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Preface

This book is a monograph of a significant and recent publications in non-linear

analysis involving set-valued mappings. A map T : X → 2Y is said to be a set-

valued mapping if for each x ∈ X , T (x) ⊂ Y .

We need analysis, topology and geometry, i.e., a mixture of these three fields, in

studying the theory of set-valued mappings. There have been a significant number

of publiactions in this area of research over the last 40 years. These have become

possible because there are huge applications in the fileds of Physics, Biology, Control

Theory, Optimization, Economics and Game Theory.

We shall cover the following topics in this book: contraction mappings, fixed

point theorems, minimax inequalities, end points, variational inequalities, general-

ized variational inequalities, and generalized quasi-variational inequalities, equilib-

rium analysis in economics, best approximation and fixed point theorems, topolog-

ical degree theory,and non-expansive types of mappings and fixed point theorems.

In Chapter 5, we shall present variational inequalities, quasi-variational equali-

ties and equilibrium analysis in economics. We have applied the topological meth-

ods to study the equilibrium analysis in economics. We shall discuss them in more

details in the Introduction Chapter. In Chapter 6, we shall discuss best approxima-

tion and fixed point theorems for set-valued mappings in topological vector spaces.

Finally, in Chapters 7 and 8 we shall present some aspects of degree theories for

set-valued mappings and non-expansive types of mappings and fixed point theorems

in locally convex topological vector spaces.

We are very much grateful to Professor Dr. Ken Smith at the Dept. of Math-

ematics of the University of Queensland for his tremendous help in making this

publication possible by compiling the manuscript into Latex format. We are also

thankful to Dr. Bevan Thompson of the same department for all his administrative

help and encouragement in completing this project.

After the sudden and unfortunate death of Dr. Enayet Tarafdar in November,

2002, I continued with the project and tried to finish it with the help of my other

friends and well wishers who were working in this area of research. In this direction,

I would like to mention the names of Dr. George Yuan and Dr. Peter Watson who

tried to help me in finishing this project with their valuable suggestons and inputs.
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Chapter 1

Introduction

Our main objective in this book is to study some aspects of non-linear analysis

which involve set-valued mappings. However, a single valued mapping T : X → Y

of a non-empty set X into a non-empty set Y can be regarded as a set-valued

mapping by considering one point {T (x)} for each each x ∈ X .

The various aspects of fixed points, minimax inequalities, end points, variational

inequalities, generalized variational inequalities, and generalized quasi-variational

inequalities, equilibrium analysis in economics, best approximation and fixed point

theorems, topological degree theory,and non-expansive types of mappings and fixed

point theorems, and related topics are considered in this book.

It is well known that fixed point theory is very important in mathematics. The

close relationship between fixed point theory and mathematical economics can be

illustrated in many ways. The usefullness of Brouwer’s fixed point theorem was

recognized by John Von Neumann when he developed the foundations of game

theory in 1928.

Fixed point and coincedence theorems for set-valued mappings and their ap-

plications to minimax theorems and economics originated from the works of John

Von Neumann (Neumann (1937)) (see also Neumann (1928b), Neumann (1928a),

Neumann and Morgenstern (1944) and Neumann and Morgenstern (1947)). Then

the theory was advanced by Kakutani (1941), Fan (1952) and others (see Zeidler’s

book (Zeidler (1985))).

In most of the economic papers appearing in any journals of economics, one

can find the terms economic equilibria, Pareto optimum in abundance. Pareto

talked about the optimum which has come to be known popularly as Pareto Op-

timum (Pareto allocation). In the last century, new discipline called mathematical

economics — has evolved into a highly developed and fast growing branch of math-

ematics blended with the components of economy, games, econometrics, psychology

and many related areas.

In fact, in a fascinating article Franklin (1983) (incidentally has a book, see

Franklin (1980)) wrote: In 1969 a spokesman for the Nobel foundation welcomed

the new prize subject, economics, as “the oldest of the arts, the youngest of the

sciences”. It might be fair to say that economics became a science when it started

1
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making significant use of mathematics.

In this book, we have applied the topological methods to study the equilibrium

analysis in economics, i.e., to prove the existence of equilibrium of social economics.

It seems that in this area nothing dominates more significantly than fixed point

theory of set-valued mappings. In fact, Nobel laureate Debreu (1959) proved two

fundamental theorems of mathematical economics by using Kakutani’s fixed point

theorem.

Let E be a topological vector space and A a non-empty subset of E. If S, T :

A→ 2E are correspondences, then T ∩ S : A → 2E is a correspondences defined by

(T ∩ S)(x) = T (x) ∩ S(x) for each x ∈ A.

Ding, Kim and Tan introduced the notions of correspondences of class L∗
θ, L∗

θ-

majorant of φ at x and L∗
θ- majorized correspondences in Ding, Kim, and Tan

(1992) as follows:

Let X be a topological space, Y be a non-empty subset of a vector space E, θ :

X → E be a map and φ : X → 2Y be a correspondence. Then (1) φ is said to be of

class L∗
θ if for every x ∈ X , conφ(x) ⊂ Y and θ(x) /∈ conφ(x) and for each y ∈ Y ,

φ−1(y) = {x ∈ X : y ∈ φ(x)} is open in X ; (2) a correspondence φx : X → 2Y

is said to be an L∗
θ majorant of φ at x if there exists an open neighborhood Nx,

of x in X such that (a) for each z ∈ Nx, φ(z) ⊂ φx(z)) and θ(z) /∈ conφx(z) (b)

for each z ∈ X , conφx, (z) ⊂ Y and (c) for each y ∈ Y, φ1(y) is open in X ; (3) φ

is L∗
θ-majorized if for each x ∈ X with φ(x) 6= ∅, there exists an L∗

θ-majorant of φ

at x.

In view of Yannelis and Prabhakar (1983, p. 239, Lemma 5.1), Ding, Kim and

Tan’s notions of the correspondence φ being of class L∗
θ or L∗

θ-majorized generalize

the notions φ ∈ C(X ,Y , θ) or C-majorized respectively which were introduced by

Tulcea (1986, p. 2). Ding, Kim and Tan pointed out that their map θ : X → E is

less restrictive than that of [Tulcea (1986)], where θ : X → Y . In most applications,

either (I) X and Y are non-empty subsets of the same topological vector space E

and θ(x) = x for all x ∈ X , or (II) X = Πi=IXI and θ(x) = πj(x) for all x ∈ X ,

where πj : X → Xj is the projection of X onto Xj and Xj and Y are non-empty

subsets of the same topological vector space E.

Ding, Kim and Tan observed that when X = Y and is convex (and θ(x) = x

for all x ∈ X), the notion of correspondence of class L∗
θ coincides with the notion

of correspondence of class L introduced by [Yannelis and Prabhakar (1983)] and

the notions of L∗
θ-majorant of φ at x and L∗

θ-majorized correspondence generalize

the notions of L-majorant of φ at x and L-majorized correspondence respectively

also introduced by [Yannelis and Prabhakar (1983)]. In the special case (I), where

θ = 1x , the identity map on X or (II), where θ = πj , L∗ is written in place of L∗
θ

if there is no ambiguity.

It should be noted that if φ is Lθ∗-majorized, then for x ∈ X, θ(x) /∈ conφ(x)

and conφ(x) ⊂ Y .

Let I be a (possibly infinite) set of agents. For each agent i ∈ I , let its choice
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set or strategy set Xi be a non-empty set in a topological vector space. Let X =

Πi∈IXI . If i ∈ I , let πi : X → Xi be the projection of X onto XI and for x ∈ X ,

let xi denote the projection πi(x) of x on Xi. Let Pi : X → 2xi be an irreflexive

preference correspondence, i.e., xi /∈ Pi(x) for all x ∈ X . Following [Gale and Mas-

Colell (1978)], the collection (Xi, Pi)i∈I will be called a qualitative game. A point

x̂ ∈ X is said to be an equilibrium of that game if Pi(x̂) = ∅ for all i ∈ I . For each

i ∈ I , let Ai be a non-empty subset of X ; if i ∈ I is arbitrarily fixed, we define

Πj 6=I,j∈iAI ⊕AI = {x = (xk)k∈I ∈ X : xk ∈ Ak for each k ∈ I}.

Let I be a (finite or an infinite) set of agents. An abstract economy Γ =

(Xi, Ai, Bi, Pi)i∈I is defined as a family of ordered quadruples (Xi, Ai, Bi, Pi), where

Xi is a topological space, Ai : Πj∈IXj → 2Xi and BiΠj∈IXj → 2Xi are constraint

correspondences and PiΠj∈IXj → 2Xi is a preference correspondence. An equilib-

rium for Γ is a point x̂ ∈ X = Πi∈IXi such that for each i ∈ I, x̂i ∈ clBi(x̂) and

Ai(x̂) ∩ Pi(x̂) = ∅. When Ai = Bi for each i ∈ I , our definitions of an abstract

economy and an equilibrium coincide with the standard definitions; e.g., in Borglin

and Keiding (1976, p. 315), or in Yannelis and Prabhakar (1983, p. 242).

In the following chapters, if E is a topological vector space, we shall denote the

dual space of E, i.e. the vector space of all continuous linear functionals on E, by

E∗ and the pairing between E∗ and E by 〈w, x〉 for each w ∈ E∗ and x ∈ E, and by

Re〈w, x〉 the real part of the pairing between w ∈ E∗ and x ∈ E. Unless otherwise

stated, if A is a subset of E, we shall denote by 2A the family of all non-empty

subsets A and by clA the closure in E, and by coA, the convex hull of A. Also, we

shall denote by F(A) the family of all non-empty finite subsets of A, by R the set

of all real numbers and R
+ = {r ∈ R : r > 0}.

Let E be a topological vector space. For each x0 ∈ E, each non-empty subset

A of E and each ε > 0, let W (x0; ε) := {y ∈ E∗ : |〈y, x0〉| < ε} and U(A; ε) :=

{y ∈ E∗ : supx∈A |〈y, x〉| < ε}. Let σ〈E∗, E〉 be the topology on E∗ generated by

the family {W (x; ε) : x ∈ E and ε > 0} as a sub-base for the neighbourhood system

at 0 and δ〈E∗, E〉 be the topology on E∗ generated by the family {U(A; ε) : A is

a non-empty bounded subset of E and ε > 0} as a base for the neighbourhood

system at 0. We note that E∗, when equipped with the topology σ〈E∗, E〉 or the

topology δ〈E∗, E〉, becomes a locally convex Hausdorff topological vector space.

Furthermore, for a net {yα}α∈Γ in E∗ and for y ∈ E∗, (i) yα → y in σ〈E∗, E〉 if

and only if 〈yα, x〉 → 〈y, x〉 for each x ∈ E and (ii) yα → y in δ〈E∗, E〉 if and

only if 〈yα, x〉 → 〈y, x〉 uniformly for x ∈ A for each non-empty bounded subset A

of E. The topology σ〈E∗, E〉 (respectively, δ〈E∗, E〉) is called the weak∗ topology

(respectively, the strong topology) on E∗. If p ∈ E, p̂ is the linear functional on E∗

defined by p̂(f) = f(p) for each f ∈ E∗.

Let X be a non-empty subset of E. Then X is a cone in E if X is convex and

λX ⊂ X for all λ ≥ 0. If X is a cone in E, then X̂ = {w ∈ E∗ : Re〈w, x〉 ≥
0 for all x ∈ X} is also a cone in E∗, called the dual cone of X .
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We shall now state a result of S. C. Fang (e.g. see [Chan and Pang (1982)] and

[Shih and Tan (1986), p. 59]) with a little modification, as follows, made in Lemma

2.4.2 in Tan (1994):

Lemma 1.1 Let X be a cone in a Hausdorff topological vector space E and

T : X → 2E
∗

be a map. Then the following statements are equivalent:

(a) There exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ 0 for all x ∈ X.

(b) There exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

Let y ∈ E. Then the inward set of y with respect to X is the set IX (y) = {x ∈
E : x = y + r(u − y) for some u ∈ X and r > 0}. We shall denote by IX(y) the

closure of IX (y) in E.

Let X and Y be topological spaces and T : X → 2Y . Then T is said to be:

upper (respectively, lower) semicontinuous at x0 ∈ X [Berge (1963), p. 109] if for

each open set G in Y with T (x0) ⊂ G (respectively, T (x0)∩G 6= ∅), there exists an

open neighbourhood U of x0 in X such that T (x) ⊂ G (respectively, T (x)∩G 6= ∅)
for all x ∈ U ;

upper (respectively, lower) semicontinuous on X if T is upper (respectively,

lower) semicontinuous at each point of X .

Moreover, T is said to be continuous on X if it is both upper semi-continuous

and lower semi-continuous on X .

Let X be a non-empty subset of E and T : X → 2E
∗

. Then T is said to be:

(i) monotone (on X)[Browder (1976), p. 79] if for each x, y ∈ X , each u ∈ T (x)

and each w ∈ T (y), Re〈w − u, y − x〉 ≥ 0;

(ii) semi-monotone [Bae, Kim, and Tan (1993), pp. 236–237] (on X) if for each

x, y ∈ X , infu∈T (x)Re〈u, y − x〉 ≤ infw∈T (y)Re〈w, y − x〉.
It is clear that if T is monotone, then T is semi-monotone. The converse is in

general false, see Example 2 in [Bae et al. (1993)].

A real-valued function ψ : X → R defined on a convex subset X of E is said to

be quasi-concave if for every real number α the set {x ∈ X : ψ(x) > α} is convex.

If X is a topological space and {Uα : α ∈ A} is an open cover for X , then

a partition of unity subordinated to the open cover {Uα : α ∈ A} is a family

βα : α ∈ A} of continuous real-valued functions βα : X → [0, 1] such that

(1) βα(y) = 0 for all y ∈ X\Uα,

(2) {support βα : α ∈ A} is locally finite and

(3) Σα∈Aβα(y) = 1 for each y ∈ X .

LetX be a non-empty subset of a topological vector spaceE and T : X → 2E
∗

be

a map. Then the generalized variational inequality problem associated with X and

T is to find ŷ ∈ X such that generalized variational inequality supw∈T (ŷ)Re〈w, ŷ−
x〉 ≤ 0 for all x ∈ X holds, or to find ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ−x〉 ≤ 0

for all x ∈ X holds. When T is single-valued, a generalized variational inequality

is called a variational inequality. Browder (1965b) and Hartman and Stampacchia
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(1966) first introduced variational inequalities. Since then, there have been many

generalizations, e.g., see Allen (1977), Bae et al. (1993), Baiocchi and Capelo (1984),

H. Brézis and Stampacchia (1972), Browder (1968), Dugundji and Granas (1978),

Kinderlehrer and Stampacchia (1980), Shih and Tan (1984), Shih and Tan (1988a),

Shih and Tan (1988c), Tan (1983) and Yen (1981), etc.

Let X and Y be subsets of a vector space E such that co(X) ⊂ Y . Then

F : X −→ 2Y is called a KKM -map if for each A ∈ F(X), co(A) ⊂ ∪x∈AF (x).

Note that if F is a KKM -map, then x ∈ F (x) for all x ∈ X .

In this research monograph, we shall use H to denote a Hilbert space with inner

product 〈 , 〉 and its corresponding induced norm ‖ · ‖.
If X is a non-empty subset of H , we shall denote by ∂H(X) the boundary of X

in H . We shall denote by bc(H) the family of all non-empty bounded closed subsets

of H . If x ∈ H and r > 0, let Br(x) = {y ∈ H : ‖x− y‖ < r}.
Let K be a non-empty closed convex subset of H . For each x ∈ H , there is a

unique point πK(x) in K such that

‖x− πK(x)‖ = inf
z∈K

‖x− z‖.

πK(x) is called the projection of x onK and is characterized as follows [Kinderlehrer

and Stampacchia (1980), Theorem 1.2.3, p. 9]:

Proposition 1.1 Let K be a non-empty closed convex subset of H. Then for

each x ∈ H and y ∈ K, y = πK(x) if and only if Re〈x− y, z− y〉 ≤ 0 for all z ∈ K.

Suppose that E and F denote two vector spaces over a scalar field Φ (either the

real field or the complex field).

Now, suppose that X is a nonempty subset of E and that 〈 , 〉 : F ×E → Φ is

a bilinear functional.

Suppose E, F and X are as above. Let T : X → 2F be a set-valued mapping,

f : X → F and η : X×X → E be two single-valued mappings, and h : X×X → R

be a real-valued function.

The generalized variational-like inequality (in short, GV LI(T, η, h, X, F )) is:

find ŷ ∈ X and ŵ ∈ T (ŷ) such that

〈ŵ, η(ŷ, x)〉 + h(ŷ, x) ≤ 0, ∀x ∈ X. (1.1)

The generalized variational-like inequalities were used by Chowdhury and Tan

in the simplest form in Chowdhury and Tan (1996) using the name of the operators

as generalized variational inequalities (GVI). Later, Tarafdar and Ding gave a gen-

eralization of these GVI and called these operators as generalized variational-like

inequalities (GVLI) in their paper in Ding and Tarafdar (2000).

The GV LI(T, η, h, X, F ) given in (1.1) includes various variational inequal-

ities studied in Chan and Pang (1982), Chowdhury and Tan (1996), Ding and

Tarafdar (1996), Ding and Tarafdar (1994), Ding and Tarafdar (1995), Fang and
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Peterson (1982), Harker and Pang (1990), Jou and Yao (1993), Noor (1988), Noor

(1992), Noor (1995), J. Parida and Kumar (1989),and Rockafeller (1970), as special

cases. In particular, when η(ŷ, x) = ŷ − x and there exists h′ : X → R such that

h(ŷ, x) = h′(ŷ)−h′(x) then the GVLI (1.1) reduces to Chowdhury and Tan’s GVLI

in Chowdhury and Tan (1996).

Suppose thatX is a nonempty subset of a topological vector space E. A function

φ : X × X → R ∪ {±∞} is said to be 0-diagonally concave (in short, 0-DCV) in

the second argument Zhou and Chen (1988), if for any finite set {x1, · · · , xn} ⊂ X

and any λi ≥ 0,
n∑
i=1

λi = 1, we have
∑n

i=1 λiφ(y, xi) ≤ 0 where y =
n∑
i=1

λixi.

An ordered set is a non-empty set X with a binary relation ≤ defined on it that

is reflexive, transitive and anti-symmetric.

A lattice is an ordered set such that sup{x, y} and inf{x, y} exist for each pair,

x, y in X .

An ordered vector space (L,≤) is a vector space L over the reals such that L is

an ordered set and f ≤ gimplies f + h ≤ g + h for all h in L and αf ≤ g for all

α ≥ 0.

An ordered vector space L which is also a lattice is said to be a Riesz space.

The set L+ = {f ∈ L/f ≥ 0} is called the positive cone of L.

Let L be a Riesz space. Then for f ∈ L we put f+ = f ∨ 0, f− = (−f) ∨ 0 and

|f | = f ∨ (−f), where x ∨ y is the supremum of the two elements x and y.

A linear functional f : L → R is said to be order-bounded whenever f maps

order-intervals of the form [−u, u] = {a ∈ L| − u ≤ a ≤ u}, where u ∈ L+, into

bounded subsets of the real line. The vector space of all order-bounded linear

functionals on L is called the order-dual of L and is denoted by L∼. In L∼, an

ordering ≥ is introduced by saying f ≥ g whenever f(u) ≥ g(u) for all u ∈ L+.

Variational inequalities are offshoot of fixed point theorems. Many problems,

e.g., Euler-Lagrange equations – which could be dealt with direct method of calculus

of variations, can now be solved by variational inequalities. One such has been done

by Browder (1970).

The topic of variational inequalities has gained importance in analysis in the

last forty five years both theoretically and practically. The variational inequality

theory has many dversified applications. The important developments in variational

inequality theory are formulations that variational inequalities can be used to study

problems of fluid flow through porous media, contact problems in elasticity, transpo-

sition problems and economic equilibria. Moreover, there are applications in control

problems with a quadratric objective functional where the control equations are par-

tial differential equations. There are intimate interconnections between variational

inequalities, stochastic differential equations, and stochastic optimization.

An important area is Mathematical Programming and is known as Complemen-

tarity Theory. It was proved that if the set involved in a variatioal inequality and

a complementarity problem is a convex cone, then both problems are equivalent.
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We remark here that the development of variatioal inequalities can be viewed

as the simultaneous pursuit of two different lines of research: On the one side, it

reveals the fundamental facts on the qualitative behaviour of solutions (such as its

existence, uniqueness and regularity) to important classes of problems. On the other

side, it enables us to develop highly efficient and powerful new numerical methods

to solve, for example, free and moving boundary value problems and the general

equilibrium problems. Among the most effective numerical techniques are projection

methods and its variant forms, linear approximation method, relaxation method,

auxiliary principle and penalty function techniques. In addition to these methods,

the finite element technique which is also being applied for the approximate solution

of variational inequalities, have been obtained by many mathematicians.

In recent years, various extensions and generalizations of variational inequalities

have been considered and studied. It is clear that in variational inequalities formu-

lation, the convex set involved does not depend on solutions. If the convex set does

depend on solutions, then the variational inequalities are called quasi-variational

inequalities.

Now, suppose X , E and E∗ are same as defined above. Then, given a (point-

to-set) map S : X → 2X and and a (point-to-point) map T : X → E∗, the

quasi-variational inequality (QVI) problem is to find a point ŷ ∈ S(ŷ) such that

Re〈T (ŷ), ŷ − x〉 ≤ 0 for all x ∈ S(ŷ). The QVI was introduced by Bensousson and

Lions in 1973 (see, e.g., [Bensousson and Lions (1973)]) in connection with impulse

control. A recent work concerning the QVI may be found in Mosco [Mosco (1976)].

Again, if we consider a point-to-set map T : X → 2E
∗

, then the generalized

quasi-variational inequality (GQVI) problem is to find a point ŷ ∈ S(ŷ) and a point

ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

In 1982, for the study of operations research, mathematical programming and

optimization theory, Chan and Pang (Chan and Pang (1982)) first introduced the

so-called generalized quasi-variational inequalities in finite dimensional spaces. In

1985, Shih and Tan (Shih and Tan (1985)) were the first to study the GQVI in

infinite dimensional locally convex Hausdorff topological vector spaces. Since then,

there have been a numerous generalizations of the existence theorems on general-

ized quasi-variational inequalities. We shall present different types of variational

inequalities, quasi-variational equalities and the equilibria of generalized games in

Chapter 5.

In Chapter 6, we shall discuss best approximation and fixed point theorems for

set-valued mappings in topological vector spaces. In Chapter 7, we give a presen-

tation of the classical theory of the degree of a mapping as given by Kronecker

and Brouwer. We also discuss its extension by Leray and Schauder to mappings

in infinite dimensional Banach spaces of the form I − Q, with Q compact. The

details of the existence and uniqueness of these degrees as defined by the additional

properties of additivity, homotopy invariance, and normalization will be elaborated.

Further, we shall discuss a self-contained exposition of the recent extension of these
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existence and uniqueness results for the degree functions for nonlinear mappings of

monotone type from a reflexive Banach space X to its conjugate space X∗. We

shall find out how such mappings arise from the combination of the ideas of fixed

point theory and the somewhat different circle of ideas associated with the direct

method of the calculus of variations. The concept of degree of mapping in all these

forms is one of the most effective tools for studying the properties of existence and

multiplicity of solutions of nonlinear equations.

Finally, in Chapter 8 we shall present some aspects of non-expansive types of

mappings and fixed point theorems in locally convex topological vector spaces.
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Chapter 2

Contraction Mappings

2.1 Contraction Mapping Principle in Uniform Topological Spaces

and Applications

Let (X, ρ) be a metric space. Then a mapping f of X into itself is called a

contraction on X if there exists a real number r with 0 < r < 1 such that

ρ(f(x), f(y)) ≤ rρ(x, y) for all points x and y in X . Banach contraction map-

ping principle states that if (X, ρ) is a complete metric space and f is a contraction

on X , then f has a unique fixed point a ∈ X such that fn(x) → a for each x ∈ X .

This principle is well known for its wide scope of applications in analysis. It is,

therefore, of some interest to extend this principle in complete Hausdroff uniform

spaces which are generalizations of complete metric spaces.

Let (X,h) be a uniform space, h being the uniformity, i.e., the family of en-

tourages. Taylor (Taylor (1972)) has introduced the following definitions:

Let B be a base of h. If f maps X into itself; then

(a) f is said to be B-nonexpansion on X if (x, y) ∈ H implies (f(x), f(y)) ∈ H

for each H ∈ B.

(b) f is said to be B-contraction on X if, for each H ∈ B, there is a K ∈ B such

that (x, y) ∈ H ◦K implies (f(x), f(y)) ∈ H .

(c) f is said to be asymptotically regular if for each x ∈ X and entourage H ∈ h

there is a positive integer n0 such that (fn(x), fn+1(x)) ∈ H for n ≥ n0.

The following result is obtained in (Taylor (1972)(see Tarafdar (1974), Lemma

1.5)).

Let (X,h) be a complete well-chained Hausdorff uniform space and B a base

for h. If f is a B-contraction on X , then f has a unique fixed point a ∈ X such

that fn(x) → a for each x ∈ X . (For definition of well-chained uniform space see

(Tarafdar (1974), p. 166).)

This result is not an exact analogue of Banach contraction mapping principle in

the sense that an additional condition of the space being well chained is imposed

on X .

In Section 2.2 of this chapter we shall obtain an exact analogue of Banach

contraction mapping principle on a complete Hausdorff uniform space by giving a

9
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suitable definition of contraction mapping on a uniform space (which will reduce to

the well-known definition of contraction mapping stated in the beginning when the

uniform space is a metric space).

In (J. B. Diaz and Metcalf (1969)) Diaz and Metcalf obtained a series of results

on the cluster set of successive approximations in a metric space by using mainly

the non-expansion and contraction of a mapping with respect to the set of fixed

points of the mapping. The main source of this work of Diaz and Metcalf was

a paper of Tricomi (Tricomi (1916)) which is concerned with iteration of a real

function. In Section 2.3 we shall present most of the results of (J. B. Diaz and

Metcalf (1969)) extended to a uniform space. In that section we shall present

some applications of the results of the Sections 2.2 and 2.3 in locally convex linear

topological spaces. We should point out that the theory of non-expansive mappings

has been growing very rapidly and a good account of the existing literature can be

obtained in (Defigueiredo (1967)).

2.2 Banach Contraction Mapping Principle in Uniform Spaces

Let (x, h) be a uniform space, h being the uniformity. The uniform topology induced

by h will be denoted by τh. A family [ρα : α ∈ I ] of pseudometrics on X is called

an associated family for the uniformity h on X if the family [H(α, ε) : α ∈ I, ε > 0],

where H(α, ε) = [(x, y) : ρα(x, y) < ε], is a subbase for h. (For definition of subbase

and base for h, see Kelley (Kelley (1955)).) A family [ρα : α ∈ I ] of pseudometrics

on X is called an augmented associated family for h if [ρα : α ∈ I ] is an associated

family for h and has the additional property that, given α, β ∈ I, there is a ν ∈ I

such that ρν(x, y) ≥ max(ρα(x, y), ρβ(x, y)) for all (x, y) ∈ X ×X . An associated

family and an augmented associated family for h will be respectively denoted by

A(h) and A∗(h).
It is well known that if (X,h) is a uniform space and [ρα : α ∈ I ] = A∗(h), then

the family [H(α, ε) : α ∈ I, ε > 0] is a base for h (see Thron (Thron (1966), p. 179) or

(Kelley (1955), pp. 188–189)). It is also well known that for each uniformity h on X ,

there exists a family [ρα : α ∈ J ], of pseudometrics on X that determines a unique

uniformity h on X such that A(h) = [ρα : α ∈ J ] and A(h) can be enlarged to A∗(h)
by adjoining to A(h) all the pseudometrics of the form max[ραk

: k = 1, 2, . . . , n],

where [α1, α2, . . . , αn] is an arbitrary finite subset of the index set J (for details see

(Thron (1966), p. 177)).

We now present the following definitions in (Tarafdar (1974), pp. 210–211). Note

that all the results of this section are taken from (Tarafdar (1974)).

Let (X,h) be a uniform space and let [ρα : α ∈ I ] = A∗(h). If f maps X into

itself, then

(i) f is said to be A∗(h)-non-expansion on X , or simply non-expansion on X , if

for each α ∈ I , ρα(f(x), f(y)) ≤ ρα(x, y) for all (x, y) ∈ X ×X ;
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(ii) f is said to be A∗(h)-contracton on X if for each α ∈ I, there exists

a real number r(α) with 0 < r(α) < 1 such that for all (x, y) ∈ X × X we

have ρα(f(x), f(y)) ≤ r(α)ρα(x, y) (we note that the above inequality implies

ρα(f(x), f(y)) = 0 if ρα(x, y) = 0);

(iii) f is said to be A∗(h)-asymptotically regular on X , or simply asymptotically

regular on X , if for each x ∈ X and α ∈ I ,

lim
n→∞

ρα(fn(x), fn+1(x)) = 0.

Remark 2.1 (Tarafdar (1974)) If f is A∗(h)-non-expansion, -contraction, or

-asymptotically regular on X , then it is trivial to see that f is also A(h)-non-

expansion, -contraction, or -asymptotically regular, respectively, on X . The con-

verse of this is also true, i.e., if f is A(h)-non-expansion, -contraction, or -

asymptotically regular on X , then f is A∗(h)-non-expansion, -contraction, or -

asymptotically regular, respectively, on X . We prove it for the case of contraction.

The case of non-expansion, and asymptotically regularity follows similarly.

Let f be A(h)-contraction. Let A(h) = [ρα : α ∈ J ]. Let ρ ∈ A∗(h) be

arbitrary. If ρ ∈ A(h), then ρ = ρα for some α ∈ J . Hence there will exist a

real number τ(α) with 0 < τ(α) < 1 satisfying the condition of Definition (ii) as

f is A(h)-contraction. If ρ 6∈ A(h), then ρ = max[ραk
: k = 1, 2, 3, . . . , n] for some

finite subset [α1, α2, . . . , αn] of J . Let τ = max[τ(αk) : k = 1, 2, 3, . . . , n], where

τ(αk)’s are obtained from the definition of A(h)-contraction of f . We will assert

that τ which clearly satisfies the relation 0 < τ < 1 is the required number for

ρ. Let (x, y) ∈ X × X . Then ρ(x, y) = ραm(x, y) for some m = 1, 2, 3, . . . , n and

ρ(f(x), f(y)) = ραj (f(x), f(y)) for some j = 1, 2, 3, . . . , n.

Now noting that f is A(h)-contraction, and ραj ∈ A(h) and that ραj (x, y) ≤
ραm(x, y), we have

ρ(f(x), f(y)) = ραj (f(x), f(y)) ≤ τ(αj)ραj (x, y) ≤ τ(αj)ραm(x, y)

= τ(αj)ρ(x, y) ≤ τρ(x, y) as τ(αj) ≤ τ.

Clearly, τ depends on α1, α2, . . . , αn and hence on β for which ρ = ρβ ∈ A∗(h) =

[ρα : α ∈ I ].

Thus we see that it does not matter whether we use A(h) or A∗(h) in the above

definitions.

Remark 2.2 (Tarafdar (1974)) It is easy to see that the Definition (c) of Taylor

(1972) for asymptotic regularity stated in the beginning of Section 2 is equivalent to

the Definition (iii) (Tarafdar (1974), p. 211) above. Also, if we take B = [H(α, ε) :

α ∈ I, ε > 0], where [ρα : α ∈ I ] = A∗(h), then we see that Definition (a) of Taylor

(1972) for B-non-expansion coincides with Definition (i) (Tarafdar (1974), p. 211)

above for non-expansion. However, Definition (b) of Taylor for B-contraction is

not, in general, equivalent to the above Definition (ii) (Tarafdar (1974), p. 211) for

contraction. We can see this by comparing Theorem 2.1 below, the first lemma in

Taylor (1972) and the discussion following this first lemma in Taylor (1972).
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Remark 2.3 (Tarafdar (1974)) If (X,h) is replaced by a metric space (X, d),

then the above Definitions (i), (ii) and (iii) (Tarafdar (1974), p. 211) reduce respec-

tively to the well known definitions for non-expansion, contraction and asymptotic

regularity on the metric space (X, d).

The following result is Theorem 1.1 in Tarafdar (1974):

Theorem 2.1 (Banach Contraction Mapping Principle) Let (X,h) be a Haus-

dorff complete uniform space and let [ρα : α ∈ I ] = A∗(h). Let f be a contraction

on X.

Then f has a unique fixed point a ∈ X such that fn(x) → a in τh-topology for

each x ∈ X.

Proof. Let x0 ∈ X . Let xn = f(xn−1) = fn(x0), n = 1, 2, . . . . Let α ∈ I be

arbitrary. If m and n are positive integers with m < n, then

ρα(xm, xn) = ρα(fm(x0), f
n(x0)) = ρα(fm(x0), f

mfn−m(x0))

≤ {τ(α)}mρα(x0, f
n−m(x0)) = {τ(α)}mρα(x0, xn−m)

≤ {τ(α)}m[ρα(x0, x1) + ρα(x1, x2) + · · · + ρα(xn−m−1, xn−m)]

≤ {τ(α)}mρα(x0, x1)[1 + τ(α) + · · · + {τ(α)}n−m−1

< {τ(α)}m ρα(x0, x1)

(1 − τ(α))
→ 0 as m,n→ ∞.

Hence {xn}∞n=1 is a ρα-Cauchy sequence (i.e., a Cauchy sequence in ρα-

topology). Since α ∈ I is arbitrary, {xn}∞n=1 is a ρα-Cauchy sequence for each

α ∈ I . Let Sp = {xn : n ≥ p} for all positive integers p and let B be the filter

basis {Sp : p = 1, 2, . . . }. Then, since {xn}∞n=1 is a ρα-Cauchy sequence for each

α ∈ I , it is easy to see that the filter basis B is Cauchy in the uniform space (X,h).

To see this we first note that the family [H(α, ε) : α ∈ I, ε > 0] is a base for h as

A∗(h) = [ρα : α ∈ I ]. Now let H ∈ h be an entourage. Then there exist a ν ∈ I and

ε > 0 such that H(ν, ε) ⊂ H . Now since {xn}∞n=1 is a ρν-Cauchy sequence in X ,

there exists a positive integer p such that ρν(xm, xn) < ε for m ≥ p, n ≥ p. This

implies that Sp × Sp ⊂ H(ν, ε). Thus given any H ∈ h, we can find a Sp ∈ B such

that Sp × Sp ⊂ H . Hence B is a Cauchy filter in (X,h). Since (X,h) is complete

and Hausdorff, the Cauchy filter B = {Sp} converges to a unique point a ∈ X in the

τh-topology. Thus τh-limSp = a. Now since f is a ρα-continuous for each α ∈ I ,

it follows that f is τh-continuous. Hence f(a) = f(τh-limSp) = τh-lim f(Sp) = τh-

limSp+1 = a. Thus a is a fixed point of f .

We now complete the proof of our theorem by showing that a is the only fixed

point of f . We assume that f has another fixed point b such that a 6= b and

deduce an absurdity from this assumption. Since (X,h) is a Hausdorff space and

a 6= b, there is an index β ∈ I such that ρβ(a, b) 6= 0. Since f is a contraction on

X , ρβ(a, b) = ρβ(f(a), f(b)) ≤ τ(β)ρβ(a, b) which is absurd as 0 < τ(β) < 1 and

ρβ(a, b) 6= 0. This together with the fact that τh-limSp = a implies τh-limxn = a

completes the proof.
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Note: When I = {1}, we obtain the famous Banach contraction mapping prin-

ciple in a complete metric space (Banach (1922), pp. 133–181).

For more on contraction mapping principle we refer to Lee (Lee (1977)) and

Morales (Morales (1980) (1980)).

Remark 2.4 The following facts are noted in Chu and Diaz (Chu and Diaz

(1965)) in metric space situation.

1. If f : (X, τh) → (X, τh) of a complete Hausdorff uniform topological space

(X, τh) into itself such that fN is a contraction mapping for some positive integer

N , then f has a unique point x0 ∈ X .

By our Theorem 2.1, fN has a unique point x0 ∈ X . Now for each α ∈ I ,

ρα(f(x0), x0) = ρα(ffN(x0), f
N (x0)) = ρα(fN(f(x0), f

N (x0)) ≤ ταρα(f(x0), x0)

which implies ρα(f(x0), x0) = 0 as 0 < τα < 1. Since X is Hausdorff, f(x0) = x0.

Since a fixed point of f is necessarily a fixed point of fN , x0 is the unique point

of f .

In fact the following is true.

2. If f : X → X is a mapping of a non-empty set X into itself such that fN has

a unique fixed point x0 ∈ X for some positive integer N , then x0 is also the unique

fixed point of f . Indeed, f(x0) = f(fN(x0)) = fN (f(x0)). Thus by the uniqueness

of fixed point of fN , f(x0) = x0.

3. If f, g : X → X is a mapping of X into itself such that f commutes with g,

i.e., fg = gf and f has a unique fixed point x0 ∈ X , then x0 is also a fixed point

of g.

Evidently, g(x0) = gf(x0) = fg(x0). Thus g(x0) is a fixed point of f . Hence by

the uniqueness of fixed point of f , g(x0) = x0.

Example 2.1 (The example of I.I. Glick cf. Chu and Diaz (Chu and Diaz (1965))

of discontinuous mapping T with T 2 is contracting.) Let X = C([0, 1]) be the

complete metric space with usual supremum metric ρ, i.e., ρ(f, g) = supa≤t≤1 |(f −
g)(t)|. Let H be Hamel basis of X containing the set A = {ex, 1, x, x2, . . . } of

linearly independent vectors.

Now we define a mapping T on H by

T (ex) =
1

2
.1, T (1) =

1

2
.ex, and T (h) =

1

2
.h if h 6= ex and 1.

T can be extended to C[0, 1] by T (x) =
∑n
i=1 αiT (hi) when x =

∑n
i=1 αihi, n is

a positive integer, αi 6= 0 for i = 1, 2, . . . , n, and hi ∈ H for i = 1, 2, . . . , n; also

let T (0) = 0. Then it can be easily checked that T 2 = I and, theerefore, T 2 is

contracting. Now we see that T is not continuous at ex, that is

lim
n→∞

T (

n∑

k=0

1

k!
xk) 6= T (ex) =

1

2

as limn→∞[T (1 +
∑∞

k=1
1
k!x

k)] = limn→∞[ 12e
x + 1

2

∑n
k=1

1
k!x

k] = ex − 1
2 .
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2.2.1 Successive Approximation

In this section We shall present extensions of some of the results of Diaz and Metcalf

(J. B. Diaz and Metcalf (1969)) to Hausdorff uniform spaces.

We shall begin with the following lemmas:

Lemma 2.1 (Tarafdar (1974), p. 213) Let (X,h) be a uniform space and let

[ρα : α ∈ I ] = A∗(h). If X is τh-compact, then X is ρα-compact for each α ∈ I.

(A topological space (X, τ) is τ -compact if every τ -open covering of X has a finite

subcovering.)

Lemma 2.2 (Tarafdar (1974), p. 213) Let (X,h) be a uniform space and let

[ρα : α ∈ I ] = A∗(h). Let {xn}n∈J be a net in X.

(a) If {xn}n∈J is τh-convergent and converges to x, then for each α ∈ I, it is

ρα-convergent and converges to x. Conversely, if {xn}n∈J is ρα-convergent and

converges to x for each α ∈ I, then it is τh-convergent and converges to x.

(b) If y is τh-cluster point of the net {xn}n∈J , then y is a ρα-cluster point of the

net {xn}n∈J for each α ∈ I.

The proofs of the above two lemmas are trivial and hence omitted.

Lemma 2.3 (Tarafdar (1974), p. 213) Let (X,h) be a Hausdorff uniform space

and let [ρα : α ∈ I ] = A∗(h). If A and B are a disjoint pair of τh-compact subsets of

X, then there exists at least one β ∈ I such that ρβ(A,B) > 0, that is ρβ(x, y) > 0

for all x ∈ A and all y ∈ B.

Proof. Since X is τh-Hausdorff, it follows that A and B are disjoint τh-closed and

τh-compact subsets of X . Hence we can find a symmetric entourage W ∈ h such

that W (A) ∩W (B) = ∅ (e.g., see (Schubert (1964), Theorem 5, p. 117) where for

any subset C of X , W (C) = {y ∈ X : (x, y) ∈ W,x ∈ C}; i.e., W (C) = ∪x∈CW (x)

where W (x) = {y ∈ X : (x, y) ∈W}.
With this symmetric entourage W we can construct a sequence {Wn} of sym-

metric entourages such that Wn ◦Wn ◦Wn ⊂ Wn−1, W1 = W ∩W−1 = W and

W0 = X and we can show that there exists a pseudometric ρ ∈ A∗(h) such that for

each positive integer n, Wn ⊂ [(x, y) : ρ(x, y) ≤ 2−n] ⊂Wn−1 (for details see Thron

(Thron (1966), pp. 178–179)). We first assert that for no pair (x, y) of points with

x ∈ A, y ∈ B we have ρ(x, y) = 0. We suppose contrary to what we wish to prove

that for some pair (p, q) of points with p ∈ A and q ∈ B, we have ρ(p, q) = 0. Then

since ρ(p, q) = 0, (p, q) ∈ Wn for each n and hence (p, q) ∈ W1 = W in particular.

Then clearly, p ∈W (A) and p ∈W (B). This contradicts W (A)∩W (B) = ∅. Thus

we have proved our assertion. Next we prove that ρ(A,B) > 0. Since ρ ∈ A∗(h)
and A and B are τh-compact, we have, by Lemma 2.1, that A and B are both

ρ-compact.

Hence, if ρ(A,B) = 0, then there would exist a pair (x, y) of points with x ∈ A

and y ∈ B such that ρ(x, y) = 0 which would contradict our established assertion

that ρ(x, y) 6= 0 for each pair (x, y) of points with x ∈ A abd y ∈ B. Hence
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ρ(A,B) > 0. As ρ ∈ A∗(h), ρ = ρβ for some β ∈ I . Thus we have proved the

lemma.

Notation: Let (X,h) be a uniform space and let f : X → X be a mapping ofX into

X . Then F (f) will be the set of fixed points of f , i.e., F (f) = {x ∈ X : f(x) = x}.
For any x ∈ X , L(x) will denote the set of all cluster points of the net (sequence)

of iterates {fn(x)}∞n=1, i.e., L(x) is the set of all y ∈ X such that {fni(x)}i∈J → y

in τh-topology for some subnet {fni(x)}i∈J of the net {fn(x)}∞n=1.

The following is an extension of Theorem 6 in (J. B. Diaz and Metcalf (1969))

to the uniform space.

Theorem 2.2 (Tarafdar (1974), p. 214) Let (X,h) be a non-empty Hausdorff

uniform space and let [ρα : α ∈ I ] = A∗(h). Let f : X → X be τh-continuous. Also

let

(a) f(X) be τh-compact; and

(b) f be asymptotically regular on X.

Then for each x ∈ X, the τh-cluster set L(x) is a non-empty τh-closed and τh-

connected subset of F (f). In case L(x) is just one point, then τh-lim fm(x) exists

and belongs to F (f). In case L(x) contains more than one point, then it is contained

in the τh-boundary of F (f). [The τh-boundary of a subset K of X = τh-closure of

K − τh-Int K where Int K stands for the interior of K.]

Proof. (Tarafdar (1974), pp. 214–217) The sequence {fn(x)}∞n=1 being also a net

in the compact set f(X) has a cluster point. Hence L(x) is non-empty. We prove

the rest of the theorem in few steps.

(i) L(x) is a subset of F (f). Let y ∈ L(x). Then there is a subnet {fnj (x)}j∈J
of the net {fn(x)}∞n=1 such that fnj (x) → y in τh-topology. Also since f is τh-

continuous, the net fnj+1(x) → f(y) in τh-topology. Hence by Lemma 2.2, for each

α ∈ I , the net fnj (x) → y and the net fnj+1(x) → f(y) in the ρα-topology of X .

Let α ∈ I be arbitrary. Then for each j ∈ J , we have

ρα(f(y), y) ≤ ρα(f(y), fnj+1(x)),+ρα(fnj+1(x), fnj (x)) + ρα(fnj (x), y). (2.1)

Let ∅ > 0 be arbitrarily chosen. Then since in ρα-topology of X , fnj+1(x) →
f(y) and fnj (x) → y and since by asymptotic regularity we have ρα(fnj+1(x),

fnj (x)) → 0, we can find a p ∈ J such that for all nj ≥ np we have simultaneously

ρα(fnj+1(x), f(y)) <
ε

3
, ρα(fnj+1(x), fnj (x)) <

ε

3
, and ρα(fnj (x), y) <

ε

3
.

(2.2)

Now from (2.1), and (2.2) we have ρα(f(y), y) < ε. Sincce ε is arbitrary,

ρα(f(y), y) = 0. Again since α is arbitrary, ρα(f(y), y) = 0 for each α ∈ I . Finally

since X is Hausdorff, it follows that f(y) = y. (The uniform space X is Hausdorff

iff, given two distinct points x and y, there is a β ∈ I such that ρβ(x, y) 6= 0.)

(ii) L(x) is a τh-closed subset of F (f). It is well known that the cluster set of

any net is always closed. Thus L(x) is a τh-closed subset of F (f) as we have proved
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in (i) that L(x) ⊂ F (f).

(iii) We now prove that L(x) is a τh-connected subset of F (f). Although our

proof is similar to the proof of the corresponding part of Theorem 6 in J. B. Diaz

and Metcalf (1969), our Lemma 2.3 will play the crucial role. If L(x) consists of a

single point, then there is nothing to prove. So, we may suppose that L(x) consists

of more than one point. We assume that L(x) is not a τh-connected subset of F (f)

and deduce a contradiction from this assumption. Since L(x) is not a τh-connected

subset of F (f), L(x) = S1 ∪ S2 where S1 and S2 are both non-empty and τh-closed

and S1 ∩ S2 = ∅. Also since f(X) is compact, it follows that S1 and S2 are both

τh-compact. Thus S1 and S2 are disjoint τh-closed and τh-compact subsets of X .

Now for each α ∈ I , let

Sα1 = {y ∈ F (f) : ρα(y, S1) ≤
1

4
ρα(S1, S2)

and

Sα2 = {y ∈ F (f) : ρα(y, S2) ≤
1

4
ρα(S1, S2).

F (f), being a τh-closed subset of τh-compact set f(X), is τh-compact. Hence F (f)

is, by Lemma 2.1, ρα-compact for each α ∈ I . Hence Sα1 and Sα2 being ρα-closed in

F (f), are both ρα-compact subsets of F (f) for each α ∈ I .

We first prove that limm→∞ ρα(fm(x), Sα1 ∪Sα2 ) = 0 for each α ∈ I . We suppose

that this is not true for some β ∈ I and obtain a contradiction. Then there would

exist ε > 0 and a subsequence {fni(x)}∞i=1 of the sequence {fm(x)}∞m=1 such that

ρβ(f
ni(x), Sβ1 ∪ Sβ2 ) ≥ ε > 0, for each i = 1, 2, . . . . (2.3)

Now the subsequence {fni(x)}∞i=1, being a net in the τh-compact set f(X), has a

cluster point, say, z. Then obviously z ∈ L(x) and z is a ρβ-cluster point of the

sequence {fni(x)}∞i=1 by Lemma 2.2. Hence there is a subsequence {fnpj (x)}∞j=1 of

the sequence {fni(x)}∞i=1 such that limj→∞ ρβ(f
npj (x), z) = 0 because ρβ-topology

ofX satisfies the first axiom of countability. Now since z ∈ L(x) = S1∪S2 ⊂ Sβ1 ∪Sβ2 ,

we have

ρβ(f
npj (x), Sβ1 ∪ Sβ2 ) ≤ ρβ(f

npj (x), z), j = 1, 2, . . . .

Hence

lim
j→∞

ρβ(f
npj (x), Sβ1 ∪ Sβ2 ) = 0

which contradicts (2.3).

Thus we have proved that

lim
m→∞

ρα(fm(x), Sα1 ∪ Sα2 ) = 0 for each α ∈ I.

Since S1 and S2 are disjoint, τh-closed and τh-compact subsets of X , by Lemma

2.3, there exists at least one ν ∈ I such that ρν(S1, S2) > 0. We now prove that
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Sν1 and Sν2 are disjoint. If p ∈ Sν1 ∩ Sν2 then, since S1 and S2 are both ρν-compact

subsets (by Lemma 2.1) of F (f), there would exist points a ∈ S1 and b ∈ S2 such

that ρν(p, S1) = ρν(a, p) and ρν(p, S2) = ρν(p, b).

Hence 0 < ρν(S1, S2) ≤ ρν(a, b) ≤ ρν(a, p) + ρν(p, b) = ρν(p, S1) + ρν(p, S2) ≤
1
2ρν(S1, S2) which is absurd. Thus Sν1 and Sν2 are disjoint. Also we have noted

earlier that both Sν1 and Sν2 are ρν -closed ρν-compact subsets of F (f). Hence

ρν(S
ν
1 , S

ν
2 ) > 0. In summary we have

ρν(S
ν
1 , S

ν
2 ) > 0; lim

m→∞
ρν(f

m(x), fm+1(x)) = 0 and lim
m→∞

ρν(f
m(x), Sν1 ∪ Sν2 ) = 0.

In view of the last two limits we can find a positive integer M such that, for all

m ≥M ,

ρν(f
m(x), fm+1(x)) <

ρν(S
ν
1 , S

ν
2 )

3
and ρν(f

m(x), Sν1 ∪ Sν2 ) <
ρν(S

ν
1 , S

ν
2 )

3
.

The rest of the proof is similar to that in (J. B. Diaz and Metcalf (1969)) and

we repeat this for the sake of clarity and completeness. It follows from the last

inequality that for any m ≥M , we have either

ρν(f
m(x), Sν1 ) <

ρν(S
ν
1 , S

ν
2 )

3
(2.4)

or,

ρν(f
m(x), Sν2 ) <

ρν(S
ν
1 , S

ν
2 )

3
. (2.5)

The set of integers m ≥M satisfying (2.4) is not empty as S1 is not empty and the

set of integers m ≤ M satisfying (2.5) is not empty as S2 is not empty. Hence we

can find a positive integer n ≥M such that we have both

ρν(f
n(x), Sν1 ) <

ρν(S
ν
1 , S

ν
2 )

3
and ρν(f

n+1(x), Sν2 ) <
ρν(S

ν
1 , S

ν
2 )

3
.

[For any m1 ≥ M such that ρν(f
m1(x), Sν1 ) <

ρν(Sν
1 ,S

ν
2 )

3 there always exists a

positive integer m2 > m1 such that ρν(f
m2(x), Sν2 ) <

ρν(Sν
1 ,S

ν
2 )

3 . n can be chosen to

be one less than smallest such m2.]

By using ρν-compactness of Sν1 and Sν2 we have

ρν(S
ν
1 , S

ν
2 ) ≤ ρν(f

n(x), Sν1 ) + ρν(f
n(x), fn+1(x)) + ρν(f

n+1(x), Sν2 ).

But then by what we have proved above

ρν(S
ν
1 , S

ν
2 ) <

ρν(S
ν
1 , S

ν
2 )

3
+
ρν(S

ν
1 , S

ν
2 )

3
+
ρν(S

ν
1 , S

ν
2 )

3
= ρν(S

ν
1 , S

ν
2 )

which is impossible. Hence our original assumption that L(x) is not a τh-connected

subset of F (f) is wrong. Thus we have proved that L(x) is a τh-connected subset

of F (f).
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(iv) If L(x) consists of a single point, then we prove that τh-lim fm(x) exists.

Let us denote the only cluster point of {fm(x)}∞m=1 by p. We prove that τh-

lim fm(x) = p. Let us assume that τh-lim fm(x) 6= p and deduce a contradiction

from this assumption. Then there is a subnet {fmk(x)}k∈K of the net {fm(x)}∞m=1

such that {fmk(x)}k∈K has no subnet converging to p in the τh-topology. But since

{fmk(x)}k∈K is a net in the τh-compact set f(X), it has a subnet converging to a

point, say, q in the τh-topology, i.e., it has a τh-cluster point q. Clearly, p 6= q and

q is also a τh-cluster point of the net {fm(x)}∞m=1. Hence L(x) consists of at least

two distinct points p and q. This contradiction proves that τh-lim fm(x) = p.

(v) Finally, we prove that if L(x) consists of more than one point, then it is in

the τh-boundary of F (f). Since L(x) consists of more than one point, it is clear

that fm(x) 6∈ F (f) for any m = 0, 1, 2, . . . , where f 0(x) = x. Let y ∈ L(x) be

arbitrary. If y belonged to Int F (f), then it would follow that Int F (f) would

contain fk(x) for some positive integer k which would contradict the assumption

that L(x) contains more than one point. Hence y ∈ τh-boundary of F (f). Thus

L(x) ⊂ τh-boundary of F (f).

The following theorem is the generalization of some parts of the main result

(Theorem 2) of (J. B. Diaz and Metcalf (1969)) to uniform space.

Theorem 2.3 (Tarafdar (1974), p. 214) Let X,h) be a Hausdorff uniform space

and let [ρα : α ∈ I ] = A∗(h). Let fX → X be τh-continuous. Also suppose that

(i) F (f) is non-empty and compact;

(ii) for each x ∈ X, with x 6∈ F (f) we have for each α ∈ I, ρα(f(x), F (f)) <

ρα(x, F (f)) if ρα(x, F (f)) 6= 0 and ρα(f(x), F (f)) = 0 if ρα(x, F (f)) = 0.

Then for each x ∈ X the set L(x) is a closed subset of F (f). If L(x) consists of

more than one point, then L(x) is contained in the τh-boundary of F (f).

Proof. We have nothing to prove if L(x) is empty. So we may suppose that L(x)

is non-empty. Again, if x ∈ F (f) or fk(x) ∈ F (f) for some integer k ≥ 1, then

obviously, τh-lim fm(x) exists and belongs to F (f) and thus the theorem is proved

in this case, i.e., we assume that fm(x) 6∈ F (f) for each m = 0, 1, 2, . . . .

(1) First we prove that for each α ∈ I , limm→∞ ρα(fm(x), F (f)) exists and

non-negative. Let α be arbitrary. Now if ρα(fk(x), F (f)) = 0 for some integer

k = 0, 1, 2, . . . , then by the second part of condition (ii) of the theorem every element

of the sequence {ρα(fm(x), F (f))}∞m=1 starting from the kth element (from the first

element if k = 0) is zero. Consequently, limm→∞ ρα(fm(x), F (f)) = 0. In the re-

maining case, i.e., when ρα(fm(x), F (f)) 6= 0 for each m = 0, 1, 2, . . . , the sequence

of positive numbers {ρα(fm(x), F (f))}∞m=1 is a decreasing sequence by virtue of the

first part of condition (ii) of the theorem and, therefore, limm→∞ ρα(fm(x), F (f))

exists and is non-negative.

(2) Next we prove that L(x) is a subset of F (f). Let y ∈ L(x). It suffices to prove

that y ∈ F (f). We assume that y 6∈ F (f) and arrive at a contradiction from this
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assumption. Since y ∈ L(x), there is a subnet {fnj (x)}j∈J of the net {fm(x)}∞m=1

such that fnj (x) → y in the τh-topology of X . Also since f is continuous, the net

fnj+1(x) → f(y) in the τh-topology of X . Now by our Lemma 2.2, for each α ∈ I ,

fnj (x) → y and fnj+1(x) → f(y) in the ρα-topology of X . The rest of the proof

depends on the simple fact that if {fnj (x)}j∈J is a subnet of {fm(x)}∞m=1 then

{fnj+1(x)}j∈J is also a subnet of {fm(x)}∞m=1.(
1)

Let α ∈ I be arbitrary. Then noting that in ρα-topology of X , fnj (x) → y and

fnj+1(x) → f(y) and using the continuity of the real valued function ρα(x, F (f)),

x ∈ X , we have

ρα(fnj (x), F (f)) → ρα(y, F (f)) and ρα(fnj+1(x), F (f)) → ρα(f(y), F (f)).

Hence in view of the fact that limm→∞ ρα(fm(x), F (f)) exists and that

{ρα(fnj (x), F (f))}j∈J and {ρα(fnj+1(x), F (f))}j∈J are both subnets of the net

{ρα(fm(x), F (f))}j∈J of real numbers, we have {ρα(f(y), F (f)) = ρα(y, F (f)).

Now since by assumptions y 6∈ F (f), the above equality together with condition (ii)

of the theorem implies that ρα(y, F (f)) = 0. Since α is arbitrary, ρα(y, F (f)) = 0

for each α ∈ I . But this contradicts our Lemma 2.3 as {y} and F (f) are disjoint

pair of τh-compact subsets of Hausdorff uniform space X . Hence y ∈ F (f).

(3) That L(x) is closed is well known and the proof that L(x) is in the τh-

boundary of F (f) when it consists of more than one point is exactly the same as

given in part (v) of the proof of Theorem 2.2.

The next theorem is an extension of Theorem 3 in (J. B. Diaz and Metcalf

(1969)) to uniform space.

Theorem 2.4 (Tarafdar (1974), p. 218) Let (X,h) be a Hausdorff uniform space

and let [ρα : α ∈ I ] = A∗(h). Let f : X → X be τh-continuous. Further suppose

that

(i) F (f) is non-empty;

(ii) for each x ∈ X, with x 6∈ F (f) and each p ∈ F (f), we have for each α ∈ I,

ρα(f(x), p) < ρα(x, p) if ρα(x, p) 6= 0, and ρα(f(x), p) = 0 if ρα(x, p) = 0.

Then for each x ∈ X, either {fm(x)}∞m=1 has no τh-convergent subnet, or τh-

lim fm(x) exists and belongs to F (f).

Proof. We have nothing to prove if L(x) is empty. So, we may assume that L(x)

is non-empty. If x ∈ F (f), or fk(x) ∈ F (f) for some integer k ≥ 1, then obviously

τh-lim fm(x) exists and belongs to F (f) and, therefore, the theorem is proved in

this case. Hence we assume that fm(x) 6∈ F (f) for each m = 0, 1, 2, . . . and prove

our theorem in the following steps.

(a) In this step we prove that for each α ∈ I , limm→∞ ρα(fm(x), p) exists

and non-negative, where p is any point belonging to F (f). Such a p exists by

condition (i) of the theorem. The proof is similar to the proof of the part 1 of

our previous theorem. Let α ∈ I be arbitrary. Now if ρα(fk(x), p) = 0 for some
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integer k = 0, 1, 2, . . . , then by the second part of condition (ii) of our theorem each

element of the sequence {ρα(fm(x), p)}∞m=1 starting from the kth element (from the

first element if k = 0) is zero and hence limm→∞ ρα(fm(x), p) = 0 in this case.

If ρα(fm(x), p) 6= 0 for eachm = 0, 1, 2, . . . , then by the first part of condition (ii)

of the theorem the sequence of positive numbers {ρα(fm(x), p)}∞m=1 is a decreasing

and, therefore, limm→∞ ρα(fm(x), p) exists and is non-negative.

(b) We next prove that L(x) is a subset of F (f). Here again the proof is very

much similar to the proof of part 2 of the previous theorem. Let y ∈ L(x). Then

there is a subnet {fnj (x)}j∈J of the net {fm(x)}∞m=1 such that fnj (x) → y in the

τh-topology of X . Also by the τh-continuity of f , fnj+1(x) → f(y). Hence by our

Lemma 2.2, for each α ∈ I we have that fnj (x) → y and fnj+1(x) → f(y) in the

ρα-topology of X . Then by using the above two limits and the continuity of the

real valued function ρα(x, p), x ∈ X , we have

ρα(fnj (x), p) → ρα(y, p) and ρα(fnj+1(x), p) → ρα(f(y), p).

Now, since we have proved in part (a) that limm→∞ ρα(fm(x), p) exists, we have

ρα(f(y), p) = ρα(y, p) because of the same reason given in part 2 of the previous

theorem, i.e. because {fnj (x)}j∈J and {fnj+1(x)}j∈J are both subnets of the net

{fm(x)}∞m=1. We now assume that y 6∈ F (f) and readily deduce a contradiction

from this assumption. Since y 6∈ F (f) and ρα(f(y), p) = ρα(y, p), it follows from

condition (ii) of our theorem that ρα(y, p) = 0. Since α is arbitrary, we have

ρα(y, p) = 0 for each α ∈ I . This implies that y = p as X is τh-Hausdorff. This is

a condition because of the fact that p ∈ F (f). Thus we have proved that y ∈ L(x).

(c) We now prove that L(x) contains at most one point. We suppose that L(x)

contains two points, p and q. By Lemma 2.2, p and q are also ρα-cluster points

of the net {fm(x)}∞m=1 for each α ∈ I . Let α be arbitrary. Then there are two

subsequences {fmi(x)}∞i=1 and {fni(x)}∞i=1 of the sequence {fm(x)}∞m=1 such that

fmi(x) → p and fni(x) → q in the ρα-topology of X (as the ρα-topology of X

satisfies the first axiom of countability) i.e.,

lim
i→∞

ρα(fmi(x), p) = 0 and lim
i→∞

ρα(fni(x), q) = 0.

We can select a subsequence {m′
i}∞i=1 of {mi}∞i=1 such that m′

i > ni for i = 1, 2, . . . .

Then fm
′
i(x) → p in the ρα-topology of X , i.e., limi→∞ ρα(fm

′
i(x), p) = 0. Also

we have fm(x) 6∈ F (f) for each m = 0, 1, 2, . . . and q ∈ F (f) by part (b). We show

that fm
′
i(x) → q in the ρα-topology of X , i.e., limi→∞ ρα(fm

′
i(x), q) = 0. We

prove this by considering two cases (A) and (B).

(A) ρα(fm
′
k(x), q) = 0 for some k = 1, 2, . . . .

Then ρα(fm
′
k+τ (x), q) = 0 for each τ = 1, 2, . . . . For, let m′

k+τ−m′
k = t. Then

by the second part of condition (ii) of the theorem

0 = ρα(fm
′
k (x), q) = ρα(fm

′
k+1(x), q) = ρα(fm

′
k+t(x), q) = ρα(fm

′
k+τ (x), q).
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Hence it follows that in this case limi→∞ ρα(fm
′
i(x), q) = 0.

(B) ρα(fm
′
i(x), q) = 0.

Then by the first part of condition (ii) of the theorem

ρα(fm
′
i(x), q) < ρα(fm

′
i−1(x), q) < · · · < ρα(fni(x), q)

Hence limi→∞ ρρα(fm
′
i(x), q) = 0 in this case either as limi→∞ ρα(fni(x), q) = 0.

Thus we have limi→∞ ρα(fm
′
i(x), q) = 0. Now by the triangle inequality,

ρα(p, q) ≤ ρα(p, fm
′
i(x)) + ρα(fm

′
i(x), q) for i = 1, 2, . . . .

Hence ρα(p, q) = 0 as limi→∞ ρα(p, fm
′
i(x)) = 0 and ρα(fm

′
i(x), q) = 0. Since α

is arbitrary, ρα(p, q) = 0 for each α ∈ I . Since X is τh-Hausdorff, this implies that

p = q.

(d) Finally, we prove that if L(x) consists of just one point, then τh-lim fm(x)

exists. Let {y} = L(x). Then there is a subnet {fnj (x)}j∈J of the net {fm(x)}∞m=1

such that τh-lim fnj (x) = y. Now by Lemma 2.2, fnj (x) → y in the ρα-topology

of X for each α ∈ I . Let α ∈ I be arbitrarily chosen. Let ε > 0. Then since

fnj (x) → y in the ρα-topology of X , there is a s ∈ J such that ρα(fnj (x), y) < ε

for all j � s and hence for all nj ≥ ns where � is the relation in J . We now show

that for all positive integers m ≥ ns, ρα(fm(x), y) < ε. We have at most two cases:

Case 1. 0 = ρα(fns(x), y) < ε.

Case 2. 0 < ρα(fns(x), y) < ε.

In Case 1, 0 = ρα(fns(x), y) = ρα(fns+1(x), y) = · · · = ρα(fm(x), y) < ε.

In Case 2, ρα(fm(x), y) < ρα(fm−1(x), y) < · · · < ρα(fns(x), y) < ε.

Thus in all cases, ρα(fm(x), y) < ε whenever m ≥ ns. Hence fm(x) → y in the

ρα-topology of X . Now since α is arbitrary, fm(x) → y in the ρα-topology of X for

each α ∈ I . Hence by Lemma 2.2, τh-lim fm(x) = y.

Remark 2.5 The Remark 10 in (J. B. Diaz and Metcalf (1969)) concerning the

work of Edelstein [(Edelstein (1962)), Theorem 1 and 3.2] applies equally here.

Corollary 2.4.1 Suppose in addition to the hypotheses of Theorem 2.4 that for

each x ∈ X, L(x) 6= ∅, then for each x ∈ X, {fn(x)}∞n=1 converges in τh-topology

to a fixed point of f .

Proof. This follows immediately from the above Theorem 2.4.

Remark 2.6 If we assume in the above Theorem 2.4 that f(X) is compact, then

this will insure the additional condition assumed in the above corollary, i.e., for each

x ∈ X , L(x) 6= ∅.

The next theorem is patterned after the Theorem 3.1 of (J. B. Diaz and Metcalf

(1969)).
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Theorem 2.5 (Tarafdar (1974), p. 221) Let (X,h) be a Hausdorff uniform space

and let [ρα : α ∈ I ] = A∗(h). Let f : x→ X be τh-continuous. Also let

(i) F (f) be non-empty;

(ii) for each x ∈ X with x 6∈ F (f) and each p ∈ F (f), we have for each α ∈ I,

ρα(f(x), p) ≤ ρα(x, p);

(iii) f be asymptotically regular on X.

Then for each x ∈ X, either {fm(x)}∞m=1 contains no τh-convergent subnet, or

τh-lim fm(x) exists and belongs to F (f).

Proof. The proof that L(x) ⊂ F (f) is exactly the same as given in the part (i) of

the proof of Theorem 2.2. The proof that L(x) contains at most one point can be

obtained from the part (c) of the proof of the above Theorem 2.4 by ignoring the

case A and replacing all the strict inequality signs appearing in case B by ≤ signs.

The rest of the proof of this theorem can be obtained from part (d) of the Theorem

2.4 by ignoring Case 1 and replacing all the strict inequality signs by ≤ in the proof

of Case 2.

Corollary 2.5.1 Let (X,h) be a Hausdorff uniform space and let [ρα : α ∈ I ] =

A∗(h). Let f be an asymptotically regular τh-continuous mapping of a subset Y ⊂ X

into Y . Also suppose that

(i) f(Y ) is τh-compact;

(ii) for each x ∈ Y with x 6∈ F (f), we have for each α ∈ I, ρα(f(x), p) ≤
ρα(x, p).

Then for each x ∈ Y , the sequence {fm(x)}∞m=1 converges in the τh-topology to a

fixed point of f .

Proof. Since f is asymptotically regular on Y on f(Y ) is compact, we have by

Theorem 2.2 that L(x) 6= ∅ for each x ∈ Y and F (f) 6= ∅. Hence the corollary

follows from the above Theorem 2.5.

An Extended Remark. Since our results will concern only with locally con-

vex linear Hausdorff topological spaces, (E, τ) will denote a locally convex linear

Hausdorff topological space throughout the rest of this section.

It is well known that given (E, τ), there always exists a family [ρal : α ∈ I ] of

seminorms on E which generates the topology τ in E. More specifically, there always

exists a family [ρal : α ∈ I ] of seminorms on E such that the family of scalar multiple

rU , r > 0, of finite intersections U =
⋂n
k=1 Uαk

, where Uαk
= {x : pαk

(x) ≤ 1},
forms a neighborhood base at 0 for the topology τ (see (Schaefer (1966), p. 48), or

(Kothe (1960), p. 203)).

In the sequel this zero neighborhood base will be denoted by B.

Now for each α ∈ I , the function ρα : E×E → R defined by ρα(x, y) = pα(x−y)
for each pair (x, y) ∈ E × E is a pseudometric on E. Thus by what we noted in

the beginning of Section 2.1 the family [ρα : α ∈ I of pseudometrics on E (obtained

from the family [pα : α ∈ I as above) determines a unique uniformity h on E such
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that A∗(h) = [ρα : α ∈ I . It is well known that τh = τ (e.g. see (Schaefer (1966),

p. 16)).

Now it is straightforward to see that the following definitions (i′), (ii′) and (iii′)
are equivalent respectively to the definitions (i), (ii) and (iii) given in Section 2.1.

Let U be the family of zero neighborhoods in E. Then we have seen that B
defined above is a base for U . Let f maps X ⊂ E into X , then

(i′) f is said to be nonexpansion on X if x− y ∈ U implies f(x) − f(y) ∈ U for

each U ∈ B and (x, y) ∈ X ×X .

(ii′) f is said to be a contraction on X if for each U ∈ B, there is a real number

τU , 0 < τU < 1, such that x− y ∈ U implies f(x)− f(y) ∈ τUU for each U ∈ B and

(x, y) ∈ X ×X .

(iii′) f is asymptotically regular on X if for each x ∈ X and U ∈ U , there is a

positive integer n0 such that fn(x) − fn+1(x) ∈ U for n ≥ n0.

[For (i) ⇐⇒ (i′) and (iii) ⇐⇒ (iii′) see Remark 2.2 and (Taylor (1972)).

We prove that (ii′) ⇐⇒ (ii). To prove this we first show that f is a contraction

with respect to A∗(h). Let ρα ∈ A(h) and (x, y) ∈ X ×X . Also let ρα(x, y) = τ .

Then x − y ∈ τUα = U ∈ B where Uα = {x : pα(x) ≤ 1}. Hence by (ii′) there

is a real number τU , 0 < τU < 1,such that f(x) − f(y) ∈ τUU . This implies

that ρα(f(x), f(y)) ≤ τUρα(x, y). Clearly τU depends on α. Hence we can write

τU = τ(α).

Similarly we prove that (ii) ⇒ (ii′). This can be done as follows. Let U ∈ B.

Then U = τ
⋂n
k=1 Uαk

, τ > 0 and Uαk
= {x : pαk

(x) ≤ 1}. Let ραk
be the

corresponding pseudometrics. Choose τU = max(τ(αk) : k = 1, 2, . . . , n) where αk’s

are obtained from the definitions (ii).]

Since now we will be concerned with only the locally convex topology τ in E,

unless otherwise stated, all topological concepts such as continuity, convergence,

closedness, etc. will hereafter be meant with respect to the topology τ in E.

A subset X of E is called starshaped if there is a point p ∈ X such that for each

x ∈ X and real t with 0 < t < 1, tx+ (1− t)p ∈ X . p is called the star centre of X .

Every convex subset of E is thus starshaped.

Lemma 2.4 (Tarafdar (1974), p. 223) Let X be a complete bounded starshaped

subset of E and let f be nonexpansion on X. Then 0 lies in the closure of (I−f)X,

i.e., in (I − f)X, where I is the identity map on X.

Proof. For each t, 0 < t < 1, we define ft(x) = tf(x) + (1 − t)p, x ∈ X p being

the star centre of X , ft is a self mapping on X as X is starshaped. Let U ∈ B
be arbitrary. Let x − y ∈ U . Then ft(x) − ft(y) = t(f(x) − f(y)) ∈ tU as f is

nonexpansion on X . Thus ft is a contraction on X . Now since X is complete and

by our Theorem 2.1 ft has a unique fixed point xt, say, in X . Now

(I − f)(xt) = xt − f(xt)

= xt − (ft(xt) − (1 − t)p)/t, from the definition of ft,

= (1 − 1/t)(xt − p) → 0 as t→ 1, because X is bounded.
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Remark 2.7 Note that in the proof of the above lemma we have not used the

fact that X is connected.

Let us express the condition (ii) of Theorem 2.5 and condition (ii) of Theorem

2.4 by saying respectively that f is nonexpansion on X with respect to F (f) and

f is contractive (in the terminology of M. Edelstein (Edelstein (1962))) on X with

respect to F (f). Thus in (E, τ) f is nonexpansion on X ⊂ E with respect to F (f)

if x − p ∈ U implies f(x) − p ∈ U for each U ∈ B and x ∈ X with x 6∈ F (f)

and p ∈ F (f). f is contractive on X with respect to F (f) if the condition (ii) of

Theorem 2.4 holds where ρα’s are obtained from the corresponding pα’s.

Theorem 2.6 (Tarafdar (1974), p. 223) Let f be a nonexpansion on a bounded

complete starshaped subset X of E. Also let (I − f)X be closed. Then f has a fixed

point.

Proof. By Lemma 2.4, 0 ∈ (I − f)X = (I − f)X . Hence there is a point p ∈ X

such that (I − f)(p) = 0, i.e., f(p) = p.

Corollary 2.6.1 (Tarafdar (1974), p. 223) Let f be a nonexpansion on a compact

starshaped subset X of E. Also suppose that f is contractive on X with respect to

F (f). Then for each x ∈ X, the sequence {fm(x)}∞m=1 converges to a fixed point

of f .

Proof. By continuity of (I − f), (I − f)X is compact and hence closed. Now by

Theorem 2.3 F (f) is non-empty. Also since f(X) is compact, L(x) 6= 0 for each

x ∈ X . Hence the corollary follows from Theorem 2.4.

Theorem 2.7 (Tarafdar (1974), p. 224) Let f be a continuous asymptotically

regular mapping on a closed bounded subset X of E. Also suppose that (I−f) maps

closed and bounded subsets of X into closed subset of E. Then for each x ∈ X,

L(x) is non-empty and a closed subset of F (f). If in addition f is nonexpansion on

X with respect to F (f), then for each x ∈ X, the sequence {fm(x)}∞m=1 converges

to a fixed point of f .

Proof. The proof is identical to the proof of Theorem 3.3 in (Taylor (1972)) because

the nonexpansion of f with respect to F (f) is only used there. Alternatively, we

prove in the same way as in Theorem 3.3 of (Taylor (1972)) that F (f) 6= ∅ and

L(x) 6= ∅ for each x ∈ X and then we refer to our Theorem 2.5.

Remark 2.8 Clearly this theorem includes the Theorem 3.3 of (Taylor (1972))

which includes the Theorem 6 of Browder and Petryshyn (Browder and Petryshyn

(1966)). Also we note that the present theorems weaken the conditions of

Theorem 3.3 of (Taylor (1972)) in exactly the same way as the Theorem 3.4 of

Diaz and Metcalf (J. B. Diaz and Metcalf (1969)) does to the conditions of Theo-

rem 6 of (Browder and Petryshyn (1966)).

(1) Note that if n is the corresponding function for the first subnet, i.e., n(j) = nj
for each j ∈ J , then the function n1(j) = n(j) + 1 = nj + 1 is the required function

for the latter subnet.
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Diaz and Metcalf have obtained the following result (J. B. Diaz and Metcalf

(1969), Theorem 4):

Lemma 2.5 (Tarafdar (1976), p. 341) Let K be a closed convex subset of a

strictly convex Banach space X; f : K → K a self mapping on K satisfying

(A) ‖f(x) − f(y)‖ ≤ ‖x− y‖ ∀x, y ∈ K;

and suppose f(K) is contained in a compact set K1 ⊂ K. Then for each x ∈ K, the

sequence {Uλn (x)}∞n=1 of iterates converges to a fixed point of f where Uλ : K → K

is the mapping defined by

Uλ(y) = λf(y) + (1 − λ)y, y ∈ K, 0 < λ < 1.

With λ = 1/2 this result reduces to a result of Edelstein (Edelstein (1966)),

which, in turn, is an extension of a result of Krasonsel’skii (Krasonsel’skii (1955)).

Barbuti and Guerra (Barbuti and Guerra (1971), pp. 29–31) have obtained the

same result by replacing the non-expansive condition (A) by a weaker condition,

namely

(B) ‖f(x) − f(y)‖ ≤ a‖x− y‖+ b(‖f(x) − x‖ + ‖f(y) − y‖), ∀x, y ∈ K,

where a ≥ 0, b ≥ 0 and a+ 2b ≤ 1.

In here we obtain this result of Tarafdar (Tarafdar (1976)) on a locally convex

linear topological space with strict convexity suitably defined on it and with a

contraction condition weaker than (B), so that our result even in Banach space

setting will include the result of Barbuti and Guerra as a special case.

To prove our result we will apply our Theorem 2.4 on uniform space by the

author (Tarafdar (1974)). (In fact, this result can be viewed as an application of

this theorem.)

Definition 2.1 (Tarafdar (1976), p. 342) A seminorm p on a linear space is

said to be strictly convex if for each pair x, y of points of E with p(x − y) 6= 0,

p(x) = p(y) = 1, we have always p(λx+ µy) < 1 whenever λ, µ > 0 and λ+ µ = 1.

A locally convex linear topological space (or a locally convex topological vector

space) hereafter abbreviated by l.c.l.t. space E, whose topology is generated by a

family [pα : α ∈ I ] of seminorms on E is said to be strictly convex if pα is strictly

convex for each α ∈ I .

Example 2.2 (Strictly convex l.c.l.t. space) Let A be any non-empty set and

Xα a strictly convex normed linear space with norm ‖ · ‖α for each α ∈ A. We

consider the cartesian product
∏
α∈AXα and for each α ∈ A, we define

pα(x) = ‖xα‖α for each x = {xα} ∈
∏

α∈A
Xα.
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Then [pα : α ∈ A] is a family of seminorms on
∏
α∈AXα and, therefore, generates

locally convex topology (which is also the product topology) on
∏
α∈AXα. It is

now easy to see that
∏
α∈AXα is strictly convex.

Theorem 2.8 (Tarafdar (1976), p. 343) Let E be a quasicomplete separated and

strictly convex l.c.l.t. space; Y a closed convex subset of E and f : Y → Y be a

continuous self-mapping on Y such that f(Y ) is contained in a compact set Y1 ⊂ Y .

Further, suppose that

(C) for each α ∈ I, there exist functions d1(α, · · · ) and d2(α, · · · ) of Y ×Y into

[0,∞) such that d1(α, x, y) + 2d2(α, x, y) ≤ 1 for all x, y ∈ Y and for any x, y ∈ Y ,

pα(f(x)−f(y)) ≤ α1(α)pα(x−y)+α2(α)pα(f(x)−x)+pα(f(y)−y), if pα(x−y) 6= 0

and pα(f(x) − f(y)) = 0 if pα(x − y) = 0 where αi(α) = di(α, x, y), i = 1, 2.

Then for each x ∈ Y , the sequence {Unλ (x)}∞n=1 of iterates where Uλ : Y → Y is

the mapping defined by

Uλ(y) = λf(y) + (1 − λ)y, y ∈ Y, 0 < λ < 1

converges to a fixed point of f .

Proof. Uλ(Y ) ⊂ Y as Y is convex. Also by definition of Uλ and by virtue of the

Tychonoff fixed point theorem (see Chapter 4) we have

F (f) = F (Uλ) 6= ∅ (2.6)

where F (f) and F (Uλ) denote the set of fixed points of f and Uλ respectively. Since

E is quasi-complete, it follows (see (Kothe (1960), p. 241)) that the closed convex

hull of f(Y ) ∪ {x} is compact for each x ∈ Y .

Hence, for each x ∈ Y, the sequence {Unλ (x)}∞n=1 being in this compact set

(2.7)

has a convergent subnet.

Now for each u ∈ F (f) and x ∈ Y with x 6∈ F (f) we have by (C) for each α ∈ I ,

if pα(x− u) 6= 0,

pα(f(x) − u) = pα(f(x) − f(u))

≤ a(α)pα(x− u) + b(α)[pα(f(x) − x) + pα(f(u) − u)]

≤ a(α)pα(x− u) + b(α)[pα(f(x) − u) + pα(x− u),

where a(α) = d1(α, x, u) and b(α) = d2(α, x, u). It follows that

pα(f(x) − u) = 0 if pα(x− u) = 0 (2.8)

and since (a(α)+b(α))
1−b(α) ≤ 1, it follows that

pα(f(x) − u) ≤ pα(x− u). (2.9)
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Now

pα(Uλ(x) − u) = pα(Uλ(x) − Uλ(u)) (2.10)

= pα(λ(f(x) − u) + (1 − λ)(x − u)). (2.11)

From (2.8), and (2.10) we have

pα(Uλ(x) − u) = 0 if pα(x− u) = 0. (2.12)

If pα(x− u) 6= 0, then from (2.10) we have

pα(Uλ(x) − u) = pα(x− u)

[
pα(λ

f(x) − u

pα(x − u)
+ (1 − λ)

(x− u)

(pα(x− u))

]
. (2.13)

If strictly inequality holds in (2.9), then from (2.13) we obtain

pα(Uλ(x) − u) < pα(x− u). (2.14)

If equality holds in (2.9), then strict convexity reduces (2.13) to (2.14).

Thus (2.6), (2.7), (2.12), and (2.14) ensure that all the conditions required in

Theorem 2.4 are fulfilled for the mapping Uλ. Hence the conclusion of our theorem

follows from Theorem 2.4.

Remark 2.9 In Banach space situation contractions of type (C) have been

considered by Hardy and Rogers (Hardy and Rogers (1973)), Chi Song Wong (Wong

(1974)) and others (see references in (Wong (1974))).

2.3 Further Generalization of Banach Contraction Mapping

Principle

A nonempty set P with a partial order relation ≤ (reflexive, antisymmetric and

transitive) is called a partially ordered set and is denoted by (P,≤). A subset C of

(P,≤) is called a chain if, given any two elements x, y of C, either x ≤ y or y ≤ x.

An element x ∈ P is called a maximal element if x ≤ y ⇒ x = y.

Let A be a nonempty subset of (P,≤). An element x ∈ P is called a lower (resp.

an upper) bound of A if x ≤ a (resp. a ≤ x) for all a ∈ A. A lower (resp. an

upper) bound of A is called infimum (resp. supremum) of A if it is greater than or

equal to (resp. less than or equal to) each lower (resp. each upper bound of A). If

the supremum or infimum of A exists, it is unique (see (Shafer and Sonnenschein

(1975), pp. 43–44)) and is, respectively denoted supA and infA.

In this section we have proved several fixed point theorems which are general-

ization of the fixed point Theorem 2.1 and are generalization of the corresponding

fixed point theorems of Caristi and Kirk (Caristi and Kirk (1975)) on metric spaces

to uniform topological spaces. Later in this section we have shown the interplay of

order and pseudometrics.
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2.3.1 Fixed Point Theorems for Some Extension of Contraction

Mappings on Uniform Spaces

Lemma 2.6 (Cantor Intersection Theorem in Uniform Space) Let (X,h) be

complete Hausdorff uniform topological space with uniform topology τh and [ρα :

α ∈ I ] = A∗(h). Let {Xn : n = 1, 2, . . .} be a sequence of nonempty closed set with

finite intersection property such that for each α ∈ I,

δα(Xn) = sup{ρα(x, y) : x, y ∈ Xn} → 0 as n→ ∞.

Then A =
⋂∞
n=1Xn consists of a single point x0, i.e.

⋂∞
n=1Xn = {x0}.

Proof. First we prove that A cannot contain two distinct points. Let x, y ∈ A.

Suppose x 6= y. Then since X is Hausdorff, ρα(x, y) = ε > 0 for some α ∈ I . Now

since δα(Xn) → 0 as n→ ∞, there exists a positive integerN0 such that δα(Xn) < ε

for all n ≥ N0. It follows that ρα(x, y) ≤ δα(XN0) < ε which is a contradiction.

Thus x = y.

Now we prove that A 6= ∅. We choose a point xn from each Xn for each n. Then

the sequence {xn} is a ρα-Cauchy sequence for each α ∈ I . To see this, let ε > 0

be given. Let α ∈ I be fixed but arbitrary. Then since δα(Xn) → 0, there exists a

positive integer N such that δα(Xn) <
ε
2 for all n ≥ N . Now for all m,n ≥ N , we

have xm ∈ Xm, xn ∈ Xn and z ∈ Xm ∩Xn, ρα(xm, xn) ≤ ρα(xm, z) + ρα(z, xn) ≤
δα(Xm)+ δα(Xn) <

ε
2 + ε

2 = ε. Next, let for each positive integer p, Sp = {xn : n ≥
p} and let β be the filter basis {Sp : p = 1, 2, . . . }. Then since {xn}∞n=1 is ρα-Cauchy

for each α ∈ I , it is easy to see that the filter basis β is Cauchy in the uniform space

(X,h). Since (X,h) is complete, the filter basis β = {Sp} converges to a unique point

x0 ∈ X in the uniform topology τh. It follows that τh-limn→∞ xn = τh-limSp = x0

and, therefore, ρα(xn, x0) → 0 for each α ∈ I . Now we prove x0 ∈ Xn for each n.

Let n0 be fixed but arbitrary. Let G be an τh-open neighborhood of x0. Then there

exists r > 0 and ρα ∈ A∗(h) such that Sr(α, x0) ⊂ G. Now since ρα(xn, x0) → 0,

there exists a positive integer N1 such that ρα(xn, x0) <
r
2 for all n ≥ N1 and since

δα(Xn) → 0, there exists a positive integer N2 such that δα(Xn) < r
2 for all n ≥ N2.

Let N = max(N1, N2). By finite intersection property, there is point u ∈ XN ∩Xn0 .

Now ρα(u, x0) ≤ ρα(u, xN )+ρα(xN , x0) ≤ δα(XN )+ρα(xN , x0) <
r
2 + r

2 = r. Thus

u ∈ Xn0 ∩ G. This implies that x0 is a limit point of xn0 and x0 ∈ Xn0 = Xn0 .

Since n0 is arbitrary, x0 ∈ A.

Now we include some extensions of Banach contraction principle which are gen-

eralization of the corresponding results of Caristi and Kirk from metric (Caristi and

Kirk (1975)), see also Ekland (Ekland (1972)) spaces to uniform spaces.

Theorem 2.9 Let (X,h) be a complete uniform space as in Lemma 2.6 and

T : X → X a mapping, not necessarily continuous. Assume that for each α ∈ I

and each ε > 0, there exists δ(α, ε) > 0 such that T [Sε(α, x)] ⊂ Sε(α, x), whenever

0 6= ρα(x, T (x)) < δ(α, ε).
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Then, if for each α ∈ I ρα(T (u), Tn+1(u)) → 0 for some u ∈ X, the sequence

{Tn(u)} converges to a fixed point of T .

Proof. We let T (u) = u1, u2 = T (u1) = T 2(u), . . . , Tn(u) = un, . . . . We show that

{un} is ρα-Cauchy for each α ∈ I . Let α ∈ I be arbitrary. Given ε
2 > 0 we can

choose a sufficiently large positive integer N such that ρα(un, un+1) < δ(α, ε2 ) for

all n ≥ N . Since ρα(uN , uN+1) < δ(α, ε2 ) we have T [S ε
2
(α, uN )] ⊂ S ε

2
(α, uN ) which

implies that uN+1 = T (uN) ε S ε
2
(α, uN ). Thus by induction T k(uN ) = uN+k ⊂

S ε
2
(α, uN ) for all k ≥ 0 and hence ρα(um, un) ≤ ρα(um, uN)+ρα(uN , um) < ε

2 + ε
2 =

ε for all m,n ≥ N . Hence {uN} is ρα-Cauchy for all α ∈ I . As noted in the lemma

β = {Sp}, where Sp = {un : n ≥ p} is a Cauchy filter which converges to a point

x0 ∈ X as (X,h) is complete. It follows that ρα(un, x0) → 0 for each α ∈ I .

Now we prove that Tx0 = x0. If possible, suppose Tx0 6= x0. Since (X,h) is

Hausdorff, there must exist one α ∈ I such that ρα(x0, Tx0) = r > 0. Then we can

choose an un ∈ S r
3
(α, x0) such that ρα(un, un+1) < δ(α, r3 ). We would then have

T [S r
3
(α, un)] ⊂ S r

3
(α, un) by the hypothesis. But this would imply Tx0 ∈ S r

3
(α, un)

and ρα(Tx0, un) ≥ ρα(Tx0, x0) − ρα(x0, un) = 2
3r, i.e. Tx0 /∈ S r

3
(α, un). Thus we

have contradiction. It follows that ρα(x0, Tx0) 6= 0 for all α ∈ I . Hence Tx0 = x0.

Corollary 2.9.1 Let (X, ρ) be a complete metric space and T : X → X

a mapping, not necessarily continuous. Assume that for each ε > 0, there is

a δ(ε) > 0 such that T [Sε(x)] ⊂ Sε(x) whenever ρ(x, T (x)) < δ(ε). Then, if

ρ(Tn(u), Tn+1(u)) → 0 for some u, the sequence {T n(u)} converges to a fixed point

of T .

Proof. Take I = {1} in Theorem 2.9.

Theorem 2.10 Let (x, h) be a complete Hausdorff uniform space as in Lemma

2.6 and T a mapping, not necessarily continuous. Let for each α ∈ I, there is a

monotone non-decreasing (not necessarily continuous) function φα : R+ → R+ with

φnα(t) → 0 for each fixed t > 0 such that ρα(Tx, Ty) ≤ φα[ρα(x, y)].

Then T has a unique fixed point u, and T n(x) → u for each x ∈ X.

Proof. First we begin by noting that for each α, φα(t) < t with each t > 0. For

if t ≤ φα(t), then by monotonicity φα(t) ≤ φ2
α(t) and by induction t ≤ φα(t) ≤

φ2
α(t) ≤ · · · ≤ φnα(t) ≤ · · · . This would imply t ≤ 0 which would be contradiction.

Now let α ∈ I be arbitrary but fixed. By hypothesis we have ρα(Tn(x), Tn+1(x)) ≤
φnα[ρα(x, T (x)]. Assume ρα(x, T (x) 6= 0.

Thus ρα(Tn(x), Tn+1(x)) → 0 for each x ∈ X . Now given a real number ε > 0,

we choose δ(α, ε) = [ε−φα(ε)] > 0. Then if ρα(x, Tx) < δ(α, ε) and y ∈ Sδ(α,ε)(α, x),

we have ρα(Ty, x) ≤ ρα(Ty, Tx) + ρα(Tx, x) ≤ φα[ρα(y, x)] + δ(α, ε) < φα(ε) + ε−
φα(ε) = ε. Thus T (y) ∈ Sε(α, x), whenever T (x) ∈ Sδ(α,ε)(α, x), i.e. T [Sε(α, x)] ⊂
Sε(α, x).
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Hence all the conditions of the Theorem 2.9 hold. The conclusion of Theorem

2.10 follows from Theorem 2.9.

Corollary 2.10.1 Let (X, ρ) be a complete metric space and T : X → X be

a mapping, not necessarily continuous. Assume that there is a monotone non-

decreasing function φ : R+ → R+ with φn(t) → 0 as n → ∞ for each t > 0 such

that ρ(T (x), T y) ≤ φ[ρ(x, y)] for all x, y ∈ X. Then there is a unique fixed u of T

and Tn(x) → u for each x ∈ X.

Proof. Let I = {1} and apply Theorem 2.9.

Corollary 2.10.2 (Boyd and Wong (1969)) Let (X, ρ) be a complete metric space

and T : X → X a mapping satisfying ρ(T (x), T (y)) ≤ φ[ρ(x, y)] for all x, y ∈ X

where φ : R+ → R+ ia any function such that (i) φ is non-decreasing, (ii) φ(t) < t

for each t > 0 and (iii) φ is right continuous. Then the conclusion of Corollary

2.10.1 holds.

Proof. We can easily verify that φn(t) → 0 for each t > 0. The conclusion follows

from Corollary 2.10.1.

Remark 2.10 Theorem 2.9 and hence Theorem 2.10 is a generalization of Banach

Contraction Mapping Principle on uniform topological space. To see this let ε > 0

be given. Let δ(α, ε) = ε−λαε where λα is the contraction constant for α ∈ I . Now

let y ∈ T (Sε(α, x)). Then y = T (u) for some u ∈ Sε(α, x). Then, if ρα(x, Tx) <

δ(α, ε), ρα(y, x) = ρα(T (u), x) ≤ ρα(T (u), T (x)) + ρα(T (x), x) ≤ λαε+ ε− λαε = ε.

This proves T [S(α, x)] ⊂ Sε(α, x), whenever ρα(x, Tx) < δ(α, ε).

In our next theorem we allow the contraction constants to depend on ρα(x, y).

Theorem 2.11 Let (X,h) be a complete uniform Hausdorff space and T : X →
X a mapping, not necessarily continuous. Let for each α ∈ I, ρα(T (x), T (y)) ≤
ψα(x, y)ρα(x, y) for all x, y ∈ X, where ψα : X ×X → R+ satisfies the condition:

for any closed interval [a, b] ⊂ R+ − {0},

sup[ψα(x, y) : a ≤ ρα(x, y) ≤ b] = λα(a, b) < 1

Then T has a unique fixed point u and T n(x) → u for each x ∈ X.

Proof. We note that ρα(x, y) = 0 implies that ρα(Tx, Ty) = 0 by the given

condition. Let α be arbitrary but fixed. For each x ∈ X , the sequence

{ρα(Tn(x), Tn+1(x))} being nonincreasing converges to some real number tα ≥ 0.

We will prove that tα = 0. If possible, tα > 0. Then ρα(Tn(x), Tn+1(x)) ∈ [tα, tα+

1] for all n ≥ N for some positive integer N . We set cα = λα(tα, tα + 1). Then

by induction tα ≤ ρα(TN+k(x), TN+k+1(x)) ≤ ckαρα(TN(x), TN+1(x)) ≤ ckα(tα + 1)

for all integers k > 0. This leads to a contradiction as cα < 1 (choose sufficiently

large k so as to make ck(tα + 1) ≤ tα). Now let ε > 0 be given. Set λα = λα[ ε2 , ε].

Choose δ(α, ε) = min[ ε2 , ε(1 − λα)]. Let 0 6= ρα(x, T (x) < δ(α, ε) and y ∈ Sε(α, x).

Then ρα(T (y), x) ≤ ρα(T (y), T (x) + ρα(T (x), x).
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We now consider the following two cases:

(i) ρα(y, x) < ε
2 . Then ρα(T (y), x) ≤ ρα(y, x) + ρα(T (x), x) < ε

2 + ε
2 = ε;

(ii) ε
2 ≤ ρα(y, x) ≤ ε. Then ρα(T (y), x) ≤ ψα(y, x)ρα(y, x) + ρα(T (x), x) <

λαε+ ε(1 − λα) = ε.

Thus T [Sε(α, x)] ⊂ Sε(α, x) whenever ρα(x, T (x)) < δ(α, ε). Now the conclusion of

the theorem follows from Theorem 2.9.

Corollary 2.11.1 Let (X, ρ) be a complete metric spaces and T : X → X be

a mapping, not necessarily continuous. Let ρ(T (x), T (y)) ≤ ψ(x, y)ρ(x, y) for all

x, y ∈ X, where ψ : X × X → R+ satisfies the condition: for any closed interval

[a, b] ⊂ R+ − {0},

sup{ψ(x, y) : a ≤ ρ(x, y) ≤ b} = λ(a, b) < 1.

Then T has a unique fixed point u ∈ X and T n(x) → 0 for each x ∈ X.

Proof. Let I = {1} and apply Theorem 2.11.

Now we give another kind of generalization of Banach Contraction Theorem on

uniform spaces.

Theorem 2.12 Let (X,h) be a complete uniform Hausdorff space. For each

α ∈ I, let φα : X → R+ be a non-negative function (not necessarily continuous)

satisfying:

(∗) inf{φα(x) + φα(y) : ρα(x, y) ≥ a} = µα(a) > 0 for all a > 0.

Then each sequence {xn} with φα(xn) → 0 for each α ∈ I converges to one and the

same point u ∈ X.

Proof. For each α ∈ I , let Aα(n) = {x ∈ X : φα(x) ≤ φα(xn)} for each positive

integer n. Aα(n) 6= φ as xnεAα(n). By using φα(xn) → 0, we can easily see that

the sequence [Aα(n) : n = 1, 2, . . . ] has finite intersection property. We now prove

that δα(Aα(n)) → 0. Let ε > 0 be given. Since µα(ε) > 0, there exists a positive

integer N such that φα(xn) < 1
2µα(ε) for all n ≥ N . Then for all n ≥ N , and

x, y ∈ Aα(n), φα(x) + φα(y) < µα(ε). It then follows from (∗), ρα(x, y) < ε. Thus

δα(Aα(n)) < ε for all n ≥ N . Hence δα(Aα(n)) → 0. Now let An = {x ∈ X :

φα(x) ≤ φα(xn) for all α ∈ I} = ∩α∈IAα(n). Since for each n,An ⊆ Aα(n). We

have δα(An) = sup{ρα(x, y) : x, y ∈ An} ≤ δα(Aα(n)). Hence δα(An) → 0. Now

by Lemma 2.6, ∩∞
n=1An = {u} for some u ∈ X . Now since xn ∈ An for each n, it

is easy to prove τh − limn→∞ xn = u. Hence ρα(xn, u) → 0 for each α ∈ I .

Let {yn} be another sequence with φα(yn) → 0 for each α ∈ I and yn → y as

proved for sequence {xn}. Then φα(xn) + φα(yn) → 0 for each α ∈ I . Let α be

fixed but arbitrary and ε > 0 be given. Then there exists a positive integer N such

that φα(xn) + φα(yn) < µα(ε) for all n ≥ N . Now by virtue of (∗), ρα(xn, yn) < ε

for all n ≥ N . Thus ρα(xn, yn) → 0. Since α is arbitrary, ρα(xn, yn) → 0 for each

α ∈ I . Hence ρα(x, y) = 0 for each α ∈ I . Since X is Hausdorff, x = y.
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Now taking I = {1} in the above theorem we have the following corollary, (see

Dugundji and Granas (Dugundji and Granas (1982)).

Corollary 2.12.1 Let (X, ρ) be a complete metric space and φ : X → R+ be a

non-negative function satisfying:

inf{φ(x) + φ(y) : ρ(x, y) ≥ a} = µ(a) > 0 for all a > 0.

Then for each sequence {xn} in X with φ(xn) → 0 converges to one and the same

point u ∈ X.

Theorem 2.13 Let (X,h) be a complete uniform Hauddorff space and T : X →
X a continuous mapping. For each α ∈ I, assume that φα(x) = ρα(x, Tx) satisfies

the condition (∗) above and infx∈X ρα(x, T (x)) = 0. Then there is a unique fixed

point of T .

Proof. Theorem follows immediately from Theorem 2.12.

Remark 2.11 Theorem 2.13 is a generalization of Banach contraction map-

ping principle. To see this let ρα(T (x), T (y)) ≤ λ(α)ρα(x, y)x, y ∈ X . Then

φα(x) = ρα(x, T (x)) satisfies (∗) of Theorem 2.12. Indeed [1 − λ(α)]ρα(x, y) ≤
ρα(x, y) − ρα(T (x), T (y)) ≤ ρα(x, T (x)) + ρα(y, T (y)). Also it is easy to see that

infx→X ρα(x, T (x)) = 0 from the fact that ρα(Tn(x), Tn+1(x)) → 0 from each

x ∈ X .

As before we have the following corollary.

Corollary 2.13.1 Let (X, ρ) be a complete metric space and T a continuous

mapping. Assume φ(x) = ρ(x, T (x)) has the property:

inf{φ(x) + φ(y) : ρ(x, y) ≥ a} = µ(a) > 0 for all a > 0

and infx∈X ρ(x, T (x)) = 0. Then T has a unique fixed point.

2.3.2 An Interplay Between the Order and Pseudometric Partial

Ordering in Complete Uniform Topological Space

In this section we display the interconnection between the order and pseudometric

partial ordering in a complete uniform space. Let (X,h) be a uniform space and

A∗(h) = [ρα : α ∈ I ].

For each α ∈ I , let φα : X → R be a real valued function. Then for each α ∈ I ,

we can define a preorder relation (reflexive and transitive) (≤α on X by x ≤α y

if and only if ρα(x, y) ≤ φα(x) − φα(y). Observe that transitivity of ≤α follows

from the triangle inequality of ρα. Thus we have a family {≤α: α ∈ I} of preorder

relations on X . From these relations we now define another partial order relation

≤ on X by x ≤ y if and only if x ≤α y (as X is Hausdorff, it is to see that ≤ is

antisymmetric).
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Theorem 2.14 Let (X,h) be a complete Hausdorff uniform space and let for

each α ∈ I, φα : X → R a lower semi-continuous function with a common finite

lower bound. Then given x0 ∈ X, there is at least one maximal element x with

respect to ≤ (as defined above) with x0 ≤ x.

Proof. For any z ∈ X and each α ∈ I , denote the set {x ∈ X : z ≤α x} by Tα(z).

For each α ∈ I, Tα(z) = {x ∈ X : φα(x)+ρα(z, x) ≤ φα(z)} is a closed set by virtue

of the lower semicontinuity of the map x→ φα(x) + ρα(z, x).

Hence T (z) = {x ∈ X : z ≤ x} = {x ∈ X : z ≤α x for each α ∈ I} = ∩α∈ITα(z) is

a closed set. Note T (z) is nonempty for all z ∈ X as z ∈ T (z).

Now let x0 ∈ X be given. We construct an ascending sequence x0 ≤ x1 ≤ x2 ≤ · · ·
inductively. We choose x1 ∈ T (x0) so that φα(x1) ≤ 1 + inf[φα\T (x0)] for all

α ∈ I . (Note this could be done as φα has common lower bound independent

of α.) Next we choose x2 ∈ T (x1) so that φα(x2) ≤ 1
2 + inf[φα\T (x1)]. We

continue this process to obtain the sequence {xn} inductively with xn ∈ T (xn−1)

and φα(xn) ≤ 1
n + inf[φα\T (xn−1)]. Clearly T (x0) ⊃ T (x1) ⊃ · · · is a descending

sequence of nonempty closed sets. Next we show that δα[T (xn)] → 0 for each

α ∈ I . Let u ∈ T (xn) ⊂ T (xn−1). Then φα(u) ≥ inf[φα\T (xn−1)] ≥ φα(xn) − 1
n

for each α ∈ I . Now since xn ≤ u, we have xn ≤α u for each α ∈ I and hence

ρα(xn, u) ≤ φα(xn) − φα(u) < 1
n for each α ∈ I . Thus δα[T (xn)] ≤ 2

n . Hence

by the Cantor Intersection Theorem in Uniform Space ∩∞
n=0T (xn) = {x}. Since

x ∈ T (xn) for each n, we have xn ≤ x. Also x is a maximal element. Let, if possible,

x ≤ v. Then xn ≤ x ≤ v and v ∈ ∩∞
n=0T (xn) = {x}. Thus x = v.

The above theorem extends the result of Bronsted (Brondsted (1974)).

Corollary 2.14.1 Let (X, ρ) be a complete metric space and let φ : X → R be

a lower semicontinuous function with finite lower bound. Then given x0 ∈ X, there

is maximal element x ≤ x0 with respect to ≤, where ≤ is defined on X by: x ≤ y if

and only if ρ(x, y) ≤ φ(x) − φ(y).

Proof. Take I = {1} in the previous theorem.

Theorem 2.15 Let (X,h) be a complete Hausdorff uniform space and let for

each α ∈ I, φα : X → R a lower semicontinuous function with a commom finite

lower bound. Let T : X → X be a mapping (not necessarily continuous) such that

for each α ∈ I, ρα(x, T (x)) ≤ φα(x) − φα(Tx), x ∈ X. Then T has a fixed point.

Proof. By the preceeding theorem there is a maximal element x. Since

ρα(x, T (x)) ≤ φα(x)−φα(T (x), we have x ≤α T (x) for each α ∈ I . Thus x ≤ T (x).

Hence x = T (x) by the maximality of x.

Corollary 2.15.1 Let (X, ρ) be a complete metric space and φ : X → R a lower

semicontinuous function with a finite lower bound. Let T : X → X be a mapping

such that ρ(x, T (x)) ≤ φ(x) − φ(T (x)) for each x ∈ X. Then T has a fixed point.

Proof. Take I = {1} and apply Theorem 2.15.
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2.4 Changing Norm

At the outset we note that if we have two equivalent norms ‖·‖ and ‖·‖1 in a Banach

space E (i.e., if we have m‖x‖1 ≤ ‖x‖ ≤M‖x‖1 for all x ∈ E with some constants

m and M), then a mapping which is Lipschitzian in one norm remains Lipschitzian

in other. Thus for a mapping T : E → E which is Lipschitzian in one norm with

Lipschitz constant ≥ 1, it is of paramount interest to seek an equivalent norm which

makes T Lipschitzian with the corresponding Lipschitz constant < 1. To the best of

the knowledge of the author this idea was first applied by Bielecki (Bielecki (1956),

pp. 265–268) and Chu and Diaz (Chu and Diaz (1964/65, pp. 351–363)).

In this section E = C[0, T ] is the Banach space of all continuous real valued

functions defined on [0, T ] with the norm ‖u‖ = sup0≤t≤T |u(t)|, u ∈ C[0, T ].

Now for any λ > 0, the norm ‖ · ‖λ in E defined by

‖u‖λ = sup
0≤t≤T

e−λt|u(t)|, u ∈ E = C[0, T ].

As e−λt‖u‖ ≤ ‖u‖λ ≤ ‖u‖ two norms are equivalent and E is also complete with

respect to the later norm.

Now let us first consider the following Volterra integral equation of the second

kind

u(t) = f(t) +

∫ t

0

F (t, s)u(s)ds, 0 ≤ t ≤ T (2.15)

where the given function f and kernel F are assumed to be continuous in [0, T ] and

[0, T ]× [0, T ] respectively.

Let E = (C[0, T ], ‖ ·‖), where ‖ ·‖ is the Sup norm as defined above. If we define

the mapping T : E → E by

T (u)(t) = f(t) +

∫ t

0

F (t, s)u(s)ds, 0 ≤ t ≤ T,

then for any v1, v2 ∈ C[0, T ],

‖T (v1) − T (v2)‖ ≤
∫ t

0

sup
0≤s,t≤T

|f(t, s)| sup
0≤s≤T

|v1(s) − v2(s)|ds ≤ aN‖v1 − v2‖,

where N = sup0≤s,t≤T |F (t, s)|.
Thus T is not, in general, a contraction mapping unless the product aN < 1.

Hence in order to apply the contraction mappings principle one is forced to restrict

either the size of the interval 0 ≤ t ≤ T where the solution is defined or the “size”

of the kernel F (x, y).
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On the other hand, if we take E = (C[0, T ], ‖ · ‖λ) and define the mapping

T : E → E by

T (u)(t) = f(t) +

∫ t

0

F (t, s)u(s)ds, 0 ≤ t ≤ T,

then for any v1, v2 ∈ E,

‖T (v1) − T (v2)‖λ ≤ N sup
0≤t≤T

e−λt
∫ t

0

|v1(s) − v2(s)|ds

= N sup
0≤t≤T

e−λt
∫ t

0

eλse−λs|v1(s) − v2(s)|ds

≤ N‖v1 − v2‖λ sup
0≤t≤T

e−λt
∫ t

0

eλs.ds

= N‖v1 − v2‖λ sup0≤t≤T
1 − e−λt

λ

≤ N

λ
‖v1 − v2‖λ.

Now it is clear that with sufficiently large λ, T is a contraction on (C[0, T ], ‖·‖λ).
Hence by the contraction mapping principle the integral equation (2.15) has a unique

solution u ∈ C[0, T ].

Next, we consider another Volterra integral equation of second kind

u(t) = f(t) +

∫ t

0

F (t, s, u(s))ds, 0 ≤ t ≤ T (2.16)

where the given function f and the kernel F are assumed to be continuous on the

finite interval [0, T ] and [0, T ]× [0, T ]× R respectively.

It is known (e.g. Tricomi (Tricomi (1957))) that by employing the usual method

of successive approximations each of the integral equations (2.15) and has a unique

solution u ∈ C[0, T ] for any continuous kernel. However, our interest in here is

limited to the application of contraction mapping principle.

Theorem 2.16 Let the kernel function F : [0, T ]× [0, T ]×R → R be continuous

and satisfy a Lipschitz condition

|F (t, s, x) − F (t, s, y)| ≤ λ|x − y|

for all s, t ∈ [0, T ] and x, y ∈ R. Then for any f ∈ C[0, 1], the integral equation

(2.16)

u(t) = f(t) +

∫ t

0

F (t, s, u(s))ds, 0 ≤ t ≤ T

has a unique solution u ∈ C[0, T ]. Moreover, for any arbitrary u0 ∈ C[0, T ], the

sequence {un} of iterates defined by un+1(t) = f(t) +
∫ t

0F (t, s, un(s))ds converges

uniformly to the unique solution u.
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Proof. Let E = (C[0, T ], ‖ · ‖λ). We define the mapping T : E → E by

T (v)(t) = f(t) +

∫ t

0

F (t, s, v(s))ds, v ∈ C[0, T ].

Then it is easy to see that u ∈ C[0, T ] is a solution of the integral equation (2.16) if

and only if u is a fixed point of T .

Now for any v1, v2 ∈ E,

‖T (v1) − T (v2)‖λ ≤ sup
0≤t≤T

e−λt
∫ t

0

|F (t, s, v1(s)) − F (t, s, v2(s))|ds

≤ λ sup
0≤t≤T

e−λt
∫ t

0

|v1(s) − v2(s)|ds

= λ sup
0≤t≤T

e−λt
∫ t

0

eλse−λs|v1(s) − v2(s)|ds

≤ λ‖v1 − v2‖λ sup
0≤t≤T

e−λt
∫ t

0

eλsds

= λ‖v1 − v2‖λ sup
0≤t≤T

[e−λt(eλt − 1)]

λ

= ‖v1 − v2‖λ sup
0≤t≤T

[1 − e−λt]

≤ (1 − e−λt)‖v1 − v2‖λ.

Thus T is a contraction mapping with contraction constant r = (1 − e−λt) < 1.

Hence by contraction mapping principle, T has a unique u ∈ C[0, T ] which is the

unique solution of (2.16).

The rest of the theorem is obvious from the contraction mapping principle when

the sequence {T n(u0)} of iterates starting from any u0 ∈ C[0, T ] is considered.

Corollary 2.16.1 Let G : [0, T ]× R → R satisfy a Lipschitz condition

|G(s, x) −G(s, y)| ≤ λ|x− y|

for all s ∈ [0, T ] and x, y ∈ R. Then the initial value problem

du

dp
= G(s, u), u(0) = 0 (2.17)

has a unique solution u ∈ C[0, T ].

Proof. If we take f(t) ≡ 0 and F (t, s, u) = G(s, u) in (2.15), then we get the

integral equation

u(t) =

∫ t

0

G(s, u(s))ds. (2.18)
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Now it is trivial to see that u ∈ C[0, T ] is a solution of (2.18) if and only if u is

a solution of (2.17). The corollary follows from the observation that (2.18) has by

virtue of Theorem 2.16, a unique solution u ∈ C[0, T ].

Next we consider a simple but useful theorem due to (Chu and Diaz (1964/65,

pp. 351–363)) with some applications to some functional equations and Goursat

problem for the wave equations, also due to (Chu and Diaz (1964/65, pp. 351–

363)).

Theorem 2.17 Let T : X → X be a mapping of a non-empty set X into

itself and K : X → X another self mapping possessing a right inverse K−1, i.e.,

KK−1 = IX , the identity mapping on X. Then the mapping T has a fixed point if

and only if K−1TK has a fixed point.

Proof. First, let T have a fixed point x0 ∈ X . Then K−1x0 = K−1Tx0 =

K−1T (KK−1)x0 = K−1TK(K−1x0). Thus K−1x0 is a fixed point of K−1TK.

Next, let x̄ ∈ X is a fixed point of K−1TK. Then Kx̄ = KK−1TKx̄ = T (Kx̄).

Hence Kx̄ is a fixed point of T .

Corollary 2.17.1 Let (X,h) be a complete Hausdorff uniform space and T,K :

X → X be two self mappings such that K has a right inverse K−1 and K−1TK is

a contraction mapping. Then T has a unique fixed point.

Proof. By contraction mapping principle K−1TK has a unique fixed point. Hence

Theorem 2.17 implies that T has a unique fixed point.

Corollary 2.17.2 Let (X,h) be a complete Hausdorff uniform space and T,K :

X → X be two self mappings such that K has a right inverse K−1 and K−1TnK

is a contraction mapping for some integer n. Then T has a unique fixed point.

Proof. By Corollary 2.17.1 T n has a unique fixed point x0 ∈ X . Now Tx0 =

T (Tnx0) = Tn(Tx0). By the uniqueness of fixed point of T n, Tx0 = x0. It follows

that x0 is a unique fixed point of T (see also Remark 2.4).

As applications of the above corollaries we consider the functional equation:

u(t) = f(t) + g(t)u(a(t)), (2.19)

where the functions f, g, and a are given and continuous on the finite closed interval

[0, T ] and 0 ≤ a(t) ≤ T . Picard (Picard (1927), pp. 158–161) considered the

equation (2.19) in the theory of boundary value problems of hyperbolic problems.

He showed the existence of a unique solution of (2.19) by the successive substitution

of the function u(a(t)), i.e.,

u(t) = f(t) + g(t)u(a(t))

= f(t) + g(t)[f(a(t)) + g(a(t))u(a2(t)]

= · · ·
= f(t) + g(t)f(a(t)) + g(t)g(a(t))f(a2(t))

+ g(t)g(a(t)) · · · + g(an(t))u(an+1(t)).
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Picard proved that under certain conditions, which are detailed in the remark

following the next theorem, the process converges to a unique solution. Much

simpler proof (even with conditions weaker than those of Picard) is obtained in the

following theorem.

Theorem 2.18 Let the functions f, g and a be given, continuous in [0, T ] and

satisfy the followings:

(a) a(0) = 0 and a(t) < t whenever 0 < t ≤ T ; and

(b) for some ρ with 0 < ρ < 1, there exists δ = δ(ρ) with 0 < δ ≤ T such that

|g(t)| < ρ for 0 ≤ t ≤ δ.

Then there exists a unique solution of the functional equation (2.19).

Proof. Since by assumption t−a(t) ≥ 0 for 0 ≤ t ≤ T , we have 0 < e−λ(t−a(t)) < 1

for all λ > 0.

Hence by assumption (b),

|g(t)e−λ(t−a(t))| < ρ for 0 ≤ t ≤ δ and all λ > 0.

Now suppose that δ ≤ t ≤ T . Then as t > a(t) for all t > 0, it follows that

m = m(ρ) = infδ≤t≤T [t− a(t)] > 0.

Thus δ ≤ t ≤ T and for λ > 0,

|g(t)e−λ(t−a(t))| ≤ e−λm sup
0≤t≤T

|g(t)|.

Now choosing sufficiently large λ, we can make the right side smaller than ρ. Hence

for such λ, say λ̄, we have

|g(t)e−λ̄(t−a(t))| < ρ whenever 0 ≤ t ≤ T.

We give two proofs, the first one is based on our previous consideration, i.e.,

changing the norm and the application of Corollary 2.17.1.

2.4.1 Changing the Norm

Let T : (C[0, T ], ‖·‖λ̄) → (C[0, T ], ‖·‖λ̄) defined by T (u)(t) = f(t)+g(t)u(a(t)), 0 ≤
t ≤ T . where ‖u‖λ̄ = sup0≤t≤T e

−λ̄(t−a(t))|u(a(t))|. Then for any v1, v2 ∈ C[0, T ],

by what has been done already,

‖T (v1) − T (v2)‖λ̄ ≤ sup0≤t≤T |g(t)|sup0≤t≤T e
−λ̄(t−a(t))|v1(t) − v2(t)|

≤ ρ‖v1 − v2‖λ̄.

As 0 < ρ < 1, T is a contraction on C[0, T ]. Hence T has a unique fixed point

u(t) ∈ C[0, T ], i.e., there is a unique solution of (2.19).



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Contraction Mappings 39

Using Corollary 2.17.1 Let K(u(t)) = eλ̄tu(t), u ∈ C[0, T ] and T is as defined

above. Then K−1(u(t)) = e−λ̄tu(t) and

K−1TK(u(t)) = K−1(T (eλ̄tu(t))

= K−1[f(t) + g(t)eλ̄a(t)u(a(t))]

= e−tf(t) + g(t)e−λ̄(t−a(t))u(a(t)).

Hence considering K−1TK as a mapping of (C[0, T ], ‖ · ‖) into itself, where ‖ · ‖) is

the usual sup norm, we have for any v1, v2 ∈ C[0, T ],

‖K−1TK(v1) −K−1TK(v2)‖ ≤ [sup0≤t≤T |g(t)e−λ̄(t−a(t))|‖v1 − v2‖
≤ ρ‖v1 − v2‖.

Thus K−1TK is a contraction. Hence in this case the result follows from Corollary

2.17.1.

Remark 2.12 The condition (b) of Theorem 2.18 will be guranteed if we assume

that |g(0)| < 1. For then for any ρ with |g(0)| < ρ < 1, we will have by the continuity

of g at 0, a real number δ = δ(p) such that 0 < δ ≤ T and |g(t)− g(0)| < ρ− |g(0)|
for 0 ≤ t ≤ δ, i.e., |g(t)| < ρ for 0 ≤ t ≤ δ.

In addition to continuity of f, g and a, Picard assumed that (i) a(x) is a linear

function, α(x) = β(x) where β is a constant satisfying 0 < β < 1 (the condition

(b) is evidently stronger than the condition (a)), (ii) the function f(x) satisfies an

inequality of the form |f(x)| ≤ cxµ with positive constant c and µ on 0 ≤ t ≤ T

(which is not assumed here) and (iii) the function g satisfies an inequality of the

form |g(t)| < eAt with constant A > 0 on 0 ≤ t ≤ T (which implies |g(0)| < 1).

As application of Corollary 2.17.2, next we consider the systems of functional

equations of the form:

u(x) = f(x) + k1(x)v(α(x)) (2.20)

v(y) = g(y) + k2(y)u(β(y)). (2.21)

We assume that

(∗)
(i) f(x), k1(x), α(x) and g(y), k2(y), β(y) are continuous on 0 ≤ x ≤ a and

0 ≤ y ≤ b respectively;

(ii) 0 ≤ α(x) ≤ b and 0 ≤ β(y) ≤ a;

(iii) |k1(0)k2(0)| < 1 and

(iv) α(0) = β(0) = 0, and β(α(x)) < x; α(β(y)) < y on 0 < x ≤ a and 0 < y ≤ b

respectively.

In this case we take the Banach space (E, ‖ · ‖), where E = C[0, a]× C[0, b] and

‖(u, v)‖ = max[ sup
0≤x≤a

|u(x)|, sup
0≤y≤b

|v(y)|],
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the mapping T : E → E defined by

T (u, v) = (f(x) + k1(x)v(α(x)), g(y) + k2(y)u(β(y))

and the mapping K : E → E defined by

K(u, v) = (eλxu(x), eλyv(y)).

Under the asssumption (∗) we can show that T has a unique fixed point (u, v) ∈ E

which will be the unique solution of (2.20).

Now K−1(u, v) = (e−λxu, e−λv), and

TK(u, v) = (f(x) + k1(x)e
λα(x)v(α(x)), g(y) + k2(y)e

λβ(y)u(β(y)).

It can be easily seen that

T 2K = TTK(u, v) = (ū, v̄)

where

ū = f(x) + k1(x)g(α(x)) + k1(x)k2(αx)e
λβ(α(x))u(β(α(x))) and

v̄ = g(y) + k2(y)f(β(y)) + k1(β(y))k2(y)e
λα(β(y))v(α(β(y))).

Hence K−1T 2K = K−1(ū, v̄) = (û, v̂), where

û = [f(x) + k1(x)g(α(x))]e−λx + k1(x)k2(α(x))e−λ(x−β(α(x)))u(β(α(x))) and

v̂ = [g(y) + k2(y)f(β(y))]e−λx + k1(β(y))k2(y)e
−λ(y−α(β(y)))v(α(β(y))).

Now we can use an argument similar to the one used in the proof of Theorem 2.18

to show that under the condition (∗), K−1T 2K is a contraction mapping. Hence

by Corollary 2.17.2, T has a unique fixed point. Thus we have proved the following

theorem:

Theorem 2.19 Under the condition (∗), the functional equation (2.20) has a

unique solution.

These functional equations have applications in boundary value problems for

partial differential equations of hyperbolic type. Here we consider an example, the

Goursat problem for the wave equations:





uxy(x, y) = f(x, y) in R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b},
u(x, α(x)) = σ(x), if 0 ≤ x ≤ a,

u(β(y), y) = τ(y), if 0 ≤ y ≤ b,

σ(0) = τ(0) = 0

(2.22)

With 0 ≤ α(x) ≤ b and 0 ≤ β(y) ≤ a for 0 ≤ x ≤ a and 0 ≤ y ≤ b respectively.
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Assuming u, ux, uy and uxy to be continuous, any solution of uxy = f(x, y) (in

the classical sense) must be of the form

u(x, y) = θ(x) + φ(y) +

∫ x

0

∫ y

0

f(ζ, η)dη, dζ, (2.23)

where θ and φ are C1-function in 0 ≤ x ≤ a and 0 ≤ y ≤ b respectively.

Substituting the boundary conditions in (2.23) we obtain

σ(x) = u(x, α(x)) = θ(x) + φ(α(x)) +

∫ x

0

∫ α(x)

0

f(ζ, η)dη, dζ

τ(y) = u(β(y), y) = θ(β(y)) + φ(y) +

∫ β(y)

0

∫ y

0

f(ζ, η)dη, dζ.

Differentiating the last two equations we obtain a system of functional equations

for θ′(x) and φ′(y):

θ′(x) = [σ′(x) −
∫ α(x)

0

f(x, η)dη − α′(x)
∫ x

0

f(ζ, α(x))dζ] − α′(x)φ′(α(x)) (2.24)

φ′(y) = [τ ′(y) −
∫ β(y)

0

f(ζ, y)dζ − β′(y)
∫ y

0

f(β(y), η)dη] − β′(y)θ′(β(y)). (2.25)

Under the assumption that α(x), σ(x) and β(y), τ(y) are of C1 on their respective

class, f is continuous in R and α(0) = β(0) = 0, it can be easily seen that (2.22)

is equivalent to the system of functional equations (2.24) which is a special case of

(2.20).

Let h and h′ be two Hausdorff uniform topologies, on a non-empty set X , which

are generated by the families of pseudometrics {ρα : α ∈ I} and {ρ′α : α ∈ I}
respectively. h and h′ are said to be equivalent if there exist families {aα : α ∈ I}
and {bα : α ∈ I} of positive constants such that for each α ∈ I ,

aαρα(x, y) ≤ ρ′α(x, y) ≤ bαρα(x, y) for all x, y ∈ X.

Throughout the rest of the section all uniform spaces are assumed to be Haus-

dorff. Let T be a mapping of a uniform space (X, {ρα : α ∈ I}) into itself satisfying

a Lipschitz condition

for each α ∈ I, ρα(T (x), T (y)) ≤ aαρα(x, y) for x, y ∈ X. (2.26)

(Note that ρα(x, y) = 0 implies ρα(T (x), T (y)) = 0.)

It follows that for each positive integer n we have

for each α ∈ I, ρα(Tn(x), Tn(y)) ≤ anαρ(x, y) for x, y ∈ X. (2.27)

A mapping satisfying (2.26) is said to be Lipschitz continuous. If T n is a contraction

mapping for some positive integer n, then by Remark 2.2 (1) and also by Corollary

2.17.2 (taking K = IX = identity mapping on X), T has a unique fixed point. The
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following theorem will imply that if T n is a contraction mapping for a fixed positive

integer n, then T is also a contraction mapping with some equivalent uniformity.

Proposition 2.1 Let T : (X,h) → (X,h) be a mapping of a uniform space

(X,h) = (X, {ρα : α ∈ I}) into itself such that, for a fixed positive integer n, T n

satisfies (2.27). Then for each α ∈ I, the function ρ′α : X ×X → R defined by

ρ′α(x, y) = ρα(x, y)+
1

aα
ρα(T (x), T (y))+ · · ·+ 1

an−1
α

ρα(Tn−1(x), Tn−1(y)) (2.28)

is a pseudometric on X and T satisfies (2.26) with respect to ρ′α, i.e., for each α ∈ I

ρ′α(T (x), T (y)) ≤ aαρ(x, y) for x, y ∈ X. (2.29)

Two uniformities {ρα : α ∈ I} and {ρ′α : α ∈ I} are equivalent if and only if T is

Lipschitz continuous.

Proof. That for each α ∈ I , ρ′α is a pseudometric is obvious. Now,

ρ′α(T (x), T (y)) = ρα(T (x), T (y)) + · · · + 1

an−1
α

ρα(Tn(x), Tn(y))

≤ ρα(T (x), T (y)) + · · · + 1

an−2
α

ρα(Tn−1(x), Tn−1(y))

+
1

an−1
α

ρα(Tn(x), Tn(y))

≤ ρα(T (x), T (y)) + · · · + 1

an−2
α

ρα(Tn−1(x), Tn−1(y)) + aαρα(x, y)

= aαρ
′
α(x, y).

Hence (2.29) is proved. Next, it is clear that ρα(x, y) ≤ ρ′α(x, y) for each α ∈ I .

Hence if T is Lipschitz continuous with Lipschitz constant bα with respect to ρα,

then it follows that T is Lipschitz continuous with respect to ρ′α with Lipschitz

constant aαbα. Conversely, if for each α ∈ I , T is ρα-Lipschitz, then powers of T is

ρα-Lipschitz continuous. Assuming that for each α ∈ I ,

ρα(T k(x), T k(y)) ≤ ak(α)ρα(x, y) for k = 1, 2 . . . , n− 1,

we have

ρα(x, y) ≤ ρ′α(x, y) ≤ bαρα(x, y) (2.30)

where bα = 1 + aα(1)aα
−1 + · · · + aα(n−1)aα

1−n.

Corollary 2.19.1 Let T : (X,h) → (X,h) be a mapping of a uniform space

(x, h) = (X, {ρα : α ∈ I}) into itself such that T n is a contraction mapping with

contraction constants {rα : α ∈ I}. Then T is ρ′α-contraction with contraction

constants (rα)1/n for each α ∈ I.

Proof. It can be easily seen that the corollary follows from the Proposition 2.1.
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2.4.2 On the Approximate Iteration

For T : X → X and x0 ∈ X , define the sequence of iterates {xn} by xk = T k(x0).

Let x∗ be a unique fixed point of T and {yk} be a sequence of points in X as will be

defined in the following theorem. It is a question of some theoretical and practical

to get the information of ρα(xk, yk) and ρα(yk, x
∗) for each α ∈ I .

The following theorem follows from Proposition 2.1.

Theorem 2.20 Let T : (X,h) → (X,h) be a Lipschitz continuous mapping of

a complete uniform space (X,h) = (X, {ρα : α ∈ I}) into itself with Lipschitz

constants {aα : α ∈ I} and T n be contraction with some positive integer n, say, for

each α ∈ I, ρα(T k(x), T k(y)) ≤ aα(k)ρ(x, y) for k = 1, 2, . . . , n, where aα(n) = anα <

1. Let xk be the unique fixed point (obtained by Corollary 2.19.1) and let {yk} be

the sequence in X such that for each α ∈ I, εk(α) = ρα(yk+1, T (yk)). Then for each

α ∈ I,

ρα(x∗, yk+1) ≤ ρ′α(x∗, yk+1) ≤ bαAk(α)

ρα(x∗, yk+1) ≤ ρ′α(x∗, yk+1) ≤ bαBk(α),

where bα is as defined in (2.30),

Ak(α) = (1 − aα
−1)[εk(α) + aαρα(yk+1, yk)

Bk(α) = ρα(xk+1, yk+1) + ak+1
α ρα(x0, y0) +

∑k
i=0aα

k−iεi.

The next proposition follows immediately from Proposition 2.1 taking I = {1} and

‖x‖ = ρ(x, 0).

Proposition 2.2 Let (X, ‖ · ‖) be a Banach space and let A be a bounded linear

operator of X into itself such that ‖An‖ = αn (‖A‖ denotes the operator norm).

Then the function ‖ · ‖1 : X → R defined by

‖x‖1 = ‖x‖+
1

α
‖A(x)‖ + · · · + 1

αn−1
‖An−1(x)‖

defines a norm equivalent to the original norm ‖ · ‖ and for the corresponding oper-

ator norm of A, we have ‖A‖1 ≤ α.

As an immediate consequence we obtain ‖A‖1 ≤ ‖An‖1/n, which is one half of

Gelfand’s theorem (see Riesz and Sz-Nagy (1955, p. 425)) on spectral radius δ of

A, namely δ ≤ inf ‖An‖1/n.

The results begining from Proposition 2.1 to the end of this section are due to

Walter (Walter (1976)) for the metric space and Theorem 2.20 in metric space case

with n = 1 is due to Ostrowski (e.g. see Ortega and Rheinboldt (1970), Theorem

12.2.1). The authors are not aware if these have been done in uniform space by

anyone.
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2.5 The Contraction Mapping Principle Applied to the Cauchy-

Kowalevsky Theorem

In this section we present a result of Walter (Walter (1976)). The Cauchy-

Kowalevsky Theorem asserts that under certain conditions the following partial

differential equation has a unique solution satisfying the initial data in some neigh-

borhood of the initial data.

∂pu(t, x)

∂tp
= F

(
t, x1, . . . , xn, u, . . . ,

∂k

∂tk
∂|α|u
∂xα

, . . .

)
(2.31)

with initial data given by

∂ju(0, x)

∂tj
= φj(x), j = 0, . . . , p− 1 (2.32)

where the order of the differential operators satisfies k + |α| ≤ p and k < p.

The specific conditions employed by Cauchy and Kowalevsky are that the φk’s

are analytic in a neighborhood of x0 = (x0
1, . . . , x

0
n) and the right hand side of

equation (2.31) is analytic in a neighborhood of the point
(

0, x0, φ0(x0), . . . ,
∂|α|φj(x0)

∂xα
, . . .

)
.

Furthermore, the initial data is not defined on a characteristic surface.

This problem is called Cauchy’s problem and the initial conditions are called

Cauchy data. It was first solved by Cauchy and, in a more general and simplified

way, by Sophie v. Kowalevsky. In this section existence and uniqueness of a solution

to this problem will be illustrated via an application of the Contraction Mapping

Principle.

The first task is to rewrite equation (2.31) in a simpler form: a quasilinear first

order system

∂u(t, x)

∂t
=

n∑

j=1

Bj(t, x, u)
∂u

∂xj
+ c(t, x, u). (2.33)

We illustrate this with a second order equation, but the same method holds for the

more general equation (2.31). Consider

∂2u

∂t2
= f(t, x, u, ut, ux, uxt, uxx) (2.34)

with initial data

u(0, x) = φ0(x) (2.35)

ut(0, x) = φ1(x). (2.36)

Here ut stands for ∂u
∂t and similarly for the other subscripts. The variable x is an

element of the reals.
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Rewrite equation (2.34) as a first order system by defining new variables

v = ut and w = ux

which leads to the system

ut(t, x) = v(t, x) (2.37)

vt(t, x) = f(t, x, u, v, w, vx, wx) (2.38)

wt(t, x) = vx(t, x) (2.39)

with initial data

u(0, x) = φ0(x) (2.40)

v(0, x) = φ1(x) (2.41)

w(0, x) = φ′0(x). (2.42)

Now any first order system of the form

∂u(t, x)

∂t
= g(t, x,u,ux) (2.43)

u(0, x) = φ(x) (2.44)

(where u, g and φ are vectors) can be transformed to a quasilinear system by the

substitution v = ux. This gives

∂v

∂t
=
∂ux
∂t

=
∂ut
∂x

=
∂g

∂x
(t, x,u,v) (2.45)

= gx + guv + gvvx. (2.46)

Thus we arrive at a quasilinear first order system in the variables (u,v):

ut = g(t, x,u,v) (2.47)

vt = gx + guv + gvvx. (2.48)

2.5.1 Geometric Preliminaries

Since we will make use of an important result of Nagumo (Nagumo (1951)), the

setting of the problem will be in the complex plane C, or more generally Cn. Dis-

cussions about the real-valuedness of solutions will be deferred until later.

Let Ω be an open set in Cn with nonempty boundary Γ = ∂Ω, so Ω is not all of

Cn but it may be unbounded. Let d(z) = dist(z,Γ) be the distance from z ∈ Ω to

Γ measured in the maximum norm |z| = maxi=1,...,n |zi|.
The set G ⊂ R×Cn (in the real case) or G ⊂ Cn+1 (complex case) is defined as

those points (t, z) with z ∈ Ω and |t| < ηd(z) for some η > 0 to be specified below.

In the real case the set G is a double cone with base Ω and pitch η.
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Let Ωt be those z ∈ Ω with (t, z) ∈ G, which is equivalent to d(z) > |t|/η. Then

Ωt is just the t-level sections of G. Define d(t, z) = d(z)−|t|/η which is the distance

from z ∈ Ωt to the boundary of Ωt.

As a straightforward application of the triangle inequality (d(z) ≤ |z−z ′|+d(z′))
one can show that

z ∈ Ωt, |z − z′| = r < d(t, z) ⇒ z′ ∈ Ωt and d(t, z′) ≥ d(t, z) − r. (2.49)

2.5.2 The Linear Problem

To illustrate the methods used we first prove existence and uniqueness for a special

case of the quasilinear problem, the linear problem:

∂u

∂t
= A(t, z)u+

n∑

j=1

Bj(t, z)
∂u

∂zj
+ c(t, z) in G (2.50)

u(0, z) = φ(z) in Ω (2.51)

where u, c, and φ are m-vectors and Bj are m×m matrices.

Some authors of textbooks consider only the linear problem, but in this case, the

linear problem is useful in illustrating the methods to be employed in the quasilinear

problem.

Now integration in t leads to an integral equation of Volterra type:

u(t, z) = g(t, z) +

∫ t

0

[
A(τ, z)u(τ, z) +

n∑

j=1

Bj(τ, z)
∂u(τ, z)

∂zj

]
dτ (2.52)

where

g(t, z) = φ(z) +

∫ t

0

c(τ, z)dτ.

A solution of (2.52) is by definition continuous in G and holomorphic in z for

fixed t (in the real case) or holomorphic in z and t in the complex case. It is clear

that a solution of equation (2.52) is a solution of the differential equation (2.50)

satisfying the initial conditions (2.51) and vice versa.

Throughout we use the maximum norm for vectors |u| = maxi=1,...,m |ui| and

the corresponding operator norm for matrices: |A| = maxk
∑

j |ajk |.
The following lemma is due to Nagumo (Nagumo (1951)) and it gives a bound

on ∂f
∂zj

in terms of f (Nagumo (1951)).

Lemma 2.7 (Nagumo (1951)) Let f : Ω → Cm be holomorphic and p ≥ 0. Then

|f(z)| ≤ c

dp(z)
for all z ∈ Ω (2.53)

=⇒
∣∣∣∣
∂f(z)

∂zj

∣∣∣∣ ≤ Cp
c

dp+1(z)
for all z ∈ Ω (2.54)
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where

Cp = (1 + p)

(
1 +

1

p

)p
< e(p+ 1)

and C0 = 1.

Proof. For a function ψ of a complex variable z ∈ C, it is straightforward to show

from the Cauchy integral formula

ψ′(z) =
1

2πi

∫

|z−z′|=r

ψ(z′)
(z − z′)2

dz′ (2.55)

that the estimate for |ψ′(z)| holds:

|ψ′(z)| ≤ 1

r
max

|z−z′|=r
|ψ(z′)|.

Applying this in the zj direction to each fi gives
∣∣∣∣
∂fi(z)

∂zj

∣∣∣∣ ≤
1

r
max

|zj−z′j |=r
|fi(z1, . . . , z′j , . . . , zn)| (2.56)

≤ 1

r
max

|zj−z′j |=r

c

dp(z1, . . . , z′j , . . . , zn)
(2.57)

≤ 1

r

c

(d(z) − r)p
(2.58)

because d(z) ≤ d(z′) + r. Choosing r = d(z)/(p+ 1) gives the desired result.

Now the Cauchy-Kowalevsky theorem is formulated and proved for the linear

problem in the case with real ‘time’ t.

Theorem 2.21 Assume that

(i) the functions A(t, z), Bj(t, z) and c(t, z) are continuous in G, holomorphic

in z for fixed t, and the initial data φ(z) is holomorphic in Ω.

(ii) there exists positive constants α, βj , γ, δ and p such that

|A(t, z)| ≤ α
d(t, z)

, |Bt(t, z)| ≤ βj

|c(t, z)| ≤ γ
dp+1(t, z)

, |φ(z)| ≤ δ
dp(z)

.

(iii) α/p + (1 + 1/p)p
∑
j βj < 1/η (which can be achieved by choosing η suffi-

ciently small).

Then the problem (2.52) has a unique solution u in G and it satisfies

|u(t, z)| ≤ c

dp(t, z)

in G.
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Proof. The first step is to find an appropriate metric space and metric to pose the

fixed point problem in. Define E to be the set of continuous functions u ∈ C(G,Cm)

with u holomorphic in z and ||u|| <∞ where

||u|| = sup
(t,z)∈G

|u(t, z)|dp(t, z).

Since convergence in this norm implies uniform convergence on compact subsets of

G, the limit is holomorphic in z and E is complete.

The integral equation (2.52) can be written

u(t, z) = g(t, z) + (Tu)(t, z) (2.59)

where

g(t, z) = φ(z) +

∫ t

0

c(τ, z)dτ

and

(Tu)(t, z) =

∫ t

0

[
A(τ, z)u(τ, z) +

n∑

j=1

Bj(τ, z)
∂u(τ, z)

∂zj

]
dτ

is a linear operator.

To apply the contraction principle, we need to verify that g ∈ E and T : E → E

is well defined and a contraction.

It is clear that g is holomorphic in z. To show ||g(t, z)|| < ∞ the following

estimate will be useful, and is not difficult to verify:

∣∣∣∣
∫ t

0

dτ

dp+1(τ, z)

∣∣∣∣ =
∫ |t|

0

dτ

(d(z) − τ/η)p+1
<

η

p dp(t, z)
. (2.60)

It follows from assumption (ii) and the definition of g that g ∈ E.

Now to estimate ||Tu|| we have from the definition of the norm that

|u(t, z)| ≤ ||u||
dp(t, z)

. (2.61)

Applying Nagumo’s lemma (Nagumo (1951)) to the region Ωt with distance function

d(t, z) we have
∣∣∣∣
∂u(t, z)

∂zj

∣∣∣∣ ≤ Cp
||u||

dp+1(t, z)
. (2.62)

From assumption (ii) and the last two inequalities we find

|Au| ≤ ||A||.||u|| (2.63)

≤ α||u||
dp+1(t, z)

, (2.64)
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∣∣∣∣Bj
∂u

∂zj

∣∣∣∣ ≤ Cpβj
||u||

dp+1(t, z)
.

It follows that

|Tu(t, z)| ≤
∫ t

0

[
α||u||

dp+1(τ, z)
+
∑

j

Cpβj
||u||

dp+1(τ, z)

]
dτ (2.65)

=

(
α||u|| + Cp

∑

j

βj ||u||
)∫ t

0

dτ

dp+1(τ, z)
(2.66)

≤ ||u||η
p

(
α+ Cp

∑

j

βj

)
1

dp(t, z)
(2.67)

where the last line is calculated from the estimate (2.60).

After multiplying both sides by dp(t, z) and using the definition of the norm, it

follows that

||Tu|| ≤ q||u|| <∞

where q = η/p(α+ Cp
∑
j βj), and so Tu ∈ E for u ∈ E. As T is a linear operator

it need only be shown that q < 1 to deduce that T is a contraction. Using the

expression for Cp then

q = η/p(α+ (1 + p)(1 + 1/p)pΣjβj) (2.68)

= η(α/p+ (1 + 1/p)p+1Σjβj) (2.69)

< 1 (2.70)

from assumption (iii). Therefore T is a contraction and equation (2.59) has a unique

fixed point in E which corresponds to a solution of the differential equation (2.50).

To complete the proof one must show that there is no possibility of there existing

a solution outside E. To this end, let u∗ be a solution defined on some open subset

D of G with D containing the point (0, z0). Choose r small enough so that

G∗ := {(t, z) : |t| < ηd∗(z), z ∈ Br(z0)} ⊂ D

and G∗ is some positive distance from the boundary of D. Here d∗(z) = r−|z−z0|.
Let E∗ be the corresponding Banach space as defined above. Applying the

theorem to Br(z0) it follows that there uniquely exists a solution u defined on G∗.
If it can be shown that u∗ ∈ E∗ then by uniqueness u = u∗ on G∗. But u∗ ∈ E∗

because it is bounded on G∗ so its norm is finite.

In the case of complex time, we can directly conclude that u = u∗ in D because

equality of holomorphic functions in the small implies the same in the large. The

proof would then be complete.

In the case of real time, we repeat the above arguments at a new point (0, z1),

eventually establishing equality of u and u∗ in a small strip: (t, z) ∈ D and |t| < α.
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By repeating the arguments at an new time t = ±α, we eventually obtain u = u∗

in all of D.

As for the solution having real values, one needs the assumption that A, Bj , c

and φ are real valued for real values of z. Then g(t, z) is real valued for real z and

the sequence of functions u0 = g, uk+1 = g + Tuk have this property as well. As

is known from the contraction mapping principle, this sequence converges to the

unique fixed point, and this limit is real valued for real values of z.

Another consequence of the contraction mapping principle is that the fixed point

varies continuously with the right hand side. Thus for suitable variations in the

functions A, Bj , c and φ, the solution varies continuously with respect to the metric.

Once again see Walter (Walter (1976)) for the details.

2.5.3 The Quasilinear Problem

For simplicity we look for a solution to the quasilinear problem

∂u

∂t
=

n∑

j=1

Bj(t, z, u)
∂u

∂zj
+ c(t, z, u) (2.71)

which takes values in the set Ω = BR(0) instead of a more general, perhaps un-

bounded domain. Furthermore the initial data will be

u(0, z) = 0

as a simple transformation will reduce the general problem to this case. As before

G is the set (t, z) with |t| < ηd(z) and z ∈ BR(0) where d(z) is the distance from z

to ∂BR(0).

Theorem 2.22 Assume that either (Real Case) the functions Bj(t, z, u) and

c(t, z, u) are continuous in G × BR(0) and holomorphic in (z, u) for fixed t, or

(Complex Case) Bj(t, z, u) and c(t, z, u) are holomorphic in all variables.

Further assume the following estimates hold:

|c| ≤ γ√
d(t, z)

, d(t, z)|c(t, z, u) − c(t, z, v)| ≤ γ ′|u− v|

|Bj | ≤ βj ,
√
d(t, z)|Bj(t, z, u) −Bj(t, z, v)| ≤ β′

j |u− v|.
If η > 0 is such that

2η
√
R(β + γ) < R, (2.72)

η

p
(β′ + βCp + γ′) < 1 (2.73)

η(3
√

3(β + γ) + 2β) ≤ 1 (2.74)

where β =
∑
j βj , β

′ =
∑
j β

′
j , then the quasilinear system has a unique solution u

satisfying the initial conditions u(0, z) = 0 and existing in G.
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Proof. We show the nonlinear integral operator

Su(t, z) =

∫ t

0

[∑

j

Bj(s, z, u)
∂u(s, z)

∂zj
+ c(s, z, u)

]
ds (2.75)

has a fixed point in the Banach space E defined as before with the same norm

||u|| = sup
(t,z)∈G

|u(t, z)|dp(t, z).

Note that unlike the linear case, the operator S is not defined on all of E because

the functions Bj and c are holomorphic for u ∈ BR(0) only. So we need a proper

subset of E which S maps to itself. Let F be the subset of E with the properties

that each u ∈ F satisfies

|u(t, z)| ≤ ρ and

∣∣∣∣
∂u(t, z)

∂zj

∣∣∣∣ ≤
1√
d(t, z)

where ρ = 2η
√
R(β + γ) < R. For u ∈ F let v = Su. We show v ∈ F . Now

|vt(t, z)| ≤
∑

j

|Bj |.|uzj | + |c| ≤ β + γ√
d(t, z)

.

Using the estimate

∫ |t|

0

ds√
d(s, z)

≤ 2η
√
R

integration in t yields

|v(t, z)| ≤ 2η
√
R(β + γ) < R

so the first defining condition for membership in F is satisfied. Now to estimate the

derivative of v, Nagumo’s Lemma (Nagumo (1951)) implies
∣∣∣∣
∂c(u)

∂zk

∣∣∣∣ ≤
γC

d3/2(t, z)
, |uzjzk

| ≤ C

d3/2(t, z)

and
∣∣∣∣
∂Bj(u)

∂zk

∣∣∣∣ ≤
βj
d

where C = C1/2 = 3/2
√

3. Thus we obtain

|vt,zk
| ≤ 1

d3/2(t, z)
(βC + β + γC)

and integration gives

|vzk
| ≤ 2η√

d(t, z)
(C(β + γ) + β) ≤ 1√

d(t, z)
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hence v ∈ F , so S : F → F . Now to show S is a contraction on F we estimate the

difference Su− Sv for u, v ∈ F .

We have

(Su− Sv)t =
∑

j

(Bj(u) −Bj(v))uzj +
∑

j

Bj(v)(uzj − vzj ) + c(u) − c(v)

so by the assumptions

|(Su− Sv)t| ≤
∑

j

β′
j

|u− v|
d

+
∑

j

βj |uzj − vzj | +
γ′

d
|u− v|.

Since |u− v| ≤ ||u− v||/dp and |uzj − vzj | ≤ Cp||u− v||/dp+1 then

|(Su− Sv)t| ≤
||u− v||
dp+1

(β′ + βCp + γ′)

and after integration

|Su− Sv| ≤ ||u− v||
dp

η

p
(β′ + βCp + γ′).

Thus by the definition of the norm we find

||Su− Sv|| ≤ η

p
(β′ + βCp + γ′)||u− v||

hence S is a contraction and the proof is complete.

To show that solutions are real valued for real values of z one uses successive

approximations starting at u0 = 0 as in the linear case. Furthermore, the solution

depends continuously on the initial condition and the functions Bj and c.

Note finally that the set F constructed in the proof is in fact compact (a straight-

forward application of the Ascoli Arzela theorem) and convex. Thus existence

follows from the Schauder fixed point theorem.

Remark 2.13 Walter’s paper (Walter (1976)) contains many facts which are of

historical and practical value: M. Nagumo (Nagumo (1951)) solves the quasilinear

system (2.33) with zero initial values by transforming it into an operator equation

in an appropriate Banach space. Then he shows that the solution is a fixed point

of the operator equation, the existence of which is obtained by the Schauder fixed

point theorem (see Chapter 4).

Keller and Schneider gave a proof of the classical Cauchy-Kowalevsky (C-K)

theorem by reducing the problem to an application of the Schauder fixed point

theorem which resembles Nagumo’s proof (Nagumo (1951)). Another approach

which was developed in sixties and gave rise to various generalized versions of C-

K theorem is the notion of a scale of Banach spaces, i.e. a collection {Bρ}ρ>0 of

Banach spaces with property that 0 < ρ < σ implies that Bσ ⊂ Bρ and ‖u‖ρ ≤ ‖u‖σ
for any u ∈ Bσ .
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These notions are used in Vol.III of Gelfand and Silov (1967, A.2.1–2.3), and

Ovsjannikov. Also the works of Tarafdar, Nirenberg, Ovsjannikov, and others con-

tributed to linear and nonlinear abstract C–K Theorems.

2.6 An Implicit Function Theorem for a Set of Mappings and Its

Application to Nonlinear Hyperbolic Boundary Value Problem

as Application of Contraction Mapping Principle

As an application of Banach contraction mapping principle in a complete metric

space we first prove the implicit theorem for a set of mappings, which in turn, will

be used to prove the existence of solution of nonlinear hyperbolic boundary value

problem [Tarafdar and Husain (1998)]. This implicit theorem contains the well-

known implicit theorem for a single mapping in Banach space. Given a Banach space

E, x0 ∈ E and δ > 0, we will use the notation Sδ(x0, E) = {x ∈ E : ‖x− x0‖ < δ}.
Where ‖·‖ is the norm in E. We will need the following notions. Let A be any

nonempty set and F a normed space, then a mapping f : A → F is called bounded

if f(A) is bounded, or equivalently if sup {‖f(t)‖ : t ∈ A} is finite. The set BF (A)

of all bounded mappings of A into F is a real (resp complex) vector space if F

is real (vesp. complex), as ‖f(t) + g(t)| ≤ ‖f(t)‖ + ‖g(t)‖ for any f, g,∈ BF (A).

Furthermore we can easily check that ‖f‖ = sup{‖f(t)‖ : f ∈ A} is a norm on

BF (A). We need the following lemmas due to Dieudonné (Diedudonné (1969)).

The results of this section are mainly from (Tarafdar and Husain (1998)).

Lemma 2.8 If F is a Banach space, BF (A) is a Banach space.

Proof. Let {fn} be a cauchy sequence in BF (A). Then given a real number ε < 0,

there exists a positive integer N such that ‖fm − fn‖ ≤ ε for all m,n ≥ N . Hence

for each t ∈ A, ‖fm(t) − fn(t)‖ ≤ ε for m,n ≥ N , i.e. for each t ∈ A, {fn(t)}
is a cauchy sequence in F . Since F is complete, {fn(t)} converges to an element

f(t) ∈ F for each t ∈ A. Hence it follows that ‖fm(t) − f(t)‖ ≤ ε for any t ∈ A

and all m ≥ N . Thus ‖f(t)‖ ≤ ‖fN (t)‖ + ε for all t ∈ A. Hence f is bounded,

i.e. f ∈ BF (A). Furthermore, we have ‖fm − f‖ ≤ ε for all m ≥ N . Thus {fn}
converges to f in BF (A).

Let U be an open subsset of a metric space E and CF (U) the vector space of

all continuous mappings of U into the normed space F . Let C∞
F (U) denote the set

of all bounded continuous mappings of U into F , i.e. C∞
F (U) = CF (U) ∩ BF (U).

Lemma 2.9 The subspace C∞
F (U) is closed in BF (U).

Proof. Let {fn} be a sequence of C∞
F (U) converging to f ∈ BF (U). Given real

number ε > 0, there exists a positive integer N such that ‖fn − f‖ ≤ ε/3 for all

n ≥ N . Let t0 be any arbitary but fixed point of U . Then by the continuity of fN ,

there exists an open neighborhood V of t0 in E such that ‖fN(t) − fN (t0)‖ ≤ ε/3

for any t ∈ V ∩ U . Since ‖fN(t) − f(t)‖ ≤ ‖fN − f‖ ≤ ε/3 for all t ∈ U . Thus
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‖f(t) − f(t0)‖ ≤ ‖f(t) − fN (t)‖ + ‖fN (t) − fN(to)‖ + ‖fN(t0) − f(t0)‖ ≤ ε for all

t ∈ V ∩ V . Hence f is continuous.

For a normed linear space (X, ‖·‖) with 0 ∈ X and a real number r > 0, we use

the notation Sr(0, X) = {x ∈ X : ‖x‖ < r}.
Lemma 2.10 Let E and F be Banach spaces, U = Sα(O,E) and V = Sβ(O,F ),

where α > 0 and β > 0 are real numbers. Let f be a continuous mapping of U × V

into F such that ‖f(x, y1) − f(x, y2)‖ ≤ k ‖y1 − y2‖ for all x ∈ U, y1, y2 ∈ V , where

k is a constant with 0 < k < 1. Also let ‖f(x, 0)‖ < β(1 − k) for all x ∈ U . Then

there is a unique continuous mapping Φ of U into V such that Φ(x) = f(x,Φ(x))

for all x ∈ U .

Proof. We give a variant of the proof given by Dieudonné (Diedudonné (1969)). Let

T :C∞
F (U) → C∞

F (U) be a mapping defined by (T Φ)(x) = f(x,Φ(x)),Φ ∈ C∞
F (U).

Now it is easy to see that T (Φ) is continuous. Also for each Φ ∈ C∞
F (U),

‖(TΦ)(x)‖ ≤ ‖f(x,Φ(x)) − f(x, 0)‖ + ‖f(x, 0)‖ ≤ k ‖Φ(x) − 0‖ + β(1 − k) <∞

Thus TΦ ∈ C∞
F (U) wherever Φ ∈ C∞

F . Now for all Φ1, Φ2, ∈ C∞
F (U).

‖T (Φ1) − T (Φ2)‖ = ‖f(x,Φ1, (x)) − f(x,Φ2(x))‖
≤ k ‖Φ1(x) − Φ2(x)‖ ≤ k ‖Φ1 − Φ2‖ .

Hence T is a contraction mapping and there is a unique fixed point Φ ∈ C∞
F (U).

Now for any x ∈ U , we define inductively a sequence of points Φn of V such

that Φ0 = 0, Φn = f(x,Φn−1), n ≥ 1. Then ‖Φn − Φn−1‖ ≤ kn−1 ‖Φ1‖ , Φn =

T (Φn−1).

Hence (∗) ‖Φn‖ ≤ (1 + k + k2 + · · · + kn−1) ‖Φ‖ ≤ ‖Φ1‖ /(1 − k) < β and

Φn ∈ C∞
F (U). Thus by contraction mapping principle Φn → Φ. Hence by (∗)

‖Φ(x)‖ ≤ ‖f(x, 0)‖ /(1 − k) < β for any x ∈ U .

Hence Φ is a mapping of U into V .

Smiley (1985) has obtained an existence theorem for the nonlinear abstract

hyperbolic boundary value problem in which the equation is of the form

∂2u

∂t2
+Au = εg[u] (2.76)

where A is a strongly elliptic operator, uniformly in an open bounded set Ω ⊂ R
n

and g is a nonlinear Nemytsky operator generated by a real valued function. The

equation (2.76) is to be satisfied weakly in the cylindrical domain (0, T ) × Ω. The

main technique used by Smiley (1985) is blending together the abstract techniques

of Lions and Magenes [LM1] with the alternative methods of Cesari (1976) and Hale

(1967). After reducing the problem (2.76) into a Cesari’s alternative form, he was

then able to use the implicit function theorem in proving the existence of solutions

of (2.76) for sufficiently small ε. The boundary conditions used for the equation

(2.76) will be made explicit in Subsection 2.6.3.
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As an application to his abstract existence theory, Smiley (1985) derived the

following theorem first established by Rabinowitz (1967).

Theorem 2.23 Let g ∈ C3(−∞, ∞), g′(u) > β > 0, g(0) = 0 and f ∈ H2(G)

be 2π-periodic in t where G = (0, 2π) × (0, π), then there exists ε0 > 0 such that

for each ε ∈ (−ε0, ε0) the problem

utt − uxx = ε[g(u) + f ], −∞ < t <∞, 0 < x < π ;

u(t, 0) = u(t, π) = 0, −∞ < t <∞ ;

u(t+ 2π, x) = u(t, x), −∞ < t <∞, 0 < x < π

has a nontrivial solution.

The above problem and similar problems have also been considered by many

authors, e.g. H. and L. (1978), Cesari (1965), Lovicarova (1972), Nakamo (1976),

Rabinowitz (1967), Vejvoda (1964).

In this section we have obtained a more general abstract existence theorem for

the equation (2.76) and as an application of our abstract theorem we have also

derived the above theorem. Our technique follows an approximating procedure

in the line of Tarafdar (1980) and an application of an implicit function theorem

involving a set of mappings which is proved in Subsection 2.6.1. This type of implicit

function theorem has its own interest and hopefully will find application elsewhere.

Finally we should mention that in this section the symbols and notations of

Smiley (1985) have been maintained and free use of preliminary results obtained

thereof has been made.

2.6.1 An Implicit Function Theorem for a Set of Mappings

In this subsection we prove an implicit function theorem for a set of mappings and

use this theorem in the latter part of our paper to obtain an abstract existence

theorem for nonlinear hyperbolic boundary value problem. All Banach spaces in

this section are assumed to be real.

Definition 2.2 Let E and F be Banach spaces and U an open subset of E. Let

I be an index set and {uα : α ∈ I} be a set of points in U . A family {fα : α ∈ I} of

mappings each defined on U and taking values in F is said to be equicontinuously

Fréchet differentiable on U with respect to the set {uα : α ∈ I} if fα is continuously

differentiable on U for each α ∈ I and given ε > 0, there exists δ > 0 (independent

of α) such that for each α ∈ I , ‖Dfα(u) −Dfα(uα)‖ < ε whenever u ∈ Sδ(uα, E),

where Df(v) stands for the derivative of f at u ∈ U .

Remark 2.14 If fα : U ⊂ E → F is differentiable on U for each α ∈ I and

‖Dfα(u) −Dfα(v)‖ ≤ C0 ‖u− v‖ for all α ∈ I , u, v ∈ U and for some constant C0,

then clearly {fα : α ∈ I} is equicontinuously differentiable on U with respect to

each set {uα : α ∈ I} of points in U .
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Theorem 2.24 (Implicit Function Theorem) Let E, F , G be Banach spaces

{fα : α ∈ I} a family of mappings of an open subset A of E × F into G. Let

{(x0, yα) : α ∈ I} be a set of points in A such that fα(x0, yα) = 0 for all α ∈ I.

Assume further:

(a) {fα : α ∈ I} is equicontinuously differentiable on A with respect to the set

{(x0, yα) : α ∈ I};
(b) (1) For each α ∈ I, the partial derivative D2fα(x0, yα) (i.e. the partial

derivative with respect to variables in F ) is a linear homeomorphism of F

onto G and

(2) the set {(D2fα(x0, yα))−1 : α ∈ I} is uniformly bounded in the operator

norm, i.e. there exists a constant C such that

∥∥(D2fα(x0, yα))−1z
∥∥ ≤ C ‖z‖ for all z ∈ G and all α ∈ I ;

(c) given ε > 0, there exists a δ > 0 such that for all α ∈ I,

‖fα(x, yα) − fα(x0, yα)‖ < ε , whenever ‖x− x0‖ < δ.

Then there exist an open neighborhood U0 of x0 and a number β0 > 0 such

that for each open connected neighborhood U of x0 with U ⊂ U0 there exists

for each α ∈ I a unique continuous mapping Φα : U → Sβ0(yα, F ) with the

property that

Φα(x0) = yα, (x, Φα(x)) ∈ A and fα(x, Φα(x)) = 0 for all x ∈ U.

Moreover, for each α ∈ I, Φα is continuously differentiable on U and the

derivatives are given by

Φ′
α(x) = −(D2fα(x, Φα(x)))−1 ·D1fα(x, Φα(x)). (2.77)

Proof. We denote by Tα the linear homeomorphism D2fα(x0, yα) of F onto G.

For each α ∈ I , let us consider the mapping gα : A → F defined by gα(x, y) =

y−T−1
α ·fα(x, y). Now since T−1

α Tα = I , the identity on F , we have for (x, y1) ∈ A

and (x, y2) ∈ A, α ∈ I ,

gα(x, y1) − gα(x, y2) = T−1
α (D2fα(x0, yα) · (y1 − y2) − (fα(x, y1) − fα(x, y2))) .

(2.78)

By condition [(b)](2) we can choose sufficiently small ε > 0 such that ε
∥∥T−1

α

∥∥ < 1/2

(by choosing ε > 0 small enough to make εC < 1/2). Also by condition (a) there

exist α0 > 0 and β0 > 0 such that for all α ∈ I , ‖Dfα(x, y) −Dfα(x0, yα)‖ < ε

whenever ‖x− x0‖ < α0 and ‖y − yα‖ < β0, i.e. whenever x ∈ Sα0(x0, E) and

y ∈ Sβ0(yα, F ). Now using the continuous differentiability of each fα and mean



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Contraction Mappings 57

value theorem (see (Diedudonné (1969)) we have for each α ∈ I ,

‖fα(x, y1) − fα(x, y2) −D2fα(x0, yα) · (y1 − y2)‖
= ‖fα(x, y1) − fα(x, y2) −Dfα(x0, yα) · ((x, y1) − (x, y2))‖
≤ ‖y1 − y2‖ sup

(x,y)∈S
‖Dfα(x, y) −Dfα(x0, yα)‖

(where S ⊂ A is a segment joining (x, y1) and (x, y2).)

≤ ε ‖y1 − y2‖ , (2.79)

whenever x ∈ Sα0(x0, E) = U1 and y1, y2 ∈ Sβ0(yα, F ). Now from (2.78) and

(2.79) we have for each α ∈ I ,

‖gα(x, y1) − gα(x, y2)‖ ≤ ε
∥∥T−1

α

∥∥ ‖y1 − y2‖ ≤ 1

2
‖y1 − y2‖ (2.80)

whenever x ∈ U1 and y1, y2 ∈ Sβ0(yα, F ).

Also by condition (c) there exists δ > 0 such that

‖gα(x, yα) − yα‖ =
∥∥−T−1

α · fα(x, yα)
∥∥ ≤

∥∥T−1
α

∥∥ ‖fα(x, yα)‖

=
∥∥T−1

α

∥∥ ‖fα(x, yα) − fα(x0, yα)‖ <
∥∥T−1

α

∥∥ εβ0 <
β0

2
(2.81)

whenever x ∈ Sδ(x0, E) = U2.

Now taking U0 = U1 ∩ U2 we see that (2.80) and (2.81) both hold whenever

x ∈ U0 and y1, y2 ∈ Sβ0(yα, F ).

Thus we can apply Lemma 2.10 to the mapping g̃α for each α ∈ I where g̃α is

defined by

g̃α(x′, y′) = gα(x0 + x′, yα + y′) − yα

in a small neighborhood of (0, 0).

When we do this, we obtain for each α ∈ I a unique continuous mapping Φα :

U0 → Vα = Sβ0(yα, F ) having the property that fα(x, Φα(x)) = 0 for all x ∈ U0

and also Φα(x0) = yα, since fα(x0, yα) = 0.

For the rest of the proof we repeat the argument of Diedudonné (1969) for each

fixed α ∈ I . Let α ∈ I be arbitrary but fixed. Next we prove that if U ⊂ U0 is

an open connected neighborhood of x0, Φα is the unique continuous mapping of U

into F such that Φα(x0) = yα, (x,Φα(x)) ∈ A and fα(x,Φα(x)) = 0 for all x ∈ U

and if ψα be a second mapping satisfying these conditions, then Φα = ψα on U .

Let M = {x ∈ U : Φα(x) = ψα(x)}. Then x0 ∈ M and M is closed as Φα and

ψα are continuous. It will thus suffice to prove that M is open, for then it will imply

that M = U as U is connected. Now since x → D2fα(x,Φα(x)) is continuous in

U0, by virtue of Lemma 2.10 (replacing if necessary U0 by a smaller neighborhood),

we can assume that D2fα(x,Φα(x)) is a linear homeomorphism of F onto G for
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x ∈ U0. Let a ∈ M . Then by the first part of theorem already proved, there exists

an open neighborhood Ua ⊂ U and open neighborhood Va ⊂ Vα of bα = Φα(a) such

that, for any x ∈ Uα, Φα(x) is the only solution yα of the equation fα(x, ya) = 0

such that yα ∈ Vα.

Now since ψα is continuous at a and Ψα(α) = Φa(a), there is a neighborhood

W ⊂ Ua such that ψa(x) ∈ Va for x ∈ W . Hence it follows that Φα(x) = ψα(x) for

x ∈W , both being solutions of fα(x, yα) = 0. Thus M is open.

Next, we show that Φα is continuously differentiable in U0.

For x and x+s in U0, put t = Φα(x+s)−Φα(x). Then by what we have already

proved, fα(x+ s,Φα(x) + t) = fα(x+ s,Φα(x+ s)) = 0 and t→ 0 as s→ 0. Hence

by (2.81), for a given x ∈ U0 and for any δ > 0, there is r > 0 such that ‖s‖ ≤ r

implies

‖fα(x+ s, Φα(x) + t) − fα(x,Φα(x)) − Sα(x) · s− Tα(x) · t‖ ≤ δ(‖s‖ + ‖t‖),

where Sα(x) = D1fα(x,Φα(x)) and Tα(x) = D2fα(x,Φα(x)), which reduces to

‖Sα(x) · s+ Tα(x) · t‖ ≤ δ(‖s‖ + ‖t‖)

Now as Tα(x) is a linear homeomorphism,
∥∥(T−1

α (x)0Sα(x)) · s+ t
∥∥ =

∥∥T−1
α (x)0Sα(x) · s+ T−1

α (x)0Tα(x) · t
∥∥ (2.82)

≤ δ
∥∥T−1

α (x)
∥∥ (‖s‖ + ‖t‖) (2.83)

Let δ be so chosen that δ
∥∥T−1(x)

∥∥ ≤ 1. Then substituting a =

2
∥∥T−1

α (x)0Sα(x)
∥∥ + 1, we have from (2.82)

‖t‖ =
∥∥T−1

α (x)0Sα(x) · s+ t− T−1
α (x)0Sα(x) · s

∥∥

≤ δ
∥∥T−1

α (x)
∥∥ (‖s‖ + ‖t‖) +

∥∥T−1
α (x)0Sα(x)

∥∥ ‖s‖

=
1

2
(‖s‖ + ‖t‖) +

a− 1

2
‖s‖ .

Hence

‖t‖ ≤ α ‖s‖ . (2.84)

Finally from (2.82) and (2.84) we have
∥∥t+ (T−1

α (x)0Sα(x)) · s
∥∥ ≤ δ(a+ 1)

∥∥T−1
α (x)

∥∥ ‖s‖

whenever ‖s‖ ≤ r. Hence it follows from the definition of t, Φα is differentiable

at the point x and has the derivative T−1
α (x)0Sα(x) which is the right hand side

of (2.77). Now from (2.82), (2.84) and (2.77), it follows that Φα is continuously

differentiable in U0.

Remark 2.15 An important fact which will be crucial for our application of the

above theorem is that if the set {yα : α ∈ I} is bounded, then for each x ∈ U the
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set {Φα(x) : α ∈ I} is also bounded. This can be seen easily. Indeed, if ‖yα‖ ≤ C1

for all α ∈ I , then

‖Φα(x)‖ ≤ ‖Φα(x) − yα‖ + ‖yα‖ ≤ β0 + C1 for all α ∈ I.

We now consider the special case when yα = y0 for all α ∈ I .

Corollary 2.24.1 Let all the conditions of Theorem 1.1 hold with yα = y0 for

all α ∈ I. Then there exist an open neighborhood U0 of x0 in E and an open

neighborhood V0 of y0 such that for each open connected neighborhood U of x0 with

U ⊂ U0, there exists for each α ∈ I a unique continuous mapping Φα : U → V0 with

the property that Φα(x0) = y0, (x, Φ(x)) ∈ A and fα(x, Φα(x)) = 0 for all x ∈ U .

Moreover, for all α ∈ I, Φα is continuously differentiable on U and the derivatives

are given by (2.77).

Taking I = {1} in Theorem 2.24, we obtain the following well-known Implicit

Function in Banach spaces.

Corollary 2.24.2 Let E,F,G be Banach spaces and f a continuously differen-

tiable mapping of an open subset A of E×F into G. Let (x0, y0) be a point of A such

that f(x0, y0) = 0 and that the partial derivative D2f(x0, y0) be a linear homeomor-

phism of F onto G. Then there exist an open neighborhood U0 of x0 and a number

β0 > 0 such that for each connected U of x0 with U ⊂ U0, there exists a unique con-

tinuous mapping Φ : U → Sβ0(y0, F ) with the property Φ(x0) = y0, (x,Φ(x)) ∈ A

and f(x,Φ(x)) = 0 for all x ∈ U . Furthermore, Φ is continuously differentiable in

U and its derivative is given by

Φ′(x) = −(D2f(x,Φ(x))−1D1(f(x,Φ(x)).

In the next corollary we deduce the well-known inverse theorem in Banach

spaces.

Corollary 2.24.3 Let E and F be two Banach spaces and f a continuously

differentiable mapping of an open neighborhood U of x0 ∈ E into F . If f ′(x0) is a

linear homeomorphism of E onto F , then there is an open neighborhood U0 of x0

with U0 ⊂ U such that the restriction of f to U0 is homeomorphism of U0 onto an

open neighborhood of y0 = f(x0) in F . Furthermore, the inverse mapping f/U0 is

continuously differentiable and [(f/U0)
−1]′(y0) = [f ′(x0)]

−1.

Proof. We will apply Corollary 2.24.2 by interchanging the role of x and y. Set

y0 = f(x0). Let A = F × U and g : A → F defined by g(y, x) = −y + f(x),

y ∈ F and x ∈ U . Then D2g(y0, x0) = f ′(x0) which is a linear homeomorphism of

E onto F , D1g(y, x) = I , the identity on F and g(y0, x0) = 0. Hence by Corollary

2.24.2 we obtain an open neighborhood V of y0 and a continuously differentiable

mapping Φ : V → E such that Φ(y0) = x0; (y,Φ(y)) ∈ A and g(y,Φ(y)) = 0 for

all y ∈ V , i.e. Φ(V ) ⊂ U and f(Φ(y)) = y for all y = V . The last equality implies

that Φ is one-to-one. Hence it follows that f−1 = Φ is a homeomorphism of V onto
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Φ(V ) ⊂ U . Thus f−1(V ) = Φ(V ) is an open set in E and f is a homeomorphism

of U0 = Φ(V ) onto V . Furthermore,

[(f/U0)
−1]′(y0) = Φ′(y0) = −(D2g(x0,Φ(x0))

−1D1(g(x0,Φ(x0)) = [f ′(x0)]
−1.

2.6.2 Notations and Preliminaries

We use the following symbols and notations in the rest of this section. Let

(V, ‖·‖ , ((·, ·))) and (H, |·| (·, ·)) be two separable Hilbert spaces with V ⊂ H and

V dense in H where ‖·‖, ((·, ·)) and |·|, (·, ·) are norms and inner products of V

and H respectively.

Let A : V → V ∗ be a continuous linear mapping of V into its dual V ∗. We define

a bilinear form on V by a(u, v) = (Au, v) and assume that a(·, ·) is symmetric and

coercive, i.e. there exist constants α0 ≥ 0 and α1 > 0 such that

a(u, u) + α0 |u|2 ≥ α1 ‖u‖2
. (2.85)

Then

‖u‖A = (a(u, u) + α0 |u|2)1/2 (2.86)

is a norm on V and is equivalent to the norm ‖·‖ on V . Henceforth ‖u‖A will be

referred to as ‖·‖, the norm on V .

Let {w1, w2, . . . } be a complete orthogonal basis for V , consisting of eigenvectors

for the operator A. Hence the set of finite linear combinations of w’s is dense in V .

Let {λ1, λ2, . . . } be the corresponding eigenvalues, i.e. Awi = λiwi for i = 1, 2, . . . .

We do not rule out the possibility that λi = λj for some i 6= j.

Let L2(0, T ; V ) and L2(0, T ; H) denote the Hilbert spaces (cf. Lasota and

Myjak (1996a)) of measurable functions from the interval (0, T ) into V and H

respectively satisfying

‖u‖2
L2(0,T ;V ) =

∫ T

0

‖u(t)‖2
dt <∞

and

‖u‖2
L2(0,T ;H) =

∫ T

0

|u(t)|2 dt <∞.

We also define the space

W (0, T ) =

{
u ∈ L2(0, T ; V ) : u′ =

du

dt
∈ L2(0, T ; H)

}
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where the derivative u′ is the weak derivative1 in the sense

∫ T

0

u′(t)Φ(t)dt = −
∫ T

0

u(t)Φ′(t)dt (Bochner integral)

for all Φ ∈ C∞
0 (0, T ), the set of infinity differentiable functions with compact

support in (0, T ). Analogously we define weak periodic derivative by replacing

C∞
0 (0, T ) by C∞

per(0, T ), the set of functions Φ ∈ C∞(R) which are T -periodic.

The inner product in W (0, T ) is defined by

(u, w)W =

∫ T

0

[a(u, w) + α0(u, w) + (u′, w′)]dt. (2.87)

In this setting as in Smiley (1985) we consider the problem

d2u

dt2
+Au = εg[u], 0 < t < T (2.88)

B1u = B2u = 0, (2.89)

where B1u = B2u = 0 denote either Dirichlet, Neumann or periodic boundary

conditions.

2.6.3 Results of Smiley on Linear Problem

The boundary condition subspace WB of W (0, T ) corresponding to three boundary

conditions are defined as follows (cf. Smiley (1982) and Smiley (1985))

WB =





W0(0, T ) = closure of C∞
0 (0, T ; V ), B1u = u(0), B2u = u(T );

W (0, T ) B1u = u′(0), B2u = u′(T );

Wper(0, T ) = closure of C∞
per(0, T, V ), B1u = u(0) − u(T ),

B2u = u′(0) − u′(T );

where the closures are taken with respect to the norm topology of W (0, T ), induced

by the inner product (2.87), C∞
0 (0, T ; V ) and C∞

per(0, T ; V ) denote the sets of C∞

functions from R to V which have compact support in (0, T ) and are T -periodic

respectively.

Let B be a subset of WB and g : B → L2(0, T ; H) be a mapping (possibly

nonlinear). Then u ∈ B is said to be a weak solution of the problem (2.88)–(2.89)

if

∫ T

0

[−(u′, w′) + a(u, w)]dt = ε

∫ T

0

(g[u], w)dt for all w ∈WB . (2.90)

1See Schwartz (1957)
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We define a symmetric form B(·, ·) by

B(u, w) =

∫ T

0

[−(u′, w′) + a(u, w)]dt. (2.91)

Then u ∈ B is a weak solution of the problem (2.88)–(2.89) if

B(u, w) = ε(g[u], w)L2(0,T ;H) for all w ∈WB . (2.92)

B(·, ·) is obviously continuous on WB ×WB .

With ε = 0, the equation (2.92) reduces to the homogeneous problem

B(u, w) = 0, for all w ∈ WB . (2.93)

Let X0 = {u ∈ WB : u satisfies (2.93)} which is a closed subspace of WB .

If dimX0 ≥ 1, the problem is said to be at resonance. Such problems are not

well-posed in the sense of Hadamard.

Let Σ denote the set of eigenvalues for the corresponding scalar problem:

Φ′′ + µΦ = 0, 0 < t < T,

B1u = B2u = 0.

Here we quote the result of Smiley (1982).

Theorem 2.25 (Fredholm Alternative) If λi ∈ Σ for all but a finite number of

indices i = 1, 2, . . . , then for f ∈ L2(0, T ; H) the weak solutions of

d2u

dt2
+Au = f, 0 < t < T, (2.94)

exist if and only if (f, u)L2(0,T ;H) = 0 for all u ∈ X0. If solutions exist, then there

is a unique solution u0 ∈ X⊥
0 , the orthogonal complement of X0 in WB.

Let I be the set of indices for which λi ∈ Σ. We reorder the set I by {1, 2, 3, . . . }
so that λ1 λ2, . . . , λn, · · · ∈ Σ (relabelling if necessary). Let us denote the real

valued eigen function corresponding to the eigenvalue µi = λi ∈ Σ of the scalar

problem by ei(t). Then clearly ei(t)wi ∈ X0 where wi is the eigen vector of

A corresponding to the eigen value λi of A. We now denote the linear span of

{e1(t)w1, e2(t)w2, . . . , en(t)wn} by Xn. Thus we have a sequence {Xn} of finite

dimensional subspaces of X0 under the hypothesis of Theorem 2.25.

Let Y0, Y1 ⊂ L2(0, T ;H) be defined as follows:

Y1 = {u : (u, u0)L2(0,T ;H) = 0, for all u0 ∈ X0}
Y0 = {u : (u, v)L2(0,T ;H) = 0, for all v ∈ Y1}.

Then we have L2(0, T ; H) = Y0 ⊕ Y1 and WB = X0 ⊕ X⊥
0 where X⊥

0 is the

orthogonal complement of X0 in WB . Obviously X0 ⊂ Y0. Let P : WB → X0 and

Q : L2(0, T ; H) → Y0 be respectively the orthogonal projections ofWB ontoX0 and
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L2(0, T ; H) onto Y0. Then I−P : WB → X1 = X⊥
0 and I−Q = L2(0, T ;H) → Y1

are orthogonal projections onto X1 and Y1 respectively.

For each positive integer n, let Pn : X0 → Xn be the orthogonal projection of

X0 onto Xn and Qn : Y0 → Xn be that of Y0 onto Xn so that PnP : WB → Xn

and QnQ : L2(0, T : H) → Xn are orthogonal projections.

We also define

‖u‖W∞ = ‖u‖L∞(0,T ;V ) + ‖u′‖L∞(0,T ;H)

and

X∞
0 = {u ∈ X0 : ‖u‖W∞ <∞} (2.95)

X∞
1 = {u ∈ X1 : ‖u‖W∞ <∞} (2.96)

and

W∞
B = X∞

0 ⊕X∞
1 .

It is easily seen that W∞
B , X∞

0 and X∞
1 are Banach spaces and the restriction

of P to W∞
B is a continuous projection of W∞

B onto X∞
0 .

Remark 2.16 It can be seen that the norm defined by ‖u‖ = ‖Pu‖W∞ +

‖(I − P )u‖W∞ is equivalent to ‖u‖W∞ defined above.

We will need the following results which we write as lemmas (for proof see Smiley

(1982) and Smiley (1985)).

Lemma 2.11 Under the hypothesis of Theorem 2.25 there is a positive constant

C such that for each f ∈ Y1 and the corresponding unique solution u1 ∈ X1 ⊂WB ,

‖u1‖W∞ ≤ C ‖f‖L2(0,T ;H) .

That is, ‖KB‖W∞ ≤ C ‖f‖L2(0,T ;H) where KB is the inverse of the restriction

of LB to X∞
1 and LB is the linear mapping defined by LBu =

d2u

dt2
+ Au and

D(LB) =

{
u ∈ WB :

d2u

dt2
+ Au = f for some f ∈ Y1

}
. Thus KB : Y1 → X∞

1 is

continuous from L2(0, T ; H)-topology to W∞-topology.

Lemma 2.12 For each u ∈ X0 there exists a positive constant C1 such that

‖u‖W∞ ≤ C1 ‖u‖W .

Also for all u ∈W (0, T ) we have

‖u‖W ≤
√

2T ‖u‖W∞ .
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Proof. For the sake of convenience we assume the boundary conditions are u(0) =

u(T ) = 0, the proof in other cases will be similar. Thus Σ = {(nπ/T )2 : n =

1, 2, . . . }. Now since u ∈ X0, u(t) ∼ ∑
i∈I

ui sin(
√
λ t)wi, and since B(u,w) = 0 for

all w ∈ X0 by (2.93),

‖u‖2
W = ‖u‖2

W +B(u, u) =

∫ T

0

(2|u′|2 + α0|u|2)dt (2.97)

≥
∫ T

0

|u′|2dt. (2.98)

We note that δi,j = ((wi, wj)) = (λi + α0)(wi, wj) and hence |u′(t)|2 =

(u′(t), u′(t)) =
∑
i∈I

u2
iλi cos2(

√
λit) · (λi + α0)

−1.

Integrating we obtain

2

∫ T

0

|u′(t)|2dt =
T

2

∑

i∈I
u2
i

λi

λi + α0
≤ ‖u‖2

W .

From the same equality we have

|u′(t)|2 ≤
∑

i∈I
u2
i

λi
λi + α0

≤ 2

T
‖u‖2

W .

Also we have

‖u(t)‖2 = ((u(t), u(t)) =
∑

i∈I
u2
i sin2(

√
λt) ≤

∑

i∈I
u2
i .

Now since λi ≥ (π/T )2 for all i ∈ I , it follows that

‖u(t)‖2 ≤
∑

i∈I
u2
i ≤

(π/T )2 + α0

(π/T )2

∑

i∈I
u2
i

λi
λi + α0

≤ C ‖u‖2
W .

Combining these estimates we can show that there is a constant C > 0 such that

‖u‖W∞ ≤ C ‖u‖W . We can conclude the proof by observing

‖u‖W ≤
√

2T ‖u‖W∞ for all u ∈W (0, T ).

Remark 2.17 By virtue of the last inequality above we obtain that KB is also

continuous from L2(0, T : H)-topology to WB-topology.

Lemma 2.13 For all u ∈ WB, we have

Pu = Qu and PnPu = QnQu.
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Proof. The proof of the first part is similar to that of Lemma 3.3 in Smiley

(1985). Let u = u0 + u1, u0 ∈ X0 and u1 ∈ X1. Then Pu = u0. Also since

X0 ⊂ Y0, Qu0 = u0. It will thus suffice to show that Qu1 = 0. To this end we

show that X1 ⊂ Y1. Let u1 ∈ X1 be arbitrary and w = Φwi ∈ X0 where Φ is a real

valued function and wi is an eigenvector of A. Now B(w, u1) = 0 as w ∈ X0 and

(w, u1)W = 0 as u1 ∈ X1 = X⊥
0 . Thus,

0 = B(w, u1) + (w, u1)W

=

∫ T

0

[−(w′, u′1) + a(w, u1) + a(w, u1)

+α0(w, u1) + (w′, u′1)]dt

=

∫ T

0

[2a(w, u1) + α0(w, u1)]dt =

∫ T

0

(2λi + α0)(w, u1)dt. (2.99)

Thus u1 is ⊥ to every element w ∈ X0 of the form Φwi with respect to L2(0, T ; H)

inner product and is therefore, ⊥ to every finite linear combination of the elements

of this form. But since the set of such finite linear combinations are dense in X0

endowed with WB-topology (see Smiley (1982)), it follows from this u1 ∈ Y1. Thus

we have proved that X1 ⊂ Y1.

Now let n be a positive integer and let

X0 = Xn ⊕ Un where PnX0 = Xn and (P − PnP )X0 = Un

and

Y0 = Xn ⊕ Vn where QnY0 = Xn and (Q−QnQ)Y0 = Vn.

Let u ∈WB . Then by first part Pu = Qu.

Let Pu = Qu = x+ y where x ∈ Xn and y ∈ Un.

Then PnPu = x and QnQx = x as x ∈ Xn. If we prove that QnQy = 0, then it

will follow that PnPu = QnQu.

Thus it will suffice as above to prove that Un ⊂ Vn.

First we recall that Xn = linear span of {e1(t)w1, e2(t)w2, . . . , en(t)wn}.
Let v ∈ Un be arbitrary. Then for k = 1, 2, . . . , n, B(ek(t)wk , v) = 0 as

ek(t)wk ∈ Xn ⊂ X0 and v ∈ Un ⊂WB . Thus as above we obtain

∫ T

0

(ek(t)wk, v)dt = 0 for k = 1, 2, . . . , n.

This implies that v⊥Xn with respect to L2(0, T ; H) inner product. Thus v ∈ Vn.

This completes the proof.
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2.6.4 Alternative Problem and Approximate Equations

In this section we will reduce our problem to the Cesari’s alternative type

of problems. Let, as before, LBu =

(
d2

dt2
+A

)
u where domain D(LB) =

{
w ∈WB :

d2u

dt2
+Au = f for some f ∈ Y1

}
. Equivalently D(LB) = X∞

0 ⊕
KB(Y1). Since what follows in this section there is nothing to distinguish between

three boundary conditions we will denote LB and KB simply by L and K.

Lemma 2.14 Under the hypothesis of Theorem 2.25, the operators P , Q, L and

K introduced in the previous section and above satisfy:

(i) K(I −Q)Lu = (I − P )u for all u ∈ D(L);

(ii) LPu = QLu for all u ∈ D(L);

(iii) LK(I −Q)u = (I −Q)u for all u ∈ L2(0, T ; H).

The proof is simple and is therefore omitted.

We now consider the following approximate equations.

For each positive integer n we consider the equation

Lnu = εg[u] (2.100)

where Lnu = Lu+ (Q−QnQ)u, u ∈ D(L).

It is easy to see that Xn = kerLn.

Lemma 2.15 (1) u is a weak solution of the problem (2.88)–(2.89), i.e. Lu =

εg[u] if and only if

u = Pu+ εK(I −Q)g[u] (2.101)

and

Qg[u] = 0 (bifurcation equation). (2.102)

(2) u is a solution of the approximate equation (2.100), i.e. Lnu = εg[u] if and

only if

u = Pu+ εK(I −Q)g[u], (2.103)

(Q−QnQ)u = εQg[u], (2.104)

and

QnQg[u] = 0. (2.105)

Proof. The proof of (1) follows immediately from (i), (ii) and (iii) of Lemma 2.14.

To prove (2), let Lnu = εg[u], i.e. Lu+ (Q−QnQ)u = εg[u]. Applying K(I −Q)
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both sides we obtain (2.103) by virtue of (i). Applying QnQ to both sides we obtain

(2.104) and and applying (Q−QnQ) to both sides we have

(Q−QnQ)u = ε(Q−QnQ)g[u] = εQg[u] by (2.104).

Next let (2.103), (2.104) and (2.105) hold. Then

Lu = ε(I −Q)g[u] by applying L to (2.103)

= εg[u]− (Q−QnQ)u by (2.78).

Thus Lnu = εg[u].

Lemma 2.16 Let g : B ⊂W∞
B →W∞

B be a mapping. We consider the mapping

F : R × B → W∞
B defined by

F (ε, u) = Pg(u) + (I − P )u− εK(I −Q)g(u), u ∈ B

and for each positive integer n,

Fn : R × B →W∞
B defined by

Fn(ε, u) = PnPg(u) + (I − PnP )u− εK(I −Q)g(u) − ε(Q−QnQ)g(u),

u ∈ B. Then (ε, u) is a weak solution of the problem (2.88)–(2.89) if and only if

F (ε, u) = 0 and (ε, u) is a solution of the approximate equation (2.100) if and only

if Fn(ε, u) = 0.

Proof. It is clear that if (2.101) and (2.102) hold, then F (ε, u) = 0. Suppose

now that F (ε, u) = 0. Then 0 = PF (ε, u) = Pg(u) = Qg(u) by Lemma 2.12 as

g(u) ∈ WB . Also 0 = (I − P )F (ε, u) = (I − P )u − εK(I − Q)g(u) which gives

(2.101). Thus the conclusion follows from Lemma 2.15. Similarly if (2.103), (2.104)

and (6.23) hold, then clearly Fn(ε, u) = 0. Conversely suppose that Fn(ε, u) = 0.

Then using Lemma 2.12 we have 0 = PnPFn(ε, u) = PnPg(u) which gives (2.105).

0 = (P −PnP )Fn(ε, u) = (P −PnP )u− ε(Q−QnQ)g(u) = (P −PnP )u− εQg(u).

Thus the lemma follows from Lemma 2.15.

Remark 2.18 The mapping g : B →W∞
B in the above lemma is not necessarily

of the form g[u]. In fact we will be interested in g of the form g[u] + f where

f ∈W∞
B .

An Abstract Existence Theorem

In the rest of this subsection we deal with the existence of solutions of the

approximate equations Lnu = εg[u]. We show by applying the implicit function

theorem established in Subsection 2.6.1 that for sufficiently small ε there exists

un(ε) such that, Lnun(ε) = εg(un(ε)) for each positive integer n, i.e. given ε > 0

sufficiently small each approximate equation has a solution.

Throughout the rest of this subsection we will assume that the hypothesis of

Theorem 2.25 holds.
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Lemma 2.17 Let g : B → W∞
B be a continuously (Fréchet) differentiable map-

ping defined on an open subset B of W∞
B . Then for each positive integer n, Fn

is continuously differentiable mapping from R × B into W∞
B . The derivative, i.e.

the linear action of the differential DFn(ε0, u) ∈ L(R ×W∞
B , W∞

B ), the space of

bounded linear mappings of R ×W∞
B into W∞

B is given by

DFn(ε0, u0) · (δ, h) = −δK(I −Q)g(u0) − δ(Q−QnQ)g(u0) + PnPg
′(u0) · h

+ (I − PnP )h− ε0K(I −Q)g′(u0) · h− ε0(Q−QnQ)g′(u0) · h. (2.106)

Also the partial derivative of Fn with respect to u ∈ B evaluated at (0, u0) ∈ R×B

is given by

DuFn(0, u0) = PnPg
′(u0) + (I − PnP ). (2.107)

Furthermore if there exists points {un : n = 1, 2, . . . } ⊂ B such that:

(0) given ε > 0, there exists δ > 0 such that for all n

‖g(u) − g(un)‖W∞ < ε whenever ‖u− un‖W∞ < δ;

(00) given ε > 0, there exists δ > 0 such that for all n

‖Dg(u) −Dg(un)‖ = ‖g′(u) − g′(un)‖ < ε whenever ‖u− un‖W∞ < δ (the norm

on the left-hand side is the operator norm). Then the family {Fn : n = 1, 2, . . . }
is equicontinuously differentiable on B with respect to each set {(t0, un) : n =

1, 2, . . . }.

Proof. P , PnP , Q, QnQ, K being continuous linear mappings are continuously

differentiable and are their own derivatives. Thus by chain rule (see Dieudonné [6])

Fn is continuously differentiable for each n. The partial derivatives are given by

DεFn(ε0, u0) · δ = −δK(I −Q)g(u0) − δ(Q−QnQ)g(u0)

and

DuFn(ε0, u0) · h = PnPg
′(u0) · h+ (I − PnP ) · h− ε0K(I −Q)g′(u0) · h

− ε0(Q−QnQ)g′(u0) · h. (2.108)

Now since DFn(ε0, u0) · (δ, h) = DεFn(ε0, u0) · δ+DuFn(ε0, u0) ·h (see Dieudonné

Diedudonné (1969)) we have proved (2.17).

From (2.108) we have

DuFn(0, u0) · h = PnPg
′(u0) · h+ (I − PnP )h = [PnPg

′(u0)

+ (I − PnP )] · h for all h ∈W∞
B .

Hence we have proved (2.107).



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Contraction Mappings 69

Using (2.17) we have

[DFn(t, u) −DFn(t0, un)] · (δ, h) = DFn(t, u) · (δ, h) −DFn(t0, un) · (δ, h)
= −δK(I −Q)[g(u) − g(un)] − δ(Q−QnQ)[g(u) − g(un)]

+PnP [g′(u) − g′(un)] · h− (t− t0)K(I −Q)[g′(u) − g′(un)] · h
− (t− t0)(Q−QnQ)[g′(u) − g′(un)] · h. (2.109)

By our Lemma 2.13, P = Q, PnP = QnQ and by using our Lemma 2.12 we can

show that ‖Pn‖W∞
B

≤ C, a constant for all n, where ‖Pn‖W∞
B

is the operator norm

in L(W∞
B , W∞

B ) (see Remark 2.19 below). Noting this we obtain from (2.109) that

for all n,

‖[DFn(t, u) − DFn(t0, un)] · (δ, h)‖W∞

≤ |δ|
[
‖K‖ ‖(I −Q)‖ + (‖Q‖+ C ‖Q‖)

]
‖g(u) − g(un)‖W∞

+ ‖P‖ ‖g′(u) − g′(un)‖ ‖h‖W∞ + |t− t0| [‖K‖‖(I −Q)‖
+ (‖Q‖+ C ‖Q‖)] ‖g′(u) − g′(un)‖ ‖h‖W∞

≤ r |δ| ‖g(u) − g(un)‖W∞

+ [‖P‖ ‖g′(u) − g′(un)‖ + r |t− t0| ‖g′(u) − g′(un)‖] ‖h‖W∞ (2.110)

where r = ‖K‖ ‖(I −Q‖ + (‖Q‖+ C ‖Q‖).
Now ε > 0 be given. Then by condition (0) there exists a δ1 > 0 such that for

all n,

‖g(u) − g(un‖W∞ <
ε

r
whenever ‖u− un‖W∞ < δ1,

and by condition (00) there exist δ2 > 0 and δ3 > 0 such that for all n,

‖g′(u) − g′(un)‖ <
ε

2 ‖P‖ whenever ‖u− un‖W∞ < δ2,

and

‖g′(u) − g′(un)‖ <
√
ε√
2r

whenever ‖u− un‖W∞ < δ3.

Taking δ = min(δ1, δ2δ3) we see from (2.110) that for all n and all (δ, h) ∈ R×W∞.

‖[DFn(t, u) −DFn(t0, un)] · (δ, h)‖W∞

≤ |δ| ε+

[
ε

2
+ r

√
ε√
2r

√
ε√
2r

]
‖h‖W∞ = ε[|δ| + ‖h‖W∞ ] = ε ‖(δ, h)‖

whenever

‖u− un‖W∞ < δ and |t− t0| <
√
ε√
2r
,
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i.e. whenever

‖(t, u) − (t0, un)‖ < δ +

√
ε√
2r
.

Thus we have proved that for all n,

‖DFn(t, u) −DFn(t0, un)‖ < ε whenever ‖(t, u) − (t0, un)‖ < δ

where δ = δ +
√
ε/
√

2r. Hence {Fn} is equicontinuously differentiable on B with

respect to each set of the form {(t0, un) : n = 1, 2, . . . }.

Remark 2.19 In the above lemma we have used the fact that ‖Pn‖ ≤ C, a

constant for all n. This can be seen easily by using our Lemma 2.11 as follows:

Pn : X0 → Xn. Hence for all 0 6= x ∈ X0,

‖Pnx‖W∞

‖x‖W∞

≤ C1 ‖Pnx‖W
(
√

2T )−1 ‖x‖W
≤ C1

(
√

2T )−1
sup

06=x∈W∞
B ∩X0

‖Pnx‖W
‖x‖W

≤ C ‖Pn‖W ≤ C

where

C =
C1

(
√

2T )−1

as Pn being an orthogonal projection in WB has norm = 1.

Theorem 2.26 Let B be an open subset of W∞
B and g : B →W∞

B a continuously

differentiable mapping. Assume that for n = 1, 2, . . . , there exist points un ∈ Xn∩B

satisfying the following:

(a)′ g satisfies (0) and (00) of Lemma 2.17 with respect to the set {un : n =

1, 2, . . . , };
(b)′ PnPg(un) = 0;

(c)′ for each n the restriction T̂n of PnPg
′(un) to Xn is a linear homeomor-

phism;

(d)′ the sequence {
∥∥∥T̂−1

n

∥∥∥} is uniformly bounded, i.e. there exists a constant C

such that
∥∥∥T̂−1

n u
∥∥∥
W∞

≤ C ‖u‖W∞ for all u ∈ Xn and all n;

(e)′ the sequence of bounded linear mappings g′(un) is uniformly bounded in

operator norm, i.e. there exists a constant C1 such that ‖g′(un) · u‖W∞ ≤
C1 ‖u‖W∞ for all u ∈ W∞ and all n;

(f)′ the sequence {‖g(un)‖W∞} is bounded.

Then there exists an ε0 > 0 and β > 0 such that for each n = 1, 2, . . . , there exists a

continuous mapping Φn : (−ε0, ε0) → Vn = Sβ(un, W
∞
B ) (open sphere with centre

at un and radius = β) with property that Φn(0) = un and Fn(ε, Φn(ε)) = 0 for all

ε ∈ (−ε0, ε0), i.e. Φn(ε) is a solution of the approximate equation Lnu = εg(u).
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Moreover Φn is continuously differentiable for each n and the derivatives are

given by

Φ′
n(ε) = −[DuFn(ε, Φn(ε))]

−1 ·DεFn(ε, Φn(ε)).

Proof. We are going to show that the family {Fn : n = 1, 2, . . . } satisfies all

the conditions of our implict function Theorem 2.24 so that the conclusions of our

theorem will follow from those of Theorem 2.24. By virtue of our condition (a)′ it

follows from Lemma 2.17 that the family {Fn : n = 1, 2, . . . } is equicontinuously

differentiable on R×B with respect to the set {(0, un)} of points. Thus the condition

(a) of Theorem 2.24 is fulfilled. Also since un ∈ Xn for all n and by (b)′ PnPg(un) =

0 for all n, we obtain

Fn(0, un) = PnPg(un) + (I − PnP )un = 0 for all n.

Next we prove that for each n, DuFn(0, un) is a linear homeomorphism of W∞
B

onto W∞
B . We have already seen that our Lemma 2.17 is valid. Hence from (2.107)

we have

DuFn(0, un) = PnPg
′(un) + (I − PnP ).

Let us denote the linear mapping PnPg
′(un) by Tn.

Let h = h0 + h1 ∈ W∞
B where h0 = PnPh and h1 = (I − PnP )h. Then

DuFn(0, un) ·h = Tnh+h1 where Tnh = PnPg
′(un) ·h ∈ Xn. Now if Tnh+h1 = 0,

then Tnh = 0 and h1 = 0 because of direct sum decomposition. But then h = h0

and Tnh0 = 0. However by assumption (c)′ Tnh0 = T̂nh0 implies h0 = 0. Thus

DuFn(0, un) · h = 0 implies h = 0. Hence DuFn(0, un) is an injection of W∞
B into

itself. We now prove that DuFn(0, un) is onto. Let h = PnPh + (I − PnP )h =

h0 + h1 ∈ W∞
B . Then h0 − Tnh1 ∈ Xn. Thus v0 = T̂−1

n (h0 − Tnh1) ∈ Xn is well

defined. Let v1 = h1 and v = v0 + v1. Then

DuFn(0, un) · v = PnPg
′(un) · v + (I − PnP )v

= Tnv + (I − PnP )v

= Tnv0 + Tnv1 + v1

= T̂n(T̂
−1
n (h0 − Tnh1)) + Tnh1 + h1

= h0 − Tnh1 + Tnh1 + h1 = h. (2.111)

Thus we have proved that DuFn(0, un) is onto. Therefore, by the open mapping

theorem DuFn(0, un) is an open mapping. Hence DuFn(0, un) is a linear homeo-
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morphism of W∞
B onto W∞

B . Now from (2.109) and using (d)′ and (e)′ we have

∥∥[DuFn(0, un)]
−1 · h

∥∥
W∞

B

=
∥∥∥T̂−1

n (h0 − Tnh1) + h1

∥∥∥
W∞

≤
∥∥∥T̂−1

n

∥∥∥ [‖h0‖W∞ + ‖Tn‖ ‖h1‖W∞ ] + ‖h1‖W∞

≤ C[‖h0‖W∞ + ‖Pn‖ ‖P‖ ‖g′(un)‖ ‖h1‖W∞ ] + ‖h1‖W∞

≤ C[‖h0‖W∞ + ‖P‖CC1 ‖h1‖W∞ ] + ‖h1‖W∞

(where C is the constant obtained from Remark 2.19)

≤ C0[‖h0‖W∞ + ‖h1‖W∞ ]

where C0 = max(C,CC1C ‖P‖+ 1) ≤ C0 ‖h‖W∞ by Remark 2.16.

Clearly the constant C0 is independent of n. Thus we have proved that∥∥[DuFn(0, un)]
−1
∥∥ ≤ C0 for all n and hence the condition (b) of Theorem 2.24

is fulfilled.

Finally from the definition of Fn we obtain

F (t, un) − F (0, un) = t[(I −Q)g(un) + (Q−QnQ)g(un)].

Hence by using (f)′ and noting Remark 2.19 we have

‖F (t, un) − F (0, un)‖W∞ ≤ |t‖ [‖(I −Q)‖ + C3‖Q‖]‖g(un)‖W∞

≤ C2[‖(I −Q)‖ + C3 ‖Q‖] |t|

(because ‖g(un)‖W∞ ≤ C2 for all n by (f)′ where C3 = (1+C), C of Remark 2.19).

≤ C4 |t| , where C4 = C2[‖(I −Q)‖ + C3 ‖Q‖]

and is independent of n. The condition (c) of Theorem 2.24 clearly follows from

this. Thus we have verified all the conditions of Theorem 2.24 and therefore, the

proof of our Theorem 2.26 is complete.

Corollary 2.26.1 If in addition to the conditions of Theorem 2.24, {‖un‖W∞} is

also bounded, then for each ε ∈ (−ε0, ε0) the sequence {Φn(ε)}∞n=1 is also bounded

in W∞-norm.

Proof. This follows from Remark 2.15.

We now suppose that {‖un‖W∞} is bounded. Then by Lemma 2.11 and

Remark 2.18, for each ε ∈ (−ε0, ε0) {‖Φn(ε)‖WB} is bounded. Thus for each

ε ∈ (−ε0, ε0) Φn(ε) → Φ(ε) ∈ WB weakly (passing to a subsequence, if necessary)

in WB . Noting this we can now state the following.

Corollary 2.26.2 In addition to the conditions of Theorem 2.24 assume that

{‖un‖W∞} is bounded and for each ε ∈ (−ε0, ε0), g[Φn(ε)] → g[Φ(ε)] weakly in

WB . Then for each ε ∈ (−ε0, ε0), Φ(ε) is a weak solution of problem (2.88)–(2.89).
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Proof. We first prove that for each ε ∈ (−ε0, ε0), Qg[Φ(ε)] = 0. By (2.104)

QnQΦ(ε) = 0 for all n. Let ε ∈ (−ε0, ε0) be arbitrary. Let n0 be arbitrary but fixed,

then clearly Qn0Qg[Φm(ε)] = 0 for all m ≥ n0. By Lemma 2.13, Pn0Pg[Φm(ε)] = 0

for m ≥ n0. Since Pn0P is weakly continuous in WB and g[Φm(ε)] → g[Φ(ε)]

weakly in WB , we have Pn0Pg[Φm(ε)] = Qn0Φg[Φm(ε)] → Pn0Pg[Φ(ε)] weakly in

WB . Hence Pn0Pg[Φ(ε)] = 0. Since n0 is arbitrary PnPg[Φ(ε)] = 0 for all n. This

implies that Pg[Φ(ε)] = Qg[Φ(ε)] = 0. Thus the condition (2.102) holds. On the

other hand from (2.103) we have

Φn(ε) = P (Φn(ε)) + εK(I −Q)g[Φn(ε)],

taking weak limit in WB we obtain

Φ(ε) = P (Φ(ε)) + εK(I −Q)g[Φ(ε)] which is (2.101).

Thus Φ(ε) is a weak solution of problem (2.88)–(2.89).

Corollary 2.26.3 (Smiley (1985)) Let B be an open subset of W∞
B and let g :

B → W∞
B be a continuously differentiable map. If there exists u0 ∈ X0 such that

Pg[u0] = 0

and the restriction of the map Pg′[u0] to the subspace X∞
0 is a linear homeomor-

phism onto X∞
0 , then there exists an ε0 > 0 and a unique continuous map:, u :

(−ε0, ε0) → B such that u(0) = u0 and F (ε, u(ε)) = 0 for all |ε| < ε0.

Furthermore, u is continuously differentiable and

u′(ε) = −[DuF (ε, u(ε))]0DεF (ε, u(ε)).

Proof. Define un = Pnu0 in Lemma 2.17, Theorem 2.26 and Corollaries 2.26.1 and

2.26.2. Then Corollary 2.26.3 follows from these results.

2.6.5 Application to Nonlinear Wave Equations A Theorem of

Paul Rabinowitz

We consider the problem

utt − uxx = ε[g(u) + f ], −∞ < t <∞, 0 < x < π (2.112)

u(t, 0) = u(t, π) = 0, −∞ < t <∞ (2.113)

u(t+ 2π, x) = u(t, x), −∞ < t <∞, 0 < x < π (2.114)

where g : R → R and g[u] = g(u) + f for convenience of presentation. Here g(u)

is the Nemytsky operator generated by g. The argument for the more general case

g[u] = g(t, x, u) + f(t, x) can be modified without difficulty.
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Theorem 2.27 If g ∈ C3(−∞, ∞), g′(u) ≥ β > 0, g(0) = 0 and f ∈W∞
perH(G)

is 2π-periodic in t where G = (0, 2π)× (0, π), then there exists ε0 > 0 such that for

each ε ∈ (−ε0, ε0) the problem (2.112)–(2.114) has a solution.

Before we prove our theorem, we need some preliminaries. For details we refer

to Smiley (1985).

In order to make our preceding results applicable we take T = 2π, V = H1
0 (0, π),

H = L2(0, π) and A = −(∂2/∂x2) with the following norms in V andH respectively

‖u‖2
V =

2

π

∫ π

0

|ux|2 dx and ‖u‖2
H =

2

π

∫ π

0

|u|2 dx.

We also take G = (0, 2π) × (0, π) so that L2(0, T ; H) = L2(G) and WB =

Wper(0, 2π) =
{
u ∈ H1(G) : u(t, ·) ∈ H1(0, π) for a.e. t ∈ (0, 2π) and u(t +

2π, x) = u(t, x) for a.e. (t, x) ∈ G}, equivalently WB is the closure of the set

{Φ ∈ C∞(R × (0, π) : Φ(t + 2π, x) = Φ(t, x) and Φ(t, ·) ∈ C∞
0 (0, π)}. As

a(u, u) ≥ 1/2‖u‖2
H1, we have

‖u‖2
WB

=
2

π

∫ 2π

0

∫ π

0

(u2
x + u2

t )dx dt

and

‖u‖W∞
B

= ess sup
0<t<2π

‖ux(t, ·)‖H + ess sup
0<t<2π

‖ut(t, ·)‖H .

The bilinear from B(·, ·) takes the form

B(u, w) =
2

π

∫ 2π

0

∫ π

0

(−utwt + uxwx)dx dt.

The eigen vectors and eigen values of the operator A are

wj = sin jx, λj = j2, j = 1, 2, 3, . . .

while the set Σ = {k2 : k = 1, 1, 2, . . . }. Hence λj ∈ Σ for all j = 1, 2, 3, . . . which

satisfies Theorem 2.25. We have

X0 = {U ∈ Wper(0, 2π) : B(u, w) = 0, ∀w ∈ Wper(0, 2π)},
X1 = {u ∈Wper(0, 2π) : (u, u0)WB = 0. ∀u0 ∈ X0},
Y1 = {f ∈ L2(G) : (f, u0)L2(G) = 0, ∀u0 ∈ X0},

and Y0 = {f ∈ L2(G) : (f, h)L2(G) = 0, ∀h ∈ Y1}.

We also note that

X∞
0 = {u ∈ X0 : ‖u‖W∞ <∞},

X∞
1 = {u ∈ X1 : ‖u‖W∞ <∞}

W∞
per = X∞

0 +X∞
1 .
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We recall X0 = X∞
0 by Lemma 2.12.

We take Xn = span {cos kt sin kx, sin kt cos kx}nk=1 for n = 1, 2, . . .

We define P , Q, Pn, Qn as before.

Let a < 0 < b where both a and b may be finite or infinite. Then for g ∈
C3(a, b), there are monotone nondecreasing functions k1, k2, k3 such that m =

1, 2, 3, |gm(u)| ≤ km(r), u ∈ (a, b), |u| ≤ r < max(|a| , b).
For u ∈ W∞

per, obviously

|u(t, x)| ≤ π√
2
‖u‖W∞ a.e. (t, x) ∈ G. (2.115)

For r > 0, let

B =

{
u ∈ W∞

per : ‖u‖W∞ <

√
2

π
r

}

u ∈ B ⇒ |u(t, x)| < r a.e. (t, x) ∈ G.

We assume g ∈ C3(−∞, ∞), g(0) = 0 and g(u) satisfies the boundary condition

whenever u does. In the following g[·] is the Nemytsky operator generated by g.

For the proof of the following simple results (A), (B) and (C), see Appendix I.

(A) g : B → W∞
per(Wper) is continuous. In particular g : B → W∞

per is Lips-

chitz, i.e.

‖g(u) − g(v)‖W∞ ≤ c(r)‖u− v‖W∞ for all u, ∈ B

where c(r) is a constant depending only on r appearing in the definition of B.

(B) g : B →W∞
per is continuously (Fréchet) differentiable and in particular,

sup
‖h‖W∞

‖(g′(u) − g′(v)) · h‖W∞ ≤ c1(r)‖u− v‖W∞ for all u, v ∈ B

where c1(r) is a constant depending only on r appearing in the definition of B.

(C) For all

u ∈ X0, u ∈ C0,1/2(G) and ‖u‖1/2 = ‖u‖C0,1/2(G)

= sup
(α,β)6=(0,0)

|u(t+ α, x+ β) − u(t, x)|
(α2 + β2)1/4

≤ c‖u‖W

where c is a constant.

The following result is also well known (e.g. see Rabinowitz (1967) and Brézis,

Coron, and Nirenberg (1980)).
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(D) With

L =

(
∂2

∂t2
− ∂2

∂x2

)
,

the corresponding linear map K as defined in subsection 3 has the property that

K : Y1 ∩ L2(G) → Y1 ∩ L2(G) is a compact mapping (i.e. compact from L2(G)-

topology to L2(G)-topology). We are now in a position to prove our Theorem 2.27.

Proof of Theorem 2.27. We first note for u ∈ X0, v ∈Wper, (u, v)W = (u, v)W −
B(u, v) = 2(ut, vt)L2(G). Also PnP : Wper → Xn is an orthogonal projection of

Wper onto Xn. We first prove that for each n = 1, 2, . . . there is a point un ∈ Xn

such that PnP (g(un) + f) = 0. To this end we define Tn : Xn → Xn by Tn(u) =

PnP (g(u) + f). Then for u, v ∈ Xn,

(Tn(u) − Tn(v), u− v)W = (PnP (g(u) − g(v)), u− v)W = (g(u) − g(v), u− v)W

=
4

π

∫ 2π

0

∫ π

0

(g′(u)ut − g′(v)vt)(u− v)tdx dt

as by (A), g(u) − g(v) ∈ Wper. Hence with v = 0

(Tn(u) − Tn(0), u)W =
4

π

∫ 2π

0

∫ π

0

g′(u)u2
tdx dt ≥ β‖u‖2

W .

Hence by the result of variational inequalities (e.g. [Kinderlehrer and Stampacchia

(1980), p. 14]) there exists un ∈ Xn such that Tn(un) = 0, i.e. PnP (g(un)+f) = 0.

By using monotonicity of g we can easily prove that un is unique, a fact which

we will not require.

Next we prove that {un ∈ Xn : n = 1, 2, . . . } obtained above is W∞-norm

bounded:

0 = (Tn(un), un) = (g(un) + f, un)W =
4

π

∫ 2π

0

∫ π

0

(g′(un)(un)t + ft)(un)tdx dt.

From this we obtain

β‖un‖2
W ≤ 4

π

∫ 2π

0

∫ π

0

(g′(un)(un)
2
t dx dt ≤

∣∣∣∣
4

π

∫ 2π

0

∫ π

0

ft(un)tdx dt

∣∣∣∣

≤ 2√
π
‖ft‖L2(G)‖un‖W .

Thus {‖un‖W } is bounded and hence by Lemma 2.12 {‖un‖W∞} is bounded. In

fact

‖un‖W∞ ≤ β−1 2√
π
C1‖ft‖L2(G)

for all n where C1 is the constant of Lemma 2.12.
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Now taking r >
√

2πβ−1C1‖ft‖L2(G) and defining B by

B =

{
u ∈W∞

per : ‖u‖W∞ <

√
2

π
r

}
,

we show that g : B →W∞
per satisfies all the conditions of Theorem 2.26.

We have proved above that for n = 1, 2, . . . , there exist points un ∈ Xn

satisfying PnPg[un] = 0. Thus (b)′ of Theorem 2.26 is fulfilled. The condi-

tion (e)′ of Theorem 2.26 follows from (A) and (B) mentioned above. Indeed

by (B) ‖g′(un) · u − g′(0) · u‖W∞ ≤ c1(r)‖un‖W∞ for all u ∈ W∞
per. Hence

‖g′(un) − g′(0)‖ ≤ c1(r)‖un‖W∞ and therefore ‖g′(un)‖ ≤ ‖g′(0)‖+ c1(r)‖un‖W∞ .

Thus {‖g′(un)‖} is bounded as {‖un‖W∞} is so. Similarly by (A) ‖g(un)‖W∞ =

‖g(un)−g(0)‖W∞ ≤ C(r)‖un‖W∞ . Thus condition (f)′ of Theorem 2.26 is satisfied.

So we are left with the conditions (c)′ and (d)′ of Theorem 2.26 to verify.

Let Tn be the restriction of PnPg
′(un) to Xn. Clearly Tn maps Xn into Xn. Let

u ∈ Xn and Tnu = 0. Then PnPg
′(un) · u = 0. By Lemma 2.13 QnQg

′(un) · u = 0

and hence for all v ∈ Xn

∫ 2π

0

∫ π

0

g′(un)uv dx dt = 0.

Taking v = u we have

β‖u‖2
L2(G) ≤

∫ 2π

0

∫ π

0

g′(un)u
2dx dt = 0

which implies that u = 0.

Thus Tn is an injective linear mapping of Xn into Xn. But since Xn is finite

dimensional, Tn is a linear homeomorphism of Xn onto Xn. Thus we have verified

the condition (c)′ of Theorem 2.26.

Finally let T−1
n h = u ∈ Xn i.e. QnQg

′(un)u = PnPg
′(un)u = h. Then

β‖u‖2
L2(G) ≤ (g′(un)u, u)L2(G) = (QnQg

′(un)u, u)L2(G) ≤ (h, u)L2(G)

≤ ‖h‖L2(G)‖u‖L2(G)

as ((I − QnQ)g′(un), u)L2(G) = 0. Thus ‖T−1
n h‖L2(G) = ‖u‖L2(G) ≤ β−1‖h‖L2(G).

Therefore, ‖T−1
n ‖ ≤ β−1 and the condition (d)′ is verified (noting that in finite

dimensional spaces norm topologies are equivalent).

Hence by Theorem 2.26 there exist ε0 > 0 and δ0 > 0 such that for each n =

1, 2, . . . , there exists a unique continuous mapping Φn : (−ε0, ε0) → Sδ0(un, W
∞
per)

(unit sphere with centre at un and radius δ0) with the property that Φn(0) = un and

Fn(ε, Φn(ε)) = 0 for all ε ∈ (−ε0, ε0) i.e. for each ε ∈ (−ε0, ε0), Φn(ε) is a solution

of the approximate equation Lnu = ε(g[u] + f) where Lnu = Lu + (P − PnP )u

and Lu = ∂2u/∂t2 − ∂2u/∂x2. Also since {‖un‖W∞} is bounded, we have from

Corollary 2.26.1 that for each ε ∈ (−ε0, ε0) the sequence {‖Φn(ε)‖W∞} is bounded
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and therefore by Lemma 2.12 {‖Φn(ε)‖W } is also bounded. Clearly by (2.115)

{‖Φn(ε)‖L∞(G)} is bounded and repeating the same argument we see with the aid

of (A) that {‖g(Φn(ε)‖L∞(G)} is bounded.

Let ε ∈ (−ε0, ε0) be arbitrary. Then by what we have proved above a sub-

sequence of {Φn(ε)} converges weakly to Φ(ε) ∈ Wper ∩ L2(G). And by Rellich

compactness theorem (a further subsequence) converges to Φ(ε) strongly in L2(G)

We claim that Φ(ε) is a solution of our problem (2.112)–(2.114).

We first note that since Φn(ε) is a solution of the approximate equation Lnu =

ε(g[u] + f), we have by (2.103) that for each n = 1, 2, . . .

(I − P )Φn(ε) = εK(I −Q)[g(Φn(ε)) + f ]. (2.116)

As {‖g(Φn(ε)‖L∞(G)} is bounded, we see that {‖(I − Q)[g(Φn(ε)) + f ]‖L2(G)} is

bounded. Hence by (D) and (2.116) {(I − P )Φn(ε)} has a subsequence which

converges in L2(G)-norm.

[It is also clear from what we have proved before that before that

{‖P (Φn(ε))‖H1(G)} is bounded and it follows from (C) that {‖P (Φn(ε))‖1/2} is

bounded. Hence by a well known compactness theorem {PΦn(ε)} has a subse-

quence which converges in L2(G)-norm. Thus we see that {Φn(ε)} = {P (Φn(ε)) +

(I − P )Φn(ε)} has a subsequence which converges to Φ(ε) in L2(G)-norm.]

We have ‖Φn(ε)‖W∞ ≤ C for some constant C and for all n. We have already

mentioned that ‖u‖W∞ ≤
√

2/π ⇒ |u(t, x)| ≤ r a.e. (t, x) ∈ G. Hence taking

K1 = max{|g′(u)| : |u| ≤ (π/
√

2C} where K1 has the meaning as defined earlier in

this section, we have for all v ∈ L2(G) (using mean value theorem),

∣∣∣∣
∫ 2π

0

∫ π

0

(g(Φn(ε)) − g(Φ(ε))) v dx dt

∣∣∣∣ ≤ K1

∫ 2π

0

∫ π

0

|Φn(ε) − Φ(ε)| |v| dx dt

≤ K1‖Φn(ε) − Φ(ε)‖L2(G)‖v‖L2(G) → 0 as n→ ∞.

Thus g(Φn(ε)) → g(Φ(ε)) weakly in L2(G). Again since Φn(ε) is a solution of the

approximate equation for each n, we have from (2.105)

QnQ[g(Φ(ε)) + f ] = 0 for all n.

Now in the same way as in Corollary 2.26.2 we prove that Q[g(Φ(ε)) + f ] = 0. Let

n0 be a fixed but arbitrary positive integer. Then

Qn0Q[g(Φm(ε)) + f ] = 0 for all m ≥ n0,

i.e.

(g(Φm(ε)) + f, v)L2(G) = 0 for all v ∈ Xn0 and all m ≥ n0.
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Hence (g(Φ(ε)) + f, v)L2(G) = (g(Φ(ε)) − g(Φm(ε)), v)L2(G) for all v ∈ Xn0 and all

m ≥ n0. Letting m→ ∞, we obtain

(g(Φ(ε)) + f, v)L2(G) = 0 for all v ∈ Xn0

and hence (g(Φ(ε)) + f, v)L2(G) = 0 for v ∈ Xn, n = 1, 2, . . . .

Thus P [g(Φ(ε))+f ] = Q[g(Φ(ε))+f ] = 0 (by Lemma 2.13). Thus the condition

(2.102) is fulfilled.

Now since Φn(ε) converges weakly to Φ(ε) in L2(G)∩Wper, P (Φn(ε)) → P (Φ(ε))

weakly in Wper ∩ L2(G). Also by Remark 2.16 (or by the Theorem in Rabinowitz

(1967), K(I−Q)[g(Φn(ε))+f ] converges weakly to K(I−Q)[g(Φ(ε))+f ] in Wper∩
L2(G). Now letting n→ ∞ in (2.116) we obtain

(I − P )Φ(ε) = εK(I −Q)[g(Φ(ε)) + f ].

Thus the condition (2.101) is satisfied. Φ(ε) is therefore a solution of the problem

(2.112)–(2.114). Finally since ε ∈ (−ε0, ε) is arbitrary, we have proved that the

problem (2.112)–(2.114) has a solution for each ε ∈ (−ε0, ε0).

Appendix I

Proof of (A).

g[u] = g(u(t, x)) is certainly a well-defined measureable function. Also g[u]

satisfies the boundary conditions whenever u ∈ B.

Now

‖g(u(t, ·)‖V =
{
2/π

∫ π
0 |g′(u(t, x))|2|ux(t, x)|2

} 1
2

≤ k1(r) ‖u(t, ·)‖V (a.e.) t ∈ (0, 2π).

Similarly ‖∂/∂t[g(u(t, ·)]‖H ≤ k1(r) ‖ut(t, ·)‖H . Thus ‖g(u)‖W∞ ≤ k1(r) ‖u‖W∞ <

∞ and therefore g : B → W∞
per. We now prove the continuity. To this end we first

note that (a.e.) (t, x) ∈ G,

∣∣∣∣
∂

∂x
[g(u) − g(v)]

∣∣∣∣ ≤ |g′(u) − g′(v)| |ux| + |g′(v)| |(u− v)x| .

Now for µ, ν ∈ (−r, r), there exists z between µ and ν such that |g′(µ) − g′(ν)| ≤
|g′′(z)| |µ− ν|. Thus for the constant c = π/

√
2, by what has been noted just before

the result A we have, (a.e.) (t, x) ∈ G,

∣∣∣∣
∂

∂x
[g(u) − g(v)]

∣∣∣∣ ≤ k2(r) |u− v| |ux| + k1(r) |(u− vx)|

≤ ck2(r) ‖u− v‖W∞ |ux| + k1(r) |(u− v)x| .
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Thus we obtain, for almost all t ∈ (0, 2π),

‖g(u(t, ·)) − g(v(t, ·))‖V ≤ 2[ck2(r) ‖u− v‖W∞ ‖u(t, ·)‖V ]2

+ 2[k1(r) ‖u(t, ·) − v(t, ·)‖V ]2

≤ 2
(
[ck2(r)]

2 + [k1(r)]
2
)
‖u− v‖2

W∞ .

A similar estimate is obtained for the term
∥∥ ∂
∂t [g(u(t, ·)) − g(v(t, ·))]

∥∥
H

. This

proves that g : B −→W∞
per is continuous.

Proof of (B).

Let u ∈ B. For h ∈ B with u+ h ∈ B we consider

q(t, x; u, h) = g(u+ h) − g(u) − g′(u)h.

Then for almost all (t, x) ∈ G we have

∂q

∂x
= g′(u+ h)(u+ h)x − g′(u)ux − g′′(u)uxh− g′(u)hx

= [g′(u+ h) − g′(u)](u+ h)x − g′′(u)uxh

= g′′(u+ σh)h(u+ h)x − g′′(u)uxh,

where σ = σ(t, x) satisfies 0 < σ < 1.

Since for any µ, / ν ∈ (−r, r) with µ+ ν ∈ (−r, r) we have

|g′′(µ+ ν) − g′′(µ)| ≤ k3(r)|ν|,

it follows from the preceding equality that (a.e.) (t, x) ∈ G

∣∣∣∣
∂q

∂x

∣∣∣∣ ≤ k3(r)|h|2|ux| + k2(r) |h| |hx|

≤ c2k3(r) ‖h‖2
W∞ |ux| + ck2(r) ‖h‖W∞ |hx| .

Hence for almost all t ∈ (0, 2π),

‖q(t, ·, u, h)‖2
V ≤ 2

[
c2k3(r) ‖h‖2

W∞ ‖u(t, ·)‖V
]2

+ 2 [ck2(r) ‖h‖W∞ ‖h(t, ·)‖V ]
2

≤ 2c2
(
[crk3(r)]

2
+ [k2(r)]

2
]
‖h‖4

W∞ .

A similar estimate holds for

∥∥∥∥
∂

∂t
[q(t, ·, u, h)]

∥∥∥∥
H

.
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Combining the two estimates we obtain

‖q(u, h)‖W∞ ≤ c(r) ‖h‖2
W∞

where c(r) is a constant depending only on r and the functions k2 and k3. This

shows that g is Fréchet differentiable at each u ∈ B.

It remains to prove that the map u −→ g′(u) is continuous from B to

B(W∞
per, W

∞
per), the space of bounded linear maps of W∞

per into itself. To this end

let h ∈W∞
per. Then (a.e.) (t, x) ∈ G,

∣∣∣∣
∂

∂x
[g′(u).h− g′(v).h]

∣∣∣∣ = |g′′(u)uxh− g′′(v)vxh+ (g′(u) − g′(v))hx|

≤ k3(r)|u− v||ux||h| + |g′′(v)||(u − v)x||h| + k2(r)|u− v|hx|

≤ c2k3(r)‖u− v‖W∞‖h‖W∞ |ux| + ck2(r)‖h‖W∞ |(u− v)x|

+ ck2(r) ‖u− v‖W∞ |hx| .

Thus for almost all t ∈ (0, 2π)

‖g′(u(t, ·))h(t, ·) − g′(v(t, ·))h(t, ·)‖2
V

≤ 3c3
(
[crk3(r)]

2 + 2[k2(r)]
2
)
‖u− v‖w∞‖h‖W∞ .

A similar estimate holds for

∥∥∥∥
∂

∂t
[g′(u).h− g′(v).h]

∥∥∥∥
H

.

From these estimates we deduce that

sup
‖h‖W∞=1

‖g′(u)h− g′(v)h‖ ≤ c(r) ‖u− v‖∞

where c(r) is a constant depending on r only. This completes the proof.

Proof of (C).

Let u =
∞∑
k=1

(ak cos kt+ bk sin kt) sin kx ∈ X0.

Then we have ‖u‖2
W = 2π

∞∑
k=1

k2(a2
k + b2k) <∞.

For α, β > 0 we define

∆u(t, x) = u(t+ α, x+ β) − u(t, x)

= u(t+ α, x+ β) − u(t, x+ β) + u(t, x+ β) − u(t, x).
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By using Hölder’s inequality,

|u(t+ α, x+ β) − u(t, x+ β)| ≤
∞∑

k=1

(|ak| (|cos k(t+ α) − cos kt|))

+ |bk| (|sin k(t+ α) − sin kt|)

≤
( ∞∑

k=1

k2a2
k

) 1
2
( ∞∑

k=1

| cosk(t+ α) − cos kt|2
k2

) 1
2

+

( ∞∑

k=1

k2b2k

) 1
2
( ∞∑

k=1

| sin k(t+ α) − sin kt|2
k2

) 1
2

.

We note that

|cos k(t+ α) − cos kt|2 ≤ 1
2

(∣∣eikα − 1
∣∣2 +

∣∣e−ikα − 1
∣∣2
)

= 1
2

[
|cos kα− 1 + i sin kα|2 + |cos kα− i− 1 sin kα|

]
= 2(1 − cos kα)

Similary we can show that |sin k(t+ α) − sin kt|2 ≤ 2(1 − cos kα).

We know from Fourier series analysis

π

2
|s| − s2

4
=

∞∑

k=1

1 − cos ks

k2
, −2π ≤ s ≤ 2π.

Hence for |α| ≤ 2π

|u(t+ α, x+ β) − u(t, x+ β)| ≤ 1
π ‖u‖W

(∑∞
k=1

2(1−cosα)
k2

) 1
2

≤ 1
π ‖u‖W

(
π|α| − α2

2

) 1
2

.

In the same fashion we can get estimate for |β| ≤ 2π

|u(t, x+ α) − u(t, x)| ≤ 1

2
‖u‖W

(
π|β| − β2

2

) 1
2

.

Thus for |α|, |β| ≤ 2π

|∆u| ≤ 1

π
‖u‖W

[(
π|α| − α2

2

) 1
2

+

(
π|β| − β2

2

) 1
2

]
.

Using this estimate we obtain for |α|, |β| ≤ 2π

|∆u(t, x)|2

(α2 + β2)
1
2

≤ 1

π2
‖u‖W

[
2(|α| + |β|) − (α2 + β2)

(α2 + β2)
1
2

]
≤ c ‖u‖W

where c is a constant independent of α and β.
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2.7 Set-Valued Contractions

Let X be a non-empty set. We will denote the family of all subsets of X by 2X .

We will also use the following notation:

CB(X) = {A ⊂ X : Ais non-empty closed and bounded} for a metric space

(X, ρ) and K(X) = {A ⊂ X : Ais compact} for a topological space X .

Let (X, ρ) be a metric space and let for any A ∈ CB(X) and r > 0, Nr(A) =

{x ∈ X : δ(x,A) < r}, where δ(x,A) = inf{ρ(x, a) : a ∈ A} = the distance of x

from A. Then for any pair A,B ∈ CB(X), if we define h(A,B) = inf{r : A ⊂
Nr(B) and B ⊂ Nr(A)}, then we can easily verify that h is a metric on CB(X).

h is called the Hausdorff metric in CB(X).

Let A,B ∈ K(X) and define d(A,B) = sup{δ(x,B) : x ∈ A}. We can equiva-

lently show that h(A,B) = d(A,B) ∨ d(B,A) is the Hausdorff metric on K(X). In

this case (K(X), h) is called the space of fractals (see M. Barnsley (Barnsley (1988,

p. 43)).

A mapping T : X → 2X is called a set-valued mapping if for x ∈ X , T (x) ∈ 2X .

Definition 2.3 Let (X, ρ1) and (Y, ρ2) be metric spaces. A set-valued mapping

T : X → CB(Y ) is said to be a Lipschitz mapping with Lipschitz constant α if

h(T (x), T (y)) ≤ αρ1(x, y), where α > 0 and h is the Hausdorff metric in CB(Y ). If

the Lipschitz constant α is < 1, then T is said to be a set-valued contraction with

contraction constant α.

The following fixed point theorem is due to Nadler (1969).

Theorem 2.28 Let (X, ρ) be a complete metric space and T : X → CB(X) is a

set-valued contraction with contraction constant α. Then T has a fixed point u ∈ X

i.e., u ∈ T (u).

Proof. Let x0 ∈ X be an arbitrary point. We choose a point x1 ∈ T (x0).

Since T (x0), T (x1) ∈ CB(X) and ε = α > 0, we have by definition of Haus-

dorff metric h on CB(X), T (x0) ⊂ Nr(T (x1)) and T (x1) ⊂ Nr(T (x0)), where

r = h(T (x0), T (x1)) + α. Now since x1 ∈ T (x0) ⊂ Nr(T (x1)), we have

δ(x1, T (x1)) = inf{ρ(x1, x) : x ∈ T (x1)} < r. Hence there exists x2 ∈ T (x1)

such that ρ(x1, x2) ≤ r = h(T (x0), T (x1)) + α.

Now since T (x1), T (x2) ∈ CB(X), x2 ∈ T (x1) and ε = α2 > 0, we have by the

same argument as above a point x3 ∈ T (x2) such that

ρ(x2, x3) ≤ h(T (x1), T (x2)) + α2.

We continue this process to obtain a sequence {xn}∞n=1 of points of X such that

xn+1 ∈ T (xn) and

ρ(xn, xn+1) ≤ h(T (xn−1), T (xn)) + αn (2.117)

for all n ≥ 1.
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Now from (2.117) and the definition of set-valued contraction we obtain

ρ(xn, xn+1) ≤ h(T (xn−1), T (xn)) + αn ≤ αρ(xn−1, xn) + αn

≤ α[h(T (xn−2), T (xn−1)) + αn−1] + αn

≤ α2ρ(xn−2, xn−1) + 2αn ≤ · · ·
≤ αnρ(x0, x1) + nαn for all n ≥ 1. (2.118)

Hence using (2.118) we have

ρ(xn, xn+j) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + · · · + ρ(xn+j−1, xn+j)

≤ αnρ(x0, x1) + nαn + αn+1ρ(x0, x1) + n+ 1αn+1 + · · ·
+αn+j−1ρ(x0, x1) + (n+ j − 1)αn+j−1

= (
∑n+j−1

i=n αi)ρ(x0, x1) +
∑n+j−1

i=n iαi

for all n, j ≥ 1.

From (2.118) it follows that {xn}∞n=1 is a Cauchy sequence in (x, ρ). Since (x, ρ)

is complete, {xn}∞n=1 converges to some point x0 ∈ X . Now, from the relation

h(T (xn), T (x0)) ≤ αρ(xn, x0), it follows that {T (xn)} converges to T (x0) in CB(X).

Since xn ∈ T (xn−1) for all n ≥ 1, it follows that x0 ∈ T (x0).

Definition 2.4 Given ε > 0, a metric space (X, ρ) is said to be ε-chainable if

and only if given u, v ∈ X there is an ε-chain from u and v, i.e., there exists a finite

set of points x0, x1, . . . , xn with u = x0 and v = xn such that ρ(xi−1, xi) < ε for all

i = 1, 2, . . . , n.

A set-valued mapping T : (X, ρ) → CB(X) is said to be (ε, α)-uniformly locally

contractive with ε > 0 and 0 < α < 1 provided that h(T (x), T (y)) ≤ αρ(x, y)

whenever x, y ∈ X with ρ(x, y) < ε.

Theorem 2.29 Let (X, ρ) be a complete ε-chainable metric space and T : X →
K(X) an (ε, α)-uniformly locally contractive set-valued mapping. Then T has a

fixed point.

Proof. For any x, y ∈ X ×X , we define

ρε(x, y) = inf{
n∑

i=1

ρ(xi−1, xi) : x0 = x, x1, · · · , xn = y is an ε-chain from x to y}.

We can easily verify that ρε is a metric on X . ρε also satisfies

(2.7.3) ρ(x, y) ≤ ρε(x, y) for all x, y ∈ X ;

and

(2.7.4) ρ(x, y) = ρε(x, y) for all x, y ∈ X ; with ρ(x, y) < ε.
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(2.7.3) follows from the triangle inequality:

ρ(x, y) ≤ ρ(x, x1) + ρ(x1, x2) + · · · + ρ(xn−1, xn).

It also follows from (2.7.3), (2.7.4) and the completeness of (X, ρ) that (X, ρε) is

complete. Let hε be the Hausdorff metric on K(X) derived from ρε. We can easily

see that if A,B ∈ K(X) such that h(A,B) < ε then hε(A,B) = h(A,B). Now we

will show that T : X → K(X) is a set-valued contraction mapping of (X, ρε) into

(K(X), hε) with contraction constant α. Let x, y ∈ X and x0 = x, x1, . . . , xn = y

be an ε-chain from x to y. Since ρ(xi−1, xi) < ε for all i = 1, 2 . . . , n, we have

h(T (xi−1), T (xi)) ≤ αρ(xi−1, xi) < ε for all i = 1, 2 . . . , n.

Hence

hε(T (x), T (y)) ≤
n∑

i=1

hε(T (xi−1), T (xi)) =
n∑

i=1

h(T (xi−1), T (xi)) ≤ α.

Now since x0 = x, x1, . . . , xn = y is an arbitrary ε-chain, it follows that

hε(T (x), T (y)) ≤ αρε(x, y) for all x, y ∈ X . Thus T is a set-valued contraction

mapping of (X, ρε) into (K(X), hε) with contraction constant α. Hence by Theo-

rem 2.28, T has a fixed point.

Remark 2.20 Similar results for a single-valued mapping was first obtained by

Edelstein (1961).

Definition 2.5 Let X and Y be topological spaces and T : X → 2Y a set-valued

mapping with T (x) 6= ∅ for each x ∈ X , i.e.,T : X → 2Y \ {∅}. T is said to be

upper semi-continuous at x0 ∈ X if given an open set G containing f(x0), there

exists an open neighborhood U(x0) of x0 such that T (U(x0) ⊂ G, where for any

subset A of X , T (A) = ∪x∈AT (x). T is said to be upper semi-continuous if T is

upper semi-continuous at each point x ∈ X .

A set-valued mapping T : X → 2Y \ {∅} is said to be lower semi-continuous

at x0 ∈ X if given an open set G in Y with T (x0) ∩ G 6= ∅, there exists an open

neighborhood U(x0) of x0 such that T (x) ∩G 6= ∅ for each x ∈ U(x0). T is said to

be lower semi-continuous if T is lower semi-continuous at each point x ∈ X .

Lemma 2.18 Let X and Y be non-empty sets and T : X → 2Y \{∅} a set-valued

mapping. Then for any non-empty set A of Y ,

X \ {∪y∈AT−1(y)} = {x ∈ X : T (x) ⊂ Y \A}.

Proof. Let u belong to the left-hand side (of the above expression). Then u 6∈
T−1(y) for any y ∈ A. This implies that y 6∈ T (u) for any y ∈ A. Thus T (u) ⊂ Y \A
which implies that u belongs to the right-hand side.

Next let u belong to the right-hand side. Then T (u) ⊂ Y \ A. It follows that

u 6∈ T−1(y) for any y ∈ A. This implies that u 6∈ ∪y∈AT−1(y); i.e., u belongs to the

left-hand side.
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For any subset A of Y , let T+(A) = {x ∈ X : T (x) ∩ A 6= ∅}.

Lemma 2.19 For any subset A of Y , T+(A) = ∪y∈AT−1(y).

Proof. Let x ∈ A. Then T (x) ∩ A 6= ∅. Let y ∈ T (x) ∩ A. This implies that

x ∈ T−1(y) with y ∈ A, i.e., x ∈ T−1(y) ⊂ ∪y∈AT−1(y). Next, let u ∈ ∪y∈AT−1(y).

Then u ∈ T−1(y) for some y ∈ A, i.e., y ∈ T (u) with y ∈ A, i.e., u ∈ T+(A).

Theorem 2.30 Let X and Y be topological spaces and T : X → 2Y \ {∅} a

set-valued mapping. Then the following statements are equivalent:

(a) T is upper semi-continuous;

(b) For each open set G in Y , T+(G) = {x ∈ X : T (x) ⊂ G} is open in X;

(c) For each closed set F in Y , T−1(F ) = ∪y∈FT−1(y) is closed in X, where

T−1(y) = {x ∈ X : y ∈ T (x)};
(d) For each x ∈ X and every net {xδ : δ ∈ D} in X converging to x, and each

open set G in Y with T (x) ⊂ G, T (xδ) ⊂ G eventually, i.e., T (xδ) ⊂ G for

all δ0 ≥ δ for some δ0 ∈ D.

Proof. First let (a) hold. Let G be an open set in Y and x0 ∈ T+(G). By upper

semicontinuity of T at x0, there exists an open neighborhood U(x0) of x0 such that

T (U(x0)) ⊂ G. Hence U(x0) ⊂ T+(G) and hence T+(G) is an open set. Thus (a)

implies (b).

Now let T+(G) be open for every open set G in Y . Let x0 ∈ X and G be an open

set containing T (x0). T
+(G) is an open neighborhood of x0 and T (T+(G)) ⊂ G.

Hence T is upper semicontinuous at x0. Since x0 is arbitrary, (b) implies (a). That

(b) ⇐⇒ (c) is evident from Lemma 2.18.

Now we prove that (b) implies (d). Let {xδ : δ ∈ D} be a net converging to

x ∈ X and G an open subset of Y with T (x) ⊂ G. Then by (b), T+(G) is open and

x ∈ T+(G). Since xδ → x, xδ ∈ T+(G) eventually. Hence T (xδ) ⊂ G eventually.

Finally, we prove that (d) implies (b). Let H be an open set in Y . If possible, let

T+(H) be not open. Then there is a point x0 ∈ X such that x0 ∈ T+(H) is not an

interior point of T+(H). Let D0 = N (x0) be the system of all open neighborhoods

of x0. Then D0 ordered partially by inclusion is a directed set. We choose xδ ∈ D0

such that xδ 6∈ T+(H). This is possible as x0 is not an interior point of T+(H).

Evidently {xδ : δ ∈ D0} is a net converging to x0 and T (x0) ⊂ H . Hence by (d),

T (xδ) ⊂ H eventually, which contradicts the fact that xδ 6∈ T+(H) for all δ ∈ D0.

Theorem 2.31 Let X and Y be topological spaces and T : X → 2Y \ {∅} a

set-valued mapping. Then the following statements are equivalent:

(a) T is lower semi-continuous;

(b) For each open set G in Y , T+(G) is open in X;

(c) For each closed set F in Y , T+(F ) is closed in X;
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(d) For each x ∈ X and each net {xδ : δ ∈ D} in X converging to x, and each

open set G in Y with T (x) ∩G 6= ∅, T (xδ)∩G 6= ∅, i.e., T (xδ) ∩G 6= ∅ for

all δ ≥ δ0 for some δ0 ∈ D.

Proof. Let (a) hold. Let G be an open set in Y and x0 ∈ T+(G). By the lower

semi-continuity of T at x0, there exists an open neighborhood U(x0) of x0 such

that T (x) ∩ G 6= ∅ for each x ∈ U(x0), i.e., U(x0) ⊂ T+(G). Hence T+(G) is open

in X . Now by virtue of Lemma 2.19, ∪y∈GT−1(y) is open. Thus (a) implies (b).

We now suppose that (b) holds. Let x0 ∈ X and G be an open set in Y such

that T (x0) ∩ G 6= ∅. Then x0 ∈ T+(G). Hence by virtue of Lemma 2.19 and (b),

T+(G) = ∪y∈GT−1(y) is an open neighborhood of x0 in X . It follows that T is is

lower semi-continuous at x0. Thus (b) implies (a).

Now that (b) ⇐⇒ (c) follows from the Lemma 2.18. Finally, by giving similar

argument as given in Theorem 2.30 we can prove that (b) implies (d).

Theorem 2.32 (a) Let X and Y be topological spaces with Y a T3 space and

T : X → 2Y \ {∅} a set-valued upper semi-continuous mapping with closed values.

Then the graph T = G(T ) = {(x, y) ∈ X × Y : y ∈ T (x)} is closed.

(b) Let X and Y be topological spaces with Y compact and T : X → 2Y \ {∅}
a set-valued mapping with closed graph (i.e., G(T ) is closed). Then T is upper

semi-continuous.

Proof. (a) Let {(xδ , yδ) : δ ∈ D} be a net in G(T ) converging to (x, u). If possible,

let (x, u) 6∈ G(T ), i.e., u 6∈ T (x). Since T (x) is closed and Y is T3, there exist open

sets G1 containing u and G2 containing T (x) with G1 ∩ G2 = ∅. Now since T is

upper semi-continuous, by Theorem 2.30 (d), T (xδ) ⊂ G2 eventually. But since

yδ ∈ T (xδ) for each δ ∈ D, yδ ∈ G2 ventually. This contradicts the fact that yδ → u

as u ∈ G1 and G1 ∩G2 = ∅.
(b) If possible, let T be not upper semi-continuous at a point x ∈ X . Let

{xδ : δ ∈ D} be a net converging to x. Then there must exist, by Theorem 2.30 (d),

at least one open set G in Y with f(x) ⊂ G such that T (xδ) 6⊂ G eventually. We

can choose a subnet {xδ′ : δ′ ∈ D′} of the net {xδ : δ ∈ D} such that T (xδ′) 6⊂ G

for each δ′ ∈ D′. For this we can select uδ′ from each T (xδ′) such that uδ′ 6∈ G′.
Now since G′ is compact, {uδ′ : δ′ ∈ D′} has a subnet {uδ′′ : δ

′′ ∈ D
′′} converging

to a point u ∈ G′. Clearly, {(xδ′′ , uδ′′ : δ
′′ ∈ D

′′} is a net in G(T ) which converges

to (x, u) 6∈ G(T ) as u 6∈ T (x) ⊂ G.

Theorem 2.33 Let X and Y be topological spaces, T : X → K(Y ) a set-valued

upper semi-continuous mapping and K a compact subset of X. Then T (K) =

∪x∈KT (x) is a compact subset of Y .

Proof. Let {Gα : α ∈ I} be an open covering of T (K). Then for α ∈ I , there

exists an open set Hα in Y such that Gα = T (K) ∩ Hα. For each x ∈ K, T (x)

being compact is covered by a finite number of Hα, say Hα1 , Hα2 , . . . , Hαn with⋃n
i=1 Hαi ⊃ T (x).
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We setHx =
⋃n
i=1Hαi . Then {T+(Hx) : x ∈ K} is an open covering ofK. Since

K is compact, there is a finite subcovering T+(Hx1), T
+(Hx2), . . . , T

+(Hxn) of K.

It follows that {Hxi : i = 1, 2, . . . , n} cover T (K) and
⋃n
i=1 Gxi =

⋃n
i=1(Hxi∩(K)) =

T (K). Hence {Gxi : i = 1, 2, . . . , n} is a subcover T (K).

Theorem 2.34 Let X and Y be topological spaces, T : X → 2Y \{∅} a set-valued

upper semi-continuous (or lower semi-continuous) mapping, K is a connected subset

of Y and T (x) is a connected subset of Y for each x ∈ K. Then T (K) is a connected

subset of Y .

Proof. If possible, we suppose that T (K) is not connected. Then there are two

disjoint non-empty open subsets G1 and G2 of T (K) such that T (K) = G1 ∩ G2.

Hence there exist two non- empty open subsets H1 and H2 of Y such that G1 =

H1∩T (K) and G2 = H2∩T (K). Thus T (K) ⊂ H1∪H2. By upper semi-continuity

of T , T+(H1) and T+(H2) are open sets ofX . Let x ∈ K, then T (x) ⊂ H1∪H2. But

since T (x) is connected, it follows that T (x) is contained in either H1 or inH2. Thus

K ⊂ T+(H1) ∪ T+(H2). Obviously, T+(H1) ∩ T+(H2) = ∅ and K ∩ T+(H1) 6= ∅
and K ∩ T+(H2) 6= ∅. Thus K is not connected, which is a contradiction. Hence

T (K) must be connected.

For the proof in the case of lower semi-continuity, we refer to Klein and Thomp-

son (1984, p. 90).

Theorem 2.35 Let X, Y and Z be topological spaces, and T1 : X → 2Y \ {∅}
and T2 : Y → 2Z \ {∅} are set-valued upper semi-continuous mappings. Then the

set-valued mapping T : X → 2Z \ {∅} defined by T = T2 ◦ T1 = T2(T1(x)) is upper

semi-continuous.

Proof. Let G be an open subset of G. Then T+(G) = (T2 ◦ T1)
+(G) = {x ∈ X :

(T2 ◦ T1)(x) ⊂ G} = {x ∈ X : T1(x) ⊂ T+
2 (G)} = T+

1 [T+
2 (G)] is an open subset of

X . Hence T is upper semi-continuous.

2.7.1 End Points

Definition 2.6 For set-valued mapping T : X → 2X \ {∅}, a point x0 ∈ X us

said to be en end point of T if T (x0) = {x0}. Let X be a topological space. Then

an upper semi-continuous set-valued mapping T : X → 2X \ {∅} with closed values

is said to be a topological contraction if, for each non-empty closed subset A of X

with T (A) = A, A is a singleton set, i.e., A is an end point of T .

Theorem 2.36 Let X be a compact Hausdorff topological space and T : X →
2X \{∅} a set-valued topological contraction. Then T has a unique end point x0 ∈ X

such that {x0} =
⋂∞
n=0 T

n(X), where T 0(X) = X and T n(X) = T (Tn−1(X)) for

n = 1, 2, . . . .

Proof. For each n = 0, 1, 2, . . . , let Fn = Tn(X). Since T is upper semi-continuous

with closed (and hence compact) values, by Theorem 2.33 Fn is compact for each
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n and moreover, {Fn} is decreasing by virtue of the fact that T (X) ⊂ X . Hence

it follows that F =
⋂∞
n=0 F

n 6= ∅ and is a closed subset of X . Also it is clear

that T (F ) ⊂ F . We will now prove that F ⊂ T (F ). To this end we take any

point x ∈ F and consider the set An = T−1(x) ∩ Fn for each n = 0, 1, 2, . . . ,

where T−1(x) = {y ∈ X : x ∈ T (y)}. Then An 6= ∅ for each n. Indeed, since

x ∈ ⋂∞
n=0 F

n ⊂ Tn+1(X) = Fn+1 there exists u ∈ Fn such that x ∈ T (u). Thus

u ∈ T−1(x) ∩ Fn. Now since T is upper semi-continuous with closed values, it

follows that G(T ) = the graph of T is closed. Hence T−1(x) is a closed subset of

X and An is compact due to the compactness of X . Hence the decreasing sequence

{An}∞n=0 has non-empty intersection, i.e.,
⋂∞
n=0 An 6= ∅.

Now we take a point z ∈ ⋂∞
n=0An, i.e., z ∈ T−1(x) ∩ (

⋂∞
n=0 F

n). Then

x ∈ T (z) ⊂ T (
⋂∞
n=0 An) ⊂ T (

⋂∞
n=0 Fn) = T (F ). Thus we have proved F ⊂ T (F ).

Hence F = T (F ). Since F is also closed and T is a set-valued topological contrac-

tion, we have F = {x0} for some x0 ∈ X . Thus x0 is an end point. The uniqueness

of the end point follows from the fact that any other end must belong to F .

Corollary 2.36.1 Let X be a Hausdorff topological space, T n0 : X → 2X \ {∅} a

set-valued topological contraction and T n0(X) is compact for some integer n0. Then

there is a unique end point x0 of T such that {x0} =
⋂∞
n=0 T

n(X).

Proof. Let X̂ = Tn0(X) and T̂ = Tn0 . Then T̂ : X̂ → 2X̂ \{∅}. By Theorem 2.36,

there is a unique end point x0 ∈ X such that

{x0} =

∞⋂

n=n0

Tn(X) =

∞⋂

n=0

Tn(X).

Remark 2.21 We note that if we assume T to be a set-valued contraction instead

of Tn0 , keeping the other assumption intact, the Corollary still holds as the set F

remain unaltered.

Corollary 2.36.2 Let X be a Hausdorff compact topological space, Ti : X →
2X \{∅} a set-valued topological contraction and for i = 1, 2, . . . , n, and T : X → 2X

the set-valued mapping defined by T (x) = ∪ni=1Ti(x). Then for each subset S of X

with T (S) = S, S contains all the end points of Ti, i = 1, 2, . . . , n.

Proof. For any open set G in X , T+(G) = {x ∈ X : T (x) ⊂ G} =
⋃n
i=1{x ∈

X : Ti(x) ⊂ G}⋃ni=1 T
+(G) is open as each T+

i (G) is open due to the upper

semi-continuity of Ti by Theorem 2.30. Hence by the same Theorem 2.30, T is

upper semi-continuous. It is easy to see that T has closed values. Let S be a

non-empty closed subset with T (S) = S (such an S exists by the argument given

in Theorem 2.36, see Theorem 2.41). Then clearly, Ti(S) ⊂ S for i = 1, 2, . . . , n.

Now for i = 1, 2, . . . , n let Si =
⋂∞
n=0 T

n
i (S). Then, as is shown in Theorem

2.36, Ti(Si) = Si, i = 1, 2, . . . , n. Now since for i = 1, 2, . . . , n, Ti is a set-valued

contraction, Si is a singleton set, i.e., Si = {x} for some xi ∈ X . It also follows

that Si ⊂ S for each i = 1, 2, . . . , n. Thus the corollary is proved.
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Remark 2.22 We note from above corollary that the finite union of set-valued

topological contractions is not necessarily a set-valued topological contraction.

Definition 2.7 Let X be a topological space. Then an upper semi-continuous

mapping T : X → 2X \ {∅} with closed and connected values is said to be a

topological contraction in weak sense if, for each non-empty closed connected subset

A of X with T (A) = A, A is a singleton, i.e., A is an end point of T .

Theorem 2.37 Let X be a compact connected Hausdorff topological space and

T : X → 2X \ {∅} be a set-valued contraction in the weak sense. Then T has a

unique end point x0 ∈ X such that {x0} =
⋂∞
n=0 T

n(X), where T 0(X) = X and

Tn(X) = T (Tn−1(X)).

Proof. The proof is similar to that of Theorem 2.36. We repeat it. For each

n = 0, 1, 2, . . . , let Fn = Tn(X). Then for each n = 1, 2, . . . , Fn is compact and

connected by Theorems 2.33 and 2.34. Since {Fn} is a decreasing sequence, it follows

that F =
⋂∞
n=0 F

n is a non-empty compact connectedsubset of X . Clearly, T (F ) ⊂
F . Now we prove F ⊂ T (F ). Let x ∈ F and consider the set An = T−1(x) ∩ Fn
for each n = 0, 1, 2, . . . , where T−1(x) = {y ∈ X : x ∈ T (y)}. Repeating the

argument given in the proof of theorem 2.36, we obtain that An 6= ∅ for each n

and
⋂∞
n=0A

n 6= ∅. Let z ∈ ⋂∞
n=0 A

n, i.e., z ∈ T−1(x) ∩ Fn. Then x ∈ T (z) ⊂
T (
⋂∞
n=0A

n) ⊂ T (
⋂∞
n=0 F

n) = T (F ). Thus T (F ) = F . Since F is compact and

connected, and T is a set-valued contraction in the weak sense, F is a singleton,

say, x0. Hence T (x0) = {x0} is an end point. If u is any other end point, then

u ∈ ⋂∞
n=0 T

n(X) = x0. Thus x0 is the unique end point.

We can consider a single-valued mapping T : X → Y as a set-valued mapping

by Tx as {Tx} for each x ∈ X . As an application of Theorem 2.36 we have the

following:

Corollary 2.37.1 Let X be a Hausdorff compact space and T : X → X a

set-valued topological contraction. Then T has a unique fixed point x0 ∈ X and,

furthermore, {x0} =
⋂∞
n=0 T

n(X) and for each x ∈ X, the sequence {T n(x)} con-

verges to the unique fixed point x0.

Proof. By Theorem 2.36 there is a point x0 ∈ X such that
⋂∞
n=0 T

n(X) = {x0}
and x0 is a fixed point of T . As {T n(x)} is a decreasing sequence of non-empty

compact sets, it follows that for each x ∈ X , T n(x) → x0.

The following result which can be viewed as somewhat converse of our above

corollary is due to Williamson and Janos (1987) which we state without proof.

Theorem 2.38 Let Φ : S → S be a continuous mapping of the compact metriz-

able space S into itself, with the property that
⋂∞
n=1{Φn(S)} is a singleton set.

Then given α with 0 < α < 1, there exists a metric ρ∗, with topology identical to

the original one, such that ρ∗(Φ(x),Φ(y)) ≤ ρ∗(x, y) for all x, y ∈ S.
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While Bessaga has proved the following converse of Banach contraction principle

which is stated below without proof.

Theorem 2.39 Let T : X → X be a mapping of a non-empty set X into

itself such that each iteration T n, n = 1, 2, . . . , has a unique fixed point. Then

for each α with 0 < α < 1, there exists a complete metric ρα on X such that

ρα(T (x), T (y)) ≤ αρα(x, y).

2.8 Iterated Function Systems (IFS) and Attractor

In (Barnsley (1988)) a finite set {Ti : i = 1, 2, . . . , n} of single-valued contraction

mappings Ti : X → X of a complete metric space (X, ρ) into itself with contraction

constant λi with 0 < λi < 1 has been said to be a hyperbolic iterated function

system (IFS) (X,Ti, i = 1, 2, . . . , n). If λ = max{λi : i = 1, 2, . . . , n}, then the

single-valued mapping T : K(X) → K(X) of the metric space (K(X), h) into itself

defined by

T (A) = T1(A) ∪ T2(A) · · · ∪ Tn(A), A ∈ K(X),

can easily be seen to be a contraction mapping with contraction constant λ (see

Barnsley (1988, Lemma 5, p. 81)), where h is the Hausdorff metric corresponding

to the metric ρ. λ is called the contraction constant of IFS.

It is also well-known that if (X, ρ) is a complete metric space, then theK(X), the

space of fractals, is a complete metric space with respect to the Hausdorff metric

h (see e.g., Theorem 1 in Barnsley (1988), p. 37 or Theorem 4.3.9 in Klein and

Thompson (1984), p. 45).

Hence the following theorem (Theorem 1 in Barnsley (1988), p. 82) is apparent

from contraction mapping principle:

Theorem 2.40 Let {X,Ti, i = 1, 2, . . . , n} be a hyperbolic iterated function sys-

tem with contraction constant α as described above. Then the mapping T : K(X) →
K(X) defined by

T (B) = T1(B) ∪ T2(B) ∪ · · · ∪ Tn(B), B ∈ K(X)

has a unique fixed point A ∈ K(X), i.e.,

A = T (A) = T1(A) ∪ T2(A) ∪ · · · ∪ Tn(A)

and is given by

A = lim
n→∞

Tn(B) for any B ∈ K(X).

The fixed point A ∈ K(X) is called the attractor (fractal) of the IFS.
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In Remark 2.21 we have pointed out that the finite union of set-valued topo-

logical contractions is not a set-valued topological contraction. We cannot have

a theorem as beautiful as Theorem 2.40. Nevertheless we can state the following

theorem in a restricted situation.

Theorem 2.41 Let X be a Hausdorff compact topological space, Ti : X →
2X \ {∅} a set-valued contraction mapping for i = 1, 2, . . . , n and T : X → 2X the

set-valued mapping defined by

T (x) = ∪ni=1Ti(x), x ∈ X

(hence T (A) = ∪ni=1T (A)).

Then there exists a non-empty closed (hence compact) subset F of X such that

T (F ) = F =
⋂∞
n=0 T

n(X), where T 0(X) = X and T n(X) = T (Tn−1(X)).

Proof. The mapping T is upper semi-continuous (see the proof of Theorem 2.36)

and has clear closed values. For each n = 0, 1, 2, . . . , let Fn = Tn(X). Since

T is upper semi-continuous, Fn is compact for each n and {Fn} is decreasing as

T (X) ⊂ X . Hence F =
⋂∞
n=0 Fn 6= ∅. Clearly, T (F ) ⊂ F . Now repeating exactly

the same argument of Theorem 2.36, we can show that F ⊂ T (F ). Thus F = T (F )

and F =
⋂∞
n=0 Fn =

⋂∞
n=0 T

n(X).

We might call F to be the attractor of the system of set-valued topological

contractions {Ti : i = 1, 2, . . . , n}. To justify our doing so, we can go back to IFS

{X,Ti, i = 1, 2, . . . , n} with contraction constant λ = max{λi, i = 1, 2, . . . , n}. Let

us consider the mapping T : K(X) → K(X) defined by

T (B) =

n⋃

i=1

Ti(B), B ∈ K(X).

Let

H0 = T 0(K(X)), H1 = T (K(X)), . . . , Hn = Tn(K(X)) = T (T n−1(K(X))).

If A is the unique fixed point of the mapping T : K(X) → K(X) of Theorem 2.40

then clearly, A ⊂ ⋂∞
n=0Hn. Moreover, if we assume that for some N , HN is a

bounded subset of the complete metric space (K(X), h), then δ(HN+1) ≤ λδ(HN ),

where h is the Hausdorff metric and δ(A) is the diameter of a set A ⊂ K(X).

Now since {HN+k}∞k=1 is a decreasing sequence of non-empty closed sets with

δ(HN+k) ≤ λkδ(HN ) → 0 as k → ∞, by Cantor Intersection Theorem
⋂∞
n=0 Hn =⋂∞

k=1 HN+k = {B} where B is a single point in K(X). Hence it follows that A = B

and

A =

∞⋂

n=0

Hn =

∞⋂

n=0

Tn(K(X)).

Thus in some sense F of Theorem 2.41 has analogy with the attractor A of IFS.
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Our next theorem which was first proved in Tarafdar and Výborný (1976) (also

appeared in Tarafdar and Yuan (1997b) and Yuan (1999)) provides the existence,

uniqueness and algorithm of end point of set-valued mappings. The rest of this

section deals with materials which appeared in Tarafdar and Yuan (1997b) and

partly in Tarafdar (1996b). Reference of Tarafdar and Yuan (1997b) is regrettably

missing in Yuan (1999).

Definition 2.8 Let (X, ρ) be a metric space. Then a set-valued mapping T :

X → 2X \{∅} is called a generalized contraction if there exists a real number λ with

0 < λ < 1 such that δ(T (A)) ≤ λδ(A) for each non-empty closed bounded subset A

of X with T (A) ⊂ A, where as before T (A) = ∪a∈AT (a) and δ(A) = sup{ρ(x, y) :

x, y ∈ A} is the diameter of A.

Given x ∈ X , let us define T (x) = T 1(x), T 2(x) = T (T 1(x)), . . . , Tn(x) =

T (Tn−1(x)) =
⋃
u∈Tn−1(x) T (u), for each n = 1, 2, . . . .

A sequence {xn}n∈N with xn ∈ T (xn−1) ⊂ Tn−1(x) is called a generalized of

iterates with respect to x. Note that for a single-valued mapping T : X → X , given

x ∈ X , we have a unique sequence of iterates with respect to x. This is not the case

for the set-valued mapping T .

Theorem 2.42 Let F be a non-empty closed bounded subset of a complete metric

space (X, ρ) and T : F → 2F \ {∅} a generalized contraction. Then T has a unique

fixed point x0 ∈ F , which is also an end point such that for each x ∈ X, every

generalized sequence of iterates with respect to x converges to x0.

Proof. We set F0 = F and define Fn = T (Fn−1) for n = 1, 2, . . . . Let D =
⋂∞
i=1 Fi.

Then we can easily see that the following holds:

(i) F0 ⊃ F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ · · · ;
(ii) T (Fn) ⊂ Fn, n = 0, 1, 2, . . . ;

(iii) T (D) ⊂ D.

To see (iii) let u ∈ T (D). Let k be a positive integer. Since u ∈ T (D), there

exists x ∈ D such that u ∈ T (x).

Now since x ∈ Fk, T (x) ⊂ T (Fk) ⊂ Mk by (ii). Hence u ∈ T (x) ⊂ Mk. Hence

u ∈Mk for all k, i.e., u ∈ D. As T is a generalized contraction, we have

δ(Fn) = δ(T (Fn−1)) = δ(T (Fn−1))

≤ λδ(Fn−1) = λδ(T (Fn−2)) = λδ(T (Fn−2))

≤ λ2δ(Fn−2)

≤ · · · ≤ λn−1δ(F1) → 0 as n→ ∞

Hence in view of (i) D =
⋂∞
i=0 Fi is, by Cantor Intersection Theorem, a single point,

say, x0. Thus it follows from (iii) that T (x0) = x0.

We now prove the uniqueness of the end point. If possible, let y = T (y) and

x 6= y. Let A = {x0, y}. Then δ(A) > 0 and T (A) = A; 0 6= δ(T (A)) < λδ(A) =
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λδ(T (A)), which is impossible as 0 < λ < 1. Also we can straightway see that

y ∈ D as y = T (A). Thus x0 = y.

Next, we see that x0 is the unique fixed point point. Let y′ ∈ F such that

y′ ∈ T (y′). Since y′ ∈ T (y′), we obtain

(iv) y′ ∈ T (y′) ⊂ T 2(y′) ⊂ T 3(y′) ⊂ · · · .

We have also

(v) Tn+1(F0) ⊂ Fn, n = 0, 1, 2, . . . .

By hypothesis T (F0) ⊂ F0. Hence T 2(F0) ⊂ T (F0) ⊂ T (F0) = F1. Let T k+1(F0) ⊂
Fk. Then T k+2(F0) ⊂ T (Fk) ⊂ T (Fk) = Fk+1. Thus by induction we obtain (v).

Now by (iv) and (v) we can conclude that y′ ∈ D. Hence y′ = x0.

Finally, let x ∈ F and {xn}n∈N a generalized sequence of iterates with respect

to x. To show that xn → x0 as n→ ∞, we note that

xn+1 ∈ Tn(x) ⊂ Tn(F0) ⊂ Fn−1 by (iv).

Now since δ(Fn) → 0 as n → ∞, we can show that{xn} is a Cauchy sequence in

the complete metric space (F, ρ). Thus xn → x in F for some x ∈ F .

Let n0 be an arbitrary positive integer. Then we show that x is a limit point of

Fn0 . Since Fn0 is a closed set, x ∈ Fn0 . Thus x ∈ D. Hence x = x0.

It is interesting to note that no continuity is assumed in the above Theorem.

The following example due to Tarafdar and Vyborny (Tarafdar and Výborný (1976))

elucidates this fact.

Example 2.3 We define the mapping T : [0, 2] → [0, 2] by

T (t) =

{
t
2 + 1

2 , if 0 ≤ t ≤ 1,
t
2 − 1

2 , if 1 < t ≤ 2.

We can easily verify that T [0, 2] = [0, 1] and T is a generalized contraction which is

discontinuous at t = 1 and, therefore, not a Banach contraction. t = 1 is the unique

fixed point.

In what follows we now merely reproduce the materials of (Tarafdar and Yuan

(1997b)).

2.8.1 Applications

A. End Points, Nucleous and Pareto Optimum

In the sequel of this section we will need the following notions and definitions

(Tarafdar (1996b) and Tarafdar and Yuan (1997b)).

A non-empty subset P of a real Banach space V is called a cone if P̄ = P ,

P + P ⊂ P , R+P ⊂ P and P ∩ (−P ) = {0}, where P̄ is the closure of P and
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R+ = [0,∞). Each cone P induces in V an ordering ‘�’ defined by x � y if

and only if y − x ∈ P . This relation ‘�’ is evidently reflexive, antisymmetric and

transitive. The pair (V, P ) is called an ordered Banach space with the ordering ‘�’

induced by P (which is called the positive cone of V ). The set P ∗ = {f ∈ V ∗ :

f(x) ≥ 0 for all x ∈ P} is called the dual cone, where V ∗ is the continuous dual of

V , i.e., P ∗ is the set of order preserving continuous linear functional on V .

A cone P of V is said to be normal if and only if there exists a positive number

e such that if x, y ∈ P with ‖x‖ ≥ 1 and ‖y‖ ≥ 1, then ‖x+ y‖ ≥ e (for other

equivalent definitions, see Knaster (1928)). In what follows, we always assume that

V denotes an ordered Banach space and we write x ≺ y if y − x ∈ P \ {0}.
Definition 2.9 Let X be a non-empty convex subset of a Hausdorff real topo-

logical vector space. A mapping F : X → V is said to be order or cone convex if

F (λx+ µy) � λF (x) + µF (y) for all x, y ∈ X and λ ≥ 0, µ ≥ 0 with λ+ µ = 1, i.e.

for such x, y, λ, µ we have

λF (x) + µF (y) − F (λx + µy) ∈ P.

In what follows, a Banach space V always means an ordered Banach space that

is ordered by a normal cone C in the sense that x � y if and only if y − x ∈ C.

Lemma 2.20 Let X be a non-empty convex subset of a Hausdorff real topological

vector space and V an ordered Banach space. A mapping F X → V is cone convex

if and only if the function f · F is convex for all f ∈ P ∗.

Proof. If F is cone convex, then f ·F is convex for f ∈ P ∗ as f is order preserving.

Next, let f · F be convex for each f ∈ V ∗. If possible, let for some x, y ∈ X and

λ ≥ 0, µ ≥ 0 with λ + µ = 1, [λF (x) + µF (y) − F (λx + µy)] 6∈ P . Then by a

consequence of the separation theorem (e.g., see Schaefer (1971)), there exists an

f ∈ P ∗ such that f [λF (x) + µF (y) − F (λx + µy)] < 0 which implies that f · F is

not convex.

Let X be a topological space. A mapping F : X → V is said to be order or cone

lower (respectively, upper) semi-continuous if f · F is lower (respectively, upper)

semi-continuous for each f ∈ P ∗.

Lemma 2.21 If P is a normal cone of a real Banach space V and x ∈ V with

x � 0 (respectively, ≺ 0), then there exists f ∈ P ∗ such that f(x) > 0 (respectively,

f(x) < 0).

Proof. Let x � 0. Then f(x) ≥ 0 for all f ∈ P ∗. If possible, let f(x) = 0 for

all f ∈ P ∗. By Hanh-Banach extension theorem there exists p ∈ V ∗ such that

p(x) 6= 0. Now since P is a normal cone, p = g − h where g, h ∈ P ∗ (e.g., see

Theorem 23.5, of Kelley and Namioka Kelley and Namioka (1963, p. 227)). Hence

p(x) = g(x) − h(x) = 0 which is a contradiction.

Definition 2.10 Let X be a non-empty set, V an ordered Banach space and

f : X → V a (single-valued) mapping. Then we say that
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(1) a point a ∈ X is said to be a Pareto maximal (respectively, Pareto minimal)

optimum of f if f(y) � f(a) (respectively, f(y) � f(a)) for all y ∈ X implies that

f(y) = f(a);

(2) if a ∈ X is a Pareto maximal (respectively, minimal) optimum of f , then

the set N(f, a) = {x ∈ X : f(a) = f(x)} is called the (generalized) Nucleolus or the

indifference set of f w.r.t. a.

We denote by P (f) the set of all Pareto maximal (respectively, minimal) optima

and E(f) the set of all end points of f . It is easy to see that our definition for

Pareto maximal (respectively, minimal) optimum is equivalent to the corresponding

definitions introduced in (Tarafdar (1996b), pp. 2511–2519 and Tarafdar (1996a),

pp. 2431–2439).

Also, the Pareto optima always means Pareto maximal optima in the remaining

part of this section for simplicity, unless otherwise specified.

Definition 2.11 Let X be a non-empty set, V an ordered Banach space and

f : X → V a (single-valued) mapping and φ : X → 2X a set-valued mapping. Then

f is said to be

(1) φ-monotone if x ∈ X , y ∈ φ(x) ⇒ f(x) � f(y); and

(2) strictly φ-monotone if x ∈ X , y ∈ φ(x) and x 6= y ⇒ f(x) ≺ f(y); (i.e., by

Lemma 2.21, there exists p ∈ P ∗ such that pf(x) < pf(y) and qf(x) ≤ qf(y) for all

q ∈ P ∗).

It is clear that a φ-monotone mapping generalizes the φ-monotone vector func-

tion, introduced by Justman in (Justman (1978)) which, in turn, serves as the

Lyapunov functions.

We note that for a given non-empty set X and an ordered Banach space V and

for each mapping f : X → V , there exist two set-valued mapping φf , φ̂f : X → 2X

such that f is φf -monotone and f is φ̂f -strictly monotone, respectively, where

φf , φ̂f : X → 2X are defined by

(a) φf (x) = {y ∈ X : f(x) � f(y)}

and

(b) φ̂f (x) = {y ∈ X : f(x) ≺ f(y)}

for each x ∈ X .

Lemma 2.22 Let X be a non-empty set and V an ordered Banach space. Suppose

f : X → V is a (single-valued) mapping and φ : X → 2X a set-valued mapping.

If f is strictly φ-monotone, then N(f, a) ⊂ E(φ) for each Pareto optimum a of f .

Moreover, if f is φ-monotone, then each z ∈ E(φf ) is a Pareto optimum of f .

Proof. To see this, let z ∈ N(f, a). If z 6∈ E(φ), then there exists y ∈ X such

that y 6= z and y ∈ φ(z). The strict φ-monotone of f implies that f(z) � f(y) and

pf(z) < pf(y) for some p ∈ P ∗ which contradicts the Pareto maximality of a of
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f . It is clear that if f : X → V is a mapping, then each z ∈ E(φf ) is a Pareto

optimum of f . Indeed, if z ∈ E(φf ) and z 6∈ P (f), then there exists y ∈ X with

x 6= y and f(z) � f(y). Thus, y ∈ φf (z) which is impossible since φf (z) = {z}.

Definition 2.12 Let X be a non-empty set and φ : X → 2X a set-valued

mapping. Then a point x0 ∈ X is said to be a maximal element of φ if φ(x0) = ∅.

Lemma 2.23 Let X be a non-empty set and V an ordered Banach space. Suppose

f : X → V is a mapping. Then a point x0 ∈ X is a Pareto optimum of f if and

only if x0 ∈ X is a maximal element of φ̂f .

Proof. It is easy to verify from the definitions.

B. Set-Valued Dynamic Systems

Let X be a metric space with metric ρ. Following Aubin and Siegel (1980), a

set-valued dynamic system F on X is a set-valued mapping F : X → 2X which

takes non-empty values. Any finite sequence x+ = x0, x1, . . . , xn, . . . , such that

xn+1 ∈ F (xn) for each n ∈ N is called a motion of the system F at x0. The set

F(x+) = {xn : n ∈ N and xn+1 ∈ F (xn)} is called the trajectory of this motion or

F -sequence starting at x0.

Let U : X → R+ ∪ {+∞} be a real-valued function with Dom U 6= ∅. A

dynamic system F : X → 2X is said to be dissipative (with respect to U) if for each

x ∈ X ,

U(y) + ρ(x, y) ≤ U(x) for all y ∈ F (x).

We first have the following fixed point theorem:

Lemma 2.24 Let (X, ρ) be a complete metric space and F : X → 2X an upper

semi-continuous mapping with non-empty compact values such that the mapping

U ′
F : X → R+ ∪ {+∞} defined by

(c) U ′
F (x) = inf{

∞∑

n=0

ρ(xn, xn+1)|(xn)∞n=0 is any F -sequence with x0 = x}

for each x ∈ X, is proper (i.e., Dom U ′
F 6= ∅). Then there exists a motion F(x+)

starting at some x ∈ Dom U ′
F which converges to a limit x̂, which is a fixed point

of F , i.e., x̂ ∈ F (x̂).

Proof. Since F is upper semi-continuous with non-empty compact values, then

for each x ∈ X , there exists y ∈ F (x) such that U ′
F (x) ≥ U ′

F (y) + ρ(x, y) by

Proposition 4 of (Aubin and Ekeland (1984), p. 242).

Noting that the graph of F is closed and Dom U ′
F 6= ∅, by Proposition 2 of

(Aubin and Ekeland (1984), p. 240), there is a motion F(x+) starting at some

x ∈ Dom U ′
F which converges to a limit x̂, which is a fixed point of F , i.e.,

x̂ ∈ F (x̂).
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In order to consider the existence of endpoints for set-valued dissipative dynamic

systems which are lower semi-continuous, we need the following lemma.

Lemma 2.25 Let (X, ρ) be a complete metric space and F : X → 2X a set-

valued dynamic system. Suppose that F is dissipative with respect to the lower

semi-continuous function U : X → R+ ∪ {+∞}. Then F has an endpoint x̂ in X,

i.e., F (x̂) = {x̂}.

Proof. This is Proposition 1.3 of (Aubin and Ekeland (1984), p. 248).

Lemma 2.26 Let (X, ρ) be a metric space and F : X → 2X a set-valued dynamic

system. Then the function UF : X → R+ ∪ {+∞} defined by

(d) UF (x) = sup{
∞∑

n=0

ρ(xn, xn+1)|(xn)∞n=0 is any F − sequence with x0 = x}

for each x ∈ X, satisfies the following inequality:

(∗) UF (y) + ρ(x, y) ≤ UF (x) for all y ∈ F (x)

for each x ∈ X. Moreover, if U is any other non-negative valued function which

satisfies the inequality (∗), then UF (x) ≤ U(x) for all x ∈ X.

Proof. It is clear that for each x ∈ X , UF (y) + ρ(x, y) ≤ UF (x) for all y ∈ F (x)

by the definition of UF . Moreover, it is trivial to verify that UF is the smallest

non-negative-valued function which satisfies the property (∗). Indeed, let U be

any non-negative-valued function satisfying (∗). Now for any F -sequence, (xn)∞n=0

starting at x0 = x. Noting that U(xn) ≥ ρ(xn, xn+1) +U(xn+1) and U(xn) ≥ 0 for

all n = 0, 1, . . . ,∞, we have that U(x) ≥ ∑∞
n=0 ρ(x

n, xn+1). Thus, UF (x) ≤ U(x)

by the definition of UF .

Lemma 2.27 Let (X, ρ) be a metric space and F : X → 2X a lower semi-

continuous set-valued mapping with non-empty values. Then the function UF :

X → R+ ∪ {+∞} defined by formula (d) in Lemma 2.26 is lower semi-continuous.

(Here F is lower semi-continuous at x0 in the sense that if xn → x0 and y0 ∈ F (x0),

then there exists yn ∈ F (xn), n = 1, 2, . . . , such that yn → y0.)

For the completeness we include the proof due to Maschler and Peleg in

(Maschler and Peleg (1976), Lemma 2.1, p. 987).

Proof. Let x ∈ X and UF (x) ≥ r. We need to show that lim infk→∞ UF (uk) ≥ r,

whenever uk ∈ X for k = 1, 2, . . . and limk→∞ uk = x.

Let ε > 0. Then there exist points x0 = x, x1 ∈ F (x0), . . . , xT ∈ F (xT−1) such

that

T−1∑

t=0

ρ(xt+1, xt) ≥ r − ε.
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Now since F is lower semi-continuous, there exist T + 1 sequences (ui,k), i =

0, 1, . . . , T , where u0,k = uk, u1,k ∈ F (u0,k), . . . , uT,k ∈ F (uT−1,k), k = 1, 2 . . . ,

such that

lim
k→∞

ut,k) = xt, t = 0, 1, . . . , T.

From above it is clear that

lim inf
k→∞

UF (uk) ≥ lim
k→∞

T−1∑

t=0

ρ(ut+1,k, ut,k) ≥ r − ε.

Since ε is arbitrary, the lemma follows.

Now we have the following result which is due to Maschler and Peleg in (Maschler

and Peleg (1976), Remark 2.8, p. 988):

Theorem 2.43 Let (X, ρ) be a complete metric space and F : X → 2X a

lower semi-continuous mapping with non-empty values. Suppose that the function

UF : X → R+ ∪ {+∞} defined by formula (d) is proper, i.e., Dom UF 6= ∅. Then

F has an endpoint x̂ ∈ X, i.e., F (x̂) = {x̂}.
Proof. Note that F is lower semi-continuous, so that the function UF is lower

semi-continuous by Lemma 2.27. Then the conclusion follows from Lemma 2.25.

For the convenience of our discussion, we shall call the function UF defined in

the formula (d) of Lemma 2.26, the function induced by F in the rest part of this

section.

As an immediate consequence of Theorem 2.43, we have the following result due

to Aubin and Ekeland in (Aubin and Ekeland (1984), Corollary 10, p. 246).

Theorem 2.44 Let (X, ρ) be a complete metric space and let the dissipative

dynamic system F : X → 2X be lower semi-continuous. Then F has an endpoint x̂

in X, i.e., F (x̂) = {x̂}.
Proof. Since F is dissipative, there exists a function U : X → R+ ∪ {+∞} such

that for each x ∈ X

U(y) + ρ(x, y) ≤ U(x) for all y ∈ F (x)

and Dom U 6= ∅. Now, let UF : X → R+ ∪ {+∞} be the induced function of F ,

i.e.,

UF (x) = sup{
∞∑

n=0

ρ(xn, xn+1)|(xn)∞n=0 is any F − sequence with x0 = x}

for each x ∈ X . By Lemma 2.26, UF (x) ≤ U(x) for all x ∈ X . Hence, Dom UF 6= ∅
because Dom U 6= ∅. Since F is lower semi-continuous with non-empty values, UF
is lower semi-continuous by Lemma 2.27. Therefore, the conclusion follows from

Theorem 2.43 and we complete the proof.
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Now as applications of the previous results, we have the following theorems on

the existence of Pareto optima in metric spaces.

Theorem 2.45 Let (X, ρ) be a complete metric space, V an ordered Banach

space and f : X → V a single-valued mapping. Suppose f is cone upper semi-

continuous and the function Uφ̂f
: X → [0,∞) which is defined from the function

φ̂f by formula (d) of Lemma 2.26, is proper (i.e., Dom Uφ̂f
6= ∅), where φ̂f is a

mapping defined by formula (b) in the last section. Then P (f) 6= ∅.

Proof. In order to prove that P (f) 6= ∅, by Lemma 2.23 it is sufficient to show

that the mapping φ̂f has a maximal element. If it were false, then φ̂f (x) 6= ∅
for each x ∈ X . Since f is cone upper semi-continuous, for each y ∈ X the set

φ̂−1
f (y) = {x ∈ X : f(x) ≺ f(y)} is open in X , and therefore the mapping φ̂f

is lower semi-continuous with non-empty values. By Theorem 2.43, there exists

x0 ∈ X such that x0 = φ̂f (x0) which is impossible since x 6∈ φ̂f (x) for each x ∈ X .

Thus, there must exist some x ∈ X such that φ̂f (x) = ∅, so that x ∈ P (f) and the

proof is completed.

Theorem 2.46 Let (X, ρ) be a closed bounded subset of a complete metric space,

V an ordered Banach space and f : X → V a mapping. Suppose the induced set-

valued mapping φf : X → 2X is a generalized contraction, where φf is a mapping

defined by formula (a) before in the last section. Then P (f) 6= ∅.

Proof. By assumption, the mapping φf is a generalized contraction, so that there

exists x0 ∈ X such that x0 = φf (x0) by Theorem 2.42. Then x0 ∈ P (f) follows

from Lemma 2.22.

Corresponding to Theorem 2.36, we also have the following theorem.

Theorem 2.47 Let (X, ρ) be a compact topological space, V an ordered Banach

space and f : X → V a mapping. Suppose the set-valued mapping φf : X → 2X is

a set-valued topological contraction, where φf is a mapping defined by formula (a).

Then P (f) 6= ∅.

Proof. By assumption, the mapping φf is a topological contraction, so that there

exists x0 ∈ X such that x0 = φf (x0) by Theorem 2.36. Then x0 ∈ P (f) follows

from Lemma 2.22 and we complete the proof.

Theorems 2.45, 2.46 and 2.47 give the existence of Pareto optima in metric

spaces.

We will now prove the existence of Pareto optimum in topological vector spaces.

Definition 2.13 Let X be a convex subset of a vector space E and V a Banach

space. A mapping f : X → V is said to be quasi-cone concave if for each x ∈ X ,

the set {y ∈ X : f(y) � f(x)} is convex.
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Before we prove the existence of the Pareto maximum for the mapping f in

topological vector spaces, we also need the following fixed point theorem (Tarafdar

(1998)) the proof of which will be given in Chapter 4.

The Fixed Point Theorem

Let X be a non-empty convex subset of a Hausdorff topological vector space E.

Suppose T : X → 2X is a set-valued mapping with non-empty convex values such

that

(i) for each fixed y ∈ X , T−1(y) = {x ∈ X : y ∈ T (x)} contains a relatively

open set Oy of X (where Oy may be empty for some y ∈ X);

(ii)
⋃
y∈X Oy = X ; and

(iii) there exists a non-empty subset X0 which is contained in a non-empty

compact and convex subset X1 of X such that the set D =
⋂
x∈X0

Ocx is either

empty or compact (where Ocx denotes the complement of Ox in X).

Then T has a fixed point.

Now we have the following theorem:

Theorem 2.48 Let X be a non-empty convex subset of a topological vector space

E and V a Banach space. Suppose f : X → V is cone upper semi-continuous and

cone quasi-concave. Furthermore, there exists a non-empty compact and convex

subset X0 of X such that the set
⋂
y∈X0

{x ∈ X : f(x) 6≺ f(y)} is either empty or

compact. Then P (f) 6= ∅.

Proof. We claim that the mapping φ̂f has a maximal element. Suppose if it were

false, then φ̂f (x) 6= ∅ for each x ∈ X and (φ̂f )
−1(y) = {x ∈ X : f(x) ≺ f(y)} is

open since f is cone upper semi-continuous. Note that φ̂f (x) is convex since f is

cone quasi-concave. Thus, all hypotheses of the above ‘Fixed Point Theorem’ are

satisfied. Hence, by the above ‘Fixed Point Theorem’, there exists x0 ∈ X such

that x0 ∈ φ̂f (x0), which is impossible by the definition of φ̂f . Hence, there must

exist x ∈ X such that φ̂f (x) = ∅. Thus x ∈ P (f).

As an immediate consequence of Theorem 2.48, we have the following corollary:

Corollary 2.48.1 Let X be a non-empty compact subset of a topological vector

space E and V an ordered Banach space. Suppose f : X → V is cone upper semi-

continuous and cone quasi-concave. Then P (f) 6= ∅.

C. The Stability of Pareto Optima

In this subsection, as applications of the results in the previous subsection, we shall

study the stability of Pareto optima for the mapping f which takes values in ordered

Banach spaces.
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Definition 2.14 (Maschler and Peleg (1976)) Let Q be non-empty subset of

a topological space X and φ : X → 2X a set-valued mapping with non-empty

values. The set Q is called stable with respect to (in short w.r.t.) φ if for each open

neighborhood U of Q, there exists a neighborhood V of Q such that if x ∈ V and

{xn}n∈N is a φ-sequence with x0 = x, then xn ∈ U for n = 1, 2, . . . (or, equivalently,

φn(V ) ⊂ U for n = 1, 2, . . . ).

We first have the following lemma:

Lemma 2.28 The set Q is stable w.r.t. φ if and only if for each open neigh-

borhood U of Q, there exists another non-empty open subset V ⊂ Q such that

φ(V ) ⊂ V . Moreover, if Q is closed and stable w.r.t. φ and X is regular, then

φ(Q) ⊂ Q.

Proof. If Q is stable and U is an open neighborhood of Q, then there is a neigh-

borhood W of U such that φn(W ) ⊂ U for n ∈ N. Let V =
⋃
n∈N

φn(W ). Then V

satisfies the stated properties. The converse is clear. Now suppose Q is stable and

closed. Let {Ui : i ∈ I} be the family of all non-empty open neighborhoods of Q,

then φ(Q) ⊂ ⋂i∈I Ui. Since Q is a closed subset of X , we claim that
⋂
i∈I Ui = Q.

It suffices to prove that
⋂
i∈I Ui ⊂ Q. If not, there exists w0 ∈ ⋂i∈I Ui and w0 6∈ Q.

As X is regular, and Q is closed, there exist a non-empty open neighborhood O(w0)

of w0 and a non-empty open neighborhood Û of Q such that O(w0) ∪ U = ∅.
But x0 ∈ ⋂i∈I Ui, so that x0 ∈ Û as {Ui}i∈I is the family of all non-empty open

neighborhoods of Q. Thus,
⋂
i∈I Ui ⊂ Q. Therefore, we have φ(Q) ⊂ Q.

Theorem 2.49 Let f : X → V be a mapping from a compact metric space

(X, ρ) into an Ordered Banach space V . Let N(f, a) be a generalized nucleolus of

f . Suppose the following conditions hold:

(i) f is φ-monotone;

(ii) f is cone upper semi-continuous on X; and

(iii) f is continuous on N(f, a).

Then N(f, a) is stable with respect to φ.

Proof. First we note that by the cone upper semi-continuity of f , the set N(f, a) =

{x ∈ X : f(a) � f(x)} is a closed subset of X . Let U ⊃ N(f, a) be an open subset

of X . Then S = X \ U is compact. Now for each y ∈ S, there exists by Lemma

2.21, a p ∈ P ∗ and a positive integer n ∈ N such that pf(y) < pf(a) + 1
n . Let

Up,n(y) = {x ∈ X : pf(x) < pf(a) +
1

n
}

for each p ∈ P ∗ and n ∈ N. Then by the upper semi-continuity of pf at a ∈ X ,

Up,n(y) is an open set containing y. Thus {Up,n(y)}p∈P∗,n∈N is an open covering

of S. As S is compact, there is a finite subcover, say, Up1,n1(y1), Up2,n2(y2), . . . ,

Upm,nm(ym), i.e.,
⋃m
i=1 Upi,ni(yi) ⊃ S. For each i = 1, 2, . . . ,m, set

Vpi,ni = {x ∈ X : pif(x) > pif(a) +
1

ni
}



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Contraction Mappings 103

which is, by the continuity of f on N(f, a), an open set containing N(f, a). Let

V =
⋂m
i=1 Vpi,ni . Then V is a neighborhood of N(f, a) and is contained in U . To see

this, let y ∈ V . If y 6∈ U , then y ∈ S which would be a contradiction. Now if x ∈ V

and {xn} is a φ-sequence with x0 = x, then by (i), we have for each i = 1, 2, . . . ,m,

pif(xn) ≥ pif(xn−1) ≥ · · · ≥ pif(x0) > pif(a) +
1

ni
.

Hence, xn ∈ V ⊂ U , where n = 1, 2, . . . . Thus N(f, a) is stable.

As applications of Theorem 2.49, we have the following theorems:

Theorem 2.50 Let (X, ρ) be a compact complete metric space, V an ordered

Banach space and f : X → V a single-valued mapping which is continuous on

P (f). Suppose f is cone upper semi-continuous on X and the induced function

Uφ̂f
of φ̂f from X to [0,∞) is proper, i.e., Dom Uφ̂f

6= ∅, where φ̂f is a mapping

defined by formula (b) of Definition 2.11. Then N(f, a) is stable with respect to Uφ̂f

for each a ∈ P (f).

Proof. By Theorem 2.45, P (f) 6= ∅. Since X is compact, the conclusion follows

from Theorem 2.49.

By employing Theorems 2.46, 2.47 and Corollary 2.48.1 and the same arguments

as used in the proof of Theorem 2.50, we have the following theorems:

Theorem 2.51 Let (X, ρ) be a compact subset of a complete metric space, V

an ordered Banach space and f : X → V (single-valued) upper semi-continuous on

X and continuous on P (f). Suppose the set-valued mapping φf : X → 2X is a

generalized contraction mapping, where φf is a mapping defined by formula (a) of

Definition 2.11. Then N(f, a) is stable with respect to Uφf
for each a ∈ P (f).

Theorem 2.52 Let (X, ρ) be a compact subset of a metric space, V an ordered

Banach space and let f : X → V be upper semi-continuous and continuous on P (f).

Suppose the set-valued mapping φf : X → 2X is a topological contraction mapping.

Then N(f, a) is stable with respect to Uφf
for each a ∈ P (f).

Theorem 2.53 Let (X, ρ) be a non-empty compact subset of a topological vector

space E and V be an ordered Banach space. Suppose f : X → V is cone upper semi-

continuous and cone concave and f is continuous on P (f). Then N(f, a) is stable

with respect to φ̂f for each a ∈ P (f), where φ̂f is a mapping defined by formula (b)

of Definition 2.11.

2.9 Large Contractions

The materials of this section is taken from Watson (1998). Recently there has been

some interesting advances in solving the following implicit Darboux problem with
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values in a Banach space E:

∂2z

∂x∂y
= g

(
x, y, z,

∂2z

∂x∂y

)
for (x, y) ∈ Ω,

z(x, 0) = 0 for x ≥ 0, (DP)

z(0, y) = 0 for y ≥ 0.

where Ω = R
+ × R

+ and g : Ω ×E ×E → E.

In (Wójtowicz (1997)) the author extends the results of (Rzepecki (1986)) by

weakening the condition that the map

g(x, y, u, ·) : E → E (2.119)

be a contraction with constant k < 1/2. The author shows that it need only be a

contraction with constant k < 1. Also in Wójtowicz (1997), the uniform continuity

required in Rzepecki (1986) is weakened to continuity.

It is of interest therefore, to investigate to what extent the contractive condition

can be weakened further. Using a fixed point theorem for so-called Large Contrac-

tions in Burton (1996), we are able to transform the implicit problem above to an

explicit problem with right-hand side f(x, y, u) a selection of

F (x, y, u) = {z ∈ E : z = g(x, y, u, z)}.

The explicit problem may then be solved by the same means as in Wójtowicz (1997).

This is possible at the expence of the weaker continuity condition. We assume

g(·, ·, ·, z) is continuous uniformly with respect to z ∈ E.

2.9.1 Large Contractions

The definition of large contractions is due to Burton (1996).

Definition 2.15 A mapping F from a metric space (M,d) into itself is said to

be a Large Contraction if F is contractive, ( i.e. for all x 6= y d(F (x), F (y)) <

d(x, y)) and for all ε > 0, there exists 0 ≤ δ(ε) < 1 such that d(x, y) ≥
ε implies d(F (x), F (y)) ≤ δd(x, y).

We rephrase the Fixed Point Theorem, Theorem 1 of Burton (1996), in terms

suitable for our goal. For F : M → M , we shall say a subset K ⊂ M is invariant

under F (or simply invariant) if F (K) ⊂ K.

Theorem 2.54 Burton (1996) Let (M,d) be a complete metric space and F :

M →M a large contraction. If M contains a bounded invariant subset, then F has

a unique fixed point.

For a different application of Theorem 2.54 to an implicit integral equation, we

refer to Burton (1996).
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2.9.2 The Transformation

Let Ω(a, b) = [0, a] × [0, b] and E a Banach space. Assume the following:

(i) g : Ω ×E ×E → E is such that g(·, ·, ·, z) is continuous

uniformly in z ∈ E;

(ii) the map g(x, y, u, ·) : E → E is a large contraction;

(iii) for each (a, b) ∈ Ω there exists m(a, b) ≥ 0 such that for

each (x, y, u) ∈ Ω(a, b) ×E, there exists K ⊂ Bm(a,b)(0) ⊂ E

such that K is invariant under g(x, y, u, ·).

Assumptions (ii) generalizes the assumption 20 of Wójtowicz (1997) in that a con-

traction with constant k < 1 is a large contraction. Assumption (iii) is not exactly

the same as the corresponding assumption 30 of Wójtowicz (1997), although the

assumptions 20 and 30 together are encompassed by (iii). This is evident from the

discussion in Section 2 of Wójtowicz (1997).

Theorem 2.55 Suppose Assumptions (i)–(iii) are satisfied. Then for each

(x, y, u) ∈ Ω ×E there exists a unique f(x, y, u) ∈ E such that

(1) f(x, y, u) = g(x, y, u, f(x, y, u));

(2) f : Ω × E → E is continuous;

(3) for each (a, b) ∈ Ω there exists m(a, b) ≥ 0 such that ||f(x, y, u)|| ≤ m(a, b)

for all (x, y) ∈ Ω(a, b) and u ∈ E.

Proof. Fix (x, y, u) ∈ Ω × E and let F (z) = g(x, y, u, z). Then F is a large

contraction. By Assumption (iii) and Theorem 2.54, F has a unique fixed point

f(x, y, u) so 1 is satisfied. Moreover for any (a, b) ∈ Ω and any (x, y, u) ∈ Ω(a, b)×E,

there exists m(a, b) ≥ 0 such that ||f(x, y, u)|| ≤ m(a, b).

Now we show f is continuous. Let (xn, yn, un) be a sequence converging to

(x0, y0, u0). Then

f(xn, yn, un) = vn = g(xn, yn, un, vn) (2.120)

and we claim vn → v0 = f(x0, y0, u0). Suppose not. Then there exists ε0 > 0 and

a sequence Nk → ∞ as k → ∞ such that for each k there exists n,m > Nk with

||vn − vm|| ≥ ε0. By definition of a large contraction, there exists δ(ε0) < 1 such

that

ε0 ≤ ||vn − vm||
≤ ||g(xn, yn, un, vn) − g(xm, ym, um, vm)||
≤ ||g(xn, yn, un, vn) − g(xn, yn, un, vm)||

+ ||g(xn, yn, un, vm) − g(xm, ym, um, vm)||
≤ δ(ε0)||vn − vm||

+ ||g(xn, yn, un, vm) − g(xm, ym, um, vm)||.
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Thus

(1 − δ(ε0))||vn − vm|| ≤ ||g(xn, yn, un, vm) − g(xm, ym, um, vm)||

and as ||vn − vm|| ≥ ε0, it follows that

(1 − δ(ε0))ε0 ≤ ||g(xn, yn, un, vm) − g(xm, ym, um, vm)||. (2.121)

From the continuity of g(·, ·, ·, z) uniformly in z, choosing k sufficiently large the

right-hand side of (2.121) may be made arbitrarily small. This is a contradiction

as (1− δ(ε0))ε0 is a fixed number greater than zero. Hence f is continuous and the

proof is complete. �

Now a solution of (DP) is a solution of the explicit problem:

∂2z

∂x∂y
= f(x, y, z) for (x, y) ∈ Ω,

z(x, 0) = 0 for x ≥ 0, (EDP)

z(0, y) = 0 for y ≥ 0,

where f is given as in Theorem 2.55.

2.9.3 An Existence Theorem

One further assumption is required for g. By α(X) where X is a subset of the

Banach space E, we mean the Kuratowski measure of noncompactness (see Banaś

and Goebel (1980).

Assume

(iv) α(g(A ×X × Y )) ≤ h(α(X))

where h : R+ → R+ is a function and A,X, Y are bounded subsets, A ⊂ Ω, and

X,Y ⊂ E.

Theorem 2.56 Suppose g satisfies (i)–(iv) where h : R+ → R+ is continuous,

nondecreasing function such that the scalar inequality

0 ≤ u(x, y) ≤
∫ x

0

∫ y

0

h(u(s, t))dsdt, (x, y) ∈ Ω (2.122)

has only a trivial solution. Then problem (DP ) has a solution.

Proof. From assumptions (iii), (iv) and the construction of f , it is clear that

α(f(A ×X)) ≤ h(α(X)) (2.123)

for bounded subsets A ⊂ Ω and X ⊂ E.

Let C(Ω;E) be the space of continuous functions from Ω to E with the topology

of uniform convergence on compact subsets of Ω.
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A solution of (EDP) is a fixed point of the operator T : C(Ω;E) → C(Ω;E)

defined by

T (z)(x, y) =

∫ x

0

∫ y

0

f(s, t, z(s, t))dsdt. (2.124)

The function f satisfies all the conditions required in the proof of Theorem 3

of Wójtowicz (1997). Hence by this theorem, T has a fixed point and the proof is

complete. �

By careful analysis of Theorem 4 of Wójtowicz (1997), it can be seen that the

conclusion of Theorem 4 is true in the situation examined here. This means that

under the assumptions of Theorem 2.56, the set of all solutions of the implicit

Darboux problem (DP) is an Rδ set (i.e., is homeomorphic to the intersection of a

decreasing sequence of compact absolute retracts).

2.10 Random Fixed Point and Set-Valued Random Contraction

The aim of this section is to present a random fixed point theorem due to Itoh

(1977). All the results of this section are from Itoh (1977). Throughout this section

(X, ρ) will denote a Polish space, i.e., a separable metric space, (T,A) a measurable

space and B the σ-algebra of Borel sets of X generated by the metric topology of

(X, ρ). A mapping F : T → 2X is called weakly A-measurable if for any open set B

of X , F−1(B) ∈ A. In this section by measurable we will mean weakly measurable.

A single valued mapping U : T → X is said to be a measurable selection of a

measurable mapping F : T → 2X if for each t ∈ T , U(t) ∈ F (t).

Definition 2.16 (Random Fixed Point) Let F : T × X → CB(X) be a

set-valued mapping such that for each x ∈ X , F (., x) is A-measurable. Then a

measurable mapping U : T → X is called a random fixed point of F if U(t) ∈
F (t, U(t)) for all t ∈ T .

We will need the following lemmas for details of which we refer to (Himmelberg

(1975) and Kuratowski and Ryll-Nardzewski (1965)).

Lemma 2.29 Let {Fn} be a sequence of measurable mappings, Fn : T → CB(X)

and F : T → CB(X) a mapping such that for each t ∈ T , h(Fn(t), F (t)) → 0 as

n → ∞, where h is the Hausdorff metric with respect to the metric ρ introduced in

Section 2.7. Then F is measurable.

Proof. By a theorem of Himmelberg (1975, Theorem 3.5), it will suffice to show

that for each x ∈ X , the real-valued function defined on T by t → d(x, F (t)) is

measurable, where as before d(x, F (t)) = inf{ρ(x, y) : y ∈ F (t)}. It follows from

the definition of Hausdorff metric h that for any A,B ∈ CB(X),

|d(x,A) − d(x,B)| ≤ h(A,B).
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Hence |d(x, Fn(t)) − d(x, F (t))| ≤ h(Fn(t), F (t)). Thus by the hypothesis, for each

t ∈ T , d(x, Fn(t)) → d(x, F (t)) as n→ ∞. Therefore, d(x, F (·)) being the pointwise

limit of measurable functions {d(x, Fn(·))}, is measurable.

Lemma 2.30 Let F : T ×X → CB(X) be a set-valued mapping such that for

each t ∈ T , F (t, ·) is k(t)-Lipschitz and for each x ∈ X, F (·, x) is measurable. Then

for any measurable mapping U : T → X, the mapping G : T → CB(X) defined by

G(t) = F (t, U(t)), t ∈ T , is measurable.

Proof. Since X is separable, there is a countable dense subset X1 = [xn : n ∈ N].

Hence X̄1 = X .

For each n, let B1n = {x ∈ X : ρ(x, x1) ≤ 1
n}, and

Bin = {x ∈ X : ρ(x, xi) ≤
1

n
} −

i−1⋃

j=1

Bjn, i = 2, 3 . . . .

Then {Bin} is a countable partition of X , i.e., Bin ∈ B,
⋃∞
i=1Bin = X and if i 6= j,

Bin ∩ Bjn = ∅.
For each n = 1, 2, . . . , we define the set-valued mapping

Fn : T ×X → CB(X)

by Fn(t, x) = F (t, xi) if t ∈ T and x ∈ Bin. It can be easily seen that Fn is

well-defined as x belongs to a unique Bin. Then for any open set B of X we have

{(t, x) ∈ T ×X : Fn(t, x) ∩ B 6= ∅} =
⋃∞
i=1{t ∈ T : F (t, xi) ∩B 6= ∅}

=
⋃∞
i=1{t ∈ T : F (t, xi) ∩B 6= ∅}

×Bin ∈ A× B,
where A×B is the product of σ-algebra on T ×X . Hence for each n, Fn is A×B-

measurable. For each t ∈ T , x ∈ X , there exists an i such that x ∈ Bin and

h(Fn(t, x), F (t, x)) = h(F (t, xi), F (t, x)) ≤ k(t)ρ(xi, x) ≤
k(t)

n
.

Thus h(Fn(t, x), F (t, x)) → 0 as n → ∞. Hence by Lemma 2.29, F is measurable.

Also the mapping g : T → T ×X defined by g(t) = (t, U(t)), t ∈ T is measurable in

the sense that g−1(A×B) ⊂ A. Now it follows that for every open set B of X ,

G−1(B) = g−1({(t, x) ∈ T ×X : F (t, x) ∩B 6= ∅}) ∈ A.

Thus G is measurable.

Lemma 2.31 Let Y be a metric space, f : T × X → Y a mapping such that

for any t ∈ T , f(t, ·) is continuous and for any x ∈ X, f(·, x) is measurable. Let

F : T → 2X be a set-valued measurable mapping such that for each t ∈ T , F (t)

is non-empty, closed and U an open subset of Y . Then the set-valued mapping

G : T → 2X defined by G(t) = {x ∈ F (t) : f(t, x) ∈ U}, t ∈ T is measurable.
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Proof. By a well-known theorem (see (Castains (1969)), or (Himmelberg (1975,

Theorem 5.6)), or (Wagner (1977))) which states that if F : T → 2X is non-

empty closed valued (weakly) measurable set-valued mapping, then there exists a

countable family {Un} of measurable selections of F such that for each t ∈ T ,

cl[Un(t) : n = 1, 2 · · · ] = F (t) and T ∩ {t : Ui(t) ∈ F (t)} is measurable for each

i = 1, 2 · · · , where clA = Ā denotes the closure of the subset A of X . Since F

satisfies the conditions of that theorem, we have such a countable family {Un(t)}.
Let B be any open subset of X , then

G−1(B) = {t ∈ T : f(t, x) ∈ U for some x ∈ F (t) ∩ B}
= {t ∈ T : f(t, Un(t)) ∈ U, un(t) ∈ B for some n}
=
⋃∞
n=1{t ∈ T : f(t, Un(t)) ∈ U}⋂u−1

n (B).

Then it follows (e.g., as in Theorem 6.5 of (Himmelberg (1975))) that {t ∈ T :

f(t, un(t)) ∈ U} ∈ A for each n. Hence G−1(B) ∈ A and G is measurable.

Lemma 2.32 Let F,G : T → CB(X) be measurable set-valued mapping, U :

T → X a measurable selection of F , r : T → (0,∞) a measurable function. Then

there is a measurable selection v : T → X of G such that for each t ∈ T ,

ρ(u(t), v(t)) ≤ h(F (t), G(t)) + r(t).

Proof. By the same reasons as in the previous theorem there exist a countable

family {un} of measurable selections of F and a countable family {vn} of measurable

selections of G such that for each t ∈ T , cl[un(t) : n = 1, 2, . . . , ] = F (t) and

cl[vn(t) : n = 1, 2, . . . , ] = G(t). It follows from the definition of Hausdorff metric

that for each t ∈ T ,

h(F (t), G(t)) = max{sup
i

inf
j
ρ(ui(t), vj(t), sup

j
inf
i
ρ(ui(t), vj(t))},

hence the real-valued function h(F (·), G(·)) on T is measurable. We now define

f : T ×X → R and G1 : X → 2X by

f(t, x) = ρ(u(t), x) − h(F (t), G(t)) − r(t)

and

G1(t) = {x ∈ G(t); f(t, x) < 0}.

By Lemma 2.31, G1 is measurable and by definition of Hausdorff metric, G1(t)

is non-empty for all t ∈ T . Thus the mapping G2 : T → CB(X) defined by

G2(t) = clG1(t) is measurable and by Kuratowski and Ryll-Nardzewski theorem

(Kuratowski and Ryll-Nardzewski (1965, p. 398), also see Wagner (1977, Theorem

4.1)) has a measurable selection v : T → X which satisfies the requirement of the

lemma.
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The following theorem is the random version of Nadler’s fixed point theorem

(Nadler (1969)) of set-valued contraction mapping which we have considered in

Section 2.7.

Theorem 2.57 Let F : T ×X → CB(X) be a mapping with the properties that

for each x ∈ X, F (·, x) is measurable and for each t ∈ T , F (t, ·) is a k(t)-contraction

(i.e. contraction mapping with contraction constant k(t)), where k : T → [0, 1) is a

measurable function. Then F has a random fixed point.

Proof. We set A1 = {t ∈ T : 0 < k(t)} and A2 = T −A1. Then A1, A2 ∈ A. First

we prove the theorem on A1. Let v0 : A1 → X be a measurable mapping. Then

by Lemma 2.30, the mapping G(·) = F (·, v(·)) : A1 → CB(X) is measurableand

has thus a measurable selection v1 : A1 → X of F (·, v(·)) by (Kuratowski and

Ryll-Nardzewski (1965)). Hence by Lemma 2.32 there is a measurable selection

v2 : A1 → X such that for any t ∈ T ,

ρ(v1(t), v2(t)) ≤ h(F (t, v0(t)), F (t, v1(t)) + k(t).

Again by Lemma 2.32, we have a measurable selection v3 : A1 → X of F (·, v2(·))
such that for any t ∈ T ,

ρ(v2(t), v3(t)) ≤ h(F (t, v1(t)), F (t, v2(t)) + [k(t)]2.

Continuing this process, we have by induction a sequence of measurable mappings

vn : A1 → X such that for each t ∈ T , vn(t) ∈ F (t, vn−1(t)) and

ρ(vn(t), vn+1(t)) ≤ h(F (t, vn−1(t)), F (t, vn(t)) + [k(t)]n.

Let t ∈ A1 be arbitrary but fixed. Then by the argument as (2.117) we have

ρ(vn(t), vn+1(t)) ≤ [k(t)]nρ(v0(t), v1(t)) + n[k(t)]n,

for all n ≥ 1. Hence as in (2.118), we have

ρ(vn, vn+j) ≤ (Σn+j−1
i=n [k(t)]iρ(v0, v1) + Σn+j−m

i=n i[k(t)]i

for all n, j = 1, 2, . . . . This by virtue of 0 < k(t) < 1 shows that {vn(t)} is a Cauchy

sequence in X . Hence {vn(t)} converges to a point v(t) ∈ X . Now it follows that

for each n,

ρ(v(t), F (t, v)) ≤ ρ(v(t), vn(t)) + ρ(vn(t), F (t, v(t))

≤ ρ(v(t), vn(t)) + h(F (t, vn−1(t)), F (t, v(t))as vn(t) ∈ F (t, vn−1(t))

≤ ρ(v(t), vn(t)) + k(t)ρ(vn−1(t), v(t)) → 0as n→ ∞.

Hence ρ(v(t), F (t, v(t)) = 0. As F (t, v(t)) is closed, v(t) ∈ F (t, v(t)). Also the

mapping v : A1 → X being the pointwise limit of measurable mappings {vn}, is

measurable.
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Now, we consider the case for A2. For each t ∈ A2 and every x, y ∈ X , we have

h(F (t, x), F (t, y)) ≤ k(t)ρ(x, y) = 0.

Thus we can set F (t, x) = F0(t) for all t ∈ A2, x ∈ X , where F0 : A2 → CB(X)

is measurable. Hence again by Kuratowski and Ryll-Nardzewski (1965), we obtain

a measurable selection w : A2 → X of F0. Then for any t ∈ A2, w(t) ∈ F0(t) =

F (t, w(t)). We now define a mapping U : T → X by

U(t) =

{
v(t), if t ∈ A1

w(t), if t ∈ A2.

It is clear that U is measurable and U(t) ∈ F (t, w(t)). In otherwords, U is a random

fixed point of F .
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Chapter 3

Some Fixed Point Theorems in Partially

Ordered Sets

3.1 Fixed Point Theorems and Applications to Economics

Partially Ordered Set

A nonempty set P with a partial order relation ≤ (reflexive, antisymmetric and

transitive) is called a partially ordered set and is denoted by (P,≤). A subset C of

(P,≤) is called a chain if, given any two elements x, y of C, either x ≤ y or y ≤ x.

An element x ∈ P is called a maximal element if x ≤ y ⇒ x = y.

Let A be a nonempty subset of (P,≤). An element x ∈ P is called a lower (resp.

an upper) bound of A if x ≤ a (resp. a ≤ x) for all a ∈ A. A lower (resp. an upper)

bound of A is called infimum (resp. supremum) of A if it is greater than or equal

to (resp. less than or equal to) each lower bound (resp. each upper bound of A). If

the supremum or infimum of A exists, it is unique (see Simmons (1963, pp. 43–44))

and is, respectively denoted supA and infA.

In Section 3.2 we have obtained slightly generalized versions of Knaster-Tarski

and Tarski-Kantorovitch theorems and a set-valued analogue of Knaster-Tarski

theorem. In Section 3.3 we have applied Knaster-Tarski theorem in proving the

existence of Nash equilibrium point of games and equilibrium point of economy.

Finally we have discussed about the Pareto optimum point of both games and

economy.

3.2 Fixed Point Theorem on Partially Ordered Sets

Theorem 3.1 (Generalized Knaster-Tarski Theorem) Let {≤α, I ∈ I} be

a family of preorder relations (reflexive and transitive) defined on a nonempty set

P , where I is an index set. Let T : P → P be isotone with respect to each ≤α,

i.e. T (x) ≤α T (y) whenever x ≤α y. Assume that there exists x0 ∈ P such that

x0 ≤α T (x0) for each α ∈ I. Assume that the relation ≤ defined by x ≤ y if and

only if x ≤α y for each α ∈ I is antisymmetric. Further assume that for every

chain in {x ∈ P : x0 ≤ x} has a suppremum. Then the set of fixed points of T is

nonempty, which includes a maximal element of P .

113
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Proof. Define a partial order relation on P by x ≤ y if and only if x ≤α y for

each α ∈ I . By hypothesis ≤ is a partial order on P , and T is an isotone with

respect to ≤ and every chain {x ∈ P : x0 ≤ x} has an upper bound. Consider the

partial order set P̂ = {x : x ≤ T (x)} ∩ {x : x0 ≤ x}. Then P 6= ∅ as x0 ∈ P̂ . Now

we can easily see that every chain C in (P̂ ,≤) has a supremum. Clearly C is also

a chain in {x ∈ P : x0 ≤ x} and has thus a supremum u in P , i.e. x ≤ u for all

x ∈ C. Now since T is isotone with respect to ≤, x ≤ T (x) ≤ T (u) for all x in C,

which imply that T (u) is an upper bound of C and u ∈ P̂ . Hence by Zorn’s lemma

P̂ has a maximal element µ. Now µ ≤ T (µ) as µ ∈ P̂ , and hence T (µ) ≤ T (Tµ)

as T is isotone. Thus T (µ) ∈ P̂ . Hence by the maximality of µ, T (µ) = µ and the

proof is complete. �

Example 3.1 Let (X, τ) be a Hausdorff uniform topological space, where the

topology τ is genrated by the family {ρα} of psuedometrics. Let X+ be the set

X × ∏
α∈I

Tα, where Tα = [0, ∞) for each α ∈ I . For each α ∈ I we define a preorder

≤α in X+ by: for (x, {aα}) and (y, {bα}) in X+, (x, {aα}) ≤α (y, {bα}) if and only

if aα−bα ≥ ρα(x, y). Now we define the relation ≤ onX+ by: (x, {aα}) ≤ (y, {bα})
if and only if (x, {aα}) ≤α (y, {bα}) for each α ∈ I . The antisymmetry of ≤ follows

from its definition and the fact that X is Hausdorff.

Corollary 3.1.1 (Knaster-Tarski Theorem) (Tarski (1955); see also Knaster

(1928)). Let (P,≤) be a partially ordered set and T : P → P an isotone mapping.

Assume that there exists an x0 ∈ P such that x0 ≤ T (x0) and that every chain in

{x ∈ P : x0 ≤ x} has a supremum. Then T has at least one fixed point which is

also a maximal element in P .

Proof. Take I = {1} and apply Theorem 3.1 �

Our next theorem is a set-valued analogue of Knaster-Tarski Theorem.

Theorem 3.2 Let (P,≤) be a partially ordered set and T : P → 2P a set-valued

mapping such that

(i) T (x) 6= ∅ for each x ∈ P ;

(ii) T is isotone; i.e. u ≤ v, for all u, v with u ∈ T (x) and v ∈ T (y) whenever

x ≤ y and x 6= y.

(iii) there exists x0 ∈ P such that x0 ≤ u for all u ∈ T (x0).

Further assume that every chain in {x ∈ P : x0 ≤ x} has a supremum.

Then there is an end point µ of T , i.e. T (µ) = {µ}, which is also a maximal element

of P .

Proof. Let P̂ = {x ∈ P : x ≤ u for all u ∈ T (x)} ∩ {x ∈ P : x0 ≤ x}. Then

P̂ 6= ∅ as x0 ∈ P̂ and every chain C in P̂ has an upper bound. To see this we first

note that C is also a chain in {x ∈ P : x0 ≤ x} and has, therefore, a supremum

x in {x ∈ P : x0 ≤ x}. Thus x0 ≤ x and c ≤ x for each c ∈ C. Now c ≤ u for
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all u ∈ T (c) as c ∈ P̂ . Hence with c 6= x, c ≤ u ≤ v for all v ∈ T (x) as u ∈ T (c)

and v ∈ T (x), c ≤ x and T is isotone. Thus each v ∈ T (x) is an upper bound of

C and hence x ≤ v for each v ∈ T (x). Hence x ∈ P̂ . Obviously x0 ≤ x. Thus C

has a supremum in P̂ . Hence by Zorn’s lemma there is a maximal element µ in P̂ .

Let u ∈ T (µ) be arbitrary. Since µ ∈ P̂ , µ ≤ u ∈ T (µ). Since T is isotone, u ≤ v

for all v ∈ T (u) if u 6= µ and also we have x0 ≤ µ ≤ u. Thus u ∈ P̂ . Now by the

maximality of µ, we have µ = u. As u is arbitrary, we have T (µ) = {u}. �

Theorem 3.3 Let (P,≤) be a partially ordered set and T : P → 2P be a set-

valued mapping such that

(i) for each x ∈ P, T (x) is nonempty and supremum of T (x) exists and is con-

tained in it;

(ii) there is a point x0 ∈ P such that x0 ≤ supT (x0).

(iii) T is isotone in the sense that x ≤ y ⇒ supT (x) ≤ supT (y).

Further assume that every chain in {x ∈ P : x0 ≤ x} has a supremum.

Then there is a fixed point of T which is also a maximal element.

Proof. Let P̂ = {x ∈ P : x ≤ supT (x)}∩{x ∈ P : x0 ≤ x}. Then P̂ is nonempty

as x0 ∈ P̂ . Let C be a chain in P̂ . Then clearly C is a chain in {x ∈ P : x0 ≤ x}
and has a supremum x, say. Thus c ≤ x for all c ∈ C. Then as c ∈ P̂ and

by virtue of isotone property of T, c ≤ supT (c) ≤ supT (x) for all c ∈ C. Thus

x ≤ supT (x) = u, say. Hence x ∈ P̂ as obviously x0 ≤ x. Thus C has a supremum

in P̂ . Hence by Zorn’s lemma there is a maximal element µ in P̂ . As µ ∈ P̂ , we

have µ ≤ supT (µ) = v, say. Hence µ ≤ supT (µ) ≤ supT (v). Thus v ≤ supT (v).

This implies v ∈ P̂ . Now by the maximality, µ = v = supT (µ) ∈ T (µ). �

Definition 3.1 Let (P,≤) be a partially ordered set. Then a mapping T : P → P

is said to be continuous if, for each countable chain {xi} in P such that supremum

of {xi} = supxi exists, we have T (sup{xi}) = sup{T (xi)}. Note that a continuous

mapping T : P → P is isotone. Indeed, if x ≤ y, then y = sup{x, y} and thus by

continuity of T, T (y) = T (sup{x, y}) = sup{T (x), T (y)}. Hence T (x) ≤ T (y).

Theorem 3.4 (Generalized Tarski-Kantorovitch Theorem (Kantorovitch

(1939))) Let {≤
α , α ∈ I} be a family of preorder relations defined in a nonempty set

P , where I is an index set. Let T : P → P be continuous with respect to ≤ , where

≤ is defined on P by u ≤ v if and only if u ≤α v for each α and ≤ is antisymmetric.

Assume that

(a) there exists x0 ∈ P such that x0 ≤α Tα(x0) for each α ∈ I;

(b) each countable chain {x ∈ P : x0 ≤ x} has a supremum in P .

Then the set of fixed points of T is nonempty. Furthermore, µ = supn T
n(x0) with

respect to ≤ is a fixed point of T and µ is the infimum of the set of fixed points of

T in {x : x0 ≤ x}.
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Proof. We define ≤ in P as in the statement of the theorem by x ≤ y if and only

if x ≤α y for each α ∈ I . Clearly ≤ is partial order relation as ≤ is antisymmetric.

Also T is isotone by continuity of T and x0 ≤ T (x0). By induction we have T n(x0) ≤
Tn+1(x0) for each n ≥ 0. Hence {T n(x0) : n = 1, 2, . . . } is a countable chain in

{x : x0 ≤ x} and supT n(x0) = µ exists in P . Now as T : (P,≤) → (P,≤) is

continuous, T (µ) = supT (T n(x0)) = supT (n+1)(x0) = µ. Thus µ is a fixed point.

Now we prove that µ is the infimum of fixed points of T in {x : x0 ≤ x}. Let µ be

another fixed point in {x : x0 ≤ x}. Since x0 ≤ µ, T (x0) ≤ T (µ) = µ. By induction

Tn(x0) ≤ µ for each n. Hence µ is an upper bound of {T n(x0) : n = 1, 2, . . .}.
Therefore, we conclude that µ ≤ µ. Thus µ = inf(µ : µ is a fixed point of T in

{x : x0 ≤ x}. �

Corollary 3.4.1 (Tarski-Kantorovitch Theorem) Let (P,≤) be a partially or-

dered set and T : P → P a continuous mapping. Assume that there is an x0 ∈ P

such that x0 ≤ T (x0) and that each countable chain in {x ∈ P : x0 ≤ x} has a

supremum.

Then the conclusion of the above theorem holds.

Proof. Take I = {1} and apply the above theorem. �

3.3 Applications to Games and Economics

Let I be a finite or an infinite (countable or uncountable) set of players or economic

agents. For each i ∈ I , let Xi 6= ∅ be the strategy or choice set, Ai : X =
∏

I∈I
Xi →

Xi the i-th constraint correspondence and Ui : X → R the i-th utility or payoff

function. Following Debreu (1959), Shafer and Sonnenschein (1975), Mas-Colell

(1974), Yannelis (1987), Gale and Mas-Collel (1975), Florenzano (1983), Khan and

Yannelis (1991), Tarafdar (1991) and Tarafdar (1992) and many others, we will

describe an abstract economy by {(Xi, Ai, Ui) : i ∈ I}. For each i ∈ I , let Pi : X →
2Xi be the i-th preference correspondence. The relation between Ui and Pi can be

exhibited by the following definition:

Pi(x) = {yi ∈ Xi : Ui(yi, x−i) > Ui(x)},

where x−i is the projection of x onto X−i = Πj 6=iXj and (yi, x−i) is the point of X

whose i-th co-ordinate is yi (see Tarafdar (1991) and Tarafdar (1992).

Given an economy E = {(X,Ai, Ui) : i = I}, we can pass onto the economy

{(X,Ai, Pi) : i ∈ I}. A point x ∈ X is called an equilibrium point or general-

ized Nash equilibrium point of the economy E = {(X,Ai, Ui) : i ∈ I} if for each

i ∈ I ,

Ui(x) = Ui[xi, x−i] = sup
zi∈Ai(x)

Ui[zi, x−i].
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When for each i ∈ I, Ai(x) = Xi for each x ∈ X , the economy reduces to a game

and the equilibrium point to a Nash equilibrium point of the game introduced by

Nash in (Nash (1950)). Thus the point x ∈ X is a Nash equilibrium point of the

game {(X,Ui) : i ∈ I} if for each i ∈ I ,

Ui(x) = Ui[xi, x−i] = sup
zi∈Xi

Ui[zi, x−i].

Thus the equilibrium point of an economy is the natural extension of the Nash

equilibrium point.

3.3.1 Game

Let us first concentrate on a game {(X,Ui) : i ∈ I}. We want to apply Knaster-

Tarski theorem to prove the existence of a Nash equilibrium point of the game

G = {(X,Ui) : i ∈ I}. To this end for each i ∈ I , if we define an order ≤i in X by:

x, y ∈ X, x ≤i y ⇔ Ui(x) ≤ Ui(y),

then ≤i fails to be antisymmetric because of the level sets U−1
i (r) = {x ⊂ X :

Ui(x) = r, r is a real number}. The elements in U−1
i (r) are called indifferent (Debreu

(1959, p. 54)).

We overcome this difficulty in the following ways: For each i ∈ I , we consider

the set X(i) of disjoint classes [xt]i = {x ∈ X : Ui(x) = t}. Clearly X = X(i) =

∪t∈R[xt]i.

Now for each i ∈ I , we define an order ≤i on X(i) by [xt]i ≤i [xt′ ]i ⇔ t ≤ t′.
In otherwords, U−1

i (t) ≤i U−1
i (t′) ⇔ t ≤ t′. It is trivial to see that (X(i),≤i) is a

partially ordered set.

We now define partial order ≤ on X . Let x ∈ X be arbitrary. Then for each

i ∈ I, x will belong to one class [xt]i = {x ∈ X : U−1
i [Ui(x)]} with t = Ui(x). We

now set [x] = {[xt]i : i ∈ I} and t = Ui(x). Given x, y ∈ X , we define

[x] ≤ [y] ⇔ [xt]i = {x ∈ X : U−1
i [Ui(x)]}

≤i [xt′ ]i = {x ∈ X : U−1
i [Ui(y)]} ⇔ t = Ui(x) ≤ t′ = Ui(y),

for all i ∈ I .

Now we make the following assumptions:

(A1) For each x ∈ X and each i ∈ I,mi(x) = sup
zi∈Xi

Ui[zi, x−i] exists and is at-

tained. Let [x̂]i denote the corresponding class U−1
i (mi(x)).

(A2) For each x ∈ X , there exists x̃ ∈ X such that Ui(x̃) = mi(x) for all i ∈ I .

(A3) We assume that given x and y,

[x] ≤ [y] ⇒ [x̃] ≤ [ỹ]
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i.e. Ui(x) ≤ Ui(y) for each i ∈ I ⇒ mi(x) ≤ mi(y) for each i ∈ I .

Let us consider the partially ordered set P = {[x] : x ∈ X}, and make the

final assumption.

(A4) Every chain on {[x] ∈ P : [x0] ≤ [x]} has a supremum for some x0 ∈ X .

Theorem 3.5 Under the assumptions (A1) to (A4), the game G has a Nash

equilibrium.

Proof. Consider the mapping T : P → P defined by T ([x]) = [x̃], x ∈ X . Inview

of assmption (A2), T is well defined. We can easily see from (A2) that [x] ≤ [x̃] for

each x ∈ X . By assumption (A3) T is isotone. Note that to make (A2) meaningful

(A1) is needed. Now by Knaster-Tarski Theorem (Corollary 3.1.1) T has a fixed

point [x] ∈ P , i.e. [x] = T [x] = [
'
x] which is also a maximal element. Hence for each

i ∈ I, [x]i = [
'
x]i ⇔ Ui[xi, x−i] = mi(x) = sup

zi∈Xi

Ui[zi, x−i]. �

3.3.2 Economy

We will now consider the abstract economy E = {(Xi, Ai, Ui) : i ∈ I}. For each

i ∈ I , we consider the same partial order ≤i on X(i) and the order ≤ on X as

defined in Subsection 3.3.1. Also for each x ∈ X , we define [x] as in Subsection

3.3.1. Then we make the following assumptions:

(A1)′ For each x ∈ X and each i ∈ I,mi,Ai(x) = sup
zi∈Ai(x)

Ui[zi, x−i] exists and is

attained.

(A2)′ For each x ∈ X , there exists x̃ ∈ X such that for each i ∈ I , Ui(x̃) = mi,Ai(x).

(A3)′ Given x and y, [x] ≤ [y] ⇒ [x̃] ≤i [ỹ]i i.e. Ui(x) ≤ Ui(y) for each i ∈ I ⇒
mi,Ai(x) ≤ mi,Ai(y) for each i ∈ I .

Now as before we consider the partially ordered set P = {[x] : x ∈ X}.
(A4)′ Every chain in {[x] ∈ P : [x0] ≤ [x]} has a supremum for some x0 ∈ X .

Theorem 3.6 Under the assumptions (A1)′ to (A4)′ the economy E has an

equilibrium point.

Proof. Consider the mapping T : P → P defined by T [x] = [x̃], x ∈ X and apply

the same argument as that in the proof of Theorem 3.5. �

Remark 3.1 Note that the same symbols ≤ have been used to denote the partial

order in X and in R but it will be clear from the context whenever it occurs.

The conditions (A1) and (A4) (resp. (A1)′ and (A4)′) will be guaranteed by as-

suming compactness on X . The conditions (A3) and (A3)′ might lead to something

new. Results with topological conditons are wellknown (e.g. see Fan (1966), and

Browder (1968)).
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3.3.3 Pareto Optimum

The terms, Pareto optimum, Pareto efficient, Pareto equilibrium are often found

in articles on economics, games theory, psychology, investment theory, theory of

finances, traffic problems, problems of human migration and other related areas. We

will define Pareto point of the game G and economy E considered in the beginning of

this section. First we see Pareto’s own description of optimal ophelimity (commonly

known as Pareto optimum). Pareto in his book, Manuel d’ économie potitique

Pareto (1909,1971, 1971, p. 261), described the economic equilibriuim and remarks

that

“..., the members of a collectively enjoy maximum ophelimity in a certain posi-

tion when it is impossible to find a way of moving from that position very slightly

in such a manner that the ophelimity enjoyed by each of the individuals of that

collectivity increases or decreases. That is to say, any small displacement in depart-

ing from that position necessarily has the effect of increasing the ophelimity which

certain individuals enjoy, and decreasing that which others enjoy, of being agreeable

to some and disagreeable to others.”

Pareto equilibrium point or Pareto optimum described above will simply come to

mean the maximal element with respect to an order which is reflexive and transitive,

not necessarily antisymmetric. We first consider the game G : {(X,Ui) : i ∈ I} and

X = Πi∈IXi. For each i ∈ I , we define an order ≤i by: given x, y ∈ X, x ≤i y ⇔
Ui(x) ≤ Ui(y) and an order ≤ on X by: given x, y ∈ X, x ≤ y ⇔ x ≤i y for each

i ∈ I .

A maximal element x ∈ X with respect to ≤ in X is said to be a

Pareto Optimum Point. It is clear that at any other point some players will loose

or some others will gain in their profit.

Next, we consider the economy E = {(Xi, Ai, Ui) : i ∈ I}. We assume at the

outset that for each i ∈ I and each x ∈ X,mi,Ai(x) = sup
zi∈Ai(x)

Ui(zi, x−i) exists and

is attained. Now define the fuction h by h(x) = m1,A1(x)+m2,A2 (x)+· · ·+mn,An(x)

for all x ∈ X .

If I is finite, say, I = {1, 2, . . . , n}, then we have the following propositions.

Proposition 3.1 If for the game G, the function f(x) = u1(x) + u2(x) + · · · +
un(x), x ∈ X has and attains its maximum over X at x ∈ X, then x is a Pareto

optimum of G.

Proof. If x is not a maximal, then x ≤ y for some y ∈ X and x 6= y, i.e. x ≤i y

for each i and x <i y, i.e. Ui(x) < Ui(y) for some i. This means f(x) < f(y) which

is a contradiction. �

Let I = {1, 2, . . . , n} and for each i ∈ I , Ûi(x) = supzi∈Xi
Ui(zi, xi)i exists and
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is attained. Let for each x ∈ X , g(x) = Û1(x) + Û2(x) + · · · + Ûn(x).Then we have

the have the following proposition.

Proposition 3.2 If for a game G, f attains maximum at some point x and

f(x) = g(x), then x is a Pareto optimum and equilibrium point of G.

Proof. For all i = 1, 2, . . . , n, Ui(x) ≤ Ûi(x). The propostion follows from this

observation. �

Proposition 3.3 Given an economy E, if f attains maximum at some point x

and f(x) = h(x), then x is both a Pareto optimum and an equilibrium point of E.

Proof. That x is a Pareto optimum follows from the same argument as in Propo-

sition 3.3. For each i = 1, 2, . . . , n, Ui(x) ≤ mi,Ai(x) by definition of mi,Ai(x).

Hence the proposition follows by virtue of this observation. �

Remark 3.2 At the end we would like to record the following idea to be pursued

later: Let f attains its maximum at two points x and y, then the Pareto optimum

x is said to be more socially acceptable than the Pareto optmum y if min{Ui(y) :

i = 1, 2, . . . , n} < min{Ui(x) : i = 1, 2, . . . , n} and max{Ui(y) : i = 1, 2, . . . , n} >
max{Ui(x) : i = 1, 2, . . . , n}.

For the Pareto optimum and economic equilibrium for private exchange economy

see Debreu (1959) and Tarafdar (1996b), Tarafdar (1996a), Tarafdar (1995b) and

Tarafdar (1995a).

3.3.4 The Contraction Mapping Principle in Uniform Space via

Kleene’s Fixed Point Theorem

We will now consider Kleene’s fixed point theorem wich is very much similar to

Theorem 3.4 in the sense that every countable chain is replaced by every increasing

sequence. We can easily verify that in a partially orderd set the statement that every

countable chain has a supremum is equivalent to the statement that every increas-

ing sequence has a supremum. First we point out some direction of applicability of

Kleene’s fixed point theorem. In every aspect of nonlinear analysis, including the

denotational semantics of programming languages fixed point theorems are found

to be an indispensable tool. Partially ordered sets and Kleene’s fixed point theorem

on such sets are used in a great variety of semantic model (Bakker (1980) and Stoy

(1977)). In the recent past, attempts have been made to replace partially ordered

sets by metric spaces and Kleen’s fixed point theorem by contraction mapping prin-

ciple (Bakker and Zucker (1983) and Hanes and Arbib (1986)). On the other hand

Baranga (Baranga (1991)) has obtained contraction mapping principle in metric

space from Kleene’s fixed point theorem. In what follows we have deduced the

contraction mapping principle in uniform space via Kleene’s fixed point theorem.
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Definition 3.2 Let (X, ≤) be a partially ordered set, where ≤ is a partial

order (reflexive, antisymmetric and transitive) relation on the nonempty set X . For

an increasing sequence {xn}n∈N of (X, ≤) we will denote by ∨{xn : n ∈ N} the

supremum of {xn}, if it exists. (X, ≤) is ω-complete if each increasing sequence

{xn}n∈N in X has a supremum in X .

A mapping f : (X, ≤) → (Y, ≤) of a partially ordered set (X, ≤) into a partially

ordered set (Y, ≤) is said to be ω-continuous if for each increasing sequence {xn}n∈N

in X such that ∨{xn : n ∈ N} exists, also ∨{f(xn) : n ∈ N} exists in Y and

f(∨{xn : n ∈ N}) = ∨{f(xn) : n ∈ N}. We can easily see that on ω-continuous

mapping is increasing. We now state Kleene’s fixed theorem.

Theorem 3.7 Let (X, ≤) be an ω-complete partially ordered set and f : X → X

an ω-continuous mapping. If x0 ∈ X is such that x0 ≤ f(x0), then x+
0 = ∨{fn(x0) :

n ∈ N} has the following properties:

(1) f(x+
0 ) = x+

0 ;

(2) x+
0 ≥ x0 and for each y ∈ X, if y ≥ x0 and f(y) ≤ y, then x+

0 ≤ y (i.e. x+
0

is the least fixed point in the set {y ∈ X : x0 ≤ y}.

Proof. For convenience let x0 = x. Define inductively

x1 = f(x), x2 = f(x1), . . . , xn = f(xn−1), . . . .

Then under given conditions it follows from x ≤ f(x) that the sequence {xn} is

inceasing. Thus we have from the ω-continuity that

x+
0 = ∨{xn} = f(∨{xn−1}) = f(x+

0 ).

To prove the second part we need only to note that by the given condition it follows

that for each n ∈ N, xn ≤ y, where xn is as defined above. Hence x+
0 ≤ y. �

Corollary 3.7.1 Let (X, ≤) be an ω-complete partially ordered set and f : X →
X an ω-continuous mapping. If x0 ∈ X is such that y0 = fN−1(x0) ≤ fN(x0) for

some positive integer N , then y+
0 = ∨{fn(y0) : n ∈ N} has the following properties:

(1) f(y+
0 ) = y+

0 ;

(2) y+
0 ≥ y0 and for each y ∈ X, if y ≥ y0 and f(y) ≤ y,

then y+
0 ≤ y (that is, y+

0 is the least fixed point in the set {y ∈ X : y0 ≤ y}.

Proof. Since y0 = TN−1(x0) ≤ TN(x0) = T (y0), the corollary follows from

Theorem 3.7. �

This corollary bears an analogy with Remark 2.2. Indeed the Contraction map-

ping principle are closely related in that the contraction mapping principle in a

complete Hausdorff uniform space and hence in a complete metric space can be
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derived from Kleene’s fixed point theorem. This has been accomplished in what

follows next.

Let (X, τ) be a uniform Hausdorff topological space where the uniform topology

τ is generated by the family {ρα : α ∈ I} of pseudometrics, I being an index set. Let

X+ denote the Cartesian product X × ∏
α∈I

Tα, where Tα = [0, ∞) for each α ∈ I .

Let us consider the relation ≤ in X+ defined by: for {aα} and {bα} ∈ ∏
α∈I

Tα,

(x, {aα}) ≤ (y, {bα}) if and only if aα − bα ≥ ρα(x, y) for each α ∈ I .

Clearly ≤ is reflexive and transitive. Furthmore ≤ is antisymmetric. Indeed

if (x, {aα}) ≤ (y, {bα}) and (y, {bα}) ≤ (x, {aα}), then aα − bα ≥ ρα(x, y) and

bα − aα ≥ ρα(y, x), i.e. ρα(x, y) = 0 for each α ∈ I . Since X is Hausdorff, it

follows that x = y. Then it follows that aα = bα for each α ∈ I . Thus (X+, ≤) is

a partially ordered set.

Theorem 3.8 Let {(xn, {kn,α})}n∈N be an increasing sequence in (X+, ≤).

Then for each α ∈ I,

(i) the sequence {kn,α}n∈N is decreasing sequence;

(ii)
∞∑
n=0

ρα(xn, xn+1) converges;

(iii) {xn}n∈N is a ρα-Cauchy sequence in X.

Proof. By definition of ≤ in (X+, ≤), for each α ∈ I , {kn,α}n∈N is a decreasing

sequence in [0, ∞) and hence converges. For each α ∈ I , let lim
n→∞

kα,n = kα. For

each α ∈ I ,
n∑
i=0

ρα(xi, xi+1) ≤ k0,α − k(n+1),α → k0,α − kα as n→ ∞. Now (ii) and

(iii) are clear. �

Theorem 3.9 Let {(xn, {kn,α})}n∈N
be an increasing sequence in (X+, ≤). The

least upper bound of this sequence exists if {xn}n∈N is τ -convergent. Furthermore,

the least upper bound is (x, {kα}), where x = τ − lim
n→∞

xn and for each α ∈ I,

kα = lim
n→∞

kn,α. If in addition, (X, τ) is complete and (x′, {k′α}) is the least upper

bound of {(xn, {kn,α})}n∈N
then lim

n→∞
xn = x′ and lim

n→∞
kn,α = k′α for each α ∈ I.

Proof. First, let x = τ − lim
n→∞

xn and kα = lim
n→∞

kn,α. Then for each α ∈ I ,

ρα(xn, x) → 0 as n → ∞; xn → x in ρα-topology. Now if m and n are two

positive integers with m ≥ n. Then for each α ∈ I , ρα(xn, xm) ≤ kn,α − km,α
as {(xn, {kn,α})} is increasing in (X+, ≤). Letting m → ∞, we see that for each

α ∈ I , ρα(xn, x) ≤ kn,α − kα. This implies that (x, {kα}) is an upper bound of

{(xn, {kn,α})}n∈N
. Now let (x′, {k′α}) be another upper bound of this sequence.

Then it follows that ρα(xn, x
′) ≤ kn,α − k′α for each α ∈ I . Letting n → ∞,

ρα(x, x′) ≤ kα − k′α for each α ∈ I . Hence (x, {kα}) ≤ (x′, {k′α}). Thus (x, {kα})
is the least upper bound.
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Next, let for each α ∈ I , kα = lim
n→∞

kn,α and (x′, {k′α}) be the least upper bound

of {(xn, {kn,α})}n∈N
in (X+, ≤). Since (X, τ) is complete, by Theorem 3.8 (iii),

{xn} converges to a point x ∈ X , i.e. τ − lim
n→∞

xn = x. Hence by what we have

proved in the first part, (x, {kα}) is the least upper bound of {(x, {kn,α})}n∈N
.

Now by the antisymmetry of ≤, it follows that (x, {kα}) = (x′, {k′α}). �

Corollary 3.9.1 If (X, τ) is a complete Hausdorff uniform topological space,

then (X+, ≤) is ω-complete.

We recall that a mapping f : (X, τ) → (X, τ) of a uniform topological space

(X, τ) into itself is called contraction if, for each α ∈ I , there exists a constant λα
with 0 < λα < 1 such that ρα(f(x), f(y)) ≤ λαρα(x, y) for all x, y ∈ X .

Let f : (X, τ) → (X, τ) be a contraction mapping of a uniform topological

space (X, τ) into itself as defined above. We define f+ : X+ → X+ as

f+(x, {kα}) = (f(x), {λαkα}) .

Theorem 3.10 If (X, τ) is a complete Hausdorff uniform topological space, then

f+ is ω-continuous.

Proof. Let {(xn, {kn,α})}n∈N be an increasing sequence in X+ with (x, {kα} =

∨{(xn, {kn,α}) : n ∈ N}. For each α ∈ I , ρα (f(xn), f(xn+1)) ≤ λαρα(xn, xn+1) ≤
λα(kn,α − kn+1,α) which implies that (f(xn), {λαkn,α}) ≤ (f(xn+1), {λαkn+1,α})
in X+, {(f(xn), {λαkn,α})}n∈N

is increasing in X+. Thus f+ (xn, {kn,α}) ≤
f+ (xn+1, {kn+1,α}), i.e. f+ is increasing. Now since X is complete, f is con-

tinuous and f+ is increasing, we obtain by applying Theorem 3.8,

f+(x, {kα}) = (f(x), {λαkα}) = ∨{(f(xn), {λαkn,α}) : n ∈ N} (3.1)

= ∨
{
f+(xn, {kn,α}) : n ∈ N

}

where τ − lim
n→∞

xn = x and lim
n→∞

kn,α = kα for each α ∈ I . �

The following Banach contraction mapping principle in a complete Hausdorff

uniform topological space has been obtained in (Tarafdar (1974), Theorem 2.1) and

will now be deduced from Kleene’s fixed point theorem.

Theorem 3.11 (Banach contraction mapping principle) Let (X, τ) be a

complete Hausdorff uniform topological space and f : X → X a contraction map-

ping. Then f has a unique fixed point x∗ and x∗ = τ− lim
n→∞

fn(x0) for each x0 ∈ X.

Proof. Let (X+, ≤) and f+ : X+ → X+ be as defined as above. Let x0 ∈ X be

arbitrary but fixed. Then for each α ∈ I , we can find a positive real number aα such

that (1 − λα)aα > ρα(x0, f(x0)) (note that if ρα(x0, f(x0)) = 0, then any aα > 0

will do). Hence (x0, {aα}) ≤ (f(x0), {λαaα}), i.e. (x0, {aα}) ≤ f+(x0, {aα}).
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Thus f+ : X+ → X+ satisfies all the conditions of Kleene’s theorem. Hence

by Kleenes theorem (x̄, 0) == ∨{(f+)n(x0, {aα}) : n ∈ N} is a fixed point of f+.

Hence x̄ = lim
n→∞

fn(x0) is a fixed point of f . Furthermore, f+ (y, {bα}) ≤ (y, {bα}),
i.e. (f(y) {λαbα}) ≤ (y, {bα}) if and only if bα = 0 and ρα(f(y), y) = 0 for each

α ∈ I , if and only if bα = 0 for each α and f(y) = y as X is Hausdorff. If y ∈ X is a

fixed point of f , we can find for each α ∈ I âα > 0 such that (x0, {âα}) ≤ (y, {0})
and (x0, {âα}) ≤ f+(x0, {âα}). Hence by the least fixed point property it follows

that (x̄, {0}) ≤ (y, {0}) which implies that x̄ = y. Thus x̄ is the unique fixed point

of f . �

3.3.5 Applications on Double Ranked Sequence

For the following result we refer to Bakker (1980):

Let (P, ≤) be a ω-complete partially ordered set. If (xn,m)n,m∈N is a double

ranked sequence in P satisfying

xn,m ≤ xn,m+1 and (3.2)

xn,m ≤ xn+1,m for all m,n ∈ N, (3.3)

then ({xn,m : n ∈ N})m∈N
and (∨{xn,m : n ∈ N} : m ∈ N})n∈N

are increasing se-

quences in P and

∨{xn,m : m ∈ N} : n ∈ N} = ∨{∨{xn,m : n ∈ N} : m ∈ N} (3.4)

= ∨{xk,k : k ∈ N}.

With help of this result we now obtain the following applications on double ranked

sequence on uniform topological space similar to those obtained in Baranga (1991)

on metric space.

Theorem 3.12 Theorem on iterated limits Let (X, τ) be a complete uniform

Hausdorff topological space as above and {xn,m}n,m∈N be a double ranked sequence

of points of X such that for each α ∈ I, there is a double ranked sequence {an,m,α}
satisfying

(i) an,m,α − an,m+1,α ≥ ρα(xn,m, xn,m+1) and

(ii) an,m,α − an+1,m,α ≥ ρα(xn,m, xn+1,m) for all n,m ∈ N.

Then both iterated limits lim
n→∞

lim
m→∞

xn,m = lim
m→∞

limn→∞ xn,m exist and are equal

to lim
k→∞

xkk.

Proof. By Corollary 3.9.1, (X+, ≤) is ω-complete, where X+ = X × ∏
α∈I

Tα,

Tα [0, ∞) for each α ∈ I and ≤ is as defined before. Then by (i) and (ii) we have
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respectively

xn,m ≤ xn,m+1 (3.5)

and xn,m ≤ xn+1,m for all n,m. (3.6)

Hence the theorem follows from the above result of Bakker (1980). �

Corollary 3.12.1 Let (X, τ) be a complete Hausdorff uniform topological space

and {xn,m}n,m∈N be a double ranked sequence in X such that for each α ∈ I both

series
∞∑
n=0

∞∑
m=0

ρα(xn,m+1, xn,m) and
∞∑
m=0

∞∑
n=0

ρα(xn+1,m, xn,m) converge. Then both

iterated limits lim
n→∞

lim
m→∞

xn,m and lim
m→∞

lim
n→∞

xn,m exist and are equal to lim
k→∞

xkk.

Proof. For each α ∈ I , define

an,m,α =

∞∑

i=n

∞∑

j=m

ρα(xi,j+1, xi,j) +

∞∑

j=m

∞∑

i=n

ρα(xi+1,j , xi,j).

It is easy to verify that (i) and (ii) of Theorem 3.11 are satisfied. Hence the Corollary

follows from Theorem 3.11. �

We should point out that taking I = {1}, we obtain all results of Baranga (1991)

in metric spaces as corollaries.

3.4 Lattice Theoretical Fixed Point Theorems of Tarski

In this section we reproduce the proofs of lattce theoretical fixed point theorems of

Tarski. A partially ordered set (X, ≤) is said to be a lattice if for any two points

x, y ∈ A there is a supremum x ∨ y and an infimum x ∧ y in X . A lattice (X, ≤)

is called complete if every subset A of X has a supremum ∨A and an infimum ∧A
in X . For a complete lattice we use the following notation: 1 = supX = ∨X and

0 = inf X = ∧X .

Given two elements a and b with a ≤ b, we denote the interval [a, b] = {x ∈ X :

a ≤ x ≤ b} by:

[a, b] = [x ∈ X : a ≤ x ≤ b].

([a, b], ≤] is clearly a lattice which is also complete if X is complete.)

Theorem 3.13 (Tarski (1955)) Let (X, ≤) be a complete lattice and f : X → X

an increasing mapping (isotone) (i.e. x ≤ y ⇒ f(x) ≤ f(y)). Then the set P

of all fixed points of f is nonempty. Furthermore (P, ≤) is a complete lattice, in

particular

∨P = ∨{x ∈ X : f(x) ≥ x} ∈ P and

∧P = ∧{x ∈ X : f(x) ≤ x} ∈ P.
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∨P and ∧P will respectively be called the maximal and the minimal fixed point.

Proof. Let

u = ∨{x ∈ X : f(x) ≥ x}. (3.7)

Then x ≤ u for all x ∈ X with f(x) ≥ x. Now since f is increasing, x ≤ f(x) ≤ f(u)

whenever f(x) ≥ x. Hence by virtue of (3.7), we obtain

u ≤ f(u). (3.8)

Thus f(u) ≤ f(f(u)). This implies that f(u) ∈ {x ∈ X : f(x) ≥ x} and hence by

(3.7), we have

f(u) ≤ u. (3.9)

Now from (3.8) and (3.9)) u is a fixed point of f and also from (3.7) we conclude

u = supP = ∨P , i.e.

∨P = ∨{x ∈ X : f(x) ≥ x} = u ∈ P.

Now let

v = ∧{x ∈ X : f(x) ≤ x}. (3.10)

Then v ≤ x for all x ∈ X with f(x) ≤ x. Since f is increasing, f(v) ≤ f(x) ≤ x

whenever f(x) ≤ x. Thus we obtain

f(v) ≤ v. (3.11)

Hence f(f(v)) ≤ f(v) ⇒ f(v) ∈ {x ∈ X : f(x) ≤ x} and, therefore,

v ≤ f(v). (3.12)

Hence v ∈ P and repeating the same argument as in the first part we obtain

∧P = ∧{x ∈ X : f(x) ≤ x} = v ∈ P. (3.13)

It remains to prove that (P, ≤) is a complete lattice. To this end it suffices to show

that for every nonempty subset A of P , ∨A ∈ P and ∧A ∈ P . We first consider

the interval [∨A, 1] which is a complete lattice. Now for any x ∈ A, x ≤ ∨A and

hence x = f(x) ≤ f(∨A) for each x ∈ A. Thus ∨A ≤ f(∨A). Now for any y with

∨A ≤ y ≤ 1, we have ∨A ≤ f(∨A) ≤ f(y) ≤ 1. Thus the restriction f ′ of f to

[∨A, 1] is an increasing mapping of [∨A, 1] to [∨A, 1]. Hence applying (3.13) to the

complete lattice [∨A, 1], w = the infimum of all fixed points of f ′ is itself a fixed

point of f ′. Obviously w is a fixed point of f , and in fact is the least fixed point of

f which is an upper bound of all elements of A. Thus it follows that w = ∨A ∈ P .

Similarly we can prove that ∧A ∈ P . �
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Theorem 3.14 (Generalized Lattice-Theoretical Fixed Point Theorem) Let

(X, ≤) be a complete lattice and F a commutative family of increasing mappings

of X into itself. Then the set P of common fixed points, i.e. {x ∈ X : f(x) =

x for all f ∈ F} is nonempty. Furthermore (P, ≤) is a complete lattice, in partic-

ular,

∨P = ∨{x ∈ X : f(x) ≥ x for all f ∈ F} ∈ P

and

∧P = ∧{x ∈ X : f(x) ≤ x for all f ∈ F} ∈ P.

Proof. Let

u = ∨{x ∈ X : f(x) ≥ x for all f ∈ F}. (3.14)

Then as in the preceding theorem we can show that

u ≤ f(u) for every f ∈ F . (3.15)

Hence for all g ∈ F , we have from (3.15)

g(u) ≤ gf(u) as g is increasing

and thus by the commutativity of F ,

g(u) ≤ f(g(u)) for all f ∈ F .

Therefore, g(u) ∈ {x ∈ X : f(x) ≥ x for all f ∈ F} and consequently,

g(u) ≤ u.

Hence we have proved that

f(u) ≤ u for all f ∈ F (3.16)

(3.14)–(3.16) show that u ∈ P and in fact u is the least upper bound of all such

fixed points, i.e.

u = ∨P = ∨{x ∈ X : f(x) ≥ x for all f ∈ F} ∈ P.

The proof of the remaining part is analogous to that of the preceding theorem and

is left out. �

A lattice (X, ≤) is said to be continuously or completely ordered if it is complete

and densely ordered if, for all x, y ∈ X with x < y, there exists z ∈ X with

x < z < y. Given a mapping f : (X, ≤) → (X, ≤) and A ⊂ X , let f ∗(A) = {f(a) :

f(a) ≥ a and a ∈ A}. A mapping f : A ⊂ X → B ⊂ X is called quasi-increasing if

satisfies the formulas:

f(∨Z) ≥ ∧f∗(Z) and f(∧Z) ≤ ∨(f∗(Z)
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for every nonempty subet Z of A. It is called quasi-decreasing if it satisfies the

formulas

f(∨Z) ≤ ∨f∗(Z) and f(∧Z) ≥ ∧f∗(Z).

A mapping is called continuous if it is both quasi-increasing and quasi-decreasing.

Theorem 3.15 Let (X, ≤) be a continuously and densely ordered lattice and

f, g : X → X be two mappings such that f is quasi-increasing, g is quasi-decreasing

and f(0) ≥ g(0) and f(1) ≤ g(1). Then the set P = {x ∈ X : f(x) = g(x)} is

nonempty and moreover, (P, ≤) is a continuous, ordered lattice; in particular,

∨P = ∨{x ∈ X : f(x) ≥ g(x)} ∈ P

and

∧P = ∧{x ∈ X : f(x) ≤ g(x)} ∈ P.

Proof. Let A be any subset of X such that

f(x) ≥ g(x) for x ∈ A. (3.17)

We will prove that f(∨A) ≥ g(∨A).

If possible, let us assume that

f(∨A) < g(∨A). (3.18)

Then the hypothesis f(0) ≥ g(0) implies that

∨A 6= 0. (3.19)

Also since X is densely ordered, (3.18) implies that there exists an element

z ∈ X such that

f(∨A) < z < g(∨A). (3.20)

Let us consider the set

D = {x ∈ X : x ≤ ∨A and g(x) ≤ z}. (3.21)

Then we have

∨D ≤ ∨A (3.22)

and

∨g∗(D) ≤ z. (3.23)
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Now we prove that equality does not hold in (3.22). For, if possible let ∨D = ∨A.

Then from (3.19) ∨D 6= 0 and hence D 6= ∅. Since g is assumed to be quasi-

decreasing, it follows that g(∨A) = g(∨D) ≤ ∨g∗(D) and hence by (3.23), g(∨A) ≤
z which contradicts (3.20). Hence we have

∨D < ∨A. (3.24)

Next let

E = {x ∈ A : ∨D < x}. (3.25)

Then E is nonempty. Indeed if E = ∅, then for every x ∈ A, x ≤ ∨D for all x ∈ A,

which would imply ∨A ≤ ∨D contradicting (3.24). By (3.25) and density of X we

can prove that ∨E = ∨A. Since, by assumption, f is quasi-increasing, we obtain

f(∨A) = f(∨E) ≥ ∧f∗(E)

and hence by virtue of (3.20)

z > ∧f∗(E).

Therefore, we must have some a ∈ E such that

z > f(a), for otherwise z ≤ ∧f∗(E).

Thus by (3.25) and (3.17)

∨D < a, a ∈ A = and g(a) ≤ z.

Hence by (3.21), a ∈ D.

The formulas ∨D < a and a ∈ D are impossible.

Thus we have proved that (3.18) does not hold for any subset A of X , i.e.

f(∨A) ≥ g(∨A) for every nonempty A = {x ∈ X : f(x) ≤ g(x)}. (3.26)

In a similar way we can prove that for every nonempty subset (empty or nonempty)

of B = {x ∈ X : f(x) ≤ g(x)},

f(∧B) ≤ g(∧B). (3.27)

Now let Y be a subset (empty or nonempty) of

P = {x ∈ X : f(x) = g(x)}.

Let

u = ∨{x ∈ X : f(x) ≥ g(x) and x ≤ ∧Y }. (3.28)

We note if Y = ∅, then (3.28) reduces to

u = ∨{x ∈ X : f(x) ≥ g(x)}. (3.29)
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By (3.26) and (3.27) we obtain

f(u) ≥ g(u) and f(∧Y ) ≤ g(∧Y ), (3.30)

latter inequality follows from the fact that

Y = {x ∈ X ∩ Y : f(x) = g(x)}.

If u = ∧Y , then from (3.30) we obtain

f(u) = g(u), i.e. u ∈ P. (3.31)

If u 6= ∧Y , then from (3.28) we have u < ∧Y .

Since X is densely ordered, we can write

u = ∧{x ∈ X : u < x ≤ ∧Y }. (3.32)

Also from (3.28) we see that for every element x of the set

{x ∈ X : u < x ≤ ∧Y } , f(x) < g(x).

Hence from (3.28) and (3.32) we have

f(u) ≤ g(u).

Thus from (3.30) we conclude

f(u) = g(u) , i.e. u ∈ P.

Therefore we have proved that

for each subset Y of P, if u = ∨{x ∈ X : f(x) ≥ g(x) and x ≤ ∧Y } , (3.33)

then u ∈ P.

Similarly we can prove that

for each subset Y of P , if v = ∧{x ∈ X : f(x) ≤ g(x) and x ≥ ∨Y }, (3.34)

then v ∈ P.

From (3.33) it follows that u is the largest element, of P which is a lower bound of all

elements of Y . Thus u is the greatest lower bound or inf of Y in (P, ≤). Similarly

from (3.34) it follows that v is the least upper bound or sup of Y in (P, ≤). Hence

(P, ≤) is a continuously ordered system. (3.35)

Finally taking Y = ∅, (3.33) and (3.34) yield respectively

∨P = ∨{x ∈ X : f(x) ≥ g(x)} ∈ P (3.36)
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and

∧P = ∧{x ∈ X : f(x) ≤ g(x)} ∈ P. (3.37)

The proof is complete. �

Every increasing (resp. decreasing) mapping is evidently quasi-increasing (resp.

quasi-decreasing). The identity mapping, g(x) = x for each x ∈ X and the constant

mapping, g(x) = c ∈ X , are continuous, i.e. both quasi-increasing and quasi-

decreasing. Hence taking an arbitrary increasing mapping f and the identity map-

ping g in the above theorem, we obtain Theorem 3.13 in a continuously and densely

ordered systems. On the otherhand by taking g to be the constant function g(x) = c

on X , we obtain:

Theorem 3.16 (Generalized Weierstrass Theorem) Let (X, ≤) be a continuously

and densely defined system f : X → X a quasi-increasing mapping of X into itself,

c an element of X such that

f(0) ≥ c ≥ f(1).

Then the set P = {x ∈ X : f(x) = c} is nonempty and (P, ≤) is a continuously

ordered system.

In particular,

∨P = ∨{x ∈ X : f(x) ≥ c} ∈ P

and

∧P = ∧{x ∈ X : f(x) ≤ c} ∈ P.

An analogous theorem for quasi-decreasing mapping can be obtained from

Theorem 3.15 by taking an arbitrary constant mapping for f .

3.5 Applications of Lattice Fixed Point Theorem of Tarski to

Integral Equations

In this section we will apply the lattice fixed point theorem of Tarski to integral

equations which was originally considered in shendge and Joshi (1982).

Let (X, ‖.‖) be a real Banach space. A mapping T : X → X is said to be

a nonlinear contraction if there exists a continuous non-decreasing real function

ϕ : R+ → R+ with ϕ(r) < r for r > 0 such that

‖T (x) − T (y)‖ ≤ ϕ(‖x− y‖), for x, y ∈ x.

Let P be a cone in X . Then (X, ≤) is a partially ordered set where ≤ is the partial

order relation induced by P . Let P be a closed and bounded subset of X such that

(P, ≤) is a complete lattice with respect to the same relation ≤ defined in X .
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Lemma 3.1 If T : X → X is a nonlinear contraction, then (I − T )−1 exists

where I is the identity on X.

Proof. Let y ∈ X be arbitrary but fixed. Define A : X → X by A(x) = y+T (x),

x ∈ X . Then ‖A(u)) −A(v)‖ = ‖T (u) − T (v)‖ ≤ ϕ(‖u− v‖)for all u, v ∈ X .

Hence by Corollary 2.10.2 with I = {1}, A has a unique fixed point x of A, i.e.

x = A(x) = y + T (x), i.e. (I − T )(x) = y. �

Theorem 3.17 Let A,B : P → P be two mappings such that

(i) A is a nonlinear contraction,

(ii) (I −A)−1B is increasing (isotone) on P , where I is identity on P , and

(iii) A(x) + B(y) ∈ P , whenever x, y,∈ P Then the set S of the solutions of the

equation

Ax+ Bx = x, x ∈ P (3.38)

is nonempty and, furthermore (S, ≤) is a complete lattice.

Note that (I −A)−1 exists by Lemma 3.1.

Proof. Set T = (I − A)−1B. Then it can be easily seen that (6.1) is equivalent

to T (x) = x. Further, by (ii) T is increasing. We will now prove that T maps P

into itself. Let y ∈ P be arbitrary but fixed. We define a mapping Ty : P → P by

Ty(x) = A(x) +B(y), x ∈ P . By (iii) Ty maps P into itself.

Now for any u, v ∈ P ,

‖Ty(u) − Ty(v)‖ = ‖A(u) −A(v)‖ ≤ ϕ(‖u− v‖).

As in Lemma 3.1 there is a unique fixed point x ∈ P of Ty, i.e. x = Ty(x) =

A(x) + B(y), i.e. (I − A)(x) = B(y), i.e. x = (I − A)−1B(y) = T (y). Now the

theorem follows from Theorem 3.13. �

We now apply Theorem 3.17 to the following mixed type of nonlinear integral

equations.

x(t) = h(t) +

∫ t

0

k1(t, s)f(s, x(s))ds +

∫ T

0

k2(t, s)g(s, x(s))ds (3.39)

where 0 ≤ s ≤ t ≤ T .

Assuming appropriate conditions on the functions involved in (3.39) we will

prove the existence of the minimal and maximal solutions of (3.39) by applying

Theorem 3.17.

Let C denote the space of real-valued bounded functions defined on the interval

I = [0, T ], which are also Lebesque integrable. C is a Banach space with the norm

defined by

‖x‖ = sup
t∈I

|x(t)| , x ∈ C.
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In C we define an order relation ≤ as follows:

for x, y ∈ C, x ≤ y if and only if x(t) ≤ y(t) for all t ∈ I . Then (C,≤)

is a complete lattice Birchoff (1967).

We now make the following assumptions.

(1) f(s, x) and g(s, x) are real functions on I × R, and each is monotone non-

decreasing in x for each s ∈ I , where R is the set of all real numbers. f

satisfies Lipschitz condition with Lipschitz constant L.

(2) The functions f(s, ϕ(s)) and g(s, ϕ(s)) are Lebesque integrable for every

Lebesque function ϕ on I .

(3) The functions h,f , g, k1 and k2 occurring in (3.39) are bounded for s, t ∈ I

and |x| <∞, with bounds H0, N1, N2, K1 and K2 respectively.

(4) The functions k1 and k2 are non-negative on I × I .

Theorem 3.18 Under the assumptions (1) to (4) the integral equation (3.39)

has minimal and maximal solutions on I, if LK1T < 1.

Proof. Define the subset P of C by

P = {x ∈ C : ‖x‖ ≤M}

where M = H0 +N1K1T +N2K2T . Obviously P is a closed bounded subset of C.

Since (C, ≤) is a Dedikind complete lattice (see (Birchoff (1967), p. 361), (P, ≤) is

also a complete lattice. Next, we define the mappings A and B by

A(x(t)) = h(t) +

∫ t

0

k1(t, s)f(s, x(s))ds, t ∈ I

B(y(t)) =

∫ T

0

k2(t, s)g(s, y(s))ds, t ∈ I.

By virtue of (3) it follows that A(x) + B(y) ∈ P , whenever x, y ∈ P . Indeed,

for each t ∈ I ,

|(A(x) +B(y))(t)| ≤ |h(t)| +
∫ t

0

|k1(t, s)| |f(s, x(s))| ds

+

∫ T

0

|k2(t, s)| |g(s, y(s))| ds

≤ H0 +N1K1T +N2K2T.

Hence ‖A(x) +B(y)‖ ≤ H0 + N1K1T + N2K2T . Thus A(x) + B(x) ∈ P ,

whenever x, y ∈ P .

From the monotone nondecreasing character of f and g assumed in (1) and the

nonnegative property of k1 and k2 assumed in (4), it readily follows that both A



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

134 Topological Methods of Set-Valued Nonlinear Analysis

and B are increasing (isotone) on P . Now we prove that A is a strict contraction.

By using (1) we have

|A(x)t)) −A(y(t))| ≤ L

∫ t

0

k1(t, x) |x(s) − y(s)| ds

Hence by (3) ‖A(x) −A(y)‖ ≤ λ ‖x− y‖, where λ = LK1T < 1. Finally, since A

and B are both (isotone) increasing and A is a strict contraction, it follows that

(I − A)−1B is (isotone) increasing. Thus all the conditions of (3.17) are satisfied.

Hence the set S of solutions of the equation (3.39) is nonempty and is a complete

lattice. Consequently ∧S= the minimal solution and ∨S= maximal solution exist.

3.6 The Tarski-Kantorovitch Principle and Theory of Iterated

Function Systems2

In Theorem 3.11 we have obtained the Banach cotraction mapping principle in a

complete uniform topological space via Tarski-Katorovitch-Kleene fixed point the-

orem. On the other hand an Iterated Function System, IFS of Chapter 2 originally

due to Hutchinson (1981) and Barnsley (1988) involves a finite set of contraction

mappings, one naurally inclines to ask whether the results of Hutchinson-Barnley

can be obtained in a complete partially ordered set (X, ≤) with a finite set of ap-

propriate self mappings. To this end we will present in this section some results

of Jachymski, Gajek, and Pokarowski (2000). Let X be a set and f1, . . . , fn be

selfmaps of X . The theory of iterated function systems (abbr., IFS) deals with the

following Hutchinson–Barnsley operator:

F (A) :=

n⋃

i=1

fi(A) for A ⊂ X. (3.40)

We have already seen in a section of Chapter 2 that, if (X, ρ) is a complete metric

space and all the maps fi are Banach contractions, then F is the Banach contraction

on the family K(X) of all nonempty compact subsets of X, endowed with the

Hausdorff metric. Consequently, F has then a unique fixed point A0 in K(X),

which is called a fractal or an attractor in the sense of Barnsley. Moreover, for any

set A in K(X), the sequence (F n(A))∞n=1 of iterations of F converges to A0 with

respect to the Hausdorff metric. For an arbitrary IFS a set A0 such that A0 = F (A0)

is called invariant with respect to the IFS {fi : i = 1, . . . , n} (cf. Lasota–Myjak

Lasota and Myjak (1996a). If n = 1, then such an A0 is said to be a modulus set

for the map f1 (cf. Kuczma Kuczma (1968, p. 13)).

In this section we consider some applications of the Tarski–Kantorovitch

fixed–point theorem (in abbreviation T-K theorem) in the theory of IFS (see

2The authors are grateful to Jacek Jachymski, Leslaw Gajek and Piotr Pokarowski for sending
a computer file of a paper which was of cosiderable help in the prepartation of this section.
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Corollary 3.4.1). So we will use the partial ordering technique to obtain results

on fixed points of the Hutchinson–Barnsley operator. The idea of treating frac-

tals as Tarski’s fixed points appeared earlier in papers of Soto-Andrade and Varela

(1984) and Hayashi (1985), however, they considered a version of Tarski’s theorem

other than that studying in this section. We also study the T–K principle for the

following operator F , introduced by Lasota and Myjak (1996b),

F (A) := cl

(
n⋃

i=1

fi(A)

)
for A ⊂ X, (3.41)

where cl denotes the closure operator. Using an idea of Williams Williams (1971),

we show that, in such a case, the T–K theorem yields the Hutchinson–Barnsley

theorem for a class of the Heine–Borel metric spaces, that is, spaces in which every

closed and bounded set is compact (cf. Williamson–Janos Williamson and Janos

(1987)). Given sets X and Y , and a map f : X 7→ Y , the sets f−1({y}) (y ∈ Y )

are called fibres of f (cf. Engelking (1977, p. 14)).

In the rest of this section, we assume that a compact or countably compact space

is Hausdorff by the definition.

Remark 3.3 As we have already noted in section 3.1 that the assumption “every

countable chain has a supremum” is equivalent to “every increasing sequence (pn)

(that is, pn ≤ pn+1 for n ∈ N) has a supremum”. Similarly, in the definition of

≤-continuity, we may substitute increasing sequences for countable chains. Such a

reformulated Theorem is identical with the Kleene fixed–point theorem (cf., e.g.,

Baranga (1991)).

Lemma 3.2 Let (P,≤) be a partially ordered set, in which every countable chain

has a supremum and such that for any p, q ∈ P there exists an infimum inf {p, q}.
Assume that for any increasing sequences (pn)

∞
n=1 and (qn)

∞
n=1,

inf

{
sup
n∈N

pn, sup
n∈N

qn

}
= sup

n∈N

inf {pn, qn}. (3.42)

Let F1, . . . , Fn be ≤-continuous selfmaps of P and define a map F by

F (p) := inf {F1(p), . . . , Fn(p)} for p ∈ P.

Then F is ≤-continuous.

Proof. For the sake of simplicity, assume that n = 2; then an easy induction

shows that our argument can be extended to the case of an arbitrary n ∈ N. By

Remark 3.3, it suffices to prove that given an increasing sequence (pn), F (p) =

supn∈N F (pn), where p := supn∈N pn. Since F1 and F2 are increasing, so is F . Thus

the sequence (F (pn)) is increasing and by hypothesis, it has a supremum. Then, by
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(2.3) and ≤-continuity of F1 and F2,

sup
n∈N

F (pn) = sup
n∈N

inf {F1(pn), F2(pn)} = inf {sup
n∈N

F1(pn), sup
n∈N

F2(pn)}

= inf {F1(sup
n∈N

pn), F2(sup
n∈N

pn)} = F (sup
n∈N

pn),

which proves the ≤-continuity of F . �

The following example which is also from Jachymski et al. (2000) shows that

there exists a partially ordered set (P,≤), in which every countable chain has a

supremum and for any p, q ∈ P there exists inf {p, q}, but condition (3.42) does not

hold. In fact, the set (P,≤) defined below is a complete lattice, that is, every subset

of P has a supremum and an infimum.

Example 3.2 Let C(R) be the family of all nonempty closed subsets of the real

line and P := C(R) ∪ {∅}. Endow P with the inclusion ⊆. If {At : t ∈ T} ⊆ P ,

then inft∈T At =
⋂
t∈T At and supt∈T At = cl

(⋃
t∈T At

)
. Define

An := [0, 1− 1

n
], Bn := [1 +

1

n
, 2] for n ∈ N.

Then (An) and (Bn) are increasing and

inf {sup
n∈N

An, sup
n∈N

Bn} = cl

(⋃

n∈N

An

)
∩ cl

(⋃

n∈N

Bn

)
= {1},

whereas supn∈N inf {An, Bn} = cl
(⋃

n∈N
(An ∩Bn)

)
= ∅, so (3.42) does not hold.

3.7 The Iterated Function Systems on (2X,⊃)

Throughout this section X is an abstract set, 2X denotes the family of all subsets

of X , and f , f1, . . . , fn are selfmaps of X . We consider the partially ordered set

(2X ,⊃). So for A,B ⊂ X , A ≤ B means that B is a subset of A. A sequence

(An)∞n=1 is ⊃-increasing if it is decreasing in the usual sense; moreover, supn∈N An
in (2X ,⊃) coincides with the intersection

⋂
n∈N

An.

Proposition 3.4 Let F (A) := f(A) for A ⊂ X so that F : 2X 7→ 2X . The

following conditions are equivalent:

(i) F is ⊃-continuous;

(ii) given a decreasing sequence (An)∞n=1 of subsets of X,

f

(⋂

n∈N

An

)
=
⋂

n∈N

f(An);

(iii) all fibres of f are finite.

In particular, (iii) holds if f is injective.
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Proof. The equivalence (i)⇐⇒(ii) follows from Remark 3.3. To prove (ii)=⇒(iii)

suppose, on the contrary, that (iii) does not hold. Then there exist a y ∈ X and a

sequence (xn)∞n=1 such that y = f(xn) and xn 6= xm if n 6= m. Set An := {xk : k ≥
n} for n ∈ N. Clearly, (An)∞n=1 is decreasing and

⋂
n∈N

An = ∅. Simultaneously,

f(An) = {y} so that

⋂

n∈N

f(An) = {y} 6= ∅ = f

(⋂

n∈N

An

)
,

which violates (ii).

To prove (iii)=⇒(ii) assume that a sequence (An)
∞
n=1 is decreasing. It suffices

to show that
⋂
n∈N

f(An) ⊂ f(
⋂
n∈N

An). Let y ∈ ⋂n∈N
f(An). Then there is a

sequence (xn)∞n=1 such that xn ∈ An and y = f(xn), that is, the set {xn : n ∈ N}
is a subset of the fibre f−1({y}). Condition (iii) implies that there is an x ∈ X and

a subsequence (xkn)∞n=1 of (xn)∞n=1 such that xkn = x. Hence x ∈ ⋂n∈N
Akn . Since

(An)∞n=1 is decreasing,
⋂
n∈N

Akn =
⋂
n∈N

An so x ∈ ⋂n∈N
An. Moreover, y = f(x)

and thus y ∈ f(
⋂
n∈N

An). �

As an application of Proposition 3.4, Corollary 3.4.1 and Lemma 3.2 we obtain

the following result on invariant sets of IFS in the set–theoretical case.

Theorem 3.19 Let F be defined by (2.1). If for i = 1, . . . , n all fibres of the maps

fi are finite, then for each set A ⊂ X such that F (A) ⊂ A, the set
⋂
n∈N

Fn(A) is

invariant with respect to the IFS {f1, . . . , fn}. In particular, the set
⋂
n∈N

Fn(X)

is the greatest invariant set with respect to this IFS. Hence, the system {f1, . . . , fn}
has a nonempty invariant set if and only if the set

⋂
n∈N

Fn(X) is nonempty.

Proof. We will apply Corollary 3.4.1 for the partially ordered set (2X ,⊃) and

the operator F . Clearly, (2X ,⊃) is a complete lattice. We verify condition (3.42).

Let (An)∞n=1 and (Bn)∞n=1 be decreasing sequences of subsets of X . Then (3.42) is

equivalent to the equality
⋂

n∈N

An ∪
⋂

n∈N

Bn =
⋂

n∈N

(An ∪ Bn),

which really holds. Let Fi(A) := fi(A) for A ⊂ X and i = 1, . . . , n. By

Proposition 3.4, all the maps Fi are ⊃-continuous. Thus all the assumptions of

Corollary 3.4.1 are satisfied.

To show that
⋂
n∈N

Fn(X) is the greatest invariant set, observe that if A0 =

F (A0), then A0 = Fn(A0) so that A0 =
⋂
n∈N

Fn(A0). Since F is increasing,

so are all its iterates F n and hence, F n(A0) ⊂ Fn(X), which implies that A0 ⊂⋂
n∈N

Fn(X). The conclusion of Theorem 3.19 is obvious. �

Let us notice that if X is a finite set, then condition (iii) of Proposition 3.4

is automatically satisfied so, by Theorem 3.19, for each map f : X 7→ X the set
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⋂
n∈N

fn(X) is a modulus set for f . It turns out that this property characterizes

finite sets only, according to the following

Proposition 3.5 The following conditions are equivalent:

(i) X is a finite set;

(ii) for each map f : X 7→ X, the set
⋂
n∈N

fn(X) is a modulus set for f .

Proof. The implication (i)=⇒(ii) follows from Theorem 3.19. To prove (ii)=⇒(i)

suppose, on the contrary, that X is infinite. Let X0 be a countable subset of X .

Without loss of generality we may assume that

X0 = {a, b} ∪
∞⋃

n=1

n⋃

k=1

{ank}

where elements a, b and ank are distinct. Set

f(x) := b for x ∈ (X \X0) ∪ {a, b};
f(an1 := a for n ∈ N;

f(ank) := an,k−1 for n ≥ 2 and 2 ≤ k ≤ n.

Then b = fn(b) and a = fn(ann) so {a, b} ⊆ ⋂n∈N
fn(X). On the other hand, it is

easily seen that
⋂
n∈N

fn(X) ⊆ {a, b}. Therefore, we get

f

(⋂

n∈N

fn(X)

)
= f({a, b}) = {b} 6= {a, b} =

⋂

n∈N

fn(X),

which violates (ii). �

We note that condition (iii) of Proposition 3.4 is not necessary for the set⋂
n∈N

fn(X) to be a modulus set for f . This fact can be deduced from Propo-

sition 3.6 and Example 3.3 given below.

Proposition 3.6 Let (X, ρ) be a bounded metric space and f : X 7→ X be a

Banach contraction with a contractive constant h ∈ (0, 1). Then for each set A ⊂ X

(with not necessarily f(A) ⊂ A),
⋂
n∈N

fn(A) is a modulus set for f .

Proof. Let A ⊂ X . Clearly, if the set
⋂
n∈N

fn(A) is empty, then it is a modulus

set for f . If this set is nonempty, then the diameter, δ
(⋂

n∈N
fn(A)

)
, can be

estimated as follows:

δ

(⋂

n∈N

fn(A)

)
≤ δ (fn(A)) ≤ δ (fn(X)) ≤ hnδ(X) → 0 as n→ ∞,

which implies that
⋂
n∈N

fn(A) = {a} for some a ∈ X . Hence, to prove that⋂
n∈N

fn(A) is a modulus set for f , it suffices to show that a is a fixed point of f .

Since a ∈ fn(A) for n ∈ N, there is a sequence (an)
∞
n=1 such that a = fn(an). Then

ρ
(
a, f(a)

)
= ρ
(
fn(an), f

n+1(an)
)
≤ hnρ

(
an, f(an)

)
≤ hnδ(X) → 0,
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which implies that a = f(a). �

Example 3.3 Let X := [−1, 1], α ∈ (0, 1/3), f(0) := 0 and f(x) := αx2 sin(1/x)

for x ∈ X \ {0}. Endow X with the euclidean metric. Since |f ′(x)| ≤ 3α < 1, f is

a Banach contraction, so the assumptions of Proposition 3.6 are satisfied. On the

other hand, Theorem 3.19 is not applicable here, since the fibre f−1({0}) is infinite.

3.8 The Iterated Function Systems on (C(X),⊃)

Throughout this subsection X is a Hausdorff topological space and C(X) denotes

the family of all nonempty closed subsets of X , endowed with the inclusion ⊃. We

start with examining the countable chain condition in this case.

Proposition 3.7 The following conditions are equivalent:

(i) every countable chain in (C(X),⊃) has a supremum;

(ii) for every decreasing sequence (An)∞n=1 of nonempty closed subsets of X, the

intersection
⋂
n∈N

An is nonempty;

(iii) X is countably compact.

Proof. (i)⇐⇒(ii) follows from Remark 3.3. For (ii)⇐⇒(iii), see Engelking (1977,

Theorem 3.10.2). �

Recall that a space X is sequential if every sequentially closed subset A of X

(that is, A contains limits of all convergent sequences of its elements) is closed.

In particular, every first–countable space is sequential (cf. Engelking (1977, Theo-

rem 1.6.14)). Our next result deals with ⊃-continuity of the Hutchinson–Barnsley

operator in such spaces. It is interesting to note that ⊃-continuity is related with

appropriate properties of fibres of f (similarly, as in the set–theoretical space; (cf.

Proposition 3.4 and Theorem 3.23 of this section), which, however, leads directly

to continuity with respect to topology, according to the following

Proposition 3.8 Let X be a countably compact and sequential space, f : X 7→ X

and F (A) := f(A) for A ⊂ X. The following conditions are equivalent:

(i) F (C(X)) ⊂ C(X) and F is continuous on C(X) with respect to the inclusion

⊃;

(ii) f is continuous on X with respect to the topology.

Proof. This equivalence follows from Remark 3.3, the fact that for a decreasing

sequence (An)
∞
n=1 of sets in C(X), supn∈N An in (C(X),⊃) coincides with

⋂
n∈N

An,

and Theorem 3.25 of this section. �

The following example shows that in Proposition 3.8 the assumption that X is

a sequential space is needed. Also observe that there exist countably compact and

sequential spaces, which are not compact as, for example, the space W0 defined

below.
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Example 3.4 Let ω1 denote the smallest uncountable ordinal number, W0 be

the set of all countable ordinal numbers and W := W0 ∪ {ω1}. It is known that

W is a compact space (cf. Engelking (1977, Example 3.1.27)) and W0 is countably

compact, but not compact (cf. Engelking (1977, Example 3.10.16)). Moreover,

W0 is a first–countable space, hence sequential. Let X := W0 ×W . Then X is

countably compact as the Cartesian product of a countably compact space and a

compact space (cf. Engelking (1977, Corollary 3.10.14)). Define a map f by

f(x1, x2) := (0, x2) for (x1, x2) ∈ X.

Clearly, f is a continuous selfmap of X so (ii) of Proposition 3.8 holds. Let A :=

{(x1, x1) : x1 ∈ W0}. Since the space W is Hausdorff, A is a closed subset of X .

On the other hand f(A) = {0} ×W0 so cl(f(A)) = {0} ×W . Hence condition (i)

of Proposition 3.8 does not hold. So the operator F is not a selfmap of C(X).

As an immediate consequence of Propositions 3.7 and 3.7, we obtain the fol-

lowing

Corollary 3.19.1 Let X be a sequential space, f and F be as in Proposition 3.8

The following conditions are equivalent:

(i) (C(X),⊃) and F satisfy the assumptions of the T-K principle;

(ii) X is countably compact and f is continuous on X.

In view of Corollary 3.19.1 the following theorem on invariant sets with respect

to IFS on a sequential Hausdorff space can be deduced from the T–K theorem for

the family (C(X),⊃).

Theorem 3.20 Let X be a countably compact and sequential space, and f1, . . . ,

fn be continuous selfmaps of X. Let F be defined by (2.1) and A0 :=
⋂
n∈N

Fn(X).

Then the set A0 is nonempty and closed, A0 = F (A0), and A0 is the greatest

invariant set with respect to the IFS {f1, . . . , fn}. Moreover, if X is metrizable,

then the sequence (F n(X))∞n=1 converges to A0 with respect to the Hausdorff metric.

Proof. Denote Fi(A) := fi(A) for A ∈ C(X) and i = 1, . . . , n. By Corol-

lary 3.19.1, (C(X),⊃) and Fi satisfy the assumptions of Corollary 3.4.1. Clearly,

for A ∈ C(X) the set F (A) is closed as a finite union of closed sets. Moreover,

condition (3.42) is satisfied here (cf. the proof of Theorem 3.19) so, by Lemma 3.2,

F is ⊃-continuous. Thus, by Corollary 3.4.1, the set A0 is invariant with respect

to {f1, . . . , fn}. Since F (X) ⊂ X and F is increasing, the sequence (F n(X))∞n=1 is

decreasing. Therefore, if X is metrizable, then (F n(X))∞n=1 converges to A0 with

respect to the Hausdorff metric as a decreasing sequence of compact sets (cf. Edgar

(1990, Proposition 2.4.7))]. �

The above theorem generalizes an earlier result of Leader (1982) for n = 1. We

close this subsection with a result on ⊃-continuity of the operator F defined by

(3.41).
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Proposition 3.9 Let X be a countably compact and sequential space, f : X 7→ X

and F (A) := cl(f(A)) for A ∈ C(X). The following conditions are equivalent:

(i) F is continuous on C(X) with respect to the inclusion ⊃;

(ii) f is continuous on X with respect to the topology.

Hence, if F is ⊃-continuous, then F (A) = f(A) for A ∈ C(X).

Proof. By Remark 3.3, the ⊃-continuity of F on C(X) means that given a de-

creasing sequence (An)∞n=1 of nonempty closed subsets of X ,

cl

(
f

(⋂

n∈N

An

))
=
⋂

n∈N

cl (f(An)) .

By Theorem 3.26 of this section ((i)⇐⇒(ii)), this condition is equivalent to the

topological continuity of f . Then, by Theorem 3.25 of this section ((i)⇐⇒(ii)), for

A ∈ C(X) the image f(A) is closed so F (A) = f(A). �

3.9 The Iterated Function System on (K(X),⊃)

Throughout this subsection X is a Hausdorff topological space and K(X) denotes

the family of all nonempty compact subsets of X , endowed with the inclusion ⊃.

Then every countable chain in (K(X),⊃) has a supremum. Let F be defined by

(3.40) for A ∈ K(X). If we are to apply Corollary 3.4.1 then, without loss of

generality, we may assume that the space X is compact (in particular, countably

compact), because the assumption of Corollary 3.4.1 “there is an X0 ∈ K(X) such

that X0 ⊃ F (X0)” implies that all the maps fi
∣∣
X0

(the restriction of fi to X0)

are selfmaps of the same compact set. Thus we arrive at the case considered in

the previous subsection, however, this time we need not assume that a space X is

sequential, since each continuous map f on X is closed the operator F , becomes a

selfmap of K(X).

Theorem 3.21 Let X be a compact space and f1, . . . , fn be continuous selfmaps

of X. Let F be defined by (2.1) and A0 :=
⋂
n∈N

Fn(X). Then the set A0 is

nonempty and compact, A0 = F (A0), and A0 is the greatest invariant set with

respect to the IFS {f1, . . . , fn}.

Proof. Let Fi(A) := fi(A) forA ∈ K(X) and i = 1, . . . , n. The ⊃-continuity of Fi
follows from Proposition 3.10 of of this section. By Lemma 3.2, F is ⊃-continuous,

so 3.4.1 is applicable. �

Theorem 3.22 Let X be a topological space (not necessarily Hausdorff),

f1, . . . , fn be continuous selfmaps of X and F be defined by (3.40). The follow-

ing conditions are equivalent:

(i) there exists a nonempty compact set A0 such that F (A0) = A0;
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(ii) there exists a nonempty compact set A such that F (A) ⊂ A.

Proof. Obviously, it suffices to show that (ii) implies (i). This follows immediately

from Theorem 3.21 applied to the compact set A and the restrictions fi
∣∣
A

of the

maps fi to the set A. �

We will show the usefulness of Theorem 3.22 in the theory of IFS. We will prove

in the next corollary the original theorem of Hutchinson-Barnsley considered in

Section 2.7 of Chapter 2 in the special case when X is a Heine-Borel metric space

without using Hausdorff metric. We recall that a metric space (X, ρ) is Heine-Borel

if every closed bounded subset of X is compact. The closed ball with centre at a

point x ∈ X and with radius r is denoted by B(x, r).

Corollary 3.22.1 Let (X, ρ) be a Heine–Borel metric space, f1, . . . , fn be Ba-

nach’s contractions on X with contractive constants h1, . . . , hn in (0, 1), and F

be defined by (3.40). Then there exists a nonempty compact set A0 such that

F (A0) = A0.

Proof. We use an idea of Williams (1971) (also cf. Hayashi (1985)). Since a

Heine–Borel metric space is complete, each map fi has a unique fixed point xi by

the Banach contraction principle. Let A := B(x1, r), a radius r will be specified

later. Denote h := max {hi : i = 1, . . . n} and M := max {ρ(xi, x1) : i = 1, . . . , n}.
If x ∈ A, then by the triangle inequality and the contractive condition

ρ(fix, x1) ≤ ρ(fix, fixi) + ρ(xi, x1) ≤ hρ(x, xi) +M (3.43)

≤ h(ρ (x, x1) + ρ(x1, xi)) +M ≤ hr + (1 + h)M.

Now if we set r := [(1 + h)/(1 − h)]M , then hr + (1 + h)M = r so, by (3.43),

fi(x) ∈ A. Since A does not depend on an integer i, we may infer that F (A) ⊂ A.

Clearly, by the Heine–Borel property, A is compact and the existence of the set A0

follows from Theorem 3.22. �

3.10 Continuity of Maps on Countably Compact and Sequential

Spaces

In the proof of Theorem 3.21 we used the following

Proposition 3.10 Let X be a countably compact space, Y be a set and f : X 7→
Y . If all fibres of f are closed, then given a decreasing sequence (An)

∞
n=1 of closed

subsets of X,

f

(⋂

n∈N

An

)
=
⋂

n∈N

f(An).

Proof. Let (An)∞n=1 be a decreasing sequence of closed subsets of X . It suffices

to show that
⋂
n∈N

f(An) ⊂ f
(⋂

n∈N
An
)
. Let y ∈ ⋂n∈N

f(An). Then there is a
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sequence (an)
∞
n=1 such that y = f(an) and an ∈ An. Thus the sets Bn defined by

Bn := An ∩ f−1({y})

are nonempty, closed and Bn+1 ⊂ Bn. By the countable compactness of X , there

exists an x ∈ ⋂
n∈N

Bn. Then y = f(x) and x ∈ ⋂
n∈N

An, which means that

y ∈ f
(⋂

n∈N
An
)
. �

The next result is a partial converse to Proposition 3.10.

Proposition 3.11 Let X be a Hausdorff topological space, Y be a set and f :

X 7→ Y . If for every decreasing sequence (An)∞n=1 of nonempty compact subsets of

X, f
(⋂

n∈N
An
)

=
⋂
n∈N

f(An), then all fibres of f are sequentially closed.

Proof. Suppose, on the contrary, that there is a y ∈ X such that the fibre

f−1({y}) is not sequentially closed. Then there exist an x ∈ X and a sequence

(xn)∞n=1 such that f(xn) = y and f(x) 6= y. Set An := {x} ∪ {xk : k ≥ n}.
Then the sets An are compact, since X is Hausdorff, and An+1 ⊂ An. Clearly,

x ∈ ⋂n∈N
An. Suppose that x′ ∈ ⋂n∈N

An and x′ 6= x. Then there is a subsequence

(xkn)
∞
n=1 of (xn)∞n=1 such that xkn = x′. Simultaneously, (xkn)

∞
n=1 converges to

x so x = x′ (since, in particular, X is a T1-space), a contradiction. Therefore⋂
n∈N

An = {x} so that

f

(⋂

n∈N

An

)
= {f(x)} 6= {f(x), y} =

⋂

n∈N

f(An),

which contradicts the hypothesis. �

As an immediate consequence of Propositions 3.10 and 3.11, we get the following

Theorem 3.23 Let X be a countably compact and sequential space, Y be a set

and f : X 7→ Y . The following conditions are equivalent:

(i) all fibres of f are closed;

(ii) given a decreasing sequence (An)∞n=1 of nonempty closed subsets of X,

f
(⋂

n∈N
An
)

=
⋂
n∈N

f(An);

(iii) given a decreasing sequence (An)
∞
n=1 of nonempty compact subsets of X,

f
(⋂

n∈N
An
)

=
⋂
n∈N

f(An).

Proof. The implication (i)=⇒(ii) follows from Proposition 3.10, (ii)=⇒(iii) is

obvious and (iii)=⇒(i) follows from Proposition 3.11. �

Remark 3.4 Observe that under the assumptions of Theorem 3.23, the classes

C(X) and K(X) need not coincide, so the equivalence (ii)⇐⇒(iii) is not trivial. For

example, define X as the set of all countable ordinal numbers; then X ∈ C(X) \
K(X) (cf. Example 3.4).
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In the sequel we will need the following lemma (cf. Engelking (1977, Proposi-

tion 1.6.15)).

Lemma 3.3 Let X be a sequential space, Y be a topological space and f : X 7→
Y . Then f is continuous if and only if f is sequentially continuous, that is, given

a sequence (xn)∞n=1 in X,

f(limxn) ⊂ lim f(xn).

Proposition 3.12 Let X be a topological space, Y be a countably compact and

sequential space and f : X 7→ Y . Then f is sequentially continuous if and only if

the graph of f is sequentially closed in the Cartesian product X × Y .

Proof. First let a sequence (xn, f(xn))
∞
n=1 converge to (x, y) in X × Y . Then

x ∈ limxn and {y} = lim f(xn) since Y is Hausdorff. By hypothesis,

f(x) ∈ f(limxn) ⊂ lim f(xn) = {y},

which means that f(x) = y. Thus the graph of f is sequentially closed.

Next, suppose, on the contrary, that f is not sequentially continuous. Then there

exist a sequence (xn)∞n=1 and an x ∈ X such that x ∈ limxn and f(x) 6∈ lim f(xn).

Without loss of generality, we may assume, by passing to a subsequence if necessary,

that there is a neighborhood V of f(x) such that f(xn) 6∈ V for all n ∈ N. Since

Y is also sequentially compact (cf. Engelking (1977, Theorem 3.10.31)), there is a

convergent subsequence (f(xkn))
∞
n=1 of (f(xn))

∞
n=1. Set y := lim f(xkn) (this limit

is unique since Y is Hausdorff). Since x ∈ limxkn and the graph of f is sequentially

closed, we infer that y = f(x), that is, (f(xkn))
∞
n=1 converges to f(x). This yields

a contradiction, since f(xkn) 6∈ V and f(x) ∈ V . �

The next result is a closed graph theorem for maps on sequential spaces.

Theorem 3.24 Let X and Y be sequential spaces and Y be countably compact.

For a map f : X 7→ Y the following conditions are equivalent:

(i) f is continuous;

(ii) the graph of f is closed in X × Y ;

(iii) the graph of f is sequentially closed in X × Y ;

(iv) f is sequentially continuous.

Proof. That (i) implies (ii) follows from Engelking (1977, Corollary 2.3.22).

(ii)⇒(iii) is obvious. (iii)⇒(iv) follows from Proposition 3.12 and finally, (iv)⇒(i)

holds by Lemma 3.3. �

The main result in this subsection is the following theorem, which gives a charac-

terization of continuity of maps on countably compact and sequential spaces. This

result was obtained as a by–product of our study of continuity of the Hutchinson–

Barnsley operator with respect to the inclusion ⊃ (cf. Proposition 3.8).
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Theorem 3.25 Let X and Y be countably compact and sequential spaces. For a

map f : X 7→ Y the following conditions are equivalent:

(i) f is continuous;

(ii) for every closed subset A of X, the image f(A) is closed, and all fibres of f

are closed;

(iii) for every closed subset A of X, the image f(A) is closed, and given a de-

creasing sequence (An)∞n=1 of nonempty closed subsets of X,

f
(⋂

n∈N
An
)

=
⋂
n∈N

f(An);

(iv) for every compact subset A of X, the image f(A) is compact, and

given a decreasing sequence (An)
∞
n=1 of nonempty compact subsets of X,

f
(⋂

n∈N
An
)

=
⋂
n∈N

f(An).

Proof. (i)=⇒(ii). Let A be a closed subset of X . Since X is sequentially com-

pact (cf. Engelking (1977, Theorem 3.10.31)), so is A (cf. Engelking (1977, Theo-

rem 3.10.33)). Hence and by continuity of f , the image f(A) is sequentially compact

(cf. Engelking (1977, Theorem 3.10.32)). In particular, f(A) is sequentially closed,

hence closed since Y is sequential. Since, in particular, Y is a T1-space it is clear

that the fibres of f are closed.

(ii)=⇒(iii) follows immediately from Theorem 3.23.

We give a common proof of the implications (iii)=⇒(i) and (iv)=⇒(i). By

Theorem 3.24, it suffices to show that the graph of f is sequentially closed. Let

a sequence (xn, f(xn))
∞
n=1 converge to (x, y) in X × Y . Since both X and Y are

Hausdorff, we may infer that x = limxn and y = lim f(xn). Set An := {x} ∪ {xk :

k ≥ n} for n ∈ N. The the sets An are compact (hence closed), An+1 ⊆ An and⋂
n∈N

An = {x}. By hypothesis,
⋂
n∈N

f(An) = f
(⋂

n∈N
An
)

= {f(x)}. Since both

(iii) and (iv) imply that the set f(An) is closed and f(xk) ∈ f(An) for k ≥ n, we

may infer that y = limk→∞ f(xk) ∈ f(An) so that y ∈ ⋂n∈N
f(An) = {f(x)}, that

is, y = f(x). This proves that the graph of f is sequentially closed.

We have shown that conditions (i), (ii) and (iii) are equivalent, and that (iv)

implies (i). To finish the proof it suffices to show that (iii) implies (iv). Since (iii)

implies the continuity of f , the first part of (iv) holds. The second part of (iv)

follows immediately from (iii). �

Our last theorem gives another characterization of continuity. This result was

obtained as a by product of our study of ⊃-continuity of operator F defined by

Lasota and Myjak (1996b) (cf. Proposition 3.9).

Theorem 3.26 Let X and Y be countably compact and sequential spaces. For a

map f : X 7→ Y the following conditions are equivalent:

(i) f is continuous;

(ii) given a decreasing sequence (An)∞n=1 of nonempty closed subsets of X,

cl
(
f(
⋂
n∈N

An)
)

=
⋂
n∈N

cl(f(An));
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(iii) given a decreasing sequence (An)
∞
n=1 of nonempty compact subsets of X,

cl
(
f(
⋂
n∈N

An)
)

=
⋂
n∈N

cl(f(An)).

Proof. (i)=⇒(ii): Let (An)∞n=1 be a decreasing sequence of nonempty closed sub-

sets of X . Since the intersection
⋂
n∈N

An is closed, we may conclude by Theo-

rem 3.25 ((i)=⇒(ii)) that all the sets f(
⋂
n∈N

An) and f(An) (n ∈ N) are closed.

Therefore, (ii) follows immediately from condition (iii) of Theorem 3.25.

(ii)=⇒(iii) is obvious.

(iii)=⇒(i). By Theorem 3.24, it suffices to show that the graph of f is se-

quentially closed. We use the same argument as in the proof of (iv)=⇒(i) in

Theorem 3.25. So let x = limxn and y = lim f(xn). Set An := {x} ∪ {xk : k ≥ n}.
By (iii),

⋂

n∈N

cl(f(An)) = cl

(
f

(⋂

n∈N

An

))
= cl ({f(x)}) = {f(x)}.

Since y ∈ cl(f(An)) for all n ∈ N, we may infer that y = f(x), which proves that

the graph of f is sequentially closed. �

3.11 Solutions of Impulsive Differential Equations

Some interesting results concerning the existence of periodic solutions to the follow-

ing impulsive differential equation have appeared, (e.g., see Kaul (1995), and Bajo

and Liz (1996)).

d

dt
x(t) = f(t, x(t)) for t 6= τ(x(t)) (3.44)

x(t+) = x(t) + I(x(t)) for t = τ(x(t)). (3.45)

These results are proved by using monotone iterative techniques and considering

f : [0, T ] × R → R only. Our aim is to establish a comparison result for (3.44)–

(3.45) where the equation is interpreted as a system in R, and then to apply this in

proving the existence of periodic solutions to (3.44)–(3.45).

By a solution of (3.44)–(3.45) we mean a left continuous function x : [0, T ] → R

such that if t satisfies τ(x(t)) 6= t, x(t) is differentiable and (3.44) is satisfied; and

if x(t) satisfies τ(x(t)) = t, then lims→t+ x(s) =: x(t+) = x(t) + I(x(t)) so (3.45) is

true. See Lakshmikantham, Bainov, and Simeonov (1989) for more details.

Now we introduce some notations and definitions. A cone K in R is a closed

convex set such that λK ⊆ K for all λ ≥ 0 and −K ∩K = {0}. Such a set defines

a partial ordering ≤ on R: x ≤ y if and only if y−x ∈ K. The relation ≥ is defined

similarly. Elements of K are said to be positive. We shall assume throughout that

K has nonempty interior and R = K −K. By x < y we mean y − x ∈ K\{0}. For

a, b ∈ R, the order interval [a, b] is defined as {x ∈ R : a ≤ x ≤ y}, which is compact

and convex.
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For K a cone in R, K+ is defined as those continuous linear functionals with

domain R which are nonnegative on K. A mapping f between two partially ordered

sets A and B is said to be increasing if x ≤ y implies f(x) ≤ f(y), and strictly

increasing if x ≤ y and x 6= y implies f(x) ≤ f(y) and f(x) 6= f(y).

Let f : [0, T ] × R → R. By the expression Ω ⊂ R is forward invariant (or flow

invariant) with respect to f , we mean any solution x(t) of the (possibly impulsive)

differential equation x′ = f(t, x) (3.44)–(3.45) with x(0) ∈ Ω satisfies x(t) ∈ Ω for

all t ∈ [0, T ].

3.11.1 A Comparison Result

We collect some basic facts that are needed in the main theorem as a series of

lemmas. First the continuity assumptions on the functions are

C1. f : [0, T ]× R → R is continuous and Lipschitz with respect to x ∈ R;

C2. τ : R → (0,∞) is continuously differentiable, strictly increasing with respect

to K and τ(x) < T for some x;

C3. I : R → −K is continuously differentiable.

Unless otherwise stated, C1-C3 will be assumed throughout the rest of this

section. The condition in the next lemma ensures that t = τ(x) does not define a

solution to (3.44)–(3.45).

Lemma 3.4 Under the additional assumption

A1. ∇τ · f(t, x) ≤ 1 ∀(t, x) ∈ [0, T ]× R

the impulsive problem has a unique solution x(t) defined on [0, T ], and if x(0) = x0

is such that the solution meets the surface S at least once, the solution meets the

surface exactly once.

The proof may be found in Lakshmikantham et al. (1989), Theorem 1.3.2.

The following lemma is a comparison result for ordinary differential equations with-

out impulse. First though we need the

Definition 3.3 Let K be a cone and ≤ the partial ordering induced by K. A

mapping f : [0, T ] × R → R is said to be quasi-monotone if for any t ∈ [0, T ] and

any x, y ∈ R with x ≥ y, and any x∗ ∈ K+ such that x∗(x − y) = 0 we have

x∗(f(t, x) − f(t, y)) ≥ 0.

Lemma 3.5 If u(t) and v(t) are solutions of the ordinary differential equation

x′ = g(t, x) on the interval [0, T ] with u(0) < v(0), g satisfies C1 and g is quasi-

monotone, then u(t) < v(t) for all t ∈ [0, T ].

See (Deimling (1977), Theorem 5.4) for a proof.

Lemma 3.6 Under the assumptions C1–C3 and A1, if u(t) and v(t) are solutions

of the impulsive system (3.44)–(3.45) with f quasimonotone, u(0) < v(0), and v(t)

meets the surface at time t2, then u(t) meets the surface at t1 ∈ (0, t2).
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Proof. Suppose the solution u(t) does not meet the surface S in the interval

(0, t2). Then from Lemma 3.5 u(t) < v(t) for all t ∈ [0, t2]. As τ is strictly

increasing, τ(u(t)) < τ(v(t)) for all t ∈ [0, t2]. Then p(t) = t − τ(u(t)) satisfies

p(0) < 0 and p(t2) = t2 − τ(u(t2)) > t2 − τ(v(t2)) = 0. As p is continuous in

[0, t2] ( by assumption that u does not meet S in this interval ) there exists a point

t1 ∈ (0, t2) such that p(t1) = 0. That is, u(t) meets S, a contradiction which proves

the lemma. �

The following comparison result complements the corresponding results in Bajo

and Liz (1996), Kaul, Lakshmikantham, and Leela (1994), and Lakshmikantham,

Leela, and Kaul (1994). By DI∗ we mean the derivative of I∗ : R → R.

Theorem 3.27 Suppose C1–C3, A1 and the following is satisfied.

A2. I∗(x) = x+ I(x) is increasing ;

A3. f(t, ·) is quasimonotone for all t ∈ [0, T ];

A4. (DI∗)(x)f(t, x) ≥ f(t, I∗(x)).

Then if u(t) and v(t) are solution of the impulsive differential equation (3.44)–(3.45)

with u(0) ≤ v(0), then u(t) ≤ v(t) for all t ∈ [0, T ].

Proof. If u(0) = v(0) then by uniqueness, u(t) = v(t) for all t ∈ [0, T ] so the

conclusion holds.

Suppose u(0) < v(0). From Lemma 3.5, u(t) < v(t) for as long as it takes for

either solution to meet the surface S. If neither solution meets S in [0, T ], there is

nothing to prove. If u(t) meets S at t1 ∈ (0, T ] and v(t) does not meet S, then as

I(x) ∈ −K, we have

u(t+1 ) = u(t1) + I(u(t1)) ≤ u(t1) < v(t1). (3.46)

Lemma 3.5 ensures that u(t) < v(t) for all t ∈ [0, t1] and since u(t+1 ) < v(t1) = v(t+1 ),

it follows by Lemma 3.5 again that u(t) < v(t) for all t ∈ (t1, T ].

It remains to consider the case when both u(t) and v(t) meet S. By Lemma 3.6,

u(t) meets S at t1 ∈ (0, T ) and v(t) meets S at t2 ∈ (t1, T ]. Then u(t) < v(t) for

all t ∈ [0, t1]. By the argument above, u(t+1 ) < v(t1) and so u(t) < v(t) for all

t ∈ [t1, t2].

We now show u(t2) ≤ v(t+2 ).

From A2 we have

u(t+1 ) = I∗(u(t1)) ≤ I∗(v(t1)).

Let k(t) = I∗(v(t)) − u(t) for t ∈ (t1, t2] and notice that k(t) is the unique solution

of the initial value problem x′(t) = g(t, x) with initial condition x(t+1 ) = I∗(v(t1))−
u(t+1 ) ∈ K where

g(t, x) = (DI∗)(v(t))f(t, v(t)) − f(t, I∗(v(t)) − x).
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By A4, g(t, x) ≥ f(t, I∗(v(t))) − f(t, I∗(v(t)) − x) and as f is quasimonotone, g

satisfies the condition that for any x∗ ∈ K+ with x∗(x) = 0, then x∗(g(t, x)) ≥ 0.

This is a sufficient condition to ensure the solution k(t) remains in K for all subse-

quent time (that is; K is forward invariant under g, (see Guo and Lakshmikantham

(1988), Theorem 4.2.2). In particular, k(t2) = v(t2) + I(v(t2)) − u(t2) ≥ 0 and so

u(t2) ≤ v(t+2 ).

If u(t2) = v(t+2 ) then u(t) = v(t) for all subsequent time from uniqueness.

Otherwise u(t2) < v(t+2 ) and Lemma 3.5 shows u(t) < v(t) for all subsequent time.

Thus the theorem is proved. �

Assumption A4 is analogous to, though slightly weaker than, condition H3 of

Theorem 2.1 of Bajo and Liz (1996) where the authors deal with upper and lower

solutions in one dimension.

3.11.2 Periodic Solutions

In this section, we examine the existence of solutions to the impulsive boundary

value problem.

d

dt
x(t) = f(t, x(t)) for t 6= τ(x(t)

x(t+) = x(t) + I(x(t)) for t = τ(x(t)

x(0) = x(T ).

A common technique in proving the existence of periodic solutions for ordinary

differential equations is to show the displacement operator P (z) defined by P (z) =

x(T ; 0, z) (that is; P (z) is the value of the solution x at time T which has initial data

x(0) = z) has a fixed point, via an application of Brouwer’s fixed point theorem.

Of course, the domain Ω of P is required to be forward invariant so that P maps Ω

into Ω. The continuity of the displacement operator P follows from the continuous

dependence of solutions of the differential equation on the initial data.

The case is somewhat different when impulses are involved. Then the displace-

ment operator need not be continuous as the following simple example illustrates.

(See Lakshmikantham et al. (1989) for results on the continuous dependence of

solutions on the initial data for impulsive differential equations.)

Example 3.5 Let f(t, x) = 1/2 for all (t, x) ∈ [0, 2] × R, I(x) = −2 and

τ(x) = x + 1. Then for P (z) = x(2; 0, z), it follows that limz→0+ P (z) = 1 and

limz→0− P (z) = −1.

Our approach in Tarafdar and Watson (1999) is analogous to that discussed

above, in that it will be shown that P (z) = x(T ; 0, z) has a fixed point, by using

fixed point theorem of Tarski (3.13).

It is clear that the order interval [a, b] = {x ∈ R : a ≤ x ≤ b}, where ≤ is the

partial ordering induced by a generating cone K (that is; R = K−K), is a complete
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lattice (Guo and Lakshmikantham (1988)).

We impose the following necessary and sufficient condition on f so that Ω = [a, b]

is forward invariant under f (see Hartman (1972), Theorem 2). Specifically

A5. f(t, x) ∈ T[0,1]×Ω(t, x) for all (t, x) ∈ [0, T ]× Ω,

where T[0,1]×Ω(t, x) is defined as follows:

T[0,1]×Ω(t, x) =

{
y ∈ R : lim inf

λ→0+

dist((t+ λ, x + λy), [0, 1] × Ω)

λ
= 0

}
. (3.47)

If the impulse satisfies

A6. x+ I(x) ∈ Ω for all x ∈ Ω

and Ω is forward invariant under f , it is clear that the solution x(t) of (5.1)–(5.2)

with x(0) ∈ Ω remains in Ω for all t ∈ [0, T ].

Hence, assuming A5 and A6, we have P (z) = x(T ; 0, z) is a well-defined function

from Ω to Ω, and if the conditions of Theorem 3.27 are satisfied, P is increasing,

so Tarski’s theorem ensures the existence of a fixed point of P in Ω. Thus we have

proved the following result:

Theorem 3.28 Let f , τ and I satisfy the continuity conditions C1–C3. Further,

suppose A1–A4 are satisfied and that A5 and A6 hold for some nonempty order

interval Ω = [a, b]. Then there exists a maximal and minimal periodic solution to

the impulsive differential equation (3.44)–(3.45).

The conclusion that there exists a maximal and minimal periodic solution follows

from the fact that the set of fixed points of P is a complete lattice.

For this subsection a further reading of Crandall (1972), Deimling (1992) and Hris-

tova and Bainov (1987) is suggested.
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Chapter 4

Topological Fixed Point Theorems

4.1 Brouwer Fixed Point Theorem

All fixed theorems to be considered in this chapter will be built on a single fixed

point theorem, the Brouwer fixed point theorem which will be proved a little later.

First we will need to consider some topological concepts.

Definition 4.1 Let X and Y be topological spaces. Two continuous mappings

f, g : X → Y are said to be homotopic if there is a continuous mapping F :

X × [0, 1] → Y such that

F (x, 0) = f(x), x ∈ X,

F (x, 1) = g(x), x ∈ X

F is called the homotopy of f and g. Also f and g are called homotopic through

the homotopy F .

A topological space X is said to be contractible if the identity map on X is

homotopic to a constant mapping, that is, there is a continuous mapping F : X ×
[0, 1] → X such that F (x, 1) = x for all x ∈ X and F (x, 0) = x0 ∈ X for all x ∈ X .

X is said to be contractible to x0.

A nonempty subset A of a topological space X is said to be a retract of X if there

is a continuous mapping f : X → X of X into itself such that f(X) ⊂ A and

f(a) = a for all a ∈ A. In the sequel Bn+1 = {x = (x1, x2, . . . , xn+1) ∈ Rn+1 :√
x2

1 + x2
2 + · · · + x2

n+1 ≤ 1} will denote the closed unit ball of Rn+1 and Sn = {x =

(x1, x2, . . . , xn+1) ∈ Rn+1 :
√
x2

1 + x2
2 + · · · + x2

n+1 = 1}, the boundary of Bn+1.

Sn is also called the n-sphere.

A continuous function of f : U −→ R defined on an open subset U of Rn is

said to be smooth, or C∞ if it has continuous partial derivatives of all orders. A

function f : A −→ R defined on an arbitrary nonempty subset A of Rn is smooth,

or C∞, if there are an open subset U of R with A ⊂ U and a smooth function

g : U → R such that g/A = f , where g/A denotes the restriction of g to A. Lastly,

151
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a continuous function f : U (or A) −→ Rm is said to be smooth if each co-ordinate

function is smooth.

Definition 4.2 A nonempty subset A of R
n is said to be smoothly contractible

if there exists a smooth function F : A× [0, 1] −→ A such that F (a, 1) = a for all

a ∈ A and F (a, 0) = a0 ∈ A for all a ∈ A. A nonempty subset A of a set B ⊂ Rn

is said to be smooth retract of B if there exists a smooth function f : B −→ B such

that f(B) ⊂ A and f(a) = a for all a ∈ A.

The following theorems are equivalent:

Theorem 4.1 A smooth mapping f : Bn+1 → Bn+1 has a fixed point.

Theorem 4.2 Sn is not a smooth retract of Bn+1.

Theorem 4.3 Sn is not smoothly contractible.

Proof. As above, let Theorem 4.2 hold. If possible let f have no fixed point. Since

x 6= f(x), the points x and f(x) determines a unique line y = x+m(x−f(x)) which

intersects Sn in exactly two points. Let m(x) be the nonnegative value of m where

the line meets Sn, that is the ray emanating from f(x) passing through x hits Sn.

Then m(x) is the larger solution of the quadratic equation:

1 = ‖x+m(x− f(x))‖2
= ‖x‖2

+ 2mx.(x− f(x)) +m2 ‖x− f(x)‖2
, (4.1)

that is

m(x) =
x.(f(x) − x) +

(
[x.(x − f(x))]2 + (1 − ‖x‖2

) ‖x− f(x)‖2
) 1

2

‖x− f(x)‖2 . (4.2)

The discriminant of the quadratic equation of (4.1) never vanishes as x 6= f(x).

Hence m(x) being a composition of smooth functions is smooth. We can easily

see from (4.2) that m(x) = 0 whenever x ∈ Sn. Now we define a mapping g :

Bn+1 −→ Bn+1 by g(x) = x+m(x)(x− f(x)), x ∈ Bn+1. Clearly g is smooth and

g(Bn+1) ⊂ Sn, and g(x) = x for each x ∈ Sn, that is, g is a smooth retraction of

Bn+1 into Sn, which is a retraction. Geometrically, we have the figure below

x+m(x − f(x))
x
p

f(x)
x y = x+m(x− f(x))

Next, let Theorem 4.1 hold. If possible, let Theorem 4.2 do not hold, that is,

assume that there is a smooth retraction f : Bn+1 −→ Bn+1. Now we define a

smooth mapping g : Bn+1 −→ Bn+1 by g(x) = −f(x), x ∈ Bn+1. Clearly g(x) 6= x

for any x ∈ Bn+1, which violates 4.1. Now we prove that Theorem 4.2 implies

Theorem 4.3. Let Theorem 4.2 hold. If possible, let Sn be smoothly contractible to

a point x0 ∈ Sn, i.e. there is a smooth mapping F : Sn × [0, 1] −→ Sn such that

F (x, 1) = x for all x ∈ Sn and F (x, 0) = x0 for all x ∈ Sn. We define a mapping
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f : Bn+1 −→ Sn by

f(tx) = F (x, t), 0 ≤ t ≤ 1, x ∈ Sn. (4.3)

Clearly f is a smooth retraction of Bn+1 onto Sn, which contradicts Theorem 4.2.

Finally we prove that Theorem 4.3 implies Theorem 4.2. Suppose that the Theorem

4.3 holds and, if possible, suppose that the Theorem 4.2 does not hold, that is, there

exists a smooth retraction f : Bn+1 −→ Bn+1 of Bn+1 onto Sn. Then the mapping

F : Sn × [0, 1] −→ Sn defined by (4.3) is clearly a smooth homotopy between the

identity map on Sn to the constant map x0, which contradicts Theorem 4.3.

We assume the functions involved in the next two lemmas to be smooth.

Lemma 4.1 Let A = (aij) be n× n matrix where each aij is a C∞ function in

R
n, then for each i = 1, 2, . . . , n,

Di detA = Di

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a2 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . . . . . . . . .

am1 am2 · · · amn
. . . . . . . . . . . . . . . . .

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

Dia11 a12 · · · a1n

Dia21 a22 · · · a2n

. . . . . . . . . . . . . . . . . .

Dian1 an2 · · · ann

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

a11 Dia12 · · · a1n

a21 Dia22 · · · a2n

. . . . . . . . . . . . . . . . . .

an1 Dian2 · · · ann

∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣

a11 a12 · · · Dia1n

a21 a22 · · · Dia2n

. . . . . . . . . . . . . . . . . .

an1 an2 · · · Diann

∣∣∣∣∣∣∣∣
, where Di =

∂

∂xi

We will use both symbols Di and ∂
∂xi

whenever it is convenient.

Proof. We first prove for 2 × 2 case. For each i = 1, 2

Di

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣ = Di[a11a22 − a12a21]

= Dia11a22 + a11Dia22 −Dia12a21 − a12Dia21

=

∣∣∣∣
Dia11 a12

Dia21 a22

∣∣∣∣+
∣∣∣∣
a11 Dia12

a21 Dia22

∣∣∣∣

We now assume that the lemma is true for the case k × k.
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Then for each i = 1, 2, . . . , k + 1,

Di

∣∣∣∣∣∣∣∣

a11 a12 · · · a1 k+1

a21 a22 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 ak+1 2 · · · ak+1 k+1

∣∣∣∣∣∣∣∣

= Dia11.

∣∣∣∣∣∣

a22 a23 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . .

ak+12 ak+13 · · · ak+1 k+1

∣∣∣∣∣∣
+ a11



∣∣∣∣∣∣

Dia22 a23 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Diak+12 ak+13 · · · ak+1 k+1

∣∣∣∣∣∣

+

∣∣∣∣∣∣

a22 Dia23 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 2 Diak+1 3 · · · ak+1 k+1

∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣

a22 a23 · · · Dia2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 2 ak+13 · · · Diak+1 k+1

∣∣∣∣∣∣




−Dia12

∣∣∣∣∣∣

a21 a23 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 ak+1 3 · · · ak+1 k+1

∣∣∣∣∣∣
− a12



∣∣∣∣∣∣

Dia21 a23 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Diak+1 1 ak+13 · · · ak+1 k+1

∣∣∣∣∣∣

+

∣∣∣∣∣∣

a21 Dia23 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 Diak+1 3 · · · ak+1 k+1

∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣

a21 a23 · · · Dia2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 ak+1 3 · · · Diak+1 k+1

∣∣∣∣∣∣




+ · · ·+ (−1)k+1Dia1 k+1

∣∣∣∣∣∣

a21 a22 · · · a2k

. . . . . . . . . . . . . . . . . . . . . .

ak+1 1 ak+1 2 · · · ak+1 k

∣∣∣∣∣∣

+ (−1)k+1a1 k+1



∣∣∣∣∣∣

Dia21 a22 · · · a2k

. . . . . . . . . . . . . . . . . . . . . . . . .

Diak+1 1 ak+1 2 · · · ak+1 k

∣∣∣∣∣∣

+

∣∣∣∣∣∣

a21 Dia22 · · · a2k

. . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 Diak+1 2 · · · ak+1 k

∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣

a21 a22 · · · Dia2k

. . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 ak+12 · · · Diak+1 k

∣∣∣∣∣∣




which can be easily seen to be

=

∣∣∣∣∣∣∣∣

Dia11 a12 · · · a1 k+1

Dia21 a22 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Diak+1 1 ak+12 · · · ak+1 k+1

∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣

+a11 Dia12 · · · a1 k+1

a21 Dia22 · · · a2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 Diak+1 2 · · · ak+1 k+1

∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣

a11 a12 · · · Dia1 k+1

a21 a22 · · · Dia2 k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ak+1 1 ak+1 2 · · · Diak+1 k+1

∣∣∣∣∣∣∣∣
.

Thus the lemma is true for the case (k + 1) × (k + 1).

Lemma 4.2 Let F (t, x) : Bn+1 × [0, 1] −→ Rn+1 be a smooth function. Then

n+1∑

l=1

∂

∂xl
detQl =

∂

∂t
det

(
∂Fj
∂xk

)
,

where
(
∂Fj

∂xk

)
is the Jacobian matrix of F with t being held as constant and Ql is the

matrix obtained from
(
∂Fj

∂xk

)
by replacing the l-th column by the partial derivatives

∂Fj

∂t , 1 ≤ j ≤ n+ 1.

Proof. First, we convince ourselves on the validity of this lemma for the case

F (t, x) : B2 × [0, 1] −→ R2.

∂

∂t

∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∂2F1

∂t∂x1

∂F1

∂x2

∂2F2

∂t∂x1

∂F2

∂x2

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂2F1

∂t∂x2

∂F2

∂x1

∂2F2

∂t∂x2

∣∣∣∣∣∣∣∣∣

2∑
l=1

∂

∂xl
detQl =

∂

∂x1
detQ1 +

∂

∂x2
detQ2

=
∂

∂x1

∣∣∣∣∣∣∣∣

∂F1

∂t

∂F1

∂x2

∂F2

∂t

∂F2

∂x2

∣∣∣∣∣∣∣∣
+

∂

∂x2

∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂t

∂F2

∂x1

∂F2

∂t

∣∣∣∣∣∣∣∣
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(By using Lemma 4.1)

=

∣∣∣∣∣∣∣∣∣

∂2F1

∂x1∂t

∂F1

∂x2

∂2F2

∂x1∂t

∂F2

∂x2

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∂F1

∂t

∂2F1

∂x1∂x2

∂F2

∂t

∂2F2

∂x1∂x2

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

∂2F1

∂x2∂x1

∂F1

∂t

∂2F2

∂x2∂x1

∂F2

∂t

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂2F1

∂x2∂t

∂F2

∂x1

∂2F2

∂x2∂t

∣∣∣∣∣∣∣∣∣

=
∂

∂t

∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

∣∣∣∣∣∣∣∣

Thus the lemma is true in this case.

n+1∑
l=1

∂

∂xl
detQl =

∂

∂x1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂t

∂F1

∂x2

∂F1

∂x3
· · · ∂F1

∂xn+1

∂F2

∂t

∂F2

∂x2

∂F2

∂x3
· · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂t

∂Fn+1

∂x2

∂Fn+1

∂x3
· · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
∂

∂x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂t

∂F1

∂x3
· · · ∂F1

∂xn+1

∂F2

∂x1

∂F2

∂t

∂F2

∂x3
· · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1

∂Fn+1

∂t

∂Fn+1

∂x3
· · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·

+
∂

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂x2

∂F1

∂x3
· · · ∂F1

∂t

∂F2

∂x1

∂F2

∂x2

∂F2

∂x3
· · · ∂F2

∂t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1

∂Fn+1

∂x2

∂Fn+1

∂x3
· · · ∂Fn+1

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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(by using the Lemma 4.1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F1

∂x1∂t

∂F1

∂x2
· · · ∂F1

∂xn+1

∂2F2

∂x1∂t

∂F2

∂x2
· · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . .

∂2Fn+1

∂x1∂t

∂Fn+1

∂x2
· · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂t

∂2F1

∂x1∂x2
· · · ∂F1

∂xn+1

∂F2

∂t

∂2F2

∂x1∂x2
· · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . .
∂Fn+1

∂t

∂2Fn+1

∂x1∂x2
· · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂t

∂F1

∂x2
· · · ∂F1

∂x1∂xn+1

∂F2

∂t

∂F2

∂x2
· · · ∂F2

∂x1∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂t

∂Fn+1

∂x2
· · · ∂Fn+1

∂x1∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F1

∂x2∂x1

∂F1

∂t
· · · ∂F1

∂xn+1

∂2F2

∂x2∂x1

∂F2

∂t
· · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . .

∂2Fn+1

∂x2∂x1

∂Fn+1

∂t
· · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂2F1

∂x2∂t
· · · ∂F1

∂xn+1

∂F2

∂x1

∂2F2

∂x2∂t
· · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1

∂2Fn+1

∂x2∂t
· · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂t
· · · ∂2F1

∂x2∂xn+1

∂F2

∂x1

∂F2

∂t
· · · ∂2F2

∂x2∂xn+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1

∂Fn+1

∂t
· · · ∂2Fn+1

∂x2∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2F1

∂xn+1∂x1

∂F1

∂x2
· · · ∂F1

∂t

∂2F2

∂xn+1∂x1

∂F2

∂x2
· · · ∂F2

∂t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2Fn+1

∂xn+1∂x1

∂Fn+1

∂x2
· · · ∂Fn+1

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂2F1

∂xn+1∂x2
· · · ∂F1

∂t

∂F2

∂x1

∂2F2

∂xn+1∂x2
· · · ∂F2

∂t
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1

∂2Fn+1

∂xn+1∂x2
· · · ∂Fn+1

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1

∂F1

∂x2
· · · ∂2F1

∂xn+1∂t

∂F2

∂x1

∂F2

∂x2
· · · ∂2F2

∂xn+1∂t
. . . . . . . . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1

∂Fn+1

∂x2
· · · ∂2Fn+1

∂xn+1∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

158 Topological Methods of Set-Valued Nonlinear Analysis

The first term of the first series + the second term of the second series + · · · +
(k + 1)th term of the last series make up

∂

∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x1
· · · · · · ∂F1

∂xn+1

∂F2

∂x1
· · · · · · ∂F2

∂xn+1

. . . . . . . . . . . . . . . . . . . . .

∂Fn+1

∂x1
· · · · · · ∂Fn+1

∂xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and the rest of the terms cancel by pairs.

Thus we have proved the relation:

∂

∂t
det

(
∂Fj
∂xk

)
=

n∑

l=1

∂

∂xl
detQl.

Proof of Theorem 4.2. Let f = (f1, f2, . . . , fn+1) : Bn+1 −→ Bn+1 be an

arbitrary smooth mapping. Let Vf =

∫
· · ·
∫

Bn+1

det

(
∂fj
∂xk

)
dx1 · · · dxn+1 be

the integral over Bn+1 of Jacobian determinant of f . Let g : Bn+1 −→ Bn+1

be another smooth map such that f = g on Sn and f(Bn+1) ⊂ Sn.

We now define F (t, x) : Bn+1× [0, 1] −→ Bn+1 by F (t, x) = tf(x)+(1−t)g(x),
x ∈ Bn+1, 0 ≤ t ≤ 1, and V (t) = tVf + (1 − t)Vg , 0 ≤ t ≤ 1, where Vg is integral

over Bn of the Jacobian determinant of g. Then

dV

dt
=

∫
· · ·
∫

Bn+1

∂

∂t
det

(
∂Fj
∂xk

)
dx1 · · · dxn+1. (4.4)

Since f = g on Sn, we can easily see that if x ∈ Sn

∂Fj
∂t

(t, x) = fj(t, x) − gj(t, x) = 0, for 1 ≤ j ≤ n+ 1.

Also it follows that detQl(t, x) = 0, if x ∈ Sn where Ql has the meaning as defined

in Lemma 4.2.

Also by Lemma 4.2 we have

∂

∂t
det

(
∂Fj
∂xk

)
=

n+1∑

l=1

∂

∂xl
detQl. (4.5)

Now we set Bl = Bn+1 ∩
{
x ∈ Rn+1 : xl = 0

}
and for x ∈ Bl, we define

ψ+
l (x) = x+ (0, . . . , (1 −

∑

j 6=l
x2
j )

1
2 , . . . , 0)

ψ−
l (x) = x+ (0, . . . , −(1−

∑

j 6=l
x2
j )

1
2 , . . . , 0)
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Now for each l = 1, 2, . . . , n
∫

· · ·
∫

Bn+1

∂

∂xl
detQl(t, x)dx1, . . . , dxn+1

=

∫
· · ·
∫

Bl

∫ (1−∑
j 6=l

x2
j )

1
2

−(1−∑
j 6=l

x2
j )

1
2

∂

∂xl
Qldx1, . . . , dxn+1

=

∫
· · ·
∫

Bl

[
Ql
(
t, ψ+

l (x)
)
−Ql

(
t, ψ−

l (x)
)]
dx1, . . . , dxl−1, dxl+1, . . . , dxn+1

= 0 as ψ+
l (x), ψ−

l (x) ∈ Sn.

It follows from (4.4) and (4.5) that dV
dt = 0 and hence Vf = Vg . Now if g(x) = x,

x ∈ Bn+1 is the identity mapping, then

Vg > 0. (4.6)

On the other hand, since f(Bn) ⊂ Sn,
n+1∑
j=1

f2
j = 1. Differentiating we obtain

n+1∑
j=1

fj
∂fj

∂xk
= 0, 1 ≤ k ≤ n + 1. Hence at each point the vector (f1, f2, . . . , fn+1)

is orthogonal to each of the vectors
(
∂f1
∂xk

, . . . , ∂fn+1

∂xk

)
, 1 ≤ k ≤ n + 1. Hence the

latter set of (n+1) vectors are linearly dependent. Then it follows that the Jacobian

determint vanishes and thus Vf = 0. Hecne in view of (4.6), f cannot coincide with

the identity mapping g on Sn.

We do not claim the orginality of the above proof. It is just a variant of the proof

given in Gamlelin and Greene (1983, p. 170, Exercise 5), Gilbarg and Trudinger

(1977, p. 236), and Dunford and Schwartz (1958). The proof in Gamlelin and

Greene (1983, p. 168), by using differential forms and Stokes Theorem is elegant

indeed. For the benefit of the readers unfamiliar with differential forms, the above

proof is preferred.

Theorem 4.4 (Brouwer Fixed Point Theorem) If T : Bn+1 −→ Bn+1 is a

continuous mapping of Bn+1 into itself, then T has a fixed point.

Proof. Let T = (f1, f2, . . . , fn+1). Then each fi by the Stone-Weierstrass The-

orem (see eg Royden (1970)), is a uniform limit of a sequence {f ki }∞k=1 of smooth

functions fki : Bn+1 −→ [−1, 1] with
∣∣fki (x)

∣∣ ≤ |fi(x)| for all i = 1, 2, . . . , n + 1,

x ∈ Bn+1 and k = 1, 2, . . ..

Let Tk = (fk1 , f
k
2 , . . . , f

k
n+1) : Bn+1 −→ Bn+1, for k = 1, 2, . . .. Then we have

T = lim
k→∞

Tk uniformly. Now since Theorem 4.2 is equivalent to Theorem 4.1, it

follows that for each k, Tk has a fixed point xk ∈ Bn+1. Since Bn+1 is compact,

{xk} has a subsequence {xkj} converging to a point x ∈ Bn+1. Hence

‖T (x) − x‖ ≤
∥∥T (x) − T (xkj )

∥∥+
∥∥T (xkj ) − Tkj (xkj

∥∥
+
∥∥Tkj (xkj ) − xkj

∥∥+
∥∥xkj − x

∥∥→ 0 as j → ∞.
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Therefore T (x) = x.

4.1.1 Schauder Projection

Definition 4.3 (Schauder Projection) If A = {a1, a2, . . . , an} be a fi-

nite subset of a normed linear space (E, ‖·‖). Then, for any real ε > 0 we set

Aε = ∪{Sε(ai) : i = 1, 2, . . . , n}, where as before Sε(ai) = {x ∈ E : ‖x− ai‖ < ε}.
For each i = 1, 2, . . . , n, we define the function λi : Aε −→ R by λi(x) =

max[0, ‖x− ai‖]. The Schauder projection pε : Aε −→ co A is given by

pε(x) =

n∑
i=1

λi(x)ai

n∑
i=1

λi(x)
,

where co A denotes the convex hull of A.

We note that as for each x ∈ Aε belongs to at least one Sε(ai),
n∑
i=1

λi(x) 6= 0

and, therefore pε is well defined.

Proposition 4.1 If A = {a1, a2, . . . , an} is a subset of a convex set K of

(E, ‖·‖) and pε is the Schauder projection as defined above, then we have

(a) pε is compact mapping of Aε into coA ⊂ K, i.e. pε is continuous and pε(Aε)

is contained in a compact subset of E;

(b) ‖x− pε(x)‖ < ε for all x ∈ Aε.

Proof. (a) is obvious. Now for each x ∈ Aε,

‖x− pε(x)‖ =
1

n∑
i=1

λi(x)

∥∥∥∥∥
n∑

i=1

λi(x)[x − ai]

∥∥∥∥∥ < ε.

Hence (b) follows.

Theorem 4.5 If X is a topological space, K ⊂ (E, ‖·‖) is a convex set and

T : X → K is a compact mapping, then for each ε > 0, there exist a finite subset

A = (a1, a2, . . . , an) ⊂ T (X) and a finite dimensional mapping Tε : X → K such

that

(i) ‖Tε(x) − T (x)‖ < ε for each x ∈ X;

and

(ii) Tε(X) ⊂ coA ⊂ K.
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Proof. By virtue of the fact that T (X) is compact, there is a finite subset A =

(a1, a2, . . . , an) ⊂ T (X) with T (X) ⊂ Aε where Aε is as defined before. Now we

define Tε : X → K as Tε = pε◦T : X −→ K where pε : Aε −→ coA is the Schauder

projection. (i) follows from (b) of Proposition 4.1 while (ii) is obvious.

Theorem 4.6 (Schauder fixed point theorem) Let K be a convex subset of

a normed linear space (E, ‖·‖) and T : K → K a compact mapping. Then T has a

fixed point.

Proof. For each ε > 0, there is by Theorem 4.5 a mapping Tε : K −→ K such that

‖Tε(x) − T (x)‖ < ε for each x ∈ K

and Tε(K) ⊂ coA ⊂ K for some finite subset A of K. Now since Tε(coA) ⊂ coA

and coA is homeomorphic to a finite-dimensional ball, Tε has by Brouwer fixed point

theorem a fixed point xε ∈ coA ⊂ K. Thus for each ε > 0 we have ‖xε − T (xε)‖ =

‖Tε(xε) − T (xε‖ < ε. Since T (K) is compact, we can find a subsequence {xk}
converging to x0 ∈ K and satisfying

‖xk − T (xk)‖ =
∥∥∥T 1

k
(xk) − T (xk)

∥∥∥ < 1

k
, k = 1, 2, . . . ,

(taking ε = 1
k ).

Now as T is continuous, letting K → ∞ we obtain Tx0 = x0.

Corollary 4.6.1 If K is a compact convex subset of a normed linear space

(E, ‖·‖) and T : K → K continuous mapping, then T has a fixed point.

Proof. Clearly T is a compact mapping. The corollary follows from Theorem 4.6.

Theorem 4.7 (Tychonoff fixed theorem) If T : K −→ K is a continuous

mapping of a compact convex subset K of locally convex Hausdorff topological vector

space E into K, then T has a fixed point.

We delayed the proof until the next section. The proof is given after the proof

of Corollary 4.14.1.

Theorem 4.8 (Markoff-Kakutani) Let K be a cmpact convex subset of a

locally convex Hausdorff topological vector space E and {Tα : α ∈ I} a commuting

family of continuous affine mappings of K into K. Then {Tα : α ∈ I} has common

fixed point.

Proof. For each α ∈ I , Fα, the set of fixed points of Tα is nonempty by Theorem

4.7. Also since Tα is continuous and affine, Fα is respectively a compact and convex

subset of K. We need to show that ∩{Fα : α ∈ I} 6= ∅.
Since Fα is closed for each α ∈ I , it would suffice to show that each finite

intersection
n⋂
i=1

Fαi 6= ∅. We employ the method of induction on the number n of
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Fαi . The result is true for n = 1. We now suppose it to be true for i = m < n, i.e.
m⋂
i=1

Fαi 6= ∅.
Since {Tα : α ∈ I} is commuting, it follows that

Fαm+1

[
m⋂

i=1

Fαi

]
⊂

m⋂

i=1

Fαi .

To see this let x ∈
m⋂
i=1

Fαi , then for each i = 1, 2, . . . , m, Tαi

(
Tαm+1(x)

)
=

Tαm+1 (Tαi(x)) = Tαm+1(x). Hence Tαm+1(x) ∈
m⋂
i=1

Fαi . Now as
m⋂
i=1

Fαi is a

nonempty compact convex subset of E, it follows that
m+1⋂
i=1

Fαi 6= ∅. Hence the

result follows by induction.

For further results and applications the readers are referred to Dugundji and

Granas (1982).

4.1.2 Fixed Point Theorems of Set Valued Mappings with

Applications in Abstract Economy

We will now consider the extension in Fan (1952) of the fixed point theorem of

Kakutani in Rn and of Bohnenblust and Karlin (1950) in Banach space to locally

convex Hausdorff topological vector space. Here we present the materials as we did

in Tarafdar (1990b).

We begin with the following theorem.

Theorem 4.9 Let K be a nonempty convex subset of normed linear space and

T : K → 2K an upper semicontinuous set valued mapping with nonempty compact

convex values. If X = T (K) is compact and X ⊂ K, then there is a point x0 ∈ K

such that x0 ∈ T (x0), where T (K) =
⋃
x∈K

T (x).

For proof of this theorem see Dugundji and Granas (1978, p. 96, Theorem 11-3).

Corollary 4.9.1 Let K be a nonempty compact convex subset of a normed linear

space E and T : K → 2K a upper semicontinuous set valued mapping with nonempty

closed convex values. Then there exists a point x0 ∈ K such that x0 ∈ T (x0).

Proof. By Theorem 2.33 T (K) is a compact set. Hence the corollary follows from

the above theorem.

Corollary 4.9.2 (Kakutani (1941)) If K is a nonempty compact convex sub-

set of Rn and T : K −→ 2K an upper semicontinuous set valued mapping with

nonempty closed convex values, then there is a point x0 ∈ K such that x0 ∈ T (x0).
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Lemma 4.3 (Fan (1952)) Let X be a separated uniform topological space. Let

A be a closed subset and B a compact subset of X. Then for each open entourage

U of the uniformity of X, there is an open entourage V such that

V (A) ∩ V (B) ⊂ U(A ∩ B),

where W (D) = {x ∈ X : (x, a) ∈ W for some a ∈ D} for a subset D of X and an

entourage W of the uniformity.

Proof. For the sake of completeness we include the proof of Fan (1952). We can

choose an open entourage U1 such that U1 ◦ U1 ⊂ V . Then U1(A ∩ B) is an open

subset of X . Let K = B ∩ [U1(A∩B)]c which is a compact subset disjoint from the

closed set A. Hence we can find an open entourage U2 such thatK∩U2(A) = φ. This

implies B∩U2(A) ⊂ U1(A∩B). Indeed if x ∈ B∩U2(A), x /∈ K, ie. x ∈ U1(A∩B).

Now if V is an entourage such that V = V −1 ⊂ U1 and V ◦V ⊂ U2, then we can prove

that V (A)∩V (B) ⊂ U(A∩B). Indeed, let x ∈ V (A)∩V (B). Then (a, x) ∈ V and

(b, x) ∈ V for some a ∈ A and some b ∈ B. Since V = V −1, (a, b) ∈ V ◦ V ⊂ U2.

Hence b ∈ B ∩ U2(A) ⊂ U1(A ∩ B). Thus there exists c ∈ A ∩ B such that

(c, b) ∈ U1. As we have already (b, x) ∈ V , we get (c, x) ∈ U1 ◦ V ⊂ U1 ◦ U1 ⊂ U ,

ie. x ∈ U(c) ⊂ U(A ∩B).

We recall the following definition.

Let X and Y be two topological spaces. Then a set valued mapping f : X → 2Y

is said to be upper semicontinuous (almost upper semicontinuous) if for each x0 ∈ X

and each open set U in Y with f(x0) ⊂ U , there is an open set W with x0 ∈ W

such that f(x) ⊂ U (f(x) ⊂ U) for all x ∈ W . Trivially an upper semicontinuous

mapping is almost upper semicontinuous.

Theorem 4.10 Let K be nonempty compact convex subset of a locally convex

Hausdorff topological vector space E. Let f, g : K → 2K be two set valued mappings

with closed values such that

(i) f is almost upper semicontinuous and g is upper semicontinuous; and

(ii) for each x ∈ X, g(x) 6= ∅ and co g(x) ⊂ f(x).

Then there exists a point x0 ∈ K such that x0 ∈ f(x0).

Proof. For the sake of completness we will repeat the argument of Fan (1952)

wherever we find it necessary.

Let B be an open base of neighborhoods of 0 of E such that each V ∈ B is

convex and symmetric, i.e. V = −V . For each V ∈ B, we define the sets

FV = {x ∈ K : x ∈ f(x) + V }

and

GV = {x ∈ K : x ∈ co g(x) + V },

where V denotes the closure of V .
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Then by the condition of the theorem GV ⊂ FV for each V ∈ B. We first prove

that GV 6= ∅ for each V ∈ B. To this end we consider a V ∈ B arbitrary but fixed.

Since K is compact, there exists a finite number of points x1, x2, . . . , xn in K such

that K ⊂
n⋃
i=1

(xi + V ). Let C be the closed convex hull of {x1, x2, . . . , xn}. For

each x ∈ C, we define

gV (x) = (g(x) + V ) ∩ C.

Then clearly for each x ∈ C, gV (x) is a nonempty closed and hence compact subset

of C. Now we prove that gV is upper semicontinuous. Let x0 ∈ C and U be an

open set in E such that gV (x0) ⊂ U . Since gV (x0) is compact, we can find V1 ∈ B
such that V1 + gV (x0) ⊂ U (e.g. see Kelley and Namioka (1963, p. 351, 5.2 (vi))).

Now by Lemma 4.3 we can find V2 ∈ B such that

(V2 + g(x0) + V ) ∩ (V2 + C) ⊂ V1 + [(g(x0) + V ) ∩ C].

Then it follows that

(V2 + g(x0) + V ) ∩ C ⊂ V1 + gV (x0) ⊂ U.

Now by the upper semicontinuity of g, there exists a neighborhood W of x0 such

that g(x) ⊂ V2 + g(x0) for all x ∈W ∩K.

Thus for all x ∈W ∩ C,

gV (x) = (g(x) + V ) ∩ C ⊂ [V2 + g(x0) + V ] ∩ C ⊂ U.

Thus gV : C → 2C is an upper semicontinuous compact valued mapping. Now

since C is a compact convex subset of finite dimensional subspace, the set valued

mapping h : C → 2C defined by h(x) = co gV (x), x ∈ C is upper semicontinuous

and compact valued (e.g. see Nikaido (1968, Theorem 4.8 and Corollary to Theorem

2.9)). Hence by Kakutani’s fixed point theorem there is a point x0 ∈ C such that

x0 ∈ h(x0) = co gV (x0) = co[(g(x0) + V ) ∩ C] ⊂ (co g(x0) + V ) ∩ C,

i.e. x0 ∈ GV .

Since V is arbitrary, GV 6= ∅ for each V ∈ B. Hence FV is nonempty for each

v ∈ B as GV ⊂ FV .

In our next move, we prove that FV is closed for each V ∈ B. Again we consider

a fixed but arbitrary V ∈ B. We prove that F cV = K \ FV is open. Let y ∈ F cV .

Then y is not contained in the closed set f(y) + V . It is possible to find a V ′ ∈ B
such that (y + V

′
) ∩ (f(y) + V + V

′
) = ∅. Now by almost upper semicontinuity of

f , there is a W ∈ B such that f(z) ⊂ f(y) + V ′ ⊂ f(y) + V
′
(as f(y) is compact

and V
′
is closed, f(y) +V

′
is closed, (e.g. see Kelley and Namioka (1963, p. 35, 5.2

(vii))) for all z ∈ (y+W )∩K. We may assume W ⊂ V ′. It then follows that for any

z ∈ (y+W )∩K, z /∈ f(z)+V , i.e. z /∈ FV (for otherwise z ∈ (y+W )∩K ⊂ y+V ′

and z ∈ f(z) + V ⊂ f(y) + V + V
′
which leads to a contradiction). Thus we have
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proved that F cV is open. Since the finite intersection of members of B is again in B, it

follows that the family {FV : V ∈ B} of closed sets has finite intersection property.

Hence
⋂
V ∈B

FV 6= ∅. Now it is easy to prove that for any point x0 ∈ ⋂
V ∈B

FV ,

x0 ∈ f(x0).

Lemma 4.4 Let K be a nonempty compact convex subset of a locally convex

Hausdorff topological vector space E and g : K → 2K an almost upper semicon-

tinuous set valued mapping. Then the set valued mapping f : D → 2K defined by

f(x) = cog(x), x ∈ K is almost upper semicontinuous with nonempty closed values.

Proof. Let U be an open set containing f(x). Since f(x) is a compact subset of

E, we can find a convex open neighborhood N of 0 such that f(x) +N ⊂ U (e.g.

see Kelley and Namioka (1963, p. 35, 5.2. (vi)) and note that E is locally convex).

Clearly V = f(x) +N is convex open set containing f(x) and V ⊂ U . Now since

g is almost upper semicontinuous, there is an open set W containing x such that

g(y) ⊂ V for every y ∈ W ∩K. Then as V is convex, f(y) = cog(y) ⊂ V ⊂ U for

each y ∈W ∩K.

Corollary 4.10.1 Let K be a nonempty compact convex subset of a locally convex

Hausdorff topological vector space E and g : K → 2K be an upper semicontinuous

set valued mapping such that for each x ∈ K, g(x) is a nonempty closed subset of

K. Then there exists a point x0 ∈ D such that x0 ∈ co g(x0).

Proof. We define the set valued mapping f : K → 2K by f(x) = co g(x), x ∈ K.

Then by Lemma 4.4, f(x) is almost upper semicontinuous. Clearly the pair (f, g)

satisfies all the conditions of Theorem 4.10. Hence there exists a point x0 ∈ K such

that x0 ∈ f(x0).

Corollary 4.10.2 (Fan’s fixed point theorem) Let K be a nonempty compact

convex subset of a locally convex Hausdorff topological vector space. If f : K → 2K

is an upper semicontinuous set valued mapping with closed values such that for each

x ∈ K, f(x) is a nonempty convex subset of K, then there exists a point x0 ∈ K

such that x0 ∈ f(x0).

Proof. If we take f = g in Theorem 4.10, the corollary is obtained.

Theorem 4.11 Let X be a topological and {Yα : α ∈ I} a family of compact

Hausdorff spaces. If for each α ∈ I, fα : X → 2Yα is an upper semicontinuous

(almost upper semicontinuous) set valued mapping with closed values, and Y =∏
α∈I

Yα, then the set valued mapping f : X → 2Y defined by

f(x) =
∏

α∈I
fα(x), x ∈ X

is upper semicontinuous (almost upper semicontinuous) with closed values.
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Proof. Let x0 ∈ X be arbitrary and U be any open set in Y containing f(x0). If

fµ(x0) = ∅ for some µ ∈ I , then by the upper semicontinuity of fµ at x0, we have an

open set W containing x0 such that fµ(x) = ∅ for all x ∈ W . Thus it follows that

f(x) =
∏
α∈I

fα(x) = ∅ ⊂U (U) for all x ∈W . So we may assume that fα(x0) 6= ∅ for

all α ∈ I . We first prove the theorem for the case when I = {1, 2, . . . , n} is finite.

Yi can be regarded as a uniform space for each i (e.g. see Wilansky (1970, p. 222,

Th.11.4.6)). Since fi(x0) is a compact set in the uniform space Yi and U is an open

set containing f(x0) =
n∏
i=1

fi(x0), there exists for each i an open set Ui in Yi such

that fi(x0) ⊂ Ui (i = 1, 2, . . . , n) and
n∏
i=1

Ui ⊂ U . Now by the upper semicontinuity

(almost upper semicontinuity) of each fi, i = 1, 2, . . . , n, there exists an open

neighborhood Wi of x0 such that fi(x) ⊂ Ui (U i) for x ∈Wi. Hence W =
n⋂
i=1

Wi is

the required open neighborhood of x0 with f(x) =
n∏
i=1

fi(x) ⊂
n∏
i=1

Ui

(
n∏
i=1

U i

)
⊂ U

(U). Thus we have proved theorem when I is finite. Now we assume I is arbitrary

and fα(x0) 6= ∅ for each α ∈ I . Since U is the union of basic open sets in Y and

f(x0 =
∏
α∈I

fα(x0) is compact, there is a finite number of basic open sets U (j) in Y

(j = 1, 2, . . . , m) such that

f(x0) =
∏

α∈I
fα(x0) ⊂

m⋃

j=1

U (j) ⊂ U (4.7)

where the m sets U (j) are of the form U (j) =
n∏
i=1

U
(j)
νi × ∏

ν∈I
ν 6=νi

, by the definition of

the product topology, where U
(j)
νi is open in Yνi . It follows from (4.7) that

n∏

i=1

fvi(x0) ⊂
m⋃

j=1

n∏

i=1

U (j)
νi
,

where the right hand side is an open set in
n∏
i=1

Yνi . Then by what we have proved

for the case when I is finite, the mapping x →
n∏
i=1

fνi(x) is upper semicontinuous

(almost upper semicontinuous). Thus there exists an open neighborhood W of x0

such that

n∏

i=1

fνi(x) ⊂
m⋃

j=1

n∏

i=1

U (j)
νi




m⋃

j=1

n∏

i=1

U
(j)
νi


 for x ∈ W.
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It follows that

f(x) =
∏

α∈I
fα(x) ⊂

m⋃

j=1

U (j) ⊂ U

(
m⋃

i=1

U (j) ⊂ U

)
.

The above proof for upper semicontinuous case is due to Fan (1952).

4.1.3 Applications

All topological spaces considered for the rest of this subsection are assumed to be

Hausdorff.

Following Debreu (1952), Arrow and Debreu (1954) and Shafer and Sonnen-

schein (1975), we describe an abstract economy(or generalized game) with utility

functions (or pay off) functions by E = {Xα.Aα, Uα : α ∈ I} where I is a finite or

an infinite set of agents (or players) and for each α ∈ I , Xα is the choice set (or

strategy set), Aα : X =
∏
α∈I

Xα → 2Xα is the (budget) constraint correspondence,

i.e. set valued mapping and Uα : X → R is the utility (or pay off) function and an

economy with preference correspondences E = {Xα, Aα, Pα : α ∈ I}, where I, Xα

and Aα are as above and Pα : X → 2Xα is the preference correspondnece for the

agent α ∈ I . Before going any further we first make clear the symbols and notations

to be used throughout this section. X and X−α will respectively denote the carte-

sian product
∏
α∈I

Xα and
∏
β∈I
β 6=α

Xβ and x−α will denote a generic element of X−α. We

will also represent an element x ∈ X by {xα} where xα} is the projection of x onto

Xα, i.e. xα is the α-th co-ordinate of x. Thus we can write x = {xα} = [xα, x−α]

for each α ∈ I .

A point x = {xα} is called an equilibrium point of an abstract economy E =

{Xα, Aα, Uα : α ∈ I} if for each α ∈ I ,

Uα(x) = Uα[xα, x−α] = sup
zα∈Aα(x)

Uα[zα, x−α].

It is worth noting that if Aα(x) = Xα for each x ∈ X , the concept of an equilibrium

point of the economy coincides with the well-known concept of Nash equilibrium

point (1950), for in the latter case, Uα(x) = Uα[xα, x−α] = sup
zα∈Xα

Uα[zα, x−α]

for each α ∈ I . An economy E = {Xα, Aα, Uα : α ∈ I} can be expressed as

an economy of the form {Xα, Aα, Pα : α ∈ I} if for each α ∈ I , we define the

correspondence Pα : X → 2Xα by Pα(x) = {yα ∈ Xα : Uα([yα, x−α]) > Uα(x)} for

each x = {xα} ∈ X .

Now suppose that for each α ∈ I , Pα : X → 2Xα is defined as above. Then it

is clear that x is an equilibrium point of the economy E = {Xα, Aα, Uα : α ∈ I} if

and only if Pα(x) ∩ Aα(x) = ∅ and xα ∈ Aα(x) for each α ∈ I .
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Thus if the economy instead of being given by utility functions is given by

preference relations, we can define an equilibrium point of an abstract economy

E = {Xα, Aα, Pα : α ∈ I} as a point x = {xα} ∈ X such that for each α ∈ I ,

xα ∈ Aα(x) and Pα(x) ∩ Aα(x) = ∅.
The object in the rest of this section is to extend the following two theorems to

the case of locally convex topological vector spaces.

Theorem A (Debrew). Let E = {Xi, Ai, Ui}Ni=1 be an abstract economy (a game)

such that for each i = 1, 2, . . . , N

(i) Xi is a nonempty compact convex subset of R`;

(ii) Ai :
N∏
i=1

Xi → 2Xi is a continuous correspondence such that for each x ∈ X,

Ai(x) is nonempty and convex;

(iii) Ui : X → R is continuous on X and quasiconcave in xi (i.e. Ui(·, x−i) is

quasiconcave for each x−i).

Then E has an equilibrium point.

Theorem B. (Shafer and Sonnenschein (1975)). Let {Xi, Ai, Pi}Ni=1 be an abstract

economy such that for each i = 1, 2, . . . , N

(i) Xi is a nonempty compact convex subset of R`;

(ii) Ai : X =
N∏
i=1

→ 2Xi is a continuous correspondence such that for each

x ∈ X, Ai(x) is nonempty and convex;

(iii) Pi : X → 2Xi has an open graph in X × Xi and for each x = {xi}Ni=1,

xi /∈ co(Pi(x)), where coA denotes the convex hull of A.

Then E has an equilibrium point.

We should point out that our extension of Theorem B requires (1) I to be

countable, (2) a strong irreflexivity of the preference correspondence, i.e. xα /∈
coPα(x) for each x = {xα} (this seems to be unavoidable due to the pathological

defect in the convex hull of a compact subset in an infinite dimensional space, i.e.

the convex hull of a compact subset in an infinite dimensional space need not be

compact, nor even closed, e.g. see Schaefer [ (1966), p. 72] and lastly — but most

importantly (3) an extension of Fan’s fixed point theorem. The extension of Fan’s

fixed point theorem, i.e. our Theorem 4.1 overcomes the difficulty arising out of

the following fact: If g : K → 2K is an upper semicontinuous set valued mapping

whereK is a nonempty compact convex subset of a locally convex topological vector

space, then the mapping f : K → 2K defined by f(x) = cog(x) is not necessarily

upper semicontinuous. We have not made any distinction between a correspondence

and a set valued mapping. Rather we have used both to conform to the existing

literature.
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4.1.4 Equilibrium Point of Abstract Economy

In this subsection we consider both kinds of economy described above, an abstract

economy by utility functions and an abstract economy given by preference relations

and prove the existence of an equilibrium point for either case.

Theorem 4.12 Let E = {Xα, Aα, Uα : α ∈ I} be an abstract economy such

that for each α ∈ I

(i) Xα is a nonempty compact and convex subset of a locally convex topological

vector space Eα;

(ii) Aα : X =
∏
α∈I

Xα → 2Xα is continuous correspondence so that for each

x ∈ X, Aα(x) is a nonempty compact and convex subset of Xα;

(iii) Uα : X → R is continuous and is quasiconcave in xα.

Then there is an equilibrium point x = {xα} ∈ X of the economy, i.e. for each

α ∈ I, Uα(x) = Uα[xα, x−α] = supzα∈A(xα) Uα[zα, x−α].

Proof. Let for each α ∈ I , Fα(x) = {yα ∈ Xα : Uα[yα, x−α] =

sup
zα∈Aα(x)

Uα[zα, x−α]}. Since Uα is continuous and Aα(x) is compact, Fα(x) 6= ∅

and clearly Fα(x) ⊂ Aα(x). Thus for each α ∈ I , Fα : X → 2Xα is a set valued

mapping. We will now prove that Fα has a closed graph. To this end we fix α ∈ I

and let {(xδ, yδα) : δ ∈ D} be a net in X ×Xα such that xδ → x and yδα → yα and

yδα ∈ Fα(xδ), i.e. Uα[yδα, x
δ
−α] = sup

zα∈Aα(xδ)

Uα[zα, x
δ
−α], i.e.

Uα[yδα, x
δ
−α] ≥ Uα[zα, x

δ
−α] for all zα ∈ Aα(xδ). (A)

Now since yδα ∈ Fα(xδ) ⊂ Aα(xδ), by upper semicontinuity of Aα, yα ∈ Aα(x).

Now let zα ∈ Aα(x) be arbitrary. Then by Lower semicontinuity of Aα, there is

zδα ∈ Aα(xδ) such that zδα → zα. But from (A), we have Uα[yδα, x
δ
−α] ≥ Uα[zδα, x

δ
−α].

Taking limit we obtain Uα[yα, x−α] ≥ Uα[zα, x−α]. Thus we have proved that

Uα[yα, x−α] = sup
zα∈Aα(x)

Uα[zα, x−α], i.e. yα ∈ Fα(x). Hence Fα has a closed graph

and therefore Fα(x) is a closed subset of Xα for each x ∈ X .

Next we prove that Fα(x) is convex for each x ∈ X and each α ∈ I . Let x ∈ X

and α ∈ I be arbitrarily fixed. Let y1
α, y

2
α ∈ Fα(x) and yα = λy1

α + µy2
α, λ, µ ≥ 0

and λ+ µ = 1. Then Uα[y1
α, x−α] = sup

zα∈Aα(x)

Uα[zα, x−α] = Uα[y2
α, x−α]. Suppose

that yα /∈ Fα(x). Then there will exist uα ∈ Aα(x) such that Uα[uα, x−α] >

Uα[yα, x−α]. Let u0 = [uα, x−α]. Since Uα is quasiconcave in α-th co-ordinate, the

set B = {zα ∈ Xα : Uα[zα, x−α] > Uα(u0)} is convex. Also by the continuity of

Uα, B = {zα ∈ Xα : Uα[zα, x−α] ≥ Uα(u0)} and is therefore convex. Now since

uα ∈ Aα(x), it follows that y1
α ∈ B and y2

α ∈ B. Hence yα ∈ B, i.e. Uα[yαx−α] ≥
Uα(u0) = Uα[uα, x−α] which is a contradiction.
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Thus we have proved that for each α ∈ I , the set valued mapping Fα : X → 2Xα

has closed graph and has closed convex value for each x ∈ X . Hence for each α ∈ I ,

Fα is upper semicontinuous and hence by Theorem 4.11 of Fan (1952) the set valued

mapping F : X → 2X defined by F (x) =
∏
α∈I

Fα(x), x ∈ X is upper semicontinuous

and is evidently nonempty closed convex valued. Hence by fixed point theorem of

Fan (here Corollary 4.10.2) there is a point x ∈ X such that x ∈ F (x). Now it is

easy to see that this point x is an equilibrium point of the economy E .

Corollary 4.12.1 Let {Xα : α ∈ I} be a family of nonempty compact convex

sets, each in locally convex topological vector space Eα. Let for each α ∈ I, Uα :

X =
∏
α∈I

Xα → R be a continuous function such that Uα is quasiconcave in xα.

Then there is a Nash equilibrium point.

Proof. For each α ∈ I , we define the set valued mapping Aα : X → 2Xα by

Aα(x) = Aα[xα x−α] = Xα. Clearly Aα is continuous. Hence the Corollary follows

from Theorem 4.12.

Remark 4.1 More general result than Corollary 4.12.1 is known, and will be

given in the appropriate place, for instance this result is known in Hausdorff topo-

logical vector space (see Theorems or Ma (1969) and Tan (1984)).

Theorem 4.13 Let E = {X〉, A〉, P〉 : 〉 ∈ I} be an abstract economy, where I

a countable set. Assume that for each i ∈ I,

(a) Xi is a nonempty compact and convex subset of a locally convex metrizable

space Ei;

(b) Ai : X =
∏
i∈I

Xi → 2Xi is a continuous correspondence such that for each

x ∈ X, Ai(x) is nonempty and convex;

(c) Pi : X → 2Xi has an open graph in X ×Xi; and

(d) for each x = {xi} ∈ X, xi /∈ coPi(x).

Then there is an equilibrium point x ∈ X of E.

Proof. As in Shafer and Sonnenschein (1975) we define for each i ∈ I a continuous

mapping Ui : X ×Xi → R by Ui(x, yi) = inf
(u,zi)∈Gc

i

ρi(Pi(x, yi), (u, zi)) where Gci

is the complement of the graph Gi of Pi and ρi is the metric in X ×Xi. Now for

each i ∈ I , we define the set valued mapping Fi : X → 2Xi by Fi(x) = {yi, Xi :

Ui(x, yi) = sup
zi∈Xi

Ui(x, zi)}.

Since Ui is continuous and Ai being nonempty valued and upper semicontinuous

is nonempty compact valued correspondence, it follows that Fi(x) is nonempty for

each x ∈ X and by similar argument as given in Theorem 4.12 we can show that

Fi has closed graph and is therefore upper semicontinuous. Hence by Theorem
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4.11 the set valued mapping F : X → 2X defined by F (x) =
∏
i∈I

Fi(x), x ∈ X

is upper semicontinuous. Thus by Corollary 4.10.1 there is a point x ∈ X such

that x ∈ coF (x) ⊂ ∏
i∈I

coFi(x). Now we repeat the same argument of Shafer

and Sonnenschein to show that x is an equilibrium point of the economy E . Since

Fi(x) ⊂ Ai(x) and Ai(x) is closed and convex, x ∈ ∏
i∈I

coFi(x) ⊂ ∏
i∈I

Ai(x). Thus

xi ∈ Ai(x) for each i ∈ I where x = {xi}. It remains to show that for each

i ∈ I , Pi(x)∩Ai(x) = ∅. If zi ∈ Pi(x)∩Ai(x), then Ui(x, zi) > 0. This implies that

Ui(x, yi) > 0 for all yi ∈ Fi(x). Hence zi ∈ Pi(x)∩Ai(x) implies that Fi(x) ⊂ Pi(x).

Thus xi ∈ coFi(x) ⊂ coPi(x) which contradicts (d).

Remark 4.2 Since in a finite dimensional space, coA of a compact subset A is

compact, the condition (d) reduces to (iii) of Theorem B of Shafer and Sonnenschein.

Thus the theorem is indeed a generalization of their theorem.

4.2 Fixed Point Theorems and KKM Theorems

In this section we will prove a series of fixed point and KKM theorems. Unless

otherwise stated, all topological vector spaces throughout this chapter are assumed

to be real and Hausdorff.

Theorem 4.14 (Tarafdar (1977)) Let K be a nonempty compact convex subset

of a topological vector space E. Let T : K → 2K be a set valued mapping of K into

2K such that

(i) for each x ∈ K, T (x) is a nonempty convex subset of K.

(ii) for each y ∈ K, T−1(y) = {x ∈ K : y ∈ T (x)} contains an open subset Oy
of K (Oy may be empty);

and

(iii)
⋃{Oy : y ∈ K} = K.

Then there exists a point x0 ∈ K such that x0 ∈ T (x0).

Proof. Since K is compact, there exists by (iii) a finite family {y1, y2, . . . , yn}
such that K =

n⋃
i=1

Oyi . Let {f1, f2, . . . , fn} be a partition of unity corresponding

to this finite subcovering, i.e. each fi, i = 1, 2, . . . , n is a real valued continuous

function defined on K such that fi vanishes outside Oyi , O ≤ fi(x) ≤ 1 for all

x ∈ K and
n∑
i=1

fi(x) = 1 for each x ∈ K.

We now define a mapping p : K → K by

p(x) =

n∑

i=1

fi(x)yi , x ∈ K.
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Obviously p maps K into K and is continuous. Also for each k with fk(x) 6= 0,

x ∈ Oyk
⊂ T−1(yk), i.e. yk ∈ T (x). As T (x) is convex, it readily follows that

p(x) ∈ T (x) for each x ∈ K.

Now let S be the finite dimensional simplex spanned by y1, y2, . . . , yn. Then

clearly p maps S into S. Also since E is Hausdorff vector space, the topology on

S induced by the topology in E is Euclidean. Hence by the Brouwer fixed point

theorem, there is point x0 = p(x0) ∈ T (x0).

Corollary 4.14.1 (Brouwer, 1968)) Let K be a nonempty convex compact

subset of a topological vector space E and T : K → 2K be set valued mapping of K

into 2K such that

(a) for each x ∈ K, T (x) is a nonempty convex subset of K;

and

(b) for each y ∈ K, T−1(y) = {x ∈ K : y ∈ T (x)} is open in K.

Then there exists a point x0 ∈ T (x0).

Proof. Take Oy = T−1(y) of Theorem 4.14. Clearly K =
⋃
y∈K

T−1(y). To see this

let x ∈ K. As T (x) 6= ∅, we can choose y ∈ T (x). Hence x ∈ T−1(y). Thus the

corollary follows from Theorem 4.14.

We now prove the Tychonoff fixed point theorem.

Proof of Theorem 4.8. Let {pα : α ∈ I} be the family of seminorms which

generates the topology of E. For each α ∈ I , let

Fα = {x ∈ K : pα(x− T (x)) = 0}.

Then since E is Hausdorff, x0 is a fixed point of T if and only if x0 ∈ ⋂
α∈I

Fα. Also

since Fα is closed for each α ∈ I and K is compact,
⋂
α∈I

Fα 6= ∅ if and only if each

finite intersection Fα1 ∩ Fα2 ∩ . . . ∩ Fαn 6= ∅. We prove that the later is nonempty.

To this end it will suffice to prove that there is a point u0 ∈ k such that

n∑

i=1

pαi (u0 − T (u0)) ≤
n∑

i=1

pαi(x − T (u0)) for all x ∈ K. (4.8)

For then it would imply that pαi (u0 − T (u0)) = 0 for i = 1, 2, . . . , n (taking

x = T (u0)), i.e. u0 ∈
n⋂
i=1

Fαi . If possible, we suppose that (4.8) is false. Then we

define the set valued mapping G : K → 2K by

G(y) =

{
x ∈ K :

n∑

i=1

pαi (y − T (y)) >

n∑

i=1

pαi (x− T (y))

}
,
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y ∈ K such that G(y) 6= ∅ for each y ∈ K. Also it is clear that G(y) is

convex for each y ∈ K. Moreover, it follows from the continuity of T and

pαi , i = 1, 2, . . . , n that for each x ∈ K, G−1(x) = {y ∈ K : x ∈ G(y)} =

{y ∈ K :
∑n

i=1 pαi (y − T (y)) >
∑n

i=1 pαi (x− T (y))} is an open set of K. Hence

by Corollary 4.14.1 there is a point u0 ∈ G(u0) which is absurd. Thus (4.8) is true.

Therefore,
⋂
α∈I

Fα 6= ∅.

Note that this proof also contains the proof of Corollary 4.7 as a special case and

that unlike Dugundji and Granas (1982) the fixed point theorem of Browder has

been used instead of KKM theorem.

We now prove the following lemma which was first proved by Fan (1961) as

an extension of the well known finite dimensional result of Knaster-Kuratowski-

Mazurkiewicz (1929) to topological vector space. We give here a different proof. In

fact, it can be shown that the following lemma is equivalent to the Corollary 4.16.1

(see the proof of equivalence in Section 4.4).

Lemma 4.5 Let X be a nonempty subset of a topological vector space E. For

each x ∈ X, let a nonempty closed subset F (x) be given such that

(i) F (x0) is compact for some x0 ∈ X;

and

(ii) for each finite subset {x1, x2, . . . , xn} of X the convex hull of

{x1, x2, . . . , xn} is contained in the corresponding union
n⋃
i=1

F (xi). Then
⋂
x∈X

F (x) 6= ∅.

Proof. In view of (i) it will suffice to show that for each finite set {x1, x2, . . . , xn},
n⋂
i=1

F (xi) 6= ∅. If possible, we suppose that for some subset {x1, x2, . . . , xm},
m⋂
i=1

F (xi) = ∅. Then for each x ∈ Sm = 〈x1, x2, . . . , xm〉, the convex hull of

{x1, x2, . . . , xm}, the set A(x) = {y ∈ Sm ∩X : x /∈ F (y)} is not empty.

Indeed, at least one of the points xi, i = 1, 2, . . . , m must be in A(x) for

otherwise
m⋂
i=1

F (xi) would be nonempty. Now for each y ∈ Sm, A−1(y) = {x ∈
Sm : y ∈ A(x)} = {x ∈ Sm : x /∈ F (y)} = [F (y)]c ∩ Sm is an open set in Sm. We

set Oy = A−1(y). It can be easily seen that
⋃

y∈Sm

Oy = Sm. Indeed, let x ∈ Sm.

Then since A(x) 6= ∅, we choose y ∈ A(x). This implies that x ∈ A−1(y) = Oy.

Thus the assertion is made. Now we set up a set valued mapping T : Sm → Sm
by T (x) = coA(x), x ∈ Sm. Then clearly T satisfies all the conditions of Theorem

4.14. Hence T has a fixed point x0, i.e. x0 ∈ coA(x0). Hence there are points

y1, y2, . . . , yk in Sm such that x0 =
k∑
i=1

λiyi,
k∑
i=1

λi = 1, λi ≥ 0, yi ∈ A(x0),
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i = 1, 2, . . . , k. This implies that x0 /∈
k⋃
i=1

F (yi) which contradicts (ii). Hence have

proved the theorem.

4.2.1 Duality in Fixed Point Theory of Set Valued Mappings

Since each fixed point of a set valued mapping T is also a fixed point of the inverse

mapping T−1 and vice-versa. It is possible to make a dual statement of a fixed point

theorem to yield a fixed point of the inverse mapping. This simple phenomenon

has been called the duality in fixed point theory in Tarafdar and Husain (1978)

containing the next two results.

Corollary 4.14.1 has the following dual statement D1:

Theorem D1. Let K be a nonempty subset of a linear topological vector space E.

Let T : K → 2E be a set valued mapping of K into 2E such that

(i) X = T (K) is a compact convex and K ⊂ X;

(ii) for each y ∈ X, T−1(y) is a nonempty convex subset of K;

and

(iii) for each x ∈ K, T (x) is an open subset of X.

Then there is a point x0 ∈ K such that x0 ∈ T (x0).

Proof. We define a mapping F : X → 2K by F (x) = T−1(x), x ∈ X as T−1(x) ⊂
K ⊂ X . Noting that F−1(y) = T (y) for each y ∈ K, it is easy to see that F satisfies

the conditions of Corollary 4.14.1. Hence there is a fixed point x0 ∈ X such that

x0 ∈ F (x0) = T−1(x0). Thus x0 ∈ T (x0) and x0 ∈ K as F (x0) ⊂ K.

Our next theorem is the dual of Theorem 4.8:

Theorem D2. Let K be a nonempty compact subset of a locally convex Hausdorff

topological vector space E. Let T : K → 2E be a set valued mapping of K into 2E

such that

(i) X = T (K) is compact convex and K ⊂ X;

(ii) T is upper semicontinuous;

(iii) T (x) is nonempty and closed for each x ∈ K;

and

(iv) T−1(x) is a closed convex subset of K for each x ∈ X.

Then there is a point x0 ∈ K such that x0 ∈ K.

Proof. It is clear that the mapping F : X → 2K defined by F (x) = T−1(x),

x ∈ X is nonempty valued. Since K and T (K) = X are compact and T is upper

semicontinuous with closed values, it follows by Theorem 2.32(a) (also Browder

(1968), lemma, p. 285) that the graph of T = G(T ) = {(x, y) : x ∈ K and y ∈
T (x)} is closed in K ×X . Now we prove that the graph of T−1 is closed. To this

end, let yδ ∈ T (K) = X , xδ ∈ T−1(yδ) and (yδ, xδ) → (y, x). Hence yδ → y,
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xδ → x and yδ ∈ T (xδ). Thus y ∈ T (x) as G(T ) is closed, i.e. x ∈ T−1(y).

Consequently G(F ) = G(T−1) is closed. T−1 having closed values is by Theorem

2.32(b) upper semicontinuous. Hence by Theorem 4.8 there is a point x0 ∈ X such

that x0 ∈ F (x0) = T−1(x0). Thus x0 ∈ T (x0) and x0 ∈ K because F (x0) ⊂ K.

In the rest of this section we deal with the results obtained in Tarafdar (1982)

and Fan (1966) and Fan (1984).

Lemma 4.6 Let X be a nonempty convex subset of a topological vector E. To

each point x ∈ X, let a nonempty subset F (x) in E be given such that

(a) x ∈ F (x) for each x ∈ X;

(b) F (x0) is compact for some x0 ∈ X;

(c) for each x ∈ X, the set A(x) = {y ∈ X : x /∈ F (y)} is convex;

(d) for each x ∈ X, the intersection of F (x) with any finite dimensional subspace

of E is closed;

(e) for each x ∈ X, F (x0) ∩ F (x) is closed.

Then
⋂
x∈X

F (x) 6= ∅.

Remark 4.3 The conditions (a) and (c) together imply the condition (i) of

Lemma 4.5. Thus if (d) and (e) are replaced by (ii) of Lemma 4.5 the above lemma

would be a special case of Lemma 4.5.

Proof of Lemma 4.6. In view of (b) and (e) it would suffice to prove that
n⋂
i=1

F (xi) 6= ∅ for each finite subset {x1, x2, . . . , xn} of X . If possible, let us assume

that
n⋂
i=1

F (xi) = ∅. Then for each x ∈ S, the convex hull of {x1, x2, . . . , xn} the

set B(x) = {y ∈ S : x /∈ F (y)} is nonempty. Indeed, at least one of the xi,

i = 1, 2, . . . , n belongs to B(x). Since S is convex, it follows from (c) that B(x) is

convex. Let us define a mapping T : S → 2S by

T (x) = B(x) for each x ∈ S.

Now T−1(x) = {y ∈ S : x ∈ T (y)} = {y ∈ S : x ∈ B(y)} = {y ∈ S : y /∈ F (x)}
is open in S by (d). Hence by Theorem 4.14.1 there is a point x0 ∈ S such that

x0 ∈ T (x0) = B(x0). But this means that x0 /∈ F (x0) which contradicts (a). This

proves the lemma.

We now prove our fixed point theorems.

Theorem 4.15 Let K be a nonempty convex subset of E. Let T : K → 2K be

a set valued mapping such that

(a)′ for each x ∈ K, T (x) is a nonempty convex subset of K;

(b)′ for some x0 ∈ K, the complement of T−1(x0), in K, denoted by [T−1(x0)]
c

is compact;
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(c)′ for each x ∈ K, the intersection of [T−1(x)]c with any finite dimensional

subsepace of E is closed;

(d)′ for each x ∈ K, [T−1(x)]c ∩ [T−1(x0)]
c is closed.

Then there is a point x0 ∈ K such that x0 ∈ T (x0).

Proof. If possible, let us assume that T has no fixed point, i.e. there is no point x ∈
K such that x ∈ T (x). This implies that there is no x ∈ K such that x ∈ T−1(x).

Thus we have (a) x ∈ [T−1(x)]c for each x ∈ K; and (b) [T−1(x)]c is nonempty for

each x ∈ K.

We set F (x) = [T−1(x)]c for each x ∈ K.

Now A(x) = {y ∈ K : x /∈ F (y)} = {y ∈ K : x /∈ [T−1(y)]c} = {y ∈ K : x ∈
T−1(y)} = T (x) which is convex by (a)′. Thus we have condition (c) of Lemma

4.6. Conditions (b), (d) and (e) of Lemma 4.6 follow from assumptions (b)′, (c)′

and (d)′ respectively. Hence there is a point u ∈ K such that u ∈ ⋂
x∈K

F (x),

i.e. u ∈ [T−1(x)]c for each x ∈ K i.e. u /∈ T−1(x) for any x ∈ K. However,

u ∈ K =
⋃
x∈K

T−1(x) which is a contradiction. This proves the theorem.

The following theorem is dual to the above theorem in the sense of Theorems

D1 and D2.

Theorem 4.16 Let K be a nonempty convex subset of E. Let T : K → 2K be

a multi-valued mapping such that

(1) for each x ∈ K, T (x) be a nonempty subset of K;

(2) for some x0 ∈ K. [T (x0)]
c is compact in K;

(3) for each x ∈ K, T−1(x) is convex (may be empty);

(4) for each x ∈ K, the intersection of [T (x)]c with any finite dimensional sub

space of E is closed;

(5) for each x ∈ K, [T (x)]c ∩ [T (x0)]
c is closed;

(6)
⋃
x∈K

T (x) = K.

Then there is a point x0 ∈ K such that x0 ∈ T (x0).

Proof. As before, let us assume that there is no point x ∈ K such that x ∈ T (x).

This implies (a) x ∈ [T (x)]c for each x ∈ K and (b) [T (x)]c is nonempty for each

x ∈ K.

We set F (x) = [T (x)]c for each x ∈ K.

Then A(x) = {y ∈ K : x /∈ F (y)} = {y ∈ K : x ∈ T (y)} = T−1(x) which is

convex by (3). Thus we have the condition (c) of Lemma 4.6 Conditions (2), (4) and

(5) imply respectively conditions (b), (d) and (c) of Lemma 4.6. Hence there is a

point u ∈ K such that u ∈ ⋂
x∈K

F (x) =
⋂
x∈K

[T (x)]c. This implies that u /∈ ⋃
x∈K

T (x)

which is impossible by (6). Thus the theorem is proved.
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Corollary 4.16.1 Let K be a nonempty convex subset of E and T : K → 2K be

a set valued mapping such that

(i) for each x ∈ K, T (x) is a nonempty convex subset of K;

(ii) for each x ∈ K, T−1(x) is open in K;

(iii) for some x0 ∈ K, [T−1(x0)]
c is compact in K.

Then there is a point x0 ∈ K such that x0 ∈ T (x0).

Proof. Corollary follows from Theorem 4.15.

Remark 4.4 This corollary generalizes the Corollary 4.14.1 of Browder (1968).

Corollary 4.16.2 Let K be a nonempty convex subset of E and T : K → 2K be

a multi-valued mapping such that

(i)′ for each x ∈ K, T (x) is a nonempty open subset of K;

(ii)′ for each x ∈ K, T−1(x) is convex (may be empty);

(iii)′ for some x0 ∈ K, [T (x0)]
c is compact;

(iv)′
⋃
x∈K

T (x) = K.

Then there is a point x0 ∈ T such that x0 ∈ T (x0).

Proof. This follows from Theorem 4.16.

4.3 Applications on Minimax Principles

Theorem 4.17 (Fan’s minimax principle) Let K be a nonempty convex subset

of E. Let f(x, y) be a real valued function defined on K ×K such that

(i) f(x, x) ≤ 0 and x ∈ K;

(ii) for every x ∈ K, the set A(x) = {y ∈ K : f(x, y) > 0} is convex;

(iii) there is a compact subset L of E and x0 ∈ L ∩K such that f(x, x0) > 0 for

all x ∈ K, x /∈ L;

(iv) for every y ∈ K, we have

(1) f(x, y) is a lower semicontinuous function of x on the intersection of

K with any finite dimensional subspace of E;

(2) f(x, y) is also a lower semicontinuous function of x on L.

Then there exists a point y0 ∈ L such that f(y0, y) ≤ 0 for all y ∈ K.

Proof. For each y ∈ K, we set F (y) = {x : f(x, y) ≤ 0}. It is easy to see that

conditions (a), (c) and (d) of Lemma 4.6 follow from assumption (i), (ii) and (iv)

respectively. F (x0) being a subset of L is compact by (iv) (2). Thus condition (b)
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of Lemma 4.6 holds. (e) follows also from (iv) (2). Hence by Lemma 4.6 there exist

a point y0 ∈ ⋂
x∈K

F (x), i.e.

f(y0, x) ≤ 0 for all x ∈ K.

Remark 4.5 This includes Fan’s minimax principle (1966) and is different from

the one of Brézis, Nirenberg and Stampacchia given later.

Although the following form of von Neumann and Sion minimax principle is a

minor generalization of the one given by Brézis, Nirenberg and Stampacchia (1972),

Proposition 1, we would like to include it as direct application of the minimax

principle 4.17.

Theorem 4.18 (von Neumann–Sion minimax principle) Let F be a Hous-

dorff topological vector space and G be a vector space; let A ⊂ F and B ⊂ G be

convex sets. Let H(u, v) be a real valued function defined on A×B satisfying

(a)′ for some ṽ ∈ B and some λ > supv∈B infu∈AH(u, v), the set P = {u ∈ A :

H(u, ṽ) ≤ λ} is compact;

(b)′ for each v ∈ A, H(u, v) is a quasi-convex function of v on B and for each

v ∈ B, −H(u, v) is a quasi-convex function of u on A;

(c)′ for each v ∈ B, H(u, v) is a lower semicontinuous function of u on P and

also a lower semicontinuous function of u on the intersection of A with any

finite dimensional subspace of F ;

(d)′ for each u ∈ A, −H(u, v) is a lower semicontinuous function of v on the

intersection of B with any finite dimensional subspace of G.

Then α = sup
v∈B

inf
u∈A

H(u, v) = inf
u∈A

sup
v∈B

H(u, v) = β.

Proof. The same proof given in (H. Brézis and Stampacchia (1972)) with slight

modification will do. We will maintain the notations given there. Obviously

inf
u∈A

H(u, v0) ≤ H(u0, v0) ≤ sup
v∈B

H(u0, v) for all u0 ∈ A and v0 ∈ B. Thus α ≤ β. If

possible, let us assume α < β. We can choose a real number γ satisfying α < γ < β,

γ ≤ λ.

Let A(v) = {u ∈ A : H(u, v) ≤ γ} and B(u) = {v ∈ B : H(u, v) ≥ γ}. By

choice of γ we have (1)
⋂
v∈B

A(v) = ∅ and (2)
⋂
u∈A

B(u) = ∅. We set A(v) = A(v)∩P

for each v ∈ B. Then by (c)′ A(v) is a closed subset of the compact subset P for

each v ∈ B and by (1)
⋂
v∈B

A(v) = ∅. Hence we can find v1, v2, . . . , vn ∈ B such

that (3)
n⋂
i=1

A(vi) = ∅. We note that A(ṽ) = A(ṽ) as γ ≤ λ. Consequently as γ > α,

we can assume λ = γ and ṽ as one of vi, i = 1, 2, . . . , n. Let B′ be the convex

hull of {vi, v2, . . . , vn}. We now set E = F ×Rn and K = A×B′ where Rn is the
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usual n-dimensional Euclidean space. We define f on K ×K by

f(x, y) = min{H(u, v′) − γ, −H(u′, v) + γ}, x = (u, v), y = (u′, v′).

Obviously f satisfies (i) of 4.17 f satisfies (ii) of 4.17 by virtue of the quasiconvexity

of H and −H assumed in (b)′. We take L = A(ṽ)×B′. The lower semicontinuity of

H on P assumed in (c)′ and the lower semicontinuity of −H assumed in (d)′ imply

the lower semicontinuity of f on L with respect to x for each fixed y ∈ K, i.e. (iv)

(2) of 4.6 holds. For each fixed y ∈ K the lower semicontinuity of f with respect

to y on the intersection of K with any finite dimensional subspace of E follows

from the corresponding lower semicontinuities of H and −H assumed inn (c)′ and

(d)′ (we recollect that minimum of two lower semicontinuous functions is lower

semicontinuous), i.e. (iv) (1) of 4.17 holds. Finally we take x0 = (u0, ṽ) ∈ L ∩K
for any u0 ∈ A.

We can easily see that (iii) of 4.17 holds with this x0.

Hence by Theorem 4.17 there is a point y0 = (u0, v0) ∈ K ∩ L such that

f(y0, y) ≤ 0 for all y ∈ K, i.e. for all u ∈ A, v ∈ B′, either H(u0, v) ≤ γ or

γ ≤ H(u, v0). Let v be one of vi. We can choose v = vi such that u0 /∈ A(vi).

This is possible as
n⋂
i=1

A(vi) = ∅. Thus H(u0, vi) > γ as u0 ∈ P . Thus it follows

H(u, v0) ≥ γ for all u ∈ A, i.e. v0 ∈ ⋂
u∈A

B(u) which contradicts (2).

4.3.1 Applications on Sets with Convex Sections

Theorem 4.19 Let K1, K2, . . . , Kn be n ≥ 2 nonempty convex sets, each in a

topological vector space En, and let K =
n∏
j=1

Kj . Let S1, S2, . . . , Sn be n subsets of

K having the following properties:

(a) Let K−j =
∏
i6=j

Ki and let us denote the points of K−j by x−j . For

j = 1, 2, . . . , n and for each x−j ∈ K−j , the set Sj(x−j) = {xj ∈ Kj :

[xj , x−j ] ∈ Sj} is a nonempty convex subset of Kj.

(b) For each j = 1, 2, . . . , n and for each point xj ∈ Kj, the set Sj(xj) = {x−j ∈
K−j : [xj , x−j ] ∈ Sj} is an open subset of K−j.

and

(c) For some point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ K, the complement of the set

n⋂
j=1

{Sj(x0
j ) ×Kj) is compact in K. Then

n⋂
j=1

Sj 6= ∅.

Proof. For each x ∈ K, let A(x) =
n∏
j=1

Sj(x−j) where x−j is the natural projection

of x on K−j . By (a) A(x) is a nonempty convex subset of K for each x ∈ K. We

define a set valued mapping T : K → 2K by T (x) = A(x), x ∈ K.
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Now x ∈ T−1(y) if y ∈ T (x) = A(x) =
n∏
j=1

Sj(x−j), i.e. yj ∈ Sj(x−j) for each

j = 1, 2, . . . , n, i.e. x−j ∈ Sj(yj) for j = 1, 2, . . . , n, where y = (y1, y2, . . . , yn).

Hence T−1(y) =
n⋂
j=1

{Sj(yj) ×Kj} which is an open set by (b).

Final by (c) [T−1(x0)]c is compact in K. Hence by Corollary 4.16.1 there is

a point z ∈ K such that z ∈ T (z), i.e. z ∈
n∏
j=1

Sj(z−j), zj ∈ Sj(z−j) for j =

1, 2, . . . , n. Hence z = [zj , z−j ] ∈ Sj for j = 1, 2, . . . , n. Thus x ∈
n⋂
j=1

Sj .

Our next corollary is due to Fan (1966, Theorem 1) and afterwards by Brower

(1968, Theorem 11) by different method.

Corollary 4.19.1 Let K1, K2, . . . , Kn be n ≥ 2 nonempty compact convex sets,

each in a topological vector space En and let K =
n∏
j=1

Kj . Let S1, S2, . . . , Sn be n

subsets of K having the properties (a) and (b) of Theorem 4.19. Then
n⋂
j=1

Sj 6= ∅.

Proof. The condition (c) of Theorem 4.19 follows automatically by the compactness

of Kj , j = 1, 2, n. Hence the corollary follows from Theorem 4.19.

Theorem 4.20 Let K1, K2, . . . , Kn, K, K−j, S1, S2, . . . , Sn be as in Theorem

4.19 satisfying the following properties:

(i) For each j = 1, 2, . . . , n and each point xj ∈ Kj , the set Sj(xj) = {x−j ∈
K−j : [xj , x−j ] ∈ Sj} is a convex subset of K−j .

(ii) For each j = 1, 2, . . . , n and each x−j ∈ K−j, the set Sj(x−j) = {xj ∈ Kj :

[xj , x−j ] ∈ Sj} is a nonempty open subset of Kj .

(iii) For some point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ K, the complement of the set

n∏
j=1

Sj(x−j) is compact.

(iv)
⋃
x∈K

A(x) = K, where A(x) =
n∏
j=1

Sj(x−j), x−j being the natural projection

of x on K−j.

Then
⋂n
j=1 Sj 6= ∅.

Proof. By (ii) A(x) is a nonempty open subset of K for each x ∈ K. We define the

set valued mapping T : K → 2K by T (x) = A(x), x ∈ K. By the same argument

as in Theorem 4.19, for each y ∈ K, T−1(y) =
n⋂
j=1

{Sj(yi) ×Kj} which is convex

by (i). By (iii) the complement of T (x0) is compact and by (iv)
⋃
x∈K

T (x) = K.

Hence by Corollary 4.16.2, there is a point z ∈ K such that z = T (z) = A(z), i.e.

z = [xj , zij ] ∈ Sj for all j = 1, 2, . . . , n. Hence z ∈
n⋂
j=1

Sj .
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Corollary 4.20.1 Let K1, K2, . . . , Kn be n ≥ 2 nonempty compact convex sets,

each in a topological vector space, K =
n∏
j=1

Kj and K−j =
∏
j 6=i

, j = 1, 2, . . . , n.

Let S1, S2, . . . , Sn be n subsets of K satisfying (i), (ii) and (iv) of Theorem 4.20.

Then
n⋂
j=1

Sj 6= ∅.

Proof. The condition (iii) of Theorem 4.20 is automatically satisfied due to the

compactness of Kj , j = 1, 2, . . . , n. Hence the corollary from Theorem 4.20.

Theorem 4.21 Let K1, K2, . . . , Kn and K be as in Theorem 4.19. Let

F1, f2, . . . , fn be n real valued functions defined on K satisfying properties:

(a) For each j = 1, 2, . . . , n, and for each point xj ∈ Kj . fj(xj , x−j) is a lower

semi-continuous function of x−j on K−j.
(b) For each j = 1, 2, . . . , n and for each x−j ∈ K−j, fj(xj , x−j) is a quasi-

concave function of xi on Kj (i.e. for each real number t, the set {xj ∈
Kj , fj(xj , x−j) > t} is a convex subset of Kj).

(c) Let t1, t2, . . . , tn be n real numbers such that for each j = 1, 2, . . . , n and

each point x−j of K−j, there exists a point yj ∈ Kj such that fj(yj , x−j) >
tj .

(d) Further assume that for some point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ K, the comple-

ment of the set
n⋂
j=1

[{
x−j ∈ K−j : fj(x

0
j , x−j) > tj

}
×Kj

]
in K is compact.

Then there is a point u ∈ K such that fj(u) > tj for all j = 1, 2, . . . , n.

Proof. For j = 1, 2, . . . , n, we define the subset Sj of K by Sj = {x ∈ K :

fj(x) > tj} which is nonempty by condition (c). The condition (d) says that the

complement of
⋂
j=1

{Sj(x0
j ) × Kj} in K is compact. The rest of the proof follows

from Theorem 4.19.

Corollary 4.21.1 (Fan (1966) and also Brower (1968)) Let K1, K2, . . . ,

Kn, K and K−j for j = 1, 2, . . . , n be as in Corollary 4.19.1. Let f1, f2, . . . , fn be

n real valued functions defined on K satisfying (a), (b) and (c) of Theorem 4.21.

Then there is a point u ∈ K such that fj(u) > t)j for all j = 1, 2, . . . n.

Proof. For j = 1, 2, . . . n, we define Sj = {x ∈ K : fj(x) > t} which is a

nonempty subset by (b). the condition (c) is automatic due to the compactness

of Kj , j = 1, 2, . . . , n. the corollary follows either from Theorem 4.21 or from

Corollary 4.19.1.

Our next theorem is dual to Theorem 4.21.

Theorem 4.22 Let K1, K2, . . . , Kn, K and K−j, j = 1, 2, . . . , n be as in

Theorem 4.21. Let f1, f2, . . . , fn be n real valued functions defined on K satisfying

the properties:
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(i) For each j = 1, 2, . . . , n and each xj ∈ Kj, f(xj , x−j) is a quasi-concave

function of xij on K−j.
(ii) For each j = 1, 2, . . . , n and each x−j ∈ K−j, fj(xj , x−j) is a lower semi-

continuous function of xj on Kj .

(iii) Let t1, t2, . . . , tn be n real numbers such that for each j = 1, 2, . . . , n and

each x−j ∈ D−j, there exists yj ∈ Kj such that fj(yj , x−j) > tj .

(iv) For some point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ K, the complement of the set

n∏
j=1

{xj ∈ Kj : fj(xj , x
0
−j) > tj} in K is compact.

(v)
⋃
x∈K

A(x) = K, where A(x) =
n∏
j=1

{xj ∈ Kj : f(xj , x−j) > tj}, x−j being

the projection of x on K−j.
Then there is a point u ∈ K such that fj(u) > tj for all j = 1, 2, . . . n.

Proof. As before, for each j = 1, 2, . . . , n we define the subsets Sj of K by Sj =

{x ∈ K : fj(x) > tj} which is nonempty by (iii). The condition (iv) reduces to the

condition that the complement of
n∏
j=1

Sj(x
0
−j) = A(x0) in K is compact. Now it is

easy to see that the corollary follows from Theorem 4.20.

Corollary 4.22.1 Let K1, K2, . . . ,Kn, K and K−j , j = 1, 2, . . . , n be as in

Corollary 4.19.1. Let f1, f2, fn be n real valued functions defined on K satisfying

the properties (i), (ii), (iii) and (v) of Theorem 4.22.

Then there is a point u ∈ K such that fj(u) > tj for all j = 1, 2, . . . , n.

Proof. Noting that the condition (iv) of Theorem 4.22 is automatic, the corollary

follows from Theorem 4.22.

Remark 4.6 The materials from Lemma 4.6 to Theorem 4.18 and Theorems

4.19, 4.20 and 4.21 are due Tarafdar (1982) and Corollaries 4.20.1 and 4.22.1 are

due to Tarafdar and Husain (1978).

4.4 More on Sets with Convex Sections

In our remaining consideration the index set I will be finite or infinite. The results

in this section are more general then those of the previous section.

Theorem 4.23 (Fan (1984)) Let {Eα : α ∈ I} be a family of topological vector

spaces, where I is a finite or an infinite index set. For each α ∈ I, let Xα be a

nonempty compact convex subset in Eα. Let X =
∏
α∈I

Xα and X−α =
∏
β∈I
β 6=α

Xβ for

each α ∈ I. Let {Aα : α ∈ I} and {Bα : α ∈ I} be two families of subsets of X

having the following properties:

(a) For each α ∈ I and each xα ∈ Xα, the set
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Bα(xα) = {x−α ∈ X−α : [xα, x−α] ∈ Bα} is open in Xα;

and

(b) For each α ∈ I and each x−α ∈ X−α, the set

Bα(x−α) = {xα ∈ Xα : [xα, x−α] ∈ Bα} is nonempty and the set

Aα(x−α) = {xα ∈ Xα : [xα, x−α] ∈ Aα} contains the convex hull of

Bα(x−α). Then
⋂
α∈I

Aα 6= ∅.

Proof. For each α ∈ I and each x−α, there exists by (b) xα ∈ Bα(x−α), i.e.

x−α ∈ Bα(xα). Hence {Bα(xα( : xα ∈ Xα} is an open covering of the compact set

X−α. Consequently for each α ∈ I , there is a finite set {xα1, xα2, . . . , xan(α)} ⊂ Xα

such that

X−α =

n(α)⋃

k=1

Bα(xαk).

Let {fα1, fα2, fαn(α)} be a continuous partition of unity subordinate to this finite

open subcovering of X−α, i.e.

fαk(x−α) = 0 for x−α ∈ X−α \Bα(xαk),

n(α)∑

k=1

fαk(x−α) = 1 for x−α ∈ X−α,

and 0 ≤ fαk(x−α) ≤ 1 for all x−α ∈ X−α. We now define a continuous mapping

pα : X−α → Xα by

pα(x−α) =

n(α)∑

k=1

fαk(x−α)xαk , x−α ∈ X−α.

Since fαk(x−α) 6= 0 implies x−α ∈ Bα(xαk), i.e. xak ∈ Bα(xα). Hence it follows

that pα(x−α) ∈ convex hull of Bα(x−α) ⊂ Aα(x−α) by (b) for α ∈ I and x−α ∈
X−α.

For each α ∈ I , let Kα be the convex hull of {xα1, xα2, . . . , xn(α)}. Then

Kα ⊃ Xα. Let Fα denote the vector subspace of Eα generated by Kα. Fα being

finite dimensional is locally convex. Then K =
∏
α∈I

Kα is a compact convex subset

of the locally convex Hausdorff topological vector space
∏
α∈I

Fα. For each α ∈ I , let

K−α =
∏

β∈I β 6=α
Kβ. Then clearly K−α ⊂ X−α for each α ∈ I .

Finally we define a continuous mappinga q : K → K in the following manner

for each: x = [xα, x−α] ∈ Kα×K−α, q(x) = {pα(x−α)}α∈I ∈
∏
α∈I

Kα = K. Clearly

q is continuous. Hence by Tychonoff’s fixed point Theorem 4.8 there is a fixed point

u ∈ K of q, i.e. u = {uα}α∈I = q(u) = {qα(u−α)}α∈I . Thus for each α ∈ I , we

have uα = pα(u−α) ∈ Aα(u−α). i.e. u = [uα, u−α] ∈ Aα. Hence
⋂
α∈I

Aα.
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Corollary 4.23.1 (Ma (1969)) Let {Eα : α ∈ I}, {Xα : α ∈ I}, X and X−α
be as in Theorem 4.19.1. Let {Aα : α ∈ I} be a family of subsets of X satisfying

the following conditions:

(i) for each α ∈ I and each xα ∈ Xα, the set Aα(xα) = {x−α ∈ X−α :

[xα, x−α] ∈ Aα} is open in X−α;

and

(ii) for each α ∈ I and each x−α ∈ X−α, the set Aα(x−α) = {xα ∈ Xα :

[xα, x−α] ∈ Aα} is nonempty and convex.

Then
⋂
α∈I

Aα 6= ∅.

Proof. For each α ∈ I , we take Aα = Bα and apply Theorem 4.23 to obtain the

corollary.

We now prove the following extended version of Theorem 4.23.

Theorem 4.24 Let {Eα : α ∈ I} be as in Theorem 4.19.1. Let for each α ∈ I,

Xα be nonempty convex subset of Eα. Let {Aα : α ∈ I} and {Bα : α ∈ I} be two

families of subsets of X =
∏
α∈I

Xα satisfying the properties (a) and (b) of Theorem

4.23. Further assume that (c) there is a nonempty compact convex subset K of X

such that for every x ∈ X \ K, x = [xα, x−α] ∈ Xα × X−α, there exists y ∈ K,

[yα, y−α] ∈ Xα ×X−α satisfying [yα, x−α] ∈ Bα for eachα ∈ I. Then
⋂
α∈I

Aα 6= ∅.

Proof. For each α ∈ I , let Pα : X → Xα be the projection of X on Xα. For each

α ∈ I . let Pα(K) = X ′
α which is nonempty compact and convex. Let X ′ =

∏
α∈I

X ′
α

and for each α ∈ I , let A′
α = Aα ∩ X ′ and B′

αn = B)α ∩X ′. We also set X ′
−α =∏

β∈I
β 6=α

X ′
β for each α ∈ I .

Then for each α ∈ I and each xα ∈ X ′
α, it is easily seen that the set

B′
α(x) = {x−α ∈ X ′

−α : [xα, x−α] ∈ B′
α} = {x−α ∈ X−α : [xα, x−α] ∈ Bα} ∩X−α]

which is relatively open in x−α] by cndition (a). Also for each α ∈ I and each

x−α ∈ X ′
−α, the set

B′
α(x−α) = {xα ∈ X ′

α : [xα, x−α] ∈ B′
α}

which is nonempty for the following reasons.

By condition (b) Bα(x−α) 6= ∅. Let xα ∈ Bα(x−α). If xα /∈ B′
α(x−α), it

follows that x /∈ X ′ and hence x /∈ K as K ⊂ X ′. By condition (c) there exists

y ∈ K, y = [yα, y−α] ∈ Cα × X−α such that [yα, x−α] ∈ Bα for each α ∈ I .

Thus as yα ∈ Pα(K) = X ′
α and x−α ∈ X ′

−α, [yα, x−α] ∈ Bα ∩ X ′ = B′
α. Hence

yα ∈ B′
α(x−α). Therefore B′(x−α) is always nonempty.
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Finally it can easily be seen that for each α ∈ I and x−α ∈ X ′
−α, the set

A′
α(x−α) = {xα ∈ X ′

α : [xα, x−α] ∈ A′
α} = {xα ∈ Xα : [xα, x−α] ∈ Aα} ∩X ′

α

contains the convex hull of the set

B′
α(x−α) = {xα ∈ X ′

α : [xα, x−α] ∈ B′
α} = {xα ∈ Xα : [xα, x−α] ∈ Bα} ∩X ′

α.

Hence the system {X ′
α, A

′
α, B

′
α} satisfies all the conditions of Theorem 4.23. There-

fore
⋂
α∈I

A′
α 6= ∅. Hence

⋂
α∈I

Aα 6= ∅.

The following theorem, which includes a theorem of von Neumann (1937), which

in turn implies the fundamental theorem of two-person zero sum games was proved

by Fan (1952) and also by Browder (1968), while Theorems 4.24 and 4.27 have been

taken from Tarafdar (1988) and Theorem 4.26 from Tarafdar and Husain (1978).

Theorem 4.25 Let {Kα : α ∈ I} be an indexed family of nonempty compact

convex sets, each in a locally convex topological vector space Eα. Let K =
∏
α∈I

Kα

and K−α =
∏
β∈I
β 6=α

Kβ.

Let {Sα : α ∈ I} be a corresponding indexed family of closed subsets of K

having the property that for each x = {xα : α ∈ I} ∈ K and each α ∈ I, the set

Sα(x−α) = {yα ∈ Kα : [yα, x−α] ∈ Sα} is nonempty and convex.

Then
⋂
α∈I

Sα 6= ∅.

Proof. Here we give the proof as given by Browder (1968). We define a set valued

mapping T : K → 2K by

T (x) = T{xα : α ∈ I} = {yα : α ∈ I}, x = {xα : α ∈ I}

if and only if for each α ∈ I , yα ∈ Sα(x−α). Since for each α ∈ I , Sα(x−α) is

nonempty convex and closed as Sα is closed, it follows that T (x) is a nonempty

compact convex subset of K for each x ∈ K. Now we show that T is upper

semicontinuous. It will suffice to show that the graph G(T ) of T is closed in K×K.

If possible, we assume that [x, y] /∈ G(T ). Then there exists an index β ∈ I such

that yβ /∈ Sβ, i.e. [yβ, x−β ] /∈ Sβ . Since Sβ is compact, there is a neighborhood

U of yβ in Kβ and a neighborhood V of x−β in K−β such that U × V does not

intersect Sβ . We consider the neighborhoods U ′ of y and V ′ of x in K defined by

U ′ = U × K−β and V ′ = Kβ × V . It now follows that for any x ∈ V ′ and any

y ∈ U ′, yβ /∈ Sβ(x−β). Hence U ′ × V ′ does not intersect G(T ). Thus [x, y] is

not a limit point of G(T ). It follows then that G(T ) is closed in K ×K and T is

upper semicontinuous. Hence by Tychonoff Theorem 4.8, there is a point u ∈ K

such that u ∈ T (u), i.e. {uα, α ∈ I} = T (uα : α ∈ I}, i.e. uα ∈ Sα(u−α), i.e.

u = [uα, u−α] ∈ Sα for each α ∈ I . Hence u ∈ ⋂
α∈I

Sα.
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Our next theorem is dual to Theorem 4.25.

Theorem 4.26 Let {Kα : α ∈ I} be a family of nonempty compact convex sets,

each in locally convex topological vector space Eα. Let K =
∏
α∈I

Kα and for each

α ∈ I, K−α =
∏
β∈I
β 6=α

Kβ. Let {Sα : α ∈ I} be corresponding indexed family of closed

subsets of K having the following properties:

(a) For each x = xα : α ∈ I} and each α ∈ I, the set Sα(x−α) = {yα ∈ Kα :

[yα, x−α] ∈ Sα} is nonempty;

(b) For each x = {xα : α ∈ I} and each α ∈ I, the set Sα(xα) = {y−α ∈ K−α :

[xα, y−α] ∈ Sα} is a convex subset of K−α

and

(c) Let for each x = {xα : α ∈ I} ∈ K, A(x) =
∏
α∈I

Sα(x−α). Assume that
⋃
x∈K

A(x) = K. Then
⋂
α∈I

Sα 6= ∅.

Proof. Since Kα and Sα are compact for each α ∈ I , it is easy to see that for each

x ∈ K and α ∈ I , Sα(x−α) is closed and, therefore, compact subset of Kα. Hence

for each x ∈ K, A(x) is a compact subset of K. Let us define a set valued mapping

T : K → 2K by

T (x) = A(x), x ∈ K.

Thus T (x) is compact and hence closed for each x ∈ K. That T (x) is nonempty

follows from the condition (a). Now we consider the set T−1(y), y ∈ K. x ∈ T−1(y)

if and only if y ∈ T (x) = A(x) =
∏
α∈I

Sα(x−α), i.e. if and only if yα ∈ S)α(x−α)

for each α ∈ I , i.e. if and only if x−α ∈ Sα(yα) for each α ∈ I . Hence T−1(y) =⋂
α∈I

{Sα(yα) ×Kα} which is a convex set by condition (b). Further since K−α and

Sα are conpact, it follows that for each yα ∈ Kα, Sα(yα) is a closed set. Therefore

T−1(y) is also closed for each y ∈ K. Now by repeating the same argument as in

Theorem 4.25 we can prove that G(T ) is closed. Hence T is upper semicontinuous.

Hence by Theorem 4.2.1 of section 4.2, there is a point u ∈ K such that u ∈ T (u),

i.e. {uα : α ∈ T} = {uα : α ∈ I}, i.e. uα ∈ Sα(u−α), i.e. u = [uα, u−α] ∈ Sα for

each α ∈ I . Thus u ∈ ⋂
α∈I

Sα.

Using Theorem 4.25 we now prove the following extension.

Theorem 4.27 For each α ∈ I, let Xα be a nonempty convex subset of locally

convex topological vector space Eα. Let {Sα : α ∈ I} be a family of closed subsets of

X =
∏
α∈I

Xα having the property that for each α ∈ I and each x−α ∈ X−α =
∏
β∈I
β 6=α

Xβ
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the set

Sα(x−α) = {xα ∈ Xα : [xα, x−α] ∈ Sα}

is a nonempty convex set.

Furthermore, assume that there is a nonempty compact convex subset K of X

such that for every x ∈ X/K, pxα, x−α] ∈ Xα × X−α, there exists y ∈ K, y =

[yα, y−α] ∈ Xα ×X−α satisfying [yα, x−α] ∈ Sα for each α ∈ I.

Then
⋂
α∈I

Sα 6= ∅.

Proof. For each α ∈ I , let Pα : X → Xα be the projection of X onto Xα. For

each α ∈ I , let Pα(K) = X ′
α which is a nonempty compact convex set in Eα. Let

X ′ =
∏
α∈I

X ′
α and for each α ∈ I , let S′

α = Sα ∩X ′. Then S′
α is a closed subset of

X ′ for each α ∈ I as X ′ is compact and Sα is closed.

Now for each α ∈ I and each x−α ∈ Xα, we can prove by giving similar argu-

ments as those in Theorem 4.20.1 that the set S ′
α(x−α) = {xα ∈ X ′

α : [xα, x−α] ∈
S′
α 6= ∅. That the set S′

α(x−α) is convex follows from the equality:

S′
α(x−α) = {xα ∈ X ′

α : [xα , x−α] ∈ S′
α} = {xα ∈ Xα : [xα, x−α] ∈ Sα} ∩X ′

α.

Now applying Theorem 4.25 to the system {X ′
α, S

′
α} we have

⋂
α∈I

S′
α 6= ∅ and hence

⋂
α∈I

Sα 6= ∅.

The following two Theorems 4.28 and 4.29 were stated by Ma (1969) in topolog-

ical vector spaces while Browder (1968) proved these in locally convex topological

vector spaces. Theorem 4.28 provides a generalization of Corollary 4.21.1 concern-

ing a known result of Nash (1951) on the existence of equilibrium points from finite

to infinite person games.

Theorem 4.28 Let {Xα : α ∈ I} be a family of nonempty compact convex sets,

each in a topological vector space Eα, where I is a before a finite or a infinite index

set and for each α ∈ I, X−α =
∏
β∈I
β 6=α

Xβ. Let {fα : α ∈ I} be a family of real valued

functions defined on X =
∏
α∈I

Xα satisfying the following properties:

(a) For each α ∈ I and for each xα ∈ Xα, fα(xα, x−α) is a lower semicontinuous

function of x−α ∈ X−α.
(b) For each x−αX−α, fα(xα, x−α) is quasi-concave function of xα on Xα.

(c) Let {tα : α ∈ I} be a family of real numbers such that for each α ∈ I and

each x−α ∈ X−α, there exists a point yα ∈ Xα such that fα(yα, x−α) > tα.

Then there is a point u ∈ X such that fα(u) > tα.

Proof. For each α ∈ I , we define the subsets Aα of X by Aα = {x ∈ X : Fα(x) >

tα}.
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Then by virtue of (a), (b) and (c), we have the conditions (i) and (ii) of Corollary

4.23.1. Hence the theorem follows from Corollary 4.23.1.

In order to prove the concluding theorems of this section we need the concept

of uniform continuity of a function defined on topological vector and the following

lemma.

A real valued function f defined on a nonempty subset X of a topological vec-

tor space E is called uniformly continuous if, given ε > 0, there exists an open

neighborhood W of O ∈ E such that |f(x) − f(y)| < ε whenever x− y ∈W ∩X .

Lemma 4.7 A real valued continuous function f defined on a compact subset X

of a topological vector space E is uniformly continuous. Although it is known, we

include a proof for the benefit of the readers.

Proof. Let ε > 0 be a real number. Then by the continuity of f for each x ∈ X ,

there exists a symmetric open neighborhoodWx of O ∈ E such that |f(x)−f(y)| < ε

whenever x−y ∈ Wx∩X . For each x ∈ X we select a symmetric open neighborhood

Ŵx of O such that Ŵx + Ŵx ⊂ Wx. Clearly {(Ŵx + x) ∩X : x ∈ X} is an open

cover of X . Let {(Ŵxi + xi) ∩ X : i = 1, 2, n} be a finite open cover. Let

W =
n⋂
i

Wxi . Now let x, y ∈ X with x− y = W . Then there is m = 1, 2, . . . n such

that x ∈ Ŵxm + xm. Now

y − xm = y − x+ x− xm ∈W + Ŵxm ⊂ Ŵxm + Ŵxm ⊂Wxm .

Hence |f(x) − f(y)| ≤ |f(x) − f(xm)| + |f(xm − f(y)| < ε
2 + ε

2 = ε.

We now state and prove a theorem on the existence of equilibrium point.

Theorem 4.29 Let {Xα : α ∈ I} be a fmaily of nonempty compact convex

sets, each in a topological vector space Eα, where I is as in Theorem 4.28. Let

{fα : α ∈ I} be a family of continuous functions defined on X =
∏
α∈I

Xα. If for

each α ∈ I and for each x−α ∈ S−α, fα(xα, x−α) is a quasi-convex function of

xα ∈ Xα, where X−α is as defined in Theorem 4.28.

Then there is a point u ∈ X such that for each α ∈ I,

fα(u) = fα[uα, u−α] = sup
xα∈Xα

fα[xα, u−α].

u is called an equilibrium point.

Proof. For each α ∈ I and each x−α ∈ X−α, let

gα(x−α = sup
yα∈Xα

fα(yα, x−α).

By Lemma 4.7 fα is uniformly continuous. Thus it follows that gα is a real valued

continuous function on X−α. For each ε > 0, let

Hε = {x ∈ X : fα(x) ≥ gα(x−α) − ε, for all α ∈ I},
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where x−α is the projection of x on X−α. By the continuity of fα, gα and the

projection mapping on X−α, it follows that Hε is a compact subset of X . Also we

note that Hε decreases as ε decreases to zero. If we set H0 =
⋂
ε>0

Hε, then clearly

H0 is precisely the set, of all points which will satisfy the conclusion of the theorem.

H0 is nonempty if eachHε is nonempty. It thus suffice to prove that Hε is nonempty

for each ε > 0. Now for fixed ε > 0, let

Aα,ε = {x ∈ X : fα(xα, x−α) > gα(x−α) − ε}, α ∈ I.

For each α ∈ I and each xα ∈ Xα, the set

Aα,ε = {x−α ∈ X−α : [xα, x−α] ∈ Aα,ε}
= {x−α ∈ X−α : fα(xα, x−α) > gα(x−α) − ε}

is open, by virtue of the continity of fα and gα. Also for each α ∈ I and each

x−α ∈ X−α, the set

Aα∈ε = {yα ∈ Xα : [yα, x−α] ∈ Aα,ε}
= {yα ∈ Xα : fα(yα, x−α) > gα(x−α) − ε}

is convex and nonempty, by virtue of the quasi-convexity of the function fα(yα, x−α)

in yα and the definition of gα. Hence by Corollary 4.23.1, there is a point u ∈⋂
α∈I

Aα,ε. It readily follows that u ∈ Hε. The proof is complete.

The following theorem which is similar to the above theorem is proved by Brow-

der in locally convex topological vector space.

Theorem 4.30 (Browder (1968)) Let {Xα : α ∈ I} be a family of nonempty

compact convex sets, each in a locally convex topological vector space Eα. Let X

and X−α for each α ∈ I be as defined in the previous theorem. Let {fα : α ∈ I} be

a correspondingly indexed family of continuous real valued functions on X. Assume

that for each α ∈ I, f ∈ R, and each x−α ∈ X−α, the set {yα ∈ Xα : fα(yα, x−α) ≥
t} is a convex subset of Xα. Then there is a point u ∈ X such that for each α ∈ I,

fα(u) = sup
yα∈Xα

fα(yα, u−α).

Proof. For each α ∈ I , let

Aα = {x ∈ X : fα ≥ sup
yα∈Xα

f(yα, x−α)},

where x−α is the projection of x on X−α. Since X is compact and fα is by Lemma

is uniformly continuous, it follows that the function gα(x−α) = sup
yα∈Xα

fα(yα, x−α)

is continuous on X−α. It follows that Aα is a closed subset of X for each α ∈ I .

Now for each α ∈ I and each u−α ∈ X−α, the set Aα = (u−α) = {vα ∈ Xα :

fα(vα, u−α) ≥ gα(u−α)} is a nonempty closed subset of Xα which is convex by
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assumption. Hence by Theorem
⋂
α∈I

Aα 6= ∅, and if u ∈ ⋂
α∈I

Aα, then u satisfies the

requirement of the theorem.

Remark 4.7 The interested readers are encouraged to obtain the dual forms

(see e.g. Husian and Tarafdar (1976)) and the noncompact version of the last two

theorems.

4.5 More on the Extension of KKM Theorem and Ky Fan’s

Minimax Principle

In this section we will consider two extensions of Ky Fan’s generalization (Theo-

rem ) of the well known classical finite dimensional result of Knaster-Kuratowski-

Mazurkiewiéz (KKM) (1929), the first one by Brezis, Nirenberg and Stampacchia

(1972) and the second one by Tarafdar and Thompson (1978). We will make a

detailed comparison between the two and make applications.

Brézis, Nirenberg and Stampacchia’s Extension of Ky Fan’s

Generalization of KKM Theorem

Lemma 4.8 Let X be a nonempty subset of a topological vector space E. To

each x ∈ X, let a nonempty subset F (x) of E be given such that

(i) F (x0) = L is compact for some x0 ∈ X;

(ii) the convex hull of every finite subset {x1, x2, . . . , xn} of X is contained in

the corresponding union
n⋃
i=1

F (xi);

(iii) for each x ∈ X, the intersection of F (x) with any finite dimensional subspace

is closed;

(iv) for every convex subset D of E the following equality holds

{ ⋂

x∈X∩D
F (x)

)
∩D =

( ⋂

x∈X∩D
F (x)

)
∩D.

Then
⋂
x∈X

F (x) 6= ∅.

The proof of this lemma is not given. The idea of the proof will be the same as

that of Lemma 4.10.

Lemma 4.9 Let X be a nonempty subset of E. To each x ∈ X, let a nonempty

set F (x) of E be given such that

(a) x ∈ F (x) for each x ∈ F (x);

(b) F (x0) is compact for some x0 ∈ X;
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(c) for each finite subset {x1, x2, . . . , xn} of X and each x ∈ Sn =

〈x1, x2, . . . , xn〉 = the convex hull of {x1, x2, . . . , xn}, the set A(x) = {y ∈
Sn ∩ X : x /∈ F (y)} has the property that whenever A(x) is nonempty, it

contains a nonempty convex subset H(x) such that the set P (x) = {y ∈ Sn :

x /∈ H(y)} is closed;

(d) F (x0) ∩ F (x) is closed for each x ∈ C.

Then
⋂
x∈X

F (x) /∈ ∅.

Proof. In view of (b) and (d) it suffices to prove that
n⋂
i=1

F (xi) 6= ∅ for each

finite subset {x1, x2, . . . , xn} of X . On the contrary we suppose that for some

finite subset {x1, x2, xk} of X we have
k⋂
i=1

F (xi + ∅. Then for each x ∈ Sk =

〈x1, x2, . . . , xk〉 the set A(x) = {y ∈ Sk ∩X : x /∈ F (y)} is nonempty. Indeed, at

least one of the points xi, i = 1, 2, . . . , k must be in A(x), for otherwise
k⋂
i=1

F (xi)

would be nonempty. We now define a multi-valued mapping T : Sk → 2Sk by

T (x) = H(x), x ∈ S|k; T is well defined by virtue of (c). Now for each x ∈ Sk,

T−1(x) = {y ∈ Sk : x ∈ T (y)} = {y ∈ Sk : x ∈ H(y)} = complement of P (x) in

SK which is an open set in Sk by condition (c) P (x) being closed in Sk). Hence by

the fixed point theorem of Browder there is a point x0 ∈ Sk such that x0 ∈ T (x0).

But then by definition of T (x0) we have x0 /∈ F (x0) which contradicts (a). Thus
k⋂
i=1

F (xi) 6= ∅.

We are now in a position to prove our main lemma.

Tarafdar and Thompson’s Extension of Ky Fan’s Generalization of

KKM Theorem

Lemma 4.10 Let X be a nonempty subset of E. To each x ∈ X, let a nonempty

subset F (x) of E be given such that

(α) x ∈ F (x) for each x ∈ X;

(β) F (x0) = L is compact for some x0 ∈ X;

(γ) for each finite subset {x1, x2, . . . , xn} of X and each x ∈ Sn =

〈x1, x2, . . . , xn〉 the set A(x) = {y ∈ Sn ∩ X : x /∈ F (y)} has the same

property as laid down in (c) of Lemma 2.2.

(δ) for each x ∈ X, the intersection of F (x) with any finite dimensional subspace

is closed;

(ω) the Brezis-Nirenberg-Stampacchia condition holds, that is, for every convex

subset D of E we have (
⋂

x∈X∩D
F (x)) ∩D = (

⋂
x∈X∩D

F (x)) ∩D.

Then
⋂
x∈X

F (x) 6= ∅.
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Proof. We may assume x0 = 0. Let (Ei)i∈I be the class of all finite dimensional

subspaces of E ordered by inclusion i.e. i ≥ j means Ej ⊂ Ei. Restricting to Ei
the conditions of Lemma 4.9 apply to Xi = X ∩Ei and Fi(x) = F (x)∩Ei. Clearly

(a) and (c) are satisfied and (b) and (d) follow from (β) and (δ). By Lemma 4.9

there is ui ∈ L ∩ Ei satisfying

ui ∈ Fi(x) ⊂ F (x) for every x ∈ Xi.

We now repeat the argument of Brezis Nirenberg, and Stampacchia (1972). Let

φi =
⋃
j≥i

{uj} and so u ∈ F (z) for u ∈ φ+ i and z ∈ xi and hence φi ⊂
⋂
x∈xi

F (z).

Suppose x̃ ∈ ⋂
i∈I

φi—which is non-empty since φi ⊂ L is compact and let ii be

such that x̃ ∈ Ei0 . For any x ∈ X we can find i ≥ i0 such that x ∈ Ei. We have

x̃ ∈ φi ∩ Ei ⊂
( ⋂

z∈Xi

F (z)

)
∩ Ei =

⋂

z∈Xi

Fi)(z)

by (ω). Therefore x̃ ∈ Fi(x) ⊂ F (x) and consequently x̃ ∈ ⋂
x∈X

F (x).

Comparison between Lemma 4.8 and Lemma 4.10

(A) If condition (γ) of Lemma 4.10 is strengthened to the condition:

(γ)′: for each x ∈ Xn = 〈x1, x2, . . . , xn〉 the set A(x) = {y ∈ Sn ∩X : x /∈ F (y)}
is convex, then Lemma 4.10 follows from Lemma 4.8.

To show this, it is enough to show that (γ)′ implies condition (ii) of Lemma

4.8. Let (α) hold and {x1, x2, . . . , xn} be any finite subset of X . Suppose (ii)

fails and Sn = 〈x1, x2, . . . , xn = rangle 6⊆
n⋃
i=1

F (xi). Then there is x ∈ Sn with

x /∈
n⋃
i=1

F (xi), x =
n∑
i=1

λixi, λi ≥ 0, and
n∑
i=1

λi = 1. Sicne x /∈ F (xi), xi ∈ A(x)

for all i = 1, 2, . . . , n, and hence x =
n∑
i=1

λixi ∈ A(x) by (γ)′. This means that

x /∈ F (x) contradicting (α). Thus (ii) of Lemma 4.8 and Lemma 4.10 follow from

Lemma 2.1.

Remark 4.8 It is interesting to note that in this case we can take H(x) = A(x)

for each x ∈ X since P (x) = {y ∈ Sn : x /∈ H(y) = A(y)} = {y ∈ Xn : x /∈ F (y)}
is automatically closed by (δ).

(B) Lemma 4.8 applies to the following example although Lemma 4.10 does not

apply.

Let E be the plane R2, S = {(u, v) ∈ R2 : −1 ≤ u, v ≤ 1}, and X = {(u, v) ∈
S : |u| = |v| = 1}. For x = (i, j) ∈ X set F (x) = {(u, v) ∈ R2 : 0 ≤ iu, jv ≤ 1}.
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Clearly Lemma 4.8 applies and by inspection
⋂
x∈X

F (x) = {0, 0}. That Lemma 4.10

does not apply can be seen as follows. For x in S let A(x) = {y ∈ X∩X : x /∈ F (y)}
so that for x 6= (0, 0), A(x) is a non-empty subset of X . Let H(x) be a non-empty

convex subset of A(x) for x 6= (0, 0). Suppose H−1(x) = {y ∈ S : x ∈ H(y)} is

open in S for all x in S. Now H−1(x) is empty for x not in X and since H(x) is

a single element for x 6= (0, 0) non-empty H−1(x) are disjoint. Now
⋃
x∈X

H−1(x) =

S \ {(0, 0)} is connected which is a contradiction.

(C) Lemma 4.10 applies to the following example although Lemma 4.8 does not

apply.

Let E be the reals, F (−3) = {x ∈ R : −3 ≤ x ≤ −2 or |x| ≤ 1} and F (3) =

{x ∈ R : 2 ≤ x ≤ 3 or |x ≤ 1}. Clearly Lemma 4.8 does not apply since [−3, 3]

is not a subset of F (3) ∪ F (−3). Now Lemma 4.10 applies since for x in [−3, 3],

A(x) = {y ∈ [−3, 3] ∩ {−3, 3} : x /∈ F (y)} and we may choose

H(x) =

{
−3, for x > 1

3, for x < −1.

Then H(x) is a convex subset of A(x) and H−1(x) is open in [−3, 3]. The other

conditions of Lemma 4.10 are clearly satisfied.

Applications

Theorem 4.31 (Minimax principle) Let K be a non-enpty convex subset of

E and f(x, y) be a real valued function defined on K ×K such that

(i) f(x, x)(≤ 0 for each x ∈ K;

(ii) for each finite subset {x1, x2, . . . , xn} of K and x ∈ Sn = 〈x1, x2, . . . , xn〉
the set A(x) = {y ∈ Sn : f(x, y) > 0} if non-empty contains a non-empty

convex subset H(x) such that the set

P (x) = {y ∈ Sn : x /∈ H(y)}

is closed;

(iii) for each y ∈ K, f(x, y) is a lower semicontinuous function of x on the

intersection of K with any finite dimensional subspace of E;

(iv) there is a compact subset L of E and y0 ∈ L ∩K such that f(x, y0) > 0 for

x ∈ K, x /∈ L;

(v) whenever x, y ∈ K and xδ is a net on K converging to x, then f(xα(1 −
t)x+ ty) ≤ 0 for every t ∈ [0, 1] implies f(x, y) ≤ 0.

Then there is a point x0 ∈ L ∩K such that

f(x0, y) ≤ 0 for all y ∈ K.

In particular, inf
x∈K

sup
y∈K

f(x, y) ≤ 0.
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Proof. For each z ∈ K we set

F (z) = {x ∈ K : f(x, z) ≤ 0}.

For each finite subset {x1, x2, . . . , xn} of K and x ∈ Sn = 〈x1, x2, . . . , xn〉 the

set A(x) = {y ∈ Sn : x /∈ F (y)} = {y ∈ Sn : f(x, y) >} has the property (γ) of

Lemma 4.10 by (ii). While (α), (δ) and (ω) of Lemma 4.10 follow from (i), (iii) and

(v) respectively. Finally by (iv), F (y0) is compact and hence we have (β) of Lemma

4.10. Thus by Lemma 4.10 there is a point x0 ∈ L ∩K such that

x0 ∈
⋂

x∈K
F (x), that is, f(x0, y) ≤ 0 for all y ∈ K.

We note that x0 ∈ L by virtue of (iv).

Corollary 4.31.1 (Brezis Nirenberg and Stampacchia (1972)) Let K be

a non-empty convex subset of E and f(x, y) be a real valued function defined on

K ×K such that

(i)′ f(x, x) ≤ 0 for each x ∈ K;

(ii)′ for every x ∈ K, the set {y ∈ K : f(x, y) > 0} is convex;

(iii)′ the condition (iii) of Theorem 4.31 holds;

(iv)′ the condition (iv) of Theorem 4.31 holds;

(v)′ the condition (v) of Theorem 4.31 holds.

Then there exists a point x0 ∈ L ∩K such that

f(x0, y) ≤ 0 for all y ∈ K.

Proof. As before we set

F (z) = {x ∈ K : f(x, z) ≤ 0} for each z ∈ K.

The set A′(x) = {y ∈ K : f(x, y) > 0} is convex by (ii)′. Hence for any finite

subset {x1, x2, . . . , xn} of K and x ∈ Sn = 〈x1, x2, . . . , xn〉 the set A(x) = {y ∈
Sn : f(x, y) > 0} is convex. Now we choose H(x) = A(x) for each x ∈ K. The set

P (x) = {y ∈ Sn : x ∈ H(y)} is closed by (iii)′ because of the reason given in the

remark following (A). Thus the conclusion of the corollary follows from Theorem

4.31.

Corollary 4.31.2 (Ky Fan (1972)) Let K be a non-empty compact convex

subset of E and f(x, y) be a real valued function defined on K ×K such that

(0) f(x, x) ≤ 0 for each x ∈ K;

(00) for each x ∈ K, the set {y : f(x, y) > 0} is convex;

(000) for each y ∈ K, f(x, y) is a lower semicontinuous function of x on K.

Then there is a point x0 ∈ K such that f(x0, y) ≤ 0 for all y ∈ K.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Topological Fixed Point Theorems 195

Proof. This follows from Corollary 4.31.1.

Let E be Hausdorff topological vectors space over the reals and K be a subset of

E. Then a mapping A of K into E∗ is called pseudomonotone if, whenever xδ is a

net in K converging to x with lim sup(Axδ , xδ −x) ≤ 0 then lim inf(Axδ , xδ − y) ≥
(Ax, x− y). Here (· , ·) denotes the paring between E∗ and E.

Corollary 4.31.3 (Brezis (1968), Corollary 29) Let K be convex subset of E

(over reals) and let f(x, y) = (Ax, x−y)+φ(x)−φ(y) where A is a pseudo-monotone

mapping from K into E∗ and φ is a lower semicontinuous convex function. In

addition we assume that A is continuous from any finite dimensional subspace of E

to the weak topology of E∗ and condition (iv)′ of Corollary 4.31.1 holds. Then there

exists x0 ∈ L ∩K such that (Ax0, x0 − y) + φ(x0) − φ(y) ≤ 0 for all y ∈ K.

Proof. The conditions (i)′, (ii)′ and (iii)′ of Corollary 4.31.1 follow immediately.

To verify that (v)′ holds, let xδ → x and f(xδ , (1− t)x+ ty) ≤ 0 for each t ∈ [0, 1].

In particular f(xδ , x) ≤ 0, so that

〈Axδ , xδ − x〉 + φ(xδ) − φ(x) ≤ 0.

Hence lim sup〈Axδ , xδ−x〉 ≤ lim sup(φ(x)−φ(xδ )) and thus lim sup〈Axδ , xδ−y〉 ≥
〈Ax, x− y〉 for each y ∈ K. But we have also

f(xδ , y) = 〈Axδ , xδ − y〉 + φ(xδ) − φ(x) ≤ 0.

Hence 〈Ax, x− y〉 + φ(x) − φ(y) ≤ 0.

4.6 A Fixed Point Theorem Equivalent to the Fan Knaster

Kuratowski Mazurkiewicz Theorem

Fan (1984) has obtained a further generalization of the classical KKM Theorem

(Knaster, Kuratowski, and Mazurkiewicz (1929)). Tarafdar (1987) has proved

a fixed point theorem for setvalued mapping with the aid of an earlier theorem

(Theorem 4.14) of him and has shown that this theorem is equivalent to Fan’s

Theorem. In this section we will present these two results.

Theorem 4.32 (Fan–Knaster–Kuratowski–Mazurkiwicz Theorem) Let Y be a

nonempty convex subset of a topological vector space and φ 6= X ⊂ Y . For each

x ∈ X, let F (x) be a relatively closed subset of Y such that the convex hull of

each finite subset {x1, x2, . . . , xn} of X is contained in the corresponding union
n⋃
i=1

F (xi). Then for each nonempty subset X0 of X such that X0 is contained in

a compact convex subset of Y ,
⋂

x∈X0

F (x) 6= ∅. Furthermore, if for some such X0

(i.e. X0 is contained in a compact convex subset of Y ) the nonempty set
⋂

x∈X0

F (x)

is compact, then
⋂
x∈X

F (x) 6= ∅.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

196 Topological Methods of Set-Valued Nonlinear Analysis

We first prove the following fixed point theorem independently of Theorem 4.32

and show the equivalence of Theorem 4.32 with our fixed point Theorem 4.33 below:

Theorem 4.33 Let X be a nonempty convex subset of a topological vector space.

Let F : X → 2X be a set valued mapping such that

(i) for each x ∈ X, f(x) is a nonempty convex subset of X;

(ii) for each y ∈ X, f−1(y) = {x ∈ X : y ∈ F (x)} contains a relatively open

subset Oy of X (Oy may be empty for some y):

(iii)
⋃
x∈X

Ox = X; and

(iv) there exists a nonempty X0 ⊂ X such that X0 is contained in a compact

convex subset X1 of X and the set D =
⋂

x∈X0

Ocx is compact, (D could be

empty and as before Ocx denotes the complement of Ox in X). Then there

exists a point x0 ∈ X such that x0 ∈ f(x0).

Proof of Theorem 4.33. We first assume that D = ∅. In this case for each

x ∈ X1, f(x) ∩ X1 6= ∅. Indeed if f(x0) ∩ X1 = ∅ for some x0 ∈ X1, then for all

x ∈ X1, x /∈ f(x0), i.e., x0 /∈ f−1(x) ⊇ Ox. Thus x0 ∈ ⋂x∈X1
Ocx ⊆ ⋂

x∈X0

Ocx = D,

which contradicts that D = ∅. Therefore we can define a set valued mapping

g : X1 → 2X1 by g(x) = f(x)∩X1, so that g(x) is a non-empty convex subset of X1

for each x ∈ X1. Now for each y ∈ X1, g
−1(y) = {x ∈ X1 : y ∈ g(x)} = {x ∈ X1 :

y ∈ f(x) ∩ X1} = f−1(y) ∩ X1 contains the relatively open set O1
y = Oy ∩ X1 in

X1. Also since
⋂

x∈X0

Ocx = ∅, we have
⋃

x∈X0

Ox = X and hence
⋃

x∈X1

Ox = X . Thus

⋃
x∈X1

O1
x =

⋃
x∈X1

(Ox ∩ X1) = X1. Hence by our Theorem 4.14 there is a point

x0 ∈ X1 such that x0 ∈ g(x0) ⊆ f(x0).

We now consider the case when D is a nonempty compact set. In this case

we prove the theorem by contradiction. Let us assume that f has no fixed point.

Then Ocx is nonempty for each x ∈ X , for Ocx = ∅ implies that x /∈ Ocx, i.e.,

x ∈ Ox ⊂ f−1(x), i.e. x ∈ f(x). More generally, the convex hull of each finite

subset {x1, x2, . . . , xn} of X is contained in the union
n⋃
i=1

Ocxi
. To see this let

x =
n∑
i=1

λixi /∈
n⋃
i=1

Ocxi
for some finite subset {x1, x2, . . . , xn} of X and λi ≥ 0,

i = 1, 2, . . . , n, with
n∑
i=1

λi = 1. This implies that x ∈ Oxi ⊆ f−1(xi) for each

i = 1, 2, . . . , n. Hence xi ∈ f(x) for each i = 1, 2, . . . , n. However, since f(x) is

convex, x ∈ f(x), contradicting our assumption. For convenience, we set F (x) = Ocx
for each x ∈ X . In our next move we prove by applying Theorem 4.14 that for each

finite subset {x1, x2, . . . , xn} of X ,
⋂
x∈K

F (x) 6= ∅, where K is the convex hull of

X1 ∪ {x1, x2, . . . , xn}. Clearly K is a compact convex subset of X . If possible, we

suppose that
⋂
x∈K

F (x) = ∅. Then we can define a set valued mapping h : K → 2K
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by h(y) = {x ∈ K : y /∈ F (x)} such that h(y) is nonempty for each y ∈ K. Now

for x ∈ K, h−1(x) = {y ∈ K : x ∈ h(y)} = {y ∈ K : y /∈ F (x)} = (F (x))c ∩K =

Ox ∩ K = Ôx, which is a relatively open set in K. We now define a set valued

mapping j : K → 2K by j(x) = convex hull of h(x) for each x ∈ K. Since

j(x) ⊃ h(x) for each x ∈ K, it follows that j−1(x) ⊇ h−1(x) ⊇ Ôx for each x ∈ K.

Also
⋂
x∈K

F (x) = ∅ implies that
⋃
x∈K

Ox = X . Hence
⋃
x∈K

Ôx =
⋃
x∈K

(Ox ∩K) = K.

Therefore by Theorem 4.14 there exists x0 ∈ K such that x0 ∈ j(x0) = convex hull of

h(x0). This implies that there exist points y1, y2, . . . , ym in K such that yi ∈ h(x0)

for i = 1, 2, . . . ,m, where x0 =
n∑
i=1

λiyi, λi ≥ 0 for i = 1, 2, . . . ,m, and
m∑
i=1

λi = 1.

This means that x0 /∈ F (yi) for i = 1, 2, . . . ,m, i.e., x0 =
m∑
i=1

λiyi /∈
m⋃
i=1

F (y),

which contradicts our established fact that the convex hull of each finite subset

{y1, y2, . . . , yn} of X is contained in the corresponding union =
m⋃
i=1

F (yi) =
m⋃
i=1

Ocyi
.

Thus we have proved that
⋂
x∈K

F (x) 6= ∅. Hence D
⋂

(
n⋂
i=1

F (xi)) ⊇ ⋂
x∈K

F (x) 6= ∅
as X0 ∪ {x1, x2, . . . , xn} ⊆ K. What we have then proved above is that for each

finite subset {x1, x2, . . . , xn} of X ,
n⋂
i=1

(D ∩ F (xi)) 6= ∅. Now since D is compact

and F (x) is closed, F (x)∩D is compact for each x ∈ X . Hence
⋂
x∈X

(F (x)∩D) 6= ∅
and, therefore,

⋂
x∈X

F (x) =
⋂
x∈X

Ocx 6= ∅, which contradicts our condition (iii). Thus

f must have a fixed point.

Corollary 4.33.1 Let X be a nonempty convex subset of a topological vector

space. Let f : X → 2X be a set valued mapping such that

(i) for each x ∈ X, f(x) is a nonempty convex subset of X;

(ii) for each y ∈ X, f−1(y) contains a relatively open subset Oy of X;

(iii)
⋃
x∈X

Ox = X; and

(iv) there exists a point x0 ∈ X such that Ocx0
is compact.

Then there exists a point x ∈ X such that x ∈ f(x).

Equivalence of Theorem 4.32 and Theorem 4.33

We first prove that Theorem 4.33 implies Theorem 4.32.

Let us assume that the conditions of Theorem 4.32 hold. If possible, suppose

that
⋂
x∈X

F (x) = ∅. Then we can define a set valued mapping f : Y → 2Y by

f(y) = {x ∈ X : y /∈ F (x)}. Clearly f(y) is a nonempty subset of Y for each y ∈ Y .

It also follows that for each x ∈ Y , f−1(x) = (F (x))c = Ox is a relatively open set

in Y . Let g : Y → 2Y be the set valued mapping defined by g(y) = convex hull of

f(y) for each y ∈ Y . Thus for each y ∈ Y , g(y) is a nonempty convex subset of Y
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and for each x ∈ Y , g−1(x) ⊃ f−1(x) = Ox. Also
⋂
x∈X

F (x) = ∅ implies
⋃
x∈X

Ox = Y

and hence
⋃
x∈Y

Ox = Y . Finally,
⋂

x∈X0

Ocx =
⋂

x∈X0

F (x) = D is compact. Hence by

Theorem 4.33 there exists a point x0 ∈ X such that x0 ∈ g(x0) = convex hull of

f(x0). Now by giving an argument similar to that in the proof of Theorem 4.33 we

can show that this contradicts the hypothesis of Theorem 4.32 that the convex hull

of each finite subset {x1, x2, . . . , xn} of X is contained in the corresponding union
n⋃
i=1

F (xi). Hence
⋂
x∈X

F (x) 6= ∅.

Now to show that Theorem 4.32 implies Theorem 4.33, we assume that the

conditions of Theorem 4.33 hold.

For each x ∈ X , F (x) = Ocx, which is a relatively closed set in X . Let us

first consider the case when D = ∅. Then by taking Y = X in Theorem 4.32

we must have a finite subset {x1, x2, . . . , xn} of X such that the convex hull of

{x1, x2, . . . , xn} is not contained in the corresponding union
n⋃
i=1

F (xi), for otherwise

D will be nonempty by the first part of Theorem 4.32. This means that x0 =
n∑
i=1

λjxi /∈ F (xi) = Ocxi
for each i = 1, 2, . . . , n and for some λi ≥ 0, i = 1, 2, . . . , n

with
n∑
i=1

λi = 1. Thus x0 ∈ Oxi ⊂ f−1(xi), i.e., xi ∈ f(x0) for each i = 1, 2, . . . , n.

Hence x0 ∈ f(x0) as f(x0) is convex and Theorem 4.33 is proved in this case.

Finally, let D 6= ∅. If the convex hull of each finite subset {x1, x2, . . . , xn}
of X is contained in the corresponding union

n⋃
i=1

F (xi), then by Theorem 4.32
⋂
x∈X

Ocx =
⋂
x∈X

F (x) 6= ∅, which contradicts the condition (iii) of Theorem 4.33.

Hence there must exist a finite subset {x1, x2, . . . , xr} of X such that the convex

hull of {x1, x2, . . . , xr} is not contained in the corresponding union
r⋃
i=1

F (xi). Now

repeating the same argument as in the first case, we obtain a point x0 ∈ X such

that x0 ∈ f(x0). This completes the proof.

We will have many opportunities of seeing the applications of Theorem 4.33

in the sequel but in the following theorem (Tarafdar (1989)) we note a simple

application.

Theorem 4.34 Let X1, X2, . . . , Xn n(≥ 2) be nonempty sets each in a Hausdorff

topological vector space and let X =
∏

1≤j≤n
Xi Let X−j =

∏
1≤i≤n,i6=j

Xi and let us

denote the points of X−j by x−j . Let A1, A2, . . . , An and B1, B2, . . . , Bn be subsets

of X such that

(a) for each j = 1, 2, . . . , n and for each xj ∈ Xj the set Bj(xj) = {x−j ∈ X−j :

[xj , x−j ] ∈ Bj} is open in X−j;
(b) for each j = 1, 2, . . . , n and each x−j ∈ X−j , the set Bj(x−j) = {xj ∈ Xj :
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[xj , x−j ∈ Bj} is nonempty;

(c) for each j = 1, 2, . . . , n and x−j ∈ X−j , the set Aj(x−j) = {xj ∈ Xj :

[xj , x−j ] ∈ Aj} contains the convex hull of Bj(x−j);

and

(d) there is a nonempty compact convex subset K of X such that for every x ∈
X \ K, x = [xj , x−j ] ∈ Xj × X−j , there exists a y ∈ K, y = [yj , y−j ] ∈
Xj ×X−j satisfying [yj , x−j ] ∈ Bj for j = 1, 2, . . . , n. Then

n⋂
i=1

Aj 6= ∅.

Proof. We define two set valued mappings f : X → 2X and g : X → 2X by

f(x) =
∏

1≤j≤n
coBj(x−j) and g(x) =

∏
1≤j≤n

Bj(x−j) for each x = [xj , x−j ] ∈ X ,

where coBj(x−j) denotes the convex hull of Bj(x−j). By condition (b), f(x) and

g(x) is nonempty for each x ∈ X . Clearly f(x) is convex and g(x) ⊂ f(x) for each

x ∈ X by condition (c). For each point y = (y1, y2, . . . , yn) ∈ X we consider the

set g−1(y) = {x ∈ X : y ∈ g(x)}. Now

x ∈ g−1(y) ⇔ y ∈ g(x) =
∏

1≤j≤n
Bj(x−j) ⇔ yj ∈ Bj(x−j)

for each j = 1, 2, . . . , n ⇔ x−j ∈ Bj(yj) for each j = 1, 2, . . . , n. Thus for each

y ∈ X ,

g−1(y) =

n⋂

j=1

{Bj(yj) ×Xj}

is an open set in X by virtue of the condition (a) = Oy , say. As g(y) ⊂ f(y) for

each y ∈ X , Oy = g−1(y) ⊂ f−1(y) for each y ∈ X . Also
⋃
x∈X

Ox = X . [For let

y ∈ X . Then g(y) 6= ∅. Let x ∈ g(y). Obviously y ∈ g−1(x) = Ox].

Now

x ∈ ∩y∈KOcy = ∩y∈K [g−1(y)]c ⇔ x ∈ [g−1(y)]c

for each y ∈ K ⇔ x /∈ g−1(y) for each

y ∈ K ⇔ x /∈
n⋂

j=1

Bj(yj) × Xj

for each y = [yj , y−j ] ∈ K ⇔ x /∈ Bj(yj) × Xj for each y = [yj , y−j ] ∈ K and

for some j = 1, 2, . . . , n, . . . (∗). On the the other hand by condition (d) for each

x ∈ X \K, x = (xj , x−j) = Xj ×X−j , there exists y ∈ K, y = (yj , y−j) satisfying

(yj , x−j) ∈ Bj for j = 1, 2, . . . , n. In other words

x ∈
n⋂

j=1

Bj(yj)) × xXj .
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This fact and (*) together imply that

⋂

x∈K
Ocx =

⋂

x∈K
[g−1(x)]c ⊂ K

Hence
⋂
x∈K

Ocx being closed subset of a compact set is compact. Hence all the

conditions of Theorem 4.33 are fulfilled for the set valued mapping f . Thus by

Theorem 4.33 there is a fixed point x ∈ X of f , i.e.

x ∈ f(x) =
∏

1≤j≤n
coBj(x−j).

Hence by (c).

x ∈
∏

1≤j≤n
coBj(x−j) ⊆

∏

1≤j≤n
Aj(x−j),

i.e., xj ∈ Aj(x−j) for j = 1, 2, . . . , n, i.e. [xj , x−j ] ∈ Aj for j = 1, 2, . . . , n. Thus

x ∈
n⋂
j=1

Aj .

The original idea of introducing two families A1, A2, . . . , An and B1, B2, . . . , Bn
is due to Dugundji and Granas (1978) and Ben-El-Mechaiekh, Deguire, and Granas

(1982).

Further applications of this theorem may be found in Tarafdar (1986).

4.7 More on Fixed Point Theorems

We prove the following fixed point theorems of Ding and Tarafdar (1994) which

differ from Theorem 4.33 in condition (iv).

As before all topological vector spaces are assumed to be Hausdorff in this

section.

Theorem 4.35 Let X be a nonempty convex subset of a topological vector space

E and F, G : X → 2X be such that

(1) for each x ∈ X, F (x) ⊂ G(x);

(2) for each y ∈ X, F−1(y) is compactly open in X;

(3) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for y ∈ X \K, there is an x ∈ co(X0∪{y})
with y /∈ clC((X \ (coG)−1(x)) ∩ C) for any nonempty compact subset C of

X; and

(4) for each x ∈ K, F (x) 6= ∅, where clX(A) denotes the closure of A in X.

Then there exists ŷ ∈ X such that ŷ ∈ co((G(ŷ)).
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Proof. Suppose that the conclusion does not hold. Then for each x ∈ X ,

x /∈ co((G(x)). For each y ∈ X and for each nonempty compact subset C of

X , (coF )−1(y) ∩ C is open in C. Indeed, if x ∈ (coF )−1(y) ∩ C, then x ∈ C

and y ∈ co(F (x)). Let y1, . . . , yn ∈ F (x), λ1, . . . , λn ≥ 0 with
n∑
i=1

λi = 1 such

that y =
n∑
i=1

λiyi. For each i = 1, . . . , n, F−1(yi) ∩ C is open in C by (2) and

x ∈ F−1(yi) ∩ C. Let U =
n⋂
i=1

(F−1(yi) ∩ C), then U is an open neighborhood

of x in C. If z ∈ U , then z ∈ C and yi ∈ F (z) for each i = 1, . . . , n, so that

y =
n∑
i=1

λiyi ∈ co(F (z)) and hence z ∈ (coF )−1(y) ∩ C for all z ∈ U . Therefore

(coF )−1(y) ∩ C is open in C and (coF )−1(y) is compactly open in X for each

y ∈ X .

For each x ∈ X , let

T (x) = clX(X \ (coG)−1(x)) ∩K,
S(x) = (X \ (coF )−1(x)) ∩K.

We shall prove that the family {T (x) : x ∈ X} has the finite intersection property.

Let {x1, . . . , xn} be any finite subset of X and let

D = co(X0 ∪ {x1, . . . , xn}),

then D is a compact convex subset of X . Define two mappings T0, S0 : D → 2D

by

T0(x) = clD((X \ (coG)−1(x)) ∩D),

S0(x) = (X \ (coF )−1(x)) ∩D), for each x ∈ D.

We observe that

(a) for each x ∈ D, S0(x) is closed in D since (coF )−1(x) is compactly open and

D is compact;

(b) for each x ∈ D, T0(x) ⊂ S0(x) by (1) and (a);

(c) for each x ∈ D, T0(x) is compact in D;

(d) T0 is a KKM mapping, i.e. for any finite subset A of D, co(A) ⊂ ⋃
x∈A

T0(x).

Indeed, it is enough to prove the mapping T ∗ : D → 2D defined by

T ∗(x) = (X \ (coG)−1(x)) ∩D for each x ∈ D,

is a KKM mapping. If it were false, then there exist {u1, . . . , un} ⊂ D and

λ1, . . . , λn ≥ 0 with
n∑
i=1

λi = 1 such that

n∑

i=1

λiui /∈
n⋃

i=1

T ∗(ui) =

n⋃

i=1

(X \ (coG)−1(ui)) ∩D.
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It follows that
n∑

i=1

λiui ∈ D ∩
n⋂

i=1

(coG)−1(ui)

and

uj ∈ (coG)(
n∑

i=1

λiui) for all j = 1, . . . , n.

Hence, we have

n∑

i=1

λiui ∈ co(G(

n∑

i=1

λiui))

which contradicts the fact that for each x ∈ X , x /∈ co(G(x)). therefore T ∗ is a

KKM mapping and so T0 is also a KKM mapping.

By Lemma 4.5, we have

∅ 6=
⋂

x∈D
T0(x) =

⋂

x∈D
clD((X \ (coG)−1(x)) ∩D) ⊂

⋂

x∈D
clX (X \ (coG)−1(x)) ∩D.

Take any y ∈ ⋂
x∈D

clD((X \ (coG)−1(x)) ∩ D). Since co(X0 ∪ {y}) ⊂ D, by the

assumption (3), we must have y ∈ K and hence

y ∈
n⋂

i=1

clX(X \ (coG)−1(xi)) ∩K =
n⋂

i=1

T (xi);

that is, the family {T (x) : x ∈ X} has the finite intersection property. By the

compactness of K,
⋂
x∈X

T (x) 6= ∅. By (1) and (2), we have T (x) ⊂ S(x) for each

x ∈ X and hence

∅ 6=
⋂

x∈X
S(x) =

⋂

x∈X
(X \ (coF )−1(x)) ∩K.

Take any ŷ ∈ ⋂
x∈X

(X \ (coF )−1(x)) ∩ K = K ∩ (X \ ⋃
x∈X

(coF )−1(x)) = K \
⋃
x∈X

(coF )−1(x)). But, by the assumption in (4) that for each x ∈ K, F (x) 6= ∅, we

have

K ⊂
⋃

x∈X
(coF )−1(x))

which is a contradiction. Therefore the conclusion must hold.

Remark 4.9 Theorem 4.35 with F = G improves Lemma 1 of Ding and Tan

(1993) and Theorem 3′′ of Ding and Tan (1992a) in the following two aspects: (1)

the coercive condition in the assumption (3) of Theorem 4.35 is weaker than that

in Lemma 1 of and Theorem 3′′ of Ding and Tan (1993); (2) clearly, the condition
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for each x ∈ K, F (x) 6= ∅ is weaker than the condition for each x ∈ X , F (x) 6= ∅
since K ⊆ X .

The following result is an immediate consequence of Theorem 4.35.

Theorem 4.36 Let X be a nonempty convex subset of a topological vector space

E and F, G : X → 2X be such that

(1) for each x ∈ X, F (x) ⊂ G(x);

(2) for y ∈ X, F−1(y) is compactly open in X;

(3) there exist a nonempty closed and compact subset K of X and a point x0 ∈ X

such that X \K ⊂ (coG)−1(x0); and

(4) for each x ∈ K, F (x) 6= ∅.

Then there exists ŷ ∈ X such that ŷ ∈ co(G(ŷ)).

Proof. Let X0 = {x0}, then X0 is a nonempty compact convex subset of X and

x0 ∈ co(X0 ∪ {y}) for any y ∈ X \ K. It follows from the condition (3) that

X \ (coG)−1(x0) ⊂ K so that clC((X \ (coG)−1(x0)) ∩ C) ⊂ K for any nonempty

compact subset C of X . Thus for each y ∈ X \K, y /∈ clC((X \ (coG)−1(x0))∩C).

The conclusion follows from Theorem 4.35.

Remark 4.10 Theorem 4.36 is Theorem 2.4′′ of (Tan and Yuan (1993)) and

hence Theorem 4.35 improves and generalizes Theorems 2.4′, 2.4′′ and 2.4′′′ of (Tan

and Yuan (1993)) and Theorem 1 of (Ding and Tan (1992b)).

We now prove that the following theorem is equivalent to Theorem 4.35.

Theorem 4.37 Let X be a nonempty convex subset of a topological vector space

E and G : X → 2X be such that

(1) for each y ∈ X, G−1(y) contains a compactly open subset Oy of X (which

may be empty);

(2) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪{y}) with y /∈ clC((X \ (coG)−1(x))∩C) for any nonempty compact

subset C of X, and K ⊂ ⋃
y∈X

Oy.

Then there exists ŷ ∈ X such that ŷ ∈ co(G(ŷ)).

Proof. We first prove that Theorem 4.35 ⇒ Theorem 4.37. We define F : X → 2X

by

F (x) = {y ∈ X : x ∈ Oy}, x ∈ X,

By the last part of the condition (2), F (x) 6= ∅ for each x ∈ K. Thus the

condition (4) of Theorem 4.35 holds. By the condition F (x) ⊂ G(x) for each x ∈ X

which is precisely the condition (1). Again since F−1(y) = 0y which is compactly

open by (1) of this theorem. Lastly the condition (3) of Theorem 4.35 the same
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as the first part of condition 2 of Theorem 4.37. Hence the Theorem 4.37 follows

from Theorem 4.35. Next we suppose that Theorem 4.37 holds. For each y ∈ X we

take Oy = F−1(y) where F is given in Theorem 4.35. Then we can easily see that

Theorem 4.37 ⇒ Theorem 4.35.

Theorem 4.38 Let X be a nonempty convex subset of a topological vector space

E and G : X → 2X be such that

(1) for each y ∈ X, G−1(y) contains a compactly open subset Oy of X (which

may be empty),

(2) there exist a nonempty closed and compact subset K of X and a point x0 ∈ X

such that x0 ∈ (coG)(y) for all y ∈ X \K,

(3) K ⊂ ⋃
y∈X

Oy.

Then there exists a point ŷ ∈ X such that ŷ ∈ co(G(ŷ)).

Proof. Since the condition (2) of Theorem 4.38 implies that the condition (2) of

Theorem 4.37 is satisfied. The conclusion holds from Theorem 4.37.

Remark 4.11 Theorem 4.38 is Theorem 2.4′′′′ of Tan and Yuan (1993) and gen-

eralizes Theorems 2.4′′′′ and 2.4′′′′′ of Tan and Yuan (1993), Theorem 2 of Ding and

Tan (1992a) and the corresponding results of Tarafdar (1977), Mehta and Tarafdar

(1987), Border (1985), Browder (1968) and Yannelis (1985).

The following fixed point theorem seems to be very useful in mathematical

economics and related areas.

Theorem 4.39 (Tarafdar 1991). Let {Xα : α ∈ I} be a family of nonempty

compact convex sets, each in a topological vector space Eα, where I is an indexing

set. Let X =
∏
α∈I

Xα. For each α ∈ I, let Tα : X → 2Xα be a set valued mapping

such that

(i) for each x ∈ X, Tα(x) is a nonempty convex subset of Xα,

(ii) for each xα ∈ Xα, T
−1
α (xα) = {y ∈ X : xα ∈ Tα(y)} contains a relatively

open subset Oxα of X such that
⋃

xα∈Xα

Oxα = X (O may be empty for some xα),

Then there is a point x ∈ X such that x ∈ T (x) =
∏
α∈I

Tα(x), i.e., xα ∈ Tα(x) for

each α ∈ I, where xα is the projection of x onto Xα for each α ∈ I.

Proof. We fix α ∈ I . Since X is compact, by (ii) there is a finite set

{x1
α, x

2
α, . . . , x

n
α} of points in Xα such that

⋃
i=1

Oxi
α

= X . Let {f1
α, f

2
α, . . . , f

n
α}

be a partition of unity corresponding to this finite subcovering Ox2
α
, Ox2

α
, . . . , Oxn

α
,

i.e., each f iα vanishes outside Oixα
, 0 5 f iα(x) 5 1 and

n∑
i=1

f iα(x) = 1 for each x ∈ X .
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Now we define a mapping qα : X → Xα by

qα(x) =
n∑

i=1

f iα(x)xiα, x ∈ X.

Clearly qα maps X into Xα and is continuous. Also for each i = 1, 2, . . . , n with

f iα(x) 6= O, x ∈ Oxi
α
⊂ T−1

α (xiα), i.e., xiα ∈ Tα(x). But since Tα(x) is convex, it

follows that qα(x) ∈ Tα(x) for each x ∈ X .

Let Fα be the linear hull of the set {x1
α, x

2
α, . . . , x

n
α}. Then Fα is a locally

convex (Hausdorff) topological vector space as it is finite dimensional. The convex

hull Sα of the set {x1
α, x

2
α, . . . , x

n
α} is a compact subset of Fα. It is also clear that qα

maps X into Sα. If we do this for each α ∈ I , we obtain a compact convex subset

S =
∏
α∈I

Sα of the locally convex (Hausdorff) topological vector space F =
∏
α∈I

Fα

and a mapping q : S → S defined by q(x) =
∏
α∈I

qα(x) such that for each x ∈ S and

each α ∈ I qα(x) ∈ Tα(x).

Since for each α ∈ I , qα is a continuous ampping of X into Sα, it follows that q

is a continuous mapping of S into itself. Hence by Tychonoff fixed point theorem,

q has a fixed point, i.e., there is a point x ∈ q(x) =
∏
α∈I

qα(x) ∈ ∏
α
Tα(x), i.e.,

xα ∈ Tα(x) for each α ∈ I , where xα is the projection of x onto Xα.

Remark 4.12 (1) If the set I consists of only one element, i.e., the cardinality

of I is one, then Theorem 4.39 reduces to a theorem of Tarafdar (1977, Theorem 1),

(in here Theorem 4.14) which contains the theorem of Browder (1968, Theorem 1),

(in here Corollary 4.14.1) (in here Corollary 4.14.1).

(2) The condition (ii) in Theorem 4.39 above can be replaced by the stronger

condition: for each xα ∈ Xα, T−1
α (xα) is relatively open in Xα.

To see this we take Oxα = T−1
α (xα). Then

⋃

xα∈Xα

Oxα =
⋃

xα∈Xα

T−1
α (xα) = X.

Let x ∈ X . Then by (i) we can find yα ∈ Tα(x), i.e., x ∈ T−1
α (yα) = Oyα .

We adapt the following notation. Let {Xα : α ∈ I} be a family of non-empty

sets, where I is an index set, finite or infinite (countable or uncountable). X will de-

note their cartesian product, i.e., X =
∏
α∈I

Xα and for each α ∈ I , Xα =
∏

β∈I,β 6=α
Xβ .

We also denote a generic element of Xα by x−α. Further, we represent each x ∈ X

by x = [xα, xα] for each α ∈ I where xα is the projection of x onto Xα. Finally, we

also write x = {xα} where xα is the projection of x onto Xα for each α ∈ I .

We apply our Theorem 4.39 to obtain a related theorem directly in the following

remark.
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Remark 4.13 Let {Xα : α ∈ I} be a family of nonempty, compact convex sets,

each in a topological vector space Eα. Let {Aα} and {Bα} be two families of subsets

of X having the following properties:

(a) for each α ∈ I and each xα ∈ Xα, the set Bα(xα) = {x−α ∈ X−α :

[xα, x−α] ∈ Bα} is open in X−α;

(b) for each α ∈ I and each x−α ∈ X−α, the set Bα(x−α) = {xα ∈ Xα :

[xα, x−α] ∈ Bα} is nonempty and the set Aα(x−α) = {xα ∈ Xα :

[xα, x−α] ∈ Aα} contains the convex hull of Bα(x−α).

Then
⋂
α∈I

Aα 6= ∅.

Proof. For each α ∈ I and each x = {xα} we set Tα(x) = coBα(x−α). Then for

each α ∈ I , Tα : X → 2Xα is a set valued mapping satisfying the condition (i) of

Theorem 4.39 [by the first part of condition (b)].

Now for each α ∈ I and each yα ∈ Xα,

T−1
α (yα) = {x = {xα} ∈ X : yα ∈ Tα(x)}

= {x = {xα} ∈ X : yα ∈ coBα(x−α)} ⊇ {x = {xα} ∈ X : yα ∈ Bα(x−α)}
= {x = {xα} ∈ X : x−α ∈ Bα(yα)} = Xα ×Bα(yα) = Oyα ,

say, which is an open set in X . Let x = {xα} ∈ X . Then by virtue of the first part

of the condition (b) there is yα ∈ Bα(x−α). Hence x−α ∈ Bα(yα). This implies

that x ∈ Oyα . Thus for each α ∈ I ,
⋃

yα∈Xα

Oyα = X and hence the condition

(ii) of Theorem 4.39 is fulfilled. Hence by the Theorem 4.39 there exists a point

x = {xα} ∈ X such that for each α ∈ I , xα ∈ Tα(x) = coB−α(x) ⊂ Aα(x−α), i.e.,

x = [xα, x−α] ∈ Aα for each α ∈ I .

4.8 Applications of Fixed Point Theorems to Equilibrium Analysis

in Mathematical Economics and Game Theory

Shafer and Sonnenschein (1975) extended the Debreu theorem on the existence of

equilibrium in a generalized N -person game (Debreu (1952)) or an abstract econ-

omy (Arrow and Debreu (1954)). In essence, Shafer and Sonnenschein maintained

the spirit of the pioneering works of Debreu, Arrow, Mas-Colell (1974) and Gale

and Mas-Colell (1975), Gale and Mas-Colell (1979). Bewley (1972) proved the ex-

istence of equilibrium point with infinite dimensional commodity space. In recent

years, many authors (e.g., Yannelis and Prabhakar (1983) and Toussaint (1984))

have proved the existence of equilibrium point of an abstract economy with infinite

dimensional commodity space and infinite agents.

Following Debreu and Schafer and Sonnenschein we will describe an abstract

economy or generalized qualitative game by E = {Xα, Aα, Uα : α ∈ I} where
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I is finite or infinite (countable or uncountable) set of agents or players, and for

each α ∈ I , Xα is the choice set or strategy set; Aα : X =
∏
α∈I

Xα → 2Xα is the

constraint correpsondence (set valued mapping) and Uα : X → R is the utility or

pay off function. Xα will be a subset of a topological vector space for each α ∈ I .

We denote the product
∏

β∈I,β 6=α
by Xα X−α and a generic element of X−α by x−α.

An abstract economy instead of being given by {Xα, Aα, Uα : α ∈ I} may be

given by E = {Xα, Pα, Aα : α ∈ I} : α ∈ I} where for each α ∈ I , Pα : X → 2Xα

is the preference correspondence. The relationship between the utility function Uα
and the preference correspondence Pα can be exhibited by the definition

Pα(x) = {yα ∈ Xα : Uα([yα, x−α]) > Uα(x)},

where for each α ∈ I , x−α is the projection of x onto X−α and [yα, x−α] is the

point of X whose αth coordinate is yα.

In the case of the economy being given by E = {Xα, Aα, Uα : α ∈ I}, a point

x ∈ X is called an equilibrium point or a generalized Nash equilibrium point of the

economy E if

Uα(x) = Uα[xα, x−α] = sup
zα∈Aα(x)

Uα[zα, x−α]

for each α ∈ I where xα and x−α are respectively projections of x onto Xα and

X−α. In this case the equilibrium point is the natural extension of the equilibrium

point introduced by Nash (1950). Now let E = {Xα, Aα, Uα : α ∈ I} be an

abstract economy and let for each α ∈ I , Pα be obtained as above. Then it can

be easily checked that a point x ∈ X is an equilibrium point of E is and only iff

for each α ∈ I , Pα(x) ∩ Aα(x) = ∅ and xα ∈ Aα(x). Thus given an abstract

economy E = {Xα, Pα, Aα : α ∈ I} we can define an equilibrium point of E as

follows: A point x ∈ X is said to be an equilibrium point of the abstract economy

E = {Xα, Pα, Aα : α ∈ I} if for each α ∈ I , Pα(x) ∩ Aα(x) = ∅ and xα ∈ Aα(x)

where xα is the projection of x onto Xα.

4.8.1 Fixed Point and Equilibrium Point

Given an abstract economy E = {Xα, Pα, Aα : α ∈ I}, for each x ∈ X we define

I(x) = {α ∈ I : Pα(x) ∩ Aα(x) 6= ∅}. Assume that for each x ∈ X and for each

α ∈ I , xα /∈ convex full of Pα(x).

For each α ∈ I , we define the set valued mapping Tα : X → 2X by

Tα(x) =

{
coPα(x) ∩Aα(x) if α ∈ I(x),

Aα(x) if α /∈ KI(x),

where coPα(x) denotes the convex hull of Pα(x).
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Then it is easy to see that x ∈ X is an equilibrium point of the economy E if and

only if x is the fixed point of the set valued mapping defined by T (x) =
∏
α∈I

Tα(x).

We recall the following notations:

For each α ∈ I , Xα will denote a nonempty set in a topological vector space

Eα, Pα X =
∏
α∈I

Xα → 2Xα a set valued mapping (preference correspondence) and

Aα X → 2Xα a set valued ampping (constraint correspondence).

{Xα, Pα : α ∈ I} will be called a qualitative game and {Xα, Pα, Aα : α ∈ I}
an abstract economy.

A point x ∈ X is called a maximal element of the game {Xα, Pα : α ∈ I} if

Pα(x) = ∅ for each α ∈ I and a point x ∈ {xα} ∈ X is called an equilibrium point

of the abstract economy {Xα, Pα, Aα : α ∈ I} if, for each α ∈ I , xα ∈ Aα(x) and

Pα(x) ∩ Aα(x) = ∅.

Theorem 4.40 Let E = {Xα, Pα, Aα : α ∈ I} be an abstract economy such that

for each α ∈ I, the following conditions hold:

(i) Xα is compact and convex;

(ii) for each x ∈ X, Aα(x) is nonempty and convex valued;

(iii) for each xα ∈ X, {P−1
α (xα)∪Fα}∩A−1

α (xα) contains a relatively open subset

Oxα of X such that
⋃

xα∈Xα

Oxα = X, where Fα = {x ∈ X : Pα(x)∩Aα(x) =

∅};
(iv) for each x = {xα} ∈ X, xα /∈ coPα(x).

Then E has the equilibrium point.

Proof. For each α ∈ I , let Gα = {x ∈ X : Pα(x)∩Aα(x) 6= ∅} and for each x ∈ X ,

let I(x) = {α ∈ I : Pα(x) ∩ Aα(x) 6= ∅}.
Now for each α ∈ I , we define the set valued mapping Tα : X → 2Xα by

Tα(x) =

{
coPα(x) ∩ Aα(x) if α ∈ I(x), i.e., if x ∈ Gα,

Aα(x) if α /∈ I(x).

Then for each x ∈ X , Tα(x) is nonempty and convex valued. Also for each yα ∈ Xα,

it can be easily checked that

T−1
α (yα) =

[{
(coPα)−1(yα) ∩ A−1

α (yα)
}
∩Gα

]
∪
[
A−1
α (yα) ∩ Fα

]

⊃
[{
P−1
α (yα) ∩ A−1

α (yα)
}
∩Gα

]
∪
[
A−1
α (yα) ∩ Fα

]

=
[
P−1
α (yα) ∩ A−1

α (yα)
]
∪
[
Fα ∩ F−1

α (yα)
]

=
[
P−1
α (yα) ∪ Fα

]
∩ A−1

α (yα).

The first inclusion follows from the fact that as Pα(x) ⊂ coPα(x) for each x ∈ X ,

P−1
x (yα) ⊂ (coPα)−1(yα) for each yα ∈ Xα. Hence by virtue of condition (iii) for
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each yα ∈ Xα, T−1
α (yα) contains an open subset Oyα ofX such that

⋃
yα∈Xα

Oyα = X .

Thus by Theorem 4.39 there exists a point x = {xα} ∈ X such that xα ∈ Tα(x) for

each α ∈ I . By (iv) and definition of Tα, it follows that x is an equilibrium point

of E .

Remark 4.14 It is easy to see that the condition (iii) of Theorem 4.40 can be

replaced by the following stronger condition:

(iii)′ For each xα ∈ Xα, {P−1
α (xα) ∪ Fα} ∩ A−1

α (xα) is relatively open in X . For

in this case for each α ∈ I ,
⋃

xα∈Xα

{P−1
α (xα) ∪ Fα} ∩ A−1

α (xα) = X .

To see this, let x ∈ X . If x /∈ Fα, we can find yα ∈ Pα(x) ∩ Aα(x), i.e.,

x ∈ P−1
α (yα)∩A−1

α (yα) and hence x ∈ [P−1
α (yα)∪Fα]∩A−1

α (yα). Let x ∈ Fα. Since

Aα(x) 6= ∅ for each x ∈ X , we can find yα ∈ Aα(x), i.e., x ∈ A−1
α (yα) and hence

x ∈ [P−1
α (yα) ∪ Fα] ∩ A−1

α (yα).

Corollary 4.40.1 Let E = {Xα, Pα, Aα : α ∈ I} be an abstract economy such

that for each α ∈ I the following conditions hold:

(i) Xα is compact and convex;

(ii) for each x ∈ X, Aα(x) is nonempty and convex valued;

(iii) the set Gα = {x ∈ X : Pα(x) ∩Aα(x) 6= ∅} is a closed subset of X;

(iv) for each yα ∈ Xα, P
−1
α (yα) is a relatively open subset in Gα and A−1

α (yα) is

a relatively open subset in X;

(v) for each x = {xα} ∈ X, xα /∈ coPα(x) for each α ∈ I.

Then there is a equilibrium point of the economy E.

Proof. Since P−1
α (yα) is relatively open in Gα, P−1

α (yα) = Gα ∩ Uα for some open

subset Uα of X ,. Hence P−1
α (yα) ∪ Fα = (Gα ∩ Uα) ∪ Fα = X ∩ (Uα ∪ Fα). Thus

{P−1
α (yα) ∪ Fα} ∩ A−1

α (yα) = (Uα ∪ Fα) ∩ A−1
α (yα) is a relatively open subset of

X as Uα, Fα and A−1
α (yα) are open subsets of X . Now the corollary follows from

Theorem 4.40 and Remark 4.14.

Theorem 4.41 Let G = {Xα, Pα : α ∈ I} be a qualitative game such that for

each α ∈ I, the following conditions hold:

(i) Xα is compact and convex;

(ii) for each xα ∈ Xα, {P−1
α (xα) ∪ Fα} contains a relatively open subset Oxα of

X such that
⋃

xα∈Xα

Oxα = X, where

Fα = {x ∈ X : Pα(x) = ∅};

(iii) for each x = {xα} ∈ X, xα /∈ coPα(x).

Then there is a maximal element of the game G.
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Proof. For each α ∈ I , if we define the set valued mapping Aα : X → 2Xα by

Aα(x) = Xα, x ∈ X , then the theorem will follow from Theorem 4.40.

Remark 4.15 The condition (ii) in Theorem 4.41 can be replaced by the fol-

lowing stronger condition:

(ii)′ For each xα ∈ X)α, the set {P−1
α (xα)∪Fα} is a relatively open subset of X .

For this case for each α ∈ I ,
⋃

xα∈Xα

{P−1
α (xα) ∪ Fα} = X .

To see this let x ∈ X . If x /∈ Fα, then Pα(x) 6= ∅. Hence we can find yα ∈ Pα(x),

i.e., x ∈ P−1
α (yα). Thus we can conclude that x ∈ P−1

α (yα) ∪ Fα.

Corollary 4.41.1 Let G = {Xα, Pα : α ∈ I} be a qualitative game such that for

each α ∈ I the following conditions hold:

(i) Xα is compact and convex;

(ii) the set Gα = {x ∈ X : Pα(x) 6= ∅} is a closed subset of X;

(iii) for each yα ∈ Xα, P
−1
α (yα) = {x ∈ Gα : yα ∈ Pα(x)} is relatively open in

Gα;

(iv) for each x = {xα} ∈ X, xα /∈ coPα(x).

Then there is a maximal element of G.

Proof. Since P−1
α (yα) is relatively open in Gα,

P−1
α (yα) = Gα ∩ Uα for some open subset Uα of X.

Thue P−1
α (yα)∪Fα = (Gα∩Uα)∪Fα = (Gα∪Fα)∩(Uα∪Fα) = X∩(Uα∪Fα) = Oyα ,

say, which is open subset of X as Fα = X \Gα is an open subset of X .

The corollary now follows from Theorem 4.41 and Remark 4.15.

Definition 4.4 Let A be a subset of a topological space X . We shall denote by

intX(A) the interior of A in X and by clX(A) the closure of A in X . A is said to

be compactly open (resp. closed) in X if for each nonempty compact subset C of

X , A ∩ C is open (resp. closed) in C. If A is a subset of a vector space, we shall

denote by co(A) the convex hull of A. If A is a nonempty subset of a topological

vector space E and S, T : A → 2E are correspondences, then coT , T ∩S : A→ 2E

are correspondences defined by (coT )(x) = co(T (x)) and (T ∩S)(x) = T (x)∩S(x)

for each x ∈ A, respectively. If X and Y are topological spaces and T : X → 2Y is

a correspondence, the graph of T is the set Gr(T ) = {(x, y) ∈ X × T : y ∈ T (x)}
and the correspondence T : X → 2Y is defined by T (x) = {y ∈ Y : (x, y) ∈
clX×Y (Gr(T ))} (the set clX×Y (Gr(T )) is called the adherence of the graph of T )

and clT : 2Y is defined by (clT )(x) = clY (T (x)) for each x ∈ X . It is easy to see

that (clT )(x) ⊂ (T )(x) for each x ∈ X .

The following notions are slightly general than the corresponding notions due

to Ding and Tan (1992c), Ding and Tan (1992a), Ding and Tan (1993) (also see
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Tan and Yuan (1993)). Let X be a topological space, Y be a nonempty subset of

a vector space E, θ : X → E be a map and ϕ : X → 2Y be a correspondence.

Then (1) ϕ is said to be of class Lθ,F if (a) if for each x ∈ X , coϕ(x) ⊂ Y and

θ(x) /∈ coϕ(x) and (b) there exists a correspondence ψ : X → 2Y such that for each

x ∈ X , ψ(x) ⊂ ϕ(x) and for each y ∈ Y , ψ−1(y) = {x ∈ X : y ∈ ψ(x)} is compactly

open in X and {x ∈ X : ϕ(x) 6= ∅} = {x ∈ X : ψ(x) 6= ∅}; (2) (ϕx, ψx, Nx) is a

Lθ,F -majorant of ϕ at x if ϕx, ψx : X → 2Y and Nx is an open neighborhood of

x in X such that (a) for each z ∈ Nx, ϕ(z) ⊆ ϕx(z) and θ(z) /∈ coϕx(z), (b) for

each z ∈ X , ψx(z) ⊆ ϕx(z) and coϕx(z) ⊆ Y and (c) for each y ∈ Y , ψ−1
x (y) is

compactly open in X ; (3) ϕ is said to be Lθ,F -majorized if for each x ∈ X with

ϕ(x) 6= ∅, there exists an Lθ,F -majorant (ϕx, ψx, Nx) of ϕ at x such that for any

nonempty finite subset A of the set {x ∈ X : ϕ(x) 6= ∅}, we have

{
z ∈

⋂

x∈A
Nx :

⋂

x∈A
coϕx(z) 6= ∅

}
=

{
z ∈

⋂

x∈A
Nx :

⋂

x∈A
coψx(z) 6= ∅

}
.

It is clear that every correspondence of class Lθ,F is Lθ,F -majorized. If for each

y ∈ Y , ψ−1
x (y) are open inX , then these notions reduce to the corresponding notions

of Ding and Tan (1992c), if for each x ∈ {x ∈ X : ϕ(x) 6= ∅}, ϕx(z) = ψx(z) for

all z ∈ X , then these notions reduce to the corresponding notions of Ding and Tan

(1993). Hence these notions in turn generalize the corresponding notions introduced

by Ding et al. (1992) and Tulcea (1986). In what follows, we shall deal mainly with

either the case (I) X = Y and is a nonempty convex subset of a topological vector

space E and θ = IX , the identity map on X , or the case (II) X =
∏
i∈I

Xi and

θ = πj : X → Xj is the projection of X onto Xj and Xj is a nonempty convex

subset of a topological vector space. In both cases (I) and (II), we shall write LF
in place of Lθ,F .

4.8.2 Existence of Maximal Elements

We recall the more general definition of maximal element.

Let X be a topological space and T : X → 2X be a correspondence. Then a

point x0 ∈ X is said to be a maximal element of T if T (x0) = ∅.
The following result is Lemma 3.1 of Tan and Yuan (1993) and the proof can be

found in Yuan (1999, p. 247).

Lemma 4.11 Let X be a regular topological vector space and Y be a nonempty

subset of a vector space E. Let θ : X → E and P : X → 2Y be Lθ,F -majorized. If

each open subset of X containing the set B = {x ∈ X : P (x) 6= ∅} is paracompact,

then there exists a correspondence ϕ : X → 2Y of class Lθ,F such that P (x) ⊆ ϕ(x)

for each x ∈ X.

Theorem 4.42 Let X be a nonempty convex subset of a topological vector space
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E and G : X → 2X be of class LF . Suppose that there exist a nonempty compact

convex subset X0 of X and a nonempty compact subset K of X such that for each

y ∈ X \K, there is an x ∈ co(X0∪{y}) with y /∈ clC((X \ (coG)−1(x))∩C) for any

nonempty compact subset C of X. Then there exists an x̂ ∈ K such that G(x̂) = ∅,
i.e. x̂ is a maximal element of G.

Proof. Since G is of class LF , we have

(a) for each x ∈ X , x /∈ co(G(x));

(b) there exists a correspondence F : X → 2X such that

(i) for each x ∈ X , F (x) ⊂ G(x),

(ii) for each y ∈ X , F−1(y) is compactly open in X ,

(iii) {x ∈ X : F (x) 6= ∅} = {x ∈ X : G(x) 6= ∅}.

Suppose G(x) 6= ∅ for each x ∈ K. By (iii), we have F (x) 6= ∅ for each x ∈ K. It

follows from Theorem 4.35 that there exists x ∈ X such that x ∈ co(G(x)), which

contradicts (a). Hence there must exist an x̂ ∈ K such that G(x̂) = ∅.

Remark 4.16 Theorem 4.42 improves Theorem 3 and 4 of Ding and Tan (1993)

and Theorem 3.2 of Tan and Yuan (1993).

Theorem 4.43 Let X be a nonempty paracompact convex subset of a topological

vector space E and P : X → 2X be LF -majorized. Suppose that there exist a

nonempty compact convex subset X0 of X and a nonempty compact subset K of

X such that for each y ∈ X \K, there is an x ∈ co(X0 ∪ {y}) with y /∈ clC((X \
(coP )−1(x)) ∩ C) for any nonempty compact subset C of X. Then there exists an

x̂ ∈ K such that P (x̂) = ∅.

Proof. Suppose that the conclusion does not hold. Then by the coercive condition,

P (x) 6= ∅ for all x ∈ X and hence the set {x ∈ X : P (x) 6= ∅} = X is paracompact.

By Lemma 4.11, there exists a correspondence ϕ : X → 2X of class LF such

that P (x) ⊂ ϕ(x) for each x ∈ X . Note that for each y ∈ X \ K, y /∈ clC((X \
(coP )−1(x)) ∩ C) implies y /∈ clC((X \ (coϕ)−1(x)) ∩ C). By Theorem 4.42, there

exists a point x̂ ∈ K such that ϕ(x̂) = ∅ so that P (x̂) = ∅ which is a contradiction.

Therefore, there exists a point x̂ ∈ K such that P (x̂) = ∅.

Remark 4.17 Theorem 4.43 improves and generalizes Theorem 1 of Ding and

Tan (1993). Note that the coercive condition of Theorem 3.3 of Tan and Yuan

(1993) implies the coercive condition of Theorem 4.40 and hence Theorem 4.43

also generalizes Theorem 3.3 of Tan and Yuan (1993), Theorem 5 of Ding and Tan

(1992c) and in turn generalizes Corollary 1 of Borglin and Keiding (1976), Theorem

2.2 of Toussaint (1984), Theorem 2 of Tulcea (1986), Theorem 5.1 and Corollary

5.1 of Yannelis-Prabhakar (1984) and Theorem 2 of Yannelis (1987).
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4.8.3 Equilibrium Existence Theorems

Let I be a (possibly infinite) set of agents. For each i ∈ I , let its choice or strategy

set Xi be a nonempty subset of a topological vector space. Let X =
∏
i∈I

Xi. For

each i ∈ I , let Pi : X → 2Xi be a correspondence. Following the notion of Gale and

Mas-Colell (1978), the collection Γ = (Xi, Pi)i∈I will be called a qualitative game.

A point x ∈ X is said to be an equilibrium of the game Γ if Pi(x) = ∅ for all i ∈ I .

For each i ∈ I , let Ai be a subset of Xi. Then for each fixed k ∈ I , we define

∏

j∈I,j 6=k
Aj ⊗Ak = {x = (xi)i∈I : xi ∈ Ai for all i ∈ I}.

Some authors use two constraint correspondences. In their context an abstract

economy (= generalized game) is a family of quadruples Γ = (Xi; Ai, Bi, Pi)i∈I
where I is a (finite or infinite) set of agents (players) such that for each i ∈ I , Xi

is a nonempty subset of a topological vector space and Ai, Bi : X =
∏
i∈I

Xi → 2Xi

are constraint correspondences and Pi : X → 2Xi is a preference correspondence.

When I = {I, . . . , N} where N is a positive integer, Γ = (Xi; Ai, Bi, Pi)i∈I is also

called an N -person game. An equilibrium of Γ is a point x ∈ X such that for each

i ∈ I , xi ∈ Bi(x) and Ai(x)∩Pi(x) = ∅. We remark that when Bi(x) = clXi(Bi(x))

(which is the case when Bi has a closed graph; in particular, when clBi is upper

semicontinuous with closed values), the definition of an equilibrium point coincides

with that of Ding et al. (1992) and Ding and Tan (1992a), Ding and Tan (1993); and

if in addition, Ai = Bi for each i ∈ I , the definition of an equilibrium point coincides

with the standard definition; e.g. in Borglin and Keiding (1976), Yannelis and

Prabhakar (1983), Yannelis-Prabhakar (1984), Tulcea (1986), and Tulcea (1988).

As an application of Theorem 4.42, we obtain the following equilibrium existence

theorem for an one-person game.

Theorem 4.44 Let X be a nonempty convex subset of a topological vector space.

Let A, B, P : X → 2X be such that

(1) for each x ∈ X, co(A(x)) ⊂ B(x);

(2) for each y ∈ X, A−1(y) is compactly open in X;

(3) A ∩ P is of class LF ;

(4) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪ {y}) with y /∈ clC((X \ (co(A ∩ P ))−1(x)) ∩ C) for any non-empty

compact subset C of X and for each x ∈ K, A(x) 6= ∅.

Then there exists a point x̂ ∈ K such that x̂ ∈ B(x̂) and A(x̂) ∩ P (x̂) = ∅.
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Proof. Let M = {x ∈ X : x /∈ B(x)}, then M is open in X . Define ϕ : X → 2X

by

ϕ(x) =

{
A(x) ∩ P (x), if x /∈ M,

A(x), if x ∈ M.

Since A ∩ P is of class LF , for each x ∈ X , x /∈ co(A(x) ∩ P (x)) and there exists a

correspondence β : X → 2X such that (a) for each x ∈ X , β(x) ⊂ A(x) ∩ P (x); (b)

for each y ∈ X , β−1(y) is compactly open in X and (c) {x ∈ X : β(x) 6= ∅} = {x ∈
X : A(x) ∩ P (x) 6= ∅}. Now define ψ : X → 2X by

ψ(x) =

{
β(x), if x /∈ M,

A(x), if x ∈ M.

Then clearly for each x ∈ X , ψ(x) ⊂ ϕ(x) and {x ∈ X : ψ(x) 6= ∅} = {x ∈ X :

ϕ(x) 6= ∅} by (c). For each y ∈ X , it is easy to see that ψ−1(y) = (M ∪ β−1(y)) ∩
A−1(y) and is compactly open in X by (2) and (b). For each x ∈ X , if x ∈M , then

x /∈ B(x), it follows from (1) that x /∈ co(ϕ(x)); if x /∈ M , x /∈ co(A(x) ∩ P (x)) =

co(ϕ(x)) since x /∈ co(A(x) ∩ P (x)) for all x ∈ X . This shows that ϕ is of class LF .

By (4) and the definition of ϕ, for each y ∈ X \K, there is an x ∈ co(X0 ∪ {y})
such that y /∈ clC((X \ (coϕ)−1(x))∩C) for any nonempty compact subset C of X .

By Theorem 4.42, there exists a point x̂ ∈ K such that ϕ(x̂) = ∅. Since for each

x ∈ K, A(x) 6= ∅ and by (4), for each y ∈ X \K, A(y) 6= ∅. Hence A(x) 6= ∅ for all

x ∈ X so that we must have x̂ ∈ B(x̂) and A(x̂) ∩ P (x̂) = ∅.

We note that Theorem 4.44 improves Theorem 4 of Ding and Tan (1992c).

As an application of Theorem 4.43, we shall prove the following equilibrium

existence theorem for a noncompact qualitative game.

Theorem 4.45 Let Γ = (Xi, Pi)i∈I be a qualitative game such that X =
∏
i∈I

Xi

is paracompact. Suppose the following conditions are satisfied:

(1) for each i ∈ I, Xi is a nonempty convex subset of a topological vector space;

(2) for each i ∈ I, Pi : X → 2Xi is LF -majorized;

(3)
⋃
i∈I

{x ∈ X : Pi(x) 6= ∅} =
⋃
i∈I

intX{x ∈ X : Pi(x) 6= ∅};

(4) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0∪{y}) with y 6∈ clC((X \ (coPi)

−1(xi))∩C) for each i ∈ I and for any

nonempty compact subset C of X.

Then Γ has an equilibrium point in K.

Proof. For each x ∈ X . Let I(x) = {i ∈ I : Pi(x) 6= ∅}. For each i ∈ I , define
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P ′
i : X → 2X by P ′

i (x) =
∏

j∈I,j 6=i
Xj ⊗ Pi(x). Furthermore, define P : X → 2X by

P (x) =





⋂
i∈I(x)

co(P ′
i (x)), if I(x) 6= ∅,

∅, if I(x) = ∅.

Then for each x ∈ X , P (x) 6= ∅ if and only if I(x) 6= ∅. By (2), (3) and the similar

argument as in the proof of Theorem 7 of Ding-Tan (1992(b)) (also see the proof of

Theorem 4.2 of Tan-Yuan (1993)), we can prove that P is LF -majorized (i.e. see

Yuan (1999), pp. 251–252 for a detailed proof which, with slight modification will

serve our purpose). By (4), for each y ∈ X \K, there exists an x ∈ co(X0 ∪ {y})
such that for any nonempty compact subset C on X ,

y /∈
⋃

i∈I
clC((X \ (coPi)

−1(xi)) ∩ C)

= clC

(⋃

i∈I
(X \ (coPi)

−1(xi)) ∩ C
)

= clC

((
X \

⋂

i∈I
(coPi)

−1(x)i)

)
∩ C

)
,

and Pi(y) 6= ∅ for each y ∈ X \K and i ∈ I and hence I(y) = I for each y ∈ X \K.

By the definition of P ′
i and P , we have

co(P (y)) =
⋂

i∈I
co(P ′

i (y))

=
∏

i∈I
co(Pi(y)).

It follows that

(coP )−1(x) = {y ∈ X : x ∈ co(P (y))}

= {y ∈ X : x ∈
∏

i∈I
co(Pi(y))}

= {y ∈ X : y ∈ (coPi)
−1(xi) for each i ∈ I}

=
⋂

i∈I
(coPi)

−1(xi).

Thus, we have that for each y ∈ X \ K, there exists an x ∈ co(X0 ∪ {y}) such

that y /∈ clC((X \ (coP )−1(x)) ∩C) for any nonempty compact subset C of X . By

Theorem 4.43, there exists a point x̂ ∈ K such that P (x̂) = ∅. This implies I(x̂) = ∅
and therefore Pi(x̂) = ∅ for each i ∈ I .
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Remark 4.18 Theorem 4.45 improves Theorem 3 of Ding-Tan (1993). It is

easy to see that the coercive condition (d) of Theorem 4.2 of Tan-Yuan (1993)

implies the coercive (4) of Theorem 4.45. Hence Theorem 4.404 also generalizes

Theorem 4.2 of Tan-Yuan (1993), Theorem 7 of Ding-Tan (1992b). In Theorem

4.45, if Xi is compact for each i ∈ I , then X =
∏
i∈I Xi is also compact. By

Letting X0 = K = X , the condition (4) of Theorem 4.45 is satisfied trivially. Hence

Theorem 4.45 also generalizes Theorem 2.4 of Toussaint (1998) and Proposition 3

of Tulcea (1986) in several aspects which in turn generalize the fixed point theorem

of Gale and Mas-Colell (1978).

As an application of Theorem 4.45, we shall show the following equilibrium

existence theorem for a noncompact abstract economy with an infinite number of

agents.

Theorem 4.46 Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that

X =
∏
i∈I

Xi is paracompact. Suppose that the following conditions are satisfied:

(1) for each i ∈ I, Xi is a nonempty convex subset of a topological vector space;

(2) for each i ∈ I and for each x ∈ X, Ai(x) is nonempty and co(Ai(x)) ⊂ Bi(x);

(3) for each i ∈ I and for each y ∈ X, A−1
i (y) is compactly open in X;

(4) for each i ∈ I, Ai ∩ Pi is LF -majorized;

(5) for each i ∈ I, Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X;

(6) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪ {y}) with y /∈ clC((X \ (co(Ai ∩ Pi))−1(xi)) ∩ C) for each i ∈ I and

for any nonempty compact subset C of X.

Then Γ has an equilibrium point in K.

Proof. For each i ∈ I , let Fi = {x ∈ X : xi /∈ Bi(x)}, then Fi is open in X . For

each i ∈ I , define Qi : X → 2Xi by

Qi(x) =

{
(Ai ∩ Pi)(x), if x /∈ Fi,

Ai(x), if x ∈ Fi.

We shall prove that the qualitative game Γ = (Xi, Qi)i∈I satisfies all hypotheses of

Theorem 4.45. For each i ∈ I , we have that the set

{x ∈ X : Qi(x) 6= ∅} = {x ∈ Fi : Qi(x) 6= ∅} ∪ {x ∈ X \ Fi : Qi(x) 6= ∅}
= Fi ∪ {x ∈ X \ Fi : (Ai ∩ Pi)(x) 6= ∅}
= Fi ∪ [(X \ Fi) ∩ Ei]
= Fi ∪ Ei

is open in X and hence the condition (3) of Theorem 4.45 is satisfied. By (4), for

each x ∈ Ei, there exist an open neighborhood Nx of x in X and correspondences

ψx, ϕx : (X → 2Xi such that
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(a) for each z ∈ Nx, (Ai ∩ Pi)(z) ⊂ ϕx(z) and zi /∈ co(ϕx(z));

(b) for each z ∈ X , ψx(z) ⊂ ϕx(z);

(c) for each y ∈ X , ψ−1
x (y) is compactly open in X ;

(d) for each nonempty finite set A ⊂ Ei,

{
z ∈

⋂

x∈A
Nx :

⋂

x∈A
co(ψx(z)) 6= ∅

}

=

{
z ∈

⋂

x∈A
Nx :

⋂

x∈A
co(ϕx(z)) 6= ∅

}
.

Now for each x ∈ X with Qi(x) 6= ∅, let

M(x) =




Fi, if x ∈ Fi,

Nx, if x /∈ Fi,

and define correspondences Φx, Ψx : X → 2Xi by

Φx(z) =




ϕx(z), if z /∈ Fi,

Ai(z), if z ∈ Fi,

Ψx(z) =




ψx(z), if z /∈ Fi,

Ai(z), if z ∈ Fi.

Then for each x ∈ X with Qi(x) 6= ∅, M(x) is an open neighborhood of x such that

(i) for each z ∈ M(x), Qi(z) ⊂ Φx(z) and zi /∈ co(Φx(z)) by (2) and (a);

(ii) for each z ∈ X , Ψx(z) ⊂ Φx(z) by (b);

(iii) for each y ∈ Xi,

Ψ−1
x (y) = {z ∈ X \ Fi : y ∈ Ψx(z)} ∪ {z ∈ Fi : y ∈ Ψx(z)}

= {z ∈ X \ Fi : y ∈ ψx(z)} ∪ {z ∈ Fi : y ∈ Ai(z)}
= [(X \ Fi) ∩ ψ−1

x (y)] ∪ (Fi ∩ A−1
i (y))

= [Fi ∪ ψ−1
x (y)] ∩ A−1

i (y)

is compactly open in X by (3), (c) and Fi being open in X .

Now let A be a finite subset of {x ∈ X : Qi(x) 6= ∅}, then A = A1 ∪ A2 where

A1 = {x ∈ A : x ∈ Fi} and A2 = {x ∈ A : x /∈ Fi}.
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Case 1. If A1 = ∅, then by (d),

{z ∈
⋂

x∈A
M(x) :

⋂

x∈A
co(ΨX(z)) 6= ∅}

= {z ∈
⋂

x∈A2

M(x) ∩ Fi :
⋂

x∈A2

co(Ψx(z)) 6= ∅}

∪ {z ∈
⋂

x∈A2

M(x) \ Fi :
⋂

x∈A2

co(Ψx(z)) 6= ∅}

= {z ∈
⋂

x∈A2

M(x) ∩ Fi : Ai(z) 6= ∅}

∪ z ∈
⋂

x∈A2

M(x) \ Fi :
⋂

x∈A2

co(ψx(z)) 6= ∅}

= {z ∈
⋂

x∈A2

M(x) ∩ Fi : Ai(z) 6= ∅}

∪ {z ∈
⋂

x∈A2

M(x) \ Fi :
⋂

x∈A2

co(ϕx(z)) 6= ∅}

= {z ∈
⋂

x∈A2

M(x) ∩ Fi :
⋂

x∈A2

co(Φx(z)) 6= ∅}

∪ {z ∈
⋂

x∈A2

M(x) \ Fi :
⋂

x∈A2

co(Φx(z)) 6= ∅}

= {z ∈
⋂

x∈A
M(x) :

⋂

x∈A
co(Φx(z)) 6= ∅}.

Case 2. If A1 6= ∅, then

{z ∈
⋂

x∈A
M(x) :

⋂

x∈A
co(Ψx(z) 6= ∅}

= {z ∈
⋂

x∈A1

M(x) ∩
⋂

x∈A2

M(x) :
⋂

x∈A
co(Ψx(z) 6= ∅}

= {z ∈ Fi ∩
⋂

x∈A2

M(x) :
⋂

x∈A
co(Ψx(z)) 6= ∅}

= {z ∈ Fi ∩
⋂

x∈A2

M(x) :
⋂

x∈A
co(Φx(z)) 6= ∅}

= {z ∈
⋂

x∈A
M(x) :

⋂

x∈A
co(Φx(z)) 6= ∅},

since Ψx(z) = Φx(z) = Ai(z) for each z ∈ Fi. This shows that for each i ∈ I , Qi is

LF -majorized.
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Finally, by (6) there exist a nonempty compact convex subset X0 of X and

a nonempty compact subset K of X such that for each y ∈ X \ K, there is an

x ∈ co(X0 ∪ {y}) with y /∈ clC((X \ (coQi)
−1(xi)) ∩ C) for each i ∈ I and for any

nonempty compact subset C of X . By Theorem 4.43, there exists a point x̂ ∈ K

such that Qi(x̂) = ∅ for all i ∈ I . By (2) and the definition of Qi, this implies that

for each i ∈ I , x̂i ∈ Bi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Remark 4.19 Note that the notion of LC-majorized correspondences in Ding-

Tan (1993) is a special case of the notion of LF -majorized correspondences. Thus

Theorem 4.46 improves Theorem 4 of Ding and Tan (1993) and in turn generalizes

Theorem 3 of Tulcea (1986) (which is also Theorem 4 of Tulcea (1988)).

Theorem 4.47 Under the hypotheses of Theorem 4.46, if the coercive condition

(6) is replaced by the following coercive condition

(6)′ there exist a nonempty closed compact subset K of X and a point x0 =

(x0
i )i∈I ∈ X such that x0

i ∈ co(Ai(y) ∩ Pi(y)) for all i ∈ I and for all

y ∈ X \K,

then Γ has an equilibrium point in K.

Proof. We prove that the coercive condition (6)′ implies the condition (6) of

Theorem 4.46. By (6)′, we have that for each i ∈ I ,

X \K ⊂ (co(Ai ∩ Pi))−1(x0
i )

and hence

X \ (co(Ai ∩ Pi))−1(x0
i ) ⊆ K.

Since K is closed and compact, we have

clC((X \ (co(Ai ∩ Pi))−1(x0
i )) ∩ C) ⊆ K ∩ C ⊆ K

for each nonempty compact subset C of X . Now, let X0 = {x0}, then X0 is a

nonempty compact convex subset of X and x0 ∈ co(X0 ∪{y}) for all y ∈ X . Hence,

there exist a nonempty compact convex subset X0 of X and a nonempty compact

subset K of X such that for each y ∈ X \K, there is an x0 ∈ co(X0 ∪ {y}) with

y /∈ clC((X \ (co(Ai ∩ Pi))−1(x0
i )) ∩C) for all i ∈ I and for any nonempty compact

subset C of X , i.e. the condition (6) of Theorem 4.46 is satisfied. The conclusion

holds from Theorem 4.46.

Remark 4.20 Theorem 4.47 generalizes Theorem 4.3 of Tna-Yuan in (1993) to

Ai∩Pi being LF -majorized for each i ∈ I . Hence Theorem 4,8,18 positively answers

the open question presented by Tan-Yuan in (1993). Theorem 4.47 also improves

and generalizes Theorem 8 of Ding-Tan (1992b) in several aspects which in turn

generalizes Theorem 3 of Tulcea in (1986) and Theorem 4 of Tulcea in (1988).
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Corollary 4.47.1 Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that

X =
∏
i∈I

Xi is paracompact. Suppose the following conditions are satisfied:

(1) for each i ∈ I, Xi is a nonempty convex subset of a topological vector space:

(2) for each i ∈ I and for each x ∈ X, Ai(x) is nonempty, co(Ai(x)) ⊂ Bi(x)

and xi /∈ co(Pi(x));

(3) for each i ∈ I and for each y ∈ Xi, A
−1
i (y) and P−1

i (y) are open in X;

(4) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪ {y}) with y /∈ clC((X \ (co(Ai ∩ Pi))−1(xi)) ∩ C) for each i ∈ I and

for any nonempty compact subset C of X.

Then Γ has an equilibrium point in K.

Proof. Since {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} =
⋃

y∈Xi

(A−1
i (y) ∩ P−1

i (y)), by (3), the

conditions (3) and (5) of Theorem 4.8.16 are satisfied. Since for each i ∈ I and

for each y ∈ Xi, (Ai ∩ Pi)
−1(y) = A−1

i (y) ∩ P−1
i (y) is open in X , for given any

x ∈ {x ∈ X : (Ai ∩ Pi)(x) 6= ∅}, let Nx = X , Ψx = φx = Ai ∩ Pi, then it is easy to

see that the condition (4) of Theorem 4.46 is also satisfied. The conclusion holds

from Theorem 4.46.

Remark 4.21 Note that for any xi ∈ Xi, (co(Ai ∩ Pi))−1(xi) is open in X by

the condition (3) of Corollary 4.8.20 and hence clC((X \ (co(Ai∩Pi))−1(xi))∩C) =

(X \ co(Ai ∩ Pi))−1(xi) ∩C. It follows that y /∈ clC((X \ (co(Ai ∩ Pi))−1(xi)) ∩C)

implied xi ∈ co(Ai(y)∩Pi(y)). Corollary 4.47.1 improves Corollary 1 of Ding-Tan in

(1993). Since the coercive condition (v) of Corollary 4.4 of Tan-Yuan (1993) implies

the coercive condition (4), therefore Corollary 4.47.1 also generalizes Corollary 4.4

of Tan-Yuan (1993), Corollary 1 of Ding-Tan (1992b), Corollary 2 of Tulcea (1986)

(also Corollary in (1988), Theorem 2.5 of Toussaint (1984) and Theorem 6.1 of

Yannelis-Prabhakar (1983).

In the following, we shall employ the approximation technique used by Tulcea in

(Tulcea (1986)). As an application of Theorem 4.45, we have the following existence

theorem of approximate equilibrium point for an abstract economy.

Theorem 4.48 Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that

X =
∏
i∈I

Xi is paracompact. Suppose that the following conditions are satisfied:

(1) for each i ∈ I, Xi is a nonempty convex subset of a topological vector space

Ei;

(2) for each i ∈ I, Ai is lower semicontinuous such that for each x ∈ X, Ai(x)

is nonempty and co(Ai(x)) ⊂ B(x);

(3) for each i ∈ I, Li ∩ Pi is LF -majorized;

(4) for each i ∈ I, Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X;
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(5) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪ {y}) with y /∈ clC((X \ (co(Ai ∩ Pi))−1(xi)) ∩ C) for each i ∈ I and

for any nonempty compact subset C of X.

Then given V =
∏
i∈I

Vi where fore each i ∈ I, Vi is a convex open neighborhood

of zero in Ei, there exists a point x̂V = (x̂Vi)iii ∈ K such that for each i ∈ I,

x̂Vi ∈ BVi(x̂V ) and Ai(x̂V )∩Pi(x̂V ) = ∅, where BVi(x) = (Bi(x)+Vi)∩X for each

i ∈ I and for each x ∈ X.

Proof. Let V =
∏
i∈I

Vi be given. For each i ∈ I , define the correspondences

AVi , BVi : X → 2Xi by

AVi(x) = (co(Ai(x)) + Vi) ∩Xi,

BVi(x) = (Bi(x) + Vi) ∩Xi for each x ∈ X.

Then, by (2) and Lemma 4.1 of Chang (1990) (or see (1986, p. 7), AVi has an

open graph in X ×Xi which implies that AVi has open lower sections (see (1976),

pp. 265–266), i.e. (AVi)
−1(y) is open in X for each y ∈ Xi. For each i ∈ I , define

the correspondence QVi : X → 2Xi by

QVi(x) =

{
(Ai ∩ Pi)(x), if x /∈ FVi ,

AVi(x), if x ∈ FVi ,

where FVi = {x ∈ X : xi /∈ BVi(x)}. Clearly, FVi is open in X . By using

same argument as in the proof of Theorem 4.46, we can prove that the qualitative

game Γ = (Xi, QVi)i∈I satisfies that for each i ∈ I , QVi is LF -majorized. Note

that by the defination of QVi , we have that for each i ∈ I and for each y ∈ X ,

Ai(y)∩Pi(y) ⊂ AVi(y) ⊂ QVi(y) and so for each i ∈ I , for each xi ∈ Xi and for any

nonempty compact subset C of X , clC((X \(coQVi)
−1(xi))∩C) ⊂ clC((X \(co(Ai∩

Pi))
−1(xi)) ∩ C). Hence the condition (5) implies that there exist a nonempty

compact convex subset X0 and a nonempty compact subset K such that for each

y ∈ X\K, there is an x ∈ co(X0∪{y}) with y /∈ clC((X\(coQVi)
−1(xi))∩C). Hence

all hypotheses of Theorem 4.45 are satisfied. By Theorem 4.45 there exists a point

x̂V = (x̂Vi)i∈I ∈ K such that QVi(x̂V ) = ∅ for all i ∈ I . Since for each i ∈ I and for

each x ∈ X , AVi(x) 6= ∅ by (2), we must have x̂Vi ∈ BVi and Ai(x̂V ) ∩ Pi(x̂V ) = ∅
for each i ∈ I .

Remark 4.22 Theorem 4.48 generalizes Theorem 5.2 of Tan-Yuan in (1993) in

the following two aspects: (a) for each i ∈ I , Ai ∩ Pi is LF -majorized; (b) the

coercive condition (5) is weaker than the coercive condition (e) of Theorem 5.2 of

Tan-Yuan (1993). Hence Theorem 4.48 answers in the affirmative the open question

presented by Tan-Yuan in (1993).
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The following result is Lemma 5.3 of Tan-Yuan in (1993).

Lemma 4.12 Let X be a topological space, Y be a nonempty subset of a topo-

logical vector space E, B be a neighborhood base at zero in E and B : X → 2Y .

For each V ∈ B, let BV : X → 2Y be defined by BV (x) = (B(x) + V ) ∩ Y for each

x ∈ X. If x̂ ∈ X and ŷ ∈ Y are such that ŷ ∈ ⋂
V ∈B

BV (x), then ŷ ∈ B(x̂).

We shall now show the following equilibrium existence theorem for an abstract

economy in locally convex topological vector space.

Theorem 4.49 Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that

X =
∏
i∈I

Xi is paracompact. Suppose the following conditions are satisfied:

(1) for each i ∈ I, Xi is a nonempty convex subset of a locally convex topological

vector space Ei;

(2) for each i ∈ I, Ai is lower semicontinuous such that for each x ∈ X, Ai(x)

is nonempty and co(Ai(x)) ⊂ Bi(x);

(3) for each i ∈ I, Ai ∩ Pi is LF -majorized;

(4) for each i ∈ I, the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X;

(5) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K such that for each y ∈ X \K, there is an x ∈ co(X0 ∪{y})
with y /∈ clC((X \ (co(Ai ∩ Pi))

−1(xi)) ∩ C) for each i ∈ I and for any

nonempty compact subset C of X.

Then Γ has an equilibrium point in K.

Proof. For each i ∈ I , let Bi be the collection of all open convex neighborhoods

of zero in Ei and let B =
∏
i∈I

Bi. Given V =
∏
i∈I Vi ∈ B where Vi ∈ BI for each

i ∈ I . By Theorem 4.48, there exists an x̂V ∈ K such that x̂Vi ∈ BVi(x̂V ) and

Ai(x̂V ) ∩ Pi(x̂V ) = ∅ for each i ∈ I , where BVi(x) = (Bi(x) + Vi) ∩ Xi for each

x ∈ X . It follows that the set

DV = {x ∈ K : xi ∈ BVi(x) and Ai(x) ∩ Pi(x) = ∅ for all i ∈ I}

is a nonempty closed subset of K by (4) and hence DV is compact.

Now we prove that the family (DV )V ∈B has the finite intersection property. Let

{V 1, . . . , V n} be any finite subset of B. For each k = 1, . . . , n, let V k =
∏
i∈I

V ki

where V ki ∈ Bi for each i ∈ I ; let V =
∏
i∈I

(
n⋂
k=1

V ki ) then DV 6= ∅. Obviously,

DV ⊂
n⋂
k=1

DV k so that
n⋂
k=1

DV k 6= ∅. Therefore the family {DV : V ∈ B} has the

finite intersection property. Since K is compact, ∩{DV : V ∈ B} 6= ∅. Now take

any x̂ ∈ ∩{DV : V ∈ B}, then for each i ∈ I , x̂i ∈ BVi(x̂) for each Vi ∈ Bi and

Ai(x̂) ∩ Pi(x̂) = ∅. By Lemma 4.12, for each i ∈ I , x̂i ∈ Bi(x̂).
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Remark 4.23 Theorem 4.49 improves and generalizes Theorem 5.4 of Tan-Yuan

in (1993) to see that for each i ∈ I , Ai ∩ Pi is LF -majorized and hence Theorem

4.49 positively answers the open problem presented by Tan-Yuan in (1993).

Corollary 4.49.1 Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that

X =
∏
i∈I

Xi is paracompact. Suppose the following conditions are satisfied:

(1) for each i ∈ I, Ai is a nonempty comvex subset of a locally convex topological

vector space;

(2) for each i ∈ I, Ai has an open graph (resp., is lower semicontinuous) such

that for each x ∈ X Ai(x) is nonempty and co(Ai(x)) ⊂ Bi(x);

(3) for each i ∈ I, Pi is lower semicontinuous (resp., has an open graph);

(4) for eahc i ∈ I, Ai ∩ Pi is LF -majorized;

(5) there exist a nonempty compact convex subset X0 of X and a nonempty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪ {y}) with y /∈ clC((X \ (co(Ai ∩ Pi))−1(xi)) ∩ C) for each i ∈ I and

for any nonempty compact subset C of X.

Then Γ has an equilibrium point in K.

Proof. Since Ai has an open graph (resp., is lower semicontinuous) and Pi is lower

semicontinuous (resp., has an open graph), the correspondence Ai ∩ Pi : X → 2Xi

is also lower semicontinuous by Lemma 4.2 of Yannelix (1987), so that the set

Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X . By Theorem 4.49, Γ has an

equilibrium point in K.

Corollary 4.49.2 Let Γ = (Xi, Ai, Bi, Pi)iii be an abstract economy such that

(1) for each i ∈ I, Xi is a nonempty compact comvex subset of a locally convex

topological vector space;

(2) for each i ∈ I Ai has an open graph (resp., is lower semicontinuous) such

that for each xiX, Ai(x) is nonempty and co(Ai(x)) ⊂ Bi(x);

(3) for each i ∈ I, Pi is lower semicontinuous (resp., has an open graph);

(4) for each i ∈ I, Ai ∩ Pi is LF -majorized.

Then Γ has an equilibrium point in X.

Proof. By Corollary 4.49.1 with X0 = K =
∏
iii

Xi, the conclusion holds.

Remark 4.24 Corollaries 4.49.1 and 4.49.2 generalize Corollaries 5.5 and 5.6

of Tan-Yuan (1993) to LF -majorized correspondences and generalize Corollary 3

of Borglin-Keiding (1976), Theorem 4.1 of Chang (1990) and Theorem of Shafer-

Sonnenschein (1975) in several aspects. Corollary 5.2 positively also answers the

open problem presented by Tan-Yuan in (1993).

Finally we note that the results of Sections 4.7 and 4.8 have been taken from

Ding and Tarafdar (1994).
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4.9 Fixed Point of ψ-Condensing Mapping, Maximal Elements and

Equilibria

In this section we shall introduce the ψ-condensing and ψα-condensing mapping and

prove to existence of fixed point of such mappings. We will also prove the existence

of maximal element of games and equilibria of abstract economies.

Let C denote a lattice with a least element 0. We first recall the following

definitions due to Fitzpatrick and Petryshyn (1974).

Definition 4.5 Let X be a locally convex topological vector space. The mapping

ψ : 2X → C is said to be a measure of noncompactness provided the followings

hold for all A, B ∈ 2X :

(i) ψ(A) = 0 if and only if A is relatively compact, i.e. A = closure of A is

compact;

(ii) ψ(coA) = ψ(A);

(iii) ψ(A ∪ B) = max(ψ(A), ψ(B)).

It follows from (3) that if A ⊂ B, then Ψ(A) ≤ Ψ(B). The above notion is

a generalization of the set-measure of noncompactness (Kuratowski (1920)) and

the ball-measure of noncompactness (Sadovskii (1972)) defined either in terms of

a family of seminorms when X is a locally convex topological vector space or of a

single norm when X is a Banach space. For more details we refer the readers to

reference Fitzpatrick and Detryshyh (1974).

Let K be anonempty subset of X . A set valued mapping T : K → 2K values

is called ψ-condensing provided that if Ω ⊂ K and ψ(T (Ω)) ≥ ψ(Ω), then Ω is

relatively compact, where ψ : 2X → C is a measure of noncompactness.

Note that if T : D → 2X is a compact mapping (i.e., T (D) is precompact), then

T is Ψ-condensing for any measure of noncompactness Ψ. Various Ψ-condensing

mappings which are not compact have been considered in Borisovich et al. (1980),

Gohberg et al. (1947), Nussabauss (1971), Detryshyh et al. (1974), Reich (1972),

Sadovskii (1972), etc. Moreover, when the measure of noncompactness Ψ is ei-

ther the set-measure of noncompactness or ball-measure of noncompactness, Ψ-

condensing mappings are called condensing mappings.

Definition 4.6 Let {Xα : α ∈ I} be an indexed family of nonempty sets, each

in locally convex topological vector space Eα, where I is a finite or an infinite index

set. For each α ∈ I , let Tα : X =
∏
α∈I

Xα → 2Xα be a set valued mapping and

ψα : 2Xα → C a measure of noncompactness in Xα. Then for α ∈ I , Tα is said

to be ψα-condensing provided that if Ω ⊂ X and ψα(Tα(Ω)) ≥ ψα(Pα(Ω)), then

Pα(Ω) is relatively compact in Xα.

Note that if I = {1}, then P{1} = I = the identity on X and this definition

reduces to the Definition 4.5 above.
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Definition 4.7 Let X be a nonempty. A set valued mapping T : X → 2X is said

to acyclic (e.g., see Bergstrom (1975, p. 403) if for each n ∈ N with xi+1 ∈ T (xi)

implies that xi /∈ T (xn).

Theorem 4.50 Let {Xα : α ∈ I} be a family of nonempty closed convex subsets,

each in a locally convex topological vector space Eα, where I is a finite or an infinite

index set. For each α ∈ I, let Tα : X =
∏
α∈I

Xα → 2Xα be a ψα-condensing mapping

with nonempty values where ψα is ameasure of noncompactness in Xα.

Then there exist nonempty compact convex subset K of X and compact convex

subset Kα of Xα for each α ∈ I such that K =
∏
α∈I

Kα and Tα : K → 2Kα for each

α ∈ I.

Proof. Let x0 ∈ X and F be the family of closed convex subsets C of X contains

x0 and for each α ∈ I , Fα be the family cα of closed convex subsets of Xα such that

(*) C =
∏
α∈I

Cα and Tα : C → 2Cα for each α ∈ I .

Clearly F 6= ∅ and F 6= ∅ for each α ∈ I as X ∈ F and Xα ∈ F with X =
∏
aii

Xα.

Now let K = ∩{C : C ∈ F} and Kα = ∩{Cα : Cα ∈ Fα} closed covnex subsets

of X and Xα respectively as x0 ∈ K and Pαx0 ∈ Kα. Now we first note that

K =
∏
α∈I

Kα. Let x ∈ K. Then x ∈ C =
∏
α∈I

Cα for all C ∈ F and all C ∈ F and

Cα ∈ Fα satisfying (*), i.e. Pαx ∈ Cα for each α ∈ I . It implies that Pαx ∈ Kα

for each α ∈ I . Thus x ∈ ∏
α∈I

Kα. Next, let x ∈ ∏
α∈I

Kα. Then for each α ∈ I ,

Pαx ∈ Cα, i.e. x ∈ ∏
α∈I

Cα = C. This implies that x ∈ K. Thus K =
∏
α∈I

Kα.

Next, we prove that Tα : K → 2Kα for each α ∈ I . Let x ∈ K. Then

x ∈ C =
∏
α∈I

Cα where C and Cα satisfy (*). Hence by (*), Tα(x) ⊂ Cα for

Cα ∈ Fα, Tα(x) ⊂ Kα. Thus Tα : K → 2Kα . It remains to prove that K and Kα

are compact for each α ∈ I .

Let us consider the set valued mapping T : X → 2X defined by T (x) =∏
α∈I

Tα(x). Then clearly we have T : K → 2K . Now let K̂ = co ({x0} ∪ T (K)),

then clearly K̂ ⊂ K as x0 ∈ K T (K) ⊂ K and K is closed and convex, where

T (K) ∪ {T (x) : x ∈ K}. For each α ∈ I , let K̂α = PαK̂. Then K̂α ⊂ PαK = Kα.

Now let
ˆ̂
K =

∏
α∈I

PαK̂ =
∏
α∈I

K̂α. Then clearly
ˆ̂
K is closed convex, x0 ∈ ˆ̂

K and

ˆ̂
K ⊂ K. Now if x ∈ ˆ̂

K, then T (x) ⊂ T (K) as
ˆ̂
K ⊂ K. Thus T (x) ⊂ K̂. Hence

Tα(x) = PαT (x) ⊂ PαK̂ = K̂α. Hence Tα :
ˆ̂
K → 2K̂α . This implies that

ˆ̂
K = K

and PαK̂ = K̂α = Kα, for each α ∈ I . Finally let α be arbitrary but fixed. Then

by using the continuity of Pα, we can easily check that

PαK̂ = Pαco ({x0} ∪ T (K))

= co ({Pα(x0)} ∪ PαT (K)) = co ({Pα(x0)} ∪ Tα(K)) .



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

226 Topological Methods of Set-Valued Nonlinear Analysis

Hence

ψα(Kα) = ψα(PαK̂) = ψα (co {Pα(x0)} ∪ Tα(K))

= ψα ({Pα(x0)} ∪ Tα(K)) = max {ψα{(Pα(x0)}, ψα(Tα(K))}
= ψα (Tα(K)) .

This shows that Kα = PαK is compact. Now since α ∈ I is arbitrary, Kα is

compact for each α ∈ I and hence by Tychonov Theorem K is compact.

Taking I = {1} we obtain the following corollary (Lemma 2.1, of Mehta et al.

(1996)).

Corollary 4.50.1 Let X be a nonempty closed convex subset of a locally con-

vex topological vector space E and T : X → 2X be a ψ-condensing mapping with

nonempty convex values where ψ : 2E → C is a measure of noncompactness. Then

there is a nonempty compact convex subset K of X such that T : K → 2K .

Theorem 4.51 Let {Xα : α ∈ I} and X be as in Theorem 4.50 and for each α ∈
I, TαLX → 2Xα be a ψ-condensing upper semicontinuous mapping with nonempty

closed values. Then the mapping T : X → 2X defined by T (x) =
∏
α∈I

Tα(x) has a

fixed point.

Proof. By Theorem 4.50 there exist a nonempty compact convex set K ⊂ X and

a compact convex set Kα for each α ∈ I such that K =
∏
α∈I

Kα and Tα : K → 2Kα

for each α ∈ I . It is now trivial to see that Tα : K → 2Kα is upper semicontinuous

and Tα(x) is nonempty compact convex subset of Kα for each x ∈ K. Now by

Theorem 4, the mapping T : K → 2K defined by T (x) =
∏
α∈I

Tα(x), x ∈ K is upper

semicontinuous with compact comvex values. Hence by Theorem 4 of Fan, there

exists a point x0 ∈ K ⊂ X such that x0 ∈ T (x0) =
∏
α∈I

Iα(x0).

Specializing I = {1}, we have the following corollary.

Corollary 4.51.1 Let X be a nonempty closed convex subset of locally convex

topological vector space E. Let the mapping T : X → 2X be upper semicontinuous

and ψ-condensing with nonempty closed convex values. Then T has a fixed point

x0, i.e. x0 ∈ T (x0).

Theorem 4.52 Let {Xα : α ∈ I} and X be as in Theorem 4.50. For each α ∈ I,

let Tα : X → 2Xα be a ψα-condensing mapping such that

(i) for each x ∈ X, Tα(x) is a nonempty convex of Xα;

(ii) for each xα ∈ Xα, T
−1
α (xα) contains a compactly open subset Oxα of X such

that
⋃

xα∈Xα

Oxα = X (Oxα may be empty for some xα).

Then there is a point x ∈ X such that x ∈ T (x) =
∏
α∈I

Tα(x).
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Proof. By Theorem 4.50 there exist a nonempty compact convex subset K of X

and a compact convex subset Kα of Xα such that K =
∏
α∈I

Kα and T : K → 2Kα .

By (i), Tα(x) is a nonempty convex subset of Kα for each x ∈ K.

By (ii), for each xα ∈ Kα ⊂ X , there exists a compactly open set Oxα of X and

hence relatively open set Ôxα = Oxα ∩K of K. Also if x ∈ K, by (ii) x ∈ Oxα for

some xα ∈ Xα. Hence x ∈ Oxα ∩K = Oxα . This shows that K ⊂ ⋃
xα∈Kα

Ôxα . Hence

K =
⋃

xα∈Kα

Ôxα . Thus all the conditions of Theorem 4.39 are fulfilled. Therefore

by Theorem 4.39 there exists a point x ∈ T (x) =
∏
α∈I

Tα(x).

Now if we take I = {1}, we obtain the following corollary.

Corollary 4.52.1 Let X be a nonempty closed convex subset of a locally convex

topological vector space E. Let X → 2X be a ψ-condensing mapping with nonempty

convex values such that for each y ∈ X, T−1(y) contains compactly open subset Oy
of X with

⋃
y∈X

Oy = X. Then T has a fixed point.

Corollary 4.52.1 contains Theorem 4.8.5 of Yuan (1999) as a special case. Corol-

laries 4.51.1 and 4.52.1 generalize the corresponding results on fixed point theorems

in locally convex topological vector spaces of Dugundji and Granas (1982), Reich

(1972), Smart (1974), Istratescu (1981), Zeidler (1985) and others.

Let X and Y be topological spaces. A correspondence T : X → 2Y is said to be

(1) quasi-regular if (a) it has open lower sections, (b) T (x) is non-empty and convex

for each x ∈ X , and (c) T (x) = clX T (x) for each x ∈ X ; (2) the correspondence

T : X → 2Y is said to be regular if it is quasi-regular and has an open graph.

If X is a set, Y is a subset of a vector space, and F : X → 2Y is such that

for each x ∈ X , coF (x) ⊂ Y , then the mapping coF : X → 2Y is defined by

(coF )(x) = coF (x) for each x ∈ X . If {X + i : i ∈ I} and Yi : i ∈ I} are

collections of sets and Fi
∏
j∈I

Xj → 2Yi is a set-valued mapping for each i ∈ I ,

then the mapping
∏
i∈I

Fi :
∏
i∈I

Xi → 2
∏

i∈I Yi is defined by (
∏
i∈I

Fi)(x) =
∏
i∈I

Fi(x)

for each x ∈ ∏
i∈I

Xi. We note that if X is a topological space, Y is a topological

vector space, and FLX → 2Y is lower semicontinuous, it is clear that coF is lower

semicontinuous.

We need notation used in Tulcea (1988). Let X be a non-empty set, Y a non-

empty subset of topological vector space E, and F : X → 2Y a set-valued mapping.

A family (fj)j∈J of correspondences between X and Y , indexed by a non-empty

filtering set J (we denote by ‘≤’ the order relation in J) is an upper approximating

family for F if:

(AI) F (x) ⊂ fj(x) for all x ∈ X and all j ∈ J ;
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(AII) for each j ∈ J there is j∗ ∈ J such that for each h ≥ j∗ and h ∈ J ,

fh(x) ⊂ fj(x) for each x ∈ X ;

(AIII) for each x ∈ X and V ∈ B, where B is the fundamental system of zero of the

topological vector space E, there is jx,ν ∈ J such that fh(x) ⊂ F (x) + V if

h ∈ J and jx,V ≤ h.

From (AI)–(AIII), it is easy to deduce that

(AIV) for each x ∈ X and l ∈ J ,

F (x) ⊂
⋂

j∈J
fj(x) =

⋂

k≤j, k∈J
fj(x) ⊂ F (x) ⊂ F (x).

Let X be a topological space, Y a non-empty subset of a vector space E, θ :

X → E be a single-valued mapping, and φ : X → 2Y be a correspondence. Then

(1) φ is said to be of class Lθ,C if (a) for each x ∈ X , coφ(x) ⊂ Y and θ(x) /∈ coφ(x),

and (b) for each y ∈ Y , φ−1(y) is compactly open in X ; (2) (φx, Nx) is an Lθ,C-

majorant of φ at x if φx : X → 2Y and Nx is an open neighborhood of x in X such

that (a) for each z ∈ Nx, φ(z) ⊂ φx(z) and θ(z) /∈ coφx(z), (b) for each z ∈ X ,

coφx(z) ⊂ T , and (c) for each y ∈ Y , φ−1
x (y) is compactly open in X ; (3) φ is said

to be Lθ,C-majorized if for each x ∈ X with φ(x) 6= ∅, there exists an Lθ,C-majorant

(φx, Nx) of φ at x.

It is clear that every correspondence of class Lθ,C is Lθ,C-majorized. We note

that our notions of the correspondence φ being of class Lθ,C and Lθ,C-majorized cor-

respondence generalize the notions of correspondence of class L∗
θ and L∗

θ-majorized

correspondence, respectively introduced by Ding et al. which in turn generalized

the notions of φ ∈ C(X, Y, θ) and C-majorized correspondence, respectively, intro-

duced by Tulcea. In this paper, we shall deal mainly with either the case (I) X = Y

and is a non-empty convex subset of the topological vector space E and θ = IX , the

identity mapping on X ; or the case (II) X =
∏
i∈I

Xi and θ = πj ; X → Xj is the jth

projection of X onto Xj and Y = Xj is a non-empty convex subset of a topological

vector space. In both cases (I) and (II), we shall write LC in place of Lθ,C .

For the proof of the following two lemmas we refer to Yuan (1999, Theorem 4.7.2

and Lemma 4.7.3, pp. 300–301), (also see Klein and Thompson (1984, Theorem

7.3.10, p. 86).

Lemma 4.13 Let X be a topological space and Y a normal space. If F1, F2 :

X → 2Y are upper semicontinuous at x ∈ X and have closed values, then F1 ∩ F2

is upper semicontinuous at x.

Lemma 4.14 Let X and Y be two topological space and A be a nonempty closed

(resp., open) subset of X. If F1 : X → 2Y and F2 : A → 2Y are lower semi-

continuous (resp. upper semicontinuous) mappings such that F2(x) ⊂ F1(x) for all



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Topological Fixed Point Theorems 229

x ∈ A, then the mapping F : X → 2Y defined by

F (x) =

{
F1(x), if x /∈ A

F2(x), if x ∈ A

is lower semicontinuous (resp. upper semicontinuous).

We should point out that Lemma 6.1 of Yannelis and Prabhakav (1983) is a

particular case of Lemma 4.14 above.

We now extend over the Theorems which are an extension of a theorem of Debreu

and Shafer and Sonnenschein (1975).

Theorem 4.53 Let E = {Xα, Aα, Uα : α ∈ I} be an abstract economy such that

for each α ∈ I.

(i) Xα is a nonempty closed convex subset of a locally convex vector space Eα.

(ii) Aα : X =
∏
α∈I

Xα → 2Xα is a continuous φα-condensing correspondence

such that for each x ∈ X, Aα(x) is nonempty closed convex subset of Xα;

(iii) Uα : X → R is continuous and quasiconcave in xα.

Then there is an equilibrium point x = {xα} ∈ X of the economy, i.e. Uα(x) =

Uα[xα, xα] = sup
Zα∈Aα(x)

U [zα, x−α].

Proof. By Theorem 4.50 there exist a nonempty compact convex subset K of

X and for each α ∈ I , a compact convex Kα of Xα such that K =
∏
α∈I

Kα and

Aα : K → 2Kα for each α ∈ I . Now for each α ∈ I , let Ûα = U \ K = the

restriction of Uα to K. Then clearly Ûα : K → R is continuous and quasiconcave

in xα. Thus the truncated economy ξ̂ = {Kα, Aα, Ûα : α ∈ I} has an equilibrium

point x ∈ K of ξ̂ by Theorem.

Now Uα(x) = Ûα(x) = Ûα[xα, x−α] = sup
zα∈(x)

Ûα[xα, x−α] = sup
zα∈Aα(x)

×

Uα[zα. x−α] for each α ∈ I .

Theorem 4.54 Let ξ = {Xi, Ai, Pi : i ∈ I} be an abstract economy, where I is

a countable index set. Assume that for each i ∈ I,

(a) Xi is s nonempty closed convex subset of a locally convex metrizable space

Ei;

(b) Ai : X =
∏
i∈I

Xi → 2Xi is a continuous φi-condensing correspondence such

that for each x ∈ X, Ai(x) is nonempty and convex, where ψi is a measure

of noncompactness in Xi;

(c) Pi : X → 2Xi has a compactly open graph in X ×Xi;

(d) for each x = {xi} ∈ X, xi /∈ coPi(x) for all i ∈ I.

Then the exists an equilibrium point x = {xi} ∈ X of ξ, i.e. xi ∈ Ai(x) and

Pi(x) ∩ Ai(x) = φ for each i ∈ I.
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Proof. By Theorem 4.50 there exist a nonempty compact convex subset K of X

and a compact convex subset Ki of Xi for each i ∈ I such that K =
∏
i∈J

Ki and

Ai : K → 2Ki . For each i ∈ I , let us define P̂i : K → 2Ki by P̂ (x) = Pi(x) ∩Ki,

x ∈ K.

Now for each i ∈ I ,

G(P̂i) = the graph of P̂i

= {(x, ui) : ui ∈ P̂i(x) ⊂ Ki, x ∈ K}
= {(x, ui) : ui ∈ Pi(x) ⊂ Xi, x ∈ X} ∩K ×Ki

= G(Pi) ∩ (K ×Ki) which is open by (c).

Thus the truncated economy ξ = {Ki, Ai, P̂i : i ∈ I} satisfies all the condition of

Theorem. Hence there is a point x = {xi} ∈ K such that for each i ∈ I , xi ∈ Ai(x)

and P̂i(x) ∩ Ai(x) = ∅. Now P̂i(x) ∩ Ai(x) = φ implies that Pi(x)Ai(x) = ∅. For if

yi ∈ Pi(x)∩Ai(x), then yi ∈ Ai(x) ⊂ Ki as x ∈ K and thus yi ∈ Pi(x)∩Ki = P̂ (x)

which would be contraction. Hence x ∈ K is an equilibrium point of ξ.

Theorem 4.55 Let Γ = (Xi, Pi)i∈I be a qualitative game such that X =
∏
i∈I

Xi.

Suppose the following conditions are satisfied:

(a) Xi is a non-empty compact and convex subset of a topological vector space

for each i ∈ I;

(b) Pi : X → 2Xi is LC-majorized for each i ∈ I.

(c)
⋃
i∈I

{x ∈ X : Pi(x) 6= ∅} =
⋃
i∈I

∫
X
{x ∈ X : Pi(x) 6= ∅}.

Then Γ has an equilibrium point in X.

Proof. For each i ∈ I , Xi is a non-empty compact and convex subset of the

topological vector space Ei. By Theorem 3 of Ding and Tan (1993), there exists a

point x ∈ X such that Pi(x) = ∅ for all i ∈ I .

We shall use the approximation technique inspired by Chang (1990) and Tul-

cea (1988) to obtain equilibrium existence theorems for generalized games in which

the constraint correpsondences are lower semicontinuous instead of having lower

open sections. The outline of ideas is as follows: for given a generalized game

Γ = (Xi; Ai, Bi; Pi)i∈I , we first construct an associated approximate generalized

game ΓV = (Xi; (AV )i, (BV )i; (PV )i)iii for each non-empty open neighborhood V

of zero in locally convex topological vector space. Then, for the associated approx-

imate generalized game ΓV = (Xi; (AV )i, (BV )i; (PV )i)i∈I , there exists an associ-

ated simple qualitative game IV = (Xi; (QV )i)iii which exhibits the same equilib-

rium points as the approximate generalized game ΓV = (Xi; (AV ), (BV )i; (PV )i)i∈I
by Theorem 4.55. Finally by employing our approximate Lemma 4.12 and finite

intersection property, the result is deduced.
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Theorem 4.56 Let G = (Xi; Ai, Bi; Pi)i∈I be a generalized game and X =∏
i∈I

Xi. Suppose the following conditions are satisfied:

(a) for each i ∈ I, Xi is a non-empty compact and convex subset of a locally

convex Hausdorff topological vector space Ei;

(b) for each i ∈ I, Ai : X → 2Xi is lower semicontinuous such that for each

x ∈ X, Ai(x) is non-empty and coAi(x) ⊂ Bi(x);

(c) for each i ∈ I, Ai ∩ Pi is LC-majorized;

(d) for each i ∈ I, the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X.

Then G has an equilibrium point in X, i.e. there exists a point x̂ = (x̂i)i∈I ∈ X

such that for each i ∈ I, x̂i ∈ Bi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Proof. Let V =
∏
i∈I

Vi be given where for each i ∈ I , Vi is an open convex

neighborhood of zero in Ei. Fix any i ∈ I and define AVi , BVi : X → 2Xi by

AVi(x) = (coAi(x) + Vi) ∩ Xi and BVi(x) = (Bi(x) + Vi) ∩ Xi for each x ∈ X .

By (a), Ai is lower semicontinuous so that coAi is also lower semicontinuous by

Proposition 2.6 of (1956, p. 366). It follows from Lemma 4.1 of (1990, p. 7) that

AVi has an open graph in X × X . Now let FVi = {x ∈ X : x ∈/∈ BVi(x)}. Then

FVi is open in X . Define the mapping QVi : X → 2Xi by

QVi(x) =

{
(Ai ∩ Pi)(x), if x /∈ FVi ,

Ai(x), if x ∈ FVi .

We shall prove that the qualitative game I = (Xi, QVi)i∈I satisfies all conditions

of Theorem 4.55. First we note that for each i ∈ I , the set

{x ∈ X : QVi(x) 6= ∅}
= FVi ∩ {x ∈ X : Ai(x) 6= ∅} ∪ {x ∈ X \ FVi : Ai(x) ∩ Pi(x) 6= ∅}
= FVi ∪ {x ∈ X \ FVi : Ai(x) ∩ Pi(x) 6= ∅} (by (b))

= FVi ∪
(
(X \ FVi) ∩ Ei

)
= FVi ∪Ei

is open in X by (d). Let x ∈ X be such that QVi(x) 6= ∅. We consider the following

two cases:

Case 1. x ∈ FVi . Let ψx = AVi andNx = FVi . ThenNx is an open neighborhood

of x in X such that (i) QVi(z) ⊂ ψx(z) and by (b), zi /∈ coψx(z) fir each z ∈ Nx;

(ii) coψx(z) ⊂ Xi for all y ∈ Xi since AVi has an open graph. Therefore, ψx is an

LC-majorant of QVi at x.

Case 2. x /∈ FVi . Since QVi(x) = (Ai ∩ Pi)(x) 6= ∅ and Ai ∩ Pi is LC-majorized,

there exist an open neighborhood Nx of x in X and a correspondence φx : X → 2Xi

such that (i) (Ai ∩Pi)(z) ⊂ φx(z) and zi /∈ coφx(z) for each z ∈ Nx; (ii) coφx(z) ⊂
Xi for each z ∈ X ; and (iii) φ−1

x (y) is compactly open in X for each y ∈ Xi. Define
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ψx : X → 2Xi by

ψx(z) =

{
AVi(z) ∩ φx(z), if z /∈ FVi ,

AVi(z), if z ∈ FVi .

Note that as (Ai ∩ Pi)(z) ⊂ φx(z) and Ai(z) ⊂ AVi(z) for each z ∈ Nx, we have

QVi(z) ⊂ ψx(z) and coψx(z) ⊂ Xi. It is easy to see that zi /∈ coψx(z) for all z ∈ X .

Moreover, for any y ∈ Xi, the set

ψ−1
x (y) = {z ∈ X : y ∈ ψx(z)}

= {z ∈ X \ FVi : y ∈ ψx(z)} ∪ {z ∈ FVi : y ∈ ψx(z)}
= {z ∈ X \ FVi : y ∈ AVi(z) ∩ φx(z)} ∪ {z ∈ FVi : y ∈ AVi(z)}
=
[
(X \ FVi) ∩ A−1

Vi
(y) ∩ φ−1

x (y)
]
∪
[
FVi ∩ A−1

Vi
(y)
]

=
[
φ−1
x (y) ∪ FVi

]
∩ A−1

Vi
(y)

is compactly open in X . Therefore, ψx is an LC-majorant of QVi at point x.

Hence QVi is an LC-majorized correspondence. Now by our assumption, the set

{x ∈ X : QVi(x) 6= ∅} = FVi ∪{x ∈ X \FVi : (Ai∩Pi)(x) 6= ∅} = FVi ∪Ei is open in

X by condition (c). Therefore all hypotheses of Theorem 4.55 are satisfied, so that

by Theorem 4.55, there exists a point xV = (xVi )i∈I ∈ X such that QVi(xV ) = ∅
for all i ∈ I . Since for each i ∈ I , Ai(x) is non-empty, we must have xVi ∈ BVi(xV )

and Ai(xV ) ∩ Pi(xV ) = ∅.
For each i ∈ I , let Bi be the collection of all open convex neighborhoods of zero

in Ei and B =
∏
i∈I

Bi. Given any V ∈ B, let V =
∏
j∈I

Vj , where Vj ∈ Bj for each

j ∈ I . By the argument above, there exists a x̂V ∈ X such that x̂Vi ∈ BVi(x̂V )

and Ai(x̂V )∩ Pi(x̂V ) = ∅ for each i ∈ I , where BVi(x) = (Bi(x) + Vi) ∩Xi for each

x ∈ X . It follows that the set QV := {x ∈ K : xi ∈ BVi(x) and Ai(x) ∩ Pi(x) = ∅}
is a non-empty and closed subset of X by (d).

Now we want to prove {WV }V ∈B has the finite intersection property. Let

{V1, . . . , Vn} be any finite subset of B. For each i = 1, . . . , n, let Vi =
∏
j∈I

Vij where

Vij ∈ Bi for each j ∈ I ; let V =
∏
j∈I (

n⋂
i=1

Vij), then QV 6= ∅. Clearly QV ⊂
n⋂
i=1

QVi

so that
n⋂
i=1

QVi 6= ∅. Therefore the family {QV : V ∈ B} has the finite intersection

property. Since X is compact,
⋂
V ∈B

QV 6= ∅. Now take any x̂ ∈ ⋂
V ∈B

QV , then for

each i ∈ I , x̂i ∈ BVi(x̂) for each Vi ∈ Bi and Ai(x̂) ∩ Pi(x̂) = ∅. By Lemma 4.12,

we must have for each i ∈ I , Bi(x̂).

As a consequence of Theorem 4.56, we have the following:

Corollary 4.56.1 Let G = (Xi, Ai, Bi, Pi)i∈I be a generalized game such that

X =
∏
i∈I

Xi is paracompact. Suppose the following conditions are satisfied:
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(a) for each i ∈ I, Xi is a non-empty compact and convex subset of a locally

convex Hausdorff topological vector space Ei;

(b) for each i ∈ I and for each x ∈ X, Ai(x) is non-empty and coAi(x) ⊂ Bi(x);

(c) for each i ∈ I, Ai has an open graph in X × Xi (resp., is lower

semicontinuous) and Pi is lower semicontinuous (resp., has an open graph

in X ×Xi);

(d) for each i ∈ I, Ai ∩ Pi is LC-majorized.

Then there exists x ∈ X such that for each i ∈ I, Ai(x)∩Pi(x) = ∅ and xi ∈ Ai(x).

Proof. For each i ∈ I , since Ai has an open graph in X × Xi (resp., is lower

semicontinuous) and Pi is lower semicontinuous (resp., has open graph in X ×Xi)

the ampping Ai ∩ Pi : X → 2Xi is also lower semicontinuous(e.g. see Lemma 4.1

of (1983, p. 103), so that the set Ei = {x ∈ X : Ai(x) ∩ Pi(x) 6= ∅} is open

in X . Therefore all conditions of Theorem 4.56 are satisfied and the conclusion

follows.

Now, by Theorem 4.56 and the approximation Theorem 3 of Tulcea (1988,

p. 280), we are able to give the existence theorem of the generalized game G =

(Xi; Ai; Pi)i∈I in which the constraint correspondences are upper semicontinuous

and preferences are lower semicontinuous instead of having open lower sections or

open graphs.

Theorem 4.57 Let G = (Xi, Ai, Pi)i∈I be a generalized game and X =
∏
i∈I

Xi.

Suppose the following conditions are satisfied for each i ∈ I:

(a) Xi is a non-empty compact and convex subset of a locally convex topological

vector space Ei;

(b) Ai : X → 2Xi is upper semicontinuous with non-empty closed and convex

values;

(c) Pi : X → 2Xi is lower semicontinuous and LC-majorized;

(d) for each i ∈ I, Ei = {x ∈ X ; (Ai ∩ Pi)(x) 6= ∅} is open in X.

Then there exists x ∈ X such that for each i ∈ I, Ai(x)∩Pi(x) = ∅ and xi ∈ Ai(x).

Proof. For each i ∈ I , Xi is non-empty compact and convex, so that X =
∏
i∈I

Xi

is also compact and convex. Given any i ∈ I , since Ai is upper semicontinuous,

Theorem 3 of Tulcea (1988, p. 280) implies that there exists a family (Bij)j∈J
indeed by filtering set J , consisting of regular correspondences between X and Xi,

such that both (Bij)j∈J and (Bij)j∈J are upper approximating of families for Bi.

The game Gj = (Xi; (Bij)i, (Bij)i; Pi)i∈I satisfies the hypotheses of Theorem

4.56 (hence also Corollary 4.56.1) for each j ∈ J . Hence Gj has an equilibrium

xj
∗ ∈ X for each fixed j ∈ J such that Bij(x

j∗ )∩Pi(xj
∗

) = ∅, and πi(x
j∗) ∈ Bij(x

j∗ )

for an i ∈ I .

Let U be an ultrafilter on J finer than the filter sections of J . Since (xj
∗

)j∈J ⊂
X , x = lim

j,U
xj

∗

. Then for all i ∈ I , πi(x) = lim
j,U

(xj
∗

)i. For each i ∈ I , we know that
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Ai(x) ⊂ Bij(x) for all x ∈ X and j ∈ J . Since for each j ∈ J , Ai(x
j∗)∩Pi(xj

∗

) = ∅
for all i ∈ I . By condition (d), it implies that Ai(x) ∩ Pi(x) = ∅ for all i ∈ I .

For each j ∈ J , xj
∗

is an equilibrium point of the generalized game Gj and Bij
is regular. Therefore clBij(x

j∗) = Bij(x
j∗) and (xj

∗

)i ∈ cl(Bij(x
j∗ )) = Bij(x

j∗ ).

Since Bij has a closed graph, (x, (x)i) ∈ Graph Bij for every i ∈ I . But for each

i ∈ I , (Bij)i∈I is the upper approximating family of the correspondence Ai, by the

property (AIV ) of the upper approximating family, for each x ∈ X .
⋂
j∈J

Bij(x)Ai(x).

We also know that Ai has a closed graph by (b), so that for each i ∈ I , Ai(x) ∩
Pi(x) = ∅ and πi(x) ∈ Ai(x).

We note that Theorem 4.57 generalizes Theorem 5 of Tulcea (1988, p. 284)

to the extent that the preference correspondence Pi is LC-majorized instead of

Ei-majorized. Theorem 4.57 also generalizes the Theorem 4.54 of Shafer and Son-

nenschein (1975, p. 374) and a corresponding result due to Tian.

The following example shows that the “for each i ∈ I , the set E i = {x ∈ X :

(Ai ∩ Pi)(x) 6= ∅} is open in X” in condition (d) of Theorem 4.57 is essential.

Example 4.1 Let I = {1} and X = [0, 1]. Define A, P : X → 2X by

A(x) =





[1/2, 1], if x ∈ [0, 1/2) ,

[0, 1] if x = 1/2,

[0, 1/2] , if x ∈ (1/2, 1] ,

and

P (x) =

{
∅, if x = 0,

[0, x) , if x ∈ (0, 1] .

Then A is upper semicontinuous with non-empty closed convex values and the

fixed point set of A is a singleton {1/2}. The correspondence P has convex values

with open lower sections since for each y ∈ [0, 1], P−1(y) = (y, 1] is open in

X . Therefore A, P , and X satisfy all conditions except that “E = {x ∈ [0, 1] :

A(x) ∩ P (x) 6= ∅} = [1/2, 1]” is closed in [0, 1]. But A(1/2) ∩ P (1/2) 6= ∅, i.e.,

the generalized game G = ([0, 1], A, P ) has no equilibrium point since A(1/2) ∩
P (1/2) 6= ∅.

By Theorem 4.57, we can also obtain the following well-known Fan-Glicksberg

fixed point theorem:

Corollary 4.57.1 Let X be a convex compact subset of a locally convex topo-

logical vector space E and A : X → 2X be upper semicontinuous with non-empty

closed and convex values for each x ∈ X. Then A has a fixed point.

Proof. By taking I = {1}, and Pi(x) = ∅ for each x ∈ X in Theorem 4.57 the

conclusion follows.
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Remark 4.25 So far, we have probed the existence theorems of equilibria for

generalized games with compact and infinite dimensional strategy spaces, in infinite

numbers of agents, and nontotal-nontransitive constraint and preference correspon-

dences which may not have open graphs or open lower (upper) sections. Since it

is well known that if a correspondence has an open graph, then it has open upper

and lower sections and thus the correspondences with open lower sections are lower

sections semicontinuous. However, a continuous correspondence does not hold open

lower (or upper) sections properties in general (e.g., see Yannelis and Prabhakar

(1983, p. 237)). The results of this section generalize many results in the existing

literature by relaxing the openness of graphs or lower (upper) sections of constraint

correspondences.

By Remark 4.25, Theorem 4.57 (also Corollary 4.57.1) not only shows that

Theorem 6.1 of Yannelis and Prabhakar (1983, p. 242) can be extended to non-

metrizable subsets without introducing additional assumption and hence the ques-

tion raised by Yannelis and Prabhakar is answered in the affirmative. In fact, some

of the assumptions of their question can be further weakened.

Since we also know that in the infinite settings, the set of feasible allocations

generally is not compact in any topology of the commodity spaces, it is necessary

to consider the existence of equilibria for generalized games in which the strategy

spaces which may not be compact. This is done by strengthening the assumptions on

the preference or constraint correspondences which enables one to remove altogether

the compactness (or paracompactness) assumptions on the strategy spaces in the

following sections.

The work on the rest of this chapter is mainly due to E. U. Tarafdar.

Noncompact Economy

Theorem 4.58 Let G = (Xi, Ai, Bi, Pi : i ∈ I) be a generalized game and

X =
∏
i∈I

Xi suppose the following conditions are satisfied:

(a)′ for each i ∈ I, Xi is a nonempty closed convex of a locally convex topological

vector space Ei;

(b)′ for each i ∈ I, Ai : X → 2Xi is lower semicontinuous such that for each

x ∈ X, Ai(x) is nonempty and coAi(x) ⊂ Bi(x) and for each i ∈ I, Bi is

ψi-condensing, where ψi is a measure of noncompactness in Xi;

(c)′ for each i ∈ I, Ai ∩ Pi is Lc-majorized;

(d)′ for each i ∈ I, the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is compactly open in

X.

Then G has an equilibrium point x ∈ X, i.e. there exists a point x = {xi} ∈ X such

that for each i ∈ I, xi ∈ Bi(x) and Ai(x) ∩ Bi(x) = ∅.
Proof. Since Bi is nonempty valued for each i ∈ I , we have by Theorem 4.50 there

exist a nonempty compact convex subset K of X and for each i ∈ I , a compact
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convex subset K of X such that K =
∏
i∈I

Ki and Bi : K → 2Ki for each i ∈ I .

Clearly Ai : k → 2ki for each i ∈ I . As coAi(x) ⊂ Bi(x), x ∈ X . Let us define

P̂i : k → 2ki for each i ∈ I , by P̂i(x) = Pi(x) ∩Ki, x ∈ k.

We now consider the generalized game Ĝ = (ki, Ai, Bi, P̂i : i ∈ I}. The condi-

tions (a) and (b) of Theorem 4.56 are immediate for Ĝ. It is only routine to check

that for each i ∈ I , Ai ∩ P̂i is LC-majorized. Thus the condition (c) of Theorem

4.56 holds for Ĝ. Also for each i ∈ I , Ê = {x ∈ k : (Ai ∩ P̂i(x) 6= ∅} = {x ∈ X :

(Ai ∩ Pi)(x) 6= ∅} ∩ k is open in k. Thus by Theorem 4.56 there exists a point x

such that xi ∈ Bi(x) and Ai(x) ∩ P̂i(x) = 0 for each i. We complete the proof by

noting that Ai(x) ∩ P̂i(x) = ∅ implies that Ai(x) ∩ Pi(x) = ∅. As Ai(x) ⊂ ki.

Exactly in the same way by using the Corollary 4.56.1 we can prove the following

theorem:

Theorem 4.59 Let G = (Xi, Ai, Bi, Pi, i ∈ I) be a generalized game such that

X =
∏
i∈I

Xi is a paracompact. Assume that the following conditions are satisfied:

(a)′ for each i ∈ I, Xi is a nonempty closed convex subset of a locally convex

topological vector space Ei;

(b)′ for each i ∈ I and for each x ∈ X, Ai(x) is nonempty and coAi(x) ⊂ Bi(x)

and for each i ∈ I, Bi is ψi-condensing;

(c)′ for 4each i ∈ I, Ai has a compactly open graph in X × Xi (resp. is lower

semicontinuous) and Pi is lower semicontinuous (resp. has a compactly open

graph in X ×Xi);

(d)′ for each i ∈ I, Ai ∩ Pi is Lc-majorized.

Then G has an equilibrium point x ∈ X.

Theorem 4.60 Let G = (Xi, Ai, Pi : i ∈ I} be a generalized game and X =∏
i∈I

Xi. Assume that for each i ∈ I the following conditions hold:

(a)′ Xi is a nonempty closed convex subset of a locally convex topological vector

space Ei;

(b)′ Ai : X → 2Xi is upper semicontinuous with nonempty closed convex values

and ψi-condensing;

(c)′ Pi : X → 2Xi is lower semicontinuous and LC-majorized;

(d)′ for each i ∈ I, Ei{x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is compactly open in X.

Then there exists a point x = {xi} ∈ X such that for each i ∈ I, xi(x) and

Ai(x) ∩ Bi(x) = ∅.

Proof. Since for each i ∈ I , Ai is nonempty valued and ψi-condensing, there exist

by Theorem 4.50 a nonempty compact convex subset k of X and for each i ∈ I ,

a compact convex subset ki of Xi such that k =
∏
i∈I

ji and Ai : k → 2ki . We can
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easily see that Ai : k → 2ki is upper semicontinuous with nonempty closed convex

values by (b)′. Thus (a) and (b) of Theorem 4.57 are satisfied by (k, ki, Ai : i ∈ I).

For each i ∈ I , we define as before P̂i : k → 2ki by P̂i(x) = Pi(x) ∩ ki, x ∈ k and

verify that (c) and (d) of Theorem 4.57 are satisfied by Ĝ = {ki, Ai, Pi : i ∈ I}.
Hence by Theorem 4.57 there exists x = {xi} ∈ k ⊂ X such that for each i ∈ I ,

xi ∈ Ai(x) and Ai(x) ∩ P̂i(x) 6= ∅ and hence Ai(x) ∩ Pi(x) = ∅ as Ai(x) ⊂ ki.

4.9.1 Equilibrium on Paracompact Spaces

In the last three decades, the classical Arrow-Debreu’s existence theorem of Wal-

rasian equilibria (1984) has been generalized in many directions. In finite dimen-

sional spaces, Gale and Mas-Colell (1978) proved the existence of a competitive

equilibrium without the assumptions of total or transitive preference correspon-

dences. Shafer and Sonnenschein (1975) obtain results in the same direction and

they proved the Arrow-Debreu Lemma for abstract economies for the case where

preference correspondences may not be total or transitive. For the infinite dimen-

sional strategy spaces and finite or infinite many players, the existence results of

equilibria for generalized games were given by Aubin and Ekeland (1984), Bewley

(1972), Border (1985), Chang (1990), Ding-Tan (1993), Ding et al. (1992), Flam

(1979), Florenzano (1983), Khan and Vohra (1979), Khan and Papageorigou (1987),

Kim-Richter (1986), Kim et al. (1989), Lassonde and Schenkel (1992), Tarafdar and

Mehta (1987), Tian (1992), Toussiant (1984, 1988), Yannelis-Prabhakar (1983), etc.

All existence theorems mentioned above, however, are obtained by assuming that

the constraint and preference correspondences have open graphs or have open lower

(or upper) open sections. Besides, in most of these models, the strategy sets are

assumed to be compact in topological vector spaces. These are restricted assump-

tions since it is well known that if a correspondence has an open graph, then it

has open upper and lower sections and thus the correspondences with open lower

sections are lower semicontinuous. However, a continuous correspondence does not

hold open lower (or upper) sections properties in general. Moveover, we also know

that in the infinite settings, the set of feasible allocations is generally not compact

in any topology of commodity spaces. The motivations for economists interested in

setting forth conditions for the existence of equilibria come from the importance of

generalized games (also called abstract economy) in the study of markets and other

general games and from the restrictions of the existing theorems.

In this subsection, by the approximate theorem for the upper semicontinuous

correspondence of Tulcea (1988), we give the existence theorems of equilibria for

non-compact generalized games in which constraint correspondences are upper semi-

continuous instead of having lower (upper) open sections or open graph in locally

convex topological vector spaces. Moreover in our framework, strategy spaces may

be infinite-dimensional and non-compact; the number of players may be uncount-

able and preference correspondences may be non-total or non-transitive. Thus our
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results generalize many of the existence theorems of equilibria in generalized games

by relaxing the compactness of strategy spaces and the continuity of constraint

correspondences. In particular, we answer the question raised by Yannelis and

Prabhakar (1983, p. 243) affirmatively with weaker assumptions. As applications,

the Fran-Glicksberg fixed point theorem and an existence theorem for constrained

game are derived. These results generalize the corresponding results due to Aubin

and Ekeland (1874), Chang (1990), Shafer-Sonnenschein (1975), Toussaint (1984),

Tulcea (1986, 1988), Yannelis-Prabhakar (1983) and others.

If X and Y are topological spaces, we recall that: (1) F : X → 2Y is said to

be lower semicontinuous (respectively, upper semicontinuous) if for each closed (re-

spectively, open) subset C of Y , the set {x ∈ X : F (x) ⊂ C} is closed (respectively,

open) inX ; (2) F is said to have compactly open lower (respectively, upper) sections

if F−1(y) := {x ∈ X : y ∈ F (x)} is compactly open for each y ∈ Y (respectively,

F (x) is compactly open in Y for each x ∈ X) and (3) F is said to be compact if for

each x ∈ X , there exists a neighborhood Vx at x in X such that F (Vx) =
⋃
z∈Vx

F (z)

is relatively compact in Y . If X is a subset of a topological vector space E, X is

said to have the property (K) if for every compact subset B of X , the convex hull

of B is relatively compact in X .

Let X and Y be topological spaces. A correspondence T : X → 2Y is said to

be quasi-regular if:

(1) it has open lower sections, i.e. for each y ∈ Y , T−1(y) is open in X ,

(2) T (x) is non-empty and convex for each x ∈ X ,

(3) T (x) = clY T (x) for all x ∈ X .

The correspondence T is said to be regular if it is quasi-regular and has an

open graph. Let I be a (possibly infinite) set of players. For each i ∈ I , let its

choice or strategy set Xi be a non-empty subset of a topological vector space and

X =
∏
i∈I

Xi. A generalized game (or an abstract economy) is a family of quadruples

Γ = (Xi; Ai, Bi; Pi)i∈I where I is a (finite or infinite) set of players (agents) such

that for each i ∈ I , Xi is a non-empty subset of a topological vector space and

Ai, Bi : X =
∏
j∈I

Xj → 2Xi are constraint correspondences and Pi : X → 2Xi

is a preference correspondence. An equilibrium of Γ is a point x̂ ∈ X such that

for each i ∈ I , x̂i = πi(x̂) ∈ Bi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅ where πi : Xi → Xi

is the i-th projection of X onto Xi. We remark that when Bi(x̂) = clXi Bi(x̂)

(which is the case when Bi has a closed graph in X ×Xi; in particular, when clBi
is upper semicontinuous with closed values), our definition of an equilibrium point

coincides with that of Ding et al. (1992); and if in addition, Ai = Bi for each i ∈ I ,

our definition of an equilibrium point coincides with standard definition; e.g. in

Borglin-Keiding (1976), Tulcea (1986) and Yannelis-Prabhakar (1983).

Note that our generalized game model is more general than the one given by

Borglin-Keiding (1976) (see also Tulcea (1986) and Yannelis-Prabhakar (1983)) in



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Topological Fixed Point Theorems 239

the sense that the constraint mapping has been split into two parts A and B due

to the fact that the “small” constraint mapping may have not enough fixed points

but a “big” constraint mapping B does so.

The following example illustrates that how our generalized game model does

work but the former one given by Borglin-Keiding et al. does not.

Example 4.2 Let X = [0, 1] and define the constraint mapping A : X → 2X by

A(x) =

{
[0, 1 − x) , if x ∈ (0, 1] ;

{1}, if x = 0.

Define the preference mapping P : X → 2X ∪ {∅} by

P (x) =

{
(0, 1] , if [0, 1) ;

∅, if x = 1.

Then the fixed point set of A is (0, 1/2). It is also clear that x /∈ P (x) and P has

open lower sections (due to the fact that P−1(y) = ∅ if y = 1 and P−1(y) = (y, 1] if

y ∈ [0, 1)). Let B : X → 2X be defined by B(x) = A(x) for each x ∈ X . Note that

the mapping B : X → 2X is such that B(x) = [0, 1− x] for each x ∈ X and 1/2 is

also a fixed point of B so that 1/2 is an equilibrium point of the generalized game

Γ = ([0, 1]; A, G; P ) (in the sense of Yannelis-Prabhakar (1983)) since 1/2 /∈ A(1/2)

even though A(1/2) ∩ P (1/2) = ∅.

We first need the following existence theorem of equilibria for generalized games:

Theorem 4.61 Let Γ = (xi, Ai, Bi, Pi)i∈I be a generalized game such that

X =
∏
i∈I

Xi is paracompact. Suppose that the following conditions are satisfied:

(a) for each i ∈ I, Xi is a non-empty convex subset of a topological vector space,

(b) for each i ∈ I and for each x ∈ X Ai(x) is non-empty and convAi(x) ⊂
Bi(x),

(c) for each i ∈ I and for each y ∈ Xi, A
−1
i (y) and P

(1)
i (y) are open in X,

(d) for each i ∈ I and for each x ∈ X, Xi /∈ convPi(x);

(e) there exist a non-empty closed and compact subset K of X and x0 = (x0
i )i∈I ∈

X such that x0
i ∈ conv(Ai(y) ∩ Pi(y)) for each i ∈ I and for all y ∈ X \K.

Then Γ has an equilibrium in K.

Proof. Since {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} =
⋃

y∈Xi

(A−1
i (y) ∩ P−1

i (y)) is open by (c),

the conditions (c) and (e), all hypotheses of Theorem 4.3 of Tan and Yuan (1993)

are satisfied. By Theorem in Tan and Yuan (1993), the conclusion follows.

Theorem 4.61 generalizes Theorem 2.5 of Toussaint in (1984), Corollary 2 of

Tulcea in (Tulcea (1986)) (also Corollary 2 in (Tulcea (1988))) and Theorem 6.1 in

Yannelis and Prabhakar (1983) to non-compact case.
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Let X be a non-empty set, Y a non-empty subset of topological vector space E

and F : X → 2Y . A family (fi)j∈J of correspondences between X and Y , indexed

by a nonempty filtering set J (we denote by ≤ the order relation in J) is an upper

approximating family for F (Tulcea (1988), p. 269) if

(AI) F (x) ⊂ fj(x) for all x ∈ X and all j ∈ J ,

(AII) for all j ∈ J there is j∗ ∈ J such that for each h ≥ j∗ and ∈ J , fh(x) ⊂ fj(x)

for each x ∈ X ,

(AIII) for each x ∈ X and V ∈ B is a base for the zero neighborhood in E, there

is jx,V ∈ J such that fh(x) ⊂ F (x) + V if h ∈ J and jx,V ≥ h.

From (AI )–(AIII), it is easy to deduce that:

(AIV ) for each x ∈ X and k ∈ J , F (x) ⊂ ⋂
j∈J

fj(x) =
⋂

k≤j, k∈J
fj(x) ⊂ clF (x) ⊂

F (x).

By Theorem 3 and its Remark of Tulcea (1988, pp. 280–282), we have the

following fact:

Lemma 4.15 Let (Xi)i∈I be a family of paracompact space and let (Yi)i∈I be a

family of set such that for each i ∈ I, Yi is a non-empty convex subset of a locally

convex Hausdorff topological vector space Ei and Yi has the property (K). For each

i ∈ I, let Fi : Xi → 2Yi be such that Fi is compact and upper semicontinuous

with compact convex values. Then there is a common filtering set J (independent of

i ∈ I) such that for each i ∈ I, there is a family (fij)j∈J of correspondences between

Xi and Yi with the following properties:

(a) for each j ∈ J is regular,

(b) (fij)j∈J and (fij)j∈J are upper approximating families for Fi,

(c) for each j ∈ J , fij is continuous if Yi is compact.

Remark 4.26 In the statement of above Lemma, Tulcea (1988, Theorem 3,

p. 270)) assumed that Yi is also closed. In his proof, the hypothesis “Y is closed”

actually is not needed.

4.9.2 Equilibria of Generalized Games

In this section, by the approximation Lemma 4.15 and Theorem 4.61, we shall

give the existence theorem of equilibria for the non-compact generalized game

Γ = (Xi; Ai, Bi; Pi)i∈I in which the constraint correspondences are upper semi-

continuous instead of having open lower or upper sections.

Theorem 4.62 Let Γ = (Xi, Ai, Bi, Pi)i∈I be a generalized game such that

X =
∏
i∈I

Xi is paracompact. Suppose the following conditions are satisfied for each

i ∈ I:
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(a) Xi is a non-empty convex subset of locally convex Hausdorff topological vector

space Ei and Xi has the property (K),

(b) Ai, Bi : X → 2Xi is such that Bi is compact and upper semicontinuous with

nonempty compact convex values and Ai(x) ⊂ Bi(x) for each x ∈ X,

(c) Pi : X → 2Xi has compactly open lower sections and for each x ∈ X,

xi /∈ conv Pi(x);

(d) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

(e) there exist a non-empty compact subset K of X and x0 ∈ X for each y ∈
X \K with x0

i ∈ conv(Ai(y) ∩ Pi(y)).
Then there exists x ∈ K such that for each i ∈ I, Ai(x)∩ Pi(x) = ∅ and x ∈ Bi(x).

Proof. By Lemma 4.15 there is a common filtering set J such that for every i ∈ I ,

there exists a family (Bij)j∈J of regular correspondences between X and Xi, such

that both (Bij)j∈J and (Bij)j∈J are the upper approximating of families for Bi.

Let j ∈ J be arbitrarily fixed. The game Γj = (Xij ; Bij , Bij ; Pi)j∈J satisfies

all hypotheses of Theorem 4.60. Hence Γj has an equilibrium xj ∈ K such that

Bij(x
j) ∩ Pi(xj) = ∅, and πi(x

j ∈ Bij(xx
j) for all i ∈ I .

Since (xj)j∈J is a net in the compact set K, without loss of generality we may

assume that (xj)j∈J converges to x∗ ∈ K. Then for each i ∈ I , πi(x
∗) = lim

j∈J
πi(x

j).

Noting that for every j ∈ J and x ∈ X , Ai(x) ⊂ Bi(x) ⊂ Bij(x), we have Ai(x
j) ∩

Pi(x
j) = ∅ for all i ∈ I . By condition (d), for every i ∈ I , Ai(x

∗) ∩ Pi(x∗) = ∅. As

Bij has closed graph, (x∗, x∗i ) ∈ GraphBij for every i ∈ I . For each i ∈ I , since

(Bij)j∈J is also an upper approximation family for Bi,
⋂
j∈J

Bij(x) ⊂ Bi(x) for each

x ∈ X so that (x∗, x∗i ) ∈ GraphBi. Therefore, for each i ∈ I , Ai(x
∗) ∩ Pi(x∗) = ∅

and πi(x
∗) ∈ Bi(x

∗).

We remark that Theorem 4.62 generalizes Theorem 2.5 of Toussaint (1984,

p. 103), Theorem 4.1 of Chang (1990, p. 246), Theorem 6.1 of Yannelis-Prabhakar

(1983) to non-compact generalized games and the constraint correspondences need

not have open lower sections. In particular, Theorem 4.62 answers the question

raised by Yannelis and Prabhakar (1983, 243) in the affirmative with weaker con-

ditions. In Theorem 4.62, let Ai = Bi for each i ∈ I and we have the following:

Theorem 4.63 Let Γ = (Xi, Ai, Pi)i∈J be a generalized game such that X =∏
i∈I

Xi is paracompact. Suppose the following conditions are satisfied for each i ∈ I:

(a) Xi is a non-empty convex subset of a locally convex Hausdorff topological

vector space Ei and Xi has the property (K),

(b) Ai : X → 2Xi is compact and upper semicontinuous with non-empty compact

and convex values for each x ∈ X,

(c) Pi : X → 2Xi has compactly open lower sections and for each x ∈ X,

xi /∈ convPi(x);

(d) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,
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(e) there exist a non-empty compact subset K of X and x0 ∈ X such that for

each y ∈ X \K with x0
i ∈ conv(Ai(y) ∩ Pi(y)).

Then there exists x ∈ K such that for each i ∈ I, Ai(x) ∩ Pi(x) = ∅ and

xi ∈ Ai(x).

If Xi is compact and closed convex in Theorem 4.63, we have:

Corollary 4.63.1 Let Γ = (Xi; Ai; Pi)i∈I be a generalized game and X :=∏
i∈I

Xi. Suppose the following conditions are satisfied for each i ∈ I:

(a) Xi is a non-empty closed compact convex subset of locally convex Hausdorff

topological vector space Ei,

(b) Ai : X → 2Xi is upper semicontinuous with non-empty compact and convex

values for each x ∈ X,

(c) Pi : X → 2Xi has open lower sections and xi /∈ conv Pi(x) for each x ∈ X,

(d) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X.

Then there exists an x ∈ K such that for each i ∈ I, Ai(x) ∩ Pi(x) = ∅ and

xi ∈ Ai(x).

Corollary 4.63.1 generalizes the Theorem of Shafer-Sonnenschein (1975, p. 374)

in the following ways: (1) I is uncountable or countable infinite instead of finite;

(2) for each i ∈ I , the locally convex Hausdorff topological vector space is infinite

dimensional instead of being finite dimensional; (3) for each i ∈ I , Ai is upper

semicontinuous instead of continuous and (4) Pi has open lower sections instead of

an open graph.

As an application of Corollary 4.63.1, we obtain the well-known Fan-Glicksberg’s

fixed point theorem (see (1952) or (1952) for upper semicontinuous correspondence

in locally convex topological vector spaces.

Corollary 4.63.2 Let X be a convex compact subset of a locally convex topo-

logical vector space and let A : X → 2X be upper semicontinuous with non-empty

closed and convex values for each x ∈ X. Then A has a fixed point.

Proof. Let I = {1} and Pi = ∅ for each x ∈ X in Corollary 4.63.1. The conclusion

follows from Corollary 4.63.1.

The following example shows that the condition (d) “for each i ∈ I , the set

Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X” in Theorem 4.63 is essential.

Example 4.3 Let I = {1} and X = [0, 1]. Define A, P : X → 2X by

A(x) =





[1/2, 1], if x ∈ [0, 1/2) ,

[0, 1] , if x = 1/2,

[0, 1/2] , if x ∈ (1/2, 1] .
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and

P (x) =

{
∅, if x = 0,

[0, x) if x ∈ (0, 1] .

Then A is upper semicontinuous with non-empty closed convex values and the fixed

point set of A is the singleton set {1/2}. The correspondence P has convex values

with open lower sections, since for each y ∈ [0, 1], P−1(y) = (y, 1] which is open

in X . Therefore A, P and X satisfy all conditions of Theorem 4.62 except that

E = {x ∈ [0, 1] : A(x) ∩ P (x) 6= ∅} = [1/2, 1] is closed but not open in [0, 1].

However, A(1/2) ∩ P (1/2) 6= ∅, i.e. the generalized game Γ = (0, 1] ; A; P ) has no

equilibrium point.

4.9.3 Applications

In this section, as applications of Theorem 4.63, we shall give the existence theorem

of equilibria for constrained games in locally convex spaces. For simplicity, we only

consider the compact constraint generalized games.

Let I = {1, 2, . . . , N}. Each player i chooses a strategy xi in a subset Xi of a

locally convex topological vector space Ei. Denote by X the (Cartesian) product∏
j∈I, j 6=i

Xj . Denote by x and x−i an element of X and X−i respectively. Each

player i has a payoff (utility) function ui : X → R ∪ {−∞, +∞}. Given x−i
(the strategies of others), the choice of the i-th player is retricted to a non-empty

compact and convex set Ai(x−i) ⊂ Xi, the feasible strategy set; the i-th player

chooses xi ∈ Ai(x−i) so as to minimize ui(x−i, xi) over Ai(x−i), where (x−i, xi) is

the point y = (yj)j∈J such that yi = x−i and yi = xi. The family G(Xi; Ai; ui)
N
i=1

is then called a constrained N -person game and an equilibrium for G is an x∗ ∈ X

such that x∗i ∈ Ai(x
∗
−i) and ui(x

∗) ≤ ui(x
∗
−i, xi) for all xi ∈ Ai(x

∗
−i) (e.g. ui(x

∗) =

inf
xi∈Ai(x∗

−i)
ui(x

∗
−i, xi)) for each i = 1, 2, . . . , N .

Note that if Ai(x−i) = Xi for each i = 1, 2, . . . , N , the constrained N -person

game reduced to the conventional game G = (Xi; ui)i∈I and its equilibrium is called

Nash equilibrium.

Theorem 4.64 Let G = (Xi; Ai; Ui)
N
i=1 be a constrained game and X =

N∏
i=1

Xi

is a non-compact convex subsets of a locally convex topological vector space Ei for

each i = 1, 2, . . . , N . Suppose the following conditions are satisfied:

(a) the correspondence A : X → 2X defined by A(x) =
N∏
i=1

Ai(x−i) for each

x = (x−i, xi) ∈ X is upper semicontinuous with closed convex values,
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(b) the function ψ : X ×X → R ∪ {−∞, +∞} defined by

ψ(x, y) =

N∑

i=1

[ui(x−i, xi) − ui(x−i, yi)]

for each (x, y) ∈ X ×X is such that for each y ∈ X, x 7→ ψ(x, y) is lower

semicontinuous on X, where x = (x−i, xi) and y = (y−i, yi),

(c) for each x ∈ X, x /∈ conv({y ∈ X : ψ(x, y) > 0}),
(d) the set {x ∈ X : sup

y∈A(x)

ψ(x, y) > 0} is open in X,

Then there exists x∗ ∈ X such that for each i = 1, 2, . . . , N ,

x∗i ∈ Ai(x
∗
−i) and ui(x

∗) ≤ inf
xi∈A(x∗

−i)
ui(x

∗
−i, xi).

Proof. Define P : X → 2X by P (x) = {y ∈ X : ψ(x, y) > 0} for each x ∈ X .

Note that (b) implies that P has open lower sections in X . By (c), x /∈ convPi(x)

for each x ∈ X . The condition (d) implies that the set {x ∈ X : A(x) ∩ P (x) 6= ∅}
is open in X . Therefore G = (X ; A; P ) satisfies all the hypotheses of Theorem 4.62

with A = B. By Theorem 4.62, there exists an x∗ ∈ X such that x∗ ∈ A(x∗) and

A(x∗) ∩ P (x∗) = ∅. Since

{x ∈ X : A(x) ∩ P (x) 6= ∅} = {x ∈ X : sup
y∈A(x)

ψ(x, y) > 0},

it follows x∗ ∈ A(x∗) and sup
y∈A(x∗)

ψ(x∗, yi) ≤ 0.

For each i = 1, 2, . . . , N , and yi ∈ Ai(x
∗
−i), let y = (x∗−i, yi). Then y ∈ A(x∗) so

that (ui(x
∗)−ui(x∗−i, yi)) =

N∑
i=1

[ui(x
∗)−ui(x∗−i, yi)] = ψ(x∗, y) ≤ sup

y∈(x∗)

ψ(x∗, y) ≤
0.

Therefore (ui(x
∗) − ui(x

∗
−i, yi)) ≤ 0 for all yi ∈ Ai(x

∗
−i). Hence x∗ is an equi-

librium point of the constrained game G = (Xi; Ai; ui)
N
i=1.

Theorem 4.64 generalizes the corresponding result of Aubin and Ekeland (1984,

pp. 350–351) in the sense that the feasible correspondence Ai is upper semicontin-

uous instead of being continuous.

4.10 Coincidence Points and Related Results, an Analysis on

H-Spaces

Let X and Y be two nonempty sets. Let T : X → 2Y and S : Y → 2X be two set

valued mappings. Then a point (x0, y0) ∈ X × Y is said to be a coincidence point

if y0 ∈ T (x0) and x0 ∈ S(y0).
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Note that the problem on the existence of a coincidence point is equivalent to

that of fixed point of the composition. To see this, let U = S0T be defined by

U(x) = ST (x) = U{S(z) : z ∈ T (x)}, x ∈ X.

Then x0 ∈ U(x0) implies that there exists a y0 ∈ T (x0) such that x0 ∈ S(y0) i.e.

(x0, y0) is a coincidence point while (x0, y0) ∈ X×Y is a coincidence point implies

that x0 is a fixed point of S0T as defined above.

The importance of coincidence phenomenon was displayed by Von Neumann

(1937) in proving his well-known minimax inequality. Since then, many authors

have contributed and enrished the field, e.g. Eilenberg and Montgomery (1946),

Kakutani (1941), Nash (1950), Debreu (1952), Fan (1952), Kneser (1952), Sion

(1958), Gorniewic and Granas (1981), Gale (1955), Nikaido (1967), Browder (1984),

Ko and Tan (1986), Ding and Tarafdar (1993) and Tarafdar and Watson (1998) to

name a few of many.

A set valued mapping T : X → 2X is said to be H-KKM if, for each finite

subset A of X , H − coA ⊂ ⋃
x∈A

T (x). We should point out that in Bardaro and

Ceppitelli (1988) T : X → 2X is called H-KKM if, for each finite subset A of X ,

FA ⊂ ⋃
x∈A

T (x). Thus if T is H-KKM in our sense, then T is H-KKM in the sense

of Bardaro and Ceppitelli. In here by H-KKM we mean by our sense.

We will need the following result of Ho (1987) in the sequel.

Lemma 4.16 Let X be a topological space such that for every subset J of

{0, 1, . . . , n} there is a nonempty contractible subset FJ of X having the property

that FJ ⊂ FJ′ whenever J ⊂ J ′. Then there is a continuous mapping g : ∆n −→ X

such that g(∆J) ⊂ FJ for each subset J of {0, 1, . . . , n}, where ∆n is the standard

n-dimensional simplex with vertices e0, e1, . . . , en, {e0, e1, . . . , en} is the canonical

basis of Rn+1 and for any subset J of {0, 1, . . . , n} ∆J (⊂ ∆n) is the convex hull of

the vertices {ej : j ∈ J}.

Proof. We include the same proof as given by Horvath (1987, Th.1) (see also

Lemma 2.2.5, Yuan (1999)). For each i ∈ {0, 1, . . . , n} we choose a point xi ∈ F{i}.
Let us assume that for each subset J of cardinality ≤ k we have constructed a

function σJ : ∆J −→ X such that σJ(∆J ) ⊂ FJ and σJ = σJ′ on ∆J ∩ ∆J′ if

J ∩J ′ 6= ∅. Now let J = {i0, i1, . . . , ik} be a subset of {0, 1, . . . , n} with cardinality

k + 1 and let Ja = J \ {ia}. We have J = J0 ∪ · · · ∪ Jk is the boundary of the

simplex ∆J . For each a we have by assumption a continuous mapping σJa : ∆Ja −→
FJa . Since these mappings coincide on the intersection of the faces, we obtain a

continuous mapping

σ̃J : ∆J0 ∪ · · · ∪ ∆Jk
−→ FJ0 ∪ · · · ∪ FJk

⊂ FJ .

Since FJ is contractible, σ̃J can be continuously extended to the simplex ∆J . Thus

for each subset J of {0, 1, . . . , n} with cardinality k + 1 we have constructed a
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mapping σJ : ∆J −→ FJ such that

σJ/∆J ∩ ∆J′ = σJ′/∆J ∩ ∆J′

whenever ∆J ∩ ∆J′ 6= ∅.
Hence by a finite number of step we obtain a continuous mapping g : ∆n −→ X

with g(∆J ) ⊂ FJ .

Definition 4.8 A nonempty subset of a topological space X is called acyclic if

all of its reduced Cech homology groups over the rationals vanish. In particular,

any contractible space is acyclic, and hence any convex or star-shaped set in a

topological vector space is acyclic.

Readers are warned not to be confused with Definition 4.7 of an acyclic set

valued mapping.

Shioji (1988, p. 188) gave a somewhat new proof of the following result of Eilen-

berg and Montgomery (1946) by using the Theorem 6.3 of Gorniewicz (1975). Since

we are restricted by the length of the tools, we state the result as a lemma and leave

it without proof.

Lemma 4.17 Let ∆n be an n-dimensional simplex with the Euclidean topology

and W a compact topological space. Let ψ : W → ∆n be a single valued continuous

mapping and T : ∆n → 2W be a set valued mapping with nonempty compact acylic

values. Then there exists a point x0 ∈ ∆n such that x0 ∈ ψ0T (x0) = ψ(T (x0)).

Theorem 4.65 Let X be a contractible space and Y a compact Hausdorff topolog-

ical vector space. Let A : X → 2Y be upper semicontinuous with closed contractible

values. Suppose that B : Y → 2X is such that:

(a) B−1(x) contains an open set Ox (which may be empty) such that
⋃
x∈X

Ox = Y ;

and

(b) for each open set Q in Y , the set
⋂
y∈Q

B(y) is empty or contractible.

Then there exists w0 ∈ X and z0 ∈ Y such that w0 ∈ B(z0) and z0 ∈ A(w0).

Proof. We first show that there exist a n-simplex ∆N and two functions f : ∆N →
X and ψ : Y → ∆N such that f(ψ(y)) ∈ B(y) for all y ∈ Y .

As Y is compact and
⋃
x∈X

Ox = y, there exists a finite subset {x0, . . . , xn} of X

such that
n⋃
i=0

Oxi = Y . For each nonempty subset J of N := {0, . . . , n}, we define

FJ =




∩{B(y) : y ∈ ∩j∈JOxj , if

⋂
h∈J

Oxj 6= ∅,

X , otherwise.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Topological Fixed Point Theorems 247

Note that y ∈ ⋂
j∈J

Oxj implies {xj : j ∈ J} ⊂ B(y) and so using (b), if
⋂
j∈J

Oxj 6=

∅, then FJ = ∩{B(y) : y ∈ ⋂
j∈J

Oxj} is nonempty and contractible. Moreover, it

is clear that FJ ⊂ FJ′ , whenever ∅ 6= J ⊂ J ′ ⊂ {0, . . . , n}. Thus, F satisfies all

the hypotheses of Lemma 4.16, and so there is a continuous function f : ∆N → X

such that f(∆N ) ⊂ FJ for all J ⊂ N . Let ψi : i ∈ N} be a continuous partition

of unity subordinate to the open covering {Oxi : i ∈ N}; that is, for each i ∈ N ,

ψi : Y → [0, 1] is continuous, {y ∈ Y : ψi(y) 6= 0} ⊂ Oxi such that
n∑
i=0

ψi(y) = 1

for all y ∈ Y . Define ψ : Y → ∆N by ψ(y) = (ψ0(y), . . . , ψn(y)) for each y ∈ Y .

Then ψ(y) ∈ ∆J(y) for all ∈∈ Y , where Y (y) = {i ∈ {0, 1, . . . , n} : ψ(y) 6= ∅}.
Therefore, f(ψ(y)) ∈ f(∆J(y)) ⊂ FJ(y) ⊂ B(y).

It is clear the composition A ◦ f : ∆N → 2Y is upper semicontinuous with

closed, contractible values and ψ : Y → ∆N is continuous. Lemma 4.17 assures

the existence of an x0 ∈ ∆N such that x0 ∈ ψ(A(f(x0))). Defining w0 = f(x0),

we have w0 = f(x0) ∈ f(ψ(A(w0))) and so we can choose a z0 ∈ A(w0) such that

w0 = f(ψ(z0)) ∈ B(z0).

Remark 4.27 Theorem 4.65 is a generalization of Theorem 1 of Tarafdar and

Yuan (1994).

We now prove the following theorem.

Theorem 4.66 Let X be a complete convex subset of a locally convex Hausdorff

topological vector space E, and Y be convex set in Hausdorff topological vector space

H. Let g : Y → 2X be upper semicontinuous with nonempty compact convex values

and f : X → 2Y have nonempty convex values such that:

(i) for each y ∈ Y , f−1(y) contains an open set Oy ⊂ X (which may be empty

for some y ∈ Y );

(ii)
⋃
y∈Y

Oy = X;

(iii) there exists a compact convex set Y1 ⊂ Y and Y0 ⊂ Y1 such that D =
⋂
y∈Y0

Ocy

is compact or empty (here Ocy denotes the complement of Oy in X).

Then there exists an x0 ∈ X such that g−1(x0) ∩ f(x0) 6= ∅.
Proof. First, suppose D = ∅. in this case, f(x) ∩ Y1 6= ∅ for all x ∈ co g(Y1). To

see this, suppose there is an x0 ∈ co g(y1) such that f(x0) ∩ Y1 = ∅. Then for each

y ∈ Y1, y /∈ f(x0), i.e., x0 /∈ f−1(y) and as Oy ⊂ f−1(y), x0 ∈ Ocy for all y ∈ Y1.

So x0 ∈ ⋂
y∈Y1

Ocy ⊂ ⋂
y∈Y0

Ocy = D, which contradicts our initial assumption that

D = ∅. Thus, we may define a nonempty set-valued mapping h : co g(Y1) → 2Y1 by

h(x) = f(x) ∩ Y1. Then h(x) is convex and h−1(y) = {x ∈ co g(Y1) : y ∈ h(x)} =

{x ∈ co g(y1) : y ∈ f(x) ∩ Y1} = f−1(y) ∩ co g(Y1) ⊃ Oy ∩ co g(Y1) = O1
y which is

relatively open in co g(Y1). Moreover,
⋃
y∈Y1

O1
y = co g(Y1) since

⋂
y∈Y0

Ocy = ∅. Thus
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by Lemma 4.16, there exists an x0 ∈ co g(Y1) such that h(x0) ∩ g−1(x0) 6= ∅, that

is, f(x0) ∩ g−1(x0) 6= ∅.
Next suppose D 6= ∅, and is compact. In this case, we argue by contradiction,

so suppose there is x0 ∈ X such that f(x0) ∩ g−1(x0) 6= ∅. If Ocy = ∅, for some

y ∈ Y as f−1(y)c ⊂ Ocy, then f−1(y) = X . So y ∈ f(x) for all x ∈ X and

choosing z ∈ g(y), we have y ∈ F (z), that is, y ∈ f(z) ∩ g−1(z), which is a

contradiction. Thus, Ocy 6= ∅ for all y ∈ Y . Moreover, the sets Ocy satisfy the

following: for any finite subset {y1, . . . , yn} ⊂ Y , g(co{Y1, . . . , yn}) ⊂
n⋃
i=1

Ocyi
. To

prove this, suppose z ∈ g(co{y1, . . . , yn}) but z /∈
n⋃
i=1

Ocyi
. Then z ∈

n⋂
i=1

Oy, and so

yi ∈ f(z) for all i = 1, . . . , n. The set f(z) is convex so co{y1, . . . , yn} ⊂ f(z) and

as z ∈ g(co{y1, . . . , yn}), we may choose w ∈ co{y1, . . . , yn} such that z ∈ g(w).

Then w ∈ f(z), and this contradicts the assumption that there is no coincidence

point. Thus, g(co{y1, . . . , yn}) ⊂
n⋃
i=1

Ocy for any finite subset {y1, . . . , yn} of Y .

For our next move, let {y1, . . . , yn} ⊂ Y be arbitrary and define K =

co ({y1, . . . , yn} ∪ Y1), which is compact and convex. We claim
⋂
y∈K

Ocy 6= ∅.

Indeed if this is not the case, the set-valued mapping h : co g(K) → 2K de-

fined by h(x) = {y ∈ K : x /∈ Ocy} is nonempty for all x ∈ co g(K). Also,

h−1(y) = {x ∈ co g(K) : x /∈ Ocy} = co g(K) ∩ Oy = Ôy and Ôy is relatively

open in co g(K). Define j(x) = coh(x). Then Ôy ⊂ h−1(y) ⊂ j−1(y). As⋂
y∈K

Ocy = ∅, ⋃
y∈K

Oy = X , and so
⋃
y∈K

Ôy = co g(K). By Theorem 4.65 there exists

an x0 ∈ co g(K) such that j(x0)∩g−1(x0) 6= ∅. That is, there exists an x0 ∈ co g(K)

and w0 ∈ K, such that w0 ∈ j(x0) and x0 ∈ g(w0). So w0 =
m∑
i=1

λiwi, where

wi ∈ h(x0) and
∑
i

λi = 1, λi ≥ 0. From the definition of h, we have x0 /∈ Ocwi
for all

i = 1, . . . ,m, that is, x0 /∈
m⋃
i=1

Ocwi
. But x0 ∈ g(w0) ⊂ g(co {w1, . . . , wm}) ⊂

m⋃
i=1

Ocwi
,

a contradiction which proves that
⋂
y∈K

Ocy 6= ∅. So [
⋂
y∈Y1

Ocy] ∩ [
n⋂
i=1

ocyi
] 6= ∅, which

implies
n⋂
i=1

(D ∩ Ocyi
) 6= ∅. As D is compact and Ocyi

∩ D is closed with the finite

intersection property,
⋂
y∈Y

(Ocy ∩ D) 6= ∅ and so
⋂
y∈Y

Ocy 6= ∅, contradiction to (ii).

Thus, the proof is complete.

Remark 4.28 Due to the pathological fact that the closed convex hull of a com-

pact set in an arbitrary topological vector space need not be compact, it is necessary

that we assume X is locally convex and complete. (Therefore, our Theorem 4.66

is not a strict generalization of Theorem 4.65, although it extends Theorem 4.65

in the sense that a coincidence point is generally not a fixed-point for either of the

mappings involved.)
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Corollary 4.66.1 Let X and Y be as in Theorem 4.66. Let g : Y → 2X be

upper semicontinuous with nonempty compact convex values and f : X → 2Y have

nonempty convex values such that:

(i) for each y ∈ Y , f−1(y) contains an open set Oy ⊂ X (which may be empty

for some y ∈ Y );

(ii)
⋃
y∈Y

Oy = X;

(iii) there exists a point y0 ∈ Y such that Ocy0 is compact or empty.

Then there exists an x0 ∈ X such that g−1(x0) ∩ f(x0) 6= ∅.

Proof. Take Y0 = Y1 = {y0} in Theorem 4.66.

In the following, we employ Theorem 4.66 to prove a minimax inequality gener-

alising Theorem 1 of Ha (1987).

Theorem 4.67 Let X and Y be as in Theorem 4.66. Let f : Y → 2X be upper

semicontinuous with compact convex values and g : Y ×X → R such that:

(i) for all y ∈ Y , x 7→ g(y, x) is lower semicontinuous;

(ii) for all x ∈ X, y 7→ g(y, x) is quasi-concave; and

(iii) there exists a nonempty compact convex set Y1 ⊂ Y and Y0 ⊂ Y1 such that

for all z ∈ X \ f(Y1) there exists a w ∈ Y0 such that g(w, z) > sup
y∈Y
u∈f(y)

g(y, u).

Then

inf
x∈X

sup
y∈Y

g(y, x) ≤ sup
y∈Y//u∈f(y)

g(y, u).

Proof. We begin by noting that Condition (iii) makes no sense when

sup
y∈Y
u∈f(y)

g(y, u) = ∞, though then the conclusion is trivially satisfied. Without loss

of generality, we may assume

r := sup
y∈Y
u∈f(y)

g(y, u) <∞.

Suppose, for a contradiction, that inf
x∈X

supy∈Y g(y, x) > r. Then the set-valued

mapping h : X → 2Y defined by

h(x) = {y ∈ Y : g(y, x) > r}

is nonempty with convex values. Furthermore, h−1(y) = {x ∈ X : g(y, x) > r} =

Oy is open as g(y, ·) is lower semicontinuous. It is easily seen that
⋃
y∈Y

Oy = X .

Finally, we show
⋂
y∈Y

Ocy is compact or empty. For z ∈ X \f(Y1), employing (iii), we

have the existence of a w ∈ Y0 such that g(w, z) > r; that is there is a w ∈ Y0 such
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that z /∈ Ocw. This implies z /∈ Ocw and so
⋂
y∈Y0

Ocy ⊂ f(Y1). Theorem 4.66 implies

the existence of a y0 ∈ Y such that f(y0)∩h−1(y0) 6= ∅. Let w0 be a member of this

intersection. Then g(y0, w0) > r and w0 ∈ f(y0), a contradiction to the definition

of r. The proof is complete.

To begin with we explain the notion of a H-space introduced by Horvath (1983,

1984, 1987) in some way and further developed by Bardaro and Cappitelli (1988)

and (1989) and related concepts on H-spaces.

Definition 4.9 Let (X, τ) be a topological space and F(X) the family of all

nonempty finite subsets of X . Let {FA} be a family of nonempty contractible

subsets of X indexed by A ∈ F(X) such that FA ⊂ FA′ whenever A ⊂ A′. The

pair (X, {FA}) is called an H-space.

Examples

1. Let E be a topological vector space. For each nonempty finite subset A =

{x1, x2, xn} of E, we set FA = co{x1, x2, . . . , xn}. Then (E, {FA}) is an

H-space.

2. Let X be a contractible topological space. Then (X, {FA}) is an H-space,

where for each A ∈ F(X), FA = X .

3. Let X be a nonempty convex subset of a topological vector space E, Y a

topological space and f : X → Y a continuous bijection. For each A ∈ F(Y ),

co[f−1(A)] is a compact subset of X . Thus f : co[f−1(A)] → f(co[f−1(A)])

is an homeomorphism. Now for each A ∈ F(Y ), let FA = f(co[f−1(A)]).

Clearly FA is contractible (see 4 below). Then (Y {FA}) is a H-space. Y

could be a torus, Möbius band or Klien bottle and hence an H-space is not

necessarily contractible.

The above examples were given in Horvath (1991) and more examples can be

found there.

4. Let (X, {FA}) be a H-space and Y an homeomorphic image of X . Then

Y is also an H-space. Let h : X → Y be a homeomorphism. For any

A ∈ F(Y ), let GA = h0Fh−1(A). Clearly A, B ∈ F(Y ) and A ⊂ B imply

GA ⊂ GB . Cince Fh−1(A) is contractible to a point y0 ∈ Fh−1(A), there

exists a continuous mapping F : Fh−1(A) × [0, 1] −→ Fh−1(A) such that

F (y, 1) = y for all y ∈ Fh−1(A) and F (y, 0) = y0 for all y ∈ Fh−1(A). Clearly

the mapping G : GA × [0, 1] −→ GA defined by G(x, t) = hF (h−1(x), t),

x ∈ GA is continuous and has the properties G(x, 1) = h0h
−1(x) = x for all

x ∈ GA and H(x, 0) = h0G(x, 0) = h(y0) = l0, say. Thus GA is contractible.

Hence (Y, GA) is an H-space.

Given an H-space (X, {FA}), a nonempty subset D of X is called

(i) H-convex if FA ⊂ D for each finite subset A of D;
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(ii) weaklyH-convex if FA∩D is nonempty and contractible for each finite subset

A of D and

(iii) compactly open (closed) if D ∩ B is open (closed) in B for each compact

subset B of X . Also a subset K of X is called H-compact if, for every finite

subset A of X , there exists a compact, weakly H-convex subset D of X such

that K ∪ A ⊂ D.

Throughout the rest of this chapter by a finite subset we will always mean

nonempty finite subset.

Let (X, {FA}) be an H-convex space. Then given a nonempty subset K of X ,

we define the H-convex hull of K, denoted by H − coK as

H − coK = ∩{D ⊂ X : D is H-convex and D ⊃ K}.

H − coK is H-convex. Indeed if A is a finite subset of H − coK, then for every

H-convex subset D of X with D ⊃ K, we have H − coK ⊂ D and thus A ⊂ D.

Hence as D is H-convex, FA ⊂ D and hence FA ⊂ H − coK. It also follows that

H − coK is the smallest H-convex subset containing K.

The following lemmas are proved in Tarafdar (1990):

Lemma 4.18 Let (X, {FA}) be a H-space and K be a nonempty subset of X.

Then H − coK = ∪{H − coA : A is a finite subset of K}.

Proof. Let A be a finite usbset ofK. ThenH−coA is the smallestH-convex subset

containing A and H − coK is the smallest H-convex subset containing K. Thus it

follows that H−coA ⊂ H−coK. Hence ∪{H−coA : A is a finite subset of K} ⊂
H − coK.

Next, let ∪{H − coA : A is a finite subset of K} = L. Then L contains K as a

subset and we prove that L is H-convex.

Let B = {x1, x2, . . . , xn} be a finite subset of L. Then there are finite subsets

A1, A2, . . . , An ofK such that xi ∈ H−coAi, i = 1, 2, . . . , n. ObviouslyA′ =
n⋃
i=1

Ai

is a finite subset of K, and xi ∈ H−coA′ for i = 1, 2, . . . , n. Therefore, as H−coA′

is H-convex, FB ⊂ FA′ ⊂ H − coA′ ⊂ L. Thus L is an H-convex subset containing

K. Hence H − coK ⊂ ∪{H − coA : A is a finite subset of K}.

Now let Dα be an H-convex subset of Xα for each i ∈ I ; then D =
∏
i∈I

Dα is

an H-convex subset of X . To see this let A be a finite subset of D. Then for each

i ∈ I , Aα = Pα(A) is a finite subset of Dα and FAα ⊂ Dα as Dα is H-convex.

Hence FA =
∏
i∈I

FAα ⊂ ∏
i∈I

Aα = D.

Then we have proved the following:

Lemma 4.19 The product of any number of H-spaces is an H-space and the

product of H-convex subsets is H-convex.
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Proof. Let {(Xα, {FAα}) : i ∈ I} be a family of H-spaces where I is a finite or

an infinite index set for each nonempty subset A of X =
∏{Xα : i ∈ I}, we set

FA =
∏{FAα : i ∈ I}, where for each i ∈ I , Aα = Pα(A) and Pα : X → Xα is

the projection of X onto Xα. Since for each i ∈ I , FAα is contractible, it is easy

to see that FA is contractible. Indeed, if for each i ∈ I , FAα is contractible to

x0
α ∈ Xα through the homotopy hα : FAα × [0, 1] → FAα , that is hα is continuous,

hα(xα, 1) = xα for each xα ∈ FAα and hα(xα, 0) = x0
α for each xα ∈ FAα . Then

the mapping h : FA × [0, 1] → FA defined by h(x, t) =
∏
i∈I

hα(xα, t) is clearly a

homotopy map and FA is contractible to
∏
i∈I

x0
α ∈ X , where Pα(x) = xα. Moreover

if A and B are two nonempty subsets of X with A ⊂ B, then for each i ∈ I ,

Pα(A) ⊂ Pα(B), that is, Aα ⊂ Bα and consequently FAα ⊂ FBα . Hence we have

FA =
∏
i∈I

FAα ⊂ ∏
i∈I

Fβ = FB . Thus (X, {FA}) is an H-space.

Next, let Dα be an H-convex subset of Xα for each i ∈ I , then D =
∏
i∈I

Dα is

an H-convex subset of X .. To see this, let A be a nonempty finite subset of D.

Then for each i ∈ I , Aα = Pα(A) is a finite subset of Dα and FAα ⊂ Dα as Dα is

H-convex. Hence FA =
∏
i∈I

FAα ⊂ ∏
i∈I

Dα.

We will also need the following definitions.

Definitions. A nonempty subset D of an H-space is called

(i) weaklyH-convex if FA∩D is nonempty and contractible for each finite subset

A of D and

(ii) compactly open (closed) if D ∩ B is open (closed) in B for each compact

subset B of X .

Also a subset K of X is called H-compact if, for every finite subset A of X , there

exists a compact, weakly H-convex subset D of X such that K ∪ A ⊂ D.

A set valued mapping T : X → 2X is said to be T -KKM (see Park (1992)) if

for each finite subset A of X , H − coA ⊂ ⋃
x∈A

T (x).

We would point out that (Bardaro and Ceppitelli (1988)), T is called H-KKM

if for each finite subset A of X , FA ⊂ ⋃
x∈A

T (x). Thus if T is T -KKM then T is

H-KKM.

The following lemma is due to Horvath (1991).

Lemma 4.20 Let (X, {FA}) be an H-space and {Hi}ni=0 be a family of closed

nonempty subsets of X. If there exists a subset {x0, x1, . . . , xn} of X such that for

each nonempty subset J of {0, 1, . . . , n}, F{xj}j∈J ⊂ ⋃
j∈J

Hj .

Proof. By Lemma 4.16 there is continuous mapping g : ∆n → X such that

g(∆J) ⊂ FJ for each subset J of {0, 1, . . . , n}, where FJ denotes F{xj}j∈J .
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For each i = 0, 1, . . . , n, let Si = g−1
(
F{0,1,...,n} ∩Hi

)
, so that Si is a closed

subset of the simplex ∆n.

For each nonempty subset J of {0, 1, . . . , n}, we have
⋃
j∈J

Sj = g−1

(
F{0,1,...,n}∩

(
⋃
j∈J

Hj)

)
⊃ g−1(F{0,1,...,n}∩FJ ) = g−1(GJ ) ⊃ ∆J . Hence co{ej : j ∈ J} ⊂ ⋃

j∈J
Sj .

Thus by the classical Knaster-Kuratowski-Mazurkiewicz Theorem
n⋂
i=0

Si 6= ∅. Let

u ∈
n⋂
i=0

Si. Then g(u) ∈
n⋂
i=0

{
F{0,1,...,n} ∩Hi

}
. Hence

n⋂
i=0

Hi 6= ∅.

Lemma 4.21 (Horvath (1989)) Let (X, {FA}) be a compact H-space and G :

X → 2X a set valued mapping with closed values and FA ⊂ ⋃
x∈A

G(x) for then
⋂
x∈X

G(x) 6= ∅.

Proof. Since G(x) is closed and X is compact, by Lemma
⋂
x∈A

G(x) 6= ∅, for each

finite subset A of X . Hence
⋂
x∈X

G(x) 6= ∅.

The following theorem is proved by Bardaro and Ceppitelli (1988).

Theorem 4.68 Let (X, {FA}) be an H-space and T : X → 2X an H-KKM set

valued mapping such that

(a) for x ∈ X, T (x) is compactly closed;

(b) there is a compact subset L of X and an H-compact subset K of X such that

for every weakly H-convex subset D with K ⊂ D ⊂ X, we have
⋂

x∈D
(T (x) ∩D) ⊂ L.

Then
⋂

x∈X
T (x) 6= ∅.

Proof. It suffices to prove that
⋂
x∈X

{T (x)∩L} 6= ∅. Since by (a) T (x)∩L is closed in

the compact set L, it suffices to prove that
⋂
x∈A

(T (x) ∩ L) 6= ∅ for each finite subset

A of X . Let A ⊂ X be a finite set and X0 ⊂ X be a compact weakly H-convex set

such that K ∪ A ⊂ X0. By (b),
⋂

x∈X0

(T (x) ∩ X0) ⊂ L and thus
⋂
x∈A

(T (x) ∩ L) ⊃
⋂

x∈X0

(T (x) ∩X0). Therefore, it is sufficient to show that
⋂

x∈X0

(T (x) ∩X0) 6= ∅. To

this end we now consider the set valued G : X0 → 2X0 defined by G(x) = T (x)∩X0,

x ∈ X0. Since T is H-KKM, it easily follows that G is H-KKM in the H-space

(X0, {FA∩X0 ∩X0}) by the Lemma 4.21
⋂

x∈X0

G(x) =
⋂

x∈X0

(T (x) ∩X0) 6= ∅.
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In what follows we prove that this theorem is equivalent to the following fixed

point theorem:

Theorem 4.69 Let (X. {FA}) be an H-space and f : X → 2X be a set-valued

mapping such that

(i) for each x ∈ X, f(x) is non-empty and H-convex;

(ii) for each y ∈ X, f−1(y) = {x ∈ X : y ∈ f(x)} contains a compactly open

subset Oy of X (Oy could be empty for some y);

(iii)
⋃
x∈X

Ox = X; and

(iv) there exists a compact subset L of X and an H-compact subset K of X such

that for every weakly H-convex subset D with K ⊂ D ⊂ X, we have

∩x∈D(Ocx ∩D) ⊂ L,

where Ocx denotes the complement of Ox in X.

Then there is a point x0 ∈ X such that x0 ∈ F (x0).

Proof. We first prove that Theorem 4.68 implies Theorem 4.69. Let the conditions

of Theorem 4.69 hold. For each finite subset A of X , we set T (x) = Ocx. If for

each finite subset A of X , H − coA ⊂ ⋃
x∈A

T (x), then for each finite subset A

of X , FA ⊂ ⋃
x∈A

T (x) as H − coA is an H-convex subset. Thus the set-valued

mapping T : X → 2X would satisfy all the conditions of Theorem 4.68 and hence⋂
x∈X

T (x) 6= ∅ which would contradict the condition (iii). Hence there must exist at

least one finite subset A of X such that H − coA 6⊂ ⋃
x∈A

T (x), that is, there exists

a point y ∈ H − coA such that y /∈ ⋃
x∈A

T (x), that is, y ∈ [T (x)]c for each x ∈ A,

that is, y ∈ Ox ⊂ f−1(x) for each x ∈ A. Hence x ∈ f(y) foreach x ∈ A, that is

A ⊂ f(y). But as f(y) is H-convex, H − coA ⊂ f(y) which implies that y ∈ F (y).

Next we prove that Theorem 4.69 implies Theorem 4.68. Assume that the

conditions of Theorem 4.68 hold. If possible, suppose that
⋂
x∈X

T (x) = ∅. Then we

can define a set-valued mapping g : mX → 2X by g(y) = {x ∈ X : y /∈ T (x)}.
Clearly g(y) is a nonempty subset of X for each y ∈ Y . Also for each x ∈ X ,

g−1(x) = (T (x))c \ Ox, say which is open subset of X . Let f : X → 2X be the

set-valued mapping defined by f(y) = H − co g(y) for each y ∈ X . Thus for each

y ∈ X , f(y) is an H-convex subset of X with g(y) ⊂ f(y), and for each x ∈ X ,

f−1(x) ⊃ g−1(x) = Ox. Moreover,
⋂
x∈X

T (x) = ∅ implies
⋃
x∈X

Ox = X . Finally,
⋂
x∈D

(Ocx ∩D) =
⋂
x∈D

(T (x) ∩D) ⊂ L. Hence the mapping f satisfies the conditions

of the Theorem 4.69. Thus there exists a point x0 ∈ X such that x0 ∈ f(x0) =

H − co g(x0), that is, there is by Lemma 4.18 a finite subset A = {x1, x2, . . . , xn}
of g(x0) such that x0 ∈ H − coA ⊂ f(x0). But xi ∈ g(x0), i = 1, 2, . . . ,⇒ x0 /∈
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T (xi), i = 1, 2, . . . , n, that is, x0 /∈
n⋃
i=1

T (xi), that is, H − coA 6⊂ ⋃
x∈A

T (x) which

contradicts that T is H-K.K.M. This proves our assertion.

Our next theorem generalizes a theorem of Fan (Theorem 16, (1984)), Browder

(1968) and the author (1989).

Theorem 4.70 Let X1, X2, . . . , Xn be n ≥ 2 H-spaces and let X =
n∏
j=1

Xj . Let

{Aj}nj=1 and Bj}nj=1 be two families of subsets of X having the following properties:

(a) Let X̂j =
∏
i6=j

Xi and let x̂j denote a generic element of X̂j . For each j =

1, 2, . . . , n and for each point x̂j ∈ X̂j, the set

Bj(x̂j) = {xj ∈ Xj : [xj , x̂j ] ∈ Bj} is nonempty and the set

Aj(x̂j) = {xj ∈ Xj : [xj , x̂j ] ∈ Aj} contains the H-convex hull of Bj(x̂j).

(b) For each j = 1, 2, . . . , n and for each point xj ∈ Xj , the set

Bj(xj) = {x̂j ∈ X̂j : [xj , x̂j ] ∈ Bj} is compactly open in X̂j.

(c) There exists an H-compact subset X0 of X such that
⋂

x∈X0

Ocx is compact

where Ox =
n⋂
j=1

{Bj(xj)×Xj} and xj is the projection of x into Xj for each

j = 1, 2, . . . , n.

Then
n⋂
j=1

Aj 6= ∅.

Proof. We define two set-valued mappings f : X → 2X and g : X → 2X by

f(x) =
n∏
j=1

H − coBj(x̂j) and and g(x) =
n∏
j=1

B(x̂j) for each x = [xj , x̂j ] ∈ X

where xj and x̂j are respectively the projections of x into Xj and X̂j . Clearly for

x ∈ X , by Lemma 2 f(x) is H-convex, and by (a) g(x) 6= ∅ and f(x) ⊃ g(x).

For each y ∈ X , we consider the set g−1(y) = {x ∈ X : y ∈ G(x)}. Now x ∈
G−1(y) ⇔ y = (y1, y2, . . . , yn) ∈ g(x) =

n∏
j=1

Bj(x̂j) ⇔ yj ∈ Bj(hxj) for each

j = 1, 2, . . . , n ⇔ x̂j ∈ Bj(yj) for each j = 1, 2, . . . , n. Thus for each y ∈ X ,

g−1(y) =
n⋂
j=1

{Bj(yj) × Xj} = Oy, which is compactly open. To show this it

would suffice that Bj(yj) × Xj is compactly open. Let K be a compact subset

of X . Let P̂j(K) = K̂j and Pj(K) = Kj where P̂j and Pj are respectively the

projections of X onto X̂j and Xj . Then K̂j and Kj are compact subsets of X̂j and

Xj respectively and (Bj(yj) ×Xj)∩ (K̂j ×Kj) =
(
Bj(yj) ∩ K̂j

)
×Kj . This shows

that (Bj(yj) ×Xj) is open in K̂j ×Kj by virtue of (b). Now since K̂j ×Kj ⊂ K,

it follows that Bj(yj) ×Xj is open in K. Now since g(x) ⊂ f(x) for each x ∈ x, it

follows that for each y ∈ X , f−1(y) contains a compactly open subset g−1(y) = Oy.
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Furthermore
⋃
x∈X

Oy = X . [For let x ∈ X . Since g(x) 6= ∅, g(x) contains a point

y ∈ X . Thus x ∈ g−1(y) = Oy .] Finally by (e) there exists an H-compact subset

X0 of X such that
⋂

x∈X0

Ocx = L is compact. Clearly with this pair (X0, L) the

condition (iv) of Theorem 4.69 is satisfied. Thus by Theorem 4.69 there exists a

point x ∈ X such that

x ∈ f(x) =

n∏

j=1

H − coB(x̂j) ⊂
n∏

j=1

Aj(x̂j)

by (a), that is, xj ∈ Aj(x̂j) for j = 1, 2, . . . , n, that is [xj , x̂j ] ∈ Aj for j =

1, 2, . . . , n. Thus x ∈
n⋂
j=1

Aj .

Remark 4.29 The theorem which is dual, in the sense of Tarafdar and Husain

(1978), to the above theorem can similarly be stated and proved.

Bardaro and Ceppitelli (1988) proved some generalisations of Fan’s minimax in-

equalities in Riesz space. We prove a variant of one of these (Bardaro and Ceppitelli

(1988), Theorem 3) by means of our Theorem 4.69.

Let (E, C) be a Riesz space, where C is the positive cone, provided with a linear,

order compatible topology (for example, see Fremlin (1974)) and C, the interior of

C is assumed to be nonempty.

Theorem 4.71 Let (X, {FA}) be an H-space and f, g : X ×X → (E, C) two

functions such that with a given λ ∈ E the following conditions hold:

(a) g(x, y) ≤ f(x, y) for all x, y ∈ X;

(b) f(x, x) /∈ λ+
◦
C for all x ∈ X;

(c) for every y ∈ X, the set {x ∈ X : f(x, y) ∈ λ+
◦
C} is H-convex;

(d) for every x ∈ X, the set {y ∈ X : g(x, y) ∈ λ+
◦
C} is compactly open;

(e) there exists an H-compact subset X0 of X such that {y ∈ X : g(x, y) /∈
λ+

◦
C, for each x ∈ X0} is a compact subset of X.

Then the set S = {y : g(x, y) /∈ λ +
◦
C for all x ∈ X} is a nonempty compactly

closed subset of X.

Proof: For each x ∈ X , let F (x) = {y ∈ X : f(x, y) /∈ λ +
◦
C} and G(x) = {y ∈

X : g(x, y) /∈ λ +
◦
C}. Then by (d), for each x ∈ X , G(x) is compactly closed. it

is clear that S = ∩x∈XG(x) and S is compactly closed. So we need to show that

S 6= ∅. If possible, let S = ∅. Then for each y ∈ X , the set h(y) = {x ∈ X : y /∈
G(x)} = {x ∈ X : g(x, y) ∈ λ+

◦
C} is non-empty. Hence for each y ∈ X , the set

k(y) = {x ∈ X : f(x, y) ∈ λ+
◦
C} ⊃ h(y) = {x ∈ X : g(x, y) ∈ λ+

◦
C}.
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The last inclusion follows from the inclusion G(x)c ⊂ F (x)c which in turn follows

from (b). [To set this let y /∈ G(x), that is, g(x, y) ∈ λ +
◦
C. Then there is a

neighborhood V of O in E such that g(x, y)+V ⊂ λ+
◦
C. Now g(x, y) ≤ f(x, y) ⇒

λ < g(x, y) + v ≤ f(x, y) + v for each v ∈ V . Thus f(x, y) + V ⊂ λ +
◦
C, that is

y /∈ F (x)]. Now for each x ∈ X ,

h−1(x) = {y ∈ X : x ∈ h(y)} = {y ∈ X : g(x, y) ∈ λ+
◦
C} = Ox,

say, is compactly open by (d). Thus for the set-valued mapping k : X → 2X ,

k(y) is nonempty and H-convex (by (c)) and for each x ∈ X , k−1(x) contains a

compactly open subset Ox = h−1(x). [That h−1(x) ⊂ k−1(x) follows from the fact

that h(x) ⊂ k(x)]. Also
⋃
x∈X

h−1(x) =
⋃
x∈X

Ox = X . [To see this let y ∈ X . Since

h(y) 6= ∅, we can assume x ∈ h(y). Then y ∈ h−1(x) = Ox]. Finally

(e) ⇒
⋂

x∈X0

Ocx =
⋂

x∈X0

{y ∈ X : g(x, y) /∈ λ+
◦
C} = L,

say, in compact. Thus the pair (L, X0) satisfies the condition (iv) of Theorem 4.69

for the mapping k. Hence this mapping k : X → 2X fulfils all the conditions of

Theorem 4.69 and, therefore, there is a point x0 ∈ X such that x0 ∈ k(x0), that is,

f(x0, x0) ∈ λ+
◦
C which contradicts (b). Thus we have proved the theorem.

Remarks. In the same way we can deduce Theorem 4 and Corollary 1 of (Bar-

daro and Ceppitelli (1988)) from our Theorem 4.69. Theorem 4.71 here includes a

theorem of Allen (1977) and also of Tarafdar (1986). The results of this section are

from Tarafdar and Watson (1998) and Tarafdar (1999).

We shall return to some new coincidence theorems which generalize some recent

results in the literature.

Theorem 4.72 Let K be a nonempty compact subset of a topological space X

and (Y, {FZ}) and H-space. Let G : X → 2Y and T : Y → ka(K) be set-valued

mapping such that

(i) T is u.s.c. on Y ,

(ii) for each x ∈ X, G(x) is H-convex and for each y ∈ Y , G−1(y) contains a

compactly open subset Oy of X (Oy may be empty for some y) such that K ⊂⋃
y∈Y

Oy, where ka(K) denotes the family of all nonempty compact subsets

of K.

Then there exist x0 ∈ K and y0 ∈ Y such that x0 ∈ T (y0) and y0 ∈ G(x0).

Proof. Since Oy is compactly open for each y ∈ Y and K is compact, by (ii), there

exists a finite subset {y0, y1, . . . , yn}, let Fj = F{yj}j∈J
. Then clearly FJ ⊂ FJ′

whenever J ⊂ J ′. By Lemma 4.16, there is a continuous mapping g : ∆n → Y
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such that g(∆J ) ⊂ FJ for each nonempty subset J of {0, 1, . . . , n}. By (i), T :

Y → ka(K) is u.s.c. and hence the composition mapping T ◦ g : ∆n → ka(K) is

also u.s.c. Now let {f0, f1, . . . , fn} be a partition of unity subordinate to the open

covering {Oyi ∩K}ni=0. Define a mapping f : K → ∆n by

f(x) =

n∑

i=0

fi(x)ei for each x ∈ K.

Clearly, f is continuous. By Lemma 4.17 there exists a point x∗ ∈ ∆n such that

x∗ ∈ f(T ◦ g(x∗)) so that there exists a point x0 ∈ T ◦ g(x∗) ⊂ K such that

x∗ = f(x0) =
n∑
i=0

fi(x0)ei. Let J(x0) = {i ∈ {0, 1, . . . , n} : fi(x0) 6= 0}, then

x∗ =
∑

i∈J(x0)

fi(x0)ei ∈ ∆J(x0)

and for each i ∈ J(x0), x0 ∈ Oyi ∩K ⊂ Oyi ⊂ G−1(yi). It follows that yi ∈ G(x0)

for each i ∈ J(x0). Since G(x0) is H-convex, we have

g(x∗) ∈ g(∆J(x0)) ⊂ FJ(x0) ⊂ G(x0).

Let y0 = g(x∗). Then we have x0 ∈ T (y0) and y0 ∈ G(x0).

Corollary 4.72.1 Let K be a nonempty compact subset of a topological space X

and (Y, {FA}) an H-space. Let G : X → 2Y be a set valued mapping such that for

each x ∈ X, G(x) is H-convex and for each y ∈ Y , G−1(y) contains a compactly

open subset Oy of X (Oy may be empty for some y) such that K ⊂ ⋃
y∈Y

Oy. Then

for any continuous mapping t : Y → K, there exists a point y0 ∈ Y such that

y0 ∈ G(t(y0)).

Proof. Define a mapping T : Y → 2K by

T (y) = {t(y)} for each y ∈ Y.

Then T : Y → ka(K) is u.s.c. By Theorem 4.72, there exist x0 ∈ K and y0 ∈ Y

such that x0 ∈ T (y0) = {t(y0)} and y0 ∈ G(x0). Hence we must have y0 ∈ G(t(y0)).

Remark 4.30 Corollary 4.72.1 is a Corollary 2.2 of Tarafdar (1992).

Theorem 4.73 Let X be a Hausdorff locally convex topological vector space,

(Y, {FA}) be a compact H-space, T : Y → 2X be u.s.c. with closed values and

g : Y → X be continuous such that

(i) for each y ∈ Y , T (y) ∩ g(Y ) is a non-empty acyclic space,

(ii) for each x ∈ g(Y ), λ > 0 and any continuous semi-norm p on X, the set

{y ∈ Y : p(g(y) − x) < λ} is H-convex.

Then there exists y0 ∈ Y such that g(y0) ∈ T (y0).
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Proof. Assume that the conclusion is not true. Then g(y) /∈ T (y) for all y ∈ Y .

Then for each y ∈ Y , the origin O of X to the closed set g(y) − T (y) and hence

there exist δy > 0 and a continuous seminorm op on X such that py(g(y)−u) > 2δy
for all u ∈ T (y). Now by the upper semicontinuity of T and continuity of g, there

exists N(y) of y in Y such that py(g(z) − v) > δy for all z ∈ N(y) and v ∈ T (z).

Since Y is compact and {N(y) : y ∈ Y } is an open cover of Y , there exists a finite

subcover {N(yi) : i = 1, 2, . . . , n} of Y . let p = max{pyi : i = 1, 2, . . . , n} and

λ = min{δyi : i = 1, 2, . . . , n}. Then p is a continuous seminorm on X such that

p(g(y) − x) > λ for all y ∈ Y and x ∈ T (y). (4.9)

(The idea of construction of p and λ is borrowed from Ha (1985).)

Clearly g(Y ) is a compact subset of X . Define a mapping T ∗ : Y → 2g(Y ) by

T ∗(y) = T (y) ∩ g(Y ).

By Theorem 3.1.8 of Aubin and Ekeland (1984) and the condition (i), T ∗ : Y →
ka(g(Y )) is u.s.c.. Define G : g(Y ) → 2Y by

G(x) = {y ∈ Y : p(g(y) − x) < λ}, ∀x ∈ g(Y ).

By the condition (ii), for each x ∈ g(Y ), G(x) is H-convex. It follows from the

continuity of p that for each y ∈ Y , G−1(y) = {x ∈ g(Y ) : p(g(y) − x) < λ} is an

open subset of g(Y ). For each x ∈ g(Y ), there is some y1 ∈ Y such that x = g(y1)

and hence y1 ∈ G(x) and x ∈ G−1(y1). Hence g(Y ) =
⋃
y∈Y

G−1(y). By Theorem

4.72 there exist x0 ∈ g(Y ) and y0 ∈ Y such that x0 ∈ T ∗(y0) = T (y0) ∩ g(Y ) and

y0 ∈ G(x0). Hence, we have p(g(y0) − x0) < λ and x0 ∈ T (y0) which contradicts

(4.9). Therefore there exists a point y0 ∈ Y such that g(y0) ∈ T (y0).

Theorem 4.74 Let X be a Hausdorff locally convex topological vector space,

(Y, {ΓA}) be a compact H-space. T : Y → 2X be u.s.c. with closed values and

g : Y → X be continuous such that

(i) for each y ∈ Y , g−1(T (y)) is a non-empty acyclic set.

(ii) for each closed convex subset C of X, g−1(C) is an H-convex subset of Y .

Then there exists a point y0 ∈ Y such that g(y0) ∈ T (y0).

Proof. Assume that the conclusion does not hold, then, by an argument similar to

that in the proof of Theorem 4.73 there exist λ > 0 and a continuous semi-norm p

on X such that

p(g(y) − x) > λ, for all y ∈ Y and x ∈ T (y).

Define mappings T ∗ : G = Y → 2Y by

T ∗(y) = g−1(T (y)) for each y ∈ Y,

G(y) = {z ∈ Y : p(g(z) − g(y)) < λ} for each y ∈ Y.
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Since g is continuous and T is u.s.c., it is easy to see that T ∗ has a closed graph.

Note that Y is compact, so by Corollary 3.1.9 of Aubin and Ekeland (1984), T is

u.s.c. with compact values. By (i), T ∗ : Y → ka(X) is u.s.c. For each y ∈ Y

and A = {y1, . . . , yn} ⊂ G(y), let ui = g(yi), i = 1, . . . , n, and hence yi ∈ g−1ui,

i = 1, . . . , n and A ⊂ g−1[co(u1, . . . , un)]. By (ii), g−1[co(u1, . . . , un)] is H-convex

and so ΓA ⊂ g−1[co(u, . . . , un0]. For any z ∈ FA, there exist λi ≥ 0, i = 1, . . . , n

with
n∑
i=1

λi = 1 such that g(z) =
n∑
i=1

λiui. Note that yi ∈ G(y) for i = 1, . . . , n. It

follows that

p(g(z) − g(y)) = p

(
n∑

i=1

λiui − g(y)

)
= p

(
n∑

i=1

λi(g(yi) − g(y))

)

≤
n∑

i=1

λip(g(yi) − g(y)) < λ

and hence FA ⊂ G(y) and G(y) is H-convex. By the continuity of p and g, for each

z ∈ Y ,

G1(z) = {y ∈ Y : p(g(z) − g(y)) < λ}

is open in Y . For each y ∈ Y , we have y ∈ G(y) and hence Y =
⋃
y∈Y

G(y).

By Theorem 4.72 there exist z0, y0 ∈ Y such that y0 ∈ T ∗(z0) = g−1(T (z0)) and

z0 ∈ G(y0). Hence we have g(y0) ∈ T (z0) and p(g(z0)−g(y0)) < λ which contradicts

4.10. Hence there exists a point y0 ∈ Y such that g(y0) ∈ T (y0).

Remark 4.31 Theorem 4.74 improves Theorem 2 of Ha (1985), Theorem 1 of

Fan (1952) and Theorem 2 of Fan (1961).

Applications

Let X and Y be two topological spaces and T : X → 2Y be a preference

correspondence. We recall that point x ∈ X is said to be a maximal element of

the preference correspondence T uf T (x) = ∅. The existence theorems of maximal

elements have become an important tool in proving the equilibrium existence of

abstract economics or generalized games, see for example, Borglin and Keiding

(1976), Yannelis and Prabhakar (1983), Ding and Tan (1992, 1993) and Tarafdar

(1991).

Theorem 4.75 Let K be a nonempty compact subset of a topological space X and

(Y, {FA}) an H-space. Let G : X → 2Y and T : Y → 2K be two correspondences.

Suppose that

(i) T is u.s.c. such that for each y ∈ Y , T (y) is either an empty set or a closed

acyclic set,



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Topological Fixed Point Theorems 261

(ii) for each y ∈ Y , some Q−1(y) contains a compactly open subset Oy of X (Oy
may be empty for some y) such that K ⊂ ⋃

y∈Y
Oy where Q(x) = H−co(G(x)),

the H-convex hull of G(x), (see Tarafdar (1990)), for each x ∈ X,

(iii) for each (x, y) ∈ K × Y , x ∈ T (y) implies y /∈ Q(x).

Then either T has a mzximal element in Y or Q has a maximal element in K.

Proof. Assume that both T and Q do not have maximal elements. Then, by (i),

T : Y → ka(K) is u.s.c. By (ii), for each x ∈ X , Q(x) is H-convex and for each

y ∈ Y , Q−1(y) contains a compactly open subset Oy ofX such thatK ⊂ ⋃
y∈Y

Oy. By

Theorem 4.72, there exist x0 ∈ K and y0 ∈ Y such that x0 ∈ T (y0) and y0 ∈ Q(x0)

which contradicts the condition (iii). The conclusion must hold.

Corollary 4.75.1 Let (X, {FA}) be a compact H and G : X → 2X a preference

correspondence such that

(i) for each x ∈ X, x /∈ H − co(G(x))

(ii) for each y ∈ X, Q−1(y) contains a compactly open subset Oy of X (Oy may

be empty for some y) such that X =
⋃
y∈Y

Oy, where Q(x) = H − co(G(x))

for each x ∈ X.

Then G has a maximal element in X.

Proof. By letting X = Y = K and T (x) = {x} for each x ∈ X in Theorem 4.75,

the conclusion follows from Theorem 4.75.

Remark 4.32 The results beginning from Theorem 4.72 to Corollary 4.75.1 are

taken from Ding and Tarafdar (1994).

4.11 Applications to Mathematical Economics: An Analogue of

Debreu’s Social Equilibrium Existence Theorem

In our consideration a social system might have a finite or an infinite agent and

each agent has a range of actions from which he/she chooses one. However his/her

choice is not totally free in the sense that this choice is to be taken from a subset

determined by actions of other agents. When the action of every agent is known, the

outcome of the social activity is known. The preferences of each agent yield his/her

complete ordering of outcomes and each one chooses his/her best possible action

from his/her restricted subset. Debreu (1959) considers a social system consisting

of m number of agents. Each agent i = 1, 2, . . . ,m operates on a contractible

polyhedron (a homeomorphic image of a geometric polyhedron) in Rn. Under this

setting Debreu (1959) has presented an existence theorem with general conditions

under which there is an equilibrium for such a social system, i.e. an outcome of the

social system where the action of each agent belongs to his/her restricted subset and
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no agent has incentive to consider another action. This basic result has now become

a classical result and has generated a deep interest in the work of mathematical

economist worldwide in the field of equilibrium analysis. As Debreu (1952) has

used a particular case of the fixed point theorem of Eilenbery and Montgomery

(1946), or even the more general result of Begle (1950), a contractible polyhedron

for each agent was appropriate for his choice set. Since we are going to use the fixed

point theorems in locally H-convex spaces, the choice set Xα for each agent α ∈ I

will appropriately assumed to be a locally H-convex compact space.

In this section the authors consider a social system in which there could be

theoretically a finite or an infinite agents characterized by i ∈ I , I being an index

set. Each agents i ∈ I operates on a locally H-convex space (X, {FAi}) which

contains a locally convex topological vector space as a special case and will be

defined shortly. It will be proved that homeomorphic image of an H-space is an H-

space and aH-convex subset (a concept which will be defined shortly) is a topologal,

i.e. remain invariant under at topological mapping (homeomorphism). Thus the

non-linear concepts of economics are well-suited in H-space. In sharp contrast to

this, one will need linear homeomorphism in topological vector spaces.

The α-th agent chooses an action from Xα, his choice set which is a locally

H-convex compact Hausdorff space. For each α ∈ I , the function fα :
∏
α∈I

→

R = [−∞, ∞] denotes the payoff function. Given x−α ∈ X−α =
∏ β∈I

β 6=αXβ , the

choice of the α-th agent is restricted to a nonempty compact set Aα(x−α) ⊂ Xα,

Aα : X−α → Xα is the constraint mapping. The α-th agent chooses xα in Aα(x−α)

so as to maximize fα(xα, x−α), assumed to be continuous in xα on Aα(x−α). As

before, x∗ ∈ X is an equilibrium point if for each α ∈ I , x∗α ∈ Aα(x∗−α) and

fα(x∗) = sup
xα∈Aα(x∗

−α)

fα(xα, x
∗
α).

Theorem 4.76 For each α ∈ I, let Xα be as above, Aα : X−α → 2Xα

set valued mapping with closed graph Gα and nonempty compact values, and fα
a continuous function from Gα to the completed real line such that ϕα(x−α) =

sup
xα∈Aα(x−α)

fα(xα, x−α) is continuous. Further assume that for each α ∈ I, and

x−α ∈ X−α, the set Mx−α = {xα ∈ Aα(x−α) : fα(xα, x−α) = ϕα(x−α)} is either

(i) contractible (more generally acyclic);

(ii) H-convex in Xα.

Then there is an equilibrium point.

Proof. By theorem X =
∏
α∈I

Xα is a Hausdorff locally H-convex space. Now we

define the set valued mapping ϕ : X → 2X by

ϕ(x) =
∏

α∈I
Mx−α , x = {xα}α∈I ∈ X.
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Under (i) ϕ(x) is nonempty contractible (or more generally acyclic) for each x ∈ X

as Mx−α is so for each α ∈ I .

Under (ii) ϕ(x) is nonempty H-convex for each x ∈ X , the product of H-convex

sets being evidently H-convex.

Now just as in Debreu (1952), for each α ∈ I , we define in Xα×X−α, the subset

of X ,

Mα =
{
(xα, x−α) : xα ∈Mx−α

}

= {(xα, x−α) ∈ Gα : fα(xα, x−α) = ϕα(x−α)}
which is a closed set by virtue of the fact that Gα is closed and fα and ϕα are

continuous.

The graph G of ϕ is the subset of X ×X , and

G = {(x, x′) : x′ ∈ φ(x)}
=
{
({xα}, {x′α}) : x′α ∈Mx−α for all α ∈ I

}

= {(x, x′) : (x′α, x−α) ∈Mα for all α ∈ I} .

Now since Mα is closed for each α, the subset Nα = {(x,x′) : (x′α, x−α) ∈Mα} is

closed for each α ∈ I .

It then follows that G =
⋂
aii

Nα is closed.

Hence by Theorem under (i) and Theorem under (ii), there is a fixed point

x ∈ X of φ, i.e. x ∈ φ(x) =
∏
α∈I

Mx−α
, where x = {xα}. Hence xα ∈ Mxα

=

{xα ∈ Aα(x−α) : fα(xα, x−α) = ϕα(x−α} for each α ∈ I , i.e. xα ∈ Aα(x−α) and

fα(x) = fα(xα, x−α) = φα(x−α) = sup
xα∈Aα(x−α)

fα(xα, x−α)

for each α ∈ I . Thus x ∈ X is an equilibrium point. We should point out that

theorem can be proved in locally H-convex spaces.
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Chapter 5

Variational and Quasivariational

Inequalities in Topological Vector Spaces

and Generalized Games

5.1 Simultaneous Variational Inequalities

Since the appearance of Minty(1962, 1963), Hartman and Stampacchia (1966) and

Browder (1965b), the theory of monotone (nonlinear) operators in general and the

variational inequality in particular have generated a tremendous interest amongst

mathematicians. This is because of the wide applicability of the variational inequal-

ities in nonlinear elliptic boundary value problems, obstacle problems, complemen-

tarity problems, mathematical programming, mathematical economics, optimiza-

tions and in many other areas. Papers which concern differential equations and

variational inequalities are too many to cite. We will only cite Browder (1965b),

Hartman and Stampacchia (1966), Kinderlehrer and Stampacchia (1980), Browder

(1970) and Pascali and Sburlan (1978). Readers will find further references cited in

these. In Karamardian (1972) it was shown that the problem of complementarity

can be reduced to that of variational inequality, while the relationship between the

variational inequality and mathematical programming was shown in Mancino and

Stampacchia (1972), between the variational inequality and convex functions by

Rockafeller (1970) and Moreau (1966), and between the variational inequality and

and the equilibrium point of Walrasian economy in Riesz spaces in Aliprantis and

Brown (1993).

5.1.1 Variational Inequalities for Single Valued Functions

Throughout this subsection X will denote a nonempty convex subset of a real Haus-

dorff topological vector space E (preferably a locally convex Hausdorff topological

vector space whenever we are considering a nonlinear mapping T : X → E∗, for

otherwise we might be in the trivial case E∗ = {0}, E∗ being the continuous dual of

E. For a subset A of X , Ac will denote the complement of A in X , i.e. Ac = X \A
and A or clA the closure of A in E. We will use both notations for closure as our

need demands. Our fixed point theorem will play an important role in this subsec-

tion. Here we deal with the materials of Husain and Tarafdar (1994), Husain and

Tarafdar (1996), Tarafdar (1990a) and Tarafdar (1977). At the outset we should

265
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mention that to prove the main theorem on variational inequalities for single valued

function we will need our fixed point theorem of set-valued mapping.

Definition 5.1 A pair of real valued functions f and g defined on X ×X is said

to be monotone or a monotonic pair if

f(x, y) + g(y, x) ≥ 0

for all x, y ∈ X , and strictly monotone if in addition the equality

f(x, y) + g(y, x) = 0

implies x = y.

A function f : X ×X → R is said to be hemicontinuous if if the function

k(t) = f(x+ t(y − x), y)

of the real variable t is lower semicontinuous on X as t ↓ 0 for arbitrary given

vectors x and y of X .

Remark 5.1 If we take f = g in the above definition, we obtain a monotone

function as defined in Tarafdar (1990a) and Mosco (1976).

Definition 5.2 A single valued (possibly nonlinear) mapping A : X → E∗ is

said to be monotone if

〈Ax−Ay, x− y 〉 ≥ 0

for all x, y ∈ X and strictly monotone if

〈Ax−Ay, x− y 〉 = 0

implies x = y. Here 〈 ·, · 〉 denotes the pairing between E∗ and E. The mapping

A : X → E∗ is called hemicontinuous if A is continuous from the line segment of

X to the weak topology of E∗.

Remark 5.2 To see the connection between the Definitions 5.1 with f = g

and 5.2, let A :→ E∗ be a monotone mapping according to Definition 5.2. Then

the function f : X ×X → R is defined by

f(x, y) = 〈A(x), x− y 〉 for x, y ∈ X (5.1)

is a monotone function according to Definition 5.1 with f = g. It is also easy to

see that f is hemicontinuous according to Definition 5.1 if A is hemicontinuous

according to Definition 5.2.

We give some examples:

Example 5.1 Let X be a nonempty subset of a real Hilbert space (H, 〈 ·, 〉),
then the functions f, g : X → R defined by

f(x, y) = α‖x− y‖2 − 〈x, y 〉
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and

g(x, y) = 〈x, y 〉,

x, y ∈ X , (α is a positive real number) are a monotonic pair.

Example 5.2 If X is a nonempty subset of a normed linear space (E, ‖·‖) and

f : X → R is a function, then for each positive number α, the function

fα(x, y) = f(x) − f(y) + α ‖x− y‖ ,

x, y ∈ X is a strictly monotone function.

Example 5.3 If X is as in Example 5.2 and A : X → E∗ is monotone (strictly

monotone) mapping, then the function f : X ×X → R defined by

f(x, y) = 〈Ax, x − y 〉,

x, y ∈ X is a monotone (strictly) function.

Example 5.4 Let X be a nonempty convex subset of Rn and f : X → R is a

continuously differentiable convex (strictly convex) function, then the F : X×X →
R defined

F (x, y) = 〈∆f(x), x− y 〉,

x, y ∈ X is monotone (strictly monotone) (see Pascali and Sburlan (1978, p. 16)).

Let ϕ : E → R be a differentiable function defined on a Banach space E and let

ϕ′
x denote the (Gateaux) derivative at x ∈ E, i.e.

ϕ′
x(y) = lim

t→0

ϕ(x + ty) − ϕ(x)

t
.

Thus ϕ′
x is a bounded linear functional on E for each x ∈ E and the mapping

x → ϕ′
x is a mapping of E into E∗. We now state the following Proposition first

explicitly given and stated by Russian mathematicians (e.g. see Browder (1970)).

Proposition 5.1 Let ϕ′
x be as above, then the function f : E ×E → R defined

by

f(x, y) = 〈ϕ′
x, x− y 〉

is monotone if and only if ϕ is convex.

Proof. From what we said in Example 5.3 it will suffice to prove that the operator

A = ϕ′ is monotone if and only if ϕ is convex. We should point out that our proof

from this point onward is almost the same as that of Browder (1970, p.4 ). First

let ϕ be convex. Then for each α with 0 ≤ α ≤ 1, we have

ϕ[y + α(x− y)] − ϕ(y) ≤ α[ϕ(x) − ϕ(y)] for x, y ∈ E (5.2)
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Dividing by α and letting α→ 0+ we have

〈ϕ′
y, x− y 〉 ≤ ϕ(x) − ϕ(y). (5.3)

Interchanging x and y we have similarly

〈ϕ′
x, y − x 〉 ≤ ϕ(y) − ϕ(x). (5.4)

Adding (5.3) and (5.4) we obtain

〈ϕ′
x − ϕ′

y, x− y 〉 ≥ 0.

Next, we assume that A = ϕ′ is monotone. For given x, y ∈ X , we construct the

function

p(λ) = ϕ[λx + (1 − λ)y] − λϕ(x) − (1 − λ)ϕ(y) for 0 ≤ λ ≤ 1. (5.5)

It suffices to show that p(λ) ≤ 0 for all 0 ≤ λ ≤ 1. If possible, suppose this is not

true. Then as p is differentiable with p(0) = p(1) = 0, it follows that p(λ) must

have maximum at a point η ∈ (0, 1) with p′(η) = 0. Let λ be a point in [0,1] with

η ≤ λ. Then using the monotonicity of A,

p′(λ) − p′(η) = 〈A(λx + (1 − λ)y) −A(ηx + (1 − η)y), x− y 〉
= (λ− η)−1〈A(λx + (1 − λ)y) −A(ηx + (1 − η)y), [λx+ (1 − λ)y]

−[ηx+ (1 − η)y] 〉
≥ 0.

Thus p does not decease for λ ≥ η. Hence it follows that p(η) ≤ p(1) = 0, and

p(λ) ≤ 0 for all λ for 0 ≤ λ ≤ 1. This is a contradiction. The proof is complete.

5.1.2 Solutions of Simultaneous Nonlinear Variational Inequalities

Let X and E be as in the previous subsection.

We consider the following problem. We assume that

ϕ : X → (−∞,∞] and ϕ 6≡ ∞, (5.6)

ϕ is convex and lower semicontinuous on E,

f, g : X ×X → R with f(x, x) = g(x, x) = 0 for each x ∈ X (5.7)

such that

(i) for each x ∈ X , f(x, .) and g(x, .) are both concave and upper semicontinuous

on E;

(ii) the pair (f, g) is monotone and both f , g are hemicontinuous.
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We are interested to find the set of points x0 ∈ X which simultaneously satisfy the

inequalities

ϕ(x0) + f(x0, y) ≤ ϕ(y) for all y ∈ X (5.8)

and

ϕ(x0) + g(x0, y) ≤ ϕ(y) for all y ∈ X. (5.9)

i.e. we want to find the set of common solutions of the variational inequalities

(5.8) and (5.9). Such a solution x0 is called a solution of simultaneous variational

inequalities.

In what follows the following lemma will play an important role.

Lemma 5.1 Assume that ϕ is defined as in (5.6) and f, g : X ×X → R are a

monotonic pair of functions. Then if x0 is a solution of the inequality (5.8), x0 is

a solution of the inequality

ϕ(x0) ≤ ϕ(y) + g(y, x0) for all y ∈ X (5.10)

and if x0 is a solution of the inequality (5.9), then x0 is a solution of the inequality

ϕ(x0) ≤ ϕ(y) + f(y, x0) for all y ∈ X. (5.11)

If f and g are as defined in (5.7) satisfying (5.7) (i) and are hemicontinuous, and

ϕ is defined as in (5.6), then if x0 is a solution of the inequality (5.10), x0 is a

solution of the inequality (5.9) and if x0 is a solution of the inequality (5.11), x0 is

a solution of the inequality (5.8).

Proof. Let x0 be a solution of (5.8), i.e. ϕ(x0) + f(x0, y) ≤ ϕ(y) for all y ∈ X .

Adding g(y, x0) to both sides and using monotonicity of the pair (f, g), we get

ϕ(x0) ≤ ϕ(y) + g(y, x0) for all y ∈ X ,i,e. x0 is a solution of (5.10). Similarly if x0

is a solution of (5.9), then adding f(y, x0) to both sides and using monotonicity of

the pair (f, g), we obtain that x0 is a solution of (5.11).

Next let x0 be a solution of (5.11), i.e. ϕ(x0) ≤ ϕ(y) + f(y, x0) for all y ∈ X . If

possible, let x0 be not a solution of (5.8). Then there must exist point y ∈ X with

ϕ(y) <∞ such that

ϕ(x0) + f(x0, y) > ϕ(y) (5.12)

Now since X is convex, yt = (1 − t)x0 + ty ∈ X for all t ∈ [0, 1]. By our assumption

made in (5.6) and by virtue of hemicontinuity of f , it follows that the function

ϕ(yt)+f(yt, y) of real variable t is lower semicontinuous as t ↓ 0+. Hence by (5.12),

there must a real t such that

ϕ(yt) + f(yt, y) > ϕ(y) for all t ∈ (0, t]. (5.13)
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Moreover as x0 is solution of (5.11), we have

ϕ(yt) + f(yt, x0) ≥ ϕ(x0) for all t ∈ [0, 1]. (5.14)

Now multiplying (5.13) by t and (5.14) by (1 − t) and adding, and using convexity

of ϕ and concavity of f(yt, .), we obtain ϕ(yt) + f(yt, yt) > ϕ(yt) which will imply

that ϕ(yt) <∞ and f(yt, yt) > 0 which in turn contradict (5.7). Hence x0 must be

a solution of (5.8). Similarly we can prove that if x0 is a solution of (5.10), then x0

is a solution of (5.9).

Theorem 5.1 If ϕ is as defined in (5.6) and f, g are as defined in (5.7) satisfying

(5.7) (i) and (ii), then x0 is a common solution of the variational inequalities (5.8)

and (5.9) if and only if x0 is either a solution of (5.8) or a solution of (5.9).

Proof. The theorem follows from Lemma 5.1. Indeed, if x0 is a solution of (5.8),

by the first part of the lemma x0 is a solution of (5.10) and by the second part of

the lemma is a solution of (5.9). Similarly if x0 is a solution of (5.9), then it is a

solution of (5.8).

Theorem 5.2 Let ϕ : X → (−∞,∞] and f, g : X × X → (−∞,∞) be as in

(5.6) and (5.7) respectively and (f, g) satisfy (5.7) (i) and (ii) and X be closed.

Then for each x ∈ X, the sets F (x) = cl{y ∈ X : ϕ(y) + f(y, x) ≤ ϕ(x)} and

G(x) = cl{y ∈ X : ϕ(y) + g(y, x) ≤ ϕ(x)} are subsets of X. Furthermore assume

that there is a nonempty subset X0 contained in a compact convex subset X1 of X

such that one of the following conditions holds:

(a) the set L =
⋂

x∈X0

F (x) is compact;

(b) the set M =
⋂

x∈X0

G(x) is compact;

(c) the set P =
⋂

x∈X0

B(x) is compact, where B(x) = {y ∈ X : ϕ(y) ≤ ϕ(x) +

f(x, y)};
(d) the set Q =

⋂
x∈X0

C(x) is compact, where C(x) = {y ∈ X : ϕ(y) ≤ ϕ(x) +

g(x, y)}.

Then the set S of simultaneous solutions of the variational inequalities (5.8) and

(5.9) is a nonempty compact convex subset of X.

Proof. It is easily seen that for each x ∈ X , by lower semicontinuity of ϕ and

−f(x, .) in E, the set B(x) = {y ∈ X : ϕ(y) − f(x, y) ≤ ϕ(x)} = {y ∈ X :

ϕ(y) ≤ ϕ(x) + f(x, y)} is a closed subset of X . Again by the monotonicity of the

pair (f, g), for each x ∈ X , the set {y ∈ X : ϕ(y) + g(y, x) ≤ ϕ(x)} ⊆ {y ∈ X :

ϕ(y) ≤ ϕ(x) + f(x, y)} = B(x). Hence for each x ∈ X , the set G(x) = cl{y ∈ X :

ϕ(y) + g(y, x) ≤ ϕ(x)} ⊆ B(x) and is, therefore, a closed subset of X . Similarly,

for each x ∈ X , by the lower semicontinuity of ϕ and −g(x, .) in E, it follows that

the set C(x) = {y ∈ X : ϕ(y) ≤ ϕ(x) + g(x, y)} is a closed subset of X and by the



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Variational and Quasivariational Inequalities and Generalized Games 271

monotonicity of the pair (f, g), the set {y ∈ X : ϕ(y) + f(y, x) ≤ ϕ(x)} ⊆ C(X).

Hence for each x ∈ X , F (x) = cl{y ∈ X : ϕ(y) + f(y, x) ≤ ϕ(x)} ⊆ C(x) and is,

therefore, a closed subset of X . Next, we first prove the existence of the solution

of the simultaneous variational inequalities (5.8) and (5.9) under the condition (b).

To this end we consider the following condition:

(*) for each x ∈ X , there exists a point y ∈ X such that ϕ(y) + f(y, x) < ϕ(x).

The condition (*) may or may not hold. We will prove that in either case the

solution of the simultaneous variational inequalities (5.8) and (5.9) exists. First,

let us assume that the condition (*) does not hold. This precisely means that

there exists x0 ∈ X such that ϕ(y) + f(y, x0) ≥ ϕ(x0) for all y ∈ X , i.e. x0 is

a solution of the inequality (5.11) and hence by Lemma 5.1 x0 is is a solution of

the inequality (5.8). Therefore by Theorem 5.1 x0 is a solution of the simultaneous

variational inequalities (5.8) and (5.9). Next, we assume that the condition (*)

holds. By virtue of the Theorem 5.1, it would suffice to prove the existence of a

solution of the inequality (5.9). If possible,we suppose that there is no solution of

the inequality (5.9). This then implies that for each y ∈ X , the set T (y) = {x ∈
X : ϕ(y) + g(y, x) > ϕ(x)} is nonempty. Thus T defines a set-valued mapping of

X into 2X . Also by convexity of ϕ and concavity of g(y, .), it follows that T (y) is

a convex subset of X for each y ∈ X . Now for x ∈ X ,

T−1(x) = {y ∈ X : x ∈ T (y)}
= {y ∈ X : ϕ(y) + g(y, x) > ϕ(x)}
= {y ∈ X : ϕ(y) + g(y, x) ≤ ϕ(x)}c ⊇ [cl{y ∈ X : ϕ(y) + g(y, x) ≤ ϕ(x)}]c

= [G(x)]c = Ox,

say, which is a relatively open subset of X . Further by condition (b), M =⋂
x∈X0

G(x) =
⋂

x∈X0

Ox
c is compact. Lastly since (*) holds, it follows that

⋃
x∈X

[B(x)]c =
⋃
x∈X

{y ∈ X : ϕ(y) > ϕ(x) + f(x, y)} = X . To see this let, for

each x ∈ X , let W (x) = {y ∈ X : ϕ(y)+ f(y, x) < ϕ(x)} which is nonempty by (*).

Hence W : X → 2X is a set-valued mapping with W (x) 6= ∅ for each x ∈ X .Thus

X =
⋃
x∈X

W−1(x) =
⋃
x∈X

{y ∈ X : x ∈ W (y)} =
⋃
x∈X

{y ∈ X : ϕ(x) + f(x, y) <

ϕ(y)} =
⋃
x∈X

[B(x)]c. Hence the set-valued mapping T : X → 2X satisfies all the

conditions of a fixed point theorem. Therefore, there exists a point x0 ∈ X such

that x0 ∈ T (x0), ϕ(x0) + f(x0, x0) > ϕ(x0) which implies that ϕ(x0) < ∞ and

f(x0, x0) > 0, contradicting an assumption made in (5.7). This contradiction proves

the assertion. Similarly we can prove the existence of the simultaneous variational

inequalities (5.8) and (5.9) under the condition (a) by replacing f by g in the con-

dition (*) and g by f in the arguments that follow. It remains to show that S is a



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

272 Topological Methods of Set-Valued Nonlinear Analysis

compact convex subset of X . For each x ∈ X , let H(x) = {y ∈ X : ϕ(y)+f(y, x) ≤
ϕ(x)} and K(x) = {y ∈ X : ϕ(y) + g(y, x) ≤ ϕ(x)}, i.e. clH(x) = F (x) and

clK(x) = G(x). It is then clear that S =
⋂
x∈X

[H(x) ∩ K(x)]. Also by Lemma

5.1, it follows that S =
⋂
x∈X

B(x) ∩ C(x). But as we have already shown that for

each x ∈ X , G(x) ⊆ B(x) and F (x) ⊆ C(x), it is obvious that for each x ∈ X ,

F (x)∩G(x) ⊆ B(x)∩C(x). Thus S =
⋂
x∈X

[H(x)∩K(x)] ⊆ [B(x)∩C(x)] = S being

a closed subset of L or M according as we have (a) or (b), is a compact subset of

X . We conclude the proof under (a) or (b) by observing that due to the convexity

of ϕ and concavity of f(x, .) and g(x, .), the sets B(x) and C(x) are convex for each

x ∈ X . Finally we finish the proof by noting that the condition (c) implies the

condition (b) and the condition (d) implies the condition (a). This follows from

the fact that in the beginning of the proof we have proved that for each x ∈ X ,

F (x) ⊆ C(x) and G(x) ⊆ B(x).

Remark 5.3 From the proof it is clear that S is compact convex subset of L or

M according as we have (a) and (d) or (b) and (c).

Corollary 5.2.1 Let ϕ : X → (−∞,∞] and f, g : X × X → (−∞,∞) be

as defined in (5.6) and (5.7) respectively, (f, g) satisfy (5.7) (i) and (ii) and X be

closed.

Further assume that there is a nonempty subset X0 contained in a compact

convex subset X1 of X such that one of the following holds:

(i) for each y ∈ X \ X1, there exists x ∈ X0 with ϕ(x) < ∞ such that ϕ(y) +

f(y, x) > ϕ(x);

(ii) same as (i) with g in place of f .

(i)′ for each y ∈ X \X1, there exists x ∈ X0 with ϕ(x) < ∞ such that ϕ(y) >

ϕ(x) + g(x, y);

(ii)′ same as (i)′ with f in place of g.

Then the set of solutions of simultaneous variational inequalities (5.8) and (5.9) is

a nonempty compact convex subset of X.

Proof. First suppose that (i) holds. Then for each y ∈ X \X1, there exists x ∈ X0

such that ϕ(y) + f(y, x) > ϕ(x). This implies that
⋂

x∈X0

H(x) ⊆ X1, where H(x) =

{y ∈ X : ϕ(y) + f(y, x) ≤ ϕ(x)}. By notation of Theorem 5.2, cl(H(x)) = F (x) for

each x ∈ X . Since X1 is closed, it follows that
⋂

x∈X0

cl(H(x)) =
⋂

x∈X0

F (x) ⊆ X1.

Hence
⋂

x∈X0

F (x) being a closed subset of a compact set X1 is compact, i.e. the

condition (a) of Theorem 5.2 holds. Thus in this case the corollary now follows

from Theorem 5.2. In the same way we can show that the condition (ii) implies

the condition (b) of Theorem 5.2. It is also easy to see that (i)′ implies that
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⋂
x∈X)

C(x) ⊆ X1, where C(x) = {y ∈ X : ϕ(y) ≤ ϕ(x) + g(x, y)} for each x ∈ X .

It follows that
⋂

x∈X0

C(x) is compact, i.e. the condition (d) of Theorem 5.2 holds.

Finally, in the same way we can show that (ii)′ implies (c) of Theorem 5.2.

Corollary 5.2.2 Let ϕ : X → (−∞,∞] and f, g : X × X → (−∞,∞) be

as defined in (5.6) and (5.7) respectively, (f, g) satisfy (5.7) (i) and (ii) and X be

closed. Further assume that one of the following conditions holds:

(i) there exists a point x0 ∈ X such that the set F (x0) = cl{y ∈ X : ϕ(y) +

f(y, x0) ≤ ϕ(x0)} is compact;

(ii) there exists a point x0 ∈ X such that the set G(x0) = cl{y ∈ X : ϕ(y) +

g(y, x0) ≤ ϕ(x0)} is compact;

(iii) there exists a point x0 ∈ X such that the set B(x0) = {y ∈ X : ϕ(y) ≤
ϕ(x0) + f(x0, y)} is compact;

(iv) there exists a point x0 ∈ X such that the set C(x0) = {y ∈ X : ϕ(y) ≤
ϕ(x0) + g(x0, y)} is compact;

(v) there exists a point x0 contained in a compact convex subset X1 of X such

that ϕ(x0) <∞ and ϕ(y) + f(y, x0) > ϕ(x0) for all y ∈ X \X1;

(vi) there exists a point x0 contained in a compact convex subset X1 of X such

that ϕ(x0) <∞ and ϕ(y) + g(y, x0) > ϕ(x0) for all y ∈ X \X1;

(vii) there exists a point x0 contained in a compact convex subset X1 of X such

that ϕ(x0) <∞ and ϕ(y) > ϕ(x0) + f(x0, y) for all y ∈ X \X1;

(viii) there exists a point x0 contained in compact convex subset X1 of X such that

ϕ(x0) <∞ and ϕ(y) > ϕ(x0) + g(x0, y) for all y ∈ X \X1.

Then the set of solutions of the simultaneous variational inequalities (5.8) and

(5.9) is a nonempty compact convex subset of X.

Proof. The corollary under (i) to (iv) follows directly from Theorem 5.2 and (v)

to (viii) from Corollary 5.2.1.

Next result was first proved in Tarafdar (1990a).

Corollary 5.2.3 If ϕ : X → (−∞,∞] is as defined in (5.6) and f is a function

as defined in (5.7) satisfying (5.7) (i) and (ii) (as a pair (f, f)) and X is closed,

then for each x ∈ X, the set

F (x) = cl{y ∈ X : ϕ(y) + f(y, x) ≤ ϕ(x)}

is a closed subset of X. Further assume that there is a nonempty subset X1 of X

such that one of the following conditions holds:

(A) same as (a) of Theorem 5.2;

(B) same as (c) of Theorem 5.2;

(C) same as (i) of Corollary 5.2.1;
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(D) same as (ii)′ of Corollary 5.2.1.

Then the set of solutions of the variational inequality (5.8) is a nonempty compact

convex subset of X.

Proof. The proof of the corollary under condition (A) and (B) follows from Theo-

rem 5.2 by taking by taking f = g, whereas that conditions (C) and (D) imply (d)

of Theorem 5.2 can easily be checked (see e.g. the proof of Theorem 1.2 in Tarafdar

(1990a)).

Theorem 5.3 If f, g : X × X → R are a strictly monotonic pair of functions

and x1 ∈ X and x2 ∈ X are respectively two solutions of the variational inequalities

(5.8) and (5.9), then x1 = x2, i.e. the solution of the simultaneous variational

inequalities, if exists, must be unique.

Proof. Since x1 ∈ X is a solution of (5.8), ϕ(x1) + f(x1, x2) ≤ ϕ(x2). Again

since x2 ∈ X is a solution of (5.9), we have ϕ(x2) + g(x2, x1) ≤ ϕ(x1). Adding

these two we obtain f(x1, x2) + g(x2, x1) ≤ 0. On the other hand by monotonicity

we have f(x1, x2) + g(x2, x1) ≥ 0. Thus f(x1, x2) + g(x2, x1) = 0, which by strict

monotonicity implies x1 = x2.

Corollary 5.3.1 Let X be a closed convex subset of E and T : X → E∗ be a

monotone and hemicontinuous mapping according to Definition 5.2. Further assume

that X contains a nonempty subset X0 contained in a compact convex subset X1 of

X such that one of the followings holds:

(α) the set
⋂

x∈X0

cl{y ∈ X : 〈T (y), y − x〉 ≤ 0} is compact;

(β) the set
⋂

x∈X0

{y ∈ X : 〈T (x), x− y〉 ≥ 0} is compact;

(γ) for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (y), y − x〉 > 0;

(δ) for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (x), x− y〉 < 0.

Then the set of solutions of the variational inequality, i.e. the set of points x0 ∈ X

satisfying:

〈T (x0), x0 − y〉 ≤ 0 for all y ∈ X, (5.15)

is a nonempty compact convex subset of X.

Proof. We define the real valued function f(x, y) on X×X byf(x, y) = 〈T (x), x−
y〉, x, y ∈ X and ϕ(x) ≡ 0 on X . Then the corollary follows from Theorem 5.2 and

Corollary 5.2.1.

Corollary 5.3.2 Let X and T be as in Corollary 5.3.1. Further assume that one

of the following conditions holds:

(α)′ there exists a point x0 ∈ X such that the set cl{y ∈ X : 〈T (y), y − x0〉 ≤ 0}
is compact;
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(β)′ there exists a point x0 ∈ X such that the set {y ∈ X : 〈T (x0), x0 − y〉 ≥ 0}
is compact;

(γ)′ there exists a point x0 contained in a compact convex subset X1 of X such

that 〈T (y), y − x0〉 > 0 for all y ∈ X \X1;

(δ)′ there exists a point x0 contained in a compact convex subset X1 of X such

that 〈T (x0), x0 − y〉 < 0 for all y ∈ X \X1.

Then the conclusion of Corollary 5.3.1 holds.

Proof. We define f and ϕ as in the proof of Corollary 5.3.1 and apply Corol-

lary 5.2.2 with (i), (iii), (v) and (vii) respectively for (α)′, (β)′, (γ)′ and (δ)′.

Corollary 5.3.3 Let X be a compact convex subset of E. Let T : X → E∗

be a monotone and hemicontinuous mapping of X into E∗. Then the set of the

variational inequality (5.15) is a nonempty compact convex subset of X.

Proof. We take X = X1 = X0. Then the set
⋂
x∈X

{y ∈ X : 〈T (x), x − y〉 ≥ 0}
being the intersection of closed sets is a closed subset of the compact set X and is,

therefore, compact. Hence the corollary follows from the Corollary 5.3.1 (β).

Remark 5.4 Corollary 5.3.3 includes the results obtained by Tarafdar (1977),

Browder (1965b) and Hartman and Stampacchia (1966) with operator C(u) ≡ 0.

Corollary 5.3.4 Let X be a closed convex subset of a reflexive Banach space V

and T : X → V ∗ be a monotone and hemicontinuous mapping. Let v∗ ∈ V ∗ be

given. Assume that X contains a nonempty subset X0 contained in a closed bounded

convex subset X1 of X such that one of the following holds:

(i) the set
⋂

x∈X0

cl{y ∈ X : 〈T (y), y − x〉 ≤ 〈 v∗, y − x〉} is bounded;

(ii) the set
⋂

x∈X0

〈T (x), x− y〉 ≥ 〈 v∗, x− y〉} is bounded;

(iii) for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (y), y−x〉 > 〈 v∗, y−x〉;
(iv) for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (x), x−y〉 < 〈 v∗, x−y〉.

Then the set of solutions of the variational inequality

〈T (x), y − x〉 > 〈 v∗, y − x〉 for all y ∈ X (5.16)

is a closed convex bounded subset of X.

Proof. We define f : X × X → R by f(x, y) = 〈T (x) − v∗, x − y〉, and ϕ ≡ 0

on X . Then f is monotone and hemicontinuous and satisfies all the conditions of

Corollary 5.2.3 with V equipped with weak topology. Conclusion of the Corollary

follows from Corollary 5.2.3.

Corollary 5.3.5 Let X,V, T and v∗ be as in Corollary 5.3.4. Assume that any

one of the following conditions holds:
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(i) there exists a point x0 ∈ X such that the set {y ∈ X : 〈T (y), y − x0〉 ≤
〈 v∗, y − x0〉} is bounded;

(ii) there exists a point x0 ∈ X such that the set {y ∈ X : 〈T (x0), x0 − y〉 ≥
〈 v∗, x0 − y〉} is bounded;

(iii) there exists a point x0 contained in a closed bounded convex subset X1 of X

such that 〈T (y), y − x0〉 > 〈 v8, y − x0〉 for all y ∈ X \X1;

(iv) there exists a point x0 contained in a closed bounded convex subset X1 of X

such that 〈T (x0), x0 − y〉 < 〈 v∗, x0 − y〉 for all y ∈ X \X1.

Then the conclusion of the Corollary 5.3.4 holds.

Proof. The proof follows immediately from Corollary 5.3.4 with X0 = {x0}.

Remark 5.5 A mapping T : X → E∗ is said to be coercive at x0 ∈ X if there

is a compact subset B of E such that x0 ∈ B ∩ X and 〈T (y), y − x0〉 > 0 for all

y ∈ X \ B. Thus if E = V and T is coercive at x0, then the condition (iii) above

holds.

5.1.3 Application to Nonlinear Boundary Value Problem for

Quasilinear Operator of Order 2m in Generalized Divergence

Form

As an application of our results of previous subsection we consider the existence of

solutions of the boundary value problem for a quasilinear operator of oder 2m in

generalized divergence form as formulated in Browder (1970). Before we proceed

further we make the following well-known observation.

If T : V → V ∗ is a mapping of a Banach space V into V ∗ and x0 is a solution

of the variational inequality

〈T (x0), y − x0〉 ≥ 0 for all y ∈ V (5.17)

then 〈T (x0), z〉 ≥ 0 for all z ∈ V , for we can take y = z+x0. Hence 〈T (x0),−z〉 ≥ 0

for all z ∈ V . Thus 〈T (x0), z〉 = 0 for all z ∈ V . Hence inequality (5.17) becomes

equality. In fact if x0 is an interior point of X , we can show that the inequality

(5.15) becomes equality.

Here we adapt the notations of Browder (1970) and Pascali and Sburlan (1978).

Let Ω be a domain in RN (N ≥ 2) and x = (x1, x2, · · · , xN ) denote an element of

Ω. Let Dα = Dα1
1 Dα2

2 · · ·DαN

N , where Dj = ∂
∂ xj

and α = (α1, α2, · · · , αN ) is an

N -tuples of nonnegative integers with |α| = α1 + α2 + · · · + αN . Let RNm be the

vector space whose elements are of the form ζ = {ζα : |α| ≤ m}. Then a nonlinear

generalized divergence operator of order 2m has the form

A(u) =
∑

|α|≤m
(−1)|α|DαAα(x, ζ(u(x)) (5.18)
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where ζ(u) = {Dαu : |α| ≤ m} and Aα is a real valued function on Ω × R
Nm for

each α with |α| ≤ m. The direct method of the calculus of variations involves in

obtaining solutions of the variational boundary value problem of the Euler-Lagrange

equation (5.18). In here we are interested in Browder’s approach to the problem as

in Browder (1970) and Tarafdar (1990a). Let V be a closed subspace of Wm,p(Ω)

such that

Wm,p
0 (Ω) ⊆ V ⊆Wm,p(Ω) with 1 < p <∞. (5.19)

Here Wm,p(Ω) is the Banach space of all LP functions u on Ω (with respect to

Lebesgue N -measure) whose distribution derivative up to order m are also Lp func-

tions. Wm,p(Ω) becomes an uniformly convex ( hence reflexive) Banach space with

respect to the norm

‖u‖pm,p =
∑

|α|≤m
‖Dαu‖pLp for 1 < p <∞. (5.20)

The subspace V in which we are interested must include the testing functions C∞
c (Ω)

with compact supports in Ω and must be closed in Wm,p(Ω). Hence it must include

the smallest such space Wm,p
0 (Ω), the closure of the testing functions in Wm,p(Ω),

i.e. Wm,p
0 (Ω) ⊆ V ⊆ Wm,p(Ω) (for details see Browder (1970), or Pascali and

Sburlan (1978) and see Adams (1975) for general informations on Sobolev spaces).

Let V be a closed subspace ofWm,p(Ω) as in (5.19). If for each α, Aα(., ζ(u(.))) ∈
Lq for every u ∈Wm,p(Ω) with 1

p + 1
q = 1, the operator A is assigned its generalized

Dirichlet form

a(u, v) =
∑

|α|≤m

∫

Ω

Aα(x, ζ(u(x)))Dα v(x)dx for all u, v ∈ V. (5.21)

The operator A defined in (5.18) is said to be of variational type if the boundary

conditions are implicitly verified by the constraint

u ∈ V and 〈Au, v〉 = a(u, v) for all v ∈ V. (5.22)

Here 〈., .〉 denotes the pairing between V ∗ and V . The choice of V and together with

(5.22) determines the boundary conditions in the manner as explained in Browder

(1970) (see also Pascali and Sburlan (1978, p. 273)):

V = Wm,p
0 and (5.22) yield generalized Dirichlet boundary conditions, while

V = Wm,p and (5.22) yield generalized Neumann boundary conditions. Any other

choice of V with Wm,p
0 (Ω) ⊆ V ⊆ Wm,p(Ω) and (5.22) give what are called the

generalized boundary conditions of mixed type.

Now as in Browder (1970) we make some assumptions to make precise the mean-

ing of the solution of (5.18).

Assumption (A). Each Aα : Ω × RNm → R satisfies Caratheodory conditions

(i.e. for each fixed ζ ∈ RNm , Aα(x, ζ) is measurable in x with respect to Lebesgue
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measure in Ω and for almost all x ∈ Ω, Aα(x, ζ) is continuous in ζ on R
Nm and

there exists a real number p with 1 < p <∞ such that

|Aα(x, ζ)| ≤ C|ζ|p−1 + g(x) (5.23)

where C > 0 is a constant and g ∈ Lq(Ω) with 1
p + 1

p = 1. (For any unexplained

term or gap in the proof of this problem please see Pascali and Sburlan (1978,

pp. 272–276)).

By virtue of condition (A), for each u ∈Wm,p(Ω), Aα(x, ζ(u(x))) is measurable

function of x and belongs to Lq(Ω). Also it follows from Hölders′ inequality that

a(u, v) is well defined for all u, v ∈ Wm,p(Ω) and satisfies an inequality of the form:

|a(u, v)| ≤ φ(‖u‖m,p) ‖v‖m,p , (5.24)

where φ : R+ → R+ is a continuous function defined by φ(r) = crp−1 + ‖g‖q
and c > 0 is a constant (see Pascali and Sburlan (1978, p. 275) for details). Thus

by virtue of (5.24) for each u ∈ V with Wm,p
0 (Ω) ⊆ V ⊆ Wm,p(Ω), a(u, .) is a

continuous linear functional, say, T (u) on V . Hence by (5.24) we can define an

operator (possibly nonlinear) T V → V ∗ by

a(u, v) = 〈T (u), v〉 for all v ∈ V. (5.25)

The mapping T : V → V ∗ is determined by the generalized Dirichlet form a(u, v)

and the closed subspace V of Wm,p(Ω). Let f ∈ V ∗ be given. Then u0 ∈ V is said

to be a solution of the variational boundary value problem for A(u) = f if

a(u0, v) = 〈T (u0), v〉 = 〈 f, v〉 for all v ∈ V, (5.26)

where A(u) is the quasilinear operator in generalized divergence form given in (5.18).

Hence by the observation made in the beginning of this subsection, given f ∈ V ∗,
u0 ∈ V is a solution of the variational boundary value problem A(u) = f if and

only if u0 ∈ V is a solution of the variational inequality

〈T (u0), v − u0〉 ≥ 〈 f, v − u0〉 for all v ∈ V. (5.27)

The condition (A) also implies that the Nemitsky operator Fα = Aα(., ζ(u)) is

continuous from Wm,p(Ω) into Lq(Ω) for each α (see Pascali and Sburlan (1978,

p. 166 and p. 275)). Now it follows that T : V → V ∗ is continuous. Indeed, let

{un} be a sequence in V converging to u in norm of V . Then

‖(T (un) − T (u)‖ = sup
‖v‖m,p≤1

〈T (un) − T (u), v〉

≤ sup
‖v|m,p≤1

∑

|α|≤m

∫

Ω

|Aα(x, ζ(un)) −Aα(x, ζ(u))| |Dα v|dx → 0

as n→ ∞. Thus T : V → V ∗ is continuous and hemicontinuous.
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Assumption (B). For each x ∈ Ω and each pair ζ, ζ ′ ∈ R
Nm ,

∑

|α|≤m
[Aα(x, ζ) −Aα(x, ζ ′)] [ζα − ζ ′α] ≥ 0.

The condition (B) implies that the operator T is monotone.

〈T (u) − T (v), u− v〉 = 〈T (u), u− v〉 − 〈T (v), u− v〉
= a(u, u− v) − a(v, u− v) = a(u− v, u− v)

=

∫

Ω

∑

|α|≤m
[Aα(x, ζ(u)) − Aα(x, ζ(v))] [ζα(u) − ζα(v)] dx

≥ 0.

Theorem 5.4 Let A(u) be a quasilinear operator of order 2m in generalized

divergence form satisfying (A) and (B) on an open set Ω of RN . Let V be a closed

subspace of Wm,p(Ω) satisfying (5.19). Let f ∈ V ∗ be given. Further assume that

either

(C) V contains a nonempty subset U0 contained in a closed bounded convex

subset U1 of V such that any one of the following conditions holds:

(i) the set
⋂

u∈U0

cl{v ∈ V :
∑

|α|≤m
∫
Ω[Aα(x, ζ(v)) − f ][ζα(v)− ζα(u)] dx ≤ 0} is

bounded;

(ii) the set
⋂

u∈U0

{v ∈ V :
∑

|α|≤m
∫
Ω
[Aα(x, ζ(u)) − f ][ζα(u) − ζα(v)] dx ≥ 0} is

bounded;

(iii) for each v ∈ V \ U1, there exists u ∈ U0 such that
∑

|α|≤m
∫
Ω
[Aα(x, ζ(v)) −

f ][ζα(v) − ζα(u)] dx > 0; and

(iv) for each v ∈ V \U1, there exists u ∈ U0 such that
∑

|α|lem
∫
Ω[Aα(x, ζ(u)) −

f ][ζα(u) − ζα(v)] dx < 0;

or (D) any one of the following conditions holds:

(i)′ there exists a point u0 ∈ V such that the set {v ∈ V :∑
|α|≤m

∫
Ω
[Aα(x, ζ(v)) − f ][ζα(v) − ζα(u0)] dx ≤ 0} is bounded;

(ii)′ there exists a point u0 ∈ V such that the set {v ∈ V :∑
|α|≤m

∫
Ω[Aα(x, ζ(u0)) − f ][ζα(u0) − ζα(v)] dx ≥ 0} is bounded;

(iii)′ there exists a point u0 contained in a closed bounded convex subset U1 of V

such that
∑

|α|≤m
∫
Ω
[Aα(x, ζ(v))−f ][ζα(v)−ζα(u0)] dx > 0 for all v ∈ V \U1;

(iv)′ there exists a point u0 contained in a closed bounded convex subset U1 of V

such that∑
|α|≤m

∫
Ω[Aα(x, ζ(u0)) − f ][ζα(u0) − ζα(v)] dx < 0

for all v ∈ V \ U1.
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Then the variational boundary value problem for A(u) = f with respect to V in the

sense as explained above has a solution and the set of such solutions is a closed

bounded convex subset of V .

Proof. The mapping T : V → V ∗ has been proved to be monotone and hemi-

continuous. We take V = X in the Corollary 5.3.4 and Corollary 5.3.5 and note

that (C) (i), (ii), (iii) and (iv) imply respectively (i), (ii), (iii) and (iv) of Corol-

lary 5.3.4 and (D) (i)′, (ii)′, (iii)′ and (iv)′ imply respectively (i)′, (ii)′, (iii)′

and (iv)′ of Corollary 5.3.5. Thus the Theorem follows from Corollary 5.3.4 and

Corollary 5.3.5.

Remark 5.6 It can be easily seen that any coercivity condition such as in

Browder (1970) or Pascali and Sburlan (1978) will imply all the conditions in (C)

of our theorem.

5.1.4 Minimization Problems and Related Results

In this subsection we consider the minimization problem:

inf
x∈X

f(x) (5.28)

where X is a nonempty convex subset of a real Hausdorff topological vector space E

which will be assumed to be locally convex in the case when E∗ 6= 0 is considered.

We apply the results of the previous subsection to prove the existence of the solution

of the problem (5.28). We recall that for a nonlinear mapping A : X → E∗, a point

x0 ∈ X is called a solution of the variational inequality if

〈A(x0), x0 − y〉 ≤ 0 for all y ∈ X, (5.29)

where as before 〈., .〉 denotes the pairing between E∗ and E. For a function F :

X×X → R, as before a point x0 ∈ X is called a solution of the variational inequality

if

F (x0, y) ≤ 0 for all y ∈ X. (5.30)

That (5.29) is a special case of (5.30) can be seen by defining F : X×X → R to be

F (x, y) = 〈A(x), x − y〉 for all x, y ∈ X. (5.31)

Now x0 ∈ X is a solution of (5.30) with F as defined in (5.31) if and only if x0 is a

solution of (5.29). If f : X ⊆ Rn → R is a continuously differentiable function and

A = ∇f , the gradient of f , then it is well known (see Pascali and Sburlan (1978,

p. 15-16)) that x0 ∈ X is a solution of the minimization problem (5.28), then x0 is

a solution of the variational inequality (5.29). If f is convex, then any solution of

(5.29) is solution of (5.28). It is trivially always the case that x0 ∈ X is a solution

of the minimization problem (5.28) if and only if x0 is a solution of the variational

inequality (5.30) with F : X ×X → R defined by F (x, y) = f(x) − f(y), x, y ∈ X .
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Theorem 5.5 Let X be a closed convex subset of a Banach U = V ∗ (i.e. the

continuous dual of a Banach space V ) and f : X × X → R a monotone and

hemicontinuous function satisfying the conditions:

(i) for each x ∈ X, f(x, x) = 0;

(ii) for each x ∈ X, f(x, .) is concave and upper semicontinuous on X.

Then for each x ∈ X, the set F (x) = ω∗-closure of {y ∈ X : f(y, x) ≤ 0} is a

subset of X.

Further assume that there is a nonempty set X0 contained in a closed bounded

convex subset X1 of X such that one of the following conditions holds:

(A) the set L defined in (a) of Theorem 5.2 is bounded;

(B) the set K =
⋂

x∈X0

B(x) is bounded, where B(x) = {y ∈ X : f(x, y) ≥ 0};

(C) for each y ∈ X \X1, there exists x ∈ X0 such that f(y, x) > 0;

(D) for each y ∈ X \X1, there exists x ∈ X0 such that f(x, y) < 0.

Then the set of solutions of the variational inequality (5.8) with ϕ ≡ 0 is a nonempty

ω∗-compact convex subset of X.

Proof. Equip U with the ω∗-topology (weak topology) of V . Then as X is convex,

it is ω∗-closed. Also by the known result (e.g. see Pascali and Sburlan (1978,

p. 23)), for each x ∈ X,F (x, .) is ω∗-upper semicontinuous and the Banach-Alaoglu

theorem, X1 is ω∗-compact. Hence the result follows from Corollary 5.2.3 with

ϕ(x) ≡ 0.

Remark 5.7 It is easy to see that the above theorem holds if X is a reflexive

Banach space.

Corollary 5.5.1 Let X be a closed convex subset of a Banach space U = V ∗ and

f : X ×X → R a monotone and hemicontinuous function satisfying (i) and (ii) of

Theorem 5.5. Further assume that there exists a point x ∈ X such that one of the

following conditions holds:

(i) the set F (x) = ω∗-closure of the set {y ∈ X : f(y, x) ≤ 0} is bounded;

(ii) the set B(x) = {y ∈ X : f(x, y) ≥ 0} is bounded;

(iii) x is contained in a closed bounded convex subset X1 of X such that f(y, x) >

0 for all y ∈ X \X1;

(iv) x is contained in closed bounded convex subset X1 of X such that f(x, y) < 0

for all y ∈ X \X1.

Then the set of solutions of the variational inequality (5.8) is a nonempty ω∗-
compact convex subset of X.

Proof. Taking {x} = X0 = X1, the corollary follows from Theorem 5.5 under

conditions (i) and (ii) and taking {x} = X0, the corollary follows from Theorem 5.5

under conditions (iii) and (iv).
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Corollary 5.5.2 Let X be closed convex subset of a Banach space U = V ∗ and

g : X → R a convex lower semicontinuous function. Further assume that either of

the conditions (a) or (b) holds:

(a) there exists a nonempty subset X0 contained in a closed bounded convex subset

X1 of X such that one of the following conditions holds:

(i) the set K =
⋂

x∈X0

B(x) is bounded, where B(x) = {y ∈ X : g(x) ≥ g(y)};

(ii) for each y ∈ X \X1, there exists x ∈ X0 such that g(y) > g(x).

(b) there exists a point x ∈ X such that the one of the following conditions holds:

(i) the set B(x) = {y ∈ X : g(x) ≥ g(y)} is bounded;

(ii) x is contained in a closed bounded convex subset X1 of X such that

g(x) < g(y) for all y ∈ X \X1.

Then the set of solutions of the minimization problem (5.28) is a nonempty ω∗-
compact convex subset of X.

Proof. Define f(x, y) = g(x) − g(y), x, y ∈ X . Then f(x, y) is a monotone and

hemicontinuous function satisfying (i) and (ii) of Theorem 5.5. Hence the corollary

follows from Theorem 5.5 and Corollary 5.5.1.

Corollary 5.5.3 Let X be a closed convex subset of a Banach space U = V ∗ and

g : X → R a convex lower semicontinuous function on X. Further assume that

g(x)

‖x‖ → ∞ as ‖x‖ → ∞.

Then the set of solutions of minimization problem (5.28) is a nonempty ω∗-compact

convex subset of X
⋂
BR for a sufficiently large R > 0, where BR = {x ∈ X :

‖x‖ ≤ R}.
Proof. We define f(x, y) = g(x) − g(y), x, y ∈ X . Then f is a monotone func-

tion satisfying (i) and (ii) of Theorem 5.5. Now lim‖x‖→∞
g(x)
‖x‖ = ∞ implies

lim‖x‖→∞
g(x)−g(x0)

‖x‖ = ∞, where x0 ∈ X is a particular point. Hence there ex-

ists R > g(x0) such that f(x, x0) = g(x) − g(x0) > 0 for every ‖x‖ > R. Hence

the condition (ii) of Corollary 5.5.2 is satisfied. Thus the Corollary follows from

Corollary 5.5.2.

Remark 5.8 Note that in the proof of Corollaries 5.5.2 and 5.5.3 we have used

the fact that the lower semicontinuity of g implies the the lower semicontinuity of

the function k(t) = f(x+ t(y − x), y) = g(x+ t(y − x)) − g(y) of real variable t as

t ↓ 0 i.e. hemicontinuity of f .

5.1.5 Extension of a Karamardian Theorem

In this subsection we extend a theorem of Karamardian (1971). Throughout this

subsection X will be assumed to be a nonempty closed convex subset of a locally
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convex (real) Hausdorff topological vector space E.

The lemma which is somewhat known is proved here for the sake of completeness.

Lemma 5.2 If T : X → E∗ is a continuous mapping and if there is a nonempty

subset X0 contained in a compact convex subset X1 of X such that

(i)
⋂

x∈X0

{x ∈ X : 〈T (x), y − x〉 ≥ 0} is compact,

then there is a point x0 ∈ X such that

〈T (x0), y − x0〉 ≥ 0 for all y ∈ X

and the set of all such x0 is a compact subset of X.

Proof. If the assertion of the lemma is false, then for each x ∈ X , there must exist

one y ∈ X such that 〈T (x), y − x〉 < 0. Thus we can define a set valued mapping

F : X → 2X by setting F (x) = {y ∈ X : 〈T (x), y − x〉 < 0}, x ∈ X . Then for each

x ∈ X,F (x) is nonempty and evidently convex.

Also for each y ∈ X,F−1(y) = {x ∈ X : y ∈ F (x)} = {x ∈ X : 〈T (x), y − x〉 <
0} = Oy,say, which is a relatively open set as T is continuous (see, e.g. Browder

(1967, Lemma 1). Obviously ,
⋃
y∈X

F−1(y) =
⋃
y∈X

Oy = X . (To see this let x ∈ X .

Since F (x) 6= ∅, there is a point y ∈ F (x) and so x ∈ F−1(y)). Furthermore,⋂
y∈X0

Ocy =
⋂

y∈X0

{x ∈ X : 〈T (x), y − x〉 ≥ 0} is compact. Hence by a fixed point

theorem, there is a point x0 ∈ X such that x0 ∈ F (x0), i.e. 〈T (x0), x0 − x0〉 < 0

which is absurd. Hence the assertion of the lemma must be true. The rest follows

from the continuity of T .

Remark 5.9 The following condition:

“There exists a nonempty set X0 contained in a compact convex subset X1 of

X such that for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (y), x− y〉 < 0”

implies (i) of the Lemma above. We can easily see this by verifying that under the

above condition the set D =
⋂

y∈X0

{x ∈ X : 〈T (x), y − x〉 ≥ 0} ⊆ X1. Thus D

being a closed subset of a compact set is compact.

Our next result which we write also as a lemma appeared in Tarafdar (1990a) (also

partly in Tarafdar (1986)).

Lemma 5.3 Let T : X → E∗ be a monotone and hemicontinuous mapping.

Further assume that there is a nonempty subset X0 contained in a compact convex

subset X1 of X such that one of the following conditions holds:

(a) the set
⋂

x∈X0

cl{y ∈ X : 〈T (y), y − x〉 ≤ 0} compact;
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(b) the set
⋂

x∈X0

{y ∈ X : 〈T (x), x− y〉 ≥ 0} is compact;

(c) for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (y), y − x〉 > 0;

(d) for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (x), x− y〉 < 0.

Then the set of points x0 ∈ X satisfying the variational inequality 〈T (x0), y−x0〉 ≥
0 for all y ∈ X is a nonempty convex subset of X.

Proof. We define the function f : X×X → R by f(x, y) = 〈T (x), x− y〉, x, y ∈ X

and apply Corollary 5.2.3 with ϕ(x) ≡ 0 on X .

Theorem 5.6 Let X be a closed convex cone of E and T : X → E∗ either a

continuous mapping or a monotone hemicontinuous mapping. Further assume that

there is a nonempty set X0 contained in a compact convex subset X1 of X such that

for each y ∈ X \X1, there exists x ∈ X0 such that 〈T (y), y − x〉 > 0.

Then there exists x ∈ X such that T (x) ∈ X∗ and 〈T (x), x〉 = 0, where

X∗ = {f ∈ E∗ : f(x) = 〈 f, x〉 ≥ 0} for all x ∈ X,

i.e. X∗ is the positive dual cone of X.

Proof. By Lemma 5.2 or Lemma 5.3 according as T continuous or monotone

hemicontinuous, the set of solutions of the variational inequality 〈T (x), y − x〉 ≥
0 for all y ∈ X is a nonempty subset of X . Now we prove that each solution

x ∈ X of the variational inequality satisfies the requirement of the theorem. Since

〈T (x), y − x〉 ≥ 0 for all y ∈ X , 〈T (x), x〉 ≤ 0, as 0 ∈ X,X being a cone. Also

taking y = 2x, 〈T (x), x〉 ≥ 0. Thus 〈T (x), x〉 = 0. Now as 〈T (x), y − x〉 ≥ 0 for

all y ∈ X , we have 〈T (x), y〉 ≥ 〈T (x, x〉 = 0 for all y ∈ X , i.e. T (x) ∈ X∗.

Remark 5.10 If E = Rn and T is continuous, Theorem 5.6 reduces to a theorem

of Karamardian (1971) and is,therefore, an extension of Karamardian theorem.

Remark 5.11 Some of the results which we have obtained in this section have

generalized in Singh, Tarafdar, and Watson (1996) by replacing monotone pair of

functions by pseudomontotone pair with the following definition:

The real valued functions f and g defined on X×X are said to be pseudomono-

tone or pseudomonotonic pair if f(x, y) ≥ 0 whenever g(y, x) ≤ 0 for all x, y ∈ X .

Since the proofs of those results involve no new technique, we did not consider

these results. We have,however, considered some special results on pseudomonotone

mappings of Singh, Watson, and Srivastava (1997) in the next section.

5.2 Variational Inequalities for Setvalued Mappings

It is well-known that variational inequality theory does not only have many impor-

tant applications in partial differential equations such as free boundary problems

and so on (e.g., see Baiocchi and Capelo (1984), but it also has been successfully used
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in the study of operations research, mathematical programming and optimization

theory (e.g., see Aubin and Ekeland (1984). Due to the development of set-valued

analysis, the study of variational inequalities has been under much attention re-

cently, for example, see Ding and Tan (1990), Harker and Pang (1990), Husain and

Tarafdar (1994), Granas (1990), Karamolegos and Kravvaritis (1992), Kravvaritis

(1979) (1979), Mosco (1976), Shih and Tan (1985), Shih and Tan (1988b), Shih and

Tan (1988a), Tarafdar and Yuan (1994) and many others whose names are not men-

tioned here. In this section we present the results obtained in Tan-Tarafdar-Yuan

(1999) on the existence of solutions for variational inequalities and quasi-variational

inequalities of set-valued mappings either in simultaneous form or in implicit form

as applications of Ky Fan’s KKM mapping principle in Fan (1961) (we can use our

fixed point theorem as well) and Fan-Glicksberg fixed point theorem (see Fan (1952)

and Glicksberg (1952)). Precisely, we shall establish the existence of solutions for

simultaneous variational inequalities in subsection 2. Then implicit variational in-

equality and implicit quasi-variational inequality in which set-valued mappings are

monotone (resp., upper semicontinuous) will be investigated in subsection 3 (resp.,

in subsection 4). These results either generalize or improve corresponding ones

given in recent literatures.

We shall denote by R and N the set of real numbers and the set of natural

numbers, respectively. Let X be a nonempty set. For convenience, throughout this

section we shall denote by 2X the family of all non-empty subsets of X . If X is

a topological space (resp., a non-empty subset of a topological vector space) , we

shall denote by K(X) (resp., KC(X)) the family of all non-empty compact subsets

of X (resp., the family of all non-empty compact and convex subsets of X). If X

is a subset of a vector space E, then coX denotes the convex hull of X in E. Let

f : X → 2R be a (set-valued) mapping. For each x ∈ X , let inf f(x) := inf{z : z ∈
f(x)}. Let E∗ be the dual space of a complex Hausdorff topological vector space

E and X be a non-empty subset of E. We shall denote by 〈w, x〉 the dual pair

between E∗ and E for w ∈ E∗ and x ∈ E and by Re〈w, x〉 the real part of the

complex number 〈w, x〉.
Definition 5.3 A mapping T : X → 2E

∗

is said to be monotone if for each

x, y ∈ X , Re〈u− v, x− y〉 ≥ 0 for all u ∈ T (x) and v ∈ T (y).

Throughout this section E denotes a given Hausdorff topological vector space unless

otherwise specified.

Definition 5.4 Let X be a non-empty convex subset of E, f, g : X×X −→ 2R,

f1 : X −→ 2R, h : X → R ∪ {−∞,+∞} and H : X → 2E
∗

. Then

(1) {f, g} is said to be a monotone pair if for each x, y ∈ X , u + w ≥ 0 for

each u ∈ f(x, y) and w ∈ g(y, x); f is said to be monotone if the pair {f, f}
is monotone. In particular, when f is single-valued, we recover the notion

of monotone pair reduces to that of a monotone mapping defined by Mosco

(1976) (see Tarafdar (1990a) and also Husain and Tarafdar (1994)).
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(2) f is said to be hemicontinuous if for each x, y ∈ X , the mapping k : [0, 1] −→
2R defined by k(t) := f((1 − t)x + ty, y) for all t ∈ [0, 1] is such that for

each given s ∈ R with f(x, y) ⊂ (s,+∞), there exists t0 ∈ (0, 1] such that

f((1 − t)x + ty, y) ⊂ (s,+∞) for all t ∈ (0, t0). We note that if f is single-

valued, our definition of hemicontinuity reduces to the classical one given by

Mosco (1976), i.e., the function t 7→ f(x+ t(y−x), y) from [0, 1] to R is lower

semicontinuous as t ↓ 0.

(3) f1 is said to be concave if for each n ∈ N, x1, · · · , xn ∈ X and nonnegative

λ1, · · · , λn with Σni=1λi = 1 and for each u ∈ f1(Σ
n
i=1λixi), there exist vi ∈

f1(xi) for i = 1, · · · , n such that u ≥ Σni=1λivi.

(4) h is said to be lower semicontinuous (resp., upper semicontinuous if for each

λ ∈ R, the set {x ∈ X : h(x) ≤ λ} (resp., {x ∈ X : h(x) ≥ λ} is closed in X .

(5) H is said to be w∗- demicontinuous if for each x ∈ X , λ ∈ R and z ∈ E with

H(x) ⊂ {p ∈ E∗ : Re〈p, z〉 > λ}, there exists an open neighborhood N of x

in X such that H(y) ⊂ {p ∈ E∗ : Re〈p, z〉 > λ} for all y ∈ N .

Example 5.5 Let X be a non-empty convex subset of a Banach space (E, ‖ · ‖)
and ψ : X → R ∪ {+∞} be a convex function. We may assume its subdifferential

∂ψ(x) exists for some x ∈ X (e.g., if ψ is lower semicontinuous and convex by

Theorem 5.4.3 of Aubin and Ekeland (1984, p. 262), i.e.,

∂ψ(x) := {p ∈ E∗ : ψ(x) − ψ(z) ≤ Re〈p, x− z〉 for all z ∈ X}.

Then the mapping A : X → 2E
∗

defined by A(x) := ∂ψ(x) for each x ∈ X is a

monotone mapping. Define f : X×X → 2R by f(x, y) := {Re〈u, x−y〉 : u ∈ A(x)}
for each x ∈ X . It is clear that f is a monotone mapping. For each fixed positive

real number β, define g : X ×X → 2R by

gβ(x, y) := {Re〈u, x− y〉 : u ∈ A(x)} + β‖x− y‖}

for each (x, y) ∈ X ×X . Then it is obvious that {f, gβ} is a monotone pair.

Definition 5.5 Let X and Y be two topological spaces, F : X → 2Y and

G : X → 2R. Then (a) F is said to be upper semicontinuous (in short, USC) (resp.,

lower semicontinuous (in short, LSC)) if for each x ∈ X and for each open set U in

Y with F (x) ⊂ U (resp., F (x) ∩ U 6= ∅), there is an open neighborhood N of x in

X such that F (y) ⊂ U (resp., F (y)∩U 6= ∅) for all y ∈ N ; (b) the graph of F is the

set {(x, y) ∈ X × Y : y ∈ F (x)} and (c) G is lower (resp., upper) demicontinuous if

for each x ∈ X and s ∈ R with G(x) ⊂ (s,∞) (resp., G(x) ⊂ (−∞, s)), there is an

open neighborhood N of x in X such that G(y) ⊂ (s,∞) (resp., G(y) ⊂ (−∞, s))

for all y ∈ N . We note that (i) if G is USC, then G is both lower demicontinuous

and upper demicontinuous, (ii) when X ⊂ E, Y = E∗ and E∗ is equipped with

the w∗-topology, if F is USC, then F is w∗- demicontinuous and (iii) when G is
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single-valued, the notions of lower demicontinuity (resp., upper demicontinuity) and

lower semicontinuity (resp., upper semicontinuity) coincide.

Example 5.6 Define F : [0,∞) → 2R by F (x) = {x} if x ≥ 1 or x = 0 and

F (x) = [x, 1/x] if 0 < x < 1. Define G : (−∞, 0] → 2R by G(x) = {x} if x ≤ −1

or x = 0 and G(x) = [1/x, x] if −1 < x < 0. Then it is easy to see that (1) F is

both lower demicontinuous and w∗- demicontinuous but not upper semicontinuous

and not upper demicontinuous and (2) G is both upper demicontinuous and w∗-
demicontinuous but not upper semicontinuous and not lower demicontinuous.

For each non-empty subset A of E and each r > 0, let U(A; r) := {w ∈ E∗ :

supx∈A |〈w, x〉| < r}. Let δ(E∗, E) be the topology on E∗ generated by the family

{U(A; r) : A is a non-empty bounded subset of E and r > 0} as a base for the

neighborhood system at 0. Then E∗, when equipped with the topology δ(E∗, E)

becomes a locally convex topological vector space. The topology δ(E∗, E) is called

the strong topology on E∗.

5.2.1 Simultaneous Variational Inequalities

For the sake of typing convenience we use ψ instead of ϕ unlike previous section.

Let X be a non-empty convex subset of E, ψ : X → R and f, g : X ×X → R. One

of the interesting problem is to find a point x0 ∈ X which simultaneously satisfies

the following inequalities:

ψ(x0) + f(x0, y) ≤ ψ(y) for all y ∈ X (5.32)

and

ψ(x0) + g(x0, y) ≤ ψ(y) for all y ∈ X (5.33)

i.e., to find a common solution for both variational inequalities (5.32) and (5.33)

above. This is the so-called existence problem for solutions of simultaneous varia-

tional inequalities and this problem has been studied by Husain and Tarafdar (1994)

as given in in the beginning of this chapter. In this subsection, we shall study the

existence of solutions for the simultaneous variational inequality problem in the

set-valued setting. We first need the following:

Lemma 5.4 Let f, g : X ×X −→ 2R.

(1) Suppose {f, g} is a monotone pair and x, y ∈ X. If inf f(x, y) ≤ 0, then

inf g(y, x) ≥ 0.

(2) Suppose f is hemicontinuous and for each x ∈ X, inf f(x, x) ≤ 0 and y 7→
f(x, y) is concave. If x0 ∈ X is such that inf f(y, x0) ≥ 0 for all y ∈ X, then

inf f(x0, y) ≤ 0 for all y ∈ X.
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Proof. (1) If inf f(x, y) ≤ 0, then for any ε > 0, there exists u ∈ f(x, y) such that

u < ε. As {f, g} is a monotone pair, for each w ∈ g(y, x), we have u + w ≥ 0, so

that w ≥ −u > −ε. Thus inf g(y, x) ≥ −ε, which implies that inf g(y, x) ≥ 0 as

ε > 0 is arbitrary.

(2) Assume that inf f(y, x0) ≥ 0 for all y ∈ X , but inf f(x0, y0) > 0 for some

y0 ∈ X . Let s ∈ R be such that inf f(x0, y0) > s > 0. Let U := (s, ∞).

Then f(x0, y0) ⊂ U . Since f is hemicontinuous, there exists t0 ∈ (0, 1) such

that f(zt, y0) ⊂ U for all t ∈ (0, t0), where zt := (1 − t)x0 + ty0 for each

t ∈ [0, 1]. As y 7→ f(zt0 , y) is concave, for each u ∈ f(zt0 , (1 − t)x0 + ty0), there

exist v1 ∈ f(zt0 , x0) and v2 ∈ f(zt0 , y0) such that u ≥ (1 − t0)v1 + t0v2 >>

(1 − t0) · s + t0 · 0) = (1 − t0)s as inf f(zt0 , x0) ≥ 0 by assumption. Hence

inf f(zt0 , zt0) = inf f(zt0 , (1 − t)x0 + ty0) ≥ (1 − t0)s > 0, which contradicts the

assumption that inf f(x, x) ≤ 0 for each x ∈ X .

As an application of Lemma 5.4 2.1, we have the following:

Theorem 5.7 Let f, g : X ×X −→ 2R be such that

(i) {f, g} is a monotone pair;

(ii) for each x ∈ X, inf f(x, x) ≤ 0 and inf g(x, x) ≤ 0;

(iii) f, g are hemicontinuous;

(iv) for each x ∈ X, the mappings y 7→ f(x, y) and y 7→ g(x, y) are concave.

Then x0 ∈ X is a solution of the following simultaneous variational inequalities
{

inf f(x0, y) ≤ 0 for all y ∈ X

inf g(x0, y) ≤ 0 for all y ∈ X

if and only if that x0 is either a solution of the variational inequality:

inf f(x0, y) ≤ 0 for all y ∈ X (5.34)

or, a solution of the following variational inequality

inf g(x0, y) ≤ 0 for all y ∈ X (5.35)

Proof. We only need to prove the sufficiency. Suppose inf f(x0, y) ≤ 0 for all

y ∈ X . By Lemma 5.4 (1), inf g(y, x0) ≥ 0 for all y ∈ X . By Lemma 5.4 (2),

inf g(x0, y) ≤ 0 for all y ∈ X . Similarly, if inf g(x0, y) ≤ 0 for all y ∈ X , then by

Lemma 5.4, inf f(x0, y) ≤ 0 for all y ∈ X .

As an immediate consequence of Theorem 5.7, we have the following result which

is Theorem 5.7, i.e. Theorem of Husain and Tarafdar (1994):

Corollary 5.7.1 Let X be a non-empty convex subset of E and ψ : X → R a

convex function. Suppose that f, g : X ×X → R satisfy:

(1) {f, g} is a monotone pair;



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Variational and Quasivariational Inequalities and Generalized Games 289

(2) for each x ∈ X, f(x, x) = g(x, x) = 0; and

(3) for each fixed x ∈ X, both f(x, ·) and g(x, ·) are concave; and f and g are

hemicontinuous.

Then there exists x0 ∈ X is a common solution of both (5.32) and (5.33) if and only

if x0 is either a solution of (5.32) or a solution of (5.33).

Proof. Define f, g : X ×X → R by

f̂(x, y) := ψ(x) + f(x, y) − ψ(y)

and

ĝ(x, y) := ψ(x) + g(x, y) − ψ(y)

for each (x, y) ∈ X × X . Applying Theorem 5.7 to f̂ and ĝ, the conclusion

follows.

In what follows, we shall prove some sufficient conditions which guarantee that

either the inequality (5.34) or (5.35) has a solution. In order to do so, we need the

following:

Lemma 5.5 Let g : X −→ 2R be lower demicontinuous. Then the mapping

G : X −→ R ∪ {−∞} defined by G(x) := inf g(x) for each x ∈ X is lower semi-

continuous.

Proof. Let λ ∈ R be given. Suppose {xα}α∈Γ is a net in X and x0 ∈ X such that

inf g(xα) ≤ λ for all α ∈ Γ and xα −→ x0. Suppose inf g(x0) > λ. Choose any s ∈ R

such that inf g(x0) > s > λ. Let U := (s, ∞), then g(x0) ⊂ U . Since g is lower

demicontinuous, there exists an open neighborhoodN of x0 inX such that g(x) ⊂ U

for all x ∈ N . But then there exists α0 ∈ Γ such that xα ∈ N for all α ≥ α0. Hence

g(xα0) ⊂ U so that inf g(xα0) ≥ s > λ which is a contradiction. Therefore we must

have inf g(x0) ≤ λ. This shows that the set {x ∈ X : inf g(x) ≤ λ} is closed in X .

Thus G is lower semicontinuous.

Let X be a non-empty subset of a vector space V and F : X → 2V . W recall

that F is said to be a KKM mapping (e.g., see Fan (1961)) if co{xi : i = 1, · · · , n} ⊂
∪ni=1F (xi) for each x1, · · · , xn ∈ X and n ∈ N.

We shall also need the following simple observation:

Lemma 5.6 Let V be a vector space and X a non-empty convex subset of V .

Suppose f : X ×X −→ 2R is such that

(i) for each x ∈ X, inf f(x, x) ≤ 0;

(ii) for each x ∈ X, y 7→ f(x, y) is concave.
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Define F : X −→ 2X by F (w) = {x ∈ X : inf f(x, w) ≤ 0} for each w ∈ X. Then

F is a KKM-mapping.

Proof. Suppose not, then there exist n ∈ N, w1, . . . , wn ∈ X and λ1, . . . , λn > 0

with
n∑
i=1

λi = 1 such that
n∑
i=1

λiwi /∈
n⋃
j=1

F (wj). It follows that inf f(
n∑
i=1

λiwi, wj) >

0 for all j = 1, . . . , n. Let s ∈ R be such that min
1≤j≤n

inf f(
n∑
i=1

λiwi, wj) > s > 0.

Since y 7→ f(
n∑
i=1

λiwi, y) is concave by (ii), for each u ∈ f(
n∑
i=1

λiwi,
n∑
j=1

λjwj), there

exist vj ∈ f(
n∑
i=1

λiwi, wj) for j = 1, . . . , n such that u ≥
n∑
j=1

λjvj > s. Thus

inf f(
n∑
i=1

λiwi,
n∑
j=1

λjwj) ≥ s > 0, which contradicts (i). Hence F must be a KKM-

mapping.

Theorem 5.8 Let X be a non-empty closed convex subset of E. Suppose f :

X ×X −→ 2R is such that

(i) for each x ∈ X, inf f(x, x) ≤ 0,

(ii) for each x ∈ X, y 7→ f(x, y) is concave,

(iii) for each y ∈ X, x 7→ f(x, y) is lower demicontinuous,

(iv) there exist a non-empty compact subset B of X and w0 ∈ B such that

inf f(x, w0) > 0 for all x ∈ X \B.

Then the set S := {x ∈ X : inf f(x, w) ≤ 0 for all w ∈ X} is a non-empty compact

subset of B.

Proof. Define F : X → 2X by

F (w) := {x ∈ X : inf f(x, w) ≤ 0}

for each w ∈ X . By(i), F (w) 6= ∅ for all w ∈ X , so that F is well-defined. By

(iii) and Lemma 5.5, for each w ∈ X , the set F (w) is closed in X . By (iv), F (w0)

is a closed subset of B so that F (w0) is compact. By (i), (ii) and Lemma 5.6, F

is a KKM-mapping. By Ky Fan’s KKM mapping principle,
⋂
w∈X

F (w) 6= ∅. Thus

S =
⋂
w∈X

F (w) is a non-empty compact subset of B.

Lemma 5.7 Let X be a non-empty closed convex subset of E. Suppose g : X −→
2R and let W := {x ∈ X : inf g(x) ≥ 0}. Then (a) W is closed in X if g is LSC

and (b) W is convex if g is concave.

Proof. (a) If W were not closed in X , then there would exist a net {xα}α∈Γ in X

and x0 ∈ X such that xα −→ x0, and inf g(xα) ≥ 0 for all α ∈ Γ but inf g(x0) < 0.
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Let s ∈ R be such that inf g(x0) < s < 0 and U := (−∞, s). Then g(x0) ∩ U 6= ∅.
Since g is LSC, there exists an open neighborhoodN of x0 ∈ X such that g(x)∩U 6=
∅ for all x ∈ N . As xα −→ x, there exists α0 ∈ Γ such that xα ∈ N for all α ≥ α0.

Thus g(xα0) ∩ U 6= ∅ so that inf g(xα0) < s < 0, which is a contradiction. Thus W

is closed in X .

(b) Suppose x, y ∈ W and λ ∈ (0, 1), then inf g(x) ≥ 0 and inf g(y) ≥ 0. Since

g is concave, for each u ∈ g(λx + (1 − λ)y), there exist v1 ∈ g(x) and v2 ∈ g(y)

such that u ≥ λv1 + (1 − λ)v2 ≥ 0. Thus inf g(λx + (1 − λ)y) ≥ 0 and we have

λx+ (1 − λ)y ∈W . Therefore W is convex.

Theorem 5.9 Let X be a non-empty closed convex subset of E and f : X×X −→
2R be such that

(i) for each x ∈ X, inf f(x, x) ≤ 0,

(ii) for each x ∈ X, y 7→ f(x, y) is concave and LSC,

(iii) f is hemicontinuous,

(iv) there exist a non-empty compact B ⊂ X and w0 ∈ B such that

inf f(x, w0) > 0 for all x ∈ X \B;

(v) f is monotone.

Then the set S := {x ∈ X : inf f(x, w) ≤ 0 for all w ∈ X} is a non-empty

compact convex subset of B.

Proof. Define F, G, H : X −→ 2X by

F (w) = {x ∈ X : inf f(x, w) ≤ 0},
G(w) = clXF (w),

H(w) = {x ∈ X : inf f(w, x) ≥ 0},

for each w ∈ X . Then by (i), (ii) and Lemma 5.6, F is a KKM-mapping so that

G is also a KKM-mapping. Note that by (iv), F (w0) ⊂ B so that G(w0) ⊂ B and

G(w0) is compact.

Again by Ky Fan’s KKM mapping principle,
⋂
w∈X

G(w) 6= ∅. By (ii) and

Lemma 5.7(a), for each w ∈ X, H(w) is closed and convex.

To complete the proof, it sufficient to show that

S =
⋂

w∈X
F (w) =

⋂

w∈X
G(w) =

⋂

w∈X
H(w).

Indeed, if w ∈ X and x ∈ F (w), then inf f(x, w) ≤ 0 so that by (v) and Lemma 5.4

(1), inf f(w, x) ≥ 0. It follows that x ∈ H(w). Hence F (w) ⊂ H(w) so that

G(w) ⊂ H(w). Therefore
⋂
w∈X

F (w) ⊂ ⋂
w∈X

G(w) ⊂ ⋂
w∈X

H(w).
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On the other hand, if x ∈ ⋂
w∈X

H(w), then inf f(w, , x) ≥ 0 for all w ∈ X .

Thus by (i), (ii), (iii), (v) and Lemma 5.4(2), we have inf f(x, w) ≤ 0 for all

w ∈ X . Thus x ∈ ⋂
w∈X

F (w). Therefore
⋂
w∈X

H(w) ⊂ ⋂
w∈X

F (w). Hence we have

S =
⋂
w∈X

F (w) =
⋂
w∈X

G(w) =
⋂
w∈X

H(w).

5.2.2 Implicit Variational Inequalities The Monotone Case

Let C be a non-empty subset of E and C1 a non-empty subset of C. Suppose

f : C1 ×C ×C → R and g : C1 ×C → R are such that f(u, v, v) ≥ 0 for all u ∈ C1

and v ∈ C. Mosco in Mosco (1976) had investigated the following so called implicit

variational inequality problems:

Find a vector v ∈ C1 such that

g(v, v) ≤ f(v, v, w) + g(v, w) for all w ∈ C. (5.36)

In this subsection, it is our goal to study the existence of solutions for implicit

variational inequality and implicit quasivariational inequalities which are variant

forms of the implicit variational inequality (5.36) above. Indeed, as applications

of Theorem 5.9 and by combining Fan-Glicksberg fixed point theorem, we shall

provide some sufficient conditions to guarantee the existence of variational and

quasivariational inequalities in their implicit forms, and in which the set-valued

mappings are monotone.

As an application of Theorem 5.9, we have the following variational inequality:

Theorem 5.10 Let X be a non-empty closed convex subset of E and T : X −→
2E

∗

be monotone such that

(i) for each x ∈ X, T (x) is w∗-compact;

(ii) T is w∗−upper semicontinuous from line segments in X to the weak∗-topology
σ(E∗, E) on E∗

(iii) there exist a non-empty weakly compact subset B of X and w0 ∈ B such that

∈
u
T (x) → inf Re〈u, x− w0〉 > 0 for all x ∈ X \B.

Then the set S := {y ∈ X :∈
w
Ty → inf Re〈w, y − x〉 ≤ 0 for allx ∈ X} is a

non-empty weakly compact convex subset of B.

Proof. Define f : X ×X −→ 2R by

f(x, y) = {Re〈u, x− y〉 : u ∈ Tx}

for each x, y ∈ X . Then we have

(1) f is monotone as T is monotone.

(2) For each x, y ∈ X , f(x, y) is a non-empty compact subset of R;
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(3) For each x ∈ X , f(x, x) = {0} so that inf f(x, x) ≤ 0.

(4) For each x ∈ X , the mapping y 7→ f(x, y) is concave. Indeed, for each

n ∈ N, y1, · · · , yn ∈ X and λ1, · · · , λn ∈ [0, 1] with Σni=1λi = 1 and for each

s ∈ f(x,
∑n

i=1 λiyi), there exists u ∈ Tx such that s = Re〈u, x −∑n
i=1 λiyi〉. But

then Re〈u, x− yi〉 ∈ f(x, yi〉 for each i = 1, 2, . . . , n and

s = Re〈u, x−
n∑

i=1

λiyi〉 =

n∑

i=1

Re〈u, x− yi〉.

Therefore y 7→ f(x, y) is concave.

(5) For each x ∈ X , the mapping y 7→ f(x, y) is weakly LSC; i.e., the mapping

y 7→ f(x, y) is LSC when X is equipped with the relative weak topology. Indeed,

let y0 ∈ X and U ⊂ R be open such that f(x, y0) ∩ U 6= ∅. Then there exists

u ∈ Tx such that Re〈u, x − y0〉 ∈ U . For each fixed x ∈ X and u ∈ T (x), as

y 7→ Re〈u, x− y〉 is weakly continuous, there exists a weakly open neighborhood N

of y0 in X such that Re〈u, x− y〉 ∈ U for all y ∈ N , so that f(x, y)∩U 6= ∅ for all

y ∈ N . Thus y 7→ f(x, y) is weakly LSC.

(6) f is hemicontinuous. Indeed, fix any x, y ∈ X and define k : [0, 1] −→ X

by k(t) = f((1 − t)x + ty, y) for each t ∈ [0, 1]. Let U = (s,∞) where s ∈ R

be such that f(x, y) ⊂ U . Note that f(x, y) is compact as Tx is weak∗-compact.

Let r0 = inf f(x, y). Then r0 > s. Set r := (r0 + s)/2, t1 := (r − s)/r and

V := (r,∞). Then t1 ∈ (0, 1), f(x, y) ⊂ V and (1 − t)V ⊂ U for all t ∈ (0, t1). Let

W = {w ∈ E∗ : Re〈w, x − y〉 > r}, then W is w∗-open and T (x) ⊂ W . By (ii),

there exists t0 ∈ (0, t1) such that T ((1− t)x+ ty) ⊂W for all t ∈ (0, t0). Thus for

each u ∈ T ((1− t)x + ty) and t ∈ (0, t0), we have

U ⊃ (1 − t)V ⊃ (1 − t)Re〈u, x− y〉 = Re〈u, ((1− t)x+ ty) − y〉.

Therefore U ⊃ f((1 − t)x+ ty, y) for all t ∈ (0, t0). Hence f is hemicontinuous.

(7) By (iii), there exists a non-empty weakly compact subset B of X and w0 ∈ B

such that

inf f(x, w0) = inf
u∈Tx

Re〈u, x− w0〉 > 0.

for all x ∈ X \B.

Now equip E with weak topology, then all hypotheses of Theorem 5.9 are satis-

fied. Thus

S = {x ∈ X : inf f(x, w) ≤ 0 for all w ∈ X}
= {x ∈ X : inf

u∈Tx
Re〈u, x− w〉 ≤ 0 for all w ∈ X}

is a non-empty weakly compact convex subset of B.

As an application of Theorem 5.10, we have the following result which is Theorem

1 of Shih and Tan (1988b):
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Corollary 5.10.1 Let (E, ‖ · ‖) be a reflexive Banach space and X a non-empty

closed convex subset of E. Suppose T : X −→ 2E
∗

is monotone such that each T (x)

is a weakly compact subset of E∗ and T is upper semicontinuous from line segments

in X to the weak topology of E∗. Assume that there exists x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈Ty

Re〈w, y − x0〉 > 0. (5.37)

Then there exists ŷ ∈ X such that

inf
w∈T ŷ

Re〈w, ŷ − x〉 ≤ 0 for all x ∈ X.

Proof. By (5.37), there exist M > 0 and R > 0 with ||x0|| ≤ R such that

infw∈Ty Re〈w, y − x0〉 > M for all y ∈ X with ||y|| > R. Let B := {x ∈ X : ||x|| ≤
R}. Then B is a non-empty weakly compact (and convex) subset of X such that

infw∈Ty Re〈w, y−x0〉 > 0 for all x ∈ X \B. It is easy to see that all hypotheses of

Theorem 5.10 are satisfied so that the conclusion follows.

We note that under the assumptions in Corollary 5.10.1, the conditions “T is

upper semicontinuous from line segments in X to the weak topology of E” and

“T is w∗-demicontinuous from line segments in X to the w∗-topology of E” are

equivalent (see e.g., [1, Theorem 10, p.128]).

As a second application of Theorem 5.9, we have the following implicit varia-

tional inequality:

Theorem 5.11 Let E be locally convex, X be a non-empty compact convex subset

of E and g : X ×X ×X −→ K(R) be such that

(i) For each u, x ∈ X, inf g(u, x, x) ≤ 0.

(ii) For each u, x ∈ X, the mapping y 7→ g(u, x, y) is concave.

(iii) For each u ∈ X, the mapping (x, y) 7→ g(u, x, y) is monotone and hemi-

continuous.

(iv) For each x ∈ X, the mapping (u, y) 7→ g(u, x, y) is LSC.

Then the set W := {u ∈ X : inf f(u, u, w) ≤ 0 for all w ∈ X} is a non-empty

compact subset of X.

Proof. For each fixed u ∈ X , define fu : X ×X −→ 2R by

fu(x, y) = g(u, x, y)

for each x, y ∈ X . Then fu satisfies all hypotheses in Theorem 5.9 so that the set

S(u) = {x ∈ X : inf fu(x, w) ≤ 0 for all w ∈ X}
= {x ∈ X : inf g(u, x, w) ≤ 0 for all w ∈ X}
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is a non-empty compact convex subset of X and S is thus a mapping from X to

K(X). We shall show that S has a closed graph. Indeed, let (xα)α∈Γ be a net in

X and yα ∈ S(xα) for all α ∈ Γ such that xα −→ x0 ∈ X and yα −→ y0 ∈ X .

Note that for each α ∈ Γ, inf g(xα, yα, w) ≤ 0 for all w ∈ X . Let w ∈ X be

given and fix an arbitrary α ∈ Γ. Since g(xα, yα, w) is compact, there exists

uα ∈ g(xα, yα, w) such that uα = inf g(xα, yα, , w) ≤ 0. Since (y, z) 7→ g(xα, y, z)

is monotone, for each v ∈ g(xα, w, yα), we have uα + v ≥ 0 so that v ≥ −uα ≥ 0.

Thus inf g(xα, w, yα) ≥ 0. As w ∈ X is arbitrarily given, inf g(xα, w, yα) ≥ 0 for

all w ∈ X . By (iv) and Lemma 5.7, for each w ∈ X , the set {(x, y) ∈ X × X :

inf g(x, w, y) ≥ 0} is closed. It follows that inf g(x0, w, y0) ≥ 0 for all w ∈ X .

By Lemma 5.4(2), inf g(x0, y0, w) ≤ 0 for all w ∈ X which shows that y0 ∈ S(x0).

Hence S has a closed graph so that S is upper semicontinuous. Now by Fan-

Glicksberg fixed point theorem (e.g., see Fan (1952) or Glicksberg (1952)), there

exists x̂ ∈ X such that x̂ ∈ S(x̂), i.e., inf g(x̂, x̂, w) ≤ 0 for all w ∈ X so that W 6= ∅.
To complete the proof, it remains to show that W is a closed subset of X . Suppose

{uα}α∈Γ is a net in W such that uα −→ u0 ∈ X . Then inf g(uα, uα, w) ≤ 0 for all

w ∈ X . Now by the same argument as above (with yα = xα = uα for all α ∈ Γ

and x0 = y0 = u0), inf g(u0, u0, w) ≤ 0 for all w ∈ X . Thus u0 ∈ S(u0) so that

u0 ∈W . Therefore W is closed in X .

As an application of Theorem 5.11, we have the following implicit quasi-

variational inequality:

Theorem 5.12 Let E be locally convex, X be a non-empty compact convex subset

of E, S : X −→ KC(X) be continuous and g : X ×X ×X −→ 2R be such that

(i) For each u, x ∈ X, inf g(u, x, x) ≤ 0.

(ii) For each u, x ∈ X, the mapping y 7→ g(u, x, y) is concave and for each y ∈ X,

the mapping u 7→ g(u, y, u) is concave.

(iii) For each u ∈ X, the mapping (x, y) 7→ g(u, x, y) is monotone and hemicon-

tinuous.

(iv) For each x ∈ X, the mapping (u, y) 7→ g(u, x, y) is LSC.

(v) The mapping (u, x) 7→ g(u, x, u) is LSC.

Then (a) there exists ŷ ∈ X such that

{
ŷ ∈ S(ŷ)

inf g(ŷ, ŷ, w) ≤ 0 for all w ∈ S(ŷ)

and (b) the set

{y ∈ X : y ∈ S(y) and inf g(y, y, w) ≤ 0 for all w ∈ S(y)}

is a non-empty compact subset of X.
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Proof. (a) Define F : X −→ KC(X) by

F (u) = {y ∈ S(u) : inf g(y, y, w) ≤ 0 for all w ∈ S(u)}

for each u ∈ X . Let u ∈ X be given. By Theorem 5.11, F (u) is non-empty

and compact. We shall now show that F (u) is also convex. Let x, y ∈ F (u) and

λ ∈ (0, 1) be given. As x, y ∈ S(u) and S(u) is convex, λx+ (1− λ)y ∈ S(u). Since

inf g(x, x, w) ≤ 0 and inf g(y, y, w) ≤ 0 for all w ∈ S(u), inf g(x,w, x) ≥ 0 and

inf g(y, w, y) ≥ 0 for all w ∈ S(u) by (iii) and Lemma 5.4 (1). It follows that inf

g(λx+ (1− λ)y, w, λx+ (1− λ)y) ≥ 0 for all w ∈ S(u) by (ii) and Lemma 5.7. By

Lemma 5.4(2), inf g(λx + (1 − λ)y, λx + (1 − λ)y, w) ≤ 0 for all w ∈ S(u). Thus

λx+(1−λ)y ∈ F (u). Hence F (u) is also convex. This shows that F is well-defined.

Now we shall show that F has a closed graph. Indeed, let ((xα, yα))α∈Γ be a net

in X ×X and (x0, y0) ∈ X ×X be such that (xα, yα) −→ (x0, y0) and yα ∈ F (xα)

for all α ∈ Γ. Since yα ∈ S(xα) for each α ∈ Γ, y0 ∈ S(x0) as S is USC. Now

fix an arbitrary w0 ∈ S(x0). Since S is LSC, there is a net (wα)α∈Γ in X with

wα ∈ S(xα) for all α ∈ Γ such that wα −→ w0. Since inf g(yα, yα, wα) ≤ 0 for all

α ∈ Γ, by (iii) and Lemma 5.4 (1), we have inf g(yα, wα, yα) ≥ 0 for all α ∈ Γ. By

(v) and Lemma 5.7, inf g(y0, w0, y0) ≥ 0. Since w0 ∈ S(x0) is arbitrary, we have

inf g(y0, w, y0) ≥ 0 for all w ∈ S(x0). By (ii), (iii) and Lemma 5.4(2), it follows

that inf g(y0, y0, w) ≤ 0 for all w ∈ S(x0) so that y0 ∈ F (x0). Thus F has a closed

graph and hence F is USC.

By Fan-Glicksberg fixed point theorem again, there exists ŷ ∈ X such that

ŷ ∈ F (ŷ); i.e.,

{
ŷ ∈ S(ŷ)

inf g(ŷ, ŷ, w) ≤ 0 for all w ∈ S(ŷ).

(b) By (a), the set {y ∈ X : y ∈ S(y) and inf g(y, y, w) ≤ 0 for all w ∈ S(y)}
is non-empty; it is also compact by following the same argument as in the proof of

Theorem 5.11.

We would like to remark that our results in this subsection unify and generalize

corresponding results in the literatures given in Aubin and Ekeland (1984), Baiocchi

and Capelo (1984), Harker and Pang (1990), Husain and Tarafdar (1994), Mosco

(1976), Shih and Tan (1985) and Shih and Tan (1988a).

5.2.3 Implicit Variational Inequalities The USC Case

Parallel to the ideas used in previous subsection and as application of Theorem 5.8

instead of Theorem 5.9, we can also study the existence of solutions for implicit vari-

ational and implicit quasi-variational inequalities in which real set-valued mappings

are upper semicontinuous instead of being monotone. First we have the following

implicit variational inequality:
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Theorem 5.13 Let E be locally convex, X be a non-empty compact convex subset

of E and g : X ×X ×X −→ K(R) be such that

(i) For each u ∈ X, inf g(u, x, x) ≤ 0.

(ii) For each u, x ∈ X, the mapping y 7→ g(u, x, y) is concave.

(iii) For each y ∈ X, the mapping (u, x) 7→ g(u, x, y) is lower demicontinuous.

Then the set W := {u ∈ X : inf f(u, u, w) ≤ 0 for all w ∈ X} is a non-empty

compact subset of X.

Proof. For each fixed u ∈ X , define fu : X ×X −→ 2R by

fu(x, y) = g(u, x, y)

for each x, y ∈ X . Then fu satisfies all hypotheses in Theorem 5.8 so that the set

S(u) = {x ∈ X : inf fu(x, w) ≤ 0 for all w ∈ X}
= {x ∈ X : inf g(u, x, w) ≤ 0 for all w ∈ X}

is a non-empty compact convex subset of X and S is thus a mapping from X to

K(X). We shall now show that S has a closed graph. Indeed, let (xα)α∈Γ be a net in

X and yα ∈ S(xα) for each α ∈ Γ such that xα −→ x0 ∈ X and yα −→ y0 ∈ X . Note

that for each α ∈ T , inf g(xα, yα, w) ≤ 0 for all w ∈ X . By (iii) and Lemma 5.5, for

each w ∈ X , the mapping (x, y) 7→ inf g(x, y, w) is lower semicontinuous. It follows

that inf g(x0, y0, w) ≤ 0 for all w ∈ X so that y0 ∈ S(x0). Thus S has a closed

graph and hence is USC. Now by Fan-Glicksberg fixed point theorem, there exists

x̂ ∈ X such that x̂ ∈ S(x̂), i.e., inf g(x̂, x̂, w) ≤ 0 for all w ∈ X . This shows that

x̂ ∈W so that the set W is non-empty. Moreover, by (iii) and Lemma 5.5, the set

W is closed in X and hence is compact.

So far, we have established some existence theorems of solutions for implicit

variational inequalities and quasi-variational inequalities as applications of Fan-

Glicksberg fixed point theorem. However, we can also study variational inequalities

as applications of existence theorems of equilibria for generalized games (resp.,

abstract economics). Some results in this direction have been given in Tarafdar

and Yuan (1994). In what follows, we shall use that method to prove an implicit

quasi-variational inequality (Theorem 5.14 below). We need the following result

which is a special case of Theorem 5 of Tulcea (1988) (see also Yuan (1998):

Lemma 5.8 Let E be locally convex, X be a non-empty compact convex subset

of E, A : X −→ KC(X) be USC and P : X −→ 2X ∪ {∅} be such that

(i) For each y ∈ X, the set P−1(y) := {x ∈ X : y ∈ P (x)} is open in X.

(ii) For each x ∈ X, x /∈ coP (x).

(iii) The set {x ∈ X : A(x) ∩ P (x) 6= ∅} is open in X.

Then there exists x̂ ∈ X such that x̂ ∈ A(x̂) and A(x̂) ∩ P (x̂) = ∅.
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We shall now apply Lemma 5.8 to prove the following implicit quasi-variational

inequality:

Theorem 5.14 Let E be locally convex, X be a non-empty compact convex subset

of E, S : X −→ KC(X) be continuous (i.e., S is both LSC and USC on X) and

f : X ×X −→ 2R be lower demicontinuous such that

(i) For each x ∈ X, inf f(x, x) ≤ 0.

(ii) For each x ∈ X, y 7→ f(x, y) is concave.

Then there exists u ∈ X such that

{
u ∈ S(u) and

inf f(u, w) ≤ 0, for all w ∈ S(u).

Proof. Define P : X −→ 2X ∪ {∅} by

P (x) = {y ∈ X : inf f(x, y) > 0}

for each x ∈ X . We then have:

(1) For each y ∈ X , the set P−1(y) is open in X by Lemma 5.5 as x 7→ f(x, y)

is lower demicontinuous.

(2) For each x ∈ X , x /∈ coP (x). Indeed, suppose there exists x0 ∈ X such

that x0 ∈ coP (x0). Let y1, . . . , yn ∈ P (x0), λ1, . . . , λn > 0 with
n∑
i=1

λi = 1 be

such that x0 =
n∑
i=1

λiyi. As y 7→ f(x0, y) is concave, for each u ∈ f(x0, x0) =

f(x0,
n∑
i=1

λiyi), there exist ui ∈ f(x0, yi) for i = 1, . . . , n such that u ≥
n∑
i=1

λiui ≥
n∑
i=1

λi inf f(x0, yi). Then inf f(x0, x0) ≥
n∑
i=1

λi inf f(x0, yi) > 0, which contradicts

(i). Hence x /∈ coP (x) for all x ∈ X .

(3) The set {x ∈ X : S(x) ∩ P (x) 6= ∅} is open in X . Indeed, suppose S(x0) ∩
P (x0) 6= ∅. Let y0 ∈ S(x0) ∩ P (x0). Then y0 ∈ S(x0) and inf f(x0, y0) > 0.

Let s ∈ R be such that inf f(x0, y0) > s > 0 and U := (s, ∞). Since f is lower

demicontinuous and f(x0, y0) ⊂ U , there exist open neighborhoods N1 of x0 in X

and V of y0 in X such that f(x, y) ⊂ U for all (x, y) ∈ N1×V . Since V ∩S(x0) 6= ∅
and S is LSC, there exists an open neighborhoodN2 of x0 in X such that V ∩S(x) 6=
∅ for all x ∈ N2. Let N := N1 ∩ N2. Then N is an open neighborhood of x0 in

X . Suppose x ∈ N is given. As V ∩ S(x) 6= ∅, we may take any y ∈ V ∩ S(x);

then f(x, y) ⊂ U so that inf f(x, y) ≥ s > 0 and hence y ∈ P (x) ∩ S(x). Thus

S(x) ∩ P (x) 6= ∅ for all x ∈ N . Therefore the set {x ∈ X : S(x) ∩ P (x) 6= ∅} is

open in X .
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Now by Lemma 5.8, there exists ŷ ∈ X such that ŷ ∈ S(ŷ) and S(ŷ)∩P (ŷ) = ∅,
i.e.,

{
ŷ ∈ S(ŷ)

inf f(ŷ, w) ≤ 0 for all w ∈ S(ŷ).

Lemma 5.9 Let X be a non-empty and bounded subset of E and T : X −→
K(E∗) be USC, where E∗ is equipped with the strong topology. Define f : X×X −→
2R by

f(x, y) = {Re〈u, x− y〉 : u ∈ Tx} for all x, y ∈ X.

Then f is USC.

Proof. Let x0, y0 ∈ X and U ⊂ R be open such that

{Re〈u, x0 − y0〉 : u ∈ Tx0} = f(x0, y0) ⊂ U.

Note that the mapping (u, z) 7→ 〈u, z〉 is (jointly) continuous on (X − X) × E∗.
Thus for each u ∈ Tx0, there exist a strongly open neighborhood Vu of u and an

open neighborhood Mu of x0 in X and an open neighborhood Nu of y0 in X such

that

{Re〈v, w − z〉 : v ∈ Vu, w ∈Mu, z ∈ Nu} ⊂ U.

Since Tx0 ⊂ ⋃
w∈Tx0

Vu and Tx0 is strongly compact, there exist u1, . . . , un ∈ Tx0

such that Tx0 ⊂
n⋃
i=1

Vui . Since T is USC, there exists an open neighborhood M1

of x0 in X such that Tx ⊂
n⋃
i=1

Vui for all x ∈ M1. Let Mx0 := M1 ∩
n⋂
i=1

Mui

and Ny0 :=
n⋂
i=1

Nui . Then Mx0 and Ny are open neighborhoods of x0 and y0

in X , respectively. Now suppose x ∈ Mx0 , y ∈ Ny0 , and u ∈ Tx are given.

Let i0 ∈ {1, . . . , n} be such that u ∈ Vui0
. As x ∈ M1 ∩ Mui0

and y ∈ Nui0
,

Re〈u, x − y〉 ∈ U . It follows that f(x, y) ⊂ U for all x ∈ Mx0 and y ∈ Ny0 .

Therefore f is USC.

By combining both Theorem 5.14 and Lemma 5.9, we have the following result

which is Theorem 4 in Shih and Tan (1985):

Corollary 5.14.1 Let E be locally convex, X be a non-empty compact convex

subset of E, S : X −→ KC(X) be continuous and T : X −→ K(E∗) be USC, where

E∗ is equipped with the strong topology. Then exists ŷ ∈ X such that
{

ŷ ∈ S(ŷ),

infw∈T ŷ Re〈w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).
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Proof. Define f : X ×X −→ 2R by

f(x, y) = {Re〈u, x− y〉 : u ∈ Tx}

for each x, y ∈ X . By Lemma 5.9, f is USC. Now the conclusion follows from

Theorem 5.14.

Finally, we have the following implicit quasi-variational inequality:

Theorem 5.15 Let E be locally convex, X be a non-empty compact convex subset

of E, S : X −→ KC(X) be continuous and g : X ×X ×X −→ 2R be such that

(i) For each u, x ∈ X, inf g(u, x, x) ≤ 0.

(ii) For each u, y ∈ X, the mapping w 7→ g(u, y, w) is concave.

(iii) g is lower demicontinuous on X ×X ×X.

(iv) For each (u,w) ∈ X ×X, the mapping y 7→ inf g(u, y, w) is convex.

Then (a) there exists ŷ ∈ X such that
{

ŷ ∈ S(ŷ)

inf g(ŷ, ŷ, w) ≤ 0 for all w ∈ S(ŷ)

and (b) the set

{y ∈ X : y ∈ S(y) and inf g(y, y, w) ≤ 0 for all w ∈ S(y)}

is a (non-empty) compact subset of X.

Proof. Define F : X −→ KC(X) by

F (u) = {y ∈ S(u) : inf g(u, y, w) ≤ 0 for all w ∈ S(u)}

for each u ∈ X . By Theorem 5.8, F is non-empty valued. Now we shall show that F

has a closed graph. Indeed, let ((xα, yα))α∈Γ be a net in X ×X , (x0, y0) ∈ X ×X

such that (xα, yα) −→ (x0, y0) and yα ∈ S(xα) for each α ∈ Γ. Then y0 ∈ S(x0)

since S is USC. Now fix an arbitrary w0 ∈ S(x0). Since S is LSC, there is a net

(wα)α∈Γ in X with wα ∈ S(xα) for all α ∈ Γ such that wα −→ w0. Note that

inf g(xα, yα, wα) ≤ 0 for all α ∈ Γ. By (iii) and Lemma 5.5, inf g is jointly lower

semicontinuous. It follows that inf g(x0, y0, w0) ≤ 0. As w0 ∈ S(x0) is arbitrary,

y0 ∈ F (x0). Thus F has a closed graph. It follows that for each u ∈ X , F (u) is

closed in X and is therefore compact, and is also convex by (iv). Therefore F is

well-defined. Moreover, as X is compact and F has a closed graph, F is USC. By

Fan-Glicksberg fixed point theorem again, there exists ŷ ∈ X such that ŷ ∈ F (ŷ);

i.e.,
{

ŷ ∈ S(ŷ)

inf g(ŷ, ŷ, w) ≤ 0 for all w ∈ S(ŷ).
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Thus the proof is completed.

Before we conclude this section, we would like to note that the results established

in this paper can be applied to study many nonlinear problems such as nonlinear

operators, nonlinear optimization, complementarity problems and so on by using

those ideas which have been illustrated by Aubin and Ekeland (1984), Baiocchi and

Capelo (1984), Granas (1990), Harker and Pang (1990), Husain and Tarafdar (1994),

Karamolegos and Kravvaritis (1992), Kravvaritis (1979) (1979), Mosco (1976) and

references therein.

5.3 Variational Inequalities and Applications

The aim of this section is to prove further results for pseudo-monotone operators

and derive a few interesting results as corollaries as in Singh, Tarafdar, and Watson

(1997) and Singh-Tarafdar-Watson (1998).

Let E stand for a real locally convex Hausdorff topological vector space and X

a nonempty convex subset of E with E∗ 6= {0}.
We need the following definitions.

Definition 5.6 Let T : X → E∗ be a nonlinear map. T is said to be h-

pseudomonotone if 〈Tx, x−y〉+h(x)−h(y) ≥ 0 whenever 〈Ty, x−y〉+h(x)−h(y) ≥ 0

for all x, y ∈ X , where h : X → R is a function. One can readily see that a

monotone mapping h-pseudomonotone for each function h : X → R. The mapping

T : X → E∗ is hemicontinuous if T is continuous from the line segment of X to the

weak topology of E∗.

A point x0 ∈ X is said to be a solution of the variational inequality if

〈Tx0, y − x0〉 ≥ 0 for all y ∈ X.

We will be interested in the following:

Find u ∈ X such that

〈T (u), v − u〉 + hv − hu ≥ 0 for all v ∈ X

where T : X → E∗ is a nonlinear mapping and h : X → R is lower semicontinuous

and convex function.

First we give the following lemma which is analogous to well-known Minty’s

lemma.

Lemma 5.10 If X is a nonempty convex subset of a topological vector space E

and T : X → E∗ is a h-pseudomonotone and hemicontinuous, then u ∈ X is a

solution of

〈T (u), v − u〉 + h(v) − h(u) ≥ 0 for all v ∈ X (5.38)
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if and only if u ∈ X is a solution of

〈T (v), v − u〉 + h(v) − h(u) ≥ 0 for all v ∈ X, (5.39)

where h : X → R is a convex function.

Proof. Let u ∈ X be a solution of (5.38). Then by h-pseudomonotonicity of T , we

have

〈T (v), v − u〉 + h(v) − h(u) ≥ 0 for all v ∈ X.

Now assume that u satisfies (5.39) and let v ∈ X be arbitrary. Then vt = (1− t)u+

tv ∈ X for all t ∈ (0, 1) since X is convex. Hence,

〈T (vt), vt − u〉 + h(vt) − h(u) ≥ 0.

So,

〈T (vt), t(v − u)〉 + t(h(v) − h(u)) ≥ 0.

If 0 < t < 1, then

〈T (vt), v − u〉 + h(v) − h(u) ≥ 0.

As t→ 0, vt → u, we get 〈T (u), v − u〉 + h(v) − h(u) ≥ 0.

Now, we state the following:

Theorem 5.16 Let X be a nonempty closed convex subset of a real Hausdorff

topological vector space E with E∗ 6= {0}. Let T : X → E∗ be a h-pseudomonotone

and hemicontinuous map and h : X → R a lower semicontinuous and convex func-

tion. Further, assume that there exists a nonempty set X0 contained in a compact,

convex subset X1 of X such that the set

D = ∩u∈X0{v ∈ X : 〈T (u), u− v〉 + h(u) − h(v) ≥ 0}

is either empty or compact.

Then there exists a u0 ∈ X such that

〈T (u0), v − u0〉 + h(v) − h(u0) ≥ 0 for all v ∈ X.

Proof. Consider the following condition:

(*) for each v ∈ X there exists a u ∈ X such that 〈T (u), u−v〉+h(u)−h(v) < 0.

Then condition (*) may or may not hold. In either case, we will prove the

existence of a u0 ∈ X satisfying

〈T (u0), v − u0〉 + h(v) − h(u0) ≥ 0 for all v ∈ X.
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First suppose that (*) does not hold. This means that there exists at least one

v0 ∈ X such that

〈T (u), u− v0〉 + h(u) − h(v0) ≥ 0 for all u ∈ X,

i.e., v0 ∈ X is a solution of (5.39). Then by Lemma 5.10, v0 ∈ X is a solution of

(5.38).

Next, suppose that (*) holds. If possible, suppose that there is no solution of

(5.38) under condition (*).

Then for each u ∈ X , the set

F (u) = {v ∈ X : 〈T (u), v − u〉 + h(v) − h(u) < 0}

must be nonempty. It also follows from the convexity of h that the set F (u) is convex

for each u ∈ X . Thus, F : X → 2X is a set-valued map with F (u) nonempty and

convex for each u ∈ X .

Now for each u ∈ X ,

F−1(u) = {v ∈ X : u ∈ F (v)} = {v ∈ X : 〈T (v), u− v〉 + h(u) − h(v) < 0}.

Hence, for each u ∈ X , (F−1(u))c = {v ∈ X : 〈T (v), u − v〉 + h(u) − h(v) ≥ 0} ⊂
{v ∈ X : 〈T (u), u− v〉 + h(u) − h(v) ≥ 0} (by h-pseudomonotonicity of T ) = G(u)

which is a relatively closed subset of X since h is lower semicontinuous.

Hence, for each u ∈ X,F−1(u) ⊃ (G(u))c = 0u say, which is a relatively open

subset of X .

Now by the condition (*), we can easily see that ∪u∈X0u = X. (Indeed, if v ∈ X ,

by (*) there exists a u ∈ X such that v ∈ (G(u))c = 0u. Thus, v ∈ ∪u∈X0u. Hence,

∪u∈X0u = X.)

Finally, D = ∩u∈X0G(u) = ∩u∈X00
c
u is compact or empty by the given condition.

Hence, by fixed point Theorem 4.33, there exists a u ∈ X such that u ∈ Fu, i.e.,

〈T (u), u− u〉 + h(u) − h(u) < 0

which is impossible. Hence there is a solution in this case as well.

Now we give a few results that are special cases to Theorem 5.16.

Corollary 5.16.1 Let T : X → E∗ be monotone and hemicontinuous, h : X → R

convex and lower semicontinuous. Further, assume that there exists a nonempty set

X0 contained in a compact convex subset X1 of X such that D = ∩u∈X0{v ∈ X :

〈T (u), u− v〉+h(u)−h(v) ≥ 0} is either empty or compact. Then there is a u ∈ X

satisfying (5.38).

Remark 5.12 Corollary 5.16.1 contains a well-known result of Tarafdar (1986).

Corollary 5.16.2 Let X be a compact, convex subset of E and T : X → E∗ h-

pseudomonotone and hemicontinuous. Suppose h : X → R is lower semicontinuous

and convex. Then there is a u ∈ X satisfying (5.38).
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Remark 5.13 If we take T = A − B where A is a monotone map and B is

anti-monotone and both are hemicontinuous, then we derive a result due to Siddiqi,

Ansari, and Kazmi Siddiqi and Kazmi (1994). Here we need only two conditions,

lower semicontinuity and convexity of the function h.

Now we give the following, known as the complementarity problem.

Theorem 5.17 Let X be a nonempty closed convex cone in E with E∗ 6= {0}.
Let T : X → E∗ be pseudo-monotone and hemicontinuous. Further assume that

there exists a nonempty set X0 contained in a compact convex subset X1 of X such

that the set

D = ∩u∈X0{v ∈ X : 〈T (u), u− v〉 ≥ 0}

is either empty or compact.

Then there is a u0 ∈ X such that

T (u0) ∈ X∗ and 〈T (u0), u0〉 = 0,

where X∗ is positive dual cone of X.

Proof. By Theorem 5.16, there is a u0 = u ∈ X such that 〈Tu, v − u〉 ≥ 0 for all

v ∈ X . Let v = 2u. Then 〈T (u), u〉 ≥ 0. Also, if v = 0, then 〈Tu, u〉 ≤ 0. Thus,

〈T (u), u〉 = 0. Also, since 〈T (u), v〉 ≥ 〈T (u), u〉 ≥ 0, T (u) ∈ X∗. Hence, the result.

5.3.1 Application to Minimization Problems

We will consider the following problem:

infx∈Ef(x)

where E is a normed linear space and f is the sum of two real valued functions

g, h : E → (−∞,∞].

Before we consider this problem, we need the following notations and results.

We recall that a function g : E → (−∞,∞] is said to be Gateaux differentiable

at an interior point x0 ∈ Dom f ≡ domain of f if

Dg(x0)(x) = lim
t→0+

g(x0 + tx) − g(x0)

t

exists for each x ∈ E and the map

x→ Dg(x0)(x) = 〈Dg(x0), x〉 = 〈g′(x0), x〉

is continuous and linear. In this case, Dg(x0) is called the gradient of g at x0.

Definition 5.7 A set-valued mapping T : E → E∗ is monotone if for all x, y ∈ E

〈p− q, x− y〉 ≥ 0 whenever p ∈ T (x) and q ∈ T (y).



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Variational and Quasivariational Inequalities and Generalized Games 305

In Section 5.1 of this chapter we have have proved the following result (see

Proposition 5.1).

Theorem 5.18 A Gateaux differentiable function g : E → (−∞,∞) is convex if

and only if the mapping T : E → E∗ defined by

Tx = g′(x) = Dg(x)

is monotone.

Definition 5.8 Let a function g : E → (−∞,∞] be given. Then the subdiffer-

entiable of g at x0 ∈ E denoted by ∂g(x0) is defined by

∂g(x0) = {p ∈ E∗ : g(x0) − g(x) ≤ 〈p, x0 − x〉 for all x ∈ E}.

∂g(x0) may be empty. g is said to be subdifferentiable at x0 ∈ E if ∂g(x0) 6= ∅.

Remark 5.14 If f : E → (−∞,∞) is a subdifferentiable function, then it is a

well-known fact that the set-valued mapping T : E → E∗ defined by T (x) = ∂f(x)

is monotone. Indeed, if p ∈ T (x), q ∈ T (y) and x, y ∈ E, then

〈p− q, x− y〉 = 〈p, x− y〉 + 〈q, y − x〉
≥ f(x) − f(y) + f(y) − f(x) = 0.

The following proposition is obtained in an article of Tarafdar and Yuan in a

more general case which will be considered in appropriate section.

Proposition 5.2 Let f = g+h be the sum of two functions g, h : E → (−∞,∞]

such that g is subdifferentiable. Then x ∈ E minimizes f if there exists p ∈ ∂g(x)

such that

〈p, x〉 + h(x) − h(x) ≤ 0 for all x ∈ E.

Proof. Let p ∈ ∂g(x) such that

〈p, x〉 + h(x) − h(x) ≤ 0 for all x ∈ E.

Then p ∈ ∂g(x),

f(x) − f(x) = g(x) − g(x) + h(x) − h(x)

≤ 〈p, x− x〉 + h(x) − h(x) for all x

≤ 0 for all x ∈ E.

Theorem 5.19 Let E be a normed linear space and let f = g+h be the sum of two

functions g, h : E → (−∞,∞] such that h is convex and lower semicontinuous and

g is convex and both Gateaux differentiable and subdifferentiable. Further, assume
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that there exists a nonempty subset K0 contained in a compact convex subset K1 of

E such that the set

D = ∩x∈K0{y ∈ K : 〈Dg(x), x − y〉 + h(x) − h(y) ≥ 0}

is either empty or compact.

Then there exists a point x0 ∈ E which minimizes f , i.e., f(x0) = inf
x∈E

f(x).

Proof. Since g is convex and both Gateaux differentiable and subdifferentiable, it

follows that ∂f(x) = {Df(x)} (e.g., see Aubin (1979, p. 219). Now we define the

set-valued mapping B : E → E∗ by

B(x) = Df(x) = f ′(x), x ∈ E.

By Remark 5.14 and also Theorem 5.18, B is monotone. Also B is continuous by

the definition of Gateaux differentiability.

Hence, it follows that B is pseudo-monotone and hemicontinuous. Hence, by

Theorem 5.16, there exists a point x0 ∈ E such that 〈B(x0), x0−x〉+h(x0)−h(x) ≤ 0

for all x ∈ E, i.e., 〈Df(x0), x0 − x〉 + h(x0) − h(x) ≤ 0 for all x ∈ E.

Hence, by Proposition 5.2, x0 minimizes f on E.

5.4 Duality in Variational Inequalities

In this section E will denote a real locally convex Hausdorff topological vector space

and E∗ its continuous dual with the duality 〈 ., .〉.
The idea of duality in variational inequalities is due to Mosco (1972) where he

expounded this principle for an injective mapping and made a comment in a remark

that it is possible to do the same thing for a set-valued mapping. In this section we

present this principle for a set-valued mapping.

Many variational problems with unilateral constraints for partial differential

operators can be formulated as a problem of variational inequalities (e.g. see the

initial works in Stampacchia (1964), Lions-Stampacchia (1965), Lions-Stampacchia

(1967), Lions (1969), and Duvaut-Lions (1971) and the extensive bibliography that

can found in these).

Let A : Dom (A) → 2E
∗

be a set-valued mapping and let f : E → (−∞,∞]

be a lower semicontinuous convex function with f 6≡ ∞, where D(A) = Dom (A) is

the domain of A.

Then (p, u) with u ∈ D(A), p ∈ A(u) is said to satisfy the variational inequality

if

〈 p, v − u 〉 ≥ f(u) − f(v) for all v ∈ E. (5.40)

We will consider an equation dual to (5.40) involving A−1 and the Fenchel conjugate

f∗ of f , i.e. the lower semicontinuous convex function f ∗ defined on E∗ and defined
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by

f∗(v∗) = sup{〈 v∗, v 〉 − f(v) : v ∈ E} for v∗ ∈ E∗; (5.41)

(see Fenchel (1949), Brondsted (1964), and Moreau (1962)).

Let ∂ f denotes the subdifferential of f . We identify with its canonical image

into the bidual E∗∗ and consider the mapping ∂f∗
0 : E∗ → 2E defined by

∂ f∗
0(v

∗) = ∂ f∗(v∗) ∩X for all v∗ ∈ E∗, (5.42)

where ∂ f∗ : E∗ → 2E
∗∗ is the subdifferential of f∗.

Lemma 5.11 With f as above, ∂ f∗
0 is the inverse of the set-valued mapping

∂ f : E → 2E
∗

, i.e. p ∈ ∂ f(u) if and only if u ∈ ∂ f∗
0(p).

Proof. The proof is well-known (e.g. see Moreau (1966, Section 10.6)). However

we will indicate the proof. Let p ∈ ∂ f(u). Then for all v ∈ E, f(u) − f(v) ≤
〈 p, u − v 〉 ≤ 〈 p, u 〉 − 〈 p, v 〉. Thus 〈 p, v 〉 − f(v) ≤ 〈 p, u 〉 − f(u) for all v ∈ E.

Hence

f∗(p) ≤ 〈 p, u 〉 − f(u) (5.43)

Also it follows from (5.41) that for each v∗ ∈ E∗, we have

〈 v∗, v 〉 − f(v) ≤ f∗(v∗) for all v ∈ E.

This implies that for each v∗ ∈ E∗,

〈 v∗, u 〉 − f(u) ≤ f∗(v∗).

Hence we have

−〈 v∗, u 〉 + f(u) ≥ −f∗(v∗). (5.44)

Now adding (5.43) and (5.44) we obtain

f∗(p)−f∗(v∗) ≤ 〈 p, u 〉−〈 v∗, u 〉 = 〈u, p−v∗ 〉 for all v∗ ∈ E∗. Hence u ∈ ∂ f∗
0(p).

Similarly we can prove the other way round.

To gain symmetry we construct a new set-valued mapping A′ : Dom (A′) → 2E

defined by:

A′(v∗) = −A−1(−v∗) = −{u ∈ E : −v∗ ∈ A(u)}, (5.45)

where D(A′) = −range(A) = − ⋃
u∈D(A)

A(u).

We now consider the dual variational inequality:

With u ∈ A′(u∗) and u∗ ∈ D(A′), the pair (u, u∗) is said to satisfy the following

variational inequality if

〈u, v∗ − u∗ 〉 ≥ f∗(u∗) − f∗(v∗) for all v∗ ∈ E∗. (5.46)

(5.40) and (5.46) could be viewed as dual of one to another.
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Now we prove the following theorem:

Theorem 5.20 (p, u) satisfies (5.40) if and only if (u, u∗) with u∗ = −p ∈ −A(u)

satisfies (5.46). Moreover, (5.40) and (5.46) hold if and only if u∗ ∈ −A(u) or

u ∈ −A′(u∗) and the following is satisfied

f(u) + f∗(u∗) = 〈u∗, u 〉. (5.47)

Proof. If (p, u) is a solution of (5.40), then we have (A): for all v ∈ E,

f(u) − f(v) ≤ 〈 p, v − u 〉 = 〈−p, u− v 〉 ⇐⇒ −p ∈ ∂ f(u)

and p ∈ A(u) (it was first noted in Lescarret (1965), see also Rockafeller (1970)).

Then by Lemma 5.11 u ∈ ∂ f∗
0(−p) with p ∈ A(u). Let us set u∗ = −p ∈ −A(u)

which implies that u ∈ A−1(−u∗) = −(−A−1(−u∗)) = −A′(u∗). Thus we have

u∗ ∈ D(A′) and we already have u ∈ ∂ f∗
0(−p), i.e. u ∈ ∂ f∗

0(u
∗), i.e. by what

we said before u ∈ [−A′(u∗)] ∩ ∂ f∗
0(u

∗). Hence applying (A) to f∗ and A′ we

conclude that (u, u∗) is a solution of (5.46). Similarly we reverse the argument.

Finally we prove that (5.47) holds under the given conditions.

Let u, u∗ and p be as in the theorem. Then by definition of f ∗, we have

〈u∗, v 〉 − f(v) ≤ f∗(u∗) for all v ∈ E.

Hence

〈u∗, u 〉 − f(u) ≤ f∗(u∗). (5.48)

Also since (p, u) is a solution of (5.40), we have

f(u) − f(v) ≤ 〈 p, v − u 〉 for all v ∈ E.

Hence

〈−p, v 〉 − f(v) ≤ −f(u) − 〈 p, u 〉 for all v ∈ E.

Thus

f∗(−p) ≤ −f(u) − 〈 p, u 〉. (5.49)

Noting −p = u∗ it now follows from (5.48) and (5.49) that f ∗(u∗)+f(u) = 〈u∗, u 〉.

Corollary 5.20.1 Let A : D(A) → E∗ be an injective mapping from E into E∗.
Then a vector u ∈ E is a solution of the variational inequality

u ∈ D(A), 〈A(u), v − u 〉 ≥ f(u) − f(u) for all v ∈ E, (5.50)

if and only if the vector u∗ = −A(u) of E∗ is a solution of the dual variational

inequality

u∗ ∈ D(A′), 〈A′(u∗), v∗ − u∗ 〉 ≥ f∗(u∗) − f(v∗) for all v∗ ∈ E∗. (5.51)
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Moreover, (5.50) and (5.51) hold if and only if u∗ = −A(u), or u = −A′(u∗) and

the following identity is satisfied

f(u) + f∗(u∗) = 〈u∗, u 〉. (5.52)

Proof. The proof follows from Theorem 5.20 noting that A′ is also injective and

p = A(u).

5.4.1 Some Auxiliary Results

Let K be a nonempty closed convex subset of E and δK the indicator function of

K, i.e.,

δK(v) = 0 if v ∈ K, δK(v) = +∞ if v ∈ E \K.

δK is a lower semicontinuous function on E and its conjugate is the support function

σK of K,

σK(v∗) = sup{〈 v∗, v 〉 : v ∈ K}, v∗ ∈ E∗.

If f = δK , then (5.40) and (5.46) become respectively

p ∈ A(u) with u ∈ D(A) ∩K, 〈 p, v − u 〉 ≥ 0 for all v ∈ K, (5.53)

and

u ∈ A′(u∗) with u∗ ∈ D(A′), 〈u, v∗ − u∗ 〉 ≥ σK(u∗) − σK(v∗) for all v∗ ∈ E∗.
(5.54)

The following corollary is now immediate from Theorem 5.20.

Corollary 5.20.2 If f = δK , then (p, u) is solution of (5.53) if and if (u∗, u)
with u∗ = −p ∈ −A(u) is a solution of (5.54). Moreover, (5.53) and (5.54) hold if

and only if u∗ ∈ −A(u) or u ∈ −A′(u∗) and the identity

u ∈ D(A) ∩K,σK(u∗) = 〈u∗, u 〉 (5.55)

holds.

Now specializing to the injective mapping A : Dom (A) → E∗ and taking f =

δK , (5.50) and (5.51) take respectively the forms

)u ∈ D(A) ∩K, 〈A(u), v − u 〉 ≥ 0 for all v ∈ K, (5.56)

and

u∗ ∈ D(A′), 〈A′(u∗), v∗ − u∗ 〉 ≥ σK(u∗) − σK(v∗) for all v∗ ∈ E∗. (5.57)
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The following corollary are now immediate from 5.20.1:

Corollary 5.20.3 A vector u is a solution of (5.56) if and only if u∗ = −A(u)

is a solution of (5.57). Moreover, (5.56) and (5.57) hold if and only if u∗ = −A(u),

or u = −A′(u∗), and

u ∈ D(A) ∩K,σK(u∗) = 〈u∗, u 〉. (5.58)

Now we consider special form of K defined by

K = v0 +H = {v ∈ E : v = v0 + w,w ∈ H}, (5.59)

where H is a closed convex cone in E with vertex at the origin and v0 ∈ E is a

given vector. The support function σK of this K is given by

σK(v∗) = 〈 v∗, v0 〉 if v∗ ∈ H∗, σK(v∗) = ∞ if v∗ 6∈ H∗,
where

H∗ = {v∗ ∈ E∗ : 〈 v∗, v 〉 ≤ 0, for all v ∈ H}

is the polar cone of H , i.e. the nonpositve dual cone of H .

For K as defined in (5.59), inequalities (5.53) and (5.54) become respectively

p ∈ A(u) with u ∈ D(A) ∩ (v0 +H), 〈 p, v − u 〉 ≥ 0 for all v ∈ v0 +H, (5.60)

and

u ∈ A′(u∗) with u∗ ∈ D(A′), 〈u+ v0, v
∗ − u∗ 〉 ≥ 0 for all v∗ ∈ H∗. (5.61)

Now just like our Corollary 5.20.2, we have the following corollary

Corollary 5.20.4 If K is as defined in (5.59) and f = δK , then (p, u) is a

solution of (5.60) if and only if (u∗, u) with u∗ = −p ∈ −A(u) is a solution of

(5.61). Moreover, (5.60) and (5.61) hold if and only u∗ ∈A (u) or u ∈ −A′(u∗) and

the identity

u ∈ D(A) ∩ (v0 +H), u∗ ∈ H∗, 〈u∗, u− v0 〉 = 0. (5.62)

holds.

Further specializing to injective mapping A and K = v0 +H we consider the fol-

lowings:

u ∈ D(A) ∩ (v0 +H), 〈A(u), v − u 〉 ≥ 0 for all v ∈ (v0 +H); (5.63)

and

u∗ ∈ D(A′) ∩H∗, 〈A′(u∗) + v0, v
∗ − u∗ 〉 ≥ 0 for all v∗ ∈ H∗. (5.64)

Corollary 5.20.5 If A is an injective mapping, f = δK and K is as in (5.59),

then u ∈ K is a solution of (5.63) if and only if u∗ = −A(u) is a solution of (5.64).
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Moreover, (5.63) and (5.64) hold if and only if u∗ = −A(u) or u = −A′(u∗), and

the following

u ∈ D(A) ∩ (v0 +H), u∗ ∈ H∗, 〈u∗, u− v0 〉 = 0. (5.65)

holds.

Proof. Noting that p = A(u) as A and henceA′ is injective, the corollary follows

from Theorem 5.20 or more specifically from Corollary 5.20.2.

The following remarks are from Mosco (1972). For the benefit of the readers we

include these here:

Remark 5.15 If E is reflexive, then it is well-known that f ∗∗ = f and A′′ = A

(e.g. see Moreau (1966, Section 6)). Hence in this (5.40) and (5.46) are dual of each

other.

Remark 5.16 If A is the subdifferential of a lower semicontinuous convex func-

tion h on E, Theorem 5.20 is closely related to Fenchel’s duality theorem (see

Fenchel (1949), Moreau (1966), and Rockafeller (1970)). A typical example of such

phenomenon can be seen in the classical potential theory, where the capacity of a

set can be defined both in terms of the Dirichlet integral and the energy integral,

which are conjugate of one to another over an appropriate Sobolev space. In the re-

sults of this section, this dual characterization is preserved for the capacities relative

to non-symmetric second order elliptic partial operators as studied in Stampacchia

(1964), and Stampacchia (1965) (see Matzeu (1972)).

Remark 5.17 The system involving (5.65) where u = −A′(u∗), can be seen

as an infinite analogue of the so-called complementarity systems that occur, for

example, in convex programming and game theory (e.g. see Cottle and Dantzig

(1968) and Cottle (1966)). In fact, if E ' E∗ ' R
n and −H is the nonnegative

orthant {v = (vi) : vi ≥ 0, i = 1, 2, · · · , n} of R
n, then the system (5.65) reduces to

u∗ ≥ 0, v ≥ 0, 〈u∗, v 〉 = 0, v = A′(u∗) + v0

which is a complementarity system in the sense of references quoted above.

Remark 5.18 The explicit consideration of the dual variational inequality can be

useful in dealing with problems of regularity, stability or numerical approximation

of solutions. We refer to the works of Fusciardietal for some applications in this

direction.

We now show how the results of previous section can be used to derive the dual

result.

Theorem 5.21 Let f : E → R be a lower semicontinuous convex function and

A : D(A) → E∗ be a f -pseudomonotone and hemicontinuous mapping, where D(A)
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is a closed convex subset of E. Further assume that there exists a nonempty subset

X0 contained in compact convex subset X1 of D(A) = X such that the set

D =
⋂

u∈X0

{v ∈ X : 〈A(u), u− v〉 + f(u) − f(v) ≥ 0}

is either empty or compact.

Then there exists u0 ∈ D(A) such that

〈A(u0), v − u0 〉 = h(u) − h(v) for all v ∈ D(A) (5.66)

and (u, u∗) with u∗ = −p = −A(u0) satisfies

u ∈ A′(u∗), and u∗ ∈ D(A′), 〈u, v∗ − u∗ 〉 ≥ f∗(u∗) − f∗(v∗) for all v∗ ∈ E∗,
(5.67)

where A′ : D(A′) → 2E is defined by:

A′(v∗) = −A−1(−v∗) = −{u ∈ E : −v∗ = A(u)}

and D(A′) = −(A). Furthermore, the following identity holds:

f(u0) + f∗(u∗) = 〈u∗, u0 〉.

Proof. Apply Theorem 5.21 and Theorem 5.20.

In the remaining sections of Chapter 5, we shall present some important results

with their proofs after thorough revisions and considerations of different research

articles of Chowdhury and Tan, Ding, Kim and Tan, Kim and Tan, Shih and Tan,

Tarafdar and Yuan, and of Tarafdar and Mehta in variational inequalities, gen-

eralized variational inequalities, generalized quasi-variational inequalities and in

generalized games.

5.5 A Variational Inequality in Non-Compact Sets with

Some Applications

We shall assume in all results of this section that E is a Hausdorff topological vector

space. The following Fan-Browder fixed point theorem (Browder (1967)) is essential

in convex analysis and also the basic tool in proving many variational inequalities

and intersection theorems in non-linear functional analysis:

Theorem 5.22 Let X be a non-empty compact convex subset of a Hausdorff

topological vector space and let T : X → 2X be a multi-map satisfying the following:

(1) for each x ∈ X, T (x) is convex,

(2) for each y ∈ X, T−1(y) is open.

Then T has a fixed point x ∈ X, i.e. x̂ ∈ T (x̂).
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The Fan-Browder theorem can be proved by using Brouwer’s fixed point the-

orem or the KKM-theorem. Till now, there have been numerous generalization

and applications of this Theorem by several authors; e.g. see (Ding et al. (1992),

Horvath (1987)) and the reference there.

In the paper (Ding et al. (1992)), Ding-Kim-Tan further generalized the above

result to non-compact sets in locally convex spaces and the following is a special

case of the fixed point version of their Theorem 1 there:

Lemma 5.12 Let X be a non-empty convex subset of a locally convex Hausdorff

topological vector space and D be a non-empty compact subset of X. Let T : X → 2D

be multi-map satisfying the following:

(1) for each x ∈ X, coT (x) ⊂ D

(2) for each y ∈ X, T−1(y) is open in X

Then there exits a point x̂ ∈ X such that x̂ ∈ coT (x̂).

The following Lemma, which is due to Kim and Tan, will be required in proving

their first theorem of this section:

Lemma 5.13 Let E be a topological vector space and E∗ be the dual space of

E equipped with the strong topology. Let X be a non-empty bounded subset of E

and T : X → 2E
∗

be an upper semi-continuous multi-map such that each T (x) is

(strongly) compact. Then for each y ∈ E, the real-valued function gy : X → R

defined by

gy(x) = inf
w∈T (x)

Re〈w, x− y〉 for each x ∈ X,

is lower semi-continuous.

Proof. Let x0 ∈ X be given. For any ε > 0, we shall show that there exits an open

neighborhood N(x0) of x0 such that

gy(x) ≥ gy(x0) − ε for each x ∈ N(x0)

Indeed, let V := p ∈ E∗ : supt∈X−y |p(t)| < ε
3 whereX − y = x− y : x ∈ X .Then V

is a strongly open neighborhood of 0 in E∗. Since X − y is a bounded set E. Since

T is upper semi-continuous at x0 and T (x0) + V is a strongly open set containing

T (x0) there exists an open neighborhood N0 of x0 in X such that T (x) ⊂ T (x0)+V

for each x ∈ N0.

Next, for each u ∈ T (x0) ,we let

Vu := {p ∈ E∗ : sup
t∈X−X

|p(t) − u(t)| < ε

3
},

where X −X = {x − z : x, z ∈ X}; then Vu is also a strongly open neighborhood

of u in E since X −X is bounded set in E. Since T (x0) is strongly compact and

T (x0) ⊂ ∪u∈T (x0)Vu, there exists a finite subset u1, . . . , un of T (x0) with T (x0) ⊂
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∩ni=1Vu . For each i = 1, · · ·n, since ui is a continuous linear functional, there exists

an open neighborhood Ni of x0 in X such that |ui(x)−ui(x0)| < ε
3 for each x ∈ Ni.

Now let N(x0) := ∩ni−0Ni; then N(x0) is an open neighborhood of x0 in X .

We shall show that this open neighborhood N(x0) of x0 is the desired one. For

each x ∈ N(x0) and each w ∈ T (x) since x ∈ N0, there exists u ∈ T (x0) such that

w − u ∈ V . Also, since u ∈ T (x0) ⊂ Uni=1 there exists i0 ∈ {1, . . . , n} such that

u ∈ V0. Therefore we have

|Re〈w, x− y〉Re〈u, x− y〉| ≤ |〈w − u, x− y〉| < ε

3
,

so that

Re〈w, x− y〉 > Re〈u, x− y〉 − ε

3
= Re〈u, x0 − y〉 +Re〈u, x− x0〉 −

ε

3

= Re〈u, x0 − y〉 +Re〈u− ui0 , x− x0〉

+Re〈ui0 , x− x0 > − ε

3

≥ inf
v∈T (x0)

Re〈v, x0 − y〉 − ε

= gy(x0) − ε.

Since w ∈ T (x) is arbitrary, we have gy(x) = inf
w∈T (x)

Re〈w, x − y〉 ≥ gy(x0) − ε,

which completes the proof.

Lemma 5.13 is a multi-valued generalization of Lemma 5.12 in [Browder (1967)]

(see also (Shih and Tan (1986), Lemma 1) where it was observed that the result

holds for X being bounded instead of compact).

The following is a variational inequality of Kim and Tan in non-compact sets.

Theorem 5.23 Let X be a bounded convex subset of a locally convex Hausdorff

topological vector space E and D be a non-empty compact subset of X. Let T : X →
2E

∗

be an upper semi-continuous multi-map from the relative topology of X to the

strong topology of E∗ such that each T (x) is (strongly) compact. Suppose further

that for each x ∈ X \D

inf
w∈T (y)

Re〈w, y − x〉 ≤ 0 for all y ∈ X (5.68)

Then there exists a point x̂ ∈ X such that

inf
w∈T (x̂)

Re〈w, x̂− x〉 ≤ 0 for all x ∈ X.

Furthermore, if T (x̂) is also convex, then there exists a point ŵ ∈ T (x̂) such that

Re〈ŵ, x̂− x〉 ≤ 0 for all x ∈ X
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Proof. Suppose that for each x ∈ X there exists a point x̂ ∈ X such that

inf
w∈T (x)

Re〈w, x − x̃〉 > 0. Then by the assumption (5.68) x̃ ∈ D Now we define

a multi-map P : X → 2D by

P (x) : {y ∈ D : inf
w∈T (x)

Re〈w, x− y〉 > 0} for all x ∈ X.

Then for each x ∈ X , P (x) is non-empty. For each x ∈ X , we shall show that

coP (x) ⊂ D. Indeed, let n ∈ N ,y1, . . . , yn ∈ P (x) and t1, . . . , tn ∈ [0, 1] with∑n
i=1 ti = 1 then for each i = 1, . . . , n,

inf
w∈T (x)

Re〈w, x− yI〉 > 0,

it follows that

inf
w∈T (x)

Re〈w, x−
n∑

t=1

tiyi〉 ≥
n∑

i=1

ti inf
w∈T (x)

Re〈w, x− yi〉 > 0.

Since
∑n
i=1 tiyi ∈ X , by the assumption (5.68) again

∑n
i=1 tiyi ∈ D. Hence

coP (x) ⊂ D.

Next for each y ∈ D, we shall show that P−1(y)is open in X . Let (xα)α∈Γ be a

net in X \ P−1(y), which converges to some x0 ∈ X . Then we have

inf
w∈T (xα)

Re〈w, xα − y〉 ≤ 0 for all α ∈ Γ.

By Lemma 5.13, the real-valued function

x→ inf
w∈T (xα)

Re〈w, x− y〉

is lower semi-continuous it follows that

inf
w∈T (x0

Re〈w, x0 − y〉 ≤ 0.

Therefore X \ P−1(y) is closed, and hence P−1(y) is open in X . Thus all the

hypotheses of Lemma 5.12 are satisfied, so by Lemma 5.12 there exists a point x̂ ∈ X

such that x̂ ∈ coP (x̂). But then there exist y1, . . . , ym ∈ P (x̂) and λ1, . . . , λm ≥ 0

with
∑m

i=1 λi = 1 such that x̂ =
∑m
i=1 λiyi. Therefore we have

0 = inf
w∈T (x̂)

Re〈w, x̂− x̂〉

= inf
w∈T (x̂)

Re〈w, x̂−
m∑

i=1

λiyi〉

= inf
w∈T (x̂)

m∑

i=1

λiRe〈w, x̂− yi〉

≥
m∑

i=1

λi inf
w∈T (x̂)

Re〈w, x̂− yi〉 > 0,
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which is a contradiction. Hence there must exist a point x̂ ∈ X such that

inf
w∈T (x̂)

Re〈w, x̂− x̂〉 ≤ 0 for all x ∈ X (5.69)

To prove the second assertion, suppose that T (x̂) is convex. Then we define f :

X × T (x̂) → R by

f(x,w) := Re〈w, x̂− x〉 for each (x,w) ∈ X × T (x̂)

Note that for each fixed x ∈ X , w → Re〈w, x̂−x〉 is continuous affine, and for each

w ∈ T (x̂), x → Re〈w, x̂− x〉 is affine. Thus, by Kneser’s minimax theorem [Kneser

(1952)], we have

min
w∈T (x̂)

sup
x∈X

f(x,w) = sup
x∈X

min
w∈T (x̂)

f(x,w)

Thus

min
w∈T (x̂)

sup
x∈X

Re〈w, x̂− x〉 ≤ 0 by (5.68)

Since T (x̂) is compact, there exists ŵ ∈ T (x̂) such that

sup
x∈X

Re〈ŵ, x̂− x〉 = min
w∈T (x̂)

sup
x∈X

Re〈w, x̂− x〉.

Therefore Re〈ŵ, x̂− x〉 ≤ 0 for all x ∈ X .

This completes the proof.

When X = D is compact convex, the following generalization of Hartman-

Stampacchia’s variational inequality (Hartman and Stampacchia (1966)) due to

Browder (Browder (1968), Theorem 6) is obtained:

Corollary 5.23.1 Let X be a non-empty compact convex subset of a locally

convex Hausdorff topological vector space E and let T : X → 2E
∗

be an upper semi-

continuous multi-map from the relative topology of X to the strong topology of E∗

such that each T (x) is a (strongly) compact convex subset of E∗.
Then there exists a point x̂ ∈ X and ŵ ∈ T (x̂) such that

Re〈ŵ, x̂− x〉 ≤ 0 for all x ∈ X

The following is a single-valued version of Theorem 5.22:

Corollary 5.23.2 Let X be a bounded convex subset of s locally convex Hausdorff

topological vector space E and D be a non-empty compact subset of X. Let T : X →
E∗ be a continuous mapping from the relative topology of X to the strong topology

of E∗ satisfying the following condition:

for each x ∈ X \D, Re〈T (y), y − x〉 ≤ 0 for all y ∈ X

Then there exists a point x̂ ∈ X such that

Re〈T (x̂), x̂− x〉 ≤ 0 for all x ∈ X.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Variational and Quasivariational Inequalities and Generalized Games 317

Let E be a topological vector space and M be a topological space. Recall

that a multi-map F : M → 2E is upper hemi-continuous (e.g. see Aubin and

Ekeland (1984, p. 122)) if for each P ∈ E∗ and for each λ ∈ R, the set {x ∈ M :

sup
u∈f(x)

Re〈p, u〉 < λ} is open in M .

For relationships among upper semi-continuity, upper demi-continuity and upper

hemi-continuity, we refer to Shih and Tan (1987, Propositions 1 and 2 and Examples

1 and 2).

The following fixed point theorem is obtained as an application of Corollary

5.23.2:

Theorem 5.24 Let X be a non-empty para-compact bounded convex subset of

a locally convex Hausdorff topological vector space E, D he a non-empty compact

subset of X. Let F : X → 2E be an upper hemi-continuous multi-map satisfying

the following:

(1) for each x ∈ X, F (x) is non-empty closed convex,

(2) for each x ∈ X, F (x) ∩ cl(x+ ∪λ>0λ(X − x)) 6= ∅,
(3) for each x ∈ X \D, y ∈ X and P ∈ E∗, if inf{Re〈p, y − z〉 : z ∈ f(y)} > 0,

then Re〈p, y − x〉 ≤ 0.

Then there exists x̂ ∈ X such that x̂ ∈ F (x̂).

Proof. Since F is upper hemi-continuous, for each P ∈ E∗, the set

U(P ) = {x ∈ X : sup
z∈F (x)

Re〈p, z〉 < Re〈p, x〉}

= ∪λ∈R[{x ∈ X : sup
z∈F (x)

Re〈p, z〉 < λ} ∩ {x ∈ X : Re〈p, x〉 > λ}]

is open in X . Suppose x /∈ F (x) for each x ∈ X . Then for each x ∈ X there exists

P ∈ E∗ such that sup
z∈F (x)

Re〈p, z〉 < Re〈p, x〉 so that x ∈ U(p). Thus {U(p) : P ∈

E∗} is an open cover of the para-compact space X . Let {V (P ) : P ∈ E∗} be a

locally finite open precise refinement of {U(p) : P ∈ E∗} and {βp : P ∈ E∗} be

the continuous partition of unity subordinated to this refinement {V (P ) : P ∈ E∗}.
Define a mapping T : X → E∗ by

T (x) =
∑

p∈E∗

βp(x)p for all x ∈ X.

Let x ∈ X be given. If P ∈ E∗ and βp(x) > 0,then x ∈ V (P ) ⊂ U(p) so that

sup
z∈F (x)

Re〈p, z〉 < Re〈p, x〉; it follows that

inf
z∈F (x)

Re〈p, x− z〉 > 0.
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Therefore for each x ∈ X ,

inf
z∈F (x)

Re〈T (x), x− z〉 = inf
z∈F (x)

∑

p∈E∗

βp(x)Re〈p, x− z〉

≥
∑

p∈E∗

βp(x) inf
z∈F (x)

Re〈p, x− z〉 (5.70)

> 0. (5.71)

Now we shall show that T satisfies all hypotheses of Corollary 5.23.2. To show

that T is continuous from the relative topology of X to the strong topology of E∗,
let (xα)α∈Γ be a net in X which converges to some x0 ∈ X . Since {V (p) : p ∈ E∗}is
locally finite, there is an open neighborhood U0 of x0 in X such that {p ∈ E∗ :

v(p) ∩ U0 6= φ} is finite, so we let {p ∈ E∗ : v(p) ∩ U0 6= ∅} = p1, . . . , pn. Let

B be any non-empty bounded subset of E, then by Theorem 1.18 [Rudin (1973)],

M = max1≤i≤n sup{|pi(x)| : x ∈ B} <∞. Since each βp is continuous, there exists

α1 ∈ Γ such that for each α ≥ α1,

|βp(xα) − βp(x0)| <
ε

Mn
for all i = 1, . . . , n.

Also since (xα) converges to x0 and U0 is an open neighborhood of x0, there exists

α2 ∈ Γ such that for each α ≥ α2, xα ∈ U0. Let α0 ≥ max{α1, α2}. Then for each

α ≥ α0, we have

sup
z∈B

| < T (xα) − T (x0), z > | = sup
z∈B

|
∑

p∈E∗

(βp(xα) − βp(x0))p(z)|

= sup
z∈B

|
n∑

i=1

(βpi(xα) − βpi(x0))pi(z)|

≤
n∑

i=1

|(βpi(xα) − βpi(x0))|sup
z∈B

pi(z)|

<

n∑

i=1

ε

Mn
M = ε,

and hence T (xα) converges to T (x0) in the strong topology of E∗.
Next suppose there exists x1 ∈ X \D such that for some y ∈ X ,

Re〈T (y), y − x1〉 =
∑

p∈E∗

βp(y)Re〈p, y − x1〉 > 0. (5.72)

If βp(y) > 0, then inf
z∈F (y)

Re〈p, y − z〉 > 0 so that by assumption (3), Re〈p, y −
x1〉 ≤ 0, which contradicts (5.72).
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Therefore by Corollary 5.23.2, there exists x̂ ∈ X such that

Re〈T (x̂), x̂− y〉 ≤ 0 for all y ∈ X. (5.73)

By the assumption (2), F (x̂)∩ cl(x̂+∪λ>0λ(X − x̂) 6= ∅. Let ŷ ∈ F (x̂), (λα)α∈Γ

be a net in (0,∞) and (uα)α∈Γ be a net in X such that (x̂+λα(uα− x̂)) → ŷ. Then

we have

Re〈T (x̂, x̂− ŷ〉 = lim
α
Re〈T (x̂, x̂− (x̂+ λα(uα − x̂)〉

= lim
α
λαRe〈T (x̂, x̂− uα〉

= ≤ 0 by 5.73).

Hence inf
z∈F (x̂)

Re〈T (x̂), x̂−z〉 ≤ 0 which contradicts (5.70). This completes the proof.

Theorem 5.24 generalizes Theorem 2 of Halpern (1970), p. 88, in the following

ways:

(i) X need not be compact and (ii) F is upper hemi-continuous instead of upper

semi-continuous.

The following is a re-formulation of Proposition 3.1.21 of Aubin-Ekeland (Aubin

and Ekeland (1984)):

Lemma 5.14 Let X and Y be topological spaces and Φ : X × Y × R be a real-

valued lower semi-continuous function on X × Y and T : Y → 2X be an upper

semi-continuous multi-map at y0 ∈ Y and T (y0) is non- empty compact. Then a

real-valued function g : Y → R defined by

g(y) := inf
x∈T (y)

Φ(x, y), for all y ∈ Y,

is lower semi-continuous at y0.

Lemma 5.15 Let E be a normed space, X be a non-empty subset of E and

T : X → 2E
∗

be an upper semi-continuous multi-map, such that each T (x) is

(norm-) compact. Then for each y ∈ E, the real-valued function gy : X → R

defined by

gy(x) := inf
w∈T (x)

Re〈w, x− y〉, for each x ∈ X,

is lower semi-continuous.

Proof. Define Φ : X ×E∗ → R by

Φ(x,w) = Re〈w, x− y〉 for each (x,w) ∈ X ×E∗.
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Let (xn) be a sequence in X which converges to x ∈ X and (wn) be a sequence in

E∗ which converges to w ∈ E∗. Then we have

|Φ(xn, wn) − Φ(x,w)| = |Re〈wn, xn − y〉 −Re〈w, x − y〉|

≤ |〈wn − w, x − y〉| + |wn, xn − x〉|

≤ ‖wn − w‖‖x− y‖ + ‖wn‖‖xn − x‖ → 0,

since {‖wn‖ : n ≥ 1} is bounded.

Thus Φ is continuous. By Lemma 5.14, gy is lower semi- continuous. This

completes the proof.

We remark that in the proof of Theorem 5.23, the condition “X is bounded”

was never needed until Lemma 5.13 was quoted. In view of Lemma 5.15, the same

proof of Theorem 5.23 gives the following:

Theorem 5.25 Let X be a convex subset of a normed linear space E and D be

a non-empty compact subset of X. Let T : X → 2E
∗

be an upper semi-continuous

multi-map from the relative topology of X to the norm topology of E∗ such that each

T (x) is (norm-) compact in E∗. Suppose further that for each x ∈ X \D,

inf
w∈T (y)

Re〈w, y − x〉 ≤ 0 for all y ∈ X. (5.74)

Then there exists a point x̂ ∈ X such that

inf
w∈T (x̂)

Re〈w, x̂− x〉 ≤ 0 for all x ∈ X.

Furthermore, if T (x̂) is also convex, then there exists a point ŵ ∈ T (x̂)) such that

Re〈ŵ, x̂− x〉 ≤ 0 for all x ∈ X.

When E is a normed space, we can delete the condition in Corollary 5.23.2 (for

the same reason) that X is bounded. Thus, recalling that every metric space is

paracompact, we obtain the following norm-version of Theorem 5.24:

Theorem 5.26 Let X be a non-empty convex subset of a normed linear space

E and D be a non-empty compact subset of X. Let F : X → 2E be an upper

hemi-continuous multi-map satisfying the following:

(1) for each x ∈ X, F (x) is non-empty closed convex,

(2) for each x ∈ X, F (x) ∩ cl(x+ ∪λ>0λ(X − x)) 6= ∅,
(3) for each x ∈ X \D, y ∈ X, and p ∈ E∗, if inf{Re〈p, y − z〉 : z ∈ F (y)} > 0,

then Re〈p, y − x〉 ≤ 0.

Then there exists x̂ ∈ X such that x̂ ∈ F (x̂).

Note that the main results of this section have been written and presented after

a thorough revision of some results of an article in Kim and Tan (1992)
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5.6 Browder-Hartman-Stampacchia Variational Inequalities for

Set-Valued Monotone Operators

If X , Y are topological spaces, then a map g :→ 2Y is said to be lower semi-

continuous on X (Berge (1963), p. 109) if for every x0 ∈ X and for every open set

G in Y with g(x0) ∩ G 6= φ, there exists an open neighborhood N(x0) of x0 in X

such that g(x) ∩G 6= φ, for all x ∈ N(x0).

If X ⊂ E, a map T : X → 2E
′

is said to be monotone on X (Browder (1976),

p. 79) if for any x, y ∈ X , u ∈ T (x) and w ∈ T (y), Re〈w − u, y − x〉 ≥ 0. If X ⊂ E

is convex , a real-valued function Ψ on X is said to be (quasi-concave) if for every

real number t, the set {x ∈ X : Ψ(x) > t} is convex.

In this section we shall present first a minimax inequality of Shih and Tan which

is a generalization of the celebrated minimax inequality of Ky Fan (Fan (1972)).

A fixed point version of the minimax inequality will be given. As an application,

some generalizations of Browder-Hartman-Stampacchia’s variational inequalities to

multi-valued monotone operators will be presented which are lower semi-continuous

along the line segments.

5.6.1 A Minimax Inequality

We shall next present the following generalization of the celebrated minimax in-

equality of Ky Fan (Fan (1972)). We observe that next result is an useful tool for

the study of existence theorems of variational inequalities for multivalued monotone

operators:

Theorem 5.27 Let X be a non-empty convex subset of a Hausdorff topological

Vector space and let φ, Ψ be two real-valued functions on the product space X ×X.

Suppose that

(a) φ(x, y) ≤ Ψ(x, y) for all (x, y) ∈ X ×X and Ψ(x, x) ≤ 0 for all x ∈ X

(b) For each fixed x ∈ X, ψ(x, y) is a lower semi-continuous function of y on X.

(c) For each fixed y ∈ X, Psi(x, y) is a quasi-concave function of x on X.

(d) There exists a non-empty compact subset K of X and x0 ∈ X such that

Ψ(x0, y) > 0 for all y ∈ X \K.

Then there exists ŷ ∈ X such that φ(x, ŷ) ≤ 0 for all x ∈ X .

Proof. For each x ∈ X , let

F (x) := y ∈ X : Ψ(x, y) ≤ 0

G(x) := y ∈ X : φ(x, y) ≤ 0.

Then

(i) by (a), F (x) ⊂ G(x) for each x ∈ X ;

(ii) by (b), G(x) is closed in X for each x ∈ X ;

(iii) by (a) and (d), F (x0) ⊂ K so that F (x0)is compact;
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(iv) by (a) and (c), given any finite subset {x1, · · · , xn} of X ,

C0{x1, · · · , xn} ⊂
n⋃

i=1

F (xi).

Thus by Ky Fan’s infinite dimensional generalization (see Fan (1961)) of the covering

theorem of Knaster-Kuratowski-Mazurkiewicz (see ? (?)), we have ∩x∈XF (x) 6= ∅.
By (i) and (ii), ∩x∈XG(x) 6= ∅. Take any ŷ ∈ ∩x∈X ; then φ(x, ŷ) ≤ 0 for all x ∈ X .

When X is a compact convex set, by taking K = X , Theorem 5.27 reduces to

Yen’s generalization [Yen (1981)] of Ky Fan’s minimax inequality and by further

taking φ = Ψ , Theorem 5.27 reduces to Ky Fan’s minimax inequality.

The following fixed point theorem, represents a fixed point version of Theorem

5.27. This fixed point version is a generalization of an earlier basic fixed point

theorem of Fan and Browder (see Fan (1961, Lemma 4), Fan (1972, Theorem 2)

and Browder (1968, Theorem 1)).

Theorem 5.28 Let X be a non-empty convex subset of a Hausdorff topological

vector space and F ,G : X → 2X . Suppose that

(a) F (x) ⊂ G(x) for each x ∈ X;

(b) For each x ∈ X, F (x) is open in X;

(c) For each y ∈ X , F−1(y) 6= ∅ and G−1(y) is convex;

(d) There exist a non-empty compact subsetK of X and X0 ∈ X such that X\K ⊂
G(x0).

Then there exists x̂ ∈ X such that x̂ ∈ G(x)

5.6.2 An Existence Theorem of Variational Inequalities

We first state the following lemma, which is a generalization of Minty’s lemma (see

Minty (1962)) and is a special case of Lemma 4 in Shih and Tan (1989):

Lemma 5.16 Let E be a Hausdorff topological vector space, X be a non-empty

subset of E and T : X → 2E
′

be lower semi-continuous along the line segments in

X to the weak-topology of E ′ . Then for ŷ ∈ X the inequality

sup
u∈T (x)

Re〈u, ŷ − x〉 ≤ 0 for all x ∈ X

implies the inequality

sup
u∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0 for all x ∈ X.

We shall present the following existence theorem of variational inequalities as

an application of Theorem 5.27:

Theorem 5.29 Let E be a reflexive Banach space equipped with norm ‖·‖ and X

be a non-empty closed convex subset of E. Suppose that T : X → 2E
′

is monotone
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on X and is lower semi-continuous from the line segments in X to the weak topology

of E′. Assume there exists x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (x)

Re〈w, y − x0〉 > 0 (5.75)

Then there exists ŷ ∈ X such that

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0 for allx ∈ X.

Proof. Define φ, Ψ : X ×X → R

φ(x, y) = sup
u∈T (x)

Re〈u, y − x〉, (5.76)

Ψ(x, y) = inf
w∈T (y)

Re〈w, y − x〉. (5.77)

As T is monotone, for each x, y ∈ X , we have

inf
w∈T (y)

Re〈w, y − x〉 ≥ sup
u∈T (x)

Re〈u, y − x〉,

so that φ(x, y) ≤ Ψ(x, y) for all x, y ∈ X . By coercive condition (1), there exists a

sufficiently large R > 0 such that

inf
w∈T (y)

Re〈w, y − x0〉 > 0

for all y ∈ X with ‖y‖ > R.

Take K := {y ∈ X : ‖y‖ ≤ R}; then K is a weakly compact convex subset of

X as E is reflexive and X is a closed convex subset of E. Thus Ψ(x0, y) > 0 for all

y ∈ X\K. It is clear that Ψ(x, x) ≤ 0 for all x ∈ X and for each x ∈ X , φ(x, y) is

a weakly lower semi-continuous function of y on X . It is easy to see that for each

y ∈ X , Ψ(x, y) is a quasi-concave function of x on X . Thus when E is equipped

with weak topology, all conditions in Theorem 5.27 are satisfied so that by Theorem

5.27, there exists ŷ ∈ X such that φ(x, ŷ) ≤ 0 for all x ∈ X , i.e.

sup
u∈T (x)

Re〈u, ŷ − x〉 ≤ 0 for allx ∈ X.

By Lemma above, we have

sup
w∈T (ŷ)

Re < w, ŷ − x〉 ≤ 0 for allx ∈ X.

We observe that an immediate consequence of Theorem 5.29 can be obtained

(as given below) which is a generalization of Browder-Hartman-Stampacchia’s vari-

ational inequalities for multi-valued monotone operators. We will note that these

variational inequalities are lower semi-continuous along the line segments.
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Theorem 5.30 Let E be reflexive Banach space equipped with norm ‖ · ‖ and X

be a non-empty closed convex subset of E. Suppose that T : X → 2E
′

is monotone

on X and is lower semi-continuous from line segments in X to the weak topology

of E′. Assume there exists x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − y0〉/‖y‖ = +∞.

Then for each given w0 ∈ E′ there exists ŷ ∈ X such that

sup
w∈T (ŷ)

Re〈w − w0, ŷ − x〉 ≤ 0 for all x ∈ X.

When T is single-valved, Theorem 5.30 reduces to Browder-Hartman-Stampacchia’s

variational inequalities (Browder (1968), Hartman and Stampacchia (1966)).

Remark 5.19 We first recall that if X , Y are topological spaces, a map g :

X → 2Y is said to be upper semi-continuous on X [Berge (1963), p. 109] if for

every x0 ∈ X and for every open set G in Y with g(x0) ⊂ G there exists an open

neighborhood N(x0) in X such that g(x) ⊂ G for all x ∈ N(x0). The following

different generalization of Browder-Hartman-Stampacchia variational inequalities

for multi-valued monotone operators which are upper semi-continuous along the

line segments was obtained in Shih and Tan (1988a).

Theorem 5.31 Let E be reflexive Banach space equipped with norm ‖ · ‖ and X

be a non-empty closed convex subset of E. Suppose that T : X → 2E
′

is monotone

on X such that each T (x) is weakly compact convex subset of E ′and T is upper

semi-continuous from line segments in X to the weak topology of E ′. Assume there

exists x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − y0〉/‖y‖ = +∞.

Then for each given w0 ∈ E′ there exists ŷ ∈ X and ŵ ∈ T (ŷ) such that

Re〈ŵ − w0, ŷ − x〉 ≤ 0 for all x ∈ X.

We note here that Theorem 5.31 can also be proved by Theorem 5.27. We shall

see that Theorem 5.31 has an application in convex optimization as follows:

Let E be a Banach space, X be a non-empty convex subset of E and f be a

convex function from X into R. If w0 ∈ E′ and u0 ∈ X then w0 is said to be a

subgradient of f at u0 if for all u ∈ X

f(u) ≥ f(u0) + 〈w0, u− u0〉.

The subdifferential ∂f of f is the map of X into 2E
′

given by

(∂f)(x) := {w ∈ E′ : w is a subgradient of f at x.
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Applying Theorem 5.31 together with the fact that the subdifferential ∂f is a

(multi-valued) monotone operator (Browder (1976), p. 97) we have the following:

Theorem 5.32 Let E be a reflexive Banach space equipped with norm ‖ · ‖ and

f : E → R be a lower semi-continuous convex function. Suppose ∂f : E → 2E
′

is

upper semi-continuous from line segments in E to the weak topology of E ′ such that

each ∂f(x) is bounded and there exists x0 ∈ E such that

lim
‖y‖→∞

inf
w∈∂f(y)

Re〈w, y − x0〉/‖y‖ = +∞.

Then there exists ŷ ∈ E such that 0 ∈ ∂f(ŷ), i.e. ŷ is a critical point of f .

Finally we remark that in Theorem 5.30, if X = E, T is necessarily single-valued

(and maximal monotone; for definition of maximal monotone, we refer to (Browder

(1976), p. 791). Thus, in Theorem 5.32 if ∂f is assumed to be lower semi-continuous

along line segments instead, then the conclusion becomes “there exists ŷ ∈ E such

that ∂f(ŷ) = {0}”.

Note that the results of this section have been presented after a thorough revision

of some results of an article in Shih and Tan (1988c).

5.7 Some Generalized Variational Inequalities with

Their Applications

As an application of Fan-Browder type fixed point theorem which was given by

Tarafdar (Tarafdar (1987)), first a generalized version of Ky Fan minimax principle

is derived. This generalized version of Ky Fan minimax principle is then applied

to establish existence theorems of solutions for non-compact variational inequal-

ities in which mappings are either monotone or upper semi-continuous in locally

convex topological vector spaces. Using these results some results on the existence

of minimizers for minimization problems (consisting of the sum of convex lower

semi-continuous functions) are obtained.

In this section we shall denote by 2X the family of all subsets of X . Moreover,

all vector spaces E will be assumed over the complex field Φ and all topological

spaces will be assumed to be Hausdorff.

If X is a non-empty subset of E, then a mapping T : X → 2E
∗

is said to be

monotone on X if for each x, y ∈ X , u ∈ T (x) and w ∈ T (y), Re〈w− u, y− x〉 ≥ 0.

5.7.1 Some Generalized Variational Inequalities

In this subsection, we shall first present a generalization of Ky Fan minimax prin-

ciple which is then applied to study the existence of solutions for non-compact

generalized variational inequalities in which the mappings are either monotone or

upper semi-continuous in locally convex topological vector spaces.
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The following fixed point theorem proved by Tarafdar in (Tarafdar (1987)) will

be very useful in deriving other results of this section.

Theorem 5.33 (Fixed point theorem of Fan-Browder Type). Let X be a non-

empty convex subset of a real Hausdorff topological vector space. Let F : X → 2X

be a set-valued mapping such that

(1) for each x ∈ X, F (x) is non-empty convex subset of X;

(2) for each y ∈ X, F−l(y) = {x ∈ X : y ∈ F (x)} contains relatively open subset

Oy of X (Oy, may be empty for some y ∈ X such that Ux∈XOx = X; and

(3) X contains a non-empty subset X0 which is contained in a compact convex

subset X1 of X such that the set D = ∩x∈X0O
c
x is either empty or compact,

where Ocx denotes the complement of Ox in X.

Then there exists a point x0 ∈ X such that x0 ∈ F (x0).

The following lemma is a variant of Ky Fan inequality proved by Tarafdar in

(Tarafdar (1986)). A different proof is given below which was obtained by Tarafdar

and Yuan using the Fan-Browder type fixed point theorem mentioned above.

Lemma 5.17 Let X be a non-empty convex subset of a Hausdorff topological

vector space and f : X ×X → R∪ {−∞,+∞} be an extended valued function such

that

(i) for each x ∈ X, f(x, ·) is lower semi-continuous on X;

(ii) for each y ∈ X,g(·, y) is quasi-concave on X (i.e., the set {y ∈ X : g(x, y) > λ}
is convex for each fixed x ∈ X and λ ∈ R);

(iii) for each (x, y) ∈ X ×X, f(x, y) > 0 ⇒ g(x, y) ≤ 0 and g(x, x) ≤ 0;

(iv) there exists a non-empty subset X0 contained in a non-empty compact convex

subset X1, of X such that for each y ∈ X\X1, there exists x ∈ X0 with

f(x, y) > 0.

Then the set S := {y ∈ X : f(x, y) ≤ 0 for all x ∈ X} is a non-empty compact

subset of X1.

Proof. For each x ∈ X , we define H(x) = {y ∈ X : f(x, y) ≤ 0}. Then by (i), H(x)

is a closed subset of X for each x ∈ X . It is trivial to see that S = ∩x∈XH(x). We

first prove that S 6= ∅. We assume, if possible, that S 6= ∅. Then for each y ∈ X ,

the set

F (Y ) = {x ∈ X : y /∈ H(x)} = {x ∈ X : f(x, y) > 0}

is non-empty. Hence by (iv) for each y ∈ X , the set G(y) = {x ∈ X : g(x, y) > 0} ⊃
F (y). Also it follows by (ii) G(y) is a convex set for each y ∈ X . Thus G : X → 2X

defines a set-valued mapping such that for each y ∈ X , G(y) is non-empty and
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convex. Now for each x ∈ X , the set

G−1(x) = {y ∈ X : x ∈ G(y)} = {y ∈ X : g(x, y) > 0}
⊂ {y ∈ X : f(x, y) > 0}
= {y ∈ X : f(x, y) ≥ 0}c

= [H(x)]c

= Ox

which is a relatively open set in X . Also by (iii) for each y ∈ X\X1, there exists

x ∈ X0 such that f(x, y) > 0, i.e., y /∈ H(x). This implies that

D = ∩x∈X0O
c
x = ∩x∈X0H(x) ⊂ X1.

Finally since Ox = {y ∈ X : f(x, y) > 0} = F−1(x), we immediately obtain

∪x∈XOx = ∪x∈XF−1(x) = X.

To see this, let x ∈ X . As F (x) 6= ∅,we can choose y ∈ F (x). Hence x = F−1(y).

Hence by the fixed point Theorem 5.33, there is a fixed point x0 ∈ X such that

x0 ∈ G(x0) i.e., g(x0, x0) > 0 which contradicts (iv). Therefore S 6= ∅. We conclude

the proof by noting that S = ∩x∈XH(x) being a closed subset of the compact subset

D = ∩x∈X0H(x) is compact and the proof is complete.

Please note that Lemma 5.17 generalizes the celebrated Ky Fan minimax princi-

ple (Fan (1972)) in several aspects (see also Ding and Tan [Ding and Tan (1992b)],

Yen [Yen (1981)] and references therein).

The proof of the following lemma can be found in Lemma 1 of Shih and Tan

(Shih and Tan (1985), p. 334):

Lemma 5.18 Let X be a non-empty subset of a Hausdorff topological vector

space E and S : X → 2E be upper semi-continuous and bounded. Then for each

P ∈ E∗, the mappings fp : X → R defined by fp(y) := supx∈S(y)Re〈P, x〉 for each

y ∈ X is upper semi-continuous.

The following lemma is a set-valued version of well-known lemma due to Minty

and Browder in (Minty (1962)) and (Browder (1968)) (see also Tarafdar (Tarafdar

(1987)) and Tan and Yuan (Tan and Yuan (1994))).

Lemma 5.19 Let X be a non-empty convex subset of a topological vector space

E. Let S : X → 2X be upper semi-continuous such that for each x ∈ X, S(x) is a

non-empty convex subset of X and T : X → 2E
∗

be such that T (x) is non-empty

for each x ∈ X and T is lower semi-continuous from the line segment to the weak

topology of E∗. Then following statement holds:

If there exists ŷ ∈ X with ŷ ∈ S(ŷ) such that

sup
u∈T (x)

Re〈u, ŷ − x〉 ≤ 0
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for all x ∈ S(ŷ), then we have

sup
u∈T (ŷ)

Re〈u, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ).

Proof. The proof is contained in the proof of Theorem 1 of Shih and Tan (Shih

and Tan (1985)). We include the proof for the sake of completeness. Let x ∈ S(ŷ)

be arbitrary and let zt = tx + (1 − t)ŷ = ŷ + t(x − ŷ), where t ∈ [0, 1]. As S(ŷ) is

convex, x ∈ S(ŷ) and ŷ ∈ S(ŷ), zt ∈ S(ŷ)for each t ∈ [0, 1]. Hence

sup
u∈T (zt)

Re〈u, ŷ − x〉 ≤ 0

for all t ∈ [0, 1]. Thus

sup
u∈T (zt)

Re〈u, ŷ − x〉 ≤ 0 (5.78)

for all all t ∈ [0, 1]. Now let w0 ∈ T (ŷ) be arbitrary but fixed. For each ε > 0, let

Uw0 = {w ∈ E∗ : |〈w0 − w, ŷ − x〉| < ε}.

Then Uw0 is a weakly open neighborhood of w0. Since Uw0∩T (ŷ) 6= ∅ and T is lower

semi-continuous from the line segment L = {zt : t ∈ [0, 1]} to the weak topology of

E∗, there is an open neighborhoodN(ŷ) of ŷ in L such that T (z)∩Uw0 6= ∅ whenever

z ∈ N(ŷ). Now there exists δ ∈ (0, 1) such that zt ∈ N(ŷ) for all t ∈ (0, δ). Thus for

each arbitrarily fixed t ∈ (0, δ) there exists u ∈ T (zt)∩Uw0 i.e.,|〈w0 −u, ŷ−x〉| < ε.

This implies that Re〈w0, ŷ−x〉 < Re〈u, ŷ−x)+ε , which together with (5.78) implies

that Re〈w0, ŷ − x〉 < ε. Now as ε > 0 is arbitrary we obtain Re〈w0, ŷ − x〉 < 0 and

as w0 ∈ T (ŷ) is arbitrary, we have

sup
w∈ŷ

Re〈w, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ). Thus the proof is complete.

Theorem 5.34 Let X be a non-empty closed convex subset of a locally convex

Hausdorff vector topological space E. Let S : X → 2X be upper semi-continuous

such that for each x ∈ X, S(x) is a non-empty closed convex bounded subset of X

and T : X → 2E
∗

be monotone and lower semi-continuous from the line segment to

the weak topology σ(E∗, E) of E∗ and T (x) is non-empty for each x ∈ X. Further

assume that the set

(1) the set
∑

1 = {y ∈ X : supx∈S(y) supu∈T (x)Re〈u, y − x〉 > 0} is open;

(2) there exists a non-empty subset X0 contained in a compact convex subset

X1 of X such that for each y ∈ X\X1, there exists an x ∈ X0 such that

supu∈T (x)Re〈u, y − x〉 > 0.

Then there exists ŷ ∈ X such that
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(i) ŷ ∈ S(ŷ);

(ii) supw∈T (ŷ)Re(w, ŷ − x) ≤ 0 for all x ∈ S(ŷ).

Proof. In view of our Lemma 5.19, it would suffice to prove that there exists a

point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
u∈T (x)

Re〈u, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ).

If possible, suppose the above is false. Then for each y ∈ X , either (α) : y /∈ S(y)

or (β) : there exists a point x ∈ S(y) such that

sup
u∈T (x)

(u, y − x) > 0.

Now whenever y /∈ S(y),there exists by Hahn-Banach separation theorem p ∈ E∗

such that

Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0.

For each y ∈ X , let α(y) := supx∈S(y) supu∈T (x)Re〈u, y − x〉. Also let V0 = {y ∈
X : α(y) > 0} which is open in X by (i). Now X \ X1 ⊂ V0.To see this let

y ∈ X \ X1. Then either y ∈ S(y) or y /∈ S(y). If y ∈ S(y), then by (ii), we

have α(y) > 0). Hence y ∈ V0. If y /∈ S(y), then by (ii) and (β), it follows

that α(y) > 0, i.e., y ∈ V0. Thus y ∈ V0 in either case. For each p ∈ E∗, let

V (P ) := {y ∈ X : Re〈p, y〉− supx∈S(y)Re〈p, x〉 > 0}. By Lemma 5.18, V (p) is open

for each p ∈ E∗. It is clear that X = V0∪{∪p∈E∗V (p)}. Since X1, is compact, there

exists pl, p2, . . . , pn ∈ E∗ such that X1 ⊂ ∪ni=1V (pi). Thus X = V0 ∪ ∪ni=1V (pi).

Now we repeat the argument as given in Shih and Tan (Shih and Tan (1985, pp. 336–

337)). Let {β0, β1, . . . , βn} be a partition of unity corresponding to the covering

{V0, V (p1), . . . , V (pn)}, i.e ,β0, β1, . . . , βn are continuous nonnegative real valued

functions defined on X such that βi vanishes out V (pi) for i = 1, 2, . . . , n and β0

vanishes outside V0 and
∑n

i=0 βi(x) = 1 for all x ∈ X . We define f, g : X ×X → R

by setting

f(x, y) = β0(y) sup
u∈T (x)

Re〈u, y − x〉 +

n∑

i=1

βi(y)Re〈pi, y − x〉,

and

g(x, y) = β0(y) inf
u∈T (y)

Re〈u, y − x〉 +

n∑

i=1

βi(y)Re〈pi, y − x〉,

for each (x, y) ∈ X × X . Now since T is monotone, it follows that g(x, y) > 0

whenever f(x, y) > 0 for all (x, y) ∈ X × X (note that,β0(y) = 0, then f(x, y) =

g(x, y)). Obviously, g(x, x) = 0 for each x ∈ X . For each fixed x ∈ X , since βi,
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where i = 1, 2, . . . , n are continuous functions of y on X and supu∈T (x)Re〈u, y−x〉
and Re〈pi, y − x〉 (i = 1, 2, . . . , n) are lower semi-continuous functions of y on X ,

by Lemma 3 of Takahashi (1976, p. 177), y → f(x, y) is lower semi-continuous on

X . Furthermore, for each fixed y ∈ X , x ∈ g(x, y) is quasi-concave. Hence all the

conditions of Lemma 5.17 are satisfied. Thus there exists by Lemma 5.17 a point

ŷ ∈ X such that f(x, ŷ) ≤ 0 for all x ∈ X , i.e.,

β0(ŷ) sup
u∈T (x)

Re〈u, ŷ − x〉 +

n∑

i=1

βi(ŷ)Re〈pi, ŷ − x) ≤ 0 (5.79)

for all x ∈ X . Since
∑n

i=0 βi(ŷ) ≥ 0 for each i = 0, 1, . . . , n and βi(y) > 0 for at

least one i = 0, 1, . . . , n. We choose x̂ ∈ S(ŷ) such that supu∈T (x̂)Re〈u, ŷ−x̂〉 ≥ α(ŷ)
2

whenever α(ŷ) > 0. If β0(ŷ) > 0, then ŷ ∈ V0. Thus α(ŷ) > 0. If βk(ŷ) > 0 for

some k = 1, 2, . . . , n then ŷ ∈ V (pk) and hence Re〈pk, ŷ−x̂) > supx∈S(ŷ)Re〈pk, x) ≥
(pk, x̂). Hence Re〈pk, ŷ − x̂) > 0. Thus it follows that

β0(ŷ) sup
u∈T (x̂)

Re(u, ŷ − x̂) +

n∑

i=1

βi(ŷ)Re〈pi, ŷ − x̂) ≤ 0

which contradicts (5.79). This proves the theorem and the proof is complete.

Remark 5.20 Theorem 5.34 contains Theorem 1 of Shih and Tan (Shih and

Tan (1985)) as a special case.

Lemma 5.20 Let X be a non-empty bounded subset of a locally convex Hausdorff

topological vector space E. Let S : X → 2X be lower semi-continuous such that for

each x ∈ X, S(x) is a non-empty subset of X and T : X → 2E
∗

be lower semi-

continuous from the relative topology of X to the strongly topology of E∗ such that

for each x ∈ X, T (x) is non-empty. Then the set

∑

1

= {y ∈ X : sup
x∈S(y)

sup
u∈T (x)

Re〈u, y − x〉 > 0}

is an open set in X.

Proof. The proof is contained in the proof of Theorem 2 of Shih and Tan in (Shih

and Tan (1985)) and thus we omit it.

Combining Theorem 5.34 and Lemma 5.20, the following theorem is obtained:

Theorem 5.35 Let X be a non-empty bounded closed convex subset of a locally

convex Hausdorff topological vector space E. Let S : X → 2X be continuous such

that for each x ∈ X, S(x) is a non-empty closed convex bounded subset of X and

T : X → 2X be a monotone mapping such that T (x) 6= ∅ for each x ∈ X and T is

lower semi-continuous from the line segment to the weak topology σ(E∗, E) of E∗.
Further assume that there is a non-empty set X0 contained in a compact convex
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subset X1 of X such that for each y ∈ X \X1 there exists an x ∈ X0 such that

sup
u∈T (x)

〈u, y − x〉 > 0.

Then there exists ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ).

Corollary 5.35.1 Let X be a non-empty closed convex subset of a locally convex

Hausdorff space E. let S : X → 2X be continuous such that for each x ∈ X, S(x)

is non-empty closed bounded convex subset of X and T : X → 2E
∗

be a monotone

mapping such that for each x ∈ X, T (x) 6= ∅ and T is lower semi-continuous from

the relative topology of X to the strong topology of E∗. Further assume that there

is a point x0 ∈ X such that supu∈T (x0)Re〈u, y− x0〉 > 0 for all y ∈ X and y 6= x0.

Then there exists ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ).

Proof. We take X1 = X0 = {x0} in Theorem 5.35 to obtain the Corollary.

Corollary 5.35.2 Let X be a non-empty closed convex subset of a locally convex

Hausdorff space E. Let T : X → 2E
∗

be a monotone mapping such that for each

x ∈ X, T (x) 6= ∅ and T is lower semi-continuous from the relative topology of X

to the strong topology of E∗. Further assume that there is a non-empty subset X0

containing in a compact convex subset X1, of X such that for each y ∈ X \ X1,

there exists x ∈ X0 such that supu∈T (x)Re〈u, y − x〉 > 0.Then there exists ŷ ∈ X

such that

sup
w∈T (ŷ)

Re(w, ŷ − x) ≤ 0

for all x ∈ S(ŷ).

Proof. We define S : X → 2X by S(x) = X for each x ∈ X . Then the conclusion

follows by Theorem 5.35.

When T is a constant monotone mapping in Theorem 5.34, we have the following

non-compact version of the well-known Fan and Glicksberg fixed point theorem (see

Fan-Glicksberg (1952)).

Theorem 5.36 Let X be a non-empty convex subset of a locally convex Hausdorff

topological space E. Let S : X → 2X be upper semi-continuous such that for each

x ∈ X, S(x) is a non-empty closed convex bounded subset of X and suppose there

exists p ∈ E∗ such that the set
∑

1 = {y ∈ X : supx∈S(y)Re〈p, u− x〉 > 0} is open
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and there exists a non-empty subset x0 contained in a compact convex subset X1, of

X such that for each y ∈ X \X1 there exists an x ∈ X0 such that Re〈p, y− x〉 > 0.

Then there exists ŷ ∈ X such that ŷ ∈ s(ŷ).

Proof. Let T : X → E∗ be defined by T (x) = p for each x ∈ X . Then T is

a monotone mapping and all hypotheses of Theorem 5.34 are satisfied. Thus the

conclusion follows from Theorem 5.34 and proof is complete.

In what follows, we shall study the existence of solutions for non-compact gener-

alized variational inequalities in which T is upper semi-continuous instead of being

monotone in locally convex spaces.

Theorem 5.37 Let X be a non-empty closed convex subset of a locally convex

Hausdorff topological vector space E. Let S : X → 2X be upper semi-continuous

such that for each x ∈ X, S(x) is a non-empty closed convex bounded subset of

X and T : X → 2E
∗

be upper semi-continuous from the relative topology of X

to the strong topology of E∗ such that for each x ∈ X, T (x) is a non-empty

compact convex subset of E∗. Further assume that (1) the set
∑

2 = {y ∈ X :

supx∈S(y) infu∈T (y)Re〈u, y − x〉 > 0} is open; (2) there exists a non-empty subset

X0 contained in a compact convex subset X1 of X such that for each y ∈ X \X1

there exists an x ∈ X0 such that infu∈T (y)Re〈u, y − x〉 > 0.

Then there exists ŷ ∈ X such that (i) ŷ ∈ S(ŷ); (ii) there exists a point ẑ ∈ T (ŷ)

such that Re(ẑ, ŷ − x) ≤ 0 for all x ∈ S(ŷ).

Proof. We shall prove the result essentially by following the idea used in Theorem

5.34 (see also Theorem 3 of Shih and Tan (Shih and Tan (1985, p. 340)).

First we show that there exists a point ŷ ∈ X such that ŷ ∈ S(ŷ and

sup
x∈S(ŷ)

inf
z∈T (ŷ)

Re〈z, ŷ − x〉 ≤ 0.

Suppose the assertion were false. Then for each y ∈ X , either y /∈ S(y) or there ex-

ists x ∈ S(y) such that infz∈T (y)Re〈z, y−x〉 > 0. Observe that whenever y /∈ S(y),

there exists p ∈ E∗ such that Re〈p, y〉− supx∈S(y)Re〈p, x〉 > 0. For each y ∈ X , we

set α(y) := supx∈S(y) infz∈T (y)Re〈z, y − x〉, V0 = {y ∈ X : α(y)} and V (p) := {y ∈
X : Re〈p, y〉−supx∈S(y)Re〈p, x〉 > 0} for each P ∈ E∗. By the condition (2) and the

same argument used in the Proof of Theorem 5.34, there exists p1, p2, . . . , pn ∈ E∗

such that X1 ⊂ ∪nn=1V (pi). Thus X = V0 ∪ ∪ni=1V (pi).Let β0, β1, . . . , βn be a

partition of unity corresponding to the covering {V0, V (p1), V (p2), . . . , V (pn)} i.e.,

β0, β1, . . . , βn are continuous nonnegative real valued functions defined on X such

that βi vanishes out V (pi) for i = 1, 2, . . . , n and β0 vanishes outside V0 and∑n
i=0 βi(x) = 1 for all x ∈ X . We define f : X ×X → R by

f(x, y) = β0(y) inf
w∈T (y)

Re〈w, y − x〉 +

n∑

i=1

βi(y)Re〈pi, y − x〉,
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for each (x, y) ∈ X × X . Clear φ satisfies all hypotheses of Lemma 5.17, (with

f = g). By Lemma 5.17 there exists ŷ ∈ X such that f(x, ŷ) for all x ∈ X . This

contradicts that there is a point x̂ ∈ X with f(x̂, ŷ) > 0 can be achieved by using

the corresponding proof of Theorem 5.34 above.

Next, we shall show that there exists ẑ ∈ T (ŷ) such that Re〈ẑ, ŷM−V z〉 ≤ 0 for

all x ∈ S(ŷ). We define a mapping ψ : S(ŷ) × T (ŷ) → R by ψ(x, y) = Re〈z, ŷ − x)

for each (x, y) ∈ S(ŷ) × T (ŷ). Note that for each fixed x ∈ T (ŷ), z 7→ ψ(x, z)

is continuous and affine; and for each fixed z ∈ T (ŷ), x 7→ ψ(x, z) is affine. By

Kneser’s minimax theorem (e.g., see Kneser (1952)), it follows that

min
z∈T (ŷ)

max
x∈S(ŷ)

ψ(x, z) = max
x∈S(ŷ)

min
z∈T (ŷ)

ψ(x, z).

Thus we have minz∈T (ŷ) supx∈S(ŷ)Re〈z, ŷ−x) ≤ 0. As T (ŷ) is compact, there exists

ẑ ∈ T (ŷ) such that Re〈ẑ, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and we complete the proof.

Assuming additional lower semi-continuity on S, the following theorem is

obtained:

Theorem 5.38 Let X be a non-empty closed bounded convex subset of a locally

convex Hausdorff topological space E. Let S : X → 2X be continuous such that for

each x ∈ X, S(x) is a non-empty closed convex bounded subset of X and T : X →
2E

∗

be upper semi-continuous from the relative topology of X to the strong topology

of E∗ such that for each x ∈ X, T (x) is a non-empty compact convex subset of E∗.
Further assume that there exists a non-empty subset X0 contained in a compact

convex subset X1, of X such that for each y ∈ X \X1, there exists an x ∈ X0 such

that infu∈T (y)Re〈u, y − x〉 > 0.

Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ);

(ii) there exists a point ẑ ∈ T (y) such that Re〈ẑ, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

Proof. Note that X is bounded. By the upper semi-continuity of T and lower

semi-continuity of S, it follows that y 7→ supx∈s(y) infu∈T (y)Re〈u, y − x〉 is lower

semi-continuous by III-Propositions 19 and 21 of Aubin and Ekeland (1984, pp. 118,

119). Thus the set
∑

2 of Theorem 5.37 is open in X and the conclusion follows by

Theorem 5.37.

Remark 5.21 For the study of variational inequalities and its various appli-

cations in Banach spaces, the interested readers are referred to Browder (1963),

Browder (1968), Ding and Tarafdar (1996), Tan and Yuan (1994) and references

therein.

5.7.2 Applications to Minimization Problems

As applications of variational inequalities which have been established by Tarafdar

and Yuan in the previous sections, we shall now present another result of Tarafdar
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and Yuan for the existence of solutions for a minimization problem.

inf
x∈E

f(x) (5.80)

where f is the sum of two extended real-valued functions g, h : E → (−∞,+∞)

and E is a normed space. Before we prove the existence of solutions for (5.80), we

recall the following definition of subdifferential (e.g., see Aubin and Ekeland (1984,

p. 187):

Definition 5.9 Let X be a non-empty convex subset of a topological vector

space E. Suppose f : X → (−∞,+∞) is a function with non-empty domain. If

x0 ∈ Dom f , the “subdifferential ∂f(x0) of f at x0,” is the subset (which may be

empty) of E∗ defined by

∂f(x0) = {p ∈ E∗ : f(x0) − f(x) ≤ 〈p, x0 − x〉 for all x ∈ X}. (5.81)

The elements p ∈ ∂f(x0) are also called subgradients. Also p0 ∈ ∂f(x0) if and

only if f∗∗(x0) = f(x0) (see, e.g., Aubin and Ekeland Aubin and Ekeland (1984,

pp. 216, 217)).

The following simple Proposition shows that the existence of solutions of vari-

ational inequalities guarantee sufficiently the existence of the minimizers for the

minimization problem (5.80).

Proposition 5.3 Let X be a non-empty convex subset of a Hausdorff topo-

logical vector space E. Suppose f = g + h is the sum of a convex function g

and a subdifferential function h defined on a non-empty convex subset X, i.e.,

g, h : X → (−∞,+∞]. Then a point x̂ ∈ X minimizes f if there exists p ∈ ∂h(x̂)

such that

sup
x∈X

[〈p, x̂− x) + g(x̂) − g(x)] ≤ 0. (5.82)

Proof. Suppose there exists p ∈ ∂h(x̂) such that (p, x̂ − x) + g(x̂) − g(x) ≤ 0 for

all x ∈ X . Then we have that

f(x̂) − f(x) = h(x̂) − h(x) + g(x̂) − g(x) ≤ (p, x̂− x) + g(x̂) − g(x) ≤ 0

for all x ∈ X . Thus x̂ minimizes f and the proof is complete.

Now we have the following general existence theorem which guarantee the exis-

tence of minimizers for the minimization problem (5.80).

Theorem 5.39 Let f : E → R be a subdifferentiable function such that the

mapping T : E → 2E
∗

defined by T (x) = ∂f(x) for each x ∈ X is lower semi-

continuous from the topology of E to the strong topology of E∗. Further assume that

there exists a non-empty subset X0 contained in a compact convex subset X1, of X
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such that for each y ∈ E \X1 there exists an x ∈ X0 such that supu∈T (x)〈u, y−x〉 >
0. Then there exists a point ŷ ∈ E such that

sup
w∈T (ŷ)

Re〈w, ŷ − x) ≤ 0

for all y ∈ E, i.e., ŷ minimizes f on E. Furthermore, for each u ∈ T (ŷ), ŷ ∈
T−1(u) = ∂f∗(u),and f(ŷ) = f∗∗(ŷ), where f∗ : E∗ → (−∞,+∞) is defined by

f∗(u) = sup
u∈E

[(u, x) − f(x)]

for each x ∈ X.

Proof. By Corollary 5.35.2, there exists ŷ ∈ X such that

sup
w∈T (ŷ)

Re〈w, ŷ − x) ≤ 0

for all x ∈ X , i.e., for each u ∈ T (ŷ), we have (u, ŷ−x) ≤ 0 for all u ∈ T (ŷ) = ∂f(ŷ).

Hence ŷ minimizes f on E. The result follows easily from our discussion above.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarafdar and Yuan (1997a).

5.8 Some Results of Tarafdar and Yuan on Generalized Variational

Inequalities in Locally Convex Topological Vector Spaces

The results of this section will be established on topological vector spaces E

(respectively, locally convex topological vector spaces E) which are Hausdorff. If X

is a nonempty set, we shall denote by 2X the family of all subsets of X .

Ding (Ding (1991, Theorem 2.2)) proved the following existence theorem of

solutions for generalized variational inequalities (the proof in an English version

can also be found in the Appendix of Ding and Tarafdar (1996)). He used this

result in studying the existence of solutions of generalized complementarity problems

(GCP (f,K)) for quasi-monotone mappings (definition follows) in general settings.

Theorem 5.40 Let K be a nonempty convex subset of a Hausdorff locally convex

topological vector space E which is of second category . Let f : K → 2E
∗

be a quasi-

monotone mapping such that f is upper semi-continuous from the line segments in

K to the weak∗ topology of E∗ and each f(x) is nonempty compact convex in the

strong topology on E∗. Suppose that there exist nonempty weakly compact convex

subset K0 of K and nonempty weakly compact subset D of K such that for each

y ∈ K\D, there exists x ∈ co(K0 ∪ {y}) with

Re〈y − x, u〉 > 0, for all u ∈ f(x).
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Then there exists a point ŷ ∈ K such that

inf
v∈f(ŷ)

Re(ŷ − x, v) ≤ 0, for all x ∈ K.

If in addition, f(ŷ) is also convex, then there exists v̂ ∈ f(ŷ) such that

Re〈x− ŷ, v̂) ≥ 0 for all x ∈ K

that is, (ŷ, v̂) is a solution of GVIP(f,K).

We recall that a topological space X is said to be of second category if X cannot

be expressed as the union of a sequence of nowhere dense sets [see Rudin (1973),

p. 41]). Of course, each Banach space is of second category. However, a topological

vector space (respectively, a locally convex topological vector space) need not be of

second category in general.

As Theorem 5.40 above has found many applications in the study of variational

theory itself, mathematical programming and operations research such as comple-

mentarity problems, and so on, it is our purpose in this note to generalize Theorem

5.40 to locally convex topological vector spaces (hence, which need not be of sec-

ond category). Our generalization of GVIP(f,K) includes corresponding results of

Cottle and Yao (1992), Saigal (1976), Fang and Peterson (1982), Harker and Pang

(1990), Siddiqi and Ansari (1989), Shih and Tan (1988b), Tan and Yuan (1994),

and Zhou and Chen (1988) as special cases.

Let X and Y be topological spaces and f : X → 2Y . Then f is said to be upper

semi-continuous (in short, u.s.c.) on X if for each x0 ∈ X and any open set V

in Y containing f(x0), there exists an open neighborhood U of x0 ∈ X such that

f(x) ⊂ V for all x ∈ U . If X is a topological space and f : X → R ∪ {−∞,+∞}
is an extended real valued function. Then f is said to be compactly lower semi-

continuous if f is lower semi-continuous on each nonempty compact subset of its

domain X .

Definition 5.10 Let K be a nonempty subset of a topological vector space E

and f : K → 2E
∗

a set-valued mapping with nonempty values. Then f is said to

be (1) monotone if for each x, y ∈ K, u ∈ f(x), and v ∈ f(y), Re〈x− y, u− v〉 ≥ 0;

(2) pseudo-monotone (see Saigal (1976), p. 263, Definition 3.4]) if for each x, y ∈ K,

u ∈ f(x), and v ∈ f(y), Re〈x − y, v〉 ≥ 0 implies Re〈x − y, u〉 ≥ 0; (3) quasi-

monotone (compare with Ding (1991)) if for each x, y ∈ K,

inf
v∈f(y)

Re〈x− y, v〉 ≥ 0 implies inf
u∈f(y)

Re〈x− y, u〉 ≥ 0

Clearly, each monotone mapping is pseudo-monotone, and Proposition 3.2 of [Kara-

mardian and Schaible (1990), p. 39] shows that the definition (3) above is a set-

valued generalization of the definition (2) for a single-valued mapping.

Let X be a nonempty convex subset of a topological vector space and ψ : X ×
X → R ∪ {−∞,+∞} an extended real-valued function. We also recall that (see
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[Zhou and Chen (1988)]) ψ is said to be 0-diagonal quasi-concave in y if for each

A ∈ F(X) and x0 ∈ co(A), we have miny∈Aψ(x0, y) ≤ 0.

Let ψ(x, x) ≤ 0 for each x ∈ X . It is clear that if ψ(x, y) is quasi-concave in y

for each x ∈ X , ψ(x, y) is 0-diagonal concave in y; but the converse does not hold

by Remark 2.2 of Zhou and Chen (1988, p. 215).

5.8.1 Some Generalized Variational Inequalities

We shall now present some results of Yuan and Tarafdar on existence theorem of

GVIP(f,K) for quasi-monotone set-valued mappings in locally convex Hausdorff

topological vector spaces.

Theorem 5.41 Let K be nonempty convex subset of a locally convex Hausdorff

topological vector space E with E∗ 6= ∅ (hence, E need not be of second category).

Let f : K−2E
∗

be a quasi-monotone mapping such that f is upper semi-continuous

from the line segments in K to the weak∗ topology of E∗ and each f(x) is nonempty

compact in the strong topology on E∗. Suppose that there exist nonempty weakly

compact convex subset K0 of K and nonempty weakly compact subset D of K such

that for each y ∈ K\D, there exists x ∈ co(K0 ∪ {y}) with

Re〈y − x, u〉 ≥ 0, for all u ∈ f(x).

Then there exists a point ŷ ∈ K such that

inf
v∈f(ŷ)

Re〈ŷ − x, v〉 ≤ 0, for all x ∈ K.

If, in addition, f(ŷ) is also convex, then there exists v̂ ∈ f(ŷ) such that

Re〈x− ŷ, v̂) ≥ 0, for all x ∈ K,

that is, (ŷ, v̂) is a solution of GVIP(f,K).

Remark 5.22 Theorem 5.41 shows that Theorem 5.40 above still holds without

the assumption that E is of secondary category, thus Theorem 5.41 includes Theo-

rem A of Ding (1991) as a special case. To prove Theorem 5.41, Tarafdar and Yuan

used the following generalization of the Ky Fan minimax principle which is due to

Ding and Tan (1992b).

Lemma 5.21 Let K be a nonempty convex subset of a Hausdorff topological

vector space E and ψ : X×X → R∪{−∞,+∞} be an extended real-valued function

such that

(1) for each fixed x ∈ K, y 7→ ψ(x, y) is compactly lower semi-continuous;

(2) for each A ∈ F(X ) and y0 ∈ co(A), minx∈A ψ(x, y0) ≤ 0;

(3) there exist a nonempty compact and convex subset K0 of K and a nonempty

compact subset D of K such that for each y ∈ K\D, there exists x ∈ co(K0 ∪
{x}) with ψ(x, y) > 0.
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Then there exists ŷ ∈ D such that supx∈X ψ(x, ŷ) ≤ 0.

Tarafdar and Yuan also used the following result which was originally proved by

[Tan and Yuan (1994), Lemma 8].

Lemma 5.22 Let K be a nonempty convex subset of a topological vector space

E and T : K → 2E
∗

be upper semi-continuous from the line segments in K to the

weak∗ topology E∗ such that each T (x) is nonempty weak∗-compact. If ŷ ∈ K, then

the inequality

inf
u∈T (x)

Re〈u, ŷ − x〉 ≤ 0, for all x ∈ K

implies the inequality

inf
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0, for all x ∈ K

Lemma 5.23 Let K be a nonempty convex subset of a topological vector space

E and f : K → 2E
∗

a set-valued quasi-monotone mapping with nonempty values.

Then the mapping ψ : K ×K → R ∪ {−∞,+∞} defined by

ψ(x, y) := inf
u∈f(y)

Re〈u, x− y〉,

for each (x, y) ∈ K ×K is 0-diagonal concave in y for each fixed x ∈ K.

By combining Lemmas 5.21, 5.22 and 5.23 Tarafdar and Yuan proved Theorem

5.41 as follows:

Proof of Theorem 5.41. Define a mapping ϕ : K × K → R by ϕ(x, y) :=

inf
u∈f(x)

Re〈u, y − x〉, for each (x, y) ∈ K ×K. Then we have

(a) for each fixed y ∈ K, ϕ(x, y) is 0-diagonal concave in x by Lemma 5.14 as f

is quasi-monotone;

(b) for each x ∈ K, the function y 7→ ϕ(x, y) is weakly lower semi-continuous on

each weakly compact subset A of K.

Note that E is locally convex, and for each x ∈ K and for any nonempty weakly

compact subset A of K, A − x is weakly bounded and hence, by Rudin (1973,

Theorem 3.18), A − x is strongly bounded in E. Now we only need to prove

that for each fixed x ∈ K and for any real number λ ∈ R the set Aλ = {y ∈ A :

infu∈f(x)Re〈y−x, u〉 ≤ λ} is weakly closed. Let {yα}α∈Γ ⊂ Aλ be a net, y0 ∈ A and

yα ⇀ y0. Since f(x) is strong-compact, for each α ∈ Γ, there exists an uα ∈ f(x)

such that

Re〈yα − x, uα〉 = inf
u∈f(x)

Re〈yα − x, u〉 ≤ λ,

and there exists a subnet {uβ} of {uα}α∈Γ, such that uβ → u0 ∈ f(x). Let B =

{yα − y : α ∈ Γ} ∪ {y0}. Then B is strongly bounded. For any given ε > 0, let
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W (B, ε) = {u ∈ E∗ : supy∈B |〈y, u− u0〉| < ε/3}, then W = W (B, ε) is a strongly

open neighborhood of u0 in E∗. Let U = {y ∈ A : |〈y − y0, u〉| < ε/3}, It follows

that U is a weakly open neighborhood of y0 in A. Choose β0 ∈ Γ such that for all

β ≥ β0,uβ ∈W and yβ ∈ U . It follows that

|Re〈yβ − x, uβ〉 −Re〈y0 − x, u0〉| ≤ |〈yβ − y0, uβ − u0〉| + |〈y0 − x, uβ − u0〉|
(5.83)

+ |〈yβ − y0, u0〉| <
ε

3
+
ε

3
+
ε

3
= ε, (5.84)

and so limβ∈ΓRe〈yβ − x, uβ〉 = Re〈y0 − x, u0〉.
Hence, we have

inf
u∈f(x)

Re〈y0 − x, u〉 ≤ Re〈y0 − x, u0〉 = lim
β∈Γ

Re〈yβ − x, uβ〉 ≤ λ,

i.e., y0 ∈ Aλ and Aλ is weakly closed in A. This shows that for each x ∈ K,y 7→
ϕ(x, y) is weakly lower semi-continuous on each weakly compact subset A of K.

(c) There exists a nonempty weakly compact convex subset K0 of K and a

nonempty weakly compact subset D of K such that for each y ∈ K\D, there exists

x ∈ co(K0 ∪ {y}) with

Re〈y − x, u〉 > 0, for allu ∈ f(x).

Since f(x) is strongly compact, therefore ϕ(x, y) = infu∈f(x)Re〈y − x, u〉 > 0.

Now equip E with the weak topology, and we see that all hypotheses of Lemma

5.21 hold. Hence, it follows that there exists an ŷ ∈ K such that

ϕ(x, ŷ) = inf
u∈f(x)

Re〈ŷ − x, u〉 ≤ 0, for allx ∈ K. (5.85)

By Lemma 5.22, we have that

ϕ(x, ŷ = inf
u∈f(ŷ)

Re〈ŷ − x, u〉 ≤ 0, for allx ∈ K.

Finally, if f(ŷ) is convex, define g : K × f(ŷ) → R by

g(x, v) = Re(ŷ − x, v).

Then for each x ∈ K, v 7→ g(x, v) is weak∗ continuous and affine and for each

v ∈ f(ŷ), x 7→ g(x, y) is also affine. By the minimax theorem of Kneser (1952) (see

also Aubin (1979)),

min
v∈f(ŷ)

sup
x∈K

Re〈ŷ − x, v〉 = sup
x∈K

min
v∈f(ŷ)

Re〈ŷ − x, v〉 ≤ 0.

Since f(ŷ) is norm compact, there exists v̂ ∈ f(ŷ) such that Re〈ŷ − x, v̂〉 ≤ 0,

for all x ∈ K, and so Re〈x − ŷ, v̂〉 ≥ 0, for all x ∈ K, i.e., (ŷ, v̂) is a solution of

GIVP(f,K) �
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Remark 5.23 Tarafdar and Yuan noted that Theorem 5.41 not only showed that

Theorem 5.40 of Ding Ding (1991) was true without the assumption that E is of

secondary category, but it also showed that the conclusion of Theorem 5.40 can hold

in topological vector spaces instead of locally convex topological vector spaces. By

following the same ideas used in literature such as Ding (1991), Ding and Tarafdar

(1996), Cottle and Yao (1992), Saigal (1976), Harker and Pang (1990), Siddiqi and

Ansari (1989), Tan and Yuan (1994), Aubin (1979), Karamardian (1971) and so on,

a number of existence theorems of GVIP(f,K) and GCP(f,K) can be proved in

which the underlying spaces are not of secondary category.

Tarafdar and Yuan also discussed the difference between their Theorem 5.41 and

Theorem 1 of Cubiotti (1993) (which was an extension of Cubiotti (1992, Theorem

2.1), which also concerned the existence of solutions for GQVI in finite dimensional

spaces). First, it was noted that Cublotti’s coercive condition (iii) of Theorem 1 in

Cubiotti (1993) was different from ours in Theorem 5.41. Secondly, the set-valued

mapping f in Theorem 5.41 was quasi-monotone and upper semi-continuous (thus

it may not be lower semi-continuous); however, the corresponding set-valued map-

ping Γ of Theorem 1 in Cubiotti (1993) was lower semi-continuous and its graph

was closed (hence, it may not be quasi-monotone nor upper semi-continuous). Fur-

thermore, the underlying space E of Theorem 5.41 was a locally convex topological

vector space which may be finite or infinite-dimensional, but the underlying space of

Theorem 1 (see also Cubiotti (1992, Theorem 2.41)), was finite dimensional. Thus,

Theorem 5.41 and Theorem 1 of Cubiotti (1993) (see also Cubiotti (1993, Theorem

2.4)), were independent of each other.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarafdar and Yuan (1997c).

5.9 Generalized Variational Inequalities for Quasi-Monotone and

Quasi-Semi-Monotone Operators

Chowdhury and Tan obtained some existence theorems of generalized variational

inequalities with applications to existence theorems of generalized complementarity

problems and fixed point theorems in Hilbert spaces. Their main results are listed

as Theorems 5.45, 5.50, 5.54, 5.58, 5.66, 5.67 and 5.68.

We note that all topological vector spaces are not assumed to be Hausdorff

unless explicitly stated.

In obtaining the results of this section, Chowdhury and Tan mainly used the

following Ky Fan’s infinite dimensional generalization of the classical Knaster–

Kuratowski–Mazurkiewicz Theorem [Knaster et al. (1929)]:

Theorem 5.42 (Fan (1961, Lemma 1)) Let E be a topological vector space, X

and Y be non-empty subsets of E such that X ⊂ Y and Y is convex. Suppose
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F : X → 2Y is such that

(a) F is a KKM -map;

(b) for each x ∈ X, F (x) is closed in Y ;

(c) there exists x0 ∈ X such that F (x0) is compact.

Then ∩x∈XF (x) 6= ∅.

The following result is equivalent to the celebrated 1972 Ky Fan’s minimax

inequality [Fan (1972), Theorem 1]:

Theorem 5.43 Let E be a topological vector space and X be a non-empty com-

pact convex subset of E. Let f be a real-valued function defined on X × X such

that

(a) for each x ∈ X, f(x, x) ≤ 0;

(b) for each fixed x ∈ X, f(x, y) is a lower semicontinuous function of y on X;

(c) for each fixed y ∈ X, f(x, y) is a quasi-concave function of x on X.

Then there exists ŷ ∈ X such that f(x, ŷ) ≤ 0 for all x ∈ X.

Ky Fan’s minimax inequality has become a versatile tool in nonlinear functional

analysis [Fan (1972)], convex analysis, game theory and economic theory [Aubin

(1982)]. There have been numerous generalizations of Ky Fan’s minimax inequality

by weakening the compactness assumption or the convexity assumption; e.g., due

to [Allen (1977), Bae et al. (1993), H. Brézis and Stampacchia (1972), Ding and

Tan (1992b), Shih and Tan (1984), Tan [27], Tan and Yuan [30], Yen [31] and Fan

himself [17].

Kneser’s minimax theorem (Kneser (1952, pp. 2418–2420), see also Aubin (1979,

pp. 40–41)) will also be used in obtaining some results of this section:

Theorem 5.44 Let X be a non-empty convex subset of a vector space and Y be

a non-empty compact convex subset of a Hausdorff topological vector space. Suppose

that f is a real-valued function on X × Y such that for each fixed x ∈ X, f(x, y) is

lower semicontinuous and convex on Y and for each fixed y ∈ Y, f(x, y) is concave

on X. Then

min
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).

The following definitions were introduced by Chowdhury and Tan in their paper

Chowdhury and Tan (1997b):

Definition 5.11 Let E be a topological vector space, X be a non-empty convex

subset of E and T : X → 2E
∗

. Then T is said to be

(a) lower hemicontinuous on X if and only if for each p ∈ E, the function

fp : X → R ∪ {+∞}, defined by

fp(z) = sup
u∈T (z)

Re〈u, p〉 for each z ∈ X,
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is lower semicontinuous on X (if and only if for each p ∈ E, the function gp : X →
R ∪ {−∞}, defined by

gp(z) = inf
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is upper semicontinuous on X);

(b) upper hemicontinuous on X if and only if for each p ∈ E, the function

fp : X → R ∪ {+∞}, defined by

fp(z) = sup
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is upper semicontinuous on X (if and only if for each p ∈ E, the function gp : X →
R ∪ {−∞}, defined by

gp(z) = inf
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is lower semicontinuous on X).

It is observed that if X is convex, then the notions of lower hemicontinuity along

line segments in X and upper hemicontinuity along line segments in X are indepen-

dent of the vector topology τ on E as long as τ is Hausdorff and the continuous dual

E∗ remains unchanged. Note also that if T , S : X → 2E
∗

are lower (respectively,

upper) hemicontinuous and α ∈ R, then T + S and αT are also lower (respectively,

upper) hemicontinuous.

Proposition 5.4 Let E be a topological vector space and X be a non-empty

convex subset of E. Let T : X → 2E
∗

be lower semicontinuous from relative topology

on X to the weak∗ topology σ〈E∗, E〉 on E∗. Then T is lower hemicontinuous

on X.

Proof. For each fixed p ∈ E, define fp : X → R ∪ {+∞} by

fp(z) = sup
u∈T (z)

Re〈u, p〉 for each z ∈ X.

Fix any p ∈ E. Let λ ∈ R be given and let A = {z ∈ X : fp(z) > λ}. Take any

z0 ∈ A. Then fp(z0) = supu∈T (z0)Re〈u, p〉 = supu∈T (z0)Re p̂(u) > λ. Choose any

u0 ∈ T (z0) such that Re p̂(u0) > λ. Thus (Re p̂)−1(λ,∞) ∩ T (z0) 6= ∅ where (Re

p̂)−1(λ,∞) is a weak∗ open set in E∗. Since T is lower semicontinuous at z0, there

exists an open neighborhood Nz0 of z0 in X such that T (z) ∩ (Re p̂)−1(λ,∞) 6= ∅
for all z ∈ Nz0 . Hence fp(z) = supu∈T (z)Re p̂(u) = supu∈T (z)Re〈u, p〉 > λ for all

z ∈ Nz0 . Thus Nz0 ⊂ A. Consequently, fp is lower semicontinuous on X . Hence T

is lower hemicontinuous on X .

The converse of Proposition 5.4 is not true in general as was observed by Chowd-

hury and Tan in their paper Chowdhury and Tan (1997b):
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Example 5.7 Let X = [0, 1] and E = R. Then E∗ = R. Let T : X → 2E
∗

be

defined by

T (x) =

{ {1, 3}, if x < 1,

{1, 2, 3}, if x = 1.

If p ∈ E and p ≥ 0, the function fp : X → R ∪ {+∞}, defined by fp(z) =

supu∈T (z)Re〈u, p〉 = 3p for each z ∈ X , is continuous. If p ∈ E and p < 0, the

function fp : X → R ∪ {+∞}, defined by fp(z) = supu∈T (z)Re〈u, p〉 = p for each

z ∈ X , is also continuous. Thus T is lower (and upper) hemicontinuous on X .

But T is not lower semicontinuous (along line segments) in X . Indeed, let x0 = 1

and U = ( 3
2 ,

5
2 ), then U is an open set in R such that U ∩T (x0) = {2} 6= ∅. But for

any open neighborhood V of x0 in X and for any x ∈ V with x 6= x0, U ∩T (x) = ∅.
This shows that T is not lower semicontinuous (along line segments) in X .

Proposition 5.5 Let E be a topological vector space and X be a non-empty

convex subset of E. Let T : X → 2E
∗

be upper semicontinuous from relative topology

on X to the weak∗ topology σ〈E∗, E〉 on E∗. Then T is upper hemicontinuous

on X.

Proof. For each fixed p ∈ E, define fp : X → R ∪ {+∞} by

fp(z) = sup
u∈T (z)

Re〈u, p〉, for each z ∈ X.

Fix any p ∈ E. Let λ ∈ R be given and let A = {z ∈ X : fp(z) < λ}. Take any

z0 ∈ A. Then fp(z0) = supu∈T (z0)Re〈u, p〉 = supu∈T (z0)Re p̂(u) < λ. Thus there

exists ε > 0 such that fp(z0) < λ − ε < λ. Therefore Re p̂(u) < λ − ε < λ for all

u ∈ T (z0). Hence T (z0) ⊂ (Re p̂)−1(−∞, λ − ε) which is weak∗ open in E∗. Since

T is upper semicontinuous at z0, there exists an open neighborhood Nz0 of z0 in X

such that T (z) ⊂ (Re p̂)−1(−∞, λ− ε) for all z ∈ Nz0 . Thus Re p̂(u) < λ− ε for all

u ∈ T (z) and for all z ∈ Nz0 . Hence supu∈T (z)Re p̂(u) ≤ λ− ε < λ for all z ∈ Nz0 ;

i.e., fp(z) = supu∈T (z)Re〈u, p〉 ≤ λ − ε < λ for all z ∈ Nz0 . Therefore Nz0 ⊂ A so

that A is open in X . Consequently, fp is upper semicontinuous on X . Hence T is

upper hemicontinuous on X .

The converse of Proposition 5.5 is not true in general as was observed by Chowd-

hury and Tan in their paper Chowdhury and Tan (1997b):

Example 5.8 Let E = R2 and X = {(x, y) ∈ R2 : x2 + y2 ≤ 1 and x, y > 0}.
Define f, g : X → 2E

∗

by

f(rcosθ, rsinθ) = {(tcosθ, tsinθ) : r ≤ t ≤ 2} for all r ∈ (0, 1), θ ∈ (0,
π

2
),

and

g(x, y) = {(z, 0) : z ≥ x} for all (x, y) ∈ X.
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Then f and g are upper semicontinuous on X so that f and g are upper hemicon-

tinuous on X by Proposition 2.4 and hence f + g is also upper hemicontinuous.

However it is easy to see that f+g is not upper semicontinuous along line segments

in X .

Chowdhury and Tan introduced the following definitions in Chowdhury and Tan

(1997b):

Definition 5.12 Let E be a topological vector space, X be a non-empty subset

of E and T : X → 2E
∗

. If h : X → R, then T is said to be

(1) h-quasi-monotone if for each x, y ∈ X , infw∈T (y)Re〈w, y−x〉+h(y)−h(x) > 0

whenever supu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0;

(2) quasi-monotone if T is h-quasi-monotone with h ≡ 0;

(3) h-quasi-semi-monotone if for each x, y ∈ X , infw∈T (y)Re〈w, y − x〉 + h(y) −
h(x) > 0 whenever infu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0;

(4) quasi-semi-monotone if T is h-quasi-semi-monotone with h ≡ 0.

Clearly, monotonicity implies quasi-monotonicity, but the converse is not

true. Moreover, quasi-monotonicity does not imply semi-monotonicity and semi-

monotonicity does not imply quasi-monotonicity. For examples please see Chowd-

hury and Tan’s paper (Chowdhury and Tan (1997a))

Clearly, semi-monotonicity implies quasi-semi-monotonicity and quasi-

monotonicity implies quasi-semi-monotonicity; but the converses are not true in

general as shown in Chowdhury and Tan (1997a).

Definition 5.13 Let (E, ‖ · ‖) be a normed space and X be a non-empty subset

of E. Then T : X → 2E
∗

is quasi-non-expansive if for each x, y ∈ X , each u ∈ T (x)

and each w ∈ T (y), Re〈w − u, y − x〉 ≤ ‖y − x‖2
.

It is clear that if T is single-valued and non-expansive (i.e., ‖T (x) − T (y)‖ ≤
‖x − y‖ for all x, y ∈ X), then T is quasi-non-expansive. The converse is false in

general as shown in Chowdhury and Tan (1997a).

In what follows, ifH is a Hilbert space, we shall denote by I the identity operator

on H ; i.e., I(x) = x for all x ∈ H .

The following is a proposition in Chowdhury and Tan (1997a):

Proposition 5.6 If X is a non-empty subset of a Hilbert space H and T : X →
2H , then T is quasi-non-expansive if and only if I − T is monotone.

Proof. Suppose T is quasi-non-expansive. Let x, y ∈ X be given and choose any

u0 ∈ T (x). Then for each w ∈ T (y),

Re〈y − w, y − x〉 = Re〈y − x+ x− u0 + u0 − w, y − x〉 (5.86)

= ‖y − x‖2 +Re〈x− u0, y − x〉 +Re〈u0 − w, y − x〉 (5.87)

≥ Re〈x− u0, y − x〉 (5.88)
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since T is quasi-non-expansive. Thus infw∈T (y)Re〈y−w, y−x〉 ≥ Re〈x−u0, y−x〉.
As u0 ∈ T (x) is arbitrary, infw∈T (y)Re〈y − w, y − x〉 ≥ supu∈T (x)Re〈x− u, y − x〉;
i.e.,

inf
w∈(I−T )(y)

Re〈w, y − x〉 ≥ sup
u∈(I−T )(x)

Re〈u, y − x〉.

Thus I − T is monotone.

Conversely, suppose I − T is monotone. Then for each x, y ∈ X,u ∈ T (x) and

w ∈ T (y), Re〈(y − w) − (x− u), y − x〉 ≥ 0 so that Re〈w − u, y − x〉 = Re〈w − y +

y − x+ x− u, y− x〉 = Re〈w − y, y − x〉 + ‖y − x‖2 +Re〈x− u, y− x〉 ≤ ‖y − x‖2.

Thus T is quasi-non-expansive.

Proposition 5.6 is a generalization of Proposition 1 in Browder (1967).

Definition 5.14 Let (E, ‖ · ‖) be a normed space and X be a non-empty

subset of E. Then T : X → 2E
∗

is semi-non-expansive if for each x, y ∈ X ,

infu∈T (x) supw∈T (y)Re〈w − u, y − x〉 ≤ ‖y − x‖2.

The following is another proposition in Chowdhury and Tan (1997a):

Proposition 5.7 If X is a non-empty subset of a Hilbert space H and T : X →
2H , then T is semi-non-expansive if and only if I − T is semi-monotone.

It is clear from definitions that a quasi-non-expansive operator is semi-non-

expansive. The converse does not hold in general (for an example please see

Chowdhury and Tan (1997a)).

Then by Propositions 5.6 and 5.7, the operator S = I−T is semi- non-expansive

but not quasi-non-expansive.

The proof of Lemma 2 in Shih and Tan (1986) (see also Tan (1994, Lemma

2.4.1), can be easily modified to give the following simple but useful result which

was first given by Karamardian for single-valued operators in Karamardian (1971,

Lemma 3.1):

Lemma 5.24 Let X be a cone in a topological vector space E and T : X → 2E
∗

.

Then the following statements are equivalent:

(a) There exists ŷ ∈ X such that supw∈T (ŷ)Re〈w, ŷ − x〉 ≤ 0 for all x ∈ X.

(b) There exists ŷ ∈ X such that Re〈w, ŷ〉 = 0 for all w ∈ T (ŷ) and T (ŷ) ⊂ X̂.

A result of S. C. Fang (e.g. see Chan and Pang (1982) and Shih and Tan (1986,

p. 59), can be modified as follows (see also Tan (1994, Lemma 2.4.2)):

Lemma 5.25 Let X be a cone in a topological vector space E and T : X → 2E
∗

.

Then the following statements are equivalent:

(a) There exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ 0 for all x ∈ X.

(b) There exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.
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The following simple result is Lemma 2.1.6 in [Tan (1994)]:

Lemma 5.26 Let E be a topological vector space and A be a non-empty bounded

subset of E. Let C be a non-empty strongly compact subset of E∗. Define f : A→ R

by f(x) = minu∈C Re〈u, x〉 for all x ∈ A. Then f is weakly continuous on A.

5.9.1 Generalization of Ky Fan’s Minimax Inequality

We shall begin with the following result which generalizes Theorem 5.43 in several

aspects:

Theorem 5.45 Let E be a topological vector space, X be a non-empty convex

subset of E and f, g : X ×X → R ∪ {−∞,+∞} be such that

(a1) for each x, y ∈ X, f(x, y) > 0 implies g(x, y) > 0;

(b1) for each fixed x ∈ X, y 7−→ f(x, y) is lower semicontinuous on non-empty

compact subsets of X;

(c1) for each A ∈ F(X ) and for each y ∈ co(A), minx∈A g(x, y) ≤ 0;

(d1) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that g(x0, y) > 0 for all y ∈ X \K.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

Proof. Define F : X → 2K by

F (x) = {y ∈ K : f(x, y) ≤ 0} for all x ∈ X.

Note that by (b1), each F (x) is closed in K. We shall first show that the family

{F (x) : x ∈ X} has the finite intersection property. Indeed, let {x1, . . . , xn} be any

finite subset of X . Set C = co({x0, x1, . . . , xn}), then C is non-empty compact

convex. Note that by (c1), g(x, x) ≤ 0 for all x ∈ X . Define G : C → 2C

by G(x) = {y ∈ C : g(x, y) ≤ 0} for all x ∈ C. We observe that: (i) if A

is any finite subset of C, then co(A) ⊂ ∪x∈AG(x); for if this were false, then

there exist a finite subset {z1, . . . , zm} of C and z ∈ co({z1, . . . , zm}) with z /∈
∪mj=1G(zj) so that g(zj , z) > 0 for all j = 1, . . . ,m which contradicts (c1); (ii) for

each x ∈ C, c`C(G(x)) is closed in C and is therefore also compact. By Theorem

5.42, ∩x∈Cc`C(G(x)) 6= ∅. Take any ȳ ∈ ∩x∈Cc`C(G(x)). Note that x0 ∈ C and

G(x0) ⊂ K by (d1); thus ȳ ∈ c`C(G(x0)) ⊂ c`X(G(x0)) = c`K(G(x0)) ⊂ K. Since

we also have ȳ ∈ ∩nj=1c`C(G(xj )) and for each j = 1, . . . , n, c`C(G(xj)) = c`C({y ∈
C : g(xj , y) ≤ 0}) ⊂ c`C({y ∈ C : f(xj , y) ≤ 0}) = {y ∈ C : f(xj , y) ≤ 0} by (a1)

and (b1), we have f(xj , ȳ) ≤ 0 for all j = 1, . . . , n and hence ȳ ∈ ∩nj=1F (xj).

Therefore {F (x) : x ∈ X} has the finite intersection property.

By compactness of K, ∩x∈XF (x) 6= ∅. Take any ŷ ∈ ∩x∈XF (x), then ŷ ∈ K

and f(x, ŷ) ≤ 0 for all x ∈ X .

The following fixed point theorem is equivalent to Theorem 5.45:
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Theorem 5.46 Let E be a topological vector space, X be a non-empty convex

subset of E and F,G : X → 2X ∪ {∅} be such that

(a2) for each x ∈ X, F (x) ⊂ G(x);

(b2) for each x ∈ X, F−1(x) is compactly open (i.e., F−1(x) ∩ C is open in C for

each non-empty compact subset C of X);

(c2) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that X \K ⊂ G−1(x0);

(d2) for each x ∈ K, F (x) 6= ∅,
(e2) for each x ∈ X, G(x) is convex.

Then there exists ȳ ∈ X such that ȳ ∈ G(ȳ).

To show Theorem 5.45 implies Theorem 5.46:

Define f, g : X ×X → R by

f(x, y) =

{
1, if x ∈ F (y),

0, if x 6∈ F (y),

g(x, y) =

{
1, if x ∈ G(y),

0, if x 6∈ G(y)

for all x, y ∈ X . It is easy to see that the conditions (a1), (b1) and (d1) of Theorem

5.45 are satisfied. If the hypothesis (c1) of Theorem 5.45 is also satisfied, then by

Theorem 5.45, there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X . It follows

that F (ŷ) = ∅ which is impossible. Thus the hypothesis (c1) of Theorem 5.45 does

not hold. Hence there exist A ∈ F(X ) and ȳ ∈ co(A) such that minx∈A g(x, ȳ) > 0

so that x ∈ G(ȳ) for all x ∈ A. Therefore ȳ ∈ co(A) ⊂ G(ȳ) by (e2).

To show Theorem 5.46 implies Theorem 5.45:

Define F,G : X → 2X ∪ {∅} by F (y) = {x ∈ X : f(x, y) > 0} and G(y) =

co({x ∈ X : g(x, y) > 0}) for all y ∈ X . It is easy to see that the conditions (a2),

(b2), (c2) and (e2) of Theorem 5.46 are satisfied. If the hypothesis (d2) of Theorem

5.46 is also satisfied, then by Theorem 3.2, here exists ȳ ∈ X such that ȳ ∈ G(ȳ).

But then there exist x1, . . . , xn ∈ X , λ1, . . . , λn ∈ [0, 1] such that g(xi, ȳ) > 0 for

all i = 1, . . . , n,
∑n

i=1 λi = 1 and ȳ =
∑n

i=1 λixi. This contradicts (c1) because

ȳ ∈ co(A), where A = {x1, . . . , xn}. Hence the hypothesis (d2) of Theorem 5.46

does not hold. Thus there exists ŷ ∈ K such that F (ŷ) = ∅. It follows that

f(x, ŷ) ≤ 0 for all x ∈ X .

Note that Theorem 5.46 is Theorem 2.4′ in [Tan and Yuan (1993)].

Clearly, Theorem 5.45 implies the following result which is Theorem 2.2 in [Tan

and Yuan (1993)]:

Theorem 5.47 Let X be a non-empty convex subset of a topological vector space

and φ, ψ : X ×X → R ∪ {−∞,∞} be such that



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

348 Topological Methods of Set-Valued Nonlinear Analysis

(a) φ(x, y) ≤ ψ(x, y) for each (x, y) ∈ X ×X;

(b) for each fixed x ∈ X, y 7−→ φ(x, y) is lower semicontinuous on non-empty

compact subsets of X;

(c) for each A ∈ F(X ) and for each y ∈ co(A), minx∈A ψ(x, y) ≤ 0;

(d) there exist a non-empty closed and compact subset K of X and x0 ∈ X such

that ψ(x0, y) > 0 for all y ∈ X \K.

Then there exists y ∈ K such that φ(x, y) ≤ 0 for all x ∈ X.

It is shown in Tan and Yuan (1993) that Theorem 5.47 implies the following

result which is Theorem 2.4 in Tan and Yuan (1993):

Theorem 5.48 Let X be a non-empty convex subset of a topological vector space

and φ, ψ : X ×X → R ∪ {−∞,+∞} be such that

(a) φ(x, y) ≤ ψ(x, y) for each (x, y) ∈ X ×X and ψ(x, x) ≤ 0 for each x ∈ X;

(b) for each fixed x ∈ X, y 7−→ φ(x, y) is lower semicontinuous on non-empty

compact subsets of X;

(c) for each fixed y ∈ X, the set {x ∈ X : ψ(x, y) > 0} is convex;

(d) there exist a non-empty closed and compact subset K of X and a point x0 ∈ X

such that ψ(x0, y) > 0 for all y ∈ X \K.

Then there exists ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X.

It is shown in [Tan and Yuan (1993)] that Theorem 5.48 is equivalent to Theorem

5.46. Thus Theorems 5.45, 5.46 (Theorem 2.4′ in [Tan and Yuan (1993)]), 5.47

(Theorem 2.2 in Tan and Yuan (1993)) and 5.48 (Theorem 2.4 in [Tan and Yuan

(1993)]) above are all equivalent and are also equivalent to Theorems 2.2′, 2.2′′,
2.3′′′, 2.4′′, 2.4′′′, 2.4′′′′ and 2.4′′′′′ in [Tan and Yuan (1993)]. Note however that

the equivalence of Theorem 2.2 in [Tan and Yuan (1993)] and Theorem 2.4 in [Tan

and Yuan (1993)] was not established in [Tan and Yuan (1993)]. Note also that

Theorem 5.47 does not imply Theorem 5.45 directly and Theorem 5.48 does not

imply Theorems 5.45 and 5.47 directly. For applications to existence of equilibrium

points of generalized games, we refer to Tan and Yuan (1993).

5.9.2 Generalized Variational Inequalities

Applying Theorem 5.45 Chowdhury and Tan obtained some existence theorems

of generalized variational inequalities(GVI). As applications of these GVI some

existence theorems of generalized complementarity problems(GCP) were obtained.

Maximality of monotone operators, and surjectivity of monotone or semi-monotone

operators will be dealt with at the end of this section.

The following is a result in Chowdhury and Tan (1997a):

Lemma 5.27 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be convex and T : X → 2E
∗

be lower hemicontinuous
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along line segments in X. Suppose ŷ ∈ X is such that supu∈T (x)Re〈u, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ X. Then

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

Proof. Suppose that supu∈T (x)Re〈u, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ X . Let x ∈ X

be arbitrarily fixed. Let zt = tx+(1−t)ŷ = ŷ−t(ŷ−x) for all t ∈ [0, 1]. Then zt ∈ X

as X is convex. Let L = {zt : t ∈ [0, 1]}. Thus supu∈T (zt)Re〈u, ŷ−zt〉 ≤ h(zt)−h(ŷ)
for all t ∈ [0, 1]. Therefore supu∈T (zt)Re〈u, ŷ − x〉 ≤ h(x) − h(ŷ) for all t ∈ (0, 1].

Since T is lower hemicontinuous on L, the function fŷ−x : L → R ∪ {+∞},
defined by

fŷ−x(zt) = sup
u∈T (zt)

Re〈u, ŷ − x〉 for each zt ∈ L,

is lower semicontinuous on L. Thus the set A = {zt ∈ L : fŷ−x(zt) ≤ h(x) − h(ŷ)}
is closed in L. Now zt → ŷ in L as t → 0+. Since zt ∈ A for all t ∈ (0, 1] we

have ŷ ∈ A. Hence fŷ−x(ŷ) = supu∈T (ŷ)Re〈u, ŷ− x〉 ≤ h(x) − h(ŷ). Since x ∈ X is

arbitrary, we have supw∈T (ŷ)Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X .

The following is another result in Chowdhury and Tan (1997a):

Lemma 5.28 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be convex and T : X → 2E
∗

be upper hemicontinuous

along line segments in X. Suppose ŷ ∈ X is such that infu∈T (x)Re〈u, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ X. Then

inf
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

Note that if E is a locally convex space, X is a non-empty convex subset of E

and h : X → R is convex, then h is lower semicontinuous on X if and only if h is

weakly lower semicontinuous on X .

Lemma 5.29 Let E be a topological vector space, X be a non-empty convex

subset of E and h : E → R be convex. Suppose ŷ ∈ X and ŵ ∈ E∗ are such that

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X, then Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all

x ∈ IX (ŷ).

Proof. Let x ∈ IX (ŷ) be arbitrarily fixed; then x = ŷ + r(u − ŷ) for some u ∈ X

and r > 0.

Case 1. Suppose 0 < r ≤ 1, then x = ru + (1 − r)ŷ ∈ X as X is convex and

u, ŷ ∈ X . By assumption, we have Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ).

Case 2. Suppose r > 1, then u = (1 − 1
r )ŷ + 1

rx. Since u ∈ X , by assumption
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again, we have

1

r
Re〈ŵ, ŷ − x〉 = Re〈ŵ, ŷ − u〉 (5.89)

≤ h(u) − h(ŷ) ≤ (1 − 1

r
)h(ŷ) +

1

r
h(x) − h(ŷ) (5.90)

=
1

r
(h(x) − h(ŷ)) (5.91)

so that Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ).

Thus in either case, Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX (ŷ).

Theorem 5.49 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be convex and weakly lower semicontinuous on weakly

compact subsets of X and T : X → 2E
∗

be h-quasi-monotone. Suppose there exist a

non-empty weakly compact and weakly closed subset K of X and x0 ∈ K such that

infw∈T (y)Re〈w, y − x0〉 + h(y) − h(x0) > 0 for all y ∈ X \ K. Then there exists

ŷ ∈ K such that supu∈T (x)Re〈u, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

Proof. Define f, g : X ×X → R by

f(x, y) = sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x),

g(x, y) = inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)

for all x, y ∈ X . Then we have the following:

(1) For each x, y ∈ X , since T is h-quasi-monotone, f(x, y) > 0 implies

g(x, y) > 0.

(2) For each fixed x ∈ X , y 7−→ f(x, y) is weakly lower semicontinuous on

non-empty weakly compact subsets of X .

(3) For each A ∈ F(X ) and y ∈ co(A), minx∈A g(x, y) ≤ 0. Indeed, if this

were false, then for some A = {x1, . . . , xn} ∈ F(X ) and some y ∈ co(A), say y =∑n
i=1 λixi where λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, such that min1≤i≤n g(xi, y) > 0.

Then for each i = 1, . . . , n, infw∈T (y)Re〈w, y − xi〉 + h(y) − h(xi) > 0 so

that 0 = g(y, y) = infw∈T (y)Re〈w, y − ∑n
i=1 λixi〉 + h(y) − h(

∑n
i=1 λixi) ≥∑n

i=1 λi(infw∈T (y)Re〈w, y − xi〉 + h(y) − h(xi)) > 0, which is a contradiction.

(4) K is a weakly compact and weakly closed subset of X and x0 ∈ K such that

for all y ∈ X \K, g(x0, y) > 0.

Equip E with the weak topology. Then f and g satisfy all the hypotheses of

Theorem 5.45 so that by Theorem 5.45, there exists ŷ ∈ K such that f(x, ŷ) ≤ 0

for all x ∈ X ; i.e., supu∈T (x)Re〈u, ŷ − x〉 + h(ŷ) − h(x) ≤ 0 for all x ∈ X .

Theorem 5.50 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be convex and weakly lower semicontinuous on weakly
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compact subsets of X and T : X → 2E
∗

be h-quasi-monotone and lower hemi-

continuous along line segments in X to the weak∗-topology on E∗. Suppose there

exist a non-empty weakly compact and weakly closed subset K of X and x0 ∈ K

such that infw∈T (y)Re〈w, y − x0〉 + h(y) − h(x0) > 0 for all y ∈ X \ K. Then

there exists ŷ ∈ K such that supw∈T (ŷ)Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

Moreover, if h is defined on all of E and is convex, then supw∈T (ŷ)Re〈w, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ IX (ŷ).

Proof. By Theorem 5.49, there exists ŷ ∈ K such that supu∈T (x)Re〈u, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ X .

Since h is convex and T is lower hemicontinuous along line segments in X , by

Lemma 5.27, we have

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X. (5.92)

Now if h is defined on all of E and is convex, then by (5.92) and Lemma 5.29, we

have

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX (ŷ).

It was noted that Theorem 5.47 (i.e., Theorem 2.2 in [Tan (1994)]) cannot be

applied directly to prove Theorem 5.50.

Remark 5.24 Theorem 5.50. improves Theorem 3 of Shih and Tan in Shih and

Tan (1984, pp. 283–285), in the following ways:

(1) f is h-quasi-monotone instead of monotone;

(2) f is lower hemicontinuous along line segments instead of lower semicontinuous

along line segments in X .

Theorem 5.51 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E, h : X → R be convex and lower semicontinuous on

weakly compact subsets of X and T : X → 2E
∗

be h-quasi-monotone and lower

hemicontinuous along line segments in X to the weak topology on E∗. Suppose

there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 + h(y) − h(x0) > 0. (5.93)

Then there exists ŷ ∈ X such that supw∈T (ŷ)Re〈w, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ X.

Moreover, if h is defined on all of E and is convex, then supw∈T (ŷ)Re〈w, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ IX (ŷ).

Proof. Let α = lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 + h(y) − h(x0). Then by (4.2), α > 0.

Let M > 0 be such that ‖x0‖ ≤M and infw∈T (y)Re〈w, y− x0〉+ h(y)− h(x0) >
α
2
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for all y ∈ X with ‖y‖ > M . Let K = {x ∈ X : ‖x‖ ≤M}; then K is a non-empty

weakly compact subset of X . Note that for any y ∈ X \ K, infw∈T (y)Re〈w, y −
x0〉 + h(y) − h(x0) >

α
2 > 0. The conclusion now follows from Theorem 5.50.

By taking h ≡ 0 in Theorem 5.50 and applying Lemma 5.24, Chowdhury and Tan

obtained the following existence theorem of a generalized complementarity problem

in Chowdhury and Tan (1997a):

Theorem 5.52 Let X be a cone in a topological vector space E. Let T : X → 2E
∗

be quasi-monotone and lower hemicontinuous along line segments in X to the weak∗-
topology on E∗. Suppose there exist a non-empty weakly compact and weakly closed

subset K of X and x0 ∈ K such that infw∈T (y)Re〈w, y−x0〉 > 0 for all y ∈ X \K.

Then there exists ŷ ∈ K such that Re〈w, ŷ〉 = 0 for all w ∈ T (ŷ) and T (ŷ) ⊂ X̂.

By taking h ≡ 0 in Theorem 5.51 and applying Lemma 5.24 (or by the same

argument as in the proof of Theorem 5.51 and by Theorem 5.52), Chowdhury and

Tan obtained the following existence theorem of a generalized complementarity

problem in Chowdhury and Tan (1997a):

Theorem 5.53 Let (E, ‖ · ‖) be a reflexive Banach space, X be a closed cone

in E and T : X → 2E
∗

be quasi-monotone and lower hemicontinuous along line

segments in X to the weak topology on E∗. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 > 0.

Then there exists ŷ ∈ X such that Re〈w, ŷ〉 = 0 for all w ∈ T (ŷ) and T (ŷ) ⊂ X̂.

Theorem 5.54 Let E be a Hausdorff topological vector space, X be a non-

empty convex subset of E, h : X → R be convex and weakly lower semicontinuous

on weakly compact subsets of X and T : X → 2E
∗

be h-quasi-monotone and upper

hemicontinuous along line segments in X to the weak∗ topology on E∗ such that each

T (x) is weak∗ compact convex. Suppose there exist a non-empty weakly compact and

weakly closed subset K of X and x0 ∈ K such that infw∈T (y)Re〈w, y−x0〉+h(y)−
h(x0) > 0 for all y ∈ X \ K. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ X. Moreover, if h is defined on all of E and

is convex, then Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX (ŷ).

Proof. By Theorem 5.49, there exists ŷ ∈ K such that supu∈T (x)Re〈u, ŷ − x〉 +

h(ŷ)−h(x) ≤ 0 for all x ∈ X . It follows that infu∈T (x)Re〈u, ŷ−x〉+h(ŷ)−h(x) ≤
0 for all x ∈ X. Since h is convex and T is upper hemicontinuous, by Lemma

5.28, infw∈T (ŷ)Re〈w, ŷ − x〉 + h(ŷ) − h(x) ≤ 0 for all x ∈ X .

Define φ : X × T (ŷ) → R by φ(x,w) = Re〈w, ŷ − x〉 + h(ŷ) − h(x) for all

(x,w) ∈ X × T (ŷ). Then for each fixed x ∈ X , w 7−→ φ(x,w) is weak∗ lower

semicontinuous and convex and for each fixed w ∈ T (ŷ), x 7−→ φ(x,w) is concave.
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By Theorem 5.44,

min
w∈T (ŷ)

sup
x∈X

φ(x,w) = sup
x∈X

min
w∈T (ŷ)

φ(x,w) ≤ 0.

Since T (ŷ) is weak∗-compact, there exists ŵ ∈ T (ŷ) such that

sup
x∈X

φ(x, ŵ) = min
w∈T (ŷ)

sup
x∈X

φ(x,w) ≤ 0.

Therefore

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X. (5.94)

Now suppose h is defined on all of E and is convex. Then by (5.94) and Lemma

5.29,

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX (ŷ).

Remark 5.25 Theorem 5.54 extends Theorem 5 of Bae-Kim-Tan in Bae et al.

(1993, pp. 238–240), in the following ways:

(1) E∗ is not equipped with strong topology,

(2) T is h-quasi-monotone instead of semi-monotone,

(3) each T (x) is weak∗-compact instead of strongly compact,

(4) T is upper hemicontinuous along line segments instead of upper semi-

continuous along line segments in X .

Note however that the coercive conditions in Theorem 5.54 here and in Theorem 5

of [Bae et al. (1993)] are not comparable.

Theorem 5.55 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E, h : X → R be convex and lower semicontinuous on

weakly compact subsets of X and T : X → 2E
∗

be h-quasi-monotone and upper

hemicontinuous along line segments in X to the weak topology on E∗ such that each

T (x) is weakly compact convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 + h(y) − h(x0) > 0.

Then there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all

x ∈ X. Moreover, if h is defined on all of E and is convex, then Re〈ŵ, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ IX (ŷ).

Proof. By using the same argument in the proof of Theorem 5.51 and by Theorem

5.54, the conclusion follows.

By taking h ≡ 0 in Theorem 5.54 and applying Lemma 5.25 Chowdhury and Tan

obtained the following existence theorem of a generalized complementarity problem

in Chowdhury and Tan (1997a):
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Theorem 5.56 Let X be a cone in a Hausdorff topological vector space E. Let

T : X → 2E
∗

be quasi-monotone and upper hemicontinuous along line segments

in X to the weak∗-topology on E∗ such that each T (x) is weak∗-compact convex.

Suppose there exist a non-empty weakly compact and weakly closed subset K of X

and x0 ∈ K such that infw∈T (y)Re〈w, y − x0〉 > 0 for all y ∈ X \K. Then there

exist ŷ ∈ K and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

By taking h ≡ 0 in Theorem 5.55 and applying Lemma 5.25 (or by a similar

argument in proving Theorem 5.51 and by Theorem 5.56), Chowdhury and Tan

obtained the following existence theorem of a generalized complementarity problem

in Chowdhury and Tan (1997a):

Theorem 5.57 Let (E, ‖ · ‖) be a reflexive Banach space, X be a closed cone

in E and T : X → 2E
∗

be quasi-monotone and upper hemicontinuous along line

segments in X to the weak topology on E∗ such that each T (x) is weakly compact

convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 > 0.

Then there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

Theorem 5.58 Let E be a Hausdorff locally convex topological vector space,

X be a non-empty convex subset of E, h : X → R be convex and weakly lower

semicontinuous on weakly compact subsets of X and T : X → 2E
∗

be h-quasi-semi-

monotone and upper hemicontinuous along line segments in X to the weak∗-topology
on E∗ such that each T (x) is strongly compact convex. Suppose there exist a non-

empty weakly compact subset K of X and x0 ∈ K such that for each y ∈ X \K,

minw∈T (y)Re〈w, y − x0〉 + h(y) − h(x0) > 0. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ)

such that Re〈ŵ, ŷ− x〉 ≤ h(x)− h(ŷ) for all x ∈ X. Moreover, if h is defined on all

of E and is convex, then Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX(ŷ).

Proof. Define f, g : X ×X :→ R ∪ {−∞,+∞} by

f(x, y) = min
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x),

g(x, y) = min
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)

for all x, y ∈ X . Then we have the following:

(1) For each x, y ∈ X , since T is h-quasi-semi-monotone, f(x, y) > 0 implies

g(x, y) > 0.

(2) For each fixed x ∈ X , since T (x) is strongly compact, by Lemma 5.26,

y 7−→ f(x, y) is weakly lower semicontinuous on non-empty bounded subsets of X

and hence also weakly lower semicontinuous on weakly compact subsets of X .
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(3) For each A ∈ F(X ) and y ∈ co(A), minx∈A g(x, y) ≤ 0 by using the same

argument in the proof of (3) in proving Theorem 5.49.

(4) By assumption, K is a weakly compact and weakly closed subset of X and

x0 ∈ K such that for each y ∈ X \K, minw∈T (y)Re〈w, y − x0〉 + h(y) − h(x0) > 0,

i.e., g(x0, y) > 0.

Equip E with the weak topology. Then f and g satisfy all the hypotheses of

Theorem 3.1 so that by Theorem 5.45, there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for

all x ∈ X ; i.e., minu∈T (x)Re〈u, y − x〉 + h(y) − h(x) ≤ 0 for all x ∈ X . Since h is

convex and T is upper hemicontinuous, by Lemma 5.28, we have

min
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

By following the same argument as in proving Theorem 5.54, the conclusion

follows.

Remark 5.26 Theorem 5.58 extends Theorem 5 of Bae-Kim-Tan in [Bae et al.

(1993), pp. 238–240] in the following ways:

(1) T is upper hemicontinuous along line segments instead of upper semicontin-

uous along line segments in X ,

(2) T is h-quasi-semi-monotone instead of semi-monotone.

Note however that the coercive conditions in Theorem 4.15 here and in Theorem

5 of [Bae et al. (1993)] are not comparable.

Theorem 5.59 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E, h : X → R be convex and lower semicontinuous on

weakly compact subsets of X and T : X → 2E
∗

be h-quasi-semi-monotone and

upper hemicontinuous along line segments in X to the weak topology on E∗ such

that each T (x) is compact convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 + h(y) − h(x0) > 0.

Then there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all

x ∈ X. Moreover, if h is defined on all of E and is convex, then Re〈ŵ, ŷ − x〉 ≤
h(x) − h(ŷ) for all x ∈ IX (ŷ).

Proof. By using the same argument in the proof of Theorem 4.7 and by Theorem

4.15, the conclusion follows.

By taking h ≡ 0 in Theorem 5.58 and applying Lemma 5.25, Chowdhury and Tan

obtained the following existence theorem of a generalized complementarity problem

in Chowdhury and Tan (1997a):

Theorem 5.60 Let X be a cone in a Hausdorff locally convex topological vector

space E. Let T : X → 2E
∗

be quasi-semi-monotone and upper hemicontinuous along

line segments in X to the weak∗-topology on E∗ such that each T (x) is strongly
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compact convex. Suppose there exist a non-empty weakly compact subset K of X

and x0 ∈ K such that for each y ∈ X \K, minw∈T (y)Re〈w, y−x0〉 > 0. Then there

exist ŷ ∈ K and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

Theorem 5.61 Let (E, ‖ · ‖) be a reflexive Banach space, X be a closed cone in

E and T : X → 2E
∗

be quasi-semi-monotone and upper hemicontinuous along line

segments in X to the weak topology on E∗ such that each T (x) is compact convex.

Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 > 0.

Then there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

It is observed that in all generalized variational inequalities and generalized

complementarity problems stated above, (1) when T is lower hemicontinuous along

line segments, T is only required to have non-empty values, (2) when T is upper

hemicontinuous along line segments and quasi-monotone, T is required to have

weak∗-compact-convex values and (3) when T is upper hemicontinuous along line

segments and quasi-semi-monotone, T is required to have strongly-compact-convex

values.

Next maximality of monotone operators will be discussed briefly:

Let X be a non-empty subset of a topological vector space E; then T : X → 2E
∗

is maximal monotone if T is monotone and if T ∗ : X → 2E
∗

is monotone such that

T (x) ⊂ T ∗(x) for all x ∈ X , then T = T ∗.

Theorem 5.62 Let E be a topological vector space and T : E → 2E
∗

be monotone

and lower (respectively, upper) hemicontinuous along line segments in E such that

each T (x) is weak∗ compact convex. Then T is maximal monotone.

Proof. Let T ∗ : E → 2E
∗

be monotone such that T (x) ⊂ T ∗(x) for all x ∈
X . Let y0 ∈ E be arbitrarily fixed and let w0 ∈ T ∗(y0). Since T ∗ is monotone,

for each x ∈ E and each u ∈ T ∗(x), Re〈u − w0, y0 − x〉 ≤ 0. It follows that

supu∈T (x)Re〈u−w0, y0−x〉 ≤ 0 for all x ∈ E. By Lemma 5.27 (respectively, Lemma

5.28), supw∈T (y0)Re〈w−w0, y0−x〉 ≤ 0 (respectively, infw∈T (y0)Re〈w−w0, y0−x〉 ≤
0) for all x ∈ E. Thus supx∈E infw∈T (y0)Re〈w−w0, y0 −x〉 ≤ 0. By Theorem 5.44,

infw∈T (y0) supx∈E Re〈w − w0, y0 − x〉 ≤ 0. Since T (y0) is weak∗ compact, there

exists ŵ ∈ T (y0) such that supx∈E Re〈ŵ −w0, y0 − x〉 = infw∈T (y0) supx∈E Re〈w −
w0, y0 − x〉 ≤ 0. Therefore w0 = ŵ ∈ T (y0). Since w0 ∈ T ∗(y0) is arbitrary,

T (y0) = T ∗(y0). Since y0 ∈ E is also arbitrary, we conclude that T = T ∗. Hence T

is maximal monotone.

Theorem 5.62 improves Lemma 3 of [Shih and Tan (1988a)] in several aspects.

Finally, Chowdhury and Tan introduced some results on the surjectivity of mono-

tone or semi-monotone operators in Chowdhury and Tan (1997a).
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Theorem 5.63 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E and T : X → 2E
∗

be monotone and lower hemicontinuous

along line segments in X to the weak topology on E∗. Suppose there is x0 ∈ X such

that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉/‖y‖ = ∞.

Then for each given w0 ∈ E∗, there exist ŷ ∈ X such that supw∈T (ŷ)Re〈w−w0, ŷ−
x〉 ≤ 0 for all x ∈ X. In particular, when X = E, then T is surjective; in fact, for

each w ∈ E∗, there is y ∈ E such that T (y) = {w}.

Proof. Let w0 ∈ E∗ be given. Then

lim
‖y‖→∞
y∈X

( inf
w∈T (y)

Re〈w − w0, y − x0〉/‖y‖) (5.95)

= lim
‖y‖→∞
y∈X

(( inf
w∈T (y)

Re〈w, y − x0〉/‖y‖)− ‖w0‖) = ∞. (5.96)

Define T ∗ : X → 2E
∗

by T ∗(x) = T (x) − w0 for all x ∈ X . Then T ∗ is monotone

and lower hemicontinuous along line segments in X to the weak topology on E∗

and

lim
‖y‖→∞
y∈X

inf
w∈T∗(y)

Re〈w, y − x0〉/‖y‖ = ∞.

Therefore by Theorem 5.51, there exist ŷ ∈ X such that supw∈T∗(ŷ)Re〈w, ŷ−x〉 ≤ 0

for all x ∈ X . That is, supw∈T (ŷ)Re〈w − w0, ŷ − x〉 ≤ 0 for all x ∈ X . Now if

X = E, then w − w0 = 0 so that w0 = w for all w ∈ T (ŷ) and hence T (ŷ) = {w0}.
This shows that T is surjective such that for each w ∈ E∗, there is y ∈ E with

T (y) = {w}.

Theorem 5.64 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E and T : X → 2E
∗

be monotone and upper hemicontinuous

along line segments in X to the weak topology on E∗ such that each T (x) is weakly

compact convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉/‖y‖ = ∞.

Then for each given w0 ∈ E∗, there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ −
w0, ŷ − x〉 ≤ 0 for all x ∈ X. In particular, if X = E, then T is surjective.
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Proof. Let w0 ∈ E∗ be given. Then

lim
‖y‖→∞
y∈X

( inf
w∈T (y)

Re〈w − w0, y − x0〉/‖y‖) (5.97)

= lim
‖y‖→∞
y∈X

(( inf
w∈T (y)

Re〈w, y − x0〉/‖y‖)− ‖w0‖) = ∞. (5.98)

Define T ∗ : X → 2E
∗

by T ∗(x) = T (x) − w0 for all x ∈ X . Then T ∗ is monotone

and upper hemicontinuous along line segments in X to the weak topology on E∗

such that each T ∗(x) is weakly compact convex and

lim
‖y‖→∞
y∈X

inf
w∈T∗(y)

Re〈w, y − x0〉/‖y‖ = ∞.

Therefore by Theorem 5.55, there exist ŷ ∈ X and w̄ ∈ T ∗(ŷ) such that Re〈w̄, ŷ −
x〉 ≤ 0 for all x ∈ X . But then there exists ŵ ∈ T (ŷ) with w̄ = ŵ − w0 so that

Re〈ŵ − w0, ŷ − x〉 ≤ 0 for all x ∈ X . Now if X = E, then ŵ − w0 = 0 so that

w0 = ŵ ∈ T (ŷ). This shows that T is surjective.

By using an argument similar to the proof of Theorem 5.64 and by applying

Theorem 5.59 (instead of Theorem 5.55), the following surjectivity of semi-monotone

operators was obtained in Chowdhury and Tan (1997a):

Theorem 5.65 Let (E, ‖·‖) be a reflexive Banach space, X be a non-empty closed

convex subset of E and T : X → 2E
∗

be semi-monotone and upper hemicontinuous

along line segments in X to the weak topology on E∗ such that each T (x) is compact

convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉/‖y‖ = ∞.

Then for each given w0 ∈ E∗, there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ −
w0, ŷ − x〉 ≤ 0 for all x ∈ X. In particular, if X = E, then T is surjective.

It is observed that the proofs of Theorems 5.63 and 5.64 are slight modification

of the proof of Theorem 2 in [Shih and Tan (1988a)] and improve Theorem 2 in

[Shih and Tan (1988a)] from upper semicontinuous along line segments to lower or

upper hemicontinuous along line segments.

5.9.3 Fixed Point Theorems

Applying the main results from Subsection 5.9.2, namely, Theorems 5.50, 5.54 and

5.58, Chowdhury and Tan obtained some fixed point theorems in Chowdhury and

Tan (1997a) for operators which are either quasi-monotone, quasi-semi-monotone

or quasi-non-expansive.
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In all the ramining results, H will denote a Hilbert space with inner product

〈·, ·〉 and the corresponding induced norm ‖ · ‖, and bc(H) will denote the family

of all non-empty bounded closed subsets of H . If X is a non-empty subset of H ,

we shall denote by ∂H(X) the boundary of X in H . If x ∈ H and r > 0, let

Br(x) = {y ∈ H : ‖x− y‖ < r}. If d is the metric on H induced by the norm ‖ · ‖,
let D be the Hausdorff metric on bc(H) induced by d. Recall that T : X → bc(H)

is non-expansive if D(T (x), T (y)) ≤ ‖x− y‖ for all x, y ∈ X .

Let K be a non-empty closed convex subset of H . For each x ∈ H , there is a

unique point πK(x) inK such that ‖x−πK(x)‖ = infz∈K ‖x−z‖. πK(x) is called the

projection of x on K and is characterized as follows Kinderlehrer and Stampacchia

(1980, Theorem 1.2.3, p. 9):

Proposition 5.8 Let K be a non-empty closed convex subset of H. Then for

each x ∈ H and y ∈ K, y = πK(x) if and only if Re〈x− y, z− y〉 ≤ 0 for all z ∈ K.

As an application of Theorem 5.50, Chowdhury and Tan obtained the following

fixed point theorem in Chowdhury and Tan (1997a):

Theorem 5.66 Let X be a non-empty convex subset of H and T : X → 2H be

lower hemicontinuous along line segments in X such that each T (x) is closed convex

and I−T is quasi-monotone. Suppose there exist a non-empty weakly compact subset

K of X and x0 ∈ K such that for each y ∈ X \K, infw∈T (y)Re〈y−w, y− x0〉 > 0.

Then there exists ŷ ∈ K such that Re〈ŷ−w, ŷ−x〉 ≤ 0 for all x ∈ IX (ŷ) and for all

w ∈ T (ŷ). Moreover, if either ŷ ∈ intH(X) or πT (ŷ)(ŷ) ∈ IX(ŷ), then ŷ is a fixed

point of T .

Proof. EquipH with the weak topology. Since T is lower hemicontinuous along line

segments in X , I−T : X → 2H is also lower hemicontinuous along line segments in

X and satisfies all the hypotheses of Theorem 5.50 with h ≡ 0. Hence by Theorem

5.50, there exists ŷ ∈ K such that supw∈T (ŷ)Re〈ŷ−w, ŷ−x〉 ≤ 0 for all x ∈ IX (ŷ).

By continuity, we have

Re〈ŷ − w, ŷ − x〉 ≤ 0 for all x ∈ IX (ŷ) and for all w ∈ T (ŷ). (5.99)

Case 1. Suppose ŷ ∈ intH(X). Fix an arbitrary ŵ ∈ T (ŷ). Take any r > 0 such that

Br(ŷ) ⊂ X . Then for each z ∈ H with z 6= ŷ, let u = ŷ+ r
2 ·

ŷ−z
‖ŷ−z‖ , then u ∈ Br(ŷ) ⊂

X ⊂ IX (ŷ). By (5.1), Re〈ŷ − ŵ, r2 · z−ŷ
‖ŷ−z‖ 〉 ≤ 0 so that r

2‖ŷ−z‖Re〈ŷ − ŵ, z − ŷ〉 ≤ 0

and hence Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 for all z ∈ H.

It follows that Re〈ŷ− ŵ, z〉 = 0 for all z ∈ H so that ŷ = ŵ ∈ T (ŷ). As ŵ ∈ T (ŷ)

is arbitrary, we conclude that in fact T (ŷ) = {ŷ}.
Case 2. Suppose p := πT (ŷ)(ŷ) ∈ IX (ŷ). Fix an arbitrary ŵ ∈ T (ŷ). By Proposition
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5.1, we have p ∈ T (ŷ) and Re〈ŷ − p, ŵ − p〉 ≤ 0. Thus

0 ≤ Re〈p− ŷ, ŵ − p〉 (5.100)

= Re〈p− ŷ, ŵ − ŷ + ŷ − p〉 (5.101)

= Re〈p− ŷ, ŵ − ŷ〉 − ‖ŷ − p‖2
. (5.102)

Therefore ‖ŷ − p‖2 ≤ Re〈ŷ − ŵ, ŷ − p〉 ≤ 0 by (5.1) as p ∈ IX(ŷ). Thus ŷ = p =

πT (ŷ)(ŷ) ∈ T (ŷ).

As it can be seen in an Example in Chowdhury and Tan (1997a), if we define

T : R+ → bc(R) by T (x) = [−x, 0] for all x ∈ R+, then I − T is quasi-monotone

but not monotone.

The following result follows from Theorem 5.46 and Proposition 5.6:

Corollary 5.66.1 Let X be a non-empty convex subset of H and T : X → 2H be

quasi-non-expansive and lower hemicontinuous along line segments in X such that

each T (x) is closed and convex. Suppose there exist a non-empty weakly compact

subset K of X and x0 ∈ K such that (i) for each y ∈ K ∩ ∂H(X), πT (y)(y) ∈ IX (y)

and (ii) for each y ∈ X \K, infw∈T (y)Re〈y − w, y − x0〉 > 0. Then T has a fixed

point in K.

Corollary 5.66.2 Let X be a non-empty bounded closed convex subset of H

and T : X → 2H be quasi-non-expansive and lower hemicontinuous along line

segments in X such that each T (x) is closed and convex. If πT (y)(y) ∈ IX (y) for

each y ∈ ∂H(X), then T has a fixed point in X.

Corollary 5.66.3 Let X be a non-empty bounded closed convex subset of H and

T : X → 2X be quasi-non-expansive and lower hemicontinuous along line segments

in X such that each T (x) is closed and convex. Then T has a fixed point in X.

As an application of Theorem 5.54, Chowdhury and Tan obtained the following

fixed point theorem in Chowdhury and Tan (1997a):

Theorem 5.67 Let X be a non-empty convex subset of H and T : X → 2H

be upper hemicontinuous along line segments in X such that each T (x) is weakly

compact convex and I − T is quasi-monotone. Suppose there exist a non-empty

weakly compact subset K of X and x0 ∈ K such that for each y ∈ X \ K,

infw∈T (y)Re〈y − w, y − x0〉 > 0. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ) such

that Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ). Moreover, if either ŷ ∈ intH(X) or

πT (ŷ)(ŷ) ∈ IX (ŷ), then ŷ is a fixed point of T , i.e., ŷ ∈ T (ŷ).

Proof. Equip H with the weak topology. Since T is upper hemicontinuous along

line segments inX , I−T : X → 2H is also upper hemicontinuous along line segments

in X . Note that I−T satisfies all the hypotheses of Theorem 5.54 with h ≡ 0. Thus

by Theorem 5.54, there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that Re〈ŷ − ŵ, ŷ − x〉 ≤ 0
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for all x ∈ IX (ŷ). By continuity,

Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX (ŷ). (5.103)

Case 1. Suppose ŷ ∈ intH(X), then there exists r > 0 such that Br(ŷ) ⊂ X .

Then for each z ∈ H with z 6= ŷ, let u = ŷ + r
2 · ŷ−z

‖ŷ−z‖ , then u ∈ Br(ŷ) ⊂ X

⊂ IX(ŷ). Thus Re〈ŷ − ŵ, r2 · z−ŷ
‖ŷ−z‖ 〉 ≤ 0 so that r

2‖ŷ−z‖Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 and

hence Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 for all z ∈ H.

It follows that Re〈ŷ − ŵ, z〉 = 0 for all z ∈ H so that ŷ = ŵ ∈ T (ŷ).

Case 2. Suppose p := πT (ŷ)(ŷ) ∈ IX (ŷ). By Proposition 5.8, we have

p ∈ T (ŷ) and Re〈ŷ − p, w − p〉 ≤ 0 for all w ∈ T (ŷ). (5.104)

Since ŵ ∈ T (ŷ), by (5.104) we have

0 ≤ Re〈p− ŷ, ŵ − p〉 (5.105)

= Re〈p− ŷ, ŵ − ŷ + ŷ − p〉 (5.106)

= Re〈p− ŷ, ŵ − ŷ〉 − ‖ŷ − p‖2. (5.107)

Therefore ‖ŷ − p‖2 ≤ Re〈ŷ− ŵ, ŷ− p〉 ≤ 0 by (5.2). Thus ŷ = p = πT (ŷ)(ŷ) ∈ T (ŷ).

The following result follows from Theorem 5.67 and Proposition 5.6:

Corollary 5.67.1 Let X be a non-empty convex subset of H and T : X → 2H

be quasi-non-expansive and upper hemicontinuous along line segments in X such

that each T (x) is weakly compact convex. Suppose there exist a non-empty weakly

compact subset K of X and x0 ∈ K such that (i) for each y ∈ K∩∂H(X), πT (y)(y) ∈
IX (y) and (ii) for each y ∈ X \K, infw∈T (y)Re〈y − w, y − x0〉 > 0. Then T has a

fixed point in K.

Corollary 5.67.2 Let X be a non-empty bounded closed convex subset of H and

T : X → 2H be quasi-non-expansive and upper hemicontinuous along line segments

in X such that each T (x) is weakly compact convex. If πT (y)(y) ∈ IX (y) for each

y ∈ ∂H(X), then T has a fixed point in X.

Corollary 5.67.3 Let X be a non-empty bounded closed convex subset of H and

T : X → 2X be quasi-non-expansive and upper hemicontinuous along line segments

in X such that each T (x) is weakly compact convex. Then T has a fixed point in

X.

As an application of Theorem 5.58 with h ≡ 0 Chowdhury and Tan obtained

the following fixed point theorem in Chowdhury and Tan (1997a):

Theorem 5.68 Let X be a non-empty convex subset of H, T : X → 2H be upper

hemicontinuous along line segments in X such that each T (x) is compact convex

and I−T is quasi-semi-monotone. Suppose there exist a non-empty weakly compact
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subset K of X and x0 ∈ K such that for each y ∈ X\K, infw∈T (y)Re〈y−w, y−x0〉 >
0. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all

x ∈ IX(ŷ). Moreover, if either ŷ ∈ intH(X) or πT (ŷ)(ŷ) ∈ IX(ŷ), then ŷ is a fixed

point of T .

Proof. Equip H with the weak topology. Since T is upper hemicontinuous along

line segments in X , I − T : X → 2H is also upper hemicontinuous along line

segments in X and satisfies all the hypotheses of Theorem 4.15 with h ≡ 0. Hence

by Theorem 5.58, there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that Re〈ŷ − ŵ, ŷ − x〉 ≤ 0

for all x ∈ IX (ŷ). By continuity of ŵ, Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ). Now

the rest of the proof is similar to that of Theorem 5.6 and the conclusion follows.

Remark 5.27 Theorem 5.68 extends Theorem 6 of Bae-Kim-Tan in Bae et al.

(1993, pp. 242, 243), in the following ways:

(1) I − T is quasi-semi-monotone instead of T is pseudo-contractive [Bae et al.

(1993), p. 240];

(2) T is upper hemicontinuous along line segments instead of upper semicontinu-

ous along line segments in X .

Note however that the coercive conditions in our Theorem 5.68 here and in

Theorem 6 of [Bae et al. (1993)] are not comparable.

The following result is an immediate consequence of Theorem 5.68:

Theorem 5.69 Let X be a non-empty convex subset of H and T : X → 2H

be upper hemicontinuous along line segments in X such that each T (x) is compact

convex and I − T is quasi-semi-monotone. Suppose there exist a non-empty weakly

compact subset K of X and x0 ∈ K such that (i) for each y ∈ K∩∂H(X), πT (y)(y) ∈
IX (y) and (ii) for each y ∈ X \K, infw∈T (y)Re〈y − w, y − x0〉 > 0. Then T has a

fixed point in K.

As it can be seen in an Example in Chowdhury and Tan (1997a), if we define

T : R+ → bc(R) by

T (x) =

{
[x

2−1
x , 0], if 0 < x < 1,

[0, x
2−1
x ], if x ≥ 1,

then I − T is quasi-semi-monotone but not semi-monotone.

Corollary 5.69.1 Let X be a non-empty bounded closed convex subset of H and

T : X → 2H be semi-non-expansive and upper hemicontinuous along line segments

in X such that each T (x) is compact convex. If πT (y)(y) ∈ IX(y) for each y ∈
∂H(X), then T has a fixed point in X.

Corollary 5.69.2 Let X be a non-empty bounded closed convex subset of H and

T : X → 2X be semi-non-expansive and upper hemicontinuous along line segments

in X such that each T (x) is compact convex. Then T has a fixed point in X.
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By Proposition in Bae et al. (1993), if T is non-expansive, then I − T is semi-

monotone; it follows from Proposition 5.7 that T is semi-non-expansive. Also ob-

serve that a set-valued non-expansive operator is necessarily upper semicontinuous

(and also lower semicontinuous) so that it is upper hemicontinuous by Proposition

5.5. Thus we have:

Corollary 5.69.3 Let X be a non-empty convex subset of H and T : X → bc(H)

be non-expansive such that each T (x) is compact convex. Suppose there exist a non-

empty weakly compact subset K of X and x0 ∈ K such that (i) for each y ∈ K ∩
∂H(X), πT (y)(y) ∈ IX(y) and (ii) for each y ∈ X\K, infw∈T (y)Re〈y−w, y−x0〉 > 0.

Then T has a fixed point in K.

Corollary 5.69.4 Let X be a non-empty bounded closed convex subset of H

and T : X → 2H be non-expansive such that each T (x) is compact convex. If

πT (y)(y) ∈ IX (y) for each y ∈ ∂H(X), then T has a fixed point in X.

Corollary 5.69.5 Let X be a non-empty bounded closed convex subset of H and

T : X → 2X be non-expansive such that each T (x) is compact convex. Then T has

a fixed point in X.

Remark 5.28 Theorem 1 of Browder (1965b) states that if X is a non-empty

bounded closed convex subset of H and f : X → X is non-expansive, then f

has a fixed point in X . Thus Corollaries 5.66.3 and 5.67.3 (respectively, Corollary

5.69.5) generalize Browder’s fixed point theorem [Browder (1965b), Theorem 1] to

set-valued quasi-non-expansive (respectively, non-expansive) operators while Corol-

laries 5.66.2 and 5.67.2 (respectively, Corollary 5.69.4) generalize Browder’s fixed

point theorem [Browder (1965b)], Theorem 1] to set-valued quasi-non-expansive

(respectively, non-expansive) operators which need not be self-maps.

Chowdhury and Tan observed in Chowdhury and Tan (1997a) that in all fixed

point theorems stated above, (1) when T is lower hemicontinuous along line seg-

ments, T is required to have closed-convex values, (2) when T is upper hemicontinu-

ous along line segments and quasi-monotone, T is required to have weakly-compact-

convex values and (3) when T is upper hemicontinuous along line segments and

quasi-semi-monotone, T is required to have compact-convex values.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Chowdhury and Tan (1997b).

5.10 Generalization of Ky Fan’s Minimax Inequality with Appli-

cations to Generalized Variational Inequalities for Pseudo-

Monotone Type I Operators and Fixed Point Theorems

In obtaining the results of this section, Chowdhury and Tan mainly used the fol-

lowing celebrated 1972 Ky Fan’s minimax inequality (Fan (1972), Theorem 1).
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Theorem 5.70 Let E be a Hausdorff topological vector space and X a non-empty

compact convex subset of E. Let f be a real-valued function defined on X ×X such

that

(a) for each fixed x ∈ X, f(x, y) is a lower semicontinuous function of y on X;

(b) for each fixed y ∈ X, f(x, y) is a quasi-concave function of x on X.

Then the minimax inequality

min
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x)

holds.

Ky Fan’s minimax inequality has become a versatile tool in non-linear functional

analysis [Fan (1972), pp. 103–113], convex analysis, game theory and economic the-

ory [Aubin (1982)]. There have been numerous generalizations of Ky Fan’s minimax

inequality by weakening the compactness assumption or the convexity assumption;

e.g., see Allen [Allen (1977)], [Bae et al. (1993)], H. Brézis and Stampacchia (1972),

Ding and Tan (1992b), [Shih and Tan (1984)], [Tan (1983)], [Tan and Yuan (1993)],

[Yen (1981)] and [Fan (1984)].

In this section, we shall present Chowdhury and Tan’s generalization of Ky

Fan’s minimax inequality with applications to generalized variational inequalities

for pseudo-monotone type I operators. Later, we shall also give some of their results

of fixed point theorems in Hilbert spaces for set-valued operators which are upper

semi-continuous such that I − T are of pseudo-monotone type I.

We shall now define pseudo-monotone type I operators which were first intro-

duced by Chowdhury and Tan as set-valued pseudo-monotone operators in Chowd-

hury and Tan (1996). Later, these operators were re-named as pseudo-monotone

type I operators in Chowdhury (2000).

Definition 5.15 Let E be a topological vector space, X be a non-empty subset

of E and T : X → 2E
∗

. If h : X → R, then T is said to be an h-pseudo-monotone

(respectively, h-demi-monotone) operator if for each y ∈ X and every net {yα}α∈Γ

in X converging to y (respectively, weakly to y) with

lim sup
α

[ inf
u∈T (yα)

Re〈u, yα − y〉 + h(yα) − h(y)] ≤ 0

we have

lim sup
α

[ inf
u∈T (yα)

Re〈u, yα − x〉 + h(yα) − h(x)] (5.108)

≥ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x) for all x ∈ X ; (5.109)

T is said to be pseudo-monotone (respectively, demi-monotone) if T is h-pseudo-

monotone (respectively, h-demi-monotone) with h ≡ 0. In general, we shall call all

such operators in this definition as h-pseudo-monotone type I operators or pseudo-

monotone type I operators.
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Note that if T is single-valued and is pseudo-monotone in the sense of H. Brézis

and Stampacchia (1972, p. 297), then T is pseudo-monotone type I in the sense of

Definition 5.15 above.

We observe that monotonicity implies semi-monotonicity. But these two opera-

tors coincide and become one operator when they are single-valued operators.

Proposition 5.9 Let X be a non-empty subset of a topological vector space E.

If T : X → E∗ is monotone and continuous from the relative weak topology on X

to the weak∗ topology on E∗, then T is pseudo-monotone and demi-monotone.

Proof. Suppose {yα}α∈Γ is a net inX and y ∈ X with yα → y (respectively, yα → y

weakly) (and lim supαRe〈Tyα, yα − y〉 ≤ 0). Then for any x ∈ X and ε > 0, there

are β1, β2 ∈ Γ with |Re〈Ty, yα−y〉| < ε
2 for all α ≥ β1 and |Re〈Tyα−Ty, y−x〉| < ε

2

for all α ≥ β2. Choose β0 ∈ Γ with β0 ≥ β1, β2. Thus

Re〈Tyα, yα − x〉 = Re〈Tyα, yα − y〉 +Re〈Tyα, y − x〉 (5.110)

≥ Re〈Ty, yα − y〉 +Re〈Tyα, y − x〉 (5.111)

= Re〈Ty, yα − y〉 +Re〈Tyα − Ty, y − x〉 +Re〈Ty, y− x〉 (5.112)

> − ε

2
− ε

2
+Re〈Ty, y− x〉 for all α ≥ β0. (5.113)

It follows that

lim sup
α

Re〈Tyα, yα − x〉 ≥ −ε+Re〈Ty, y− x〉.

As ε > 0 is arbitrary,

lim sup
α

Re〈Tyα, yα − x〉 ≥ Re〈Ty, y − x〉.

Hence T is pseudo-monotone (respectively, demi-monotone).

5.10.1 Generalization of Ky Fan’s Minimax Inequality

We shall begin with a lemma of Chowdhury and Tan in (Chowdhury and Tan

(1996)):

Lemma 5.30 Let E be a topological vector space, X be a non-empty convex

subset of E. Let F : X → 2X be a KKM-map such that

(a) clXF (x0) is compact for some x0 ∈ X;

(b) for each A ∈ F(X) with x0 ∈ A and each x ∈ co(A), F (x) ∩ co(A) is closed

in co(A) and

(c) for each A ∈ F(X) with x0 ∈ A,

(clX(
⋂

x∈co(A)

F (x))) ∩ co(A) = (
⋂

x∈co(A)

F (x)) ∩ co(A).
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Then
⋂
x∈X F (x) 6= ∅.

Proof. Fix any A ∈ F(X ) with x0 ∈ A. Define GA : co(A) → 2co(A) by GA(x) =

F (x) ∩ co(A) for each x ∈ co(A).

Now, for each x ∈ co(A), GA(x) is non-empty since F is a KKM map and closed

in co(A) by (b). Note that co(A) is compact. Thus each GA(x) is also compact. For

each B ∈ F(co(A)) we have B ∈ F(X ) as co(A) ⊂ X and so co(B) ⊂ ∪x∈BF (x).

But co(B) ⊂ co(A); it follows that

co(B) ⊂ (
⋃

x∈B
F (x)) ∩ co(A) =

⋃

x∈B
(F (x) ∩ co(A)) =

⋃

x∈B
GA(x).

Thus GA is a KKM-map on co(A). Hence by Ky Fan’s lemma in Fan (1961, Lemma

1), we have

⋂

x∈co(A)

GA(x) 6= ∅, i.e.,
⋂

x∈co(A)

F (x) ∩ co(A) 6= ∅. (5.114)

Note that we do not require Hausdorff condition in Ky Fan’s Lemma. This was

observed by Ding and Tan in [Ding and Tan (1992b), Lemma 3].

Let {Ei}i∈I be the family of all convex hulls of finite subsets of X containing

the point x0, partially ordered by ⊂.

Now, for each i ∈ I , let Ei = co(Ai), where Ai ∈ F′(X ) = the family of all

non-empty finite subsets of X containing the point x0.

By (5.114), for each i ∈ I ,
⋂
x∈Ei

F (x) ∩Ei 6= ∅. Fix any ui ∈
⋂
x∈Ei

F (x) ∩Ei.
For each i ∈ I , let

Φi = {uj |j ≥ i, j ∈ I}.

Clearly, (i) {Φi|i ∈ I} has the finite intersection property and (ii) Φi ⊂ F (x0)

for all i ∈ I. Then clXΦi ⊂ clXF (x0) for all i ∈ I. By compactness of clXF (x0),⋂
i∈I clXΦi 6= ∅. Choose any x̂ ∈ ⋂i∈I clXΦi. Note that for any i ∈ I and for all

j ∈ I with j ≥ i,

uj ∈
⋂

x∈Ej

F (x) ∩ Ej ⊂
⋂

x∈Ei

F (x) ∩ Ej ⊂
⋂

x∈Ei

F (x).

Therefore

Φi ⊂
⋂

x∈Ei

F (x). (5.115)
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Now, for any x ∈ X, there exists i0 ∈ I such that x, x̂ ∈ Ei0 . Therefore for all

i ≥ i0, we have x, x̂ ∈ Ei0 ⊂ Ei. It follows that

x̂ ∈ Ei ∩ clXΦi ⊂ Ei ∩ (clX
⋂

z∈Ei

F (z)) (5.116)

= (
⋂

z∈Ei

F (z)) ∩ Ei (by (c)) (5.117)

= (
⋂

z∈Ei

F (z) ∩ Ei) ⊂ F (x). (5.118)

Thus x̂ ∈ F (x) for all x ∈ X. Hence
⋂
x∈X F (x) 6= ∅.

Under the hypotheses of Lemma 5.30, we see that if for each x ∈ X and each

finite dimensional subspace L of E, F (x)∩L is closed in L, then for each A ∈ F(X )

with x0 ∈ A and each x ∈ co(A), F (x) ∩ co(A) is also closed in co(A).

The following example of Chowdhury and Tan in (Chowdhury and Tan (1996))

shows that the converse is not true in general.

Example 5.9 Let E = R2. Consider the following non-empty convex subset X

of E:

X = {(u, v) ∈ R
2|0 < u < 1 and 0 < v ≤ 1−u}∪{(u, v) ∈ R

2|u = 0 and 0 ≤ v ≤ 1}.

Fix x0 = ( 1
2 ,

1
2 ) ∈ X. For each x ∈ X with x 6= (0, 0) and x 6= x0, let Ax denote the

following set:

Ax = the closed region in X bounded by the line v = 1− u and the line passing

through the point x and parallel to the line v = 1 − u.

Now, we define F : X → 2X by

F (x) =





Ax ∪ {(0, 0)} ∪
{(

1
n+2 ,

1
n+2

)
: n = 1, 2, 3, . . .

}
,

if x /∈ (0, 0) and x /∈ x0;

X, if x = (0, 0);

{(0, 0)} ∪
{(

1
n+2

1
n+2

)
: n 6= 1, 2, . . .

}
,

if x = x0

Then for each A ∈ F(X ) with x0 ∈ A and for each x ∈ co(A), F (x)∩co(A) is closed

in co(A). However, consider L = R2 and x = (0, 0); then F (x)∩L = F ((0, 0))∩R2 =

X is not closed in L. Note that F is a KKM-map such that clXF (x0) = F (x0) is

compact and the condition (c) of Lemma 5.30 is also satisfied. Thus Lemma 5.30

is applicable but Lemma 1 of [H. Brézis and Stampacchia (1972)] is not.

We remark here that the hypotheses (b) and (c) of Lemma 5.30 are more gen-

eral than the hypotheses (8) and (9) of Lemma 1 in [H. Brézis and Stampacchia

(1972), pp. 294–295]. But Lemma 5.30 requires that X be convex while Lemma 1

of Fan in [Fan (1961)] and Lemma 1 of [H. Brézis and Stampacchia (1972)] do not.
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However, in all applications of Lemma 1 in [Fan (1961)] or Lemma 1 in [H. Brézis

and Stampacchia (1972)], the set X is always assumed to be convex.

We shall now present the following minimax inequality in [Chowdhury and Tan

(1996)]:

Theorem 5.71 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be lower semicontinuous on co(A) for each A ∈ F(X) and

f : X ×X → R ∪ {−∞,+∞} be such that

(a) for each A ∈ F(X) and each fixed x ∈ co(A), y 7−→ f(x, y) is lower semi-

continuous on co(A);

(b) for each A ∈ F(X ) and each y ∈ co(A), minx∈A[f(x, y) + h(y) − h(x)] ≤ 0;

(c) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X

converging to y with

f(tx+(1−t)y, yα)+h(yα)−h(tx+(1−t)y) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1],

we have f(x, y) + h(y) − h(x) ≤ 0;

(d) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that f(x0, y) + h(y) − h(x0) > 0 for all y ∈ X\K.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ h(x) − h(ŷ) for all x ∈ X.

Proof. Define F : X → 2X by

F (x) = {y ∈ X : f(x, y) + h(y) − h(x) ≤ 0} for each x ∈ X.

If F is not a KKM -map, then for some finite subset {x1, . . . , xn} of X and αi ≥ 0

for i = 1, . . . , n with
∑n

i=1 αi = 1, we have ȳ =
∑n

i=1 αixi 6∈ ⋃n
i=1 F (xi). Thus

f(xi, ȳ) + h(ȳ) − h(xi) > 0 for i = 1, . . . , n so that

min
1≤i≤n

[f(xi, ȳ) + h(ȳ) − h(xi)] > 0,

which contradicts the assumption (b). Hence F : X → 2X is a KKM -map. More-

over we have,

(i) F (x0) ⊂ K by (d), so that clXF (x0) ⊂ clXK = K and hence clXF (x0) is

compact in X ;

(ii) for each A ∈ F(X ) with x0 ∈ A and each x ∈ co(A),

F (x) ∩ co(A) = {y ∈ co(A) : f(x, y) + h(y) − h(x) ≤ 0}
= {y ∈ co(A) : f(x, y) + h(y) ≤ h(x)}

is closed in co(A) by (a) and the fact that h is lower semi-continuous on co(A);

(iii) for each A ∈ F(X) with x0 ∈ A, if y ∈ (clX(
⋂
x∈co(A) F (x))) ∩ co(A), then

y ∈ co(A) and there is a net {yα}α∈Γ in
⋂
x∈co(A) F (x) such that yα → y. For each

x ∈ co(A), since tx+(1− t)y ∈ co(A) for all t ∈ [0, 1], we have yα ∈ F (tx+(1− t)y)
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for all α ∈ Γ and all t ∈ [0, 1]. This implies that f(tx+(1− t)y, yα)+h(yα)−h(tx+

(1− t)y) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1] so that by (c), f(x, y)+h(y)−h(x) ≤ 0;

it follows that y ∈ (
⋂
x∈co(A) F (x))∩ co(A). Hence, (clX (

⋂
x∈co(A) F (x)))∩ co(A) =

(
⋂
x∈co(A) F (x)) ∩ co(A).

Hence by Lemma 5.30 we have
⋂
x∈X F (x) 6= ∅. Then there exists ŷ ∈⋂

x∈X F (x), so that f(x, ŷ)+h(ŷ)−h(x) ≤ 0 for all x ∈ X , i.e., f(x, ŷ) ≤ h(x)−h(ŷ),
for all x ∈ X .

When h ≡ 0, Theorem 5.71 reduces to the following:

Theorem 5.72 Let E be a topological vector space, X be a non-empty convex

subset of E and f : X ×X → R ∪ {−∞,+∞} be such that

(a) for each A ∈ F(X) and each fixed x ∈ co(A), y 7−→ f(x, y) is lower semi-

continuous on co(A);

(b) for each A ∈ F(X ) and each y ∈ co(A), minx∈A f(x, y) ≤ 0;

(c) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X

converging to y with f(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1],

we have f(x, y) ≤ 0;

(d) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that f(x0, y) > 0 for all y ∈ X\K.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

Note that Theorem 5.72 implicitly implies the following minimax inequality:

Theorem 5.73 Let E be a topological vector space, X be a non-empty convex

subset of E and f : X ×X → R ∪ {−∞,+∞} be such that

(a) for each A ∈ F(X) and each fixed x ∈ co(A), y 7−→ f(x, y) is lower semi-

continuous on co(A);

(b) for each A ∈ F(X ) and each y ∈ co(A), minx∈A f(x, y) ≤ 0;

(c) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X

converging to y with f(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1],

we have f(x, y) ≤ 0;

(d) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that whenever supx∈X f(x, x) < ∞, f(x0, y) > supx∈X f(x, x) for all y ∈
X\K.

Then the minimax inequality

min
y∈K

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x)

holds.

Proof. Let t = supx∈X f(x, x). Clearly, we may assume that t < +∞. Define for

any x, y ∈ X, g(x, y) = f(x, y) − t. Then g satisfies all the hypotheses of Theorem

5.72 when f is replaced by g. Hence by Theorem 5.72, there exists an ŷ ∈ K such
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that g(x, ŷ) ≤ 0 for all x ∈ X . This implies f(x, ŷ) ≤ t for all x ∈ X , so that

supx∈X f(x, ŷ) ≤ t and therefore

min
y∈K

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, ŷ) ≤ t = sup
x∈X

f(x, x),

i.e.,

min
y∈K

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x).

Theorem 5.73 generalizes Theorem 5.70 in several ways.

Theorem 5.74 Let E be a topological vector space, X be a non-empty convex

subset of E. Let f, g : X ×X −→ R ∪ {−∞,+∞} be such that

(a) f(x, y) ≤ g(x, y) for all x, y ∈ X and g(x, x) ≤ 0 for all x ∈ X;

(b) for each A ∈ F(X) and each fixed x ∈ co(A), y 7−→ f(x, y) is lower semi-

continuous on co(A);

(c) for each y ∈ X, the set {x ∈ X : g(x, y) > 0} is convex;

(d) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X

converging to y with f(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1],

we have f(x, y) ≤ 0;

(e) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that f(x0, y) > 0 for all y ∈ X\K.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

Proof. It is easy to see that the conditions (a) and (c) here imply the condition

(b) of Theorem 5.72 so that the conclusion follows.

Note that Theorem 5.74 generalizes Theorem 1 of Shih and Tan in [Shih and

Tan (1984), pp. 280–282].

Theorem 5.75 Let E be topological vector space, C be a non-empty closed convex

subset of E and f : C × C → R be such that

(a) f(x, x) ≤ 0 for all x ∈ C;

(b) for each A ∈ F(C) and each fixed x ∈ co(A), y 7−→ f(x, y) is lower semi-

continuous on co(A);

(c) for each y ∈ C, the set {x ∈ C : f(x, y) > 0} is convex;

(d) for each A ∈ F(C) and each x, y ∈ co(A) and every net {yα}α∈Γ in C con-

verging to y with f(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1], we

have f(x, y) ≤ 0;

(e) there exist a non-empty closed and compact subset L of E and x0 ∈ C ∩ L

such that f(x0, y) > 0 for all y ∈ C \ L.

Then there exists ŷ ∈ C ∩ L such that f(x, ŷ) ≤ 0 for all x ∈ C.

Proof. Let f = g, K = C ∩ L and X = C in Theorem 5.74, the conclusion

follows.
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Theorem 5.75 improves Theorem 1 of Brézis et al. in [H. Brézis and Stampacchia

(1972)]. Note that if the compact set L is a subset of C, C is not required to be closed

in E in Theorem 5.75. Note also that in Theorem 1 of [H. Brézis and Stampacchia

(1972)], the set C was not assumed to be closed in E. However this is false in

general as is observed by Chowdhury and Tan by the following example in [Tan

(1994), Example 1.3.14].

Example 5.10 Let E = R
2, C = {(u, v) ∈ R

2 : u2 + v2 ≤ 1, u, v > 0},
L = {(u, v) ∈ R2 : u2 + v2 ≤ 1

4}, x0 = ( 1
2
√

2
, 1

2
√

2
), and f : C × C → R be defined

by f(x, y) = ‖y‖ − ‖x‖ for all x, y ∈ C. Then all the hypotheses of Theorem 1

in [H. Brézis and Stampacchia (1972)] are satisfied. However there does not exist

ŷ ∈ C ∩ L such that f(x, ŷ) ≤ 0 for all x ∈ C.

The following is equivalent to Theorem 5.72:

Theorem 5.76 Let E be a topological vector space, X be a non-empty convex

subset of E, and G : X → 2X ∪ {∅} be a set-valued map such that

(a1) for each A ∈ F(X) and each fixed x ∈ co(A), G−1(x) ∩ co(A) = {y ∈ co(A) :

x ∈ G(y)} is open in co(A);

(b1) for each A ∈ F(X) and each y ∈ co(A), there exists x ∈ A such that x 6∈ G(y);

(c1) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X

converging to y such that tx+(1− t)y 6∈ G(yα) for all α ∈ Γ and all t ∈ [0, 1],

we have x 6∈ G(y);

(d1) there exist a non-empty closed and compact subset K of X and x0 ∈ K such

that x0 ∈ G(y) for all y ∈ X\K.

Then there exists a point ŷ ∈ K such that G(ŷ) = ∅.

Sketch of Proof. Theorem 5.72 implies Theorem 5.76:

Define f : X ×X → R by

f(x, y) =

{
1, if x ∈ G(y),

0, if x /∈ G(y),

for all x, y ∈ X and apply Theorem 5.72. The conclusion of Theorem 5.76

follows.

Sketch of Proof. Theorem 5.76 implies Theorem 5.72:

Define G : X → 2X by G(x) = {y ∈ X : f(x, y) > 0} for all x ∈ X and apply

Theorem 5.76. The conclusion of Theorem 5.72 follows.

The following fixed point theorem is an immediate consequence of Theorem 5.76:

Theorem 5.77 Let X be a non-empty convex subset of a topological vector space

E and let G : X → 2X ∪ {∅} be a set-valued map such that

(a2) for each A ∈ F(X) and each fixed x ∈ co(A), G−1(x)∩co(A) is open in co(A);
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(b2) for each y ∈ X, G(y) is convex;

(c2) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in X

converging to y such that tx + (1 − t)y 6∈ G(yα) for all α ∈ Γ and for all

t ∈ [0, 1], we have x 6∈ G(y);

(d2) there exists a non-empty closed and compact subset K of X and x0 ∈ K such

that x0 ∈ G(y) for all y ∈ X\K;

(e2) for each y ∈ K, G(y) 6= ∅.

Then there exists a point y0 ∈ X such that y0 ∈ G(y0).

Proof. By Theorem 5.76, there exist A ∈ F(X) and y ∈ co(A) such that x ∈ G(y)

for all x ∈ A. Thus y ∈ co(A) ⊂ G(y) as G(y) is convex.

5.10.2 Generalized Variational Inequalities

In this section we shall present some results of Chowdhury and Tan on generalized

variational inequalities in Chowdhury-Tan (1996). We shall first state a lemma in

Chowdhury-Tan (1996) with its proof:

Lemma 5.31 Let E be a Hausdorff topological vector space, A ∈ F(E), X =

co(A) and T : X → 2E
∗

be upper semi-continuous from X to the weak∗-topology
on E∗ such that each T (x) is weak∗-compact. Let f : X × X → R be defined by

f(x, y) = infw∈T (y)Re〈w, y − x〉 for all x, y ∈ X. Then for each fixed x ∈ X,

y 7−→ f(x, y) is lower semi-continuous on X.

Proof. Let λ ∈ R be given and let x ∈ X be arbitrarily fixed. Let Cλ = {y ∈
X : f(x, y) ≤ λ}. Suppose {yα}α∈Γ is a net in Cλ and y0 ∈ X such that yα → y0.

Then for each α ∈ Γ, λ ≥ f(x, yα) = infw∈T (yα)Re〈w, yα − x〉 so that by weak∗-
compactness of T (yα), there exists wα ∈ T (yα) such that λ ≥ infw∈T (yα)Re〈w, yα−
x〉 = Re〈wα, yα − x〉. Since T is upper semi-continuous from X to the weak∗-
topology on E∗, X is compact and each T (z) is weak∗-compact, ∪z∈XT (z) is also

weak∗-compact. Thus there is a subnet {wα′}α′∈Γ′ of {wα}α∈Γ and w0 ∈ E∗ with

wα′ → w0 in the weak∗-topology. Again, as T is upper semi-continuous with weak∗-
closed values, w0 ∈ T (y0).

Suppose A = {a1, . . . , an} and let t1, . . . , tn ≥ 0 with
∑n

i=1 ti = 1 such that

y0 =
∑n

i=1 tiai. For each α′ ∈ Γ, let tα
′

1 , . . . , t
α′

n ≥ 0 with
∑n
i=1 t

α′

i = 1 such that

yα′ =
∑n

i=1 t
α′

i ai. Since E is Hausdorff and yα′ → y0, we must have tα
′

i → ti for

each i = 1, . . . , n. Thus

λ ≥ Re〈wα′ , yα′ − x〉 =
n∑

i=1

tα
′

i Re〈wα′ , ai − x〉 −→
n∑

i=1

tiRe〈w0, ai − x〉

= Re〈w0,

n∑

i=1

ti(ai − x)〉 = Re〈w0, y0 − x〉
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so that λ ≥ infw∈T (y0)Re〈w, y0 − x〉 and hence y0 ∈ Cλ. Thus Cλ is closed in X

for each λ ∈ R. Therefore y 7−→ f(x, y) is lower semi-continuous on X .

We remark here that in Lemma 5.31, T is only assumed to be upper semi- contin-

uous from X = co(A) to the weak∗-topology on E∗ and T is weak∗-compact valued.

If X is any non-empty compact subset of E, strong topology on E∗, strongly-

compact-valued are generally required, see e.g. [Shih and Tan (1989), Lemma 2].

The following result is Lemma 4.3 in [Chowdhury and Tan (1997b)]:

Lemma 5.32 Let E be a topological vector space, X be a non-empty convex

subset of E and h : E → R be convex. Suppose ŷ ∈ X and ŵ ∈ E∗ are such that

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X, then Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all

x ∈ IX (ŷ).

We shall now present the following result in Chowdhury and Tan (1996):

Theorem 5.78 Let X be a non-empty convex subset of a Hausdorff topological

vector space E and h : E → R be convex. Let T : X → 2E
∗

be h-pseudo-monotone

(respectively, h-demi-monotone) and be upper semi-continuous from co(A) to the

weak∗-topology on E∗ for each A ∈ F(X) such that each T (x) is weak∗-compact

convex. Suppose there exist a non-empty compact (respectively, weakly closed and

weakly compact) subset K of X and x0 ∈ K such that for each y ∈ X \ K,

minw∈T (y)Re〈w, y − x0〉+ h(y)− h(x0) > 0. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ)

such that Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX(ŷ).

Proof. We first note that for each A ∈ F(X), h is continuous on co(A) (see e.g. [14,

Corollary 10.1.1, p. 83]). Define φ : X×X → R by φ(x, y) = minw∈T (y)Re〈w, y−x〉,
for each x, y ∈ X . Then we have the following:

(a) For each A ∈ F(X) and each fixed x ∈ co(A), since E is Hausdorff and

co(A) is compact, and the relative weak topology on co(A) coincide with its relative

topology, it follows that y 7−→ φ(x, y) is lower semi-continuous (respectively, weakly

lower semi-continuous) on co(A), by Lemma 5.31.

(b) Clearly, for each x ∈ X , φ(x, x) = 0 and for each fixed y ∈ X , x 7−→
φ(x, y) is quasi-concave. It follows that for each A ∈ F(X) and each y ∈ co(A),

minx∈A[φ(x, y) + h(y) − h(x)] ≤ 0.

(c) Suppose A ∈ F(X), x, y ∈ co(A) and {yα}α∈Γ is a net in X converging to y

(respectively, weakly to y) with

φ(tx+(1− t)y, yα)+h(yα)−h(tx+(1− t)y) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1].

Then for t = 0 we have φ(y, yα) + h(yα) − h(y) ≤ 0 for all α ∈ Γ, i.e.,

minw∈T (yα)Re〈w, yα − y〉 + h(yα) − h(y) ≤ 0 for all α ∈ Γ. Hence

lim sup
α

[
min

w∈T (yα)
Re〈w, yα − y〉 + h(yα) − h(y)

]
≤ 0.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

374 Topological Methods of Set-Valued Nonlinear Analysis

Since T is h-pseudo-monotone (respectively, h-demi-monotone), we have

lim sup
α

[
min

w∈T (yα)
Re〈w, yα − x〉 + h(yα) − h(x)

]
≥ inf

w∈T (y)
Re〈w, y−x〉+h(y)−h(x).

(5.119)

For t = 1 we also have φ(x, yα) + h(yα) − h(x) ≤ 0 for all α ∈ Γ, i.e.,

minw∈T (yα)Re〈w, yα − x〉 + h(yα) − h(x) ≤ 0 for all α ∈ Γ. It follows that

lim sup
α

[
min

w∈T (yα)
Re〈w, yα − x〉 + h(yα) − h(x)

]
≤ 0. (5.120)

By (5.119) and (5.120), φ(x, y) + h(y) − h(x) ≤ 0.

(d) By assumption, K is a compact (respectively, weakly closed and weakly

compact) subset of X and x0 ∈ K such that for each y ∈ X\K, minw∈T (y)Re〈w, y−
x0〉 + h(y) − h(x0) > 0, i.e., φ(x0, y) + h(y) − h(x0) > 0.

(If T is h-demi-monotone, we equip E with the weak topology.) Then φ satisfies

all the hypotheses of Theorem 5.71. Hence by Theorem 5.71, there exists a point ŷ ∈
K with φ(x, ŷ) ≤ h(x)− h(ŷ) for all x ∈ X ; in other words, minw∈T (ŷ)Re〈w, ŷ−
x〉 ≤ h(x) − h(ŷ) for all x ∈ X .

Define f : X × T (ŷ) −→ R by

f(x,w) = Re〈w, ŷ − x〉 + h(ŷ) − h(x) for all x ∈ X and for all w ∈ T (ŷ).

Note that for each fixed x ∈ X , w 7−→ f(x,w) is weak∗ continuous and convex

and for each fixed w ∈ T (ŷ), x 7−→ f(x,w) is concave. Thus by Theorem 5.44 we

have

min
w∈T (ŷ)

sup
x∈X

(Re〈w, ŷ−x〉+h(ŷ)−h(x)) = sup
x∈X

min
w∈T (ŷ)

(Re〈w, ŷ−x〉+h(ŷ)−h(x)) ≤ 0.

Hence there exists a point ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X. (5.121)

Since h is defined on all of E and is convex, by (4.3) and Lemma 5.32, we have

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX (ŷ).

Remark 5.29 If T is h-pseudo-monotone (respectively, h-demi-monotone), The-

orem 5.78 generalizes (respectively, extends or improves) Application 3 in [H. Brézis

and Stampacchia (1972), p. 297] in the following ways: (1), (2) and (3) (respectively,

following ways (1) and (2)):

(1) T is set-valued and upper semi-continuous from co(A) to the weak∗ topology

on E∗ for each A ∈ F(X) instead of single-valued and continuous on any finite

dimensional subspace;

(2) h need not be lower semi-continuous on X ;

(3) As noted earlier, the definition of pseudo-monotonicity, even in the single-

valued case, is more general.
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The results from 5.79 to 5.82 have been taken from Chowdhury and Tan (1996).

Theorem 5.79 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E and h : E → R be convex. Let T : X → 2E
∗

be h-demi-

monotone and be upper semi-continuous from co(A) to the weak topology on E∗ for

each A ∈ F(X) such that each T (x) is weakly compact convex. Suppose there is

x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 + h(y) − h(x0) > 0. (5.122)

Then there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all

x ∈ IX (ŷ).

Proof. Let α = lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y−x0〉+h(y)−h(x0). Then by (5.122), α > 0.

Let M > 0 be such that ‖x0‖ ≤M and infw∈T (y)Re〈w, y− x0〉+ h(y)− h(x0) >
α
2

for all y ∈ X with ‖y‖ > M . Let K = {x ∈ X : ‖x‖ ≤M}; then K is a non-empty

weakly compact subset of X . Note that for any y ∈ X \ K, infw∈T (y)Re〈w, y −
x0〉 + h(y) − h(x0) >

α
2 > 0. The conclusion now follows from Theorem 5.78.

By taking h ≡ 0 in Theorem 5.78 and applying Lemma 1.1, the following theorem

is obtained on existence theorem of a generalized complementarity problem:

Theorem 5.80 Let X be a cone in a Hausdorff topological vector space E. Let

T : X → 2E
∗

be pseudo-monotone (respectively, demi-monotone) and be upper

semi-continuous from co(A) to the weak∗-topology on E∗ for each A ∈ F(X) such

that each T (x) is weak∗-compact convex. Suppose there exist a non-empty compact

(respectively, weakly closed and weakly compact) subset K of X and x0 ∈ K such

that for each y ∈ X\K, infw∈T (y)Re〈w, y − x0〉 > 0. Then there exist ŷ ∈ K and

ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

By taking h ≡ 0 in Theorem 5.79 and applying Lemma 1.1, the following theorem

is obtained on existence theorem of a generalized complementarity problem:

Theorem 5.81 Let (E, ‖ · ‖) be a reflexive Banach space, X be a closed cone in

E and T : X → 2E
∗

be demi-monotone and be upper semi-continuous from co(A) to

the weak topology on E∗ for each A ∈ F(X) such that each T (x) is weakly compact

convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉 > 0.

Then there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

Finally, a result in Chowdhury and Tan (1996) on the surjectivity of demi-

monotone operators is presented:
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Theorem 5.82 Let (E, ‖ · ‖) be a reflexive Banach space, X be a non-empty

closed convex subset of E and T : X → 2E
∗

be demi-monotone and be upper semi-

continuous from co(A) to the weak topology on E∗ for each A ∈ F(X) such that

each T (x) is weakly compact convex. Suppose there is x0 ∈ X such that

lim
‖y‖→∞
y∈X

inf
w∈T (y)

Re〈w, y − x0〉/‖y‖ = ∞.

Then for each given w0 ∈ E∗, there exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ −
w0, ŷ − x〉 ≤ 0 for all x ∈ X. In particular, if X = E, then T is surjective.

Proof. Let w0 ∈ E∗ be given. Then

lim
‖y‖→∞
y∈X

(
inf

w∈T (y)
Re〈w − w0, y − x0〉/‖y‖

)

= lim
‖y‖→∞
y∈X

((
inf

w∈T (y)
Re〈w, y − x0〉/‖y‖

)
− ‖w0‖

)
= ∞.

Define T ∗ : X → 2E
∗

by T ∗(x) = T (x) − w0 for all x ∈ X . Then T ∗ is upper

semi-continuous from co(A) to the weak topology on E∗ for each A ∈ F(X) such

that each T ∗(x) is weakly compact convex and

lim
‖y‖→∞
y∈X

inf
w∈T∗(y)

Re〈w, y − x0〉/‖y‖ = ∞.

Suppose y ∈ X and {yα}α∈Γ is a net in X converging weakly to y with

lim sup
α

[
inf

u∈T∗(yα)
Re〈u, yα − y〉

]
≤ 0.

It follows that

lim sup
α

[
inf

u∈T (yα)
Re〈u, yα − y〉

]

≤ lim sup
α

[
inf

u∈T (yα)
Re〈u− w0, yα − y〉

]
+ lim sup

α
Re〈w0, yα − y〉

= lim sup
α

[
inf

u∈T∗(yα)
Re〈u, yα − y〉

]
≤ 0.

Since T is demi-monotone,

lim sup
α

[
inf

u∈T (yα)
Re〈u, yα − x〉

]
≥ inf
w∈T (y)

Re〈w, y − x〉 for all x ∈ X.
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Hence for each x ∈ X ,

inf
w∈T∗(y)

Re〈w, y − x〉

= inf
w∈T (y)

Re〈w − w0, y − x〉

= inf
w∈T (y)

Re〈w, y − x〉 −Re〈w0, y − x〉

≤ lim sup
α

[
inf

u∈T (yα)
Re〈u, yα − x〉

]
−Re〈w0, y − x〉

≤ lim sup
α

[
inf

u∈T (yα)
Re〈u− w0, yα − x〉 +Re〈w0, yα − x〉

]
−Re〈w0, y − x〉

≤ lim sup
α

[
inf

u∈T∗(yα)
Re〈u, yα − x〉

]
+ lim sup

α
Re〈w0, yα − x〉 −Re〈w0, y − x〉

= lim sup
α

[
inf

u∈T∗(yα)
Re〈u, yα − x〉

]
.

Therefore T ∗ is also demi-monotone.

Hence by Theorem 5.79 with h ≡ 0, there exist ŷ ∈ X and w̄ ∈ T ∗(ŷ) such that

Re〈w̄, ŷ − x〉 ≤ 0 for all x ∈ X . But then there exists ŵ ∈ T (ŷ) with w̄ = ŵ − w0

so that Re〈ŵ − w0, ŷ − x〉 ≤ 0 for all x ∈ X . Now if X = E, then ŵ − w0 = 0 so

that w0 = ŵ ∈ T (ŷ). This shows that T is surjective.

5.10.3 Applications to Fixed Point Theorems

In the following results in Chowdhury and Tan (1996), H will denote a Hilbert

space with inner product 〈 , 〉 and its corresponding induced norm ‖ · ‖.
The following fixed point theorem is obtained in Chowdhury and Tan (1996) as

an application of Theorem 5.78:

Theorem 5.83 Let X be a non-empty convex subset of H and T : X → 2H

be upper semi-continuous from co(A) to the weak topology on H for each A ∈
F(X) such that each T (x) is weakly compact convex and I − T is pseudo-

monotone (respectively, demi-monotone). Suppose there exist a non-empty com-

pact (respectively, weakly compact) subset K of X and x0 ∈ K such that for each

y ∈ X \K, infw∈T (y)Re〈y − w, y − x0〉 > 0. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ)

such that

Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ).

Moreover, if either ŷ is an interior point of X in H or p(ŷ) ∈ IX (ŷ), where p(ŷ) is

the projection of ŷ on T (ŷ), then ŷ is a fixed point of T , i.e., ŷ ∈ T (ŷ).

Proof. (If I−T is demi-monotone, we equip H with the weak topology.) Since T is

upper semi-continuous from co(A) to the weak topology on H for each A ∈ F(X),
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I − T : X → 2H is also upper semi-continuous from co(A) to the weak topology on

H for each A ∈ F(X) and satisfies all the hypotheses of Theorem 5.78 with h ≡ 0.

By Theorem 5.78, there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that Re〈ŷ − ŵ, ŷ − x〉 ≤ 0

for all x ∈ IX (ŷ). By continuity,

Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ). (5.123)

Case 1. Suppose ŷ is an interior point of X in H , i.e., ŷ ∈ intHX , then there

exists r > 0 such that Br(ŷ) ⊂ X . Then for each z ∈ H with z 6= ŷ, let u =

ŷ + r
2 · ŷ−z

‖ŷ−z‖ , then u ∈ Br(ŷ) ⊂ X ⊂ IX (ŷ). Thus Re〈ŷ − ŵ, r2 · z−ŷ
‖ŷ−z‖ 〉 ≤ 0 so that

r
2‖ŷ−z‖Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 and hence Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 for all z ∈ H.

It follows that Re〈ŷ − ŵ, z〉 = 0 for all z ∈ H so that ŷ = ŵ ∈ T (ŷ).

Case 2. Suppose p(ŷ) ∈ IX (ŷ). By Proposition 1.1, the projection p(ŷ) of ŷ on T (ŷ)

has the following property:

p(ŷ) ∈ T (ŷ) and Re〈ŷ − p(ŷ), w − p(ŷ)〉 ≤ 0 for all w ∈ T (ŷ). (5.124)

Since ŵ ∈ T (ŷ), by (5.124) we have

0 ≤ Re〈p(ŷ) − ŷ, ŵ − p(ŷ)〉
= Re〈p(ŷ) − ŷ, ŵ − ŷ + ŷ − p(ŷ)〉
= Re〈p(ŷ) − ŷ, ŵ − ŷ〉 − ‖ŷ − p(ŷ)‖2

.

Therefore

‖ŷ − p(ŷ)‖2 ≤ Re〈ŷ − ŵ, ŷ − p(ŷ)〉 ≤ 0 by(5.123)

Thus ŷ = p(ŷ) ∈ T (ŷ).

The following fixed point theorem obtained in Chowdhury and Tan (1996) is an

immediate consequence of Theorem 5.83:

Theorem 5.84 Let X be a non-empty convex subset of H and T : X →
bc(H) be upper semi-continuous from co(A) to the weak topology on H for each

A ∈ F(X) such that each T (x) is weakly compact convex and I − T is pseudo-

monotone (respectively, demi-monotone). Suppose there exist a non-empty com-

pact (respectively, weakly compact) subset K of X and x0 ∈ K such that

(i) for each y ∈ K ∩ ∂H(X), πT (y)(y) ∈ IX (y) and (ii) for each y ∈ X \ K,

infw∈T (y)Re〈y − w, y − x0〉 > 0. Then T has a fixed point in K.

Corollary 5.84.1 Let X be a non-empty compact (respectively, bounded closed)

convex subset of H and T : X → bc(H) be upper semi-continuous from co(A) to

the weak topology on H for each A ∈ F(X) such that each T (x) is weakly compact

convex and I − T is pseudo-monotone (respectively, demi-monotone). Suppose that

for each y ∈ ∂H (X), πT (y)(y) ∈ IX(y). Then T has a fixed point in X.
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Corollary 5.84.2 Let X be a non-empty compact (respectively, bounded closed)

convex subset of H and T : X → bc(X) be upper semi-continuous from co(A) to

the relative weak topology on X for each A ∈ F(X) such that each T (x) is weakly

compact convex and I−T is pseudo-monotone (respectively, demi-monotone). Then

T has a fixed point in X.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Chowdhury and Tan (1996).

5.11 Generalized Variational-Like Inequalities for Pseudo-Monotone

Type I Operators

The generalized variational-like inequalities were used by Chowdhury and Tan in

the simplest form in Chowdhury and Tan (1996) using the name of the operators

as generalized variational inequalities (GVI). Later, Tarafdar and Ding gave a gen-

eralization of these GVI and called these operators as generalized variational-like

inequalities (GVLI) in their paper in Archiv der Mathematik mentioned above.

Ding and Tarafdar’s generalized variational-like inequality was introduced in prob-

lem (1.1).

In this section, E and F will denote vector spaces over a scalar field Φ (either

the real field or the complex field). We shall denote by 2F the family of all subsets

of F .

Let X be a nonempty subset of E and 〈 , 〉 : F ×E → Φ be a bilinear functional

satisfying the following property:

(P) the family of {〈·, x〉}x∈E separates the points of F .

Unless otherwise stated, E, F and 〈·, ·〉 will be assumed to satisfy the property

(P) in all results of this section.

In all results of this section related to the problem (1.1), the underlying space

F is equipped with the σ(F, E)-topology.

In Ding and Tarafdar (2000), a slight generalization of Chowdhury and Tan’s

definition of h-pseudo-monotone type I operators or pseudo-monotone type I op-

erators was given. We shall call all such operators (η, h)-pseudo-monotone type I

(resectively, a strong (η, h)-pseudo-monotone type I) operators. We introduce these

operators as follows:

Definition 5.16 Let X be a nonempty subset of a topological vector space E

over Φ and F be a vector space over Φ which is equipped with the σ(F, E)-topology.

Let T : X → 2F \ {φ}, η : X ×X → E and h : X ×X → R. Then T is said to be

an (η, h)-pseudo-monotone type I (respectively, a strong (η, h)-pseudo-monotone

type I) operators, if for each y ∈ X and every net {yα}α∈Γ in X converging to y
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(respectively, weakly to y) with

lim sup
α

[ inf
w∈T (yα)

Re〈w, η(yα, y)〉 + h(yα, y)] ≤ 0,

we have

lim sup
α

[ inf
w∈T (yα)

Re〈w, η(yα, x)〉 + h(yα, x)] (5.125)

≥ inf
w∈T (y)

Re〈w, η(y, x)〉 + h(y, x) ∀x ∈ X. (5.126)

T is said to be an h-pseudo-monotone type I (respectively, a strong h-pseudo-

monotone type I) operators, if T is an (η, h)-pseudo-monotone type I (respectively,

a strong (η, h)-pseudo-monotone type I) operators, with η(x, y) = x − y and for

some h′ : X → R, h(x, y) = h′(x)−h′(y) for all x, y ∈ X . Note that if F = E∗, the

topological dual space of E, then the notions of the h-pseudo-monotonicity of type I

(respectively, strong h-pseudo-monotonicity of type I) operators coincide with those

in Chowdhury and Tan (1996).

Definition 5.17 Let T : X → 2F \ {φ}, η : X × X → E and g : X → E.

The mappings T and η are said to have 0-diagonally concave relation (in short,

0-DCVR) if the function φ : X ×X → R ∪ {±∞} defined by

φ(x, y) = inf
w∈T (x)

Re〈w, η(x, y)〉 (5.127)

is 0-DCV in y. The mappings T and g are said to have 0-diagonally concave relation

if T and η(x, y) = g(x) − g(y) have the 0-DCVR.

We shall now present some lemmas from Ding and Tarafdar (2000):

Lemma 5.33 Let T : X → 2F \ {φ} and η : X ×X → E be such that for each

fixed x ∈ X, inf
u∈T (x)

〈u, η(x, x)〉 = 0 and η(x, ·) is an affine mapping. Then T and

η have 0-DCVR.

Proof. By the assumptions on T and η, for any finite set {y1, . . . , ym} ⊂ X and

for any y0 =
m∑
i=1

λiyi (λi ≥ 0,
m∑
i=1

λi = 1), we have

m∑

i=1

λiφ(y0, yi) =

m∑

i=1

λi[ inf
w∈T (y0)

〈w, η(y0, yi)〉]

≤ inf
w∈T (y0)

[〈w,
m∑

i=1

λiη(y0, yi)〉]

≤ inf
w∈T (y0)

〈w, η(y0, y0)〉 = 0.

This shows that T and η have 0-DCVR.
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The following is another lemma in (Ding and Tarafdar (2000)). We shall also

give the proof of this lemma exactly given in (Ding and Tarafdar (2000)). However,

there is a lacuna in its proof in (Ding and Tarafdar (2000)): the point-wise bound-

edness was not proved which is an essential part in applying the Banach-Steinhauss’

Theorem.

Lemma 5.34 Let E be a topological vector space over Φ, A ∈ F(E) and X =

co(A). Let F be a vector space over Φ which is equipped with σ(F, E)-topology such

that for each w ∈ F , x 7→ 〈w, x〉 is continuous. Let η : X ×X → E be continuous

in first argument and T : X → 2F \ {φ} be u.s.c. from X to the σ(F, E)-topology

on F such that each T (x) is σ(F, E)-compact. Let φ : X ×X → R be defined by

φ(x, y) = inf
w∈T (y)

〈w, η(y, x)〉.

Then for each fixed x ∈ X, the function y 7→ φ(x, y) is lower semicontinuous on X.

Proof. For given λ ∈ R and arbitrary fixed x ∈ X , let

Cλ = {y ∈ X : φ(x, y) ≤ λ}.

Suppose that {yα}α∈Γ ⊂ Cλ is a net such that yα → y0 ∈ X , then for each α ∈ Γ,

inf
w∈T (yα)

〈w, η(yα, x)〉 = φ(x, yα) ≤ λ.

By the definition of the σ(F, E)-topology of F , it is known that for each x ∈ E,

the function w 7→ 〈w, x〉 is continuous. By the continuity of η(·, x), we obtain

η(yα, x) → η(y0, x). Since each T (yα) is σ(F, E)-compact, there exists wα ∈ T (yα)

such that

〈wα, η(yα, x)〉 = inf
w∈T (yα)

〈w, η(yα, x)〉 ≤ λ.

Since T is u.s.c. from X to the σ(F, E)-topology on F , X is compact and each T (x)

is σ(F, E)-compact, it follows from Proposition 3.1.11 of Aubin and Ekeland Aubin

and Ekeland (1984) that the set
⋂
y∈X

T (y) is also σ(F, E)-compact. Hence there

exists a subnet {wβ} of {wα} such that {wβ} converges to a point w0 ∈ ⋂
y∈X

T (y).

By the upper semi-continuity of T , we have w0 ∈ T (y0). Since wβ → w0 in the

σ(F, E)-topology, we have

〈wβ − w0, η(y0, x)〉 → 0.

Since η(yβ , x) → η(y0, x) and for each w ∈ F , the function x 7→ 〈w, x〉 is continu-

ous, we have

〈w0, η(yβ , x) − η(y0, x)〉 → 0.
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It follows from the compactness ofX that it is second category, by Banach-Steinhaus

theorem (see, Theorem 2.5 in Rudin (1973)), the family of functions {(wβ −w0, ·〉}
is equi-continuous on X and hence

〈wβ − w0, η(yβ , x) − η(y0, x)〉 → 0.

It follows that

|〈wβ , η(yβ , x)〉 − 〈w0, η(y0, x)〉|
= |〈wβ − w0, η(y0, x)〉 + 〈wβ − w0, η(yβ , x) − η(y0, x)〉

+ 〈w0, η(yβ , x) − η(y0, x)〉|
≤ |〈wβ − w0, η(y0, x)〉| + |〈wβ − w0, η(yβ, x) − η(y0, x)〉|

+ |〈w0, η(yβ , x) − η(y0, x)〉| → 0.

Thus we obtain that for each x ∈ X ,

φ(x, y0) = inf
w∈T (y0)

〈w, η(y0, x)〉 ≤ 〈w0, η(y0, x)〉 = lim
β
〈wβ , η(yβ , x)〉 ≤ λ.

Therefore y0 ∈ Cλ and Cλ is closed in X . Hence for each fixed x ∈ X , the function

y 7→ φ(x, y) is lower semi-continuous on X .

Remark 5.30 If F = E∗, the topological dual space of E, and η(x, y) = x− y

for all x, y ∈ X , then Lemma 2.2 reduces to Lemma 3 in [Chowdhury and Tan

(1996)].

The following result is a slightly improved form of Lemma 2 in Chowdhury and

Tan (1996)].

Lemma 5.35 Let X be a nonempty convex subset of a topological vector space

E and G : X → 2X \ {φ} be such that

(i) for some M ∈ F(X), clX (
⋂
x∈M

G(x)) is compact,

(ii) for each A ∈ F(X) with M ⊂ A and for x ∈ co(A), G(x) ∩ co(A) is closed in

co(A),

(iii) G is a KKM mapping, i.e., co(A) ⊂ ⋂
x∈A

G(x) for all A ⊂ F(X),

(iv) for each A ∈ F(X) with M ⊂ A,

(clX(
⋂

x∈co(A)

G(x)))
⋂

co(A) = (
⋂

x∈co(A)

G(x))
⋂

co(A).

Then
⋂
x∈X

G(x) 6= ∅.

Proof. If x0 and clX G(x0) are replaced by M and clX(
⋂
x∈M

G(x)) respectively in

the proof of Lemma 2 of Chowdhury and Tan Chowdhury and Tan (1996)], then by

using similar argument, we can prove that the conclusion of Lemma 5.35 holds.
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Example 5.11 Let X = E = R and G : X → 2X be defined as follows:

G(x) =





R, if x ∈ R \ {1, 2}
[1, ∞) if x = 1

(−∞, 2] , if x = 2.

By taking M = {1, 2}, it is easy to check that all conditions of Lemma 5.35 are

satisfied and
⋂
x∈X

G(x) = [1, 2] 6= ∅. But for any x ∈ X , clX G(x) is not compact

and hence Lemma 2 of Chowdhury and Tan [Chowdhury and Tan (1996)] cannot

be applied.

5.11.1 Existence Theorems for GV LI(T, η, h, X, F )

In this section, we shall present some results of Ding and Tarafdar on existence

theorems for the solutions to the GV LI(T, η, h, X, F ) involving an (η, h)-pseudo-

monotone type I operator T with non-compact domain in Hausdorff topological

vector spaces.

Theorem 5.85 Let X be a nonempty convex subset of a Hausdorff topological

vector space E over Φ and F be a vector space over Φ with the σ(F, E)-topology

such that for each w ∈ F , the function x 7→ Re〈w, x〉 is continuous. Let T : X →
2F \ {φ}, η : X ×X → E and h : X ×X → R be mappings such that

(i) for each A ∈ F(X), T is u.s.c. from co(A) to the σ(F, E)-topology on F such

that for each x ∈ X, T (x) is σ(F, E)-compact,

(ii) T and η have the 0-DCVR,

(iii) for each fixed y ∈ X, η(·, y) is continuous and h(·, y) is lower semi-continuous

on co(A) for each A ∈ F(X), and for each fixed x ∈ X, h(x, ·) is concave and

h(x, x) = 0,

(iv) T is an (η, h)-pseudo-monotone type I (respectively, a strong (η, h)-pseudo-

monotone type I) operator,

Suppose that there exist a nonempty compact (respectively, weakly compact and

weakly closed) subset K of X and a finite set M ∈ F(X) such that for each y ∈
X \K, there is an x ∈M satisfying

inf
w∈T (y)

Re〈w, η(y, x)〉 + h(y, x) > 0.

Then there exists a point ŷ ∈ K such that

inf
w∈T (ŷ)

Re〈w, η(ŷ, x)〉 + h(ŷ, x) ≤ 0, ∀x ∈ X. (5.128)

If, in addition, T (ŷ) is convex and for each x ∈ X and η(x, ·) is affine then there

exists a point ŵ ∈ T (ŷ) such that

Re〈ŵ, η(ŷ, x)〉 + h(ŷ, x) ≤ 0, ∀x ∈ X.
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Proof. Define a set-valued mapping G : X → 2X \ {φ} by

G(x) = {y ∈ X : inf
w∈T (y)

Re〈w, η(y, x)〉 + h(y, x) ≤ 0}.

For each A ∈ F(X) with M ⊂ A, since E is Hausdorff and co(A) is compact, and

the relative weak topology on co(A) coincides with the relative topology on co(A),

it follows from Lemma 5.34 and the condition (iii) that for each fixed x ∈ X , the

function

y 7→ inf
w∈T (y)

Re〈w, η(y, x)〉 + h(y, x)

is lower semi-continuous (respectively, weakly lower semicontinuous) on co(A) and

so G(x) ∩ co(A) is closed (respectively, weakly closed) in co(A). Hence condition

(ii) of Lemma 5.35 is satisfied.

We claim that G is an KKM mapping. If it is false, then there exist a finite

set A = {x1, . . . , xn} ∈ F(X) and y =
n∑
i=1

λixi (λi ≥ 0,
n∑
i=1

λ = 1) such that

y /∈
n⋂
i=1

G(xi). Then we have

inf
w∈T (y)

Re〈w, η(y, xi)〉 + h(y, xi) > 0, ∀i = 1, . . . , n.

It follows from (iii) that

0 <

n∑

i=1

λi inf
w∈T (y)

Re〈w, η(y, xi)〉 +

n∑

i=1

λih(y, xi)

≤
n∑

i=1

λi inf
w∈T (y)

Re〈w, η(y, xi)〉 + h(y, y)

=

n∑

i=1

λi inf
w∈T (y)

〈w, η(y, xi)〉

which contradicts the condition (ii). Hence G is an KKM mapping and the condition

(iii) of Lemma 5.35 is satisfied.

By the condition (v), it is easy to see that
⋂
x∈M

G(x) ⊂ K and hence

clX(
⋂
x∈M

G(x)) is compact (respectively, weakly compact) and the condition (i)

of Lemma 5.35 is satisfied. For each A ∈ F(X) with M ⊂ A, if y ∈
(clX(

⋂
x∈co(A)

G(x)))
⋂

co(A), then y ∈ co(A) and there exists a net {yα}α∈Γ

in
⋂

x∈co(A)

G(X) such that {yα}α∈Γ converges to y (respectively, weakly to y).

Since tx + (1 − t)y ∈ co(A) for all t ∈ [0, 1] and x ∈ co(A), we have

infw∈T (yα)Re〈w, η(yα, tx + (1 − t)y)〉 + h(yα, tx + (1 − t)y) ≤ 0, ∀α ∈ Γ, and

t ∈ [0, 1].
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Then for t = 0 we have

inf
w∈T (yα)

Re〈w, η(yα, y)〉 + h(yα, y) ≤ 0, ∀α ∈ Γ.

It follows that

lim sup
α

[ inf
w∈T (yα)

Re〈w, η(yα, y) + h(yα, y)] ≤ 0.

Since T is an (η, h)-pseudo-monotone type I (respectively, a strong (η, h)-pseudo-

monotone type I) operator, we have

lim sup
α

[ inf
w∈T (yα)

Re〈w, η(yα, x)〉 + h(yα, x)] ≥ inf
w∈T (y)

Re〈w, η(y, x)〉 + h(y, x).

(5.129)

For t = 1, we have

inf
w∈T (yα)

Re〈w, η(yα, x)〉 + h(yα, x) ≤ 0, ∀α ∈ Γ.

It follows that

lim sup
α

[ inf
w∈T (yα)

Re〈w, η(yα, x)〉 + h(yα, x)] 5 0. (5.130)

By (5.129) and (5.130), we obtain

inf
w∈T (y)

Re〈w, η(y, x)〉 + h(y, x) ≤ 0

and so y ∈ G(x) for all x ∈ co(A). Therefore we have y ∈ (
⋂

x∈co(A)

G(x))
⋂

co(A).

Hence we must have

clX


 ⋂

x∈co(A)

G(x)




⋂ co(A) =


 ⋂

x∈co(A)

G(x)


⋂ co(A)

and the condition (iv) of Lemma 5.35 is satisfied. By Lemma 5.35, we have⋂
x∈X

G(x) 6= ∅. Hence there exists ŷ ∈ ⋂
x∈X

G(x). This means that

inf
w∈T (ŷ)

Re〈w, η(ŷ, x)〉 + h(ŷ, x) ≤ 0, ∀x ∈ X.

Also from this and condition (v) it follows that ŷ ∈ K.

This proves that the conclusion (5.128) holds.

Now suppose that T (ŷ) is convex and for each x ∈ X and η(x, ·) is affine. Define

a functional f : X × T (ŷ) → R by

f(x, w) = Re〈w, η(ŷ, x)〉 + h(ŷ, x).

By the definition of the σ(F, E)-topology on F , for each x ∈ E, the function

w 7→ 〈w, x〉 is continuous, it follows that for each x ∈ X , the functional w 7→ f(x, w)

is continuous and affine and for each w ∈ T (ŷ), the functional x 7→ f(x, w) is
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concave since η(ŷ, ·) is affine and h(ŷ, ·) is concave. By applying Kneser’s minimax

Theorem 5.44, we obtain

min
w∈T (ŷ)

sup
x∈X

[Re〈w, η(ŷ, x)〉 + h(ŷ, x)]

= sup
x∈X

min
w∈T (ŷ)

[Re〈w, η(ŷ, x)〉 + h(ŷ, x)]

= sup
x∈X

[
inf

w∈T (y)
Re〈w, η(ŷ, x)〉 + h(ŷ, x)

]
≤ 0.

Since T (ŷ) is σ(F, E)-compact, there exists a point ŵ ∈ T (ŷ) such that

sup
x∈X

[Re〈ŵ, η(ŷ, x)〉 + h(ŷ, x) ≤ 0.

and hence

Re〈ŵ, η(ŷ, x)〉 + h(ŷ, x) ≤ 0, ∀x ∈ X,

that is, the pair ŷ ∈ K and ŵ ∈ T (ŷ) is a solution of the GV LI(F, η, h, X, F ) (2).

By taking η(x, y) = g(x) − g(y) for all x, y ∈ X , we obtain the following result

of Ding and Tarafdar from Theorem 5.85.

Corollary 5.85.1 Let X, E and F be same as in Theorem 5.85. Let T : X →
2F \ {φ}, g : X → E and b : X ×X → R be such that

(i) T satisfies the condition (i) of Theorem 5.85,

(ii) T and g have the 0-DCVR,

(iii) g is continuous on co(A) for each A ∈ F(X), and b is lower semicontinuous

in {(x, x) : x ∈ X} such that for each x ∈ X, b(x, ·) is a convex function and

b is upper semi-continuous in its first argument,

(iv) T is an (η, h)-pseudo-monotone type I operator where η(x, y) = g(x) − g(y)

and h(x, y) = b(x, x) − b(x, y) for all x, y ∈ X,

(v) there exist a nonempty compact subset K of X and a finite set M ∈ F(X)

such that for each y ∈ X \K, there is an x ∈ M satisfying

inf
w∈T (y)

Re〈w, g(y) − g(x)〉 + b(y, y) − b(y, x) > 0.

Then there exists a point ŷ ∈ K such that

inf
w∈T (ŷ)

Re〈w, g(ŷ) − g(x)〉 + b(ŷ, ŷ) − b(ŷ, x)〉 ≤ 0, ∀x ∈ X.

If, in addition, T (ŷ) is convex and g is affine, then there exists a point ŵ ∈ T (ŷ)

such that

Re〈ŵ, g(ŷ) − g(x)〉 + b(ŷ, ŷ) − b(ŷ, x) ≤ 0, ∀x ∈ X.
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Remark 5.31 If X is also compact in E, then the condition (v) of Theorem

5.85 and Corollary 5.85.1 is satisfied trivially. We note here that in Theorem 5.85

and Corollary 5.85.1, the space E may not be locally convex, T is only assumed to

be upper semi-continuous from co(A) to the σ(F, E)-topology on F and g is only

assumed to be continuous in co(A) for each A ∈ F(X). Since E is Hausdorff and

co(A) is compact, the relative weak topology on co(A) coincides with its relative

topology. Therefore Theorem 5.85 and Corollary 5.85.1 are different from Theorem

3.1 in Ding and Tarafdar (1994), Theorem 3.1 of Yu and Yao Yu and Yao (1996)

and Theorem 1 of Yu, Lai and Yao Yu, Lai, and Yao (1966). Theorem 5.85 and

Corollary 5.85.1 require that T is an (η, h)-pseudo-monotone type I operator but the

results in [Ding and Tarafdar (1994), Yu et al. (1966), Yu and Yao (1996)], though

do not require the pseudo-monotonicity, do require some other strong conditions.

Hence Theorem 5.85 and Corollary 5.85.1 are new results which are different from

those in [Ding and Tarafdar (1994), Yu et al. (1966), Yu and Yao (1996)].

When η(x, y) = x − y and h(x, y) = h′(x) − h′(y) for some convex function

h′ : X → R and for all x, y ∈ X , we obtain the following result of Ding and

Tarafdar from Theorem 5.85.

Theorem 5.86 Let X, E and F be same as in Theorem 5.85. Let T : X →
2F \ {∅} and h′ : X → R be such that

(i) T satisfies the condition (i) of Theorem 5.85 and each T (x) is also convex,

(ii) T is an h′-pseudo-monotone type I (respectively, a strong h′-pseudo-monotone

type I) operator,

(iii) h′ is a convex function,

(iv) there exist a nonempty compact (respectively, weakly closed and weakly

compact) subset K of X and a finite set M ∈ F(X) such that for each

y ∈ X \K, there is an x ∈ M satisfying

inf
w∈T (y)

Re〈w, y − x〉 + h′(y) − h′(x) > 0.

Then there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ − x〉 ≤ h′(x) − h′(ŷ), ∀x ∈ IX (ŷ),

where IX (ŷ) = {ŷ + r(x − ŷ) : x ∈ X and r ≥ 0}.

Proof. We first note that for each A ∈ F(X), h′ is continuous on co(A) (see,

Rockafeller (1970, Corollary 10.1.1, p. 83). Let η(x, y) = x − y and h(x, y) =

h′(x)−h′(y) for all x, y ∈ X in Theorem 5.85. It is easy to check that all conditions

of Theorem 5.85 are satisfied. Hence there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ − x〉 + h′(ŷ) − h′(x) ≤ 0, ∀x ∈ X.
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Let z ∈ IX (ŷ) \ X . Since X is convex, there exist x ∈ X and r > 1 such that

z = ŷ + r(x − ŷ). Suppose that

Re〈ŵ, ŷ − z〉 + h′(ŷ) − h′(z) > 0.

Then we have x = (1 − 1/r)ŷ + (1/r)z ∈ X and

0 ≥ <〈ŵ, ŷ − x〉 + h′(ŷ) − h′(x)

≥ (1/r)Re〈ŵ, ŷ − z〉 + h′(ŷ) − [(1 − 1/r)h′(ŷ) + (1/r)h′(z)]

= (1/r)[Re〈ŵ, ŷ − z〉 + h′(ŷ) − h′(z)] > 0

which is impossible. Hence we must have

Re〈ŵ, ŷ − x〉 ≤ h′(x) − h′(ŷ), for allx ∈ IX (ŷ).

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Ding and Tarafdar (2000).

5.12 Generalized Quasi-Variational Inequalities

In this section, E will denote a Hausdorff topological vector space, and if X is an

arbitrary non-empty subset of E then 2X will denote the family of all subsets of X .

In this section we shall present some results of Shih and Tan on general theorems

on solutions of the generalized quasi-variational inequalities (GQVI). In obtaining

these results, Shih and Tan used the Ky Fan minimax principle [Fan (1972)] or the

following generalized version due to Yen [Yen (1981)] as their basic tool:

Theorem 5.87 Let X be a nonempty compact convex set in a Hausdorff topo-

logical vector space E. Let φ and ψ be two real-valued functions on X → X having

the following properties:

(a) φ ≤ ψ on X ×X and ψ(x, x)) ≤ 0 for all x ∈ X;

(b) For each fixed x ∈ X,φ(x, y) is a lower semi-continuous function of y on X;

(c) For each fixed y ∈ X,ψ(x, y) is a quasi-concave function of x on X.

Then there exists a point ŷ ∈ X such that φ(x, ŷ) ≤ 0 for all x ∈ X.

5.12.1 Generalized Quasi-Variational Inequalities for Monotone

and Lower Semi-Continuous Mappings

We shall present some results from Shih and Tan (1985) on generalized quasi-

variational inequalities (GQVI) for monotone and lower semicontinuous operators

on compact sets. Before doing that we shall start with a lemma in Shih and Tan

(1985).
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Lemma 5.36 Let E be a Hausdorff topological vector space, X ⊂ E be non-

empty and S : X → 2E be upper semi-continuous such that for each x ∈ X,S(x)

is nonempty and bounded. Then for p ∈ E ′ the map fp : X → R defined by

fp(y) := supx∈S(y)Re〈p, x〉 is upper semi-continuous.

Proof. Let y0 ∈ X and ε > 0 be given. Let

Uε := {x ∈ E : |〈p, x〉| < ε/2};

then Uε is an open neighborhood of 0. As S(y0) + Uε is an open set containing

S(y0), by upper semicontinuity of S at y0, there exists a neighborhood N(y0) of y0
in X such that if y ∈ N(y0) then S(y) ⊂ S(y0) + Uε. Thus, for each y ∈ N(y0),

fp(y0) = sup
x∈S(y)

Re〈p, x〉 (5.131)

≤ sup
x∈S(y0)+Uε

Re〈p, x〉 (5.132)

≤ sup
x∈S(y0)

Re〈p, x〉 + sup
x∈Uε

Re〈p, x〉 (5.133)

< fp(y0) + ε. (5.134)

Hence fp is upper semi continuous and the proof is completed.

We now present the first result in Shih and Tan (1985):

Theorem 5.88 Let E be a locally convex Hausdorff topological vector space and

X be a nonempty compact convex subset of E. Let S : X → 2X be upper semi-

continuous such that for each x ∈ X,S(x) is a nonempty closed convex subset of X,

and let T : X → 2E
′

be monotone such that for all x ∈ X,T (x) is a nonempty subset

of E′ and for each one-dimensional flat L ⊂ E, T |L ∩X is lower semi-continuous

from the topology of E to the weak∗- topology σ(E′, E) of E′. Suppose further that

the set Σ1 := {y ∈ X : supx∈S(y) supu∈T (x)Re〈u, y − x〉 > 0} is open in X. Then

there exists a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) supw∈T (ŷ)Re〈w, ŷ − x〉 ≤ 0 for all xex ∈ S(ŷ).

Proof. The proof is divided into two steps as follows:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and supu∈T (x)Re〈u, y−
x〉 ≤ 0 for all x ∈ S(ŷ).

Suppose the assertion were false. Then for all y ∈ X , either y /∈ S(y) or there

exists a point x ∈ S(y) such that supu∈S(y)Re〈u, y−x〉 > 0. Observe that whenever

y /∈ S(y), there exists p ∈ E ′ such that

Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0
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by applying the Hahn-Banach separation theorem. For each y ∈ X , we set

α(y) := sup
x∈S(y)

sup
u∈T (x)

Re〈u, y − x〉.

Let

V0 := {y ∈ X : α(y) > 0}.

For each p ∈ E′, we set

V (p) := {y ∈ X : Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉0}.

Then X = V0 ∪ ⋃p∈E′ V (p). By hypothesis, V0 is open in X . By Lemma 5.36,

V (p) is open in X for each p ∈ E ′. Since X is compact, there exist p1, . . . , pn ∈ E′

such that X = V0 ∪
⋃n
i=1 V (p1) and a continuous partition of unity {β0, β1, . . . , βn}

subordinated to the covering {V0, V (p1), . . . , V (pn)}, that is, β0, β1, . . . , βn are con-

tinuous nonnegative real-valued functions on X such that β0 vanishes on X V0 and

for each 1 ≤ i ≤ n, βI vanishes on X V (pi) and Σni=0βi(x) = 1 for all x ∈ X .

Define φ, ψ : X ×X → R by setting

φ(x, y) := β0(y) sup
u∈T (x)

Re〈u, y − x〉 +

n∑

i=1

βi(y)Re〈pi, y − x〉,

ψ(x, y) := β0(y) inf
w∈T (y)

Re〈w, y − x〉 +

n∑

i=1

βi(y)Re〈pi, y − x〉.

By monotonicity of T , we have

sup
u∈T (x)

Re〈u, y − x〉 ≤ inf
w∈T (y)

Re〈w, y − x〉 for all x, y ∈ X.

It follows that φ ≤ ψ on X × X . Clearly ψ(x, x) = 0 for all x ∈ X . For each

fixed x ∈ X , since, βi(i = 0, 1, . . . n) are continuous nonnegative functions of y on X

and supu∈T (x)Re〈u, y−x〉(i = l, . . . , n) are lower semi-continuous functions of y on

X , by Lemma 3 in [Takahashi (1976), p. 177], y → φ(x, y) is lower semi-continuous

on X . Furthermore, for each fixed y ∈ X, x → ψ(x, y) is quasi-concave. Hence, all

the conditions of Theorem 5.87 are satisfied, so that there exists a point ŷ ∈ X such

that φ(x, ŷ) ≤ 0 for all x ∈ X ; that is,

β0(ŷ) sup
u∈T (x)

Re〈u, ŷ − x〉 +

n∑

i=1

βi(ŷi)Re〈pi, ŷ − x〉 ≤ 0 for all x ∈ X. (∗)

Since {β0, β1, . . . , βn} is a partition of unity, |bei(ŷ) > 0 for at least one index

I ∈ {0, 1, . . . , n}. Choose any x̂ ∈ S(ŷ) such that

sup
u∈T (x̂)

Re〈u, ŷ − x̂〉 ≥ α(ŷ)

2
whenever α(ŷ) > 0.
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If β0(ŷ) > 0, then ŷ ∈ V0 so that α(ŷ) > 0. Hence,

sup
u∈T (x̂)

Re〈u, ŷ − x̂〉 ≥ α(ŷ)

2
> 0.

If βi(ŷ) > 0, for i = 1, . . . , n, then ŷ ∈ V (pi) and hence

Re〈pi, ŷ〉 > sup
x∈S(y)

Re〈pi, x〉 ≥ Re〈pi, x̂〉

so that Re〈pi, ŷ − x̂〉 > 0. It follows that

β0(ŷ) sup
u∈T (x)

Re〈u, ŷ − x̂〉 +

n∑

i=1

βi(ŷi)Re〈pi, ŷ − x̂〉 > 0

contradicting (∗). This contradiction proves Step 1.

Step 2.

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

Let x ∈ S(ŷ) be arbitrarily fixed and let zt := tx + (1 − t)ŷ ≡ ŷ − t(ŷ − x) for

t ∈ [0, 1]. As S(ŷ) is convex, we have zt ∈ S(ŷ) for t ∈ [0, 1]. Therefore by Step 1,

we have

sup
u∈T (zt)

Re〈u, ŷ − zt〉 ≤ 0 for all t ∈ [0, 1],

and it follows that

sup
u∈T (zt)

Re〈u, ŷ − x〉 ≤ 0 for all t ∈ (0, 1]. (∗∗)

Let w0 ∈ T (ŷ) be arbitrarily fixed. For each ε > 0, let

Uw0 := {w ∈ E′ : |〈w0 − w, ŷ − x〉| < ε};

then Uw0 is a σ(E′, E)-neighborhood of w0. Since T |L∩X is lower semi-continuous,

where L := {zt : t ∈ [0, 1]}, and Uw0 ∩ T (ŷ) 6= ∅, there exists a neighborhood N(ŷ)

of ŷ in L such that if z ∈ N(ŷ) then T (z)∩Uw0 6= ∅. But then there exists δ ∈ (0, 1)

such that zt ∈ N(ŷ) for all t ∈ (0, δ). Fix any t ∈ (0, δ) and u ∈ T (zt) ∩ Uw0, we

have

|〈w0 − u, ŷ − x〉| < ε.

This implies

Re〈w0, ŷ − x〉 < Re〈u, ŷ − x〉 + ε.
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By (∗∗), we have Re〈w0, ŷ−x〉 < ε. Since ε > 0 is arbitrary, Re〈w0, ŷ−x〉 ≤ 0. As

w0 ∈ T (ŷ) is arbitrary,

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

This concludes the proof of our theorem.

When T ≡ 0, Theorem 5.88 gives the well-known Fan-Glicksberg fixed point

theorem [Fan (1952), Glicksberg (1952)].

Corollary 5.88.1 (Fan and Glicksberg) Let E be a locally convex Hausdorff

topological vector space and X a nonempty compact convex set in E. Let S : X →
2X be upper semi-continuous such that for each x ∈ X,S(x) is a nonempty closed

convex subset of X. Then there exists a point x̂ ∈ X such that x̂ ∈ S(x̂).

Shih and Tan observed that, if S is assumed to be continuous and T is assumed

to be lower semi-continuous in Theorem 5.88, then the set Σ1 becomes open in

X . The following theorem presents the results with these additional continuity

assumptions.

Theorem 5.89 Let E be a locally convex Hausdorff topological vector space and

X be a nonempty compact convex subset of E. Let S : X → 2X be continuous

such that for each x ∈ X, S(x) is a nonempty closed convex subset of X, and

T : X → 2E
′

be monotone such that for each x ∈ X, T (x) is a nonempty subset

of E′ and T is lower semi-continuous from the relative topology of X to the strong

topology of E′. Then there exists a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

Proof. By virtue of Theorem 5.88, we need only show that

Σ1 := {y ∈ X : sup
x∈S(y)

sup
u∈T (x)

Re〈u, y − x〉 > 0}

is open in X . Let y0 ∈ Σ1; then there exist x0 ∈ S(y0) and f0 ∈ T (x0) such that

α := Re〈f0, y0 − x0〉 > 0.

Since f0 is continuous at x0 and at y0, there exist an open neighborhood N1, of x0

and an open neighborhood U1 of y0 such that

x ∈ N1 ⇒ |〈f0, x0〉 − 〈f0, x〉| < α/6,

y ∈ U1 ⇒ |〈f0, y0〉 − 〈f0, y〉| < α/6.

Let

W := {f ∈ E′ : sup
z1,z2∈X

|〈f − f0, z1 − z2〉| < α/6};
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then W is a strongly open neighborhood of f0 and W ∩ T (x0) 6= ∅ so that by lower

semi-continuity of T at x0, there exists an open neighborhood N2 of x0 such that

x ∈ N2 ⇒ T (x) ∩W 6= ∅.

Let N := N1 ∩ N2; since N is a neighborhood of x0 and N ∩ S(y0) 6= ∅, by lower

semi-continuity of S at y0, there exists an open neighborhood U2 of y) such that

y ∈ U2 ⇒ S(y) ∩N 6= ∅.

Let U := U1 ∩ U2; then U is an open neighborhood of y0. For each y1 ∈ U , choose

x1 ∈ S(y1) ∩N and f1 ∈ T (x1) ∩W ; it follows that

α = Re〈f0, y0 − x0〉 (5.135)

= Re〈f1, y1 − x1〉 +Re〈f0, y0 − y1〉 +Re〈f0 − f1, y1 − x1〉 (5.136)

+Re〈f0, x1 − x0〉 (5.137)

< Re〈f1, y1 − x1〉 + α/2. (5.138)

Thus, Re〈f1, y1 − x1〉 > α/2 > 0 so that y1 ∈ Σ1 for all y1 ∈ U4. Hence Σ1 is

open in X and the proof is completed.

When S(x) ≡ X , Theorem 5.89 gives a multi-valued version of the Hartman-

Stampacchia variational inequality [Hartman and Stampacchia (1966)] as follows.

Corollary 5.89.1 Let E be a locally convex Hausdorff topological vector space

and X be a nonempty compact convex subset of E. Let T : X → 2E
′

be monotone

such that for each x ∈ X, T (x) is a nonempty subset of E ′ and T is lower semi-

continuous from the relative topology of X to the strong topology of E ′. Then there

exists a point ŷ ∈ X such that

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ 0 for all x ∈ X.

5.12.2 Generalized Quasi-Variational Inequalities for Upper Semi-

Continuous Mappings Without Monotonicity

In Theorems 5.88 and 5.89, Shih and Tan used a monotone operator T which also

have some kind of lower semi-continuity. In the next result from Shih and Tan

(1985) the operator T is upper semi-continuous; but T is not a monotone operator.

Theorem 5.90 Let E be a locally convex Hausdorff topological vector space

and X be a nonempty compact convex subset of E. Let S : X → 2X be upper

semi- continuous such that for each x ∈ X, S(x) is a nonempty closed convex

subset of X, and let T : X → 2E
′

be upper semi-continuous from the relative

topology of X to the strong topology of E’ such that for each x c- X, T (x) is a

nonempty compact convex subset of E ′. Suppose further that the set Σ2 = {y ∈ X :
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supx∈S(y) infz∈T (y)Re〈z, y−x〉 > 0} is open in X. Then there exists a point ŷ ∈ X

such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists a point ẑ ∈ T (ŷ) with Re〈ẑ, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

Proof. The proof is divided into two steps as follows:

Step 1. There exists a point ŷ ∈ S such that ŷ ∈ S(ŷ) and

supx∈S(ŷ) infz∈T (ŷ)Re〈z, ŷ− x〉 ≤ 0.

Suppose the assertion were false. Then for all y ∈ X , either y /∈ S(y) or

there exists x ∈ S(y) such that infz∈T (y)Re〈z, y − x〉 > 0. Observe that whenever

y /∈ S(y), there exists p ∈ E ′ with

Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0.

For each y ∈ X , we set

α(y) := sup
x∈S(y)

inf
z∈T (y)

Re〈z, y − x〉.

Let

V0 := {y ∈ X : α(y) > 0},

and for each p ∈ E′, we set

V (p) := {y ∈ X : Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0}.

Then x = V0 ∪
⋃
p∈E′ V (p). By hypothesis, V0 is open in X . By Lemma 5.36, V (p)

is open in X for each p ∈ E ′. Since X is compact, there exist p1, . . . , pn ∈ E′ such

that

X = V0 ∪
n⋃

i=1

V (pi)

and a continuous partition of unity {β0, β1, . . . , βn} subordinated to the covering

{V0, V (p1), . . . , V (pn)}.
Define φ : X ×X → R by setting

φ(x, y) := β0(y) inf
w∈T (y)

Re〈w, y − x〉 +

n∑

i=1

βi(y)Re〈pi, y − x〉.

Clearly φ(x, x) = 0 for each x ∈ X . Note that for each fixed x ∈ X , y →
infw∈T (y)Re〈w, y − x〉 is lower semi-continuous as can be seen within the proof of

Theorem 21 in [Takahashi (1976)], so that y → φ(x, y) is lower semi-continuous.

Also it is clear that for each fixed y ∈ X , x → φ(x, y) is quasi-concave. Hence by

the Ky Fan minimax principle (i.e., Theorem 5.87 with φ ≡ ψ), there exists a point

ŷ ∈ X such that φ(x, ŷ) ≤ 0 for all x ∈ X . The contradiction that there is a point
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x̂ ∈ X with φ(x̂, ŷ) > 0 can be achieved by using the corresponding proof of Step 1

of Theorem 5.88.

Step 2. There exists a point ẑ ∈ T (ŷ such that Re〈ẑ, ŷ−x〉 ≤ 0 for all x ∈ S(y).

Indeed, define f : S(ŷ) × T (ŷ) → R by

f(x, z) := Re〈z, ŷ − x〉.

Note that for each fixed x ∈ S(ŷ), z → f(x, z) is continuous and affine, and for

each z ∈ T (ŷ), x → f(x, z) is affine. Thus by Kneser’s minimax theorem [Kneser

(1952)], we have

min
z∈T (ŷ)

max
x∈S(ŷ)

f(x, z) = max
x∈S(ŷ)

min
z∈T (ŷ)

f(x, z).

Thus

min
z∈T (ŷ)

max
x∈S(ŷ)

Re〈z, ŷ − x〉 ≤ 0

by Step 1. Since T (ŷ) is compact, there exists ẑ ∈ T (ŷ) such that

Re〈z, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

Shih and Tan further observed that, when E is a normed linear space, if S is

assumed to be continuous in Theorem 5.90, then the set Σ2 becomes open in X .

The following theorem is a result with this additional assumption.

Theorem 5.91 Let E be a normed linear space and X be a nonempty compact

convex subset of E. Let S : X → 2X be continuous such that for each x ∈ X,

S(x) is a nonempty closed convex subset of X, and let T : X → 2E
′

be upper semi-

continuous such that for each x ∈ X, T (x) is a nonempty compact convex subset of

E′. Then there exists a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists a point ẑ ∈ T (ŷ) with Re〈ẑ, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ).

Proof. By virtue of Theorem 5.90, we need only show that the set

Σ2 := {y ∈ X : sup
x∈S(y)

inf
z∈T (y)

Re〈z, y − x〉 > 0}

is open in X . For this purpose, let y0 ∈ Σ2, then there exists x0 ∈ S(y0) with

α = inf
z∈T (y)

Re〈z, y0 − x0〉 > 0}.

Let

M := max{(x), sup
z∈T (y0)

‖z‖} and B := {f ∈ E ′ : ‖f‖ < 1}.
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Since T is upper semi-continuous at y0, for η = α/6(1 + M) > 0, there exists

δ1 ∈ (0,min{1, α/6(1 +M)}) such that for all y ∈ X , ‖y− y0‖ < δ1 implies T (y) ⊂
T (y0)+ηB. As S is lower semi-continuous at y0, there exists δ2 ∈ (0,min{1, α/6(1+

M)}) such that for all y ∈ X , ‖y − y0‖ < δ2 implies

S(y) ∩ {x ∈ X : ‖x− x0‖, η} 6= ∅.

Let δ := min{δ1, δ2}. Let y1 ∈ X be such that ‖y1 − y0‖ < δ. Then T (y1) ⊂
T (y0) + ηB and we can choose x1 ∈ S(y1) with ‖x1 − x0‖ < η. It follows that

inf
z∈T (y1)

Re〈z, y1 − x1〉 ≥ inf
Z∈T (y0)+ηB

Re〈z, y1 − x1〉 (5.139)

≥ inf
z∈T (y0)

Re〈z, y1 − x1〉 + inf
z∈ηB

Re〈z, y1 − x1〉 (5.140)

≥ inf
z∈T (y0)

Re〈z, y1 − y0〉 + inf
z∈T (y0)

Re〈z, y0 − x0〉 (5.141)

+ inf
z∈T (y0)

Re〈z, x0 − x1〉 − η‖y1 − x1‖ (5.142)

≥ − sup
z∈T (y0)

‖z‖‖y1 − y0‖ + α (5.143)

− sup
z∈T (y0)

‖z‖‖x0 − x1‖ − α/6 (5.144)

> α/2 > 0. (5.145)

Thus,

sup
x∈S(y1)

inf
z∈T (y1)

Re〈z, y1 − x〉 > 0

so that y1 ∈ Σ2 whenever y1 ∈ X with ‖y1 − y0‖ < δ. This shows that Σ2 is open

in X and the proof is completed.

When S(x) ≡ X , the above result of Shih and Tan (1985) gives the following

multi-valued version of the Hartman-Stampacchia variational inequality:

Corollary 5.91.1 Let E be a normed linear space and X ⊂ E a nonempty

compact convex subset of E. Let T : X → 2E
′

be upper semicontinuous such that

for each x ∈ X, T (x) is a nonempty compact convex subset of E ′. Then there exist

a point ŷ ∈ X and a point ẑ ∈ T (ŷ) such that

Re〈ẑ, ŷ − x〉 ≤ 0 for all x ∈ X.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Shih and Tan (1985).
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5.13 Generalized Quasi-Variational Inequalities for Lower and

Upper Hemi-Continuous Operators on Non-Compact Sets

In obtaining some main results of this section Chowdhury and Tan used the following

result which is Theorem 1 in [Bae et al. (1993), p. 231]:

Theorem 5.92 Let E be a topological vector space, X be a non-empty convex

subset of E and f, g : X ×X → R ∪ {−∞,+∞} be such that

(a) g(x, x) ≤ 0 for all x ∈ X and f(x, y) ≤ g(x, y) for all x, y ∈ X;

(b) for each fixed x ∈ X, y 7→ f(x, y) is lower semicontinuous on non-empty

compact subsets of X;

(c) for each fixed y ∈ X, the set {x ∈ X : g(x, y) > 0} is convex;

(d) there exist a non-empty compact convex subset X0 of X and a non- empty

compact subset K of X such that for each y ∈ X\K, there is an x ∈ co(X0 ∪
{y}) with f(x, y) > 0.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

The following is a definition in [Chowdhury and Tan (1997b), pp. 28–29]:

Definition 5.18 Let E be a topological vector space, X be a non-empty subset

of E and T : X → 2E
∗

. Then T is said to be lower hemi-continuous on X if and

only if for each p ∈ E, the function fp : X → R ∪ {+∞}, defined by

fp(z) = sup
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is lower semicontinuous on X (if and only for each p ∈ E, the function gp;X →
R ∪ {−∞}, defined by

gp(z) = inf
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is upper semicontinuous on X).

The following is another definition in [Chowdhury and Tan (1997b), pp. 28–29]:

Definition 5.19 Let E be a topological vector space, X be a non-empty subset

of E and T : X → 2E
∗

. Then T is said to upper hemi-continuous on X if and only

if for each p ∈ E, the function fp : X → R ∪ {+∞}, defined by

fp(z) = sup
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is upper semicontinuous on X (if and only if for each p ∈ E, the function gp : X →
R ∪ {−α}, is defined by

gp(z) = inf
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is lower semicontinuous on X).
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The following result is in [Chowdhury and Tan (1997b), p. 29]:

Proposition 5.10 Let E be a topological vector space and X be a non-empty

subset of E. Let T : X → 2E
∗

be lower semicontinuous from relative topology on X

to the weak∗ topology σ〈E∗, E〉 on E∗. Then T is lower hemi-continuous on X.

Next, we give another result in [Chowdhury and Tan (1997b), p. 30]:

Proposition 5.11 Let E be a topological vector space and X be a non-empty

subset of E. Let T : X → 2E
∗

be upper semicontinuous from relative topology on X

to the weak∗ topology σ〈E∗, E〉 on E∗. Then T is upper hemi-continuous on X.

The following simple result is Lemma 2.1.6 in [Tan (1994)]:

Lemma 5.37 Let E be a topological vector space and A be a non-empty bounded

subset of E. Let C be a non-empty strongly compact subset of E∗. Define f : A→ R

by f(x) = minu∈C Re〈u, x〉 for all x ∈ A. Then f is weakly continuous on A.

The following result is Lemma 4.2 in [Chowdhury and Tan (1997b), p. 38]:

Lemma 5.38 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be convex and T : X → 2E
∗

be upper hemi-continuous along

line segments in X. Suppose ŷ ∈ X is such that infu∈T (x)Re〈u, ŷ−x〉 ≤ h(x)−h(ŷ)
for all x ∈ X.Then

inf
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(y) for all x ∈ X

We shall end this section with a result which is Lemma 4.1 in [Chowdhury and

Tan (1997b), pp. 37–38]:

Lemma 5.39 Let E be a topological vector space, X be a non-empty convex

subset of E, h : X → R be convex and T : X → 2E
∗

be lower hemi-continuous along

line segments in X. Then

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

5.13.1 Generalized Quasi-Variational Inequalities for Lower

Hemi-Continuous Operators

In this subsection we shall present some existence theorems of Chowdhury and

Tan on generalized quasi-variational inequalities for monotone and lower hemi-

continuous operators on paracompact sets.

Theorem 5.93 Let E be a locally convex Hausdorff topological vector space

and X be a non-empty paracompact convex subset of E. Let S : X → 2X be

upper semicontinuous such that each S(x) is compact convex and T : X → 2E
∗
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be monotone and lower hemi-continuous along line segments in X to the weak∗-
topology on E∗. Let h : X → R be convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x) > 0}

is open in X. Suppose further that there exist a non-empty compact convex subset

X0 of X and a non-empty compact subset K of X such that for each y ∈ X\K, there

exists a point x ∈ co(X0∪{y})∩S(y) with supu∈T (x)Re〈u, y−x〉+h(y)−h(x) > 0.

Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Proof. The proof is divided into two steps as follows:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ sup
u∈T (x)

Re〈u, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0.

Suppose the contrary. Then for each y ∈ X , either y 6∈ S(y) or there exist

x ∈ S(y) and u ∈ T (x) such that Re〈u, y − x〉 + h(y) − h(x) > 0; that is, for each

y ∈ X , either y 6∈ S(y) or y ∈ Σ. If y 6∈ S(y), then by Hahn-Banach separation

theorem, there exists p ∈ E∗ such that Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0. For each

y ∈ X , set

γ(y) := sup
x∈S(y)

[ sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)].

Let V0 := {y ∈ X |γ(y) > 0} = Σ and for each p ∈ E∗, set

Vp := {y ∈ X : Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0}.

Then X = V0 ∪ ⋃p∈E∗ Vp. Since each Vp is open in X by Lemma 5.36 and V0

is open in X by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X . Since

X is paracompact, there is a continuous partition of unity {β0, βp : p ∈ E∗} for

X subordinated to the open cover {V0, Vp : p ∈ E∗} (see, e.g., Theorem VIII.4.2

of Dugundji in Dugundji (1966)); that is for each p ∈ E∗, βp : X → [0, 1] and

β0 : X → [0, 1] are continuous functions such that for each p ∈ E∗, βp(y) = 0 for all

y ∈ X \Vp and β0(y) = 0 for all y ∈ X \V0 and {support β0, support βp : p ∈ E∗} is

locally finite and β0(y)+Σp∈E∗βp(y) = 1 for each y ∈ X . Define φ, ψ : X ×X → R

by

φ(x, y) = β0(y)[ sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈p, y − x〉,
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and

ψ(x, y) = β0(y)[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈p, y − x〉,

for each x, y ∈ X . Then we have the following.

(1) For each x, y ∈ X , since T is monotone, φ(x, y) ≤ ψ(x, y) and ψ(x, x) = 0

for all x ∈ X .

(2) For each fixed x ∈ X and each fixed u ∈ T (x), the map

y 7−→ Re〈u, y − x〉 + h(y) − h(x)

is continuous on X and therefore the map

y 7−→ β0(y)[ sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)]

is lower semicontinuous on X by Lemma 3 in [Takahashi (1976), p. 177]. Also for

each fixed x ∈ X ,

y 7−→ Σp∈E∗βp(y)Re〈p, y − x〉

is continuous on X . Hence, for each fixed x ∈ X , the map y 7−→ φ(x, y) is lower

semicontinuous on X .

(3) Clearly, for each y ∈ X , the set {x ∈ X : ψ(x, y) > 0} is convex.

(4) By hypothesis, there exists a non-empty compact convex subset X0 of X

and a non-empty compact subset K of X such that for each y ∈ X \K, there exists

a point x ∈ co(X0 ∪ {y}) ∩ S(y) such that supu∈T (x)Re〈u, y − x〉 + h(y) − h(x) >

0. Thus β0(y)[supu∈T (x)Re〈u, y − x〉 + h(y) − h(x)] > 0 whenever β0(y) > 0.

Also Re〈p, y − x〉 > 0 whenever βp(y) > 0 for p ∈ E∗. Consequently, φ(x, y) =

β0(y)[supu∈T (x)Re〈u, y − x〉 + h(y) − h(x)] +Σp∈E∗βp(y)Re 〈p, y − x〉 > 0.

Then φ and ψ satisfy all the hypotheses of Theorem 5.92. Thus by Theorem

5.92, there exists ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X , i.e.,

β0(ŷ)[ sup
u∈T (x)

Re〈u, ŷ − x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x〉 ≤ 0 (5.146)

for all x ∈ X .

If β0(ŷ) > 0, then ŷ ∈ V0 = Σ so that γ(ŷ) > 0. Choose x̂ ∈ S(ŷ) ⊂ X such that

sup
u∈T (x̂)

Re〈u, ŷ − x̂〉 + h(ŷ) − h(x̂) ≥ γ(ŷ)

2
> 0;

it follows that

β0(ŷ)[ sup
u∈T (x̂)

Re〈u, ŷ − x̂〉 + h(ŷ) − h(x̂)] > 0.
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If βp(ŷ) > 0 for some p ∈ E∗, then ŷ ∈ Vp and hence

Re〈p, ŷ〉 > sup
x∈S(ŷ)

Re〈p, x〉 ≥ Re〈p, x̂〉

so that Re〈p, ŷ − x̂〉 > 0. Then note that

βp(ŷ)Re〈p, ŷ − x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗, it follows that

φ(x̂, ŷ) = β0(ŷ)[ sup
u∈T (x̂)

Re〈u, ŷ − x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x̂〉 > 0,

which contradicts (5.146). This contradiction proves Step 1.

Step 2.

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Indeed, from Step 1, ŷ ∈ S(ŷ) which is a convex subset of X , and

sup
u∈T (x)

Re〈u, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Hence by Lemma 5.39, we have

sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

If X is compact, Theorem 5.93 reduces to the following of Chowdhury and Tan:

Theorem 5.94 Let E be a locally convex Hausdorff topological vector space

and X be a non-empty compact convex subset of E. Let S : X → 2X be upper

semicontinuous such that each S(x) is closed convex and T : X → 2E
∗

be monotone

and lower hemi-continuous along line segments in X to the weak∗-topology on E∗.
Let h : X → R be convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x) > 0}

is open in X. Then there exists a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Remark 5.32 Theorem 5.93 and Theorem 5.94 generalize Theorem 1 of Shih

and Tan (1985, p. 335).
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Chowdhury and Tan observed that if X is also bounded in Theorem 5.93 and the

map S : X → 2X is, in addition, lower semicontinuous and for each y ∈ Σ = {y ∈
X : supx∈S(y)[supu∈T (x)Re〈u, y−x〉+h(y)−h(x)] > 0}, T is lower semicontinuous

at some point x in S(y) with supu∈T (x)Re〈u, y−x〉+h(y)−h(x) > 0, then the set

Σ in Theorem 5.93 is always open in X . The following theorem is presented with

these additional assumptions.

Theorem 5.95 Let E be a locally convex Hausdorff topological vector space and

X be a non-empty paracompact convex and bounded subset of E. Let S : X → 2X

be continuous such that each S(x) is compact convex and T : X → 2E
∗

be monotone

and be lower hemi-continuous along line segments in X to the weak∗-topology on

E∗. Let h : X → R be convex and continuous. Suppose that for each y ∈ Σ = {y ∈
X : supx∈S(y)[supu∈T (x)Re〈u, y−x〉+h(y)−h(x)] > 0}, T is lower semicontinuous

at some point x in S(y) with supu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0. Suppose

further that there exist a non-empty compact convex subset X0 of X and a non-

empty compact subset K of X such that for each y ∈ X \K, there exists a point

x ∈ co(X0 ∪ {y})∩ S(y) with supu∈T (x)Re〈u, y− x〉 + h(y)− h(x) > 0. Then there

exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) sup
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Proof. By virtue of Theorem 5.93, we need only show that the set

Σ := {y ∈ X : sup
x∈S(y)

[ sup
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)] > 0}

is open in X . Indeed, let y0 ∈ Σ; then by hypothesis, T is lower semicontinuous at

some point x0 in S(y0) with supu∈T (x0)Re〈u, y0 − x0〉 + h(y0) − h(x0) > 0. Hence

there exists u0 ∈ T (x0) such that Re〈u0, y0 − x0〉 + h(y0) − h(x0) > 0. Let

α := Re〈u0, y0 − x0〉 + h(y0) − h(x0).

Then α > 0. Also let

U1 := {u ∈ E∗ : sup
z1,z2∈X

|〈u− u0, z1 − z2〉| <
α

6
}.

Then U1 is a strongly open neighborhood of u0 in E∗. Since T is lower semicontin-

uous at x0 and U1 ∩ T (x0) 6= ∅, there exists an open neighborhood V1 of x0 in X

such that T (x) ∩ U1 6= ∅ for all x ∈ V1.

As the map x 7−→ Re〈u0, x0 −x〉+h(x0)−h(x) is continuous at x0, there exists

an open neighborhood V2 of x0 in X such that

|Re〈u0, x0 − x〉 + h(x0) − h(x)| < α

6
for all x ∈ V2.
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Let V0 := V1 ∩ V2; then V0 is an open neighborhood of x0 in X . Since x0 ∈ V0 ∩
S(y0) 6= ∅ and S is lower semicontinuous at y0, there exists an open neighborhood

N1 of y0 in X such that S(y) ∩ V0 6= ∅ for all y ∈ N1.

Since the map y 7−→ Re〈u0, y − y0〉 + h(y) − h(y0) is continuous at y0, there

exists an open neighborhood N2 of y0 in X such that

|Re〈u0, y − y0〉 + h(y) − h(y0)| <
α

6
for all y ∈ N2.

Let N0 := N1∩N2. Then N0 is an open neighborhood of y0 in X such that for each

y1 ∈ N0, we have

(i) S(y1) ∩ V0 6= ∅ as y1 ∈ N1; so we can choose any x1 ∈ S(y1) ∩ V0;

(ii) |Re〈u0, y1 − y0〉 + h(y1) − h(y0)| < α
6 as y1 ∈ N2;

(iii) T (x1) ∩ U1 6= ∅ as x1 ∈ V1; choose any u1 ∈ T (x1) ∩ U1 so that

sup
z1,z2∈X

|〈u1 − u0, z1 − z2〉| <
α

6
;

(iv) |Re〈u0, x0 − x1〉 + h(x0) − h(x1)| < α
6 as x1 ∈ V2.

It follows that

Re〈u1, y1 − x1〉 + h(y1) − h(x1)

= Re〈u1 − u0, y1 − x1〉 +Re〈u0, y1 − x1〉 + h(y1) − h(x1)

≥ −α
6

+Re〈u0, y1 − y0〉 + h(y1) − h(y0)

+Re〈u0, y0 − x0〉 + h(y0) − h(x0)

+Re〈u0, x0 − x1〉 + h(x0) − h(x1) (by (iii)),

≥ −α
6
− α

6
+ α− α

6
=
α

2
> 0 (by (ii) and (iv));

therefore

sup
x∈S(y1)

[ sup
u∈T (x)

Re〈u, y1 − x〉 + h(y1) − h(x)] > 0

as x1 ∈ S(y1) and u1 ∈ T (x1). This shows that y1 ∈ Σ for all y1 ∈ N0, so that Σ is

open in X . This completes the proof.

If X is compact, Theorem 5.95 reduces to the following result of Chowdhury

and Tan:

Theorem 5.96 Let E be a locally convex Hausdorff topological vector space and

X be a non-empty compact convex subset of E. Let S : X → 2X be continuous

such that each S(x) is closed convex and T : X → 2E
∗

be monotone and be lower

hemi-continuous along line segments in X to the weak∗-topology on E∗. Let h :

X → R be convex and continuous. Suppose that for each y ∈ Σ = {y ∈ X :

supx∈S(y)[supu∈T (x)Re〈u, y− x〉+ h(y)− h(x)] > 0}, T is lower semicontinuous at
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some point x in S(y) with supu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0. Then there

exists a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) supw∈T (ŷ)Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Remark 5.33 Theorem 5.95 and Theorem 5.96 generalize Theorem 2 of Shih-

Tan in [Shih and Tan (1985), p. 338]

5.13.2 Generalized Quasi-Variational Inequalities for Upper

Hemi-Continuous Operators

In this subsection we shall present some existence theorems of Chowdhury and Tan

on generalized quasi-variational inequalities for semi-monotone and upper hemi-

continuous operators on paracompact sets.

We present the following result of Chowdhury and Tan on these operators men-

tioned above:

Theorem 5.97 Let E be a locally convex Hausdorff topological vector space and

X be a non-empty paracompact convex and bounded subset of E. Let S : X → 2X

be upper semicontinuous such that each S(x) is compact convex and T : X → 2E
∗

be semi-monotone and be upper hemi-continuous along line segments in X to the

weak∗-topology on E∗ such that each T (x) is strongly compact convex. Let h : X →
R be convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)] > 0}

is open in X. Suppose further that there exist a non-empty compact convex subset

X0 of X and a non-empty compact subset K of X such that for each y ∈ X\K, there

exists a point x ∈ co(X0 ∪{y})∩S(y) with infu∈T (x)Re〈u, y−x〉+h(y)−h(x) > 0.

Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists a point ŵ ∈ T (ŷ) with Re〈ŵ, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ S(ŷ).

Proof. The proof is divided into three steps as follows:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ inf
u∈T (x)

Re〈u, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0.

Suppose the contrary. Then for each y ∈ X , either y 6∈ S(y) or there exists

x ∈ S(y) such that infu∈T (x)Re〈u, y−x〉+h(y)−h(x) > 0; that is, for each y ∈ X ,

either y 6∈ S(y) or y ∈ Σ. If y 6∈ S(y), then by Hahn-Banach separation theorem,



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Variational and Quasivariational Inequalities and Generalized Games 405

there exists p ∈ E∗ such that Re〈p, y〉− supx∈S(y)Re〈p, x〉 > 0. For each y ∈ X , set

γ(y) := sup
x∈S(y)

[ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)].

Let V0 := {y ∈ X |γ(y) > 0} = Σ and for each p ∈ E∗, set

Vp := {y ∈ X : Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0}.

Then X = V0 ∪ ⋃p∈E∗ Vp. Since each Vp is open in X by Lemma 5.36 and V0 is

open in X by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X . Since X

is paracompact, there is a continuous partition of unity {β0, βp : p ∈ E∗} for X

subordinated to the open cover {V0, Vp : p ∈ E∗}.
Define φ, ψ : X ×X → R by

φ(x, y) = β0(y)[ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈p, y − x〉,

and

ψ(x, y) = β0(y)[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈p, y − x〉

for each x, y ∈ X . Then we have the following.

(1) For each x, y ∈ X , since T is semi-monotone, φ(x, y) ≤ ψ(x, y) and ψ(x, x) =

0 for all x ∈ X .

(2) For each fixed x ∈ X , the map

y 7−→ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)

is weakly lower semicontinuous (and therefore lower semicontinuous) on X by

Lemma 5.37 and the fact that h is continuous; therefore the map

y 7−→ β0(y)[ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)]

is lower semicontinuous on X by Lemma 3 in [Takahashi (1976), p. 177]. Also for

each fixed x ∈ X ,

y 7−→ Σp∈E∗βp(y)Re〈p, y − x〉

is continuous on X . Hence, for each fixed x ∈ X , the map y 7−→ φ(x, y) is lower

semicontinuous on X .

(3) Clearly, for each y ∈ X , the set {x ∈ X : ψ(x, y) > 0} is convex.

(4) By hypothesis, there exists a non-empty compact convex subset X0 of X

and a non-empty compact subset K of X such that for each y ∈ X \ K, there

exists a point x ∈ co(X0 ∪ {y}) ∩ S(y) such that infu∈T (x)Re〈u, y − x〉 + h(y) −
h(x) > 0. Thus β0(y)[infu∈T (x)Re〈u, y−x〉+h(y)−h(x)] > 0 whenever β0(y) > 0.

Also Re〈p, y − x〉 > 0 whenever βp(y) > 0 for p ∈ E∗. Consequently, φ(x, y) =

β0(y)[infu∈T (x)Re〈u, y − x〉 + h(y) − h(x)] +Σp∈E∗βp(y)Re 〈p, y − x〉 > 0.
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Then φ and ψ satisfy all the hypotheses of Theorem 5.92. Thus by Theorem

5.92, there exists ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X , i.e.,

β0(ŷ)[ inf
u∈T (x)

Re〈u, ŷ − x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x〉 ≤ 0 (5.147)

for all x ∈ X .

If β0(ŷ) > 0, then ŷ ∈ V0 = Σ so that γ(ŷ) > 0. Choose x̂ ∈ S(ŷ) ⊂ X such that

inf
u∈T (x̂)

Re〈u, ŷ − x̂〉 + h(ŷ) − h(x̂) ≥ γ(ŷ)

2
> 0;

it follows that

β0(ŷ)[ inf
u∈T (x̂)

Re〈u, ŷ − x̂〉 + h(ŷ) − h(x̂)] > 0.

If βp(ŷ) > 0 for some p ∈ E∗, then ŷ ∈ Vp and hence

Re〈p, ŷ〉 > sup
x∈S(ŷ)

Re〈p, x〉 ≥ Re〈p, x̂〉

so that Re〈p, ŷ − x̂〉 > 0. Then note that

βp(ŷ)Re〈p, ŷ − x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗, it follows that

φ(x̂, ŷ) = β0(ŷ)[ inf
u∈T (x̂)

Re〈u, ŷ − x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x̂〉 > 0,

which contradicts (5.147). This contradiction proves Step 1.

Step 2.

inf
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Indeed, from Step 1, ŷ ∈ S(ŷ) which is a convex subset of X , and

inf
u∈T (x)

Re〈u, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Hence by Lemma 5.38, we have

inf
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ). (5.148)

Step 3. There exist a point ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all

x ∈ S(ŷ).

Indeed, from Step 2 we have

sup
x∈S(ŷ)

[ inf
w∈T (ŷ)

Re〈w, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0, (5.149)
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where T (ŷ) is a strongly compact convex subset of the Hausdorff topological vector

space E∗ and S(ŷ) is a convex subset of X .

Now, define f : S(ŷ) × T (ŷ) → R by f(x,w) = Re〈w, ŷ − x〉 + h(ŷ) − h(x) for

each x ∈ S(ŷ) and each w ∈ T (ŷ). Note that for each fixed x ∈ S(ŷ), the map

w 7−→ f(x,w) is convex and continuous on T (ŷ) and for each fixed w ∈ T (ŷ),

the map x 7−→ f(x,w) is concave on S(ŷ). Thus by applying Kneser’s minimax

Theorem 5.44, we have

min
w∈T (ŷ)

sup
x∈S(ŷ)

[Re〈w, ŷ−x〉+h(ŷ)−h(x)] = sup
x∈S(ŷ)

min
w∈T (ŷ)

[Re〈w, ŷ−x〉+h(ŷ)−h(x)].

Hence

min
w∈T (ŷ)

sup
x∈S(ŷ)

[Re〈w, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0, by (5.149).

Since T (ŷ) is compact, there exists ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

If X is compact, Theorem 5.97 reduces to the following of Chowdhury and Tan:

Theorem 5.98 Let E be a locally convex Hausdorff topological vector space

and X be a non-empty compact convex subset of E. Let S : X → 2X be upper

semicontinuous such that each S(x) is closed convex and T : X → 2E
∗

be semi-

monotone and be upper hemi-continuous along line segments in X to the weak∗-
topology on E∗ such that each T (x) is strongly compact convex. Let h : X → R be

convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)] > 0}

is open in X. Then there exists a point ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists a point ŵ ∈ T (ŷ) with Re〈ŵ, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ S(ŷ).

Chowdhury and Tan observed that if the map S : X → 2X is, in addition, lower

semicontinuous and for each y ∈ Σ, T is upper semicontinuous at some point x in

S(y) with infu∈T (x)Re〈u, y−x〉+h(y)−h(x)] > 0, then the set Σ in Theorem 5.97

becomes an open set in X . The following theorem is presented with these additional

conditions:

Theorem 5.99 Let E be a locally convex Hausdorff topological vector space

and X be a non-empty paracompact convex and bounded subset of E. Let S :

X → 2X be continuous such that each S(x) is compact convex and T : X → 2F

be semi-monotone and be upper hemi-continuous along line segments in X to the

weak∗-topology on E∗ such that each T (x) is strongly compact convex. Let h :

X → R be convex and continuous. Suppose that for each y ∈ Σ = {y ∈ X :
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supx∈S(y)[infu∈T (x)Re〈u, y − x〉 + h(y) − h(x)] > 0}, T is upper semicontinuous

at some point x in S(y) with infu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0. Suppose

further that there exist a non-empty compact convex subset X0 of X and a non-

empty compact subset K of X such that for each y ∈ X \K, there exists a point

x ∈ co(X0 ∪ {y}) ∩ S(y) with infu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0. Then there

exists ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exist a point ŵ ∈ T (ŷ) with Re〈ŵ, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ S(ŷ).

Proof. By virtue of Theorem 5.97, it suffices to show that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)] > 0}

is open in X . Indeed, let y0 ∈ Σ; then by hypothesis, T is upper semicontinuous at

some point x0 in S(y0) with infu∈T (x0)Re〈u, y0 − x0〉 + h(y0) − h(x0) > 0. Let

α := inf
u∈T (x0)

Re〈u, y0 − x0〉 + h(y0) − h(x0).

Then α > 0. Also let

W := {w ∈ E∗ : sup
z1,z2∈X

|〈w, z1 − z2〉| < α/6}.

Then W is a strongly open neighborhood of 0 in E∗ so that U1 := T (x0) +W is an

open neighborhood of T (x0) in E∗. Since T is upper semicontinuous at x0, there

exists an open neighborhood V1 of x0 in X such that T (x) ⊂ U1 for all x ∈ V1.

As the map x 7−→ infu∈T (x0)Re〈u, x0 − x〉 + h(x0) − h(x) is continuous at x0,

there exists an open neighborhood V2 of x0 in X such that

| inf
u∈T (x0)

Re〈u, x0 − x〉 + h(x0) − h(x)| < α/6 for all x ∈ V2.

Let V0 := V1 ∩ V2; then V0 is an open neighborhood of x0 in X . Since x0 ∈ V0 ∩
S(y0) 6= ∅ and S is lower semicontinuous at y0, there exists an open neighborhood

N1 of y0 in X such that S(y) ∩ V0 6= ∅ for all y ∈ N1.

Since the map y 7−→ infu∈T (x0)Re〈u, y− y0〉+ h(y)− h(y0) is continuous at y0,

there exists an open neighborhood N2 of y0 in X such that

| inf
u∈T (x0)

Re〈u, y − y0〉 + h(y) − h(y0)| < α/6 for all y ∈ N2.

Let N0 := N1∩N2. Then N0 is an open neighborhood of y0 in X such that for each

y1 ∈ N0, we have

(i) S(y1) ∩ V0 6= ∅ as y1 ∈ N1; so we can choose any x1 ∈ S(y1) ∩ V0;

(ii) | infu∈T (x0)Re〈u, y1 − y0〉 + h(y1) − h(y0)| < α/6 as y1 ∈ N2;

(iii) T (x1) ⊂ U1 = T (x0) +W as x1 ∈ V1;

(iv) | infu∈T (x0)Re〈u, x0 − x1〉 + h(x0) − h(x1)| < α/6 as x1 ∈ V2.
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It follows that

inf
u∈T (x1)

Re〈u, y1 − x1〉 + h(y1) − h(x1)

≥ inf
[u∈T (x0)+W ]

Re〈u, y1 − x1〉 + h(y1) − h(x1) (by (iii)),

≥ inf
u∈T (x0)

Re〈u, y1 − x1〉 + h(y1) − h(x1) + inf
u∈W

Re〈u, y1 − x1〉

≥ inf
u∈T (x0)

Re〈u, y1 − y0〉 + h(y1) − h(y0)

+ inf
u∈T (x0)

Re〈u, y0 − x0〉 + h(y0) − h(x0)

+ inf
u∈T (x0)

Re〈u, x0 − x1〉 + h(x0) − h(x1) + inf
u∈W

Re〈u, y1 − x1〉

≥ −α
6

+ α− α

6
− α

6
=
α

2
> 0 (by (ii) and (iv));

therefore

sup
x∈S(y1)

[ inf
u∈T (x)

Re〈u, y1 − x〉 + h(y1) − h(x)] > 0

as x1 ∈ S(y1). This shows that y1 ∈ Σ for all y1 ∈ N0, so that Σ is open in X . This

completes the proof.

If X is compact, Theorem 5.99 reduces to the following result of Chowdhury

and Tan:

Theorem 5.100 Let E be a locally convex Hausdorff topological vector space

and X be a non-empty compact convex subset of E. Let S : X → 2X be continuous

such that each S(x) is closed convex and T : X → 2E
∗

be semi-monotone and

be upper hemi-continuous along line segments in X to the weak∗-topology on E∗

such that each T (x) is strongly compact convex. Let h : X → R be convex and

continuous. Suppose that for each y ∈ Σ = {y ∈ X : supx∈S(y)[infu∈T (x)Re〈u, y −
x〉 + h(y) − h(x)] > 0}, T is upper semicontinuous at some point x in S(y) with

infu∈T (x)Re〈u, y − x〉 + h(y) − h(x) > 0. Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists a point ŵ ∈ T (ŷ) with Re〈ŵ, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ S(ŷ).

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Chowdhury and Tan (1999).

5.14 Generalized Quasi-Variational Inequalities for Upper Semi-

Continuous Operators on Non-Compact Sets

In this section we shall present some existence theorems of Chowdhury and Tan

on generalized quasi-variational inequalities for upper semi-continuous operators on
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paracompact convex sets. In obtaining these results Chowdhury and Tan mainly

used the following generalized version of Ky Fan’s minimax inequality (Fan (1972))

in [Ding and Tan (1992b, Theorem 1)].

Theorem 5.101 Let X be a non-empty convex subset of a topological vector

space E and let f : X ×X → R ∪ {−∞,+∞} be such that

(a) for each fixed x ∈ X, the map y 7→ f(x, y) is lower semicontinuous on each

non-empty compact subset C of X;

(b) for each A ∈ F(X) and for each y ∈ co(A), minx∈A f(x, y) ≤ 0;

(c) there exists a non-empty compact convex subset X0 of X and a non-empty

compact subset K of X such that for each y ∈ X \ K, there exists an x ∈
co(X0 ∪ {y}) with f(x, y) > 0.

Then there exists a point ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.

Chowdhury and Tan used the following result which is Lemma 2.2.7 in Tan

(1991) (see also the proof of Theorem 21 of Takahashi in Takahashi (1976)):

Lemma 5.40 Let E be a topological vector space and E∗ be the continuous dual

of E equipped with the strong topology. Let X be a non-empty compact subset of E

and T : X → 2E
∗

be upper semi-continuous such that T (x) is strongly compact for

each x ∈ X. Define f : X ×X → R by f(x, y) = infw∈T (y)Re〈w, y − x〉, for each

x, y ∈ X. Then f is lower semi-continuous on X ×X.

In obtaining the main results, Chowdhury and Tan also used the following result

which is Lemma 3 of Takahshi in [Takahashi (1976)](see also Lemma 3 in [Shih and

Tan (1989)]):

Lemma 5.41 Let X and Y be topological spaces, f : X → R be non-negative and

continuous and g : Y → R be lower semi-continuous. Then the map F : X×Y → R,

defined by F (x, y) = f(x)g(y) for all (x, y) ∈ X × Y , is lower semi-continuous.

5.14.1 Non-Compact Generalized Quasi-Variational Inequalities

We shall first present a result of Chowdhury and Tan to a non-compact setting

which generalizes Theorem 3 in Shih and Tan (1985):

Theorem 5.102 Let E be a locally convex Hausdorff topological vector space

and X be a non-empty para-compact convex subset of E. Let S : X → 2X be upper

semi-continuous such that each S(x) is a non-empty compact convex subset of X

and T : X → 2E
∗

be upper semi-continuous from the relative topology of X to the

strong topology of E∗ such that each T (x) is a strongly compact convex subset of

E∗. Let h : X → R be convex and continuous. Suppose that the set

Σ = {y ∈ X : sup
x∈S(y)

[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] > 0}
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is open in X. Suppose further that there exist a non-empty compact convex subset

X0 of X and a non-empty compact subset K of X such that for each y ∈ X\K, there

exists a point x ∈ co(X0 ∪{y})∩S(y) with infw∈T (y)Re〈w, y−x〉+h(y)−h(x) > 0.

Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Proof. The proof is divided into two steps as follows:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

sup
x∈S(ŷ)

[ inf
w∈T (ŷ)

Re〈w, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0.

Suppose the contrary. Then for each y ∈ X , either y 6∈ S(y) or there exists

x ∈ S(y) such that infw∈T (y)Re〈w, y − x〉 + h(y) − h(x) > 0; that is, y 6∈ S(y) or

y ∈ Σ. If y 6∈ S(y), then by Hahn-Banach separation theorem, there exists p ∈ E∗

such that Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0. For each y ∈ X , set

γ(y) := sup
x∈S(y)

[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)].

Let V0 := {y ∈ X |γ(y) > 0} = Σ and for each p ∈ E∗, set

Vp := {y ∈ X : Re〈p, y〉 − sup
x∈S(y)

Re〈p, x〉 > 0}.

Then X = V0 ∪ ⋃p∈E∗ Vp. Since each Vp is open in X by Lemma 5.36 and V0 is

open in X by hypothesis, {V0, Vp : p ∈ E∗} is an open covering for X . Since X

is paracompact, there is a continuous partition of unity {β0, βp : p ∈ E∗} for X

subordinated to the open cover {V0, Vp : p ∈ E∗}.
Define φ : X ×X → R by

φ(x, y) = β0(y)[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈p, y − x〉,

for each x, y ∈ X . Then we have the following.

(1) For each fixed x ∈ X , the map

y 7→ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)

is lower semi-continuous on each non-empty compact subset of X by Lemma 5.40

and therefore the map

y 7→ β0(y)[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)]

is lower semi-continuous on each non-empty compact subset of X by Lemma 5.41.

Also for each fixed x ∈ X ,

y 7→ Σp∈E∗βp(y)Re〈p, y − x〉
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is continuous on X . Hence, for each fixed x ∈ X , the map y 7→ φ(x, y) is lower

semi-continuous on each non-empty compact subset of X .

(2) For each A ∈ F(X) and for each y ∈ co(A), minx∈A φ(x, y) ≤
0. Indeed, if this were false, then for some A = {x1, · · · , xn} ∈ F(X)

and some y ∈ co(A), say y =
∑n

i=1 λixi where λ1, · · · , λn ≥ 0 with∑n
i=1 λi = 1, such that min1≤i≤n φ(xi, y) > 0. Then for each i = 1, · · · , n,

β0(y)[infw∈T (y)Re〈w, y − xi〉 + h(y) − h(xi)] + Σp∈E∗βp(y)Re〈p, y − xi〉 > 0 so

that 0 = φ(y, y) = β0(y)[infw∈T (y)Re〈w, y −
∑n

i=1 λixi〉 + h(y) − h(
∑n

i=1 λixi)] +

Σp∈E∗βp(y)Re〈p, y −
∑n

i=1 λixi〉 ≥
∑n
i=1 λi(β0(y)[infw∈T (y)Re〈w, y − xi〉 + h(y) −

h(xi)] + Σp∈E∗βp(y)Re〈p, y − xi〉) > 0, which is a contradiction.

(3) By hypothesis, there exist a non-empty compact convex subset X0 of X and

a non-empty compact subset K of X such that for each y ∈ X \K, there exists a

point x ∈ co(X0 ∪ {y}) ∩ S(y) such that infw∈T (y)Re〈w, y − x〉 + h(y) − h(x) > 0.

Thus β0(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] > 0 whenever β0(y) > 0.

Also Re〈p, y − x〉 > 0 whenever βp(y) > 0 for p ∈ E∗. Consequently, φ(x, y) =

β0(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] +Σp∈E∗βp(y)Re〈p, y − x〉 > 0.

Then φ satisfies all hypotheses of Theorem 5.101. Hence by Theorem 5.101,

there exists a point ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X ; i.e.,

β0(ŷ)[ inf
w∈T (ŷ)

Re〈w, ŷ − x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x〉 ≤ 0 (5.150)

for all x ∈ X .

If β0(ŷ) > 0, then ŷ ∈ V0 = Σ so that γ(ŷ) > 0. Choose x̂ ∈ S(ŷ) ⊂ X such that

inf
w∈T (ŷ)

Re〈w, ŷ − x̂〉 + h(ŷ) − h(x̂) ≥ γ(ŷ)

2
> 0;

it follows that

β0(ŷ)[ inf
w∈T (ŷ)

Re〈w, ŷ − x̂〉 + h(ŷ) − h(x̂)] > 0.

If βp(ŷ) > 0 for some p ∈ E∗, then ŷ ∈ Vp and hence

Re〈p, ŷ〉 > sup
x∈S(ŷ)

Re〈p, x〉 ≥ Re〈p, x̂〉

so that Re〈p, ŷ − x̂〉 > 0. Then note that

βp(ŷ)Re〈p, ŷ − x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗, it follows that

φ(x̂, ŷ) = β0(ŷ)[ inf
w∈T (ŷ)

Re〈w, ŷ − x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x̂〉 > 0,

which contradicts (5.150). This contradiction proves Step 1.
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Step 2. There exists a point ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ − x〉 + h(ŷ) − h(x) ≤ 0 for all x ∈ S(ŷ).

Note that for each fixed x ∈ S(ŷ), w 7→ Re〈w, ŷ−x〉+h(ŷ)−h(x) is convex and

continuous on T (ŷ) and for each fixed w ∈ T (ŷ), x 7→ Re〈w, ŷ − x〉+ h(ŷ)− h(x) is

concave on S(ŷ). Thus by Kneser’s minimax theorem [Kneser (1952)], we have

min
w∈T (ŷ)

max
x∈S(ŷ)

[Re〈w, ŷ−x〉+h(ŷ)−h(x)] = max
x∈S(ŷ)

min
w∈T (ŷ)

[Re〈w, ŷ−x〉+h(ŷ)−h(x)].

Hence

min
w∈T (ŷ)

max
x∈S(ŷ)

[Re〈w, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0 by Step 1.

Since T (ŷ) is compact, there exists ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ − x〉 + h(ŷ) − h(x) ≤ 0 for all x ∈ S(ŷ).

Chowdhury and Tan observed that if X is also bounded in Theorem 5.102 and

the map S : X → 2X is, in addition, lower semicontinuous, then the set Σ in

Theorem 5.102 becomes an open set in X . The following theorem is presented with

these additional conditions:

Theorem 5.103 Let E be a locally convex Hausdorff topological vector space and

X be a non-empty paracompact convex and bounded subset of E. Let S : X → 2X

be continuous such that each S(x) is a non-empty compact convex subset of X and

T : X → 2E
∗

be upper semi-continuous from the relative topology of X to the strong

topology of E∗ such that each T (x) is a strongly compact convex subset of E∗. Let

h : X → R be convex and continuous. Suppose further that there exists a non-

empty compact convex subset X0 of X and a non-empty compact subset K of X

such that for each y ∈ X \ K, there exists a point x ∈ co(X0 ∪ {y}) ∩ S(y) with

infw∈T (y)Re〈w, y−x〉+h(y)−h(x) > 0. Then there exists a point ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists a point ŵ ∈ T (ŷ) with Re〈ŵ, ŷ−x〉 ≤ h(x)−h(ŷ) for all x ∈ S(ŷ).

Proof. Comparing with Theorem 5.102, we see that we shall only need to show

that the set

Σ := {y ∈ X : sup
x∈S(y)

[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] > 0}

is an open set in X . For, let y0 ∈ Σ; then there exists x0 ∈ S(y0) such that

α := infw∈T (y0)Re 〈w, y0 − x0〉 + h(y0) − h(x0) > 0. Let

W := {w ∈ E∗ : sup
z1,z2∈X

|〈w, z1 − z2〉| <
α

6
}.
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Then W is a strongly open neighborhood of 0 in E∗ so that U1 := T (y0) +W is

an open neighborhood of T (y0) in E∗. Since T is upper semi-continuous at y0, there

exists an open neighborhood N1 of y0 in X such that T (y) ⊂ U1 for all y ∈ N1.

As the map x 7−→ infw∈T (y0)Re〈w, x0 − x〉 + h(x0) − h(x) is continuous at x0,

there exists an open neighborhood V1 of x0 in X such that

| inf
w∈T (y0)

Re〈w, x0 − x〉 + h(x0) − h(x)| < α

6
for all x ∈ V1.

Since x0 ∈ V1 ∩ S(y0) 6= ∅ and S is lower semi-continuous at y0, there exists an

open neighborhood N2 of y0 in X such that S(y) ∩ V1 6= ∅ for all y ∈ N2.

Since the map y 7−→ infw∈T (y0)Re〈w, y− y0〉+h(y)−h(y0) is continuous at y0,

there exists an open neighborhood N3 of y0 in X such that

| inf
w∈T (y0)

Re〈w, y − y0〉 + h(y) − h(y0)| <
α

6
for all y ∈ N3.

Let N0 := N1 ∩N2 ∩N3. Then N0 is an open neighborhood of y0 in X such that

for each y1 ∈ N0, we have

(i) T (y1) ⊂ U1 = T (y0) +W as y1 ∈ N1;

(ii) S(y1) ∩ V1 6= ∅ as y1 ∈ N2; so we can choose any x1 ∈ S(y1) ∩ V1;

(iii) | infw∈T (y0)Re〈w, y1 − y0〉 + h(y1) − h(y0)| < α
6 as y1 ∈ N3;

(iv) | infw∈T (y0)Re〈w, x0 − x1〉 + h(x0) − h(x1)| < α
6 as x1 ∈ V1.

It follows that

inf
w∈T (y1)

Re〈w, y1 − x1〉 + h(y1) − h(x1)

≥ inf
[w∈T (y0)+W ]

Re〈w, y1 − x1〉 + h(y1) − h(x1) (by (i)),

≥ inf
w∈T (y0)

Re〈w, y1 − x1〉 + h(y1) − h(x1) + inf
w∈W

Re〈w, y1 − x1〉

≥ inf
w∈T (y0)

Re〈w, y1 − y0〉 + h(y1) − h(y0)

+ inf
w∈T (y0)

Re〈w, y0 − x0〉 + h(y0) − h(x0)

+ inf
w∈T (y0)

Re〈w, x0 − x1〉 + h(x0) − h(x1)

+ inf
w∈W

Re〈w, y1 − x1〉

≥ −α
6

+ α− α

6
− α

6
=
α

2
> 0 (by (iii) and (iv));

therefore supx∈S(y1)[infw∈T (y1)Re〈w, y1 − x〉 + h(y1) − h(x)] > 0 as x1 ∈ S(y1).

This shows that y1 ∈ Σ for all y1 ∈ N0 so that Σ is open in X . This proves the

theorem.
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Theorem 5.103 generalizes a result in [Shih and Tan (1985), Theorem 4] and

in [Kim (1988), Theorem] which is a special case of Theorem 11 in [Shih and Tan

(1989)] to non-compact setting.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Chowdhury and Tan (1997a).

5.15 Generalized Quasi-Variational Inequalities for Pseudo-

Monotone Set-Valued Mappings

In this section, Chowdhury and Tan used a generalized version of Ky Fan’s mini-

max inequality [Fan (1972), Theorem 1] in [Chowdhury and Tan (1996), Theorem

2] as a tool to obtain some general theorems on solutions of the generalized quasi-

variational inequalities on paracompact sets X in locally convex Hausdorff topo-

logical vector spaces where the set-valued operators T are strong pseudo-monotone

operators or pseudo-monotone operators and are upper semicontinuous from co(A)

to the weak∗-topology on E∗ for each A ∈ F(X).

In all results of this section, Chowdhury and Tan used the following set-valued

generalization of the classical pseudo-monotone operator. The classical definition of

a pseudo-monotone operator was introduced by Brézis, Nirenberg and Stampacchia

in [H. Brézis and Stampacchia (1972)]. In [Chowdhury and Tan (1996), Definition

1], Chowdhury and Tan made a slightly general definition of a pseudo-monotone

operator which we called pseudo-monotone type I operators.

Definition 5.20 Let E be a topological vector space, X be a non-empty subset

of E and T : X → 2E
∗

. If h : X → R, then T is said to be

(1) h-pseudo-monotone if for each y ∈ X and every net {yα}α∈Γ in X converg-

ing to y with lim supα[ inf
u∈T (yα)

Re〈u, yα − y〉 + h(yα) − h(y)] ≤ 0, we have

lim infα[ inf
u∈T (yα)

Re〈u, yα − x〉 + h(yα) − h(x)] ≥ inf
w∈T (y)

Re〈w, y − x〉 + h(y)−
h(x) for all x ∈ X ;

(2) pseudo-monotone if T is h-pseudo-monotone with h ≡ 0.

5.15.1 Generalized Quasi-Variational Inequalities for Strong

Pseudo-Monotone Operators

We shall present Chowdhury and Tan’s definition of strong pseudo-monotone opera-

tors and some general theorems on solutions of the generalized quasi-variational in-

equalities on paracompact sets in locally convex Hausdorff topological vector spaces.

Definition 5.21 Let E be a topological vector space, X be a non-empty subset

of E and T : X → 2E
∗

. If h : X → R, then T is said to be (1) strong h-pseudo-

monotone if for each continuous function θ : X → [0, 1], for each y ∈ X and every

net {yα}α∈Γ in X converging to y with lim supα[θ(yα)(infu∈T (yα) Re〈u, yα − y〉 +
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h(yα) − h(y))] ≤ 0 we have

lim sup
α

[θ(yα)( inf
u∈T (yα)

Re〈u, yα − x〉 + h(yα) − h(x))] (5.151)

≥ [θ(y)( inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x))] (5.152)

for all x ∈ X ; (2) strong pseudo-monotone if T is strong h-pseudo-monotone with

h ≡ 0.

Clearly, every strong pseudo-monotone operator is also a pseudo-monotone op-

erator as defined in [Chowdhury and Tan (1996)].

Proposition 5.12 Let X be a non-empty subset of a topological vector space E.

If T : X → E∗ is monotone and continuous from the relative weak topology on X

to the weak∗ topology on E∗, then T is strong pseudo-monotone.

Proof. Let us consider any arbitrary continuous function θ : X → [0, 1]. Suppose

{yα}α∈Γ is a net in X and y ∈ X with yα → y (and lim supα[θ(yα)(Re〈Tyα, yα −
y〉)] ≤ 0). Then for any x ∈ X and ε > 0, there are β1, β2 ∈ Γ with |θ(yα)Re〈Ty, yα−
y〉| < ε

2 for all α ≥ β1 and |θ(yα)Re〈Tyα − Ty, y − x〉| < ε
2 for all α ≥ β2. Choose

β0 ∈ Γ with β0 ≥ β1, β2. Thus

θ(yα)Re〈Tyα, yα − x〉 = θ(yα)Re〈Tyα, yα − y〉 + θ(yα)Re〈Tyα, y − x〉 (5.153)

≥ θ(yα)Re〈Ty, yα − y〉 + θ(yα)Re〈Tyα, y − x〉 (5.154)

= θ(yα)Re〈Ty, yα − y〉 + θ(yα)Re〈Tyα − Ty, y − x〉 + θ(yα)Re〈Ty, y − x〉
(5.155)

> − ε

2
− ε

2
+ θ(yα)Re〈Ty, y− x〉 for all α ≥ β0 (5.156)

so that infα≥β0 θ(yα)Re〈Tyα, yα − x〉 ≥ −ε + infα≥β0 θ(yα)Re〈Ty, y − x〉. It

follows that lim supβ θ(yβ)Re〈Tyβ, yβ − x〉 ≥ lim infβ θ(yβ)Re〈Tyβ, yβ − x〉 ≥
−ε + θ(y)Re〈Ty, y − x〉. As ε > 0 is arbitrary, lim supβ θ(yβ)Re〈Tyβ, yβ − x ≥
θ(y)Re〈Ty, y − x〉. Hence T is a strong pseudo-monotone operator.

We shall now present the following result of Chowdhury and Tan:

Theorem 5.104 Let E be a locally convex Hausdorff topological vector space,

X be a non-empty paracompact convex subset of E and h : E → R be convex.

Let S : X → 2X be upper semicontinuous such that each S(x) is compact convex

and T : X → 2E
∗

be strong h-pseudo-monotone and be upper semicontinuous from

co(A) to the weak∗-topology on E∗ for each A ∈ F(X) such that each T (x) is weak∗-
compact convex. Suppose that the set Σ = {y ∈ X : supx∈S(y)[infw∈T (y)Re〈w, y −
x〉 + h(y) − h(x)] > 0} is open in X.
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Suppose further that there exist a non-empty compact subset K of X and a point

x0 ∈ X such that x0 ∈ K ∩S(y) and infw∈T (y)Re〈w, y−x0〉+h(y)−h(x0) > 0 for

all y ∈ X \K. Then there exists ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Proof. The proof is divided into two steps as follows:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and

supx∈S(ŷ)[infw∈T (ŷ)Re〈w, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0.

Suppose the contrary. Then for each y ∈ X , either y 6∈ S(y) or there exists

x ∈ S(y) such that infw∈T (y)Re〈w, y − x〉 + h(y) − h(x) > 0; that is, y 6∈ S(y)

or y ∈ Σ. If y 6∈ S(y), then by Hahn-Banach separation theorem, there exists

p ∈ E∗ such that Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0. For each y ∈ X , set γ(y) :=

supx∈S(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)]. Let V0 := {y ∈ X |γ(y) > 0} = Σ

and for each p ∈ E∗, set Vp := {y ∈ X : Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0}.
Then X = V0 ∪ ⋃p∈E∗ Vp. Since each Vp is open in X by Lemma 1 in [Shih

and Tan (1985)] and V0 is open in X by hypothesis, {V0, Vp : p ∈ E∗} is an open

covering for X . Since X is paracompact, there is a continuous partition of unity

{β0, βp : p ∈ E∗} for X subordinated to the open cover {V0, Vp : p ∈ E∗} (see,

e.g., Theorem VIII.4.2 of Dugundji in [Dugundji (1966)]); that is, for each p ∈ E∗,
βp : X → [0, 1] and β0 : X → [0, 1] are continuous functions such that for each

p ∈ E∗, βp(y) = 0 for all y ∈ X \ Vp and β0(y) = 0 for all y ∈ X \ V0 and

{ support β0, support βp : p ∈ E∗} is locally finite and β0(y) + Σp∈E∗βp(y) = 1

for each y ∈ X . Note that for each A ∈ F(X), h is continuous on co(A) (see

e.g. [Rockafeller (1970), Corollary 10.1.1, p. 83]). Define φ : X × X → R by

φ(x, y) = β0(y)[minw∈T (y)Re〈w, y−x〉+h(y)−h(x)] + Σp∈E∗βp(y)Re〈p, y−x〉 for

each x, y ∈ X . Then we have the following.

(1) Since E is Hausdorff, for each A ∈ F(X) and each fixed x ∈ co(A), the

map y 7→ minw∈T (y)Re〈w, y − x〉 + h(y) − h(x) is lower semicontinuous on co(A)

by Lemma 3 in [Chowdhury and Tan (1996)] and the fact that h is continuous on

co(A) and therefore the map y 7→ β0(y)[minw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] is

lower semicontinuous on co(A) by Lemma 3 in [Takahashi (1976)]. Also for each

fixed x ∈ X , y 7→ Σp∈E∗βp(y)Re〈p, y − x〉 is continuous on X . Hence, for each

A ∈ F(X) and each fixed x ∈ co(A), the map y 7−→ φ(x, y) is lower semicontinuous

on co(A).

(2) For each A ∈ F(X) and for each y ∈ co(A), minx∈A φ(x, y) ≤ 0. Indeed, if

this were false, then for some A = {x1, . . . , xn} ∈ F(X) and some y ∈ co(A), say y =∑n
i=1 λixi where λ1, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, such that min1≤i≤n φ(xi, y) > 0.

Then for each i = 1, . . . , n,

β0(y)[ min
w∈T (y)

Re〈w, y − xi〉 + h(y) − h(xi)] + Σp∈E∗βp(y)Re〈p, y − xi〉 > 0
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so that

0 = φ(y, y) = β0(y)[ min
w∈T (y)

Re〈w, y −
n∑

i=1

λixi〉 + h(y) − h(

n∑

i=1

λixi)] (5.157)

+ Σp∈E∗βp(y)Re〈p, y −
n∑

i=1

λixi〉 (5.158)

≥
n∑

i=1

λi(β0(y)[ min
w∈T (y)

Re〈w, y − xi〉 + h(y) − h(xi)] (5.159)

+ Σp∈E∗βp(y)Re〈p, y − xi〉) > 0, (5.160)

which is a contradiction.

(3) Suppose A ∈ F(X), x, y ∈ co(A) and {yα}α∈Γ is a net in X converging to y

with φ(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1].

Then for t = 0 we have φ(y, yα) ≤ 0 for all α ∈ Γ, i.e., β0(yα) ×
[minw∈T (yα)Re〈w, yα − y〉 + h(yα) − h(y)] + Σp∈E∗βp(yα)Re〈p, yα − y〉 ≤ 0 for

all α ∈ Γ. Hence

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y))] (5.161)

+ lim inf
α

(Σp∈E∗βp(yα)Re〈p, yα − y〉) (5.162)

≤ lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y)) (5.163)

+ Σp∈E∗βp(yα)Re〈p, yα − y〉] ≤ 0. (5.164)

Therefore lim supα[β0(yα)(minw∈T (yα)Re〈w, yα − y〉 + h(yα) − h(y))] ≤ 0. Since T

is a strong h-pseudo-monotone operator, we have

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.165)

≥ β0(y)( min
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)). (5.166)

Thus

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.167)

+ Σp∈E∗βp(y)Re〈p, y − x〉 (5.168)

≥ β0(y)( min
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)) (5.169)

+ Σp∈E∗βp(y)Re〈p, y − x〉. (5.170)
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For t = 1 we have φ(x, yα) ≤ 0 for all α ∈ Γ, i.e., β0(yα)[minw∈T (yα)Re〈w, yα −
x〉 + h(yα) − h(x)] + Σp∈E∗βp(yα)Re〈p, yα − x〉 ≤ 0 for all α ∈ Γ. Therefore

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.171)

+ lim inf
α

[Σp∈E∗βp(yα)Re〈p, yα − x〉] (5.172)

≤ lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x)) (5.173)

+ Σp∈E∗βp(yα)Re〈p, yα − x〉] ≤ 0. (5.174)

Thus

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.175)

+ Σp∈E∗βp(y)Re〈p, y − x〉 ≤ 0. (5.176)

Hence by (5.167) and (5.175), we have φ(x, y) ≤ 0.

(4) By hypothesis, there exist a non-empty compact (and therefore closed) sub-

set K of X and a point x0 ∈ X such that x0 ∈ K ∩ S(y) and infw∈T (y)Re〈w, y −
x0〉 + h(y) − h(x0) > 0 for each y ∈ X \ K. Thus for each y ∈ X \ K,

β0(y)[infw∈T (y)Re〈w, y − x0〉 + h(y) − h(x0)] > 0 whenever β0(y) > 0 and

Re〈p, y − x0〉 > 0 whenever βp(y) > 0 for p ∈ E∗. Consequently, φ(x0, y) =

β0(y)[infw∈T (y)Re〈w, y− x0〉+ h(y)−h(x0)] + Σp∈E∗βp(y)Re〈p, y− x0〉 > 0 for all

y ∈ X \K.

Then φ satisfies all hypotheses of Theorem 2 in [Chowdhury and Tan (1996)].

Hence by Theorem 2 in [Chowdhury and Tan (1996)], there exists a point ŷ ∈ K

such that φ(x, ŷ) ≤ 0 for all x ∈ X ; i.e.,

β0(ŷ)[ inf
w∈T (ŷ)

Re〈w, ŷ − x〉 + h(ŷ) − h(x)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x〉 ≤ 0 (5.177)

for all x ∈ X . If γ(ŷ) = 0, choose any x̂ ∈ S(ŷ); if γ(ŷ) > 0, choose any x̂ ∈ S(ŷ)

such that inf
w∈T (ŷ)

Re〈w, ŷ − x̂〉 + h(ŷ) − h(x̂) ≥ γ(ŷ)
2 > 0.

If β0(ŷ) > 0, then ŷ ∈ V0 = Σ so that γ(ŷ) > 0; it follows that

β0(ŷ)[ inf
w∈T (ŷ)

Re〈w, ŷ − x̂〉 + h(ŷ) − h(x̂)] > 0.

If βp(ŷ) > 0 for some p ∈ E∗, then ŷ ∈ Vp and hence Re〈p, ŷ〉 >

supx∈S(ŷ)Re〈p, x〉 ≥ Re〈p, x̂〉 so that Re〈p, ŷ−x̂〉 > 0. Then note that βp(ŷ)Re〈p, ŷ−
x̂〉 > 0 whenever βp(ŷ) > 0 for p ∈ E∗.

Since β0(ŷ) > 0 or βp(ŷ) > 0 for some p ∈ E∗, it follows that

φ(x̂, ŷ) = β0(ŷ)[ inf
w∈T (ŷ)

Re〈w, ŷ − x̂〉 + h(ŷ) − h(x̂)] + Σp∈E∗βp(ŷ)Re〈p, ŷ − x̂〉 > 0,

which contradicts (5.177). This contradiction proves Step 1.
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Step 2. There exists a point ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 + h(ŷ) − h(x) ≤
0 for all x ∈ S(ŷ).

Note that for each fixed x ∈ S(ŷ), w 7→ Re〈w, ŷ−x〉+h(ŷ)−h(x) is convex and

continuous on T (ŷ) and for each fixed w ∈ T (ŷ), x 7→ Re〈w, ŷ − x〉+ h(ŷ)− h(x) is

concave on S(ŷ). Thus by Kneser’s Minimax Theorem in [Kneser (1952)] (see also

Aubin (1979, pp. 40, 41)), we have

min
w∈T (ŷ)

max
x∈S(ŷ)

[Re〈w, ŷ−x〉+h(ŷ)−h(x)] = max
x∈S(ŷ)

min
w∈T (ŷ)

[Re〈w, ŷ−x〉+h(ŷ)−h(x)].

Hence minw∈T (ŷ) maxx∈S(ŷ)[Re〈w, ŷ−x〉+h(ŷ)−h(x)] ≤ 0 by Step 1. Since T (ŷ) is

compact, there exists ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ−x〉+h(ŷ)−h(x) ≤ 0 for all x ∈
S(ŷ).

When X is compact, Chowdhury and Tan obtained the following result from

the above Theorem 5.104:

Theorem 5.105 Let E be a locally convex Hausdorff topological vector space, X

be a non-empty compact convex subset of E and h : E → R be convex. Let S : X →
2X be upper semicontinuous such that each S(x) is closed convex and T : X → 2E

∗

be a strong h-pseudo-monotone operator and be upper semicontinuous from co(A) to

the weak∗-topology on E∗ for each A ∈ F(X) such that each T (x) is weak∗-compact

convex. Suppose that the set Σ = {y ∈ X : supx∈S(y)[infw∈T (y)Re〈w, y−x〉+h(y)−
h(x)] > 0} is open in X. Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Chowdhury and Tan observed that if X is also bounded in Theorem 5.104, the

map S : X → 2X is, in addition, lower semi-continuous and for each y ∈ Σ, T is

upper semicontinuous at y in X , then the set Σ in Theorem 5.104 becomes an open

set in X . The following theorem is presented with these additional assumptions:

Theorem 5.106 Let E be a locally convex Hausdorff topological vector space,

X be a non-empty paracompact convex and bounded subset of E and h : E →
R be convex. Let S : X → 2X be continuous such that each S(x) is compact

convex and T : X → 2E
∗

be a strong h-pseudo-monotone operator and be upper

semicontinuous from co(A) to the weak∗-topology on E∗ for each A ∈ F(X) such

that each T (x) is weak∗-compact convex. Suppose that for each y ∈ Σ = {y ∈ X :

supx∈S(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] > 0}, T is upper semicontinuous

at y from the relative topology on X to the strong topology on E∗. Suppose further

that there exist a non-empty compact subset K of X and a point x0 ∈ X such that

x0 ∈ K ∩ S(y) and infw∈T (y)Re〈w, y − x0〉 + h(y) − h(x0) > 0 for all y ∈ X \K.

Then there exists ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).
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Proof. Comparing Theorem 5.104, we see that we need to show only that the set

Σ := {y ∈ X : supx∈S(y) [infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] > 0} is open in

X . For, let y0 ∈ Σ; then there exists x0 ∈ S(y0) such that α := infw∈T (y0)Re 〈w,

y0 − x0〉 + h(y0) − h(x0) > 0.

Let W := {w ∈ E∗ : supz1,z2∈X |〈w, z1 − z2〉| < α
6 }. Then W is a strongly

open neighborhood of 0 in E∗ so that U1 := T (y0) + W is an open neighborhood

of T (y0) in E∗. Since T is upper semicontinuous at y0 in X , there exists an open

neighborhood N1 of y0 in X such that T (y) ⊂ U1 for all y ∈ N1.

Now, the rest of the proof is similar to the proof of Theorem 2.2 in [Chowdhury

and Tan (1997b)]. Hence by the rest of the proof of Theorem 2.2 in [Chowdhury

and Tan (1997b)], Σ is open in X . This proves the theorem.

When X is compact, Chowdhury and Tan obtained the following result from

Theorem 5.106:

Theorem 5.107 Let E be a locally convex Hausdorff topological vector space, X

be a non-empty compact convex subset of E and h : E → R be convex. Let S : X →
2X be continuous such that each S(x) is closed convex and T : X → 2E

∗

be strong h-

pseudo-monotone and be upper semicontinuous from co(A) to the weak∗-topology on

E∗ for each A ∈ F(X) such that each T (x) is weak∗-compact convex. Suppose that

for each y ∈ Σ = {y ∈ X : supx∈S(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] > 0}, T
is upper semicontinuous at y from the relative topology on X to the strong topology

on E∗. Then there exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Chowdhury and Tan observed that in Theorems 5.104–5.107, the condition “h :

E → R be convex” can be replaced by the condition “h : X → R be convex such

that h|co(A) is continuous for each A ∈ F(X )”.

5.15.2 Generalized Quasi-Variational Inequalities for Pseudo-

Monotone Set-Valued Mappings

In this section we shall present some existence theorems of generalized quasi-

variational inequalities for pseudo-monotone set-valued mappings (see Definition

5.20) on paracompact convex sets.

We shall first presnt the following result of Chowdhury and Tan:

Theorem 5.108 Let E be a locally convex Hausdorff topological vector space,

X be a non-empty paracompact convex and bounded subset of E and h : E → R be

convex such that h(X) is bounded. Let S : X → 2X be upper semicontinuous such

that each S(x) is compact convex and T : X → 2E
∗

be h-pseudo-monotone and be

upper semicontinuous from co(A) to the weak∗-topology on E∗ for each A ∈ F(X)
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such that each T (x) is weak∗-compact convex and T (X) is strongly bounded. Suppose

that the set Σ = {y ∈ X : supx∈S(y)[infw∈T (y)Re〈w, y−x〉+h(y)−h(x)] > 0} is open

in X. Suppose further that there exist a non-empty compact subset K of X and a

point x0 ∈ X such that x0 ∈ K∩S(y) and infw∈T (y)Re〈w, y−x0〉+h(y)−h(x0) > 0

for all y ∈ X \K. Then there exists ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Proof. The proof is divided into two steps as follows:

Step 1. There exists a point ŷ ∈ X such that ŷ ∈ S(ŷ) and supx∈S(ŷ) ×
[infw∈T (ŷ)Re〈w, ŷ − x〉 + h(ŷ) − h(x)] ≤ 0.

Suppose the contrary. Then for each y ∈ X , either y 6∈ S(y) or there exists

x ∈ S(y) such that infw∈T (y)Re〈w, y − x〉 + h(y) − h(x) > 0; that is, y 6∈ S(y)

or y ∈ Σ. If y 6∈ S(y), then by Hahn-Banach separation theorem, there exists

p ∈ E∗ such that Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0. For each y ∈ X , set γ(y) :=

supx∈S(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)]. Let V0 := {y ∈ X |γ(y) > 0} = Σ

and for each p ∈ E∗, set Vp := {y ∈ X : Re〈p, y〉 − supx∈S(y)Re〈p, x〉 > 0}.
Then X = V0 ∪ ⋃p∈E∗ Vp. Since each Vp is open in X by Lemma 1 in [Shih

and Tan (1985)] and V0 is open in X by hypothesis, {V0, Vp : p ∈ E∗} is an open

covering for X . Since X is paracompact, there is a continuous partition of unity

{β0, βp : p ∈ E∗} for X subordinated to the open cover {V0, Vp : p ∈ E∗}.
Note that for each A ∈ F(X), h is continuous on co(A) (see e.g. [Rock-

afeller (1970), Corollary 10.1.1, p. 83]). Define φ : X × X → R by φ(x, y) =

β0(y)[minw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] + Σp∈E∗βp(y)Re〈p, y − x〉 for each

x, y ∈ X . Then we have the following:

(1) The same argument in proving (1) in the proof of Theorem 5.104 shows

that for each A ∈ F(X) and each fixed x ∈ co(A), the map y 7−→ φ(x, y) is lower

semicontinuous on co(A).

(2) The same argument in proving (2) in the proof of Theorem 5.104 shows that

for each A ∈ F(X) and for each y ∈ co(A), minx∈A φ(x, y) ≤ 0.

(3) Suppose A ∈ F(X), x, y ∈ co(A) and {yα}α∈Γ is a net in X converging to y

with φ(tx + (1 − t)y, yα) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1].

Case 1: β0(y) = 0.

Note that β0(yα) ≥ 0 for each α ∈ Γ and β0(yα) → 0. Since T (X) is strongly

bounded and {yα}α∈Γ is a bounded net, it follows that

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] = 0. (5.178)
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Also β0(y)[minw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] = 0. Thus

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.179)

+ Σp∈E∗βp(y)Re〈p, y − x〉 (5.180)

= Σp∈E∗βp(y)Re〈p, y − x〉 (by (3.1)) (5.181)

= β0(y)[ min
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] (5.182)

+ Σp∈E∗βp(y)Re〈p, y − x〉. (5.183)

For t = 1 we have φ(x, yα) ≤ 0 for all α ∈ Γ, i.e.,

β0(yα)[ min
w∈T (yα)

Re〈w, yα−x〉+h(yα)−h(x)]+Σp∈E∗βp(yα)Re〈p, yα−x〉 ≤ 0 (5.184)

for all α ∈ Γ. Therefore

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.185)

+ lim inf
α

[Σp∈E∗βp(yα)Re〈p, yα − x〉] (5.186)

≤ lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x)) (5.187)

+ Σp∈E∗βp(yα)Re〈p, yα − x〉] (5.188)

≤ 0 (by (3.3)). (5.189)

Thus

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα−x〉+h(yα)−h(x))]+Σp∈E∗βp(y)Re〈p, y−x〉 ≤ 0.

(5.190)

Hence by (5.179) and (5.190), we have φ(x, y) ≤ 0.

Case 2: β0(y) > 0.

Since β0(yα) → β0(y), there exists λ ∈ Γ such that β0(yα) > 0 for all α ≥ λ.

Then for t = 0 we have φ(y, yα) ≤ 0 for all α ∈ Γ, i.e., β0(yα)[minw∈T (yα)Re〈w, yα−
y〉 + h(yα) − h(y)] + Σp∈E∗βp(yα)Re〈p, yα − y〉 ≤ 0 for all α ∈ Γ. Thus

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y)) (5.191)

+ Σp∈E∗βp(yα)Re〈p, yα − y〉] ≤ 0. (5.192)
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Hence

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y))] (5.193)

+ lim inf
α

[Σp∈E∗βp(yα)Re〈p, yα − y〉] (5.194)

≤ lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y)) (5.195)

+ Σp∈E∗βp(yα)Re〈p, yα − y〉] (5.196)

≤ 0 (by (5.191)). (5.197)

Since lim infα[Σp∈E∗βp(yα)Re〈p, yα − y〉] = 0, we have

lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y))] ≤ 0. (5.198)

Since β0(yα) > 0 for all α ≥ λ, it follows that

β0(y) lim sup
α

[ min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y))] (5.199)

= lim sup
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − y〉 + h(yα) − h(y))]. (5.200)

Since β0(y) > 0, by (5.198) and (5.199) we have lim supα[minw∈T (yα)Re〈w, yα−
y〉 + h(yα) − h(y)] ≤ 0. Since T is an h-pseudo-monotone operator, we have

lim infα[minw∈T (yα)Re〈w, yα−x〉+h(yα)−h(x)] ≥ minw∈T (y)Re〈w, y−x〉+h(y)−
h(x). Since β0(y) > 0, we have

β0(y)[lim inf
α

( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.201)

≥ β0(y)[ min
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)]. (5.202)

Thus

β0(y)[lim inf
α

( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.203)

+ Σp∈E∗βp(y)Re〈p, y − x〉 (5.204)

≥ β0(y)[ min
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] (5.205)

+ Σp∈E∗βp(y)Re〈p, y − x〉. (5.206)

For t = 1 we also have φ(x, yα) ≤ 0 for all α ∈ Γ, i.e.,

β0(yα)[ min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x)] + Σp∈E∗βp(yα)Re〈p, yα − x〉 ≤ 0
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for all α ∈ Γ. Therefore

0 ≥ lim inf
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x)) (5.207)

+ Σp∈E∗βp(yα)Re〈p, yα − x〉] (5.208)

≥ lim inf
α

[β0(yα)( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.209)

+ lim inf
α

[Σp∈E∗βp(yα)Re〈p, yα − x〉] (5.210)

= β0(y)[lim inf
α

( min
w∈T (yα)

Re〈w, yα − x〉 + h(yα) − h(x))] (5.211)

+ Σp∈E∗βp(y)Re〈p, y − x〉. (5.212)

Consequently, by (5.203) and (5.207), we have φ(x, y) ≤ 0.

Now, the rest of the proof of Step 1 is similar to the proofs in Step 1 of Theorem

5.104 and Theorem 3.1 in [Chowdhury and Tan (1997b)]. Thus Step 1 is proved.

Step 2. There exists a point ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 + h(ŷ) − h(x) ≤
0 for all x ∈ S(ŷ).

Also the same proof of Step 2 of Theorem 5.104 shows that there exists ŵ ∈ T (ŷ)

such that Re〈ŵ, ŷ − x〉 + h(ŷ) − h(x) ≤ 0 for all x ∈ S(ŷ).

When X is compact, Chowdhury and Tan obtained the following result from

Theorem 5.108:

Theorem 5.109 Let E be a locally convex Hausdorff topological vector space,

X be a non-empty compact convex subset of E and h : E → R be convex such that

h(X) is bounded. Let S : X → 2X be upper semicontinuous such that each S(x) is

closed convex and T : X → 2E
∗

be h-pseudo-monotone and be upper semicontinuous

from co(A) to the weak∗-topology on E∗ for each A ∈ F(X) such that each T (x)

is weak∗-compact convex and T (X) is strongly bounded. Suppose that the set Σ =

{y ∈ X : sup
x∈S(y)

[ inf
w∈T (y)

Re〈w, y − x〉 + h(y) − h(x)] > 0} is open in X. Then there

exists ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Chowdhury and Tan observed that if the map S : X → 2X is, in addition, lower

semicontinuous and for each y ∈ Σ, T is upper semicontinuous at y in X , then

the set Σ in Theorem 5.108 becomes an open set in X . The following theorem is

presented with these additional assumptions:

Theorem 5.110 Let E be a locally convex Hausdorff topological vector space,

X be a non-empty paracompact convex and bounded subset of E and h : E → R

be convex such that h(X) is bounded. Let S : X → 2X be continuous such that
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each S(x) is compact convex and T : X → 2E
∗

be h-pseudo-monotone and be upper

semicontinuous from co(A) to the weak∗-topology on E∗ for each A ∈ F(X) such

that each T (x) is weak∗-compact convex and T (X) is strongly bounded. Suppose that

for each y ∈ Σ = {y ∈ X : supx∈S(y)[infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] > 0}, T
is upper semicontinuous at y from the relative topology on X to the strong topology

on E∗. Suppose further that there exist a non-empty compact subset K of X and a

point x0 ∈ X such that x0 ∈ K∩S(y) and infw∈T (y)Re〈w, y−x0〉+h(y)−h(x0) > 0

for all y ∈ X \K. Then there exists ŷ ∈ K such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

Proof. Comparing Theorem 5.108, we see that we need to show only that the set

Σ := {y ∈ X : supx∈S(y) [infw∈T (y)Re〈w, y − x〉 + h(y) − h(x)] > 0} is open in X .

Now, following the same arguments as in the proofs of Theorem 3.2 in [Chowd-

hury and Tan (1997b)] and Theorem 5.106, we can similarly show that the set Σ is

open in X . Hence by Theorem 5.108 the conclusion follows.

When X is compact, Chowdhury and Tan obtained the following result from

Theorem 5.110:

Theorem 5.111 Let E be a locally convex Hausdorff topological vector space, X

be a non-empty compact convex subset of E and h : E → R be convex such that h(X)

is bounded. Let S : X → 2X be continuous such that each S(x) is closed convex and

T : X → 2E
∗

be h-pseudo-monotone and be upper semicontinuous from co(A) to

the weak∗-topology on E∗ for each A ∈ F(X) such that each T (x) is weak∗-compact

convex and T (X) is strongly bounded. Suppose that for each y ∈ Σ = {y ∈ X :

supx∈S(y)[infw∈T (y)Re〈w, y− x〉+ h(y)− h(x)] > 0}, T is upper semicontinuous at

y from the relative topology on X to the strong topology on E∗. Then there exists

ŷ ∈ X such that

(i) ŷ ∈ S(ŷ) and

(ii) there exists ŵ ∈ T (ŷ) with Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).

We remark here that in Theorems 5.108–5.111, the condition “h : E → R be

convex” can be replaced by the condition “h : X → R be convex such that h|co(A)

is continuous for each A ∈ F(X )”.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Chowdhury and Tan (1998).

5.16 Non-Linear Variational Inequalities and the Existence of

Equilibrium in Economics with a Riesz Space of Commodities

The object of this section is to present the results of Tarafdar and Mehta who investi-

gated the existence of equilibrium in an economy with a Riesz space of commodities.
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Riesz space methods have been used in economics by Aliprantis and Brown (1983).

Their proof is based on a theorem by Ky Fan (1961) which generalizes the classic

Knaster-Kuratowski-Mazurkiewicz Theorem. The main idea of the proof given by

Aliprantis and Brown is to define a ”revealed preference” relation on the space of

prices and then to use Ky Fan’s theorem to show the existence of a maximal element

for this ordering. This maximal element is then proved to be an equilibrium point.

The proof given in this section is not based on Ky Fan’s theorem. Instead it is

shown that the existence of an equilibrium point for the economy is equivalent to

the solution of a non-linear variational inequality which was first proved by Hart-

man and Stampacchia (1966) and Browder (1965) independently (see also Tarafdar

(1977), and Mosco (1976)). For applications of non-linear variational inequalities

we refer the reader to Hartman and Stampacchia (1966) and Mosco (1976).

We shall now present the following result of Aliprantis and Burkinshaw (1981,

pp. 189–190):

Theorem 5.112 (Riesz) If L is a Riesz space, then its order dual L∼ is also a

Riesz 5pace. If f ∈ l and u ∈ L+, then

f+(u) = sup{f(v)/0 ≤ v ≤ u}
f−(u) = sup{−f(v)/0 ≤ v ≤ u and |f |(u) = sup{f(v)/|v| ≤ u}.

Let L∼
+ denote the positive cone of L∼. Its members are called positive linear

functionals an L. f belongs to L∼
+ if and only if f(u) ≥ 0 for all u in L+. f is

strictly positive (f >> 0) if u > 0 implies f(u) > 0.

The following is another result in Aliprantis and Burkinshaw (1981, pp. 190–

191):

Theorem 5.113 Let L be a Riesz space and let f ∈ L∼ such that f ≥ 0. Then

for every x ∈ L, f(x+) = sup{g(x)/g ∈ L∼, 0 ≤ g ≤ f), f(x−) = sup{−g(x)/g ∈
L∼, 0 ≤ g ≤ f} and f(|x|) = sup{g(x)/|g| ≤ f}.

An ideal or order-ideal A of a Riesz space L is a vector sub-space of L such that

|f | ≤ |g| and g ∈ A imply f ∈ A .

If L is a Riesz space and L′ an ideal of L∼ separating the points of L, then the

dual pair (L,L′) is called a Riesz dual system.

Let (L,L′) be a Riesz dual system. A price-simplex D for (L,L′) is a non-

empty, w∗-compact and convex subset of L∼
+. Here, w∗ is the weak-star topology

on L∼, i.e. it is the w(L∼, L) topology. We assume that D satisfies the following

condition:

(∗) The cone generated by S = {p ∈ L′
+ ∩D/p >> 0} is w∗-dense in L′

+.

Let D be a price-simplex for a Riesz dual system (L,L′) An excess demand

function E is a mapping E : D → L, satisfying the following condition (Walras’

law):

pE(p) = 0 for all p ∈ D.
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By an economy, we mean a Riesz dual system (L,L′), a price-simplex D for

(L,L′) and an excess demand function E defined on D. An economy is said to have

an equilibrium price p if E(p) ≤ 0 where ≤ is the Riesz order on the space L.

Let K be a subset of Hausdorff linear topological space F over the reals and T a

single-valued (non-linear) mapping of K into F ′, the topological dual of F . Recall

that a point u0 is said to satisfy the variational inequality if

(T (u0), v − u0) ≤ 0 for all v in K.

Here, (,) denotes the pairing between F ′ and F . u0 is also called a solution of

the variational inequality. The mapping T is said to be monotone if (T (u) − T (v),

u− v) ≤ 0 for all u, v in K. T is said to be hemicontinuous if T is continuous from

the line segments in K to the weak topology of F ′.

5.16.1 Existence of Equilibrium Lemma

Lemma 5.42 Let (L,L′) be a Riesz dual system and let u ∈ L. Then u ≥ 0

holds if and only if f(u) ≥ 0 for all f ≥ 0 in L′.

Proof. The proof of the lemma is based on the two Riesz theorems cited in the

preliminary remarks (see Aliprantis and Brown (1983, Theorem 2.2)).

Next, we present the following result of Tarafdar and Mehta:

Theorem 5.114 Any point p in D is an equilibrium price for ((L,L.), D,E) if

and only if p is a solution of the variational inequality.

Proof. Suppose that E(p) ≤ 0 for some p. Then qE(p) ≤ 0 for all q in D

since q is a positive linear functional. This implies that qE(p) ≤ pE(p) since by

Walras’ law pE(p) = 0 for all p. Consequently, (E(p), p − q) ≤ 0, or, equivalently,

(E(p), q − p) ≤ 0 for all q in D and p solves the variational inequality. Thus an

equilibrium price p solves the variational inequality.

Conversely, suppose that p is a solution of the variational inequality. Then

(E(p), p− q) ≥ 0 which implies that 0 = E(p) · p ≥ E(p) · q for all q in D, where the

first equality holds by Walras’ law. Hence, E(p)· ≤ 0 for all q in L′
+ by the density

condition (∗). Now Lemma 5.42 implies that E(p) ≤ 0 so that p is an equilibrium

price.

We shall now present the following result of Tarafdar and Mehta on the existence

of equilibrium:

Theorem 5.115 Let ((L,L′), D,E) be an economy. Then there exists an equi-

librium price for this economy, if either one of the following conditions holds:

(1) E : (D < W ∗) → (L,w(L,L′) is continuous,

(2) E is hemicontinuous and monotone.
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Proof. Suppose first that E is continuous. Since E : (D,w∗) → (L,w(l, L′) and

D is w∗-compact and convex, E satisfies the conditions of Browder’s Theorem 2 in

[Browder (1968), p.286]. We conclude that there exists a p such that (E(P ), p−q) ≤
0 for all q in D which implies that (E(p), q−p) ≤ 0 for all q in D so that p solves the

variational inequality. Theorem 5.114 now implies that p is an equilibrium price.

Suppose now that E is hemicontinuous and monotone. Again, since D is w∗-
compact and convex, E satisfies the conditions of the corollary of Theorem 2 of

Tarafdar (1977). We conclude as above that there exists an equilibrium price for

this economy.

We now consider the existence of equilibrium prices for a more general class of

economies. Suppose that (L,L′) is a Riesz dual system and thatD is a price-simplex

for (L,L′). We now suppose that the domain D′ of E is a subset of D. An excess

demand function E is now defined to be a mapping E : (D′, w∗) → (L,w(L,L′)
which satisfies the following properties:

(a) Density condition: D′ is a w∗-dense convex subset of D.

(b) Walras’ law: pE(p) = 0 for all p in D′.

(c) Boundary condition: It pn is a net in D′ which converges to q in d\D′ then

there exists a p in D′ such that the upper limit lim p(E(pn)) > 0.

Tarafdar and Mehta proved the following theorem in Aliprantis and Brown

(1983) without using the concept of a maximal element for the “revealed

preference” relation on the space of prices.

Theorem 5.116 Let (L,L′), D,E) be an economy. Then there exists an equilib-

rium price for this economy if E is continuous.

Proof. Let A denote the collection of all the finite subsets of D′. For each a ∈ A,let

Da be the convex hull of a. Each Da is w∗-compact, and the restriction of E to Da

a is continuous so that Theorem 5.115 implies the existence of an equilibrium price

pa for the economy (L,L′), Da, E). Since pais an equilibrium price for Da, pa solves

the variational inequality (E(pa), q − pa) ≤ 0 by Theorem 5.114. This implies that

E(p) ≤ 0 for all q in Da.

Although the rest of the argument is similar to that in [Aliprantis and Brown

(1983), Theorem 3.6], we include it for the sake of completeness. Consider the net

{pa : a ∈ A} where A is directed by inclusion. Since D is w∗-compact we may

assume that pa → q in the w∗-topology.

We show first that q ∈ D′. If q ∈ D\D′, then by the boundary condition on

the excess demand function there exists a p ∈ D with limp(E(pa)) > 0. Since

∪a∈Da = D′, p ∈ Da for some a, so that there exists b ∈ A such that p ∈ Da for all

a ≥ b. But then for all a ≥ b, pE(pa) ≤ 0 since pa is an equilibrium price so that

limpE(pa) ≤ 0, a contradiction. Thus q ∈ D′.
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We now show that q is an equilibrium price. To this end let p ∈ D′. The function

p · E(r) from (D,w∗) to the reals is continuous as a composite of two continuous

functions. It follows that

pE(q) = w∗ − lim pE(pa) since pa→w∗

q.

As above, there exists b ∈ A satisfying pE(pa) ≤ 0 for all a ≥ b, and so pE(q) ≤ 0.

This is true for all p ∈ D′.
Now the density condition on the excess demand function implies that pE(q) ≤ 0

for all p ∈ D since D′ is w∗-dense in D. Since D is a price simpler, the density

condition ∗ implies that pE(q) ≤ 0 for all p ∈ L′. The lemma now implies that

E(q) ≤ 0 so that q is an equilibrium price.

Remark 5.34 Theorem 5.116 can be obtained in the same manner under the

assumption of monotonicity of the excess demand function E if the hemicontinuity

condition on E is strengthened in the following way. Let {pa : a ∈ A} be a net in

D′ with pa ∈ Da and Da being as described in the above proof. Then we need to

assume that if pa→w∗

p in D′ and for each a, (E(pa), q − pa) ≤ 0 for all q in Da,

then it follows that (E(p), q − p) ≤ 0 for all q in D′.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarafdar and Mehta (1986).

5.17 Equilibria of Non-Compact Generalized Games with L∗

Majorized Preference Correspondences

Ding, Kim and Tan introduced the notions of correspondences of class L∗
θ , L∗

θ-

majorant of φ at x and L∗
θ- majorized correspondences in Ding et al. (1992).

In this section we shall present an existence theorem of maximal elements in a

non-compact set for L∗
θ-majorized correspondences (see Chapter 1 for details). Ding,

Kim and Tan applied this maximal element theorem to prove an existence theorem

of equilibrium in a qualitative game. Using this existence theorem of equilibrium,

Ding et al. proved an existence theorem of equilibrium in a non-compact abstract

economy with L∗- majorized preference correspondences. Their result generalizes

the result in (Yannelis and Prabhakar (1983, p. 242, Theorem 6.1)), in several ways

and is closely related to the theorems of Toussaint (1984, pp. 102, 103; 6, p. 283).

5.17.1 Existence of Maximal Elements

We shall start with a result of Ding, Kim and Tan:

Lemma 5.43 Let X be a regular topological space and Y be a non-empty subset

of a vector space E. Let θ : X → E and P : X → 2Y be Lθ∗-majorized. If every

open subset of X containing the set {x ∈ X : P (x) :6= ∅} is paracompact, then there
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exists a correspondence φ : X → 2Y of class Lθ∗ such that P (x) ⊂ φ(x) for all

x ∈ X.

Proof. Let B = {x ∈ X : P (x) 6= ∅}. Since P is Lθ∗-majorized, for each x ∈ B,

let Nx be an open neighborhood of x in X and φx : X → 2Y be such that (i)

P (z) ⊂ φx(z) and θ(z) /∈ conθx(z) for all z ∈ Nx, (ii) conφx(z) ⊂ Y for all z ∈ X

and (iii) φ−1
x (y) is open in X for each y ∈ Y . Since the set {z ∈ X : φx(z) 6=

∅} =
⋃
y∈Y φ

−1
x (y) is an open neighborhood of x in X and X is regular, there exists

an open neighborhood Gx of x in X such that clxGx ⊂ Nx and φx(z) 6= ∅ for

all z ∈ clxGx. Let g =
⋃
x∈B Gx; then G is an open subset of X which contains

B = {x ∈ X : P (x) 6= ∅} so that G is paracompact by assumption. By [Dugundji

(1966), p. 162, Theorem VIII.1.4] the open covering {Gx} of G has an open precise

neighborhood-finite refinement {G′x}. For each x ∈ B, define φ′x : G→ 2Y by

φ′x(z) =

{
φx(z), if z ∈ G ∩ clxG′

x

Y, if z ∈ G\clxG′
x

We claim that for each y ∈ Y, (φ′
x)

−1(y) = {z ∈ G : y ∈ φ′x(z)} is opening X .

Indeed, for each y ∈ Y , we have

(φ′x)
−1(y) = {z ∈ G ∩ clxG′

x : y ∈ φ′x(z)} ∪ {z ∈ G\clxG′
x : y ∈ φ′x(z)}

= {z ∈ G ∩ clxG′
x : y ∈ φ′x(z)} ∪ {z ∈ G\clxG′

x : y ∈ Y }
= [G ∩ clxG′

x) ∩ φ−1
x (y)] ∪ (G\clxG′

x)

= (G ∩ φ−1
x (y)) ∪ (G\clxG′

x).

Since φ−1
x (y) is open in X, (φ′x)

−1(y) is open in X .

Now we define φ : X → 2Y by

φ(z) =





⋂

x∈B
φ′x(z), if z ∈ G

∅, if z ∈ X\G

Let z ∈ X be given. Clearly conφ(z) ⊂ Y . If z ∈ X\G, then φ(z) = ∅ so

that θ(z) /∈ conφ(z). If z ∈ G, then z ∈ G ∩ clxG
′
x for some x ∈ B so that

φ′x(z) = φx(z), and hence φ(z) ⊂ φx(z). As θ(z) /∈ conφx(z). We must also have

θ(z) /∈ conφ(z). Therefore, θ(z) /∈ conφ(z) con 0(z) for all z ∈ X . Now we show

that for each y ∈ Y, φ−1(y) is open in X . Let y ∈ X be such that φ−1(y) 6= ∅
and fix u ∈ φ−1(y) = {z ∈ X : y ∈ φ(z)} = {z ∈ G : y ∈ φ(z)}; then there

exists an open neighborhood Mu of u in G such that {x ∈ B : Mu ∩ G′
x 6= ∅} =

{x(u, 1), ..., x(u, n(u))} since {G′
x} is a neighborhood-finite refinement. Note that

for each x ∈ B, if x /∈ {x(u, 1), ..., x(u, n(u))}, then ∅ = Mu ∩G′
x = Mu ∩ clxG′

x so

that φ′x(z) = Y for all z ∈Mu. Thus we have φ(z) =
⋂
x∈B φ

′
x(z) =

⋂n(u)
i=1 φ′x(u,i)(z)
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for all z ∈Mu. Note that

φ−1(y) = {z ∈ X : y ∈ φ(z)} =
{
z ∈ G : y ∈

⋂

x∈B
φ′x(z)

}

⊂
{
z ∈Mu : y ∈

⋂

x∈B
φ′x(z)

}

=
{
z ∈Mu : y ∈

n(u)⋂

i=1

φ′x(u, i)(z)
}

= Mu ∩
{
z ∈ G : y ∈

n(u)⋂

i=1

φ′x(u,1)(z)
}

+Mu ∩
[n(u)⋂

i=1

(φ′x(u, i)−1(y)
]
.

But then, M ′
u = Mu[

⋂n(u)
i=1 (φ′x(u,i)(y)] is an open neighborhood of u in X such that

M ′
u ⊂ φ−1(y). This shows that for each y ∈ Y, φ−1(y) is open in X . Therefore,

φ;X → 2Y is a correspondence of class L∗
θ. It remains to show that P (w) ⊂ φ(w)

for all w ∈ X . Indeed, let w ∈ X with P (w) 6= ∅. Note then w ∈ G. For each

x ∈ B, if w ∈ G\clxG′x, then φ′x(w) = Y ⊃ P (w) and if w ∈ G ∩ clxG
′
x, we

have w ∈ clxG
′
x ⊂ clxGx ⊂ Nx so that P (w) ⊂ φ(w) = φ′x(w). It follows that

P (w) ⊂ φ′x(w) for all x ∈ B so that P (w) ⊂ ⋂x∈B(w) = φ(w).

Note that Ding, Kim and Tan observed that Lemma 5.43 is exactly similar to

the result in [Tulcea (1986), Proposition 1]. The only difference is in the definition

of majorized correspondences,

In proving some of their main results, Ding et al. used the following simple

result which is Lemma 1 in (Ding and Tan (1990)):

Lemma 5.44 Let D be a non-empty compact subset of a topological vector space

E. Then conD is σ-compact and hence paracompact.

We shall now present the following theorem of Ding, Kim and Tan on the exis-

tence of a maximal element:

Theorem 5.117 Let X be a non-empty convex subset of a locally convex Haus-

dorff topological vector space and D be a non-empty compact subset of X. Let

P : X → 2D be L∗-majorized (i.e., L∗
1x

-majorized). Then there exists a point

x̂ ∈ conD ⊂ X such that P (x̂) = ∅.

Proof. Suppose the contrary, i.e., for all x ∈ conD, P (x) 6= ∅. Then the set

{x ∈ conD : P (x) 6= ∅} = conD is paracompact by Lemma 5.44. By Lemma 5.43,

there exists a correspondence φ : conD → 2D of class L∗ such that P (x) ⊂ φ(x) for

each x ∈ conD. It is easy to see that φ satisfies all hypotheses of Yannelis-Prabhakar



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Variational and Quasivariational Inequalities and Generalized Games 433

(1984, Theorem 5.3), and hence there exists a point x̂ ∈ conD such that φ(x̂) = ∅;
it follows that P (x̂) = ∅ which contradicts our assumption. Hence, the conclusion

must hold.

Theorem 5.117 generalizes Theorem 5.3 in [Yannelis-Prabhakar (1984)] in the

following ways: (i) X need not be paracompact and (ii) P is L∗-majorized but need

not be of class L∗.

As an application of Theorem 5.117, Ding, Kim and Tan proved the following

equilibrium existence theorem for a 1-person game:

Theorem 5.118 Let X be a non-empty convex subset of a locally convex Haus-

dorff topological vector space and D be a non-empty compact subset of X. Let

P : X → 2D be L∗-majorized (i.e., L∗
1x

-majorized) and A,B : X → 2D be such that

for each x ∈ X,A(x) is non-empty and conA(x) ⊂ B(x) and for each y ∈ D,A−1(y)

is open in X. If the correspondence clB : X → 2D is upper semicontinuous, then

there exists an equilibrium choice x̂ ∈ X, i.e., x̂ ∈ clB(x̂) and A(x̂) ∩ P (x̂) = ∅.

Proof. Let F = {x ∈ X : x ∈ clB(x)}. We first note that F is closed in X since

clB is upper semicontinuous. Define ψ : X → 2D by

ψ(x) =

{
A(x) ∩ P (x), if x ∈ F,

A(x) if x /∈ F.

If x /∈ F , then X\F is an open neighborhood of x such that for each z ∈
X\F, z /∈ clB(z) and ψ(z) = A(z); since conA(z) ⊂ B(z), we have z /∈ conA(z)

and conA(z) ⊂ D. Since A−1(y) is open for all y ∈ D, A is an L∗-majorant of ψ

at x. Now suppose that x ∈ F and ψ(x) = A(x) ∩ P (x) 6= ∅; then by assumption

there exist φx : X → 2D and an open neighborhood Nx of x in X such that (a)

P (z) ⊂ φx(z) and z /∈ conφx(z) for each z ∈ Nx, (b) conφx(z) ⊂ D for each z ∈ X

and (c) φ−1
x (y) is open in X for each y ∈ D. Define φ′

x : X → 2D by

φ′x(z) =

{
A(z) ∩ φx(x), if z ∈ F,

A(z), if z /∈ F ;

then (i) for each z ∈ Nx it is easy to see that ψ(z) ⊂ φ′
x(z) and z /∈ conφ′x(z), (ii) for

each z ∈ X, conφ′x(z) ⊂ conA(z) ⊂ B(z) ⊂ D and (iii) for each y ∈ D, (φ′
x)

−1(y) =

[φ−1
x (y) ∩ (X\F ) ∩ A−1 is open in X . This shows that φ′x is an L∗-majorant of ψ

at x. Therefore, ψ is L∗-majorized. By Theorem 5.117, there exists a point x̂ ∈ X

such that ψ(x̂) = ∅. Since A(x) 6= ∅ for each x ∈ X , we must have x̂ ∈ clB(x̂) and

ψ(x̂) = A(x̂) ∩ P (x̂) = ∅,
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5.17.2 Existence of Equilibrium for Non-Compact Abstract

Economies

We shall present the following equilibrium existence theorem of Ding, Kim and Tan

for a non-compact qualitative game (see Chapter 1 for definition). This follows from

Theorem 5.117.

Theorem 5.119 Let Γ = (Xi, Pi)i∈I , be a qualitative game such that for each

i ∈ I,

(a) Xi is a non-empty convex subset of a locally convex Hausdorff topological

vector space,

(b) Pi : X ∈ Πi∈iXi → 2Di is L∗-majorized (i.e., L∗
πi

-majorized), where Di is a

non-empty compact subset of Xi

(c) the set Ei = {x ∈ X : Pi(x) 6= ∅} is open in X,

(d) there exists a non-empty subset Fi of Di such that FI ∩ Pi(x) 6= ∅ for each

x ∈ Ei and conFi ⊂ Di.

Then Γ has an equilibrium point, i.e., there exists a point x̂ ∈ X such that

Pi(x̂) = ∅ for all i ∈ I.

Proof. Let D = Πi∈IDi then D is compact by Tychonoff’s theorem (e.g., see

[Tulcea (1986), p. 224]). For each x ∈ X , let I(x) = {i ∈ I : Pi(x) 6= ∅}. Define a

correspondence P : X → 2D by

P (x) =





⋂

i∈I(x)
P ′
i (x) if I(x) 6= ∅,

∅, if I(x) = ∅,

where P ′
i (x) = Πj 6=,j∈IFj ⊕ Pi(x) for each x ∈ X .

Then for each x ∈ X with I(x) 6= ∅, P (x) 6= ∅. Let x ∈ X be such that P (x) 6= ∅.
Then P ′

i (x) 6= ∅ for all I ∈ I(x). Fix one i ∈ I(x). By assumption (b), there exist

an open neighborhood N(x) of x in X and an L∗-majorant φi of Pi at x such that

(i) for each z ∈ N(x), Pi(z) ⊂ φi(z)and zI /∈ conφi(z),

(ii) for each z ∈ X, conφi(z) ⊂ Di, and

(iii) for each y ∈ Di, φi−1(y) is open in X .

By assumption (c), we may assume N(x) ⊂ Ei, so that Pi(z) 6= ∅ for all z ∈
N(x). Now we define Φx : X → 2D by

Φx(z) = Πj 6=i,j∈IFj ⊕ φi(z)for allz ∈ X.

We now claim that Φx is an L∗-majorant of P at x. Indeed, for each z ∈ N(x), by

(i),

P (z) =
⋂

j∈I(z)
P ′
j(z) ⊂ P ′

i (z) ⊂ Φx(z)
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and

z /∈ conΦ − x(z).

By assumption (d) and (ii), for each z ∈ X ,

conΦx(z) ⊂ Πj 6=i,j∈I conFj ⊕ conφi(z) ⊂ D.

Since for each y ∈ D,

Φ−1
x (y) =

{
φ−1
i (yI), if yj ∈ Fj for all j 6= i,

∅, if yj /∈ Fj for some j 6= i

and φ−1
i is open in X,Φ−1

x (y) is also open in X .

Therefore, Φx is an L∗-majorant of P at x. This shows that P is L∗-majorized.

By Theorem 5.117, there exists a point x̂ ∈ X such that P (x̂) = ∅ so that I(x̂) = ∅
and hence Pi(x̂) = ∅ for all i ∈ I .

Remark 5.35 (1) If Xi is compact convex for each i ∈ I then the condition (d)

in Theorem 5.119 is satisfied if Di = Xi = Fi for each i ∈ I .

(2) Ding, Kim and Tan’s Theorem 5.119 is an existence theorem of equilib-

rium for non-compact sets in locally convex spaces, while Toussaint (1984, p. 101,

Theorem 2.4), is an existence theorem for compact sets in topological vector spaces.

(3) The following condition clearly implies the condition (d) in Theorem 5.119:

conPi(X) = Di for each i ∈ I .

As an application of Theorem 5.119, Ding, Kim and Tan proved the following

existence theorem of equilibrium for a non-compact abstract economy (see definition

in Chapter 1) with possibly an infinite number of agents.

Theorem 5.120 Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy such that

for each i ∈ I,

(a) Xi a non-empty convex subset of a locally convex Hausdorff topological vector

space,

(b) for each x ∈ X = Πi∈IXi, Ai(x))is non-empty and conAi(x) = Bi(x),

(c) for each y ∈ Xi, A
−1
i (y) is open in X,

(d) the correspondence clBi : X → 2Di is upper semicontinuous, where Di is a

non-empty compact subset of Xi,

(e) Ai ∩ Pi is L∗-majorized,

(f) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

(g) there exists a non-empty subset Ki of Di with conKI ⊂ Di such that for each

x ∈ Ei ∩ Fi, (Ai ∩ Pi)(x) ∩Ki 6= ∅ and for each x ∈ X\Fi, conAi(x) ∩Ki 6= ∅
where Fi = {x ∈ X : xi ∈ clBi(x)}.

Then Γ has an equilibrium point, i.e., there exists a point x̂ ∈ X such that

x̂i ∈ clBi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅ for each I ∈ I.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

436 Topological Methods of Set-Valued Nonlinear Analysis

Proof. For each I ∈ I , as clBi, is upper semicontinuous, the set Fi is closed in X .

We now define Qi : X → 2Di by

Qi(x) =

{
(Ai ∩ Pi)(x), if x ∈ Fi,

conAi(x), if x /∈ Fi.

We shall show that the qualitative game Γ = (Xi, Qi)i∈I , satisfies the hypotheses

of Theorem 5.119. First we have that for each I ∈ I , the set

{x ∈ X : Qi(x) 6= ∅} = {x ∈ X\Fi : Qi(x) 6= ∅} ∪ {x ∈ Fi : Qi(x) 6= ∅}
= (X\Fi) ∪ {x ∈ Fi : Ai ∩ Pi)(x) 6= ∅}
= (X\Fi) ∪ (Fi ∩ Ei)
= (X\Fi) ∪ Ei

is open in X by (f).

Let x ∈ X be such that Qi(x) 6= ∅. We consider the following two cases:

Case 1. x /∈ Fi.

Let Φx = conAi, and Nx = X\Fi, Nx is an open neighborhood of x in X such

that

(∗) Qi(z) ⊂ Φx(z) and by (b), z /∈ conΦx(z) for each z ∈ Nx,

(∗∗) conΦx(z) ⊂ Di for each z ∈ X by (b),

(∗∗∗) Φ−1
x (y) is open in X for all y ∈ Di by (c) and [Yannelis and Prabhakar

(1983), p. 239, Lemma 5.1].

Therefore, Φx is an L∗-majorant of Qi at x.

Case 2. x ∈ Fi.

Since Qi(x) = (Ai ∩ Pi)(x) 6= ∅ and Ai ∩ Pi is L∗-majorized, there exist an

open neighborhood Nx of x in X and a correspondence φx : X → 2Di such that

(Ai ∩ Pi)(z) ⊂ φx(z) and zi /∈ conφx(z) for each z ∈ Nx, conφx(z) ⊂ Di for each

z ∈ X and φ−1
x (y) is open in X for each y ∈ Di. Define Φx : X → 2Di by

Φx(z) =

{
conAi(z) ∩ φx(z), if z ∈ Fi,

conAi(z), if z /∈ Fi.

Note that as (Ai ∩ Pi)(z) ⊂ φx(z) for each z ∈ Nx, we have Qi(z) ⊂ Φx(z) and

conΦx(z) ⊂ Di for each z ∈ Nx. It is easy to see that zi /∈ conΦx(z) for all z ∈ Nx.
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Moreover, for any y ∈ Di, the set

(Φx)
−1(y) = {z ∈ X : y ∈ Φx(z)}

= {z ∈ Fi : y ∈ Φx(z)} ∪ {z ∈ X\Fi : y ∈ Φx(z)}
= {z ∈ Fi : y ∈ conAi(z) ∩ φx(z)} ∪ {z ∈ X\Fi : y ∈ conAi(z)}
= [F − i ∩ (conAi)

−1(y) ∩ φ−1
x (y)] ∪ [(X\Fi) ∩ (conAi)

−1(y)]

= [φ−1
x (y) ∪ (X\Fi)] ∩ (conAi)

−1(y)

is open in X . Therefore, Φx is an L∗-majorant of Qi at x.

Therefore, Qi, is an L∗-majorized correspondence. Let x ∈ X with Qi(z) 6= ∅.
Then x ∈ (X\Fi)∪ {x′ ∈ Fi : (Ai ∩ Pi)(x′) 6= ∅}.. If x ∈ X\Fi, then by assumption

(g) we have ∅ 6= conAi(x) ∩Ki = Qi(x) ∩Ki. If x ∈ {x′ ∈ Fi : (Ai ∩ Pi)(x′) 6= ∅},
then by assumption (g) again, ∅ 6= (Ai ∩ Pi)(x) ∩Ki = Qi(x) ∩Ki. Therefore, we

have Qi(x) ∩Ki 6= ∅ in both cases. Also we have conKi ⊂ Di.

Therefore, all hypotheses of Theorem 5.119 are satisfied, so that there exists a

point x̂ ∈ X such that Qi(x̂) = ∅ for all i ∈ I . By (b), this implies that for each

i ∈ I, x̂i ∈ clBi(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅.

Remark 5.36 (1) If Xi is compact convex for each i ∈ I , then the condition (g)

in Theorem 5.120is satisfied if Xi = Di = Ki, for each i ∈ I .

(2) Theorem 5.120 generalizes [Yannelis and Prabhakar (1983), p. 242, Theorem

6.1 ] in several ways:

(a) Xi need not be compact or metrizable,

(b) Pi need not be of class L, and

(c) the set I of agents need not be countable.

In case Xi is compact convex and Ai = Bi for each i ∈ I , then Ding, Kim and

Tan obtained the following result from Theorem 5.120:

Corollary 5.120.1 Let Γ = (Xi, Ai, Pi)i∈I be an abstract economy such that for

each i ∈ I,

(a) Xi is a non-empty compact convex subset of a locally convex Hausdorff topo-

logical vector space,

(b) for each x ∈ X = Πi∈IXi, Ai(x) is non-empty convex,

(c) for each y ∈ Xi, A
−1
i (y) is open in X,

(d) the correspondence clAiX → 2Xi is upper semicontinuous,

(e) Ai ∩ Pi is L∗-majorized.

(f) the set {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X.

Then Γ has an equilibrium.
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Remark 5.37 The above corollary is closely related to [Tulcea (1988), p. 283,

Theorem 4; Toussaint (1984) pp. 102–103, Theorem 2.5]; their results are existence

theorems of equilibria for compact abstract economies under a stronger assumption

(namely, xi /∈ conPi(x) for all x ∈ X) than Ding-Kim-Tan’s corollary (and hence

also Theorem 5.120) but their underlying spaces are only topological vector spaces

(while Ding-Kim-Tan’s are locally convex Hausdorff topological vector spaces).

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Ding et al. (1992).

5.18 Equilibria of Non-Compact Generalized Games

In the last three decades, the classical Arrow-Debreu’s existence theorem of Wal-

rasian equilibria [Aubin and Ekeland (1984)] has been generalized in many direc-

tions. In finite dimensional spaces, Gale and Mas-Colell (1978) proved the existence

of a competitive equilibrium without the assumptions of total or transitive prefer-

ence correspondences. Shafer and Sonnenschein (1975) obtained results in the same

direction and they proved the Arrow-Debreu Lemma for abstract economies for the

case where preference correspondences may not be total or transitive. For the in-

finite dimensional strategy spaces and finite or infinite many players, the existence

results of equilibria for generalized games were given by Aubin and Ekeland (1984),

Bewley (1972), Border (1985), Chang (1990), Ding and Tan (1993), Ding et al

(1992), Flam (1979), Florenzano (1983), Khan and Papageorgiou (1987), Kim and

Richter (1986), Kim, Prikry, and Yannelis (1989), Lassonde and Schenkel (1992),

Mehta and Tarafdar (1987), Tian (1992), Toussaint (1984), Tulcea (1986), Tul-

cea (1988), Yannelis and Prabhakar (1983), etc. All existence theorems mentioned

above, however, are obtained by assuming that the constraint and preference corre-

spondences have open graphs or have open lower (or upper) open sections. Besides,

in most of these models, the strategy sets are assumed to be compact in topolog-

ical vector spaces. These are restricted assumptions since it is well known that if

a correspondence has an open graph, then it has open upper and lower sections

and thus the correspondences with open lower sections are lower semi-continuous.

However, a continuous correspondence does not hold open lower (or upper) sections

properties in general. Moreover, we also know that in the infinite settings, the

set of feasible allocations is generally not compact in any topology of commodity

spaces. The motivations for economists interested in setting forth conditions for the

existence of equilibria come from the importance of generalized games (also called

abstract economy) in the study of markets and other general games and from the

restrictions of the existing theorems.

In this section, by the approximate theorem for the upper semi-continuous cor-

respondence of [Tulcea (1988)], Tarafdar and Yuan give the existence theorems

of equilibria for non-compact generalized games in which constraint correspon-
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dences are upper semi-continuous instead of having lower (upper) open sections

or open graph in locally convex topological vector spaces. Moreover in their frame-

work, strategy spaces may be infinite-dimensional and non-compact; the number of

players may be uncountable and preference correspondences may be non-total or

non-transitive. Thus Tarafdar-Yuan’s results generalize many of the existence the-

orems of equilibria in generalized games by relaxing the compactness of strategy

spaces and the continuity of constraint correspondences. In particular, Tarafdar

and Yuan answered the question raised by [Yannelis and Prabhakar (1983), p. 243]

affirmatively with weaker assumptions. As applications, the Fan-Glicksberg fixed

point theorem and an existence theorem for constrained game were derived by Taraf-

dar and Yuan. These results generalize the corresponding results due to Aubin and

Ekeland (1984), Chang (1990), Shafer and Sonnenschein (1975), Toussaint (1984),

Tulcea (1986),Tulcea (1988), Yannelis and Prabhakar (1983) and others.

Using Tulcea’s approximate theorem for upper semi-continuous correspondences,

Tarafdar and Yuan proved existence theorems of equilibria for generalized games in

which the constraint correspondences are upper semi-continuous instead of having

lower (upper) open sections or open graphs in infinite dimensional topological vector

spaces. We shall also present an existence theorem for the constrained game derived

by Tarafdar and Yuan.

Let A be a subset of a topological space X . A is said to be compactly open in

X if for each non-empty compact subset C of X , A ∩ C is open in C. If X and

Y are topological spaces and T : X → 2Y is a correspondence, the Graph of T ,

denoted by GraphT , is the set {(x, y) ∈ X ×Y : y ∈ T (x)} and the correspondence

T̄ : X → 2Y is defined by T̄ (x) = {y ∈ Y : (x, y) ∈ clX×YGraphT} (the set

clX×YGraphT is called the adherence of the graph of T ), and clT : X → 2Y is

defined by clT (x) = clx(T (x)) for each x ∈ X . It is easy to see that clT (x) ⊂ T̄ (x))

for each x ∈ X .

Let X be a topological space, Y a non-empty subset of a vector space E, θ :

X → E a map and let ϕ : X → 2Y be a correspondence. Then (1) ϕ is said to be

of class Lθ,C (e.g., see [Tan and Yuan (1993)]) if (a) for each x ∈ X , convϕ(x) ⊂ Y

and θ(x) /∈ convϕ(x) W(x) and (b) there exists a correspondence ψ : X → 2Y

such that for each x ∈ X,ϕ(x) ⊂ ϕ(x) and for each y ∈ Y, ψ−1(y) is compactly

open in X and {x ∈ X : ϕ(x) 6= θ} = {x ∈ X : ψ(x) 6= θ}; (2(ϕx, ψx;Nx) is an

lθ,C-majorant of ϕ at x if ϕx, ψx : X → 2Y and Nx is an open neighbourhood of

x in X such that (a) for each z ∈ Nx, ϕ(z) ⊂ ϕ(z) and θ)z) /∈ convϕx(z), (b) for

each z ∈ X,ψx(z) ⊂ ϕx(z) and convϕx(z) ⊂ Y and (c) for each y ∈ Y, ψ−1
x (y) is

compactly open in X ; (3) ϕ is said to be lθ,C-majorized if for each x ∈ X with

ϕ(x) 6= θ, there exists an Lθ,C-majorant (ϕx, ψx, Nx) of ϕ at x such that for any

non-empty finite subset A of the set {x ∈ X : ϕ(x) 6= ∅}, we have

{
z ∈

⋂

x∈A
Nx :

⋂

x∈A
convϕx(z) 6= ∅

}
=

{
z ∈

⋂

x∈A
Nx :

⋂

x∈A
convψx(z) 6= ∅

}
.
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In this section, we shall deal mainly with either the case (I) where X = Y and

is a non-empty convex subset of the topological vector space E and θ = Ix, the

identity map on X , or the case (II) where X = X = Πi∈IXi and θ = πj : X → Xj

is the i-th projection of X onto Xj and Y = Xj is a non-empty convex subset of a

topological vector space. In both cases (I) and (II), we shall write LC instead of of

Lθ,C.

Recall that if X and Y are topological spaces, (1) F : X → 2Y is said to be lower

semicontinuous (respectively, upper semicontinuous) if for each closed (respectively,

open) subset C of Y , the set {x ∈ X : F (x) ⊂ C} is closed (respectively, open)

in X ; (2) F is said to have compactly open lower (respectively, upper) sections if

F−1 := {x ∈ X : y ∈ F (x)} is compactly open for each y ∈ Y (respectively, F (x) is

compactly open in Y for each x ∈ X) and (3) F is said to be compact if for each

x ∈ X , there exists a neighbourhood Vx at x in X such that F (Vx) =
⋃
z∈Vx

F (z)

is relatively compact in Y . If X is a subset of a topological vector space E, X is

said to have the property (K) (e.g. see [Tulcea (1988)]) if for every compact subset

B of X , the convex hull of B is relatively compact in X .

Let X and Y be topological spaces. A correspondence T : X → 2Y is said to he

quasi-regular if:

(1) it has open lower sections, i.e. for each y ∈ Y, T−1(y) is open in X ,

(2) T (x) is non-empty and convex for each x ∈ X ,

(3) T̄ (x) = clY T (x) for all x ∈ X .

The correspondence T is said to be regular if it is quasi-regular and has an

open graph. Let I be a (possibly infinite) set of players. For each i ∈ I , let its

choice or strategy set Xi be a non-empty subset of a topological vector space and

X = Πi∈IXi. A generalized game (an abstract economy) is a family of quadruples

Γ = (Xi;Ai;Bi;Pi)i∈I where I is a (finite or infinite) set of players (agents) such

that for each i ∈ I , Xi is a non-empty subset of a topological vector space and

Ai, Bi : X = Πj∈IXj → 2Xi are constraint correspondences and Pi : X → 2Xi

is a preference correspondence. An equilibrium of Γ is a point x̂ ∈ X such that

for each i ∈ I , x̂i = πi(x̂) ∈ B̄i(x̂) and Ai(x̂) ∩ Pi(x̂) = ∅. We remark that when

B̂i(x̂) = clXiBi(x̂) (which is the case when Bi has a closed graph in X × Xi; in

particular, when clBi is upper semi-continuous with closed values), our definition

of an equilibrium point coincides with that of Ding et al. [Ding et al. (1992)]; and if

in addition, Ai = Bi for each i ∈ I , our definition of an equilibrium point coincides

with the standard definition; e.g. in Borglin and Keiding (1976), Tulcea (1986),

and Yannelis and Prabhakar (1983).

Note that Tarafdar and Yuan’s generalized game model is more general than

the one given by Borglin and Keiding (1976) (see also [Tulcea (1986)] and [Yannelis

and Prabhakar (1983)]) in the sense that the constraint mapping has been split into

two parts A and B due to the fact that the “small” constraint mapping may have

not enough fixed points but a “big” constraint mapping B does so.
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The following example illustrates how Tarafdar and Yuan’s generalized game

model does work but the former one given by Borglin-Keiding et al. does not:

Example 5.12 Let X = [0, 1] and define the constraint mapping A : X → 2X

by

A(x) =

{
[0, 1− x), if x ∈ (0, 1];

{1}, if x = 0.

Define the preference mapping P : X → 2X ∪ {∅} by

P (x) =

{
[0, 1− x), if x ∈ [0, 1);

∅, if x = 1.

Then the fixed point set of A is (0, 1/2). It is also clear that x /∈ P (x) and P

has open lower sections (due to the fact that P−1(y) = ∅ if y = 1 and P−1(y) =

(y, 1] if y ∈ [0, 1)). Let B : X → 2X be defined by B(x) = A(x) for each x ∈ X .

Note that the mapping B̄ : 2X is such that B̄(x) = [0, 1 − x] for each x ∈ X and

1/2 is also a fixed point of B so that 1/2 is an equilibrium point of the generalized

game Γ = ([0, 1];A,B;P )) (in our sense); but 1/2 is not an equilibrium point of

the generalized game ([0, 1];A;P ) (in the sense of Yannelis and Prabhakar (1983))

since 1/2 /∈ A(1/2) even though A(1/2) ∩ P (1/2) = ∅.

We shall now present the following existence theorem of equilibria for generalized

games in Tarafdar and Yuan (1993) which follows from Theorem 4.3 in [Tan and

Yuan (1993)]:

Theorem 5.121 Let Γ = (xi, Ai, Bi, Pi)i∈I be a generalized game such that

X = Πi∈IXi is paracompact. Suppose that the following conditions are satisfied:

(a) for each i ∈ I, Xi is a non-empty convex subset of a topological vector space,

(b) for each i ∈ I and for each x ∈ XAi(x) is non-empty and convAi(x) ⊂ Bi(x),

(c) for each i ∈ I and for each y ∈ Xi, A−1(y) and P−1
i (y) are open in X,

(d) for each i ∈ I and for each x ∈ X, xi /∈ convPi(x);

(e) there exist a non-empty closed and compact subset K of X and x0 = (x0
i )i∈I ∈

X such that x0
i ∈ conv(Ai(y) ∩ Pi(y)) for each i ∈ I and for all y ∈ X\K.

Then Γ has an equilibrium in K.

Proof. Since {x ∈ X : (Ai∩Pi)(x) 6= ∅} =
⋃
y∈Xi

(A−1
i (y)∩P−1

i (y)) is open by (c),

the conditions (c) and (e), all hypotheses of Theorem 4.3 of [Tan and Yuan (1993)]

are satisfied. By Theorem 4.3 in [Tan and Yuan (1993)], the conclusion follows. �

Theorem 5.121 generalizes Theorem 2.5 of Toussaint in [Toussaint (1984)], Corol-

lary 2 of Tulcea in [Tulcea (1986)] (also Corollary 2 in [Tulcea (1988)]) and Theorem

6.1 of Yannelis-Prabhakar in [Yannelis and Prabhakar (1983)] to non-compact case.
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Let X be a non-empty set, Y a non-empty subset of topological vector space E

and F : X → 2Y . A family (fj)j∈J of correspondences between X and Y , indexed

by a nonempty filtering set J (we denote by ≤ the order relation in J) is an upper

approximating family for F [Tulcea (1988), p. 269] if

(AI): F (x) ⊂ fj(x) for all x ∈ X and all j ∈ J ,

(AII): for each j ∈ J there is j∗ ∈ J such that for each h ≥ j∗ and h ∈ J, fh(x) ⊂
fj(x) for each x ∈ X ,

(AIII): for each x ∈ X and V ∈ B, where B is a base for the zero neighbourhood

in E, there is jx,V ∈ V such that fh(x) ⊂ F (x) +V if h ∈ J and jx,V ≤ h.

From (AI)–(AIII), it is easy to deduce that:

(AIV ): for each x ∈ X and k ∈ J, F (x) ⊂ ⋂
j∈J fj(x) =

⋂
k≤j
k∈J

fj(x) ⊂ clF (x) ⊂
F̄ (x).

By Theorem 3 and its Remark in [Tulcea (1988), pp. 280–282], Tarafdar and

Yuan gave the following:

Lemma 5.45 Let (Xi)i∈I be a family of paracompact spaces and let (Yi)i∈I be a

family of set such that for each i ∈ I, Yi is a non-empty convex subset of a locally

convex Hausdorff topological vector space Ei and Yi has the property (K). For each

i ∈ I, let Fi : Xi → 2Yi be such that Fi is compact and upper semi-continuous

with compact convex values. Then there is a common filtering set J (independent of

i ∈ I) such that for each i ∈ I, there is a family (fij)j∈J of correspondences between

Xi and Fi with the following properties:

(a) for each j ∈ J , fij is regular,

(b) (fij)j∈J and (fij)j∈J are upper approximating families for Fi,

(c) for each j ∈ J, fij is continuous if Yi is compact.

Remark 5.38 In the statement of above Lemma, Tulcea [Tulcea (1988), Theo-

rem 3, p. 270]) assumed that Yi is also closed. In his proof, the hypothesis “Y is

closed” is not required.

5.18.1 Equilibria of Generalized Games

In this subsection, by the approximation Lemma 5.45 and Theorem 5.121, Tarafdar

and Yuan gave the existence theorem of equilibria for the non-compact generalized

game Γ = (Xi;Ai, Bi;Pi)i∈I in which the constraint correspondences are upper

semi-continuous instead of having open lower or upper sections.

Theorem 5.122 Let Γ = (Xi, Ai, Bi;Pi)i∈I be a generalized game such that

X = Πi∈IXi is paracompact. Suppose the following conditions are satisfied for each

i ∈ I:
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(a) Xi is a non-empty convex subset of locally convex Hausdorff topological vector

space Ei and Xi has the property (K),

(b) Ai, Bi : X → 2Xi such that Bi is compact and upper semi- continuous with

nonempty compact convex values and Ai(x) ⊂ Bi(x) for each x ∈ X,

(c) Pi : X → 2Xi has compactly open lower sections and for each x ∈ X, xi /∈
convPi(x);

(d) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

(e) there exist a non-empty compact subset K of X and x0 ∈ X for each y ∈ X\K
with x0

i ∈ {Ai(y) ∩ Pi(y)}.

Then there exists x̄ ∈ K such that for each i ∈ I, Ai(x̄) ∩ Pi(x̄) = ∅ and

x̄i ∈ B̄i(x̄).

Proof. By Lemma 5.45, there is a common filtering set J such that for every i ∈ I ,

there exists a family Bij)j∈J of regular correspondences between X and Xi, such

that both ((Bij)j∈J and (Bij)j∈J are the upper approximating of families for Bi.

Let j ∈ J be arbitrarily fixed. The game Γj = (Xi;Bij , Bij ;Pi)i∈I satisfies

all hypotheses of Theorem 5.121. Hence Γj has an equilibrium x̄j ∈ K such that

Bij(x̄j) ∩ Pi(x̄j) = ∅, and πi(x̄
j ∈ Bij(x̄

j) for all i ∈ I .

Since (x̄j)j∈J is a net in the compact set K, without loss of generality we

may assume that ((x̄j)j∈J , converges to x∗ ∈ K. Then for each i ∈ I, πi(x
∗) =

limj∈J πi(x̄j). Noting that for every j ∈ J and x ∈ X,Ai(x) ⊂ Bi(x) ⊂ Bij(x),

we have Ai(x̄
j) ∩ Pi(x̄

j) = ∅ for all i ∈ I . By condition (d), for every i ∈
I, Ai(x

∗) ∩ Pi(x
∗) = ∅. As Bij has closed graph, (x∗, x∗i ) ∈ Graph Bij for ev-

ery i ∈ I . For each i ∈ I , since (Bij)j∈J is also an upper approximation family for

Bi,
⋂
j∈J Bij(x) ⊂ Bi(x) for each x ∈ X so that (x∗, x∗i ) ∈ GraphBi. Therefore, for

each i ∈ I , Ai(x
∗) ∩ Pi(x∗) = ∅ and πi(x

∗) ∈ Bi(x
∗).

Tarafdar and Yuan observed that Theorem 5.122 generalizes Theorem 2.5 of

[Toussaint (1984), p. 103], Theorem 4.1 of [Chang (1990), p. 246], Theorem 6.1

of [Yannelis and Prabhakar (1983), p. 243] to non-compact generalized games and

the constraint correspondences need not have open lower sections. In particular,

Theorem 5.122 answers the question raised by [Yannelis and Prabhakar (1983),

p. 243] in the affirmative with weaker conditions. If Ai = Bi for each i ∈ I in

Theorem 5.122, Tarafdar and Yuan obtained the following:

Theorem 5.123 Let Γ = (Xi, Ai, Pi)i∈J be a generalized game such that X =

Πi∈IXi is para-compact. Suppose the following conditions are satisfied for each

i ∈ I:

(a) Xi is a non-empty convex subset of a locally convex Hausdorff topological

vector space Ei and Xi has the property (K),

(b) Ai : X → 2Xi is compact and upper semi-continuous with non-empty compact

and convex values for each x ∈ X,
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(c) Pi : X → 2Xi has compactly open lower sections and for each x ∈ X, xi /∈
convPi(x)

(d) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

(e) there exist a non-empty compact subset K of X and x0 ∈ X for each y ∈ X\K
with x0

i ∈ (Ai(y) ∩ Pi(y)).

Then there exists x̄ ∈ K such that for each i ∈ I, Ai(x̄) ∩ Pi(x̄) = ∅ and x̄i ∈
Ai(x̄).

When Xi is compact, closed and convex in Theorem 5.123, Tarafdar and Yuan

obtained the following:

Corollary 5.123.1 Let Γ = (Xi;Ai;Pi)i∈I be a generalized game and X :=

Πi∈IXI . Suppose the following conditions are satisfied for each i ∈ I:

(a) Xi is a non-empty closed compact convex subset of locally convex Hausdorff

topological vector space Ei,

(b) Ai : X → 2Xi is upper semi-continuous with non-empty compact and convex

values for each x ∈ X,

(c) Pi : X → 2Xi has open lower sections and xi /∈ convPi(x) for each x ∈ X,

(d) the set Ei = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X,

Then there exists an x̄ ∈ K such that for each i ∈ I, Ai(x̄) ∩ Pi(x̄) = ∅ and

x̄ ∈ Ai(x̄).

Corollary 5.123.1 generalizes the Theorem of [Shafer and Sonnenschein (1975),

p. 374] in the following ways: (1) I is uncountable or countable infinite instead

of finite; (2) for each i ∈ I , the locally convex Hausdorff topological vector space

is infinite dimensional instead of being finite dimensional; (3) for each i ∈ I, Ai
is upper semi-continuous instead of continuous and (4) Pi has open lower sections

instead of an open graph.

As an application of Corollary 5.123.1, Tarafdar and Yuan obtained the well-

known Fan-Glicksberg’s fixed point theorem (see [Fan (1952)] or [Glicksberg (1952)])

for upper semi-continuous correspondence in locally convex topological vector

spaces.

Corollary 5.123.2 Let X be a convex and compact subset of a locally convex

topological vector space and let A : X → 2X be upper semi-continuous with non-

empty closed and convex values for each x ∈ X. Then A has a fixed point.

Proof. Let I = {1} and Pi(x) = ∅ for each x ∈ X in Corollary 5.123.1. The

conclusion follows from Corollary 5.123.1.

The following example shows that the condition (d) “for each I ∈ I , the set

EI = {x ∈ X : (Ai ∩ Pi)(x) 6= ∅} is open in X” in Theorem 5.122 is essential.
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Example 5.13 Let I = {1} and X = [0, 1]. Define A,P : X → 2X by

A(x) =





[1/2, 1], if x ∈ [0, 1/2),

[0, 1], if x = 1/2,

[0, 1/2], if x ∈ (1/2, 1],

and

P (x) =

{
∅, if x = 0,

[0, x) if x ∈ (0, 1].

Then A is upper semi-continuous with non-empty closed convex values and the

fixed point set of A is the singleton set 1/2. The correspondence P has convex

values with open lower sections, since for each y ∈ [0, 1], P−1(y) = (y, 1] which is

open in X . Therefore A, P and X satisfy all conditions of Theorem 5.122 except

that E = {x ∈ [0, 1] : A(x) ∩ P (x) 6= ∅} = [1/2, 1] is closed but not open in [0, 1].

However, A(1/2) ∩ P (1/2) 6= ∅, i.e. the generalized game Γ = (0, 1];A;P ) has no

equilibrium point.

5.18.2 Tarafdar and Yuan’s Application on Existence Theorem of

Equilibria for Constrained Games

In this subsection, as applications of Theorem 5.122, we shall present Tarafdar

and Yuan’s existence theorem of equilibria for constrained games in locally convex

spaces. For simplicity, Tarafdar and Yuan only considered the compact constraint

generalized games.

Let I = {1, 2, . . . , N}. Each player i chooses a strategy x in a subset X of a

locally convex topological vector space Ei. Denote by X the (Cartesian) product

ΠN
j=1Xj and X−i the product Πj∈I,j 6=iXj . Denote by x and x−i an element of

X and X−i respectively. Each player i has a payoff (utility) function ui : X →
R ∪ {−∞,+∞}. Given x−i (the strategies of others), the choice of the i-th player

is restricted to a non-empty compact and convex set Ai(x−i) ⊂ Xi, the feasible

strategy set; the i-th player chooses xi ∈ Ai(x−i) so as to minimize ui(x−i, xi), over

Ai(x−i), where x−i, xi) is the point y = (yj)j∈I such that yI = x−i and yi = xi.

The family G = (Xi;Ai;ui)
N
i=1 is then called a constrained N -person game and an

equilibrium for G is an x∗ ∈ X such that x∗i ∈ Ai(x
∗
−i) and ui(x

∗) ≤ ui(x
∗
−i, xi) for

all xi ∈ Ai(x
∗
−i) (e.g. ui(x

∗) = infxi∈Ai(x∗
−i)
ui(x

∗
−i, xi)) for each i = 1, 2, . . . , N .

Note that if Ai(x−i) = Xi for each i = 1, 2, . . . , N , the constrained N -person

game reduced to the conventional game G = (Xi;ui)i∈I and its equilibrium is called

a Nash equilibrium.

Theorem 5.124 Let G = (Xi;Ai;Ui)
N
i=1 be a constrained game and x = ΠN

i=1Xi

where Xi is a non-compact convex subsets of a locally convex topological vector space

Ei for each i = 1, 2, . . . , N . Suppose the following conditions are satisfied:
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(a) the correspondence A : X → 2X defined by A(x) = ΠN
i=1Ai(x−i) for each

x = (x−i, xi) ∈ X is upper semi-continuous with closed convex values,

(b) the function ψ : X ×X → R ∪ {−∞,+∞} defined by

ψ(x, y) =

N∑

i=1

[ui(x−i, xi) − ui(x−i, yi)]

for each (x, y) ∈ X × X is such that for each y ∈ X, x 7→ ψ(x, y) is lower

semi-continuous on X, where x = (x−i, xi) and y = (y−i, yi)

(c) for each x ∈ X, x /∈ conv({y ∈ X : ψ(x, y) > 0}),
(d) the set {x ∈ X : supy∈A(x) ψ(x, y) > 0} is open in X, Then there exists

x∗ ∈ X such that for each i = 1, 2, . . . , N ,

x∗i ∈ Ai(x
∗
−i) and ui(x

∗) ≤ inf
xi∈A(x∗

−i)
ui(x

∗
−i, xi).

Proof. Define P : X → 2X by P (x) = {y ∈ X : ψ(x, y) > 0} for each x ∈ X . Note

that (b) implies that P has open lower sections in X . By (c), x /∈ convPi(x) conv Pi

(x) for each x ∈ X . The condition (d) implies that the set {x ∈ X : A(x)∩P (x) 6= ∅}
is open in X . Therefore G = (X ;A;P ) (satisfies all the hypotheses of Theorem 5.122

with A = B. By Theorem 5.122, there exists an x∗ ∈ X such that x∗ ∈ A(x∗) and

A(x∗) ∩ P (x∗) = ∅ . Since

{x ∈ X : X(x) ∩ P (x) 6= ∅} = {x ∈ X : sup
y∈A(x)

ψ(x, y) > 0},

it follows x∗ ∈ A(x∗) and supy∈A(x∗) ψ(x∗, yi) ≤ 0.

For each i = 1, 2, . . . , N , and yi ∈ Ai(x
∗
−i), let y = (x∗−i, yi). Then y ∈

A(x∗) so that (ui(x
∗) − ui(x

∗
−i, yi)) =

∑N
i=1[ui(x

∗) − ui(x
∗
−i, yi)] = ψ(x∗, y) ≤

supy∈A(x∗) ψ(x∗, y) ≤ 0.

Therefore (ui(x
∗)−ui(x

∗
−i, yi)) ≤ 0 for all yi ∈ Ai(x

∗
−i). Hence x∗ is an equilib-

rium point of the constrained game G = (Xi;Ai;ui)
N
i=1.

Theorem 5.124 generalizes the corresponding result of Aubin and Ekeland (1984,

pp. 350, 351), in the sense that the feasible correspondence Ai is upper semi-

continuous instead of being continuous.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarafdar and Yuan (1993).
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Chapter 6

Best Approximation and Fixed Point

Theorems for Set-Valued Mappings in

Topological Vector Spaces

In the first course of functional analysis we encounter the following question: Let

M be a closed vector subspace of a Hilbert space H . Given an element x ∈ H , does

there exist an element Px ∈ M such that

‖x− Px‖ = d(x,M) = inf{‖x−m‖ : m ∈M}?

In other words, does there exist a best approximation to x among all the elements

in M - best in the sense that ‖x− Px‖ ≤ ‖x− z‖ for all z ∈M? The answer to this

question provides the Projetion Theorem in Hilbert space. For a nice treatment of

the subject we refer to Goldberg (1966, pp. 34–38).

More generally, let M be a nonempty closed subset of a real or complex normed

space (E, ‖.‖). Given u ∈ E, the set (may be empty) of all x ∈M such that

‖u− x‖ = inf{‖u−m‖ : m ∈ M} = d(u,M)

is denoted by PM (u) and each member of PM (u) is called a best M -approximant

to u.

Let f : M → E be a mapping, where M and E are as above. We are interested

in a point x ∈ M which best approximates f(x), i.e.

‖x− f(x)‖ = d(f(x),M) = inf{‖f(x) −m‖ : m ∈ M}. (6.1)

The metric projection PM : M → 2M is defined by PM (x) = {y ∈ M : ‖x− y‖ =

d(x,M)}, x ∈ M . PM (x), if nonempty, is closed and bounded and is convex if M

is convex. PM is called the metric projection on M . M is called Proximinal if

PM (x) 6= ∅ for each x ∈ M . If for each point x ∈ M , PM (x) contains at most one

point, then M is called a Chebyshev set.

Now it is easy to see that the point x ∈ M is a solution of (6.1) if and only

if x is a fixed point of the setvalued mapping PM . For fixed point theorems and

best approximations, especially in Hilbert spaces, we refer to Singh et al. (1997,

pp. 75–120), Park (1995), Park (1991), and Park (1987).

447



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

448 Topological Methods of Set-Valued Nonlinear Analysis

6.1 Single-Valued Case

Definition 6.1 Let M be a closed convex subset of a normed space (E, ‖.‖).
Then a mapping g : M → E is called almost affine if for x1, x2 ∈ M and y ∈ E, 0 <

λ < 1, we have

‖g(z)− y‖ ≤ λ ‖g(x1) − y‖ + (1 − λ) ‖g(x2) − y‖

where z = λx1 + (1 − λ)x2.

Then g is called almost quasi-convex if

‖g(z) − y‖ ≤ max(‖g(x1) − y‖ , ‖g(x2) − y‖) for all y ∈ M.

We can easily check that an almost affine map is always almost quaxi-convex.

The following theorem was proved in Carbone (1991) where Allen’s Theorem

Allen (1977) (see Tarafdar (1986) for more general results) and the technique of

Kapoor (1973) and Sehgal, Singh, and Smithson (1987) were used. We give a new

proof by using our fixed point Theorem 4.33 (Tarafdar (1987)).

Theorem 6.1 Let M be a nonempty convex subset of a normed space (E, ‖.‖).
Let g : M → M be a continuous, almost quasi-convex and onto mapping and

f : M → E be a continuous mapping. Furthermore, let M0 be a nonempty compact

convex subset of M such that the set

D = {y ∈ M : ‖f(y) − g(y)‖ ≤ ‖f(y) − g(x)‖ for all x ∈M0}

is empty or compact. Then there exists a point u ∈M such that

‖g(u) − f(u)‖ = d(f(u),M).

Proof. Suppose the theorem is false.Then it follows that for each y ∈ M , the set

F (y) = {x ∈M : ‖f(y) − g(y)‖ > ‖f(y) − g(x)‖} is nonempty. Thus F : M → 2M

is setvalued with nonempty value. Moreover, for each y ∈ M , F (y) is convex. To

see this, let u =
∑n

i=1 λixi, xi ∈ F (y), i = 1, 2, . . . , n, 0 ≤ λi ≤ 1 and
∑n
i=1 λi = 1.

Then we have ‖g(y) − f(y)‖ > ‖g(xi) − f(y)‖ , i = 1, 2, . . . , n. Hence by the almost

quasi-convexity of g, we have

‖g(u) − f(y)‖ =

∥∥∥∥∥g(
n∑

i=1

λixi) − f(y)

∥∥∥∥∥

≤ max (‖g(x1) − f(y)‖ , . . . , ‖g(xn) − f(y)‖)
< ‖g(y) − f(y)‖ .

This implies that u ∈ F (y). Hence F (y) is convex for each y ∈ M . Now for each
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x ∈M ,

F−1(x) = {y ∈ M : x ∈ F (y)}
= {y ∈ M : ‖f(y) − g(y)‖ > ‖f(y) − g(x)‖}
= {y ∈ M : ‖f(y) − g(y)‖ ≤ ‖f(y) − g(x)‖}c,

which is a relatively open set for each x ∈ M as f and g are continuous. Set

Ox = F−1(x) for each x ∈ M . Then obviously
⋃
x∈M

Ox = M . (To see this, let

y ∈ M . Then since F (y) 6= ∅, let x ∈ F (y) which implies that y ∈ F−1(x) = Ox.)

Now we can easily check that
⋂

x∈M0

0x
c =

⋂

x∈M0

F−1(x)
c

= D.

Thus all the conditions of a Theorem of Chapter 4 are fulfilled in this case. Hence

there is a fixed point y0 of F , i.e. y0 ∈ F (y0), i.e. ‖f(y0) − g(y0)‖ > ‖f(y0) − g(y0)‖,
which is absurd. Thus the theorem must be true. �

The following result is also proved in Carbone (1991) by using a lemma of Fan

(1969) and following the line of Kapoor (1973). In here it follows directly from

above Theorem 6.1.

Corollary 6.1.1 Let M be a nonempty compact convex subset of a normed space

(E, ‖.‖). If g : M → M is a continuous, almost quasi-convex and onto mapping

and f : M → E is a contnuous mapping, then there is a point u ∈ M such that

‖f(u) − g(u)‖ = d(f(u),M).

Proof. We take M = M0. For each x ∈ M , the set

F (x) = {y ∈M : ‖g(y) − f(y)‖ ≤ ‖g(x) − f(y)‖

is a closed subset of M due to the contnuity of g and f . Hence D =
⋂
x∈M

F (x)

being a closed subset of a compact set M is compact, if nonempty. Hence the result

follows from Theorem 6.1. �

The following result is proved in Prolla (1982–1983).

Corollary 6.1.2 Let M be a nonempty compact and convex subset of a normed

space (E, ‖.‖). If g : M → M is a continuous almost affine and onto mapping and

f : M → E is a continuous mapping, then there is a point u ∈ M such that

‖g(u) − f(u)‖ = d(f(u),M).

Proof. Noting that an almost affine mapping is always almost quasi-convex, the

corollary follows from Corollary 6.1.1. �
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Our next result is a variant of a result of Hayashi (1985) and is proved in Lin

(1989) by using Fan’s lemma (see Fan (1961)). Here we give another variant of

proof by using our Fixed Point Theorem 4.33.

We need the following definition.

Definition 6.2 Let E and F be two Hausdorff (real) topological vector spaces.

Let → and ⇀ denote respectively the convergence in given and weak topology (on

E or F ). A mapping f : E → F is called strongly continuous, if f(xν) → f(x)

whenever xν ⇀ x; and f is called weakly continuous, if f(xν) ⇀ f(x) whenever

xν ⇀ x, {xν} being a net in E.

Theorem 6.2 Let E and F be locally convex Hausdorf topological vector spaces,

M ⊂ E be a nonempty weakly compact convex subset. Let f, g : M → F be two

mappings such that f is strongly continuous and g is weakly continuous on M . Let

g satisfy the following condition:

(a) g−1([y, z]) is convex for all y, z ∈ g(M), where [y, z] = {λy + (1 − λ)z : 0 ≤
λ ≤ 1}.

Then there exists a point u0 ∈ M with f(u0) = g(u0), or there exist a point

u0 ∈ M and a continuous seminorm p on F such that for all y ∈ g(X),

0 < p (g(u0) − f(u0) ≤ p(y − f(u0)).

Proof. We repeat the argument of Lin (1989) and replace Fan’s lemma by our

Fixed Point Theorem 4.33. Let us assume that the second alternative does not hold.

Then for each point u ∈M , any continuous seminorm p on F with p (g(u) − f(u)) >

0, there exists a point x ∈ M such that p (g(x) − f(u)) < p (g(u) − f(u)). Under

this assumption we will prove that there is a coincidence point u0 of f and g, i.e.

f(u0) = g(u0).

Let {pα : α ∈ I} be the set of all continuous seminorms on F . For each α ∈ I ,

we define Fα = {x ∈ M : pα (g(x) − f(x)) = 0}.
By using weak continuity of g and strong continuity of f we can easily prove

that for each α ∈ I , Fα is weakly closed in M . Indeed, if xν be a net in Fα such that

xν ⇀ x, then g(xν) ⇀ g(x) and f(xν) → f(x) and thus g(xν)−f(xν) ⇀ g(x)−f(x).

We note that for any positive real number r, the set {y ∈ F : pα(y) ≤ r} is

convex, closed and hence weakly closed (see Rudin (1973, p. 64). Thus pα is weakly

lower semicontinuous and hence

pα (g(x) − f(x)) ≤ lim inf pα (g(xν) − f(xν)) = 0.

This implies that x ∈ Fα and Fα is weakly closed.

Evidently a point u ∈ M is a coincidence point of g and f if and only if u ∈⋂
α∈I

Fα. Since M is weakly compact, it suffices to prove that
⋂n
i=1 Fαi 6= ∅ for every

finite subset {α1, . . . , αn} of I . To this end, let {α1, α2, . . . , αn} be a subset of I .



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Best Approximation and Fixed Point Theorems for Set-Valued Mappings 451

Then we can define β ∈ I with pβ = pα1 + pα2 + · · · + pαn . Let

A = {(x, u) ∈M ×M : pβ (g(x) − f(u)) ≥ pβ (g(u) − f(u))} .

Clearly (x, x) ∈ A for each x ∈M. For each x ∈M, the set

U = {u ∈M : pβ (g(x) − f(u)) ≥ pβ (g(u) − f(u))}

is weakly closed. To see this let {uν} be net in U such that uν ⇀ u ∈M. Then we

have from the weak continuity of g and strong continuity of f that g(uν) ⇀ g(u)

and f(uν) → f(u). Thus

g(uν) − f(uν) ⇀ g(u) − f(u)

and

g(x) − f(uν) → g(x) − f(u).

Now since pβ is weakly lower semicontinuous and uν ∈ U , we obtain

pβ (g(u) − f(u)) ≤ lim inf pβ (g(uν) − f(uν))

≤ lim inf pβ (g(x) − f(uν))

= pβ (g(x) − f(u)) .

Thus u ∈ U and U is weakly closed.

We now prove that there is a point u0 ∈ M such that M × {u0} ⊆ A. Suppose

that this is not true. This will imply that for each u ∈ M , the set

T (u) = {x ∈M : (x, u) /∈ A}
= {x ∈M : pβ (g(x) − f(u)) < pβ (g(u) − f(u))}

is nonempty. Now we prove that T (u) is convex for each u ∈M . Let x1, x2 ∈ T (u),

we will prove that for all λ with 0 ≤ λ ≤ 1, λx1 + (1 − λ)x2 ∈ T (u). Since

x1, x2 ∈ T (u), we have

pβ (g(xi) − f(u)) < pβ (g(u) − f(u)) , i = 1, 2.

Let g(x1) = y, g(x2) = z. By condition (a), g−1([y, z]) is convex. Hence it follows

that λx1 +(1−λ)x2 ∈ g−1([y, z]), i.e. g (λx1 + (1 − λ)x2) ∈ [y, z]. This implies that

there is a number γ with 0 ≤ γ ≤ 1 such that g (λx1 + (1 − λ)x2) = γy+(1−γ)z =

γg(x1) + (1 − γ)g(x2). Thus

pβ (g(λx1 + (1 − λ)x2) − f(u)) = pβ (γg(x1) + (1 − γ)g(x2) − f(u))

≤ γpβ (g(x1) − f(u)) + (1 − γ)pβ (g(x2) − f(u))

< γpβ (g(u) − f(u)) + (1 − γ)pβ (g(u) − f(u))

= pβ (g(u) − f(u)) .
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This shows that λx1 +(1−λ)x2 ∈ T (u). Thus T (u) is convex for each u ∈M. Next

we prove that for each x ∈M , T−1(x) = {u ∈ M : x ∈ T (u)} = {u ∈M : pβ(g(x)−
f(u)) < pβ(g(u) − f(u))} = [u ∈ M : pβ(g(x) − f(u)) ≥ pβ(g(u) − f(u))]c = U c

relatively weakly open. Evidently
⋃
x∈M

T−1(x) = M as T (u) 6= ∅ for each u ∈ M .

Thus all the conditions of Theorem 4.33 there is a fixed point x0 ∈ M such that

x0 ∈ T (x0), i.e. pβ (g(x0) − f(x0)) < pβ (g(x0) − f(x0)) which is impossible. Thus

there must exist a point u0 ∈ M such that M × {u0} ⊆ A, i.e.

pβ (g(x) − f(u0)) ≥ pβ (g(u0) − f(u0)) for all x ∈M.

Hence from our initial assumption it follows that pβ (g(u0) − f(u0)) = 0. This im-

plies that pαi (g(u0) − f(u0)) = 0, for i = 1, 2, . . . , n, and u0 ∈ ⋂ni=1 Fαi 6= ∅. This

completes the proof. �

Corollary 6.2.1 Let E be a locally convex Hausdorff topological vector space and

M be a nonempty weakly compact convex subset of E. Let f : M → E be strongly

continuous mapping. Then either there is a point x0 ∈ M such that f(x0) = x0,

or there exist a point u0 ∈ M and a continuous seminorm p on E such that for all

x ∈M ,

0 < p(u0 − f(u0)) ≤ p(x− f(u0)).

Proof. We take E = F and g = I, the identity mapping on E, and apply

Theorem 6.2. �

The following celebrated result is due to Fan (1969).

Corollary 6.2.2 Let M be a nonempty compact convex subset of a locally convex

Hausdorff topological vector space E. Let f : M → E be a continuous mapping.

Then either f has a fixed point in M , or there exist a point u0 ∈M and a continuous

seminorm p on E such that

0 < p(u0 − f(u0)) = inf{p(x− f(u0)) : x ∈ M}.

Proof. The corollary follows directly from Corollary 6.2.1, if we replace the weak

topology by the given topology of E. �

Remark 6.1 The results of this section will be particular cases of more general

results which will be proved in the next section. We believe that for some readers

the above presentations will be helpful.

6.2 Set-Valued Case

Since the appearance of the result of Fan (1969), (see Corollary 6.2.2), there have ap-

peared many generalizations and applications of this result, e.g. see Carbone (1991),

Carbone (1992), Ding and Tan (1992b), Fan (1984), Hayashi (1985), Hayashi (1987),
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Kapoor (1973), Komiya (1986), Kong-Ding (1992), Park (1988), Park (1989), Pro-

lla (1982–1983), Reich (1972), Reich (1978), Reich (1979), Sehgal-Singh (1985),

Sehgal-Singh (1988) and Sehgal et al. (1987).

The result of Fan, i.e. Corollary 6.2.2 can be referred to as ‘best approximation

and fixed point result’. In the same way the results on two space settings of this

section can be referred to as ‘best approximation and coincidence point results’.

The results of this section are mainly from Ding and Tarafdar (1995) and partly

from Ding and Tan (1992b).

Throughout this section we will adapt to the following notations of Ding and

Tarafdar (1995). As before, let X be a nonempty set, 2X denote the family of all

subsets of X and F(X) denote the family of all non-empty finite subsets of X . If

X is a topological space with topology T , we shall use (X,T ) and 2(X,T ) to denote

the sets X and 2X respectively with emphasis on the fact that X is equipped with

the topology T . If A is a subset of a topological space (X,T ), we shall denote by

int(X,T ) and ∂(X,T ) the interior and boundary of A in (X,T ) respectively. Let (X,T )

and (Y, S) be two topological spaces; for a setvalued mapping F : (X,T ) → 2(Y,S)

we will tacitly assume in this that F (x) 6= ∅ for each x ∈ X . As before, a setvalued

mapping F : (X,T ) → 2(Y,S) is said to be upper semicontinuous (respectively,

lower semicontinuous) on X if for each x0 ∈ X and for each S-open G in Y with

F (x0) ⊆ G (respectively, F (x0) ∩ G 6= ∅), there exists a T -open neighbourhood U

of x0 in X such that F (x) ⊆ G (respectively, F (x) ∩G 6= ∅) for all x ∈ U.

Let E be a topological vector space with topology T , will denote by E∗ = (E, T )∗

the topological (continuous) dual of (E, T ). E∗ is said to separate points of E if for

each x ∈ E with x 6= 0, there exists an f ∈ E∗ such that f(x) 6= 0. We shall denote

by W = W (E,E∗) the weak topology of E and by P = P (E, T ) the family of all

continuous seminorms on (E, T ). If X is a nonempty subset of E, we shall denote

by co(X) the convex hull of X and by (X,T ) and (X,W ) the set X equipped with

the relative topology of T to X and the relative topology of W to X respectively.

We shall denote by R the set of all real numbers and if z is a complex number, we

will denote by Re z the real part of z.

Let X be a nonempty subset of topological vector space (E, T ). For each x ∈ E,

the inward set and outward set of X at x, denoted by IX(x) and OX(x) respectively,

are defined by

IX (x) = {x+ r(y − x) : y ∈ X and r > 0}.
OX (x) = {x− r(y − x) : y ∈ X and r > 0}.

The closures of IX (x) and OX(x) in (E, T ), denoted by cl Ix(x) and clOX(x)

respectively, are called the weakly inward set and weakly outward set of X at x

respectively. We shall use Q(x) to denote either cl IX (x) or clOX(x).

Let (E, T ) and (F, S) be two topological vector spaces. Let X be a nonempty

convex subset of (E, T ) and let (F, S)∗ separate points of (F, S). Following Prolla

(1982–1983) (see also Mehta-Sessa (1992)), a mapping g : X → F is said to be
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almost affine if for any x, y ∈ X, and for any p ∈ P (F, S)

p(g(λx+ (1 − λ)y) − z) ≤ λp(g(x) − z) + (1 − λ)p(g(y) − z)

for all z ∈ F and λ ∈ [0, 1]. As in Carbone (1991) a mapping g : X → F is said to

be almost quasi-convex if for each each z ∈ F , each p ∈ P (F, S) and each r > 0,

the set {x ∈ X : p(g(x) − z) < r} is convex.

Obviously, each affine mapping (i.e. g(λx + (1 − λ)y) = λg(x) + (1 − λ)g(y),

for all x, y ∈ X and λ ∈ [0, 1]) is almost affine and each almost affine mapping is

almost quasi-convex, but not conversely.

6.2.1 Some Lemmas and Relevant Results

In this subsection we include some lemmas and relevant results (e.g. see Ding and

Tan (1992b) and Ding and Tarafdar (1995).

Let (E, T ) be a topological vector space for which P 6= ∅. For each nonempty

subset A of E and for each p ∈ P , let

dp(x,A) = inf{p(x− a) : a ∈ A}

for each x ∈ E.

Proposition 6.1 Let (E, T ) and (F, S) be two topological vector spaces, (F, S)∗

separates points of (F, S) and X be a nonempty subset of (E, T ). Let g : X → F

satisfy the following condition: (see Hayashi (1985) and Lin (1989) or Theorem 6.2)

g−1([u, v]) is convex for all u, v ∈ g(X), where [u, v] = {λu+ (1 − λ)v : λ ∈ [0, 1]}.
Then g is almost quasi-convex.

Proof. For any z ∈ F, p ∈ P(F, S) and r > 0, let x, y ∈ {x ∈ X : p(g(x) − z) <

r}. Then p(g(x) − z)) < r and p(g(y) − z)) < r. Let u = g(x) and v = g(y),

then x, y ∈ g−1([u, v]). By the assumption g−1([u, v]) is convex. Hence we have

[x, y] ⊆ g−1([u, v]). Thus for each λ ∈ [0, 1] there exists k ∈ [0, 1] such that

g(λx + (1 − λ)y) = ku+ (1 − k)v = kg(x) + (1 − k)g(y)

It follows that

p(g(λx+ (1 − λ)y) − z) = p(kg(x) + (1 − k)g(y) − z)

≤ kp(g(x) − z) + (1 − k)p(g(y) − z)

< kr + (1 − k)r = r.

Hence the set {x ∈ X : p(g(x) − z) < r} is convex and g is almost quasi-convex. �

We will need the following result of Ding and Tan (1992b) and Aubin (1982,

p. 67, Theorem 2.5.1) which we write as a lemma.
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Lemma 6.1 Let X and Y be topological spaces. Suppose that h : X × Y → R

is lower semicontinuous and f : X → 2Y is upper semicontinuous at x0 ∈ X such

that f(x0) is compact. Then the function x → inf{h(x, y) : y ∈ f(x)} is lower

semicontinuous at x0.

The following is the Lemma 2.1 in Ding and Tarafdar (1995).

Lemma 6.2 Let (E, T ) and (F, S) be Hausdorff topological vector spaces, (E, T )∗

and (F, S)∗ the topological duals of (E, T ) and (F, S) such that (F, S)∗ separates

points of F . Let X be a nonempty subset of (E, T ), W (E, E∗) and W (F, F ∗) be

the weak topology on E and F respectively. Suppose that g : (X,W (E, E∗)) →
(F, (W, (F, F ∗)) is continuous, G : (X,W (E, E∗)) → 2(F,S) is upper semicon-

tinuous such that G(x) is S-compact and p ∈ P(F, S). Then the function V :

(X,W (E, E∗)) → R defined by

V (x) = dp(g(x), G(x)) = inf{p(g(x) − z : z ∈ G(x)}

is lower semicontinuous (in short, l.s.c.), i.e. V : X → R is weakly l.s.c.

Proof. Define a function h : (X,W (E, E∗)) × (F, S) → R by

h(x, z) = p(g(x) − z), for (x, z) ∈ X × F.

For each r ∈ R, let A(r) = {(x, z) ∈ X × F : h(x, z) ≤ r}. Let {Xα, zα)}α∈∆ be

a net in A(r) and (x, z) ∈ X × F such that xα → x in W (E,E∗)-topology and

zα → z in S-topology. By the continuity of g, g(xα) → g(x) in W (F, F ∗)-topology.

By the corollary of Hahn-Banach theorem (e.g. see Robertson-Robertson (1964),

p. 29, Corollary 2), there exists f ∗ ∈ (F, S)∗ such that f∗(g(x) − z) = p(g(x) − z)

and |f∗(z)| ≤ p(z) for all z ∈ F.

Since g(xα) − zα → g(x) − z in W (F, F ∗)-topology, we have

h(x, z) = p(g(x) − z) = f∗(g(x) − z)

= Ref∗(g(x) − z)

= lim
α
Ref∗(g(xα) − zα)

≤ lim inf
α

|f∗(g(xα) − zα)|

≤ lim inf
α

p(g(xα) − zα)

= h(xα, zα) ≤ r

So that (x, z) ∈ A(r). Thus A(r) is closed in (X,W (E,E∗)) × (F, S) and h is

l.s.c on (X,W (E,E∗)) × (F, S). Hence by Lemma 6.1 the function V is l.s.c. on

(X,W (E,E∗)). �

The following corollary is the Lemma 4 in Ding and Tan (1992b).
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Corollary 6.2.3 Let (E, T ) be a Hausdorff topological vector space whose topo-

logical dual E∗ separates points of E. Let X be a nonempty subset of E, p ∈ P and

f : (X,W ) → 2(E,T ) be upper semicotinuous such that f(x) is T -compact for each

x ∈ X. Then the function V : (X,W ) → R defined by

V (x) = dp (x, f(x)) for x ∈ X

is lower semicontnous, i.e. V : X → R is weakly lower semicontinuous.

Proof. When (E, T ) = (F, S) and g = I, the identity mapping on E, Lemma 6.2

reduces to the Corollary. �

Our next lemma is the Lemma 5 in Ding and Tan (1992b).

Lemma 6.3 Let E be a Hausdorff topological vector space whose topological dual

E∗ separates the points of E. Let A be a nonempty compact convex subset of E and

x ∈ E. If for each f ∈ E∗, infa∈A |Ref(x − a)| = 0, then x ∈ A. In particular, if

dp(x,A) = 0 for each continuous seminorm p on E, then x ∈ A.

Proof. Assume that x 6∈ A. Then for each a ∈ A, there exists fa ∈ E∗ such that

fa(x) 6= fa(a) as E∗ separates the points of E. Let Oa and Ua be disjoint open

convex sets containing fa(a) and fa(x) respectively. Then f−1
a (Oa) and f−1

a (Ua)

are disjoint open convex sets in E containing a and x respectively. Sice A is

compact, there are points a1, a2, . . . , an ∈ A such that A ⊆ ⋃n
i=1 f

−1
ai

(Oai).. Let

U =
⋂n
i=1 f

−1
ai

(Uai), then U is open convex set containing x such that U ∩ A = ∅.
By Theorem 3.4 in Rudin (1973, p. 58), there exist f ∈ E∗ and γ ∈ R such that

Ref(x) < γ ≤ Ref(a) for all a ∈ A. It follows that

inf |Ref(x− a)| ≥ γ −Ref(x) > 0,

which is a contradiction. Thus we have x ∈ A. The last assertion follows from the

fact that for each f ∈ E∗, the function p : E → R defined by p(u) = |Ref(u)| for

all u ∈ E is a continuous seminorm on E. �

Remark 6.2 We note that E is not assumed to be locally convex in the above

lemma. We also note that even when E is Hausdorff, the conclusion of Lemma 6.3

is false if E does not separate points of E; e.g., the competely metrizable vector

space Lp with 0 < p < 1 contains no open convex sets other than ∅ and Lp (see, e.g.

Rudin (1973, p. 35)) and, therefore, Lp has no nonzero continuous linear functional

and hence no nonzero continuous seminorm.

The following is Lemma 2.2 in Ding and Tarafdar (1995).

Lemma 6.4 Let (E, T ) and (F, S) be Hausdorff topological vector spaces and

(F, S)∗ separates points of (F, S). Let X be a nonempty W (E, E∗)-compact subset

of E, g : (X,W (E, E∗)) → (F,W (F, F ∗)) be continuous and G : (X,W (E, E∗)) →
2(F,S) be upper semicontinuous such that for each x ∈ X, G(x) is S-compact and
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convex. If for each p ∈ P(F, S), there exists xp ∈ X such that dp (g(xp), G(xp)) = 0,

then g and G have a coincidence point in X, i.e. there is x0 ∈ X such that g(x0) ∈
G(x0).

Proof. By the assumption and Lemma 6.2, for cach p ∈ P(F, S) the set A(p) =

{x ∈ X : dp(g(x), G(x)) = 0} is nonempty and W (E,E∗)-closed. If {p1, p2, . . . , pn}
is a finite subset of P(F, S), then

∑n
i=1 pi ∈ P(F, S) and A (

∑n
i=1 pi) ⊆

⋂n
i=1 A(pi).

Thus the family {A(p) : p ∈ P(F, S)} has the finite intersection property. By the

W (E, E∗)-compactness of X ,
⋂

p∈P(F,S)

A(P ) 6= ∅. Take any x̂ ∈ ⋂
p∈P(F,S)

A(p). Then

dp (g(x̂), G(x̂)) = 0 for all p ∈ P(F, S). Since G(x̂) is S-compact, by Lemma 6.3,

g(x̂) ∈ G(x̂). Hence x0 = x̂ satisfies the requirement of the Lemma. �

Our next lemma is the minimax inequality: e.g. see Ding and Tan (1992c), Ding

and Tan (1992b) and Ding and Tarafdar (1995).

Lemma 6.5 Let X be a nonempty convex subset of a topological vector space

and ϕ : X ×X → R ∪ {−∞,+∞} be such that

(i) for each x ∈ X, y → ϕ(x, y) is lower semicontinuous on each compact subset

C of X ;

(ii) for each A ∈ F(X) and for each y ∈ co(A), minx∈A ϕ(x, y) ≤ 0;

(iii) there exist a nonempty compact convex subset X0 of X and a nonempty com-

pact subset K of X such that for each y ∈ X \K, there is an x ∈ co(X0 ∪{y})
with ϕ(x, y) > 0.

Then there exists ŷ ∈ K such that ϕ(x, ŷ) ≤ 0 for all x ∈ X.

Proof. For each x ∈ X, let K(x) = {y ∈ K : ϕ(x, y) ≤ 0.} By (i), K(x) is closed

for each x ∈ X. We prove that family {K(x) : x ∈ X} has the finite intersection

property. For any fixed {x1, x2, . . . , xn} ∈ F(X), let

D = co(X0

⋃
{x1, x2, . . . , xn}),

then D is a compact convex subset of X. Define G : D → 2D by

G(x) = {y ∈ D : ϕ(x, y) ≤ 0}.

Now by virtue of the hypothses, it is to prove that all the conditions of Fan (1961,

Lemma 1) of Chapter 4 are satisfied. Hence
⋂
x∈X

G(x) 6= ∅; i.e. there exists y0 ∈ D

such that ϕ(x, y0) ≤ 0 for all x ∈ D. By (iii), we must have y0 ∈ K so that

y0 ∈ ⋂ni=1K(xi). This proves that {K(x) : x ∈ X} has finite intersection property.

Hence by virtue of compactness of K,
⋂
x∈X

K(x) 6= ∅. Let ŷ ∈ ⋂
x∈X

K(x). Then ŷ ∈ K

and ϕ(x, ŷ) ≤ 0 ofr all x ∈ X. �

The following is theorem in Hayashi (1985).
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Lemma 6.6 Let E,F be Hausdorff topological vector spaces, X ⊆ E, Y ⊆ F be

nonempty convex sets and Y be compact. Let G : X → 2Y be upper semicontinuous

with nonempty closed convex values and ϕ : X × Y → R be such that

(a) for each x ∈ X, y → ϕ(x, y) is lower semicontinuous in Y ;

(b) for each y ∈ Y, x → ϕ(x, y) is quasi-concave in X.

Then

inf
y∈Y

sup
x∈X

ϕ(x, y) ≤ sup
u∈G(x),x∈X

ϕ(x, u).

Proof. For proof we refer to Yuan (1999, p. 143, Theorem 2.9.6) for more general

result. �

The next two lemmas are from Ding and Tan (1992b, p. 747, Lemmas 6 and 7)

and have their own interest.

Lemma 6.7 Let (E, T ) be a Hausdorff topological vector whos topological dual E∗

separates points of E, X be a nonempty W -compact subset of E and f : (X,W ) →
2(E,T ) be upper semicontinuous such that for each x ∈ X, f(x) is T -compact and

convex. If for each p ∈ P , there exists xp ∈ X such that dp (xp, f(xp)) = 0, then f

has a fixed point in X.

Proof. For each p ∈ P , the set

A(p) = {x ∈ X : dp (x, f(x)) = 0}

is nonempty as xp ∈ A(p) and alsoW -closed as x → dp (x, f(x)) isW -lower semicon-

tinuous by Corollary 6.2.3. If {p1, p2, . . . , pn} is a finite subset of P , then evidently∑n
i=1 pi ∈ P and thus A (

∑n
i=1 pi) ⊆ ⋂n

i=1A(pi). Hence {A(p) : p ∈ P} has the

finite intersection property. By virtue of weak compactness of X,
⋂
p∈P

A(p) 6= ∅. We

take u0 ∈ ⋂
p∈P

A(p), then dp (u0, f(u0)) = 0 for all p ∈ P . Hence by Lemma 6.3,

u0 ∈ f(u0)) as f(u0) is T -compact and convex. �

Let X be a nonempty subset of a topological vector space (E, T ). It is obvious

to see that if f : (X,W ) → 2(X,T ) is upper semicontinuous (respectively, lower

semicontinuous, continuous), then f : (X,T ) → 2(X,T ) is upper semicontinuous

(respectively, lower semicontinuous, continuous). The next result of Ding and Tan

(1992b) shows that the converse is also true under certain additional conditions on

E and on X.

Lemma 6.8 Let (E, T ) be a Hausdorff topological vector space whose topological

dual E∗ separates the points of E and X be a nonempty T -compact subset of E. If

f : (X,T ) → 2(X,T ) is upper semicontinuous (respectively, lower semicontinuous,

continuous), then f : (X,W ) → 2(E,T ) is upper semicontinuous (respectively, lower

semicontinuous, continuous).
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Proof. Assume that f : (X,T ) → 2(X,T ) is upper semicontinuous (respectively,

lower semicontinuous). Let U be any T -open set in E. Then it follows that the set

A = {x ∈ X : f(x) 6⊆ U} (respectively, A = {x ∈ X : f(x) ∩ U = ∅}) is T -closed in

X and hence A is T -compact as X is T -compact. Thus A is W -compact. Now since

E∗ separates points of E, it follows that W is Hausdorff. Thus A in W -closed. Thus

f : (X,W ) → 2(X,T ) is upper semicontinuous (respectively, lower semicontinuous).

The proof of continuity is now obvious. �

Now we prove several approximation and fixed point theorems for continuous

setvalued mappings.

The following theorem is the theorem 1 in Ding and Tan (1992b).

Theorem 6.3 Let (E, T ) be a Hausdorff topological vector space whose topo-

logical dual E∗ separates points of E, X be a nonempty convex subset of E and

f : (X,W ) → 2(E,T ) be continuous on each nonempty W -compact subset C of X

such that for each x ∈ X, f(x) is T -compact and convex. Let X0 be a nonempty

W -compact and convex subset of X and K be a nonempty W -compact subset of X.

If p ∈ P has the following property:

for each y ∈ X \ K, there exists x ∈ co(X0

⋃{y}) such that dp (x, f(y)) <

dp (y, f(y)) ,

then there exists u ∈ K such that

dp (u, f(u)) = min {dp (x, f(u)) : x ∈ cl IX (u)} .

Moreover, u ∈ K
⋂
∂ X whenever dp (u, f(u)) > 0.

Proof. We define g : X ×X → R by

g(x, y) = dp (y, f(y)) − dp (x, f(y)) .

Then we have the followings:

(a) For each fixed x ∈ X, by Theorem 2.5.2 in Aubin (1982, p. 69) the function

y → dp (x, f(y)) is W -upper semicontnuous on C for each nonempty W -compact

subset C of X (take h(t, u) = p(t − u) for all (t, u) ∈ X × X to apply Theorem

2.5.2 in Aubin (1982, p. 69)). So in view of Corollary 6.2.3, g(x, y) is W -lower

semicontinuous function of y on C for each each each nonempty W -compact subset

C of X .

(b) For eachA ∈ F(X) and for each y ∈ co(A), we must have minx∈A g(x, y) ≤ 0;

if this were not true, then there would exist A = {x1, x2, . . . , xn} ∈ F(X) and

y =
∑n

i=1 λixi ∈ co(A) with λ1, λ2, . . . , λn ≥ 0 and
∑n

i=1 λi = 1 such that

g(xi, y) = dp (y, f(y)) − dp (xi, f(y)) > 0 for all i = 1, . . . , n. (6.2)

Since f(y) is T -compact, there exists ui ∈ f(y) for each i = 1, . . . , n such that

p(xi − ui) = dp (xi, f(y)) . Let u =
∑n
i=1 λiui. Cleary u ∈ f(y) as f(y) is convex.
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Then it follows that

dp (y, f(y)) ≤ p(y − u)

= p

(
n∑

i=1

λi(xi − ui)

)

≤
n∑

i=1

λipi(xi − ui)

=

n∑

i=1

λidp (xi, f(y))

< dp (y, f(y))

the last inequality follows from (6.2). But this is impossible.

(c) By hypothesis, there exist a nonempty W -compact convex X0 of X and a

nonempty W -compact K of X such that for each y ∈ X \ K, there exists x ∈
co (X0 ∪ {y}) with g(x, y) > 0.

Now equip E with weak topology W, then all hypotheses of Lemma 6.5 are

satisfied so that there exists u ∈ K such that g(x, u) ≤ 0 for all x ∈ X ; i.e.

dp (u, f(u)) ≤ dp (x, f(u)) for all x ∈ X. (6.3)

Now fix an arbtrary v ∈ IX(u) \X. As X is convex, there exist z ∈ X and r > 1

such that v = u+ r(z − u). Suppose that

dp (v, f(u)) < dp (u, f(u)) . (6.4)

Since f(u) is T -compact, there exist z1, z2 ∈ f(u) such that p(u− z1) = dp (u, f(u))

and p(v − z2) = dp (v, f(u)) . Let ẑ = (1 − 1
r )z1 + 1

r z2, then ẑ ∈ f(u) as f(u) is

convex. Since z = (1 − 1
r )u+ ( 1

r )v ∈ X, we have

dp (z, f(u)) ≤ p(z − ẑ)

= p

(
(1 − 1

r
)(u− z1) + (

1

r
)(v − z2)

)

≤ (1 − 1

r
)p(u− z1) + (

1

r
)p(v − z2)

= (1 − 1

r
)dp (u, f(u)) + (

1

r
)dp (v, f(u))

< dp (u, f(u))

by (6.4), which contradicts (6.3). Thus we must have

dp (u, f(u)) ≤ dp (x, f(u)) for all x ∈ IX (u).
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By the continuity of p, we obtain

dp (u, f(u)) ≤ dp (x, f(u)) for all x ∈ cl IX (u).

Hence dp (u, f(u)) = min {dp (x, f(u)) : x ∈ cl IX (u)} .
Now assume that dp (u, f(u)) > 0, then f(u)∩X = ∅. Since f(u) is T -compact,

there exists u ∈ f(u) such that p(u−u) = dp (u, f(u)) . Note that u 6∈ X. If u ∈ intX,

then there exists a real number λ with 0 < λ < 1 such that z = λu+ (1− λ)u ∈ X.

It follows that

0 < p(u− u) = dp (u, f(u))

≤ dp (z, f(u)) ≤ p(z − u)

= λp(u− u) < p(u− u)

which is impossible. Thus u 6∈ intX . Hence u ∈ K ∩ ∂ X. This completes the

proof. �

The following is Theorem 2 in Ding and Tan (1992b).

Corollary 6.3.1 Let (E, T ), E∗, X, f,X0 and K be as in Theorem 6.3 such that

for each p ∈ P , the following property holds: for each y ∈ X \ K, there exists

x ∈ co(X ∪ {y}) such that dp (x, f(y)) < dp (y, f(y)) .

Then either (a) f has a fixed point in K or (b) exist p ∈ P and u ∈ K ∩ ∂X
such that 0 < dp (u, f(u)) = min {dp (x, f(u)) : x ∈ cl IX (u)} .
Proof. The conclusion of the corollary follows from Theorem 6.3 and

Lemma 6.7. �

Remark 6.3 Theorem 6.3 generalizes Theorem 1 in Sehgal et al. (1987) in

several ways: (1) f is setvalued; (2) continuity of f is weakened; (3) the space E

need not be locally convex; (4) the noncompactness condition used here is weaker

than that of Sehgal et al. (1987). In view of Lemma 6.8, Corollary 6.3.1 generalizes

Fan’s result (Corollary 6.2.2).
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Chapter 7

Degree Theories for Set-Valued Mappings

In this section, we shall present some results on Degree Theory which will be used

or will have generalizations in the next sections. With the exception of Theo-

rem 7.7, the other results are taken from the works of Petryshyn and Fitzpatrick

(1974), Mawhin (1972), Gaines and Mawhin (1977), Hetzer (1975), Dugundji (1951),

Granas (1959), Nussbaum (1969, and 1971), and Vainiko and Sadovskii (1968). The

proofs of these results are available from the above works and have thus been in-

cluded only where it is considered necessary.

7.1 Degree Theory for Set-Valued Ultimately Compact Vector

Fields

Let X denote a separated locally convex topological vector space over the real

field with the additional property that for each compact subset A of X , there is a

retraction of X onto the convex closure of A. This property automatically holds

when X is metrizable, especially when X is a normed linear space. For any set B,

let coB denote the convex closure of B and let B̄ and ∂B denote the closure and

boundary of B respectively. Let K(B) and CK(B) denote respectively the set of

non-empty convex closed subsets of B and the set of non-empty convex compact

subsets of B. If F is a set-valued mapping, then F (B) =
⋃
X∈B F (X).

Definition 7.1 Let X and Z be locally convex topological vector spaces over the

real field.Let B be a subset of X and F a mapping defined on B taking values in

the set of subsets of Z. F is said to be upper-semicontinuous at x if, given an open

set V in Z with F (x) ⊂ V , there exists an open set W of X such that x ∈ W and

F (W ) ⊂ V . If F is upper-semicontinuous at every point x of the domain B, F is

said to be upper-semicontinuous on B or simply an upper-semicontinuous (denoted

u.s.c.) mapping.

An u.s.c. mapping F defined on B is said to be a compact vector field if (I −
F )(B) is relatively compact, where I denotes the identity mapping.

463
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Construction: Let ω ⊂ X be an open set and let F : Ω̄ → K(X) be u.s.c. We

define a transfinite sequence {Kα} as follows:

K0 = coF (Ω̄) (7.1)

Kα =

{
coF (Ω̄ ∩Kα−1) if α is an ordinal such that α− 1 exists,⋂
β≤αKβ if α is an ordinal such that α− 1 does not exist.

(7.2)

It can be easily checked that the following properties hold:

each Kα is closed , convex and Kα ⊂ Kβ for all α ≥ β; (7.3)

F (Kα ∩ Ω̄) ⊂ Kα for each ordinal α. (7.4)

Since the transfinite sequence {Kα} is non-increasing, there is an ordinal γ such

that Kγ = Kγ+1 and Kβ = Kγ for each β ≥ γ. We denote Kγ by K(F, Ω̄) or

simply K when it is clearly understood which mapping is concerned. Clearly,

K = Kγ+1 = c̄oF (Ω̄ ∩Kγ) = c̄oF (Ω̄ ∩K).

Thus we have,

K = ∩βKβ = c̄oF (Ω̄ ∩K). (7.5)

Definition 7.2 A u.s.c. mapping F : Ω̄ → K(X) is said to be ultimately compact

if either K ∩ Ω̄ = ∅ or, if K ∩ Ω̄ 6= ∅, then F (Ω̄ ∩K) is relatively compact.

If F is an ultimately compact mapping, we shall call (I − F ) an ultimately

compact vector field, where I is the identity mapping on X .

Lemma 7.1 Let Ω ⊂ X be open and let F : Ω̄K(X) be ultimately compact.

Suppose that 0 6∈ x− F (x) for each x ∈ ∂Ω. Assume that K ∩ Ω̄ 6= ∅ and let ρ be a

retraction of X onto K. Then

x ∈ Ω and x ∈ F (x) ⇒ x ∈ K and (7.6)

x ∈ Ω and x ∈ F (x) ⇔ x ∈ ρ−1(Ω) and x ∈ F (ρ(x)). (7.7)

Definition 7.3 Let Ω ⊂ X be open and let F : Ω̄ → K(X) be ultimately

compact with 0 6∈ x − F (x) for each x ∈ ∂Ω. If K ∩ Ω̄ is empty, we define the

degree of (I −F ) on Ω with respect to zero, denoted by d(I −F,Ω, 0), to be zero. If

K ∩ Ω̄ 6= ∅, let ρ be a retraction of X onto K and define

d(I − F,Ω, 0) = dc(I − Fρ, ρ
−1(Ω), 0) (7.8)

where the right hand term is the degree for compact set-valued vector fields defined

by Ma (1972).
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Remark 7.1 (a) For each x ∈ ρ−1(Ω), x ∈ ρ−1(Ω̄) by the continuity of ρ and

hence ρ(x) ∈ Ω̄∩K. Since F (Ω̄∩K) is relatively compact, Fρ is a compact mapping

on ρ−1(Ω). (b) Again by continuity of ρ, ∂ρ−1(Ω) = ρ−1(∂Ω) and from 7.7, if X is

a fixed point of Fρ in ρ−1(Ω), x ∈ Ω ∩ F (x) and thus x ∈ K by 7.6. This implies

that ρ(x) = x ∈ Ω and hence x 6∈ ∂ρ−1(Ω) as Ω is open.

Remark 7.1 shows that the right-hand term of 7.8 is well defined. The following

theorem ensures that the left-hand term of 7.8 is independent of the retraction ρ

and hence the degree of (I − F ) on Ω with respect to zero is well defined.

Theorem 7.1 Let Ω ⊂ X be open and let F : Ω̄ → K(X) be ultimately compact

with 0 6∈ x − F (x) for each x ∈ ∂Ω. Let A ⊂ X be the convex closure of a compact

set such that K ⊂ A, A∩Ω 6= ∅, F (A∩ Ω̄) ⊂ A and F (A∩ Ω̄) is relatively compact.

Let τ be retraction of X onto A. Then

dc(I − Fτ , τ
−1(Ω), 0) = d(I − F,Ω, 0) (7.9)

Remark 7.2 By putting A = K, the above theorem shows that the degree

defined in Definition 7.3 is independent of the retraction ρ and thus is well defined.

7.1.1 Properties of the Degree of Ultimately Compact Vector

Fields

It has been shown by Petryshyn and Fitzpatrick (1974) that the degree for ulti-

mately compact vector fields is an extension of the degree for compact vector fields

defined by Ma (1972). This is stated in the following proposition. They have also

shown that the usual properties of the topological degree can be extended to the

case of ultimately compact vector fields. These properties are stated in the five

theorems following the proposition.

Proposition 7.1 Let Ω ⊂ X be open and suppose that F : Ω̄ → K(X) is compact

with 0 6∈ x− F (x) for each x ∈ ∂Ω. Then

dc(I − F,Ω, 0) = d(I − F,Ω, 0).

Theorem 7.2 (Existence of Fixed Points) If d(I − F,Ω, 0) 6= 0, there exists

x ∈ Ω such that x ∈ F (x) where F : Ω̄ → K(X) is ultimately compact with no fixed

points on the boundary of Ω.

Theorem 7.3 (Additivity) Let Ω be an open subset of X and F : Ω̄ → K(X)

be an ultimately compact mapping such that 0 6∈ x − F (x) for each x ∈ ∂Ω. Let

Ω1,Ω2 be open disjoint subsets of X such that Ω1 ∪Ω2 ⊂ Ω and Ω̄1 ∪ Ω̄2 = Ω̄. Also,

suppose that x 6∈ F (x) for each x in ∂Ω1 ∪ ∂Ω2. Then

d(I − F,Ω, 0) = d(I − F,Ω1, 0) + d(I − F,Ω2, 0). (7.10)

Theorem 7.4 If Ω is an open set containing the origin, then d(I,Ω, 0) = 1.
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Theorem 7.5 (Homotopy Invariance) Let Ω ⊂ X be open and let H : [0, 1]×
Ω̄ → K(X) be u.s.c. such that H([0, 1] × (Ω̄ ∩ K ′)) is relatively compact where

K ′ = K(H, [0, 1] × Ω̄). If x 6∈ H(t, x) for each t ∈ [0, 1] and each x ∈ ∂Ω, then

d(I −H0,Ω, 0) = d(I −H1,Ω, 0) (7.11)

where Ht = H(t, ·).

Theorem 7.6 Let Ω ⊂ X be a symmetric neighbourhood of the origin and F :

Ω̄ → K(X) be an odd ultimately compact mapping such that x 6∈ F (x) for each

x ∈ ∂Ω. Then d(I − F,Ω, 0) is an odd integer.

Remark 7.3 (a) Theorem 7.3 is a slight variation of the Additivity Theorem

given by Petryshyn and Fitzpatrick (1974) where it is assumed that Ω1 ∪ Ω2 = Ω.

However, the same proof applies here with slight modifications. (b) Theorem 7.4

follows from the fact that if F is the zero mapping, it is also compact and the result

follows from Proposition 7.1 and the corresponding result in the case of compact

vector fields.

The following lemma is an extension of Tietze’s Theorem, proved by Dugundji

(1951).

Lemma 7.2 Let X be a metric space and E a locally convex linear vector space.

Let A be a closed subset of X and f : A → E be a continuous mapping on A.

Then f can be extended over the whole space X such that the range of f , f(X) is

contained in the convex closure of f(A).

We present the following theorem of Tarafdar and Teo in (Tarafdar and Teo

(1979)) which was used later in the proof of the Continuation Theorem.

Theorem 7.7 (Reduction Formula) Let X be a metrizable, locally convex topo-

logical vector space with the additional property that, for each closed subspace E and

any compact subset B of E, there exists a retraction of E onto the convex closure

of B. Let F : Ω̄ → K(X) be an ultimately compact mapping such that x 6∈ F (x) for

each x ∈ ∂Ω. Let E0 be a finite dimensional subspace of X containing the closure

of F (Ω̄). Then

d(I − F,Ω, 0) = d(I − F |Ω̄∩E0
,Ω ∩ E0, 0).

Proof. As K is a closed, convex and compact set, K ∩ E0 is also closed, convex

and compact. Let ρ1 : E0 → K ∩E0 be a retraction of E0 onto K ∩E0. Now define

ρ2 : K ∪ E0 → K by

ρ2(x) =

{
ρ1(x) if x ∈ E0,

x if x ∈ K.

As ρ1 is a retraction of E0 onto K ∩ E0, ρ1(x) = x for all x in K ∩ E0 and it is

clear that ρ2 is well defined in K ∪ E0. Also since ∂K ∩ E0 ⊂ ∂(K ∩ E0), and
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ρ1 is continuous on E0, ρ2 is a continuous mapping on the closed set K ∪ E0. By

Dugundji’s Extension of Tietze’s Theorem (1951), there exists an extension ρ of ρ2,

ρ : X → COρ2(K ∪ E0) such that ρ is continuous. Now as ρ2(K ∪ E0) = K which

is closed and convex, ρ is a retraction of X onto K and is an extension of ρ2 and

ρ1. Now,

x ∈ ρ1
−1(Ω ∩ E0) ⇔ ρ1x ∈ Ω and ρ1x ∈ E0 (7.12)

⇔ x ∈ E0 and ρx = ρ1x ∈ Ω (7.13)

⇔ x ∈ E0 ∩ ρ−1(Ω). (7.14)

Hence we have ρ−1
1 (Ω ∪E0) = E0 ∩ ρ−1(Ω). By Definition 7.3,

d(I − F |Ω̄∩E0
,Ω ∩E, 0) = dc(I − Fρ1 |(ρ1−1(Ω∩E0))− , ρ1

−1(Ω ∩E0), 0) (7.15)

= dc(I − Fρ1 |(ρ−1(Ω)∩E0)− , ρ
−1(Ω) ∩ E0, 0) (7.16)

= dc(I − Fρ|(ρ−1(Ω)∩E0)− , ρ
−1(Ω) ∩ E0, 0). (7.17)

By the continuity of ρ and the hypothesis of the theorem that (F (Ω̄))− ⊂ E0,

we have

(Fρ(ρ
−1(Ω))−)− = (Fρ(ρ

−1(Ω̄)))− (7.18)

⊂ (F (Ω̄))− (7.19)

⊂ E0. (7.20)

Hence, we may apply Theorem 11.1 of Ma (1972) and we have

dc(I − Fρ|(ρ−1(Ω)∩E0)− , ρ
−1(Ω) ∩E0, 0) = dc(I − Fρ, ρ

−1(Ω), 0) (7.21)

= d(I − F,Ω, 0), (7.22)

the last equality holding by Definition 7.3 as ρ is a retraction of X onto K. Hence

we obtain the required result,

d(I − F,Ω, 0) = d(I − F |E0∩Ω̄,Ω ∩ E0, 0).

7.1.2 k-φ-Contractive Set Valued Mappings

Definition 7.4 Let C be a lattice with a minimal element which we denote by

zero, 0. A mapping φ : 2X → C, where 2X denotes the family of all subsets of X ,

is called a measure of non-compactness if, for any A ⊂ X , B ⊂ X , it satisfies the

following properties:

φ(c̄oA) = φ(A), (7.23)

φ(A) = 0 if and only if A is precompact, (7.24)

φ(A ∪ B) = max{φ(A), φ(B)}. (7.25)

Remark 7.4 It follows from (7.25) that A ⊂ B ⇒ φ(A) ≤ φ(B).
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Definition 7.5 Let φ be a measure of non-compactness and we assume that the

lattice C has the property that, for each c ∈ C and λ ∈ R with λ ≥ 0, there is

defined an element λc ∈ C and 0c = 0. A u.s.c. mapping F : Ω̄ → CK(X) is called

a k − φ-contraction or a k − φ-contractive mapping if there exists some k ≥ 0 such

that, for every subset A of Ω̄,

φ(F (A)) ≤ kφ(A).

The following two propositions follow almost immediately from the definition of

a k − φ-contraction and will be stated without proof.

Proposition 7.2 Let φ be a measure of non-compactness as given in Definition

7.5, with the additional property that, for any A ⊂ X, B ⊂ X,

φ(A+B) ≤ φ(A) + φ(B) (7.26)

If F : Ω̄ → CK(X) and G : Ω̄ → CK(X) are k1- and k2-φ-contractive mappings

respectively, then (F +G) : Ω̄ → CK(X) defined by

(F +G)(x) = F (x) +G(x) for each x ∈ Ω̄

is a (k1 + k2)-φ-contractive mapping.

Proposition 7.3 Let φ be a measure of non-compactness as in Definition 7.5.

Let F : Ω̄ → CK(X) be a k1-φ-contraction and let G : X → X be a linear,

continuous, single-valued mapping such that there exists k2 ≥ 0 with

φ(G(A)) ≤ k2φ(A) for each A ⊂ X.

Then GF : Ω̄ → CK(X) defined by

GF (x) = {G(y) : y ∈ F (x)} for each x ∈ Ω̄

is a k1k2-φ-contraction.

Remark 7.5 Linearity and continuity of G ensure that GF (x) is a compact,

convex subset of X for each x ∈ Ω̄.

Proposition 7.4 Let φ be a measure of non-compactness as in Definition 7.5.

If F and G are k-φ-contractions on Ω̄, then for any λ ∈ [0, 1], the mapping λF +

(1 − λ)G : Ω̄ → CK(X), defined by

[λF + (1 − λ)G](x) = λF (x) + (1 − λ)G(x) for each x ∈ Ω̄

is a k-φ-contraction.
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Proof. For any A ⊂ X , λ ∈ [0, 1],

φ([λ + (1 − λ)G](A)) ≤ φ(c̄o(F (A) ∪G(A))) (7.27)

= φ(F (A) ∪G(A)) (7.28)

= max{φ(F (A)), φ(G(A))} (7.29)

≤ kφ(A). (7.30)

Hence λF + (1 − λ)G is also a k-φ-contraction.

Theorem 7.8 Let φ : 2X → R+ = {t ∈ R : t ≥ 0} ∪ {∞} be a measure

of non-compactness and suppose that F : Ω̄ → CK(X) is a k-φ-contraction with

0 ≤ k < 1 and φ(F (Ω̄)) < ∞. If either X is quasi-complete or Ω̄ is complete, then

F is ultimately compact.

Proof. As K = c̄oF (Ω̄ ∩K),

φ(F (Ω̄ ∩K)) = φ(K) ≥ φ(Ω̄ ∩K).

But F is a k-φ-contraction for some k ∈ [0, 1]. Hence,

φ(Ω̄ ∩K) ≤ φ(F (Ω̄ ∩K)) ≤ kφ(Ω̄ ∩K) (7.31)

with k ∈ [0, 1].

Since φ(F (Ω̄)) is finite, so are all the terms in the relation (7.31) and hence, for

(7.31) to hold with 0 ≤ K < 1, we must have

φ(Ω̄ ∩K) = φ(F (Ω̄ ∩K)) = 0.

Thus Ω̄ ∩K and F (Ω̄ ∩K) are precompact.

If X is quasi-complete, F (Ω̄∩K) is relatively compact. If Ω̄ is complete, Ω̄∩K
is compact and hence F (Ω̄ ∩K) is relatively compact.

Hence F is an ultimately compact mapping.

The k-φ-contractions as defined in Definition 7.4 are a generalizations of k-ball-

contractions and k-set-contractions for multivalued mappings and are an extension

of the k-φ-contractions for single-valued mappings. Nussbaum (1971) and Sadovskii

(1972) have made contributions in these cases and more generalized multivalued k-φ-

contractions were introduced by Petryshyn and Fitzpatrick (1974). In the following

we shall recall the χ and γ measures of non-compactness and restate some of the

properties of the k-φ-contractions for such φ.
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Definition 7.6 Let {pα : α ∈ A} be a family of seminorms which define the

topology on X . Given α ∈ A and Ω ⊂ X , define

χα(Ω) = inf{ε > 0 : there exist {x1, x2, · · · , xn} ⊂ X, with

Ω ⊂
n⋃

i=1

{y : pα(xi − y) < ε}},

γα(Ω) = inf{ε > 0 : Ω can be covered by the union of a finite

number of sets, each with pα − diameter < ε}.

Let C be the set of all mappings from A into R+ with the usual definitions of

ordering, maximum, multiplication by a real number, etc. Then C forms a lattice

and the two mappings χ : 2X → C and γ : 2X → C are defined by

χ(Ω)(α) = χα(Ω) and γ(Ω)(α) = γα(Ω)

for every α ∈ A and each Ω ⊂ X .

Remark 7.6 It can be easily verified that χ and γ are measures of non-

compactness and, furthermore, they satisfy the following:

B ⊂ X is bounded if and only if γα(B) or χα(B) is finite for each α ∈ A,

(7.32)

B ⊂ X is precompact if and only if, for each α ∈ A, γα(B) = χα(B) = 0, (7.33)

χ(λΩ) = |λ|χ(Ω), γ(λ(Ω)) = |λ|γ(Ω) for any γ ⊂ X,λ ∈ R. (7.34)

For any Ω1 ⊂ X,Ω2 ⊂ X,χ(Ω1 + Ω2) ≤ χ(Ω1) + χ(Ω2), γ(Ω1 + Ω2)

≤ γ(Ω1) + γ(Ω2), (7.35)

Theorem 7.9 Let F : Ω̄ → CK(X) be a k-φ-contraction where 0 ≤ k < 1 and

φ = χ or γ. Suppose that either X is quasi-complete or Ω̄ is complete and suppose

that F (Ω̄) is bounded. Then F is ultimately compact.

Proof. The proof follows almost identically that of Theorem 7.8.

Suppose X is a normed linear space with norm || · || and the metric d : X×X →
R+ is defined by d(x, y) = ||x − y||. If we let the norm || · || be the only element

of A, the lattice C is isomorphic to R+ and χ and γ reduce to the ball- and set-

measures of non-compactness respectively. Let us denote these two measures of

non-compactness by χd and γd respectively.

Theorem 7.10 (a) Let F be a k-φ-contraction where φ = χ, γ, χd or γd. Then

for λ ∈ R, λF is a |λ|k-φ-contraction.

(b) Suppose F and G are k1- and k2-φ-contractions respectively where φ is

χ, γ, χd or γd.
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Then (F +G) is a (k1 + k2)-φ-contraction.

Proof. These results follow immediately from (7.34) and (7.35) and Proposition

7.2.

We note that some results of this section have been taken for presentations from

Tarafdar and Teo (1979).

7.2 Coincidence Degree for Non-Linear Single-Valued

Perturbations of Linear Fredholm Mappings

Let L be a linear single-valued operator between X and Z, two vector spaces over

the real field, where domL, the domain of L, is a subspace of X . We shall denote

the kernel or null-space of L, L−1(0), by kerL, the range space of L by ImL and

the quotient space Z|ImL, the cokernel of L, by cokerL.

Given a vector subspace Y of a vector space E, there always exists a projection,

a linear and indempotent operator, P of E onto Y and E is the direct sum of

ImP = Y and kerP . If E is a topological vector space, and P is a continuous

projection, then E is the topological direct sum of ImP and kerP .

Definition 7.7 If X , Z, L are as above, let P and Q be continuous projections

on X and Z respectively such that ImP = kerL and kerQ = ImL. Such a pair of

projections (P,Q) will be called exact with respect to L.

Definition 7.8 Let Lp be the restriction of L to kerP ∩ domL. Then Lp is an

isomorphism from kerP ∩ domL to ImL. Let Kp : ImL → kerP ∩ domL be the

inverse of Lp. Kp is then called the pseudo inverse of L associated with P .

Let π : Z → cokerL be the canonical surjection, that is Πz = z + ImL for each

z ∈ Z. Clearly, the restriction of Π to ImQ is an algebraic isomorphism. If Z

is a topological vector space and cokerL is given the quotient topology, then Π is

continuous.

The following results are almost immediate:

PKp = 0, (7.36)

LKp = LpKp = I, (7.37)

KpL = KpL(I − P ) = KpLp(I − P ) = I − P, (7.38)

Qz = 0 <=> z ∈ ImL <=> Πz = 0, (7.39)

where the zeros denote the null elements of the respective spaces.

Although the following two results are easy consequences of the above (e.g., see

Mawhin (1972)), we are stating them with their proofs.
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Proposition 7.5 Let (P,Q) and (P ′, Q′) be pairs of projections exact with respect

to L. Then

Kp′ = (I − P ′)KP (7.40)

PKp′ + P ′KP = 0 (7.41)

where Kp, Kp′ denote the pseudo-inverses of L associated with P and P ′

respectively.

Proof. From (7.37) we have the following on ImL

LKp = I = LKp′ .

Hence,

L(Kp −Kp′) = 0.

Thus, Kp −Kp′ maps ImL into kerL and we therefore have

Kp −Kp′ = P ′(Kp −Kp′) = p(Kp −Kp′).

Since pKp = P ′Kp′ = 0, we obtain (7.40) from the first equality and (7.41) from

the second equality.

Proposition 7.6 Let P , P ′ be projections of X onto kerL and let P ′′ = aP+bP ′

for some real numbers a, b. Then, P ′′ is a projection onto kerL if and only if

a+ b = 1. If this necessary and sufficient conditions holds, the pseudo inverse of L

associated with P ′′ is given by

KP ′′ = aKp + bKp′ ,

where Kp and Kp′ are the pseudo-inverses of L associated with p, p′ respectively.

Proof. P ′′ is clearly linear and it can be checked that

(P ′′)2 = (a+ b)P ′′.

Hence P ′′ is indempotent if and only if a+ b = 1.

Since kerL is a subspace of X and P ′′ is a linear combination of P and P ′, the

range of P ′′ is contained in kerL.

For x ∈ kerL, P ′′x = aPx+ bP ′x = (a+ b)x = x and hence P ′′ is a projection

onto kerL.

Thus, (a+b) = 1 is a necessary and sufficient condition for P ′′ to be a projection

onto kerL.
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Now, suppose a+ b = 1. Then

Kp′′ = (I − P ′′)Kp (7.42)

= (I − ap− bp′)Kp (7.43)

= (I − bp′)Kp (7.44)

= [(a+ b)I − bp′]Kp (7.45)

= aKp + b(I − P ′)Kp (7.46)

= aKp + bKp′ (7.47)

which gives the required result.

7.2.1 An Equivalence Theorem

Let X and Z be vector spaces and consider the two mappings

L : domL ⊂ X → Z

N : domN ⊂ X → Z

where L is linear and domL is a subspace of X .

Theorem 7.11 Let (P,Q) be a pair of projections exact with respect to L and

let Kp and Π have the usual meanings. Suppose there exista a linear one-to-one

mapping Ψ : cokerL→ kerL and let the mapping MΨ : domN → X be defined by

MΨ(x) = Px+ ΨΠNx+KP (I −Q)Nx. (7.48)

Then x ∈ domL ∩ domN is a solution of

Lx = Nx (7.49)

if and only if it is a solution of

x = MΨ(x). (7.50)

Proof. It is easily checked that the following equivalence relations hold:

Lx = Nx⇐⇒ (I −Q)Nx = Lx and QNx = 0 (7.51)

⇐⇒ KPLx = KP (I −Q)Nx and ΠNx = 0 (7.52)

⇐⇒ (I − P )x = KP (I −Q)Nx and ΨΠNx = 0 (7.53)

⇐⇒ x− Px = ΨΠNx+KP (I −Q)Nx (7.54)

⇐⇒ x = MΨ(x). (7.55)

Hence the theorem holds.
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7.2.2 Definition of Coincidence Degree

Assumptions I.

(a) X and Z are normed linear spaces over the real field.

(b) L is a linear operator defined on some subspace, domL , of X such that ImL

is closed in Z. Also, kerL and cokerL are of finite dimension and

dim kerL = dim cokerL <∞ (7.56)

where dim denotes dimension.

(c) Ω is an open, bounded subset of X and N : Ω̄ → Z is a continuous mapping

such that ΠN(Ω̄) is bounded in Z.

(d) For a pair of projections (P,Q) exact with respect to L, the mapping Kp(I−
Q)N is completely continuous or compact, i.e. Kp(I − Q)N is continuous and

Kp(I −Q)N(Ω̄) is relatively compact.

(e) 0 6∈ (L−N)(domL ∩ ∂Ω).

Remark 7.7 (1) Assumption (b) ensures the existence of a pair of projections

(P,Q), exact with respect to L

(2) Assumption (b) also ensures the existence of a continuous isomorphism ψ :

cokerL→ kerL.

(3) With the quotient topology on cokerL , cokerL is a normed linear space and

the canonical surjection Π is continuous in this topology.

Remark 7.8 It has been shown that assumption (d) is independent of the choice

of the exact pair of projections (P,Q) i.e. if (d) holds for any one pair of projections

(P,Q), it holds for any other pair of projections (P ′, Q′) exact with respect to L.

Definition 7.9 A linear operator satisfying I(b) is called a linear Fredholm

mapping of index zero.

Definition 7.10 A mapping N satisfying assumptions (c) and (d) is said to be

L-compact in Ω.

Assumptions II.

(a) X and Z are Banach spaces.

(b) L is a linear Fredholm mapping of index zero defined on some subspace

domL of X such that ImL is a subspace of Z.

(c) Ω is an open bounded subset of X and N : Ω̄ → Z is a continuous mapping

such that ΠN(Ω̄) is bounded.

(d) For a pair of projections (P,Q) exact with respect to L the mapping KP (I−
Q)N is either (i) a k-set-contraction or (ii) a k-ball contraction for some 0 ≤ k < 1.

(e) 0 6∈ (L−N)(domL ∩ ∂Ω).

Remark 7.9 Assumption II(D) is also independent of the choice of the exact

pair of projections (P,Q).
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Definition 7.11 A mapping N satisfying (c) and (d)(i) (respectively (d)(ii)) is

said to be L-k-set contractive (respectively L-k-ball contractive) in Ω̄ for some k in

0 ≤ k < 1.

Let Ψ : cokerL → kerL be an orientation preserving continuous isomorphism.

The mapping MΨ : Ω̄ → X defined by

MΨ(x) = Px+ ΨΠNx+KP (I −Q)Nx

is compact, k-set-contractive or k-ball-contractive accordingly as N is L-compact,

L-k-set-contractive or L-k-ball-contractive in Ω̄ respectively. Also, assumption (e)

and Theorem 7.11 imply that MΨ has no fixed points on ∂Ω. Hence, for the case

of an L-compact N , the Leray-Schauder degree of I −MΨ over Ω with respect to

zero is well defined. For the other two cases, the degree of I −MΨ has also been

defined by Nussbaum [1971] and Vainikko and Sadovskii [1968].

Definition 7.12 (a) Let Assumptions I be satisfied. Then the Coincidence

Degree of L and N over Ω, denoted d[(L,N),Ω], is defined to be the Leray-Schauder

degree of I −MΨ over Ω with respect to zero i.e.

d[(L,N),Ω] = d(I −MΨ,Ω, 0).

(b) Let Assumptions II be satisfied. Then the Coincidence Degree of L and N

over Ω, denoted d[(L,N),Ω], is defined to be the degree of I −MΨ over Ω with

respect to zero as given by Nussbaum for the L-k-set-contractive N and as given

by Vainikko and Sadovskii for the L-k-ball- contractive N .

Remark 7.10 (a) The Coincidence Degree given in Definition 7.12 is dependent

only on L, N , Ω and the homotopy class of Ψ. Thus, as Ψ is chosen to be orientation

preserving, the degree is dependent only on L, N , and Ω and hence is well defined.

(b) If, in addition to Assumptions I, we assume that X and Z are Banach

spaces, the first case becomes a special case of the second as compact mappings are

0-set-contractions and 0-ball-contractions.

7.2.3 Properties of the Coincidence Degree

Unless specifically stated, Assumptions I or II will be assumed satisfied for the

pair (L,N) so that d[(L,N),Ω] is defined. It has been shown that the following

properties hold:

Theorem 7.12 (Existence Theorem) If d[(L,N),Ω] 6= 0, then there exists x ∈
domL ∩ Ω such that Lx = Nx.

Theorem 7.13 (Additivity Property) If Ω1, Ω2 are open, disjoint subsets of Ω

such that Ω1 ∪ Ω2 ⊂ Ω, Ω̄1 ∪ Ω̄2 ⊂ Ω̄ and 0 6∈ (L−N)(∂Ω1 ∪ ∂Ω2), then

d[(L,N),Ω] = d[(L,N),Ω1] + d[(L,N),Ω2].
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Theorem 7.14 (Excision Property) If Ω0 ⊂ Ω is an open set such that

(L−N)−1(0) ⊂ Ω0,

then

d[(L,N),Ω] = d[(L,N),Ω0].

Theorem 7.15 (Generalized Borsuk’s Theorem) If Ω is symmetric about the ori-

gin and contains it, and, for every x ∈ Ω we have N(−x) = −Nx, then d[(L,N),Ω

is odd.

Theorem 7.16 (Homotopy Invariance) Let Assumptions I(a) and (b) be satisfied

and let Ω be an open bounded subset of X. Suppose Ñ : Ω̄× [0, 1] → Z is L-compact

in Ω̄ × [0, 1] such that, for each λ ∈ [0, 1],

0 6∈ [L− Ñ(·, λ)](dom l ∩ ∂Ω.

Then d[(L,N(·, λ)),Ω] is independent of λ in [0, 1].

Remark 7.11 The result holds similarly if Assumptions II(a) and (b) are satis-

fied and Ñ is a L-k-set-contraction or L-k-ball-contraction in Ω × [0, 1].

Corollary 7.16.1 Suppose that Assumptions I or II are satisfied. Then

d[(L,N),Ω] depends only on L, Ω and the restriction of N to ∂Ω

Lemma 7.3 Let X and Z be normed linear spaces with norm || · || and let

the metric d be induced by the norm, i.e. d(x, y) = ||x − y||. Let Assumptions

I(b), (c), (d) and (e) be satisfied and we additionally assume that KP (I − Q) is

continuous. Then there exists µ > 0 such that

inf{||Lx−Nx|| : x ∈ ∂Ω ∩ domL} ≥ µ.

Theorem 7.17 Let X, Z, L, and N be as in Lemma 7.3 Then, for each L-

compact N ′ : Ω̄ → Z such that

sup{||Nx−N ′x|| : x ∈ ∂Ω} < µ

where µ is the positive number in Lemma 7.3, we have

d[(L,N),Ω] = d[(L,N ′),Ω].

Theorem 7.18 (Generalized Continuation Theorem) Let X, Z and L sat-

isfy Assumptions I(a) and (b), and let Ω be an open bounded subset of X. Let

N∗ : Ω̄ × [0, 1] → Z be L-compact in Ω̄ × [0, 1] and let N = N ∗ (·, 1). Suppose

y ∈ ImL and the following conditions hold:

(1) Lx 6∈ λN ∗ (x, λ) + y for every x ∈ ∂Ω ∩ domL and every λ ∈ [0, 1].

(2) ΠN ∗ (x, 0) 6= 0 for evry x ∈ L−1{Y } ∩ ∂Ω.

(3) d[ΠN ∗ (·, 0)|L−1{Y }, L−1{Y } ∩ Ω, 0] 6= 0.
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Then for each λ ∈ [0, 1], the equation

Lx = λN ∗ (x, λ) + y

has at least one solution in Ω, and the equation

Lx = Nx+ y

has at least one solution in Ω̄.

Theorem 7.19 Let X, Z and L satisfy Assumptions I(a) and (b) and let Ω be

an open bounded subset of X. Let Ñ : Ω̄× [0, 1] → Z be L-compact in Ω̄× [0, 1]. If,

for each x ∈ ∂Ω ∩ domL, we have

Lx 6= Ñ(x, λ)

and if d[(L,N(·, 0)),Ω] 6= 0, then for each λ ∈ [0, 1], the equation Lx ∈ Ñ(·, λ) has

at least one solution in Ω.

Corollary 7.19.1 Let Assumptions I(a) and (b) be satisfied and let Ω be an open

bounded set, symmetric with respect to the origin and containing it. Suppose that

Ñ : Ω̄ × [0, 1] → Z is L-compact in Ω̄ × [0, 1] and that, for each x ∈ Ω̄,

Ñ(−x, 0) = −Ñ(x, 0)

with Lx 6= Ñ(x, λ) for each x ∈ domL∩∂Ω and each λ ∈ [0, 1]. Then each equation

Lx = λN(x, λ) with λ ∈ [0, 1]

has at least one solution in Ω.

Corollary 7.19.2 (Generalized Krasnosel’skii Theorem) Let Assumptions

I(a) and (b) be satisfied, and let Ω be as in Corollary 7.19.1. Let N be a L-compact

mapping in Ω̄ and assume that, for every µ ∈ [0, 1] and x ∈ domL ∩ ∂Ω, we have

(L−N)x 6= µ(L−N)(−x).

Then the equation

Lx = Nx

has at least one solution in Ω.

Remark 7.12 Lemma 7.3, Theorems 7.17, 7.18, 7.19, Corollaries 7.19.1 and

7.19.2 can all be extended to the case when X and Z are Banach spaces and the

“N” mappings are correspondingly L-k-set-contractive or L-k-ball-contractive.

Note that some results of this section were taken from Tarafdar and Teo (1979).
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7.3 On the Existence of Solutions of the Equation Lx ∈ Nx and a

Coincidence Degree Theory

Let X and Z be normed linear spaces over the reals. Extensive researches have

been undertaken on the study of the operator equation

Lx ∈ Nx, (7.57)

where L : domL ⊂ X → Z is a linear mapping and N : domN ⊂ X → Z is

a (possibly nonlinear) mapping. The equation (7.57) represents a wide class of

problems including nonlinear ordinary, partial and functional differential equations.

When L−1 exists, the reduced equation x = L−1Nx is under the scope of fixed

point theory. For extensive literature for this case we refer to the survey works of

Dolph and Minty (1964) and Ehrmann (1965).

When L−1 does not exist andX and Z are Banach spaces, the basic works on the

study of the equation (7.57) are due to Cacciopoli (1946), Shimizu (1948), Cronin

(1950), Bartle (1953), Vainberg and Trenogin (1962), Vainberg and Aizengendler

(1968) and Nirenberg (1960). These works involve some small assumptions on N .

The method for finding solutions of the equation (7.57), initiated by Cesari (1963)

and Cesari (1964) and further developed by Locker (1967), Bancroft, Hale, and

Sweet (1968) and Williams (1968) deals with a more general class of mappings.

For application of Cesari’s method to diferential equation we refer to Cesari (1969),

Cesari (1971) and Hale (1969), Hale (1971).

Using an equivalence theorem which reduces the problem of existence of solutions

of the equation (7.57) to that of fixed points of an auxiliary mapping and Leray-

Schauder degree, Mawhin (1972) developed a degree called the coincidence degree

for the pair (L,N) and applied to nonlinear differential equations (for example, see

Gaines and Mawhin (1977)). In essence, Mawhin’s method preserves the spirit of

the works of the authors mentioned above.

In the recent past the Leray-Schauder degree theory for a single-valued compact

vector field has been extended to a larger class of single-valued mappings, namely to

k-set contractive vector fields by Nussbaum (1969), and Nussbaum (1971), ball con-

densing vector fields by Vainikko and Sadovskii (1968) and Borisovich and Sapronov

(1968), ultimately compact vector fields by Sadovskǐi (1968) (see also Sadovskǐi

(1972) and Daneš (1974)). On the other hand, Leray-Schauder degree theory has

been extended to set-valued compact vector fields by Granas (1959), Cellina and

Lasota (1969), Ma (1972) and to ultimately compact vector fields by Petryshyn and

Fitzpatrick (1974).

The coincidence degree of Mawhin (1972) has been sharpened by Hetzer (1975a)

and Hetzer (1975b) by replacing the complete continuity assumption by k-set con-

traction with k < 1 and Leray-Schauder degree by the corresponding degree of k-set

contractive vector field mentioned above.
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The purpose of this section is to consider the equation

Lx ∈ N(x), (7.58)

where L : dom L ⊂ X → Z is a single-valued linear Fredholm mapping of index

zero and N : dom N ⊂ X → CK(Z) is a mapping, X and Z being normed linear

spaces.

Like Mawhin (1972) we have proved equivalence theorems which reduce the

problem of existence of solutions of the equation (7.58) to that of fixed points of

an auxiliary set-valued vector fields given by Petryshyn and Fitzpatrick (1974),and

we have built up the coincidence degree theory for the pair (L,N) appearing in

the equation (7.58). We have proved that this degree has all the usual properties

of a degree theory. We have also extended the Rouche’s theorem and the Leray-

Schauder continuation principle to our context. In new section we will present the

coincidence degree of Akashi (1988) by using our equivalence theorem when L is a

Fredholm mapping of non-negative index.

7.3.1 Coincidence Degree for Set-Valued k− φ-Contractive

Perturbations of Linear Fredholm Mappings

In this subsection, we shall present Tarafdar and Teo’s extension of the notion

of coincidence degree developed by Mawhin (1972) to the case where the second

mapping is set-valued. Tarafdar and Teo observed that such a degree theory will

provide a method for proving the existence of solutions to the equation

Lx ∈ Nx.

An Equivalence Theorem of Tarafdar and Teo

Theorem 7.20 Let X and Z be two vector spaces over the same scalar field.

Let L : domL ⊂ X → Z be a linear mapping and N : A ⊂ X → 2Z be a set-valued

mapping. Further, assume that there is a linear injective (one-to-one) mapping

ψ : cokerL→ kerL.

Then x0 ∈ domL ∩ A is a solution of the equation

Lx ∈ Nx (7.59)

if and only if x0 is a fixed point of the set-valued mapping Mψ : A→ 2X defined by

Mψx = Px+ [ψπ +Kp(I −Q)]Nx (7.60)

for every pair (P,Q) of exact projections with respect to L, where π and Kp have

their meaning as explained in Section 7.2. In other words,

(L−N)−1(0) = (I −Mψ)−1(0). (7.61)
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Proof. Since the images under P and ψ are contained in kerL and that under Kp

is in XI−P ∩ domL, it is clear that Mψ(A) ⊂ domL. First, let us suppose that

x0 ∈ A ∩ domL with Lx0 ∈ Nx0. Then

[ψπ +Kp(I −Q)]Lx0 ∈ [ψπ +Kp(I −Q)]Nx0.

Hence using (7.38) and (7.39) we have

(I − P )x0 ∈ [ψπ +Kp(I −Q)]Nx0.

Therefore

x0 ∈ Mψx0.

Next, let us suppose that x0 ∈ A ∩ domL with x0 ∈Mψx0, that is

x0 ∈ Px0 + [ψπ +Kp(I −Q)]Nx0. (7.62)

Since the operator ψπ +Kp(I −Q) is injective (see Lemma 7.6) we have

[ψπ +Kp(I −Q)]−1[ψπ +Kp(I −Q)]Nx0 = Nx0. (7.63)

Hence it follows from (7.62) and (7.63) that

[ψπ +Kp(I −Q)]−1(I − P )x0 ∈ Nx0. (7.64)

Thus

[ψπ +Kp(I −Q)]−1 = [(π/ImQ)−1ψ−1P + L] (7.65)

yields Lx0 ∈ Nx0, where π/ImQ denotes the restriction of π to ImQ. We now

establish (7.65).

For each z ∈ Z we have by using (7.37)

[(π/ImQ)−1ψ−1P + L][ψπ +Kp(I −Q)]z (7.66)

= (π/ImQ)−1πz + (I −Q)z = Qz + (I −Q)z = z. (7.67)

Also if x ∈ domL, then using (7.38) and (7.39) we have

[ψπ +Kp(I −Q)][(π/ImQ)−1ψ−1P + L]x = Px+ (I − P )x = x.

Basic Assumptions of Tarafdar and Teo

Before we present the coincidence degree for (L,N), we shall state some assump-

tions of Tarafdar and Teo which they made on the mappings.

Assumptions:

(a) X is a real Banach space and Z is a real normed linear space.
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(b) L : domL ⊂→ Z is a linear Fredholm mapping of index zero defined on a

subspace domL of X , that is L is linear, ImL is closed and

dim kerL = dim cokerL <∞,

where ‘dim’ denotes dimension.

(c) Ω is a bounded, open set in X and the set-valued mapping N : Ω̄ → CK(Z)

takes each x in the closure of Ω to a non-empty compact convex subset of Z.

(d) N is upper semi-continuous with πN(Ω̄) bounded in cokerL.

(e) Let (P,Q) be an exact pair of projections with respect to L and let Kp be

the pseudo-inverse of L associated with P . Let φ be a measure of non-compactness

defined on 2X such that (i) φ satisfies the subadditivity condition of Proposition 7.2

and takes values in R+ = {t ∈ R : t ≥ 0} ∪ {∞} or (ii) we additionally assume that

Z is a Banach space and φ is one of χ, γ, χd and γd. We assume that with such a

measure of non-compactness φ, Kp(I−Q)N is a k-φ-contraction with 0 < k < 1 and

that φ(Kp(I −Q)N(Ω̄)) <∞. In this case we also assume that Kp is continuous.

(f) 0 6∈ (L−N)(domL ∩ ∂Ω) where ∂Ω denotes the boundary of Ω.

Remark 7.13 From Assumption (b), the exact pair of projections (P,Q) may

be assumed continuous and will hereafter be assumed continuous. Moreover, with

the quotient norm topology cokerL is a normed space and the canonical surjection

π is continuous with respect to this topology. Also, (b) is sufficient condition for

the existence of a linear isomorphism ψ : cokerL→ kerL.

Proposition 7.7 Let Assumptions (a) to (d) hold and let (P,Q) and (P ′, Q′) be

exact pairs of continuous projections with respect to L. Suppose that (P,Q) satisfies

Assumption (e). Then the pair (P ′, Q′) also satisfies the Assumption (e).

Proof. Writing πQ = π/ImQ and πQ′ = π/ImQ′ and using (7.40) we have

Kp′(I −Q′)N = (I − P ′)Kp(I −Q′)N (7.68)

= (I − P ′)Kp(I −Q)N + (I − P ′)Kp(Q−Q′)N (7.69)

= (I − P )Kp(I −Q)N + (I − P )K̃p(πQ
−1 − πQ′

−1)πN, (7.70)

where K̃p denotes the restriction of Kp to the finite dimensional subspace (Q−Q′)Z.

Thus K̃p is continuous. Since πN(Ω̄) is bounded in a finite dimensional subspace of

X , it follows that (I − P ′)K̃p(πQ
−1 − πQ′

−1)πN is a 0-φ-contraction. Hence from

Proposition 7.2 and 7.3 it follows that Kp′(I − Q′)N is a k-φ-contraction. That

Kp′ is continuous follows from (7.40) as Kp and (I − Q′) are continuous. Finally

applying φ to both sides of (7.68) and using subadditivity of φ we can easily show

that φ(Kp′(I −Q′)N(Ω̄)) <∞.

Definition 7.13 A mapping N : Ω̄ → CK(Z) satisfying (c), (d) and (e) is said

to be a L-k-φ-contraction. (We see that this is a proper definition as Assumption

(e) is independent of the choice of (P,Q).)
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Tarafdar and Teo’s Definition of Coincidence Degree

Proposition 7.8 Suppose Assumptions (a) to (e) are satisfied and Mψ is the

mapping defined in Theorem 7.20 for some continuous isomorphism

ψ : cokerL→ kerL.

Then for each x in Ω̄, Mψx is a compact convex subset of X and Mψ is a k-φ-

contraction.

Proof. Since P , Q, Kp, ψ and π are all linear and N(x) is convex for each x ∈ Ω̄,

it follows that Mψx is convex for each x ∈ Ω̄. Again since P , Q, Kp and ψ are

continuous and Nx is compact, Mψx = Px + [ψπ +Kp(I −Q)]Nx is compact for

each x ∈ Ω̄.

Now P is linear, continuous and has a finite dimensional range. Hence P is

compact and is, therefore, a 0-φ-contraction. Also ψπN(Ω̄) being bounded subset

of a finite-dimensional subspace is relatively compact.

We now prove that [ψπ+Kp(I −Q)]N is a k-φ-contraction. Let A ⊂ Ω̄. Noting

that

[ψπ +Kp(I −Q)]N(A) ⊂ ψπN(A) +Kp(I −Q)N(A)

we have

φ([ψπ +Kp(I −Q)]N(A)) (7.71)

≤ φ(ψπN(A) +Kp(I −Q)N(A)) (7.72)

≤ φ(ψπN(A)) + φ(Kp(I −Q)N(A)) by subadditivity ofφ (7.73)

≤ kφ(A) (7.74)

as φ(ψπN(A)) = 0, ψπN(A) being relatively compact. Now from Proposition 7.2

it follows that Mψ is a k-φ-contraction from Ω̄ to CK(X).

Remark 7.14 Tarafdar and Teo noted that assumption in (e) that Kp is con-

tinuous has been used to prove that Mψx is a compact subset for each x ∈ Ω̄.

This assumption is not unrealistic. For, if in addition to the Assumption (b),

L : domL ⊂ X → Z is a closed operator and Z is a Banach space, then Kp is

continuous. To see this let yn → y, yn ∈ ImL and Kpyn = xn → x. Since

Lxn = LKpyn = yn and xn ∈ domL ∩XI−P ,

we have by closedness of L that Lx = y and x ∈ domL. Clearly x ∈ XI−P as XI−P
is closed. Hence Kpy = KpLx = (I − P )x = x and obviously y ∈ ImL as ImL is

closed. Thus Kp is closed. Again since ImL is closed, the closed graph theorem

yields that Kp is continuous.

Remark 7.15 From Proposition 7.8, Tarafdar and Teo observed that if the

Assumptions (a) to (f) are satisfied, M is an ultimately compact mapping (see
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Theorems 7.8 and 7.9). It follows from Assumption (f) and Theorem 7.20 that

0 6∈ (I−Mψ)(domL∩∂Ω). Thus the degree of the ultimately compact field (I−Mψ)

with respect to zero is well defined.

Definition 7.14 Let LL denote the set of all continuous isomorphisms from

cokerL to kerL. ψ, ψ′ are said to be homotopic in LL if there exists a continuous

mapping ψ̄ : cokerL× [0, 1] → kerL such that ψ̄(·, 0) = ψ, ψ̄(·, 1) = ψ′ and, for each

λ ∈ [0, 1], ψ̄(·, λ) ∈ LL.

Remark 7.16 To be homotopic is an equivalence relation which partitions LL
into equivalence classes called homotopy classes.

The following two propositions and corollary are quoted from Gaines and

Mawhin (1977):

Proposition 7.9 ψ and ψ′ are homotopic in LL if and only if det(ψ′ψ−1) > 0.

Corollary 7.20.1 LL is partitioned into two homotopic classes.

Definition 7.15 ψ : cokerL → kerL is said to be orientation preserv-

ing if {ψa1, ψa2, . . . , ψan} belongs to the orientation chosen in kerL where

{a1, a2, . . . , an} is a basis for cokerL belonging to a certain chosen orientation.

Otherwise, ψ is said to be orientation reversing.

Proposition 7.10 If cokerL and kerL are oriented then ψ and ψ′ are homotopic

in LL if and only if they are simultaneously orientation preserving or orientation

reversing.

Lemma 7.4 Let X and Z be normed linear spaces and let Ω be a bounded

open subset of X. Let φ : 2X → C be a measure of non-compactness as given in

Assumption (e). Let F : Ω̄× [0, 1] → CK(X) be an upper semi-continuous mapping

such that φ(F (Ω̄ × [0, 1])) <∞ and, for some k ∈ (0, 1), we have

φ(F (A × [0, 1])) ≤ kφ(A) for every A ⊂ Ω̄.

Then F ((K ′ ∩ Ω̄) × [0, 1]) is relatively compact where

K ′ = K(F, Ω̄) × [0, 1]).

Proof. As K ′ = K(F, Ω̄ × [0, 1]) = C̄OF ((Ω̄ ∩K ′) × [0, 1]),

φ(K ′ ∩ Ω) ≤ φ(K ′) = φ(F (Ω̄ ∩K ′) × [0, 1]) (7.75)

kφ(Ω̄ ∩K ′). (7.76)

As 0 < k < 1, and φ(F (Ω̄ × [0, 1])) <∞, we have

φ(K ′ ∩ Ω̄) = φ(F ((Ω̄ ∩K ′) × [0, 1])) = 0.

Hence, (K ′ ∩ Ω̄) and F ((Ω̄ ∩ K ′) × [0, 1]) are precompact and by the assumption

that Ω̄ is complete, we conclude that F ((Ω̄ ∩K ′) × [0, 1]) is relatively compact.
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Theorem 7.21 Let Assumptions (a) to (f) be satisfied. Then d(I −Mψ,Ω, 0)

as defined in Definition 7.3 depends only on L, N and the homotopy class of ψ in

LL.

Proof. Let (P,Q) and (P ′, Q′) be exact pairs of projections with respect to L. Let

ψ, ψ′ ∈ LL be in the same homotopy class and let ψ̄ : cokerL× [0, 1] → kerL be the

mapping in Definition 7.14. Let

M = P + [ψπ +Kp(I −Q)]N,

M ′ = P ′ + [ψ′π +Kp′(I −Q′)]N.

For each λ ∈ [0, 1], define

Pλ = (1 − λ)P + λP ′,

Qλ = (1 − λ)Q+ λQ′.

By Proposition 7.6, (Pλ, Qλ) is an exact pair of projections with respect to L.

Moreover, P0 = P , P1 = P ′, Q0 = Q, Q1 = Q′, and KPλ = (1 − λ)Kp + λKp′ .

Define M∗ : Ω̄ × [0, 1] → CK(X) by

M∗(x, λ) = Pλx+ [ψ̄(π(·), λ) +KPλ(I −Qλ)]Nx.

By Theorem 7.20 and Assumption (f),

x 6∈M∗(x, λ) for every x ∈ ∂Ω, λ ∈ [0, 1].

Also, M∗(·, 1) = M ′ and M∗(·, 0) = M .

We claim that M∗((Ω̄ ∩K ′) × [0, 1]) is relatively compact, where

K ′ = K(M∗, Ω̄ × [0, 1]).

Now, writing explicitly,

M∗(x, λ) = (1 − λ)Px+ λP ′x+ [ψ̄(π(·), λ) (7.77)

+ {(1− λ)Kp + λKp′}{I − (1 − λ)Q− λQ′}]Nx (7.78)

= (1 − λ)Px+ λP ′x+ [ψ̄(π(·), λ) (7.79)

+ {(1− λ)Kp + λ(I − P ′)Kp}{I −Q+ λ(Q−Q′)}]Nx (7.80)

= (1 − λ)Px+ λP ′x+ [ψ̄(π(·), λ) + (I − λP ′)Kp(I −Q) (7.81)

+λ(I − λP ′)Kp(Q−Q′)]Nx. (7.82)

Using the same argument as in Proposition 7.7 we can show that for each λ ∈
[0, 1], λ(I − λP ′)Kp(Q − Q′)]N is 0-φ-contraction. Now by using the Assumption

(e) and similar argument as in Proposition 7.8 we can show that for each λ ∈ [0, 1],

[ψ̄(π(·), λ) + (I − λP ′)Kp(I −Q) + λ(I − λP ′)Kp(Q−Q′)]N
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is a k-φ-contraction (note that P and P ′ being compact maps are both 0-φ-

contraction). Thus, it follows from Propositions 7.2 and 7.3 that for each λ ∈ [0, 1],

M∗(·, λ) is a k-φ-contraction.

Now,

φ(M∗(A× [0, 1])) = φ(
⋃

λ∈[0,1]

M∗(A, λ)) (7.83)

= max
λ∈[0,1]

φ(M∗(A, λ)). (7.84)

Since for each λ ∈ [0, 1], M∗(·, λ) is a k-φ-contraction

φ(M∗(A× [0, 1])) ≤ kφ(A).

From the preceding lemma, M∗((ω ∩ K ′) × [0, 1]) is relatively compact. By the

Homotopy Invariance Theorem given in Petryshyn and Fitzpatrick (1974),

d(I −M∗(·, 0),Ω, 0) = d(I −M∗(·, 1),Ω, 0)

or

d(I −M,Ω, 0) = d(I −M ′,Ω, 0).

Thus the degree of I −Mψ on Ω with respect to zero is independent of the choice

of P,Q and ψ within the same homotopy class.

Definition 7.16 Suppose that Assumptions (a) to (f) are satisfied and ψ is an

orientation preserving continuous isomorphism from cokerL to kerL. Then, the

coincidence degree of L and N in Ω, denoted by d[(L,N),Ω], is defined by

d[(L,N),Ω] = d(I −Mψ,Ω, 0), (7.85)

where Mψ : Ω → CK(X) is defined by

Mψ = P + [ψπ +Kp(I −Q)]N

and the right-hand term is the degree for the set-valued ultimately compact field

I −Mψ as defined in Definition 7.3.

Remark 7.17 (a) If X = Z, L = I , then kerL = {0} and thus cokerL = {0}.
This implies that ImL = X and hence P = 0, Q = 0, and Kp(I − Q) = I and

the only isomorphism between cokerL and kerL is the trivial one ψ(0) = 0. The

Assumption (b) is trivially satisfied and (e) reduces to assuming that N is a k-φ-

contraction for some k in (0, 1) with φ(N(Ω)) <∞. Assumption (f) means that N

has no fixed points on the boundary of Ω. As Mψ = N , we have

d[(I,N),Ω] = d(I −N,Ω, 0).
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Tarafdar and Teo observed that, Assumption (e) may be replaced by the as-

sumption that N is ultimately compact.

Tarafdar and Teo’s Basic Properties of the Coincidence Degree

In this subsection, unless otherwise specified, Tarafdar and Teo assumed that

Assumptions (a) to (f) were satisfied such that the Coincidence Degree was well

defined.

Theorem 7.22

(a) Existence Theorem.

If d[(L,N),Ω] 6= 0, then 0 ∈ (L−N)(domL ∩ Ω).

(b) Additivity Property.

Let Ω1,Ω2 be disjoint open sets such that Ω1 ∪ Ω2 ⊂ Ω, Ω̄1 ∪ Ω̄2 = Ω̄, and

0 6∈ (L−N)(∂Ω1 ∪ ∂Ω2). Then,

d[d[(L,N),Ω] = d[(L,N),Ω1] + d[(L,N),Ω2].

(c) Excision Property.

If Ω1 ⊂ Ω is an open set such that (L−N)−1(0) ⊂ Ω1 then

d[d[(L,N),Ω] = d[(L,N),Ω1].

Proof. (a) and (b) follow from the Definition of Coincidence Degree and the

corresponding properties of degree of an ultimately compact vector field given by

Petryshyn and Fitzpatrick (1974). By taking Ω2 = Ω \Ω1, that is

Ω2 = {x ∈ Ω : x 6∈ Ω̄}.

The result (c) follows from (a) and (b).

Theorem 7.23 If Ω is a symmetric bounded neighbourhood of the origin and

N(−x) = −Nx for all x ∈ Ω̄, then d[(L,N),Ω] is odd.

Proof. Note that, as P , Q, Kp, ψ and π are all linear, the condition on N implies

that Mψ(−x) = −Mψ(x) for all x ∈ Ω. Thus, by the corresponding property of

degree of an ultimately compact vector field (Petryshyn and Fitzpatrick (1974))

and the definition of Coincidence Degree, d[(L,N),Ω] is odd.

Theorem 7.24 (Homotopy Invariance) Let Assumptions (a) and (b) be sat-

isfied and let Ω be a bounded, open subset of X. Let φ, P , Q and Kp be as given in

Assumption (e) and suppose Ñ : Ω̄ × [0, 1] → CK(Z) satisfy the following:

(i) Ñ is upper semi-continuous on Ω̄ × [0, 1],

(ii) πN(Ω̄ × [0, 1]) is bounded,

(iii) φ(Kp(I −Q)Ñ(Ω̄ × [0, 1])) <∞,

(iv) there exists k ∈ (0, 1) such that, for every A ⊂ Ω,

φ(Kp(I −Q)Ñ(A× [0, 1])) < kφ(A),
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(v) for each λ ∈ [0, 1],

0 6∈ (L−N(·, λ))(domL ∩ ∂Ω). (7.86)

Then, d[(L,N(·, λ)),Ω] is independent of λ in [0, 1].

Proof. Let ψ : cokerL → kerL be an orientation preserving continuous isomor-

phism. Define Mψ : Ω̄ × [0, 1] → CK(X) by

Mψ(x, λ) = Px+ [ψπ +Kp(I −Q)]Ñ(x, λ).

Then, by Lemma 7.4 and (v), Mψ satisfies the condition of Theorem 2.2 of Petryshyn

and Fitzpatrick (1974). Hence, by the definition of Coincidence Degree,

d[(L,N(·, 0)),Ω] = d[(L,N(·, 1),Ω].

Now, for any λ ∈ [0, 1], let λ′ = λt and apply the above to Ñ ′(·, t), t ∈ [0, 1] where

Ñ ′(·, t) = Ñ(·, λ′). Then,

d[(L, Ñ(·, λ)),Ω] = d[(L, Ñ ′(·, 1)),Ω] (7.87)

= d[(L, Ñ ′(·, 0)),Ω] (7.88)

= d[(L, Ñ(·, 0)),Ω]. (7.89)

Hence, d[(L, Ñ(·, λ)),Ω] is independent of λ in [0,1].

Corollary 7.24.1 Let Assumptions (a) and (b) hold and let Ω be an open bounded

subset of X. Let N and N ′ be two L-k-φ-contractions on Ω̄ satisfying (f) such that

Nx = N ′x for each x ∈ ∂Ω. Then d[(L,N),Ω] = d[(L,N ′),Ω].

Proof. Define

Ñ : Ω̄ × [0, 1] → CK(Z)

by

Ñ(x, λ) = (1 − λ)Nx+ λN ′x.

Then Ñ is clearly upper semi-continuous and satisfies all the other conditions of

Theorem 7.23. Hence by Theorem 7.23,

d[(L, Ñ),Ω] = d[(L, Ñ(·, 0)),Ω] (7.90)

= d[(L, Ñ(·, 1)),Ω] (7.91)

and hence,

d[(L,N),Ω] = d[(L,N ′),Ω].

Definition 7.17 Let X and Z be normed linear spaces with norms denoted by

|| · ||. Let x be any point of X (or Z) and let A,B be subsets of X (or Z). Then
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D∗(x,A) = inf{||x − a|| : a ∈ A} is the usual distance between x and A and we

define

d∗(A,B) = inf{||a− b|| : a ∈ A, b ∈ B}

to be the distance between A and B. In fact, d∗(x,A) is equivalent to the distance

between A and the singleton {x}.
Lemma 7.5

d∗(x,A) + d∗(B,C) ≥ d∗(x,A+ C −B).

Proof. If a ∈ A, b ∈ B and c ∈ C, a + c − b ∈ A + C − B and hence, for every

a ∈ A, b ∈ B, c ∈ C,

||x− (a+ c− b)|| ≥ d∗(x,A+ C −B)

Now,

||x− (a+ c− b)|| ≤ ||x− a|| + ||b− c||

Hence, for every a ∈ A, b ∈ B and c ∈ C, we have

d∗(x,A + C −B) ≤ ||x− a|| + ||b− c||

and so,

d∗(x,A + C −B) ≤ inf{||x− a|| : a ∈ A} + inf{||b− c|| : b ∈ B, c ∈ C} (7.92)

= d∗(x,A) + d∗(B,C). (7.93)

Lemma 7.6 For each x ∈ domL ∩ Ω̄, we have

(I −Mψ)x = [ψπ +Kp(I −Q)](L−N)x,

where ψπ +Kp(I −Q) is an algebraic isomorphism between Z and domL.

Proof.

[ψπ +Kp(I −Q)](L−N) = [ψπ +Kp(I −Q)]L− [ψπ +Kp(I −Q)]N (7.94)

= Kp(I −Q)]L− [ψπ +Kp(I −Q)]N by (7.39) (7.95)

= KpL− [ψπ +Kp(I −Q)]N (7.96)

= I − P − [ψπ +Kp(I −Q)]N by (7.38) (7.97)

= I −Mψ. (7.98)

To show that ψπ +Kp(I −Q) is an isomorphism, consider the equation

[ψπ +Kp(I −Q)]z = y (7.99)

for some y ∈ domL.
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This is equivalent to

ψπz = Py, (7.100)

Kp(I −Q)z = (I − P )y. (7.101)

Now, as kerπ = ImL = Im(I − Q), ψπQ, the restriction of ψπ to ImQ, is an

isomorphism from ImQ to kerL and hence (7.100) is equivalent to

Qz = (ψπQ)−1Py (7.102)

and since LKp = I and LP = 0, (7.101) is equivalent to

(I −Q)z = L(I − P )y = Ly (7.103)

Hence,

z = Qz + (I −Q)z (7.104)

= (ψπQ)−1Py + Ly. (7.105)

This shows the existence and uniqueness of the solution z of equation (7.99) for

each given y in domL. Hence ψπ +Kp(I −Q) is an isomorphism from Z to domL.

Lemma 7.7 Let Assumptions (a) to (f) be satisfied. If Mψ(∂Ω) is relatively

compact, then there exists µ > 0 such that

inf{d∗(Lx,Nx) : x ∈ ∂Ω ∩ domL} ≥ µ. (7.106)

Proof. By Assumption (f), d∗(Lx,Nx) > 0 for all x ∈ ∂Ω ∩ domL. Now, suppose

that for all µ > 0, (7.106) does not hold. Then for each positive integer n, there

exists xn ∈ ∂Ω ∩ domL such that

d∗(Lxn, Nxn) <
1

n
.

Now, d∗(xn,Mψxn) < ||xn − y|| for all y ∈Mψxn.

Using the preceeding lemma and noting that ψπ + Kp(I − Q) is a continuous

linear operator from Z onto domL, we have for each zn ∈ Nxn,

(ψπ +Kp(I −Q)(Lxn − zn)) = xn − y for some y ∈ Mψxn.

Hence, for all zn ∈ Nxn,

||(ψπ +Kp(I −Q))(Lxn − zn)|| ≥ d∗(xn,Mψxn.

If ||ψπ +Kp(I −Q)|| = α ≥ 0,

d∗(xn,Mψxn ≤ ||ψπ +Kp(I −Q)||||Lxn − zn|| (7.107)

= α||Lxn − zn|| for all zn ∈ Nxn. (7.108)
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Hence,

d∗(xn,Mψxn ≤ αd∗(Lxn, Nxn) (7.109)

< α
1

n
. (7.110)

Thus for each integer n, there exists some un ∈Mψxn such that

||xn − un|| <
α

n
.

Now since un ∈ Mψxn ⊂ Mψ(∂Ω) which is relatively compact, we can find a

subsequence {unk
} of {un} such that unk

→ u0 and the triangle inequality

||xnk
− u0|| ≤ ||xnk

− unk
|| + ||unk

− u0|| (7.111)

<
α

nk
+ ||unk

− u0|| (7.112)

implies that xnk
→ u0 as nk → ∞. As xnk

∈ ∂Ω which is closed, u0 ∈ ∂Ω. By

upper semi-continuity of Mψ, unk
∈ Mψxnk

for each nk –implies that u0 ∈ Mψu0

which is a contradiction as u0 ∈ ∂Ω. Hence (7.106)holds for some µ > 0.

Remark 7.18 In Gaines and Mawhin (1977), Rouché’s Theorem was extended to

the context of Coincidence Degree. The following theorem is a version of Rouché’s

Theorem in our situation.

Theorem 7.25 Let Assumptions (a) to (f) be satisfied and assume that Mψ(∂Ω)

is relatively compact. Let µ > 0 be such that

inf{d∗(Lx,Nx) : x ∈ ∂Ω ∩ domL} ≥ µ.

Then, for each L-k-φ-contraction N ′ : Ω̄ → CK(Z) satisfying Assumption (f) and

the following condition:

sup{d∗(Nx,N ′x) : x ∈ ∂Ω} < µ

we have

d[(L,N),Ω] = d[(L,N ′),Ω].

Proof. Let Ñ : Ω̄ × [0, 1] → CK(Z) be defined by

Ñ(x, λ) = (1 − λ)Nx+ λN ′x.

It can easily be verified that conditions (i) to (iv) of Theorem 7.24 are satisfied.

Now,

d∗(Lx, Ñ(x, λ)) = d∗(Lx,Nx− λ(Nx −N ′x)) (7.113)

≥ d∗(Lx,Nx) − λd∗(Nx,N ′x) (7.114)
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the last inequality following from Lemma 7.5 by putting B = λN ′x, C = λNx and

A = Nx− λNx+ λN ′x.
Hence, for each (x, λ) ∈ (domL ∩ ∂Ω) × [0, 1],

d∗(Lx, Ñ(x, λ)) > µ− λµ ≥ 0.

This shows that Ñ satisfies the last condition of Theorem 7.24 and hence,

d[(L,N),Ω] = d[(L, Ñ(·, 0)),Ω] = d[(L, Ñ(·, 1)),Ω] = d[(L,N ′),Ω].

Thus,

d[(L,N),Ω] = d[(L,N ′),Ω].

A Generalized Continuation Theorem of Tarafdar and Teo and Existence

Theorems

In Gaines and Mawhin (1977), the Leray-Schauder Continuation Theorem was

extended to the context of Coincidence Degree. Here, Tarafdar and Teo extended it

to the set-valued situation. Tarafdar and Teo also derived some existence theorems

for Lx ∈ Nx.

Definition 7.18 Consider the mapping F : X → CK(X) where X is the zero-

dimensional space {0}. As CK(X) may only contain non-empty subsets of X ,

CK(X) = {{0}} and hence F is the mapping F (0) = {0}. We define d(F, {0}, 0) = 1

and this degree agrees with the usual properties of the degree of an ultimately

compact field F . We also set d(F, φ, 0) = 0.

Definition 7.19 Let X and Z be normed linear spaces and let L be a linear

Fredholm mapping of index zero. Let P , Q, Kp and φ be given as in Assumption

(e) and let Ω be an open bounded subset of X such that Ω is complete. Let a > 0

and N∗ : Ω̄× [0, a] → CK(Z) be a set valued mapping. Let N ∗ satisfy the following

conditions:

(i) N∗ is upper semi-continuous on Ω̄ × [0, a],

(ii) N∗(Ω̄ × [0, a]) is bounded,

(iii) φ(Kp(I −Q)N∗(Ω̄ × [0, a])) <∞,

(iv) there exists a positive k < 1 such that, for every A ⊂ Ω̄,

φ(Kp(I −Q)N∗(A× [0, a])) ≤ kφ(A).

Then N∗ is said to be a L-k-φ-contraction on Ω × [0, a].

Remark 7.19 With N∗ as defined above, Tarafdar and Teo observed that for

each λ ∈ [0, a], N∗(·, λ) is L-k-φ-contraction as defined by Assumptions (c), (d) and

(e). They also noted that for a = 1, N ∗ satisfies the first four conditions of the

homotopy invariance theorem, Theorem 7.24.
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Now, let assumptions (a) to (f) be satisfied for a pair of mappings L : domL→ Z

and N : Ω̄ → CK(Z) and let N∗ : Ω̄ × [0, 1] → CK(Z) be a L-k-φ-contraction on

Ω̄ × [0, 1] such that N∗(·, 1) = N .

Let y ∈ ImL and consider the family of equations

Lx ∈ λN∗(x, λ) + y. (7.115)

An element (x, λ) ∈ Ω̄×[0, 1] satisfying (7.115) is said to be a solution of (7.115).

If λ is specified, any x ∈ Ω̄ satisfying the equation for that λ is also called a solution.

It will be clear from the context whether a solution is an element of Ω̄ or Ω̄× [0, 1].

Lemma 7.8 For each λ ∈ (0, 1], the set of solutions of (7.115) is equal to the set

of solutions of the equation

Lx ∈ [Q+ λ(I −Q)]N∗(x, λ) + y (7.116)

and if λ = 0, every solution of (7.116) is a solution of (7.115).

Proof. If λ = 0, (7.116) reduces to

Lx ∈ QN ∗ (x, 0) + y.

But Lx = (I −Q)Lx which implies that

Lx ∈ (I −Q)[QN ∗ (x, 0) + y] = {y}.

This means that Lx = y or x is a solution of (7.115) for λ = 0. Let λ ∈ (0, 1] and

let x be a solution of (7.115). Then there exists u ∈ N ∗(x, λ) such that

Lx = λµ+ y.

Hence u = λ−1(Lx− y) ∈ ImL. Therefore Qu = 0 and thus,

u = (I −Q)u ∈ (I −Q)N∗(x, λ).

Hence,

Lx = 0 + λµ+ y = [Q+ λ(I −Q)]u+ y ∈ [Q+ λ(I −Q)]N ∗(x, λ) + y,

that is x is a solution of (7.116).

Conversely, let x be a solution of (7.116). Then there exists v ∈ N ∗(x, λ) such

that

Lx = [Q+ λ(I −Q)]v + y.

Here 0 = QLx = Qv + λQ(I −Q)v +Qy = Qv. Thus,

Lx = Qv + λ(I −Q)v + y (7.117)

= λv + y as Qv = 0 (7.118)

∈ λN∗(x, λ) + y, (7.119)



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Degree Theories for Set-Valued Mappings 493

that is x is a solution of (7.115).

Theorem 7.26 (A Generalized Continuation Theorem of Tarafdar and

Teo) Let L and N be mappings satisfying Assumptions (a) to (f) and let N ∗

be a L-k-φ-contraction on Ω̄ × [0, 1] such that N∗(·, 1) = N . Let y ∈ ImL and we

assume the following conditions hold:

(1) Lx 6∈ λN∗(x, λ) + y for every x ∈ ∂Ω ∩ domL, λ ∈ [0, 1].

(2) 0 6∈ πN∗(x, 0) for every x ∈ L−1{y} ∩ ∂Ω.

(3) d(g(·)|L−1{y},Ω ∩ Ω1 ∩ L−1{y}, 0) 6= 0,

where the left-hand expression is the Brouwer degree for the single-valued compact

field g restricted to the affine finite-dimensional space L−1{y} and g and Ω1 are

defined as follows: As kerL is a finite dimensional subspace of X, -ψπN ∗(·+Kpy, 0)

defined on ((Ω−Kpy))
−∩kerL is a set-valued compact field with respect to zero (the

conclusion that 0 6∈ −ψπN∗(x +Kpy, 0) for every x ∈ ∂(Ω −Kpy) ∩ kerL follows

from condition (2)). In Ma (1972), Section 5.2, it has been shown that there exists

a single-valued compact field g and an open bounded set Ω1 ⊂ kerL containing zero

such that g(· +Kpy) and −ψπN∗(· +Kpy, 0) are homotopic and

g(x+Kpy) = x+Kpy for all x in (((Ω −Kpy))
− \ (Ω1 −Kpy)) ∩ kerL.

Ma has also defined the degree of the set-valued compact field −ψπN ∗(· + Kpy, 0)

by

d(−ψπN∗(· +KpY, 0)|kerL, (Ω −Kpy) ∩ kerL, 0) (7.120)

= d(g(· +Kpy)|kerL, (Ω −Kpy) ∩ (Ω1 −Kpy) ∩ kerL, 0). (7.121)

Then, for each λ ∈ [0, 1), equation (7.115) has at least one solution in Ω and for

λ = 1, the equation

Lx ∈ Nx+ y (7.122)

has at least one solution in Ω̄.

Proof. Let λ ∈ [0, 1] be considered fixed. For each x ∈ Ω̄, µ ∈ [0, 1] we define

Ñ(x, µ) = [Q+ λµ(I −Q]N∗(x, λµ) + y.

Clearly Ñ is a L-k-φ-contraction in Ω × [0, 1].

Let us now consider the case where λ ∈ [0, 1]. By condition (1) and Lemma 7.8

if λ 6= 0

Lx 6∈ Ñ(x, µ) for every x ∈ ∂Ω ∩ domL, µ ∈ [0, 1].

Also, if µ = 0 or λ = 0

Ñ(x, µ) = QN ∗ (x, 0) + y
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and Lx ∈ Ñ(x, µ) would imply that Lx = y and 0 ∈ QN ∗ (x, 0) or x ∈ L−1{y} and

0 ∈ πN∗(x, 0). Thus, by Assumption (2), x 6∈ ∂Ω. Hence, for every x ∈ ∂Ω∩domL,

µ ∈ [0, 1],

Lx 6∈ Ñ(x, µ). (7.123)

By Theorem 7.24, d[(L, Ñ(·, µ)),Ω] is independent of µ in [0,1] and hence,

[L, Ñ(·, 1)),Ω] = d[L, Ñ(·, 0)),Ω] (7.124)

= d[L,QN ∗ (·, 0) + y),Ω] (7.125)

= d(I − P − [ψπ +Kp(I −Q)][QN ∗ (·, 0) + y],Ω, 0) (7.126)

that is

d[L, Ñ(·, 1)),Ω] = d(I − P − ψπN∗(·, 0) −Kpy,Ω, 0). (7.127)

Let us now consider two cases. Firstly let us assume kerL = 0. Then P = 0, Q = 0,

π = 0, Kp = L−1 and hence, from (7.127), we have

d[L, Ñ(·, 1)),Ω] = d(I − L−1y,Ω, 0). (7.128)

Now, L−1{y} = {L−1y} is a zero dimensional space and hence, for condition (3) to

be satisfied, L−1{y} ∩ Ω ∩ Ω1 6= ∅.
Hence, L−1y ∈ Ω and so, as the right-hand term of (7.2, 4.2) has reduced to the

degree of a single-valued mapping I − L−1y, we have

d[L, Ñ(·, 1)),Ω] = d(I − L−1y,Ω, 0) (7.129)

= d(I,Ω, L−1y) (7.130)

= 1. (7.131)

From Theorem 7.22, there exists x ∈ Ω such that Lx ∈ Ñ(x, 1), that is, for some

x ∈ Ω

Lx ∈ [Q+ λ(I −Q)]N∗(x, λ) + y.

and by Lemma 7.8, equation (7.115) has at least one solution in Ω. Now let us

consider the case where kerL 6= {0}. By a change of variables, we have

d(I−P−ψπN∗(·, 0)−Kpy,Ω, 0) = d(I−P−ψπN∗(·,+Kpy, 0),Ω−Kpy, 0). (7.132)

As kerL is a finite-dimensional subspace containing the range of P +ψπN ∗, one

can apply Theorem 7.2 and obtain

d(I − P − ψπN∗(· +Kpy, 0),Ω−Kpy, 0) (7.133)

= d(I − P − ψπN∗(· +Kpy, 0)]|kerL(Ω −Kpy) ∩ kerL, 0) (7.134)

= d(−ψπN∗(· +Kpy, 0)|kerL, (Ω −Kpy) ∩ kerL, 0) (7.135)

= d(g(· +Kpy)|kerL(Ω −Kpy) ∩ (Ω1 −Kpy) ∩ kerL, 0) (7.136)
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the last equality holding by definition.

By a change of variables again,

d(g(· +Kpy)|kerl, (Ω −Kpy) ∩ (Ω1 −Kpy) ∩ kerL, 0) (7.137)

= d(g(·)|L−1y,Ω ∩ Ω1 ∩ L−1y, 0) (7.138)

6≡ 0 by condition (3) (7.139)

Hence, from (7.127), (7.132), (7.133) and (7.137)

d[(L,N(·, 1)),Ω] 6= 0

and again, we conclude from Theorems 7.22 and 7.24 that equation (7.115) has at

least one solution in Ω.

Now, for λ = 1, equation (7.115) becomes

Lx ∈ Nx+ y = N∗(x, 1) + y.

If, for every x ∈ ∂Ω ∩ domL, (7.115) does not hold, then Lx 6∈ Ñ(x, µ) for each

x ∈ ∂Ω ∩ domL and each µ ∈ [0, 1] and the above proof can be repeated. If,

however, there exists x in ∂Ω∩domL such that Lx ∈ Nx+y, then a solution exists

in ∂Ω ⊂ Ω̄. Hence (7.115) always has a solution in Ω̄.

This completes the proof of the Theorem.

Theorem 7.27 Let X be a Banach space, Z a normed linear space and let L be

a linear Fredholm mapping of index zero from a subspace of X into Z.

Let Ω be an open bounded subset of X and let tildeN : Ω̄× [0, 1] → CK(Z) be a

L-k-φ-contraction on Ω̄ × [0, 1]. If for each λ ∈ [0, 1] and x ∈ ∂Ω ∩ domL, we have

Lx 6∈ Ñ(x, λ)

and if d[L, Ñ(·, λ0)),Ω] 6= 0 for some λ0 ∈ [0, 1], then for each λ ∈ [0, 1], the

equation

Lx ∈ Ñ(x, λ) (7.140)

has at least one solution in Ω.

Proof. By Theorem 7.24, for each λ ∈ [0, 1],

d[(L, Ñ(·, λ)),Ω] = d[(L,N(·, λ0)),Ω] 6= 0

and hence by Theorem 7.22, the equation

Lx ∈ N̂(x, λ)

has a solution in Ω.

Corollary 7.27.1 (A Generalized Borsuk’s Theorem) Let X, Z and L be as in

Theorem 7.27 and let Ω be a bounded open subset of X, symmetric with respect to
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the origin and containing it. Let Ñ : Ω̄ × [0, 1] → CK(Z) be a L-k-φ-contraction

on Ω̄ × [0, 1]. Also, suppose that Ñ(−x, 0) = −Ñ(x, 0) for each x ∈ Ω̄.

Then equation (7.106) has a solution in Ω for each λ ∈ [0, 1].

Proof. From Theorem 7.23, d[(L,N(·, 0)),Ω] is odd and hence different from zero.

The result follows from the preceding theorem.

Corollary 7.27.2 (A Generalized Krasnoselskii Theorem) Let X, Z, L and Ω

be as in Corollary 7.27.1 and let N : Ω̄ → CK(Z) be a L-k-φ-contraction such that

for each λ ∈ [0, 1] and x ∈ ∂Ω ∩ domL, we have

[(L−N)x] ∩ [λ(L−N)(−x)] = ∅. (7.141)

The equation

Lx ∈ Nx (7.142)

has at least one solution in Ω.

Proof. Define N : Ω̄ × [0, 1] → CK(Z) by

Ñ(x, λ) = (1 + λ)−1[Nx− λN(−x)].

It can be easily verified that Ñ is a L-k-φ-contraction on Ω× [0, 1]. Now, Ñ(x, 0) =

Nx and N(x, 1) = 1
2 [Nx −N(−x)] which is odd. We claim that Lx 6∈ N(x, λ) for

each λ ∈ [0, 1] and each x ∈ ∂Ω∩domL. Assuming otherwise, there exist λ ∈ [0, 1],

x ∈ ∂Ω ∩ domL such that

(1 + λ)Lx ∈ Nx− λN(−x);

that is there exist u ∈ Nx, v ∈ N(−x) such that

(1 + λ)Lx = u− λv

or

Lx− u = λ(L(−x) − v)

which contradicts (7.141).

Hence the conditions of Theorem 7.27 are satisfied and thus, there is a x ∈ Ω

such that

Lx ∈ Ñ(x, 0) = Nx

and so equation (7.142) has a solution in Ω.

Remark 7.20 If N : Ω̄ → Z is single-valued, then d[(L,N),Ω] contains the

coincidence degree of Mawhin.

If X = Z and N is an ultimately compact operator, then degree theorem reduces

to the degree theory of Petryshyn and Fitzpatrick (1974).
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Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarafdar and Teo (1979).

7.4 Coincidence Degree for Multi-Valued Mappings with

Non-Negative Index

Using the equivalence theorem, Theorem 3.1, of Tarafdar and Teo (1979), Akashi

(1988) has proved a new equivalence theorem and built a coincidence degree such

that, even when the index of L is strictly positive, this coincidence degree is not nec-

essarily zero. In this we dealt with this coincidence degree when L is of nonnegative

index.

The following definition is due to Petryshyn and Fitzpatrick (1974).

Definition 7.20 Let φ be a measure of noncompactness in X and let T : D ⊂
X → K(X) be a u.s.c. multivalued mapping.

Then T is said to be φ-condensing if φ(T (Ω)) 6≥ φ(Ω) for all Ω ⊂ D such that

Ω is not relatively compact. In case C is not linearly ordered, the above condition

reduces to the requirement that φ(t(Ω)) < φ(Ω) for each Ω ⊂ D which is not

relatively compact.

Proposition 7.11 (Petryshyn and Fitzpatrick (1974)) Let D ⊂ X be closed

and let T : D → CK(X) be φ-condensing. Then T is ultimately compact.

Proposition 7.12 (Petryshyn and Fitzpatrick (1974)) Let φ : 2X → R+ =

{t ∈ R; t ≥ 0} ∪ {∞} be a measure of non-compactness and suppose that T : D ⊂
X → CK(X) is a k : φ-contraction, 0 < k < 1, with φ(T (D)) ∈ R. Then T is

φ-condensing if either X is quasi-complete or D is complete.

7.4.1 Basic Assumptions and Main Results in Akashi (1988)

In this subsection we assume the following assumptions:

(a′) X is a Banach space and Z is a real normed space.

(b′) L : D(L) ⊂ X → Z is a linear Fredholm mapping (i.e., R(L) is closed;

dimkerL < ∞ and dimcokerL < ∞) with nonnegative index of Fredholm (indL =

dimkerL− dimcokerL ≥ 0).

(c′) Ω is a bounded, open set inX and the multivalued mappingN : Ω̄ → CK(Z)

is u.s.c. and N(Ω̄) is bounded in Z. Furthermore suppose that D(L) ∩ Ω 6= Φ.

(d′)Let (P,Q) be an exact pair of projection with respect to L and let φ be

a measure of non-compactness defined from 2X into C (linearly ordered lattice)

such that φ satisfies the sub-additivity condition (A ⊂ X,B ⊂ X =⇒ φ(A +

B) ≤ φ(A) + φ(B)). We assume that with such a measure of non-compactness φ,

Kp(I − Q)N is φ-condensing and that φ[Kp(I − Q)N(Ω̄)] < ∞. Furthermore, we

assume that Kp is bounded.

(e′) 0 6∈ (L−N)(D(L) ∩ ∂Ω where ∂Ω denotes the boundary of Ω.
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Remark 7.21 Assumption (b′) authorizes that we assume the continuity of the

exact pair of projections (P,Q). Moreover, with the quotient norm topology, cokerL

is a normed space and the canonical surjection π is continuous with respect to this

topology. Also (b′) implies that there exists a continuous linear one-to-one mapping

Ψ : cokerL→ kerL.

Proposition 7.13 Under the assumptions (a′) to (d′), the condition (d′) is in-

dependent of choice of the exact pair (P,Q) of continuous projections with respect

to L.

Proof. We follow the proof of Proposition 3.1 of Tarafdar and Teo (1979). Sup-

pose that (P,Q) satisfies (d′) and let (P ′, Q′) be another exact pair of continuous

projections with respect to L. Then by Proposition 7.5 we have

Kp′(I −Q′)N = (I − P ′)Kp(I −Q′)N (7.143)

⊂ (I − P ′)Kp(I −Q)N + (I − P ′)Kp(Q−Q′)N (7.144)

= (I − P ′)Kp(I −Q)N + (I − P ′)K̃P (π−1
Q − π−1

Q′ )πN, (7.145)

where Kp denotes the restriction of Kp to the finite dimensional subspace (Q −
Q′)(Y ) (K̃p is continuous); πQ = π/R(Q) and πQ′ = π/r(Q′). Since πN(Ω̄) is

bounded in a finite dimensional subspace of X, it follows that

φ[(I − P ′)K̃P (π−1
Q − π−1

Q′ )πN(Ω̄)] = 0.

Hence, from the subadditivity condition on φ, it follows that KP ′(I − Q′)N is φ-

condensing and that φ[KP ′(I −Q′)] <∞.

The following proposition was used in Akashi (1988) in proving the main results.

Proposition 7.14 If assumptions (a′b′c′d′) are satisfied, then for every contin-

uous linear one-to-one mapping Ψ : cokerL → kerL and any exact pair (P,Q)

of continuous projections with respect to L, MΨ is a φ-condensing multivalued

mapping.

Proof. Since P , Q, KP , π, Ψ are all linear and continuous and N(x) is convex

and compact for each x ∈ Ω̄, it follows that MΨ(x) is convex and compact for each

x ∈ Ω̄.

Now, let A ⊂ Ω̄ such that A is not relatively compact. Then,

MΨ(A) = [P + [Ψπ +KP (I −Q)]N ](A) ⊂ P (A) + ΨπN(A) +KP (I −Q)N(A)

and, by the subadditivity of φ,

φ[MΨ(A)] ≤ φ[P (A)] + φ[ΨπN(A)] + φ[KP (I −Q)N(A)].

Now, P (A) and ΨπN(A) are bounded subsets of finite-dimensional subspace of

X and, therefore,

φ[P (A)] = φ[ΨπN(A)] = 0.
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Then,

φ[MΨ(A)] ≤ φ[KP (I −Q)N(A)].

By assumption (d′) KP (I −Q)N is φ-condensing and, therefore, the above in-

equality assures that M is φ-condensing.

From Proposition 7.12, we see that if assumptions (a′b′c′d′) are satisfied, then

MΨ is an ultimately compact multivalued mapping. It follows from the assumption

(e′) and Theorem 7.20 that 0 6∈ (I−MΨ)(D(L)∩∂Ω). Thus, the topological degree

of the multi-valued mapping I −MΨ on Ω with respect to zero (d[I −MΨ,Ω, 0]) is

well defined.

Remark 7.22 If indL = O, Ψ : cokerL→ kerL is considered as an isomorphism,

and if the lattice C is taken as R+ = {t ∈ R; t ≥ 0} ∪ {∞} and if the multivalued

mapping Kp(I−Q)N is considered as a k-set-contraction with k < l, then the work

in Akashi (1988) reduces to the work in Tarafdar and Teo (1979).

If indL > O, unfortunately we have the following result:

Proposition 7.15 If indL > 0 and 0 6∈ (L − N)(D(L) ∩ ∂Ω) then, for each

linear one-to-one mapping Ψ : cokerL→ kerL, one has d[I −MΨ,Ω, 0] = 0.

Proof. We follow the proof of Proposition 6.1 of Mawhin (1972) or Proposition

XII.1 of Gaines and Mawhin (1977) where N is assumed to be single-valued. First

note that the condition indL > 0 implies that there exists a linear one-to-one

mapping Ψ : cokerL → kerL. Also, indL > 0 implies that R(Ψ) is a proper

subspace of kerL. This and

R(I −MΨ) ⊂ R[I − P − ΨπN −Kp(I −Q)N ]

implies that R(I −MΨ) is necessarily contained in the proper subspace of X given

by

X ′ = kerP
⊕

R(Ψ)

Then, by the properties of topological degree, there exists a neighbourhood V of

the origin such that

d[I −MΨ,Ω, 0] = d[I −MΨ,Ω, y]

for all y ∈ V . If we take y in the non-void set V ∩CXX ′(CXX ′ is the complement of

X ′ inX), then y does not belong to the R(I−MΨ) and, consequently, d[I−MΨ,Ω, 0].

This complete the proof.

However, this negative result can be overcome by modifying the multivalued

mapping MΨ, related to L-N in such a way that the topological degree is no more

necessarily equal to zero, as follows (cf. Proposition XII. 3 of Gaines and Mawhin

(1977) in case of a single valued N):

Theorem 7.28 Under the same notation of Theorem 7.20 if indL ≥ 0, then:
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(i) every fixed point of the multivalued mapping KPN is a solution of the inclusion

(7.57) provided L is surjective;

(ii) if L is not surjective, the inclusion (7.57) has a solution if and only if there ex-

ists a linear one-to-one mapping Ψ : cokerL→ kerL such that the multivalued

mapping

M̃Ψ = RΨP + [Ψπ +KP (I −Q)]N

has a fixed point, where RΨ : kerL→ kerL is a projector such that R(RΨ) =

R(Ψ).

Proof. First suppose that L is surjective and that x is a fixed point of KPN , i.e.,

x ∈ KPN(x). Thus, L(x) ∈ LKPN(x) = N(x), i.e., x is a solution of (7.57).

Now, suppose that L is not surjective and that x is a solution of (7.57). Then,

it follows from Theorem 7.20 that

x ∈ MΨ(x)

with

MΨ = P + [Ψπ +KP (I −Q)]N

for any linear Ψ : cokerL → kerL which is one-to-one. Now let V be any subspeac

of kerL of dimension equal to dim cokerL and containing P (x) (such a subspacce

necessarily exists) and let RΨ he any projector in kerL such that R = (RΨ) = V .

Then necessarily

P (x) = RΨP (x)

and if we take Ψ : cokerL → kerL linear one-to-one such that R(Ψ) = V (such a

linear mapping necessarily exists) then

x ∈MΨ(x) = P (x) + [Ψπ +KP (I −Q)]N(x) (7.146)

= RΨP (x) + [Ψπ +KP (I −Q)]X(x) (7.147)

= M̃Ψ(x). (7.148)

Conversely, if x ∈ D(L) ∩ Ω̄ is a fixed point of the multivalued M̃Ψ = RΨP +

[Ψπ +KP (I −Q)]N , i.e.,

x ∈ RΨP (x) + [Ψπ +KP (I −Q)]N(x)

then

(I − P )(x) = Kp(I −Q)(z)

P (x) = RΨP (x) + Ψπ(z)

for some z ∈ N(x). Hence,

L(x) = (I −Q)(z)
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(I −RΨ)P (x) = Ψπ(z) = RΨΨπ(z)

which implies

L(x) = (I −Q)(z)

(I −RΨ)P (x) = 0, RΨΨπ(z) = 0.

Now, Ψπ(z) = RΨΨπ(z) = 0 implies z ∈ R(L). Hence (I−Q)(z) = z and therefore,

L(x) ∈ N(x).

Let V be a vector subspace of kerL such that dimV = dim cokerL. Then,

analogous to Proposition 7.14, Akashi (1988) obtained the following result whose

proof is analogous to the proof of Proposition 7.14.

Proposition 7.16 If assumptions (a′b′c′d′) are satisfied, then for every contin-

uous linear one-to-one mapping Ψ : cokerL → kerL and any exact pair (P,Q) of

continuous projections with respect to L, the multi-valued mapping M̃Ψ stated in

Theorem 7.28 is φ-condensing and, for each x ∈ Ω̄, MΨ(x) ∈ CK(X).

Then, under the Assumptions (a′b′c′d′e′) the topological degree of the multi-

valued mapping I − M̃Ψ on Ω with respect to zero is well defined. Akashi (1988)

denoted it by

dV [I − M̃Ψ,Ω, 0].

For each vector subspace V of kerL such that dimV = dim cokerL, dV [I − M̃Ψ, 0]

is independent of the choice of P , Q and within the same homotopy class (here, the

mappings Ψ are such that R(Ψ) = V ).

Definition 7.21 For each vector subspace V of kerL such that dim V =

dim cokerL, let LVL he the set of all continuous isomorphism from cokerL into

V . Ψ, Ψ′ are to be homotopic in LVL if there exists a continuous mapping

Ψ̄ : cokerL× [0, 1] → V such that Ψ̄(·, 0) = Ψ, Ψ̄(·, 1) = Ψ′ and, for each λ ∈ [0, 1],

Ψ̄(·, λ) ∈ LVL .

Remark 7.23 To be homotopic is an equivalence relation which partitions LVL
into equivalence classes called homotopy classes.

The following two propositions and corollary are quoted from Gaines and

Mawhin (1977):

Proposition 7.17 Ψ and Ψ′ are homotopic in LVL if and only if det(Ψ′,Ψ−1) > 0.

Corollary 7.28.1 LVL is partitioned into two homotopy classes.

Definition 7.22 Ψ : cokerL → V is said to be orientation preserving if

{Ψa1 ,Ψa2 , . . . ,Ψan} belongs to the orientation chosen in V where {a1, a2, . . . , an}
is a basis for cokerL belonging to a certain chosen orientation. Otherwise, Ψ is said

to he orientation reversing.
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Proposition 7.18 If cokerL and V are oriented then Ψ and Ψ′ are homotopic

in LVL if and only if they are simultaneously orientation preserving or orientation

reversing.

Definition 7.23 Let V he as given above and suppose that assumptions

(a′b′c′d′e′) are satisfied and Ψ is an orientation preserving continuous isomorphism

from cokerL into V . Then, the coincidence degree of L and N in Ω, denoted by

D[(L,N),Ω], is defined by

D[(L,N),Ω] =

{⋃
V ∈Nker L

dV (I − M̃Ψ,Ω, 0), if L is not surjective

d(I −KPN,Ω, 0), if L is surjective

where NkerL is the family of all vector subspaces V of kerL such that dimV =

dim cokerL.

Remark 7.24 Note that if indL = 0, and the projector RΨ is the identity

mapping, then the work in Tarafdar and Teo (1979) is a particular case of the work

in Akashi (1988).

7.4.2 Akashi’s Basic Properties of Coincidence Degree

In this subsection, unless otherwise specified, Akashi (1988) assumed that assump-

tions (a′b′c′d′e′) were satisfied such that the coincidence degree was well defined.

Theorem 7.29

(a) (Existence theorem) If

D[(L,N),Ω] 6= {0}

then (7.57) has at least one solution in Ω.

(b) (Excision property) If Ω0 ⊂ Ω is an open set such that

(L−N)−1(0) ⊂ Ω0,

then,

D[(L,N),Ω] = D[(L,N),Ω0].

(c) (Addivity property) If Ω = Ω1 ∪ Ω2 where Ω1, Ω2 are two open sets such that

Ω1 ∩ Ω2 = ∅, then

D[(L,N),Ω] ⊂ D[(L,N),Ω1] +D[(L,N),Ω2].

Proof. This theorem follows immediately from Definition 7.23 and corresponding

properties of topological degree of ultimately compact multivalued mappings (see,

Petryshyn and Fitzpatrick (Petryshyn and Fitzpatrick (1974)).
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One of the most useful properties of every concept of topological degree is its

invariance with respect to some type of homotopy. In the case of coincidence degree

the following result was obtained in Akashi (1988):

Theorem 7.30 If the assumptions (a′b′) are satisfied and if the multivalued

mapping

Ñ : Ω̄ × [0, 1] → CK(Y )

is such that (c̃) Ñ is upper semicontinuous on Ω̄ × [0, 1], (d̃) πÑ(Ω̄ × [0, 1]) is

bounded, (ẽ) φ[KP (I −Q)Ñ(Ω̄× [0, 1])] <∞ and KP (I −Q)Ñ is φ-condensing (f)

for each λ ∈ [0, 1],

0 6∈ [L− Ñ(·, λ))(D(L) ∩ ∂Ω).

Then, D[(L, Ñ(·, λ)),Ω] is independent of λ in [0, 1].

Note that φ, P , Q, KP are the same as given in assumption (d).

Proof. It is an easy consequence of Definition 7.23 and the corresponding prop-

erty of topological degree of an ultimately compact vector field (Petryshyn and

Fitzpatrick (Petryshyn and Fitzpatrick (1974)).

Theorem 7.31 If O is a symmetric bounded neighbourhood of the origin and N is

odd (N(−x) = −N(x) for all x ∈ O) such that L(x) 6∈ N(x) for all x ∈ ∂O∩D(L),

then D[(L,N), O] 6= {0}.

Proof. Note that, how P , Q, KP , Ψ, and RΨ are all linear, the condition on N

implies that M̃Ψ is also odd. Thus, by the corresponding property of topological

degree of an ultimately compact vector field (see Petryshyn and Fitzpatrick (1974))

and Definition 7.23, it follows that D[(L,N), O] 6= {0}.

7.4.3 Application to Multitivalued Boundary Value Problem for

Elliptic Partial Differential Equation

Let G ⊂ Rn be a bounded domain whose boundary ∂G is a C∞-manifold. We will

consider real-valued functions of the following type: u : G → R. For a multi-index

α = (α1, . . . , αn) and a function u : G→ R the symbol

Dαu = D|α|u/(∂α1 x1 · · · ∂αnxn)

will denote the partial derivative of u (if it exists) of the order |α| = α1 + · · · + αn.

Let Cm(G) be a space of all functions u from G into R which are continuous together

with derivatives Dαu, |α| ≤ m, and let

C̃mp (G) = {u ∈ Cm(G) : (Σ|∞|≤m

∫

G

|Dαu(x)|pdx)1/p <∞}
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for 1 < p <∞. In the space C̃mp (G) we define the norm as follows:

||u||m,p = (Σ|∞|≤m

∫

G

|Dαu(x)|pdx)1/p.

By Hm,p(G) we will denote the Sobolev space which is the completion of C̃mp (G)

with respect to the norm ||·||m,p. By C∞
0 (G) we will denote the space of all functions

u ∈ C∞(G) = ∩∞
m=0C

m(G), which have a compact support in G.

Let u, v : G→ R be two integrable functions. We say that the function v is the

α-th weak derivative of u if, for every f ∈ C∞
0 (G),

∫

G

u(x)Dαf(x)dx = (−1)|α|
∫

G

v(x)f(x)dx.

Then we write Dα(u) = v.

Let LP (G), p > 1, he the Banach space of all measurable functions y : G → R,

for which
∫
G
|y(u)|P du <∞, with the norm

||y||p = (

∫

G

|y(u)|P du)1/P .

The following two facts are well known (see Nirenberg (1974)).

Hm,p(G) = {u ∈ LP (G); D̃αu ∈ LP (G), |α| ≤ m}. (7.149)

Let α be such that |α| ≤ m. The mapping D̃α : Hm,p(G) → Lp(G) is a

continuous extension of the mapping Dα : Cm(G) → C0(G). Let Cm(Ḡ) be the

space of all functions u from G into R which are uniformly continuous together with

derivatives Dα(u) for |α| ≤ m.

In the space Cm(Ḡ) we define a norm putting

|u|m = Σ|x|<n sup
x∈G

|Dαu(x).

Let Cm+µ(Ḡ), 0 < µ < 1, he the Holder space with the norm

|u|m+µ = |u|m + Σ|α|=m sup
|Dαu(x) −Dαu(y)|

|x− y|µ : x, y ∈ G, x 6= y.

We have Cm+µ(Ḡ) ⊂ Cm(Ḡ). Note the following (see Nirenberg (1974)).

The embedding i : Cm+µ(Ḡ) → Cm(Ḡ), given by i(u) = u, is a

completely continuous mapping.
(7.150)

From the Sobolev embedding theorem (see Nirenberg (1974)) Akashi (1988)

obtained the following:

Proposition 7.19 Let p > n. Then, for µ = 1−n/p, the mapping j : Hm,p(G) →
Cm−1+µ(Ḡ) given as follows: j(ũ) = u, u ∈ Cm−1+µ(Ḡ) and u(x) = ũ(x) a.e. on

G, is well defined and it is a continuous mapping.
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Let Ap : Hm,p(G) → Lp(G) be an elliptic operator given by

Ap(u)(x) = Σ|α|≤maα(x)Dαu(x),

where

aα(·) ∈
∞⋂

m=0

Cm(Ḡ) = C∞(Ḡ)

and let Bj : Cm−1(Ḡ) → C0(Ḡ); j = 1, 2, . . . , k be a differential boundary operator

given by

Bj(u)(x)Σ|α|≤mj
bjα(x)Dαu(x),

where mj < m, bjα(·) ∈ C∞(Ḡ) for j = l, 2, . . . , k and |α| < mj .

For a multivalued mapping f : Ḡ × R × R → 2R Akashi (1988) formulated the

following boundary value problem:

u ∈ Cm−1(Ḡ)

Ap(u)(x) ∈ f(x, u(x), Dβu(x)) a.e. on G, |β| < m, p > n

Bj(u)(x) = 0 for x ∈ ∂G, j = 1, 2, . . . ,m/2.

(7.151)

Definition 7.24 We say that a multivalued mapping f : Ḡ×R×R → 2R satisfies

the Caratheodory conditions if: (C1) for each pair (u, v) ∈ R2, the mulltivalued

mapping f(·, u, v) is measurable, i.e., for every open set u ⊂ R, the set f−1(U, u, v) =

{x ∈ Ḡ : f(x, u, v) ∩ U 6= ∅} is Lebesque measurable; (C2) for each x ∈ Ḡ, the

multivalued mapping f(x, ·, ·) is u.s.c.

Theorem 7.32 Suppose that the multivalued mapping f stated in the boundary

value problem (7.151) satisfies:

(i) the Caratheodory conditions (C1), (C2);

(ii) for each (x, u, v) ∈ Ḡ× R × R, f(x, u, v) is a convex set;

(iii) |f(x, u, v)| ≤ g(x)(1 + |u| + |v|)p, for each (x, u, v) ∈ Ḡ × R × R and some

g ∈ Lp(G) and some ρ, ρ < 1. Moreover, suppose that R(Ap) = Lp(G) and

j(kerAp) ⊂ C∞(G), where Ap is the elliptic operator stated above and that

the system

Ap(u)(x) = 0

Bj(u)(x) = 0 for x ∈ ∂G, j = 1, 2, . . . ,m/2
(7.152)

admit only a finite number of linearly independent solutions. Then, the

problem (7.151) admits a solution.

Proof. Let us put X1 = Cm−1(Ḡ); X2 = Lp(G), p > n and

X = {u ∈ Cm−1(Ḡ) : Hm,p(G), Bj(u)/∂G = 0, j = 1, 2, . . . ,m/2}
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Now, let us specify the following:

N : X1 → 2X2

N(u) = {v ∈ Lp(G); v(x) ∈ f(x, u(x), Dβu(x)) a.e. on G} (7.153)

and

L : D(L) = X → X2; L(u) = Ap(u).

So, the problem (7.151) is equivalent to the equation

L(u) ∈ N(u).

The mapping L defined above is a linear Fredholm mapping with indL ≥ 0. Let P

he a projection in < X1, | · |m−1 > such that R(P ) = kerL. By the Banach theorem,

the mapping (L/X0
)−1 : X2 →< X, || · ||m,p > is continuous, where X1 = kerL

⊕
X0

with X0 a closed vector subspace of < X1, | · |m−1 >. In virtue of (7.151) and

Proposition 7.19, we see that the mapping Kp is a completely continuous mapping

from X2 into < X1, | · |m−1 >, where Kp is the mapping stated in the following

commutative diagram:                        

                                                                

                                                          

                                                                                           

                                                                                     

                                                                             

                                                            

                                                                                                                              

                                                                                    

                                                                      
Kp = i/X .j/X .(L/X0

)−1

X2 = Lp(G) (
) (L/X0

)−1

〈X, ‖ · ‖m,p〉

j/X

〈X, ‖ · ‖m−1+µ〉

i/X

〈X, ‖ · ‖m−1〉

(7.154)

Let T : X1 → C(Ḡ,R2) be a linear continous mapping given by T (u) = (u,Dβu)

for every u ∈ X , and let S : C(Ḡ,R2) → 2X2 be the multivalued mapping defined

by

S(u) = {Z ∈ Lp(G);Z(x) ∈ f(x, u(x), v(x)) a.e. on G}.

Since by condition C3, N = S ◦ T maps a bounded set into a bounded set, the

multivalued mapping KpN is compact since Kp is a compact linear mapping. Fur-

thermore, by conditions (i) and (ii) we have that KpN is u.s.c. and for each u ∈ X ,

KpN(u) is a convex set. The closedness of KpN(u) for each u ∈ X follows by the

upper semicontinuity and the compactness of KpN . Now, by the surjectivity of L,

the projector Q stated in the Definition 7.23 is the null operator. Then,

Kp(l −Q)N = KpN.

Still by the surjectivity of L, cokerL = {0} and then, M̃Ψ = KpN, where M̃Ψ is

the multivalued mapping stated in the Theorem 7.28. Thus, if u is a solution of
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L(u) ∈ N(u), then u ∈ KpN(u), and so, by condition (iii) we have

|u|m−1 ≤ D(1 + |u|m−1)
ρ, ρ < 1,

where C is a positive constant. This implies that there exists a positive constant C̄

such that if u is a solution of L(u) ∈ N(u) then,

|u|m−1 ≤ C̄.

So, if we take δ > C̄ , then, for each u ∈ ∂B(O, δ), we have

u 6∈ KpN(u).

Let M be the multivalued mapping defined by

M(λ, u) = λKpN(u), λ ∈ [0, 1], u ∈ X1,

It is easily seen that if u ∈ ∂B(0, δ) then we have u 6∈ M(λ0, u) for each λ0 ∈ [0, 1].

So, by the homotopy property of topological degree, we have

d(I −KpN,B(0, δ), 0) = d(I, B(0, δ), 0).

Now, it is well known that d(I, B(0, δ), 0)) = 1 and so, by the existence property of

coincidence degree, we have that the equation L(u) ∈ N(u) admit a solution, i.e.,

the boundary value problem (7.151) admit a solution.

Remark 7.25 Comparing the application above with the application 5 of

Pruszko (1981), Akashi (1988) noted that while in Pruszko (1981) the mapping

S was considered injective, in the case of Akashi (1988) this was exchanged by the

more general condition dim ker S < ∞. Akashi (1988) also observed that the

hypothesis (iii) of Theorem 7.32 in Akashi (1988) was more general than that of the

condition (C ′) stated in Theorem 5.6 of Pruszko (1981).

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Akashi (1988).

7.5 Applications of Equivalence Theorems with Single-Valued

Mappings: An Approach to Non-Linear Elliptic Boundary

Value Problems

Let D be a bounded domain in Rn and let L be a formally self-adjoint elliptic

second order operator on D̄ with real valued coefficients which are measurable and

bounded functions on D. Assume that kerL (kernel of L) is one dimensional and

spanned by w. Let f : D × R → R be a function such that f(x, u(x)) ∈ L2(D) for

each u ∈ L2(D) and the mapping u(x) → f(x, u(x)) is continuous from L2(D) into

L2(D). Assume that there exist functions h+ ∈ L2(D) such that

limt→+∞f(x, t) = h+(x)
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and that there exists a constant k such that

|f(x, u(x)), w)| ≤ k for all u ∈ L2(D).

Under these conditions Landesman and Lazer (1970) have proved that the Dirichlet

problem

(L(u))(x) = f(x, u(x)), x ∈ D, (7.155)

u(x) = 0, x ∈ ∂D(boundary of D) (7.156)

has a weak solution if

[

∫

[w>0]

h+(x)|w(x)|dx −
∫

[w<0]

h−(x)|w(x)|dx] (7.157)

× [

∫

[w>0]

h−(x)|w(x)|dx −
∫

[w<0]

h+(x)|w(x)|dx] < 0 (7.158)

where [w ≥ 0] = {x ∈ D : w(x) ≥ 0}. Moreover if in addition to the above

conditions f , h+ and h− satisfy the condition

h−(x) < f(x, t) < h+(x) for a.e. x in D and ∀t ∈ R

then the condition (7.157) is also necessary for the existence of a solution of the

boundary value problem (7.155). This result has been extended by Williams (1970)

and also by Browder (mentioned as unpublished manuscript in Nirenberg (1970))

to the case of a higher order formally self-adjoint elliptic operator L with arbitrary

finite dimensional kerL. In fact, various other aspects of the paper of Landesman

and Lazer (1970) have been exploited in different directions by Hess (1974), Niren-

berg (1970), Nirenberg (1971)), Schechter (1973), Figueiredo (1974), Gaines and

Mawhin (1977), Fućik (1974b)), Fućik (1974a), Fućik and Nećas (1975), Hetzer

(1975b) and many others (see Remark 7.29). Of these the particular interest is in

the generalization of Landesman and Lazer’s result by Figueiredo (1974) and also

by Gaines and Mawhin (1977, Theorem VIII.2, p. 156). The summary of this result

is as follows:

Let D ⊂ Rn be a bounded domain. With α = (α1, α2, . . . , αn), β =

(β1, β2, . . . , βn), αi, βi ∈ N and |α| =
∑n

i=1 αI , let aαβ , 0 ≤ |α|, |β| ≤ m,

be real valued L∞(D)-functions. Also let aαβ = aβα and moreover aαβ with

|α| = |β| = m be uniformly continuous. Assume that there exists a constant c such

that
∑

|α|=m,|β|=m aαβ(x)ζ
αζβ ≥ c|ζ|2m ∀ζ ∈ Rn and x ∈ D. Let f : D×R → R be

a function satisfying the Caratheodory condition. Assume that there are constants

λ > 0, δ ∈ [0, 1) and a function b ∈ L2(D) such that

|f(x, t) ≤ λ|t|δ + b(x) for a.e. x ∈ D and ∀t ∈ R,
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and that there are functions H+− ∈ L2/(1−δ)(D) such that

lim
t→+−∞

f(x, t)

|t|δ = h+−(x) for all x ∈ D.

Under these conditions it is proved in Figueiredo (1974) and Gaines and Mawhin

(1977) that there exists a u ∈ Hm
0 satisfying

∑

|α|≤m,|β|≤m

∫
aαβ(x)D

αu(x)Dβv(x)dx =

∫

D

f(x, u(x))v(x)dx (7.159)

for all v ∈ Hm
0 , that is, u is a solution of the nonlinear elliptic boundary value

problem (7.159) if for every w ∈ KerL with ‖w‖L2(D) = 1,

∫

[w>0]

h+(x)|w(x)|1+δdx−
∫

[w<0]

h−(x)|w(x)|1+δdx > 0. (7.160)

Moreover, if h(x) < f(x, t) < h+(x) holds for a.e. x in D and all t ∈ R, then the

condition (7.160) is necessary for the existence of a solution of (7.159). To find an

analogy between conditions (7.157) and (7.160) Tarafdar (1983) observed that an

analogue of condition (7.157) would be the following:

For each w ∈ KerL with ‖w‖L2(D) = 1,

[

∫

[w>0]

h+(x)|w(x)|1+δdx−
∫

[w<0]

h−(x)|w(x)|1+δdx] (7.161)

× [

∫

[w>0]

h−(x)|w(x)|1+δdx−
∫

[w<0]

h+(x)|w(x)|1+δdx] < 0. (7.162)

In this section Tarafdar (1983) showed that the boundary value problem (7.159)

has a solution if (7.161) holds. In the sequel it will also be shown that (7.159)

implies (7.161). In fact Tarafdar proved this result under a more general setting

(see Theorem 7.35).

It is interesting to note that de Figueiredo (Figueiredo (1974)) has proved his

result by using a perturbation argument introduced by Hess (1974); and in Gaines

and Mawhin (1977) the result has been proved by using the generalized Leray-

Schauder continuation theorem in the context of coincidence degree and Poincaré-

Bohl Theorem, while in Tarafdar (1983) Tarafdar proved his result by using a

generalized Krasnosel’skii’s result which is easy to prove. Tarafdar observed that

many of the applications given in Gaines and Mawhin (1977) can be obtained by

Krasnosel’skii’s theorem as it was done in Tarafdar (1983).

We will continue to let X and Z denote two vector spaces over the same scalar

field.

An operator P : X → X is said to be an algebraic projection if P is linear

and idempotent, that is, P 2 = P . Let P : X → X and Q : Z − Z be two

algebraic projections. Then the pair (P,Q) is said to be an exact pair with respect
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to L if the sequence X→P domL→LZ→QZ is exact, that is, ImP = KerL and

ImL = KerQ. Let KP = L−1
P where LP is the restriction of L to KerP ∩ domL.

Clearly KP : ImL→ domL∩KerP is a linear mapping. For each exact pair (P,Q)

with respect to L we have the following:

PKP = 0. (7.163)

For each y ∈ ImL,

LKP (y) = L(I − P )KP (y) = LP (l − P )KP (y) = y, (7.164)

where I is the identity mapping on X .

For each x ∈ domL,

KPL(x) = KPL(I − P )(x) = KPLP (I − P )(x) = (I − P )(x). (7.165)

CokerL denotes the quotient space Z/ImL and Π : Z → CokerL the canonical

surjection. Obviously

Q(z) = 0 <=> z ∈ ImL <=> π(z) = 0. (7.166)

We will also use the well known fact that since ImL = KerQ, the restriction Π̂ of

Π to ImQ is an algebraic isomorphism. We should mention that the same symbol

I will be used for the identity mapping on X as well as on Z. We believe that

this will create no confusion to the reader and will be clearly understood from the

context.

Equivalence Theorem

In what follows the following theorem, which is only a variant of a result due

to Mawhin (see Gaines and Mawhin (1977), p. 13) and is also a particular case of

equivalence Theorem 7.37, will serve as a main tool.

Theorem 7.33 Let X and Z be two vector spaces over the same scalar field and

Ω be a subset of X. Let L : domL ⊂ X → Z be a linear mapping and N : Ω → Z

be a mapping which is not necessarily linear. Further assume that there exists a

mapping ψ : CokerL→ kerL such that ψ−1(0) = {0}.
Then x is a solution of the operator equation

L(x) = N(x)

if and only if x is a fixed point of the mapping M : Ω → X defined by

M(x) = P (x) + ψπN(x) +KP (I −Q)N(x), x ∈ Ω,

where (P,Q) is an exact pair of projections.
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Suppose that X is a metric space and A is a bounded subset of X . Then

the measure of non-compactness of A, denoted by α(A), is defined by α(A) =

inf{ε > 0, A can be covered with a finite number of sets of diameter less than ε}.
A continuous mapping f : X → Y of a metric space X into a metric space Y is

said to be a k-set contraction if for each bounded subset A of X , α(f(A)) ≤ kα(A)

where k is a nonnegative real number.

For properties of measure of non-compactness and the degree theory of k-set

contraction mapping f with 0 ≤ k < 1 we refer to Lloyd (1978). In Tarafdar (1983)

it was observed that the results presented in Tarafdar (1983) would also hold if the

above measure of non-compactness was replaced by ball measure (for definition see

Lloyd (1978), p. 93).

Throughout the rest of this section, unless otherwise stated, X and Z will denote

real Banach spaces.

Lemma 7.9 (Generalized Krasnosel’skii Theorem) Let L : domL ⊂ X → Z

be a Fredholm mapping of index zero (that is L is linear and dimension KerL =

dimension cokerL < ∞), Ω ⊂ X a bounded open set containing the origin and

symmetric with respect to the origin and N : clΩ → Z a mapping satisfying the

following conditions (clΩ denotes the closure of Ω):

(i) N is continuous and N(cl Ω) is bounded;

(ii) KP (I − Q)N is a k-set contraction with 0 ≤ k < 1 where (P,Q) is an

exact pair of continuous projections with respect to L, which always exists as L is

a Fredholm mapping of index zero. Then if

(L−N)(x) 6= µ(L−N)(−x) (7.167)

for every µ ∈ [0, 1] and every x ∈ ∂Ω ∩ domL where ∂Ω denotes boundary of Ω,

there exists solution x0 ∈ Ω of the equation L(x) = N(x).

Proof. Although the proof is similar to the one given in Gaines and Mawhin Gaines

and Mawhin (1977) for compact situation we include the proof for the reason that

this is basic for the results of this section and we can avoid coincidence degree.

We define N : clΩ × [0, 1] → Z by

N̂(x, t) = (1 + t)−1[N(x) − tN(−x)], x ∈ clΩ, t ∈ [0, 1].

We first prove that KP (I −Q)N̂ is a k-set contraction. Let D be a subset of clΩ×
[0, 1]. Then D = C × I where C ⊂ clΩ and I ⊂ [0, 1]. We set A = KP (I −Q)N(C)

and B = KP (I −Q)(−N(−C)). Obviously then

KP (I −Q)N(D) = KP (I −Q)N̂(C × I) ⊂
⋃

t∈I
(1 + t)−1(A+ tB) (7.168)

⊂
⋃

t∈[0,1]

(1 + t)−1((A ∪ B) + t(A ∪B)) = co(A ∪ B) (7.169)
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where coE denotes the convex hull of E. Hence using the well known properties of

measure of non-compactness and the k-compactness of KP (I −Q)N , we obtain

α(KP (I −Q)N̂(D)) ≤ α(co(A ∪ B)) (7.170)

= α(A ∪ B) (7.171)

= max(α(A), α(B)) (7.172)

≤ kα(C) (7.173)

= kα(C × I) (7.174)

= kα(D). (7.175)

Let us now define the mapping M : clΩ × [0, 1] → X by

M̂(x, t) = P (x) + [ψΠ +KP (I −Q)]N̂(x, t), x ∈ clΩ, t ∈ [0, 1],

where ψ is a linear homeomorphism of cokerL onto KerL and Π : Z → cokerL is the

natural surjection. Since P and ψΠN̂ are 0-set contractions, it follows from what

we have proved above that M̂ is a k-set contraction. Also 0 6= (I − M̂(·, t))∂Ω,

for otherwise by virtue of the Equivalence Theorem 7.33 we will have x ∈ ∂Ω

and t ∈ [0, 1] such that L(x) = N̂(x, t), that is, (L − N)(x) = t(L − N)(−x),
contradicting (7.167). Hence by homotopy invariance theorem of degree theory for

k-set contraction mappings, d(I − M̂t,Ω, 0), the degree of I − M̂t on Ω over 0, is

independent of t where M̂t(x) = M̂(x, t). Thus d(I−M̂0,Ω, 0) = d(I−M̂1,Ω, 0) 6= 0

as M1(·) = M(·, 1) is an odd mapping. Hence d(I − M̂0,Ω, 0) being nonzero, there

is x0 ∈ Ω such that x = M̂0(x) = M̂(x, 0) = P (x) + [ψΠ + KP (I − Q)N(x). By

Theorem 7.33 L(x0) = N(x0).

Remark 7.26 The above lemma has also been obtained by Hetzer (1975b) in a

similar form in the context of coincidence of degree.

Tarafdar assumed in this subsection that, unless otherwise stated, the kernel of

the linear operator L is nonzero.

Theorem 7.34 Let L : DomL ⊂ X → Z be a Fredholm mapping of index zero

and F : X → Z be a continuous mapping (possibly nonlinear) which maps a bounded

set into a bounded set. Let (P,Q) be an exact pair of continuous projections with

respect to L. Assume the following:

(i) KP (I −Q)F is a k-set contraction on each closed bounded subset of X; with

0 ≤ k < 1.

(ii) There exists δ ∈ [0, 1), λ ≥ 0 and ν ≥ 0 such that for each x ∈ X, ‖KP (I −
Q)F (x)‖ ≤ λ‖x‖δ + ν.

(iii) For each R > 0, there exists t0 > 0 such that for all t ≥ t0, ∀v ∈ KerP ∩B(R)

and ∀w ∈ KerL ∩ ∂B(1):

Q(F (tw + tδv) − µF (−tw − tδv)) 6= 0 for all µ ∈ [0, 1]

where ∂B(x) = {x ∈ X : ‖x‖ = s} and B(s) = {x ∈ X : ‖x‖ ≤ s}.
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Then for each z ∈ ImL, the equation L(x) = F (x) + z has at least one solution.

Proof. The proof is similar to the one of Theorem VII.4 in Gaines and Mawhin

(1977), p. 141. For z ∈ ImL, we define N : X → Z by

N(x) = F (x) + z, x ∈ X.

Let us assume that for some x ∈ X and µ ∈ [0, 1] we have (L − N)(x) = µ(L −
N)(−x), that is,

L(x) − F (x) − z = µ(−L(x) − F (−x) − z)

or

(1 + µ)L(x) = F (x) − µF (−x) + (1 − µ)z.

Now considering the direct sum decomposition Z = ImL ⊕ Q(Z) we obtain from

above

(1 + µ)L(x) = (I −Q)(F (x) − µF (−x)) + (1 − µ)z (7.176)

and

Q(F (x) − µF (−x)) = 0. (7.177)

From (7.176) and (7.165) we have

(1 + µ)(I − P )(x) = (1 + µ)KPL(x) (7.178)

= KP (I −Q)(F (x) − µF (−x)) + (1 − µ)KP z. (7.179)

Using this and (ii) we get

(1 + µ)‖(I − P )(x)‖ ≤ λ‖x‖δ + µλ‖ − x‖δ + (1 − µ)‖KP z‖+ (1 + µ)ν

which yields

‖(I − P )(x)‖ ≤ λ‖x‖δ + ‖KP z‖+ ν. (7.180)

Let u = P (x) and v = (1 − P )(x) and r = ‖KP z‖+ ν. Then (7.180) reduces to

‖v‖ ≤ λ‖u+ v‖δ + r. (7.181)

Let us assume that ‖u‖ 6= 0. Then from (7.181) we obtain

‖v‖
‖u‖δ ≤ λ(1 +

‖v‖
‖u‖)δ +

r

‖u‖δ (7.182)

≤ λ+
λδ

‖u‖1−δ
‖v‖
‖u‖δ +

r

‖u‖δ , (7.183)
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where the last inequality is obtained by applying the Mean Value Theorem to the

real valued function f(t) = (1 + t)δ. Let t1 > 0 be the number such that whenever

‖y‖ ≥ t1, y ∈ X , we have

λδ

‖y‖1−δ ≤ 1

2
.

Thus if ‖u‖ ≥ t1, (7.182) implies

‖v‖
‖u‖δ ≤ 2(λ+ rt1

−δ = R, say.

Let V = {y ∈ KerP : ‖y‖ ≤ R}. Now by (iii) there exists t0 > 0 such that for all

t ≥ t0, w ∈ KerL ∩ ∂B(1) and y ∈ V ,

QF (tw + tδy) − µQF (−tw − tδy) 6= 0. (7.184)

Therefore if ‖u‖ ≥ max(t1, t0), we have ‖v‖/‖u‖δ ∈ V and w = u/‖u‖ ∈ KerL ∩
∂B(1), and by (7.184),

QF (x)−µQF (−x) = QF (u+ v) − µQF (−u− v) (7.185)

= QF (‖u‖ u

‖u‖ + ‖u‖δ ‖v‖
‖u‖δ ) − µQF (−‖u‖ u

‖u‖ − ‖u‖δ ‖v‖
‖u‖δ ) (7.186)

6= 0 (7.187)

which contradicts (7.177). Hence we can conclude that we have always ‖u‖ <

max(t0t1) = t. Now (7.181) implies that

‖v‖ ≤ λ(t+ ‖v‖)δ + r. (7.188)

Let t̄ be the unique positive solution of the equation α−λ(t+α)δ−r = 0. Then

(7.188) implies that ‖v‖ ≤ t̄. Thus we have obtained a priori bound of x, namely

‖x‖ ≤ t+ t̄.

Let R̄ > (t+ t̄) be any positive real number and Ω = {x ∈ X : ‖x‖ < R}. Now an

application of Lemma 7.9 to the triple (L,N,Ω) proves the theorem.

Corollary 7.34.1 Let H be a Hilbert space and L : domL ⊂ H → H be a closed

linear mapping with dense domain and closed range with the property that KerL =

KerL∗ or equivalently ImL = (KerL)⊥ and dim KerL < ∞ (note that a closed

self-adjoint operator L on H with dim KerL < ∞ satisfies all these conditions).

Let F : H → H be a continuous mapping which maps a bounded set into a bounded

set. Noting that L is a Fredholm mapping of index zero assume that (I) and (ii) of

Theorem 7.34 hold. Further assume that

(a) for each R > 0, there exists t0 > 0 such that for all t ≥ t0, w ∈ KerL∩∂B(1),

v ∈ KerP ∩ B(R) and µ ∈ [0, 1]:

(F (tw + tδv) − µF (−tw − tδv), w) 6= 0,
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where (·, ·) denotes the inner product on H.

Then the equation L(x) = F (x) + Z has a solution for every z ∈ ImL.

Proof. Clearly H = ImL ⊕ KerL and KerP = ImL where P is the orthogonal

projection of H onto KerL. Thus we can take Q = P . Let dim KerL = n and

w1, w2, . . . wn be an orthonormal basis of KerL. Thus for each x ∈ H ,

P (x) = Q(x) =

n∑

i=1

(x,wi)wi.

We need only to verify the condition (iii) of Theorem 7.34. Let R > 0 be given.

Then there exists t0 > 0 satisfying the condition (a) above. We claim that t0
satisfies (iii) of Theorem 7.34.

Let t ≥ t0, w ∈ KerL ∈ ∂B(1), v ∈ KerP ∩ B(R) and µ ∈ [0, 1]. Let w =∑n
i=1 αiwi. Then

(Q(F (tw + tδv) − µF (−tw − tδv), w) (7.189)

= (

n∑

i=1

(F (tw + tδv) − µF (−tw − tδv), wi)wi,

n∑

i=1

αiwI) (7.190)

= (F (tw + tδv) − µF (−tw − tδv), w) 6= 0 by (a). (7.191)

This implies that Q(F (tw+ tδv)−µF (−tw− tδv)) 6= 0. Hence all the conditions of

Theorem 7.34 are fulfilled.

Remark 7.27 If the condition (a) of the above corollary is replaced by (a)′ for

each R > 0 there exists t0 > 0 such that for all t > t0, w ∈ KerL ∩ ∂B(1) and

v ∈ KerP ∩ B(R):

(F (tw + tv), w) > 0,

then the conclusion of the corollary still holds. This is because (a)′ implies (a). For

clearly (F (−tw − tδv, w) = −F (−tw − tδv,−w)) < 0.

Theorem 7.35 Let D be a bounded domain in Rn and H = L2(D). Let L :

domL ⊂ H → H be a Fredholm mapping of index zero and be as in Corollary

7.34.1, (P,Q) being an exact pair of continuous projections with respect to L. Let

f : D × R → R be a function satisfying Carathéodory conditions, that is, for each

fixed u ∈ R, the function x→ f(x, u) is measurable in D and for each x → ω (a.e.)

the function u → f(x, u) is continuous. Assume that there are constants λ > 0,

δ ∈ [0, 1) and function b ∈ L2(D) such that

|f(x, u)| ≤ λ|u|δ + b(x) for a.e. x ∈ D and ∀u ∈ R. (7.192)

Under these conditions it is well known that the mapping defined by N(u)(x) =

f(x, u(x)), u ∈ H maps H into H, is continuous, and maps a bounded set into a

bounded set; in fact we have ‖N(u)‖ ≤ λ‖u‖δ + ‖b‖ where ‖ · ‖ denotes the norm in

H, that is, L2-norm.
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Further assume that

(i) KP (I−Q)N is a k-set contraction on each bounded subset of H with 0 ≤ k <

1;

(ii) there are functions h+ , h−, ∈ L2/(1−δ)(D) such that

lim
u→+−∞

f(x, u)

|u|δ = h+−(x);

(iii) for each v ∈ KerL ∩ ∂B(1) and all µ ∈ [0, 1]

∫

[v>0]

h+‖v‖1+δ −
∫

[v<0]

h−‖v‖1+δ 6= µ[

∫

[v>0]

h−‖v‖1+δ −
∫

[v<0]

h+‖v‖1+δ]

where [v >< 0] = {x ∈ D; v(x) >< 0}.

Then the operator equation L(u) = N(u) has a solution.

Proof. By virtue of Corollary 7.34.1 it will suffice to prove that for every R > 0,

there exists t0 > 0 such that for all t ≥ t0, w ∈ KerL ∩ ∂B(1), v ∈ KerP ∩ B(R)

and µ ∈ [0, 1]:

(N(tw + tδv), w) 6= µ(N(−tw − tδv), w)

where (·, ·) denotes the inner product in L2(D). We prove by contradiction. Suppose

that the above is false. Then there exists R > 0) there exists {µn}, µn ∈ [0, 1],

there exists {tn}, tn > 0 and tn → ∞), there exists {vn}, vn ∈ KerP ∩ B(R)) and

there exists {wn}, wn ∈ KerL ∩ ∂B(1)): (N(tnwn + tδvn), wn) = µn(N(−tnwn −
tδnvn), wn), that is,

∫

D

[f(x, tnwn(x) + tδnvn(x))wn(x) − µnf(x,−tδnwn(x) − tδnvn(x))wn(x)]dx = 0.

(7.193)

Since dim KerL < ∞ and µn ∈ [0, 1], we may assume (going to subsequence if

necessary), µn → µ ∈ [0, 1], wn → w in ‖ · ‖, wn + tδ−1
n vn → w in ‖ · ‖ and

wn(x) + tδ−1
n vn(x) → w(x) a.e. in D. Thus for almost all x ∈ [w > 0] (resp.

[w < 0]) there exists a positive integer n0(x) such that for all n ≥ n0(x)

wn(x) + tδ−1
n vn(x) >

w(x)

2
(resp. <

w(x)

2
)

Hence for a.e. in [w > 0] (resp. [w < 0]), as n→ ∞
{
tnwn(x) + tδnvn(x) → +∞ (resp. −∞), and

−tnwn(x) − tδnvn(x) → −∞ (resp. +∞).
(7.194)
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Let us first consider the integral

∫

D

t−δn f(x,−tnwn(x) − tδnvn(x))wn(x)dx (7.195)

=

∫

[w>0]

t−δn f(·, ·)w(x)dx +

∫

[w<0]

t−δn f(·, ·)w(x)dx (7.196)

+

∫

D

t−δn f(·, ·)(wn(x) − w(x))dx. (7.197)

The last integral of the right hand side of (2.12) tends to zero as n→ ∞. For

|
∫

D

t−δn f(·, ·)(wn(x) − w(x))dx| ≤ (

∫

D

(t−2δ
n f2(·, ·)dx)1/2‖wn − w‖ (7.198)

≤ [λ‖wn + tδ−1
n vn‖δ + t−δn ‖b‖]‖wn − w‖. (7.199)

The first factor of (7.198) is derived from the growth condition (7.192). Again the

sequence {t−δn f(x,−tnwn(x)−tδnvn(x))} is ‖·‖ bounded in L2(D) (being dominated

by the first factor of the right hand side of (7.198) and due to the fact that wn +

tδ−1
n vn → w in ‖ · ‖).

Similarly

∫

D

t−δn f(x, tnwn(x) + tδnvn(x))dx (7.200)

=

∫

[w>0]

t−δn f(·, ·)(w(x)dx +

∫

[w<0]

t−δn f(·, ·)(w(x)dx (7.201)

+

∫

D

t−δn f(·, ·)(wn(x) − w(x))dx (7.202)

and we can show in the same way as in the previous case that the last inte-

gral of the right hand side of (7.200) tends to zero as n → ∞ and the sequence

{t−δn f(x, tnwn(x) + tδnvn(x))} is ‖ · ‖ bounded in L2(D).

Now using (7.194)

lim
n→∞

f(x, tnwn(x) + tδnvn(x))

tδn
(7.203)

= lim
n→∞

f(x, tnwn(x) + tδnvn(x))

|tnwn(x) + tδnvn(x)|δ |wn(x) + tδ−1
n vn(x)|δ (7.204)

= h+−(x)|w(x)|δ a.e. in [w >< 0] (7.205)
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and

lim
n→∞

f(x,−tnwn(x) − tδnvn(x))

tδn
(7.206)

= lim
n→∞

f(x,−tnwn(x) − tδnvn(x))

| − tnwn(x) − tδnvn(x)|δ | − wn(x) − tδ−1
n vn(x)|δ (7.207)

= h−+(x)|w(x)|δ a.e. in [w >< 0]. (7.208)

Hence

lim
n
t−δn [f(x, tnwn(x) + tδnvn(x)) − µnf(x,−tnwn(x) − tδnvn(x))] (7.209)

= (h+−(x) − µh−+(x))|w(x)|δ a.e. in [w >< 0]. (7.210)

Now as we already know that the sequence {t−δn [f(x, tnwn(x) + tδnvn(x)) −
µnf(x,−tnwn(x)− tδnvn(x))]} is ‖ · ‖ bounded in L2(D) and hence in L2([w >< 0]),

it converges weakly in L2([w >< 0]) (going to a subsequence if necessary) to its

pointwise limit given in (7.209). Hence as n→ ∞,
∫

[w><0]

t−δn [f(x, tδnwn(x) + tδnvn(x)) − µnf(x,−tnwn(x) − tδnvn(x))]w(x)dx

(7.211)

→
∫

[w><0]

+−(h+−(x) − µh−+(x))|w(x)|δ+1dx. (7.212)

Now adding (7.200) and −µn times (7.198) and letting n → ∞ and noting (7.193)

and (7.211) we obtain
∫

[w>0]

h+(x))|w(x)|δ+1dx− µ

∫

[w>0]

h−(x))|w(x)|δ+1 (7.213)

−
∫

[w<0]

h−(x))|w(x)|δ+1 + µ

∫

[w>0]

h+(x))|w(x)|δ+1dx = 0 (7.214)

which contradicts (iii), and the theorem is proved.

Corollary 7.35.1 In Theorem 7.35 if the condition (iii) is replaced by either of

the conditions

(0) for each v ∈ KerL ∩ ∂B(1)

[

∫ 1+δ

[v>0]h+|v|
−
∫ 1+δ

[v<0]h−|v|
][

∫ 1+δ

[v>0]h−|v|
−
∫ 1+δ

[v<0]h+|v|
] < 0,

(00) for each v ∈ KerL ∩ ∂B(1) either

0 ≤ [

∫ 1+δ

[v>0]h−|v|
−
∫ 1+δ

[v<0]h+|v|
] < [

∫ 1+δ

[v>0]h+|v|
−
∫ 1+δ

[v<0]h−|v|
],
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or

[

∫ 1+δ

[v>0]h+|v|
−
∫ 1+δ

[v<0]h−|v|
] < [

∫ 1+δ

[v>0]h−|v|
−
∫ 1+δ

[v<0]h+|v|
] ≤ 0,

(000) for each v ∈ KerL ∩ ∂B(1)

∫ 1+δ

[v>0]h+|v|
−
∫ 1+δ

[v<0]h−|v|
> 0,

then the equation L(u) = N(u) has a solution.

Proof. Obviously each of (0) and (00) implies the condition (iii). If (000) holds,

then proceeding exactly as in Theorem 7.35 we can show that for each R > 0,

there exists t0 > 0 such that for all t ≥ t0, w ∈ KerL ∩ ∂B(1), v ∈ KerP ∩ B(R):

(N(tw + tδv), w) > 0. This in turn implies that for all µ ∈ [0, 1]

(N(+w + tδv), w) 6= µ(N(−tw − tδv), w).

For (N(−tw − tδv), w) = −(N(−tw − tδv),−w) < 0.

Corollary 7.35.2 Let L and f satisfy all the conditions of Theorem 7.35 with

δ = 0. In addition assume that for a.e. in D and such u ∈ R either

j−(x) ≤ f(x, u) < h+(x), (7.215)

h−(x) < f(x, u) ≤ h+(x). (7.216)

Then the condition (iii) of Theorem 7.35 is also necessary for the existence of a

solution of the equation L(u) = N(u).

Proof. Let u be a solution of L(u) = N(u). Let 0 6= v ∈ KerL. Then∫
D
F (x, u(x))v(x)dx = (N(u), v) = (L(u), v) = 0, as L(u) ∈ KerP and v ∈ KerL =

ImP and P is orthogonal projection. Thus
∫
[
v > 0]f(x, u(x))|v(x)|dx −

∫
[
v <

0]f(x, u(x))|v(x)|dx = 0. We assume that (7.215) holds. Then
∫

[v>0]

h+(x)|v(x)|dx >
∫

[v>0]

f(x, u(x))|v(x)|dx (7.217)

=

∫

[v<0]

f(x, u(x))|v(x)|dx ≥
∫

[v<0]

h−(x)|v(x)|dx. (7.218)

Thus
∫
[v>0] h+|v| −

∫
[v<0] h−|v| > 0. Also

∫
[v>0] h−(x)|v(x)|dx ≤

∫
[v>0] f(x, u(x))×

|v(x)|dx =
∫
[v<0] f(x, u(x))|v(x)|dx <

∫
[v<0] h+(x)v(x)dx, that is,

∫
[v>0] h−v −∫

[v<0]
h+v < 0. Therefore condition (iii) holds for each µ ∈ [0, 1]. Similarly we

can show that (iii) holds under (7.216).

In this context Tarafdar (1983) considered the Theorem VII.1 in Gaines and

Mawhin (1977):
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Theorem 7.36 Let L : domL ⊂ X → Z be a Fredholm mapping of index zero

and F : X → Z a continuous mapping which maps a bounded set into a bounded

set. Let P,Q) be an exact pair of continuous projections with respect to L. Assume

the following:

(i) there exist real numbers λ ≥ 0, r ≥ 0 such that

‖KP (I −Q)F (x)‖ ≤ λ‖x‖ + r for all x ∈ X ;

(ii) there exist real numbers λ ≥ 0 and s ≥ 0 such that each possible solution x of

the system of equations

Q[F (x) − µF (−x)] = 0, µ ∈ [0, 1],

satisfies the relation

‖P (x)‖ ≤ α‖(I − P )(x)‖ + s;

(iii) λ(1 + α) < 1; and

(iv) KP (I −Q)F is a k-set contraction with 0 ≤ k < 1. Then for each z ∈ ImL,

the equation L(x) = F (x) + z has at least one solution.

Proof. We define N : X → Z by

N(x) = F (x) + z, x ∈ X.

We assume that for some x ∈ X0 and some µ ∈ [0, 1]

(L−N)(x) = µ(L−N)(−x).

Then using (7.165), conditions (i) to (iii) we can easily show that

‖x‖ ≤ (1 + α)r + α‖KP z‖+ s

1 − λ(1 + α)
= t, say.

Let R be any number > t. Then the theorem is proved by applying Lemma 7.9 to

(L,N,Ω) where Ω = {x ∈ X : ‖x‖ < R}.
Corollary 7.36.1 Let X = B(S,Rn), the space of bounded mappings of S into

Rn with a norm satisfying

‖x‖ ≥ sup
s∈S

|x(s)|, x ∈ X.

Let L and F be as in Theorem 7.36. Assume the following:

(i)′ there exists β > 0 such that for each u ∈ KerL and each s ∈ S,

‖u‖ ≤ β|u(s)|;

(ii)′ there exists r1 > 0 such that for each x ∈ domL satisfying |x(s)| ≥ r1 for all

s ∈ S,

Q[N(x) − µN(−x)] 6= 0 for all µ ∈ [0, 1].



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Degree Theories for Set-Valued Mappings 521

(iii)′ ‖KP (I −Q)F (x)‖ ≤ λ‖x‖ + r where 0 ≤ λ < (1 + β)−1 and r ≥ 0; and

(iv)′ KP (I−Q)F is a k-set contraction on each closed bounded set with 0 ≤ k < 1.

Then for each z ∈ ImL, the equation L(x) = F (x) + z has a solution.

Proof. By similar argument as in the proof of Theorem VII.2 in Gaines and Mawhin

(1977) we can show that any solution x of the system of equations

Q[N(x) − µN(−x)] = 0 for all µ ∈ [0, 1]

satsfies the relation ‖P (x)‖ ≤ β‖(I − P )(x)‖ + βr. Thus with α = β and s = βr1
the condition (ii) of Theorem 7.36 is satisfied. By (iii)′ we have λ(1 + α) < (1 +

β)/(1 + β) = 1 and the condition (iii) of Theorem 7.36 is satisfied. Thus the

corollary follows from Theorem 7.36.

Corollary 7.36.2 Let X be as in Corollary 7.36.1 with additional condition that

‖x‖ = sups∈S |x(s)| when x is a constant mapping of S into Rn. Let L : domL ⊂
X → Z be a linear mapping such that ImL is closed and of co-dimension n and

KerL = {x ∈ X : x is a constant function}. Clearly L is a Fredholm mapping

of index zero. Let F be as in Corollary 7.36.1. Assume that conditions (ii)′ and

(iv)′ hold and (iii)′ holds with λ < 1/2. Then for each z ∈ ImL, The equation

L(x) = F (x) + z has a solution.

Proof. The condition (I′) of Corollary 7.36.1 holds with β = 1. Hence the corollary

follows from Corollary 7.36.1.

7.5.1 Tarafdar’s Application to Elliptic Boundary Value Problems

In this section KerL of the linear mapping L will be assumed to be non-zero.

Application 1. Let D be a bounded domain in Rn. With α = (α1, α2, . . . , αn),

β = (β1, β2, . . . , βn), αiβi ∈ N and |α| =
∑n

i=1 αi, let aαβ , 0 ≤ |α|, |β| ≤ m be real

valued L∞(D)-functions. Let aαβ = aβα and moreover with |α| = |β| = m, aαβ be

uniformly continuous. Assume that there exists a constant c > 0 such that
∑

|α|≤m,|β|≤m
aαβ(x)ξ

αξβ ≥ c|ξ|2m, for all ξ ∈ Rn and x ∈ D.

Let Hm
0 (D) be the completion of the space C∞

0 (D) under the norm

‖φ‖m = [
∑

|α|≤m

∫

D

|Dαφ|2]1/2.

We define the bilinear form (in C∞
0 (Ω))

a(u, v) =
∑

|α|=m,|β|=m

∫

D

aαβ(x)D
αu(x)Dβv(x)dx.
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Let f : D×R → R be a function as considered in Theorem 7.35, that is, f satisfies

the Carathéodory condition and the growth condition (7.192). We are interested in

the existence of u ∈ Hm
0 (D) such that

a(u, v) =

∫

D

f(x, u(x))v(x)dx (7.219)

for all v ∈ Hm
0 (D).

We define a linear mapping L : domL ⊂ L2(D) → L2(D) as follows:

domL = {u ∈ Hm
0 : v → a(u, v) is continuous in Hm

0 with L2-norm}.

Then using the fact that Hm
0 (D) is dense in L2(Ω) and the representation theorem

for functionals on Hilbert space we have, for each u ∈ domL, a unique L(u) ∈ L2(D)

such that for all v ∈ Hm
0 (D), a(u, v) = (Lu, v) where (·, ·) denotes the inner product

in L2(D). u → Lu is a linear mapping of L2(D) into L2(D). Now clearly the

existence of u satisfying (7.219) is equivalent to the existence of u satisfying the

operator equation L(u) = N(u).

Theorem 7.37 Assume that the assumptions in (7.219) above hold and condition

(ii) of Theorem 7.35 holds. Then the boundary value problem (7.219) has a solution

if either the condition (iii) of Theorem 7.35 holds or any one of the conditions (0)

to (000) of Corollary 7.35.1 holds.

Proof. It is known from the L2 theory of elliptic boundary value problems that

L is a Fredholm mapping of index zero and KP is compact. Hence the theorem

follows from Theorem 7.35 and Corollary 7.35.1 respectively.

Remark 7.28 In the case of δ = 0 the necessary condition of Theorem 7.37 is

exactly the same as in Corollary 7.35.2.

Remark 7.29 In Tarafdar (1983) it was observed that Theorem 7.37 was first

proved by Landesman and Lazer (1970) with second order linear part, dim KerL = 1

and δ = 0. Williams (1970) generalized the result with KerL of arbitrary finite

dimension and the higher order linear part. Theorem 7.37 was proved by Figueiredo

(1974) with condition (000) of Corollary 7.35.1 by using a perturbation argument

of Hess (1974), and was given in the above form with the same condition (000)

by Gaines and Mawhin (1977) by using an extended form of the Leray-Schauder

continuation theorem in terms of coincidence degree and Poincaré-Bohl Theorem.

Application 2. In Tarafdar (1983) the analogue of Theorem VIII.I in Gaines and

Mawhin (1977) was considered as an application to Tarafdar’s Corollary 7.36.2. Let

D be a bounded domain in Rn and ai,j : D → R (i, j = 1, 2, . . . , n) be measurable

and bounded functions. Assume that there exist constants m,M with 0 < m < M

such that for all x ∈ D and ξ ∈ Rn,

m|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ≤M |ξ|2



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Degree Theories for Set-Valued Mappings 523

where |ξ| is the Euclidean norm in Rn and that f : D̄ × R → R is a continuous

mapping, where D̄ = clD. Let H1 = H1,2(D) be the completion of C1(D), the

space of C1-real functions in D under the Sobolev norm

‖u‖1,2 = ‖u‖L2(D) +

n∑

i=1

‖Diu‖L2(D)

where Diu = ∂u/∂xi. Here we are interested to find the existence of u ∈ H1

satisfying n

a(u, v) =

n∑

i,j=1

ai,j(x)Diu(x)Djv(x)dx (7.220)

=

∫

D

f(x, u(x))v(x)dx (7.221)

for all v ∈ H1.

We now define a linear mapping L̃ : L2(D) → L2(D) as follows:

DomL̃ = {u ∈ H1 : v → a(u, v) is continuous in H1 in L2-norm.}

Since H1 is dense in L2(D), we have by representation theorem for functionals that

for each u ∈ domL there is a unique L̃(u) ∈ L2(D) such that

a(u, v) = (L̃(u)v) for v ∈ H1

where (·, ·) is as before the inner product in L2(D). Then clearly u → L̃(u) is a

linear mapping of L2(D) into L2(D). Thus for h ∈ L2(D) the equation

a(u, v) = (h, v) for all v ∈ H1 (7.222)

is equivalent to (L̃(u), v) = (h, v) for all v ∈ H1 and hence to

L(u) = h (7.223)

as H1 is dense in L2(D).

It is well known from the classical result of L2-theory of linear elliptic boundary

value problems that under the assumptions made above (7.222) and hence (7.223)

is solvable if and only if h satisfies the relation
∫
D
h = 0. In other words h ∈ ImL̃(u)

if and only if
∫
D
h = 0. Thus L̃h1 = L̃h2 implies h1 − h2 is constant. In particular

then u ∈ KerL̃ if and only if u is a constant function. Thus if we define the

projection P̃ : L2(D) → L2(D) by P̃ u = (meas D)−1
∫
D
u, then KerL̃ = ImP̃

and ImL̃ = KerP̃ . Now assuming sufficient regularity assumptions on D and using

the regularization theory for (7.222) it can be shown (see for details Gaines and

Mawhin (1977), p. 152) that if L is the restriction of L̃ to L−1(C0(D̄)) and P is the

restriction of P̃ to (C0(D̄)), then L : C0(D̄) → C0(D̄) is a Fredholm mapping of
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index zero, (P, P ) is an exact pair of continuous projections with respect to L, and

there exists a constant k > 0 and a α ∈ (0, 1) such that for each v ∈ KerP

‖KP v‖C0,α(D) ≤ k‖v‖C0(D̄) (7.224)

where

‖u‖C0,α(D) = sup
x∈D

|u(x)| + sup
x,y∈D,x6=y

|u(x) − u(y)|
‖x− y‖α

and C0(D̄) is the space of real continuous functions on D̄. (7.224) implies that KP

is compact.

We now define F : C0(D̄) → C0(D̄) by

(F (u))(x) = f(x, u(x)), x ∈ D̄.

We also assume that there exist β ≥ 0 and s ≥ 0 such that for all x ∈ D̄ and u ∈ R,

|f(x, u) ≤ β|u| + s. (7.225)

Clearly F maps a bounded set into a bounded set and is continuous.

Theorem 7.38 Let D ⊂ Rn and ai,j : D → R (i, j = 1, 2, . . . , n) satisfy all

assumptions made above. Let f : D̄ × R → R be continuous satisfying (7.225).

Further assume that

(a) β < 1
4k where k is as obtained in (7.224);

(b) there exists R > 0 such that for each u ∈ C0(D̄) satisfying |u(x)| ≥ R for all

x ∈ D̄
∫

D

[f(x, u(x)) − µf(x,−u(x))] 6= 0 for all µ ∈ [0, 1].

Then the problem (7.220) has a solution.

Proof. Clearly (b) implies condition (ii)′ of Corollary 7.36.1. Since KP is compact,

KP (I − P )N is 0-set contraction and hence (iv)′ of Corollary 7.36.1 holds. Now

from (7.225)

‖Fu‖c0(D̄) ≤ β‖u‖c0(D̄) + s

and hence using (7.224)

‖KP (I − P )F (u)‖c0(D̄) ≤ 2k(β‖u‖c0(D̄) + s).

Thus from this and (a) it follows that condition (iii) of Corollary 7.36.1 holds with

λ < 1/2. Hence proof of the theorem is complete.

Corollary 7.38.1 Let D ⊂ Rn, ai,j(i, j = 1, 2, . . . , n) and f be as in Theorem

7.38 and let (a) of Theorem 7.38 hold. Assume that there exists (b′) R ≥ 0 such
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that for each u ∈ C0(D̄) satisfying |u(x)| ≥ R for all x ∈ D̄,

[

∫

D

f(x, u(x))dx][

∫

D

f(x,−u(x))dx] < 0.

Then the problem (7.220) has a solution.

Proof. (b′) implies (b) of the Theorem 7.38.

Remark 7.30 In this section the application of the Lemma 7.9 in the case when

KPN is non-compact but is of k-set contraction with 0 < k < 1 has not been

considered.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarafdar (1983).

7.6 Further Results in Coincidence Degree Theory

We shall start with the following result in Mawhin (1972) which is the basic for

defining coincidence degree:

Proposition 7.20 Let X and Z be as above, L : domL ⊂ X → Z a linear

mapping and N : Ω ⊂ X → Z be a mapping (not necessarily a linear). Suppose

that there exists a mapping ψ : cokerL → kerL such that ψ−1(0) = 0.Then x is a

solution of the operator equation L(x) = N(x) if and only if x is a fixed point of

the mapping N : Ω → X defined by

M(x) = P (x) + ψπN(x) +KP (I −Q)N(x), (7.226)

x ∈ Ω where (P,Q) is an exact pair of algebraic projections with respect to L.

Proof. This is just a variant of Proposition III.2 in (Gaines and Mawhin (1977),

pp. 13–14), and the same proof applies.

Let us now assume that X and Z are normed linear spaces over the real field.

L : domL ⊂ X → Z is a Fredholm mapping of index > 0; i.e. ImL is closed,

dimkerL = m < ∞, dimcokerL = p < ∞ and m − p > 0, and N : Ω ⊂ X → Z

is a mapping where Ω is a bounded open set. Then clearly there exists an exact

pair (P,Q) of continuous projections and a mapping ψ : cokerL → kerL with

ψ−1(0) = 0. Further we assume that (a) πN is continuous and N(ClΩ) is bounded,

where ClΩ denotes closure of Ω; and (b) KP (I−Q)N is completely continuous (i.e.

KP (I −Q)N is continuous and KP (I −Q)N(ClΩ) is relatively compact (here I is

the identify on Z).

With these assumptions it is easy to see that the mapping M : ClΩ → X defined

by

M(x) = P (x) + ψπN(x) +KP (I −Q)N(x), x ∈ ClΩ

is completely continuous.
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Now if 0 6∈ (L−N)(∂Ω ∩ domL) where ∂Ω denotes the boundary of Ω, then by

Proposition 7.20, 0 6∈ (I −M)(∂Ω) and hence Leray-Schauder degree d(I −M,Ω, 0)

of I−M on Ω over 0 is well-defined where I is the identity inX . Gaines and Mawhin

(1977) (also see Mawhin (1972)) has shown that d(I −M,Ω, 0) is independent of

the exact pair (P,Q) of continuous projections and depends only on L, N , Ω and

ψ. d(I −M,Ω, 0) is called the coincidence degree of the pair (L,N) and is denoted

by d[(L,N),Ω]. d[(L,N) < Ω] has all the important properties of Leray-Schauder

degree. It is shown in (Mawhin (1972), p. 626), also in (Gaines and Mawhin (1977),

p. 229), that if Ind l = index ofL > 0, then d((L,N),Ω) = 0 and this fact is then

used to prove the existence theorem of the operator equation L(x) == N(x) on the

boundary ∂Ω when N is an odd mapping and an indication for possible application

to elliptic boundary value problem is given (see chapter XII of Gaines and Mawhin

(1977)).

In Tarfadar (1979), Tarafdar first mentioned an important fact that if ImN ⊂
ImL and KerL 6= 0, then d[(L.N),Ω] = 0 even when IndL = 0. So far as coincidence

degree theory is concerned this is a negative result but as Tarafdar mentioned before

it can be used to prove existence theorem on the boundary for odd mappings. In

this section we shall present this result from Tarfadar (1979). In fact we shall give

the proof of a more general result in Tarfadar (1979), and the above result will be

a particular case of the latter.

Next, we shall state and prove the following proposition which is a special case

of the Proposition 7.20:

Proposition 7.21 Let X, Z, Ω, N be as in Proposition 7.20. Further assume

that ImN ⊂ L, then x is a solution of the operator equation L(x) = N(x) if anf

only if x is a fixed point of the mapping M : ClΩ → X defined by

M(x) = P (x) +KpN(x), x ∈ ClΩ, (7.227)

where P is any algebraic projection X → kerL. (Q has no effect because of (7.166).

Proof. First, let X = M(x) = P (x) + KPN(x). Then L(X) = N(x) because of

(7.164). Conversely, let L(x) = N(x). Then KPN · (x) = KPL(x) = (I − P )(x) by

(7.165). Thus x = P (x) +KPN(x).

Let us now consider the following conditions:

(1) X and Z are Banach spaces and Ω is an open bounded subset of X .

(2) L : (dom)L ⊂ X → Z is a linear mapping such that kerL 6= 0 and is comple-

mented, i.e. there exists a continuous projection P : X → kerL.

(3) N : ClΩ → Z is a mapping with ImN ⊂ ImL.

(4) KPN is completely continuous.

Now under these conditions if kerL is finite dimensional, then clearly the map-

ping M defined by (7.227) is completely continuous where P appearing in the defi-

nition of M is the � P � of condition (2).
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If dimker = ∞, then let Xn be a finite dimensional sub-space of kerL. It is

well known that there is a continuous projection Pn : kerL → Xn. It is clear that

PnP : X → Xn is a continuous projection. We define a mapping Mn : ClΩ → X

by

Mn(x) = PnP (x) +KPN(x), x ∈ ClΩ. (7.228)

Since PnP is continuous and has finite dimensional range and KPN is completely

continuous, it follows that Mn is completely continuous. IF dimker < ∞, we will

take Xn = X and Pn = P , i.e. we will regard Mn = M . Thus if 0 6∈ (I −Mn)(∂Ω),

then under the conditions (1)to (4), d(I −Mn,Ω, 0), the Leray-Schauder degree of

I −Mn on Ω over 0 is well-defined.

Lemma 7.10 If x is a fixed point of Mn, then x is a fixed point of M .

Proof. Let x be a fixed point of Mn. Then x = Mn(x) = PnP (x) + KpN(x).

Hence P (x) = PnP (x) by (7.163) (more precisely as KPN(x) ∈ kerP ) and by the

fact that PnP (x) ∈ ImP . Hence x = P (x) +KPN(x) = M(x).

Theorem 7.39 Assume that (1), (2), (3) and (4) hold and 0 6∈ (I −Mn)(∂Ω),

then d(I −Mn,Ω, )) = 0.

Proof. Since Mn is completely continuous and ∂Ω is closed, (I−Mn)(∂Ω) is closed

(e.g. see Nagumo (1951), Theorem 1, p. 499).3 Again since 0 6∈ (I−Mn)(∂Ω), there

exists a convex neighborhood G of 0 such that G ∩ (I −Mn)(∂Ω) = ∅. Hence

d(I −Mn,Ω, y) = d(I −Mn,Ω, 0) for all y ∈ G

(again see Nagumo (1951), Corollary 2, p. 505). Now since

I −Mn = I − PnP −KPN and Im(I − PnP ) = X1

whereX1 us defined by X = X1⊕Xn and X1∩Xn = 0, it follows that Im(I−Mn) ⊂
X1. Again since O ∈ Xn, there exists z ∈ G ∩Xn with z 6= 0. Thus

(I −Mn,Ω, 0) = (I −Mn.Ω, z) = 0 as z 6∈ Im(I −Mn).

This completes the proof.

Corollary 7.39.1 Let L : domL ⊂ X → Z be a Fredholm mapping of index zero

with kerL 6= 0 and assume that (1), (3) and (4) hold and 0 6∈ (L−N)(∂Ω∩ domL),

then the coincidence index d[(L,N),Ω] = 0.

Proof. We take M = Mn. Since 0 6∈ (L − N)(∂Ω ∩ domL), by Proposition 7.21

0 6∈ (I −M)(∂Ω). Now applying Theorem 7.39 and definition of d[(L,N),Ω] we

obtain the corollary.

3The object of citing Nagumo (1951) instead of the corresponding references in normed linear
space is to indicate that the results can be extended in separated locally convex topological vector
spaces in the line of Mawhin (1972).
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Now we present the main result in Tarfadar (1979):

Corollary 7.39.2 Assume that (1), (2), (3) and (4) hold. Further assume that Ω

be an open bounded symmetric neighborhood of 0 and N is odd on ∂Ω i.e.N(−x) =

−N(x) for all x ∈ ∂Ω. Then there is a solution x ∈ ∂Ω of the operator equation

L(x) = N(x).

Proof. If 0 ∈ (I −Mn)(∂Ω). Then by Lemma 7.10 and Proposition 7.20 theorem

will follow. Thus it would suffice to prove that 0 ∈ (I −Mn)(∂Ω). We suppose on

the contrary that 0 6∈ (I −Mn)(∂Ω). Then d(I = Mn,Ω, 0) is well-defined. Since

N is odd on ∂Ω it follows that Mn is odd on ∂Ω. Hence by Bosuk’s theorem on

Leray-Schauder degree d(I−Mn,Ω, 0) = 1(mod2) which contradicts Theorem 7.39.

This proves our corollary.

The above results can also be used to prove some mapping theorems. We shall

give a particular case in Tarfadar (1979):

Theorem 7.40 Let L be a Fredholm mapping of index zero with kerL 6∈ 0 and Ω

an open bounded neigbourhood of zero. Assume that (1), (3) and (4) hold and that

N(0) = 0. If L−N is one-to-one (on domL ∩ ClΩ), then ImN 6⊂ ImL.

Proof. If possible suppose that ImN ⊂ ImL. We can find a real number ε > 0

such that ClBε(0) ⊂ ClΩ where Bε(0) = {x ∈ X : ||x|| < ε} and D(IM , Bε, 0)

is well-defined and = ±1(see Gaines and Mawhin (1977), Theorem X.1, p. 190).

Now since by hypothesis N(ClΩ) ⊂ Im l we have N(CLBε(0)) ⊂ ImL. Hence

considering N as a mapping restrictrd to ClBε(0), it follows from Corollary 7.39.1,

d(I −M,Bε · (0), 0) = 0 which is a contradiction. This proves the theorem.

Remark 7.31 In Tarfadar (1979), Tarafdar mentioned that the result obtained in

this section is not completely independent from the known result that, if indL > 0,

d[(L < N),Ω] = 0. In fact, when ImN ⊂ ImL, one can consider the couple (L,N)

as a couple of mapping between the vector spaces X and ImL instead of between

the vector spaces X and Z. It follows at once from the definition of coincidence

degree that this degree is the same whatever the couple of spaces is chosen, and

with the first choice, one has that the index of L, relative to the spaces X and ImL

is necessarily strictly positive as far as kerL 6= (0), so that the coincidence degree

is zero by the known result.

Note that the results of this section have been written and presented after a

thorough revision of some results of an article in Tarfadar (1979).

7.7 Tarafdar and Thompson’s Theory of Bifurcation for the

Solutions of Equations Involving Set-Valued Mappings

In this section we shall present some results from Tarafdar and Thompson (1985)

on the theory of bifurcation for the solutions of equations involving set-valued

mappings.
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In the Leray-Schauder degree theory the study of the index of an isolated fixed

point of a compact mapping is a basic tool for the calculation of the degree. A fun-

damental and well-known result of Leray and Schrauder (1934), commonly known

as the Leray-Schauder principle, is that the topological index at zero of an invert-

ible linear perturbation of the identity I − A in a Banach space can be expressed

in terms of multiplicity of the characteristic values of A lying in the open interval

(0, 1). Krasnosel’skii (Krasnosel’skii (1963)) employed this result as a basic tool to

develop his bifurcation theory for equations of the form:

x− µAx −R(x, µ) = 0 (7.229)

in a real Banach space X , where A : X → X is a linear compact mapping, R : Ω̄×
R → X is compact mapping, R(x, µ) is of o(‖x‖) uniformly in µ in compact intervals

and Ω is a bounded open neighborhood of zero in X . Rabinowitz (1971) studied the

global character of the solution set of such equations and applied his results in many

directions. Because of the wide scope of applicability of the bifurcation theorem of

Krasnosel’skii and Rabinowitz a tremendous research interest in this field has been

evidenced currently (see Crandall and Rabinowitz (1971)) and the literature cited

there).

Our aim of this section is to present the results from Tarafdar and Thompson

(1985) which generalize the theorems of Krasnowel’skii and Rabinowitz to the set-

valued situation, i.e., to equations of the form:

x ∈ µAx+R(x, µ) (7.230)

where A is as above, B : Ω̄ × R → CK(X) is a compact set valued mapping and

B is of o(‖x‖) uniformly in µ in compact intervals (see definitions below), Ω being

as above and CK(X) being the set of all compact convex subsets of X . From the

result in Tarafdar and Thompson (1985) for equations of the form (7.230) Tarafdar

and Thompson deduced the same result for equations of the form:

Lx ∈ µAx+R(x, µ) (7.231)

where L : X → Z is a linear mapping, A : X → Z a compact linear mapping,

B : Ω̄ ×R → CK(Z) a compact mapping and of o(‖x‖) uniformly in µ in compact

intervals. The result for the equation when R is single valued was first obtained by

Laloux and Mawhin (1977) (see also Gaines and Mawhin (1977)). However, even

when R is single valued the result in Tarafdar and Thompson (1985) is more general

than that of Laloux and Mawhin (1977) (see Remark 7.36).

As an application of the results in Tarafdar and Thompson (1985), Tarafdar and

Thompson included a two point boundary value problem for a generalized ordinary

differential equation in Tarafdar and Thompson (1985). Tarafdar and Thompson

observed that their results in Tarafdar and Thompson (1985) would have application

to problems in control theory, mathematical economics and related problems.
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In all the results, from now on, X will denote a real Banach space and CK(X)

will denote the set of all compact convex subsets of X . A set valued mapping

N : Ω ∈ X → CK(X) is said to be compact if N is upper semicontinuous, and maps

bounded subsets of Ω into relatively compact subsets of X . The degree theory which

will be used here is due to Ma (1972) although all the results obtained for compact

mappings will equally hold for more general mappings known as ultimately compact

mappings by applying the degree theory for such mappings due to Petryshyn and

Fitzpatrick (1974).

Index. Let Ω be an open neighborhood of a ∈ X and N : Ω̄ → CK(X) be a

compact mapping. We assume that a ∈ N(a) and there exists ε0 > 0 such that

Bε0(a) ⊂ Ω and (I −N)−1(0) ∩ Bε0(a) = {a}; i.e., a is an isolated zero of I −N ,

where

Bε0(a) = {x ∈ X : ‖x− a‖ < εo}

and I is Identity mapping on X . This implies that for every

ε ∈ (0, ε0), ), 0 6∈ (I −N)(δBε, (a))

where δBε(a) denotes the boundary of Bε(a). Thus the degree d(I −N,Bε(a), 0) is

defined and is independent of ε ∈ (0, ε0) by the excision property of the degree.

Definition 7.25 Under the above assumptions the index of the fixed point a

of N is the integer d(I − N,Bε(a), 0) for any ε ∈ (0, ε0) and will be denoted by

i(I −N, a).

Remark 7.32 If N is single valued, then the index of a fixed point a of N as

defined above coincides with the Leray-Schauder index.

Proposition 7.22 Let N : Ω̄ → CK(X) be a compact-napping such that 0 6∈
(I − N)(δΩ and (I − N)−1(0) is a finite set, say, {a1, a2, . . . , an}; i.e., the set of

fixed points of N is finite.

Then

d(I −N,Ω, 0) =

n∑

j=1

I(I −N, aj).

Proof. We can find positive numbers cj , j = 1, 2, . . . , n such that

Bεj (aj) ∩ Bεk
(ak) = φ for any j, k ∈ {l, 2, . . . , n}

with j 6= k.

By the additivity and excision properties of degree we have

d(I −N,Ω, 0) = d(I −N,∪nj=1Bεj(aj), 0) =

n∑

j=1

i(I −N, aj).
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Definition 7.26 Let Ω ⊂ X be a bounded open neighborhood of the origin and

B : Ω̄ → CK(X) be an upper semicontinuous set valued mapping. B is said to be

of order o(‖x‖) if

‖x‖−1 sup ‖y‖ : y ∈ B(x) → 0 as‖x‖ → 0.

Remark 7.33 It is clear from the definition that B(O) = 0 and the definition

of o(‖x‖) coincides with the usual definition of o(‖x‖) when B is single valued.

Theorem 7.41 Let N = A+B where A : X → X is a linear compact mapping

with ker(I −A) = {0} and B : Ω̄ → CK(X) is a compact mapping of order o(‖x‖)
where Ω ⊂ X is a bounded open neighborhood of the origin. Then 0 is an isolated

zero of (I −N) and

i(I −N,O) = i(I −A,O)

where i(I −A,O) is the usual Leray-Schauder index of the fixed point 0 of A.

Proof. Since B is of order o(‖x‖) and A is linear, N(0) = 0. We can easily verify

that for each x ∈ Ω̄,

(I −N)(x) = (I −A)[I − (I −A)−1B](x). (7.232)

That (I −A)−1 exists follows from Riesz theory.

Now from the fact that B is of order o(‖x‖) it follows that there exists εo > 0

such that B̄εo ⊂ Ω 2 and for each x ∈ Bεo(O),

sup{‖y‖ : y ∈ (I −A)−1B(x)} ≤ 1

2
‖x‖.

Hence for each ε ∈ (0, εo] and every (x, λ) ∈ Bε(0) × [0, 1] we have

inf{‖x− y‖ : y ∈ λ(I −A)−1B(x)} ≥ inf{‖x‖ − ‖y‖ : y ∈ λ(I −A)−1B(x)}
(7.233)

≥ ‖x‖ − sup{‖y‖ : y ∈ λ(I −A)−1B(x)}
(7.234)

≥ 1

2
‖x‖. (7.235)

(7.232) and (7.233) together imply that the only fixed point of N in Bε0(0) is 0;

i.e., (I −N)−1(0) ∩ B̄ε0(0) = {0}.
By the homotopy invariance property

d(I − λ(I −A)−1B,Bε(0), 0) = d(I, B − ε(0), 0) = 1 (7.236)

for every ε ∈ (0, ε0] and λ ∈ [0, 1]. (7.237)

Now from (7.232), (7.236) and the product theorem of degree we have

d(I −N,Bε(0), 0) = d(I −A,Bε(0), 0)
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for each ε ∈ (0, ε0]; i.e.

i(I −N, 0) = i(I −A, 0).

7.7.1 Characteristic Value and Multiplicity

Let A : X → X be a linear compact mapping and r(A) = {µ : µ−1 is an eigenvalue

of A}. Each λ ∈ r(A) is called a characteristic value of A. The multiplicity of

µ ∈ r(A) is the integer

β(µ) = dim ker[I − µA]n(µ)

where n(µ) is the smallest non-negative integer n such that

ker[I − µA]n+1 = ker[I − µA]n+1.

Since A is compact, β(µ) is finite. A real number µ is said to be a regular value of

A if (I − µA)−1 exists and is continuous.

If µ ∈ R is not a characteristic value of A, x = 0 is an isolated zero of I−µA and

iLS(I −µA,O), the Leray-Schauder index of I −µA at zero will be simply denoted

by i(µ).

The following lemma gives us the well-known Leray-Schauder principle:

Lemma 7.11 If A : X → X is a compact linear mapping and µ1, µ2 with µ1 < µ2

are not characteristic values of A, then i(µ1) = (−1)βI(µ2) = (−1)βI(µ2) where

β is the sum of multiplicities of the characteristic values of A lying in the interval

[µ1, µ2].

7.7.2 Tarafdar and Thompson’s Results on the Theory

of Bifurcation

Throughout the rest of this section we will assume Ω to be an open bounded neigh-

borhood of the origin in X .

Definition 7.27 Let N : Ω̄ → CK(X) be a set valued mapping satisfying

(o) N is upper semicontinuous and compact on bounded subsets of Ω̄ ×R;

(oo) for each µ ∈ R,

0 ∈ N(0, µ).

Thus for each µ ∈ R, x = 0 is a solution of the equation

x ∈ N(x, µ). (7.238)

A point (0, µ0) will be said to be a bifurcation point for the solution of the

equation (7.238), or simply a bifurcation point of N if every neighborhood of (0, µ0)
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contains at least one solution (x, µ) of the equation (7.238) with x 6= 0. By abuse

of notation we will sometimes refer to µ0 as the bifurcation point.

Lemma 7.12 Let N be as above satisfying (o) and (oo). If the interval [µ1, µ2]

contains no bifurcation point of N , then there exists a δ > 0 such that, for each

µ ∈ [µ1, µ2] and x ∈ Ω̄ ∩ Bδ(0),

x ∈ N(x, µ) ⇒ x = 0.

Proof. Let S = {(x, µ) ∈ Ω̄ × [µl, µ2] : x ∈ N(x, µ)}. From the compactness of N ,

It follows that S is a compact subset of X × R. We suppose, if possible, that the

lemma is not true. Then for each positive integer n, there exist µ̃n ∈ [µ1µ2], and

xn ∈ Ω̄ ∩B1/n(0) such that

xn ∈ N(xn, µ̃n) and xn 6= 0.

Now (xn, µ̃n) ∈ S which is compact. Hence (xn, µ̃n) has a convergent subsequence

converging to (x0, µ̃n). Clearly x0 = 0 and (x0, µ̃0) is a bifurcation point of N in

[µ1, µ2] which contradicts the hypothesis. Hence the lemma is proved.

Theorem 7.42 Let N be as above satisfying (o) and (oo) and let µ1, µ2 ∈ R

with µ1 < µ2. Further suppose that i(µj) = I [I −M(·, µj), 0], j = 1, 2 are defined

and i(µ1) 6= i(µ2). Then there exists µ0 ∈ [µ1, µ2] such that (0, µ0) is a bifurcation

point of N .

Proof. As i(µj), j = 1, 2 are defined, there exist δj > 0, j = 1, 2 such that [I −
N(·, µj))−1(0)] ∩ Bδj (O) = {0}.

Suppose that the conclusion of the theorem is false. Then by the above lemma

there exists δ3 > 0 such that for each µ ∈ [µl, µ2] and x ∈ Bδ3(0) ∩ Ω̄,

x ∈ N(x, µ) ⇒ x = 0.

We set δ0 = min(δ1, δ2, δ3). Then for each δ ∈ (0, δ0], each λ ∈ [0, 1], x ∈ Bδ(0),

x ∈ N(x, λµ1 + (1 − λ)µ2) ⇒ x = 0.

Hence it follows that for each δ ∈ (0, δ0], λ[0, 1] and x ∈ ∂Bδ(0),

x 6∈ N(x, λ1 + (1 − λ)µ2).

Therefore by Homotopy Invariance Theorem

i(µ1) = d[I −N(·, µ1)Bδ(0), 0] (7.239)

= d[I −N(·, µ2)Bδ(0), 0] = i(µ2) (7.240)

which contradicts our hypothesis. Hence the theorem is proved.

Theorem 7.43 Let N : Ω̄ ×R → CK(X) be such that

N(x, µ) = µAx+B(x, µ)
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where A : X → X is a linear compact (single valued) mapping and B : Ω̄×R → X

is upper semi-continuous and compact on bounded subsets of Ω̄×R with B(x, µ) =

o(‖x‖) uniformly in µ on compact intervals. Then for each bifurcation point (0, µ0)

of N,µ0 is a characteristic value of A.

Proof. Again we prove this theorem by contradiction. Suppose that (0, µ0) is a

bifurcation point of N and µo, is not a characteristic value. Then A0 = (I−µ0A)−1

exists and is continuous.

Let F : Ω̄ ×R → X and G : Ω̄ ×R → CK(X) be defined as follows:

F (x, µ) = (µ− µ0)A0Ax

and

G(x, µ) = A0B(x, µ).

Clearly F and G are compact on bounded subsets of Ω̄×R. Also from the assump-

tion that B(x, v) = 0(‖x‖) and the continuity of A0 it follows that A0B(x, µ) =

o(‖x‖) uniformly in µ in compact intervals.

Let δ > 0 be such that δ‖A0A‖ ≤ 1
3 and ρ > 0 be such that whenever (x, µ) ∈

Bρ(O) × [µ0 − δ, µ0 + δ] we have

‖x‖−1 sup{‖y‖ : y ∈ A0B(x, µ)} ≤ 1

3
.

Then for each x ∈ Bρ(0) ∩ Ω̄\{0} and µ ∈ [µ0 − δ, µ0 + δ]

inf{‖A0x− y‖ : y ∈ A0N(x, µ)} (7.241)

= inf{‖A0[I − µ0A)x+ µ0Ax] − µA0Ax− v‖ : v ∈ A0B(x, µ)} (7.242)

= inf{‖x+ (µ0 − µ)A0Ax − v‖ : v ∈ A0B(x, µ)} (7.243)

≥ ‖x‖ − |µ− µ0|‖A0A‖‖x‖A sup{‖v‖ : v ∈ A0B(x, µ)} (7.244)

≥ [1 − δ‖A0A‖ −
1

3
]‖x‖. (7.245)

Hence there exist ρ > 0 and δ > 0 such that for each

(x, µ) ∈ {Bρ(0)} ∩ {Ω̄}\{0}}× [µ0 − δ, µ0 + δ], x 6∈ N(x, µ).

But this implies that µ is not a bifurcation point, which is a contradiction. Thus

the theorem is proved.

Theorem 7.44 Let N : Ω̄ ×R → CK(X) be given by N(x, µ) = µAx+B(x, µ)

where A and B are as in Theorem 7.43. If µ0 is a characteristic value of A of odd

multiplicity β0, then (0, µ0) is a bifurcation point of N .

Proof. Since A is compact, µ0 is an isolated characteristic value of A. Hence there

exists ε > 0 such that µ0, is the only characteristic value of A in [µ0 − ε, µ0 + ε].



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Degree Theories for Set-Valued Mappings 535

Thus from Lemma 7.11 we have

I(µ0 − ε) = i[I − (µ0 − ε)A0] = (−1)β0i[I − (µ0 + ε)A, 0] (7.246)

= (−1)β0i[I − (µ0 + ε). (7.247)

Hence from the above equality and Theorem 7.41 we have

i[I −N(·, µ0 − ε), 0] 6= (−1)β0i[I −N(·, µ0 + ε), 0].

Now since β0 is odd, we have

I [I −N(·, µ0 − ε), 0] 6= (−1)β0i[I −N(·, µ0 + ε), 0].

Hence by Theorem 7.42 there exists a bifurcation point (0, µ̄) of N with µ̄ ∈ [µ0 −
ε, µ0 + ε]. But since µ0 is the only characteristic value in [µ0 − ε, µ0 + ε], Theorem

7.43 implies that µ̄ = µ0. Thus we have proved that (0, µ0) is a bifurcation point

of N .

We note that all Theorems proved above hold with the same proof if we replace

Ω by X .

Let E denote the space X×R or Ω̄×R where Ω is a bounded open neighborhood

of the origin in X .

The following global version in the single valued case is due to Rabinowitz (1971).

Theorem 7.45 Let N : E → CK(X) be such that N(x, µ) = µAx + B(x, µ)

where A and B are as in Theorem 7.43 with Ω̄ × R being replaced by E. Let

µ0 be a characteristic value of A of odd multiplicity. Let S denote the closure

of all nontrivial solutions of (7.238). Then S contains a component C (i.e., a

maximal closed and connected subset) which contains (0, µ0) and either is unbounded

or contains (0, µ̃) where µ̃ is a characteristic value of A and µ̃ 6= µ0.

The proof of this theorem is exactly similar to that given by Rabinowitz

(1971)(also see Crandall and Rabinowitz (1971) for the single valued case.

For the sake of completeness, the proof of the above theorem will be given after

the following two lemmas. Tarafdar and Thompson (1985) used these two lemmas

in the proof of the above theorem.

Lemma 7.13 (Whyburn (1958)) Let K be a compact metric space and A and B

two disjoint closed subsets of K. Then either there is a subcontinuum (i.e., a closed

and connected subset) of K meeting both A and B, or there exist disjoint compact

subsets KA ⊃ A and KB ⊃ B such that K = KA ∪KB.

Lemma 7.14 Under the hypothesis of Theorem 7.45 assume that there exists no

sub-continuum C of S ∪ {(0, µ0)} such that either (i) C is unbounded, or (ii) C

contains (0, µ̄) with µ0 6= µ̄ ∈ r(L). Then there exists a bounded open set θ in E

such that

(0, µ0) ∈ θ, ∂θ ∩ S = ∅,
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and

θ ∩ ({0} ×R) = {0} × (µ0 − δ, µ0 + δ),

for some positive δ.

Proof. The proof is similar to that of Lemma 7.12. Let Cµ0 be the component

of (0, µ0) in S ∪ {(0, µ0)}. Then Cµ0 is bounded by (i). Hence by the upper semi-

continuity and compactness of N , Cµ0 is compact. Let Uδ be a δ-neighborhood of

Cµ0 . Now from the fact that for λ 6∈ r(L), by Theorem 7.41, (0, λ) is an isolated

solution of (7.238) and from (ii) it follows that for 0 < δ < ε0 sufficiently small Uδ
contains no solution (0, λ) with |λ − µ0| > δ. Now since S is locally compact, it

follows that K = Ū|de∩S is compact in the relative topology induced from E. Also

Cµ0 ∩ ∂U|de = ∅. Let K1 = Cµ0 and K2 = (∂U|de)∩ S. There is no sub-continuum

meeting K1 and K2 for otherwise Cµ0 will not be a component. Hence by Lemma

7.13 there exist compact subsets A ⊂ K1 and B ⊂ K2 such that K = A ∪B. Let θ

be an ε-neighborhood of A where ε Is less than the distance between A and B. We

can easily see that θ fulfills the demand of the lemma.

Proof of Theorem 7.45. Let Cµ0 be the component of (0, µ0) in S ∪ {0, µ0)}.
Assume that the theorem is false. Then by Lemma 7.14 there is a bounded open

set θ such that

Cµ0 ⊂ θ, ∂θ ∩ S = ∅

and

θ ∩ ({0} ×R) ⊂ {0} × (µ0 − δ, µ0 + δ)

for some δ > 0. Let θλ = {x ∈ X : (x, λ) ∈ θ}. Now for λ satisfying 0 < |λ−µ0| ≤ δ,

(0, λ) is an isolated solution of (7.238) (by construction of θ and Theorem 7.41).

Hence there exists ρ(λ) > 0 such that (0, λ) is the only solution of (7.238) in

B̄ρ(λ) × {λ}. For λ > µ0 + δ we choose ρ(λ) = ρ(µ0 + δ) and for λ < µ0 − δ we

choose ρ(µ0 − δ). By choosing ρ(µ0 − δ) sufficiently small, we can assume that

B̄ρ(λ) ∩ θ̄λ = ∅ for λ satisfying |λ − µ0| ≥ δ. Thus for λ 6= µ0 there is no solution

of (7.238) in ∂[θλ − B̄ρ(λ)] × {λ} and therefore d(I −N(·, λ), θλ − B̄ρ(λ), 0) is well

defined for each λ 6= µ0. By homotopy invariance d(I − N(·, λ), θλ − B̄ρ(λ), 0) =

constant for all λ > µ0. However (7.238) has no solution in θλ − B̄ρ(λ). Hence for

λ > µ0 we have

(A) d(I −N(·, λ), θλ − B̄ρ(λ), 0) = 0.

Similarly (A) holds for λ ≥ µ0. Moreover, by homotopy invariance we have

(B) d(I −N(·, λ), θλ, 0) = constant,

for |λ− µo| < δ. Let

µ0 − δ < µ < µ0 < µ̄ < µ0 + δ.
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Then from

θµ̄ = Bρ(µ̄) ∪ (θµ̄ −Bρ(µ̄)),

and by additivity of degree we have

d(I −N(·, µ̄), θµ̄, 0) = d(I −N(·, µ̄), Bρ(µ̄), 0) + d(I −N(·, µ̄), θµ̄ − B̄ρ(µ̄), 0)

(7.248)

= d(I −N(·, µ̄), Bρ(µ̄), 0) by (A). (7.249)

Similarly, we can show that

d(I −N(·, µ), θµ, 0) = d(I −N(·, µ), Bρ(µ), 0).

Hence by using (B) we obtain

(C) d(I −N(·, µ), Bρ(µ), 0) = d(I −N(·, µ̄), Bρ(µ̄), 0).

We now define the homotopy

N̂(x, λ, t) = λAx + tB(x, λ), 0 ≤ t ≤ 1.

As B(x, λ) Is of o(‖x‖), we can choose ρ(µ̄) sufficiently small to obtain

0 6∈ (I − N̂)(x, µ̄, t)

for any

(x, t) ∈ ∂Bρ(µ̄) × [0, 1].

Thus by homotopy invariance

d(I −N(·, µ̄), Bρ(µ̄), 0) = d(I − N̂(·, µ̄, t), Bρ(µ̄), 0) (7.250)

= d(I − N̂(·, µ̄, 0), Bρ(µ̄), 0) (7.251)

= d(I − µ̄A,Bρ(µ̄), 0). (7.252)

By repeating the same argument for µ and using (C) we obtain

d(I − µA,Bρ(µ), 0) = d(I − µ̄A,Bρ(µ̄), 0).

i.e.,

i(I − µA, 0) = i(I − µ̄A, 0),

which is a contradiction in view of the fact that µ0is a characteristic value of odd

multiplicity and in view of Lemma 7.11. Thus the theorem is proved.

Remark 7.34 Tarafdar and Thompson observed that the results similar to The-

orems 1.16, 1.25, 1.27, 1.40 in Rabinowitz (1971) can also be proved in the set valued

case. Tarafdar and Thompson omitted these as their proofs are only repetition of

the arguments given in Rabinowitz (1971).
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Let X and Z be real Banach spaces. Let us now consider the equation

Lx ∈ λAx+B(x, λ) = N(x, λ) (7.253)

where L : X → Z is a continuous linear mapping A : X → Z is a compact linear

mapping and B : Ω̄ × R → CK(Z) is a set valued mapping which is upper semi-

continuous and is compact on bounded subset of Ω̄ × R. We also assume that

0 ∈ B(0, λ) for all λ ∈ R.

A point (0, µ0) is said to be a bifurcation point of the equation (7.253) if every

neighborhood of (0, µ0) contains at least one solution (x, µ) of (7.253) with x 6= 0.

Theorem 7.46 Let L,A and B be as above. Let B(x, λ) be o(‖x‖) uniformly in

λ in compact intervals; that is,

‖x‖−1 sup{‖y‖ : y ∈ B(x, λ)} → 0 as ‖x‖ → 0,

uniformly in λ in compact intervals. Assume that there exists µ̄ ∈ R such that

(L − µ̄A)−1 exists and is continuous. Let (µ0 − µ̄) be a characteristic value of the

compact operator

A0 = (L− µ̄A)−1A,

of odd multiplicity β0. Then µ0 is a bifurcation point of the equation (7.253).

Proof. Let us consider the equation

x ∈ λA0x+ (L− µ̄A)−1B(x, λ + µ̄) = N̄(x, λ). (7.254)

Now (x, µ) is a solution of (7.253) if and only if (x, µ − µ̄) is a solution of (7.254).

Indeed,

Lx ∈ N(x, µ) = µAx+B(x, µ) ↔ (7.255)

= Lx− µ̄Ax ∈ (µ− µ̄)Ax+B(x, µ− µ̄+ µ̄) ↔ (7.256)

x ∈ (µ− µ̄)(L− µ̄A)−1Ax+ (L− µ̄A)−1B(x, µ− µ̄+ µ̄) ↔ (7.257)

x ∈ (µ− µ̄)A0x+ (L− µ̄A)−1B(x, µ− µ̄+ µ̄) = N̄(x, µ− µ̄).

(7.258)

Noting that (L − µ̄A)−1B(x, λ + µ̄) is of o(‖x‖) uniformly in λ in compact

intervals, by applying Theorem 7.44 we conclude that µ0 − µ̄ is a bifurcation point

of (7.254). Hence it follows from (7.255)that µ0 is a bifurcation point of (7.253).

Remark 7.35 Tarafdar and Thompson observes that the corresponding global

version of Theorem 7.44 also holds.

Remark 7.36 Tarafdar and Thompson observed that in Theorem 7.44 instead of

assuming A and B(x, λ) to be compact it would suffice to assume A0 = (L−µ̄A)−1A

and (L − µ̄A)−1B to be compact. By doing this, Tarafdar and Thompson found

that even when B is single valued their Theorem would be more general than that
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proved in Laloux and Mawhin (1977) in the sense that Tarafdar and Thompson

were not assuming L to be a Fredholm mapping of index zero. It was noted that

all the conditions in Theorem 7.44 had also been assumed implicitly by Laloux and

Mawhin.

7.7.3 Tarafdar and Thompson’s Application on the Theory

of Bifurcation

Let CK(X) be as defined before. Let

F : [0, π] ×R ×Rn ×Rn → CK(Rn),

be upper semi-continuous and q ∈ L1[0, π] (abbreviated as L1) be such that

sup{‖u‖ : u ∈ F (t, λ, y, z), for some λ ∈ R, y, z ∈ Rn} ≤ q(t) (7.259)

∀t ∈ [0, π].

Tarafdar and Thompson considered the two point boundary value problem

ÿ(t) ∈ λy(t) + F (t, λ, y(t), ẏ(t)), a.e. t ∈ [0, π] (7.260)

y(0) = 0 = y(π) (7.261)

where a solution y : [0, π] → Rn satisfies ẏ is absolutely continuous on [0, π] and y

satisfies (7.260) and (7.261).

Tarafdar and Thompson assumed that for t ∈ [0, π], λ ∈ R, y, z ∈ Rn

sup{‖u‖ : u ∈ F (t, λ, y, z)}
‖y‖+ ‖z‖ → 0 (7.262)

uniformly for t ∈ [0, π] and λ bounded, as ‖y‖ + ‖z‖ → 0. For y, z ∈ (C[0, π])n

(abbreviated as (C)n) let

B(y, z, λ) = {f |f : [0, π] → Rn is measurable, f(t) ∈ F (t, λ, y(t), z(t))};

when z = dy
dt we abbreviate this to B(y, λ). For λ ∈ R, and y, z ∈ (C)n, let

H(t) = F (t, λ, y(t), z(t))

then

H : [0, π] → CK(Rn)

is upper semicontinuous as a composition of an upper semi-continuous function with

a continuous function and hence

{(t, u(t)) ∈ [0, π] ×Rn : u(t) ∈ H(t)∀t ∈ [0, π]},
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is closed and hence measurable. Thus the set B(y, z, λ) is non empty by the results

stated in Rockafeller (1976). Also B is convex valued as F is convex valued. Since

f ∈ B(y, z, λ), f is measurable and

‖f(t)‖ ≤ q(t)∀t ∈ [0, π]

so f ∈ (L1)n.

Let

G : [0, π] × [0, π] → R

be given by

G(x, t) =

{
(π−x)t
π , 0 ≤ t ≤ x ≤ π

x(π−t)
π , 0 ≤ x ≤ t ≤ π

and let K : (L1)n → X be given by

Kφ(x) =

∫ π

0

G(x, t)φ(t)dt

where

φ(t) = (φ1(t), . . . , φn(t)), φi ∈ L1, 1 ≤ i ≤ n,

and

X = (C1[0, π])n.

For S ⊆ (L1)n let

KS = {Kφ : φ ∈ S}.

For y ∈ X let

N(y, λ) = λKy +KB(y, λ).

Thus

N(y, λ) ∈ CK(X)

and finding a solution to problems (7.260), (7.261) is equivalent to finding a solution

to

y ∈ N(y, λ) = λKy +KB(y, λ).

Now

KB(y, λ) ∈ CK(X) and KB : X ×R → CK(X)

is upper semicontinuous. This can be seen as follows. As B is convex valued and

K is linear, KB is convex valued. Since f ∈ B(y, λ) implies f ∈ (L1)n and
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‖f(t)‖ ≤ q(t) ∀ t ∈ [0, π], ‖(k̈f)(t)‖ = ‖f(t)‖ ≤ q(t),

a.e. for t ∈ [0, π] so KB(y, λ) is equicontinuous in X . If fi ∈ B(y, λ) and Kfi → g

in X then

‖fI(t)‖ ≤ q(t)

so fi → f weakly in (L1)n. Thus there exists hi ∈ (L1)n, hi are convex combinations

of the fj such that hi → f ∈ (L1)n. Thus hi ∈ B(y, λ) and hjk → f , a.e. for

t ∈ [0, π] to some subsequence hik . Thus as F is upper semicontinuous f ∈ B(y, λ)

and

g = Kf ∈ KB(y, λ)

is closed and hence compact. A similar argument using the upper semi-continuity

of F with respect to (λ, y, z) shows KB : X×R−CK(X) is upper semi-continuous.

Now K : X → X is completely continuous with eigenvalues

1

λ
=

1

n2
,

n = 1, 2, 3, · · · all of multiplicity one.

From (7.262) we see that for λ ∈ R and y ∈ X

sup{‖u‖ : u ∈ KB(y, λ)}
‖y‖ → 0

as y → 0 in X ; here ‖u‖ and ‖y‖ are the X norms of u and y respectively. Thus

the conditions of Theorem 7.43 are satisfied and the points (0, n2) are bifurcation

points and the problem (7.260), (7.261) has nontrivial solutions (y, λ) near (0, n2).

Remark 7.37 Tarafdar and Thompson observed that the upper semicontinuity

of F can be relaxed to the following:

(i) F (t, ·, ·, ·) is upper semicontinuous for almost every t ∈ [0, π]

(ii) F (·, λ, y, z) is measurable for all (λ, y, z) ∈ R×Rn ×Rn

(iii) F is closed convex valued

and

(iv) for each (λ, y, z) ∈ R×Rn ×Rn

there exists a measurable function f : [0, π] → Rn such that

f(t) ∈ F (t, λ, y, z)

for all t ∈ [0, π] and there exists a fixed q ∈ L1 such that

‖f(t)‖ ≤ q(t)

for almost every t ∈ [0, π].
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7.8 Tarafdar and Thompson’s Results on the Solvability of

Non-Linear and Non-Compact Operator Equations

This section will be devoted to the presentations of some results in Tarafdar

and Thompson (1987) on the solvabiility of non-linear and non-compact operator

equations.

The notion of p-epi mappings was introduced by Furi, Martelli, and Vignoli

(1980) as follows:

If E and F are normed linear spaces, Ω ⊂ E is a bounded open set and p ∈ F

then a continuous mapping f : Ω̄ → F with f(x) 6= p for any x ∈ ∂Ω is called

p-epi if for each compact mapping h : Ω̄ → F with h ≡ 0 on ∂Ω, the equation

f(x) = h(x) + p has a solution in Ω.

The authors showed in Furi et al. (1980) that the p-epi mappings have ‘exis-

tence’, ‘boundary dependence’, ‘normalization’, ‘localization’ and ‘homotopy’ prop-

erties similar to those of topological degree theory. The theory of p-epi mappings

is based on elementary tools such as the Schauder fixed point theorem, Urysohn’s

lemma, etc.

Unlike the case of degree theory p-epi mappings may act between different

spaces. These theories are normally used to establish the existence of solutions

of nonlinear problems. However in applications such as to differential and func-

tional differential equations the problems occur frequently as nonlinear mappings

acting between different spaces. Thus the theory of p-epi mappings is directly appli-

cable to such problems while to apply degree theory it is necessary to re-formulate

the problems as non-linear self mappings acting on some space.

In this section we shall present Tarafdar and Tahompson’s concept of a (p, k)-epi

mapping by allowing the mapping h to be a k-set contraction rather than just a

compact mapping and requiring E and F to be Banach spaces. Thus in Tarafdar

and Thompson (1987), the authors dealt with a class of mappings smaller than that

of p-epi mappings. However, by restricting f to be a (p, k)-epi mapping Tarafdar

and Tahompson solved the equation f(x) = p+ h(x) for more general mappings h.

The authors observed that this was necessary in some applications.

We shall also present applications of Tarafdar and Tahompson’s theory of (p, k)-

epi mappings to a number of problems in this section.

7.8.1 Measure of Noncompactness and Set Contraction

In this section we shall present the well-known concepts of measure of non-

compactness and k-set contractions and some of their properties. Although most

of these concepts and properties were discussed in Chapter 7, we shall repeat them

with a different approach to increase the understandings of the readers. We shall

also present some results from Tarafdar and Thompson (1987) which the authors

proved in their paper and which they had needed for the subsequent development



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Degree Theories for Set-Valued Mappings 543

of their theory. Although some of the results in this section are not new, we in-

clude their proofs for the completeness of presentation of the work in Tarafdar and

Thompson (1987).

Definition 7.28 Let X be a metric space and A ⊂ X a bounded subset. Set

∆(A) = {ε > 0 : A can be covered by a finite number of sets of diameter less than

ε}. Then α(A) = inf∆(A) is defined to be the measure of noncompactness of A.

This notion of measure of noncompactness was introduced by Kuratowski (1930).

Another notion of measure of noncompactness was introduced by Gokhberg,

Goldstein, and Markus (1957) in the following manner:

Let σ(A) = {ε > 0 : A can be covered by a finite number of balls of radius ε}.
Then β(A) = inf σ(A) is called the (ball) measure of non-compactness of A.

Properties of the measure of noncompactness:

Let A and B be bounded subsets of a metric space X . Then

(1) α(A) = 0 if and only if A is relatively compact;

(2) A ⊆ B implies α(A) ≤ α(B);

(3) α(A) = α(Ā), where Ā denotes the closure of A;

(4) α(A ∪ B) = max(α(A), α(B)).

Furthermore, if X is a normed space, then

(5) α(CoA) = α(A) where CoA denotes the convex hull of A, and

(6) α(A +B) ≤ α(A) + α(B).

For proof of these we refer to Lloyd (1978) or Martin (1976).

Definition 7.29 A continuous mapping f : X → Y of a metric space X into a

metric space Y is said to be a k-setcontraction if for each bounded subset A of X ,

α(f(A)) ≤ kα(A), where k ≥ 0, and is said to be a condensing mapping if for each

noncompact bounded subset A of X , α(f(A)) < α(A).

In the sequel we denote by δ(A) the diameter of a bounded subset A of a metric

space X .

Lemma 7.15 Let Ω be a nonempty bounded subset of a metric space X and

let A ⊆ [0, 1] × Ω. Let π(A) = x ∈ Ω : (t, x) ∈ A for some t ∈ [0, 1]. Then

α(π(A)) = α(A).

Proof. We first show that α(π(A)) ≤ α(A). Let ε > 0. Then there exists a finite

number of subsets D1, D2, . . . , Dn, of A with δ(Di) ≤ α(A) + ε for I = 1, 2, . . . , n

such that A ⊆ ∪ni=1Di. Clearly π(A) ⊆ ∪ni=1π(Di) and δ(π(Di)) ≤ δ(Di)) ≤
α(A) + ε. Thus α(π(A)) ≤ α(A) + ε. Since ε > 0 is arbitrary, α(π(A)) ≤ α(A).

Now A ⊂ [0, 1] × |pi(A) so α(A) ≤ α([0, 1] × π(A)). Thus it suffices to show that

α([0, 1] × π(A)) ≤ α(A). Now given ε > 0 there exist a finite number of subsets

Di, of π(A) with δ(Di) ≤ (π(A)) + ε/2 for i = 1, . . . ,m such that π(A) ⊆ ∪mi=1Di.

Let Ti = [(i − 1)/l, i/l] for i = 1, . . . , l where 1/l < ε/2. Thus [0, 1] × π(A) ⊆
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∪1≤i≤m,1≤j≤lTj × Di and δ(Tj × Di) ≤ α(π(A)) + ε. Thus α([0, 1] × π(A)) ≤
α(π(A)) + ε. Since ε was arbitrary, the result follows.

Theorem 7.47 Let X and Y be metric spaces and Ω a bounded subset of X.

Let H : [0, 1] × Ω → Y be a k-set contraction and φ : Ω → [0, 1] be a continuous

mapping. The mapping h : Ω → Y defined by h(x) = H(φ(x), x), x ∈ Ω is a k-set

contraction. (Throughout this section we use the metric ρ(·, ·) on [0, 1]×X defined

by ρ((t, x), (t̄, x̄)) = max(|t,−t̄|, d(x, x̄)) where d is the metric on X.)

Proof. Let S ⊂ Ω, α(h(S)) ≤ α(H(φ(S) × S) = kα(S) by Lemma 7.15. As h is

continuous, the proof is complete.

In proving the next theorem, the following two lemmas in Tarafdar and Thomp-

son (1987) will be required.

Lemma 7.16 Let A be a non-empty bounded subset of a metric space (X, ρ) and

for ε > 0, let B(A, ε) = ∩x∈AB(x, ε) where B(x, ε) = {y ∈ A : ρ(x, y) < ε}. Then

δ(B(A, ε)) ≤ δ(A) + 2ε. As before, δ stands for diameter.

Proof. Let u, v ∈ B(A, ε). Then u ∈ B(x, ε) and v ∈ B(y, ε for some x, y ∈ A.

Hence ρ(u, v) ≤ ρ(u, x) + ρ(x, y) + ρ(y, v) < δ(A) + 2ε.

Lemma 7.17 Let A be as in Lemma 7.16. Then α(B(A, ε)) ≤ α(A) + 2ε.

Proof. This is immediate from Lemma 7.16 and definition of α.

For the rest of this section, unless otherwise stated, E and F will denote real

Banach spaces and Ω an open bounded subset of E. We will also denote by Σk(Ω̄)

the set of all k-set contractions f : Ω̄ → F .

Theorem 7.48 Let h : [0, 1] → Σk(Ω̄) be a continuous mapping where Σk(ω̄) is

equipped with the topology of uniform convergence. Let H : [0, 1]× Ω̄ → F be defined

by H(t, x) = h(t)(x). Then H is a k-set contraction.

Proof. Let S ⊆ [0, 1] → ×Ω̄.Then clearly H(S) ⊆ H([0, 1] × π(S)).Given ε > 0,

there exists, by uniform continuity of h, points t1, t2, . . . , tm+1, with 0 = t1 <

t2 < · · · < tm < Tm+1 = 1 such that ‖h(t)(x) − h(τ)(x)‖ < ε whenever t, τ ∈
[tI , tI+1], 1 ≤ i ≤ m,x ∈ Ω̄.Thus for (t, x) ∈ [0, 1]×π(S), there is ti, 1 ≤ I ≤ m such

that ‖h(ti)(x) − h(t)(x)‖ < ε. Hence it follows that

H([0, 1]× π(S)) ⊆
m⋃

i=1

B(h(tI )(π(S)), ε). (7.263)

However

α(h(ti)(π(S))) ≤ kα(|pi(S)) i = 1, 2, . . . ,m ≤ kα(S),

by Lemma 7.15.
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Hence using (7.263), Lemma 7.17 and properties of measure of noncompactness

we obtain α(H(S) ≤ α(H([0, 1]×π(S))) ≤ kα(S)+2ε. But since ε > 0 is arbitrary,

the theorem is proved.

Theorem 7.49 Let E and F be normed spaces and Ω ⊂ E a bounded open set.

Let h : Ω̄ → F be a k-set contraction such that h(x) = 0 for all x ∈ ∂Ω, where ∂Ω

denotes the boundary of Ω. Let h̄ : E → F be defined by

h̄(x) =

{
h(x) for x ∈ Ω̄,

0 for x 6∈ Ω̄.

Then h̄ is a k-set contraction.

Proof. Let S ⊂ E be a bounded set. If S∩Ω = φ then h̄(S) = 0. So α(h̄(S)) = 0 ≤
kα(S). Now let S ∩Ω 6= φ. Then α(h̄(S ∩Ω)) = α(h(S ∩Ω)) ≤ kα(S ∩Ω) ≤ kα(S)

(by property 2). Also h̄(S) ⊆ Ω)∪ 0. Hence α(h̄(S)) ≤ α(h̄(S ∩Ω)) ≤ kα(S). Thus

the result follows as h̄ is continuous.

Theorem 7.50 (1) (Fixed Point Theorem of Darbo) If D ⊂ E is a closed

bounded convex set and f : D → D is a k-set contraction with k ∈ [0, 1], then f has

a fixed point.

(2) If D is as above and f : D → D is a condensing mapping, then f has a fixed

point.

Proof. See Martin (1976), pp. 125–127.

In obtaining the results of this section Tarafdar and Thompson (1987) also used

the following notion of a k-proper mapping. We recall that a continuous mapping

f : X → Y of a topological space X into a topological space Y is called proper

if for every compact subset K of Y , f−1(K) is compact. Following this, given

k ≥ 0, we define a mapping f : Ω̄ → F to be k-proper if f is continuous and

α(f−1(S)) ≤ kα(S), for each bounded set S ⊆ F . By virtue of property 1 of the

measure of noncompactness if f is a k-proper mapping for some k > 0, then f is

proper.

Theorem 7.51 Let f ; Ω̄ → F be k1-proper and h : Ω̄ → F a k-set contraction.

Then for each bounded set S ⊆ F ,

α[(f − h)−1(S)] ≤ k1α(S) + k1kα[(f − h)−1(S)].

Proof. Let set (f − h)−1(S) = P . Let x ∈ P . Then there exists y ∈ S such that

y = f(x)−h(x), that is, f(x) = y+h(x), that is, x ∈ f−1(y+h(x)). Thus it follows

that P ⊆ f−1(S + h(P )). Hence α(P ) ≤ α[f−1(S + h(P ))] ≤ k1α(S + h(P )) ≤
k1[α(S) + α(h(P ))] ≤ k1α(S) +K1kα(P ).

Corollary 7.51.1 Let f : Ω̄ → F be k1-proper and h : Ω̄ → F be compact (that

is, h is continuous and maps each bounded set onto a relatively compact set). Then

(f − h) : Ω̄ → F is k1-proper.
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Proof. Since k = 0, the corollary follows from Theorem 7.51.

The next theorem of Tarafdar and Thompson (1987) will have an application

in the Subsection 7.8.3 on (p− k)-epi mappings on the whole space. This theorem

also furnishes an example of a k-proper mapping for some k.

Let L : E → F be a bounded linear Fredholm operator of index zero. Then

we can write E = M ⊕ N and F = U ⊕ V where N = N(L) = the kernel ofL

and U = R(L) = the range of L, dim N = dim V < ∞. Let P : E → N and

Q : F → V be continuous projections. Also let L̃ : M → U denote the restriction

of L to the closed subspace M , and φ : N → V be an isomorphism. Then it can

easily be seen that L+ φP is an isomorphism.

Theorem 7.52 Let L : E → F be a bounded linear Fredholm mapping of index

zero. Then there exists a linear compact mapping K such that L+K is an isomor-

phism and is a k = ‖L̃−1‖-proper mapping (in the sense that α((L +K)−1(S)) ≤
kα(S) for each bounded set S ⊆ F ).

Proof. Now K = φP . Let S ⊆ F be bounded and let y ∈ S. Thus y = u+v, where

u ∈ U and v ∈ V . Set x = (L+K)−1y = m+ n, where m ∈ M and n ∈ N . Thus

(L+K))(m+n) = u+ v so Lm+Kn = u+ v. Hence v = Kn and u = Lm so that

(L+K)−1(S) ⊆ L̃−1()I−Q)(S))+φ−1(Q(S)).Thus α((L+K)−1(S)) ≤ α((̃L−1((I−
Q)(S))) + α(φ−1(Q(S))). Now φ−1(Q(S)) is compact so α(φ−1(Q(S))) = 0 and

α((L+K)−1(S)) ≤ α(L̃−1((I −Q)(S))) ≤ ‖L̃−1‖α((I −Q)(S)). It suffices to show

that α((I − Q)(S)) ≤ α(S). Now (I − Q)(S) ⊆ S − Q(S) so α((I − Q)(S)) ≤
α(S) + α(Q(S)) and again since Q̄(S) is compact α(Q(S)) = 0, and the result

follows.

Remark 7.38 From the proof of the above result we have α(S) = α((I−Q)(S)),

since S ⊆ (I −Q)(S) +Q(S) so α(S) ≤ α((I −Q)(S)) + α(Q(S)) = α((I −Q)(S)).

7.8.2 Epi Mappings

As we have already indicated, throughout the rest of this section, unless otherwise

stated E and F will denote real Banach spaces and Ω an open bounded subset

of E.

Definition 7.30 A continuous mapping f : Ω̄ → F is said to be 0-admissible

(p-admissible) if f(x) 6= 0(f(x) 6= p ∈ F ) for x ∈ ∂Ω.

Before stating the next definition of Tarafdar and Thompson (1987) we recall

Furi et al. (1980) that a 0-admissible mapping f : Ω̄ → F is called 0-epi if for each

compact mapping h : Ω̄ → F with h(x) ≡ 0 on Ω̄ the equation f(x) = h(x) has a

solution in Ω. A p-admissible mapping f : Ω̄ → F is called p-epi if the mapping

f − p defined by (f − p)(x) = f(x) − p, x ∈ Ω̄ is 0-epi.

Definition 7.31 A 0-admissible mapping f : Ω̄ → F is said to be (0, k)-epi if for

each k-set contraction h : Ω̄ → F with h(x) ≡ 0 on ∂Ω the equation f(x) = h(x)
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has a solution in Ω. Similarly a p-admissible mapping f : Ω̄ → F is said to be

(p, k)-epi if the mapping f − p defined by (f − p)(x) = f(x)− p, x ∈ Ω̄, is (0, k)-epi.

Remark 7.39 Since every compact mapping is a k-set contraction it follows that

every (0, k)-mapping is 0-epi and every (p, k)-epi mapping is p-epi. In fact, the class

of (p, 0)-epi mappings is strictly larger than that of (p, k)-epi mappings.

Tarafdar and Thompson (1987) gave an example (see below) of a 0-epi mapping

which is not (0, k)-epi for some k. However, the importance of studying (p, k)-epi

mappings lies in the fact that a (p, k)-epi mapping is in a sense more solvable at

the point p than a p-epi mapping. Tarafdar and Thompson (1987) made it clear by

introducing the following terminology.

Measure of Unsolvability:

Let f : Ω̄ → F be a p-admissible mapping and A(f, p) = {k ≥ 0 : there exists a

k-set contraction g : Ω̄ → F with g ≡ 0 on ∂Ω such that the equation f(x)−p = g(x)

has no solution in Ω}. We define

γ(f, p) = j

{
inf A(f, p) if A(f, p) 6= ∅,
∞ if A(f, p) = ∅.

We call γ(f, p) the measure of unsolvability of f at p. Thus γ(f, p) : A(Ω̄, p) →
[0,∞] is a well defined mapping, where A(Ω̄, p) is the set of all p-admissible mapping

f : Ω̄ → F . It then follows from the above definition that for a (p, 0)-epi mapping

f : Ω̄, γ(f, p) ≥ 0 while γ(f, p) ≥ k for a (p, k)-epi mapping f : Ω̄ → F .

We recall that a mapping of the form I−h is called a compact vector field where

h : Ω̄ → E is a compact mapping and I is the identity on E. (See Granas (1962).)

Lemma 7.18 Let (I − h) : Ω̄ → E be a compact vector field and assume that

h ≡ 0 on ∂Ω. Then γ(f, p) ≥ 1 if and only if p ∈ Ω, where f = I − h.

Proof. First note that γ(f, p) is defined only when f is p-admissible, that is when

f(x) = x− h(x) 6= p for all x ∈ ∂Ω. This implies that p 6∈ ∂Ω as h ≡ on ∂Ω. Thus

p ∈ E\∂Ω.

Now suppose that p ∈ Ω and let g : Ω̄ → E be a k-set contraction with 0 ≤ k < 1

and g ≡ 0 on ∂Ω. Setting l(x) = p + h(x) + g(x), x ∈ Ω̄ we see that l is a k-set

contraction. We define l̄ : E → E by

l̄(x) =

{
l(x) if x ∈ Ω̄,

p if x 6∈ Ω̄.

By Theorem 7.49 l̄ is a k-set contraction and therefore l̄(Ω̄) is bounded. Let

M = sup(‖l̄(x)‖ : x‖Ω̄}/ and B = {x ∈ E : ‖x‖ ≤M}. Then the restriction of h̄ to

the closed convex ball B is a selfmapping and remains a k-set contraction. Hence

by Theorem 7.50 there exists a point x0 ∈ B such that l̄(x0) = x0. Now x0 ∈ Ω, for

otherwise l̄(x0) = p = x0 which will contradict the fact that p ∈ Ω. Thus x0 ∈ Ω
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and x0 = l(x0 = p + h(x0 + g(x0, that is f(x0) − p = g(x0) as required. Next

suppose that γ(f, p) ≥ l. Let g = −h. Then g is a 0-set contraction and therefore

f(x0) − p− g(x0) = 0 for some x0 ∈ Ω. Hence p = x0 ∈ Ω, as required.

Example 7.1 More generally, let h : Ω̄ → E be a k-set contraction such that k ∈
[0.1] and p 6∈ (I − h)(∂Ω). We also assume Nussbaum (1971) degree, d(f,Ω, p) 6= 0

where f = I − h. We choose ε > 0 sufficiently small that k + ε < 1 and consider a

[1− (k+ ε)]-set contraction g : Ω̄ → E such that g ≡ 0 on ∂Ω. Then clearly h+ g is

a (1− ε)-set contraction and h+ g ≡ h on ∂Ω. Hence by the boundary dependence

property of the Nussbaum degree d(I −h,Ω, p) = d(I − (h+ g),Ω, p) 6= 0. Hence by

the existence property of the degree there exists a solution x0 ∈ Ω of the equation

f(x) − p = g(x), that is γ(f, p) ≥ 1 − k.

Example 7.2 Now we give an example where d(f,Ω, 0) = 0 but f is (0, k)-

epi, for all k. Let E = R, the real line, Ω = (−2, 0) ∪ (0, 2) and f : Ω̄ → E be

defined by f(x) = x2 − 1. Clearly d(f,Ω, 0) = 0 but γ(f, 0) = ∞. To see that

γ(f, 0) = ∞ let g : Ω̄ → E be continuous and let g ≡ 0 on ∂Ω. Now we note that

d(f |[0,2], (0, 2), 0) = 1. Since f−g = f on ∂((0, 2)) we have d(f−g|[0,2], (0, 2), 0) = 1.

The conclusion follows from the definition of γ.

We now return to (p, k)-epi mappings and present some of their basic properties

in Tarafdar and Thompson (1987).

Existence Property:

If f : Ω̄ → F is a (p, k)-epi mapping, then the equation f(x) = p has a solution

in Ω.

Proof. Using h(x) ≡ 0 on Ω̄ in the definition of (p, k)-epi, we obtain a solution of

the equation f(x) = p in Ω.

Normalization Property:

The inclusion mapping i : Ω̄ → E is (p, k)-epi for k ∈ [0, 1] if and only if p ∈ Ω,

that is, γ(i, p) ≥ 1 if and only if p ∈ Ω.

This is a special case of Lemma 7.18 with h ≡ 0 in Ω̄.

Localization Property:

If f : Ω̄ → F is (0, k)-epi and f−1(0) is contained in an open set Ω1 ⊂ Ω, then

f restricted to Ω1 is also (0, k)-epi.

Proof. Let h : Ω1 → F be a k-set contraction such that h ≡ 0 on ∂Ω1. Define

h̄ : E → F by

h̄(x) =

{
h(x) if x ∈ Ω̄1,

0 if x 6∈ Ω̄1.

Then h̄ is, by Theorem 7.49, a k-set contraction and h1, the restriction of h̄ to Ω̄,

is, therefore, a k-set contraction and obviously h1 ≡ 0 on ∂Ω. Thus the equation
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f(x) = h1(x) has a solution x)0 ≡ Ω. Now f−1(0) ⊆ Ω1 implies that x0 ∈ Ω1.

Therefore f(x) = h(x) has a solution x0 ∈ ω1, as required.

Homotopy Property:

Let f : Ω̄ → F be (0, k)-epi and h : [0, 1]× Ω̄ → F be an α-set contraction with

0 ≤ α ≤ k < 1 such that h(0, x) = 0 for all x ∈ Ω̄. Further let f(x) +h(t, x) 6= 0 for

all x ∈ ∂Ω and for all t ∈ [0, 1]. Then f(·) + h(l, ·) : Ω̄ → F is (0, k − α)-epi.

Proof. Let g : Ω̄ → F be a (k−α)-set contraction such that g ≡ 0 on ∂Ω. The set

S = {x ∈ Ω̄ : f(x) + h(t, x) = g(x) for some t ∈ [0, 1]} is a closed set since f , g,

h are continuous and [0, 1] is compact. Note that g being a (k − α)-set contraction

is a k-set contraction. Hence there exists x0 ∈ Ω such that f(x0) = g(x0). Thus

f(x0) + h(O, x0) = g(x0) and S is nonempty. Moreover S and ∂Ω are disjoint.

Hence by Urysohn’s Lemma there exists a continuous function φ : Ω̄ → [0, 1] such

that φ ≡ 1 on S and φ ≡ 0 on ∂Ω. We now consider the function h̄ : Ω̄ → F

defined by h̄(x) = g(x) − h(φ(x), x), x ∈ Ω̄. In view of Theorem 7.47 h̄ is a k-set

contraction. Also h̄ ≡ 0 on ∂Ω. Hence the equation f(x) = h̄(x) = g(x)−h(φ(x), x)

has a solution x0 ∈ Ω. This implies x0 ∈ S. Hence f(x) + h(l, x) = g(x) has a

solution x0 ∈ Ω.

Thus γ(·, p) has the essential features of a degree theory.

Boundary Dependence Property:

Let f : Ω̄ → F be (0, k)-epi and g : ω̄ → F be an α-set contraction with

0 ≤ α ≤ k < 1 and g ≡ 0 on ∂Ω. Then (f + g) : Ω̄ → F is (0, k − α-epi.

Proof. Let h be a (k−α)-set contraction and h ≡ 0 on ∂Ω. Then (h− g) : Ω̄ → F

is a k-set contraction and (h − g) ≡ 0 on ∂Ω. Hence f(x) = (h − g)(x), that is,

f(x) + g(x) = h(x) has a solution in Ω.

We shall now consider the k-proper mapping which Tarafdar and Thompson

(1987) introduced in Subsection 7.8.1. Since every k-proper mapping f : Ω̄ → F

is proper, it follows that if f : Ω̄ → F is k-proper, then f Ω̄ is closed and hence

f(Ω̄) = f(Ω), by continuity of f .

Theorem 7.53 If f : Ω̄ → F is (0, k)-epi with k ∈ [0, 1] and proper, then f

maps Ω onto a neighborhood of the origin. More generally, if U is the connected

component of F\f(∂Ω) containing the origin, then U ⊂ f(Ω).

Proof. Since f is proper, f(∂Ω) is closed. Thus U is an open set and is path

connected. Assume that p ≡ U and φ : [0, 1] → U is a continuous mapping with

φ(0) = 0 and φ(1) = p. Then taking the 0-set contraction h(x, t) = −φ(t) in the

homotopy property given in Tarafdar and Thompson (1987), we see that f(·) −
φ(1) : Ω̄ → F is (0, k)-epi. Thus f(x) − φ(1) = 0 has a solution in Ω, that is,

p = φ(1) ∈ f(Ω).
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In the following theorem by a (p, 1−)-epi we mean a p-admissible mapping f :

Ω̄ → F such that for each condensing mapping f : Ω̄ → F with g ≡ 0 on∂Ω, the

equation f(x) − p = g(x) has a solution in Ω.

Theorem 7.54 Let f : Ω̄ → F be continuous, injective and 1-proper. Then f(Ω)

is open if and only if f is (p, 1−)-epi for any p ∈ f(Ω).

Proof. Let p ∈ f(Ω). Since f is proper, it follows from Theorem 7.47 that f − p

being also (0, 0)-epi maps Ω onto a neighbourhood of 0. Thus f(Ω) is open.

Now let f(Ω) be open. It suffices to prove that if 0 ∈ f(Ω) then f is (0, 1−)-epi.

So we assume 0 ∈ f(Ω). Now since f(Ω) is open, f is injective and 1-proper and

hence proper, f−1 is continuous. Also since f(Ω) = f(Ω̄), we have ∂(f(Ω)) = f(∂Ω).

Let h : Ω̄ → F be condensing such that h ≡ 0 on ∂Ω.

We define g : F → F by

g(y) =

{
h(f−1(y)), if y ∈ f(Ω),

0 otherwise

Since ∂(f(Ω)) = f(∂Ω), g ≡ 0on ∂(f(Ω)). Thus it follows that g is continuous.

Now let S be a bounded subset of F . Then α[g(S)] = α[h(f−1{S ∩ f(Ω̄)}] ≤
α[f−1{S ∩ f(Ω̄)}] ≤ α(S ∩ f(Ω̄)) ≤ α(S). Also since g(F ) = g(f(Ω)) ∪ {0} =

g(f(Ω̄)) ∪ {0} = h(Ω̄) ∪ {0} and h is condensing, g(F ) is bounded. Let M = {‖y‖ :

y ∈ g(F )}. Let B = {x ∈ F : ‖x‖ ≤ M}. Then g restricted to B maps B into

itself and is, by what it is proved above, a condensing mapping. Hence by Theorem

7.50 there is a point y0 ∈ B such that g(y0) = y0. Since 0 ∈ f(Ω), it follows that

y0 ∈ f(Ω). Hence x0 = f−1(y0) ∈ Ω is a solution of the equation f(x) = h(x).

Theorem 7.55 Let f : Ω̄ → F be continuous, injective and k1-proper. Then

f(Ω) is open if and only if f is (p, k)-epi for each p ∈ f(Ω) and each nonnegative k

satisfying the condition k1k < 1.

Proof. The argument for the ’if part’ is the same as in the proof of Theorem

7.54. For the ’only if part’ let h : Ω̄ → FD be a k-set contraction. The rest of the

argument will be the same as in the proof of Theorem 7.54 except that we need

to show that the mapping g as constructed there is a k1k-set contraction. Indeed

α[g(S)] = αhf−1{S ∩ f(Ω̄)})] ≤ kα[f−1{S ∩ f(Ω̄)}] ≤ kk1α{S ∩ f(Ω̄)} ≤ kk1α(S).

Corollary 7.55.1 Let f Ω̄ → F be continuous, injective and k1-proper and f(Ω)

be open. Then f is (p, k)-epi for each nonnegative k satisfying k1k < 1 if and only

if p ∈ f(Ω).

Proof. If f is (p, k)-epi, then p ∈ f(Ω) by the existence property (regardless of

whether f(Ω) is open or not). If f(Ω) is open, the result follows from the Theorem

7.55.
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Theorem 7.56 Let f : Ω̄ → F be continuous, injective and proper open. Then

f(Ω) is open if and only if f is (p, 0)-epi for every p ∈ f(Ω).

Proof. Again the argument is the same as in the proof of the Theorem 7.54, except

that we use the fact that g(F ) = h(Ω̄) ∪ {0} is relatively compact mapping. The

fixed point of g|B : B → B is guaranteed by the Schauder fixed point theorem.

The above theorem and following corollary have been obtained by Furi et al.

(1980).

Corollary 7.56.1 Let f : Ω̄ → F be continuous, injective and proper and f(Ω)

open. Then f is (p, 0)-epi if and only if p ∈ f(Ω).

Proof. The proof is similar to that of Corollary 7.55.1, except that we use Theorem

7.56 in place of Theorem 7.55.

Remark 7.40 For each k ≥ 0, we construct a mapping fk such that γ(fk, 0) = k.

We consider the Hilbert space H = {x =
∑
αiei : −∞ < i <∞,

∑
α2
i <∞} where

{ei} is the orthonormal basis, that is, 〈ei, ej〉 = 0 if i 6= j and = 1 if i = j. The

norm of H is defined by ‖x‖ = |∑α2
i |1/2, where x =

∑
αiei.

Let Ω = B(0, 1) = {x ∈ H : ‖x‖ < 1}. Let f : Ω̄ → H be defined by

f(x)(1/2d)x, x ∈ Ω̄ where d > 0 is a constant. Clearly f : Ω̄ → H is continuous,

injective and 2d-proper and f(Ω) is open as f is a homomorphism onto f(Ω̄)(=

f(Ω)). Hence, by Corollary 7.62.1, f is (p, k)-epi for each nonnegative k < 1/2d

and each p ∈ f(Ω), that is γ(f, p) ≥ 1/2d for each p ∈ f(Ω). We now construct a

k̄-set contraction h : Ω̄ → H for some positive number k̄, with h ≡ 0 on∂Ω such

that f(x) = h(x) has no solution in Ω, that is, γ(f, 0) ≤ k̄.

Let u : Ω̄ → H be defined by u(x) =
∑
αiei ∈ Ω̄ and φ : Ω̄ → H by

φ(x) = (1 − ‖x‖)u(x) + ‖x‖x+
1

3
((1 − ‖x‖)e0, x ∈ Ω̄

Finally we defined h : Ω̄ → H by h(x) = (x−φ(x))/d, x ∈ Ω̄. It is easy to verify

that h ≡ 0 on∂Ω. We next verify that h is a k̄-set contraction for some positive

number k̄. On simplifying h(x) = 1
d (1−‖x‖)(x−u(x)− 1

3e0).). Hence for x, y ∈ Ω̄,

h(x) − h(y) =
1

d
(1 − ‖x‖)(x− u(x) − 1

3
e0) − (1 − ‖y‖)(y − u(y) − 1

3
e0)] (7.264)

=
1

d
[(1 − ‖x‖){(x− u(x)) − (y − u(y))} − {(y − u(y) − 1

3
e0)}

(7.265)

× (‖x‖ − ‖y‖)] (7.266)

=
1

d
[1 − ‖x‖)(v(x) − v(y)) − (v(y) − 1

3
e0)(‖x‖ − ‖y‖)] (7.267)

where v = I − u : H → H is a bounded linear operator on H .
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Hence

‖h(x) − h(y)‖ ≤ 1

d
[|1 − ‖x‖|‖v‖‖x‖ − y‖ + (‖v‖‖y‖+

1

3
)(‖x‖ − ‖y‖)] (7.268)

≤ 1

d
[‖v‖ + ‖v‖ +

1

3
]‖x− y‖ (7.269)

Thus h is k̄-set contraction where k̄ = (2‖v‖ + 1
3 ) 1
d . Next we show that f(x) =

h(x) has no solution in Ω̄. Suppose that f(x0) = h(x0) for some x0 ∈ Ω̄.

Case 1. Let x0 ∈ ∂Ω an f(x0) = h(x0), then x0/2d = 0 by definition of f and

h, which is a contradiction. Hence ‖x0‖ < 1.

Case 2. Let ‖x0‖ = 1
2 . Then x0 = 2φ(x0), that is, x0 = u(x0) + x0 + 1

3e0,

that is,
∑
α0+1 + ei = 0, where x0 =

∑
αiei. This implies that α1 = − 1

3 , and

αj = 0 for j 6= 1. Thus ‖x0‖ = 1
3 which is a contradiction. Hence ‖x0‖ = t < 1 and

t 6= 1
2 .

Case 3. Let ‖x‖ = t < 1 and t 6= 1
2 . As φ > (0) 6= 0 andx0 6= 2φ(x0), we have

x0 = 2(1−t)u(x0)+2tx0+
2
3 (1−t)e0, that is,

∑
αiei = 2(1−t)∑αiei+1+2t

∑
αiei+

2
3 (1 − t)e0 where x0 =

∑
αiei. Hence (1 − 2t)(1 − t)−1

∑
αei = 2

∑
αiei+1 + 2

3e0.

Thus (1− δ)
∑
αiei+1 + 2

3e0, where δ = t/(1− t) 6= 1 as t 6= 1
2 . Hence (1− δ)αi+1 =

2αi + 2
3δ0,i+1 where

δi,j =

{
0 if i 6= j,

1 if i = j,

and 1 − δ 6= 0. Hence |αj | → ∞ or |αj | → ∞ as j → −∞ according as 2/(1− δ) > 1

or 2/(1 − δ) < 1. But
∑
α2
i < ∞ which is a contradiction. Thus we conclude that

h(x0) 6= f(x0) for any x0 ∈ Ω̄. Hence f is not (0, k̄)-epi and hence γ(f, 0) 6= k̄.

Thus there exists r such that (2d)−1 ≤ r ≤ k̄ and f is (0, s)-epi for each s < r but

not (0, s)-epi for s > r. Setting fk = kf/r, the result follows.

We recall that a set Q ⊂ F is said to be star-shaped with respect to the origin

if ty ∈ Q whenever y ∈ Q and t ∈ [0, 1].

Theorem 7.57 Let f : Ω̄ → F be (0, k)-epi with k ∈ [0, 1] and Q a star-shaped

subset of F with respect to the origin such that Q∩f(∂Ω) = ∅. Then for each kl set

contraction h : Ω̄ → F with h(∂Ω ⊂ Q) and 0 ≤ k1 ≤ k, 1, the equation f(x) = h(x)

has solution in Ω. In particular Q ⊂ f(Ω).

Proof. It is clear that for all x ∈ ∂Ω and for all t ∈ [0, 1], th(x) ∈ Q and f(x) 6∈ Q.

Hence f(x) 6= th(x) for all x ∈ ∂Ω and for all t ∈ [0, 1]. We define the mapping

H : [0, 1] × Ω̄ → F by H(t, x) = −th(x), for all (t, x) ∈ [0, 1] × Ω̄. Clearly for each

fixed t ∈ [0, 1], the mapping Ht : Ω̄ → F defined by Ht(x) = H(t, x) = −th(x)
is a k1-set contraction (as α(H, (S)) = α(th(S)) = tα(h(S)) ≤ tk1α(S) ≤ k1α(S),

for every set S ⊂ Ω̄). Hence by Theorem 7.48, H : [0, 1] × Ω̄ → F is a k1-set

contraction. Also H(O, x) = 0 for all x ∈ Ω̄. Thus by the homotopy property

f(·)+H(1, ·) = f(·)−h(·) is (0, k− k1)-epi. Hence f(x) = h(x) has a solution in Ω.
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Now let p ∈ Q. The constant mapping h(x) = p for all x ∈ Ω̄ is a 0-set contraction.

Hence by the above f(x) = p for some x ∈ Ω. Thus Q ⊂ f(Ω).

Theorem 7.58 Let f : Ω̄ → F be continuous, 0-admissible and k1-proper and

let fn : fn : Ω̄ → F be a sequence of (0 − k)-epi mappings with k1k < 1 such that

fn → f uniformly. Then f is (0, k)-epi.

Proof. Let h : Ω̄ → F be a k-set contraction such that h ≡ 0 on ∂Ω. For each

n = 1, 2, . . . , there exists xn ∈ Ω such that fn(xn) = h(xn). Let yn = f(xn) −
fn(xn) = f(xn) − h(xn). Then yn → 0 as n → ∞. Let set S = {yn : n = 1, 2, · · · }.
Then by Theorem 7.51,

α[(f − h)−1(S)] ≤ k1kα(f − h)−1(S)]

as α(S) = 0. Now as k1k < 1, this implies that (f − h)−1(S) is relatively compact.

Hence xn : n = 1, 2, · · · being a subset of (f − h)−1(S) must have a limit point x0.

Clearly f(x0) = h(x0).

Theorem 7.59 (Perturbation) Let f : Ω̄ → F be (0, k)-epi and k1-proper and

let h : [0, 1] × Ω̄ → F be a k2-set contraction such that 0 ≤ k2 ≤ k < 1 and

h(0, x) = 0 for all x ∈ Ω̄. If k1k2 < 1, then there exists ε > 0 such that f(·)−h(t, ·)
is (0, k − k2)-epi for all t satisfying |t| < ε.

Proof. In view of the homotopy property, it will suffice to show that there exists

ε > 0 such that f(x) − h(t, x) 6= 0 for all x ∈ ∂Ω and for all t ∈ (−ε, ε). We

assume that there is no such ε > 0. Then we can show that there exists a sequence

{(tn, xn)} with tn → 0, xn ∈ ∂Ω and f(xn) = htn, xn) = yn, for all n. Now using

the fact that f is k1-proper and h is a k2-set contraction,

α[xn : n = 1, 2, . . .] ≤ α[f−1(yn) : n = 1, 2, . . .] ≤ k1α[yn : n = 1, 2, . . .] (7.270)

= k1α[h(tn, xn) : n = 1, 2, . . .] ≤ k1k2α[(tm, xn) : n = 1, . . . , . . .] (7.271)

k1k2α[{tn} × {xm} : m,n = 1, 2, . . .] = k1k2α[xm : m = 1, 2, . . .], (7.272)

by Lemma 7.15. Since k1k2 < 1, α[xn : n = 1, 2, . . .] = 0. Hence the sequence {xn}
has a limit point x0. It follows that f(x0) = h(0, x0) = 0 which contradicts the fact

that f is 0-admissible.

If f : Ω̄ → E is a k-set contraction mapping such that k ∈ [0, 1), I is the identity

mapping on E, and p 6∈ (I − f)(∂Ω), then the degree of I − F at p, d(I − f,Ω, p)

is well defined (see Lloyd (1978), p. 95). The following theorem is similar to the

example following the definition of measure of unsolvability.

Theorem 7.60 Let I − f : Ω̄ → E be p-admissible and let f : Ω̄ → E be

a k-set contraction with k ∈ [0, 1). If d(I − f,Ω, p) 6= 0, then for every k1 with

0 ≤ k ≤ k1 < 1, I − f is (p, k1 − k)-epi.
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Proof. Let h : Ω̄ → E be a (k1 − k)-set contraction such that h ≡ 0 on ∂Ω.

(I − (f + h)) is a k1-set contraction and clearly f + h ≡ f on ∂Ω. Hence by the

boundary dependence property of the degree, d(I−(f+h),Ω, p) = d(I−f,Ω, p) 6= 0.

Hence there exists x0 ∈ Ω such that x0−(f+h)(x0) = p. Thus x0−f(x0) = p+h(x0),

as required.

Theorem 7.61 Let L : E → F be bounded, linear and subjective with

dim KerL < ∞. Let g : Ω̄ → R
n be continuous with bounded range. Let g(x) 6= 0

for all x ∈ ∂Ω ∩ KerL and J : Rn → E be a linear mapping with Im J = KerL. If

the Brouwer topological degree d(gJ, J−1(Ω), 0) 6= 0, then γ(M, 0) ≥ ‖L̃−1‖ where

E = KerL⊕N , L̃ is the restriction of L to N , and M : Ω̄ → F × Rn is defined by

M(x) = (Lx, g(x)).

Proof. The proof is simliar to that of Theorem 1.7 in (Furi et al. (1980)). Let

S = L̃−1. We define A : F × Rn → E by A(y, z) = Sy + Jz. Evidently A is an

isomorphism. We now consider the mapping f = MA : A−1(Ω) → ×Rn. Then as

S is a right inverse of L and Im J = KerL, f(y, z) = (L(Sy + Jz), g(Sy + Jz)) =

(y, g(Sy + Jz)) = (y, z) − (0, z − g(Sy + Jz)) = (I − h)(y, z) where h : A−1(Ω) →
{0} × Rn is the mapping defined by h(y, z) = (0, z − g(Sy + Jz)). By using the

properties of Leray-Schauder degree

d(f,A−1(Ω), 0) = d(f |{0}×Rn , A−1(Ω) ∩ ({0} ×Rn), 0) (7.273)

= d(gJ, J−1(Ω), 0) 6= 0. (7.274)

Hence by Example 7.1, γ(f, 0) ≥ 1. Now M = fA−1 and A−1 is ‖L̃−1‖ proper and

hence γ(M, 0) ≥ γ(f, 0)‖L̃−1‖.

The following is an example in Tarafdar and Thompson (1987):

Example 7.3 A natural question which arises from Theorem 7.61 is the follow-

ing. In Theorem 7.61 is it legitimate to replace the assumption that the Brouwer

degree d(gJ, J−1(Ω), 0) 6= 0 merely by the assumption that gJ : J−1(Ω) → F is

0-epi? This is not legitimate as the following example in Tarafdar and Thompson

(1987) shows.

Let Ω = {(x, y) ∈ R2 : 0 < x2 + y2 < 4} ⊆ E = R2 and let J : R → E be

given by J(x) = (x, 0) so that J−1(Ω) = (−2, 0) ∪ (0, 2). Let g : Ω̄ → F = R be

given by g(x, y) = x2 + y2 − 1. Thus gJ : [−2, 2] → R is given by gJ(x) = X2 − 1

so gJ is 0-epi on (−2, 0) ∪ (0, 2) = J−1(Ω) from Example 7.2. Let L : E → F

be given by L(x, y) = y. Thus Im J = KerL. Let M(X, y) = (y, x2 + y2 − 1) =

(L(x, y), g(x, y)). We show that M : ω̄ → F ×R is not 0-epi. Define h : Ω̄ → F ×R

by h(x, y) = (2(x2 + y2)(x2 + y2 − 2), 0). Thus h(x, y) = (0, 0) for all (x, y) ∈ ∂Ω, h

is continuous on Ω̄, and it suffices to show that M(x, y) 6= h(x, y) for all (x, y) ∈ Ω.

Suppose there is a solution (x, y) ∈ Ω, then g(x, y) = 0 so x2 + y2 = 1. Thus

h(x, y) = −2 6= L(x, y) = y since |y| ≤ 1.
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7.8.3 Tarafdar and Thompson’s (p, k)-Epi Mappings on the Whole

Space

As before, E and F are real Banach spaces. Let f : Ω → F be a continuous mapping

of E into F . For p ∈ F, f is said to be p-admissible if f−1(p) is a bounded subset of

E. f is said to be (p, k)-epi if f is (p, k)-epi on the closure of any bounded open set

Ω ⊂ f−1(p)), that is, f |Ω̄, the restriction of f to Ω̄, is (p, k)-epi for each bounded

open subset Ω containing f−1(p). We note that by virtue of the localization property

in Tarafdar and Thompson (1987) for (0, k)-epi mappings it suffices to consider a

sufficiently large open ball centered at the origin and containing f−1(0).

Homotopy Property:

If f : E → F is (0, k1)-epi, h : [0, 1] × E → F is a k2-set contraction such that

h(0, x) = 0, for all x ∈ E, 0 ≤ k2 ≤ k1 < 1 and the set S = {x ∈ E : f(x)+h(x, t) =

0 for some t ∈ (0, 1]} is bounded, then f(·) + h(l, ·) is (0, k1 − k2)-epi.

Proof. It is an easy consequence of the homotopy property for mappings on

bounded sets in Tarafdar and Thompson (1987).

Theorem 7.62 Let f : E → F be (0, k)-epi with k ∈ [0, 1) and Q ⊂ F be

starshaped with respect to the origin. If f−1(Q) is bounded and h : E → F is a

k1-set contraction such that 0 ≤ k1 ≤ k < 1 and Imh ⊂ Q, then the equation

f(x) = h(x) has a solution. In particular Im f ⊃ Q.

Proof. Let Ω be a ball centered at the origin such that Ω ⊂ f−1(Q). We consider

the mapping f |Ω̄ : Ω̄ → F . Then using a similar argument to that in Theorem 7.57

and the above homotopy property, the result follows.

Corollary 7.62.1 If L : E → F is a linear bounded mapping, then L is

(0, t/‖L−1‖)-epi for each t ∈ [0, 1] if and only if L is an isomorphism.

Proof. Let L be an isomorphism. Then L continuous, injective and ‖L−1‖ -proper.

Hence L is (0, t/‖L−1‖)-epi for each t ∈ [0, 1), by Corollary 7.55.1. Conversely, if L

is (0, t/‖L−1‖)-epi, for all t ∈ [0, 1) then L−1(0) is bounded by the admissibility of L.

Thus L is one-to-one. To prove that L is onto, let p ∈ F and Q = {tp : 0 ≤ t ≤ 1}.
Then L−1(Q) is clearly bounded. Hence by Theorem 7.62, L(x) = p has a solution

(taking h to be the constant mapping h(x) = p for all x ∈ E).

Corollary 7.62.2 Let f : E → F be (0, k)-epi for some k ∈ [0, 1) and ‖f(x)‖ →
∞ as ‖x‖ → ∞. If h : E → F is a k1-set contraction such that 0 ≤ k1 ≤ k < 1 and

h(E) is bounded, then the equation f(x) = h(x) has a solution. In particular f is

onto.

Proof. The condition ‖f(x)‖ → ∞ as ‖x‖ → ∞ implies that f−1(S)) is bounded

for every bounded subset S of F . Since Imh = h(E) is bounded, we can take a ball

Q centered at the origin of F sufficiently large that Q ⊃ Imh. Hence the Corollary

follows from Theorem 7.62.
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Remark 7.41 If f and h are as in Corollary 7.62.2, then f + h is (0, k− k1)-epi

and, therefore, f is (p, k)-epi for an p ∈ F .

Theorem 7.63 Let f : E → F be 0-admissible and k1-proper on bounded closed

sets and let {fn : fn : E → F} be a sequence of (0, k)-epi mappings such that fn → f

uniformly on closed bounded subsets of E. Further assume that the sets f−1
n (0) are

uniformly bounded and kk1 < 1. Then f is (0, k)-epi.

Proof. This is a direct consequence of Theorem 7.58 which is a theorem in Tarafdar

and Thompson (1987).

7.8.4 Tarafdar and Thompson’s Applications of (p, k)-Epi

Mappings in Differential Equations

Example 7.4 In this example Tarafdar and Thompson (1987) found a solution

x ∈ C−1[0, 1] of the following problem:

A

{
ẋ(t) = h(t, x(t), x(φ(t)), ẋ(φ(t))),

x(0) = d

where φ ∈ C[0, 1] satisfies 0 ≤ φ(t) ≤ t for all t ∈ [0, 1] and h : [0, 1] × R3 → R is

continuous and satisfies

|h(t, x, y, z)| ≤ a+ b|x‖ + c|y| + r|z| (7.275)

and

|h(t, x, y, z) − h(t, x, y, u) ≤ r|z − y| (7.276)

for all t ∈ [0, 1] and x, y, z, u ∈ R, a, b, c and r being nonnegative with r < 1.

Furi, Marteffi and Vignoli (Furi et al. (1980)) considered the special case of

this problem where ẋ(t) = µ(t)ẋ(φ(t)) + h(t, x(t), x(φ(t))) where µ : [0, 1] → R is

continuous and satisfies ‖µ(t)‖ ≤ t < 1 and h : [0, 1] × R2 → R is continuous and

satisfies

|h(t,X, y)| ≤ a+ b|x| + c|y|

where a, b, c, r and φ are as above. Their method cannot be extended to treat

the more general problem above. To this end we present the following results in

Tarafdar and Thompson (1987).

Lemma 7.19 Let a, b, c and r be nonnegative numbers with r < 1. Let x, y ∈
C1[0, 1] and φ ∈ C[0, 1] with 0 ≤ φ(t), for all t ∈ [0, 1]. Further assume that for all

t ∈ [0, 1] we have

|ẋ(t)‖ ≤ a+ b|x(t)| + c|x(φ(t))| + r|ẋ(φ(t))‖ (7.277)

ẏ(t) > a+ by(t) + cy(φ(t)) + rẏ(φ(t)) (7.278)
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and

|x(0)| < y(0) (7.279)

Then |x(t)| < y(t), for all t ∈ [0, 1].

Proof. Since φ(0) = 0, we obtain by using (7.277), (7.278) and (7.279)

ẏ(0) > [a+ (b+ c)y(0)]/(1 − r) (7.280)

≥ [a+ (b+ c)|x(0)|]/(1 − r) (7.281)

≥ |ẋ(0)|. (7.282)

Let τ = sup{t ∈ [0, 1] : |x(s)| < y(s) and |ẋ(s)| < ẏ(s), 0 ≤< t}. By virtue of

(7.279), (7.280) and continuity it follows that 0 < τ < 1.

Clearly

|x(s)| < y(s) and |ẋ(s)| < ẏ(s) for s ∈ [0, τ). (7.283)

Suppose that |x(, τ)| = y(, τ). Since (ṡ) ≥ |ẋ(s)| ≥ 0 for s ∈ [0, τ ] and 0 ≤ φ(s) ≤ s,

then |x(φ(s))| ≤ y(φ(s)) and ẏ(φ(s)) ≥ |ẋ(φ(s))| for s ∈ [0, τ ]. Thus from (7.277)

and (7.278)we obtain

|ẋ(s)| < ẏ(s) for s ∈ [0, τ). (7.284)

This, together with (7.279), implies that y(τ) > |x(τ)| which is a contradiction.

Suppose that y(τ) > |x(τ)|. Now since |x(φ(τ)| < y(φ(τ)) and ẏ(φ(τ)) ≥
|ẋ(φ(τ))|, it follows from (7.277) and (7.278) that |ẋ(τ) < ẏ(τ) which is again a

contradiction. Thus the lemma is proved.

Corollary 7.63.1 Let a, b, c and r be nonnegative numbers with r < 1. Let

x, y ∈ C1[0, 1] and φ ∈ C[0, 1] with 0 ≤ φ(t), for all t ∈ [0, 1]. Assume that x

satisfies (7.277) and ẏ is non-decreasing. Further assume that

ẏ(t) > a+ by(t) + cy(t) + rẏ(t), for all t ∈ [0, 1] (7.285)

and |x(0)| < y(0). Then y(t) > x(t), for all t ∈ [0, 1].

Proof. Clearly ẏ(0) > 0 and so ẏ(t) > 0, for all t ∈ [0, 1]. Thus y(φ(t)) ≤ y(t).

Again as ẏ is non-decreasing, ẏ(t) ≥ ẏ(φ(t)). Hence (7.278) is satisfied and the

result follows from the Lemma 7.19.

Corollary 7.63.2 Let a, b, c, r, x, y and φ be as in Lemma 7.19 and assume

that (7.277) to (7.279) hold. Then ẏ(t) > ẋ(t)| for all t ∈ [0, 1].

Proof. This is implicit in the proof of Lemma 7.19.

Theorem 7.64 Let h : [0, 1] × R3 → R be continuous and satisfy (7.275) and

(7.276). Then the mapping H : C1[0, 1] → C[0, 1] defined by

H(Y )(t) = h(t, y(t), y(φ(t)), ẏ(φ(t)))

is an r-set contraction.
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Proof. Let S ⊂ C1[0, 1] be a bounded set with α(S) = λ. We show that α(H(S)) ≤
rλ where α is the measure of non-compactness in the relevant spaces. Denote by S ′

the set {y′ : y ∈ S} and identify S and S′ as subsets of C. Let G : C × C → C be

defined by G(u, v)(t) = h(t, u(t), u(φ(t)), v(φ(t))), for t ∈ [0, 1]. As H(S) ⊂ G(S, S ′)
it suffices to show that α(G(S, S ′)) ≤ rα(S′) ≤ rλ. Now the set T = {z : z = y(t) or

z = y′(t) for some y ∈ S and t ∈ [0, 1]} is bounded. So given ε > 0, by the uniform

continuity of h on [0, 1]×T 3, there is η > 0 such that |h(t, x, y, z)−h(t, p, q, z)| < ε,

whenever |x − p| + |y − q| < 2η, t ∈ [0, 1], and x, y, z, p, q ∈ T . As S is a bounded

equicontinuous subset of C there is an η-net u1, . . . , um for S in C. Thus G(S, S′) ⊆
Umi−1B(G(u, , S′), ε) and by Lemma 7.16 and property (iv) of the measure of non-

compactness

α(G(S, S′)) ≤ max{α(G(ui, S
′)) + 2ε : 1 ≤ i ≤ n}

Thus it suffices to show that α(G(ui, S
′)) ≤ rα(S′) for 1 ≤ i ≤ m. Let V be an

arbitrary bounded subset of C. We show that δ(G(ui, V )), where δ denotes diameter

in C. For v1, v2 ∈ V ,

|G(ui, v1)(t) −G(ui, v2)(t) ≤ r|vl(φ(t)) − v2(φ(t))|

so ‖G(ui, vi) −G(ui, V2)‖ ≤ r‖v1 − v2‖ and the result follows.

Problem A:

We now turn our attention to the following problem of Tarafdar and Thompson

(1987):

A

{
ẋ(t) = h(t, x(t), x(φ(t)), ẋ(φ(t))),

x(0) = d

where h satisfies (7.275) and (7.276) and φ ∈ C[0, 1] with 0 ≤ φ(t) ≤ t for t ∈ [0, 1].

Let M : C1[0, 1]− C[0, 1] ×R be defined by

M(x)(t) = (ẋ(t) − h(t, x(t), x(φ(t)), ẋ(φ(t))), x(0))

Then M is (0, k)-epi for each k ∈ [0, 1−r). In particular the problem has a solution

for each d ∈ R.

Proof. We first note that L : C1[0, 1] → C[0, 1]×R given by (Lx)(t) = (ẋ(t), x(0))

is an isomorphism with ‖L1‖ = 1; here we use the norm in C[0, 1] × R defined by

‖(x, r)‖ = ‖x‖ + |r| for (x, r) ∈ C[0, 1] × R where ‖x‖ is the usual sup norm. Let

K : C1[0, 1] → C[0, 1] × R be defined by K(x)(t) = (h(t, x(t), x(φ(t)), ẋ)φ(t))), d).

We claim that S = {x ∈ C1[0, 1] : Lx = λK(x) for some λ ∈ [0, I ]} is bounded. To

this end let Lx = λK(x) where λ ∈ [0, 1] and x(0) = λd. By (7.275)

|ẋ(t)| ≤ at+ b|x(t)| + c|x(φ(t))| + r|ẋ(φ(t))|

Let y(t) = a+(b+c)y(t)+rẏ(t)+1, that is, ẏ(t) = [(1+a)+(b+c)y(t)]/(1−r) and

y(0) = 1+ |d|. By solving this equation we can easily see that ẏ(t) is non-decreasing.
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Since y(0) = 1 + |d| > |x(0)| = λ|d|, by Corollaries 7.63.1 and 7.63.2 it follows that

‖x‖ ≤ ‖y‖ and hence S is bounded.

From Theorem 7.64 it easily follows that K is an r-set contraction and hence

H : [0, 1] × C1[0, 1] → C[0, 1] × R defined by H(λ, x) = −λK(x) is also an r-set

contraction. By the Corollary 7.62.1 L is (0, 1 − ε)-epi for each ε ∈ [0, 1). Hence

by the homotopy property in Tarafdar and Thompson (1987) L −K(·) = M(·) is

(0, 1 − ε− r)-epi.

Remark 7.42 It is not difficult to see that the above result can be strengthened

by replacing (7.275) by

|h(t,X, Y, z)| ≤ ψ(|x|) + ψ(|y|) + r|z|

where r ∈ [0, 1) is a constant and ψ : [0,∞) → (0,∞) is a continuous strictly increas-

ing function satisfying f∞(ψ(s))−1ds = ∞. All that is required is the corresponding

modification of Lemma 7.19 and its corollaries and the observation that

ẏ(t) = (2ψ(|y(t)|) + 1)/(1− r), y(0) = 1

has a solution on [0, 1] with ẏ(t) non-decreasing.

Example 7.5 Let Ω be a bounded C1,1 domain in Rn, let LP (Ω) be the spaces

of Lebesgue measurable functions with the usual norms, for 1 ≤ p ≤ ∞, and

let W p,q
0 (Ω) and W p,q(Ω) be the usual Sobolev spaces for p, q = 1, 2, · · · . Let

aij ∈ C(Ω̄), bi, c ∈ L∞(Ω) for i, j = 1, 2, . . . , n, and let

aij(x)ξiξj ≥ λ0|ξ|2

for all ξ ∈ Rn, x ∈ Ω and, some constant λ > 0 and c ≤ 0. Let h : Ω×R×Rn×Rn2

satisfy

|h(x, u, p, s)| ≤ k{|u|+ |p| + |s|} + g(x)

for some constant k > 0 and g ∈ L2(Ω) and

|h(x, u, p, s) − h(x, u, p, t)| ≤ k|s− t|,

for all (x, u, p) ∈ Ω × R × Rn and for all s, t ∈ Rn2

. Moreover let h satisfy the

Carathéodory conditions: that is, let h(x, ·, ·, ·) : R ×Rn × Rn2

be continuous a.e.

x ∈ Ω and let h(·, u, p, s) : Ω → R be measurable for all (u, p, s) ∈ R×Rn ×Rn2

.

Let B = W 1,2
0 (Ω) ∩W 2,2(Ω) with the W 2,2 norm and define L : B → L2(Ω) by

Lu = aijDiju+ biDiu+ cu. We look for a solution u ∈ B of the Dirichlet problem

B{Lu = εh(x, u,Du,D2u) in Ω

where e > 0 is sufficiently small.

Define the Nemitsky operator M : L2(Ω) × (L2(Ω))n × (L2(Ω))n
2 → L2(Ω) by

M(u, p, s)(x) = h(x, u(x), p(x), s(x)). From the growth on h,M ic continuous (see

Vainbreg (1964), p. 162). By the Kondrachov compactness theorem (see Gilbarg and
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Trudinger (1983), p. 167) the mapping K : B → L2(Ω)×(L2(Ω))n, given by K(u) =

(u,Du) is completely continuous. We show that the mapping H : B → L2(Ω) given

by H(u) = M(K(u), D2u) is a 2k-set contraction. As M , K and D2 are continuous,

H is continuous. We show that for any bounded set S ⊆ B,H(S) ⊆ H1(S) +

H2(S) where H2(S) is compact and α(H1(S)) ≤ 2kα(S); here δ and α represent

the diameter and the measure of noncompactness, respectively, in the appropriate

spaces and for G : B → L2(Ω), G(S) = {G(u) : u ∈ S}. Fix w ∈ S and define

H1, H2 : B → L2(Ω) by H2(u) = M(K(u), D2w) and H1(u) = H(u)−H2(u) for all

u ∈ B. As |D2w| ∈ L2(Ω) it follows that M(·, ·, D2w) : L2(Ω) × (L2(ω))n → L2(Ω)

is continuous and hence H2 is completely continuous. We show that δ(H1(S)) ≤
2kδ(S) and then α(H1(S)) ≤ 2kα(S) as S is an arbitrary bounded set. By the

Lipschitz condition on h, |h(x, u,Du,D2u) − h(x, u,Du,D2w)| ≤ k|D2u−D2w| so

that ‖H1(u)‖ ≤ k‖u‖ and hence δ(H1(S)) ≤ 2kδ(S). Now α(H(S)) ≤ α(H1(S)) ≤
α(H2(S)) + α(H2(S)) ≤ α(H1(S)) ≤ 2kα(S) as required.

By Theorem 9.15 and Corollary 9.17 of Gilbarg and Trudinger (1983), L : B →
L2(Ω) is an isomorphism. Choose ε0 > 0 such that 2kε0l

−1 < 1 where l−1 = ‖L−1‖.
Let S = {(λ, u) ∈ [−1, 1] × B : Lu = λε0H(u)}. We show that S is bounded. Let

(λ, u) ∈ S then ‖λε0H(u)‖ ≤ ε‖g‖+kε‖(u)‖ thus ‖u‖ ≤ l−1ε0‖g‖+kε0 l
−1‖u‖ and

‖u‖ ≤ 2l−1ε0‖g‖. As εH is a 2ε0k-set contraction for |ε| ≤ 2ε0kl
−1 < 1, and L is an

isomorphism with ‖L−1‖ = l−1, then L− εH is (0, k̄)-epi for each k̄ ∈ [0, l− 2ε0k),

by Corollary 7.62.1 and the homotopy property of Subsection 7.8.3. Now Problem

B is equivalent to finding a solution u ∈ B of Lu = εH(u) so Problem B has a

solution for each ε with |ε| ≤ ε0.

Problem C of the next example is well known. There are several different exis-

tence proofs in the literature. We shall give an existence proof from Tarafdar and

Thompson (1987) which is based on the previous results of this section.

Example 7.6 Let X be a Banach space with norm denoted by | · |. Let

C([0, 1], X) be the space of continuous functions y : [0, 1] → X with norm defined

by ‖y‖ = sup{e−lt|y(t)| : 0 ≤ t ≤ 1}, where l > 1 is a constant given below. Let

C1([0, 1], X) be the space of continuously differentiable functions y in C([0, 1], X)

with norm ‖|y‖| = max{‖y‖, 1
l ‖ý‖}. Clearly a bounded subset S ∈ C1 is a bounded

equicontinuous subset of C. Let h : [0, 1] ×X → X be uniformly continuous and

assume there is a constant k > 0 such that |h(t, y)| ≤ k, for all (t, y) ∈ [0, 1] ×X ,

and α(h(t, S)),≤ kα(S),for all bounded subsets S ⊆ X .Then there is a solution

y ∈ C1 of the problem

C

{
y′ = h(t, y), for all t ∈ [0, 1],

y(0) = y0.

It suffices to consider the case y0 = 0. Let C1
0 ([0, 1], X) = {y : y ∈ C1, y(O) = 0}.

Clearly C1
0 is a closed subset of C1.

Define L : C1
0 → C by (Ly)(t) = y′(t) and H : C1

0 → C by H(y)(t) = h(t, y(t)).
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If S ⊆ C1
0 is a bounded set then for an arbitrary bounded subsetD ⊆ C and t ∈ [0, 1]

let D(t) = {y(t) : y ∈ D}. If S ⊂ C1
0 is a bounded set then H(S) = {H(y) : y ∈ S}

is a bounded equicontinuous subset of C so by variants of Lemma 2.3.1 and Theorem

2.3.1 of Martin (1976)

α(H())) = sup{e−ltα(H(S)(t) : 0 ≤ t ≤ 1} (7.286)

≤ sup{e−ltkα(S(t)) : 0 ≤ t ≤ 1} (7.287)

= kα(S) (7.288)

Clearly H is continuous and it is not difficult to show that L is an isomorphism

with ‖L−1‖ ≤ l−1. Choose l > k. Now the problem C is equivalent to solving

Ly = H(y). Let (λ, y) ∈ S = {(λ, y) ∈ [0, 1] × C1
0 : Ly = λH(y)}, then for all

t ∈ [0, 1], y′(t) = λh(t, y(t)) and y(0) = 0. Thus |ẏt)| ≤ k and hence |y(t)| ≤ k, for

all t ∈ [0, 1]. Hence |‖y‖| ≤ k and S is bounded.

The result now follows by an argument similar to that in Example 7.5. In

particular L−H is (0, k̄)-epi for k̄ ∈ [0, ‖L−1‖−1 − k) and hence problem C has a

solution.

Example 7.7 Let φ ∈ C2(R) satisfy φ′(x) < 0 and φ′′(x) > 0, for all x ∈ R and

set Ω = {(x, y) ∈ R2 : y > φ(x)}. Let h : Ω̄×R3 → R be continuous. Let ȳ = φ(x)

and x̄ = φ−1(y) and for u : Ω̄ → R let

‖u‖ = sup{e−l[x−x̄+y−ȳ]|u(x, y)| : (x, y) ∈ Ω̄}

where l > 1 is chosen later. Let C(Ω̄) = {u : Ω̄ → R, u is continuous, ‖u‖ <∞}.
Consider the Cauchy problem

D

{
uxy(x, y) = h(x, y, u, ux, uy) in Ω,

u = ux = uy = 0 on ∂Ω,

where a solution u is a function satisfying u, ux, uy, uxy = uyx ∈ C(Ω̄) and D

pointwise.

We assume that h satisfies

|h(x, y, u, p, q) − h(x, y, u, s, t) ≤ k{|p− s| + |q − t|},

and

|h(x, y, u, p, q)| ≤ k{|u|+ |p| + |q|} + g(x, y)

for all (x, y) ∈ Ω and for all p, q, r, s ∈ R, where g ∈ C(Ω̄). We show that problem

D has a solution. By translating axes we may assume that (0, 0) ∈ ∂Ω. Let

Ωn = {(x, y) ∈ Ω : |x|, |y| < n}, for all n = 1, 2, . . ., and let C(Ω̄) and ‖u‖ for

u ∈ C(Ω̄n) have the obvious interpretations. We find a solution un of problem
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Dn

{
uxy(x, y) = h(x, y, u, ux, uy) in Ωn,

u = ux = uy = 0 in ∂Ω ∩ Ω̄n,

and show problem D has a solution by a standard diagonalization argument. Let

Bn = {u : u, ux, uy, and uxy = uyx ∈ C(Ω̄n), u = ux = uy = 0 on ∂Ω ∩ Ω̄n}

and define a norm on Bn by |‖u‖| = ‖u‖ + ‖ux‖ + ‖uy‖ + l−1‖uxy‖. Thus Bn is

a Banach space. Let L,N : Bn → C(Ω̄n) be given by (Lu)(x, y) = uxy(x, y) and

H(u)(x, y) = h(x, y, u, ux, uy), for all u ∈ Bn and for all (x, y) ∈ Ω̄n. It is not

difficult to show that problem Dn is equivalent to solving Lu = H(u). Now L is

an isomorphism with ‖L−1‖ ≤ l−1. Choose l > 2k. Now H is a k-set contraction.

This follows by a similar argument to that in Example 7.4 since a bounded subset

of Bn has compact closure in C(Ω̄n). Let Sn = {(λ, u) ∈ [0, 1]×Bn : Lu = λH(u)}
then Sn is bounded independently of n. To see this (λ, u) ∈ Sn then ‖λH(u)‖ ≤
k|‖u|‖ + ‖g‖. Since ‖L−1‖ ≤ (2k)−1 then |‖u|‖ ≤ k−1‖g‖ ≤ C, a constant as

g ∈ C(Ω̄). By an argument similar to that in Example 7.5, there is a solution

un ∈ Bn of Lu = H(u). Now let Tn = {u ∈ Bn : Lu = H(u)} = (L −H)−1({0}).
By Theorem 7.51, α(Tn) = 0 since k1k = ‖L−1‖k < 1. Clearly um|Ω̄n

∈ Tn, for all

m ≥ n. Choose a subsequence of um denoted by um,1, after re-labeling, such that

um,1|Ω̄1
converges in B1. Proceeding inductively we may choose a subsequence of

um,n denoted by um,n+1, after re-labeling, such that um,n+1|Ω̄n
converges in Bn+1.

Thus u = limn→∞ un,n with the limit appropriately interpreted is a solution of

Problem D, as required.

Remark 7.43 Problem D is similar to one studied by Hartman and Wintner

(1952); however they establish existence in a bounded domain by producing a con-

vergent sequence of approximate solutions. Thus, the existence result of Tarafdar

and Thompson (1987) in a bounded domain is cleaner. It would be interesting to

know if the existence of a solution in the unbounded domain could be established

directly without finding solutions in an expanding sequence of bounded domains.

In the case h is Lipschitz with respect to u as well as ux and uy the existence of a

solution on all of Ω follows directly from the contraction mapping principle, as is

well known.

Remark 7.44 In Fitzpatrick and Petryshyn (1979), a problem of the following

form was considered:

Lu = g(x, u,∇u,D2u) + h(x, u,∇u, Lu), for all x ∈ Ω.

In the above problem L is a linear second order elliptic partial differential operator

from W 2,2(Ω) ∩W 1,2(Ω) to L2(Ω). Although there is some formal similarity with

the Problem B of Example 7.5, the above problem is somewhat different from, and

the results in Fitzpatrick and Petryshyn (1979) do not apply to, the Problem B of

Example 7.5 of this section.
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Chapter 8

Nonexpansive Types of Mappings and

Fixed Point Theorems in Locally Convex

Topological Vector Spaces

8.1 Nonexpansive Types of Mappings in Locally Convex

Topological Vector Spaces

In this chapter we consider some results concerning nonexpansive types of mapping

on locally convex topological vector spaces. Unless otherwise stated throughout

this chapter (E, τ) will denote a real locally convex Hausdorff topological vector

space. In here we will not consider the results explicitly on nonexpansive mappings

on Banach spaces, i.e the results in Browder (1965a), Browder (1966), Kirk (1965),

Opial (1967), Belluce and Kirk (1967), Bruck (1973), Dozo (1973), Kirk and Yanez

(1988), Tan and Hong-Kun (1991) and in many other places(e.g. see Zeidler (1985)

and Kirk (1981) and references thereof).

8.1.1 Nonexpansive Mappings

Some results concerning fixed theorems for nonexpansive mappings on locally convex

topological vector spaces have been obtained in Taylor (1972) and also in Tarafdar

(1974). In Kakutani (1938), Markov (1936), and Day (1961) fixed point theorems

for commutative family of linear contnuous of self mappings on a compact convex

subset of a topological vector space have been investigated. In DeMarr (1963),

Belluce and Kirk (1966), Hong (1968) and in many other places the fixed point the-

orems for a commutative family of nonexpansive mappings on a Banach space have

been considered. These theorems have been proved in locally convex topological

vector spaces in Tarafdar (1975) which will be the subject matter of the next two

subsections. The main tool here will be the Minkowski functional of a balanced,

convex (i.e. absolutely convex ) bounded subset of (E, τ).

A family [pα : α ∈ I ] of seminorms defined on (E, τ) is said to be an associatd

family of seminorms for τ if the family [ρU : ρ > 0], where U =
⋂n
i=1 Uαi and

Uαi = {x ∈ E : pαi(x) < 1}, forms a base of neighbourhoods of 0 for τ , I being

an index set. The set U is also given by U = {x ∈ E : p(x) < 1} where p is the

seminorm max[pα1 , pα2 , . . . , pαn ].

A family [pα : α ∈ I ] of seminorms on E is said to be an augmented associated

563
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family for τ if [pα : α ∈ I ] is an associated family for τ and has the further property

that, given β, γ ∈ I , the seminorm max[pβ, pγ ] ∈ [pα : α ∈ I ]. We shall denote an

associated family and augmented family for τ by A(τ) and A∗(τ) respectively. It is

wellknown (e.g. see Köthe (1969, p. 203)) that given a locally convex topological

vector space (E, τ) there always exists a family [pα : α ∈ I ] of seminorms defined

on E such that [pα : α ∈ I ] = A∗(τ). Conversely each family [pα : α ∈ J ] of

seminorms defined on E with property that for each x ∈ E with x 6= 0 there is

atleast one α ∈ J such that pα(x) 6= 0 always determines a unique locally convex

topology τ on E such that A(τ) = [pα : α ∈ J ] and A(τ) can be extended to A∗(τ)
by adjoining to A(τ) all seminorms of the form max[pα1 , pα2 , . . . , pαn ] for each finite

subset [α1, α2, . . . , αn] of the index set J .

Definition 8.1 A mapping f : M →M of a subset M of E into itself is said to

be A(τ) (respectively, A∗(τ))-nonexpansive on M if, for all x, y ∈ M ,

pα(f(x) − f(y)) ≤ pα(x− y) for each pα ∈ A(τ)(respectively ∈ A∗(τ)).

It is trivial to see that f is A∗(τ)-nonexpansive then f is A(τ)-nonexpansive. It

is also true (see Tarafdar (1974) or the begining of Chapter 2) that if f is A(τ)-

nonexpasive, then f is also A∗(τ)-nonexpansive. Hence, instead of saying f is A(τ)-

or A∗(τ)-nonexpansive, we say simply say that f is nonexpansive in either case.

In what follows the following construction will be crucial. Let M be a τ -bounded

set in (E, τ) and let A ∗ (τ) = [pα : α ∈ I ]. Let us consider the family {Uα : α ∈ I}
where Uα = {x ∈ E : pα(x) ≤ 1}. Then the family {Uα : α ∈ I} is a base of closed

absolutely convex neighbourhoods of 0.

Since M is τ -bounded, we can select a number λα > 0 for each α ∈ I such that

M ⊆ λαUα. Then clearly B =
⋂
α∈I

λαUα is τ -bounded, τ -closed and absolutely

convex and M ⊆ B. The linear span of B in E is equal to EB =
⋃∞
n=1 nB and B is

an abslutely convex α-body (i.e. has an algebraic interior point). The Minkowski

functional of B is a norm ‖.‖B on EB . Thus EB is a normed linear space with

norm ‖.‖B and closed unit ball B. The norm topology on EB is finer than the

topology on EB induced by τ (for details see Köthe (1969, p. 252) or Horváth

(1966, pp. 207–208)). Now since pα is the Minkowski functional of Uα and ‖.‖B
is the Minkowski functional of B and B ⊆ λαUα, we can easily see that for each

x ∈ EB , pα(x) ≤ λα ‖x‖B .

Thus for each α ∈ I , we have

pα

(
x

λα

)
≤ ‖x‖B . (8.1)

We now prove that

sup
α∈I

pα

(
x

λα

)
= ‖x‖B for each x ∈ EB . (8.2)
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Let x ∈ EB . We assume that supα∈I pα
(
x
λα

)
< ‖x‖B and deduce a contradiction.

Let supα∈I pα
(
x
λα

)
= λ. Then we have pα

(
x
λα

)
≤ λ < ‖x‖B for each α ∈ I . Now

pα

(
x
λα

)
≤ λ implies that x

λ ∈ λα Uα for each α ∈ I , i.e. x
λ ∈ B. But ‖x‖B > λ

implies that x 6∈ λB. Thus we have contradiction.

We are now in a position to prove the following theorem.

Theorem 8.1 Let (E, τ) be a locally convex Hausdorf topological vector space

and A∗(τ) = [pα : α ∈ I ]. If f is a nonexpansive mapping on a τ -bounded subset

M ⊆ E, then f is also nonexpansive on M with respect to the norm ‖.‖B where

‖.‖B has the meaning as explained above.

Proof. Let x, y ∈ M . Then since f is nonexpansive on M ,

pα(f(x) − f(y)) ≤ pα(x− y) for each α ∈ I.

Hence supα∈I pα
(
f(x)−f(y)

λα

)
≤ supα∈I pα

(
x−y
λα

)
. Thus ‖f(x) − f(y)‖B ≤

‖x− y‖B from (8.2).

We recall that the following definition was made in Chapter 2.

Definition 8.2 A subset X of E is called starshaped if there exists a point p ∈ X

such that for each x ∈ X and real t with 0 < t < 1, tx+ (1− t)p ∈ X . p is called a

star centre of X . Each convex subset of E is thus starshaped.

Remark 8.1 The following result, with M assume to be complete, is known (see

Tarafdar (1974) or Chapter 2 here and Taylor (1972)). Here we have relaxed the

completeness by sequential completeness.

Theorem 8.2 Let (E, τ) and A∗(τ) be as in Theorem 8.1. Let M bo a nonempty,

starshaped, τ -bounded, and τ -sequetially complete subset of E, and f be a nonexpan-

sive mapping on M . Then 0 lies in ‖.‖B - cl(I − f)M and hence in τ − cl(I − f)M

where I is the identity map on M , clA stands for the closure of subset A of E and

‖.‖B has the meaning as explained earlier.

Proof. We have already mentioned that EB is a normed space with norm ‖.‖B
and with B as the unit ball. Since the norm topology on EB has a base of neigh-

bourhoods of 0 consisting of τ -closed sets, namely the scalar multiples of B and M

is τ -sequentially complete, we know that M is a ‖.‖B-sequentially complete subset

of EB (apply 18, 4.4 of Köthe (1969) to the topology on EB induced by τ and the

‖.‖B-topology on EB). Let p be the star centre of M . For each t, 0 < t < 1, we

define

ft(x) = tf(x) + (1 − t)p, x ∈M.

Then clearly ft maps M into itself. Moreover,

‖ft(x) − ft(y)‖B = ‖t(f(x) − f(y))‖B ≤ t ‖x− y‖B for all x, y ∈M
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as f is nonexpansive on M with respect to the norm ‖.‖B by Theorem 8.1. Thus

ft is a contraction on M with respect to the norm ‖.‖B . Now since M is ‖.‖B-

complete, by Banach contraction mapping principle, ft has a unique fixed point xt,

say, in M . By definition of ft, we have

(I − f)(xt) = xt −
1

t
(ft(xt) − (1 − t)p) =

(
1 − 1

t

)
(xt − p).

Hence

‖(I − f)(xt)‖B ≤ |1 − 1

t
|(‖xt‖B + ‖p‖B) ≤ 2|1 − 1

t
| → 0

as t→ 1, because xt and p are in the unit ball of EB . Thus 0 ∈ ‖.‖− cl(I − f)M ⊆
τ − cl(I − f)M . The last inclusion follows from the fact that the ‖.‖B-topology is

finer than the topology induced on EB by τ .

Remark 8.2 This theorem incudes Theorem 2.2 in Taylor (1972) (also see

Lemma 3.1 in Tarafdar (1974)). Also we note that here we have obtained a stronger

result under a weaker hypothesis.

Corollary 8.2.1 Let (E, τ) and A∗(τ) be as in Theorem 8.1. Let f be nonex-

pansive on a nonempty τ -sequentially complete, τ -bounded and starshaped subset M

of E, and let (I − f) map τ -bounded and τ -sequentially closed subsets of M into

τ -sequentially closed subsets of M . Then f has a fixed point in M .

A point p ∈ τ -clM is a τ -sequential limit point of M if there is exists a sequence

{pn}, pn ∈ M , such that pn → p in the τ -topology. M is called τ -sequentially closed

if each τ -sequential limit point of M belongs to M .

Proof. Since M is τ -sequentially complete and E is Huasdorf, it follows that M

is τ -sequentially closed. (Let pn → p in the τ -topology and pn ∈ M . The {pn}
is a τ -Cauchy sequence and,therefore, p ∈ M .) Hence, by hypothesis (I − f)M is

τ -sequentially closed. By Theorem 8.2, 0 ∈ ‖.‖B − cl(I − f)M . But

‖.‖B − cl(I − f)M ⊆ τ−sequential− cl(I − f)M

because it follows that each point in ‖.‖B − cl(I − f)M is a τ -sequential limit point

of (I − f)M as ‖.‖B-topology is finer than the τ -topology. Hence 0 ∈ (I − f)M .

This completes the proof.

Corollary 8.2.2 Let (E, τ) and A∗(τ) be as in 8.1. Let f be nonexpansive on

a nonempty, τ -sequentially compact and starshaped subset M of E. Then f has a

fixed point in M .

Proof. M being τ -sequentially compact is τ -bounded and τ -sequentially complete.

Hence by Theorem 8.2 and by the reason given in Corollary 8.2.1, 0 ∈ ‖.‖B − cl(I−
f)M ⊆ τ -sequential-cl(I−f)M . Thus there exists a sequence {yn}, yn ∈ (I−f)M ,

such that yn → 0 in the τ -topology. Now since f is nonexpansive on M , it follows
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that f is pα-continuous for each α ∈ I . Hence f is τ -continuous and, therefore,

(I − f) is τ -continuous. Then it follows that (I − f)M is τ -sequentially compact as

M is so. Now it is easy to see that 0 ∈ (I − f)M . This completes the proof.

Before we prove the main result of this section we need to prove two lemmas.

The following result, which we write as a lemma, was proved in Göhde (1964/65,

Theorem 4) in a normed space. We extend this to a locally convex topological

vector space and also weaken the covexity hypothesis to the starshaped convexity.

Lemma 8.1 Let (E, τ) and A∗(τ) be as in Theorem 8.1. Let f be nonexpansive

on a nonempty, τ -closed, τ -bounded, and starshaped subset M of E. Further assume

that there exists a τ -compact subset L of M such that, for each x ∈M ,

τ − cl{fn(x) : n = 1, 2, . . . } ∩ L 6= ∅.

Then there exists atleast one fixed point of f in L.

Proof. Let p be the star centre of M . For each t with 0 < t < 1, we define

ft(x) = tf(x) + (1 − t)p, x ∈M.

Then, in exactly the same way as in the proof of Theorem 8.2 we can show that

ft is a contraction on M with respect to the norm ‖.‖B where ‖.‖B has the same

meaning as before, i.e. as in (8.2).

For any x ∈ M , {fn(x)} is a ‖.‖B-Cauchy sequence and there are points in M

which are displaced by ft with respect to |.‖B by an arbtrary small amount. Let

‖ft(xt) − xt‖B ≤ (1 − t).

Thus we have

‖f(xt) − xt‖B = ‖f(xt) − {tf(xt) + (1 − t)p} + ft(xt) − xt‖B
≤ ‖f(xt) − tf(xt)‖B + (1 − t) ‖p‖B + ‖ft(xt) − xt‖B
≤ (1 − t)(‖f(xt)‖B + ‖p‖B + 1)

≤ 3(1 − t)

as f(xt) and p are in the unit ball of EB . Thus there are points in M which are

displaced by f ( with respect to ‖.‖B ) by an arbitrary small amount.

By the above inequality and the ‖.‖B-nonexpanion of f on M (due to Theo-

rem 8.1) we have that, for each positive integer n,
∥∥fn+1(xt) − fn(xt)

∥∥
B
≤ 3(1 − t).

Thus from (8.1), we have

pα

(
fn+1(xt) − fn(xt)

λα

)
≤ 3(1 − t) for each α ∈ I. (8.3)
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Now, by our hypothesis, there is a yt ∈ L such that yt is a τ -limit point of {fn(xt)}.
Clearly yt is also pα-limit point of {fn(xt)} for each α ∈ I . Now let α ∈ I be

arbitrary. Then, since yt is a pα-limit point of {fn(xt)}, for any ε > 0, there is a

positive integer n such that

pα (fn(xt) − yt) < ε. (8.4)

Let ε be arbitrarily chosen. Then since λα > 0, there is a positive integer m such

that

pα (fm(xt) − yt) < λα ε. (8.5)

From (8.3), (8.5) and the pα-nonexpansion of f , we have

pα

(
f(yt) − yt

λα

)
≤ pα

(
f(yt) − fm+1(xt)

λα

)
+ pα

(
fm+1(xt) − fm(xt)

λα

)

+ pα

(
fm(xt) − yt

λα

)
< ε+ 3(1 − t) + ε.

Since ε is arbitrary, we must hae

pα

(
f(yt) − yt

λα

)
≤ 3(1− t). (8.6)

Now we consider a sequence {ti} of real numbers such that 0 < ti < 1 for each i

and limi→∞ ti = 1.

As L is τ -compact, the sequence {yti} has a τ -cluster point y in L. Clearly y

is also a pα-cluster point of {yti} and hence we can select a subsequence {ytni
} of

{yti} such that ytni
→ y as the pα-topology satisfies the first axiom of countability.

In view of (8.6) we have

lim
i→∞

pα
(
f
(
ytni

)
− ytni

)
≤ lim

i→∞
3λα (1 − tni) = 0.

Again since f is pα-nonexpansive on M , it follows that f is pα-continuous on M .

Hence f
(
ytni

)
→ f(y) in the pα-topology; i.e. limi→∞ pα

(
f
(
ytni

)
− f(y)

)
= 0.

We now have

pα(f(y) − y) ≤ pα
(
f(y) − f

(
ytni

))
+ pα

(
f
(
ytni

)
− ytni

)
+ pα

(
ytni

− y
)
,

where i = 1, 2, . . . . Taking the limit as i→ ∞, we have

pα(f(y) − y) = 0.

Since α is arbitrary, pα(f(y) − y) = 0 for each α ∈ I . Again, since E is Hausdorff,

f(y) = y. This completes the proof.

Remark 8.3 In proving the above lemma, if we start at the outset with an

arbitrary α ∈ I , then it is true that ft and {fn(x)} are respectively a contraction
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and a Cauchy sequence with respect to the seminorm pα. But then xt will depend

on α and hence the technique of Göhde (1964/65) applied α-wise does not work.

Thus it seems that the use of ‖.‖B , as made in the proof, is appropriate.

The next lemma was proved in DeMarr (1963) in a Banach space.

Lemma 8.2 Let (E, τ) and A∗(τ) be as in Theorem 8.1. Let M be a nonempty,

τ -compact subset of E and K the convex hull of M . If, for any β ∈ I, the pβ-

diameter δ(M,β) of M is greater than 0, then there exists an element u ∈ K such

that

sup{pβ(x− u) : x ∈ M} < δ(M,β).

Proof. The proof in DeMarr (1963) with slight adjustment will do. Since M is τ -

compact, M is pα-compact for each α ∈ I . Thus there exist points x0, x1 in M such

that pβ(x0 − x1) = δ(M,β). Let Mβ ⊆ M be the maximal so that {x0, x1} ⊆ Mβ

and pβ(x − y) = δ(M,β) for all distinct x, y ∈ Mβ . Mβ is cleary nonempty. Also,

since M is pβ-compact, it follows that Mβ is finite. Let Mβ = {x0, x1, . . . , xn}. We

define

u =
∑

k=0

n 1

n+ 1
xk ∈ K.

Since M is pβ-compact, there exists a point y0 ∈ M such that pβ(y0 − u) =

sup{pβ(x − u) : x ∈ M}. Again, since pβ(y0 − u) ≤ δ(M,β) for all k = 0, 1, . . . , n,

we have

pβ(y0 − u) ≤
∑

k=0

n 1

n+ 1
pβ(y0 − xk) ≤ δ(M,β).

Now pβ(y0 − u) = δ(M,β) would imply that pβ(y0 − xk) = δ(M,β) > 0 for all

k = 0, 1, . . . , n. But this would then imply, by definition of Mβ, that y0 ∈ Mβ; i.e.

y0 = xk for k = 0, 1, . . . , n, which would contradict that pβ(y0 − xk) = δ(M,β) > 0

for all k = 1, 2, . . . , n. Hence pβ(y0 − u) < δ(M,β). This completes the proof.

We now state and prove the main theorem of this section.

Theorem 8.3 Let (E, τ) be a quasi-complete locally convex Hausdorff topological

vector space and A∗(τ) = [pα : α ∈ I ]. Let X be a nonempty, τ -bounded, τ -closed

and convex subset of E and M be a τ -compact subset of X. let F be a nonempty

commutative family of nonexpansive self mappings on X having the property that

for some f1 ∈ F and for each x ∈ X,

τ − cl{f1n(x) : n = 1, 2, . . .} ∩M 6= ∅.

Then the family F has a common fixed point in M .

Proof. We take X as M in the definition of EB . The proof proceeds in the general

line of argument of Theorem 1 of Belluce and Kirk (1966). Let K be a nonempty,
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τ -closed, and convex subset of X such that f(K) ⊆ K for each f ∈ F . Let x ∈ X .

Then {f1n(x)} ⊆ K. By hypothesis we have K ∩M ⊇ τ − cl {f1
n(x)} ∩M 6= ∅.

Applying Zorn’s Lemma we obtain a subset a subset X∗ of X which is minimal

with respect to being nonempty, τ -closed, convex and being mapped into itself by

each f ∈ F . We set M∗ = X∗ ∩M . M∗ 6= ∅ by the above inclusion relation. By

our Lemma 8.1 it follows that f1 has a nonempty τ -closed fixed-point H in M∗.
Now let x ∈ H and y = f(x) for any f ∈ F . Then by using the commutativity of

F , we obtain, f1(y) = f1[f(x)] = f [f1(x)] = f(x) = y. Hence y ∈ H and f(H) ⊆ H

for each f ∈ F . Therefore, we are able to find a subset H∗ of H which is minimal

with respect to being nonempty, τ -closed, and mapped into itself by each f ∈ F .

Let g ∈ F . Then g, being nonexpansive on X , is pα-continuous for each α ∈ I and

hence τ -continuous on X . Therefore g(H∗) is τ -closed as H∗ is τ -compact. Now

for each f ∈ F , f(g(H∗)) = g(f(H∗)) ⊆ g(H∗). Hence by the minimality of H∗

implies that g(H∗) = H∗. Hence H∗ is mapped onto itself by each f ∈ F .

Let W be the convex τ -closure of H∗. Then W is τ -compact, as H∗ is so and E

is quasi-complete. We now prove that δ(W,α) = 0 for each α ∈ I where as before

δ(W,α) is the pα-diameter of W . we assume that δ(W,β) > 0 for some β ∈ I and

deduce a contradiction. Then, by applying our Lemma 8.2 to the compact set W ,

there is a point x ∈ W such that

sup{pβ(x− z) : z ∈ W} = r < δ(W,β).

As in Belluce and Kirk (1966) we set

C1
β = {w ∈ W : pβ(w − z) ≤ r for all z ∈ H∗}

and

C2
β = {w ∈ X∗ : pβ(w − z) ≤ r for all z ∈ H∗}.

Then C1
β = C2

β∩W . Since f(H∗) = H∗ for each f ∈ F , by using pβ-nonexpansion

of each f ∈ F , we can show that f
(
C2

β
)

⊆ C2
β . Clearly C2

β is nonemty and

convex. Also C2
β is τ -closed. (For let y be a τ -limit point of C2

β . Then since X∗

is τ -closed, y ∈ X∗. Also y being a τ -limit point of C2
β is a pβ-limit point of C2

β .

Let ε > 0 be arbitrarily given. Then exists a w ∈ C2
β such that pβ(y − w) < ε.

Now for any z ∈ H∗, pβ(y − z) ≤ pβ(y − w) + pβ(w − z) < ε + r. Since ε is

arbitrary, pβ(y − z) ≤ r. Hence y ∈ C2
β .) Hence C2

β = X∗ by the minimality of

X∗. Thus we obtain C1
β = W . Let W ′ be the convex pβ-closure of H∗. Then we

have δ(W,β) ≤ δ(W ′, β) = δ(H∗, β) as W ⊆ W ′, each τ -limit point of a set being

also a pβ-limit point of the set. Hence there must be points u and v in H∗ such

that pβ(u − v) > r. But since H∗ ⊆ W = C1
β , pβ(u − v) ≤ r. Thus we obtain a

contradiction. Hence δ(W,α) = 0 for all α ∈ I . Since E is Hausdorff, this implies

that H∗ consists of a single point which must be a fixed point of each f ∈ F . This

completes the proof.
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The next theorem was proved in Hong (1968) in Banach space.

Theorem 8.4 Let (E, τ) and A∗(τ) be as in Theorem 8.3. Let X be a nonempty

τ -closed convex subset of E. Let F be a commutative family of nonexpansive map-

pings on X and M a τ -compact subset of X such that ther exist an f1 ∈ F and

x0 ∈ X satisfying the following properties:

(i) {f1n(x0)} is τ -bounded;

(ii) τ − cl co{f1
n(x)} ∩M 6= ∅ for every x ∈ X,

where coA stands for convex hull of A. Then the family F has a common fixed

point in M .

Proof. Let M1 = {f1n(x0)}. Then we take this M1 as M in the definition EB . Let

M1 be ‖.‖B-bounded by the number d ≤ 2. Let Bn denote the ‖.‖B-closed ball of

centre f1
n and radius d. We now define: Dk = ∩∞

n (Bn∩K) and D = τ−cl(∪∞
0 Dk).

Then we can show that D is convex, τ -closed and τ -bounded as ∪0
∞ is ‖.‖B-

bounded. Moreover, D is mapped into itself by the mapping f1. Now by applying

Theorem 8.3 to the family F = {f1}, we obtain a fixed point of f1 in M . By

condition (ii) we have that each fixed point of f1 is contained in M . Hence The

set H1 of all fixed point of f1 is a nonempty, τ -closed, and τ - compact of M . Also

by the the commutativity of F , we have as in Theorem 8.3 that f(H1) ⊆ H1 for

each f ∈ F . Furthermore, by τ -compactness of H1 and by Zorn’s lemma, there is

a nonempty set H∗ which is minimal with respect to being nonempty, τ -compact

subset of H1 and mapped into itself by eacy f ∈ F . Now for every f, g ∈ F , we

have

g[f(H∗)] = f [g(H∗) ⊆ f(H∗);

Thus f(H∗) is a nonempty τ -compact subset of H1 and is mapped into itself

by each g ∈ F . Thus by the minimality of H∗, f(H∗) = H∗ for eacf f ∈ F . Now

we repeat the same argument as in Theorem 8.3 and establish the existence of a

common fixed of F .

8.2 Set-Valued Mappings of Nonexpansive Type

The authors of Browder (1965a), Göhde (1966) and Kirk (1965), have independently

proved that a nonexpansive self mapping on a weakly compact convex subset of a

Banach space with normal strcture has a fixed point. In this section we include the

results proved in Husain and Tarafdar (1980), i.e. we define the concept of normal

structure of a bounded convex subset of a locally convex tological vector space and

also the notion of a set-valued mapping of nonexpansive type on such a space. We

then prove a fixed point theorem for such mappings which include the above fixed

point theorem of Browder (1965a), Göhde (1966) and Kirk (1965). We also consider
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another definition of nonexpansive set-valued mapping and fixed point theorem for

such a mapping on a closed bounded interval.

Throughout this section as before (E, τ) will denote a locally convex Hausdorff

topological space where the topology τ is generated by the family [pα : α ∈ I ] of

seminorms on E, I being the index set.

8.2.1 Normal Structure and Fixed Point Theorems

The concept of normal structure of a bounded convex set in a Banach space was

first introduced in Brodskii and Milman (1948). We have introduced below the

same concept for a bounded convex subset of E.

A point x of a bounded subset K of E is said to be a pα-diametral point of K

if δ(K,α) = sup{pα(x− y) : y ∈ K}, as before δ(K,α) is the pα-diameter of K, i.e.

δ(K,α) = sup{pα(x − y) : x, y ∈ K}. A point y ∈ K which is not a pα-diametral

point of K is called a pα-nondiametral point of K.

Definition 8.3 A bounded convex subset K of E is said to have normal structure

if every convex subset B of K containing more than one point has at least one pα-

nondiametral point of B for each α ∈ I satisfying δ(B,α) > 0.

Example 8.1 Let K be a convex subset of E such that K is pα-compact for

each α ∈ I . Then K has normal structure.

Proof. For, suppose K does not have normal stucture. Then there are a convex

subset B of K conaining more than one point and an α ∈ I with δ(B,α) > 0 such

that B does not contain any pα-nondiametral point. Let x1 ∈ B. Then we can find

x2 ∈ B such that pα(x1−x2) = δ(B,α). Since B is convex, x1+x2

2 ∈ B. We can find

x3 ∈ B such that pα(x3 − x1+x2

2 ) = δ(B,α). Continuing this process we obtain a

sequence {xn} of points in B such that pα
(
xn+1 − x1+x2+···+xn

n

)
= δ(B,α). Since

δ(B,α) = pα

(
xn+1 −

x1 + x2 + · · · + xn
n

)
≤ 1

n

∑

k=1

n
pα(xn+1 − xk) ≤ δ(B,α),

it follows that pα(xn+1 − xk) = δ(B,α) for k = 1, 2, . . . , n. This implies that {xn}
has no pα-Cauchy subsequence contradicting the assumption that K is pα-compact.

Example 8.2 Let K be a τ -compact convex subset of E. Then K has normal

structure.

Since K is τ -compact, it is pα-compact for each α ∈ I . Hence K has normal

structure as shown in Example 1.

For any bounded subset K of E and x ∈ K, let

γx(K,α) = sup{pα(x− y) : y ∈ K},

γ(K,α) = inf{γx(K,α) : x ∈ K},
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and

C(K,α) = {x ∈ K : γx(K,α) = γ(K,α)}.

Lemma 8.3 Let K be a nonempty weakly compact convex subset of E. Then

C(K,α) is a nonempty closed convex subset of K for each α ∈ I.

Proof. For each positive integer n and x ∈ K, let Kn(x, α) ={
y ∈ K : pα(x− y) ≤ γ(K,α) + 1

n

}
. Obviously Kn(x, α) is nonempty, convex and

pα-closed. Let Cn(α) =
⋂
x∈K

Kn(x, α). Clearly Cn(α) is convex and pα-close and

hence τ -closed. Cn(α) is also nonempty. Indeed, ther is a a z ∈ K such that

γz(K,α) ≤ γ(K,α) + 1
n , i.e. pα(z − x) ≤ γ(K,α) + 1

n for all x ∈ K. Hence

z ∈ Cn(α). Now since {Cn(α) : n = 1, 2, . . . , } is a decreasing sequence of τ -closed

(hence weakly closed because each Cn(α) is convex), convex subsets of the weakly

compact set K, it follows that ∩nCn(α) is nonempty, τ -closed and convex. We

complete the proof by noting that C(K,α) = ∩nCn(α).

Lemma 8.4 Let K be as in Lemma 8.3. In addition assume that K has normal

structure. Then δ(C(K,α), α) < δ(K,α) whenever δ(K,α) > 0.

Proof. Since K has normal structure, there is a point x ∈ K such that

γx(K,α) < δ(K,α). If u, v ∈ C(K,α), then pα(u − v) ≤ γu(K,α) = γ(K,α).

Hence δ(C(K,α), α) ≤ γx(K,α) < δ(K,α).

Definition 8.4 LetK be a nonempty subset of E. A set-valued (or single valued)

mapping f : K → 2K with f(x) 6= ∅ for each x ∈ K said to be nonexpansive type

on K if f satisfies either of the following conditions:

(a) for each α ∈ I , there are nonnegative real numbers a1(α), a2(α), a3(α) with

a1(α) + a2(α) + a3(α) ≤ 1 such that for all x, y ∈ K,

pα(u− v) ≤ a1(α)pα(x− y) + a2(α)pα(x− v) + a3(α)pα(y − u)

whenever u ∈ f(x) and v ∈ f(y);

(b) given x ∈ K and u ∈ f(x), for each v ∈ f(y), y ∈ K and each α ∈ I , there

exists v′(α) ∈ f(y) such that pα(u− v) ≤ pα(x− v′(α));

(c) given x ∈ K and real number ε > 0, there exists for each α ∈ I a real number

δ(α) ≥ ε such that pα(u − v) ≤ ε whenever u ∈ f(x), v ∈ f(y), y ∈ K and

pα(x− y) ≤ δ(α).

Theorem 8.5 Let K be a nonempty weakly compact convex subset of E. Assume

that K has normal structure. Then for each multivalued mapping f of nonexpansive

type on K, there is a point x ∈ K such that f(x) = {x}, where {x} denotes the set

consisting of the single point x.

Proof. By using weak compactness of K and Zorn’s lemma we can find a minimal

nonempty τ -closed convex subset F of K such that f(F ) ⊆ F (e.g see Browder
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(1965a)). We assert that F is a set consisting of a single point, by showing that

δ(F, α) = 0 for each α ∈ I . If possible, let δ(F, α) > 0 for some α ∈ I . Since F is

weakly compact, by Lemma 8.3 C(F, α) is nonempty, τ -closed convex subset of F .

We now prove that f(C(F, α)) ⊆ C(F, α). To this end let u ∈ f(F (C,α)) [here we

note f(A) =
⋃
x∈A

f(x) for any subset A of K]. Then there is a point x ∈ C(F, α)

such that u = f(x). Let S = {y ∈ F : pα(u− y) ≤ γ(F, α)}. Clearly S is nonempty,

convex and pα-closed and hence τ -closed. Also f(S) ⊆ S. Let y ∈ f(S). Then

there is a z ∈ S ⊆ F such that y = f(z). If f satisfies (a), then

pα(u− y) ≤ a1(α)pα(x − z) + a2(α)pα(x− y) + a3(α)pα(z − u)

≤ a1(α)γ(F, α) + a2(α)γ(F, α) + a3(α)γ(F, α) ≤ γ(F, α),

because z ∈ S ⊆ F , x ∈ C(F, α) and u, y ∈ F . Hence y ∈ S in this case. If f satsfies

(b), then there is a v′(α) ∈ f(z) ⊆ F such that pα(u− y) ≤ pα(x− v′(α)) ≤ γ(F, α)

since x ∈ C(F, α) and v′(α) ∈ F . Thus y ∈ S in this case, too. Finally if f satisfies

(c), there is a δ(α) ≥ γ(F, α) such that pα(u−y) ≤ γ(F, α) whenever u ∈ f(x), y ∈
f(z) and pα(x − z) ≤ δ(α). Now since for all z ∈ F , pα(x − z) ≤ γ(F, α) ≤ δ(α),

we have pα(u−y) ≤ γ(F, α). Thus y ∈ S in this case also. Hence, we conclude that

f(S) ⊆ S. Thus S = F by the minimality of F .

Now γu(F, α) = sup{pα(u − y) : y ∈ F} = sup{pα(u − y) : y ∈ S} ≤ γ(F, α).

Noting that u ∈ F , we obtain that γu(F, α) = γ(F, α), i.e. u ∈ C(F, α). Hence

f(C,F < α)) ⊆ C(F, α) as was to be shown. But then, F = C(F, α) by the

minimality of F . Since δ(F, α) > 0, it is impossible in view of our Lemma 8.4.

Thus we have shown that δ(F, α) = 0 for all α ∈ I . Since E is Hausdorff, F is a set

consisting of a single point {x}, say. Whence f(x) = {x}. .

Remark 8.4

(i) If (E, ‖.‖) is a Banach space and f is single valued and satisfies (a) with

a2(‖.‖) = a3(‖.‖) = 0, then the above theorem reduces to the result of Browder

(1965a), Göhde (1966) and Kirk (1965).

(ii) If (E, ‖.‖) is a Banach space, f is single valued and C(K, |.‖) is a single point,

then the above theorem reduces to a theorem of Wong (1974).

The following corollary shows how a set-valued mapping of nonexpansive type

can arise and an application of Theorem 8.5 gives rise to a common fixed point

theorem.

Corollary 8.5.1 Let E and K be as in Theorem 8.5. Let {fγ : γ ∈ J} be a

family of single valued mappings on K (i.e. fγ is a mapping of K into itself for

each γ ∈ J) satisfying either of the following conditions:

(i) for each α ∈ I, there are nonnegative numbers a1(α), a2(α), a3(α) with a1(α)+

a2(α) + a3(α) ≤ 1 such that for all x, y ∈ K and all γ, δ ∈ J ,

pα(fγ(x)−fδ(y)) ≤ a1(α)pα(x−y)+a2(α)pα(x−fδ(y))+a3(α)pα(y−fγ(x));
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(ii) given x ∈ K,α ∈ I, γ ∈ J , there exists for each pair (y ∈ K, δ ∈ J) a δ′ ∈ J

such that

pα(fγ(x) − fδ(y)) ≤ pα(x − fδ′(y)).

Then the family {fγ : γ ∈ J} has a common fixed point.

Proof. We define the set-valued mapping f : K → 2K by f(x) = {fγ(x) : γ ∈
J} =

⋃
γ∈J

fγ(x), x ∈ K. We can easily verify that if {fγ : γ ∈ J} satisfies (i), then f

is nonexpansive type of (a) in Definition 8.4 and if {fγ : γ ∈ J} satsfies (ii), then f

is nonexpansive type of (b) in Definition 8.4. Hence by Theorem 8.5 in either case

there is a point x ∈ K such that f(x) = {x}. This implies that x is a common fixed

point of {fγ : γ ∈ J}.

8.2.2 Another Definition of Nonexpansive Set-Valued Mapping

and Corresponding Results on Fixed Point Theorems

In this subsection we give another definition of nonexpansive set-valued mapping

which, in a single valued case, coincides with usual definition of nonexpansive map-

ping.

Definition 8.5 Let C be a subset of a metric space (X, ρ). A set-valued mapping

f : C → 2C with f(x) 6= ∅ for each x ∈ C is said to be nonexpansive if given x ∈ C

and u ∈ f(x), there is a vy ∈ f(y) for each y ∈ C, such that ρ(u, vy) ≤ ρ(x, y).

Remark 8.5 This can obviously extended in locally convex spaces in terms of

seminorms.

Example 8.3 Let {fα : α ∈ I} be a family of single valued nonexpansive self

mappings on a subset C of a metric space (X, ρ) [i.e. for each α ∈ I, fα : C → C and

ρ(fα(x), fα(y)) ≤ ρ(x, y) for all x, y ∈ C]. Then the set-valued mapping f : C → 2C

defined by f(x) = {fα(x) : α ∈ I}(= ⋃
α∈I

fα(x)), x ∈ C is clearly nonexpansive in

the sense of our Definition 8.5.

We do not as yet know if a fixed point theorem similar to our Theorem 8.5 or

the theorem of Browder (1965a), Göhde (1966) and Kirk (1965) can be proved in

general for such a nonexpansive mapping on a weakly compact subset (with normal

structure) of a Banach space. However, we prove the following fixed point theorem

on the subsets of real line R.

Theorem 8.6 Let C be a closed, convex and bounded subset (i.e. a closed and

bounded interval) of the real real line R. Let f be a nonexpansive (in the sense of

Definition 8.5) set-valued mapping on C with closed and convex vales in C (i.e.

f(x) is closed and convex for each x ∈ C). Then thetre is a point x0 ∈ C such that

x0 ∈ f(x0).
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Proof. Since C is compact, by using Zorn’s lemma we can find a minimal nonempty

colsed bounded convex set K ⊆ C such that f(K) ⊆ K, where as before f(K) =⋃
x∈K

f(x), (e.g. see Browder (1965a). Noting that K is a closed bounded interval,

say [a, b], let z be the midpoint (centre) and r the radius of K, i.e. r = |z − a| =

|z − b|. Let N = N(f(z), r) = {y ∈ K : |y − x| ≤ r} for some x ∈ f(z)}. Since

f(z) and K are convex, it follows that N is convex. N is also closed. Indeed, if

yn ∈ N,n = 1, 2, . . . and yn → y, we can find xn ∈ f(z), n = 1, 2, . . . such that

|yn − xn| ≤ r. Since f(z) is compact, we select a subsequence {xni} of {xn} such

that xni → x ∈ f(z). Now from the triangle inequality

|y − x| ≤ |y − yni | + |yni − xni | + |xni − x|,

it follows that |y − x| ≤ r. Thus x ∈ N and N is ,therefore, closed. We show that

f(N) ⊆ N . If y ∈ f(N), there is a w ∈ N ⊆ K such that y‘ ∈ f(w). Now since f

is nonexpansive, there is a u ∈ f(z) such that |u − y| ≤ |z − w| ≤ r, z being the

centre of K and w being in K. Hence y ∈ N . Thus by the minimality of K, we

have K = N = [a, b]. Hence z ∈ f(z). For if z 6∈ f(z), then since f(z) is a closed

and convex of K = N = [a.b], it follows that either (i) f(z) ⊆ [a, z), or f(z) ⊆ (z, b].

Clearly in case (i) b 6∈ N and in case (ii) a 6∈ N . Thus in either case N 6= K which

is a contradiction.

8.3 Fixed Point Theorems for Condensing Set-Valued Mappings

on Locally Convex Topological Vector Spaces

Using the concept of condensing mapping the authors in Sadovskǐi (1967) and Lif̌sic

and Sadovskǐi (1968) have obtained respectively the generalizations of Schauder

fixed point theorem Schauder (1930) and Tychonoff fixed point theorem Tychonoff

(1935). In Daneš (1968) the generalization of Kautani’s fixed point theorem Kaku-

tani (1941) by using the concept of set-valued condensing mapping has been ob-

tained. In Reinermann (1971) the condensing mapping defined in terms of of a

measure of noncompactness (nonprecompactness) of bounded sets to obtain gener-

alizations has also been used. Using the set-valued condensing mapping defined in

terms of a measure of precompactness, Himmelberg, Porter and van Vleck Himmel-

berg and Vleck (1969) proved a fixed point theorem which includes the fixed point

theorem of Sadovskǐi (1967), Tychonoff (1935), Glicksberg (1952), Fan (1952) and

a part of theorem of Browder (1959).

The aim of this section as is noted in Tarafdar and Výborný (1975) is to obtain

a fixed point theorem which will contain the above fixed point theorems of Daneš

(1968), Fan (1952), Glicksberg (1952), Himmelberg and Vleck (1969), Kakutani

(1941), Sadovskǐi (1967), Reinermann (1971), Sadovskii (1968), Schauder (1930)

and Tychonoff (1935).

In the next subsection we introduced general definition of a measure of non-
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compactness of bounded sets in a locally convex topological vector space. In the

subsequent subsections we have given various definitions of condensing set-valued

mappings and have unified them in single definition and then we have proved our

main fixed point theorem of this section and also obtained corollaries and theorem

which are similar but more general than the corresponding results of Himmelberg

and Vleck (1969).

Let F : X → 2Y be set-valued mapping with F (x) 6= ∅ for each x ∈ X (this will

be assumed throughout this section). For Ω ⊆ X , a set-valued mapping G : Ω → 2Y

having the property that G(x) ⊆ F (x) for each x ∈ Ω is called a subset-valued

mapping of F . For Ω ⊆ X,F (Ω) =
⋃
x∈Ω

F (x).

Given two topological spaces X and Y , a set-valued mapping F : X → 2Y is

as before called upper semicontinuous if for each closed subset A of Y , F−1(A) is

closed. F has closed graph if Y is regular and F is upper semicontinuous and closed

values (see Kuratowski (1966, p. 175). A set-valued mapping F : X → 2Y is lower

semicontnuous if for each open set A of Y, F−1(A) is open (for more details see

Chapter 2).

As before, in this section (E, τ) will denote a locally convex Hausdorff topological

vector space and [pα : α ∈ I ] will denote the family of seminorms which generates

the topology τ . Also, any topological concept, such as closedness, pre-copactness,

compactness, boundedness, and so on, will be understood as ‘with respect to topol-

ogy τ . In all other cases, i.e., when a topological concept is not meant with respect to

τ , the corresponding topology will precede the concept; for example, pα-precompact

to mean that certain subset is precompact with respect to pα-topology.

8.3.1 Measure of Precompactness and Non-Precompactness

We denote by C the class of all τ -bounded subsets of (E, τ).

Definition 8.6 µ = [µα : α ∈ I ] will be said to define a measure of precompact-

ness on C, where for each α ∈ I , µα is a set (interval) valued mapping of C into

R+, the set of nonnegative real numbers, having the properties:

(i) µα(Ω) = [a,∞), or (a,∞), a ≥ 0 for each Ω ∈ C;

(ii) Ω1 ⊆ Ω2 ∈ C implies that µα(Ω1) ⊇ µα(Ω2) for each α ∈ I ;

(iii) µα(Ω) = µα(coΩ) for each Ω ∈ C where as before co stands for the convex

hull of Ω;

(iv) µα(Ω1 ∪ Ω2) = µα(Ω1) ∩ µα(Ω2) for Ω1,Ω2 ∈ C;

(v) µα = R+ if Ω is precompact and Ω precompact if µα ⊇ (0,∞), for each α ∈ I .

For Ω ∈ C, µ̂(Ω) = [µ̂α(Ω) : α ∈ I ], where µ̂α(Ω) = inf µα(Ω), may then be regarded

as a measure of nonprecompactness of Ω. Thus all the entries in the parenthesis of

µ̂(Ω) are zeros if and only if Ω is precompact.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

578 Topological Methods of Set-Valued Nonlinear Analysis

Example 8.4 (Kuratowski) For each Ω ∈ C, we define λ(Ω) = [λα(Ω) : α ∈ I ],

where

λα(Ω) = {ε > 0 : Ω can be covered by a finite number of sets of pα-diameter ≤ ε}.

Then λ is indeed a measure of precompactness on C.

Thus taking λ̂α(Ω) = inf λα(Ω), we see that

(i) λα(Ω) = [λ̂α(Ω),∞) or (λ̂α(Ω),∞), (ii), (iv), and (v) follow easily. For proof

of (iii) we refer to Akhmerovtal (1992) or Darbo (1955) (the proof given there for

normed space applies also for seminormed space).

Example 8.5 Let Uα = {x ∈ E : pα(x) ≤ 1}. For each Ω ∈ C, we define

γ(Ω) = [γα(Ω) : α ∈ I ], where

γα(Ω) = {ε > 0 : there exists a pα-precompact subset S with S + εUα ⊇ Ω}.

(i) As before we take a = inf γα(Ω) = ˆγα(Ω). The proof of (ii) and (iv) of

Definition 8.6 is trivial. We now prove (iii) and (v).

(iii) In view of (ii) it suffices to prove that γα(Ω) ⊆ γα(co Ω). Let t ∈ γα(Ω).

Then there exists a pα-precompact subset S such that S + tUα ⊇ Ω. Since

coS+ tUα ⊇ Ω and coS+ tUα is convex, coS+ tUα ⊇ co Ω. Noting that coS

is pα-precompact, we conclude that t ∈ γα(coΩ).

(v) Let Ω be τ -precompact. Then Ω is pα-precompact for each α ∈ I . Since

Ω + tUα ⊇ Ω for all t ≥ 0 and α ∈ I , we have µα(Ω)(= γα(Ω)) = R
+ for all

α ∈ I .

Next, let α ∈ I be arbitrary and γα(Ω) ⊇ (0,∞). Let r > 0 be any number.

Since r
2 ∈ γα(Ω), there exists a pα-precompact set S such that S + r

2Uα ⊇ Ω.

Since S is pα-precompact, there exists a finite set F such that F + r
2Uα ⊇ S. Now

F + rUα ⊇ S + r
2Uα ⊇ Ω. Thus Ω is pα-precompact. Since α is arbitrary, Ω is

τ -precompact.

Example 8.6 Let (E, τ), [p − α : α ∈ I ] and C be as before. For Ω ∈ C, we

define ν(Ω) = [να(Ω) : α ∈ I ], where

να(Ω) = {ε > 0, there exists a precompact set S such that S + εUα ⊇ Ω}.

The proof that ν is a measure of nonprecompactness on C is similar to that of

Example 8.5. We note that for each Ω ∈ C, να(Ω) ⊆ γα(Ω) for each α ∈ I .

8.3.2 Condensing Mappings

The authors of Himmelberg and Vleck (1969) have defined a measure of pre-

compactness for any subset of (E, τ) in the following way.

Let B be base of convex neighbourhoods of 0. Then for Ω ⊆ E, Q(Ω), the

measure of τ -precompactness of Ω, is defined to be the collection of all B ⊆ B
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such that S + B ⊇ Ω for some τ -precompact subset S of E. With this notion of

precompactness they have introduced a definition of condensing mapping.

Let X be a nonempty subset of (E, τ). Let [pα : α ∈ I ] and C be as before. Let

F : X → 2X be a set-valued mapping

Definition 8.7 F is condensing with respect to Q if for each τ -bounded but not

τ -precompact set Ω ⊆ X with F (Ω) ⊆ Ω we have Q(F (Ω)) 6⊇ Q(Ω).

Definition 8.8 F is condensing with respect to µ if for each bounded but not

τ -precompact set Ω ⊆ X with F (Ω) ⊆ Ω, there exists α ∈ I such that µ̂α (F (Ω)) <

µ̂α(Ω), where µ = [µα : α ∈ I ] is a measure of τ -precompactness on C.

Definition 8.9 F is condensing with respect to µ for each bounded but not

precompact set Ω ⊆ X with F (Ω) ⊆ Ω, there exists α ∈ I such that µα (F (Ω)) 6⊇
µα(Ω).

Definition 8.10 F is condensing if for each Ω ⊆ X with F (Ω) ⊆ Ω,

(a) the condition that Ω \ τ − cl coF (Ω) is τ -compact implies the τ -compactness

of τ − cl Ω; or

(b) the condition that Ω \ coF (Ω) is empty or single point implies the τ -

compactness of τ − clΩ.

Definition 8.11 F is condensing if for each Ω ⊆ X with F (Ω) ⊆ Ω, the condition

that Ω \ coF (Ω) is empty or single point implies that Ω is τ -precompact.

Definition 8.7 is used first in Himmelberg and Vleck (1969). For single valued

mapping, Definition 8.8 has been used in Reinermann (1971) and in Stallbohm

(1973) with µ = λ, and Definition 8.10 is due to the authors of Lif̌sic and Sadovskǐi

(1968). Definition 8.11 is a slight variant of the one given in Daneš (1968).

(A) It is easy to see that Definition 8.8 implies Definition 8.9 for each measure µ.

(B) Definition 8.7 implies Definition 8.9 for suitable measure µ. Let Definition 8.7

hold. We index the base B by B = [Bα : α ∈ I ]. Let pα be the Minskowski

functional on Bα. Let Uα = {x ∈ E : pα(x) ≤ 1}. Clearly Bα = Uα. We

now consider the measure ν as defined in Example 8.6. We now show that

Definition 8.9 holds with respect to this measure ν. Let Ω be any τ -bounded

but not τ -precompact subset of X with F (Ω) ⊆ Ω. Then we have Q (F (Ω)) 6⊇
Q(Ω); that is, there exists a Bα ∈ B such that Bα ∈ Q (F (Ω)) but Bα 6∈ Q(Ω).

Hence it follows that 1 ∈ να (F (Ω)) but 1 6∈ να(Ω). Also since F (Ω) ⊆ Ω, it

follows from (ii) of Definition 8.6 that να (F (Ω)) 6⊇ να(Ω).

(C) Definition 8.9 with measure µ implies Definition 8.11 if F has bounded range.

Let Definition 8.9 hold with a measure µ. Let Ω ⊆ X,F (Ω) ⊆ Ω, and Ω \
coF (Ω) = Z where Z = ∅ or a single point. Obviously µα(Z) = R

+ for each

α ∈ I .

Since Ω ⊆ Z∪coF (Ω), it follows that Ω is bounded and we have for each α ∈ I ,

µα(Ω) ⊇ µα (Z ∪ F (Ω)) by (ii) of Definition 8.6 equal to µα(Z) ∩ µα (F (Ω))
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by (iv) and (iii) of Definition 8.6. Again since Ω ⊇ Z∪F (Ω), we have for each

α ∈ I, µα(Ω) ⊆ µα(Z) ∩ µα (F (Ω)) by (ii) and (iv) of Definition 8.6. Thus

for each α ∈ I , we have µα(Ω) = µα(Z) ∩ µα (F (Ω)). From this and the fact

that µα(Z) = R+ for each α ∈ I , it follows that µα(Ω) = µα (F (Ω)) for each

α ∈ I , which in view of Definition 8.9 implies that Ω is τ -precompact.

(D) Obviously Definition 8.10 implies Definition 8.11.

8.3.3 Fixed Point Theorems

For the proof of the following elementary result see, e.g., the book of Berge (1963,

Theorem 8, p. 113).

Lemma 8.5 Let X be a compact topological space and F : X → 2X be a upper

contnuous set-valued mapping (with F (x) 6= ∅ for each x ∈ X which has been

assumed at the begining of the section), then there exists a nonempty compact subset

K of X such that F (K) = K.

The following corollary was given as a lemma in Himmelberg and Vleck (1969).

Corollary 8.6.1 Let X be topological space. Let F : X → 2X be a set-valued

mapping with closed graph. If there exists a nonempty subset A of X such that

F (A) ⊆ A and clA is compact, then there exists a nonempty, closed and compact

subset K of X such that K ⊆ F (K).

Proof. Let G =Graph F
⋂

(clA×clA). Then G is closed and compact as F is upper

semicontinuous and A is compact. Let G0 be a set-valued mapping such that Graph

G0 = G. Clearly G−1
0 (clA) is a closed subset of clA containing A. Thus domain

G0 = G−1
0 (clA) = clA. Hence G0 : clA → 2clA is a upper semicontinuous mapping

from the compact set clA. Consequently there is by Lemma 8.5 a nonempty, closed

and compact subset K such that G0(K) = K. This implies F (K) ⊇ K.

Theorem 8.7 Let X be a nonempty complete convex subset of a locally convex

Hausdorff topological vector space E. Let F : X → 2X be a condensing set-valued

mapping in the sense of Definition 8.11 with convex values and closed graph. Then

F has a fixed point.

Proof. Unlike Sadovskǐi (1967), Lif̌sic and Sadovskǐi (1968) and Himmelberg and

Vleck (1969), we will not use ordinals. Let x ∈ X . Set A = {x} ∪ {⋃∞
n=1 F

n(x)}.
Then clearly F (A) ⊆ A and A \ coF (A) ⊆ {x} or empty set. Since F is con-

densing, A is precompact. Also clA ⊆ X and clA is compact as X is complete.

Hence by Corollary 8.6.1 there exists a nonempty compact subset K of X such that

F (K) ⊇ K.

Let S = {Y ⊆ X : K ⊆ Y, F (Y ) ⊆ Y and Y is convex}. S is nonempty as

X ∈ S. S is a partially ordered set with respect to the relation ≤ where Y1 ≤ Y2 if

and only if Y1 ⊇ Y2 with Y1, Y2 ∈ S.
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We first prove that every chain in S has an upper bound in S. Let T be a chain

in S. Then Z =
⋂
Y ∈T

Y is an upper bound. Clearly

Z ⊆ X, K ⊆ Z, F (Z) ⊆ Z,

and Z is convex. Hence Z ∈ S. Thus by Zorn’s Lemma there is a maximal element

Z0 ∈ S.

We next prove that for each Y ∈ S, coF (Y ) ∈ S

(a) coF (Y ) ⊆ X as F (Y ) ⊆ Y ⊆ X and X is convex.

(b) K ⊆ coF (Y ).

Since K ⊆ Y and K ⊆ F (K), we have K ⊆ F (K) ⊆ F (Y ). Hence K ⊆
coF (Y ).

(c) F (coF (Y )) ⊆ coF (Y ).

Since F (Y ) ⊆ Y and Y is convex, coF (Y ) ⊆ Y . Hence F (coF (Y )) ⊆ F (Y ) ⊆
coF (Y ).

(d) coF (Y ) is convex.

Now since for each Y ∈ S, F (Y ) ⊆ Y and Y is convex, we have coF (Y ) ⊆ Y . Thus

Y ≤ coF (Y ) for each Y ∈ S. In particular Z0 ≤ coF (Z0). But since Z0 is a

maximal element in S, it follows that Z0 = coF (Z0); i.e. Z0 \ F (Z0) = ∅. Hence

by the condensing property of F , Z0 is precompact. Therefore, clZ0 ⊆ X and clZ0

is compact. The rest of the argument is as given in Himmelberg and Vleck (1969).

Let G = graph F ∩ (clZ0 × clZ0). Then G is closed and compact subset of X×X .

Let G0 be the set-valued mapping such that Graph G0 = G. Since G−1
0 (clZ0) is a

closed subset of clZ0 containing Z0, the domain G0 = G−1
0 (clZ0) = clZ0. Hence

G0 : clZ0 → 2clZ0 is a set-valued mapping with convex values and compact graph

(note F = G0 on clZ0). G0 is also upper semicontinuous. Hence by fixed point

theorem of Glicksberg (1952) and Fan (1952) (also chapter 2), G0 has a fixed point

in clZ0. This fixed point is also a fixed point of F .

Remark 8.6 The same remark as given in Himmelberg and Vleck (1969, p. 637)

applies in the present situation; i.e. the theorem remains true for non-Hausdorff

(non-separated) E if further assumption that X is closed is assumed. For details

see Himmelberg and Vleck (1969) as quoted above.

Remark 8.7 If F is assumed to be condensing with respect to Definition 8.10,

then the above theorem remains true with the completeness conition on X replaced

by the condition that X is closed. The same proof applies, because in this case clA

and clZ0 appeared in the proof would be compact directly due to the condensing

of F . By remark 8.6 we can then remove the the Hausdorff condition on E as the

condition that X is closed is already assumed. The resulting version of the theorem

will include a fixed point theorem of Lif̌sic and Sadovskǐi (1968).

Corollary 8.7.1 Let X be a nonempty comlete convex subset of a Hausdorff

locally convex topological vector space E. Let F : X → 2X be a set-valued mapping
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with convex values, closed graph and bounded range. If F is condensing in the sense

of Definition 8.9, then F has a fixed point.

Proof. This follows from Theorem 8.7 and (C) following the definitions.

Remark 8.8 In view of (B) it follows that the fixed point theorem in Himmelberg

and Vleck (1969, Th. 1,p. 637) is a special case of Corollary 8.7.1.

The following theorem includes the corresponding theorem in Himmelberg and

Vleck (1969).

Theorem 8.8 Let X be a nonempty complete convex subset of a locally convex

topological vector space E. Let F : X → 2X be a lower semicontinuous set-valued

mapping with closed convex values. Then F has a fixed point if either of the following

conditions holds:

(a) X is compact and metrizable;

(b) the subspace uniformity on X is metrizable and F is condensing in the sense

of Definition 8.11.

Proof. (a) By a wellknown selection theorem of Michael (1966, Theorem 1.2), there

is a continuous selection f : X → X such that f(x) ∈ F (x) for all x ∈ X . Hence by

Tychonoff fixed point theorem f has a fixed point. This fixed point is also a fixed

point of F .

(b) We proceed as in the proof of Theorem 8.7 until the set Z0 with coF (Z0) =

Z0 is obtained. By Corollary 2a, p. 176 in Kuratowski (1966), F (clZ0) ⊆ clF (Z0) ⊆
clZ0. Then we apply case (a) to the mapping F : clZ0 → 2clZ0 . (If required see

Himmelberg and Vleck (1969, p. 641).)
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Secrétariate des Mathematiques, Publication No., 43.

Cellina, A., & Lasota, A. (1969). A new approach to the definition of topological

degree for multivalued mappings. Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis.

Mat. Natur., 47(8), 434–440.

Cesari, L. (1963). Functional analysis and periodic solutions of nonlinear differential

equations. Contributions to Differential Equations, 1, 149–187.

Cesari, L. (1964). Functional analysis and Galerkin’s method. Michigan Math. J.,

II, 385–418.

Cesari, L. (1965). Existence in the large of periodic solutions of hyperbolic partial

differential equations. Archs Ration. Mech. Analysis, 20, 170–190.

Cesari, L. (1969). Functional analysis and differential equations. Siam Studies in

Applied Mathematics, 5, 143–155.

Cesari, L. (1971). Functional analysis and boundary value problems, in: Analytic

theory in differential equations, pp. 178–194 (Vol. 183). Berlin: Springer-

Verlag.

Cesari, L. (1976). Functional analysis, nonlinear differential equations and the

alternative method, pp. 1–97 — Nonlinear functional analysis and differential

equations. New York: Dekker.

Chan, D., & Pang, J. S. (1982). The generalized quasi-variational inequality prob-

lem. Math. Oper. Res., 7, 211–222.

Chang, S. Y. (1990). On the Nash equilibrium. Soochow J. Math., 16, 241–248.

Chowdhury, M. S. R. (2000). The surjectivity of upper hemi-continuous and pseudo-

monotone type II operators in reflexive Banach spaces. J. Bangladesh Math.

Soc., 20, 45–53.

Chowdhury, M. S. R., & Tan, K.-K. (1996). Generalization of Ky Fan’s minimax

inequality with applications to generalized variational inequalities for pseudo-

monotone operators and fixed point theorems. J. Math. Anal. and Appl., 204,

910–929.

Chowdhury, M. S. R., & Tan, K.-K. (1997a). Generalized quasi-variational in-

equalities for upper semi-continuous operators on non-compact sets. Nonlinear

Analysis, Theory, Methods & Applications, Proceedings of the Second World

Congress of Nonlinear Analysts, 30:8, 5389–5394.

Chowdhury, M. S. R., & Tan, K.-K. (1997b). Generalized variational inequalities for

quasi-monotone operators and applications. Bulletin of the Polish Academy

of Sciences, 45(1), 25–54.



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Bibliography 587

Chowdhury, M. S. R., & Tan, K.-K. (1998). Applications of pseudo-monotone oper-

ators with some kind of upper semi-continuity in generalized quasi-variational

inequalities on non-compact sets. Proceedings of the American Mathematical

Society, 126:10, 2957–2968.

Chowdhury, M. S. R., & Tan, K.-K. (1999). Generalized quasi-variational inequal-

ities for lower and upper hemi-continuous operators on non-compact sets.

Mathematical Inequalities & Applications, 2:1, 121–134.

Chu, S. C., & Diaz, J. B. (1964/65). A fixed point theorem for “in the large”

application of the contraction principle. Atti. Accad. Sci., Torino C1. Sci.

Fis. Mat. Natur., 99, 351–363.

Chu, S. C., & Diaz, J. B. (1965). Remarks on a generalization of Banach’s principle

of contraction mapping. J. Math. Anal. Appl., 11, 440–446.

Contraction principle in pseudo-uniform spaces. (1980). In F. Fadell & G. Fournier

(Eds.), Fixed point theory, Proceedings, Sherbrooke, Quebec (pp. 300–308).

Berlin: Springer-Verlag.

Cottle, R. W. (1966). Nonlinear programs with positively bounded Jacobians.

SIAM J. Appl. Math., 14, 147–157.

Cottle, R. W., & Dantzig, G. B. (1968). Complementary Pivot theory of mathe-

matical programming. Linear Algebra and Appl., 1, 103–125.

Cottle, R. W., & Yao, J. C. (1992). Pseudo-monotone complementarity problems

in Hilbert spaces. J. of Optimization Theory and Applications, 75, 281–295.

Crandall, M. G. (1972). A generalisation of Peano’s existence theorem and flow

invariance. Proc. Amer. Math. Soc., 36(1), 151–155.

Crandall, M. G., & Rabinowitz, P. H. (1971). Mathematical theory of bifurcation. In

C. Bardos & D. Besis (Eds.), Bifurcation Phenomena in Mathematical Physics

and related Topics (pp. 3–46).

Cronin, J. (1950). Branch points of solutions of equations in Banach spaces. Trans.

Amer. Math. Soc., 69, 208–231.

Cubiotti, P. (1992). Finite dimensional quasi-variational inequalities associated with

discontinuous functions. Journal of Optimization Theory and Applications,

72, 577–582.

Cubiotti, P. (1993). An existence theorem for generalized quasi-variational inequal-

ities. Set-Valued Analysis, 1, 81–87.

Daneš, J. (1968). Some fixed point theorems. Comment. Math. Univ. Carolinae,

9, 223–235.
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H. Brézis, L. N., & Stampacchia, G. (1972). A remark on Ky Fan’s minimax

principle. Boll. Un. Mat. Ital. (4), 6, 293–300.

Hess, P. (1974). On a theorem by Landesman and Lazer. Indiana Univ. Math. J.,

23, 827–830.

Hetzer, G. (1975a). Some applications of the coincidence degree for set-contractions

to functional differential equations of neutral type. Comm. Math. Univ. Car-

olinae, 16, 121–138.

Hetzer, G. (1975b). Some remarks on φ+-operators and on the coincidence degree

for a Fredholm equation with non-compact nonlinear perturbations. Ann. Soc.

Sci. Bruxelles Ser., 89, 497–508.

Himmelberg, C. J. (1975). Measurable relations. Fund. Math., 87, 53–72.

Himmelberg, J. R. P., C. J., & Vleck, F. S. vav. (1969). Fixed point theorems for

condensing multifunctions. Proc. Amer. Math. Soc., 23, 635–641.

Hong, D.-X. (1968). A note on fixed point theorems for a family of nonexpansive

mappings. Proc. Amer. Math. Soc., 19, 1223–1224.

Horvath, C. D. (1987). Some results in a multivalued mappings and inequalities

without convexity. In Nonlinear and Convex Analysis; Lecture Notes in Pure

and Applied Math. Series Vol. 107. Springer-Verlag.
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Naukowe, Warsaw: Academic Press.

Kuratowski, K., & Ryll-Nardzewski, C. (1965). A general theorem on selectors.

Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13, 397–403.

Lakshmikantham, V., Bainov, D. D., & Simeonov, P. S. (1989). Theory of Impulsive



December 4, 2007 22:38 WSPC/Book Trim Size for 9.75in x 6.5in EUT˙MC˙final˙2007

Bibliography 595

Differential Equations. Singapore: World Scientific.

Lakshmikantham, V., Leela, S., & Kaul, S. (1994). Comparison principle for impul-

sive differential equations with variable times and stability theory. Nonlinear

Anal. T. M. A., 22, 499–503.

Laloux, B. A., & Mawhin, J. (1977). Multiplicity, Leray-Schauder formula and

bifurcation. J. Differential Equations, 24, 309–322.

Landesman, E. M., & Lazer, A. C. (1970). Nonlinear perturbations of linear elliptic

boundary value problems at resonance. J. Math. Mech., 19, 609–623.

Lasota, A., & Myjak, J. (1996a). Semifractals. Bull. Pol. Acad. Sci. Math., 44,

5–21.

Lasota, A., & Myjak, J. (1996b). Semifractals. Bull. Pol. Acad. Sci. Math., 44,

5–21.

Lassonde, M., & Schenkel, C. (1992). KKM principle, fixed points and Nash

equilibria. J. Math. Anal. Appl., 164, 542-548.

Leader, S. (1982). Uniformly contractive fixed points in compact metric spaces. 86,

153–158.

Lee, C.-M. (1977). A development of contraction mapping principles in Hausdorff

uniform spaces. Transacions of Amer. Math. Soc., 226, 147–159.

Leray, J., & Schrauder, J. (1934). Topologie et équations functionelles. Ann. Ecole

Norm. Sup., 51, 45–78.
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generalized, 116
point, 113, 117, 167
of the game, 117

natural surjection, 512
Nemitsky operator, 278, 559
non-compact abstract economies, 434
non-linear

elliptic boundary value problems, 507
single-valued perturbations, 471
variational inequalities, existence of
equilibrium in economics, Riesz
space of commodities, 426

boundary value problem, quasilinear
operator of order 2m, generalized
divergence form, 276

contraction, 131
wave equations, theorem of Paul
Rabinowitz, 73

nondiametral point, 572
nonexpansive, 564

mappings, 563
type, 573

of mappings and fixed point
theorems, 563
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of mappings in locally convex
topological vector spaces, 563

norm toology, 61
normal, 95

structure and fixed point
theorems, 572

normalization property, 548
notations, 60
nucleolus, indifference set, 96
null operator, 506

optimal ophelimity, 119
order, 117

and pseudometrics partial ordering,
in complete uniform topological
space, 32

dual, 6
or cone convex, 95
or cone, lower semi-continuous,
upper semi-continuous, 95

relation, 133
bounded, 6
Banach space, 95
set, 6
vector space, 6
orientation preserving, 485
or orientation reversing, 502

orthogonal
complement, 62
projections, 63

outward set, 453

Pareto
maximal optimum, Pareto minimal
optimum, 96

optimum, 119
efficient, 119
equilibrium, 119
point, 113, 119

of the game, economy, 119
partial order, 117

set, 27, 113
partition of unity, subordinated to an

open cover, 4
path connected, 549
periodic solutions, 149
perturbation, 553
Polish space, 107
positive cone, 6

preference correspondence, 116, 213
preorder, 114
product theorem of degree, 531
projection, 167
properties of

degree, 465
Leray-Schauder degree, 554
coincidence degree, 486
measure of noncompactness, 543

proximinal, 447
pseudo inverse, 471
pseudo-monotone

set-valued mappings, 415, 421
type I operators, 415

pseudometrics, 10
pseudomonotone, 195, 284
pseudomonotonic

pair, 284

qualitative game, 3
quasi

complete, 569
-concave mapping, 4
-cone concave, 100
-decreasing, 128, 131
-increasing, 127
-monotone, 147
-regular, 238
correspondence, 227
-variational inequality, 7
concave, 169
-linear problem, 46, 50
-variational inequalities, 292

random fixed point, set-valued random
contraction, 107

real valued eigen function, 62
reduced Cech homology groups, 246
reduction formula, 466
regular

correspondence, 227
value, 532

relatively compact, 465
results of Smiley, on linear problem, 61
retract, 151
Riesz

dual system, price-simplex, 428
space, 6
theory, 531
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reflexive preference correspondence, 3

Schauder fixed point theorem, 161
Urysohn’s lemma, 542

Schauder projection, 160
semi-monotone mapping, 4
seminorms, 470, 563

separable Hilbert spaces, 60
sequential space, 139
set-measure of noncompactness, 224
set-valued

k − φ-contractive perturbations, 479
contractions, 83
dynamic system, 97
mappings, vii

of nonexpansive type, 571
topological contractions, 92

simultaneous
nonlinear variational inequalities, 268
variational inequalities, 265, 287

single valued mapping, 1
smooth, 151

retract, 152
contractible, 152

solution of
simultaneous variational inequalities,
269

impulsive differential equations, 146
stable, 102
star centre, 565
starshaped, 23, 565

set, 246
with respect to the origin, 552

strictly
φ-monotone, 96

convex, 25
strong

continuity, 450
pseudo-monotone operators, 415
topology on E∗, 287

subdifferentiable, 305
subset-valued mapping , 577
successive approximation, 14
systems of functional equations, 39

Tarafdar
and Teo’s definition of coincidence
degree, 482

and Thompson results, on the theory
of bifurcation, 532

Tarafdar and Thompson’s (p, k)-epi
mappings on the whole space, 555

extension of Ky Fan’s generalization
of KKM theorem, 191

results, on the solvabiility of
non-linear and non-compact
operator equations, 542

theory of bifurcation, for the
solutions of equations, involving
set-valued mappings, 528

Tarski-Kantorovitch theorem, 113, 116

generalized, 115

testing functions, 277

the space of fractals, 91

the Tarski-Kantorovitch principle, and
theory of iterated function systems, 134

the transformation, 105

topological contraction, 88

in weak sense, 90

topological direct sum, 471

trajectory, 97

Tychonoff fixed point theorem, 161

ultimately compact

mapping, 464

vector fields, 465

uniform

Hausdorff topological space, 122

space, uniformity, i.e., the family of
entourages, 9

topological spaces, 9

topology, 122

uniformity, 10

uniformly

continuous, 560

locally contractive, 84

upper approximating family of
correspondences, 227

upper semi-continuous, 85, 163, 286, 463,
541, 577

operators, 409

mapping, lower semicontinuous
mapping, 4

usual Leray-Schauder index of the fixed
point, 531

utility functions, pay off functions, 167
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variational and quasivariational
inequalities, generalized games, 265

variational inequalities, 4, 301, 312
for set-valued mappings, 284
for single valued functions, 265

variational type, 277

Walras’ law, 428
weak continuity, 450

weak∗ topology, strong topology, 3
weakly

A-measurable, 107
H-convex, 251, 252
inward set, 453
outward set, 453

well-chained uniform space, 9

Zorn’s Lemma, 115, 570


	Contents
	Preface
	1. Introduction
	2. Contraction Mappings
	2.1 Contraction Mapping Principle in Uniform Topological Spaces and Applications
	2.2 Banach Contraction Mapping Principle in Uniform Spaces
	2.2.1 Successive Approximation

	2.3 Further Generalization of Banach Contraction Mapping Principle
	2.3.1 Fixed Point Theorems for Some Extension of Contraction Mappings on Uniform Spaces
	2.3.2 An Interplay Between the Order and Pseudometric Partial Ordering in Complete Uniform Topological Space

	2.4 Changing Norm
	2.4.1 Changing the Norm
	2.4.2 On the Approximate Iteration

	2.5 The Contraction Mapping Principle Applied to the Cauchy- Kowalevsky Theorem
	2.5.1 Geometric Preliminaries
	2.5.2 The Linear Problem
	2.5.3 The Quasilinear Problem

	2.6 An Implicit Function Theorem for a Set of Mappings and Its Application to Nonlinear Hyperbolic Boundary Value Problem as Application of Contraction Mapping Principle
	2.6.1 An Implicit Function Theorem for a Set of Mappings
	2.6.2 Notations and Preliminaries
	2.6.3 Results of Smiley on Linear Problem
	2.6.4 Alternative Problem and Approximate Equations
	2.6.5 Application to Nonlinear Wave Equations — A Theorem of Paul Rabinowitz

	2.7 Set-Valued Contractions
	2.7.1 End Points

	2.8 Iterated Function Systems (IFS) and Attractor
	2.8.1 Applications

	2.9 Large Contractions
	2.9.1 Large Contractions
	2.9.2 The Transformation
	2.9.3 An Existence Theorem

	2.10 Random Fixed Point and Set-Valued Random Contraction

	3. Some Fixed Point Theorems in Partially Ordered Sets
	3.1 Fixed Point Theorems and Applications to Economics
	3.2 Fixed Point Theorem on Partially Ordered Sets
	3.3 Applications to Games and Economics
	3.3.1 Game
	3.3.2 Economy
	3.3.3 Pareto Optimum
	3.3.4 The Contraction Mapping Principle in Uniform Space via Kleene's Fixed Point Theorem
	3.3.5 Applications on Double Ranked Sequence

	3.4 Lattice Theoretical Fixed Point Theorems of Tarski
	3.5 Applications of Lattice Fixed Point Theorem of Tarski to Integral Equations
	3.6 The Tarski-Kantorovitch Principle
	3.7 The Iterated Function Systems on (2X; )
	3.8 The Iterated Function Systems on (C(X); )
	3.9 The Iterated Function System on (K(X); )
	3.10 Continuity of Maps on Countably Compact and Sequential Spaces
	3.11 Solutions of Impulsive Differential Equations
	3.11.1 A Comparison Result .
	3.11.2 Periodic Solutions


	4. Topological Fixed Point Theorems
	4.1 Brouwer Fixed Point Theorem
	4.1.1 Schauder Projection
	4.1.2 Fixed Point Theorems of Set Valued Mappings with Applications in Abstract Economy
	4.1.3 Applications
	4.1.4 Equilibrium Point of Abstract Economy

	4.2 Fixed Point Theorems and KKM Theorems
	4.2.1 Duality in Fixed Point Theory of Set Valued Mappings

	4.3 Applications on Minimax Principles
	4.3.1 Applications on Sets with Convex Sections

	4.4 More on Sets with Convex Sections
	4.5 More on the Extension of KKM Theorem and Ky Fan's Minimax Principle
	4.6 A Fixed Point Theorem Equivalent to the Fan–Knaster– Kuratowski–Mazurkiewicz Theorem
	4.7 More on Fixed Point Theorems
	4.8 Applications of Fixed Point Theorems to Equilibrium Analysis in Mathematical Economics and Game Theory
	4.8.1 Fixed Point and Equilibrium Point
	4.8.2 Existence of Maximal Elements
	4.8.3 Equilibrium Existence Theorems

	4.9 Fixed Point of  -Condensing Mapping, Maximal Elements and Equilibria
	4.9.1 Equilibrium on Paracompact Spaces
	4.9.2 Equilibria of Generalized Games
	4.9.3 Applications

	4.10 Coincidence Points and Related Results, an Analysis on H-Spaces
	4.11 Applications to Mathematical Economics: An Analogue of Debreu's Social Equilibrium Existence Theorem

	5. Variational and Quasivariational Inequalities in Topological Vector Spaces and Generalized Games
	5.1 Simultaneous Variational Inequalities
	5.1.1 Variational Inequalities for Single Valued Functions
	5.1.2 Solutions of Simultaneous Nonlinear Variational Inequalities
	5.1.3 Application to Nonlinear Boundary Value Problem for Quasilinear Operator of Order 2m in Generalized Divergence Form
	5.1.4 Minimization Problems and Related Results
	5.1.5 Extension of a Karamardian Theorem

	5.2 Variational Inequalities for Setvalued Mappings
	5.2.1 Simultaneous Variational Inequalities
	5.2.2 Implicit Variational Inequalities — The Monotone Case
	5.2.3 Implicit Variational Inequalities — The USC Case

	5.3 Variational Inequalities and Applications
	5.3.1 Application to Minimization Problems

	5.4 Duality in Variational Inequalities
	5.4.1 Some Auxiliary Results

	5.5 A Variational Inequality in Non-Compact Sets with Some Applications
	5.6 Browder-Hartman-Stampacchia Variational Inequalities for Set-Valued Monotone Operators
	5.6.1 A Minimax Inequality
	5.6.2 An Existence Theorem of Variational Inequalities

	5.7 Some Generalized Variational Inequalities with Their Applications
	5.7.1 Some Generalized Variational Inequalities
	5.7.2 Applications to Minimization Problems

	5.8 Some Results of Tarafdar and Yuan on Generalized Variational Inequalities in Locally Convex Topological Vector Spaces
	5.8.1 Some Generalized Variational Inequalities

	5.9 Generalized Variational Inequalities for Quasi-Monotone and Quasi- Semi-Monotone Operators
	5.9.1 Generalization of Ky Fan's Minimax Inequality
	5.9.2 Generalized Variational Inequalities
	5.9.3 Fixed Point Theorems

	5.10 Generalization of Ky Fan's Minimax Inequality with Applications to Generalized Variational Inequalities for Pseudo-Monotone Type I Operators and Fixed Point Theorems
	5.10.1 Generalization of Ky Fan's Minimax Inequality
	5.10.2 Generalized Variational Inequalities
	5.10.3 Applications to Fixed Point Theorems

	5.11 Generalized Variational-Like Inequalities for Pseudo-Monotone Type I Operators
	5.11.1 Existence Theorems for GV LI(T;  ; h; X; F)

	5.12 Generalized Quasi-Variational Inequalities
	5.12.1 Generalized Quasi-Variational Inequalities for Monotone and Lower Semi-Continuous Mappings
	5.12.2 Generalized Quasi-Variational Inequalities for Upper Semi- Continuous Mappings Without Monotonicity

	5.13 Generalized Quasi-Variational Inequalities for Lower and Upper Hemi-Continuous Operators on Non-Compact Sets
	5.13.1 Generalized Quasi-Variational Inequalities for Lower Hemi- Continuous Operators
	5.13.2 Generalized Quasi-Variational Inequalities for Upper Hemi- Continuous Operators

	5.14 Generalized Quasi-Variational Inequalities for Upper Semi- Continuous Operators on Non-Compact Sets
	5.14.1 Non-Compact Generalized Quasi-Variational Inequalities

	5.15 Generalized Quasi-Variational Inequalities for Pseudo-Monotone Set-Valued Mappings
	5.15.1 Generalized Quasi-Variational Inequalities for Strong Pseudo- Monotone Operators
	5.15.2 Generalized Quasi-Variational Inequalities for Pseudo- Monotone Set-Valued Mappings

	5.16 Non-Linear Variational Inequalities and the Existence of Equilibrium in Economics with a Riesz Space of Commodities
	5.16.1 Existence of Equilibrium Lemma

	5.17 Equilibria of Non-compact Generalized Games with L  Majorized Preference Correspondences
	5.17.1 Existence of Maximal Elements
	5.17.2 Existence of Equilibrium for Non-Compact Abstract Economies

	5.18 Equilibria of Non-Compact Generalized Games
	5.18.1 Equilibria of Generalized Games
	5.18.2 Tarafdar and Yuan's Application on Existence Theorem of Equilibria for Constrained Games


	6. Best Approximation and Fixed Point Theorems for Set-Valued Mappings in Topological Vector Spaces
	6.1 Single-Valued Case
	6.2 Set-Valued Case
	6.2.1 Some Lemmas and Relevant Results


	7. Degree Theories for Set-Valued Mappings
	7.1 Degree Theory for Set-Valued Ultimately Compact Vector Fields
	7.1.1 Properties of the Degree of Ultimately Compact Vector Fields
	7.1.2 k- -Contractive Set Valued Mappings

	7.2 Coincidence Degree for Non-Linear Single-Valued Perturbations of Linear Fredholm Mappings
	7.2.1 An Equivalence Theorem
	7.2.2 Definition of Coincidence Degree
	7.2.3 Properties of the Coincidence Degree

	7.3 On the Existence of Solutions of the Equation Lx 2 Nx and a Coincidence Degree Theory
	7.3.1 Coincidence Degree for Set-Valued k 

	7.4 Coincidence Degree for Multi-Valued Mappings with Non-Negative Index
	7.4.1 Basic Assumptions and Main Results in Akashi (1988)
	7.4.2 Akashi's Basic Properties of Coincidence Degree
	7.4.3 Application to Multitivalued Boundary Value Problem for Elliptic Partial Differential Equation

	7.5 Applications of Equivalence Theorems with Single-Valued Mappings: An Approach to Non-Linear Elliptic Boundary Value Problems
	7.5.1 Tarafdar's Application to Elliptic Boundary Value Problems

	7.6 Further Results in Coincidence Degree Theory
	7.7 Tarafdar and Thompson's Theory of Bifurcation for the Solutions of Equations Involving Set-Valued Mapping
	7.7.1 Characteristic Value and Multiplicity
	7.7.2 Tarafdar and Thompson's Results on the Theory of Bifurcation
	7.7.3 Tarafdar and Thompson's Application on the Theory of Bifurcation

	7.8 Tarafdar and Thompson's Results on the Solvability of Non-Linear and Non-Compact Operator Equations
	7.8.1 Measure of Noncompactness and Set Contraction
	7.8.2 Epi Mappings
	7.8.3 Tarafdar and Thompson's (p; k)-Epi Mappings on the Whole Space
	7.8.4 Tarafdar and Thompson's Applications of (p; k)-Epi Mappings in Differential Equations


	8. Nonexpansive Types of Mappings and Fixed Point Theorems in Locally Convex Topological Vector Spaces
	8.1 Nonexpansive Types of Mappings in Locally Convex Topological Vector Spaces
	8.1.1 Nonexpansive Mappings

	8.2 Set-Valued Mappings of Nonexpansive Type
	8.2.1 Normal Structure and Fixed Point Theorems
	8.2.2 Another Definition of Nonexpansive Set-Valued Mapping and Corresponding Results on Fixed Point Theorems

	8.3 Fixed Point Theorems for Condensing Set-Valued Mappings on Locally Convex Topological Vector Spaces
	8.3.1 Measure of Precompactness and Non-Precompactness
	8.3.2 Condensing Mappings
	8.3.3 Fixed Point Theorems


	Bibliography
	Index



