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Foreword

The present book consists of a fairly literal translation of a course in
French which | gavein Sdo Pauloin 1954, and which has been available
since then in only a mimeographed form. For particulars of the material
covered in this course, the reader should consult the Introduction
(page 1) as well as the-Contents (page vii). The author has not revised
this account of the theory of topological vector spaces, first given
fourteen years ago, mainly because he has not been directly involved
with the subject for nearly as many years, and because other tasks
(including some of a similar nature) have kept him rather too busy.
This, the author feels, 'is of not too serious consequence, since the
material covered in his Sdo Paulo course has remained practically
unchanged since that time, so that the revision would have resulted in
scarcely more than minor stylistical changes, which any esthetically
minded reader would be able to provide by himself. Generally speaking,
It seems that the theory of locally convex spaces has not significantly
progressed since that time, most probably because no such progress was
necessary in related fields.

Bibliographical data are not included in this book, since the reader
will be able to find such information in any of the various books on the
same subject which have recently appeared, among which are the books
by Bourbaki, and by Koethe (Topologische Lineare Raame |, Springer-
Verlag 1960), the latter also containing numerous results not given in
the present work.

Finally, | am glad to extend my warmest thanks to O. Chaljub for
his careful translation of the original French into English, and aso for
his help in proofreading. Equal thanks are due to Mr E. Thomas for
reading the whole manuscript critically, correcting various mistakes,
and making several valuable terminological suggestionsfor the English

translation.
A. GROTHENDIECK
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CHAPTER O

Topological introduction

As A PREREQUISITE for this course, the reader should know some
general topology as given in Topologie Générale by Bourbaki, particu-
larly Chapters I, Il, IV and I X, Chapter VI, Sections 1 and 2 (topo-
logical properties of R=), Chapter VIII (complex numbers) and, in
particular, Chapter 111 (topological groups). Non-abelian topological
groups will not be used. From the book Algebra by Bourbaki, we shall
use Chapters | and Il; notice that we shall always suppose that the
underlying field is the real field R or the complex field C.

We wish to recall here some points of general topology which will be
of particular interest to us and, still more particularly, a part of Chapter
X of Bourbaki's Topologie Générale.

Most proofs, requiring only simple verifications, are left to the
reader.

1 Least upper bound of a family of topologies

Consider a non-empty family (Ti)iel of topologies on a set E. We know
that a least wpper bound topology of the topologies T, exists, i.e. the
coarsest topology on E, finer than each Tio I f ¥7; is the set of open sets
for the topology 'I', (i E I), theleast upper bound topology is generated
by the union of the ¥7,.

Let E beany set and (#,);.; a non-empty family of topological spaces
and, for eachi e 1,/; amappingof Einto E; (i EIl). Thereisatopology
called the initial topology of the E; by the mappingsli, which is the
coarsest topology for which all the mappingsl1 are continuous: it is the
least upper bound of those topologies which are inverse images of the
topologies of the space Ei, by the mappingslI.

Separation condition In order that the space E, equipped with the
initial topology of the E; induced by theli' be Hausdorff, itis necessary,
and aso sufficient, if the Ei are Hausdorff, that for x 2y in E there
exists anli such thatli(x) =li(Y).

Transitivity Olthe initial topology |If the topology of E is the initial

topology of the Ei by theli and if the topology of each E, is dso the

initial topology of spaces E ik induced by mappings ¢, of Ei into Eix
1



2 TOPOLOGICAL VECTOR SPACES

(k E At), then thetopology of E is the initial topology of the'E;, by the
mappings ¢ 0 |1 (i € 1, k £ Ai)’

Inparticular, ifF is asubset of E, the topology induced on F by the
topology of E is the initial topology of the Ei by the restrictions of the
t.to F. Another particular case: the initial topology of the Ei by thell

is the inverse image of the topology of the product space I_II E; by the

mapping’
x—>1(xX) = (li(X))iel

from E intoI;{r N.,iffor any x, y €E, x =y, thereexistsani e | such
thatli(x) #}i(y), then | is an isomorphism of E onto a subspace of
the prqduct !;II' Ei- (Notice that by definition, the topology of !;[ E; i
the initial topology of the E; by the natural projectionsE —E;.)

PRoPOSITION | Let E bea topological space with the initial topology of
spaces E, by mappingslt.

1) Let ¢ be a mapping of a topological space F into E. The mapping ¢
is continuous i | and only iffor everyi the mappingst, o ¢from F into E,
18 continuous. :

2) Afilter @ on E convergestox E E ifand only iflor every i" the filter

base f,(®) on Ej convergestofi(x). -

If E is a set, (Ei)iEl a non-empty family of topological spaces, and
fi(i 1) mappings from E; into E, we can consider the finesttopology
on E for which thell are continuous. The open (or closed) setsin this
topology are the subsets U of E such that the f11(U) are open (or
closed) in E; for everyi e |. Thistopology is called thefinal topology of
the E; induced by thell' Let| be a mapping from E into a topological
space F, then| is continuous if and only if each101. is continuous,

A particular case Given ,afamily (Ai)iel of subsets of E, each Ai with
a topology Ti. Then, there exists on £ a topology T, the finest among
those which induce a topology coarser than the 'l', on the sets Ai' The
open (or closed) subsets for T are those whose intersection with each
Ai is open (or closed) for Tt. A mappi ngf from E into a topological
spaceis continuousif and only ifits restriction to every Ai is continuous
for 7';. If we can find on £ a topology T' that induces on every A,
exactly T;. then T > Tj, therefore T'induces Pi On every Ai Themost
important case of the situation just described will be seen in Chapter 4,
Part 2, Section 3, Theorem 2.
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2 Least upper hound of a family of uniform structures

Consider on a set E a non-empty family (%iiel of uniform structures.
We know there exists a l.u.b, uniform structure for the %,, i.e., the
coarsest uniform structure on E among those which are finer than each
;. The entourage filter of this uniform structurein the filter generated
by the union of the entourage filters of the ;. The set of intersections
of a finite number of entourages Wi in Z,(1 < i < n) is afundamental
system of entourages of %. The topology associated with % is the |.ub,
topology for the topologies associated with the %;.

IfE isaset, (Ei)iel a non-empty family of uniform spaces, and if for
each i e |, fi is a mapping from E into E;, then there exists on E 'a
uniform structure called the initial uniform structure of the Ei induced
by the mappingsfi' which is the coarsest for which thel, are uniformly
continuous. It is the Lu.b, of the uniform structures which are the
inverse images by the f, of the uniform structures on Ei. The topology
deduced from this uniform structure is the finest on E for which the
{. are continuous. Conversely, the uniform structure %, |.u.b. of afamily
(%,):er Of uniform structures, can be considered as the" coarsest for
which the identity mappings E — &, are uniformly continuous (E;
stands for E equipped with the uniform structure %,).

Separati,on condition The space E which has the initial uniform struc-
ture of the E; induced by the f; is Hausdorff if and only if for x, y E E,
X % ¥, there exists an index i and an entourage Vi of E; such that
(fi(x), fi(y» ¢ Vi- Furthermore, if the E; are Hausdor ff uniform spaces,
It is necessary and sufficient that for X,y e E, X 32y, there exists an
index i such that fi(x) == fi(y).

Transitivity of the initial uniform structure |f we substitute "uniform
structure” for "topology" and "uniform space" for "topological "space",
we can, word for word, repeat the section on transitivity of the initial

topology.

PROPOSITION 2 Let E be a uniform space with" the initial uniform
structure of the E ; by thefi.

1) 4 filter @ on E is a Cauchy filter if and only iffor everyi e l,
fi(D) isthe base of a Gauchy filter on Eio

2) Let ¢ bea mapping from a uniform space F into E. The mapping ¢
is uniformly continuou» i f and only iffor every 4 € |, the mappingfi o ¢
from F into Ei is uniformly continuous.
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3 Precompact spaces

A uniform space E is called precompac, if the completion of the
Hausdorff space associated with E is compact. (Contrary to Bourbaki,
a precompact space is not necessarily Hausdorff.) A subset A of E is
precompact if the uniform subspace A is precompact. The closure of
A in E isthen aso precompact.

PRoPoSITION 3
1) A uniform space E is precompact if and only if, for every entourage
V of E, there exist8 a finite covering of E by V-small sets.

2) Letf be a uniformly contznuous mapping from a precompact space
E into a uniform space F . then f(E) is a precompact subset of F.

3) Let E be a space equipped with the coarsest uniform structure for
which the mappingsfi into the uniformspaces Ei are uniformly continuous.
Then E isprecompad i fand only iffor everyi fi(E) is precompact.

From 3) we conclude also that a subset A of # is precompact if and
only if for every ¢ e I, fi(A) is a preoompact subset of Ej.

EXERCISE A spaceE is precompact if and only if every ultrafilter on
E isa Cauchy filter.

4 G-convergence

Let E be any set and let F be a uniform space. Write & (#, F) for the
space of all mappings from E intoF. Let A be a subset of E, U an
entourage of F and W(A, U) the set of pairs (u, v) of mappings of E into
F such that (u(x), v(x» e U for every x e A. Ifwe keep A fixed and let
U run through the entourage filter of F (or a fundamental system of
entourages of F), the sets W(A, U) form a fundamental system of
entourages for a uniform structure on & (&, F), called the uniformity of
uniform convergence on A or the A-convergence uniform structure.
A filter @ converging towards ugfor the topology deduced from this
uniform structureis said to be uniformly convergent to ugin A.

L et & beaset of subsetsof E. Thel.u.b. ofthe A-convergence uniform
structures (A e ® is called the &-convergence uniform structure. We
denote by Fg(Z, F) the set #(&, F) with this uniform structure. We
have a fundamental system of entourages if we choose for each
entourage U of theentouragefilter of F (or of a fundamental entourage
system of F) and for eachfinue sequence (4;);<i<» Of elements of &, the
entourage

w(f Ao - Dwea, .
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It is immediate that the &-convergence uniform structure is the
coarsest uniform structure on &% (&,F} for which every mapping
PA(A E ®) from & (&,F} intothe #(A4, F) equipped with A-convergence
is continuous, pA(U)U E Z(Z, I being the restriction of u to A.

The ®-convergence uniform structure does not changeif & isreplaced
by the set &’ ofjinite unions of sets of &, or by the set &’ of all subsets
of membersof &'. If & = &' we have a fundamental entourage system
by choosing the sets W(A, U) for every A E & and for every U of
the entourage filter of F (or of a fundamental entourage system of F).

EXAMPLES

1) Choose & to be the set of one-point subsets of E, or, what is
equivalent, the set of finite subsets of E. The ®-convergence uniform
structure we obtain on (&, F} is called the uniform structure of simple
(or pointwise) convergence; we denote by #,(#, F) the set #(#, F) with
this uniform structure. If for every x e E we denote by & the mapping
from F(&, F) into F which to each u e & (&, F) assigns u(x) (that is,
&(u) = u(x}), then the simple convergence uniform structure is the
coarsest uniform structure for which the # are uniformly continuous;
equivalently, # (&, F) is the product space FE.

If afilter @ on #(&,F) converges to Ugfor the associated topology
we say that & converges simply towards Uy If Eo < E, we shall call
®-convergent uniform structure on & (&, F), where & is the set of
finite subsets of Eo, the uniformity of simple convergence in Eo.

2) If & = {E}, the uniform structure we obtain is called the uni-
formity of uniform convergence. We will call the set #(#, F) with this
structure F (£, F). If a filter & converges towards ug for the corres-
ponding topology we say that @ converges uniformly fowards Ugin E.

3) Let E beatopological space, let & be the set of all compact subsets
of E. The corresponding uniform structureis called the uniform structure
of compact convergence; we will call the set (&, F) with this uniform
structure # (&, F). If afilter & converges towards ugfor the corres-
ponding topology then we say that it converges uniformly towards ug
N every compact set.

E being atopological space, the simple convergence uniform structure
IS coarser than the compact convergence uniform structure which is
coarser than the uniformly convergence uniform structure.

PROPOSITION 4 Let ® bea set of subsets of E, F a uniform space.
1) Ajilter @ on Fg(H, F) convergesto Ugifand onlyiffor everyA E ©,
@ converges to Uguniformly in A
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2) @ is a OQauchy filter ifand only iffor every A e ®, @ is a Oauchy
filter for A -convergence.

A M <« F(&,F) isprecompact ifand only iffor every A E &, M is
precompact for A -conoergence.

4) A mappingf from a topological (or uniform) space H into Fg(&, F)
Is continuous (or uniformly continuous) ifand only i ffor everyA e &,f is
continuous (or uniformly continuous) for A -convergence.

The proof follows immediately from the definition of &-convergence
.and from Propositions 1, 2, 3.

REMARK If we consider ®-convergence as the coarsest uniform struc-
tureon & (&, F) for which therestrictions pA(A E & from & (&, F) into
the #,(4, F) are uniformly continuous, then, by Propositions 1, 2 and
3 we obtain variants for the criteria of Proposition 4. Thus we can
rewrite 1): afilter @ on Fg(&, F) converges towards ugif and only if
for every A e @ thefilter base @4 = pa(®) (formed by the restrictions
of theu e @ to A) converges uniformly to PA(Uy) (therestriction of Ugto
A). Similar variants can be givenfor Criteria2, 3 and 4 of Proposition 4.

PROPOSITION 5 The uniform space & &(#, F) is Hausdorffifand only if
F is Hausdorffand E = U A.
Ae®
In order to see that #4(#, F) Hausdorff implies F Hausdorff we
notice that F is isomorphic to the subspace of # g formed of constant
mappings from E into F.

THEOREM 1 (£, F) iscompleteifand only ifF is complete.

The necessity follows if we consider F as the subspace of constant
mappings from E into F. The sufficiency follows from

PROPOSITION 6 Let @ bea filter on #g(F, F). Then @ convergesto ug
ifand only if @ is a Oauchy filter for &-convergence and @ converges to

u gfor the uniformity of simple convergence in Eo = Ua (that is, for
Ae®

every X e Eo, @(x) converges to uo(x) in F).
The verification is immediate. We conclude:

COROLLARY Let &, and ®, besets of subsets of E suchthat ®; < &, and
UA= | B;

Aé@l BE@Q
let H be a subset of #(, F).
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1) If H is complete for &;-convergence then H is complete for ®,-
convergence.

2) | fHisprecompactfor &,-convergence, then on H, the ® ;-convergence
and the ® 2convergence uniform etruaures coincide.

1) follows from Proposition 6. In order to show 2) we shall suppose

U B = E andF Hausdorff for the sake of simplicity. We can suppose
Be®,

F complete (if not, use the completion) and H closed in F¢ (&, F).
Since this space is Hausdorff, H is even compact, therefore its uniform
structure is identical to every coarser Hausdor ff uniform structure, in
particular to the At-COnvergence structure. In fact, it is not necessary
that E= U BandF be Hausdorff, as we shall see from Exercise 1 below.
: Be®,

PROPOSITION 6' The set of w E #Fg(#, F) which transform the A E ®
into precompact subsets of F is closed.

This is a simple consequence of the usual criteria of precompactness
(Proposition 3, 1).

COROLLARY |IfF isHausdorffand complete, the space of mappingsfrom
E into F which transform the A e ® into relatively compact subsets s
complete for &-convergence,

® X € - convergence on a product

PROPOSITION 6" Let E, F besets, ® a set of subsets of E, € a set of sub-
setsof F, ® X € the set of subsets of E X F of theform A x B (A E &,
B e &), G a uniform space.

Then the uniform spaces: Fg (& X F, G) and F (&, F+(F, G)) are
isomorphic (by the canonical mapping [rom. the first onto the second
defined in set theory).

This follows from the definitions of the respective entourages.

EXERCISES
1) The Hausdorff space associated with & g(&, F) can be identified

with Fg(&,, F,) where Eo = U A and F o is the Hausdorff space
Ae®

associated with F.

2) If ®, and &, are two sets of subsets of E such that on #(Z, F) the
®,-convergent uniform structure coincides with the ®,-convergent
uniform structure, then &,"” = &,".
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5 G-convergence in the spaces of continuous mappings

I n general, we should consider several important subsets of the space of
all mappingsfrom E intoF. Let E be atopological space and F a uniform
space; we denote by ¥(#,F) the subset of #(#,F) formed by the
continuous mappings. If we have &-convergence on F (&, F) we write
(&, F) for €(&,F) with the induced uniform structure. We shall
write ¢(%,F), €. (&,F) and %.&,F) for the set ¥(¥,F) with the
simply, uniformly and compact convergence uniform structures
respectively.

Since the w E ¢(#, F) are continuous we can easily see that if we re-
place ® by the set of closures of the A E &, then €g(&, F) does not
change.

PROPOSITION 7 For the space ¥s(#, F) to be Hausdorff it is necessary
that F be Hausdorff and this condition is sufficientifEo = U A is dense

] AeS
INE.

THEOREM 2 The set €(&, F) is closed in F (&, F).
That is: every uniform [imit of continuous functions is continuous.

COROLLARY 1 %u(E, F) is completeifand only ifF is complete.

In order to show the sufficiency use Theorems | and 2; for the
necessity proceed as for Theorem 1.

COROLLARY 2 The space €¢(#, F) is closedin #4(&, F) whenever each
mapping from E into F whose restrictions to the A e ® are continuous, is
already continuous. I n this case €¢(#, F) is complete if and only ifF is
complete.

The hypothesis of the corollary is satisfied, for example, when E is
locally compact or metrisable, and ® isthe set of compact subsets of E.

PROPOSITION 8 The m.apping (u, X) — u(x) from €,(£,F) x E into F
IS continuous.

6 Equicontinuous and uniformly equicontinuous sets

Let E be a topological space, F a uniform space and H a subset of
F (L, F). Wesay that H is equiconiinuous at thepoint xqOf E if for every
entourage U of F there exists a neighbourhood V of x,in E such that
(u(X), u(xgp) e U for every x e V and every « e H. The set H is equi-
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continuous iN E if His equicontinuous at each point of E. Then clearly
each U e H is continuous at xq (or continuous in E). I n the case where
E is a uniform space we say that H is uniformly equicontinuous if for
every entourage U in F there exists an entourage V in E such that
(u(x), uty» e U for every (z,y) eV and every ue H. Then every
u e H is uniformly continuous. Furthermore, uniform equicontinuity
implies equicontinuity.

EXAMPLES

1) Every finite set of continuous (resp. uniformly continuous) func-
tions is equicontinuous (resp. uniformly equicontinuous); every finite
union of equicontinuous (resp. uniformly equicontinuous) sets is
equicontinuous (resp. uniformlyequicontinuous).

2) IfE and F are metric spaces, the set of all isometriesfrom E into
F is uniformly equicontinuous.

3) If H is a non-empty subset of #(&,F) we consider for every
x E E the mapping U — u(x) from H into F that we write &; it is an
element of #(H,F). If we put on H < % (&, F) the topology of the
simple convergence or a finer topology, the mapping u +> u(x) is con-
tinuous (Section 4, Example 1), therefore & belongs to €(H, F).

PROPOSITION 9

1) Let E be a topological space and H < #(#,F). The subset H is
equicontinuous at xg of E (or equicontinuous in E) if and only if the
mapping x +—> & from E into %,(, F) is continuous at xq (or continuous
in E).

2) Let E bea uniformspace and H < & (¥, F). Then H is uniformly
equieoniinuou« i f and only ifthe 1napping x — & from E into ¥, (H, F) is
unifor mlyequicontinuous.

3) More generally, letf bea mapping continuous in each variable from
aproduct H X E of two topological spaces into a uniform space F. I we
denote by fu, the mapping x —-f(u, x) from E into F and by f.,, the map-

ping u — f(u, X) from H into F, then thefollowing assertions are equiva-
lent:

a) The set of fu,.(u e H) is an equicontinuous (resp. uniformly
continuous) subset of #(#, F).

b) The mapping x —-|.,.X from E into €u(H, F) is continuous (resp.
uniformly continuous).

The proof follows directly from the definitions.
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COROLLARY 1 Let H bea set of mappingsfrom a compact set E into a
uniform space F. There is equivalence between H being equicontinuous or
uniformly equicontinuous.

Thisfollows from the fact that a continuous mapping from a compact
space E into a uniform space €u(H, F) is uniformly continuous.

COROLLARY 2 Let M bea topological (resp. uniform) space, & a set of
subsets of E. A mapping f from Minto #g(Z, F) is continuous (resp.
uniformly continuous if and only iffor every A E & the set of mappings

t —f(t)(x),

where X E A is an equicontinuous (resp. uniformly equicontinuous) set of
mappingsfrom Minto F.

THEOREM 3 Let E and F betopological spaces, G a uniform space and f
amappingfrom E X F into G.

1) Iff is continuous, then

a) for everyy e F, f. , ¢8 consinuou»:
b) the mapping y — f"vfrom F into €.(&, G) is continuous.
b) is equivalent to
b') the set of fx . where x runs through a compact set of E is an equi-
continuous subset of €(¥, 0).

2) ITE islocally compact, conditions a) and b) are also sufficient for
the continuity off.

The equivalence of b) and b') is a particular case of Proposition 9, 3).
| ffiscontinuous so are thef.tv. Weproveb): Lety e F, K be a compact
set in E and U a symmetric entourage in G. For every x e K there
exists an open neighborhood V, of x and a neighborhood W, of Y
such that for every x' e V, and y' e W, we have (f(x', y'), f(x, y» E U.
Since K is compact there exists a finite number of points xi e K
(1 <i < n) such that the V,, form a covering of K. Indicating by W
the intersection of neighborhoods W, of y we have: for every x' e K
there exists an xi e K such that x' e V,, then (f(x', y'),f(x.,y» E U
for every y' e Wand in particular (f(x', y),f(xi' y» e U. We conclude
then that (f(x', y'),f(x', y» e U for any x' E K, which ends the proof
of 1).

In order to show 2) we can reduce to the case where E is compact
and consider f to be composed of the mapping (x, u) — u(x) from
E X €,(#,G) into 0, which is continuous (Proposition 7) and the
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mapping (x, y) —> (x,f.,) from E x F into E x %u(E, G) which is
also continuous by hypothesis.

THEOREM 4 Let E be a topological (resp. uniform) space and H an
equiconiinuoue (resp. uniformly equicontinuous) subset of €(&, F). On H,
theunifor mity of simple convergence in E, ofsimple convergencein a dense
subset E0 of E and of compact (resp. precompact) convergence, areidentical.

| t suffices to show that on H, simple convergence in Eo and compact
(resp. precompact) convergence are identical. SupposeE is atopological
space; we must show that if U is an entourage in F and K a compact
subset in E, there exists afinite subset A of Eo and an entourage U' inF
such that W(A, U') ¢ W(K, U). We choose for U' a symmetric
entourage such that U' < U. Since His equicontinuous there exists for
every xoe K an open neighborhood V of xg in E such that for every
Xxe Vandu e H, (uX), u(xg) e U'. Let(V;) <<, be afinite sequence of
such neighborhoods covering K, we choose in each Vi an element
xi E Eoand consider the set A unionofthexi (I <i < n). Letu,vVEH
with u, veE W(A, U"), i.e

(UXi)" v(xi)) U
for any xi E A, then we conclude that
(ux), v(x)) eU' ¢ U

for any x e K which proves the first part. I n the case where E is a uni-
form space and H uniformly continuouslet K be a precompact subset of
E, U an entourage in E and U' as above. There exists an entourage V
in E such that for every x, y EK, (x,y) E Vandu e H we have

(u(x), u(y)) e U".
We now use Proposition 3. 1) and construct A as above.

THEOREM 5 |f H is an equicontinuous (resp. uniformlyequicontinuous)
subset of # (&, F) then its closure in # (&, F) is equicontinuous (resp.
uniformly equicontinuous).

The verification is immediate. Taking into consideration Theorem 4
we obtain:

COROLLARY This closureis identical to the closurefor the compact (resp.
precompact) convergence.

PROPOSITION 10 Every precompact subset H of €,(#,F) is equicon-
tinwows,; iffurthermore E is a uniform space and i f the elements of Hare
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uniformly continuous functions, then H ¢s uniformly equicontinuous. On
H the uniform structures of simple convergence in a dense subset Eo of E
and of uniform convergence are identical.

We must show that the mapping x — & from E into ¢, (H,F) is
continuous (resp. uniformly continuous). Now the image £ of E in
€u(H,F) is uniformly equicontinuous (Proposition 8, Corollary 2),
therefore, H being precompact, on Z the uniformly convergence uniform
structure is identical to the simple convergence uniform structure
(Theorem 4). 1t suffices then to verify that x = & is continuous (resp.
uniformly continuous) for simple convergence in ¥(H, F) which means
precisely that the mappings x — &(u) = u(x) are continuous (or uni-
formly continuous) on E. Finally, inthe last assertion of Proposition 10
we can replace Eo by E using Theorem 4, and it is then sufficient to
apply Proposition 6, Corollary 2).

7 Relatively compact and precompact sets of continuous functions

THEOREM 6 (AscoLl) Let E be a compact treep, precompact) set, F a
uniform space, H a set of continuous (resp. uniformly continuous) map-
pingsfrom E into F.

1) H is precompact in €, (&, F) if and only if H is equiconiinuous
iresp, uniformly equicontinuous) and H(x) is precompact for every x E E.
2) Suppose F to be Hausdorff; H is relatively compact in €,(&, F) if

and only if H is equicontinuous (or uniformly equicontinuous) and H (x)
is relatively compact for every x E E.

In thefirst statement the necessity follows from the preceding propo-
sition and the uniform continuity of the &; the sufficiency follows from
the fact that on H the uniform convergence and simple convergence
uniformities are identical and from Proposition 3, 3). In the second
statement we can suppose H closed. Thisisnecessary as seen above. For
the sufficiency we can supposeF complete (if not, we completeit and H
will also be closed in €,(Z, F)), whence %,(£, F) is complete. Thus H
will be precompact by 1), hence compact because it is complete.

COROLLARY 1 Let E be a locally compact or meirisable space, F a
Hausdor ff uniform space and H a subset of (&, F). Then H is relatively
compact (resp. precompact) in ¢, (%, F) ifand only if His equicontinuous
and H(x) is relatively compact iresp, precompact) for every x E E.
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These conditions are sufficient with no restriction on the space E:
we consider for every compact K in E the set Hk of restrictions of all
elements u of H to K and we use the remark following Proposition 4.
To show the necessity we reconsider Theorem 6, and notice that aset H
of mappings from E into F is equicontinuous if and only if for every
compact K < E the set H¢ of restrictions to K of the u e H is equi-
continuous.

COROLLARY 2 Let E be a topological (resp. uniform) space, & a set of
subsetsof E, F a uniform space and H a set of continuous (resp. uniformly
continuous) mappingsfromE intoF. For A £ ® let H Abethe set of restric-
tions to A ofthew e H. Then His precompact in €g(&, F) ifand only if
HA is equicontinuous (resp. uniformly equicontinuous) for every A e & and

H(x) is precompact for every x e EO = UA 1ftheaA e are pre-
AcH

compact these conditions are also 8ufficient.

Thefirst part follows immediately from Proposition 9 and the second
part from Theorem 6. 1), asit issufficient to verify that the H 5 are pre-
compact for the uniform convergence.

REMARK We often wish to consider subspace» M of a space €(&, F)
instead of €(%, F). The preceding chapter allows us to give criteria
for relative compactness of subsets H of M. In fact, H is relatively
compact in M if and only if it is relatively compact in €g(E, F) and
its closure in this space is contained in M.



CHAPTER 1

General properties

EXCEPT FOR Section 10 and part of Section 9, the particular structure
of the fields of real or complex numbers plays no role in this chapter;
these fields can be replaced by a valued field, provided certain obvious
adaptations are made. For simplicity, however, we will suppose that
the base field K is either the real field R or the complex field C. We will
assume a good knowledge of linear algebraover afield K (see Bourbaki,
Algebra, Chapter 2) and general topology (see Bourbaki, Topologie
(énérale).

We omit the proofs of assertions that follow easily from former
results.

1 General definition of a topological vector space

DEFINITION 1 A topological vector space (henceforward abbreviated to
TVS) E isa vector space E endowed with a topology such that the mappings

x, y) =>x T yand (4 x) > lz

fromE X E into E and from K X E into E are continuous (E x E and
K x E having product topologies). Such a topology on a vector space is
said to be compatible with the vector structure.

A TVS is in particular an abelian topological group, the related
general results (incidentally, trivial) could be used inwhat follows. L et
E bea TVS. Translations on E are homomorphisms and so are the non-
zero homothetic transformations (which are aso automorphisms of E).
I t follows from the former that if A and B are subsets of E where either
is open, then A + B is open, for it is the union of translations of an
open set. If M is a topological space, and iff, g, 2, 4 are continuous
mappings from Minto E, E, K and K respectively, then f(t) + g(t),
At)f(t) and more generally A(¢)f(¢) T u(t)g(t), are continuous mappings
of Minto E.

PROPOSITION 1 For a TVS, E to be Hausdorff, it is necessary and suffi-
cient that the set reduced to the origin {O} be closed.

The necessity is evident; for the sufficiency we observe that the
14
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diagonal of E X E is the pre-image of {O} induced by the continuous
mapping (x, y) => x - vy, therefore E is closed if {O} is closed.

The topology of a TVS is known once the neighborhood filter of the
origin is known, as the neighborhood filter of any point x is obtained
by the translation x. More precisely:

PROPOSITION 2 For afilter ¥ over a Tvs E to bethe neighborhoodfilter
of the originfor a topology compatible with the vector structure, it is neces-
sary and sufficient that it satisfies the following conditions:

1) v admits a base of balanced sets (V is balanced if AV < V for all
scalars A of norm < 1).

2) ¥ is closed under non-zero homothetic transformations.
3) For all U e 7, thereexists V e ¥ such that V + V CU.

4) The V E ¥ are absorbing (i.e. for every X E E, Az E V for 2 suffi-
ciently small).

2 Products, suhspaees, quotients

Let E be a vector space, (E;) a family of TVS, for all i, fi a linear
mapping from E into E;. Then, the coarsest topology on E for which
thefi are continuous is compatible with the vector structure, that is, it
makes E into a TVS. Thus, the pre-image of alinear mappingf from E
into a TVSF, isa TVS topology on E; in particular, a vector subspace
E ofaTVSF isaTVSfor theinduced topology (E will be called a topo-
logical vector subspace of F). In a similar way, the product of a family
(E;) of TVS, having a vector product structure and a product topology,
iIsa TVS called the topological vector product of the E;-
The essential facts concerning quotient spaces are condensed in

THEOREM 1

1) Let E bea TVS, F a vector subspace, ¢ the canonical mapping of E
into EIF. Then the quotient topology of the topology of E makes EIF a
TVS. ¢ is an open mapping of E into EIF. A fundamental system of
neighborhoods of the origin in EIF is formed by the canonical images of
the neighborhoods of the origin in E running through a fundamental
system of neighborhoods. The space EIF is Hausdorff ifand only ifF is
closed.

2) Let G be a vector subspace of E containing F,. consider GIF as a
vector subspace of EIF. Then the topology induced by EIF on GIF is
identical to the quotient topology of G by F. The canonical isomorphism
of (EIF)/(GIF) with E IG defined asin algebrais also a Tv sisomorphiem.
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Proof

1) First, itistransparent that ¢ is an open mapping (that means that
if U c E isopen, then U T F is open, as pointed out in Section 1).
Therefore, (EIF) x (EIF) is identified with (E x E)I(F x F) and
K + (EIF) with (K X E)/({O} X F) (as topological spaces), which
proves immediately the TVS axioms with respect to EIF. The charac-
terization of the neighborhoods of the origin in EIF follows readily
from the fact that ¢ is open; the criteriafor EIF to be Hausdorff is a
particular case of Proposition 1.

2) From the above, the sets ¢(U n G), where U runs through the
open sets of E are open sets of the quotient topology on GIF; the sets
é(U) n (GIF) are open sets of the topology induced by EIF on GIF.
It follows immediately that ¢(U N G) = ¢(U) n (GIF). The second
part of 2) can be seenin a similar way or as a particular case of a result
of general topology o011 quotient spaces.

Notice also that since the canonical mapping of a TV Sonto a quotient
space is open, the classical algebraic isomorphism of (E1/F1) x (E2|F2)
with (E; x Eoy,e1 X Fyp is @ TVS isomorphism (E; and E, being
TVS, F, and F, vector subspaces).

Care should be taken if ¢ is the canonical mapping of a TVS E onto
a gquotient space EIF, and G a vector subspace of E not containing F,
as then the canonical mapping of G1(0 N F) onto the subspace ¢(G) of
EIF is not in general a TVS isomorphism (even in the case of an
algebraic isomorphism and a continuous mapping). This means also
that if ¢ is @ homomorphism of E onto a space H (see Section 3), the
mapping induced on a subspace G of E may well not be a homo-
morphism. This follows from the remark that every continuous linear
mapping « from Ginto H can be induced by a homomorphism from
G x H onto H, namely the mapping

(9, h)=>u(@@) th

3 Continuouslinear mappings, homomor phisms

LetE, F be TVS, U alinear mapping from E into F. uis continuous if
and only ifitis continuous at the origin. In that case, if N is the kernel,
» defines an injective continuous linear mapping from E N into F.
This mapping will not be in general an isomorphism from E [N onto
u(gE) for the TVS structures, i.e. the inverse mapping is not always
continuous.

DEFINITION 2 A linear mapping u[rom. a TVS E into a TVSF is a
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homomor phism, i f the mapping from EIN (N, the kernel of u) onto u(E)
defined by u, is a TV'S isomorphism.

PROPOSITION 3 Let » bea continuous linear mapping from a TVS E
into a TVSF. The following conditions are equivalent:

a u is a homomorphism.
b) u transforms the open subsets of E into open subsets of u(E).

c) w transforms the neighborhoods of the origin of E into neighbor-
hoods of the origin of u(E).

It follows immediately that @ implies b), b) implies ¢) and c¢) im-
plies a).

The continuous linear mappings from E into F form a vector space,
written L(E, F).

4 Uniform structure of a TVS

Let E be a TVS. For every neighborhood U of the origin, let tJ be the
set of couples (x, y) EE x E suchthat x - y E U. When U varies, the
U form the basis of an entourage filter for a uniform structure on E
compatible with the topology of E. Because of this uniform structure,
E will implicitly be considered to be a uniform space.

The translations, the non-zero homothetics, are automorphisms of E
considered as a uniform space.

If E and Fare TVS, every linear mapping from E into F is already
uniformly continuous. More generally, if a set A of linear mappings of
E intoF isequicontinuous at the origin, A is uniformly equicontinuous.

Let E be a TVS whose topology is the coarsest for which the linear
mappings fi from E into the TVS Ej are continuous (Section 1). Then
the uniform structure of E is the coarsest for which thefi are uniformly
continuous; in particular, the uniform structure of a topological vector
subspace of a TVS is the induced structure, and the uniform structure
of theproduct of afamily of TVSistheproduct of theuniform structures
of the factor spaces. Thus, a subset of E is precompact if and only if
the images by thefi are precompaet subsets of E; -

The Hausdorff uniform space associated with a TVS E in the space
EIN, where N is the closure of the origin.

The very definition of the uniform structure of a TVS E shows the
following:

PROPOSITION 4 The uniform structure of a TVS is metrisable 1f and
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only if E is Hausdorff and there exists a countable fundamental system of
neighborhoods of the origin.

{There will be, in fact, a countable fundamental entourage system.)
Since a TVS is aso a uniform space, the meaning of a complete TVS
Is clear. For the spaces which are not complete, we have

PROPOSITION 5 Let E be a Hausdorff TVS and B its uniform com-
pletion. Then the mapping (x, y) +>x Ty from E x E into E can by
continuity be extended to a continuous mapping from £ X B into &, and
the mapping (4, X) —> Az from K X E into E can by continuity be ex-
tended to a continuous mappingfrom K x £ into 2. The laws thus defined
in B make B a vector space and the topology of £ is compatible with this
vector structure. Finally, the uniform structure of the completion of E is
merely the uniform structure associated with the TVS B, which we have
just defined.

The proof is standard. We notice that (x, y) => x + Y is uniformly
continuous in E x E and (4, x) = Az uniformly continuous on the
product of a bounded subset of K and E. From this we obtain the
desired extension. The latter assertion is verified by calling F the TVS
£ and by using uniform continuity extending the identity isomorphism
of E onto F to anisomorphism of the uniform space £ onto the uniform
space #'; this last mapping must be the identity mapping.

PROPOSITION 6 Let E be a metrisable complete TVS and F a closed
vector subspace. Then EIF is metrisable and complete.

Thisis a particular case of Bourbaki, Topologie (énérale, Chapter 9,
Section 3, Proposition 4. We note that there exist complete locally
convex spaces (not metrisable) not at all pathological, which admit
non-complete quotient spaces. The validity of Proposition 6 is one
reason for the importance of metrisable TVS.

5 Topology defined by a semi-norm

DEFINITION 3 A semi-norm on a vector space E is a positive function p
on E satisfying the conditions:
p(x Ty) <p(x) +p(y)for x, y EE
p(Az) = 14 Ip(x) for x EE, 4 EK.
The semi-norm p is a norm if additionally p(x) = 0 implies x = Q.

A semi-normed iresp. normed) space is a vector space which kas a semi-
norm (resp. a norm).
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Very often, if E is a semi-normed space, its semi-norm. is written
¢+ |l x 1. The unit ball of E is the set of elements of E such that
| x | < 1.1f Visthis set, the set of x £ E suchthat Il x | < 4 (where
A >0)is AV. The set V is clearly balanced and absorbing from the
second axiom of semi-norms, and we have V + V ¢ 2V from the first
axiom. From Section 1 Proposition 1 we find :

PROPOSITION 6' Let E bea semi-normed space, V its unit ball. Then the
non-zero homothetics AV of V are a basis for the neighborhood filter of a
TVS topology on E. The function |l x - y llon E x E $s a pseudo-metric
which defines the uniform structure of the TVS E (which is therefore
Hausdorff if and only if E is normed).

A semi-normed space will therefore be considered as a TVS.

Subspace», quotient spaces and product spaces of semi-normed spaces.

Let E be a semi-normed space, F a vector subspace. Then the semi-
norm of E induces a semi-norm on F and the corresponding topology
Is the topology induced by E. Furthermore,

PROPOSITION 7 Consider on EIF the function X + Il X 11 which to

every X EEIF (i.e. a certain subset of E, translation of F) assigns the

distance from the origin to X (relative to the pseudo-metric | x - y ||)
I[X Il = infll x|l

geX

This function is a semi-normon E/F, andthe corresponding topology is
the quotient topology of E by F.

From now on, a vector subspace or a quotient space of a semi-
normed space will always be considered as a semi-normed space. In
particular, the Hausdorff space E [N associated with a semi-normed
space E (see Section 5) (where N is the closure of the origin, i.e. the set
of x E E such that Il x | = 0) can be considered to be a normed space,
called the normed space associated with the semi-normal space E. This
|leads to the idea of a metric homomorphism of one semi-normed space
into another: it isacontinuouslinear mapping of E into F such that the
mapping of E | N onto the subspace u(E) of F thereby obtained (where
N is now the kernel of the mapping) is an isomorphism (for the struc-
tures of semi-normed spaces). A fortiori « will be a homomorphism in
the sense of Section 3.

L et (Pi) be afamily of semi-normsonavector space. Ifp(x) = sup Pi(X)
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is finite for every x e X, then p(x) is a semi-norm on E. The following
IS a more general way of constructing semi-norms from Pi' Consider the

mapping
X > p{z) = (Pi(X»

of E into RI; let H be a vector subspace of RI containing ¢(&) and
finaly let « be a semi-norm on H which is increasing for the structure
of natural order induced on H by RI. Then

a(pi(x)

IS a semi-norm on E. For instance, if the family (Pi) is finite, the
functions

TP and (T pix)?)V?
are semi-norms, since it is readily verifiable that the expressions

slél and (T&yve

on R» are norms. Notice finally that if # is a semi-normed space, and
u a linear mapping from the vector space E into F, then Il ux) Il is a
semi-norm on E, and the topology associated with it is the inverse
image topology of E by u, These considerations |ead to

PROPOSITION 8 Let E be a vector space, (Ej) a finite family of semi-
normed spaces and for every i, fi alinear mapping of E into B; Then the
coarsest topology on E for which thel. are continuous may be defined by a
semi-norm. We can use, for instance, any of the following semi-norms
(where Pi(X) = Il fi(x) I[):

SUp Pi(X), B PI(X), (X (pada))2)V

But a priori there should be no preferences, the choice being deter-
mined by convenience in each particular case. We see that in particular
the topology of the product of a finite number of semi-normed (resp,
normed) spaces may be defined by a semi-norm (resp. a norm).

The completion of a normed space A complete normed space is called a
Banach space. Let E be a normed space, Il x | (distance to the origin) is
known to be uniformly continuous and by the continuity extendable
to the completed vector space £ (Section 4, Proposition 5) to afunction,
dso written Il x II, which is still a semi-norm. On the other hand, the
function Il x - y lion £ x E, which by continuity extends the func-
tionll x - ylionE x E, isa distance on the completion of the metric
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space E, the topology of # is therefore the topology defined by its
norm. Thus, the completion of a normed epace may be considered as a
normed space.

Oontinuous linear mappings between semi-normed spaces
THEOREM 2 Let E, F be semi-normed spaces.

1) Let U bea linear mapping of E into F. Then u is continuous i f and
only ifthereexists an M > 0 such that

lux) I <M Il x Il for every x e E,
which is equivalent to
sup llux) Il < 31
lfll <1
or to u(Vv) ¢ MW

where V and Ware the unit balls of E and F.
2) For everyu e L(E, F) let

lull = sup Il u(x) 1
]| <1

Thefunction thus defined on L(E, F) is a semi-norm, and anormifF is
Hausdorff. With this norm, L(E, F) is complete if F is complete.

I f E and Fare semi-normal spaces, L(E, F) is always considered «s a
semi-normed space as indicated above. In any case, |l u Il will be called
by abuse of the term) the norm of u,

Proof
1) Itisevident that the first formula implies the others and that the

|ast ones are equivalent. On the other hand
ulv) ¢ MW

implies u(sV) ¢ eMW for every ¢ > 0, thus u is continuous at the
origin and therefore continuous (Section 3). Conversely, if u is con-
tinuous, we will have u(¢V) ¢ W for ¢ sufficiently small and then
u(V) ¢ MW with M = 1/8. Finally, it is easy to see, by considering
homogeneity, that the second formula in 1) implies the first.

2) Forevery x e E, u || u(x) |l is a semi-norm on L(E, F), sinceit
is the inverse image of the semi-norm on F by the linear mapping
u > u(x). On the other hand, we have stated that every least upper
bound of semi-norms is a semi-norm and therefore » u n is a semi-norm
on L(E, F). The rest of the proof is left to the reader.
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COROLLARY Two semi-norms P and g on the same vector space E define
the same topology i f and only i fthere exist two numbers m and M such that

O0<m<M< 4+
mp(x) < q(x) < Mp(x) for x e E.

We must express that the identity mapping of E with ponto E with
g, as well as the inverse mapping, is continuous, and we apply the
criterion of the preceding theorem.

6 Generalities concerning spaces defined hy families of semi-norms

Let E be a vector space, (Pi) afamily of semi-norms on E. Consider on
E the least upper bound of the topologies associated with the Pi'
which makes E a TVS (Section 2). The uniform structure of E is the
least upper bound of the uniform structure associated with the Pi
(Section 4), and therefore is defined by the families of pseudo-metrics
Pi(X- y). A fundamental family of neighborhoods of the originin E is
obtained by taking for eachfinite subset J of the set of indices| and for
each e > 0, the set of those x such that PJ(x) < e where we have set

PJ(X) = ?gf Pi(X).

In consequence, the topology defined by the family (Pi)iel of semi-
norms remains unchanged when the least upper bound PJ of a finite
number of such semi-normsis added. We can add the semi-norms on E
which are bounded by a multiple of such aPJ; we verify that we have
then obtained all the semi-norms on E which are continuous (the addi-
tion of other semi-norms would make the topology of E strictly finer).

DEFINITION 4 A locally convex space is a TVS whose topology can be
defined by a family of semi-norms (Pi) on E as described above (i.e. it is
the least upper bound of the semi-normed topologies associated with the Pi).
The family (Pi) is said to be a family of definition for the topology of E.
Such afamily is said to befundamental ifthe unit balls associated with the
Pi form afundamental system of neighborhoods of the origin.

(This means also that for eachfinite subset J of | and for each M > 0O,
there existsa Pi > MpJ.)

Nearly all TVS used in analysis are locally convex since they are the
only spaces for which we have a sufficient number of important results.
They arelargely sufficient, since they are a family of spaces closed under
the usual operations, as we will now see.

Let E be a TVS whose topology is defined as the coarsest for which
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thej', from E into locally convex spaces Ei are continuous. Then E is
locally convex; more precisely, its topology is defined by the family of
semi-norms pfi' where for al i, p runsthrough afamily of definition for
the topology of E, (this follows from an obvious transitivity property,
valid in general topology, for the method of definition of a topology as
the coarsest which ...).

Thus, a topological vector subspace of a locally convex space, and the
topological vector product of a family of locally convex spaces, are locally
convex. Let E be a locally convex space with a fundamental family of
semi-norms, let F be a vector subspace and consider on EIF the
quotient semi-norms p, of the Pi (Section 5, Proposition 7). From
Proposition 7, it follows that these semi-norms define precisely the
quotient topology of EIF; therefore, a quotient space of a locally convex
gpace is locally convex. In particular, the Hausdorff space associated
with alocally convex space (Section 4) islocally convex. The completion
of a locally convex space is locally convex. For, if (Pi) is a family of semi-
norms on E defining the topology of E, the (Pi) can, by uniform con-
tinuity, be extended into semi-norms 9, on the completion, and the
corresponding pseudo-metrics on £, extensions by continuity of the
pseudo-metrics Pi(X - y) on E, define the uniform structure of &
(Topologie Générale); the topology of £ is therefore defined by the 7.

The following is a useful characterization of locally convex spaces:

ProrosiTioN 9 The topology of a locally convex space E can be defined
as the coarsest for which certain linear mappingsfi from E into Banach
spaces E; are continuous, | fin particular E is Hausdorff, E is isomorphic
to a topological vector subspace of a topological vector produd. of Banach
spaces.

For, if (Pi) is afamily of definition of the topology of E, it suffices to
call E; the Banach space completion of the normed space associated with
the semi-norm Pi (Section 5), andj', the canonical mapping of E into E;-

7 Bounded sets: General criteria

DEFINITION 5 Let E bea TVS. A subset A of E is bounded iffor every
neighborhood V oftheoriginthereexistsascalar A = 0 suchthat A4 ¢ V.

I f A isbounded, wewill haveadso A4 ¢ V provided 4 is small enough
(choose V balanced). A subset of a bounded set is bounded. Every sub-
set of E reduced to a point is bounded (since the neighborhoods of the

origin are absorbing); therefore, every finite subset of E is bounded as
c
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the union, and the sum. of a finite number of bounded sets ar¢ bounded
(using Proposition 2. 3)). In particular, the translations of a bounded
set are bounded; clearly the homothetics of a bounded set are also
bounded. The closure of a bounded set is bounded (use the fact that E,
being uniformizable, admits a fundamental system of closed neighbor-
hoods of the origin).

PROPOSITION | OA precompact subset A of a TVS is bounded.

For, if V is a balanced neighborhood of the origin, there exists a
finite subset B of E such that A = B + V (thisis a statement of the
precompactness of A). There exists also a scalar 4 of norm < 1 such
that AB < V, from which

‘dciBtivevtyv
Since V is arbitrary, A is bounded.

PROPOSITION 11 Let E bea TV S whosetopology is the coarsest for which
certain linear mappingsfi from E into TVS Ei are continuous. Then a set
A 45 boundedin E if and only iffor everyi, fi(A) is bounded in Ei-

The necessity is a particular case of the (immediate) fact: the image
of a bounded set by a continuous linear mapping is bounded. For the
sufficiency we use the characterization of the neighborhoods of the
origin in E. Particular cases to be made explicit are subspace and
product space.

Let E be a semi-normed space, V its unit ball. AcE is bounded if
there exists 2 < 0 such that A4 < V, the condition is aso sufficient
since we have sA4 < ¢V for every ¢ > 0. Since A4 < V can be written
A < MV whereM = 1/4or |l xIl < M for every x e A, we see that:

PROPOSITION 12 |If E is a semi-normed space, the bounded subsets of E
are the bounded subsets i n the sense of the metric (more exactly in the sense
of the pseudo-metric Il x - y Il), i.e., the subsets A such that

supljzj < oo.

wed
| n particular, the unit ball of a semi-normed space is a bounded neigh-
borhood of the origin. Oonversely:

COROLLARY 1 The topology of a TVS E may bedefined by a semi-norm,
or a norm respectively (we say that E is semi-normable, or normable), if
and only if E is locally convex (resp. locally convex and Hausdorff), and
admits a bounded neighborJwod of the origin.

For if V is a bounded neighborhood of the origin, and if p is a con-
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tinuous semi-norm on E such that the corresponding unit ball U be
contained in V, the topology of E isthat defined by p. If W is any given
neighborhood of the origin, we will have AV < W for some 1 2 0, and
afortiori AU < W.

COROLLARY 2 Let u bea linear mapping of a semi-normed space E into
aTVSF. Then u is continuous i f and only i f u transforms the unit ball of
E into a bounded subset of F.

The necessity follows from the fact that V is bounded. Conversely, if
u(V) is bounded and W a neighborhood of the origininF, we will have
(V) < W
for some A = 0, from which #(AV) < W. Since AV is a neighborhood
of theoriginin E, it follows that v is continuous at the origin, therefore

continuous.

Now let E be a locally convex space, whose topology is defined by a
family (Pi) of semi-norms. Combining Propositions 11 and 12 we sea
that a subset A is bounded if and only if for every i, we have

sup Pi(X) < +oo.
xed
We therefore easily conclude;

PROPOSTION 13 Let E bea locally convex space. Then the disked hull of
a bounded subset of E is bounded. (The disked hull of A is the set of
finite sums T Az, wherethe xi e A and Z |4, | < 1).

Consequently, the closed disked hull of a bounded set (i.e. the closure
of the disked hull) is a bounded set.

DEFINITION A TVS is quasi-complete if its closed and bounded subsets
are complete.

EXERCISE Let E beaTVS. Show thefollowing: aline of E is bounded
if and only if it is contained in the closure of the origin. Therefore E is
Hausdorff if and only if E does not contain bounded lines.

8 Bounded sets: Their usein ®-convergences
The need for bounded sets appears in

THEOREM 3 Let M beaset, ® a set ofsubsetsof M, E aTVS, H a vector
subspace of the space of all mappings of Minto E with the ®-convergence
topology. This topology is compatible with the vector structure if and only
If every u e H transforms the A e ® into bounded subsets of E. Then the
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yuniform structure of the TVS H isidentical to the &-convergent uniform
structure. | f the topology of E is defined by a family (Pi)iel of semi-norms,
the topology of H is defined by the semi-norms

Pi,AU) = Sup Pi(U(1)),

wherei run« through | and A. through & (therefore H is locally convex if
E i8). In particular, if ® i8 reduced to the unique element M (in the case
of uniform convergence), and If E is semi-normed (or normed), then the
topology of H 18 defined by the semi-norm (or the norm)

lull = sup Ihu) |

(called the uniform norm).

The proof follows immediately by using for example Proposition 1
(Section 1). The four conditions on the neighborhood filter of the
originin H are clearly always satisfied, except for the last one, which
demands that the u(A) (x e H, A e & be bounded subsets of E.

Theorem 3 leads to the consideration of the space of all mappings u
of Minto E which transform the A e & into bounded sets. With the
®-convergent topology, it is a TVS denoted by Bg(M,E). The TVS
such as H are therefore the topological vector subspaces of Bg(M, E).
If in particular M is a topological space, we call Cgx(H, E) the topo-
logical vector subspace of Bg(4, E) formed by the continuous map-
pings (bounded on the A e ®). When in particular & is the set of
compact subsets of M, we obtain the space of all continuous mappings
of Minto E (since the precompact subsets of E are bounded) (Proposi-
tion 10), with the compact convergence topology: this space is written
O(M, E). When & is reduced to the single element M (in the case of
uniform convergence), we denote the corresponding space by ¢“(M, E),
I.e. the space of continuous and bounded mappings of Minto E, with
the topology of uniform convergence. | f E is a normed space, (M, E)
is alwaysimplicitly considered as a space normed by the uniform norm

Il = sup I ue) I

When M is compact, the spaces C-1U. E) and O(M, E) coincide.
Finally, when E is the field of scalars, we omit it from the expression
and write Cgx(M), O(M), C*(M) (the latter is always a Banach space:
see the following proposition).

PROPOSITION 14 Using the preceding notation, If E is complete,
Bg(M, E) and C*(M, E) are complete. 'I'hie is equally true for G(M, E)
iffor example M is locally compact or metrieable.
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We know that if E is complete, the space of all mappings of Minto
E with a -convergence uniformity is complete; it suffices to show that
the spaces mentioned in the proposition are closed subspaces of the
above-mentioned space. This is well known for O(M, E) when M is
metrisable or locally compact. Moreover this can be directly verified
for Bg(M, E). Furthermore, C*(3, E), the intersection of the space
Bg(M, E) (where ® is reduced to M) and the space (also closed) of all
continuous functions with valuesin E, is also closed.

If M and E are semi-normed spaces, and if we consider on L(M, E)
the topology of uniform convergence on the unit ball V of M, this
topology is defined by the norm

sup I u(x) Il

ll2ll <1
which is simply the norm defined in Section 5, Theorem 2. Since every
limit for simple convergence (and a fortiori for uniform convergence
on V) of linear mappings of Minto E is clearly linear (at least if E is
Hausdorff), Proposition 14 implies that L(M, E) is complete if E is a
Banach space.

ProrosiTion 15 Under the conditions of Theorem 3, a subset P of H is
bounded if and only if for every A e &, the set P(A) = U u(A) is a

uch
bounded subset of E.

EXERCISE Show that if M is locally compact but not compact, the
topology of O(M) cannot be defined by a semi-norm (use Proposition
12, Corollary 2).

9 Examples of TVS: Spaces of continuous functions

An isomorphism and a canonical homomorphism Let M be a normal
space, N a closed subspace. The mapping which to every f e O%(M)
assigns the restriction of f to N is evidently a linear mapping, of
norm < 1, of C®(M) into C*(N). Uryson's theorem implies that we
even have a metric homomorphism from C*(M) onto C*(V), therefore
identifying the latter space (as a normed space) with the quotient of
C=(M) by the subspace J of functions that are zero on N.

Let K and L be locally compact spaces, E a TVS. Then the spaces
O(K x L, E) and G(K, G(L, E)) are canonically isomorphic as uniform
spaces (thisistruewhenever E is auniform space), and thisisomorphism
respects the vector structure. Thus, G(K x L, E) is identified with
O(K, O(L, E» as a TVS. This isomorphism respects the norms when E
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is normed. In particular, we have a canonical isomorphism of normed
spaces:
O(K X L) ~ O(K, O(L».

We draw attention to the fact that in general, if L is not compact,
we will have C*(K X L) £ CO®(K, C*(L)); a priori, the second space
iscontained in the first but in general strictly contained (the reader will
find examples).'

An approximation property

THEOREM 4 Let M be a compact space, E a locally convex space. Then
the linear combinations of functions ¢.a (where ¢ € O(M), a €E) are
dense in O(M, E).

Proof Let f e O(M, E). We must show that for every continuous
semi-norm p on E, there exists a function g = Y ¢4, such that
p(f(t) - g» < 1 for every te M. Since f is uniformly continuous,
there exists a finite covering (Ui) of M by open sets and a point t;
contained in each U, such that t e tj, implies

p(f(t) — f(ti» < 1.

Set f(tj) = ai' let (¢$,) be a partition of unity subordinated to (Uj) and
choose

g = 2 b.a;.
We will then have f(t) - g(t) =3 ¢:()(f(¢) - f(t;»; where we can
restrict the sum to those i such that t e Ui and obtain
p(f(t) — o)) < 1L

COROLLARY Let K and L be compact spaces. Then the functions which
are linear combinations of functions of type f(s)g(t) (where f e O(K),
ge O(L)), aredense in O(K XxL).

It is sufficient to see that

O(K x L) = O(K, O(L».

From Theorem 4 we see that this theorem is valid when M is only

locally compact.

Separability properties
PROPOSITION 16 Let M bea compact space. M is metrisable ifand only
IfO(M) isseparabk.
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Sufficiency Let (fi) be dense in O(M). If e t are two points of M such
that fi(s) = fi(t) for every i, by continuity we will have f(s) = f{t) for
every f e O(M), therefore e = t. The coarsest topology on M for which
the f; are continuous is therefore Hausdorff and consequently identical
to the topology of M sinceit is coarser, but this topology is metrisable.

Necesssty Consider a sequence of finite open coverings of M by sets
whose diameter tends to zero and for each of these coverings a sub-
ordinate partition of unity. The proof of Theorem 4 shows that the
linear combinations of functions ¢, corresponding to the unit partitions
are dense in O(M). Thisis adso true for rational linear combinations of
these functions, and the conclusion follows.

Combining Proposition 16 with Theorem 4 we obtain the

COROLLARY Let K be a compact meirisable space, E a separable locally
convex space. Then O(K, E) is separable.

The space Oo(M).

Let M be alocally compact space, E a TVS. A mappingf of Minto E
is said to be zero at infinity if it tends to zero following the filter of the
complements of compact subsets of M. We wrote Oo(M, E) for the
space of continuous mappings of Minto E zero at infinity and having
the uniform convergence topology. This is clearly a TV subspace of
C=®(M, E). Let M be the one point compactification of M (supposed
not compact), let w be the point at infinity of M (i.e. the only point
of M which does not belong to M). A continuous function from Minto
E is zero at infinity i f and only i f the extension to I obtained when to has
the value zero, is continuous. From this, Oo(M, E) is identified with the
closed subspace of C(JM, E) formed by functions which are zero at w.
This identification respects the topologies. The constant mappings of
Minto E form a natural supplement of Go(M, E).

ProrosiTion 17 Let M bea locally compact space, E a locally convex
gpace. Then Go(M, E) is the closurein ¢'*(3, E) of the space of con-
tinuous mappings having a compact support of M in E {the support of a
function having vectorial values is the closed set complementary to the set
of points in whose neighborhood the function is zero}.

EXERCISE 1 Show that under the preceding conditions (M a normal
space, N a closed subspace), if E is a Banach space, the canonical
mapping of C*(M, E) into C=(X¥, E) is a metric homomorphism of the
first space onto a closed subspace of the second (use Uryson's theorem
and Proposition 6, Section 4). Conclude from this that it is a metric
homomorphism of C*(3, E) onto ¢*(¥,E) if N is compact (use
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Theorem 4 above). Prove the analogous proposition when E is a locally
convex metrisable and complete space. What can we say when E is any
locally convex space?

EXERCISE 2 Let M be a completely regular space. E alocally convex
space. Show that the functions f e (M, E) belonging to the closed
vector space generated by the functions ¢.a (¢ e C*(3), aE E), are
exactly those for which f(M) is precompact. (Proceed as in Theorem 4
or use Theorem 4 introducing the Stone compactijication of M. See
Bourbaki, Topologie Générale, Chapter 9, Section 1, Exercise 6).

EXERCISE 3 Let M be a compact space, E a metrisable and separable
uniform space. Show that G(M, E) is a metrisable and separabl e space.
(Choose a metric for E and prove first of all the lemma: a separable
metric space E is always isomorphic to a subspace of a separable
Banach space. To see this, take a dense sequence (xi) in E, aEe E arbi-
trary and show that the mapping x — ¢(z) = (d(x, xi) - d(a, Xi»iel
into the space ¢'"°(¥) of bounded sequences is an isometry; then take
the closed vector space generated by #(#).)

EXERCISE 4 If M is acornpletely regular non-compact space, then
C*(M) is not separable. (Otherwise M would be a dense subspace of a
compact metrisable space J (its stone compactification), different from
M, and such that every bounded continuous function on M could be
extended by continuity to al of i7.)

EXERCISE 5 Apply the precedingidentificationin order to characterize
the relatively compact subsets of Oo(M, E). Case Oo(M). Extend
Theorem 4 to the spaces 0o(M, E).

EXERCISE 6 Letl| be anindex set, let 11(1) be the space of summabie
families of scalars over the index set 1:

a) Show that the function
I (A= 214l
over I1(1) is a norm, which. makes it a Banach space.

b) Let E beacomplete TVS. Show that if (Xi) isa bounded family in
E, then for every 2 = () e ll(1), the family (Az;) is a summable
family in E, and its sum () is a continuous linear function of
A = {(4,) e lI(1). Show that we thus obtain exactly all the continuous
linear mappings of 11(1) into E.

c) If E is a Banach space, the norm of the linear mapping of 11(1)
into E defined by means of the sequence (Xi) isidentical to sup Il z; II.

1el
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EXERCISE 7 Let | be an index set. We denote by [*({) and co(l} the
spaces ¢/*(f) and 0., built upon I considered as a discrete locally
compact space; they are therefore Banach spaces and co(l} is a normed
subspace of [*(I). On the other hand, ZI(1) represents the space of
scalar functions i — A; on 1 such that 1 4, 1 < + o with the norm
% | 2; | (see the preceding exercise). When 1 is implicit or is the set of
positive integers, we write the preceding spaces simply 1*, co and |,
If (A;) EI® and (u;) E 4, set

A, (1) = X Asus.
Show that the dual (i.e. the space of continuous linear mappings having
a natural norm-see Section 5) of co can beidentified with ZI, and the
dual of Il can be identified with I* (for the dual of Zl see the preceding
EXEercise).

10 Other examples: The spaces £™ and & of L. Schwartz

See Theorie des Distributions by L. Schwartz for the notation Dv for
the derivation operatorson R», wherep = (PI' ..., Pn)isany system of
n integers ;» O. D? stands for the operator
arl
oxPr ... OxP"
where I[P | = PI + ...+ P«is the order of this differential operator.
We have DO = identity, D*D? = Dptq.
Let U be an open non-empty subset of R», call

g(m)(U)
or simply & the space of scalar functions on U which are m times
continuously differentiable, having the coarsest topology for which the
t» (| P | < m) from this space into O(U) are continuous (O(U) is the
space of continuous functions on U with a compactly convergent
topology). We thus obtain a locally convex and metrisable space
(Section 4, Proposition 4), where a fundamental sequence of semi-
normsis obtained by taking a "fundamental sequence” (K, of compact
subsets of U and by setting

Pn(f) = sup IDPi(t) |
[p}<im, teKn
A filter (fi) in &= converges towardsf e & if and only if for every

p with .p + << m, the Dr], converge towards Dv] uniformly on every
compact set. Let (fi) be a Cauchy filter in &, then for every p of
order << m, the DP!i form a Cauchy filter in O(U), thus convergein this
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space towards a ¢, E C(U) (Section 8, Proposition 14). We can show
that ¢, is m times continuously differentiable, that D*¢, = ¢, and that
if every partial derivative (a/ax)fi tendsto alimit h uniformly on every
compact set, ¢, is continuously differentiable and its derivatives are
the h,- To see this we can consider the case of one variable where the
result is classical.

We have thus proved that & is complete.

We cdl &(U) or simply & the intersection of the spaces & (U)
having a least upper bound topology with respect to the induced
topologies. This is aso the coarsest topology for which the DP from
&(U) into C(U) are continuous (where p now runs through the set of all
indexes of derivation). Itisfurthermore alocally convex and metrisable
space and the above reasoning shows that it is complete. This can
be shown also from the following useful lemma:

LEMMA Let F bea set, (Em) a decreasingly directed family of subsets with
uniform structures su-ch that for Em ¢ £,,, the uniform structure of Emis
finer than that induced by Z,. Let E bethe intersection of the Em with the
least upper bound uniform structure of the structures induced by the Em.
| f the Em are Hausdor ff and complete, so is E.

Suppose now that K is a compact cube of B», We can define as above
the spaces £™)(K), &(K), and the preceding reasoning showe as before
that they are locally convex metrisable and complete spaces. The
essential difference is that the #™(K) are normable since C(K) is a
Banach space (Section 5, Proposition 8), while it is easy to see that the
&m(U) are not normable (use Proposition 12, Corollary 1); &£(U) and
&(K) are not normable.

I n Section 7, Proposition 11 we have given a criterionfor the bounded
subsets of gm)}(U) or &(U); a subset A of £&m™)(U) (or of £(V)) is bounded
if and only if for every index of derivation p of order < m (or of any
order) the set Dp(A) is a bounded subset of C(U) (i.e. Section 8, Proposi-
tion | 5-aset of continuous functions on U, uniformly bounded on every
compact set in U). Also, a subset A of &= (U) is relatively compact if
and only if it is precompact, therefore if for every p of order << m, the
set DP(A) is a precompact subset of C(U). Applying Ascoli's theorem
we find

ProrosiTiON 18 Let A bea subset of &)(U). A is relatively compact i f
and only if A is bounded and for every index of derivation p of order m
the set of functions DP(A) is equiconiinuous.
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| t suffices to show that for every p of order < m the set of functions
Dp(A) is equicontinuous. This follows from:

LEMMA Let B be a set of continuously differentiable functions on U
uniformly bounded on every compact set together with their first order
derivatives. Then B is equiconiinuous. (Mean Value Theorem).

Combining Proposition 18 and the lemma we get

COROLLARY Every bounded subset of &m+1(U) is relatively compact
in g (V).

A fortiori, every bounded subset of &(U) is relatively compact in all
of the &m)(U), from this we obtain the important

THEOREM 5 In &(U), bounded subsets and relatively compact subsets
are identical.

All of the preceding can be repeated word for word for the spaces
sm(K) and &(K),

in particular every bounded subset of £(K) is relatively compact. Since
&m+1(K) is normable, the Corollary of Proposition 18 shows that the
identity mapping of £m+1(K) into &™)(K) transforms some neighbor-
hood of the origin into a relatively compact subset of &™(K). We say
that it is a compact mapping.

EXERCISE 1 Define the spaces &)U, E), &(U, E), &™(K, E),
&(K, E) when E isany TVS. Show that these spaces are complete when
E is locally convex and complete (use Section 6, Proposition 9 for the
case E a Banach space). Show that if V isopeninR», L a compact cube
of B», we have a TV S isomorphism

g(m)(u X V) = g(m)(u, (g‘(m)(V))

g(m)(]{ X |_) = g(m)(]{’ éa(m)(L)
(similarly for £(U x V) and &(K xXL>».
EXERCISE 2 Characterize the relatively compact subsets of &)U, E)
and of &(U, E), when E is locally convex, Hausdorff and complete.

Under what conditions is every bounded subset of &(U, E) relatively
compact?

EXERCISE 3 Ifm > m' theidentity mapping of &™)(U) into &™)(U),
isnot a TVS isomorphism.
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|1 Topological direct sums

Recall that two subspaces F, G of a vector space E are supplementary
if the mapping (x, y) —x *y of F x G into E is an isomorphism,
which meansin particular thatF A G = {O}, F + G = E (Direct sum).
The projection of F x G onto F defines a linear mapping p of E onto
F which considered as an endomorphism of E satisfies

p2 - P p(E) - F’ p'l(O) = G.

The analogous mapping of E onto Gis 1 - p. Conversely, if p is an
endomorphism of E such that p2 = p, we see that p can be obtained
as described above and this uniquely, since we will have F = p(E),
G = p-1(0O). An endomorphism p of a vector space E such that p2 = P
is called a projector. The projectors of E therefore correspond exactly
to the decompositions of E in direct sums of 2 supplementary subspaoes
F, G.

Suppose now that E is a TVS. If F and G are supplementary sub-
spaces of E, the algebraic isomorphism of F x Gonto E is clearly con-
tinuous but not always a TV S isomorphism, i.e. theinverse mapping is
not always continuous. Ifwe have a TV Sisomorphism we say that they
are topological supplements.

PROPOSITION 19 Let E bea TVS, F a vector subspace.

1) A projector p of E onto F defines a topological supplement G ifand
only ifp is continuous. Then 1 - P is a topological homomorphism of E
onto G, i.e. it defines a TV S isomorphism of EIF on G. (To every element
of the quotient EIF there corresponds its unique representative in G, and
to each element of G its canonical image in EIF.)

2) The mapping of EIF onto G considered in 1) is a continuous linear
mappwng Of EIF into E which assigns to every element in the quotient a
representative element in E. Conversely, every mapping ¥ of EIF into E
having these properties can be obtained in this way (clearly uniquely since
we will have G = ¥(E|F».

The proof is obvious.

COROLLARY 1 Two topological supplements of the same space Fare

canonically isomorphic.
| n fact they are both canonically isomorphic to EIF.

COROLLARY 2 If E is a Hausdorff TVS, F and G supplementary topo-
logical vector subepaces, then F and G are closed.
In fact, they are respectively the kernels of the continuous linear

mappings 1 - p or p.
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Care should be taken, however, for, as we shall see later, even a
closed vector subspace of a Banach space does not always admit a
topological supplement; this causes numerous difficulties. Let us point
out that if D is a differential operator with constant coefficients,
eliptic on B», n > 2, and of strictly positive order, then it is a homo-
morphism of &(R*) onto &(E*) which does not admit a continuous right
inverse (see below), i.e. its kernel has no topological supplement.

Let % bea continuous linear mappingofa TVS £ intoa TVS F. A con-
tinuous linear mapping v of F into E is a right inverse (resp. left inverse)
ofuifuo v=1(resp.vo u = 1).

PROPOSITION 20 Let u bea continuous linear mapping ofa TVS E into
aTVSF.

1) 4 admits a continuous right inverse if and only if it is a homo-
mor phism of E onto F whose kernel admits a topological supplement in E.

2) « admits a continuous left inverse ifand only ifit is a isomorphism
of E into F, whoseimage admits a topological supplement in F.

The proof is left to the reader.
LetE beaTVS, let #,, ---, £, be afinite number of vector subspaoes

of E. & is a topological direct sum of eubspaces E; if the natural con-
tinuous linear mapping

Xi) > 2 Xi
of I1E; into E is a topological vector isomorphism of the first onto the

second. Then the projections of IIE; onto the factor spaces define
continuous endomorphisms Pi of E, satisfying the conditions:

PE=Pi Piop; =9 forv =y
ZPi=1 pi(E) = E&

Conversely, we verify immediately that if we have a finite sequence
of continuous projectors p,; into E whose products are pairwise zero and
whose sum is the identity, they correspond to the decomposition of E
into a topological direct sum of subspaces E; = p,(#).

EXERCISE1 LetE beaTVS. Every finite dimensional vector subspace
of £ admits atopological supplement if and only iffor every x == 0of E
there exists a continuous linear form on E which does not vanish on x.

EXERCISE 2 Let F be a closed vector subspace of a Banach space E
such that EIF is isomorphic (as TVS) to the space |11 of summable
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sequences (with the norm

121 = 140,

Show that F admits a topological supplement (use Proposition 19. 2)
and Exercise 6 of Section 9).

EXERCISE 3 Let M be a locally compact non-compact space, M its
one point compactification and E a TVS. Show that C(J4, E) is a topo-
logical direct sum of Oo(M, E) and of the space of constant mappings
of M into E.

EXERCISE 4 Let M be a topological space, the topological sum of a
finite sequence of subspaces Mi' Show that O(M) (see definition in
Section 8) is the topological direct sum of a sequence of subspaces iso-
morphic to the spaces O(M;). Describe the corresponding projectors.

EXERCISE 5 Let M be a metrisable space, N a closed non-empty
subspace whose boundary is separable. Show that there exists a
canonical linear mapping of C*(N) into C*(M), a right inverse of the
canonical linear mapping of C*{M) onto C”(&N) (Kakutani). (Let (Xi)
be a sequence dense in the boundary of N, let Vi,n be the set of points
x EM such that d(Xi' x) < 1N and d(x, N) > 4=, let (Va) be the open
covering of CN formed by the Vin and by eN. Construct a family
(¢,) of continuous functions positive on , With support ¢, < V,
uniformly summable in a neighborhood of each point of and
having 1for sum. Take finaly, for every f e C®(&), the functionf on
M identical tof on N and to

Z f(xi)ﬁéi,-n
in eN). Extend the result to the case C*(N, E):

) when E is a Banach space;
2) when E is alocally convex complete space.

REMARK Even if M is compact and N a compact subspace, it is not
true in general (if M is not metrisable) that the natural mapping of
O(M) onto C(N) admits a right inverse mapping which is linear and
continuous (it is false, for example, if M is the Stone compactification
of the integers, and N the complement in M of the integers).
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12 Vector subspaces of finite dimension or codimension

PROPOSITION 21 Let E bea TVS, F a vector subspace. Then the closure
of F is a vector subspace.

COROLLARY A hyperplane V in E is either dense or closed (i.e. if the
complement of V kas an interior point, V is closed).

THEOREM 6 Let E bea TVS, x' a non-zero linear forrn on E. For x' to
be continuous it is necessary and sufficient that the hyperplane kernel of
X' be closed.

Proof We must show thatifthe hyperplane Visclosed x' is continuous.
This means that settingF = EIN (F is a Hausdorff TVS of dimension
1), the linear form on F obtained by passing to the quotient is con-
tinuous. But that form is of type

Ae—> A,
where eis some element of F, so that we must prove the

LEMMA Let F be a Hausdorff TVS of dimension 1, e a non-zero element
of F. Then the mapping A +— A¢ of K onto F is a TV S isomorphism.

Let V be a balanced neighborhood of the originin F such that e¢ V.
We must show that 2e— A is continuous at the origin, that is, for
e > 0 there exists a neighborhood W of the origin in F such that
Ze E W implies |2 | < &. We may choose W = eV since fe E W is the
sameas eE (¢/2) V and, since V is balanced we would have (¢/A) Vc V
if we had

<

h- NI

which would be absurd.
THEOREM 7 Let E bea finite dimensional Hausdorff TVS, let

Eill<i<n
be a basts of E. Then the mapping
(A:) = 2 Aee
of K» onto E is a TVS isomorphism of the first space onto the second
(Kn having the product topology).

Thisis true if n = 1 (by the preceding lemma); let us proceed by
induction on n supposing the theorem proved for the dimensionn - 1.
The hyperplane in E generated by e,, ..., -, isisomorphic to Kr:",
therefore complete and thus closed since E is Hausdorff. Consequently
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(Theorem 6) the linear form X A,e; > 4, on E is continuous. Similarly,
the other 4, will be continuous, and the theorem follows.

COROLLARY 1 Let E be a .finite dimensional Hausdorff Tvs. Every
linear mapping of E into a Tvs F is continuous. Every vector subspace
of E is closed.

For the first part take E = K», The second part is contained in

COROLLARY 2 Let E bea Hausdorff Tvs. Then every finite dimensional
vector subspace of E is closed.
(It is infact complete, by Theorem 7.)

COROLLARY 3 Let E be a Tvs, F a closed vector subspace of finite
codimension: Then every linear mapping of E into a Tv s G which vanishes
onF is continuous. Every supplement of F is also a topological supplement.

For EIF being finite dimensional and Hausdorff, the first assertion
follows from Corollary 1. If H is a supplement of F, the corresponding
projector of E onto F is continuous (since zero on F), therefore H is a
topological supplement.

COROLLARY 4 Let E bea Tvs, F a closed vector subspace, G a finite
dimensional subspace. Then F + G is closed.

L et ¢ be the canonical mapping of E onto the Hausdorff space EIF,
#(@) is a closed subspace of EIF (Corollary 2), therefore its pre-image,
by ¢ which isF + G, is closed.

13 Locally precompact TVS

THEOREM 8 (BANACH) Let E be a Hausdorff Tvs with a precompact
neighborhood of the origin. Then E is finite dimensional.

We first prove the

LEMMA Let E bea Tvs, F a vector subspace, V a neighborhood of the
origin suchthat F + V s E (for example, F closed and different from E,
V bounded). Then, for 0 < k < 1wehave V ¢ F + kV.

Let us suppose V ¢ F T kV, i.e. introducing G = EIF and the
canonical image W of V into EIF (which is still a neighborhood of the
originin G): W ¢ kW, from this we conclude

W< kW < k2w ¢ ... < k*W,

therefore W 2 (1/k*)W for every n. Since the union of the (1/k*)W is
G (Wisabsorbing), wehave W = G,i.e. F + V = E, whichisacontra-
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diction. If, for example, F isclosed and different from E, and V bounded,
then W is a bounded subset of a non zero Hausdorff space G, therefore
W = Q.

We will prove Theorem 8 by contradiction: take 0 < k < 1; if E
were infinite dimensional, we could construct by induction (Lemma) a
sequence (xi) of points of V such that, #, being the space generated by
XI' .=., %, We would have xn+, ¢ £, T kV. We would then have

xi - xi g kV

for i #j, which contradicts the precompactness of V (since kV is a
neighborhood of the origin).

14 Theorem of homomor phisms, closed graph theorem

THEOREM 9 HOMOMORPHISM THEOREM (BANACH) A linear and con-

tinuous mapping u from a metrisable and complete TVS E onto another,
F, is a homomor phism.

| f we consider the quotient of E by the kernel of u, a quotient which
is still a complete and metrisable TVS (Section 4, Proposition 6), the
preceding theorem is equivalent to the following particular case
(Theorem of isomorphisms): a continuous and bijective linear mapping u
from a complete and metrisable TVS E onto another one F, is an iso-
mor phism of the first onto the second (i.e, the inverse mapping is con-
tinuous), or equivalently, if we have on a vector space two TVS topo-
logies for which the space is metrisable and complete, then these
topologies are either not comparable or they are identical. The proof
will be given in two parts.

1) Under the conditions of Theorem 9, for every neighborhood U
of the originin E, the closure of u(U) is a neighborhood of the origin
inF (using only the hypothesisonF). Sinceu(E) = F, the union of the

nu(U) = u(nuU)
(n a positiveinteger) isF and sinceF is a Baire space, one of the nu(U)
is not rare. Therefore u(U) is not rare, i.e. its closure contains a non-
empty open subset W. Let U' = U - U, then W - W is a neighbor-
hood of the origin in F, contained in the closure of u(U"). Therefore the

closure of the set u(U" is a neighborhood of the origin, from which
follows the assertion.

2) Theorem 9is now a consequence of

LeEMMA Let u bea continuouslinear mappingofa TVSE intoa TVSF.
We suppose that E is metrisable and complete, and that for every neigh-

D
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borhood V oftheoriginin E, the closure u(V) of u(U) is a neighborhood
oftheoriginin F. Then « is a homomorphism. of E onto F.

(This impliestherefore that F is metrisable and complete.) Precisely,
let V be a neighborhood of the originin E. We will show that every
Y eu(V) is of the form sz, where x e V + V, V being an arbitrary
neighborhood of the originin E (which implies the lemma). Let (Vi)
be a fundamental sequence of neighborhoods of the originin E, such
that

VI=U U,+U,cUnVv and ti;+ttjc U,., forn> 3

This implies that
Un+1+---"‘|'Un+kC Un
ifn> 1and
U +... +Ukc V +V.
L et us construct by induction a sequence (Yi) of points of F, such that

Yi eu{Uj) and Y- (Mi+ ... +¥n) Eu(U,+1-
(The possibility of induction is obvious.) Let xi e U, such that
ux; = Yi' The sequence (xi) in E is summable since E is complete and
the sum of afinite number of xi fori > nisalwaysin U,. Let x = X xi

be the sum. Passing to the limit we find that x e V + U and that
ux = 2 uz; =y.
This proves the lemma.
COROLLARY 1 Let E and F betwo Banach spaces, V and V their unit

balls, u a linear mapping of E into F such. that u(V) is densein V. Then
% IS a metric homomor phism of E onto F.

We have already shown that every element of u(V} = Vistheimage
by « of an element of V + ell = (1 + &)U, where e > 0is given.

COROLLARY 2 Let E be a metrisable and complete TVS, F and G two
vector eubspacee. For F and Gto betopological supplements it is necessary
and sufficient that they be closed and algebraic supplements.

(Apply the isomorphism theoremtoF X G and E.)

COROLLARY 3 Let E andF betwo TVS, E metrisable and complete, u a
continuous linear mapping of E into F. I1fu(E) 2 F, u(E) is meagre.

In fact it follows from the lemma that if u{E) = E, there exists a
neighborhood V of the originin E such that u(U) has no interior, but,

uE) = Unu).
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Another important form of the theorem of homomorphisms is

THEOREM 10, THE CLOSED GRAPH THEOREM Let u bealinear mapping
of a complete and metrieable TV S E into another, F. For u to becontinuous
(it is necessary and) it is sufficient that its graph be closed, or equivalently,
that there is no sequence in E tending to zero such that the image sequence
has a non-zero limit.

Let H be the graph of u, i.e, the set of pairs

(x, ux) EE X F,

where x runs through E. If H is closed, it is a metrisable and complete
TVS, and since its projection on E is a bijective continuous linear
mapping of H onto E, itisa TVS isomorphism, a fact that follows from
the theorem of isomorphisms. Therefore the inverse mapping is con-
tinuous, asis u obtained by composing the preceding mapping with the
projection of H onto F. To say that the graph H is closed means that
If (Xi) is a sequencein £ converging to X, and if (U(X)) converges to vy,
then y = u(x). Replacing xi by «; - x we see clearly that we can
restrict ourselves to the case x = 0.

COROLLARY Let E and F be metrisable and complete TVS, u a linear
mapping of E into F. For u to be continuous it is already 8ufficient that u
be continuous for a H ausdorff topology on F coarser than the given topology
of F.

Remarks Theorem 10 practically means that a linear mapping from
a complete and metrisable TVS into another one, F, defined in a
natural way, is always continuous. In fact, we do not know an explicit
example (i.e. not using the axiom of choice) of a non-continuous linear
mapping from a metrisable and complete TVS into another. However,
it is easy to see that if Z is a metrisable TVS of infinite dimension,
there exist non-continuous linear forms on E: take a sequence (x;) in E
converging to O, the xi being linearly independent, and take on the
vector space generated by the X the linear form equal to 1 on the xi
extend this form to all of E in an arbitrary way. We should note that
for the theorem of isomorphisms as in the closed graph theorem, the
fact that the spaces are complete is essential. A counter example when
F is not complete: the identity mapping of &=+)(K) into &™(K)
(Section 10) is a bijective continuous linear mapping from the Banach
space E = &m+U(K) onto the subspace F = u(E) of #™)(K), but it is
not a TVS isomorphism of E onto F. A counter example when E is not
complete: Let F be a complete and metrisable TVS of infinite dimen-
sion, v a non-continuous linear form on F (see above), £ the space F
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with the coarsest topology for which the identity mapping and v are
continuous (E isthen a metrisable TVYS), let u bethe identity mapping
of E onto F: U is a bijective continuous linear mapping of E onto F
whose inverse is not continuous.

EXERCISE 1 Every separable Banach space E is isomorphic to a
guotient space of the space 1' of summable sequences (isomorphisms
for the normed structure). (Take a dense sequence (Xi) in the unit ball
of E and show that the mapping

(A) = X Az
IS a metric homomorphism of 1! onto E.) Every Banach space E

(separable or not) is isomorphic to a quotient space of a space 11(1).
(Choose 1 to be a dense subset of the unit ball of E.)

EXERCISE 2 Let M beacompact space, E alocally convex, metrisable
and complete space (or a Banach space), F a closed vector subspace of
E, ¢ the canonical mapping of E onto EIF. Show that the mapping
f—>¢of of OM, E) into O(M, EIF) is a homomorphism (or a metric
homomorphism) of the first space onto the second. (Use the lemma of
Section 14-or Corollary 1 of Theorem 9-and the proof of Theorem 4,
Section 9.) If M isonly locally compact and countable to infinity, prove
the analogue for O(M, EIF) and Oo(M, EIF).

EXERCISE 3 Let K beacompact cube of B», let F be a Banach space
whose elements are scalar functions on K, with a topology finer than
that of the simple convergence. If F contains the infinitely differenti-
able functions on K, there exists an integer m > 0 such that F aso
contains the m-times continuously differentiable functions on K. (Show
that the identity mapping of the space #(K)—see Section |O-intoF is
continuous.)

EXERCISE 4 Let E, F be a metrisable and complete TVS, u a linear
mapping of E into F such that u(E) is of finite codimension. Show that
u is a homomorphism. More generally, two vector subspaces of E that
are the images of metrisable and complete TVS by continuous linear
mappings, which are algebraic supplements, are topological supple-
ments.

15 The Banach-Steinhaus theorem

TrrEorEM 11 (BANACH-STEINHAUS) Let E bea metrieable and complete
TVS, F any TVS, M a set of continuous linear mappings of E into F.
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For M to be equiconiinuoue it is necessary and sufficient that for every
X E E, the set M(x) of images of x by the u E M be a bounded subset of F
(i.e. that M be a subset of L(E, F) bounded for the topology of pointwise
conver gence-see Section 8, Proposition 15).

The necessity is immediate; more generally,

PROPOSITION 22 |If M isan equiconiinuou« set of linear mappings of a
TVvs E into a Tvs F, then for every bounded subset A of E, the set

M(A) = U 'u(A) is a bounded subset of F (i.e. M is a bounded subset of
ueM

L(E, F) for the topology of uniform convergence on the bounded subsets of
F—see Section 8, Theorem 3 and Proposition 15).

Conversely, if under the general conditions of Theorem 11 M(x) is a
bounded subset of F for every x e E, let us show that M is equicon-
tinuous. It suffices to show equicontinuity at the origin, i.e. that for
every neighborhood V of the originin F, the set

U= M-I(V) = U u-yv)

isa neighborhood V of theorigin in E. We can assume V closed, there-
fore U is closed, furthermore the hypothesis on M means exactly that
the sets U are absorbing. From Baire's theorem a closed absorbing
subset U of E has a non-empty interior (seethefirst part of the proof of
Theorem 9) therefore U - U is a neighborhood of the origin in E.
Then M-Y(V - V) isaneighborhood of the originin E, the conclusion
followssinceas V varies V - V runsthrough a fundamental system of
neighborhoods of the origin in F.

COROLLARY OF THE BANACH-STEINHAUS THEOREM Let E bea metrisable
and complete Tvs, F any Hausdorff Tvs, (Ui) a sequence of con-
tinuous linear mappings of E into F, converging for every x e E towards
a limit u(x). Then (Ui) is an equicontinuous sequence, therefore « is
contynuous (clearly, linear) from E into F and (u;) tends toward u uni-
formly on every compact set.

The analogous statement for afilter with a countable basisin L(E, F)
is still valid since it can be reduced to the case of a sequence.

A particularly important application of the Banach-Steinhaus
theorem is the following theorem, from which the preceding one can be
obtained if F is the field of scalars:

TrrorEM 12 Let E and F be metrisable and complete Tvs, G any
TVvsS. For a bilinear mapping « of E x F into G to be continuous, (it is
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necessary and) it is sufficient that it be continuous with respect to each
variable separately. More generally, a set M of bilinear mappings of
E X F into Gisequicontinuous, (ifand) only ifthe « E M are separately
continuous, and for every (X, y) EE x F, the set M(X, y) of images
u(x, y) for « EM, isa bounded subset of G.

The necessity is immediate. The sufficiency follows from

Lrymma Let E be a metrisable and complete TVS, T a metrisable topo-
logical space, Ga TVS, M a set of mappings

(X, t) — u(z, t)

of EXT into G, linear with respect to x. For M to be equiconiinuoueit is
necessary and suffictent that the following three conditions be satisfied:

1) the w E M are continuous with respect to x;

2) theset M is equicontinuous with respect tot, i,e. for every xq e E, the
set of mappings t— u(Xg, t) from T into Gis equicontinuou;

3) M is bounded for the topology of the simple convergence, i.e. for
every (x,t) E EXT, the set M(x,t) of w(z,t) for ¥ EM is a bounded
subset of G.

(Thislemma was found in a manuscript of N. Bourbaki.)

The lemma implies Theorem 12 since the conditions of Theorem 12
imply the conditions in the lemma. Condition 2) of the lemma will be
verified using the Banach-Steinhaustheorem). To prove the lemma, we
return to the case where T is compact, and use the following fact
(immediately verifiable): Let P be a metrisable space, M a set of
mappings from P into a uniform space G: for M to be equicontinuous
at PEP, it is necessary and sufficient that for every sequence (Pn)
tending towardsp, the set of restrictions of « e M to the set of (Pn) and
p be equicontinuous at p. When T is compact, Hypotheses 2) and 3)
imply that for every xgE E, the set of u(xg, t) foru EmM andteT isa
bounded subset of G (by using the compactness). But by virtue of
Hypothesis 1) and the Banach-Steinhaus theorem, thisimplies that the
set of al mappings x — u(x, t), when « variesin M andtin T, is an
equiconiinuoue set of mappings of E into G. If W is a neighborhood of
the originin Gand (xq, t0) E EXT, there exists a neighborhood U of
xgsuch that u(x,t) - u(xg t) EW assoonasx e U, foranyteT and
%4 EM. On the other hand by virtue of Hypothesis 2) there exists a
neighborhood V of to in T such that

u(xo, t) - %(ze, t0) E W
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for every t e V, and any v EM. We have then
u{z, t) - w(x,, to) e W + v

forx e U,t e Vforanyu EM. Since W was an arbitrary neighborhood
of the origin in G, it follows that M is equicontinuous.

EXERCISE Let E be a topological space, F a subset of E; F is meagre
with respect to E at a point x e E if there exists a neighborhood V of x
such that V n F is a meagre subset of E.

a) Show that if E isa Bairespace and if #' is not meagre at any point
X EF, then F'is a Baire space.

b) Show that ifFF isaBairespace densein E, then E isa Baire space
andF ismeagreat X, at no point X eF (with respect to E). (Thereforeif
E is a dense topological subspace of E, F isa Baire space if and only if
E is a Baire space and F is not meagre with respect to E at any point
X EF.)

c) Let E beaTVS, F adense vector subspace. ¥ is a Baire space if
andonly if E isa Bairespace andF is not meagrein E. In particular, if
F isametrisable TVS, F isaBairespaceif and only if F is not meagre
in its completion.

d Let E bea TVS. E is a Baire space if and only if E is not the
union of a sequence of closed sets having no interior.



CHAPTER 2

The general duality theorems
on locally convex spaces

1 Introduction

As the title indicates, we group in this Chapter all duality properties
which follow directly from the Hahn-Banach theorem, insofar as they
concern the most general locally convex spaces. Particular categories of
spaces will be studied in the next chapters.

I n contrast to the preceding chapter, the particular structure of the
field of real numbers and in particular its order structure will be im-
portant. Since the field of real numbers R is a subfield of the field of
complex numbers C, every vector space E over Chas also the structure
of a vector space Eo over R. For a topology on E thereis no difference
between its compatibility with the vector structure over R or over C;
If E is acomplex TVS, we can consider its associated real TVS Eo.

We will call the space E' of continuous linear forms on E the dual
space (or dual) of the TVS E (real or complex). We then have:

PROPoSITION 1 Let E bea complex TVS, Eothe associated real TVS. If
to every continuous linear form x' on E we assign the function

X —> Az, 2>

on E = EO, we get a hijective mapping of the dual E' onto the dual (E0),
of Eo, which #s an isomorphismfor the real vector structure of E' and (E0)'".
| f2' is the complex linear form corresponding to the continuous real linear
form y', then the kernel of X' is V niV, where V ¢s the kernel ofy'.

For the first part, we notice that Z{«, x') is a real continuous linear
formonE, cal ity'; aso, that ' can be expressed with the aid of y' by

@, 2> = <&, y') - i<ix y')

and that conversely, ify' is given real continuous linear form on E, the
preceding formula defines x' as a complex continuous linear form. The
characterization of the kernel of x' is obvious.

46
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2 Convex sets, disked sets

DEFINITION 1 Let A bea subset of a vector space E. The subset A is
convex if together with two points x and y, A contains the segment that
joins them.

Recall that the segment joining the points x and y is the set of
points Az + (1 - A)y, where 0 << 2 < 1. A set reduced to a point, a
linear sub-variety, a segment, are examples of convex sets. If F is a
vector subspace of E containing A, it is equivalent to say that A is
convex inF orin E.

ProprosiTion 2 Let E bea real one-dimensional vector space. The convex
subsetsof E aretheintervals of E (finite or infinite, closed or open or semi-
open).

The proof is immediate.

ProrosiTion 3 Every intersection, every increasingly directed union of
convex setsis conoex; the direct or inverse image of a convex set by a linear
mapping is conoex; if Ei are vector spaces and Ai < E,; convex sulsets,
then the product of the Ai is a convex subset of the product of the El the
sum of afamily of convex sets Ai of a vector space E is conoex; a trandate,
a homothetic image of a convex set is convex.

The proof istrivial: the first five properties (closure) are easily veri-
fied; the case of the sum reduces to the case of a finite sum, then we
consider 2 Ai astheimage of theconvex set |1 Ai by thelinear mapping
(Xi) — Z xi of Eninto E. In particular, if A is convex, A + Xis convex
for every x e E, since {x} is convex.

Since E is convex and an intersection of convex setsis convex, there
exists a smallest convex set containing a given set A, called the convex
hull of A. We denote it by r(A).

PROPOSITION 4 Let A bea subset of a vector space. Then its convex hull
r(A) is the set of sums
E Zixi}
I1<i<n
where the xi are elements of A and the A; are positive scalars of sum 1.

I n order to prove Proposition 4, it is sufficient to show that the set
of these sums % A;z; is convex (immediate), and that such asumis con-
tained in every convex set B containing A. Thisis trivial for a sum of
1 or 2 terms, and can be verified by induction in the general case.
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DEFINITION 2 Let A bea subset of a vector space E. 7'7en .4 is called a
disked set or simply a disk, i f together with two points x and y it also con-
tains all the points Az + uy where 4 and x are two scalars such that

4] +|n]> 1.

Such a setisafortiori convex, and furthermore balanced (see Chapter
1, Proposition 2), that is, closed under homothetics of norm < 1. The
converse is true and furthermore:

PROPOSITION 5 Let A be a subset of a vector space E. The following
conditions are equivalent:

a) A is disked.
b) A ¢s convex and balanced.

c) Aisconvexand 14 < Afor A1l = 1.

| t suffices to show that c) implies b) and that b) implies a). Supposing
c) to beverified by us prove that A iscircled, i.e, 24 < A for all 2 with
|41 < 1. Writing
A
[ 4]

when A is not zero we see that it is sufficient to consider the case in
which 0 < 4 < 1. Now from c) we see that -X e A whenever X e A.
Thus from the convexity it follows that the whole segment (-X%, X) is
containedin A and that in particular the points Az with0 << 1 < 1 are
in A. Supposing now b) to be verified let us prove a), i.e. &x + uy e A
whenever x and yareinA and |A | + lu| > 1. Writing

A=|2]—=

A=Al p=|pul—
Iﬂl | H|

we see again that we may suppose 4 > 0, > 0 and furthermore

A+ u > 0. It suffices then to write

i 4+ py = (A 4+ p ———av+‘1 ;g)

The stability properties stated in Proposition 3 are all true for disked
sets except that a translate of a disked set is not in general disked. We
can show thisdirectly asin Proposition 3 or as a corollary to Proposition
3, using criterion c¢) of Proposition 5. Since a vector subspace of E and
in particular E itself, is clearly disked, we can conclude that there
exists a smallest disked subset containing a given subset A; we call it
the disked hull of A. We show as for Proposition 5 that the disked hull



DUALITY THEOREMS ON LOCALLY CONVEX SPACES 49

of A is the set of sums 2 4,2;, where the Xi are points of A and the 4,
scalars such that = 1 4; | < 1.

In the case where the field of scalars is R, only +1 and -1 have
norm 1, therefore (Proposition 5, ¢)) the disked sets are the symmetric
convex sets (A is symmetricif A = -A).

3 Convex cones and ordered vector spaces

Even though the elementary theory which follows is not necessary to
the development of the theory of TVS, we present it because of its
interest in applications.

DEFINITION 3 A subsei A of a vector space E 4s calledaconeifid ¢ A
for every 4 > 0.

A mayor may not contain the origin; the definition means aso that
A isthe union of "open" half-raysfrom the origin O. The empty set or
a vector subspace are particular cones.

PRoPoSITION 6 Let A bea subset of a vector space. A is a convex cone
ifand only if

A+tAcA and 14 = A
for A > 0.

For the necessity, write x + y = 2(1a + 1y), which shows that if
x, YEA then x + yEA. The sufficiency is still more trivial.

We have furthermore for convex cones stability properties exactly
identical to those of Proposition 3, except that a translate of a convex
cone is not in general a convex cone; these properties can be verified
directly or as a corollary to Proposition 3. I f A is any subset of E, there
exists a smallest convex cone containing A called the convex cone
generated by A. It is clear that the convex cone generated by A is the
set of sums T A,z; with Xi e A and the 4, scalars >0.

DEFINITION 4 Let E be a vector space. A pre-order structure on E is
said to be compatible with the vector structure of E ifit is invariant by
translations and by strictly positive homoiheiics. A vector space E with a
(pre-) order structure compatible with the vector structureis called a (pre-)
ordered vector space.

The axioms mean therefore that x <y implies x + z<y + z for
every ze E and Az < Ay for every 4 > 0. From this we infer that
xI < Yl and x, < vz imply x1 + x, <Yl + Y2 In particular, x <Yis
equivalent to y - x > 0, therefore the pre-order is known once we
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know the set P of elements> 0 (called positive elements). From Proposi-
tion 6, we see that P is a convex cone, clearly containing the origin.
Conversely, let P be a convex cone in E containing zero; we verify
immediately that the relation y - x EP defined on E is a pre-order
relation (reflexive because 0 e P, transitive since P + pcP), com-
patible with the vector structure (AP < P for 2 > 0). We have shown
the first part of:

PROPOSITION 7

1) Let E be a vector space. There 4s a bijective correspondence between
the pre-order relations on E compatible with the vector structure, and the
convex cones in E containing the origin. To a pre-order relation compatible
with the vector structure there corresponds the cone P of positive elements
ofE, and toP therecorresponds the pre-order defined by: x < y ifand only
iIfy-xEP.

2) A pre-ordered vector space E isorderedifand only if

P n(-P) = {0}

it is wncreastngly directed (for all x, y E E, there exists a z such that
Z> X 22> Y). (P stands for the cone of positive elements.)

Proof of the second part is left to the reader.

4 Correspondence between semi-norms and absorbing disks.
Characterization of locally convex spaces

THEOREM 1 Let E bea vector space, p a semi-normonE. The set U of all
X E E such that p(x) < | (theunit ball associated with p) is an absorbing
disk and p is known once we know U, by virtue of theformula:

p(x) = Iinf 4

Az>0
2eAlU,

Oonversely, if U isan absorbing disk in E, the preceding formula (which
defines a positive function p, U being absorbing) defines a semi-normp on
E (called the gauge of U). Itsunst ball is U with the addition of the ends of
intervals defined by the intersection of U with the real rays passing through
the origin.

The first partistrivial. For the converse, it is clear that

p(4) = 12 1p(x)
for every 1 (since U is balanced). In order to show that

p(x Ty) <px) +py)
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we note that p(x) < Aandp(y) < g imply p(x ty) <1 + g, since

2
w+w:<a+%l#u +££—U c A+ U

(U being convex). The characterization of the unit ball associated with
p is again trivial. We have then a bijective correspondence between
semi-norms on E on the one hand and on the other hand the absorbing
disks whose intersection with every real homogeneous ray is closed. In
particular;

COROLLARY 1 Let E bea TVS. Then the continuous semi-norms on E
correspond bijectively to the disked. and closed neighborhoods of the
origin 0 in E.

TrareorEM 2 Let E bea TVS. Thefollowing conditions are equivalent:
a) E islocally convex (Ohapter 1, Section 6, Definition 4);
b) E admits a fundamental system of d¢sked neighborhoods of O;
¢) E admits afundamental system of convex neighborhoods of O.

The equivalence of @) and b) results from Corollary 1, since saying
that E is locally convex is equivalent to saying that the unit balls
associated with the continuous semi-norms on E form a fundamental
system of neighborhoods of the origin. It suffices to show then that
c) implies b), and for this we note that if V is a convex neighborhood

of 0, then N ivisa neighborhood of O which is convex (intersection
[A] =1
of convex sets), closed under homothetics of norm 1, therefore disked

(Proposition 5).

Let E be a vector space. Theleast upper bound of all locally convex
topologies on E is a locally convex topology, which is the finest locally
convex topology on E. A convex subset V of E is a neighborhood of 0
if and only if it is absorbing. The necessity is trivial, for the sufficiency

we may assume V to be disked (if not we can replace it by nAV);
{Al=1

then V contains the interior of the unit ball defined by the semi-norm
p, the gauge of V, therefore it is a neighborhood of O for the semi-
normed topology defined by p; the assertion follows. A point x E E is
an internal point ofaset Vif V - xisabsorbing; we see then that if V
IS convex it is equivalent to saying that x isinterior to V for the finest
locally. convex topology, which reduces a notion of purely algebraic
nature to a topological one.
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5 Convex sets in TVS

PROPOSITION 8 Let E bea TVS. The closureof a convex set (or a disk, or
a convex cone) is convex (or a disk or a convex cone).

The closure of the convex hull r(A) of a set A is called the closed
convex hull of A, written r(A). We define similarly the closed disked
hull of A (or closed disk generated by A), and the closed convex cone
generated by A.

PROPOSITION 9 Let E bea TVS, A a convex subset of E. Then 4 is
convex and if it is non-empty, its closureis identical to the closure of A.
| f xgis an interior point of A, then the interior of A (or the closure of A,
or the boundary of A) is the union of open intervals (or closed intervals,
or finite extremities of intervals) defined by tAe intersection of A with the
real rays passing through xg

The proof follows immediately from:

Lemma Let A bea convex subset of a TVS E, x an interior point of A,
y a point of the closure of A,. then the segment (x, y) minus y is interior
to A.

Let 0 < A < 1, let us show that Ax + (1 - A)y isinterior to A. Let
U = A. Consider the set of z e E such that

e+ @- NyeiU +@- Az
: A
€. + -(x - -
1.e the set y & - U);

it is an open set containing y (since x e U) therefore (y in the closure of
A) it contains ZEA. But since U = A, AU + (1 - A)z is an open set
contained in A and containing Az + (1 - 1)y, the conclusion follows.

COROLLARY The interior of a disk is a disk, the interior of a convex
coneis a convex cone. Let p bea continuous semi-normon E, U ¢he associ-
ated unit ball. U is closed, its interior is the set of x such that p(x) < 1,
its boundary ¢he set of x such that p(x) = 1.

EXERCISE 1 Let A beaconvex setin afinite dimensional vector space
E; if the affine linear variety (manifold) generated by A is E, then A
has a non-empty interior.

EXERCISE 2 Let A be asubset of a real n-dimensional vector spaceE.
Show that the convex hull of A is the set of sums with n + 1 terms



DUALITY THEOREMS ON LOCALLY CONVEX SPACES 53

% Az, where Xi e A, A, > 0, £ 4, = 1. From this conclude that if A is
compact, r(A) is compact.

EXERCISE 3 Let A be aconvex compact subset of a real n-dimensional
vector space E, and suppose that A has a non-empty interior. Show
that A is homeomorphic to the unit ball of En.

EXERCISE 4

a) Let A and B be two convex subsets of a Hausdorff TVS E. Show
that the convex hull of A u B is the set of sums Az + (1 - 1)y with
xEA, YEBO<i<L1
COROLLARY If A and B are compact convex sets, then r(A u B) is
compact.

b) Let A be a convex subset of E containing the origin, show that
its disked hull is contained in A - A in the case of real scalars, con-
tainedin (A - A) T i(A - A) in the case of complex scalars.
COROLLARY If A is convex, relatively compact, its disked hull is
relatively compact.

EXERCISE 5 Let E be a locally convex space. Show that the closed
disked hull of a preoompaet subset of E is preeompaot. Consider the
case where every closed bounded set in E is complete.

EXERCISE6 LetE beaTVS, A aconvex subset of E, V a vector sub-

space, then r(A u V) = A + V. From this conclude that if E is

Hausdorff, A is convex compact, V a closed subspace, then
r(AuV)=AtTyv.

(Show that if A. and B are two subsets of E, A compact, B closed, then
A + B is olosed.)

6 The Hahn-Banach theorem

I n the next two sections, a hyperplaneis a not necessarily homogeneous
affine linear subvariety of codimension 1. IfE isa TVS, we have seen
in Chapter 1, Section 12 (Proposition 21 and Theorem 6) that a hyper-
plane V in E is closed if and only if its complement has at least an
interior point or furthermore if and only if V being given by the equa-
tionx e V< (X, X') = «, thelinear form X' on E is continuous. Notice
that there is therefore a bijective correspondence between non-homo-
geneous closed hyperplanes of E and the continuous non-zero linear
forms on E, attaching to the linear form X' the hyperplane of equation
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<x, X/) = 1. To say that V does not meet a set A is to say that x/ does
not have the value 1 initsrange when its domain is A; if A is disked,
that means also that | <x, x/) | < | for x EA. If A is furthermore open
(therefore the interior of the unit ball associated to a continuous semi-
normp on E) it means also that

| <x,x') | <1

forx EA,i.e, | <x,x) | < 1forp(x) < 1, thatisto say x/ considered as
alinear form on the space E semi-normed by p isof norm < 1 (Chapter
|, Section 5).

Haan-BanacH THEOREM | Let E beareal or complex TVS, U a convex,
open and non-empty subset of E, V a linear sub-variety of E not meeting
U. Then there exists a closed hyperplane containing V and not rneeting U.

Proof Suppose the origin is contained in V (translate if necessary),
that is, V is a vector subspace. Furthermore we can restrict ourselves
to the case of real scalarssincein the complex caseif Wis areal hyper-
plane passing through V not meeting U, then W n iW is a complex
hyperplane satisfying the same conditions. Let M be the set of sub-
spaces of E containing V and not meeting U. Ordered by inclusion M is
clearly inductive, let W be a maximal element, it suffices to show that
W is a hyperplane which will necessarily be closed since U is open and
contained in CW. We will show that if W were of eodimension > 2,
W would not be maximal. In fact, F = E/W would be of dimension
> 2 and the image U/ of U by the canonical mapping ¢ of E onto F
would be an open convex subset of F not containing O; if we construct
a homogeneous ray D in F not meeting U/ the result will follow since
¢-4D) will bein M, will contain Wand will be different from W. We
then find a homogeneous ray D in F not meeting a given convex open
subset U/ not containing the origin. SincedimF > 2, we are led back
to the case whereF is two-dimensional and we can assumeF Hausdorff.

Furthermore, we verify that 0 = Ui is an open convex cone not
A0

containing the origin and containing U', so that we can replace U' by
O. Since the complement of {O} is connected and clearly distinct from
0,0 has at least a boundary point x in its complement. O being open,
and a cone, the Az with 2 > 0 are also boundary points, therefore not
containedin O. Also, if A > 0, Ax cannot be an element of U, sinceifit
were, all the points of the segment (Ax, x) minus x would be in U
(Section 4, Lemma), a contradiction. Thus, the homogeneous ray pass-
ing through x satisfies the requirement.

Suppose now that the set U in the preceding theorem is disked. It
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therefore contains the origin, and consequently the linear variety V is
not homogeneous; thus, V isin the vector space F generated by V a
non-homogeneous hyperplane of F. Using the remarks at the beginning
of this Section, we find: every linear form x' on a subspace F such that
| <x, x') | < 1for x e U N F isthe restriction of alinear form y' on E
such that | <x,y") | < 1 for x € U. In other words:

HAHN-BANACH THEOREM Il LetE bea TVS, p a continuous semi-norm,
F a vector subspace of E and x' a linear form on F of norm, < 1 (for the
semi-norm induced by p). Then X' is the restriction to F of a linear form
y' on E, of norm < | (for the semi-normp on E).

I nthe statement we have omittedto say that x' and y' are continuous
since they are automatically so. It is clear that the topology of E does
not in fact form part of the statement, only that of the semi-norm p.

COROLLARY | Let E bea locally convex vector space, F a vector subspace.
Then every continuous linear form on F is the restriction of a continuous
linear form on E. Every equicontinuous set of linear forms on F is the set
of restrictions of an equicontinuous set of linear forms on E.

| tissufficient to noticethat aset A of linear forms on alocally convex
space (F for example) is equicontinuous if and only if there exists a
neighborhood U of O such that every x' e A is bounded by | (in the
sense of the absolute value) on U; or else, that there exists a continuous
semi-norm p on F such that all the x' e A are of norm < 1 (when E is
semi-normed by p). In particular:

COROLLARY 2 Let E bea Hausdorff locally convex space. Then for every
non-zero X E E, there exists x' E E' such that

<x, X') = .

It is sufficient to consider the linear form Ax+> 4 on the ray F
generated by x, which is continuous since E, therefore F, is Hausdorff,
and to apply Corollary 1. More generally we show:

COROLLARY 3 Let E bea Hausdorff locally convex space, let z,, ---, z,
be linearly independent elements of E, and C,, ..., On any scalars. Then,

there exists a continuous linear form x' on E such that <Xi' x') = O, for
every .

In particular, let 2; be a continuous linear form on E such that
<Xi' ;> = &; (the Kronecker delta function) for every j; then the
operator

Y, x;
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in E is a continuous projection of E onto the vector space generated by
the xi. From this we get (Chapter 1, Section I1):

COROLLARY 4 Let E be a Hausdorff locally convex space. Every vector
subspace of finite dimension of E admits a topological supplement.

EXERCISE LetE beaTVS, P aconvex coneinE containingtheorigin
and having a non-empty interior (it is then the set of positive elements
of E for a certain preordered, directed vector space structureon E, (see
Section 3»; let F be a vector subspace of E meeting the interior of P.
Show that every "positive" linear form on E, i.e. taking positive values
on P, is continuous, and that every positive linear form on F is the
restriction of a positive linear form on E.

7 Separation of convex sets. Characterization of the closure of a convex set

I n this Section we work with real vector spaces only.

Let E be a TVS of dimension > 1, xi a continuous linear form on E,
and « ascalar. Thenthe set M ofoX E E such that <x, X') < « isa closed
and convex set whose interior M is the set of points x E E such that
<X, X') < « and whose boundary is the hyperplane V of equation
<X, XI) = &, A setsuchas M is called a closed half-space, the interior of
such a set is called an open half-space. Since the inequalities <x, x1) > «
and <x, X') > « can be written <x, -XI) < - « and <x, -XI) < —g,
they define also a closed half-space M1+ or an open half-space M
respectively. We verify that there exist exactly two closed half-spaces
whose boundary is the olosed hyperplane V, namely M and M ; ; we call
them the closed Aalf-spaces defined by the (closed) hyperplane V. Their
intersectionis V, while the corresponding open half-spaces do not meet.

A closed hyperplane V separates ireep, strictly separates) two subsets
A and B of E if A is containedin one closed (resp. open) half-space and
B in the other half-space defined by the hyperplane V. This means
therefore that by putting V in the form of an equation <x, X') = «, x
takesvalues < « on A and values > « on B (resp. values < « on A and
values > « on B), or vice-versa. Alternatively, we can say that the
pointo (inR) separatesiresp, strictly separates) the setsx'(A) and xI(B).
I f X' is given, the existence of an « such that the hyperplane <x, X') = «
separates A and B is possibleif and only if there exists an « separating
x'(A) and x'(B). In particular, if A and B are convex, x'(A) and x'(B)
are convex, therefore they are intervals (Proposition 2), and clearly it
is 8ufficient that these intervals do not meet, i.e. that x' does not vanish
on A - B, thatis, that the homogeneous hyperplane W defined by X'
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does not meet A-B. Applying the Hahn-Banach theorem |, we find
the first part of

ProrosiTion 10 Let E be a locally convex TVS, let A and B be two
disjoint convex subsets of E.

1) If either A or B is open, there exists a closed hyperplane separating
A and B.

2) If A is closed, B compact, there exists a closed hyperplane strictly
separating A and B.

The second part can be obtained from the first: it results from the
hypothesis that there exists a neighborhood U of 0 such that A + U
and B + U do not meet (this follows from a well-known property of
compact sets). We can choose U convex since E is locally convex.
Then A + U and B + U are disjoint open sets to which we apply 1).

Applying 2) to the case of a closed convex set and to a set reduced
to a point, we find

THEOREM 3 Let A bea convex subset of a locally convex space E. A is
closedif and only ifit is the intersection of a family of closed hall-spaces.

From this we deduce the apparently more general result:

COROLLARY 1 Let E bea locally convex space, A a subset of E. Then the
closed convex hull r(A) is the intersection of the closed half-spaces con-
taining A.

To say that xoE E belongs to r(A) means therefore that for every
x' e E' and every scalar « such that <x, x') < « for x e A, we have
<X01 X') < o.

COROLLARY 2 Let E bea locally convex space, A a subset of E. Then the
closed vector space generated by A is the intersection of closed hyperplanes
containing A.

We can prove that if V is a closed vector space and X E G/, there
exists a closed hyperplane containing V and not x, which is a result of
Theorem 3 (obtained more rapidly from a direct application of the
Hahn-Banach theorem I, in which we choose a neighborhood U of x
which does not meet V). Explicitly, an x e E belongs to the closed
vector space generated by A if and only if every continuous linear form
vanishing on A vanishes on x.

DEFINITION 5 A subset A of a TVS E istotal if the closed vector space
generated by A is E.
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Corollary 2 above gives:

COROLLARY 3 Let E bea locally convex space, A a subset of E. For A to
betotal it isnecessary and sufficient that every continuous linear form on E
which uamiehe« on A, ¢s identically zero.

The following proposition is sometimes useful .

PROPOSITION 11 Let E bea TVS. For E to beseparable it is necessary
and sufficient that there exists a countable total subset of E.

The condition is clearly necessary; conversely, let A be a countable
total subset of E. Since the set of rational linear combinations of
elements of A is dense in V and countable, our assertion follows.

Notice that the Hahn-Banach theorem Il and Theorem 3 above
are the most convenient forms of the Hahn-Banach theorem | (in fact,
they are the most general). The next two Sectionswill present Theorem
3in g useful form.

EXERCISE ProvetheHahn-Banachtheorem| using either Proposition
10 or Theorem 3. (Recall that in the statement of the Hahn-Banach
theorem |, inthe case where V is a point x; if starting from Theorem 3,
distinguish first of al the case x ¢ U and treat the case where X is a
boundary point of U passing to thelimit by supposing 0 e U; compare
with the exercise of Section 8.)

8 Dual system, weak topology

DEFINITION 5 A dual system is a pair of vector spaces E, E' with a
bilinear form on their product E X E'.

The value of this form on (x, x') is denoted by <x, x'). We also say
that the spaces E, E' are set in duality by the form <x, x'). A duality
between E, E' is equivalent to the existence of a linear mapping from
E' into the algebraic dual E* of E which assigns to x' e E' the form
xr — <x X') onE; thisisequivalent to the existence of alinear mapping
from E into the algebraic dual E'* of E'. Theduality between E and E'
issaid to be separated in E' (resp. in E) if the mapping from E' into E*
(resp. from E into E'*) which corresponds to the duality, is injective.
Ordinarily we identify E' with a vector subspace of E* (or E with a
vector subspace of E'*). Conversely, a vector space E and a vector
subspace E' of its algebraic dual E* define a dual system (E, E'),
separated in E'. Itisseparatedin E if and only if every x e E on which
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al the x' e E' vanish is precisely the 0 element. The duality (E, E') is
separated if it is separatedin E and in E'.

|mportant example: Let E be alocally convex space (henceforward
abbreviated to LCTVYS), E' itsdual, then E and E' form a dual system
separatedin E'. It is separated in E if and only if # is Hausdorff (use
the Hahn-Banach theorem 11, Corollary 2).

DEFINITION 6 Let (E, E') bea dual system. The weak topology on E is
the coarsest topology on E for which the linear forms x +— (X, X'), X' € E',
are continuous. We define symmetrically the weak topology on E'. They
are denoted by a(E, E") and a(E', E).

In particular, ifE isan LCTVS and E' itsdual, then (E, E'") is a dual
system to which corresponds a weak topology on E and a weak topology
on E'; by "the weak topology"” on E or E' we shall mean, unless other-
wise specified, the weak topologies defined above.

E and E' are LCTVS with these weak topologies. E is Hausdorff for
the weak topology if and only if the duality between E and E' is separ-
ated in E. (We have the same criterion for E' and from now on we will
not repeat the corresponding statements for E'.) We notice that the
weak topology of E depends only on the image of E' in E*, thereforeit
is also the weak topology defined by the subspace of E*.

A subset of E is said to be weakly closed (or weakly open, weakly com-
pact, etc.) ifitis closed (or open, compact, etc.) for the weak topology.
Care should be taken in the case where E isa LCTVS, as the notion of a
weakly closed or weakly open subset of E is more restrictive than that
of a closed or open subset; it is the contrary for weakly compact or
compact.

A fundamental system of neighborhoods of the originin E is formed
by sets of x e E such that | (x, «;> | < 1 for every i, where (z}) is a
finite set of elements of E'. Each V contains the vector subspace H
formed by the x such that (x, xi) = 0 for every i, from which we con-
clude that every linear form on E bounded above on V, is zero on H,
therefore it is a linear combination of linear forms defined by the z;.
Whence:

PROPOSITION 12 Let (E, E') be a dual system. Then the weakly con-
tinuous linear forms on E are exactly those defined by the X' E E'.

Clearly, the analogue is true on E' by considerations of symmetry.

COROLLARY Let & bean LcTvs. The linear forms which are continuous
for the initial topology or the weak topology are the same.



60 TOPOLOGICAL VECTOR SPACES

THEOREM 4 Let E be an LCTVS, A a convex subset of E. A is closed
ifand only if A is weakly closed.

First we can reduce the proof to the case of real scalars, foritiseasily
verified with the aid of Proposition 1 that if E is a complete LCTVS,
its weak topology is identical to the weak topology of the associated
real TVS. If A isclosed, A istheintersection of a family of closed half-
spaces (Theorem 3); since a closed half-space is defined by an equation
(x, X') < e« with x' e E', it isaso a weakly closed set, therefore A is
weakly closed.

COROLLARY Let E be an LCTVS, A a subset of E. Then the closed
convex hull of A isidentical toits weakly closed convex hull. I n particular,
I1f A is convexits closure is identical to its weak closure.

THEOREM 4' Let # bea LCTVS, A a subset of E. A is bounded i f and
only if A is weakly bounded.

It is sufficient to show that if A is weakly bounded, it is already
bounded. If E is normed, then the natural mapping of E into the dual
of E', where E' is considered as a normed space (see Chapter 1, Section
5), is a metric isomorphism (by the Hahn-Banach theorem 11, taking
F to be theray generated by an x e E). The weak topology of E isthen
that induced by the simply convergent topology in the dual of E'. By
the Banach-Steinhaus theorem (Chapter 1, Section 15, Theorem 11)
A isthen an equicontinuous set of linear forms on E', sinceitis bounded
for the simple convergence, therefore A is aso bounded for the norm
of E. Inthe case where E isany LCTVS, we consider the topology of E
as the coarsest for which given linear mappings ui from E into normed
spaces E; are continuous (Chapter 1, Section 6, Proposition 9) and to
prove that A is bounded reduces to proving that the ui(A) are bounded
subsets of E; (Chapter 1, Section 7, Proposition 11). But the «; are
clearly continuous for the weak topologies of E and E;, therefore the
ui(A) are weakly bounded subsets of E;- We are thus led back to the
particular case first considered. Owing to Theorem 4', there is no
ambiguity, if (E, E") is a dual system, in saying simply "bounded sub-
sets", instead of "weakly bounded subsets" in the space E or E'.

Proposition 12, and even more Theorems 4 and 4', reduce many
questions relative to an LCTVS E to considerations of its weak topo-
logy. Itistherefore of interest sometimesto substitutethislast topology
for the initial topology in order to reason in terms of duality. Care
should be taken as the weak topology of a LCTVS E seldom makesE a
complete space. Precisely:
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PROPOSITION 13 Let (E, E') be a separated dual sydeln. Then the
algebraic dual E'* of E', equipped with the weak topology a(E'*, E'), is
the completion of E in the weak topology.

In fact, E with the weak topology is identified with a topological
vector subspace of E'™*, then it suffices to show that E'* is complete and
that E is dense in E™. However, E'™ is complete since it is a closed
subspace of the space of all the scalar functions on E', with pointwise
convergence, whichis a complete space. Furthermore E is dense in E'™
for it is sufficient to show that every continuouslinear form on E'™* zero
on E is identically zero (Section 7, Theorem 3, Corollary 3), but by
Proposition 12 every continuous linear form on E™ comes from an
element of E'. The conclusion follows. Notice that if (E, E') is only
separated in E, the completion of weak E is still identified with the
closure of E in the complete space E™, equipped with the topology
a(E™, E).

EXERCISE 1 Let E bean LCTVS. A sequence (Xi) in E tends weakly
toalimita e E if and only if a isin the closed convex hull of every

subsequence of (Xi)'

EXERCISE 2 Let A be a convex subset of an LCTVS. A is weakly
compact if and only if every filter base on A formed by closed convex
sets has a non-empty intersection.

(Hint: For the sufficiency show first of all that A isweaklyprecompact
since it is weakly bounded; then show that A is weakly complete. For
this, if ¢ is a weak Cauchy filter on A, notice that the set of closed
convex hulls of B € ¢ is still a weak Cauchy filter base and admits a
weak cluster point which is a limit of the filter, and a fortiori of ¢.)

EXERCISE 3 Let E beanormed TVS of infinite dimension. Show that
E is not weakly complete. (There are on E' non-continuous linear forms
for the norm topology of E'-see Chapter 1, Section 14, Remarks-and
a fortiori non-continuous for a(E', E).)

9 Polarity

DEFINITION 7 Let (E, E") bea dual system, let A bea subset of E. The
polar of A, denoted by Ao is the set of x' E E' such that %<z, x') > -1
for every x EA. There is an analogous definition for the polar of a subset
of E'.
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The most inmediate properties of this notion are outlined in

PROPOSITION 14 Let (E, E') bea dual system.

1) The polar of a subset A of E is a subset of E' which is convex, con-
tains theorigin, and is weakly closed. It remains unchanged if we replace
A by the weakly closed convex hull of A u {QJ

2) The transformation A —- A° is decreas ng. We have
1
(Ad)0 = E(A 0)

for everyreal scalar A. If A and B are two subsets of E, we have
(A u B = A° N BO.

3) If A is disked, then A°is disked and identical to theset of X' e E'
such that | (x, x') | < 1 for every x EA. If A is a cone, A is a cone,
identical to the set ofx E E' such that Z(x, xX') > O0for every x EA. If A
IS a vector space, A °is the vector subspace of E' orthogonal to A, i.e. the set
of X' EE' such that (x, x') = 0for every x EA.

I f A is asubset of E, we call the set of X' EE' suchthat | (x, x') < 1
for every x e A, the absolutepolar of A, and the set of X' e E' such that
Rlx,X') = 0
for every x e A the supplementary coneof A. From Proposition 4, 3) we
know that the polar of a disk isidentical to its absolute polar and that
the polar of a cone isidentical to its supplementary cone. The absolute
polar of a set A does not change when A isreplaced by its disked hull;
from thiswe seethat it isaso the polar of the disked hull of A; similarly,
the supplementary cone of A isidentical to the polar of the cone gener-

ated by A.

THEOREM 5 (BIPOLAR THEOREM) Let (E, E') be a dual system, A a
weakly closed convex subset of E containing the origin. Then (AQ0)0 = A.

This means that if xo ¢ A there exists an x' e E' such that
Hlx,X') > -1 forxe A and %y, X') < -1.

I n this assertion, it is only necessary to consider the structure of E as a
real TVS with the topology weak (Section 1). The existence of a linear
form x' asabove resuItS|mmed|aterfrom Section 7, Theorem 3. If A is
a subset of E, then its polar A °and therefore its bi polar (A0)0 do not
change if we replace A by the weakly closed hull of A u {O}; from this
we obtain

COROLLARY 1 Let A bea subset of E. Then the weakly closed convex hull
of A u {QJis identical to the "bipolar" {A0)0 of A.
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Similarly, the weakly closed disked hull of A isidentical to the polar
of the absolute polar of A; the weakly closed convex cone generated by
A is identical to the supplementary cone of the supplementary cone
of A.

The mechanism of polarity as aresult of Proposition 14 and Theorem
5, isoutlined in the

COMMENT Let (E, E') be a dual system. Let K(E) be the set of convex
subsets of E which contain the origin and are weakly closed : let K(E') be
the analogous setfor E'. K(E) and K(E') are ordered by inclusion. | f with
every A E K(E) we associate its polar A ° and with every A' E K(E') its
polar A'o, we obtaln a bijective mapping from K(E) onto K(E'). The
mapping A — A°is an isomor phism from the ordered set K (E) onto the
set K(E) with the opposite order: IfA, B E KSE) then A < B is equiva-
lent to A ° > BO. The polar of_(_ u B) isA n BO, the polar of A N B

isr(AO u BO). We have (14)° = 5.(A0) for every real scalar 2.

Finally, the correspondence outlined above between K(E) and K(E')
induces a bijective correspondence between the weakly closed disks of E
and E', between the weakly closed convex cones of E and E', and between
the weakly closed subspaces of E and E'. These correspondences can also be
obtained as stated in Proposition 14, 3).

Notice also the formulae
(r(A uB)O= A0ONBO and (A nB)O = r(AO u BO).

The first one is trivial (Proposition 14) and the second an a priori non-
trivial result. The second one results from the beginning of the comment
(therefore from Theorem 5) and from the first formula applied to A°

and BO instead of A and B. We can also point out that in K(E), A n B
and r (A u B) arerespectively the g.l.b. and thel.u.b. of A and Band
must therefore be transformed by polarity into the l.u.b., or g.l.b.

respectively of A °and BO by virtue of the beginning of the comment.

In cases where A and B are vector spaces V and W, the preceding
formulae become

(V+FWOo=VOnW and (VA WO = VO + WO
where the first is a priori trivial but not the second.
Theorem 5 is clearly equivalent to Theorem 3 stated for a vector
space with a weak topology. (We can always suppose that the convex
set in the statement of Theorem 3 contains 0.) Therefore, the con-

junction of Theorems 4 and 5 is exactly equivalent to Theorem 3.
Depending on applications, we use either of the parts of Theorem 3,
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which particular statements are easier to use than Theorem 3 itself.
In what follows the bipolar theorem (Theorem 5) will be of special
importance.

For the next topics considered, the concept of absolute polar will be
of more use than that of polar given in Definition 7 (which is useful for
examplein ordered vector spaces). I n al studiesinvolving polarity, the
polar of A is what we call here its absolute polar; but if we restrict
ourselves to disked sets, which is not hard to do in practice, we have
seen that the two notions coincide. The concept of absolute polar,
independently introduced by different authors, has been systematically
used by Dieudonne and Schwartz. The more general notion of polar
(Definition 7) is due to N. Bourbaki.

EXERCISE Let M be alocally compact space. For every t ¢ M let &,
be thelinear form f - f(t) on O(M). Show that the unit ball of the dual
A (M) of O(M) is the weakly closed disked hull of the set of &,. An
element u E A4 (M) is said to be positive if <f, u> > 0for f > 0. Show
that the set of u e #(3{) which are positiveis the weakly closed convex
cone generated by the &, and that the set of positive x4 such that
2 || < I isthe weakly closed convex hull of the set of &, and 0. From
this, conclude that the set of positive iz of norm = 1listhe closed convex
hull of the &,. (Show that if x> 0, then |l Il = %(1).)

10 The G-topologies on a dual

PROPOSITION 15 Let (E, E') be a dual system, A a subset of E. The
following conditions are equivalent:

a) A isweakly bounded.
b) For every X' € E' the set of <x,X'), « E A, is bounded.
c) A is weakly precompact.

The equivalence of @) and b) is a particular case of Chapter 1, Section
7, Proposition I1. On the other hand the equivalence of b) and c) results
from the usual characterization of precompact subsets in a uniform
space whose uniform structure is the coarsest for which mappings
fi :E > E, into uniform spaces, are uniformly continuous (here the fi
are the mappings z > <x, x') from E into the field of scalars k); we
know that the precompact subsets of k are identical to the bounded
subsets.

PROPOSTION 16 Let (E, E') bea dual system, & a set of subsets of E.
On E' the G-topology is compatible with the vector structure if and



DUALITY THEOREMS ON LOCALLY CONVEX SPACES 65

onlyifthe A e & are weakly bounded subsets of E. If so, E' equipped
with the &-topology is a locally convex space and a fundamental system of
neighborhoods of the origin for this topology is obtained by taking the
absolute polars of A e & and the finite intersections of non-zero homo-
thelie« of such polars.

Thefirst assertion is aresult of Proposition 15 and Chapter I, Section
18, Theorem 3; the second assertion follows from the same theorem and
the definition of absolute polars. We then see that in particular the
®-topology on E' does not change if we replace the A e & by their
weakly closed disked hulls, not even if we add to & the weakly closed
disked hulls B of finite unions of homothetics of sets Ai e &, and
finally every weakly closed disk contained in a set such as B. We are
then led to a set &, of weakly bounded and weakly closed disks of E,
invariant by non-zero homothetics, increasingly directed and contain-
ing all the weakly closed disks which are contained in some set A e &.
We thus obtain a fundamental system of neighborhoods of the origin
in E', for the &,-convergent topology, by taking the polars of A e &,.
But it follows from the bipolar theorem that we cannot add to &, any
other weakly closed disks without changing the corresponding topology
on E'. In general:

PROPOSITION 17 Let (E, E') bea dual system, & a set of weakly disked
and weakly closed subsets of E, invariant by non-zero homothetic, in-
creasingly directed and containing with every set A all the weakly closed
disks contained in A. Let 7 be a set of weakly closed and weakly bounded
disks of E, on E' the &-topology isfiner than the z-topology if andonlyif
< O,

For, if A e 7, then AQis a neighborhood of 0in E' for ther-topology,
therefore (if this topology is coarser than the &-topology) it containsa
set BO, with B &, from which we conclude that A = B and therefore
AE®.

COROLLARY | Under the conditions of Proposition 17, supposing that
satisfies the same conditions as &, on E' the &-fopology and T-topology are
identical ifand only if & = .

COROLLARY 2 Let (E, E') bea dual system, let & and r be two sets of
bounded subsets of E. On E' the ®&-fopology isfiner than the T-topology if
and only ifevery A E 7 is contained in the weakly closed disked hull of the
union of afinite number of homothetice of 4; E &.
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This corollary is in fact equivalent to Proposition 17, because of the
remarks made before its statement.

DEFINITION 8 Let (E, E') bea dual system. The strong topology or the
topology of bounded convergence onE' is thetopol ogyof unifor mconvergence
on thebounded subsetsof E. | fE is locally convez, wecall thedual spaceE'
with topology of uniform convergence on the bounded subsets of E, the
strong dual of E.

Since the bounded weakly closed subsets of a LCTVS E are already
bounded for the original topology (Theorem 4", the strong topology of
E' depends only on the dual system (E, E'). According to Definition 8,
the strong topology of E' is thefinest of thelocally convex &-topologies
considered above.

Proprosition 17° Let (E, E') be a dual system. A locally convex topology
on E' is a &-topology for some set & of bounded subsets of E if and only
if it admits a fundamental system of neighborhoods Vi of O disked and
closed for &(Z’, E).

The necessity follows from the characterization of neighborhoods of
Ofor the &-topology just given. For the sufficiency we observe that
if Al isthe polar of Vi we have V = A2, therefore the topology con-
sidered for E' isthe &-topology, where & isthefamily of Ai' If we start
with a LCTVS E we can see by changing the roles of E and E' in the
proposition that the topology of E is a &-topology for some set & of
subsets of E' (use Theorem 4). We will now consider the &-topology
more closely.

11 The LCTVS as duals having ®&-topologies

ProrosiTioN 18 Let E be a locally convex space, E' its dual, E* its
algebraic dual. A linear form x' on E is continuous if and only if there
exists a disked neighborhood V of 0in E on which x' is bounded by | in
absolute value, i.e. such that x' belongs to thepolar of Vin E*. A set A' of
linear forms on E is equicontinuous if and only if there exists a disked
neighborhood V of 0 in E such that all the x' e A" are bounded by I in
absolutevalue on V, i.e. such that A is contained in thepolar of V in E*.

The proof is immediate.

COROLLARY | Let E bean LcTvs, A an equicontinuous subset of the
dual of E. Then, the weakly closed convex hull of A is still equicontinuous.

COROLLARY 2 Let E bea locally convex space. Then, by polarity, thereis
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a bijective correspondence between the disked and closed neighborhoods of
Oin E, and the disked equicontinuous weakly closed subsets of E'.

I nfact, the polar of a neighborhood of 0 in E is an equicontinuous
subset of E' (Proposition 18), and the polar of an equicontinuous subset
of E' is clearly a neighborhood of 0 in E. The corollary follows from
the bipolar theorem. Taking into consideration Proposition 16, we find:

COROLLARY 3 Let E belocally convex, E' its dual. Then the topology of
E isthe &-topology where & is the set of equicontinuous subsets of E' (or
I T we wish, the set of weakly closed equiconiinuou« disked subsets of E').

In particular, if E is Hausdorff, E appears as the dual of weak E'
with a ®-topology, where @ is as above. The method of topologization
studied in Section 10 then gives us all the locally convex spaces. The
topology of alocally convex space is known once we know the sets of
linear forms which are equicontinuous for the topology.

THEOREM 6 Let E bean LCTVS. Then the equicontinuous subsets of the
dual are weakly relative compact subsets.

According to Proposition 18, we can restrict ourselvesto showing that
If Visa disked neighborhood of O in E, then the polar VO of V in E*
is weakly compact. However, VO is a closed subset of weak E* which is
a complete space (see Proposition 13), therefore VO is weakly complete.
On the other hand, from Proposition 15, VO is weakly precompact,
hence the conclusion.

EXERCISE 1 Show the Hahn-Banach theorem Il as a consequence of
the bipolar theorem (and of the more elementary Theorem 6). (Show
first of all that every continuous linear form z’ on the subspace F is the
restriction of a continuous linear form on E, by applying the bipolar
theorem to the disk A consisting of the x e F such that | <x,x) | < 1:
thereexistsay' e Ao ¢ E' not everywhere zero on F withitsrestriction
to F proportional to X', then apply the bipolar theorem and Section 5,
Exercise 6, in order to calculatethe polarin E' of V n F where Visthe
unit ball associated with the given semi-norm on E).

EXERCISE 2
a) Let E be aseparable LCTVS. Show that the weakly compact sub-
sets of E' are metrisable.

b) Let E be a metrisable LCTVS; E is separable if and only if the
equieontinuous subsets of E' are weakly metrisable (use a) for the
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necessity and Chapter 1, Section 9, Proposition 16 for the sufficiency).
Show that thisimplies that E' is weakly separable.

c) Let E be normed. The space E is separable if and only if the unit
ball of E' is weakly metrisable.

EXERCISE 3 Let E be avector space, E* its algebraic dual. Thereis a
bijective correspondence between the semi-norms p on E and the
weakly compact disks A of E* :to p there corresponds the polar of the
"unit ball" of p, and conversely to A there corresponds the semi-norm
p(x) = sup | (x, x) .
z2'ed

If we start from a TVS E, then for the correspondence indicated
above the continuous semi-norms are those corresponding to the weakly
compact disks contained in E'.

12 Mackey's theorem: general formulation. Bidual of an LCTVS

THEOREM 7 (MACKEY) Let (E, E') bea dual system separated in E, let
® bea set of bounded disked subsets of E, increasingly directed and closed
under homothetics. Let E' have a &-topology. Then the dual of E' is
identical to the subspace of the weak completion £ of E, union of weak
closuresin £ of sets A E &. A subset of & is an equicontinuous set of linear
forms on E' ifand only i f the subset i s contained in the weak closure in £
ofaset A E 6.

It is sufficient to prove the second assertion. The equicontinuous
subsets of the dual of E' are the subsets of the algebraic dual E'* con-
tained in the polar of a disked neighborhood of O (Proposition 18),
which we can suppose of the form Ao, A e & (Section 10). By the
theorem bipolar, the polar of Ao in E'* is identical with the weak
closure of the disk A and the conclusion follows.

COROLLARY 1 Let (E, E') be a dual system separated in. E, let ® bea
set of bounded subsets of E and let E' have the G-topology. Then the dual
of E' is the vector subspace of the weak completion £ of E generated by the
weakly closed disked Aulls in B ofthe A E @.

We can suppose the A e & disked; it is sufficient to show that if we
have a finite set of elements Ai of ® and of scalars 4,, then the weakly
closed disked hull of Ui,4; in & is contained in the hull considered
in the corollary. But, if 4, is the weak closure of Ai in B, itis aweakly
compact disk in B, therefore T 2,4, is a weakly compact disk in E.
It contains U4, 4, and therefore it contains the weakly closed disked
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hull of this set in £, a weak hull which is contained in the vector space
generated by the 4.,.

COROLLARY 2 Let (E, E') bea dual system separated in E, let & bea
set of bounded subsets of E and let E' have the &-topology. Then:

) the dual of E' 4s contained ¢n» E if and only if the weakly closed
disked hulls (in E) of the A e & are weakly compact.

2) thedual of E' contarns E 1fand only if the vector space generated by
the weakly closed disked hulls (in E) ofthe A E & is identical to E.

3) therefore, the dual of E' is identical with E if and only if the two
preceding conditions are verified.

The case of the strong topology on E' is particularly important.

DEFINITION 9 LetE bean LCTVS. The bidual of E denoted by E" will
be the dual of the strong dual E' (see Section 10, Definition 8), with the
topology of uniform convergence on the equicontinuous subsets of E'.

We verify immediately that the equicontinuous subsets of E' are
strongly bounded, therefore the topology on E" is locally convex.
Since the strong dual of E depends only on the dual system (E, E'), it
follows that the bidual is known, except for its topology, once the dual
system (E, E') is known. Thus, if we start from a dual system (E, E')
we can still call the strong dual of E' the bidual of E, (without an
explicit topology, a priori). If E is a Hausdorff LCTVS, it isidentified
with a vector subspace of E", the topology on E being that induced by
E"; and E" isin turn identified with a vector subspace of the weak
completion & of E (but, clearly, the topology of E" will not be, in
general, that induced by ). In short, from Mackey's theorem, E" is
the union of weak closures in £ of bounded subsets of E, and more
generally the equicontinuous subsets of E" (considered as a strong
topological dual of E') are the subsets of E" contained in the weak
closure of a bounded subset of E.

DEFINITION 10 Let E bean LCTVS. E is satd to bereflexive if it is
Hausdor ff and identical with its bidual.

Similarly, if (E, E") is a dual system we can call it reflexive in E if
E-weak is reflexive (the reflexivity of an LCTVS depends on the
duality). The past part of corollary 2 of Theorem 7 gives

THEOREM 8 Let E bean LCTVS. The spaceE is reflexiveif and only if
its bounded subsets are wea,kly relatively compact.
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COROLLARY LetE beareflexive LCTVS, F a closed vector space, then F
IS reflexive.

In fact, since every continuous linear form on F is the restriction of
a continuous linear form on E, the weak topology of F is induced by
the weak topology of E. On the other hand, F is weakly closed (Section
8, Theorem 4); the corollary results from Theorem 8.

13 Topologies compatible with a duality. The Mackey topology

In this Section, we simply state in a different language the last part of
Corollary 2 of Theorem 7 (Mackey's theorem).

DEFINITION 11 Let (E, E") bea dual system separated in E'. A topology
on E is said to be compatible with the duality (E, E") ifit is locally convex
and if the dual of E for this topology is identical with E".

Thus, the weak topology CIJE, E") is compatible with the duality
(Section 8, Proposition 12) and is clearly the coarsest on E compatible
with the duality.

THEOREM 9 Let (E, E') bea dual system separated in E'. A topology on
E iscompatible with the duality (E, E') if and only ifit is a &-topology,
where & is a set of weakly compact disksin E' covering E'.

The condition is necessary by Proposition 18, Corollary 3; it is suffi-
cient by Theorem 7 (Mackey's theorem), Corollary 3 (where we only
reverse the roles of E and E'). Therefore, among the topologies on E
compatible with a duality, thereis a finest one which correspondsto &,
the set of all the weakly compact disksin E'.

DEFINITION 12 Let (E, E') bea dual system, separated in E,. we call the
topology of uniform convergence on the weakly compact disks of E the
Mackey topology on E, and denote it by =(#, E'). We call this topology
(£, E'), the Mackey topology associated with the topology of a given
LCTVS E (where E' isthe dual of E).

Theorem 9 can then be stated as follows:

COROLLARY The topologies on E compatible with the duality (E, E') are
exactly the locally convex topologies included between the weak topology
(X, E") and the Mackey topology (%, E").

Proof For such a topology, the dual of E' is included between the

dualsfor the weak topology and the Mackey topology, i.e. itisidentical
with E".
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I n the sequel we will refer to any of Theorems 7, 8 or 9 as "Mackey's
theorems". We will see in Chapter 3 that the topology of a metrisable
LCTVS always coincides with Mackey's topology.

PROPOSITION 19 Let E bean LCTVS. A disked and absorbing subset V
of E is a neighborhood of the origin for the M aclcey topology (&, E")
ifand only if every linear form. on E, bounded by 1 in absolute value on V,
IS continuous.

The necessity results from- Mackey's theorem, since the considered
linear form is continuous for =(#, E"). Conversely, if the polar of V in
E* is contained in E', we will show that V is a neighborhood of O for
(H, E'). We can suppose that V is the unit ball associated with some
semi-norm on E (Section 4, Theorem 1), therefore (by the bipolar
theorem applied to V in the space E with the preceding semi-norm)
V is the polar in E of yo. Since VO is a weakly compact disk in E'
(apply Theorem 6 of Section 11to E considered as a semi-normed space),
it follows that V is a neighborhood of O for (%, E'").

EXERCISE 1 Show that in the statement of Theorem 9 and in Defini-
tion 12, we can replace the word “‘disk’’ by "convex set" (see Section 5,
Exercise 4).

EXERCISE 2 Let E be a complete Hausdorff LCTVS, (Xi) a bounded
sequence in E, % the continuous linear mapping of [1 into E defined as
in Chapter 1, Section 9, Exercise 6. Show that u is continuous for the
topology CJ(II, co) (see Chapter 1, Section 9, Exercise 7) and for the
weak topology of E if and only if (Xi) tends weakly towards O. From
this conclude that if (Xi) is a sequence tending weakly to 0 in a complete
Hausdorff LCTVS, then its closed convex hull (or its closed disked hull)
is the set of sums % A,z; where (4;) runs through the set of positive
sequences such that X A, = 1 (or where (4,) runs through the unit ball
of 11). (Show that the two preceding sets are weakly compact, therefore
closed, applying Theorem 6 to co and its dual 71.)

EXERCISE 3

a) Let E be a complete Hausdorff LCTVS, F a vector subspace, x a
point in the closure of F. Show that we can find a bounded sequence
(Xi) in F, and a positive sequence of summable scalars (4;) such that we
have x = X A2, (this series converges, see Chapter 1, Section 9, Exer-
cise 6). Show that if (u;) is a sequence of scalars > 0 we can assume
above that 4; < u, for every i,

b) From this conclude that if x is a point in F, we have x E F(K),

F
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where K is some compact subset of F (takefor K a sequence tending to
Oin F and containing the origin).

c) Conclude from b) that if E is a metrisable LCTVS, E is complete
if and only if the closed convex hull of every compact subset of E is
compact (for the necessity see Section 5, Exercise 5).

d) Concludefrom a) that if E is a normed space E is completeif and
only if every absolutely convergent seriesin E is convergent.

EXERCISE 4

a) Let E be a complete Hausdorff LCTVS, or more generally an
LCTVS whose closed and bounded subsets are complete. We equip E'
with the topology of compact convergence. Show that the dual of E' is
identical with E (use Mackey's theorem and Section 5, Exercise 5).

b) Let E be ametrisable LCTVS, equipitsdual E' "with the topology
of compact convergence. Show that the dual of E' can beidentified with
the completion of E (see Exercise 3), and that it [sidentical with E if
and only if E is complete. From this, conclude that Theorem 9 does not
hold if the word "disked" is removed from the statement.

EXERCISES Let E be an LCTVS whose topology is identical with the
associated Mackey topology. Show that this is also true for the com-
pletion of E.

EXERCISE 6 Let u be a bounded measure on a locally compact space
M, let A be a convex subset of L™ = L®(u). Show that iff isin the
closure of A for the weak topology of L' considered as dual of L1, there
exists a sequence (1i) in A suchthat for everyp, 1 <p < *tco, f; tends
tol in the sense of the topology induced by LP. (Notice that the topo-
logy induced by LP is the topology of uniform convergence on the unit
ball of LP', which is a weakly compact subset of L1, LP' being reflexive.
(We may assume p > 1); therefore, the topology induced by Lv is
coarser than the Mackey topology (L', L®), so that it is sufficient
to apply Mackey's theorem and Theorem 4 of Section 9.) Show that,
conversely, if A is bounded in the normed space L*, then the closure of
A in the normed space L1 isidentical with itsweak closurein L* (apply
Theorem 6to A).

EXERCISE7 LetM beanLCTVS, letE = Go(M); then E' isthe space
of bounded measureson M . We identify 11(M) with the space of discrete
bounded measureson M, and M with a subset of 11(M) associating with
every X E M the measure of mass + 1 at the point x. For every X e E"
let | x be the restriction of X to 1Jf; it is a bounded function on M, i.e.
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an element | X e 1°(}). The restriction of X to I1(M) is exactly | Xwhen
we identify {®(M) with the dual of [I(M) (Chapter 1, Section 9, Exer-
cise 7).

1) Show that every bounded function on M, .fe I®(M), is of the
form |s» where X is an element of E" of norm I[l Il. (1dentify | with a
linear form on the subspace |1(M) of E' and apply the Hahn-Banach
theorem; or, proceed directly by provingthat the unit ball of E = do(M)
is dense for the topology of pointwise convergence in the unit ball of
[°(M).) From this, conclude that if M is infinite, i.e. E of infinite
dimension, then E is not reflexive.

2) A space L(u) (constructed on a positive measure u on alocally
compact space) is not reflexive, unless it is of finite dimension, i.e. u is
the sum of a finite number of point masses. (Notice that the dual of L!
which is L=, isisomorphic to a space C(M), M compact, by virtueof a
classical theorem of Stone-Gelfand, and also, if L1(u) is reflexive, its
dual is, whence the conclusion using 1).)

14 The completion of an LCTVS

THEOREM 10 Let (E, E') bea separated dual system, & an increasingly
directed set of bounded disks of E such that the vector space generated by
their union is identical with E. Equip E' with a &-topology and let £’
be the set of linear forms on E whose restrictions to all the A e & are
weakly continuous. Then E’ is a compleie Hausdorff LCTVS and E' ‘is
a dense topological vector subspace of £’; in other uiords, the TVS £’ is
the completion of E' (for the &-topology).

We first point out the following corollaries:

COROLLARY 1 Under the conditions of Theorem 10, E' equipped with
a G-topology is complete if and only if every linear form on E, whose
restrictions to A e & are weakly continuous, are weakly continuous.

COROLLARY 2 Let E be a Hausdorff LCTVS,. then the completion
of E can beidentified with the space of linear forms on E' whoserestrictions
to the equicontinuous subsets are weakly continuous, when this space has
the uniform topology of convergence on the equicontinuous subsets of E'.

COROLLARY 3 Let E bea llausdorff LCTVS. The space E is complete if
and only ifeverylinear form on E', whoserestrictions to the equicontinuous
subsets are weakly continuous, is already weakly continuous, i.e. is a
member of E.
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(The last statement is the most useful.)

Proof

1) We consider first of all the particular case where the A E & are
weakly compact (this is in practice the most important case since it
contains Corollary 3). For every x' e B’ and A e &, x'(A) is a compact
set and is therefore bounded in the field of scalars, therefore £’ is
locally convex for the &-topology. Also, £’ is complete since it is a
closed uniform subspace of the space of all mappings of E into the field
K equipped with the &-topology, which is a complete space. The
topology of E' is clearly that induced by E’. To provethat E' isdensein
B’ we must verify that every continuous linear form on £’ vanishing
on E' isidentically zero (Section 7, Theorem 3, Corollary 3). Now, the
A E & are still compact for a(E, E) (since the x' e £’ have restrictions
to A E & which are already continuous for a(E, E'») so thedual of £’ is
identical with E (Mackey's theorem), and the conclusion follows.

2) General case-we use the following lemma, interesting in itself.

LEMMA Let E bean LCTVS, A a convex symmetric subset of E, u a
linear mapping of E into an LCTVS F. For the restriction of u to A to be
uniformly continuous it is sufficient that it be continuous at the origin.

In fact, we must find for every neighborhood V of O in F a neigh-
borhood U of Oin E such that x, YEA, x - y E U imply

u(x) - 'ltty) eV thatis u(x- y) E V.
We will have x - yEA - A = 2A, therefore such a U exists if
u2A N U) < V, thatis
u(A Nniv) < iV,
which is true.

Applying the lemmato Theorem 10, we see that for every X/ e £’ the
restriction of x' to every A e & is uniformly weakly continuous, there-
fore it can be extended by uniform continuity to a function 2/, on the
weak closure 4 of A in E'*. Let E, be the vector space generated by the
4, let &, be the set ofgveakly compact disks 4 in E,- I f x EEI' we have
Ax e A for somei > and A e &, and we verify immediately that the

expreSSlon

1,
ixA(lx)
does not depend on the choice of the pair (4, A) (since ® is directed);
let (x, x') be its value and notice that the function <X, x") thus defined

on E, X E'is bilinear. Finally, for the described pairing of E, and £’,
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£’ can beidentified with the space of linear forms on E ; whose restric-
tionsto the A1 E &, are continuous, and the old &-topology is identical
with the &,-topology. Since the system (E,, E'), &,, £’ satisfies the
conditions of the first part of the proof, it follows that E’ is locally
convex and is the completion of E'.

EXERCISE 1 Let E bean LCTVS, A a disked subset of E, x' e E*.

a) the restriction of x' to A is continuous if and only if, for every
¢ > 0, theintersection of A with the hyperplane of equation <x, xX') = ¢
is relatively closed in Ag (Use the Lemma and show that if U is a
disked neighborhood of inE such that U n A does not meet V, then
L<x, x) | < e for x EU N A; notice that we only use the fact that

¢ A N VB)

b) Conclude from a) that the restriction of x' to A is continuous if
and only if it is continuous for the topology induced by the weak
topology of E.

EXERCISE 2 Let E be a Hausdorff LCTVS, A a convex subset of E.
Show that the completion of A can be identified with the set of x e E'*
which are in the weak closure of A and which define linear forms on E'
whose restrictions to the equicontinuous subsets of E' are weakly
continuous. (Use Theorem 10, Corollary 2 and the corollary of Theorem
4 applied to the completion of E.)

EXERCISE 3 Deduce Proposition 13 from Theorem 10.

EXERCISE 4 Let E be a complete Hausdorff LCTVS. If E' equipped
with the strong topology is reflexive, the E is reflexive (show that
every strongly continuous linear form on E' is weakly continuous, by
using Theorem 10, Corollary 3). Show that it is sufficient to suppose that
the closed and bounded subsets of E are complete (proceed as before,
but use Theorem 7 and Exercise 2).

REMARK These results are also particular cases of more general
results, to be studied in Section 18.

EXERCISE 5 Let E be a vector space, A a convex symmetric subset.
Show that if two locally convex topologies on E induce on A the same
system of neighborhoods of 0, they aso induce the same uniform
structures. (Thisis a corollary of the lemmain this Section.)
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15 Duality for suhspaees, quotients, products, projective limits

Let E be an LCTVS, F a vector subspace. If to every x' E E' we assign
its restriction to F, we obtain a linear mapping from E' into F' whose
kernel is the orthogonal FO of F in E'; this mapping is furthermore
from E' onto F' (Hahn-Banach theorem I, Corollary 1), therefore F'
can be identified with E'lIFo; then the equicontinuous subsets of F'
are the canonical images of equicontinuous subsets of E' (Hahn-
Banach |1, Corollary 1). From the identity F' = E'IFo it follows
trivially that the weak topology a(F, F') of F is identical with the
topology induced by the weak topology a(E, E') of E. On the other
hand, it istrivial that the dual of EIF can be identified with the space
of continuous linear forms on E vanishing on F, that is, to FO; the
equicontinuous subsetsof thedual of EIF canthen beidentified with the
equicontinuous subsets of E' contained in FO. If E, stands for E with
the a(E, E') topology and if we apply the last assertion to EslF, we
find that the equicontinuous subsets of the dual of EslF are the subsets
of FO which are contained in and are bounded in a finite dimensional
vector space. That is, they are exactly the equicontinuous subsets of
the dual of (EIF)s; consequently, the weak topology associated with
the LCTVS EIF is identical with the quotient topology of the weak
topology of E. Summing up:

PROPOSITION 20 Let E bean LCTVS, F a vector subspace. Let F have
the topology induced by E, and EIF the quotient topology. Then the dual
of F can beidentified with E'l Fo, the equicontinuoue subsets of this dual
being the canonical images of equicontinuous subsets of E', and the weak
topology of F being identical with the topology induced by the weak topo-
logy of E. The dual of EIF can beidentified with FO, the equicontinuous
subsets of this dual being the equicontinuous subsets of E' contained in FO.
Finally, the weak topology of EIF is identical with the quotient topology
of the weak topology of E.

The results concerning the topologies on the duals are summed up in

PROPOSITION 21 Let E bean LCTVS, F a vector subspace, ® a set of
bounded subsets of E, &, the set of intersections A NF where 4 runs
through &, let $(®) bethe set of canonical images ofthe A £ & in EIF.

1) The ¢G-topology in the dual FO of EIF, is identical to the topology
induced by the ®-topology in E'.

2) Suppose E Hausdorff, F closed, ® increasingly directed and the
A E® disked and weakly compact. Then in the dual E'/FO of F, the
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&, -topology is identical to the quotient topology of the &-fopology in
E'.

1) istrivial. In order to show 2) we may obviously suppose & closed
under homothetics. Consider on E'l Fo the quotient &-topology, whose
dual is the orthogonal of FO in the dual of E' by Proposition 21,
however, the dual of E' isthe vector space UA, e & (Mackey's theorem)
and the orthogonal of FO in this space is the trace of F on this space
(F is closed); furthermore, the equicontinuous subsets of the dual of
E'lFo are the subsets of the dual which are equicontinuous in the
dual of E' (Proposition 20), i.e. contained in an A e &. Those are aso
the sets contained in an Al E &,, therefore exactly the sets which are
equicontinuous when E'lFo is given &,-convergence; from this follows
the equality of the two topologies considered for E'l Fo.

COROLLARY 1 Let E bean LCTVS, F a vector subspace. Then the weak
topology of the dual of EIF isidentical to the topology induced on FO by the
weak topology of E'. If F is closed, the weak topology of F' = E'lFo0 is
identical to the quotient topology of the weak topology of E'.

COROLLARY 2 Let E bea reflexive LCTVS, F a closed vector subspace.
Then F is reflexive and the 8trong dual of F can be identified with the
guotient of the strong dual E' of E by the subspace FO.

This is shown by jointly applying Proposition 21 and the Corollary
of Theorem 8.

We remark that inthe general case wherethe A E ® are not supposed
to be weakly compact, the &,-topology on the dual of F is coarser than
the quotient &-topology in E' and can be strictly coarser; thus, we can
find a metrisable and complete space E and a closed vector subspace F
such that the strong dual of F is not identified with a quotient of the
strong dual E'. We point out also that by Proposition 21 and Section 1,
Proposition 17, Corollary 2, the topology of the strong dual of EIF, a
priori finer than the topology induced by strong E', isidentical to the
latter if and only if every bounded subset of EIF is contained in the
closure of the canonical image of a bounded subset of E; this condition
IS not necessarily verified even when E is a reflexive metrisable and
complete space. However, we will see in Section 17, Proposition 32,
that the strong topologies are well behaved when E is a normed space.

Consider a finite family (E;) of LCTVS; alinear form x' on the pro-
duct is bijectively determined by the system () of restriction to the
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subspaces E; since we will have
«Xi), X') = T (Xi' @)

It is clear that x' is continuous if and only if the «; are continuous
linear forms on the E; and x' runs through an equicontinuous set if and
only if each Xi does. Therefore,

PROPOSITION 22 Let (E;) beafinite family of LcTVs; then the dual of
Il E; can be identified by the pairing described above, with the product
Il E; of duals. The equiconiinuous subsets of the dual of Il E, are those
contained in a product Il Ai where for every i, Ai is an equiconiinuous
subset of ;.

COROLLARY | Let (E;) be a family of LcTVs; then the dual of the
product Il E, can beidentified with the direct sum Z B', of the duals, The
equicontinuous subsets of the dual of |l Ei are those contained in the sum
of a finite number of equicontinuous subsets of £.

We have in fact an obvious linear mapping of T E; into the dual of
E = Il B;whichistrivially bijective. A continuouslinear formon Il E,
is bounded above by I in absolute value over a set V defined by the
conditions: Xi e Vi for every i e J whereJ isafinite subset of | and the
Vi neighborhoods of 0 in the E;. It follows that x' vanishes on the

vector subspace Il E, of E, and therefore comes from a continuous
t¢J
linear form on the quotient space which can be identified with Il Ei:
iEJ
Proposition 22 gives the desired result. We proceed likewise for the
equicontinuous sets of linear forms.

COROLLARY 2 Let (E;) beafamily of LCTVS,. then the weak topology of
Il E; is the product of the weak topologies of the E;-

Taking into consideration Theorem 8 (Mackey's theorem), we thus
obtain:

COROLLARY 3 Under the conditions of Corollary 2, Il N, is reflexive if
and only ifthe Ei are reflexive.

COROLLARY 4 Let (E;) be a finite family of LcTVvs, E their product;
for every i, let ®; bea set of bounded subsets of E, and & the set of subsets
IT Ai of E with Ai E &, for every i, Then the dual of E equipped with the

|
&-topology can beidentified witk the product of the duals ofthe Ei equipped
with the &;-topology.
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This corollary implies in particular that the weak dual of Il E; is the
product of the weak duals of E; and that the strong dual of Il E; isthe
product of the strong duals of the E, (i finite).

The case of the infinite product is interesting in order to prove.

THEOREM 11 Let E bea vector space, (E;) afamily of LCTVS, and for
every i, u; a linear 1napping of E into E;- We assign to E the coarsest
topology for which the ui are continuous. Then the dual of E isidentical to

the set of linear forms of the[orni X x; o ui where J is afinite subset of
1eJ

the set of indices, andfor everyi EJ, z; isan element of the dual of E;. We

obtain the equicontinuous subsets of the dual of E by taking J fixed and

letting @; run through an equiconiinuous subset of the dual of Ei (for

every i J).

The proof reduces to the case where E is Hausdorff and can there-
fore be identified with a topological vector subspace of Il Ei: Then the
equicontinuous sets of linear forms on E are the restrictions to E of the
equicontinuous sets of linear forms on Il E; (Proposition 20), which are
characterized by Corollary 1 of Proposition 22. Theorem 11 follows.

The following is a useful particular case of Theorem 11. Let E and F
be LCTVS, L a vector space of linear mappings of E into F, L, is the
space L with the topology of pointwise convergence, i.e. the coarsest for
which the mappings u — u(x) from L into F (where xEE) are con-
tinuous. Theorem 11 tells us that the continuouslinear formson L, are
the forms of type

U 3 <U(X). ¥
where (Xi) is afinite sequencein E, (y;) afinite sequenceinF'. Interpret-

ingtheu EL aslinear forms on E x F', i.e. elements of the algebraic
dual of E' @ F, and introducing

v ¥xi ® %, eE QF',
we see that the continuous linear forms on L, are the forms of type
ur> <u,v), where VEE ® F'. That is, E @ F' oan be canonically

mapped onto the dual of Lg; this mapping is bijective provided L con-
tains E' ® F, and E is Hausdorff, as we can easily verify. Thus:

PROPOSITION 23 Let E,F be LCTVS, E Hausdorff, let L be a vector
space of linear mappings of E into F containing E' & F. Then the dual of
L for the topology of pointwise convergence can beidentified with E & #".

COROLLARY The dual of L, does not change when the topology of F is re-
placed by another with the same dual. For example ifit is replaced by the
weak topology associated with the initial topology of F.
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It then follows for example that for a convex subset of L, the closure
for the topology of pointwise convergenceisidentical to the closure for
the topology of pointwise weak convergence (i.e. the topology of point-
wise convergence when we impose a weak topology on F).

EXERCISE |
a) Let E be a locally convex, metrisable and complete space, F a

closed vector subspace. Show that on the dual of EIF, the topology of
compact convergence is identical to the topology induced on po by the
topology of compact convergence in E' (use Chapter I, Section 14,
Exercise 2).

b) Let E be an LCTVS whose bounded closed subsets are corn-
plete, F a closed vector subspace. Show that on the dual of F, the
topology of compact convergence is identical to the quotient topology
of the topology of compact convergencein E' modulo FO (use Section
5, Exercise 5).

EXERCISE 2 Let E be a complete Hausdorff LCTVS whose topology
is defined as the coarsest for which linear mappings u; from E into
reflexive spaces E, are continuous. Show that E is reflexive (use Proposi-
tion 21, Corollary 2 and Proposition 22, Corollary 3). Show that the
result remains valid when we only suppose that the bounded closed
subsets of E are complete.

16 Thetranspose of alinear mapping; characterization of homomorphisms

PROPOSITION 24 Let E and F be two LCTVS, u a linear mapping from
E into F. The mapping u is continuousfor the weak topologiesifand only
iffor everyy' e F' theform y' o u on E is continuous.

The proof is trivial.

COROLLARY |  Let u be alinear mappingfrom an LCTVS E into another
oneF. If u iscontinuous, it is also continuous for the weak topologies.

Thedual systems (E, E') and (F, F') arethereally important elements
of Proposition 24. The condition given in it for U to be weakly con-
tinuous means also that the algebraic transpose of u (which is a linear
mapping u* from the algebraic dual F* of F into the algebraic dual
E* of E defined by the classical formula

u*y' = y'ou,
or, explicitly,
Coury') = <UX, y»)
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maps the dual F' of F into tho dual E' of E. From now on, we will call
the linear mapping u' of F' into E', induced by the algebraic transpose
of it, the transpose of a weakly continuous linear mapping u of E into F.

COROLLARY 2 Let (E, E') and (F, F') be dual systems separated in E'
and F', « a weakly continuous linear mapping from E into F,. then the
transpose u' of u is a weakly continuous linear mappingfrom F' into E',
whose transpose is U, when E and F are Hausdorff (and when E', F' are
equipped with their weak topologies).

It follows that in the case of separated dual systems (E, E'), (F, F'")
the mapping u +»> u' defines an isomorphism from the vector space
L(E, F) of weakly continuous linear mappings from E into F, onto the
vector space L(F', E') of weakly continuous linear mappings from F'
into E'; we shall see that essentially what is true for elements, subsets,
etc., of L(E, F) can beinterpreted, simply, by transposition in terms of
elements, subsets, etc., of L(F', E").

Recall that if we consider the transpose of the composition of a
sequence of weakly continuous operators:

E—sF—. ...,
we could equally well have considered the composition of the sequence
of transposed mappings:
G — ... > F >}k,

In particular, the transposition defines an isomorphism of the
algebra L(E, E) of weakly continuous endomorphisms from E onto the
contravariant algebra of L(E', E') of continuous endomorphisms of E':

(uv)) =V o U,

Let M be a set of linear mappings from a vector space E onto a

vector space F, A a subset of E, B a subset of F; we set

M(A) = U u(A) M-I(B) = U u-1(8).

ued uweM
We then have the following trivial proposition:

PROPOSITION 25 Let (E, E'), (F, F') bedual systems separatedin E' and
F', « a weakly continuous linear mapping frem E into F, A a subset of
F'. Then we have
(U(A»O = ut-1(AQ) u-1Bo) = (u'(B»)o.
More generally, if M is a set of weakly continuous linear mappings
[rom E into F, M' the eel of transposed mappings, we get
(M(A))® = M'-1{40), M-1(BO) = (M'(B»O

(the superscript ° standsfor absolute polar).
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COROLLARY Under the conditions of Proposition 25, the weakly closed

disked hull of u(A) tresp, of M(A)) is identical to the polar of u'-1(A0Q)
(resp. of M' -1(A0)).

This follows, in fact, from Proposition 25 and the bipolar theorem.
In particular, choosing A = E, we find:

PROPOSITION 26 Let (E, E') and (F, F') be dual systems separated in
E' and F', let v bea weakly continuous mappingfrom E into F. Then the
weak closure of u(E) is the orthogonal of the kernel of %', if E and Fare
separated, the kernel of u is the orthogonal of u'(F").

The second assertion can be obtained by exchanging the roles of E
and E' and of F and F'. In particular:

COROLLARY Let (E, E') and (F, F') be separated dual systems, u a
weakly continuous linear mapping from E into F. For u(E) to be weakly
denseinF, it is necessary and sufficient that u' be one-to-one; « is one-to-
oneifandonly ifu'(F') isweakly dense in E'.

We cannot use this corollary to interpret by transposition the situa-
tion u(E) = F; such an interpretation isincluded in

PROPOSITION 27 Let (E, E') and (F, F') be dual systems separated in
E' and F.', let u be a weakly continuous linear mapping from E into F.
For » to be a weak homomorphismit is necessary and sufficient that u'(F")
be a weakly closed subspace of E'.

Proof Let N bethekernel of u, vthe mapping of EIN into F obtained
from u, Since the 'weak dual of EIN can be identified with the closed
topological vector subspace N° of weak E', and u' is obtained by
composing V' with theidentity mappingfrom N°into E', the hypothesis
that u'(F') be weakly closed is equivalent to the same hypothesis on v;
on the other hand, since the quotient topology of E weak by N is
identical to the corresponding weak topology on EIN (Proposition 20),
to say that » is a weak homomorphism is to say that v is a weak iso-
morphism. Wethus prove the proposition for the bijection v instead of u,
But in this case the proposition is obvious (if » is a weak isomorphism,
then u' maps F' onto E', by Proposition 20, i.e, the Hahn-Banach
theorem; the converseis trivial by the definition of weak topologies).

COROLLARY Let (E, E'), (F, ") be separated dual systems, w a weakly
continuous linear mapping from E into F. For u to bea weak isomor phiem,
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It is necessary and sufficient that
u'(F') = EY
Jor u(E) = F itisnecessary and sufficient that «’ be a weak isomor phism:

So far we have used dual systems and weak topologies. Now we
introduce other locally convex topologies on the vector spaces.

PROPOSITION 28 Let (E, E') and (F, F') be dual systems separated in
E', F'. We equip E (resp. F) with the topology oj uniJorm convergence
onaset ® (resp. & oj weakly bounded subsets oj E' (resp. F'). We suppose
that every set contained in a homothetic oj the weakly closed disked hull o]
ajinite number oj elements of ®, belongsto . Let u bea weakly continuous
linear mappingfrom E into F. For u to be continuous it is necessary and
sufficient that u' (£)< @, i.e. thatfor every B E € wehaveu'(B) e &. More
generally, a set M of weakly continuous linear mappingsJromE intoF is
equicontinuous if and only iffor every B E € we have M'(B) e & (M’ is
the set of transposes of u EM).

Proof To say that M is equioontinuous is to say that for every
neighborhood V of 0in F, M -1(V) is a neighborhood of 0in E. We can
evidently suppose that V is of the form BO, where B € €. By the last
formula of Proposition 25, this means that every (M'(B))O is a neigh-
borhood of 0 in E, therefore (Section 8) that M'(B) e €, hence the

conclusion.

COROLLARY 1 LetE andF beLcTVvs, ic a linear malJping from E into
F. For u to be continuous it is necessary and sufficient that for every equi-
continuous subset B of F', the set of y' o u where y' runs through B, bean
equicontinuous set of linear forms on E (i.e. that « be weakly continuous
and u' transforms the equicontinuous subsets of F' into equiconiinuoue

subsets of E').

COROLLARY 2 LetE andF beLcTVvs, E being equipped with the Mackey
topology =(#, E'). Then the linear mappings from. E into F that are con-
tinuous, are identical with those that are weakly continuous.

For, if u is continuous, it is weakly continuous (Proposition 24,
Corollary 1) and, conversely, if U is continuous, its transpose is weakly
continuous, therefore it transforms the weakly compact disks (and, a
fortiori, the weakly closed disked equicontinuous subsets of F') into
weakly compact disks of E' and therefore into equicontinuous subsets

of E'.

COROLLARY 3 Let u be a continuous linear mapping from ¢ Hausdorff
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LCTVS E into another, F. Then its transpose u' is continuous when we
equip E' and F' with:

a) the strong topologies;

b) the Mackey topologies «S. E) and <[ F);
c) the topologies of compact convergence;

d) the weak topologies.

|t suffices to apply Proposition 28 exchanging the roles of E and E'
and of F and F".

PROPOSTION 29 Let E and F betwo LCTVS, u a continuous linear
mapping from E into F. For u to bea homomorphism, it is necessary and
sufficient that it be a weak homomorphism (i.e. Proposition 27, that u'{F")
be a weakly closed subspace of E') and that every equicontinuous subset
of E' contained in u'{F") bethe image by u' of an equicontinuous subset
of F'.

LetN bethekernel of u, M itsimage, vthe continuouslinear mapping
of E IN onto M defined by u, I n view of Proposition 20, we verify easily
that each of the two hypotheses whose equivalence we wish to proveis
equivalent to the same hypothesis on v instead of u, We can thus con-
sider the case where u is a bijection of E onto F and we conclude with
the remark that two topologies on an LCTVS are identical if and only
If they give the same dual and the same equicontinuous subsets on the
dual (Section 1), or aso by applyingto « Corollary | of Proposition 28.

COROLLARY 1 Let E and F be two LCTVS, u a continuous linear
mapping from E into F. For u to be an isomorphism, it is necessary and
sufficient that every equicontinuous subset of E' be the image by u' of an
equicontinuous subset of F'.

COROLLARY 2 Let E and F betwo LCTVS, u a continuous linear map-
ping from E into F. For u to be a homomorphismfrom E onto a dense sub-
gpace of F it is necessary and sufficient that u'(F') be a weakly closed
subspace of E', and that the inverse image by u' of an equicontinuous
subset of E' be equicontinuous.

From this we conclude:

COROLLARY 3 Let E and F betwo LCTVS, F being equipped with tZe
Mackey topology T(F, F'). Let u bea continuous linear mapping from E
onto F. For u to bea homomorphism, it is necessary and sufficient that u
be a weak homomor phism.
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Using Propositions 29 and 27 we obtain the conditions on u' for « to
be a homomorphism from E onto F, etc.

COROLLARY 4 Let E and F betwo LCTVS, u a continuous linear map-
ping from E onto F, Eo a dense vector subspace of E. If u induces a
homomorphismfrom Eointo F, # is a homomor phism.

I n fact, the duals of Eo and E can be identified with each other; the
equicontinuous subsets of one correspond exactly to the equicon-
tinuous subsets of the other; the corollary follows from the fact that a
subspace of E' which is closed for a(E', E0) is a fortiori closed for
a(E', E). Note carefully that the converse of Corollary 3is false: u can
be a homomorphism without inducing a homomorphism of EO (see
Exercise 2).

In the next Section we shall characterize, using the transpose, a
metric homomorphism from a Banach space into another.

Biiranepose: Let (E, E') and (F, F') be two separated dual systems,
u a weakly continuous linear mapping from E into F. Then u' is a
continuous mapping from strong F' into strong E' (Proposition 28,
Corollary 4), therefore its transpose («’)’ is a linear mapping from E"
into F" continuous for a(E", E') and o(&'’, F') (same reference). It is
called the bitranepose of u and denoted by u". It is also the mapping
obtained from u by extension by weak continuity to E" (recall that E
is weakly densein E") and often it is of interest to reason directly on
u" with this interpretation.

EXERCISE | Let E be a vector space, (u;) a family of linear mappings
from E into an LCTVS Ei- for every i let #; be the algebraic transpose
of uir Let & be the set of subsets of the algebraic dual E} of E of the
form u¥(4;), where Ai runs through the set of weakly compact equi-
continuous disks of E;. Show that, on E, the &-topology is identical to
the coarsest topology for which the u; are continuous. Using Theorem
7, Corollary I (Section 12) find a new proof of Theorem 11 (Section 15).

EXERCISE 2 Let E be a metrisable, complete, Hausdorff LCTVS, F a
closed vector subspace of infinite codimension. Show that an algebraic
supplement Eo of F existswhich is everywhere dense in E, and that for
such an Eo, the canonical homomorphism from E onto EIF induces on
Eo a linear mapping which is not a homomorphism.

EXERCISE 3 Let K be acompact space, E an LCTVS, F aclosed vector
subspace of E. Show that the natural linear mapping from C(K, E) into
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G(K, EIF) is a homomorphism from the first space onto a dense sub-
space of the second. (Use Proposition 29, Corollary 3, replacing G(K, E)
by C(K) ® E, then apply Chapter 1, Section 14, Exercise 2.)

17 Summary and complementary results for normed spaces

Let E be a normed space. Then E' has a natural norm

I X1l = sup I<x X) |,
N=zll<1

which makes it a Banach space (Chapter 1, Section 5, Theorem 2). We
see immediately that the corresponding topology on E' is identical to
the strong topology of thedual, i.e. thetopology of uniform convergence
on the unit ball of E (which is identical to the strong topology, by
virtue of the metric characterization of the bounded subsets of E). By
definition of the norm of E' the unit ball of E' is the polar of the unit
ball of E. Therefore, the unit ball of E' is a weakly cornpact subset of E'
("weak" refers to the topology a(E', E)).

The equicontinuous subsets of E' are the bounded subsets of the
normed space E', therefore the topology of the bidual E" of E (Section
12, Definition 9), is identical to the strong topology of the dual of E',
I.e. the topology defined by the norm of the dual of the normed space
E'. Furthermore:

PROPOSITION 30 Let E bea normed space. Then the continuous mapping
of E into its bidual is a metric isomorphism from E into E".

In fact, if x e E it follows from the definitions that the norm of
xin E" is at most equal to itsnorm in E; theinverseinequality follows
from the stronger fact that there exists an x' e E' of norm < 1 such
that <x, x') = Il x Il Jitisin fact trivial when we replace E by the line
F generated by x, then it is sufficient to extend the linear form obtained
onF into alinear form of norm < 1 defined on all of E, by the Hahn--
Banach. Theorem I1.

COROLLARY Every normed space is isomorphic (with its norm) to a
vector subspace of a space C(K) constructed on some compact space K,

We can choose as K the unit ball of E' equipped with the weak
topology and then consider for every x E E the restriction to K of the
linear form on E' defined by x; Proposition 30 means precisely that the
linear mapping from E into C(K) thus obtained is a metricisomorphism.
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Theorem 8 of Section 12 gives

PROPOSITION 31 Let E bea normed space. E is reflexive if and only if
its unit ball is weakly compact.

In the general case, the bipolar theorem shows that the unit ball of
E" isthe weak closure of the unit ball of E ("weak" refers to the topo-
logy a(E", E")). We point out the

COROLLARY Let E bea reflexive normed space, F a closed vector subspace.
Then F and EIF are reflexive.

It is sufficient to show this for the quotient space. The unit ball of E
being weakly compact, its canonical imagein EIF is weakly compact,
therefore closed, and since it is dense in the unit ball of EIF it is
identical to this unit ball. Thus EIF satisfies the criterion of Proposi-
tion 31.

I n the theory of duality for subspaces and quotients we have

PROPOSITION 32 Let E be a normed space, F a closed vector subspace.
Then the natural linear mapping from the dual of EIF into the dual of E
IS a metric isomorphism. from the first space into the second. The natural
linear mapping ofthedual of E into thedual of F is a metric homomor phism
from thefirst space onto the second.

The first assertion follows trivially from the definitions, the second
one is already included in the theorem of Hahn-Banach 11 (therefore
itis even an equivalent statement if we take into consideration Theorem
6, Section 11). Thus, the canonical isomorphisms (EIF)' ~ FO,
F' ~ E'lFo, are even isomorphisms for the normed structure and a
fortiori for the various natural strong topologies.

COROLLARY | Let« bea continuous linear mappingfrom a normed space
E into another, F. If u is a homomorphism (resp. metric homomor phism)
then its transpose u' is a homomorphism iresp, metric homomor phism).

In fact, the two parts of Proposition 32 lead us back to the case
where u is a bijection from E onto F, therest is trivial.

COROLLARY 2 Let » be a coniinuoue linear mapping from a complete
normed space E into a normed space F. For u to bea metric homomor phism
from, E onto F (resp. a metric isomorphism) it is necessary and sufficient
that itstranspose u' bea metric isomorphismfromF' into E' iresp, a metric
homomorphismfrom F' onto E').

Thisisjust another formulation of Corollary |. We point out that we

G
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shall seein Chapter 4, Part 2, Section 4, that the converses to Corollaries
| and 2 are valid.

While considering transpositions, it remains to show

PROPOSITION 33 Let E and F be two normed spaces, u a continu-ous

linear mapping from E into F. Then the norm of u is equal to the norni of
Its transpose.

In fact, we have

Lull = sup lluxll,
lIxJj<1

then by Proposition 30 we get

lux |l = sup | <ux, x*) j,
1 <]
lull = sup I<ux,x) = supl(x, ux)l
9% WIS
= sup lux |l = llull
Ixil <1

EXERCISE | Let E be a normed space, F a closed vector subspace of
E. Show that if F and EIF are reflexive, E is reflexive. (Show directly
that every continuous linear form on E' comes from an element of E,
showing first that it coincides on FO with a linear form defined by an
element of E.)

EXERCISE 2 Show that a separable normed space is isomorphic to a
normed vector subspace of a space O(K), where K is a compact metris-
able space (use Section |1, Exercise 2). From this conclude that we can
choose for K the Cantor set (see Bourbaki, Topologie Générale, Chapter
| X, Section 2, Exercise 18), or aso the interval | = (0, I) (show that
by extending linearly in the components of Cl K every continuous
function given on the Cantor set K, we obtain a metric isomorphism

from O(K) into 0(1)). (Compare these results with Chapter I, Section 14,
Exercise 1.)

EXERCISE3 LetE beanLCTVS, let u be a continuouslinear mapping
from E into a Banach space F. Show that the image of the unit ball of
F' by the transpose «’ of U is an equicontinuous weakly compact disk
in E'. Conversely, for every weakly compact equicontinuous disk A' in
E', we can find a continuous linear mapping u from E into a Banach
spaceF, suchthat A' be theimage of the unit ball of F' by the transpose
u' of u; we can suppose U' bijective. (Consider on E the semi-norm
associated to the polar disk of A', and choose F to be the associated
Banach space.)



DUALITY THEOREMS ON JJOCALLY CONVEX SPACES 89

EXERCISE 4

a) Consider the Banach space co of sequences of scalars tending to O
(see Chapter I, Section 9, Exercise 7). Let e, be the element of ¢o 'with
all "coordinates" zero except for the ith which equals 1. Show that the
sequence (e) tends to zero weakly but not strongly. Show that the
sequence

uﬂ = 2 e!
1<i<n

is aweak Cauchy sequence in co, which does not converge weakly to a
limit in co (show that (»,) converges weakly in the bidual I* of coto the
limit u where all the coordinates are equal to 1).

b) Consider the Banach space || of summable sequences of scalars,
constructed on a set | of indices. Show that on this space, every weak
Cauchy sequence is a strong Cauchy sequence and therefore strongly
convergent.

EXERCISE 5 Let E be a separable Banach space where there exist
weak Cauchy sequences not weakly convergent or weakly convergent
sequences not strongly convergent (see Exercise 4, a)), let u be a homo-
morphism from Il onto E (see Chapter I, Section 14, Exercise |). Show
that the kernel of u does not admit a topological supplement in |l (use
Exercise 4, b)).

18 Elementary properties of compactness and weak compactness

I n this section we will consider only the most elementary properties of
compactness connected with the theory of duality. Further results are
contained in Chapter 5.

PROPOSITION 34 Let A bea eubse, of an LCTVS E. For A to bepre
compact it 48 necessary and sufficient that A be bounded, and that on A
the uniform structure induced by E be identical to the induced weak
uniform structure.

The condition is sufficient, since a bounded set is weakly precompact
(Section 10, Proposition 15). It is necessary since a precompact set is
bounded (Chapter I, Section 7, Proposition 10); on the other hand, in
order to show that the two induced uniform structures are identical,
we can clearly suppose E Hausdorff, therefore E can beidentified with
a space of functions on E' having a ®-convergent topology, the weak
topology being the simply convergent topology. Thus we have a
general situation already known intopology (see Chapter 0, Proposition
6, Corollary 2).
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PROPOSITION 35 Let A bea precompact subset ofan LCTVS E,. then the
disked hull of A is still precornpact.

The proof is obvious.

COROLLARY Let A be a precompact subset of a Hausdorff LCTVS E.
The closed disked hull of A 4s compact ifand only ifit is complete (thisis
the case if in E every bounded closed subset is complete, a fortiori if E
IS complete).

In order to verify that a subset B of an LCTVS is complete, the
following criterion is often useful:

PROPOSITION 36 LetE bean LCTVS, A a complete subset of E. Then A
is also complete for every locally convex topology T on E which is finer
than the initial topology To and which admits a closed (for To) funda-
mental system of neighborhoods of 0.

The proof reduces to the case where To is Hausdorff, and therefore
can beidentified with a space of linear forms on E' with a ®,-topology.
Then T is a ®-topology with & = &o a case known in general topology
(Chapter 0O, Proposition 6, Corollary 1). We can also prove the more
general result: Let F be a set with two uniform structures To and T,
TfinerthanT gwith a fundamental system of entouragesclosedinF x F
for the topology corresponding to To. Then every subset A of F com-
plete for To is complete for T.

We must show that a Cauchy filter @ for T admitsalimit point for T.
By the hypothesison T, the closures B, for To, in A, B E @, still form a
Cauchy filter base ¥ for T; we must show it converges or that

N s

Bed
is not empty. Since ¥ is also a Cauchy filter base for To, formed of
closed sets for To, and since A is complete for To, A admits a cluster

point for T, i.e, n B is not empty.
Bed

COROLLARY 1 Let E bea Hausdorff LCTVS,. then every weakly compact
subset of E is complete.

Itisinfact weakly complete, and it suffices to apply Proposition 36
with Totheweak topology, T thegiventopology. I nview of Proposition
35, we get:

COROLLARY 2 Let A bea precompact subset of a Hausdorff LCTVS. Its
closed disked hull B is compact if and only if B is weakly compact.
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The necessity is clear, the sufficiency follows from Corollary 1 and
Proposition 35, Corollary. Finally we point out

COROLLARY 3 Let E bean LcTvs. Every weakly compact subset of E'
Is strongly complete.

Itisin fact weakly complete, and it suffices to apply Proposition 36
to E' with To the weak topology, T the strong topology.

PROPOSITION 37
1) Let E bea Hausdorff LcTvs, A a conipaci subset of E, B a closed
subset of E. Then A + B is closed.

2) Let A, B be two compact convex subsets of E, then F(A u B) is
compact.

1) Let x ¢ A + B. This also means that the compact set x - A and
the closed set B do not meet. It is then well known that there exists a
neighborhood (x - A) + U of the compact set which does not meet B;
then x + U is a neighborhood of x which does not meet A + B.

2) See Section 5, Exercise 4.

THEOREM 12 Let (E, E") and (F, F') betwo dual systems, & a set of
bounded 8ubsets of E, € a set of bounded subsets of F', u a weakly con-
tinuous linear mapping from E into F, u' its transpose. The following
conditions are equivalent:

1) u transforms the A E & into precompact subsets of F equipped with
the &-topology.

') u' transforms the B E € into subsets of E' which areprecompact for
the &-topology.

2) The restrictions of u to the A e & are uniformly continuous when we
equip E with the weak topology and F with the &-topology.

2') Therestrictions of u' tothe B E € are unifor mly continuous when we
equip £ with the weak topology and E' with the &-topology.

3) The restriction of the function (ux, y') = (X, u'y') to the sets
A X B with A E &, B E E areuniformly continuous for the product of the
weak uniform structures. It even suffices to suppose these functions to be
uniformly continuous for the product of the weak uniform structure of A
by the strong uniform structure of B, or conversely.

Furthermore, when the A £ & ireg, theB e €) are disked we can replace
in Oondition 2 iresp, 2") the uniform continuity by continuity and even by
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continuity at the origin. The preceding conditions imply that for every
A E®, B EZ, thesat ofu(x, y'), with x E A y' EB is bounded.

Proof 1) implies 2'). Since the B e € are uniformly continuous sets of
functions on F (with ®-topology), on such a B the weak uniform
structure is identical to the structure of precompact convergence and,
also, 1) means precisely that u' is continuous, therefore uniformly con-
tinuous, for precompact convergence on F' and ®-convergence on E’
(Section 16, Proposition 28). 2') implies 1'), by reasons of uniform con-
tinuity sincethe B e € are weakly precompact subsetsof F'. By reasons
of symmetry we aso have the implications: 1') = 2) and 2') = 1),
which proves that conditions 1), 2, I'), 2) are equivalent.
Furthermore, 2) and 2') imply 3) as can easily be seen by writing
<X, $1> - <G, ¥e> = <UX - X2, ¥ T <ux, ¥ - ¥,
and conversely, the first weakened statement of 3) evidently implies 2),
since it implies that for a given e > 0there exists a weak entourage U
in A such that
| Cumy, y') - <uxe, SO [< e

for xi' x, EA, Y EB, (%, %, E U i.e ux, - ux, EBO which is precisely
2). Thus 3) and its variants are equivalent to the preceding conditions.
Since A x B is precompact for the product of the weak uniform
structures, 3) implies that the set of <ux, y'), with x EA, y'EB is a
precompact subset, therefore bounded, of the field of scalars. Finally,

the substitutionin 2) (or 2')) of uniform continuity by continuity at the
origin is a particular case of Section 14, Lemma.

COROLLARY | Let u bea continuous linear mappingfrom an LCTVS E
into another, F, and ® a set of bounded subsets of E that generate E.
The mapping u transforms the A e ® into precompact subsets of F i f and
only if its transpose u' transforms the equiconiinuou» subsets of F' into
relatively compact subsets of E' equipped with the &-topology.

In fact, in the second condition we can suppose that the equicon-
tinuous subset B of F' isweakly compact, thenitsimagein E' isweakly
compact therefore weakly complete and a fortiori complete for &-
convergence (Proposition 37); it follows that precompactness of B is
equivalent to relative compactness. Then, Corollary | is a particular
case of the equivalence of conditions |) and I') of Theorem 12. Notice
that we can also see that, if the A e & are weakly compact and F
Hausdorff, then the condition considered in Corollary 1 means that u
transforms the A e ® into relatively compact subsets of F. A simple
change in notation gives us.
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COROLLARY 2 Let E and F betwo Hausdorff LCTVS, u a weakly con-
tinuous linear mapping from E' into F, u' the weakly continuous linear
mapping from F' into E (U’ is the transpose of u). u transforms the equi-
conttnuous subsets of E' into relatively compact subsets of F if and only
i1fu' does.

We remark that the first condition means also that u' is continuous
when F' has the topology of uniform convergence on the compact disks
of F (Section 16, Proposition 28); this is equivalent to an analogous
statement on u.

COROLLARY 3 Let u be a continuous linear mapping from a Banach
gpace E into another, F. The mapping u transforms the unit ball of E into
a relatively compact subset of F if and only ifits transpose u' ¢(ransforms
theunit ball of F' into a relatively compact subset of the Banach space E'.

(Choose & with only the unit ball of E, € with only the unit ball of
F'.)
COROLLARY 4 Let (E, E') be a dual system, ® a set of bounded subsets

of E, € a set of bounded subsets of E'. The following conditions are equiva-
lent:

a} The subsets A e & are precompact for the &-topology ,
a') The subsets A' e € are precompact for the &-topology ,

b) For every A E ®, A' €€, the restriction of the function <x, x') to
A x A' is uniformly continuous for the product of the weak uniform
structures,

It suffices to apply Theorem 12 to the identity mapping of E. In
particular, when ® is the set of bounded subsets of an LCTVSE, ¢ the
set of equicontinuous subsets of E', we obtain

COROLLARY 5 Let E bean LCTVS. The bounded subsets of E are pre-
compact if and only if the equicontinuous subsets of E' are strongly
relatively compact.

This is dso a particular case of Corollary 1, relative to the identity
mapping of E and the set of all bounded subsets of E.

DEFINITION 13 Let E bean LCTVS. E is a Montelspace, abbreviated a
space of type (-#), ifit is Hausdorff and if every bounded subset of E is
relatively compact.

A fortiori, such a space is reflexive. We have seen that the spaces
&(U) and &(K) of Schwartz (Chapter 1, Section 10) are Montel spaces.
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A Banach space of type (.#) is finite dimensional by Chapter 1, Section
13. Corollary 4 of Theorem 12 then gives

PROPOSTION 38 Let E bea Hausdorff LCTVS. E is of type (.#) if and
only if its closed bounded subsets are complete and the equicontinuous
subsets of E' strongly relatively compact.

COROLLARY Let E be an LCTVS whose closed bounded subsets are
complete and such that the strongly bounded subsets of the dual are equi-
continuous (example, a complete metrisable space-see Ohapter 1, Section
15, Theorem 11). E is of type (.#) if and only if its strong dual is of
type (#).

(We shall study in Chapter 3, Section 3, under the name of quasi-
barrelled spaces, the LCTVS suchthat the strongly bounded subsets of
the dual are equicontinuous.)

DEFINITION 14 Let % bea linear 1napping ofan LCTVS E into another,
F. We say that u is compact iresp. precompact, resp, weakly compact, resp,
bounded) if « transforms some neighborhood V of 0 in E into a relatively
compact resp. precompact, ...) subset of F.

When E is a Banach space, we may choose for V the unit ball of E.
To say that « is bounded is to say that « is continuous (Chapter 1,
Section 7, Proposition 12, Corollary 2). Corollary 3 of Theorem 12
states that a linear mapping « from a Banach space into another is
compact if and only if its transpose is compact.

We now examine weak compactness. Recall that as the bounded
subsets of an LCTVS E are exactly the weakly precompact subsets, a
subset A of E is weakly compact if and only if it is bounded, weakly
Hausdorff and weakly complete.

The analogue of Theorem 12 is

THEOREM 13 Let % be a continuous linear mapping from a Hausdor ff
LCTVS E into another, F. Let & be a set of bounded subsets in E, let H
be the vector space generated by the weak closures ofthe A e & in E",. we
suppose H = E. The following conditions are equivalent:

1) w transforms the A E & into weakly relatively compact subsets of F

2) The bitranspose u" of w maps H into F.
These conditions imply

3) The transpose u' transfor ms the weakly closed equicontinuous subsets
of P' into subsets of E' which are relatively compact for a(E', H).

When F is quasi-complete, Oondition 3) also implies Oonditions 1)
and 2).
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Proof Sinceu" isa weakly continuous mapping from E" into #'' and
since the weak closures in E" of the A E & are weakly compact sets,
1) is equivalent to 2). Also, 2) means that «’ is continuous for at]", F)
and a(E', H) and, since an equicontinuous weakly closed subset B of F’
is weakly compact, 2) implies that B is transformed into a compact,
therefore relatively compact subset of E' with a(E', H). Conversely, if
this is so, the topology a(E', H) on «'(B) will be identical to a(E', E),
therefore the restriction of 4’ to an equicontinuous subset B of F* will
be continuous for the topdlogies a(F', F) and a(E', H), therefore for
every X e H therestriction of the linear form 4z = x o0 %’ to the equi-
continuous subsets of F being weakly continuous, belongs to the
completion of F (Section 14, Theorem 10, Corollary 2), and therefore
to F when F is complete. In any case, u"» belongs aso to the weak
closure in the completion # of F, of a bounded subset of F. We can
obviously suppose this subset disked, therefore its weak closurein # is
identical to its closurefor the natural topology of the completion; then,
If F is quasi-complete, we will have «"'2 e F for every x e H.

The most important case is the one where & is the set of al bounded
subsets of E:

COROLLARY 1 Let E, F betwo Hausdorff LCTVS, % a continuous linear
mapping from E into F. The following conditions are equivalent:

1) « transforms the bounded subsets of E into weakly relatively compact
subsets of F ;

2) the bitramspose u" maps E" into F.
These conditions imply:

3) The transpose u' transforms the equiconiinuou« subsets of F' into
relatively compact subsets of E' for a(E', E"),. the converseis true ifF is
guasi-compl ete.

COROLLARY 2 Let E, F be Hausdorff LcTvs, w a weakly continuous
linear mapping from E into F', u/ the weakly continuous mapping from
F into E', u' the transpose of u, The mapping « transforms the bounded
subsets of E into relatively compact subsets of F' for a(F', F") if and only
iIfu' has the analogous property.

Proof It suffices to show that the first condition implies the second,
which follows from Corollary 1, applied to E and F' strong, since the
bounded subsets of F are equi continuous subsets of the dual of F' strong.

COROLLARY 3 Let w be a contznuous linear mapping from a Banach
space E into another, F. The mapping « is weakly compact (see Definition
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14) if and only if its transpose u' is a weakly compact 1napping from the
Banach space F' into the Banach space E'.

COROLLARY 4 LetE bea Hausdorff LCTVS.

a) ITE isreflexive and if the strongly bounded subsets of the dual are
equicontinuous, then E' equipped with the strong topology is reflexive.

b) If E is quasi-complete and E' with the strong topology is reflexive,
then E s reflexive.

c) Thus, if the strongly bounded subsets of E' are equicontinuous, E is
reflexive if and only ifit is quasi-complete and its strong dual is reflexive.
(In particular, a meirisable and complete LCTVS is reflexive if and only
ifits strong dual isreflexive.)

a) is an immediate consequence of Theorem 8 and b) results from
Corollary 1 for the identity mapping.

EXERCISE 1 Let A, B be two sets, u a bounded scalar function on
A x B. Forevery x E A let & be the function y — u(x, y) on B and for
every y e B let fj be the function x — u(x, y) on A. Let 4 be the subset
of the Banach space C*(B) of bounded functions on B formed by the
#x e A) and let B be the analogous subset of ¢*(4). Show that 4 is a
relatively compact (or weakly relatively compact) subset of C*(B), if
and only if B is a relatively compact (or a weakly relatively compact)
subset of 0*(4).

Application Let G be a monoid, f a bounded function on G, for every
SseE G let Usf (or Vsf) be the function t —f(st) (or t —f(ts)) on G.
Show that the set of left translates Usf of f is relatively compact (or
weakly relatively compact) in *(@#) if and only if the set of right
translates Vaf is. We say that f is an almost periodic function (or
weakly almost-periodic) on G. Show that iffis almost periodic then the
set of UsVtf where s, t EGis arelatively compact subset of C*(G).

EXERCISE 2 Consider the Banach spaces co, I, I* (Chapter 1, Section
9, Exercises 6, 7).

a) Show that co, I! are separable and from this conclude that the
unit ball of co is weakly metrisable, that the unit ball of It is metris-
able for o({!, co). Show that 1" is not separable (for every subset A of
the set of the integers, let xa E [* be its characteristic function, show
that A =B implies Il xa - xe ll > 1 and that the set of xa is not
countable.

b) Show that every weakly compact subset of the Banach space |1
IS compact (use Section 17, Exercise 4b; it suffices to show that from
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every weakly relatively compact sequence of 1! we can extract a sub-
sequence that converges strongly, using @) in order to extract a sequence
that converges for a(ll, co) and therefore for a(ll, I*)).

c) Let « be a continuous linear mapping from co into an LCTVS E;
show that « is compact if and only if « is weakly compact (use b)).

d) Generalize b) and c¢) to the spaces I1(1) etc. constructed on an
index set 1.

EXEROISE 3 Let E be a Hausdorff LOTVS, % a weakly continuous
linear mapping from the dual {* of Il into E (« therefore transforms the
unit ball of I* into a weakly compact subset of E). Show that « trans-
forms even the unit ball of I" into a compact subset of E (see Exercise
2). Let ei be the element of 1" with all coordinates zero except the ith
which equals 1; show that the sequence of ue, is a commutatively
convergent series in E, that its product with every bounded sequence
is also and that
U((Xi)) = X Xiuei

for every (Xi) e . Conversely, show that if E is quasi-complete every
summable family in E is obtained in this way. Therefore there is a
bijective correspondence between the weakly continuous linear map-
pingsfrom [* into E, the compact linear mappings (or weakly compact)
from Co into E and the commutatively convergent seriesin E. (The
spaces Co, 11, I* can still be constructed on any given set | of indices.)

EXEROISE 4

a) Let » be a bilinear form on the product E x F of two LCTVS,
let A (or B) beadisk inE (or F). Show that if the restriction of % to
A x B is continuous at the origin, then the restriction is continuous.
I f furthermore A is precompact and B compact, then « is continuous
onA x B.

b) Let « be a weakly continuous linear mapping from an LCTVSE
into another, F; let ® be a set of bounded disks of E covering E. The
mapping « transforms the subsets A e & into precompact subsets of F
if and only if for every A e ® and every equicontinuous subset B of F',
the restriction to A x B of the function <UX, y') is continuous at the
origin for the product of the weak topologies (see Theorem 12, Condi-
tions 1) and 3)).

c) Let E be a separable Banach space. Show that for every sequence
(Xi) in E converging weakly to 0 and every sequence (z;) in E' con-
verging weakly to 0 we have

<x¢'5 x'£> - 01
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if and only if the weakly compact subsets of E are compact (use b), by
noticing that the unit ball of E' isweakly metrisable, that consequently
E' isweakly separable and the weakly compact subsets of E are weakly
metrisable,

EXERCISE 5 Let E be an LCTVS whose strong dual is separable (for
example Co, see Exercise 2a, or a vector subspace of co),

a) Let » be a weakly continuous linear mapping from E into an
LCTVS F. The mapping « transforms the bounded subsets into pre-
compact subsetsif and only if % transforms the sequences that converge
weakly to 0, into convergent sequences for the given topology (it
suffices to see that the restriction of » to a bounded set A of E is con-
tinuous for the weak topology of E and the given topology of F and to
note that A is weakly metrisable).

b) Let F be an LCTVS whose weakly compact subsets are compact.
Show that every weakly continuous linear mapping from E into F
transforms the bounded subsets into precompact subsets (and is there-
fore precompact if E is a normed space). (In particular we can choose
E to be a vector subspace of Co and F = II; see Exercise 2).

c¢) Fromthis, conclude that if E is a normed space whose strong dual
is separable and whose weakly compact subsets are compact, then E is
finite dimensional.

d) Conclude from c) and from Exercise 4c, that if E is an infinite
dimensional Banach space whose strong dual is separable we can find
in E asequence (Xi) converging weakly to 0, such that <Xi' z;> = | for
every z.

e) IfE isanLCTVS whose dual isseparable, show that every element
of E" is the limit of a weak Cauchy sequence in E (notice that the
bounded subsets of E are weakly metrisable). From this conclude that
a weakly continuous linear mapping « from E into an LCTVSF trans-
forms the bounded subsets into weakly relatively compact subsets if
and only if % transforms weak Cauchy sequencesinto weakly convergent
sequences.



CHAPTER 3

Spaces of linear mappings

IN THIS cHAPTER we continue to develop the formalism begun in the
preceding one, concentrating on spaces of linear mappings. The de
velopment is easy and we do not meet any truly new theorems; the
hypothesis of local convexity (and the Hahn-Banach theorem) are
seldom used. Mainly we use General Topology and the application of
the Banach-Steinhaus theorem (therefore of Baire's theorem).

1 Generalities on the spaces of linear mappings

LetE and F be LCTVS, let L(E, F) be the space of continuous linear
mappings from E into F. Let y be an element of F not in the closure of
the origin, i.e. such that the line generated by y is Hausdorff therefore
isomorphic to the field of scalars. If we assign to every x' e E' the

mapping
X > <X X))y

from E into F we clearly obtain an algebraic isomorphism from E' into
L(E, F). If & isany given set of subsets of E, the precedingisomorphism
is also a homomorphism from E' into L(E, F) when these spaces are
equipped with the &-topology. It follows that (in view of Chapter 2,
Section 10, Proposition 16) the &-topology on L(E, F) is compatible
with the vector structure only if the A e & are bounded subsets of E.
The condition is aso sufficient by the general criterion of Chapter 1,
Section 8, Theorem 3. In what follows, when we consider on L(E, F) a
®-topology, & will always be a set of bounded subsets of E.

Let Lg(E,F) be the space L(E, F) of continuous linear mappings
from E into F equipped with the &-topology. In particular, Ly(Z, F)
and Lb(E, F) standfor thespaceL(E, F) with, respectively, the topology
of pointwise convergence and the topology of uniform convergence on
the bounded subsets of E. If for every A e & and every neighborhood
VofoinF welet W(A, V) betheset ofu e L(E, F) suchthat u(A) < V,
the sets W(A, V) and the homothetics of theintersections of a finite
number of such sets, form a fundamental system of neighborhoods of
Oin Lg(#, F). It follows that the &-topology does not change when we

add to ® the closed disked hulls of finite unions of elements of &, the
99
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homothetics of such hulls and finally all sets contained in the sets of
the preceding type. However, when F is not identical to the closure of
the origin, theimmersion of E' into L(E, F) indicated at the beginning
shows that we cannot increase the set of subsetsfurther without making
the corresponding topology finer (Chapter 2, Section 10, Proposition 17).
Finally we remark that in the study of a ®-topology we can always
suppose & to be a set of closed disks of E, closed under homothetics,
containing together with a finite number of disks Ai their closed disked
hulls and with a disk A all the disks contained in A.

We can also consider the space of all weakly continuous linear map-
pings from E into F with a ®-topology (for the given topology on
F); this spaceisidentical to Lg(#,, F) where &, is E with the Mackey
topology (&, E') (since the weakly continuous linear mappings from
E into F are precisely those which are continuous for the topology
(K, E') on E and the given topology on F; see Chapter 1, Section 16,
Proposition 28, Corollary 2). More generally, consider two dual systems
(E, E") and (F, F'), let ® be a set of bounded subsets of E, € a set of
bounded subsets of F' ("bounded" meaning weakly bounded). We can
equip F with a €-topology, which induces on the space of weakly
continuous linear mappings from E into F a ®-topology; it is locally
convex if for example the A € ® are strongly bounded or the B € £
strongly bounded as we can easily verify. In either case:

PROPOSITION 1 Let (E, E") and (F, F') betwo separated dual systems, let
® (or €) be a set of bounded subsets of E (or F). Equip E' with a &-
topology, F with a €-topology, then equip the space of weakly continuous
linear mappings from E into F with the &-topology, and the space of
weakly continuous linear mappingsfrom F' into E' with the £-fopology,
then the operation of transposition is homomorphism from the first space
of linear mappings onto the second.

Proof From the characterization of neighborhoods of 0in the spaces
under consideration it suffices to show that for given A e &, B e € the
relations u(A) ¢ BO and u'(B) ¢ A° for a weakly continuous linear
mapping « from E into F (with transpose u') are equivalent. Sincethe
first relationship canbewritten A ¢ u-1(®9) and since u- (9= (u'(B»O
(Chapter 2, Section 16, Proposition 25); from the bipolar theorem,
A ¢ (U(B»Oisequivalentto Ao = u'(B).

COROLLARY Let (E, E') and (F, F') betwo separated dual systems. Con-
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sider on E, E', F, F' the weak topologies. Then the operation of transposi-
tion 4 — u' isa TVS isomorphismfrom Ls(E, F) onto Ls(F', E').

PROPOSITION 2 St E and F betwo non-zero LOTVS. We equip E with
the topology =(#, E') so that the linear mappingsfrom E into F which are
continuous or weakly continuous are the same, and we suppose F to be
Hausdorff. Let ® bea set of bounded subsets of E such that the vector space
generated by their union is identical to E. Then the space Lg(&, F) is
complete if and onlyifF iscomplete and E' is completefor the &-topology.

The necessity follows as E' with &-convergence is isomorphic to a
closed topological vector subspace of L(E, F) (see the beginning of this
section), and aso as F is isomorphic to a closed topological vector
subspace of Lg(#, F) (choose x' e E' non-zero and associate with every
y EF the mapping =+ <x, X')y from E into F). Conversely, if E'
(with &-convergence) and F are complete we shall show that Lg(Z, F)
is complete. Since the space of all mappings from E into F is complete
for ®-convergence, it sufficesto show that Lg(#, F) isa closed subspace,
I.e, that every mapping « from E into F which is a limit for the ®-
convergence of continuous linear mappings is linear and continuous.
The linearity is trivial in any case. For the continuity it is sufficient to
verify weak continuity, thatis, for every y' e F', y' o % isa continuous
linear form on E. Itisimmediate that y' o % is a limit for the ®-con-
vergence of linear forms of type y' o %, where the u, are in L(E, F),
thereforeitis a limit for the ®-convergence of continuous linear forms.
Since E' is complete for G-convergence, it follows that y' o « is con-
tinuous.

Recall that we have obtained in Chapter 2, Section 14 a criterion for
the completeness of E' and F (with &-convergence) which can be used
in Proposition 2.

EXERCISE Let E and F be two Hausdorff LCTVS, let & be a set of
weakly compact disks in E whose union generates E and let Fs be the
space F with the weak topology. Show that the dual of Lg(#, Fg is
identical to E ® F' (use Proposition 1 and Ohapter 2, Section 15,
Proposition 23). Show that we obtain the same dual by equipping
L(E,Fs = L(£_,F) with the |.u.b. topology of the preceding topology
and the topology of the space L., F) (use Chapter 2, Section 15,
Theorem 11).
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2 Bounded sets in the spaces of linear mappings

DEFINITION 1 Let E bean LcTvs, & a set of bounded subsets of E. A
subset U of E is ®-absorbing iffor every A E & we have A U DA for 2
positive and sufficiently large. When & is the set of all bounded subsets of
E, we simply say that U is bornioerous,

When U or the A E ® are balanced, it suffices in the preceding de-
finition to suppose that there existsfor every A e ®, a A > 0such that
AU 2 A. Noticethat if ® is the set of subsets of E reduced to a point,
to say that U is G-absorbing is to say that U is absorbing.

PROPOSITION 3 Let E andF beLcTvs, ® a set of bounded subsets of E,
M a set of (linear rnappings from E into F not necessarily continuous).
M(A) is a bounded subset of F for every A E & if and only if for every
neighborhood V of 0 in F, the set M-1(V) is a &-absorbing subset of E.

(Recall that M(A.) = Uu{a), M-1(v) = Nu-1(v)). The proof is

o UEM ueci
trivial.

COROLLARY 1 LetE andF betwo LcTVvs, ® a set of bounded subsets of
E. For a subset M of Lg(#, F) thefollowing conditions are equioaleni :

a) M isbounded;
b) for every A E &, M(A) is a bounded subset of F;

c) For every neighborhood of 0 in F, M -I(V) isa ®-absorbing subset
of E.

The equivalence of @) and b) is a particular case of Chapter 1, Section
8, Proposition 15; the equivalence of b) and c) is a particular case of
Proposition 3.

COROLLARY 2 Let E bean LcTvs with a set ® of bounded sets. A sub-
set A' of E' is bounded for the &-topology ifand only ifits polar A'ois a
&-absorbing subset of E.

Thisis also equivalent to the fact that the weakly closed disked hull
of A, is bounded for the &-topology; furthermore, Corollary 2 shows
that there is a bijection, by polarity, between the closed &-absorbing
disks in E, and the weakly closed disks of E' which are bounded for
®-convergence. From this we conclude

COROLLARY 3 Let E bean LcTvs, let &, and &, be sets of bounded
subsei« of E. Then the following conditions are equivalent:
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a) Every ®,-absorbing closeddisk in E is &,-absorbing.

b) Every subset bounded for &,-convergence is bounded for ®&,-con-
vergence, in E'.

c) Every A E ®, is bounded for the &’,-fopology, where &', is the set of
subsets of E' bounded for & I-convergence;

d) For every LCTVS F, every subset of L(E, F) bounded for &,-con-
vergence is bounded for &,-convergence.

a) and b) are equivalent by polarity; @ impliesd) by Corollary 1, and
b) is a particular case of d), therefore a), b), c) are equivalent. Finally,
b) means also (by Proposition 3) that for every subset A' E ®; of E'
and every subset A E &, of E, the set <A, A') of scalar products
<x, X') with x e A, X' E A" is bounded; this is also equivalent to c).
Notice that condition b) is already verified if we suppose d) valid for
an LCTVSF which is different from the closure of the origin asin the
immersion of E' into L(E, F) described at the beginning of Section 1.
From Corollary 3, if ®, is a set of subsets of E, there exists a larger set
®, of bounded subsets of E such that for every LCTVSF, every subset
of L(E, F) bounded for ®,-convergence is bounded for ®,-convergence:
itis the set of subsets of E' bounded for &,-convergence. | n particular,
when @, is the set of subsets reduced to a point of E (the most interest-
ing case), the corresponding topology on E' being the weak topology,
we obtain for &, the set of strongly bounded subsets of E (recall that we
call the topology of uniform convergence on the weakly bounded subsets
of E' thestrongtopology on E, atopology that depends only on the dual
system (E, E'». In particular,

PROPOSITION 3' Let E and F be LCTVS; every subset of L(E, F)
bounded for pointwise convergence, is bounded for uniform convergence on
the strongly bounded subsets of E.

Thefollowing theorem reveal san important class of strongly bounded
subsets of E:

THEOREM 1 (BANAOH-STEINHAUSMACKEY) Let E be a Hausdorff
LCTVS. Every bounded complete disk of E is strongly bounded.

I n other words:

COROLLARY 1 Let E and F beLCTVS, E Hausdorff; then every subset
of L(E, F) bounded for pointwise convergenceis bounded for the uniform
convergence on the bounded complete disks of E.

H
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Thismeans that in E every closed and absorbing disk is ®-absorbing,
where ® is the set of complete bounded disks of E. We point out that
Theorem 4' of Chapter 2, Section 8, is a particular case of Theorem 1.
the case where a Hausdorff LCTVS E is considered as the dual of E'
weak for the topology of uniform convergence on some set ® of weakly
compact (therefore weakly complete) disks of E': to say that a subset
of E is weakly bounded is to say that it is bounded for the topology
of pointwise convergence, therefore, by Theorem 1, it is bounded for
®-convergence. More generally

COROLLARY 2 Let E and # beLCTVS, E Hausdorff. Let M be a set of
continuous linear mappings from E into F bounded for pointwise con-
vergence, then M is bounded for the topology of uniform convergence on the
weakly compact disks of E.

Proof We canreplacethetopology of E by theweak topology; aweakly
compact subset of E being a fortiori bounded and weakly complete,
and apply Theorem 1.

CORROLLARY 3 Let E bea Hausdorff LCTV S, complete, or more generally,
iohoee closed bounded subsets are complete. Then for every LCTVS F,
every set of continuous linear mappings from E into F, bounded for the
topology of pointwise convergence, is bounded for the topology of bounded
conver gence.

DEFINITION 2 E is quasi-complete if s bounded closed subsets are
compl ete.

Thus, if E is quasi-complete, the subsets of L(E, F) bounded for the
various ®-topologies (& is a set of bounded subsets of E whose union
generates E) are identical.

Proof of Theorem 1. We must show that if M isaset of continuous
linear mappingsfrom E into F, bounded for pointwise convergence, and
If A isa complete bounded disk in E, then M(A) is a bounded subset of
F. Now, let EA be the vector space generated by A, with the gauge
semi-norm of A :

I x 1A= inf |A1;

redd
thisis a norm since A is bounded. Taking the restrictions of u e M to
EA. we can show that the set of mappings from E intoF thus obtained,
is bounded for A-convergence. But as this set is bounded for pointwise
convergence, it suffices to show that E is complete and to apply the
Banach-Steinhaus theorem (Chapter 1, Section 15, Theorem 11). We
then have the following lemma, interesting in itself:
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LEMMA 1 Let E beaHausdorffLCTVS, A a complete bounded diskin E.
Then the corresponding normed space E is a Banach space, 1., it is
compl ete.

Proof As A is closed in E, and therefore contains the ends of the
intervals intersected by A on the real lines passing through the origin,
we conclude that the unit ball of E5 is A. Also it is clear that a normed
space is complete if and only if its unit ball is complete. It is then
sufficient to show that the unit ball A of E is complete for the norm
topology of EA. Thisfollows from Chapter 2, Section 18, Proposition 35,
applied to EA and to the topology induced by E on EA.

EXERCISE 1 Let E be a Hausdorff LCTVS, A a complete convex
(not necessarily disked) subset of E. Show that every set of continuous
linear mappings from E into an LCTVS F bounded for pointwise
convergence, is bounded for A-convergence. (Examine the case where
OE A and proceed by contradiction: if M were not bounded on A, there
would exist a sequence (z,) extracted from A such that M would not
be bounded on the sequence of x, /n; consider then the closed convex
hull K of the sequenoe of z,,/# and notice that K-K is a symmetric
compact, convex subset of E on which M would not be bounded.)

EXERCISE 2 A sequenceof scalars(4;) israpidlydecreasingifitsproduct
with every monomial sequencei > inisbounded. Let E be an LCTVS,
a sequence (Xi) in E is rapidly decreasing if for every continuous semi-
normp on E, the sequence of p(x;) is rapidly decreasing. Show that this
Is true if and only if for every integer n > 0, the sequence (inx;) is
bounded. From this conclude that the sequence (Xi) in E is rapidly
decreasing if and only if for every x' e E', the sequence «Xi' X'») is
rapidly decreasing. Generalize thisresult for alarger class of sequences.

EXERCISE 3

a) Let u be a continuous linear mapping from an LCTVS E into
another, F. Show that u is continuous for the strong topologies (apply
Chapter 2, Section 16, Proposition 28, Corollary 4) and therefore
transforms the strongly bounded subsetsinto strongly bounded subsets.
In particular, if uis a continuous linear mapping from a Banach space
Eintoan LCTVSF, then u transforms the unit ball of E into a strongly
bounded subset of F, i.e. it is continuous for the strong topology of F.

b) Let F be an LCTVS with the topology T, let T' be another LC
topology on F with a fundamental system of neighborhoods of O
closed for T. Show that every linear mapping u from a Banach space E
into F continuousfor T, is continuousfor T' (notice that the topology T
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Is the topology of uniform convergence on a set of weakly bounded
subsets of the dual F' of F with the topology T).

c) Particular case: let E and F be LCTVS, U a continuous linear
mapping from a Banach space H into LS(E, F) then u is also continuous
from H into Lb(E, F).

EXERCISE 4 Let (E, E') be a dual system. Every bounded subset of
E is strongly bounded if and only if the same is true for E'.

3 Relationship between bounded sets and equicontinuous sets. Barrelled
Spaees

Let E and F be LCTVS, M a set of linear mappings from E into F.
The set M is equicontinuous if and only if for every neighborhood V
of 0inF, the set M -1(V) is a neighborhood of 0in E. Notice that if M
is equicontinuous, then the sets M -1( V) are a fortiori ®-absorbing for
every set ® of bounded subsets of E, therefore by Proposition 3:

PROPOSITION 4 Let E and F be LCTVS, M an equicontinuous set of
linear mappingsfrom E into F. Then M is bounded for every &-topology
(® is a set of bounded subsets of E).

We have already seen this proposition in Chapter 1, Section 15,
Proposition 22. We examine the case where there is a converse. First,
consider the
LEMMA Let E bean LCTVS, & a set of bounded subsets of E. The follow-
tng conditions are equivalent:

a) In E every closed ®-absorbing disk is a neighborhood of 0.

b) In E' every subset which is bounded for the ®-conwvergence is
equicontinuous.

c) In L(E, F) every subset which is bounded for the €-convergence is
equicontinuous, for an arbitrary LCTVSF.

(Compare with Proposition 3, Corollary 3.) The equivalence of a) and
b) is immediate by polarity since in b) we can restrict ourselves to
the weakly closed disked subsets of E', and can then apply Proposition
3, Corollary 2. b) implies c), by the characterization of bounded or equi-
continuous, subsets of L(E, F) by the nature of the sets M -1(V) (V
closed disked neighborhood of O inF). Finally, c) implies b): it suffices
to suppose c) true for a spaceF different from the closure of the origin,
by the immersion of E' into L(E, F) indicated at the beginning of
Section 1.

DEFINITION 3 LetE beanLCTVS. E isbarrelled (resp. quasi-barrelled) i f
et'eryweakly bounded (resp. stronglybounded) subset of E' is equiconiinuous,
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By the preceding lemma, this 11lenSthat in E, every closed absorbing
disk (resp. every closed bornivorous disk) is a neighborhood of O;
furthermore:

PROPOSITION 5 The LCTVSE is barrelled (resp. quasi-barrelled) ifand
only if thefollowing proposition is true: For every locally convex space F,
every subset of L(E, F) bounded for the topology of pointwise convergence
(resp. bounded for the topology of bounded convergence) is equicontinuous.

COROLLARY Let E bea barrelled LCTVS, F a Hausdorff LCTVS, (Ui) a
sequence of continuous linear mappings from E into F such that Ui(X)
tends to a limit u(x) for every x e E. Then the sequence (Ui) is equicon-
tinuous, therefore u is a continuous linear mapping from E into F, and u;
tends to u uniformly on every compact set.

A barrelled space is quasi-barrelled more precisely, to say that E is
barrelled is to say that E is quasi-barrelled and satisfies the following
supplementary condition: every weakly bounded subset of E' is strongly
bounded. We have seen (Section 1, Theorem 1) that this last property
is satisfied in a wide variety of cases, for example every time E is quasi-
complete. Thus, IfE is quasi-complete, "barrelled" and "quasi-barrelled"
have the same meaning. We point out that a quasi-barrelled space
necessarily has a Mackey topology (¥, E'), since this means that the
weakly compact disks of E' are equicontinuous, and they are in any
case strongly bounded.

The Banach-Steinhaus theorem (Chapter 1, Section 15) stated for
locally convex complete metrisable spaces, can be expressed precisely as

THEOREM 2 A metrisable and complete LCTVS is barrelled.

Itis easy to see that it is essential that the space considered be com-
plete. We shall see in the next section that a metrisable LCTVS, even
when not complete is always quasi-barrelled.

EXEROISE 1
a) The quotient space of a barrelled (resp, quasi-barrelled) space is
barrelled (resp. quasi-barrelled).

b) Let (E;) beafamily of LCTVS, then Il E; isbarrelled (resp. quasi-
barrelled) if and only if every E; isbarrelled (resp. quasi-barrelled) (see
Chapter 4, Part 1, Section 4, Exercise 7).

c) A vector subspace whichis atopological direct factor of a barrelled
(resp quasi-barrelled) space is barrelled (resp. quasi-barrelled).

EXEROISE 2 LetE beanLCTVS. Consider on E' atopology compatible
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with the duality (E, E'). Show that E is barrelled if and only if the
topology of ¥ is z(¥, E') and E' is reflexive.

EXERCISE 3 Deduce from Exercise 2 an example of a complete
LCTVS with a Mackey topology and which is not barrelled (therefore
not quasi-barrelled). (Take the dual E' of a metrisable and complete
space E which is not reflexive and equip E' with the Mackey topology
(&', E}). Using Exercise 1 b) deduce an example of a closed not
barrelled vector subspace of a complete barrelled space (recall that
every Hausdorff LCTVS isisomorphic to a topological vector subspace
of a product of Banach spaces).

EXERCISE 4 The completion of a quasi-barrelled space is barrelled.

EXERCISE5 LetE bean LCTVS whichis a Baire space. Show that E
is barrelled (notice that the proof of the Banach-Steinhaus theorem is
validin thiscase). We point out that there exist barrelled normed spaces
which are not Baire spaces (see Section 5, Exercise 11).

EXERCISES' LetE bean LCTVS.

1) E is quasi-barrelled if and only if the canonical mapping from E
into the strong dual of E's is an isomorphism into. Itisanisomorphism
ontoifandonlyifE isquasi-barrelled and reflexive. Show that E isthen
barrelled.

2) Let E be a barrelled and quasi-complete LCTVS. E is reflexive if
and only if E'v is reflexive (see Chapter 2, Section 18, Theorem 13,
Corollary 4).

EXERCISE 6 Show that the lemma of Chapter 1, Section 15, is true
when E is a barrelled metrisable LCTVS, G a LCTVS. From this,
conclude that if E and Fare metrisable LCTVS and one of them is
barrelled, every bilinear mapping from E x F intoan LCTVS G, which
iscontinuous with respect to each variable, is continuous; if E and Fare
both barrelled, every set M of separately continuous bilinear mappings
from E X F into G, such that M(x, y) is a bounded subset of G for
every x EE, y EF, is equicontinuous.

EXERCISE 7 Let K be a compact space.

a) Let H be anon-bounded set of measures on K; show that there
exists X e K such that for every neighborhood V of x and every n > 0,
there exists # e H and a subset A of V such that | u(4) | > n {notice
that it suffices that x be such that for every V and n we can find # e H
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such that | x | (v) > n; prove the existence of x by contradiction using
Borel-Lebesgue).

b) Under these conditions either there exists a neighborhood V of
x suchthat j « | (V n Cx) remains bounded for x € H (then u(x), u € H,
does not remain bounded), or we can construct by induction a sequence
of open neighborhoods V, of x and a sequence of open sets U, and
finally a sequence (u,) extracted from H such that:

Vo+: < V, n CU o;

1<i<n
Un+1 < Vn+r N Cx
wi(Upty < 2-N-1for i <n
tnt1(Unty) > n + 1,
c¢) From this conclude that there exists an open set U such that
w(U), well, does not remain bounded (choose U = K n C for the
first case in b), or choose U to be a sufficiently small neighborhood of

xand U = U U; in the second case).

d) Suppose that the 4 e H are all measures of base u,, where u, is a
positive measure such that every point of K has a measure zero for
wue- 1T H is not bounded, there exists an open set U, whose boundary
has measure zero for u,, and such that u{U), « e H, does not remain
bounded. (Show that in the construction of b) we can assume

1o(Uy) < 1IN,

and furthermore that each U, has a boundary of measure zero, using
the known general result: every point a of K has a fundamental system
of open neighborhoods whose boundary has measure zero. Thisresultis
independent of the hypothesis on u,. We conclude that the statement is
still true if we replace a by an arbitrary compact subset of K.) Now
consider the sequence of measures &5 + n(c1/m - g_1/») ON the compact
interval [-1, 1] and show that the restrictive hypothesis on y, is
essential: H may even be such that x(U), x E H, remains bounded
every time U is reduced to a point, and H need not necessarily be
bounded.

EXERCISE 8 Let | be a set of indices, E the vector subspace of [*(])
generated by the characteristic functions ¢4 of subsets A < |.

a) Show that E (which is dense in I®(])) is barrelled, Le. that every
subset H of the dual of {*(I), bounded for the ¢4, is bounded. (Use the
preceding Exercise, a) and b) noticing that we are considering the
second case of b) and that we can suppose the U, open and closed.
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Clearly, K is the Stone compactification of I, such that C(K) can be
identified with [*(Z) in the usual manner. The open and closed subsets
U; of K correspond to the subsets Ai of I, and, through a variation of
the reasoning employed in Chapter 3, Section 7, Exercise 2c, reduce to
the case where | = N (the set of natural numbers) and where Ai is
reduced to i. From this conclude that we would have p, (&) — <o,
which is absurd.)

b) Show that if | isinfinite, the preceding barrelled space E is not a
Baire space. (For every integern > 0, let £,, be the subset of E formed

by the
2 Zi‘}SAi
i=1

with |2, | < n. Show by an argument of weak compactness that Z,, is
closed in I/" (1) and a fortiori in E, then observe that E is the union of

the sequence (£,) but that every £, has an empty interior in E.)

c) Let K be a compact Stone space, i.e. a space in which the
closure of an open set is open. Let E be the vector subspace of O(K)
generated by the characteristic functions of simultaneously open
and closed sets of K. Show that E (which is dense in O(K)) is barrelled,
therefore every set H of measures on K such that u(4), e H, is
bounded for every subset A of K which is simultaneously open and
closed. Reduce to @ with the aid of the additional known fact: there
existsa projection of norm 1 of [*(f) on O(K), which isa homomorphism
for the algebraic structures and therefore transforms idempotents, i.e.
characteristic function of sets, into idempotents.)

4 Homological spaces

DEFINITION 4 LetE bean LCTVSE isbornological i f every bornivorous
disk of E is a neighborhood of O.

A fortiori a closed absorbing disk is a neighborhood of O, thus a
bornologicalspace is quasi-barrelled, afortiori itstopology is the Mackey
topology. The following proposition expresses the interest which arises
from the concept of homological space.

PROPOSITION 6 Let E be an LCTVS. The following conditions are
equivalent:

a) E isbornological;
b) Every set M of linear mappingsfrom E into an LCTVS F such that
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M(A) is « bounded subset of F for every bounded subset A of E, is equi-
continuous;

c) Every linear mapping «» from E into an LCTVS F which takes
bounded sets into bounded sets, is continuous;

d) Every set of linear forms on E, uniformly bounded on the bounded
subsets of E, s equicontinuous;

e) Every linear form on E, bounded on the bounded sets, is continuous,
and the topology of E is the Mackey topology ={#, E').

a) implies b) since the hypothesis on M means that for every disked
neighborhood V of 0inF, M ~1(V) isabornivorousdisk in E (Section 2,
Proposition 3), thereforeitis aneighborhood of Osince E is bornological,
whence Mis equicontinuous; b) impliesc) trivially.We shall show that
c) impliesa). Let, infact, V beabornivorousdiskinE, | etF bethe space
E with the semi-norm gauge of V, we wish to show that V is a neighbor-
hood of O, i.e. that the identity mapping of E onto F is continuous.
But to say that V is bornivorous is to say that the identity mapping
from E onto F transforms bounded setsinto boundedsets(Proposition 3),
therefore it is continuous by hypothesis. Thus a), b), ¢) are equivalent
and these imply d) which in turnimplies €) (since every weakly compact
disk of E' will be equicontinuous). Finally, €) implies ¢) since the to-
pology of E is z(¥, E'), in order to verify the continuity of u it suffices
to verify that itisweakly continuous (Chapter 2, Section 16, Proposition
28, Corollary 2), thereforefor every y' EF', y' o Uisa continuouslinear
form on E. Now this linear form is in fact bounded on the bounded
subsets of E.

Bornological spaces are of value as they allow the criterion givenin
Proposition 6¢ to be used in deciding whether or not a linear mapping
% from the bornological space E into the LCTVS F is continuous. In
fact, itis not difficult to verify whether or not % transforms the bounded
subsets of E into bounded subsets of F (using the closed graph theorem,
when the spaces EA-where A is a closed and bounded disk in EE-
are complete). We now give an easily applicable characterization of
linear mappings from one LCTVS E into another, which mappings
transform bounded subsets into bounded subsets. We need

DEFINITION 5 Let E bean LCTVS and (Xi) a sequence in E. We say
that (xi) tends to a limit x e E in the sense of Mackey if there exists a
bounded disk A in E such that (Xi) tends to Xin the normed space EA.

This means that Xi - x tends to zero in the sense of Mackey; to say
that xi tends to 0 in the sense of Mackey is to say that there exists a
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sequence of scalars 4; > 0 tending to zero, such that the sequence of

a;/%; remains bounded; if we replace the sequence (4;) by (', we
see that we can even suppose that z;/4; tends to zero. It is clear that
convergence in the sense of Mackey implies convergence in the sense of
the topology of E.

PROPOSITION 7 Let u be a linear mapping from one LcTvs E into
another, F. Thefollowing conditions are equivalent:

a) u transforms bounded subsets of E into bounded subsets of F.

b) « transforms the sequenceswhich converge to 0 i n the sense of Mackey
into sequenceswhich converge to 0 in the sense of Mackey.

c) « transforms the sequenceswhich convergeto 0 in the sense of Mackey
into sequenceswhich converge to 0 (for the topology of F).

d) « transforms the sequences which converge to 0 in the sense of
Mackey into bounded sequences.

That a=- b= c= d is immediate. In order to show that d) = a),
we suppose that a) is not true and therefore there exists a bounded
subset A of E and a neighborhood V of 0inF such that u(A) is not
contained in any homothetic of V. Then for every integer n > 0, an
x, E A exists such that w(z,) ¢ n2V, from which we have u(xn/n) ¢ nV,
therefore ,, /n would be a sequence in E converging to zero in the sense
of Mackey whose image in F is not bounded. Hence, by contradiction,
the required result. From Proposition 7 we find new statements
equivalent to condition b) of Proposition 6. We obtain for exampie:

COROLLARY Let E bea bornological LcTVvs, % alinear mappingfrom E
into an LcTtvs F. The mapping v is continuous if and only if » is
continuous for the eequences; or equivalently, u transforms the sequences
whach converge to zero into bounded eequences; it is sufficient for this to
betrue of the sequenceswhich converge to zeroin the sense of Mackey.

We now give the following

LEMMA Let E bea metrisable LCTVS, (Xi) a sequencein E converging
to zero; then it converges to zero in the sense of Mackey.

In fact, let (p,) be a fundamental sequence of continuous semi-
norms of E; the hypothesis then means that for every n, the sequence
(Pn(x;)) tends to zero. We must conclude that there exists a sequence of
scalars 4; > 0 tending to zero such that z,/2; remains bounded, there-
fore such that for every n, the sequence (p.{z:)/4;) remains bounded.
For this it suffices to set

Mn = 8up .’pn(xi)
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and choose
1

b= X 22

Using the lemma and Criterion c) of Proposition 7, we see that the

bounded linear mappings from E into an LCTVS F are exactly those

which are continuous for the sequences, i.e. (E metrisable) those which
are continuous. Then we have (Proposition 6¢)

THEOREM 3 A merisable LCTVS (rwt necessarily complete) is borno-
logical.

COROLLARY A metrisable LCTVS is quasi-barrelled and a fortiori its
topology is the Mackey topology.

From this last fact, we deduce (see Chapter 2, Section 16, Proposition
28, Corollary 2) the following corollaries:

COROLLARY 1 Let « be a linear mapping from a metrisable LCTVS E
into an LCTVSF. The mapping « is continuous i fand only if« is weakly
continuous.

COROLLARY 2 Let % bea continuous linear mapping from an LCTVSF
into an LCTVS E. The mapping u is a homomorphism if and only if «
is a wealc homomor phism.

EXERCISE 1

a) A quotient space of a bornological space is bornological.

b) Let (E;) be afinite family of LCTVS. Their product is bornological
if and only if the Ei are bornological.

c) A topological direct factor of a bornologioal spaceis bornological,
EXERCISE 2 Let (Ei)iEl beafamily of LCTVS. Fortheproduct | | Ejto

iel
be bornological itis sufficient, and it is necessary if the E; are Hausdorff
and 20, that the E; be bornological and that the product RI be borno-
logical. From this, conclude that the product of a sequence of borno-

logical spaces is bornological.

EXERCISE 3 Let E be an LCTVS. Show that there exists on E a
topology T which is the coarsest of those bornological topologies which
are finer than the given topology; the bornivorous disks of E form a
fundamental system of neighborhoods of O for T.

EXERCISE 4 Show that the results of Section 2, Exercise 3, remain
valid if we replace the Banach space E, or H, by a quasi-complete
bornological space.

Pn(Xi),
n
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Iixsercise 5 Let E be a Hausdorff LCTVS. Thefollowing conditions
are equivalent:

a) For every closed and bounded disk A of E, EA is complete.

b) For every bounded disk A of E, there exists a bounded disk B in
E containing A such that En is complete.

c) For every continuous linear mapping » from a normed space H
in E, there exists a continuous linear mapping from the completion of
H into E which extends u,

d) The closed convex hull of every sequence in E, which convergesto
zero in the sense of Mackey, is compact. (For this, use Chapter 2,
Section 3, Exercise 3.)

Then every bounded subset of E is strongly bounded, whence every
set of continuous linear mappings from E into a LCTVS F, which
is bounded for pointwise convergence, is bounded for bounded
convergence.

EXERCISE 6 Let E be a metrisable LCTVS. The following conditions
are equivalent:

a) E is barrelled;
b) Every weakly bounded subset of E' is strongly bounded,;

c) Every sequence weakly convergent to O in E' converges uni-
formly on every compact set;

e) E is not the union of a sequence of closed disks none of which is a
neighborhood of 0.

EXERCISE 7 Let E be abornological (resp. quasi-barrelled) space, F a
complete (resp. quasi-complete) LCTVS. Show that Lb(E, F) is complete
(resp. quasi-complete).

5 Bilinear functions: Types of continuity. Continuity and separate con-
tinuity

DEFINITION 6 Let E, F, G be topological spaces, » a mapping from
E x F into G. The mapping « is separately coniinuou« i fu is continuous
‘with respect to each variable. I f G is furthermore a uniform space, we say
that set M of mappings u(x, y) from E x F into Gis equicontinuous in x
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(resp. iny) iffor every y e I, the set of rnappings x > u(x, y) where U runs
through M, is an equicontinuous set of mappings from E into G (resp.
if...). M is separately equiconiinuous if it is equicontinuous both in x
andiny.

Interpreting the mappings of E x F into G as mappings from E into
the set of mappings of F into G, to say that u is separately continuous
is to say that there corresponds a mapping from E into the space
C(F, G) of continuous mappingsfromF into G, whichiscontinuouswhen
C(F, G) hasthetopology of pointwise convergence. Similarly, to say that
M is a set of separately continuous mappingsfrom E x F into Gwhich
IS equicontinuous with respect to x is to say that the set of mappings from
E into the space Os(F, G) which corresponds to it, is equicontinuous; to
say that M is equicontinuous with respect to y is to say that for every
X EE the set M(x) of images of x by the mappings E — Cs(F, G)
corresponding to u EM is an equicontinuous subset of C(F, G). Also, if
E,F, Gare LCTVS, to say that a mapping of E x F into Gis bilinear
is to say that the mapping of E into the space of linear mappings from
F into G corresponding to it, maps E into the space of linear mappings
from F into G and that it is linear. Then we have the following trivial
but fundamental fact:

THEOREM 4 Let E, F, G be LCTVS. Then the separately continuous
bilinear mappings from E x F into G are in bijective correspondence
with the continuous linear mappings from E into the space Ls{F, G) of
continuous linear mappingsfrom F into G, equipped with the topology of
pointwise convergence.

COROLLARY Let E and F be LCTVS. Then the separately continuous
bilinear forms on E x F correspond bijectively to the continuous linear
mappings from E into the weak dual #, of F.

Notice that the notion of a bilinear form separately continuous on
E x F depends only on the duals of E and F. It is clear that we can
obtain analogous statements by exchanging the roles of E and F in
the above. Then,

PROPOSTION 8 LetE, F, GbeLCTVS and u a bilinear mapping from
E x F into G. The mapping u is continuous ifandonlyifitiscontinuous
at the origin. If G is normable it is also necessary and sufficient that the
corresponding mappingfrom E into L(F, G) transforms some neighborhood
of 0 in E into an equicontinuous subset of L(F, G). There is an analogous
statement for the equicontinuous sets of bilinear mappings from E x F
into G.
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The proof is immediate. I n particular: .

COROLLARY 1 Let E, F beLcTVvs. Then the continuous bilinear forms
on E x F correspond bijectively to the linear mappings from E into F'
that transform some neighborhood of 0 into an equicontinuous subset of F'.
The equiconiinuous sets of bilinear forms correspond to the sets of linear
mappings from E into F' which map a certain neighborhood of 0 into a
fixed equiconiinuous subset of F'.

COROLLARY 2 Let E bean LcTvs and let E' have the strong topology.
Then the canonical bilinear form on E x E' is continuousifand only if
E is semi-normable.

In fact, by Corollary 1, this bilinear form is continuous if and only
if there exists a neighborhood of 0 in E which is equicontinuous as a
subset of the dual of E', i.e. which is bounded. Now this means that E
Is semi-normable (Chapter 1, Section 7, Proposition 12, Corollary 1).
Corollary 2 shows that there exist very important bilinear forms which
are not continuous but only separately continuous. Recall however that
if E and Fare metrisable and complete, then every separately con-
tinuous bilinear mapping on E x F is continuous (Chapter 1, Section
15, Theorem 12). We shall see an analogous important casein Chapter 5,
Part 3, Section 2.

Hypocontinuity We therefore wish to find types of continuity of
bilinear forms which are weaker than continuity but stronger than
separate continuity.

LEMMA Let E, F betopological spaces, G a uniform space, ® a set of
subsets of E, u a separately conttnuous mapping from E X F into G.
Then the following conditions are equivalent:

a) the mapping E — Os(F, G) corresponding to u transformsthe A £ &
into equicontinuous eubset« of O(F, G);

b) the mapping F — 0S(E, G) corresponding to u is also a continuous
mapping from F into the space Cg(Z, G) of continuous mappings from
E into G with the &-topology.

When these conditions are satisfied, for every A e &, the restriction
of uto A x F is continuous. When, furthermore, the analogous con-
ditionsrelative to a set € of subsets of F are satisfied, for every A e ®,
B EZ, therestriction of u to A x B is uniformly continuous.

The proof is trivial (see Chapter 0, Proposition 9, 3). The lemma can
be generalized to refer to a set of separately continuous mappings from
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E x F into G, and afurther variant of the statement concerns the case
in which we suppose that F is aso a uniform space, and thus replacein
conditions @ and b), "continuous" by "uniformly continuous" and
"equicontinuous" by "uniformly equicontinuous".

DEFINITION 6' Let E, F betopological spaces, G a uniform space, & a
set of subsets of E. A mappingfrom E X F into Gis hypocontinuous with
respectto &, ifit is separately continuous and satisfies the conditions of
thepreceding lemma. Likewise wedefinefor a set of mappingsfromE X F
into G the notion of equihypocontinuity of M with respectto &. Also, ifF is
a uniform space we have thefollowing variants: the mapping » uniformly
hypocontinuous with respect to &, the set M of mappings uniformly
equihypocontinuous with respect to ®.

When E, F, G are LCTVS and we consider only bilinear mappings
from E x F into G, since the equicontinuous subsets of L(F, G) are
already uniformly equicontinuous, there is no need to distinguish be-
tween a hypocontinuous or uniformly hypocontinuous bilinear mapping
nor between a set of equihypocontinuous or uniformly equihypocon-
tinuous bilinear mappings (with respect to a given &). In this case, the
notion is of interest only if & is a set of bounded subsets of E. Clearly,
the preceding paragraph could be repeated exchanging the roles of E
and F; thus, if € is a set of subsets of F, we have the concept of a map-
ping of E x F hypocontinuous with respect to €, etc. | f we have simul-
taneouslyaset ® of subsets of E and a set € of subsets of F, we obtain
the concept of a hypocontinuous mapping with respect to & and €, etc.
We recall the meaning of the concepts introduced where considering
bilinear mappings:

PROPOSITION 9 Let E, F, GbeLCTVS, & a set of bounded subsets of
E. A separately continuous bilinear mapping « [rom E x F into G is

hypocontinuous with respectto & i fand only u satisfies one of thefollowing
equivalent condition:

a) the mapping E — L(F, G) corresponding to « transformthe A € &
into equicontinuous subsets of L(F, G).

b) the mapping F — L(E, G) corresponding to « is continuous when
we equip L(E, G) with the topology of the &-convergence.

Then for every A E & the restriction of » to A x F is continuous.
There is an analogous statement for a set of separately continuous
bilinear mappings which is equihypocontinuous with respect to .

COROLLARY 1 Let E,F, Gbhe LCTVS, » a separately continuous bilinear
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mapping from E x F into G iresp, M a pointwise bounded set of con-
tinuous bilinear mappings from E X F into G). IfF is barrelled, « is
hypocontinuous with respect to the bounded subsets of E (resp. M is
equihypocontinuQ'U,s with respect to the bounded subsets of E).

Proof Thisfollows from criterion a) of Proposition 9 and from the fact
that in Ly(¥, G) every bounded subset is equicontinuous.

A bilinear mapping from E x F into G is hypocontinuous, if it is
hypocontinuous with respect to the bounded subsets of E and F; like-
wise for an equihypocontinuOU8 set of linear mappings from E x F into
G. Noticethat for aform or a set of bilinear forms separatel y continuous
on E x F, hypocontinuity with respect to a set & of subsets of E does
not depend on the topology of E but only on the dual of E, so that we
can choose the weak topology on E.

COROLLARY 2 Let « bea hypocontinuous bilinear form on E x F. Then
for every bounded subset A of E and every bounded subset B in F, the
restriction Of  t0 (Ayea) X F @andtoE X (B,ex) IS continuous. Likewisefor
the restriction. of % t0 (Aye) X (Buex) 1T €ither A or B is precompact.

The last assertion follows from the fact that on a precompact subset
of an LCTVS, the induced topology is identical to the induced weak
topology (Chapter 2, Section 18, Proposition 33).

Normally in analysis we can show by standard techniques that the
separately continuous bilinear mappings we find have the hypocon-
tinuity properties we need. For example, see Corollary 1 of Proposition
9 and Exercises 7, 8, 9 which follow. The value of hypocontinuity is
seen in the obvious remark that if % is a separately continuous bilinear
mapping from E x F into G, hypocontinuous with respect to the com-
pact sets of E (or of F), then « is continuous with respect to convergent
sequences; continuity with respect to convergent sequences of E x F
sufficesin many cases as a substitute for continuity (see Exercise 6). On
the other hand, the hypocontinuity of a bilinear mapping is useful in
matters of extensions.

Extensions of hypocontinuous bilinear m.appings

PROPOSITION 10 Let E, F, G be LCTVS, E; (resp, F,) a dense vector
subspace of E (resp. F), & ireep, €) a directed set of bounded subsets of

E 1 (resp. F 1) that generates the vector space E1 (resp. F1), ® iresp, ) the
set of closures in E (resp. F) of elements of & (resp. €). We suppose that

® generaies E, that € generatesF, that G is Hausdor ff and quasi-compl ete.
Then every bilinear mapping wfrom E1 x Fiinto G, hypocontinuous with
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respect to ® and €, can beextended i n a unique way into a bilinear mapping

% from E x F into G, hypocontinuous with respect to ® and €. If % is
continuous, 4 is coniinuous: ifu runs through a set of bilinear mappings,

equihypocontinuous with respect to & and €, then @ runs through a set of
bilinear mappings, equihypocontinuous with respect to & and €.

The proof is immediate and |eft to the reader, likewise for the follow-
ing variant of Proposition 10:

PROPOSITION 11 Let E, F be Hausdorff LCTVS. Then every hypocon-
tinuous bilinear form on E x F can be uniquely extended to a separately
weakly continuous bilinear form on E x F". When « runs through an
equicontinuous set of bilinear forms on E x F, then # runs through an
equiconiinuous set of bilinear forms on E x F" equihypocontinuOUB with
respect to the bounded subsets of E and the equicontinuous subsets of F"
(considered as duals of E'band F'b)' Whenu run.s through an equiconiinuous
set of bilinear forms on E x F, then & runs through an equicontinuous set
of bilinear forms on E x F".

(Recall that unless otherwise stated, the weak topology of the bidual
E" meansthe topology a(E", E'), while the "natural topology" of Ell,
that we always consider when there is no other topology of E", is the
topology of uniform convergence on the equicontinuous subsets of E'.)

EXERCISE1 LetE,F, GbeLCTVS, M aset of bilinear mappings from
E x F into G. The set M is equicontinuous (or equihypocontinuous
with respect to a set & of bounded subsets of E or F; or separately equi-
continuous) if and only if for every equicontinuous subset O' of G, the
set Mc' of bilinear forms <u(x,y), z) on E x F where ue M and
Z e O' has the same property. (Identify G with a space of functions on
G' with the topology of uniform convergence on the set € of equicon-
tinuous subsets; the problem is then reduced to a general topological
situation independent of vector structures.)

EXERCISE2 LetE, F, Gbe LCTVS, & aset of bounded disks of E, M
a set of bilinear mappings separately continuous from E x F into G.
For the set M to be equihypocontinuous with respect to &, it suffices
already (anditis necessary) that for every A E &, the set of restrictions
ofu EM to A X F be equicontinuous at (0, 0).

EXERCISE3 LetE,F, GbeLCTVS, u abilinear mappingfrom E x F
into G, hypocontinuous with respect to the compact subsets of E (or of
F). Let T be a metrisable topological space, f a continuous mapping
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from T into E, g a continuous mapping from T into F. Show that the
mapping t — u(f(t), g(t)) from T into G is continuous.

EXERCISE4 LetE, F, Gbe LCTVS, M a set of separately continuous
linear mappings from E X F into G. Show that if M is equicontinuous
with respect to one of the variables, then M(x, y) is a bounded subset of
G for every

x,y) EE X F.

Let A (resp. B) be abounded subset of E (resp. F). Showthat M(A X B)
is a bounded subset of G in each of the following cases:

a) M(Xx, y) is a bounded subset of G for every (x,y) EE x F, and A
and B are strongly bounded.

b) M is equicontinuous with respect to x and A is strongly bounded;

c) M is equihypocontinuous with respect to the compact subsets of
E (or even only with respect to the sequencesin E tending to Oin the
sense of Mackey).

EXERCISE 5 Show that in the preceding exercise, it is not sufficient
in @) to suppose A or B strongly bounded nor in b) to suppose that B is
strongly bounded (A supposed only bounded), whilein @ and b) the
hypothesison M remains the same. Finally, in c) it is not sufficient to
suppose M separately equicontinuous. (We shall show that there are
spaces where there exist bounded subsets not strongly bounded; then
one can put in @ and b) F = G= k = field of scalars, and in ¢)
G = k,F = E's M reduced to one element: the canonical bilinear form
on E x E'.) From this deduce counter-examples in the case where we
suppose M reduced to a point (establish a converse of Exercise 1).

EXERCISE6 LetE, F, GbeLCTVS, w abilinear mappingfromE x F
into G such that # (A X B) is a bounded subset of G for every bounded
subset A of E and every bounded subset B of F. Let U be an open sub-
set of &=, | etf (resp. g) be a continuously differentiable mapping from U
into E (resp. F). Show that the function t + u(f(t), glt> on U with
valuesin G is continuously differentiable and that its derivative with
respect to t; is given by

0 o 3
a, U(i(0), o)) = %( 5.4 s g() + U(E), 3, 9(0).

(Show :first of all that a derivative given by the preceding formula
exists; then show that if u is as given above and f' a continuously
differentiable mapping from U into E, g a continuous mapping from U
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into'a, then the mapping t — u(j'(t), g(t)) from Uinto Ais continuous).
Establish a quicker proofinthe case where we suppose« hypocontinuous
with respect to the compact subsets of E (or of F).

EXERCISE 7 LetE, F, dbe LCTVS, M a separately equicontinuous
set of bilinear mappings from E X F into a. Show that M is equi-
hypocontinuous with respect to the compact subsets of F, when we
equip E with the topology of uniform convergence on the weakly com-
pact subsets of E' (case where a is the field of scalars with the aid of
Exercise 1, theninterpret M as an equicontinuous set of linear mappings
fromF into E' weak; noticethat M isrelatively compactinL(F, E') for
compact convergence by Ascoli's theorem; from this conclude using
continuity that for every compact KeF, M(K) is a weakly relatively
compact subset of E').

EXERCISE8 LetE, F, dabelLCTVS, M a set of separately continuous
bilinear mappings from E X F into a, & a set of strongly bounded
subsets of F. We supposeF to be barrelled (or quasi-barrelled) and that
for every (x, y) E E X F, M(X, y) is abounded subset of a (or that Mis
equicontinuous with respect to E). Show that M is equihypocontinuous
with respect to €.

EXERCISE 9 Let E, F, A be LCTVS, &, (resp. &,) a set of bounded
subsets of E (resp. F) covering E (resp. F). We suppose that for every
continuous linear mapping « from E into F we have 4(®,)< &,. Then
the bilinear mapping (v, %) —>v - u from Lg (¥, a) X oLg (¥, F) into
Lg (E, a) is separately continuous. Let % be the set of subsets M of
Lg (E, F) such that for every A e &, M(A) is a subset of F belonging
to &,. Then (v, u) > v o % is hypocontinuous with respect to = and
with respect to the set of equioontinuous subsets of Lg (¥, G). Par-
ticular cases are:

a) If &, isthe set of all bounded subsets of F, then (v, %) —v o % is
hypocontinuous with respect to the set of bounded subsets of Lg (E, F)
and the set of equicontinuous subsets of Lg (¥, ).

b) If &, (resp. ®,) is the set of finite subsets of E (resp. F) then
(v, u) —>V 0 %
IS a hypocontinuous mapping with respect to the equicontinuous sub-
sets of Lg, (F, a).

c) If &, is a set of compact subsets of E, &, the set of all compact
subsets of F, then (v, ) — v o % is a hypocontinuous mapping with
respect to the compact subsets of Lg (F, F) and with respect to the
equicontinuous subsets of Lg (¥, a).
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EXERCISE 10 L etF be aBanach space,-let E = F' bethe dual Banach
space, « the canonical bilinear formon E x F. Let v, be the canonical
extension by weak continuity of « to E x F", and w, the analogous
extension of v, to E" x F". We define likewise the extension v, of « to
E" X F, and the extension w, from v, to E" X F". Make w, and w,
explicit (which are bilinear formson E" x F"), and show that they are
distinct and not weakly separately continuous if F is not reflexive.
Show then that there does not exist any bilinear form weakly separately
continuous on E" x F" which extends u,

6 Spaces of bilinear mappings. Definitions and notations

LetE, F, Gbe LCTVS, let ® be a set of bounded subsetsof E, € a set of
bounded subsets of F, H a space of bilinear mappings separately con-
tinuous from E X F into G. Consider on H a & X ¢ topology, where
® x & stands for the set of subsets of E x F of type A x B with
A E®, B eZ. This topology is locally convex if and only if for every
A x Be® x $andevery« EH, thesetu(A x B) isabounded subset
of G (Chapter I, Section 8, Theorem 3).

PROPOSITION 12 On the space of bilinear mappings H the & x &-
topology is identical to the topology induced by the space of linear map-
pingsfrom E into L (&, G) with &-convergence.

The verification is immediate, see Chapter O, Proposition 6". I n par-
ticular, if the « EHare hypocontinuous with respect to & or &, then
the corresponding mappings from E into L4 (¥, G) transformtheA e &
into bounded subsets of L4(#, G) and therefore H islocally convex.
Likewise, applying Proposition 3', (Section 2), we see that H is always
locally convex if the A E® or the B E€ are strongly bounded. I n par-
ticular, by the Banach-Steinhaus-Mackey theorem (Section 2), we
find the

COROLLARY If the elements of & or € are complete disks, then the space
of all separately continuous bilinear mappings from E X F into G with
the & x E-topology is locally convex.

The & x $-topology is the topology of bounded (resp. compact, resp.
simple) if ® and € are the sets of bounded convergence (resp. compact,
resp. finite) subsets of E and F. The space of separately continuous
(resp. continuous) bilinear mappingsfrom E x F into G is denoted by
B, F; G) (resp. B(E, F; G)), and we omit G when it is the field of
scalars, therefore B(#, F) and B(E, F) are respectively the space of
separately continuous bilinear forms and the space of continuous
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bilinear forms of E x F. If we consider the topology of bounded (resp.
compact, resp, pointwise) convergence on one of the preceding spaces,
we indicate the fact with the index b (resp. c, resp. s) asinB,(&, F; G),
B(E, F; G), B(E,F; G). ThespaceB(L, F; G) and the space Bb(E, F;
G) arealwayslocally convex. When we consider the strong dualsE' and
F' of the LCTVSE andF we may wish to equip the space B(&’, F'; G)
and its subspaces with the topology of uniform convergence on the
products A x B, where A (resp. b5) is an equicontinuous subset of E'
(resp, F). This topology, always locally convex (the weakly closed
equicontinuous subsets, therefore weakly compact in the dual, are
strongly complete by Lemma 2 of Section 2), is called the topology of
bi-equicontinuous convergence. We indicate this topology with the index
e. When F and G are the field of scalars, we find E" with the usual
topology.

Oase of normed spaces The following is a generalization of Chapter I,
Section 5, Theorem 2:

PROPOSITION Let E; (i= 1,2, ...,n) and F be semi-normed spaces,
let u bean n-linear mappingfrom TIEi into F. The mapping u iscontinuous
ifand onlyif |l u Il defined by

Hull= sup llu(xl, ..., =) ||
xi), 11=3]] <
I Xl <

bi-equicontinuous isfinite.
Then we have,

I ufxi, === 2a) | < Uu flEs - 220 2, |

for every (Xi) e TIE;. The expression Il u llon B{E, --- E,; F) is a
semi-norm (it is a norm if F is Hausdorff), the corresponding topology
being the topol ogy of uniform convergence on the product of the unit balls of
Ei (or on the product of bounded sets). This space is complete when F is
Hausdor ff and complete. Finally, we have a canonical metric isomorphism
from

B(E, -...E,. B(E,,, ..., £,;F» onto B(E,, ..., E,;F).

I n particular, ifu is a continuous bilinear form onthe productE x F
of two semi-normed spaces, its norm, as a bilinear form, is identical
to the norm of the corresponding linear mapping from E into F' (or
from F into E'). The canonical extension of the form u on E x F into
aformonE x F" (see Proposition I1) has the same norm as u: Notice
that if E, F, G are semi-normed spaces, then on B(&’,F'; G) the
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topology of bi-equicontinuous convergence is none other than that
defined by the natural semi-norm of this space.

ThespacesE & F Let E, F be Hausdorff LCTVS; consider E & F as
space of bilinear forms on E' X F'; to x & y there corresponds the
bilinear form <X, X><y $> since this last form is olearly weakly
separately contlnuous (and even weakly continuous), we can oonsider
E ® F as avector subspace of B(E,, F,), and equipit with the topology
of bi-equicontinuous convergenoe, for whioh it is a topologioal vector

subspace of B,(Z., F?,).

DEFINITION 7. Let E, F be Hausdorff LCTVS. We denoteby E & F the
completion of E & F equipped with the topology of bi-equiconiinuous con-
vergence (the topology induced by B,(&, F.)).

|f BE,, F,) ~ L(E', F) is complete, i.e. if E and F are complete
(Section I, Propositionl) then E & F is the closed topological vector
subspace of B,(&,, ), the closure of E ® F. On the other hand let
ue B,(E,, F,); to say that the linear mapping from E' into F, which
corresponds to it, transforms the equicontinuous subsets into precom-
pact subsets of F, or into relatively compact subsets of F, is to say that
the linear mapping from F' into E which corresponds to it has the
analogous property (Chapter 2, Section 18, Theorem 12, Corollary); on
the other hand the subspace K of

BEZ,, F,) ~ Le(E', F)

formed by those u is closed (Chapter 0, Section 4, Proposition 6'). There-
fore, if E andF are complete, E & F can aso beidentified with a vector
subspace of K, in other words, the linear map from E' into F corre-
sponding to au E E & F transforms the equioontinuous subsets of E'
into relatively compact subsets of F. The converseis true in al known
oases, that is, in all known cases, every weakly continuous linear
mappingfrom E' intoFwhichtransformstheequicontinuous subsetsinto
relatively compact ones is a uniform limit, on the equicontinuous sub-
sets of E, of weakly continuous linear mapping of finite rank (see
Exeroise 4).

If E and Fare normed spaces, then the topology of the bi-equicon-
tinuous oonvergence on E ® F is defined by the natural norm of the
space B(E', F') of continuous bilinear forms on E' x F'. We can then
consider E & F as a Banach space, a normed subspace of B(E', F').

EXERCISE 1 LetE, F be Banach spaces; consider the space B(E, F) as
a subspaoe of the dual of E @ F.
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a} Show that the unit ball of B(E, F) is weakly compact, and is
therefore the unit ball of the dual of E ® F for some uniquely deter-
mined normon E ® F.

b) E ® F being thus normed, show that a bilinear mapping v from
E ® F into a Banach space Gis continuous if and only if the linear
mapping % from E x F into G corresponding to it is continuous, then,
the norms of u and # are identical.

c) ShowthatE & F is barrelled (notice that this assertionis equival-
ent to Chapter 1, Section 15, Theorem 12).

d) Let P, be the set of elementsof E @ F of rank <<n. Show that P;
is a closed subset of E @ F (we shall show that P; is even closed for
a(E ® F, E' @ F"), using the following exercise). From this conclude
thatif E and F arefinite dimensional, thenE ® F is anormed barrelled
space which is meager (therefore not a Baine space).

EXERCISE 2 Let E, F be vector spaces, « a bilinear form on E x F.
We call the rank of the linear mapping from E into the algebraic dual
F* of F defined by « the rank of u. (Thisis clearlyidentical to therank
of thelinear mapping from F into E* defined by u.) Show that the rank
of uis < n, (agiveninteger > 0), if and only if for every sequence of
n elements (Xi) in E and every sequence of n elements (Yi) inF we have
det (u(Xt, Yi)) = O. From this conclude that the set of bilinear forms on
E X F ofrank < nis closed for the topology of pointwise convergence.

EXERCISE 3
a) Let (E;), (F,) be two families of Hausdorff LCVTS, let E = nE;,

F = nF;. Show that E & F is canonically isomorphic to

ITs, &1,

b) Let E;, E, be Hausdorff LCTVS (i = 1,2), let u, be a continuous
linear mapping from E; into F;; show that the mapping v; & u, from
E, ®E,into F1 ® F2is continuous for the topologies of bi-equicon-
tinuous convergence and can therefore be extended to a continuous
linear mapping u, & u, from E;, & £, into F;, & F,- If the u; are
topological isomorphisms, s0 is u; & u, If the E;, E, are Banach
spaces, and if the «, are metric isomorphisms, soisu; & U,

EXERCISE 4 Let E be a Hausdorff complete LCTVS. The following
conditions are equivalent:

a) E' ® F isdensein Lc(E, F);

b) For every LCTVSF, F' ® E isdensein Lc(F, E);



126 TOPOLOGICAL VECTOR SPACES

c) For every LCTVSF with a set & of bounded subsets, F* ® E is
dense for ®-convergence in the space Kg(F, E) of continuous linear
mappings from F into E, which transform the A e ® into relatively
compact subsets of E;

d) for every Hausdorff complete LCTVSF, F & E can beidentified
with the space of weakly continuous linear mappings from F' into E
which transform the equicontinuous subsets of F' into relatively com-
pact subsets of E. Show that if E has these properties, every direct
factor of E has them also.

7 Linear mappings from an LCTVSinto certain function spaces. M appings
into a space of continuous functions

Let M belocally compact; consider the space O(M) of continuous scal ar
functions on M, with the topology of uniform convergence on compact
sets, and the space Oo(M) of scalar functions "zero at infinity" with
topology of uniform convergence (see Chapter 1, Section 9). For every
t EM, let ¢(t) be the linear form f+—f(t} on O(M} which is clearly
continuous, and the mapping t — ¢(¢t) from M into the dual of O(M)
(or of Oo(M)) is clearly continuous for the weak topology of the dual;
itiseasy to verify that it is even a homeomorphism (it is even a homeo-
morphism of M for the topology a((O(M))', o (M)) where £ (M) is the
space of continuousfunctions with compact support). Thenthe topology
of O(M) is a E-topology, where & is the set of subsets of (O(M))" of
type ¢(K), where K runs through the set of compact subsets of M; the
topology of Oo(M) is the topology of uniform convergence on the subset
e(M) of (Oo(M))'.

LetE bean LCTVS, u a continuouslinear mapping from E into O(M).
Thenitstranspose u' is aweakly continuous mapping from (O(M))' into
E' which transforms the equicontinuous subsets into equicontinuous
subsets (Chapter 2, Section 16) therefore u' o eis a continuous map-
pingf from Minto E., which transforms the compact subsets of Minto
equicontinuous subsets of E', defined explicitly by

(1) (1) = u()(t}

and we then see that u is known whenf is known. Conversely, iffis a
continuous mapping from Minto E; which transforms compact subsets
into equicontinuous subsets, then for every x E E the preceding formula
defines a continuous scalar function on M (by the continuity off) ; from
this we get alinear mapping u from E into O(M). This mapping is con-
tinuous, sinceit means (same reference) that when x' runs through a set
e(K) (K a compact subset of M), then x' o u runs through an equi-
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continuous subset of E', then by definition
e(t) o u = f(1).

A similar reasoning is valid when we replace O(M) by Oo(M). Sum-
mimg up:

THEOREM 5 Let M be locally compact space, E an LcTvs. The con-
tinuous linear mappingsfrom E into O(M) (resp. into Oo(M)) correspond
bijectively to the continuous mapping from Minto £, which transform the
compact subsets into equicontinuous subsets of E' iresp, to the continuous
mappings "zero at infinity" from Minto £, which map M into an
equicontinuous subset of E'),. this correspondence is the one given by
formula (1) above.

COROLLARY 1 |IfE is barrelled, then we have the canonical isomorphisms

L(E, O(M)) = O(M, E;)
L(E,Oo(M)) = Oo(M, E;).

Infact, every weakly compact subset of E' is equicontinuous, so that
the supplementary condition on the continuous mappings from Minto
E’ given in Theorem 5 becomes unnecessary. When E is only a TVS,
we can only state:

L(E, O(M)) ¢ O(M, E)
L(E,Oo(M)) ¢ Oo(M, E.).
Furthermore we verify immediately:

COROLLARY 2 Let ® bea set of bounded subsets of E. Then the &-topology
in L(E, O(M)) iresp, L(E, Oo(M)), isidentical to the topology induced by
the topology of compact tresp, unifor m convergence on the space of mappings
from M into Eg (where g stands for E' with a &-topology).

(Proof: consider the neighborhoods of 0).

COROLLARY 3 Let M belocally compact, E a Hausdorff LCTVS where
the closed convex hull of a compact set is a compact set (for example, a
guasi-complete space, see Chapter 2, Section 5, Exercise 4). Then we have
Isomor phisms

O(M, E) = L(E,, O(M)), Oo(M, E) = L(E,, Oo(M)),
where B, standsfor E' with the topology of compact convergence.

In fact, by Mackey's theorem, the dual of E. is E, the result follows
from Theorem 5 keeping in mind the fact that a continuous mapping
from Minto E weak, transforming compact subsets into compact sub-
setsis already continuous for the given topology of E (since on a com-
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pact subset of E, the induced topology isidentical to the induced weak
topology), and on the other hand, anf £ O(M, E) (or anf £ Oo(M, E))
evidently satisfies the conditions of Theorem 5 (that is, it transforms
compact subsets into compact subsets-or transforms M into a rela-
tively compact subset of E). Using the approximation theorem
(Chapter 1, Section 9, Theorem 4). Corollary 3 can be rephrased:

COROLLARY 4 Let M bea locally compact space, E an LCTVS which is
separated and complete. Then we have the isomor phisms:
OM, E) ~O(M) B E Oo(M, E) ~ Oo(M) & E.

Besides, if E is a Banach space the second isomorphism is even a
metric isomorphism

Let M be a set, E an LCTVS formed by scalar functions on M, with
a topology finer than the topology of pointwise convergence (i.e. a
vector subspace of kM, with a locally convex topology which is finer
than the induced topology). Therefore, for every t EM, the linear form
¢(t) o11 E defined by

(s (t) = $(t)

is continuous. Let F be a separated complete LCTVS, let u be a weakly
continuouslinear mapping from F' into E, thenf = u' o eisa mapping
from M into F given explicitly by

<f(t), y') = <uy,e(t) = u(y)(®).
Then for y' EF', the function

t=>fu() = <f(),y")

isidentical to uy', therefore, if y' runs through an equicontinuous subset
of F', f,» runs through a weakly relatively compact subset of E. Con-
versely, iffis a mapping from Minto F such that for every y' EF' the
function f,, runs through a weakly relatively compact subset of E if
y' runs through an equioontinuons subset of F', we shall show that the
mapping u: y' > f,, from F' into E is weakly continuous, In fact, the
restriction of u to every equiconbinuous subset A of F', being con-
tinuous for the weak topology of A and the topology of pointwise con-
vergence on E, is even weakly continuous since on the weak closure of
u(A) which is weakly compact, the weak topology is identical to the
coarse separated topology of pointwise convergence on M. Thus, for
every X' EE', the restriction of X' o u to every equicontinuous subset
A of F' is weakly continuous, therefore when F is complete, x' o u will
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even be weakly continuous (Chapter 2, Section 14, Theorem 10), then
u is weakly continuous. Summing up:

PROPOSITION 14 LetM beaset, E an LCTV Sformed by scalar functions
on M with a topology finer than the topology of pointwise convergence. Let
F be a complete Hausdorff LCTVS. Then the weakly continuous linear
mappingsfrom F' into E can beidentified with the mappingsf from Minto
F such that for every y' E F', the function f,.: t — <f(t), y') belongs to E
and runs through a weakly relatively compact subset of E when y' runs
through an equiconiinuou» subset of F'.

COROLLARY I n the preceding statement, if E is reflexive metrisable and
complete, then the last condition onf is always satisfied.

This means, in fact, that the mapping y' = f,, fromF' into E trans-
forms every weakly closed equicontinuous disk A of F' into a bounded
subset of E, that is, induces a continuous linear mapping from the
Banach space F'4. But a priori thislinear mapping is continuous for the
topology on E of pointwise convergence in M, a Hausdorff topology
which is coarser than the given topology on E. It follows from the
closed graph theorem that this mapping is continuous.

Proposition 14, together with its corollary, can be applied in numer-
ous cases. Choosing, for example, E to be the space of infinitely differ-
entiable functions on an open subset M of Rn, wefind that the weakly
continuous linear mappings from F' into E can be identified with the
mappings from Minto F which are "scalarly infinitely differentiable"
(see the next section for the study of such functions), etc.

EXERCISE 1 Let M be alocally compact space, Mo a closed subspace,
E an LCTVS.

a) Show that the natural linear mapping from O(M, E) into O(Mg, E)
assigning to every continuous function on M, its restriction to Mg, is
a homomorphism from the first space onto a dense subspace of the
second space.

b) Then conclude that if M is countable at infinity and E metrisable
and complete we even obtain a homomorphism from the first space onto
the second.

c) Thisis true for every complete locally convex space E if and only
If the subspace J(M0) of O(M) formed by functions zero on M 0admits
a topological supplement, or equivalently that the natural mapping
t > g(t) from M, into the weak dual of O(Mg can be extended into a
continuous mapping from M into the same space (for the sufficiency of
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thefirst condition use Corollary 3 of Theorem 5; for the converse, choose
E to be the dual of Go(M0) with the topology of compact convergence
(for which the spaceisa complete LCTVS) ; then consider the continuous
mapping t > &(t) from M ginto E). Thisis the case if in particular M
IS metrisable and separable (Chapter I, Section |1, Exercise 5).

d) Show that if the natural mapping from C(M, E) into C(Mg, E) is
not onto, then the quotient of C(M, E) by the closed subspace of func-
tions zero on M o is not complete (although C(M, E) is complete when E
IS complete).

EXERCISE 2 Let1 be aset, consider the Banach space {*(7) of bounded
families of scalars on 1. If J ¢ 1, we identify [*(J) with the space
1°(I) formed by elements whose coordinates i E CJ are zero. If L4is a
continuous linear form on I*([), we denote its restriction to [*(J) by

M-
a) Show thatifJ,, ---, J, are disjoint subsets of 1, then

N wdll + ...+ wn <l all

b) For every continuouslinear form yx oni*(I), let % beitsrestriction
to c41), identified with an element of ZI(1) (Chapter I, Section 9,
Exercise 7); we can then consider it as a continuous linear form on
[°(I) by the natural duality between [1(1) and {* (1), in general distinct
from x. Deduce from a) that if 1 is infinite, for every sequence (,) of
continuous linear forms on [*(I), there exists an infinite subset J of 1
such that {(z,), = (u.), for every n, (Construct by induction a decreas-
ing sequence (./,) of infinite subsets of 1, such that

I (o | < 1in

for k << n, and consider an infinite subset J of 1 such that J n Cinis
finite for every n).

c) From this conclude that if (x,) converges to zero in the weak
dual of I*([I), then (z,) converges strongly to zero in ZI(1) (proceed by
contradiction, showing that if not we could find an ¢ > 0 and a se
quence (4,) of finite subsets of 1, pairwise disjoint, such that

ieAn
(ifrequiredreplace (u,) by a subsequence, then consider theisomorphism
of I*(N) - N is the set of integers which are positive or zero-into
[*(I) given by

(€n) > X §ﬂ¢Au’
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where ¢4, is the characteristic function of 4, and where the series con-
verges for the topology of pointwise convergence in 1*(/); reduce to
the case where | = N and 4, = {n}. Using b) we can even suppose
Un = [i, for every n, therefore that u, e ! for every n; then (u,) would
be a weakly convergent sequence and not strongly convergent of the
Banach space !, whichisimpossible (Chapter 2, Section 17, Exercise 4)).

d) Conclude from c) that if e, is the ith coordinate form on co, then
the sequence of ¢, convergesto 0 in the weak dual of co but cannot be
lifted to a sequence of continuous linear forms on [® converging to zero
in the weak dual of [*. A fortiori, cohas no topological supplement in
1",

e) Let M be the stone compactification of the space N of integers
>0, let M, be the compact subspace complement of N. Show that
M, Mo do not satisfy the conditions of Exercise Ic.

EXERCISE 3

a) Let M be acompact space, E a Banach space. Show that the space
of compact linear mappings from E into O(M) with the norm induced
by L(E, O(M)), is canonically isomorphic to the normed space O(M, E').

b) Then conclude that if E is a Banach space, F a normed vector
subspace then every compact linear mapping u from F into O(M) can
be extended to a compact linear mapping from E into O(M) of norm
< [l'u]| + ewhere e > 0is arbitrarily chosen (use Chapter I, Section
14, Exercise 2)

c) Generalize to the case where E isany LCTVS.

EXERCISE 4 Show that we can find a closed subspaceF of E = [* and
a sequence in EIF converging weakly to zero which does not comefrom
a sequence in E converging weakly to zero (recall that every weakly
convergent sequence of Zl is strongly convergent-Chapter 2, Section 17,
Exercise 4); show also that there exist separable Banach spaces, such
as co, which admit weakly convergent sequences which are not strongly
convergent; show finally that every separable Banach space is iso-
morphic to a quotient space of I*—(Chapter |, Section 14, Exercise ).

8 Differentiable vectorial functions

Let U beopeninR», E a Hausdorff LCTVS (in this section we consider
Hausdorff LCTVS only), fa mapping from U into E. The notion of
differentiability offin apointt e U, withrespect to one of the variables
(or more generally, in the direction of a given vector) can be defined as



132 1'OPOLOGICAL VECTOR SPACES

inthe scalar case, and from this follows the notion of a mapping which
IS m times continuously differentiable, from U into E. We now develop
some useful lemmas.

LEmMMA 1 A mapping f from U< Rn into the weak completion E'* of
E is differentiable at t e U if and only iffor every x' E E', the function
X = <f(t), x') isdifferentiable at t; then we havefor every x' e E'

(1) <f'(0), X') = fu(?).

I n fact, we must state that
1
7 (f(t +n) - f(t»

considered as a linear form on E' converges simply to alimitifh —0
(thislimit will be automatically linear, therefore it will be an element of
E'™*, thederivative offint). This meansthat for every x' € E' thescalar

product

{(f(t +h) - f(t», x"D = 7wt +h) - ful)))

tends to a limit (that will be <f'(t), x'), i.e, that for every x' E E' the
function f,, is differentiable in t whence (1».

COROLLARY A mappingf from the open set U < Rn into the weak com-
pletion E'* of E is m times continuously differentiable if and only iff is
scalarly m times continuously differentiable (by this we mean that for
every X' e E', thefunction f,, Ahas the property considered)

LEMMA 2 The mappingf from U into E is m times continuously differ-
entiable in the weak completion E'* of E if and only ifitissoin E"
with the weak dual topology.

The sufficiency is trivial; for the converse we start with m = 1 and
U < R and we note that if the limit of (1/h)(f(t + h) - f(t» existsin
E'™* weak, thislimit is also thelimit of a sequencein E (corresponding to
h = IInwithn aninteger >0), which will be a weak Cauchy sequence,
therefore bounded. It follows (Mackey's theorem) that the limit belongs

to E".

LEMMA 3 Letf be a mapping from U into E which is continuously
differentiable and whose first partial derivatives are continuous for a
locally convex topology T on E with a closed fundamental systern of
neighborhoods of 0. Then f is also continuously differentiable for T.

The hypothesis on T means that it is a &-topology, where & is a
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set of weakly closed subsets of E'. We need only consider the case
of one variable and it suffices to show that (I/h)(f(t + h) - f(t)),
tending to f'(t) for theinitial topology To of E, tends also to the same
limit for thetopology T, that is, that for every A e &, its scalar product
with the x' e A tends to <f'(t), x') uniformly when x' runs through A.
Now this scaler product can also be written

F(fult ) - ful) = 30 k) ds

its difference with <f'(t), x') = f.(t) can be written

2N (fts) - fu s
H

and it tends, in fact, to zero uniformly when x' runs through an A e G,
since f,,(s) tends to f,,(¢) for s — t, uniformly when x' runs through an
A E & (thisis a statement of the continuity off'(s) for the topology T).

COROLLARY T being as above, i ff +s m times continuously differentiable
and its derivatives of order m are continuousfor T, thenf is also m {imes
continuously differentiable for T,

Proof Thisisimmediate starting from Lemma 3 by induction on m.

LemmA 4 Let F bean LCTVS, E a quasicomplete vector subspace, f a
mapping from the open set U c: B* in E which is m {imes continuously
differentiable, into F. Then f is m tsmes continuously differentiable in E.

The proof is analogous to Lemma 2 since the values in F of the
derivatives off will be in the closure of the bounded subsets of E.

LEMMA 5 Letf bea mapping scalarly continuously differentiable from U
into E. Thenf is continuous even for the topology of uniform convergence
on the strongly bounded subsets of E'.

The proofis easier if we use the notion of aweak integral, the elemen-
tary properties only being needed here. We have

+h
f(t +h) - f(t) = j f(s) de

(weintegrate the continuous functionf' with values in E" weak), then
we obtain
f(t +h) - f(t) e hK for h sufficiently small,

where K is the weakly closed convex hull of the set K 5 which is the
image of a fixed compact interval of center t, contained in U. The set
Ko is weakly compact therefore K is weakly bounded, therefore
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A = K n E is a bounded subset of E and we have

f(t + h) -f(t) Eh.A.
From thisit follows that (f(t + h) - f(t) tends to zero for the topology
of uniform convergence on the strongly bounded subsets of E'. (We
have supposed, for the sake of simplicity of notation, U< R, a fact
which is not essential.) Notice that Lemma 3 could also be proved using
thisintegral method.

PROPOSITION 15 Let U be open in Rn, E a quas-complete LcTVs, fa
mapping from U into E. The mapping f is m témes continuously differ-
entiableifand only ifit is scalarly m times continuously differentiable and
its mth partial derivatives (that exist in E"-see Lemmas | and 2) are
continuous for the natural topology of E" (the topology of uniform con-
vergence on the equicontinuous subsets of E').

Explicitly, these conditions mean that the f,, are m times continu-
ously differentiable, and that the mth derivatives run through an
equicontinuous set of functions on U, when X' runs through an equi-
continuous subset of E' (this condition permits the consideration of
only the scalar components f,).

Proof Under the indicated conditions f is m times continuously
differentiablein E" weak (Lemmas | and 2) and so is also for the natural
topology of E" (Lemma 3), therefore also in E itself (Lemma 4).

COROLLARY | E being quasi-complete, i fthe mappingf from U into E is

scalarly m ¢imes continuously differentiable, itism - | times continuously
differentiable.
Infact, by Lemmab5thederivativesof orderm - | offinto E" weak

are continuous for the topology of uniform convergence on the subsets
of E' bounded for the strong topology of E' associated with the dual
system (E', E"), then afortiori for the topology of uniform convergence
on the weakly compact equicontinuous disks of E' (therefore complete
and bounded for the strong topology on E' associated with (E', E"))
i.e. the natural topology of E". The corollary then follows from Prop-
osition 15. We conclude from this:

COROLLARY 2 Let E be a quasi-complete LcTvs, f a mapping from an
open set U of Rn into E. The mapping f is indefinitely continuously
differentiable i fand only i ffis scalarly indefinitely continuously differenti-
able

PROPOSITION 16 Let E bea completeLcTVvs, let U beopen in Rn. Then
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the epace &™(U, E) of m-times continuously differentiablefunctions from
U into E with its natural topology (compact convergence off and its de-
rivatives of order <<m) can beidentified with the space of weakly continuous
linear mappingsfrom E' into SV» (U) which transform the equicontinuous
subsets into relatively compact subsets of Sv» (U), this space of mappings
being endowed with the topology of uniform convergence on the equicon-
tinuous subsets of E'.

Letf e &ew(u, E). Thenf defines alinear mapping @' — f,, from E'
into &£ U), which is weakly continuous by Section 7, Proposition 14.
We now show that it transformsanequicontinuous subset A of E' into a
relatively compact subset of &£t (U). From Chapter |, Section 10,
Proposition 18, it suffices to show that the set of derivatives of order m
of the f,,(x' E A) is an equicontinuous set of functions on U,, this means
that the mth derivatives offin E are continuous mappings. Conversely,
given a weakly continuous mapping u from E' into &£m(U), which
transforms the equicontinuous subsets into relatively compact subsets,
we deduce a mappingf from U into E such that <f(t), x') = ux'(t) for
te U, 2’ E E'. Thisf then satisfies the conditions of Proposition 15 and
belongs to em)(u , E). Finally, we verify trivially that the topology of
em(uU, E) corresponds to the topology of uniform convergence on the
equicontinuous subsets of E. I nthis reasoning we could have supposed
that m = +eo, and dropped the condition of compactness using
Corollary 2 of Proposition 15. We thus obtain

COROLLARY E being a complete LCTVS, &(U, E) can beidentified with
the space of weakly continuous linear mappings from E' into &(U), with
the topology of uniform convergence on the equicontinuous subsets of E'.

Thisis aso the corollary of Proposition 14 taking into consideration
Proposition 15, Corollary 2.



CHAPTER 4

Study of some special classes of spaces

PART 1 INDUCTIVE LIMITS, (£%) SPACES

1 Generalities

DEFINITION | Let E bea vector space, (E;) afamily of LCTVS, and for
every i let Ui bealinear mapping from Ei into E. We call thefinest locally
convex topology on E for which the «, are continuous the inductive limit
topology of the E; (by the u;). With this topology E is called the inductive
limit of the E; (by the uj).

The existence of such a topology is immediate as a locally convex
topology T on E permitstheu; to be continuousifandonlyif for every
disked neighborhood V of 0 for T, the «,; (V) are neighborhoods of 0
inthe E, ; clearly the set of al absorbing disks in E having this property
is a system of disked neighborhoods of O for alocally convex topology
on E which is the finest among the topologies considered. We have
shown the first part of

PROPOSITION | Let E bethe inductive limit of the Ei by the «,.

) An absorbing disk V in E is a neighborhood of 0 if and only if for
every i, w7'(V) is a neighborhood of 0 in Eio

2) Ifthe ui(E;) generate E, we obtain a fundamental system of neigh-
borhoods of 0 by taking the convex Aulls

I"(Uui(\ﬁ»),

where, for every i, Vi runsthrough a givenfundamental system of neighbor-
hoods of 0in E;-

The second part is an immediate consequence of the first. Notice that
in 1), if the ui(E;) generate E, it is unnecessary to suppose a priori V
absorbing, since it will be so automatically.

COROLLARY | An inductive limit of bornological tresp, barrelled, resp,
guasi-barrelled) spaces is bornological tresp, barrelled, resp, quasi-
barrelled).

In fact, if V is a disk in E which is bornivorous (resp. closed and
absorbing, resp. closed and bornivorous), it is also balanced and the

u;'(V) are clearly also bornivorous (resp. - --) therefore they are
136
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neighborhoods of 0 by the hypothesis on the E;, and V is itself a
neighborhood of 0, hence the conclusion.

Very often, the family of indices | (implicit above) is ordered, in-
creasingly directed and for i <] we define a continuous linear mapping
uy; from E; into E; such that i < 9 < kimplies uic = uuy; and i <<
impliesu; = uju;;.

We verify immediately that the induotive limit topology on E does
not changeif we replace | by aset I'< | cofinal to |I. We can reduce
the general case to the one just considered. I n fact, for the general case,
for every finite subset J = |, let

E; = 11 N;
iel

and let uJ be the linear mapping from E; into E coinoiding with the u;
on the Ei; since this mapping is clearly continuous when E has the
induotivelimit topology of the Z,, it follows that the latter isaso identi-
cal to the induotive limit of the E; by the uJ; clearly, the family (E;)
forms a transitive system of the type considered above. Notice further-
more that the inductive limit topology of E does not change when we
replace the E; by their quotients by the kernel of the ui, which leads
us to the case where the ui are injective and consequently the E; are
identified with vector subspaces of E having their own locally convex
topologies T;- When the E; form a transitive system we see that after
passage to the quotient we have subspaces E; of E suchthati <j im-
plies Eic E, and such that the identity mapping from E; into E, is
continuous (for the given topologies of E;, E,). Very often, the union
of the ui(E;) generates E (therefore, if theE; form atransitive family,
the union of the ui(E;) isidentical to E).

Notice the transitivity property resulting from the definition: If
eachE; isitselfaninductivelimitof (#,,) athenE isalso theinductive

limit of (E,;’a)aeA' i E1, by theu;o u,,.

PROPOSITION 2 Let E bethe inductive limit of (E;) of LCTVS by (Ui),
E generated by the ui{E;). Let F bean arbitrary LCTVS.

1) A linear mapping vfrom E into F is continuous if and only iffor
every i Vo ui is continuous. More generally, let M be a set of linear
mappingsfrom E into F,. M is equicontinuous if and only iffor everyi,
Mo u; (formed by the vo uj with ve M) is an equicontinuous set of
mappings from E, snto F.

2) Let,for everyi, ®, bea set of bounded subsetsof E; ; let ® bethe union
of bounded subsets #,(®;) of E. Then the &-fopology in the space of linear
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mapprngs from E into F is the coarsest topology for which the mappings
V> Vo U; are continuous when the space of linear mappings from Ei
into F hasthe &;-topology. I N particular, a set M of linear mappingsfrom
E into F is bounded for the &-topology if and only iffor everyi the set
M o ui of linear mappingsfrom Ei into F is boundedfor the &,-topology.

Proof 2)istrivial (F can be any topological space, the same for the
mappings; the vector structures and the topology of E are not con-
sidered). For 1) we notice that if Mis equicontinuous, for every neigh-
borhood V of 0in F, M-1(V) is a neighborhood of 0 in E; since it is
already a disk, this means (Proposition 1) that for every i, u;I(M-1(V))
is a neighborhood of 0 in E;- Now this set is also M;!(V) where
M; = M o u;; wemustexpressthat for agiven:,M;*(V) is a neighbor-
hood of O in E, for any disked neighborhood V of 0in F, i.e. that M,
IS equicontinuous.

Some questions arise concerning a space which is an inductive limit,
which often receive negative answers, even for the inductivelimits of a
seguence of Banach spaces, and which often present serious difficulties.

1) Is E complete when the Ei are complete?

2) Doesevery bounded (resp. compact, resp. weakly compact) subset
of E come from a bounded subset (resp....) of a space E;? (In this
guestion, we can suppose that the (E;) already form atransitive system.)
In particular, if we suppose the E, reflexive, (or Montel spaces) is E
reflexive (or a Montel space). (For an affirmative answer it would suffice
to know that E is Hausdorff and that every bounded subset of E comes
from a bounded subset of an E;.) Noticethat evenif the E; areHausdorff
it is possible that E is not Hausdorff (see Section 4, Exercise 2) but in
practice, we make sure that E is Hausdorff since it suffices for this pur-
pose to find on E a Hausdorff locally convex topology for which the ui
are continuous. We remark that in practice the difficulties which we
encounter in inductive limits are the "converse" of those met in pro-
jective limits (the coarsest topology for which ...); here it is nearly
always easy to show that the space is complete, and to determine
whether its bounded subsets are weakly compact or compact (the
reader will recall the corresponding statements), and in particular to
recognize it as either a reflexive or a Montel space. But it is difficult
to recognize if the space is bornologioal or barrelled, and we have no
good criterion as in Proposition 2 above for the equicontinuous sets of
linear forms, etc.
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2 Examples

In al of these examples, the E; naturally form a transitive system and
the union of the ui(Ejy is E. We verify trivially in examples c), d), €},
f), that the E obtained in each case is Hausdorff, using the general
remark stated in Section 1.

a) Let E be an LCTVS, F a vector subspace. Then EIF is the in-
ductive limit of E by the canonical mapping of E onto EIF.

b) The locally convex space E is bornological if and only ifit is an
inductive limit of normed spaces. I n fact, it is sufficient by Proposition
1, Corollary (as a normed space is bornological by Chapter 3, Section 4,
Theorem 3) and it is necessary as we verify immediately that E is
bornological if and only if its topology is the inductive limit of the
spaces EA (where A runs through the closed and bounded disks of E) by
the identity mappings of these spacesinto E. (Then if E is Hausdorff
and quasi-complete, the E o are complete, therefore E is bornological if
and only if it is an inductive limit of a family of Banach spaces.t

c) Let E and F be (&) spaces, let r(E, F) be the space of compact
linear mappings from E into F. For every disked neighborhood V of 0,
let Ev be the normed space associated to the gauge, semi-norm of V;
there exists a natural linear bijection from r(Evy, F) into r(E, F) which
is the union of the images of these spaces. Equip r(Ev,F) with a
topology of bounded convergence for which it is a closed subspace of the
space LfJ(Ev, F) (Chapter 3, Section 1, Proposition 2; the compact linear
mappings from a semi-normed space into a space F are those trans-
forming the unit ball into a relatively compact subset of F). Since-
Lb(Ev, F) isclearly an (¥') space, soisr(Ey, F) (wethus have the right
topology on this space). We can then equip r(E, F) withtheinductive
limit topology of the spaces r(Ev, F) of type (&#). This limit topology
does not change if V runs through a fundamental system of disked
neighborhoods of 0, for example a fundamental sequence (V,,) of neigh-
borhoods. Thus, the space Z(#, F) of compact linear mappings of a
space (&) into another appears as an inductive limit of a sequence of
spaces of type (#). Thereis an analogous construction for the space of
bounded linear mappings from E into F.

d) Let M be alocally compact space, let (M) be the space of
continuous numerical functions with compact support on M. For every
compact set K = M we denote by 2#'K(M) the space of functions with
support =« K with the uniform norm topology (i.e. the topology of
uniform convergence). Thus it becomes a Banach space. o' (M) is the
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union of these subspaces and we can equip it with an inductive limit
topology. If M is countable at infinity, we can choose some increasing
sequence (Kn) of compact set, then #(M) is the inductive limit of a
sequence of Banach spaces.

e) We proceed likewise for the space 2(U) of indefinitely differenti-
able functions, with compact support, on an open set U < Rn; this
space is the inductive limit of a sequence of subspaoes of type (&).

f) Let, first of all, U be open in Rn and consider the space H(U) of
holomorphic functions on U which is a closed vector subspace of the
space C(U) of continuous complex functions on U (Weierstrass
theorem), and has the induced topology for which itis a space (#). Let
A be a subset of en and H(A) the set of equivalence classes of holo-
morphic functions defined in an open neighborhood of A ; two functions
are equivalent if they coincide on a neighborhood of A. The set H(A)
has an obvious linear structure, and if B > A we have anatural linear
mapping ¢z 4 from H(B) into H(A) (therestriction). If A is open, we find
the space already defined. We can then equip H(A) with the inductive
limit topology of the H(U) corresponding to the open neighborhoods U
of A, by thelinear mappings ¢ 4. |t suffices to make U run through a
fundamental system of neighborhoods of A. In particular, if A is
compact, we can choose a fundamental sequence (Un) of open neigh-
borhoods of A, therefore H(A) appears then as an inductive limit of a
sequence of (&) spaces.

3 Strict inductive limits

DEFINITION 2 E isastrict inductive limit of afamily (E;) of LCTVSif
the Ei form an increasingly directed set of vector subspaces of E whose
unionis E, each Ei with a Hausdorff locally convex topology and Ei CEi
.implying that Ei is a closed topological vector subspace of Ei (in particular,
its topology is induced by E;) This is the case in Examples d), e), of
Section 2-

We still do not know if in this case the questions asked at the end of
section 1 have an affirmative answer (see Exercise 7 below). We shall
see that it is so in the most important case where the index set | is
countable. I n this case, theremarks madein Section 1 show that we can
suppose (E;) to be anincreasing sequence of vector subspaces of E, whose
union is E, with given Hausdorff topologies such that the topology of
E; is induced by that of F,.,, and such that E; is closed in E; +;.

PROPOSITION 3 Let E bea strict inductive limit space of an increasing
sequence of subspacesE ;. Then theE, areclosedi nE, Einducesoneach Eithe
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gruen topology of E, (in particular E is Hausdorff), the bounded subsets of
E are those contained and bounded in some Space E;- The space E is com
plete if and only if the E, are complete.

The proof rests on the

LEMMA LetF bean LCTVS, G a closed vector subspace, V an open disk
in G, « £ CG. Then, there exists an open disk Win F such that 2z £ CW,

WnG=V.

Let W, be an open disk in F sufficiently small so that « + W does
not meet G and such that Wo nF < V. The reader isinvited to verify
that W = F(Wo n V) satisfies the condition.

I n order to show that E induces on E; the given topology of E; we
must show that for every open disk Vi in Ei there exists a disked neigh-
borhood of 0 in E such that V n E, = V;. But by the lemma, we
construct by induction a sequence of disks V+," ---, ¥;, ... where Vi
is an open disk in &, inducing Vv;+l on E;- ;- Then V = U V; is the
required neighborhood. We now show that Z; is closed in E that is,
for z e CE,- there exists a continuous linear form on E, zero on E; but
not zero on X. In fact we have X e E; for somej and sinceE; isclosed in
E,. there exists a continuous linear form on E; zero on E; but not on X.
Since E; is atopological vector subspace of E, thisform can be extended
into a continuous linear form defined on all of E which will satisfy the
condition. For the assertion relative to the bounded sets we must show
that if A is a bounded subset of E then A ¢ E; for somei. If this were
not the case we could construct by induction a strictly increasing
sequence of indices (z,,) and a sequence (xp) in E such that

Xn EA N )); N CEin_l-

Then by the lemma we have a sequence of open disks V, in the Ein such
that V,_, = V, nE;,_ . x, énV, Theunion V of ¥, is then a neigh-
borhood of O in E, inducing the V,, on the E,, such that «z, ¢ nV,, for
every n. It follows that the sequence (z,). therefore A, cannot be
bounded.

If E is complete so are its closed subspaces E ;- Conversely, supposing
that the E; complete, we shall show that E is complete, i.e, (Chapter 2,
Section 14, Theorem 10) that every linearform x on E'whose restrictions
to the equicontinuous subsets are weakly continuous, is already weakly
continuous. First, x is zero on an orthogonal set E; for somei, as other-
wise for every i there exists an z; e E? such that <X, ;> = 1, and the
sequence of z; would be equicontinuous (Proposition 1) and would
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converge weakly to O without <X, x;> tending to 0, which is absurd.
Thus x is zero on a space &2, therefore it comes from a linear form y on
the quotient E'/ £?, which quotient can be identified with the dual Z;
of E;- Thislinear form is restricted to the equicontinuous subsets of ¥’
which are weakly continuous; in fact, an equicontinuous subset of E'
is contained in the image ¢(A4) of an equicontinuous subset of E'
(Chapter 2, Section 15, Proposition 20) which we can suppose weakly
compact, where ¢ is the canonical mapping from E' onto Z;. Now the
restriction of y to ¢(4) weak is continuous if and only if yo ¢ = X s
continuous on A weak which is in fact the case. Since E; is complete
we conclude that y is weakly continuous and soisx = yo ¢.

4. Direct sums

DEFINITION 3 Let (E;) beafamily of LCTVS E;- The topological direct
sum ofthe spaces E;, isthe algebraic direct sumE = 2'&; with the topology

which is the inductive limit of the eubepaces E; (with their given topology).

When the index set is finite, we have the product topology.
The construction of general inductive limits can be reduced to the
construction of topological direct sums and quotients, by

PROPOSITION 4 Let E bean LCTVS, the inductive limit of afamily (E;)
of LCTVS by linear mappings ui such. that E is generated by the union of
the ui(E;). Then E is isomorphic to a quotient space of the topological
direct sum ofthe E;-.

Let F bethislast space, let u bethelinear mapping of F into E which
coincides with ui on E;; it is a linear mapping from F onto E, there-
fore it defines a bijective linear mapping from a quotient of F onto E.
The quotient topology on E is the inductive limit topology of F by u
(Section 2, Example a)), therefore (by transitivity of inductive limits,
see Section 1) itisidentical to the inductive limit topology of the E; by
the ui induced by u on the E; ; hence the conclusion.

PROPOSITION 5 Let E bethe topological direct sum of a family (Ei)iel of
Hausdorff LCTVS. Then the Ei are closedin E and E induces in them the
given topology," more generally, for every subset J of |, the space E;, the
topological direct sum of the E; with i eJ, is a closed topological vector
subspace of E. The bounded subsets of E are the subsets which are con-
tained and bounded in the direct sum of a finite number of factors E;. The
space E iscomplete ifand only ifthe Ei are complete.
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A priori, the direct sum topology of Es is finer than the topology in-
duced by E, but the natural projection of E onto E; is a continuous
linear mapping from E into E; (as itsrestrictionsto E;. i €l, are con-
tinuous), thusE; is a closed topological vector subspace of E. Let A be
a bounded subset of E; if A were not contained in any E; withJ finite,
we could construct by induction an increasing sequence of finite subsets
Ji, J, === -L; ... Of | and a sequence of points z;, =--, x,, --- Of A,
such that

Tn E 'EJn+1 N CEJn‘
We let J betheunion of the./,,, and verify that E; isthe strict inductive
limit of the E;,- But then A n E; would be a bounded subset of E;
which is not contained in any of the #,_, a contradiction to Proposition
3. If E is complete, the E; are complete as they are closed subspaces
of E. For the converse, we need first

PROPOSITION 6 The dual of the topological direct sum 2 E; can be
identified with the product Il E; of duals of E;. the equicontinuous subsets
of the dual are those contained in a product Il Ai' wherefor every i, Ai is
an equicontinuous subset of .

Thisis a trivial consequence of Proposition 2, 1.

COROLLARY Letfor everyi, ®; bea set of bounded subsets of Ei' let & be
the set of bounded subsets of E, the union of the &,. Then on E' = Il E;
the ®-topology is identical to the product topology, when the E; have a
&;-topology. In particular, the weak (resp. strong) topology on E' is the
product of the weak iresp, strong) topologies of the E'i’

The general assertion is a particular case of Proposition 2, 2. The
particular casesfollow as we can replace & by the set of convex hulls of
finite unions of elements of & and then apply the characterization
of bounded sets of E given in Proposition 5.

We can now show that if the Ei are complete, E is complete, i.e. that
every linear form x on E' = |l E;, whose restrictions to the equi-
continuous subsets are weakly continuous, is weakly continuous
(Chapter 2, Section 14, Theorem 10). Let xi be therestriction of x to £,
then its restrictions to the equicontinuous subsets of £; (considered as
the dual of E;) are clearly weakly continuous, therefore, £, being com-
plete, we have xi e E;- We now show that all the xi except for a finite
number are zero: if not, there would exist an infinite sequence of

distinct indices ¢,, ..., %,, -.. and of elements z; E E; such that

(X’ x;ﬂ> - (Xin' a:;r.r.> = 11
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whence it isimmediate that (z; ) is an equicontinuous sequence tending
weakly to 0in E', which is absurd, since <X, x; > would have to tend to
zero. Let X be the element of E whose components are the xi; it remains
to be shown that x = X. These two forms coincide on the subspace E;
of Il B; and are restricted to the equicontinuous subsets of 1l £’ which
are weakly continuous, thus it suffices to show that every

x'= (x;) E Il B;
is in the weak closure of an equicontinuous subset of || E; containedin
2 E;. The set of projections z; of x' to the finite direct sums E corres-
ponding to the finite subsets J of | is then clearly equicontinuous, and
X' isaweak limit of the z, with respect to thefilter of increasing sections

in the set of finite subsets of |, hence the conclusion.
The following is the dual of Proposition 6:

PROPOSITION 7 Let (Ei) beafamily of LCTVS, let for every i, ®; be a
set of bounded disks of E; ; let ® bethe set of subsets of Il E; of type Il Ai
with Ai e &, for every i. Then on the dual Z & of the topological vector
product |l E, (see Ohapter 2, Section 15, Proposition 22) the &-topology
is identical to the direct sum topology of the &;-fopologies on the E;.

This follows immediately from the following formula, validfor every
family (Ai) of disksin the E;:
(Il A)O = F(U(AI)O)

the verification of whichisleft to the reader. By the characterization of
the bounded subsets of Il E;. we find the

COROLLARY The strong dual of Il E; can be identified with the topo-
logical direct sum of the strong duals of the Ei-

EXERCISE 1 Generalize Proposition 6 and its corollary to the space of
continuous linear mappings from a topological direct sum into an
LCTVS. Generalize aso Proposition 7 and Chapter 2, Proposition 22 to
the space of continuous linear mappings from a topological vector
product of LCTVSinto an LCTVSF whichis semi normed (in particular
a Banach space). Show that the result obtained is false when F is any
LCTVS (takeF = E).

EXERCISE 2 Let H be aninfinite dimensional separable Banach space.
Let (H,) be anincreasing sequence of vector subspaces of finite dimen-
sion whose union N isdenseinH, let £, = H/H,, E = HIN, «, being
the natural mapping from #, onto E. Show that the inductive limit
topology of the sequence of Banach spaces Z,, by the u,, is the coarsest
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topology on E (i.e, every non-empty open set is identical to E). Let F
be an algebraic supplement of N, let ¥, be the space F whose norm is
the inverse image of the norm of &, by the natural mapping of F into
E,; show that onF, the inductivelimit topology of the F,, (with respect
to theidentity mappings) is still the coarsest topology on F. (Show that
every continuous linear form on E or F is zero.)

EXERCISE 3 Let E be a vector space, (#,) an increasing sequence of
vector subspaces of E with Hausdorff locally convex topologies such
that theidentity mappingfrom E; into Ei+| isweakly compact (Ohapter
2, Section 18, Definition 14) for every i. Show that the space E, with
the inductive limit topology of the Ei is Hausdorff and that it oan also
be considered as the inductive limit of an analogous sequence of
Banach spaces.

EXERCISE 4 (G. Kothe) Let for every n, (a;;) be the double sequence
defined by: @i = j*fori < n, aj = infori > n. Let

o = coN xN)  1® = I[®(N x N),

whereN isthe set of natural numbers, let a». co (resp. a».l*) be the space
of productsanx with x E co(resp. x  I*) with the norm topology deduce
from the topology of co (resp. I*) by transport of structure.

a) For every double sequence x and every subset J of N X N let xJ
be the double sequence whose coordinates are identical to those of x on
J and zero on CJ. Let E resp. F) be the union of a*. co (resp, a.l”) with
theinductivelimit topology. Show that for every x e F, the sequence of
xJwhereJ runsthrough thefinite subsetsof N X N isa Oauchy sequence
in E and that it tends to thelimit X inF.

b) From this conclude that E is not complete, and similarly for the
sequences (notice that the double sequences whose coordinates are all
equal to 1isinF, but notin E).

EXERCISE 5 Let E be an LOTVS, a strict inductive limit of an in-
creasing sequence of subspaces #,,.

a) If & (resp. &,) is the set of equicontinuous subsets of E' (resp. E,)
then for every &-absorbing disk U in E' (see Ohapter 2, Section 3,
Definition 1) there exists an n such that U = (En)O, and thentheset U,
of x' e (En)' whoseinverseimagein E' is containedin U isa &-absorbing
disk.
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b) Oonclude from this that if the #,, are quasi-barrelled and if their
strong duals are bomological, then E is quasi-barrelled and its strong
dual is bornological.

c) Let E be a quasi-barrelled LOTVS. Show that if E' strong is quasi-
barrelled, it is aso barrelled (therefore under the conditions of b) E'
strong is aso barrelled).

EXERCISE 6 Deduce from Exercise 4 and Proposition 4 that there
exists a closed vector subspace H of the direct sum L of a sequence of
spaces isomorphic to co such that LIH is not complete (even if L is
complete by Proposition 5). Show that this remains true if we replace
co by Il (use the fact that coisisomorphic to a quotient space of I1-
Ohapter 1, Section 14, Exercise 1).

EXERCISE 7 Let E = Il Ei be the topological vector product of a
family of LOTVS E;-

a) Show that the weakly (resp. strongly) bounded subsets of
E' = X E; are the subsets contained in the sum of a finite number of
weakly (resp. strongly) bounded subsets of Z;.

b) Conclude that E is barrelled (or quasi-barrelled) if and only if the
S, are.

EXERCISE 8 Let E = X Ei be the topological direct sum of a family
of LCTVS E;. The spaceE is bornological (resp. barrelled, resp. quasi-

barrelled, resp. reflexive, resp. of type (.#)) if and only if the E; are
bornological (resp....).

5 (LF) spaces

DEFINITION 4 An (Z%#) space is a Hausdorff LOTVS E which is an
inductive limit of a sequence (E;) of (%) spaces by linear mappings ui'
such that the ui(E;) generate E.

The considerations of Section 1show that we can supposethe sequence
(E;) to be an increasing sequence of vector subspaces of E with given
topologies'l', which make them into (&) spaces, the identity mapping
from E; into #,,, being continuous and E being the union of the E;.
Such a sequence is called a sequence of definition of the (£ %) space.
The most important examples of Section 2 are (Z.%) spaces (examples
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C), €); d) when M is countable at infinity, examplef) when A is open or
compact). An (&) space is trivially of type (£%). By the transitivity
of inductive limits, a Hausdorff E space which is an inductive limit of
a sequence of (£ &) spaces by linear mappings such that the union of
their images generates E, is an (£ %) space; in particular, a quotient
space of an (Z%) space by a closed vector subspace is an (¥ &) space.
It should be noted carefully that a closed vector subspace of an (£ %)
space or even of a topological direct sum of a sequence of Hilbert spaces
may not necessarily be of type (¥£). The spaces of type (¥%) are
bornological and barrelled (Proposition 1, Corollary) but not necessarily
complete even in the case of inductivelimits of Banach spaces (Kothe's
example, Section 4, Exercise 4). The more special properties of (F%)
spaces follow from the next theorem (where local convexity is not
considered).

THEOREM 1 Let E be a vector space with a Hausdorff topology, (E;) a
sequence of complete and metrisable TVS,. let Ui be a continuous linear
mapping from Ej into E for every i. Let u bea continuous linear mapping
from a complete and metrisable TVS F into E, such that u(F) = UUI(EI).
Then there exists an indexi suchthat u(F) < ui(Ej), andifu; is bijective,
we can write u = w; 0o v, where v is a continuous linear mapping from F
into Eio

Proof LetHi bethe closed subspaceof F x £, consisting of pairs (X, y)
such that ux = uvivandlet E, = Pi(Hj) © F wherePi is the projection
of F X E; onto F; E, is clearly the set of x e F such that uz e w,(E,).

The hypothesis states that F = uF;, and (F being a Baire space) it
follows that one of the spacesE, is meagre. But by the Banach homo-
morphism theorem (Chapter 1, Sestion 14, Theorem 9, Corollary 3) this
impliesthat Piisalinear map from Hi onto F, i.e. Fi = F and u(F) < Ui
(F,)

| f uiisbijectiveweclearly haveu = Ui o vwherevisalinear mapping
from F into E; whioh is continuous by the closed graph theorem
(Chapter 1, Section 14, Theorem 10, Corollary) since it is oontinuous
for the inverse image topology of E by u; on E;, which is a topology
coarser than the given one and still Hausdorff.

COROLLARY 1 Let E bean (Z£) space, (E;) a sequence of definition of
E, u a continuous linear mapping from a space F oftype (&) into E. Then
there exists an i such that u is a coniinuous linear mapping from F into
E; (with its given (&) space topology).

Thisis an immediate particular case of Theorem 1. Applying thisto
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the case F = Ea, a normed space defined by a bounded disk of E, we
find

COROLLARY 2 Let E bean (£ %) space, (E;) a sequenceofdefinition of E,
A a bounded disk in E such that Ea is complete (for example a bounded
and complete disk). Then A is contained and bounded in a space E;-

I n particular, if E is quasi-complete, then the bounded subsets of E
come from bounded subsets of #; (the converseis false, see the space E
of Exercise 4 above).

COROLLARY 3 Let E bea vector space, let (E;) iresp, (F;) bea sequence
of (&) spaces, letfor everyi, u; treep, vi) bealinear mappingfrom E; (resp.
F.) into E,. we suppose that the #mages of the E; tresp, F;) generateE and
that we can find on E a Hausdor ff éopology for which the ui and the vi are
continuous. Then, on E, the inductive limit topology of the Ei by the ui is
identical to the inductive limit topology of the E, by the vi:

I n fact, we can reduce this to the case where the (E;) (or F,)) form a
sequence of definition and we see by Theorem 1 that every E; is con-
tained in someFi (with theidentity mapping Ei — F; continuous) and
conversely; the result follows. We then see that in practice there
cannot be more than one reasonable (#.%#°) topology on a vector space.

Dsing Theorem 1 the theorem of homomorphisms and the closed
graph theorem can be generalized. I n order to do this we introduce the
notion of a strictly bornologieal epace: it is a Hausdorff LCTVS whichis
the inductive limit of a family (of any cardinality) of Banach spaces
(thisisequivalent to saying that in E, every ®-absorbing disk, where
is the set of bounded disks in E such that Ea is complete, is a neighbor-
hood of zero; compare with Section 2, Example b)). If E is Hausdorff
and quasi-complete for E to be bornological or strictly bornological is
the same thing (Section 2, Example b)).

I n particular, an (&) space is strictly bomological since it is borno-
logical (Chapter 3, Section 4, Theorem 3). It is trivial that every in-
ductive limit of strictly bomological spaces is strictly bomological
(transitivity of inductive limits), in particular, on (£&%) space is
strictly bomological. We have,

THEOREM 2 Let E be a strictly bornological LCTVS, F a Hausdorff
LCTVS which is the union of a sequence of images of spaces E; of type
(%) by continuous linear mappings u, (for example E and F of type
(LF)).

1) Every continuous linear mappingfrom F onto E isa homomor phism.
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2) Lei « bea linear mapping from E into F. For the mapping « to be
continuous it is sufficient that its graph be closed and even that it is not
possible tofind in E a sequence (Xi) tending to zero such that the sequence
(UXi) tends to a limit different from zero.

Proof

1) We can clearly suppose that u is bijective (replace F by F /ker u);
we must show that the identity mapping from E with the given topo-
logy into E with the inductive limit topology T of the E; by the
vi = U o U; (written Et) is continuous. Since E is strictly bornological
this means that for every Banach space H and every continuous linear
mapping w from H into E, wis aso a continuous mapping from H into
Er (Section 1, Proposition 2). But we can clearly assume that the
union of the images of the E; in E isidentical to E and that the », are
bijective, the result then follows from Theorem 1.

2) In order to verify the continuity of u we are reduced to the case
where E isa Banach space. Let H = E X F the graph of u, let

H,,:H('\(EXE,)

(we suppose that the E; are subspaces of F whose union is F); the
weakest hypothesis on 2 impliesthat Hi is a closed subspaceof E X E;,
l.e. itis an & space for the induced topology. H is the union of the A,
and satisfies the condition of the space F of Statement 1. Therefore, the
projection of H onto E is an isomorphism, i.e. the inverse mapping is
continuous, therefore « is continuous, « obtained by composition of the
preceding mapping with the projection of H into F.

| t seems we could considerably weaken the conditions on F, a ques-
tion worth some research.

EXERCISE 1 Let E be an (&) space, F an (L&) space.

a) Show that if either E is normable, or F quasi-complete then the
space of bounded linear mappings from E into F (Ohapter 2, Section 18,
Definition 14) can be given a uniquely determined (£.%) topology,
finer than the topology of the bounded convergence (see Section 2,
Example cl).

b) E andF beingasina), let G be an (&) space, let « be a continuous
bilinear mapping from E x G into F such that for every z E G the
mapping x — u(x, z) from E into F is bounded. Show that there exists
a fixed neighborhood V of 0 in E, such that for every ze G, V be
transformed into a bounded subset of F by the mapping x > u(x, 2).

c) State results analogous to @) and b) when F is an (&) space or
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more generally a strict inductive limit of-a sequence of (%) spaces and
where the bounded mappings are replaced by compact mappings.

6 Products and direct sums of lines

Prorosirion 8 Let E be an LCTVS. The following conditions are
equivalent:

1) The topology of E is thefinest LCTV S topology on E (or equivalently,
every linear mapping from E into an LCTVS is continuous).

2) Every linear form on E is continuous and the topology of E is a
Mackey topology (Ohapter 2, Section 13, Definition 12).

3) E isisomorphic to a topological direct BUm of lines.

The equivalence of the conditions in 1) is trivial, furthermore it is
immediate that the finest locally convex topology on E is identical to
the topology (&, E*) (Mackey theorem), if on the other hand, (e) is a
basis of E by which E isidentified with k! (k is the field of scalars), itis
immediate from the definition that the finest locally convex topology
on E isaso thetopological direct sum (whichisthefinest locally convex
topology on E for which the mappings A —> Ae; are continuous, where
every locally convex topology on E makes them continuous). This
shows the equivalence of conditions 1), 2), 3).

Prorosition 9 Let E be a vector space with the finest locally convex
topology. E is bornological, complete, (therefore barrelled) and its bounded
subsets are finite dimensional (a fortiori E is reflexive and even a (.#)
space-see Ohapter 2, Section 18, Definition 13). On the dual E' = E*
of E the weak and strong fopologies areidentical and E* is isomorphic to a
topological product of lines.

E is bomological and barrelled from the definitions (but also because
of closure under inductive limits). The completion of E and the charac-
terization of its bounded subsetsistheresult of Proposition 5, Section 3.
The fact that the bounded subsets are finite dimensional is equivalent
to the fact that on E' weak and strong topologies coincide. On the
other hand, the weak dual of a topological direct sum is the product of
the weak duals of the factors (Proposition 6), the result follows:

PROPOSITION 10 Let E be a vector space with the finest locally convex
topology. Then every vector subspace V of E is closed, the induced topology
on V is also thefinest locally convex topology on V, and every algebraic
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supplement of V is also a topological supplement (therefore V is a topo-
logical direct factor of E).

Let W be an algebraic supplement of V, let p be the corresponding
projection from E onto V; itis continuouswhen V hasthefinest locally
convex topology T on V (Proposition 8, 1), it follows afortiori that itis
continuous from E into E, therefore that V and Ware topological
supplements and afortiori V is closed; at the same time this provesthat
the induced topology of E onto V isidentical to T (since the identity
mapping of V onto V with one or the other topology is continuous).

COROLLARY Every quotient space of E is Hausdorff and its topology is
the finest locally convex topology.

I n fact, this quotient space is by Proposition 10 isomorphic to a sub-
space W of E (supplementary to the given subspace V) hence the
conclusion.

PROPOSITION 11 Let E bea Hausdorff LCTVS. 'I'hefollowing conditions
are equivalent:

1) The topology of E is minimal among the Hausdorff locally convex
topologies.

2) E = E'™.

3) E isisomorphic to a topological vector product of lines.

1) implies 2) sinceif wehad x e E'* n ( £ andif H isthekernel of the
linear form x on E', the topology a(E, H) would be clearly Hausdorff,
strictly coarser than a(E, E') (sinceitsdual isH whichisstrictly smaller
than E') therefore strictly coarser than the given topology.

Conversely, 2) implies that every equicontinuous subset of E', which
will be weakly bounded for a(E', E'*), is finite dimensional (since
Proposition 10 contains the fact that for every vector space F, the
bounded subsets for a(F, F*), i.e. for the finest locally convex topology
-which is the same by the Banach-Steinhaus-Mackey theorem-s-is
finite dimensional. Therefore the topology of E is a weak topology. If
T is a Hausdorff locally convex topology coarser than a(E, E') its dual
must be E' (otherwise the topology would not be Hausdorff, every
vector subspace of E' being weakly closed), thereforeitis finer than the
initial topology, therefore identical, which shows that the initial
topology is minimal among the Hausdorff locally convex topologies on
E. Finally, we know that E'* with a(E'*, E') is isomorphic to a topo-
logical product of lines (Proposition 9), and conversely such a space
clearly satisfies 2).
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PROPOSTION 12 Let E bean LCTVS isomorphic to a topological vector
product of lenes. E is complete, barrelled, ¢ (#) space (afortiori reflexive),
whose strong dual is isomorphic to a topological direct sum of lines (con-
sidered in Proposition 9).

Trivial (complete spaces (resp, barrelled, resp. of type (.#)) are
closed under the formation of products; the strong dual of a topological
vector product is the topological direct sum of strong duals). We do not
know whether the space RI is bornological (see Exercise 3).

PROPOSITION 13 Let E bean LCTVS isomorphic to a topological vector
product oj lines, let V be a closed vector subspace of E,. then, V admits a
topological supplement, and the topology induced on V makes of it a space
isomorphic to a topological vector product of lines.

Consider the orthogonal VO of V in E' strong; we know (Proposition
10) that it admits a topological supplement N, and that VO and N are
isomorphic to direct sums of lines. Then, the strong dual E of E' can be
identified with the product of strong duals of VO and of N, these duals
being isomorphic to topological vector products of lines; with this
identification, V is the dual of N, hence the conclusion.

CoroLLARY Every Hausdorff quotient space of E is also isomorphic to a
topological vector product of lines.

EXERCISE 1

a) Every continuous linear mapping from an LCTVSF into a space
E isomorphic to a topological direct sum of lines is a homomorphism
onto a closed subspace. | f this mappingis bijective (or onto) it admits a
left inverse (or right inverse) continuous linear mapping. I n particular,
if H is a vector subspace of F such that F/H isisomorphic to a direct
sum of lines, then H admits a topological supplement.

b) Every continuous linear mapping from a space E isomorphic to a
topological vector product of lines into a Hausdorff LCTVS F is a
homomorphism onto a closed subspace. | f this mapping is bijective (or
onto) it admits a left inverse (or right inverse) continuous linear
mapping. I n particular, if H is a vector subspace of F isomorphic to a
topological vector product of lines, then H admits a topological supple-
ment.

EXERCISE 2 Let E be an LCTVS isomorphic to a topological direct
sum of lines, F an LCTVS isomorphic to a topological vector product
oflines; considerH = E & F: spaces of thistype aresaid to belinearly
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locally compact. Show that every closed vector subspace of H is also
linearly locally compact and admits a topological supplement.

EXERCISE 3 Let| be an infinite set of indices.

a) Consider r1 and its dual r@). Show that every linear form on ri
bounded on the bounded subsets can be decomposed uniquely as
=y + Z, where y' E R(1) and where Z is zero on rR(1) < RI.

b) Let Z be alinear form on ri1 bounded on the bounded subsets and
zero on r(1). Show that we can find a finite partition of I into subsetsJ
with the following property: for every decomposition of J into com-
plementary setsJ1 and J 2 the restriction of Z to one of the two spaces
RJ or R is zero (proceed by contradiction showing that we could
otherwise find an infinite sequence xciy of elements of E, with pairwise
disjoint supports, and on which Z is not zero; we could suppose
<xci), ') = 1, which is absurd, since xci tends to zero in the sense of
Mackey),

c) Let Z be a linear form on r1 bounded on the bounded subsets,
zero on r(1) and such that for every subset J of | the restriction of Z
to RJor to r() iszero. Show that if Z is not zero then the subsetsJ of |
such that the restriction of Z to RJis not zero form an ultrafilter ¢ such
that the intersection of a sequence of setsJi belonging to ¢ still belongs
to ¢ ("Ulam-Mackey ultrafilter") and that we would have

<x,Z) = Alimxi

for every X = (Xi) e RIl, where 4 is a constant. Show that conversely
for every Ulam-Mackey ultrafilter ¢ on | the preceding formula (with
A = 1) defines alinear form ¢, on r1, bounded on the bounded subsets,
zero on R(1).

d) Show that the forms ¢, thus constructed are linearly independent
and that then every linear form on Ri bounded on the bounded subsets
can be put uniquely in the form of a sum of an element of r() and a
linear combination of linear forms of type ;.

e) The space r1 isbornological if and only if there does not exist any
Ulam-Mackey ultrafilter on |. We then say that the cardinal of | is
bornological. Show that if there exists a non-bornological cardinal then
there exists a smallest non-bomological cardinal K, and, then a cardinal
Is bomological if and only if it is strictly inferior to K.

f) Show that a cardinal number which is the sum of a family of
bornological cardinals, the cardinal of the family of indices being
bomological, is bornological (use Chapter 3, Section 4, Exercise 2).
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Ulam has shown that if « is bornological, 2* is bornological ; therefore,
the cardinal K of e), if it exists, isa limit cardinal.

g) A cardinal O isstrongly inaccessibleifitis > X, ifitisnot the sum
of a family of strictly inferior cardinals, the family having a power
strictly inferior to O, and if furthermore « < 0 implies 2* < 0 (which
implies that O is alimit cardinal). The cardinal K ifit exists, see e), is
strongly inaccessible. We do not know of the existence of strongly in-
accessible cardinals and we can almost surely add to the axioms of set
theory the non-existence of strongly inaccessible cardinals without
finding any contradiction. In such a system of axioms we would have
the theorem: every space HI is bomological (therefore-see Chapter 3,
Section 4, Exercise-every product of bomological spaces is borno-
logical).

h) Let Z be alinear form on HI bounded on the bounded subsets,
let E be a subset of HI whose power is bornological, Show that the
restriction of Z to E is continuous. There is an analogous statement for
the convergent filters on HI with a basis of bornological power.

In this order of ideas see also Bourbaki, Integration, Chapter 1V,
Section 4, Exercise 18.

PART 2 METRISABLE LCTVS

1 Preliminaries

Recall that a space (%) is a metrisable and complete LCTVS. IfE isa
metrisable LCTVS, F a closed vector subspace, then EIF is metrisable,
and if E is complete, so is EIF (Chapter 1, Section 4, Proposition 6).
Clearly, a closed vector subspace of a space (&) is a space (&), as well as
the topological vector product of a sequence of (&) spaces.

A space E of type (&) is a Baire space, a reason for its special pro-
perties. Itisthen abarrelled space, i.e. if F isan LCTVS, every subset of
L(E, F) bounded for pointwise convergence is equicontinuous (Banach-
Steinhaus theorem; in fact, local convexity is irrelevant in this case,
see Chapter 1, Section 15, Theorem 11). We conclude that if E and F
are (&) spaces, then every separately continuous bilinear mapping
from E x F into an LCTVS G is continuous, and every set of bilinear
mappings from E X F into G bounded for simple convergence is equi-
continuous (Chapter 1, Section 15, Theorem 12). Among the properties
using the fact that we are dealing with complete metrisable spaces we
must point out the closed graph theorem, which in practice means that
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al .linear mappings from an (&) space which we shall find are con-
tinuous, and the theorem of homomorphisms which is a useful variant
(Chapter 1, Section 14).

A locally convex metrisable space E (complete or not) is borno-
logical, in particular its topology is the associated Mackey topology
7(E, E") (Chapter 3, Section 4, Theorem 3). In particular, if F is an
LCTVS, the continuous or weakly continuous linear mappings from E
into F are identical; similarly, there is identity between the homo-
morphisms and the weak homomorphisms (Chapter 2, Section 16,
Proposition 28, Corollary 2 and Proposition 29, Corollary 3; notice that
we use the fact that, the subspace u(F) of E, being metrisable, has the
Mackey topology).

We point out finally the following proposition of General Topology,
which can be applied in particular to quotients of (&%) spaces:

PROPOSITION 1 Let E bea complete metric topological space, #Z a separ-
ated and open equivalence relation in E. Then every compact subset of
E |2 is contained in the canonical image of a compact subset of E,. every
convergent sequencein E/ # is the canonical image of a convergent sequence
in E.

Proof The two parts of the proposition result from

COROLLARY 1 Under the conditions of Proposition 1, let K be a totally
discontinuous compact space, «# a continuous mapping from K into E /Z.
Then there exists a continuous mapping v from K into E such that

U= éoVv,
uihere ¢ is the canonical mapping from E onto E | 4.

The first part of the proposition follows since every compact subset
A of E/# can be considered as the image of a compact K, totally dis-
continuous, by a continuous mapping from K onto A (we can take K
to be the Cech-Stone compactification of A considered as a discrete set,
or also-since A is metrisable-the tryadic Cantor set); similarly, the
second part of the proposition follows from the lemma, considering a
convergent sequence in E|l# as the image of the compact space K

formed by points 0, 1, 4, ..., lin, ... by a continuous mapping from
K into E/Z.

Proof of Corollary 1 We construct by induction an increasing sequence
of finite partitions V,, ..., ¥,, --- of K by sets simultaneously open

and closed, and of mappings Un,i — B, i assigning to every U, i E V,
an open ball of radius < lininE, such that u(U, ;) = ¢(B, ;) and that
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Uprii ¢ Uny implies By ¢ By, The possibility is immediate
because if the construction is made up to rank n, we consider for every
U, eV, the covering formed by inverse images by u of images by ¢
of open balls of radii < lin contained in B, ,; since ¢ is an open map-
ping, we obtain an open covering of the totally discontinuous compact
space U, i; therefore, there exists a finer finite covering defined by a
partition of U, ; into sets simultaneously open and closed Unp+ 1;- To
each of these sets we can assign an open ball B, 1,; of radius < 1l (n +1)
in B, ; such that u(Uy:,;) ¢ é(Barys). This being done for al the
U, E Vy, we obtainthe covering V,,.y = (Uynytq,5) SOught for, as well as
the mapping Uyt ; — Buyiy Let now X E K, let Un(x)be the element
of V, containing x, let B,(z) be the associated ball in E; we thus obtain
a decreasing sequence of balls whose radii tend to zero, therefore (E
complete) a limit point v(x). Since u(x) e ¢(B,(z) for every n, we con-
clude that é(v(x)) = ux. On the other hand, the oscillation of v in an
element of ¥V, is at most 2/n, therefore v is continuous.

We remark that in the case where E/Z is the quotient space of an
(&) space by a closed vector subspace F, Proposition 1is a particular
case of a stronger result (Chapter 1, Section 14, Exercise 2).

EXERCISE Let E be metrisable and compact, # a separated equiva-
lence relation in E such that every convergent sequence in E/Z is the
image of a convergent sequence in E. Show that Z is open.

2 Bounded subsets of a metrisahle LCTVS
THEOREM | Let E bea metrisable LCTVS.

1) For every sequence (Ai) of bounded subsets of E, there exists a
sequence (4;) o] numbers > 0 such that u A;4; is bounded; furthermore,
there exists a closed and bounded disk A in E such that the Ai are bounded
subsets of the normed space EA.

2) Let A be a bounded subset of E. There exists a dosed and bounded
disk B of E suchthat A < B, and such that the topology and the uniform
structure induced by the normed spaceE s on A is identical to that induced
by E.

It isimmediate that the two assertions of 1) are equivalent. Let (p,,)
be a fundamental sequence of semi-normsin E, let

M? = sup pa(x),

zedq
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we will then have, if x e U1, 4,
Pa(®) < sup A M,

It suffices to choose (4,) such that for every n we have
sup A, M} < + oo,

or equivalently, such that for every n, (4;) is bounded from above by a
multiple of the sequence (1/M?});. It suffices in fact to choose

A'z - |nf( lel’ III’M:)

I n order to prove the second part we can suppose that A is a disk, is
then sufficient for Es to induce on A the same system of neighborhoods
of 0 which E induces (Chapter 2, Section 14, Lemma), or for every
A >0, an index n exists such that An V,< AB (where (V,) is a
fundamental sequence of neighborhoods of 0 in E). Now we have
A< n/iVi where (4;) is some sequence of numbers > 0; let (u;)
be a sequence of positive numbers such that A;/u; — 0; we contend
that B = n u,Vi satisfies the requirement. In fact, we have A < Au;Vi
for i sufficiently large (that is for i such that 4; < Au,), now, let n be
such that V,, is contained in the intersection of the Ay, Vi for the other
indicesi, then we have A N V,, © Au;Vi for everyi,i.ee AnV, < iB.
The two statements of the theorem give

COROLLARY 1 Let E bea metrisable LCTVS, let (Ai) be a sequence of
bounded subsets of E. Then there exist« a dosed and bounded disk A in E
such that the Ai are bounded subsets of the normed space EA and such. that
the latter induces on them the same topology and uniform structure as
does E.

COROLLARY 2 Let A beaprecompact (resp. compact, resp.weakly compact
and convex) subse: of the metrieable LCTVS E. Then there exists a closed
and bounded disk B in E such. that A is also a precompact (resp. compact,
resp, weakly compact) sub8et of the normed space Eg-

This follows trivially from Theorem 1, 2) in the case where A is pre-
compact or compact. In the case of weak compactness we use the fact
that for a convex subset A of a locally convex space F( = Eg), the fact
of weak compactness depends only on the topology induced by F (not
F weak but F) on A (Chapter 2, Section 9, Exercise 2). We shall seein
Chapter 5that in a complete LCTVS, the closed convex hull of a weakly
compact set is weakly compact, therefore if E is an (&) space, it is
useless to suppose A convex in the preceding corollary.
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COROLLARY 3 Let| be a continuous mapping [rom. a locally compact,
r-compaci space M into a metrisoble LCTVS E. Then there exists a closed
and bounded disk A in E such that| is a continuous mapping[roin Minto
the normed space EA.

The remark following Corollary 2 shows that Corollary 3 remains
valid if we replace continuity by weak continuity.

EXERCISE 1 Show the analogue of Corollary 3 above for the con-
tinuous functions zero at infinity (it is not necessary to suppose M
r-compaet), What do we obtain when M is the set of natural numbers,
with the discrete topology?

EXERCISE 2 Let M be alocally compact space with a positive measure
u, where M is the union of a sequence of integrable sets. Let | be a
measurable mapping from M into a metrisable LCTVS E. Show that
f is ailmost everywhere equal to a measurable mapping from M into a
normed space E A, where A is a closed and bounded disk in E.

EXERCISE 3 Let A* = (A7); be a sequence of sequences of positive
numbers. Let E be a metrisable LCTVS, (xi) a sequencein E such that
for every X e E', the sequences (4A7<Xi' X'») are bounded for every n.
Show that there exists a closed and bounded disk A in E such that the
xi belong to the normed space E », and that the sequence of their norms
Il i llA is such that the sequences (A7 ||, xi I!A)i are bounded for every n.

EXERCISE 4 Let E be a Hausdorff LCTVS. Show that the following
conditions are equivalent:

a) For every compact linear mapping from a LCTVSF into E, the
transpose is a compact linear mapping from E' strong into F' strong.

b) The same as a) but F being a Banach space.

c) For every compact disk A in E, there exists a closed and bounded
disk B @ A such that A is a compact subset of the normed space EB.
This means even that the transpose of a compact linear mapping from
an LCTVSF into E is a compact mapping from E, (E' with precom-
pact convergence) into F' strong. Apply thisresult to the case where E
IS a metrisable space.

3 T, Topology on the dual

Let E be an LCTVS, then on the equicontinuous subsets of E' (which
are also uniformly equicontinuous), the topology 'l'; of uniform con-
vergence on precompact sets Tc is identical to the weak topology.
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Therefore onE' the topology T', is a priori coarser than the finest
topology To on E' (locally convex or not) inducing on the equicon-
tinuous subsets the weak topology (see Chapter 0, Section 1). We shall
see that they are indentical if E is metrisable (this forms with the
Hahn-Banach theorem, the Banach-Steinhaus theorem, the theorem
of homomorphisms or the closed graph theorem, one of the deepest
results of the theory, although less frequently used than the others);

THEOREM 2 (BANACH-DIEUDONNE) Let E be a metrisable LcTVS.
Then on E' the topology of precompact convergenceis identical to thefinest
topology which induces on the equicontinuous subsets the weak topology.

We first give the corollaries. The theorem is equivalent to

COROLLARY 1 A subset H of E' isclosed for the topology Tc ifand only
I ffor every weakly closed equicontinuous subset A of E', A N H is weakly
closed. Equivalently: A subset U of E' is open for T; if and only if for
every equiconiinuou« subset A of E', U n A is relatively open in A with
the weak topology.

Or equivalently:

COROLLARY 2 Let % bea mapping from E' into a topological space F.
The mapping « is continuous for the To topology on E' if and only if its
restriction to every equiconiinuous subset of E' is weakly continuous.

Corollaries 1 and 2 are, for example, useful when E is a metrisable
space of type (.#), since then the topology To is the strong topology,
important in itself. In the general case, the most important application
IS

COROLLARY 3 Let E bean (#) space, let H bea convex subset of E'. The
subset H is weakly closed if and only if its intersection with every weakly
closed equiconiinuoue subset of E' is weakly closed.

Since the dual of E' for Tois E (Mackey theorem), for a convex subset
H of E' to say that H is closed for To isto say that it is weakly closed,
and the conclusion follows from Corollary 1.

Furthermore, we shall show that the finest topology To which ...,
isidentical to thetopology of uniform convergence on the sequences of E
converging to 0. From this we get:

COROLLARY 4 Let E bea meirisable LcTvs. Then on E' the topologies
of precompaci convergence, compact convergence and uniform convergence
on the sequences of E tending to 0 are identical. I n other words, for every
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precompact subset K of E, there exists a sequence (Xi) in E tending to 0
such that K is contained in the closed disked hull of (Xi)'

Proof of Theorem 2 We shall show that for every subset U of E' which
Is open for the topology To, i.e. such that the intersection of Cu with
every weakly closed equicontinuous subset of E' is weakly closed, and
every X' E U, there exists a neighborhood of x' for the uniform con-
vergence on the sequences converging to 0, contained in U. We can
clearly suppose X = 0 and we haveto find aset K in E, the set of points
of a sequence converging to 0, suchthat KO ¢ U. Let (V,) be a funda-
mental decreasing sequence of neighborhoods of 0 in E, and construct
by induction a sequence K ¢ .. K, . . . of finite subsets of E with

K, < Vanforn> 1,

(1){K;°n (Var)® € Uforn>o0 (where kK. = UK.
t<n

Then K = UK, satisfies the required conditions (since E' is the
union of polars of V,). The construction of K ®is immediate sinceit is
only necessary that K g be a finite, subset whose polar does not meet
7° n Cu, whichis possible since thislast set is weakly closed and does
not contain O. In order to construct X,,, we must find a finite subset
A = K,,, of V.., such that (K. u A)O does not meet (V,.,)°* n Cu.
Now this last set is weakly compact and its intersections with the
(K, u A)O form a filter base of weakly closed sets, whose intersection
IS empty since a point in the intersection belongs to

(Kp U Vard)® = K00 (Varh)Y
which is contained in U by the induction assumption. Then at |east one
of the sets
(K. U A0 n (V,+90n Cu
Is empty, and the result follows.

EXERCISE 1 LetE be an LCTVS. Consider the following conditions:

a) Every vector subspace of E' whose intersections with the weakly
closed equicontinuous subsets are weakly closed, is weakly closed,;

b) Every continuous linear mapping from E onto a barrelled LCTVS
F is a homomorphism.

1) Show that @ implies b) and that if F is barrelled, b) implies a).
Application: Deduce the theorem of homomorphisms for (&) spaces
from Theorem 2, Corollary 3.
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2) Show that the properties a) and b) are closed under the formation
of quotients by a closed vector subspace. Show that a) implies that E
is complete (therefore that every quotient space of E by a closed vector
subspace is complete).

3) Conclude that properties a) and b) are not necessarily true when
E is the topological direct sum of a sequence of spaces isomorphic to
¢, or to |l (use Part 1, Section 4, Exercise 5). A fortiori Theorem 2 is
not necessarily true for these direct sums.

4) In 1) we have seen that the theorem of homomorphisms is valid
for a continuous linear mapping from a space F of type (&) onto a
barrelled LCTVSF. Itisno longer valid if we suppose E barrelled, F of
type (#): let E be a normed space of codimension 1in its completion
B (therefore barrelled, see Chapter 3, Section 2, Exercise 7, 2», D a
line supplementary to E in £,F = E/D, u the bijective continuous
linear mapping from E onto F induced by the canonical mapping from
B onto F. The mapping « is not an isomorphism (since E is not com-
plete).

EXERCISE 2 Let E be abarrelled LCTVS, « alinear mapping from E
intoa LCTVSF.

1) Let H be the subspace of F' formed by the y' such that y' o u is
continuous. Show that if A is a weakly bounded subset of F' contained
inH, thenitsweak closureis containedin H. Concludethat if F satisfies
condition a) of Exercise 1, (in particular if F is an (&) space), then H
is a weakly closed vector subspace of F'.

2) Conclude from 1) that if E is an (%) space, « is continuous if we
can find a total subset in F' formed by y"s such that each y' o % is
continuous. (It sufficesto verify that u is weakly contmuous.)

3) Let » be alinear mapping from a barrelled LCTVSE into a space
F of type (£). Show that « is continuous if we can find on F a Haus-
dorff locally convex topology coarser than that given on F for which u
IS continuous (immediate consequence of 2}).

4) The mapping w« is continuous if every y'EF' is in the weak
closure of a weakly bounded set of F' whose elements y' are such that
y' o % IS continuous.

EXERCISE 3 Let E be an (#) space, (Xi),+ a family of elements of E,

H a total subset of E' such that for every family 4 = (4,) of scalars all
equal to t1or -1, we can find an element x = u(4) in E (evidently
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unique) such that
<X’ X') = 2 )L.,;<x2-, X')

for every x' e H. Show that the map u can be extended to a continuous
linear map from [*(I). (Let F be the subspace of {*(I) formed by
linear combinationsof A = (4;), extendu into a linear mapping u from
F into E; show that « is continuous using Exercise 2, and the fact that
F is barrelled, established in Chapter 3, Section 3, Exercise 7). What
can be said about the summability of (Xi)iEl? (See Chapter 2, Section
18, Exercise 3).

THEOREM 3 Let E and F be (&) spaces, % a continuous linear mapping
from E into F. The following conditions are equivalent:

1) % is a homomor phism.
2) % %8 a weak homomor phism.
3) u(E) is closed.
4) u' 43 a weak homomor phism.
5) u'(F') isweakly closed.
6) u'(F') is strongly closed.
| t suffices in order to verify these conditions that we have
7) U'is a strong homomor phism.
T'his condition is also necessary if E and F are Banach spaces.

Proof 1)isequivalent to 2), since the topology of u(E) is the Mackey
topology (see Section 1). 1) implies 3) since every quotient space of E
is complete, on the other hand 3) implies 1), which is the homomorphism
theorem (Chapter 1, Section 14). Anyway, 3) is equivalent to 4) and
2) equivalent to 5) (Chapter 2, Section 16, Proposition 27). There-
fore conditions 1) to 5) are equivalent and 5) clearly implies 6). We shall
show that 6) also implies 5) by means of the following stronger result:

LEMMA Suppose that for every weakly closed disked equicontinuous subset
A of E', u'(F) r. A is closed in the Banach space &' . Then u'(F') is
weakly closed (i.e. % is a homomor phism).

(Notice that the hypothesis of the lemma means that u'(F') is closed
with respect to the sequences that-converge to 0 in the sense of Mackey.)
Applying Theorem 2 of Section 3, it suffices to show that for every A,
A nu'(F") = B isweakly closed because it is weakly compact as will be
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shown. Now B being a closed disk of the Banach space £, E; = (E)B
is a Banach space, therefore a Baire space. On the other hand F' is the
union of a sequence (C,) of weakly compact disks. Then
B; = A nu'(C,)

is a disk of B3 which is weakly compact in E' and a fortiori closed in
E%, the union of the #B,, is E5. From this it follows that one of the B;
is a neighborhood of 0in E3, then we shall have, if needed multiplying
C, by a scalar, B < B; = «%'(C,) r. A, whence B = B,. Now B; is
weakly compact, so B is, hence the conclusion. (This lemma is due to
G. Kothe.)

Thus, conditions 1) to 6) are equivalent. We now show that 7) implies
6). In fact, let G be the closure of u(E), writew = wav wherev isthe
mapping from E into G deduced from % and w the identity mapping
from G into F. We then have u' = v' aw, but since U' is a strong
homomorphism so is V': if U is a strong neighborhood of 0 in G', since
w' is a mapping onto, we have U = w'(V), where V = W'-I(U) is a
strong neighborhood of 0 in F', then v (U) = u'(V) and since by
hypothesis u'(V) is a strong neighborhood of 0 in u'(F"), v'(U) is a
strong neighborhood of 0 in v'(G') = u'(F'), so v' is a strong homo-
morphism. Since V' is bijective, v' is a strong isomorphism from G' into
E', then, G' being complete, u'(G') is a strongly complete subspace,
hence strongly closed, of E'.

Finally, we have seen that (Chapter 2, Section 17, Proposition 32,
Corollary 2) that if E andF are Banach spaces, 1) implies 7), which ends
the proof of Theorem 3. Now we can state the converse of the result:

COROLLARY 1 Let E and F be Banach spaces, # a continuous linear
mapping from E into F. The mapping u is a homomorphism (or a metric
homomorphism) from E into F if and only if u' is a homomorphism (or a
metric homomor phism) from the Banach spaceF' into the Banach spaceE'.

The case of a homomorphism follows from the equivalence of con-
ditions 1) and 7) of Theorem 3. It remains to be shown that if u' is a
metric homomorphism, so is u. Now % is a homomorphism, and by
Chapter 2, Section 17, Proposition 32, in order to show that « is a
metric homomorphism we can limit ourselves to the case where % is an
isomor phism (topological) onto. Thisis trivial sincethe norm of anormed
spaceis known once we know the unit ball of itsdual. Particular cases:

CororLLARY 2 Let E and ¥ be Banach spaces, u a continuous linear
mapping from E into F. The mapping » is an isomorphism (resp. a metric
ieomorphiem, a resp. homomor phism onto, a resp, metric homomor phiem
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ifand only if i is a homomorphism onto a weakly dense eubspace of E'
(resp. a metric homomorphism onto a weakly dense subspace of E',

resp, an isomorphismfromP' into E', resp, a metric isomor phismfrom F'
into E').

Finally, using Proposition 1, of Section 1, we have (independently
of Theorem 3):

COROLLARY 3 Let E andF be(#) spaces, 1. a continuous linear mapping
from E into F. The mapping u is a homomorphismifand only iffor every
sequence (i) in u(E) tending to 0, there exists a sequence (Xi) in E tending
to 0 such that Yi = u», for everyi.

|t should be noted that in general if 1 is a homomorphism from E
into F (E and F of type (%)), 11’ is not necessarily a strong homo-
morphism, in particular if 11, is an isomorphism from E into F, or a
homomorphism from E onto F. In other words (as we have already
pointed out in Chapter 2, Section 15), the strong dual of a closed sub-
space of a space E of type (&) may not be identifiable with a quotient
of the strong dual of E, and the strong dual of a quotient space of E
may not be identifiable with a subspace of the strong dual of E (if we
wish the topologies to remain the same). Recall however that if 11, is an
isomorphism from a reflexive LCTVS into an LCTVSF, its transpose
Is a strong homomorphism (Chapter 2, Section 15, Proposition 21, 2)).

EXERCISE 1 Let u, be a homomorphism from a Banach space E into
an LCTVS F. Show that «’ is a strong homomorphism.

EXERCISE 2 Let P be the set of indices of derivation relative to Rn.
Show that the linear mappingf — (DVI(O))PEP from &(R*) into R? is a
homomorphism from the first onto the second (show that u'(F') is the
weakly closed subspace of E' formed of distributions of support {O}).
Show that the kernel of this homomorphism has no topological supple-
ment (if v were a right inverse of « show that we could suppose
v(y) E &(R") has its support in a fixed compact set K; conclude by
contradiction, observing that the space off e &(R*) having its support
in K, admits a true continuous norm, while R? does not).

PART 3 (9%) SPACES

1 Generalities
DEFINITION 1 A locally convex space H is a (2%) spaceifit satisfies:
1) H admits a fundamental sequence of bounded subsets.
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2) If (U;) is a sequence of closed and disked neighborhoods of 0 whose
intersection U is bornioorous, then U is a neighborhood of 0.
By polarity, condition 2) is equivalent to

2') Every bounded subset M of the strong dual H' of H which is the
union of a sequence of equiconiinuoue subsets is equiconiinuous,

Condition 2) is satisfied if H is quasi-barrelled (then H is of type
(@#) ifit admits a fundamental sequence of bounded sets), and in the
general case it can be used to replace the requirement that a space is
quasi-barrelled. A normed space satisfies condition 1) and is quasi-
barrelled, therefore a (24#) space. Other examples will be studied in
Section 4, but for the time being the most important one (which
justifies the introduction of (2.%) spaces) is given by

THEOREM 1 The strong dual E' ofameirisableLcTVvsE is oftype (2.4).

I nfact, the bounded subsets of E' are its equicontinuous subsets, and
they admit a fundamental sequence (since E admits a fundamental
sequence of neighborhoods of 0). Condition 2) remains to be verified,
for this we notice that a fundamental system of neighborhoods of 0 in
E' is formed of absorbing weakly closed disks (which are the polars of
the bounded sets of E) and we must find such a V contained in U. Let
(Ai) be a fundamental sequence of bounded disks of E' which we can
suppose weakly compact; we construct by induction a sequence of
weakly closed disked neighborhoods Vi of 0 and of scalars A, > 0 such
that if the construction is done up to rank n, we have

/‘{,-Az- < %U, Z,A, < Vj; Vi < tj,
for i,j < n.

It sufficesto set V = r. Vi. The possibility of induction remains to
be shown. We can find 2,1 sufficiently small so that

Aat1dni1 © Vi
for1 = 1, . 00 nand
Zﬂ+1Aﬂ+1 = %U:

then A = 5;; (A:4;)

is a weakly compact disk contained in $U. Let W be a weakly closed
disked neighborhood of O contained in 3U, +,, then V,+; = A + W is
a weakly closed disk contained in 3U + 1U,.,, thusin Unpt+, since Unt,
is a disk containing A, thereforethe 2,4ifori = 1, ..., n + 1.

PROPOSITION 1 Let H be a (2%#) space, E an LcTvs. Then every
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bounded subset of Lb(H, E) which 73 the union of a sequence of equi-
continuous subsets, is equiconiinuous.

Thisfollows from Condition 2' of Definition 1. A subset M of Lb(H, E)
is clearly bounded (resp. equioontinuous) if and only if for every equi-
continuous subset A of E', the set M'(A) the union of the u'(A) when «
runsthrough M is a bounded (resp. equicontinuous) subset of the strong
dual of H.

COROLLARY 1 Every bounded sequence in Lb(H, E) and therefore every
bounded subset M in which there exists a countable dense subset (it suffices
that it be dense for pointwise convergence), is equicontinuous.

I n particular:

COROLLARY 2 LetH bea complete (2% space, let (Ui) be a sequence of
continuous linear mappings from H into E (E Hausdorff) converging
porntwise to a limit u(x). Then (Ui) is an equiconiinuoue sequence and « a
continuous linear mapping and U, tends to % uniformly on every compact
Set.

In fact, since H is complete and (u;) bounded for pointwise con-
vergence, it is also bounded for bounded convergence, therefore
equicontinuous (Corollary 1).

CoroLLARY 3 LetH bea (2%) space, E an (%) space, then Lb(H, E) is
an (&) space.

In fact, H admits a fundamental sequence of bounded subsets and
since E is metrisable, Lb(H, E) is metrisable. In order to verify com-
pleteness it suffices to see that every Cauchy sequence converges; for
this, it sufficesto verify that it converges pointwise, which follows from
Corollary 2 (see also Section 5, Theorem 6, Corollary 1, for a more
general and less obvious result), in particular:

COROLLARY 4 The strong dual of a (2% space is of type (&F).

By Theorem 1, it follows therefore that the bidual of a metrisable
space E is an (¥) space (notice that as E is quasi-barrelled the natural
topology of its bidual -uniform convergence on equicontinuous subsets
-isidentical to the topology of the strong dual of E strong).

EXERCISE 1 Let w be a weakly continuous linear mapping from a
(2%) space H into a separable LCTVS. Show that u is continuous
(proceed by transposition, noticing that the equicontinuous subsets of
E' are weakly separable).
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EXERCISE 2 Let E be a reflexive non-separable Banach space, let H
be the space E with the topology of uniform canvergence on the separ-
able bounded subsetsof E'. Show that E is areflexive (2% space whose
topology is different from the Mackey topology. Show that the result
of Exercise 1is not necessarily true if E is not separable.

EXERCISE 3 Let E beametrisable LCTVS. Show that every bounded
and weakly bounded subset of E" is contained in the weak closure of a
bounded subset of E. In particular, every separable bounded subset of
the: completion of E is contained in the closure of a bounded subset
ofE.

EXERCISE 4 Let E be a metrisable LCTVS, & a set of bounded sub-
sets of E closed under unions. Show that E' with the &-topology is a
(%) space. Application: the bidual of a (2% space H, withitsnatural
topology (equicontinuous convergence) is a {Z.%) space.

2 Bilinear mappings on the product of two (2% spaces

PROPOSITION 2 LetH bea(2£) space, (U;) a sequence of neighborhoods
of 0 in H. There exists a neighborhood U of 0 absorbed by every U; (i.e
for every U, some dilation of U, contains U).

By polarity, this means that for every sequence of equicontinuous
subsets Ai of H', there exists a sequence of 2; > 0 such that Ui;4; is
equicontinuous. Now H' being metrisable and the Ai bounded we can
find the 4, such that u 1,4, is bounded (Part |, Section 2, Theorem 1);
this set is equioontinuous by Condition 2' of Definition 1.

COROLLARY 1 Every continuous linear mapping of a space H of type
(2%) into a metrisable LCTVS E is bounded (i.e. transforms some
neighborhood of 0 into a bounded subset). Every equicontinuous set of
linear mappingsfrom H into E is equibounded (i.e. there exists a neighbor-
hood U of 0 in H such that
M) = U uwy
ueM
IS a bounded subset of E).

| t suffices to prove the second assertion. Let (Vn) be a fundamental
sequence of neighborhoods of 0 in E, then for every n,
M-I(V,) = n u-1(Vy)
ueM

iIs a neighborhood Un of 0 in H. If U is a neighborhood of O in H

M
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|bsorbed by all the U,, M(U) isabsorbed by all the V,,, i.e. itisbounded.
an the same vein, we point out:

COROLLARY 2 Let E bean (%) space, H a (2£) space. Every continuous
linear mappingfrom E into H is bounded, every bounded set of continuous
linear mappings from E into H is equibounded.

It suffices to see the continuous linear mappings from E into H as
bilinear forms on E x H' (product of two (&%) spaces) and to apply
Chapter 1, Section 15, Theorem 12.

THEOREM 2 Let HI and H, be(2£) spaces, E an LCTVS, u a bilinear
mappingfrom HI x H:zinto E. The mapping u is continuous ifand only
i fit is hypocontinuous (Chapter 3, Section 5, Definition). More generally
aset M of bilinear mappingsfrom HI x H24s equicontinuous i f and only
Ifit is equi-hypocontinuous.

Since Mi s equicontinuous (resp. equi-hypocontinuous) if and only if
for every equicontinuous subset A of E' the set M'(A) of bilinear forms
<u(X y), Z) onHI x H,when urunsthrough M and Z runsthrough A
IS equicontinuous (resp. equi-hypocontinuous)-the verification is
trivial; see Chapter 3, Section 5, Exercise | -weareled back to the case
where E isthefield of scalars. But M can be identified with an equicon-
tinuous set of linear forms from HI into the strong dual H, of H 2 (equi-
hypocontinuity in H2), and since H, is an (&) space, there exists a
neighborhood U of 0in HI such that M(U) is a bounded subset of H,
(Proposition 2, Corollary 1). But HI is the union of a sequence of
bounded subsets, thenceaso U with the Aias bounded subsets, therefore

M(U) = uM(A)).

The M(A;) are equicontinuous subsets of H, (equi-hypocontinuity in
HI), thus M(U) is a bounded subset of H,, the union of a sequence of
equicontinuous subsets, therefore equicontinuous. This means that M
IS an equicontinuous set of bilinear forms.

COROLLARY 1 Let HI and H, be barrelled (2% epaces; let E be an
LCTVS, U a separately continuous bilinear form from HI x H: into E;
then u ¢s continuous. More generally every set M of separately continuous
bilinear mappings from HI x H, into E which is pointwise bounded is
eguicontinuous.

Inthe case of HI and H, barrelled, the hypothesison M implies equi-
hypocontinuity (Chapter 3, Section 5, Proposition 9, Corollary 1).

COROLLARY 2 Let Eland E: bemetrisableLcTVvs, E an LCTVS, U a
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bilinear mapping from E; x E, into E separately weakly continuous.
Then u 4s continuous for the product of the strong topologies. More gener-
ally, let M be a set of weakly separately continuous bilinear mappings
from E; x E, into E, bounded for pointwise convergence, then M is equi-
contynuous for the product of the strong topologies.

It suffices to consider the case where E is the field of scalars. The
hypothesis on 47 impliesthat M is bounded for bi-bounded convergence
(E: and B, are strongly complete), i.e. that for every bounded subset
A of Ei, M(A) is a bounded subset of E . therefore an equicontinuous
subset of the dual of E; strong. This is a statement of the equi-hypo-
continuity of M in E| strong; we see also that Mi s equi-hypocontinuous
in B, strong, therefore, by Theorem 2, M is equicontinuous for the
product of the strong topologies (£; and E, are (2%) spaces by Theorem
1).

PROPOSTION 3 Let HI and H, be(2%) spaces, E an LCTVS, M a sub-
set of the space Bb(HI' H2' E) of continuous bilinear mappings from
HI x Hzinto E with bi-bounded convergence. 1 f M is bounded andisthe
union of a sequence of equicontinuous subsets, then M is equicontinuoue.

We may again assume that E is the field of scalars. M can be
identified with a bounded set in L,(H,, H;) (where H2 has the strong
topology), and is the union of a sequence of equicontinuous subsets,
therefore an equicontinuous subset of L,(H,, H;) (Proposition 1). Also,
M defines an equicontinuous set of linear mappings from H: into Hj.
A fortiori, M is equihypocontinuous as a set of bilinear forms, therefore
equicontinuous by Theorem 2.-The statements of the corollaries of
Proposition 1 are left to the reader.

EXERCISE 1 Extend the preceding results to multilinear mappings on
products of (2.%) spaces.

EXERCISE 2 Let E be anon-quasi-barrelled LCTVS. Show that there
exists a normed space F (assumed complete if the strong dual of E is
assumed complete), and a separately continuous bilinear form on
E X F which is not continuous (choose in E' a closed and strongly
bounded disk A not equicontinuous and set F = EA). Conclude that in
Corollary 1 of Theorem 2 we cannot restrict ourselves to the supposition
that HI or H, is barrelled.

EXERCISE 3 An LCTVS which is simultaneously metrisable and of
type (2£) is normable (apply Proposition 2, Corollary 1).
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3 Stability properties
PROPOSITION 4 Let E bean LcTVvs, F a vector subspace.

1) IfF is a (2%) space, then its strong dual can beidentified with the
quotient of the strong dual E' of E by the orthogonal FO of F.

2) ITE 1s a(2F) space, then-EIF isa (2%) space, and its strong dual
can beidentified with the subspace FO of the strong dual E' of E.

In 1) we must show that the natural mapping
F,— E,/F°

is continuous; how F, is metrisable therefore bornological, so it suffices
to verify that its sequences that converge to zero are transformed into
bounded sequences. AsF is a (2%) space, a strongly bounded sequence
of the dual is equicontinuous therefore comes from an equicontinuous
(a fortiori strongly bounded) sequence of E' whose image in E,/F is
therefore bounded. We show in the same way in 2) that the natural
mapping from FO (with the metrisable topology indueed by E,) into
the strong dual of EIF transforms sequences converging to zero into
bounded sequences, and is thus continuous, therefore an isomorphism.
Thisis equivalent to saying that every bounded subset of EIF is con-
tained in the closure of the canonical image of a bounded subset of E,
from which it follows that a fundamental sequence of bounded sets in
E IF exists (there exists onein the (2%) space E). Finally, we trivially
verify the second condition on the (2%) spacesin EIF by the fact that
itis verifiedinE.

COROLLARY 1 LetE beanLcTvVvs, F a(2%) vector subspace, then every
bounded subset of the closure of F is contained in the closure of a bounded
subset of F.

We can assume F to be dense in E, the duals of E and F are then
algebraically identical, and Proposition 4, 1) saysthat thisidentification
respects the topologies which is exactly the meaning of the corollary.
In particular:

COROLLARY 2 LetF bea(2%) space. The spaceF is completeifand only
ifit isquasi-complete. I n particular, ifF isreflexive it is complete.

We point out that a closed vector subspace of a (2% space (even of
type (.#) isnot aways of type (2£). However, we verify trivially that
the product of afinite number of (2%#) spaces is a (2%) space. If E is
a (9%) space, its strong dual E' is an (&) space, therefore its bidual
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with the topology of the strong dual of E' is a (2%) space (Theorem 1);
E" isstill a (24) space for its "natural" topology (Section 1, Exercise
4). Finally, we have

PROPOSITION 5 Let E be an LcTVvs inductive limit of a sequence of
(Z2%) spaces E; by linear mappings ui such that the union of images of Ei
generates E. Then E is a (@%) space, the strong topology of its dual is the
coarsest for which the transposed mappings «; of E' into the strong duals
B, are continuous; the bounded subsets of E are those contained in the
closure of the sum of a finite number of images of bounded subsets of the
E; by the u;.

The two last assertions are equivalent and we must verify only that
the identity mapping of E' with the coarsest topology T, for which the
w; into E' strong are continuous, is continuous. Since T is metrisable
it suffices to verify that a sequence that convergesto 0 for T is strongly
bounded, and it is even equicontinuous, since its image by every «; is
a strongly bounded sequence therefore equicontinuous of E;. We have
shown at the same time that E admits a fundamental sequence of
bounded subsets. Finally, the second condition on (2%) spaces is
trivially verified from the fact that it is valid on each E;. We could also
prove Proposition 5 for the topological direct sums of a sequence of
(2%) spaces by means of Proposition 4, 2).

COROLLARY 1 |ftheE; are reflexive (24) spaces iresp, oftype (#)) and
E is Hausdorff, then E is reflexive (resp. of type (.#)).

We verify that its bounded subsets are relatively compact (resp.
weakly relatively compact).

COROLLARY 2 Let (E;) be a sequence of LcTvVvs, letfor everyi u; bea
linear mapping from E; into a vector space E and vi a linear mapping
from E; into E;+; such that u, = ui+1 o vi' Suppose E identical to the
union of the images ofthe Ei and equip it with the snductzve limit topology.
| f the mappingsvi are bounded then E is a quasi-barrelled and bornological
(2%) space; i fthe mappingsvi areweakly compact (resp, compact) and E is
Hausdorffthen E is reflexive tresp, oftype (.#)) barrelled and bornological.

Let for every i U; be a disked neighborhood of 0 in E, whose image
by vi is bounded, | etF, be Ej with the semi-norm gauge of Ui; we verify
trivially that the topology of E is aso the inductive limit topology of
the semi-normed spaces ri by the ui' It istherefore a (2% space quasi-
barrelled and bomological since the Fi are, and furthermore every
bounded subset of E is contained in the closure of the dilation of a
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set u,(U;) (it is useless to choose finite sums since we already have a
transitive system). Now Ui(U;) = 4;+(4:+;) Where A, ; = Vi{U), If
the Vi are compact (resp. weakly compact), and if E is Hausdorff, then
thewu,, (4,,,) arerelatively compact (resp. weakly relatively compact)
subsets of E which will then be of type (.#) (resp. reflexive). A fortiori
it will be complete (Proposition 4, Corollary 2), thence barrelled sinceit
IS quasi-barrelled.

EXERCISE 1 With the hypothesis of Proposition 5, Corollary 2 (the Vi
being bounded mappings) show that if the E; are quasi-complete or the
Vi weakly compact, then E is an (%) space (therefore barrelled).

EXERCISE 2 Let E be a (2#) space. Show that its completion is
(2F). The space E is quasi-barrelled if and only if its completion is
barrelled.

EXERCISE 3 Show that the bornological (2%) spaces are exactly the
inductive limits of a sequence of normed spaces whose images generate
the space. A complete (2%) space is bornological if and only ifitis an
(LF) space.

EXAMPLES
a) Since the strong duals of (#) spaces are of type (2%), the dis-
tribution spaces &', Zip, etc. (seeL. Schwartz, Theory of Distributions)
are (2%) spaces. :
Other important (2£) spaces are often defined as inductive limits:

b) Let K be acompact set of C*, let H(K) bethe space of hoiomorphic
functions defined in a neighborhood of K, with the inductive limit
topology of H(U) spaces, where U runs through the open neighbor-
hoods of K (Part 1, Section 2, Example f». Hereit sufficesthat U runs
through a fundamental sequence (U,) of neighborhoods of K and we
can suppose U, ;. relatively compact in U,,. Then the canonical mapping
v, from H(Up+ ) into H(U,) is compact (Montel theorem), therefore we
have the conditions of Proposition 5, Corollary 2. H(K) is a complete
(2% space, barrelled, bornological and of type (.#).

c) Let(¢,) be anincreasing sequence of positive continuous functions
on a locally compact space M, let for every n, £, be the space of con-
tinuous functions f on M bounded above for the absolute value by a
multiple of ¢,,, with the natural norm assigning tofthe smallest m such
that If | < m¢,, for whichitis aBanach space (immediateverification).
Then the space E of continuous functions on M bounded above by a
multiple of one ¢,,, is the union of an increasing sequence of #, and it
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will have the corresponding inductive limit topology for which it will
be a (2#) space (Proposition 5) homological and barrelled. If for
example M is the union of a sequence of compact sets A, and if we
take an increasing sequence of positive continuous functions with com-
pact support ¢, such that ¢, is 1 on X,,, E will be the space of con-
tinuous functions with compact support on M (Part 1, Section 2,
Exampled)). IfM = Re andif ¢, = (1 +r2)n(r isthe distanceto the
origin), we find that E is a space of slowly increasing continuous
functions (i.e, bounded above by a polynomial).

d) Variants are possible, supposing for example the ¢,, defined on
C? and letting I1; be the subspace of £, formed by holomorphic func-
tions. It is a closed subspace (the uniform limit on a compact set of a
holomorphic function is holomorphic by Weierstrass theorem), and the
inductive limit of the H, (space of holomorphic functions bounded
above by a multiple of a ¢,) has thus the topology of a bornological
and barrelled (2#) space. Choosing for example ¢, = exp nr (r dis-
tance to the origin) we find the space of entire functions of exponential
type. Choosing ¢, = exprlwe find the space of entire functions of
finite order, etc.

€) An open question is the set of conditions for a space Lb(E, H),
with E of type (#) and H of type (2%), to be of type (Z2%) (we know
that Lb(E, H) will have a fundamental sequence of bounded subsets, an
i mmedi ate consequence of Section 2, Proposition 2, Corollary 2). I n par-
ticular, when H is the strong dual of an (&) spaceF the problemisto
know whether the space B(E, F) of continuous bilinear mappings on the
product of two (&) spaces with the bi-bounded topology is a (2%)
space.

EXERCISE Show that the space of entire function of exponential
type, or of finite order on Cr is a (2% space of type (.#) (use Proposition
5, Corollary 2). Show that the first of these two spaces is isomorphic to
the space H({O}) of functions holomorphic in the neighborhood of the
origin (represent a function holomorphic at the origin by the sequence
of its Taylor coefficients).

4 Complementary results

Asthetitle implies, in this section we will give some further results on
(2%) spaces but shall omit proofs (Theorem 3, Theorem 4, Lemma).
The reader can proceed independently or look at Grothendieck: Sur les
espaces (#) et (2%) in Summa Brasiliensis Mathematicae, where some
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varied counterexamples relative to (¥#) and (2£) spaces and some
open questions are to be found.

THEOREM 3 Let H bea (2&) space, U a disk in H. The disk U is a
neighborhood of 0 i fand only i fit induces on every bounded set a neighbor-
hood of 0.

We verify that this is equivalent to:

COROLLARY 1 Let « bea linear mapping from H into an LcTtvs E.
The mapping « is continuous i f and only if its restrictions to the bounded
8ubsetsof H are continuous.

The analogous statement for the characterization of equicontinuous
sets of linear mappings from H into E is also valid (same proof); this
allows us to improve Theorem 2 of Section 2. Another application:

COROLLARY 2 Let H bea (2%) space, E a complete Hausdorff LCTV s,
then Lb(H, E) is complete.

Every limit, for bounded convergence, of continuous linear mappings
will have continuous restrictions to the bounded subsets and will be
continuous by Corollary 1; then L,(H, E)- is a closed subspace of the
complete space of all mappings from H into E with bounded con-
vergence, therefore complete. This result generalizes Proposition 1,
Corollary 3. Compare with Chapter 3, Proposition 2.

THEOREM 4 Let H bea (2%) space, M a separable subset of H. Then,
on M, thegiven topology T of H and thetopology To of unifor m convergence
on the strongly bounded subsets of H are identical.

SinceT = To if and only if His quasi-barrelled, we have:
COROLLARY 1 A separable (2%) space is quasi-barrelled.
Another immediate consequence:;

COROLLARY 2 In H, the sequences that converge for T or for To' are
identical. Equivalently, a mapping from a metrisable topological spaceinto
H is continuousfor T ifand only ifit is continuous for To.

Using Theorem 3 we have:

THEOREM 5 A (2%) space whose bounded subsets are metrisable is
guasi-barrelled.

I n order to verify that the identity mapping from H with T into H
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with To is continuous, it suffices (Theorem 3, Corollary 1) to verify that
its restriction to every bounded subset is continuous, by Corollary 2 of
Theorem 4.

We can also prove:

LEMMA Let (Ai) bean increasing sequence of bounded disks in the space
H of type (2&) such that their homotheticsform a fundamental sequence
of bounded subsets of H. Let U = uA,;, then the closure of U is identical
to the unit ball associated with the gauge of U (i.e. to the union of the
closures of segments intersected by U on the real lines passing through the
origin).

Using an argument of weak compactness, we obtain;

THEOREM 6 Let E bea metrisable LcTvs, then every bornivorous disk.
U in the strong dual E' contains a closed and bornivorous disk.

By polarity, we obtain:

COROLLARY 1 Every set of linear forms on E' uniformly bounded on
every bounded subset, is contained i n theweak closure, i n the algebraic dual
of E', of a bounded subset of E".

The most important particular caseis

COROLLARY 2 Let E be a metrisable LcTvs. Its strong dual E' is
bornological ifand only ifit is quasi-barrelled (or barrelled, which amounts
to the same because the space is complete).

E' strong is quasi-barrelled as can be verified by Theorem 5. This s
trivially trueif E is reflexive, therefore: |

COROLLARY 3 The strong dual of a reflexive (&) space is bornological.
The fact of a strong dual being homological can be useful in duality
theorems such as the following:

PROPOSITION 6 Let E bean LcTvs, F aquasi-barrelled vector subspace
whose strong dual is bornological. This strong dual can be identified with
the quotient of the strong dual E' by the subspace F" orthogonal to F.

In order to verify,that the canonical mapping F, — E,’,/Fo Is con-
tinuous it suffices to verify that a bounded subset is transformed into
a bounded subset, since F, is bornological; but F being quasi-barrelled,
a bounded subset of F' strong is equicontinuous, therefore comes from
an equicontinuous subset of E', a fortiori strongly bounded, whose
canonical imagein E;/F° is consequently bounded.
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EXERCISE Deduce from Theorem 4 that the theorem remains valid if
we replace T and To by the associated weak topologies. Give the corres-
ponding analogue to Corollary 2 of Theorem 4. Show that the subsets
of H which are compact for the weak topology associated with T or
with To are identical (see the case where H is complete and use Eber-
lein's theorem, to be proved in Chapter 5: In a complete locally convex
Hausdorff space a subset is weakly relatively compact if and only if
every sequence extracted from it admits a cluster point for the weak
topology. Conclude that every linear form on H continuous for To
belongs to the completion of H' for t(H’, H); show that ifH is complete,
every linear form on H belonging to the completion of H' for 7(H’, H)
IS bounded on the bounded subsets and that, conversely, if H is the
strong dual of a metrisable LCTVS, every linear form on H bounded
on the bounded sets, is continuous for To.

PART 4 QUASI-NORMABLE SPACES AND SCHWARTZ SPACES

1 Definition of quasl-normahle spaces

DEFINITION 1 A locally convex space E is quasi-normable if for every
equicontinuous disk 4 in E' thereexists an equiconiinuousdiskB = 4 such
that on 4 the topologiesinduced by E' strong and by E% are the same.

By Chapter 2, Section 14, thisis equivalent to saying that theuniform
structureson A induced by E' strong or by £5 areidentical; or that the
two topologies in question induce on 4 the same system of neighbor-
hoods of 0. This means that for every 4 > 0, there exists a strong
neighborhood W of 0 in E' that we can suppose disked and weakly
closed such that A n W< AB. Supposing 4 and B weakly closed
and letting their polars be U and V, letting the polar of W be M the
condition of quasi-normability becomes: for every disked and closed
neighborhood U of 0 in E, there exists another one V such that for
every 2 > 0 we can find a closed and bounded disk M such that
V e AU u M). Changing AM into M (change of notation) and
noticing that

U +M)cr(Uu M) «2UF+M)
(the second inclusion is true because U is a neighborhood of 0), we
verify that we can write the following instead of the inclusion written
above:
1) V < AU + M.
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Thus, E is quasi-normableif and only if for every neighborhood U of
O there exists a neighborhood V of 0 such that for every 4 > 0 there
exists a bounded set M such that we have (1): thisis the form under
which we shall verify quasi-normability in concrete cases.

A quasi-barrelled (2%) space is quasi-normable; thisisanimmediate
consequence of the definition and of Part 2, Section 2, Theorem 1, 2).
An (&) spaceevenifitisof type (#) (Chapter 2, Section 18, Definition
13) may not be quasi-normable, however, the (.#) spaces we find in
practice are quasi-normable, Thereader may verify that quasi-normable
spaces are closed under the formation of quotients and topological
direct sums, furthermore, the inductive limit of a sequence of quasi-
normabl e spaces is quasi-normable (it is the quotient of the topological
direct sum); the same is true for the topological vector product. (It
suffices to use the definition; only the case of a direct sum calls for
a proof, in which we proceed as in Part 2, Section 2, Theorem 1, 2)).
A vector subspace of a quasi-normable space is not in general quasi-
normable since every (&) space is isomorphic to a subspace of the
product of a sequence of Banach spaces (this product is quasi-normable
by the preceding discussion) and we know there exist non-quasi-
normable (#) spaces.

We point out that from the definition it follows that if E is quasi-
normable, then the equicontinuous subsets of its strong dual are metris-
able. In the case where E is of type (%), therefore E' strong of type
(%) (Part 3, Theorem 1), we see with the aid of Part 3, Section 5,
Theorem 5 and Theorem 6, Corollary 2, that E' strong is a borno-
logical (2%) space (if E is quasi-normable).

EXERCISE 1 Show that the bidual of a quasi-normable space is quasi-
normable (use the condition stated in Formula (1)).

EXERCISE 2 Let E be an LCTVS. We say that E satisfies the con-
dition of Mackey convergenceif every sequence tending to Oin E tends
to 0 in the sense of Mackey (Chapter 3, Section 4, Definition 4), and
that E satisfies the strict condition of Mackey convergence if for every
bounded disk A in E, there exists a bounded disk B = A such that on
A, the topology induced by E or by EB is the same (Example: metris-
able spaces, by Part 2, Section 2, Theorem 1, 2)).

1) Let E be a quasi-barrelled LCTVS, then E is quasi-normable if
and only if its strong dual satisfies the strict condition of Mackey
convergence.

2) A subspace of a space which satisfies one of the two conditions of
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Mackey convergence, the topological vector product of a sequence of
spaces or the topological direct sum of a family of spaces which satisfy
one of the two properties, satisfies also the same property.

3) Let E bean LCTVS admitting afundamental sequence of bounded
sets

a) If E satisfies the Mackey convergence condition, show that for
every filter ¢ with a countable base on E converging to alimit x e E,
we can find a closed and bounded disk A such that A e ¢ and such
that the trace of ¢ on A tends to z in the normed space EA; in par-
ticular, every metrisableboundeddisk B inE is contained in a bounded
disk A such that on B thetopology induced by E or by E A isthe same.

b) Concludefrom thisthat E satisfiesthestrict Mackey convergence
condition if and only if its bounded subsets are metrisable and E
satisfies the Mackey convergence condition for the sequences.

2 Lifting of strongly convergent sequences of linear. forms on a subspace
An immediate consequence of Definition 1is

PROPOSITION 1 Let E be a quasi-normoble LCTVS, (x;) an equicon-
tinuoue sequence in E' tending strongly to a limit xX'. Then there exists an
equicontinuous disk A in E' such that «; tends to X' in the normed space
E', ; equivalently (letting V = A0) thereexists a neighborhood V of 0 in E
such that «; tends to X' uniformly on V.

| f we suppose x' = 0 this means also that there exists a sequence of
4; > Otending to 0, such that we have z; e ;4. | f we suppose that E
IS a topological vector subspace of an LCTVS F, we know (Hahn-
Banach) that an equicontinuous subset A of E' is the canonical image
of an equicontinuous subset B of F', therefore, under the preceding
conditions, we can find for every i an extension y; of z; to F such that
y; E A,B’. Therefore:

THEOREM 1 Let F be an LCTVS, E a vector subspace, (z;) an equi-
continuous strongly convergent sequence in E'. Then, if E is quads-
normable, we can find extensions y; of the x; to F, such that (y;) is a
strongly convergent equicontinuou« sequence in F'.

Theorem 1is often applied in the form of the

COROLLARY Let E be a quasi-normoble LCTVS whose topology is the
coarsest for which certain linear mappings u; from E into LCTVS Ei are
continuous. Then the equiconiinuoue and strongly convergent sequences in
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E' can be obtained by taking finite sums of sequences that result from
composing with u, the elements of an equicontinuous and strongly con-
vergent sequence in a space ;.

We may reducethisto the case where E is Hausdorff so that it can be
identified with a topological vector subspace of the topological vector
product of the E;. We then apply Theorem 1 noticing that the strong
dual of the product of the Ei can be identified with the topological
direct sum of the strong duals of the E; (Part 1, Section 4, Proposition
7), and that its equicontinuous subsets are those contained in the sum
of a finite number of equicontinuous subsets of spaces ¥; (Chapter 2,
Section 15, Proposition 22, Corollary 1).

We remark incidentally that Theorem 1 and Corollary 1 could also
be stated for strongly convergent filters on an equicontinuous subset of
the dual of E. If we suppose conversely that E isan LCTVS such that
regardless of its inmersion into an LCTVS F, the statement thus re-
inforced of Theorem 1 is valid, then F is quasi-normable; we see this
immediately by choosing E to bea quasi-normable LCTVS, for example
a product of Banach spaces, which is always possible.

EXERCISE 1 Let E be a separable LCTVS, F a vector subspace, (z;)
an equicontinuous and weakly convergent sequence in F'; show that
we can find extensions y; of the «; to E such that (y;) is an equicon-
tinuous and weakly convergent sequence in E'. Show that even if E is
a Banach space, it is necessary in al of the preceding argument that E
IS separable (see Chapter 3, Section 7, Exercise 2, d)).

3 Quasi-normability and compactness

THEOREM- 2 Let E be a quasi-normable LCTVS, A an equicontinuous
disk in E' which is compact for a(E', E") iresp, for the strong topology),
then there exists a weakly closed equicontinuous disk B in E' such that 4
is a weakly compact subset (resp. compact) of the Banach space 5.

Choose B such that on 4 the topology induced by E' strong or by E}
isthe same. If 4 isstrongly compact, itis compact also in E%. Similarly,
iIf B is compact for the weak topology a(E', E") associated with the
strong topology, B is weakly compact in the Banach space E%, since
for adisked subset.A of an LCTVSF (E5% in this case) the fact of being
weakly compact depends only on the topology induced by F on A (see
Chapter 2, Section 9, Exercise 2).

COROLLARY Letu bea continuous linear mapping from a quasi-normable
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LCTVS E into a Banach space F, transforming bounded subsets into
weakly relatively compact subsets (resp. relatively compact). Then u is
weakly compact (resp. compact).

Let A be the image of the unit ball of F' by u', A is compact for
a(E', E") resp. for the strong topology, by Chapter 2, Section 18,
Theorem 12 and Theorem 13. L et B be asin the statement of Theorem 2,
let U = BO; since u(V) is clearly bounded (since #(A40) is contained in
the unit ball of F) u is a continuous linear mapping from the space E
with the semi-norm gauge of U. The dual of this semi-normed space is
clearly E3 and the transpose of u considered as a mapping from E u
into F isstill u' considered as a mapping from F' into B5. Since this|ast
mapping isweakly compact (resp. compact) so is u considered as a map-
ping from E  (same reference), therefore u(U) is weakly relatively
compact (resp. relatively compact). I n particular, we obtain:

COROLLARY 2 Let E bea quasi-normable LCTVS. ITE is reflexive resp,
i fits bounded subsets are precompact, afortiori if E is of type (.#)), then
every continuous linear mappingfrom E into a Banach space F is weakly
compact (resp. compact).

This last property may not be true if E is not quasi-normable even
iIfitisof type (#) and (.#). We can find a space E of type (¥#) and (.#)
admitting a quotient which is a non-reflexive Banach space, then the
canonical mapping from E onto its quotient is not even weakly com-
pact! (At the same time we see that there exist bounded subsetsin the
guotient which are not contained in the closure of the canonical image
of a bounded subset of E: choose a neighborhood of 0 bounded in the
guotient space; then the strong dual of the quotient of E cannot be
identified with a topological vector subspace of the strong dual of E).
There is a larger class of reflexive quasi-normable spaces which satisfy
Corollary 2:

PROPOSITION 2 Let E be an LCTVS. The following conditions are
equivalent:

1) Every continuous mappingfrom E into a Banach space F is weakly
compact (resp. compact).

2) For every disked neighborhood U of 0 in E there exists a disked
neighborhood V < U such that the natural mapping from By into Bu is
weakly compact (resp. compact).

3) For every equicontinuous disk A in E' there exists an equicontinuous
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disk"B = 4 such that 4 is weakly relatively compact (resp. relatively com-
pact) in the normed space 5.

| f E satisfiesthese properties and is furthermore quasi-complete then
itis reflexive (resp, of type (#)).

Notice that if U is a disked neighborhood of 0 in E, £u stands for
the Banach space associated with the semi-norm gauge of U. The
equivalence of 1) and 2) is trivial (1) implies 2) as we can see setting
F = Eu; 2) implies 1) considering the inverse image U of the unit ball
of F by u). On the other hand, 3) means that the identity mapping
from E) into Ey is compact; supposing 4 and B weakly closed (which
changes nothing) and calling U and V the polars of 4 and B, the
identity mapping E, — Ej is the transpose of the canonical mapping
By — R\, thereforeit is weakly compact (resp. compact) if andonly if
the last mapping is. This establishes the equivalence of conditions
2) and 3). Finally, ifE satisfies these conditions and is quasi-complete
we shall show that it is reflexive (resp, a Montel space), i.e. that the
Identity mapping E — E transforms bounded subsetsinto weakly rela-
tively compact (resp. relatively compact) subsets. We know (Chapter
2, Section 18, Theorems 12 and 13) that thisis equivalent to saying that
the transpose, i.e. the identity mapping from E' onto E' transforms
equicontinuous subsets into relatively compact subsets for a(E', E")
(resp. relatively compact for the strong topology) which follows from
Condition 3.

It is trivial that a quotient space of a space E satisfying the con-
ditions of Proposition 2 also satisfies these conditions.

Using Corollary 2 of Theorem 2 we obtain:

COROLLARY 1 Let E bea reflexive quasi-normable space (resp. of type
(«#)). Then every quasi-complete Hausdorff quotient of E is also quasi-
normable and reflexive (resp. of type (.#)).

By condition 2) or condition 3) of Proposition 2, we see that the
property considered in this proposition is closed under formation of
arbitrary vector subspaces, In particular:

COROLLARY 2 Let E bea quasi-normable and reflexive LcTv s (resp. of
type (#)). Then every vector subspace of E satisfies the conditions of
Proposition 2.

We remark that this subspace may not be quasi-normable. We find
for example that every vector subspace of the topological vector pro-
duct of a family of reflexive Banach spaces satisfies the conditions of
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Proposition 2 (those relative to weak compactness, i.e. which arenotin
parenthesis). This is the case for the spaces (2:,) of L. Schwartz for
1 < p < o which are in fact by definition isomorphic to topological
vector subspaces of the product of a sequence of L» spaces (which are
reflexive Banach spaces). Infact, itisnot hard to see that the (2.,) are
even quasi-normable, although not in the general case, e.g. its vector
subspaces which nevertheless satisfy the conditions of Proposition 2.

4 Schwartz spaces

A Schwartz space is a Hausdorff LCTV S which satisfies the second series
of equivalent conditions of Proposition 2. We can for example put
Condition 2 in the form:

DEFINITION 2 Let E be a Hausdorff LCTVS; E is a Schwartz space
abbreviated (S) space iffor every disked neighborhood U of 0, there exists
another one, V, which is precompact for the semi-normed topology defined
by U.

Aswell as the equivalent conditions of Proposition 2 we have another
characteristic of (S) spaces:

PROPOSTION 3 Let E bea Hausdorff LCTVS. E is an (S space if and
only ifitisquaei-normable and i f every bounded subset is precompact.

The condition is sufficient by Corollary 2 of Theorem 2. Suppose,
conversely, that E is an (S) space; let A be a bounded subset of E. In
order to show that A is precompact it suffices to show that it is pre-
compact for every continuous semi-norm corresponding to a disked
neighborhood U of O; thisis clear by Definition 2. Finally, let A be
weakly a closed equicontinuousdisk in E'; from Condition 3 of Proposi-
tion 2 there exists a weakly closed equicontinuous disk B such that A
is compact in E3. Therefore, on A the topology induced by Ej is
identical to the topology induced by E' strong which is Hausdorff and
coarser. It follows that E is quasi-normable.

The interest of (S) spacesis due mainly to their properties of closure
and because in the case of (#) spaces they allow the completion of
strong duality theory as we shall now show.

PROPOSITION 4 (S spaces are closed under the formation of eubepaces,
Hausdorff quotient spaces, topological vector products and topological
direct sums of sequences of such spaces.

We have already pointed out that the conditions of Proposition 2 are
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closed under formation of vector subspaces and quotients. For the
closure of the product use Condition 2 of Proposition 2 (a continuous
linear mapping from the product into a Banach space is equivalent to
a continuous linear mapping from a partial finite product into the same
space). For the topological direct sum of a sequence of spaces, see
Exercise 1. For our purpose here ((8) spaces) we can say that a topo-
logical direct sum of quasi-normable spaces is quasi-normable, and if
the bounded subsets of the factors are precompact, so are the bounded
subsets in the direct sum (which are in fact contained in the sum of a
finite number of bounded subsets of the factors), the result follows by
Proposition 3.

COROLLARY 1 A Ha'U8dorjf LcTvs which is the inductive limit of a
sequence of (8) spaces is an (8) space.

COROLLARY 2 A Hausdorff LcTVvs whose topology is the coarsest for
which linear mappings u, from E into (8) spaces E, are continuous, is an

(8) space.

I n the first case we have the quotient of a topological direct sum of a
sequence of (8) spaces, in the second case we have a subspace of the
product of a family of (8) spaces. Notice that if E is an (#) and (.#)
space which is not an (8) space (we have said in Section 3 that some
existed), E is the strong dual of its strong dual E', which is of type (8)
since it is quasi-normable (as a quasi-barrelled (2#°) space) and of type
() (as the dual of a quasi-barrelled (.#) space). Then the strong dual
of an (8) space can fail to be of type (8).

THEOREM 3 Let E bean (#) and (8) space, F a closed vector subspace.
Then F and EIF are (#) and (8) spaces, the strong dual of F treep, of
EIF) can beidentified with the quotient E'IlFO of the strong dual E' of E
(resp. with the topological vector subspace FO of the strong dual E' of E).

We know already (Proposition 4) that F and E I F are of type (8) and
also () spaces. I n particular, F will be reflexive whence we obtain the
result on the strong dual (Chapter 2, Section 15, Proposition 21,
Corollary 2). For the assertion relative to the dual of EIF it sufficesto
show that every bounded subset of EIF is contained in the closure of
the canonical image of a bounded subset of E. Now the bounded subsets
of EIF being relatively compact it suffices to apply Part 2, Section 1,
Proposition 1.

COROLLARY Let E bean (%) and (8) space. Then the closed vector sub-
N
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spaces ofits strong dual and the quotient spaces of the dual by the subspaces
are (2%), (8), bornological and complete spaces.

They are strong duals of (¥) and (8) spaces therefore they are (2%)
spaces, complete and homological (Part 3, Section 5, Theorem 6,
Corollary 3). Since they are also of type (.#), they are of type (8) as we
have pointed out above for the barrelled (2%) spaces.

PROPOSTION 5 Let U bean open subset of R#, K a compact cube of R*,
Then the spaces &(U) and &(X) of indefinitely differentiable functions on
U and K (see Ohapter 1, 8ection 10) are (8) spaces.

In fact, the topology of &(K) for example is the coarsest for which
the identity mappingsfrom &(K) into the spaces £™(K) are continuous.
Now we have seen (Chapter 1, Section 10) that the identity mapping
from £™+D(K) into £™(K) is compact, whence the condition of Defini-
tion 2isverified. We proceed analogously for &(U).

COROLLARY 1 The space Z(U) of indefinitely differentiable functions
with compact supportin U is an (8) space.

For every compact K < U, the space 2x(U) off e &(U) whose sup-
portisinK isatopological vector subspace of &£(U), thus an (8) space.
2(U) is theinductive limit of a sequence of such spaces £K(U) of type
(8), thusitself an (8) space.

COROLLARY 2 Let U bean open set of G»; the space 5#(U) of holomorphic
functions on U with the topology of compact convergence is an (8) space.
80 isthe space s#(K) of functions holomorphic in the neighborhood of a
compact K of C* (Part 1, Section 2, Examplef).

We know that s#(U) is a topological vector subspace of £(U) (usethe
closed graph theorem and the fact that uniform limits on every com-
pact set of holomorphic functions are holomorphic, which a fortiori
means that s#(U) is a closed subspace of £(U) whichis of type (8), then
so is #2(U). Finaly, s##(K) is the inductive limit of a sequence of s#(U)
which are (8) spaces therefore an (8) space.

EXERCISE 1 Let E be an (¥) space and let (Ai) be a sequence of
weakly compact (resp. compact) disks in E. Show that we can find a
sequence (4,) of scalars > 0 such that the closed disked hull of the
v 4; is weakly compact (resp. compact). Conclude that if F is an
LCTVS inductive limit of a sequence of LCTVS Fi by linear mappings
u; Whose images generate F, and » alinear mapping from F into E (of
type (¥)), then u is weakly compact (resp. compact, resp. bounded) if
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and only if the mappings « o ui are weakly compact (resp. compact,
resp. bounded). Conclude that the conditions of Proposition 2 are closed
under passage to the inductive limit of a sequence of spaces.

EXERCISE 2 Consider the situation of Part 3, Section 3, Proposition 5,
Corollary 2. Show that if the mappings vi are weakly compact (resp.
compact) then the strong dual of E is an (&) space satisfying the first
(resp. the second) series of conditions of Proposition 2 of the present
section. Then, E is the strong dual of areflexive (%) space (resp. of an
(#) and (8) space).



CHAPTER 5

Compactness in locally convex
topological vector spaces (LCTVS)

THE MOST ELEMENTARY properties of compactness (and the most im-
portant ones) referring to the duality technique have been seen in
Chapter 2, Section 18. Here we present more refined properties. Parts 1
and 2 are important for certain applications (beyond the theory of
TVS itself). They are independent from each other and from Parts 3
and 4.

PART 1 THE KREIN-MILMAN THEOREM

1 Extreme points

The vector spaces considered here will be real. The segment with end
points a and b is the set of points Aa + (1 - A)b with 0 < A < 1; for
convenience we call the segment without its end points the interior of
the segment.

DEFINITION Let A bea subset of a vector space. A linear sub-variety V
of E is a support variety if V n A ==¢ and if every open segment con-
tained in A whose interior meets V is contained in V. We call a linear
swpport variety of dimension 0 an extreme point of A (i.e. a point of A
which is an end point of every segment in A which contains it).

ProrosiTion 1 An intersection of support varieties of A is a support
variety if and only ifit meets A

The proof istrivial.

COROLLARY IfA isacompactsubsetofa TVS E, the set of closed support
varieties of A isinductivefor =.

For reasons of compactness the intersection of a totally ordered
family of closed support varieties meets A, therefore it is a closed
support variety which is thel.u.b.

PROPOSITION 2 Let A be a subset of E, a vector space, let X' bea non-zero
186
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linear form on E, V a hyperplane of equation
<x X') = a
V is a support variety of A ifit meetsA and "keeps it on oneside" i.e. a

a minimum or a maximum of theform x on A. The condition is also
necessary if A is convex.

The proofis trivial.

COROLLARY If A is a compact subset of a TVS then for every closed
hyperplane V in E, thereexists a parallel support hyperplane of A.

V will have an equation <x, X') = 0, where X' is a continuous linear
form on E which then admits a maximum a on A. The hyperplane of
equation <x, X') = a satisfies the condition.

PROPOSITION 3 Let A be a subset of E, V a support variety of A, W a
variety contained in V. Then W is a support variety of A if and only if
it is asupport variety of V n A.

The necessity follows from the trivial fact that every support variety
W of A is also a support variety of every subset of A that meets W,
the sufficiency from: asegmentin A whoseinterior meets W is contained
in V, thereforein V n A therefore in W which is a support variety of
VnA.

From Propositions 2 and 3 follows the

COROLLARY Let A bea compact subset of a Hausdorff LCTVS E. Then
the extreme points of A arethe minimal closed support varieties.

Let V be a closed support variety not reduced to a point. We shal.
show that there exists a closed support variety strictly smaller. We
can suppose 0 E V (by translation if necessary), then V n A is a non-
empty compact subset of the non-zero Hausdorff LCTVS V. In V there
exists a closed hyperplane (Hahn-Banach) therefore a parallel support
hyperplane of A n V (Proposition 2, Corollary) which is also a variety
of support of A (Proposition 3).

From the preceding corollary and from the Corollary of Proposition 1
which allows Zorn's theorem to be applied) we have:

PROPOSITION 4 Let A bea compact subset of HausdorffLCTVS E. Every
closed support variety of A contains at least one extreme point.

Since E is a support variety of A, A has at |east one extreme point.
Better still:

THEOREM 1 (KREIN-MILMAN) Let A be a compact subset of a Hausdor ff
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LCTVS E. Then the set of extreme points of A kas the same closed convex
hull as A.

I n the case where A is convex (apparently the most interesting) this
statement becomes

COROLLARY A compact convex subset of a Hausdorff LCTV S isidentical
to the closed convex hull of the set of its extreme points.

Proof of Theorem 1 By Chapter 2, Theorem 3, Corollary 1, it sufficesto
show that if X' EE' and a ER are such that
<x X') < a

for every extreme point of A, we have the same inequality for
every x EA. If not, the maximum of x' on the compact A would be
b > a; now the hyperplane <x, x') = b would be a support hyperplane
of A (Proposition 2), therefore would contain an extreme point (Pro-
position 4), a contradiction, since at that point x' has the value b not
<La.

2 Extreme generators

For the elementary study of cones, see Chapter 2, Section 3. Here we
only consider cones containing 0. Let V be a support variety of the
cone O; if it contains a point x of O, it contains the generator of x
(since it contains a segment carried by the generator whose interior
containsx). Therefore in all cases, since for a support variety V, Vn 0
IS non-empty, a support variety of the cone G contains 0O, i.e. it is
homogeneous. We are interested in support varieties which contain at
|least one generator, i.e. whose interseotion with O is not reduced to
zero.

DEFINITION 2 Let O be a conein the vector space E. A generator of O is
an extreme generator if the line it generatesis a support variety.

If x isa point of O, its generator is an extreme generator if and only
If every segment in O whose interior contains x is oontained in the
generatorof x, i.e.,ify,ze A,0 < 21 < 1andx = iy + (1 — A)zimplies
that y and z are proportional to x. (The necessity is clear by definition,
the sufficiency is also clear if we notice that if the condition is verified
itis also verified for the points of O proportional to x.)

Let O be a cone in the vector space E, H a non-homogeneous hyper-
plane in E such that O is the oone (containing the origin) generated by
A = 0 nH. Then the vector subspaces W of E such that Wn O is
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not reduced to zero are in bijective correspondence with the linear
sub-varieties V of H meeting A, assigning V = W n H to Wand to

V the vector space W generated by V.

ProposiTioN 5 In this correspondence, the support varieties W of 0 such
that W n 0 = 0, correspond to the support varieties V of A = H n O.

Suppose W is a support variety of O; consider a segment in A whose
interior meets V, it isthen containedin 0 and meets W, thereforeit is
containedin W, thencealsoinV = W n H; thus Visasupport variety
of A. Suppose that Visasupport variety of A; consider asegmentin 0
whose interior contains an xE W, x % 0 (because of the way O
IS generated). Either this segment is on the line generated by X (a
fortiori containedin W) oritis projected (centrally) on H on a segment
contained in A whose interior contains the projection of x on Hand
thus meets V = W n H; this last segment is then contained in V,
whence the initial segment isin W, which proves that W is a support

variety of O.

COROLLARY Let O be the convex cone containing O, generated by a
subset A of a non-homogeneous hyperplane H. The extreme generators of
O are in hijective correspondence with the extreme points of A (to an
extreme point of A corresponds the generator of O generated by this point).

We haveseen in Chapter 2, Part 3, that the existence of a convex cone
Ocontaining the originin avector spaceE, isequivalent to the existence
of apreorder on E compatiblewith the vector structure (the cone being

the set of elements > 0in E).

PROPOSITION 6 Let E beareal pre-ordered space, O the coneofits positive
elements. Let x e E, x = 0. The generator of x is an extreme generator of
O if and only if every positive element of E bounded above by x is pro-
portional to x.

| f the generator of x is not an extreme generator we have
x= Aot (1- 2)b

with a, bEO, 0 < 4 < 1, a and b not proportional to X (see remark
after Definition 2). Then Ja is a positive element of E, bounded above
by z and not proportional to x. Supposethere exists such an element y of
E,O <y < x, ynot proportional to x; then we have

X = 32y +2(x - y»),

and we are back to the initial conditions with a= 2y, b= 2(x - vy)
2 = 1, s0 that the generator of x is not extreme. It is mainly in the
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form of Proposition 6 that the extreme generaters of convex cones
appear in applications.

Up to this point we have not dealt in this Section with a topology on
E, which we will now do:

THEOREM 2 Let E bea HausdorffLcTVvs, A a compact convex subset of
E not meeting O, C the cone containing the origin, generated by A. Then
Oisclosed and identical to the closed convex hull of the union of its extreme
generators.

We can find a closed hyperplane H o not meeting A and consequently
keeping A strictly to one side. Let H be a hyperplane parallel to Hoof
equation <x, X') = 1, ofthesamesideofHoasA. Forevery x e CHolet

1
p(X) = <x x) X o

be its central projection on H. The cone containing generated by A
isidentical to the cone containing 0 generated by K = p(A) and except
for the origin it is the set of points x of the open half-space U defined
by <x,x') = 0 such that p(x) e K. Now as p is a continuous mapping
in CHo K will be compact since it is the image of the'compact A. A
fortiori K is closed, then itsinverseimagein U by p whichis 0 minus
the origin isrelatively closed in U. Then every point in the closure of
C N U not containedin 0 N U isnot contained in U, thence notinH g,
and we shall show it is zero. Thisfollows from the immediate fact that
we can strictly separate every non-zero point x of Ho from A by some
closed hyperplane whence x is not in the closure of the cone generated
by A. We havethusproved that O is closed. By Theorem 1 the compact
K is the closed convex hull of the set of its extreme points, therefore
contained (taking into consideration the corollary of Proposition 5) in
the closed convex hull of the union of extreme generators of O; thisis
equally true of C, which ends the proof.

EXERCISE 1

1) Let M be a locally compact space. Let # (M) be the ordered
vector space of real continuous functions with compact support in
M, #+(M) the cone of positive linear forms on 2 (M). Show that the
extreme generators are generated by the linear forms &,(s EM) defined
by <f, s, = f(8).

2) Let #Y M) be the dual of the Banach space Oo(M). Let A be the
set of elements of the unit ball of #(3) which are positive linear forms
on the ordered vector space 0o(M). Show that the extreme points of A
are 0 and the .
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3) If M is compact, show that the set K of elementsof 4 of norm 1is
identical to the set of positive linear forms x on O(K) such that
#(1) = 1. Conclude that K is weakly compact. Show that its extreme
points are the s, and that the cone containing O generated by K is
identical to .#+(M).

4) Apply the Krein-Milman theorem to the situations in 2) and 3)
and notice aso that here we obtain the same results more rapidly
by direct application of the bipolar theorem, compare with Chapter 2,
Section 9, Exercise).

5) Consider furthermore Oo(M) (M locally compact), the scalars being
either real or complex. Show that the extreme elements of the unit
ball of the dual £} M) are the is, withs EM, 12 1= 1.

EXERCISE 2 (The scalars are real or complex)

1) Let M be atopological space. Show that the extreme points of the
unit ball of 0*(M) arethe! suchthat [f(s) | = 1for every e EM. Prove
the analogous assertion for a space L ® constructed on a measure u.

2) Show that inthis last case, the unit ball of L" isthe closed convex
hull of the set of its extreme points. Show that this is aso true for
O(M) where M is compact and totally discontinuous. (The Krein-
Milman theorem does not work in this case! We must consider a space
O(M) where M is a compact finite set. We can remark that, as is well
known, L' is isomorphic to a O(M) constructed on a certain totally
discontinuous compact space M; therefore, in fact, the assertion on
L" can be considered as a particular case of that relative to O(M).)

3) Let M be a connected topological space; show that the unit ball
of O0OO(M) when we choose real scalars has only two extreme points and
Is not in general the closed convex hull of the set of its extreme points.

EXERCISE 3 Let « be alinear mapping from one vector space E into
another, F. Let A be asubset ofE, let B = u(A). Show that theinverse
image by « of a support variety of B is a support variety of 4. Conclude
that ifE,F are HausdorffLCTVS, A compact, then every extreme point
of B is the image by » of an extreme point of A; and if 4 is the cone
containing the origin generated by a compact convex set not containing
0, then every extreme generator of B is the image by » of an extreme
generator of A.

EXERCISE 4 Let E be afinite dimensional vector space over R, K a
compact convex subset of E. Show that K is the convex hull of its
extreme points (in order to show that every x e K isin this hull, take x
in the interior of K then reason by induction on the dimension).
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EXEROISE 5 Let E be a Hausdorff LCTVS over R, A a subset of E.

a) Show that the following conditions on an z e E are equivalent:
1. For every continuous linear mapping « from E into a finite
dimensional vector space, w(x) belongs to the convex hull of u(A).

2. For every closed subvariety H of E, of finite codimension

n > 0, containing X, there exists a subset A having at most n + 1

elements whose convex hull meets H (use Chapter 2, Section 5,

Exercise 2). Let 4 be the set of z  E that satisfy these properties. 4 is

convex and we have A < 4 = 4 and 4 is contained in the closed

convex hull of A. If E is finite dimensional, A is identical to the

convex hull of A.

b) Let (Xi) be a family of elements of A; (4;) a family of positive
numbers such that X4, = 1, and the family of (;z,) in E is summable.
Show thatitssum xisin A. (Reduceto the case where E is finite dimen-
sional and is generated affinely by the 1;z;). More generally, if M is a
locally compact space with a positive measure x of total mass 1,
t —f(t) a scalarly summable mapping from Minto E such that

X = J!(t) du(t) E E,

if we suppose thatf(M)c A then x € 4. (Reduce to the case where E is
finite dimensional, then to the preceding case, writingM asN U (U M)

where N is negligible, and where (M;) is a sequence of pairwise disjoint
compact S on which f has a continuous restriction-using Chapter 2,
Section 5, Exercise 2.)

c) If A is compact, 4 isidentical to the closed convex hull of A (use
Chapter 2, Section 5, Exercise 2).

d) If K iscompact convex subset of E, A the set of its extreme points
we have K = 4 (use Exercises 3 and 4).

e) If A is a subset of E which is the union of closed half-lines of
origin O, then Condition 1 of a) can be replaced by the following: for
every closed variety H of finite codimension n containing X, there exists
a finite subset of A having at most n elements whose convex hull meets
H (or also: whose sum equals x). Furthermore, the sum of every sum-
mable family extracted from A isin A, then generalize as in b) for
theintegrals of weakly summablefunctions. 1 f A isthe union of extreme
generators of a cone O generated by a compact convex set Knot
containing the origin, we have 4 = O.
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PART 2 THEORY OF COMPACT OPERATORS

1 Generalities

I n this Part we consider Hausdorff LCTVS only.

Recall (Chapter 2, Section 18, Definition 14) that a linear mapping
fromaLCTVSE into another one, F, is compact (resp. precompact) ifit
transforms some neighborhood V of 0 into a relatively compact (resp,
precompact) subset; a fortiori it is continuous. When E is normed we
can choose V to be the unit ball in the definition; ifFis quasi-complete
the notions of compact mapping and precompact mapping coincide.
Taking into consideration Chapter 0, Section 4, Proposition 6' it follows
that if E is normable, F quasi-complete, the space of compact linear
mappings from E into F is a closed vector subspace of Lb(E, F). Recall
also that the transpose of a compact linear mapping of a Banach space
into another is compact (Chapter 2, Section 18, Theorem 12, corollary 3).
We point out that this is more generally true for the transpose of a
compact linear mapping from an LCTVS into an (%) space when we
equip the duals with the strong topology (see Chapter 4, Part 2,
Exercise 4).

We also point out.

Proposrrion 1 Let u bea continuous linear mapping from one LCTVS
E into another, F. Let B, and F, betheduals of E and F, with the topology
of uniform convergence on the compact disks. If u is compact, then its
transpose U' is also compact.

L et V bea disked neighborhood of theoriginin E suchthat K = «(V)
is relatively compact, then «' maps KO into VO (Chapter 2, Proposition
25). Now KO is a neighborhood of 0in F, and VO in an equicontinuous
subset of E', therefore relatively compact for the weak topology, and
also for compact convergence (and a fortiori for uniform convergence
on the compact disks) by reasons of equioontinuity. This endsthe proof;
notice that the converse is clearly true if every compact disk in £, is
equioontinuous, in particular, if the topology of E is z(¥, E').

2 General theorems for finite dimension
Here we follow almost word for word a recent note of L. Schwartz.

THEOREM 1 Let u, v be two linear mappings from one LCTVS E into
another, F. We suppose that « is an isomorphism from E onto a closed
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subspace of F and that vis compact. Thenw = u + v is a homomorphism
whose image is closed and whose kerneloi sfinite dimensional.

L et V be a disked neighborhood of such that v(V) isrelatively com-
pact, let N be the kernel of w, let W = V n N. Then we have

u(W) = -v(W) < v(V),

Thus u(W) is relatively compact therefore precompact, whence W is
preeompact (% is an isomorphism). Thus N has a precompact neighbor-
hood W of 0, therefore'it is finite dimensional (Chapter 1, Section 13,
Theorem 8), Itis clear that in order to prove the other assertions of the
theorem we can choose therestrictions of u, v, w to a topological supple-
ment of N (it existsas N isfinite dimensional, see Chapter 2, Section 5,
Hahn-Banach theorem, Corollary 4), therefore we are back to the case
where w is bijective. We must now show that w is an isomorphism onto
a closed subspace of F; it isimmediate that this means that if U is an
ultrafilter in E such that limu wx exists in F, then U convergesin E.
Let p be the semi-norm gauge of V, let a = limj,p(x) 0 < a < + ).
If a is finite then there exists A e U such that A is contained in a
dilation (a + 1)V, then v(A) is relatively compact, therefore limu vx
exists and limuux = z (since ux = wx - vx). But, E being closed,
we have z = ux,(XgeE) and « being an isomorphism we have
limux = xg We shall show that it isimpossible to have a = + . If
not, we would have

Ifmu&% = II|mu W(Q&)) =0,

or, by the preceding argument, Xjp(x) — xgand we would have

p(xo) = IimuP( —a?"—( )! =1

and w(xq) = 0, which contradicts the bijectivity of w.

THEOREM 2 Letu, v belinear mappingsfrom one LCTV S E into another,
F. We suppose that u is a weak homomorphism from E onto F suck that
every compact disk of F is contained in the image by « of a compact disk of
E and that viscompact. Then w = u + v is a weak homomorphism from
E onto a closed subspace offinite codimension of E.

Equip E, F' with the topology of uniform convergence on compact
disks (their dualsarethen E andF), V' iscompact (Proposition 1), u'(F")
iIsweakly closed since u isaweak homomorphism (Chapter 2, Section 16,
Proposition 27) thence closed, finally u' is continuous (Chapter 2,
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Proposition 28) and even an isomorphism; since every equicontinuous
subset of the dual F of F' i.e. every compact disk of F is by hypothesis
contained in theimage by (u')’ = u of an equicontinuous subset of the
dual of E', i.e. of a compact disk of E, so that it suffices to apply
Chapter 1, Proposition 29, Corollary 1. Thus %’ and V' satisfy the
hypothesis of Theorem 1, hencew' = u' + V' is a homomorphism from
F' onto a closed subspace of E' having a finite dimensional kernel.
Thus w is a weak homomorphism (since w(F') is weakly closed) and
W(E) is closed (w'. being a homomorphism therefore a weak homo-
morphism) and even identical to the orthogonal of the kernel of io',
thence of finite codimension, which ends the proof.

COROLLARY 1 Letu, v becontinuous linear mappingsfrom a space E of
type (&) into another, F. We suppose that % is onto, v compact. Then
w = % T v is a homomorphism from E onto a closed subspace of finite
codimeneion of F.

The mapping u is a homomorphism (theorem of homomorphisms,
Banach theorem, Chapter 1, Section 14, Theorem 9), a fortiori a weak
homomorphism, the condition onlifting of compactsin the statement of
Theorem 2 is automatically satisfied (Chapter 4, Part 2, Section 1,
Proposition 1). Theorem 2 can be applied and from the fact that wis a
weak homomorphismitfollows thatitis even a homomorphism (Chap-
ter 4, Part 2, Section 4, Theorem 3).

COROLLARY 2 LetE, F, Gbe(#) spaces, u a continuous linear mapping
from E into G, v a compact linear mapping from F into G such that
u(E) +v(F) = G. Then u is a homomorphismfrom E onto a closed sub-
space of finite codimension of G.

Let H=E x F; let 4 and ¥ be linear mappings from H into G
defined by u and v (d@(x, y) = ux, ¥(x,y) = vy), let @ = & + & whence
% = @ T (=o). Then @ is onto (by u(E) + v(F) = G) and —# is com-
pact, then by virtue of Corollary 1 % is a homomorphism from H onto
a closed subspace of finite codimension of G. Thisis clearly also true of
u, Combining theorems | and 2 we obtain:

COROLLARY 3 Let %, Vv be linear mappings from one LcTtvs E into
another, F. We suppose that u is an isomorphismfrom E onto F, v com
pact. Then w = « + v is a homomorphismfrom E onto a closed subspace
of finite codimension of F, whose kernel isfinite dimensional.

In Section 4, we shall see that the dimension of the kernel of w is
equal to the codimension of the image (we suppose E = F, u is the
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identity mapping from E onto F, a hypothesis which does not restrict
the generality).

3 Generalities on the spectrum of an operator

We begin with some generalities of an algebraic nature (valid fo1' vector
spaces over an arbitrary field).

PROPOSITION 2 Let v be an endomorphism of a vector spaceE. Let &, be
thekernd, F,, the image of v (for n an integer > 0), in particular

Eo=0 Fo=E

1) The sequence (E,) is either strictly increasing or strictly increasing
up to afinite rank n = v, and constant from there on.

2) The sequence (F,,) is dther strictly decreasing or strictly decreasing
up to afinite rank 4, and constantfrom there on.

3) | fthe twosequences (#,) and (F,) end up being stationary theny = u
(with the notations of 1 and 2, i.e. they remain stationary beginning at the
samerank. Now setE, = &#,,F, = F,, then E is direct sum of E ., and
F . and » ¢nduces a nilpotent endomor phismin thefirst factor, an automor-
phism in the second factor.

Proof We have
(vp)_l(Eq) = Epw
'Up(Fq) = F:o+q
on the other hand, since v» permutes with v, its kernel En and image
E; are stable under v. Therefore
Bopi= v Y8,) > E,
Fu. = v(,) > P;
whence(#,,)isincreasing, (F,) decreasing. Ifwehave &, = Z,+1 wehave
(v?) Y Ea) = (*)"H(En 1),
Eoiw= Eainy, 1.6 the sequence (£,) is stationary starting at n,
and we see in the same way that if F,, = F, ., the sequence (F,) is
stationary starting at n, which ends the proof of 1 and 2. In the no-
tations of 3, we would have shown ¢ < v if we prove that &, = £,+1
and F, #F,,; implies F,.1 # Fas2 (Whence Fniy # Fase Since
we have E,,, = K,y S0 that (Fm) would be a strictly increasing
sequence). If in fact we had F, ., = F, ., letting vnx be an element
of ¥, then
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Is of the form v»+2y, then
vt Vy) = 0
and (sinceE; = F, ;)
v (x —ovy) =0
e,
vnix= Vv e F, ...

we would then have F; = F,,,, contrary to the hypothesis. We prove
analogously that F;, = #,,, and E, £ E,,, implies E,,; = E, s
whencer < u,and 4 = ». We have £, nFw = 0; sinceifx belongsto
this intersection we have x = V'y, V'x = 0, whence v = 0 and
V¥ = 0 (since £, = E,), Le. x = 0. Let v be the operator in E/Ec
deduced from » by passing to the quotient, ¥ is clearly bijective (since
E; = E,+). andwe shall show itis onto. In fact, from 3, applied to ¢
for which the integer corresponding to » in this statement is 0, the
sequence of vn(E/£*) would be strictly decreasing, whence the sequence
of their inverse images

vwn(E) T+ &,
would be strictly decreasing, and the sequence of the Vn(E) could not

remain stationary, contrary to the hypothesis. Thus ¥ is an automor-
phism, so is &%, in particular

¥(E/Ew) = EIE.,
which can aso be written

WE) tE, = E
i.e. Foo T E, = F. Thisproves that E is direct sum of Fw and E . To
say that ¥ is an automorphism is to say also that vinduces an automor-

phism onto F .- On the other hand, since V' is zero on E«, the re-
striction of v to E, is nilpotent, the conclusion follows:

COROLLARY Suppose we have the conditions of 3) and that E ., isfinite
dimensional. Then the dimension of the kernel of v is equal to the co-
dimension of its image.

| t sufficesto verify this separately for the restrictions of vto E ., and
F .. Now in the finite dimensional space E thisis well known, aso, v
induces an automorphism of F_, consequently the dimension of its
kernel and the codimension of its image are both zero.

Recall that the spectrum of an element u of an algebra A with unity
1 is the set of scalars A such that A1 - u cannot be inverted. In par-
ticular, if u is alinear operator in a vector space E, when we mention
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Its spectrum, we understand the spectrum of u in the algebra of endo-
morphisms of E, or of all continuous endomorphisms of E when E is a
TVS; if E is an (&) space, the spectrum of u in either of the two alge-
brasis the same since we know that if a continuous operatorv = 1 - U
can be inverted in the set of linear endomorphisms, i.e. if it is bijective,
thenitsinverseis continuous (Theorem of homomorphisms, Chapter 1,
Section 14, Theorem 9). L et u be an endomorphism of a vector space, a
scalar 1 is an eigen value of % if there exists a non-zero x in E such that
ua: = Ax; since this can be written (A1 - «)x = 0, we see that thisis
equivalent to saying that A1 - « is not bijective, a fortiori cannot be
inverted, thus an eigenvalue is a spectral value (the converse being
in general false if E is infinite dimensional). The x E E such that
ux = Az are called the eigenvectors associated with the eigenvalue 4.
The space of eigenvectors relative to 1 is then also the kernel of

ll - U= 'UA.
Generally, for every scalar 1, set v, = Al - U, then

Bin = v7"(0)
Fﬁ.,n - 'U:I%(E)

.- Ug, r - Ur,

The sequence (#,,,) is increasing, (¥,,) decreasing; for 2 = 0 we
find the sequences of spaces of Proposition 2 for the operator u. £, is
also called the spectral subspace of E relativeto 4, itsdimensionis called
the spectral multiplicity of A.

PROPOSITION 3 |If A and A’ are distincts scalars then &, ¢ FI.".

Let xE &), i,e. (AL - u)nx = O for some n, we must show that we
can write for any m,

X = (A'1 - u)my.

Now, |let Gbethevector spacestableunderu (or A1 - u, whichamounts
to the same) generated by x, which has finite dimension < n; the
restriction of uta G having as only eigenvalue 1, 2’1 - u has arestric-
tionto Gwhichisinvertible; thisalso holdsfor (A1 - u)m, consequently

XE (A1 - umG = G,

which ends the proof.

Recall that if E is finite dimensional and the field of scalars alge-
braically closed (for examplethefield of complex numbers), thenE isthe
direct sum of the spectral subspaces £, corresponding to the eigenval ues
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of # which are the roots of the characteristic polynomial
P,(2) = det (11 - ),

of degree n = dimE. The order of multiplicity of a root equals its
spectral multiplicity.

PROPOSITION 4 Let E bea Banach space. The set of invertible elements of
L(E) ¢s open and contains the set of 1 - « with llu [l < 1.

_ - - co
Proof If [« |l < 1, the series 3, un is absolutely convergent and we
0]

verify trivially that its sum is the inverse of 1 - u, Let v be an in-
vertible element of L(E), then for w E L(E),

vtw=vl - (-v-1w))

isinvertible if Il v-1w | < 1, afortiori if Il V-1l Il wll < 1, therefore
in every case for w sufficiently small, which ends the proof.

COROLLARY For every u E L(E), the spectrum a(u) of u i8 a compact
subset of the field of sealare;; 4 £ a(u) implies |4 | < Il % 11

By definition, a(u) is the inverse image by the mapping 4 +— A1 - u
of the set of non-invertible elements of L(E), and since this last one
is closed by Proposition 3, so is a(u). Furthermoreif > |l u ll, then by
Proposition 3, 1 - (1/A)uisinvertible, and sois A1 - u, and A does not
belong to a(u). In other words, 4  a(u) implies 4 < Il u Il Thus the
spectrum of % is bounded and therefore compact since it is closed.
Notice that Proposition 3 and its corollary remain valid for a complete
normed algebrawith unity.

| f « is a continuous operator in a non-normable LCTVS its spectrum
is not in general either closed or bounded (see Exercise 1). We can
however in certain cases reduce the problem to the case of a Banach
space by

PROPOSITION 5 Let E bean LCTVS, F a vector subspace of E with a
locally convex topology finer than the topology induced by E. Let « be
a .continuous mapping from E into F and call ¢ the inclusion mapping
from F into E. Then with the exception of the scalar O, the spectrum of
éu in L(E) isidentical to the spectrum of u¢ in L(F). If 4 is a non-zero
element of the spectrum, then the eigensubspace and the corresponding
spectral subspace isthe same for u¢ and ¢u.

We must first show that if 2 is a non-zero scalar, to say that A1 - Ju
isinvertiblein L(E) isto say that 11 - wu¢ isinvertiblein L(F). Divid-
ing by the scalar 4 and replacing in the notations —(1/2)x by u, it
sufficesto provethisfor 1 t. ¢u and 1 + u¢. Now suppose that 1 + ¢u

0
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has an inverse in L(E) which we can write 1 + v, v e L(E), then
(1) du v+ duv = du +v +odu =0
From the first relationship in (1) we have
V= ¢wwherew= -u(l +Vv)eL(E, F)
and replacing vin (I) we find
plu +w + udw) = $lu +w F whu) =0
and, suppressing the factor ¢ to the left (which is possible since ¢ is
injective) and multiplying the relations obtained to the right by ¢:

up +wp + (up)(we) = up +wp + (wh)(ug = 0
which means precisely that 1 + w¢ e L(F) is an inverse of u¢ in L(F).
Similarly we can show that if u¢ isinvertiblesoisu. Let A be anon-zero
spectral value of ué, $u, then it is obvious that the eigensubspace
corresponding to « in F is the intersection of F with the eigensubspace
of E corresponding to ¢«; however, the latter is already contained in
F, since gux = Az implies X = (1/A)dux € F, the identity of eigensub-
spaces then follows. From this we conclude more generally that for
every n, the kernels of (A1 - ¢u)* in E and of (1 - u¢)* in Fare
identical since we see clearly that up to a factor A» these two operators
can be written
1 + ¢un and 1 + 'u'»n?l’

for some u, E L(E, F). The identity of the spectral subspaces of ¢« and
u¢ follows,

COROLLARY Let u bea bounded operator in a quasi-complete LCTVS E
or more generally supp 0se there exists a neighborhood V of 0 and of a
bounded disk B in E such that u( V) c B and that the space Es generated
by B with the norm gauge of B is complete. Then the spectrum of u I8 a
compact subset of thefield of scalars.

Proof: u can be considered as a continuous operator from E into Es,
therefore, by Proposition 4, except for zero, its spectrum is L(E) is
identical to the spectrum of a continuous operator in the Banach
space EBwhich is compact from Proposition 3, Corollary. Thisends the
proof (if 0 does not belong to the spectrum of u in L(E), u is an iso-
morphism from E onto E, B is a bounded neighborhood of zero so that
E isisomorphic to Es andwecanapply Proposition 3, Corollary directly).

EXERCISE | Let M be a locally compact space, let E = O(M). If
fEE, cdl u,; the operator

g —fg
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in E. Show that the spectrum of «, isidentical to f(M). Conclude that
every non-empty subset of the field of scalars can be considered as the
spectrum of a continuous operator in some LCTVS; in the case where
the given subset is the union of a sequence of compact setsitis eventhe
spectrum of a continuous operator in some Frechet space; in the case
where the given subset is a compact subset, it is the spectrum of a
continuous operator in a Banach space E (choose

E = C(M),
M is the compact subset under consideration).

EXERCISE 2 Let E be a complex Banach space, let u E L(E); consider
the function
$(A) = (A1 - U)-|

defined in the complement of the spectrum of u with values in L(E).
Show that ¢(1) tends to 0 when | 1 | tends to infinity and that for every
continuous linear form w on L(E), <¢(4), w) is a holomorphic function
of . Conclude that the spectrum of u is not empty (if not, apply
Liouville's theorem to the entire function zero at infinity <{¢(4), w»).

EXERCISE 3 Let E be the space of continuous functionsf on R such
that
lim f(t) € = O.

f—— o0
Equip E with a natural topology so as to makeit a Frechet space. L et
u be the translation operator uf(t) = f(t - h) where h > 0. Show that
U is a continuous operator whose spectrum is empty (show that the

00

series ), Arum convergesin Lb(E) for any 2). Let u be a bounded operator
0]

ina LCTVS E, show that the spectrum of % is not empty (use Exer-
cise 2).

EXERCISE 4 Let U bealinear operator in a vector space E. With the
notations of Proposition 3, show that the spectral subspaces £, are
linearly independent.

4 The Riesz theory of compact operators

LEMMA Let u be a compact operator in an LCTVS E, letv= 1 *Fu,
Then the sequence of kernels of v ends up being stationary.

Proof Let V be aneighborhood of 0in E and A a compact disk such
that (V) cA. Then the space E generated by A with the norm gauge
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of A is a Banach space, the identity mapping ¢ from E 4 into E is
compact and « defines a continuous linear mapping ufrom E into EA,;
on the other hand the operator ug¢ induced by % in Ea is compact
since u gis compact. By Proposition 5, in order to prove the lemma it
sufficesto proveitfor the compact operator u o¢ in the Banach space EA.
We can therefore suppose that E is a Banach space. We proceed
by contradiction; if the sequence of kernels Z,, of »» were strictly in-
creasing we could find an infinite sequence (y,) such that «, e En+,,
Il 4, I < 1, the distance from Yn to En being at least equal to } (see
Chapter 1. Section 13, Lemma). We would have then for m > n:

U, - unm= (1 - yYm- (1 - 2)y, =Ym- =
where X = Wm+ (@1 - vy, eEm,
so that | %y, - uymll > 3.

Now the, sequence (uy,) is relatively compact as it is the image of a
sequence extracted from the unit ball and should have a (cluster point),
which is absurd. This ends the proof.

Applying the lemma to v = 1 +u' in E' with the topology of
uniform convergence on the compact disks (for which u' is a compact
operator by Proposition 1), we Seethat the sequence of kernels of vin
ends up being stationary. Now «» = (v, and we can write

v=@1tur=1+uqu,

where U, = nu+n(né l)w2+...+un
IS a compact operator in E. Thus (Theorem 3, Corollary 3) v is a
homomorphism from E onto a closed subspace of finite codimension of
E which is therefore the orthogonal of the kernel of (¢#)’. Since this
last one remains constant for n sufficiently large it follows that the
sequence of vn(E) ends up being stationary and its intersection is a
closed subspace F «» of finite. oodimension. Applying Proposition 2, 3)
we see that the sequences v-n(O) and vn(E) are stationary starting from
the same rank » and that E is a direct (algebraic) sum of

Ew = V-"(O) and Fw = V"(E)

It is even their topological direct sum, F_ being closed and of finite
codimension (Chapter. 1, Section 12, Theorem 7, Corollary 3). Further-
morevisnilpotentin Ex andisinF , an automorphisminthe algebraic
sense (Proposition 2, 3), i.e. a bijective mapping from F«» onto F.,.
Since it isfurthermore a homomorphisminF , by Theorem 2, Corollary
2 applied to the operator » = 1 + » induced by v on F oo We see that
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itiseven anisomorphism from F « onto itself. Summing up, we can now
state the fundamental theorem of the Riesz theory:

THEOREM 5 Let u bea compact operator inanLcTvsE, létv = 1 + u.
Then v is @ homomorphism from E onto a closed subspace of E offinite
cadimension equal to the dimension of the kernel. Let

s: = Uvno), Fo= MNine,

then E« and F . aretopologicol smvpplemenss stableunder « and v, E « finite
dimensional. Then v induces @ nilpotent operatorinE « anda Tv sautomor-
phismin F co.

(The first assertion of the theorem is contained in Theorem 2,
Corollary 3, and in Proposition 2, Corollary.)

COROLLARY 1 Theimage v(E) is the orthogonal of the kernel of v' and the
image v'(E") is the orthogonal of the kernel of v.

Thefirst assertion follows from the fact that v(E) is closed, the second
one from thefact that v'(E') is closed in E' equipped with the topology
of uniform convergence on compact disks (by Proposition 1, which
allows Theorem 3to be appliedto v = 1 + u"), hencealso in E' weak.

COROLLARY 2 The following conditions are equivalent:

a) Visbijective

b) vis onto

c) Vv is an automorphism
a') V' is bijective

b') V' is onto

c') V' is an automorphism

(V' considered as an operator on E' with the topology of uniform convergence
on compact disks).

The equivalence of @ and b) follows from the identity between the
dimension of the kernel and the codimension of the image of v; further-
more, v being ahomomorphism, a) andb) imply c) andarethusequival ent
to it. This aso proves the equivalence of a), b'), ¢'); finaly, the equi-
valence of b) and a') follows from Corollary 1 which implies, more
generally,

COROLLARY 3 The dimension of the kernd of v, the dimension of the
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kernel of V', the codimension ofthe image of.v and finally the cadsmension of
the image of V' are equal.

COROLLARY 4 Let

g, - Uvno),lN = Nvne).

Then E., is the orthogonal of F ,, and. F';, s the orthogonal of E,. In par-
ticular, the démensions of E,, and I, are the same.

Introducing the integer » at which the four sequences (v-#(0)), etc.
become constant, it suffices to apply Corollary | tov® = | + 4, (where
%, IS @ compact operator in E).

PROPOSITION 6 Let % bea compact operator in an LCTVS E. For every
A # 0 of the spectrum of « there exists a non-zero eigenvector, i.e. 1 is
eigenvalue of u, The corresponding spectral subspace Z, of E is of finite
dimension, equal to the dimension ofthe spectral subspace Z; corresponding
to the transpose ¥’ of U; u and u' have the same eigenvalues with the same
multiplicities.

I t sufficesto apply the preceding corollaries to the compact operator
—(1/A)u and to the corresponding operator

1 |
1- 4 U —1(21- u).

CoronLARY The subspaces #,(4 =4 0) are topologically free.

By this we mean that for every A # O there exists a closed vector
subspace of E containing the E,, (A’ different from A and from 0) and
whose intersection with &, is zero. Now it suffices to choose #'; with the
notations of Proposition 3.

THEOREM 4 Let # be a compact operator in an LCTVS E. Then the
spectrum of u. is a compact set, and every non-zero point of the spectrum
IS isolated.

Equivalent statement The spectrum of « is either finite or isformed of 0
and of points of a sequence that convergesto O.

Proof We know that the spectrum of « is compact (Proposition 5,
Corollary); now let A be a non-zero element of the spectrum, then we
shall show thatitisanisolated point. WiththenotationsofProposition 3,
E is a topological direct sum of the closed subspaces #Z, and F, stable
under u, Ifu, and u, are the operators induced by « we clearly have
u(u) = a(ul) u a(u,. Now a(u,) is reduced to 4 and a(u, is compact
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(see above) and does not contain A (otherwise F would contain a non-
zero eigenvector corresponding to 4) whence the conclusion follows.

EXERCISE 1 LetE beanLCTVS.

a) If w is a compact (resp, bounded) linear operator in E and if
v = 1 tuisinvertiblein L(E), show that theinverse of v has the same
form of v (use the fact that compact resp. bounded operators form a
bilateral ideal in L(E)).

b) Conclude that this is equivalent to say that v is invertible in
L(E) or inthe algebra L(Eg) of oontinuous linear operatorsfor alocally
convex topology on E whichis finer than the given topology, having the
same bounded subsets, and such that L(EO)c L(E).

c) Let z, be a compact operator in E; let Eo be the space E with a
locally oonvex topology such that every compact operator in E is
continuous in Eo. Show that it is equivalent to say that 1 + « is
invertiblein L(E) or in L(EO)'

EXERCISE 2 Let (4;) be a sequence tending to zero, let E be the space
Ip or the space co(1 << p < T ), » the operator of multiplication by
(4;) in E. Show that the spectrum of' % is composed of 0 and the set
(4,). Conclude that every non-empty compact subset of the field of
scalars where every non-zero point is isolated, is the speotrum of some
compact operator in E. Show that Proposition 6 and its Corollaries are
false if we do not exclude the spectral value O.

EXERCISE 3
a) Develop the notion of holomorphic, or meromorphio function, on

an open set of the complex plane with valuesin an LCTVSE.

b) Show that if« isacontinuouslinear operatorin a complex Banach
spaoe E, the funotion A > (A1 - U)-I defined in the complement of the
spectrum of 4 with values in the Banach space L(E), is holomorphic.
Generalize to the case where « is a bounded operator inan LCTVS E,
L(E) with the topology of bounded oonvergence (see Section 3,
Exercise 2).

c) Let» beacompact, operator in the oomplex LCTVS E. Show that
the funotion (I - zu)-1 with values in Lb(E) is meromorphic in all of
the complex plane. (It suffices by b) to prove the fact of being mero-
morphic in a point z such that 1/z isan eigen value; for this use the

spectral decompositionE = Ey, +Fy/,,)
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PART 3 GENERAL CRITERIA OF .COMPACTNESS

1 Smudian's theorem

ProrosiTion 1 Let E be a compact space, F a metric space, ® a set of
subsets of E' covering E, (fi) a relatively compact sequence in Cg(Z, F).
Then there exists a subsequence that convergesin Cg(Z, F).

Let A be the compact closure of the set offi. On A, ®-convergence iS
equal to pointwise convergence and even equal to pointwise con-
vergencein adense subset of E, thereforeit sufficesto find a subsequence
of (fi) which converges on each point of E or even of a dense subset.
This leads us to the case where & is the set of one-point subsets of E.
| f E is metrisable and therefore admits a dense subsequence (Xi) since
it is compact, A is metrisable for pointwise convergence in the set of
(Xi), whence the conclusion in this case. If we do not suppose E metris-
able, we consider the compact space £ the quotient of E by the
equivalence relation "li(X) = fi(Y) for every i", then Cy(Z, F) can be
identified with a closed subspace of OS(E, F). On the other hand, & is
metrisable since its topology is by reasons of compactness the coarsest
for which the maps fi' into the metric space F are continuous. We are
thus reduced to the former case.

COROLLARY 1 In Proposition I, instead of supposing E compact, it
suffices to suppose that there exists a sequence of compact subsets of E
whose union is dense.

In fact, it follows from Proposition 1 that we can extract from (fi) a
subsequence which converges on every point of E;, and from this one
a subsequence which converges on every point of E,, etc., finaly, the
diagonal procedure gives us a subsequence extracted from (fi) which
convergesin every point of UEi' which ends the proof since this last set
IS dense. '

COROLLARY 2 Let E bea Hausdorff LCTVS such that there existsin E'
a sequence of weakly compact subsets whose union istotal. Then from every
relatively compact subset of E we can extract a convergent subsequence.

We can clearly suppose that the union of weakly -compact subsets of
E' is even weakly dense. Interpreting as usual E as a space of contin-
uous scalar functions on E' weak with a ®&-topology it suffices to
apply Corollary 1. In particular suppose that there exists a sequence of
neighborhoods of 0 in E for a topology compatible with the duality
(E, E'), i.e. neighborhoods for (&, E'), whose intersection is 0; we
see immediately by polarity that thereexistsin E' a sequence of weakly
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compact disks whose union s dense. I nthis case we can apply Corollary
2. In particular, if B is the weak space associated with a metrisable
LCTVS we find

THEOREM I' (SMULIAN) Let # bea metrisable LCTVS, then from every
weakly relatively compact sequence of E, we can extract a weakly con-
vergent subsequence.

EXERCISE 1 Show that Proposition 11s false if we do not suppose F
metrisable (choose £ reduced to a point).

Exercise 2 Let £ be acompact space, F a metric space, A a subset of
Gs(E, F), f a point in the closure of A. Show thatf isin the closure of a
countable subset of A. (For every integer n > 0, show that there exists
a finite subset F, of-A such that for every x = (zy, .. ., z,) E Enthere
exists f, e F,, such that

d(fals), f(25)) < 1/m

for 1< i < n)

EXERCISE 3 Let F be a separable LCTVS then the weakly compact
subsets of the dual are metrisable, therefore from every weakly
relatively compact sequence in £ we can extract a weakly convergent
subsequence. Show that this statement is false if # is not separable
(Example; £ = [* and the sequence of coordinate forms on E).

2 Eberlein's theorem

PROPOSITION' 2' Let E bea compact space, F a metric space, ® a set of
subsete of B covering E" A a subset of Cg(#, F). Then A isrelatively com-
pact 1T and only i f every sequence in A admitsa limit point in Cg(#, F).

- We need only prove the sufficiency; as the condition stated implies
that A is precompact (Well's criterion, Chapter 0) it suffices to show that
the closure of A in Cgx(#, F) is complete. For this we show that, its
closurefor pointwise convergenceis completefor pointwise convergence
and, afortiori, for ®-convergence (Chapter 0, Section 4, Proposition 6,
Corollary) which.leads us back to the case of pointwise convergence.
For every x E E, A(x) is a subset of # such that every subsequence
admits a cluster point, therefore A(x) is relatively compact in F since
F is metric. By Tychonoff, A isrelatively compact in (%, F) = FE
with pointwise convergence. It remains to be shown that the closure of
Ain Z(E,F) iscontainedin GS(E, F), therefore that a mappingj'from
FintoF inthe closure of A for pointwise convergenceis continuous. We
proceed by contradiction; if this were not so there would exist an
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ae E where f is not continuous, therefore an e > 0 such that for
every neighborhood V of a an x £ V would exist with

d(f(x), jla)) > e.
We could construct by induction a sequence (fi) extracted from A and
a sequence (Xi) extracted from E, with xg = a such that

1) d(fn(xi),f(xi)) < lin for 0<K<i<n- 1,
2) d(fi(Xn),fiXonp < 1In for 0<i < n,
3) d(f(xn), f{x0)) > e.

Suppose the 2 sequences constructed up to rank n — I, then deter-
minej', so asto obtain I) which is possible becausefisin the closure of
A, then construct x,, so as to satisfy 2) and 3) using the fact that the set
of x,, of E satisfying 2) is a neighborhood of x, = a. Let g be a cluster
point of the sequence (fn) in Gs(E, F) (which exists by hypothesis on A)
and Xa cluster point of (x,) inE. We havej'(z.) = g(x) for everyi by 1),
fi(X) = fi(Xy for every i by 2), and, taking I) into consideration

d(fn(x),f(xg) < lin

for every n, whence g(x) = f{xgy Now g being a continuous function,
g(x) is a cluster point of (g(%», therefore f(Xg) is a point cluster of
(f(x; 2 which contradicts 3) and ends the proof.

THEOREM 2 (EBERLEIN) Let E bean LcTVvs, A a subset of E. Suppose
that every sequence extractedfrom A admits a cluster point and that the
closed convexhull of A is completefor (&, E'). Then A isrelatively compact.

Since A is precompact, it suffices to show that its closure is complete
and a fortiori that its weak closure is weakly complete, which reduces
the problem to the case where E has the weak topology. Since F(A) is
complete for (&, E'), it will be closed in the completion £ of E for
(&, E"), therefore weakly closedinthis spacesinceitisa convex subset;
it suffices then to show that the weak closure of A in & is weakly
compact sincethis closureis containedin E. Thuswe may assume that
E is complete for 7(&, E"). Since A is clearly bounded hence relatively
compact in the algebraic dual of E' with the weak topology, it suffices
to show that every form X on E' in the closure of A for convergenceis
in E. Now for every weakly compact subset K of E' the restriction X
of X to K isin the closure (pointwise convergence) of the set Ak of
restrictionsof x e A to K. Itisclear that every sequence extracted from
Ak has a cluster point in Gs(K), then by Proposition 2, A ¢ isrelatively
compact in 0s(K), and X k is continuous. Since this is true for every
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weakly compact disk K in E' this implies that x isin E since E is
complete for z(#, E") (Chapter 2, Section 14, Theorem 10, Corollary 3).
Applying Theorem 2for a weak topology we obtain the following result
(equivalent to one already known).

COROLLARY Let E bea quasi-complete LCTVS. A subset of E is weakly
relatively compact if and only if every subsequence admits ¢ weak cluster

point.

THEOREM 3 Let K bea compact space, A a subset of O(K). Then A is
weakly relatively compact if and only if A 43 bounded and relatively

compact in Gs(K).

The necessity is trivial. For the sufficiency, by virtue of the theorem
on weak closurein O(K) or by virtue of Section 1, Proposition 1, we can
extract a sequence converging simply to a continuous function. The
conclusion follows from

PROPOSTION 3 A sequence (fi) in O(K) (K compact), converges weakly
toanf e O(K) ifand only ifit is bounded and convergespointwise tof.

The necessity is trivial. Since the continuous linear forms on O(K)
are the measures on K, the sufficiency follows from the Lebesgue

theorem.

EXERCISE 1 We shall say that a space has the property (E) if every
subset with every sequence extracted from it admitting a cluster point
is relatively compact. Let E be a locally compact or metrisable space,
® a set of subsets of E covering E, F a uniform space. Show that
Cg(E, F) hasthe property (E) if and only ifF hasit. (Examine the case
where E is compact, then the case of pointwise convergence, then the
case where F is the field of reals, viewing the topology of F as the
coarsest for which a certain family of real functions on F is continuous.)

EXERCISE 2 Let E bean LCTVS, A a convex subset of E.

a) A isweakly relatively compactifandonly if 4 is complete and its
image by every continuous linear mapping from E into an arbitrary
Banach space F is weakly relatively compact. (Notice that E is iso-
morphic to a topological vector subspace of a product of Banach apaces.)

b) Show that in this statement we can choose F to be the space [®

of bounded sequences. (We can suppose by a) that E is a Banach space
and we can furthermore suppose A disked. We must show that the

identity mappingfromG = Eainto E isweakly compact or equivalently
that the transpose mapping maps the unit ball of E' into a subset
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of G' relatively compact for a(G', G") (Chapter 2, Section 18, Theorem
13, Corollary 3). Show that it suffices to show that the image of every
sequence (x;) extracted from the unit ball of E' isrelatively compact for
a(G', Gil) and examine the mapping ux = «Xx, Xi» from E into [®.

C) SupposeE is separable. Then on statement @) we can suppose that
F is the space co. (With the notations of b), notice that it suffices to
prove that the mapping E' — G' has a restriction to the unit ball of'E'
which is continuous for a(E', E) and a(G', G") and only continuous at
the origin, and that the unit ball of E' being weakly metrisable it
suffices to show that for every sequence (x;) in E' tending to zero for
a(E'E), itsimagein G tends to zero for a(G', Gil». The hypothesis that
E is separable is essential, if not, a subset A of E may be not weakly
relatively compact, itsimagein O, by every continuous linear mapping
iS compact. "

EXAMPLE E = I/", A asubset of L" which is bounded, weakly metris-
able and not weakly relatively compact, for example a weak Cauchy
sequence not weakly convergent (see Section 3, Supplementary Exer-
cise 4).

EXERCISE 3 Prove the analogue of Exercise 2 replacing weak com-
pactness by compactness (the proof is similar but there is no need to
use Eberlein's theorem).

EXERCISE 4 Let E be an LCTVS, A a convex subset of E. Then A
is weakly relatively compact if and only if its closure is complete, and
for every decreasing sequence of convex subsets Ai of A we have

_n Ai # ¢ (By Exercise 2 a) reduce to the case where E is a Banach

|

space, then it suffices to show that every sequence (xi) extracted from
A has a weak cluster point. This brings us to the case where' E is
separable hence, where there exists a weakly dense sequence (x;) inE".
Extracting if needed from (Xi) a partial subsequence, we can suppose
that for everyl,

lim <xi' ;>
exists. Let An be the convex hullof the set of xi with i > n, let

ve (1 4.,

show that xi tends weakly to x using Chapter 2, Section 18, Exercise 1))
EXERCISE 5 Let E be a completely regular space whose topology T
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is finer than a certain metrisable topology To. Let A be a subset of E.
The following conditions are equivalent;

a) A isrelatively compact.
b) Every sequence extracted from A admits a cluster point.

c) For every sequence extracted from A, there exists a subsequence
extracted from the latter which is convergent. (Show that b) implies c)
viewing the topology T as thel.u.b. of afamily of metrisable topologies
Ti finer than To. Show then that a) implies that the closure of A is
metrisable).

EXERCISE 6 Let K be a compact space, A and B two weakly relatively
compact subsets of O(K). Show that the set AB of fg(fe A, ge B) is
weakly relatively compact. (Use Theorem 3.) For a deeper and more
general result, see Part 4, Section 2, Corollary 1.

EXERCISE 7 Let M be a locally compact space, (fi) a sequence in
ao(M). It is a weak Cauchy sequence if and only if it is bounded
and converges at each point of M. (Use the Lebesgue theorem.)

3 Krein's theorem

THEOREM 4 (KREIN) Let E bean LCTVS, A a weakly compact subset of
E. Then its closed convex Aull r(A) is weakly compact if and only ifit
Is completefor the given topology.

Applying the same statement to E with #{#, E') (which does not
change the corresponding weak topology) we see that it suffices that
r(A) be complete for (&, E') which is a priori less restrictive.

COROLLARY 1 Let E be a quasi-complete LCTVS, then in E the closed
convex hull of a weakly compact subset is weakly compact.

Theorem 4 is contained in the following statement which appears
more general.

COROLLARY 2 Let E bean LCTVS, A a compact subset of E. Then its
closedconvex hull r(A) is compact ifand onlyifitis completefor =(&, E").

(Theorem 4 can be obtained by applying this statement to a space E
with the weak topology.)

The condition is necessary since a compact subset of E is complete
therefore completefor z(#, E'). Conversely, suppose r(A) complete for
7(#, E'). Since r(A) is precompact for the given topology it suffices to
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show that it is complete for this topology and a fortiori to show that
it is weakly compact. Thus we are reduced the case where the given
topology of E is the weak topology, and we may, as in the proof of
Theorem 2, assume E to be completefor =(E, E"). |1t will sufficeto show
that the disked hull B of 4 is weakly relatively compact, Le. that the
identity mapping « from the normed space Es = F generated by B
(with the norm gauge of B) in E is weakly compact. By Chapter 2,
Section 18, Theorem 13, Corollary 1, this means that u' transforms the
equioontinuous subsets 4’ of E' into relatively compact subsets of F
for at]”, F"). Now consider the subspace H of elements of F' whose
restrictions to A are continuous for o(%, E'); it is clearly a closed,
therefore complete vector subspace of F' and thenorm induced on H by
F' isalso that induced by the space O(A) of continuous functions on the
compact 4 with o(&, E') (B is the disked hull of A). Therefore, H is a
closed subspace of O(A), hence weakly closed, and for a subset H
to be relatively compact in F' for a(F', F") it is (necessary and)
sufficient that it be weakly relatively compact in O(A), then by con-
tinuity it will be weakly relatively compact in the Banach space F',
i.e. for oi]", F"). Now clearly u' (E') cHand we must show only that
u' transforms an equieontinuous subset of E' into a weakly relatively
compact subset of O(A). Then u' transforms &’ e E' into the restriction
of z’ to 4 and we must show that if 2’ runs through an equicontinuous
subset of E', its restriction to 4 runsthrough aweakly relatively com-
pact set in O(A). Now, by Theorem 3, thisis clear (sinceu': E' — O(A)
being continuous from E' weak into O,(A) transforms an equicontinuous
subset, therefore weakly relatively compact subset of E', into arelatively
compact subset of Os(A), and we verify besides that it is bounded.
This ends the proof (but notice that in the form of Theorem 3 the
proof uses essentially Eberlein's theorem and the Lebesgue theorem in
integration).

PRoPOSITION 4 Let K be compact with a measure u, f a weakly con-
tinuous mapping from K into a quasi-complete LCTVS E. Then f is

weakly integrable in E.

Recall that this means that on one hand f is scalarly integrable
(trivial, since scalarly continuous) and furthermore the linear form
z on E' given by

<x, @' = j' <J(t), X> du

belongs to E. Now, supposing |l z Il < 1, which is permitted, we see
that X belongs to the polar, in the algebraic dual of E', of the polar of
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f(K)-, that is, to the bipolar ofj(K), that is to the weakly closed disked
hull of f(K) in the weak completion of E. It suffices then to show
that this hull is containedin E, therefore that the weakly closed disked
hull of f(K) in E is already weakly compact. Now f(K) being weakly
compact by continuity, it suffices to apply Theorem 4, Corollary 1,
which is also valid for the closed disked hull, either as a result of the
given proof or as an immediate corollary of the given statement.

EXERCISE 1 Show that the conclusion of Proposition 4 remains valid
if we suppose K locally compact only, the measure x bounded, f weakly
continuous and bounded. (Examinefirst the case where u has a compact
support, by Proposition 4, then pass to the limit for any given u).

EXERCISE 2 Let K be a compact subset of a complete LCTVS. Show
that the closed convex hull of K is the set of weak integrals

[« 2 duta

where u runs through the set of positive measures of norm 1 on K.
Show that Theorem 4 would be an easy consequence of Proposition 4.

Supplementary exercises

Here are some exercises on compactness which could have been given
starting from Chapter 2, with the exception of Exercise 3, 3) and
Exercises 4 and 5 which use Smulian’s theorem.

EXERCISE 1 Let (Xi) be a Cauchy sequencein an LCTVS E, show that
its closed disked hull A is metrisable. (Work out the case where E is
complete and Hausdorff, then (Xi) convergent, then the case where the
limit is zero noticing that the sum of two metrisable compact sets A
and B is a homeomorphic compact set since it is metrisable to a separ-
able quotient of 4 X B. Then using Chapter 2, Section 13. Exercise 2,
notice that 4 isisomorphic to a quotient space of the unit ball of |1 with
o(l1, co) and that the latter is a metrisable compact set.)

EXERCISE 2. LetE bean LCTVS, let & be the set of subsets 4 of E such
that from every sequence extracted from A, we can extract a Cauchy
subsequence (® then contains the metrisable precompact spaces).

1) Let « be alinear mapping from E into an LCTVSF. Show that if
u transforms convergent sequences into convergent sequences, then
u transforms Cauchy sequences into Cauchy sequences and the 4 e &
into precompact subsets. (For the first part, let A be the closed disked
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hull of the Cauchy sequence (Xi), show that the restriction of % to A is
uniformly continuous, noticing that by Chapter 2, Section 14, Lemma,
It sufficesto show the continuity of thisrestriction at the origin and that
it then suffices, by Exercise 1, to show this continuity for the sequences
in A tending to O. The second point follows from theflrst in apurely to-
pological way, using Weil's criterion.)

2) Let A' be a set of linear forms on E which are continuous on the
sequences, then the following conditions on A" are equivalent:

a) A is precompact for uniform convergence on the convergent
sequences of E;

b A'is precompact for &-convergence;
0) every convergent sequence (or also: every Cauchy sequence) in

E, 'converges uniformly on A'. (Show that this statement is equiva-
lent to the first one, using Chapter 2, Section 13, Theorem 12.)

EXERCISE 3 LetE beLCTVS, & the set of subsets A of E such that
from every sequence extracted from A we can extract a weak Cauchy
subsequence (& contains then the bounded sets which are metrisable
for the weak uniform structure since "bounded" is equivalent to
"weakly precompact").

1) Letw bealinear mappingfrom E intoan LCTVSF. If utransforms
the weakly convergent sequences into convergent sequences, it trans-
forms weak Cauchy sequences into Cauchy sequences, and the A e &
into precompact subsets, (Particular cases of the preceding exercise
applied to E weak; the same proof for 2).)

2) Let A' be a subset of E'. The following conditions are equival ent:

a) A'is precompact for uniform convergence on the weakly con-
vergent sequences of E;

b) A'is precompact for &-convergence;

c) every weakly convergent sequence (or .also: every weak Cauchy
sequence) in E, converges uniformly on A'.

Following G. Kéthe we call such a subset of E' limited ("begrenzt");
this notion depends only on the dual system (E, E') (so that thelimited
subsets of E are defined at the same time).

3) ‘A" ¢ E'isliinitedifitis precompaot for =(E’, E). This condition
IS also necessary if E is separable or metrisable (more generally, each
time that Smulian’s theorem is validin E, as it means that the weakly
compact subsets of E are in &!).

4) A weakly continuous linear mapping (only the dual systems are
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pertinent here) from one LCTVS into another transforms limited
subsetsinto limited subsets. Show that for a subset A of E, thefollowing
conditions are equivalent:

a) A islimited,;

b) every weakly continuouslinear mapping from E into a separable
LCTVSF transform A into a precompact subset;

c) every weakly continuous linear mapping from E into co
transforms A into a precompact subset of co.

(@) = b) follows from 3), b) = ¢) is trivial and c) = a) can be seen
using a canonical bijective correspondence between weakly continuous
linear mappings from E into ¢,, and sequences weakly convergent to
0OinE'). Compare with Section 2, Exercise 2, ¢).

EXERCISE 4 Let (E, E') be a dual system, & the set of subsets A of
E such that from every sequence extracted from A we can extract a
weak Cauchy subsequence, A' the set of analogous subsets of E', &
(resp. &£’} the set of limited subsets of E (resp. E') (see Exercise 3).

1) Show that the following conditions are equival ent:
a & c ¥ a) © < ¥,
b) (resp. ¢) the weakly convergent sequences (resp, the weak

Cauchy sequences) in E arelimited,;
b') (resp, c') the same statement relative to E';

d) For every sequence (Xi) (resp. (x;)) in E (resp. E') which tends
weakly to 0 we have lim <Xi' ;> = 0.

2) IfE isseparable, it cannot have the preceding property unless its
bounded subsets are precompact for z(E, E'); in particular if E is a
normabl e space this E must be finite dimensional. The same conclusion
follows if E is a reflexive not necessarily separable Banach space (use
Exercise 3, 3)).

3) Let K be a compact Stonian space, set E = O(K), show that
(E, E") satisfiesthe conditions of 1). (Use Part 4, Sectionl, Exercise 12,
2) showing that a weakly convergent sequence in E' converges for
a(E, E") and aso the same Section 1, Exercise 11, showing that in a
dual of a space O(K) a sequence convergent for a(E', E") converges
for v(E', E.)

4) Noticing that if in 3) K isinfinite (for example O(K) = Zo when
K is the Stone compactification of the integers), there exist weak

p
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Cauchy sequences not weakly convergentinE = O(K) (seefor example
Part 4, Section 2, Exercise 3, 2°), conclude from this that there exist in
E limited subsets that are not even weakly relatively compact. (Com-
pare with Section 2, Exercises 2 and 3.)

EXERCISE 5

1) Let x4 be a positive measure countable at infinity on a locally
compact space M, let E = LYu). Show that from every bounded
sequence of the dual E' we can extract a weakly convergent subse-
quence. (Reduce to the case where u is bounded replacing x by an
equivalent measure which replaces L(x) by an isomorphic space; in
this case we have L" elLl, and the inclusion mapping is continuous
for ¢(L*, LI) and the weak topology ¢(L1, L* of LI, therefore the unit
ball of L* is a weakly compact subset of LI. Then apply Smulian’s
theoremin LI.)

2) Let x be a measure on a locally compact space. Show that the
limited subsets of E = .L(x) (see Exercise 3) are identical to the pre-
compact subsets of E. (In order to show that alimited subset is pre-
compact we can suppose that it is a sequence in E = L'u); reduce
to the case where w4 is countable at infinity; in this case, the assertion
follows trivially from 1).)

EXERCISE 6 Let E be an LCTVS whose strong dual is separable, A
linear mapping » from E into an LCTVSF, transforming weakly con-
vergent sequences into convergent sequences, transforms bounded sub-
sets into precompact subsets-and conversely. (Use Exercise 3, 1),
noticing that the bounded subsets of E are weakly metrisable in this
ease.)

PART 4 WEAK COMPACTNESS IN LI

1 The Dunford-Pettis criterion and its first consequences

In what follows, M stands for a locally compact space, x4 a positive
measure on M. We suppose the general theory of integration (Bourbaki,
Integration, Chapters 1 to 5) is known and we follow in general Bour-
baki's terminology. Recall that L(x) = LI the Banach space of equi-
valent classes of summable functions, with the norm

"= fJf(S) | dp (s),
and that its dual can be identified with L®(u) = L', the space of
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classes of measurable and bounded functions with the norm

| fllo = 1.u.b, in measure l/(S) I
The coupling is given by

<l g = ffg du (fe L', g € L®).

It is sometimes convenient to introduce the space .#(u) = .# of all
classes of measurable scalar functions (modulo the equality locally
almost everywhere), with the topology of convergencein measure on every
compact set, where a fundamental system of neighborhoods of 0 is
formed by sets V(K, ), K compact <M and ¢ > 0 formed by the f
such that the set of points of K, where lf(s) | > &, is of measure > .
(We thus obtain a TVS topology but in general not a LCTVS). The
convergent sequences for this topology are said to be sequences con-
vergent in measure on every compact set. The LP spaces can be imbedded
canonically and continuously in .# (which explains the use of .#).
Recall Egoroff's theorem, a sequence (fi) which converges almost every-
where, converges in measure on every compact set.

If A is a subset of M, we call ¢4 its characteristic function or aso
ir'gs class in L® if A is measurable. With this notation we have for

et».

<|, ¢a> = jd 1dg.

LemMmA 1 Let (f,) be asequence in L1 such that ({f,, $4> is convergent
for any open set A. Then we have

a) For every ¢ > Othereexists y > 0 suchthat A measurable, u(4) < 7
implies <| f,, |, ¢4 >< & for every n.
b) For every ¢ > 0 there exists a compaci set K < M such that
fol bex> < €
for every n.

Proof
a) It is well known that for a givenf ELI we can find for every

¢ > 0an#n > 0suchthat A measurable, u{(A4) < n implies
Af | da> < e
(Since, letting M, be the set of se M such that |f(8) | > n, then
N, = 4,
therefore, by Lebesgue's theorem
Ifl ¢ar.> — 0,
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so that there exists n such that

11 bar> < &/2;
choose n = (¢/2n), then A is measurable and u(4) < n implies

A1 1> < A ameary T < o) < pu(d) /2 < e

Suppose first that for every open set A, {f,, $4> tends to 0. In order to
prove a) it sufficesto show that we can find > 0 such that A measur-
able, u(4) < n implies

<.fm 95A> < e

for every n, since we shall then have (supposing the f, real)

11 dad = <, da> "= Sy da
(where 44, or A ,, is the set of points of A where f, is positive, resp.
negative) whence,
<|||,qSA> <ete= 2s
We proceed now by contradiction supposing that for any % > 0,
there exists a measurable set 4 and an index n such that
p(d) < 7, I<fm 4> | > e.

We can clearly suppose A open (replacing it by a slightly larger open
set and n as big as desired. We shall construct by simultaneous
induction a strictly increasing sequence of indices (ni) and a sequence
of open sets Ai' such that we have, where 4,; are the set of elements of
Ai which do not belong to either A; or A, for k < i,

1) | {fupp a,> | -C 2-1- for every i,j
(2) | {fu,» $4,> | > € for everyj.

Suppose the construction is done up to rank k; by the remark at the
beginning we can find an » > 0 such that

Qfilad < 2-201 < 241 a
for pAd) <7 j <Kk

and since (f,) tends to 0 on the characteristic functions of open sets
and therefore on their linear combinations ¢4,(¢, j < k) we can find an
index n such that

| <Im, b4,y | < 2-%. 1 2-1 (e
for m>n, 1,j<kEk.

Finally, by hypothesiswe canfind anopenset A = Ariandm = nk+l
such that

wd)<n, m>n, IKImédl> e,
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and we verify immediately that the hypothesis of induction"is still
satisfied. Let A = u A,. which is open, and since

A = Aiu U Ajj (disjoint union)

<f'nj) (){)A> = <f'np ¢Aj> + Z <f'nj: 96‘4”>
then by (1) and (2)
| fo,, $P> | > ¢ - 22-i1=¢- 2%

But on the other hand we should have

<f‘m'; ¢’A> — 0

which is a contradiction.
We now consider the general case. We claim that thereexistsann > 0

and an#z > 0 such that u(4) < N. p, g > nimply
Afo - fo |, dad< /2.

| f not, we could find two sequences of indices Pk and gk and a sequence
from A, such that

u(Ak) < é Pk, gk = K,
<|fm = fak |, ‘}5‘4,,> > e/2,

which contradicts the preceding result as the sequence

(f‘Dk = |qk)
IS a sequence which tends to 0 on the ¢4, A open. Then let nand 7 be
as above; choosing » sufficiently small we can furthermore suppose that

wA) < nimplies dso
<Iml, 4> < &/2
for m < n, We then have for u(4) < yand m > n
<Iml, ¢d> < A fal,dad> +<UM- ful d> < e/2 +8/2 = ¢
whence <Uml ¢a> < ¢
for every m which ends the proof of the first part of the lemma.

b) Let U« be the measure of density f, with respect to . From the
hypothesis that u,(A4) is a converging sequence for every open set A, we
wish to conclude that there exists a compact set K such that

lua I(CK) < &
for every n. Interpreting the u,, as bounded measures on the compact set

M obtained by the adjunction of "apoint at infinity" w, the hypothesis
remainsvalidin thisinterpretation of the «,, and the conclusion means
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that we can find a neighborhood Vv of w in M such that | U« | (v) < ¢
for every n. Now we can find a measure » on # such that the x, belong
to Li(y) (identified in the usual fashion with a space of measures) for
example

Y 9-n _Hn
v = 2,2 2 T
By the first part we can find » > 0 such that for every measurable
subset A of M, »(4) < n implies lu« | (A) < e. In particular, we can
choose a neighborhood V of « such that
WV N o) <7,
which is the desired V.

THEOREM 1 (DUNFORD-PETTIS) Let H be a subset of L», Then H is
weakly relatively compact if and only if it satisfies the two following con-
ditions:
a) For every n > 0, there exists ¢ > 0 such that A measurable and
md) <7
implies
<|f|’ ¢A> < €

for every f E H.
b) For every ¢ > 0 there exists a compact set K < M such that

Afl x> < e

for every f e H.

Suppose H weakly relatively compact. | f a) were not true there would
exist a sequence (4,,) of measurable subsets of M and a sequence (fn)
extracted from H such that

Afal da> > 6 w(dy) < lin.
But from Smulian’s theorem we can extract from (f,) a weakly con-
vergent subsequence and this contradicts the first part of the preceding
lemma. Likewise, if b) were not true we could find a sequence of com-
pact sets K; =« M pairwise disjoint and a sequence (f,) extracted
from H such that <Ifnl, ¢x,> > e Let ((InN) be a weakly convergent
subsequence of (fn) (Smulian's theorem), let K be a compact set such
that
A g |, dex> < &/2
for every n we would have

dgnl, x> < 5 < (0l Praras

ol o™
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and the second term at the right tendsto 0 for m — <o uniformly with
respect to n by Lemma 1, @) whence

A9l dxn>< e
for every n for m = mg which is absurd.
Suppose a) and b) verified, we shall show that H is weakly compact.
We use the

Lempn 2 Let H be a subset of a Banach space E such that for every
e > thereewxists a weakly compact subset H' of E such that every x EH
be at a distance < e from H'. Then H is weakly relatively compact.

L et B be the unit ball of E, E' the bidual of E, B the closure of Bin
E" with the weak topology (i.e, a(E", E')). H being clearly bounded,
it sufficesto show that itsweak closure # in E" is containedin E. Now
from

H<H t¢B
we conclude

HcH T8
since H' being weakly compact and B weakly closed the second term
iIs weakly closed in E". A fortiori we shall have

H< E + ¢B
for every ¢ > 0, whence H = E since E is strongly closed in E". The
conclusion follows.

We now return to the conditions of Theorem 1. For every compact
K = M, consider the setH' = ¢xH of products ¢ f, f € H. ByLemma2
and condition b) of the theorem it suffices to show that the sets H' are
weakly relatively compact, which leads us to the case where all the
f eH vanish outside a fixed compact set K, therefore to the case where
M isitself a compact set K. Inthis case we have L* eLl. We seefirst
of all that a) impliesthat H is bounded. Let A be the unit ball of L'";
on A, convergence to O in the sense of the topology induced by LI im-
plies uniform convergence on H. In fact, by condition a) on H we see
easily that even the convergence in measure on A implies uniform con-
vergenceon H. Now on L " thetopology induced by L 1 isthetopology of
uniform convergence on thg@subset A of L 1, and the preceding argument
means that for every e > there exists » > 0 such that

A Nnd® < eHO,
By polarity this can be written

1 = 1

-H ¢ I“(A", - A)

& \ 7

H
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where Ao is simply the unit ball B of LI. Then a fortiori

H < A + B,
7

I.e. we have the conditions of Lemma 2, with H' = £A. It suffices to
Y

notice that A is a weakly compact subset of L1 which is immediate,
the identity mapping from L" into L1 being continuous for the weak
topology a(L®, L 1) of L® and the weak topology of L 1and transforming
then the weakly compact subset A of L™ into aweakly compact subset
of L':

COROLLARY 1 Let HelL |l and let H' bethe set off e L! such that there
existsg e H with If | < I gl Then H isweakly relatively compact if H' is.

I n particular

COROLLARY 2 A subset of L1 which is order bounded s weakly relatively
compact.

(Choose in Corollary 1 H reduced to an element.)

COROLLARY 3 In a space L), a weak Cauchy sequence is weakly con-
vergent.

By Lemma I, the two conditions of Theorem 1 are satisfied.

PROPOSITION 1 Every bounded sequence in L*® converging to an f in
measure on every compact set, converges to f uniformly on every weakly
compact subset of L1 (i.e. for the Mackey topology 7(L*, L1).

The proof is immediate by conditions a) and b) of Theorem L The
converse is true, see Exercise L

COROLLARY Let u bea weakly continuous linear mapping from L * into
an LCTVS E. Then « transforms the bounded sequences convergent in
measure into convergent sequences of E.

I n fact, the transpose u' of u is a linear mapping from E' into L'
continuous for a(E', E) and ¢(L!, L*) and thus transforms the weakly
compact subsets and afortiori the weakly closed equicontinuous subsets
of E' into weakly compact subsets of L': The conclusion of the corollary
means precisely that the sequences (f,) considered, converge uniformly
on the images by u' of equicontinuous subsets of E', which follows from
Proposition 1.
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PROPOSITION 2 LetH < L !(u). For H tobe relatively compactit is neces-
sary and sufficient that it be weakly relatively compact and relatively com-
pact on the space.#(u) (for thetopology of convergence on measure on every
compact st).

The necessity is clear. For the sufficiency it sufficesto show that from
every sequence (f,) extracted from H we can extract a subsequent
convergent in L», Now we can extract from it a weakly convergent
sequence (g,) (Smulian) and from this a sequence which converges
in measure; since if we suppose M countable at infinity then .#(u) is
metrisable (therefore every relatively compact sequence of this space
admits a convergent subsequence), and in the general case can be
reduced to the preceding case noticing that the ¢,, are zero outside the
union of a sequence of compact sets (since each g, is integrable). The
proposition follows from

COROLLARY Let (f,) bea sequence in Lt. Then it converges strongly to
[ eL»ifand only ifit converges weakly and if it convergestof in .#(u)
(i.e. in measure on every compact set).

The necessity is obvious. For the sufficiency we notice that the set of
f» beingweakly relatively compact in L1 satisfies conditions a) and b) of
Theorem 1. From this, and from the fact that it converges in measure
tof on every compact set, we conclude easily that

jlf- I 1dji— O

COROLLARY 2 In the space I' every weakly compact subset is compact,
"every weakly convergent sequence is convergent.

EXERCISE 1 A subset of L® isrelatively compact for ¢(L>, LI) if and
onlyifitis bounded and relatively compact in .# (space of equivalent
classes of measurable scalar functions with convergence in measure on
every compact set). A sequencein L® convergesfor «(L*, LI) ifand only
iIf it is bounded and converges in measure on every compact set.
(Reduce to the second statement and use Proposition 1.)

EXERCISE 2 Let M be alocally compact space, .#1() the space of
bounded measures on M, the dual of Oo(M).

a) Let u be a positive measure on M. Ifto everyf el I(u) we assign
the measure fa of "density "' with respect to u we obtain a metric
isomorphism from L(z) into .# (M) which' respects the natural order
structures. We shall write LY(u) < .#*M). Show that the Ll{u)
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(v variable in .#1(M)) form an increasingly directed family of closed
vector subspaces of .#1(M) whose union is .#1(M). For every sequence
LY(u;) of such subspaces there exists an L(u) of the same type that
contains them all. (Choose

1 u
HeZgllgl

and apply the Lebesgue-Nikodym theorem.)

b) Show that we can find a locally compact space M' with a posi-
tive measure 4 and an isomorphism of ordered Banach spaces from
M (M) onto L*(u). (Consider a maximal family (i,) of positive measures
on M pairwise mutually singular and choose for (M', u) the sum of the
spaces (M;, u;) where M is the support of u,).

c) A subset of .#1(M) bounded for the lattice structureis relatively
compact for o(A M), (A (M))).

EXERCISE 3

a) Let H be aweakly compact subset of a space L(x). Show that we
can find a sequence (K;) of compact subsets of M such that everyf e H
vanishes outside uK;, therefore that there exists anf e LI such that for
every g e H we have gu E LI(fu).

b) Conclude, with the notation of Exercise 2, that a weakly compact
subset of a space .#1(M) is contained and is weakly compact in some
subspace Lu. (Use Exercise 2, b); naturally, by weak topology in
A1) we understand the weak topology defined by the dual of the
Banach space .#1(M) and not the coarser topology o(.#*(M), Oo(M».

c) Let A be a subset of a space .#*(M). Show that the following
conditions are equivalent:

) There exists a positive bounded measure z on M such that
A < LYg);

2) A is contained in the closed vector space generated by some
|attice bounded subset of (#YM);

3) A is contained in the closed vector space generated by some
weakly compact subset of .#1(M).

Show that the sets A are closed under countable unions. If z is a
positive measure on M then the subset Li(u) of #*(M) satisfies the
conditions above if and only if i is countable at infinity.

d) Let u be a positive measure countable at infinity on the locally
compact space M, » a continuous linear mapping from L(u) into a
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space .#1(M’) (M' a locally compact space). Show that the image of
L*(u) 1s contained in a space LI(V), where v is some bounded positive
measure on M'. (Use ¢).}

EXERCISE 4

a) LetK beacompactspace, F aquasi-eompleteLCTV S, uacontinuous
linear mapping from C(K) into F. For every Hausdorff quotient space
K of K weidentify C(K) to a normed subspace of O(K). Show that u is
weakly compact if and only if every metrisable quotient space K of
K the restriction of u to C(K) is weakly compact. (Use Eberlein's
theorem and notice that every sequencein C(K) is contained in the space
C(K) with £ some metrisable quotient of K.)

b) For every Hausdorff quotient space K of the compact set K we
consider the transpose rnapping of the canonical embedding from
C(K) into O(K), we then obtain a canonical metric homomorphism
u > ¢(u) from the space .#(K) of measures on K onto the space
A (K) of measures on K (¢(u) is known as the image of themeasure u by
the canonical mapping ¢ from K into K). Let A be a subset of #(K).
Show that A is weakly relatively compact (by weak topology on .#(K)
we understand the topology o(#(K), (#(K))') and not the topology
o(#(K), O(K))), if and only if for every metric quotient £ of K the
canonical image of A in .#(X) is weakly relatively compact (Show that
A is bounded then reduce to the case where A is disked and closed for
o(A#(K), O(K)), therefore equal to the image of the unit ball of a dual
F' by the transpose of a continuous linear mapping u from O(K) into a
Banach space F. Show that u is weakly compact using a)).

EXERCISE 5 Let M be a locally compact space, .#t = #(M) the
space of bounded measures on M (the dual of Oo(M)). Every bounded
function f on M measurable for every measure on M (for example a

bore funotion) defines a continuous linear form u +— jf dyu on A*
of norm sup lf(t) |, which permits the identification of the space of

t
these functions with the uniform norm with a normed subspace of the
dual of #t, We call E , (resp. Eo) the subspace formed of linear combina-
tion of characteristic functions of open sets (resp. of open sets which
are the union of a sequence of closed sets). By weak topology in .#1 we
understand the topology o(.#1, (#1)").

a) A Cauchy sequence for o(#*, E,) is already weakly convergent.
(Use Exercise 2, @) inorder to reduce to the case of a sequencein a space
L 1(u), then use Lemma 1 and Theorem 1.)
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b) Let A be a subset of .#1, then A is weakly relatively compact if
and only if A isrelatively compact for ¢(.#?, E0). (Reduce to the case
where M is compact, using the one point compactification, then to
the case where M is metrisable by Exercise 4 b). Notice that A is
bounded by Chapter 3, Section 3, Exercise 7, ¢). It suffices then to
extract from every sequence (u;) in A aweakly convergent subsequence
by Eberlein's theorem. Extract first of al a convergent sequence for
a(.#*, 0, using the fact that the unit ball of .#! is metrisable and
compact for this topology. Then noticethat A is aso relatively compact
for o(#?, E,), where E, is the closure of Eo for the norm topology of
.#1 and that 0,< £, so that every sequencein A which converges for
o(-#1, 0, converges aso for o(#1 E0) by compactness, therefore
weakly by a)).

c) Let u be a continuous linear mapping from Oo(M) into a quasi-
complete LCTVSF. Show that the following conditions are equivalent:

1) uis weakly compact;
2) u"(Eg < F;
- 3) u transforms weak Cauchy sequences into weakly convergent
sequences; :
4) » transforms every bounded non-decreasing sequence into a
weak Cauchy sequence.

(We haveimmediately 1) = 2) = 3) = 4), by the characterization of

weak Cauchy sequencesin Oo(M), Part 3, Section 2, Exercise 8; further-
more we easily obtain 4) = 2); finally 2) == 1) by bj).
EXERCISE 6 Let M be a locally compact space, F a quasi-complete
LCTVS. We suppose that in F every weak Cauchy sequence is weakly
convergent. Show that every continuous linear mapping from Oo(M)
into F is weakly compact. (Use Exercise 5, c). Every continuous linear
mapping from Oo(M) into a space LI or .#Y( M), M' being locally com-
pact, is weakly compact. (Use @) and Theorem 1, Corollary 3), finally,
use the fact that .#*(M) isisomorphic to a space L", Exercise 2 bj.)

EXERCISE 7 Let M be locally compact with a positive measure u,
E a quasi-complete LCTVS, f a scalarly summable mapping from M
into E which defines a natural linear mapping « from E' into LI(U),
ux' being the equivalent class of the function <f(t), x'). The transpose
of uisalinear mapping from L™ into the algebraic dual 2 of E' usually

denoted by
u'dp = ff¢ dy
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("weak'integral"). Show that f f¢ du is an element of E for every ¢ e L"
if and only if this is the case for every ¢ characteristic function of a
closed set. (Consider the case whereF is a Banach space; then show that
u 1S a contenuous linear mapping from E' into LI using the closed graph
theorem, therefore u' is a continuous linear mapping from L' into E".
Conclude that it maps Oo(M) into E, then, using Exercise 5, ¢), Criterion
2), conclude that it is a weakly compact linear mapping from Oo(M) into
E. Conclude by noticing that the unit ball of Oo(M) is weakly dense in
that of L%),

EXERCISE 8 Let E be a quasi-complete LCTVS in which every weak
Cauchy sequence is weakly convergent (for example, a reflexive space
or LI). Show that in E every scalarly summable sequence is summable.
(Use Chapter 2, Section 18, Exercise 3.)

EXERCISE 9 Let M be a locally compact space, let #! = .#YM) be
the space of bounded measures.on M (dual of 0, = Oo(M), H a subset
of 1, Show that the following conditions are equivalent:

a) H isrelatively compact for g(#1, (A1)’).

b) There exists a positive measure ¢ on M such that H < L(u)
(when L(u) is identified with a space of bounded measures as in
Exercise 2). Then p being thus fixed, H as a subset of Li(ux) satisfies
the conditions @) and b) of the theorem.

c) There exists a positive measure  on M such that H ¢ L(u).
Then H being thus fixed, every bounded sequence (f,) in L*(u) which
converges in measure converges uniformly on H.

d) Every sequence in 0, weakly convergent to 0 (i.e. bounded and
converging to zero in every point of M), converges uniformly on H.

e) For every sequence of open sets Oi pairwise disjointin M we have
lim 2(0;) = O.uniformly when x isin H.

f) H satisfies the two conditions: (i) For every compact K < M and
every € > 0, there exists an open set U > K such that

lul(unCk) <e

for every 4 E H. (ii) For every ¢ > 0 there exists a compact K ¢ M
such that | x| (CK) < e for every u e H.

a) = b) by Exercise 3, b) and Theorem 1; b) = ¢) by Proposition 1;
c) = d) trivially; we show without difficulty d) = €) and e) = f).

| t remainsto be shownthat f) = @), for thisconsider, using Eberlein's
theorem, the case where H is countable and contained in a space
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LY(u), using Exercise 2 a). (Then use Theorem 1 where we need only
prove condition a); for thiswe can consider the case whereM is compact
and we finally prove the conclusion by contradiction, not at all trivial.)

EXERCISE 10 Let u be a continuous linear mapping from Oo(M) (M
locally compact) into a Banach space E. Show the equivalence of the
following conditions:

a) U is weakly compact;

b) there exists a positive measure ; on M such that u'(E') ¢ L(u).
Then u being fixed the following conditions are satisfied:

«) For every e > 0O there existsn > 0 suchthat for every borelian
set A with u(4) < nwe have | u”(¢4) Il < e

fl) For every e > 0O there exists a compact X = M such that for
every borelian set Ace X we have | w/(¢4) | < e

c) There exists a positive measure ; on M such that u can be ex-
tended by continuity into a mapping from L®(u) into E continuouswith
respect to o(L”(u) LY(x) and a(E, E').

d) » transforms the weakly convergent sequences of Oo(M) into
strongly convergent sequences of E.

e) For every sequence (Oi) of open pairwise disjoint subsets of M we
have lim«”(¢y,) = 0inE.

f) We have the two properties:

¢) For every compact X < M and every ¢ > 0, there exists an
open set U > X such that for every X' contained in U n Cx we

have Il w(¢z) Il < e
fl) For every e > 0 there exists a compact X contained in M such
that for every compact X' disjoint from X we have ll v”(¢z) Il < e

I n the statements of conditions a), c) and f) we have identified asin
Exercise 5, the bounded bore functions on M with elements of the
bidual of 0 o(M). ¢4 isthecharacteristic function of A. (Proof: with the
exception of c), the equivalence of these conditions is merely the
reformulation of the equivalence of the corresponding conditions in
Exercise 9. @) = c) follows directly from Exercise 3, b) and c¢) =~ a) is
trivial because the unit ball of L®(u) is compact for the considered weak
topology). Extendthe equivalence of conditionsa, d, e, f (f appropriately
modified) to the case where E is a quasi-complete LCTVS.

Compare the results of Exercises 9 and 10 to those of the following
exercise (and also of Exercise 5).
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EXERCISE 11 Let E be an # space. A subset H of E' is relatively
compact for z(£’, E) if and only if every weakly convergent sequencein
E converges uniformly on H; alinear mapping from E into an LCTVS
F transforms weakly compact subsets into compact subsets if and only
ifit transformsweakly convergent sequencesinto convergent sequences.
(Thesetwo statementsare equivalent by Chapter 2, Section 18, Theorem
12; the proof is immediate by Smulian's theorem.)

Let E = Oo(M). A subset of E' is relatively compact for ={(#’, E) if
and only if it is so for a(E', EO); a linear mapping u from E into a
quasi-complete LCTVSF isweakly compact if and only if it transforms
weakly compact subsets into compact subsets. (Use Theorem 1, and
Exercise 9. Compare with the next section Proposition 3 and Corollaries,
and Theorem 2, and Section 2, Exercise 3, 3), 4), 5).)

EXERCISE 12
1) Let E be a Banach space. Show that the following conditions are

equivalent:

a) Every continuous linear mapping from E into a separable
quasi-complete LCTVS is weakly compact.

b) Every sequence (Xi) of E', which converges weakly to O, con-
verges to O for a(E', E").

(For a = b we consider the mapping
X «&X, Xi»)

from E into co defined by the given sequence in order to show that
the latter is relatively compact for o(¥’, EO); for b = a it suffices to
show that the image of an equicontinuous subset of E' by the transpose
u' is relatively a(E', E")-compact, and for this we use Eberlein's
theorem noticing that from an equicontinuous sequence of the dual of
F' we can extract a weakly convergent subsequence.)

2) Let K be a Stonian compact space, i.e. such that O(K) is a com-
plete lattice. Show that O(K) has the properties consideredin 1) (We
admit that C(K) is a direct factor of the space [*(K). Compare with
Chapter 3, Section 3, Exercise 8, ¢j), this leads us to the case

E = I°(K) = C(K)
(K agivenindex set, X its Stone compactification). It suffices to show
that the sequence (Xi) is relatively compact for a(E', E") and for this
we apply Criterion c) of Exercise 9 noticing that we can suppose the
O, simultaneously open and closed, K being totally discontinuous. Pro-
ceeding as in Chapter 3, Section 3, Exercise 8, a), consider the case
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where | is the set of integers and O, = {i}, then conclude by means of
Chapter 3, Section 7, Exercise 2, c).

3) A separable Banach space isomorphic to a quotient of a space
C(K), K stonian compact, is reflexive (use 2». Conclude that if M isan
infinite locally compact space with countable base, then Co(M) is not a
direct factor in its bidual. (Notice that when the dual of E = Oo(M)
Is isomorphic to an L1 space, Exercise 2, its bidual, is isomorphic to a
space L', then to a O(K) with K a stonian compact set. On the other
hand, E is separable, and therefore cannot be isomorphic to a quotient
of E" since E is not reflexive.) This generalizes Chapter 3, Section 7,
Exercise 2, d).

EXERCISE 13 Let M bealocally compact spacewith apositive measure
u, E a Hausdorff LCTVS, E' its dual. A mappingf from Minto E is
said to be strictly weakly summable if it is scalarly summable and if for
every ¢ e L", the weak integral { ¢fdu (which a priori is alinear form
on E') is an element of E. Thent defines a linear mapping u, from L
into E, u,(¢) = [ $fdu which is continuous for the weak topology
a(Le, L 1) and a(E', E) therefore transforms the unit ball of L* into a
weakly compact subset of E.

1) 1ff is a strictly weakly summable mapping from Minto E, the
mapping u/ transforms the unit ball of L'" into a limited subset of E
(see Part 3, Section 3, Supplementary Exercise 3, 3). (We must show
that every sequence (x;) weakly convergent in E' converges uniformly
on the subset of E in question or equivalently that the sequence ;2 is
strongly convergent in LI. By Proposition 2, Corollary 1, it suffices to
show that itis a sequencein £1 which isweakly relatively compact and
that it converges at every point.)

2) Conclude that ur is a compact mapping in each of the following
cases. E is separable; E is a reflexive Banach space or more generally
the dual F' of an (#) space F with the topology *(#',F); E is an £1
space; f is strongly measurable. (Except for the last case, under each
of the preceding conditions, thelimited subsets of E are precompact, by
Part 3, Section 3, Supplementary Exercise 3, e, and Supplementary
Exercise 5; inthelast case, reduceto the case whereE is a Banach space
-using Part 3, Section 2, Exercise 3-then the case where M is count-
able at infinity, finally the case of E separable noticing that we can
assume that/i s defined on a separable subspace of E.) Note: We do not
know whether uf is compact in all cases. We can easily reduce the
problem to the case where E is the Banach space {* and M is compact
proceeding as above, and thus to the case where M is metrisable or
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even where M is the segment (0, 1) with Lebesgue measure, and we
can finally assume f to be bounded using Section 2 Supplementary
Exercise 4, 3).

3) Letf be a scalarly summable mapping from M into the complete
space E. Show that f is strictly weakly summable if and only if the
mapping from E' into L) defined by f transforms equicontinuous
subsets into weakly relatively compact subsets of L», and that we can
find a total subset H of the weak dual L* of L» such that { ¢fdu e E
for every ¢ E H. (Notice that u/ is then a mapping from L* into the
algebraic dual E™* of E' continuous for z(L®, LI) and for the equi-
topology of equi-continuous convergence on E' mapping the dense
vector subspace generated by H into the complete, therefore closed
subspace E of E' *.) Note: we do not know whether the second condition
stated above is superfluous. We can reduce this question to the case
where E is a Banach space, M compact and finally (by Section 2,
Supplementary Exercise 4, 3)f scalarly essentially bounded.

2 Application of the Dunford-Pettis criterion

PROPOSITION 3 Let E bean LCTVS, & a set ofbounded subsetsof E, &’
the set of subsets of E' which are disked, equiconiinuous and compact for
a(E', E"). The following assumptions on (E, ®) are equivalent:

a) Every continuous linear mapping « from E into a Hausdorff
LCTVSF which transforms bounded subsets into weakly relatively compact
subseie, transforms the A e ® into relatively compact subsets.

b) The A e ® are precompact for the &’-topology.
c) The A' e &' are precompact for the &-topology.

We point out immediately that in the definition of &’ it was not
necessary to suppose the A"s disked (by Krein's theorem, Part 3,
Section 3).

The proof is standard: a) = b), since if we take F to be the com-
pletion of E for &’-convergence and « the identity mapping of E (with
its given topology) into F, u satisfies the conditions of a) by Chapter 2,
Section 18, Theorem 13 (the transpose u' transforms an equicontinuous
. subset of F' into a set contained in an element of &’, thence equicon-
tinuous and a(E', EIl) compact), therefore transforms the A into rela-
tively compact subsets of F, i.e. the.A e ® are precompact for ®’-eon-
vergence. b) == ¢) by Chapter 2, Section 18, Theorem 12 applied to the
.preceding mapping «# from E into F. Finally ¢) == @ by the same

Q
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theorem applied to «. (We find that « transforms the A e & into
precompact subsets of F, but since they are also weakly relatively
compact by the hypothesis on %, A being bounded, they will be even
relatively compact-Chapter 2, Section 18, Proposition 37, Corollary 1.)

COROLLARY 1 Let E be a quasi-barrelled space, E' its strong dual, sup-
pose that E' satisfies the conditions of Proposition 3 when &’ stands for the
set of a(E', E")-compact subsets of E'. Then E satisfies the analogous
conditron (relative to the set of weakly compact subsets of E).

We use the notations of Proposition 3. The hypothesis on E' means
aso (when we choose the statement b) of the proposition, which we
apply to (E', ®')) that the A' e & are precompact for the topology of
uniform convergence on the set &'’ of subsets A" of E" which are
equicontinuous and a(E", E"") compact. But an A e ®, i.e. a weakly
compact subset of E, clearly belongs also to &*, (since E being quasi-
barrelled is a topological vector subspace of E" strong), therefore a
fortiori the A' e &' are precompact for &-convergence, which is merely
Condition b) of Proposition 3 for (E, ®).

COROLLARY 2 Let E bean (#) epace, & the set of weakly compact sub-
sets of E. For the conditions of Proposition 3 to besatisfied it is (necessary
and) 8ufficient that every sequence weakly convergentto 0 in E, converges
‘Uniformly on every A' E &',

We shall use the Condition b) of Proposition 3. The necessity is
trivial. For the sufficiency we must show that every weakly compact
disked subset A of E is precompact for &’-convergence. Now (Smulian’s
theorem) we are able to extract from the given sequence a weakly
convergent subsequence which by the hypothesis will also converge in
the &-topology.

COROLLARY 3 Let E bean LcTvs, ® the set of subsets of E which are
weak Oauchy sequences. Then the conditions of Proposition 3 are equivalent
to thefollowing: '

a') Every continuous linear mapping u from E into a Hausdorff
LCcTVs F, which éransforms bounded subsets into weakly relatively com-
pact sUbsets, transforms weak Oauchy sequences into convergent sequences.

b') Every weak Oauchy sequencein E is also a Oauchy sequencefor the
&’-convergence.

| f these conditions are satisfied, and ifE is of type (&), then the con-
ditions of Proposition 3 are still satisfied if & is the set of weakly
compact subsets of E.
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It is in fact immediate that a') resp. b') are equivalent ways of
expressing @) resp. b). Finally, thelast part of the corollary follows from
Corollary 2.

THEOREM 2 Let E bea space L(ux) on 0o(M), u a mapping from E into
a Hausdorff LcTvs F which fransforms bounded subsets into weakly
relatively compact subsets. Then u transforms weakly compact subset8 into
relatively compact subsets and weak Oauchy sequences into convergent
sequences.

The first assertion means that E satisfies the conditions of Proposi-
tion 3 when & is the set of weakly compact subsets of E. Furthermore,
sincethedual L" of aspace LI isisomorphic to a space O(K) (Kakutani,
Stone), thisassertion on LI spaceswill be already established ifwe show
it for the Oo(M) spaces (by Proposition 3, Corollary 1). Then, the
second assertion will also be proved for the case E = LI sincein LI a
weak Cauchy sequence is weakly convergent (Theorem 1, Corollary 3).
We are thus reduced to the case E = Oo(M). Furthermore, by Pro-
position 3, Corollary 3, it suffices to prove the second assertion of the
theorem which can also be stated: Let (fi) be a weak Cauchy sequence
in E = 0o(M), A" a subset a(E', E") compact in E'. Show that (fi' u)
converges uniformly when . runs through A'. If thisis not the case
we could find ¢ > 0, extract from A" a sequence (u;) and find a strictly
increasing sequence (i;) of indices such that

| <fo, —fii > | > &
This leads us to the case where A is a weakly relatively compact
sequence. But we know that a bounded positive measure x then exists
such that all the u,; are absolutely continuous with respect to u«
1 uy
for example: # = 22 |l ui ll

so that the y, can be identified with elements of L*(u). Since L!(x) isa
normed subspace of the space .#1(#M) = E' of bounded measures on E,
which is closed (since it is complete) therefore also closed for a(E', E"),
the sequence A' is also weakly relatively compact in Li(u). On the
other hand, (fi) being a weak Cauchy sequence, it is bounded in Oo(M),
and furthermore converges in each point, and a fortiori converges in
measure on every compact set with respect to x. By Proposition 1, it
follows that <fi' x> converges uniformly when x runs through A'; this
ends the proof.

COROLLARY 1 LetE, F, GheLcTVs, u acontinuous bilinear mapping
from E X F into G. We suppose that E is a space isomorphic to a space
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L1 or to a space Oo(M). Then for every weakly compact subset A of E and
B of F therestriction of # to A X B #s continuous for the product of the
weak topologies on A x B, and the weak topology on G (in particular,
U(A x B) is a weakly compact subset of G).

We can reduce thisto the case where u is a continuous bilinear form.
By Chapter 2, Section 18, Theorem 12, it suffices to show that the
linear mapping v from E into F' defined by « transforms the weakly
compact subsets A into subsets of F' which are compact for #(#’, E).
Now visaweakly compact mappingwhen we equip F' with the topology
(F’, F), then the conclusion follows from Theorem 2. Also:

COROLLARY 2 Under the conditions of Oorollary 1, let (Xi) be a weak
Oauchy sequencein E, (Yi) a weak Oauchy sequencein F, then (U(Xi" Yi»
IS a weak Oauchy sequence in G.

Reduce to the case where uis abilinear form, which weinterpret asa
linear mapping fromF into E'.)
The most important application of Theorem 2 is

THEOREM 3 (DUNFORD-PETTIS-PHILIPPS) Let M be a locally compact
space with a positive measure ¢ E a Banach space, u a weakly compact
linear mappingfrom L(x) into E. Then thereexists a measurable mapping
f from Minto E, such that

) I <ull
for every t, and that

(1) up = .fi¢(tlf(t)‘ixi(¢)

for every ¢é e LY(u). (Notice that the product ¢f will be automatically
integrable which gives meaning to the formula-see Bourbaki, Integra-
tion.) Thisf is unique modulo the locally negligible junctions.

The uniqueness is immediate and well known in a more general con-
text. It follows that it sufficesto prove,the theorem when M is compact:
for then, to every compact set K we assign a class Fk of bounded and
measurable functionsf on K with valuesin E, with

1) 11 < [ull

for ailmost every t e K, such that (1) will be satisfied for the ¢ which
vanishin CK; the uniqueness showsthat K = K' impliesthatF k isthe
restriction of F ' ; by a well-known lemma due to Godement, specially
conceived for this sort of situation, there exists a mapping f from
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M into E which induces on each K the class Fk. Then we verify
immediately that this mapping f satisfies the -desired conditions
(I1f(t) | < Il'u I[locally almost everywhere only, and a modification'of
f on alocally negligible set allows the same inequality everywhere).

Suppose M compact. Then L" < L), and the unit ball of L.* is a
weakly compact subset of LI (for example by Theorem 1, Corollary 2),
hence (Theorem 2) itistransformedinto arelatively compact subset of
E. Let E, be the closed vector subspace generated by the latter; itisa
separable Banach space and since L" is dense in L* and mapped into
E,. u maps also LI into E,. This reduces the problem to the case
where E is aso separable, which we now suppose. Let A be the closure
of the image of the unit ball of L), It isaweakly compact subset of E,
and sinceE' isweakly separable (E being separablejzl will be metrisable
for its weak topology. 4 is aso the unit ball of the dual of .the Banach
space F obtained (passing to the quotient and then to the completion)
from the space E' with the semi-norm gauge of Ao and with this
identification the two weak topologies are identical. Since A is a
metrisable compact set for its weak topology, it follows that F is
separable. Thus u becomes a linear mapping of norm 1 from LI into the
dual of the separable Banach space F. From the Dimford-Pettis
theoreminits classical form (asin Bourbaki), uis defined by'a scalarly
mapping f from M into the unit ball of F' by the integral (1) (but
where the integral is a weak integral in F'). A fortiori f is a scalarly
integrable mapping from Minto E, and formula (1) is valid as a weak
integral in E. 1t remains to point out that in factf is even measurable:
it is well known that for a mapping with range a separable Banach
space scalarly measurable implies measurable. Finally the inequality
[If(t) 1 <auun isimplied by the more precise result f(M)c 4 (true
without supposing M compact nor E separable). As a first interesting
application see Exercises 8, 9. Theorem 3 plays animportant part inthe
theory of topological tensor products.

EXERCISE 1 Show that we obtain a condition equivalent- to .the con-
ditions of Proposition 3 if we state b) supposing that F is a Banach
space or even the Banach space [* (in the latter case, use .Part 3,
Section 2, Exercise 3).

EXERCISE 2 We say that an LCTVS E is a DP space (Dunford-
'‘Pettis) ifit satisfies the conditions of Proposition 3, ® being the set of
Its weakly compact subsets.

1) If E is DP so is every direct factor of E. The analogous result is
false for the subspaces and quotients (recall that every Banach spaceis
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isomorphic to a subspace of a space O(K) and to a quotient space of a
space LI, see Chapter 1, Section 14, Exercise 1 and Chapter 2, Section
17, Proposition 30, Corollary).

2) A reflexive DP Banach space is finite dimensional. (Show that its
unit ball is precompact.)

3) A reflexive Banach space of infinite dimension is not isomorphic
to a direct factor of a space LI or of a space Oo(M) (use 1) and 2».
Using theremarks at the end of 1), deduce examples of vector subspaces
in O(K) or LI which have no topological supplements.

EXERCISE 3

1) Let « be a mapping from a uniform space E into a Hausdorff
topological space F. If % transforms Cauchy sequences into convergent
sequences, it transforms precompact and metrisable subsets into rela-
tively compact subsets of F. (Show that u can be extended by con-
tinuity to the completion of the precompact metrisable subset in
question.) Corollary: Let u be a mapping from a uniform space E
into another, F, transforming Cauchy sequences into Cauchy sequences,
then uis uniformly continuous on every metrisable precompact subset,
which is transformed by U into a precompact subset. (Consider the
case where F is Hausdorff and complete, then, from the preceding
argumenb ss can be extended by continuity to the completion of the
preeompact subset under consideration, then the conclusion follows.)

2) Particular casesof 1). Let % be a linear mapping from a Hausdorff
LCTVS F transforming weak Cauchy sequences into convergent
sequences, then u transforms the weakly metrisable bounded subsets
into relatively compact subsets.

3) Inparticular, ifinF the weak Cauchy sequences converge weakly,
then every weakly continuouslinear mapping from E into F transforms
weakly metrisable bounded subsets into weakly relatively compact
subsets. In particular (choosing E = F, % the identity mapping of F)
every weakly metrisable bounded subset of F is weakly relatively
compact. I f the strong dual of E is separable, every weakly continuous
linear mapping from E into F transforms bounded subsets into weakly
relatively compact subsets.

EXERCISE 4
1) A weakly metrisable bounded subset of a space LI is weakly
relatively compact (use Theorem 1, Corollary 3 and Exercise 3, 3».

2) Let E be a Oo(M) space of infinite dimension. Show that there
exists in E weak Cauchy sequences not weakly convergent (a fortiori
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therefore weakly metrisable bounded subsetsnot weakly relatively com-
pact), and weakly convergent sequences not convergent. (Proceed
either by direct construction, considering the case of M metrisable by
passage to the quotient, or by noticing that if this were not true the
identity mapping of E would be weakly compact by Section 1, Exercise
5 ¢, Criterion 3) and Exercise 10, Criterion d); then E would be reflexive
which necessitates that E is finite dimensional.

3) Conclude from 1) and 2) that a space Oo(M) of infinite dimension
IS not isomorphic to a topological vector subspace of a space L(u) and
neither is a space LI of infinite dimension isomorphic to a quotient of a
space Oo(M) (the second statement is equivalent to the first one by
duality; we can also prove the latter first, using Section 1, Exercise
6, I,

EXERCISE 5

1) Let E and F be Banach spaces, E isomorphic to a space LI or
Oo(M), u a weakly compact bilinear formon E x F, A a weakly com-
pact subset of E, B the unit ball of F. Show that the restriction of « to
A X B is continuous for the product of the weak topologies. (Consider
% as a weakly compact linear mapping from E into the Banach space
F' strong and apply Theorem 2.)) We can also replace the hypothesis
on A by the following: A is bounded and weakly metrisable. (Use
Exercise 3, 3).) Thereis a variant supposing thatF isan LCTVS; what
is the hypothesis to be made on «?

2) Let E, F be Banach spaces each isomorphic to some space Oo(M).
Let 4 be a continuous bilinear form on E x F, show that if A is a
weakly compact subset or a bounded and weakly metrisable subset of
E, B the unit ball of F, the restriction of w to A x B is continuous for
the product of the weak topologies. (Use 1) and Section 1, Exercise
6 b).)

EXERCISE 6

1) Let x be a bounded positive measure on a locally compact space
M. Let E be a vector subspace of L*(u) closed in an Lp space with
1< p < @ Showthat E isfinite dimensional. (Using the closed graph
theorem show that on E the topology induced by L= or Lp is the same
iIfp = 1, which allows reduction to reduce the case p > 1; show then
that the unit ball of E induced by Lp is precompact, applying Theorem
2 to the identity mapping from L* into the reflexive space LP.)

2) Let u be apositive measureona space M. Let 1 <p < oo, letE
be a closed vector subspace of Lp and10 e LP, 10 >> 0, such that every
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1e L* is bounded above by some multiple of 10. Show that E is finite
dimensional. (Introduce the bounded measure of density 110|? with
respect to x and reduce to 1).)

EXERCISE 7 Prove Theorem 2 for the case where E is an (&) space.
(Reduce to the case of a Banach space, by Chapter 4, Part 2, Section 2,
Theorem 1, Corollary 2.)

EXERCISE 8 LetM be alocally compact spacewith a positive measure
u, f a scalarly measurable mapping from M into a Banach space E,
g a strongly measurable mapping' from Minto E, scalarly locally
almost everywhere equal to .

1) Show that 1 defines a weakly compact linear mapping from LI
into E and apply Theorem 3. In particular, every scalarly measurable
and locally bounded mapping from M into a reflexive Banach space E
"Is scalarly locally equal almost everywhere to a strongly measurable
mapping from Minto E. (Note: A deeper study using supplementary
‘exercise 4, 3) below would show that this result is still validwithout
supposing the given mapping locally bounded, and if the space E is a
reflexive (&) space.)

2) According to general definitions a mapping 1 from Minto E is
weakly measurable if for every compact K < M .and every e > 0 there
exists a compact K' < K such that w(K n CK') < e and such that
the restriction of 1to K' is weakly continuous. (This implies that 1is
scalarly measurable but the converse is false.)) Show that a weakly
measurable mapping from Minto" E is already strongly measurable.
(Reduce to the case where 1 is weakly continuous and M compact.
Then apply 1) noticing that we even have/(t) = g(t) ailmost everywhere
and not only scalarly a.e. For the latter point reduce to the case where
gis itself continuous.)

3) Particular case of 2): let/ be aweakly continuous mapping from
alocally compact. space M into a Banach space E, then/is measurable
for every measure g on M.

EXERCISE 9 LetM, N be compact spaces, 1 a ;numerical function on
M X N. For every s EM let F(s) be the function on N given by
F(s)(t) = /(8,1). :

1) The mapping s —» F(s) is weakly continuous from M into the
Banach space O(N) if and only if/ is bounded and continuous in each
variable. (The necessity is trivial; for the sufficiency one proves that
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F(M) is a weakly compact subset of O(N), using Part 3, Section 2,
Theorem 3.) :

2) Suppose that the mapping lis continuousin each variable. Show
that for every positive measure x» on M and 3very e > 0, thereexistsa
compact set K' ¢ K such that u(X n CK" < e, and such that the
restriction of 1 to K* x N is continuous. (Reduce to the case where 1
takes its values in the segment [0, 1] therefore satisfies the conditions
of 1); it suffices then to apply Exercise 10, 3).)

3) 1 being as in 2), show that 1is measurable for every positive
measure xw on M X N. (Let p be the image of x by the projection of
M X Non M, then apply the result of 2) to 1and p.) Show that 2) and
3) are still valid if1 takesits values in a separable metrisable space P
and if in 3) we suppose only M and N locally compact. (Imbed Pinto
the product of a sequence of segments, thus reduce to the case of a
function with values in a segment; in 3), if M and N are only locally
compact reduction, to the compact case is immediate.)

4) Suppose the numerical function | ON the product of compact M
and N to be bounded and continuous in each variable. For every
measure x on M and » on N lisintegrable for 4 ® » by 3); set

il v) = j fdudy

MxXxN

Show that we thus obtain a weakly separately continuous bilinear form
on the product #(M) X #(N) of duals of O(M) and O(N), the corres-
ponding mapping from .#(M) into O(N) being

u > J‘ F du
M
(weak integral in O(N». (Use 1).) Conversely, every weakly separately
continuous bilinear form u on .#(M) X .#(N) is defined by an 1 as
above uniquely determined, by
1(8, 1) = u(cs, &)
(¢, being the measure +1 at 8) We have

I U = sup|1(8 t) |

EXERCISE 10 Let U be an open set of €N, I(ZI' .=, 2,), a function
defined on U locally summable or locally bounded and holomorphicin
each variable separately. If 1 is locally bounded, show that if f is
defined on the product of two open sets U< OP and V< O, locally
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bounded and separately holomorphicin U and V thenl is holomorphic.
Since it is measurable by Exercise 11, 3), it will be locally summable
and we examine this case. Consider now the distribution T defined by
| and show that it satisfies

94_o

3z¢
by a holomorphie function g, a.e. equal tof. Show finallyl = g.

Supplementary exercises

These exercises are not tied directly to the text but use the techniques
therein.

EXERCISE 1

1) Let E = LYu) constructed on a measure countable at infinity.
Let H be a convex subset of the dual E' = L®(u). Show that the
following conditions are equivalent:

a) H isweakly closed;
b) H is closed with respect to weakly convergent sequences;

c) H is closed for the bounded sequences which converge, a.e,
a) = b) trivially; b) == c¢) since the sequences considered in c) are
weakly convergent by Lebesgue's theorem. In order to show c) = a)
reduce to the case where H is bounded by the Banach-Dieudonne
theorem (Chapter 4, Part 2, Section 3, Theorem 2), then to the case
where u is bounded, replacing ¢ by an equivalent bounded measure
therefore to the case L® eLl. (Show that H is then a cosed convex
subset of L), therefore weakly closed in L), thence weakly compact
in LI, since it is already weakly relatively compact, and it follows
thatHis aso weakly compact in L*.)

2) Let E be a separable space, A a convex subset of E'. Then A is
weakly closed if and only if it is weakly closed for the sequences. (Use
the Banach-Dieudonne theorem.) (This exercise could have been given
in Chapter 4, Part 2, Section 3.)

3) Letf be a mapping from a Hausdorff locally compact space M
into a locally convex space E. Show that the subspace H of E' formed
of X' such that </(t), x') is measurable is a vector subspace which is
closed for the weakly convergent sequences. Conclude that if E is a
separable (&) space or if E is an LI space constructed on a measure
countable at infinity, thenl is scalarly measurableif there exists a total
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subset of E' made up of forms x' such that <f(t), X') is measurable.
(Note: this result becomes false if we choose for example E = [® or
E = ZI(l) with | not eountable.)

4) Let E be a O(K) space constructed on a compact Stonian space
(see Exercise 12) for example [*, Let H be a convex subset of E'. Then
H is closed for the weakly convergent sequences if and only if H is
strongly closed. (Use Exercise 12, 2).) In particular, if dimE = o we
canfind in E' a hyperplane closed for the weakly convergent sequences
which is not weakly closed, therefore we can find a linear form con-
tinuous for the weakly convergent sequences which is not weakly con-
tinuous. (In fact, E is not reflexive.)

5) Show that 1) is false if we do not suppose x countable at infinity.
(Take the space E of 4) and recall that a Banach space is always iso-
morphic to a quotient of a space {}(/) on an appropriate index set 1.)

EXERCISE 2

1) LetE = L(u) constructed on a measure ¢ countable at infinity.
Let U be alinear form on E'; show that the following conditions are
equivalent:

a) « is weakly continuous;
b) U is continuous for the sequences that tend weakly to O;

C) uiscontinuousfor the sequences boundedinL ® which tendto O
almost everywhere. (Use Exercise 1, 1).)

2) Let E = LY(u) with x on alocally compact space M. Show that
we can find a locally compact space M a topological sum of afamily of
compact spaces (M), and a measure p on M of support M such that
LI(p) is isomorphic as an ordered Banach space, to L(x). We can
suppose 1 reduced to one element, or not countable; the power of | is
well determined and called the order at infinity of the measure u.
(Proceed as in Section 1, Exercise 2, b).)

3) With the notations of 2), let p = power of | = order at infinity
of u. Show that the following conditions are equivalent:
a) Every linear form on the dual of L(u) continuous for the
weakly convergent sequences, is weakly continuous;

b) Every continuous form on the dual () of II(l), continuous
for the weakly convergent sequences, is weakly continuous.

c) Every positive linear form on [® zero on ¢,, continuous for the
weakly convergent sequences, is zero.
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(@) = b) iseasy, b) = a) iseasy by 1) and 2); for ¢) = b) consider the
restriction » of « to co as an element of Zl, i.e. a weakly continuous
linear form on I/, and show that « — v is zero which reduces b) to
the case of a form % zero on co. Interpreting {*(/) as the space 0(1)
(1 the Stone compactification of 1) show that if the measure x on 1
isalinear form on{®(Z) continuousfor the weakly convergent sequences,
sois | u | (which leads us to the case u > 0). For this, interpreting the
continuouslinear formsoni®(I) asthe bounded "additive set functions”
(defined on the family of all subsets of E), the forms which are con-
tinuous for the weakly convergent sequences become the "completely
additive" set functions and our assertion means that the "absolute
variation" of a completely additive set function is still completely
additive, which is well known although condemned by Bourbaki).

4) In the language of set functions, the hypothesis considered in 3),
which deals only with the cardinal p, means that there does not exist
a completely additive positive set function defined on the family of all
subsets, of I for which the measure of pointsis 0 and whichis not equal
to 0. We say that such a cardinal is a cardinal of measure O. If there
exists a cardinal which is not of measure O, there exists a first one Po'
(and all the following cardinals do not have measure 0). Show that the
sum of a family of cardinals of measure 0 is of measure O if the, power
of the index family is also of measure O; thus the following cardinal
is of measure O, therefore Poif it existsis a limit cardinal. A cardinal
is inaccessible if it is a limit cardinal and if for every family of strictly
inferior cardinals with an index set of strictly inferior power its sum is
'strictly inferior. Therefore Po would be an inaccessible cardinal. It
seems plausible that we can add without contradictions, to the axioms
of set theory, the non-existence of inaccessible cardinals, and a fortiori
that every cardinal has measure zero (compare with Chapter 4, Part 1,
Section 6, Exercise 3, g).

EXERCISE 3

1) Let x4 be a positive measure on a locally compact space; consider
E = L}u) as an ordered Banach space. Show that if H is a closed
vector subspace which is a sublattice, there exists a uniquely deter-
mined projection from E onto H transforming positive elements into
positive elements and conserving the norm of the positive elements; this
projection has norm 1 if H % O. (Reduce to the case where M is a
compact K, then, by consideration of the Kakutani space K, i.e. the
spaceK suchthat L*(x) isisomorphic to O(K), inwhich casethe natural
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mapping C(K) — L>*(u) is an isomorphism onto. Considering
H nL®=H nC(K),
show that we can find a mapping ¢ from K onto a Hausdorff quotient
K" of K in such a way that denoting x4’ the image of u by ¢ (see Section
1, Exercise 4, b), H isidentical to the set of classes of functions|' o ¢
where " £ L1(4'). Identifying L1(x) with the space of measures on K
of base u, show that if the measure p on K isin L}(g) then itsimagein
K*isin LYu"). The desired projection is obtained by composing the
mappings |
p>¢lp) and [ —>1"0¢)

2) Show that every separable subspace of Ll(x) is contained in a
separable direct factor. (Consider the closed vector sub-lattice gener-
ated by the given subspace.) Note: this TVS property of L1 spaces is
not shared by the spaces L' (as usual!).

EXERCISE 4 Let u be apositive measure countable at infinity on the
locally compact space M. Let M(u) be the set of classes of real functions
-finite or not which are measurable on M (which, has therefore a largest
element + oo and a smallest element - ).

1) Let H be anincreasingly directed subset of M(u); show that the
filter of increasing sections on H tends to a limit for convergence in
measure on every compact set and that thislimit is the upper bound of
H in M(u). We can find a sequence in H which converges a., to this
upper bound. (Examine the case where uisbounded, therefore L® <L»,
then examine the classical analogous properties, for the directed sets
bounded in L2, identifying M with the set of measurable functions
which lie between 0 and 1, by virtue of a strictly increasing homo-
morphism ¢ from |- <o, ] onto [0, 1].)

2) Let H be a set of real finite measurable functions on M (not

classes of functions) such that for every t EM we have supl(t) < .
tEH

Show that there exists a real, finite, measurable function gon M such
that |E H impliesj(t) < g(t) ae, (Show with the aid of the last part of
1), that the sup in M of the set of classes ofj e H isthe classof afunction
which is finite ae,

3) Letj'be ascalarly measurablefunction from M into an LCTVSE,
let A be a weakly bounded subset of E'. Show that we can find a real
measurable finite function g on M such that for every x' e A we have

| <1(t), x) | < g(t) ae.
We say thatj is scalarly essentially bounded if for x' e E*, the class of the
function <f(t), x') isin L": Deducefrom the above that ifE is a Banach
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space (or more generally an (&) space), for every compact K < M and
every e > 0 there exists a compact K' < K such that

WK N O(') < €
and such that the restriction off to K is scalarly bounded.

4) Let E be a Banach space. Suppose that the pair (u, E) to be such
that the Dunford-Pettis theorem characterizing t.ne continuous linear
mappings from LI into E', or equivalently, from E into L", is valid.
(Thisis the case if E is separable, or if M is a Kakutani space, etc.)
L et « be a continuous linear mapping from E into .#(x). The mapping
u can be defined by means of a scalarly measurable function f from
Minto E' by the usual formula 4z = class of the function <X, f(t»,
If and only if the image of the unit ball of E in .#(u) isboundedfor its
|attice structure (for the necessity use 3); for the sufficiency, reduce to
the case where « maps the unit ball of E into the unit ball of L', by
composition of the given mapping with some multiplicative mapping.

5) Suppose the measure « non-discrete (for example the Lebesque
measure on [0, 1]). Show that for 1 < p < oo there exist continuous
linear mappings from E = L(u) into L*(x) which cannot be obtained
by a mapping from Minto E' = L%(u) i.e. by a kernel function which
IS measurable on M x M. (Replace E by Il noticing that Il is iso-
morphic to a quotient of LI. Then show that there exist in L» bounded
sequences not bounded for the lattice structure in .#(x) and which
define mappings from Il of the desired type.)

EXERCISE5 LetM bealocally compact space with a positive measure
u, T a strictly weakly summable mapping from M into a space E of
type (&) (see Section 1, Exercise 13). We suppose that in E every
limited subset is precompact and that every separable subspace of E is
contained in a separable direct factor (this condition is verified in par-
ticular if E is a space LI constructed on an arbitrary measure by
Exercise 3, 2) and Part 3, Section 3, Supplementary Exercise 5). Then
there exists a measurable mapping g from Minto E, scalarly locally
equal tof ae (by Section 1, Exercise 13, 1), the mapping #, from L™
into E defined by f is compact; let F be a separable direct factor of E
containing the image of L" by u,, let p be a continuous projection from
E ontoF, welet g = pof. Then gis measurable since g is a mapping
into a separable (#) space F. Observe that #, = «,, which means that
f isequal to gscalarly locally a.e,

EXERCISE 6
1) Let M be alocally compact space with a positive measure u, E a
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Hausdorff locally convex space such that every linear form on E'
whichiscontinuousfor the equicontinuousweakly convergent sequences
Is continuous (for example, E separable and complete since then the
restrictions of the forms considered to the equicontinuous subsets are
weakly continuous, since these subsets are weakly metrisable; or, E a
space LI constructed on a measure u’ whose order at infinity has
measure zero, see Exercise 2.) Letf be a scalarly measurable bounded
mapping from Minto E and let ¢ e L(u). Show that the weak integral
JéfduisinE. (It sufficesto show that it is a continuous form for the
weakly convergent equicontinuous sequences and for this we apply
L ebesque's theorem.)

2) |If we suppose furthermore E metrisable and that, in E, every
weak Cauchy sequenceis weakly convergent, then we have the stronger
result: every scalarly summable mapping from Minto E is strictly
weakly summable. (By Section 1, Exercise 13, 3), it suffices to show
that the mapping from E' into LI defined by f transforms equicon-
tinuous subsets into weakly relatively compact subsets of LI and that
Jéfdu e E for every continuous function with compact support ¢ on
M; using Eberlein's theorem reduce to the case where M is countable
at infinity, then using the second hypothesis on E and Exercise 4, 3)
reduce to the case where M is compact and f scalarly essentially
bounded on M. One is then back to 1).)

EXERCISE 7 Let M, M' be locally compact spaces with positive
measures u, p’'; let E = LY(u'). We suppose that the order at infinity
of x4’ is a cardinal of measure zero or that for every compact K eM,
the power of K is a cardinal of measure zero (see Exercise 2). Letf be
a scalarly measurable mapping from Minto E; show that there exists
a measurablemapping ¢ from Minto E which is equal to f scalarly
almost everywhere; iff is weakly summable gis strictly weakly sum-
mable (Section 1, Exercise 13). (Show that we can suppose M compact
using Godement's lemma in the first case and proceeding as in the
preceding exercise 2) in the second case. This allows us to assume that
we are in case where the order at infinity of u’ is of measure zero,
replacing if necessary u by
u" = supinf (1, [ f(t) |) u'.
teM

The second assertion results from Exercise 6. For the first assertion,
reduce to the case wheref is scalarly essentially bounded using Exercise
4, 3); thenf is scalarly summable, therefore strictly weakly summable,
and we can apply Exercise 5).



