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Preface

I should probably not have felt the desire to move into the philosophy
of mathematics had it not been for my encounter with two philosophical
works. The first of these was Imre Lakatos’s Proofs and Refutations (1976),
a copy of which was thrust into my hands by a good friend Darian Leader,
who happens to be the godson of Lakatos. The second was an article entitled
‘The Uses and Abuses of the History of Topos Theory’ by Colin McLarty
(1990), a philosopher then unknown to me. What these works share is the
simple idea that what mathematicians think and do should be important
for philosophy, and both express a certain annoyance that anyone could
think otherwise.

Finding a post today as a philosopher of mathematics is no easy task.
Finding a post as a philosopher of mathematics promoting change is even
harder. When a discipline is in decline, conservatism usually sets in. I am,
therefore, grateful beyond words to my PhD supervisor, Donald Gillies,
both for his support over the last decade and for going to the enormous
trouble of applying for the funding of two research projects, succeeding in
both, and offering one to me. The remit of the project led me in directions
I would not myself have chosen to go, especially the work reported in
chapters 2 and 3, and I rather think chapters 5 and 6 as well, but this
is often no bad thing. I am thus indebted to the Leverhulme Trust for
their generous financial support. Thanks also to Jon Williamson, the other
fortunate recipient, for discussions over tapas.

Colin McLarty has provided immense intellectual and moral support
over the years, and also arranged a National Endowment of the Humanities
Summer Seminar where sixteen of us were allowed the luxury of talking
philosophy of mathematics for six weeks in the pleasant surroundings of
Case Western Reserve University. My thanks to the NEH and to the other
participants for making it such an enjoyable experience.

I should also like to acknowledge the helpful advice of Ronnie Brown,
Jeremy Butterfield, James Cussens, Matthew Donald, Jeremy Gray, Colin
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x Preface

Howson, Mary Leng, Penelope Maddy, Stephen Muggleton, Madeline
Muntersbjorn, Jamie Tappenden, Robert Thomas and Ed Wallace. This
book could only have benefited from greater exposure to the intellec-
tual ambience of the History and Philosophy of Science Department in
Cambridge, where the writing was finished. Unfortunately time was not
on my side. I only hope a little of the spirit of the department has trickled
through into its pages.

Hilary Gaskin at Cambridge University Press has smoothed the path
to publication. Four of the chapters are based on material published else-
where. Chapter 5 is based on my chapter in Corfield and Williamson 2001,
Foundations of Bayesianism, Kluwer. Chapters 7 and 9 are based on papers
of the same title in Studies in the History and Philosophy of Science, 28(1):
99–121 and 32(3): 507–33. Chapter 8 is likewise based on my article in
Philosophia Mathematica 6: 272–301. I am grateful to Kluwer, Elsevier and
Robert Thomas for permission to publish them.

I should like to thank J. Scott Carter and Masahico Saito for kindly
providing me with the figure displayed on the cover. It shows one of the
ingenious ways they have devised of representing knotted surfaces in four-
dimensional space. In chapter 10 we shall see how this type of representation
permits diagrammatic calculations to be performed in higher-dimensional
algebra.

Love and thanks to Oliver, Kezia and Diggory for adding three more
dimensions to my life beyond the computer screen, and to my parents for
all their support. This book I dedicate to Ros for fourteen years of sheer
bliss.

The publisher has used its best endeavours to ensure that the URLs for
external websites referred to in this book are correct and active at the time
of going to press. However, the publisher has no responsibility for the web-
sites and can make no guarantee that a site will remain live or that the con-
tent is or will remain appropriate.



chapter 1

Introduction: a role for history

To speak informatively about bakery you have got to have put your
hands in the dough. (Diderot, Oeuvres Politiques)

The history of mathematics, lacking the guidance of philosophy, has
become blind , while the philosophy of mathematics, turning its back
on the most intriguing phenomena in the history of mathematics, has
become empty. (Lakatos, Proofs and Refutations)

1 . 1 real mathematics

To allay any concerns for my mental health which the reader may be feeling
if they have come to understand from the book’s title that I believe math-
ematics based on the real numbers deserves singling out for philosophical
treatment, let me reassure them that I mean no such thing. Indeed, the
glorious construction of complex analysis in the nineteenth century is a
paradigmatic example of what ‘real mathematics’ refers to.

The quickest way to approach what I do intend by such a title is to
explain how I happened upon it. Several years ago I had been invited
to talk to a philosophy of physics group in Cambridge and was looking
for a striking title for my paper where I was arguing that philosophers of
mathematics should pay much closer attention to the way mathematicians
do their research. Earlier, as an impecunious doctoral student, I had been
employed by a tutorial college to teach eighteen-year-olds the art of jumping
through the hoops of the mathematics ‘A’ level examination. After the latest
changes to the course ordained by our examining board, which included
the removal of all traces of the complex numbers, my colleagues and I
were bemoaning the reduction in the breadth and depth of worthwhile
content on the syllabus. We started playing with the idea that we needed
a campaign for the teaching of real mathematics. For the non-British and
those with no interest in beer, the allusion here is to the Campaign for Real
Ale (CAMRA), a movement dedicated to maintaining traditional brewing
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2 Towards a Philosophy of Real Mathematics

techniques in the face of inundation by tasteless, fizzy beers marketed by
powerful industrial-scale breweries. From there it was but a small step to
the idea that what I wanted was a Campaign for the Philosophy of Real
Mathematics. Having proposed this as a title for my talk, it was sensibly
suggested to me that I should moderate its provocative tone, and hence the
present version.

It is generally an indication of a delusional state to believe without
first checking that you are the first to use an expression. The case of ‘real
mathematics’ would have proved no exception. In the nineteenth century
Kronecker spoke of ‘die wirkliche Mathematik’ to distinguish his algorith-
mic style of mathematics from Dedekind’s postulation of infinite collec-
tions. But we may also find instances which stand in need of no translation.
Listen to G. H. Hardy in A Mathematician’s Apology:

It is undeniable that a good deal of elementary mathematics – and I use the word
‘elementary’ in the sense in which professional mathematicians use it, in which
it includes, for example, a fair working knowledge of the differential and integral
calculus – has considerable practical utility. These parts of mathematics are, on the
whole, rather dull; they are just the parts which have the least aesthetic value. The
‘real’ mathematics of the ‘real’ mathematicians, the mathematics of Fermat and
Euler and Gauss and Abel and Riemann, is almost wholly ‘useless’ (and this is as
true of ‘applied’ as of ‘pure’ mathematics). It is not possible to justify the life of
any genuine professional mathematician on the ground of the ‘utility’ of his work.
(Hardy 1940: 59–60)

Overlooking his caveat (1940: 72), many have enjoyed reproducing this
quotation to point out Hardy’s error, that the mathematics of Fermat and
Euler and Gauss and Abel and Riemann has turned out to be extremely
useful, for esoteric physical theories such as string theory, but also more
practically for the encryption systems which we trust keep our financial
dealings secure. But this is not my concern here. I wish rather to pay
attention to Hardy’s use of ‘real’. Elsewhere he talks in a similar vein of
pieces of mathematics being ‘important’ and even ‘serious’. I have dropped
his scare quotes. It is hard to see that they can achieve very much in our
times.

Hardy is being extremely exacting here on mathematicians who want to
join the real mathematicians’ club. I think we can afford to be considerably
more generous. Where second-rate mathematicians are given short shrift
by Hardy, I am willing to give even computers a fair hearing, and, although
I shall not be speaking of them, people employing ‘dull’ calculus are not to
be excluded. But that having been said, Fermat and Euler and Gauss and
Abel and Riemann, along with Hilbert and Weyl and von Neumann and
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Grothendieck, are right there at the core of what I am taking to be real
mathematicians.

What then of the philosophy of real mathematics? The intention of this
term is to draw a line between work informed by the concerns of mathemati-
cians past and present and that done on the basis of at best token contact
with its history or practice. For example, having learned that contemporary
mathematicians can be said to be dealing with structures, your writing on
structuralism without any understanding of the range of kinds of structure
they study does not constitute for me philosophy of real mathematics. But,
then, how exacting am I being?

1 .2 the current state of play

Ian Hacking opens his book Representing and Intervening with a quotation
from Nietzsche’s The Twilight of the Idols:

You ask me, which of the philosophers’ traits are idiosyncracies?
For example: their lack of historical sense, their hatred of becoming, their
Egypticism. They think that they show their respect for a subject when they
dehistoricize it – when they turn it into a mummy.

He then continues: ‘Philosophers long made a mummy of science. When
they finally unwrapped the cadaver and saw the remnants of an historical
process of becoming and discovering, they created for themselves a crisis of
rationality. That happened around 1960’ (Hacking 1983: 1).

If this portrayal of mid-twentieth century philosophy of science strikes
a chord with you, you may well then ask yourself whether mathematics
was faring similarly at the hands of philosophers at that time. Hacking’s
reference to the year 1960 alludes, of course, to the rise within philosophy
of science of a movement which took the history of science as a vital fount
of information, epitomised by Kuhn’s The Structure of Scientific Revolutions
(Kuhn 1962). Imre Lakatos, with his motto ‘Philosophy of science with-
out history of science is empty; history of science without philosophy of
science is blind’ (1978a: 102), made his own distinctive contribution to
this movement. And yet, as the second epigraph of this chapter suggests,
we should remember that the rationalist theory of scientific methodol-
ogy he proposed and developed in the late 1960s and early 1970s derived
from ideas developed in his earlier mathematical text Proofs and Refutations,
which had appeared as a series of journal articles at around the same time
as Kuhn’s Structure. There we find sharp criticisms of a process similar to
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mummification, the treatment of an evolving body of knowledge as lifeless,
levelled now at formalist and logicist philosophers and mathematicians:

Nobody will doubt that some problems about a mathematical theory can only be
approached after it has been formalised, just as some problems about human beings
(say concerning their anatomy) can only be approached after their death. But few
will infer from this that human beings are ‘suitable for scientific investigation’
only when they are ‘presented in “dead” form’, and that biological investigations
are confined in consequence to the discussion of dead human beings – although,
I should not be surprised if some enthusiastic pupil of Vesalius in those glory
days of early anatomy, when the powerful new method of dissection emerged, had
identified biology with the analysis of dead bodies. (Lakatos 1976: 3n.)

Someone working closer to the ‘glory days’ of early logical reductionism
was Ludwig Wittgenstein. Employing imagery similar to that of Hacking
and Lakatos, he writes of Russell’s logicist analysis of mathematics, ‘The
Russellian signs veil the important forms of proof as it were to the point of
unrecognizability, as when a human form is wrapped up in a lot of cloth’
(Wittgenstein 1978: 162, remark III-25). But Lakatos went further than
Wittgenstein in reporting to us what lay under the cloth. He exposed much
more of the physiology of the mathematical life-form. So did his revelations
lead to a parallel ‘crisis of rationality’ in the philosophy of mathematics?

To provide us with the means to gauge the situation, let us briefly sketch
the current state of a central branch of philosophy of science – the phi-
losophy of physics. Now, the first thing one notices here is the extensive
treatment of recent and contemporary developments. Consider, for in-
stance, the volume – Physics meets Philosophy at the Planck Scale (Callender
and Huggett 2001). As this striking title suggests, philosophers of physics
may interest themselves in specific areas at the forefront of physics research
and yet still ask palpably philosophical questions about time, space and cau-
sation. By contrast, elsewhere one finds less specific, more allusive, studies
of the way research is conducted. For instance, a book such as Models as
Mediators (Morgan and Morrison 1999) analyses the use of models over
a wide range of physics as a part of the general programme of descriptive
epistemology. Issues here are ones just about every physicist has to deal with,
not just those striving to read the mind of God. So, on the one hand, we
have philosophical and historical analysis of particular physical theories and
practices, while, on the other, we have broader treatments of metaphysical
and epistemological concerns, grounded on detailed accounts of physicists’
activities. There is a creative interaction between these two strands, both of
which are supported by the study of physical theories, instrumentation and
experimental methodologies of earlier times, and there is even a specialist
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journal – Studies in History and Philosophy of Modern Physics – devoted to
physics after the mid-nineteenth century.

Now, certainly one can point to dissension in practitioners’ visions of
what philosophy of physics activity should be like. Indeed, one can con-
strue passages of Cartwright’s The Dappled World (1999a, see, e.g., pp. 4–5)
as a call for a philosophy of real physics. Nevertheless, there is a strong com-
mon belief that one should not stray too far from past and present prac-
tice. How different things are in the philosophy of mathematics. While
there is a considerable amount of interest in the ways mathematicians
have reasoned, this is principally the case for the nineteenth century and
earlier and is usually designated as history. By far the larger part of activ-
ity in what goes by the name philosophy of mathematics is dead to what
mathematicians think and have thought, aside from an unbalanced in-
terest in the ‘foundational’ ideas of the 1880–1930 period, yielding too
often a distorted picture of that time. Among the very few single-authored
works on philosophy of recent mathematics, perhaps the most prominent
has been Penelope Maddy’s (1997) Naturalism in Mathematics, a detailed
means–end analysis of contemporary set theory. We shall return to Maddy’s
work in chapter 8, simply noting for the moment that its subject matter
belongs to ‘foundational’ mathematics, and as such displays a tendency
among practice-oriented philosophers not to stray into what we might
call ‘mainstream’ mathematics. This tendency is evident in those chapters
of Revolutions in Mathematics (Gillies 1992) which address the twentieth
century.

The differential treatment of mathematics and physics is the result of
fairly widely held beliefs current among philosophers to the effect that the
study of recent mainstream mathematics is unnecessary and that studies of
pre-foundational crisis mathematics are merely the historical chronicling of
ideas awaiting rigorous grounding. Now, there are two ways to try to coun-
teract such notions. First, one just goes ahead and carries out philosophical
studies of the mainstream mathematics of the past seventy years. Second,
one tries to confront these erroneous beliefs head on. Those who prefer
the first strategy may wish to skip the next section, but anyone looking
for ways to support the philosophical study of real mathematics may profit
from reading it.

1 .3 the foundationalist filter

Various versions of the thought that it is right that mathematics and physics
be given this very uneven treatment because of inherent differences between
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the disciplines have been expressed to me on several occasions when I have
been proposing that philosophers could find plenty of material to mull
over in post-1930 mainstream mathematics (algebraic topology, differential
geometry, functional analysis, analytic number theory, graph theory, . . .).
They have taken two forms:
(1) Mathematics differs from physics because of the retention through

the centuries of true statements. While scientific theories are continu-
ally modified and overthrown, many true results of Euclidean geome-
try were correctly established over 2,000 years ago, and mankind has
known arithmetic truths much longer even than this. Thus, contem-
porary mathematics possesses no philosophically significant feature to
distinguish it from older mathematics, especially when the latter has
been recast according to early twentieth-century standards of rigour.
Arithmetic and its applications will provide sufficiently rich material
to think through most questions in philosophy of mathematics. And
even if one wished to take a Lakatosian line by analysing the production
of mathematical knowledge and the dialectical evolution of concepts,
there is no need to pick case studies from very recent times, since they
will not differ qualitatively from earlier ones, but will be much harder
to grasp.

(2) The mathematics relevant to foundational questions, which is all that
need concern philosophers, was devised largely before 1930, and that
which came later did not occur in mainstream branches of mathematics
but in the foundational branches of set theory, proof theory, model
theory and recursion theory. Physics, meanwhile, is still resolving its
foundational issues: time, space, causality, etc.

As to point (1), I freely admit that I stand in awe of the Babylonian
mathematical culture which could dream up the problem of finding the
side of a square field given that eleven times its area added to seven times
its side amounts to 61/4 units. Their method of solution is translatable as
the calculation of what we would write

{√[(7/2)2 + 11·(61/4)]− (7/2)}/11 1/2,

suggesting that quadratics were solved 4,000 years ago in a very similar
fashion to the way we teach our teenagers today. But, from the perspec-
tive of modern algebra and the contemporary study of algorithms, think
how differently we interpret this calculation of the positive solution of
a quadratic equation. As for the geometry of the Greeks, again it goes
without saying an extraordinary achievement, but out of it there emerged a
discipline which has undergone drastic reinterpretations over the centuries.
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Today, one way mathematicians view Euclid’s Elements is the study of a
case of n-dimensional Euclidean geometry, the properties of the princi-
ple bundle H → G → G/H, where G is the Lie group of rigid motions
of Euclidean n space, H is the subgroup of G fixing a point designated
as the origin, and G /H is the left coset space. From being the geome-
try of the space we inhabit, it has now become just one particular species
of geometry alongside non-Euclidean geometries, Riemannian geometries,
Cartan geometries and, in recent decades, non-commutative and quantum
geometries. Euclidean space now not only has to vie for our attention with
hyperbolic space and Minkowski space, but also with q-Euclidean space.
What distinguishes mathematical transformations or revolutions from their
scientific counterparts is the more explicit preservation of features of earlier
theories, but, as several contributors to Gillies (1992) have shown, they sur-
vive in a radically reinterpreted form. There are meaningful questions we
can ask about Euclidean geometry which could not have been posed in the
time of Riemann or even of Hilbert, and which would have made no sense
at all to Euclid. For example, does two-dimensional Euclidean geometry
emerge as the large-scale limit of a quantum geometry? The fact that we
are able to ask this question today demonstrates that the relevant constel-
lation of absolute presuppositions, scene of inquiry, disciplinary matrix, or
however you wish to phrase it, has simply changed.

Moreover, to the extent that we wish to emulate Lakatos and represent
the discipline of mathematics as the growth of a form of knowledge, we
are duty bound to study the means of production throughout its history.
There is sufficient variation in these means to warrant the study of con-
temporary forms. The quaint hand-crafted tools used to probe the Euler
conjecture in the early part of the nineteenth century studied by Lakatos
in Proofs and Refutations have been supplanted by the industrial-scale ma-
chinery of algebraic topology developed since the 1930s. And we find that
computer algebra systems are permitting new ways of doing mathematics,
as may automated theorem provers in the future. No economist would dare
to suggest that there is nothing to learn from the evolution of industrial
practices right up to the present, and neither should we.

An adequate response to (2) must be lengthier since it arises out of core
philosophical conceptions of contemporary analytic philosophy. In the re-
mainder of this section I shall sketch out some ideas of how to address it,
but, in some sense or other, the whole book aims to tempt the reader away
from such ways of thinking. Straight away, from simple inductive con-
siderations, it should strike us as implausible that mathematicians dealing
with number, function and space have produced nothing of philosophical
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significance in the past seventy years in view of their record over the pre-
vious three centuries. Implausible, that is, unless by some extraordinary
event in the history of philosophy a way had been found to filter, so to
speak, the findings of mathematicians working in core areas, so that even
the transformations brought about by the development of category the-
ory, which surfaced explicitly in 1940s algebraic topology, or the rise of
non-commutative geometry over the past seventy years, are not deemed
to merit philosophical attention. This idea of a ‘filter’ is precisely what is
fundamental to all forms of neo-logicism. But it is an unhappy idea. Not
only does the foundationalist filter fail to detect the pulse of contemporary
mathematics, it also screens off the past to us as not-yet-achieved. Our job is
to dismantle it, in the process demonstrating that philosophers, historians
and sociologists working on pre-1900 mathematics are contributing to our
understanding of mathematical thought, rather than acting as chroniclers
of proto-rigorous mathematics.

Frege has, of course, long been taken as central to the construction of
this foundationalist filter, but over the past few years new voices have been
heard among the ranks of scholars of his work. Recent reappraisals of his
writings, most notably those of Tappenden, have situated him as a bona fide
member of the late nineteenth-century German mathematical community.
As is revealed by the intellectual debt he incurred to Riemann, Dedekind
and others, his concern was with the development of a foundational sys-
tem intimately tied to research in central mathematical theories of the day.
In this respect his writings are of a piece with the philosophical work of
mathematicians such as Hilbert, Brouwer and Weyl. By contrast, in more
recent times philosophers have typically chosen to examine and modify
systems in which all, or the vast majority, of mathematics may be said to be
represented, but without any real interest for possible ways in which distinc-
tions suggested by their systems could relate to the architectural structure
of the mainstream. Even distinctions such as finitary/infinitary, predica-
tive/impredicative, below/above some point in the set theoretic hierarchy,
constructive/non-constructive have lost much of their salience, the latter
perhaps less so than the others.1 How much less relevant to mathematics
are the ideas of fictionalism or modalism.

A series of important articles by Tappenden (see, for example, his 1995)
provides the best hope at present of bringing about a Gestalt switch in the

1 This is largely through the reinterpretation of constructiveness by those working in computer science,
but also through the desire of mathematicians to be more informative, as when a constructive proof
of a result in algebraic geometry permits it to be applied to a parameterised family of entities rather
than a single one. Both kinds of reinterpretation are well described by category theory.
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way Frege is perceived by the philosophy community, thereby weakening
the legitimising role he plays for the activity of many philosophers of math-
ematics. Frege should now be seen not merely as a logical reductionist, but
as someone who believed his logical calculus, the Begriffsschrift, to be a
device powerful enough to discern the truth about what concepts, such
as number, are really like, sharp enough to ‘carve conceptual reality at the
joints’ (Tappenden 1995: 449). With considerable justification Tappenden
can say:

The picture of Frege which emerges contains a moral for current philosophical
study of mathematics. We appear to have arrived at a stultifyingly narrow view of
the scope and objectives of foundations of mathematics, a view we read back into
Frege as if it could not but be Frege’s own. (Tappenden 1995: 427)

For the moment, however, I choose to take a closer look at a similar
reinterpretation of Frege appearing in an article written by Mark Wilson
(1999), since it reveals clearly, although not altogether intentionally, the
fault lines running through contemporary philosophy of mathematics. To
prepare ourselves to draw some morals for our discipline from his exercise
in the methodological exegesis of a hallowed ancestor it will help us to
conceive of contemporary research activity in philosophy of mathematics
in terms of a Wittgensteinian family resemblance. From this perspective,
Wilson is aware that he is putting into question the right of a prominent
clan, which includes the Neo-Fregeans, to claim exclusive rights to the
patrimony of a noble forefather. Indeed, he writes ‘I doubt that we should
credit any Fregean authority to the less constrained ontological suggestions
of a Crispin Wright’ (Wilson 1999: 257). As someone who identifies with
this clan (‘our Frege’), he naturally finds this result unwelcome. He then
continues by introducing his next paragraph as a ‘happier side to our story’,
which oddly he concludes by indicating, in effect, that another clan – the
category theorists – may now be in a stronger position to stake their claim
to be seen as Frege’s legatees. Interpreting this in my genealogical terms,
we might say that some new shared family traits have been discovered.
Just like Frege, the category theorist is interested in the organisation of
basic mathematical ideas and looks to current ‘mainstream’ research for
inspiration. In the case of Frege it was, according to Wilson, von Staudt’s
geometry and Dedekind’s number theory,2 while in the case of the category
theorists, algebraic topology and algebraic geometry have provided much
of the impetus.

2 Currently, the best piece on Frege’s mathematical milieu is Tappenden’s unpublished ‘A Reassessment
of the Mathematical Roots of Frege’s Logicism I: The Riemannian Context of Frege’s Foundations’.
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We should also note, however, that Wilson’s interest in the method-
ological resources available to Frege and his awareness of their continued
usage into more recent times is indicative of the work of yet another clan
within philosophy of mathematics, the practice-oriented philosophers, or
what I am calling philosophers of real mathematics. Continuing Lakatos’s
approach, researchers here believe that a philosophy of mathematics should
concern itself with what leading mathematicians of their day have achieved,
how their styles of reasoning evolve, how they justify the course along
which they steer their programmes, what constitute obstacles to these pro-
grammes, how they come to view a domain as worthy of study and how
their ideas shape and are shaped by the concerns of physicists and other
scientists. Wilson, allied with one clan, has conducted some research in the
style of a second clan, whose effect is a reduction in the legitimisation of
the activities of the first clan in favour of those of a third clan.

There are traits suggesting considerable kinship between the latter two
clans, the philosophers of real mathematics and the category theorists, an
obvious reason for which being that category theory is used extensively
in contemporary practice. Thus, the boundary between them is not at
all sharp. Tappenden in his (1995) effectively casts Frege as a precursor
of the former approach, but interestingly gives an example (p. 452) using
category theory to illustrate how a mathematical property can be said to be
mathematically valuable.

The rise of category theory will most likely be treated in different ways by
the two clans: on the one hand, as the appearance, or the beginnings of the
appearance, of a new foundational language; on the other hand, as an indi-
cation that mathematics never stops evolving even at its most fundamental
level. In the broader context of general philosophy, the category theorist
may also be led to find further roles for category theory within philosophy,
for instance, to think category theory semantics should replace Tarskian
set theoretic semantics in the philosophy of language (see Macnamara and
Reyes 1994 and Jackendoff et al. 1999).

1 .4 new debates for the philosophy of mathematics

Even were they to lose the endorsement of Frege, neo-logicist philosophers
of mathematics could still claim that they are acting in accordance with
current conceptions of philosophy. After all, they typically start out from
the same or similar philosophical questions as those asked in philosophy of
science – How should we talk about mathematical truth? Do mathematical
terms or statements refer? If so, what are the referents and how do we have
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access to them? It just so happens, they can claim, that these questions do not
lead on to further questions relevant to what takes place in mathematics
departments. Where the realist beliefs of a philosopher of physics may
dictate that she holds that electrons exist, but lines of magnetic force do
not, or those of a philosopher of psychology that the Freudian unconscious
exists, but IQ does not, mathematics treats things made of the same stuff –
sets, extensions of concepts, possible constructions, fictions or whatever – so
the philosopher of mathematics cannot make similar kinds of distinction.

If we pause to think about this, however, should we not consider it a
little strange that whatever our ‘ontological commitments’ – a notion so
central to contemporary English-language philosophy – vis-à-vis mathe-
matics they can play no role in distinguishing between entities that receive
large amounts of attention, Hopf algebras, say (see appendix), and some
arbitrarily cooked up algebraic entities. If I define a snook to be a set with
three binary, one tertiary and a couple of quatenary operations, satisfying
this, that and the other equation, I may be able to demonstrate with unob-
jectionable logic that all finite snooks possess a certain property, and then
proceed to develop snook theory right up to noetherian centralizing snook
extensions. But, unless I am extraordinarily fortunate and find powerful
links to other areas of mathematics, mathematicians will not think my work
worth a jot. By contrast, my articles may well be in demand if I contribute
to the understanding of Hopf algebras, perhaps via noetherian centralizing
Hopf algebra extensions.

Surely, the philosopher ought to be able tell us something about the pre-
suppositions operating in the mathematical community today which would
account for this difference. Resorting to the property of having been used
in the natural sciences will not do, since there are plenty of entities deemed
crucial for the life of mathematics that have found no direct applications.
On the other hand, it is hard to see how the property of being deemed thus
crucial can be salient to dominant philosophical modes of thinking. For
this, questions of conceptual meaning and shared understanding would
have to come to centre stage. The Hopf algebra concept possesses a cluster
of interrelated meanings, one of which allows for descriptions of interaction
between processes of composition and decomposition in many situations.
These meanings are implicated in the uses to which Hopf algebras are put.

Returning to the philosophy of science, is it the issue of realism as op-
posed to instrumentalism – whether we should think of unobservable the-
oretical entities as really existing – which can be said to relate to the most
penetrating analyses of how the natural sciences work? One recent endeav-
our to escape the realist/instrumentalist impasse in the philosophy of science
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is structural realism, the thesis that science is uncovering only the mathe-
matical structure inherent in the world. But the move to structural realism
does not free us from having to make a stark choice as to whether math-
ematical entities exist or not. Indeed, the choice for the ‘ontic’ structural
realist (see Ladyman 1998) lies between, on the one hand, some mathemat-
ical structures existing as actualised in the universe and, on the other, all
mathematical structures existing, the ones we self-conscious human struc-
tures encounter being deemed physical. Now, at least, mathematicians may
be said to be studying something real, rather than merely creating fictions,
but still we gain no sense of mathematical thinking as part of mathematical
practice. We may have been led to use specific Hopf algebras to allow us
to perform calculations with Feynman diagrams (Kreimer 2000), but it
cannot be right to say that they are structures instantiated in the world.
Still we cannot distinguish between snooks and Hopf algebras.

An attempt to encourage the reorientation of philosophy of science to-
wards debates better grounded in scientific practice has been made by Ian
Hacking (1999). These debates are fuelled by the work emerging from sci-
ence studies and sociology of scientific knowledge, which for him are ‘where
the action has been in the philosophy of science over the past few years’
(Hacking 1999: 186). The first of the ‘sticking points’ on which the de-
bates depend is related to structural realism, although without its physical
foundationalism. Hacking points to an older sense of realism – the thesis
that opposes nominalism – and because of the baggage associated with the
term realism, he opts for the expression inherent-structurism (1999: 83), the
position that the ‘world may, of its own nature, be structured in the ways
in which we describe it’. To understand what is at stake here we don’t have
to turn to esoteric physical theories, but rather may think through the issue
by way of a question such as: To what extent is it the case that the world
is structured of its own nature in such a way that it is correct to designate
as ‘swans’ those black feathered things swimming on the Swan River in
Perth, Australia, and those white feathered things swimming on the River
Thames in England? Note that this is not an all or nothing kind of question.
Answers will invoke ideas from anatomy, physiology, genetics, evolutionary
theory, the history of ornithology, the history of colonial science, etc.

Could a parallel move work for mathematics? At first glance it might
not look promising. How can we talk of a mathematical ‘nature’ possessing
joints to carve? But this, in essence, is how many mathematicians do talk.
Rather than anything contained within the doctrine currently referred to as
‘Platonism’, the sense they have is that something much stronger than logic
offers resistance to their efforts, and that when they view matters ‘correctly’
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things fit into place. Whereas Hopf algebra theory is an established part
of real mathematics, snook theory is not, they would say, because it is
not the result of carving ‘conceptual reality’ at the joints. This notion of
conceptual reality is independent of how we might describe the nature of
the stuff talked about by mathematics. It could inhabit Plato’s heaven or
it could be what results from the process of postulating rules or it could
concern operations, actual or idealised, that we can perform on the physical
world.3

Lakatos is aiming at Hacking’s nominalist-inherent structurist distinc-
tion when he maintains that:

As far as naı̈ve classification is concerned, nominalists are close to the truth when
claiming that the only thing that polyhedra have in common is their name. But
after a few centuries of proofs and refutations, as the theory of polyhedra develops,
and theoretical classification replaces naı̈ve classification, the balance changes in
favour of the realist. (Lakatos 1976: 92n.)

For Lakatos, if human inquiry allows the dialectical play of ideas to oc-
cur with sufficiently little interference, it will eventually arrive at the right
concepts. In this respect, vast tracts of logically sound, but uncritically
generated, mathematics should be cast out as worthless. In response, the
nominalist might say that there is nothing which intrinsically determines
whether mathematical concepts have been produced correctly. What pro-
vides resistance to the mathematician are the conventions operating in her
community brought about by the contingencies of history. And so we arrive
at a sticking point. Out of this disagreement it might be hoped that the
production of a rich picture of mathematical thinking will ensue.

Let us continue with the other two ‘sticking points’ Hacking sees at the
heart of the science wars. These concern the inevitability or contingency of
the science we have, and whether external or internal explanations should be
given for the stability of our knowledge. What I find attractive about these
questions is the possibility to escape polarised answers. Indeed, Hacking
amusingly suggests that one locate oneself on a scale from 1 to 5. These
ratings are presented in absolute terms as though we have to give a single
answer to, say, how likely we reckon it is for specific scientific developments
to have occurred. It seems to me more reasonable to take it as a measure of
the tendency within one to take a certain side in a series of arguments. We all
know of colleagues who tend to take up more contingentist or necessitarian
views than ourselves on just about any question.

3 These last two are, of course, distinguishable: you can physically move a knight forward one square,
but the rules of chess do not allow you to do so.
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Each of these additional sticking points is relevant to mathematics in the
sense that we may argue about the following kinds of question: Is it the case
that had a successful mathematical discipline been developed to a level of
sophistication comparable to our own, then it would have to involve some-
thing equivalent to X , where for X we may substitute the natural numbers,
the rationals, the complex numbers, complex analysis, Riemann surfaces,
finite groups, Lie groups, Hopf algebras, braided monoidal bicategories,
etc.? Why do we still adhere to, and teach undergraduates about, certain
ways of thinking of X ?4

We can find examples of these debates already happening. Indeed, on
the question of contingency, Lakatos and Bloor use the same material,
Lakatos’s case study of the Euler conjecture from Proofs and Refutations, to
argue different sides. Lakatos tells us that:

any mathematician, if he has talent, spark, genius, communicates with, feels the
sweep of, and obeys this dialectic of ideas. (Lakatos 1976: 146)

While for Bloor:

Lakatos’s discussion of Euler’s theorem . . . shows that people are not governed by
their ideas or concepts . . . it is people who govern ideas not ideas which control
people. (Bloor 1976: 155)

Now, to Hacking’s trio of sticking points I would like to add two more.
First, there is the issue of the unity or connectivity of mathematics. This
is nothing to do with all mathematical entities being seen as constructible
within set theory, but much to do with cases of unexpected discovery
such as finding that when using Hopf algebras to calculate expansions
in perturbative quantum field theory, answers depend on values of the
Riemann zeta function. There is an inclination to rebel against such a story
and so to latch on to an image of mathematics as thoroughly fragmented as
Mehrtens (1990) chooses to do, but then we need explanations of cases of
surprising connectivity. For instance, how is it that a geometry devised after
a failed reductio ad absurdum argument, starting out from the negation of
Euclid’s fifth postulate, could provide a useful classifier in knot theory in
that it allows for the measurement of the volume of the hyperbolic space
that typically remains when a knot is removed from the space in which
it sits? For those who admit a considerable degree of unity, the further

4 For an attempt to answer the question ‘What kind of combination between the “natural” and the
historically contingent led to our conception of modern logic?’ by arguing that first-order logic is
‘no natural unity’ see Ferreirós (2001).
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question arises of its causes: social pressures to keep to certain ways of
thinking, the way our brains work, or encounters with inherent structure.

Second, there is the issue of the explicability of the applicability of math-
ematics. Usually this is polarised into ‘it’s an inexplicable miracle how
mathematics, developed for aesthetic reasons, applies to the world’ posi-
tion opposed to one asserting ‘it’s not surprising because mathematics has
been thoroughly shaped by the concerns of physicists’. Think how much
more we might learn from a debate between, on the one hand, someone at
point 3 on the scale, who recognises mathematics as arising from what the
world allows us to do it, and who knows how intricately linked mathemat-
ics and physics were in the nineteenth century, but who still thinks there
is something to explain about how Riemannian geometry was there for
Einstein, and on the other hand, someone at point 4 who reckons in addi-
tion that physicists configure their theories to allow for the use of available
mathematics. Mark Steiner (1998) has provided a start for us, but there are
many more subtleties to discover. Just read a mathematician on the subject
to feel the contemporary richness of this issue (e.g. Klainerman 2000).

These debates are not just about getting our description of mathematical
practice right, but bear on ideas about how things ought to be. Just as there
is a normative element to Lakatos’s remarks about realism – we ought to
follow his methodology to arrive at ‘real’ classifications, with the suggestion
that we may, and indeed often do, fail to do so – so each of the other sticking
points can be made to bear some normative load. For instance, we hear that
mathematics may be fragmented today, but along with physics, it could and
should be unified by adopting the language of geometric calculus (Hestenes
1986).

These kinds of questioning are to be addressed by an understanding
of mathematical knowledge as historically situated rather than timeless.
Lakatos understood this, but his work was only a start. To move on we
shall need a revolution of sorts. In the 1960s Kuhn was able to revolu-
tionise the philosophy of science partly because there was already a con-
siderable body of history and sociology of science in existence, the product
of professionalised disciplines. Philosophy of physics was already a much
larger affair than its mathematical counterpart, with ahistoricist philoso-
phers well grounded in mainstream theories and experiments connected
with general relativity and quantum mechanics. We should remember, for
instance, that Reichenbach worked for a time with Einstein. On the other
hand, the logicism expounded by Reichenbach, Hempel and others of that
generation was too deeply ingrained in the philosophical psyche to be over-
come easily. By the 1960s, there was no philosophical tradition requiring
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extensive mathematical knowledge, and the history of modern mathematics
was still largely an amateur affair stuck at the stage of ‘Men of Mathematics’,
and so the conditions were not right for Proofs and Refutations to have its
effect.

Forty years on, few philosophers of mathematics have been prompted
to gain anything approaching the level of historical and theoretical knowl-
edge that philosophers of natural science are expected to have. This is
partly owing to the state of the history of mathematics. We still have noth-
ing to compare with the sophistication of contemporary history of modern
physics, the history of twentieth-century mathematics remaining largely
the preserve of mathematicians. But these factors would be of little impor-
tance were the philosophical agenda to require serious engagement with
the thinking of mathematicians through the ages.

How radical a change is required? It often seems that anyone wishing
to take the history of a science seriously in their philosophy requires what
to many in the English-speaking world of philosophy is an unorthodox
philosophical background. This Lakatos certainly had. For Kuhn, on the
other hand, it was implicitly fed to him via the historians he studied, Koyré,
etc.:

the early models of the sort of history that has so influenced me and my historical
colleagues is the product of a post-Kantian European tradition which I and my
philosophical colleagues continue to find opaque. Increasingly, I suspect that anyone
who believes history may have a deep philosophical import will have to learn to
bridge the longstanding divide between the Continental and English-language
philosophical traditions. (Kuhn 1977: xv)

Without the resources of a dialectical philosophy, Kuhn came unstuck. In
the rigid epistemological framework he inherited from the logical empiri-
cists, sameness and difference were polarised, a concept could not evolve
into another while retaining something of its past. And so he was guilty
both of underestimating diversity within a paradigm and of overestimating
incommensurability between paradigms.

One of the last of the English-language philosophers not to be cut off
from Continental thinking by the rising tide of analytic philosophy was
R. G. Collingwood. Collingwood had the notion that a discipline in any
particular epoch possesses its own constellation of absolute presupposi-
tions, and that discovering these is the task of the metaphysician. The fact
that these absolute presuppositions change is sometimes seen as having
as its consequence that there exists between the stages of development of
a discipline an incommensurability akin to Kuhn’s. This, however, is a
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misunderstanding of Collingwood’s position.5 Aside from the possibility
of there being absolute presuppositions which have been maintained since
the Greeks, when change does takes place it need not be construed as a dis-
continuous rupture, but rather as a dialectical change in which something
about the earlier presupposition is retained in whatever it turns into:

The problem of knowledge is therefore everywhere and always the same in its gen-
eral form: when we are presented with something which we do not understand . . .
we are to reach an understanding of it by finding out how it has come to be what
it is: that is to say, by learning its history. (Collingwood 1999: 178)

This kind of understanding of change was part and parcel of Lakatos’s
thinking, as his desire to become the founder of a dialectical school in the
philosophy of mathematics reveals (Larvor 1998: 9).

For Collingwood, along with this dialectical sensitivity, a capacity to
experience the force of the absolute presuppositions of the contemporary
form of the discipline about which one is philosophising is vital. While
describing which qualities someone should possess to be able to answer the
questions of philosophy of history, he remarks acidly that:

No one, for example, is likely to answer them worse than an Oxford philosopher,
who, having read Greats in his youth, was once a student of history and thinks
that this youthful experience of historical thinking entitles him to say what history
is, what it is about, how it proceeds, and what it is for. (Collingwood 1946: 8)

A similar conclusion could be formulated for philosophy of mathematics,
and indeed Kant is praised for dealing with the presuppositions of mathe-
matics ‘rather briefly’ for ‘he was not very much of a mathematician; and
no philosopher can acquit himself with credit in philosophizing at length
about a region of experience in which he is not very thoroughly at home’
(Collingwood 1940: 240).6 Returning to history, he continues:

An historian who has never worked much at philosophy will probably answer our
four questions in a more intelligent and valuable way than a philosopher who has
never worked much at history. (Collingwood 1946: 9)

Evidence for the equivalent statement about mathematics is provided by
the very many important contributions made by mathematicians thinking
about their discipline, several of which I shall lean on in the course of this

5 See Oldfield (1995) on this point.
6 Collingwood is being rather unfair to Kant in that, as Friedman (1992) argues, Kant’s engagement

with mathematics and especially physics was what gave depth to his philosophy. But that then only
supports Collingwood’s thesis that to do philosophy of a discipline well one must be ‘thoroughly at
home’ with it.
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book. These include the thoughts of Weyl, Weil, Mac Lane, Rota, Atiyah,
and from the current generation, Gowers and Baez.

1 . 5 towards a philosophy of real mathematics

Aspray and Kitcher (1988: 17) dub as belonging to the ‘Maverick Tradition’
those philosophers of mathematics who pose such questions as:

How does mathematical knowledge grow? What is mathematical progress? What
makes some mathematical ideas (or theories) better than others? What is mathe-
matical explanation?

While their portrayal of such philosophers as non-conformists may not be
far off the mark, it clearly does not represent a desirable state of affairs.
Language has a performative role as well as a descriptive one, and we
should be looking to inspire a new generation of philosophers to sign up to
the major project of understanding how mathematics works. Maddy has
opted with her naturalist methodology not to use the word ‘philosophy’,
which seems to me an unnecessary concession. Larvor (2001) has described
a movement he terms the dialectical philosophy of mathematics, and kindly
refers to me as one of its three leading exponents. Then again my philosophy
of real mathematics may provide a louder clarion call for a time.

One way to proceed with this programme is to return to two of the found-
ing fathers of the philosophy of real mathematics: Pólya and Lakatos. This
I shall do, but in full consciousness of a problem we face. Back in the early
1960s, Lakatos and Kuhn were able to take risks with their pioneering his-
toricist philosophies of mathematics and science, where bold theses were
defended on the basis of a handful of sketchy historical reconstructions.
Now, from the perspective of our current sophisticated science studies we
look back on Kuhn’s Structure as being rather simplistic, if understandably
so, and we may agree with Peter Galison (1997) that it would be extremely
naı̈ve today to maintain that there is a unique structure to scientific revo-
lutions. Our discipline has not had the same opportunity to grow up, and
so forty years on we find ourselves in an awkward situation. We wish to
propose striking theses, since tentatively expressed claims are hardly likely
to energise our field, and yet with so little to build on it is likely that our
efforts will appear immature by comparison to our sister discipline. For
instance, historians, philosophers and sociologists of science may wonder
whether it is necessary to rake up all the paraphernalia of Lakatos’s research
programmes, as I do in chapter 7, when they now have little time for them.
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And isn’t the Bayesianism of chapters 4 and 5 beyond the pale? Hopefully,
they will allow us a period for recapitulation.

An alternative strategy would be to claim sanctuary under the protection
of philosophy of science on the pretext that mathematics be seen as a science.
Now, one of the varieties of disunity treated by Ian Hacking in his paper
‘The Disunities of the Sciences’ (Hacking 1996) he terms methodological
disunity, which concerns the diversity of styles of scientific activity. For
several years he has expressed support for the following classification of
scientific styles proposed by the historian of science A. C. Crombie:

(a) postulation in the axiomatic mathematical sciences, (b) experimental explo-
ration and measurement of complex detectable relations, (c) hypothetical mod-
elling, (d) ordering of variety by comparison and taxonomy, (e) statistical analysis
of populations, and (f ) historical derivation of genetic development. (Hacking
1996: 65)

To these Hacking wishes to add ‘laboratory science . . . characterized by the
construction of apparatus intended to isolate and purify existing phenom-
ena and to create new ones’ (ibid.). Hacking applauds Crombie’s inclusion
of (a) as ‘restoring mathematics to the sciences’ (ibid .) after the logical posi-
tivists’ separation, and extends the number of its styles to two by admitting
the algorithmic style of Indian and Arabic mathematics. I am happy with
this line of argument, especially if it prevents mathematics being seen as
activity totally unlike any other. Indeed, mathematicians do more than pos-
tulate axioms and devise algorithms; it would hardly be figurative to say that
mathematicians also engage in styles (b) (see chapter 3), (c) and (d),7 and
along the lines of (e) mathematicians are currently analysing the statistics
of the zeros of the Riemann zeta function.8 As for Hacking’s additional sci-
entific style – the construction of apparatus – Jean-Pierre Marquis (1997)
made a start on analysing the notion that some mathematical construc-
tions are used as machinery or apparatus to explore the features of other

7 Cf. John Thompson’s comments: ‘the classification of finite simple groups is an exercise in taxonomy.
This is obvious to the expert and to the uninitiated alike. To be sure, the exercise is of colossal
length, but length is a concomitant of taxonomy. Those of us who have been engaged in this
work are the intellectual confreres of Linnaeus. Not surprisingly, I wonder if a future Darwin will
conceptualize and unify our hard won theorems. The great sticking point, though there are several,
concerns the sporadic groups. I find it aesthetically repugnant to accept that these groups are mere
anomalies . . . Possibly . . . The Origin of Groups remains to be written, along lines foreign to those
of Linnean outlook’ (quoted in Solomon 2001, 345).

8 Hacking (1992: 5) remarks that ‘A great many inquiries use several styles. The fifth, statistical, style
for example is now used, in various guises, in every kind of investigation, including some branches
of pure mathematics.’
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mathematical entities, as when, for instance, K-theory was constructed to
probe topological spaces. But let us remember that these styles of math-
ematical activity arise in particular epochs and evolve over the centuries.
After all, Hilbert’s use of axiomatisation differs quite considerably from
Euclid’s.

The fact that there is such a degree of overlap between the styles of math-
ematical and scientific activity suggests we might learn from current studies
of scientific argumentation. However, were we to ignore the differences be-
tween, say, classifying finite simple groups and tabulating their properties,
and doing similarly for the chemical elements, fundamental particles, or
zoological phyla, we would lose what is unique about mathematics. For
one thing, these styles of activity work in a more interactive fashion for
mathematics, owing to the greater homogeneity of mathematical material.
Pieces of mathematical machinery, such as homology and cohomology the-
ories, although used as ‘black boxes’ by some consumers, are themselves
mathematical entities and so the possible subject matter for mathematical
classification, as for instance when the so-called spectra representing ex-
traordinary cohomology theories are gathered together to form a category,
and one of them – the sphere spectrum – shown to be maximally difficult
to compute with. Of course, there are theories of instrumentation in the
natural sciences, but nobody seriously contemplates the space of all possible
machines of a certain kind.

As I have said, I see no intrinsic reason why we should not succeed in draw-
ing connections between developments in mathematics, including those
which have occurred in recent decades, and recognisably philosophical
concerns. Indeed, we can point to a considerable number of important
studies already in existence as evidence, the vast majority in the mould of
descriptive epistemology. But to emulate philosophy of physics we need to
make a more systematic effort to engineer space for ourselves to work with
a wide range of issues. Alongside descriptions of how research mathemati-
cians have worked, we should also allow philosophy to treat interpretational
issues interior to branches of mathematics in such a way as to provide us
with insight into reasonably large portions of mathematics, on the assump-
tion that we will miss something important if we only look for features
relevant to mathematics as a whole.

Not only do we need to free ourselves from the requirement that we treat
simultaneously all of the space of mathematics, we also need to work out
varied ways to liberate ourselves from the appeal of timelessness. In doing
so temporality needs to be introduced at many scales, since mathematics
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more than any other discipline has been formed by the endless reinter-
pretation of its own results. The sociologist of science Andrew Pickering
extends his ‘Mangle of Practice’ to mathematics in Pickering (1997). In a
similar vein, and in the spirit of Diderot’s bon mot quoted at the beginning
of this chapter, we might liken doing mathematics to kneading dough. If
your time-scale allowed you only to describe the lump being flattened and
stretched, you would miss the coming together of widely separated points
during the folding process. As a piece is torn off and set to one side, you
might believe it looked finished. But had you waited a little longer you
would have seen it return under the knuckle to be reshaped into the rest
of the dough. No mathematical concept has reached a definitive form –
everything is open for reinterpretation, even the integers as we shall see
in chapter 10. There is a danger then in relying too heavily on ‘one-pass
history’, as it is known. Pickering’s story ends with Gibbs and Heaviside lay-
ing out ‘the fundamentals of vector analysis, dismembering the quaternion
system into more useful parts in the process’ (1997: 60). One might easily
draw the moral from the apparently ephemeral success of the quaternions
that much was contingent about their evolution, but we can support the
inevitabilist position somewhat by a longer-term history which shows that
since 1880 the quaternions have re-established themselves as very respectable
citizens of the world of mathematics for their many good works, and that
while Pickering’s claim that vector analysis is ‘central to modern physics’
(1997: 45) is questionable, a similar claim about the unit quaternions in the
shape of the Lie group SU(2) is not.9

The need to avoid confining oneself to a particular historical moment
is made more pressing by the fact that the material basis of mathematical
practice does not anchor it so precisely in time or space as does the physicist’s
apparatus. Of course, this freedom is not limitless. Restrictions on the
availability of papyrus or supercomputers, or of access to books and journals
certainly play their part, but there is nothing quite to compare with the
localised knowledge of glass production or lens grinding, or the fixity of a
particle accelerator. Today, software and electronic journals can travel across
the world in seconds, mathematicians in hours.

We are faced with an enormous and daunting choice. A fascinating, but
extremely challenging, case to treat would be the vast ongoing programme

9 Baez (2002: 146): ‘The unit quaternions form the group SU(2), which is the double cover of the
rotation group SO(3). This makes them nicely suited to the study of rotations and angular momen-
tum, particularly in the context of quantum mechanics. These days we regard this phenomenon as a
special case of Clifford algebras. Most of us no longer attribute the cosmic significance that Hamilton
claimed for them, but they fit nicely into our understanding of the scheme of things.’
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to form a non-commutative version of geometry, which among other things
aims to allow non-commutative algebras of quantum mechanical observ-
ables to be thought of as algebras of functions on phase spaces. The related
‘q-disease’, whose primary symptom is a preference to study deformations
of familiar objects rather than the originals, has by now become an epi-
demic. Alternatively, we find that mathematicians are especially interested
in one of the debates I suggested in the previous section, the one centred
on the issue of unity. Arnold (2000), for instance, tells us that many of
the unexpected connections found between apparently distant regions of
mathematics can be viewed as one construction, being the complexification,
quaternionisation, symplectisation, or contactisation of another, and out-
lines how he sees large tracts of mathematics in this light. Related to this is
the appearance in the post-Second World War era of a sharp divide between
the highly interconnected nexus of theories such as algebraic geometry and
differential topology, on the one hand, and the more fragmented treatment
of partial differential equations, on the other, belied from time to time by
the construction of bridges from specific kinds of differential equation to
parts of the nexus.

Another topic which needs to be explored is the introduction of proba-
bilistic and stochastic thinking into mathematics. Besides its use in graph
theory, for instance in establishing lower bounds for Ramsey numbers,
mathematicians have come across the surprising fact that the distribution
of the zeros of the Riemann zeta function shares much in common with
the distribution of energy levels of a heavy nucleus. Both are connected to
the distribution of eigenvalues of very large random matrices.

A final example, one I shall be treating in this book, is the rise of a
discipline known as higher-dimensional algebra, which aims to permit com-
position to take place in additional dimensions to the standard linear one
of the printed text, blurring the boundary between algebra and topology
in the process. As we shall see later, higher-dimensional algebra offers us an
account of why Hopf algebras are ‘good’ things.

1 .6 relations with the philosophy of physics

Evidently, the relationship with the philosophy of physics is likely to be
closest, although there is no reason why there should not be important
collaborations with, say, the philosophy of biology, and we very much need
to bolster the philosophy of theoretical computer science. Philosophers
of physics are already in a much better position to provide us with some
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answers to the question ‘Why Hopf algebras?’, since they can point to
applications in integrable models of statistical mechanics, inverse scattering,
renormalisation theory, etc. But we should remember that mathematics
considers more varieties of structure than does theoretical physics, even
when we take the latter to include the construction of toy models. More
importantly, it considers them in different ways.

I am hopeful that the philosophy of physics may take a mathematical
turn and so require the services of a philosophy of real mathematics. Just
as philosophers there had to overcome various logical empiricist tenden-
cies – the emphasis placed on theory rather than experiment, modelling
being taken in the logicians’ sense, etc. – it is time to overcome the logi-
cist idea that mathematics contains nothing beyond an elaboration of the
consequences of sets of axioms. Until philosophy of science became serious
about the actual workings of science, one could take the logical empiricist
line on confirmation without worrying much about the way experiments
are conducted. What seems to have changed little in this more realistic
climate, however, is the tendency to take the mathematics used in physics
as read, either as devised on the fly by physicists or else as selected off the
shelves of the mathematicians’ superstore. The conceptual contribution of
mathematics to the work of physics is thus largely being overlooked. In a
sense we need to mimic at the level of philosophy the recent rapproche-
ment between mathematics and physics. A simplistic story has it that after
centuries of close union, the two disciplines became divorced in the 1930s
over a quarrel about quantum field theory. Each went off on its own path,
and it was only in the late 1970s they discovered that they had both been
performing similar constructions, e.g., connections on fibre bundles and
gauge potentials. The danger in physicists ignoring the ideas of mathemati-
cians lies in their overlooking the power of mathematical conceptualisations
when they are interested in a piece of mathematics as a ready-to-wear item
rather than as part of a network of associated ideas. There is a many–many
relationship between mathematics and physics: one piece of physics calls
upon varied pieces of mathematics, one piece of mathematics can be used
in very varied situations (in computer science and mathematics itself as
well). What could potentially provide some unity to the many uses of a
piece of mathematics lies at the conceptual level. Similarly, mathematicians
may not understand how field theoretic considerations mean that different
pieces of mathematics are related.

Take our running example of Hopf algebras, a small fragment of the
picture of whose uses I have drawn below:
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We can see an example of how mathematical understanding might impinge
on physical conceptualisation in the work of Shahn Majid (1995). Associated
with Hopf algebras, he tells us, is a notion of duality realised as a form of
input–output symmetry. When these algebras are used as physical models,
instead of taking the observables as forming an algebra and the states of
the system as forming merely a set or space, one now has a multiplication
imposed on the states as well. So one can reverse the interpretation of the
model, interchanging states and observables and causing random walks
to be seen as dual to creation processes. This may sound like a physical
argument, but the idea of viewing a pairing between a function and the
value of an argument both as the application of the function to the argument
and as the evaluation of the function by the argument is a fundamentally
mathematical thing to do.

The essential point here is that, despite the rapprochement between
mathematics and physics, there will be no simple unification of disciplines.
The mathematical physicist Cumrun Vafa expresses this well:

It is clear to many physicists and mathematicians that we are going to continue
witnessing many exciting domains of interaction between physics and mathemat-
ics. So much so that some researchers are even predicting a merger between the
two fields in the near future. However, I believe merging of the two subjects will
not take place given the vast differences in aims that mathematicians and physicists
have about a given subject. In fact, if a merger were to happen, I believe it would
not even be a healthy development. Physicists and mathematicians have benefited
from each other so much precisely because they have such clearly distinct views
about a given subject. (Vafa 1999: 327)
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This suggests the need for philosophers of physics and of mathematics to
talk to one another, while maintaining their own interests. If philosophers
of physics are to study the practice of physics, they must take into ac-
count the contemporary form of the interaction with mathematics, and vice
versa.

The history of this intimate relationship between mathematics and
physics has certainly left its mark, but we may attribute the shaping of
contemporary mathematics to more than this. We shall now equip our-
selves with the means to find our bearings in the space of ways of thinking
about mathematics by considering factors shaping the way it proceeds.

1 .7 factors governing the way mathematics proceeds

We can usefully think of the path taken by mathematics through its history
as governed by factors arising from a variety of sources. To give a flavour
of the kinds of factors we shall meet weaving their way through later chap-
ters, I shall treat them in groups according to the following classification:
(a) logical and calculational correctness; (b) plausibility; (c) psychological
factors; (d) technological factors; (e) sociological and institutional factors;
(f ) relations with other sciences; and (g) inherent structure. Let us consider
them in turn.

(a) Correctness within some existing calculus: generally speaking, algebraic
and analytic calculations are performed within some specified calculus, and
proofs conform to the accepted logical standards of the day. It may seem
unusual to group these together, since philosophers usually like to take their
preferred form of logical calculus as fundamental. I tend to side, however,
with Poincaré and Hilbert in viewing the structure presupposed by even
the predicate calculus as substantial. In any event, it is not the concern of
this book to determine how large a part of mathematical knowledge may be
said to be a priori knowledge of analytic truths, as the neo-Fregeans imagine
themselves to be doing by casting arithmetic in terms of second-order logic.
What I am concerned with is the notion that a calculus may ‘run along the
grain’ of a piece of mathematics. It is true that although a mathematical
proof may involve some amount of algebraic or analytic calculation, it could
in principle be couched purely in a logical calculus, but it is important to
realise just how unappealingly long-winded the result would be. Thinking
about this situation from the opposite direction, without the presence of a
suitable algebraic or analytic system it is extremely unlikely that one would
hit upon the proof. If these points are not obvious, the reader is encouraged
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to translate a simple piece of algebraic manipulation, the expansion of
a power of a polynomial, say, into first-order logic. Four lines suddenly
become a hundred. Now, in Proofs and Refutations a considerable part of
the problem for the students is that they lack adequate means to define what
they mean by a polyhedron. These days mathematicians have the resources
on hand to make definitions precise and to present their arguments with a
standardised level of rigour. This, however, is generally not sufficient. What
one generally requires is a good algebraic or analytic framework.

It has proved to be the case that much is gained by constructing a formal
calculus in which calculations and arguments may be said to be conducted
correctly. This is as much for the provision of a boundary which shows
explicitly when one is stepping outside the system, as for assuring the
security of results demonstrated within it. The persistent need to breach
the constraints of the system will suggest the necessity of augmenting or
reconstructing the system. An early example was the study of divergent series
(see Kline 1972, ch. 47). Series divergent according to Cauchy’s convergence
criterion were known to be useful, but it took a concerted effort for several
decades after 1880 to establish the range of validity of the use of such
series. More recently, we find constructions in quantum field theory causing
mathematicians a headache. Take for instance Edward Witten’s response
to the challenge Michael Atiyah proposed in the late 1980s to find an
intrinsically three-dimensional interpretation of the Jones polynomial, a
recently discovered knot invariant calculated via knot projections in the
plane. Witten provided a quantum field theoretic interpretation involving
integration over a space of connections on a principal bundle modulo gauge
equivalence. However, no appropriate measure has been defined over this
infinite dimensional space, and so Witten’s formula is treated as a heuristic
device. Calculations may be performed, but the boundaries of what is
permitted are not clear. Few mathematicians would not be delighted to see
this work given a firmer grounding.

(b) Plausibility: an understanding of how practitioners of a discipline reason
plausibly should be hugely important for philosophers of that discipline.
They have tended, however, to steer clear of this topic and so we must rely
on the writings of mathematicians such as George Pólya. Pólya taught us
that mathematicians spend much of their time formulating conjectures,
providing evidence for these conjectures by way of calculating particular
instances, or drawing analogies to similar problems, and then planning
proofs based on the existing knowledge and their understanding of the
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proofs of related results. Much of this activity has an inductive flavour to
it. We need to understand how considerations of plausibility govern the
choices of mathematicians at different time-scales, from their day-to-day
reasoning on a specific problem to the decision to dedicate a considerable
part of their lives to a particular research programme.

Consideration of which results are likely to be correct and which are
likely to be accessible using available proof techniques are clearly relevant
to rational decision making as to the choice of research topic. Furthermore,
it is common practice to build a considerable body of mathematics upon
unproven conjectures. For example, we have results which start ‘If the
Riemann hypothesis is correct, then . . .’. Obviously, building a pyramid of
conjectures on a base of uncertain propositions would be an unwise thing
to do, if we had strong grounds to doubt their truth.

(c) Psychological factors: the extent to which mathematics reflect the work-
ings of the human mind, both in its strengths and limitations, is a question
largely discussed by cognitive psychologists and philosophers interested in
their work (cf. Kitcher 1983). Unconstrained by the need to demonstrate
direct relevance to the world, it is easy to imagine that mathematicians
would unintentionally project into their work features of the ways in which
their minds work. Such projection would be expected to reveal itself espe-
cially when cognitive obstacles were being overcome. For instance, mathe-
maticians in the past century and a half took a long time to become happy
with the idea that a manifold should be defined as a patchwork of pieces of
space held together by some specified variety of ‘glue’, rather than as sitting
in an ambient space, as our untutored intuitions would suggest. An individ-
ual will have to surmount this hurdle through her own education. But it is
possible that many of the ways psychological factors structure mathematics
go unnoticed. If so, it has an important bearing on philosophy of science.
The more you see our mathematics as significantly shaped by the way we
think, the more you seem to be forced to find its application in the world
a sign that something akin to Kantianism is correct, unless you prefer the
notion of a ‘user friendly’ universe which our minds are somehow adapted
to understand (Steiner 1998: 8).

Even if we could establish that many pieces of mathematical research bear
the stamp of some universal features of mental functioning, this would
not make it irrational to pursue them. If our aim is to produce more
mathematics of relevance to our sciences, and it can be argued that working
in a way that suits our minds is most likely to achieve this, then it is
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rational to do so. For instance, one may reasonably attribute psychological
factors to the fact that the study of knots, that is, circles embedded in
3-dimensional space, began long before the study of knotted spheres in
4-dimensional space. But even if it were deemed at some stage very likely
that the latter would turn out to be much more important in terms of its
applications, perhaps as the basis of a 4-dimension quantum field theory as
some practitioners of quantum gravity hope (see chapter 10), in view of our
greater capacity to visualise knots and so produce an algebraic treatment
of them which is likely to be relevant to the next higher dimension, it may
be argued that it was rational to devote our resources to the former first.
Two mathematicians working on precisely this project see the situation as
follows:

The purpose of this book is to develop the diagrammatic theory of knotted surfaces
in 4-dimensional space in analogy with the classical theory of knotted and linked
circles in 3-space. This goal may sound unachievable to some readers, how can we
perceive phenomena that occur in 4-space? (Carter and Saito 1998: ix)

They proceed to develop movies, sequences of slices through a knotted
surface, all of which would have been unthinkable without the help of
earlier experience on knots.

(d) Technological factors: these include the means to communicate and pub-
lish, and the means to compute. The former are more important than
one might imagine. Reviel Netz in The Shaping of Deduction in Greek
Mathematics (Netz 1999) writes on the great expansion of mathematical
activity that occurred when mathematics freed itself from its oral tradi-
tion and storing and retrieval became much more written. Much closer to
our times, when textbooks had to be typeset the expense to be incurred
in their production forced publishers to guarantee that they would find a
substantial readership and so be cautious. With the advent of Xerox ma-
chines, ideas at the frontiers of research could be conveyed rapidly around
the world. However, when you see the ghastly typewritten monographs of
the 1970s, you can appreciate the limitations of the available notational
devices. Now we have the opportunity to read for free papers submitted
to preprint servers, written with the notational resources of Latex, and il-
lustrated by diagrams constructed using clever software packages, and we
are able to watch remotely lectures given by illustrious mathematicians and
view moving graphics. But might Latex itself act as a constraint on the
development of new notational practices? It is not hard to argue, then, that
the lack of technological resources may delay the development of a field.
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As we shall see in chapter 10, it has been claimed that it is the availability
of more sophisticated printing technology in the past few years which has
allowed the emergence of higher-dimensional algebra.

As for computation, I shall largely be concentrating on automated the-
orem proving and conjecture formation in this book, but it is clear that
numerical and algebraic calculation has had the more profound effect upon
the practice of mathematical research. Whole new fields of mathematics
have been opened up by the increasing power of computational devices.
But this gives rise to the question how the mathematical community ought
to use and develop technology. Ursula Martin, a researcher working in the
field of computer algebra systems, has suggested on the basis of her anal-
ysis of mathematical practice (Martin 1999) that there is little purpose to
the activity of one sector of the automated theorem proving community.
Members of this group seek to use automated proof assistants to produce
and check completely formally correct proofs of large tracts of mathemat-
ics. Martin argues, convincingly to my mind, that this is largely a waste
of effort. How much more profitable for someone to collect, and make
available on the Internet, informal insights? Listen to the mathematician
Raoul Bott:

With one offhand remark we give away our insight of years of thinking, and such
a remark might illuminate a whole field or fit into one’s brain just right to unlock
some new insight. (Jackson 2001: 381)

(e) Sociological and institutional factors: The effects of the war effort on
American mathematics in the post-Second World War era are very evident,
as are the effects of the prevailing political climate of the Cold War in the
Soviet Union through the 1960s and 1970s. We are told, for instance, that
Russian algebraic topologists were thought rather frivolous for working in
such an impractical domain, until the announcement of the Atiyah–Singer
Index theorem made it evident that algebraic topology was relevant to
the solutions of partial differential equations, and so its study of potential
benefit in sustaining the Revolution. However, in the course of this book
I shall not be dwelling on how sociological factors at the external end of
the range dictate the way mathematics is done, but rather more internalist
considerations of decision making within the community. This is not an
indication that I underestimate the importance of the bearing of the larger
society on the mathematics it supports. It has already been the subject of
extensive studies (e.g. Restivo 1992), which tend to map out the history
of mathematics at a large time-scale, requiring a severe compression of the
twentieth century.
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The arrival of improved means of communication which I mentioned
in (d) above may not be all for the good. Indeed, it has been argued that
they have a tendency to produce small communities of researchers linked
not by spatial proximity, but solely by their narrow field of interest, thereby
preventing cross-fertilisation with other branches of mathematics, and pro-
ducing strong tendencies to follow the latest trends in a field. Connes, on
the other hand, presents a much more optimistic picture of how the math-
ematics community copes with its vast expansion (Connes et al. 2000:
100–1).

(f ) Relations with other sciences: the structures encountered in other dis-
ciplines, most especially physics, are often rich sources of inspiration to
mathematicians. In our quest to represent the workings of mathematics we
shall have to figure out the extent to which mathematics has been shaped
by its relationship with the natural sciences, and how the mathematical
requirements of the biological and neural sciences are currently leading
mathematics in new directions.

It was famously the concern of John von Neumann that mathematics
tends to advance along the path of least resistance into very specialised
branches unless is it brought back periodically into contact with its empir-
ical roots. If so, mathematicians ought to keep an eye on adjacent sciences.
On the other hand, one may also argue that it is extremely likely that
many mathematical constructions, even those far removed from any em-
pirical source, have considerable unrealised potential to be applied. Who
would have dreamed that our knowledge of elliptic curves could provide
the basis for an encryption system? Either way few would disagree that
mathematicians and scientists should talk more to each other.

(g) Inherent structure: one could imagine a philosopher responding to the
classification up to this point as showing that everything is merely logic
plus sociology. Someone from the Strong Programme might go a step fur-
ther and say that our use of logic also has sociological determinants (see
Barnes et al. 1996, ch. 7) – nothing is free of sociology. The idea of inherent
structure, which may be chimerical, answers to the sense that mathemat-
ics offers resistance to the mathematician well beyond that attributable
to correctness within some universal calculus, and yet not just emerging
from disciplinary training. For example, there are any number of ways to
generalise or deform the concept of a group perfectly rigorously, but only
a very few have important properties. Again, in the late nineteenth cen-
tury Dedekind and Weber postulated a strong analogy between number
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fields and function fields. The playing out of this analogy has formed a
major part of mathematics ever since. Does its success suggest the existence
of objectively similar characteristics? Can any two concepts be made to
resemble each other considerably if worked hard enough?

This form of realism, resembling Hacking’s notion for the natural sci-
ences discussed in section 1.4, is independent of the issue of whether math-
ematical entities really exist in some ontological realm or other. It is about
seeing things ‘correctly’, that is, how things ‘really’ are. This is the type
of realism which underlies the suggestion that a mathematician may have
‘glimpsed’ something decades before another brings it into sharp focus.
The key words here are ‘natural’ and ‘fundamental’. Mathematicians use
them all the time to describe features of their work that appear to arise from
the nature of the domain they are studying, rather than being externally
imposed.

While set theory displays certain ‘foundational’ virtues, we must recog-
nise that reformulating a piece of mathematics that way may run against its
‘grain’. While commenting on the success of the set theoretic programme to
comprehend all mathematical entities in its terms, the mathematical physi-
cist John Baez remarks, ‘one must bend over backwards to think of such
varied entities as sets, so this formalization may seem almost deliberately
perverse’ (Baez 2001a: 189). The price to be paid for universality is unnat-
uralness. Instead of seeing mathematical entities and constructions merely
as ultimately composed of set theoretic dust, we should take into account
structural considerations, rather as the student of anatomy gains little by
viewing the human skeleton merely as a deposit of calcium. Such consid-
erations can hardly fail to take into account what is special about those
disciplines described as ‘geometric’ and should lead us to form a new phi-
losophy of geometry which treats: fibre bundles, connections, curvature,
spin networks and foams, non-commutative spaces, toposes, instantons,
sheaves, gerbes, symplectic geometry, and geometric quantisation.

Tracing out the interrelations between these factors should prove a chal-
lenging task. My response to this challenge will run as follows.

1 .8 outline of the book

One approach to thinking about mathematics is to consider how differently
it might have turned out. This may be done by engaging in counterfactual
history, where, say, we imagine that Chinese mathematics had prevailed
over Greek mathematics. However, the advent of the computer provides
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us with a more convincing strategy since machines are today starting to
contribute to mathematical research in their own way. We begin part I with
two chapters (chapters 2 and 3) examining the potential role of computers
in mathematics. One of the lessons we learnt from Proofs and Refutations is
that when humans do mathematics, three components of their activity –
conceptualisation, the formation of conjectures and the construction of
proofs – are inextricably linked. Given the very distant prospect of com-
puters being able to supersede mathematicians’ capacity to conceptualise,
we shall see here whether the latter two components may be disentangled
sufficiently to allow machines to augment our capacity to prove and conjec-
ture. In chapter 3 I deal with automated theorem proving, contrasting two
approaches: one which aims to emulate human reasoning and one which
sees fit to play to the strengths of machines at matching syntactical strings.
It is the second approach which has produced the most striking result to
date by contributing to the solution of a problem which taxed Alfred Tarski
for many years.

Continuing the theme of computerised assistance, in chapter 3 we see
what has been achieved in the line of conjecture formation. One of the most
effective areas is the use of high-precision arithmetic to discover numerical
identities between combinations of constants. Other successes include the
use of algorithms to count tilings in enumerative combinatorics. What
I shall be focusing on in this chapter, however, are my own attempts to
use a logic-based machine learning device to learn from a collection of
topological data. I shall argue that the difficulties I encountered arose from
the unsuitability of a logical language in this topological domain.

Induction and analogy were the two varieties of plausible reasoning
George Pólya treated in his Mathematics and Plausible Reasoning (1954a).
Having looked at inductive activity in chapter 3, in chapter 4 I turn my
attention to analogy. We can find ample evidence of the high regard in
which analogical reasoning is held by mathematicians, but do its apparently
successful uses indicate merely that it represents a way mathematicians can
think powerfully, or rather that it is the style of thinking best adapted to
capturing inherent structure? Is it possible to transfer constructions between
any two fields of mathematics, or are we encountering what we might call
after Wigner the unreasonable effectiveness of mathematics in mathematics?

Part II considers plausibility, uncertainty and probability. In chapter 5
I probe Pólya’s idea that, like everyday reasoning, mathematical reasoning
is for the larger part inductive rather than deductive. In explaining this
idea he chose to represent uncertainty in mathematical knowledge using a
kind of Bayesian degree-of-belief framework, where qualitative changes of
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direction of degrees of belief occur on discovering new knowledge. Now,
while Bayesian reconstructions of rational practice are extremely common
in philosophy of science, very little has been done by way of following up
Pólya on their suitability for mathematical practice. I discuss the question of
which variety of Bayesianism is most appropriate for this task, and proceed
to examine the use of analogy, the choice of strategy in proof planning, and
large-scale enumerative induction.

If mathematical uncertainty may be viewed in Bayesian terms just as
scientific uncertainty often is, we should expect a certain compatibility
between the way we treat them. Today, in the absence of experimental data,
it may happen that the only verifiable predictions are mathematical ones.
When these mathematical predictions are confirmed, scientists naturally
view this as a sign that their modelling techniques and theorisation are
on track. I argue in chapter 6 that any confirmation theorist must either
declare this irrational or else integrate mathematical predictions into their
framework. For the Bayesian philosophy of science, the obvious solution is
to extend Bayesianism to mathematics as I did in chapter 5.

In part III, Chapters 7–9 concern Lakatos: what he did, what he might
have done but for his untimely death, and what he perhaps ought to have
done. In chapter 7, I examine his writings in philosophy of mathematics.
Lakatos maintained that the transformation of informal mathematics into
an axiomatised research programme largely marks the end of the creative
process. While indicating that readjustments might be required were in-
sufficient of the informal material to be captured, he gave no hint that an
axiomatisation could act as a springboard for further theoretical develop-
ment. For Lakatos, once a mathematical theory has entered the axiomatic
stage ‘imagination is tied down to a poor recursive set of axioms and some
scanty rules’ (1978b: 68). I argue that Lakatos is wrong.

It is known that Lakatos had intended to return to the philosophy of
mathematics to apply the constructions he had devised to account for the
development of the natural sciences. In chapter 8 I assess the obstacles to a
transfer of the methodology of scientific research programmes to mathemat-
ics. I argue that, if we are to use something akin to Lakatos’s methodology
to discuss modern mathematics with its interweaving theoretical develop-
ment, we shall require a more intricate construction and we shall have to
move still further away from seeing mathematical knowledge as a collection
of statements. I also examine the notion of rivalry within mathematics and
claim that this appears to be significant only at a high level.

Out of the totality of possible mathematical structures, mathematicians
choose to explore a very limited range. This is due not solely to what they
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are able to study at any one time, but rather it reflects their attribution of
importance. Naturalness, fruitfulness, conceptual power and elegance are
other qualities valued in a piece of mathematics. Are these merely transitory
aesthetic judgements, or is there something ‘objective’ to them? In chapter 9,
I consider the claims made by some mathematicians that conceptual de-
velopment is afforded too little credit by comparison to problem solving
capacity.

In part IV, in the final chapter (chapter 10), I take a look at higher-
dimensional category theory. This new discipline seeks to construct higher-
dimension versions of simple algebraic constructions by a process known as
categorification. An example of this proceeds up the ladder of categorifica-
tion from the integers to the category of tangles in which sits the collection
of mathematical knots. In the process it explains why mathematicians and
physicists have found knot invariants by way of a construction on types of
Hopf algebra, known as quantum groups, and relates this construction to
models employed in statistical mechanics and quantum field theory. One
intriguing consequence of its adoption is a reappraisal of sets as occupying
simply one corner of the mathematical universe.

As you will have gathered, the chapters of this book cover a considerable
range of aspects of mathematics. This is as it must be. If physics can meet
philosophy at the Planck scale, in time I hope that philosophy and math-
ematics will meet in a very wide range of places. We should broaden the
range of philosophical resources in these encounters. The ones I have used
originate principally in the English-language literature, and at the ‘internal-
ist’ end at that. This should not be taken to imply a want of appreciation for
what is happening elsewhere, but when forging a path towards a philosophy
of real mathematics one must start somewhere.



part i

Human and artificial mathematicians

Future philosophers may find it surprising that so few analytic philoso-
phers, especially those who work at the formal end of the spectrum, have
troubled themselves to converse with practitioners of machine learning,
seeing that both groups convey their ideas about knowledge and inference
within logical systems. Mathematical reasoning has, of course, been seen
as the paradigm case for this treatment, so it is interesting to read Seymour
Papert, a prominent Artificial Intelligence researcher, accuse philosophers
of working with:

a projection of mathematics which greatly exaggerates its logical face much as the
Mercator projection of the globe exaggerates the polar regions so that on the map
northern Greenland becomes much more imposing than equatorial Brazil. (Papert
1978: 107)

One reason for my interest in computer assisted mathematics is that it
offers us our best chance of perceiving what is lacking in such a projection.

Theorem proving, conjecturing and concept formation make up the
three principal components of mathematical research. The brilliant obser-
vation of Lakatos, argued through the length of his famous dialogue, Proofs
and Refutations, was that these components are thoroughly interwoven. He
was right. Mathematicians perform these activities simultaneously – while
clarifying a concept they notice a property which looks like it may hold for
all of some class of objects, and while trying to prove that this is so, they
find that it pays to introduce conceptual distinctions between elements of
that class.

The use of computers in mathematics up until now has been surprisingly
limited, but the evidence of the past few years indicates that some changes
are on their way, especially with the advent of computer algebra systems, to
augment number-crunching capabilities. For computers to become valu-
able to mathematicians it will be necessary to isolate the components, or
perhaps even parts of the components, mentioned above. Numerical and
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symbolic calculation may be seen as an integral part of theorem proving,
conjecture formation and conjecture testing. The last of these three has been
far and away the most successful avenue for computer science to invade
mathematics, but we should note that any success here need not make us
change our image of mathematics so very radically if we were already aware
of mathematics’ quasi-empirical face. We should already have known that
numerical calculation may be used to put conjectures to the test. Computer
algebra systems just allow us to expand this activity.

I want then to look here at potentially more radical uses of machines.
Computer science provides the philosopher of mathematics with a fresh
angle on mathematical practice, the chance to look outside of what might
turn out to be merely ‘human’ mathematics to a larger space of ways of
doing mathematics. In chapters 2 and 3 I shall be exploring what we might
call ‘fringe’ uses of machines in mathematics, in theorem proving and
conjecture formation, as a way of deepening our understanding of what
doing mathematics at the start of the twenty-first century is like.

The final component of mathematical research activity I spoke of above
is concept formation. I shall not be treating ‘beyond the fringe’ attempts
to automate this process owing to a near total lack of success to date. After
the initial flourish of Lenat’s Automated Mathematician (AM), little has
been done here. One of the few recent attempts has been the HR program,
which ‘genetically’ recombines pieces of other concepts (Colton 1999). One
of its more notable feats has been to generate the notion of a refactorable
number. A refactorable number is a natural number the number of whose
divisors divides itself. The first few are 1, 2, 8, 9, 12, 18 . . . While this series
has been included in an electronic encyclopaedia of integer sequences, I
doubt many mathematicians will be impressed. So, instead, in chapter 4
I see how humans go about concept formation via analogy, to provide a
counterpoint to chapters 2 and 3.



chapter 2

Communicating with automated theorem provers

it is only the very unsophisticated outsider who imagines that mathe-
maticians make discoveries by turning the handle of some miraculous
machine. (Hardy, A Mathematician’s Apology)

2.1 introduction

Had you subscribed to the New York Times back on December 10, 1996,
you might well have noticed the following headline:

Computer Math Proof Shows Reasoning Power
By Gina Kolata
Computers are whizzes when it comes to the grunt work of mathematics. But for
creative and elegant solutions to hard mathematical problems, nothing has been
able to beat the human mind. That is, perhaps, until now . . .

The article announced that a computer had solved a famous mathematical
problem – The Robbins Problem – sixty years after it had been posed.
Noted mathematicians had tried but all had failed. Even the great logician
Alfred Tarski had spent time on it to no avail.

To date computers have had little impact on the process of deriving
mathematical proofs, or, at least, very much slighter an impact than one
might casually have reckoned on from the way mathematics was repre-
sented in much of the philosophical literature of the twentieth century.
To give a couple of examples briefly, where Pierre Duhem spoke of the
role of bons sens and finesse in the field of physics, he contrasted these to
géométrie, the automatic mode of thought to which the mathematician is
restricted (cf. Crowe 1990). For the logical empiricists, meanwhile, mathe-
matics was taken to be merely a branch of logic, give or take an odd pos-
tulate (Hempel 1945, §10). Duhem’s idea of automaticity was absent from
Hempel’s account in recognition of mankind’s psychological limitations,
but bearing in mind that computers excel at syntactical manipulations

37



38 Human and artificial mathematicians

corresponding to steps of logical inference, which includes for Hempel
mathematical inference, we might have expected by now the extensive use
of banks of automated theorem provers in our mathematics departments.
What we find instead, however, is that mathematicians are using comput-
ers for quite other purposes. Aside from their more menial functions in
facilitating communication and publication, several areas of mathematics
have benefited greatly from computers’ number-crunching capabilities and
could hardly have been developed without them. I am thinking here of, for
instance, numerical analysis of partial differential equations. In a similar
vein, as we shall see in chapter 3, there are signs of an emerging experi-
mental approach where researchers can ‘out-Gauss’ Gauss by carrying out
lengthy numerical and algebraic calculations to see whether their conjec-
tures hold over a range of instances, or whether patterns emerge from their
data.

What has not happened yet has been any appreciable turn to computers
to assist in the production of the inference steps of a proof. While a degree
of success has been achieved by theorem provers, prompting a few leading
mathematicians to predict a rosy future for the automation of theorem
proving, at present it is very much a fringe activity for the mathematical
community, and we may expect that it will remain so until a significant
number of problems deemed to be of sufficient importance have been re-
solved. Notwithstanding this lack of interest on the part of mathematicians,
the ambitions of researchers to develop powerful automated provers and
proof assistants remain undiminished.

In spite of its marginal status, an investigation of automated theorem
proving remains worthwhile since it sheds light even on central aspects
of the mathematical community’s research activity. Our primary concerns
are the following. First, a simple general remark, one should not under-
estimate the difficulty of developing useful automated theorem provers.
Even in the case of first-order provers, a huge effort has been required to
find strategies to restrict and direct machines to be effective even on a very
limited range of problem types. Second, I believe it is no accident that
the most successful approach to date has been one that has deliberately
avoided closely imitating human problem solving techniques. Computers
have their own inhuman strengths which need to be harnessed. Third, the
output of a theorem prover, even when it represents the proof of an open
problem, is often of little value beyond establishing the correctness of a
proof. Human mathematicians pride themselves on producing beautiful,
clear, explanatory proofs, and devote much of their effort to reworking
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results in conceptually illuminating ways. Philosophers must not evade
their duty to treat these value judgements in mathematics. Fourth, it is
worth considering that automated provers might allow mathematicians
to develop mathematical domains which they would not otherwise have
done. Perhaps, not only have mathematicians been constrained to study
subject areas in which they could calculate, expansion occurring through
theoretical, algorithmic and technological advances, but also they have
been limited to domains in which results are humanly provable. Finally,
if anything very important is to come out of this research, mathemati-
cians will have to learn and devise new language forms, both to be able
to speak to members of the automated reasoning community and their
machines, and to glean as much as possible from the latter’s often obscure
output.

In the next section I shall briefly outline ongoing work in the auto-
mated reasoning community. In section 2.3 I shall discuss the approach
to theorem proving adopted by Larry Wos’s group at Argonne, Illinois,
at present the most successful group working on mathematics and logic.
Their finest achievement to date has been to settle the Robbins Prob-
lem, sixty years after it was formulated. This is the topic for section 2.4.
Their interest piqued by a proof which seems to lie just a little beyond
the grasp of humans, various researchers have attempted to reformulate
it in a more humanly accessible way. Finally, in section 2.5 I discuss the
knot theorist Louis Kauffman’s use of a diagrammatic notation for this
purpose.

2.2 automated mathematical reasoning

Leibniz’s dream that some form of unambiguous symbolic language could
be devised to allow all forms of reasoning to become mere calculation is
alive and well among practitioners of the field of automated reasoning. To
date the most solid achievements in this field have been the construction
of systems that can automatically synthesise hardware and software designs
to meet given specifications, or that can verify that such specifications
have been met. Here, electronic circuits and computer programmes are
represented as logical formulae, allowing their features to be interrogated.1

However, the automated reasoning community has more ambitious goals.
For example, a considerable number of researchers are interested in applying

1 See MacKenzie (2001) for this and other issues bearing on the chapter.
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automated deduction techniques to natural language processing tasks. By
contrast to the widely used statistical approach, from this perspective the act
of parsing a sentence is seen as a form of logical deduction, where choices
must be made among the various pieces of typing information tagged to
the different senses of each word in the sentence in order to produce a
consistent assignment. When a parser reaches the end of a sentence still
expecting a noun phrase or anticipates a full stop too soon, it ‘realises’ that
it has made this choice incorrectly and must backtrack. An idea of this
can be gained when, for instance, English speakers typically have to adjust
their parsing in the case of the sentence – The horse raced past the barn was
fast – by redesignating ‘raced’ from an active intransitive verb to a passive
transitive one heading a subordinate clause.

Our concerns here, however, are with one of the original aims of au-
tomated reasoning – mathematical theorem proving. Ambitious plans are
afoot, and have partially been achieved, to link together several theorem
provers, model constructors and databases of known theorems to form a
mathematical assistant. Mathematicians would be able to pose problems
from their desks to an interface program via the Internet. The central node
of the network distributes the request to several available client theorem
provers, while the interface shows the user the state of progress. This net-
work would assist in devising a proof plan, which would isolate potentially
important lemmas, and attempt to prove them, drawing on knowledge
contained in databases.

Before we get carried away by these enticing visions, it is worth look-
ing to see what has been achieved by automated theorem provers to date.
We have had to learn to be very cautious about the exaggerated claims
of practitioners of artificial intelligence in the past, their failure to de-
liver justifying a considerable degree of scepticism. An insight into their
achievements may be acquired from a perusal of the database of problems
against which automated theorem prover designers test their programs. A
recent version (v.2.3.0) of the TPTP (Thousands of Problems for Theorem
Provers) repository contains around 3,500 files, each containing informa-
tion about a problem, although some concern the same problem and many
are minor variations of others.2 One of the largest groups of problem con-
cerns group theory (see appendix), interpreted broadly to include topics
such as quasi-groups, typical members of which are:
(a) The inverse of the identity is the identity.
(b) The left identity is a right identity.

2 This may be consulted at http://www.cs.jcu.edu.au/∼tptp/.
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(c) The identity element is unique.
(d) If a = b−1, then b = a−1.
(e) (x·y)·(y−1·x−1) = e.
(f ) If G1 has exactly two elements and G2 has exactly two elements, then

there exists an isomorphism (a one-to-one and onto homomorphism)
between them.

(g) Groups in which the square of each element is the identity are com-
mutative.

(h) For groups in which the cube of each element is the identity, then for
all x and y, we have [[x, y], y] = e, where [a, b] = aba−1b−1 is the
commutator of a and b.

(i) The commutator operation is associative if and only if the commutator
of any two elements lies in the centre of the group, i.e., [[x, y], z] =
[x, [y, z]] iff [u, v]·w = w·[u, v].

(j) There is a single axiom for group theory, in terms of product and
inverse.

The first five, (a)–(e), are elementary results, each of which has a fairly
clear meaning that could be used in an informal proof. For example, as
when taking off socks and shoes, the idea behind (e) is that to undo the
composite action, A followed by B, one must first undo B then undo A.
However, even an elementary textbook will give fairly formal derivations in
the form of the rewriting of equations. Similarly, a textbook presentation
of the final four statements, which from the simple (g) to the tricky (j) and
forward half of (i) lack intuitive obviousness, would adopt this equational
form. All of these results are thus well suited to theorem provers working
with equational first-order logic.

(f ) presents an interesting case in that it is the type of problem that is a
very obvious result for a human and yet it is difficult for a machine. Unlike
the other cases where human proofs will resemble computer proofs as the
rewriting of equations, here the human will typically be rather informal. For
instance, she might point out that if the groups elements are e (identity)
and a, then three of the entries in the multiplication table are instantly
determined by the properties of the identity, and that since a needs an
inverse and a·e �= e, then we must have a·a = e. A final comment to
the effect that the multiplication table of any other two-element group
will be forced to take the same form up to isomorphism completes the
argument.

The computer, on the other hand, must reason at a more logically explicit
level. The comments from two files recording computer attempts to solve
it are revealing. The first of these states that:
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In order to prove the theorem, the group tables and a particular homomorphism
are specified, and the contradiction comes from the fact that this is the actual
isomorphism. Not only is this formulation cheating, but also it does not prove the
theorem in full generality. (TPTP, file GRP025-1)

Presumably, the worry is that all that has been shown is that two particular
two element groups are isomorphic, the mapping having been provided.
That a serious attempt to prove such a simple result should fail to establish
it in full generality, and should involve so generous a hint to the machine
as to be described as ‘cheating’ is surely revealing. A second attempt is more
successful, but still requires generous help:

In order to prove the theorem, we specify one element of each group as the identity
element and take as a previously-proven lemma (obvious) that maps from G1→G2
which are not one-to-one or which are not onto need not be considered for iso-
morphisms between the groups. Thus we consider only the two one-to-one and
onto maps between the groups, and show that assuming neither of them are ho-
momorphisms gives a contradiction. (TPTP, file GRP025-2)

What this shows is the difficulty of higher-order reasoning for present-
day machines. Problems more naturally expressed in higher-order terms
are either represented unnaturally to be fed to a first-order logic theorem
prover, and in the process helped considerably, or else they are fed to a
higher-order logic theorem prover which almost always needs much as-
sistance throughout the proof. Some researchers seem to be content with
this situation, aiming to design what we might term a ‘secretarial’ theorem
prover which acts merely to fill in the short gaps of a proof plan devised by
its human user; others are more ambitious.

Recognising that human mathematicians think in terms of proof plans,
work has been carried out on automating their construction. However, for
this to be feasible there has to be a sense of a ‘typical’ situation where a
particular proof strategy applies. This is fair enough in the verification of
chip and software designs, where one finds great similarities in the required
strategies, where nothing very novel is expected and where the outcomes
are long tedious proofs of specifications being met, which have no intrinsic
interest to anyone but the designer. One could imagine this approach to
automated theorem proving arriving eventually at a machine that would
do well in a public examination where increasingly, in Britain at least, the
student is expected to have learned to apply a limited range of techniques in a
near algorithmic way. This would admittedly be an enormous achievement,
but even then it is not clear that we would be very much nearer to a
device capable of assisting working mathematicians. Time will tell. As I am



Communicating with automated theorem provers 43

interested in the production of new results I shall be devoting much of the
rest of this chapter to the theorem provers produced by Larry Wos and his
team, in this respect the most successful. But to throw Wos’s approach into
clearer relief, it will be worth our while ending this section by touching on
an example of the proof planning approach.

I shall draw here on an article in the Journal of Automated Reasoning
by Erica Melis (Melis 1998), in which the author explains her approach
to automating analogical translation of a proof plan between two similar
problems. The motivation for her work was a challenge made by Woody
Bledsoe, a mathematician very interested in automated theorem proving,
who set the automated reasoning community the task of producing a proof
of the Heine–Borel theorem in two dimensions given a suitable proof of
the corresponding result in one dimension. This theorem, in its standard
one-dimensional form, states that for any closed interval of the reals, [a, b],
any covering by open sets has a finite subcover. In the two-dimensional case
one replaces the interval by a closed rectangle. Think of covering a table
top with infinitely many mats, where overlapping is allowed and there is no
limit as to how small a mat may be. The theorem tells you that you never
need to use that many.

Bledsoe’s intuition was that this transfer is an elementary, yet typical piece
of mathematical activity. If for mathematicians the step from one dimension
to two is straightforward, then any automated theorem prover worth its salt
had better be able to do likewise. However, a direct process of syntactical
translation is doomed to failure. Indeed, when you attempt such a feat, you
can easily see what Taylor means when he says ‘the predicate calculus has a
better claim to being the “machine code” of mathematics than set theory
or the Sheffer stroke does, but machine code is always rather clumsy in
handling higher level idioms’ (Taylor 1999: §2.6.9), emphasising its distance
from the level of mathematical ideas. Instead, one must represent the proof
ideas in a higher-level description language.

The strategy of an often-quoted proof of the one-dimensional Heine–
Borel theorem is to seek a refutation by assuming that there is a closed
interval and an open cover with no finite subcover. Divide this interval
into two equal parts and select the leftmost one which cannot be finitely
covered. Iterate this process to achieve an infinite sequence of nested in-
tervals, each of which is half the length of its predecessor and cannot be
finitely covered. The key now is to use knowledge of the reals to the ef-
fect that the intersection of such a sequence must contain a point. As it is
contained in the initial interval, this point must belong to some member
of the open cover. This open set must contain a closed interval centred
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on the point, but far enough along the sequence the nested intervals are
narrow enough to fit inside this closed interval, implying that they have a
one-element cover, which contradicts the fact that they could not be finitely
covered.

Mellis represents this proof in a tree-shaped format as a proof plan. To a
goal or target proposition there is associated a method. Each method relies
in turn upon a branching set of assumptions (lemmas, axioms, definitions)
and further goals. Each of these further goals is in turn to be achieved
by a method with its own branching set of assumptions and new goals.
For a valid proof plan the formulas represented at the leaves must all be
assumptions.

What Mellis is trying to achieve is the automated translation of the
proof plan to the two-dimensional case. Her program thus rewrites, say,
mention of ‘closed intervals of the reals’ in a goal or assumption to ‘closed
rectangles of the plane’. The new versions of the lemmas must then be
checked, along with the translated proof methods. In this case, the part
that needs most adjusting occurs when showing that eventually members
of the sequence of nested rectangles are contained in a rectangle centred
on the point contained in the intersection of the sequence. Here one must
ensure that one is far enough along the sequence that both length and
breadth are small enough to fit in that rectangle.

This is impressive work, but still very much in the secretarial mould. The
operator has to provide the theorem, proof plan and relevant definitions and
lemmas of the source of the analogy, along with the theorem, definitions and
lemmas of the target. You have to remind yourself that given the proof in one
dimension in terms of a nested sequence of intervals, it is straightforward
to use the very similar idea of a nested sequence of rectangles generated
by quartering each time and choosing one of the quarters not finitely
coverable. The machine is labouring to assist in a task which for the human
with the slightest grasp of the situation is obvious. To be in a situation where
one has a sufficiently elaborated proof plan for a result makes it unlikely
that one would not be able to carry out very easily an analogical transfer
oneself.

Of course, we should not be too quick to judge. Perhaps, these are just
the first faltering steps of a young research programme striving to construct
a useful computerised assistant. It is interesting to note, however, what
Bledsoe wrote in 1986:

Analogy is the heart and soul of all intelligent behavior, especially mathematical
behavior. Why have we made so little use of analogy in ATP [automated theorem
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proving]? . . . We predict no substantial advance until our provers begin to effectively
use Analogy with the help of an adequate MKB [mathematical knowledge base].
(Quoted in Melis 1998: 255–6)

Ten years later a long-standing problem had been resolved, generating a
large amount of publicity, but by an approach with no pretensions of
emulating human mathematicians. As we shall see, the philosophy adopted
by Wos and his team has been very much to play to the computer’s strengths.

2.3 the argonne paradigm

The Argonne approach to automated theorem proving is characterised by
its experimental outlook. The key for Wos’s group has been not to imitate
slavishly the human. Rather, he has sought to represent problems in such a
way as to allow the computer to carry out inference in the way best suited
to it, but at the same time allowing the human expert to influence the
inferential process.3 Several inferential strategies have been devised for this
purpose. The user of OTTER must then choose which strategies to employ
on a particular problem and which settings to apply regarding these choices.
It has been made very simple to experiment by altering these choices and
settings to see whether a proof can be found,

A first indication that we must play to the machine’s strengths is the use
of the clause language. The program represents sentences as disjunctions of
positive and negative literals. Logical ‘or’ is represented by ‘|’, while ‘not’ is
represented by ‘−’. Thus, the following sentences are acceptable clauses:

-P(x, y, u) | -P(y, z, v) | -P(u, z, w) | P(x, v, w).
-P(x, y, u) | -P(y, z, v) | -P(x, v, w) | P(u, z, w).

By attempting to understand what these sentences amount to in the context
of P expressing a product relation, the reader will no doubt conclude that
clause language is no natural vehicle for the expression of mathematical
ideas.

This situation is ameliorated by the capacity of OTTER to accept sen-
tences in standard predicate form. The use of Skolem functions permits a
translation from the first-order predicate calculus to clause language, where
the resulting set of clauses is not necessarily logically equivalent to the
original statement or formula, but the original statement is satisfiable iff

3 This dichotomy between the imitation of human reasoning patterns and the reliance on the sheer
speed of a computer to search through a massive space has been with us right from the beginning of
artificial intelligence. See MacKenzie (2001, ch. 3).
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the translation is. OTTER is able to perform this translation, and would
translate the following sentences to those above:

all x y u v z (P(x, y, u) & P(y, z, v) & P(u, z, w)
-> P(x, v, w)).

all x y u v z (P(x, y, u) & P(y, z, v) & P(x, v, w)
-> P(u, z, w)).

This is surely an improvement, but by no means a perfect situation. First,
any constructed proof appearing in an output file will still be represented
in clausal form and so require translation into first-order form.4 Second,
and more importantly, mathematically one would prefer the use of equality
based reasoning. OTTER does accept such a representation. In the case of
the sentences above it takes the far more familiar form:

EQUAL( f ( f (x , y ), z), f (x , f (y , z))),

revealing itself to be an expression of associativity. However, adopting this
familiar form forces you to use the type of inference known as paramodu-
lation, rather than any variant on the classic resolution.

Perhaps the clearest way to gain a sense of how what is best fitted to
the computer may be very different from what is suitable to the human
mathematician is to consider a particular reasoning manoeuvre. Were a
mathematician asked to show that any group all of whose elements square
to the identity is commutative, it would probably not be long before they
thought to substitute yz for x in f (x, x) = e. However,

no effective automated technique is known for wisely choosing which of the myriad
of less general conclusions to draw, indeed, how to effectively emulate that aspect
of person-oriented reasoning. In other words, automated reasoning programs do
not offer the type of reasoning called instantiation, which can be used to yield
the second equality from the first by replacing (instantiating) x by yz. Although
instantiation serves well logicians and mathematicians, unless an effective strategy
is discovered to control its use, instantiation is unneeded and even unwanted in
the context of mechanizing inference rule application and proof finding. Indeed,
its use (in effect) conflicts with a reasoning program’s preference for generality that
in turn contributes to effectiveness. (Wos and Fitelson forthcoming: 5)

For a device ever threatened to be swamped by derived consequences, the
last thing it needs is a capacity to instantiate willy-nilly. Instead, it needs
to find a way to combine two or more clauses it already has in the hope

4 The L�UI (Lovely Omega User Interface) is capable of automatically translating a proof from clausal
form to something more comprehensible.
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of coming up with something new. If, for example, OTTER has already
generated:

f ( f (x , y ), y ) x ,(1)

f (x , f (x , y )) y ,(2)

then it can choose to assign x in (2) as f (x, y), since this permits unification
of the underlined terms, yielding

f ( f (x , y ), x ) y .(3)

This step is an instance of what Wos calls paramodulation:

Of the various inference rules, one of the more complicated is paramodula-
tion, which enables an automated reasoning program to treat equality as if it
is ‘understood’. Paramodulation – which is the best example of a computer-
oriented inference rule, and one that a person probably should not apply by
hand – generalizes the usual notion of equality substitution. (Wos and Fitelson
forthcoming: 9)

So the generation of new clauses is prevented from overloading the system
by the control of instantiation, using techniques such as paramodulation,
and by the deletion of less general clauses, using the closely related demod-
ulation.

At the same time as it is possible to restrict OTTER’s inference, it is also
possible to direct it. An example here is given by the resonance strategy.
Unless otherwise directed, OTTER weights clauses according to the num-
ber of symbols appearing in them. The resonance strategy allows one to
intervene by telling OTTER to give a lower weighting to clauses possessing
specified syntactical forms. Thus, if you believe that a proof is possible via
a certain lemma, you can ensure that OTTER looks favourably on any
clause of the same syntactical form. It is interesting to note in this con-
text that Wos uses the phrase resonance strategy for what he once termed
analogy. If you have a proof for a proposition and you come to consider
a very similar proposition, you can direct OTTER to give low weights to
generated clauses fitting syntactical templates corresponding to lines of the
original proof. Notice how this technique contrasts markedly with Melis’s
analogical reformulation that we saw earlier.

With resonance and similar strategies available, the user has many choices
to make to steer the machine to succeed either in producing a first proof
of a result or in producing a shorter proof than any previously known.
From my amateur attempts at automated proof, I found it very striking
how sensitive OTTER is to these choices. For example, you may think you
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are helping it on its way but find you have side-tracked it into paying too
much attention to clauses of a specified syntactical form. Then again, an
adjustment may have the effect of increasing the CPU time considerably,
but also of producing a shorter proof. OTTER operators clearly develop a
practical knowledge of what is likely to work, which exceeds what they are
able to convey by rules of thumb. I find it unlikely that difficult problems
will be solved by OTTER without considerable input from someone who
has worked closely with Wos’s team. This was certainly true of its most
fêted result – the Robbins Problem.

2.4 the robbins problem

In 1933, Huntingdon presented a simple set of axioms for Boolean algebra.
He demonstrated that in addition to specifying that there be a commutative,
associative binary operator, denoted ‘+’, and a unary operator, denoted ‘n’,
all that was needed was an axiom relating them in an equation:

x + y y + x , (commutativity)(1)

(x + y )+ z x + (y + z), (associativity)(2)

n(n(x )+ y )+ n(n(x )+ n(y )) x . (Huntington equation)(3)

From these it is possible to show the existence of a ‘0’ for the addition,
that n(n(x)) = x, that n(x + n(x)) = 0, the existence of a ‘×’ operator,
distributivity laws, etc. Shortly after Huntingdon’s paper appeared, Robbins
speculated that the Huntingdon equation could be replaced by a weaker
one:

n(n(x + y )+ n(x + n(y )) x . (Robbins equation)(4)

It is easy to show that a Boolean algebra satisfies the Robbins equation, but
it remained an open problem for around sixty years to determine whether
a Robbins algebra, i.e., one satisfying (1), (2) and (4), is Boolean, and this
despite the best efforts of Tarski and his students.

Wos and his colleagues had been aware that the Robbins Problem was
one well suited to their techniques several years prior to the proof. A large
part in its solution was played by a mathematician named Steve Winker,
who at Wos’s suggestion sought conditions which if satisfied by a Robbins
algebra would imply that it was Boolean. The idea was to use a simple
condition of this kind as a lemma and then see whether this lemma was
derivable solely from the Robbins axiom. Several candidates were found,
but most seemed to offer little prospect of having made the problem simpler
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in that they looked just as hard to prove as the Huntingdon equation did
itself. However, a few promising ones did eventually emerge around 1980.
The two simplest conditions Winker found were:
(i) there are two terms, C and D, satisfying the relationship C + D = C ,

(ii) there are two terms, C and D, satisfying the relationship n(C + D) =
n(C ).

Winker had proved these conditions sufficient using induction, some-
thing unavailable to OTTER, but by 1996 Wos’s group had used OTTER
to generate first-order proofs that Winker’s conditions sufficed. William
McCune then took up the task of searching for two terms satisfying this
property. For the purpose he used the automated reasoning program EQP,
a variant of OTTER which could perform AC-unification. Here instead
of writing in the commutativity and associativity of the ‘+’ by hand as
axioms, the program automatically looked to unify and subsume terms by
commuting and reassociating subterms. On one run of EQP lasting eight
days in October 1996, two terms were found satisfying the second con-
dition. Shortly after, EQP found two terms satisfying the first condition
as well as a resolution of the Robbins Problem which avoided Winker’s
conditions.

To give a taste of one of the computer proofs, we shall look at its first step.
Recall that the Robbins equation takes the form:

n(n(n(w)+ z)+ n(w+ z)) z.

A use of paramodulation involves replacing w by (n(x) + y) and z by
n(x + y) to yield:

n(n(n(n(x )+ y )+ n(x + y ))+ n(n(x )+ y + n(x + y ))) n(x + y ),

which reduces to

n(y + n(n(x )+ y + n(x + y ))) n(x + y ),

on rewriting the first term within the first pair of parentheses on the left-
hand side according to the Robbins equation. The proof continues in this
vein until after only twelve steps it is shown that

n(n(3x )+ x )+ 2x 2x ,

where mx is the sum of m copies of x. Winker’s first condition has been
satisfied.
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In some sense, it seems fitting that the subject matter is Boolean alge-
bra. After all, one of the earliest examples of an automated reasoner was
Jevons’ reasoning piano which could determine the truth status of Boolean
algebra expressions. But Boolean algebra was devised in the nineteenth
century with an intended interpretation, namely, propositional logic, and
was later found to be very useful for understanding circuit design. Why
then would one want to solve the Robbins Problem? What is to be gained
from seeing how weak an axiom base one can get away with? Much is
made of the fact that Tarski directed a considerable amount of attention,
both his own and his students’, to the problem, but this fact cannot be
decisive. A considerable portion of the automated theorem provers’ suc-
cesses have been in establishing that a smaller number of axioms can form
the basis of an algebra than had been thought. It is true that mathemati-
cians have engaged in these games, devising single axioms for various alge-
braic objects. Tarski in 1938 showed that a set with a binary operation ‘–’
satisfying

x − (y − (z − (x − y ))) z,

is an Abelian group, while Higman and Neumann showed in 1952 that a
set with a binary operation ‘/’ satisfying

(x/((((x/x )/y )/z)/(((x/x )/x )/z))) y

is a group. One may worry, however, that this is not a very worthwhile
pursuit. It might have been the case that the fewer the axioms describing
a field, the easier it would be to establish theorems there, in the sense that
one might expect less combinatorial explosion. But of course the proof that
EQP generated establishes just the opposite. It takes twelve intricate lines of
proof to establish that there exists a pair of elements whose sum is equal to
the first of them, something immediately deducible from the usual axiom
basis. Certainly, Wos sees no point in handicapping a system by restricting
its axiom base:

My experiments suggest that, as is so often true in mathematics, using a minimal
set of axioms can actually interfere with the likelihood of success. For some evi-
dence, you need merely glance at a typical algebra text in which group theory is
discussed. Specifically, although the axioms of right identity and right inverse can
be proved dependent on the remaining set consisting of left identity, left inverse,
and associativity, the typical author simply includes the dependent axioms when
discussing group theory. (Wos and Pieper 1999: 376)
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On the other hand, it is possible that we might wish to check that a particular
set with a binary operation is an Abelian group. Because of Tarski’s result
we would only have to check that his single condition holds. However, I
have never seen this done.

Perhaps we can say nothing more than that EQP has given us a new
insight into Boolean algebra. The experience gained from working on the
Robbins Problem may help in less-charted areas of mathematics. We can
anticipate that mathematicians and scientists arriving at a situation where
they would like to know more about a particular algebra but have little
intuition about it will turn to automated provers such as OTTER and
EQP for assistance. It will then become important to learn not only the
correctness of conjectures about the algebra, but also how to achieve fur-
ther such results by becoming acquainted with how the elements of the
algebra behave. To facilitate this process will probably require translation
procedures to more humanly comprehensible forms. Let us now turn to
consider attempts to do this for EQP’s proof.

2.5 reformulation

If the day arrives when automated theorem provers become powerful
enough to be able to resolve open problems across a significant spectrum
of mathematical disciplines, how much shall we have benefited? Knowl-
edge of the truth or falsity of a proposition of interest is, of course, useful,
but, as Rav (1999) has discussed, it is far from everything.5 Mathemati-
cians want to learn much more from each other’s proofs than the cor-
rectness of their conclusion. Indeed, a good human proof will typically
introduce important lemmas and novel concepts which may turn out to be
more significant than the theorem itself. For instance, a good ‘conceptual’
proof of the irrationality of

√
2 will make you see that for n a positive

integer,
√

n is rational if and only if every prime factor in the unique
prime factorisation of n has an even exponent, i.e., n is a perfect square.
Similarly, an aptly chosen counter-example is worth probing for further
information.

Useful concept production appears to be a distant prospect, but we
would be content with lesser successes. Certainly, when, as has happened, a
computer’s proof or disproof of a proposition prompts a mathematician to

5 Rav overstates the case by questioning the value of an oracle which could answer any mathematical
problem posed to it. With such a thing available one could pose candidate lemmas to it. Knowledge
of which are correct would surely help in planning a strategy for a proof.
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produce their own proof or counter-example just because she knows which
is the correct thing to do, then we can say that the machine has played
an important role. But what would be more helpful would be the chance
to augment our understanding of a domain by examining the computer’s
output. When a computer algebra system performs a calculation beyond
human capacity, we may be very interested in the result, but we are not
interested in the path of the calculation. No selection has occurred in
the application of its algorithms. On the other hand, EQP’s proof does
involve the selection of a combination of inference steps from an enormous
space of such combinations. Without needing to credit the machine with
intelligence, there is still something to learn from devices which manage to
find one or more successful paths from a very large space of possibilities.
As one mathematician who has taken an interest in the Robbins Problem
comments:

EQP’s proof is much more than a calculation. The proof depends upon a successful
search among a realm of possibilities and the skillful application of pattern recog-
nition and the application of axioms. This is very close to the work of a human
mathematician. EQP, being able to handle many possibilities and great depths
of parantheses has an advantage over her human colleagues. I understood EQP’s
proof with an enjoyment that was very much the same as the enjoyment that I get
from a proof produced by a human being. (Kauffman 2000: 4)

The sentiment expressed here is that there is something novel about EQP’s
proof, something from which one might perhaps learn, rather as chess
players may learn from computers’ solutions to endgame positions.

Various attempts have been made to reformulate EQP’s seemingly in-
comprehensible proof, including Fitelson’s (1998) use of Mathematica. But
to my mind the most interesting reformulation has been devised by the
knot theorist Louis Kauffman. Kauffman has been a key figure in the drive
to unravel the interconnections between braid theory, three manifold in-
variants, statistical mechanics and quantum field theory, the subject matter
of chapter 10. His work is characterised by a very creative playfulness,
which throws into question the very notion of notation. From time to time
philosophers have realised that there is more to a mathematical diagram
than just a heuristical aid, that in certain cases some form of access to truth
is possible. As we shall see, Kauffman is part of a more ambitious movement
that hopes to see the boundary between notation and diagram redrawn,
even removed. Here, one can calculate and prove with diagrammatic no-
tation. Representations of topological objects become pieces of algebraic
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notation and vice versa, each able to undergo surgical transformations to
effect calculation.

This movement has amusingly termed itself postmodern algebra, playing
on the jarring juxtaposition of the words, while alluding to the modern
algebra devised by Noether’s Göttingen school of the 1920s. Scholars of
postmodernism soon discover that the attitudes of their heroes of the middle
to late twentieth century are often foreshadowed by writers and artists from
earlier times. In the field of literature, for example, the text Tristram Shandy
by Lawrence Sterne is often cited as being postmodernist avant la lettre. If
the postmodern algebraicists engage in a similar pursuit for predecessors,
one person they should encounter is Charles Sanders Peirce, the American
philosopher and logician. Peirce it was who devised a system for representing
both (what we now term) the propositional and predicate calculus in a form
which he called existential graphs.

In Peirce’s system, an unenclosed letter, or graph-instance, printed on a
sheet of paper corresponds to the assertion of the proposition it represents.
Enclosing it in a box corresponds to asserting its negation. The juxtapo-
sition of graphs corresponds to the conjunction of the propositions they
represent. Rules of inference then permit you to perform certain specified
kinds of erasure and duplication of portions of the graph. For instance, any
graph-instance may be iterated (i.e. duplicated) in the same area or in any
area enclosed within that. This system has been shown to be sound and
complete, as has Peirce’s version of first-order logic, which introduces lines,
or ligatures, allowing for a variable free presentation.

More recently, in the 1960s a mathematician named George Spencer-
Brown, in a work entitled Laws of Form (Spencer-Brown 1969), echoing
the title of Boole’s famous work, portrayed Boolean algebra and thus propo-
sitional logic in a similar form. Where many see Spencer-Brown’s book as
full of empty verbiage, and at best derivative of Peirce’s work, Kauffman en-
joys his phenomenological turn of phrase and it is Spencer-Brown’s choice
of juxtaposition to represent or rather than Peirce’s and which Kauffman
has opted for. One of the advantages of this choice is a simpler form of
implication. For Spencer-Brown A→ B appears as6

6 In fact, Spencer-Brown did not use a full box notation, but just the top and right-hand sides.
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Using Spencer-Brown’s notation, the Robbins axiom becomes:

W Z W Z = Z

Now, remember that along with this axiom we are allowed to assume
associativity and commutativity and nothing else. These, however, are built
into the notation in that we are allowed to use the two dimensions of the
sheet to rearrange letters, so long as we do not make them cross through the
boundaries of boxes. Such an inbuilt facility seems highly desirable, as is
indicated on the computer’s side by the efficiency savings gained by EQP’s
use of AC-unification.

What paramodulation amounts to here is choosing substitutions for W
and Z which make one of the inner boxes resemble the left-hand side of
the above axiom.

Let us see what happens when we replace Z by X Y and W by X Y:

=XX X Y Y X Y X YY

The first of the enclosed boxes on the left-hand side has become an instance
of the left-hand side of the Robbins axiom. We may, therefore, replace it
by Y, yielding

=X Y X Y X YY

You could imagine playing the steps of this reformulation of the proof as a
film, where the passage between frames marks an inference step. As we shall
see in chapter 10, postmodern algebraicists think in precisely these terms
when they calculate.

Different languages suit different people. From what they have seen,
some readers may be of the opinion that little has been gained by the
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translation into box notation. They should, though, before arriving at this
judgement, thoroughly test its potential benefits for themselves, especially
on some of the more intricate lines of the proof, such as

n(n(n(n(n(n(x )+ y )+ x + 2y )+ n(n(x )+ y )

+ n(y + z)+ z)+ z + u)+ n(n(y + z)+ u)) u.

Kauffman clearly feels he has gained from the effort in that he is better able
to appreciate the proof:

It is our contention that mathematics can behave non-trivially under change of
notation. Change of notation is change of language. In the present case the change
of language afforded by an appropriate change of notation makes a mathematical
domain accessible to human beings that has heretofore been only accessible to
computers. (Kauffman 2000: 2)

So perhaps some of us are capable of gaining a sense of EQP’s proof via
some diagrammatic representation. It is not clear, however, that thoroughly
familiarising ourselves with Kauffman’s reconstrual of OTTER’s proof will
help us do anything particularly useful. We should remember, however,
that knowledge skills developed while working in one field may benefit
work in other fields in quite subtle ways.7 Moreover, we must look to the
future:

There will be successors to EQP. Computers will prove theorems with proofs that
are very long and complex. These proofs will need translations into language that
human beings can understand. Here is the beginning of a new field of mathemat-
ics in the interface between logic, communication and the power to reason and
understand. The machines will help us move forward into new and powerful ways
to explore mathematical terrain. (Kauffman 2000: 4)

2.6 conclusion

These are, of course, very early days for computer assisted mathematics.
At present, by far the largest part of this assistance comes in the form of
enhanced numerical and symbolic calculating capacity. In this chapter I
have discussed what the marginal status of automated provers can tell us
about the practice of mathematics. Even taking into account the weakness
of these provers beyond a limited range of logic, the desire on the part of
mathematicians for an improved understanding of a field of research dis-
courages interest in devices generating lines of incomprehensible symbols.

7 See Gowers (2000a).
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This indifference throws into sharp contrast the dual roles of mathematical
proof: establishing the truth or correctness of propositions and contributing
to the conceptual development of a field. What mathematicians are largely
looking for from each other’s proofs are new concepts, techniques and in-
terpretations. Computer proofs certainly give information concerning the
truth of a result, but very little beyond this. However, in the combinato-
rial trace of their syntactical output there may be a glimmer of additional
information about the theory they are working on.

This raises the further issue, the thought that there is an additional im-
pediment to the rise of automated theorem provers, namely, that work
has only just begun to find languages capable of representing mathematics
to both man and machine. In his Image and Logic (Galison 1997), Peter
Galison talks of the creation of Pidgins to facilitate communication be-
tween different communities of researchers. Just as trading partners, each
with their own interests, were induced to manufacture common languages
adequate for exchange, so, Galison claims, experimenters, instrument de-
signers and theorists have found ways to communicate without the need
fully to understand each other’s ways. The beginnings of something similar
appear to be occurring here. Kauffman is encouraging us to encode our
concepts in a form acceptable to computers, and then to learn to translate
from their languages to ones accessible to us. Although Galison appears
to include computers within the scope of trading partners with his talk of
‘Fortran Creoles’, the objection may be raised that inanimate machines
play no active part in language formation. Perhaps siding with Collins
and Kusch (1998) in the debate over the attribution of agency in human–
machine interactions, we would do better to view computer scientists (and
logicians) as the mathematicians’ prospective trading partners. Let us now
see what assistance computers are providing for conjecture formation.



chapter 3

Automated conjecture formation

Induction, i.e. inference based on many observations, is a myth. It
is neither a psychological fact, nor a fact of ordinary life, nor one of
scientific procedure. (Popper 1963: 53)

The same point has sometimes been formulated by saying that it is not
possible to construct an inductive machine. The latter is presumably
meant as a mechanical contrivance which, when fed an observation
report, would furnish a suitable hypothesis, just as a computing ma-
chine when supplied with two factors furnishes their product. I am
completely in agreement that an inductive machine of this kind is not
possible. (Carnap 1950: 193)

3 . 1 introduction

Conjecture formation stands alongside theorem proving as a fundamen-
tal kind of mathematical activity. Any prospective completely automated
mathematical reasoner must not only be able to demonstrate results deduc-
tively, but must also devise worthwhile ones to feed into its prover module.
The artificial intelligence community is naturally well aware of this need.
Indeed, when Larry Wos (1988) raised what he considered to be thirty-three
pivotal questions for workers in the field, the thirty-first of them asked:

What properties can be identified to permit an automated reasoning program to
find new and interesting theorems, as opposed to proving conjectured theorems?
(Wos 1988: 63)

One form the input data to such a program might take is a list of existing
theorems and conjectures. Adopting a ‘genetic’ approach, one could perhaps
feed those deemed interesting by experts into a machine programmed to
mutate them slightly or to splice them together in pairs, in the hope that
what was interesting about the original statements might be preserved
by the offspring. Promising examples of these new statements could then

57
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be discovered by filtering out those which fail to survive a large number
of tests. One might imagine, for instance, a computer being ‘told’ that
Pythagorean triples exist, generalising to the question as to whether or not
this is also the case for integral powers greater than 2. It could then easily run
through millions of quadruples of integers to see whether an example of
x n + y n = zn could be found for n > 2, and arrive at the statement of
Fermat’s Last Theorem.

As a thought experiment this may appear to be not completely implau-
sible, but let us recognise that it is one whose relevance is heavily reliant on
hindsight. That Fermat’s conjecture has been such a source of fascination
through the centuries has other causes than its being a variation on the
theme of Pythagorean triples. From the elliptic comments of Fermat in
that famous margin to the life-long quest of Wiles, much of the romance
surrounding the problem stems from the way mathematicians working on
the problem are publicly presented. Indeed, it should be pointed out that
within the profession mathematicians have often considered the conjecture
in a less than favourable light. But, however frivolous we take Fermat’s con-
jecture to be, it has at least been possible to wed it to some real mathemat-
ics, for example, in the nineteenth century to the problem of factorisation
within algebraic number rings containing roots of unity. This conglom-
eration of sentiments has persisted to the present day in the shape of a
consensus that it is not the achievement by Wiles of his result per se which
is important, but rather the theoretical understanding gained in the con-
struction of the tools needed in the proof of a part, and recently all, of the
Taniyama–Shimura–Weil conjecture. Without notoriety or connections to
serious mathematics, conjectures will simply be ignored. Just imagine that
our computer is spewing out a list of well-confirmed conjectures. It tells
us, for instance, that as far as it knows an nth power added to an (n + 1)th

power is never equal to an (n + 3)th power for n ≥ 17. I predict that no
mathematician would give the conjecture a second glance.

I have yet to hear of this genetic approach being put into practice, and
in view of my doubts expressed in the introduction to part I about the sim-
ilar HR program for concept formation, you may imagine that I am not
sanguine about its chances. Let us note its Popperian flavour – conjectures
arising any old how from theoretical, or even metaphysical, considerations,
mercilessly tested against empirical data. Karl Popper’s falsificationism dic-
tates that it does not much matter how we arrive at conjectures, just so
long as they are bold and readily falsifiable. Good conjectures are those
which survive severe testing. What, though, of the alternative strategy of
conjecture formation, namely, generalising from the data? Well, as the first
epigraph of this chapter indicates, Popper was noted for his trenchant
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criticisms of the claim that scientific reasoning is inductive, that scientists
reason from many observations to general laws.

Many commentators have been critical of Popper for conflating two
types of reasoning, which might be termed inductive: finding generalisa-
tions from low-level observations and providing confirmation for general
statements by verifying instances. We might call these heuristic and con-
firmatory induction, respectively. Already by the middle of the nineteenth
century J. S. Mill in his A System of Logic (1843: 284) had distinguished
between them. Popper’s rhetorical strategy, his critics point out, was to
caricature inductivists by portraying them as believing that one could pro-
ceed simply by writing down whatever one observes and then forming
generalisations by an almost automatic process. Thus we read in a contem-
porary encyclopaedia the following entry for ‘inductivism’ written by the
philosopher Brian Skyrms:

Inductivism, a philosophy of science invented by Popper and P. K. Feyerabend as
a foil for their own views. According to inductivism, a unique a priori inductive
logic enables one to construct an algorithm that will compute from any input of
data the best scientific theory accounting for that data. (Audi 1995: 426)

While one can find passages of Bacon’s writings which do resemble this
caricature,1 twentieth-century inductivists have been much more likely to
worry about confirmatory induction. Having carved apart the context of
discovery and the context of justification, logical empiricists typically kept
separate the process whereby one arrived at a law or generalisation from
the act of using data to provide confirmation for such a law. Concerning
induction of the latter kind, Popper seemed to be on weaker ground and his
ideas on corroboration and verisimilitude, the positive counterparts of fal-
sification, have appeared to many to offer no advantage over a confirmatory
inductive calculus such as Bayesianism.

For those of us living in a post-Kuhnian world where the sharpness of
the context of discovery/context of justification dichotomy has been put
into question, a novel and more interesting way of taking on Popper is to
tackle him on his own terms. In other words, why not see whether it really
might be possible to generate scientific theories mechanically from fairly
raw data? Now, this is precisely what Gillies (1996) wants to find out. He
takes on the controversy between Bacon and Popper precisely at the level of
algorithmic methods of generalisation. He first notes that pharmaceutical

1 For instance: ‘There remains but one course for the recovery of a sound and healthy condition, –
namely, that the entire work of the understanding be commenced afresh, and the mind itself be from
the very outset not left to take its own course, but guided at every step: and the business be done as
if by machinery’ (Bacon 1620: 256)
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companies have been engaged for decades in what he terms mechanical
falsification. This takes place when a very large number of compounds are
synthesised and then assayed for various properties with the understand-
ing that the vast majority of hypotheses will be refuted. Like my imagined
form of mathematical conjecture formation sketched above it is not a com-
pletely blind search – theoretic understanding points to certain classes of
compound as being more promising than others, but still it turns out often
to be more cost effective to test compounds rather than to think hard first
about whether it is worth testing them. This practice might be said to lend
support to Popper’s attitude towards induction, since the space of promis-
ing hypotheses is not constructed from raw data in bottom-up fashion, but
rather is reached by weeding out failures from a larger space of hypotheses
devised by overarching theoretical concerns.

Gillies continues, however, by noting that machine learning programs
are beginning to throw up results in an activity he calls mechanical induction.
He outlines the case of GOLEM, an Inductive Logic Programming (ILP)
program, discovering a law which indicates how an amino acid whose near
neighbours on a chain possess certain properties is very likely to be part of a
type of protein fold. Instead of repeating this example, let us take a look at
a more recent discovery made by an ILP device. Muggleton (1999) reports
that in a study of 230 chemical compounds, an earlier regression analysis
had found 188 of them amenable to regression, but could make little sense
of the remaining 42. His latest program PROGOL was able to provide
rules allowing for equally accurate classification of the 188 compounds, but
in a more comprehensible way as a set of disjunctive conditions indicative
of high mutagenicity. More impressively, perhaps, it derived a rule for
the remaining ‘regression unfriendly’ compounds which was found to be
far more accurate and which indicated the ‘new chemical insight that the
presence of a five-membered aromatic carbon ring with a nitrogen atom
linked by a single bond followed by a double bond indicates mutagenicity’
(Muggleton 1999: 46). As one might imagine, this procedure is not purely
bottom-up. Indeed, as we shall see below, ILP programs require background
knowledge to generate worthwhile hypotheses. It can only be a question
of the ‘ratio’, if you like, of the inductive to the deductive activity whether
one calls an instance of computer assisted discovery mechanical induction
or mechanical falsification.

What, then, of mathematics? Should we expect it to be possible to prac-
tice something approaching mechanical induction here? Until the advent
of computers, at best, a prodigious calculator would beaver away on a few
cases and conjecture some property for all n. Take the case of the Mersenne
primes, those of the form 22n+1. There was no systematic theory available,
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but still Fermat conjectured that they were prime for all n on the basis of a
handful of positive cases. Now, if, as Gillies argues, mechanical induction
starts to occur in scientific disciplines just as computers became sufficiently
powerful to cope with significant amounts of data, we might expect that
mathematicians would have begun to avail themselves of these devices. This
is what I want to investigate in this chapter. In section 3.2 we shall look at
calculating devices which play a role in the production of generalisations.
Here machines carry out computations equivalent to the enumeration of
the ways of tiling instances of various types of grid. Machines are thus
shown to be playing an indispensable role in the generation of conjectures,
but the algorithms used are highly tailored to the special nature of the
problem situation. So next we turn to programs which conjecture numer-
ical identities by comparing a more common type of data – long decimal
expansions of expressions.

In neither of these cases, I feel, could the machines be said to performing
mechanical induction. In sections 3.4 and 3.5, I shall describe a more ambi-
tious plan to produce richly expressed conjectures automatically. As Gillies
(1996) suggests, to do so we would need an automated reasoning program
which uses a language capable of expressing background knowledge and
data. In the light of his endorsement of the ILP paradigm, and the use of
the GOLEM program to discover a law of protein folding, I have tried
myself to apply the later ILP program, PROGOL, to mathematical data.
Finally, in section 3.6 I shall diagnose the cause of the difficulties I had with
this work.

3 .2 combinatorial enumeration

A graph is defined as a set of vertices or nodes along with a set of edges, each
edge joining two vertices. A perfect matching of a graph G is a choice of a
subset of the edges of G so that each vertex of G belongs to precisely one of
the chosen edges. For example, if G is the graph whose vertices are the
centres of the squares of a chess board, with edges corresponding to the
adjacency of squares, a perfect matching of G corresponds to a way of
tiling the chess board with blank dominoes covering two squares at a time.
The question then for enumerative combinatorics is how many perfect
matchings G has. A researcher in the field tells us:

For general graphs G, it is computationally hard to obtain the answer . . . , and
even when we have the answer, it is not clear that we are any the wiser for knowing
this number. However, for many infinite families of special graphs the number of
perfect matchings is given by compelling simple formulas. (Propp 1999: 255)
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Propp goes on to tell us that the desire to count matchings on graphs first
arose in the 1930s for two groups of researchers. Independently, chemists
studying aromatic hydrocarbons and physicists working on a theory of the
liquid state were led to these enumerative problems. These interests have
continued and new ones have since appeared. The field of graph matchings
is now intimately related to the field of exactly solved models in statistical
mechanics.

The method of attack is to translate the graph into a matrix upon which
some algebraic operation is then performed. In many of the tractable cases
it is the determinant of the matrix which corresponds to the number of
matchings. Let us illustrate this methodology with an example. In line with
having its roots in quantum chemistry, hexagonal grids, relating to the
structure of benzene rings, are often studied in enumerative combinatorics.
Imagine a hexagon with sides of length n, n + 1, n, n + 1, n, n + 1 set at
120◦ to one another, triangulated by unit equilateral triangles and with the
central triangle removed. The number of ways this grid can be covered by
rhombus-shaped lozenges (each covering two triangles) may be calculated
by a computer program evaluating the determinant of a certain matrix. The
resulting integers expressed as prime factorisations are as follows:

n matchings

1 2
2 2·33

3 23·33·5
4 25·57

5 22·57·75

6 28·33·5·711

7 213·39·711·11
8 213·318·75·117

9 28·318·1113·135

10 22·39·1119·1311

11 210·33·1119·1317.17
12 216·1113·1323.177

For n = 12, the number of coverings is approximately 3.8× 1052. It is
therefore highly suspicious that its highest prime factor is only 17. Numbers
with this property of being large by comparison with their largest prime
factor are often described as smooth or round :
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The definition of roundness is not precise, since it is not intended for use as
a technical term. Its vagueness is intended to capture the uncertainties and the
suspense of formula-hunting, and the debatable issue of whether the occurrence
of a single larger-than-expected prime factor rules out the existence of a product
formula. (Propp 1999: 260)

You can also see that the exponents of the prime factors appear to occur in
patterns (e.g. exponents of 3 are 0, 3, 3, 0, 0, 3, 9, 18, 18, 9, 3, 0, . . .). The
appearance of round numbers right the way down this list and the exponent
patterns will set the mathematician thinking that some neat formula is
lurking about the data. As Propp remarks:

Most of the formulas that have been discovered express the number of matchings
of a graph as a product of many comparatively small factors. Even before one has
conjectured (let alone proved) such a formula, one can frequently infer its existence
from the fact that the number of matchings has only small prime factors. (Propp
1999: 260)

Of course it is no easy matter to pass from this data to a formula. So
to help in the search for such a formula, programs have been written.
One such program is RATE [from the German verb ‘to guess’] written by
Krattenthaler.2 With this resource and others, including Superseeker, the
electronic Encyclopaedia of Integer Sequences, Krattenthaler reckons that
when searching for a general formula for members of a sequence of integers
‘guessing can be largely automated’ (1999: 51).

RATE’s deepest search involves looking for an analytic expression for the
ratio of ratios of successive terms (an+2·an/(an+1)2). For example, if RATE
is given the eight integers (1, 2, 7, 42, 429, 7436, 218348, 10850216) it will
output

n−1∏
r 1

2

(
r−1∏
s 1

3(2+ 3s )(4+ 3s )

4(1+ 2s )(3+ 2s )

)
.

With a little work this expression may be rewritten

n−1∏
r 0

(1+ 3r )!

(n + r )!
,

the formula for the number of alternating sign matrices, i.e., matrices of
0s, 1s and –1s in which the entries in each row or column sum to 1 and the
non-zero entries on each row or column alternate in sign, a result proved
as recently as 1995.

2 See http://radon.mat.univie.ac.at/People/kratt/rate/rate.html.
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But even when you have a formula, your work is not finished. There
is always the thought that a deep reason lies behind it. For example, as
Necker cube-type optical illusions suggest, hexagons tiled with lozenges
may be viewed as a two-dimensional projection of stacks of cubes. For the
working mathematician, this may well evoke the notion of Young diagrams,
a way of classifying representations of permutation groups. We are also
making contact here with the study of integrable lattice models initiated by
Onsager and Ising, ideas of which were used in a proof of the alternating
sign matrix conjecture. We know what extraordinarily rich connections this
has to mathematics. As Propp puts it:

The deeper significance of these formulas is not clear. Some of them are related to
results in representation theory or the theory of symmetric functions, but others
seem to be self-contained combinatorial puzzles. Much of the motivation for this
branch of research lies in the fact that we are unable to predict ahead of time
which enumerative problems lead to beautiful formulas and which do not: each
new positive result seems like an undeserved windfall. (Propp 1999: 256)

But even those formulas which ‘seem to be self-contained combinatorial
puzzles’ usually possess what Propp (1999: 286) calls some ‘gratuitous sym-
metry’. By this he means the property of a formula being invariant under the
replacement of n by some linear expression in n, say, –n, which interpreted
in terms of the tiled grid makes no sense.

The computer assisted part of this ‘fishing’ for combinatorial formulas
is simple enough that undergraduates can be involved in the discovery of
novel results, something rather rare in mathematics. There is a significantly
inductive flavour to this work and yet the background theoretical frame-
work is considerable, as evidenced by the facts that the procedure is highly
specific to graph matching problems and that the formula guessing algo-
rithm works within a tight range. Real numbers appear more frequently as
mathematical data. Let us turn now to see how to automate the discovery
of conjectures about relationships between sets of real numbers.

3 .3 numerical identities and enumeration

A new identity for π has recently been discovered:

π =
∞∑

k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
.

This remarkable formula offers us a way to calculate a digit of the hex-
adecimal (base 16) expansion of π without calculating the previous digits.
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You can now calculate on your own personal computer in around 30 sec-
onds that the millionth hexadecimal place of π is 2. The identity may
be proved by elementary calculus, but it was found by ‘a combination of
inspired guessing and extensive searching using the PSLQ integer relation
algorithm.’ (Bailey et al. 1997: 905).

This PSLQ algorithm is the result of a long-standing quest to find a way
of determining whether for a set of n real numbers, xi, there are integers ai
not all zero and not exceeding a specified size such that �ai xi = 0. One use
of such an algorithm is to discover whether a given real number is algebraic,
that is, satisfies a polynomial with integer coefficients. To see whether there
is such a polynomial of degree less than n with coefficients not too large
for some real α, PSLQ is set to search for an integer dependence between
powers of α up to n (1, α, α2, . . . , αn).

During the running of the algorithm, y, a vector of real numbers associ-
ated to x, is defined. While the search is proceeding the ratio between the
largest and smallest entries of y is usually at most two or three orders of
magnitude. The program continues either until the point is reached when
one knows that if there is some integer relation then some of the ai must ex-
ceed a large pre-set bound, or else the smallest entry of y suddenly becomes
extremely small, providing very strong evidence that an integer relation
has been found. An example of the former case was a search conducted to
find a similar formula for π but with ‘10’ instead of ‘16’, so as to allow the
decimal places of π to be calculated from a given place without knowledge
of previous digits. Using PSLQ, we now know that no formula of similar
simplicity can exist. In the latter case, when success occurs, Borwein and
Broadhurst describe the final ratio between the smallest and largest entry of
y as a ‘confidence level’, in the sense that, bearing in mind rounding errors,
it would have been extremely unlikely for the algorithm to have behaved
like this merely due to chance.

We have here then an example of a highly specific algorithm aiming to
extract as much information as possible from a real number or set of real
numbers, by working to many thousands of decimal (or some other base)
places. High-precision arithmetic makes this possible, but even so, one
clearly cannot throw too large a set of real numbers at the device, for then
the discovery of apparent integer relations will be inevitable. The reader
may consult Websites where vast numbers of mathematical constants are
listed.3 Aimless searching for relations between these cannot work. The

3 See, for instance, Plouffe’s inverter at http://www.lacim.uqam.ca/pi/ where 200 million constants
may be consulted.



66 Human and artificial mathematicians

‘inspired guessing’ mentioned above must act to restrict severely the range
of candidate numbers appearing in the formulas in something more closely
resembling the mechanical falsification of chemical compound screening
mentioned in section 3.1 above.

Moreover, as in the case in section 3.2, we should observe that the discov-
ery of the formula for π is not in itself a fundamental piece of mathematics
unless one finds richer connections to the identity. An indication that this
may happen is a suggestion by researchers in the field that it may be possi-
ble to relate the production of digits of π by the discovered formula to the
output of a dynamical system, with the further prospect of demonstrating
the normality of π , i.e., the property that any given sequence of n digits
occurs with frequency 10−n. Let us turn now to the least specific algorithm
to be considered in this chapter.

3 .4 inductive logic programming

ILP has been defined by Stephen Muggleton, one of its leading exponents,
as the intersection of machine learning and logic programming. Readers
will perhaps be familiar with the first of these terms. While much activity in
machine learning is aimed merely at constructing classification devices, ILP
aspires to do more. When an ILP device is given background knowledge
B, expressed as a set of predicate definitions, positive examples E+ and
negative examples E−, it should construct a logic formula H such that:
1. all the examples in E+ can be logically derived from B ∧ H , and
2. no negative example in E− can be logically derived from B ∧ H .
Background knowledge, examples and hypotheses are represented as logic
programs. This latter concept may be new to the reader, so let us see a simple
example of what we may expect from PROGOL, one of the most advanced
ILP algorithms.

The name PROGOL is derived from Prolog, a computer language based
on the predicate calculus, or rather that portion of it expressible in Horn
clauses.4 Given data about the result of appending two lists of constants,
we would like PROGOL to be able to generate a definition of the append
operation for us. First, we need to provide background information about
the types involved: lists and constants. We input

list ([]).
list ([H|T]) :- const(H), list(T).

4 The ‘GOL’ part is the reverse of the ‘log’ of Prolog, an allusion to the thought that induction is the
reverse of deduction.
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This recursive definition tells PROGOL that a list is either empty or has
a constant at its head followed by another list (read ‘: -’ as a backwards
implication ‘←’, and ‘,’ as conjunction). Next we need to let PROGOL
know some candidates for list membership,

const(a). const(b). const(c). ...

Finally, we need a sample of examples of the form

append([a, b, c], [d, e], [a, b, c, d, e]).

We may also give some negative examples, such as

:- append ([a, b], [d, e], [a, b, e, d]).

or perhaps include a clause to state that append is a function.
What we hope to acquire as output is a recursive definition of append

such as:

append([], A, A).
append([A|B], C, [A|D]):- append(B, C, D).

To do so we must provide templates for the clauses appearing in the output.
These ‘mode declarations’ tell PROGOL to search for generalisations of
the data of a certain form, e.g., one might have

:- modeb(1, append(+list,+list,-list))?

if one thinks append(A, B, C), with A and B as input lists and C as
output list, might well appear in the body (right-hand side) of a suitable
clause. From the language of the examples and background knowledge,
the algorithm produces hypotheses which are constrained by the mode
declarations and which are entailed by the background knowledge and
the negations of the positive examples. Promising hypotheses are those
that combine brevity with the ability to account for as many as possible
of the positive examples, but no negative examples, in the context of the
background knowledge. If PROGOL is carrying out positive-only learning,
it will randomly generate potentially negative clauses.

We can easily express PROGOL’s results above in ordinary language.
Appending the empty list to any list leaves it unchanged. If D is the list
formed by appending B to C, then appending B with an additional constant
at its head to C will result in D with that additional constant at its head.
The capacity of an ILP program to produce hypotheses permitting this
kind of translation is frequently cited as a key advantage over a statistical
classification device, which in this case would merely be able to give you a
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numerical value expressing the extent to which it was certain that one list
was the result of two others being appended. Indeed, anything PROGOL
learns may be translated into natural language, with the possibility that an
expert in the domain can make sense of it. In the case referred to in the
introduction to this chapter, the law found to classify the mutagenicity of
compounds was as follows:

A compound is highly mutagenic if it has (1) a LUMO [the energy of the Lowest
Unoccupied Molecular Orbit] value≤ –1.937; or (2) a LUMO value≤ –1.570 and a
carbon atom merging six-membered aromatic rings; or (3) a LUMO value≤ –1.176
and an aryl-aryl bond between benzene rings; or (4) an aliphatic carbon with partial
charge ≤ –0.022. (Muggleton 1999: 7)

This uniformity of the treatment of background knowledge, examples, and
output is cited as one of ILP’s strengths.

So where now to turn for suitable mathematical data to let our ILP program
loose on? We have seen two examples of PROGOL at work, a textbook ex-
ample appearing as a manual illustration, and a more serious piece of work
in biochemistry. In the biochemistry case, one has individual compounds
each with a collection of relevant data. PROGOL is trying to generate a gen-
eralisation from a single case, according to advice as to what form it should
be looking for. Each time it generates a candidate hypothesis PROGOL
then see how many examples it covers. We appear to be in a similar situation
with the integer relation search as an expression is associated with the many
places of its decimal expansion. However, since PROGOL does not contain
any particularly sophisticated ways of treating numerical data, we cannot
hope to compete with the extremely specialised PSLQ algorithm. Similarly,
nor should we expect PROGOL to be able to compete with RATE on in-
teger sequences. One might suppose the logic programming approach to
work better on mathematical data where there are expected connections
between different pieces of data to allow the kind of recursive output of
the ‘append’ example. With all these considerations in mind I opted for
data concerning the homotopy groups of different dimensional spheres.

3 .5 the problem of the homotopy groups
of the spheres

Homotopy theory is a branch of algebraic topology. The algebraic topolo-
gist’s principal aim is to find refined, yet tractable, ways to associate algebraic
invariants and mappings to topological spaces and continuous mappings.
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Homotopy theory considers some of the most subtle invariants of this kind.
One of its central constructions is Map(X, Y ), the set of ways a space X
may be mapped continuously into another Y ,5 where one chooses not to
distinguish between mappings whose images are merely continuous de-
formations of each other. In many situations it may be possible to equip
Map(X , Y ) with some extra structure. For instance, in the cases we shall
consider here it is possible to compose any two mappings to result in a
third, and indeed so as to form a commutative group.

One approach to the analysis of topological spaces views the spheres as
the simplest building blocks of spaces.6 It seems reasonable then to use
these spheres as probes to detect the topological structure of a target space.
Like a fisherman we cast circles, balls, and their higher-dimensional equiv-
alents, hoping to catch something within the target. So, define πn(Y ) ≡
Map(Sn, Y ) to be the nth homotopy group of Y . An obvious choice for Y
then is another sphere, an m-sphere, say.

For n= 1 and m > 1, π 1(Sm)= 0, the trivial group. This is simple to see
when m = 2. Then any loop on the surface of a ball may be contracted to
a point. But we do pick up some homotopy when m = 1. π1(S 1) measures
the ways of mapping a circle into another and is equivalent to the integers
under addition. This you may be able to imagine by wrapping string around
your finger a number of times. Going around three times and then twice
more corresponds to adding 3 and 2. Reversing the direction of the two
winds corresponds to the subtraction, 3 minus 2.

This ability to wrap an n-sphere around another n-sphere continues in
higher dimensions. With the ordinary sphere, for instance, for a natural
number d , one can imagine cutting a latex globe down the Greenwich
Meridian and pulling on one side of the cut to wrap it round the globe
d times, before stitching it back up along the Meridian. This is all the
homotopy to be had using these dimensions: for all n > 0, πn(Sn) = Z,
where Z stands for the group formed by the integers under addition.

Now, for n less than m, there is enough room in the target m-sphere to
contract any image of the n-sphere to a point. In other words, for all
n < m, πn(Sm) = 0. You might think conversely that if n > m, there
would not be enough room to map an n-sphere to hook onto an m-sphere,
but you would be very wrong. It is true that π 2(S1) = 0, balls cannot

5 One also requires that a base point be chosen for each of X and Y , and that this be preserved by the
mappings.

6 n-spheres are defined for all values of n as homeomorphic to (that is, in continuous bijection
with) the subspace of a (n + 1)-dimensional Euclidean space of points at unit distance from the
origin.
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be mapped usefully onto circles, but in the 1930s Hopf discovered that
π 3(S2) = Z.7 On a good day you might be able picture this so-called Hopf
fibration in your mind. Things start to get much harder as m and n increase,
however. Even the fact that π 4(S2) is the two-element group seems to be
beyond most people’s imagination.

Whereas for some Y we know πn(Y ) for all n, surprisingly perhaps,
not all πn(Sm) are known. Indeed, these groups are notoriously difficult to
calculate. Even for m = 2, the ordinary sphere, not all homotopy groups
are known. But still, for a large number of pairs (n, m), these groups have
been discovered. For instance, strange though it may seem to think about
this, it is known that the ways of mapping a 33-sphere into a 14-sphere
form a group of order 2112. Some readers may at this point be wondering
why on earth we should want to know such things. Well, those who prefer
their mathematics to have some relevance to the world may be comforted
to learn that faults in nematic crystals may be classified by knowledge of
πn(Sm) for low values of m and n. As for higher values of m and n, there
is a thought around that π 11(S8) = C24 has relevance to M-theory, the
next big thing for string theorists. More generally, the techniques devised
in homotopy find use in algebraic topology as a whole and from there in
other branches of mathematics and mathematical physics.

To sum up what we have learned so far, for any two given positive integers,
n and m, we have a finitely generated Abelian group, πn(Sm). If these groups
were entered on a grid of n against m, we would have Z all the way along
the main diagonal, 0 in all positions to one side of it, and a complicated
array of groups on the other. It turns out that these groups are by no means
unrelated. Indeed, there are many subtle interrelations between the groups.
One of the most important of these is known as stabilisation. It concerns
homotopy groups for a fixed difference k between m and n, i.e., entries
along a diagonal. Then, for n less than k + 2 the groups will generally vary,
but thereafter all groups are identical. So, for example, for k = 3, π 8(S5)=
π 9(S6) = π 10(S7) = · · · = C24, the cyclic group of order 24. Part of the
work of calculating these groups involves understanding how elements are
preserved as one passes along the diagonal. These so-called stable homo-
topy groups are easier to calculate, but still there is no general formula.
It is possible to split these groups, rather like we do with numbers, into
their prime components. Some dedicated souls have managed to calculate

7 For those who care to know such things, a map from the 3-sphere to the 2-sphere which generates
this group may be represented algebraically as a map from the unit quaternions (isomorphic to the
3-sphere) to the Riemann sphere (the complex plane compactified by a point at infinity).
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the 5-component of the stable homotopy groups up to k = 1000, giving us
information about the ways the 2002-sphere maps into the 1002-sphere!

In a perfect world we would find an algorithm which when two integers
and a prime (n, m and p) are entered as input, sends back the p-component
of the nth homotopy group of the m-sphere. Mathematicians are far from
that point, however. Instead, there is an extraordinary range of techniques
used in the calculation of the groups. For example, from the existence of a
fibration, resembling the Hopf fibration, except this time the total space is
the 7-sphere with fibres homeomorphic to the 3-sphere and base space the
4-sphere, we may derive the relation π q(S4)≡ π q(S7)⊕ π q–1(S3). This is a
simple general relation, but as n and m increase more intricate tricks must
be used. Out of this motley of ways of calculating the groups, might one
hope perhaps to find some unnoticed regularities?

We need to present the data to PROGOL. Now, finitely generated Abelian
groups are sums of a number of copies of the infinite cyclic group and a
finite Abelian group. A complete set of invariants for a finite Abelian group
is given by a list of integers greater than 1, each of which is a multiple
of its successor. For example, π 33(S14) ≡ C2 ⊕ C4 ⊕ C264. However, this
representation is not well suited for my purposes, since it does not fit well
with the operation of addition on Abelian groups. Better then to break
these groups into their p-components for prime p. Very much like the
factorisation of natural numbers, this decomposition is unique, however to
a given prime power there correspond different Abelian groups. However,
an Abelian group whose order is the power of a prime, p, is uniquely
expressible as a sum of cyclic groups each of order some power of p. Thus
we may express the Abelian group C2 ⊕ C4 ⊕ C8 as [1, 1, 1], while, say,
C2 ⊕ C2 ⊕ C8 ⊕ C16 may be expressed as [2, 0, 1, 1].

We enter positive examples of the form h(2, 33, 14, [1, 1, 1]). This says
that the 2-component of π 33(S14) is the 64-element group C2⊕ C4 ⊕ C8.
We do not need to enter negative examples as we can also specify in the
background knowledge that

:- h(A, B, C, D), h(A, B, C, E), D �= E.

This tells PROGOL that the A-component of the Bth homotopy group
of the C-sphere is uniquely specified. Other background knowledge will
include the fact that the homotopy for B greater than A is trivial:

h(2, A, B, []) :- A ≤ B.



72 Human and artificial mathematicians

As with all machine learning algorithms, combinatorial explosion is
always a threat. As I mentioned above, PROGOL 4.4 escapes from this
threat by the use of mode declarations and background knowledge. These
delimit the range of hypotheses the computer can look for and so reduces
enormously the lattice in which it searches. In this case we know that
there are relations expressing one group as the sum of two other groups.
As we have represented the p-component of an Abelian group for prime
p as a list, we need to define the addition of two lists to correspond to
the addition of the groups. This is easily done as a recursive definition in
PROLOG:

list add([H1 | T1],[H2 | T2],[H3 | T3]):- H3 is H1 + H2,
list add(T1, T2, T3).
list add([], L, L).
list add([H | T],[],[H | T]).

As for mode declarations, we know that a target law is π q(S4) ≡ π q(S7)⊕
π q–1(S3). This holds, in particular for the 2-component, which PROGOL
would represent as:

h(2, A, 4, B):- h(2, A, 7, C), h(2, D, 3, E),
add list(C, E, B), succ(A, D).

This suggests we guide PROGOL by making mode declarations such as:

:- modeh (1, h(#nat,+nat,#nat,-list))?

and

:- modeb (1, add list(+list,+list,-list))?

3 .6 results and diagnosis

So, how did I fare with PROGOL on this homotopy data? Well, I have
to confess to achieving little success. With some considerable prompting it
did manage to find

h(2, A, 4, B) :- h(2, A, 7, C), h(2, D, 3, E),
add list(C, E, B), succ(A, D).

but this did require some generous hints in the form of mode declarations,
and I was unable to come up with anything else. Of course, one philoso-
pher’s failure to make a machine learning system generate any interesting
mathematical conjectures in one particular problem situation provides very
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little evidence that that machine learning systems are poorly adapted for
mathematical reasoning at the inductive end of the scale. It may well be that
even the self-same system I used could be made to perform far more effec-
tively in the hands of an expert working on this very problem. However, as
further evidence that one should not expect anything significant from such
a computer assisted approach I can report to you the outright incredulity
on the part of the professional topologists I consulted as to the prospects
for PROGOL’s success. As John Earman comments in his (1992), extreme
implausibility of this kind is not to be ignored by the philosopher. He
illustrates the thought that there is ‘sharp consensus’ about ‘unnecessary
experiments’ with a cartoon showing, alongside other frames, one in which
a scientist stands on the rim of a volcano testing whether a paper towel can
stop it erupting (Earman 1992: 159). What lies behind the algebraic topol-
ogists’ incredulity here? Why is PROGOL as likely to extract important
unknown relations from homotopy data as a paper towel is to protect the
residents of Ercolano from Vesuvius?

One way of seeing what is going on here is to think through an idea
expressed by Ronald Brown, an algebraic topologist whose interests include
the computerisation of algebraic calculations. Brown claims that:

Mathematics often proceeds Geometry → Algebra → Computation. (Brown 1992:
243)

and in a recent unpublished paper he has elaborated this schema to the
following:

geometry→ underlying problems→ algebra→ algorithms→ computer imple-
mentation.

There is an important idea here. Very many key constructions in algebra
have arisen out of a desire to penetrate to the heart of geometric or topolog-
ical problems. For example, we can certainly think of Descartes’s analytic
geometry in this way. But, in such a process it is not merely a question of
devising as powerful a form of algebraic representation as possible. There is
a balance to be struck between there being sufficient subtlety in the algebra
to capture salient features of the geometry, without sacrificing tractability.
The C∗-algebra of continuous complex functions on a topological space
completely specifies that space, in that the latter is recoverable up to homeo-
morphism from the algebra. However, nothing is gained for topology since
the algebra is no more tractable than the topology.

It should be noted that mathematicians also work in the opposite direc-
tion, from algebra to geometry. For instance, having observed the afore-
mentioned equivalence of commutative C∗-algebras and topological spaces,
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mathematicians set themselves the task of finding the ‘spaces’ giving rise to
non-commutative C∗-algebras. This search for the leftmost portion of an
instance of Brown’s schema was one of the founding steps of noncommuta-
tive geometry. In general terms, geometry and algebra are more intricately
involved with each other than the schema suggests, and we may complicate
it further by observing, as we shall discuss in chapter 10, that it is possible
to use topological diagrams to perform algebraic calculations.

What we are trying to do in the cases considered in this chapter is to
pass back along the chain of the schema from the results of computations
to gain new insight into the algebra, as well, possibly, as its algorithmic
implementation, and from there potentially to the geometry and its un-
derlying problems. In the case of graph matchings, we possess an efficient
algorithm to pass from large matrices to their determinants, allowing us to
enumerate the large number of distinct matchings. In these calculations,
we have not had to rely on deeper knowledge of the geometry–algebra
relation, namely, the graph matching–representation theory relation, but
we do know enough about the algebraic situation to expect certain sorts of
numerical relation to hold among the data, which we can then search for
algorithmically. We would hope then that the discovered formula would
provide some new insight into representation theory.

The discovered formula for π is as yet a rather peripheral result. It can be
proved easily enough by integration of simple functions, but it is unlikely
one would have thought to do so before the formula was known. High-
precision arithmetic is used to evaluate certain sums, producing a surfeit
of data. Then a knowledge of the kinds of relation in which to expect π to
occur greatly constrains the search. The discovered algebraic formula may
then be linked to the geometry of a certain dynamical system.

In both of these cases, computers programmed with general purpose
algorithms are being used to generate novel information which is somewhat
independent of what we know of the underlying algebraic situation, which
in turn provides a way of sharply constraining the search for a conjecture.
In both cases, I would incline to view them on the side of falsification rather
than induction.

As for our final example, homotopy theory is one of the subtlest forms
of algebraic topology, with the unfortunate consequence that it is very hard
to perform calculations there. So, other more tractable theories (ordinary
cohomology, K-theory, complex cobordism theory, BP-theory, etc.) are used
which can capture some of the homotopy. As we shall see in chapters 9 and
10, there are those, Brown among them, who believe it is possible to develop
the ‘right’ algebra for homotopy theory using higher-order groupoids, a
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radical departure from the algebra we have grown to love, while retaining
some computational tractability.

These considerations point us to two sources for the problems PROGOL
faced: (i) the large amount of extremely intricate algebraic and geometric
theoretisation which allowed the groups to be calculated in the first place
means that data is not acquired by independent sources; (ii) the predicate
calculus is not well suited to encoding this algebraic and geometric back-
ground knowledge, nor to providing a framework in which an algorithm
linking algebra to computation may be approached. Let us take these in
turn.

Independent sources

If you are interested in the drug toxicity of a group of compounds, you
put two teams onto the task of collecting data. They will typically have
very different skills. While the first carries out chemical analysis on each
compound to discover its molecular structure and properties, the second
injects each compound into samples of unfortunate animals to see how
long they survive, or how serious are the compound’s effects. In this way
PROGOL is being given data from two independent sources. Any relations
discovered between these two types of data constitute new information.
With the homotopy data, on the other hand, a lot of high-level theory,
of precisely the type sought, has already been used to generate the data in
the first place. To get a flavour of the overwhelming amount of theoretical
machinery devised for homotopy theory, listen to an appreciative reviewer’s
summary of the first chapter of Ravenel (1986), a book in which it is
explained how to go about calculating homotopy groups:

One of the nice features of this book is Chapter 1, ‘An introduction to the ho-
motopy groups of spheres’. It begins with a quick historical survey, starting with
the Hurewicz and Freudenthal theorems and leading, via the Hopf map, to the
Serre finiteness theorem, the Nishida nilpotence theorem, and the exponent the-
orem of Cohen, Moore, and the reviewer. Then results relating to the special
orthogonal group are described, for example, Bott periodicity and the image of
J . The history of computing homotopy groups is illustrated by a brief discussion
of the Cartan–Serre method of killing homotopy groups and of its descendent,
the classical Adams spectral sequence. Some of the triumphs of this spectral se-
quence, or, more precisely, of the secondary cohomology operations related to it,
are indicated; for example, the solutions to the classical and mod p Hopf invariant
one problems. At this point, the author makes the transition to the main subject
matter of this book by describing the complex cobordism ring, formal group laws,
and the Adams–Novikov spectral sequence. The applications of this and related
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techniques to the existence of infinite families of elements in the stable homotopy
groups of spheres are then indicated. Next, the author replaces cobordism by the
more tractable BP-theory and introduces the chromatic spectral sequence. Chapter
1 closes with a discussion of the way in which the unstable homotopy groups of
spheres relate to the vector field theorem, the Kervaire invariant, and the Segal
conjecture. Present in this discussion are James periodicity, the EHP sequences of
James and Toda, and the Kahn–Priddy theorem. The description of Mahowald’s
work on the stable EHP spectral sequence is likely to be of special value to the
experts. It should be clear that a reader of Chapter 1 can come away with some
understanding of a substantial portion of current homotopy theory. (Neisendorfer,
review of Ravenel 1986 on MathSciNet)

What we do not have here, at present at least, is the prospect of per-
forming the homotopy calculations in terms of a more general purpose
algorithm.

Aside from the general purpose algorithms, one might imagine cases
in some situations where diagrams could provide an alternative source of
knowledge, as James Brown (1999) sees their role. Unfortunately, direct
pictorial data is extremely rare. Our visualising capacities are adequate to
provide sufficient data to convince us of the truth of ‘Vertices – Edges +
Faces= 2’ for sphere-like polyhedra, but cases like this are far from typical.
In our case, the fact that the third and higher homotopy groups of the
2-sphere are the same as those of the 3-sphere can be ‘seen’ from the ex-
istence of the Hopf fibration, where the 3-sphere, which although three-
dimensional cannot be embedded in three-dimensional space, is fibred over
the 2-sphere. On a good day I can glimpse all this, but it cannot take us
very far.

Two extreme strategies, then, are either to pack as much as possible
of the data-generating theory into the background knowledge, but then
the positive examples, E+, are already consequences, or else to feed in very
little by way of background knowledge, hoping to pick up regularities in the
data independent, as it were, of the motley of high-level theory. This latter
strategy strikes the experts as unworkable – surface regularities are rare and
in any case well understood. This leaves the possibility of an intermediate
strategy, but one would imagine that it would suffer from the difficulties
of the extremes to the extent that it resembles them.

Language

Homotopy theory is an unfinished story. The possibility for higher homo-
topy groups was recognised in the 1930s, yet when it was shown that they
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are all Abelian, it was enough to persuade leading topologists that this was
not the way forward. In hindsight this seems a drastic reaction. After all,
Abelian groups give you some information. But the reaction was based on
some correct intuition: that there ought to be a more comprehensive way
of capturing higher-dimensional information. As we shall see in chapter 9,
there are indications that different types of algebraic object, known as
higher-order groupoids, can achieve this. Even at the simplest stage, ways
of calculating the fundamental group of the circle, π 1(S1), generally wander
away from the simple attribution of algebraic object to topological object,
while using groupoids instead of groups allows you to remain within this at-
tribution. In higher-dimensional situations, multiple groupoids have been
found to capture the topology algebraically. Furthermore, groupoid theory
is now being welded onto the GAP computer algebra software package to
allow for automated computations.

If all this were to go smoothly, then Brown’s schema would present a very
clear picture of the situation, but it is hard to see an ILP device contributing
to this process. To fill the gap between algebra and computation requires
efficient algorithms. But the logical representation of even the simplest
algebraic calculation is extremely long-winded. For example, it has been
estimated that to show that (x + y)2 = x2 + 2xy + y2 it takes apparently
over 70 steps in the natural deduction calculus (Kerber et al . 1998: 337).
First-order logic is an ‘algebra’ primarily suited to finite sets, with properties
and relations. Where it is happiest is dealing with a database of entities and
their attributes. Nor would the availability of set theoretic language help
the situation – it is for good reason that computer algebra systems do not
rely on set theoretic reductions of their subject matter.

Once we have the right algebra and have encoded a suitable algorithmic
implementation, the effects can be dramatic:

Algebraic geometers already got used to the possibility of computing the coho-
mology of coherent sheaves by hitting some keys on a keyboard, but questions
pertaining to the topological cohomology of algebraic varieties (especially open or
singular) are still regarded as belonging to some kind of ‘Alaskan refuge’ of con-
templative thinking. The possibility of an ‘industrial approach’ to this area has a
sobering effect, forcing one to ponder wider issues raised by the use of computers.
(Kapranov 2001: 487)

Going backwards to discover the implementation from the data is imprac-
tical.

On the other hand, moving to the earlier links of Brown’s schema, it is
hard to think that PROGOL can help find the ‘right’ algebraic language
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since this presupposes considerable theoretical understanding of that do-
main. For one thing, PROGOL is treating the homotopy data as a collection
of functions taking spheres as input and outputting groups. Mathematicians
see the homotopy groups as functors (see appendix), where the mappings
between the spheres, with their geometric interpretations, get represented
by mappings between groups. It is hard to see how to encode effectively the
existence of such relations between spheres. But this is only the beginning
of mathematicians’ understanding of the geometric situation. Homotopy
groups admit a multiplication, something that can be seen from thinking
in terms of spheres, and so form what is called a graded algebra. Encoding
substantial background knowledge about spheres seems implausible.

3 .7 conclusion

In treating at length one attempt to use one system on one problem, it might
be thought that any claim to generality had been lost, but I believe that the
vividness of an allusive illustration of this kind is adequate recompense. A
view of mathematics as tightly bound up with logic would tend to suggest
that machine learning systems, especially those using the resources of the
predicate calculus as mine did, should be very well suited to problem tasks
in mathematics, or at least as well suited there as in the natural sciences. If
not producing mathematics on their own, they should at least be of some
considerable assistance to the research mathematician. This, however, is
not the case. In fact, it is the data-rich fields such as biochemistry where
there is the best prospect of success. This picture is repeated throughout
automated reasoning in the sciences.

It could hardly be expected otherwise than that, as we proceed along
a scale leading from a highly tailored algorithm plus considerable human
intervention to a general purpose algorithm with little intervention, we
achieve less. In the first of our examples, because of the data generation pro-
cess, we saw significant results about graph matchings discovered without
passing through deeper explanations from the theory of group representa-
tions, although their existence is to be expected. The algorithm used in the
second case was less constrained, it can be used on any moderately small
finite set of real numbers. But here there must be reasons to believe that
integer relations might exist. Although the discovered formula suggests that
the digits of π could be seen as generated by some pseudo-random process
associated with a dynamical system, this played no part in the discovery.
Finally, where a general algorithm with no specific ability to represent a
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particular kind of mathematical entity operates on data concerning that
kind of entity, little is to be expected.

In some sense, this was an unfair task. There are, however, many reasons
to attempt the impossible or near impossible deliberately. Whereas King
Canute ordered the sea to retreat to reveal the ineffectual sycophancy of
his advisors, we are told, here I wanted to show how algorithmic inductive
activity should be seen as much less likely to be effective in concept-rich
disciplines such as mathematics than in the data-rich disciplines of some of
the natural sciences. A second goal was to establish further the inadequacy
of the predicate calculus as a means of representing mathematics. First-order
logic does not often bring out the grain of mathematics despite the hopes of
Frege. As Tappenden (1995) shows, Frege had imagined that his new proto-
predicate calculus, the Begriffsschrift, would allow mathematicians to carve
out concepts fruitfully. That hope has only very partially been realised.

To the extent that ILP has achieved some phenomenological success
in areas of natural science, picking up surface patterns in bodies of data,
we can say that the predicate calculus is a suitable language in which to
express generalities there. My sense is that the ILP paradigm will always
find life harder in mathematics. Plenty of results in mathematics appear to
be of the simple logical form, all S are M – for instance, all elliptic curves
are modular. Lakatos (1976) showed us, however, that the difficult part is
the construction of the definitions involved in S and M . If you know the
composition of the conjecture to that extent, you have done much of the
hard work and you will have considerable insight as to how to approach a
proof. In the drug-toxicity case, on the other hand, this need not be the
case.

This brings us to the end of our foray into the borderland between
articial intelligence and mathematics. I hope that the reader is now inclined
to think that philosophy can gain impetus by juxtaposing itself to novel
disciplines. There is certainly much for practice-oriented philosophers of
mathematics and computer scientists working on automated mathematical
reasoning to talk about. Several of the thirty-three questions of Larry Wos
are ones pondered by philosophers. Even if philosophers are sceptical of
the present capabilities of computers, detailed arguments as to the reasons
for their doubt should clarify important issues. Now, after two chapters
of machine-based research at the periphery of mathematics, let us change
gears and look at the way humans do mathematics, the kinds of human
Hardy would have counted as ‘real’ mathematicians.



chapter 4

The role of analogy in mathematics

The enrapturing discoveries of our field systematically conceal, like
footprints erased in the sand, the analogical train of thought that is
the authentic life of mathematics. (Rota in Kac et al . 1986: ix)

4.1 introduction

When mathematicians talk informally about a theory, their metaphors
and similes often reveal something about their conceptualisation which
too often goes missing from the papers and monographs they write. The
topologist Solomon Lefschetz describes, for instance, how back in the 1920s
he ‘planted the harpoon of algebraic topology into the body of the whale of
algebraic geometry’ (1971: 13). By this he means that at that time algebraic
geometry encompassed a large amount of rather poorly structured theory.
Algebraic topology was a newly created tool which Lefschetz could employ
to capture and systematise the older theory. There is also an allusion to
death in his metaphor which agrees well with mathematicians’ use of this
word to describe a theory which has been ‘killed off’ by being worked out.

A more explicit similarity lies behind the following statement: ‘The zeta
function of a field is like the atom of physics . . . we will show how to
split it via group theory’ (Stark 1992: 366). While we have two objects
which at some point in their careers were profitably split, revealing in each
case important information about the relation of the whole to its parts, I
imagine that when Stark wrote this he did not believe that his comparison
could be pushed too far. Of course, there was a similarity in the fact that
representation theory is used to factorise the general zeta function and
is used in the construction of the quantum theory of the atom, yet it is
unlikely that he believed there would be any meaningful equivalent of, say,
the nucleus in the number theoretic case. Curiously, though, a powerful
connection between these domains has since been found. The (scaled)
spacings between the zeros of the Riemann zeta function and between

80
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the energy levels of a heavy nucleus turn out to share the same statistical
distribution.

In this chapter I want to examine cases of quite precise structural simi-
larity and so I shall talk of ‘analogy’ rather than ‘metaphor’. To elaborate a
vague idea relating two apparently distinct theories is often described in the
most loving terms by mathematicians.1 But this sometimes mysterious, yet
common, use of concepts drawn from one area to illuminate another body
of theory may be seen not only as a source of satisfaction for mathemati-
cians, but also as a riddle begging philosophical treatment, what might be
termed the ‘unreasonable effectiveness of mathematics in mathematics’:

The glory of mathematics lies not so much in the fact that abstract theories do
turn out to be useful in solving problems, but in that wonder of wonders, in
the fact that a theory meant for one type of problem is often the only way of
solving problems of entirely different kinds, problems for which the theory was
not intended. No philosophy of mathematics can be excused from explaining such
occurrences. (Rota 1991: 448)

Examples are never far from hand: Hermitian metrics from differential
geometry are used in number theory, knots embedded in three-dimensional
manifolds are usefully likened to prime ideals in the spectrum of a ring of
algebraic integers in arithmetic topology, and so on.

In the days when discovery and justification were held to be quite sep-
arate processes it might have been argued that the use of analogy pertains
merely to the discovery or invention of mathematical theories, but has lit-
tle to do with the justification of mathematical results. Often the sense of
mystery accompanying a perceived analogy is dispelled when the structural
similarity is explained away in some larger theory, thereby revealing to us
how it all works. But we can view matters differently. Analogies do not just
act as cognitive aids to the discovery and learning of mathematics and so
relate solely to the psychology of mathematical understanding. Important
though this is in itself, they also play a central role in determining the direc-
tion mathematics has taken throughout its history by constituting what is
deemed to be interesting theory. This role was described by Poincaré when
he remarked that:

the mathematical facts worthy of being studied are those which, by their analogy
with other facts, are capable of leading us to the knowledge of a mathematical
law, just as experimental facts lead us to the knowledge of a physical law. They are

1 Rather incredibly, van Bendegem can claim ‘both analogy and metaphor are . . . disliked by mathe-
maticians’ (van Bendegem 2000: 106).
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those which reveal to us unsuspected kinship between other facts, long known,
but wrongly believed to be strangers to one another. (Quoted in Atiyah 1978: 76)

Those wishing to deflate the inherent-structurist interpretation of this
claim may choose to argue that the linking of apparent strangers is a rel-
atively easy thing to achieve, so that constructions from more or less any
domain could be used to develop any other if pushed hard enough. Indeed,
so prevalent is the application of one theory to another that the suspicion
must arise that this is so.2 Then the analogies that are accepted have noth-
ing more to recommend themselves than that they are accepted. We may
believe, for example, that it is simply natural for functional analysts to take
a function to be a ‘point’ belonging to a space, allowing geometric notions
to provide them with the idea of nearness between functions. And we may
well imagine that had Riemann, Ascoli, and Arzelà not started this way of
thinking, then somebody else would have done so. But how much freedom
was there to choose to make this analogy in the first place, were there plenty
of other choices to be made, and once a function was seen as a point how
much freedom was there to develop functional analysis? These are the kinds
of question the philosophy of real mathematics needs to address.

Mathematicians tend to oppose ‘nominalist’ and ‘contingentist’ answers
to these questions. Although through the twentieth century the technique
of projecting parts of mathematics onto others has become totally unexcep-
tional, leading Sir Michael Atiyah to claim that mathematics is the ‘science
of analogy’ (Atiyah 1976: 220),3 still powerful applications require the very
great intellectual effort of uncovering profound analogies. The kind of
intricate interaction that exists between the branches of number theory,
algebra, geometry, topology and analysis, is really not so easy to achieve,
but is widespread since it is precisely what mathematics is about:

[t]his interaction is, in my view, not simply an occasional interesting accident,
but rather it is of the essence of mathematics. Finding analogies between different
phenomena and developing techniques to exploit these analogies is the basic math-
ematical approach to the physical world. It is therefore hardly surprising that it
should also figure prominently internally within mathematics itself. (Atiyah 1978:
75–6)

Contingentists might challenge this position by demonstrating how inter-
action of such a kind came to be seen as ‘the essence of mathematics’ and

2 See Ruelle (1988) for thoughts along these lines.
3 Atiyah goes on to suggest that ‘the widespread applicability of mathematics in the natural sciences,

which has intrigued all mathematicians of a philosophical bent, arises from the fundamental rôle
which comparisons play in the mental process we refer to as “understanding” ’.
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how this image is maintained. While it is very clear that the explicit use of
analogy has increased through time, this might be better thought of as an
achievement, rather than the discovery of an essence.

In the space of a chapter I cannot do justice to these matters, but one
of the central points I shall be making does bears on them. I claim that
the development of the analogy between function and number initiated by
Dedekind and Weber in the late nineteenth century should be seen as a
watershed, marking a new level of sophistication in the use of analogy and
the appearance of a new attitude to the possibilities of relationships holding
between constructions from apparently different domains. The axiomatics
of Hilbert, the algebra of Noether, and the category theory of Eilenberg
and Mac Lane may be seen as increasingly sophisticated ways of capturing
these relationships.

I shall treat the Dedekind–Weber case in sections 4.3 and 4.4, after
reviewing other contributions to the use of analogy in mathematics. Since
the idea of partner theories displaying structure similarity runs counter to
the reductionist spirit of much of recent philosophy of mathematics, the
literature on this subject is not extensive. I shall discuss in section 4.2 the
ideas of the mathematicians Saunders Mac Lane and George Pólya and
those of the philosopher Emily Grosholz and the sociologist of science
Andrew Pickering.

4.2 thoughts on analogy

For Mac Lane (1986: ch. X) analogy, along with the study of examples, the
analysis of proofs, shifts of attention and the search for invariant formula-
tion, are the most important methods we employ in our effort to understand
mathematics. In what one might consider as the standard contemporary
account of mathematical analogy, he tells us that an analogy perceived to
exist between two or more theories suggests the possibility of generalising
constructions in one of these theories by transferring them to the other and
furthermore implies the existence of a common structure to be captured
by an abstraction.

Analogy for Pólya forms one of the methods of plausible reasoning in
mathematical discovery (Pólya 1954a: ch. II), and is based on the hope that
a common ground exists between two domains. Pólya gives some examples
of how we use analogy to pass from plane geometry to solid geometry.
For instance, the tetrahedron is the analogue of the triangle because it is
the solid figure with the least number of plane faces while the triangle is
the plane figure with the least number of straight edges. Here, the source
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and target domains of the analogy resemble each other very closely. In
his most detailed case study, on the other hand, there is a greater distance
between the domains. This example concerns Euler’s extension of the use of
factorisation from polynomials to infinite series in response to the problem
posed by Jacques Bernoulli of finding the sum of the reciprocal of the
squares of the natural numbers. Euler’s creative step was to treat sin x like
a polynomial, reasoning that there was a chance that this would work in
view of the shape of the graph of this function, the sine wave and its series
expansion, which converges for all values of x. He had to hope that the
fact that sin x has infinitely many roots would not matter. These roots are
x = 0, ±π , ±2π , ±3π , . . . Now, polynomials may be factorised as a
constant multiplied by the product of factors of the form (1 – x/root). The
analogy suggests then that, since sin x/x → 1 as x → 0,

sin x
x

(
1− x 2

π 2

)(
1− x 2

4π 2

)(
1− x 2

9π 2

)
· · ·

Using the series expansion of the left-hand side as 1 – x2/3! + x4/5! –
x6/7! + · · ·, Euler compared coefficients of x2 on each side to arrive at
the result �1/r2 = π 2/6, which he then confirmed numerically to several
decimal places. Here then the complex schema of ‘factorisation to solve
equation’, or better its reverse ‘construction of equation from solutions’,
has been transferred from the domain of polynomials to the domain of
infinite series.

There is something almost Piagetian happening here. Piaget proposed
the mechanisms of assimilation and accommodation as key to a child’s
intellectual development. Assimilation occurs when a schema is applied
to new situations. This often leads to an imbalance, a lack of equilibrium,
which is resolved by accommodation, the process of modifying the schema.
Creativity for Piaget occurs through ‘spontaneous assimilation’. In our
example we find Euler creatively applying an existing schema to the domain
of infinite series. But then what are the limits to the transferral? If the
process works for sin x/x, we might expect it to do so for similar functions.
How similar? Tan x/x has the same zeros as sin x/x, and yet its series
expansion differs in its second term, so this technique fails there. Might
the failure be due to the function being undefined at infinitely many values
of x? The function ex, on the other hand, is defined everywhere, but it
has no zeros. An interesting problem thus emerges of discovering to which
series the technique can be applied. This process, which we may liken to
accommodation, is frequently very fruitful, and in the case before us led
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to a ‘common ground’ in the form of a general theory of factorising entire
functions, complex functions holomorphic throughout the complex plane.

Language similar to Piaget’s is used by Pickering (1997) in his account
of Hamilton’s search for an analogue of the complex numbers in three di-
mensions, where he talks of a ‘dialectic of resistance and accommodation’.
Modelling one domain in another is analysed into three component activ-
ities by Pickering. First, a bridgehead is constructed in the second domain.
Next, one transcribes ‘established moves from the old system into the new
space fixed by the bridgehead’ (1997: 42). What is available for transcription
is very rarely sufficient to complete the process, however, and so some filling
is required. For Pickering, bridging and filling, the first and third of the
components, are free moves, while transcription is based on forced moves
dictated by the prior discipline. As is well known, the choices Hamilton
made of requiring the retention of certain arithmetic and geometric fea-
tures of the complex numbers meant that no three-dimensional analogue
was available. Instead, he was led to define a third imaginary unit as part
of the four-dimensional quaternion system.

This picture is, I believe, more or less correct, but we may put into
question the stark dichotomy between the freedom of bridging and filling
and the forcedness of transcription. After all, the capacity to accommodate
to resistance during bridging or filling is often subject to fairly stringent
requirements. Indeed, the very act of constructing a bridgehead may be
guided by the experience of previous analogous analogies, and filling, in
particular, must accord with existing conventions. In other words, we need
to remember that the making of analogies does not occur in a vacuum,
but rather in an intricate setting. Ulam’s famous notion of mathematicians
perceiving ‘analogies between analogies’ alludes to this intricacy, familiarity
with which can only increase the feeling that one’s choices are restricted.

It is probably this general sense of forcedness that gave Michael Crowe
the idea that there was something irresistible about the invention of the
quaternions once Hamilton had set off to look for higher-dimensional
numbers. Crowe uses this case as an illustration of the first of his ten
‘laws’ concerning patterns of change in mathematics – ‘New mathematical
concepts frequently come forth not at the bidding, but against the efforts,
at times strenuous efforts, of the mathematicians who create them.’ (Crowe
1975: 16). At issue here is the degree of freedom we ascribe to Hamilton.
After the event we might say that there are no normed division algebras
in dimension 3 – inherent structure prevented him from succeeding in his
initial goal. But Pickering might want to reply that Gibbs and Heaviside’s
solution of forming a vector calculus by hacking off a three-dimensional part
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of the quaternion system shows that no single solution is forced. Admittedly,
associativity fails for the vector cross product, but then the octonions, the
eight-dimensional normed division algebra devised by Hamilton’s friend
Graves, suffers from the same supposed defect. Where the vector calculus
is a more radical departure, however, is in allowing zero divisors, e.g., for
any x, x × x = 0.

The other side of the coin is that we should be careful not to take
transcription as a totally automatic process. We have seen in chapter 2 that
Melis’s attempt to automate even a simple piece of transcription runs into
problems. Recall that for the analogical reasoning to work, we had to make
sure that we had gone far enough along the sequence of nested rectangles to
ensure that both dimensions were small enough. One would imagine that
most trained mathematicians would cope very easily with this problem and
approach it in broadly the same way. This suggests they may be working
in a tight disciplinary framework yet still have a modicum of freedom. An
alternative would be to count this kind of adjustment as filling , but then
the term seems to be doing a lot of work, and transcription not enough.

Analogies vary as to the distance between the analogue domains. All things
being equal, the larger the distance the greater the chance for the target
domain’s resistance. The pay-off is that analysis of resistance often leads
to new ideas. Take, for example, a further use of the analogy between
finite and infinite series, this time initially unsuccessful. Consider the series
1 – 1/2 + 1/3 – 1/4 + · · · and double each term. The new series can then
be rearranged and terms added to give back the original undoubled series,
implying that the sum of the series is equal to twice itself and so must equal
0, while we know for other reasons that the series converges to ln 2:

2(1− 1/2+ 1/3− 1/4+ 1/5− · · ·)
(2− 2/2)− 2/4+ (2/3− 2/6)− 2/8+ (2/5− 2/10)− · · ·
1− 1/2+ 1/3− 1/4+ 1/5− · · ·

What has gone wrong? In a finite series the sum is the same whatever the
order of the terms, yet analysis of this case shows that this property fails to
hold generally for infinite series. The complex schema ‘rearrange terms of
a series to find sum’ has been applied to a wider domain with only partial
success. We can, however, find a condition which holds trivially for finite
series and which will determine when the rearrangement of terms in the
infinite case is valid. This is the condition of absolute convergence, which
a series satisfies if the series formed by the absolute values of its terms
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converges. Such a condition would not occur to anyone working solely
with finite sums.

This example may be construed as involving no real change to the source
domain, but we must be careful not to assume that accommodation takes
place only in the target domain. Sometimes it is better to say that the
prior discipline has been reordered. The shift from the finite to the infinite
frequently requires that modifications of this kind first be made. A good
example of the need for reinterpretation before generalisation occurs in the
extension of self-adjoint maps on finite vector spaces to infinite dimensional
Hilbert spaces. Consider the following integral equation:

v(x )

b∫
a

K (x , s )u(s )dx.

For suitable K (x, s) this defines a self-adjoint mapping taking u(x) to v(x),
from the space of Lebesgue square summable functions on the interval
[a, b] to itself. Any function which is mapped to a scalar multiple of itself
is then an eigenfunction of the mapping. The space of functions itself may
be thought of as an infinite dimensional space with an inner product and
the mapping as a linear function acting on it.

It makes sense to consider these mappings as infinite dimensional ana-
logues of finite dimensional self-adjoint matrices and one then tries to
push the analogy by diagonalising them. Any finite self-adjoint matrix
can be so diagonalised such that its eigenvalues, which are all real, appear
along the diagonal. The attempt to transfer this directly to the infinite case
does not work, as many operators have 0 as their only eigenvalues and yet
could not be represented by a zero infinite matrix. So first of all the finite
dimensional theory must be recast, in what ‘may seem a perverse manner’
(Mackey 1992: 133), in terms of projection valued measures. To each sub-
set of the reals, E , assign an operator PE which maps an eigenvector to
itself, if the corresponding eigenvalue belongs to E , and to 0 otherwise. It
is only after this step that the idea of diagonalisation can be generalised
to the infinite dimensional case to form the spectral theorem of Hilbert
spaces.

One might wonder whether this modification of a simpler theory to allow
for its generalisation, taking place as it does only after the discovery of the
larger theory, merely acts as a means of justifying interest in the latter to
the community. However, Hilbert believed that in many situations, finding
the ‘right’ way to represent a domain would provide the key to cracking a
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more extensive one, thereby placing the original theory in its proper setting.
A piece of heuristical advice from him tells us that:

In perhaps most cases when we fail to answer a question, the failure is caused by
unsolved or insufficiently solved simpler and easier problems. Thus all depends on
finding the easier problem and solving it with tools that are as perfect as possible
and with notions that are capable of generalization. (Quoted in Booss and Bleecker
1985: 218)

We shall see in section 4.3 a case where the two domains of an analogy are
very clearly revised because of the construction of a bridge between them.

Now we turn to analogies with greater apparent distance between source and
target domains. Emily Grosholz has devoted a number of papers to the topic
of structure similarity between two apparently distinct branches, focusing
on Descartes’ introduction of analytic geometry and Leibniz’s extension of
this to the study of dynamics. Here I shall deal only with the one entitled
‘Two Episodes in the Unification of Logic and Topology’ (Grosholz 1985).
It might appear that this is yet another case of the phenomenon where
exponents of the philosophy of real mathematics, although claiming not to
afford privileges to mathematical logic over other branches of mathematics,
still persist in drawing their case studies from this discipline. Grosholz,
however, has as a reason for wanting to consider examples where an area of
logic forms one side of the analogy, precisely the concern of deflating the
special importance afforded to logic. By showing that areas of mathematical
logic can partake in a structural partnership with topological concepts,
Grosholz hopes to reduce what she sees as the unfair prominence given by
philosophers to the former over the latter as an example of a mainstream
branch.

The main thrust of her article is to illustrate her thesis that an important
dynamic for mathematical development arises when between two branches
there appears an unforeseen partial structural analogy. Here I shall talk
principally about her first example, Stone duality. Grosholz’s account is a
little brief in certain respects, so I shall extend her account by bringing out
the core of the analogy that drove Marshall Stone’s programme. The roots
of this theory go back to Boole’s interpretation of classes or propositions
in terms of algebra. A Boolean algebra is generated from a propositional
language (collection of classes) by interpreting conjunction (intersection) as
multiplication and disjunction (union) as addition. Lindenbaum and Tarski
showed that necessary and sufficient conditions for a Boolean algebra to be
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representable as the algebra of all subsets of some set are that the algebra is
complete and atomic, that is, it has to possess infinite meets and joins, and
each element of the algebra has to be greater than or equal to an element not
expressible as the join of strictly smaller elements. Their result, however,
still left unsolved the problem of finding a general representation theorem
for Boolean algebras.

While Grosholz describes Stone as an algebraist, his early work was in fact
in functional analysis and this had a direct bearing on his later ideas. It was
his work on algebras of commuting projections in a Hilbert space, which can
be seen as Boolean algebras, that led Stone to seek a general representation
theory. Moreover, through this background of functional analysis he had
been made aware of the tools and concepts of general topology. In 1936–7,
Stone published two long papers in which he solved the representation
problem by making novel usage of ideas from topology. His first step was
to notice that a Boolean algebra could be seen as a certain kind of ring (see
appendix), where each of its elements satisfies a = a2. As Peter Johnstone
points out, four years earlier Stone had in fact used an ‘informal analogy with
ring theory, and it was not until 1935 that he realized the connection could
be made formal’ (Johnstone 1982: xv). This, now formal, analogy prompted
him to investigate the role of ideals in a Boolean algebra. He then observed
that the set of prime ideals of such an algebra, that is, those which cannot
be factorised, could be given a topology4 in which the clopen (closed and
open) sets correspond to principal ideals. These are ideals generated by a
single element of the algebra, and so provided him with a representation of
the original algebra. The forging of this analogy with ring theory allowed
him to create a representation carried not by some set of elements of the
Boolean algebra as in the Lindenbaum–Tarski representation, but by the
set of prime ideals.

In this example we find at least two creative acts: seeing a Boolean algebra
as a ring; and, seeing the set of ideals as a space. The act of topologising such a
seemingly non-spatial set helped to free applications of topology from their
then close association with ordinary geometric spaces. Thereafter, Stone
was wont to repeat the maxim ‘one should always topologize’.

It is worth mentioning also that Stone duality is very well suited to the
language of category theory. Indeed, the theorem can be restated to say that
there is an adjoint equivalence between the category of Boolean rings and

4 The open sets are in one-to-one correspondence with the general ideals of the Boolean ring. To such
an ideal corresponds the set of those prime ideals which do not contain it.
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the opposite of the category of zero-dimensional compact Hausdorff spaces.
This equivalence can in turn be seen as being generated by an adjunction
between larger categories.5 Further evidence of the ‘naturalness’ of using
category theory to explain Stone duality comes from the fact that in a
standard introductory textbook to mathematical logic (Bell and Machover
1977), the only point at which the authors feel obliged to reformulate a
result in category theoretic terms is precisely when they are dealing with
Stone duality.

Johnstone (1982: xvi) believes that ‘Stone’s theorem was undoubtedly
one of the major influences which prepared the mathematical world for the
introduction of categories by Eilenberg and Mac Lane’. It was perhaps to
be expected then that Mac Lane would, as we have seen, give a prominent
place to analogy. Now, categories have the feeling in many branches of
mathematics as always-having-been-there, so let us return to one of the
most significant cases of analogy making in the history of mathematics,
one which inspired Stone’s work and which marked a dramatic escalation
in the search for interbranch structural similarity.

4.3 the analogy between number and function

The case study we shall investigate in this section is believed to be so good an
example of the role of analogy in mathematics that when mathematicians
are searching for an illustration of this phenomenon they very often turn
to it. It was the obvious choice for one of the chief players in its later
elaboration, the French mathematician André Weil, when, incarcerated in
prison after forcible repatriation in 1940 for having tried to avoid military
service by fleeing to Finland where he was lucky to escape being shot as a
spy, he had the leisure to try to explain to his sister, the philosopher Simone
Weil, the purpose of his mathematical research. This letter is published in
his Collected Works (Weil 1940) and the subject matter taken up again in
his ‘De la Métaphysique aux Mathématiques’ (Weil 1960).

The use of the word ‘métaphysique’ here refers to expressions such as
‘the metaphysics of the calculus’ used by mathematicians of the eighteenth
century to indicate their incomplete understanding of the calculus or ‘the
metaphysics of equations’ used by Lagrange to describe the, then unclear,
ideas later made explicit by Galois. The title of Weil’s paper refers to the
act of clarifying mathematicians’ blurred visions, and a very important way

5 These results along with their many generalisations and extensions into almost every branch of
mathematics are described in Johnstone (1982).
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of doing this, he claims, is by working out analogies between theories.
According to Weil:

As every mathematician knows, nothing is more fruitful than these obscure analo-
gies, these indistinct reflections of one theory into another, these furtive caresses,
these inexplicable disagreements; also nothing gives the researcher greater pleasure.
(Weil 1960: 408, my translation)

It is the sense of surprise which attends such discoveries that suggests to
mathematicians that they are on to something important as Dieudonné,
Weil’s fellow Bourbakiste, remarks:

But there are also what I shall call major translations, which could almost be termed
mutations, and which appear to a certain extent out of the blue. They give the
impression of a creation that nothing at all had prepared one for. (Dieudonné
1975b: 48, my translation)

The analogy which concerns us here is by no means simple, but I hope
I may be able convey to the reader some sense of how intricate it is. We
start with the simple observation that polynomials in one unknown with,
say, complex coefficients, share many of the properties of the integers. In
each case, given any two elements, there is an algorithm to find their high-
est common factor; there is unique decomposition into irreducible prime
elements; analogous to the rationals are the rational functions (quotients
of polynomials), etc. This would not seem to take us very far, but by the
time this analogy was first noticed in the second half of the nineteenth cen-
tury, Riemann had already developed his theory of many-valued complex
functions of one variable to a high level of sophistication taking the first
important steps in algebraic topology along the way.

In order to deal with many-valued complex functions, for example, w2=
z(z – 1) for which, apart from when z = 0 or 1, w takes two distinct values,
Riemann devised the surfaces later known after him. If the value of z
is restricted to being defined on a single copy of the complex plane, on
completing a single circuit of the circle of radius 1/2 centred at the origin,
one does not arrive back at the same value of w, but rather at the other
branch of the function. Riemann’s solution was to construct the Riemann
surface of the function by taking two copies of the complex plane and cutting
along a line running from the point 0 to the point 1 in each of them. This
prevents the function changing branch along any curve in either of the
planes. Now the planes are pasted together, the lower edge of the cut in
one plane with the upper edge of the cut in the other, producing a surface
on which the function is single-valued:
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It is simpler for many purposes to add points at infinity to the two planes.
Then by deforming the resulting surface one can obtain a sphere.

Riemann then considered the set of meromorphic functions, that is,
differentiable except for isolated poles (infinities), defined on the Riemann
surface associated with a particular algebraic equation in two variables. He
noticed that these functions form a field (see appendix) and that this field
contains all one needs to know about the Riemann surface or algebraic
curve. This is an example of what Mac Lane has called a shift of attention
(1986: 433) and as we shall see has a close parallel to a similar construction
in number theory. This field is a finite extension of the field of rational
complex functions, C(X ).

During the 1870s Dedekind had studied algebraic numbers, i.e., solu-
tions to equations in one unknown with rational coefficients. Given such
an equation, we adjoin its roots to the rationals, Q, thereby forming an
algebraic number field. If we consider for instance the equation x 2 = −1,
we then form the field Q(i). This field and its automorphisms (invertible
mappings preserving arithmetic relations) contain all we need to know
about the original equation. Dedekind noticed the parallel here between
this situation and Riemann’s in that both involved finite extensions of fields
and this led him, in a paper he published along with Weber in 1882, to at-
tempt the transfer of ideal theory, a recent construction of his in algebraic
number theory, to Riemann’s algebraic curves so as to avoid the latter’s
‘transcendental’ arguments.

To motivate Dedekind’s introduction of ideals into number theory we
need to go a little further back to earlier work in number theory. Kummer’s
principal interest in number theory was the continuation of the work of
Gauss on what is called quadratic reciprocity. During his investigations he
was led to the problem of whether unique factorisation holds among certain
collections of complex numbers, and found that it does not. It seems that
Kummer first explicitly mentioned this failure of unique factorisation in
1844, crediting Jacobi for the discovery.

A simple example of this phenomenon occurs in the ring of integers of
Q(
√− 5), where we find that 3.7= (4+√− 5)(4−√− 5)= 21 , and yet
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it can easily be shown that none of the two pairs of factors of 21 can be
factorised further. So although 3 cannot be factorised in Q(

√−5), it does
not share the property possessed by ordinary primes that if p divides a.b
then it divides a or it divides b. The analogy between the ordinary integers
and the ring of integers in a number field has failed and the two ideas,
the former now called irreducibility, the latter called primeness, do not
coincide. Kummer’s task then was to try to rescue some notion of unique
factorisation.

To do so Kummer had to in some sense ‘factorise’ these irreducibles
further. He did so by providing a condition under which it might be said that
an ‘ideal’ prime factor divided an integer. From there Kummer completed
the task of showing that an algebraic integer could be factorised uniquely
into prime ideal numbers. As with many constructions in mathematics,
Kummer’s ideal complex numbers engendered more than one successor.
Kronecker’s notion of a divisor is perhaps closer in spirit to its precursor,
but here I shall speak only of Dedekind’s introduction of ideals. I shall be
looking at Kronecker and Dedekind’s rival attempts to generalise Kummer’s
work in the context of research programmes in chapter 8.

The term ideal clearly derives from its progenitor. By calling his ideal
numbers ‘numbers’ Kummer had taken an unusual step in the sense that
any set of objects termed as such usually possesses an addition. This was not
directly the case with Kummer’s numbers, yet there was an unobvious sense
in which it was so. Dedekind’s ideals made this sense explicit. Very much in
line with his philosophical viewpoint, Dedekind identified an ideal number
with the set of integers it divided, where these integers are defined as roots
of polynomials with integer coefficients and leading coefficient equal to 1.
Dedekind and Kronecker converged on this latter definition analogising
from a feature of the ordinary integers.

Dedekind then proved that in the integer ring of an algebraic number
field the ideals possessed the property of unique factorisation, thus showing
prime ideals to be the analogues of the prime numbers. In their paper of
1882, Dedekind and Weber now transferred these algebraic constructions
to Riemann’s complex function theory outlined above. Corresponding to
Z, Q and an algebraic extension K , we have C[X], C(X) and an algebraic
extension C(X , Y ), while corresponding to the algebraic integers of K we
have the set of entire functions S, i.e., those which only have poles at infinity.
But what then are the prime ideals of such an S? Well, for C[X] they are
simply the principal ideals generated by (X – a) with a in C, and for S
corresponding to a field extension C(X , Y ) where the variables are related
by an equation such as above Y 2 = X (X – 1), the prime ideals are those of
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the form (X – a, Y – b) where a and b are in C and satisfy b2 = a(a – 1).
The essential point is that there is a one-to-one correspondence between
the prime ideals of S and the points of the corresponding Riemann surface.
Thus, the Riemann surface has been described purely in algebraic terms
and this allows for the transfer of all the associated algebraic techniques into
what might have been thought a geometric theory, in particular, it allows
for a purely algebraic proof of the Riemann–Roch Theorem, a result which
appeared to belong firmly to the subject of analytic varieties.

This idea of identifying points on a Riemann surface with prime ideals
allows for the transfer of the idea of ramification. A Riemann surface is
ramified with e sheets at a point p lying over X = a if a closed path in a
small neighbourhood of the point winds around a minimum of e times.
The sum of the ramification indices of the points lying above a is equal
to the degree of the defining polynomial seen as a polynomial in Y with
coefficients in C(X ). In our example Y 2 = X (X − 1), (0, 0) and (1, 0)
are ramification points of index 2 lying over 0 and 1, respectively, and
hence there are no Taylor expansions of Y in powers of X or (X – 1).
Over a general point in the complex plane the Riemann surface will be
unramified, e.g., over X = 1/2 there are two function elements represented
by Y = ±i/2{1 – 2(X – 1/2)2 + · · ·}. Translating this into the language
of ideals, the principal ideal (X – 1/2) is prime in C[X ], but in the set of
entire functions, C[X , Y ]/(Y 2 – X 2 + X ), it splits into distinct primes as
(X – 1/2) = (X – 1/2, Y – i/2)(X – 1/2, Y + i/2). In the case of (X )
however, we find it ramifies as (X ) = (X , Y )2.

Returning now to algebraic number fields, the question arises of how a
prime ideal factorises in a field extension of Q. Given (p) the prime ideal of
Z generated by p, we know it must factorise completely into prime ideals of
the ring of integers, O, of the number field, (p) = P1

e1 P2
e2 . . . Pg

eg , where
any prime ideal P of O is such that O/P is a finite field of characteristic
p, and so we can assign an f to each P where O/P = (Z/p Z)f .6 Having
done this we find the analogous formula �ieif i = n, where n is the degree
of the field extension. If we now take the extension to be Galois then the
ei are all equal as are the f i. It turns out that in any proper extension of Q
there must exist a prime which ramifies, just as only the Riemann surfaces
of rational functions are non-ramified.

Continuing with a further transfer of ideas in the same direction.
Riemann’s approach to complex function theory was not allowed undis-
puted control of the field. In Berlin, Weierstrass was pushing through a

6 In function fields C(X , Y ) we always have f = 1 as C is complete. This inertia in the number theoretic
case is thus a disanalogy and was a spur to develop an intermediate language, as I shall describe below.
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programme of arithmetisation based on the use of power series. Whereas
Riemann studied complex functions from a global perspective, Weierstrass
relied on a local approach in terms of power series expansions about a point.
Any given rational complex function can be expanded in the neighbour-
hood of a point x0 to give a series �an(x–x0)n, where the series runs from
some (possibly negative) integer. However, not all expansions of this form
correspond to rational functions. In 1897, Hensel, a student of Kronecker,
pursued the analogy which identified points on an algebraic curve with
prime ideals and was led to consider a similar extension to an algebraic
number field. It will be easier to illustrate this construction if we choose
this field to be Q, for which the prime ideals are the principal ideals gen-
erated by the primes.

Just as 1/(1 – x) is expanded in the neighbourhood of 0 as 1 + x + x2

+ · · ·, Hensel considered 1/(1 – p) as 1 + p + p2 + · · · Recalling that any
member of Q can be uniquely expressed as pna/b with n an integer, and
a, b �= 0 (mod p), this can be given the following heuristic justification.
If given two rational numbers we can divide their difference by arbitrarily
high powers of p, then it is clear that the two numbers must be equal.
Similarly, if we take the difference 1/(1 – p) – (1 + p + p2 + · · · + pn), we
can see that it is divisible by p (n+1), suggesting that it is ‘small’ from the
perspective of p. For example, if p = 5,

1/(1 – 5) – (1 + 5 + 25 + 125) = –625/4 is divisible by 54 = 625.

Now if we consider the set of all formal sums �anpn, where 0≤ an ≤ p – 1
and the sum begins with n possibly negative, and denote it Q p, it is easy to
see that we can carry out on it all the usual arithmetic operations: addition,
subtraction, multiplication and division. p-adic integers are those sums for
which an = 0 for negative n.

We have a field, termed by Hensel the p-adic field, in which the ordi-
nary rationals turn out to be those expansions which recur after a certain
point. This suggests an analogy with the reals seen as the completion of
the rationals under the usual metric |a – b|. We define a valuation |x|p =
p−n , where n is determined by x = pna/b. Q p is then the completion of
Q under the metric d (x, y) = |x – y|p. In Q 5 for instance, we have shown
above that –1/4 and 156 are ‘close’ to each other.

Weil later observed that this notion of valuation which links the standard
distance function in R or C with the p-adic distance removes a noticeable
case of disanalogy between algebraic number fields and algebraic number
fields. Consider once again Q and C(X ). For elements in each field we
have the factorisations p1 · · · pm/q1 · · · qn and a(x – α1) · · · (x – αm)/
(x – β 1) · · · (x – βn), but in the latter case the point at infinity is treated
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on an equal footing with the other points, there being a zero (or pole) at
infinity of order |n – m| when n > m (or n < m). There is no immediate
analogue for this in the field of rational numbers. However, we may rethink
this case in terms of valuations. For each α, there is a function which for
any rational function takes as its value the power of (x – α), and for∞ takes
the value (n – m). The sum of these functions for any rational function is
then 0. Similarly, taking the valuation ‘at infinity’ to be the ordinary real
modulus, the product of the valuations on a rational number is 1. To give
another sense of this, if we think of a decimal expansion of a real number,
it is similar to a p-adic series except in that moving along the series the
exponent of 10 decreases instead of increasing, rather like the expansion of
a rational function at∞ in terms of 1/x.

By the mid-twentieth century, mathematicians such as Weil were milk-
ing the analogy for all its worth. To give a flavour of this highly com-
plex work, note that a meromorphic function may be considered not
merely as being expandable at one point, but at all points. In the simplest
case, this corresponds to embedding C(X ) in the set of formal series in
(x – x0) for each x0. Similarly we can embed an algebraic number field into
its p-adic completions and do so simultaneously. In other words, we have
a map into the product of these completions, or rather into a subset of this
product, namely the adèle whose members are choices of elements from
each completion almost all of which belong to the respective completion of
the integers. Adèles may be given a topology which turn them into a locally
compact group, thereby allowing all the techniques of harmonic analysis
(a generalisation of Fourier analysis) to be imported.

4.4 a watershed in the use of analogy

If section 4.3 was rather hard going for you, I hope you still managed to gain
the sense that the Dedekind–Weber paper of 1882 laid the foundations for
an extraordinarily rich transfer of concepts between the fields of algebraic
number theory and algebraic function theory. Dieudonné notes how in
this paper we find:

one of the key ideas of modern mathematics, which consists in performing cal-
culations on objects which are not at all like numbers or functions. Moreover,
this article by Dedekind and Weber drew attention for the first time to a striking
relationship between two mathematical domains up until then considered very
remote from each other, the first manifestation of what was to become a ‘leitmotif ’
of later work: the search for common structures hidden under at times extremely
disparate appearances. (Dieudonné 1969: 375, my translation)
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This is a thoroughly Bourbakiste vision of mathematics, passed down to
them from Dedekind via Hilbert, Noether and Artin.

Of course, if through abstraction the point is ever reached where the
concepts common to two or more fields are made sufficiently explicit to
allow the straightforward transcription of results between these fields, the
analogy has served its purpose and is at the end of its useful life; the fields
will have been grounded in a common discipline:

The day dawns when the illusion vanishes; intuition turns to certitude; the twin
theories reveal their common source before disappearing; as the Gita teaches us,
knowledge and indifference are attained at the same moment. Metaphysics has
become mathematics, ready to form the material for a treatise whose icy beauty no
longer has the power to move us. (Weil 1960: 408, my translation)

Bourbaki have often been the butt of criticism for having written such a
treatise, but its members were well aware that it is often the case that the
fields bearing the analogy present considerable resistance to their common
grounding. This appears to be the case in our example where Serge Lang,
another Bourbakiste, justifies his separate treatment of algebraic number
fields by pointing out that:

certain aspects of number fields are still shrouded in mystery while the correspond-
ing aspects of the function field case are cleared up. Thus a certain emphasis on
the peculiarities of number fields is not out of place. (Lang 1970: 175)

A similar point is also noted by Emily Grosholz in the paper mentioned
in section 4.2, in particular in the case of Stone duality:

Structural analogies are interesting not only in their development, but also in their
limitations. In the end, only a restricted portion of topology was amenable to
correlation with propositional logic; both fields, in resisting each other, show their
own characteristic and irreducible texture. (Grosholz 1985: 151)

We should not forget, however, that the incompleteness of an analogy at a
given moment is no indication that it may not be extended or subsumed
at a later date. But even if all is eventually explained, these glimpses of
some deeper explanation for structure similarity do not just operate briefly.
They may hang tantalisingly in the air for decades and play a crucial role
in directing research.

In the case considered in section 4.3, although the analogy between
algebraic number fields and algebraic function fields had proved immensely
rich, there was still the perception that much of the intricate structure
of the complex function fields was unavailable for transfer for want of a
broad enough bridge between the Riemannian and number field domains.
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To provide a broader conduit it was considered necessary to construct an
intermediate platform to provide support for a two-arched bridge. Just such
a support was found in the shape of function fields over finite constant or
Galois fields.

Weil (1960: 411–122) likens this new situation to that faced by
Champollion as he commenced his Herculean task of deciphering the
Rosetta Stone. The problem in this case is also to translate passages in the
text of one of the three languages into the other two languages. For example,
in the early 1920s Emil Artin in his doctoral thesis translated the statement
of the Riemann hypothesis into the middle language of ‘Galoisian’, where
it was proved some time later. Owing to our inability to translate this proof
back into Riemannian, the original hypothesis remains as yet unproven.
Artin also managed a two-step translation of a further construction from
Riemannian to number theory passing through Galoisian.

4.5 conclusion

I want to underscore the historical claim that the work of Weber and
Dedekind represented a significant moment in the movement of mathe-
matics towards what is often called a ‘structural’ outlook. The thoroughness
of their analogising gave great heart to this movement whose staging posts
include Hilbert, Noether and later Bourbaki. Not everyone has been so
enchanted as Weil by this style of mathematics, but it has certainly played
a major part in shaping the mathematics of the twentieth century.

For Weil (1940) the process of analogy formation resembles the work
of sculpting a hard piece of rock whose structure dictates the emerging
shape. But this inherent-structurist picture may of course be challenged.
Do function fields and number fields possess unusually strong structural
similarities to allow fruitful analogies to take place? Was the analogy forced
upon them? Is it perhaps easy to do this sort of thing for any two types
of mathematical entity? Is it just the way mathematicians expand into
unknown territory owing to their psychological make-up? The evidence
we need to argue for these positions lies all around us. For instance, the
programme described in Kreimer (2000) includes an attempt to restore
prime factorisation to Feynman diagrams based on an analogy with number
fields. Let’s get to work on these questions.

Finally, I would like to relate what we have discovered in this chapter on
human mathematics to the work of chapters 2 and 3 on automated math-
ematics. Note how we have seen mathematicians operating with ‘bite-size’
chunks of mathematical concepts: factorisation, primality, ramification,
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inertia, completions, embeddings. This is the order mathematicians work
at, and it seems to suit them because they need only employ, in a recursive
fashion, a manageable number of them. The gulf between human and com-
puter assisted analogical reasoning is broad. Mathematicians are operating
two levels up from Wos’s analogy or resonance via syntactical similarity
and one level up from Mellis’s analogy via proof plans. For a computer to
collaborate at the human level it would require one whose sophistication
resembled that of the assistant appearing in Gowers’s fantasy (2000b).





part ii

Plausibility, uncertainty and probability

To acquire insight into a discipline one needs to comprehend how its
practitioners reason plausibly. This is no less true for mathematics than it
is for science. Understanding how mathematicians choose which problems
to work on, how they formulate conjectures and the strategies they adopt
to tackle them all require considerations of plausibility. Furthermore, it is
also the case that the plausibility of a scientific theory may depend on the
plausibility of mathematical results. This has always been so, but now we
live in an era where for some physical theories the only testable predictions
are mathematical ones it is coming to the fore. Thus, if we are to understand
how physicists reckon on the plausibility of their theories, this must involve
paying due consideration to the effect of verifying uncertain mathematical
predictions.

Now, if one decides, as many have, to treat plausible and inductive rea-
soning in the sciences in Bayesian terms, it seems clear that one would want
to do the same for mathematics. After all, it would appear a little extravagant
to devise a second calculus. In any case, Bayesianism is usually presented
by its proponents as capable of treating all forms of uncertain reasoning.
If so, then we can say that Bayesianism in science requires Bayesianism
in mathematics. Once this is accepted, we shall respond in one of two
ways according to the discoveries made while examining Bayesianism in
mathematics:
I. Bayesianism cannot be made to work for mathematics, therefore

Bayesianism cannot give a complete picture of scientific inference.
II. Some forms of Bayesianism can be made to work for mathematics,

therefore one of these must be adopted by Bayesian philosophers to
give a more complete picture of scientific inference.

The arguments presented in chapter 5 indicate that the antecedent of I is
false and the antecedent of II true, opening the prospect of an expanded,
but modified, Bayesianism. Chapter 6 then investigates how the Bayesian
should integrate plausibility considerations in mathematics and science,
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and claims more generally that philosophers of science need to take much
greater account of the contribution of mathematical reasoning to science.

Those at the historically minded end of philosophy may view this turn to
Bayesianism with a jaundiced eye. Back in 1962, Kuhn warned of the prob-
lems of probabilistic verification theories (Kuhn 1962: 145–6) and Lakatos
was even less supportive (Lakatos 1968). We shall move on to Lakatos in
part III, but in the meantime, if Bayesianism gets us talking about plausi-
bility in mathematics and the role of mathematics in science, that can be
no bad thing.



chapter 5

Bayesianism in mathematics

Even in the field of tautology (i.e. of what is true or false by mere
definition, independently of any contingent circumstances) we always
find ourselves in a state of uncertainty. In fact, even a single verification
of a tautological truth (for instance, of what is the seventh, or billionth,
decimal place of π , or of what are the necessary or sufficient conditions
for a given assertion) can turn out to be, at a given moment, to a greater
or lesser extent accessible or affected with error, or to be just a doubtful
memory. (de Finetti 1974: 24)

After all, which is more compelling, a formal proof that in its full
exposition requires hundreds of difficult pages of reasoning, fully un-
derstood by only two or three colleagues, or the numerical verification
of a conjecture to 100,000 decimal digit accuracy, subsequently vali-
dated by numerous subsidiary computations?

(Bailey and Borwein 2001: 53)

5 . 1 introduction

In his Mathematics and Plausible Reasoning (Pólya 1954a, 1954b), Pólya sug-
gests that mathematics is the perfect domain in which to devise a theory
of plausible reasoning. After all, where else do you find such unequivo-
cal instances of facts satisfying general laws, and where else do you find
general laws being established so conclusively? As a noted mathematician
actively engaged in research, Pólya delightfully conveys inferential patterns
by means of examples of his own use of plausible reasoning to generate likely
conjectures and workable strategies for their proof. What concerns us in
this chapter is the fact that in the second of these two volumes, he works his
account of plausible reasoning into a probabilistic mould. It appears that
in doing so he became indebted to Bruno de Finetti, one of the founders
of modern subjective Bayesianism (Pólya 1941: 451).1 Moreover, he can be
1 ‘I owe much to a conversation which I had the pleasure of having with Bruno de Finetti’ (Pólya 1941:

451). In the same paper, he also indicates that he has read J. M. Keynes’ A Treatise on Probability
(ibid .: 462).
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viewed as a pioneer who influenced some later prominent Bayesians. Edwin
Jaynes certainly learned from his work, and it is clear that Judea Pearl has
read him closely. So, while he did not name himself as such, we may reason-
ably view Pólya as a member, or at least an associate, of the Bayesian camp.
But what are we to make of a Bayesian interpretation of mathematical
reasoning?

In sections 5.1 and 5.2 we shall be inquiring as to which varieties of
the many forms of Bayesianism are best able to accommodate math-
ematical reasoning. Bayesians commonly hold as tenets that logically
equivalent sentences should be believed by an ideal agent with equal
confidence and that any evidence should have an equal impact on their
degrees of belief in such sentences. However, this ideal throws little or
no light on plausible mathematical reasoning, since from its perspective
mathematicians can only be deemed to be failing dismally as soon as
they express the strength of their belief in mathematical propositions.
We are thus led to search for a reasonable relaxation of the strictures of
omniscience.

Arguing for such a relaxation is a thankless task. Half of your audience
take it to be so obvious that they accuse you of insulting their intelligence;
while the other half take it as such a hopelessly wrong-headed idea that they
insult your intelligence. Even so, I feel there is something to be said, and so
in section 5.2 I argue that if a Bayesian modelling of plausible reasoning in
mathematics is to be of value, then the assumption of logical omniscience
should be relaxed.

In Pólya’s version of Bayesianism in mathematics we have only the right
to specify the direction of change in the credence we give to a statement
on acquiring new information, not the magnitude. However, Edwin Jaynes
demonstrated that one of the central grounds for this decision on Pólya’s
part to avoid quantitative considerations was wrong. In section 5.3 I con-
sider whether there is any scope for a quantitative form of Bayesianism in
mathematics.

One criticism often made of Bayesian philosophy of science is that it does
not help very much in anything beyond toy problems. While it can resolve
simple issues, such as accounting for how observing a white tennis shoe
provides no confirmation for the law ‘all ravens are black’, it provides no
insight into real cases of theory appraisal and confirmation. Much rests on
the assignment of priors which, it is claimed, can be chosen to make most
pieces of scientific reasoning look reasonable. Recognising what is correct
in this criticism, I think there is still useful work to be done. In section 5.4
I shall be looking in particular at: reasoning by analogy; choice of
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proof strategy (for automated theorem proving); and large-scale induction
(particularly enumerative induction).

5 .2 probability theory as logic

Plausible reasoning in mathematics is, of course, necessary only because
mathematics does not emerge in the minds of mathematicians as it appears
on the pages of a journal article or textbook, that is, in its semi-rigorous
deductive plumage. Indeed, it is owing to the failure of what is called ‘logical
omniscience’, the capacity to know immediately the logical consequences
of a set of hypotheses, that mathematicians are forced to resort to what
amounts to a guided process of trial and error, not so dissimilar to that
employed in the natural sciences. So here we have something of a paradox:
plausible mathematical reasoning, the subject of Pólya’s analysis, was an
important source of ideas for some of the leading figures of Bayesianism,
and yet it is necessitated by the fact that people involved in this most
rigorous branch of knowledge cannot come close to adhering to the ideal
constituted by a widely held tenet of Bayesianism, namely, that logically
equivalent statements receive identical degrees of belief, or alternatively,
that tautologies be believed with degree of belief set at 1.

Let us illustrate this with a simple example. Imagine you are to bet on
the trillionth decimal place of π .2 As I write this, computers have ‘only’
reached the 206 billionth place, so this wager concerns a result that nobody
yet knows but which we may imagine will be settled in the not too distance
future. Surely it is reasonable for you to prefer a bet on this digit being
between 0 and 8, to one at the same odds on its being 9. If this is your pref-
erence, we can say that your degree of belief that this digit is 9 is less than 0.5.
If, however, 9 is the correct digit, then it follows as a ‘mere’ calculation from
one of the series expansions for π . That is, ‘π = 4(1 – 1/3+ 1/5 – 1/7+ · · ·)’
and ‘π = 4(1 – 1/3 + 1/5 – 1/7 + · · ·) & the trillionth decimal place of
π is 9’ would be logically equivalent and so to be believed with the same
confidence, and so the second bet should be preferred. Indeed, any degree
of belief for a digit of π which is strictly between 0 and 1 is incoherent from
the omniscient perspective, or, to use the language of Howson (2000),
adopting such degrees of belief cannot be done consistently.

Now, someone who wishes to retain the condition that tautologies be
believed to degree 1 might respond, as does Howson, that this is not a

2 Some Bayesianians object to the use of the language of gambling. Whatever I say here in this language
is readily translatable into other preferred idioms.
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problem, that ‘the possibility of inconsistency is like that of death, a con-
dition of life, an omni-present hazard’ (Howson 2000: 150), and that all
one need do is adjust Pr(A) to 1 on discovering that A is a logical truth. But
still one wants to reserve some kind of label to chastise the fool who offers
0.1 for a particularly digit being a ‘0’ and 0.2 for each of the other values,
to distinguish him for someone who reasonably offers 0.1 for each value of
the digit, but who must be ‘wrong’.

One of Howson’s arguments for retaining omniscience rests on an anal-
ogy with deductive logic. There, if I believe I have found a deductive proof
of a proposition, I now have confidence in its truth. If later a clear counter-
example is shown to me, I simply alter my truth ascription. I do not argue
for changes to be made to the inference rules to accommodate inconsistent
truth ascriptions.

One response to this point is to claim, as did Pólya (1954b: 112–16), that
deductive logic and Bayesian inference are qualitatively different. A mathe-
matician is cautious about what she alleges to have shown deductively. Were
she found to have erred on even 1 per cent of the theorems proved in her
papers, her credibility would be severely damaged. On the other hand, she
may use plausible inference to assess the plausibility of any statement based
on what she knows at present.3 And as soon as she announces non-extreme
degrees of belief for a set of mathematical statements, our understanding
that she is not logically omniscient should make us expect them to be in-
coherent in the omniscient sense. This will be so even for mathematicians
with an excellent sense of what is likely to be true. The question is whether
there are reasonable ways in which we can arrive at, what from a God’s eye
view are incoherent, degrees of belief on the basis of what we already know.

Howson (2000: 200–1) also introduces some interesting ideas about more
sophisticated statements such as ‘Peano Arithmetic is consistent’ (PAC).
Here we have a mathematical statement which is neither a logical truth
nor falsehood. Rather, it is a statement about which we have a considerable
amount of evidence (no discovery of inconsistency to date, proof of consis-
tency in stronger, but potentially inconsistent system, etc.), bearing on our
assessment of a degree of belief. Of course, there arises the issue of how one
could establish PAC, or settle a bet in favour of its truth if you prefer that
language, but let’s imagine that resolved. We would still want to allow as

3 Jaynes (forthcoming ch. 10: 21) has a similar view on the difference between deductive logic and
probability theory as logic: ‘Nothing in our past experience could have prepared us for this; it is a
situation without parallel in any other field. In other applications of mathematics, if we fail to use
all of the relevant data of a problem, the result will be that we are unable to get any answer at all.
But probability theory cannot have any such built-in safety device, because in principle, the theory
must be able to operate no matter what our incomplete information might be.’
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reasonable the possibility of assessing our degree of belief in a statement of
arithmetic below that given to PAC, when in fact the statement is provable
in Peano arithmetic, differentiating this from some foolish choice.

Someone alive to this difference is Ian Hacking. In his article, ‘Slightly
More Realistic Personal Probability’ (Hacking 1967), he sets out a hierarchy
of strengths of Bayesianism. These strengths he correlates with ways of
saying whether a statement can be possibly true. At the weaker end we find
a position he terms ‘realistic personalism’, where non-zero probabilities
will be attributed by a subject to any statement not known by them to be
false, knowledge being taken in a very strict sense: ‘a man can know how
to use modus ponens, can know the rule is valid, can know p, and can know
p ⊃ q, and yet not know q, simply because he has not thought of putting
them together’ (Hacking 1967: 319). At the stronger end we find logical
omniscience and divine knowledge.

Now clearly the coherence provided by realistic personalism is not
enough to equip you for a life as a gambler. For instance, it is advisable not
to advertise on a mathematics electronic bulletin board the odds at which
you would accept either side of a wager on a mathematical proposition
whose truth status you have every reason to believe has been settled. Dutch
Book arguments and their ilk, used to establish the irrationality of holding
degrees of belief not satisfying the probability axioms, do not prove your
irrationality on the grounds that someone may know more than you. If
they do know more than you, you will tend to lose whether the subject of
your bet is mathematics, physics or the date of the next general election.

An intermediate position between realistic personalism and logical om-
niscience involves considering mathematics as a body of knowledge, where
the ideal would be to know the sum of what leading researchers know.
This idealisation of being aware of all known mathematics is, unlike in the
case of omniscience, which offers little more by way of advice than to be
as perfect a logician as you can be, at least one which may be aspired to.
And it does seem that an acknowledged trait of a good mathematician is
that she can judge what is already known. For instance, the mathematician
Stanislaw Ulam tells us that:

As for myself, I cannot claim that I know much of the technical material of
mathematics. What I may have is the feeling for the gist, or maybe only the gist
of the gist, in a number of fields. It is possible to have this knack for guessing or
feeling what is likely to be new or already known, or else not known, in some
branch of mathematics, where one does not know the details. I think I have the
ability to a degree and can often tell whether a theorem is known, i.e., already
proved, or is a new conjecture. (Quoted in Gardner 1983: 143)
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But this capacity is becoming less important with the advent of new tech-
nology. The arrival of MathSciNet, an online database of abstracts, allows
mathematicians to determine what is currently happening in specific re-
search areas. As David Eisenbud remarks:

This allows me to search through the body of mathematical knowledge in a way
that was never before possible. When I’m thinking about a new area, I can go
to a computer and quickly see what has and what hasn’t been done. (Eisenbud
2001: 651)

Thinking in terms of such communal knowledge points the intrepid
Bayesian philosopher of mathematics to look into the intricacies of what
actually happens in mathematics departments to find out how this body
grows.

It is interesting to speculate why Pólya has been so little taken up on
his Bayesianism in mathematics by philosophers. What is the underlying
intuition behind the avoidance of a Bayesian treatment of plausible and
inductive reasoning in mathematics? We can begin to understand what is at
stake when we read Mary Hesse’s claim that ‘since mathematical theorems,
unlike scientific laws, are matters of proof , it is not likely that our degree of
belief in Goldbach’s conjecture is happily explicated by probability func-
tions’ (1974: 191). There are two responses to this. First, while it is true
that the nature of mathematics is characterised like no other discipline by
its possession of deductive proof as a means of attaining the highest confi-
dence in the trustworthiness of its results, proofs are never perfectly secure.
Second, and more importantly, what gets overlooked here is the preva-
lence in mathematics of factors other than proof for changing degrees of
belief.

The lack of attention plausible mathematical reasoning has received re-
flects the refusal of most English-language philosophers of mathematics to
consider the way mathematical research is conducted and assessed. On the
basis of this refusal, it is very easy then to persist in thinking of mathe-
matics merely as a body of established truths. As classical deductive logic
may be captured from a probability calculus which permits propositions to
have probabilities either 0 or 1, the belief that mathematics is some kind of
elaboration of logic and that the mathematical statements to be considered
philosophically are those known to be right or wrong go hand in hand.
We could say in fact that mathematics has suffered philosophically from its
success at accumulating knowledge since this has deflected philosophers’
attention from mathematics as it is being developed. But one has only to
glance at one of the many survey articles in which mathematicians discuss
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the state of play in their field, to realise the vastness of what they know
to be unknown but are very eager to know, and about which they may be
thought to have degrees of belief equal neither to 0 nor to 1.4

We shall see in section 4.4 how mathematical evidence comes in very dif-
ferent shapes and sizes. But even remaining with ‘proved’ or well-established
statements, although there would appear to be little scope for plausible rea-
soning, there are a number of ways that less than certain degrees of belief can
be attributed to these results. David Hume described this lack of certainty
well:

There is no Algebraist nor mathematician so expert in his science, as to place entire
confidence in his proof immediately on his discovery of it, or regard it as any thing,
but a mere probability. Every time he runs over his proofs, his confidence encreases;
but still more by the approbation of his friends; and is rais’d to its utmost perfection
by the universal assent and applauses of the learned world. Now ’tis evident, that
this gradual encrease of assurance is nothing but the addition of new probabilities,
and is deriv’d from the constant union of causes and effects, according to past
experience and observation. (Hume 1739: 180–1)

Perfect credibility may be difficult to achieve for proofs taking one of a
number of non-standard forms, from humanly generated unsurveyable
proofs to computer assisted proofs to probabilistic proofs. These latter
include tests for the primality of a natural number, n. Owing to the fact that
more than three-quarters of the numbers less than n are easily computed
‘witnesses’ to its being composite, if such is the case, a relatively small
sample will provide us either with a proof of compositeness or else with
very powerful evidence for n being prime, and we can prolong this sampling
to reduce doubt as far as we care to.

While a certain amount of suspicion surrounds the latter type of ‘proof’,
from the Bayesian perspective, one can claim that all evidence shares the
property that it produces changes in some degrees of belief. The ques-
tion of whether there is any qualitative difference in the epistemic import
of different types of proof has been examined by Don Fallis (1997), who
considers many possible ways of distinguishing epistemically between de-
ductive proofs and probabilistic proofs and finds none of them adequate.
Fallis centres his discussion around ‘proofs’ which involve clever ways of get-
ting strands of DNA to react to model searches for paths through graphs,
putting beyond reasonable doubt the existence or non-existence of such
paths. Despite there being here a reliance on biochemical knowledge, Fallis

4 I mean to exclude here the immense tracts of totally uninteresting statements expressible in the
language of ZFC in which one will never care to have a degree of belief.
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still sees no qualitative difference as regards the justificatory power of this
type of proof. Confidence in mathematical statements is being determined
by natural scientific theory. This appears less surprising when you consider
how complicated, yet well modelled, configurations of silicon can be used
to generate evidence for mathematical propositions.

The less controversial part of the position Fallis is examining may be
expressed in Bayesian terms as follows.5 The reliability of a mathematical
statement is dependent solely on your rational degree of belief in that
statement conditioned on all the relevant evidence. Whatever level you
set yourself (0.99 or 0.99999), the type of evidence which has led you
there is irrelevant. You may judge that a 10,000-page proof provides as
much support as a probabilistic proof or the non-appearance of a counter-
example. To contemplate the reliability of a result in a particular field we
should think of someone from outside the field asking a specialist for their
advice. If the trustworthy expert says she is very certain that the result may
be relied upon, does it matter to the enquirer how the specialist’s confidence
arises? This depiction could be taken as part of a larger Bayesian picture.
The very strong evidence we glorify with the name ‘proof’ is just as much
a piece of evidence as is a verification of a single consequence. Bayesianism
treats in a uniform manner not just the very strong evidence that Fallis
considers, but all varieties of partial evidence. Let us now see what we are
to make of this partial evidence.

5 .3 quantitative bayesianism

As I have said, Pólya (1954b: 112–16) understood plausible inference to be
quite different from deductive logic. In his opinion, deductive logic is:
(a) Impersonal – independent of the reasoner
(b) Universal – independent of the subject matter
(c) Self-sufficient – nothing beyond the premises is needed
(d) Definitive – the premises may be discarded at the end of the argument.
On the other hand, plausible inference is characterised by the following
properties:
(a) The direction of change in credibility is impersonal, but the strength

may be personal
(b) It can be applied universally, but domain knowledge becomes impor-

tant for the strength of change, so there are practical limitations

5 He points out (private communication), however, that he is not necessarily committed to a Bayesian
analysis of this position, nor does he deny other epistemic virtues of traditional proofs.
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(c) New information may have a bearing on a plausible inference, causing
one to revise it

(d) The work of plausible inference is never finished as one cannot predict
what new relevant information may arise.

In this section we shall be concerned with numerical and even algorithmic
kinds of Bayesianism. It is clear that the strength of a mathematician’s belief
in the correctness of a result has an impact on their practice: Andrew Wiles
would hardly have devoted seven years to Fermat’s Last Theorem had he
not had great faith in its veracity. No doubt we could give a complicated
Bayesian reconstruction of his decision to do so in terms of the utility of
success, the expected utility of lemmas derived in a failed attempt, and
so on. For a simpler example, let us give a Bayesian reconstruction of the
following decision of the French Academy:

The impossibility of squaring the circle was shown in 1885, but before that date
all geometers considered this impossibility as so ‘probable’ that the Académie des
Sciences rejected without examination the, alas!, too numerous memoirs on this
subject that a few unhappy madmen sent in every year. Was the Académie wrong?
Evidently not, and it knew perfectly well that by acting in this manner it did not
run the least risk of stifling a discovery of moment. The Académie could not have
proved that it was right, but it knew well that its instincts did not deceive it. If
you had asked the Academicians, they would have answered: ‘We have compared
the probability that an unknown scientist should have found out what has been
vainly sought for so long, with the probability that there is one madman the more
on earth, and the latter has appeared to us the greater.’ (Poincaré 1905: 191–2)

These alternatives, being mad and being right, were hardly exhaustive.
Leaving aside the person’s sanity we can contrast the probability that their
proof is correct with the probability that it is incorrect:

Pr(proof correct | author unknown)=
Pr(proof correct | author unknown, result true)·
Pr(result true | author unknown) +
Pr(proof correct | author unknown, result false)·
Pr(result false | author unknown).

Assuming we are dealing with a consistent system in which a false result
cannot be proved correctly, and assuming that the existence of the unknown
author has no bearing on the truth of the result, we have then:

Pr(proof correct | author unknown)=
Pr(proof correct | author unknown, result true)·
Pr(result true).
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Substituting reasonable estimates of the Académie’s degrees of belief will
lead to a very small value for this last expression because its two factors are
small. So small indeed that even though the gain of discovering a correct
proof greatly outweighs the effort wasted in discovering a flaw in a submitted
proof, greater expected utility arises from consigning it to the bin. On the
other hand, a submitted proof of the possibility of squaring the circle by
a known mathematician, or a submitted proof of its impossibility by an
unknown author would presumably have been dealt with more tolerantly.
Of course, the credibility of even the best-known mathematicians will not
be judged to be uniform. Listen to Jacobi in 1846: ‘When Gauss says he
has proved something, I think it very likely; when Cauchy says it, it is
a fifty-fifty bet; when Dirichlet says it, it is certain’ (Laugwitz 1999: 63).
Standards have evidently improved.

Notice that this reconstruction would not seem to require one to go
beyond vague talk of very high or very low probabilities. By contrast, when
it comes to offering a betting ratio for the trillionth decimal digit of π

being 9, it would seem to be eminently reasonable to propose precisely
1/10. What appears to determine this value is some form of the principle
of indifference based on our background knowledge. With a simple grasp
of the idea of a decimal expansion we simply have no reason to believe
any single digit more likely than any other. Those who know a little more
may have heard that to date there is neither statistical evidence nor theo-
retical explanation for any lack of uniformity in the known portion of the
expansion, probably rendering them much less likely to be swayed in their
betting ratio by a spate of 9s occurring shortly before the trillionth place.
Those who have read (Bailey and Crandall 2001) may have been persuaded
by their use of dynamical systems theory to argue for the normality of π ,
and be extremely resistant to changing their betting ratio. So, unless some
dramatic piece of theoretical or empirical evidence is found, it seems that
most mathematicians would stick with the same betting ratio until the
point when they hear that computers have calculated the trillionth place.

Do we require a quantitative, or even algorithmic, form of Bayesianism
to allow us to explicate plausible mathematical reasoning, or, like Pólya,
should we make do with a qualitative form of it? First, it will be helpful for
us to contrast Pólya’s position with that of Jaynes. For Jaynes, Pólya was an
inspiration. Indeed, he

was the original source of many of the ideas underlying the present work. We show
how Pólya’s principles may be made quantitative, with resulting useful applications.
(Jaynes forthcoming, ch. 1: 3)
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Jaynes was positioned at the objectivist end of the Bayesian spectrum.
In other words, his aim was to establish principles (maximum entropy,
transformation groups, etc.) applicable in as many situations as possible, in
which a reasonable being could rationally decide on their prior probabilities.
Pólya, on the other hand, reckoned that one would have to stay with a
qualitative treatment (e.g. if A is analogous to B and B becomes more likely,
then A becomes somewhat more likely), in that the direction of changes to
confidence might be determined but not their strength. But Jaynes claimed
that this decision was based on a faulty calculation made by Pólya when
he was considering the support provided to Newton’s theory of gravitation
by its prediction of the existence and location of a new planet, now called
Neptune. The incorrect calculation occurred when Pólya was discussing
the boost to confidence in Newtonian gravitation brought about by the
observation of a previously unknown planet precisely where calculations
predicted it to be, based on observed deviations in Uranus’s orbit.

Pólya takes Bayes theorem in the form,

Pr(Newt. Grav.| Neptune) = Pr(Newt. Grav.)·
Pr(Neptune | Newt. Grav.)/Pr(Neptune),

where Pr(Neptune) corresponds to a scientist’s degree of belief that the
proposed planet lies in the predicted direction. For the purposes of the
calculation, he estimates Pr(Neptune) in two ways. First, he calculates
the probability of a point lying within one degree of solid angle of the pre-
dicted direction, and arrives at a figure of 0.00007615 ≈ 1/13100. Second,
on the grounds that the new planet might have been expected to lie on the
ecliptic, he uses the probability of a point on a circle lying within one de-
gree of the specified position, yielding a value for Pr(Neptune) of 1/180.
He then argues that Pr(Newtonian Gravitation) must be less than
Pr(Neptune), otherwise Bayes’s theorem will lead to a posterior probabil-
ity greater then 1, but that it is unreasonable to imagine a scientist’s degree
of belief being less than even the larger figure of 1/180, since Newtonian
Gravitation was already well confirmed by that point. He concludes, ‘We
may be tempted to regard this as a refutation of the proposed inequality’
(1954b: 132), and suggests we return to a safer qualitative treatment.

However, as Jaynes points out, Pólya’s calculations were in fact of the
prior to posterior odds ratio of two theories: on the one hand, Newtonian
gravitation and, on the other, a theory which predicts merely that there be
another planet, firstly anywhere and secondly on the ecliptic. Indeed, from
the confirmation, Newtonian gravitation is receiving a boost of 13100 or
180 relative to the theory that there is one more planet somewhere. Pólya
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had forgotten that if Pr(Newtonian Gravitation) is already high then
so too would be Pr(Neptune).

We are told by Jaynes that Pólya realised his mistake and went on to
participate vigorously in the former’s lectures at Stanford University in the
1950s. However, Pólya had given several further arguments against quan-
titative plausible reasoning, so even if Jaynes could block this particular
argument, one would need to confront the others. Reading through them,
however, one notes that Pólya is making fairly standard points – the in-
comparability of evidence and conjectures, problems with the principle
of indifference, etc. – which Bayesians such as Jaynes have responded to
elsewhere.

Could it be that your background predisposes you to adopt a certain type of
Bayesianism? The physicist relies on sophisticated symmetry considerations
pertaining to the physical systems and instruments producing the data,
the philosopher of science on vaguer considerations of theory evaluation,
while the economist must integrate a mass of data with her qualitative,
quasi-causal understanding of the economy. Are disputes among Bayesians
like the blind men feeling different parts of an elephant?

Bayesianism applied to reasoning in the natural sciences appears to fall
into two rather distinct categories:
(1) Analysis of data from, say, nuclear magnetic resonance experiments or

astrophysical observations, permitting model comparison and param-
eter estimation

(2) Plausible reasoning of scientists by philosophers of science (e.g. Franklin
1986).

We may wonder how strong the relation is between them. Rosenkrantz
(1977) attempted a unified treatment, and he indicates by his subtitle
Towards a Bayesian Philosophy of Science that a treatment of history and
philosophy of science issues alongside statistical issues should be ‘mutually
enriching’ (ibid .: xi).

Jaynes himself was less sure about how far one could take the historical
reconstructions of scientific inference down a Bayesian route. After his
discussion of Pólya’s attempt to quantify Neptune discovery he claims:

But the example also shows clearly that in practice the situation faced by the
scientist is so complicated that there is little hope of applying Bayes’ theorem
to give quantitative results about the relative status of theories. Also there is no
need to do this, because the real difficulty of the scientist is not in the reasoning
process itself; his common sense is quite adequate for that. The real difficulty is
in learning how to formulate new alternatives which fit better the facts. Usually,
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when one succeeds in doing this, the evidence for the new theory soon becomes so
overwhelming that nobody needs probability theory to tell him what conclusions
to draw. (Jaynes forthcoming, ch. 5: 17)

This note occurs in a chapter entitled ‘Queer Uses of Probability’, by which
he intends that at present we have no rational means for ascribing priors.
So, despite his professed debt to Mathematics and Plausible Reasoning , we
find two poles of Bayesianism represented by Jaynes and Pólya. For Jaynes,
any two rational agents possessing the same information will assign iden-
tical probability functions. For Pólya, two experts with the same training
may accord different changes to their degrees of belief on discovery of the
same fact. One imagines a machine making plausible inferences, the other
emphasises the human aspect.

Jaynes:

instead of asking, ‘How can we build a mathematical model of human common
sense?’ let us ask, ‘How could we build a machine which would carry out useful
plausible reasoning, following clearly defined principles expressing an idealized
common sense?’ (Jaynes forthcoming, ch. 1: 5)

Pólya:

A person has a background, a machine has not. Indeed, you can build a machine
to draw demonstrative conclusions for you, but I think you can never build a
machine that will draw plausible inferences. (Pólya 1954b: 116)

Perhaps it is the lack of exactitude which steers Jaynes away from modelling
scientific reasoning. After a lifetime investigating how symmetry consider-
ations allow the derivation of the principles of statistical mechanics, it must
be difficult to adapt to thinking about plausibility in complex situations of
hypothesis assessment.

But if a physicist may be excused, what of a philosopher? John Earman,
while discussing how a physicist’s degrees of belief in cosmological propo-
sitions were affected by the appearance of General Relativity on the scene,
tells us:

But the problem we are now facing is quite unlike those allegedly solved by clas-
sical principles of indifference or modern variants thereof, such as E. T. Jaynes’s
maximum entropy principle, where it assumed that we know nothing or very little
about the possibilities in question. In typical cases the scientific community will
possess a vast store of relevant experimental and theoretical information. Using
that information to inform the redistribution of probabilities over the competing
theories on the occasion of the introduction of the new theory or theories is a
process that is, in the strict sense of the term, arational: it cannot be accomplished
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by some neat formal rules, or, to use Kuhn’s term, by an algorithm. On the other
hand, the process is far from irrational, since it is informed by reasons. But the
reasons, as Kuhn has emphasized, come in the form of persuasions rather than
proof. In Bayesian terms, the reasons are marshalled in the guise of plausibility
arguments. The deployment of plausibility arguments is an art form for which
there currently exists no taxonomy. And in view of the limitless variety of such
arguments, it is unlikely that anything more than a superficial taxonomy can be
developed. (Earman 1992: 197)

There seems to be no expectation here that even a qualitative Bayesianism
can help us go beyond such a ‘superficial taxonomy’, a rather pessimistic
analysis for a professed Bayesian. Does the ‘limitless variety’ of these ar-
guments mean that we should not expect to find patterns among them?
Despite the talk of their deployment being an ‘art form’, Earman does allow
himself to talk about the objective quality of these plausibility arguments.
Indeed, he claims that:

Part of what it means to be an “expert” in a field is to possess the ability to recognize
when such persuasions are good and when they are not. (Earman 1992: 140)

Interestingly, it is Pólya the ‘expert’ in mathematics who believes that it
is possible to extract the patterns of good plausibility arguments from his
field.

So, out of the three, Jaynes, Pólya and Earman, representatives of three
different types of Bayesianism, it is Pólya who believes one can say some-
thing quite concrete about plausible reasoning. All realise that plausible
reasoning is a very complex process. Neither Jaynes nor Earman can see a
way forward with plausible scientific reasoning. This leaves Pólya who gets
involved with real cases of (his own) mathematical reasoning, which he goes
on to relate to juridical reasoning and reasoning about one’s neighbour’s
behaviour. Is he right to claim that mathematics provides a better launch
pad to tackle everyday reasoning than does science?

If we want a fourth Bayesian to complete the square, we might look to
the computer scientist Judea Pearl. Like Pólya, Pearl believes we can formu-
late the principles of everyday common sense reasoning, and like Jaynes he
thinks Bayesian inference can be conducted algorithmically. To be able to
do the latter requires a way of encoding prior information efficiently to
allow Bayesian inference to occur. For Pearl (2001) humans typically store
their background information in the form of causal knowledge. The repre-
sentation of this causal knowledge in a reasonably sparse Bayesian network
is the means by which a machine can be made to carry out plausible rea-
soning and so extend our powers of uncertain reasoning.
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In earlier work (Pearl 1988) expressed his appreciation of Pólya’s ideas, and
yet found fault with his restriction to the elucidation of patterns of plausible
reasoning rather than a logic. He considers Pólya’s loose characterisation of
these patterns not to have distinguished between evidence factoring through
consequences and evidence factoring through causes. For instance, Pólya
asserts that when B is known to be a consequence of A, the discovery that B
holds makes it more likely that A holds. But this relies on the assumption,
which he fails to make explicit, that B is all one has learnt. Otherwise, this
pattern constitutes a well-known fallacy of causal reasoning. I see that the
sprinkler on my lawn is running and that the grass is wet, but this does not
make it more probable to me that it has rained recently even though wet
grass is a consequence of it having done so.

So, Pólya seems to have overlooked the possibility that there may be more
than one known potential cause of an event. Now, we might want to say that
this is due to his working in mathematics where casual considerations are
not at stake. However, one need not remain with causal stories to illustrate
this fallacy. A consequence of a natural number being divisible by four is
that it is even. I find that a number I seek is either 2 or 6. Although I
have learnt that it is even, this discovery reduces the probability of its being
divisible by 4 to zero. Essentially, what Pólya overlooked was the web-like
nature of our beliefs, departing from patterns involving two propositions
only when he considered the possibility of two facts having a common
ground. In Bayesian networks, converging arrows are equally important
but must be treated differently.

A more daring response to the claim that causes are not operative in
mathematics is to deny it. In the Hellenistic era, when a broader conception
of cause prevailed, this would not seem unreasonable. Proclus remarks
that ‘Many persons have thought that geometry does not investigate the
cause, that is, does not ask the question “why?”’, but then argues that
they are mistaken (Morrow 1970: 158–9). As Mancosu (1996) explains, the
notion of cause was also at play in seventeeth-century mathematics. Today,
mathematicians are happy to say that the existence of the octonions is what
causes the periodicity of the homotopy groups of O(∞), the inductive limit
of O(n), or that the reason that there are exceptional Lie groups is because the
covering group of SO(8) has an outer automorphism. More generally, when
you are studying a mathematical object which displays a certain property,
it is very common to wonder which features of the object are ‘responsible
for’ that property.

It remains to be seen whether the techniques of Bayesian networks may
illuminate scientific and mathematical inference. Now we shall turn our
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attention to examine what Bayesianism has to say about certain aspects of
mathematical reasoning.

5 .4 what might be achieved by bayesianism
in mathematics

Varieties of mathematical evidence may be very subtle, lending support to
Earman’s and Jaynes’s scepticism. Pólya (1954b: 111) himself had the intu-
ition that two mathematicians with apparently similar expertise in a field
might have different degrees of belief in the truth of a result and treat ev-
idence for that result differently. Even though each found a consequence
of the result equally plausible, the establishment of this consequence could
have an unequal effect on their ratings of the likelihood of the first result
being correct. The complex blending of the various kinds of evidence ex-
perienced through a mathematician’s career would explain the differences
in these reactions, some of which might be attributable to aspirations on
the part of each of them either to prove or disprove the theorem. But Pólya
goes further to suggest that such differences of judgement are based on ‘still
more obscure, scarcely formulated, inarticulate grounds’ (ibid .).

Certainly, evidence for the correctness of a statement may be very subtle.
It may even arise through an experience of failure. In chapter 7 we shall
see that, while proving the so-called ‘duality theorem’, Poincaré had come
to realise that an assumption he was making about the way differential
manifolds intersect was invalid in general. However, he still believed that
the general strategy of constructing for a given set of manifolds of equal
dimension a manifold of complementary dimension which intersected each
of the members of the set exactly once could be made to work. He just
needed to have the intersections occur in a more controlled fashion. One
can only guess how this experience impacted on his degree of belief in the
duality theorem. It is quite probable that even though the initial proof
was found to be wrong, the experience of near success with a variant of
a strategy gave him hope that another variant would work. It must also
happen, however, that mathematicians are discouraged by such setbacks.

Evidence can also involve the non-discovery of something, as Sherlock
Holmes well knew when he built his case on the observation of a dog that
did not bark. The classic example of the unsurveyable human-generated
kind of proof at the present time is the classification of finite simple groups
into 5 infinite families and 26 sporadic outsiders. How does one’s degree
of belief in this result depend on such potentially flawed lengthy evidence?
Fallis (1997) has Gorenstein, the driving force behind the collective proof,
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confessing that confidence is boosted less by the proof itself than by the fact
that no other such groups have been found. Similarly, remarks are often to
be heard concerning the consistency of ZFC that one would have expected
to have encountered a contradiction by now.

We should also remember that evidence for mathematical propositions
comes from sources which have only recently become available, as for
example in the case of computers. Reliance on computer evidence raises
some novel issues. Oscar Lanford is attributed with pointing out that:

in order to justify a computer calculation as part of a proof . . . , you must not
only prove that the program is correct (and how often is that done?) but you must
understand how the computer rounds numbers, and how the operating system
functions, including how the time-sharing system works. (Hirsch 1994: 188)

Moreover, if more than one piece of computer evidence is being considered,
how do we judge how similar they are for conditionalising purposes? This
would require one to know the mathematics behind any similarities between
the algorithms utilised.

It is clear then that any account of mathematical inference will require a
very expressive language to represent all the various forms of evidence which
impact on belief in mathematical propositions. The Bayesian wishing to
treat only propositions couched in the language of the object level might
hope to be able to resort to Jeffrey conditionalisation, but this comes at the
price of glossing over interesting features of learning. Concerning scientific
inference, Earman (1992: 196–8) asserts that many experiences will cause
the scientist to undergo what he calls non-Bayesian shifts in their degrees of
belief, i.e., ones unaccountable for by any form of algorithmic conditional-
isation. These shifts, the resetting of initial probabilities, are very common,
he claims, arising from the expansion of the theoretic framework or from
the experience of events such as ‘[n]ew observations, even of familiar scenes;
conversations with friends; idle speculations; dreams’ (1992: 198).

One might despair of making any headway, but taking Pólya as a guide we
may be able to achieve something. While recognising that making sense of
plausible reasoning in mathematics will not be easy, I believe that three key
areas of promise for this kind of Bayesianism in mathematics are analogy,
strategy and enumerative induction.

Analogy

As we saw in chapter 3, before turning to a probabilistic analysis of plausible
reasoning in the second volume of Mathematics and Plausible Reasoning ,
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Pólya had devoted the first volume (1954a), as its subtitle suggests, to the
themes of analogy and induction. Now, analogies vary as to their precision.
When vague they contribute to what he called the general atmosphere sur-
rounding a mathematical conjecture, which he contrasts to pertinent clear
facts. While verifications of particular consequences are straightforwardly
relevant facts, the pertinence of analogical constructions may be hard to
discern precisely.

Let us illustrate this with an example. At the present time, the vast
majority of mathematicians have a high degree of belief in the Riemann
Hypothesis. Recall that the Riemann zeta function is defined as the analytic
continuation of ζ (s) = �n−s summed over the natural numbers, and that
the hypothesis claims that if s is a zero of ζ (s), then either s= –2, –4, –6, . . . ,
or the real part of s equals 1/2. Many roots have been calculated (including
the first 1.5 billion zeros in the upper complex plane along with other
blocks of zeros), all confirming the theory, but despite this ‘overwhelming
numerical evidence, no mathematical proof is in sight’ (Cartier 1992: 15). As
Bayesians have explained, there are limits to the value of showing that your
theory passes tests which are conceived to be very similar. If, for example,
a further 100 million zeros of the zeta function are found to have their real
part equal to 1/2, then little change will occur in mathematicians’ degrees
of belief, although a little more credibility would be gained if this were
true of 100 million zeros around the 1020th, which is precisely what has
happened.

In this example the clear facts making up the numerical evidence can lend
only limited credence by themselves. After all, there are ‘natural’ properties
of the natural numbers which are known to hold for exceedingly long
initial sequences. What counts in addition beyond evidential facts, however
numerous, is the credibility of stronger results, general consequences and
analogies. Indeed, if an analogy is deemed strong enough, results holding
for one side of it are thought to provide considerable support for their
parallels. Concerning the Riemann conjecture (RC), we are told that:

There is impressive numerical evidence in its favour but certainly the best reason
to believe that it is true comes from the analogy of number fields with function
fields of curves over finite fields where the analogue of RC has first been proved by
A. Weil. (Deninger 1994: 493)

This analogy,6 we saw in chapter 4, was postulated early in this century as a
useful way of providing a halfway house across Dedekind and Weber’s older

6 See also Katz and Sarnak (1999), in particular the table on p. 12.
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analogy from algebraic number fields to function fields over the complex
numbers. The more geometric side of the analogy Deninger mentions
was able to absorb cohomological techniques, allowing Weil to prove the
Riemann hypothesis analogue in 1940. An extraordinary amount of effort
has since been expended trying to apply cohomology to number theory
(Weil, Grothendieck, Deligne, etc.) with the establishment of the standard
Riemann hypothesis as one of its aims.

How should we judge how analogous two propositions, A and B, are to
each other? For Pólya (1954b: 27) it correlates to the strength of your
‘hope’ for a common ground from which they both would naturally follow.
Of course, how this hope is to be assessed will depend on your sense of the
relatedness of mathematical facts. This sense seems to vary between indi-
vidual mathematicians, and also between communities of mathematicians.
The effect of the success of the Dedekind–Weber analogy could only have
been to strengthen the idea of mathematics’ connectivity and so to have
encouraged the hope for common ground in a wider range of situations.

With a conjectured common ground H in place, Pólya argues, an increase
in confidence in A will then feed up to it and then back down to B.7 Recall
from chapter 4 that in Pólya’s principal example, Euler noticed that the
function sin x/x resembles a polynomial in several respects: it has no poles;
it has the right number of zeros, which do not accumulate; it behaves
symmetrically at ±∞. On the other hand, unlike a polynomial, sin x/x
remains bounded. Even with this disanalogy, it seemed plausible that sin
x/x shared enough of the properties of polynomials that it would possess
those ‘responsible for’ allowing factorisation in the case of the latter, giving
him the confidence to try ‘factorising’ the Taylor expansion.

It might be that what is happening here is something similar to what Pearl
(2000) has termed the ‘transfer of robust mechanisms to new situations’.
We have a mechanism that links factorisation of a function to its zeros.
We find it applies for complex polynomials and wonder whether it may be
extended. Features of polynomials that may be required in the new setting
are that they have the right number of zeros, they remain bounded on
compact sets, and they behave similarly at ±∞. Might the mechanism be
expected to work for a non-polynomial function possessing these features,
such as sin x/x? What if you force the variable measuring the number of
roots to be infinite? We may find it hard to estimate quantitatively the
similarity between a function like sin x/x and a complex polynomial, but

7 Notice here the flavour of a Bayesian network: H pointing to both A and B.
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it is clear that tan x/x or exp x are less similar, the former having poles, the
latter having no zeros and asymmetric behaviour at ±∞, and indeed the
mechanism does fail for them.

In this case, once the realisation that an analogy was possible, it did not
cost much to work through the particular example. Euler hardly needed
to weigh up the degree of similarity since calculations of the sum quickly
convinced him that sin x/x could be factorised. However, to develop a gen-
eral theory of the expansion of complex functions did require greater faith
in the analogy. It paid off when further exploration into this mechanism
permitted mathematicians to form a very general result concerning entire
complex functions, providing the ‘common ground’ for the analogues.

Strategy

Moving on now to strategy, the title of Deninger’s (1994) paper – ‘Evidence
for a Cohomological Approach to Analytic Number Theory’ – is also rel-
evant to us. His aim in this paper is to increase our degree of belief that a
particular means of thinking about a field will lead to new results in that
field. This is a question of strategy. At a finer level one talks of tactics. Re-
searchers from the AI community working on automated theorem proving,
have borrowed these terms. In chapter 2, we mentioned the tactic devised
by Larry Wos (Wos and Pieper 1999) which involves thinking in terms of
how probable it is that the computer can reach the target theorem from a
particular formula generated from the hypotheses during the running of the
program. This tactic takes the form of a weighting in the search algorithm
in favour of formulas which have a syntactical form matching the target.

Elsewhere, researchers in Edinburgh have been interested in the idea of
the choice of tactics (Bundy 1999). There is an idea of likening mathematics
to a game of bridge where the mathematician, like the declarer, has some
information and a range of strategies to achieve their goal (finesse, draw
trumps, squeeze). Of course, there is a difference. In bridge, you are in the
dynamic situation where you cannot try out every strategy, as the cards get
played. This forces you to pay very close attention to which tactics have
the best chance of working. In mathematics, on the other hand, with a
computer it does not cost you much to try things out, although one does
risk combinatorial explosion.

At present, although probabilities are being used by the Edinburgh group
for their computer bridge player, they are not yet being used for their
automated theorem provers. While the computer has a small repertoire of
syntactical tactics (rippling, resonance, heat, etc.) there is less need for an
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assessment of the chance of each working, but presumably the number of
proof techniques will grow.

I mentioned at the end of chapter 4 that Gowers (2000b) describes a
fantastic proof assistant, a kind of surrogate supervisor, able to suggest proof
techniques based on extensive experience of what tends to work in specific
problem situations, and vast knowledge of the literature. If such a device
ever comes to be built, we might foresee a role for Bayesianism, and its
constructors will no doubt have Pólya to thank. To give a brief flavour of
his ideas, when planning to solve a problem, any of the following should
increase your confidence in your plan (Pólya 1954b: 152–3):
(1) Your plan takes all relevant information into account.
(2) Your plan provides for a connection between what is known and what

is unknown.
(3) Your plan resembles some which have been successful in problems of

this kind.
(4) Your plan is similar to one that succeeded in solving an analogous

problem.
(5) Your plan succeeded in solving a particular case of the problem.
(6) Your plan succeeded in solving a part of the problem.
Whether automated reasoning devices can prosper by simulating these
considerations in a probabilistic framework remains to be seen.

Enumerative induction

Besides the incorrect Bayesian calculation of the confirmation provided by
the observation of Neptune, Pólya does resort to a quantitative sketch in
another place (1954b: 96–7). Here he outlines how one might think through
the boost to the credibility of Euler’s formula for a polyhedron (vertices –
edges + faces = 2) known to hold for some simple cases, when it is found
to be true of the icosahedron. (12 – 30 + 20 = 2). Pólya’s approach is to
reduce the problem to the chances of finding three numbers in the range
1 to 30 with the property that the second is equal to the sum of the other
two, i.e., (V – 1) + (F – 1) = E. The proportion of these triples is around
1 in 60, providing, Pólya argues, a boost of approximately 60 to the prior
probability of Euler’s conjecture. Here again we see the same problem that
Jaynes located in the Neptune calculation. The ratio of the likelihood of
the Euler conjecture compared to that of its negation is 60.

In any case Pólya’s construction can only be viewed as sketchy. It is not
hard to see that the number of edges will always be at least as great as one
and a half times the number of faces or the number of vertices. (For the
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latter, for example, note that each edge has two ends, but at least three of
these ends coincide at a vertex.) Thus one should have realised that there are
further constraints on the possible triples and hence that the likelihood ratio
due to the evidence for the Euler formula should have been in comparison
to better informed rival conjecture, and so not so large. But the interesting
point is that Pólya goes on to say that:

If the verifications continue without interruption, there comes a moment, sooner
or later when we feel obliged to reject the explanation by chance. (1954b: 97)

The question then arises as to whether one is justified in saying such a thing
on the basis of a finite number of verifications of a law covering an infinite
number of cases. This will hinge on the issue of the prior probability of
such a law.

Now, consider Laplace’s rule of succession. If you imagine yourself draw-
ing with replacement from a bag of some unknown mixture of white and
black balls, and you have seen m white balls, but no black balls, the standard
use of the principle of indifference suggests that the probability that the
next n will be white is

(m + 1)/(m + n + 1).

As n → ∞, this probability tends to zero. In other words, if verifying a
mathematical conjecture could be modelled in this fashion, no amount of
verification could help you raise your degree of belief above zero.

This accords with the way Rosenkrantz (1977) views the situation. He
considers the particular case of the twin prime conjecture: that there are
an infinite number of pairs of primes with difference 2. He mentions that
beyond the verification of many cases, there are arguments in analytic
number theory which suggest that you can form an estimate for the number
of twin primes less than n and show that it diverges. He then continues:

Now if Popper’s point is that no examination of ‘positive cases’ could ever raise
the probability of such a conjecture to a finite positive value, I cannot but agree.
Instances alone cannot sway us! But if his claim is that evidence of any kind (short
of proof ) can raise the probability of a general law to a finite positive value, I
emphatically disagree. On the cited evidence for the twin prime conjecture, for
example, it would seem to me quite rational to accept a bet on the truth of
the conjecture at odds of, say 100:1, that is to stake say $100 against a return of
$10 000 should the conjecture prove true. (Rosenkrantz 1977: 132)

So for Rosenkrantz, with no background knowledge, the principle of
indifference forces a universal to have zero, or perhaps an infinitesimal
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(something also considered by Pólya) prior probability. However, other
considerations may determine a positive probability:

Subject-specific arguments usually underlie probability assessments in mathemat-
ics. (Rosenkrantz 1977: 90)

In support of this view, returning to the Euler conjecture, we should note
that there was background knowledge. For polygons, it is a trivial fact that
there is a linear relation between the number of vertices and the number of
edges, namely, V = E. Hence, a simple linear relation might be expected
one dimension higher.

But is it always this kind of background knowledge which gives the prior
probability of a conjecture a ‘leg-up’? Do we ever have a situation with no
background knowledge, i.e., where a general atmosphere is lacking? Consider
the case of John Conway’s ‘Monstrous Moonshine’, the conjectured link
between the j-function and the monster simple group. The j-function arose
in the nineteenth century from the study of the parameterisation of elliptic
curves. It has a Fourier expansion in q = exp(2π iτ ):

j(τ ) = 1/q + 744 + 196884q + 21493760q2 + 864299970q3 + · · ·
One day while leafing through a book containing this expansion, a mathe-
matician named John MacKay observed that there was something familiar
about the third coefficient of this series. He recalled that 196,883 was the
dimension of the smallest non-trivial irreducible representation of what
was to become known as the monster group, later confirmed to be the
largest of the 26 sporadic finite simple groups. Better still, adding on the
one dimension of the trivial representation of the monster group results in
equality.

In view of the very different origins of these entities, the j-function from
nineteenth-century work on elliptic curves and the monster group from
contemporary work in finite group theory, if one had asked a mathemati-
cian how likely she thought it that there be some substantial conceptual
connection between them or common ground explaining them both, the
answer would presumably have been ‘vanishingly small’. In Bayesian terms,
Pr(connection | numerical observation) is considerably greater
than Pr(connection), but the latter is so low that even this unlikely
coincidence does not bolster it sufficiently to make it credible. Naturally,
McKay was told that he was ‘talking nonsense’. He then went on, how-
ever, to observe that the second non-trivial representation has dimension
21296876. A quick calculation revealed that the fourth coefficient of the
j-function could be expressed as: 21493760 = 21296876 + 196883 + 1. In



126 Plausibility, uncertainty and probability

fact every further coefficient of the j-function turns out to be a simple sum
of the dimensions of the monster’s representations. At this point the ques-
tion of whether there is some connection has been all but answered – it has
become a near certainty. Conway challenged the mathematics community
to resolve this puzzle:

Fourier expansion in q = exp(2π iτ ):

j(τ ) = 1/q + 744 + 196884q + 21493760q2 + 864299970q3 + · · ·
196884 196883 + 1
21493760 21296876 + 196883 + 1
864299970 842609326 + 21296876 + 196883 + 196883 + 1 + 1
. . . . . .

The answer eventually arrived through a construction by Richard Bocherds,
a student of Conway, which earned him a Fields’ Medal. Bocherds managed
to spin a thread from the j-function to the 24-dimensional Leech lattice,
and from there to a 26-dimensional space-time inhabited by a string theory
whose vertex algebra has the monster as its symmetry group.

So why does the monster group–j-function connection become so likely
by the time you have seen three or four of the sums, even with a minuscule
prior, when other inductions are less certain after billions of verifications?
Would we find consensus on how the number of instances affects one’s
confidence? Surely most people would agree that it was a little reckless on
Fermat’s part to conjecture publicly that 22n + 1 is prime after verifying only
five cases (and perhaps performing a check on divisibility by low primes
for the sixth).

n 0 1 2 3 4 5
22n + 1 3 5 17 257 65537 4294967297 641× 6700417

But perhaps mathematicians were less cautious in a time when discovered
patterns more often than not were found to be valid everywhere. Pólya
(1941: 456) quotes Descartes: ‘In order to show by enumeration that the
area of a circle is greater than that of any figure of the same perimeter, we
do not need to make a general investigation of all the possible figures, but
it suffices to prove it for a few particular figures whence we can conclude
the same thing, by induction, for all the other figures.’

Is it possible to use Bayes’ theorem, even merely suggestively? Let us
return to the case of the Riemann hypothesis (RH). If we have a prior
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degree of belief for RH, how can 1.5 billion verifications affect it? Surely
they must, but then is there some asymptotic limit? One might choose to
factor the posterior for RH as follows

Pr(RH | Data) = Pr(RH | p = 1, Data)· Pr(p = 1 | Data),
where p denotes the limiting proportion, if this exists, of the zeros that lie
on the line, taking the zeros in the order of increasing size of modulus.

For the second factor we might then have started with a prior distribution
over p according to the weighted sum of the exhaustive set of hypotheses
about p: non-convergent p; p in [0,1); p = 1.8 Then if one can imagine
some element of independence between the zeros, e.g., the fact that the nth
zero lies on the line provides no information on the (n + 1)th, then the
confirmation provided by the 1.5 billion zeros should push the posterior of
p = 1 to take up nearly all the probability accorded to convergent p. This
kind of assumption of independence has been used by mathematicians to
make conjectures about the distribution of primes, so may be appropriate
here. In Bayesian terms, it would be better to use de Finetti’s idea of ex-
changeability, that is, we have no reason to prefer any particular ordering
of a given number of successes and failures. We might also consider that
1.5 billion positive instances provides an indication that p is convergent.
Again, however, this consideration would depend on experience in similar
situations.

For the first factor, out of all the functions you have met for which their
zeros have held for a large initial section and the proportion of cases is 1, you
are wondering what proportion are universally true. It is clear, then, that
again much would depend on prior experience. For example, something
that would be kept in mind is that the function π (x), defined as the number
of primes less than x, is known to be less than a certain function, denoted
li(x), up to 1012, and that there is good evidence that this is so up to 1030.
But it is known not to hold somewhere before 10400. Indeed, there appears
to be a change close to 1.4 × 10316.

Returning finally to ‘Monstrous Moonshine’, perhaps we should look
harder for a reliance on background knowledge to explain the rapid ap-
pearance of conviction. First, it is worth remembering that the dimensions
of the monster group’s representations and the coefficients of the j-function
were not ‘made up’. They come from ‘natural’ mathematical considerations,
a term we shall discuss in chapter 9. Imagine in the Monstrous Moonshine

8 Levinson showed in 1974 that p > 1/3.
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case if the two sides were not ‘interesting’ entities or that you knew for a
fact that these numbers were randomly generated, wouldn’t you take more
convincing? Similar considerations are discussed by Paris et al . (2000), who
wish to justify some ‘natural’ prior distribution of probability functions over
n variables:

what in practice I might claim to know, or at least feel justified in believing, is
that the data I shall receive will come from some real world ‘experiment’, some
natural probability function; it will not simply have been made up. And in this
case, according to my modeling, I do have a prior distribution for such functions.
(Paris et al . 2000 : 313)9

Evidence for the fact that background knowledge is coming into play
in this case is provided by the fact that on presentation of the example
to an audience of non-mathematicians they found the numerical coinci-
dences not at all convincing. Despite the fact that a mathematician has no
knowledge of a reason for a connection between these two mathematical
entities, some slight considerations must play a role. Indeed, what seemed
to disappoint the non-mathematicians was the need to include multiples
of the dimensions of the irreducible representations. A mathematician, on
the other hand, is well aware that in general a group representation is a sum
of copies of irreducible ones. For example, the right regular representation,
where the group acts on a vector space with basis corresponding to its own
elements, is such a sum where the number of copies of each irreducible
representation is equal to its dimension. Behind the addition of dimen-
sions are sums of vector spaces. Second, a mathematician would know that
the j-function arises as a basic function, invariant under the action of the
modular group. This offers the possibility that group theory might shed
some light on the connection.

5 .5 conclusion

We have covered a considerable stretch of ground here. Clearly much work
remains to be done on Pólya’s research programme, but I think we can allow
ourselves a little more optimism than Earman shows towards philosophy of
science. I have isolated the following areas as potentially useful to study in
a Bayesian light: (1) Analogy; (2) Strategy choice; and, (3) The use of large
computations to increase plausibility of conjectures. In chapter 6 I shall

9 The degree to which an object is deemed natural correlates to expectations about how it may be
integrated into the rest of mathematics: ‘Now, the Monster M is presumably a natural mathematical
object, so we can expect that an elegant construction for it would exist’ (Gannon 2001: 8).
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be considering an additional area (4) Mathematical predictions in physics;
and, elsewhere, (5) The use of stochastic ideas in mathematics (random
graphs, random matrices, etc.). It is important to note that we need not
necessarily arrive at some quantitative, algorithmic Bayesian procedure to
have made progress. If Bayesianism in mathematics suggests interesting
questions in the philosophy of mathematics, then I think we can say that
it has served its purpose.

It is all too typical that Pólya’s important contribution to Bayesianism
has been overlooked by philosophers. Inspired by de Finetti he, in turn,
inspired Jaynes and Pearl with the ideas he had worked out by thinking
about mathematical reasoning. Meanwhile, philosophers happy to accept
Hempel’s (1945) claim that mathematics is just a branch of logic, have
passed over Pólya’s work. Let’s now see how this mathematical blind spot
operates in the philosophy of science.



chapter 6

Uncertainty in mathematics and science

nothing is evidence except in relation to some definite question.
(Collingwood 1999: 37)

6.1 introduction

We have seen in chapter 5 that to model plausible mathematical reasoning
in Bayesian terms it is best to forgo logical omniscience. Now, the Bayesian
philosopher of science might be quite happy to do so in purely mathematical
contexts, while at the same time maintaining that omniscience is not an
overly inaccurate assumption for what concerns her – the treatment of
confirmation in the natural sciences. Indeed, she might argue that with so
much uncertainty surrounding the empirical adequacy of our models, it
would be fastidious to worry about our mathematical imperfections. If you
put ten male rabbits into a pen with ten female rabbits and come back a few
weeks later expecting there to be twenty rabbits but count twenty-five, then
you do not question your arithmetic beliefs, but rather your counting and
then your model of the stability of the number of rabbits over time. But
might this idealisation make us miss something about scientific reasoning
itself, especially when our mathematics is not secure? After all, some pieces
of physics we trust more than we do some pieces of mathematics. Think
of having made a conjecture in combinatorics which you have verified on
paper in a few simple cases. You set your computer algebra system onto the
problem, and it duly carries out several more calculations which provide
confirmation for your conjecture. At this point you may be quite confident
of its truth. Eventually, however, you encounter a counter-example, and
repeat the calculation on a different machine using what you know to be a
different computer algebra package. Naturally, you give up your conjecture
sooner than believe that both hardware–software systems have led to the
same mistake, and you certainly will not take it as a refutation of the
semiconductor theory used in the design of the hardware.

130
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Some more ‘humanistic’ versions of Bayesianism do already allow
for scientists conditionalising on the basis of the discovery of ‘logico-
mathematical consequences’ of a theory.1 Then not only do we talk ofPr(T)
and Pr(T |E), but also of Pr(T |-E) and Pr(T |T |-E). This extension
is generally considered in situations where some already observed phe-
nomenon remains unexplained until a theory, proposed for whatever rea-
son, is found at some later date to account for it, using a piece of established
mathematics. My concern, however, is that the notion of a theory account-
ing for evidence underpinning entities of the form Pr(T |- E) has not been
satisfactorily described, especially in cases where the relevant mathematics
has yet to be devised. What is overlooked here is the fact that in many cases
it is necessary that a large amount of mathematical machinery be produced
to allow the production of a model through which a scientific theory can
be said to explain or predict a particular phenomenon, and that it may hap-
pen that over long periods of time parts of the mathematics are uncertain.
A physicist may come to realise that were a certain mathematical result true,
she could establish that an observation is accounted for by her pet theory.
Thus she makes a prediction that the mathematics is true and may even
be able to give a heuristic argument for its truth from her understanding
of the physics. If the mathematical result turns out to be correct, credit
accrues to the scientific theory, the more so the more unlikely the result. To
portray this kind of situation as merely the elaboration of the mathematical
content of that scientific theory, as though the mathematical component
of scientific activity consists in little more than the uncovering of what is
already contained within scientific precepts, is a serious misrepresentation.

I shall argue in this chapter that any theory of scientific inference needs
to take the mathematical reasoning fully into account, but to make the
discussion more concrete I shall focus on plausibility considerations and
continue speaking in Bayesian terms. I take it as fairly obvious that a
Bayesian philosopher of science wishing to take uncertain mathematical
knowledge into consideration will construe rationality in mathematics in
Bayesian terms. In section 6.2 I shall present the cases of four less visited
episodes from the history of science, illustrating how uncertainty in math-
ematics and physics may affect each other. In section 6.3, I analyse the
ways in which one should construe confirmation as taking place, drawing
on recent philosophical work on scientific models. Then, in section 6.4,
on the basis of this analysis, I shall outline how a Bayesian philosopher of
science might resolve the infamous ‘old evidence’ problem.

1 A discussion of the relevant literature may be found in ch. 5 of Earman 1992.
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6.2 four case studies of the interrelationship
between the plausibility of scientific hypotheses

and evidence and the plausibility
of mathematical conjectures

The stability of the solar system

The question as to whether our solar system will persist in a stable planetary
configuration has stimulated thinkers for over 2,000 years. Of course, Greek
understanding of the problem was very different from ours, stability of the
heavens being assured by the location of the celestial bodies on crystal
spheres. A formulation of the problem closely comparable to a present-day
one came only with the publication of Newton’s Principia. But despite the
power of his mathematical approach to cosmology, it was soon realised that
many aspects of planetary dynamics would be difficult to treat. Newton
himself worked on the three-body system, comprising the sun, the earth
and the moon, and so began the study of the three-body problem.

Insight into many-body dynamics was difficult to acquire, although no-
table successes did occur. In 1785 Laplace took a major step in promoting
Newtonian gravitation when he demonstrated that it could explain pertur-
bations in the orbits of Jupiter and Saturn as arising from the near-resonance
in the frequency of their orbits. He showed how the 2:5 ratio of their orbital
periods caused deviations in their elliptical orbits having a 900-year period.
From experience with this and other aspects of celestial mechanics, Laplace
was convinced of planetary stability and he wrote in the preface to volume 3
of La Mécanique Céleste:

Nature orders the celestial machine for an eternal duration, upon the same princi-
ples which prevail so admirably upon the earth, for the preservation of individuals
and for the perpetuity of the species.

Through the nineteenth century numerous researchers attempted ana-
lytic solutions of various versions of the many-body problem. A question
on this subject was posed in a prize competition offered by King Oscar
of Sweden, which, as June Barrow-Green (1997) has shown, was rigged in
favour of the French mathematician Henri Poincaré. By the time he had
been allowed to correct his entry, Poincaré had established a new qualitative
approach to the treatment of dynamical systems, and over the following
years he developed many essential components of the branch of mathemat-
ics it needed. One of the outcomes of Poincaré’s work was a demonstration
that a certain series expansion, thought previously to converge, in fact
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diverges. With this and the first recognition that dynamical systems may
possess what we now term chaos, confidence in the stability of the solar
system diminished.

Significant progress on the stability of the solar system had to wait until
KAM theory was developed in the middle of the twentieth century. In
dynamical systems theory, the evolution of a system is seen as a point tracing
out a path in a phase space. In conservative systems energy conservation
restricts this path to lie on some bounded subspace, a many-dimensional
torus, parameterised by a set of numbers. KAM theory studies the stability
of these tori when a small perturbing force is added, where interplanetary
attractions play this role in the case of the solar system. It demonstrates
that tori whose parameters are sufficiently far from being dependent over
the integers will survive the perturbation, merely being deformed. If KAM
theory is relevant to a system, it implies what Arnold (1988: 189) describes
as metric stability, but topological instability or, in other words, stability for
the majority of initial conditions, yet in however small a neighbourhood
of the initial conditions there passes an unstable trajectory. If applicable to
the solar system it suggests that it is overwhelmingly likely that the planets’
positions will remain in a bounded region of space, but that some almost
identical solar system to ours would be unstable. To complicate matters
mathematicians have devised several other notions of stability as applied to
dynamical systems.

A proof of the central theorem of KAM theory in the case of two degrees
of freedom was sketched in lectures by Kolmogorov in 1954. In 1963 Arnold
constructed a proof for systems with any number of degrees of freedom.
Moser later showed that some of the conditions on the differentiability
of the Hamiltonian governing their dynamics could be relaxed. Arnold’s
assessment at the time of its relevance to the stability question was that:

For the majority of initial conditions under which the instantaneous orbits of the
planets are close to circles lying in a single plane, perturbation of the planets on
one another produces, in the course of an infinite interval of time, little change
on these orbits provided the masses of the planets are sufficiently small. (Arnold
1963: 125)

Clearly there had been a boost to belief in stability in relation to the time ear-
lier in the century when mathematicians, such as Birkhoff, had ‘inclined
to the opposite view’ (ibid.). This boost might typically have occurred
gradually from the moment when Kolmogorov conjectured KAM theory
and had good reason to believe it, to the moment when Moser had demon-
strated the theorem for a broad range of systems. A mathematician’s degree
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of belief in KAM theory would have fluctuated through the decade as
promising lines of attack on the problem came and went, and so the
Bayesian might calculate the degree of belief in the stability of the solar
system as varying via

Pr(S/NG & K)= P(S/KAM & NG & K)·Pr(KAM)
+ Pr(S/¬KAM & NG & K)·Pr(¬KAM),

where S= stable solar system, NG=Newtonian gravitation (as an adequate
approximation), K = background knowledge.

To describe this episode as just the drawing of a logico-mathematical
consequence of a scientific theory 300 years after it had been proposed
is surely misleading. Rather, the development of KAM theory constitutes
the production of a result which is true of a wide range of mathematical
dynamical systems and which may or may not be applicable to the dynamics
of the solar system. Whether it is applicable is still to be decided:

The rigorous bounds that have been established, so far, which guarantee the ex-
istence of some invariant tori, do not come close to establishing the stability of
the major planets in the Solar System. There is a gap between the bounds that are
proved and experimental evidence on how far they are valid. (Lagarias 1992: 39)

The factors involved in determining what would be denoted Pr(NG |-S)
by the so-called humanistic Bayesian are subtle indeed.

Although KAM theory provided support for stability, the clearest idea we
have today of the future of the solar system is based on computer simulations
of its evolution. It seems that the future is uncertain. The greatest causes for
alarm are the possible drifting away of Mercury, the transport of asteroids
to Mars, and even to the Earth, owing to a 3:1 resonance between Jupiter’s
orbit and their own, and the chaotic change in the eccentricity of Mars
which may allow it within 5 billion years to cross the path of the Earth’s
orbit.2

Computer evidence raises a host of epistemological questions. Indeed,
the use of computer simulations and sampling techniques in the biological
and physical sciences provides further ports of entry for changing levels
of credibility in pieces of mathematics to affect the credibility of scientific
results. Concerning such evidence you will need to know the extent to which
the algorithm used can be thought to have captured the system of equations
in the model to set your degree of belief in the validity of using it. But to
make a plausible case for this may well require novel types of mathematical
demonstration. Then when it comes to different computer simulations used

2 See Sussman and Wisdom (1992).
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as evidence, one needs to know how ‘different’ are the resulting pieces of
evidence, for the Bayesian, Pr(second evidence/first evidence),
based on mathematical analysis of the simulation set-ups.3 Developments
in the mathematics of algorithms will effect such judgements.

However we decide to interpret the notion, at the present time, the
presence of stability in the solar system in the remaining 5 billion years
before the sun is expected to turn into a red giant is very uncertain. Degrees
of belief in such stability have varied over the past 300 years, and at all times
have depended on the credibility of uncertain pieces of mathematics in very
subtle ways.

The onset of turbulence

Let us now consider a case where scientific observation provides evidence
for a mathematical conjecture. In his account of chaos theory, Does God Play
Dice?, Ian Stewart (1997) discusses Ruelle and Takens’ proposed scenario for
the way turbulence sets in during changes in the parameters of fluid flow.
Fluid flows are modelled by Navier–Stokes equations, notoriously difficult
beasts to tame mathematically. Still, models employing these equations have
done tremendously well in spite of the fact that the physical assumptions
behind their use, such as the continuity of the medium, clearly contradict
the best account we have of physics at the smallest scales. Now, Ruelle
and Takens conjectured that under certain conditions, the dynamics of a
fluid determined by the Navier-Stokes equations is governed by a strange
attractor. As Stewart explains:

So one possible research programme to put the Ruelle–Takens theory on a testable
basis is: derive a strange attractor from the Navier–Stokes equations for fluid flow.
This is a problem that requires mathematical, rather than experimental advances,
and it hasn’t been carried out yet. (Stewart 1997: 172)

The Navier–Stokes equations and the ways of solving, approximately solv-
ing, or qualitatively treating them belong to mathematics. Stewart’s sugges-
tion would thus appear to involve merely internal adjustments to degrees of
belief in mathematical propositions. But Stewart then proceeds to explain
how Mitchell Feigenbaum extracted a universal feature of the development
of chaos in very simple dynamical systems. These systems included the
well-known logistic mapping, a way of using a parabola to generate a dy-
namics, and some close relatives. The common feature concerned a certain

3 Sussman and Wisdom tell us how convincing they find ‘the detailed agreement between our 100-
million-year solar system integration and that of Laskar [another modeller – DC], because of the
radically different methods used’ (1992 : 61).
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constant 4.669201609 . . . , arising from the ratio of changes in the value
in a parameter at successive points of bifurcation of the dynamics. These
findings lead Stewart to the conclusion:

if it so happens that, buried away in the Navier–Stokes equations, there’s a math-
ematical process involving a simple-humped mapping, then a period-doubling
cascade with scaling ratio 4.669 is going to occur. (Stewart 1997: 196)

What we have here then is a mathematical conjecture that there is a tech-
nique of the kind mathematicians employ to expedite the solution of dif-
ferential equations (change of variables, etc.) which will lead to a process
involving such a mapping. As yet there is neither proof nor any convincing
mathematical evidence for this conjecture. But what if experiments on fluid
flow produced Feigenbaum’s constant? We would then have ‘experimental
evidence in favour of a mathematical theorem!’ (ibid .). Stewart describes
this situation as ‘bizarre’, but he goes on to tell us that this is precisely what
occurred when Albert Libchaber later made observations of convection rolls
in a miniscule chamber filled with liquid helium, from which he calculated
a number close to Feigenbaum’s constant.

The effect of this experiment is to make degrees of belief change. Prior
to the experiment we would expect:

Pr(Navier-Stokes equations involve a single-humped mapping/appear-
ance of Feigenbaum’s constant in fluid flow data) > Pr(Navier-Stokes
equations involve a single-humped mapping).

Thus, to rely on all possible evidence to determine her degrees of belief
a mathematician will need to have degrees of belief in relevant scientific
statements. The acceptance of Libchaber’s experimental results should then
have an impact on degrees of belief concerning the properties of other
systems thought to be modelled by Navier–Stokes equations.

Notice how one might have reacted in an extended Duhem–Quine fash-
ion had Libchaber’s experiment failed. Had he arrived at a figure sufficiently
different from 4.669, the response might have been:
(a) The experiment was incorrectly carried out because some auxiliary hy-

pothesis did not hold – the correct value should have been close to
4.669

(b) Navier–Stokes modelling was wrong/inaccurate – we need some other,
or at least a more refined, model of liquid helium flow

(c) The mathematical conjecture was wrong – there is no single-humped
mapping involved in the Navier–Stokes equations.

It is clear I hope that if Bayesianism is to explicate all varieties of the Duhem–
Quine problem, the resolution of which has been deemed an important
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success (Howson and Urbach 1989: 92–102), it must take into account
degrees of belief in mathematical statements.

The Lee–Yang circle theorem

The use of equilibrium statistical mechanics (canonical ensembles, partition
functions, etc.) to study physical macrosystems by way of the interactions
of their microscopic constituents was well established by the 1950s. A long-
standing, central idea of this field is that an examination of the parameter
values at which the partition function fails to be analytic in the thermo-
dynamic limit (e.g. as a lattice becomes infinitely large) gives information
regarding phase transitions in the macrosystem. Now, ferromagnets in the
presence of an external magnetic field were thought to be suitably mod-
elled by a two-dimensional lattice, at the vertices of which were situated
atoms of spin up or spin down, an Ising model. Below a certain temperature
(the Curie temperature), it was known that ferromagnets are spontaneously
magnetised and that if the external magnetic field perpendicular to the lat-
tice, H , is manipulated, a sudden change in their magnetisation occurs as
it passes through zero. This led to the prediction that the partition func-
tion for infinitely many particles would fail to be analytic at H = 0 for
sufficiently low temperatures. Translating this piece of physics into the
mathematics of the Ising model generated the prediction that members of
a certain class of complex polynomials in one variable always have their
zeros lying on the unit circle. This so-called Lee–Yang circle theorem was
eventually proved after some considerable difficulty.

For the mathematicians, the magnetisation data and the previous success
of the equilibrium statistical mechanics machinery should have counted to
set their degree of belief in the circle theorem fairly high. For the scientists,
as the theorem becomes more plausible, first through some trial-and-error
experimentation with these polynomials and then through the establish-
ment of a proof, increases of credibility were fed back into the physics which
had led to its conjecture, into the validity of the model, the experimental
data and the whole statistical mechanics approach.

Quantum field theory

By the end of the twentieth century, novel relationships between mathemat-
ics and physics had emerged. At times, given the nature of some modern
physical theories, their mathematical predictions are the only ones with
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any chance of being confirmed. The mathematician Sir Michael Atiyah
explains the use of such predictions in modern theoretical physics:

quantum field theory has had its credibility enhanced by its success in making cor-
rect mathematical predictions. Given the lack of rigorous foundations for quantum
field theory, these successes provide great encouragement to physicists that their
ideas are fundamentally sound. (Atiyah 1995: 6070)

What does this enhancement of credibility involve?
Duality arguments, where a problem situation is transformed into a

dual one which may be simpler to solve, crop up all over in mathematics,
from projective geometry to Fourier transforms. In contemporary physics
an important example concerns what are known as mirror manifolds. Here
physical arguments are given to suggest that string theories in two manifolds
are dual to each other, with the consequence that parameters governing the
quantum geometry in one model are transformed into ones corresponding
to classical features of another. In one case of this mirror duality the diffi-
cult task of counting the number of holomorphic curves on a Calabi–Yau
manifold becomes in the dual mirror manifold the simpler question of
how certain cohomology elements vary as its complex structure varies.
This generated a range of mathematical predictions, later confirmed, of the
number of curves of genus g and degree d on a certain quotient of a quintic
hypersurface in complex projective 4-space.4

As one mathematical physicist puts it:

One should note, however, that very rarely can one actually prove (even in the
physics sense of this word) that two given physical systems are dual to one another.
Often the existence of dualities between two given physical systems is guessed at
based on some physical consistency arguments. Testing many non-trivial conse-
quences of duality conjectures leads us to believe in their validity. In fact we have
observed that duality occurs very generically, for reasons we do not fully under-
stand. This lack of deep understanding of duality is not unrelated to the fact that
it leads to solutions of otherwise very difficult problems. At the mathematical
level, evidence for duality conjectures amounts to checking validity of proposed
solutions to certain difficult mathematical problems. (Vafa 1998: 540)

The important things to note are that these consequences are purely math-
ematical and that their ‘non-trivial’ nature, implying a lack of likeliness, is
being taken into account. The verification of these unlikely numerical pre-
dictions makes it almost certain that the corresponding physical systems are

4 We are dealing with large numbers here, e.g., 317206375 curves of genus 0 and degree 3 (cf. Giventhal
1996). Numerical coincidence is out of the question. Let us note here for future reference that mirror
symmetry is expressible as an equivalence of categories.
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dual, thereby increasing confidence in the physical consistency arguments
which predicted such duality. So, the confirmation of these mathemat-
ical predictions gives mathematical physicists the confidence that ‘their
ideas are fundamentally sound’. Are they wrong to react like this? We
should demand of Bayesianism, or any other confirmation theory, that it
be able to account for this practice, or else be in a position to discount it as
irrational.

Through these case studies we have seen how thoroughly intertwined
are factors of uncertainty in mathematics and physics. Although I recorded
above Ian Stewart’s comment that it is ‘bizarre’ to find experimental evi-
dence bearing on a mathematical result, in a sense we could say that this
happens all the time. What I have in mind here are computer calculations,
where the behaviour of some carefully configured semiconductors is taken
as having a bearing on a mathematical question. Perhaps this type of in-
terrelation is overlooked owing to the flexibility of the computer, where
it appears that it is the software that is doing the computational work,
rather than the physical hardware, whereas Libchaber’s liquid helium is
directly involved in the production of a value for Feigenbaum’s constant.
An intermediate case is the use of reacting strands of DNA to allow certain
computations to take place. As I mentioned in chapter 5, Fallis (1997) de-
scribes the employment of such biochemical computers to determine the
existence of paths through specified graphs in the context of an argument to
the effect that, as regards confidence in a hypothesis, there is no qualitative
difference between, on the one hand, evidence gained by such means and,
on the other, mathematicians’ potentially fallible hand-written proofs. His
arguments support my position that physical evidence impacts on degrees
of belief in mathematical theories and vice versa. Let us now try to make
more sense of how we might construe the types of confirmation we have
just seen in terms of scientific models.

6.3 mathematics and scientific models

Bayesianism is usually represented in a formal fashion as an extension of the
syntactic approach to the description of scientific theories, where evidence
is held to support a theory if it is a deductive consequence of that theory.
However, as the case studies outlined in section 6.2 demonstrate, scientific
modelling, a subject currently receiving considerable philosophical atten-
tion, is a subtle affair. In Models as Mediators (Morgan and Morrison 1999),
the editors advocate the philosophical study of modelling as an essential
component of scientific practice:
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The implication of our investigations is that models should no longer be treated
as subordinate to theory and data in the production of knowledge. Models join
with measuring instruments, experiments, theories and data as one of the essential
ingredients in the practice of science. (Morrison and Morgan 1999: 36)

Contributors to the book maintain that models operate in a variety of ways
to mediate between theories and experimental data, while retaining some
considerable degree of autonomy. No longer can we see them in the Tarskian
sense as set theoretic entities satisfying the axioms of some scientific theory,
and there is far more at stake for models in the discovery and justification of
scientific knowledge than merely belonging to the intended class of models
interpreting some particular theory, as they claim the so-called semantic
view of theories decrees.

On the other hand, advocates of this semantic view (e.g. da Costa and
French 2000) see the Models as Mediators programme as overstating the
autonomy of models from theory, and also as misrepresenting their position
as one which makes the naı̈ve claim that the production of models from
theory is a kind of automatic process.

However this debate is settled, I think it is fair to say that the only hope
for Bayesianism to prosper is for it to adopt a looser characterisation of
scientific inference, in terms of modelling, than has typically been the case.
Even in the case of mathematical inference, the logical representation of
which is generally thought to be considerably less of a distortion, we have
seen that a less formal language was necessary to express the prospects of
success for proof strategies, the strength of analogies, vague connections
between theories and the very varied types of mathematical evidence.

Let us consider the third case study from section 6.2. Equilibrium statis-
tical mechanics (ESM) is a discipline which has provided a host of models to
aid our understanding of phase transition phenomena in a variety of phys-
ical situations: spontaneous magnetisation in ferromagnets, oscillations in
crystal lattices gases, the surface tension of a liquid, etc. Its techniques have
also lent themselves to relativistic quantum field theory and differentiable
dynamical systems. The traditional Bayesian approach might have talked
about the change to one’s degree of belief in ESM conditional on establish-
ing observations of, say, the phenomenon of spontaneous magnetisation.
However, this approach is faced with the problem of delineating ESM as
a theory neatly expressible as an axiomatic theory. It is hard to conceive
of the totality of the non-observational components of a theory such as
ESM as the logical conjunction of a bundle of propositions. What, then,
is a specified degree of belief in ESM supposed to indicate? I suggest that
the best one can say is that it indicates confidence in ESM’s capacity to
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generate good models of relevant phenomena – or, in Kuhnian terms, its
capacity to solve relevant puzzles.

The two-dimensional Ising model is not deemed to be an accurate rep-
resentation of a ferromagnetic sample. Much of what is known about in-
teratomic forces is bracketed out and unrealistic assumptions are made to
allow the construction of a simple and mathematically tractable member
of a universality class of models (Hughes 1999), to which less crude models
of various kinds of process in condensed matter physics are thought to
belong. Many of the features of the Ising model will not be applicable to
ferromagnets. What we find here is not a direct confirmation from evi-
dence to model as an intended representative of a theory, but rather the
‘adequate’ treatment of a phenomenon. Practitioners of ESM have been
able to garner the resources to manage to account in a reasonable way for
the phenomenon of spontaneous magnetisation. To the extent that con-
firmation has taken place, we ought to be led to place greater confidence
in the theory to do likewise in similar situations, that is, that the relevant
techniques will cope well in those situations where the theory is deemed
appropriate. Given ESM’s success with crystalline structures, one might
have expected it to be able to deal with glasses. However, it turns out that
the microscopic structure of glass is not in equilibrium and so we find that:

glasses are outside the piece of reality that is well described by equilibrium statistical
mechanics. (Ruelle 1991: 189)

Failure on ESM’s part to account for the properties of glass is, therefore, not
to count against it. To sum up, in typical scientific situations, confirmation
of a theory involves learning that upon it one may base a satisfactory account
of a phenomenon understood to lie within its purview.

Now, before I set this view of confirmation the task of making sense of
the old evidence problem, I want briefly to make the case for a deeper
engagement of philosophy of science with contemporary mathematics. Let
us then consider the fourth case study, which represents a different kind
of confirmation. If physicists can be led to make mathematical predictions
which would appear to be extremely unlikely to be correct without their
arguments, then there is very likely something sound about the processes by
which they are attained. For instance, the physical intuitions which suggest
that two models are dual to one another must be deemed likely to yield
further such dualities. We are not talking here about the correctness of a
model, but rather of the conjectural interrelation between models. These
may be ‘toy’ models which are investigated with no prospects anticipated
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for direct representation of some piece of reality, nor even of their belonging
to a universality class, as with the Ising model. Rather, they are studied with
a view to exploring a space of models, including, or at least juxtaposed to,
one or more with the potential for eventual integration with observational
data, such as when toy models of 2 + 1-dimensional quantum gravity are
examined to see if three-dimensional general relativity emerges in the clas-
sical limit in the hope that models that do so will be useful for constructing
good models of quantum gravity in 3 + 1 dimensions.

An attitude one finds among some philosophers of physics is to avoid
consideration of this kind of speculative theoretical physics. This is under-
standable. In that philosophers have been guilty in the past of neglecting the
subtle relationship between modelling and experimentation, the last thing
we need look at, one might think, is theorists’ highly abstracted mathemati-
cal pictures of the world. Would this not return us to the earlier unbalanced
concentration on scientific theories? But to turn away from mathematical
conceptualisation just as modelling becomes the focus of philosophical
contemplation may be undesirable as it will prevent us from examining the
richly structured ‘trading zones’, to use a phrase of Peter Galison (1997),
currently emerging between physicists and mathematicians, and the mutual
benefit accruing from their contact. Curiously, in the collection referred
to above (Morgan and Morrison 1999), it is a philosopher of economics,
Marcel Boumans (1999), who is most aware of the conceptual contribution
of mathematics to the production and establishment of models. Boumans
portrays several ingredients being integrated into a model – theoretical
notions, mathematical concepts, mathematical techniques, stylised facts,
empirical data, policy views, analogies and metaphors – in such a way
that if its construction satisfies certain criteria then it is accompanied by
a certain built-in justification.5 Think, then, how much more the role of
mathematics needs to be stressed in a discipline such as physics where the
cross-pollination of ideas with mathematics is so fertile.6

5 Chitra Ramalingam, while an MPhil. student in the History and Philosophy of Science Department at
Cambridge University, has further observed in an essay that where Boumans talks about mathematical
arguments using the past tense, suggesting a interest in them as historically situated, the other
contributors describe such arguments using the ‘disembodied present tense’.

6 One only has to think of the impact knot theory, quantum group theory, 2D integrable models and
quantum field theory have been having on one another since the mid-1980s. Here, one could almost
conceive of a type of confirmation where the scientific theory generates ‘important’, rather than
correct, mathematics. Incidently, in the essay mentioned in n.5, Ramalingam shows the inaccuracy
of Norton Wise’s construal of Kelvin’s working out of the analogies between gravitational potential,
water flow, heat flow, and electrostatic distribution, solely via physical interpretations. It was, in fact, at
first mathematics-led. While Cartwright who ‘learned about Kelvin from Norton Wise’ (1999a: 48n)
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Philosophers of science seem to be all too ready to dismiss the creative
contribution of mathematics to scientic thinking. Where Wigner found it
mysterious that mathematics developed for aesthetic reasons should find
uses in the physical sciences, this is typically deflated by the twin strategies
of taking mathematics to be a transparent language which plays no role in
shaping the way we think about the field it is used to describe, and then of
pointing out how so much of mathematics arises from scientific theorising.
Mathematicians and scientists know that this is wrong. Indeed, Ruelle
(1988) clearly sees himself as adopting a controversial position for arguing
for the existence of even a small amount of mathematics reached only via
physical considerations. Mark Steiner (1998) has pointed to the Wignerian
faith physicists display in assuming that mathematical arguments will prove
to have physical significance. Unfortunately, his radical conclusion that this
faith is justified by our inhabiting a ‘user friendly universe’ may well lead
people to overlook the subtleties of the changing relationship between
mathematics and science.

In a recent article, Lawrence Sklar (2000) has called on philosophers to
carry out a thorough study of the aims and methods of interpretation as a
scientific activity. Rather than seeing interpretation as mere philosophical
gloss, Sklar views it as an essential part of justificatory activity, since

time and again, what we find is that foundational theories, for all their empirical
success and all the good reasons we have for thinking of them as at least ‘point-
ing toward truth’, if not finally giving it, exist themselves in a perpetual state of
indeterminacy and conceptual lack of ‘fixedness’. They come replete with internal
puzzles that leave us perplexed, at the same time that we are assured that they are
indeed on the right scientific track, about just what the theories are saying about
the world and what kind of a world they can be describing. (Sklar 2000: 735–6)

Here again, as with those studying model building, we find a scientifically
knowledgable philosopher aware of the distortion of oversimplistic repre-
sentations of the relationship between evidence and theory. Sklar’s portrayal
is one that suits me well, since mathematicians can and do contribute to
the interpretation of physical theories through their deeper understanding
of the mathematics involved in them. It seems not to be widely recognised
that mathematics itself is also an open-ended interpretative discipline, con-
temporary philosophy of mathematics having done much to obscure this
fact. To arrive at a more adequate view will require a revolution in our

can distance herself from ‘philosophers studying the mathematical structures of our most modern
theories in physics’ (ibid.: 4–5), all seem to suffer from a certain blind spot when it comes to the
contribution of mathematics.
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outlook to stop taking mathematics for granted. Here we turn to the more
modest goal of examining how the conceptions of confirmation presented
in this section fare with the thorny problem of old evidence.

6.4 the problem of old evidence

One of the first serious obstacles to a Bayesian rendition of scientific infer-
ence, as presented by Earman (1992), is the problem of old evidence. Put
simply, according to Bayes’ theorem, if we know a piece of evidence to be
true, a newly devised theory which accounts for that evidence cannot have
its credibility boosted by the data, even if there is no other theory around
which can account for it. In view of the liberality of Bayesianism as a way
of representing reasoning, too generous some would argue (Albert 2001),
to think that it cannot cope with as a common a scenario as old evidence
strains belief. It is as though Borges had told us of a country where a style
of prose had been devised which no piece of paper in that realm would
allow to have written upon itself. Let us first see how old evidence operates
in mathematics with an example of Pólya’s.

Pólya (1954b: 5–6) explains how when you are considering the plausibility
of a conjecture, you look to see if it works in specific cases that you know
already. Adapting his simple example slightly, you are set the task of finding
a formula for the curved surface area of a frustrum of a cone (imagine here a
cone with its nose chopped off ). With your shaky and rudimentary calculus
you arrive at the conjecture that the surface area is π (R + r)

√
{(R – r)2 +

h2}. You are moderately confident that this is correct, but you accept that
you may have erred. Later it occurs to you that you know the answer in
certain degenerate cases: the area of an annulus is π (R2 – r2), the curved
surface area of a cylinder is 2πrh and the curved surface area of a cone
is πR

√
(R2 + h2). It is also clear that inverting the frustrum should not

alter the area. You check your formula’s accuracy for h = 0, R = r, and
r = 0, and symmetry on exchanging r for R. By now your confidence has
grown to near certainty. What could be unreasonable about this boost in
confidence on discovering that a general proposition has already known true
consequences? It could be objected that one should have already known
that these were consequences and so have factored this knowledge into
one’s belief of the general proposition, but we dispensed with that idea in
chapter 5.

The classic example of old evidence providing a boost to a novel theory
is the capacity of the General Theory of Relativity (GTR) to account for
the anomalous advance of Mercury’s perihelion (AMP), known for several
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years prior to 1915 to be roughly 43 arcseconds per century. Bayes’s theorem
gives us

Pr(GTR | AMP) = Pr(AMP | GTR)·Pr(GTR)/Pr(AMP)
= Pr(GTR),

since, by 1915, Pr(AMP)=1 and, as AMP is a consequence of GTR,
Pr(AMP |GTR)=1. Thus, on the face of it, Bayesianism would appear to
offer as methodological advice to the scientist not to bother formulating a
theory which accounts for already known data, a bizarre piece of counsel,
and yet many scientists found this success of GTR’s very convincing.

Naturally, much effort has been invested in rectifying this difficulty. The
formula suggests that the only ways to do so are to allow the scientist
hearing of Einstein’s ideas the possibility that Pr(AMP)�=1 or to abandon
Pr(GTR |AMP) in favour of some other conditional.7 These possibilities
relate to the two general approaches to resolving the paradox, where we
must contrast an agent’s current belief with an imagined situation:
1. Imagine that the agent does not possess the experimental data:

(a) Imagine an agent’s history had been such that she never came to
believe the evidence

(b) Imagine that the evidence, or the observations on which the evidence
is based, has been deleted from the agent’s background knowledge.

2. Imagine that the agent does not believe that the theory accounts for the
data:
(a) Imagine that the agent does not know that the evidence is a

consequence of the theory – i.e. allow for conditionalising on
‘logico-mathematical learning’, and consider probabilities of the kind
Pr(GTR/GTR |-AMP)

(b) Imagine that the observed phenomenon is known to have been
brought about by a minimal piece of divine interference.8

Objections can be raised to each of these approaches. For example, in
the case of 1(a) we must wonder what to do if the observation played
some role in the production of the theory, as was the case in the example
we are considering. Einstein is known to have rejected other candidate
theories because they produced incorrect perihelion advances. With 1(b), a
common concern is that neat excision of a statement from one’s background
knowledge will not be possible.

7 Alternatively, we adopt a method of updating other than conditioning, such as Jeffrey’s reparation
(Jeffrey 1992: 103–7).

8 See Barnes (1999) for the second part of 1(b) and 2(b).
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As for 2(a), it would seem to fit the bill with Pólya’s example. However,
in the case of Mercury, Earman protests that it is not learning that AMP
is a consequence of GTR that is at issue but the confirmatory power of
the astronomical evidence of Mercury’s behaviour. Painted in these stark
terms one will incline to agree with Earman. The squiggles on a piece of
paper which represent the derivation do not seem enough when Mercury
is known to be out there misbehaving. But was this the only choice? Let
us consider this point from the other direction. Surely it is problematic
to say that the observational evidence of Mercury’s behaviour confirmed
Einstein’s theory before he devised it. But what is gained by the alternative
of saying it becomes evidence as soon as Einstein utters the theory, but
before he has made the link between theory and observation? Would it
not be better to have both the acceptance of the data and the derivation
as components of the larger process of accepting that the theory accounts
well for a phenomenon within its domain? Scientific observations become
evidence when they are taken up within the ambit of an explanation.

Barnes’ depiction of divine intervention 2(b) would seem to be closely
related to this line of thought. We are to contrast our confidence in a the-
ory after discovering that it can account satisfactorily for a phenomenon
understood to be within its purview, with the level of confidence in the
theory were we to discover that the phenomenon was a product of some
exogenous process, e.g., it had been brought about by divine fiat, and so no
longer to be taken to be within the theory’s range. It is interesting to note
that in devising 2(b) Barnes has hit upon a solution which involves an idea
recently developed by Judea Pearl (2000). What it concerns is the difference
between observing the value of an operator and exogenously fixing the value
of that operator. Pearl has shown how important it is to expand the proba-
bility calculus to allow entities such as Pr(Y=y |do(x)), where the value
of the variable X is forced to be x. The problem for Barnes’ approach, as
he points out, arises when the act of fixing the evidence causally brings
about the occurrence of the hypothesis, as when observing that someone
smokes forty cigarettes a day and forcing them to do so both bring about
lung cancer.9

Let us continue with Earman’s doubts about the Bayesian handling of old
evidence. He gives a list of four factors which might be taken into account
by anyone explaining why the perihelion data provided good confirmation
of General Relativity: precision; no adjustable parameters; a good bootstrap
test; and, dozens of attempts had already failed. His worry is that:

9 Pearl goes to great lengths to develop a calculus for the ‘do’ operator to cope with such causal
situations.
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without solving the Bayesian problem of old evidence, we can recognize on in-
dependent grounds the confirmational virtues of the perihelion data. Of course,
there is nothing to block Bayesians from taking into account the factors enumer-
ated above. But how these factors can be made part of Bayesian calculations in the
context of old evidence remains to be seen. (Earman 1992: 132)

But the occurrence of the first three factors is what constitutes GTR as
accounting well for AMP, while the fourth bears on the prior probability
of GTR accounting for AMP.10 By 1915, it seemed unlikely that it would be
possible for Newtonian mechanics to be able to account for the perihelion
data without making some dubious assumptions. So, Pr(GTR), as short-
hand for Pr(GTR can account well for all physical phenomena within its
scope), will start out low as it is realised that it is no simple matter to be
able to cope with all relevant cosmological phenomena, especially in view
of the failure of so many of its predecessors. AMP had plagued cosmology
for several years, provoking the postulation of all manner of ingenious hy-
potheses, such as the presence of intramercurial matter of various forms.
At this point Pr(GTR/GTR accounts well for AMP) would surely be
higher than Pr(GTR). Historically, many scientists heard of GTR and
its success with AMP simultaneously, in which case this success was fac-
tored directly into a prior Pr(GTR). For others,11 a positive difference
would have existed between Pr(GTR/GTR accounts well for AMP)
and Pr(GTR).

The elements of an ‘accounting for’ involved in the Einsteinian account
of Mercury’s perihelion advance include: the general laws of GTR, approx-
imate modelling assumptions, results in differential geometry, and obser-
vational evidence, including theories of instrumentation. When we realise
this, we can see how uncertain mathematical knowledge may need to be
factored in. Perhaps the AMP case is not well suited to allow us to see what
is going on, since the mathematics was readily available, but we have already
discussed a case where the proof of a mathematical result gave greater
credence to a scientific theory, namely, the Lee–Yang circle theorem. The
boost given to equilibrium statistical mechanics and in particular to its rele-
vance to ferromagnetic spin systems by the confirmation of a mathematical
prediction may act as our guide here. ESM’s ability to account for sponta-
neous magnetisation in ferromagnets was a good test for it. We would have

10 Okasha (2000) also argues for explanatory considerations to be construed in a Bayesian light. Might
an attempt to model the notion of accounting well for phenomena, involving prior degrees of belief
that a theory could do at least as well as it turns out to have done, introduce a quantitative element
into this kind of Bayesianism?

11 If nobody is in this class, a small thought experiment would allow the AMP postdiction to take place
sufficiently later then the publication of GTR.
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Pr(ESM can account for phenomena within its range/ESM can
account for spontaneous magnetisation)> Pr(ESM can account
for phenomena within its range). After the modelling, but
prior to the proof of the theorem, to calculate Pr(ESM can ac-
count for spontaneous magnetisation), we would have required
Pr(Lee−Yang circle theorem).

On the other hand, had the circle theorem been already known, as it easily
might have been, the same kind of boost to ESM would have occurred as the
ingredients (modelling, mathematical theorem, calculations, assumptions,
observations) came together in a different order. ‘Accountings for’ are always
new; there is no old evidence. If observations have not been linked by a
model to a theory, they may be old but they do not provide evidence.

6.5 conclusion

We should recognise that within the philosophy of science Bayesianism, as a
theory of confirmation, is not alone in its neglect of plausible mathematical
reasoning. Any philosopher of science must either deny the epistemic role
accorded by contemporary scientists to the confirmation of mathematical
predictions arising from their research, or else account for this practice
within their theory of scientific rationality. I have argued that the Bayesian
philosopher of science who does not see fit to contradict the reasoning
of leading mathematical physicists should consider degrees of belief in
mathematical statements. Non-Bayesians in a similar position will have to
find their own way out of this problem.

Thinking about evidence within mathematics makes us see how unhelp-
ful it is to construe as timeless the evidential relation between facts and
theories. Focusing on the mathematical component of scientific reasoning
then makes plain that it is the achievement of a satisfactory explanation of
a phenomenon which is at stake in confirmation.



part iii

The growth of mathematics

Within the philosophy of science, Bayesianism can be seen as positioned
on the boundary between the logical empiricist legacy and a more practice-
oriented, historical approach. Bayesianism in science points rather to the
logical empiricist side, especially when it sees itself as an extension of logic.
In mathematics, on the other hand, Bayesianism appears to point us away
from logicism to the practice of mathematics. This we saw in the work of
Pólya, someone very interested in what goes on behind the scenes. Now
it was Pólya who suggested to his fellow Hungarian Imre Lakatos that he
explore the early development of algebraic topology following on from the
appearance of the Euler conjecture. Lakatos took him up on this advice,
producing Proofs and Refutations – a dialectical account of the growth of
mathematical knowledge.

Lakatos also came under the influence of Popper, whose negative attitude
towards inductivism he shared. He could thus say of Pólya:

We owe this revival of mathematical heuristic in this century to Pólya. His stress
on the similarities between scientific and mathematical heuristic is one of the main
features of his admirable work. What may be considered his only weakness is
connected with this strength: he never questioned that science is inductive, and
because of his correct vision of deep analogy between scientific and mathematical
heuristic he was led to think that mathematics is also inductive. (Lakatos 1976:
74n.)

We have already encountered this hostile attitude towards inductivism in
science in chapter 2. Lakatos thought that the adoption of an inductivist
logic such as Carnap’s was misguided as it presupposed ‘a fixed theoretical
framework’ (1968: 161), and warned that the ‘inductivist delusion’, which
imagined that ‘truth (or some quasi-truth like probability)’ (1978b: 41–2)
could be transmitted upwards from basic statements to axioms, would
incline practitioners to remain within that framework. Both deductivism
and inductivism, therefore:
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trade the challenge and adventure of working in the atmosphere of permanent
criticism of quasi-empirical theories for the torpor and sloth of a Euclidean or
inductivist theory, where axioms are more or less established, where criticism and
rival theories are discouraged. (Lakatos 1978b: 42)

In response, one could say that, following Kuhn, mathematics needs
periods of ‘normal mathematics’ as much as science needs ‘normal science’.
Perhaps we could then adopt the position that Bayesianism may be insight-
ful during periods of relative conceptual stability. This would make sense
of an impression many have had that Pólya was more a great puzzle solver
than a major innovator. Hermann Weyl, for instance, once wrote of him
in a reference:

His way of doing mathematics is really completely foreign to me. He is to a lesser
degree concerned with knowledge but rather with the joy of the hunt. However,
I admire his brilliance extraordinarily. His ideas are certainly not of the type that
would cast light on the major relationships of knowledge. His papers are rather
single, bold advances toward very specific, limited points in an undiscovered land
that will remain totally in the dark. (Alexanderson 2000: 38–40)

In chapters 7–9 we turn to consider the growth of mathematical knowl-
edge. In chapter 7, we examine Lakatos’s writings, in particular Proofs and
Refutations. Hopelessly inaccurate even as a schematic history of early al-
gebraic topology, somewhat superficial as a phenomenology of discovery,
too captivated by its struggle with an imaginary opponent, the formal-
ist, to make more of the excellent choice of its subject matter, this work
still remains an oasis in a desert of neo-logicism. In chapter 8, we explore
the prospects facing Lakatos had he lived long enough to transfer his no-
tion of research programmes back from science to mathematics. Finally, in
chapter 9 we examine a controversial case of conceptual development to
discover the kinds of quality mathematicians expect from novel theories.



chapter 7

Lakatos’s philosophy of mathematics

7.1 introduction

Nearly forty years have passed since Imre Lakatos published his paper
Proofs and Refutations over four successive issues of the British Journal for
the Philosophy of Science. Two years after his untimely death in 1974, these
articles, along with other sections of his doctoral thesis, were published
as a book (Lakatos 1976). It was only then that (generally favourable) re-
views of his work appeared, among them notably one by Quine (1977).
Uncharacteristically for a piece of philosophy of mathematics written in
the latter half of the twentieth century, even mathematicians appeared to
enjoy it. Davis and Hersh (1981: 347), themselves mathematicians, maintain
that before it appeared in book form it was a ‘sort of underground classic
among mathematicians, known only to those intrepid souls who ventured
into the bound volumes of the British Journal for the Philosophy of Science’.
And yet, despite receiving praise from mathematicians and positive reviews
from philosophers, very few attempts have been made to build on Lakatos’s
ideas.

I shall begin by assessing the later Lakatos’s portrayal of the way math-
ematical theories develop. Then, after defending him from a number of
criticisms that have been aimed at his work, I shall be arguing later in this
chapter that Lakatos was overly concerned with questioning the status of
the accepted statements of an established mathematical theory, and that
accordingly he did not pay sufficient attention to its more conceptual fea-
tures, including its relationships with other theories, an imbalance which
was not so noticeable in his treatment of informal theories, but which
emerges quite plainly when he touches on modern mathematics. By con-
fining uncertainty in mature theories to the issue of whether the full content
of informal prior theories had been captured, while recognising the achieve-
ment of a kind of stability in rigour, he was led to the mistaken position
that the development of modern mathematics lacks much of the freedom
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and excitement of earlier times. This constitutes a serious misunderstand-
ing on Lakatos’s part and prevented him from observing an important part
of the dialectical process involved in the development of the mathematics
of the twentieth century. I shall suggest instead that the appropriate use of
rigorous definition and axiomatisation has not acted as a hobble on the
creativity of mathematicians, but rather an invaluable tool in the forging
of new mathematical theories and the extension of old ones.

Although I shall be concentrating in this chapter on the limitations of
Lakatos’s philosophy of mathematics, I hope my appreciation of his work
will be evident. One does not choose to criticise and develop a philosophical
position unless one takes it seriously. Not only has Lakatos handed down
to us important notions such as that of a ‘proof-generated concept’, but
through his case studies he has let us hear for the first time a snatch of
mathematical conversation. What has perhaps appealed most to mathe-
maticians about Proofs and Refutations is the sense of authenticity Lakatos
managed to convey by casting the book in the form of a dialogue in which
the characters are frequently made to express themselves in the words of
various prominent nineteenth-century mathematicians. Yet while Lakatos
has rightly become the patron saint of those struggling to produce an ad-
equate philosophy of mathematics, this should not blind us to his faults.
Either one takes the text of Proofs and Refutations as providing a ‘rational re-
construction’ of the early history of algebraic topology, while the footnotes
point to discrepancies existing between this version and the often irrational
course of real history. But then as Koetsier (1991: sec. 1.3.3) has observed,
even the material in the footnotes is seriously historically inaccurate. Or
else, like Glas (1993), one chooses to ignore Lakatos’s introductory claim
that ‘the real history will chime in in the footnotes’ (Lakatos 1976: 5) and
side-steps Koetsier’s criticism by taking the text and footnotes as a whole to
be a rational reconstruction. Either way, however, as we shall see, Lakatos
omitted to tell us about the very heart of nineteenth-century algebraic
topology in his endeavour to shape his account into the method of proofs
and refutations, ignoring for the most part the rationale for Poincaré’s work
on the Euler conjecture.

7.2 lakatos’s stages of development

The final glimpse we have of Lakatos’s philosophy of mathematics is in the
second section of The Method of Analysis-Synthesis (1978b: 93–103) which is
based on an address he gave in 1973, the year before his death. In this paper
Lakatos portrays the development of a mathematical theory according
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to the following schema. Mathematical theories pass through three phases
in their development: the first stage of discovery is the stage of ‘naive
trial and error’ in which the ‘naive conjecture’ is reached by the method
of ‘Popperian conjectures and refutations’. In the case study described in
Proofs and Refutations, Lakatos claims, this stage lasted 2,000 years from the
time of Euclid to Descartes.1 The second stage is that of ‘proof-procedure’
in which, via the method of analysis and synthesis, an expression used inter-
changeably with the method of proofs and refutations, ‘the naive conjecture
disappears, the proof-generated theorems become ever more complex and
the centre of the stage is occupied by the newly invented lemmas, first
as hidden (enthymemes), and later as increasingly well articulated auxil-
iary assumptions. It is these hidden lemmas which, finally, become the
hard core of the programme’ (1978b: 96). The third stage is then that of
the research programme, a concept he had invented for his philosophy of
science. We may suppose then that had Lakatos returned to the philosophy
of mathematics, he would have elaborated on this third stage. However, as
we shall see in chapter 8, the ambivalence he displays in his attitude to-
wards axiomatic mathematical theories would have made this problematic
for him.

Lakatos makes it clear that he sees these three stages in the life of a theory
as distinct in character. The method of proofs and refutations, or of analysis
and synthesis, unavailable during the first stage, is the dominant dynamic
of the second stage and plays only a subsidiary role in the third stage. Thus:

in the creative development of algebraic topology we rarely any longer find anal-
yses. Once the lemmas become corroborated and even organised in axiomatic
systems, once the mathematical machinery is established, analysis, ‘working back-
wards’ may still be applied as a heuristic tool in puzzle-solving, but it becomes
clear that its role is only psychological. It helps the imagination to produce valid
proofs or explanations in terms of a given research programme. Analysis in mature
science and mathematics no longer leads to revolutionary progress. Analysis is only
revolutionary when it engineers a breakthrough from a low-level naive conjecture
to a research programme. (1978b: 99)

1 It is very easy to misread the paragraph on p. 96 in which he discusses this stage as identifying the
Popperian method with the method of proofs and refutations. The editors falsely remark in a footnote
that this stage is described in chapters 1 and 2 of Proofs and Refutations, which comprise the bulk of
the book. However, a close reading of this paragraph in conjunction with pp. 6 and 7 (especially the
footnotes) of Proofs and Refutations shows that Lakatos intends us to think of the first stage as the
production of a formula that works for a range of common polyhedra. Indeed, he tells us of Euler,
prior to any proof, testing the formula against various prisms. We have seen in chapter 4 that Pólya,
who suggested this case study to Lakatos, used this process of guessing and testing as an example of
inductive reasoning in mathematics.
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Once the excitement of the second stage is over we enter the more staid
third stage where ‘imagination is tied down to a poor recursive set of axioms
and some scanty rules’ (1978b: 68).2

This picture of mathematical development will provide us with a frame-
work in which to locate possible criticisms of Lakatos’s ideas. The two critics
I shall focus most closely on here are Mark Steiner (1983) and Solomon
Feferman (1981). The latter professes a certain sympathy with Lakatos’s
cause:

Personally, I have found much to agree with both in his general approach and in
his detailed analysis. (Feferman 1981: 310)

However, Lakatos’s account he finds ‘too single-minded and much more
limited than he makes out’ in that ‘he plays only a single tune on a single in-
strument – admittedly with a number of satisfying variations – where what
is wanted is much greater melodic variety and the resources of a symphonic
orchestra’ (ibid .: 310). Steiner, on the other hand, is generally hostile, read-
ing Lakatos as holding that we can have no mathematical knowledge, a
view he naturally wishes to discredit having expressed contrary opinions in
a book entitled Mathematical Knowledge (Steiner 1975).

I shall be using the history of algebraic topology to provide illustrations
both of what is missing and what is incorrect in Lakatos’s account and so
shall require an idea of the possible timings of the transitions between the
stages. Lakatos himself (1976: 6n.) dates the transition from the first to the
second stage of discovery in algebraic topology to the discovery by Euler of
the ‘V− E+ F= 2’ formula published in 1758 (or possibly to a manuscript
of Descartes c. 1639). However, neither date sits well with the claim that
the method of proofs and refutations was discovered only in 1847 by P. L.
Seidel (ibid .: 136).

Lakatos’s rational reconstruction does not extend to the onset of the final
stage of development of this branch, that is, the appearance of the further
‘derivatives’ of the hidden lemmas found in the second stage as the axioms of
algebraic topology. However, on the basis of comments he makes elsewhere

2 The account Lakatos presents here runs against an indication he gives elsewhere that Proofs and
Refutations describes a research programme (Lakatos 1978a: 52n.). Glas (1993) rightly underlines the
similarities between the methodology of proofs and refutations and the methodology of research
programmes and would have the ‘idea that the relationship V − E + F = 2 . . . expresses some
fundamental feature’ belong to the hard core (1993: 49). This I would agree is the correct way to
proceed and below I sketch the hard core of modern algebraic topology in terms of an aim, but it
contradicts Lakatos who resorted instead to hidden lemmas become axioms as the constituents of
the hard core (1978b: 96).
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(Lakatos 1978b: 66), it seems likely that he is referring to Eilenberg and
Steenrod’s axiomatisation of homology and cohomology theories.3 On the
other hand, algebraic topology was on a fairly firm footing by around 1920
after the application of Brouwer’s innovations to Poincaré’s less rigorous
work by the Princeton topologist, J. W. Alexander. Indeed, Dieudonné
(1989: 16) dates the acquisition of rigour in this branch to Brouwer’s work
of 1910.

I raise the question of Lakatos’s dating of this transition for the reason
that the later this is fixed the less credible the idea that the method of proofs
and refutations suffices to account for growth during the second stage, while
the suggestion that the imagination of algebraic topologists was ‘tied down
to a poor recursive set of axioms and some scanty rules’ already incorrect
for the later date becomes patently absurd for the earlier one when we
come to consider the significant contributions made by topologists such as
Lefschetz, Cech, Vietoris and Hopf in the 1920s and 1930s.

7.3 the method of proofs and refutations

I shall keep my comments about the first stage and the transition to the
second stage brief. Feferman wonders where the initial proof originated
from and what happened before the onset of the method of proofs and
refutations (criticisms vi and i).4 It is true we get to hear very little about
what happened before Cauchy’s proof, which Feferman describes as already
well advanced, other than what is mentioned in two footnotes (Lakatos
1976: 6–7), but Lakatos does say there that his discussion starts where
Pólya’s stops. It would of course be desirable to account for the evolution
of theories prior to the 1840s, yet had he succeeded in the restricted project
of describing mathematical change since that time, then it would surely
still have been a magnificent achievement.

Now let us turn to the second stage, in which the method of proofs and
refutations prevails. Lakatos describes the seven stages of the growth of
informal mathematical theories via this method as follows:

3 Eilenberg and Steenrod (1952), the results of which had been announced seven years earlier. Leaving
aside problems with the idea of characterising a branch of mathematics in terms of its axioms, which
I shall discuss later, it is worth briefly remarking that by 1952 homotopy theory had become just as
important a part of algebraic topology as homology and cohomology theory, marking its difference
by its failure to satisfy Eilenberg and Steenrod’s ‘Excision axiom’. In their book (1952: 49) Eilenberg
and Steenrod date the axiomatisation of the homotopy groups to a paper of J. Milnor later published
in 1956.

4 I shall follow Feferman’s enumeration of his questions and criticisms from (i) to (x) (1981: 316–20).
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(1) Primitive conjecture.
(2) Proof (a rough thought-experiment or argument, decomposing the primitive

conjecture into subconjectures or lemmas).
(3) ‘Global’ counterexamples (counterexamples to the primitive conjecture)

emerge.
(4) Proof re-examined: the ‘guilty lemma’ to which the global counterexample

is a ‘local’ counterexample is spotted. This guilty lemma may have previously
remained ‘hidden’ or may have been misidentified. Now it is made explicit, and
built into the primitive conjecture as a condition. The theorem – the improved
conjecture – supersedes the primitive conjecture with the new proof-generated
concept as its paramount new feature.

(5) Proofs of other theorems are examined to see if the newly found lemma or the
new proof-generated concept occurs in them: this concept may be found lying
at the cross-roads of different proofs, and thus emerge as of basic importance.

(6) The hitherto accepted consequences of the original and now refuted conjecture
are checked.

(7) Counterexamples are turned into new examples – new fields of inquiry open
up.

(Lakatos 1976: 127–8)

Feferman’s criticisms of the proof-procedure stage amount to the claims
that: (vii) Lakatos has treated only proofs of conjectures of a particular form,
namely, ∀x[A(x)→B(x)]; (viii) logical analysis can account for these cases
just as well; and (iii) counterexamples do not form the principal feature
of the (self-)critical examination of proofs. To the first point one might
say that this format is relatively common in the sort of conjecture that
spearheads the drive towards the establishment of a research programme.
Leafing through Hilbert’s twenty-three problems one finds that many of
the specific problems to be resolved are of this type. The second point is
one with which Lakatos would not have disagreed strongly. He himself
made a rather unsuccessful attempt to formulate a symbolic scheme of
the method of proofs and refutations in The Method of Analysis-Synthesis
(Lakatos 1978b: 70) which the editors correctly point out does not agree
with his verbal account. That Lakatos could attempt such a thing reveals
a tension between, on the one hand, his appreciation of informal mathe-
matics and, on the other, his preference for the logical structure of a proof
over its more conceptual aspects. The last point, especially when conjoined
to the claim that in any case proof analysis is by no means the only dy-
namic at play during the second stage, I would agree is on target. Here
we can only say in Lakatos’s defence that as his was the first attempt to
characterise the development of informal mathematics, it was liable to be
incomplete.
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The false impression Lakatos gives is of a theory developing along a single
track, driven by successive attempts to modify a particular conjecture by
incorporating conditions brought to light by counter-examples to it. In
chapter 1 of Proofs and Refutations he describes the development of work
on the Euler formula up to the 1860s, then goes on in chapter 2 to discuss
Poincaré’s proof of 1899 which appears there out of the blue.5 It is not
pointed out, however, that the developments described in the earlier chapter
formed only one, and by no means the most important, source for this
later proof. Nor is it mentioned there that Poincaré considered his duality
theorem, ‘le théorème fondamentale’, a far more important result.

To see an emerging branch of mathematics as crystallising around the
seeds of a few scattered conjectures is surely inaccurate. It would be quite im-
possible to explain the appearance of Poincaré’s work in algebraic topology,
or Analysis Situs as he called it, contained in six papers running from
1895 to 1904, without describing the motivation that lay behind them.
Fortunately for us, Poincaré himself recorded this for posterity in the sum-
mary he gave of his work, Analyse de ses travaux scientifique, written in
1901:

All the different paths along which I set out in turn led me to Analysis Situs. I needed
the results of this Science to pursue my study of curves defined by differential
equations and to extend this to higher order differential equations, in particular,
to those involved in the three body problem. I needed them to study nonuniform
functions of two variables. I needed them to study multiple integrals and to apply
these to the expansion of the perturbation function. Finally, I glimpsed in Analysis
Situs a way to approach an important problem in group theory, the study of discrete
or finite groups contained in a given continuous group. (Poincaré 1921: 323, my
translation)

As can be seen from this quotation, Poincaré studied algebraic topology to
provide himself with tools for his other mathematical interests rather than
from a desire to prove any particular conjecture.

While there are indications that Poincaré’s appreciation of the work of
Picard in algebraic geometry strongly influenced the Analysis Situs papers,
which is reflected in the fact that the main applications of algebraic topology
to other areas of mathematics were initially in this subject, the principal
source for many of the ideas in these papers comes from Riemann’s work
in the theory of complex functions, most notably the study of integrals on
Riemann surfaces.

5 This is not quite correct. The proof given in Proofs and Refutations involves choosing coefficients for
the chains from the field of integers mod 2, a technique introduced by Tietze only in 1908.
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In both the introduction to the first of the Analysis Situs papers (Poincaré
1895) and the summary of his life’s work mentioned above, it is Riemann
and Betti that he considers as his predecessors and he makes no reference
to the work on the Euler conjecture described in the first chapter of Proofs
and Refutations:

In spite of everything, this branch of Science had until then been little cultivated.
After Riemann came Betti, who introduced several fundamental ideas, but nobody
followed Betti. (Poincaré 1921: 323, my translation)

I shall not add to what I said about Riemann’s treatment of multiple-valued
complex functions in chapter 4. An account of this episode can be found
in Morris Kline’s history of mathematics (Kline 1972: 655–65) from which
it is clear that the method of proofs and refutations could not suffice as a
historiographical tool. It might be argued that complex analysis had by this
time reached the third stage of discovery, but this would point only to the
lack of attention Lakatos gave to the influences which theories, possibly in
different stages of development, have on each other.

To test the validity of Lakatos’s ideas in a situation where they are most likely
to succeed, I shall now examine an episode of proof-analysis which follows
the method of proofs and refutations in broad outline, but which shows in
its details the need for a richer theory. Riemann (for two dimensions) and
Betti (for higher dimensions) had been interested in the situation where a
collection of n subvarieties of a manifold U , all of the same dimension d ,
was such that the addition of an (n + 1)th variety of the same dimension
would cause there to be a homology between them. That is, this last patch of
space would make it possible for a variety of dimension d + 1 to be found
whose boundary was formed by these n + 1 subvarieties. In this case the
d th-dimensional Betti number of U was defined as Pd = n + 1. Poincaré
took up this idea and tried to prove a duality theorem for manifolds which
states that the Betti numbers of U of complementary dimensions p and
(h – p), where h is the dimension of U , are equal. However, without his
being aware, he had made a subtle alteration in the definition of Betti
numbers which went unrecognised until Heegaard, in a review of Analysis
Situs, reported a supposed counter-example to the duality theorem. When
Poincaré came to analyse what had gone wrong, he found that his definition
of the independence of a collection of varieties, v1, v2, . . . , vn , differed
from Betti’s. For Poincaré such a collection is linearly dependent if there
exists integer coefficients, k1, k2, . . . , kn , not all zero, such that the sum of
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the vi taken with multiplicity ki forms a homology, k1v1 + k2v2 + · · ·+
knvn ∼ 0.6 In his definition Betti had only allowed these coefficients to
be 0 or 1.

By treating homologies like equations which could be added, subtracted,
multiplied by an integer and divided by an integer if the n coefficients were
multiples of that integer, the Betti numbers so produced may turn out
to differ from those arising from Betti’s original definition. The simplest
example which demonstrates the difference between the two definitions is
given by real projective space, RP(2), the space of lines through the origin in
three-dimensional Euclidean space, in which there is a closed path which is
not the boundary of any two dimensional subspace of RP(2), yet two copies
of this path do form such a boundary. Think of rotating a plane passing
through the origin by a half turn about a perpendicular axis. Then a line
in this plane will be taken to itself, and yet the path of this line does not
surround any region of RP(2). On the other hand, the path corresponding
to a full turn of the plane bounds the space of all those lines not lying in
the plane, essentially just as the equator of a sphere bounds its northern
hemisphere.

Poincaré was concerned to find that his proof of the duality theorem
seemed to apply equally well to both definitions. Although with his version
of the Betti number Heegaard’s space was no longer a counter-example
to the duality theorem, it did contradict a lemma Poincaré had used in
the proof of that theorem. The heart of the problem lay in the fact that
Poincaré’s definition of a subvariety allowed too much freedom to the way
subvarities could intersect each other. Because of this a crucial lemma, which
stated that for any collection of linearly independent varieties of dimension
(h− p), a p-dimensional variety could be found which intersected just one
of these varieties and only once, was false. Poincaré had to redesign his proof
and when he did so in the year after Heegaard’s paper had appeared, it was by
considering spaces as polyhedra, that is, as being constructed from varieties
of all dimensions up to h intersecting in a controlled fashion. To prove
the duality theorem under this scheme he defined for each polyhedron P a
reciprocal polyhedron P ′ (polyèdre réciproque) and demonstrated with the
use of linear algebra the following equalities between their Betti numbers:
Pd = P ′d and Pd = P ′h−d . From these equations the theorem then follows
easily.

6 The concept of a multiple of a variety was left vague. It was to be thought of as a set of varieties
slightly deformed from each other.
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If we compare this episode with Lakatos’s schema for the Method of
Proofs and Refutations shown at the beginning of this section, we find
certain differences:
(1) The situation here involves the emergence of a counter-example, after

the first proof of the theorem, which was not global but local in that
it contradicted a lemma but not the theorem (stage (3)). Furthermore,
the lemma had already been made explicit.

(2) It would be a mistake to describe Poincaré’s subsequent proof as result-
ing from lemma-incorporation (stage (4)). Although the two proofs are
conceptually similar, the second differs considerably from the first and
it would not be possible to make a comparison using a simple predi-
cate symbol schema. Thus, while the strategies behind both proofs are
comparable – first characterise intersections between varieties of com-
plementary dimensions and then compare their linear dependencies –
and while one can see how problems with the first strategy led to the
second, it would be quite wrong to say that a condition had simply
been ‘built into the primitive conjecture.’

Lakatos’s method comes out looking better if we follow his ideas from the
main text of Proofs and Refutations. There we find the following heuristic
rule:

Rule 4. If you have a counterexample which is local but not global, try to improve
your proof-analysis by replacing the refuted lemma by an un-falsified one. (Lakatos
1976: 58)

One of the students, Omega, then goes on to point out that there are two
ways this rule may be implemented. In Poincaré’s case, the first of these
ways corresponds to restricting the validity of the theorem to manifolds for
which all collections of submanifolds have the right intersection properties,
thereby rendering it empty. The second way is to invent ‘a completely
different, more embracing, deeper, proof’ (ibid .: 59). This is sound advice
to be sure, but hardly helpful. One would expect a ‘logic of discovery’ to
offer us a little more by way of insight as to how to find such a proof.

Furthermore, and this is this essential point, to the best of my knowl-
edge, no other counter-examples did emerge to the large amount of theory
contained in the 300 pages of the Analysis Situs papers. This is not to say
that later mathematicians considered all his proofs complete, but simply
that they proceeded not by discovering counter-examples to the proofs but
by reformulating them. As regards the second stage of discovery of a theory,
then, it would appear to be wrong to maintain that the Method of Proofs
and Refutations describes the main dynamic of this period. Any attempt
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to ‘rationally reconstruct’ it as such would be doing unacceptable violence
to history.

7.4 the research programme stage

I shall now move on to discuss Lakatos’s treatment of the transition to the
third stage of discovery and the third stage itself. Most readings of Lakatos
have focused on his thesis of the fallibilism of mathematical theories, that
we can never know but only guess, never know that we have extended
our knowledge only guess that we have. I hope to show here that this is
an inaccurate appraisal of his ideas and that in many respects he inclined
further towards the logicist pole than has been thought, in the sense that
he believed proofs in axiomatic theories to be readily formalisable.

Steiner attributes to Lakatos the view that ‘knowledge (meaning cer-
tainty) is impossible even in mathematics’ (1983: 505), backing this up with
a quotation from Lakatos which begins ‘We never know: we only guess’.
As the larger part of his disagreement with Lakatos seems to rest on this
identification of knowledge with certainty, it would surely have been wiser
to have been a little more careful in relying solely on this single quotation.
When knowledge is used in its more usual sense it is clear that Lakatos
does hold that it is something we can possess. Indeed, it is the growth of
knowledge on which he bases his whole philosophy. Thus.

It will take more than the paradoxes and Gödel’s results to prompt philosophers to
take the empirical aspects of mathematics seriously, and to elaborate a philosophy
of critical fallibilism, which takes inspiration not from the so-called foundations
but from the growth of mathematical knowledge. (Lakatos 1978b: 42)

Having equated knowledge and certainty for Lakatos, Steiner makes the
claim that Poincaré’s proof

characterizes polyhedra in highly abstract terms to which the concepts of algebra
apply. Lakatos has no counterexample here to offer (in fact, none have turned up);
instead he complains that the proof is too abstract to have captured the original
subject matter! (Steiner 1983: 504)

He then supports this claim by quoting Lakatos. The first thing to note
about this quotation is that it is not taken from Proofs and Refutations.
The second is that it does not contain such a complaint. Before proceeding
to the quotation let us see whether the text of Proofs and Refutations gave
Steiner any grounds for making such a claim. We find that Steiner might
have been thinking of the comment made by one of the pupils:
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Lambda: . . . This is no longer a theorem about polyhedra but about a certain set
of multidimensional vector spaces. (Lakatos 1976: 118)

However, Lambda’s later comments on the proof show that he has appre-
ciated it as an improvement (ibid .: 120). On the other hand, it seems a
fair bet to assume that the Teacher’s comments are closest to Lakatos’s own
views and we find him saying during Epsilon’s presentation of the proof:

Teacher: I like this reformulation which really showed the nature of your simple
tools – just as you promised. You will no doubt prove Euler’s theorem by the simple
methods of vector algebra. Let us see your proof. (Lakatos 1976: 116)

and then later in reply to a criticism of the proof on the grounds that it is
not final:

Teacher: But Epsilon never promised finality, only more depth than we had
achieved earlier. He has now fulfilled his promise to produce a proof which explains
both the Eulerian character of ordinary polyhedra and the Eulerian character of
star-polyhedra at one blow. (Lakatos 1976: 120)

Later in the dialogue we find another pupil, Alpha, expressing worries
that by translating vague terms into the language of a dominant theory

some essential aspects of the original vague concept may get lost. The new clear
concept may not serve for the solution of the problem for which the old concept
was supposed to serve. (Lakatos 1976: 122)

That Lakatos held the opinion voiced by Alpha may be seen from the quo-
tation that Steiner does use to support his claim. This, however, merely
states the widely held view that ‘it is certain that we won’t have any coun-
terexample formalizable in the system assuming the system is consistent;
but we have no guarantee at all that our formal system contains the full
empirical or quasi-empirical stuff in which we are really interested and with
which we dealt in the informal theory. There is no formal criterion as to the
correctness of formalization’ (Lakatos 1978b: 66). Lakatos then proceeds in
the same paper to give some examples in which formalisations have been
insufficient to deal with certain intuitive ideas pertaining to that field. That
this assertion is unobjectionable to Steiner is shown by the fact that Steiner
himself comes up with another example of this situation. But what then was
the point he was trying to make? Lakatos did not say that all formalisations
were doomed never to capture the content of their intuitive ancestors.7

7 See (Lakatos 1978b: 67): ‘Does all this mean that proof in a formalized theory does not add anything
to the certainty of the theorem involved? Not at all . . . if we manage to formalize a proof of our
theorem within a formal system, we know that there will never be a counterexample to it which could
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Nor does he say that casting proofs in theories further removed from the
intuitive subject matter cannot add to our knowledge of the result. This
latter claim is the main purpose of Steiner’s presentation of the modern
version of the proof of Euler’s formula at the conclusion of which he feels
he has proved his point against Lakatos that ‘contemporary treatments are
superior to Euler’s and Cauchy’s in that they are more explanatory and
explain more’ (Steiner 1983: 521).

Had Steiner paid closer attention to Lakatos’s writings he may have found
himself disagreeing with Lakatos rather less strongly than he did and, seeing
that he too has an interest in mathematical practice, may even have found
useful ideas there. In defence of Steiner, it does seem to be especially easy to
misread Lakatos’s work owing to the difficulties, described by Ian Hacking
(1979) in his review of Lakatos’s Philosophical Papers, of understanding his
underlying philosophical motivation.8

7 .5 lakatos on rigour

A further common accusation made against Lakatos is that he has wrongly
characterised standards of rigour as ever-changing. A typical example of this
is the following remark made by the mathematician Saunders Mac Lane:

[T]here was (and, despite Lakatos, still is) a precise definition of “proof”. (Mac
Lane 1988: 325)

Now before countering this remark it is worth seeing what Mac Lane means
by the notion of a rigorous proof:

For the concept of rigor we make a historical claim: That rigor is absolute and here
to stay. The future may see additional axioms for sets or alternatives to set theory
or perhaps new more efficient ways of recording (or discovering) proofs, but the

be formalized within the system as long as the system is consistent . . . if formalization . . . conforms
with some informal requirements, such as enough intuitive counter-examples being formalized in it
and so on, we gain quite a lot in the value of proofs.’

8 Is this difficulty sufficient to account for the fact that we find such disagreements between reviewers
of his work as ‘Lakatos . . . espouses a correspondence theory of truth’ (Steiner 1983: 508), and
‘Lakatos’s problem is to provide a theory of objectivity without a representational theory of truth’
(Hacking 1979: 384)? Hacking does, however, go on to note (ibid .: 385n.) a doubt expressed by
Feferman about his claim that Lakatos is not primarily concerned with characterising knowledge by
how well it represents reality. Perhaps, matters could be resolved by thinking in terms of Hacking’s
notion of inherent-structurism and its extension to mathematics as I discussed in section 7.1. Then
we can make sense of Lakatos’s assertion – ‘I think that the bulk of logic and mathematics is God’s
doing and not human convention . . . But in consequence I am a fallibilist not only in science, but
in mathematics and logic as well’ (Lakatos 1978b: 127) – as an avowal of anti-nominalism. Hacking
tells me (personal communication) that he came to the idea of inherent-structurism during his time
as Lakatos’s assistant.
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notion of a rigorous proof as a series of formal steps in accordance with prescribed
rules of inference will remain. (Mac Lane 1986: 378).

If, for example, category theory were to become the standard language for
mathematics, this should not be counted as a change in the standards of
rigour – category theoretic proofs also proceed only via ‘a series of formal
steps’. Rather, the adoption of a new language will bear solely on the
question of pragmatic efficacy.

That Lakatos did not dissent from Mac Lane’s opinion we can see from
the following passage:

Up to now no informal mathematical theory could escape being axiomatized.
We mentioned that when a theory has been axiomatized, then any competent
logician can formalize it. But this means that proofs in axiomatized theories can
be submitted to a peremptory verification procedure, and this can be done in a
foolproof, mechanical way. (Lakatos 1978b: 66)

Indeed, Lakatos appears to be saying something stronger than Mac Lane,
who realises that the complete formalisation of a proof is an extremely
difficult and laborious process.

Having deflected this criticism, I can now explain the cause of my dis-
agreement with Lakatos. Later in the same article he warns again of what
can happen if a pre-formal theory is axiomatised too early. There follows a
series of what-if scenarios and the information that ‘even after a theory has
been fruitfully axiomatized, there may arise issues which can bring about
a change in axiomatization’ (ibid .: 68). So what is the worry on his part?
Life and uncertainty seem to go on even after axiomatisation. But here we
come to the crucial point:

While in an informal theory there are unlimited possibilities for introducing more
and more terms, more and more hitherto hidden axioms, more and more hitherto
hidden rules in the form of new so-called ‘obvious’ insights, in a formalized theory
imagination is tied down to a poor recursive set of axioms and some scanty rules.
(1978b: 68)

The impression given here and in other places in his writings is that the ex-
citement of bold speculations and illuminating intuitive insights disappears
on reaching the relative safety of axiomatisation. Thus:

[i]t is important to realize that most mathematical conjectures appear before they
are proved; and they are usually proved before the axiomatic system is articulated
in which the proof can be performed in a formalized way. (Lakatos 1978b: 96)

While the first claim is surely trivial, one has only to leaf through a contem-
porary book such as Open Problems in Topology (van Mill and Reed 1990)
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to realise that the second claim is completely false. In this book we find
over 1,000 unsolved problems of the different branches of topology, many
in the form of conjectures and the vast majority only expressible after
axiomatisation had taken place, gathered together to help prospective re-
searchers choose from a list of unanswered problems deemed important by
the community.

The implication that the creativity and uncertainty are largely confined
to the pre-axiomatic stage is reinforced by such comments as ‘[a]nalysis was
not any more a venture into the unknown; it was an exercise in mobilizing
and ingeniously connecting the various parts of the known’ (Lakatos 1978b:
100).

I certainly would not wish to disagree with Lakatos that each theory
needs intuitive motivation; there are too many cases of theories that have
been developed simply by dropping an axiom of an established theory and
which, owing to lack of sufficient motivation, have not led to anything
worthwhile. But by asserting that ‘[t]here is indeed no respectable formal
theory which does not have in some way or another a respectable informal
ancestor’ (ibid .: 62), he appears to be saying more than this. He seems to
be implying that if you take a body of theory presented in terms of some
modern axiomatic theory and trace back its ancestry, you will arrive at a
period when the concepts of the later system could be seen condensing
out of the undefined and nebulous proto-theory. I challenge anyone who
holds this view to try to find an informal ancestor of an Eilenberg–Mac
Lane space or a spectral sequence dating from the pre-axiomatic stage of
algebraic topology.

The polyhedron concept is one that lies close to basic human experience:
we play with dice, we receive postcards of the Egyptian Pyramids, and we
eat bars of Toblerone. However, the supply of such low-level concepts is
surely limited, as those who attempt popularisations of mathematics well
know. Explaining modern physics to the man in the street is somewhat
simpler in that he can easily imagine two particles colliding and producing
new particles, or can strain his geometric imagination to think of space-
time as a four-dimensional manifold. But this paucity of intuitions among
the mathematically uneducated does not mean that trained research math-
ematicians works only with the formalism of a theory. There is a common
misconception present in those who have reached the end of their imagi-
nation that everyone else must be in the same boat, merely relying on the
formalism to indulge in some pointless game. As Thurston, the geometer,
puts it: ‘One person’s clear mental image is another person’s intimidation’
(Thurston 1994: 164).
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The idea that mathematicians have an intuitive feeling of the behaviour
of objects they try to define is surely right, but the process of discovery today
involves as it ever did the struggle to find a good or the ‘right’ definition.
Even after this has occurred the dialectical process continues as novel proof
techniques emerge and are then better understood. Peter Johnstone, in the
introduction to his book Topos Theory, is apologetic for having contributed
to the ‘concreting-over’ of the foundations of the basic theory of elementary
toposes, seeing this as a bad thing because ‘it is vital to the health of a subject
as basic as topos theory that its fundamental tenets should be the subject
of continual review and improvement’ (Johnstone 1977: xvi), yet he does,
of course, mean this review to be carried out in a rigorous fashion. This
improvement of ‘fundamental tenets’ is not meant to imply the overthrow
of the axioms defining an elementary topos, which have not changed from
the first.9 Rather, it refers to the way the theory is organised, the relative
importance given to different subclasses of toposes and the morphisms
between them, the preference for certain proof techniques, etc. The point
here is that even after the arrival of rigour there is still room for debate;
concept-stretching continues to occur.

Lakatos missed one of the essential roles of axiomatisation as Kreisel and
MacIntyre (1982: 233) intimate: ‘The use of axiomatic analysis as a proof
strategy does not seem to be well known to people writing on heuristics,
like Pólya, nor to those in the education business.’ They see its signifi-
cance less for the greater generality of the theorem proved or any idea of
greater precision, but more as ‘a strategy both for finding and remembering
proofs’ (ibid .: 232). A similar view is voiced by Eilenberg and Steenrod
(1952: x–xi):

The great gain of an axiomatic treatment lies in the simplification obtained in
proofs of theorems. Proofs based directly on the axioms are usually simple and
conceptual . . . Successful axiomatizations in the past have led invariably to new
techniques of proof. The present system is no exception.

Axiomatisation has not hindered but aided the creativeness of the best
modern mathematics by helping to disentangle theories from the contin-
gent circumstances in which they were discovered:

It is as if you took a man out of a milieu in which he had lived not because it
fitted him but from ingrained habits and prejudices, and then allowed him, after
thus setting him free, to form associations in better accordance with his true inner
nature. (Weyl 1951: 465)

9 In point of fact, one of Lawvere and Tierney’s axioms was later found to be redundant.
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Thus axiomatisation facilitates interaction between apparently different
areas of mathematics, an essential feature of the twentieth century, and has
helped to overcome the compartmentalisation of earlier centuries.

We can gain a clearer understanding of what is involved here by approaching
these issues from a different angle, namely, by studying a criticism expressed
by Davis and Hersh about the inclusion of comments made by the editors
of Proofs and Refutations, John Worrall and Elie Zahar, in a series of four
footnotes they added to the text. Davis and Hersh (1981: 354) complain
that Worrall and Zahar have misunderstood Lakatos’s message that it is
an error to identify ‘mathematics itself (what real mathematicians really
do in real life) with its model or representation in metamathematics, or, if
you prefer, first-order logic’. Worrall and Zahar had maintained that ‘first
order logic has arrived at a characterisation of the validity of an inference
which (relative to a characterisation of the “logical” terms of a language)
does make valid inference essentially infallible’ and that Lakatos, having
come in later years ‘to have the highest regard for formal deductive logic’
would have given up on his claim that we should ‘give up the idea that our
deductive, inferential intuition is infallible’ (Lakatos 1976: 138).

This discrepancy in the evaluation of Lakatos’s ideas can be explained by
Davis and Hersh imagining Lakatos’s understanding of modern mathemat-
ics to be in agreement with theirs, that is, that his discussion of the growth
of informal concepts was intended to extend to the twentieth century and
up to the present day. In that Lakatos was the only philosopher of mathe-
matics voicing the kind of opinion they wanted to hear, it is understandable
that they imagined his views to be closer to theirs than in fact they were,
and so thought that Worrall and Zahar’s additions ran squarely against
Lakatos’s thinking. It appears, however, on closer inspection of Lakatos’s
writings that it is Worrall and Zahar who are largely correct in their inter-
pretation of him.

Now Davis and Hersh know, being practising mathematicians, that theirs
is a difficult profession, one which is full of uncertainty, but in this article
they restrict the range of this uncertainty to the realm of proofs, a typical
example of which appearing in a mathematical journal of today is certainly
not written in a completely formal style. Yet, whereas we have seen earlier
Lakatos say of proofs in modern theories that ‘any competent logician can
formalize [them]’ and thus that they ‘can be submitted to a peremptory
verification procedure’, Davis and Hersh maintain that ‘[a] real proof is not
checkable by a machine’ (1981: 354) and believe that Lakatos is with them
on this issue:
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Lakatos applied his epistemological analysis, not to formalized mathematics, but
to informal mathematics in process of growth and discovery, which is of course
mathematics as it is known to mathematicians and students of mathematics.
(1981: 347)

However, Lakatos reckons that there are two senses of the word ‘informal’
as applied to proofs:

But what about an informal proof? Recently there have been some attempts by
logicians to analyse features of proofs in informal theories. Thus a well known
modern text-book of logic says that an ‘informal proof’ is a formal proof which
suppresses mention of the logical rules of inference and logical axioms, and indicates
only every use of the specific postulates.

Now this so-called ‘informal proof’ is nothing other than a proof in an axiom-
atized mathematical theory which has already taken the shape of a hypothetico-
deductive system, but which leaves its underlying logic unspecified. At the present
stage of development in mathematical logic a competent logician can grasp in a
very short time what the necessary underlying logic of a theory is, and can formalize
any such proof without too much brain-racking.

But to call this sort of proof an informal proof is a misnomer and a misleading
one. It may perhaps be called a quasi-formal proof or a ‘formal proof with gaps’ but
to suggest that an informal proof is just an incomplete formal proof seems to me
to be to make the same mistake as early educationalists did, when, assuming that
a child was merely a miniature grown-up, they neglected the direct study of child-
behaviour in favour of theorizing based on simple analogy with adult behaviour.
(Lakatos 1978b: 62–3)

Thus, while Davis and Hersh imagine that Lakatos’s account of informal
mathematics extends to present-day proofs in established branches of math-
ematics, surely the majority of the estimated 200,000 produced each year,
Lakatos himself wishes to count them as ‘almost formal’ or ‘quasi-formal’.10

If we imagine a spectrum of opinion about the reasons for the acceptance
of proofs in modern theories as being correct ranging from an extreme left
which holds that this is decided by some social decision process of the
mathematical community, to the extreme right which would say that a
proof is acceptable only if it is possible to formalise it in a truth transmitting
calculus, then we find that while Worrall and Zahar want to have Lakatos
seen as further to the right, at least in his later years, the majority of
commentators, and many of these disapprovingly, interpret him as sitting
towards the left. It is no doubt impossible to locate Lakatos precisely on this
spectrum, but I hope I have shown that Worrall and Zahar’s interpretation

10 We could attempt to make a distinction between the use of the terms ‘axiomatisation’ and ‘for-
malisation’, but need not in this discussion as Lakatos claims to use the terms interchangeably
(see ibid ., p. 67).
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is not unfaithful. What is novel in Lakatos is that, unlike most people who
see formalisation as unproblematic, he does not take it as an end in itself
and worries about the possibility of its excluding fruitful ideas.

Further testimony to the correctness of this line is offered by the way that
Lakatos tends to favour the syntactic over the semantic aspects of theories.
If we read his characterisation of the ‘hard core’ of the research programme
of algebraic topology it is given in terms of its axioms (1978b: 96).11 Now,
ignoring for the moment the frequent assertions of mathematicians that
the boundary between two branches is ill defined, we can say that modern
algebraic topology may be partially characterised by its aim of resolving
problems in topology by assigning algebraic objects to topological objects
in an invariant (up to homeomorphism) way and thus reducing the original
problems to easier algebraic ones. However, it is far from clear how such a
characterisation could be described solely in terms of axioms. The axioms
used by algebraic topologists include those defining types of topological
spaces, those defining types of algebraic objects, such as Abelian groups and
graded rings, and those defining processes going from one type of object
to the other. The Eilenberg–Steenrod axioms play the role of definitions
picking out what their authors decided was an important class of collections
of maps (functors) indexed by the integers from a suitable category of pairs
of topological spaces to the category of Abelian groups. The principal reason
for doing this was to facilitate the proof of general results by focusing on the
essential characteristics of the, until then, motley collection of homology
theories. Many of the axioms were properties of these homology theories
which had been proved for them individually.

As I mentioned earlier, homology theory was far from being the whole
of algebraic topology at that time, but even if we restrict ourselves to this
subbranch, we find that the appearance of new concepts did not cease after
1952. Shortly after this date new collections of functors were discovered
satisfying all the Eilenberg–Steenrod axioms except one – the dimension
axiom, which requires that the homology groups of the space consisting of

11 Other commentators have noted this aspect of Lakatos’s thought. Eduard Glas (1989: 168) describes
Felix Klein’s programme as ‘the best example of progress through generalization and consolidation’
likening it to Lakatos’s methodology, but he then adds that ‘proofs and refutations typically belong
to propositions, and Klein was not primarily concerned with the proofs of propositions but with
the development of models’. Kitcher’s view of explanatory progress leads him to recognise ‘the need
to break away from concentration on accepted statements (a feature of logical empiricism that survives
in Lakatos and Laudan) and to focus on the ways in which statements are used in answering questions’
(Kitcher 1993: 112n., author’s emphasis). There was always the fear in Lakatos’s mind that too many
concessions on this issue would lead to the introduction of something like Polanyi’s ‘know-how’,
which Lakatos felt to be irrelevant to his programme of explaining the development of theories in
the ‘Third World’.
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a single point be zero in all dimensions except dimension zero. This axiom
was introduced, the authors claim, to ‘insure that the dimensional index
shall have a geometric meaning’ (Eilenberg and Steenrod 1952: 12). These
functors, which include K-theory, now known as generalised homology
theories, are seen as very important developments and, despite their not
satisfying the dimension axiom, still have a strong geometric meaning.
Should we say that this premature axiomatisation by Eilenberg and Steenrod
might have delayed, or even prevented, the discovery of these new homology
theories? On the contrary, it is impossible to imagine the dramatic progress
which occurred in algebraic topology through the 1950s without the spread
of this new conceptual approach promulgated by means of the publication
of their book.

Returning to Davis and Hersh, we can now see that they were missing
the most essential point. They know that formalising a proof contributes
nothing to its comprehensibility, that mathematical understanding is not
transmitted without sufficient motivation, and that the logical form of a
proof fails to capture many of its important features,12 yet in this paper
they attend solely to the notion of the reliability of proofs. Given the
stabilisation that has occurred in the idea of what constitutes a rigorous
proof, this gives them little room for manoeuvre against their formalist
adversaries. Elsewhere we find that they, or at any rate Hersh, recognise
that uncertainty is more commonly to be found in aspects of modern
mathematics other than the validity of proofs:

there is an amazingly high concensus in mathematics as to what is “correct” or
“accepted”. But besides this, and equally important, is the issue of what is “inter-
esting” or “important” or “deep” or “elegant”. These aesthetic or artistic criteria
vary widely, from person to person, specialty to specialty, decade to decade. They
are perhaps no more objective than aesthetic judgments in art or music. (Hersh
1991: 131–2)

These criteria are precisely what we shall be studying in chapters 8 and 9.
Mathematicians today, aware of the volume of production of their col-
leagues, are far more concerned that their work will be ignored through
lack of interest shown to it than through any fear that it will be found
incorrect. Mac Lane (1986: 441) has a list of values for a piece of mathe-
matics similar to Hersh’s in which he too avoids the use of the word true
in favour of correct, and then adds the epithets: responsive, illuminating,

12 This is one of the interesting points made by Kreisel and MacIntyre (1982). They recommend (1982:
236) the perusal of essay reviews or lectures to learned societies by mathematicians as an antidote to
misconceptions on this score.
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promising, and relevant. However, he differs from Hersh, rightly in my
view, in the belief that there is something more objective to say about these
qualities.

7.6 the jaffe–quinn debate

A further twist in this story about the place of rigour comes in an article by
Arthur Jaffe and Frank Quinn (1993). These two mathematical physicists
are worried about the emergence of a new hybrid discipline lying some-
where between mathematics and physics. As we have seen in chapter 5,
theoretical physicists often find themselves today dealing with theories
whose consequences are beyond the range of experiment and so they are
turning to mathematicians to fill the role of experimentalist in that their
speculations may lead them to, say, a description of representations of the
‘monster’ sporadic group using vertex operators in Kac–Moody algebras.
While the authors are wholeheartedly in favour of mathematicians draw-
ing inspiration from ideas in physics, they are concerned that much of
the mathematical work emerging has not been established in the tradi-
tional rigorous fashion with the following consequences to the practice of
mathematics:
(1) Theoretical work, if taken too far, goes astray because it lacks the feed-

back and corrections provided by rigorous proof.
(2) Further work is discouraged and confused by uncertainty about which

parts are reliable.
(3) A dead area is often created when full credit is claimed by vigorous

theorizers: there is little incentive for cleaning up the debris that blocks
further progress.

(4) Students and young researchers are misled. (1993: 8)
Here we have, if you like, the reverse of Lakatos, in the sense that Jaffe and

Quinn are asserting that delay in the introduction of rigorous definitions
and proofs to a theory, if not properly signalled, may well have a pernicious
effect. Some of the best speculative ideas are not fulfilling their potential,
they say, because their discoverers are eschewing rigour. In other words,
an important part of the dialectical process is being missed in that good
intuitive ideas, which are often the material for the most fruitful variety of
rigorous exploration, are being drowned in a sea of conjectures from which
they may be extracted only by great effort.

Jaffe and Quinn illustrate their thesis with examples of lack of rigour
slowing progress and, in particular, in response to Dieudonné’s query as to
why it took so long after Poincaré’s work for algebraic topology to establish
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itself as a subject (ibid .: 36n.), allege that the result of Poincaré’s ‘reckless’
method was ‘a dead area which had to be sorted out before it could take
off’ (ibid .: 7). While there is no doubt a modicum of truth in this claim,
we ought I feel to offer a defence on Poincaré’s behalf and through this
provide a vindication of Lakatos’s interest in the less-than-formal, intuitive
side to mathematical reasoning.

A first point to be made is that in that era, fifteen or so years was not a long
period of time for ideas in a new area to be taken up. After all, the interval
from Betti to Poincaré was even longer. Many branches of geometry were
especially slow to crystallise. By 1900, after a century of the most violent
overthrows of geometrical understanding, the definition of a differentiable
manifold and of a topological space had not yet stabilised, and would not
do so for another decade. Thus:

[i]t is quite difficult for us to understand the point of view of the mathematicians
who undertook to tackle topological problems in the second half of the nineteenth
century: When dealing with curves, surfaces, and, later, manifolds of arbitrary
dimension, with their intersections or their existence when submitted to various
conditions, etc., they relied exclusively on “intuition”, and thus followed – with a
vengeance – in the footsteps of Riemann, behaving exactly as the analysts of the
eighteenth or early nineteenth century in dealing with questions of convergence
or continuity! (Dieudonné 1989: 15)

Rigour in algebraic topology, according to Dieudonné, comes only with
Brouwer’s work in around 1910, but the question of which objects form its
most appropriate domain has continued to be asked right up until recent
times.13

Now we are used to the idea of infinite dimensional spaces it may be hard
for us to remember the novelty of working in dimensions higher than 3.
In the introduction to Analysis Situs Poincaré went to the lengths of jus-
tifying the need for such a theory by remarking that while Riemann had
classified algebraic curves according to their genus by classifying closed real
surfaces using topological methods in two dimensions, the classification of
algebraic surfaces and their birational transformations was going to require
topological considerations in five dimensions.

We should notice in addition the originality and depth of the ideas
emerging from the Analysis Situs papers. It is generally recognised that a

13 It seems fair to say that the geometric branches of mathematics that have taken longest to ‘settle
down’ are the ones most likely to bring about reconceptualisations of mathematics. It was algebraic
topology which led to the formulation of the first ideas in category theory and it was in algebraic
geometry, for which Dieudonné dates the advent of rigour as late as 1950, that the notion of a topos
first emerged.
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majority of the concepts employed in algebraic topology until 1925 and
many of those appearing after this date have their seed in Poincaré’s work.
It certainly took a rare combination of talents to produce these papers and,
if a talent for rigorous work was not among these, then this is surely quite
understandable.

Finally, it is interesting to note some of the mathematicians who did fol-
low Poincaré. The four most important of these before 1925 were, perhaps,
Brouwer, self-taught and isolated in Holland, who did have a talent for
rigour but restricted himself to a small fragment of what his new concept
of simplicial approximation allowed him to explore, and the three Princeton
topologists, Alexander, Veblen and Lefschetz who, as residents of a country
with a shorter history of mathematical research, were not so constrained
by tradition. In this respect, it is interesting to note that in France where
analysis continued to reign supreme, nobody took up algebraic topology
until Jean Leray in the 1940s. We might have imagined that Poincaré’s stu-
dents would have carried on their teacher’s work and might well find that a
historical account of Poincaré’s role as a supervisor would yield a more com-
plete answer to Dieudonné’s question. Indeed, we find Dieudonné himself
(1975a: 52) making a comparison between the working styles of Poincaré
and Gauss when he notes that both of these mathematicians ‘had very few
students and liked to work alone’.

Perhaps we can arrive at a synthesis of Lakatos and Jaffe–Quinn’s posi-
tions. Mathematical research is to a great extent a search for ideas. There
are times when a domain needs an injection of rigour and times when it
can benefit from some speculative thinking. From the opposite point of
view, either activity may block the production and development of ideas.
As with comedy, it’s all in the timing.

7.7 conclusion

I would like to end this chapter with a tentative suggestion as to why Lakatos
had such a poor opinion of axiomatisation. Herbert Breger (1992) has ar-
gued that the establishment of the modern axiomatic paradigm by Hilbert,
Zermelo and others occurred via the overthrow of the earlier paradigm of
extreme Platonism. Despite the fact that it was possible to be a member of
this new paradigm and still be a kind of Platonist and despite Hilbert’s pro-
fession that he was preserving the old order, according to Breger, a central
belief of the older paradigm was given up. Whereas for Hilbert, consistency
of axioms for a system was sufficient reason to say that that system existed,
for the extreme Platonists ‘a definition does not constitute an object, it just
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points at an already pre-existing object.’ (ibid .: 256). Finsler was an adherent
of the old paradigm still working in the late 1920s on an axiomatisation of
set theory in the Cantorian tradition. However, this style of axiomatisation
was very different from that of the Hilbertians. His is maximal in the sense
that he is describing the totality of all sets as that system which satisfies
certain axioms and which cannot be extended; theirs is minimal in the
sense that there are no sets which cannot be derived from the axioms. If we
are right about Lakatos’s inherent-structurism, it would be consistent for
Lakatos to see axiomatisation in the Hilbertian sense, which is of course
the one that has been largely adopted by the mathematical community,
as somehow restricting the freedom of mathematicians to capture all the
mathematical reality there is.

If this sketch is roughly along the right lines, it would account for the
refreshing novelty of Lakatos’s philosophy of mathematics. Despite my crit-
icisms of him, Lakatos has played a vital role in redirecting our attention to
the evolution of mathematical theories, in particular through his treatment
of concept-stretching. However, I have argued that he misunderstood the
range of applicability of his ideas. He has claimed too much for them in
the sense that the method of proofs and refutations has at no time been
the most important mechanism for progress in mathematics, while he has
claimed too little for them by restricting himself to pre-axiomatic theo-
ries and in doing so made too much of the division between axiomatised
theories and their informal ancestors. Mathematical concepts may still be
generated today via proof attempts and uncertainty still thrives in the guise
of such problems as the choice of direction one’s research should take or
the ‘right’ way a theory should be generalised.

Insofar as the method of proofs and refutations focuses too closely on the
level of proofs, it demonstrates its limitations. What we need is an account
of explanatory and conceptual progress which goes beyond the bounds of
the collection of accepted statements of a theory. Let us now see whether a
methodology of mathematical research programmes might fare better.



chapter 8

Beyond the methodology of mathematical
research programmes

8.1 introduction

It is well known that, prior to his untimely death, Lakatos had hoped to re-
turn to the philosophy of mathematics bringing with him there some of the
constructions he had formulated during his study of the development of
the natural sciences. The problem which had faced him in the philosophy
of science was to rectify Popper’s depiction of scientific methodology tak-
ing account of Kuhn’s criticisms, yet avoiding what he saw as the relativist
pitfalls of the Kuhnian approach. He inherited from Popper an apprecia-
tion of the heuristic role of metaphysics in scientific theorising, which had
marked Popper’s difference from the Logical Positivists, and indeed placed
a greater emphasis on this role by allowing room for it within the structure
of a research programme.1

We may observe, then, that as he switched from mathematics to science,
the targets of his philosophical criticism changed from logicism and formal-
ism to positivism and Kuhnian relativism. This should lead us to wonder
which threats he would have been warding off with a methodology of math-
ematical research programmes. Two possibilities suggest themselves. First,
he might have wanted to use this methodology to intensify his attack on
logicism and formalism begun in Proofs and Refutations and continued in
other works. Second, seeing that in the 1970s there was no apparent rela-
tivist threat as regards mathematical knowledge, he might also have wanted
to create a prophylactic against the future appearance of such a threat.

Let us take these targets in turn. Just as he constructed his methodology
of scientific research programmes to oppose the Positivists’ notion that the
philosophically significant part of the scientific enterprise was restricted to
a collection of scientific statements logically analysable into observation

1 ‘Whereas Popper acknowledged the influence of metaphysics upon science, I see metaphysics as an
integral part of science’ (Lakatos 1978a: 148n.). As we shall see, however, Lakatos was not so successful
in distancing himself from other Positivist principles.
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statements, so he might have used mathematical research programmes to
oppose the logicist and formalist positions by underscoring the heuristic
and value-laden components within them. However, to be in a position
to see such programmes as dynamic progressive entities he would have
had to adopt a far more positive opinion of axiomatisation. Lakatos made
the bold proposal that something might be missed by the formalisation of
informal thought, yet he needed to understand how axiomatisation might
act to support the generation of a more refined informal thought, rather
than, as we saw in chapter 7, as marking the termination of the creative
process of research. Had he realised this, he would have been able to extend
greatly his fallibilist conception of axiomatised mathematics beyond the
limited sphere of logical falsification (when contradictions appear) and
heuristic falsification (when aspects of the prior informal theory had not
been captured).

As for the second of Lakatos’s possible targets, the production of a
methodology of mathematical research programmes would have a bearing
on ongoing debates within what is sometimes termed the post-positivist
philosophy of mathematics. Here, a central bone of contention is the
issue of what mathematicians have termed the unity (Michael Atiyah) or
connectivity (Saunders Mac Lane) of mathematics. Is modern mathematics
a loose association of disparate theories related to, as Mehrtens puts it,
‘heterogeneous specific problems’ (1990: 20) with a ‘form of communica-
tion . . . [which] tends to sharpen internal boundaries between specialties’
(quoted in McLarty 2000: 271)? Or, should we see these claims of Mehrtens
as arising from an ‘excessively direct transcription of common views of
postmodernism into the history of mathematics’ (McLarty 2000: 278) and
instead strive to account for the profound interconnectedness of modern
analysis, geometry, topology and number theory and their current use in
mathematical physics and elsewhere? There are indications that Lakatos
feared that the former was the more accurate picture with the concomi-
tant worry that much of modern mathematics was degenerate. Presumably,
however, he would have expected a methodology of mathematical research
programmes either to reveal the rationality of modern mathematical prac-
tice or else to point to ways of enhancing it.

A handful of attempts have been made to construct a methodology of
mathematical research programmes. Hallett (1979), for example, finds no
great obstacles to this task. More recently, we find Glas agreeing that science
and mathematics share a similar Lakatosian methodology, yet he feels that
this needs to be enriched by sociological considerations:
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This adapted version of the methodology has been shown to be adequate to account
retrospectively for the development of theories that depend on a shared hard core of
assumptions, but nothing more. In particular, it does not account for the genesis of a
new programme nor for the transition from one programme to another. (Glas 1995:
241–2)

So Glas requires a ‘sociohistorical perspective in the Kuhnian vein’ (ibid .:
242) to complement Lakatos’s methodological perspective, and this he out-
lines in the same paper.

I am far more sympathetic to sociologically inspired accounts of the
development of mathematics than Lakatos would have been, and I believe
much important work has been done in this area yet, like McLarty, I feel
there is a tendency to exaggerate the fragmentation of modern mathematics.
Lakatos surely failed to convince us that he had discovered the laws of
growth of knowledge in some autonomous ‘Third World’, but testing the
aptness of research programmes in the history of modern mathematics may
enable us both to decide on the degree of connectivity and to weigh up
judiciously the factors determining what the mathematicians of any era
deem to be salient.

Glas’s ‘adapted version of the methodology’ maintains the Lakatosian
picture of well delineated non-interacting research programmes and this
lends support to a vision of the course of mathematics being governed
to a very appreciable extent by external interests, such as the promotion
of mathematicians’ careers.2 A concern here is that if the depiction of the
development of research programmes does not include consideration of the
interaction between programmes, we shall overlook the fact that large tracts
of mathematics may be described in terms of a small number of powerful
principles (see, for example, the range of harmonic analysis as presented by
George Mackey in his (1992)).

On a speculative note, the existence of such principles offers us, I be-
lieve, a clue as to the relationship between our cognitive capacities and the
comprehensible features of the world. This brings me to a further point
that I wish to make about Glas’s presentation. I would suggest that even
his socio-historical addition, while important, will not suffice to account

2 Discussing Monge’s Central School of Public Works, Glas claims that ‘[t]he thorough educational
reforms effected in this prestigious institution (which later would still inspire Klein) produced a
generation of students who stuck to his “paradigmatic” teachings because they embodied the special
competences and proficiencies on which their further careers depended’ (Glas 1995: 240). With the
vast number of mathematics departments and journals in existence today, and the possibility of rapid
communication and travel, we might wonder how relevant to the present-day situation are the factors
Glas has isolated.
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for ‘the genesis of a new programme’. Clearly, for a piece of mathematical
improvisation to become accepted it cannot deviate too far from the inter-
nalised norms and values of a sufficiently powerful section of the mathe-
matical community, yet constraints on what may be understood must arise
not just from our condition as culturally constituted beings, but also from
our embodied condition. Better still, these conditions should be considered
as interrelated.

What must also not be neglected is what we might call the ludic quality of
mathematical research. Mathematicians after immersing themselves in var-
ious theories will devise problems and ‘play around’ with novel techniques
and concepts in their attempts at solving them, based on their desire to
increase their understanding. To some degree, and I deem it relatively large
(especially in the twentieth century), important ideas have arisen through
mathematicians being allowed to take up the challenge of clarifying and
extending theories with little need of extra-mathematical justification. The
question remains whether there exists some characterisation of the objec-
tive mathematical importance of a technique or concept. This we shall in
address in this chapter and chapter 9.

In this chapter I shall attempt to determine the extent to which the
research programme schema could be made to work for mathematics in the
modern era. I shall begin by examining the problems of delineating research
programmes in an age where the pace of mathematical research is so much
faster than that obtaining before, say, 1850. This I shall attempt for algebraic
topology, a minor part of whose rise into a research programme we have
seen Lakatos describe in Proofs and Refutations. One hypothesis that will be
thrown up from this section is that rivalry between research programmes
concerns high-level issues. This I shall illustrate in the following section by
considering a battle between Dedekind and Kronecker and their followers
as to whose theory was to succeed Kummer’s number theory.

The principal point that emerges from this study is that mathemat-
ics works at many levels, and that the one-level analysis provided by the
methodology of research programmes is insufficient. This thesis will be
examined in the context of a brief critique of some ideas of Giulio Giorello.
Similar criticisms have been made by Teun Koetsier, who decided in his
(1991) to turn to Larry Laudan’s scientific research traditions for inspira-
tion. Koetsier has realised that a more complex schema is needed to describe
modern mathematics, but I shall proceed to show that he has not gone far
enough. Such complexity – in particular the interweaving of theories – is
not, I believe, due to the failure on my part to ‘rationally reconstruct’ away
from the details of actual history. Instead, it is an integral feature of the
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dynamics of modern mathematics which accounts for the nature and ra-
pidity of its development. Finally, I shall make some comparisons between
my ideas and those of Penelope Maddy.

8.2 putting the methodology of mathematical
research programmes to the test

The components of a Lakatosian scientific research programme are: the hard
core, the positive and negative heuristic, and the protective belt. According
to Lakatos, the hard core of a research programme is a collection of laws
that the adherents to the programme are willing to hold on to at any price.
The reticence in allowing the hard core to be refuted is formulated as the
negative heuristic. The positive heuristic is a plan to guide the development
of the programme along lines which should eliminate some of the major
anomalies that the programme faces and which may attend it from its birth.
It ‘consists of a partially articulated set of suggestions or hints on how to
change, develop the ‘refutable variants’ of the research-programme, how
to modify, sophisticate, the ‘refutable’ protective belt’ (1978a: 50). This
protective belt is a body of auxiliary assumptions and theories which can
always be made to take the blame if an experimental finding appears to
contradict a consequence of the theory.

Lakatos’s prime example of a research programme is given by Newtonian
mechanics, the hard core here comprising Newton’s Laws of Motion and
the Law of gravitation. According to the plan of the positive heuristic,
Newton was to start by considering a planetary system with a fixed point-
like sun and a single point-like planet. This assumption he recognised to
be incompatible with one of the elements of his hard core, namely, the
law stating that every action has an equal and opposite reaction, whose
admission requires the complication of considering the system as revolv-
ing about the common centre of gravity. According to Lakatos’s story,
Newton then added other planets, but ignored interplanetary forces, in-
troduced ball-like planets and sun, allowed the planets to spin, and so
on. These changes were not motivated by experimental disconfirmation,
but rather by foreseen theoretical contradictions already present within the
programme.

Research programmes are defined by Lakatos as progressive in three
different ways: (a) they are theoretically progressive if each modification of
the protective belt ‘leads to new unexpected predictions’, (b) empirically
progressive if some of these predictions are verified, and (c) heuristically
progressive if the modifications are ‘in the spirit of the heuristic’. In all these
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senses Newtonian mechanics constituted a progressive research programme
over many decades.

One of Lakatos’s students, Elie Zahar, introduced a modification to
Lakatos’s initial scheme. This was to alter the definition of empirical
progress by saying that a research programme receives empirical support if
the new theory leads to the understanding of novel facts, taking a fact to ‘be
considered novel with respect to a given hypothesis if it did not belong to
the problem-situation which governed the construction of the hypothesis’
(Zahar 1973: 1). In other words, the phenomenon which is explained need
not be novel, so long as the theory was not devised with this phenomenon
in mind. Thus, Copernicus’s accounting for the retrograde motion of Mars
is to count as empirical progress despite the fact that this phenomenon had
been first observed centuries earlier.

I shall not comment at any length on the problems with the method-
ology of scientific research programmes (see, for instance, Chalmers 1982),
but we should note the tension produced by considering science in terms
of the activities of individual scientists and their communities and in terms
of the evolution of the ‘third world’. On the one hand, Lakatos wants to
use the history of science and mathematics to tell a story of the progress
of theories, the alienated products of human activity which inhabit Pop-
per’s ‘World 3’, separate from the worlds of physical reality and human
consciousness. Thus, the methodologist needs to ‘rationally reconstruct’
historical episodes, abstracting away from the contingencies and accidental
features of the discovery process, so as to describe the laws governing the
growth of the occupants of this Third World. On the other hand, to deter-
mine empirical progress, in Zahar’s modified sense, he must, as Feyerabend
points out (1976: 222n.), make detailed investigations into the heuristic
reasoning that lies behind the discovery of a theory. Only such detailed
study into the creative thought processes of the scientists concerned, in-
volving extensive investigation into their journals and correspondence with
colleagues will allow us to establish whether the scientist was thinking of
a particular phenomenon when he formulated a theory. This for Zahar is
no drawback given his belief that ‘the process of discovery is much more
rational than it appears at first sight’ (Zahar 1983: 244–5), that creativity is
not the irrational, ‘a-ha’ process it has often been considered to be, and that
many of the steps which lead to a theory’s discovery are also employed in
its justification. However, this would appear to take us beyond mere ‘Third
World’ considerations.

In chapter 7, I described how Lakatos thought that the hidden lemmas
which emerged and solidified during the process of proofs and refutations
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became the axioms which constituted the hard core of the newly established
research programme. This idea, I argued, seems difficult to defend for
algebraic topology given the speed with which homology theories (termed
extraordinary) contradicting one of the axioms (the dimension axiom) were
admitted after axiomatisation. Moreover, cohomology operations which relate
the products of these axiomatised cohomology theories were discovered to
be of use in settling more subtle topological problems.

The way I favour resolving this anomaly is to give up having axioms as the
hard core. If we wish to find something that has remained truly invariant
through the history of algebraic topology, it is the belief that it is possible
to solve (all) important topological problems, many of which may be for-
mulated as ‘extension’ or ‘lifting’ problems, by associating algebraic objects
and mappings to topological spaces and their mappings in a ‘natural’ way,
with the ultimate aim of being able to classify completely a suitably defined
class of topological spaces along with the mappings between them.3 To this
may be added the belief that powerful connections may be made between
the structure possessed by a space, i.e., the fact that it is an algebraic vari-
ety, differential manifold or whatever, and the invariants of the underlying
topological space. A well-known example of such a connection relates the
integral of a surface’s curvature to its topological genus.

What this amounts to is a shift of perspective from seeing a mathematical
theory as a collection of statements making truth claims, to seeing it as the
clarification and elaboration of certain central ideas by providing definitions
to isolate classes of relevant entities and ways of categorising and organ-
ising information about these entities. Further examples would describe
harmonic analysis as based on the idea that functions can be expressed as
sums of harmonics and algebraic geometry as the study of the solutions of
polynomial equations. In each example there is a kind of creative vagueness
to the central idea. For certain periods, the entities of a theory may change
little while the apparatus used to investigate them varies; at other times,
the range of the entities may be broadened.4

3 As I mentioned in chapter 7, Eduard Glas had moved in this direction by characterising the research
programme’s hard core in terms of the recognition of the importance of the Euler formula. I have
argued that this imputes to Lakatos more than he said, since I read him to take the constituents of
the hard core to be axioms. This reading of mine is consistent with his taking the hard core of a
research programme in physics to be composed of laws.

4 As, for instance, when algebraic geometry allowed the coefficients of polynomial equations to lie in
fields other than the real or complex numbers. My use of the word ‘apparatus’ points in the direction of
exploring mathematics in terms of machines as in the interesting paper of Jean-Pierre Marquis (1997).
One place I disagree with Marquis in this paper concerns the fixed distinction between instruments
and natural kinds. In his examples from algebraic topology, algebra is represented as providing the
instruments to probe ‘natural’ topological spaces. However, homological algebra can be turned on
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Is this modification brought on us by some fundamental difference be-
tween mathematics and science? A Newtonian if asked whether he thought
the law of gravitation and Newton’s three Laws of Motion were true, might
well have answered affirmatively, as would a seventeenth-century mathe-
matician have responded to a similar question concerning the axioms of
Euclidean geometry. But were we to ask a mathematician today whether he
considered a system of axioms to be true, he would most probably tell us
that he thought it had interesting models or that it described an important
construction. Perhaps the distance between the modern mathematician
and scientist in this respect is not so great in that the physicist is likely
nowadays to say that she thinks her theory a good model of some aspect
of the universe. Thus, Lakatos ought to have allowed a wider notion of
hard core to allow research programmes any chance of success in accurately
portraying science. In retrospect, the hard core of the Newtonian theory
of planetary motion should also be seen to include beliefs which employ
the notion of a model : massive particles are well represented by points in a
three-dimensional Euclidean space, time and space are absolute, time may
be modelled by a one-dimensional continuum, etc.

Allowing higher-level beliefs or aims into the hard core would allow
for a more flexible account of mathematical progress. With the inclusion
of broader goals, conjectures would then no longer be seen as the sole
spurs to theory development. Although conjectures about mathematical
objects still play a vital role in this century in carving out the future lines of
attack – we only have to think of the developments prompted by Hilbert’s
twenty-three problems5 – this class of aims used in the characterisation of
research programmes must be extended to include such goals as that of,
say, extending Kummer’s theory to general algebraic number fields, or that
of creating a non-commutative version of differential geometry. Not only
will this allow us to account for the historical fact that not all mathemat-
ical research programmes are launched by the progressive understanding
generated by improved attempts at solving a single conjecture, but it will
also provide us with something that may be adhered to with tenacity, a
quality Lakatos expected of his hard core, in that more general aims cannot
be decisively established or refuted.

As an illustration of this last point let us compare two aims of importance
to geometers, one at the level of conjecture, the other described more as a
broad aim:

algebraic objects (e.g. groups), and topology itself can be used to explore algebraic entities, as is done
in topological algebra.

5 Of course, several of Hilbert’s problems are expressed in terms of broad goals.
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(1) To prove or disprove Poincaré’s conjecture that all spaces homotopy
equivalent to the 3-sphere are homeomorphic to the 3-sphere

(2) To develop a good account of three-dimensional manifolds.
Although it may be supposed that a solution to (1) will involve contributions
to (2) and vice versa, it is possible that the conjecture will be decided one
way or the other by an uninformative proof or an uninstructive counter-
example, neither of which helps with the second aim. In the former case,
we may end up with a computer proof of the sort used to prove the four-
colour theorem which left many mathematicians with the feeling that unless
a more conceptual proof is devised at some point, the conjecture was not a
good one in the first place. For them, understanding is just as important as,
or more important than, deciding the correctness of a result. While, in the
latter case, if a counter-example is found, then topologists will still want to
find the reasons for the counter-example’s not being homeomorphic to the
3-sphere or to find the number of different homeomorphism classes.

William Thurston is one of the leaders of a programme which is working
to achieve aim (2). He has proposed the following conjecture, one that
subsumes Poincaré’s:

The interior of every compact 3-manifold has a canonical decomposition into
pieces which have geometric structures. (Thurston 1982: 357)

The whole point of a conjecture is to mark out the path to the achievement
of some central aim, and as such belongs to the positive heuristic. As
Thurston remarks:

just as Poincaré’s conjecture, [it] is likely not to be resolved quickly, but I hope it
will be a more productive guide to research on 3-manifolds than Poincaré’s question
has proven to be. (1982: 358)

Thurston also provides in this article a list of twenty-four ‘questions and
projects’ on 3-manifolds and Kleinian groups which constitute targets for
the programme.

If with Lakatos the components of a research programme were paired
(hard core–negative heuristic, positive heuristic–protective belt), my sug-
gestion would bring the hard core and positive heuristic closer thereby
threatening to collapse the whole construction. Already in the case of nat-
ural science, Lakatos has an inkling of this problem when he declares that
‘[t]he demarcation between “hard core” and “heuristics” is frequently a
matter of convention’ (Lakatos 1978a: 181n.).6 One way out of this problem

6 According to Zahar’s account the metaphysics of the hard core leads to certain prescriptions that
may be translated into the meta-statements of the positive heuristic. Thus ‘the heuristic may reflect
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might be a classification of beliefs as means or ends. The hard core is com-
posed of ends or aims, while the positive heuristic is composed of favoured
means to achieve these ends.

Although we have already met with certain difficulties in carrying over
the research programme structure to mathematics, let us continue with
the comparison. Algebraic topology as a programme could be said to be
born refuted given the early understanding that it would be impossible
to distinguish between all the different homeomorphism classes of subsets
of the plane. The solution to the question of the ‘right’ set of spaces for
algebraic topology to classify is thus constrained by the desire for generality
and the desire for completeness.7 Claims about which topological objects
ought to form the study of algebraic topology we might assign to the
protective belt. If we find that algebra cannot make the necessary distinction
between two such objects, the negative heuristic would advise us to consider
altering these claims.

As for the positive heuristic, we can take this to include the plan to start
with the classification of triangulable spaces and then to extend this to more
general spaces; to engage with neighbouring branches; to relate invariants
of geometric objects to the invariants of their underlying topological spaces;
to introduce as much power into the algebra as possible without rendering
the translated problems as difficult as the original topological problems.
The positive heuristic of a programme must be allowed to evolve: it would
be incorrect, for example, to say that Poincaré presaged the extension of
homology theory to a wider class of spaces since the very notion of space
underwent dramatic change in the years following his Analysis Situs papers,
driven by considerations unrelated to his own.

The spectre of a problem we shall meet repeatedly has arisen: the de-
lineation of a research programme is made difficult by the presence of
mathematicians temporarily working on a problem with different moti-
vations and from different backgrounds. Witness the example described
by Saunders Mac Lane (1978), where five mathematicians produced four
independent papers continuing an idea of Hopf’s in precisely the same
direction.

By 1942, it had long been known that the first homology group of a space
was the Abelianisation of its fundamental group. What Hopf achieved in
a paper published in that year was the discovery of a relationship between

certain aspects of the hard core; the distinction between hard core and heuristic is not as absolute as
Lakatos imagined’ (Zahar 1989: 22).

7 A further consideration requires that the space of mappings between two objects be itself an object
of the same kind.
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the fundamental group and the second homology group. Within three years
of its publication no less than four papers, including one by Hopf himself,
pushed this idea further, thereby laying the foundation for homological
algebra. The conditions for such a multiple discovery were created by the
difficulties in communicating papers during the Second World War. Mac
Lane, a co-author with Eilenberg of one of the four papers, mentions
how he recognised the construction of Hopf’s as the Schur multiplier of
a group. He had become acquainted with this construction through his
study of class field theory, the continuation of the algebraic number theory
of Dedekind to be discussed below. In a second of the four papers, use
was made of the universal covering space, an indication that Galois theory
is lurking in the background. Further ideas are found in the other two
papers. So here we can already see the difficulties in untangling the lines of
development of a theory. We have five mathematicians with their different
backgrounds and knowledge of a variety of areas of mathematics involved
for a brief time in the attempt to achieve similar ends, yet making use of
dissimilar means. To count these mathematicians as working within the
same research programme would force us to include within the heuristic
of that programme a wide variety of favoured means originating from a
considerable part of the totality of mathematics. When mathematicians
from a variety of backgrounds work temporarily on the same project, the
correct attribution of the heuristic becomes a far from simple matter.

As for equivalents of Lakatos’s three varieties of progress, we can still talk
of developments being in the spirit of a programme and so of heuristical
progress: progressive research should have a sense of purpose and employ
suitable means to achieve its ends. If a programme generates new concepts,
produces new proof techniques, elaborates on partially understood ideas
thus enabling generalisation of results to a wider domain or a neighbouring
field, then we could talk of theoretical progress. If a programme permits
problems in other fields to be solved, extends our ability to calculate solu-
tions of equations or investigate the nature of these solutions, or provides
new applications in science or engineering, then we might say it consti-
tutes empirical progress. Mathematicians are well aware of these varieties
of progress:

Mathematics is good if it enriches the subject, if it opens up new vistas, if it solves
old problems, if it fills gaps, fitting snugly and satisfyingly into what is already
known, or if it forges new links between previously unconnected parts of the
subject. It is bad if it is trivial, overelaborate, or lacks any definable mathematical
purpose or direction. It is pure if its methods are pure – that is, if it doesn’t cheat and
tackle one problem while pretending to tackle another, and if there are no gaping
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holes in its logic. It is applied if it leads to useful insights outside mathematics. By
these criteria, today’s mathematics contains as high a proportion of good work as
at any other period, and as any other area; and much of it manages to be both pure
and applied at the same time. (Stewart 1987: 233)

The importance of a part of mathematics is something one can judge roughly
by the amount of interaction it has with other parts of the subject . . . Hard core
mathematics is, in some sense, the same as it has always been. It is concerned with
problems that have arisen from the actual physical world and other problems inside
mathematics having to do with numbers and basic calculations, solving equations.
This has always been the main part of mathematics. Any development that sheds
light on these topics is an important part of mathematics. (Atiyah 1984: 299)

Algebraic topology has shown all these varieties of progress. In terms
of heuristical progress, homology theories were devised of greater appli-
cability from cell complexes to general topological spaces, and ever-more
sophisticated tools (e.g. squaring operations) have provided for finer clas-
sifications. Theoretical progress has been achieved by the development of
homological algebra, category theory, and K-theory, which have had effects
on other branches of mathematics far wider than could have been hoped by
their discoverers, who certainly did not lack ambition, thus adding to the
complex intertwining of modern mathematical theories. From Poincaré’s
qualitative analysis of the solution sets of differential equations, through
Lefschetz’s fixed point theorem and Morse’s calculus of variations, to the use
of homotopy classification of mappings in modern conformal field theories,
algebraic topology has extended the understanding and solution of equa-
tions in mathematics and physics throughout its history and therefore may
be deemed to have undergone empirical progress. One of the main reasons
for the introduction of the methodology of scientific research programmes
was to provide rules (if only retrospective ones) to determine the relative
status of competing research programmes, and thus to class the refusal to
acknowledge the degeneration of a research programme as irrational. Here
the aim was to account for what was better about, say, Einsteinian physics
compared to its Newtonian predecessor. One could compare this example
of competition with the success of Eilenberg–Steenrod axiomatic algebraic
topology over earlier formulations. What these axioms do is to define what
it is to be a homology theory in terms of properties already known to hold
for existing homology theories. It was a radical change less for the content
of the theories, more as an example of a new way of doing mathematics:
the use of axioms to define a class of processes that acts on one type of
object to produce another type of object. Mathematics became for the first
time explicitly functorial . This brings us to one of the central ideas of this
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chapter: rivalry in mathematics is less over the ground the competing theo-
ries are covering, and more concerned with high-level questions regarding
the organisation of mathematics.

What of more direct confrontation of theories? Can we find examples of
competing research programmes? Point-set (or general) topology might be
thought of as a rival to algebraic topology, and yet, despite a certain overlap
in their goals, it should surely be seen as aimed at answering different
questions or as providing a useful, but distinct, set of conceptual tools for
other branches. Algebraic topology has provided the different branches of
geometry with a host of useful technical devices and given a huge impetus to
algebra; point-set topology has been useful in, among other areas, functional
analysis and Boolean algebra. Algebraic topology is concerned with very
different aspects of a topological space, e.g., its ‘holedness’, whereas point-
set topology explores aspects of separability. One can, however, debate their
relative importance for mathematics as a whole. While discussing a recent
development in model theory, Angus Macintyre commented that:

[t]his can be construed as a long-overdue rapprochement between logic and
algebraic topology (as opposed to set-theoretic topology). Kreisel had stressed
the gigantic difference in importance (for the life of mathematics) between alge-
braic topology (coming from Poincaré) and set-theoretic topology. The latter is of
course ubiquitous in routine arguments and formulations, but the former is al-
most unreasonably effective in advancing mathematical understanding. (Macintyre
1989: 366)

But this type of theory comparison bears little resemblance to those Lakatos
described as deciding between rival scientific research programmes com-
peting in similar observational realms.

We can, however, find examples of fairly direct competition within
modern mathematics. Comparison of research programmes for Lakatos
involved the notion of the degeneration of programmes. A programme is
degenerating when all it can do to counter anomalies is to make ad hoc, or
non-progressive, changes to its protective belt. We can find many examples
of this phenomenon of stagnation in mathematics, but I shall confine myself
here to just one.

One of the areas of mathematics that has been seen as unapproachable
from a constructive perspective, despite the efforts of Errett Bishop, is point-
set topology. Constructivists have been unable to treat topological spaces
in their full generality, restricting themselves instead to metric spaces. But
given that most of the results on topological spaces rely solely on the lattice
structure of their open sets, a constructive counterpart can be defined in
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what is known as a locale, a type of lattice. In the words of Peter Johnstone,
a mathematician working in this field:

It is, I think, by now generally accepted that topos theory has something to say
to constructive mathematics. But I believe that the contribution of topos theory
should be more than merely providing models against which the constructivists
can test their own (preconceived) ideas; it also has a role to play in suggesting what
constructive mathematics ought to be – what results one should aim for, and even
how one should try to prove them. In this latter sphere, topos theory has so far
made little headway; even the message that constructive general topology ought
to be about locales and not spaces, which has been broadcast loud and clear by
topos theorists for some years now, has had little impact on any of the traditional
schools of constructive mathematics. (Johnstone 1984: 84–5)

For constructivists to use toposes as models to test their ideas against is
surely ad hoc, in the sense of being heuristically non-progressive, since these
structures are not constructively defined. They are category theoretic struc-
tures that happen to model ‘internally’ higher-order intuitionistic logic.
They were developed by category theorists from work done in algebraic
geometry and point to the practical rather than philosophical importance
of constructivism. The reliance on theory solely generated by other pro-
grammes is a sure sign of degeneracy.

Again the dispute is at a high level: the category theorist versus the con-
structivist. To examine this idea that rivalry is always at a high level, I shall
now look at an example of rivalry at an apparently lower level by com-
paring the fates of two extensions of Kummer’s algebraic number theory –
Dedekind’s versus Kronecker’s – as seen by later mathematicians.8

8 .3 dedekind versus kronecker

Recall from chapter 4 that Kummer created the notion of an ideal divisor
in response to the anomaly that for certain number domains prime fac-
torisation is not unique.9 For instance, in Z[

√−5] we can factorise 6 in
two ways: (1 + √−5)·(1 − √−5) = 6 = 2·3, such that the factors cannot
be reduced further. Kummer’s idea was to imagine that these factors could
be reduced further into ideal divisors such that the two factorisations were
alternative ways of grouping the ideal divisors. He then gave conditions

8 The ideas of the Russian mathematician Zolotarev, who also worked in this area, could profitably be
studied as a third rival.

9 Harold Edwards has discussed Kummer’s research, along with its development by Dedekind and
Kronecker, in great detail in several books and articles. For Kummer’s work see, for instance, Edwards
(1977).
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for divisibility by an ideal divisor in terms of the elements of the number
domain.

Dedekind replaced Kummer’s notion of an ideal divisor by the ideal of
integers divisible by that divisor in his attempt to extend unique factori-
sation to general number fields. Kronecker achieved the same goal in a
paper which appeared in 1882, despite the theory having been worked out
many years before, in the same edition of Crelle’s Journal as its rival the
Dedekind–Weber paper. His major innovation was to investigate polyno-
mials in a finite number of indeterminates with coefficients in the number
field. He then defined the content of a polynomial as the greatest common
divisor of its coefficients with a view to identifying associate polynomials,
i.e., polynomials with the same content. Before this identification is made,
however, he has the advantage of a simple notion of addition, subtrac-
tion and multiplication and, allowing rational functions, he is also able to
divide.

Kummer showed clear partiality for one of the heirs to his theory over the
other. According to Dedekind, Kummer did not want to know about his
research, while admiring his former pupil’s ideas. To help us appreciate the
difference between the styles of these two protagonists it will pay us to jump
forward several decades to consider a section of Weyl’s book on algebraic
number theory (Weyl 1940) entitled ‘Our Disbelief in Ideals’. Here, Weyl
presents two arguments against ideals. The first is that Dedekind’s approach
has the ‘awkward consequences’ that the ideal generated by a set of integers
varies depending on the field in which it is embedded, so that, in particular,
an ideal is prime only relative to a given field. Where Dedekind looks only
at one field, Kronecker wants to talk in terms of concepts independent of
the field under consideration. With Dedekind, if you wish to change the
field you must intersect the ideals with a lower field or take the ideal they
generate in a larger field. Divisors, on the other hand, are defined such that
nothing changes if the field is extended:

It is a remote consequence of the theory that both requirements agree, while in
Kronecker’s theory the embedding field . . . is irrelevant for the definition. (Weyl
1940: 67–8)

The second argument arises when we wish to look beyond algebraic
number fields with the recognition that in a ring of polynomials in more
than one variable, while the ring already possesses unique factorisation,
ideals do not. So, whereas the use of ideals restores unique factorisation in
number fields, it destroy it in some rings. Thus:
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[o]ur aim here is to secure the law of unique decomposition. With this sole purpose
in mind we must reject Dedekind’s notion of an ideal as a universal solution. (Weyl
1940: 38)

Differences between the two approaches emerge more markedly when we
pass to fields of polynomials in several variables with complex coefficients.
The algebraic geometer wishes to study manifolds determined as the zeroes
of a set of algebraic equations, which may thus be equated with the ideal of
polynomials everywhere zero on the manifold. He will thus want to make
the distinction between the surface f = 0 and the surface f 2 = 0, and this
ideal theory allows him to do. Weyl admits:

that polynomial ideals are a worthy subject of study – not, however, as a tool for
the arithmetic of polynomials, but for their own sake, because algebraic mani-
folds of lower dimension deserve no less attention than algebraic surfaces. (Weyl
1940: 38)

He finishes up with the following compromise position:

In summarizing, one may venture to say that K[ronecker] is the more fundamental,
D[edekind] the more complete theory; or that D is of higher importance to the
geometer, who ought to be concerned about manifolds of every dimension, while
K is more important to the arithmetician, whose chief concern (presuming he is
old fashioned enough!) is the law of unique factorisation. (Weyl 1940: 70)

The use of the word ‘disbelief’ in Weyl’s choice of title for the section in
which these thoughts are discussed may seem a little curious in the context
of an argument about the relative utility of divisors and ideals. Indeed Weyl
says later in the book:

As both theories are actually equivalent one can dissent about questions of conve-
nience only. To my judgment the odds are here definitely against Dedekind. His
theory suffers from a certain lack of self-sufficiency, in so far as its proofs resort
to indeterminates and pivot around the fundamental Lemma . . . tools which are
native to Kronecker’s set up, alien to Dedekind’s. (Weyl 1940: 67)

Thus, we might say that Weyl is accusing Dedekind of being ad hoc in the
sense of not being in line with the heuristics of his programme. However,
this judgment he notes in an amendment to the book (1940: 223) is not
fair to the Dedekindian approach as a whole in that Noether and Krull had
in the intervening period worked out a way of avoiding this incongruous
move.10 Surely then the only way to account for Weyl’s preference is on
the basis on a deeper ideological split. We will not have far to look for

10 As it happens, Weyl was being unfair to Dedekind as the latter had himself avoided resorting to
indeterminates.
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support for this claim after recalling that Weyl had strong constructivist
leanings and so was in much closer accord with Kronecker’s beliefs than
with a philosophy that could be instrumental to the founding of set theory.
As Weyl points out:

Kronecker’s criterion of divisibility is one decidable by finite means, while
Dedekind’s criterion refers to the infinite set of all possible integers. (1940: 67)

The differences between the two approaches reflect real philosophical di-
vergences. Whereas divisors can be computed with, Dedekind did not have
an algorithm for deciding whether a given element is in an ideal and this
Kronecker and later mathematicians of a constructive bent saw as being
‘needlessly nonconstructive’ (Edwards 1989: 68).11

Having been commissioned to write a review of the state of research in
algebraic number theory at the end of the nineteenth century, David Hilbert
used the opportunity in his Zahlbericht to rethink the whole field, opting
largely for the Dedekindian approach, which in this way became standard.12

Certainly Dedekind’s approach won out over the decades leading to van
der Waerden’s Moderne Algebra, but already by 1949 the p-adic approach of
Kronecker’s student Hensel was seen by many as a strong competitor:

It seemed at first that the ideal-theoretic approach was superior to the divisor-
theoretic, not only because it led to its goal more rapidly and with less effort,
but also because of its usefulness in more advanced number theoretic research.
For Hilbert and, after him, Furtwängler and Takagi succeeded in constructing on
this foundation the imposing structure of class field theory, including the general
reciprocity law for algebraic numbers, whereas on Hensel’s side no such progress
was recorded. More recently however, it turned out, first in the theory of quadratic
forms and then especially in the theory of hypercomplex numbers (algebras),
not only that the divisor-theoretic or valuation-theoretic approach is capable of
expressing the arithmetic structural laws more simply and naturally, by making it
possible to carry over the well-known connection between local and global relations
from function theory to arithmetic, but also that the true significance of class field
theory and the general reciprocity law of algebraic numbers are revealed only
through this approach. Thus the scales now tip in favor of the divisor-theoretic
approach. (Hasse 1980: vi)

11 Note, however, that in a paper published in 1932, Weyl speaks well of ideals. The concept of an ideal
is described as ‘fundamental’ (1932: 649) and as playing a ‘dominant role’ (1932: 650) in commutative
and non-commutative algebra.

12 Weber had presented Kronecker’s version in his Lehrbuch der Algebra (1896). Why, then, Hilbert’s
choice? Should one point to an overlap in their methodological outlook, or might there be an
element of contingency? For an account of the mathematical styles of Dedekind and Hilbert see
chaps. 2 and 3 of Corry (1996).
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Hensel’s ideas were closely aligned with Kummer’s divisor theory and
were suggested by the analogy between algebraic number fields and algebraic
function fields first explored, paradoxically, by Dedekind and Weber, as we
saw in chapter 4. Their joint paper, however, borrowed elements from the
divisor theoretic tradition. Triumph for Hensel, however, was not triumph
for Kronecker:

There appears to have been a certain feeling of rivalry, both scientific and personal,
between Dedekind and Kronecker during their life-time; this developed into a
feud between their followers, which was carried on until the partisans of Dedekind,
fighting under the banner of the ‘purity of algebra’, seemed to have won the field,
and to have exterminated or converted their foes. Thus many of Kronecker’s far-
reaching ideas and fruitful results now lie buried in the impressive but seldom
opened volumes of the Collected Works. While each line of Dedekind’s XIth Sup-
plement, in its three successive and increasingly ‘pure’ versions, has been scanned
and analyzed, axiomatized and generalized, Kronecker’s once famous Grundzüge
are either forgotten, or are thought of merely as presenting an inferior (and less
pure) method for achieving part of the same results, viz., the foundation of ideal-
theory and of the theory of algebraic-number fields. In more recent years, it is true,
the fashion has veered to a more multiplicative and less additive approach than
Dedekind’s, to an emphasis on valuations rather than ideals; but, while this trend
has taken us back to Kronecker’s most faithful disciple, Hensel, it has stopped short
of the master himself . . . Now it is time for us to realize that, in his Grundzüge,
Kronecker did not merely intend to give his own treatment of the basic problems
of ideal-theory which form the main subject of Dedekind’s life-work. His aim was
a higher one. He was, in fact, attempting to describe and initiate a new branch of
mathematics which would contain both number-theory and algebraic geometry
as special cases. This grandiose conception has been allowed to fade out of our
sight, partly because of the intrinsic difficulties of carrying it out, partly owing to
historical accidents and to the temporary successes of the partisans of purity and
of Dedekind. (Weil 1950: 90)

Weil then goes on to say that:

It will be the main purpose of this lecture to try to rescue it from oblivion, to revive
it, and to describe the few modern results which may be considered as belonging
to the Kroneckerian program. (1950: 90)

Weil’s interest in this programme was caused not through any great
concern for the constructive tradition per se, but rather through his belief
in the mathematical power of Kronecker’s approach, one that embraced
far more than the constructivism for which he is often remembered. As
it turned out he was proved to be fully justified in his beliefs when in
the late 1950s and 1960s Grothendieck’s massive reformulation of algebraic
geometry subsumed Kronecker’s programme. Weil modestly claims later



Beyond the methodology of mathematical research programmes 193

that this revival in the fortunes of Kronecker’s theory was not due to his
own contribution, but that it had arisen from considerations other than
those he had mentioned:

My foremost desire was to draw attention to the opportunity of studying algebraic
geometry over a ring. Doubtless the natural development of the subject would have
led there by itself; whatever the case, it has been satisfied to a large extent . . . above
all by the theory of schemes devised by Grothendieck and developed by his students
and successors. (Weil 1979: 576, my translation)

A hint of the constructivity of Kronecker still survives in that
Grothendieck devised for his programme a class of categories, known as
Grothendieck toposes, and their generalisation, the elementary toposes of
Lawvere and Tierney, are models for higher-order constructive logic. But
what the many mathematicians, including Langlands, who have favoured
Kronecker over Dedekind have realised is the greater vision of the former’s
idea. The point here is that the concerns of algebraic geometers have proved
to include and surpass most of what is important for mathematics in the
idea of constructivity. This view is also held by the logician Gonzalo Reyes:

work on ‘foundations’ has been concentrated for too long on the field of Analysis
and the dialectic contradiction of ‘constructive’ versus ‘non-constructive.’ It seems
to me that it is high time to look for ‘foundational’ fields elsewhere and Algebraic
Geometry with a much richer dialectics seems as good a choice as any. And who
knows, it may even be the Ariadne’s thread of the ‘labyrinth of the continuum.’
(Reyes 1980: 250)

As regards the rivalry of the two programmes, we have seen that both have
succeeded as successors to Kummer’s programme in their different ways.
The language of ideal theory occurs throughout mathematics and yet, in
a sense, Kronecker’s approach was the more fundamental. It aimed more
directly at the very heart of the seemingly inexhausible analogy that exists
between number and function. This situation where two theories appear to
converge on a common problem yet later turn out to proceed in different
directions is, I suggest, very common in the history of mathematics, more so
at any rate than rival scientific theories accounting for the same experimental
data.

We may see two consequences following from this short case study. First,
it implies the necessity of a many-layered account of mathematics, where
theories can succeed at different levels. Second, as mathematicians have in
some sense a little more room to manoeuvre than scientists, there is less
chance for them to be disputing precisely the same territory.
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8.4 other attempts to construct a methodology of
mathematical research programmes

Only a few attempts have been made to extend the methodology of sci-
entific research programmes to mathematics. These include those outlined
in articles by Michael Hallett and Giulio Giorello, about the first of which
(Hallett 1979) I shall not have much to say. Here Hallett concentrates on
the issue of progress, proposing that to say that one theory has progressed
over another if it satisfies Hilbert’s criterion. This states that:

the setting up of a new mathematical theory Tm+1 constitutes progress with respect
to its predecessor Tm if Tm+1 is used in the solution of at least one problem P
which Tm did not solve, provided that P is not of Tm+1’s own making and that the
statement solving P was not used in the construction of Tm+1. (Hallett 1979: 10)

This is clearly closely related to Lakatos’s empirical progress with Zahar’s
modification. Hallett shows quite convincingly that point-set topology
exhibited this variety of progress through the early years of this century and
provides support for the notion of a methodology of mathematics research
programmes.

Turning now to Giorello (1980) we find the author alleging that:

In our opinion, (in the context of mathematical discovery) Lakatos’ perspective
provides more adequate tools than Kuhn’s. (1980: 118, author’s emphasis)

This remark is made on the basis that:

in the growth of knowledge, concatenations between scientific achievements are
observed which no typology should ignore, but strangely enough, the author of
The Structure of Scientific Revolutions seems to pay little attention to this. (1980:
118, author’s emphasis)

This is perhaps some truth to this in the light of the lack of dialectical
awareness shown by Kuhn, as I discussed in chapter 1.

Giorello takes the story of Riemann’s development of the theory of func-
tions of a complex variable as a case study to back his claim. He isolates
three principles in Riemann’s programme: (a) the Dirichlet principle; (b)
the definition of mathematical entities by means of their behaviour in the
infinitely small; and (c) some ‘metaphysical’ principles taken from Herbart
such as that ‘therapy’ was necessary to counteract the ‘prejudices inadver-
tently transmitted through language’.

There is no attempt by Giorello in this article to outline the range of
Riemann’s work and so to enable us to see the roles these three principles
play for Riemann. To me it seems a curious decision to want to lump
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them together. The Dirichlet principle is a technical tool which provides
the means for obtaining a real harmonic function, u, on a domain �

coinciding with a given continuous function on the boundary of � by
finding an appropriate u that minimises a certain integral D(u). This is
justified by the observation that D(u) is always non-negative.

As for (b), this may be appropriate to describe Riemann’s work in differ-
ential geometry, and accords with Weyl’s description of Riemann’s quest ‘to
understand the world from its behavior in the infinitely small’ (Laugwitz
1999: 307). As for complex function theory, it better accords with Weier-
strass’s approach. Weierstrass, we may recall, understood these functions
in terms of their series expansions about different points; Riemann on the
other hand, adopted a global approach by looking for suitable spaces on
which they could be defined.

Finally, (c) involves general philosophical ideas held specifically by
Riemann himself and not by his followers. Such ideas have commonly
been held by very imaginative mathematicians and tell us much about the
creative thinking behind their work, yet to include it in the hard core would
suggest that these beliefs belonged to anyone working on the programme.

Giorello describes the successive attempts to establish the limits of the
domain of validity of Dirichlet’s principle as continuations of Riemann’s
programme, thus sees (a) as belonging to the community of mathemati-
cians working on the programme. But surely this is to confuse the indi-
vidual with the community faces of mathematics. It is extremely unlikely
that Riemann’s successors adhered to his Herbartian beliefs or even neces-
sarily agreed with his views on the infinitely small. Why not rather define
the programme as the attempt to establish a coherent theory of complex
functions in a global style, these later efforts being attempts to deal with
anomalies in the programme? A separate venture would be to explore the
personal heuristical unity behind Riemann’s work.

In his (1991) Koetsier criticises Giorello for a rather loose application
of the terminology of a research programme but, as we can see from the
following statement, Giorello has realised that the research programme
language will not translate directly over into mathematics:

Do we hold then that one of the more distinctive characteristics of the methodology
of scientific research programmes – the distinction between the metaphysical hard
core and the protective belt, in characterizing the heuristics – cannot be applied to
case studies such as the one under consideration, or that it should be abandoned?
As an absolute scheme, this distinction, in our opinion, leads to considerable
difficulties. However, if it is assumed as a working hypothesis, in a flexible, non-
schematic way, it will allow us to characterize assertions such as those of type (c),
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in our example as at once ‘metaphysical’ and ‘auxiliary’ according to our interests
in the reconstruction of the research program. (1980: 130–1)

I have, however, based the present chapter on the assumption that is only by
a more rigorous application of Lakatos’s ideas that we will be able to extract
what is best about them and so produce a clearer picture of mathematical
progress.

Koetsier claims that:

the heart of Riemann’s scientific enterprise is first of all the conviction that a very
general, global approach to the theory of complex functions of a complex variable
is possible. Secondly, the theory of complex functions was linked to geometry
(conformal mappings) on the one hand and to potential theory on the other.
(1991: 143)

While the accuracy of this characterisation of the work of Riemann and his
followers as a programme is open to debate, it is noticeable that Koetsier
here is talking effectively in terms of ends and means, and not axioms and
theorems. Let us now turn our attention to Koetsier’s replacement for the
methodology of mathematical research programmes.

8.5 koetsier and the methodology of mathematical
research traditions

In his (1991), having offered criticisms of attempts to transfer the method-
ology of scientific research programmes to mathematics, Koetsier tries to
do better with Laudan’s notion of a research tradition. This he defines as
follows:

A mathematical research tradition is a group research activity, historically identifiable
(in a certain period), characterized by common general assumptions (in the form of
e.g. definitions, axioms) about the entities that are being studied in a fundamental
mathematical domain, and it involves assumptions about the appropriate methods
to prove properties of those entities.

A fundamental mathematical domain consists of the most general mathematical
entities that play a role in the mathematics of the period. (1991: 151)

Koetsier offers the following ‘tentative’ notion of mathematical rationality:

A mathematical research project or research tradition progresses heuristically if it
produces conjectures (theorem candidates) of weight. Apart from heuristic progress
there is absolute progress, if the project or the tradition succeeds in proving or refuting
the conjectures resulting from its heuristic progress, it progresses absolutely. But
we have also absolute progress, if the project or tradition succeeds in proving (or
refuting) conjectures or theorems produced by a competing project or tradition . . .
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The preference of a rational mathematical community for a research project or
a research tradition is proportional to its expected progress. (1991: 159)

The first doubt I should like to express about this picture is as to whether
progress should be judged purely in terms of the theorems or conjectures
generated by a tradition or project. Other candidates for signs of progress
include the reorganisation of existing bodies of work and the production of
new techniques to solve problems which need not be theorems, for example,
enabling one to solve a new class of differential equations. It is all too easy
to forget that one of the main purposes of elaborating formal concepts is to
provide methods of calculation – recall the quotation from Atiyah above.

The notion of the importance or ‘weight’ mathematicians give to some
theorems over others needs analysis and Koetsier provides this by listing
nine factors. When we come to look closely at these we find that several
of these factors are expressed in terms of theories. Thus it begins to look
as though Koetsier has realised that there is more to mathematics than
its theorems. However, when we turn to his definition we find Koetsier
claiming that a theory belonging to a tradition is:

a set of connected mathematical statements that are considered to be true of (a
subdomain of ) the fundamental domain of that tradition encompassing at least
one theorem, i.e. a proven conjecture. (1991: 153)

Once again logical positivist doctrine has left its mark and has restricted us
to a set of statements.

Next, there follows the problem of deciding the best scale with which to
classify units of research. Given the dramatic rise in the number of working
mathematicians since the Renaissance, might the most appropriate size
not vary through the centuries? Koetsier’s classification of mathematical
theories as belonging to research traditions seems to me to be increasingly
inappropriate as we move forward to the present day. As he says about
analysis (1991: 199), this branch was not all of mathematics in the nineteenth
century, but was of such importance that it affected the whole community.
This is more or less correct. The adherence of their aging teachers to the view
that analysis was the pinnacle of mathematics drove the future founders
of Bourbaki to Göttingen and Hamburg to find out all about the new
German abstract algebra, the intervening generation having been wasted in
the trenches of the Western Front. But what of twentieth-century research
traditions? Koetsier tells us only of the ‘structuralist’ tradition, the one
promoted by Bourbaki, whose fundamental domain ‘consists of the totality
of all mathematical structures, and its methodology of proof is the modern
formalist axiomatic method’ (1991: 152). This tradition so described includes
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the majority of modern mathematics, and so the term ‘research project’ is
then left to do an immense amount of work. In effect it has to describe all
the developments that have occurred since, say, the 1930s.13

Surely we should aim for a resolution finer than one which takes mod-
ern algebraic topology as a mere project. After all, Mathematical Reviews
classifies research in this branch under roughly a hundred sub-headings,
all of which are active.14 Seen as a whole, algebraic topology deserves to
be classified on a level different from that of one of its research problems,
for instance, the attempt to discover the higher homotopy groups of the
spheres, or the theory of knots. These latter would seem to merit the name
project, while the former, certainly by the Steenrod–Eilenberg axiomatisa-
tion, deserve the name programme. Why not then allow for three levels –
tradition, programme, and project – each of which may fade away through
lack of results or be superseded or swallowed up by a rival, the latter two
also being able to spur new developments in the next higher level? In
Kronecker we can see elements of an algorithmic tradition, a programme
to unify arithmetic and algebraic geometry, and a project to better ground
Kummer’s ideal numbers. We should not access the degree of success of his
work as a monolithic block.

Category theory, it could be argued, began as a project to study con-
tinuous mappings within the programme of algebraic topology, has since
become a programme in its own right, and is challenging set theory to
become the language of the dominant tradition. It claims to provide new
means better adjusted to the needs of the structuralist research tradition.

In the twentieth century we see the increasing take-over of the structural-
ist tradition,15 where branches, which had been kept artificially isolated from
each other, were allowed to interact, often through projects starting within
a particular programme weaving through other programmes. K-theory is a
perfect illustration of this in that it originated in a project of Grothendieck
and others within topology to classify vector bundles over a topological
space and has since made contributions to arithmetic, algebra, and func-
tional analysis. As such it has played a crucial role in the construction of
areas of mathematics currently absorbing the interest of many mathematical

13 Cf. Lakatos’s remark: ‘Even science as a whole can be regarded as a huge research programme . . . But
what I have primarily in mind is not science as a whole, but rather particular research programmes’
(Lakatos 1978a: 47).

14 Papers are often classified under several subheadings.
15 See Corry (1996) for an account of the rise of the structuralist approach. Corry makes the important

point that the rise of structuralism should not be confused with the rise of axiomatisation (1996: 53
and n.) and devotes the second part of the book to a discussion of various attempts to capture the
notion of structure.
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physicists. A typical research programme today, such as the Langlands pro-
gramme, a non-commutative generalisation of class field theory, is a far
better integrated affair than those of the pre-war era.

This points to a difference between mathematics and physics: while
scientific research programmes can be grouped into higher-level traditions
characterised by a guiding metaphysics, for instance, an adherence to atom-
ism or to a field theoretic outlook, it is often best to focus on the level of
programmes or projects to see where the battles are being fought out. Math-
ematics appears to have an extra degree of freedom at this level which makes
it improbable that projects, and even programmes, will be in direct compe-
tition for the precisely the same territory. Point-set topology and algebraic
topology, we have said, study similar objects but in different ways, to the
benefit of each other. As a consequence, the outcome of struggles between
rivals is less often one of outright victory. To admit this extra degree of
freedom is by no means to allow that anything goes.

Traditions spawn projects which may become programmes in their own
right, may then link up in tandem with other programmes, possibly strad-
dling different traditions. Riemann’s initial account of connectivity and
Betti’s improvements were within the tradition of analysis as represented
by Cauchy, the measuring being done only in terms of natural numbers.
Poincaré’s work in algebraic topology began as a project to help provide him
with tools to study differential equations qualitatively, the spaces belong-
ing to the older idea of a manifold taken from differential geometry, while
the algebra was done in terms of the linear algebra of the time. Algebraic
topology became a programme in the Princeton of the 1920s. Spaces had by
then been generalised to the point-set variety founded by Hausdorff among
others, while later Noether’s rings and modules transplanted the matrices
of the old linear algebra.

An idea of the complex shifting of levels comes from Atiyah (1974: 213) in
which the author describes how when faced by a problem a mathematician
may devise a ‘trick’ to help him solve it. Further analysis reveals to him how
this trick works and allows him to develop a ‘technique’. If the technique
is generalisable it in turn may become a ‘method’, which further developed
becomes a theory.

The greatest problem with the attempt to transfer pictures of scientific
theoretical progress, developed often from historical research of the science
of earlier times, to the mathematics of the twentieth century is the rapidity
with which ideas came to be passed from hand to hand. The language
of research programmes and projects as clearly delineated entities seems
better suited to describe work conducted in the comparatively leisurely
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atmosphere of earlier centuries. Recall from above the speed with which
the ideas in Hopf’s 1942 paper were developed by himself and four other
mathematicians, each from a different background. It is understandable
then why mathematicians presenting a synoptic view of progress in a par-
ticular theory relate the history of ideas rather than the history of their
discoverers.

We can even find mathematicians offering historiographical advice. For
instance, Weil points out that:

In Bourbaki’s historical note on the calculus, it is said that the history of math-
ematics should proceed in the same way as the musical analysis of a symphony.
There are a number of themes. You can more or less see when a given theme occurs
for the first time. Then it gets mixed up with the other themes, and the art of the
composer consists in handling them all simultaneously. Sometimes the violin plays
one theme, the flute plays another, then they exchange, and this goes on.

The history of mathematics is just the same. You have a number of themes; for
instance, the zeta-function; you can state exactly when and where this one started,
namely with Euler in the years 1730 to 1750 . . . Then it goes on and eventually
gets inextricably mixed up with the other themes. It would take a long volume to
disentangle the whole story. (Weil 1974: 291)

This technique of writing a history of mathematics was adopted by
Dieudonné in his ‘The Historical Development of Algebraic Geometry’
(Dieudonné 1972), where the themes he selects there are: (A) Classifica-
tion, (B) Transformation, (C) Infinitely near points, (D) Extending the
scalars, (E) Extending the space, (F) Analysis and topology in algebraic
geometry and (G) Commutative algebra and algebraic geometry. Notice
that these themes operate at the different hierarchical levels I have been
discussing and that they reveal the extent of horizontal transfer within lev-
els. Mathematics starts to look like a tangled net and it becomes much less
appropriate for a historian to offer a sequential narrative.

8.6 maddy’s naturalism

At about the same time as I was revising Lakatos’s conception of research
programmes in terms of aims and means, Penelope Maddy was led through
her thorough understanding of the recent history of set theory to do some-
thing very similar in the form of a means–end analysis. Her analysis of
set theory given in (1997) and elsewhere is a fascinating illustration of her
thesis that we should see mathematical developments not as settled on
philosophical grounds, but as driven by the desire to satisfy mathematical
goals.
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While I thoroughly recommend her account of the reasons philosophers
of mathematics should become naturalistic methodologists, I think it is still
worth drawing attention to some slight differences of orientation between
us. Possibly these arise merely from the fact that we study different areas of
mathematics. In this regard, two features of contemporary set theory are
quite prominent. First, the number of practitioners is fairly small, aiding the
achievement of a firm consensus on most matters. Second, the programme
has remained far more isolated from other branches than is the case with
most programmes. The first of these points may lie behind a decision not
to question the rationality of the goals of community (see, e.g., 1997: 198).
In fields where there is more dispute, it is not just the means but the whole
hierarchy of goals that comes to be questioned. In fact, means and goals are
very intimately wrapped up with each other. How the questions which are
real to a community (Jardine 2000), i.e., ones that mathematicians have
an idea how to get started on, come to be introduced and sustained is
something the methodologist must address.

Relating to the second feature noted above, set theory’s isolation, when
you dip into core mathematical activity you find an enormous diversity of
means and ends jostling together. This flexibility is seen to be required to
broaden mathematicians’ understandings of a particular type of object, and
as such is also important for the health of a whole branch of mathematics.
About algebraic number theory Serge Lang could say:

If there is one moral which deserves emphasis, however, it is that no one piece
of insight which has been evolved since the beginning of the subject has ever
been ‘superseded’ by subsequent pieces of insight. They may have moved through
various stages of fashionability, and various authors may have claimed to give so-
called ‘modern’ treatments. You should be warned that acquaintance with only
one of the approaches will deprive you of techniques and understandings reflected
by the other approaches, and you should not interpret my choosing one method
as anything but a means of making easily available an exposition which had fallen
out of fashion for twenty years. (Lang 1970: 176)

This is extremely important. One imagines a new approach will come along
and sweep all before it, but typically it only partial captures the situation.
As Lakatos told us, we can never be certain that a research programme
won’t be profitably revived. One might have imagined, for instance, that
the modern definition of a function as a set of ordered pairs was adequate to
all there is to say about functions, and that the older Eulerian representation
of functions by formulas was buried. Not so. Recently, for instance, with
the computer assisted study of solutions to partial differential equations,
numerical analysis has been joined by symbolic computation:
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This book is an introduction to new computational methods in the theory of linear
PDE [partial differential equations – DC]. To explain the terminology, the ‘old’
methods, well predating the advent of computers, are concerned with approximate
numerical solutions based on difference approximations to differential equations.
The underlying mathematical point of view here is that a function is given by a
table of its values. In contrast, the new computational methods forming the subject
of this book are symbolic, i.e., based on the idea that a function is best given by a
formula, e.g., as an explicit polynomial or power series. (Kapranov 2001: 481)

In sum, my worry is that a rational reconstruction may be used to stifle de-
bate. In 1910, we could easily have presented Dedekind’s means of resolving
the problem of prime factorisation as having successfully met ‘the’ goal, and
then taken Kronecker’s ideas as not quite up to the mark. But as we have
seen elements of these ideas resurfaced very strongly in the mid-twentieth
century. This is not to say that no stretches of mathematical may be de-
scribed fairly straightforwardly in means–ends terms, just that we must not
overrationalise our accounts, as Lakatos himself was wont to do, and we
need to keep an eye on apparently failed programmes.

8.7 conclusion

I have attempted to demonstrate that any model of the development of
modern mathematics will requires more sophistication than a simple trans-
fer of Lakatos’s methodology of research programmes from science to math-
ematics. The model I have proposed is more sophisticated, but may well
turn out to have flaws. It would be extremely useful to make a study of
the notions of progressiveness as presented by mathematicians working in
a range of eras and in a range of fields, and to compare these with the
historical record. I shall look in greater detail at contemporary ideas of
progressiveness in chapter 9.

I have stressed in the introduction that at present there are far too few
studies of modern mathematics. I suspect that when at last we come to
explore the development of mathematics in the twentieth century in a suf-
ficiently detailed and historically sensitive way, what will probably emerge
is a complex story, similar in many ways to those produced by the historians
and sociologists of modern physics. In the account of physics presented by
Peter Galison in his How Experiments End (Galison 1987) the author enters
into a discussion (chapter 5) of how long-term, middle-term, and short-
term constraints govern experimentalists’ beliefs and actions. These may
possibly be thought of as finding their parallels in commitments to beliefs
involved in traditions, programmes, and projects. Coincidently, Galison
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talks of programmatic goals when he discusses the beliefs to which a scien-
tist is committed due to middle-term constraints (1987: 249).

For those philosophers who reject the idea of mathematics as comprising
a collection of statements, changes made to their picture of the development
of mathematics must have an impact on their philosophy. The danger of
allocating insufficient attention to the twentieth century is that we shall
then be forced to extrapolate from our knowledge of earlier times. However,
mathematicians through this century have increasingly seen fit to relate
apparently unconnected theories. Indeed, it is the success of the structuralist
tradition to have allowed for an accelerated interweaving of research. The
rise of this tradition has provided a convenient setting for the employment of
analogy, ever a potent heuristical tool, which has resulted in the quickening
pace of transfer of ideas between fields. Thus, mathematics today progresses
in ways in which it could not have progressed a hundred years ago. Pursuing
the idea of mathematics as the ‘science of analogy’ should prove fruitful for
philosophers.

While it is clear from what I have just said that I believe it will remain a
useful strategy for those working in the history of mathematics to keep an
eye open on developments in the history of science, we must of course expect
differences to emerge. One I have proposed in the course of this chapter
is that rivalry between competing researchers tends to involve high-level
issues. In physics, the distribution of cases of decisive rivalry would seem
to occur at lower levels. It remains to be seen whether this turns out to be
a general principle.

Now let us see what we can make of differences in mathematicians’
conceptions of the most important factors constituting progress.



chapter 9

The importance of mathematical conceptualisation

A mathematician, like a painter or a poet, is a maker of patterns. If his
patterns are more permanent than theirs, it is because they are made
with ideas. (Hardy 1940: 24)

All these difficulties are but consequences of our refusal to see that
mathematics cannot be defined without acknowledging its most
obvious feature: namely, that it is interesting. (Polanyi 1958: 188)

9.1 values in mathematics

As with any academic community, mathematicians must devote a signifi-
cant part of their time to promoting their research activities. This occurs
both externally, with a view to improving the standing of mathematics rel-
ative to other disciplines, and internally, with a view to establishing the
importance of specific research programmes. What is very noticeable when
one encounters such promotion exercises is the enormous variety of qual-
ities alluded to and the differences in emphasis placed on these qualities.
Even if, as seems to be the case, a considerable consensus has persistently
taken certain moments in the history of mathematics to be pivotal, im-
portance does appear to be a time-dependent notion. Something vitally
important for one generation may not seem quite so crucial for the next.
But, alongside these rather predictable variations between generations of
mathematicians, one also finds considerable dissimilarities between math-
ematicians of any given era. We would expect, then, that an exploration of
contrasting opinions about what constitutes an important advance would
reveal much about the evolution of competing images of mathematics and
the tensions existing between them.

A first step is to glean what we can from mathematicians who meet
with the question of importance in their roles as researchers, teachers,
referees, textbook writers, grant body panellists and doctoral supervisors. As
I mentioned above, what we quickly discover is that there are many criteria

204
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for judging the importance of a development and that there are differences
among mathematicians as to the value they place on success according
to these various criteria. For the purposes of this chapter, I propose to
arrange these criteria, several of which we matched to Lakatos’s notions of
progressiveness in chapter 8, into five broad categories:
(1) When a development allows new calculations to be performed in an

existing problem domain, possibly leading to the solution of old con-
jectures.

(2) When a development forges a connection between already existing
domains, allowing the transfer of results and techniques between them.

(3) When a development provides a new way of organising results within
existing domains, leading perhaps to a clarification or even a redrafting
of domain boundaries.

(4) When a development opens up the prospect of new conceptually mo-
tivated domains.

(5) When a development reasonably directly leads to successful applications
outside of mathematics.

Naturally, some developments may be rated highly according to several
or perhaps all of the categories. In particular, it may happen that a refor-
mulation of a body of existing theory or a unification of existing theories
leads to new results in an already existing domain, but also points the way
forward to a new area. Of course, there is a fine line between clarifying
the boundaries of an old domain and extending beyond them into a new
domain, but there are cases which are clearly on one side or the other.

What needs to be brought under close scrutiny is the tacit weighting given
by the mathematical community to these different criteria. My perception
is that, very reasonably, if a development is seen either to be doing well or
to have the potential to do well according to the majority of the criteria,
then interest is guaranteed. Take, for example, the Atiyah–Singer index
theorem, a formula demonstrated in the early 1960s which links analytic
information concerning an elliptic differential operator with topological
information on an associated vector bundle, thereby relating important
constructions in algebraic topology to the domain of partial differential
equations. This immediately scored extremely highly on (1) and (2), highly
on (3), and had the potential to score well on (5). Sure enough, the theorem
later found its uses in quantum field theory.

A problem arises, however, when a development appears to do well on
one front, but poorly on the others. An example here is the computer as-
sisted proof of the four-colour theorem. Few now deny that the theorem is
true, or that the various computer proofs warrant our belief in it, and yet a
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widespread feeling persists that unless there is some more conceptual suc-
cess, for example, by linking the theorem to other branches in illuminating
ways,1 then little has been achieved. What interests me more, however, are
situations where the conceptualists are in the minority position. We can
express their concern as follows: despite the greater difficulty of scoring
according to categories (3) and (4), success here is not in general given
sufficient weighting. Their worry is, in other words, that the conceptual
aspect of mathematical activity is on occasions undervalued in that the
acquisition of results is favoured over the reorganisation and elaboration of
concepts.2

To be what I have called a conceptualist is not indicative of any specific
view as to the ultimate goal of mathematics. As a conceptualist, you may
well believe that the proper organisation of mathematical ideas is an end in
itself, but equally it could be that you see it as the most appropriate way of
providing tools to model the natural world, which you view as the essential
purpose of mathematics.

Complaints of a lack of conceptual appreciation are not hard to find. For
instance, although his work is generally considered to be extremely impor-
tant, Mikhael Gromov considers that a book of his containing fundamental
insights on partial differential equations

is practically ignored because it is too conceptual. (Berger 2000: 187)

Now, it is no easy business defining what one means by the term conceptual .
One radical position, represented by a book such as Conceptual Mathematics
(Lawvere and Schanuel 1997), sees category theory as providing much of the
answer. Where set theory picks up on a few of our everyday structural con-
cepts (collection, membership, union, etc.), category theory does so more
extensively in such a way that its concepts can be found in a multiplicity
of contexts. Without wishing to take sides here, I think we can say that
the conceptual is usually expressible in terms of broad principles. A nice
example of this comes in the form of harmonic analysis, which is based on
the idea, whose scope has been shown by George Mackey (1992) to be im-
mense, that many kinds of entity become easier to handle by decomposing
them into components belonging to spaces invariant under specified sym-
metries. In the case of Gromov’s book, on the other hand, the conceptual
core is expressed in terms of the h-principle, which holds, roughly speak-
ing, that, in many geometric situations, obstructions to the construction
of solutions to partial differential equations arise only from topology.

1 This is being done. See Thomas (1998). 2 This imbalance is also noted by Laugwitz (1999: 22).
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In a fascinating paper, which provides an excellent counterpoint to this
one, the mathematician Timothy Gowers (2000a) stands up for the kind
of mathematics which earned him a Fields’s Medal. To some the field
of what he refers to as ‘combinatorics’ appears as a collection of wholly
unrelated problems, each requiring some clever trick to solve it, while fields
such as algebraic number theory contain many general unified results. But
by contrasting the problem solving to the theory building components
of mathematical activity and identifying the field of combinatorics as one
where the former prevails, Gowers does not mean to suggest that there is no
common ground between the ways of arriving at results in combinatorics.
Instead, he notes that the solution of combinatorial problems often leads to
the production of ‘somewhat vague general statements’ (Gowers 2000a: 72)
which then open up other problems for solution.3 It would be interesting
to observe the extent to which these implicit general principles can evolve
to become explicit unifying theories.

To my mind the most straightforward access we can gain to these issues is via
a case study analysis. What we require then is an example of a development
whose fate hangs or has hung in the balance. In this respect an account
of quantum groups, fascinating though this would be for our understand-
ing of mathematical physics in the late twentieth century, will not fit the
bill. Given the centrality of Lie groups and Lie algebras to mathematical
physics, the pleasantly surprising discovery that ‘quantum’ deformations of
examples of the latter exist was never going to be seen otherwise than as
an important breakthrough. What we need to observe is an idea which,
it is claimed by some, has suffered neglect because of a lack of immediate
success in the more ‘practical’ categories, (1) and (5) of those outlined above.

The case I have chosen to treat in this chapter concerns the question as to
whether the group concept should be extended to, or even subsumed under,
the groupoid concept. Over a period stretching from at least as long ago as
the early nineteenth century the group concept has emerged as the standard
way to measure the degree of invariance of an object under some collection
of transformations.4 The informal ideas codified by the group axioms,
an axiomatisation which even Lakatos (1978b: 36) thought unlikely to be
challenged, relate to the composition of reversible processes revealing the
symmetry of a mathematical entity. Two early manifestations of groups were

3 For example: ‘if one is trying to maximize the size of some structure under certain constraints, and
if the constraints seem to force the extremal examples to be spread about in a uniform sort of way,
then choosing an example randomly is likely to give a good answer’ (Gowers 2000a: 69).

4 See Wussing (1984).
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as the permutations of the roots of a polynomial, later reinterpreted as the
automorphisms of the algebraic number field containing its roots, in Galois
theory, and as the structure-preserving automorphisms of a geometric space
in the Erlanger Programme. Intriguingly, it now appears that there is a
challenger on the scene. In some situations, it is argued, groupoids are
better suited to extracting the vital symmetries.5 And yet there has been
a perception among their supporters, who include some very illustrious
names, of an unwarranted resistance in some quarters to their use, which
is only now beginning to decline.

My claim is that, although groupoids did well at reformulating old
domains and pointing to new areas for exploration, they suffered from
leading to too little in the way of new techniques for solving old, cir-
cumscribed problems. Thus, their early adoption required an inclination
towards being conceptually adventurous. However, now that programmes
using groupoids have becoming established, researchers can use them to
work with more of an air of what we might call ‘normal mathematics’ within
these programmes.

9.2 what is a groupoid?

When promoting a mathematical concept, it is never a bad idea to think
up an illustration from everyday life. Ronald Brown (1999: 4), a leading
researcher in groupoid theory, has provided us with a good example by
considering possible car journeys between cities of the United Kingdom.
Now, one approach to capturing the topology of the British road system
is to list the journeys one can make beginning and ending in Bangor,
the Welsh town where Brown’s university is located. This possesses the
advantage that the members of the list form a group under the obvious
composition of trips, where the act of remaining in Bangor constitutes
the group’s identity element.6 However, for a country so dominated by its
capital city, it might appear a little strange to privilege Bangor and the act of
staying put there. Each city might be thought to deserve equal treatment.

5 If they succeed, then my account of the deficiencies in Lakatos’s philosophy of mathematics discussed
in chapter 7 will be supported. Lakatos’s belief that ‘elementary group theory is scarcely in any danger
[of heuristic refutation]’ arises from his idea that ‘the original informal theories have been so radically
replaced by the axiomatic theory’ (Lakatos 1978b: 36). But extended informal notions of symmetry
which arise from working with axiomatised theories elsewhere in mathematics may provide such a
refutation.

6 Note that trips are being considered here only ‘up to homotopy’. In particular, taking a trip and then
retracing one’s steps is to be equated with staying at home.
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Pleasant as it is to remain in Bangor, staying put in London should surely
be seen as another identity element. Moreover, if you want to know about
trips from London to Birmingham, it would seem perverse to have to sift
through the set of round trips from Bangor which pass through London
and then Birmingham, even if all you need to know is contained therein.
And if ferry journeys are excluded, this method is perfectly hopeless for
finding out about trips out of Belfast. More reasonable then to list all trips
between any pair of cities, where ordered pairs of trips can be composed
if the destination of the first trip matches the starting point of the second.
Something group-like remains but with only a partial composition. On
this basis Brown can claim that:

[t]his naı̈ve viewpoint gives rise to the heretical suggestion that the natural concept
is that of groupoid rather than group. (Brown 1999: 4)

As the mention of heresy indicates, the suggestion is far from universally
accepted within the mathematical community. We read that Alain Connes,
the French Fields’s medallist, considers that ‘it is fashionable among math-
ematicians to despise groupoids and to consider that only groups have au-
thentic mathematical status, probably because of the pejorative suffix oid’
(1994: 6–7, my emphasis). This explanation of the origins of such a strong
sentiment may seem implausible, but there can be little doubt that the
climate towards groupoids has not been exactly favourable.

Brown reproduces a passage from a letter sent to him by Grothendieck
in 1985:

The idea of making systematic use of groupoids . . . , however evident as it may
look today, is to be seen as a significant conceptual advance, which has spread into
the most manifold areas of mathematics . . . In my own work in algebraic geometry,
I have made extensive use of groupoids. (Quoted in Brown 1999: 7)

One might have expected that eleven years later the matter would have
been settled, the ‘evident’ idea would have spread, but according to Alan
Weinstein, a noted geometer, by 1996 the message had still not got
through:

Mathematicians tend to think of the notion of symmetry as being virtually syn-
onymous with the theory of groups . . . In fact, though groups are indeed sufficient
to characterize homogeneous structures, there are plenty of objects which exhibit
what we clearly recognize as symmetry, but which admit few or no nontrivial au-
tomorphisms. It turns out that the symmetry, and hence much of the structure,
of such objects can be characterized algebraically if we use groupoids and not just
groups. (Weinstein 1996: 744)
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To counteract resistance to their use we find that three articles have
been written and two Internet websites constructed with a view to their
promotion. Such explicit promotion is quite unusual, although mathemati-
cians are aware of the need to market their wares. In a humorous subsection
of his book, entitled ‘Commercial break’, the algebraic geometer Miles Reid
tells us that:

Complex curves (= compact Riemann surfaces) appear across a whole spectrum of
maths problems, from Diophantine arithmetic through complex function theory
and low dimensional topology to differential equations of math physics. So go out
and buy a complex curve today. (Reid 1988: 45)

Now, this book is aimed at undergraduates – complex curves have not stood
in need of any PR campaign for the purposes of recommending them to
professionals for many decades. In fact, it would be hard to count yourself
a professional mathematician without agreeing that complex curves are a
good thing, even if your research never brings you particularly close to
them. Groupoids, on the other hand, despite generating sufficient interest
for an annual ‘Groupoid Fest’ to be held in their honour, still require some
salesmanship.

Two of the promotional articles are due to Brown (1987, 1999), the
first appearing in the long-established Bulletin of the London Mathematical
Society, which publishes research and expository articles, while the second
forms the opening article of the first issue of a new journal Homology,
Homotopy and Applications. The other article, Weinstein (1996), appears in
the Notices of the American Mathematical Society, a more informal journal,
which includes, besides less technical exposition, articles on the teaching
of mathematics and administrative issues. This informality is reflected by
the choice of cover picture for the edition containing Weinstein’s article.
Next to the title of this article one sees a photograph of a herd of zebra.
No explicit explanation is offered for its presence, nor is one needed. The
received account as to why zebras sport stripes is that when they stand in a
herd, a charging lioness is presented with a strongly patterned visual array,
making it very difficult for her to detect the outline of a single member
of the herd. The rationale for the choice of this picture, in which one
imagines Weinstein played a part, rests in his idea that groupoids are better
than groups at detecting the inner symmetry of patterns of this kind. This
idea Weinstein explicitly illustrates in the article itself with a discussion
of the symmetries of a set of bathroom tiles. In contrast to this rather
mundane concern of the mathematician contemplating the pattern of the
grouting while enjoying a soak, the cover picture makes clear that such
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inner symmetry is a matter of life and death. As any zebra will tell you,
‘symmetry capturable by groupoids but not by groups saves lives’.

Let us now consider the definition of a groupoid and its motivation.7 A
groupoid is composed of two sets, A and B, two functions, a and b, from
B to A, and an associative partial composition, s·t, of pairs of elements of
B with a(s) = b(t), such that a(s·t) = a(t) and b(s·t) = b(s). Furthermore,
there is a function, c, from A to B such that a(c(x))= x = b(c(x)) and such
that c(x)·s = s for all s with b(s) = x and t·c(x) = t for all t with a(t) = x.
Finally, there is a function, i, from B to B such that, for all s, i(s)·s = c(a(s))
and s·i(s) = c(b(s)).

This may seem like a highly convoluted definition, but it can be illus-
trated simply in Brown’s picture. We simply take A to be the set of cities,
while B is the set of trips. The start and finish of a trip are given by applying
a and b, respectively. Applying c to a city results in the staying-put trip.
Finally, i sends a trip to the same trip in reverse.8 This illustration should
prompt anyone acquainted with category theory to realise that a groupoid
may be defined concisely in its terms. Indeed, a groupoid is just a small
category in which every arrow is invertible. This much curter definition
points to an important association of groupoid theory with category the-
ory, as we shall see later. From this perspective, groups can be seen to be
special cases of groupoids, that is, they are groupoids with only one object.
Alternatively, in terms of the definition above, a group may be represented
as a groupoid in which the set A is a singleton, and where B corresponds
to the set of group elements seen as permutation maps on the group.

9.3 how groupoids compare with groups

The fact that groups are just a type of groupoid raises the possibility that
groupoids comprise a more conceptually basic variety of object. The first
mathematician into whose consciousness groupoids explicitly appeared
seems to have been H. Brandt. In his research on quaternary quadratic forms
he found that he could define a composition on classes of forms, but unlike
in the binary case where a group is involved, this composition was only

7 Note that the term ‘groupoid’ is also used to denote a set with a binary operation on it satisfying no
further conditions. This minimalistic structure is used by Saunders Mac Lane as an example of what
he calls a ‘mathematical dead end’ (Mac Lane 1992: 10).

8 Again these trips are being considered here only ‘up to homotopy’. Higher-dimensional groupoids
can used to maintain the distinction between homotopic paths. Note also that one-way streets are
being overlooked.
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partial. He named the corresponding structure a gruppoid (Brandt 1926).
As this was a continuation of a programme begun by Gauss, quite possibly
groupoids might have been defined earlier. One can speculate that, had the
course of history run differently, we would find what we now call groups
being designated by some epithet as a type of what we now call groupoid,
rather than having, as is now the case, groupoids seen as ‘not-quite-
groups’. On the other hand, it seems very likely that category theory would
have had to have been invented first.

Historical counterfactuals do not take us far. What we need now is a
comparison of the characters of the group and groupoid concepts. Given
that the group structure had already been isolated, our question is how
much was there to gain by generalising to groupoids. Groupoids will have
to confront the charge that anything they achieve was already inherent in
the idea of groups. Before they are allocated some of the goodwill earned by
their relatives, they will need to prove sufficiently different to enable their
users to do new things and to do old things more straightforwardly. To the
extent that the monoid concept is a generalisation of the group concept,
in that the requirement that each element has an inverse is dropped, one
might imagine that it might be in a similar situation. However, it is easy
to argue that the character of monoids is very different and that monoids
will have to make their own way in the world. In that the idea of an
inverse is central to any concept of symmetry, groupoids, as their name was
designed to suggest, would appear to be lesser distortions of groups than are
monoids.

In favour of the idea that groupoids are similar in spirit to groups, we
find that only a small modification is required:

Thus the groupoid I , which at first sight seems unworthy of notice, plays a key
role in the theory of groupoids, and in applications. A failure to extend group
theory so as to include the use of I , on the grounds that I is a trivial object of only
formal interest, is analogous to failing to use the number 0 in arithmetic, a failure
which in fact held back mathematics for centuries. Of course, if you allow I , then
in effect you allow all groupoids since any groupoid is a colimit of a diagram of
copies of I , in the same way as any group is a colimit of a diagram of copies of Z.
(Brown 1987: 121)

The groupoid I is composed of two objects, identity arrows and an arrow
passing in each direction between the objects. Think of two cities with a
single road between them. Thus, overcoming our resistance to groupoids
is likened to that monumental moment when zero was recognised as a
number – a small change with large ramifications.
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The opposition9 can pick up on the size of this change, however. One
of the few explicit criticisms of groupoids portrays them as only a minor
variant of groups, the real essence of the notion of symmetry. After all, it
is the case that a (transitive) groupoid is isomorphic to the product of the
vertex group at any object and the coarse groupoid on the elements of A,
that is, the groupoid with a single arrow between each pair of elements of
A. To carry out this reduction in terms of Brown’s illustration, for each city
select a path leading to it from Bangor. Then any trip from, say, London
to Birmingham can be recreated from the designated paths from Bangor
to each of these two cities and the group of round trips from Bangor. The
complexity of a groupoid appears to be already contained within any of
its isomorphic vertex groups, the arrows looping around at a given point.
Compare this to the intricate structure theorems of groups themselves or
of von Neumann algebras.

A related point is that the naming of examples of a certain class of
entity acts to give the definition of that class a greater sense of importance.
For instance, the largest of the sporadic simple finite groups is known as
the monster. In addition to its vast size it has recently received additional
fame through the connections established between its representations and
the j-function as we saw in chapter 4. Elsewhere, we can find noted von
Neumann algebras such as the hyperfinite type II1 factor and among Lie
algebras E8 attracts much interest. With groupoids, on the other hand, no
individual stands out that is not a group. One might point to the simplest
groupoid which is not a group, the one we denoted I above, but it does
have a very simple structure.

Against the ‘trivial classification’ criticism, Brown and Weinstein produce
the same two counter-arguments, the first of which runs to the effect that if
this criterion is to be applied rigorously then important entities such as finite
vector spaces become vacuous as they are categorised simply by a natural
number. What is vital for vector spaces is the linear maps between them.
So it is with groupoids. Notice also that no finite vector space stands out.

The second line of defence argues that especially interesting things
happen when you add extra geometric structure to groupoids. Groupoids
come in several varieties: topological, measurable, differentiable, Lie,
Poisson, symplectic, quantum, algebraic, etc. The geometric structure often
interacts with the groupoid structure in a more complicated way than in
the corresponding situation with only a group structure.

9 Most of the opposition takes the form of a reluctance to use groupoids. Some comes in the form of
anonymous referees’ reports on grant proposals. We shall see some of the small amount of explicit
opposition below.
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I have yet to read or hear of any riposte to these lines of defence. This of
course does not mean that such a thing is impossible, but it does indicate
that mathematicians, unlike philosophers, have no particular inclination
to engage in sustained argumentative activity. I am inclined to believe that
this is due to a deficiency in mathematical training, rather than because it
is unnecessary. Lakatos drew a similar conclusion when through the voice
of the student Gamma he wonders:

Why not have mathematical critics just as you have literary critics, to develop
mathematical taste by public criticism? (Lakatos 1976: 98)10

However, while it is difficult to discover arguments passing through several
turns of criticism and defence, it is quite straightforward to find a consid-
erable range of lines of argument put forward to support a construction.

Let us now turn to consider some of the reported advantages of
groupoids. There is only space in this chapter to touch on a few of these
advantages, which may be classed as follows:
(1) As generalisations of groups, they fully capture the one-dimensional

aspects of a situation
(2) As generalisations of equivalence relations, they cope well with the

symmetries of ‘bad’ inhomogeneous spaces
(3) Applications in physics for groupoids have been found which go beyond

the use of group theory
(4) Higher-dimensional groupoid theory is richer than higher-dimensional

group theory and allows new geometric features to be measured.

9.4 the full exploitation of one-dimensionality

Groups do not fully exploit all the path-like behaviour that is present in a
situation, because they do not capture the intermediate stages of reversible
processes. We can see this in the following example. Recall from algebraic
topology that the fundamental group of a space at a base point is the set of
classes of closed paths in the space beginning (and ending) at that point,
where two paths belong to the same class if one can be continuously de-
formed to the other within the space.11 Van Kampen’s theorem tells you that

10 See also Brown (1994: 50): ‘Does our education of mathematicians train them in the development
of faculties of value, judgement, and scholarship? I believe we need more in this respect, so as to give
people a sound base and mode of criticism for discussion and debate on the development of ideas.’

11 It is not essential to gain a thorough understanding of the mathematics which follows. For those
who wish to see a more leisurely presentation of this material I can recommend Gilbert and Porter
(1994).
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if you know the fundamental groups of two spaces, U and V , and of their
intersection, U ∩ V , at x, a base point in the intersection, and if all three
spaces are path connected, then you can calculate the fundamental group of
X =U ∪ V at x. This theorem is used to pass from the fundamental group
of simple spaces such as the disc and circle to more complicated spaces.
The fundamental group of the disc for any base point is trivial, since any
loop can be deformed to the constant loop. In the case of the unit circle,
loops which pass a given number of times around the origin are equivalent,
so may be classified by an integer. Composition of paths then corresponds
to integer addition.

Van Kampen’s theorem tells you that the fundamental group of the union
of U and V has as generators those of U and V , but that in addition to
the relations already in place new ones may be imposed. These arise from
equating the two representations of a loop situated in the intersection,
according to whether it is viewed as belonging to U or to V . For example,
a torus may be taken as the union of two spaces: an open rectangle, U ,
and a union of two annuli, V . The fundamental group of U is trivial and
that of V is the free group on two generators, since it is retractable to
the join of two circles. The loop c around the intersection of U and V is
collapsible in U , but is homotopic to the path a−1b−1ab in V . Therefore,
in the fundamental group of the union the latter path must be put equal
to the identity, or in other words, the relation ab = ba is imposed and we
can conclude that the fundamental group of the torus is the Abelian group
on two generators:

π (U, x ) <|>, π (V, x ) < a , b |> and π (U ∩ V, x ) < c |>.

In U, c ∼ constant path at x . While in V, c ∼ a−1b−1ab.

Therefore, π (Torus, x ) < a , b | a−1b−1ab > Z ⊕ Z.

But how can the result that the fundamental group of the circle is iso-
morphic to the integers under addition be derived? There are several ways
of doing this, none of which is as straightforward as might be expected
for such a basic shape. It might have been hoped that it could be found
by applying van Kampen’s theorem to the circle seen as the union of two
overlapping open intervals:

U

V
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That this will not be possible is clear from the observation that, in the
words of Rogers and Hammerstein, ‘nothing comes from nothing’ – the
fundamental groups of U and V being trivial and so providing no gen-
erators. The problem arises from the fact that the intersection of U and
V is not connected, but is composed of two disjoint intervals. An arbi-
trary choice must be made as to which component will contain the base
point. As we saw earlier with the disconnected United Kingdom, funda-
mental groups do not cope well with such spaces as they can measure
only one connected component. This presents something of an anomaly
since open regions of n-dimensional space are the basic building blocks of
manifolds in modern topology and geometry. There is, of course, nothing
wrong with the various ways of establishing the fundamental group of the
circle. No Lakatosian proof analysis conducted on any of them will dis-
cover a counter-example. One also cannot deny the interesting connections
with many other branches of mathematics, e.g., the winding number of
a function about a point in complex analysis. The point is, however, that
the van Kampen philosophy just ought to work there. To call this case a
‘heuristic counter-example’ would be to stretch the meaning of the term
beyond that given it by Lakatos (1976: 83), but I think he would have
approved.

In fact it can be made to work but only if one extends the fundamen-
tal group idea to allow loops at several base points and paths between
them. One for each component would be enough. But after this exten-
sion we shall no longer be dealing with a group since composition will
not be possible for each pair of paths. The fundamental groupoid of a
space X with respect to a given set of base-points has this set as A and
equivalence classes of paths between two such points as the elements of B.
Groupoid status is assured owing to the fact that each path may be run
backwards.

One can now prove a van Kampen theorem for fundamental groupoids.
I shall not enter into details, but note that its phrasing in category theoretic
terms is very simple. The category of topological spaces has pushouts. A
pushout may be thought of as a kind of sum of two objects which identifies
or keeps separate precisely what ought to be identified or kept separate. In
particular, the pushout of the injections of the intersection, U ∩ V , into
U and into V is their union, U ∪ V = X . The fundamental groupoid
construction provides a functor from the category of topological spaces
to the category of groupoids which preserves pushouts. With U and V
overlapping intervals forming a circle, and x and y points in the components
of the intersection, we have:
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Π ( – ; x , y )

U ∩ V U

U ∪ VV
b−1

b

a

?

a−1

This tells us that insofar as we are interested in one-dimensional data, much
about the compositional structure of topological spaces has been captured
algebraically. Indeed, the fundamental groupoid of the circle with a pair
of base-points is the pushout of the diagram of groupoids (denoted by the
question mark) and one can prove that the vertex group at each object in
this groupoid is isomorphic to the infinite cyclic group.12

Although groups are more familiar to mathematicians, the restriction
to one base point may also lead to an unwieldy presentation in terms of
generators and relations, rather as it would be inconvenient to view all
British road trips in relation to Bangor. As Grothendieck remarks on the
benefits of groupoid presentations:

people are accustomed to work with fundamental groups and generators and re-
lations for these and stick to it, even in contexts when this is wholly inadequate,
namely when you get a clear description by generators and relations only when
working simultaneously with a bunch of base-points chosen with care – or equiva-
lently working in the algebraic context of groupoids, rather than groups. Choosing
paths for connecting the basepoints natural to the situation to one among them,
and reducing the groupoid to a single group, will then hopelessly destroy the struc-
ture and inner symmetries of the situation, and result in a mess of generators and
relations no one dares to write down, because everyone feels they won’t be of any
use whatever, and just confuse the picture rather than clarifying it. (Quoted in
Brown 1987: 118)

Groupoids even provide new information about groups themselves, because
they possess some important properties not shared by groups. For example,

12 The identity arrows of the groupoids have not been shown. The composition of arrows a and b is
an arrow from x to itself. As nothing tells us to equate either it or any iterate of it to the identity
arrow at x, we do not. Indeed, it forms a generator for the vertex group at x. Notice how the simple
groupoid I , which marks the gap between groups and groupoids, crops up here.
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the category of groups cannot support several useful constructions:

One of my hopes in preparing the text was to convince students of group theory
that it is often profitable to cross the boundary between groups and groupoids. The
main advantage of the transition is that the category of groupoids provides a good
model for certain aspects of homotopy theory. In it there are algebraic analogues
of such notions as path, homotopy, deformation, covering and fibration. Most of
these become vacuous when restricted to the category of groups, although they are
clearly relevant to group-theoretical problems. (Higgins 1971: vii)

A further significant flaw with groups is that:

One of the irritations of group theory is that the set Hom(H , K ) of homomor-
phisms between groups H , K does not have a natural group structure. However,
homotopies between homomorphisms of groupoids H , K may be composed to
give a groupoid HOM(H , K ) with object set Hom(H , K ). (Brown 1987: 122)

This construction leads to a groupoid isomorphism HOM(G × H , K )
HOM(G, HOM(H , K )), an example of a very widespread structural law
which is found even in the simplest theories, such as arithmetic, a(b×c) =
(ac)b, and propositional logic, A & B � C if and only if A � B→C .
The desirability of this property is also the reason some topologists give
for working with compactly generated topological spaces.13 Use of this
construction again provides information about groups.

9.5 groupoid algebras used to compensate
for bad spaces

First let us consider a simple way in which the algebra of complex n × n
matrices may be reinterpreted from a groupoid perspective. Take the pair
(or coarse) groupoid A×A, where A= {1, 2, 3, . . . , n}. This is the groupoid
where for each pair of members of A there is a single arrow passing from the
first to the second. Next, take the algebra of complex valued functions on
the arrows of this groupoid. A type of multiplication known as convolution
may now be defined on these functions, generalising a similar construction
used for groups. The value of the convolution of two such functions, f
and g , denoted f ∗g , on a pair (i, k) is the sum over j of products of the
form f (i, j)·g(j, k). This is completely equivalent to matrix multiplication,
where if the ijth entry of a matrix, M , is f (i, j) and similarly for a matrix
N and the function g , then the matrix corresponding to f ∗g is simply
M ·N .

13 Cf. Mac Lane (1971: 184).
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Convolution algebras can be defined similarly for all groupoids. In view
of the importance of group convolution algebras, which over the integers
underlie the harmonic analysis of Fourier series, we can see the potential
for this generalisation. Indeed, groupoid convolution algebras play a major
part in the field of non-commutative geometry. This field is based on the
observation that a commutative algebra may be construed as the collection
of functions on a space. By analogy the non-commutative algebras are
seen as arising from functions on a non-commutative space. Such a space is
often characterisable as the orbit space of a groupoid. To recapture a space
of functions on what might be termed a ‘bad’ space with an inadequate
collection of ordinary set-based functions, the focus is shifted from the space
to the groupoid representing it, and from there to a suitable convolution
algebra.

To take a simple example, consider the topological space formed from
two intervals, {0}× [0, 1] and {1}× [0, 1], by identifying pairs of points
{(0, a), (1, a)} for all a �= 1/2. This looks very much like just one interval,
except for a small split half-way along it. It is a perfectly legitimate topolog-
ical space, although not Hausdorff. But then if we try to characterise the
space by the continuous complex functions it can support, we find that the
points (0, 1/2) and (1, 1/2) cannot be distinguished. From the point of view of
continuous functions the space is indistinguishable from a simple interval.
However, this space can be reformulated as the orbit space of a topologi-
cal groupoid where the objects are the points along the two intervals, and
besides the identity arrows, there are pairs of inverse arrows between the
points to be identified. This groupoid is not equivalent (homotopic) to
the groupoid of identity arrows on an interval, as becomes apparent by
the difference between their convolution algebras of complex continuous
functions. This may be represented in the case of the ‘bad’ non-Hausdorff
space as the algebra of 2× 2 matrices of continuous complex functions on
[0, 1] which are diagonal at 1/2.

This is a simple example of an important use for groupoids, which
Weinstein claims:

leads us to the following guiding principle of Grothendieck, Mackey, Connes,
Deligne, . . .

Almost every interesting equivalence relation on a space B arises in a natural way
as the orbit equivalence relation of some groupoid G over B. Instead of dealing
directly with the orbit space B/G as an object in the category Sma p of sets and
mappings, one should consider instead the groupoid G itself as an object in the
category Ghtp of groupoids and homotopy classes of morphisms. (Weinstein, 1996:
748, my emphasis)
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Here we see once more the expression of a broad principle, which is what I
took earlier to be the mark of the conceptual. Notice the vagueness of the
wording. There is plenty of scope here for argument about what counts
as ‘almost every’ and as ‘interesting’ and as to whether it really is so very
‘natural’. As we saw in chapter 8, this vagueness is reminiscent of the kind
of language with which the aims and means found at the heart of a research
programme are articulated.

Groupoids as generalisations of sets, equivalence relations, groups and
group actions permit a unified reformulation of these concepts. This fact
by itself is not sufficient reason to adopt them; concepts must work harder
to pay their way. Whether a reformulation constitutes a clarification and
whether a unification may be considered important are two deep questions.
For Weinstein the approach to orbit spaces outlined in this section has led
to an important unification and he claims that Alain Connes’s book on
non-commutative geometry, which utilises this construction:

shows the extent to which groupoids provide a framework for a unified study of
operator algebras, foliations, and index theory. (Weinstein 1996: 745)

9.6 applications and old conjectures

Having applications in the sciences, computing or engineering is incontro-
vertibly a good thing for a piece of mathematical theory. However, questions
remain concerning the importance of the application and whether a partic-
ular theory is indispensable in a given application. In the case of groupoids,
we hear in an announcement for a 1998 conference, ‘Groupoids in Physics,
Analysis and Geometry’, that:

The uses of groupoids in physics come from two main sources. The first is Alain
Connes’ theory of noncommutative geometry, in which groupoids are a main
source of examples of noncommutative spaces. This theory is being studied very
actively by physicists, and by mathematicians. Bellisard’s work studying the quan-
tum Hall effect via noncommutative geometry has led to the study of connections
between solid state physics and noncommutative geometry models associated with
tilings.

The second major source of the use of groupoids in physics is the general
theory of quantization in mathematical physics. A theory of quantization has been
introduced by V. Maslov and A. Karasev, and a version due to Alan Weinstein has
been actively developed by him and his collaborators. One step in this program is
to associate a symplectic groupoid to a given Poisson manifold. (Kaminker 1998)

As for the first of these uses, Bellisard, a solid state physicist, uses non-
commutative geometry to explore the non-commutative Brillouin zone of
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an aperiodic medium. While discussing the way mathematicians succeeded
in capturing some forgotten intuitions of Heisenberg in the context of the
C∗-algebra approach to quantum mechanics, he claims that:

The breakthrough went with the notion of a groupoid . . . which is nothing but
the abstract generalization of the notion of transition between stationary states as
defined by Bohr and Heisenberg. (Bellissard 1992: 551)

This relates to the reformulation we saw above of matrix algebras as the con-
volution algebras of groupoids. It is Connes’s position that for Heisenberg
the groupoid idea came first, albeit implicitly, and hence his requirement
of matrices. As he explains in a section of his book (1994: 33–9) written to
‘remove this prejudice [towards groupoids]’ (1994: 7), the groupoid idea is
present in the case of an electron’s transitions between energy levels in the
atom – the transitions from level i to level j and from level k to level l may
be composed iff j = k.

With the physical world providing only a very indirect constraint on
mathematical theorising, mathematicians have worried that pieces of re-
search, although perfectly correct, may be of little or no value. They have,
therefore, sought ways internal to mathematics of adjudicating whether
a theory is on course. One way of doing this is to set up, as Hilbert fa-
mously once did, a series of problems to be solved. Then a theory’s success
in solving any of these problems can be taken as a token of its worth.
Thus:

Often a test for the value of a new theory is whether it can solve old problems. De
facto, this limits the freedom of a mathematician, in a way which is comparable
to the constraints imposed on a physicist, who after all doesn’t choose at random
the phenomena for which he wants to construct a theory or devise experiments.
(Borel 1983: 14)

One senses here the concern that without such constraints mathematicians
may find themselves wandering aimlessly through a world of mathematical
possibility.

Now, on this score there appear to be no clear successes for groupoids,14

but remember that groupoids can be used to discover new properties
about familiar things, namely, groups. Just because these properties were
unforeseen, and so no conjectures made about them, seems to be no reason
to mark groupoids down.

14 It may be argued, however, as Brown has, that Grothendieck’s reliance on groupoids means that they
are due some credit for Wiles’s proof of Fermat’s Last Theorem.
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As a second response, we might say that while it is reassuring that a theory
solves famous old problems, mathematics must also be about opening up
new areas by the elaboration of mathematical ideas. Frequently, for those
venturing into unknown territory there is no shortage of constraints resem-
bling the ‘old problems’ one. For example, you may find that a definition
that seems to go in the right direction unexpectedly makes contact with
older work, or that the method you are using to overcome obstacles which
are preventing you from performing a construction analogous to an earlier
one gives you a much clearer picture of the whole domain. We now turn
our attention to some new areas.

9.7 new prospects: higher-dimensional algebra

The fundamental group of a space need not be Abelian. Imagine yourself
based at the crossover point of a figure of eight. The path which takes
you clockwise round the upper loop, then around the lower one is not
equivalent to the path taking the loops in the opposite order. However,
higher homotopy groups are always Abelian. Here, rather than throwing
loops into our space to see what we can catch, we are throwing spheres
(two-dimensional and higher). Just as we can see a loop belonging to the
fundamental group as a line where the endpoints are identified, we can
see an element of the second homotopy group as a map of a square into
the space where the perimeter gets mapped to the base point. Think of a
net having being cast by a fisherman, who now holds its opening. Then
we can set up a composition in two directions, corresponding to the two
dimensions of a square.

Let us give an idea of what happens when we compose in one direction.
Imagine two square nets joined along one edge and pinned to the table along
their perimeters. Push all the raised part of the left net into its upper half
so that the rest lies flat, and all the raised part of the right net into its lower
half. Then make the raised parts swap sides and permits them to reform
their original shapes. You may be able to see that the two multiplications
coincide in a single commutative operation.

The question then arises as to whether this commutativity is due to the
higher dimensional homotopic nature of spaces or whether it is a failure on
the part of groups to capture this nature. On the face of it there is no reason
to expect homotopy to become simpler in higher dimensions, suggesting
that the fault lies with the algebra, which must be refined to detect deeper
features of geometric reality. As part of the process of capturing these deeper
features, in the 1940s the topologist J. H. C. Whitehead devised what are
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known as crossed modules. Brown has succeeded in using them in this way
and he notes that:

information about even such an apparently simple computation as a second ab-
solute homotopy group of this mapping cone is tightly bound to information
on crossed modules. There is at present no alternative description [to crossed
modules] of this second homotopy group in algebraic terms. This highlights some
basic difficulties of homotopy theory, and also suggests that homotopy theory is
an essentially non abelian subject. The abelian homotopy groups, even as modules
over the fundamental group, give only a pale shadow of the homotopical structures.
(Brown 1999: 32)

Now, crossed modules turn out to be equivalent to groupoid objects within
the category of groups, i.e., groups on which there is a compatible groupoid
structure. Unlike in the purely group theoretic case, the two structures
interact non-commutatively.

The next step is to look for double groupoids, groupoid objects within
the category of groupoids – or, if you prefer, two interacting groupoid
structures. The simplest way to catch a glimpse of what is happening here
is to think of mapping a square into a topological space as we did above,
but this time with no restrictions on where its perimeter lands. We still have
multiplications running in two directions but, in the spirit of groupoids,
only if the paths corresponding to the adjoining sides of two square are
equal. Brown managed, after years of effort, to achieve a van Kampen-style
theorem in two dimensions. These mark some early steps of an enormous
programme we shall discuss in chapter 10.

We should note that multiple and higher-dimensional groupoid theory
has not penetrated into the non-commutative geometry mentioned in
sections 9.5 and 9.6, although it is starting to be used in differential geome-
try (see, e.g., Mackenzie 1992). In view of the fact that Charles Ehresmann
was exploring such ideas in the late 1950s, we may wonder why the develop-
ment has been so slow. Has there been an undervaluing of the conceptual?

9.8 the conceptual and the natural

Recall my quoting earlier Brown making ‘the heretical suggestion that the
natural concept is that of groupoid rather than group’ (Brown 1999: 4, my
emphasis). The philosophical treatment of the notion of a mathematical
concept is still to be done, but it is interesting to note that the category
theorist William Lawvere, co-author of Conceptual Mathematics (1997), has
expressed the view (Brown 1987: 129) that the term group should be taken
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to refer to what is now covered by groupoid . Most mathematicians will
find this hard to accept, having been taught to accept the group concept
as the natural one. Let us approach these matters by discussing the idea of
naturalness.

The epithet ‘natural’ is never far from mathematicians’ lips when they
describe their favourite constructions. It even appears in mathematical
terms such as natural number, natural transformation and natural deduc-
tion. Only for the first of these can some connection with the physical
world be claimed, as the natural numbers constitute possible responses to
questions of the kind ‘How many elephants are there in this National Park?’.
Mathematicians sometimes play humorously on this idea. In what must
be one of the wittiest mathematics textbooks ever written, Frank Adams
discusses the situation where two spaces have the same homology groups,
yet their fundamental groups are ‘wildly’ different. He tells us that one of
the spaces can even be taken to have trivial higher homotopy groups:

By now we have theorems saying that this situation is common; Kan and Thurston
show that given almost any space Y, you can approximate it homologically by
an Eilenberg-Mac Lane space EM(π, 1) for some weird and artificial group π.
However, we should perhaps be more concerned with cases where this situation
arises in nature. (Adams 1978: 84, my emphasis)

Without wishing to labour the point, you are not going to meet with this
situation while on safari in a National Park. You won’t even meet with it
while doing theoretical physics. But you may encounter it, without artifi-
cially engineering it, while working in reasonably well frequented regions
of mathematics. Adams’s sentiment is that for a type of construction to
be worth defining or for a type of situation to be worth describing, there
ought to be examples readily available.15

For Adams, if an instance of the situation he describes occurs and he de-
cides not to count it as arising in nature, he is not thereby banishing that in-
stance from its fellows. This may be contrasted with what Lakatos (1976: 23)
designated as ‘monster-barring’, when a proposed counter-example which
may be thought to have refuted a claim about a class of entities is declared
not to belong to that class. Here, the ‘monster’ is unnatural – it does not
have in its nature what it takes to be a member. Adams’s reaction is more

15 A similar idea is expressed by Robert Solomon when he points out that, despite the fact that the
majority of finite groups are nilpotent of nilpotence class 2, and so far from being simple, ‘experience
shows that most of the finite groups which occur “in nature” – in the broad sense not simply of
chemistry and physics, but of number theory, topology, combinatorics, etc. – are “close” either to
simple groups or to groups such as dihedral groups, Heisenberg groups, etc. which arise naturally
in the study of simple groups’ (Solomon 2001: 347).
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typical of the contemporary mathematician, who knows enough about the
conceptual twists and turns that have occurred in the discipline since the
mid-nineteenth century not to take talk of unnatural monsters too seri-
ously and illustrates an important point about the changing conceptions
of mathematicians towards the role of definitions. It would be a valu-
able exercise to make comparisons with claims of naturalness from earlier
times.

We can see the modern attitude illustrated in the following example
from non-commutative geometry. While discussing the set, X , of Penrose
tilings,16 Alain Connes notes that, although it is clearly a spatial entity,
when it is treated with the classical tools of point-set topology it cannot be
distinguished from a point. This is because among the peculiar properties
of X we find that, given any two distinct tilings, a finite portion of one of
them of whatever size will be found occurring infinitely often within the
other. Hence:

[t]he natural first reaction to such a space X is to dismiss it as pathological.
(1994: 6)17

This may sound rather like monster-barring, but what Connes means here
is that:

To a conservative mathematician this example might appear as rather special, and
one could be tempted to stay away from such spaces by dealing exclusively with
more central parts of mathematics. (1994: 94)

So, it is not a question of excluding X by modifying the definition of
a topological space. Either one accepts it as an odd sort of space and
then ignores it or, like Connes, one brings new tools to bear upon it,
in this case a convolution algebra on the associated groupoid. The situa-
tion may be summarised well by describing X as a heuristic counter-example
to the notion that classical topology is adequate to deal with all topological
spaces.

Another way of arguing for the naturalness of a concept is in terms of the
inevitability of its discovery. There seems to be a widespread feeling that

16 These are the quasi-periodic tilings of the plane with local 5-fold symmetry whose patterns have
been found to occur in the natural world in what are termed quasi-crystals. X may be interpreted as
the orbit space of a groupoid.

17 Notice here how ‘natural’ is being used about the mathematician rather than about the mathematical
entity. Perhaps natural deduction involves both. It turns the reasoning processes of mathematicians
into an entity which may be investigated mathematically.
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however mathematics was to reach anywhere near the level of sophistication
we see today, a basic concept such as that of a group was bound to be
formulated, while there is disagreement over whether the same could be
said for groupoids. Powerful evidence that a concept was inevitably going
to be forged is to show that it was required independently by researchers
working in different fields. A convincing case can be made that this was so
for groups. As for groupoids, after their introduction by Brandt in 1926,
researchers have for their own reasons deemed it worthwhile to introduce
them into the theory of field extensions, non-commutative ring theory,
algebraic logic,18 partial differential equations, category theory, differential
geometry, differential topology, foliations, non-Abelian cohomology and
ergodic theory.

Independence of use is most marked when the researcher coins a new
name for the concept as when George Mackey working in ergodic theory
used the term ‘virtual group’ to refer to what amounts to a groupoid. A more
vivid illustration of this phenomenon is reported in a survey article on Lie
algebroids and Lie pseudoalgebras19 by Kirill Mackenzie. He remarks (1995:
100) that the notion of a Lie pseudoalgebra had been devised independently
by well over a dozen researchers in almost identical fashion, each with a
different name.

The mathematicians’ notion that some ideas are fundamental and will
inevitably emerge reveals a degree of faith resembling that motivating the
scientists’ discursive line, treated by Gilbert and Mulkay (1984), that ‘Truth
will out’. These ideas are deemed to possess such intrinsic value that they
can overcome the vagaries of the human research effort. The strongest form
of this sentiment would maintain that some concepts will necessarily appear
and that, by virtue of their nature, they rather than the user will determine
their use. Opposed to this faith that methods of research will not stand in
the way of important ideas and their proper deployment is the notion that
even good ideas that have at some time surfaced into the awareness of a
mathematician may be lost to future generations. For Gian-Carlo Rota this
is no rare event:

On leafing through the collected papers of great mathematicians, one notices how
few of their ideas have received adequate attention. It is like entering a hothouse
and being struck by a species of flowers whose existence we did not even suspect.
(Kac et al . 1986: 1)

18 In the early 1950s, Jónsson and Tarski required generalised Brandt groupoids to capture the calculus
of binary relations. These were not required to satisfy transitivity.

19 The former are related to Lie groupoids as Lie algebras are to Lie groups and are special cases of the
latter.



The importance of mathematical conceptualisation 227

Presumably, then, for Rota some of these powerful ideas may be lost for a
long time, and possibly forever.

This picture offers the mathematician the opportunity of presenting
their work as allowing the recovery of some of this lost treasure. Some
mathematicians are appealed to more than others in this respect. Someone
like Sophus Lie working in a branch of geometry at a time when standards
of rigour had not become well established, but when mathematicians were
closer to ‘nature’, makes for an excellent target. Hence:

[t]he concept of groupoid is one of the means by which the twentieth century
reclaims the original domain of application of the group concept. The modern,
rigorous concept of group is far too restrictive for the range of geometrical appli-
cation envisaged in the work of Lie. (Mackenzie 1987: vii)20

There are various ways of responding to claims of naturalness. I may suggest
a new concept to be the natural development of an earlier one, or the natural
idea on which to base an attack on an important problem, or the natural
way to illuminate some phenomenon in the physical sciences. You reply
by claiming it to be an unnecessary modification of a perfectly serviceable
idea, with little to be gained from its acceptance other than as a boost to
my publication record. A colleague then chips in with her view that while
she does not believe it to have achieved what I claim, it may prove useful as
a temporary measure, and may lead to a better reconceptualisation of the
field. This threefold distinction – fundamental, convenient and pointless –
is quite common. In the following quotation we see groupoids consigned
to the middle category:

[definitions] like that of a group, or a topological space, have a fundamental im-
portance for the whole of mathematics that can hardly be exaggerated. Others are
more in the nature of convenient, and often highly specialised, labels which serve
principally to pigeonhole ideas. As far as this book is concerned, the notions of
category and groupoid belong in this latter class. It is an interesting curiosity that
they provide a convenient systematisation of the ideas involved in developing the
fundamental group. (Crowell and Fox 1977: 153)

Naturally, Brown sees this as much more that an ‘interesting curiosity’.
Rather, the elegance of the systematisation was read by him as a clue that
groupoids could play a very large role in this area.

The convenient class is very broad. Crowell and Fox judge groupoids to be
at the lower end, bordering on the pointless. Meanwhile, in a discussion of

20 Lie is also selected by two exponents of synthetic differential geometry who claim to be able to allow
his intuitive reasoning to be fully captured in a rigorous framework (Moerdijk and Reyes 1991).
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the role of groupoids in differential geometry, Kumpera has them straddling
the boundary between the fundamental and the convenient:

Bundles are of course extremely useful objects but, as Ehresmann would probably
say, groupoids are somehow closer to the truth. As for connections, they are an
extremely useful algorithm whereas groupoids (and algebroids) are an extremely
useful concept. (Kumpera 1988: 359)

Rota goes as far as to say of the notion of groupoids that it ‘is one of the
key ideas of contemporary mathematics’ (Bergeron et al . 1997: vii).

We see here the idea of a split between something intrinsically worth study-
ing and something valuable as a tool to be used in the study of something
else, even if this means that the tool needs to be studied to know if it is up
to the job.21 But this distinction is not permanent. In the course of time
the status of mathematical entities may change from being viewed as useful
tools to becoming fully fledged objects. In the search for a solution to a
problem, means are introduced which can then become interesting in their
own right, and further means will then be necessary to study them in turn:

Once we have a genuine need for some mathematical idea as a matter of language,
that idea has arrived; it is hardly necessary to discuss its status as a useful technical
tool. (That sentence is not intended to exclude the possibility that some authors
may try to introduce language we can do without.) (Adams 1978: 79)

The criticism which may meet this kind of promotion is that means have
been unjustifiably raised to the level of ends.

Category theory is often picked out for this treatment as when Miles
Reid remarks:

The study of category theory for its own sake (surely one of the most sterile
of all intellectual pursuits) also dates from this time; Grothendieck himself can’t
necessarily be blamed for this, since his own use of categories was very successful
in solving problems. (Reid 1988: 116)22

As a contemporary algebraic geometer, Reid could not possibly deny cate-
gory theory its ‘useful’ status. Even in a textbook aimed at undergraduates
(Reid 1988) he allows it to make an occasional appearance. What he appears

21 One might be tempted to equate the class of that which is worthy of study for its own sake with
the natural , but mathematicians might easily talk of a piece of what they term machinery as natural.
Topologists actually refer to the apparatus for converting between spectra and spaces as ‘machinery’.
See Adams (1978, ch. 2). I have sometimes been asked why the methodologist need bother studying
(difficult) contemporary theory development. The answer is clear: if she wants to find out how
today’s mathematical ‘technology’ works, she has no choice.

22 For robust rebuttals of Reid’s remarks see Brown (1994: 49).
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to be criticising here is the view that categories are like meta-Abelian groups,
braids, projective varieties or sets, entities to which a mathematician today
may devote her whole career without being required to demonstrate their
applicational virtues. His is probably a majority position at the present
time,23 but again within this position finer distinctions may be made rang-
ing from those who think category theory works well as a convenient
means of representing a body of theory to those who think its principles
can at times provide very strong guidance for future research. Moreover,
promotion for categories may be imminent. With the race to develop a
theory of weak n-categories currently proceeding at a frenetic pace, one
may argue that important entities of intrinsic conceptual interest are being
carved out.

This mention of category theory leads us to a narrower, more technical,
sense of the term ‘natural’. As we saw above, the classification of a transitive
groupoid requires the choice of an object, and the choice of an arrow from
that object to each other object. These choices cannot, however, be said to be
natural, insofar as there was no good reason to favour them over any others.
In other words, the reduction of a groupoid to a group suffers from the need
to make an arbitrary, or unnatural, choice. This might remind the reader
of a similar unforced choice in the theory of vector spaces. To establish an
isomorphism between a finite vector space and its dual, the space of linear
maps to the ground field, one must make an arbitrary choice of a basis. By
contrast, when it comes to establishing an isomorphism between a vector
space and its double dual, there is a natural map, namely, the map which
sends a vector to the map equivalent to evaluation at that vector. This last
example is part of the category theoretic folklore. It provided Eilenberg and
Mac Lane with the notion of a natural transformation between functors,
in this case between the identity and double dual functors on the category
of vector spaces.

Here we see again the idea that it is preferable not to make arbitrary
choices. It accords with the notion that one should not privilege a mem-
ber of a collection without good reason. Recall that we constructed the
fundamental groupoid of a space precisely to avoid creating a privileged
base-point. This kind of privileging occurs in the notion of a principal
fibre bundle from differential geometry where one fibre is singled out. A
more even-handed or ‘democratic’ treatment of this very important geo-
metric idea is to work with Lie groupoids, those for which the sets we have

23 Of course, the positing of a piece of research as ‘for its own sake’ is open to challenge.
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denoted A and B are smooth manifolds satisfying some further conditions.
This is not just done for convenience – it makes a concrete difference:

The need for privileged fibres has an important consequence when one needs
to consider group actions. A single automorphism of a principal bundle can be
transported to its Lie groupoid and vice versa, using a chosen reference point,
but for general (nontrivial) groups of automorphisms it is impossible to choose
reference points consistently. The automorphism groups of a principal bundle
and its Lie groupoid therefore do not correspond and there is a notion of group
action for Lie groupoids which makes no sense for principal bundles. (Mackenzie,
personal communication)24

In sum, a full analysis of the use of the term ‘natural’ by mathematicians
through the ages would require a book-length treatment. As used today it
possesses several shades of meaning, which blend into each other to some
extent, relying as they do on a sense of freedom from arbitrariness and
artificiality. Promoters of groupoids see them as a natural concept since:
(1) One comes across them in the course of carrying out research in many

areas of mathematics, without resorting to artifice
(2) They embody a simple, non-artificial idea, which permits them to mea-

sure the symmetries of families of objects
(3) They permit one to model situations without requiring that arbitrary

choices be made.

9.9 conclusion

This chapter should be seen as an early foray into an extremely complex
subject. We have discovered that mathematicians will on occasion argue
for the acceptance and further study of a piece of theory by indicating
a panoply of good qualities. Philosophers should note that in the case
treated here arguments for the ‘existence’ of groupoids did not figure in the
array surveyed. This is through no oversight on my part – mathematicians
make no use of the idea in their advocacy of the groupoid concept. On
the other hand, turning to the arguments they do use, it is reasonable to
wonder why so many different types are employed. I would explain this by
pointing out that individual mathematicians weight the candidate criteria
for progress idiosyncratically. One sets greatest store by the unificatory
power of a concept, another by the potential for applications, a third by
its ability to help resolve outstanding problems. Brown, Weinstein and
other promoters of groupoids may have their own preferences as to the

24 See Hitchin (2001) for the ‘democratic’ advantages of groupoids.
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reasons why groupoids should be accepted, which reflect their sense of
what mathematicians should be aiming to achieve, but they wish to cater
for as many tastes as possible. Something akin to what Laudan terms the
dominance of a theory over another is at stake. For Laudan (1984), even if
the aims of scientists are varied, a theoretical development will still be held
unanimously to constitute progress when it satisfies each scientist’s criteria.

I believe there is much we can learn from parallel work in science studies.
For example, Jardine’s The Scenes of Inquiry (Jardine 2000) presents a highly
sophisticated pragmatist philosophy, which stresses the importance of what
he terms ‘calibration’, the act of making a theory measure up to earlier ones.
The considerations of importance treated in this chapter would seem to be
mathematicians’ forms of calibration, where solving old problems is just
one form. A particular concern of this chapter has been a disagreement
about the weighting of these forms of calibration. We have encountered
the thought that, whether seen as a goal in itself or as a means to a further
end, a bias against conceptual reformulation and development have acted to
delay the acceptance of groupoids. From this perspective, it took the efforts
of conceptually daring mathematicians, such as Grothendieck and Connes,
to set up programmes in which the use of groupoids became a matter of
course.25 A still more daring act of faith has been needed to pursue higher-
dimensional groupoids. This research has provided key insights into how
to develop higher-dimensional algebra, whose revolutionary credentials we
shall be considering in chapter 10.

It is worth noting that for debates about the value of groupoids even
to begin, there must be some shared ground, one or more absolute pre-
suppositions, held by the participants. We can detect one fairly clearly –
the presupposition that there is a distinction between concepts of great
mathematical importance and concepts which are mathematically point-
less. People disagree about how this distinction fits with the space of math-
ematics, but they do not question that it exists. Now, we could plausibly
claim that the idea of such a distinction has been operating at least as far
back as the Greeks. It is curious, then, that many contemporary varieties
of philosophy of mathematics disregard it.

One vision I share with Lakatos about how the future of mathematics
might be shaped involves encouraging both a heightening of the level of
historical awareness among the mathematical community and a facilitation
of the expression of critical attitudes. This is not to say that the present

25 See Cartier (2001) for some insight into why groupoids link the geometric visions of these two giants
of mathematics.
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situation is hopeless, but it can only be good for the health of mathematics to
make improvements. One might also hope for useful communication with
those philosophers who are well-versed in areas of modern mathematics.
Unfortunately, the latter are not too numerous at present, but successful
exchanges should encourage an expansion. Eventually one might hope to
construct arenas where mathematicians and those working in the history,
philosophy and sociology of mathematics can come together to permit
sustained discussion of common concerns to take place.



part iv

The interpretation of mathematics

Up to this point in the book I have largely been occupied by what is some-
times called descriptive epistemology, the philosophical analysis of the work-
ings of a knowledge-acquiring practice. Philosophy in this vein searches
out allusive examples of some discipline’s conceptual, social and material
apparatus at work. When Nancy Cartwright (1999b) studies the modelling
of superconductivity she is not trying to clarify the conceptual presupposi-
tions of this particular branch of physics per se, but rather discerning more
general methodological principles. As I have stated already, one should
not fall into the trap of demarcating this philosophical activity from some
pristine form of normative epistemology. Normative notions may emerge
from the description of valued pieces of scientific activity. For Cartwright
the development of superconducting quantum interference devices, used
in medicine to detect brain damage in stroke victims, is physics being done
at its best. This vision leads her to advocate that more resources be devoted
to the less glamorous, but more practical, areas of physics (1999a: 16–17).

But developments in a science may serve other philosophical purposes.
Besides showing us how physics works, from time to time they change our
outlook on fundamental concepts: life, time, causality, matter, the universe.
Philosophers of science taking themselves to be the descendants of the
Ionian Pre-Socratics have been drawn to the latest scientific developments.
Currently, the obvious choice in physics is quantum gravity. It is clear that
if ever a successful unification of general relativity and quantum mechanics
takes place it will entail profound alterations to our physical understanding.
My undertaking in this final part of the book is to do something more
analogous to the work of contemporary philosophers of physics such as
John Earman or Jeremy Butterfield on quantum gravity.

I think it important that some resources of the philosophy of real math-
ematics be devoted to the analysis of research at the coal-face. Historical
studies of the inauguration of novel practices from much earlier times are,
of course, indispensable to a proper understanding of the field, but risk
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being perceived as an antiquarian exercise. It is necessary to think of them
as having once been contemporary, a notion which can be encouraged only
by portraying contemporary trends as historically achieved. Moreover, the
study of ongoing research gives philosophy a current relevance, and in so
doing, one is only following in the illustrious footsteps of Berkeley on the
calculus and Russell and Frege on the foundations of arithmetic.

So, where in today’s mathematics do you look for an equivalent of these
seminal moments in the history of mathematics? Well, I believe I may have
found an answer. It is certainly a risky game predicting what will be seen
in a hundred years time as the most significant conceptual advances of the
day in any given field. However, my bet, for what it is worth, is that the
developments I shall discuss in the next chapter, which go by the name
higher-dimensional algebra, will be included in any list of philosophically
important mathematical innovations constructed a century hence. A sug-
gestive piece of evidence that they are mathematically important is the fact
that I shall touch on the work of half a dozen Fields’ medallists. Without
wishing to make any hard and fast distinction between mathematics and
the philosophy of mathematics, I must, of course, also argue that philoso-
phers should pay attention to the possible philosophical consequences of
higher-dimensional algebra. Here is a selection:
(a) Many important constructions may profitably be seen as the ‘categorifi-

cation’ of familiar constructions. Indeed, very important structures are
reached quickly by categorifying simple structures such as the natural
numbers or the integers.

(b) It provides a way of organising a considerable proportion of mathe-
matics. It shows us that set theory talks about just one corner of the
mathematical universe, where set theory is taken in its category the-
oretic sense, i.e., free of the unwanted structure provided by ε-trees,
and offers the potential for a clearer idea of the structuralism operating
within mathematics.

(c) These constructions have applications in mathematics, computer sci-
ence, and physics. In particular, we hear that ‘higher-dimensional alge-
bra is the perfect language for topological quantum field theory’ (Baez
2001a: 192).

(d) Higher-dimensional algebra blurs the distinction between topology and
algebra. Pieces of algebraic notation are taken as dimensioned topolog-
ical entities inhabiting a space. Deformation within that space then
corresponds to calculation. In this way, higher-dimensional algebra ac-
counts for many uses of diagrams as means with which to calculate and
reason.
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At the present time it is difficult to gauge the size of the transformation
underfoot. There are a whole range of definitions of higher-dimensional
categories on the market, although for any dimension they are thought to
be ‘equivalent’ at the next higher dimension. Of course, I am open to the
charges that the theories I am occupying myself with have not taken on
sufficiently definitive a form to allow for proper philosophical scrutiny, and
that others deserve earlier treatment. Fortunately, philosophers of quantum
gravity have had to defend themselves against similar charges and their
defence has been performed very ably in a way that can be translated to my
field (cf. Butterfield and Isham 2001, sec. 1.2).

When material is explained for a case study, there is little expectation that
more than a handful of philosophers will work on it, except perhaps to refine
or to challenge the morals being drawn from it. Quantum mechanics and
general relativity have played a different role in the philosophy of physics.
Philosophers come back to them time and again, as they are increasingly
doing to quantum field theory and will eventually do, one imagines, to
quantum gravity. If you want to be a philosopher of physics, you simply
must be conversant with these theories. On the other hand, the prospective
philosopher of mathematics quickly gathers that some arithmetic, logic
and a smattering of set theory is enough to allow her to ply her trade,
and will take some convincing that investing the time in non-commutative
geometry or higher-dimensional algebra is worthwhile. One of the main
purposes of the book has been to argue against this.

Imagine that twentieth-century philosophy of physics had run differently
and that neither quantum mechanics nor general relativity had received
much treatment from that quarter. One day some bright spark decides to
write a book whose last chapter outlines the state of quantum gravity. I find
myself now in a similar situation. Necessarily, therefore, a fairly large part
of chapter 10 is expository and insufficiently philosophically ‘processed’.
For this I can only ask for the reader’s forbearance, but I may be able to
sweeten the pill with the observation that if my prediction that higher-
dimensional algebra will emerge as a key mathematical theory is correct,
then it becomes a topic about which philosophers of mathematics will
have to inform themselves. Remember that Bertrand Russell once had to
convince himself that it would pay to learn what Weierstrass, Dedekind,
Hilbert, Frege and Peano were talking about.





chapter 10

Higher-dimensional algebra1

Mathematical diagrams may well have been the first diagrams. The
diagram is not a representation of something else; it is the thing itself.
It is not like a representation of a building, it is like a building, acted
upon and constructed. (Netz 1999: 60)

Angular momentum and the topology of knots and links are a fantasy
and fugue on the theme of pattern in a formal plane. The plane sings its
song of distinction, unfolding into complex topological and quantum
mechanical structures. (Kauffman 1991: 621)

10. 1 introduction

Mathematicians are in the business of interpretation. Their lives are spent
on open-ended quests for improved reformulations and reconceptualisa-
tions, where the familiar and taken-for-granted may at any moment be cast
in a surprising light. The real numbers are seen at one time as the natu-
ral completion of the set of rational numbers, and later as just one such
completion – the completion ‘at infinity’ – alongside infinitely many p-adic
completions for prime p. The Euler characteristic is first seen as a regularity
holding between the number of vertices, edges and faces of a polyhedron,
later understood to be a topological invariant of a triangulable space of
any dimension, and is now also seen by geometric probability theorists as
a valuation on the algebra of sets generated by polytopes in Rn.

Consider the following spaces: the Eilenberg–Mac Lane space, K(Z, 2),
whose only non-vanishing homotopy group is π2(X )= Z; the space of unit

1 I have met philosophers of mathematics on the practice-oriented side who from reading Lakatos
believe there to be little in the way of informal mathematical exposition available. I can only encourage
them to look harder. One mathematician who deserves lavish praise for the breadth and quality of his
exposition is John Baez at the University of California, Riverside (http://math.ucr.edu/home/baez).
I owe much of my understanding of the material in this chapter to his efforts and to comments
in correspondence with him. There is no better way into the topic of higher-dimensional algebra,
especially its relevance to physics, than through his papers and informal writings.
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vectors modulo phase in a Hilbert space of countable dimension; CP∞,
the direct limit of finite dimension complex projective spaces, CPn; the
classifying space for principal U(1) bundles; the complex vector space of
non-zero rational complex functions in one variable modulo constants; and
the space of configurations of integer-labelled points on the surface of a
sphere, whose labels sum to zero. Now, in a certain strong sense, namely up
to homotopy, these are just different descriptions of the same space. Each
way of thinking about this space is valuable; each presents the prospect
for novel connections. We know there is an Eilenberg–Mac Lane space
K(Z, 3), whose only non-trivial homotopy lies in dimension 3. We also know
alternative descriptions of it: integer-labelled particles on the 3-sphere, etc.
But in view of the consideration that it is potentially important for quantum
mechanics, coming fourth in line after Z, U(1), and the space of pure states
in Hilbert space, finding some new ways to look at it might well be useful
for physics.2

The fact that the philosophy of mathematics appears largely to have
forgotten about this interpretative side of doing mathematics will, I feel,
appear strange to our descendants. After all, the philosophies of Frege,
Russell and the early Wittgenstein originated in a maelstrom of competing
logical reinterpretations of mathematics (Ferreirós 2001). They arose from
attempts to bring some order to the tumultuous nineteenth century. Look-
ing back to the end of that century, we see mathematicians and philosophers
beginning to perceive the opportunities opened up by the conceptual rein-
terpretations that had taken place within mathematics during the previous
decades. No more important lesson was being learnt than that one should
not worry unduly about the circumstances in which a mathematical entity
of interest came to prominence. As we saw in chapter 4, just because you
are dealing with a collection of functions defined on a complex curve does
not mean that you should not think of them as possessing deep similarities
to a collection of algebraic numbers generated by extending the rational
numbers. By freeing these collections from the mathematical context of
their discovery, they could both be seen simply as fields and properties
pertaining to both could be discovered and justified at one stroke.

By the 1920s, the extraordinary result had been established that this
process could be taken to such an extreme that any algebraic, analytic or
geometric entity, any collection of such entities, and any mapping between
collections of such entities could be seen as the same kind of thing – a set.
This finding cast a long shadow over the philosophy of mathematics for the

2 See ‘week 149’ at Baez’s website (Baez 2001b).
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rest of the century. If every mathematical entity is representable as the same
kind of thing, the train of thought went, for the purposes of philosophy
we need not concern ourselves with what is special about entities which are
considered as possessing, say, geometric features or combinatorial features.

Mathematicians, on the other hand, recovered from the surprising uni-
versality of set theory. They benefited from the associated freedom to im-
pose what could appear on the surface to be unnatural structures on given
collections of entities. Objects could be examined in novel and illumi-
nating ways, as when, as we saw in chapter 4, Marshall Stone defined
a topology on the very algebraic concept of the set of prime ideals of a
ring. But, of course, there were limits to this process. Penetrating inter-
pretations do not grow on trees, but rather emerge through hard thinking
about particular problems. We saw that Stone’s construction owed much
to Dedekind and Weber’s remarkable idea to put into correspondence the
prime ideals of a ring of functions and the points of an algebraic curve,
so we certainly should not credit set theory unduly. While it is expressive
enough to be able to represent more or less any desired construction, it has
a problem in that it does not know how to say ‘No’. It cannot distinguish
between those constructions that the mathematically literate will realise are
patently pointless and those that stand at least some chance of gainful em-
ployment. The question arises therefore as to whether we can say anything
about the boundary which separates the potentially useful from the patently
pointless.

At first glance, one might think that the motley of concepts and tech-
niques used by mathematicians is so unruly that we could not hope for
anything more than set theory’s capacity to embrace them all, however in-
discriminately. But, as you will already have glimpsed from this book, one
way of reimposing some order has been the use of category theory. Category
theory allows you to work on structures without the need first to pulverise
them into set theoretic dust. To give an analogy in the field of architecture,
when studying Notre Dame cathedral in Paris, you try to understand how
the building relates to other cathedrals of the day, and then to earlier and
later cathedrals, and other kinds of ecclesiastical building. What you don’t
do is begin by imagining it reduced to a pile of mineral fragments. Similarly,
when category theorists think about those very important entities known
as Lie groups, smooth manifolds that behave like groups, they do so by
looking for group objects in the category of smooth manifolds, rather than
by looking for sets which happen to be manifolds with compatible group
structure. The idea here is to work out a theory of groups and then see
which categories can support it, rather than just start out with sets:
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Out of laziness and ignorance, people usually work in the category of sets as a kind
of ‘default setting’. This category has many wonderful features – it’s like a machine
that chops, slices, dices, grates, liquefies and purees – but usually you don’t need
all these features to carry out a particular task. So, one job of a category theorist is
to figure out what features are actually needed in a given situation, and isolate the
kind of category that has those features. (Baez 2001b)

It certainly could not be said that the story of category theory has been
fully told today, not at any rate in the philosophical literature, but what
I shall be describing here is an even grander project known as higher-
dimensional algebra or higher-dimensional category theory, which pic-
tures sets as 0-categories, categories as 1-categories and then continues up
the dimension ladder, ultimately all the way to ω. We look first at cate-
gorification, the process of ascending this ladder (section 10.1). Next we
see how higher-dimensional algebra gives us a way of organising tracts of
mathematics. It transpires that some mathematical constructions which are
deemed very important by parts of the mathematical community may be
reached in a very few steps from the most basic operations when viewed in
an n-category theoretic light, while a set theoretic perspective provides no
insight into their importance. A section devoted to new insights into the
diagrammatic basis of some forms of notation follows. Finally, we turn to
look at applications in computer science and physics.

10.2 categorif ication: making distinctions

When we consider a given finite set, all we can say of any two of its elements
is whether or not they are equal. We need additional structural resources
to be able to undertake a more refined analysis, when, for instance, we
want to say that two things are different, yet similar in some sense. We
might do this by moving up a level and comparing two sets. Now the sets
may be different, and yet similar to the extent that there is a bijection
between them. This similarity is made plain by the mapping which takes a
set to its cardinality. Equinumerable finite sets are sent to the same natural
number. This forgetting of extraneous information is fine if, for example,
we merely wish to know whether the number of forks on a table is equal
to the number of knives. But reducing each set of cutlery to its cardinality
may lose information of interest to us. Perhaps we cared about there being
a particular bijection which allowed us to lay out matched sets from the
motley collection in our cutlery drawer for a dinner party. Sometimes less
information is a good thing, sometimes not.
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Mathematically, the passage from finite sets to natural numbers may be
described as decategorification. In the category of finite sets, isomorphic ob-
jects have been identified and the mappings forgotten. The reverse process
is known as categorification. We see these processes occurring in combina-
torics. Stanley (1999: 219–29) lists sixty-six different combinatorial interpre-
tations of the Catalan numbers, defined for n ≥ 0 as c(n) = ( 2n

n )/(n + 1),
i.e., 1, 1, 2, 5, 14, 42, 132, . . . As an exercise, he urges the reader to demonstrate
the validity of all these interpretations, ideally by finding 4290 ‘simple and
elegant’ bijections between the various sets being counted, i.e., one for each
ordered pair, rather than merely equating each to the Catalan numbers.

Let us give an example of this. The number of binary rooted trees with
n vertices and the number of ways of inserting n pairs of brackets into
(n + 1) items in pairs are both equal to the nth Catalan number. For
instance, for n = 3, we have 5 bracketings

(a (b(c d ))), ((a (bc ))d ), ((ab)(c d )), (a ((bc )d )), (((ab)c )d ),

and 5 trees

I have ordered these sets to make obvious a ‘simple and elegant’ bijection.
In modern combinatorics we would not talk here about isomorphisms

between sets, but rather of species. Species allow us a way of talking about
labelled combinatorial objects while committing to no definitive assign-
ment of labels and, so Rota forcefully argues in his preface to Bergeron
et al . 1997, should revolutionise the field of combinatorics. They permit
a rigorous understanding of the apparent magic of the reasoning which
reveals the number of binary rooted trees possessing a given number of
nodes as the corresponding Catalan numbers. According to this reasoning,
a binary rooted tree is either empty or composed of a root with two further
(possibly empty) binary rooted trees attached. This may be symbolised as
the relation:

B 1+ B·X ·B 1+ X ·B 2

Then,

B(x ) 1+ x B 2(x ).
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Solving this quadratic,

B(x ) = 1−√1− 4x
2x

,

and so expanding this,

B(x ) 1+ x + 2x 2 + 5x 3 + 14x 4 + 42x 5 + 132x 6 + · · ·
Reading off the relevant coefficient gives us the number of binary rooted
trees with a given number of nodes.

When we speak of equivalence of species, we are invoking the idea of
equivalence in categories other than that of finite sets, and hence require
a broader way of understanding the not-identical-but-equivalent within
any category. To this end, we define a pair of objects in a category to be
isomorphic if there are two arrows going in different directions between
them whose composites are the identity arrows for the objects. What the
process of decategorification amounts to is the forming of equivalence
classes of isomorphic objects. It may be applied to any category. Applied
to the category of finite sets and mappings it yields the natural numbers.
Applied to the category of finite dimensional vector spaces it again yields the
natural numbers, the dimensions of the spaces. We can then make sense of
the move from Betti numbers to homology groups in the history of algebraic
topology, discussed in chapter 7, as an example of the opposite process,
categorification, here from the natural numbers to vector spaces. The great
advantage about working in this more structured setting is that one now
has algebraic information on the mappings between topological spaces in
terms of how they are represented by morphisms between vector spaces.
Instead of merely assigning the number 2 to the surface of a doughnut to
represent how it may be cut along two circles to form a rectangle, we can
now assign to it the vector space R2 and then represent mappings between
such doughnut surfaces in terms of vector space transformations.

When you start to think about the processes of categorification and
decategorification, you realise they are rife. Recall from chapter 9 the fun-
damental groupoid of a space, Y , with base points every point of Y . This
is the category where the objects are the points of Y , and the arrows be-
tween x and y are homotopy equivalence classes of paths from x to y. What
does the decategorification of this category look like? Well x and y will be
counted as isomorphic if there are paths running between them in oppo-
site directions such that the composite paths are homotopic to staying put
at each respective point. All this requires is the existence of a single path
between them, for then running along it from x to y and then returning
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in reverse is homotopy equivalent to staying at x, and similarly for y. The
object x finds itself in the isomorphism class of all points of Y to which it
is path connected. By decategorifying to the set of path components, we
have passed from how points are connected to whether they are.

The following rather more involved examples show that some of the
extra structure of a category may be preserved in the decategorified set:
the character ring of a group is a decategorified version of its category of
representations; the second cohomology group of a space, X , is the decate-
gorification of the category of complex line bundles on X . Fortunately, we
can also see this kind of preservation in the familiar example of the cate-
gory of finite sets. This category has sums and products, which correspond
to disjoint union and Cartesian product, respectively. Traces of these are
preserved in the usual addition and multiplication operations within the
set of natural numbers.

The homotopy theoretic example above is very useful to help us develop
these ideas. We have seen how we must not treat two objects of a category
as equal when they are merely isomorphic by learning how to refine the no-
tion of sameness. However, we might wish to distinguish not only between
objects being identical or equivalent, but also arrows. After all, going from
Bangor to London then retracing your steps really does not seem to be the
same as spending that time pottering about your garden in Bangor. At the
level of categories we are forced to choose between declaring them to be
the same or different, but it would be good to have the resources to call
them different but equivalent. To be able to do this what we would need is a
collection of 2-arrows, each going from one ordinary arrow to another, and
satisfying suitable conditions. We should be able to compose compatible
2-arrows with an associative operation, and there should be identity
2-arrows for each arrow. Then we could say that two ordinary 1-arrows,
f and g , between objects A and B are equivalent if there exist a pair of
2-arrows, α from f to g and β from g to f , such that α·β is the identity
2-arrow on g and β ·α is the identity 2-arrow on f .

Homotopy theorists were driven up the dimension ladder with the re-
alisation that n-groupoids model homotopy n-types. An n-groupoid is an
n-category all of whose morphisms have ‘inverses’ up to an equivalence at
the next level, up to an equivalence two levels above, and so on up to equiv-
alence at the top level. A homotopy n-type is a homotopy class of spaces all
of whose homotopy groups vanish above the nth. If mathematicians could
work out how to give some sense to the notion of infinite-dimensional
groupoids, they would then have algebraically circumscribed this field.

Let us take a look at the first steps up this ladder in terms of the surface
of our planet. Now, any path from the North Pole to the South Pole
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may be continuously deformed into any other. In other words, from the
fundamental 1-groupoid perspective, between any two objects there is a
single arrow. But this does not appear to have captured what it is like to live
on the Earth. The path between the Poles down the Greenwich meridian
seems worth distinguishing from the way down the International date line.
Let us keep the paths distinct and introduce 2-arrows. These can correspond
to ways of sweeping a path from itself to another path. For example, we
can sweep the Greenwich meridian at a constant rate eastward onto the
date line. But we would not want to count this sweeping as different from
a broadly similar sweeping which tarried a while as it passed down the
longitude of, say, New Delhi. On the other hand, we would want to count
it as different from the sweeping which proceeds westward at the same rate as
well as from the sweeping proceeding eastward at three times the rate, which
covers the surface of the Earth one and a half times. As 2-arrows between
paths, then, we have homotopy equivalence classes of paths between paths.
You may be able to see that these classes may be put into correspondence
with the integers. Our original meridians are now not the same, but they are
equivalent, since sweeping eastward by half a revolution followed by west-
ward by half a revolution is equivalent to forcing the meridian to stay put.

The construction I have just sketched, the fundamental 2-groupoid,
has detected more about the homotopy of the surface of a sphere, but
there seems no reason to stop at the 2-level. Indeed, since there is no n
above which the 2-sphere has zero homotopy, a fundamental ω-groupoid
would be needed to capture its full homotopy. We seem to be moving
towards a theory of 2-categories which have categories between their objects,
i.e., hom(U , V ) is a category for any pair of objects, and from there to
n-categories for any n, having (n – 1)-categories between two objects. This
is precisely the theory of strict n-categories. But it is an approach which
does not meet mathematicians’ needs very well. At the level of 1-categories,
either a composition along two sides of a triangle is the same as the third
side or it is different, but at the level of 2-categories we have a chance to
weaken equations governing the 1-arrows. The homotopy theorists were
here first with their weakened associative law.

I have not been very precise so far in my mention of paths, so we shall
have to enter into a little more detail to see why we need to weaken. A path
between two points, x and y, of a space X is defined as a mapping, f , of the
interval [0, 1] into X , such that f (0) = x and f (1) = y. Think of the path
being run in a unit of time. But then what do we mean by the composition
of f with another path g from y to z? If we join them the obvious way it
will take us two units of time to get from x to z, but then strictly speaking
it will not form a path. So what we do is run this composite path at double
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speed, e.g., at time 1/2 we are at y. What happens if we compose again with a
third path, h, from z to w? I hope you can see that this will involve running
f and g at quadruple speed then h at double speed. If, however, we compose
in the other order, the composite of f with the composite of g and h, the
resulting path runs along f at double speed and then g followed by h at
quadruple speed. Now these paths are not identical, but they are equivalent.
At the level of the fundamental 2-groupoid, we can say that the composite
arrows are equivalent. Indeed, we can even designate a specific 2-arrow to
do the job. The following diagram should be sufficiently suggestive of what
is involved:

f g h

f g h

Weak 2-categories have the property that the associativity law for 1-arrows
only holds up to isomorphism at the next level. These are also known as
bicategories as distinguished from (strict) 2-categories. Since the weak ones
are the ones we meet ‘in nature’ I shall just call them 2-categories. An
example of their use is the way they can be used to express what is known
as Morita equivalence for algebra-like objects (see appendix).

Then we can advance up the dimension ladder to 3-categories, and so on.
In a 3-category, the equations governing the associators of 2-categories be-
come isomorphisms at the level of 3-arrows. Complicated sets of coherence
conditions must now be written down. The problem is to find a principled
way of doing so. As Baez and Dolan put it:

To advance further in n-category theory, it is urgent to define ‘weak n-categories’
for all n. It is clear that new ideas are needed to do so without a combinatorial
explosion, since already the explicit definition of a tricategory takes 6 pages, and
that of a triequivalence 13 pages! (1995: 19)

Finding a tractable definition that copes with subtle shades of sameness and
difference is no easy matter. Many proposals are on offer involving spheres,
cubes, simplices, and other shapes in their constructions. Leinster (2002)
has provided an up-to-date list of a dozen varieties of n-category, which in
some sense are hoped to be equivalent. There is still much to play for.
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Let us now return to categorification from the 0- to the 1-level, that is, from
sets to categories. Monoids are a prevalent, basic kind of structure. They
are defined as sets possessing an associative binary operation with a unit
element. To categorify this notion we shall need a multiplication on objects,
so that the object A× B exists for all A and B. We could then categorify the
associativity law (ab)c = a(bc) strictly to require some associative product
on objects (A × B) × C = A × (B × C ), but for typical categories the
relation holds up to isomorphism only. In the category of sets, for example,
with multiplication corresponding to some specified cartesian product,
there is an obvious isomorphism between these products. For each triple
A, B, C we can specify a 1-arrow, an isomorphism known as the associator
αA,B,C . These associators satisfy a similar equation to the one satisfied by the
1-arrow associators in a 2-category. So objects in a category like Set which has
a product behave like 1-arrows in a 2-category, and 1-arrows like 2-arrows.
We seemed to have slipped a dimension. This suggests an important way of
generating categories with more structure. We take an n-category with one
object, X say, one 1-morphism 1X , and so on up to one (k – 1)-morphism.
Then we reindex the remaining morphisms so that the k-morphisms are
taken as 0-morphisms or objects, and so on. This produces the following
family.

Table of k-tuply monoidal n-categories

n = 0 n = 1 n = 2 . . .
k = 0 sets categories 2-categories

k = 1 monoids monoidal monoidal
categories 2-categories

k = 2 commutative braided braided
monoids monoidal monoidal

categories 2-categories

k = 3 ” ” symmetric weakly
monoidal involutory
categories monoidal

2-categories

k = 4 ” ” ” ” strongly
involutory
monoidal
2-categories

k = 5 ” ” ” ” ” ”
. . .

Source: Baez and Dolan (1999).
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There are various ways of moving about the table. Decategorification
takes you in a westerly direction from (n, k) to (n – 1, k), as when we passed
from a fundamental groupoid (1, 0) to the set of path components (0, 0).
Forming the centre, a generalisation of the algebraic operation which gives
you the elements of a group which commute with all other elements, takes
you southerly from (n, k) to (n, k + 1). Looping , isolating one object of the
category and reindexing j-morphisms as (j – 1)-morphisms, allows you to
pass south-westerly from (n, k) to (n – 1, k + 1). For example, monoidal
categories arise from looping 2-categories. Stabilisation involves a southerly
movement from (n, k) to (n, k + 1), resembling the process in homotopy
theory of suspension eventually leading to stable homotopy groups as we
saw in chapter 3. Many of these ways of moving, or functors, have a kind
of inverse, known as an adjoint, in the reverse direction (see appendix).

Now, one of the main ideas is that starting from some very basic con-
structions – natural numbers, integers, and so on – and applying these
functors we end up at some important mathematics. For instance, in-
finitely categorifying and stabilising the integers give you what is called the
sphere spectrum, something central to algebraic topology. This programme
evidently has enormous scope:

It is clear . . . that the set-based mathematics we know and love is just the tip of
an immense iceberg of n-categorical, and ultimately ω-categorical, mathematics.
The prospect of exploring this huge body of new mathematics is both exhilarating
and daunting. (Baez and Dolan 1999: 32)

‘Daunting’ indeed – the path is still littered with huge conceptual chal-
lenges. In section 10.3 we shall see what sense we can make of parts of
mathematics with this table.

10.3 higher-dimensional algebra as an organising
language

In his account of what is at the heart of the so-called Science Wars, Hacking
contrasts Kuhn’s vision of science proceeding through large jumps with
the physicist Steven Weinberg’s much more gradualist account. Weinberg
claimed that ‘as far as culture or philosophy is concerned the difference
between Newton’s and Einstein’s theories of gravitation, or between classi-
cal and quantum mechanics is immaterial’ (Hacking 1999: 89). This may
seem like the very essence of nonsense to philosophers of science, whose
discipline has been described as emerging from these two great convulsions
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in early twentieth-century physics, but Weinberg is not alone here. The
mathematical physicist Rovelli makes a similar point:

In my opinion, the emphasis on the incommensurability between theories has
probably clarified an important aspect of science, but risks to obscure [sic] some-
thing of the internal logic according to which, historically, physics finds knowledge.
There is a subtle, but definite, cumulative aspect in the progress of physics, which
goes far beyond the growth of validity and precision of the empirical content of
the theories. In moving from a theory to the theory that supersedes it, we do not
save just the verified empirical content of the old theory, but more. This ‘more’ is
a central concern for good physics. It is the source, I think, of the spectacular and
undeniable predicting power of theoretical physics. (Rovelli 2001: 116)

This preservation of the insight of the old theory leads Rovelli to the
conclusion that scientists such as Copernicus, Kepler, Einstein and Dirac
are better seen as conservatives rather than as revolutionaries. So that:

figuring out where the true insights are and finding the way of making them
work together is the work of fundamental physics. This work is grounded on the
confidence in the old theories, not on random search of new ones. (Rovelli 2001:
117)

This is very much in line with the ideas of the philosopher of science
Michael Friedman (2001: 60).

Now, philosophers of mathematics gazing back through time have found
it difficult to see anything other than a hiatus marked by the advent of logical
rigour brought about by the foundational crisis, the foundationalist filter I
spoke of in chapter 1. But could we not say something plausible about math-
ematics, resembling Weinberg and Rovelli’s positions, by playing down this
perceived cleft between the nineteenth and twentieth centuries? Well, listen
to Sir Michael Atiyah:

Whereas nineteenth century mathematics was primarily concerned with functions
of one variable, the dominant theme of the twentieth century has been the problem
of many variables. Great emphasis has therefore been put on basic structural features
and these have in turn led to spectacular links between the discrete and continuous
aspects of algebraic equations. (Atiyah 1976: 299)

Atiyah’s idea is based on the observation that while the line can be folded
up in just one way, and the plane into closed Riemann surfaces, we still
do not know all the ways three-dimensional space can be folded up. The
principal reason topology becomes so prevalent in the twentieth century is
not now the search for a rigorous foundation for general spaces, but rather
because the natural direction for mathematics was the study of equations in
several variables whose more intricately structured solution spaces required
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the resources of a robust theory of space. As we saw in chapter 7, on the
eve of the twentieth century this was one of the reasons Poincaré gave
when explaining why he felt required to develop Analysis Situs for higher-
dimensional spaces.

This depiction of what changes between the last two centuries allows
Atiyah to propose a continuity to mathematics:

modern mathematics is not as divorced from traditional mathematics as is some-
times implied. Mathematicians have regrouped their forces and spread out in
different directions but the basic objectives are still the same. (Atiyah 1977: 73)

Some will, no doubt, find this rather questionable, but we should surely give
it due consideration. There are different levels of absolute presuppositions,
as Collingwood puts it. Perhaps some of these have changed very little
over long stretches of time. Let’s run with Atiyah’s idea a little further. If
the twentieth century marks the advent of the kind of structural thinking
which category theory so often captures very well, brought about by the
necessity of studying higher-dimensional spaces algebraically, analytically,
topologically and geometrically, it would be apt if the twenty-first century
was governed by structural consideration at the level of higher-dimensional
categories. In other words, perhaps we have a scheme:

Nineteenth century The study of functions of one variable
Twentieth century The study of functions of many variables

The search for structural features captured by
1-category theory

Twenty-first century The search for structural features captured by
n-category theory

This middle association is suggested by the fact that category theory is
not apparent in the more elementary parts of mathematics, and begins to
emerge only during the move to higher dimensions, as our examples of
the section 10.2 indicated. We can see another instance of this when on
higher-dimensional spaces the fundamental theorem of calculus becomes
a result in differential geometry:

Every time we integrate a function
∫ b

a f (x )dx we are concerned with a 1-form
f (x)dx on an interval [a, b] with values in the Lie algebra of real numbers, and
the integral is an element of the Lie group of real numbers. – common room
conversation. (Sharpe 1997: 95)

Sharpe reinterprets the theorem as a result about the Darboux deriva-
tive where values are taken in a Lie group other than the reals. Category
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theory now starts to play a part, e.g., the functor from Lie groups to Lie
algebras, categories of representations, etc. Today, at the beginning of
the twenty-first century, mathematicians are finding they need higher-
dimensional categories of representations of higher-dimensional algebraic
objects, Lie 2-algebras, and so on.

Further support for the middle association comes from the fact noted
in last chapter 9 that groupoids emerged in 1926 when Brandt extended to
four variables Gauss’s work on quadratic forms in two variables. This shift
from group to groupoid takes us from the zeroth to the first column of the
category table.

No doubt this is a terribly oversimplified picture, but even so I think
it is interesting merely at the level of providing an alternative vision. The
advice it suggests for philosophers is that rather than see the explosion
of new mathematics as an unruly mess and fall back to the position that
at least set theory can cope with more or less everything, we try instead
to depict what there is more closely. The fact that mathematicians can
see analogies between the mighty Langlands programme and topological
quantum field theory (Kapranov 1995) should encourage us. If there is a
modicum of truth to the picture, it can also provide us with a way to answer
those who believe that the philosophical need for case study material can
be met without straying beyond, say, 1930. In chapter 4, I presented the
Dedekind–Weber paper of 1882 as marking a watershed in the development
of structural thinking. One can see the development of their analogy right
up to Weil and beyond as operating at the same level of abstraction, even
if the ideas become recursively richer.3 What seems to be happening with
higher-dimensional algebra is the generation of a higher level of abstraction.

If we return to our table of n-categories, we can see that it does throw some
light on the matter. First, we need to mention that the table can appear
in three varieties: with nothing added, with inverses (up to equivalence),
and with duals. Inverses we have met in our discussion of groupoids. Duals
may be motivated by the notion of adjointness in Hilbert space theory
and category theory. Linear Hilbert space operators F : H→ H ′ and F ∗:
H ′→H are adjoint if <Fϕ, ψ>=<ϕ, F ∗ψ>, for all vectors in H and
H ′. F and F ∗ need not be inverse operators, but are in some sense an ap-
proximation. In the appendix the reader may see how closely the definition
of adjoint functors resembles this one. We also need the notion of ‘freeness’
to continue. Mathematical entities are said to be free when they have all
the properties they are required to, but nothing more. For example, the

3 Thanks to José Ferreirós for that thought.
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free (commutative) group on one object is forced to have an element with
an inverse, and the means to compose associatively however many copies
of the element and its inverse using only cancellation of inverses. It is thus
isomorphic to the integers.

Let’s now focus on the case where the categories come with duals as it is
in some sense the most interesting. In general, something living in the (n, k)
place of the table may be thought of as a collection of n-dimensional things
living in an (n+ k)-dimensional world. Mathematicians and physicists are
especially interested in what goes on in the (1, 2), (1, 3), and (2, 2) positions.
For example, Feynman diagrams live in the (1, 3) position, labelled one-
dimensional drawings in 4-space where because of the number of degrees of
freedom line crossings they need not be marked as underpasses or overpas-
ses. Free versions of categories in these positions come without the labelling.

We now encounter the ‘tangle hypothesis’ which states that framed ori-
ented n-tangles in n+ k dimensions are the n-morphisms of the free k-tuply
monoidal n-category with duals on one object. Let us run through the sit-
uation for the (1, 2) position where we are concerned with 1-dimensional
things living in a three-dimensional world. Here the objects are collections
of positively and negatively marked points. Ignoring the framing for the
moment, an arrow is constituted by oriented lines going between marked
points in the domain or target in specified ways. Essentially, we have ori-
ented lines running in different directions and loops, possibly intricately
tangled. Then the arrows from the object corresponding to the empty col-
lection of points to itself are just oriented links. As a free type of entity,
there will be a functor going from it to any other entity of that type we can
find. In our case, any object in a braided monoidal category with duals will
provide such a functor, and this functor will map a given knot to an arrow
from the identity object to itself. Now, the category of representations of
any quantum group is braided monoidal, and we are thus provided with a
large supply of knot invariants.

What has happened here is in line with the usual practice of algebraic
topology to engineer algebraic representations of topological situations. In
other words, it has devised functors from some topological category to an
algebraic one. Here, however, a new type of algebra is the target of the
functor, something belonging to the field of what is now called quantum
algebra. Something notable about this development is that whereas older
invariants produce algebraic objects for each dimension, the objects of
quantum algebra are tailored to the relevant dimension.

The case of the (1, 2) position allows us an interpretation of what has
been happening in the parallel field of quantum topology. Until the 1980s,
knot invariants were unable to distinguish between knots and their mirror
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images. Vaughan Jones working on von Neumann algebras found a set of
relations on generators which put him in mind of braids, entities closely
related to knots. This permitted him a representation of knots sensitive
to the two kinds of crossing there can be. The original invariants from
topology all factored through the representation of spaces as n-groupoids,
but braided monoidal n-categories with duals provide a richer environment
to detect structure.

Higher-dimensional algebra can now provide us with the beginning of
an answer to our question asked on p. 11 as to why Hopf algebras are
worth studying while snooks probably are not. General Hopf algebras have
representation categories which are monoidal with duals, while those which
are quasi-triangular are important because their representation categories
are braided monoidal with duals. These latter, also known as quantum
groups, may be produced by deforming the universal enveloping algebra
of semi-simple Lie algebras. The representational counterpart of this kind
of deformation corresponds to a deformation of a symmetric monoidal
category (1, 3) to a braided one (1, 2) within the 2-category of braided
monoidal categories.

10.4 diagrammatic calculation

In spite of the very widespread use of diagrams by mathematicians to
expedite their reasonings and calculations, philosophers have paid them
scant attention. When they have done so it has often been to look on
diagrammatic reasoning as a poor relation of verbal reasoning, quicker at
times but dangerous, potentially able to offer new insights, yet not wholly
reliable. Wasn’t the nineteenth century one long exercise in showing us how
our spatial intuition can lead us astray?

A minority position argues for pictorial reasoning to be seen as some-
thing stronger than this, something capable of reliably generating mathe-
matical knowledge. Brown, for example, argues that Bolzano’s picture of
a continuous function allowed him to observe a result about continuous
functions which later provided independent evidence that the arithmetisa-
tion of analysis was on track. Here we have an important role attributed to
pictures:

Pictures are crucial . They provide the independently-known-to-be-true consequences
that we use for testing the hypothesis of arithmetization. Trying to get along
without them would be like trying to do theoretical physics without the benefit of
experiments to test conjectures. (Brown 1999: 29)
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So, the kind of diagram that produces an arithmetic identity is more than
an inspiration. Like an experiment it provides independent access to the
truth:

Some ‘pictures’ are not really pictures, but rather are windows to Plato’s heaven.
(Brown 1999: 39)

This idea of transparency is echoed in a superb book on complex analysis:

The basic philosophy of this book is that while it often takes more imagination
and effort to find a picture than to do a calculation, the picture will always reward
you by bringing you nearer to the Truth. (Needham 1998: 222)

Brown’s philosophical position places the emphasis on what is to be
known, for him the inhabitants of Plato’s heaven, but it is equally impor-
tant to think about the process of observation. After all, there is much one
can understand about physics by considering the changing nature of in-
strumentation and experimentation. In modern physics, as Galison (1997)
and others have described, the bodies of skills and knowledge necessary
to maintain detectors of high-energy particles and extract observations
from them are very richly structured indeed. So, similarly for mathematics,
we find that diagrammatic technology has changed over the years bring-
ing novel phenomena into view. The observational apparatus of today’s
mathematician resembles more the electron microscope or the radio tele-
scope than it does the pane of glass constituting one of the ‘windows to
Plato’s heaven’. What you see with it has much to do with its own na-
ture, that is, what it allows you to do with it. Indeed, what we find when
we bring contemporary varieties of diagrammatic apparatus into focus is
that they cannot be neatly separated from what they might be thought to
be about. Rather, attention shifts constantly between the probe and the
probed.

The cases of diagrammatic reasoning considered by Brown suffer from
lacking that element of systematicity that is so noticeable in, say, the use
of algebraic notation in the hands of Fermat and Descartes. There a whole
raft of problems could be solved in a uniform fashion. With the diagrams
of Pythagorean pebble-arithmetic or Euclidean geometry, however, there
remains a continual need for the invention of clever tricks. One-off flashes of
inspiration are fine, but how much more interesting if behind the tricks we
find something of more substantial calculus. As we shall now see, systematic,
rigorous diagrammatic reasoning is becoming a reality.

But surely, one might have thought, the problem is not one of paying
insufficient attention to the twentieth century. When you glance through
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a range of contemporary textbooks, a very low percentage have anything
more than the odd diagram. And wasn’t it Bourbaki who proudly ensured
that so few diagrams appeared in their Eléments? Well, Bourbaki belong to
what might be designated the high modernist period. Now, we inhabit a
postmodern world, where:

geometric representation theorems for the syntax of higher-dimensional categories
are examples of what Street and others have begun calling ‘post-modern alge-
bra’ . . . In post-modern algebra, the abstract algebraic notions are very much alive,
but the syntax of their operations is often represented by concrete structures drawn
from outside algebra, typically geometric or topological in nature. (McIntyre and
Trimble forthcoming: 11)

Whether or not we see anything in the designation beyond a joke, the
signs coming from the front lines of mathematical research cannot be ig-
nored. Spin networks, Feynman diagrams and spin foams, their higher-
dimensional analogues, Penrose tensor diagrams, and even Charles Peirce’s
existential graphs all may be treated in this framework. These diagrams are
not just there to illustrate, they are used to calculate and to prove results
rigorously.

The possibility of doing so arises from the flip side of our facility to
use algebraic objects to understand topology, as in the case described in
section 10.3 of quantum group invariants of knot theory. Now, we work
the other way around, using topological objects to allow us to calculate in
algebra. For example, we can use framed tangles to help us calculate with
representations of quantum groups. For a representation V with dual V ∗,
there are maps: evv : V ∗ ⊗ V → C; coevv : C → V ⊗ V ∗; ψ v,v∗ : V ⊗
V ∗ → V ∗ ⊗ V , and its inverse, satisfying various relations. They may be
represented diagrammatically as a cup, a cap, and two types of crossing, so
that, for instance, the composite map U v = (evv ⊗ idv) ◦ (ψ v,v∗ ⊗ idv) ◦
(idv ⊗ coevv∗) is represented as on the left:

V V

To help you to understand the representation, on the right I have shown
the same diagram sliced through four times. Each of the three brackets
represents a map between two slices.

The relations governing the maps are such that if we think of each curve
of a diagram as a length of ribbon, any physical move we could perform
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on these ribbons keeping them flat in the plane corresponds to a legitimate
algebraic calculation. We can then show that U v has an inverse

= = =

and define this inverse in terms of ev, coev and ψ . We can also work out
what the U map looks like for the tensor product of two representations
V ⊗W :

= = =

V W

This demonstrates the relation U v⊗w =ψ−1
v,w ◦ψ−1

w,v ◦ (U v ⊗U w). To
write out the steps in the same linear form would be horrendous. There are
eight cups, caps and crossings in total in the left-hand diagram, compared
to three for U v. Already in the algebraic manipulation corresponding to the
first tangle transformation several pieces of rewriting would have occurred.
It is not surprising then that a text book such as Majid (1995: 444–6) relies
only on the diagrammatic proof.

Now there are two things to note here. First, without the diagrammatic
representation it would be exceedingly hard to find a proof of this relation.
Second, having followed a representation of the proof written in standard
linear notation, one has no reason to be more confident in its correctness
than having followed the pictures:

once the appropriate algebraic expression is found that represents such diagrams,
it seems clear that algebraic computation will be no more easy than diagrammatic
manipulations. (Carter et al . 1996: 65)

Matters become far more complicated than this when we try to repeat these
constructions in the position (2, 2). Diagrammatic notation has shown
itself easier to handle than the algebra in position (1, 2) and yet the four-
dimensional algebra in position (2, 2) requires two-dimensional diagrams
sitting in 4-space, or at least the projection of these surfaces into 3-space with
all the accompanying kinds of intersection. While the latter are difficult to
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visualise and a fortiori to manipulate, the benefits of using spatial intuition
over straight algebraic manipulation are such that it is worth developing
ways to support this intuition even if this means we still cannot take in at
a glance whole manoeuvres. We have three options:
(1) Project the knotted surface into 3-space marking points of intersection.

(Instead of one type of intersection point with two types of crossing
as in knot projections, we now have three types of point with a total
of ten types of crossing.) Then find a set of legitimate moves on these
projections.

(2) Present a movie of the surface – a projected surface via a series of stills,
slices through the surface either side of singularities, each of which
contains a link diagram. Legitimate moves then correspond to certain
movie moves.

(3) Represent each still as a word written in symbols depicting caps, cups
and crossovers, and then each movie as a sentence of such words.
Legitimate moves then correspond to certain rewrite rules.

Option (3) exposes us to the risk of mistaking legitimate rewritings
through the immense length of calculations, and makes them all but im-
possible to find; (1) may encode a calculation extremely efficiently, but
presents the risk of the faulty use of our spatial intuition. Out of these
options (2) with its combination of step-by-step procedures but reliance
on 2D spatial capabilities seems the best suited to humans, especially if
worked alongside (1). I can only urge you to consult Carter and Saito’s
beautifully produced book – Knotted Surfaces and Their Diagrams (Carter
and Saito 1998) – to gain a proper sense of what is at stake. A projection of a
surface translates to a movie of 13 stills, or to a sentence of over 400 letters.
Rewriting the sentence representation, you have four pages of rules to
follow.

Obviously at some point as we climb up the dimension ladder our in-
tuition will fail us. But it is important to note that it is not just that
this diagrammatic rendition makes the mathematics easier for us, more
accessible to creatures with our capabilities, rather the fact that the alge-
bra and topology are so intimately connected argues for the importance
of the algebra as powerfully related to what we might call after Spencer-
Brown the ‘laws of form’. Hopf algebras, quantum groups and Lie algebras
gain in naturalness, where snooks never will, for having this connection to
topology.

The above is just one part of a large programme to use diagrammatic
notation which shows:
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(1) how certain algebraic relationships can be depicted and computed via diagrams;
(2) how diagrams lead to algebraic structures;
(3) how singular diagrams yield algebraic relationships;
(4) how diagrams can be used to anticipate certain algebraic structures.

(Carter et al. 1996: 2)

Regarding point (4), the discovery of algebraic objects, perhaps quasitri-
angular Hopf 2-algebras, whose representations form a braided monoidal
2-category with duals now becomes desirable to assist the development of
4-dimensional topology and physics.

Now remember that the proponents of this programme do not claim
that their diagrammatic reasoning cannot be fitted into some accepted
system such as set theory. Indeed, one may consult Joyal and Street (1991)
for a proof that some forms of it can be thus fitted, where they recast
the diagrams as topological subsets of the plane. But it’s hard to escape
the feeling that something odd is going on here. Indeed, this form of
diagrammatic calculation has struck one of knot theory’s leading exponents
as novel. The observation that one may reason about knots by manipulating
their projections has led Louis Kauffman to say:

Notationally the Jordan curve theorem is a fact about the plane upon which we
write. It is the fundamental underlying fact that makes the diagrammatics of knots
and links correspond to their mathematics. This is a remarkable situation – a
fundamental theorem of mathematics is the underpinning of a notation for that
same mathematics. (Kauffman 1991: 15)

This is an intriguing thought. The Jordan curve theorem tells us that:
Any continuous simple closed curve in the plane, separates the plane into two
disjoint regions, the inside and the outside. Reliance on it suggests that now
not only should we think of our notation devices as pieces of topology –
we need also think about the medium which allows the notation to be
inscribed upon it. Let’s illustrate this idea by first moving down a dimension
to the more prosaic use of point-like notation. In the n= 0 column of the
table, in the (0, 1) position we find that the free monoid on one object has
as elements finite sets of points inscribed along a line, with composition
equivalent to juxtaposition. It is equivalent to the natural numbers, N,
like Hilbert’s strokes. Similarly, the free monoid with duals, i.e. groups, is
isomorphic to the integers. Integers are seen as classes of dots and duals
strung along a line, where an adjacent dot and dual may annihilate each
other, and such a pair may be created anywhere on the line.
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By thinking about its topological character, we see the basis for tradi-
tional linearly written algebra. Imagine you are working with a monoid,
that is, a set with an associative binary operation with identity. When you
write down a term of the monoid, in effect you are labelling a string of
0-dimensional things sitting in a 1-dimensional world. Your ability to
rewrite this term corresponds to a freedom to allow these labelled points
to move along the line and compose in pairs. If you would prefer that they
didn’t interfere with each other quite so freely, you must put in brackets
to stop them. If you do want associativity, on the other hand, then there is
no need for brackets. You see this also in category theory, i.e., in position
(1, 0). Here we have one-dimensional objects living in a one-dimensional
world and we get associativity in the composition of three arrows for
free.

Now, how do we know that when we write a.b on a line that when we
come back after a coffee break the a won’t have slid past the b? Well, marks
just don’t move like that. Does the distance from a to b matter? No, it
is purely a topological matter, and topologically the line with the point
labelled b removed is such that a point on the left must stay there. Or
more symmetrically, given that the points are not allowed to occupy the
same point, the configuration space is a square without a diagonal, and so
composed of two components. Restriction to a line thus prevents commu-
tativity, just as brackets stopped associativity. But what if we didn’t mind
about the order of multiplication? Well, a representation of 0-dimensional
things in a two- or higher dimensional world will allow this. We would be
happy, for instance, to write down elements of a free commutative group
and for them to move about with pairs of inverses annihilating each other,
so that when we got back the calculation had been done. Had we left a
camera running we would see a tangle traced out.

Exploiting the freedom of the page is precisely what the philosopher
Charles Peirce did in his representation of propositional logic via the alpha
portion of his existential graphs (EG). As we saw in chapter 2, for Peirce
if A and B represent propositions, then inscribing them both on a page
represents the assertion of their conjunction. This graphical notation uses
the topology of the plane to show the irrelevance of order. We can see that
it makes no difference whether A is to the right or left of B. Similarly, there
is no need to mention associativity. So the six orderings of A, B and C
each with two bracketings, that is twelve different syntactical forms, are
represented by the same existential graph. An alpha graph works up to
legitimate topological equivalence.
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Peirce went on to construct the beta part of his graphs, which captures
what was later called the predicate calculus. Here we use strings as well as
letters and scrolls. Let’s see how this works by representing the proposition
‘No man has seen every city’:

man

city

has seen

Peirce was aware that the use of logic presupposes a certain perceptual
capacity. In 1902 he wrote:

Kant is entirely right in saying that, in drawing those consequences, the mathe-
matician uses what, in geometry, is called a ‘construction’, or in general a diagram,
or visual array of characters or lines . . . Thus, the necessary reasoning of math-
ematics is performed by means of observation and experiment, and its necessary
character is due simply to the circumstance that the subject of this observation and
experiment is a diagram of our own creation, the conditions of whose being we
know all about.

But Kant, owing to the slightest development which formal logic had received
in his time, and especially owing to his total ignorance of the logic of relatives,
which throws brilliant light upon the whole of logic, fell into error in supposing
that mathematical and philosophical necessary reasoning are distinguished by the
circumstance that the former uses constructions. This is not true. All necessary
reasoning whatsoever proceeds by constructions; and the only difference between
mathematical and philosophical necessary deductions is that the latter are so exces-
sively simple that the construction attracts no attention and is overlooked. (Ewald
2000: 635–6)

Quine also perceived that variables could be replaced by connecting lines.
In a textbook he wrote on logic, he expresses the same sentence as follows:

(   ) (   is a man.⊃ ∼( )(  is a city .⊃.   has seen   )

He continues:

But these ‘quantification diagrams’ are too cumbersome to recommend themselves
as a practical notation. (Quine 1955: 70)
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Peirce’s system, on the other hand, has been described in much more
favourable terms:

if a facile and perspicuous notation is one that can be learned and easily manip-
ulated, then years of experience with university students have convinced me that
EG is the most perspicuous, and Principia notation the least. The unusual ease
with which inferences can be drawn in EG is something of an unexpected bonus.
(Roberts 1973: 126)

As you might have guessed, the beta system can be recast in terms of
n-category theory. Each diagram may be seen as an arrow in a symmetric
monoidal category, and with inference represented by 2-arrows, the typed
predicate calculus is then reformulated as a monoidal 2-category (Brady
and Trimble, unpublished).

The revival of diagrammatic calculi owes much to the efforts of Roger
Penrose. He developed a kind of tensor notation where instead of indices
one has strings:

While these symbols look like tensors, there is no summation on the indices. The
identity of the indices is very important – two symbols that share an index represent
fragments of a diagram that are tied together at the site of this index. Abstract
tensor algebra is a significant departure from other forms of abstract algebra. In
the abstract tensor algebra there are symbols, separated by typographical distance,
that are interconnected by their indices. (Kauffman 1991: 566)

‘Typographical distance’ is an interesting idea. For anyone who feels that
the attempts of Field (1980) to spirit away mathematical structure into
space-time regions and logic are somewhat suspect, it provides a possible
key. Where Field quantifies over space-time regions with the formula ∃x
∃y(Fx & Fy & x �= y) to avoid the use of ‘2’ in ‘there are at least 2 Fs’,
mathematicians sense that this trick relies on making two distinguishable
marks on a piece of paper, in this case x and y. In Peirce’s system the twoness
is quite evident:

F

Clearly much remains to be said on this topic, but let us now briefly
turn to the question of why mathematicians have found it difficult to
promulgate diagrammatic notation. In the late nineteenth century, Peirce



Higher-dimensional algebra 261

was not alone in developing a notation for logic requiring two dimensions –
Frege’s Begriffsschrift took a clumsy tree-like form. In both cases problems
with printing technology seem to have played a factor in their lack of success.
This appears to be a general problem for diagrammatic techniques. Penrose
says of his tensor notation:

Unfortunately the notation seems to be of value mainly for private calculations
because it cannot be printed in the normal way. (Penrose and Rindler 1984: 425)

As printing technology has improved, two mathematicians deemed it nec-
essary to remove doubts concerning its validity:

Penrose was the first to use the graphical notation for calculating with tensors.
It is now currently used by theoretical physicists as a private device for quickly
verifying complicated tensor formulas. A striking aspect of the notation is that it
is pictorial rather than sequential or alphabetical. This made it difficult to print,
which partly explains why no rigorous theory was developed. We believe that a
notation which is useful in private must be given a public value and that it should
be provided with a firm theoretical foundation. Furthermore printing techniques
have improved drastically in recent years. (Joyal and Street 1991: 55)

‘Drastically’ perhaps, but drawing packages still do not allow physicists
and mathematicians to construct diagrams as easily as they can write with
Latex. Although mathematicians and physicists manage surprisingly well
with ASCII when they discuss technical issues in newsgroups, some mathe-
maticians I have consulted have said that there are things they have chosen
not to publish because of the limitations of available drawing packages.
Not everyone has the dedication of Carter and Saito, who may spend up
to three hours on one of their diagrams (personal communication).

I hope that from this brief foray you will agree that research into the
evolution of notational styles, and the ways printing skills and technol-
ogy have interacted with notation formation through the ages, would be
tremendously valuable. An important part of this research would concern
differences between communities in their attitude towards notation. No
doubt one would find great variation even within a single community, but
perhaps the following comment might provide a starting point:

The notation used in physics is not designed to emphasize the logical relations of
the concepts involved, but rather to facilitate explicit calculations. (Rabin 1995:
186)

Let us now turn to the physicists and others who might benefit from higher-
dimensional algebra.



262 The interpretation of mathematics

10.5 applications

We would expect, if it is half as important as I have been suggesting, that
higher-dimensional algebra would find itself in a position to be able to
provide novel ‘constitutively a priori principles’ for other sciences, to use
the language of Friedman (2001). In other words, once in place it should
enable a range of new empirical theories to become thinkable. In this section
we shall see whether this may be so for quantum gravity. But before we head
off along that path, I should first like to mention another potential area for
the application of higher-dimensional algebra. I shall be brief here since
this area, theoretical computer science, is still in a fairly precarious position.
In principle the discipline has much going for it. Computer languages are
formal languages, and programs written in those languages resemble proofs.
One would think, therefore, that formal systems would be very useful in
modelling programs and in the construction of new languages. However,
the experience of some undergraduates passing through their degree is of an
unbridgeable gulf between the highfalutin end and the practical concerns
of computing. C++ and Java just do not seem to have been designed on
the basis of a deep structural understanding of logic. Let us just for the
moment, however, set aside these concerns and trust that there is a point to
it all.

Foundational branches of mathematics have become a matter of practi-
cal interest in theoretical computer science (Taylor 1999). Logic becomes
unrecognisable in the hands of ‘informaticians’, with a range of new logics,
including the family of linear logics. The development of computer lan-
guages provides an excellent topic for philosophical reflection: the imper-
ative/declarative dichotomy, object-oriented reasoning, concurrency, etc.
Conceptual problems are prevalent, and several computer scientists have
revisited Frege’s writings to look for inspiration as to how to handle variables
cleanly.

There needs to be philosophy of computer science separate from that
part of philosophy of mind which concerns itself with artificial intelligence,
and from the philosophical component of the work on technology in the
sociology of science. It needs to create a space where various dualities can
be examined – time/information, automaton/schedule, state/event, pro-
gramme/context – which might find points of contact with philosophy of
physics. Even at a fairly superficial level one can see connections between
physics and computer science. Quantum field theory sees particles as quanta
of fields, where the particles mediating the interaction themselves interact.
Computer science is interested in modelling interaction between processes,
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seen themselves in terms of their interaction with an environment, where
information ‘tokens’ trace out some path around a network. ‘Process al-
gebras’ are employed to represent the binding together of processes into a
composite with mutual communications internalised. As in field theory,
interaction is local.

Rather like physicists of the 1930s finding a shortage of constitutive
principles from mathematics to cope with quantum field theory, we hear a
similar complaint today:

The notions of function, set, and algorithm were available ‘off-the-shelf’ from math-
ematics and logic for use in computer science. By contrast, there is no adequate
pre-existing theory of processes, interaction, information flow etc. on which these
‘second-generation’ models can build. (Abramsky 1997: 1)

One notion which computer scientists have seen fit to construct to make
up for this shortage is linear logic, a resource-sensitive logic devised by
the proof theorist Girard. Semantics for linear logic include ones based on
games, but intriguingly also ones based on our old friends Hopf algebras.
And where Hopf algebras are to be found, you can be certain categories
will follow.

It would take a monograph-length study to examine the ways in which
computer scientists have invoked category theoretic constructions. Here,
we must be brief. Later in the same article, Abramsky writes:

Traditional completeness theorems in logic have focussed on characterizing prov-
ability by validity in some model or class of models. The focus from the point of
view of computation or proof theory is on the proofs themselves as mathematical
objects, rather than on the mere fact of provability. The idea of full completeness is
to have a model given by purely semantic means (i.e. independently of the syntax)
such that every element of the model is the denotation of some proof (this can be
stated in terms of the fullness of the functor from the free category based on the
syntax, hence the name). (Abramsky 1999: 2)

Closely related is the idea of full abstraction for a programming language
where a syntax-independent model provides the denotation for any pro-
gramme. Notice how just as with the categorification from the set of path
components to the fundamental groupoid, we have again a passage from
whether to how, from whether A is provable from B to how it is provable.

Higher-dimension algebra can now come in to allow comparisons to
be made between these models, but it appears elsewhere. In the theory of
automata, automata are seen as different ways of taking an input of a certain
kind and giving an output of another. The automaton may be described as
doing this according to its internal state. What is needed is a language to say
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that two automata are ‘different but equivalent’, i.e., we need a notion of a
2-arrow from an automaton 1-arrow to another. Elsewhere, those modelling
the syntax of a language deal with three levels: types, raw terms, and redux
paths. It is not hard then to imagine a higher-dimensional syntax talking of
maps between redux paths, and so on. In fact, people use algebraic topology
to analyse computation in these languages for confluence.

I shall stop here in the hope that a pioneering philosopher or two might
be inspired to move into this vast field, and turn instead to the even vaster
field of mathematical physics.

Since the late 1970s there has been an enormous increase in the flow of ideas
between mathematics and mathematical physics. Debts have been incurred
not just by physicists, but also by mathematicians. One of these debts
arises out of the response of the mathematical physicist Edward Witten to
a problem raised by Michael Atiyah in 1988. As I have already mentioned, a
few years earlier, after decades of little progress in producing more powerful
knot invariants, a new polynomial, named after its discoverer Vaughan
Jones, was found to be able to distinguish between some knots and their
mirror image. Previous invariants had been unable to do this. Now, knots
are one-dimensional things living in a three-dimensional space and yet
Jones’s invariant and its many successors were calculated from the knot’s
projection onto the plane, relying on the associated algebra being invariant
under legitimate transformations of the projection. Atiyah wondered how
to give a straight three-dimensional interpretation of these knot invariants.

Witten answered the challenge by constructing a quantum field theory on
a three-dimensional manifold with boundary composed of surfaces marked
by negatively and positively signed points. Embedded in the 3-manifold
is an oriented tangle, whose open strings end at the marked points on
the boundary. Witten then ‘averages out the geometry’ by performing an
integration with respect to a measure on the space of connections (modulo
gauge) on a principal bundle over the 3-manifold, yielding a topological
invariant. Knot invariants arise from applying this integration to the case
where a knot is embedded in the 3-sphere. His formula:

∫
dA exp[(ik/4π )S (M, A)]Tr

(
P exp

(∮
kA

))
,

is not rigorously defined because of the lack of a suitable measure, but it is
possible to treat it heuristically to show that it does give the same answers
as the Jones polynomial.
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Atiyah subsequently extracted an axiomatic definition of a topological
quantum field theory (TQFT) as a rigid symmetric monoidal functor from
the category of n-cobordisms to the category of vector spaces. Rigid here
means that it preserves duals. The TQFT is called unitary if the target
category is the category of Hilbert spaces and compatible with a second
sort of duality structure at the level of arrows.

A unitary TQFT in dimension n is a functor Z which assigns:
(1) A finite-dimensional complex vector space Z (�) to each compact ori-

ented smooth (n −1)-dimensional manifold �

(2) An operator between vector spaces Z (�) and Z (�′) for each compact
oriented n-dimensional manifold Y with boundary diffeomorphic to
� ∪ �′∗, where ∗ indicates reversed orientation.

Various axioms must be satisfied which are neatly encoded in Atiyah’s
category theoretic definition. Cobordism classes are used to count diffeo-
morphic space-times as the same.

One helpful set of associations to have in mind is as follows:

(n − 1)-dimensional space Hilbert space of states

Cobordism between two (n − 1)-dimensional
spaces (space-time)

Operator acting on states

Composition of cobordisms Composition of operators

Identity cobordism Identity operator

Time reversal Adjoint operator
(see Baez 2001a: 186)

Now there are three techniques used to construct TQFTs: one is exem-
plified by Witten’s use of a path integral formulation and a Lagrangian;
a second is category theoretic, using a description of cobordisms in terms
of generators and relations; and, the third is combinatorial, about which
more later. One interesting idea has been to extend the manifolds involved
to allow corners. Now taking a time-slice through, say, a 2-cobordism pro-
duces a 1-manifold, which in turn may be seen as a cobordism between
0-manifolds. This is reminiscent of Carter and Saito’s presentation of knot-
ted surfaces. Where Atiyah gives his definition of a TQFT in terms of 2
levels, as implied by his use of categories, here we are dealing with the notion
of an extended TQFT which rests on an n-category description. Extended
TQFTs map from topological n-categories to hit algebraic n-categories.
In other words, the algebra needs categorifying as well. Just as important
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objects are picked up by categorifying the integers, so interesting algebraic
entities are generated starting from the complex numbers. One result of
this process is that the notion of adjoint operators becomes categorified
to adjoint functors. This is quite remarkable because the latter term was
introduced several decades ago, based on what was thought to be a mere
resemblance.

But why would anyone one want a TQFT, aside from making sense of
the mathematics of knot invariants? Well, one of the central problems in
reconciling quantum field theory and general relativity is that each has a
failing. Quantum field theory is carried out on manifolds with a background
metric in place. General relativity, on the other hand, is not a quantum
theory. What everyone is after is ‘a background-free quantum theory with
local degrees of freedom propagating causally’ (Baez 2001a: 178). However:

freedom in the construction of a (background independent) quantum theory of
geometry is very limited. Thus, the mathematical structures, definitions and con-
struction we use are . . . essentially unique. (Ashtekar 2002: 1)

To help with the search for these structures it was thought worthwhile
to construct the third point of the triangle whose first two points are
represented by general relativity and quantum field theory, by devising
background-free quantum theories with no local degrees of freedom, i.e.,
TQFTs. These are not so unphysical as they sound. Indeed, classical
general relativity in three dimensions has no local degrees of freedom,
since the curvature is completely determined by the flow of energy and
momentum. The four-dimensional general relativity we think relevant to
our universe does, of course, have local degrees of freedom, but the expec-
tation is that a four-dimensional TQFT will shed great light on it. Let’s
now look at the third way to produce a TQFT.

Particle physicists wishing to devise a theory of quantum gravity have
tended to opt for string theory. By doing so they are staying close to the
gauge field theories which have served them so well in the construction of
the Standard Model. Relativists, on the other hand, have taken Einstein’s
theory as their starting point. Direct attempts to quantise general relativity
have come unstuck because of the problem of forming Hilbert spaces from
infinite dimensional spaces of connections modulo gauge equivalence, so
one important step has been the reformulation of the theory in terms of
novel variables, loops rather than points. Loop quantum gravity works by
quantising holonomies along paths. The space of states for such a theory
has been found to be spanned by what are known as spin networks.
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Thus, loop quantum gravity theorists have revived a thirty-year-old the-
ory of Roger Penrose. Around 1970, to avoid all the problems associated
with continuum models, Penrose had constructed a combinatorial, discrete
model of space. This involved merely a trivalent graph – three edges meet
at each node – where each edge is labelled by a half-integer, corresponding
to a representation of SU(2), the group involved in angular momentum in
quantum theory. Penrose showed that Euclidean directions emerged from
a large-scale spin network.

Intriguingly, the four-colour theorem can be recast in terms of a class of
spin networks in which each edge is labelled ‘1’ and which behave as though
they can perform vector algebra. The theorem then becomes a result about
solutions to a vector equation. This has not led to a simpler proof, but
physical ideas may prove useful.

Recently, loop quantum gravity theorists have generalised spin networks
to allow nodes of higher valency and labels corresponding to different
groups and to different types of algebra. They have also moved up a
dimension to model the dynamics of the system by what have been dubbed
spin foams. Spin foam models of quantum gravity are analogues of Feynman
diagrams, where path integrals are rewritten as a sum over spin foams con-
necting spin networks:

In spin foam models, the microscopic degrees of freedom are representations and
intertwiners of the appropriate group (originally SU(2)) and live on a branched
2-surface, or 2-complex. A specific model is given by a partition function that
sums over all microscopic degrees of freedom and all (model-dependent) weights
on the vertices of the 2-complex. It also sums over all 2-complexes that interpolate
between the given in and out 3-geometry states, making spin foams a path-integral
approach to quantum gravity. (Markopoulou 2002: 3)

As befits a quantum geometry, the area and volume operators of these
models have discrete eigenvalues. It appears that in these 3-geometry states,
quantum excitations are one-dimensional spin network edges, where each
edge intersecting a surface gives it a quantum of area. To generate enough
area for a sheet of paper, it has been calculated that it would require 1068

incident edges.
These spin foams are seen as embedded in a differential manifold, but

true to Penrose’s original vision, some people are approaching spin foams
and networks abstractly, that is, without any prior manifold. They encode
the representation theory of a group as a quantum field theory, where a
duality between geometry and algebra, similar to the knot–quantum group
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relation, comes into play which, as Baez puts it, ‘is exactly the sort of thing
one would hope for in a theory of quantum gravity’ (1999: 36).

Part of the process of making spin foams into combinatorial TQFTs is
to assign labels to faces and maps to edges, combining labels of the faces
meeting at the edges. Then a weighted sum is carried out over labellings.
But to be ‘topological’ there naturally have to be severe constraints imposed.
As the co-creator of a 4-dimensional TQFT puts it:

In order to obtain a topologically invariant theory, we need the combination factors
to satisfy some equations. The equations they need to satisfy are very algebraic in
nature; as we go through different classes of theories in different low dimensions
we first rediscover most of the interesting classes of associative algebras, then of
tensor categories. (Crane 1994: 125)

In this ‘marriage between algebra and topology which underlies TQFT’
(Crane 1994: 126), we meet again the same idea of carving out ‘natural’
algebras via categorification. Categorification corresponds to shifting up a
dimension:

We have discovered that in many situations if a given type of algebraic structure
can be used to generate a TQFT in d = n then a categorification can naturally be
used to generate a TQFT in D = n + 1. (Crane 1995: 9)

For example, in two dimensions semisimple algebras are required. In di-
mension 3, you must either add comultiplication resulting in Hopf algebras,
or categorify to monoidal representation categories. At the next dimension,
you complete the square by devising Hopf categories.

I have talked about the three ways of producing a TQFT, but from what
we have seen it should be clear that all have a category theoretic flavour.
About the combinatorial way, Baez claims:

In fact, the recipe for amplitudes and the verification of these facts make heavy
use of category theory. The same is true for all other theories for which Atiyah’s
axioms have been verified. For some strange reason, it seems that category theory
is precisely suited to explaining what makes a TQFT tick. (Baez 1999: 17)

It would also seem that category theory is likely to benefit from any progress
in quantum gravity, because it is heavily implicated in the mathematics
equipping the other main contender, namely, string theory and, for in-
stance, its use of derived categories. But, for those who are wary of Planck-
scale physics, we do not have to travel to such remote regions to find signs of
quantum algebra at work. I stated in chapter 9 that quantum groups would
make an excellent topic for a history exemplifying late twentieth-century



Higher-dimensional algebra 269

mathematical physics. Quantum groups emerged as ways to measure sym-
metry in the physics of certain kinds of two-dimension lattice models and
1+ 1-dimensional scattering models. For instance, in three-particle interac-
tions, models which are insensitive to the order of the pairwise interactions
are organised by the so-called Yang–Baxter equation. In other words, this
is a piece of algebra which reflects an equivalence between the following
diagrams:

But this diagram corresponds to the third of the Reidermeister moves,
the basic moves which allow you to pass between different knot projec-
tions of the same knot. This nexus of concepts relating knot theory, 1+ 1-
dimensional scattering models, integrable two-dimensional lattice models
of statistical mechanics, and topological quantum field theory in 3 di-
mensions is currently receiving the categorification treatment, where up a
dimension what corresponds to the Yang–Baxter equation is the Zamolod-
chikov equation.

10.6 conclusion

One can say with little fear of contradiction that in today’s philosophy
of mathematics, it is the philosophy which dictates the agenda. The issue
at stake in this chapter is at what point does it become incumbent upon
philosophers to take the reverse attitude and let the mathematics have some
say in what is asked of it? Personally I have a very low threshold. I cannot
bear to see all this exciting, yet incompletely achieved, mathematics go
unnoticed. Some people’s threshold is evidently higher, hence the thought
to bombard the reader through this chapter with views of this material from
enough angles to form the beginnings of at least a dozen doctoral theses.

Consider the position in which Bertrand Russell claimed to have found
himself at the start of the twentieth century. He had given up on the idea
that British Hegelianism could supply a way of understanding the problems
mathematicians face, and he had discerned from the writings of Dedekind,
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Weierstrass, Frege and others that a new way of thinking about mathematics
was in the process of emerging. This new way of thinking required a new
language, and so he rushed to join in the construction of this logic, hopeful
that it might revitalise philosophy as a whole. From our vantage point today
we can emulate Russell by:
(1) Believing that our current philosophy is not adequate to make proper

sense of contemporary mathematics
(2) Trusting that some mathematicians can give us insight into a better

philosophical treatment
(3) Believing that the emerging picture will revitalise philosophy.

There are two ways to respond to belief (1). The first way involves taking
the philosophy of mathematics in a ‘science studies’ direction. The material
presented in this chapter suggests a range of ways of doing so. A change
in the language of mathematics should be expected to reveal previously
tacit understandings about mathematics – for example, presuppositions
about the use of notation. We also saw how printing technology may have
played a significant role in the shape taken by contemporary mathemat-
ics. Further, we touched on the changing relationship between physics and
mathematics over the past hundred years. Relating to (3), we would hope to
contribute to science studies by discovering features which are more promi-
nently displayed by mathematics as a knowledge-producing discipline, e.g.,
the relationship between content and form, or aesthetics and rationality.
According to our attitude to (2), we can be more or less appreciative of
what goes on in mathematics departments.

The second way to update belief (1) buys into updated versions of (2) and
(3). It is to see a new ‘laws of form’ or ‘laws of thought’ emerging which
could reinvigorate philosophy by making it think about the nature of a
piece of mathematical syntax, the space in which it is written, and what it
is supposed to refer to. The philosophy of geometry could be revitalised by
the discrete geometry emerging from this programme. While concerning
logic, we can already see signs of philosophical activity. Makkai (1999), for
example, explains his programme to develop a foundational language out
of higher-dimensional algebra which stops you asking ‘silly’ questions, such
as whether two groups are not only isomorphic but also the same. Such a
language might be useful for ontologists working outside of mathematics.

Both these ways are surely worth pursuing. Mathematics has been and
remains a superb resource for philosophers. Let’s not waste it.
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MONOID

A monoid is a set M with a binary operation, such that
(i) The operation is associative, i.e., g·(h·k)= (g·h)·k for any three elements

of M .
(ii) There is an identity element, e, with e·g = g = g·e for all g in M .

GROUP

A group is a monoid (G, ·) satisfying the additional condition:
(iii) For each g in G, there is g−1 with g·g−1 = e = g−1·g .
A group is said to commutative or Abelian if g·h = h·g , for all pairs of
elements of G.

R ING

A ring R = (R, +, ·, 1) is a set R with two binary operations, addition and
multiplication, and an element 1, such that:
(i) (R, +) is a commutative group.

(ii) (R, ·, 1) is a monoid.
(iii) Multiplication is distributive over addition, i.e., a·(b+ c)= a·b+ a·c

and (a + b)·c = a·c + b·c.

IDEAL

An ideal I is a subset of a ring R such that if a and b are members of I so is
a + b, and ra is in I for all r in R. The principal ideal generated by x, Ix,
is the set of rx with r in R.

F IELD

A field is a non-trivial commutative ring in which every non-zero element
has a multiplicative inverse.
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ALGEBRA

An algebra over a field k is a vector space A together with two linear maps,
an associative multiplication m: A ⊗ A → A, and a unit map η: k → A,
such that m·(η ⊗ idA) and m·(idA ⊗ η) are scalar multiplication.

COALGEBRA

A coalgebra over a field k is a vector space C together with two linear maps,
a comultiplication �: C → C ⊗ C and a counit ε: C → k, such that:
(i) (� ⊗ idC ) · � = (idC ⊗ �) · � (coassociativity);

(ii) (ε ⊗ idC ) · � = 1k ⊗ idC and (idC ⊗ ε) · � = idC ⊗ 1k.

B IALGEBRA

(B, m, β, η, �, ε) is a bialgebra if (B, m, η) is an algebra, (B, �, ε) is a
coalgebra, and the algebra and coalgebra structures are compatible, in the
sense that:
(i) �·m = (m ⊗ m)(idH ⊗ t ⊗ idH )(� ⊗ �) where t interchanges the

components of the tensor product;
(ii) ε·m = ε ⊗ ε.

HOPF ALGEBRA

A Hopf algebra is a bialgebra together with an antipode S: H → H such
that m·(S ⊗ idH )·� = η·ε = m·(idH ⊗ S)·�.

CATEGOR Y

A category C consists of:
(i) A class of objects, A, B, C , . . .

(ii) A class of morphisms (or arrows), f , g , h, . . . , each of which has
a domain and codomain which are objects of C . If the domain and
codomain of f are A and B, respectively, we may write f : A→B.

(iii) A composition law which takes a pair of compatible morphisms (f , g),
i.e., with the codomain of f equal to the domain of g , to another
morphism: if f : A→B and g : B→C , then g ◦ f : A→C .

These satisfy the following axioms:
(1) Composition is associative.
(2) For each object A there is an identity morphism, 1A, such that if

f : A →B, then f ◦ 1A = f = 1B ◦ f as arrows from A to B.
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FUNCTOR

A functor T : C→D is a morphism of categories. In other words, it consists
of functions taking objects and morphisms of C, respectively, to the objects
and morphisms of D, such that
(i) If f : A→ B, then T(f ): T(A)→ T(B).

(ii) T(g ◦ f ) = T(g) ◦ T(f ), whenever g ◦ f is defined.
(iii) For all A in C, T(1A) = 1T(A).

ADJOINT FUNCTORS

Given functors F : C→ D and G: D→ C, we say F is left adjoint to G if
there is a bijection, natural in the variables A and B, between morphisms
f : A→ G(B) in C and morphisms f : F (A)→ B in D.

MORITA EQUIVALENCE

Two rings are said to be Morita equivalent if their categories of left modules
are equivalent. This is a useful notion which views as ‘the same’ a ring R
and a matrix ring over it, Mn(R). Since even for commutative R, Mn(R)
will in general not be commutative, within the category of rings and ho-
momorphisms Morita equivalence cannot be detected, even if we extend it
to a strict 2-category with intertwiners acting between arrows. But we can
define a bicategory of rings where this equivalence is naturally expressed.
The objects in this category are the rings and the arrows between two rings,
R and S, are bimodules. The identity maps are formed by canonical bimod-
ules. Horizontal composition corresponds to forming the tensor product.
Vertical arrows are R-S linear maps. Then R and S are Morita equivalent if
isomorphic in this bicategory. This requires there to be bimodules M and
M−1 such that

S →M−1 ⊗R M ← S ∼= S → S ← S;
R →M ⊗S M−1 ← R ∼= R → R ← R;

each isomorphism provided by inverse vertical arrows. Similar construc-
tions work for C∗-algebras, von Neumann algebras, Lie groupoids, sym-
plectic groupoids and integrable Poisson manifolds. In each case isomorphic
objects in the respective bicategories are Morita equivalent.
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1983, ‘The Philosophy of Imré Lakatos’, Journal of Philosophy, 80(9): 502–21
1998, The Applicability of Mathematics as a Philosophical Problem, Harvard

University Press
Stewart, I., 1987, The Problems of Mathematics, Oxford University Press

1997, Does God Play Dice?: The New Mathematics of Chaos, 2nd edn., Penguin
Sussman, G. and Wisdom, J., 1992, ‘Chaotic Evolution of the Solar System’,

Science, 257: 56–62
Tappenden, J., 1995, ‘Extending Knowledge and “Fruitful Concepts”: Fregean

Themes in the Foundations of Mathematics’, Nous, 29(4): 427–67
Taylor, P., 1999, Practical Foundations of Mathematics, Cambridge University Press
Thomas, R., 1998, ‘An Update on the Four-Color Theorem’, Notices of the American

Mathematical Society, 45(7): 848–59
Thurston, W., 1982, ‘Three Dimensional Manifolds, Kleinian Groups and Hyper-

bolic Geometry’, Bulletin of the American Mathematical Society, 6(3): 357–81
1994, ‘On Proof and Progress in Mathematics’, Bulletin of the American Mathe-

matical Society, 30(2): 161–77
Vafa, C., 1998, ‘Geometric Physics’, Documenta Mathematica, Extra Volume ICM,

I: 537–56
2000, ‘On the Future of Mathematics/Physics Interaction’, in Arnold et al .

(eds.): 321–8



Bibliography 285

Waldschmidt, M., Moussa, P., Luck, J.-M. and Itzykson C. (eds.), 1992, From
Number Theory to Physics, Springer-Verlag

Weil, A., 1940, ‘Une lettre et un extrait de lettre à Simone Weil’, in Collected Papers,
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