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Preface

The articles in this volume are an outgrowth of an international conference
entitled Variational and Topological Methods in the Study of Nonlinear Phe-
nomena, held in Pisa in January-February 2000. Under the framework of
the research project Differential Equations and the Calculus of Variations,
the conference was organized to celebrate the 60th birthday of Antonio
Marino, one of the leaders of the research group and a significant contrib-
utor to the mathematical activity in this area of nonlinear analysis.

The volume highlights recent advances in the field of nonlinear functional
analysis and its applications to nonlinear partial and ordinary differential
equations, with particular emphasis on variational and topological meth-
ods. A broad range of topics is covered, including: concentration phenomena
in PDEs, variational methods with applications to PDEs and physics, pe-
riodic solutions of ODEs, computational aspects in topological methods,
and mathematical models in biology.

Though well-differentiated, the topics covered are unified through a com-
mon perspective and approach. Unique to the work are several chapters on
computational aspects and applications to biology, not usually found with
such basic studies on PDEs and ODEs. The volume is an excellent reference
text for researchers and graduate students in the above mentioned fields.

Contributors are M. Clapp,M.J. Esteban, P. Felmer, A. loffe, W. Marzan-
towicz, M. Mrozek, M. Musso, R. Ortega, P. Pilarczyk, M. del Pino, E. Sere,
E. Schwartzman, P. Sintzoff, R. Turner, and M. Willem.

Vieri Benci
Giovanna Cerami
Marco Degiovanni
Dino Fortunato
Fabio Giannoni
Anna Maria Micheletti
October 2001





Morse Indices at Mountain
Pass Orbits of
Symmetric Functionals
M. Clapp

Dedicated to Antonio Marino

ABSTRACT We consider functionals that are invariant under the action of an
arbitrary group of symmetries and have the mountain pass geometry, and intro-
duce a suitable notion of genus which allows computation of lower bounds for the
Morse indices of critical orbits at corresponding minimax values. Via a Borsuk-
Ulam type property, we relate these critical values to those which are relevant for
obtaining multiplicity results for perturbed symmetric problems. This allows us
to obtain good estimates for their growth, which are useful in applications, and
extends previous results of Bahri and Lions and Tanaka for even functionals to
more general group actions.

1 Introduction

This work was motivated by the problem of existence of multiple solutions
of perturbed symmetric functionals. Multiplicity results for perturbations
of even functionals were first obtained in the early eighties by Bahri and
Berestycki [2), Struwe [24) and Rabinowitz [21), and further developed by
many others, e.g., (3), [25), [17], [9], [7], [8). Results for more general group
actions have been given in [11], [13]. All of these results require appro-
priate estimates of the growth of some critical values of the unperturbed
symmetric problem. These critical values are given by a topological in-
variant, originally introduced by Krasnoselskii [19), which captures some
relevant non-symmetric properties of symmetric sets. This invariant has
been extended to more general group actions and to the mountain pass
setting in [11), (13). We call it the equivariant capacity.

For even functionals with constraints Bahri and Lions [3) showed that
one can obtain good estimates of the growth of those critical values in
terms of lower bounds for the Morse indices of critical points given by the

*Partially supported by the Consejo Nacional de Ciencia y Tecnologia (CONACyT)
under Research Project 28031-E.



2 M. Clapp

dual topological invariant: the Krasnoselskii genus (refered to as "cogenus"
in [3]). A similar result was obtained by Tanaka [25] for even functionals
having the mountain pass geometry. He computed the Morse index of dual
critical values obtained via a finite-dimensional approximation procedure.

Here we consider arbitrary symmetries given by the action of an arbitrary
compact Lie group G. We introduce a suitable notion of relative equivariant
genus, which provides critical values for the equivariant mountain pass situ-
ation directly (without going through a finite-dimensional approximation),
and which allows one to compute lower bounds for the equivariant Morse
indices of the corresponding critical orbits using only simple methods of
equivariant topology.

As for even maps, one can compare the minimax values given by the
equivariant genus with those given by the equivariant capacity, provided
that the group G satisfies some Borsuk-Ulam type property. This will be
the case if G is a torus, a p-torus or a cyclic p-group [12]. So for these
groups one does obtain appropriate estimates of those critical values rele-
vant to perturbed symmetric problems. Applications to systems of elliptic
differential equations may be found in [13].

This paper is organized as follows: In Section 1 we recall some basic
topological notions and fix notation. In Section 2 we introduce and discuss
the notions of equivariant capacity and equivariant genus in a mountain
pass setting, and give a comparison result between the corresponding mi[1-
imax values. Section 3 is devoted to computing lower bounds for the Morse
indices of critical orbits related to these values. We summarize with some
final remarks in Section 4.

2 Preliminaries

We start by recalling some basic notions of equivariant topology. A detailed
account may be found in [16]. Let G be a compact Lie group. A G-space is a
topological space Y with a continuous action of G. A G-map is a continuous
map 0: Y -' Z which preserves the G-action, i.e., 0(gy) = go(y). A G-map
0 which is a homeomorphism is called a G-homeomorphism. We denote by
Gy := {gy E Y : g E G} the G-orbit of y, and by G := {g E G : gy = y}
the isotropy subgroup of y. Observe that Gy is G-homeomorphic to GIG,,.
We denote by YG := {y E Y : gy = y for all g E G) the fixed point set of
Y.

By a G-pair (Y, A) we mean a G-space Y together with a G-invariant
subspace A of Y, and by a G-map (of pairs) 0 : (Y, A) -- (Z, B) we mean
a G-map 0 : Y -+ Z which maps A into B. Two such G-maps are
G-homotopic, denoted by

0 GG:(Y,A)-(Z,B),
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if there exists a G-homotopy (of pairs) O : (Y x [0, 11, A x [0, 1]) (Z, B)
from 0 to V), i.e., for each t c- [0, 1], the map

et : (Y, A) --+ (Z, B), Ot(y) ®(y, t),

is a G-map (of pairs), Oo = 0 and O1 = Vi. A G-map 0 : (Y, A) -+ (Z, B)
is a G-homotopy equivalence if there is a G-map 77 : (Z, B) (Y, A) such
that

(Y, A) and 0ori^id:(Z,B)-+ (Z, B).

We denote

(Y, A) x [0,1] := (Y x (0, 1], A x [0,1]).

The join Y * Z of two non-empty G-spaces Y and Z is the quotient space
of Y x [0, 1] x Z obtained by identifying (y, 0, z) with (y, 0, z') and (y, 1, z)
with (y', 1, z) for all y, y' E Y, z, z' E Z. It has a natural G-action given
by g(y, t, z) = (gy, t, gz). We define Y * 0 := Y =: 0 * Y. If fi : Yi --+ Zi,
i = 1, 2, are G-maps then

fl*f2:Y1*Y2- Z1*Z2

is the C-map given by (yl, t, y2) +-+ (fl(yl), t, f2(y2))
We denote by

k tines

the n-fold join of G. This is a free G-space. If C = Z/2, then Ek(Z/2)
is (Z/2-homeomorphic to) the unit sphere Sk-1 c 1Rk with the antipodal
action. If G = S', then Ek(S1) is (S'-homeomorphic to) the unit sphere
S2k-1 C Ck with the action given by multiplication on each coordinate. If
B is a topological space with the trivial G-action, then the fixed point set
of B * EkG is precisely B. We denote

(Y, A) * EkG := (Y * EkG, A * EkG).

3 Equivariant capacity and equivariant genus

Let X be a G-Hilbert space with norm 11 ]J and such that dim X = 00
and dim(XG) < oo. Let F : X R be a G-invariant, C'-functional which
satisfies the Palais-Smale condition:

(PS) Every sequence (Uk) in X such that P(uk) c and JJ4'(uk)JJ -+ 0
has a convergent subsequence, and the two mountain pass conditions:
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(MP1) sup 4 = 0 and there is a sequence of finite-dimensional G-linear
B°

subspaces of X

X -+ oo, and a non-decreasing sequence of real numbers

1=Re<R1<...<Rf,<...

such that t(u)<0if UEX and llull>R,,,
(MP2) There exist r, a > 0 such that 4(u) > a for all u E X', lull = r.

We shall define two topological invariants that give rise to critical values:
The relative equivariant capacity and the relative equivariant genus.

Let B := {u E X : Ilull < 1} and S := {u E X : Ilull = 1} be the unit
ball and the unit sphere in X respectively, and let BO := B rl XG and
SG : = Sn XG be the unit ball and the unit sphere in the fixed point space
XG. Let

D:= U {uEX,,:Ilull?Rn}.
n=o

Definition 3.1. For every G-invariant subset Y of X such that Y D D U
XG, we define the G-capacity ,cG(Y) of Y to be the greatest number k > 0
such that there exists a G-map

a : (BG, SG) * EkG -+ (Y, D)

whose restriction to the fixed point sphere a I SG : SG ^_- DG is a homotopy
equivalence. If such a map exists for all k we shall say that KG(Y) = 00.

For example, if G = Z/2 = (1,-11 we consider the representations
XG ® Rk, where Z/2 acts trivially on XG and by multiplication on Rk.
Then icG(Y) is the greatest number k > 0 such that there exists an odd
map v : B(XG®Rk) -+ Y from the unit ball in XG®Rk into Y which maps
the unit sphere S(XG ®1Rk) into D in such a way that o I SG : SG -- DG is
a homotopy equivalence. If Z/2 acts on X by multiplication then XG = (0)
and this is essentially the same invariant used in [251.

Analogously, if G = S1 we consider the representations XG ®Ck, where
S1 C C acts trivially on XG and by multiplication on Ck. Then KO (Y) is the
greatest number k > 0 such that there exists an S1-map Q : B(XG(DCI) -+
Y from the unit ball in XG ® Ck into Y which maps the unit sphere
S(XG ®Ck) into D in such a way that a I S° : SG ^-- DG is a homotopy
equivalence.

Observe that if v I SG : SG DG is a homotopy equivalence, then
aG : (BG, SG) ^-- (XG, DG) is a homotopy equivalence of pairs. So the
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notion of C-capacity given here is a special case of the one given in [11], cf.
also [14].

The G-capacity satisfies the following monotonicity property.

Proposition 3.2. (Monotonicity) If Y and Z are G-invariant subsets of
X which contain DUXC and i : (Y, D) - (Z, D) is a G-map which induces
a homotopy equivalence r) DC : DC -_ DC, then ,C(Y) < r.C(Z).

Therefore we may use this invariant to obtain critical values of 'F via
minimax. Let

rk := {Y c X : Y is 0-invariant, Y D D U XC and rcC(Y) > k}.

We define

ck = inf sup 'F(u)
YErk uEY

=inf{c>0:KC('F`)>k}.

Observe that since dim X - oo, there exists a G-map a : (B, S)
EkG (X, D) as in Definition 3.1 for each k > 0 [11] Proposition 2.5.
Hence ck < max(4io) < oo and, moreover,

0 = Co < ... < Ck G Ck+ 1 < ... < 00-

By standard methods, using the G-invariant version [15] of the well-
known Deformation Lemma [22], [24] and the monotonicity property of the
G-capacity, one can easily show that

Proposition 3.3. If 0 < ck < oo then ck is a critical value of fi.

Another invariant which provides critical values of 4) is defined, in a dual
fashion, as follows.

Definition 3.4. Let (Y, Z) be a G-pair and let A be a family of G-spaces.
The A-genus, -y4(Y, Z), is the smallest number j such that there exists a
G-map

,r: (Y, Z) --# (Z*A1 *...*Aj,Z)

with Ai E A for all i = 1,... J, whose restriction r I Z : Z - Z is the
identity.

If Z = 0 this is just the A-genus (4]. We shall be interested in the case
when A is the set

C = {G/H1 U U G/H,,, : Hi G a closed subgroup of i = 1,... , m).

If G has the property that every finite set of proper subgroups is con-
tained in a proper subgroup of G, then yg (Y, Z) = ygo (Y, Z) where

co = {G/H: H is a closed subgroup of G, H 0 G).
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This is true in particular for G = Z/2 and for G = S1. Hence, if G = Z/2,
yg(Y, Z) is the smallest number j such that there exists an odd map

r : (Y, Z) (Z * Sk-1, Z)

whose restriction r I Z : Z - Z is the identity. If Z = 0, this is just the
Krasnoselski genus. If G = S', then yg (Y, Z) is the smallest number j such
that there exist a fixed-point free 2j-dimensional representation V of S'
and an S1-niap

r:(Y,Z)-+ (Z*SV,Z)

whose restriction r ] Z : Z -- Z is the identity.
This invariant is closely related to the equivariant Lusternik-Schnirelmann

category (15]. It is easy to see that, if Z is closed in Y, then yA(Y, Z), is the
smallest number j such that there exists an open covering {Yo, Y1:... , Yj }
of Y, a G-retraction Yo Z and G-maps Y; - A= E A, i = 1,... , j, cf.
(15], Proposition 2.4.

The A-genus satisfies also a monotonicity property.

Proposition 3.5. (Monotonicity) If (Y, Z) and (Y', Z) are G -pairs and
r) : (Y, Z) , (Y', Z) is a G-map whose restriction 77 1 Z : Z --* Z is the
identity, then 7A(Y, Z) < -tA(Y', Z).

So we may use this invariant to obtain critical values of -t. Choose a
regular value 0 < 19 < a of 4), where a is as in (MP2). Then the minimax
values of 4) given by the 9 -genus

cj =inf{c>19:yg(4b°. IV) > j},

also give rise to critical values.

Proposition 3.6. If t9 < cj < oc, then c`j is a critical value of

Observe that, since t9 is a regular value, there exists e > 0 such that
yg (V1+`, V3) = 0. Hence

t9<2Fl < cJ <2FJ+1 <... <oo.

In fact, the A-genus has also the usual properties of an index theory,
which are useful for obtaining multiplicity results for symmetric functionals,
cf. for example (1], [5], [6], [22], [15].

We wish to compare the minimax values provided by the G-capacity with
those given by the C-genus. We shall need the following property.

Definition 3.7. A compact Lie group G will be said to have the Borsuk-
Ulam property (BU) if there exist b and jo such that, if there exists a
G-map

C:S"'*EkG--ISt*A1 *...*Aj
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with A, E 9 for i = 1, ... J, j > jo, whose restriction f c : Stm ^_- S' to the
sphere of fixed points is a homotopy equivalence, then k < bj.

Examples of groups satisfying (BU) have been given in [12] where the
following result was proved.

Theorem 3.8. a ) If G is a torus G = S1 x . x S' or a p-torus G =
Z/p x x Z/p, p prime > 1, then G has the Borsuk-Ulam property with
b=1.

b) If G = Z/pr is a cyclic p-group, p prime > 1, then G has the Borsuk-
Ulam property with b = p''-1.

The Borsuk-Ulam property allows us to compare the minimax values
given by the c-genus with those provided by the G-capacity.

Proposition 3.9. If G has the Borsuk-Ulam property (BU) and ' : X
R is a 0-invariant Cl-functional which satisfies (MP1) and (MP2), then
there exists a ko such that, for all k > ko,

19 < Cj(k) < Ck < 00

where j(k) is the smallest integer > b - 1g(BXI, SXI U B°).

Proof. Let Y be a G-subset of X such that Y Va D u X G. Let
k = rcc(Y), j = yc(Y,'") and i = 7g(BX1i SXI U Bc). Consider the
G-map

(Bc, SC) * EkG (Y, D) C (Y, Vo)
(V *AI*...*Aj,V)

psid (SRX U BRXI * AI * ... * Aj, SRX )
tk*# ((SUBc)*Ai*...*A;*AI*...*Aj+S)

where o and r are as in Definitions 3.1 and 3.4, R = R2 is as in (MPI),

P:40 +X\S,.Xi -+ SRXUBRXI

is the radial projection onto SRX on X \ BRX and the projection along
straight lines onto SRX U BRXI on BRX \ S,.XI , and 0 is given by
multiplying first by 1* and then composing with the map given by i =
ryc(BXI, SXI U Bc). Hence l: induces a G-map

which is homotopic to the identity on the fixed point sphere Bc/Sc ob-
tained by identifying the boundary of the ball BC with a point. Since G
satisfies (BU),

ac(Y) < b(max {-yg(BXI, SX1 U Bc) +7p(Y, -b"), jo}).
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In particular, nG(4bi9) < bmax {yg(BXI, SXi U BG), jo} =: k0. Therefore

{c>0:kG(V)>k>ko} C {c>t9:yg(4)',V3) > j(k)> 1}

and the result follows.

4 Morse indices at minimax orbits

The G-capacity, while being an invariant of G-invariant sets, has also a non-
equivariant homotopy property called the rigidity property, which makes it
very useful for obtaining critical point results for perturbed symmetric func-
tionals [2], [21], [11], [13]. Neither the equivariant Lusternik-Schnirelmann
category nor the C-genus have this property. On the other hand, critical
point results for perturbed symmetric functionals require good estimates
on the growth of the critical values ck. These are provided, for example,
by the Morse index at some critical orbits [3], [25]. The critical values F.
given by the !-genus have the advantage that one can easily estimate from
below the Morse index at a corresponding critical orbit. We shall prove the
following.

Theorem 4.1. Let 4D : X --+ R be a G-invariant C2 -functional which satis-
fies (PS), (MP1) and (MP2) and is such that (D"(u) is a Fredholm operator
for every u E X. Assume that, for some j > 1, cj < oo. Then there is a
critical G-orbit Gui of 4) with critical value cj which is either non-isolated
or such that

µ(Gu;) + v(Gu;) > j

where µ is the Morse index and v is the nullity of the G-orbit.

For G = Z/2 a similar result was obtained by Tanaka [25] via a finite-
dimensional approximation procedure. The relative notion of c-genus al-
lows us to obtain lower estimates for the Morse index of a mountain pass
G-orbit directly, in a similar way as the Krasnoselki genus does for even
fuctionals on a sphere [3], [10]. Theorem 4.1, together with Proposition 3.9
immediately gives the following.

Theorem 4.2. Assume that G satisfies (BU). Let I : X R be a G-
invariant C2-functional which satisfies (PS), (MP1) and (MP2) and is
such that 1"(u) is a Fredholm operator for every u E X. Then there exists
ko such that for every k > ko there is a critical G-orbit Guk of 4) with
4(uk) < ck which is either non-isolated or such that

k
µ(Guk) + v(Guk) > - yg(BXI, SX1 U BG) .



Morse Indices at Mountain Pass Orbits 9

The proof of Theorem 4.1 relies on the following topological lemma which
is closely related to the cellular approximation theorem [23] 7.6.17, [16]
11.2.1. For the notion of G-complex we refer to [16]. We denote by Z(") the
G-equivariant n-skeleton of the G-complex Z and by dime Z the dimension
of the G-complex Z, that is, the ordinary dimension dim(Z/G) of its orbit
space.

Lemma 4.3. Let Z, Yo,... , Yk be G-complexes such that Y11 # 0 for every
isotropy subgroup H of Z, i = 0,..., k, and let r : Z - Yo*...*Yk be a G-map.
If dime Z < k- 1 then r is G-homotopic to a G-map z : Z -+ Yo * * Yk_ 1.

Proof. First observe that any j-fold join of non-empty spaces Zo * * Zj _ 1

is (j - 2)-connected so, from the homotopy exact sequence of a pair [23]
7.2.3 it follows that (Zo * * Zn Zo * * Zj_ 1) is (j - 1)-connected for
all m>j.

We will show, inductively, that there exist G-homotopies ei : Z -+ y:=
such that eo=r,ei-1=eo,ei(Z("))CYo*. .*Y" and

9n does not depend on t on Z(i-1). The desired homotopy is then given
by glueing all of these together. For the induction step we assume that
r(Z(j)) C Yo * *Yj for j < n. Let X : G/H x (3n, Sn- 1) (Z(n), Z(n-1))

be a characteristic map for an n-cell. We wish to show that r o X is G-
homotopic rel. G/H x S` I to a G-map G/H x 3" --+ Yo * .. * Y". But such
G-homotopies correspond to ordinary homotopies (Bn,Sn-1) x [0,1]
(YH,YH * ... * Y,H 1) rel. Sn-1 between rr o X I 13' and a map ]3n -+
YH * . . . * Y,H. Since (YH, YH * * Y,H) is n-connected such a homotopy
does exist [23] 7.2.1. 0

Proof of Theorem 4.1. Assume that the set of critical orbits with
value cj is finite and that the Morse index plus the nullity of each of them
is < j. Choose c > 0 such that c`j -e > 0 and such that cj is the only critical
value of 4 in [ci - E, Cj + E]. By the G-equivariant version [26], [10] of the
Marino-Prodi theorem [20] there is a G-invariant CZ-functional T : X -, IR
which satisfies (PS) such that

(a)=(D onX\4?'1(cj-2,Fj+2),
(b) [-t - %k1c, < 2, and

(c) the critical G-orbits of %P in -t -1 [c) - 2, cj +
2

] are nondegenerate and
of Morse index < j.

Let d1 < .. < dm be the critical values of the critical G -orbits of %k in
4t-1 [cj - 2, cj + 2]. Then cj - E < d1 and d,,, < cj + e. Also, W-1(co, c`j -
e] _ 1(00, c`j - E] and it ' 1 [ccj + E, oo) = 'b 1 [cj + E, oo). We will show
that for each dj there is a l > 0 such that, if yg(*d.-a, %pO) < j, then
7g(sd'+b,%k0) < j. Then, since ryg(Vi_E,4Do) = yg(` ;-e,W0) < j, it
follows that yg(Vi+E,V) j which is a contradiction.
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Fix d = d; and let G/H1 i ..., G/Hn be the critical orbits of %P with critical
value d. Then there exists 3 > 0 such that, up to G -homotopy rel. 11°,

q d+6 is obtained from jpd-a by attaching the disk bundles of the negative
normal bundles pk : Nk G/Hk of each one of these critical orbits along
the sphere bundles (10], [18], [27]; that is,

U (BNB U ... U BN,-).
SN-

The bundle dimension of pk : Nk -+ G/Hk is the Morse index of G/Hk,
therefore dime SNk < j - 2. Consider the composition of the attaching
map th of SNk with the G-map T given by .yg(Wd-a, W°) < j,

SNk ;jid-a V*AI*...*Aj-1.
By adding G/H to each A; if necessary, we may assume that AH j4 0 for
each isotropy subgroup H of SNk. So, by Lemma 4.3, Totbk is G-homotopic
to a G-map z : SNk ->'° * AI * ... * Aj_2. Let a be a G-homotopy with
e0 = T o V)k and e1 = T. Then r o t/,k can be extended to a G-map

Tk:DNk -+ APO *Al*...*(Ai-lUG/Hk)

as follows: For C E SNk and 0 < t < 1,

Tk(t() '_ { 2(1 -
t))pk

if <tt < 1

Hence, T can be extended to a G-map
%pd+a,I,o*Al

and therefore ryg(%pd+a, qiO) < j 0

5 Further remarks and comments

For an arbitrary group G we may look at the minimum Jac(k) of all numbers
j such that there exists a G-map

with A, E 9, i = 1, ..., j, whose restriction OC : Stm S' to the sphere
of fixed points is a homotopy equivalence. Obviously $c(k) < k and the
function J3C is non-decreasing. If G satisfies (BU) then PC (k) > g - j0.

The same argument we gave to prove Proposition 3.9 shows that, for
every G-invariant C1-functional' : X --+ IR satisfying (MP1) and (MP2),

19 < cpa(k)-; < ck < 00

for k large enough, where i :_ -yg(BXI, SX1 U BC). So, as a corollary of
Theorem 4.1, we obtain the following.
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Corollary 5.1. Every G-invariant C2 functional -5 : X - R satisfying
(PS), (MP1) and (MP2) and such that lb"(u) is Fredholm for every u E X,
has a critical G-orbit Guk with 4 (uk) < ck which is either non-isolated or
such that

µ(Guk) + v(Guk) > QG(k) - 1.9(BXl, SX1 U BG).
Now, computing QG(k) or even obtaining lower bounds for it is, in gen-

eral, not easy. It was shown in [12] that if G is a p-group, then p0(k) - 00
as k - oo. For the applications to perturbed symmetric problems, however,
this is not enough. One needs more information on the growth of f0(k),
cf. for example [3], [8], [13], [25].

For arbitrary group actions, homological nlinimax values have been con-
sidered by Viterbo [26] who gave bounds for the Morse indices of the cor-
responding critical orbits under a strong cohomological assumption. This
assumption is satisfied if G is Z/p or Sl but it is not satisfied for arbitrary
actions of tori or p-tori of rank > 2 or of cyclic p-groups of order p'' with
r > 2, which are covered by Theorem 4.2.
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On Some Linear and Nonlinear
Eigenvalue Problems in
Relativistic Quantum
Chemistry
Maria J. Esteban and Eric Sere

Dedicated to Antonio Marino

1 Introduction

In relativistic quantum mechanics 111, the bound states of an electron under
the action of an external electrostatic potential V are represented by the
wave functions 0 E L2(R3,C4) which are solutions of the equation

(Ha+V)O=AO, .1ER (1.1)

3

with Ho = -ich E akak + mc2fl , (1.2)
k=1

where c denotes the speed of light, m > 0, the mass of the electron, and h is
Planck's constant. Moreover, al, 02, a3 and Q are 4 x 4 complex matrices,
whose standard form (in 2 x 2 blocks) is

fl=( 1),ak=

with
_ C01)al 10 a2 =

0 ak
ak 0 )

(k = 1,2,3),

C°
02) , a3 =

(O O1)
.

One can easily check the relations

ak = ak , fl = fl`,
akat + weak = 23ke , akfl + flak = 0,

which ensure that Ho is a self-adjoint operator with domain HI (R3, C4),
such that

Ho = -c20 + m2c4. (1.4)
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Unless otherwise stated, in the rest of the paper we choose a system of
units such that m = c = h = 1.

Let us now fix some notation. The conjugate of z E C will be denoted

by z*. For X = I I a column vector in C', we denote by X* the row

covector (zi , ..., z4*). Similarly, if A = (aid) is a 4 x 4 complex matrix, we
denote by A* its adjoint, (A*)i2 = aj*i.

We denote by (X, X') the Hermitian product of two vectors X , X' in
4

C4, and by I X I, the norm of X in C4, i.e., 1X12 = X;X; . The usual
i=1

Hermitian product in L2(ll 3, C 4) is denoted

(01 ?P),2 = 1 (O(x),'O(x)) d3x. (1.5)

The basic space in which we will work throughout this paper is E
H1/2(R3, C4), which is the form-domain of the first order operator Ho .

When the potential V is not too strong, the solutions of (1.1) can be
found as critical points in E of the Rayleigh quotient

Q(O):_ ((Ho+V)O,0)

Since we are interested in particle states, we need to find critical values
of Q(O) at critical levels not belonging to the essential spectrum of the
operator Ho + V. The essential spectrum of Ho is easily computable. It is
the union of two unbounded intervals:

aeee(Ho) = (-oo, -1] U [1, +oo),

and when V $ 0, the essential spectrum of Ho + V is still the same set if
V is not too singular. More precisely, we have the following:

Lemma 1.1. Suppose that V = Vo + Vl + + Vk, with Vo E L°O(R3),
limlyI_+o° Vo(x) = 0, and Vi(x)lx - xil < 1 for some xi E R3, for all
i = 1, ... , k. Then H has a natural self-adjoint extension whose domain is
a subspace of E, and whose essential spectrum is (-oo, -1] U [1, +oo) .

This lemma is an easy extension of [31, 29, 37, 241.
A basic example of an eigenvalue problem arising in atomic and molecular

models corresponds to the case of the Coulomb potential - tJxI-1 created
by a point-like nucleus at the origin of coordinates. The limitation u < 1 will
have an impact on the assumptions made on the maximum nuclear charge
under which our results will be valid. In our system of units, u = aZ, where
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Z > 0 is the number of protons in the nucleus, and a is a dimensionless
scalar called the "fine structure constant", whose experimental value is
slightly smaller than 1/137. The constraint on the nucleus is thus Z < 137.
This covers all known atoms. Note that, for a mathematician, it can be
interesting to consider that Z is not necessarily an integer, and that a can
be arbitrarily small (see Section 3).

In Section 2, we describe variational methods yielding critical points of
Q(O) with critical values in the gap (-1, 1), for a class of potentials which
contains the standard Coulomb case.

In Section 3, we treat more realistic systems corresponding to atoms or
molecules with several electrons. The problem is to compute the station-
ary states of the electronic "cloud", given a fixed distribution of nuclear
charges. The correct theory in this case should be Quantum Electrodynam-
ics. However it seems extremely difficult to use this theory for the numeri-
cal computation of the electronic states of heavy atoms or molecules. This
is why the Dirac-Fock approximation is used in quantum chemistry (see
[32, 23, 18, 8, 27, 17]). In this model, the N electrons are represented by
a family of N functions 4i = (rpl, ... , VN), subject to the normalization
constraints

(wt, Wk) = ak

The functions cak are solutions of a system of N coupled nonlinear eigen-
value problems. This corresponds to replacing the external potential V in
(1.1) by a "mean-field" nonlocal operator, acting on functions 0 E E, with
values in its dual E':

VOO=-aZµ*11/V)+CO *I1 )0-a
fR3Ix

R( ,y)ky)
XI XI

Here, a is the already mentioned fine structure constant, Z is the total
number of protons in the molecule, p is a fixed probability measure on
R3, and Zµ represents the density of protons in the molecule. A typical
example is the case of a point-like nucleus containing Z protons, located at
the origin: then µ is the Dirac mass bo at the origin.

In the expression of V,, the first term -aZ (µ * 1X-1T) represents the fixed

nuclear potential acting on each electron. The other terms represent the
mean field due to the N electrons acting on each electron. These terms
depend on 4i in a nonlinear way: p(x) is a scalar and R(x, y) is a 4 x 4
complex matrix, given by

N N

p(x) _ (x), W, (x)) , R(x, y) = w, (x) ®'p;(y) . (1.7)
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Physically, p is the electronic density, R is the "exchange matrix" which
comes from Pauli's exclusion principle. Note that R(y, x) = R(x, y)*, so
that tr (R(x, y)R(y, x)) _ IR(x, y).; I'.

The Dirac-Fock system is
+,i

N

H,,Tk = k=1,...,N. (1.8)

Here,

t=1

H,ip=Hat,+V4'.
We can apply a unitary transformation u E U(N) to the family b (i.e.,
replace Vk by

i:N ukO01) in order to diagonalize the above system and
get

H. Tk = ^k Ok , k = 1, ... , N . (1.9)

Moreover, once again we are interested in solutions of (1.9) such that all the
Ak lie in the interval (-1, 1). In fact, for physical reasons we are even more
restrictive: we require 0 < Ak < 1, since negative energies would correspond
to "positronic" states.

Some easy computations show that the solutions of (1.9) are critical
points in EN of the energy functional

N N
1

EDF(4) = E(We, Ho ) ' - aZE (pe, (U * x
1)'Pe)e=1 e=1

+ 2 ff V (x - y) [p(x)p(y) - tr(R(x, y)R(y, x))] d3xd3y ,

RjxR

(1.10)

under the orthonormality constraints (6), which can be summarized as

GramL9' = I.

Solutions of (1.9) can be found by variational methods, using the func-
tional (10). The main difficulty, in the study of (1.9) as well as (1.1), lies in
the fact that the energy functionals involved are all highly indefinite, since
they are positive (resp. negative) definite in a space of infinite dimension.

2 The linear eigenvalue Dirac problem

In order to state the main results presented in this section, let us start with
some technical lemmas which are necessary in the sequel of the paper. The
first one is proved quite easily by using Fourier variables.
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Lemma 2.1. Ho is a self-adjoint operator on L2(R3,C4), with domain
D(Ho) = H1(R3, C4). Its spectrum is (-oo, -1] U [1, +oo). There are two
orthogonal projectors on L2(R3,C4) , A+ and A_ = 1L, - A+, both with
infinite rank, and such that

(HOA+=A+Ho= 1-0 A+=A+ 1- (2.11)
HoA_ = A_ H o = - 1 --A A -A_ 1 - A .

The next lemma deals with the interplay between the Dirac potential
and the potential V.

Lemma 2.2. The Coulomb potential 11 satisfies the following Hardy-type
inequalities:

1
(µ*

0 for all probability measures p on
R3. Moreover,

1

, (11* Fx 0)i
rr

(i,IHoi0)Lz , VO E H1/2(R3,C4), (2.13)0 ) 2 :5(

11
(1A

*
T1 ) -0iil2 < 2flVOflL2 , dO E Hl(R3,C4). (2.14)

In the particular case where µ is equal to the Dirac mass at the origin
bo , an inequality more precise than (2.12) was proved independently by
Tix and Burenkov-Evans (see [35, 4, 36]). This inequality reads as follows

CHo -) 0, 0) ? ((1- aZ)O, 0)

2
Q, for all 0 E A+(H1/2(R3,C4)). The techniquefor all Z < ZZ

Tf +1
used by Tix and Burenkov-Evans is based on ideas introduced by Evans,
Perry and Siedentop in [15]. We refer to [21, 22] for inequality (2.12) in
the case a = 6o. Thaller's book [34] gathers many results on the Dirac
operator, including Lemma 2.1 and the standard Hardy inequalities (2.14)
and (2.13) for µ = bo, with references. The extension of (2.12), (2.13) and
(2.14) from 1 = bo to a general probability measure p is immediate, since
the projectors A±, the gradient V and the free Dirac operator Ho commute
with the space translations.

We are now ready to state our main results about the existence and
multiplicity of the eigenvalues of Ho + V for potentials V satisfying the
following assumptions:

V(x) iii _ 0, (2.15)
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V-ICI -CI <V <c2=sup V, (2.16)

with vE(0,1),cl,c2EIR,

cl,c2>0, cl+c2-1 < 1-v2. (2.17)

Theorem 2.3. ([10]) Let V be a scalar potential satisfying (2.15), (2.16)
and (2.17). Then, all the eigenvalues of Ho + V in the gap (c2 - 1,1),
counted with multiplicity, are given by the min-max values

v = inf su ((Ho + V )O, 0) (2.18k
'

)FCY+ OEF® - (0195)F vector space o#odim F=k

where Yf := A±(Co (1R3, C 4)) .

Let us note that the above result does not correspond to a classical min-
max situation: indeed, the classical theorems showing that min-max levels
for some functional yield critical points need the condition that the sets
in the min-max class are invariant under the action of the gradient flow
related to the functional. This assumption is not satisfied here. The reason
is that A± are spectral projectors corresponding to the free operator H0,
but not to Ho + V. Therefore, no classical min-max method can prove
Theorem 2.3 and ad-hoc arguments have to be used.

Under stronger assumptions on V, the result was first proved in [121.
A further improvement was contained in (9). The proof of Theorem 2.3 in
its final formulation, which seems to be optimal in the case of Coulomb
potentials created by a point-like nucleus, is contained in [101. Actually
this theorem is a corollary of a general result about the point spectrum
of operators with gaps (Theorem 1.1 in [10]). Let us state it in its full
generality.

Let N be a Hilbert space with scalar product and A : D(A) C N -
N a self-adjoint operator. We denote by .F(A) the form-domain of A. Let
? 1+, N_ be two orthogonal Hilbert subspaces of N such that N = 7-l+®?{_.
We denote by P+, P_ the projectors on ?{+, 1{-. We assume the existence

of a core F (i.e., a subspace of D(A) which is dense for the norm II.IID(A)),
such that

(i) F+ = P+F and F_ = P_F are two subspaces of F(A).

(ii) a_ = supz_EF_\{o} _-'A=- < +00IIz-IIH

We consider the sequence of min-max levels:

Ak = inf sup (x, Ax) , k > 1. (2.19)
V subspace of F+ 2E(V®F_)\{o}

dim V=k

Our last assumption is
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(iii) Al > a_ .

Now, let b = inf f1 (a_, +oo)) E [a_, +oo]. For k > 1, we de-
note by Ak the kth eigenvalue of A in the interval (a_, b), counted with
multiplicity, if this eigenvalue exists. If there is no kth eigenvalue, we take
Ak = b. Then,

Theorem 2.4. ([10]) With the above notation, and under assumptions
(i) -(iii),

Ak = Pk , for all k > 1.

As a consequence, b = lira Ak = sup Ak > a_
k

The proof of this theorem is given in detail in [10]. What we will do here
is sketch the proof of Theorem 2.3, i.e., explain why Theorem 2.4 implies
Theorem 2.3.

Sketch of the proof of Theorem 2.3.
Here we choose l to be the space L2 (R3, C 4) , F = Co (R3, C 4) , A=

Ho + V and P± = A. The self-adjointness of A follows from Lemma 2.1.
From the explicit formulae defining A±, it is easy to see that (i) and (ii)
are satisfied with a_ = c2 - 1. Also, here b = 1. So , only (iii) remains to
be verified. Since Ni is monotonic in V, it is enough to verify (iii) in the
particular case cl = c2 = 0. This is done in [10], by using a continuation
argument and the fact that uI (Ho -') > 0 > -1 is explicitly known: for
allvE(0,1), pi(Ho-j)= 177 >0>-1. 0.

Theorem 2.3 is interesting from a theoretical point of view, since it can
be used to obtain monotonicity results and some qualitative information
about the eigenvalues of the operator Ho + V whenever V satisfies the
assumptions of the theorem. However, the min-max defined in (2.3) is not
excellent when one needs to compute (numerically) the eigenvalues.

In [10] we have proved that the min-max defining the first eigenvalue can
be written as a minimum. The idea lying behind this is that the maximum
contained in the min-max can be "explicitly" solved. But in order to do
so in a very straightforward and easy way, we introduce another class of
min-maxes related to different projectors P±: for every 6 = (x), we define

P+O _ (o) , PLO _ (z)

A min-max approach involving these projectors appears in [33] and [7]. On
the other hand, this idea was first used in a rigorous proof by Griesemer
and Siedentop in [20], but only for bounded potentials V.

The above projectors satisfy all the assumptions necessary to apply The-
orem 2.4. With this definition, (i), (ii) and (iii) are again satisfied with the
values a_ = C2 - 1, b = 1. Hence, for all V satisfying the assumptions of
Theorem 2.3, all the eigenvalues contained in the interval (c2 - 1, 1) are
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given by the min-max values defined in (2.19). But now it is not difficult
to prove that for every (p E CO-(R3, C 2) \ (0),

A(V) sup {
((Ho(01 0)O} 0)

E span{(o)} ®P_ (C (R3.C')) }

is the unique number A E (c2 - 1, +oo) such that

2

A f I(vl2dx= f i I(c . V)+,2 + (1 + (2.20)

where or denotes the matrix vector with the Pauli matrices'vi, i = 1, 2, 3, as
entries. Moreover, the maximizer X in the above supremum is the function

X(V, P) 1 - V + A(,p)
(2.21)

Finally, it is easy to prove that under the assumptions of the theorem,
the first eigenvalue of Ho + V in the interval (c2 - 1, 1) is given by

inf {a(pp); O E Co (R3,C2) \ {0}} . (2.22)

In [111 we describe how to use (2.22) to write an algorithm which enables
us to compute all the eigenvalues of Ho+V in a quite straightforward way.
Tables containing numerical results are given in [111 for a family of Coulomb
operators.

3 The nonlinear Dirac-Fock system

In [13] we proved, by a variational method, that under some assumptions
on N and Z, there exists an infinite sequence of solutions of the Dirac-Fock
equations. More precisely, we have the following:

Theorem 3.1. ([13]). Let N < Z + 1. Then, for a' 222 " max(Z, 3N -
1) < 1, there exists a sequence of solutions of the Dirac-Fock equations,

141i}1 C (H1/2(1
3))N,

such that
e>

(i) 0 < EDF(%Pi) < N,

(ii) lim eDF(%Pt) = N,
i +00

(iii) 0 < 1 - < e1 < ... < eN < 1 - with mi, p, > 0, independent of
a.



Linear and Nonlinear Eigenvalue Problems in Relativistic Quantum Chemistry 23

Some ideas in the proof of Theorem 3.1 are inspired, in particular, by
the works [5, 3, 28], and we use a general result of Fang-Ghoussoub [16]
on the Morse index of Palais-Smale sequences associated to a min-max.

With the physical value a = 1/137 and Z an integer (the total number of
protons in the molecule), our conditions become N < Z, N < 41, Z < 124.
The constraint N < 41 is rather unnatural. In our proof, we need a certain
concavity property of the Dirac-Fock functional, and the constraint on N
ensures that this property is satisfied.

Our result was recently improved by Paturel [30], who relaxed the condi-
tion on N. Paturel obtains the same multiplicity result, assuming only that
N < Z + 1 and a" 222 " max(Z, N) < 1. This is an important improve-
ment, since his result covers all existing neutral atoms. His proof is very
technical and uses ideas coming from the variational theory of nonconvex
Hamiltonian systems (in particular [6]).

As mentioned above, the physical value of a is approximately 1/137.
However, it is interesting to study the connection between the relativistic
Dirac-Fock model and its nonrelativistic counterpart: the Hartree-Fock
model. This comparison involves the so-called "nonrelativistic limit" a
0. In [14], we obtain several results on this limit. The first one asserts
that, under certain conditions and after rescaling, solutions of Dirac-Fock
converge to solutions of Hartree-Fock as a goes to zero. More precisely, we
fix N, Z with N < Z + 1 and we take a fixed probability measure µ on R.
Let an be a sequence of positive numbers converging to zero. We define a
sequence of probability measures µn by µn(E) = µ(a,,E), for all Borel sets
E. We call (DF,,) the Dirac-Fock system associated to a, N, Z, it,, . Take
a sequence {%pn}n of solutions of with eigenvalues ek,n (1 < k < N),
for which

-00 < Jim (an)-2(el,n - 1) < lim (an)-2(EN,n - 1) < 0. (3.23)
n-+co of-.+00

Then /has\ a subsequence converging strongly in

H1(R3,C4), towards T = I 0 I, where _ R3 - (C 2)"

is a solution of the Hartree-Fock equations:

k2 -Z(µ*V)CPk+ (P+* IXI)Vk

N

f:,
(wk(Y),c03(y))

- . Ix - y
dy - k = 1,...N,F (HF)j=1

fR3
dx = b,j , Xk = n li mo(an)-2(Ek,n - 1) .

Note that the Hartree-Fock equations are the Euler-Lagrange equations
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corresponding to critical points of the Hartree-Fock energy:

eHF(4)) _ (2IIoViII; - ZJ (µ * V)IV,I2 )
1Ri=1

+1 P,(x)P,(y) - IP*(x,y)I2 dxdyll3 xx3 Ix - yI

under the constraint J
Wicpio = bid , i, j = It.... , N, where

N N

P,(x) = E('Pi(x),Wi(x)), P,(x,y) =
i=1 i=1

(3.24)

Particular solutions of the Hartree-Fock equations are the minimizers of

E1.HF :=1nfjeHF(4)); 4) E (H1(R3))", Gram 4) = 1}

The existence of such minimizers was proved by Lieb and Simon [26] under
the assumption N < Z + 1 (see also [28] for a multiplicity result on critical
points that are not minimizers).

The second main result in [14] is that the first solution W1 of Dirac-Fock
found in [13], whose energy level will be denoted E1,DF, converges, after
rescaling, to the ground state of Hartree-Fock.

Theorem 3.2. ([14]). Fix N < Z + 1 and a probability measure a on R3.
Take a very small, while the nuclear densities Ziia are given by 11"(E)
p(aE) for all Borel sets E. Then, with the above notation,

EI,DF = e(I1) = N+ a2E1.HF + o(a2)a_,o. (3.25)

If an goes to zero, then, after extraction of a subsequence,

(an)-3/2*1* ('/an1 (1) in H1(R3), (3.26)

where E1,HF is the ground-state energy and T is a minimizer
for E1,HF.

Moreover, for a small the eigenvalues corresponding to ' 1 in the Dirac-
Fock system, I . , eN are the smallest positive eigenvalues of the linear
(Dirac + mean-field) operator F1,y i and the (N + 1)-th positive eigenvalue
of this operator is strictly larger than EN .

Finally, we are able to show that, in the neighborhood of the nonrela-
tivistic limit, the function %P 1 can indeed be viewed as an electronic ground
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state for the Dirac-Fock equations, and this not only because it is close to
the ground state of Hartree-Fock , but also it minimizes the Dirac-Fock
energy among all possible "electronic configurations":

Theorem 3.3. ([14]). Fix N, Z with N < Z+1 and take a > 0 sufficiently
small. Then ' I is a solution to the following minimization problem:

inf{EDF(%P) ; Gram' = I, A,, 41 = 0 } (3.27)

where Al, = Xi_a oi(H,y) is the negative spectral projector of the (Dirac +
mean-field) operator Hp.

Part of the proof of Theorem 3.3 is inspired by the work of Buffoni and
Jeanjean [2]. We also use an estimate on the negative energy projector A*-,
due to Griesemer, Lewis and Siedentop [19].

References

[1] J.D. Bjorken and S.D. Drell, Relativistic quantum mechanics,
McGraw-Hill, New York-Toronto-London, 1964.

[2] B. Buffoni and L. Jeanjean, Minimax characterization of solutions for
a semi-linear elliptic equation with lack of compactness, Ann. Inst. H.
Poincare Anal. Non Lineaire 10 (1993), 377-404.

[3] B. Buffoni, L. Jeanjean, and C.A. Stuart, Existence of a nontrivial so-
lution to a strongly indefinite semilinear equation, Proc. Amer. Math.
Soc. 119 (1993), 179-186.

[4] V.I. Burenkov and W.D. Evans, On the evaluation of the norm of an
integral operator associated with the stability of one-electron atoms,
Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 993-1005.

[51 A. Castro and A.C. Lazer, Applications of a min-max principle, Rev.
Colombiana Mat. 10 (1976), 141--149.

[6] C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem
and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33-49.

[7] S.N. Datta and G. Deviah, The minimax technique in relativistic
Hartree-Fock calculations, Pramana 30 (1988), 387-405.

[8J J.P. Desclaux, Relativistic Dirac-Fock expectation values for atoms
with Z = 1 to Z = 120, Atomic Data and Nuclear Data Tables 12
(1973), 311-406.

[9] J. Dolbeault, M. J. Esteban, and E. S&6, Variational characteriza-
tion for eigenvalues of Dirac operators, Calc. Var. Partial Differential
Equations 10 (2000), 321-347.



26 M. J. Esteban and E. Sere

[10] J. Dolbeault, M.J. Esteban, and E. Sere, About the eigenvalues of
operators with gaps. Application to Dirac operators, J. Funct. Anal.
174 (2000), 208-226.

[11] J. Dolbeault, M.J. Esteban, E. Sere, and M. Vanbreugel, to appear in
Plays. Rev. Lett. 85(19) (2000), 4020-4023.

[12] M.J. Esteban and E. Sere, Existence and multiplicity of solutions for
linear and nonlinear Dirac problems, in Partial differential equations
and their applications, Eds. P.C. Greiner, V. Ivrii, L.A. Seco and C.
Sulem., 107-118, CRM Proc. Lecture Notes, 12, Amer. Math. Soc.,
Providence, RI, 1997.

[13] M.J. Esteban and E. Sere, Solutions of the Dirac-Fock equations for
atoms and molecules, Comm. Math. Phys. 203 (1999), 499--530.

[14] M.J. Esteban and E. Sere, The nonrelativistic limit for the Dirac-Fock
equations, to appear in Ann. H. Poincare.

[15] W.D. Evans, P. Perry, and H. Siedentop, The spectrum of relativistic
one-electron atoms according to Bethe and Salpeter, Comm. Math.
Plays. 178 (1996), 733-746.

[16] G. Fang and N. Ghoussoub, Morse-type information on Palais-Smale
sequences obtained by min-max principles, Manuscripta Math. 75
(1992), 81-95.

[17] 0. Gorceix, P. Indelicato, and J.P. Desclaux, Multiconfiguration
Dirac-Fock studies of two-electron ions: I. Electron-electron interac-
tion, J. Plays. B: At. Mol. Phys. 20 (1987), 639-649.

[18] I.P. Grant, Relativistic Calculation of Atomic Structures, Adv. Phys.
19 (1970), 747-811.

[19] M. Griesemer, R.T. Lewis, and H. Siedentop, A minimax principle in
spectral gaps: Dirac operators with Coulomb potentials, Doc. Math. 4
(1999), 275-283.

[20] M. Griesemer and H. Siedentop, A minimax principle for the eigen-
values in spectral gaps, preprint mp-arc 97-492, J. London Math. Soc.
60(2) (1999), 490-500.

[21] I.W. Herbst, Spectral theory of the operator (p2 + m2)1/2 - Zee /r,
Comm. Math. Phys. 53 (1977), 285-294.

[221 T. Kato, Perturbation theory for linear operators, Springer, 1966.

[23] Y.K. Kim, Relativistic self-consistent Field theory for closed-shell
atoms, Phys. Rev. 154 (1967), 17-39.



Linear and Nonlinear Eigenvalue Problems in Relativistic Quantum Chemistry 27

[24] M. Klaus and R. Wiist, Characterization and uniqueness of distin-
guished self-adjoint extensions of Dirac operators, Comm. Math. Phys.
64 (1978-79), 171-176.

[25] W. Kutzelnigg, Relativistic one-electron Hamiltonians "for electrons
only" and the variational treatment of the Dirac equation, Chemical
Physics 225 (1997), 203-222.

[26] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb sys-
tems, Comm. Math. Phys. 53 (1977), 185-194.

[27] I. Lindgren and A. Rosen, Relativistic self-consistent field calculations,
Case Stud. At. Phys. 4 (1974), 93-149.

[28] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems,
Comm. Math. Phys. 109 (1987), 33-97.

[29] G. Nenciu, Self-adjointness and invariance of the essential spectrum
for Dirac operators defined as quadratic forms, Comm. Math. Phys.
48 (1976), 235-247.

[30] E. Paturel, Solutions of the Dirac-Fock equations without projector,
Ann. Henry Poincare 1 (2000), 1123-1157.

[31] U.W. Schmincke, Distinguished self-adjoint extensions of Dirac oper-
ators, Math. Z. 129 (1972), 335-349.

[32] B. Swirles, The relativistic self-consistent field, Proc. Roy. Soc. A 152
(1935), 625-649.

[33] J.D. Talman, Minimax principle for the Dirac equation, Phys. Rev.
Lett. 57 (1986), 1091-1094.

[34] B. Thaller, The Dirac equation, Springer-Verlag, 1992.

[35] C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown
and Ravenhall, Bull. London Math. Soc. 30 (1998), 283-290.

[36] C. Tix, Lower bound for the ground state energy of the no-pair Hamil-
tonian, Phys. Lett. B 405 (1997), 293--296.

[37] R. Wiist, Dirac operators with strongly singular potentials, Math. Z.
152 (1977), 259-271.

CEREMADE - UMR C.N.R.S. 7534
Universit6 Paris IX-Dauphine
Place du Marechal de Lattre de Tassigny
75775 Paris Cedex 16 - France
email: esteban®ceremade.dauphine.fr

sere0ceremade.dau phine. fr





Convexity at Infinity and
Palais-Smale Conditions.
Application to
Hamiltonian Systems
A. Ioffe and E. Schwartzman

Dedicated to Antonio Marino

ABSTRACT We consider functionals f (x) = (1/2)(Lxlx) + H(x) on Hilbert
spaces and establish the relationship between convexity of H and conditions of
Palais-Smale type. This is further extended to functionals with H exhibiting
convex behavior "at infinity" and to Hamiltonian systems with Hamiltonians
having such a property.

1 Introduction

We study the problem of existence of critical points for the function

f (x) = (1/2) (Lxl x) + H(x). (1.1)

The starting point of the study was the dual action principle discovered
by Clarke in the late 1970s which proved to be the main tool for existence
proofs in problems with convex subquadratic H, especially for periodic
solutions of Hamiltonian systems (e.g., [3, 6, 11, 12]).

At the same time, the natural question of whether classical minimax
methods of calculus of variations (Ljusternik-Schnirelman theory, moun-
tain pass theorem and its extensions, etc.) can be applied in such cases and
produce similar results,remained open. As usual, this question reduces to
that of the Palais-Smale condition: what kind of condition (if any) may be
behind the existence results provided by the dual action principle?

A simple answer to this question, surprisingly unknown so far, is given
here by Theorem 1. Namely, it turns out that, under very mild assumptions
on L, f satisfies a slightly strengthened form of the Cerami version of
the PS-condition (see [41 - we call this version the weighted Palais-Smale

The research was partially supported by the Fund for the Promotion of Research at
the Technion.
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condition in this paper) if H is convex continuous and subquadratic at
infinity.

The basic fact behind the theorem is that any collection of vectors x
with bounded "measure of non-criticality" is norm bounded in this case
(Proposition 3.3). This makes every weighted PS-sequence bounded and
hence reduces the compactness test to verification of the PS-condition only
for bounded PS-sequences.

The proof based on this scheme has one definite advantage over that
based on the dual action principle: it requires "less" convexity as there is
no need to pass to the dual problem and then to show that any solution of
the latter gives a critical point of f. It turns out that all we need is that
H behave like a convex function only "at infinity" when JJxH - oo. This
idea is realized in Theorems 3 and 4, the latter concerned with periodic
solutions of Hamiltonian systems.

The deformation techniques used in the proofs of the mentioned results is
very elementary - in fact, only finite dimensional deformations are needed.
This, in turn, allows us to require very little of L. Practically the only as-
sumption we impose on L is that zero does not belong to the essential
spectrum of L. In fact, in this paper we assume for simplicity that the
essential spectrum of L is empty, that is, that L has a purely discrete spec-
trum with every eigenvalue having finite multiplicity, but this assumption
can be substantially weakened.

This is a brief description of the content of the paper. Elsewhere we
shall consider the case of even H and corresponding multiplicity results:
the simple finite dimensional deformation technique of this paper does not
work in this case. Some of the results presented here were announced in
[8]. Everywhere in what follows, we have:

X is a separable Hilbert space;
is the inner product in X;

B is the unit ball around the origin in X;
S is the unit sphere;
PE is the orthogonal projection to the subspace E C X.

2 Preliminaries

We adopt the following hypotheses throughout the paper.
(Al) X is a separable Hilbert space; L is a closed self-adjoint linear

operator in X with dense domain dole L;
(A2) o(L), the spectrum of L, is purely discrete and every eigenvalue

has a finite multiplicity.
It follows from (A2) that X admits an orthogonal decomposition

X=X-®X°®X+,



Convexity at Infinity and Palais-Smale Conditions 31

where X' = Ker L is finite dimensional, X+ and X- are positive and
negative subspaces of L and there are positive numbers v- and v+ such
that

(Lxix) < -v 11x112, Vx E X- fl dom L;

(Lxlx) > v+1ixIi2, dx E X+ fl dom L.

We set furthermore
Y=X°ED X+,

and for any x E dom L we shall denote by x-, x°, x+, y the corresponding
components of x.

(A3) there is a µ > 0 such that [-µ, 0) fl v(L) = 0 and

limsup IIxiI-2IH(x)] <,u/2;
II'U-Cc

(A4) H(x) oo if jjxji oo, x E Ker L.
(A5) H satisfies the Lipschitz condition on every ball;
By 8H(x) we denote Clarke's generalized gradient of H of x. Recall the

definition (see, e.g., [3]):

OH(x) = {u; (ulv) < H°(x, v), Vv E X},

where
H°(x, v) = lim sup t-1(H(x' + tv) - H(x'))

x'-x,t-O
is Clarke's directional derivative of H at x along v. Recall that 8H(x)
coincides with the subdifferential of H at x in the sense of convex analysis
if H is convex.

We say that x is a critical point of f if x E dom L and

0 E Lx + 8H(x). (2.2)

Finally we shall denote

p(x) = dist (0, Lx + OH(x)).

This means that critical points are characterized by the relation p(x) = 0.
Furthermore, given a closed subspace E C X, we set

PE (X) = dist (0, PE (Lx + 8H(x))).

3 Weighted Palais-Smale condition

Following tradition, it would be natural to call a Palais-Smale se-
quence if the corresponding sequence (f (x,,)} is bounded and p(x,,) 0.
But as was explained in the introduction we shall be interested in a nar-
rower class of sequences. The following is the version of the PS-condition
to be used.
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Definition 3.1. (cf. [4, 1]). A sequence {xn} is a weighted Palais--Smale
sequence for f (at level c E R) if c and p(x,,)(1 + IIx,111) -+ 0 as
it -- oo. We say that f satisfies the weighted PS-condition at level a if any
weighted PS-sequence for f at that level contains a convergent subsequence.

More generally, we say that {xn} is a weak (weighted) Palais-Smale
sequence for f (at level c E R) if there is an increasing sequence of L-
invariant subspaces En C X such that dom L C U E,,, xn E En, f (x,,) -+ c.
and 0 (resp. pE,.(xn)(1+IIx,,ll) -+ 0) as n - oo. We say that f
satisfies the weak (weighted) PS-condition at level c if any weak (weighted)
PS-sequence at that level contains a convergent subsequence.

It is clear that every weighted PS-sequence is a Palais-Smale sequence in
the usual sense (that is such that dist (0, Lxn + 0 and a weak
weighted PS-sequence (just take En = X).

Theorem 3.2. We assume that (A1) - (A5) hold and H is convex. Then f
satisfies the weak weighted PS-condition at every level. Moreover, the limit
of any convergent weak weighted PS-sequence is a critical point of f.

The following result is crucial for the proof of the theorem.

Proposition 3.3. Assume (A1)--(A5). If in addition to these assump-
tions, H is convex, then for any -oo < a < b < oo and any b > 0,
there is a K > 0 such that IIxII < K for any x satisfying a < f(x) < b,
x E E and pE(x)(1+IIxII) < d, whenever E is a closed L-invariant subspace
of X.

Proof. Set Q(x) = (1/2)(Lxlx) and define

rE(t) = sup{IIxII : x E E-, f(x) > -t},
qE(t) = sup{-Q(x) : x E E-, f(x) > -t},

where we set Et = E n X t .

It follows from (A3) that both rE(t) and qE(t) are finite for any t, nonde-
creasing and going to oo as t -. oc, provided E- contains nonzero elements.
It is also clear that rE(t) < r(t) = rX(t) and qE(t) < q(t) = qx(t). Take an
x satisfying the assumption. Then, as the function ip(y) = f (x'+y)-f (x-)
on Y = X° e X + is convex, the inclusion 0 $ Ly+Py(8H(x- + y)) C
holds for any y E Y n dom L. Furthermore, if z E Lx + OH(x), then (as
xo, x-, x+ belong to E), setting w = x - x- = x° + x }, we get

f (.x-) - a > (Lxlx - w) + H(x - w) - f (x)
_ (LxI - w) + H(x - w) - H(x)
> (zI - w) = (PEZI - w)

which implies that f(x) - a > -pE (x) II x+ + x°ll > -pE(x) llx.Il, whence

-f(x) :5 pE(x)(1+IIxII)-a<6-a.
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It follows that

Ilx- II 5 r(b - a) = Ki, I Q(x )l <- q(b - a) = K2.

We have therefore that

(v+/2) IIx+112 + H(x) < f (x) + K2 < b + K2 = c. (3.3)

By (A4), H is bounded below on Ker L. It follows by standard rules of
convex calculus that

H(x) = Hi(x) - (zlx),
where H1 is bounded below by a certain a (which we may assume nonpos-
itive) and z is orthogonal to Ker L. We therefore get from (3.3)

(v+/2)llx+112 <- c - a + llzll(Ki + 11x+ 11)

and, consequently,
IIx+ll 5 K3 < 00-

It remains to estimate the norm of IIx°Il. Setting ik(y) = H1(x- + y) -
Hl (x-) we also get:

O(w) = Hi(x) - Hi(x-) = f(x) - Q(x) + (zlx) - Hi(x )
< f (x) - Q(x-) + (zl x- + x+) - Hl (x-)
5b+llzIIIIx II+IIzlllIx+II-a+K2

<b+llzll(Ki+K3)-a+K2=K4. (3.4)

Set further
ri = sup{llull : u E Ker L, 1/i(u) < K4}.

By (A4), r1 < oo. As 0(0) = 0, it follows (due to convexity) that

u E Ker L, (lull > (3/2)ri 1/'(u) > (3/2)K4.

Let 12 denote the Lipschitz constant of on the ball of radius R = Ilwll
in Y = X° ® X. If u E Y is such that (lull < R, llu°ll > (3/2)rl and
IIu+II < el < min{K4/212i K3}, then

+G(u)?i(u°)-12x1>K4

Therefore if for a certain u E Y with llull 5 R we have O(u) < K4, then
either 110°ll < (3/2)rl or Ilu+ll > el.

If now K3/212 > K3 = el, then 11x+ 11 < ei and we conclude from (3.4)
that 11w°ll = IIx°II 5 (3/2)rl = K. Assume now that IIx°II > (3/2)ri. In
this case K4/211 = E1 < IIx+p < K3. Let A > 0 be such that \llx°ll =
(3/2)ri. Then llAx+II is still not smaller than ei, \ < 1 and (as 0(0) = 0)
i/i(Aw) < \O(w) < K4 by (3.4). Therefore

K3 > IIx+ll > e1/,\ = K411x°II/3r112,
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that is IIx°II < 3r112K3/K4 = K7. In either case, Ilxll <_ K1+K3+K5+K6 =
K, which completes the proof.

As an immediate consequence of the proof of Proposition 3.3, we get

Corollary 3.4. Under the assumptions of Proposition 3.3

lim f (x) = oc
IlxIl-o0, xEY

and, consequently,
inf f (x) > -oo.
xEY

Proposition 3.5. Assume (A1),(A2) and (A5). Then any bounded sequence
{xk } such that the sequence Lxk is bounded is precompact. In particular, a
bounded weak Palais-Smale sequence (at any level) is precompact and every
its limit point is a critical point off(.).

Proof.The first statement is an obvious consequence of (A2). Suppose now
that {xk} is a bounded weak PS-sequence By the assumption there is an
increasing sequence of L-invariant subspaces Ek C X whose union is dense
in X such that dist (0, Lxk + OPEk (H(xk))) -+ 0. As {Xk} is a bounded
sequence, it follows from (A5) that the sequence {Lxk} is also bounded,
hence {xk}is precompact.

Without loss of generality we may assume that {xk} converges to a cer-
tain x and {Lxk} weakly converges to a certain y. As L is a closed operator,
it follows that x E dom L and y = Lx.

Furthermore, for any n and any k > n

dist (0, PE (Lxk) + PE., (OH(xk))) = dist (0, PE (Lxk + OH(xk)))
< dist (0, PEk (Lxk + OH(xk)))

< dist (0, Lxk + PEk (OH(xk)))

and we conclude (as the subdifferential mapping of a Lipschitz contin-
uous function is upper norm-to-weak sernicontinuous) that we have 0 E

for any n. Since the union of En is dense in X, it follows
that 0 E Lx + 8H(x), that is, x is a critical point of f.
Proof of Theorem 3.2: immediate from Propositions 3.3 and 3.5.

4 Existence theorem: the general case

Theorem 4.1. Under the assumptions of Theorem 3.2 ((A1) - (A5) and
convexity of H), f has at least one critical point.

Proof. If L is positive semi-definite, then f (x) is a convex lower semi-
continuous function which attains its minimum (as f (x) -+ oo when llxll -'



Convexity at Infinity and Palais-Smale Conditions 35

oo, as follows from the corollary after Proposition 3.3). Thus in this case
the theorem holds.

We therefore assume that the negative subspace X- is nontrivial. Let En
be finite dimensional L-invariant subspaces of dom L such that Ker L C
En C En+1 and the union of En is dense in the domain of L. Denote by
fn the restriction of f to En. Then fn is continuous and locally Lipschitz
on En. Let further B; and S; be the intersections of E; with the unit
ball and the unit sphere of X, respectively. Let finally Yn be the orthogonal
complement of E; in En which is the sum of En and Ker L = X°.

We shall show first, using the standard saddle point approach due to
Rabinowitz [131, that for any n there is an xn E En such that

0 E Pn(Lxn + aH(xn)) (4.5)

(which means that xn is a critical point of fn) and f (xn) converge to a
certain finite number.

Set

An = inf fn (x) = inf f (x).
xEY xEY

Then ... > An > An+1 >_ ... > A = infy f (x) and A > -oo by the corollary
after Proposition 3.3.

Using (A3), we can choose r > 0 so large that sup,,S- f (x) < A. Consider
the collection Pn of continuous mappings from rBn into En which are the
identity on rS;. Every such mapping meets Yn, as dim E; < oo. Therefore

cn = inf Max f(p(x)) > An.
PEP- xErB;

It follows that fn has a critical point in the sense of the "nonsmooth crit-
ical point theory" of [5, 7, 10] at the level cn. Let xn be such a point. As fn
satisfies the Lipschitz condition, we get 0 E Ofn(xn) which is exactly (4.5).

We have cn > A for all n. On the other hand, taking the identity mappings
for any n meeting Yn at zero, we conclude that cn < H(0) < oo. Therefore
cn = f (xn) are uniformly bounded. Applying Proposition 3.3, we conclude
that {xn} is a bounded sequence. But it is obviously a weak PS-sequence,
so by Proposition 3.5 it has a limit point which is a critical point of f.

In the above proof the convexity assumption was used only to show that
the sequence {xn} is bounded. The rest of the proof is based exclusively on
the assumptions (A1) - -(A5). This allows one to weaken the convexity
requirement in the following way.

Theorem 4.2. Assume in addition to (All- -(A5) that H is "convex at
infinity" in the following sense: H(x) = H(x) + V(x), where H is con-
vex continuous, the function p(x) is locally Lipschitz and bounded and
Lip p(x) = O(Ix1I'1) as IIxfl goes to infinity (Lip W(x) being the Lips-
chitz constant of V at x). Then the conclusions of Theorems 3.2 and 4.1
remain valid.
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Proof. In view of Proposition 3.5 and the proof of Theorem 4.1, we have
to show that under the assumptions every weak weighted Palais-Smale
sequence is bounded. So assume the contrary: there is such a sequence

with oc. Let { E, } be a corresponding increasing sequence
of L-invariant finite dimensional subspaces of X such that the domain of
L the closure of belongs to the union of E and (1 + 0.

Set j (x) _ (1/2)(Lxlx) + H(x) and pE(x) = dist (0, L(x) + PE(OH(x)).
By the assumptions, the sequence (f(x,,)} is bounded, and OH(x) C
8H(x) - O (x) (see, e.g., [3I for the calculus of generalized gradients) so
that

dist (0, +PE dist (0, +Lip

It follows that
(1 + IIxn II))PEn(x.) = 0(1),

is a bounded sequence and, as H is convex continuous and obviously satis-
fying (A.1)-(A5), Proposition 3.3 implies uniform boundedness of x,,.

5 Application to Hamiltonian systems

In this section we apply Theorem 3.2 to study the existence of T-periodic
solutions of a non-autonomous Hamiltonian inclusion

Jx E OH(t, x), (5.6)

where x E R2' and OH(t, x) stands for the Clarke subdifferential of H as
a function of x. The corresponding functional is

Tf
J

[(-1/2)(J:cl x) + H(t, x)I dt. (5.7)
0

We shall consider the problem in the space X = L2[0, T]. Then (5.7) has
the form (1.1) with L being the operator that carries x(t) into -Jt(t) and
H(x(.)) = fT H(t,x(t))dt. The domain of L is of course the Hardy space
H'.

Then L satisfies (A2), (A3) (see, e.g., [6I). More precisely, the spectrum
of L consists of all numbers 2ka/T with k = 0, ± 1, ±2, .... The multiplicity
of any eigenvalue is 2n. In other words, when applying Proposition 3.3, we
can take as E,,, invariant subspaces of L, for instance, we can take Em
equal to the subspace spanned by all eigenvectors of L corresponding to
eigenvalues 2kir/T with Ikl < m.

The following assumptions will be imposed on H(t, x):
(Hl) H(., x) is summable on [0, tI for every x, H(t, ) is locally Lipschitz

in x for almost any t and f H(t, x)dt oo as Ix' - oo;1
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(H2) there is a positive a < 7r/T and a summable nonnegative function
r(t) such that

IH(t, x)I 5 aIIxII2 + r(t);
It follows from (H1), (H2) that (A4) and (A5) are satisfied as well.

Theorem 5.1. Assume (HI), (H2) and (H3) H(t, x) = H(t, x) + cp(t, x),
where H is convex continuous in x and summable w. r. t. t for any x, ep(t, 0)
is also summable, p is locally Lipschitz as a function of x and Lip cp(t, x) <
l(t, IIxii) for all t, x, where 1(t,l;) is a nonnegative Caratheodory function
with the following properties:

(i) lr(t,l;) noonincreasingttas a function of

(ii) JOT l2(t,b)dt = O(1/S2) as S -' 00;
(iii) fT sup l(t,l;)dt = C < oo.

Then there exists a solution of (5.6) satisfying the periodic boundary
condition x(0) = x(T).

Theorem 5.1 does not follow from Theorem 4.2 although the key element
of the proof is similar: this time this is the demonstration that the weighted
(PS)-condition is satisfied for in the L2-metric.

We precede the proof by three technical lemmas. For any x E Rn we
denote by m(x) the vector whose components are equal to absolute values
of the corresponding components of x, that is, if x = (t i, ..., t;n), then
m(x) = (I6 I,...,ICnl)-
Lemma 5.2. Let ?P(x) be a convex function on Rn satisfying for some
Q>0, -y>0

I,G(x)I <- (0/2)IIxII2+'y, dx E Rn.

Then for any x and any u E OV)(x)

I (m(x)I m(u)) 5 5olIx1I2 + 2-y.

Proof. Let e E 1Rn, Deli = 1. If u E 8i(x), then

t/i(x f (xie)e) - V)(x) > ±(xle)(uie),

so that

2/3IIx112 +'y = 11I2xli2 +'y 2 IIx ± (xle)e112 + 7
2 2

> i,b(x ± (xie)e) > ±(xie)(ul e) + i(x)

> ±(x1e)(ule) - Z IIxiI2 - y.

Thus, if .x = (1;1 i ..., t;n ), u = (rlj , ...77n ), then taking e = e= A-, 1, ..., 0),
we get

IUI77il <- 2RIIxI12 + try

and the result follows.
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Lemma 5.3. Assume (Hl)-(H3). Let be a PS-sequence for (5.6)
in L2. Then there are numbers Mo and M (not depending on k) such that

Omaax IIxk(t)II C MO+MOm<TIIxk(t)II

for all k.

Proof. In the proof, we denote d(x, Q) the distance from x E R" to Q C
R". Then being the PS-sequence means (after selecting a suitable
subsequence if necessary) that

f(xk(')) -' C; f d2(0, -Jxk(t) + 8H(t, xk(t))dt --+ 0,
T0

the latter being equivalent to the existence of measurable selections
of set-valued mappings t p--+ OH(t,x(t)) such that

rT
J IJ±k(t) - uk(t)I2dt - 0.

0

Set 7lk(t) = IIJ±k(t) - uk(t)II. By the standard rules of the calculus
of generalized gradients of Clarke, Uk(t) = Wk(t) +lk(t), where wk(t) E
8H(t,xk(t)) and G(t) E 8cP(t,xk(t)) (the possibility to choose these two
functions measurable also follows from the standard measurable selection
argument). By (H3) the latter gives

l(t, Ilxk(t)II)

As follows from Lemma 5.2 and (H2),

(xk(t)Ixk(t)) < (m(xk(t))Im(xk(t))) = (m(Jxk(t))Im(xk(t)))
<_ (m(wk(t))I m(xk(t))) + IIG(t)II)Ilxk(t)II
< 5nallxk(t)II2 + ('9k (t) + II4k(t)II)I1xk(t)II + 2r(t)
< Ck(t)IIxk1I2 + rk(t)),

where, say Ck(t) = 5na+77k(t)+IIG(t)II and rk(t) = 2r(t)+7?k(t)+IIG(t)II
It is clear that integrals of these functions are uniformly bounded by certain
CO and R0. Thus

Wt Ilxk(t)II2 < Ck(t)Ilxkll2 + rk(t),

and applying Gronwall's lemma (e.g., [9]), we get that for any r E [0, T]
and any k

Ilxk(t)II2 <- Ilxk(T)112 + ef= c(e)de

f t
rk(s)e-f, c(a)do < Ilxk(T)112 + const

r
and this immediately implies the desired inequality.
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Lemma 5.4. Assume (H2), (H3). Then the function

f (x(-)) = f T H(t, x(t))dt
0

on L2 is convex continuous and satisfies

H(x()) < const.

Furthermore, Y() E if and only if y(t) E 8H(t, x(t)) almost ev-
erywhere.

Proof. The inequality is immediate from (H2) and part (iii) of (H3), whence
continuity of f as it is clearly convex. The subdifferential inclusion is now
a well-known fact of analysis of convex integral functionals.

Proof of the theorem. Let be a weighted PS-sequence for f(.) in
L2. This means that there are uk(-) such that uk(t) E 8H(t,xk(t)) almost
everywhere and

rT

(1 + IIuk(t) - Jthk(t)II2dt)1/2 --4, 0

0

as k -+ oo. Then of course fT luk(t) - J±k(t)I2dt -+ 0 and we can apply
Lemma 5.3. It follows from the lemma that either are uniformly
bounded or mint Ilxk(t)II - oo.

In the first case the sequence is obviously weakly precompact in
H1 and we get a critical point as the limit.

Assume now that ak = mint Ilxk(t)II -* oo. We have Uk(t) = yk(t)+zk(t),
where yk(t) E OH(t,xk(t)) and Zk(t) E OOcp(t,xk(t)) almost everywhere.
As Ilxk(t)II > ak, we have Ilzk(t)ll <- l(t,ak) by (i) which means that
fo IIzk(t)II2dt = O(ak2) -+ 0 by (ii) and, on the other hand, llx(t)ll <
MO + Mak for all t by Lemma 5.3 and therefore O(ak). It
follows that the quantity

T

(1 + Ilyk(t) -
0

is uniformly bounded for all k. But by Lemma 5.4 this quantity is precisely
(1 + where p(x(.)) is the distance from Lx(.)
to zero. Thus the sequence (1 + Ilxk(')II2)P(xk(')) is bounded. This means
that

T
(-1/2)(JkIx) + H(t, x)ldt.!(X(.)) = fo 1

satisfies all the conditions of Proposition 3.3 (in L2), and applying the
proposition we find that the sequence {xk} is uniformly bounded, in con-
tradiction with what has been assumed. This completes the proof of the
theorem.
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Periodic Solutions of Nonlinear
Problems with Positive
Oriented Periodic Coefficients
W. Marzantowicz

Dedicated to Antonio Marino

ABSTRACT We study nonlinear ODE problems in the complex Euclidean space,
with the right hand side being a complex analytic function of the space variable
z with nonconstant periodic coefficients in the time variable t. As the coefficients
functions we admit only functions with vanishing Fourier coefficients for negative
indices. This leads to an existence theorem which relates the number of solutions
with the number of zeros of the averaged right hand side function, and finally
gives a theorem of the existence of periodic solution which originates from infinity.
The work generalizes and extends previous results of the author, joint with A.
Borisovich, for the polynomial case.

1 Introduction

In this paper we study a non-autonomous system of ordinary differential
equations in the plane of the form

u(t) = f (u(t), t), (1.1)

where f (z, t) is a holomorphic function in the space variable z E U C C
and T-periodic with respect to the time variable t. We note that if the
coefficients of the Taylor expansion E°a0c3(t)(z - zo)' of f, with respect
to the variable z, belong to the trace of disc algebra on the boundary (i.e.,
are the restrictions to the sphere of these continuous functions on disc
which are holomorphic in its interior) then the 0-th Fourier coefficient is a
multiplicative functional.

The averaging of (1.1) leads to a complex analytic equation

0 = f(u), (1.2)

where f(z) := E c., (z-zo)', with c := T fo c3(t)dt and u + fo u(t)dt.
s=o

'Research supported by KBN grant no. 2 PO3A 03315.
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First we observe that u(t) is a periodic solution (in the discussed algebra)
only if u is a root of f, i.e., the T-periodic solutions of 1.1 are only in the
fibres {F1}, over (isolated !) zeros {zi}, off (4.1).

Next we give a sufficient condition for the existence of the T-periodic
solution of (1.1) over a zero of f . To do it we express f as

f (z, t) = (z - z°) h(z, t) + r(t) (1.3)

Theorem 3.7. The main result says that if the multiple of T by the sum of
norms of h and r is smaller than 2, then there exists a T-periodic solution
u(t) E C+(T) of (1.1) with the mean value equal to z°, which is noncon-
stant if r 4 0 (Theorem 4.6). The proof of the main theorem is essentially
the same as the corresponding theorem of [2], i.e., it is a kind of contin-
uation method of Krasnosielski et al. and Mawhin et al. [13]. Indeed our
hypothesis is equivalent to an assumption that equation (1.1) is either a
small perturbation (but effectively given) of equation (1.2) or the frequency
is large enough, which resembles previous approaches to the problem ([12],
[11], [18]). As an application, we show an example of function f (z, t) for
which the equation (1.1) has infinitely many distinct T-periodic solutions
(Corollary 4.12.)

Finally we prove the existence of a nontrivial periodic solution for a
meromophic function f, which originates from infinity (Theorem 5.4).

To make the paper self-contained, in Section 1 we give a brief exposition
on the Banach subalgebra of T-periodic Ck-functions of disc algebra type,
called the positive oriented functions. Next in Section 2 we present prop-
erties of the Banach algebra of functions f (z, t) which are holomorphic
with respect to the first variable and T-periodic and positive oriented with
respect to the second. The subject is presumably known but not unified in
most of the available literature.

2 Banach algebras of positive oriented
differentiable functions

Let p > and D,, {z E C : JzJ < µ} be the disc of the radius µ. Let next
O

R (D.) be the class of all analytic functions in the interior D,, _ {z E C
IzI <,u}.

We use the notation C°(D,,), or for short C(D,,), corresponding to
Ck(D,,) for the Banach space (algebra with the ordinary multiplication
of functions) of continuous, or k-differentiable in the real sense respec-
tively, complex-valued functions on D,,, with the norm:

Ilfll := sup If(z)I or
zE D
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k

IIfIIk E sup Ifi'i(z)I 0 < I < k respectively.
1=0 zED

Put T = 27rµ. As above we have a natural linear map (of norm equal to
1): resT : Ck(D,,) -, Ck(OD,,), assigning each f E Ck(D,,) its restriction
f := fhoD to the boundary.

For an obvious reason the space Ck(OD,,) is isomorphic to the space of
all functions in Ck(R; C) which are T-periodic with all derivatives up to
the k-th, which is denoted by Ck(T). Set 1(t) := f(pexp(2,zt)). Since
Sµ = BD,, = R/27rpZ, we can identify the space Ck(OD,,) with the space
of k-th differentiable T-periodic functions with the usual norm

k

IIhIIk sup Ih()(t)l.
1=0 0<t<T

Note that in this definition differentiability and differentials of f : D -+ C
are considered as corresponding notions of a map of R2. Consequently, for
every j E Z and f E Ck (T), the j-th Fourier coefficient of f is defined as

ai(f) := T
IT

f(t)exp(-7,jt)dt

Definition 2.1. Let Ac(D,,) denote a subalgebra of Ck(D,,) consisting of
functions continuous on the boundary BD,, and holomorphic in the open

0
disc D,,, i.e.,

Ak(DP) := {f E Ck(D,) : fI- E W(D.)}

with the ordinary multiplication of functions and the norm taken from
C(D,,). Let us also set

Ak(D,,) := resT(Ak(D,,))

Finally put

C+ (T) := (f ECk(T); a,(f)=0, for all j <0},

with the usual Ck-norm as in Ck(T).

The norm in Ak(D.) is defined as

k k

IIfIIk = E sup WO (z)I = E sup If(z)(l) l.
1=0 IzI<_p 1=0 lzl=l+

We would like to emphasize that if k = 0, and u = 1, (i.e., T = 27r,)
then A°(D1) := A° is called the disc algebra (cf. [7], [8], [9)).
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To shorten this paper we present properties of the algebras AI(D,,) with-
out proofs. For the case µ = 1, which is the most studied in the literature,
they are presented in [7], [8], [9], [17]. The general case easily follows by
Theorem 2.8.

First, for any derivative, up to the k-th, of a function f E Ak(D,,) the
Cauchy integral formula and maximum modulus principle hold (cf. [7]).

From the maximum modulus principle we have

If II = sup If (z)I = sup If (z)I.
I=I<_/, 1z1=1A

Theorem 2.2. Ak and Ak(D,,) are closed Banach subalgebras of Ck(D,,)
and Ck(OD,), respectively. If f = res f E then for the j-th Fourier
coefficient a j (f) we have

ai(f) = 1 I f () d('T27 (j+1
< I=µ

For every j < 0, a(f) = 0 , and

aj(f) = f(j)(O)lj!,

for every j > 0. Furthermore the sequence of coefficients a j (f (1)), j >
0, 0 < 1 < k, of a function f E Ak(D,,) is determined by the sequence
{ f(>>(o)}.

Theorem 2.3. The homomorphism res : Ak(D,,) -4 Ak(D,,) is an isom-
etry of Banach algebras. We have Ak(D,,) = C+(T), and consequently
C+(T) is a Banach subalgebra of Ck(T) = Ck(OD,,).

From now on we shall not distinguish between Ak(D,,) and C+(T) and
use rather the second notion as the more natural one.

Definition 2.4. For n E N U {0} we define a functional

given as the n-th Fourier coefficient:

On(f) := an(f)

This functional corresponds to a functional cpfz : Ak(D,,) --. C, pn(f)
f (n) (0) /n!, which means that cpn = res gyp. It is called the averaging, or mean
value functional. If f E Ak(D,,), or f E C+ (T), then we denote by f, or f
cp(f ), or ip(f) respectively.
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Corollary 2.5. Functionals c'o and '30 are multiplicative on corresponding
algebras, Ak(D,,) and C+ (T), respectively.

'Po(fg) = Po(f)'po(9)

43o(f9) =Po(f)'Po(9)

for all f,g E Ak(D,,)

and equivalently

fT
f (t)g(t)dt = T j f (t)dt

1 J 2r g(t)dt
for all f, g E C+(T)

0

To shorten notation, from now on we shall drop the tilde in symbols
of elements of C+(T) = Ak(T), as well in the symbols of the Fourier
functionals 'pn : C+(27r) - C if it does not lead to a disorientation. Also
we write Ak for Ak (21r) .

Corollary 2.6. For given k > 0 the kernels

Zo := C Ak(D,,) and Zo := ker,3o C C+ (T)

are ideals in the corresponding Banach algebras. O

Definition 2.7. Let p :A k (D,,) --> Ak be an operator defined as follows:
for every f E A'(D,,) p(f) = fl, where f,(z) = f(Az) for I zI < 1. For
every f in A'(D,,) let p* (f) = fl and 11 (a) = f (ya), when a E [0, 27r].

Theorem 2.8. Operators p and p' are isometries and the following dia-
gram commutes:

Ak(D,)
p

Ak

resT I 1r-

A(D,,) =C+(T) p A=C+(27r).
0

Example 2.9. For every k any trigonometric polynomial

p(t)
:=

TI:rj exp(i j t)
0

belongs to C+(T).

At the end of this section we define the dual notion of the "conjugated"
disc algebra and negative oriented periodic functions.
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Definition 2.10. Let 7k(D.) denote a subalgebra of Ck(D.) consisting

of Ck functions f on Dµ such that f is holomorphic in the open disc DO,,.
Analogously, for a given k E N U {0} we define a closed subspace (subal-

gebra) of the T-periodic functions

Ck(T) :_ {f E Ck(T); a3(f) = 0, for all j > 0}.

We called Ck (27r) the subspace of negative oriented periodic functions.

We end with a theorem whose proof is left to the reader.

Theorem 2.11. The homomorphism resT : [k(D,,) - Ck (T) is an isom-
etry of the complex Banach algebras. Moreover the mapping f i-+ 7 defines
an isomorphism of the Banach algebra (over R !) Ak(D,,) and A (D.),
and the mapping u(t) H u(-t) defines an isomorphism of the veal Banach
algebras C+ (T) and C' (T) such that the following diagram commutes:

Ak(DM)

resTI resT

Cik-(T) Ck(T)

Furthermore the hypotheses of all the statements of this section hold as well
for the algebra 7k (D,.) and Ck(T) in appropriate formulations.

3 Algebras of analytic functions with periodic
coefficients

In this section we introduce a special class of of functions of two variables
(complex z and real-time t), which are analytic with respect to the first
and periodic with respect to the second.

Our task is now to define an appropriate function space of functions on
U x [0, T] which we call the fine T-periodic functions.

Definition 3.1. Let U C C be an open set. We denote by ?{(U,C+(T))
the set of all continuous functions f : U x [0, TJ - C, which are T-periodic
with respect to t and for a fixed z E U belong to C+(T), and which are
holomorphic with respect to z for a fixed t.

Definition 3.2. Let U C C be an open set. We denote by A(U,C+(T))
the set of all Ck- functions f : U x [0, 71 C, T-periodic with respect to t
satisfying the following condition: For every zo E U, there exists p > 0 and
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a sequence {ci(t)}, ci(t) E C+ (T), with

such that

limsup' IICiiIk <- 1 ,
P3- 00

3 =,1

V
C D > +oI II f (z, t) - E (t)(z - zo)' IIk < e , (3.5)

i=o

uniformly with respect to z in the disc DP(zo) = {Iz° - zI < p}. We equip
the space A(U,C+(T)) in the topology of uniform convergence on every
compact subset K C U. More precisely, let K C Kn+i, be a

sequence of compact subsets of U, such that iK,, = U. Every & defines
a semi-norm

k

If (1)(z,t)I.PK..(f) rzEKmtaEX(o.T(

The sequence of semi-norms PK defines a locally convex metrizable topol-
ogy in A(U,C+(T)).

Remark 3.3. Since lei 5 IIc(t)IIo < IIc(t)IIk for every c(t) E C'(t), from
(3.4) it follows that the series Eci(z - zo)i has the radius of convergence

i
greater than p, and consequently it defines a holomorphic function in the
disc DP(zo).

We show that Definitions 3.2 and 3.1 describe the same space.

Theorem 3.4. Let U C C be an open set. Then

A(U,Ck(T))) = R(U,C'+(T))

Proof. Suppose that f E A(U,C+k (T)). By Definition 3.2 and completeness
of C' (T), the function g(t) f (z, t) belongs to C+ (T) . Furthermore, for
a fixed t E [0, TJ the function h(z) := f (z, t) is defined by the power series
Eo ci(t)(z - zo)i absolutely convergent in a disc {Iz - zoI < p}, and is
thus holomorphic in this disc.

To show the inverse inclusion ?l(U) C A(U) we need the parameter
Cauchy formula. Let f E 9-1(U, Ck (T)) and zo E U. For j E Z, define

ci(f)(t) = 1.
I

f((,t)
d(,Ti ( -zo(=ao (C - zo)i+i

where po is so small that K - zoI < po C U. By the property of the integral
of a function with parameter, each ci (f)(t) is a continuous function and
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belongs to C'(T). For a given t E [0, TJ from the Cauchy formula and the
fundamental theorem of analytic functions, it follows that

f(z. t) - ECJ(t)(z - zo).7

00
0

and the series is convergent uniformly in every disc Iz - z01 < p, p < p0.
For z = z0 we have f (zo, t) = co(t) which shows that co(t) E C+(T).
Set f (z, t) = co(t) + (z - zo) fl(z, t). The function fl, locally defined
by the higher terms of the Taylor expansion, by definition belongs to
f(D,,C+(T)). Applying the above procedure to fl we get cl(t) E C+ (T),
and by the inductive argument cj(t) E C+(T) for every 0 < j < oo. Con-
sequently f E A(U, C+ (T)). 0

(As a matter of fact fl has a unique extension to fl(U, C+ (T)) by Lemma
3.5 and Theorem 3.7.)

Lemma 3.5. Let f E f(U,C+(T)), U E C. Suppose that there exists
z° =E U such that f (zo, t) = 0 for all t E [0, t] . Then

f (z, t) = (z - zo) h(z, t) ,

where h E f(U,C+(T)) is uniquely defined.

Proof. Note that the function z - zo E l(U, C+" (T)) and f z, e E fl(U \(Z-ZO)

{z°},C+(T)). We show that zz,to) E 7-l(U,C+(T)).

Consider the function h(z, t) I(=zn , fix z E U, and take a small disc
Dp(z) C U. Obviously h(z, to) E f(U) for a fixed to. Fixing t and using
the Cauchy formula we have

EL-q
h(z, t) = f <zO t9

z - zo 27r2 1(-xI=p (, - z

_ 1 f((, t)-
27rz IC-zl=p (C - zo)(C -

z)dC.

Consequently h(z, t) forms a continuous family of holomorphic functions,
periodic and Ck in t thus gives a function in l(U,C+(T)). The uniqueness
is obvious. 0
Definition 3.6. We say that zo E U is a zero off E f(U,C+(T)), or a
stationary zero of f, if f (zo, t) = 0 for all t E [0, T] which is equivalent to

f(z,t) = (z - zo)f(z, t),

where R Z, t) E f(U, C+' (T)). The set of all zeros off is denoted by Zen f
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We say that zo E U is a zero of f E 7.1(U), or a nonstationary zero of f,
if f(zo) = 0, which is equivalent to

f(z) = (z - zo)f(z).

Observe that if zo is a zero of f (z, t) E %(U, C+1 (T)), then it is a zero of
its averaging f E 1-1(U) but not conversely.

Next, we need also a correspondent of the division Weierstrass theorem.
(cf. [3] and references there).

Theorem 3.7. Let f E 9{(U, C+' (T)) and zo E U. Then there exist unique
h(z, t) E 1.1(U,C+(T)) and r(t) E C+ (T) such that

f (z, t) = (z - zo) h(z, t) + r(t) .

Moreover r(t) = co(t) is the 0-coefficient of the local Taylor expansion of f
at zo.

Proof. Put r(t) := co(t) the 0-coefficient of the local Taylor expansion of f
at zo. Then the function g(z, t) := f (z, t) - r(t) belongs to 7.1(U, C+' (T))
and has a stationary zero at zo. The statement follows from Lemma 3.5.

0
Properties of the function space I1(U, C+' (T)) = A(U, C+' (T)) are given

in the following statement.

Proposition 3.8. We have f(U, C+(T)) C C(U x I) C LC' (14 x I), where
the last is the space of functions integrable on every compact subset of
U, and for every fixed z E U, the function fs(t) := f(z,t) E C+T.
%(U, C+ (T)) is a linear space and an algebra.

For every f E I{(U, C+' (T)) the value cp(f) 4 fT f (z, t)dt is well
defined and p(f) E f(U). Moreover <p is continuous and multiplicative,
i. e.,

T TfT
f(z,t)g(z,t) = T f f(z,t)dt T g(z, t)dt.

Furthermore for every u E C+(T, C), such that V t u(t) E U and f E
?{(U, C+ (T)) the substitution function

t - f (u(t), t) : [0,T] C

belongs to C+In(k,l)(T)

Proof. These properties can be shown by the use of Theorems 3.4, 2.3. We
left the proof for the reader.
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Now we wish to describe the set of all invertible elements of the algebra
f(U,C+(T)). For a given algebra A, we denote by (A)-1 the set of all
invertible elements of A. We begin with following theorem.

Theorem 3.9. Let k > 0, T = 27rit > 0, f E (CT(T)-1 if f = res (u),
where u E .Ak(D,,)-1. Moreover u E A'r(D,,)-1 if u(z) # 0 for Izi _<

,u. Furthermore f E C+(T)-1 if its mean value f, or equivalently the
zero Fourier coefficient ao(f) is different from 0. Correspondingly, u E

Ak(D,,)-1 iff u(0) # 0.

Proof. Suppose that f = res (u) and u-1 exists. Then res (u u-1) = f
res (u-1) = 1 by the multiplicity property, which shows that res (u-1) =
f-1. Conversely, f = res (v), v E Ak(D,,,u) by Theorem 2.3. This gives
1 = res (u) res (v) = res (u v) and consequently u v = 1, since res is an
isomorphism. This shows the first part of the statement.

Of course, if u-1 exists, then for every jzj < p u(z) 0. Conversely,

if u(z) 0 0 in D,, then u-1 is continuous in D,, and holomorphic in Dµ,
which proves the statement. If u(0) 0, then u(z) # 0 for all ;z[ < p by
the maximum modulus formula. The converse is obvious. Finally, if f E

C+(T)-1 then ao(f) = goo(f) 54 0, because Po is a multiplicative functional
(2.5). The inverse implication follows from the previous statement, since
res is an isomorphism of Banach algebra and ao(f) = u(0) for f = res (u)
(Theorem 2.2).

Next we give a characterization of invertible elements in N(U, C' (T)).
We have the following theorem that is an analog of the characterization of
invertible elements in the ring of formal power series.

Theorem 3.10.
f (z, t) E 9{(U, C* (T))

if for every zo E U in the local representation 3.5 off the zero coefficient
co(t) E C+(T)-1. Equivalently, f(z,t) E Il(U,C}.(T))-1 iff

sP(f) E 11(U)-1

Proof. For every z E Dn(zo) we define f (z. t) by the formal power series

00

f-1(z,t) :_ Eb*)(z - zo)',
=o

where b;(t) E C .(T) are defined by the recursion formula of the inverse
in the ring A[[z - z0]] of formal power series in the coefficients in ring
A = C+ (T). It is known that this formula works if and only if the zero
coefficient is in A-1. We have bo(t) = c11 1(t) and then bj (t,) given by the
above mentioned formula.
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We are left with the task of proving that f-1 E 1-l(U,C+(T)), i.e., the
series is convergent in the sense of Definition 3.1.

If f(z,t) E f(U,C+(T))-1, then p(f) E ?{(U)-1, since cp is a homo-
morphism of algebras. Conversely, if f := W(f) E f(U)-1 then every
zo E co = cpo(f..) 0 and co(t) E C+(T) by the last part of statement of
Theorem 3.9. This shows that f (z, t) E f(U, C+(T))-1 with respect to the
first part of the theorem.

Example 3.11.
n

i) Every polynomial p(z, t) := rcj(t)z3, c,(t) E C+(T)) belongs to
i=o

?(C, C+(T))

ii) Let f(z, t) := a i,ti where z E CN, and p(z, t), q(z, t) are poly-
nomials as above of degree n and m respectively. Then f (z, t) E
h(U,C+(T)) for U = C \ Zerq, q(z) V(q(z, t)), as follows from
Theorem 3.10.

iii) Let h(z, t), g(z, t) E 1-l (C, C' (T)). Then

h(z, t)
f(z, t) :=

g(z, t)
E f(U,C+k (T)),

with U = C \ Zer g(z), once more by 3.10.

Remark 3.12. There are dual notions of
7k

(Dm; C), C-k (T; C) of the
conjugated vector-valued disc algebras and vector-valued negative oriented
periodic functions. Furthermore, let U C C be an open set. We denote by
Ak(U, Ck (T)) the corresponding space of holomorphic functions of many
variables with coefficients in the space of negative oriented vector-valued
functions. All the stated above facts about Ak(U, C+(T)) have their corre-

spondents for the algebra Ak (U, Ck (T)) .

At the end of this section we would like to remind the reader of the
Poincare inequality (cf. [14]) in the form used in [2] for the scalar (complex)
valued functions and the Wirtinger inequality ((cf. [14]).

Proposition 3.13. For every function u E C1(T; CN) we have the Poin-
care inequality

Hullo - lul < IIu - ullo < 2 Ilullo,

and the Wirtinger inequality

llUllL2 - Iul : llu - uliL2 < 2
T

NIIIV,

where u = cp(u) is the mean value of u and 11 11L2 is the L2-norm.
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4 The existence of solutions for an equation with
the right hand side being an analytic function
with periodic coefficients

In this section we study the problem of existence of T-periodic solutions of
the problem.

du
cTt

= f (u, t), where

f E 1-l(U,Co(T)), u(t) E U, U C C.

More precisely, we will seek a positive oriented T-periodic of the equation
4.6. Our theorem extends the main result of 121 having a polynomial equa-
tion with positive oriented coefficients. Moreover, the use of the form of the
right hand side of 4.6 given by the division theorem 3.7 gives a geometric
interpretation for the suitable a priori bounds that are sufficient for the
existence of solutions.

From now on we look for only the positive oriented periodic solutions of
4.6. This means that we pose our problem in the function spaces C+ (T).

We begin with a necessary condition for the existence of T-periodic so-
lutions of 4.6 that is a consequence of the multiplicity of the averaging
functional on the algebra of positive oriented functions (2.5).

Theorem 4.1. A function u E C+(T) is a solution of the equation

u(t) = f (u, t), with f E l(U. C+ (T))

only if u = V(u) E Zerf, i.e. f(u) =0.

Proof. Applying the averaging functional p to both sides of 4.6 we split into
a direct sum of two equations

du = f(u,t),
dt

0 = f(u),

corresponding to the split C+ (T) = Il E) C, where I. = ker gyp, C = im gyp,
and u:=u-u.

Note that for D T, we have ker D = coker D = im cp, and im D = ker cp
since the derivative of constant and the mean value of the derivative of any
C1 periodic function is equal to 0. The statement follows from the fact that
f E N(U,C+(T)), and thus f(z, t) = f((u+(u-u), t) = f(u)+f(z-u, t),
where f (z - u, t) E II, because (z - u) E Io and the Taylor expansion at
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u has the form

f (z, t) = co(t) + Ecj(t) (u + (z - u))3
j>0

= Ecj(t)u? + T(z, t) = Ecj u3 + µ(z, t) + T(z, t),
j=0 j=0

where p, r E Zo (cf. /2/ for the polynomial case ). 0

Remark 4.2. With respect to Theorem 4.1, we can say that the set of
solutions of Equation 4.6 forms a fibration over the set Zer f.

Now we present a sufficient condition for the existence of periodic solu-
tions (indeed positive oriented periodic solutions) at a given isolated zero
of f. To do this we need new notation. Let z0 E U be a zero of f . We define

x := Iz - zol.

Let next p0 > 0 be such that:
10. Dp(zo) C U,
20. DP(zo) f1 Zer(f) = {zo}.

Let next f (z, t) = (z - zo) h(z, t) + r(t) be the representation off given
by Theorem 3.7. We define

b := IIr(t)II

a := sup Ilh(z, t)II,
`-zo I <_ Po

with the convention that p := min{1, p}. We put

d EIlcjllPo-' (4.8)
j>0

with the same convention as above. Next we define

c. = c(II II) 2 for 11 11o

21r for II 1I L2 .

To a given map f(z, t) E 7-l(U,C+(T)) we assign the following real func-
tions of the variable x E [0, oo).

Definition 4.3. Let f (z, t) E 1-L(U, C9 (T)) and let a, b, c be the con-
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stants defined above. Put

0(x) := ax + b,

w(x) := E llci llx' = E Ilci llx' + b
i>o i>o

a(x) := dx + b.

Note that w(x), and a(x) are well defined at least for x < po, because the
Taylor series of the local expansion of f is absolutely convergent at least
for x < po.

We begin with an obvious comparison of the above functions.

Proposition 4.4. For every T-periodic solution u(t), u = zo, zo E Zer f ,
Ilu - zollo=x, of 4.6 with 0<x<po we have

A(x) < 0(x) < w(x) < a(x).

Proof. Suppose that u is a solution of 4.6. First u E CI(T). From the
Wirtinger, or correspondingly Poincar6, inequality, it follows that

A(x) < ll f (u(t), t)II <- llrll + llh(u(t), t) II = Ilao(t) + Ecs(t)u(t)' ll ,
j>0

which gives directly the required inequalities in the case of the C°-norm.
For the case of the L2 norm note that IIu(t) V(t)IIL2 <- lIu(t)IIL2 lIv(t)llo if
u E L2, and v E CO .

Remark 4.5. Let zo E a Zer f. Then zo is a stationary zero of f iff and
only r(t) = 0 in the local representation 3.7 of f . The last is equivalent to
b=0.

We are in a position to formulate our main result which gives a sufficient
condition for the existence of a periodic solution near a given zero of the
averaged right hand side (cf. 4.1).

Theorem 4.6. Consider the nonautonomous, T-periodic ordinary differ-
ential equation 4.6 with positive oriented coefficients on the complex plane.
Suppose the zo is a zero of the averaged function of the right hand side of
4.6 and let f (z, t) = h(z, t) + r(t) be the local representation off at zo
given in 3.7 with the local Taylor expansion of the form 3.5 convergent over
disc I z - zo I < Po < p, where p is as in (3.4). Let next a, b, c = 2, d be real
constants defined in 4.7, 4.9, 4.8 for the C°-norm and po = min{po, 1}.

If either T (apo + b) < 2 po or T (dpo + b) < 2 po
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then the problem 4.6 has at least one T-periodic solution u(t) E C' (T) with
the mean value u = zo and IIu - zollo < Po

Proof. We pose our problem as a coincidence between maps of the function
spaces E = C.. (T) and F = C' (T). It could be transformed to a nonlinear
equation of the form Id - 45, 4 a completely continuous map (see [2)).

Fix zo E Zer f and assume that po < p is such that Dpo(zo) n Zer f = 0.
Take W := Dpo(zo) x I C F. Form a deformation of the problem 4.6

u = f,\ (u, t) := f(u) + (1 -.\)(f(u, t) - f(u)), (4.10)

E [0, 11, which gives a deformation of the corresponding nonlinear prob-
lem.

Note first that if (u, A) is a solution of (4.10), then u = zo, as follows from
4.1, i.e., every solution of the equation 4.10 in W is contained in {zo} x Z.
Assume that for p one of the inequalities of the hypothesis of the theorem
holds. We show that for the set Wb := DP0(zo) x B6(1), B6(1) :_ {u E Z

=lull < 6} there is no solutions of the deformation on the boundary OW
BDp,(zo) x Ba(1) U Dp,, (zo) x 0B6(1) if b = po. Indeed if u(t) E C+ (T),
x = 1ju - zoll is a solution of 4.6, then A(x) < 0(x) < w(x) < a(x) for
every 0 < x < po. In particular, A(po) < 0(po) < o(po) which contradicts
the inequalities of the assumption. To complete the proof it is sufficient to
use the continuation method (see [6), [13), because for A = 0 fa = f . Thus
to show that the Leray-Schauder degree of our problem is different from
0, it is enough to derive the Brouwer degree of the end of the deformation
f at zero, i.e., the Brouwer degree off : (Dp. (zo), DP0(zo) \ {zo}). It is the
local degree of a holomorphic map at its zero, which is always a positive
integer.

Note that if zo is a stationary zero of f, i.e., r(t) = 0, then our method
picks up the stationary solution u = zo of (4.6). On the other hand, from the
local representation of Theorem (3.7), it follows that if zo is not stationary
zero, then the solution u is not the constant solution.

Corollary 4.7. If zo E Zer f is not a stationary zero, i.e., f (zo, t) $ 0 ,
then the solution u(t) of (4.6) given by Theorem 4.6 is nonconstant.

Remark 4.8. Theorem 4.6 can be formulated and proved in the multidi-
mensional case, i.e., if f E f(U, C70+ (T); CN), z E CN, U C CN. We
have to assume that zo E U is an isolated zero of f. A proof is analogous.

Remark 4.9. It seems that Theorem 4.6 has its correspondent for the L2-
norm. The main technical problem in a direct repetition of the argument
is the fact that the L2-norm is not multiplicative. Note that constant c =
27r > 2, and thus the supposed inequalities are weaker.

Remark 4.10. It is worth pointing out that the estimate of Theorem 4.6
is very restrictive and could be weakened for particular equations. On the
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other hand there are examples of equations with a simple right side as in
(4.6), or in the complex Riccati equation, which do not have a T-periodic
solution (cf. [15],(19], see also [5] for an example of real Riccati equation
without periodic solutions and [4] for a complete discussion of solutions of
the Riccati equation).

Remark 4.11. Theorems 4.1 and 4.6 have their correspondents for the
equation 4.6 with f E ?{(U, Ck (T)). The statements are the same for C+ (T)
replaced by C° (T).

Consider the equation

u = a sin(u) + r(t), (4.11)

where a > 0, and r(t) E C+(T) is a function with ([rI[o = 0, and r = 0,
e.g., r(t) := b exp(T z t), b E R, b > 0.

Note that a sin(u) + r(t) E ?{(C, C+(2a)) . Moreover the local Taylor
expansion has the form

°O 2k+1
r(t) + a F(_1)k

(2k + 1)!j=0

and is convergent over the whole plane C, i.e., p = oo. Furthermore f(z) _
a sin(z), and Zer f = {k it }, k E Z. Consequently at zo = k7r, the local
representation of f of Theorem 3.7 is of the form

r(t) + (z - zo) h(z),

where h(z) =(,sin ,.z and 1, b = r ti=_ Ao = ()[Jo To apply Theorem 4.6
we have to estimate Ih(z)I for [z - zo[ < 1. Since sin(z) is a 27r- periodic
function, it is enough to derive this estimate at zo = 0. From the maximum
modulus principle we have

max [h(z)[ = max[a (sin(z)/z)[
I=I<1 Iz1=1

- max a [ exp(-2t) - exp(2t) [
<

535.490 a < 268a.
0<t<1 2 2 -

This leads to the following fact.

Corollary 4.12. For every perturbation r(t) E Cio,(T), with b = [[r[[o > 0,
r = 0, the nonlinear equation (4.11) has infinitely many T-periodic non-
constant solutions {uk(t) E C+(T)} provided

T <
b + 268a'

2

0
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Remark 4.13. Using the same approach and the correspondent of the
Theorem 4.6 for a system one can prove the existence of infinitely many
non-constant periodic solutions for the perturbed complex pendulum equa-
tion

ii(t) = a sin(u(t)) + r(t), u(t) E C

where r(t) is as in Corollary 4.12 (cf. [14] a discussion of the existence of
periodic solutions of this equation in the real case).

5 Periodic solutions at infinity

In this section we show that the equation 4.6 with the right hand side being
a positive oriented periodic meromorphic function could have a solution
which originates at infinity.

Consider the problem

it(t) = f (u(t), t), with f = p(z' t)
q(z, t)

(5.12)

where u E C and p, q are polynomials with positive oriented periodic coef-
ficients of degree n and m, respectively. In this section study the problem
of existence of T-periodic positive oriented solutions of the problem.

Note that the right hand side of the equation 5.12 belongs to C\{Zer (q)}.
For every u(t) E C+ (T), k > 0, by ii we denote its image in C+ (T) given

by u(t) := u(-t), and call it the conjugated function. The mapping u H u
defines an isometry of the corresponding Banach algebras by Theorem 2.11.

Lemma 5.1. U E C+ (T) is a solution of the equation 4.6 i f u is a solution
of the equation

u(t) = -1(u, t), where

7 has all coefficients formed of conjugated functions.
(5.13)

We can identify C! (T) with resAµ(D(oo)), i.e., with the space of all
continuous functions f : D,. (oo) C S2 = CU{oo}, Dµ(oo) := {z E C : IzI >

µ } , 21rµ = T which are holomorphic in D,,(00) = {z E C : IzI >

µ
} C S2.

Definition 5.2. We say that f(z, t) E f(U,Ct(T)), 00 E U C S2 is a
holomorphic at infinity if f (1/z, t) expands in the Taylor series of Defini-
tion 3.1 at z = 0.

Example 5.3. Every function f of the form

f (z, t) = P(z, t)
q(z, t)
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where
n m

1=0

pj(t), ql(t) E CI(T)), k > 0, and n < in, is holomorphic at oc provided
qo(t) E (CS(T))-l (cf. 3.9).

Now we show a theorem which gives a condition for the existence of
positive oriented solutions that originated at infinity. To do it we need new
notions. Let R sup Izi. Note that f (z t) E f(D,,(oc), C+(T)) if

=EZerp(:)
D,L(oo) c C \ DR(0), i.e if µ <

If q(z, t) o qj(t) z"-j, is a polynomial of degree m, then there
exists a > 0 such that

IIgoII - x(E Iigjj xj-1) > 2 l1go11
Y"

1

1=1

for every 0 < x < a.

Let a0 := sup a, where a is as above. We put 00 = min{ 1, po, ao) } .
For a given polynomial p(z, t) _ 0 pj (t) z"-j we define a function
w(x) of the real variable x by the formula

j=1

Theorem 5.4. Consider the equation 5.12

u = f(u,t), with f(z,t) =

4
z t)

(5.14)

where p(z, t), q(z, t) are polynomials with positive oriented T-periodic co-
efficients. Assume that p and q are of the same degree, i.e., deg p = it =
m = deg q. Suppose also that:

10 The leading coefficient po(t) # 0 has zero mean value, i.e., po =
cp(po(t)) = 0.

20 The leading coefficient qo(t) is invertible in C+ (T) (see 3.9).

Then the equation has a T-periodic nonconstant positive oriented solution
u(t) provided

Ilpoll + 2w(Ao)Po)1 T < 2,
IIgoII ligol1 JI

where w, p0 are defined above. Moreover this solution originates at infinity,
i.e., u(t) E D,(oo).

q(z, t) = E qj (t) z'-1 ,

j=0
p(z, t) = E pi(t) zn-1
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Proof. We show that the conjugated equation (5.13) has a negative oriented
T-periodic solution that originates at infinity and which corresponds to
a positive oriented T-periodic solution of (5.12) by Theorem 2.11. The
conjugate equation has the form

dz E"-0 p, (t) zn-j
n-idt = f(z,t) = Em09i(t) z

Substituting z = 1/z to I (z, t) we get

n-m Ei=o pi (t) zi _ Ei=O Pi (t) zj P(z, t)f (t) = z E ` 0 9i (t) z E;0 qi (t) zj . 4(z, t)

since m=n.
By assumption f E %(Dp0(oo), Ck (T)) . To show the existence of a pe-

riodic solution we can use the results of Section 3, as follows from Remark
4.11.

Observe first that the necessary condition of Theorem (4.1) is satisfied,
since f(0) = Ps = 0. Note that q # 0 by Assumption 2° and Theorem
3.9.

Write P(z, t) Po(t) + z ((E; 1
)i(t) zi-1) Po(t) + zP(z t) and

analogously q(z, t) as q0(t) + z (E; i 91(t) zj-1) q'°(t) + zq(z, t).
By Theorem 3.10 4(z, t) is invertible in f(D,%(oo),C°-(T) and has the

Taylor expansion at 0 with the zero coefficient equal to qo 1(t) . By Theorem
3.7 we have

90 1(z, t) = go' (t) + z 9(z, 0,
where g(z, t) E 7{(DA(oo), C°-(T)) . Multiplying P by 4-1 we have

R Z, t) = Po(t) g0 1(t) + z h(z, t). (5.15)

To apply Theorem 4.6 we have to estimate max{Ilh(z, t)II} for IzI < /3o . As
previously put x := IzI. By the definition of w(x), co, p0i and (lull = (lull,
we have

imax Ilh(z, t)II :5 im x IIP(z, 011 im x114-1(z, t)II

< W(A) min q z, t < W' (Y0) 1 21 907l T
.15lo

(5.16)

This shows that for the constants a, b of Definition 4.7, defining the function
0(x) (cf. Def. 4.3) we have b = J M9 , and a < 2

119011
, which shows the

existence of a T-periodic solution u(t) by Theorem 4.6. u(t) 9& u = 0, since
0 is not a stationary zero of f . 0
Remark 5.5. Theorem 5.4 can be used to study periodic solutions of sys-
tems with singularities. However we must say that the most important



62 W. Marzantowicz

systems do not belong to the class studied here (cf [1]). This is because
their singularities are of the form Z-Z.I- . On the other hand the module
z(t) I of a nonconstant function z E C±' (T) does not belong to Ct (T).
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The Conley Index and
Rigorous Numerics for
Attracting Periodic Orbits
M. Mrozek and P. Pilarczyk

Dedicated to Antonio Marino

1 Introduction

Despite the enormous number of papers devoted to the problem of the
existence of periodic trajectories of differential equations, the theory is still
far from satisfactory, especially when concrete differential equations are
concerned, because the necessary conditions formulated in many theoretical
criteria are difficult to verify in a concrete case. And even if some methods
work for some concrete equations, it is usually difficult to carry them over to
other problems. Thus quite often the only available method is to experiment
numerically. Unfortunately, such an approach cannot be treated as reliable.

All this makes the problem a natural field of research in rigorous numer-
ics. However, only recently some new techniques were developed, for which
the amount of computations necessary is within the reach of present-day
computers (see [4, 5, 15]). Especially powerful seem to be methods based
on topological invariants like the Conley index [4] and the fixed point index
[15].

In this paper we sketch an approach to the existence of periodic solutions
of differential equations based on the discrete Conley index and rigorous
numerics of dynamical systems. For details the reader is referred to Ill,
12]. We briefly discuss the result of applying this method to two different
periodic orbits in the Rossler equations and two periodic trajectories in the
Lorenz equations.

2 Representable sets and maps

Let X, Y be locally compact metric spaces. For g c P(X), A C X and
CCQput

'Research partially supported by Polish Scientific Committee (KBN), grant no. 2
P03A 011 18.
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I a n anAO},

IGI UG,
(C) := (C)G {X E X I G(x) = C }.

A family G C 2(X) will be called a grid in X if

(i) every element of G is a non-empty compact set,

(ii) for every compact K C X we have 1 < card G(K) < oo,

(iii) for every C C G we have cl (C) = fC.

A typical example of a grid in lkd is a set of d-dimensional hypercubes
of the same size r1 > 0 which fill the space:

d

{fl(kirl, (ki + 1)r7] I ki E Z, i =1, ... , d).
i_i

Define the diameter of a grid G as

diamG:=sup{diamaIaEG}.

A set E is called an elementary representable set if E = (C) for a finite
subfamily C C G. A set A is called representable if it is a finite union of
elementary representable sets. A set A is called strongly representable if it
is a finite union of a subfamily of G.

Theorem 2.1. (see [9]) The family of representable sets is closed under the
set-theoretical union, intersection, difference as well as topological closure
and topological interior.

The family of elementary representable sets over a grid g will be further
denoted by ER(G), and the family of all representable sets by R(G).

A multivalued map F: X Y is a map F: X - F(Y). Its domain and
image are defined as follows:

domF:={xEXIF(x)&O},
im F := U F(x).

--EX

The image and preimage of a set under a multivalued map is defined in the
following way:

F(A) := U F(x),
xEA

F-'(B):= {xEX I F(x)nB34 O}.
A multivalued map F: X Y is called representable over grids G, rl in
X, Y respectively if it satisfies the following conditions:
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(i) card 9(dom F) < oo,

(ii) for every x E X the set F(x) is representable,

(iii) if E is an elementary representable set, then FIE = const.

Theorem 2.2. (see [9)) If A E R(9), B E R(?{) and F is a representable
multivalued map, then

dom F, F` (B) E R(9),
F(A) E R(?{).

Let N C X be a compact representable set. Define

FN:X:)

Proposition 2.3. FN is representable.

We say that a multivalued map F : X Y is upper semicontinuous if
for every x E X the set F(x) is compact and for every neighborhood U of
F(x) there exists a neighborhood V of x such that F(V) C U.

If a sequence of multivalued maps {Fn} is given, then we say that this
sequence converges to a multivalued map F, which we denote by F F,
if the graphs of F converge to the graph of F as subsets of X x Y with
respect to the Hausdorff metric.

A multivalued map f is called single-valued if card f (x) < 1 for every
x E X and may be identified with a map X -e-#Y defined on a subset of X.

A single-valued map f : X -e-+Y is called a selector of a multivalued map
F: X = Y if f(x) E F(x) for every x E dom f (in particular, dom f C
dom F).

Assume X, Y are two locally compact metric spaces with given grids
?{. Let P X be a continuous map defined on a subset of X. We say
that F: X Y is a representation of f if F is representable and f is a
selector of F.

Theorem 2.4. (see [81) Assume 9,,, ?t are sequences of grids in X, Y
respectively, such that diam 0 and diam Rn -- 0. Let f : X be a
Lipschitz function such that dom f is relatively compact. Then there exist
sequences of multivalued maps F,,, On: X Y such that

(i) F,,, On are representations of f,

(ii) F is lower semicontinuous and On is upper semicontinuous,

(iii) F f, On - f.
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3 The Conley index

Let P Rd -+ Rd be a homeomorphism.
If N C Rd, then the set

InvN:=Inv(N,f):=(xENIdnEZ fn(x)EN}
is called the invariant part of N.

A compact set N C Rd is called an isolating neighborhood if

Inv N C int N.

A set S C Rd is called an isolated invariant set if there exists an isolating
neighborhood N such that S = Inv N.

A pair P = (PI, P2) of compact subsets of an isolating neighborhood N
is called an index pair if P2 C Pl and

(i) xEPi, f(x)EN f(x)EPi, i=1,2,
(ii) xEPi, f(x)it N xEP2i

(iii) Inv N C int(Pi\P2).

Let He denote the Alexander-Spanier cohomology functor. Let ip be
the inclusion (PI, P2) -+ (P1 U f (P2), P2 U f (P2)). Since f maps (PI, P2) to
(P1 U f (P2), P2 U f (P2)) and ip is an excision for the Alexander-Spanier
cohomology, we can define the index map according to the formula

Ip := H*(fp) o H`(ip)-1: H'(PI, P2) -, H'(Pi, P2)
Define the generalized kernel of this map as

gker(Ip) := U kerlp.
nEN

The Conley index is then defined as

CH'(S, f) := (H`(Pi, P2)/gker(lp), [IpJ),

where [Ip) stands for the automorphism induced by Ip on the quotient
space H*(Pl, P2)/ gker(Ip).

Consider now the multivalued case. Let F : Rd Rd be an upper semi-
continuous multivalued map and let N C Rd be a compact set. The invari-
ant part of N is the set

Inv(N, F) := {x E N 130: Z - N such that o(0) = x
and o(n + 1) E F(o(n))}.

The set N is called an isolating neighborhood if

Inv N U F(Inv N) C int N.

A pair P = (P1, P2) of compact sets is an index pair in an isolating
neighborhood N if P2 C Pl C N and
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(i) F(P,)nNc Pi, i = 1, 2,

(ii) F(P,\P2) c N,

(iii) Inv N C int(Pi \P2).

The index map in this case is defined according to the formula

Ip := H' (Fp) o H'(ip)-' : H*(P1, P2) H`(P,, P2)

and the Conley index is defined as

CH* (S, f) := (H* (PI, P2)/ gker(Ip), (Ip])

Assume A is a collection of multivalued maps. We recall that property
Sp of maps in A is inheritable if for every F E A and every selector f of F

v(F) = p(f)
We say that is strongly inheritable if V is inheritable and for any single-
valued map f E A such that W(f) and for any sequence {Fn} C A satisfying
F - f we have cp(Fn) for n sufficiently large. Finally, if a(F) is a term,
then we say that a is inheritable (strongly inheritable) if for any x the
property a(F) = x is inheritable (strongly inheritable).

Theorem 3.1. (see (81) Isolating neighborhood, index pair and Conley in-
dex are strongly inheritable terms.

4 Existence of periodic orbits

Let P Rd -+ Rd be a vector field on Rd of class C'. Let cp: Rd x R Rd
be the flow on Rd generated by the differential equation

x' = f(x). (4.1)

A compact subset ` of a (d - 1)-dimensional hyperplane TI is called a
local section for V if the vector field f is transverse to II on E. Such a set
is called a Poincare section for a in an isolating neighbourhood N if En N
is closed and for every x E N there exists t > 0 such that cp(x, t) E E.

Given a t E R, define the time-t map by

,pt: Rd E) x _ V(x, t) E Rd.

Fix t > 0 and r) > 0. Assume we can construct a compact set N repre-
sentable with respect to the grid 9,, such that a certain representation F
of Vg on N satisfies the condition

F(N) C int N. (4.2)
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In practice, we can expect that such a representation may be constructed
if numerical simulations indicate the existence of an attracting periodic
orbit, and the grid size 1) is chosen small enough.

As a consequence of (4.2), the set N is an isolating neighborhood for F
and the pair P = (N, 0) is an index pair for F in N. If the cohomology of
N is the cohomology of the circle and the index map Ip is an isomorphism,
then the Conley index of N is an index of an attracting periodic orbit. Due
to the inheritability property, this is also the Conley index of any selector
of F, in particular of Vt. Moreover, this is also the Conley index of N
with respect to the flow V, as proved in [7]. Therefore, it only remains to
verify that N admits a Poincare section in order to have checked all the
assumptions of the following theorem, proved in a more general setting in
[3]:

Theorem 4.1. Assume N is an isolating neighborhood for the flow cp which
admits a Poincare section E. If N has the cohomological Conley index of a
hyperbolic periodic orbit, then Inv(N, gyp) contains a periodic orbit.

As a consequence, we obtain a computer assisted proof that the differ-
ential equation (4.1) admits a periodic orbit.

In practice, the verification of the assumptions of Theorem 4.1 involves
a series of extensive, time-consuming computations. The algorithms which
may be used for these computations are proposed in [11].

As a byproduct we obtain rigorous information concerning the location
of the periodic orbit: it is contained in the interior of the isolating neigh-
borhood N constructed in course of the computer assisted proof. Unfortu-
nately, we do not prove anything about the period of this orbit. In partic-
ular, it is not ruled out that this orbit may make several turns along the
neighborhood until it closes.

As an example consider the Rossler equations

x = -(y + z),
x + by, (4.3)

1 z=b+z(x-a).
For a = 5.7 and b = 0.2 the existence of chaos in (4.3) was proved in

[15]. The chaotic attractor observed there seems to emerge via a series of
period-doubling bifurcations of stable periodic orbits as the parameter a is
increased. The first orbit in this series was observed in numerical simula-
tions for a = 2.2 in [2], but the existence of a periodic orbit close to the
observed one was proved only recently [12] with the use of the method de-
scribed in this section. This method also allows one to prove the existence
of the second orbit, numerically best seen for a = 3.1 [13]. Summarizing,
we can prove the following theorem.

Theorem 4.2. Let b = 0.2. For a = 2.2 as well as for a = 3.1 the Rossler
equations (4.3) admit a periodic orbit.
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FIGURE 4.1. The isolating neighborhood constructed for the Rossler equations
for the parameter value a = 2.2.

In Figure 4.1, projections to the XY and XZ planes of the neighborhood
constructed for the Rossler equations (4.3) for the parameter value a = 2.2
are illustrated. The grid size used was r) = 1/32. The time-step t = 3
was approximately a half of the period of the periodic trajectory. The
thin lines in the picture indicate integer coordinates. Note that a much
tighter neighborhood may be obtained if a finer grid is taken, but then the
computations are more costly in terms of computer time and memory used.

Figure 4.2 shows projections to the XY and XZ planes of the neighbor-
hood computed for the periodic trajectory which numerically is observed
to appear after the first period-doubling bifurcation in the Rossler equa-
tions. This neighborhood was created with the grid size n = 1/256 and the
time-step t = 2.

FIGURE 4.2. The neighborhood constructed for the Rossler equations with
a=3.1.
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All the rigorous computations needed to complete the proof of the exis-
tence of the periodic orbit took about 2 hours (a = 2.2) and 3 days (a = 3.1)
on an IBM compatible PC running a 450 MHz processor.

As our second example consider the Lorenz equations

x = a(y - x),
y=Rx - y - xz,
z =xy - bz.

For R = 28, a = 10 and b = 8/3 the existence of chaos in these equa-
tions was proved in [1, 61. However, when the parameter R is increased to
R = 260 or to R = 350, attracting periodic orbits are observed in numer-
ical simulations [14]: a symmetric one in the latter case and two mutually
symmetric in the former case. These symmetries are due to the symmetry
in the equations:

s : (x,y,z)'-' (-X, -y' Z) -
Our method allows us to prove that there exist periodic orbits close to the
location of the numerically observed ones. The details are presented in [13].

Theorem 4.3. Fix a = 10 and b = 8/3. For R = 260 the Lorenz equations
(4.4) admit two mutually symmetric periodic orbits, and for R = 350 the
Lorenz equations (4.4) admit a periodic orbit.

In Figure 4.3, projections to the XY and XZ planes of a neighborhood
of one of the two mutually symmetric periodic trajectories for R = 260
are plotted. The grid marked in the picture is drawn every 10 units. The
Z coordinate of the bottom of the right-hand picture is 180. The grid size
used in rigorous computations was n = 1/16. The time step was taken to
be t = 1/16 which is about 1/7 of the approximate period of the trajectory
observed in numerical simulations.

FIGURE 4.3. The isolating neighborhood constructed for the Lorenz equations
for the parameter value R = 260.
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FIGURE 4.4. The neighborhood constructed for the Lorenz equations with
R = 350.

In Figure 4.4, projections to the XY and XZ planes of the neighborhood
found for R = 350 are visualized. Again, the grid marked in the picture is
drawn every 10 units. The Z coordinate of the bottom of the right-hand
picture is 280. The grid size used in rigorous computations was 77 = 1/8. The
time step was chosen as t = 1/16, which is about 1/6 of the approximate
period of the observed trajectory.

The time of numerical computations on an IBM compatible PC running
a 450 MHz processor amounted to about 4 days for the first orbit and 5
days for the other.
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Dynamics of a Forced
Oscillator having an Obstacle
R. Ortega

Dedicated to Antonio Marino

1 Introduction

Consider the scalar differential equation

x+g(x) = f(t)

where f is 2a-periodic, say f E C(T) with T = R/2irZ, and g satisfies

lim x ±00, lim sup
x

x-.fo0 IxI-00 X

The existence of 27r-periodic solutions has been analyzed by many authors
using different variational and topological methods. For the linear case
(g(x) = w2x) it is well known that the existence of a periodic solution is
equivalent to the boundedness of all solutions, and one can ask whether
such an equivalence still holds in nonlinear cases. In this paper we report
on several results which give partial answers to this question. First we shall
assume that g satisfies the assumptions of Lazer and Leach in [13] and we
shall show that the condition for existence of a periodic solution obtained in
that paper guarantees, in many cases, the boundedness of all solutions. For
this class of nonlinearities the situation resembles the linear theory. Later
we shall consider the asymmetric nonlinearities that were first discussed by
Fucik [11] and Dancer [6, 5]. The situation now is more delicate because
unbounded and periodic solutions can coexist. After this brief review of
published results we shall analyze in detail the problem of boundedness
for a forced linear oscillator which bounces elastically against a wall. This
problem has not been considered previously and it will be employed to
illustrate the techniques developed in [21] and [22]. We notice that the
periodic problem for this bouncing oscillator was already studied by Lazer
and McKenna in [15]. They interpreted the model as a limiting case of the
asymmetric oscillator.

Moser's theorem on the existence of invariant curves will be crucial in
the proofs. The use of this theorem in the study of boundedness for (1.1)
is classical and one can refer to [20, 7, 16]. In all those papers the function
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g was superlinear at infinity and did not satisfy (1.2). In many cases we
shall be able to obtain additional information on the dynamics around
infinity. For instance, when there is boundedness, the existence of large
subharmonic and quasi-periodic solutions follows as a consequence of the
method of proof and the theory of twist mappings.

2 Remarks on the Lazer-Leach condition

Let us now assume that the function g in (1.1) is of the type

g(x) = n2x + h(x)

where n = 1, 2.... and h is a continuous and bounded function having
limits at infinity, h(+oc) and h(-oo). The main result in [13] implies that
(1.1) has a 2-7r-periodic solution if the condition

Ifnl < . lh(+oo) - h(-oo)l,

holds, where in = 2w J f (t)e`dt.
We shall refer to (2.3) as to the Lazer-Leach condition. When h is not

constant and satisfies

h(-oo) < h(x) < h(+oo) dx E R, (2.4)

this condition becomes necessary and sufficient for the solvability of the
periodic problem. This is a remarkable consequence of [13].

Next we shall show that (2.3) also plays a role in the problem of bound-
edness. Let us first assume that h is the piecewise linear function

-Lifx<-1
hL(x) = Lx if jxj < 1

L ifx>1
for some L > 0. This function satisfies (2.4) and the Lazer-Leach condition
becomes

2L

It was proved in [22] that if f E C5(R) and (2.5) holds, then all solutions of
(1.1) with g(x) = n2x + hL(x) are bounded. In this case (2.5) is sharp for
the boundedness problem because all solutions are unbounded when it does
not hold. This follows from [24] and [1]. More recently Liu has obtained
similar results for a class of functions g, including the model nonlinearity
g(x) = arctanx (see [18] and also [12]).
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3 The asymmetric oscillator

Let us now consider another piecewise linear function. Namely, g(x) _
ax+ - bx- where a, b > 0 with a 96 b. The corresponding equation

x+ax+ - bx- = f(t) (3.6)

can be thought of as a model of the motion of a particle subjected to an
asymmetric restoring force. The periodic problem for (3.6) was analyzed
by Fucik [11] and Dancer [6, 5] in the 1970s. In this context they realized
the importance of the following set, lying in the plane of parameters (a, b),

00

1 1 ?}E= UCp, Cp={(a,b)ER{.: - + =.
P=1 V" P

It can be proved that if (a, b) Sf E, then (3.6) has a 27r-periodic solution
for every f E C(T). On the contrary, when (a, b) E E the solvability of
the periodic problem depends upon f (see [5, 14, 8]). The set E can be
thought of as a sort of periodic spectrum and sometimes it is called the
Fucik spectrum. In contrast to the Lazer-Leach situation, now there is no
direct connection between the periodic problem and the boundedness of all
solutions. In a joint paper with Alonso [2] we noticed that, given any (a, b)
with

1 1

+7EQ,

it is possible to construct many functions f for which (3.6) has unbounded
solutions. Selecting the couple (a, b) so that it is not in E, one finds examples
of coexistence of unbounded and periodic solutions. Sufficient conditions on
f for the boundedness of all solutions have been obtained in [19] and also
in [23].

The function g(x) = ax+ - bx- is possibly the simplest example of a
function satisfying g'(+oo) 96 g'(-oo). Results for more general jumping
nonlinearities can be seen in [9, 4, 26].

In the next sections we shall consider the following limit case of (3.6),

a + ax+ - oox- = f (t). (3.7)

Of course this is not a well-defined differential equation but it will be inter-
preted in the sense proposed by Lazer and McKenna in [15]. The equation
(3.7) can be thought of as the model of the motion of a particle which is
attached to a spring (-ax) that pushes the particle against a barrier situ-
ated at x = 0. At this barrier the particle bounces elastically. See the figure
below.
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A/ wall

C

Some discussions on the periodic problem for (3.7) can be found in [15].
We also mention [10] for some connections between jumping nonlinearities
and bouncing problems.

4 A linear equation with obstacle

Given a > 0 and f E C(T), we consider the equation with obstacle

+ ax = f (t),
x(t) > 0,
x(to) = 0 * i(to+) = -i(to-).

By a solution of (4.8) we understand a continuous function x : I -' [0, oo),
defined on some closed interval I c R, such that the conditions below hold:

(i) the set of zeros Z = it E I : x(t) = 0} is discrete,

(ii) for any interval J = [tl, t2] with Z n (t1i t2) the function x(t)
belongs to C2(J) and satisfies

?(t) + ax(t) = f (t), t E J,

(iii) given to E Z fl int (I), i(to+) = -i(to-).
(Here i(to±) denote the right and left derivatives of x at to. The condition
(ii) guarantees that they are well defined).

In the previous definition the set Z can be empty. Then x(t) is just a
positive solution of the linear equation. When Z is non-empty we shall
say that x(t) is a bouncing solution. As an example consider the function
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x(t) = 1 + csin ft. It is a solution of (4.8) with f =- a for any c with
Icl < 1, but it is a bouncing solution if and only if Icl = 1.

Given r E R and (x0,vo) E R2 with x0 > 0 or x0 = 0 and vo > 0, we
can always find a unique solution of (4.8) satisfying x(r) = xo, x(r) = vo.
Sometimes this solution cannot be defined in the whole line. For instance,
assume that we can find a solution x(t) of the linear equation I+ax = f (t)
satisfying (for some to E R): a) x(t') = :(t') = 0 , b) x(t) > 0 if
0 < to - t < E , c) there exists a sequence t j to such that 0.
Then we can construct a solution of (4.8) which coincides with x(t) on the
interval (t' - E, t'). It is clear that this solution cannot be continued to the
right of to. We also notice that all the solutions of (4.8) are well defined
over (-oo, +oo) if f (t) qb 0 for every t E R.

The homogeneous equation (f = 0) can be easily analyzed. Actually the
solutions are

x(t) = AI sin(J&t + ¢) I , A > 0, 0 E T.

All of them are periodic with period

We shall distinguish the solution with initial conditions x(0) = 0, i(0) = 1
and denote it by

W. (t) _ -Isin(/t)I.
The analysis of the non-homogeneous case (f 0- 0) is more delicate and we
shall distinguish two cases depending on whether the period T is commen-
surable with 2a or not. In the first case we can find positive integers p, q
such that

%/a = , p and q are relatively prime. (4.9)
P

Assuming that this condition holds, we define the function

1
Zap

4i(r) _ -
I

f (S
+ r)cpa(s)ds.

q o

This function is 2a-periodic and will play an important role in what follows.
Sometimes it is more convenient to employ another expression of 4, namely

1 4-1
4P(r)_Fu(r+hT)

q h=o

where
r

f (s) r))ds. (4.10)µ(r) = fT f (s + r)4pa(s)ds = - fT+

o
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These last expressions reveal that 4? is of class C2.

Example 1. Computation of 4'.
Assume a = 1. Then (4.9) holds with p = 1, q = 2 and

1 2,

4i(T) =
2
f f (S

+ r) I sin slds.
0

Assuming that f (t) = a + 0 sin t + y sin 2t, with a,,3, y E R, a computation
shows that

4'(T) = 2a - 2ysin2T.

We notice that the function 4' changes sign if and only if 31x1 < JyJ. Our
next result will imply that in such a case there are unbounded solutions of
(4.8).

Theorem 4.1. Assume that f E Q and it satisfies (4.9). In addition 4?
changes sign and all zeros of 4' are nondegenerate; that is,

41(7_)2 + 4"(r)2 > 0 VT E R.

Then there exists R > 0 such that any solution of (4.8) with

x(T) + Jx(T)J > R (for some T E R)

is unbounded.

Next we present a complementary result about the boundedness of solu-
tions.

Theorem 4.2. Assume that

f E C4(T)

and one of the conditions below holds,

(i) f E Q and it satisfies (4.9) with 4'(r) # 0 VT E R,

(ii) f 95 Q and ff" f (t)dt 54 0.

Then there exists R > 0 such that every solution of (4.8) satisfying

x(T) + J±(T)I > R (for some r E R)

is well defined in (-oo, +oo) and bounded.

Remarks. 1. The proof of these theorems will give more insight into the
dynamics of the equation as well as precise information about the oscillatory
properties of solutions.
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2. Going back to the example before Theorem 4.1 one notices that Theorem
4.2 applies when 3Ia1 > 17I. The case 3IaI = I7I and Q arbitrary, is left open
by the previous theorems.
3. In the second theorem we need some extra regularity for the forcing, f E
C4. There are known examples where regularity plays a role in the problem
of boundedness (see [17, 271) and so this condition seems reasonable. We
present an example in this direction, but first it is convenient to state
explicitly an intuitive consequence of Theorem 4.2.

Corollary 4.3. Assume that

f E C4 (T)

and

f(t)>0 VtEIR. (4.11)

Then, for arbitrary a > 0, all solutions of (4.8) are bounded.

Example 2. A spring with impulses.
Let b(t) denote the 21r-periodic extension of the Dirac mass concentrated

at t = 0. More precisely, S is the measure on T defined by

S E C(T)*, (a, 0) = 0(0), 0 E C(T).

We shall consider the equation

i + x = b(t),
x(t) > 0,
x(to) = 0 = i(to+) = -i(to-)

(4.12)

and we shall see that all solutions are unbounded. Since 8 satisfies the
condition (4.11) when it is interpreted in a liberal way, this example shows
that the previous corollary is not valid when f is a measure.

A solution of (4.12) can be defined as a continuous function satisfying
(4.8) with f - 0 in each interval 121rn, 27r(n + 1)] and such that

i(27rn+) = i(27rn-) + 1, if x(2n7r) > 0

and

i(27rn+) = -i(21rn-) + 1, if x(2nir) = 0.

Intuitively we can describe the situation as follows: in the absence of ex-
ternal force, our particle would bounce periodically with period 7r. Now we
are adding an external force which is localized at times t = 0, ±27r, ±47r....
and has the effect of increasing the velocity of the particle in one unit.

We consider the Poincare mapping

P : (x(0), i(0+)) - (x(27r), i(27r+))
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where x(t) is a solution of (4.12). Since the period of b is twice the period of
the free oscillation, it is clear that P is just the translation of vector (0, 1),
that is x(2a) = x(0), i(2a+) = i(0+) + 1. In consequence all solutions are
defined up to +oo and the corresponding energy goes to infinity .

Example 3. A spring with oscillating wall.
In principle one could consider more general oscillators by letting the

barrier oscillate. More concretely, let us now assume that the wall is not
fixed at x = 0 but it moves according to the known law w = w(t). See the
figure below.

0 w(t) x(t)

We assume that w is smooth, positive and 27r-periodic. The particle
follows the model

1i+ax = f (t)
X(t) > w(t)
X(to) = w(to) = i(to+) = -i(to-) + 21ir(to).

if x(t) > w(t)

The last condition reflects that the bouncing against the wall is elastic.
The change of reference system

x=y+w(t)

transforms the model into (4.8) where the new external force depends upon
f, w and w. More discussions on this kind of oscillators as well as some
connections with billiards can be seen in [3]. I thank R. Ramfrez-Ros for
informing me of this reference.



Dynamics of a Forced Oscillator having an Obstacle 83

5 The successor map

Given T E R and v > 0, let x(t; T, v) be the solution of

x + ax = f(t), x(T) = 0, i(T) = v.

We denote by f > T the first zero of x(t; T, v) to the right of r. The corre-
sponding velocity after bouncing will be denoted by

v = T, v).

The properties of the map S : (T, v) H (T, v) have been studied in [21] and
[22] and we shall use the results in these papers. First of all we notice that
S is well defined and one-to-one in the domain

R+={(T,v)ER2: v>0}.

Moreover, it satisfies

S(T + 21r, v) = S(T, v) + (27r, 0).

In view of this property it is natural to identify r with T + 27r and we shall
interpret r and v as polar coordinates (T =angle, v = radius). In this way
the mapping S is defined on the cylinder,

S:Tx (0,oo) -'Tx [0,oo).

The iteration
(Tn+1,vn+1) = S(Tnevn)

will reflect the dynamical properties of (4.8) as well as the oscillatory prop-
erties of solutions. Given an orbit of S, {(Tf,vn)}neA, A C Z, such that
{Tn : n E A) is a closed and discrete subset of R, we can construct a
bouncing solution of (4.8) defined as

x(t) = x(t; Tn, vn) if t E [Tn, Tn+l].

Conversely, given a solution x(t) of (4.8) we can label the set Z as a sequence
{Tn}. If we define vn = i(Tn+) and assume vn 0 0, then the sequence
{(rn,vn)} is an orbit of S. We notice that positive solutions of (4.8) do not
correspond to any orbit of S. These solutions are always bounded. On the
other hand a bouncing solution will be bounded if and only if supra vn < 00
(see Lemma 4.3 in [21]).

We are now interested in the regularity of S. To this end we consider the
singularity set

E={(T,v): v=0}.
Then S is of class C' on R+ - E. Another useful fact is that E is bounded
in the cylinder, this means that there exists v > 0 such that

ECRx(0,v).
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All these facts are proved in [21]. Now we present the expansion of S at
infinity as obtained in Section 6 of [22]:

T=T+5+ Qvio(T)+F(T,v)
{v=v+ko(T)+G(T,v)

where

ao(T) =
J

7+ *
f (t) sin (t - T)dt, ko(T) = j f (t) cos - T)dt.

T

The remainders F and G satisfy

F(-r, v) = O(- ), G(T, V) = O(v) as v -' +oo,

uniformly in r E R. Moreover, if f E CP(T), p > 1, then one can estimate
the derivatives of the order a = (al, a2), al + a2 < p, in the form

O F(T, v) = 0(V2}02 ), 9'0(-r, v) = O(vl+«2) as v +oo.

We are now in a position to prove the results of the previous section. To
prove Theorem 4.1 we shall apply the results in Section 3 of [2]. When a
satisfies (4.9) one can rewrite the expansion of S at infinity as

T=T+2+c+F(T,v)
v = v - µ'(T) + G(T, v),

where µ(T) was defined by (4.10). At this point it is convenient to notice
that Qo = -/k0.

The expansion for the q-iterate of S is

fTq=r+2irp+It U+F(T,v)
vq = v - q4'(T) + G(T, v)

where P and G are remainders satisfying the same conditions as F and
G. We can now apply Proposition 3.1 in [2] to deduce that, when the
conditions of Theorem 4.1 hold, there exists Rl > 0 such that if vo > R1,
then {(T,,,vn)} is well defined in the future or in the past and satisfies
vn - +oo as n - +oo or n -4 -oo. Thus, any solution of (4.8) satisfying
x(T) = 0, i(T) > Rl (for some T) is unbounded. The proof of the theorem
can be finished by an application of Lemma 4.3 in [21].

To prove Theorem 4.2 it is sufficient to find Rl > 0 such that any orbit
{ (Tn, with vo > Ri is well defined for n E Z and supra vn < oo. This
will be achieved by means of the theory of invariant curves. First we assume
that the condition (i) holds. We shall find a sequence of Jordan curves {rn}
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in T x (0, oo) which are homotopic to the circle v = constant and such that
I',,. These curves are ordered and go to infinity as n - +oo. This

means that lies in the unbounded component of [T x (0, oo)] - r and
min {v : (T, v) E +oo as n -+ oo. Since S is a topological mapping
(for large v) and v -' +oo as v +oo, one deduces that rn acts as a
barrier for the orbits of S9. Thus, if (ro, vo) lies between rN and rN+1,
then (Tkq, Vkq) will also lie on this region for any k E Z. From here it is
easy to prove that v is bounded.

To prove the existence of r one can proceed exactly in the same way
as in the proof of Theorem 1.1 in [22]. First one notices that Sq has the
intersection property and then, after the change of variables

O=T, Sr = 1, (6 > 0 parameter),
V

one can apply Theorem 3.1 of [22] to Sq. Notice that in that theorem one
can replace C5 by C4. To realize this it is sufficient to employ a C4 version
of the Small Twist Theorem (see for instance the appendix in [231).

To prove Theorem 4.2 when (ii) holds, one proves the existence of in-
variant curves of S. This is achieved by employing the main result in [23].
See also Example 2 in the same paper.

Final remarks.
1. In the assumptions of Theorem 4.1 it is possible to give an almost com-
plete description of the dynamics of S around infinity. This can be achieved
by combining the expansion of Sq previously obtained with the proof of
Proposition 3.1 in [2].
2. In the assumptions of Theorem 4.2 we find the typical situation where
KAM theory can be applied. In the annulus between two invariant curves
we can apply the Poincar6-Birkhoff Theorem to deduce the existence of
periodic points of S. This lead to subharmonic solutions of large amplitude.
The solutions with initial conditions on an invariant curve will be quasi-
periodic. All this is explained in the book [25].
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Spike Patterns in the
Super-Critical Bahri-Coron
Problem
M. del Pino, P. Felmer, and M. Musso

Dedicated to Antonio Marino

1 Introduction

This paper deals with the construction of solutions of the problem

z
- Du =

ur fe in 0
u>0 in 52
u=0 one

(1.1)

where S2 is a smooth, bounded domain in Rl', N > 3, and e > 0 is a small
parameter.

It is well known that the problem

1-Du=u4 in l
u>0 inSZ
u=0 ones)

has at least one solution when 1 < q < . However, when q >, the
existence of solutions to problem (1.2) depends strongly on the topology or
geometry of fl. A well-known result by Pohozaev [13], asserts that (1.2) has
no solutions if q > and 0 is star-shaped. On the other hand Kazdan
and Warner [10] showed that (1.2) has a radially symmetric solution for
any q > 1 when S2 is a symmetric annulus. Coron in [5] considered the case
q = , and showed that (1.2) is solvable when SZ is a (non-symmetric)
domain exhibiting a small hole, say Q = D \ B(P0, µ), where V is a smooth
bounded domain, Po E V and µ is sufficiently small.

In [1], Bahri and Coron considerably generalize this result, proving that
if q = and if some homology group of S2 with coefficients in Z2 is

'The first and second authors were supported by Fondecyt grants 1000969, and FON-
DAP Matematicas Aplicadas, Chile. The third author was partially supported by IN-
DAM, Italy.
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nontrivial, then problem (1.2) has a solution. While it may be expected
that this solution survives a small supercritical perturbation of the expo-
nent as in (1.1), the indirect variational arguments employed in [5] and (1]
do not seem to give in principle a clue as to how to obtain this fact. Solv-
ability when q > th, in domains "with topology" is not true in general as
shown via counterexamples by Passaseo 111, 12], answering negatively the
question posed by Brezis in [3]. In our recent work [6] we have considered
problem (1.1) in Coron's situation of a domain with a small perforation,
and proved solvability whenever E is sufficiently small. The proof is con-
structive and, rather puzzlingly, the solutions found collapse as e --+ 0 in
the form of a double spike: the solution tends to vanish everywhere ex-
cept around two local maximum points which blow up at the rate O(E- I).
This result generalizes to a domain exhibiting multiple holes, as we have
recently established in [7]. In such a situation, multi-peak solutions exist,
consisting of the gluing of double-spikes associated to each of the holes.
More precisely, our setting in problem (1.1) is the following.

Let D be a bounded, smooth domain in RN, N > 3, and P1, J'2,... , Pm
points of D. Let us consider the domain

Sl=D\UB(Pi,it) (1.3)
i=1

where µ > 0 is a small number.

Theorem 1.1. There exists a µo > 0, which depends on D and the points
P1,... , Pm such that if 0 < µ < µo is fixed and Sl is the domain given by
(1.3), then the following holds: Given an integer 1 < k < m, there exists
co > 0 and a family of solutions uf, 0 < E < co of (1.1), with the following
property: %. has exactly k pairs of local maximum points (1 , l; j2) E Si2 j =
1,... , k with cµ < Il j; - P; I < Cµ, for certain constants c, C independent
of u and such that for each small 6 > 0,

sup uE(x) - 0
I>6 Va,i}

and

asE --+ 0.

sup uE (x) -+00, d i, j
Iz-(,,j<6

The proof provides much finer information on the asymptotic profile of
the blowup of these solutions, as E - 0: after scaling and translation one
sees around each £ a solution in entire RN of the equation at the critical
exponent. More precisely, we will find,

k 2 aNA1JE7'
NT9

ue(x) _ E > C + 9E(x), (1.4)

i=1j=1 E
\

tj + I
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where 9 (x) - 0 uniformly as a 0, for certain positive constants aN. The
numbers ) and the points l; will be further identified as critical points of
certain functionals built upon the Green function of 0. The role of Green's
function in concentration phenomena associated to almost-critical problems
on the subcritical side, q =

22
-e, has already been considered in several

works; see Brezis and Peletier [4], Rey [141, [15], [16], Han [9] and Bahri,
Li and Rey [2].

In what follows we will denote by G(x, y) the Green function of Sl, namely
G satisfies

A..G(x, y) = 8(x - y), x E Sl,

G(x, y) = 0, x E 852,

where 5(x) denotes the Dirac mass at the origin. We denote by H(x, y) its
regular part, namely

H(x, y) = r(x - y) - G(x, y)

where r denotes the fundamental solution of the Laplacian,

r(x) = bNIx12-N,

so that H satisfies
AxH(x,y)=0, xESl,

H(x,y) =f(x-y), x E BSl.

Its diagonal H(x, x) is usually called the Robin function of the domain.

We shall concentrate next on the case of existence of a single two-spike
solution, and state a general result derived in [6], which includes the case
k = 1 in Theorem 1.1. In the two-spike concentration phenomenon, the
following function will play a crucial role in our analysis:

S2( 1, e2) = HI (Cl, C1)H4 (6, e2) - G(C1, C2). (1.5)

We will construct solutions of (1.1) which as e 0 develop a spike-shape,
blowing up at exactly two distinct points 11: C2 while approaching zero
elsewhere, provided that the set where p < 0 is included in f22 in a topo-
logically nontrivial way. The pair (1;1,1;2) will be a critical point of cP with
'P(C1, 6) < 0.

For a subspace B of 1 we will designate by Hd(B) its d-th cohomology
group with integral coefficients. We will consider the homomorphism t
H"(fl) - H*(B), induced by the inclusion i : B -' Q.
Theorem 1.2. Assume N > 3 and let Q be a bounded domain with smooth
boundary in RN, with the following property: There exists a compact man-
ifold M C fl and an integer d > 1 such that, cP < 0 on M x M,
t" : Hd(Sl) -+ Hd(M) is nontrivial and either d is odd or H2d(1) = 0.
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Then there exists co > 0 such that, for any 0 < e < co, problem (1.1) has
at least one solution ue. Moreover, let C be the component of the set where
cp < 0 which contains M x M. Then, given any sequence e = e - 0, there
is a subsequence, which we denote in the same way, and a critical point

C2) E C of the function W such that ue(x) - 0 on compact subsets of
c \ { f 1 i e2 } and such that for any S > 0

sup ue(x) --; +oo, i = 1, 2,
Ix-G1<d

as e-+0.

The assumption of the above theorem does indeed hold true in the case
of a small hole, as we explain next. Let us set

S2 = D \B(0,µ). (1.6)

Elementary properties of harmonic functions give the validity of the fact
that

lim H(x, y) = Hp (x, y),
N-.o

(1.7)

uniformly on x, y in compact subsets of D \ {0}, where HD denotes the
regular part of the Green function GD on D.

For any (fixed) sufficiently small number p > 0 there is a po > 0 such
that if µ < µo, and 11 is given by (1.6), then

sup 'P(t1,t2) < 0.
IE,1=1(21=P

Hence, Theorem 1.2 applies to fl given by (1.6), with

M = p SN-1.

This follows directly from (1.7) and the fact that HD is smooth near (0, 0)
while GD becomes unbounded as its arguments get close.

A second example is the following. Consider now a solid torus in 1R3 given
by T(l, r), where I is the radius of the axis circle, which we assume centered
at 0, and r that of a cross-section. Assume now that there is an ro > 0 such
that T(l, ro) C D. Consider now Da defined as

Da = D \ T(l, b).

Similarly, as in the previous example, the Green and Robin functions of D6
will approach that of D. Then, fixing now a sufficiently small p > 0 and
considering the boundary of a fixed section S1(p) of T(l, p), we will have
that if fl =D6 with 6 sufficiently small, then

sup W(6,6) < 0-
CI 42ES'(p)
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It follows that Theorem 1.2 applies now with

M = S'(p)

It is perhaps clear from the above argument that it suffices that for a torus
not necessarily symmetric taken away, the same would be true, provided
that it is "narrow" only in a certain region.

We explain next the main elements in the proofs of Theorems 1.1 and 1.2.
One obvious difficulty to circumvent is the fact that Sobolev's embedding is
no longer valid in our situation. We are able however to work out in "well-
chosen" spaces a reduction to a finite dimensional problem, which we treat
with a variational-topological approach. In the case of a single two-spike,
the problem becomes basically reduced, as we will explain below, to that of
finding a critical point of p which persists under small C' perturbations.
Such a critical point comes from a min-max quantity naturally defined from
the assumptions of Theorem 1.2.

2 Recasting the problem: The finite-dimensional
reduction

To find a multiple-spike solution, it is convenient to scale problem (1.1)
into the expanding domain

Q, = F 7v n.

Let us consider the change of variables

v(y) = s2+e- u(CV-L,y),

Then u solves (1.1) if and only if v satisfies

yESZE.

Ov+v +e=0 in 1,
of>0 in 11,
v=0 on812f.

Since 12E expands to the whole RN, and all positive solutions of

Ov + v
14+2

= 0 in RN

are given by the functions

N-2 - rx
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with N-2

U(y) = aN
+1IyP2

and aN = (N(N - 2))N4 22 E RN, A > 0, it is natural to seek solutions
v of the form

h

v(y) (y) (2.9)

for a certain set of h points 1i ... , th in S1 and numbers A1, ... , Ah > 0,
where now and in what follows we set, for t E R,

C' _ E-C E S1E.

It turns out that this choice of scaling is precisely one at which we can find
solutions satisfying (2.9), with the points ti uniformly away from each other
and from the boundary of 11, and the positive scalars Ai bounded above,
and below away from zero. Such an approximation cannot be too good
near the boundary, where v is supposed to vanish. A better approximation
involves the orthogonal projections onto Ho(S1E) of the functions U.\,('. We
denote by Va,t, these projections, which are defined as the respective unique
solutions of the equations

-iVA,E' = U in SZf

VA,E, = 0 on fflf.

For a given set of points 1, ... , h in S1 and numbers A1i ... , Al, > 0, we
consider the functions

UiV =Va:,E;' i=1,...,h. (2.10)

Moreover, we write

h h

U=EU,, V=>V?.
J=1 a=1

Consider further the functions

(2.11)

ZiJ = 8 ZiN+1 = 8A;
=(x-VU2+(N-2)Ui,

and their respective Ho (Z)-projections Zip, namely the unique solutions
of

AZij = OZiJ in SZE
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Zij = 0 on BfE.

We look for a solution v of problem (2.8) of the form

h

v=Y'[;+¢
i=1

where 0 is some lower order term. In order to do so, we consider the fol-
lowing auxiliary problem: Find a (small) function 0 such that for certain
constants cij

O(V + 0) + (V + O)+' = >i,j cijViP-1Zij in Q,
0=0 on81 (2.12)

fa. ¢Vip-1Zip = 0 for all i, j.

Here and in what follows we call p = . Our task is then to solve (2.12)
and find points t and scalars A such that the associated cij are all zero,
which determines a solution of (2.8).

The first equation in (2.12) can be rewritten in the following form:

,&¢+ (p+E)VP+c-14 _ -NE(-O) - R` +EcijVip-1Zij
i.i

in ftf (2.13)

where

and

NN(4) = (V +c)+
e - VP+c - (p+E)VP+E-10,

h

(2.14)

RE=VP+E-1UT (2.15)
j=1

It is then clear that we need to understand the following linear problem:
given h E Ca(fl,), find a function 0 such that

4+(p+E)VP+E-1O=h+Eijc,jVip-1Zij infts
0 = 0 on BflE (2.16)
fn, Vp-1Zjo = 0 for all i, j

for certain constants cij, i = 1,... , h, j = 1,... , N + 1. In order to solve
(boundedly) (2.16), it is convenient to work on functional spaces which
depend on the chosen points t;. Let us consider the norms

h

I
E(1+Ix-t;12)-" 0(x)I,

ZEn, j=1
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whereQ=1if N=3, 8= N22 if N>3, and
_ a

h n-z
sup E(1 + Ix - 6,12)-=
rE a _

Let us fix a small number b > 0. From now on we will restrict ourselves to
points l;; E f2E, and numbers a; > 0, i = 1, ... , h, such that

ICS - E ; I > be- , dist (1; , 8 ) ) > be- , 6 < ) , < 6-1. (2.17)

We have the validity of the following result.

Proposition 2.1. There are numbers co > 0, C > 0, such that for all
0 < e < co, points (1;', A) satisfying condition (2.17) and h E Cl),°(5Ewe
have that (2.16) has a unique solution 0 = LE(h). Besides,

IILE(h)II. <- CIIhil.. (2.18)

for any h E C"(SlE).

Once this result is established, we see that Problem (2.12) is equivalent
to the fixed point problem

0 = -LE(NE(O) + RE).

We set even further

VE=-LE(RE), = 0 - E (2.19)

and rewrite the problem as

= -LE(NE( + E)) =

It is not hard to check that IIREII.. = 0(e), so that II7pEII. = O(E). From
the fact that NE has a power behavior greater than one for small values of
its argument, it can be shown that the operator T,. defines a contraction
mapping of a certain small ball in the II II norm into itself. More precisely,
we have that

CII0II"'in{pF+1,21;

hence TE applies a ball with radius O(E"'in{p,2}) into itself. Then the result
follows from the Banach fixed point theorem applied in such a ball:

Proposition 2.2. Assume the conditions of Proposition 2.1 are satisfied.
Then there is a constant C > 0 such that, for all e > 0 small enough, and
all points satisfying (2.17) there exists a unique solution

to problem (2.12) with 0, _ -LE(RE) such that

II II1 << Cc
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It can be shown that the map (£', A) -- c/ (E', A) is of class C' for the
11 11*-norm and

Ce. (2.20)

We also have that 1 V (E',A)' ' I t < Cs.

3 The energy approach

The functional associated to Problem (2.8) is given by

ZE(v) = 2 f IVu12 _ 1 f ,P+1+E. (3.21)
n P + 1 + e '

Regular critical points of it correspond exactly to the solutions of (2.8). Let
us also observe that given points and scalars A, 0 satisfies (2.12) if and
only if

ZE(V + 0) [17] = 0 (3.22)

for all r), which satisfies the orthogonality relations fn. 1' Z,,rj = 0. On
the other hand, it is readily checked that the scalars c,; in (2.8) are all
zero if and only if -T, (V + ¢)[Z,] = 0 for all i, j. This last relation and
(3.22) combined, plus the relationship up to lower order terms between the
derivatives of V with respect to and A and the Z;j's, plus the smallness
of these derivatives in 0, yield that the ct,'s are zero in (2.8) if and only if

Dt',AZE(V + 0) = 0.

Now we recall that we want to consider points

ei = 6 (3.23)

with t E Q. It will also be convenient, rather than working with the num-
bers A,, to do so with the A,'s given by

A, = (aNAi)°L-7 (3.24)

with
1 ff, UP+1

wrv - p+ 1 (fR, UP)2
.

The role of this constant is to provide a simpler form for the expansion of
the functional. Thus we search for critical points A) of

I(C, A) __ Z (V + 0). (3.25)
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A crucial step is to give an asymptotic estimate for I(t;, A). Let us set

CN = 2 I IDU12 _ p+ 1 fN 1U1p+1
R

Since the points £, are very far away from each other and from the boundary
of the expanding domain SZE, and the perturbation ¢ is a lower order term,
then at first order

h

I (t, A) ^' >2ze(V1) ^ hCN.

A precise account of lower order terms in this expansion is given in the
result below.

Proposition 3.1. Let us fix b > 0. Then there exist positive constants ryN
and WN such that the following expansion holds.

I(t;,A)=hCN+e[ryN+WN (t;,A)+o(1)], (3.26)

where the quantity o(1) tends to zero as e --+ 0 uniformly in the C1-sense
in the variables (t;, A) for which t; given by (3.23) and a given by (3.24).
satisfy constraints (2.17). Here

h

'Ii(C,A) = 2{>2H(C,,Cj)Aa -2>2G(&,C1)A1A1}+log(A1...Ah),

i=1 i<i
(3.27)

The estimate given by the last proposition tells us that it is sufficient
to find a critical point for 'P which is stable under small C1-perturbations.
We construct such a critical point through a min-max characterization in
the following section. We will sketch how to do so only for the case of a
two-spike, under the assumption of Theorem 1.2. In that case the function
Jt becomes

z

41(t;, A) = 2 {1: H(t;1,1;1)A - 2G(t;1i t;2)A1A2} + log(A1A2). (3.28)
.i=1

4 The min-max

In this section we set up a min-max scheme to find a critical point of the
function %P given by (3.28). This scheme is then used to find a critical
point for the reduced functional I (see (3.25), (3.26)). We recall that the
function 1D is well defined in (Sl x f) \ A) x R+, where A is the diagonal
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A = {(b1, 62) E Sl x S2 / b1 = 62}. In order to avoid the singularity of over
A, we let M > 0 be a very large number, and we define

GAI (e)
G(6) if G(t) <- M (4.29)
Al if G(t;) > M,

and we consider'I'Af,p : fl,, xSZp x18+ -' R defined by

whf,a(e,A) _ +G(t;)A1A2, (4.30)

where p > 0 and Cl,,, = {l; E Cl / S2) > p}. We will specify p later, and
for notational convenience we will simply write tP Af, p ='P and D = f2 p x
S2p x)(82 . We consider a further restriction D,, = {(e, A) E D / p(t;) < -po},
where po = min{ 2 exp(-2Co - 1), - 2 max{So /in M2}}, with

CO = sup 1P (C 09 -

({.o)EM' x to

With this choice certainly M2 x ]R C Dw.
Aiming to define the min-max class, for every t; E M2 we let d(.) _

(d1(t;),d2(t;)) E S' C R2 be the negative direction of the quadratic form
defining T. Such a direction exists since, by hypothesis of Theorem 1.2, the
function cp is negative over M2. We easily see that there is a constant c > 0
such that c < d1(f)d2(t;) < c-1 for all t; E M2.

Next we let r be the class of continuous functions y : M2 X IO x [0, 1] -
Dw, such that

1. Qo, t) and co 1, t) ao'd(e)) for all t E
M2, t E [0,1], and

2. y(., a, 0) Qd(1;)) for all (t;, a) E M2 x lo,

where Io = [aO, ao 1) with aO is a small number to be chosen later. Then
we define the min-max value

c(S2) = inf sup ID Of (C a, 1)) (4.31)
'YEr (t,o)EM2 x /o

and we will prove in what follows that c(Q) is a critical value of T. For this
purpose we will first prove an intersection lemma based on a topological
continuation result of Fitzpatrick, Massabo and Pejsachowicz [8). For every
(e, o,, t) E M2 x Io x [0, 1], we denote y(t;, a, t) _ (t;(t, or, t), A(t;, or, t)) E Do,
and we define S = {(t;,a) E M2 X JO / Al(e,Q,1) A2(l;,a,1) = 1),; then
we have

Lemma 4.1. For every open neighborhood V of S in M2 X Io, the map
g' : H* (M2) ---* H'(V), induced by the projection g : V -+ M2, is a
monomorphism.
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As a consequence, we have

Proposition 4.2. There is a constant K, independent of ao, so that

sup W (y(£, a, 1)) > -K for all y E r.
(f,Q)EM2x10

Proof. Since fl is smooth, there is a b0 > 0 such that if ti, C2 E fl,, and
1C1 - e21 < 60i then the line segment [6, t;2] C Si. Then we let K > 0 so
that G(t;1, t;2) > K implies Jl;i - t;2I < 60.

Assume, for contradiction, that for certain y E r

WY(y(l;, a,1)) < -K for all (t;, a) E M2 X Io.

This implies that, for a small neighborhood V of S in M2 x Io, we have

G(t;(t;,a,1)) > K for all (C, a) E V. (4.32)

Let Do = f2 x ft x R2 and y1 = Consider the inclusion i2 : y1 (V)
D0 and the maps p : yl (V) - Si x R+ and b : Si x R+ - Do defined as
p(6, 6, A) _ (£1, A) and 6(t;,, A) _ (Cl, t;1, A). From (4.32) we find that
the function h : y1(V) x [0,1] - Do defined as h(C'1, e2, A, t) = (6, C2 +
t(6 - 6), A) is a homotopy between i2 and b op. Let d be the integer given
in Theorem 1.2 and consider the following commutative diagram:

H2d(M2 X Io)

2il
H2d(V)

1l.

'Y2
.

H2d(Do)
221

HI (-I, (V)),

where it is an inclusion map and y2 = yljv. From the hypothesis of The-
orem 1.2 we find u E Hd(M) and v E Hd(fi) are nontrivial elements such
that t *(v) = u. If v x v E H2d(Do) is the corresponding element, then
by the homotopy axiom and Lemma 4.1 we have ii o y, (v x v) # 0. On
the other hand we see that 6 *(0 x 0) = 0 - v E H2d(f2 x R+) is zero,
either because d is odd or because H2d(Si) = 0. In both cases we have then
y2 oi2(v x 0) = 0, providing a contradiction.

In proving that c(12) is a critical value for 4 , the next key step is to show
that I satisfies the Palais-Smale (P.S.) condition in D. We do this now.

Proposition 4.3. The function ' satisfies the P.S. condition in A. at
level c(Si).

Proof. The following preliminary fact fixes the value of the parameter p > 0:
Given c E R there exists p > 0 sufficiently small so that if (fl, t2) E
8(fip x Sip) is such that V(l:l,t2) = c, then there is a vector r, tangent to
8(f)p x Sip) at the point (t 1 2), so that

V (E1,1;2) r 0 0. (4.33)
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This choice of p allows us to prove a related property for %P. That is,
given a sequence {(1;,,, An)} C D. such that (s,,, An) E 8D,p
and *(l n, c(Sl), there is a vector T, tangent to BD,p at (, A), such
that

V'(6, A) T # 0. (4.34)

In order to prove (4.34) we first observe that if An - A E 81[8} then
W (6, , An) - -oo. Thus we can assume that A E Ri.,J E il,, x SZp and
cp(6) < -po. Two cases arise: if VA'Y(6, A) # 0, then T can be chosen
parallel to VAW(l , A). Otherwise, when DAB(, A) = 0 we have that A
satisfies

A2 - _
1 H(.1,51)112V(4

A2
2

and l satisfies W(l;') < 0. Substituting back in vD, we get

1 1 1

Al, A2) 2 + !log
Ic

and then '(l) exp(-2c(1l) - 1) < -2po < -po. Thus E 8(Qp x Slp)
and the application of (4.33) completes the proof of (4.34). Now we can
define an appropriate negative gradient flow that will remain in D. at
level c(1l).

To finish, we mention that the Palais-Smale condition indeed holds: if
{(l n, An)} C D,p satisfies %P(l n, An) c(Q) and V4'(Cn, An) 0, then
{(ln, An) } has a subsequence converging to some (t, A) E D. In fact, it
can be shown that the sequence An remains bounded. Finally we conclude
using (4.34). 0

In view of Proposition 4.1 and 4.2 we have that the number c(1) given
in (4.31) is a critical value for 41 in D. This min-max setting does survive
a small C1-perturbation of ' in the considered region, yielding a critical
point of the functional I (see (3.25), (3.26)) as well, as required.

We finish this note by mentioning that extra care needs to be taken in
the construction of multiple pairs of spikes as in Theorem 1.1. We need
to work on a region for the reduced functional which indeed isolates pairs
of spikes associated to distinct holes. This is possible provided that ,u is
chosen sufficiently small: in such a case, interactions of far away spikes
become negligible, and the functional 4' basically decouples into the sum
of several functionals of the form V.
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A Semilinear Elliptic Equation
on RN with Unbounded
Coefficients
P. Sintzoff and M. Willem

Dedicated to Antonio Marino

1 Introduction

We study the existence of localized solutions of the semilinear elliptic equa-
tion

-Au + a(x)u = f (x, u)

on RN. Many papers deal with the case when a is "large" at infinity and f
is subcritical : for some c > 0 and p <j,

If (X, u)I <- c (1 + IuIP-1) ,

see, e.g., [1], [2], [4], [5].
It was recently observed by Sirakov in his thesis [7] that the case when f

is unbounded in x is rather delicate. Consider the model problem

Du + IxI°u = IxlbuP-1,

{ u > 0, u E H1(1RN),
(1.1)

where a > 0, b > 0, N > 3. Sirakov proves the existence of a solution for

2<p<p11 = 2N - 4b

N-2 a(N-2)

By the Derrick-Pohozaev identity there is no solution for

2N 2b
p

_
N-2 + N-2 <p'

Hence 2' = lies in a gap between p# and p. In [3], Ding and Ni obtain
the existence of a solution of (1.1) with

a=0,p<2',2b<(N-1)(p-2).
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Our aim is to solve problem (1.1). Our approach is applicable in a more
general setting, but, for simplicity, we consider only the model problem.

In section 2, we prove the existence of a radial least energy solution

of (1.1) when

2 < p < p, 2b - J+ 2) a < (N - 1)(p - 2). (1.2)

In section 3, we consider the existence of nonradial solutions. Finally, in
section 4, we consider necessary conditions for the existence of a solution
of (1.1).

2 Radial solution

We denote by H,1 (RN) the space of radially symmetric functions in

H'(RN) = {u E L2(RN) : Du E L2(RN)} .

We denote by H,'!,a (RN) the space of radif ally symmetric functions in

HH(RN)= uE H'(RN): Ixlau2dx<oo}.
N 111

We denote by D,'.'2(RN) the space of radially symmetric functions in

D'2(RN) = fu u E L2' (RN) : Vu E L2(IRN) > .

The following radial lemma is an improvement of the Strauss radial lemma
(see 181).

Lemma 2.1. If N > 2, there exists AN > 0 such that, for every u E
H;,a(RN), u E C(RN\{O}) and

1

UN
IxlIu(x)I < AN IxI"Iul2dx) IVu12.

Proof. By density, it suffices to consider u E H,', a(RN) n D(RN). Since

2udrrfrN-1 <
d (u2r4rN-1 ),

we obtain

rN-'rfu2(r) < 2 J °° lul I du I sN''stds
r

< AN (J sau2)'
(f

IVuI2)'.

0
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The following inequality is due to Rother 161.

Lemma 2.2. If N > 3, 1 < p < oo, p = 797-12 + , and there ex-
ists 0 such that, for every u E D,1.2(RN),

(JRN
Ixr`lulpdx) P < JRN IVU12dx.

We shall prove that, under some conditions,

m = m(a, b, p) = inf f IDuI2 + IxI°u2dx
U E H,1!°(RN) N

fRN Ixlblulpdx =1

is achieved. Then by the Lagrange multiplier rule, the symmetric criticality
principle and the maximum principle, we obtain a solution of

{
&V + IxI°V = alxlbVp-1,

VEH,1.,°(RN),V>0.

Hence u = acv is a solution of (1.1).

Theorem 2.3. If a > 0, b > 0, N > 3 and

2<p<p= 2N + 2b ,2b-(1+p)a<(N-1)(p-2),N-2 N-2 2

then m(a, b, p) is achieved and problem (1.1) has a radial solution.

Proof. Let (un) C H,1.,° (RN) be a minimizing sequence for m = m(a, b, p) :

JRN Ixlblunlpdx = 1,1
N

Ivunl2 +IxI°undx m.

By going if necessary to a subsequence, we can assume that un - u
in H,,a(RN). Hence, by weak lower semicontinuity, we have

IRN
IVUI2 + IxI°u2dx < m,

JkN Ixlblulpdx < 1.

If c is defined by p = V--3 + , then c < b and it follows from lemma 2.2
that

IxI`lunlpdxIxlblunlpdx < eb ° f
RN

cleb-°,
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since is bounded in Hr,a(Rt"). We deduce from Lemma 2.1 that

J Ixlblunlpdx = J IxIb alu,,jp-ZIxIaundx
f=I> 1 Irt?

i )
< E CZJ N (xf°undx

2

It follows from the two preceding inequalities that, for every t < 1, there
exists c > 0 such that, for every n,

Ixlblunlpdx > t.
E<I=I5'1.

By the Rellich theorem and Lemma 2.1,

1 > f IxlbluVpdx >
J <1=1<i

IxIbluIpdx > t.
_

Finally IRN IxIbI uI pdx = 1 and m = m(a, b, p) is achieved at u. 0

We consider now

M = M(a, b,p) = inf f IVu12 + Ixlau2dx.
u E HH(RN) N

f,tN IxlbIulpdx =1

It is clear that Al < m. We shall prove that M is achieved under the
condition used by Sirakov.

Theorem 2.4. If a > 0, b > 0, N > 3 and

2<p<p#= 2N 4b

N-2 a(N-2)'
then M(a,b,p) is achieved.

Proof. Let C HQ (RN) be a minimizing sequence for 1LI = M(a, b, p) :

JRN IxI&IuvdPdx = 1j N M.

By going if necessary to a subsequence, we can assume that u - u in
Ha' (RN). Hence, by weak lower semi-continuity we have

u12 + xlau2dx < M,
JRN

V

INlxlblulndx<1.
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If cis defined by p = NNZ --N`2>, then c> band

a a2*r=-,s=
c ap-2c

are conjugate. It follows from Holder and Sobolev inequalities that

J.1>+
Ixlblu4JPdx < (!)"J

As in Theorem 2.3, for every t < 1, there exists e > 0 such that, for every n,

fw<! IxIbIunlPdx > t.

By the Rellich theorem, since p < 2*,

1 > f N IxIblu1Pdx > J
zi<1 I

xIbIuIPdx > t.
-e

Hence fRN IxIbIuIPdx = 1 and M = M(a,b,p) is achieved at u. 0

3 Nonradial solutions

In this section, we use the preceding results in order to construct nonradial
solutions of

f-Au + Ixlau = IxIbuP-',
u > 0 in B(0, R),

1u=0 onOB(0,R).

Theorem 3.1. If a > 0, b > 0, N > 3 and

2<p< NN2,2b-(1+2)a<(N-1)(p-2),ap<2b,

then, for every R large enough, problem (3.3) has a radial and a nonradial
solution.
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Proof. By Theorem 2.3, m(a, b, p) is positive. Since 2b > ap, it is easy to
verify that M(a, b, p) = 0. Let us define

IxIau2dxM(a, b, p, R) = inf
L(O,R)

IVu12 +

r
E H(B(O,R))

JB(O.R) Ixl bjujpdx = 1

L(O.R)
m(a, b, p, R) = inf IDu12 + xIau2dx .

E Had(B(O, R))
fB(0.R) IxlbluIPdx = 1

It is clear that, for every R > 0, M(a, b, p, R) and m(a, b, p, R) are achieved
and

limR.. M(a, b, p, R) = M(a, b, p) = 0,
limR_, m(a, b, p, R) = m(a, b, p) > 0.

Using the Lagrange multiplier rule, the symmetric criticality principle and
the maximum principle, we obtain, for every R large enough, a radial and
a nonradial solution of (3.3). 0

4 Necessary conditions

We derive from the Derrick-Pohozaev identity some necessary conditions
for the existence of a solution of problem (1.1).

Theorem 4.1. If

2N 2bP_N-2+N-2
Sp

or

N+a N+b
2 p

then there is no solution for problem (1.1).

Proof. The Derrick-Pohozaev identity is verified by any solution u of (1.1) :

N2 2,/NIVul2dx+N2 aJ
NIxIau2dx-Np b INIxIbupdx=0.
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On the other hand, multiplying (1.11) by u and integrating, we see that

J Ixlbupdx = / y IVul2 + Ixlau2dx.
N

Hence we obtain

(N_2N+b)2 p [ IDul2dx+ (N2 a - Np+b)J /'N IxIau2dx =0.
N

(4.4)

So, if u is a solution of problem (1.1), we must have

a-N+b>0.N2 2-N+b<0,N2 p

p

0

Remarks

1. The first assumption of Theorem 2.3, 2 < p < p, is optimal.

2. The second assumption of Theorem 2.3,

2b-(i+2)a<(N-1)(p-2),

implies that

N+b N+a
p

<
2

3. The following example shows that m(a, b, p) > 0 implies

2b-ap<(N-1)(p-2).

This example is inspired by example 5.9 in [3].

Example 4.2. We assume that

2b - ap > (N - 1)(p - 2).

For each integer n > 0, we define r = Ixl and

n

{+e
0 < r < n,

un(r) n < r < n + 1,

n + 1 < r.
(n+1) T--+I
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These (un) are in H,.,a(RN). Moreover, we verify that

JN In

n+1

Ixlblunlpdx > f f rN-1rbr-( +0pdr

> nj(2b-ap-(N-1)(p-2))

- +00 asn -00.

On the other hand, it is easy to verify that there exists a constant c5 such
that, for every n,

unl2 + Ixlaudx < C5.
JRN IV

Hence

fRN IVUnl2 + lxlaundx
I - 0 as n --, oo,

(fRN Ixlblunlpdx) P

and thus m(a, b, p) = 0 when 2b - ap > (N - 1) (p - 2).
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Traveling Waves in
Natural Systems
R. E. L. Turner

Dedicated to Antonio Marino

1 Introduction

Waves that propagate along a real coordinate axis without change of form
arise in a myriad of natural settings, from meteorology, oceanography, com-
bustion theory, to name several areas in the physical sciences, and from
biology, physiology, and population dynamics, to name several from the
biological and health sciences. The phenomena usually involve some local
"excitability" or change of state which can influence a neighboring region
to pass to the altered state, thus provoking a chain type reaction. In many
situations one can show that there is a set of conditions which permit the
wave to move in one direction without change of form, and this is the type
of wave we treat here. Our choice of examples is motivated by personal pref-
erence and experience with types in the realm of fluid waves and waves in
physiology. We begin with a type which occurs in stratified fluids and then
pass to a description of the classical study of Hodgkin and Huxley on prop-
agating action potentials as a lead-in to our work on waves of contraction
producing locomotion in the nematode Ascaris.

2 Fluid Waves

A common thread in many treatments of traveling waves is an underlying
geometry which has the form of a domain fZ x R where n is a bounded
domain in some Euclidean space and R is the real line. For a wide class of
problems the solution of a differential equation, say W (t, x, w), depending
on time t, x E R, and w E St, can be sought in the form U(x - ct, w),
reducing the study to an equation for U(rl, w). This reduction is widely used
in the study of water waves and we use this paradigm here. The resulting
problem typically becomes an elliptic problem on the domain Il x R where
r) lies in R. Methods for studying the resulting elliptic problem include
global bifurcation, variational methods, and, for solutions which are small
in amplitude, the center-manifold approach introduced by Kirchgiissner
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([7]) and developed by him with his co-researchers. Our approach is in this
latter line, but the machinery is different from that of Mielke ([11]) who
worked closely with Kirchgiissner. We describe the physical problem in the
moving coordinates and then return to a further explanation of the point
of view taken in the center-manifold approach.

The problem of a density stratified, non-diffusive fluid confined between
horizontal boundaries can be formulated in Eulerian coordinates. One ob-
tains a semilinear equation which reduces to the Laplace equation in any
region of constant density. Substantial analytical difficulties arise, however,
if this equation is used for the case of discontinuous density, for then interior
free boundaries arise.

An alternative is to use semi-Lagrangian coordinates, a horizontal spa-
tial coordinate and a streamline coordinate, as the two independent coor-
dinates. The difficulty of the free boundary disappears, but a quasilinear
equation is part of the trade. The streamline coordinate can be normalized
to coincide with the height function as the horizontal coordinate x ap-
proaches -oo (we now use x in place of 77). Thus all points on the stream-
line, which approaches height y at -oo, have the same coordinate label
y. The dependent coordinate is w = w(x, y), the vertical deviation of the
streamline with label y at position x, from its height in the underlying triv-
ial flow. The flow region is taken to be T - R x I where I = [-h, 1- h] and
with our normalization T is also the domain of the new independent coor-
dinates. We shall assume that the channel is occupied by two fluids, one
of normalized density unity, corresponding to stream labels -h < y < 0,
and one of density p < 1 in the coordinate region 0 < y < 1 - h. In the
new coordinates a flow connects to a parallel flow of speed c as x - -oo,
provided to -+ 0 as x -, -oo. For any speed c the whole flow region can be
the same trivial, parallel flow and satisfy the flow equations. In this case
w = 0. The problem is to find a speed c and a function to # 0 corresponding
to a nontrivial flow.

Some definitions are needed. Let I denote a bounded open set in R2 or
a point and let T = R x I. When I is a point we merely identify T with R.
Let CS(T) denote the space of continuous real-valued functions on T with
continuous derivatives through order j. For h in C°(T) and 0 < a < 1, the
Holder constant of h at x is measured by

(Hah)(x) = sup jh(x, y) - h(x', y']
I(=.y)-(='.v )I <1 I (x, y) - (z', y') ]
yEI,(x',y')ET

where ] ] denotes the Euclidean distance in T. Using standard notation
for partial derivatives of functions, for each real number µ we define
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1: sup e-Il=ij5Ih(x,y)j+ supe-,"I'I(H O h)(x)
101<j

-ER, yEI
101=i

'ER

(2.2)

and let

Cµ°(T) = {h E C'(T) : {hlj,«,µ < oo}. (2.3)

The use of exponential weights in x appears to be crucial in making the
center-manifold approach work.

The quasilinear elliptic problem for w contains an eigenvalue parameter
A = g/c2 where g is the gravity constant. The lowest eigenvalue is

Ad =11p(h+1Ph),

and one looks for a nontrivial solution in the neighborhood of w - 0,
A = Ad. Letting p = Ad - A and expanding in linear and higher order terms
in w, one can arrive at the system

Aw} = div(gi (Ow), 92 (Vw)) in T}, (2.5)

p(Wy+ - Adw+) - (wy - Adw ) = 93(Vw, w, p) on y = 0, (2.6)

w-(x,-h)=w+(x,1-h)=0, xER. (2.7)

Here T- = R x (-h, 0), T+ = R x (0,1 - h), and ± are used to denote
values or limits taken within T±. The first equation describes the fluid flow.
The second gives pressure continuity at the internal fluid boundary, and
the third merely expresses that no flow penetrates the walls. The terms
91 , g2 , and 93 are higher order than linear w and Vu; = (w2, wy).

Corresponding to the eigenvalue Ad there is an eigenfunction, t(y) with
no x dependence. Suppose we seek a solution w of the system (2.5)-(2.7)
in the form

w = Q(x)t(y) + R(x, y); (2.8)

that is, a "separation of variables" term plus a "remainder." Then the
system (2.5)-(2.7) is a nonlinear problem with linear expressions in w on
the left and nonlinear expressions in w on the right. As is common, to study
the nonlinear problem we look first at a linear one in which the terms on
the right side of (2.5)-(2.6), abbreviated as G = (gi, 91 , 92 , 9z ,93), are
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taken to be given functions of of x, y, and p. The resulting linear problem
has a unique solution in the form (2.8) with (Q, Q', R) satisfying

Q(x)=fi+foQ', xER,

Q'(x) = e2 + L1GI0x + fo L2G, x E R, (2.9)

R(x, y) _ (L3G)(x, y), (x, y) E T

for suitable linear operators L1, L2, L3 acting on weighted Holder spaces
defined on Tt (cf. [11,[21).

When G on the right of (2.5)-(2.6) is replaced by the original expressions
gi (Vwf, w), etc. from (2.5) and (2.6), one obtains a problem of fixed point
type for fl a (Q1, Q2, R) with Q1 = Q and Q2 Q'. (In fact it is useful to
put in a scale factor /3 so that Q2 = #-1Q'.)

The result is a nonlinear map N from a product of weighted spaces to
itself and the problem reduces to solving

H = N(C, St) (2.10)

where e = V1, W represents the initial data in (2.9), and some of the
parameters are suppressed. As with most center-manifold situations one
must tailor the problem by putting in cutoff functions, resulting in an
altered problem

n = N(t, Q) (2.11)

having the same "small" solutions as the original one. To show there is a
solution of (2.11), we work in a closed subset of a weighted Holder space, the
closed subset having bounds on the derivatives of the admissible functions,
but not on the functions themselves (cf. [21). One must study the calculus
of compositions in these spaces, an elementary though lengthy task. In this
context one can show the existence of a unique solution fl(l;)(x).

A striking feature of the center-manifold equation (2.11) is that for a
solution 11 = (Q1, Q2, R), the third component R is a pointwise function
of the first two. That is, there is a function J defined on R2 and taking
values in Cµ'12(1+) X Cµ'12(1-), µ > 0, such that R as a function of x is

R = J(Q1(x), Q2(x)) (2.12)

Thus, knowing the two components (Q1 (x), Q2(x)) one can lift the orbit in
R2 to the full infinite- dimensional solution. There is a problem, however, in
that the map N(f2) includes a truncation and only "small" solutions ft cor-
respond to solutions of the original partial differential equation. Returning
to the equations (2.9) one now has the option of replacing the occurrence of
R in the first two equations by the expression R = J(Q(x),Q2(x)). After
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some labor, one can obtain the lowest order terms in a pair of differen-
tial equations for (Q1(x),Q2(x)) alone. One can show that the function
J is "smooth" (by restricting its domain) and that J(0,0) = 0. Hence a
small solution of the equation for (Q1(x),Q2(x)) will lift to a small triple
0 = (Q1, Q2, R) and hence will be a small fixed point of N. But a small
fixed point of N is also a fixed point of N and hence of the original elliptic
problem. In this way one can succeed in characterizing all the "L°° small"
solutions of the traveling wave problem (cf. [11, (21). Among the resulting
flows are solitary waves (homoclinic orbits), and surges connecting distinct
parallel flows at the extreme ends of the channel (heteroclinic orbits). Each
of these, of course, constitutes a traveling wave solution in the original
coordinates.

3 Waves in Axons

In a classic paper in neurobiology Hodgkin and Huxley ([5]) gave a de-
tailed model for the propagation of waves of depolarization in axons, the
conduits that carry a variation in potential from the central part of a neu-
ron to a distant synapse. The arrival of the voltage pulse at the synapse
triggers the release of neurotransmitters enabling the passage of a signal to
a neighboring neuron. The experimental basis for their work was the study
of the giant axon of the squid Loligo, the culmination of studies by many
researchers on cell electrophysiology. The mechanism can be understood
by first looking at a situation in which there is no spatial dependence and
then including the diffusive effect possible along the axon, a long cylindri-
cal structure with a small diameter. In fact, Hodgkin and Huxley removed
the spatial dependence by threading fine wires along the axon, maintaining
constancy of voltage in space even while it changed in time.

The two main players in the passage of current across the axonal mem-
brane are sodium and potassium ions. Being ions they move due to diffusion
and to electromotive force. It is the combination of these two fluxes that
affects the voltage excursions. The membrane has large numbers of tiny
channels, some of which are selective for the passage of sodium and others
for the passage of potassium. A crucial aspect of the dynamics is that each
channel may be open or closed for the passage of ions and that its state,
open or closed, is a random process. This is the simplest model for such
a channel. The random aspect is fundamental, and without this stochastic
behavior, the propagation would fail and the animal would "shut down"
immediately.

The model of the kinetics of a potassium channel is somewhat simpler
than that of a sodium channel, and so we start with the former, i.e., the
K+ channel. Modern usage takes the reference voltage to be that outside
the cell and takes it to be V = 0 mV (millivolts). Hodgkin and Huxley
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took the reference V = 0 mV to be the the potential of the inside of the
cell at rest. Moreover, the current standard is to use "depolarization" to
mean an excursion of the interior of the cell (roughly -70 mV with respect
to the exterior) toward more positive voltages. For Hodgkin and Huxley
depolarization meant an excursion of the interior toward more negative
voltages. We use the current standards.

There is a higher concentration of K+ inside the cell than outside and this
imbalance is maintained by ion pumps. If the voltage were 0 mV inside the
cell and a K+ channel were to open, diffusion would produce a net outward
current of positive charges. If the inside were artificially maintained at
-100 mV and a K+ channel were to open, the outward diffusion would be
countered by a flux of the charged ions due to the voltage gradient and a net
inward flux of positive charge would result. If the interior were artificially
held at about -90 mV, the two fluxes would cancel and produce a net zero
current. The potential VK = -90 mV, is called the reversal potential for
potassium (for this particular cell).

The basis of the model can be understood in terms of a pure stochastic
process for the state of a single K+ channel. Let N denote a stochastic
variable which can take the values N = 0 and N = 1, corresponding to
closed and open, respectively. It is assumed that a single channel undergoes
a random process independently of the other channels and remains in each
state, 0 or 1, with an exponentially distributed waiting time (cf. [6]). The
current through a single channel is taken to be iK = GK * N * (V - VK)
where GK is the conductance of a single open channel and (V - VK) is the
net driving potential.

The stochastic variable N will have associated probability distributions.
Suppose the infinitesimal transition probabilities are a for the transition
0 - 1 and Q for the transition 0 - 1. By differentiating the Chapman-
Kolmogorov equation ([61, p. 89) one can obtain the forward equation for
the process, and the transition probability Pol(t)(that starting in state 0,
one is in state 1 at time t) is found to satisfy the differential equation

dtPol(t) = a(1- Po1(t)) -13P01(t) (3.13)

One sees that, given a and /3, the equilibrium state for Pol (t) is «+ , and it
is approached by an exponential in time, with a time constant r = Fora+p.

a large number of channels, starting closed, by the law of large numbers,
we can expect the fraction n of channels in the open state at time t to be
approximately Pol(t). More generally, for any starting value, the fraction
n(t) will satisfy

do n00-n
dt rn n (V)°° a + 0'

a
(3.14)

nOO(V) being the equilibrium state. The time constant is Tn = a+ "0. Then
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if there are NK channels, the total potassium current will be

(3.15)

where gK = GK NK (in units of microsiemens).
In fact, Hodgkin and Huxley found a better fit to their measured data

by using a form IK = gK n4 (V - VK), arguing that this is consistent
with a channel protein that has four independent "n gates" in the channel,
all of which must be in the open state to allow passage of a K+ ion.

Another wrinkle is that the kinetic parameters a and Q change with the
interior cellular potential V. In the case of potassium, the closed state is
favored when V is substantially below zero and the open state is increas-
ingly favored as V rises, with n (V) approaching 1 for V well above zero.
Among the data given in the article 151 are graphs of the dependence of
n,, (V) and r (V) as V varies, based on extensive experiments, as well as
explicit functions fit to this data.

The sodium current has a similar description in [5], but differs slightly. It
has an m gate analogous to the n gate, favoring the open state as V becomes
more depolarized (more positive), but also has an h gate (an inactivation
gate) which favors being closed when V becomes more depolarized. Each
gate has its own time scale and so the effect of an upward excursion of
V(t), starting at a substantially negative value where h is close to 1, is to
first allow passage of calcium as V rises, and then to curtail the current
as h decreases. The form is: INa = 9Na m3h (V - VNa), with equations
for the dynamics of m and h (see below). The net current also includes a
"leak" current IL = gL . (V - VL) which has no voltage dependence in its
total conductivity.

The cell membrane acts as a capacitor of capacitance c,,, (on the order
of 1 microfarad per square centimeter) and the capacitative current acts
in conjunction with the ionic currents, the latter often likened to batteries
in a circuit. The total current equation plus the three kinetic equations for
n, m, h are called the Hodgkin-Huxley equations and have the form

dV

(3.16)

dna _ moo (V) - m
17(3

dt rm(V)
. )

dh _ h,a(V) - h
(3.18)

dt

do _

rh(V)

n,,. (V) - n
19(3

dt r (V) . )

The set of four equations above has a stable equilibrium with V approx-
imately -70 mV and with the kinetic variables at and so on.
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The behavior of the system is sensitive to the injection of a current pulse.
Let I(t) be a function which is positive on the interval 0 < t <_ T where
T is on the order of a millisecond. If one adds A I(t) to the right side of
(3.16) with A small, the voltage will undergo a small excursion and return
to its equilibrium value. However, if A is larger than a critical value &
there will be a large excursion of 100 mV or so before the voltage returns to
its equilibrium value. Moreover, the size of the excursion is essentially in-
dependent of A as long as A > A,. This pulse is called a (non-propagating)
action potential and is essentially equal to the plot labeled VO in Figure 1.
It differs from VO in the fifth decimal place.

If one considers spatial dependence, taken to depend only on a single
variable x measuring distance along a narrow axon, then one considers the
various quantities to depend on x as well as on time t. One has dependent
variables V (x, t), m(x, t), and so on. Now, of course, current can move
axially along the axon as well as across its membrane, and the effect is to
add a diffusive term

1 82V(x,t)
ri 8x2

(3.20)

on the right side of (3.16), where ri is the interior resistance to current flow
in units of ohms per unit length (the current equation now has units of
current per units of length).

Without the active ion channels a current pulse inserted at a spatial
position x = 0 would produce a spreading wave of voltage variation, much
as an ordinary diffusion or heat equation. However, with active channels a
pulse of current of super-critical amplitude inserted at x = 0 will produce
a voltage excursion (a 'firing') and current influx near that point. It will
be sufficient to bring a neighboring point to the critical "firing" level, and
so on down the axon, so that the voltage excursion propagates along the
axon and does so with essentially no change in form. Thus it arrives at the
distant synaptic site at full strength. In Figure 1 we have plotted the voltage
excursions at sites x = 0 and equally spaced increments Ax > 0, 2Ax, 30x.
The computation is done by replacing the second partial derivative above
by a second difference quotient and choosing Ox = 1 and ri = 1.

4 Contraction waves in Ascaris

The simple nematode Ascaris suum has been studied for close to a century
and there is a wealth of data regarding its anatomy, neural architecture, and
electrophysiology. However, as regards locomotion, the data has never been
brought to bear on an understanding of how the various components can
produce movement. In a moving worm one sees body waves of sinusoidal
shape progressing along the worm. At a fixed position along the worm,
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FIGURE 1. Plots of voltage excursions (from 0 mV inside the cell) for a model
axon with a discrete second difference approximation to the diffusion term; plots
of VO at a site x=0, together with voltages Vk at sites k Ax > 0 for k = 1, 2, 3.
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when the (ventral) underside is contracted, corresponding to positive volt-
age excursions, the (dorsal) upper side is relaxed; with the passage of time
the dorsal muscles contract and the ventral muscles relax, this happening
in alternation as the body waves progress. Here we present a model for an
individual muscle cell and show how chains of cells can produce the pro-
gressing waves of activity that are seen in a moving worm. For the single
cell and for the system we obtain a reasonable approximation to the types
of recordings made by Weisblat and Russell ([17]) in dissected preparations
and by Mead ([10]) in a semi-intact, behaving worm.

A longstanding question regards the origin of the contractile waves and
signals that are observed in Ascaris. Do they arise in the muscle cells or
in the neurons? We focus on the muscle cells in developing a model. A
special characteristic of the muscle cells in Ascaris are that they appear to
be capable of spontaneous oscillation. This is a feature that we emphasize
in our model (cf. [15] for an earlier, minimal model).

Ascaris has approximately 50, 000 muscle cells along its 30 cm. length and
has 300 neurons, about 90 of which are involved in locomotion ([12],[13] and
the references therein). One can view the muscle cells as being arrayed in
two chains, a dorsal chain running along the top of the worm and a ventral
chain running along the bottom. While each muscle cell has a complicated
morphology, we consider it to be isopotential. The identified currents are
listed below and each is modeled in the spirit of the Hodgkin-Huxley model.
The data on the currents can be found in ([14], [8],[9]).

Calcium current
The calcium current across the cell membrane of a model muscle cell is

taken to be

(4.21)

Here gca is the maximum calcium conductance for the cell; e is a unitless
activation parameter; f is an inactivation parameter; V is the cytoplasmic
voltage in millivolts; and Vca is the calcium reversal potential. The dy-
namics of the gating variables e and f are analogous to those described in
the previous section. However, in the present situation there is not suffi-
cient data to do the fine type of fitting done by Hodgkin and Huxley in
[5] and so we restrict ourselves here to having the infinitesimal transition
probabilities o(V), ,3(V) given by standard Boltzmann type rate functions
(cf. [16]). The various free parameters entering the description of the ki-
netics are used to "fit" the calcium current in the model to the laboratory
measurements in ([8]) done during voltage clamp experiments.

Potassium currents
A Hodgkin-Huxley type of "non-inactivating" current is given by

(4.22)
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the terms being similar to those in the calcium current. The activation
parameter is n and we do, in fact, put in a slow inactivation m to capture
a slow decline in IK that one sees in Figure 6 of Martin et al. ([8]). The
reversal potential for potassium is taken to be -50 mV, based on the
discussion [8], pp. 81-82. Again, values for the controlling parameters are
chosen to approximately capture the dynamic responses seen in ([8]), Figure
6. Here, however, we have replaced the Boltzmann relaxation times by
constants: 5 milliseconds for n and 500 milliseconds for in.

A rapidly inactivating potassium current, IA, is described by:

IA = 9A p4 q (V - VK), (4.23)

the activation parameter being p, and the inactivation, q (cf. ([4], page
118).

Leak current
This is taken to be

It = 9t (V - Vt) (4.24)

with the parameters obtained from Martin et al. ([8]).

Calcium activated chloride current
This current is different from the type discussed in the previous section

in that it is a two stage activation. First the calcium must enter the cell.
Next the calcium acts at a site inside the cell to open chloride channels.
The work of Thorn and Martin ([14]) was dedicated to studying a calcium
dependent chloride channel in the muscle cell. The mechanics of activation
of the chloride channels by calcium are not discussed in their paper and so
we have incorporated a mechanism which allows for some accumulation of
calcium and a subsequent opening of chloride channels when a threshold
level of calcium is reached. We take into account the time lag (from 2 to
3 seconds, [14], p. 44) between the appearance of calcium and the opening
of the chloride channels. We introduce a discrete version of a diffusion (a
mathematical device). This allows for some time delay in the action of the
entering calcium and has some smoothing effect on the calcium level.

We consider a segregated fraction r of the calcium to be that which
accumulates and controls the gating of the chloride channel, through a
parameter b satisfying 0 < b < 1. The current has the form

(4.25)

The discrete diffusion takes place over hypothetical sites having calcium
levels ao (segregated calcium), al, a2, a3. The amplitude of a2 is used to
trigger the value of the gating variable b through a sigmoidal function b,,,,.
We also include a buffering of calcium, with constant k (see below).

We used the anatomical data in Stretton ([12]), making a rough calcula-
tion of .002 cm2 for the surface area of a muscle cell and multiplying by the
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commonly used value 1 microfarad per cm2 to obtain the cell membrane
capacitance c,,,. Combining the components just described, we obtain the
equations governing a model cell. Its state is described by the variables
(V, e, f, n, m, q, b), and calcium concentrations a;, i = 0, 1, 2, 3. The first
is a current balance and the remainder regulate the kinetics. The form of
these last four equations results from a spatially discrete approximation to
the diffusion equation. See ([16]) for precise values of parameters.

dVC 'n

dt = gcae2 f (V - VCa) +gKn m (V - VK) +gL (V - VL)

(V - VK)+gcr b (V -Vcl) (4.26)

de _ e,,. (V) - e
(4.27)

dt

df

re (V)

ff(V) - f
(4.28)

dt
do

rj(V)
n

(V)

dt
(V) -

dt
db _

ra(V)
b,,. (a2) - b

(4.32)
dt

dao

=

7b(V)

I - k- 4 33
dt

r c0 ao ( . )

dal
6(a2 - 2a1 + ao) - ka1 (4 34)

it-
dal

6(a3 - 2a2 + al) - ka2

.

(4.35)
dt

da3 6(-2a3 + a2) - ka3 (4 36)
dt

.

The equations (4.26) to (4.36) are solved using Fortran and a differential
equation solver "dvode" from Lawrence Livermore National Laboratory,
Berkeley, California. In the simulations for a single cell the initial data are
taken to be: V = -30 mV, f = 1.0, q = 1.0, m = 1.0. All of the remaining
variables start at zero. A typical output of the model for a single cell is
shown in Figure 2.

Figure 2 is a very good approximation to some of the recordings of Weis-
blat and Russell [17]. In their laboratory recordings there were trains of 3 to
8 spikes (Figure 2 shows an example with trains having 3 spikes) separated
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FIGURE 2. Plots of voltage excursions for a model muscle cell.



128 R. E. L. Turner

0 5000 10000 15000 20000

time in milliseconds

25000 30000

FIGURE 3. Plots of voltage excursions for a model axon with a discrete second
difference approximation to the diffusion term; plots of VO at a site x=0, together
with voltages Vk at sites k Ax > 0 for k = 1, 2, 3. Scale markings 0, -20, -40
are for first cell, etc.
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by "quiet intervals" lasting for a few hundred milliseconds. The time scale
for the individual spikes and the time scale for the "bursts" or groups of
spikes is reasonably close to the laboratory recordings. It should be noted
that for parameter values near those used in the simulation, the cell has an
equilibrium solution with a voltage near -30 mV, an established value for a
muscle cell at rest. For an individual muscle cell, Weisblat and Russell also
saw a longer time scale, in that a string of bursts was interrupted every 7
to 20 seconds by a "quiet" period. We believe this is a system characteristic
and to model it we extend the equations above with a term representing a
"stretch" receptor. This aspect of Ascaris has not been carefully studied,
but is firmly believed to be present (Davis, private communication).

For this element we propose a mechanism which measures the amount
of bursting activity in a cell, effectively integrates it, and when it reaches
a critical level, sends a hyperpolarizing signal to the cell. A further, well
established effect is a reciprocal inhibition between cells in the dorsal chain
and cells in the ventral chain (]13]). Each cell in the dorsal chain sends
inhibitory signals to a group of cells in the ventral chain, the receiving
group being roughly the same distance along the chain as the sending cell.

For our purposes we assume each dorsal cell is paired with a "twin" in
the ventral chain. For the reciprocal inhibition we use a technique similar
to that just described for stretch, but have activity in a dorsal(ventral) cell
rapidly send a hyperpolarizing signal to its "twin" in the ventral(dorsal)
chain. Likewise an active ventral cell inhibits its dorsal twin in the model.
In the worm this effect is carried through the neural architecture, but for
the purposes of our model at this stage, we have put in a direct reciprocal
inhibition from a muscle cell to its twin. A last element is an influence of
an active cell on the kinetic parameters of a neighboring cell, to rouse it
from a quiescent mode and put it in an oscillatory mode. The results of the
more extensive model (paper in preparation) can be seen in Figure 3 where
we have used 15 dorsal cells "twinned" with 15 ventral cells, though with
kinetics parameters differing from those yielding Figure 2. Shown are the
voltage excursions at four successive (dorsal) cells in the chain, responding
to a stimulus originally acting at one end of the chain and progressing along
the chain.
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