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Preface

Probability is the most important concept in modern science especially as

nobody has the slightest notion what it means.

Bertrand Russell

About 15 years ago, I wrote the book Essentials of Probability, which was

designed for a one-semester course in probability that was taken by math majors

and students from other departments. This book is, in some sense, the second

edition of that book, but there are several important changes:
� Chapter 1 quickly introduces the notions of independence, distribution, and

expected value, which previously made their entrance in Chapters 2, 3, and 4.
This makes it easier to discuss examples; for example, we can now talk about the
expected value of bets.

� For 5 years these notes were used in a course for students who knew only a little
calculus and were looking to satisfy their distribution requirement in mathematics,
so it is aimed at a wider audience.

� Markov chains are covered, and thanks to a suggestion of Lea Popovic, this topic
appears right after the notion of conditional probability is discussed. This material
is usually covered in an undergraduate stochastic processes course, if you are
fortunate enough to offer one in your department, but in our experience this
material is popular with students.

� Continuous distributions are presented as an optional topic. This decision orig-
inated to minimize the reliance on calculus, but in time I have grown to enjoy
abandoning the boring mechanics of marginal and conditional distributions to
spend more time talking about probability.

This book, like its predecessor, takes the philosophy that the best way to learn

probability is to see it in action. There are more than 350 problems and 200

examples. These contain all the old standards: the World Series, dice and card

games, birthday problem, Monty Hall, medical testing posterior probabilities,

and various applications of the central limit theorem. However, it also con-

tains a number of topics that are rarely covered: Benford’s law, the TV show

vii
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viii Preface

Deal or No Deal, alliteration in Shakespeare, Wayne Gretzky’s scoring record,

lottery double winners, the trials of O. J. Simpson and Sally Clark, how to play

blackjack, cognitive dissonance in monkeys, the hot hand in basketball, and

option pricing.

The discussion in the text follows the philosophy of Dragnet’s Joe Friday:

“Just the facts, ma’am.” However, there are several dozen figures that show

the shapes of distributions and help to explain the arguments. Copyright laws

prevent me from calling this book “Probability for Dummies,” but that would

be a misnomer. The first two words of the title are “Elementary Probability,”

which means that there are few formal prerequisites. I have done my best to

explain things clearly, but the reader (and the instructor) should be warned that

thinking is required.

How should you teach from this book?

The easiest way to explain this is with a flowchart of the chapters:

1 2 3

4

5

6 7�� � ����

���

���

����

Chapter 1 introduces the language we need to talk about examples. Chapter 2

covers combinatorial probability and is followed by Chapter 3’s treatment of con-

ditional probability. At this point, one can go on to Markov chains in Chapter 4

(which I prefer) or to continuous distributions in Chapter 5. From Chapter 4

you can go to Chapter 5 or leave this boring topic to the instructor of the

statistics course that follows yours and go on to the law of large numbers and

central limit theorem in Chapter 6. The all-important normal is a continuous

distribution, of course, but all computations for it are done with tables, so

the only concept one needs is the distribution function. Finally, Chapter 7 is a

brief introduction to option pricing. I find this makes a nice final lecture be-

fore one turns to the business of reviewing material in preparation for the final

exam.

Supporting cast

The writing of this book benefited from the comments of several people paid

by Cambridge University Press to read various chapters, and in particular by

the efforts of one reader who made hundreds of comments on the writing style.

In the spring quarter of 2008, Ed Waymire used the book at Oregon State, and

in the fall quarter of 2008, Michael Phelan used the book at U. C. Irvine. I am

grateful to Michael for his many comments and his enthusiasm for the book.
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ix Preface

When Essentials of Probability was written, my sons David and Greg were 6

and 4, and Tipper Gore was complaining about the lack of values in the music

I listened to. Now David is a senior at Ithaca College, one semester away from

graduating with a major in journalism, and wondering if the economic collapse

brought on by 8 years of the Bush administration will keep him from getting

a job. Greg, who is a junior at MIT double majoring in computer science and

math, has better long-term job prospects, but he will probably go to graduate

school before deciding how close he wants to be to the real world.

This brings me to the two women who are the most important for this book.

The first is my wife, Susan. After 28 years of marriage and almost a dozen prefaces,

I have run out of clever things to say. When the kids are home from college, as

they are now during winter break, she is a flurry of activity. In between, she fills

her empty nest with the New York Times, its crossword puzzles (an addiction I

share), and tending to her parents who moved to Ithaca from the Sacramento

area about 5 years ago. In December, we had our first vacation away together

since David was born in 1988. Before you say “how romantic,” I should admit

that the trip consisted of 2 days on the beach at Half Moon Bay and 3 days of

work in Berkeley.

The other important woman is my editor Lauren Cowles. After seeing Essen-

tials of Probability moved around from Wadsworth to Duxbury Press and on to

International Thompson Publishing and then go out of print without my being

told, it is nice to be in the hands of someone who cares about my books. Even

though I (and others) have spent a lot of effort debugging the book, it is in-

evitable that there will be typos. Email them to rtd1cornell.edu and look for lists

onwww.math.cornell.edu/˜durrett, where you can find information

about my research and other books.

Rick Durrett
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1

Basic Concepts

In this chapter we introduce the basic terminology of probability theory. The

notions of independence, distribution, and expected value are studied in more

detail later, but it is hard to discuss examples without them, so we introduce

them quickly here.

1.1 Outcomes, events, and probability

The subject of probability can be traced back to the 17th century when it arose

out of the study of gambling games. As we see, the range of applications extends

beyond games into business decisions, insurance, law, medical tests, and the

social sciences. The stock market, “the largest casino in the world,” cannot do

without it. The telephone network, call centers, and airline companies with their

randomly fluctuating loads could not have been economically designed without

probability theory. To quote Pierre-Simon, marquis de Laplace from several

hundred years ago:

It is remarkable that this science, which originated in the consideration

of games of chance, should become the most important object of human

knowledge . . . The most important questions of life are, for the most part,

really only problems of probability.

In order to address these applications, we need to develop a language for

discussing them. Euclidean geometry begins with the notions of point and line.

The corresponding basic object of probability is an experiment: an activity

or procedure that produces distinct, well-defined possibilities called outcomes.

(Here and throughout the book boldface type indicates a term that is being

defined.)

Example 1.1 If our experiment is to roll one die then there are 6 outcomes corresponding

to the number that shows on the top. The set of all outcomes in this case

is {1, 2, 3, 4, 5, 6}. It is called the sample space and is usually denoted by �.

1
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Symmetry dictates that all outcomes are equally likely, so each has probability

1/6.

Example 1.2 Things get a little more interesting when we roll two dice. If we suppose, for

convenience, that they are red and green then we can write the outcomes of this

experiment as (m, n), where m is the number on the red die and n is the number

on the green die. To visualize the set of outcomes it is useful to make a small

table:

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)

(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)

(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)

(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

There are 36 = 6 · 6 outcomes since there are 6 possible numbers to write in the

first slot and for each number written in the first slot there are 6 possibilities for

the second.

The goal of probability theory is to compute the probability of various

events of interest. Intuitively, an event is a statement about the outcome of

an experiment. The formal definition is: An event is a subset of the sam-

ple space. For example, “the sum of the two dice is 8” translates into the set

A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}. Since this event contains 5 of the 36

possible outcomes its probability P (A) = 5/36.

For a second example, consider B = “there is at least one 6.” B consists of the

last row and last column of the table, so it contains 11 outcomes and hence has

probability P (B) = 11/36. In general, the probability of an event C concerning

the roll of two dice is the number of outcomes in C divided by 36.

1.1.1 Axioms of probability theory

Let ∅ be the empty set, that is, the event with no outcomes. We assume that the

reader is familiar with the basic concepts of set theory such as union (A ∪ B ,

the outcomes in either A or B) and intersection (A ∩ B , the outcomes in both

A and B).

Abstractly, a probability is a function that assigns numbers to events, which

satisfies the following assumptions:

(i) For any event A, 0 ≤ P (A) ≤ 1.

(ii) If � is the sample space then P (�) = 1.
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(iii) If A and B are disjoint, that is, the intersection A ∩ B = ∅, then

P (A ∪ B) = P (A) + P (B)

(iv) If A1, A2, . . . , is an infinite sequence of pairwise disjoint events (that is,

Ai ∩ A j = ∅ when i �= j ) then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai )

These assumptions are motivated by the frequency interpretation of probabil-
ity, which states that if we repeat an experiment a large number of times then

the fraction of times the event A occurs will be close to P (A). To be precise, if

we let N(A, n) be the number of times A occurs in the first n trials then

P (A) = lim
n→∞

N(A, n)

n
(1.1)

In Chapter 6, we see that this result is a theorem called the law of large

numbers. For the moment, we use this interpretation of P (A) to explain the

definition.

Given (1.1), assumptions (i) and (ii) are clear: the fraction of times a given

event A occurs must be between 0 and 1, and if � has been defined properly

(recall that it is the set of ALL possible outcomes) then the fraction of times

something in � happens is 1. To explain (iii), note that if the events A and B

are disjoint then

N(A ∪ B , n) = N(A, n) + N(B , n)

since A ∪ B occurs if either A or B occurs but it is impossible for both to

happen. Dividing by n and letting n → ∞, we arrive at (iii).

Assumption (iii) implies that (iv) holds for a finite number of events, but

for infinitely many events the last argument breaks down and this is a new

assumption. Not everyone believes that Assumption (iv) should be used. How-

ever, without (iv) the theory of probability becomes much more difficult and

less useful, so we impose this assumption and do not apologize further for it. In

many cases the sample space is finite, so (iv) is not relevant anyway.

Example 1.3 Suppose we pick a letter at random from the word TENNESSEE. What is the

sample space � and what probabilities should be assigned to the outcomes?

The sample space � = {T, E , N, S}. To describe the probability it is enough

to give the values for the individual outcomes since (iii) implies that P (A) is

the sum of the probabilities of the outcomes in A. Since there are nine letters

in TENNESSEE, the probabilities are P ({T}) = 1/9, P ({E }) = 4/9, P ({N}) =
2/9, and P ({S}) = 2/9.
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1.1.2 Basic properties of P(A)

Having introduced a number of definitions, we now derive some basic properties

of probabilities and illustrate their use.

Property 1. Let Ac be the complement of A, that is, the set of outcomes not in A.

Then

P (A) = 1 − P (Ac ) (1.2)

Proof. Let A1 = A and A2 = Ac . Then A1 ∩ A2 = ∅ and A1 ∪ A2 = �, so (iii)

implies P (A) + P (Ac ) = P (�) = 1 by (ii). Subtracting P (A) from each side

of the equation gives the result.

This formula is useful because sometimes it is easier to compute the prob-

ability of Ac . For an example, consider A = “at least one 6.” In this case

Ac = “no 6.” There are 5 · 5 outcomes with no 6, so P (Ac ) = 25/36 and

P (A) = 1 − 25/36 = 11/36, as we computed before.

Property 2. For any events A and B,

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) (1.3)

Proof by picture:

������������

P (A)

P (B)

−P (A ∩ B)

+ +

+ +

−

A

B

Intuitively, P (A) + P (B) counts A ∩ B twice, so we have to subtract

P (A ∩ B) to make the net number of times A ∩ B is counted equal to 1.

Proof. To prove this result we note that by assumption (ii)

P (A) = P (A ∩ B) + P (A ∩ Bc )

P (B) = P (B ∩ A) + P (B ∩ Ac )
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Adding the two equations and subtracting P (A ∩ B),

P (A) + P (B) − P (A ∩ B) = P (A ∩ B) + P (A ∩ Bc )

+ P (B ∩ Ac ) = P (A ∪ B)

which gives the desired equality.

To illustrate Property 2, let A = “the red die shows 6,” and B = “the green

die shows 6.” In this case A ∪ B = “at least one 6” and A ∩ B = {(6, 6)}, so we

have

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) = 1

6
+ 1

6
− 1

36
= 11

36

The same principle applies to counting outcomes in events.

Example 1.4 A survey of 1,000 students revealed that 750 owned stereos, 450 owned cars, and

350 owned both. How many own either a car or a stereo?

Given a set A, we use |A| to denote the number of points in A. The reasoning

that led to (1.3) tells us that

|S ∪ C | = |S| + |C | − |S ∩ C | = 750 + 450 − 350 = 850

We can confirm this by drawing a picture:

400 350 100

S

C

Property 3 (Monotonicity). If A ⊂ B, that is, any outcome in A is also in B,

then

P (A) ≤ P (B) (1.4)

Proof. A and Ac ∩ B are disjoint, with union B , so assumption (iii) implies

P (B) = P (A) + P (Ac ∩ B) ≥ P (A) by (i).

We write An ↑ A if A1 ⊂ A2 ⊂ · · · and ∪∞
i=1 Ai = A. We write An ↓ A if

A1 ⊃ A2 ⊃ · · · and ∩∞
i=1 Ai = A.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

6 Basic Concepts

Property 4 (Monotone limits). If An ↑ A or An ↓ A then

lim
n→∞ P (An) = P (A) (1.5)

Proof. Let B1 = A1, and for i ≥ 2 let Bi = Ai ∩ Ac
i−1. The events Bi are disjoint,

with ∪∞
i=1 Bi = A, so (iv) implies

P (A) =
∞∑

i=1

P (Bi ) = lim
n→∞

n∑
i=1

P (Bi ) = lim
n→∞ P (An)

by (iii) since Bi , 1 ≤ i ≤ n, are disjoint and their union is An.

To prove the second result, let Bi = Ac
i . We have Bn ↑ Ac so by (1.5) and

(1.2), limn→∞ P (Bn) = 1 − P (A). Since P (Bn) = 1 − P (An), the desired re-

sult follows.

1.2 Flipping coins and the World Series

Even simpler than rolling a die is flipping a coin, which produces one of two

outcomes, called “heads” (H) or “tails” (T). If we flip two coins there are 4

outcomes:

HT

HH TH TT

Heads 2 1 0

Probability 1/4 1/2 1/4

Flipping three coins there are 8 possibilities:

HHT TTH

HHH HTH THT TTT

THH HTT

Heads 3 2 1 0

Probability 1/8 3/8 3/8 1/8

Our next problem concerns flipping four to seven coins.

Example 1.5 World Series. In this baseball event, the first team to win four games wins the

championship. Obviously, the series may last 4, 5, 6, or 7 games. However, a fan

who wants to buy a ticket would like to know what are the probabilities of each

of these outcomes.

Here, we are assuming that the two teams are equally matched and ignoring

potential complicating factors such as the advantage of playing at home or
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psychological factors that make the outcome of one game affect the next one. In

short, we suppose that the games are decided by tossing a fair coin to determine

whether team A or team B wins.

Four games. There are two possible ways this can happen: A wins all four games

or B wins all four games. There are 2 · 2 · 2 · 2 = 16 possible outcomes and these

are 2 of them, so P (4) = 2/16 = 1/8.

Five games. Here and in the next case we compute the probability that A wins

in the specified number of games and then multiply by 2. There are 4 possible

outcomes:

B AAAA, AB AAA, AAB AA, AAAB A

AAAAB is not possible since in that case the series would have ended in four

games. There are 25 = 32 outcomes, so P (5) = 2 · 4/32 = 1/4.

Six games. In the next section we learn systematic ways of doing this, but for

now we compute the probabilities by enumerating the possibilities:

B B AAAA AB B AAA AAB B AA AAAB B A

B AB AAA AB AB AA AAB AB A

B AAB AA AB AAB A

B AAAB A

The first column corresponds to outcomes in which B wins the first game,

the second one to outcomes in which the first game B wins is the second game,

etc. We then move the remaining win for B through its possibilities. There are

10 outcomes out of 26 = 64 total, so remembering to multiply by 2 to account

for the ways B can win in six games, P (6) = 2 · 10/64 = 5/16.

Seven games. The analysis from the previous case becomes even messier here,

so we instead observe that the probabilities for the four possible outcomes must

add up to 1, so

P (7) = 1 − P (4) − P (5) − P (6) = 1 − 2

16
− 4

16
− 5

16
= 5

16

As mentioned earlier, we are ignoring things that many fans think are impor-

tant in determining the outcomes of the games, so our next step is to compare

the probabilities just calculated with the observed frequencies of the duration

of best-of-seven series in three sports. The numbers in parentheses give the

number of series in our sample.
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Games 4 5 6 7

Probabilities 0.125 0.25 0.3125 0.3125

World Series (94) 0.181 0.224 0.224 0.372

Stanley Cup (74) 0.270 0.216 0.230 0.284

NBA finals (57) 0.122 0.228 0.386 0.263

To determine whether or not the data agree with predictions, statisticians use

a chi-squared statistic:

χ2 =
∑ (oi − ei )2

ei

where oi is the number of observations in category i and ei is what the model

predicts. The details of the test are beyond the scope of this book, so we just

quote the results: the Stanley Cup data are very unusual (the probability of a

chi-square score this large or larger has probability p < 0.01) due to the larger-

than-expected number of four-game series. The World Series data do not fit the

model well, but are not very unusual (p > 0.05). On the other hand, the NBA

finals data look like what we expect to see. The excess of six-game series can be

due just to chance.

Example 1.6 Birthday problem. There are 30 people at a party. Someone wants to bet you

$10 that there are 2 people with exactly the same birthday. Should you take the

bet?

To pose a mathematical problem we ignore February 29 which only comes in

leap years, and suppose that each person at the party picks their birthday at ran-

dom from the calendar. There are 36530 possible outcomes for this experiment.

The number of outcomes in which all the birthdays are different is

365 · 364 · 363 · · · · · 336

since the second person must avoid the first person’s birthday, the third the first

two birthdays, and so on, until the 30th person must avoid the 29 previous

birthdays. Let D be the event that all birthdays are different. Dividing the

number of outcomes in which all the birthdays are different by the total number

of outcomes, we have

P (D) = 365 · 364 · 363 · · · · · 336

36530
= 0.293684

In words, only about 29% of the time all the birthdays are different, so you

will lose the bet 71% of the time.
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At first glance it is surprising that the probability of 2 people having the same

birthday is so large, since there are only 30 people compared with 365 days

on the calendar. Some of the surprise disappears if you realize that there are

(30 · 29)/2 = 435 pairs of people who are going to compare their birthdays. Let

pk be the probability that k people all have different birthdays. Clearly, p1 = 1

and pk+1 = pk(365 − k)/365. Using this recursion it is easy to generate the

values of pk for 1 ≤ k ≤ 40.

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

The graph shows the trends, but to get precise values a table is better:

1 1.00000 11 0.85886 21 0.55631 31 0.26955

2 0.99726 12 0.83298 22 0.52430 32 0.24665

3 0.99180 13 0.80559 23 0.49270 33 0.22503

4 0.98364 14 0.77690 24 0.46166 34 0.20468

5 0.97286 15 0.74710 25 0.43130 35 0.18562

6 0.95954 16 0.71640 26 0.40176 36 0.16782

7 0.94376 17 0.68499 27 0.37314 37 0.15127

8 0.92566 18 0.65309 28 0.34554 38 0.13593

9 0.90538 19 0.62088 29 0.31903 39 0.12178

10 0.88305 20 0.58856 30 0.29368 40 0.10877

1.3 Independence

Intuitively, two events A and B are independent if the occurrence of A has no

influence on the probability of occurrence of B . The formal definition is A and

B are independent if

P (A ∩ B) = P (A)P (B)
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To make the connection between the two definitions, we need to introduce

the notion of conditional probability, which is discussed in more detail in

Chapter 3.

Suppose we are told that the event A with P (A) > 0 occurs. Then the sample

space is reduced from � to A and the probability that B will occur given that A

has occurred is

P (B |A) = P (B ∩ A)

P (A)
(1.6)

To explain this formula, note that (i) only the part of B that lies in A can

possibly occur and (ii) since the sample space is now A, we have to divide by

P (A) to make P (A|A) = 1.

������������
A

B

B ∩ A

Ac

Suppose A and B are independent. In this case P (A ∩ B) = P (A)P (B), so

P (B |A) = P (A)P (B)

P (A)
= P (B)

or in the words of the intuitive definition of independence, “the occurrence of

A has no influence on the probability of the occurrence of B .”

Turning to concrete examples, in each case it should be clear that the intuitive

definition is satisfied, so we only check the formal one.

• Flip two coins. Let A = “the first coin shows heads” and B = “the second coin
shows heads.” P (A) = 1/2, P (B) = 1/2, P (A ∩ B) = 1/4.

• Roll two dice. Let A = “the first die shows 5” and B = “the second die shows 2.”
P (A) = 1/6, P (B) = 1/6, P (A ∩ B) = 1/36.

• Pick a card from a standard deck of 52 cards. Let A = “the card is an ace” and
B = “the card is a spade” P (A) = 1/13, P (B) = 1/4, P (A ∩ B) = 1/52.

Two examples of events that are not independent are

Example 1.7 Draw two cards from a deck. Let A = “the first card is a spade” and B = “the

second card is a spade.” Then P (A) = 1/4 and P (B) = 1/4, but

P (A ∩ B) = 13 · 12

52 · 51
<

(
1

4

)2
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To derive the answer, we note that there are 52 · 51 outcomes for drawing

two cards from the deck when we keep track of the order they are drawn, while

there are 13 · 12 outcomes that result in two spades. A second approach is to

note that we have a probability of P (A) = 13/52 of getting a spade the first time

and if we succeed then the probability on the second draw is P (B |A) = 12/51.

Rearranging the definition of conditional probability in (1.6)

P (A ∩ B) = P (A)P (B |A)

Thus, these two events are not independent, since getting a spade the first time

reduces the fraction of spades in the deck and makes it harder to get a spade the

second time.

Example 1.8 Roll two dice. Let A = “the sum of the two dice is 9” and B = “the first

die is 2.” A = {(6, 3), (5, 4), (4, 5), (3, 6)}, so P (A) = 4/36. P (B) = 1/6, but

P (A ∩ B) = 0 since (2, 7) is impossible.

In general, if A and B are disjoint events that have positive probabilities then

they are not independent since P (A)P (B) > 0 = P (A ∩ B).

There are two ways of extending the definition of independence to more than

two events. A1, . . . , An are said to be pairwise independent if for each i �= j ,

P (Ai ∩ A j ) = P (Ai )P (A j ); that is, each pair is independent. A1, . . . , An are

said to be independent if for any 1 ≤ i1 < i2 < · · · < ik ≤ n, we have

P (Ai1 ∩ · · · ∩ Aik ) = P (Ai1 ) · · · P (Aik )

If we flip n coins and let Ai = “the i th coin shows heads,” then the events Ai

are independent since P (Ai ) = 1/2 and P (Ai1 ∩ · · · ∩ Aik ) = 1/2k . We have

already seen an example of events that are pairwise independent but not inde-

pendent.

Example 1.9 Birthdays. Let A = “Alice and Betty have the same birthday,” B = “Betty and

Carol have the same birthday,” and C = “Carol and Alice have the same birthday.”

Each pair of events is independent but the three are not.

Since there are 365 ways 2 girls can have the same birthday out of 3652

possibilities (as in Example 1.6, we are assuming that leap year does not exist

and that all the birthdays are equally likely), P (A) = P (B) = P (C ) = 1/365.

Likewise, there are 365 ways all 3 girls can have the same birthday out of 3653

possibilities, so

P (A ∩ B) = 1

3652
= P (A)P (B)

that is, A and B are independent. Similarly, B and C are independent and C and

A are independent, so A, B , and C are pairwise independent. The three events
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A, B , and C are not independent; however, since A ∩ B = A ∩ B ∩ C and

hence

P (A ∩ B ∩ C ) = 1

3652
�=
(

1

365

)3

= P (A)P (B)P (C )

Example 1.10 Roll three dice. Let A = “the numbers on the first and second add to 7,” B =
“the numbers on the second and third add to 7,” and C = “the numbers on the

third and first add to 7.” Again each pair of events is independent but the three

are not.

To check that A and B are independent, note that no matter what the values

i and j are on the first two dice there is probability 1/6 that the third die is

7 − j . Similar arguments show that B and C are independent and A and C are

independent. To show that the three events are not independent, we note that

A ∩ B ∩ C = ∅. Let i, j, k be the values for the three dice. We claim that if A

and B occur then i + k is even, so C is impossible. To check this, note that if j

is odd then i and k are even, while if j is even then i and k are odd.

The last two examples are somewhat unusual. However, the moral of the story

is that to show several events are independent, you have to check more than just

that each pair is independent.

1.4 Random variables and distributions

A random variable is a numerical value determined by the outcome of an

experiment. Consider the following four examples:

• Roll two dice and let X = the sum of the two numbers that appear.
• Roll a die until a 4 appears and let X = the number of rolls we need.
• Flip a coin 10 times and let X = the number of heads we get.
• Draw 13 cards out of a deck and let X = the number of hearts we get.

In these cases X is a discrete random variable. That is, there is a finite

or countable sequence of possible values. In contrast, the height of a ran-

domly chosen person or the time a person spends waiting for the bus in the

morning are continuous random variables, since the value could be any pos-

itive real number. In this book we are primarily concerned with discrete ran-

dom variables. Continuous random variables do not make an appearance until

Chapter 5.

The distribution of a discrete random variable is described by giving the

value of P (X = x) for all values of x . In each case, we only give the values of

P (X = x) when P (X = x) > 0. The other values that we do not mention are

0. We begin with the first two examples.
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Example 1.11 Roll two dice. Let X = the sum of the two numbers that appear.

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3)

(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4)

(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5)

(1, 6) (2, 6) (3, 6) (4, 6) (5, 6) (6, 6)

Using the table of outcomes, it is easy to see

x 2 3 4 5 6 7 8 9 10 11 12

P (X = x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

To check this, note that the outcomes with a given sum are diagonal lines in

the square. For example, the four outcomes in boldface are the ones for which

the sum is 5.

Example 1.12 Geometric distribution. If we repeat an experiment with probability p of

success until a success occurs, the number of trials required, N, has

P (N = n) = (1 − p)n−1 p for n = 1, 2, . . .

In words, N has a geometric distribution with parameter p, a phrase we

abbreviate as N = geometric(p).

To check the formula, note that in order to first have success on trial n, we must

have n − 1 failures followed by a success, which has probability (1 − p)n−1 p. In

the example at the beginning of the section, success is rolling a 4, so p = 1/6.

The next graph gives a picture of the distribution in this case.
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For an example of the use of the geometric distribution, we consider

Example 1.13 Birthday problem, II. How large must the group be so that there is a probability

>0.5 that someone will have the same birthday as you do?

In our first encounter with the birthday problem it was surprising that the

size needed to have 2 people with the same birthday was so small. This time the

surprise goes in the other direction. Assuming 365 equally likely birthdays, a

naive guess is that 183 people will be enough. However, in a group of n people

the probability that all will fail to have your birthday is (364/365)n. Setting this

equal to 0.5 and solving,

n = log(0.5)

log(364/365)
= −0.69314

−0.0027435
= 252.7

So we need 253 people. The “problem” is that many people in the group will

have the same birthday, so the number of different birthdays is smaller than the

size of the group.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

15 1.4 Random variables and distributions

Example 1.14 Astragali. Board games involving chance were known in Egypt, 3000 b.c. The

element of chance needed for these games was at first provided by tossing

astragali, the ankle bones of sheep. These bones could come to rest on only

four sides, the other two sides being rounded. The upper side of the bone,

broad and slightly convex, counted four (tetras); the opposite side, broad and

slightly concave, counted three (trias); the lateral side, flat and narrow, one

(monas), and the opposite narrow lateral side, which is slightly hollow, six

(hexas).

The outcomes of this experiment are � = {1, 3, 4, 6}. There is no reason to

suppose that all four sides have the same probability, so our model will have

probabilities for the four outcomes p1, p3, p4, p6 ≥ 0 that have p1 + p3 + p4 +
p6 = 1. To define the probability of an event A, we let

P (A) =
∑
i∈A

pi

In words, we add up the probabilities of the outcomes in A. With a little

thought we see that any probability with a finite set of outcomes has this form.

Example 1.15 English letter frequencies. In text written in English the 26 letters in the

alphabet occur with the following frequencies:

E 13.0% H 3.5% W 1.6%

T 9.3% L 3.5% V 1.3%

N 7.8% C 3.0% B 0.9%

R 7.7% F 2.8% X 0.5%

O 7.4% P 2.7% K 0.3%

I 7.4% U 2.7% Q 0.3%

A 7.3% M 2.5% J 0.2%

S 6.3% Y 1.9% Z 0.1%

D 4.4 % G 1.6%

From this it follows that vowels (A, E, I, O, U) are used 7.3 + 13.0 + 7.4 +
7.4 + 2.7 = 37.8% of the time.

Example 1.16 Scrabble. In this game, there are 100 tiles with the following distribution. The

first number after the letter is its point value and the second is the number of

tiles.
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E 1 12 U 1 4 V 4 2

A 1 9 D 2 4 W 4 2

I 1 9 G 2 3 Y 4 2

O 1 8 B 3 2 K 5 1

N 1 6 C 3 2 J 8 1

R 1 6 M 3 2 X 8 1

T 1 6 P 3 2 Q 10 1

L 1 4 F 4 2 Z 10 1

S 1 4 H 4 2 blank 0 2

In Scrabble, vowels are 12 + 9 + 9 + 8 + 4 = 42% of the letters. The number

of points on a randomly chosen tile has the following distribution:

0 1 2 3 4 5 8 10

0.02 0.68 0.07 0.08 0.10 0.01 0.02 0.02

Example 1.17 Benford’s law is named after the late Dr. Frank Benford, a physicist at General

Electric Company. In 1938, he noticed that pages of logarithms correspond-

ing to numbers starting with 1 were dirtier and more worn than other pages.

He examined 20,229 data sets and developed a prediction about the observed

distribution of first digits:

pk = log10(k + 1) − log10(k) for k = 1, 2, . . . , 9

This is a probability distribution because pk ≥ 0 and
∑9

k=1 pk = log10(10) −
log10(1). The numerical values of the probabilities are

1 2 3 4 5 6 7 8 9

0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458

Some of the many examples that are supposed to follow Benford’s law are

census populations of 3,259 counties, 308 numbers from Reader’s Digest, areas

of 335 rivers, 342 addresses of American Men of Science. The next table compares

the percentages of the observations in the first five categories to Benford’s law:

1 2 3 4 5

Census 33.9 20.4 14.2 8.1 7.2

Reader’s Digest 33.4 18.5 12.4 7.5 7.1

Rivers 31.0 16.4 10.7 11.3 7.2

Benford’s law 30.1 17.6 12.5 9.7 7.9

Addresses 28.9 19.2 12.6 8.8 8.5
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The fits are far from perfect, but in each case Benford’s law matches the general

shape of the observed distribution.

Why should Benford’s law hold? It is a mathematical fact that the first digits

of 2n follow Benford’s law. This can be established by showing that the fractional

parts of log10(2m) for 1 ≤ m ≤ n (that is, the part of the number to the right

of the decimal point) are, for large n, approximately uniformly distributed

on (0, 1).

There are two good general explanations:

(i) If the Dow Jones average or some other statistic grows at a rate r , that is,

f (t) = C er t , then the amount of time it takes for the first digit to change

from k to k + 1 is [ln(k + 1) − ln(k)]/r . When we divide by the total time

to go from 1 to 10, the result is Benford’s law.

(ii) Ted Hill proved (see Statistical Science 10, 354–363) that if the first-digit

distribution does not depend on the units used then Benford’s law is the

only possibility.

1.5 Expected value

The expected value of X , or mean of X , is defined to be

E X =
∑

x

x P (X = x) (1.7)

In words, we multiply each possible value by its probability and sum.

Example 1.18 Roulette. If you play roulette and bet $1 on black then you win $1 with prob-

ability 18/38 and you lose $1 with probability 20/38, so the expected value of

your winnings X is

E X = 1 · 18

38
+ (−1) · 20

38
= −2

38
= −0.0526

The expected value has a meaning much like the frequency interpretation of

probability: in the long run you will lose about 5.26 cents per play.

To make a precise statement we need a definition. Suppose X1, . . . , Xn are

independent and have the same distribution as X ; that is,

P (X1 = x1, . . . , Xn = xn) = P (X = x1) · · · P (X = xn)

The law of large numbers, which is proved in Chapter 6, says that when n is

large the average of the values we have observed, (X1 + · · · + Xn)/n, will be

close to E X with high probability. In the roulette example, if we let Xi be your

winnings on the i th play then this law says that (X1 + · · · + Xn)/n will be close

to −0.0526.
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Example 1.19 Roll one die. Let X be the number that appears on the die. P (X = x) = 1/6

for x = 1, 2, 3, 4, 5, 6, so

E X = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 21

6
= 3

1

2

In this case the expected value is just the average of the six possible values.

To deal with more than one die we use the following fact, which is proved in

Chapter 6.

Theorem 1.1. If X1, . . . , Xn are random variables then

E (X1 + · · · + Xn) = E X1 + · · · + E Xn (1.8)

From this and Example 1.19, it follows that if we roll two dice the expected

value of the sum is 7. As another example, let Xi = 1 if the i th flip of a coin is

heads and 0 otherwise. X1 + · · · + Xn is the number of heads in n tosses. Since

E Xi = 1/2 for a fair coin, the last result implies that

E (X1 + · · · + Xn) = nE Xi = n

2

Example 1.20 Scrabble. As we computed in Example 1.16, the point value of a randomly

chosen Scrabble tile has the following distribution:

Value 0 1 2 3 4 5 8 10

Probability 0.02 0.68 0.07 0.08 0.10 0.01 0.02 0.02

The expected value is

= 0.68 + 0.14 + 0.24 + 0.4 + 0.05 + 0.16 + 0.2 = 1.87

This means that when we draw 7 letters to start the game the average numbers of

points on our rack will be 7(1.87) = 13.09. Of course, on any play of the game

the number of points may be more or less than 13. The law of large numbers

implies that if we keep records for a large number of games then the average we

see on our first draws will be close to the expected value.

Example 1.21 Fair division of a bet on an interrupted game. Pascal and Fermat were sitting

in a café in Paris playing the simplest of all games, flipping a coin. Each had put

up a bet of 50 francs and the first to get 10 points wins. Fermat was winning

8 points to 7 when he received an urgent message that a friend was sick and

he must rush to his hometown of Toulouse. The carriage man who delivered

the message offered to take him, but only if he would leave immediately. Later

in correspondence between the two men, the problem arose: How should the

money bet (100 francs) be divided?
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Fermat came up with the reasonable idea that the fraction of the stakes that

each receives should be equal to the probability it would have won the match. In

the case under consideration, it is easier to calculate the probability that Pascal

(P ) wins. In order for Pascal to win by a score of 10–8, he must win three

flips in a row: P P P , an event of probability 1/8. To win 10–9, he can lose one

flip but not the last one: F P P P , P F P P , P P F P , which has probability 3/16.

Adding the two we see that Pascal wins with probability 5/16 and should get

that fraction of the total bet, that is, (5/16)(100) = 31.25.

Example 1.22 Deal or No Deal. In this TV game show there are 26 briefcases with amounts

of money indicated in the first, third, and fifth columns of the next table. You

pick one briefcase and then pick five others to open. At that point they offer you

an amount of money. If you take it the game ends. If not, then you open more

briefcases. The numbers in the second, fourth, and sixth columns are the rounds

on which I opened those briefcases when I played the game online at nbc.com:

0.01 2 300 3 75,000 4

1 1 400 4 100,000 2

5 2 500 3 200,000

10 750 3 300,000 2

25 2 1,000 9 400,000 5

50 4 5,000 1 500,000 3

75 5 10,000 1 750,000 7

100 8 25,000 6 1,000,000 1

200 1 50,000 1

The expected value of the money in the briefcase you pick is 131,477. The

next table gives the offers I got from the online game compared with the expected

value after each of the rounds.

1 25,866 117,660

2 35,158 122,074

3 30,492 120,970

4 46,446 152,910

5 48,806 162,685

6 64,675 190,222

7 21,620 50,277

8 40,872 67,003

9 62,003 100,005

Notice that in all cases the offer is considerably less than the expected value.

After the ninth round there are two briefcases left, one with 200,000 and other
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with 10. If I were playing for real I might have taken the 62,003 offer for sure

but I stuck with the higher expected value and won 200,000.

Example 1.23 Geometric distribution. When P (N = n) = (1 − p)n−1 p, for n = 1, 2,

3, . . . , we have E N = 1/p.

This answer is intuitive. We have a probability p of success on each trial, so

in n trials we have an average of np successes and if we want np = 1, we need

n = 1/p. To get this from the definition, we begin with the sum of the geometric

series

∞∑
k=0

xk = 1

1 − x

and differentiate with respect to x to get

∞∑
k=0

kxk−1 = 1

(1 − x)2

Dropping the k = 0 term from the left since it is 0 and setting x = 1 − p,

∞∑
k=1

k(1 − p)k−1 = 1

p2

Multiplying each side by p we have

∞∑
k=1

k P (N = k) = 1

p

Example 1.24 China’s one-child policy. In order to limit the growth of its population, the

Chinese government decided to limit families to having just one child. An

alternative that was suggested was the “one-son” policy: as long as a woman has

only female children she is allowed to have more children. One concern voiced

about this policy was that no family would have more than one son, but many

families would have several girls. This concern leads to our question: How would

the one-son policy affect the ratio of male to female births?

To simplify the problem we assume that a family will keep having children

until it has a male child. Assuming that male and female children are equally

likely and the sexes of successive children are independent, the total number

of children has a geometric distribution with success probability p = 1/2, so

by the previous example the expected number of children is 1/p = 2. There is

always one male child, so the expected number of female children is 2 − 1 = 1.

Does this continue to hold if some families stop before they have a male child?

Consider for simplicity the case in which a family will stop when they have a
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male child or a total of three children. There are 4 outcomes:

P (M) = 1

2

P (F M) = 1

4

P (F F M) = 1

8

P (F F F ) = 1

8

The average number of male children is 1/2 + 1/4 + 1/8 = 7/8, while the

average number of female children is 1(1/4) + 2(1/8) + 3(1/8) = 7/8.

The last calculation makes the equality of the expected values look like a

miracle, but it is not, and the claim holds true if a family with k female children

continues with probability pk and stops with probability 1 − pk . To explain this

intuitively, if we replace M by +1 and F by −1, then childbirth is a fair game.

For the stopping rules under consideration the average winnings when we stop

have mean 0; that is, the expected number of male children equals the expected

number of female children.

1.6 Moments and variance

In this section we are interested in the expected values of various functions of

random variables. The most important of these are the variance and the standard

deviation, which give an idea about how spread out the distribution is. The first

basic fact we need in order to do computations is

Theorem 1.2. If X has a discrete distribution and Y = r (X) then

E Y =
∑

x

r (x)P (X = x) (1.9)

Proof. P (Y = y) = ∑
x :r (x)=y P (X = x). Multiplying both sides by y and sum-

ming gives

E Y =
∑

y

y P (Y = y) =
∑

y

y
∑

x :r (x)=y

P (X = x)

=
∑

y

∑
x :r (x)=y

r (x)P (X = x) =
∑

x

r (x)P (X = x)

since the double sum is just a clumsy way of summing over all the possible values

of x .
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If r (x) = xk , E (Xk) is the k th moment of X . When k = 1, this is the first

moment or mean of X .

Example 1.25 Roll one die. Let X be the resulting number. Compute E X2.

E X2 = 1

6
(1 + 4 + 9 + 16 + 25 + 36) = 91

6
= 15.1666

To prepare for our next topic we need the following properties:

E (X + b) = E X + b E (a X) = a E X (1.10)

In words, if we add 5 to a random variable then we add 5 to its expected value.

If we multiply a random variable by 3 we multiply its expected value by 3.

Proof. For the first one, we note that

E (X + b) =
∑

x

(x + b) P (X = x) dx

=
∑

x

x P (X = x) +
∑

x

b P (X = x) = E X + b

The second is easier:

E (a X) = a
∑

x

x P (X = x) = a E X

If E X2 < ∞ then the variance of X is defined to be

var(X) = E (X − E X)2

To illustrate this concept, we consider some examples. But first, we need a

formula that enables us to compute the variance more easily.

var(X) = E X2 − (E X)2 (1.11)

Proof. Letting µ = E X to make the computations easier to see, we have

var(X) = E (X − µ)2 = E (X2 − 2µX + µ2) = E X2 − 2µE X + µ2

by (1.10) and the facts that E (−2µX) = −2µE X and E (µ2) = µ2. Substitu-

ting µ = E X now gives the result.

The reader should note that E X2 means the expected value of X2 and in the

proof E (X − µ)2 means the expected value of (X − µ)2. When we want the

square of the expected value we write (E X)2. This convention is designed to cut

down on parentheses.
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The variance measures how spread out the distribution of X is. To begin to

explain this statement, we show that

var(X + b) = var(X) var(a X) = a2var(X) (1.12)

In words, the variance is not changed by adding a constant to X , but multi-

plying X by a multiplies the variance by a2.

Proof. If Y = X + b then the mean of Y , µY = µX + b by (1.10), so

var(X + b) = E [(X + b) − (µX + b)]2 = E (X − µX )2 = var(X)

If Y = a X then µY = aµX by (1.10), so

var(a X) = E [(a X − aµX )2] = a2 E (X − µX )2 = a2var(X)

The scaling relationship (1.12) shows that if X is measured in feet then the

variance is measured in square feet. This motivates the definition of the standard
deviation σ (X) = √

var(X), which is measured in the same units as X and has

a nicer scaling property:

σ (a X) = |a|σ (X) (1.13)

We get the absolute value here since
√

a2 = |a|.

Example 1.26 Roll one die. Let X be the resulting number. Find the variance and standard

deviation of X .

Examples 1.19 and 1.25 tell us that E X = 7/2 and E X2 = 91/6, so

var(X) = E X2 − (E X)2 = 91

6
− 49

4
= 105

36
= 2.9166

and σ (X) = √
var(X) = 1.7078. The standard deviation σ (X) gives the size of

the “typical deviation from the mean.” To explain this, we note that the deviation

from the mean

|X − µ| =




0.5 when X = 3, 4

1.5 when X = 2, 5

2.5 when X = 1, 6

so E |X − µ| = 1.5. The standard deviation σ (X) =
√

E |X − µ|2 is a slightly

less intuitive way of averaging the deviations |X − µ| but, as we see later, is one

that has nicer properties.
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Example 1.27 Scrabble. As we computed in Example 1.16, the point value of a randomly

chosen Scrabble tile has the following distribution:

Value 0 1 2 3 4 5 8 10

Probability 0.02 0.68 0.07 0.08 0.10 0.01 0.02 0.02

In Example 1.20, we have computed that E X = 1.87.

E X2 = 0.68 + 4(0.07) + 9(0.08) + 16(0.10) + 25(0.01)

+ 64(0.02) + 100(0.02) = 9.06

so the variance is 9.06 − (1.87)2 = 5.5631 and the standard deviation is√
5.5631 = 2.35.

Example 1.28 Geometric distribution. Suppose N = geometric(p). That is, P (N = n) =
(1 − p)n−1 p for n = 1, 2, . . . , and 0 otherwise. Compute the variance and

standard deviation of N.

To compute the variance, we begin, as in Example 1.23, by observing that

∞∑
n=0

xn = (1 − x)−1

Differentiating this identity twice and noticing that the n = 0 term in the first

derivative is 0 gives

∞∑
n=1

nxn−1 = (1 − x)−2
∞∑

n=1

n(n − 1)xn−2 = 2(1 − x)−3

Setting x = 1 − p gives

∞∑
n=1

n(1 − p)n−1 = p−2
∞∑

n=1

n(n − 1)(1 − p)n−2 = 2p−3

Multiplying both sides by p in the first case and p(1 − p) in the second, we

have

E N =
∞∑

n=1

n(1 − p)n−1 p = p−1

E [N(N − 1)] =
∞∑

n=1

n(n − 1)(1 − p)n−1 p = 2p−2(1 − p)
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From this it follows that

E N2 = E [N(N − 1)] + E N = 2 − 2p

p2
+ 1

p
= 2 − p

p2

var(N) = E N2 − (E N)2 = 2 − p

p2
− 1

p2
= 1 − p

p2

Taking the square root, we see that σ (X) = √
1 − p/p.

Example 1.29 New York Yankees 2004 salaries. Salaries are in units of M (millions of dollars

per year) and, for convenience, have been truncated at the thousands place.

A. Rodriguez 21.726 D. Jeter 18.6

M. Mussina 16 K. Brown 15.714

J. Giambi 12.428 B. Williams 12.357

G. Sheffield 12.029 M. Rivera 10.89

J. Posada 9 J. Vazquez 9

J. Contreras 9 J. Olerud 7.7

H. Matsui 7 S. Karsay 6

E. Loazia 4 T. Gordon 3.5

P. Quantrill 3 K. Lofton 2.985

J. Lieber 2.7 T. Lee 2

G. White 1.925 F. Heredia 1.8

R. Sierra 1 M. Cairo 0.9

J. Falherty 0.775 T. Clark 0.75

E. Wilson 0.7 O. Hernandez 0.5

D. Osborne 0.45 C.J. Nitowski 0.35

J. DePaula 0.302 B. Crosby 0.301

The total team salary is 183.355 M. Dividing by 32 players gives a mean of

6.149 M. The second moment is 73.778 M2, so the variance is 73.778 −
(6.149)2 = 35.961 M2 and the standard deviation is 5.996 M. The next graph

shows the fraction of Yankees with salaries ≥ x M.
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1.7 Exercises

Basic definitions

1. A man receives presents from his three children, Allison, Betty, and Chelsea.

To avoid disputes he opens the presents in a random order. What are the possible

outcomes?

2. Suppose we pick a number at random from the phone book and look at the last

digit. (a) What is the set of outcomes and what probability should be assigned

to each outcome? (b) Would this model be appropriate if we were looking at the

first digit?

3. Two students arrive late for a math final exam with the excuse that their car

had a flat tire. Suspicious, the professor says “each one of you write down on a

piece of paper which tire was flat.” What is the probability that both students

pick the same tire?

4. Suppose we roll a red die and a green die. What is the probability that the

number on the red die is larger than the number on the green die?

5. Two dice are rolled. What is the probability that (a) the two numbers will

differ by 1 or less and (b) the maximum of the two numbers will be 5 or larger?

6. If we flip a coin 5 times, what is the probability that the number of heads is

an even number (that is, divisible by 2)?

7. The 1987 World Series was tied at two games a piece before the St. Louis

Cardinals won the fifth game. According to the Associated Press, “The numbers

of history support the Cardinals and the momentum they carry. Whenever the

series has been tied 2–2 the team that won the fifth game won the series 71%

of the time.” If momentum is not a factor and each team has a 50% chance of

winning each game, what is the probability that the Game 5 winner will win the

series?

8. Two boys are repeatedly playing a game that they each have probability 1/2 of

winning. The first person to win 5 games wins the match. What is the probability

that Al will win if (a) he has won 4 games and Bobby has won 3 and (b) he leads

by a score of 3 games to 2?

9. 20 families live in a neighborhood: 4 have 1 child, 8 have 2 children, 5 have

3 children, and 3 have 4 children. If we pick a child at random, what is the

probability that they come from a family with 1, 2, 3, 4 children?

10. In Galileo’s time people thought that when three dice were rolled, a sum

of 9 and a sum of 10 had the same probability since each could be obtained
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in 6 ways:

9 : 1 + 2 + 6, 1 + 3 + 5, 1 + 4 + 4, 2 + 2 + 5, 2 + 3 + 4, 3 + 3 + 3

10 : 1 + 3 + 6, 1 + 4 + 5, 2 + 4 + 4, 2 + 3 + 5, 2 + 4 + 4, 3 + 3 + 4

Compute the probabilities of these sums and show that 10 is a more likely total

than 9.

11. Suppose we roll three dice. Compute the probability that the sum is (a) 3,

(b) 4, (c) 5, (d) 6, (e) 7, (f) 8, (g) 9, (h) 10.

12. In a group of students, 25% smoke cigarettes, 60% drink alcohol, and 15%

do both. What fraction of students have at least one of these bad habits?

13. In a group of 320 high school graduates, only 160 went to college but 100 of

the 170 men did. How many women did not go to college?

14. In the freshman class, 62% of the students take math, 49% take science, and

38% take both science and math. What percentage takes at least one science or

math course?

15. 24% of people have American Express cards, 61% have Visa cards, and 8%

have both. What percentage of people have at least one credit card?

16. Suppose � = {a , b, c}, P ({a , b}) = 0.7, and P ({b, c}) = 0.6. Compute the

probabilities of {a}, {b}, and {c}.
17. Suppose A and B are disjoint with P (A) = 0.3 and P (B) = 0.5. What is

P (Ac ∩ Bc )?

18. Given two events A and B with P (A) = 0.4 and P (B) = 0.7, what are the

maximum and minimum possible values for P (A ∩ B)?

Independence

19. Suppose we draw 2 cards out of a deck of 52. Let A = “the first card is an

ace” and B = “the second card is a spade.” Are A and B independent?

20. A family has 3 children, each of whom is a boy or a girl with probability 1/2.

Let A = “there is at most 1 girl” B = “the family has children of both sexes.”

(a) Are A and B independent? (b) Are A and B independent if the family has

4 children?

21. Suppose we roll a red and a green die. Let A = “the red die shows a 2 or a 5”

and B = “the sum of the two dice is at least 7.” Are A and B independent?
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22. Roll two dice. Let A = “the sum is even” and B = “the sum is divisible by

3,” that is, B = {3, 6, 9, 12}. Are A and B independent?

23. Roll two dice. Let A = “the first die is odd,” B = “the second die is odd,”

and C = “the sum is odd.” Show that these events are pairwise independent but

not independent.

24. Nine children are seated at random in three rows of three desks. Let A = “Al

and Bobby sit in the same row” and B = “Al and Bobby both sit at one of the

four corner desks.” Are A and B independent?

25. Two students, Alice and Betty, are registered for a statistics class. Alice attends

80% of the time, Betty 60% of the time, and their absences are independent. On

a given day, what is the probability that (a) at least one of these students is in

class and (b) exactly one of them is there?

26. Let A and B be two independent events with P (A) = 0.4 and P (A ∪ B) =
0.64. What is P (B)?

27. Three students each have probability 1/3 of solving a problem. What is the

probability that at least one of them will solve the problem?

28. Three independent events have probabilities 1/4, 1/3, and 1/2. What is the

probability that exactly one will occur?

29. Three missiles are fired at a target. They will hit it with probabilities 0.2, 0.4,

and 0.6. Find the probability that the target is hit by (a) three, (b) two, (c) one,

and (d) no missiles.

30. Three couples that were invited to dinner will independently show up with

probabilities 0.9, 0.89, and 0.75. Let N be the number of couples that show up.

Calculate the probability P (N) with N = 3, 2, 1, 0.

31. A college student takes 4 courses a semester for 8 semesters. In each course

she has a probability 1/2 of getting an A. Assuming her grades in different courses

are independent, what is the probability that she will have at least one semester

with all A’s?

32. When Al and Bob play tennis, Al wins a set with probability 0.7 while Bob

wins with probability 0.3. What is the probability that Al will be the first to win

(a) two sets and (b) three sets?

33. Chevalier de Méré made money betting that he could “roll at least one 6 in

4 tries.” When people got tired of this wager he changed it to “roll at least one

double 6 in 24 tries,” but then he started losing money. Compute the probabilities

of winning these two bets.
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34. Samuel Pepys wrote to Isaac Newton: “What is more likely, (a) at least one 6

in 6 rolls of one die or (b) at least two 6’s in 12 rolls?” Compute the probabilities

of these events.

Distributions

35. Suppose we roll two dice and let X and Y be the two numbers that appear.

Find the distribution of |X − Y |.
36. Suppose we roll three tetrahedral dice that have 1, 2, 3, and 4 on their four

sides. Find the distribution for the sum of the three numbers.

37. We roll two six-sided dice, one with sides 1, 2, 2, 3, 3, 4 and the other with

sides 1, 3, 4, 5, 6, 8. What is the distribution of the sum?

38. How many children should a family plan to have so that the probability of

having at least one child of each sex is ≥0.95?

39. How many times should a coin be tossed so that the probability of at least

one head is ≥99%?

Expected value

40. You want to invent a gambling game in which a person rolls two dice and is

paid some money if the sum is 7, but otherwise he loses his money. How much

should you pay him for winning a $1 bet if you want this to be a fair game, that

is, to have expected value 0?

41. A bet is said to carry 3 to 1 odds if you win $3 for each $1 you bet. What

must the probability of winning be for this to be a fair bet?

42. A lottery has one $100 prize, two $25 prizes, and five $10 prizes. What should

you be willing to pay for a ticket if 100 tickets are sold?

43. In a popular gambling game, three dice are rolled. For a $1 bet you win $1

for each 6 that appears (plus your dollar back). If no 6 appears you lose your

dollar. What is your expected value?

44. A roulette wheel has slots numbered 1 to 36 and two labeled with 0 and 00.

Suppose that all 38 outcomes have equal probabilities. Compute the expected

values of the following bets. In each case you bet one dollar and when you win

you get your dollar back in addition to your winnings. (a) You win $1 if one of

the numbers 1 through 18 comes up. (b) You win $2 if the number that comes

up is divisible by 3 (0 and 00 do not count). (c) You win $35 if the number 7

comes up.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

30 Basic Concepts

45. In the Las Vegas game Wheel of Fortune, there are 54 possible outcomes.

One is labeled “Joker,” one “Flag,” two “20,” four “10,” seven “5,” fifteen “2,” and

twenty-four “1.” If you bet $1 on a number you win that amount of money if

the number comes up (plus your dollar back). If you bet $1 on Flag or Joker,

you win $40 if that symbol comes up (plus your dollar back). What bets have

the best and worst expected value here?

46. Sic Bo is an ancient Chinese dice game played with three dice. One of the

possibilities for betting in the game is to bet “big.” For this bet, you win if the

total X is 11, 12, 13, 14, 15, 16, or 17, except when there are three 4’s or three

5’s. On a $1 bet on big, you win $1 plus your dollar back if it happens. What is

your expected value?

47. Five people play a game of “odd man out” to determine who will pay for

the pizza they ordered. Each flips a coin. If only one person gets heads (or tails)

while the other four get tails (or heads) then he is the odd man and has to pay.

Otherwise they flip again. What is the expected number of tosses needed to

determine who will pay?

48. A man and his wife decide that they will keep having children until they have

one of each sex. Ignoring the possibility of twins and supposing that each trial

is independent and results in a boy or a girl with probability 1/2, what is the

expected value of the number of children they will have?

49. An unreliable clothes dryer dries your clothes and takes 20 minutes with

probability 0.6 and buzzes for 4 minutes and does nothing with probability 0.4.

If we assume that successive trials are independent and that we patiently keep

putting our money in to try to get it to work, what is the expected time we need

to get our clothes dry?

Moments and variance

50. A random variable has P (X = x) = x/15 for x = 1, 2, 3, 4, 5, and 0 other-

wise. Find the mean and variance of X .

51. Find the mean and variance of the number of games in the World Series.

Recall that it is won by the first team to win four games and assume that the

outcomes are determined by flipping a coin.

52. Suppose we pick a month at random from a non-leap year calendar and let

X be the number of days in the month. Find the mean and variance of X .

53. The Elm Tree golf course in Cortland, NY, is a par 70 layout with 3 par fives,

5 par threes, and 10 par fours. Find the mean and variance of par on this course.
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54. In a group of five items, two are defective. Find the distribution of N, the

number of draws we need to find the first defective item. Find the mean and

variance of N.

55. Can we have a random variable with E X = 3 and E X2 = 8?

56. Suppose P (X ∈ {1, 2, 3}) = 1 and E X = 2.5. What are the smallest and

largest possible values for the variance?
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Combinatorial Probability

2.1 Permutations and combinations

As usual we begin with a question:

Example 2.1 The New York State Lottery picks 6 numbers out of 59, or more precisely,

a machine picks 6 numbered ping-pong balls out of a set of 59. How many

outcomes are there? The set of numbers chosen is all that is important. The

order in which they are chosen is irrelevant.

To work up to the solution we begin with something that is obvious but is a

key step in some of the reasoning to follow.

Example 2.2 A man has 4 pair of pants, 6 shirts, 8 pairs of socks, and 3 pairs of shoes. Ignoring

the fact that some of the combinations may look ridiculous, in how many ways

can he get dressed?

We begin by noting that there are 4 · 6 = 24 possible combinations of pants

and shirts. Each of these can be paired with 1 of 8 choices of socks, so there

are 24 · 8 = 192 ways of putting on pants, shirts, and socks. Repeating the last

argument one more time, we see that for each of these 192 combinations there

are 3 choices of shoes, so the answer is

4 · 6 · 8 · 3 = 576 ways

The reasoning in the last solution can clearly be extended to more than 4

experiments, and does not depend on the number of choices at each stage, so

we have

The multiplication rule. Suppose that m experiments are performed in order

and that, no matter what the outcomes of experiments 1, . . . , k − 1 are, ex-

periment k has nk possible outcomes. Then the total number of outcomes is

n1 · n2 · · · · · nm.

32
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Example 2.3 How many ways can 5 people stand in line?

To answer this question, we think about building the line up 1 person at a

time starting from the front. There are 5 people we can choose to put at the

front of the line. Having made the first choice, we have 4 possible choices for the

second position. (The set of people we have to choose from depends on who was

chosen first, but there are always 4 people to choose from.) Continuing, there

are 3 choices for the third position, 2 for the fourth, and finally 1 for the last.

Invoking the multiplication rule, we see that the answer must be

5 · 4 · 3 · 2 · 1 = 120

Generalizing from the last example we define n factorial to be

n! = n · (n − 1) · (n − 2) · · · 2 · 1 (2.1)

To see that this gives the number of ways n people can stand in line, notice

that there are n choices for the first person and n − 1 for the second, and each

subsequent choice reduces the number of people by 1 until finally there is only

1 person who can be the last in line.

Note that n! grows very quickly since n! = n · (n − 1)!.

1! 1 7! 5,040

2! 2 8! 40,320

3! 6 9! 362,880

4! 24 10! 3,628,800

5! 120 11! 39,916,800

6! 720 12! 479,001,600

The number of ways we can put the 22 volumes of an encyclopedia on a shelf

is

22! = 1.24000728 × 1021

Here, we have used our TI-83. We typed in 22 and then used the MATH button

to get to the PRB menu and scroll down to the fourth entry to get the !, which

gives us 22! after we press ENTER.

The number of ways that cards in a deck of 52 can be arranged is

52! = 8.065817517 × 1067

Before there were calculators, people used Stirling’s formula:

n! ≈
(n

e

)n √
2πn (2.2)

When n = 52, 52/e = 19.12973094 and
√

2πn = 18.07554591, so

52! ≈ (19.12973094)52 · 18.07554591 = 8.0529 × 1067
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Example 2.4 Twelve people belong to a club. How many ways can they pick a president, vice

president, secretary, and treasurer?

Again we think of filling the offices one at a time in the order in which they

were given in the last sentence. There are 12 people we can pick for president.

Having made the first choice, there are always 11 possibilities for vice presi-

dent, 10 for secretary, and 9 for treasurer. So by the multiplication rule, the

answer is

12

P

11

V

10

S

9

T
= 11,800

To compute P12,4 with the TI-83 calculator, type 12, push the MATH button,

move the cursor across to the PRB submenu, scroll down to nPr on the second

row, and press ENTER. nPr appears on the screen after the 12. Now type 4 and

press ENTER.

Passing to the general situation, if we have k offices and n club members then

the answer is

n · (n − 1) · (n − 2) · · · · · (n − k + 1)

To see this, note that there are n choices for the first office, n − 1 for the

second, and so on until there are n − k + 1 choices for the last, since after the

last person is chosen there will be n − k left. Products such as the last one come

up so often that they have a name: the number of permutations of k objects
from a set of size n, or Pn,k for short. Multiplying and dividing by (n − k)!, we

have

n · (n − 1) · (n − 2) · · · · · (n − k + 1) · (n − k)!

(n − k)!
= n!

(n − k)!

which gives us a short formula

Pn,k = n!

(n − k)!
(2.3)

The last formula would give us the answer to the lottery problem if the order

in which the numbers were drawn was important. Our last step is to consider a

related but slightly simpler problem.

Example 2.5 A club has 23 members. How many ways can they pick 4 people to be on a

committee to plan a party?

To reduce this question to the previous situation, we imagine making the

committee members stand in line, which by (2.3) can be done in 23 · 22 · 21 · 20

ways. To get from this to the number of committees, we note that each committee

can stand in line 4! ways, so the number of committees is the number of lineups
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divided by 4! or

23 · 22 · 21 · 20

1 · 2 · 3 · 4
= 23 · 11 · 7 · 5 = 8,855

To compute C23,4 with the TI-83 calculator, type 23, push the MATH button,

move the cursor across to the PRB submenu, scroll down to nCr on the third

row, and press ENTER. nCr appears on the screen after the 23. Now type 4 and

press ENTER.

Passing to the general situation, suppose we want to pick k people out of a

group of n. Our first step is to make the k people stand in line, which can be

done in Pn,k ways, and then to realize that each set of k people can stand in line

k! ways, so the number of ways to choose k people out of n is

Cn,k = Pn,k

k!
= n!

k!(n − k)!
= n · (n − 1) · · · · · (n − k + 1)

1 · 2 · · · · · k
(2.4)

by (2.4) and (2.1). Here, Cn,k is short for the number of combinations of k

things taken from a set of n. Cn,k is often written as
(n

k

)
, a symbol that is read as

“n choose k.” We are now ready for the

Answer to the lottery problem, Example 2.1. We are choosing k = 6 objects out

of a total of n = 59 when order is not important, so the number of possibilities

is

C59,6 = 59!

6!53!
= 59 · 58 · 57 · 56 · 55 · 54

1 · 2 · 3 · 4 · 5 · 6

= 59 · 58 · 19 · 7 · 11 · 9 = 45,057,474

You should consider this the next time you think about spending $1 for two

chances to win a jackpot that starts at $3 million and increases by $1 million

each week there is no winner.

Example 2.6 World Series (continued). Using (2.4) we can easily compute the probability

that the series lasts 7 games. For this to occur the score must be tied 3–3 after

6 games. The total number of outcomes for the first 6 games is 26 = 64. The

number that ends in a 3–3 tie is

C6,3 = 6!

3! 3!
= 6 · 5 · 4

1 · 2 · 3
= 20

since the outcome is determined by choosing the 3 games, team A will win.

This gives us a probability of 20/64 = 5/16 for the series to end in 7 games.

Returning to the calculation in the previous section, we see that the number of

outcomes that lead to A winning in 6 games is the number of ways of picking

two of the first 5 games for B to win or C5,2 = 5!/(2! 3!) = 5 · 4/2 = 10.
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Example 2.7 Suppose we flip 5 coins. Compute the probability that we get 0, 1, or 2 heads.

There are 25 = 32 total outcomes. There is only 1 TTTTT that gives 0 head.

If we want this to fit into our previous formula, we set 0! = 1 (there is only one

way for zero people to stand in line) so that

C5,0 = 5!

5! 0!
= 1

There are 5 outcomes that have 1 head. We can see this by writing out the

possibilities: HTTTT, THTTT, TTHTT, TTTHT, and TTTTH. Or, note that

the number of ways to pick 1 toss for the heads to occur is

C5,1 = 5!

4! 1!
= 5

Extending the last reasoning to 2 heads, the number of outcomes is the number

of ways of picking 2 tosses for the heads to occur or

C5,2 = 5!

3! 2!
= 5 · 4

2
= 10

By symmetry the numbers of outcomes for 3, 4, and 5 heads are 10, 5, and 1,

or in general.

Cn,m = Cn,n−m (2.5)

The last equality is easy to prove: The number of ways of picking m objects

out of n to take is the same as the number of ways of choosing n − m to leave

behind. Of course, one can also check this directly from the formula in (2.4).

Pascal’s triangle. The number of outcomes for coin tossing problems fit

together in a nice pattern:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Each number is the sum of the 1’s on the row above on its immediate left and

right. To get the 1’s on the edges to work correctly we consider the blanks to be

0’s. In symbols,

Cn,k = Cn−1,k−1 + Cn−1,k (2.6)
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Verbal proof. In picking k things out of n, which can be done in Cn,k ways, we

may or may not pick the last object. If we pick the last object then we must

complete our set of k things by picking k − 1 objects from the first n − 1, which

can be done in Cn−1,k−1 ways. If we do not pick the last object then we must

pick all k objects from the first n − 1, which can be done in Cn−1,k ways.

Analytic proof. Using the definition (2.4),

Cn−1,k−1 + Cn−1,k = (n − 1)!

(n − k)!(k − 1)!
+ (n − 1)!

(n − k)!(k − 1)!

Factoring out the parts common to the two fractions

= (n − 1)!

(n − k − 1)!(k − 1)!

(
1

n − k
+ 1

k

)

= (n − 1)!

(n − k − 1)!(k − 1)!

(
n

(n − k)k

)
= n!

(n − k)!k!

which proves (2.6).

Binomial theorem. The numbers in Pascal’s triangle also arise if we take powers

of (x + y):

(x + y)2 = x2 + 2xy + y2

(x + y)3 = (x + y)(x2 + 2xy + y2) = x3 + 3x2 y + 3xy2 + y3

(x + y)4 = (x + y)(x3 + 3x2 y + 3xy2 + y3)

= x4 + 4x3 y + 6x2 y2 + 4xy3 + y4

or in general

(x + y)n =
n∑

m=0

Cn,mxm yn−m (2.7)

To see this consider (x + y)5 and write it as

(x + y)(x + y)(x + y)(x + y)(x + y)

Since we can choose x or y from each parenthesis, there are 25 terms in all.

If we want a term of the form x3 y2 then in 3 of the 5 cases we must pick x , so

there are C5,3 = (5 · 4)/2 = 10 ways to do this. The same reasoning applies to

the other terms, so we have

(x + y)5 = C5,5x5 + C5,4x4 y + C5,3x3 y2 + C5,2x2 y3 + C5,1xy4 + C5,0 y5

= x5 + 5x4 y + 10x3 y2 + 10x2 y3 + 5xy4 + y5



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

38 Combinatorial Probability

Poker. In the game of poker the following hands are possible; they are listed in

increasing order of desirability. In the definitions the word value refers to A, K,

Q, J, 10, 9, 8, 7, 6, 5, 4, 3, or 2. This sequence also describes the relative ranks of

the cards, with one exception: an ace may be regarded as a 1 for the purposes of

making a straight. (See the example in (d).)

(a) One pair: Two cards of equal value plus three cards with different values

J♠ J♦ 9♥ Q♣ 3♠
(b) Two pair: Two pairs plus another card with a different value

J♠ J♦ 9♥ 9♣ 3♠
(c) Three of a kind: Three cards of the same value and two with different values

J♠ J♦ J♥ 9♣ 3♠
(d) Straight: Five cards with consecutive values

5♥ 4♠ 3♠ 2♥ A♣
(e) Flush: Five cards of the same suit

K♣ 9♣ 7♣ 6♣ 3♣
(f) Full house: A three of a kind and a pair

J♠ J♦ J♥ 9♣ 9♠
(g) Four of a kind: Four cards of the same value plus another card

J♠ J♦ J♥ J ♣ 9♠
(h) Straight flush: Five cards of the same suit with consecutive values

A♣ K♣ Q♣ J♣ 10♣
The last example is called a royal flush.

To compute the probabilities of these poker hands we begin by observing that

there are

C52,5 = 52 · 51 · 50 · 49 · 48

1 · 2 · 3 · 4 · 5
= 2,598,960

ways of picking 5 cards out of a deck of 52, so it suffices to compute the number

of ways each hand can occur. We will do three cases to illustrate the main ideas

and then leave the rest to the reader:

(d) Straight: 10 · 45

A straight must start with a card that is 5 or higher, 10 possibilities. Once the

values are decided on, suits can be assigned in 45 ways. This counting regards a

straight flush as a straight. If you want to exclude straight flushes, suits can be

assigned in 45 − 4 ways.

(f) Full house: 13 · C4,3 · 12 · C4,2

We first pick the value for the three of a kind (which can be done in 13 ways),

then assign suits to those three cards (C4,3 ways), then pick the value for the pair

(12 ways), and then assign suits to the last two cards (C4,2 ways).
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(a) One pair: 13 · C4,2 · C12,3 · 43

We first pick the value for the pair (13 ways), next pick the suits for the pair (C4,2

ways), and then pick three values for the other cards (C12,3 ways) and assign

suits to those cards (in 43 ways).

A common incorrect answer to this question is 13 · C4,2 · 48 · 44 · 40. The

faulty reasoning underlying this answer is that the third card must not have

the same value as the cards in the pair (48 choices), the fourth must be dif-

ferent from the third and the pair (44 choices), . . .. However, this reasoning is

flawed since it counts each outcome 3! = 6 times. (Note that 48 · 44 · 40/3! =
C12,3 · 43.)

The numerical values of the probabilities of all poker hands are given in the

next table.

(a) One pair 0.422569

(b) Two pair 0.047539

(c) Three of a kind 0.021128

(d) Straight 0.003940

(e) Flush 0.001981

(f) Full house 0.001441

(g) Four of a kind 0.000240

(h) Straight flush 0.000015

The probability of getting none of these hands can be computed by summing

the values for (a) through (g) (recall that (d) includes (h)) and subtracting the

result from 1. However, it is much simpler to observe that we have nothing if we

have 5 different values that do not make a straight or a flush. So the number of

nothing hands is (C13,5 − 10) · (45 − 4) and the probability of a nothing hand

is 0.501177.

2.1.1 More than two categories

We defined Cn,k as the number of ways of picking k objects out of n. To motivate

the next generalization we would like to observe that Cn,k is also the number of

ways we can divide n objects into two groups, the first one with k objects and

the second with n − k. To connect this observation with the next problem, think

of it as asking: “How many ways can we divide 12 objects into three numbered

groups of sizes 4, 3, and 5?”

Example 2.8 A house has 12 rooms. We want to paint 4 yellow, 3 purple, and 5 red. In how

many ways can this be done?
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This problem can be solved using what we know already. We first pick 4 of

the 12 rooms to be painted yellow, which can be done in C12,4 ways, and then

pick 3 of the remaining 8 rooms to be painted purple, which can be done in C8,3

ways. (The 5 unchosen rooms will be painted red.) The answer is

C12,4C8,3 = 12!

4! 8!
· 8!

3! 5!
= 12!

4! 3! 5!
= 27,720

A second way of looking at the problem, which gives the last answer directly,

is to first decide the order in which the rooms will be painted, which can be

done in 12! ways, and then paint the first 4 on the list yellow, the next 3 purple,

and the last 5 red. One example is

9

Y

6

Y

11

Y

1

Y

8

P

2

P

10

P

5

R

3

R

7

R

12

R

4

R

Now, the first four choices can be rearranged in 4! ways without affecting

the outcome, the middle three in 3! ways, and the last five in 5! ways. Invoking

the multiplication rule, we see that in a list of the 12! possible permutations

each possible painting thus appears 4! 3! 5! times. Hence the number of possible

paintings is

12!

4! 3! 5!

The second computation is a little more complicated than the first, but makes

it easier to see

Theorem 2.1. The number of ways a group of n objects to be divided into m groups

of size n1, . . . , nm with n1 + · · · + nm = n is

n!

n1! n2! · · · nm!
(2.8)

The formula may look complicated but it is easy to use.

Example 2.9 There are 39 students in a class. In how many ways can a professor give out

9 A’s, 13 B’s, 12 C’s, and 5 F’s?

39!

9! 13! 12! 5!
= 1.57 × 1022

Example 2.10 Bridge. Four people play a card game in which each gets 13 cards. How many

possible deals are there?

52!

(13!)4
= 5.364473777 × 1028
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Example 2.11 Suppose we draw 13 cards from a deck. How many outcomes are there? How

many lead to hands with 4 spades, 3 hearts, 3 diamonds, and 3 clubs? 3 spades,

5 hearts, 2 diamonds, and 3 clubs?

C52,13 = 6.350135596 × 1011

C13,4C13,3C13,3C13,3 = 715 · (286)3 = 16,726,464,040

C13,3C13,5C13,2C13,3 = 286 · 1,287 · 78 · 286 = 8,211,173,256

Example 2.12 Suit distributions. The last bridge hand in the previous example is said to have

a 5–3–3–2 distribution. Here, we have listed the number cards in the longest

suit first and continued in decreasing order. Permuting the four numbers we see

that the example 3 spades, 5 hearts, 2 diamonds, and 3 clubs is just one of 4!/2!

possible ways of assigning the numbers to suits, so the probability of a 5–3–3–2

distribution is

12 · 8,211,173,256

6.350135596 × 1011
= 0.155

Similar computations lead to the results in the next table. We have included

the number of different permutations of the pattern to help explain why slightly

unbalanced distributions have larger probability than 4–3–3–3.

Distribution Probability Permutations

4–4–3–2 0.216 12

5–3–3–2 0.155 12

5–4–3–1 0.129 24

5–4–2–2 0.106 12

4–3–3–3 0.105 4

6–3–2–2 0.056 12

2.2 Binomial and multinomial distributions

Example 2.13 Suppose we roll 6 dice. What is the probability of A = “we get exactly two 4’s”?

One way that A can occur is

×
1

4

2

×
3

4

4

×
5

×
6

where × stands for “not a 4.” Since the six events “die 1 shows ×,” “die 2 shows

4,” . . . , “die 6 shows ×” are independent, the indicated pattern has probability

5

6
· 1

6
· 5

6
· 1

6
· 5

6
· 5

6
=
(

1

6

)2 (5

6

)4
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Here, we have been careful to say “pattern” rather than “outcome” since the

given pattern corresponds to 54 outcomes in the sample space of 66 possible

outcomes for 6 dice. Each pattern that results in A corresponds to a choice of 2

of the 6 trials on which a 4 will occur, so the number of patterns is C6,2. When

we write out the probability of each pattern, there will be two 1/6s and four 5/6s,

so each pattern has the same probability and

P (A) = C6,2

(
1

6

)2 (5

6

)4

Generalizing from the last example, suppose we perform an experiment n

times and on each trial an event we call “success” has probability p. (Here

and in what follows, when we repeat an experiment, we assume that the out-

comes of the various trials are independent.) Then the probability of k successes

is

Cn,k pk(1 − p)n−k (2.9)

This is called the binomial(n, p) distribution. Taking n = 6, k = 2, and p = 1/6

in (2.9) gives the answer in the previous example. The reasoning for the general

formula is similar. There are Cn,k ways of picking k of the n trials for successes

to occur, and each pattern of k successes and n − k failures has probability

pk(1 − p)n−k .

Theorem 2.2. The binomial(n, p) distribution has mean np and variance

np(1 − p).

Proof using theory. Let Xi = 1 if the i th trial is a success and 0 otherwise.

Sn = X1 + · · · + Xn is the number of successes in n trials. Using (1.8) we see

that E Sn = nE Xi = np; that is, the expected number of successes is the number

of trials n times the success probability p on each trial.

Since X1, . . . , Xn are independent, (6.11) implies that var (Sn) = var (X1)

+ · · · + var (Xn) = n var (X1). To compute var (X1), we note that E X2
1 =

1 · p + 0 · (1 − p) = p, so var (X1) = E X2
1 − (E X1)2 = p − p2 = p(1 − p)

and the desired result follows.

Proof by computation. Using the definition of expected value,

E N =
n∑

m=0

m
n!

m!(n − m)!
pm(1 − p)n−m
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The m = 0 term contributes nothing, so we can cancel m’s and rearrange to get

np
n∑

m=1

m
(n − 1)!

(m − 1)!(n − m)!
pm−1(1 − p)n−m = np

since the sum computes the total probability for the binomial(n − 1, p) distri-

bution.

As in the case of the geometric, our next step is to compute

E (N(N − 1) =
n∑

m=2

m(m − 1)
n!

m!(n − m)!
pm(1 − p)n−m

We have dropped the first two terms that contribute nothing, so we can cancel

to get

n(n − 1)p2
n∑

m=2

m(m − 1)
(n − 2)!

(m − 2)!(n − m)!
pm−2(1 − p)n−m

since the sum computes the total probability for the binomial(n − 2, p) distri-

bution.

To finish up, we note that

var (N) = E N2 − (E N)2 = E (N(N − 1)) = E N − (E N)2

= n(n − 1)p2 + np − n2 p2 = n(p − p2) = np(1 − p)

which completes the proof.

Example 2.14 A student takes a test with 16 multiple-choice questions. Since she has never

been to class she has to choose at random from the 4 possible answers. What is

the probability that she will get exactly 3 right?

The number of trials is n = 10. Since she is guessing the probability of success

p = 1/4, so using (2.9) the probability of k = 3 successes and n − k = 7 failures

is

C16,3(1/4)3(3/4)7 = 16 · 15 · 14

1 · 2 · 3
· 313

416
= 560 · 1,594,323

4,294,967,296
= 0.2079

In the same way we can compute the other probabilities. The results are given

in next figure. With a TI-83 calculator these answers can be found by going to the

DISTR menu and using binompdf(16, 0.25, k). Here, pdf is short for probability

density function.
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Example 2.15 A football team wins each week with probability 0.6 and loses with probability

0.4. If we suppose that the outcomes of their 10 games are independent, what is

the probability that they will win exactly 8 games?

The number of trials is n = 10. We are told that the success probability

p = 0.6, so by (2.9), the probability of k = 8 successes and n − k = 2 failures is

C10,8(0.6)8(0.4)2 = 10 · 9

1 · 2
(0.6)8(0.4)2 = 0.1209

In the same way we can compute the other probabilities:

Example 2.16 Aces at bridge. When we draw 13 cards out of a deck of 52, each ace has a

probability 1/4 of being chosen, but the four events are not independent. How

does the probability of k = 0, 1, 2, 3, 4 aces compare with that of the binomial

distribution with n = 4 and p = 1/4?

We first consider the probability of drawing two aces:

C4,2C48,11

C52,13
= 6 · 48···38

11!
52···40

13!

= 6 · 13 · 12 · 39 · 38

52 · 51 · 50 · 49
= 0.2135
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In contrast, the probability for the binomial is

C4,2(1/4)2(3/4)2 = 0.2109

To compare the two formulas, note that 13/52 = 1/4, 12/51 = 0.2352,

39/50 = 0.78, 38/51 = 0.745 versus (1/4)2(3/4)2 in the binomial formula. Sim-

ilar computations show that if D = 52 · 51 · 50 · 49, then the answers are

Aces Binomial

0
39 · 38 · 37 · 36

52 · 51 · 50 · 49
(3/4)4

1 4 · 13 · 39 · 38 · 37

52 · 51 · 50 · 49
4 · (1/4)(3/4)3

2 6 · 13 · 12 · 39 · 38

52 · 51 · 50 · 49
6 · (1/4)2(3/4)2

3 4 · 13 · 12 · 11 · 39

52 · 51 · 50 · 49
4 · (1/4)3(3/4)

4
13 · 12 · 11 · 10

52 · 51 · 50 · 49
(1/4)4

Evaluating these expressions leads to the following probabilities:

Aces Binomial

0 0.3038 0.3164

1 0.4388 0.4218

2 0.2134 0.2109

3 0.0412 0.0468

4 0.00264 0.00390

Example 2.17 In 8 games of bridge, Harry had 6 hands without an ace. Should he doubt that

the cards are being shuffled properly?

The number of hands with no ace has a binomial distribution with n = 8 and

p = 0.3038. The probability of at least 6 hands without an ace is

8∑
k=6

C8,k(0.3038)k(0.6962)8−k = 1 −
5∑

k=0

C8,k(0.3038)k(0.6962)8−k

We have turned the probability around because on the TI-83 calculator the

sum can be evaluated as binomcdf(8, 0.3038, 5) = 0.9879. Here, cdf is short for

cumulative distribution function, that is, the probability of ≤5 hands without

an ace. Thus the probability of luck this bad is 0.0121.
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Example 2.18 Tennis. In men’s tennis, the winner is the first to win 3 out of 5 sets. If Roger

Federer wins a set against his opponent with probability 2/3, what is the prob-

ability w that he will win the match?

He can win in three sets, four or five, but he must win the last set, so

w =
(

2

3

)3

+ C3,2

(
2

3

)3 1

3
+ C4,2

(
2

3

)3 (1

3

)2

=
(

2

3

)3

(1 + 3(1/3) + 6(1/9)) = 8

27
· 8

3
= 0.790

0.5 0.6 0.7 0.8 0.9 1

0.6

0.7

0.8

0.9

1

 

 

2/3
3/5
4/7

Replacing 2/3 by p and 1/3 by (1 − p), we get the general solution for best 3

out of 5, which generalizes easily to other common formats:

2 out of 3: p2 + C2,1 p2(1 − p)

3 out of 5: p3 + C3,2 p3(1 − p) + C4,2 p3(1 − p)2

4 out of 7: p4 + C4,3 p4(1 − p) + C5,3 p4(1 − p)2 + C6,3 p4(1 − p)3

As we should expect, if p > 1/2, then the winning probability increases with

the length of the series. When p = 0.6 the three values are 0.648, 0.68256, and

0.710208. The graph above compares the winning probabilities for a team that

wins each game with probability p.

Multinomial distribution

The arguments above generalize easily to independent events with more than

two possible outcomes. We begin with an example.

Example 2.19 Consider a die with 1 painted on three sides, 2 painted on two sides, and 3

painted on one side. If we roll this die 10 times, what is the probability that we

get five 1’s, three 2’s and two 3’s?
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The answer is

10!

5! 3! 2!

(
1

2

)5 (1

3

)3 (1

6

)2

The first factor, by (2.8), gives the number of ways to pick five rolls for 1’s,

three rolls for 2’s, and two rolls for 3’s. The second factor gives the probability of

any outcome with five 1’s, three 2’s, and two 3’s. Generalizing from this example,

we see that if we have k possible outcomes for our experiment with probabilities

p1, . . . , pk , then the probability of getting exactly ni outcomes of type i in

n = n1 + · · · + nk trials is

n!

n1! · · · nk !
pn1

1 · · · pnk
k (2.10)

since the first factor gives the number of outcomes and the second the probability

of each one.

Example 2.20 A baseball player gets a hit with probability 0.3, a walk with probability 0.1, and

an out with probability 0.6. If he bats 4 times during a game and we assume that

the outcomes are independent, what is the probability that he will get 1 hit, 1

walk, and 2 outs?

The total number of trials is n = 4. There are k = 3 categories: hit, walk, and

out. n1 = 1, n2 = 1, and n3 = 2. Plugging in to our formula the answer is

4!

1!1!2!
(0.3)(0.1)(0.6)2 = 0.1296

Example 2.21 The output of a machine is graded excellent 70% of the time, good 20% of the

time, and defective 10% of the time. What is the probability that a sample of

size 15 has 10 excellent, 3 good, and 2 defective items?

The total number of trials is n = 15. There are k = 3 categories: excellent,

good, and defective. We are interested in outcomes with n1 = 10, n2 = 3, and

n3 = 2. Plugging in to our formula the answer is

15!

10! 3! 2!
· (0.7)10(0.2)3(0.1)2

2.3 Poisson approximation to the binomial

X is said to have a Poisson distribution with parameter λ, or Poisson(λ) if

P (X = k) = e−λ λk

k!
for k = 0, 1, 2, . . .
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Here, λ > 0 is a parameter. To see that this is a probability function we recall

ex =
∞∑

k=0

xk

k!
(2.11)

so the proposed probabilities are nonnegative and sum to 1.

The next figure shows the Poisson distribution with λ = 4.

Theorem 2.3. The Poisson distribution has mean λ and variance λ.

Proof. Since the k = 0 term makes no contribution to the sum,

E X =
∞∑

k=1

ke−λ λk

k!
= λ

∞∑
k=1

e−λ λk−1

(k − 1)!
= λ

since
∑∞

k=1 P (X = (k − 1)) = 1. As in the case of the binomial and geometric

our next step is to compute

E (X(X − 1)) =
∞∑

k=2

k(k − 1)e−λ λk

k!
= λ2

∞∑
k=2

e−λ λk−2

(k − 2)!
= λ2

From this it follows that

var (X) = E X2 − (E X)2 = E (X(X − 1)) + E X − (E X)2

= λ2 + λ − λ2

which completes the proof.

Our next result explains why the Poisson distribution arises in a number of

situations.
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Theorem 2.4. Suppose Sn has a binomial distribution with parameters n and pn.

If pn → 0 and npn → λ as n → ∞, then

P (Sn = k) → e−λ λk

k!
(2.12)

In words, if we have a large number of independent events with small probability

then the number that occurs has approximately a Poisson distribution. The key

to the proof is the following fact.

Lemma. If pn → 0 and npn → λ, then as n → ∞
(1 − pn)n → e−λ (2.13)

Proof. Calculus tells us that if x is small then

ln(1 − x) = −x − x2

2
− · · ·

Using this we have

(1 − pn)n = exp(n ln(1 − pn))

≈ exp(−npn − np2
n/2) ≈ exp(−λ)

In the last step we used the observation that pn → 0 to conclude that npn · pn/2

is much smaller than npn.

Proof of (2.12). Since P (Sn = 0) = (1 − pn)n, (2.13) gives the result for k = 0.

To prove the result for k > 0, we let λn = npn and observe that

P (Sn = k) = Cn,k

(
λn

n

)k (
1 − λn

n

)n−k

= n(n − 1) · · · (n − k + 1)

nk
· λk

n

k!

(
1 − λn

n

)n (
1 − λn

n

)−k

→ 1 · λk

k!
· e−λ · 1

Here, n(n − 1) · · · (n − k + 1)/nk → 1 since there are k factors in the nu-

merator, and for each fixed j , (n − j )/n = 1 − ( j/n) → 1. The last term

(1 − {λn/n})−k → 1 since k is fixed and 1 − {λn/n} → 1.

When we apply (2.12), we think, “If Sn = binomial(n, p) and p is small then

Sn is approximately Poisson(np).” The next example illustrates the use of this

approximation and shows that the number of trials does not have to be very

large for us to get accurate answers.
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Example 2.22 Suppose we roll two dice 12 times and we let D be the number of times a double 6

appears. Here, n = 12 and p = 1/36, so np = 1/3. We now compare P (D = k)

with the Poisson approximation for k = 0, 1, 2.

k = 0 exact answer: P (D = 0) =
(

1 − 1

36

)12

= 0.7132

Poisson approximation: P (D = 0) = e−1/3 = 0.7165

k = 1 exact answer: P (D = 1) = C12,1
1

36

(
1 − 1

36

)11

=
(

1 − 1

36

)11

· 1

3
= 0.2445

Poisson approximation: P (D = 1) = e−1/3 1

3
= 0.2388

k = 2 exact answer: P (D = 2) = C12,2

(
1

36

)2 (
1 − 1

36

)10

=
(

1 − 1

36

)10

· 12 · 11

362
· 1

2!
= 0.0384

Poisson approximation: P (D = 2) = e−1/3

(
1

3

)2 1

2!
= 0.0398

Example 2.23 Death by horse kick. Ladislaus Bortkiewicz published a book about the Poisson

distribution titled The Law of Small Numbers in 1898. In this book he analyzed

the number of German soldiers kicked to death by cavalry horses between 1875

and 1894 in each of 14 cavalry corps, arguing that it fits the Poisson distribution.

I. J. Good and others have argued that the Poisson distribution should be called

the Bortkiewicz distribution, but then it would be very difficult to say or write.

Example 2.24 V-2 rocket hits in London during World War II. The area under study was

divided into 576 areas of equal size. There were a total of 537 hits or an average

of 0.9323 per subdivision. Using the Poisson distribution the probability a

subdivision is not hit is e−0.9323 = 0.3936. Multiplying by 576 we see that the

expected number not hit was 226.71, which agrees well with the 229 that were

observed not to be hit.

Example 2.25 Shark attacks. In the summer of 2001 there were 6 shark attacks in Florida,

while the yearly average is 2. Is this unusual?

In an article in the September 7, 2001, National Post, Professor David Kelton

of Penn State University argued that this was a random event. “Just because you
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see events happening in a rash this does not imply that there is some physical

driver causing them to happen. It is characteristic of random processes that they

have bursty behavior.” He did not seem to realize that the probability of six shark

attacks under the Poisson distribution is

e−2 26

6!
= 0.01203

This probability can be found with the TI-83 by using Poissonpdf(2, 6) on DISTR

menu. If we want the probability of at least 6, we would use 1 − Poissoncdf(2, 5).

Example 2.26 Alliteration in Shakespeare. Did Shakespeare consciously choose words with

the same sounds or did lines like “full fathom five thy father lies” just occur by

chance. Psychologist B. F. Skinner addressed this question in two papers (one in

1939 in The Psychological Record, Vol. 3, pp. 186–192, and one in 1941 in The

American Journal of Psychology, Vol. 54, pp. 64–79). He looked at 100 sonnets

(for a total of 1,400 lines) and counted the number of times s sounds appeared

in a line. The next table compares the counts to those expected under a Poisson

distribution with the same mean.

s sounds 0 1 2 3 4

Observed 702 501 161 29 7

Expected 685 523 162 26 2

It turns out that most of the discrepancy in the last two cells goes away if the

same word on a line is not counted more than once. However, even without this

manipulation the similarity to the Poisson is remarkable. This example comes

from a 1989 article by Diaconis and Mosteller on coincidences in the Journal of

the American Statistical Association, Vol. 84, pp. 853–861.

Example 2.27 Birthday problem, II. If we are in a group of n = 183 individuals, what is the

probability that no one else has our birthday?

By (2.13), the probability is(
1 − 1

365

)182

≈ e−182/365 = 0.6073

From this we see that in order to have a probability of about 0.5, we need

365 ln 2 = 253 people as we calculated before.

Example 2.28 Birthday problem, I. Consider now a group of n = 25 and ask our original

question: What is the probability that two people have the same birthday?

The events Ai, j that persons i and j have the same birthday are only pairwise

independent, so strictly speaking (2.12) does not apply. However, it gives a

reasonable approximation. The number of pairs of people is C25,2 = 300, while
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the probability of a match for a given pair is 1/365, so by (2.13) the probability

of no match is

≈exp(−300/365) = 0.4395

versus the exact probability of 0.4313 from the table in Section 1.1.

General Poisson approximation result. The Poisson distribution is often used

as a model for the number of people who go to a fast-food restaurant between

12 and 1, the number of people who make a cell phone call between 1:45 and

1:50, or the number of traffic accidents in a day. To explain the reasoning in

the last case we note that any one person has a small probability of having an

accident on a given day, and it is reasonable to assume that the events Ai = “the

i th person has an accident” are independent. However, it is not reasonable to

assume that the probabilities of having an accident pi = P (Ai ) are all the same,

nor is it reasonable to assume that all women have the same probability of giving

birth, but fortunately the Poisson approximation does not require this.

Theorem 2.5. Consider independent events Ai , i = 1, 2, . . . , n, with probabilities

pi = P (Ai ). Let N be the number of events that occur, let λ = p1 + · · · + pn, and

let Z have a Poisson distribution with parameter λ. Then, for any set of integers B,

|P (N ∈ B) − P (Z ∈ B)| ≤
n∑

i=1

p2
i (2.14)

We can simplify the right-hand side by noting

n∑
i=1

p2
i ≤ max

i
pi

n∑
i=1

pi = λ max
i

pi

This says that if all the pi are small then the distribution of N is close to a Poisson

with parameter λ. Taking B = {k}, we see that the individual probabilities

P (N = k) are close to P (Z = k), but this result says more. The probabilities of

events such as P (3 ≤ N ≤ 8) are close to P (3 ≤ Z ≤ 8) and we have an explicit

bound on the error.

For a concrete situation, consider Example 2.22, where n = 12 and all the

pi = 1/36. In this case the error bound is

12∑
i=1

p2
i = 12

(
1

36

)2

= 1

108
= 0.00926

while the error for the approximation for k = 1 is 0.0057.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

53 2.3 Poisson approximation to the binomial

Example 2.29 The previous example justifies the use of the Poisson distribution in modeling

the number of visits to a Web site in a minute. Suppose that the average number

of visitors per minute is λ = 5, but that the site will crash if there are 12 visitors

or more. What is the probability that the site will crash?

The probability of 12 or more visitors is

1 −
11∑

k=0

e−5 5k

k!

This would be tedious to do by hand, but is easy if we use the TI-83 calculator.

Using the distributions menu,

11∑
k=0

e−5 5k

k!
= Poissoncdf(5, 11) = 0.994547

Subtracting this from 1, we have the answer 0.005453.

Example 2.30 Births in Ithaca. The Poisson distribution can be used for births as well as for

deaths. There were 63 births in Ithaca, NY, between March 1 and April 8, 2005,

a total of 39 days, or 1.615 per day. The next table gives the observed number of

births per day and compares with the prediction from the Poisson distribution.

0 1 2 3 4 5 6

Observed 9 12 9 5 3 0 1

Poisson 7.75 12.52 10.11 5.44 2.19 0.71 0.19

Example 2.31 Wayne Gretsky. He scored a remarkable 1,669 points in 696 games as an Ed-

monton Oiler, for a rate of 1,669/696 = 2.39 points per game. From the Pois-

son formula with k = 0, the probability of Gretzky having a pointless game is

e−2.39 = 0.090. The next table compares that actual number of games with the

numbers predicted by the Poisson approximation.

Points Games Poisson

0 69 63.27

1 155 151.71

2 171 181.90

3 143 145.40

4 79 87.17

5 57 41.81

6 14 16.71

7 6 5.72

8 2 1.72

9 0 0.46
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Coincidences. If we see an event with a chance of one in a hundred million

then we are amazed, even though each day in the United States such events will

happen to three people. This observation helps explain why some incredible

things occur. Some times, as in our first example, it is just a miscalculation.

Example 2.32 Pick 4 coincidence. To quote a United Press story on September 10, 1981,

reported by James Hanley in his article in the American Statistician, Vol. 46,

pp. 197–202: “Lottery officials say that there is 1 chance in 100 million that the

same four digit lottery number would be drawn in Massachusetts and New York

on the same night. That’s just what happened Tuesday. The number 8902 came

up paying $5842 in Massachusetts and $4,500 New York.”

These lotteries pick four-digit numbers, so each number has a 1 in 104 chance.

The probability that 8902 is chosen in both states is 1 in 108 but then again

some number will be chosen in Massachusetts and after that has been done the

probability that the same number is chosen in New York is 1 in 104. When you

take into account that there are a half dozen states that have similar games and

drawings occur twice a day in New York, one should expect this to happen every

few years.

Example 2.33 Lottery double winner. The following item was reported in the February 14,

1986, edition of the New York Times: A New Jersey woman, Evelyn Adams, won

the lottery twice within a span of 4 months raking in a total of 5.4 million dollars.

She won the jackpot for the first time on October 23, 1985, in the Lotto 6/39, in

which you pick 6 numbers out of 39. Then she won the jackpot in the new Lotto

6/42 on February 13, 1986. Lottery officials calculated the probability of this as

roughly one in 17.1 trillion. What do you think of this statement?

It is easy to see where they get this from. The probability of a person picked

in advance of the lottery getting all six numbers right both times is

1

C39,6
· 1

C42,6
= 1

17.1 × 1012

One can immediately reduce the odds against this event by noting that the

first lottery had some winner, who if they played only one ticket in the second

lottery had a 1/C42,6 chance.

The odds drop even further when you consider that there are a large number

of people who submit more than one entry for the twice weekly drawing and that

wins on October 23, 1985, and February 13, 1986, is not the only combination.

Suppose for concreteness that each week 1 million people play the lottery and

each buys exactly five tickets. The probability of one person winning on a given

week is

p1 = 5

C42,6
= 9.531 × 10−7
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The number of times one person will win a jackpot in the next year (100

twice-weekly drawings) is roughly Poisson with mean

λ1 = 100 p1 = 9.531 × 10−5

The probability that a given player wins the jackpot two or more times is

p0 = 1 − e−λ1 − e−λ1λ1 = 4.54 × 10−9

The number of double winners in a population of 1 million players is Poisson

with mean

λ0 = (1,000,000) p0 = 4.54 × 10−3

so the probability of at least one double winner is 1 − e−0.00454 ≈ 0.00454. If

you take into account that many states have lotteries and we were just looking

at 1 year, we see that a double winner is not unusual at all.

My favorite double-winner story is Maureen Wilcox. In June 1980, she bought

tickets for both the Massachusetts Lottery and the Rhode Island Lottery. She

picked the winning numbers for both lotteries. Unfortunately for her, her

Massachusetts numbers won in Rhode Island and vice versa.

Example 2.34 Scratch-off triple winner. 81-year-old Keith Selix won three lottery prizes to-

taling $81,000 from scratch-off games in the 12 months preceding May 3, 2006.

He won $30,00 twice in “Wild Crossword” games and $21,000 playing “Double

Blackjack.” Again we want to calculate the probability of this.

The odds of winning in these games are 89,775 to 1 and 119,700 to 1 respec-

tively. One of the reasons Selix won so many times in 2006 is that he spent about

$200 a week or more than $10,000 a year on scratch-off games. If the games cost

$1 then this would be 10,000 plays with an approximate 1/100,000 chance of

winning. Thus his expected number of wins would be 0.1 and the probability of

exactly three wins would be

e−0.1 (0.1)3

3!
or <

1

60,000

Example 2.35 Sally Clark. Sometimes coincidences are not happy events like lottery wins.

In 1999, a British jury convicted Sally Clark of murdering her two children

who had died suddenly at the ages of 11 and 8 weeks respectively of sudden

infant death syndrome or “cot deaths.” There was no physical or other evidence

of a murder, nor was there a motive. Most likely, the jury was convinced by

a pediatrician who said that a baby had a probability of roughly 1/8,500 of

dying a cot death, so having two children die this way had probability roughly

1/73,000,000.
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There are two problems with the computation: (i) Many families have children

who die this way, so the first factor of 1/8,500 should be dropped. (ii) Two cot

deaths in the same family are not independent events; once one occurs the

second child faces an increased risk of about 1/100 of dying this way. Thus the

probability that it would happen again without foul play is 1/100. If this number

had been presented to the jury, Sally probably would not have had to spend

3 years in jail before the verdict was overturned.

2.4 Card games and other urn problems

A number of problems in probability have the following form.

Example 2.36 Suppose we pick 4 balls out of an urn with 12 red balls and 8 black balls. What

is the probability of B = “we get two balls of each color”?

Almost by definition, there are

C20,4 = 20 · 19 · 18 · 17

1 · 2 · 3 · 4
= 5 · 19 · 3 · 17 = 4,845

ways of picking 4 balls out of the 20. To count the number of outcomes in B ,

we note that there are C12,2 ways to choose the red balls and C8,2 ways to choose

the black balls, so the multiplication rule implies

|B | = C12,2C8,2 = 12 · 11

1 · 2
· 8 · 7

1 · 2
= 6 · 11 · 4 · 7 = 1,848

It follows that P (B) = 1,848/4,845 = 0.3814.

We now consider two gambling games in which numbered balls are picked

out of urns.

Example 2.37 New York State lottery. As mentioned in Section 2.1, if there are 59 numbered

balls and 6 are picked, the number of outcomes is

C59,6 = 45,057,474

In the lottery you do win some money if at least three of your six numbers

are chosen. The problem is to compute the probability of winning these other

prizes.

Five out of six has probability

C6,5C53,1

C59,6
= 6 · 53

C59,6
= 1

141,690
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Four out of six has probability

C6,4C53,2

C59,6
= 15 · 1,378

C59,6
= 1

2,180

Three out of six has probability

C6,3C53,3

C59,6
= 20 · 23,426

C59,6
= 1

96

To add more prizes, a bonus number has been added to the card. You win if

you match 5 out of 6 and also the bonus number that has probability

C6,5C52,1

C59,6

1

52
= 6

C59,6
= 1

7,509,579

It is hard to compute the expected value because the rewards for 6 out of 6 and 5

out of 6 plus the bonus number depend on the number of weeks that there has

been no winner, and all prizes with the exception of 3 out of 6 which always pays

$1 depend on both the number of people who play and the number of people

who win. However, one can get some idea of the expected value by noting that

54.7% of the money bet is returned in prizes, 32.9% to education, and 12.4% to

various operating expenses.

The next table gives data for the number of winners and winning amounts

for the month of January 2008.

Date 6 5+ 5 4 3

1/2 10M 503,347 2,284 23 1

0 0 15 1,601 36,719

1/5 11M 557,243 1,635 29 1

0 1 25 1,502 36,203

1/9 12M 46,833 2,200 34 1

1 0 16 1,128 26,319

1/12 3M 96,488 2,354 32 1

0 1 16 1,299 30,689

1/16 4M 41,839 2,645 36 1

0 0 12 951 24,147

1/19 5M 91,440 984 21 1

0 0 37 1,909 42,927

1/23 6M 133,696 1,885 26 1

0 0 17 1,319 31,131

1/26 7M 184,664 1,104 26 1

0 1 34 1,582 37,648

1/30 8M 38,956 461 11 1

2 1 60 2,700 45,386
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As you can see from the table, the big prize starts at 3 million and increases

by 1 million each week when there are no winners. The 5 out of 6 plus bonus

number is about 40,000 times the number of weeks since the previous winner.

One can get a pretty good idea of the number of people who played each

week by multiplying the number of 3 out of 6 winners by 96 (or 100 which is

easier).

Example 2.38 Keno. In this game the casino picks 20 balls out of 80 numbered balls. Before the

draw you may, for example, pick 10 numbers and bet $1. In this case you win

$1 if 4 of your numbers are chosen; $2 for 5; $20 for 6; $105 for 7; $500 for 8;

$5,000 for 9; and $12,000 if all 10 are chosen. We want to compute the expected

value of the bet.

The number of possible draws is astronomically large:

C80,20 = 3.5353 × 1018

The probability that k of your numbers are chosen is

pk = C10,kC70,20−k

C80,20

When k = 0, this is

C70,20

C80,20
= 70!60!

80!50!
= 60 · 59 · · · · · 51

80 · 79 · · · · · 71
= 0.045791

To compute the other probabilities it is useful to note that for 1 ≤ m ≤ n,

Cn,m = n!

m!(n − m)!
= n + 1 − m

m
· n!

(m − 1)!(n + 1 − m)!

= n + 1 − m

m
· Cn,m−1

so we have

pk = pk−1 · 11 − k

k
· 21 − k

50 + k

Writing wk for the winning when k of our numbers are drawn, using this

recursion and the result for p0 gives
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k pk wk wk pk

0 0.045791 0

1 0.179571 0

2 0.295257 0

3 0.267402 0

4 0.147319 1 0.147319

5 0.051428 2 0.102855

6 0.011479 20 0.229588

7 0.001611 105 0.169701

8 0.000135 500 0.067710

9 6.12 × 10−6 5,000 0.030603

10 1.12 × 10−7 12,000 0.001347

4–10 0.2120 0.7486

Thus, we win something about 21.2% of the time and our average winning is a

little less than 75 cents, a typical expected value for Keno bets. The last column

shows the contribution of the different payoffs to the expected value.

Example 2.39 Bridge. In the game of bridge there are four players called North, West, South,

and East according to their positions at the table. Each player gets 13 cards.

The game is somewhat complicated, so we will content ourselves to analyze one

situation that is important in the play of the game. Suppose that North and

South have a total of 8 hearts. What is the probability that West will have 3 and

East will have 2?

Even though this is not how the cards are usually dealt, we can imagine that

West randomly draws 13 cards from the 26 that remain. This can be done in

C26,13 = 26!

13! 13!
= 10,400,600 ways

North and South have 8 hearts and 18 nonhearts, so in the 26 that remain there

are 13 − 8 = 5 hearts and 39 − 18 = 21 nonhearts. To construct a hand for West

with 3 hearts and 10 nonhearts we must pick 3 of the 5 hearts, which can be

done in C5,3 ways, and 10 of the 21 nonhearts in C21,10. The multiplication rule

then implies that the number of outcomes for West with 3 hearts is C5,3 · C21,10

and the probability of interest is

C5,3 · C21,10

C26,13
= 0.339

Multiplying by 2 gives the probability that one player will have 3 cards and the

other 2, something called a 3–2 split. Repeating the reasoning gives that an i − j
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split (i + j = 5) has probability

2 · C5, i · C21,13−i

C26,13

This formula tells us that the probabilities are

3–2 0.678

4–1 0.282

5–0 0.039

Thus while a 3–2 split is the most common, one should not ignore the possibility

of a 4–1 split. Similar calculations show that if North and South have 9 hearts

then the probabilities are

2–2 0.406

3–1 0.497

4–0 0.095

In this case the uneven 3–1 split is more common than the 2–2 split since it can

occur two ways; that is, West might have 3 or 1.

Example 2.40 Disputed elections. In a close election in a small town, 2,656 people voted for

candidate A compared to 2,594 who voted for candidate B , a margin of victory

of 62 votes. An investigation of the election, instigated no doubt by the loser,

found that 136 of the people who voted in the election should not have. Since

this is more than the margin of victory, should the election results be thrown

out even though there was no evidence of fraud on the part of the winner’s

supporters?

Like many problems that come from the real world (a court case De Martini

v. Power), this one is not precisely formulated. To turn this into a probability

problem we suppose that all the votes were equally likely to be one of the 136

erroneously cast and we investigate what happens when we remove 136 balls

from an urn with 2,656 white balls and 2,594 black balls. Now the probability

of removing exactly m white and 136 − m black balls is

C2,656,mC2,594,136−m

C5,250,136

In order to reverse the outcome of the election, we must have

2,656 − m ≤ 2,594 − (136 − m) or m ≥ 99

With the help of a short computer program we can sum the probability

above from m = 99 to 136 to conclude that the probability of the removal of 136

randomly chosen votes reversing the election is 7.492 × 10−8. This computation
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supports the Court of Appeals decision to overturn a lower court ruling that

voided the election in this case.

Exercise. In election considered in Ipolito v. Power, the winning margin was

1,422 to 1,405 but 101 votes had to be thrown out. The judge rules that “it

does not strain the probabilities to assume a likelihood that the questioned

votes produced or could produce a change in the result.” Do you agree with this

assessment? We return to this question in Example 6.22.

Example 2.41 Quality control. A shipment of 50 precision parts including 4 that are defective

is sent to an assembly plant. The quality control division selects 10 at random

for testing and rejects the entire shipment if 1 or more are found defective. What

is the probability that this shipment passes inspection?

There are C50,10 ways of choosing the test sample and C46,10 ways of choosing

all good parts, so the probability is

C46,10

C50,10
= 46!/36!10!

50!/40!10!
= 46 · 45 · · · 37

50 · 49 · · · 41

= 40 · 39 · 38 · 37

50 · 49 · 48 · 47
= 0.396

Using almost identical calculations a company can decide on how many bad

units they will allow in a shipment and design a testing program with a given

probability of success.

Example 2.42 Capture–recapture experiments. An ecology graduate student goes to a pond

and captures k = 60 beetles, marks each with a dot of paint, and then releases

them. A few days later she goes back and captures another sample of r = 50,

finding m = 12 marked beetles and r − m = 38 unmarked. What is her best

guess about the size of the population of beetles?

To turn this into a precisely formulated problem, we suppose that no beetles

enter or leave the population between the two visits. With this assumption, if

there were N beetles in the pond, then the probability of getting m marked and

r − m unmarked in a sample of r would be

pN = Ck,m C N−k,r−m

C N,r

To estimate the population we pick N to maximize pN , the so-called maximum
likelihood estimate. To find the maximizing N, we note that

C j−1, i = ( j − 1)!

( j − i − 1)!i !
so C j, i = j !

( j − i)!i !
= j C j−1, i

( j − i)
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and it follows that

pN = pN−1 · N − k

N − k − (r − m)
· N − r

N

Now pN/pN−1 ≥ 1 if and only if

(N − k)(N − r ) ≥ N(N − k − r + m)

that is,

N2 − k N − r N + kr ≥ N2 − k N − r N + mN

or equivalently if N ≤ kr/m. Thus the value of N that maximizes the probability

pN is the largest integer ≤kr/m. This choice is reasonable since when N =
kr/m, the proportion of marked beetles in the population, k/N, equals the

proportion of marked beetles in the sample, m/r . Plugging in the numbers

from our example, kr/m = (60 · 50)/12 = 250, so the probability is maximized

when N = 250.

2.5 Probabilities of unions, Joe DiMaggio

In Section 1.1, we learned that P (A ∪ B) = P (A) + P (B) − P (A ∩ B). In

this section we extend this formula to n > 2 events. We begin with n = 3

events:

P (A ∪ B ∪ C ) = P (A) + P (B) + P (C )

− P (A ∩ B) − P (A ∩ C ) − P (B ∩ C )

+ P (A ∩ B ∩ C ) (2.15)

Proof. As in the proof of the formula for two events, we have to convince

ourselves that the net number of times each part of A ∪ B ∪ C is counted is 1.

To do this, we make a table that identifies the areas counted by each term and

note that the net number of pluses in each row is 1:

A B C A ∩ B A ∩ C B ∩ C A ∩ B ∩ C

A ∩ B ∩ C + + + − − − +
A ∩ B ∩ C c + + −
A ∩ Bc ∩ C + + −
Ac ∩ B ∩ C + + −
A ∩ Bc ∩ C c +
Ac ∩ B ∩ C c +
Ac ∩ Bc ∩ C +
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Example 2.43 Suppose we roll three dice. What is the probability that we get at least one 6?

Let Ai = “we get a 6 on the i th die.” Clearly,

P (A1) = P (A2) = P (A3) = 1/6

P (A1 ∩ A2) = P (A1 ∩ A3) = P (A2 ∩ A3) = 1/36

P (A1 ∩ A2 ∩ A3) = 1/216

So plugging into (2.15) gives

P (A1 ∪ A2 ∪ A3) = 3 · 1

6
− 3 · 1

36
+ 1

216
= 108 − 18 + 1

216
= 91

216

To check this answer, we note that (A1 ∪ A2 ∪ A3)c = “no 6” = Ac
1 ∩ Ac

2 ∩ Ac
3 and

|Ac
1 ∩ Ac

2 ∩ Ac
3| = 5 · 5 · 5 = 125 since there are five “non-6’s” that we can get

on each roll. Since there are 63 = 216 outcomes for rolling three dice, it follows

that P (Ac
1 ∩ Ac

2 ∩ Ac
3) = 125/216 and P (A1 ∪ A2 ∪ A3) = 1 − P (Ac

1 ∩ Ac
2 ∩

Ac
3) = 91/216.

The same reasoning applies to sets.

Example 2.44 In a freshman dorm, 60 students read the Cornell Daily Sun, 40 read the New

York Times, and 30 read the Ithaca Journal. 20 read the Cornell Daily Sun and the

New York Times, 15 read the Cornell Daily Sun and the Ithaca Journal, 10 read

the New York Times and the Ithaca Journal, and 5 read all three. How many read

at least one newspaper?

Using our formula the answer is

60 + 40 + 30 − 20 − 15 − 10 + 5 = 90

To check this we can draw picture using D, N, and I for the three newspapers.

D

I

N

5 515

1030 10

15

To figure out the number of students in each category we work out from the

middle. D ∩ N ∩ I has 5 students and D ∩ N has 20, so D ∩ N ∩ I c has 15.

In the same way we compute that D ∩ Nc ∩ I has 15 − 5 = 10 students and
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Dc ∩ N ∩ I has 10 − 5 = 5 students. Having found that 30 of students in D

read at least one other newspaper, the number who read only D is 60 − 30 = 30.

In a similar way, we compute that there are 40 − 25 = 15 students who read

only N and 30 − 20 = 10 students who read only I . Adding up the numbers in

the seven regions gives a total of 90, as we found before.

2.5.1 Inclusion–exclusion formula

Formula (2.15) generalizes to n events:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai ) −
∑
i< j

P (Ai ∩ A j ) +
∑

i< j<k

P (Ai ∩ A j ∩ Ak)

+ · · · + (−1)n+1 P (A1 ∩ · · · ∩ An) (2.16)

In words, we take all possible intersections of 1, 2, . . . , n events and the signs of

the sums alternate.

Proof. A point that is in exactly k sets is counted k times by the first sum, Ck,2

times by the second, Ck,3 times by the third, and so on until it is counted Ck,k = 1

time by the kth term. The net result is

Ck,1 − Ck,2 + Ck,3 + · · · + (−1)k+11

To show that this adds up to 1, we recall the binomial theorem

(a + b)k = ak + Ck,1ak−1b + Ck,2ak−2b2 + · · · + bk

Setting a = 1 and b = −1, we have

0 = 1 − Ck,1 + Ck,2 − Ck,3 − · · · − (−1)k+1

which proves the desired result.

Example 2.45 You pick 7 cards out of deck of 52. What is the probability that you have a three

of a kind, that is, exactly three cards of some denomination (for example, three

kings or three 7’s)?

Let Ai for 1 ≤ i ≤ 13 be the event you have three cards of type i where 1 is

ace, 11 is jack, 12 is queen, and 13 is king. It is impossible for three of these

events to occur so

P

(
13⋃

i=1

Ai

)
= 13P (A1) − C13,2 P (A1 ∩ A2)

A1 can occur in C4,3C48,4 = 778,320 ways and A1 ∩ A2 can occur in (C4,3)2 ·
44 = 704 ways so the answer is

13 · 778,320 − 78 · 704

C52,7
= 10,118,160 − 54,912

133,784,560
= 0.075219
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Notice that the first term gives most of the answer and the second is only a small

correction to account for the rare event of having two sets of three of a kind.

Example 2.46 Suppose we roll a die 15 times. What is the probability that we do not see each

of the 6 numbers at least once?

Let Ai be the event that we never see i . P (Ai ) = 515/615 since there are 615

outcomes in all but only 515 that contain no i ’s. 515/615 = 0.064905, so

6∑
i=1

P (Ai ) = 6(0.064905) = 0.389433

Turning to the second term, we note that for any i < j , we have P (Ai ∩ A j ) =
415/615 = 0.002284 and there are C6,2 = (6 · 5)/2 = 15 choices for i < j , so∑

i< j

P (Ai ∩ A j ) = 15(0.002284) = 0.03426

For the third term, we note that for any i < j < k, we have P (Ai ∩ A j ∩
Ak) = 315/615 = 3.05 × 10−5 and there are C6,3 = (6 · 5 · 4)/3! = 20 choices

for i < j < k, so∑
i< j<k

P (Ai ∩ A j ∩ Ak) = 20(3.05 × 10−5) = 0.00061

At this point the pattern should be clear:

C6,1(5/6)15 − C6,2(4/6)15 + C6,3(3/6)15 − C6,4(2/6)15 + C6,5(1/6)15

= 0.389433 − 0.03426 + 6.1 × 10−4 − 1.045 × 10−6 + 1.276 × 10−11

= 0.355787

2.5.2 Bonferroni inequalities

In brief, if you stop the inclusion–exclusion formula with a + term you get an

upper bound; if you stop with a − term you get a lower bound.

P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

P (Ai ) (2.17)

≥
n∑

i=1

P (Ai ) −
∑
i< j

P (Ai ∩ A j ) (2.18)

≤
n∑

i=1

P (Ai ) −
∑
i< j

P (Ai ∩ A j ) +
∑

i< j<k

P (Ai ∩ A j ∩ Ak)

(2.19)



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

66 Combinatorial Probability

To explain the usefulness of these inequalities, we note that in the previous

example they imply that the probability of interest

≤ 0.389433

≥ 0.389433 − 0.03426 = 0.355177

≤ 0.389433 − 0.03426 + 6.1 × 10−4 = 0.355738

so we have a very accurate result after three terms.

Proof. The first inequality is obvious since the right-hand side counts each

outcome in ∪n
i=1 Ai at least once. To prove the second, consider an outcome that

is in exactly k sets. If k = 1, the first term will count it once and the second not at

all. If k = 2, the first term counts it twice and the second once, with a net total of

1. If k ≥ 3, the first term counts it k times and the second Ck,2 = k(k − 1)/2 > k

times so the net number of countings is <0.

The third formula is similar.

In k sets Counted

1 1 − 0 + 0 = 1

2 2 − 1 + 0 = 1

3 3 − 3 + 1 = 1

When ≥ 4, the number of countings is

Ck,1 − Ck,2 + Ck,3 > k − k(k − 1)

2
+ (k − 1)(k − 2) ≥ 0

Example 2.47 The streak. In the summer of 1941, Joe DiMaggio achieved what many people

consider the greatest record in sports, in which he had at least one hit in each of

56 games. What is the probability of this event?

A useful trick. Suppose for the moment that we know the probability p that Joe

DiMaggio gets a hit in one game and that successive games are independent.

Assuming a 154-game season, we could let Ai be the probability that a player

got hits in games i + 1, . . . , i + 56 for 0 ≤ i ≤ 98. Using (2.17) it follows that

the probability of the streak is

≤99p56

As we will see in a minute this overestimates the actual answer by a factor

of 1/(1 − p). The problem is that if Ai occurs, it becomes much easier for

Ai+1, Ai−1, and other “nearby” events to occur. To avoid this problem, we

will let Bi be the event the player gets no hit in game i but has hits in games

i + 1, i + 2, . . . , i + 56, where 1 ≤ i ≤ 98. Ignoring the probability of having
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hits in games 1, 2, . . . , 56, the event of interest S = ∪98
i=1 Bi , so

P (S) ≤ q ≡ 98p56(1 − p)

To compute the second bound we begin by noting Bi ∩ B j = ∅ if i < j ≤ i + 56

since Bi requires a hit in game j , while B j requires no hit. If 56 + i < j ≤ 98,

then P (Bi ∩ B j ) = P (Bi )P (B j ). To simplify the arithmetic we note that in

either case P (Bi ∩ B j ) ≤ P (Bi )P (B j ), so

∑
1≤i< j≤98

P (Bi ∩ B j ) ≤ C98,2 p112(1 − p)2 ≤ q 2

2

This is the number we have to subtract from the upper bound to get the lower

bound, so we have

q ≥ P (S) ≥ q − q 2

2
(2.20)

Since q will end up being very small, the ratio of the two bounds is 1 − (q/2) ≈ 1.

To compute the probability p that Joe DiMaggio gets a hit in one game,

we will introduce two somewhat questionable assumptions: (i) A player gets

exactly four at bats per game (during the streak, DiMaggio averaged 3.98 at bats

per game) and (ii) the outcomes of different at bats are independent with the

probability of a hit being 0.325, Joe DiMaggio’s lifetime batting average. From

assumptions (i) and (ii) it follows that the probability

p = 1 − (0.675)4 = 0.7924

and using (2.20) we have

P (S) ≈ q = 98(0.7924)56(0.2076) = 4.46 × 10−5

To interpret our result, note that the probability in (2.20) is roughly 1/22,000,

so even if there were 220 players with 0.325 batting averages, it would take

100 years for this to occur again.

Example 2.48 A less famous streak. Sports Illustrated reports that a high school football

team in Bloomington, Indiana, lost 21 straight pregame coin flips before finally

winning one. Taking into account the fact that there are approximately 15,000

high school and college football teams, is this really surprising?

We will first compute the probability that this happens to one team some

time in the decade 1995–2004, assuming that the team plays 10 games per year.

Taking a lesson from the previous example, we let Bi be the event that the team

won the coin flip in game i but lost it in games i + 1, . . . , i + 21. Using the



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

68 Combinatorial Probability

reasoning that led to (2.20),

P (S) ≈ 79(1/2)22 = 1.883 × 10−5

What we have computed is the probability that one particular team will have

this type of bad luck some time in the last decade. The probability that none of

the 15,000 teams will do this is

(1 − 79(0.5)22)15,000 = 0.7539

that is, with probability 0.2461 some team will have this happen to them. As a

check on the last calculation, note that (2.17) gives an upper bound of

15,000 × 1.883 × 10−5 = 0.2825

2.6 Blackjack

In this book we analyze craps and roulette, casino games where the player has

a substantial disadvantage. In the case of blackjack, a little strategy, which we

explain in this section, can make the game almost even. To begin we describe

the rules and the betting.

In the game of blackjack, a king, queen, or jack counts 10, an ace counts 1 or

11, and the other cards count the numbers that are shown on them (for example,

a 5 counts 5). The object of the game is to get as close to 21 as you can without

going over. You start with 2 cards and draw cards out of the deck until either

you are happy with your total or you go over 21, in which case you “bust.”

If your initial two cards total 21, this is a blackjack, and if the dealer does not

have one, you win 1.5 times your original bet. If you bust then you immediately

lose your bet. This is the main source of the casino advantage since if the dealer

busts later you have already lost. If you stop with 21 or less and the dealer busts,

you win. If you and the dealer both end with 21 or less then the one with higher

hand wins. In the case of a tie no money changes hands.

In casino blackjack the dealer plays by a simple rule: He draws a card if his total

is ≤ 16, otherwise he stops. The first step in analyzing blackjack is to compute

the probability that the dealer’s ending total is k when he has a total of j . To deal

with the complication that an ace can count as 1 or 11, we introduce b( j, k) =
the probability that the dealer’s ending total is k when he has a total of j including

one ace that is being counted as 11. Such hands are called soft because even if

you draw a 10, you will not bust. We define a( j, k) = the probability that the

dealer’s ending total is k when he has a hard total of j , that is, a hand in which

any ace is counted as 1.
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We start by observing that a( j, j ) = b( j, j ) = 1 when j ≥ 17 and then

start with 16 and work down. Let pi = 1/13 for 1 ≤ i < 9 and p10 = 4/13. If

11 ≤ j ≤ 16, then a new ace must count as 1, so

a( j, k) = p1a( j + 1, k) +
10∑

m=2

pma( j + m, k)

When 2 ≤ j ≤ 10, a new ace counts as 11 and produces a soft hand:

a( j, k) = p1b( j + 11, k) +
10∑

m=2

pma( j + m, k)

For soft hands, an ace counts as 11, so there are no soft hands with totals of less

than 12. If the card we draw takes us over 21 then we have to change the ace

from counting 11 to counting 1, producing a hard hand, so

b( j, k) = p1b( j + 1, k) +
21− j∑
m=2

pmb( j + m, k) +
10∑

m=22− j

pma( j + m − 10, k)

When j = 11, the second sum runs from 11 to 10 and is considered to be 0.

The last three formulas are too complicated to work with by hand but are

easy to manipulate using a computer. The next table gives the probabilities of

the various results for the dealer conditional on the value of his first card. We

have broken things down this way because when blackjack is played in a casino,

we can see one of the dealer’s two cards.

17 18 19 20 21 Bust

2 0.13981 0.13491 0.12966 0.12403 0.11799 0.35361
3 0.13503 0.13048 0.12558 0.12033 0.11470 0.37387
4 0.13049 0.12594 0.12139 0.11648 0.11123 0.39447
5 0.12225 0.12225 0.11770 0.11315 0.10825 0.41640
6 0.16544 0.10627 0.10627 0.10171 0.09716 0.42315

7 0.36857 0.13780 0.07863 0.07863 0.07407 0.26231

8 0.12857 0.35934 0.12857 0.06939 0.06939 0.24474

9 0.12000 0.12000 0.35076 0.12000 0.06082 0.22843

10 0.11142 0.11142 0.11142 0.34219 0.11142 0.21211

Ace 0.13079 0.13079 0.13079 0.13079 0.36156 0.11529

You should note that when the dealer’s upcard is 2, 3, 4, 5, or 6, her most

likely outcome is to bust, but when her first card is k = 7, 8, 9, 10, or ace = 11,

her most likely total is 10 + k. To make this clear we have given the most likely

probabilities in boldface.
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The analysis of the player’s options is even more complicated than that of the

dealer, so we will not attempt it here. The first analysis was performed in the

mid-1950s (see Baldwin et al. in Journal of the American Statistical Association,

Vol. 51, pp. 429–439) and has been redone by a number of other people since

that time. To describe the optimal strategy in a few words we use “stand on n”

as short for “take a card if your total is < n but not if it is ≥ n.”

Hard hands
Stand on 17 if the dealer shows 7, 8, 9, 10, or A.

Stand on 12 if the dealer shows 2, 3, 4, 5, or 6.

Exception: Draw to 12 if the dealer shows 2 or 3.

Soft hands
Stand on 18.

Exception: Draw to 18 if the dealer has 9 or 10.

To help remember the rules for hard hands, observe that with two exceptions

the strategy there is a combination of “mimic the dealer” and “never bust” (that

is, “only take a card if you have 11 or less”), and it is exactly what we would do

if the dealer’s downcard was a 10. If her upcard is 7, 8, 9, 10, or A, then we must

get to 17 to have a chance of winning. If her upcard is 2, 3, 4, 5, or 6 then we

don’t draw and hope that she busts.

Using these rules, the probability that you will win is about 0.49, close enough

to even if you are only looking for an evening’s entertainment. You can reduce

the house edge even further by learning about “doubling down” and splitting

pairs.

Doubling down. In this move you turn up your two cards, double your bet, and

ask for one card to be dealt down to you. You are not allowed to ask for a second

card if you don’t like the first one. Double down

• If your total is 11
• If your total is 10 and the dealer’s upcard is 9 or less
• If your total is 9 and the dealer’s upcard is 3 through 6
• If you have A and 2 through 7 and the dealer’s upcard is 4, 5, or 6

Again the doubling down rules can be explained by assuming that we are going

to get a 10. Some Nevada casinos allow doubling down only on 11 or 10.

Splitting pairs. If you have a pair you can split them, an extra card is dealt to

each one, you place another bet on the table, so there is one on each hand, and

then play two hands separately.

• Always split A’s or 8’s.
• Never split 4’s, 5’s, or 10’s.
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• Split 2’s, 3’s, 6’s, and 7’s when the dealer’s upcard is 3 through 7.
• Split 9’s when the dealer’s upcard is 2 through 9, but not 7.

The reason for splitting aces should be obvious. It is such a good play that it

has on occasion been forbidden. Some casino rules do not allow further drawing

after aces are split, and if a 10 lands on the ace, it is not a blackjack. To see why 8’s

are singled out for splitting, note that 8 + 8 = 16, which wins only if the dealer

busts, while an 8 paired with a 10 produces an 18.

Counting cards. Edward Thorp’s book Beat the Dealer, which astonished the

world in 1962 by demonstrating that by “counting cards” (that is, by keeping

track of the difference between the numbers of cards you have seen that count 10

and those that count 2 through 6) and by adjusting your betting you can make

money from blackjack. Before the reader plans a trip to Las Vegas or Atlantic

City, we would like to point out that playing this strategy requires hardwork,

that making money with it requires a lot of capital, and that casinos are allowed

to ask you to leave if they think you are playing it. The book Bringing Down the

House gives an entertaining account of MIT students using the strategy to win

money at blackjack.

2.7 Exercises

Permutations and combinations

1. How many possible batting orders are there for nine baseball players?

2. A tire manufacturer wants to test four different types of tires on three different

types of roads at five different speeds. How many tests are required?

3. 16 horses race in the Kentucky Derby. How many possible results are there

for win, place, and show (first, second, and third)?

4. A school gives awards in five subjects to a class of 30 students but no one is

allowed to win more than one award. How many outcomes are possible?

5. A tourist wants to visit six of America’s ten largest cities. In how many ways

can she do this if the order of her visits is (a) important or (b) not important?

6. Five businessmen meet at a convention. How many handshakes are exchanged

if each shakes hands with all the others?

7. A commercial for Glade Plug-ins says that by inserting 2 of a choice of

11 scents into the device, you can make more than 50 combinations. If we

exclude the boring choice of two of the same scent, how many possibilities are

there?
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8. In a class of 19 students, 7 will get A’s. In how many ways can this set of

students be chosen?

9. (a) How many license plates are possible if the first three places are occupied

by letters and the last three by numbers? (b) Assuming all combinations are

equally likely, what is the probability that the three letters and the three numbers

are different?

10. How many four-letter “words” can you make if no letter is used twice and

each word must contain at least one vowel (A, E, I, O, or U)?

11. Assuming all phone numbers are equally likely, what is the probability that

all the numbers in a seven-digit phone number are different?

12. A domino is an ordered pair (m, n) with 0 ≤ m ≤ n ≤ 6. How many domi-

noes are in a set if there is only one of each?

13. A person has 12 friends and will invite 7 to a party. (a) How many choices

are possible if Al and Bob are feuding and will not both go to the party? (b) How

many choices are possible if Al and Betty insist that they both go or neither one

goes?

14. A basketball team has 5 players more than 6 feet tall and 6 who are less

than 6 feet. How many ways can they have their picture taken if the 5 taller

players stand in a row behind the 6 shorter players who are sitting on a row of

chairs?

15. The Duke basketball team has 10 women who can play guard and 12 tall

women who can play the other three positions. At the start of the game, the

coach gives the referee a starting lineup that lists who will play left guard, right

guard, left forward, center, and right forward. In how many ways can this be

done?

16. Six students, three boys and three girls, lineup in a random order for a

photograph. What is the probability that the boys and girls alternate?

17. Seven people sit at a round table. How many ways can this be done if Mr.

Jones and Miss Smith (a) must sit next to each other and (b) must not sit next

to each other? (Two seating patterns that differ only by a rotation of the table

are considered the same.)

18. How many ways can four rooks be put on a chessboard so that no rook can

capture any other rook? Or, what is the same: How many ways can 8 markers be

placed on an 8 × 8 grid of squares so that there is at most one in each row or

column?
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19. A BINGO card is a 5 × 5 grid. The center square is a free space and has no

number. The first column is filled with five distinct numbers from 1 to 15, the

second with five numbers from 16 to 30, the middle column with four numbers

from 31 to 45, the fourth with five numbers from 46 to 60, and the fifth with

five numbers from 61 to 75. Since the object of the game is to get five in a row

horizontally, vertically, or diagonally, the order is important. How many BINGO

cards are there?

20. Continuing with the setup from the previous problem, in BINGO numbers

are drawn from 1 to 75 without replacement. When a number is called you put

a marker on that square. If you have five in a row horizontally, vertically, or

diagonally, you have a BINGO. What is the probability you will have a BINGO

after (a) four numbers are called? (b) After five?

Multinomial counting problems

21. How many different ways can the letters in the following words be arranged:

(a) money, (b) banana, (c) statistics, (d) Mississippi?

22. 12 different toys are to be divided among 3 children so that each one gets 4

toys. How many ways can this be done?

23. A club with 50 members is going to form two committees, one with 8

members and the other with 7. How many ways can this be done (a) if the

committees must be disjoint? (b) If they can overlap?

24. If seven dice are rolled, what is the probability that each of the six numbers

will appear at least once?

25. How many ways can 5 history books, 3 math books, and 4 novels be arranged

on a shelf if the books of each type must be together?

26. Suppose three runners from team A and three runners from team B have a

race. If all six runners have equal ability, what is the probability that the three

runners from team A will finish first, second, and fourth?

27. Four men and four women are shipwrecked on a tropical island. How many

ways can they (a) form four male–female couples, (b) get married if we keep

track of the order in which the weddings occur, (c) divide themselves into four

unnumbered pairs, (d) split up into four groups of two to search the North,

East, West, and South shores of the island, (e) walk single file up the ramp to

the ship when they are rescued, (f) take a picture to remember their ordeal if all

eight stand in a line but each man stands next to his wife?



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

74 Combinatorial Probability

Binomial and multinomial distributions

28. A die is rolled 8 times. What is the probability that we will get exactly

two 3’s?

29. Mary knows the answers to 20 of the 25 multiple-choice questions on the

Psychology 101 exam, but she has skipped several of the lectures; she must

take random guesses for the other five. Assuming each question has four an-

swers, what is the probability that she will get exactly 3 of the last 5 questions

right?

30. In 1997, 10.8% of female smokers smoked cigars. In a sample of size 10

female smokers, what is the probability that (a) exactly 2 of the women smoke

cigars? (b) At most 1 smokes cigars?

31. A 1994 report revealed that 32.6% of U.S. births were to unmarried women.

A parenting magazine selected 30 women who gave birth in 1994 at random.

(a) What is the probability that exactly 10 of the women were unmarried? (b)

Using your calculator determine the probability that in the sample at most 10

are unmarried.

32. 20% of all students are left-handed. A class of size 20 meets in a room

with 5 left-handed and 18 right-handed chairs. Use your calculator to find the

probability that each student will have a chair to match their needs.

33. David claims to be able to distinguish brand B beer from brand H, but Alice

claims that he just guesses. They set up a taste test with 10 small glasses of beer.

David wins if he gets 8 or more right. What is the probability that he will win

(a) if he is just guessing? (b) If he gets the right answer with probability 0.9?

34. The following situation comes up the game of Yahtzee. We have three rolls

of five dice and want to get three sixes or more. On each turn we reroll any dice

that are not 6’s. What is the probability that we succeed?

35. A baseball pitcher throws a strike with probability 0.5 and a ball with

probability 0.5. He is facing a batter who never swings at a pitch. What is the

probability that he strikes out, that is, gets three strikes before four balls?

36. A baseball player is said to “hit for the cycle” if he has a single, a double,

a triple, and a home run all in one game. Suppose these four types of hits

have probabilities 1/6, 1/20, 1/120, and 1/24. What is the probability of hitting

for the cycle if he gets to bat (a) four times and (b) five times? (c) Using

P (∪i Ai ) ≤ ∑
i P (Ai ) shows that the answer to (b) is at most 5 times the

answer to (a). What is the ratio of the two answers?
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Poisson approximation

37. Compare the Poisson approximation with the exact binomial probabilities

when (a) n = 10, p = 0.1, (b) n = 20, p = 0.05, and (c) n = 40, p = 0.025.

38. Use the Poisson approximation to compute the probability that you will

roll at least one double 6 in 24 trials. How does this compare with the exact

answer?

39. The probability of a three of a kind in poker is approximately 1/50. Use the

Poisson approximation to compute the probability that you will get at least one

three of a kind if you play 20 hands of poker.

40. Calls to a toll-free hotline service are made randomly at rate 2 per minute.

The service has five operators, none of whom is currently busy. Use the Poisson

distribution to estimate the probability that in the next minute there are < 5

calls.

41. In one of the New York state lottery games, a number is chosen at random

between 0 and 999. Suppose you play this game 250 times. Use the Poisson

approximation to estimate the probability that you will never win and compare

this with the exact answer.

42. If you bet $1 on number 13 at roulette (or on any other number) then you

win $35 if that number comes up, an event of probability 1/38, and you lose your

dollar otherwise. Suppose you play 70 times. Use the Poisson approximation to

estimate the probability that (a) you have won 0 times and lost $70, and (b) you

have won 1 time and lost $34. (c) If you win 2 times you have won $2. Combine

the results of (a) and (b) to conclude that the probability that you will have won

more money than you have lost is larger than 1/2.

43. In a particular Powerball drawing 210,850,582 tickets were sold. The chance

of winning the lottery is 1 in 80,000,000. Use the Poisson approximation to

estimate the probability that there is exactly one winner.

44. Suppose that the probability of a defect in a foot of magnetic tape is 0.002.

Use the Poisson approximation to compute the probability that a 1,500-foot roll

will have no defects.

45. Suppose 1% of a certain brand of Christmas lights is defective. Use the

Poisson approximation to compute the probability that in a box of 25 there will

be at most one defective bulb.

46. In February 2000, 2.8% of Colorado’s labor force was unemployed. Calculate

the probability that in a group of 50 workers exactly one is unemployed.
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47. An insurance company insures 3,000 people, each of whom has a 1/1,000

chance of an accident in 1 year. Use the Poisson approximation to compute the

probability that there will be at most 2 accidents.

48. Suppose that 1% of people in the population are more than 6 feet 3 inches

tall. What is the chance that in a group of 200 people picked at random from

the population at least four people will be more than 6 feet 3 inches tall.

49. In an average year in Mythica there are 8 fires. Last year there were 12 fires.

How likely is it to have 12 or more fires just by chance?

50. An airline company sells 160 tickets for a plane with 150 seats, knowing that

the probability that a passenger will not show up for the flight is 0.1. Use the

Poisson approximation to compute the probability that they will have enough

seats for all the passengers who show up.

51. Books from a certain publisher contain an average of 1 misprint per page.

What is the probability that on at least one page in a 300-page book there are

five misprints?

Urn problems

52. Two red cards and two black cards are lying face down on the table. You pick

two cards and turn them over. What is the probability that the two cards are

different colors?

53. Four people are chosen at random from 5 couples. What is the probability

that two men and two women are selected?

54. You pick 5 cards out of a deck of 52. What is the probability that you get

exactly 2 spades?

55. Seven students are chosen at random from a class with 17 boys and 13 girls.

What is the probability that 4 boys and 3 girls are selected?

56. In a carton of 12 eggs, 2 are rotten. If we pick 4 eggs to make an omelet, what

is the probability that we do not get a rotten egg?

57. An electronics store receives a shipment of 30 calculators of which 4 are

defective. Six of these calculators are selected to be sent to a local high school.

What is the probability that exactly one is defective?

58. A scrabble set contains 54 consonants, 44 vowels, and 2 blank tiles. Find the

probability that your initial draw contains 5 consonants and 2 vowels.

59. (a) How many ways can we pick 4 students from a group of 40 to be on the

math team? (b) Suppose there are 18 boys and 12 girls. What is the probability

that the team will have 2 boys and 2 girls.
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60. The following probability problem arose in a court case concerning possible

discrimination against black nurses. 26 white nurses and 9 black nurses took an

exam. All the white nurses passed but only 4 of the black nurses did. What is

the probability that we would get this outcome if the five nurses who failed were

chosen at random?

61. A closet contains 8 pairs of shoes. You pick out 5. What is the probability of

(a) no pair, (b) exactly one pair, and (c) two pairs?

62. A drawer contains 10 black, 8 brown, and 6 blue socks. If we pick two socks

at random, what is the probability that they match?

63. A dance class consists of 12 men and 10 women. Five men and five women

are chosen and paired up to dance. In how many ways can this be done?

64. Suppose we pick 5 cards out of a deck of 52. What is the probability that we

get at least one card of each suit?

65. A bridge hand in which there is no card higher than a 9 is called a Yarborough

after the Earl who liked to bet at 1,000 to 1 that your bridge hand would have a

card that was 10 or higher. What is the probability of a Yarborough when you

draw 13 cards out of a deck of 52.

66. Two cards are a blackjack if one is an A and the other is a K, Q, J, or 10. (a)

If you pick two cards out of a deck, what is the probability that you will get a

blackjack? (b) Suppose you are playing blackjack against the dealer with a freshly

shuffled deck. What is the probability that you or the dealer will get a blackjack?

67. A student studies 12 problems from which the professor will randomly

choose 6 for a test. If the student can solve 9 of the problems, what is the

probability she can solve at least 5 of the problems on the test?

68. A football team has 16 seniors, 12 juniors, 8 sophomores, and 4 freshmen.

If we pick 5 players at random, what is the probability that we will get 2 seniors

and 1 from each of the other 3 classes?

69. In a kindergarten class of 20 students, one child is picked each day to help

serve the morning snack. What is the probability that in 1 week five different

children are chosen?

70. An investor picks 3 stocks out of 10 recommended by his broker. Of these, 6

will show a profit in the next year. What is the probability that the investor will

pick (a) 3, (b) 2, (c) 1, (d) 0 profitable stocks?

71. Four red cards (that is, hearts and diamonds) and four black cards are face

down on the table. A psychic who claims to be able to locate the four black cards

turns over 4 cards and gets 3 black cards and 1 red card. What is the probability

that he would do this if he were guessing?
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72. A town council considers the question of closing down an “adult” theater.

The five men on the council all vote against this and the three women vote in

favor. What is the probability that we would get this result (a) if the council

members determined their votes by flipping a coin? (b) If we assigned the five

“no” votes to council members chosen at random?

73. An urn contains white balls numbered 1 to 15 and black balls also numbered

1 to 15. Suppose you draw 4 balls. What is the probability that (a) no two have

the same number? (b) You get exactly one pair with the same number? (c) You

get two pair with the same numbers?

74. A town has four TV repairmen. In the first week of September four TV sets

break and their owners call repairmen chosen at random. Find the probability

that the number of repairmen who have jobs is 1, 2, 3, 4.

75. Compute the probabilities of the following poker hands when we roll five

six-sided dice.

(a) Five of a kind 0.000771

(b) Four of a kind 0.019290

(c) A full house 0.038580

(d) Three of a kind 0.154320

(e) Two pair 0.231481

(f) One pair 0.462962

(g) No pair 0.092592

76. In seven-card stud you receive seven cards and use them to make the best

poker hand you can. Ignoring the possibility of a straight or a flush the probability

that the best hand you can make with your cards is

Seven cards Five cards

(a) Four of a kind 0.001680 0.000240

(b) A full house 0.025968 0.001441

(c) Three of a kind 0.049254 0.021128

(d) Two pair 0.240113 0.047539

(e) One pair 0.472839 0.422569

(f) No pair 0.210150 0.507082

Verify the probabilities for seven-card stud. Hint: For full house you need to

consider hand patterns: 3–3–1 and 3–2–2 in addition to the more likely 3–2–1–1.

For two pair you also have to consider the possibility of three pair.
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Probabilities of unions

77. Six high school teams play each other in the Southern Tier division. Each

team plays all the other teams once. What is the probability that some team has

a perfect 5–0 season?

78. Suppose you draw 7 cards out of a deck of 52. What is the probability

that you will have (a) exactly 5 cards of one suit? (b) At least 5 cards of one

suit?

79. In a certain city 60% of the people subscribe to newspaper A, 50% to B,

40% to C, 30% to A and B, 20% to B and C, and 10% to A and C, but no one

subscribes to all three. What percentage subscribe to (a) at least one newspaper

and (b) exactly one newspaper?

80. Santa Claus has 45 drums, 50 cars, and 55 baseball bats in his sled. 15 boys

will get a drum and a car, 20 a drum and a bat, 25 a bat and a car, and 5 will get

three presents. (a) How many boys will receive presents? (b) How many boys

will get just a drum?

81. Use the inclusion–exclusion formula to compute the probability that a

randomly chosen number between 0000 and 9999 contains at least one 1. Check

this by computing the probability that there is no 1.

82. Ten people call an electrician and ask him to come to their houses on

randomly chosen days of the work week (Monday through Friday). What is the

probability of A = “he has at least one day with no jobs”?

83. We pick a number between 0 and 999, then a computer picks one at random

from that range. Use (2.15) to compute the probability that at least two of our

digits will match the computer’s number. (Note: We include any leading zeros,

so 017 and 057 have two matching digits.)

84. You pick 13 cards out of a deck of 52. What is the probability that you will

not get a card from every suit?

85. You pick 13 cards out of a deck of 52. Let A = “you have exactly 6 cards

in at least one suit” and B = “you have exactly 6 spades.” The first Bonferroni

inequality says that P (A) ≤ 4P (B). Compute P (A) and P (A)/P (B).

86. Use the first two Bonferroni inequalities to compute an upper and a lower

bound on the probability that in a group of 60 people, at least 3 were born on

the same day.
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87. Suppose we roll two dice 6 times. Use the first three Bonferroni inequalities

to compute bounds on the probability of A = “we get at least one double 6.”

Compare the bounds with the exact answer 1 − (35/36)6.

88. Suppose we try 20 times for an event with probability 0.01. Use the first three

Bonferroni inequalities to compute bounds on the probability of one success.
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Conditional Probability

3.1 Definition

Suppose we are told that the event A with P (A) > 0 occurs. As explained in

Section 1.3, then the sample space is reduced from � to A and by (1.6) the

probability that B will occur given that A has occurred is

P (B |A) = P (B ∩ A)

P (A)
(3.1)

Example 3.1 Suppose we roll two dice. Let A = “the sum is 8” and B = “the first die is 3.”

A = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}, so P (A) = 5/36. A ∩ B = {(3, 5)}, so

P (B |A) = 1/36

5/36
= 1

5

The same result holds if B = “the first die is k” and 2 ≤ k ≤ 6. Carrying this

reasoning further, we see that given the outcome lies in A, all 5 possibilities have

the same probability. This should not be surprising. The original probability is

uniform over the 36 possibilities, so when we condition on the occurrence of A,

its 5 outcomes are equally likely.

As the last example may have suggested, the mapping B → P (B |A) is a

probability. That is, it is a way of assigning numbers to events that satisfies the

axioms introduced in Chapter 1. To prove this, we note that

(i) 0 ≤ P (B |A) ≤ 1 since 0 ≤ P (B ∩ A) ≤ P (A).

(ii) P (�|A) = P (� ∩ A)/P (A) = 1.

(iii) and (iv) If Bi are disjoint then Bi ∩ A are disjoint and (∪i Bi ) ∩ A =
∪i (Bi ∩ A), so using the definition of conditional probability and parts

(iii) and (iv) of the definition of probability we have

P (∪i Bi |A) = P (∪i (Bi ∩ A))

P (A)
=
∑

i P (Bi ∩ A)

P (A)
=
∑

i

P (Bi |A)

81
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From the last observation it follows that P (·|A) has the same properties that

ordinary probabilities do; for example, if C = Bc ,

P (C |A) = 1 − P (B |A) (3.2)

Actually for this to hold, it is enough that B and C complement each other

inside A; that is, (B ∩ C ) ∩ A = ∅ and (B ∪ C ) ⊃ A.

Example 3.2 Alice and Bob are playing a gambling game. Each rolls one die and the person

with the higher number wins. If they tie, they roll again. If Alice just won, what

is the probability she rolled a 5?

Let A = “Alice wins” and Ri = “she rolls an i .” If we write outcomes with

Alice’s roll first and Bob’s second, the event A

(2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(3, 2) (4, 2) (5, 2) (6, 2)

(4, 3) (5, 3) (6, 3)

(5, 4) (6, 4)

(6, 5)

There are 1 + 2 + 3 + 4 + 5 = 15 outcomes in A, and if we condition on

A, they are all equally likely. A ∩ R5 has 4 outcomes, so P (R5|A) = 4/15. In

general, P (Ri |A) = (i − 1)/15 for 1 ≤ i ≤ 6.

Example 3.3 A person picks 13 cards out of a deck of 52. Let A1 = “he has at least one ace,”

H = “he has the ace of hearts,” and E 1 = “he receives exactly one ace.” Find

P (E 1|A1) and P (E 1|H). Do you think these will be equal? If not then which

one is larger?

Let E 0 = “he has no ace.”

p0 = P (E 0) = C48,13

C52,13
p1 = P (E 1) = 4C48,12

C52,13

Since E 1 ⊂ A1 and A1 = E c
0,

P (E 1|A1) = P (E 1)

P (A1)
= p1

1 − p0

Since E 1 ∩ H means you get the ace of hearts and no other ace:

P (E 1|H) = P (E 1 ∩ H)

P (H)
= C48,12/C52,13

1/4
= p1

To compare the probabilities we observe

P (E 1|A1) = p1

1 − p0
> p1 = P (E 1|H)



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

83 3.1 Definition

Letting A2 = “he has at least two aces” and using (3.2) we have

P (A2|A1) < P (A2|H)

Intuitively, the event H is harder to achieve than A1, so conditioning on it

increases our chance of having other aces.

Multiplying the definition of conditional probability in (3.1) on each side by

P (A) gives the multiplication rule

P (A)P (B |A) = P (B ∩ A) (3.3)

Example 3.4 Suppose we draw 2 cards out of a deck of 52. What is the probability that both

cards are spades?

Let A = “the first card is a spade” and B = “the second card is a spade.”

P (A) = 1/13. To compute P (B |A), we note that if A has occurred then only

12 of the remaining 51 cards are spades, so P (B |A) = 12/51 and

P (A ∩ B) = P (A)P (B |A) = 13

52
· 12

51

Note that in this example we computed P (B |A) by thinking about the

situation that exists after A has occurred, rather than using the definition

P (B |A) = P (A ∩ B)/P (A). Indeed, it is more common to use P (A) and

P (B |A) to compute P (A ∩ B) than to use P (A) and P (A ∩ B) to compute

P (B |A).

Example 3.5 The Cornell hockey team is playing in a four-team tournament. In the first

round they have any easy opponent that they will beat 80% of the time but if

they win that game they will play against a tougher team where their probability

of success is 0.4. What is the probability that they will win the tournament?

0.8

0.2

0.4

0.6

Win

Lose

��������

��������

��������

��������

Win–win 0.32

Win–lose 0.48

If A and B are the events of victory in the first and second games then P (A) =
0.8 and P (B |A) = 0.4, so the probability that they will win the tournament is

P (A ∩ B) = P (A)P (B |A) = 0.8(0.4) = 0.32
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The reasoning in the last two examples extends easily to three events:

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2|A1)P (A3|A1 ∩ A2)

since the right-hand side is equal to

P (A1) · P (A1 ∩ A2)

P (A1)
· P (A1 ∩ A2 ∩ A3)

P (A1 ∩ A2)

Example 3.6 In the town of Mythica 90% of students graduate high school, 60% of high

school graduates complete college, and 20% of college graduates get graduate

or professional degrees. What fraction of students get advanced degrees?

Answer = (0.9)(0.6)(0.2) = 0.108.

The formula for three events generalizes to any number of events.

Example 3.7 What is the probability of a flush, that is, all cards of the same suit, when we

draw 5 cards out of a deck of 52?

1 · 12

51
· 11

50
· 10

49
· 9

48

The first time we can draw anything. On the second draw we must pick 1 of

the other 12 cards in that suit among the 51 that remain. If we succeed on the

second draw then there are 11 good cards out of 50, etc.

Conditional probabilities are the sources of many “paradoxes” in probability.

One of these attracted worldwide attention in 1990 when Marilyn vos Savant

discussed it in her weekly column in the Sunday’s Parade magazine.

Example 3.8 The Monty Hall problem. The problem is named for the host of the television

show Let’s Make A Deal, in which contestants were often placed in situations

such as the following: Three curtains are numbered 1, 2, and 3. Behind one

curtain is a car; behind the other two curtains are donkeys. You pick a curtain,

say #1. To build some suspense the host opens up one of the two remaining

curtains, say #3, to reveal a donkey. What is the probability you will win given

that there is a donkey behind #3? Should you switch curtains and pick #2 if you

are given the chance?

Many people argue that “the two unopened curtains are the same, so they

each will contain the car with probability 1/2, and hence there is no point in

switching.” As we will now show, this naive reasoning is incorrect. To compute

the answer, we will suppose that the host always chooses to show you a donkey

and picks at random if there are two unchosen curtains with donkeys. Assuming
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you pick curtain #1, there are three possibilities:

#1 #2 #3 Host’s action

Case 1 Donkey Donkey Car Opens #2

Case 2 Donkey Car Donkey Opens #3

Case 3 Car Donkey Donkey Opens #2 or #3

Now P (case 2, open door #3) = 1/3 and

P (case 3, open door #3) = P (case 3)P (open door #3|case 3) = 1

3
· 1

2
= 1

6

Adding the two ways door #3 can be opened gives P (open door #3) = 1/2 and

it follows that

P (case 3|open door #3) = P (case 3, open door #3)

P (open door #3)
= 1/6

1/2
= 1

3

Although it took a number of steps to compute this answer, it is “obvious.”

When we picked one of the three doors initially we had probability 1/3 of

picking the car, and since the host can always open a door with a donkey, the

new information does not change our chance of winning.

The paradox actually predates the game show in the following form. Three

prisoners, Al, Bob, and Charlie, are in a cell. At dawn two will be set free and one

will be hanged, but they do not know who will be chosen. The guard offers to

tell Al the name of one of the other two prisoners who will go free but Al stops

him, screaming, “No, don’t! That would increase my chances of being hanged

to 1/2.”

Example 3.9 Cognitive dissonance. An economist, M. Keith Chen, has recently uncovered a

version of the Monty Hall problem in the theory of cognitive dissonance. For a

half century, experimenters have been using the so-called free choice paradigm to

test our tendency to rationalize decisions. In an experiment typical of the genre,

Yale psychologists measured monkeys’ preferences by observing how quickly

each monkey sought out different colors of M&Ms.

In the first step, the researchers gave the monkey a choice between, say, red and

blue. If the monkey chose red then it was given a choice between blue and green.

Nearly two-thirds of the time it rejected blue in favor of green, which seemed to

jibe with the theory of choice rationalization: once we reject something, we tell

ourselves we never liked it anyway.

Putting aside this interpretation it is natural to ask: What would happen

if monkeys were acting at random? If so, the six orderings RGB, RBG, GRB,

GBR, BGR, and BRG would have equal probability. In the first three cases red

is preferred to blue, but in 2/3s of those cases green is preferred to blue. Just
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as in the Monty Hall problem, we think that the probability of preferring blue

to green is 1/2 due to symmetry, but the probability is 1/3. This time however

conditioning on red being preferred to green reduced the original probability of

1/2 to 1/3, whereas in the Monty Hall problem the probability was initially 1/3

and did not change.

3.2 Two-stage experiments

We begin with several examples and then describe the collection of problems we

treat in this section.

Example 3.10 An urn contains 5 red and 10 black balls. We draw 2 balls from the urn without

replacement. What is the probability that the second ball drawn is red?

This is easy to see if we draw a picture. The first split in the tree is based

on the outcome of the first draw and the second on the outcome of the final.

The outcome of the first draw dictates the probabilities for the second one. We

multiply the probabilities on the edges to get probabilities of the four endpoints

and then sum the ones that correspond to red to get the answer: 4/42 + 10/42 =
1/3.

1/3

2/3

4/14

10/14

5/14

9/14

Red

Black

��������

��������

��������

��������

��������

��������

Red 4/42

Black 10/42

Red 10/42

Black 18/42

To do this with formulas, let Ri be the event of a red ball on the i th draw and

B1 the event of a black ball on the first draw. Breaking things down according

to the outcome of the first test, then using the multiplication rule, we have

P (R2) = P (R2 ∩ R1) + P (R2 ∩ B1)

= P (R2|R1)P (R1) + P (R2|B1)P (B1)

= (1/3)(4/14) + (2/3)(5/14) = 14/42 = 1/3

From this we see that P (R2|R1) < P (R1) < P (R2|B1) but the two probabilities

average to give P (R1). This calculation makes the result look like a miracle but

it is not. If we number the 15 balls in the urn then by symmetry each of them is
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equally likely to be the second ball chosen. Thus the probability of a red on the

second, eighth, or fifteenth draw is always the same.

Example 3.11 Based on past experience, 70% of students in a certain course pass the midterm

exam. The final exam is passed by 80% of those who passed the midterm, but

only by 40% of those who fail the midterm. What fraction of students pass the

final?

Drawing a tree as before with the first split based on the outcome of the

midterm and the second on the outcome of the final, we get the answer: 0.56 +
0.12 = 0.68.

0.7

0.3

0.8

0.2

0.4

0.6

Midterm

Pass

Fail

Final

Pass 0.56

Fail 0.14

Pass 0.12

Fail 0.18

��������

��������

��������

��������

��������

��������

To do this with formulas, let A be the event that the student passes the final

and B the event that the student passes the midterm. Breaking things down

according to the outcome of the first test, then using the multiplication rule, we

have

P (A) = P (A ∩ B) + P (A ∩ Bc )

= P (A|B)P (B) + P (A|Bc )P (Bc )

= (0.8)(0.7) + (0.4)(0.3) = 0.68

Example 3.12 Al flips 3 coins and Betty flips 2. Al wins if the number of heads he gets is more

than the number Betty gets. What is the probability that Al will win?

Let W be the event that Al wins. We will break things down according to the

number of heads Betty gets. Let Bi be the event that Betty gets i heads and A j

the event that Al gets j heads. By considering the 4 outcomes of flipping 2 coins

it is easy to see that

P (B0) = 1/4 P (B1) = 1/2 P (B2) = 1/4
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while considering the 8 outcomes for 3 coins leads to

P (W|B0) = P (A1 ∪ A2 ∪ A3) = 7/8

P (W|B1) = P (A2 ∪ A3) = 4/8

P (W|B2) = P (A3) = 1/8

This gives us the raw material for drawing our picture:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��������

��������

��������

��������

��������

��������

1/4

2/4

1/4

0
7/8

1/8

1
4/8

4/8

2
1/8

7/8

Betty’s heads

Betty

Al

Betty

Al

Betty

Al

Winner

7/32

1/32

8/32

8/32

1/32

7/32

Adding up the ways Al can win, we get 7/32 + 8/32 + 1/32 = 1/2. To check this

draw a line through the middle of the picture and note the symmetry between

top and bottom.

To do this with formulas, note that W ∩ Bi , i = 0, 1, 2, are disjoint and their

union is W, so

P (W) =
2∑

i=0

P (W ∩ Bi ) =
2∑

i=0

P (W|Bi )P (Bi )

since P (W ∩ Bi ) = P (A|Bi )P (Bi ) by the multiplication rule (3.3). Plugging

in the values we computed,

P (W) = 1

4
· 7

8
+ 2

4
· 4

8
+ 1

4
· 1

8
= 7 + 8 + 1

32
= 1

2

The previous analysis makes it look miraculous that we have a fair game.

However, it is true in general.

Example 3.13 Al flips n + 1 coins and Betty flips n. Al wins if the number of heads he gets is

more than the number Betty gets. What is the probability that Al will win?
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Consider the situation after Al has flipped n coins and Betty has flipped n.

Using X and Y to denote the number of heads for Al and Betty at that time, there

are the three possibilities: X > Y , X = Y , X < Y . In the first case, Al has already

won. In the third, he cannot win. In the second, he wins with probability 1/2.

Using symmetry if P (X > Y ) = P (X < Y ) = p then P (X = Y ) = 1 − 2p, so

the probability that Al wins is p + (1 − 2p)/2 = 1/2.

Abstracting the structure of the last problem, let B1, . . . , Bk be a partition,

that is, a collection of disjoint events whose union is �.

	
	
	
	
	
	
	
	


















�
�
�
�
�
�
�
�B1 B2 B3 B4

B5

����������������������
A

Using the fact that the sets A ∩ Bi are disjoint, and the multiplication rule,

we have

P (A) =
k∑

i=1

P (A ∩ Bi ) =
k∑

i=1

P (A|Bi )P (Bi ) (3.4)

a formula that is sometimes called the law of total probability.

The name of this section comes from the fact that we think of our experiment

as occurring in two stages. The first stage determines which of the B ’s occur,

and when Bi occur in the first stage, A occurs with probability P (A|Bi ) in the

second. As the next example shows, the two stages are sometimes clearly visible

in the problem itself.

Example 3.14 Roll a die and then flip that number of coins. What is the probability of A =
“we get exactly 3 heads”?

Let Bi = “the die shows i .” P (Bi ) = 1/6 for i = 1, 2, . . . , 6 and

P (A|B1) = 0 P (A|B2) = 0 P (A|B3) = 2−3

P (A|B4) = C4,3 2−4 P (A|B5) = C5,3 2−5 P (A|B6) = C6,3 2−6

So plugging into (3.4),

P (A) = 1

6

{
1

8
+ 4

16
+ 10

32
+ 20

64

}

= 1

6

{
8 + 16 + 20 + 20

64

}
= 1

6
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Example 3.15 Suppose we roll three dice. What is the probability that the sum is 9?

Let A = “the sum is 9,” Bi = “the first die shows i ,” and C j = “the sum

of the second and third dice is j .” Now P (A|Bi ) = P (C9−i ) and we know the

probabilities for the sum of two dice:

j 2 3 4 5 6 7 8 9 10 11 12

P (C j )
1

36
2

36
3

36
4

36
5

36
6

36
5

36
4

36
3

36
2

36
1

36

Using (3.4), now we have

P (A) =
6∑

i=1

P (Bi )P (A|Bi ) = 1

6
(P (C8) + P (C7) + · · · + P (C3))

= 1

6

(
5

36
+ 6

36
+ 5

36
+ 4

36
+ 3

36
+ 2

36

)
= 25

216

In the same way we can compute the probability of Ak = “The sum of

three dice is k.” To check the symmetry in the table, note that if the numbers

on top are i1 + i2 + i3 = k, then the sum of the numbers on the bottom are

(7 − i1) + (7 − i2) + (7 − i3) = 21 − k.

k 3, 18 4, 17 5, 16 6, 15 7, 14 8, 13 9, 12 10, 11

P (Ak) 1
216

3
216

6
216

10
216

15
216

21
216

25
216

27
216

The graph in the figure shows the shape of the distribution. Note that the

triangular shape of the sum of two dice has become a little more rounded.

Example 3.16 Craps. In this game, if the sum of the dice is 2, 3, or 12 on his first roll, the

player loses; if the sum is 7 or 11, he wins; if the sum is 4, 5, 6, 8, 9, or 10, this

number becomes his “point” and he wins if he “makes his point” that is, his
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number comes up again before he throws a 7. What is the probability that the

player wins?

The first step in analyzing craps is to compute the probability that the player

makes his point. Suppose his point is 5 and let E k be the event that the sum is

k. There are 4 outcomes in E 5 ((1, 4), (2, 3), (3, 2), (4, 1)), 6 in E 7, and hence

26 not in E 5 ∪ E 7. Letting × stand for “the sum is not 5 or 7,” we see that

P (5) = 4

36
P (× 5) = 26

36
· 4

36
P (× × 5) =

(
26

36

)2 4

36

From the first three terms it is easy to see that for k ≥ 0,

P (× on k rolls then 5) =
(

26

36

)k 4

36

Summing over the possibilities, which represent disjoint ways of rolling 5 before

7, we have

P (5 before 7) =
∞∑

k=0

(
26

36

)k 4

36
= 4

36
· 1

1 − 26
36

since
∞∑

k=0

xk = 1

1 − x
(3.5)

Simplifying, we have P (5 before 7) = (4/36)/(10/36) = 4/10. Such a simple

answer should have a simple explanation, and it does. Consider an urn with

four balls marked 5, six marked 7, and twenty-six marked with x. Drawing with

replacement until we draw either a 5 or 7 is the same as drawing once from an

urn with 10 balls with four balls marked 5 and six marked 7.

5 5 5 5 x x x x x x x x

7 7 7 7 7 7 x x x x x x

x x x x x x x x x x x x

Another way of saying this is that if we ignore the outcomes that result in

a sum other than 5 or 7, we reduce the sample space from � to E = E 5 ∪ E 7

and the distribution of the first outcome that lands in E follows the conditional

probability P (·|E ). Since E 5 ∩ E = E 5, we have

P (E 5|E ) = P (E 5)

P (E )
= 4/36

10/36
= 4

10
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The last argument generalizes easily to give the probabilities of making any

point:

k 4 5 6 8 9 10

|E k | 3 4 5 5 4 3

P(k before 7) 3/9 4/10 5/11 5/11 4/10 3/9

To compute the probability of A = “he wins,” we let Bk = “the first roll is k”

and observe that (3.4) implies

P (A) =
12∑

k=2

P (A ∩ Bk) =
12∑

k=2

P (Bk)P (A|Bk)

When k = 2, 3, or 12 comes up on the first roll we lose, so

P (A|Bk) = 0 and P (A ∩ Bk) = 0

When k = 7 or 11 comes up on the first roll we win, so

P (A|Bk) = 1 and P (A ∩ Bk) = P (Bk)

When the first roll is k = 4, 5, 6, 8, 9, or 10, P (A|Bk) = P (k before 7) and

P (A ∩ Bk) is

3

36
· 3

9
k = 4, 10

4

36
· 4

10
k = 5, 9

5

36
· 5

11
k = 6, 8

Adding up the terms in the sum in the order in which they were computed,

P (A) = 6

36
+ 2

36
+ 2

(
1

36
+ 4 · 2

36 · 5
+ 5 · 5

36 · 11

)

= 4

18
+ 2

(
55 + 88 + 125

36 · 11 · 5

)
= 220 + 268

18 · 11 · 5
= 488

990
= 0.4929 (3.6)

which is not very much less than 1/2 = 495/990.

Example 3.17 Al and Bob take turns throwing one dart to try to hit a bull’s-eye. Al hits with

probability 1/4, while Bob hits with probability 1/3. If Al goes first what is the

probability that, he will hit the first bull’s-eye?

Let p be the answer. By considering one cycle of the game, we see

p = 1/4 + (3/4)(1/3)(0) + (3/4)(2/3)p

In words, Al wins if he hits the bull’s-eye on the first try. If he misses and Al

hits then he loses. If they both miss then it is Al’s turn and the game starts over,
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so Al’s probability of success is p. Solving the equation we have p/2 = 1/4 or

p = 1/2.

Back to craps. This reasoning in the last example can be used to compute the

probability q that a player rolls a 5 before 7. By considering the outcome of the

first roll q = 4/36 + (6/36)0 + (26/36)q and solving we have q = 4/10.

Example 3.18 NCAA Basketball Tournament. Since 1985 the tournament has had 64 teams,

four regions with 16 seeded teams. This is a knockout tournament; that is, after

each game the loser is eliminated. The table given next presents data for 1985–

2004, 20 seasons. Since there are four regions, this means that each seeding has

had a total of 80 trials. The table describes relative success of the various seeds in

advancing in the tournament to the rounds of 32, sweet 16, elite 8, the final 4, the

2 teams in the championship game, and to win the tournament. The numbers

are decreasing across each row. For readability once a number becomes 0, the

remaining entries are left blank.

For reasons that will become clear as you read the table we have listed the

seeds in the order dictated by how the games are played. That is, in the first

round the sum of the seeds of the two teams is always 17, and the number of

times the teams advance will add up to 80. In the round of 16 statistics if we

divide the 16 numbers into four groups of four, each will add up to 80, etc.

Seed 32 16 8 4 2 Winner

1 80 68 56 34 17 11

16 0

8 37 9 6 3 1 1

9 43 3 1 0

4 64 36 12 7 2 1

13 16 3 0

5 54 28 4 3 2 0

12 26 13 1 0

3 67 38 18 11 7 2

14 13 2 0

6 56 30 11 3 2 1

11 24 10 3 1 0

2 76 51 37 18 9 4

15 4 0

7 48 13 5 0

10 32 16 6 0

Total 640 320 160 80 40 20



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

94 Conditional Probability

From this table we can compute the probabilities for the first four seeds to

win a game in each round, given that it reached that round.

64 32 16 8 4 2

1 1.0 0.85 0.823 0.607 0.5 0.647

2 0.95 0.671 0.725 0.486 0.5 0.444

3 0.838 0.567 0.474 0.611 0.636 0.285

4 0.8 0.563 0.333 0.583 0.286 0.5

Here, 68/80 = 0.85, 56/68 = 0.823, etc. As we should expect, the conditional

probabilities generally decrease from left to right and from top to bottom. We

leave it to the reader to ponder the meaning of the exceptions, some of which

may be due only to the small sample sizes.

3.3 Bayes’ formula

The title of the section is a little misleading since we will regard Bayes’ formula

as a method for computing conditional probabilities and will only reluctantly

give the formula after we have done several examples to illustrate the method.

Example 3.19 Exit polls. In the California gubernatorial election in 1982, several TV stations

predicted, on the basis of questioning people when they exited the polling place,

that Tom Bradley, then mayor of Los Angeles, would win the election. When the

votes were counted, however, he lost to George Deukmejian by a considerable

margin. What caused the exit polls to be wrong?

To give our explanation we need some notation and some numbers. Suppose

we choose a person at random; let B = “the person votes for Bradley” and

suppose that P (B) = 0.45. There were only two candidates, so this makes the

probability of voting for Deukmejian P (Bc ) = 0.55. Let A = “the voter stops

and answers a question about how they voted,” and suppose that P (A|B) = 0.4

and P (A|Bc ) = 0.3. That is, 40% of Bradley voters will respond compared with

30% of the Deukmejian voters. We are interested in computing P (B |A) = the

fraction of voters in our sample that voted for Bradley. By the definition of

conditional probability (1.6),

P (B |A) = P (B ∩ A)

P (A)
= P (B ∩ A)

P (B ∩ A) + P (Bc ∩ A)

To evaluate the two probabilities, we use the multiplication rule (3.3):

P (B ∩ A) = P (B)P (A|B) = 0.45 · 0.4 = 0.18

P (Bc ∩ A) = P (Bc )P (A|Bc ) = 0.55 · 0.3 = 0.165
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From this it follows that

P (B |A) = 0.18

0.18 + 0.165
= 0.5217

and from our sample it looks as if Bradley will win. The problem with the exit poll

is that the difference in the response rates makes our sample not representative

of the population as a whole.

Turning to the mechanics of the computation, note that 18% of the voters are

for Bradley and respond, while 16.5% are for Deukmejian and respond, so the

fraction of Bradley voters in our sample is 18/(18 + 16.5). In words, there are

two ways an outcome can be in A – it can be in B or in Bc – and the conditional

probability is the fraction of the total that comes from the first way.

0.18 0.165

B Bc

0.4
0.3

0.45 0.55

Example 3.20 Mammogram posterior probabilities. Approximately 1% of women aged 40–

50 years have breast cancer. A woman with breast cancer has a 90% chance of

a positive test from a mammogram, while a woman without has a 10% chance

of a false-positive result. What is the probability that a woman has breast cancer

given that she just had a positive test?

Let B = “the woman has breast cancer” and A = “a positive test.” We want to

calculate P (B |A). Computing as in the previous example,

P (B |A) = P (B ∩ A)

P (A)
= P (B ∩ A)

P (B ∩ A) + P (Bc ∩ A)

To evaluate the two probabilities, we use the multiplication rule (3.3):

P (B ∩ A) = P (B)P (A|B) = 0.01 · 0.9 = 0.009

P (Bc ∩ A) = P (Bc )P (A|Bc ) = 0.99 · 0.1 = 0.099

From this it follows that

P (B |A) = 0.009

0.009 + 0.099
= 9

108
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or a little less than 9%. This situation comes about because it is much easier

to have a positive result from a false-positive for a healthy woman, which has

probability 0.099, than from a woman with breast cancer having a positive test,

which has probability 0.009.

This answer is somewhat surprising. Indeed, when 95 physicians were asked

the question “What is the probability a woman has breast cancer given that she

just had a positive test?”, their average answer was 75%. The two statisticians

who carried out this survey indicated that physicians were better able to see

the answer when the data were presented in frequency format. Ten out of 1,000

women have breast cancer. Of these 9 will have a positive mammogram. However,

of the remaining 990 women without breast cancer, 99 will have a positive test,

and again we arrive at the answer 9/(9 + 99).

Example 3.21 Hemophilia. Ellen has a brother with hemophilia, but has two parents who do

not have the disease. Since hemophilia is caused by a recessive allele h on the

X chromosome, we can infer that her mother is a carrier (that is, the mother

has the hemophilia allele h on one of her X chromosomes and the healthy

allele H on the other), while her father has the healthy allele on his one X

chromosome. Since Ellen received one X chromosome from her father and one

from her mother, there is a 50% chance that she is a carrier, and if so, there is a

50% chance that her sons will have the disease. If she has two sons without the

disease, what is the probability that she is a carrier?

Ellen X? X0

X1 Xh Mother

XhY Brother

Father X0Y

Let B be the event that she is a carrier and A the event that she has two healthy

sons. Computing as in the two previous examples,

P (B |A) = P (B ∩ A)

P (A)
= P (B ∩ A)

P (B ∩ A) + P (Bc ∩ A)

To evaluate the two probabilities we use the multiplication rule (3.3). Since the

probability of having two healthy sons when she is a carrier is 1/4, and is 1 when

she is not.

P (B ∩ A) = P (B)P (A|B) = 1

2
· 1

4
= 1

8

P (Bc ∩ A) = P (Bc )P (A|Bc ) = 1

2
· 1 = 1

2
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From this it follows that

P (B |A) = 1/8

1/8 + 1/2
= 1

5

Example 3.22 Three factories make 20, 30, and 50% of the computer chips for a company. The

probability of a defective chip is 0.04, 0.03, and 0.02 for the three factories. We

have a defective chip. What is the probability that it came from Factory 1?

Let Bi be the event that the chip came from factory i and A the event that

the chip is defective. We want to compute P (B3|A). Adapting the computation

from the two previous examples to the fact that there are now three Bi ,

P (B |A) = P (B ∩ A)

P (A)
= P (B ∩ A)∑3

i=1 P (Bi ∩ A)

To evaluate the three probabilities, we use the multiplication rule (3.3):

P (B1 ∩ A) = P (B1)P (A|B1) = 0.2 · (0.04) = 0.008

P (B2 ∩ A) = P (B2)P (A|B2) = 0.3 · (0.03) = 0.009

P (B3 ∩ A) = P (B3)P (A|B3) = 0.5 · (0.02) = 0.010

From this it follows that

P (B1|A) = P (B1 ∩ A)

P (A)
= 0.008

0.008 + 0.009 + 0.010
= 8

27

The calculation can be summarized by the following picture. The conditional

probability P (B3|A) is the fraction of the event A that lies in B3.

0.04
0.03

0.02

B1 B2 B3

0.2 0.3 0.5

0.008 0.009 0.010A

We are now ready to generalize from our examples and state Bayes’ formula.

In each case, we have a partition of the probability space B1, . . . , Bn, that is, a

sequence of disjoint sets with ∪n
i=1 Bi = �. (In the first three examples, B1 = B

and B2 = Bc .) We are given P (Bi ) and P (A|Bi ) for 1 ≤ i ≤ n and we want to
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compute P (B1|A). Reasoning as in the previous examples,

P (B1|A) = P (B1 ∩ A)

P (A)
= P (B1 ∩ A)∑

i P (Bi ∩ A)

To evaluate the probabilities, we observe that

P (Bi ∩ A) = P (Bi )P (A|Bi )

From this, it follows that

P (B1|A) = P (B1 ∩ A)

P (A)
= P (B1)P (A|B1)∑n

i=1 P (Bi )P (A|Bi )
(3.7)

This is Bayes’ formula. Even though we have numbered it, we advise you not

to memorize it. It is much better to remember the procedures we followed to

compute the conditional probability.

Our last two examples come from law.

Example 3.23 Paternity probabilities. Before there were sophisticated tests based on DNA

samples, the testing of blood type and other hereditary factors was used in

paternity cases to infer, using Bayes’ formula, the probability that a particular

man is the father. For a concrete example, suppose that the baby’s blood type is

B , the mother’s is A, and that of the suspected father’s, whom for convenience

we will call Bob, is B . Given this information what is the probability that Bob is

the father?

To explain how this could happen, we note that the genes that control blood

type can be O , A, or B , with A and B dominant over O but neither A nor B

dominating the other, so we get the following correspondence between geno-

types (the genes on the two chromosomes) and phenotypes (observed blood

type):

Genotype O O AO AA B O B B AB

Phenotype O A A B B AB

Proportion 0.479 0.310 0.050 0.116 0.007 0.038

From this table, we see that if the baby’s blood type is B then it must be the

case that the mother’s genotype is AO , she contributed an O gene, and the

father contributed a B gene.

Let E (for “evidence”) be the event that the baby’s blood type is B and F

the event that Bob is indeed the father. We cannot observe Bob’s genotype, but

using the proportions of the various genotypes from the table, we can compute

that

P (genotype is B O| phenotype is B) = 0.116/0.123

P (E |F ) = (0.116)0.5 + 0.007

0.123
= 0.065

0.123
= 0.528
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There is not too much to argue about in the last computation. When we

compute P (E |F c ), we make the first of two questionable assumptions: If Bob

is not the father, then the real father is someone chosen at random from the

population, so

P (E |F c ) = (0.116)0.5 + 0.007 + (0.038)0.5 = 0.084

To evaluate P (F |E ), we thus need to evaluate the prior probability P (F )

that Bob is the father. It would be natural to make P (F ) equal to the fraction

of times that the mother had intercourse with Bob near the time of conception.

However, it is not unusual for the mother to claim that this number is 1 and the

alleged father to claim that it is 0, so the common practice in these computations

is to set P (F ) = 1/2 (our second questionable assumption). If we do this, then

P (F ) = P (F c ) = 1/2, so

P (F |E ) = P (E |F )P (F )

P (E |F )P (F ) + P (E |F c )P (F c )

= 0.065/0.123

0.065/0.123 + 0.084
= 1

1.158
= 0.8628

Example 3.24 O. J. Simpson trial. DNA testing has considerably more power than blood

tests. RFLPs (restriction fragment length polymorphisms) are typed by digest-

ing DNA with “restriction” enzymes and then determining the lengths of the

fragments. These lengths are highly variable (polymorphic) in humans, so the

use of eight or nine such markers results in incredibly small probabilities. For

example, Robin Cotton of Cellmark Diagnostics testified that blood found on

a sock near Simpson’s bed had the genetic type of Nicole Brown Simpson and

the chances of another person having the exact same RFLP alleles were 1 in

9.7 billion.

For this problem we will concentrate on a less dramatic example that involves

blood found at the murder scene (item 49). Three blood factors were recorded

that matched Simpson’s blood types. The next table that comes from p. 10

of Vol. 7, No. 4, of Chance gives the frequencies estimated from the overall

population.

System Item #49 Frequency

ABO A 0.347

EsD 1 0.79

PGM 2+, 2− 0.016

Here, 2+, 2− indicates that two alleles were present, one inherited from each

parent.
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Multiplying the probabilities together gives 0.00438 or 1/227, a number that

was approximated in the trial and quoted in the press as 1/200. Letting E denote

this evidence and G the event that Simpson is guilty, and sticking with the

simpler fraction, we see that P (E |G c ) = 1/200. It is an error known as the

“prosecutor’s fallacy” to think of this as P (G c |E ); that is, the probability that

Simpson is innocent given this evidence is 1/200. A second error known as the

“defendant’s fallacy” is to note that 1/200 of the population of Los Angeles is

40,000, so the probability that it is O. J. Simpson’s blood is 1/40,000.

Both these fallacies are based on assuming that unknown probabilities are

uniform on the set of possibilities. The correct way to compute P (G |E ) is

P (G |E ) = P (E |G)P (G)

P (E |G)P (G) + P (E |G c )P (G c )

but of course this requires giving a value to P (G). It is perhaps for this reason

that Bruce Weir (Nature Genetics, Vol. 11, pp. 365–368) argues for the use of

the likelihood ratio P (E |G)/P (E |G c ) = 200, that is, the evidence is 200 times

more likely if O. J. Simpson is guilty than if the murderer is a randomly chosen

person.

3.4 Discrete joint distributions

In many situations we need to know the relationship between several random

variables X1, . . . , Xn. Here, we confine our attention to the case n = 2. Once this

case is understood the extension to n > 2 is straightforward. For one random

variable, the distribution is a list of the probabilities of all the possible values.

The joint distribution of a pair of random variables is a table of numbers that

gives the probabilities for all the possible values of the pair.

Example 3.25 Roll 2 four-sided dice with the numbers 1, 2, 3, and 4 on their sides. Let X be

the maximum of the two numbers that appear and Y the sum.

By considering the 16 possible outcomes we find the following joint distribu-

tion of X and Y .

X Y = 2 3 4 5 6 7 8

1 1/16 0 0 0 0 0 0

2 0 2/16 1/16 0 0 0 0

3 0 0 2/16 2/16 1/16 0 0

4 0 0 0 2/16 2/16 2/16 1/16

Example 3.26 Suppose we draw 2 balls out of an urn with 6 red, 5 blue, and 4 green balls. Let

X be the number of red balls we get and Y the number of blue balls.
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There are C15,2 = 105 outcomes. The number of outcomes with i red, j blue,

and 2 − (i + j ) green balls is C6, i C5, j C4,2−(i+ j ). Using this formula, we have

X Y = 0 1 2

0 1·1·6
105 = 6/105 1·5·4

105 = 20/105 1·10·1
105 = 10/105

1 6·1·4
105 = 24/105 6·5·1

105 = 30/105 0

2 15·1·1
105 = 15/105 0 0

Example 3.27 Consider the following hypothetical joint distribution of X , a person’s grade on

the AP calculus exam (a number between 1 and 5), and their grade Y in their

high school calculus course, which we assume was A = 4, B = 3, or C = 2.

X Y = 4 3 2

5 0.1 0.05 0

4 0.15 0.15 0

3 0.1 0.15 0.10

2 0 0.05 0.10

1 0 0 0.05

3.4.1 Marginal distributions

The next question to be addressed is, “Given the joint distribution of (X, Y ), how

do we recover the distributions of X and Y ?” The answer is that the marginal
distributions of X and Y are given by

P (X = x) = ∑
y P (X = x , Y = y)

P (Y = y) = ∑
x P (X = x , Y = y) (3.8)

To explain the first formula in words, if X = x , then Y will take on some

value y; so to find P (X = x), we sum the probabilities of the disjoint events

{X = x , Y = y} over all the values of y. To illustrate these formulas we return to

Example 3.25, where we rolled a four-sided die and let X be the larger number

and Y the sum. Omitting the probabilities that are 0,

P (X = 1) = P (X = 1, Y = 1) = 1/16

P (X = 2) = P (X = 2, Y = 3) + P (X = 2, Y = 4) = 2/16 + 1/16 = 3/16

P (X = 3) = P (X = 3, Y = 4) + P (X = 3, Y = 5) + P (X = 3, Y = 6)

= 2/16 + 2/16 + 1/16 = 5/16

P (X = 4) =
8∑

y=5

P (X = 4, Y = y) = 2/16 + 2/16 + 2/16 + 1/16 = 7/16
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In words, we add the probabilities in each row to get the marginal distribution of

X . Similarly, we add up the probabilities in each column to get the distribution

of Y .

X Y = 2 3 4 5 6 7 8

1 1/16 0 0 0 0 0 0 1/16

2 0 2/16 1/16 0 0 0 0 3/16

3 0 0 2/16 2/16 1/16 0 0 5/16

4 0 0 0 2/16 2/16 2/16 1/16 7/16

1/16 2/16 3/16 4/16 3/16 2/16 1/16

In the urn example,

X Y = 0 1 2

0 6/105 20/105 10/105 36/105

1 24/105 30/105 0 54/104

2 15/105 0 0 15/105

45/105 50/105 10/105

To check the marginal distribution of Y note that when we draw from an urn

with 6 red, 5 blue, and 4 green balls, the probabilities for the number of blue

balls are

0:
C10,2

105
= 45

105
1:

C5,1C10,1

105
= 50

105
2:

C5,2

105
= 10

105

Finally in the AP calculus example, the marginal distributions are

X Y = 4 3 2

5 0.10 0.05 0 0.15

4 0.15 0.15 0 0.30

3 0.10 0.15 0.10 0.35

2 0 0.05 0.10 0.15

1 0 0 0.05 0.05

0.35 0.40 0.25

3.4.2 Independence

Two random variables are independent if

P (X = x , Y = y) = P (X = x)P (Y = y) (3.9)

In words, two random variables are independent if for each x and y, the events

{X = x} and {Y = y} are independent. To use two of our new terms, this occurs
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if their joint distribution is the product of the two marginal distributions. In the

dice example,

P (X = 1, Y = 4) = 0 < (1/16) · (3/16) = P (X = 1)P (Y = 4)

so the random variables are not independent. In general, independence fails if

there is a 0 in the table where the row and column sums are positive. This simple

observation takes care of all our examples; so to further explore the concept we

need a new one.

X Y = 0 1

0 0.4 0.3 0.7

1 0.2 0.1 0.3

0.6 0.4

There is no zero in the table but it fails the independence test:

P (X = 0, Y = 0) = 0.4 �= 0.42 = (0.7)(0.6) = (X = 0)P (Y = 0)

If we want to have independent random variables with these marginal distribu-

tions there is only one way to fill in the table.

X Y = 0 1

0 0.42 0.28 0.7

1 0.18 0.12 0.3

0.6 0.4

Example 3.28 This example gives a remarkable property of the Poisson distribution. Let

A1, . . . , Ak be disjoint events whose union ∪k
i=1 Ai = �. Suppose we perform

the experiment a random number of times N, where N has a Poisson distribu-

tion with mean λ, and let Xi be the number of times Ai occurs.

If n = x1 + · · · + xk , then recalling the formula for the multinomial distri-

bution (Example 2.9 in Chapter 2),

P (Xi = xi for 1 ≤ i ≤ k) = e−λ λn

n!

n!

x1! · · · xk !
P (A1)x1 · · · P (Ak)xk

= e−λP (A1) (λP (A1))x1

x1!
· · · e−λP (Ak ) (λP (Ak))xk

xk !

since
∑k

i=1 P (Ai ) = 1. In words, X1, . . . , Xk are independent Poissons with

parameters λP (Ai ).

To see why this is surprising, consider the special case k = 2; that is, A2 = Ac
1.

If we performed our experiment a fixed number of times then N1 and N2 would

not be independent since N2 = n − N1. It is remarkable that when we perform



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

104 Conditional Probability

our experiment a Poisson number of times, the number of successes tells us

nothing about the number of failures. This result is not only surprising but

also useful. For a concrete example, suppose that a Poisson number of cars

arrive at a fast-food restaurant each hour and let Ai be the event that the car

has i passengers. Then the number of cars with i passengers that arrive are

independent Poissons.

3.4.3 Conditional distributions

For discrete random variables, the definition of conditional probability implies

P (X = x|Y = y) = P (X = x , Y = y)

P (Y = y)
= P (X = x , Y = y)∑

u P (X = u, Y = y)
(3.10)

If we fix y and look at P (X = x|Y = y) as a function of x , what we have is the

conditional distribution of X given that Y = y.

Example 3.29 To illustrate this formula we look at our AP calculus example:

X Y = 4 3 2

5 0.10 0.05 0 0.15

4 0.15 0.15 0 0.30

3 0.10 0.15 0.10 0.35

2 0 0.05 0.10 0.15

1 0 0 0.05 0.05

0.35 0.40 0.25

It follows from the definition of conditional probability that

P (X = 5|Y = 4) = P (X = 5, Y = 4)/P (Y = 4) = 0.10/0.35 = 2/7

P (X = 4|Y = 4) = P (X = 4, Y = 4)/P (Y = 4) = 0.15/0.35 = 3/7

P (X = 3|Y = 4) = P (X = 3, Y = 4)/P (Y = 4) = 0.10/0.35 = 2/7

In words, 2/7’s of the students who get A’s in the course get a 5 on the exam,

3/7’s get a 4, and 2/7’s get a 3. Operationally, we divide the entries in the second

column by their sum to turn them into a probability distribution. We leave it to

the reader to check

x 5 4 3 2 1

P (X = x|Y = 3) 1/8 3/8 3/8 1/8 0

P (X = x|Y = 2) 0 0 2/5 2/5 1/5
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The conditional expectation is mean of the conditional distribution:

E (X|Y = y) =
∑

x

x P (X = x|Y = y)

In the previous example,

E (X|Y = 4) = (5(0.10) + 4(0.15) + 3(0.10))/0.35 = 4

E (X|Y = 3) = (5(0.05) + 4(0.15) + 3(0.15) + 2(0.05))/0.40 = 3.5

E (X|Y = 2) = (3(0.10) + 2(0.10) + 1(0.05))/0.25 = 2.2

Example 3.30 Simpson’s paradox is the phenomenon that means of subgroups can show

much different patterns than the mean of the group as a whole. For a real-life

example, consider the average SAT verbal score. It was 504 in 1981 and 21 years

later in 2002 it was again 504. However, when we break things down by ethnic

groups, we see that all of them increased their scores:

1981 2002

Non-Hispanic whites 519 527

African-Americans 412 431

Mexican-Americans 438 446

Asian-Americans 474 501

The explanation is simple: minorities made up a much larger portion of the test-

ing population in 2002 than in 1981, and although they have shown significant

improvement their averages are lower than non-Hispanic whites, which reduces

the overall mean.

3.5 Exercises

Conditional probability

1. A friend flips two coins and tells you that at least one is head. Given this

information, what is the probability that the first coin is head?

2. A friend rolls two dice and tells you that there is at least one 6. What is the

probability the sum is at least 9?

3. Suppose we roll two dice. What is the probability that the sum is 7 given that

neither die showed a 6?

4. Suppose you draw 5 cards out of a deck of 52 and get 2 spades and 3 hearts.

What is the probability that the first card drawn was a spade?
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5. Two people, whom we call South and North, draw 13 cards out of a deck of

52. South has two aces. What is the probability that North has (a) none? (b)

One? (c) The other two?

6. An urn contains 8 red, 7 blue, and 5 green balls. You draw out two balls and

they are different colors. Given this, what is the probability that the two balls

were red and blue?

7. Suppose 60% of the people subscribe to newspaper A, 40% to newspaper B,

and 30% to both. If we pick a person at random who subscribes to at least one

newspaper, what is the probability that she subscribes to newspaper A?

8. In a town 40% of families have a dog and 30% have a cat. 25% of families with

a dog also have a cat. (a) What fraction of people have a dog or cat? (b) What is

the probability that a family with a cat has a dog?

9. Plumber Bob does 40% of the plumbing jobs in a small town. 30% of the

people in town are unhappy with their plumbers, but 50% of Bob’s customers

are unhappy with his work. If your neighbor is not happy with his plumber,

what is the probability that it was Bob?

10. An ectopic pregnancy is twice as likely if a woman smokes cigarettes. If 25%

of women of childbearing age are smokers, what fraction of ectopic pregnancies

occur to smokers?

11. Brown eyes are dominant over blue. That is, there are two alleles B and b.

bb individuals have blue eyes but other combinations have brown eyes. Your

parents and you have brown eyes but your brother has blue. So you can infer

that both of your parents are heterozygotes, that is, have genetic type Bb. Given

this information what is the probability that you are a homozygote.

12. Suppose that the probability that a married man votes is 0.45, the probability

a married woman votes is 0.4, and the probability a woman votes given that her

husband does is 0.6. What is the probability that (a) both vote? (b) A man votes

given that his wife does?

13. Two events have P (A) = 1/4, P (B |A) = 1/2, and P (A|B) = 1/3. Compute

P (A ∩ B), P (B), and P (A ∪ B).

14. A, B , and C are events with P (A) = 0.3, P (B) = 0.4, and P (C ) = 0.5,

A and B are disjoint, A and C are independent, and P (B |C ) = 0.1. Find

P (A ∪ B ∪ C ).
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Two-stage experiments

15. From a signpost that says MIAMI two letters fall off. A friendly drunk puts

the two letters back into the two empty slots at random. What is the probability

that the sign still says MIAMI?

16. Two balls are drawn from an urn with balls numbered from 1 up to 10. What

is the probability that the two numbers will differ by more (>) than 3?

17. How can 5 black and 5 white balls be put into two urns to maximize the

probability that a white ball is drawn when we draw from a randomly chosen

urn?

18. Suppose we draw k cards out of a deck. What is the probability that we do

not draw an ace? Is the answer larger or smaller than (3/4)k?

19. You and a friend each roll two dice. What is the probability that you both

have the same two numbers?

20. In a dice game the “dealer” rolls two dice, the player rolls two dice, and the

player wins if his total is larger than the dealer’s. What is the probability that the

player wins?

21. What is the most likely total for the sum of four dice and what is its proba-

bility?

22. Charlie draws 5 cards out of a deck of 52. If he gets at least three of one suit,

he discards the cards not of that suit and then draws until he again has 5 cards.

For example, if he gets 3 hearts, 1 club, and 1 spade, he throws the 2 nonhearts

away and draws 2 more. What is the probability that he will end up with 5 cards

of the same suit?

23. Suppose 60% of the people in a town will get exposed to flu in the next

month. If you are exposed and not inoculated then the probability of your

getting the flu is 80%, but if you are inoculated that probability drops to 15%.

Of two executives at Beta Company, one is inoculated and one is not. What

is the probability at least one will not get the flu? Assume that the events that

determine whether or not they get the flu are independent.

24. John takes the bus with probability 0.3 and the subway with probability 0.7.

He is late 40% of the time when he takes the bus, but only 20% of the time when

he takes the subway. What is the probability that he is late for work?

25. The population of Cyprus is 70% Greek and 30% Turkish. 20% of the Greeks

and 10% of the Turks speak English. What fraction of the people of Cyprus speak

English?
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26. You are going to meet a friend at the airport. Your experience tells you that

the plane is late 70% of the time when it rains, but is late only 20% of the time

when it does not rain. The weather forecast that morning calls for a 40% chance

of rain. What is the probability that the plane will be late?

27. Two boys have identical piggy banks. The older boy has 18 quarters and 12

dimes in his; the younger boy, 2 quarters and 8 dimes. One day the two banks

get mixed up. You pick up a bank at random and shake it until a coin comes out.

What is the probability that you get a quarter? Note that there are 20 quarters

and 20 dimes in all.

28. Suppose that the number of children in a family has the following distribu-

tion:

Number of children 0 1 2 3 4

Probability 0.15 0.25 0.3 0.2 0.1

Assume that each child is independently a girl or a boy with probability 1/2 each.

If a family is picked at random what is the chance it has exactly two girls.

29. A student is taking a multiple-choice test in which each question has four

possible answers. She knows the answers to 50% of the questions, can narrow

the choices down to two 30% of the time, and does not know anything about

20% of the questions. What is the probability that she will correctly answer a

question chosen at random from the test?

30. A student is taking a multiple-choice test in which each question has four pos-

sible answers. She knows the answers to 5 of the questions, can narrow the choices

down to 2 in 3 cases, and does not know anything about 2 of the questions.

What is the probability that she will correctly answer (a) 10, (b) 9, (c) 8, (d) 7,

(e) 6, and (f) 5 questions?

31. Two boys, Charlie and Doug, take turns rolling two dice with Charlie going

first. If Charlie rolls a 6 before Doug rolls a 7 he wins. What is the probability

that Charlie wins?

32. Three boys take turns shooting a basketball and have probabilities 0.2, 0.3,

and 0.5 of scoring a basket. Compute the probabilities for each boy to get the

first basket.

33. Change the second and third probabilities in the last problem so that each

boy has an equal chance of winning.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

109 3.5 Exercises

Bayes’ formula

34. 5% of men and 0.25% of women are color blind. Assuming that there are

an equal number of men and women, what is the probability that a color-blind

person is a man?

35. The alpha fetal protein test is meant to detect spina bifida in unborn babies,

a condition that affects 1 out of 1,000 children who are born. The literature

on the test indicates that 5% of the time a healthy baby will cause a positive

reaction. We will assume that the test is positive 100% of the time when spina

bifida is present. Your doctor has just told you that your alpha fetal protein test

was positive. What is the probability that your baby has spina bifida?

36. Binary digits, that is, 0’s and 1’s, are sent down a noisy communications

channel. They are received as sent with probability 0.9 but errors occur with

probability 0.1. Assuming that 0’s and 1’s are equally likely, what is the probability

that a 1 was sent given that we received a 1?

37. To improve the reliability of the channel described in the last example, we

repeat each digit in the message three times. What is the probability that 111

was sent given that (a) we received 101? (b) We received 000?

38. Two hunters shoot at a deer, which is hit by exactly one bullet. If the first

hunter hits his target with probability 0.3 and the second with probability 0.6,

what is the probability that the second hunter killed the deer? The answer is not

2/3. Do you think the answer is larger or smaller?

39. A cab was involved in a hit-and-run accident at night. Two cab companies

green and blue operate 85% and 15% of the cabs in the city respectively. A

witness identified the cab as blue. However, in a test only 80% of witnesses were

able to correctly identify the cab color. Given this what is the probability that

the cab involved in the accident was blue?

40. A student goes to class on a snowy day with probability 0.4, but on a

nonsnowy day attends with probability 0.7. Suppose that 20% of the days in

February are snowy. What is the probability that it snowed on February 7 given

that the student was in class on that day?

41. A company gave a test to 100 salesman, 80 with good sales records and 20

with poor sales records. 60% of the good salesman passed the test but only 30%

of the poor salesmen did. Andy passed the test. Given this, what is the probability

that he is a good salesman?

42. A company rates 80% of its employees as satisfactory and 20% as unsat-

isfactory. Personnel records indicate that 70% of the satisfactory workers had
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prior experience but only 40% of the unsatisfactory workers did. If a person

with previous work experience is hired, what is the probability that they will be

a satisfactory worker?

43. A golfer hits his drive in the fairway with probability 0.7. When he hits his

drive in the fairway he makes par 80% of the time. When he doesn’t, he makes

par only 30% of the time. He just made par on a hole. What is the probability

that he hit his drive in the fairway?

44. You are about to have an interview for Harvard Law School. 60% of the

interviewers are conservative and 40% are liberal. 50% of the conservatives

smoke cigars but only 25% of the liberals do. Your interviewer lights up a cigar.

What is the probability that he is a liberal?

45. Five pennies are sitting on a table. One is a trick coin that has heads on both

sides, but the other four are normal. You pick up a penny at random and flip it

four times, getting heads each time. Given this, what is the probability that you

picked up the two-headed penny?

46. One slot machine pays off 1/2 of the time, while another pays off 1/4 of the

time. We pick one of the machines and play it 6 times, winning 3 times. What is

the probability we are playing the machine that pays off only 1/4 of the time?

47. A student is taking a multiple-choice exam in which each question has four

possible answers. She knows the answers to 60% of the questions and guesses at

the others. What is the probability that she guessed given that she got question

12 right?

48. 20% of people are “accident-prone” and have a probability 0.15 of having an

accident in a 1-year period in contrast to a probability of 0.05 for the other 80%

of people. (a) If we pick a person at random, what is the probability that they will

have an accident this year? (b) What is the probability a person is accident-prone

if they had an accident last year? (c) What is the probability that they will have

an accident this year if they had one last year?

49. One die has 4 red and 2 white sides; a second has 2 red and 4 white sides. (a)

If we pick a die at random and roll it, what is the probability that the result is a

red side? (b) If the first result is a red side and we roll the same die again, what

is the probability of a second red side?

50. A particular football team is known to run 40% of its plays to the left and

60% to the right. When the play goes to the right, the right tackle shifts his

stance 80% of the time, but does so only 10% of the time when the play goes to

the left. As the team sets up for the play the right tackle shifts his stance. What

is the probability that the play will go to the right?



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

111 3.5 Exercises

51. A company gives a test to 100 salesmen, 80 with good sales records and 20

with poor records. 60% of the good salesmen pass the test, but only 30% of

the poor salesmen do. A new applicant takes the test and passes. What is the

probability that he is a good salesman?

52. You are a serious student who studies on Friday nights but your roommate

goes out and has a good time. 40% of the time he goes out with his girlfriend;

60% of the time he goes to a bar. 30% of the times when he goes out with his

girlfriend he spends the night at her apartment. 40% of the times when he goes

to a bar he gets in a fight and gets thrown in jail. You wake up on Saturday

morning and your roommate is not home. What is the probability that he is in

jail?

53. Two masked robbers try to rob a crowded bank during the lunch hour but

the teller presses a button that sets off an alarm and locks the front door. The

robbers, realizing they are trapped, throw away their masks and disappear into

the chaotic crowd. Confronted with 40 people claiming they are innocent, the

police give everyone a lie detector test. Suppose that guilty people are detected

with probability 0.95, and innocent people appear to be guilty with probability

0.01. What is the probability that Mr. Jones is guilty given that the lie detector

says he is?

54. Three bags lie on the table. One has two gold coins, one has two silver coins,

and one has one silver and one gold. You pick a bag at random, and pick out

one coin. If this coin is gold, what is the probability that you picked from the

bag with two gold coins?

55. In a certain city, 30% of the people are Conservatives, 50% are Liberals, and

20% are Independents. In a given election, 2/3 of the Conservatives voted, 80%

of the Liberals voted, and 50% of the Independents voted. If we pick a voter at

random what is the probability that she is Liberal?

56. An undergraduate student has asked a professor for a letter of recommen-

dation. He estimates that the probability he will get the job is 0.8 with a strong

letter, 0.4 with a medium letter, and 0.1 with a weak letter. He also believes that

the probabilities that the letter will be strong, medium, or weak are 0.5, 0.3, and

0.2. What is the probability that the letter was strong given that he got the job.

57. A group of 20 people go out to dinner. 10 go to an Italian restaurant, 6

to a Japanese restaurant, and 4 to a French restaurant. The fractions of people

satisfied with their meals were 4/5, 2/3, and 1/2 respectively. The next day the

person you are talking to was satisfied with what they ate. What is the probability

that they went to the Italian restaurant? The Japanese restaurant? The French

restaurant?
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58. 1 out of 1,000 births results in fraternal twins; 1 out of 1,500 births results in

identical twins. Identical twins must be the same sex but the sexes of fraternal

twins are independent. If two girls are twins, what is the probability that they

are fraternal twins?

59. Consider the following data on traffic accidents:

Age group % of drivers Accident probability

16–25 15 0.10

26–45 35 0.04

46–65 35 0.06

>65 15 0.08

Calculate (a) the probability that a randomly chosen driver will have an accident

this year, and (b) the probability that a driver is between 46 and 65 given that

they had an accident.

Joint distributions

60. Suppose we draw two tickets from a hat that contains tickets numbered

1, 2, 3, 4. Let X be the first number drawn and Y be the second. Find the joint

distribution of X and Y .

61. Suppose we roll one die repeatedly and let Ni be the number of the roll on

which i first appears. Find the joint distribution of N1 and N6.

62. Compute (a) P (X = 1|Y = 1) and (b) P (X = 2|Y = 2) for the following

joint distribution:
Y X = 1 2 3

1 0.1 0.2 0.3

2 0.15 0.15 0

3 0.05 0 0.05

63. Compute (a) P (X = 2|Y = 3) and (b) P (Y = 3|X = 3) for the following

joint distribution:

Y X = 1 2 3

1 0.2 0.15 0.05

2 0.10 0 0.10

3 0.05 0.15 0.20

64. Using the clues given below, fill in the rest of the joint distribution. There is

only one answer.
Y X = 0 3 6

1 ? ? ?

2 0.1 0.05 ?

(a) P (Y = 2|X = 0) = 1/4, (b) X and Y are independent.
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65. Using the clues given below, fill in the rest of the joint distribution. There is

only one answer:

Y X = 1 2 3

1 ? ? ?

2 ? 0 ?

3 0 ? 0

For k = 1, 2, 3, (a) P (Y = 1|X = k) = 2/3, (b) P (X = k|Y = 1) = k/6.

66. Fill in the rest of the joint distribution so that X and Y are independent.

There are two possible answers:

Y X = 0 1

0 ? 2/9

1 2/9 ?
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Markov Chains

4.1 Definitions and examples

The importance of Markov chains comes from two facts: (i) there are a large

number of physical, biological, economic, and social phenomena that can be

described in this way, and (ii) there is a well-developed theory that allows us to

do computations. We begin with a famous example, then describe the property

that is the defining feature of Markov chains.

Example 4.1 Gambler’s ruin. Consider a gambling game in which on any turn you win

$1 with probability p = 0.4 or lose $1 with probability 1 − p = 0.6. Suppose

further that you adopt the rule that you quit playing if your fortune reaches $N.

Of course, if your fortune reaches $0, the casino makes you stop.

Let Xn be the amount of money you have after n plays. I claim that your

fortune, Xn, has the “Markov property.” In words, this means that given the

current state, any other information about the past is irrelevant for predicting

the next state Xn+1. To check this, we note that if you are still playing at time

n, that is, your fortune Xn = i with 0 < i < N, then for any possible history of

your wealth in−1, in−2, . . . , i1, i0

P (Xn+1 = i + 1|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = 0.4

since to increase your wealth by 1 unit you have to win your next bet and the

outcome of the previous bets has no useful information for predicting the next

outcome.

Turning now to the formal definition, we say that Xn is a discrete-time Markov
chain with transition probability p(i, j ) if for any j, i, in−1, . . . , i0,

P (Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X0 = i0) = p(i, j ) (4.1)

Equation (4.1), also called the “Markov property,” says that the conditional pro-

bability Xn+1 = j given the entire history Xn = i, Xn−1 = in−1, . . . , X1 = i1,

114
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X0 = i0 is the same as the conditional probability Xn+1 = j given only the

previous state Xn = i . This is what we mean when we say that “given the

current state any other information about the past is irrelevant for predicting

Xn+1.”

In formulating (4.1) we have restricted our attention to the temporally ho-
mogeneous case in which

p(i, j ) = P (Xn+1 = j |Xn = i)

does not depend on time n. Intuitively, the transition probability gives the rules

of the game. It is the basic information needed to describe a Markov chain. In

the case of the gambler’s ruin chain, the transition probability has

p(i, i + 1) = 0.4, p(i, i − 1) = 0.6, if 0 < i < N

p(0, 0) = 1 p(N, N) = 1

When N = 5, the matrix is

0 1 2 3 4 5

0 1.0 0 0 0 0 0

1 0.6 0 0.4 0 0 0

2 0 0.6 0 0.4 0 0

3 0 0 0.6 0 0.4 0

4 0 0 0 0.6 0 0.4

5 0 0 0 0 0 1.0

but picture is perhaps more informative:

0 1 2 3 4 5
← ← ← ←

→ → → →

0.4 0.4 0.4 0.4

0.6 0.6 0.6 0.6

→
1

←1

Example 4.2 Wright–Fisher model. We consider a fixed population of N genes that can be

one of two types: A or a . These types are called alleles. In the simplest version of

this model the population at time n + 1 is obtained by drawing with replacement

from the population at time n. In this case if we let Xn be the number of A alleles

at time n, then Xn is a Markov chain with transition probability

p(i, j ) =
(

N

j

)(
i

N

) j (
1 − i

N

)N− j

0 ≤ i, j ≤ N

since the right-hand side is the binomial distribution for N independent

trials with success probability i/N. Note that when i = 0, p(0, 0) = 1, and
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when i = N, p(N, N) = 1.

Time n Time n + 1

A

a

A

A

A

a

A

a

A

a

A

A

A

a

a

A

A

a

a

A

In the gambler’s ruin chain and the Wright–Fisher model the states 0 and N

are absorbing states. Once we enter these states we can never leave. The long-

run behavior of these models is not very interesting; they will eventually enter

one of the absorbing states and stay there forever. To make the Wright–Fisher

model more interesting and more realistic, we can introduce the possibility of

mutations: an A that is drawn ends up being an a in the next generation with

probability u, while an a that is drawn ends up being an A in the next generation

with probability v. In this case the probability an A is produced by a given

draw is

ρi = i

N
(1 − u) + N − i

N
v

that is, we can get an A by drawing an A and not having a mutation or by

drawing an a and having a mutation. Since the draws are independent the

transition probability still has the binomial form

p(i, j ) =
(

N

j

)
(ρi )

j (1 − ρi )
N− j (4.2)

Moving from biology to physics

Example 4.3 Ehrenfest chain. We imagine two cubical volumes of air connected by a small

hole. In the mathematical version, we have two “urns,” that is, two of the exalted

trash cans of probability theory, in which there are a total of N balls. We pick

one of the N balls at random and move it to the other urn.

◦

◦

◦

◦

◦
◦
◦

◦

◦

◦
◦

◦

◦
◦
◦

◦

◦

◦

◦

◦
◦

◦

◦
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Let Xn be the number of balls in the “left” urn after the nth draw. It should be

clear that Xn has the Markov property; that is, if we want to guess the state at time

n + 1, then the current number of balls in the left urn, Xn, is the only relevant

information from the observed sequence of states Xn, Xn−1, . . . , X1, X0. To

check this we note that

P (Xn+1 = i + 1|Xn = i, Xn−1 = in−1, . . . , X0 = i0) = N − i

N

since to increase the number we have to pick one of the N − i balls in the other

urn. The number can also decrease by 1 with probability i/N. In symbols, we

have computed that the transition probability is given by

p(i, i + 1) = N − i

N
, p(i, i − 1) = i

N
for 0 ≤ i ≤ N

with p(i, j ) = 0 otherwise. When N = 5, for example, the matrix is

0 1 2 3 4 5

0 0 5/5 0 0 0 0

1 1/5 0 4/5 0 0 0

2 0 2/5 0 3/5 0 0

3 0 0 3/5 0 2/5 0

4 0 0 0 4/5 0 1/5

5 0 0 0 0 5/5 0

Here, we have written 1 as 5/5 to emphasize the pattern in the diagonals of the

matrix.

Moving from science to business

Example 4.4 Inventory chain. An electronics store sells a video game system. If at the end of

the day, the number of units they have on hand is 1 or 0, they order enough new

units, so their total on hand is 5. This chain is an example of an s , S inventory

control policy with s = 1 and S = 5. That is, when the stock on hand falls to s

or below, we order enough to bring it back up to S.

For simplicity we assume that the new merchandise arrives before the store

opens the next day. Let Xn be the number of units on hand at the end of the nth

day. If we assume that the number of customers who want to buy a video game

system each day is 0, 1, 2, or 3 with probabilities 0.3, 0.4, 0.2, and 0.1, then we
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have the following transition matrix:

0 1 2 3 4 5
0 0 0 0.1 0.2 0.4 0.3

1 0 0 0.1 0.2 0.4 0.3

2 0.3 0.4 0.3 0 0 0

3 0.1 0.2 0.4 0.3 0 0

4 0 0.1 0.2 0.4 0.3 0

5 0 0 0.1 0.2 0.4 0.3

To explain the entries we note that if Xn ≥ 2, then no ordering is done, so

what we have at the end of the day is the supply minus the demand. If Xn = 2

and the demand is 3 or more, or if Xn = 3 and the demand is 4, we end up with

0 units at the end of the day and at least one unhappy customer. If Xn = 0 or 1,

then we will order enough so that at the beginning of the day we have 5, so the

result at the end of the day is the same as if Xn = 5.

Markov chains are described by giving their transition probabilities. To create

a chain, we can write down any n × n matrix, provided that the entries satisfy:

(i) p(i, j ) ≥ 0, since they are probabilities.

(ii)
∑

j p(i, j ) = 1, since when Xn = i , Xn+1 will be in some state j .

The equation in (ii) is read “sum p(i, j ) over all possible values of j .” In words,

the last two conditions say, the entries of the matrix are nonnegative and each

row of the matrix sums to 1.

Any matrix with properties (i) and (ii) gives rise to a Markov chain, Xn. To

construct the chain we can think of playing a board game. When we are in state

i , we roll a die (or generate a random number on a computer) to pick the next

state, going to j with probability p(i, j ). To illustrate this we now introduce

some simple examples.

Example 4.5 Weather chain. Let Xn be the weather on day n in Ithaca, NY, which we assume

is either 1 = rainy or 2 = sunny. Even though the weather is not exactly a Markov

chain, we can propose a Markov chain model for the weather by writing down

a transition probability:

1 2
1 0.6 0.4

2 0.2 0.8

The table says, for example, the probability that a rainy day (state 1) is followed

by a sunny day (state 2) is p(1, 2) = 0.4.
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Example 4.6 Social mobility. Let Xn be a family’s social class in the nth generation, which

we assume is either 1 = lower, 2 = middle, or 3 = upper. In our simple version

of sociology, changes of status are a Markov chain with the following transition

probability:

1 2 3
1 0.7 0.2 0.1

2 0.3 0.5 0.2

3 0.2 0.4 0.4

Example 4.7 Brand preference. Suppose there are three types of laundry detergent, 1, 2, and

3, and let Xn be the brand chosen on the nth purchase. Customers who try these

brands are satisfied and choose the same thing again with probabilities 0.8, 0.6,

and 0.4 respectively. When they change they pick one of the other two brands at

random. The transition probability is

1 2 3
1 0.8 0.1 0.1

2 0.2 0.6 0.2

3 0.3 0.3 0.4

Example 4.8 Two-stage Markov chains. In a Markov chain the distribution of Xn+1 depends

only on Xn. This can easily be generalized to case in which the distribution of

Xn+1 depends only on (Xn, Xn−1). For a concrete example consider a basketball

player who makes a shot with the following probabilities:

1/2 if he has missed the last two times

2/3 if he has hit one of his last two shots

3/4 if he has hit both of his last two shots

To formulate a Markov chain to model his shooting, we let the states of the

process be the outcomes of his last two shots: {H H, H M, M H, MM}, where

M is short for miss and H for hit. The transition probability is

HH HM MH MM
HH 3/4 1/4 0 0

HM 0 0 2/3 1/3

MH 2/3 1/3 0 0

MM 0 0 1/2 1/2

To explain suppose the state is H M; that is, Xn−1 = H and Xn = M. In this

case the next outcome will be H with probability 2/3. When this occurs the next
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state will be (Xn, Xn+1) = (M, H) with probability 2/3. If he misses an event of

probability 1/3, (Xn, Xn+1) = (M, M).

The hot hand is a phenomenon known to everyone who plays or watches

basketball. After making a couple of shots, players are thought to “get into a

groove” so that subsequent successes are more likely. Purvis Short of the Golden

State Warriors describes this more poetically as

you’re in a world all your own. It’s hard to describe. But the basket seems

to be so wide. No matter what you do, you know the ball is going to go in.

Unfortunately for basketball players, data collected by Tversky and Gliovich

(Chance, Vol. 2 (1989), No. 1, pp. 16–21) show that this is a misconception. The

next table gives data for the conditional probability of hitting a shot after missing

the last three, missing the last two, . . . , hitting the last three, for nine players of

the Philadelphia 76ers: Darryl Dawkins (403), Maurice Cheeks (339), Steve Mix

(351), Bobby Jones (433), Clint Richardson (248), Julius Erving (884), Andrew

Toney (451), Caldwell Jones (272), and Lionel Hollins (419). The numbers in

parentheses are the number of shots for each player.

P (H|3M) P (H|2M) P (H|1M) P (H|1H) P (H|2H) P (H|3H)

0.88 0.73 0.71 0.57 0.58 0.51

0.77 0.60 0.60 0.55 0.54 0.59

0.70 0.56 0.52 0.51 0.48 0.36

0.61 0.58 0.58 0.53 0.47 0.53

0.52 0.51 0.51 0.53 0.52 0.48

0.50 0.47 0.56 0.49 0.50 0.48

0.50 0.48 0.47 0.45 0.43 0.27

0.52 0.53 0.51 0.43 0.40 0.34

0.50 0.49 0.46 0.46 0.46 0.32

In fact, the data support the opposite assertion: after missing a player is more

conservative about the shots they take and will hit more frequently.

4.2 Multistep transition probabilities

The previous section introduced several examples to think about. The basic

question concerning Markov chains is what happens in the long run? In the case

of the weather chain, does the probability that day n is sunny converge to a limit?

In the case of the social mobility and brand preference chain, do the fractions of

the population in the three income classes (or that buy each of the three types of
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detergent) stabilize as time goes on? The first step in answering these questions

is to figure out what happens in the Markov chain after two or more steps.

The transition probability p(i, j ) = P (Xn+1 = j |Xn = i) gives the proba-

bility of going from i to j in one step. Our goal in this section is to compute the

probability of going from i to j in m > 1 steps:

pm(i, j ) = P (Xn+m = j |Xn = i)

For a concrete example, we start with the transition probability of the social

mobility chain:

1 2 3
1 0.7 0.2 0.1

2 0.3 0.5 0.2

3 0.2 0.4 0.4

To warm up we consider

Example 4.9 Suppose the family starts in the middle class (state 2) in generation 0. What is the

probability that the generation 1 rises to the upper class (state 3) and generation

2 falls to the lower class (state 1)?

Intuitively, the Markov property implies that starting from state 2 the prob-

ability of jumping to 1 and then to 3 is given by p(2, 3) p(3, 1). To get this

conclusion from the definitions, we note that using the definition of conditional

probability,

P (X2 = 1, X1 = 3|X0 = 2) = P (X2 = 1, X1 = 3, X0 = 2)

P (X0 = 2)

Multiplying and dividing by P (X1 = 3, X0 = 2),

= P (X2 = 1, X1 = 3, X0 = 2)

P (X1 = 3, X0 = 2)
· P (X1 = 3, X0 = 2)

P (X0 = 2)

Using the definition of conditional probability,

= P (X2 = 1|X1 = 3, X0 = 2) · P (X1 = 3|X0 = 2)

By the Markov property (4.1), the last expression is

P (X2 = 1|X1 = 3) · P (X1 = 3|X0 = 2) = p(2, 3) p(3, 1)

Moving on to the real question

Example 4.10 Suppose the family starts in the middle class (state 2) in generation 0. What is

the probability that generation 2 will be in the lower class (state 1)?



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

122 Markov Chains

To do this we simply have to consider the three possible states for generation

1 and use the previous computation.

P (X2 = 1|X0 = 2) =
3∑

k=1

P (X2 = 1, X1 = k|X0 = 2) =
3∑

k=1

p(2, k)p(k, 1)

= (0.3)(0.7) + (0.5)(0.3) + (0.2)(0.2)

= 0.21 + 0.15 + 0.04 = 0.40

There is nothing special here about the states 2 and 1 here. By the same

reasoning,

P (X2 = j |X0 = i) =
3∑

k=1

p(i, k) p(k, j )

The right-hand side of the last equation gives the (i, j )th entry of the matrix p

multiplied by itself.

To explain this, we note that to compute p2(2, 1) we multiplied the entries of

the second row by those in the first column:
 . . .

0.3 0.5 0.2

. . .




0.7 . .

0.3 . .

0.2 . .


 =


 . . .

0.40 . .

. . .




If we wanted p2(1, 3), we would multiply the first row by the third column:
0.7 0.2 0.1

. . .

. . .




. . 0.1

. . 0.2

. . 0.4


 =


. . 0.15

. . .

. . .




When all of the computations are done, we have
0.7 0.2 0.1

0.3 0.5 0.2

0.2 0.4 0.4




0.7 0.2 0.1

0.3 0.5 0.2

0.2 0.4 0.4


 =


0.57 0.28 0.15

0.40 0.39 0.21

0.34 0.40 0.26




The two-step transition probability p2 = p · p. Based on this you can prob-

ably leap to the next conclusion:

Theorem 4.1. The m-step transition probability

pm(i, j ) = P (Xn+m = j |Xn = i) (4.3)

is the mth power of the transition matrix p, that is, p · p · · · · · p, where there are

m terms in the product.

The key ingredient in proving this is
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Chapman–Kolmogorov equation:

pm+n(i, j ) =
∑

k

pm(i, k) pn(k, j ) (4.4)

Once this is proved, (4.3) follows, since taking n = 1 in (4.4), we see that

pm+1 = pm · p.

Why is (4.4) true? To go from i to j in m + n steps, we have to go from i to

some state k in m steps and then from k to j in n steps. The Markov property

implies that the two parts of our journey are independent.

•
•
•
•

•
•
•
•

•
•
•
•
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i

j

Time 0 m m + n

Proof of (4.4). The independence in the second sentence of the previous expla-

nation is the mysterious part. To show this, we combine Examples 4.9 and 4.10.

Breaking things down according to the state at time m,

P (Xm+n = j |X0 = i) =
∑

k

P (Xm+n = j, Xm = k|X0 = i)

Repeating the computation in Example 4.9, the definition of conditional prob-

ability implies

P (Xm+n = j, Xm = k|X0 = i) = P (Xm+n = j, Xm = k, X0 = i)

P (X0 = i)

Multiplying and dividing by P (Xm = k, X0 = i) gives

= P (Xm+n = j, Xm = k, X0 = i)

P (Xm = k, X0 = i)
· P (Xm = k, X0 = i)

P (X0 = i)

Using the definition of conditional probability we have

= P (Xm+n = j |Xm = k, X0 = i) · P (Xm = k|X0 = i)

By the Markov property (4.1), the last expression is

= P (Xm+n = j |Xm = k) · P (Xm = k|X0 = i) = pm(i, k)pn(k, j )

and we have proved (4.4).
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Having established (4.4), we now return to computations. We begin with the

weather chain (
0.6 0.4

0.2 0.8

)(
0.6 0.4

0.2 0.8

)
=
(

0.44 0.56

0.28 0.72

)

Multiplying again p2 · p = p3(
0.44 0.56

0.28 0.72

)(
0.6 0.4

0.2 0.8

)
=
(

0.376 0.624

0.312 0.688

)

and then p3 · p = p4(
0.376 0.624

0.312 0.688

)(
0.6 0.4

0.2 0.8

)
=
(

0.3504 0.6496

0.3248 0.6752

)

To increase the time faster we can use (4.4) to conclude that p4 · p4 = p8:(
0.3504 0.6496

0.3248 0.6752

)(
0.3504 0.6496

0.3248 0.6752

)
=
(

0.33377 0.66623

0.33311 0.66689

)

Multiplying again p8 · p8 = p16(
0.33333361 0.66666689

0.33333319 0.66666681

)

Based on the last calculation, one might guess that as n gets large the matrix

becomes closer and closer to (
1/3 2/3

1/3 2/3

)

This is true and will be explained in the next section.

4.3 Stationary distributions

Our first step is to consider

What happens when the initial state is random? Breaking things down ac-

cording to the value of the initial state and using the definition of conditional

probability,

P (Xn = j ) =
∑

i

P (X0 = i, Xn = j )

=
∑

i

P (X0 = i)P (Xn = j |X0 = i)
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If we introduce q(i) = P (X0 = i), then the last equation can be written as

P (Xn = j ) =
∑

i

q(i)pn(i, j ) (4.5)

In words, we multiply the transition matrix on the left by the vector q of initial

probabilities. If there are k states, then pn(x , y) is a k × k matrix. So to make

the matrix multiplication work out right, we should take q as a 1 × k matrix or

a “row vector.”

For a concrete example consider the weather chain (Example 4.5) and suppose

that the initial distribution is q(1) = 0.3 and q(2) = 0.7. In this case

(
0.3 0.7

)(0.6 0.4

0.2 0.8

)
=
(

0.32 0.68
)

since

0.3(0.6) + 0.7(0.2) = 0.32

0.3(0.4) + 0.7(0.8) = 0.68

For a second example consider the social mobility chain (Example 4.6) and

suppose that the initial distribution q(1) = 0.5, q(2) = 0.2, and q(3) = 0.3.

Multiplying the vector q by the transition probability gives the vector of proba-

bilities at time 1.

(
0.5 0.2 0.3

)0.7 0.2 0.1

0.3 0.5 0.2

0.2 0.4 0.4


 =

(
0.47 0.32 0.21

)

To check the arithmetic note that the three entries on the right-hand side are

0.5(0.7) + 0.2(0.3) + 0.3(0.2) = 0.35 + 0.06 + 0.06 = 0.47

0.5(0.2) + 0.2(0.5) + 0.3(0.4) = 0.10 + 0.10 + 0.12 = 0.32

0.5(0.1) + 0.2(0.2) + 0.3(0.4) = 0.05 + 0.04 + 0.12 = 0.21

If the distribution at time 0 is the same as the distribution at time 1, then by

the Markov property it will be the distribution at all times n ≥ 1. Because of

this q is called a stationary distribution. Stationary distributions have a special

importance in the theory of Markov chains, so we will use a special letter π to

denote solutions of the equation

π · p = π

To have a mental picture of what happens to the distribution of probability

when one step of the Markov chain is taken, it is useful to think that we have
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q(i) pounds of sand at state i , with the total amount of sand
∑

i q(i) being 1

pound. When a step is taken in the Markov chain, a fraction p(i, j ) of the sand

at i is moved to j . The distribution of sand when this has been done is

q · p =
∑

i

q(i)p(i, j )

If the distribution of sand is not changed by this procedure, q is a stationary

distribution.

General two-state transition probability.

1 2
1 1 − a a

2 b 1 − b

We have written the chain in this way, so the stationary distribution has a simple

formula

π(1) = b

a + b
π(2) = a

a + b
(4.6)

As a first check on this formula we note that in the weather chain, a = 0.4 and

b = 0.2 which gives (1/3, 2/3) as we found before. We can prove this work in

general by drawing a picture:

•
1b

a + b
•
2 a

a + b

a
−→←−

b

In words, the amount of sand that flows from 1 to 2 is the same as the amount

that flows from 2 to 1, so the amount of sand at each site stays constant. To check

algebraically that this is true:

b

a + b
(1 − a) + a

a + b
b = b − ba + ab

a + b
= b

a + b

b

a + b
a + a

a + b
(1 − b) = ba + a − ab

a + b
= a

a + b
(4.7)

Formula (4.6) gives the stationary distribution for any two-state chain, so we

progress now to the three-state case and consider the brand preference chain

(Example 4.7). The equation πp = π says

(
π1 π2 π3

)0.8 0.1 0.1

0.2 0.6 0.2

0.3 0.3 0.4


 =

(
π1 π2 π3

)
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which translates into three equations:

0.8π1 + 0.2π2 + 0.3π3 = π1

0.1π1 + 0.6π2 + 0.3π3 = π2

0.1π1 + 0.2π2 + 0.4π3 = π3

Note that the columns of the matrix give the numbers in the rows of the

equations. The third equation is redundant since if we add up the three equations,

we get

π1 + π2 + π3 = π1 + π2 + π3

If we replace the third equation by π1 + π2 + π3 = 1 and subtract π1 from each

side of the first equation and π2 from each side of the second equation, we get

− 0.2π1 + 0.2π2 + 0.3π3 = 0

0.1π1 − 0.4π2 + 0.3π3 = 0

π1 + π2 + π3 = 1 (4.8)

At this point we can solve the equations by hand or using a calculator.

By hand. We note that the third equation implies π3 = 1 − π1 − π2 and

substituting this in the first two gives

0.3 = 0.5π1 + 0.1π2

0.3 = 0.2π1 + 0.7π2

Multiplying the first equation by 0.7 and adding −0.1 times the second gives

1.8 = (0.35 − 0.02)π1 or π1 = 18/33 = 6/11

Multiplying the first equation by 0.2 and adding −0.5 times the second gives

−0.09 = (0.02 − 0.35)π2 or π2 = 9/33 = 3/11

Since the three probabilities add up to 1, π3 = 2/11.

Using the TI-83 calculator is easier. To begin we write (4.8) in matrix form

as

(
π1 π2 π3

)−0.2 0.1 1

0.2 −0.4 1

0.3 0.3 1


 =

(
0 0 1

)

If we let A be the 3 × 3 matrix in the middle this can be written as π A = (0, 0, 1).

Multiplying on each side by A−1, we see that

π = (0, 0, 1)A−1
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which is the third row of A−1. To compute A−1, we enter A into our calculator

(using the MATRX menu and the EDIT submenu), use the MATRX menu to

put [A] on the computation line, and then press the x−1. Reading the third row

we find that the stationary distribution is

(0.545454, 0.272727, 0.181818)

Converting the answer to fractions using the first entry in the MATH menu gives

(6/11, 3/11, 2/11)

Example 4.11 Social mobility (continuation of 4.6)

1 2 3
1 0.7 0.2 0.1

2 0.3 0.5 0.2

3 0.2 0.4 0.4

Using the first two equations and the fact that the sum of the π ’s is 1,

0.7π1 + 0.3π2 + 0.2π3 = π1

0.2π1 + 0.5π2 + 0.4π3 = π2

π1 + π2 + π3 = 1

This translates into π A = (0, 0, 1) with

A =


−0.3 0.2 1

0.3 −0.5 1

0.2 0.4 1




Note that here and in the previous example the first two columns of A consist

of the first two columns of the transition probability with 1 subtracted from

the diagonal entries, and the final column is all 1’s. Computing the inverse and

reading the last row gives

(0.468085, 0.340425, 0.191489)

Converting the answer to fractions using the first entry in the math menu gives

(22/47, 16/47, 9/47)

Example 4.12 Basketball (continuation of 4.8)

To find the stationary matrix in this case we can follow the same procedure.

A consists of the first three columns of the transition matrix with 1 subtracted
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from the diagonal, and a final column of all 1’s.

−1/4 1/4 0 1

0 −1 2/3 1

2/3 1/3 −1 1

0 0 1/2 1

The answer is given by the fourth row of A−1:

(0.5, 0.1875, 0.1875, 0.125) = (1/2, 3/16, 3/16, 1/8)

Thus the long-run fraction of time the player hits a shot is

π(H H) + π(M H) = 0.6875 = 11/36

Example 4.13 Inventory chain (continuation of 4.4)

As in the two previous examples, A consists of the first five columns of the

transition matrix with 1 subtracted from the diagonal, and a final column of

all 1s.

−1 0 0.1 0.2 0.4 1

0 −1 0.1 0.2 0.4 1

0.3 0.4 −0.7 0 0 1

0.1 0.2 0.4 −0.7 0 1

0 0.1 0.2 0.4 −0.7 1

0 0 0.1 0.2 0.4 1

The answer is given by the sixth row of A−1:

(0.090862, 0.155646, 0.231006, 0.215605, 0.201232, 0.105646)

Converting the answer to fractions using the first entry in the math menu gives

(177/1,948, 379/2,435, 225/974, 105/487, 98/487, 1,029/9,740)

but the decimal version is probably more informative.

Example 4.14 Ehrenfest chain (continuation of 4.3)

Consider first the case N = 5. As in the three previous examples, A consists

of the first five columns of the transition matrix with 1 subtracted from the
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diagonal, and a final column of all 1’s.

−1 1 0 0 0 1

0.2 −1 0.8 0 0 1

0 0.4 −1 0.6 0 1

0 0 0.6 −1 0.4 1

0 0 0 0.8 −1 1

0 0 0 0 1 1

The answer is given by the sixth row of A−1:

(0.03125, 0.15625, 0.3125, 0.3125, 0.15625, 0.03125)

Even without a calculator we can recognize these as

(1/32, 5/32, 10/32, 10/32, 5/32, 1/32)

the probabilities of 0–5 heads when we flip five coins.

Based on this we can guess that in general

π(k) =
(

N

k

)
/2N

Proof by computation. For 0 < k < N, we can end up in state k only by

coming up from k − 1 or down from k + 1, so

π(k − 1)p(k − 1, k) + π(k + 1)p(k + 1, k)

=
( N

k−1

)
2N

· N − k + 1

N
+
( N

k+1

)
2N

· k + 1

N

= 1

2N

(
(N − 1)!

(k − 1)!(N − k)!
+ (N − 1)!

(k)!(N − k + 1)!

)

= 1

2N

(
N

k

)(
k

N
+ N − k

N

)
= π(k)

The only way to end up at 0 is by coming down from 1, so

π(1)p(1, 0) = N

2N
· 1

N
= π(0)

Similarly, the only way to end up at N is by coming up from N − 1, so

π(N − 1)p(N − 1, N) = N

2N
· 1

N
= π(0)

Proof by thinking. To determine the initial state, (a) flip N coins, with

heads = in the left urn and tails = in the right. A transition of the chain corres-

ponds to (b) picking a coin at random and turning it over. It is clear that the
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end result of (a) and (b) has all 2N outcomes equally likely, so the state at time

1 is the same as the state at time 0.

4.4 Limit behavior

In this section we give conditions that guarantee that as n gets large, pn(i, j )

approaches its stationary distribution. We begin with the convergence in the

two-state case.

Theorem 4.2. Let pn be the probability of being in state 1 after n steps. For a

two-state Markov chain with transition probability

1 − a a

b 1 − b

where 0 < a + b < 2, we have∣∣∣∣pn − b

a + b

∣∣∣∣ =
∣∣∣∣p0 − b

a + b

∣∣∣∣ · |1 − a − b|n (4.9)

In words, the transition probability converges to equilibrium exponentially fast.

In the case of the weather chain, |1 − a − b| = 0.4, so the difference between

pn and the limit b/(a + b) goes to 0 faster than (0.4)n.

Proof. Using the Markov property we have for any n ≥ 1 that

pn = pn−1(1 − a) + (1 − pn−1)b

In words, the chain is in state 1 at time n if it was in state 1 at time n − 1 (with

probability pn−1) and stays there (with probability 1 − a), or if it was in state 2

(with probability 1 − pn−1) and jumps from 2 to 1 (with probability b). Since

the probability of being in state 1 is constant when we start in the stationary

distribution, see the first equation in (4.7):

b

a + b
= b

a + b
(1 − a) +

(
1 − b

a + b

)
b

Subtracting this equation from the one for pn, we have

pn − b

a + b
=
(

pn−1 − b

a + b

)
(1 − a) +

(
b

a + b
− pn−1

)
b

=
(

pn−1 − b

a + b

)
(1 − a − b)
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If 0 < a + b < 2, then |1 − a − b| < 1 and we have∣∣∣∣pn − b

a + b

∣∣∣∣ =
∣∣∣∣pn−1 − b

a + b

∣∣∣∣ · |1 − a − b|

In words, the difference |pn − b/(a + b)| will shrink by a factor |1 − a − b| at

each step. Iterating the last equation gives the desired result.

There are two cases a = b = 0 and a = b = 1 in which pn(i, j ) does not

converge to π(i). In the first case the matrix is(
1 0

0 1

)

so the state never changes. This is called the identity matrix and denoted by I ,

since for any 2 × 2 matrix m, I · m = m and m · I = m. In the second case the

matrix is

p =
(

0 1

1 0

)

so the chain always jumps. In this case, p2 = I , p3 = p, p4 = I , etc. To see that

something similar can happen in a “real example,” we consider

Example 4.15 Ehrenfest chain. Consider the chain defined in Example 4.3, and for simplicity

suppose there are three balls. In this case the transition probability is

0 1 2 3
0 0 3/3 0 0

1 1/3 0 2/3 0

2 0 2/3 0 1/3

3 0 0 3/3 0

In the second power of p, the zero pattern is shifted:

0 1 2 3
0 1/3 0 2/3 0

1 0 7/9 0 2/9

2 2/9 0 7/9 0

3 0 2/3 0 1/3

To see that the zeros will persist, note that if initially we have an odd number

of balls in the left urn, then no matter whether we add or subtract one ball

the result will be an even number. Thus, Xn alternates between being odd
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and even. To see why this prevents convergence note that p2n(i, i) > 0, while

p2n+1(i, i) = 0.

A second thing that can prevent convergence is shown by

Example 4.16 Reducible chain

0 1 2 3
0 2/3 1/3 0 0

1 1/5 4/5 0 0

2 0 0 1/2 1/2

3 0 0 1/6 5/6

In this case if we start at 0 or 1 it is impossible to get to states 2 or 3 and vice

versa, so the 2 × 2 blocks of 0’s will persist forever in the matrix.

A remarkable fact about Markov chains (on finite state spaces) is that if we

avoid these two problems then there is a unique stationary distribution π and

pn(i, j ) → π( j ). The two conditions that rule out these problems are

• p is said to be irreducible if for each i and j it is possible to get from i to j , that is,
pm(i, j ) > 0 for some m ≥ 1.

• a state i is said to be aperiodic if the greatest common divisor of J i = {n ≥ 1 that
have pn(i, i) > 0} is 1.

In general, the greatest common divisor of J i is called the period of state i .

In the Ehrenfest chain it is only possible to go from i to i in an even number of

steps, so all states have period 2. The next example explains why the definition

is formulated in terms of the greatest common divisor.

Example 4.17 Triangle and square. The state space is {−2, −1, 0, 1, 2, 3} and the transition

probability is

−2 −1 0 1 2 3
−2 0 0 1 0 0 0

−1 1 0 0 0 0 0

0 0 1/2 0 1/2 0 0

1 0 0 0 0 1 0

2 0 0 0 0 0 1

3 0 0 1 0 0 0

In words, from 0 we are equally likely to go to 1 or −1. From −1 we go with

probability 1 to −2 and then back to 0, from 1 we go to 2, then to 3, and back
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to 0. The name refers to the fact that 0 → −1 → −2 → 0 is a triangle and

0 → 1 → 2 → 3 → 0 is a square.

� �

��
�

�
�

�
��

��

�

−1 0 1

−2 3 2

1/2 1/2•

•

•

•

•

•

If we note that (i) 3, 4 ∈ J 0, (ii) J 0 is closed under addition, and (iii) once J 0

contains three consecutive integers, it will contain the rest then we see

J 0 = {3, 4, 6, 7, 8, 9, . . .}

so the greatest common divisor of J 0 is 1. In this case and in general for aperiodic

states J 0 contains all integers beyond some point.

With the key definitions made we can now state the

Convergence theorem. If p is irreducible and has an aperiodic state then there is

a unique stationary distribution π and for any i and j

pn(i, j ) → π( j ) as n → ∞ (4.10)

An easy, but important, special case is

Corollary. If for some n, pn(i, j ) > 0 for all i and j , then there is a unique

stationary distribution π and

pn(i, j ) → π( j ) as n → ∞ (4.11)

Proof. In this case p is irreducible since it is possible to get from any state to any

other in n steps. All states are aperiodic since we also have pn+1(i, j ) > 0, so

n, n + 1 ∈ J i and hence the greatest common divisor of J i is 1.

The corollary with n = 1 shows that the convergence theorem applies to the

Wright–Fisher model with mutation, weather chain, social mobility, and brand

preference chains that are Examples 4.2, 4.5, 4.6, and 4.7. The convergence

theorem does not apply to the gambler’s ruin chain (Example 4.1) or the Wright–

Fisher model with no mutations since they have absorbing states and hence are

not irreducible. We have already noted that the Ehrenfest chain (Example 4.3)
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does not converge since all states have period 2. This leaves the inventory chain

(Example 4.4):

0 1 2 3 4 5
0 0 0 0.1 0.2 0.4 0.3

1 0 0 0.1 0.2 0.4 0.3

2 0.3 0.4 0.3 0 0 0

3 0.1 0.2 0.4 0.3 0 0

4 0 0.1 0.2 0.4 0.3 0

5 0 0 0.1 0.2 0.4 0.3

We have two results we can use.

Checking (4.10). To check irreducibility we note that starting from 0, 1, or 5,

we can get to 2, 3, 4, and 5 in one step and to 0 and 1 in two steps by going

through 2 or 3. From 2 or 3 we can get to 0, 1, and 2 in one step and to 3, 4, and

5 in two steps by going through 0. Finally from 4 we can get to 1, 2, 3, and 4 in

one step and to 0 or 5 in two steps by going through 2 or 1 respectively. To check

aperiodicity, we note that p(5, 5) > 0, so 5 is aperiodic.

Checking (4.11). With a calculator we can compute p2:

0 1 2 3 4 5
0 0.05 0.12 0.22 0.28 0.24 0.09

1 0.05 0.12 0.22 0.28 0.24 0.09

2 0.09 0.12 0.16 0.14 0.28 0.21

3 0.15 0.22 0.27 0.15 0.12 0.09

4 0.10 0.19 0.29 0.26 0.13 0.03

5 0.05 0.12 0.22 0.28 0.24 0.09

All entries are positive, so (4.11) applies.

Doubly stochastic chains. A Markov chain is defined by the condition that∑
j p(i, j ) = 1. Suppose that in addition, we have

∑
i p(i, j ) = 1. If the chain

has N states then the stationary distribution is π(i) = 1/N since

∑
i

π(i)p(i, j ) = 1

N

∑
i

p(i, j ) = 1

N

To illustrate this consider

Example 4.18 Tiny board game. Consider a circular board game with only six spaces

{0, 1, 2, 3, 4, 5}. On each turn we decide how far to move by flipping two coins

and then moving one space for each heads. Here, we consider 5 to be adjacent

to 0, so if we are there and get two heads then the result is 5 + 2 mod 6 = 1,
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where i + k mod 6 is the remainder when i + k is divided by 6. In this case the

transition probability is

0 1 2 3 4 5
0 1/4 1/2 1/4 0 0 0

1 0 1/4 1/2 1/4 0 0

2 0 0 1/4 1/2 1/4 0

3 0 0 0 1/4 1/2 1/4

4 1/4 0 0 0 1/4 1/2

5 1/2 1/4 0 0 0 1/4

It is clear that the columns add to one, so the stationary distribution is uniform.

To check the hypothesis of the convergence theorem, we note that after 3 turns

we will have moved between 0 and 6 spaces, so p3(i, j ) > 0.

Example 4.19 Mathematician’s monopoly. The game monopoly is played on a game board

that has 40 spaces arranged around the outside of a square. The squares have

names such as Reading Railroad and Park Place, but we will number the squares

0 (Go), 1 (Baltic Avenue), . . . , 39 (Boardwalk). In Monopoly you roll two dice

and move forward a number of spaces equal to the sum. For the moment, we will

ignore things such as Go to Jail, Chance, and other squares that make the tran-

sitions complicated and formulate the dynamics as following. Let rk be the pro-

bability that the sum of two dice is k (r2 = 1/36, r3 = 2/36, . . . , r7 = 6/36, . . . ,

r12 = 1/36) and let

p(i, j ) = rk if j = i + k mod 40

where i + k mod 40 is the remainder when i + k is divided by 40. To explain

suppose that we are sitting on Park Place i = 37 and roll k = 6. 37 + 6 = 43

but when we divide by 40 the remainder is 3, so p(37, 3) = r6 = 5/36.

This example is larger but has the same structure as the previous example.

Each row has the same entries but shifts 1 unit to the right each time with the

number that goes off the right edge emerging in the 0 column. This structure

implies that each entry in the row appears once in each column and hence the

sum of the entries in the column is 1, and the stationary distribution is uniform.

To check the hypothesis of the convergence theorem note that in four rolls you

can move forward by 8–48 squares, so p4(i, j ) > 0 for all i and j .

Example 4.20 Real Monopoly has two complications:

1. Square 30 is Go to Jail, which sends you to square 10. You can buy your way

out of jail but in the results we report next, we assume that you are cheap. If

you roll a double then you get out for free. If you don’t get doubles in three

tries you have to pay.
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2. There are three Chance squares at 7, 12, and 36 (diamonds on the graph), and

three Community Chest squares at 2, 17, 33 (squares on the graph), where

you draw a card, which can send you to another square.

The graph gives the long-run frequencies of being in different squares on the

Monopoly board at the end of your turn, as computed by simulation. To make

things easier to see we have removed the 9.46% chance of being In Jail to make

the probabilities easier to see. The value reported for 10 is the 2.14% probability

of Just Visiting Jail, that is, being brought there by the roll of the dice. Square

30, Go to Jail, has probability 0 for the obvious reasons. The other three lowest

values occur for Chance squares. Due to the transition from 30 to 10, frequencies

for squares near 20 are increased relative to the average of 2.5%, while those

after 30 or before 10 are decreased. Squares 0 (Go) and 5 (Reading Railroad)

are exceptions to this trend since there are chance cards that instruct you to go

there.

In Monopoly when you land on Go you get an extra $200. This motivates the

following.

Example 4.21 Landing on Go. What is the long-run probability that during one trip around

the board in mathematician’s Monopoly that we land on Go? We have italicized

a phrase in the last question to emphasize that this is different from the question

answered in Example 4.19: the long-run fraction of time we spend at 0 is 1/40.

Intuitive solution. Consider instead an infinite board with squares 0, 1, 2, . . . ,

and make the connection with the circular board by thinking of Go as 0, 40,

80, . . . . Rolling two dice we move an average of 7 squares per turn, so in the

long run we visit 1/7 of the squares.
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Formal solution. Let Xn = 0 if we visit square n on the infinite board. For the

squares m we do not visit, we define Xm to be the number of steps to the next

square we hit. For example if the first three rolls were 4, 6, and 3.

Xn 0 3 2 1 0 5 4 3 2 1 0 2 1 0

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Let qk be the probability we move forward k squares on one roll and suppose

q0 = 0. Then Xn is a Markov chain with

p j, j−1 = 1 j > 0

p0,k−1 = qk

To check the second note that in the example the first roll is 4 but X1 = 3. Let

rk = ∑∞
j=k+1 q j . We claim that r p = r . To check this, note that to end at k ≥ 0

there are two possibilities: come down from k + 1 or jump up from 0, so

(r p)k = rk+1 · 1 + r0 · qk+1 = rk

since r0 = ∑∞
j=1 q j = 1 and qk+1 +∑∞

j=k+2 q j = rk .

To turn r into a stationary distribution we need to divide by
∑∞

k=0 rk . To

evaluate the sum we write

∞∑
k=0

∞∑
j=k+1

q j =
∞∑
j=0

j−1∑
k=0

q j =
∞∑
j=0

j q j = µ

Thus the stationary distribution is πk = rk/µ.

When qk is the probability that the sum of two dice is k, then Xn is irreducible

on the state space {0, 1, . . . , 11}. pk(0, 0) = qk > 0 for k = 2, 3, so Xn is a

periodic and we can conclude P (Xn = 0) → 1/µ = 1/7.

4.5 Gambler’s ruin

As we have said earlier, the long-run behavior of the gambler’s ruin chain and

the Wright–Fisher model with no mutation are not very exciting. After a while

the chain enters one of the absorbing states (0 and N) and stays there forever.

Our first question is, “What is the probability that the chain gets absorbed at

N before hitting 0?,” that is, “What is the probability that the gambler avoids

ruin?”

Example 4.22 Flipping coins. A gambler is betting $1 each time on the outcome of the flip of

a fair coin. He has $10 and will stop when he has $25. What is the probability

that he will reach his goal before he runs out of money?
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Even though we are interested only in what happens when we start at 10,

to solve this problem we must compute h(x) = the probability of reaching N

before 0 starting from x for all 0 < x < N. Of course, h(0) = 0 and h(N) = 1.

For 0 < x < N, considering what happens on the first step gives

h(x) = 1

2
h(x − 1) + 1

2
h(x + 1)

In words, h(x) is the average of h(x − 1) and h(x + 1). Multiplying by 2, moving

h(x − 1) to the left and one of the h(x)’s to the right, we have

h(x) − h(x − 1) = h(x + 1) − h(x)

This says that the slope of h is constant or the graph of h is a straight line. Since

h(0) = 0 and h(N) = 1, the slope must be 1/N and

h(x) = x

N
(4.12)

Thus the answer to our question is 10/25.

To see that this is reasonable, note that since we are playing a fair game (that

is, the average winnings on any play is 0) the average amount of money we have

at any time is the $10 we started with. When the game ends we will have $25

with probability p and $0 with probability 1 − p. For the expected value to be

$10, we must have p = 10/25. This calculation extends easily to the general case:

when the game ends we will have $N with probability p and $0 with probability

1 − p. If we start with $x , then the expected value at the end should also be $x

and we must have p = x/N.

Example 4.23 Wright–Fisher model. As described in Example 4.2, if we let Xn be the number

of A alleles at time n, then Xn is a Markov chain with transition probability

p(x , y) =
(

N

y

)( x

N

)y (
1 − x

N

)N−y

0 and N are absorbing states. What is the probability that the chain ends up in

N starting from x .

Extending the reasoning in the previous example, we see that if h(x) is the

probability of getting absorbed in state N when we start in state x , then h(0) = 0,

h(N) = 1, and for 0 < x < N,

h(x) =
∑

y

p(x , y)h(y) (4.13)

In words if we jump from x to y on the first step then our absorption probability

becomes h(y).
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In the Wright–Fisher model, p(x , y) is the binomial distribution for N inde-

pendent trials with success probability x/N, so the expected number of As after

the transition is x ; that is, the expected number of As remains constant in time.

Using the reasoning from the previous example, we guess

h(y) = y

N

Clearly, h(0) = 0 and h(N) = 1. To check (4.13) we note that

∑
y

p(x , y)
y

N
= x

N

since the mean of the binomial is x .

The formula h(y) = y/N says that if we start with y A’s in the population

then the probability that we will end with a population of all A’s (an event called

“fixation” in genetics) is y/N, the fraction of the population that is A. The case

y = 1 is a famous result due to Kimura: the probability of fixation of a new

mutation is 1/N. If we suppose that each individual experiences mutations at

rate µ, then since there are N individuals, new mutations occur at a total rate

Nµ. Since each mutation achieves fixation with probability 1/N, the rate at

which mutations become fixed is µ independent of the size of population.

Example 4.24 Roulette. Suppose now that the gambler is playing roulette where he will win

$1 with probability p = 18/38 and lose $1 with probability 1 − p = 20/38 each

time. He has $25 and will stop when he has $50. What is the probability that he

will reach his goal before he runs out of money? Note if this was a fair game his

success probability would be 0.5.
Again we let h(x) = the probability of reaching N before 0 starting from x .

Of course h(0) = 0 and h(N) = 1. For 0 < x < N, (4.13) implies

h(x) = (1 − p)h(x − 1) + ph(x + 1)

Moving (1 − p)h(x − 1) to the left and ph(x) to the right, we have

(1 − p)(h(x) − h(x − 1)) = p(h(x + 1) − h(x))

which rearranges to

h(x + 1) − h(x) = 1 − p

p
(h(x) − h(x − 1)) (�)



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

141 4.5 Gambler’s ruin

We know that h(0) = 0. We don’t know h(1), so we let h(1) = c . Using (�)

repeatedly we have

h(2) − h(1) = 1 − p

p
(h(1) − h(0)) =

(
1 − p

p

)
c

h(3) − h(2) = 1 − p

p
(h(2) − h(1)) =

(
1 − p

p

)2

c

h(4) − h(3) = 1 − p

p
(h(3) − h(2)) =

(
1 − p

p

)3

c

From this it should be clear that

h(x + 1) − h(x) =
(

1 − p

p

)x

c

Writing r = (1 − p)/p to simplify and recalling h(0) = 0, we have

h(y) = h(y) − h(0) =
y∑

x=1

h(x) − h(x − 1)

= (r y−1 + r y−2 + · · · + r + 1)c = r y − 1

r − 1
· c

since (r y−1 + r y−2 + · · · + r + 1)(r − 1) = r y − 1. We want h(N) = 1, so we

must have c = (r − 1)/(r N − 1). It follows that

h(y) = r y − 1

r N − 1
=

(
1−p

p

)y
− 1(

1−p
p

)N
− 1

(4.14)

To see what this says for our roulette example we take p = 18/38, x = 25,

and N = 50. In this case, (1 − p)/p = 10/9, so the probability that we succeed

is

(10/9)25 − 1

(10/9)50 − 1
= 12.929

193.03
= 0.067

compared to 0.5 for the fair game.

Now let’s turn things around and look at the game from the viewpoint of the

casino, that is, p = 20/38. Suppose that the casino starts with the rather modest

capital of x = 100. (4.14) implies that the probability that they will reach N

before going bankrupt is

(9/10)100 − 1

(9/10)N − 1
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If we let N → ∞, (9/10)N → 0, so the answer converges to

1 − (9/10)100 = 1 − 2.656 × 10−5

If we increase the capital to $200 then the failure probability is squared, since to

become bankrupt we must first lose $100 and then lose our second $100. In this

case the failure probability is incredibly small: (2.656 × 10−5)2 = 7.055 × 10−10.

4.6 Absorbing chains

In this section we consider general Markov chains with absorbing states. The

two questions of interest are “Where does the chain get absorbed?” and “How

long does it take to get there?” We begin with a simple example.

Example 4.25 Two-year college. At a local two-year college, 60% of freshmen become sopho-

mores, 25% remain freshmen, and 15% drop out. 70% of sophomores graduate

transfer to a four-year college, 20% remain sophomores, and 10% drop out.

What fraction of new students eventually graduate?
We use a Markov chain with state space 1 = freshman, 2 = sophomore, G =

graduate, and D = dropout. The transition probability is

1 2 G D
1 0.25 0.6 0 0.15

2 0 0.2 0.7 0.1

G 0 0 1 0

D 0 0 0 1

Let h(x) be the probability that a student currently in state x eventually

graduates. By considering what happens on one step,

h(1) = 0.25h(1) + 0.6h(2)

h(2) = 0.2h(2) + 0.7

so h(2) = 0.7/0.8 = 0.875 and h(1) = (0.6)/(0.75)h(2) = 0.7.

To check these answers we will look at powers of the transition probability

p2 =

1 2 G D
1 0.0625 0.27 0.42 0.2475

2 0 0.04 0.84 0.12

G 0 0 1 0

D 0 0 0 1
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From this we see that the fraction of freshmen who graduate in 2 years is

p2(1, G) = 0.42 = 0.6(0.7) = p(1, 2) p(2, G). After 3 years

p3 =

1 2 G D
1 0.015625 0.0915 0.609 0.283875

2 0 0.008 0.868 0.124

G 0 0 1 0

D 0 0 0 1

while after 6 years very few people are still trying to get their degrees

p6 =

1 2 G D
1 0.000244 0.002161 0.697937 0.283875

2 0 0.000064 0.874944 0.124492

G 0 0 1 0

D 0 0 0 1

Note that p6(1, D) ≈ 0.7 and p6(2, D) ≈ 0.875.

Example 4.26 Tennis. In tennis the winner of a game is the first player to win 4 points, unless

the score is 4–3, in which case the game must continue until one player wins

by 2 points. Suppose that the game has reached the point where one player is

trying to get 2 points ahead to win and that the server will independently win

the point with probability 0.6. What is the probability that the server will win

the game if the score is tied 3–3? if she is ahead by 1 point? Behind by 1 point?
We formulate the game as a Markov chain in which the state is the difference

of the scores. The state space is 2, 1, 0, −1, −2 with 2 (win for server) and −2

(win for opponent). The transition probability is

p =

2 1 0 −1 −2
2 1 0 0 0 0

1 0.6 0 0.4 0 0

0 0 0.6 0 0.4 0

−1 0 0 0.6 0 0.4

−2 0 0 0 0 1

If we let h(x) be the probability of the server winning when the score is x , then

h(x) =
∑

y

p(x , y)h(y)
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with h(2) = 1 and h(−2) = 0. This involves solving three equations in three

unknowns. The computations become much simpler if we look at

p2 =

2 1 0 −1 −2
2 1 0 0 0 0

1 0.6 0.24 0 0.16 0

0 0.36 0 0.48 0 0.16

−1 0 0.36 0 0.24 0.4

−2 0 0 0 0 1

From p2 we see that

h(0) = 0.36 + 0.48h(0)

so h(0) = 0.36/0.52 = 0.6923. By considering the outcome of the first point we

see that h(1) = 0.6 + 0.4h(0) = 0.8769 and h(−1) = 0.6h(0) = 0.4154.

General solution. Suppose that the server wins each point with probabilityw.

If the game is tied then after 2 points, the server will have won with probability

w2, lost with probability (1 − w)2, and returned to a tied game with prob-

ability 2w(1 − w), so h(0) = w2 + 2w(1 − w)h(0). Since 1 − 2w(1 − w) =
w2 + (1 − w)2, solving gives

h(0) = w2

w2 + (1 − w)2

The next graph gives the probability of winning a tied game as a function of the

probability of winning a point.

4.6.1 Absorption times

Example 4.27 An office computer is in one of three states, working (W), being repaired (R), or

scrapped (S). If the computer is working 1 day the probability it will be working
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the next day is 0.995 and the probability it will need repair is 0.005. If it is being

repaired then probability it is working the next day is 0.9, the probability it still

needs repair the next day is 0.05, and the probability it will be scrapped is 0.05.

What is the average number of working days until a computer is scrapped?
Leaving out the absorbing state of being scrapped the reduced transition

probability is

r =
W R

W 0.995 0.005

R 0.90 0.05

To see that this is enough of the matrix to compute what we want, note

that r n(W, W) gives the probability a computer is working on day n, so∑∞
n=0 r n(W, W) gives the expected number of days that it is working. To see

this, let Yn = 1 if the computer is working on day n and 0 otherwise; then

Y = ∑∞
n=0 Yn is the number of days the computer is working

E Y = E
∞∑

n=0

Yn =
∞∑

n=0

E Yn =
∞∑

n=0

r n(W, W)

By analogy with the geometric series
∑∞

n=0 xn = 1/(1 − x) we can guess that

∞∑
n=0

r n = (I − r )−1 (4.15)

where I = the identity matrix and r 0 = I . To check this we note that

(I − r )
∞∑

n=0

r n =
∞∑

n=0

r n −
∞∑

n=1

r n = r 0 = I

Computing the inverse

(I − r )−1 =
W R

W 3, 800 20

R 3, 600 20

we see that on the average a working computer will work for 3,800 days and will

spend 20 days being repaired.

(I − r )−1 is sometimes called the fundamental matrix because it is the key

to computing many quantities for absorbing Markov chains.

Example 4.28 A local cable company classifies its customers according to how many months

overdue their bill is: 0, 1, 2, 3. Accounts that are 3 months overdue are discon-

tinued (D) if they are not paid. The company estimates that transitions occur
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according to the following probabilities:

0 1 2 3 D
0 0.9 0.1 0 0 0

1 0.8 0 0.2 0 0

2 0.7 0 0 0.3 0

3 0.6 0 0 0 0.4

D 0 0 0 0 1

What is the expected number of months for a new customer (that is, one who

starts in state 0) to have their service discontinued?

Let r be the reduced 4 × 4 matrix of transitions between the nonabsorbing

states, 0–3.

(I − r )−1 =
416.66 41.66 8.33 2.5

406.66 41.66 8.33 2.5

366.66 36.66 8.33 2.5

250 25 5 2.5

The first row gives the expected number of visits to each of the four states starting

from 0, so the expected time is 416.66 + 41.66 + 8.33 + 2.5 = 469.16.

Returning to our first two examples:

Example 4.29 Two-year college. Consider the transition probability in Example 4.25. How

many years on the average does it take for a freshman to graduate or drop out?
Removing the absorbing states from the transition probability, we obtain the

reduced matrix

r =
1 2

1 0.25 0.6

2 0 0.2

From this we compute

(I − r )−1 =
1 2

1 1.33 1

2 0 1.25

so, on the average, a freshman takes 1.33 + 1 = 2.33 years to either graduate or

drop out.

Example 4.30 Tennis. Consider the transition probability in Example 4.26. Suppose that game

is tied 3–3? How many more points do we expect to see before the game ends?
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Removing the absorbing states from the transition probability, we obtain the

reduced matrix

r =
1 0 −1

1 0 0.4 0

0 0.6 0 0.4

−1 0 0.6 0

From this we compute

(I − r )−1 =
1 0 −1

1 1.4615 0.7692 0.307

0 1.1538 1.09230 0.769

−1 0.6923 1.1538 1.461

so, on the average, a tied game requires 1.1538 + 1.09230 + 0.769 = 3.8458

points to be completed.

The fundamental matrix can also be used to compute the probability of

winning the game. To see this we note that in order to end in state 2, the chain

must wander among the nonabsorbing states for some number of times n and

then jump from some state y to state 2; that is,

h(x) =
∑

y

∞∑
n=0

r n(x , y)p(y, 2) = (I − r )−1(x , y)p(y, 2)

In the case of the tennis chain, p(y, 2) = 0 unless y = 1, and in this case

p(1, 2) = 0.6, so

h(x) = 0.6(I − p)−1(x , 1)

Multiplying the first column of the previous matrix by 0.6 we get the answers

we found in Example 4.26:

0.8769 0.6923 0.4154

Example 4.31 Waiting for coin patterns. If we flip a coin repeatedly, what is the average

number of tosses until we see HH? HT?

If we let (Xn−1, Xn) be the outcomes of the last two tosses then this is a

Markov chain with transition probability

HH HT TH TT
HH 1/2 1/2 0 0

HT 0 0 1/2 1/2

TH 1/2 1/2 0 0

TT 0 0 1/2 1/2
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To compute the expected time to reach HH, THH, we make a reduced matrix r1

by eliminating its row and column and then subtract from the identity to get

I − r1 =
HT TH TT

HT 1 −1/2 −1/2

TH −1/2 1 0

TT 0 −1/2 1/2

From this we compute

(I − r1)−1 =
HT TH TT

HT 2 2 2

TH 1 2 1

TT 1 2 3

From this we see E HTTHH = 6, E THTHH = 4, and E TTTHH = 6. It takes two

tosses to get the chain started. If we get HH on the first two we are done. In the

other three cases we have the waiting time computed earlier, so

E THH = 2 + 1

4
(6 + 4 + 6) = 6

We can check this by noting that if we start with T or HT, then we have made

no progress, but if the first two tosses are HH we are done. From this we see that

E THH = 1

2
(1 + E THH) + 1

4
(2 + E THH) = 1

4
· 2

so (1/4)E THH = 1.5 and again we find E THH = 6.

It is clear from symmetry that E TTT = 6, so the only remaining case is E THT.

To compute the expected time to reach HT, we make a reduced matrix r2 by

eliminating its row and column and then subtract from the identity to get

I − r2 =
HH TH TT

HH 1/2 0 0

TH −1/2 1 0

TT 0 −1/2 1/2

From this we compute

(I − r2)−1 =
HH TH TT

HH 2 0 0

TH 1 1 0

TT 1 1 2

From this we see E HHTHT = 2, E THTHT = 2, and E TTTHT = 4, and

E THT = 2 + 1

4
(2 + 2 + 4) = 4
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This is the answer we should have expected to hold in general: along the

sequence 1/4 of the pairs are HT, so the average distance between them is 4.

We get a different answer for E THH because once one HH occurs then there is

probability 1/2 of having another H H one unit of time later. E THH counts the

distance between nonoverlapping occurrences, so

4 = (1/2) · 1 + (1/2) · E THH

Solving we have a third proof that E THH = 6.

Example 4.32 Waiting for coin patterns, II. We now consider patterns of length 3. By sym-

metry we only need to consider the four that start with H . Using the reasoning

from the end of the previous example,

8 = (1/2) · 1 + (1/2) · E THHH

8 = (1/4) · 2 + (3/4) · E THTH

and solving gives

E THHH = 14 E THTH = 10

In the other cases, the three tosses are not useful for getting another occurrence

so E THHT = E THTT = 8.

To check the result for E THHH, we note that if we start with T, HT, or HHT,

then we have made no progress, but if the first three tosses are HHH we are

done. From this we see that

E THHH = 1

2
(1 + E THHH) + 1

4
(2 + E THHH) + 1

8
(3 + E THHH) + 1

8
· 3

so (1/8)E THHH = 1.75 and again we find E THHH = 14.

To compute E THTH we begin by writing down the transition probability for

the last three flips (Xn−2, Xn−1, Xn):

HHH HHT HTH HTT THH THT TTH TTT
HHH 1/2 1/2 0 0 0 0 0 0

HHT 0 0 1/2 1/2 0 0 0 0

HTH 0 0 0 0 1/2 1/2 0 0

HTT 0 0 0 0 0 0 1/2 1/2

THH 1/2 1/2 0 0 0 0 0 0

THT 0 0 1/2 1/2 0 0 0 0

TTH 0 0 0 0 1/2 1/2 0 0

TTT 0 0 0 0 0 0 1/2 1/2
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Removing the row and column for HTH, then subtracting from I the matrix to

be inverted is

1/2 −1/2 0 0 0 0 0

0 1 −1/2 0 0 0 0

0 0 1 0 0 −1/2 −1/2

−1/2 −1/2 0 1 0 0 0

0 0 −1/2 0 1 0 0

0 0 0 −1/2 −1/2 1 0

0 0 0 0 0 −1/2 1/2

The inverse is

2.5 1.5 1 0.5 0.5 1 1

0.5 1.5 1 0.5 0.5 1 1

1 1 2 1 1 2 2

1.5 1.5 1 1.5 0.5 1 1

0.5 0.5 1 0.5 1.5 1 1

1 1 1 1 1 2 1

1 1 1 1 1 2 3

From this we conclude that the expected waiting times are

x = HHH HHT HTT THH THT TTH TTT

E x THTH 8 6 10 8 6 8 10

As in the previous example it takes three tosses to get the chain started and at

that point all 8 states are equally likely, so

E THTH = 3 + 1

8
(8 + 6 + 10 + 8 + 6 + 8 + 10) = 3 + 56

8
= 10

Removing the row and column for HHT, then subtracting from I the matrix

to be inverted is

1/2 0 0 0 0 0 0

0 1/2 −1/2 0 0 0 0

0 0 1 0 0 −1/2 −1/2

−1/2 0 0 1 0 0 0

0 −1/2 −1/2 0 1 0 0

0 0 0 −1/2 −1/2 1 0

0 0 0 0 0 −1/2 1/2
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which differs from the previous one only in the second row and second column.

This small change makes a big difference in the inverse:

2 0 0 0 0 0 0

1 1.5 0.5 1 1 0.5 0.5

1 0.5 1.5 1 1 1.5 1.5

1 0 0 1 0 0 0

1 1 1 1 2 1 1

1 0.5 0.5 1 1 1.5 0.5

1 0.5 0.5 1 1 1.5 2.5

From this we conclude that the expected waiting times are

x = HHH HHT HTT THH THT TTH TTT

E x THHT 2 6 8 2 8 6 8

To see that the first and fourth answers are sensible, note that if the initial state

is HHH or THH, we will have HHT the first time we get a T. As in the previous

example it takes three tosses to get the chain started and at that point all 8 states

are equally likely, so

E THHT = 3 + 1

8
(2 + 6 + 8 + 2 + 8 + 6 + 8) = 3 + 40

8
= 8

We could have saved ourselves a lot of work if we had noted that in order to

get HHT we need to first get HH, which has an expected waiting time of 6, and

then wait for a T, which has a waiting time of 2, so E THHT = 6 + 2. To treat HTT

this way, note that we need to first get HT, which has an expected waiting time

of 4. If we get a T, then we are done. If not, we have to wait again for an HT and

the average number of times we have to repeat the process is 2, so E HTT = 4 · 2.

4.7 Exercises

Transition probabilities

1. What values of x , y, z will make these matrices transition probabilities:

(a)
0.5 0.1 x

y 0.2 0.4

0.3 z 0.1

(b)
x 0.1 0.7

0.2 0.3 y

0.6 z 0.2

2. A red urn contains 2 red marbles and 3 blue marbles. A blue urn contains 1

red marble and 4 blue marbles. A marble is selected from an urn, the marble
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is returned to the urn from which it was drawn, and the next marble is drawn

from the urn with the color that was drawn. (a) Write the transition probability

for this chain. (b) Suppose the first marble is drawn from the red urn. What is

the probability that the third one will be drawn from the blue urn?

3. At Llenroc College, 63% of freshmen who are premed switch to a liberal

arts major, while 18% of liberal arts majors switch to being premed. If the

incoming freshman class is 60% premed and 40% liberal arts majors, what

fraction graduate as premed?

4. A person is flipping a coin repeatedly. Let Xn be the outcome of the two

previous coin flips at time n; for example, the state might be HT to indicate that

the last flip was T and the one before that was H. (a) Compute the transition

probability for the chain. (b) Find p2.

5. A taxicab driver moves between the airport A and two hotels B and C according

to the following rules. If he is at the airport, he will go to one of the two hotels

next with equal probability. If at a hotel then he returns to the airport with

probability 3/4 and goes to the other hotel with probability 1/4. (a) Find the

transition matrix for the chain. (b) Suppose the driver begins at the airport at

time 0. Find the probability for each of his three possible locations at time 2 and

the probability that he is at hotel B at time 3.

6. Consider a gambler’s ruin chain with N = 4. That is, if 1 ≤ i ≤ 3,

p(i, i + 1) = 0.4, and p(i, i − 1) = 0.6, but the endpoints are absorbing states:

p(0, 0) = 1 and p(4, 4) = 1. Compute p3(1, 4) and p3(1, 0).

7. An outdoor restaurant in a resort town closes when it rains. From past records

it was found that from May to September, when it rains one day the probability

that it rains the next is 0.4; when it does not rain one day it rains the next with

probability 0.1. (a) Write the transition matrix. (b) If it rained on Thursday

what is the probability that it will rain on Saturday? On Sunday?

8. Market research suggests that in a 5-year period 8% of people with cable

television will get rid of it and 26% of those without it will sign up for it.

Compare the predictions of the Markov chain model with the following data on

the fraction of people with cable TV: 56.4% in 1990, 63.4% in 1995, and 68.0%

in 2000.

9. A sociology professor postulates that in each decade 8% of women in the

workforce leave it and 20% of the women not in it begin to work. Compare the

predictions of his model with the following data on the percentage of women

working: 43.3% in 1970, 51.5% in 1980, 57.5% in 1990, and 59.8% in 2000.
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10. The following transition probability describes the migration patterns of birds

between three habitats:

1 2 3
1 0.75 0.15 0.10

2 0.07 0.85 0.08

3 0.05 0.15 0.80

If there are 1,000 birds in each habitat at the beginning of the first year, how

many do we expect to be in each habitat at the end of the year? At the end of the

second year?

Convergence to equilibrium

11. A car rental company has rental offices at both Kennedy and LaGuardia

airports. Assume that a car rented at one airport must be returned to one of the

two airports. If the car was rented at LaGuardia the probability that it will be

returned there is 0.8; for Kennedy the probability is 0.7. Suppose that we start

with 1/2 of the cars at each airport and that each week all of the cars are rented

once. (a) What is the fraction of cars at LaGuardia Airport at the end of the first

week? (b) At the end of the second? (c) In the long run?

12. The 1990 census showed that 36% of the households in the District of

Columbia were homeowners, while the remainder were renters. During the next

decade 6% of the homeowners became renters and 12% of the renters became

homeowners. (a) What percentage were homeowners in 2000? In 2010? (b) If

these trends continue what will be the long-run fraction of homeowners?

13. Most railroad cars are owned by individual railroad companies. When a car

leaves its home railroad’s trackage, it becomes part of the national pool of cars

and can be used by other railroads. A particular railroad found that each month

15% of its boxcars on its home trackage left to join the national pool and 40%

of its cars in the national pool were returned to its home trackage. A company

begins on January 1 with all its cars on its home trackage. What fraction will

be there on March 1? At the end of the year? In the long run what fraction of a

company’s cars will be on its home trackage.

14. A rapid transit system has just started operating. In the first month of

operation, it was found that 25% of commuters are using the system, while 75%

are traveling by automobile. Suppose that each month 10% of transit users go

back to using their cars, while 30% of automobile users switch to the transit

system. (a) Compute the three-step transition probability p3. (b) What will be

the fractions using rapid transit in the fourth month? (c) In the long run?
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15. A regional health study indicates that from one year to the next, 75% of

smokers will continue to smoke, while 25% will quit. 8% of those who stopped

smoking will resume smoking, while 92% will not. If 70% of the population

were smokers in 1995, what fraction will be smokers in 1998? In 2005? In the

long run?

16. The town of Mythica has a “free bikes for the people program.” You can pick

up bikes at the library (L), the coffee shop (C), or the cooperative grocery store

(G). The director of the program has determined that if a bike is picked up at

the library ends up at the coffee shop with probability 0.2 and at the grocery

store with probability 0.3. A bike from the coffee shop will go to the library with

probability 0.4 and to the grocery store with probability 0.1. A bike from the

grocery store will go to the library or the coffee shop with probability 0.25 each.

On Sunday there are an equal number of bikes at each place. (a) What fraction

of the bikes are at the three locations on Tuesday? (b) On the next Sunday? (c)

In the long run what fraction are at the three locations?

17. Bob eats lunch at the campus food court every week day. He either eats

Chinese food, Quesadilla, or Salad. His transition matrix is

C Q S
C 0.15 0.6 0.25

Q 0.4 0.1 0.5

S 0.1 0.3 0.6

He had Chinese food on Monday. What are the probabilities for his three meal

choices on Friday (4 days later).

Asymptotic behavior: Two-state chains

18. Census results reveal that in the United States 80% of the daughters of

working women work and that 30% of the daughters of nonworking women

work. (a) Write the transition probability for this model. (b) In the long run

what fraction of women will be working?

19. Three of every four trucks on the road are followed by a car, while only one

of every five cars is followed by a truck. What fraction of vehicles on the road

are trucks?

20. In a test paper the questions are arranged so that 3/4’s of the time a true

answer is followed by a true, while 2/3’s of the time a false answer is followed by

a false. You are confronted with a 100-question test paper. Approximately what

fraction of the answers will be true?
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21. When a basketball player makes a shot then he tries a harder shot the next

time and hits (H) with probability 0.4 and misses (M) with probability 0.6. When

he misses he is more conservative the next time and hits (H) with probability 0.7

and misses (M) with probability 0.3. (a) Write the transition probability for the

two-state Markov chain with state space {H, M}. (b) Find the long-run fraction

of time he hits a shot.

22. A regional health study shows that from 1 year to the next 76% of the people

who smoked will continue to smoke and 24% will quite. 8% of those who do not

smoke will start smoking, while 92% of those who do not smoke will continue

to be nonsmokers. In the long run what fraction of people will be smokers?

23. In unprofitable times corporations sometimes suspend dividend payments.

Suppose that after a dividend has been paid the next one will be paid with

probability 0.9, while after a dividend is suspended the next one will be suspended

with probability 0.6. In the long run what is the fraction of dividends that will

be paid?

24. A university computer room has 30 terminals. Each day there is a 3% chance

that a given terminal will break and a 72% chance that a given broken terminal

will be repaired. Assume that the fates of the various terminals are independent.

In the long run what is the distribution of the number of terminals that are

broken.

Asymptotic behavior: Three or more states

25. A plant species has red, pink, or white flowers according to the genotypes

RR, RW, and WW, respectively. If each of these genotypes is crossed with a pink

(RW) plant then the offspring fractions are

RR RW WW
RR 0.5 0.5 0

RW 0.25 0.5 0.25

WW 0 0.5 0.5

What is the long-run fraction of plants of the three types?

26. A certain town never has two sunny days in a row. Each day is classified as

rainy, cloudy, or sunny. If it is sunny one day then it is equally likely to be cloudy

or rainy the next. If it is cloudy or rainy then it remains the same 1/2 of the time,

but if it changes it will go to either of the other possibilities with probability 1/4

each. In the long run what proportion of days in this town are sunny? Cloudy?

Rainy?
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27. A midwestern university has three types of health plans: a health maintenance

organization (HMO), a preferred provider organization (PPO), and a traditional

fee for service plan (FFS). In 2000, the percentages for the three plans were HMO:

30%, PPO: 25%, and FFS: 45%. Experience dictates that people change plans

according to the following transition matrix:

HMO PPO FFS
HMO 0.85 0.1 0.05

PPO 0.2 0.7 0.1

FFS 0.1 0.3 0.6

(a) What will be the percentages for the three plans in 2001? (b) What is the

long-run fraction choosing each of the three plans?

28. A sociologist studying living patterns in a certain region determines that the

pattern of movement between urban (U), suburban (S), and rural areas (R) is

given by the following transition matrix:

U S R
U 0.86 0.08 0.06

S 0.05 0.88 0.07

R 0.03 0.05 0.92

In the long run what fraction of the population will live in the three areas?

29. In a large metropolitan area, commuters either drive alone (A), carpool (C),

or take public transportation (T). A study showed that 80% of those who drive

alone will continue to do so next year, while 15% will switch to carpooling and

5% will use public transportation. 90% of those who carpool will continue,

while 5% will drive alone and 5% will use public transportation. 85% of those

who use public transportation will continue, while 10% will carpool and 5% will

drive alone. Write the transition probability for the model. In the long run what

fraction of commuters will use the three types of transportation?

30. In a particular county voters declare themselves as members of the Republi-

can, Democrat, or Green party. No voters change directly from the Republican

to Green party or vice versa. In a given year 15% of Republicans and 5% of Green

party members will become Democrats, while 5% of Democrats switch to the

Republican party and 10% to the Green party. Write the transition probability

for the model. In the long run what fraction of voters will belong to the three

parties.

31. (a) Three telephone companies A, B, and C compete for customers. Each

year A loses 5% of its customers to B and 20% to C; B loses 15% of its customers



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

157 4.7 Exercises

to A and 20% to C; C loses 5% of its customers to A and 10% to B. (a) Write the

transition matrix for the model. (b) What is the limiting market share for each

of these companies?

32. An auto insurance company classifies its customers in three categories:

poor, satisfactory, and preferred. No one moves from poor to preferred or from

preferred to poor in 1 year. 40% of the customers in the poor category become

satisfactory, 30% of those in the satisfactory category move to preferred, while

10% become poor; 20% of those in the preferred category are downgraded

to satisfactory. (a) Write the transition matrix for the model. (b) What is the

limiting fraction of drivers in each of these categories?

33. A professor has two lightbulbs in his garage. When both are burned out, they

are replaced, and the next day starts with two working lightbulbs. Suppose that

when both are working, one of the two will go out with probability 0.02. (Each

has probability 0.01 and we ignore the possibility of losing two on the same day.)

However, when only one is there, it will burn out with probability 0.05. What is

the long-run fraction of time that there is exactly one lightbulb working?

34. An individual has three umbrellas; some at her office and some at home. If

she is leaving home in the morning (or leaving work at night) and it is raining,

she will take an umbrella, if one is there. Otherwise, she gets wet. Assume that

independent of the past, it rains on each trip with probability 0.2. To formulate

a Markov chain, let Xn be the number of umbrellas at her current location. (a)

Find the transition probability for this Markov chain. (b) Calculate the limiting

fraction of time she gets wet.

35. At the end of a month, a large retail store classifies each of its customer’s

accounts according to current (0), 30–60 days overdue (1), 60–90 days overdue

(2), more than 90 days overdue (3). Their experience indicates that the accounts

move from state to state according to a Markov chain with transition probability

matrix:

0 1 2 3
0 0.9 0.1 0 0

1 0.8 0 0.2 0

2 0.5 0 0 0.5

3 0.1 0 0 0.9

In the long run what fraction of the accounts are in each category?

36. At the beginning of each day, a piece of equipment is inspected to determine

its working condition, which is classified as state 1 = new, 2, 3, or 4 = broken.
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We assume the state is a Markov chain with the following transition matrix:

1 2 3 4
1 0.95 0.05 0 0

2 0 0.9 0.1 0

3 0 0 0.875 0.125

(a) Suppose that a broken machine requires 3 days to fix. To incorporate this

into the Markov chain we add states 5 and 6 and suppose that p(4, 5) = 1,

p(5, 6) = 1, and p(6, 1) = 1. Find the fraction of time that the machine is

working. (b) Suppose now that we have the option of performing preventative

maintenance when the machine is in state 3 and that this maintenance takes

1 day and returns the machine to state 1. This changes the transition probab-

ility to

1 2 3
1 0.95 0.05 0

2 0 0.9 0.1

3 1 0 0

Find the fraction of time the machine is working under this new policy.

37. To make a crude model of a forest we might introduce states 0 = grass, 1 =

bushes, 2 = small trees, 3 = large trees, and write down a transition matrix such

as the following:

0 1 2 3
0 1/2 1/2 0 0

1 1/24 7/8 1/12 0

2 1/36 0 8/9 1/12

3 1/8 0 0 7/8

The idea behind this matrix is that if left undisturbed a grassy area will see bushes

grow, and then small trees, which of course grow into large trees. However,

disturbances such as tree falls or fires can reset the system to state 0. Find the

limiting fraction of land in each of the states.

38. Five white balls and five black balls are distributed in two urns in such a

way that each urn contains five balls. At each step we draw one ball from each

urn and exchange them. Let Xn be the number of white balls in the left urn at

time n. (a) Compute the transition probability for Xn. (b) Find the stationary

distribution and show that it corresponds to picking five balls at random to be

in the left urn.
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Absorbing chains

39. Two competing companies are trying to buy up all the farms in a certain

area to build houses. In each year 10% of farmers sell to company 1, 20% sell to

company 2, and 70% keep farming. Neither company ever sells any of the farms

that they own. Eventually all the farms will be sold. How many will be owned

by company 1?

40. A warehouse has a capacity to hold four items. If the warehouse is neither

full nor empty, the number of items in the warehouse changes whenever a new

item is produced or an item is sold. Suppose that (no matter when we look)

the probability that the next event is “a new item is produced” is 2/3 and that

the new event is a “sale” is 1/3. If there is currently one item in the warehouse,

what is the probability that the warehouse will become full before it becomes

empty.

41. The Macrosoft Company gives each of its employees the title of program-

mer (P) or project manager (M). In any given year 70% of programmers re-

main in that position, 20% are promoted to project manager, and 10% are

fired (state X). 95% of project managers remain in that position, while 5%

are fired. How long on the average does a programmer work before they are

fired?

42. At a nationwide travel agency, newly hired employees are classified as begin-

ners (B). Every 6 months the performance of each agent is reviewed. Past records

indicate that transitions through the ranks to intermediate (I) and qualified (Q)

are according to the following Markov chain, where F indicates workers that

were fired:

B I Q F
B 0.45 0.4 0 0.15

I 0 0.6 0.3 0.1

Q 0 0 1 0

F 0 0 0 1

(a) What fraction are eventually promoted? (b) What is the expected time until

a beginner is fired or becomes qualified?

43. At a manufacturing plant, employees are classified as trainee (R), technician

(T), or supervisor (S). Writing Q for an employee who quits we model their
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progress through the ranks as a Markov chain with transition probability

R T S Q
R 0.2 0.6 0 0.2

T 0 0.55 0.15 0.3

S 0 0 1 0

Q 0 0 0 1

(a) What fraction of recruits eventually make supervisor? (b) What is the ex-

pected time until a trainee quits or becomes supervisor?

44. The two previous problems have the following form:

1 2 A B
1 1 − a − b a 0 b

2 0 1 − c − d c d

A 0 0 1 0

B 0 0 0 1

Show that (a) the probability of being absorbed in A rather than B is ac/(a +
b)(c + d) and (b) the expected time to absorption starting from 1 is 1/(a +
b) + a/(a + b)(c + d).

45. The Markov chain associated with a manufacturing process may be described

as follows: a part to be manufactured will begin the process by entering step 1.

After step 1, 20% of the parts must be reworked, that is, returned to step 1, 10%

of the parts are thrown away, and 70% proceed to step 2. After step 2, 5% of

the parts must be returned to the step 1, 10% to step 2, 5% are scrapped, and

80% emerge to be sold for a profit. (a) Formulate a four-state Markov chain

with states 1, 2, 3, and 4, where 3 = a part that was scrapped and 4 = a part that

was sold for a profit. (b) Compute the probability that a part is scrapped in the

production process.

46. Six children (Dick, Helen, Joni, Mark, Sam, and Tony) play catch. If Dick

has the ball he is equally likely to throw it to Helen, Mark, Sam, and Tony. If

Helen has the ball she is equally likely to throw it to Dick, Joni, Sam, and Tony.

If Sam has the ball he is equally likely to throw it to Dick, Helen, Mark, and

Tony. If either Joni or Tony gets the ball, they keep throwing it to each other. If

Mark gets the ball he runs away with it. (a) Find the transition probability. (b)

Suppose Dick has the ball at the beginning of the game. What is the probability

that Mark will end up with it?
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Continuous Distributions

5.1 Density functions

In many situations random variables can take any value on the real line or in a

subset of the real line, such as the nonnegative numbers or the interval [0, 1]. For

concrete examples, consider the height or weight of a Cornell student chosen at

random, or the time it takes a person to drive from Los Angeles to San Francisco.

A random variable X is said to have a continuous distribution with density
function f if for all a ≤ b, we have

P (a ≤ X ≤ b) =
∫ b

a
f (x) dx (5.1)

Geometrically, P (a ≤ X ≤ b) is the area under the curve f between a and b.

a b

For the purposes of understanding and remembering formulas, it is useful to

think of f (x) as P (X = x) even though the last event has probability zero. To

explain the last remark and to prove P (X = x) = 0, note that taking a = x and

b = x + �x in (5.1) we have

P (x ≤ X ≤ x + �x) =
∫ x+�x

x
f (y) dy ≈ f (x)�x

when �x is small. Letting �x → 0, we see that P (X = x) = 0, but f (x) tells

us how likely it is for X to be near x . That is,

P (x ≤ X ≤ x + �x)

�x
≈ f (x)

161
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In order for P (a ≤ X ≤ b) to be nonnegative for all a and b and for P (−∞ <

X < ∞) = 1, we must have

f (x) ≥ 0 and

∫
f (x) dx = 1 (5.2)

Here, and in what follows, if the limits of integration are not specified, the

integration is over all values of x from −∞ to ∞. Any function f that satisfies

(5.2) is said to be a density function.

We are now going to give three important examples of density functions. For

simplicity, we will give the values of f (x) where it is positive and omit the phrase

“0 otherwise.”

Example 5.1 Uniform distribution. Given a < b we define

f (x) = 1

b − a
a ≤ x ≤ b

The idea here is that we are picking a value “at random” from (a , b). That

is, values outside the interval are impossible, and all those inside have the same

probability (density).

a b

1

b − a

If we set f (x) = c when a < x < b and 0 otherwise then

∫
f (x) dx =

∫ b

a
c dx = c(b − a)

So we have to pick c = 1/(b − a) to make the integral 1. The most important

special case occurs when a = 0 and b = 1. Random numbers generated by a

computer are typically uniformly distributed on (0, 1). Another case that comes

up in applications is a = −1/2 and b = 1/2. If we take a measurement and

round it off to the nearest integer then it is reasonable to assume that the

“roundoff error” is uniformly distributed on (−1/2, 1/2).

Example 5.2 Exponential distribution. Given λ > 0 we define

f (x) = λe−λx x ≥ 0
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To check that this is a density function, we note that∫ ∞

0
λe−λx dx = −e−λx

∣∣∞
0

= 0 − (−1) = 1

Exponentially distributed random variables often come up as waiting times

between events, for example, the arrival times of customers at a bank or ice-

cream shop. Sometimes we will indicate that X has an exponential distribution

with parameter λ by writing X = exponential(λ).

P

Example 5.3 Power laws

f (x) = (ρ − 1)x−ρ x ≥ 1

Here, ρ > 1 is a parameter that governs how fast the probabilities go to 0 at ∞.

To check that this is a density function, we note that∫ ∞

1
(ρ − 1)x−ρ dx = −x−(ρ−1)

∣∣∞
1

= 0 − (−1) = 1
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These distributions are often used in situations where P (X > x) does not go to

0 very fast as x → ∞. For example, the Italian economist Pareto used them to

describe the distribution of family incomes.

A fourth example, and perhaps the most important distribution of all, is the

normal distribution. However, because some treatments might skip this chapter,

we delay its consideration until Section 6.4.

5.1.1 Expected value

Given a discrete random variable X and a function r (x), the expected value of

r (X) is defined by

E r (X) =
∑

x

r (x)P (X = x).

To define the expected value for a continuous random variable, we replace

the probability function by the density function and the sum by an integral:

E r (X) =
∫

r (x) f (x) dx (5.3)

As in Section 1.6, if r (x) = xk , E Xk is called the kth moment of X and the

variance is defined by

var (X) = E (X − E X)2 = E (X2) − (E X)2

Example 5.4 Uniform distribution. Suppose X has density function f (x) = 1/(b − a) for

a ≤ x ≤ b. Then

E X = a + b

2
var (X) = (b − a)2

12
(5.4)

Notice that (a + b)/2 is the midpoint of the interval and hence is the natural

choice for the average value of X . Since var (X + c) = var (X), the variance

depends only on the length of the interval, not its location.

We begin with the case a = 0, b = 1.

E X =
∫ 1

0
x dx = x2

2

∣∣∣∣
1

0

= 1/2

E (X2) =
∫ 1

0
x2 dx = x3

3

∣∣∣∣
1

0

= 1/3

var (X) = E (X2) − (E X)2 = (1/3) − (1/2)2 = 1/12
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To extend to the general case we recall from Section 1.6 that if Y = c + d X ,

then

E (Y ) = c + d E X var (Y ) = d2 var (X) (5.5)

Taking c = a and d = b − a ,

E Y = a + b − a

2
= a + b

2
var (Y ) = (b − a)2

12

Example 5.5 Exponential distribution. Suppose X has density function f (x) = λe−λx for

x ≥ 0.

E X = 1/λ var (X) = 1/λ2 (5.6)

To explain the form of the answers, we note that if Y is exponential(1), then

X = Y/λ is exponential(λ), and then use (5.5) to conclude E X = E Y/λ and

var (X) = var (Y )/λ2. Because the mean is inversely proportional to λ, λ is

sometimes called the rate.

To compute the moments we need the integration by parts formula:

∫ b

a
g (x)h′(x) dx = g (x)h(x)|b

a −
∫ b

a
g ′(x)h(x) dx (5.7)

Integrating by parts with g (x) = x , h′(x) = λe−λx , so g ′(x) = 1 and h(x) =
−e−λx .

E X =
∫ ∞

0
x λe−λx dx

= −xe−λx
∣∣∞

0
+
∫ ∞

0
e−λx dx = 0 + 1/λ

To check the last step note that −xe−λx = 0 when x = 0 and when x → ∞
−xe−λx → 0 since e−λx → 0 much faster than x grows. The evaluation of the

integral follows from the definition of the exponential density, which implies∫∞
0 λe−λx dx = 1

To compute E (X2), we integrate by parts with g (x) = x2 and h′(x) = λe−λx ,

so g ′(x) = 2x and h(x) = −e−λx .

E (X2) =
∫ ∞

0
x2 λe−λx dx = −x2e−λx

∣∣∞
0

+
∫ ∞

0
2xe−λx dx

= 0 + 2

λ

∫ ∞

0
xλe−λx dx = 2

λ2
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by the reasoning in the previous calculation and the result for E X . Combining

the last two results,

var (X) = 2

λ2
−
(

1

λ

)2

= 1

λ2

Example 5.6 Power laws. Let ρ > 1 and f (x) = (ρ − 1)x−ρ for x ≥ 1.

E X =
∫ ∞

1
x(ρ − 1)x−ρ dx = ρ − 1

2 − ρ
x2−ρ

∣∣∣∣
∞

1

= ρ − 1

ρ − 2

if ρ > 2. E X = ∞ if 1 < ρ ≤ 2. The second moment

E (X2) =
∫ ∞

1
x2(ρ − 1)x−ρ dx = ρ − 1

3 − ρ
x3−ρ

∣∣∣∣
∞

1

= ρ − 1

ρ − 3

if ρ > 3. E (X2) = ∞ if 1 < ρ ≤ 2. If ρ > 3,

var (X) = ρ − 1

ρ − 3
−
(

ρ − 1

ρ − 2

)2

= (ρ − 1)

[
(ρ − 2)2 − (ρ − 1)(ρ − 3)

(ρ − 2)2(ρ − 3)

]
= ρ − 1

(ρ − 2)2(ρ − 3)

If, for example, ρ = 4, E X = 3/2, E (X2) = 3, and var (X) = 3 − (3/2)2 =
3/4.

5.2 Distribution functions

Any random variable (discrete, continuous, or in between) has a distribution

function defined by F (x) = P (X ≤ x). If X has a density function f (x), then

F (x) = P (−∞ < X ≤ x) =
∫ x

−∞
f (y) dy

That is, F is an antiderivative of f , and a special one F (x) → 0 as x → −∞
and F (x) → 1 as x → ∞.

One of the reasons for computing the distribution function is explained by

the next formula. If a < b, then {X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} with the

two sets on the right-hand side disjoint, so

P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)

or, rearranging,

P (a < X ≤ b) = P (X ≤ b) − P (X ≤ a) = F (b) − F (a) (5.8)
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The last formula is valid for any random variable. When X has density function

f , it says that

∫ b

a
f (x) dx = F (b) − F (a)

that is, the integral can be evaluated by taking the difference of any antiderivative

at the two endpoints.

To see what distribution functions look like and to explain the use of (5.8),

we return to our examples.

Example 5.7 Uniform distribution. f (x) = 1/(b − a) for a ≤ x ≤ b.

F (x) =




0 x ≤ a

(x − a)/(b − a) a ≤ x ≤ b

1 x ≥ b

To check this, note that P (a < X < b) = 1, so P (X ≤ x) = 1 when x ≥ b

and P (X ≤ x) = 0 when x ≤ a . For a ≤ x ≤ b, we compute

P (X ≤ x) =
∫ x

−∞
f (y) dy =

∫ x

a

1

b − a
dy = x − a

b − a

In the most important special case when a = 0 and b = 1, we have F (x) = x

for 0 ≤ x ≤ 1.

a (a + b)/2 b

1

1/2
Uniform on [a, b]

0 ����������

Example 5.8 Exponential distribution. f (x) = λe−λx for x ≥ 0.

F (x) =
{

0 x ≤ 0

1 − e−λx x ≥ 0
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The first line of the answer is easy to see. Since P (X > 0) = 1, we have

P (X ≤ x) = 0 for x ≤ 0. For x ≥ 0, we compute

P (X ≤ x) =
∫ x

−∞
f (y) dy =

∫ x

0
λe−λy dy

= −e−λy
∣∣x

0
= −e−λx − (−1)

Suppose X has an exponential distribution with parameter λ. If t ≥ 0, then

P (X > t) = 1 − P (X ≤ t) = 1 − F (t) = e−λt , so if s ≥ 0, then

P (T > t + s |T > t) = P (T > t + s )

P (T > t)
= e−λ(t+s )

e−λt
= e−λs = P (T > s )

This is the lack of memory property of the exponential distribution. Given

that you have been waiting t units of time, the probability that you must

wait an additional s units of time is the same as if you had not been waiting

at all.

Example 5.9 Power laws. f (x) = (ρ − 1)x−ρ for x ≥ 1 where ρ > 1.

F (x) =
{

0 x ≤ 1

1 − x−(ρ−1) x ≥ 1

The first line of the answer is easy to see. Since P (X > 1) = 1, we have

P (X ≤ x) = 0 for x ≤ 1. For x ≥ 1, we compute

P (X ≤ x) =
∫ x

−∞
f (y) dy =

∫ x

1
(ρ − 1)y−ρ dy

= −y−(ρ−1)
∣∣x

1
= 1 − x−(ρ−1)

To illustrate the use of (5.8) we note that if ρ = 3, then

P (2 < X ≤ 4) = (1 − 4−2) − (1 − 2−2) = 1

4
− 1

16
= 3

16
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P

Distribution functions are somewhat messier in the discrete case.

Example 5.10 Binomial(3, 1/2). Flip three coins and let X be the number of heads that we

see. The probability function is given by

x 0 1 2 3

P (X = x) 1/8 3/8 3/8 1/8

•

•

•
•

0 1 2 3

1/8

1/2

7/8

Binomial(3, 1/2)

In this case the distribution function is

F (x) =




0 x < 0

1/8 0 ≤ x < 1

1/2 1 ≤ x < 2

7/8 2 ≤ x < 3

1 3 ≤ x

To check this, note, for example, that for 1 ≤ x < 2, P (X ≤ x) = P (X ∈
{0, 1}) = 1/8 + 3/8. The reader should note that F is discontinuous at each

possible value of X and the height of the jump there is P (X = x). The little

black dots in the figure are there to indicate that at 0 the value is 1/8, at 1 it is

1/2, etc.
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Theorem 5.1. All distribution functions have the following properties:

(i) If x1 < x2, then F (x1) ≤ F (x2); that is, F is nondecreasing.

(ii) limx→−∞ F (x) = 0.

(iii) limx→∞ F (x) = 1.

(iv) limy↓x F (y) = F (x); that is, F is continuous from the right.

(v) limy↑x F (y) = P (X < x).

(vi) limy↓x F (y) − limy↑x F (y) = P (X = x); that is, the jump in F at x is equal

to P (X = x).

Proof. To prove (i), we note that {X ≤ x1} ⊂ {X ≤ x2}, so (1.4) implies that

F (x1) = P (X ≤ x1) ≤ P (X ≤ x2) = F (x2).

To prove (ii), we note that {X ≤ x} ↓ ∅ as x ↓ −∞ (here ↓ is short for

“decreases and converges to”), so (1.5) implies that P (X ≤ x) ↓ P (∅) = 0.

The argument for (iii) is similar: {X ≤ x} ↑ � as x ↑ ∞ (here ↑ is short for

“increases and converges to”), so (1.5) implies that P (X ≤ x) ↑ P (�) = 1.

To prove (iv), we note that if y ↓ x , then {X ≤ y} ↓ {X ≤ x}, so (1.5) implies

that P (X ≤ y) ↓ P (X ≤ x).

The argument for (v) is similar. If y ↑ x , then {X ≤ y} ↑ {X < x} since

{X = x} �⊂ {X ≤ y} when y < x . Using (1.5) now, (v) follows.

Subtracting (v) from (iv) gives (vi).

5.2.1 Two useful transformations

The first result can often be used to reduce a general continuous distribution to

the special case of a uniform.

Theorem 5.2. Suppose X has a continuous distribution. Then Y = F (X) is uni-

form on (0, 1).

Proof. Even though F may not be strictly increasing, we can define an inverse

of F by

F −1(y) = min{x : F (x) ≥ y}

x

F −1(x)

y

F −1(y)

���
���� �
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Using this definition of F −1, we have

P (F (X) < y) = P (X < F −1(y)) = F (F −1(y)) = y

the last equality holding since F is continuous.

This is the key to many results in nonparametric statistics. For example,

suppose we have a sample of 10 men’s heights and 10 women’s heights. To test

the hypothesis that men and women have the same height distribution, we can

look at the ranks of the men’s heights in the overall sample of size 20. For

example, these might be 1, 2, 3, 4, 6, 8, 9, 11, 13, and 14. Since applying the

distribution function to the data points does not change the ranks, Theorem 5.2

implies that the distribution of the rank sum does not depend on the underlying

distribution.

Reversing the ideas in the proof of Theorem 5.2, we get a result that is useful

to construct random variables with a specified distribution.

Theorem 5.3. Suppose U has a uniform distribution on (0, 1). Then Y = F −1(U )

has distribution function F .

Proof. The definition of F −1 was chosen so that if 0 < x < 1, then

F −1(y) ≤ x if and only if F (x) ≥ y

and this holds for any distribution function F . Taking y = U , it follows that

P (F −1(U ) ≤ x) = P (U ≤ F (x)) = F (x)

since P (U ≤ u) = u.

For a concrete example, suppose we want to construct an exponential distri-

bution with parameter λ. Setting 1 − e−λx = y and solving gives − ln(1 − y)/

λ = x . So if U is uniform on (0, 1), then − ln(1 − U )/λ has the desired expo-

nential distribution. Of course since 1 − U is uniform on (0, 1), we could also

use − ln(U )/λ. In the case of a power law, setting 1 − x−(ρ−1) = y and solving

gives (1 − y)−1/(ρ−1) = x . So if U is uniform on (0, 1), then U −1/(ρ−1) has the

desired power law distribution.

5.2.2 Medians

Intuitively, the median is the place where F (x) crosses 1/2. The precise definition

we are about to give is complicated by the fact that {x : F (x) = 1/2} may be

empty or contain more than one point.

m is a median for F if P (X ≤ m) ≥ 1/2 and P (X ≥ m) ≥ 1/2.

We begin with our three favorite examples.
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Example 5.11 Uniform distribution. Suppose X has density 1/(b − a) for a ≤ x ≤ b. As

we computed in Example 5.7, the distribution function is (x − a)/(b − a) for

a ≤ x ≤ b. The computation of the median is illustrated in Example 5.7. To

find the median, we set (x − a)/(b − a) = 1/2, that is, 2x − 2a = b − a , or

solving we have x = (b + a)/2. To see that this is the only median, we observe

that if m < (a + b)/2, then P (X ≤ m) < 1/2, while if m > (a + b)/2, then

P (X ≥ m) < 1/2. In this case the median is equal to the mean, but this is a rare

occurrence.

Example 5.12 Exponential distribution. Suppose X has density λe−λx for x ≥ 0. As we com-

puted in Example 5.8, the distribution function is F (x) = 1 − e−λx . To find

the median, we set P (X ≤ m) = 1/2, that is, 1 − e−λm = 1/2, and solve to find

m = (ln 2)/λ, compared to the mean 1/λ.

In the context of radioactive decay, which is commonly modeled with an

exponential distribution, the median is sometimes called the half-life, since half

the particles will have broken down by that time. One reason for interest in the

half-life is that

P (X > k ln 2/λ) = e−k ln 2 = 2−k

or in words, after k half-lives only 1/2k particles remain radioactive.

Example 5.13 Power laws. Suppose X has density (ρ − 1)x−ρ for x ≥ 1, where ρ > 1. As we

computed in Example 5.9, the distribution function is 1 − x−(ρ−1). To find the

median, we set 1 − m−(ρ−1) = 1/2, that is, 1/2 = m−(ρ−1), and solving gives

m = 21/ρ−1. This contrasts to the mean (ρ − 1)/(ρ − 2), which is finite for

ρ > 2. For a concrete example note that when ρ = 4, the mean is 3/2 while the

median is 21/4 = 1.189.

We now turn to unusual cases where there may be no solution to P (X ≤
x) = 1/2 or more than 1.

Example 5.14 Multiple solutions: Binomial(3, 1/2). The distribution function was computed

in Example 5.10.

F (x) =




0 x < 0

1/8 0 ≤ x < 1

1/2 1 ≤ x < 2

7/8 2 ≤ x < 3

1 3 ≤ x
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If 1 ≤ m ≤ 2, then P (X ≤ m) ≥ 1/2 and P (X ≥ m) ≥ 1/2, so the set of me-

dians is [1, 2]. For a picture see Example 5.10.

Example 5.15 No solution: Uniform on 1, 2, 3. Suppose X takes values 1, 2, 3 with probability

1/3 each. The distribution function is

F (x) =




0 x < 1

1/3 1 ≤ x < 2

2/3 2 ≤ x < 3

1 3 ≤ x

To check that 2 is a median, we note that

P (X ≤ 2) = P (X ∈ {1, 2}) = 2/3

P (X ≥ 2) = P (X ∈ {2, 3}) = 2/3

This is the only median since if x < 2, then P (X ≤ x) ≤ P (X < 2) ≤ 1/3 and

if x > 2, then P (X ≥ x) ≤ P (X > 2) = 1/3.

•
•

•

1 2 3

1/3

2/3

Uniform on {1, 2, 3}

1/2

5.3 Functions of random variables

In this section we answer the question, “If X has density function f and Y =
r (X), then what is the density function for Y ?” Before proving a general result,

we consider an example.

Example 5.16 Suppose X has an exponential distribution with parameter λ. What is the

distribution of Y = X2?

To solve this problem we will use the distribution function. First, we recall

from Example 5.8 that P (X ≤ x) = 1 − e−λx , so if y ≥ 0, then

P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √
y) = 1 − e−λy1/2

Differentiating, we see that the density function of Y is given by

fY (y) = d

dy
P (Y ≤ y) = λy−1/2

2
e−λy1/2

for y ≥ 0

and 0 otherwise.
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Generalizing from the last example, we get

Theorem 5.4. Suppose X has density f and P (a < X < b) = 1. Let Y = r (X).

Suppose r : (a , b) → (α, β) is continuous and strictly increasing, and let s :

(α, β) → (a , b) be the inverse of r . Then Y has density

g (y) = f (s (y))s ′(y) for y ∈ (α, β) (5.9)

X

Y

y

r(x)

x s(y)

Before proving this, let’s see how it applies to the last example. There X has

density f (x) = λe−λx for x ≥ 0, so we can take a = 0 and b = ∞. The func-

tion r (x) = x2 is indeed continuous and strictly increasing on (0, ∞). To find

the inverse function, we set y = x2 and solve to get x = y1/2, so s (y) = y1/2.

Differentiating, we have s ′(y) = y−1/2/2, and plugging into the formula, we

have

g (y) = λe−λy1/2 · y−1/2/2 for y > 0

Proof. If y ∈ (α, β), then

P (Y ≤ y) = P (r (X) ≤ y) = P (X ≤ s (y))

since r is increasing and s is its inverse. Writing F (x) for P (X ≤ x) and differ-

entiating with respect to y now gives

g (y) = d

dy
P (Y ≤ y) = d

dy
F (s (y)) = F ′(s (y))s ′(y) = f (s (y))s ′(y)

by the chain rule.
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For our next example, we will consider a special case of Theorem 5.2. If X has

a continuous distribution function F then F (X) is uniform on (0, 1).

Example 5.17 Exponential to uniform. Suppose X has an exponential distribution with

parameter 3. That is, X has density function 3e−3x for x ≥ 0. Find the dis-

tribution function of Y = 1 − e−3X .

Here, r (x) = 1 − e−3x is increasing on (0, ∞), α = r (0) = 0, and β =
r (∞) = 1. To find the inverse function, we set y = 1 − e−3x and solve to get

s (y) = (−1/3) ln(1 − y). Differentiating, we have s ′(y) = −(−1/3)/(1 − y).

So plugging into (3.1), the density function of Y is

f (s (y))s ′(y) = 3e ln(1−y) · 1/3

(1 − y)
= 1

for 0 < y < 1. That is, Y is uniform on (0, 1).

Example 5.18 Cauchy distribution. A drunk standing 1 foot from a wall shines a flashlight at

a random angle � that is uniformly distributed between −π/2 and π/2. Find

the density function of the place X where the light hits the wall.

������

θ

tan(θ)

1

X

The angle � is uniformly distributed on [−π/2, π/2] and has density f (θ) =
1/π . As you can see from the picture, r (θ) = tan(θ). The inverse function

s (x) = tan−1(x) has s ′(x) = 1/(1 + x), so using (5.9) X has density function

1

π
· 1

1 + x2

This is the Cauchy density. Its median is 0 but its mean does not exist since

E |X| =
∫ |x|

π(1 + x2)
dx = ∞

To check the last conclusion note that the integrand is ≈ 1/|x| when |x| is large.

Example 5.19 How not to water your lawn. The head of a lawn sprinkler, which is a metal

rod with a line of small holes in it, revolves back and forth so that drops of

water shoot out at angles between 0 and π/2 radians (that is, between 0 and

90◦). If we use x to denote the distance from the sprinkler and y the height

off the ground then a drop of water released at angle θ with velocity v0 will
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follow a trajectory

x(t) = (v0 cos θ)t y(t) = (v0 sin θ)t − g t2/2

where g is the gravitational constant, 32 ft/s2. The drop lands when y(t0) = 0,

that is, at time t0 = (2v0 sin θ)/g . At this time

x(t0) = 2v2
0

g
sin θ cos θ = v2

0

g
sin(2θ)

If we assume that the sprinkler moves evenly back and forth between 0 and π/2,

it will spend an equal amount of time at each angle. Letting K = v2
0/g , this leads

us to the following question:

If � is uniform on [0, π/2], then what is the distribution of Z = K

sin(2�)?

The first difficulty we must confront when solving this problem is that sin(2x) is

increasing on [0, π/4] and decreasing on [π/4, π/2]. The solution to this prob-

lem is simple, however. The function sin(2x) is symmetric about π/4, so if we

let X to be uniform on [0, π/4], then Z = K sin(2�) and Y = K sin(2X)

have the same distribution. To apply (5.9), we let r (x) = K sin(2x) and

solve y = K sin(2x) to get s (y) = (1/2) sin−1(y/K ). Plugging into (5.9) and

recalling

d

dx
sin−1(x) = 1√

1 − x2

we see that Y has density function

f (s (y))s ′(y) = 4

π
· 1

2
√

1 − y2/K 2
· 1

K
= 2

π
√

K 2 − y2

when 0 < y < K and 0 otherwise. The title of this example comes from the fact

that the density function goes to ∞ as y → K , so the lawn gets very soggy at
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the edge of the sprinkler’s range. This is due to the fact that s ′(K ) = ∞, which

in turn is caused by r ′(π/4) = 0.

5.4 Joint distributions

Two random variables are said to have joint density function f if for any

A ⊂ R2,

P ((X, Y ) ∈ A) =
∫∫

A
f (x , y) dx dy (5.10)

where f (x , y) ≥ 0 and
∫∫

f (x , y) dx dy = 1.

In words, we find the probability that (X, Y ) lies in A by integrating f over

A. As we will see a number of times later, it is useful to think of f (x , y) as

P (X = x , Y = y) even though the last event has probability 0. As in Section

5.1, the precise interpretation of f (x , y) is

P (x ≤ X ≤ x + �x , y ≤ Y ≤ y + �y) =
∫ x+�x

x

∫ y+�y

y
f (u, v) dv du

≈ f (x , y)�x�y

when �x and �y are small, so f (x , y) indicates how likely it is for (X, Y ) to be

near (x , y).

We are now going to give three concrete examples of a joint density function.

As in the case of density functions we will only give the formula for f (x) where

it is positive and omit the phrase “0 otherwise.”

Example 5.20 f (x , y) = e−y 0 < x < y < ∞.

�
�

�
�

�
�

0 0
e−y

The story behind this example is told later in Example 5.28. To check that f

is a density function, we observe that∫ ∞

0

∫ y

0
e−y dx dy =

∫ ∞

0
ye−y dy

and integrating by parts (5.7) with g (y) = y, h′(y) = e−y , so g ′(y) = 1 and

h(y) = −e−y .∫ ∞

0
ye−y dy = −ye−y

∣∣∞
0

+
∫ ∞

0
e−ydy = 0 + (−e−y)

∣∣∞
0

= 1
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To illustrate the use of (5.10) we will now compute P (X ≤ 1), which can be

written as P ((X, Y ) ∈ A), where A = {(x , y) : x ≤ 1}. The formula in (5.10)

tells us that we find P ((X, Y ) ∈ A) by integrating the joint density over A.

However, the joint density is positive only on B = {(x , y) : 0 < x < y < ∞},
so we need to integrate only over A ∩ B = {(x , y) : 0 < x ≤ 1, x < y}, and

doing this we find

P (X ≤ 1) =
∫ 1

0

∫ ∞

x
e−y dy dx

To evaluate the double integral we begin by observing that

∫ ∞

x
e−y dy = (−e−y)

∣∣∞
x

= 0 − (−e−x ) = e−x

so P (X < 1) = ∫ 1
0 e−x dx = (−e−x )

∣∣1
0
= 1 − e−1.

Example 5.21 Uniform distribution on a ball. Pick a point at random from the ball B =
{(x , y): x2 + y2 ≤ 1}. By “at random from B” we mean that a choice outside of

B is impossible and that all the points in B should be equally likely. In terms

of the joint density this means that f (x , y) = 0 when (x , y) �∈ B and there is a

constant c > 0 so that f (x , y) = c when (x , y) ∈ B .

Our f (x , y) ≥ 0. To make the integral of f equal to 1, we have to choose c

appropriately. Now,

∫∫
f (x , y) dx dy =

∫∫
B

c dx dy = c (area of B) = cπ

So we choose c = 1/π to make the integral 1 and define

f (x , y) = 1/π x2 + y2 ≤ 1

The arguments that led to the last conclusion generalize easily to show that if we

pick a point “at random” from a set S with area a , then

f (x , y) = 1

a
(x , y) ∈ S (5.11)

Example 5.22 Buffon’s needle. A floor consists of boards of width 1. If we drop a needle of

length L ≤ 1 on the floor, what is the probability it will touch one of the cracks

(that is, the small spaces between the boards)? To make the question simpler to

answer, we assume that the needle and the cracks have width zero.
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θ

X
(L/2) sin(θ)

Let X be the distance from the center of the needle to the nearest crack and �

be the angle ∈ [0, π) that the top half of the needle makes with the crack. (We

make this choice to have sin � > 0.) We assume that all the ways the needle can

land are equally likely; that is, the joint distribution of (X, �) is

f (x , θ) = 2

π
if x ∈ [0, 1/2), θ ∈ [0, π)

The formula for the joint density follows from (5.11). We are picking a point “at

random” from a set S with area π/2, so the joint density is 2/π on S.

By drawing a picture (like the one given earlier), one sees that the needle

touches the crack if and only if (L/2) sin � ≥ X . (5.10) tells us that the proba-

bility of this event is obtained by integrating the joint density over

A = {(x , θ) ∈ [0, 1/2) × [0, π): x ≤ (L/2) sin θ}

so the probability we seek is

∫∫
A

f (x , θ) dx dθ =
∫ π

0

∫ (L/2) sin θ

0

2

π
dx dθ

= 2

π

∫ π

0

L

2
sin θ dθ = L

π
(− cos θ)

∣∣∣∣
π

0

= 2L/π

Buffon wanted to use this as a method of estimating π . Taking L = 1/2 and

performing the experiment 10,000 times on a computer, we found that 1 over

the fraction of times the needle hit the crack was 3.2310, 3.1368, and 3.0893

in the three times we tried this. We show in Chapter 6 that these numbers are

typical outcomes and that to compute π to four decimal places would require

about 108 (or 100 million) tosses.

Remark. Before leaving the subject of joint densities, we would like to make

one remark that will be useful later. If X and Y have joint density f (x , y), then

P (X = Y ) = 0. To see this, we observe that
∫∫

A f (x , y) dx dy is the volume of

the region over A underneath the graph of f , but this volume is 0 if A is the line

x = y.
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5.4.1 Joint distribution functions

The joint distribution of two random variables is occasionally described by

giving the joint distribution function:

F (x , y) = P (X ≤ x , Y ≤ y)

The next example illustrates this notion but also shows that sometimes the

density function is easier to write down.

Example 5.23 Suppose (X, Y ) is uniformly distributed over the square {(x , y) : 0 < x < 1, 0

< y < 1}. That is,

f (x , y) = 1 0 < x , y < 1

Here, we are picking a point “at random” from a set with area 1, so the formula

follows from (5.11).

By patiently considering the possible cases, we find that

F (x , y) =




0 if x < 0 or y < 0

xy if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

x if 0 ≤ x ≤ 1 and y > 1

y if x > 1 and 0 ≤ y ≤ 1

1 if x > 1 and y > 1

The answer is probably easier to understand in a picture:

0

0

0

0

xy

x

0

y

1

0 1

0

1

The first case should be clear: If x < 0 or y < 0, then {X ≤ x , Y ≤ y} is

impossible since X and Y always lie between 0 and 1. For the second case we

note that when 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

P (X ≤ x , Y ≤ y) =
∫ x

0

∫ y

0
1 dv du = xy

In the third case, since values of Y > 1 are impossible,

P (X ≤ x , Y ≤ y) = P (X ≤ x , Y ≤ 1) = x
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by the formula for the second case. The fourth case is similar to the third, and

the fifth is trivial. X and Y are always smaller than 1, so if x > 1 and y > 1, then

{X ≤ x , Y ≤ y} has probability 1.

We will not use the joint distribution function in what follows. For complete-

ness, however, we want to mention two of its important properties. The first for-

mula is the two-dimensional generalization of P (a < X ≤ b) = F (b) − F (a).

P (a1 < X ≤ b1, a2 < Y ≤ b2)

= F (b1, b2) − F (a1, b2) − F (b1, a2) + F (a1, a2) (5.12)

Proof. The reasoning we use here is much like that employed in studying the

probabilities of unions in Section 1.6. By adding and subtracting the probabilities

on the right, we end up with the desired area counted exactly once.

D

C

B

A

a1

a2

b1 b2

Using A as shorthand for P ((X, Y ) ∈ A), etc., and consulting the picture,

F (b1, b2) = A +B +C +D

−F (a1, b2) = −B −D

−F (b1, a2) = −C −D

F (a1, a2) = +D

Adding the last four equations gives the one in (5.12).

The next formula tells us how to recover the joint density function from

the joint distribution function. To motivate the formula, we recall that in one

dimension F ′ = f since F (x) = ∫ x
∞ f (u) du.

∂2 F

∂x∂y
= f (5.13)

To explain why this formula is true, we note that

F (x , y) =
∫ x

−∞

∫ y

−∞
f (u, v) dv du



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

182 Continuous Distributions

and differentiating twice kills the two integrals. To check that (5.13) works in

Example 5.23, F (x , y) = xy when 0 < x < 1 and 0 < y < 1, so ∂2 F
∂x∂y = 1 there

and it is 0 otherwise.

5.5 Marginal and conditional distributions

In the discrete case the marginal distributions are obtained from the joint

distribution by summing

P (X = x) =
∑

y

P (X = x , Y = y) P (Y = y) =
∑

x

P (X = x , Y = y)

In the continuous case if X and Y have joint density f (x , y), then the marginal
densities of X and Y are given by

f X (x) =
∫

f (x , y) dy fY (y) =
∫

f (x , y) dx (5.14)

The verbal explanation of the first formula is similar to that of the discrete case:

if X = x , then Y will take on some value y, so to find the marginal density

f X (x), we integrate the joint density f (x , y) over all possible values of y.

To illustrate the use of these formulas we look at Example 5.20.

Example 5.24 f (x , y) = e−y 0 ≤ x ≤ y < ∞.

In this case

f X (x) =
∫ ∞

x
e−y dy = (−e−y)

∣∣∞
x

= e−x

since (5.14) tells us to integrate f (x , y) over all values of y but we only have

f > 0 when y > x . Similarly,

fY (y) =
∫ y

0
e−y dx = ye−y

Two random variables with joint density f are independent if and only if

f (x , y) = f X (x) fY (y)

that is, if the joint density is the product of the marginal densities.

We will now consider three examples that parallel the ones used in the discrete

case.

Example 5.25 f (x , y) = e−y 0 ≤ x ≤ y < ∞.

We calculated the joint distribution in the previous example but we can settle

the question without computation. f (3, 2) = 0 while f X (3) and fY (2) are both
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positive, so

f (3, 2) = 0 < f X (3) fY (2)

and X and Y are not independent. In general, if the set of values where f > 0

is not a rectangle then X and Y are not independent.

Example 5.26 f (x , y) = (1 + x + y)/2 0 ≤ x , y ≤ 1.

In this case the set where f > 0 is a rectangle, so the joint distribution passes

the first test and we have to compute the marginal densities

f X (x) =
∫ 1

0
(1 + x + y)/2 dy =

(
1 + x

2

)
y + y2

4

∣∣∣∣
1

0

= x

2
+ 3

4

fY (y) = y

2
+ 3

4
by symmetry

These formulas are valid for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 respectively. To check

independence we have to see if

1 + x + y

2
=
(

x

2
+ 3

4

)
·
(

y

2
+ 3

4

)
(�)

A simple way to see that (�) is wrong is simply to note that when x = y = 0, it

says that 1/2 = 9/16.

Example 5.27
f (x , y) = y−3/2 cos x

(e − 1)
e sin x−(2/

√
y) 0 < x < π/2, y > 0

In this case, the integration does not look like much fun, so we adopt another

approach.

Theorem 5.5. If the joint density function f (x , y) can be written as g (x)h(y),

then there is a constant c so that f X (x) = cg (x) and fY (y) = h(y)/c . It follows

that f (x , y) = f X (x) fY (y) and hence X and Y are independent.

In words, if we can write f (x , y) as a product of a function of x and a function

of y then these functions must be constant multiples of the marginal densities.

Theorem 5.5 takes care of our example since

f (x , y) =
(

cos x e sin x

e − 1

)
(y−3/2e−2/

√
y)
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Proof. We begin by observing

f X (x) =
∫

f (x , y) dy = g (x)

∫
h(y) dy

fY (y) =
∫

f (x , y) dx = h(y)

∫
g (x) dx

1 =
∫ ∫

f (x , y) dx dy =
∫

g (x) dx

∫
h(y) dy

So if we let c = ∫
h(y) dy, then the last equation implies

∫
g (x) dx = 1/c and

the first two give us f X (x) = cg (x) and fY (y) = h(y)/c .

Conditional distributions

Introducing f X (x|Y = y) as notation for the conditional density of X given
Y = y (which we think of as P (X = x|Y = y)), we have

f X (x|Y = y) = f (x , y)

fY (y)
= f (x , y)∫

f (u, y) du
(5.15)

In words, we fix y, consider the joint density function as a function of x , and

then divide by the integral to make it a probability density. To see how formula

(5.15) works, we return to Example 5.15.

Example 5.28 f (x , y) = e−y 0 ≤ x ≤ y < ∞
In this case we have computed fY (y) = ye−y (in Example 5.24), so

f X (x|Y = y) = e−y

ye−y
= 1

y
for 0 < x < y

That is, the conditional distribution is uniform on (0, y). This should not be

surprising since x → f (x , y) is constant for 0 < x < y and 0 otherwise.

To compute the other conditional distribution we recall f X (x) = e−x , so

fY (y|X = x) = e−y

e−x
= e−(y−x) for y > x

That is, given X = x , Y − x is exponential with parameter 1. From this it follows

that if Z1, Z2 are independent exponential(1), then X = Z1, Y = Z1 + Z2 has

the joint distribution given previously. If we condition on X = x , then Z1 = x

and Y = x + Z2.

The multiplication rule says

P (X = x , Y = y) = P (X = x)P (Y = y|X = x)
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Substituting in the analogous continuous quantities, we have

f (x , y) = f X (x) fY (y|X = x) (5.16)

The next example demonstrates the use of (5.16) to compute a joint distribution.

Example 5.29 Suppose we pick a point uniformly distributed on (0, 1), call it X , and then pick

a point Y uniformly distributed on (0, X).

To find the joint density of (X, Y ) we note that

f X (x) = 1 for 0 < x < 1

fY (y|X = x) = 1/x for 0 < y < x

So using (5.16), we have

f (x , y) = f X (x) fY (y|X = x) = 1/x for 0 < y < x < 1

To complete the picture we compute

fY (y) =
∫

f (x , y) dx =
∫ 1

y

1

x
dx = − ln y

f X (x|Y = y) = f (x , y)

fY (y)
= 1/x

− ln y
for y < x < 1

Again the conditional density of X given Y = y is obtained by fixing y, regarding

the joint density function as a function of x , and then normalizing so that the

integral is 1. The reader should note that although X is uniform on (0, 1) and

Y is uniform on (0, X), X is not uniform on (Y, 1) but has a greater probability

of being near Y .

5.6 Exercises

Density functions
1. Suppose X has density function f (x) = c(3 − |x|) when −3 < x < 3. What

value of c makes this a density function?

2. Consider f (x) = c(1 − x2) for −1 < x < 1 and 0 otherwise. What value of

c should we take to make f a density function?

3. Suppose X has density function 6x(1 − x) for 0 < x < 1 and 0 otherwise.

Find (a) E X , (b) E (X2), and (c) var (X).
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4. Suppose X has density function x2/9 for 0 < x < 3 and 0 otherwise. Find (a)

E X , (b) E (X2), and (c) var (X).

5. Suppose X has density function x−2/3/21 for 1 < x < 8 and 0 otherwise.

Find (a) E X , (b) E (X2), and (c) var (X).

Distribution functions

6. F (x) = 3x2 − 2x3 for 0 < x < 1 (with F (x) = 0 if x ≤ 0 and F (x) = 1 if

x ≥ 1) defines a distribution function. Find the corresponding density function.

7. Let F (x) = e−1/x for x > 0 and F (x) = 0 for x ≤ 0. Is F a distribution

function? If so, find its density function.

8. Let F (x) = 3x − 2x2 for 0 ≤ x ≤ 1, F (x) = 0 for x ≤ 0, and F (x) = 1 for

x ≥ 1. Is F a distribution function? If so, find its density function.

9. Suppose X has density function f (x) = x/2 for 0 < x < 2 and 0 otherwise.

Find (a) the distribution function, (b) P (X < 1), (c) P (X > 3/2), and (d) the

median.

10. Suppose X has density function f (x) = 4x3 for 0 < x < 1 and 0 otherwise.

Find (a) the distribution function, (b) P (X < 1/2), (c) P (1/3 < X < 2/3),

and (d) the median.

11. Suppose X has density function x−1/2/2 for 0 < x < 1 and 0 otherwise. Find

(a) the distribution function, (b) P (X > 3/4), (c) P (1/9 < X < 1/4), and (d)

the median.

12. Suppose P (X = x) = x/21 for x = 1, 2, 3, 4, 5, 6. Find all the medians of

this distribution.

13. Suppose X has a Poisson distribution with λ = ln 2. Find all the medians of

X .

14. Suppose X has a geometric distribution with success probability 1/4; that is,

P (X = k) = (3/4)k−1(1/4). Find all the medians of X .

15. Suppose X has density function 3x−4 for x ≥ 1. (a) Find a function g so

that g (X) is uniform on (0, 1). (b) Find a function h so that if U is uniform on

(0, 1), h(U ) has density function 3x−4 for x ≥ 1.

16. Suppose X1, . . . , Xn are independent and have distribution function

F (x). Find the distribution functions of (a) Y = max{X1, . . . , Xn} and

(b) Z = min{X1, . . . , Xn}
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17. Suppose X1, . . . , Xn are independent exponential(λ). Show that

min{X1, . . . , Xn} = exponential(nλ)

Functions of random variables

18. Suppose X has density function f (x) for a ≤ x ≤ b and Y = c X + d , where

c > 0. Find the density function of Y .

19. Show that if X = exponential(1), then Y = X/λ is exponential(λ).

20. Suppose X is uniform on (0, 1). Find the density function of Y = Xn.

21. Suppose X has density x−2 for x ≥ 1 and Y = X−2. Find the density function

of Y .

22. Suppose X has an exponential distribution with parameter λ and Y = X1/α .

Find the density function of Y . This is the Weibull distribution.

23. Suppose X has an exponential distribution with parameter 1 and Y =
ln(X). Find the distribution function of X . This is the double exponential

distribution.

24. Suppose X is uniform on (0, π/2) and Y = sin X . Find the density function

of Y . The answer is called the arcsine law because the distribution function

contains the arcsine function.

25. Suppose X has density function f (x) for −1 ≤ x ≤ 1 and 0 otherwise. Find

the density function of (a) Y = |X| and (b) Z = X2.

26. Suppose X has density function x/2 for 0 < x < 2 and 0 otherwise. Find

the density function of Y = X(2 − X) by computing P (Y ≥ y) and then dif-

ferentiating.

Joint distributions

27. Suppose X and Y have joint density f (x , y) = c(x + y) for 0 < x , y < 1.

(a) What is c ? (b) What is P (X < 1/2)?

28. Suppose X and Y have joint density f (x , y) = 6xy2 for 0 < x , y < 1. What

is P (X + Y < 1)?
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29. Suppose X and Y have joint density f (x , y) = 2 for 0 < y < x < 1. Find

P (X − Y > z).

30. Suppose X and Y have joint density f (x , y) = 1 for 0 < x , y < 1. Find

P (XY ≤ z).

31. Two people agree to meet for a drink after work but they are impatient and

each will wait only 15 minutes for the other person to show up. Suppose that

they each arrive at independent random times uniformly distributed between

5 p.m. and 6 p.m. What is the probability they will meet?

32. Suppose X and Y have joint density f (x , y) = e−(x+y) for x , y > 0. Find

the distribution function.

33. Suppose X is uniform on (0, 1) and Y = X . Find the joint distribution

function of X and Y .

34. A pair of random variables X and Y takes values between 0 and 1

and has P (X ≤ x , Y ≤ y) = x3 y2 when 0 ≤ x , y ≤ 1. Find the joint density

function.

35. Given the joint distribution function F X,Y (x , y) = P (X ≤ x , Y ≤ y), how

do you recover the marginal distribution function F X (x) = P (X ≤ x)?

36. Suppose X and Y have joint density f (x , y). Are X and Y independent if

(a) f (x , y) = xe−x(1+y) for x , y ≥ 0?

(b) f (x , y) = 6xy2 when x , y ≥ 0 and x + y ≤ 1?

(c) f (x , y) = 2xy + x when 0 < x < 1 and 0 < y < 1?

(d) f (x , y) = (x + y)2 − (x − y)2 when 0 < x < 1 and 0 < y < 1?

In each case, f (x , y) = 0 otherwise.

37. Suppose a point (X, Y ) is chosen at random from the disk x2 + y2 ≤ 1.

Find (a) the marginal density of X and (b) the conditional density of Y given

X = x .

38. Suppose X and Y have joint density f (x , y) = x + 2y3 when 0 < x < 1

and 0 < y < 1. (a) Find the marginal densities of X and Y . (b) Are X and Y

independent?
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39. Suppose X and Y have joint density f (x , y) = 6y when x > 0, y > 0, and

x + y < 1. (a) Find the marginal densities of X and Y and (b) the conditional

density of X given Y = y.

40. Suppose X and Y have joint density f (x , y) = 10x2 y when 0 < y < x < 1.

(a) Find the marginal densities of X and Y and (b) the conditional density of Y

given X = x .
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Limit Theorems

6.1 Sums of independent random variables

If X and Y are independent then

P (X + Y = z) =
∑

x

P (X = x , Y = z − x)

=
∑

x

P (X = x)P (Y = z − x) (6.1)

To see the first equality, note that if the sum is z then X must take on some value

x and Y must be z − x . The first equality is valid for any random variables. The

second holds since we have supposed X and Y are independent.

Example 6.1 Suppose X and Y are independent and have the following distribution:

k 1 2 3 4

Probability 0.1 0.2 0.3 0.4

Find the distribution of X + Y .

To compute a single probability is straightforward:

P (X + Y = 4) =
3∑

k=1

P (X = k)P (Y = 3 − k)

= 0.1(0.3) + 0.2(0.2) + 0.3(0.1) = 0.10

To compute the entire distribution, we begin by writing out the joint distri-

bution of X and Y :

X Y = 1 2 3 4

1 0.01 0.02 0.03 0.04

2 0.02 0.04 0.06 0.08

3 0.03 0.06 0.09 0.12

4 0.04 0.08 0.12 0.16

190
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The numbers with a given sum are diagonals in the table, so

P (X + Y = 2) = 0.01

P (X + Y = 3) = 0.02 + 0.02 = 0.04

P (X + Y = 4) = 0.03 + 0.04 + 0.03 = 0.10

P (X + Y = 5) = 0.04 + 0.06 + 0.06 + 0.04 = 0.20

P (X + Y = 6) = 0.08 + 0.09 + 0.08 = 0.25

P (X + Y = 7) = 0.12 + 0.12 = 0.24

P (X + Y = 8) = 0.16

Example 6.2 If X = binomial(n, p) and Y = binomial(m, p) are independent then X + Y =
binomial(n + m, p).

Proof by thinking. The easiest way to see the conclusion is to note that if X is

the number of successes in the first n trials and Y is the number of successes in

the next m trials then X + Y is the number of successes in n + m trials.

Proof by computation. Using (6.1), noting that P (X = j ) = 0 when j < 0

and P (Y = k − j ) = 0 when j > k, and plugging in the definition of the bino-

mial distribution we get

P (X + Y = k) =
k∑

j=0

P (X = j )P (Y = k − j )

=
k∑

j=0

Cn, j p j (1 − p)n− j Cm,k− j pk− j (1 − p)m−(k− j )

= pk(1 − p)n+m−k
k∑

j=0

Cn, j Cm,k− j

= pk(1 − p)n+m−kCn+m,k

To see the last equality, note that we can pick k students out of a class of n

boys and m girls in Cn+m,k ways, but this can also be done by first deciding on

the number j of boys to be chosen and then picking j of the n boys (which can

be done in Cn, j ways) and k − j of the m girls (which can be done in Cm,k− j

ways). The multiplication rule implies that for fixed j , the number of ways the
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j boys and k − j girls can be selected is Cn, j Cm,k− j , so summing from j = 0 to

k gives

k∑
j=0

Cn, j Cm,k− j = Cn+m,k

Since Poissons arise as the limit of binomials, we should guess that

Example 6.3 If X = Poisson(λ) and Y = Poisson(µ) are independent then X + Y =
Poisson(λ + µ).

Proof by thinking. Let [x] be the largest integer ≤ x , that is, x rounded

down to the next integer. By Example 6.2 if X = Binomial([nλ], 1/n) and Y =
Binomial([nµ], 1/n) are independent, X + Y = Binomial([nλ] + [nµ], 1/n).

Letting n → ∞ and using the Poisson approximation to the binomial now gives

the result.

Proof by computation. Again we use (6.1); note that P (X = j ) = 0 when

j < 0 and P (Y = k − j ) = 0 when j > k, and plug in the definition of the

Poisson distribution to get

P (X + Y = k) =
k∑

j=0

P (X = j )P (Y = k − j )

=
k∑

j=0

e−λ λ j

j !
e−µ µk− j

(k − j )!

= e−(λ+µ) 1

k!

k∑
j=0

Ck, j λ
j µk− j

= e−(λ+µ) (λ + µ)k

k!

where the last equality follows from the binomial theorem (2.7).

Example 6.4 Suppose X1, . . . , Xn are independent and have a geometric distribution with

parameter p and let T = X1 + · · · + Xn be the amount of time we have to

wait for n successes when each trial is independent and results in success with

probability p. Then

P (T = m) = Cm−1,n−1 pn(1 − p)m−n

To see this consider the following possibility with m = 10 and n = 3:

FSFFFFSFFS
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We know that there must be m − n = 10 − 3 = 7 failures and the last trial

must be a success. In the first m − 1 = 9 trials, there must be n − 1 = 2

successes. Once we choose their locations, which can be done in Cm−1,n−1

ways, the outcome is determined. Each of these outcomes has probability

pn(1 − p)m−n.

6.1.1 Continuous random variables

Reasoning as in (6.1) the density function for the sum of two independent

random variables with continuous distributions satisfies

f X+Y (z) =
∫

f X (x) fY (z − x) dx (6.2)

Example 6.5 Suppose X and Y are independent and uniform on (0, 1), then

f X+Y (z) =
{

z 0 ≤ z ≤ 1

2 − z 1 ≤ z ≤ 2

Since the densities of X and Y are symmetric about 1/2, the density of the sum

is symmetric about 1, and it suffices to prove the first half of the formula. Since

f X (x) and fY (y) are 1 on [0, 1], if 0 ≤ z ≤ 1,

f X+Y (z) =
∫ z

0
1 dx = z

To generalize let fk be the density function of the sum of k independent

uniforms. By (6.2)

fk(z) =
∫ z

z−1
fk−1(y) dy

When k = 3 and 0 ≤ z ≤ 1,

f3(z) =
∫ z

0
y dy = z2

2

When 2 ≤ z ≤ 3, changing variables x = 2 − y,

f3(z) =
∫ 2

z−1
(2 − y) dy =

∫ 3−z

0
x dx = (3 − z)2

2

Since we expect the density to be symmetric about 3/2, it is comforting to note

that f3(z) = f3(3 − z) for 2 ≤ z ≤ 3.
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The formula for middle piece 1 ≤ z ≤ 2 takes more work

f3(z) =
∫ 1

z−1
y dy +

∫ z

1
(2 − y) dy

= 1

2
− (z − 1)2

2
+
(

2z − z2

2

)
−
(

2 − 1

2

)

Using −(z − 1)2 = −z2 + 2z − 1 with a little algebra gives

f3(z) = −2z2 + 6z − 3

2
= z(3 − z) − 3

2

This answer has the expected symmetry and is = 1/2 = z2/2 when z = 1.

It is remarkable that there is a general formula:

fk(x) = 1

(k − 1)!

k−1∑
j=0

(−1) j Ck, j (x − j )k−1
+ (6.3)

where y+ = max{y, 0} is the positive part of y. For a proof see Feller’s An

Introduction to Probability Theory and Its Applications, Vol. 2, pp. 27–28. To

check the formula, note that when k = 3 and 0 ≤ x ≤ 1, only the j = 0 term is

not zero, so

f3(x) = 1

2
x2

When 1 ≤ x ≤ 2, the j = 1 term is also nonzero and we get

f3(x) = 1

2
[x2 − 3(x − 1)2] = −2x2 + 6x − 3

2

When 2 ≤ x ≤ 3, we also have the j = 2 term, so

f3(x) = 1

2
[−2x2 + 6x − 3 + 3(x − 2)2] = 1

2
[x2 − 6x + 9] = (3 − x)2

2

When k = 4, (6.3) gives

f4(x) =
{

x3/6 0 ≤ x ≤ 1
1
6 [x3 − 3(x − 1)3] 1 ≤ x ≤ 2

and rest of the density can be computed from f4(x) = f4(4 − x) for 2 ≤ x ≤ 4.

The next figure graphs f2, f3, and f4.
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Example 6.6 X is said to have a gamma distribution with parameters n and λ or gamma(n, λ)

for short, if

f X (x) = λnxn−1

(n − 1)!
e−x for x ≥ 0

When n = 1, this reduces to the exponential(λ).

Theorem 6.1. If X = gamma(n, λ) and Y = exponential(λ) then X + Y =
gamma(n, λ).

Proof. Using (6.2) we have

f X+Y (z) =
∫ z

0

λnxn−1

(n − 1)!
e−x · λe−(z−x) dx

= λn+1e−z

∫ z

0

xn−1

(n − 1)!
dx = λn+1zn

n!
e−z

It follows from Theorem 6.1 that

(i) If Y1, . . . , Yn are independent exponential(λ), then the sum Y1 + · · · + Yn

is gamma(n, λ).
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(ii) If X = gamma(m, λ) and X = gamma(n, λ) are independent then X +
Y = gamma(m + n, λ).

The derivation of (ii) from (i) is the same as the “proof by thinking” for the

binomial distribution.

6.2 Mean and variance of sums

In this section we show that the expected value of a sum of random variables is

the sum of the expected values. We begin with the case of two random variables.

Theorem 6.2. For any random variables X and Y ,

E (X + Y ) = E X + E Y (6.4)

Proof. We have not derived a formula for the expected value of a function of

two random variables, but the recipe is the same: sum the function times the

probability over all possible pairs:

E (X + Y ) =
∑
x , y

(x + y) P (X = x , Y = y)

=
∑
x , y

x P (X = x , Y = y) +
∑
x , y

y P (X = x , Y = y)

By the definition of the marginal distribution,
∑

y P (X = x , Y = y) = P (X =
x) and

∑
x P (X = x , Y = y) = P (Y = y). This converts the above into

=
∑

x

x P (X = x) +
∑

y

y P (Y = y) = E X + E Y

which is the desired result.

From (6.4) and induction it follows that

Theorem 6.3. For any random variables X1, . . . , Xn,

E (X1 + · · · + Xn) = E X1 + · · · + E Xn (6.5)

Proof. (6.4) gives the result for n = 2. Applying (6.4) to X = X1 + · · · + Xn

and Y = Xn+1, we see that if the result is true for n, then

E (X1 + · · · + Xn+1) = E (X1 + · · · + Xn) + E Xn+1

= E X1 + · · · + E Xn + E Xn+1 (6.6)

and the result holds for n + 1.
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Formula (6.5) is very useful in doing computations.

Example 6.7 Pick two cards out of a deck of 52 and let X be the number of spades. Calculate

the expected value of X .

To do this directly from the definition we have to calculate the distribution

P (X = 2) = C13,2

C52,2
= 13 · 12

52 · 51

P (X = 1) = C13,1C39,1

C52,2
= 2 · 13 · 39

52 · 51

From this it follows that

E X = 2 · 13 · 12

52 · 51
+ 2 · 13 · 39

52 · 51
= 2 · 13 · 51

52 · 51
= 1

2

To see this more easily, let Xi = 1 if the i th card drawn was a spade and 0

otherwise. X = X1 + X2, so it follows from (6.5) that

E X = E X1 + E X2 = 1/4 + 1/4 = 1/2

since P (Xi = 1) = 1/4 and P (Xi = 0) = 3/4.

In a similar way we can conclude that if we draw 13 cards out of a deck of

52, the expected number of spades is 13/4 = 3.25. Doing this directly from

the distribution would be extremely tedious. In our next example it would be

difficult to calculate the distribution, but it is easy to compute the expected

value.

Example 6.8 Balls in boxes. Suppose we put n balls randomly into m boxes. What is the

expected number of empty boxes?

Let Xi = 1 if the i th box is empty. The total number of empty boxes is given

by N = X1 + · · · + Xm, so it follows from (6.5) that

E N = E X1 + · · · + E Xm = mE X1

The probability that box 1 is empty is (1 − 1/m)n, so the expected number of

empty boxes is m(1 − 1/m)n.

For a concrete example, suppose m = 100 and n = 500. In this case,

(1 − 1/100)500 ≈ e−5 = 0.00673

so the expected number of empty boxes is 2/3 (approx.). We will return to this

computation in Example 6.17.

The next goal of this section is to show that if X1, . . . , Xn are independent

then

var (X1 + · · · + Xn) = var (X1) + · · · + var (Xn).
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The first step is to prove

Theorem 6.4. If X and Y are independent then

E XY = E X · E Y (6.7)

Proof. Since X and Y are independent, P (X = x , Y = y) = P (X = x)P (Y =
y) and

E XY =
∑
x , y

xy P (X = x)P (Y = y) =
∑

y

y P (Y = y)
∑

x

x P (X = x)

=
∑

y

y P (Y = y)E X = E X · E Y

which proves the desired result.

(6.4) says that E (X + Y ) = E X + E Y holds for ANY random variables. The

next example shows that E XY = E X · E Y does not hold in general.

Example 6.9 Suppose X and Y have joint distribution given by

X Y = 1 0

1 0 0.3

0 0.5 0.2

We have arranged things so that XY is always 0, so E XY = 0. On the other

hand, E X = P (X = 1) = 0.3 and E Y = P (Y = 1) = 0.5, so

E XY = 0 < 0.15 = E X E Y

Our next example shows that we may have E XY = E X E Y without X and

Y being independent.

Example 6.10 Suppose X and Y have joint distribution given by

X Y = −1 0 1

1 0 0.25 0 0.25

0 0.25 0.25 0.25 0.75

0.25 0.5 0.25

Again we have arranged things so that XY is always 0, so E XY = 0. The

symmetry of the marginal distribution for Y (or simple arithmetic) shows

E Y = 0, so we have E XY = 0 = E X E Y . X and Y are not independent since

P (X = 1, Y = −1) = 0 < P (X = 1)P (Y = −1).
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Our next topic is the variance of sums. To state our first result we need a

definition. The covariance of X and Y is

cov (X, Y ) = E {(X − E X)(Y − E Y )}
Now cov (X, X) = E {(X − E X)2} = var (X), so repeating the proof of (1.11)

we can rewrite the definition of the covariance in a form that is more convenient

for computations:

cov (X, Y ) = E {XY − Y E X − X E Y + E X E Y } = E XY − E X E Y (6.8)

Remembering (6.7), we see that if X and Y are independent, cov (X, Y ) = 0.

Example 6.11 Consider the calculus grade joint distribution (Example 3.27)

X Y = 4 3 2

5 0.10 0.05 0 0.15

4 0.15 0.15 0 0.30

3 0.10 0.15 0.10 0.35

2 0 0.05 0.10 0.15

1 0 0 0.05 0.05

0.35 0.40 0.25

E X = 5(0.15) + 4(0.30) + 3(0.35) + 2(0.15) + 1(0.05) = 3.35 and E Y =
4(0.35) + 3(0.40) + 2(0.25) = 3.10. Patiently adding up all the possibilities we

see E (XY ) = 10.9, so

cov (X, Y ) = 10.9 − (3.35)(3.10) = 0.515 > 0

Positive covariance means that when one variable is above average then the other

has a greater tendency to be above average. For example, we expect a person’s

height and weight to have this relationship. In the opposite direction is

Example 6.12 The urn joint distribution (Example 3.26)

X Y = 0 1 2

0 6/105 20/105 10/105 36/105

1 24/105 30/105 0 54/104

2 15/105 0 0 15/105

45/105 50/105 10/105

E X = (54/105) · 1 + (15/105) · 2 = 84/105 = 4/5

E Y = (50/105) · 1 + (10/105) · 2 = 70/105 = 2/3

E XY = (30/105) · 1 = 2/7
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so we have

cov (X, Y ) = 2

7
− 4

5
· 2

3
= −0.2476

Negative covariance means that when one variable is above average then the

other has a greater tendency to be below average. For example, we expect for

a high school student, the number of hours of TV watched and their grades

to have this relationship. In the urn example, negative covariance is clear since

there is a triangle of 0’s in the joint distribution that comes from the restriction

X + Y ≤ 2.

The next result explains our interest in the covariance

var (X + Y ) = var (X) + 2 cov (X, Y ) + var (Y ) (6.9)

Proof. Using E (X + Y ) = E X + E Y and working out the square

E (X + Y − E (X + Y ))2 = E ((X − E X) + (Y − E Y ))2

= E (X − E X)2 + 2E ((X − E X)(Y − E Y ))

+ E (Y − E Y )2

= var (X) + 2 cov (X, Y ) + var (Y )

which proves the desired formula.

Reasoning similar to the proof of (6.9) with more algebra leads to

var

(
n∑

i=1

Xi

)
=

n∑
i=1

var (Xi ) + 2
∑

1≤i< j≤n

cov (Xi , X j ) (6.10)

The most important special case of (6.10) is

Theorem 6.5. If X1, . . . , Xn are independent then

var (X1 + · · · + Xn) = var (X1) + · · · + var (Xn). (6.11)

Proof. Our assumption implies that the second sum in (6.10) vanishes.

(6.11) is useful in computing variances. For example, it reduces the compu-

tation of the variance of the binomial to the following trivial case.

Example 6.13 Bernoulli distribution. X = 1 with probability p and 0 with probability 1 −
p. E X = 1 · p + 0 · (1 − p) = p and E (X2) = 12 · p + 02 · (1 − p) = p, so

var (X) = p − p2 = p(1 − p).
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Example 6.14 Binomial distribution. Consider a sequence of independent trials in which suc-

cess has probability p. Let Xi = 1 if the i th trial results in a success and 0 other-

wise. The total number of successes, Sn = X1 + · · · + Xn, has a binomial(n, p)

distribution. Compute the variance of X .

(6.11) and Example 6.13 imply

var (Sn) = n var (X1) = np(1 − p).

To see what this says consider n = 400 and p = 1/2; that is, Sn is the num-

ber of heads when we flip 400 coins. (6.5) implies that E S400 = 400(1/2), so

the expected number of heads is 200. var (S400) = 400(1/2)(1/2) = 100, so the

standard deviation σ (S400) is 10.

Informally, in 400 tosses we expect 200 ± 10 heads, where ± can be read as

“give or take.” In Section 6.5, we make this more precise: the number of heads

will be in [190, 210] 68% of the time and in [180, 220] 95% of the time.

Example 6.15 Hypergeometric distribution. Suppose we have an urn with n balls, m of which

are red. Let R be the number of red balls we get when we draw from the urn

k times without replacement. If we let Xi = 1 if the i th draw is red, and 0

otherwise, then R = X1 + · · · + Xk . From this we see that

E R = k E X1 = kp where p = m/n.

To compute the variance we will use (6.10). Since the Xi are Bernoulli random

variables, var (Xi ) = p(1 − p). As for the covariance,

E (X1 X2) = P (X1 = 1, X2 = 1) = m

n
· m − 1

n − 1

so we have

cov (X1, X2) = m

n
· m − 1

n − 1
− m

n
· m − 1

n − 1

= m

n
·
(

(m − 1)n − m(n − 1)

n(n − 1)

)
= −m

n
· n − m

n(n − 1)

and it follows from (6.10) that

var (R) = kp(1 − p) − k(k − 1)p(1 − p)
1

n − 1
= kp(1 − p)

[
1 − k − 1

n − 1

]

It is comforting to note that var (R) = 0 when k = n, that is, when we draw all

of the balls out of the urn. If k = xn, then var (R) ≈ nx(1 − x) · p(1 − p), so

the maximum occurs when k ≈ n/2.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

202 Limit Theorems

What have we learned?

The most important facts from this section are

(6.5) For any random variables X1, . . . , Xn,

E (X1 + · · · + Xn) = E X1 + · · · + E Xn

(6.11) If X1, . . . , Xn are independent then

var (X1 + · · · + Xn) = var (X1) + · · · + var (Xn)

These two facts imply that if Sn is a sum of n independent random variables

with mean µ and variance σ 2, then

E Sn = nµ var (Sn) = nσ 2

and hence the size of the typical deviation from the mean is σ
√

n.

To illustrate the use of these results, we consider two more examples.

Example 6.16 Rolling dice. Suppose we roll two dice 100 times. What is the mean, variance,

and standard deviation of the sum of the points?

This is equivalent to rolling one die 200 times. Let S200 be the sum. (6.5)

implies that E S200 = 200(7/2) = 700, while (6.11) and Example 1.26 imply

var (S200) = 200(105/36) = 583.33, so σ (S200) = 24.15. Informally, the sum

will be 700 give or take 24.

In our final example the variables being summed do not all have the same

distribution.

Example 6.17 Coupon collector’s problem. Suppose that we record the birthday of every

person we meet. Let N be the number of people we have to meet until we have

seen someone with every birthday. Ignoring February 29, find the mean and

variance of N.

Let Tk be the time at which we see our kth different birthday, so N = T365.

If we let T0 = 0, then for 0 ≤ k ≤ 364, Tk+1 − Tk is geometric with success

probability 1 − k/365, since up to that point we have collected k birthdays.

Recalling that the mean of the geometric with success probability p is 1/p, this

is 365/(365 − k), and summing gives

E T365 =
364∑
k=0

365

365 − k
= 365

365∑
j=1

1

j
= 2,364.64
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Since the variance of geometric(p) is (1 − p)/p2,

var (T365) =
364∑
k=1

k/365

(1 − k/365)2
=

364∑
j=1

1 − j/365

( j/365)2

= (365)2
364∑
j=1

1

j 2
− 365

364∑
k=1

1

j
= 216, 418

The variance looks frighteningly large until you take square root to conclude that

the standard deviation is 465.2. Informally, we will need to meet 1,900–2,930

people to see all 365 birthdays.

General formulas. Suppose now that there are n objects to be collected. Let Tk

be the time at which we see our kth different object, so N = Tn. T1 = 1. For

1 ≤ k ≤ n − 1, Tk+1 − Tk is geometric with success probability 1 − k/n, since

up to that point we have collected k objects. Using our formula for the mean of

the geometric,

E Tn = n
n−1∑
j=1

1

j
≈ n ln n

since
∑n−1

i=1 1/j ≈ ∫ n
1 dx/x = ln n. Turning to the variance,

var (Tn) =
n−1∑
j=1

1 − j/n

( j/n)2

= n2
n−1∑
j=1

1

j 2
− n

n−1∑
j=1

1

j 2
≈ n2π2/6

since
∑∞

j=1 1/j 2 = π2/6. Note that the mean is mean n ln n, while the standard

deviation is of order n.

Back to balls in boxes, Example 6.8. When n = 100, n ln n = 460.51 and the

standard deviation is roughly nπ/
√

6 = 128.25. This seems consistent with the

previous computation that putting 500 balls into 100 boxes leaves an average of

2/3 empty boxes.

6.3 Laws of large numbers

To motivate the main result of this section, we turn to simulation. The next

figure shows the fraction of heads versus time in a simulation of flipping a fair
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coin 5,000 times. As dictated by the frequency interpretation of probability, the

fraction of heads seen at time n approaches 1/2 as n → ∞.

, , , , ,

To state the general result, we need some definitions. If X1, X2, . . . , are in-

dependent and have the same distribution then we say the Xi are independent
and identically distributed, or i.i.d. for short. Such sequences arise if we repeat

some experiment, such as flipping a coin or rolling a die, or if we stop people at

random and measure their height or ask them how they will vote in an upcoming

election.

Our first goal in this section is to prove the law of large numbers, which says

that if X1, X2, . . . , are i.i.d. with E Xi = µ, then when n is large, the average of

the first n observations,

X̄n = (X1 + · · · + Xn)/n

is close to E X with high probability.

X̄n is called the sample mean because if we assigned probability 1/n to each

of the first n observations then X̄n would be the mean of that distribution.

If we suppose that the Xi are i.i.d. with E Xi = µ, then using the facts that

E (cY ) = c E Y and the expected value of the sum is the sum of the expected

values, we have

E X̄n = 1

n
E (X1 + · · · + Xn)

= 1

n
(E X1 + · · · + E Xn) = µ (6.12)

If we suppose that var (Xi ) = σ 2, then using the facts that var (cY ) =
c 2 var (Y ) and that for independent X1, . . . , Xn the variance of the sum is
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the sum of the variances, we have

var (X̄n) = 1

n2
var (X1 + · · · + Xn)

= 1

n2
( var (X1) + · · · + var (Xn)) = σ 2

n
(6.13)

Taking square roots we see that the standard deviation of X̄n is σ/
√

n. We have

earlier called this the size of a typical deviation from the mean. The key to

proving the law of large numbers is to show that if k is large then the probability

of an observation more than k standard deviations from the mean is small. To

motivate the inequality we will use to prove this, we consider a

Puzzle. Suppose E X = 0 and E X2 = 1. How large can P (|X| ≥ 3) be?

Solution. On the set {|X| ≥ 3}, X2 ≥ 9. Since X2 ≥ 0, E X2 must be larger than

what we get from considering only values with |X| ≥ 3. That is,

1 = E X2 ≥ 9P (|X| ≥ 3)

or P (|X| ≥ 3) ≤ 1/9. To see that this can be achieved, we let P (X = 3) = 1/18,

P (X = −3) = 1/18, and P (X = 0) = 8/9 and note that

E X = 3 · 1

18
+ (−3) · 1

18
= 0

E X2 = 9 · 1

18
+ 9 · 1

18
= 1

Generalizing leads to

Chebyshev’s inequality. If y > 0, then

P (|Y − E Y | ≥ y) ≤ var (Y )/y2 (6.14)

Proof. Again since |Y − E Y |2 ≥ 0, E |Y − E Y |2 must be larger than what we

get from considering only values with |Y − E Y | ≥ y so

var (Y ) = E |Y − E Y |2 ≥ y2 P (|Y − E Y | ≥ y)

and rearranging gives (6.14).

If we let σ 2 = var (Y ) and take y = kσ with k ≥ 1, then (6.14) implies that

P (|Y − E Y | ≥ kσ ) ≤ 1/k2 (6.15)

This reinforces our notion that σ is the size of the typical deviation from the

mean by showing that a deviation of k standard deviations has probability

smaller than 1/k2.
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Proof of the law of large numbers. Let Y = X̄n. (6.12) implies E Y = µ and

(6.13) implies var (Y ) = σ 2/n, so using Chebyshev’s inequality, we see that if

ε > 0, then

P (|X̄n − µ| ≥ ε) ≤ var (X̄n)

ε2
= σ 2

ε2n
→ 0 (6.16)

as n → ∞.

(6.16) could be called the fundamental theorem of statistics because it says

that the sample mean is close to the mean µ of the underlying population when

the sample is large. The last conclusion does not rule out the possibility that the

sequence of sample means X̄1, X̄2, . . . , stays close to E X most of the time but

occasionally wanders off because of a streak of bad luck. Our next result says

that this does not happen.

Strong law of large numbers. Suppose X1, X2, . . . , are i.i.d. with E |Xi | < ∞.

Then with probability 1 the sequence of numbers X̄n converges to E Xi as n → ∞.

The first thing we have to explain is the phrase “with probability 1.” To do this

we first consider flipping a coin and letting Xi be 1 if the i th toss results in heads

and 0 otherwise. The strong law of large numbers says that with probability 1,

(X1 + · · · + Xn)/n → 1/2 as n → ∞

It is easy to write down sequences of tosses for which this is false:

H, H, T, H, H, T, H, H, T, H, H, T, . . .

However, the strong law of large numbers implies that the collection of “bad

sequences” (that is, those for which the asymptotic frequency of heads is not

1/2) has probability zero.

Example 6.18 Growth of a risky investment. In our simple model, each year the stock market

either increases by 40% or decreases by 20% with probability 1/2 each. How fast

will our money grow?

Reasoning naively, our expected value is (1/2)40 + (1/2)(−20) = 10% per

year. However, this is not the right way to look at things. Let Xi be independent

and equal to 1.4 and 0.8 with probability 1/2 each. If we start with M0 dollars

then after n years we have

Mn = M0 X1 X2 · · · Xn
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To turn this into something to which we can apply the law of large numbers, we

take logarithms:

ln(Mn/M0) =
n∑

i=1

ln Xi ≈ nE (ln Xi )

Computing the expected value,

E (ln Xi ) = 1

2
ln(1.4) + 1

2
ln(0.8) = 0.0566643

so we have

Mn ≈ M0 exp(n(ln(1.4) + ln(0.8))/2) = M0(
√

(1.4)(0.8))n

From this we see that the growth is not given by the arithmetic mean (1.4 +
0.8)/2 = 1.1, but by the geometric mean

√
(1.4)(0.8) = 1.0583.

Example 6.19 Optimal investment. Suppose now that we can either (i) invest in the stock

market with either increases by 40% or decreases by 20% with probability 1/2

each or (ii) buy a bond that always pays 4% interest. How should we allocate

our money between these two alternatives to maximize our rate of return?

The answer is easier to understand if we consider a general problem. Let

α = 1.4 and β = 0.8 be the two outcomes for the stock and let γ = 1.04 be the

growth for the bond. Let Mn be the amount of money we have at the end of year

n. If we put a fraction p in the bond and 1 − p in the stock market then the

expected return is

R(p) = E (ln(M1/M0)) = 1

2
ln[ pγ + (1 − p)α] + 1

2
ln[ pγ + (1 − p)β]

To optimize we take the derivative:

R′(p) = 1

2

γ − α

α + p(γ − α)
+ 1

2

γ − β

β + p(γ − β)

= β(γ − α) + α(γ − β) + 2(γ − β)(γ − α)p

2(α + p(γ − α))(β + p(γ − β))

For the maximum to occur at a value 0 < p < 1, we need R′(0) > 0 and

R′(1) < 0. The denominator is positive. If we let q(p) be the numerator of

R′(p),

q(0) = γ (β + α) − 2αβ

q(1) = γ (γ − α) + γ (γ − β)
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For q(1) < 0, that is, to have some of the stock in our portfolio, we need

γ < (α + β)/2. For q(0) > 0, that is, to have some of the bond in our portfolio,

we need

γ >
αβ

(α + β)/2

When both these conditions hold there will be an optimal that can be found by

setting q(p∗) = 0.

The next figure gives the return on investment as a function of p in our

concrete example: α = 1.4, β = 0.8, and γ = 1.04. To connect the value at 0

with Example 6.18, we note that the exponential growth rate is ln(1.0583) =
0.0566.

To find the maximum analytically,

α + β

2
= 1.1 > γ = 1.04 >

αβ

(α + β)/2
= (1.4)(0.8)

1.1
= 1.018

so the optimal fraction in the bond is

p∗ = γ (β + α)/2 − αβ

(γ − β)(α − γ )
= (1.04)(1.1) − (1.4)(0.8)

(0.24)(0.36)
= 0.2777

6.4 Normal distribution

To prepare for results in the next section we need to introduce the standard
normal distribution

f (x) = (2π)−1/2e−x2/2
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which looks like

Since there is no closed-form expression for the antiderivative of f , it takes

some ingenuity to check:

Theorem 6.6. f (x) = (2π)−1/2e−x2/2 is a probability density.

Proof. Let I = ∫
e−x2/2 dx . To show that

∫
f (x) dx = 1, we want to show that

I = √
2π .

I 2 =
∫

e−x2/2 dx

∫
e−y2/2 dy =

∫∫
e−(x2+y2)/2 dx dy

Changing to polar coordinates, the last integral becomes∫ ∞

0

∫ 2π

0
e−r 2/2 r dθ dr = 2π

∫ ∞

0
e−r 2/2 r dr = 2π (−e−r 2/2)

∣∣∣∞
0

= 2π

So I 2 = 2π or I = √
2π .

There is, unfortunately, no closed-form expression for the distribution

function,

�(x) =
∫ x

−∞
(2π)−1/2e−y2/2 dy

so we have to use a table like the one given in the Appendix. In the next few

calculations, we will only use a little of the table:

x 0 1 2 3

�(x) 0.5000 0.8413 0.9972 0.9986

P (a < X ≤ b) = F (b) − F (a). For example, when b = 2 and a = 1, we

have

P (1 < X ≤ 2) = �(2) − �(1) = 0.9772 − 0.8413 = 0.1359
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Our little table and the one in the back of the book only give the values of �(x)

for x ≥ 0. Values for x < 0 are computed by noting that the normal density

function is symmetric about 0 ( f (x) = f (−x)), so

P (X ≤ −x) = P (X ≥ x) = 1 − P (X ≤ x)

since P (X = x) = 0. For an example of the use of symmetry, we note that

P (X ≤ −1) = 1 − P (X ≤ 1) = 1 − 0.8413 = 0.1587

so we have

P (−1 ≤ X ≤ 1) = �(1) − �(−1) = 0.8413 − 0.1587 = 0.6826

In the case of discrete random variables, it was important to keep track of the

difference between < and ≤. Here it is not, since for the normal distribution

P (X = x) = 0 for all x .

The standard normal distribution has mean 0 by symmetry:

var (X) = E (X2) =
∫

(2π)−1/2x2e−x2/2 dx

To show that the variance is 1, we use integration by parts (5.7), with g (x) =
(2π)−1/2x , h′(x) = xe−x2/2, and hence g ′(x) = (2π)−1/2, h(x) = −e−x2/2 to

conclude that the integral above is

= −(2π)−1/2xe−x2/2
∣∣∣∞
−∞

+
∫

(2π)−1/2e−x2/2 dx

= 0 + 1

For the last step we observe that e−x2/2 goes to 0 much faster than x goes to ∞,

and the integral gives the total mass of the normal density.

To create a normal distribution with mean µ and variance σ 2, let Y = σ X +
µ, where σ > 0. The inverse of r (x) = σ x + µ is s (y) = (y − µ)/σ , so (5.9)

implies that Y has density function

f (s (y))s ′(y) = (2π)−1/2e−{(y−µ)/σ }2/2 1

σ

= (2πσ 2)−1/2e−(y−µ)2/2σ 2

If Y = normal(µ, σ 2), then reversing the formula we used to define Y , X =
(Y − µ)/σ has the standard normal distribution.

Example 6.20 Suppose that a man’s height has a normal distribution with mean µ = 69 inches

and standard deviation σ = 3 inches. What is the probability that a randomly

chosen man is more than 6 feet tall (72 inches)?
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The first step in the solution is to rephrase the question in terms of X :

P (Y ≥ 72) = P (Y − 69 ≥ 3) = P

(
Y − 69√

9
≥ 1

)
= P (X ≥ 1) = 1 − 0.8413 = 0.1587

from the little table above.

An important property of the normal is

Theorem 6.7. If X = normal(µ, a) and Y = normal(ν, b) are independent then

X + Y = normal(µ + ν, a + b).

Proof. By considering X ′ = X − µ and Y ′ = Y − ν and noting X + Y = X ′ +
Y ′ + (µ + ν), it suffices to prove the result when µ = ν = 0. By (6.2) we need

to evaluate ∫
1√
2πa

e−z2/2a 1√
2πb

e−(x−z)2/2b dz

The product of the two exponentials is

exp

(
− z2

2a
− z2

2b
+ 2xz

2b
− x2

2b

)

The quantity in the exponent is

− z2(a + b)

2ab
+ 2axz

2ab
− ax2

2ab

= a + b

2ab

(
−z2 + 2a

a + b
xz − a

a + b
x2

)

= a + b

2ab

[
−
(

z − ax

a + b

)2

− ab

(a + b)2
x2

]

Working backward through our steps we need to evaluate

1√
2πa

1√
2πb

e−x2/2(a+b) ·
∫

exp

(
−a + b

2ab

(
z − ax

a + b

)2
)

dz

The integrand is a constant multiple of the density of a normal with mean

ax/(a + b) and variance ab/(a + b), so it is = √
2πab/(a + b) and we end up

with

1√
2π(a + b)

e−x2/2(a+b)

which is the desired density function.
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6.5 Central limit theorem

The limit theorem in this section gets its name not only from the fact that it

is of central importance but also because it shows that if you add up a large

number of random variables with a fixed distribution with finite variance, then

if we subtract the mean and divide by the standard deviation, the result has

approximately a normal distribution.

Central limit theorem (CLT). Suppose X1, X2, . . . , are i.i.d. and have E Xi = µ

and var (Xi ) = σ 2 with 0 < σ 2 < ∞. Let Sn = X1 + · · · + Xn. As n → ∞,

P

(
a ≤ Sn − nµ

σ
√

n
≤ b

)
→

∫ b

a

1√
2π

e−x2/2 dx (6.17)

To do computations it is convenient to introduce χ , a normal random variable

with mean 0 and 1. With this we can write the last result as

Sn − nµ

σ
√

n
≈ χ

Some people seem mystified that I use chi for the normal, but to me it seems

natural since the square of a normal has a chi-squared distribution.

Example 6.21 Suppose we flip a coin 100 times. What is the probability that we get at least 56

heads?

As the figure shows, the distribution (given by squares) is approximately normal

(the smooth curve). To use (6.17) we note that Xi = 1 or 0 with probability 1/2

each, so the Xi have mean 1/2 and standard deviation
√

0.5 · 0.5 = 1/2. The

mean number of heads in 100 tosses is 100/2 = 50 and the standard deviation
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√
100/2 = 5, so (6.17) implies

P (S100 ≥ 56) = P

(
S100 − 50

5
≥ 6

5

)
≈ P (χ ≥ 1.2)

= 1 − P (χ ≤ 1.2) = 1 − 0.8849 = 0.1151

As we will now explain there is a small problem with this solution. If the

question in the problem had been formulated as “What is the probability of at

most 55 heads?” we would have computed

P (S100 ≤ 55) = P

(
S100 − 450

5
≤ 5

5

)
≈ P (χ ≤ 1.0) = 0.8413

which does not quite agree with our first answer since

0.8413 + 0.1151 = 0.9568 < 1

whereas P (S100 ≤ 55) + P (S100 ≥ 56) = 1. The solution to this problem is to

regard {S100 ≥ 56} as {S100 ≥ 55.5}; that is, the integers 55 and 56 split up the

territory that lies between them:

55 56
[////////

When we do this, the answer to our original question becomes

P (S100 ≥ 55.5) = P

(
S100 − 50

55
≥ 5.5

15

)

≈ P (χ ≥ 1.1) = 1 − 0.8643 = 0.1357

which is a much better approximation of the exact probability 0.135627 than

was our first answer, 0.1151.

The last correction, which is called the histogram correction, should be used

whenever we apply (6.17) to integer-valued random variables. As we did in the

last example, if k is an integer we regard P (Sn ≥ k) as P (Sn ≥ k − 0.5) and

P (Sn ≤ k) as P (Sn ≤ k + 0.5). More generally, we replace each integer k in the

set of interest by the interval [k − 0.5, k + 0.5].

Example 6.22 Ipolito versus Power. In Example 2.40, we asked the question: what is the

probability 101 disputed votes would change the outcome of an election in

which the winner won by 17 votes. To do this they would have to split 59–42

or worse. In Chapter 2, we analyzed a similar situation by supposing that the

101 votes were sampled without replacement from the 2,827 cast. Here, we

simplify by supposing that the votes were determined by flipping 101 coins.
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Using notation and computations from the previous example, we are interested

in

P (S101 ≥ 58.5) = P

(
S101 − 50.5√

101/2
≥ 8√

101/2

)

≈ P (χ ≥ 1.59) = 1 − 0.9441 = 0.0559

We leave it to the reader to decide if a 5.6% probability of changing the outcome

justifies calling for a new election.

The next example shows that the histogram correction is a device not only to

get more accurate estimates, but also allows us to get answers in cases where a

naive application of the central limit theorem would give a senseless answer.

Example 6.23 Suppose we flip 16 coins. Use (6.17) to estimate the probability that we get

exactly 8 heads.

The mean number of heads is n/2 = 8, while the standard deviation is√
n/2 = 2. To use the normal approximation we write {S16 = 8} as {7.5 ≤

S16 ≤ 8.5}. By (6.17),

P

(
7.5 − 8

2
≤ S16 − 8

2
≤ 8.5 − 8

2

)
≈ P (−0.25 ≤ χ ≤ 0.25)

Since P (χ = −0.25) = 0, the probability of interest is P (χ ≤ 0.25) − P (χ ≤
−0.25). The table tells us that P (χ ≤ 0.25) = 0.5987. There are no negative

numbers in the table, but the normal distribution is symmetric, so

P (χ ≤ −0.25) = P (χ ≥ 0.25) = 1 − P (χ ≤ 0.25) = 1 − 0.5987 = 0.4013

and we have

P (S16 = 8) ≈ 0.5987 − 0.4013 = 0.1974

The exact answer is

2−16 16!

8! 8!
= 0.1964

Similar reasoning shows that

P (S16 = 8 + k) ≈ P

(
χ ≤ k + 0.5

2

)
− P

(
χ ≤ k − 0.5

2

)
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As the next table shows, these probabilities are fairly close to the exact answers

obtained from the binomial distribution.

k 8 9 10 11 12 13

Normal approximations 0.1974 0.1747 0.1209 0.0656 0.0279 0.0092

Exact answers 0.1964 0.1746 0.1221 0.0666 0.0277 0.0085

Records of teams in the National Football League regular season could be

modeled as the outcome of 16 coin tosses, one for each game. The next table

compares the won–loss records of the 32 teams in the 2008 season with the

numbers just computed:

k 8 9 10 11 12 13

32 × exact answers 6.28 5.59 3.91 2.13 0.88 0.27

Teams winning k games 5 6 1 4 4 1

Teams losing k games 2 1 2 3 0

Missing from the table are two teams who won only 2 games (an event with coin

flip probability 120/216 = 0.00183 ≈ 1/546) and the Detroit Lions who went

0 − 16, an event with coin flip probability 1/65,536.

Example 6.24 Suppose we roll a die 24 times. What is the probability that the sum of the

numbers S24 ≥ 100?

As the figure shows the distribution (squares) is approximately normal

(smooth curve). To apply (6.17), the first step is to compute the mean and vari-

ance of S24. E S24 = 24 · 7/2 = 84. var (S24) = 24 · 35/12 = 70, so the standard
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deviation is
√

70 = 8.366. Using (6.17) now, we have

P (S24 ≥ 99.5) = P

(
S24 − 84√

70
≥ 15.5

8.366

)

≈ P (χ ≥ 1.85) = 1 − P (χ ≤ 1.85) = 0.0322

compared with the exact answer 0.031760.

z-score. The key to finding the solution of this and the previous two problems

is to compute the number of standard deviations separating the observed value

from the expected value. The z-score is defined by

z = observed value − expected value

standard deviation

In the preceding example, this is

z = 99.5 − 85

8.366
= 1.85

so the normal approximation is P (χ ≥ 1.85). Here a picture is worth a hundred

words.

84 99.5
[////////

Mean 1.85 s.d.

Example 6.25 Roulette. Consider a person playing roulette 1,000 times and betting $1 on

black each time. What is the probability that their net winnings are ≥ 0?

The figure gives three simulations of 1,000 plays of roulette, betting $1 on

black.

The outcome of the i th play P (Xi = 1) = 18/38, and P (Xi = −1) = 20/38, so

E Xi = −1/19 = −0.05263, E X2
i = 1, and var (Xi ) = 1 − (1/19)2 ≈ 1. The
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mean of 1,000 plays is −52.63, while the standard deviation is
√

1,000 = 31.62.

Writing ≥ 0 as ≥ −1 since only even numbers are possible values for S1,000, the

z-score is

z = −1 − (−52.63)

31.62
= 1.63

so the normal approximation is P (χ ≥ 1.63) = 1 − P (χ ≤ 1.63) = 0.0516.

−52.63 −1
[////////

Mean 1.63 s.d.

Example 6.26 Normal approximation to the Poisson. Each year in Mythica, an average of 25

letter carriers are bitten by dogs. In the past year, 33 incidents were reported. Is

this number exceptionally high?

Assuming that dog bites are a rare event, we use the Poisson distribution

for the number of dog bites. As we observed in Example 6.3, a Poisson with

mean 25 is the sum of 25 independent Poisson mean 1 random variables, so we

can use the normal to approximate the Poisson. As the next figure shows the

approximation is good but the Poisson still shows a slight skew.

The mean is 25, while the standard deviation is
√

25 = 5. Writing the observed

event as ≥32.5 we see that this is (32.5 − 25)/5 = 1.5 standard deviations

above the mean, so the normal approximation is P (χ ≥ 1.25) = 1 − 0.8943 =
0.1057, so this is not a very unusual event.

Example 6.27 A manufacturing plant produces boxes of biscuit mix that are 1 pound (454

grams). However, due to the poor flow properties of the powder the standard

deviation of the weight of a box is 10 grams. A sample of 25 boxes had an average
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weight of 449.4 grams. Does this indicate a problem with the manufacturing

process?

The average weight X̄25 has mean 454 grams and standard deviation σ/
√

n =
10/

√
25 = 2. The observed weight is 4.6 grams below the mean, which is 2.3 stan-

dard deviations. From the Normal Table, P (χ ≥ 2.3) = 1 − 0.9893 = 0.0107,

so a deviation this large by chance is rather unlikely.

Note. Continuous random variables can take on any value so there is no

“histogram correction.”

Example 6.28 Suppose that the average weight of a person is 182 pounds with a standard devi-

ation of 40 pounds. A large plane can hold 400 people. What is the probability

that the total weight of the people, S400, will be more than 75,000 pounds?

The expected value of S400 is 400 · 182 = 72,800. The standard deviation is

σ
√

n = 40 · 20 = 800.

P (S400 ≥ 75,000) = P

(
S420 − 72,800

800
≥ 2.75

)

≈ P (χ ≥ 2.75) = 1 − P (χ ≤ 2.75) = 0.003

In designing airplanes one cannot afford to make a mistake 3 times out of a

1,000 if the error will have disastrous consequences like a crash. Our table stops

at 3.09. For larger values one can use the following approximation:∫ ∞

x
e−y2/2 dy ≤ 1

x
e−x2/2 (6.18)

Proof. Multiplying by y/x , which is ≥ 1 when y ≥ x , we have∫ ∞

x
e−y2/2 dy ≤ 1

x

∫ ∞

x
ye−y2/2 dy

= 1

x
(−e−y2/2)

∣∣∣∞
x

= 1

x
e−x2/2

which proves the desired estimate.

From this we see that the probability that the total weight is more than 77,600

pounds, which is six standard deviations above the mean, is at most

1√
2π

· 1

6
e−18 ≈ 1 × 10−9
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6.6 Applications to statistics

The central limit theorem is the key to several topics in statistics. In this sec-

tion, we briefly discuss its use in hypothesis testing and confidence intervals,

emphasizing the relevance of the central limit theorem and ignoring some of

the fine points of the proper implementation of these methods (caveat emptor).

In the first situation we have a hypothesis about how the world works and ask

if the data are consistent with that hypothesis.

Example 6.29 Is there a difference between baseball and flipping coins? In 2007, the Boston

Red Sox won 96 games and lost 66. How likely is this result if the games were

decided by flipping coins?

If they were flipping coins the mean number of wins would be 162/2 = 81,

the variance 162/4 = 40.5, and standard deviation
√

40.5 = 6.36396. The event

W ≥ 96 translates to W ≥ 95.5 when we apply the histogram correction. This is

14.5 above the mean, or 14.5/6.36396 = 2.28 standard deviations. The normal

approximation for this probability is P (χ ≥ 2.28) = 1 − 0.9887 = 0.0113.

This probability is small but we must also remember that the Boston Red

Sox are 1 of 30 teams in baseball (1/30 = 0.033) and we picked them because

they had the best record. The figure compares the outcomes of the 2007 season

with the normal distribution that we would have if games were decided by

flipping coins. To be precise, it compares the number of teams with ≤k wins

with the distribution function of the approximating normal. Since the empirical

distribution is less steep than the normal, we see that there is more variability in

baseball win–loss records compared to flipping coins.

One final small point is that due to the histogram correction, we put the data

point for k at k + 0.5. To see why we do this, note that the normal approximation

for ≤91 is not 1/2, but is P (χ ≤ 0.5/6.36396) = P (χ ≤ 0.08) = 0.5319.
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To delve further into the details of hypothesis testing, we will consider an

artificial example.

Example 6.30 A factory owner is concerned that the fraction of red M&M’s produced by his

machines is not 1/4. In a sample of 1,200, 328 were red. Should he doubt the

accuracy of his machines?

If the true fraction was p = 1/4, then in a sample of 1,200 candies the mean

number of reds would be 1,200/4 = 300 and the standard deviation would be√
1,200(0.25)(0.75) = 15. ≥328 corresponds to 27.5/15 = 1.9 standard devia-

tions, so the observed event corresponds to P (χ ≥ 1.83) = 0.0336.

In this computation, we have ignored one of the subtleties referred to at the

beginning of the section. If the factory owner had no suspicion of error before

the test then he would have been equally alarmed by observing 272 reds, so we

need to double the probability to 0.0672 to give a more accurate estimate of a

deviation this large by chance alone.

Example 6.31 Weldon’s dice data. An English biologist named Weldon was interested in the

“pip effect” in dice – the idea that the spots, or “pips,” which on some dice are

produced by cutting small holes in the surface, make the sides with more spots

lighter and more likely to turn up. Weldon threw 12 dice 26,306 times for a total

of 315,672 throws and observed that a 5 or 6 came up on 106,602 throws or with

probability 0.33770. Is this significantly different from 1/3?

If the true value was 1/3, then the expected number of successes would be

105,224, the variance 87,686.666, and the standard deviation 296.12. Ignoring

the histogram correction the excess of 5’s and 6’s is 1,378 or 4.6535 standard

deviations, so we are very confident that the true probability is not 1/3.

To make a statement about what we think the real value of p is, we note that if

the true probability is p, then the average in the sample p̂ = 106,602/315, 672,

then p̂ has mean p, and standard deviation
√

p(1 − p)/n. Consulting the

Normal Table we see that

P (−2 ≤ χ ≤ 2) = 2(P (χ ≤ 2) − 1/2) = 0.9544

Replacing p by the estimate p̂ in the formula for the standard deviation we see

that 95% of the time the true value of p will lie in[
p̂ − 2

√
p̂(1 − p̂)√

n
, p̂ + 2

√
p̂(1 − p̂)√

n

]
(6.19)

Plugging in our estimate p̂, we have

0.33770 ± 2

√
0.3377 · 0.6623

315, 672
= 0.33770 ± 0.00168
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This is easier to understand if we subtract 1/3.

p̂ − 1/3 = 0.00427 ± 0.00168 = [0.00259, 0.00595]

This difference, which is ≈1/250, is not enough to be noticeable by people who

play dice games for amusement, but is, perhaps, large enough to be of concern

for a casino that entertains tens of thousands of gamblers a year and offers a

wide variety of bets on dice games. For this reason most casinos use dice with

no pips.

Example 6.32 Buffon’s needle. As shown in Example 5.22 if the needle is 1/2 the distance

between the cracks on the floor then the probability of hitting a crack is 1/π =
0.318310. In three simulations of 10,000 trials, we observed 3,095, 3,186, and

3,237 hits. To see that these are “typical” outcomes, note that by (6.19) 95% of

the observations will fall in

0.31831 ± 2
√

(0.31831)(0.68169)

100
= 0.31831 ± 0.00932 = [0.3090, 0.3276]

Example 6.33 Sample size selection. Suppose you want to forecast the outcome of an elec-

tion and you are trying to figure out how many people to survey so that with

probability 0.95 your guess does not differ from the true answer by more than

2%.

From (6.19) we see that if a fraction p̂ of the people in a sample of size n are

for candidate B then the 95% confidence interval will be

p̂ ± 2
√

p̂(1 − p̂)√
n

To get rid of the p̂’s in the width of the confidence interval we note that the

function g (x) = x(1 − x) = x − x2 has derivative g ′(x) = 1 − 2x , which is

positive for x < 1/2 and negative for x > 1/2. So g is increasing for x < 1/2

and decreasing for x > 1/2, and hence the maximum value occurs at x = 1/2.

Noticing that 2
√

x(1 − x) = 1 when x = 1/2, we have

P

(
p ∈

[
p̂ − 1√

n
, p̂ + 1√

n

])
≥ 0.95 (6.20)

To see that this approximation is reasonable for elections, notice that if 0.4 ≤
p ≤ 0.6, then

√
p(1 − p) ≥ √

0.24 = 0.4899, compared with our upper bound

of 1/2. Even when p is as small as 0.2,
√

p(1 − p) = √
0.16 = 0.4.
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To answer our original question now, we set 1/
√

n = 0.02 and solve to get

n = (1/0.02)2 = 502 = 2,500

To get the error down to 1%, we would need n = 1/(0.01)2 = 10,000. Comparing

the last two results and noticing that the radius of the confidence interval in

(6.20) is 1/
√

n, we see that to reduce the error by a factor of 2 requires a sample

that is 22 = 4 times as large.

Example 6.34 The Literary Digest poll. In order to forecast the outcome of the 1936 election,

Literary Digest polled 2.4 million people and found that 57% of them were going

to vote for Alf Landon and 43% were going to vote for Franklin Roosevelt. A

95% confidence interval for the true fraction of people voting for Landon based

on this sample would be 0.57 ± 0.00064, but Roosevelt won, getting 62% of the

vote to Landon’s 38%.

To explain how this happened we have to look at the methods Literary

Digest used. They sent 10 million questionnaires to people whose names came

from telephone books and club membership lists. Since many of the 9 million

unemployed did not belong to clubs or have telephones the sample was not

representative of the population as a whole. A second bias came from the fact

that only 24% of the people filled out the form. This problem was mentioned

in our discussion of exit polls in Example 3.19. If, for example, 36% of Landon

voters and 16.6% of Roosevelt voters responded then the fraction of people who

responded would be 0.62(0.166) + 0.38(0.36) = 0.24 and the fraction in the

sample for Landon would be

0.38(0.36)

0.62(0.166) + 0.38(0.36)
= 0.1368

0.24
= 0.57

in agreement with the data.

Finally, we would like to observe that Literary Digest, which soon after went

bankrupt, could have saved a lot of money by taking a smaller sample. George

Gallup, who was just then getting started in the polling business, predicted based

on a sample of size 50,000 that Roosevelt would get 56% of the vote. His 95%

confidence interval for the election result would be 0.56 ± 0.0045, compared

with the election result of 62%. Again there could be some bias in his sample, or

perhaps Landon voters, discouraged by the predicted outcome, were less likely

to vote. The moral of our story is: It is much better to take a good sample than

a large one.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

223 6.7 Exercises

6.7 Exercises

Expected value of sums

1. A man plays roulette and bets $1 on black 19 times. He wins $1 with probability

18/38 and loses $1 with probability 20/38. What are his expected winnings?

2. Suppose we draw 13 cards out of a deck of 52. What is the expected value of

the number of aces we get?

3. Suppose we pick 3 students at random from a class with 10 boys and 15 girls.

Let X be the number of boys selected and Y be the number of girls selected.

Find E (X − Y ).

4. 12 ducks fly overhead. Each of 6 hunters picks one duck at random to aim

at and kills it with probability 0.6. (a) What is the mean number of ducks that

are killed? (b) What is the expected number of hunters who hit the duck they

aim at?

5. 10 people get on an elevator on the first floor of a seven-story building. Each

gets off at one of the six higher floors chosen at random. What is the expected

number of stops the elevator makes?

6. Suppose Noah started with n pairs of animals on the ark and m of them died.

If we suppose that fate chose the m animals at random, what is the expected

number of complete pairs that are left?

7. Suppose we draw 5 cards out of a deck of 52. What is the expected number of

different suits in our hand? For example, if we draw K♠ 3♠ 10♥ 8♥ 6♣, there

are three different suits in our hand.

8. Suppose we draw cards out of a deck without replacement. How many cards

do we expect to draw out before we get an ace? Hint: The locations of the four

aces in the deck divide it into five groups X1, . . . , X5.

9. A calculus class has 150 students. Assume there are 365 days in a year and note

that 150/365 = 0.410959. (a) What is the probability that at least one student is

born on April 1? (b) Let N be the number of days on which at least one student

has a birthday. Find the expected value E N.

Variance and covariance

10. Roll two dice and let Z = XY be the product of the two numbers obtained.

What is the mean and variance of Z?
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11. Suppose X and Y are independent with E X = 1, E Y = 2, var (X) = 3, and

var (Y ) = 1. Find the mean and variance of 3X + 4Y − 5.

12. In a class with 18 boys and 12 girls, boys have probability 1/3 of knowing

the answer and girls have probability 1/2 of knowing the answer to a typical

question the teacher asks. Assuming that whether or not the students know the

answer are independent events, find the mean and variance of the number of

students who know the answer.

13. At a local high school, 12 boys and 4 girls are applying to MIT. Suppose that

the boys have a 10% chance of getting in and the girls have a 20% chance. (a)

Find the mean and variance of the number of students accepted. (b) What is

more likely: 2 boys and no girls accepted or 1 boy and 1 girl?

14. Let Nk be the number of independent trials we need to get k successes when

success has probability p. Find the mean and variance of Nk .

15. Suppose we roll a die repeatedly until we see each number at least once and

let R be the number of rolls required. Find the mean and variance of R.

16. Suppose X takes on the values −2, −1, 0, 1, 2 with probability 1/5 each, and

let Y = X2. (a) Find cov (X, Y ). (b) Are X and Y independent?

Chebyshev’s inequality

17. Suppose that it is known that the number of items produced at a factory

per week is a random variable X with mean 50. (a) What can we say about the

probability X ≥ 75? (b) Suppose that the variance of X is 25. What can we say

about P (40 < X < 60)?

18. Let X = binomial(4, 1/2). Use Chebyshev’s inequality to estimate P (|X −
2| ≥ 2) and compare with the exact probability.

19. Let X̄10,000 be the fraction of heads in 10,000 tosses. Use Chebyshev’s inequal-

ity to bound P (|X̄n − 1/2| ≥ 0.01) and the normal approximation to estimate

this probability.

20. Let X have a Poisson distribution with mean 16. Estimate P (X ≥ 28) using

(a) Chebyshev’s inequality and (b) the normal approximation.

Central limit theorem, I. Coin flips

21. A person bets you that in 100 tosses of a fair coin the number of heads will

differ from 50 by 4 or more. What is the probability that you will win this bet?
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22. Suppose we toss a coin 100 times. Which is bigger, the probability of exactly

50 heads or at least 60 heads?

23. Bill is a student at Cornell. In any given course he gets an A with probability

1/2 and a B with probability 1/2. Suppose the outcomes of his courses are

independent. In his 4 years at Cornell he will take 33 courses. If he can get 22

A’s and only 11 B’s he can graduate with a 3.666 average. What is the probability

that he will do this?

24. In a 162-game season find the approximate probability that a team with a

0.5 chance of winning will win at least 87 games.

25. British Airways and United offer identical service on two flights from New

York to London that leave at the same time. Suppose that they are competing

for the same pool of 400 customers who choose an airline at random. What is

the probability that United will have more customers than its 230 seats?

26. A probability class has 30 students. As part of an assignment, each student

tosses a coin 200 times and records the number of heads. What is the probability

that no student gets exactly 100 heads?

27. A fair coin is tossed 2,500 times. Find a number m so that the chance that

the number of heads is between 1,250 − m and 1,250 + m is approximately 2/3.

CLT, II. Biased coins

28. Suppose we roll a die 600 times. What is the approximate probability that

the number of 1’s obtained lies between 90 and 110?

29. Suppose that each of 300 patients has a probability of 1/3 of being helped

by a treatment. Find approximately the probability that more than 120 patients

are helped by the treatment.

30. Suppose that 10% of a certain brand of jelly beans are red. Use the normal

approximation to estimate the probability that in a bag of 400 jelly beans there

are at least 45 red ones.

31. A basketball player makes 80% of his free throws on the average. Use the

normal approximation to compute the probability that in 25 attempts he will

make at least 23.

32. Suppose that we roll two dice 180 times and we are interested in the prob-

ability that we get exactly 5 double sixes. Find (a) the normal approximation,

(b) the exact answer, and (c) the Poisson approximation.
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33. A gymnast has a difficult trick with a 10% chance of success. She tries

the trick 25 times and wants to know the probability that she will get exactly

two successes. Compute the (a) exact answer, (b) Poisson approximation, and

(c) normal approximation.

34. A student is taking a true/false test with 48 questions. (a) Suppose she has

a probability p = 3/4 of getting each question right. What is the probability

that she will get at least 38 right? (b) Answer the last question if she knows the

answers to half the questions and flips a coin to answer the other half. Notice

that in each case the expected number of questions she gets right is 36.

35. To estimate the percent of voters who oppose a certain ballot measure, a

survey organization takes a random sample of 200 voters. If 45% of the voters

oppose the measure, estimate the chance that (a) exactly 90 voters in the sample

oppose the measure and (b) more than half the voters in the sample oppose the

measure.

36. An airline knows that in the long run only 90% of passengers who book

a seat show up for their flight. On a particular flight with 300 seats there are

324 reservations. Assuming passengers make independent decisions what is the

chance that the flight will be overbooked?

37. Suppose that 15% of people don’t show up for a flight, and suppose that

their decisions are independent. How many tickets can you sell for a plane with

144 seats and be 99% sure that not too many people will show up?

38. A seed manufacturer sells seeds in packets of 50. Assume that each seed

germinates with probability 0.99 independently of all the others. The manufac-

turer promises to replace, at no cost to the buyer, any packet with 3 or more

seeds that do not germinate. (a) Use the Poisson to estimate the probability a

packet must be replaced. (b) Use the normal to estimate the probability that the

manufacturer has to replace more than 70 of the last 4,000 packets sold.

39. An electronics company produces devices that work properly 95% of the

time. The new devices are shipped in boxes of 400. The company wants to

guarantee that k or more devices per box work. What is the largest k so that at

least 95% of the boxes meet the warranty?

CLT, III. General distributions

40. The number of students who enroll in a psychology class is Poisson with

mean 100. If the enrollment is >120, then the class will be split into two sections.

Estimate the probability that this will occur.
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41. On each bet a gambler loses $1 with probability 0.7, loses $2 with probability

0.2, and wins $10 with probability 0.1. Estimate the probability that the gambler

will be losing after 100 bets.

42. Suppose we roll a die 10 times. What is the approximate probability that the

sum of the numbers obtained lies between 30 and 40?

43. Members of the Beta Upsilon Zeta fraternity each drink a random number of

beers with mean 6 and standard deviation 3. If there are 81 fraternity members,

how much should they buy so that using the normal approximation they are

93.32% sure they will not run out?

44. An insurance company has 10,000 automobile policy holders. The ex-

pected yearly claim per policy holder is $240 with a standard deviation of $800.

Approximate the probability that the yearly claim exceeds $2.7 million.

45. A die is rolled repeatedly until the sum of the numbers obtained is larger

than 200. What is the probability that you need more than 66 rolls to do this?

46. Suppose that the checkout time at a grocery store has a mean of 5 minutes

and a standard deviation of 2 minutes. Estimate the probability that a checker

will serve at least 49 customers during her 4-hour shift.

Confidence intervals

47. Of the first 10,000 votes cast in an election, 5,180 were for candidate A. Find

a 95% confidence interval for the fraction of votes that candidate A will receive.

48. A bank examines the records of 150 patrons and finds that 63 have savings

accounts. Find a 95% confidence interval for the fraction of people with savings

accounts.

49. Among 625 randomly chosen Swedish citizens, it was found that 25 had

previously been citizens of another country. Find a 95% confidence interval for

the true proportion.

50. A sample of 2,809 handheld video games revealed that 212 broke within

the first 3 months of operation. Find a 95% confidence interval for the true

proportion that break in the first 3 months.

51. Suppose we take a poll of 2,500 people. What percentage should the leader

have for us to be 99% confident that the leader will be the winner?

52. For a class project, you are supposed to take a poll to forecast the outcome of

an election. How many people do you have to ask so that with probability 0.95

your estimate will not differ from the true outcome by more than 5%?
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Hypothesis testing

We will use casual language to state these problems. The precise formulation of

the first one is if p = 1/6, then what is the probability that we will observe 3,123

or more sixes in 18,000 rolls. Here, and in what we follows, we will ignore the

fact that we should multiply by 2 to get a more accurate idea of how odd the

observation is.

53. A casino owner is concerned based on past experience that his dice show

6 too often. He makes his employees roll a die 18,000 times and they observe

3,123 sixes. Is the die biased?

54. We suspect that a bridge player is cheating by putting an honor card (ace,

king, queen, or jack) at the bottom of the deck when he shuffles so that this card

will end up in his hand. In 16 times when he dealt, the last card dealt to him was

an honor on 9 occasions. Are we confident that he is cheating?

55. If both parents carry one dominant (A) and one recessive gene (a) for a

trait then Mendelian inheritance predicts that 1/4 of the offspring will have both

recessive genes (aa) and show the recessive trait. If among 96 offspring of Aa

parents we find 30 are aa , is this consistent with Mendelian inheritance?

56. A softball player brags that he is a 0.300 hitter, yet at the end of the season

he has gotten 21 hits in 84 at bats. Is this just bad luck?

57. In a 60-day period in Ithaca 12 days were rainy. Is this observation consistent

with the belief that the true proportion of rainy days is 1/3?

58. In a poll of 900 Americans in 1978, 65% said that extramarital sex was wrong,

whereas a similar poll in 1985 found that 72% had the same opinion. Are we

confident that opinions have changed?

59. A psychic claims to be able to guess the suit of a card without seeing it. In

52 attempts, someone who is just guessing will get 13 right on the average. How

many would he have to get right so that we are about 99.88% sure he is not

guessing.
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Option Pricing

7.1 Discrete time

In the next section we discuss the Black–Scholes formula. To prepare for that,

we consider the much simpler problem of pricing options when there are a

finite number of time periods and two possible outcomes at each stage. The

restriction to two outcomes is not as bad as one might think. One justification

for this is that we are looking at the process on a very slow timescale, so at most

one interesting event happens (or not) per time period. We begin by considering

a very simple special case.

100

120

90

140

115

120

80

������

������

������

������

������

������

Time 0

Time 1

Time 2

Example 7.1 Two-period binary tree. Suppose that a stock price starts at 100 at time 0. At

time 1 (one day or one month or 1 year later) it is either worth 120 or 90. If the

stock is worth 120 at time 1, then it might be worth 140 or 115 at time 2. If the

price is 90 at time 1, then the possibilities at time 2 are 120 and 80. Suppose now

that you are offered a European call option with strike price 100 and expiry 2.

This means you have an option to buy the stock (but not an obligation to do

so) for 100 at time 2, that is, after seeing the outcome of the first and second

stages. If the stock price is 80, you do not exercise the option to purchase the

stock and your profit is 0. In the other cases you choose to buy the stock at

100 and then immediately sell it at X2 to get a payoff of X2 − 100, where X2 is

the stock price at time 2. Combining the two cases we can write the payoff in

229
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general as (X2 − 100)+, where z+ = max{z, 0} denotes the positive part of z.

Our problem is to figure out what is the right price for this option.

At first glance this may seem impossible since we have not assigned pro-

babilities to the various events. However, it is a miracle of “pricing by the ab-

sence of arbitrage” that in this case we do not have to assign probabilities to the

events to compute the price. To explain this we start by considering a small piece

of the tree. When X1 = 90, X2 will be 120 (“up”) or 80 (“down”) for a profit of

30 or a loss of 10, respectively. If we pay c for the option then when X2 is up we

make a profit of 20 − c , but when it is down we make −c . The last two sentences

are summarized in the following table:

Stock Option

Up 30 20 − c

Down −10 −c

Suppose we buy x units of the stock and y units of the option, where negative

numbers indicate that we sold instead of bought. One possible strategy is to

choose x and y so that the outcome is the same if the stock goes up or down:

30x + (20 − c)y = −10x + (−c)y

Solving, we have 40x + 20y = 0 or y = −2x . Plugging this choice of y into the

last equation shows that our profit will be (−10 + 2c)x . If c > 5, then we can

make a large profit with no risk by buying large amounts of the stock and selling

twice as many options. Of course, if c < 5, we can make a large profit by doing

the reverse. Thus, in this case the only sensible price for the option is 5.

A scheme that makes money without any possibility of a loss is called an arbi-
trage opportunity. It is reasonable to think that these will not exist in financial

markets (or at least be short-lived), since if and when they exist people take

advantage of them and the opportunity goes away. Using our new terminology

we can say that the only price for the option that is consistent with absence

of arbitrage is c = 5, so that must be the price of the option (at time 1 when

X1 = 90).

Before we try to tackle the whole tree to figure out the price of the option at

time 0, it is useful to look at things in a different way. Generalizing our example,

let ai, j be the profit for the i th security when the j th outcome occurs.

Theorem 7.1. Exactly one of the following holds:

(i) There is a betting scheme x = (x1, x2, . . . , xn) so that
∑m

i=1 xi ai, j ≥ 0 for

each j and
∑m

i=1 xi ai,k > 0 for some k.

(ii) There is a probability vector p = (p1, p2, . . . , pn) with p j > 0 so that∑n
j=1 ai, j p j = 0 for all i .
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Here a vector x satisfying (i) is an arbitrage opportunity. We never lose any

money but for at least one outcome we gain a positive amount. Turning to (ii),

the vector p is called a martingale measure since if the probability of the j th

outcome is p j , then the expected change in the price of the i th stock is equal to

0. Combining the two interpretations we can restate Theorem 7.1 as

Theorem 7.2. There is no arbitrage if and only if there is a strictly positive proba-

bility vector so that all the stock prices are martingale.

Why is this true? One direction is easy. If (i) is true, then for any strictly positive

probability vector
∑m

i=1

∑n
j=1 xi ai, j p j > 0, so (ii) is false.

Suppose now that (i) is false. The linear combinations
∑m

i=1 xi ai, j when

viewed as vectors indexed by j form a linear subspace of n-dimensional Eu-

clidean space. Call it L. If (i) is false, this subspace intersects the positive orthant

O = {y: y j ≥ 0 for all j } only at the origin. By linear algebra we know that L
can be extended to an (n − 1)-dimensional subspace H that only intersects O
at the origin.

Since H has dimension n − 1, it can be written as H = {y :
∑n

j=1 y j p j = 0}.
Since for each fixed i the vector ai, j is in L ⊂ H, (ii) holds. To see that all the

p j > 0, we leave it to the reader to check that if not, there would be a nonzero

vector in O that would be in H.

To apply Theorem 7.1 to our simplified example we begin by noting that in

this case ai, j is given by

j = 1 j = 2

Stock i = 1 30 −10

Option i = 2 20 − c −c

By Theorem 7.2 if there is no arbitrage, then there must be an assignment of

probabilities p j so that

30p1 − 10p2 = 0 (20 − c)p1 + (−c)p2 = 0

From the first equation we conclude that p1 = 1/4 and p2 = 3/4. Rewriting the

second we have

c = 20p1 = 20 · (1/4) = 5

To generalize from the last calculation to finish our example we note that the

equation 30 p1 − 10p2 = 0 says that under p j the stock price is a martingale

(that is, the average value of the change in price is 0), while c = 20p1 + 0p2

says that the price of the option is then the expected value under the martingale

probabilities. Using these ideas we can quickly complete the computations in

our example. When X1 = 120, the two possible scenarios lead to a change
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of +20 or −5, so the relative probabilities of these two events should be 1/5 and

4/5. When X0 = 100, the possible price changes on the first step are +20 and

−10, so their relative probabilities are 1/3 and 2/3. Drawing a picture of the

possibilities, we have

100

120

90

140

115

120

80

1/3

2/3

1/5

4/5

1/4

3/4

������

������

������

������

������

������

Option

40

15

20

0
so the value of the option is

1

15
· 40 + 4

15
· 15 + 1

6
· 20 = 80 + 120 + 100

30
= 10

The last derivation may seem a little devious, so we now give a second deriva-

tion of the price of the option. In the scenario described above, our investor has

four possible actions:

A0. Put $1 in the bank and end up with $1 in all possible scenarios.

A1. Buy one share of stock at time 0 and sell it at time 1.

A2. Buy one share at time 1 if the stock is at 120 and sell it at time 2.

A3. Buy one share at time 1 if the stock is at 90 and sell it at time 2.

These actions produce the following payoffs in the indicated outcomes:

Time 1 Time 2 A0 A1 A2 A3 Option

120 140 1 20 20 0 40

120 115 1 20 −5 0 15

90 120 1 −10 0 30 20

90 80 1 −10 0 −10 0

Noting that the payoffs from the four actions are themselves vectors in four-

dimensional space, it is natural to think that by using a linear combination of

these actions we can reproduce the option exactly. To find the coefficients we

write four equations in four unknowns:

z0 + 20z1 + 20z2 = 40

z0 + 20z1 − 5z2 = 15

z0 − 10z1 + 30z3 = 20

z0 − 10z1 − 10z3 = 0 (7.1)
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Subtracting the second equation from the first and the fourth from the third

gives 25z2 = 25 and 40z3 = 20, so z2 = 1 and z3 = 1/2. Plugging in these values,

we have two equations in two unknowns:

z0 + 20z1 = 20 z0 − 10z1 = 5

Taking differences, we conclude that 30z1 = 15, so z1 = 1/2 and z0 = 10.

The reader may have already noticed that z0 = 10 is the option price. This is

no accident. What we have shown is that with $10 cash we can buy and sell shares

of stock to produce the outcome of the option in all cases. In the terminology of

Wall Street, z1 = 1/2, z2 = 1, z3 = 1/2 is a hedging strategy that allows us to

replicate the option. Once we can do this it follows that the fair price must be

$10. To do this note that if we could sell it for $12, then we can take $10 of the

cash to replicate the option and have a sure profit of $2.

7.2 Continuous time

To do option pricing in continuous time we need a model of the stock price,

and for this we have to first explain Brownian motion. Let X1, X2, . . . , be

independent and take the values 1 and −1 with probability 1/2 each. E X = 0

and E X2 = 1, so if we let Sn = X1 + · · · + Xn, then Sn/
√

n converges to χ a

standard normal distribution. Intuitively, Brownian motion is what results when

we look not only at time n but also at how the process got there. To be precise,

we let t ≥ 0 and consider S[nt]/
√

n, where [nt] is the largest integer ≤ nt. In

words, we multiply n by t and then round down to the nearest whole number.

When n = 1,000 the picture looks like

To understand the nature of the limit process we note that

S[nt]√
n

= S[nt]√
[nt]

·
√

[nt]√
n
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The first term approaches a standard normal distribution and the second
√

t, so

Sn/
√

n converges to
√

tχ , a normal with mean 0 and variance t. Repeating the

reasoning in the last paragraph we can see that if s < t, then (S[nt] − S[ns ])/
√

n

converges to a normal with mean zero and variance t − s . Noting that (S[nt] −
S[ns ]) is independent of S[ns ] suggests the following definition of the limiting

process that we call Brownian motion.

• Bt has a normal distribution with mean 0 and variance t.
• If 0 < t1 < · · · < tn then Bt1 , Bt2 − Bt1 , . . . , Btn − Btn−1 are independent

In modeling stock prices it is natural to assume that the daily percentage

changes in the price are independent. For this reason and the mundane fact

that stock prices must be >0, we model the stock as what is called geometric
Brownian motion.

Xt = X0 · exp(µt + σ Bt) (7.2)

µ is the exponential growth rate of the stock and σ its volatility. In writing

the model we have assumed that the growth rate and volatility of the stock

are constant. If we also assume that the interest rate r is constant, then the

discounted stock price is

e−r t Xt = X0 · exp((µ − r )t + σ Bt)

Here, we have to multiply by e−r t , since $1 at time t has the same value as e−r t

dollars today.

Our problem is to determine the fair price of a European call option (Xt −
K )+ with strike price K and expiry t. Extrapolating wildly from Theorem 7.2, we

can say that any consistent set of prices must come from a martingale measure.

This implies

µ = r − σ 2/2 (7.3)

To compute the value of the call option, we need to compute its value in the

model in (7.2) for this special value of µ. Using the fact that log(Xt/X0) has a

normal(µt, σ 2t) distribution, one can show

Black–Scholes formula. The price of the European call option (XT − K )+ is

given by

X0�(σ
√

t − α) − e−r t K �(−α)

where � is the distribution function of a standard normal and

α = {log(K /X0eµt)}/σ√
t
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To try to come to grips with this ugly formula note that K /X0eµt is the ratio of

the strike price to the expected value of the stock at time t under the martingale

probabilities, while σ
√

t is the standard deviation of log(Xt/X0).

Example 7.2 Microsoft call options. The February 23, 1998, Wall Street Journal listed the

following prices for July call options on Microsoft stock.

Strike 75 80 85

Price 11 8 1
8 5 1

2

On this date Microsoft stock was trading at 81 5
8 , while the annual interest rate

was about 4% per year. Should you buy the call option with strike 80?

Solution. The answer to this question depends on your opinion of the volatil-

ity of the market over the period. Suppose that we follow a traditional rule of

thumb and decide that σ = 0.3; that is, over a 1-year period a stock’s price

might change by about 30% of its current value. In this case the drift rate for

the martingale measure is

µ = r − σ 2/2 = 0.04 − (0.09)/2 = 0.04 − 0.045 = −0.005

and so the log ratio is

log(K /X0eµt) = log(80/(81.625e−0.005(5/12)) = log(80/81.455) = −0.018026

Five months corresponds to t = 5/12, so the standard deviation

σ
√

t = 0.3
√

5/12 = 0.19364

and α = −0.018026/0.19364 = −0.09309. Plugging in now, we have a price of

81.625�(0.19365 + 0.09309) − e−0.04(5/12)80�(0.09309)

= 81.625�(0.28674) − 78.678�(0.09309)

= 81.625(0.6128) − 78.678(0.5371) = 50.02 − 42.25 = 7.76

This is somewhat lower than the price quoted in the paper. There are two reasons

for this. First, the options listed in the Wall Street Journal are

American call options. The holder has the right to exercise at any time during

the life of the option. Since one can ignore the additional freedom to exercise

early, American options are at least as valuable as their European counterparts.

Second, and perhaps more importantly, we have not spent much effort on our

estimate of r and σ . Nonetheless, as the next example shows the predictions of

the formula are in rough agreement with the observed process.



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

236 Option Pricing

Example 7.3 Intel call options. Again consulting the Wall Street Journal for February 23,

1998, we find the following prices listed for July call options on Intel stock,

which was trading at 94 3
16 .

Strike 70 75 80 85 90 95 100 105

Price 26 22 18 14 1
2 11 3

8 8 3
4 6 1

2 4 3
8

Formula 25.65 21.16 17.01 13.59 10.11 7.11 5.39 4.13
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Normal Table

�(x) =
∫ x

−∞

1√
2π

e−y2/2 dy

To illustrate the use of the table: �(0.36) = 0.6406, �(1.34) = 0.9099

0 1 2 3 4 5 6 7 8 9
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9924 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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Answers to Odd Problems

1. Basic Concepts

1. � = {ABC , AC B , B AC , BC A, C AB , C B A}, 3. 1/4, 5. (a) 16/36, (b) 20/36,

7. 3/4, 9. 1:4/57, 2:16/57, 3:15/57, 4:12/57, 11. Number of outcomes out of 216:

(a) 1, (b) 3, (c) 6, (d) 10, (e) 15, (f) 21, (g) 25, (h) 27, 13. 90, 15. 77, 17. 0.2, 19.

Yes, 21. Yes, 25. 0.44, 27. 19/27, 29. (a) 0.048, (b) 0.296, (c) 0.464, (d) 0.192, 31.

0.4032, 33. 0.4914, 35. 0:6/36, 1:10/36, 2:8/36, 3:6/36, 4:4/36, 5:2/36, 37. The same

as for the sum of two ordinary dice, 39. 7, 41. 1/4, 43. −17/216, 45. Flag or Joker:

−13/54, 20: −12/54, 10: −10/54, 5: −12/54, 2: −9/54, 1: −6/54, 47. 32/10,

49. 26, 51. mean 5.8125, variance 1.03, 53. Mean 3.888, variance 0.432. 55. No.

2. Combinatorial Probability

1. 9!, 3. 3,360, 5. (a) 151,200, (b) 210, 7. 55, 9. (a) 263103 (b) 0.6391, 11.

0.0605, 13. (a) 540, (b) 372, 15. 118,800, 17. (a) 240, (b) 480, 19. (P15,5)4 P15,4,

21. (a) 120, (b) 60, (c) 504,000, (d) 34,650, 23. (a) 50!/(8!7!), (b) C50,8C50,7,

25. 103,680, 27. (a) 4!=24, (b) 576, (c) 105, (d) 2,520, (e) 40,320, (f) 384, 29.

60/1024, 31. (a) 0.152, (b) 0.618, 33. (a) 0.05469, (b) 0.92981, 35. 21/32, 37.

(a) 0.3874, (b) 0.3773, (c) 0.3725, 39. 0.3297, 41. Poisson: 0.778801, Exact:

0.778703, 43. 0.1889, 45. 0.9735, 47. 0.4232, 49. 0.11192, 51. 0.6664, 53. 10/21.

55. 0.3343, 57. C26,5C4,1/C30,6, 59. 0.3684, 61. (a) 0.4085, (b) 0.5107, (c) 0.0766,

63. C12,5 · C10,5 · 5!, 65. 5.47 × 10−4, 67. 1/2, 69. 0.5814, 71. 0.2285, 73. (a)

0.7969, (b) 0.1992, (c) 0.0038, 75. (a) Five of a kind: 0.000771, (b) four of a kind:

0.019290, (c) full house: 0.038580, (d) three of a kind: 0.154320, (e) two pair:

0.231481, (f) one pair: 0.462962, (g) no pair: 0.092592, 77. 5/32, 79. (a) 0.9, (b)

0.3, 81. 0.3439, 83. 0.028, 85. P (A) = 0.1655, P (A)/P (B) = 3.9971, 87. First

bound: 0.1667, second: 0.1551, third: 0.1555213, exact: 0.1555124

3. Conditional Probability

1. 2/3, 3. 4/25, 5. (a) 0.4385, (b) 0.4561, (c) 0.1052, 7. 6/7, 9. 2/3, 11. 1/3, 13.

P (A ∩ B) = 1/8, P (B) = 3/8, P (A ∪ B) = 1/2, 15. 0.6, 17. Put 1 white ball

in the first urn and all the other balls in the second. 19. 11/216, 21. 14: 146/1296,

0
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23. 0.9568, 25. 0.17, 27. 2/5, 29. 0.7, 31. 0.4918, 33. 1/4, 1/3, 35. 1/51, 37. (a)

0.9, (b) 1/730, 39. 12/29, 41. 8/9, 43. 56/65, 45. 4/5, 47. 1/7, 49. (a) 1/2, (b) 5/9 ,

51. 8/9, 53. 5/6, 55. 4/7, 57. 4/7, 2/7, 1/7, 59. 0.062, 0.3387, 61. P (N1 = k, N6 =
j ) = P (N1 = j, N6 = k) = (4/6) j−1(5/6)k− j−1(1/6)2, 63. (a) 1/6 (b) 1/2,

65.

Y X=1 2 3

1 1/9 2/9 1/3

2 1/18 0 1/6

3 0 1/9 0

4. Markov Chains

1. (a) x = 0.4, y = 0.4, z = 0.6, (b) x = 0.2, y = 0.5, z = 0.2, 3. 0.294, 5.

13/32, 7. (b) 0.22, 0.166, 9. 51.2% in 1980, 56.8% in 1990, and 60.9% in 2000,

11. (a) 0.55, (b) 0.575, (c) 0.6, 13. 0.7825, 0.727291, 8/11 = 0.0727272, 15.

38%, 25%, 8/33 = 24%, 17. 0.211, 0.286, 0.502, 19. 4/19, 21. (b) 7/13, 23. 4/5,

25. 0.25, 0.5, 0.25, 27. (a) 0.35, 0.34, 0.31, (b) 0.5294, 0.3235, 0.1470, 29. Long

run frequencies are A:0.2, C:0.55, T:0.25, 31. (b) 0.2321, 0.1964, 0.5714, 33.

0.2817, 35. π(0) = 100/122, π(1) = 10/122, π(2) = 2/122, π(3) = 10/122,

37. π(0) = 0.1, π(1) = 0.4, π(2) = 0.3, π(3) = 0.2, 39. 1/3, 41. 16.666, 43. (a)

1/4, (b) 3.916, 45. 0.125/0.685

5. Continuous Distributions

1. c = 1/3, 3. (a) 1/2, (b) 0.3, (c) 0.05, 5. (a) 15/28, (b) 127/49, (c) 2.304, 7.

Yes. x−2e−1/x , 9. (a) x2/4 for 0 ≤ x ≤ 2, (b) 1/4, (c) 7/16, (d)
√

2, 11. (a) x1/2

for 0 ≤ x ≤ 1, (b) 1 − 1/
√

3, (c) 1/6, (d) 1/4, 13. any number in [0, 1], 15.

(a) 1 − x−3 (b) (1 − u)−1/3, 21. y−1/2/2, 23. 1 − exp(−e−x ), 25. (a) f (y) +
f (−y) for 0 ≤ y ≤ 1, (b) { f (

√
z) + f (−√

z)}/2
√

z for 0 ≤ z ≤ 1, 27. (a) c =
1, (b) 3/8, 29. (1 − z)2/2 for 0 ≤ z ≤ 1, 31. 7/16, 33. F (x , y) = min{x , y} if

x , y > 0 and min{x , y} ≤ 1, F (x , y) = 1 if min{x , y} > 1, 0 otherwise, 35.

F X (x) = F X,Y (x , ∞) = limy→∞ F X,Y (x , y), 37. (a) f X (x) = (2/π)
√

1 − x2,

(b) fY (y|X = x) = 1/2
√

1 − x2 for −√
1 − x2 < y <

√
1 − x2, 39. f X (x) =

3(1 − x)2 for 0 < x < 1, fY (y) = 6y(1 − y) for 0 < y < 1, (b) f X (x|Y = y) =
1/(1 − y), 0 < x < 1 − y

6. Limit Theorems

1. −1, 3. −3/5, 5. 5.03, 7. 3.114, 9. 123.136, 11. Mean 6, variance 43, 13. (a)

mean 2, variance 1.82, (b) 1 boy and 1 girl, 15. Mean 14.7, variance 38.99, 17. (a)

P (X ≥ 75) ≤ 2/3, (b) P (40 < X < 60) ≥ 0.75, 19. Chebyshev: ≤ 1/4, normal

approx: 0.0455, 21. 0.484, 23. 0.041, 25. 0.0016, 27. 24, 29. 0.0085, 31. 0.1056,

33. (a) 0.2658, (b) 0.2565, (c) 0.2475, 35. (a) 0.0566, (b) 0.0884, 37. 157, 39.

373, 41. 0.3897, 43. 527, 45. 0.0116, 47. [0.508, 0.528], 49. [0.0044, 0.0356], 51.

52.33, 53. 0.0081, 55. Yes, 57. No, 59. 23

1
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Index of Terms

absorbing state, 116

arbitrage opportunity, 230

Bayes’ formula, 97

Bernoulli distribution, 200

binomial distribution, 42

mean and variance, 42

median, 172

sums of, 191

binomial theorem, 37

Black-Scholes formula, 234

Bonferroni inequalities, 65

Brownian motion, 233

geometric, 234

Cauchy distribution, 175

central limit theorem, 212

Chapman-Kolmogorov equation, 123

Chebyshev’s inequality, 205

chi-squared statistic, 8

combinations, 35

conditional probability, 81

confidence interval, 221

continuous distribution, 161

change of variables, 174

continuous random variable, 12

covariance, 199

density function, 161

discrete random variable, 12

mean, 21

standard deviation, 23

sums of, 190

variance, 22

discrete joint distributions, 100

conditional distributions, 104

marginal distributions, 101

distribution functions, 166

properties of, 170

doubly stochastic, 135

European call option, 229

event, 2

independent, 9, 11

pairwise disjoint, 3

pairwise independent, 11

expected value, 17

linearity of, 18, 196

experiment, 1

exponential distribution, 162

distribution function, 167

expected value, 165

lack of memory property, 168

mapped to uniform, 175

median, 172

sums of, 195

factorial, 33

gamma distribution, 195

geometric distribution, 13, 20

mean and variance, 24

sums of, 192

hedging strategy, 233

histogram correction, 213

hypergeometric distribution, 201

hypothesis testing, 220

identity matrix, 132

inclusion-exclusion formula, 64

independent

continuous random variables, 182

discrete random variables, 102

239
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240 Index of Terms

independent (cont.)

events, 9

identically distributed, 224

integration by parts formula,

165

joint density function, 177

conditional densities, 184

marginal densities, 182

joint distribution function,

180

law of large numbers, 206

law of total probability, 89

Markov chain, 114

aperiodic, 133

convergence theorem, 134

fundamental matrix, 145

irreducible, 133

period of a state, 133

two-stage, 119

maximum likelihood, 61

mean, 17

median, 171

moments, 22

multinomial distribution, 46

multiplication rule

combinatorial, 32

for probabilities, 83

normal distribution, 208

sums of, 211

tail probabilities, 218

outcome, 1

pairwise independent, 11

partition, 89, 97

permutation, 34

Pascal’s triangle, 36

Poisson distribution, 47

approximation to the binomial, 49, 52

mean and variance, 48

normal approximation, 217

sums of, 192

power laws, 163

distribution function, 168

expected value, 166

median, 172

probability, 2

frequency interpretation of, 3

monotonicity of, 5

prior, 99

random variable, 12

sample mean, 204

sample size selection, 221

sample space, 1

standard deviation, 23

stationary distribution, 125

Stirling’s formula, 33

sums of random variables

distribution, 190, 193

mean, 196

variance, 200

transition probability, 115

multi-step, 120

two-stage experiments, 81

uniform distribution, 162

distribution function, 167

expected value, 164

median, 172

on a ball, 178

sums of, 193

variance, 22

z-score, 216



aatozz cuus671/Durrett 978-0-521-86756-6 Top Margin: Gutter Margin: July 1, 2009 7:15

Index of Examples

Alliteration in Shakespeare, 51

Astragali, 15

Bad luck in Bloomington, 67

Balls in boxes, 197, 203

Baseball versus flipping coins, 219

Benford’s law, 16

Birthday problem, 8, 14, 51

Births in Ithaca, 53

Blackjack, 68

Bridge, 40, 44, 59

Buffon’s needle, 178, 221

Capture-recapture experiments, 61

China’s one-child policy, 20

Cognitive dissonance, 85

Coupon collector’s problem, 202

Craps, 90, 93

Deal or No Deal, 19

Death by horse kick, 50

Disputed elections, 60

Ehrenfest chain, 116, 129, 132

English letter frequencies, 15

Exit polls, 94

Fair division of a bet, 18

Gambler’s ruin, 114, 138

Growth of a risky investment, 206

Hemophilia, 96

Hot-hand in basketball, 120, 128

How not to water your lawn, 175

Ipolito versus Power, 213

Joe DiMaggio’s streak, 66

Keno, 58

Literary Digest poll, 222

Lottery double winners, 54

Mammogram posterior probabilities, 95

Monopoly, 136

Monty Hall problem, 84

NCAA tournament, 93

New York state lottery, 56

New York Yankees salaries, 25

NFL regular season records, 215

O.J. Simpson trial, 99

Optimal investment, 207

Paternity probabilities, 98

Pick 4 coincidence, 54

Poker, 38

Quality control, 61

Roulette, 17, 139, 216

Sally Clark, 55

Scrabble, 15, 20, 24

Scratch-off triple winner, 55

Shark attacks, 50

Simpson’s paradox, 105

Tennis, 46, 143, 146

V-2 rocket hits, 50

Waiting for coin patterns, 147

Wayne Gretsky, 53

Weldon’s dice data, 220

World Series, 6, 35

Wright-Fisher model, 115, 139
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