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Preface

Asymptotic behavior of evolution equations is a well-studied area in the the-

ory of abstract differential equations with various methods of studies. It is

natural to use the well-known ideas and techniques in the finite dimensional

case as much as possible to deal with the problems in the infinite dimen-

sional case. Having this in mind, in this book we will make an attempt to

gather systematically certain recent results on several central topics of the

asymptotic behavior of differential equations in Banach spaces. We will dis-

cuss the conditions for the stability, dichotomy and harmonic oscillation of

solutions of evolution equations. The results and methods of approach will

be presented in a manner that allows the reader, who is familiar with the

techniques in the finite dimensional case, to easily understand them. Some

parts of the book are actually lecture notes we have taught to graduate

students over the past years.

We outline briefly the contents of our book. In Chapter 1 we recall

several basic facts from semigroup theory, spectral theory of functions that

will be used throughout the book. Chapter 2 is devoted to some classical

topics including stability and dichotomy of linear homogeneous equations.

In Chapter 3 we present some new methods of studying the harmonic os-

cillation in inhomogeneous linear equations. Chapter 4 is devoted to the

topic of almost automorphy of solutions, that has recently regained interest

in the mathematical literature. Existence of almost automorphic solutions

to some linear and semilinear abstract differential equations is studied. We

discuss the Massera type conditions for the existence of periodic solutions

to periodic nonlinear equations in Chapter 5. At the end of each chapter

we give a guide for further reading and comments on the results as well

as the methods of study discussed in the chapter. We finally collect some

of the required tools from functional analysis and operator theory in the

v
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Chapter 1

Banach Spaces, C0-Semigroups of

Linear Operators and Almost

Periodicity of Functions

1.1 Banach Spaces and Linear Operators

1.1.1 Banach Spaces

The notion of Banach spaces will be used throughout this book. A normed

space is a linear space X, endowed with a norm, frequently denoted by ‖ ·‖,
that is a function from X to the set of all real numbers, denoted by R, such

that

(1) ‖x‖ ≥ 0, ‖x‖ = 0 if and only if x = 0;

(2) ‖λx‖ = |λ|‖x‖, ∀λ ∈ C or R, x ∈ X;

(3) ‖x+ y‖ ≤ ‖x‖ + ‖y‖, ∀ x, y ∈ X.

A normed space X is called Banach space if it is complete, i.e., every Cauchy

sequence in X is convergent.

Example 1.1. Let BC(R,X) be the linear space of all bounded continuous

X-valued functions on R with sup-norm

‖f‖ := sup
t∈R

‖f(t)‖, ∀f ∈ BC(R,X). (1.1)

Then BC(R,X) is a Banach space.

Similarly, the following spaces are Banach spaces if endowed with norm

(1.1).

BUC(R,X) := {f ∈ BC(R,X) : f is uniformly continuous} (1.2)

Pω := {f ∈ BC(R,X) : f is periodic with period ω} (1.3)

However, the function space

C1(R,X) := {f ∈ BC(R,X) : f ′ exists and f ′ ∈ BC(R,X)}

1



April 22, 2008 10:13 World Scientific Book - 9in x 6in stability

2 Topics on Stability and Periodicity in Abstract Differential Equations

is not a Banach space. In fact, it is easy to choose a sequence of differen-

tiable functions {fn} with f ′
n ∈ BC(R,X) such that it is a Cauchy sequence

but it does not converge to a differentiable function.

Example 1.2. Let Ω be the unit open ball of Rn, i.e., Ω = {x ∈ Rn : ‖x‖ <
1}. We denote by Cm(Ω) the set of all m times continuously differentiable

functions in Ω with the derivatives up to the order m bounded and contin-

uously extendable up to the boundary {x ∈ Rn : ‖x‖ = 1}. Then Cm(Ω) is

a Banach space with the following norm

‖f‖Cm(Ω) :=
∑

|α|≤m

sup
x∈Ω

‖Dαf(x)‖. (1.4)

To conclude this subsection we consider the following Banach spaces

Example 1.3. For any interval I = [a, b], a < b ∈ R and α ∈ (0, 1) let us

denote

Cα(I,X) := {f ∈ BC(I,X) : sup
t,s∈I,s<t

‖f(t) − f(s)‖
(t− s)α

<∞}.

Then Cα(I,X) is a Banach space with the norm

‖f‖Cα(I,X) := sup
t∈I

‖f(t)‖ + sup
t,s∈I,s<t

‖f(t) − f(s)‖
(t− s)α

.

These Banach spaces are called the Banach spaces of Hölder continuous

functions.

In general if dimX <∞, then X is a Banach space with any norm.

Exercise 1. Show that X with norm ‖·‖ is a finite-dimensional Banach space

if and only if the unit ball {x ∈ X : ‖x‖ ≤ 1} is compact.

1.1.2 Linear Operators

Definition 1.1. Let X be a Banach space. Then a mapping A fromD(A) ⊂
X to X is said to be a linear operator if D(A) is a linear subspace of X and

A is linear. In this case D(A) is called domain of A and the range of this

operator will be denoted by R(A).

Remark 1.1. In the definition of a linear operator the domain is necessarily

a linear space. In general, it is a dense subspace of X but not the whole

space X.
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Example 1.4. Let M be an n×n matrix with real entries. Then it defines

a linear operator from Rn into itself by the rule x 7→ Mx, where x is a

columm of n rows, an element of Rn. In this example, denoting by M the

corresponding linear operator, we have that D(M) = Rn.

Generally, if dimX < ∞, then from the density of D(A) in X follows that

D(A) = X. However, it is not the case for the following operators in infinite

dimensional Banach spaces:

Example 1.5. Let A be the differential operator d/dt with D(A) defined

as follows:

D(A) = {f ∈ BC(R,X) : df/dt ∈ BC(R,X)}.
Obviously, A is a linear operator and D(A) is a subspace of X that is dense

everywhere in X, but is not X.

Example 1.6. Let B be the differential operator d/dt with D(B) defined

as follows:

D(B) := {g ∈ BC(R,X) : dg/dt ∈ BC(R,X), dg(0)/dt = 1}.

It is not difficult to see that B is not a linear subspace of BC(R,X) as the

domain D(B) is not linear subspace. In fact, we can see that 0 is not in

D(B).

1.1.3 Spectral Theory of Linear (Closed) Operators

First, we introduce the notion of bounded linear operators on a Banach

space X, and then extend our consideration to more general classes of linear

operators, for instance, closed operators.

Definition 1.2. Let A be a linear operator on a Banach space X with

D(A) = X. Then it is said to be a bounded linear operator on X if there

exists a positive constant c such that

‖Ax‖ ≤ c‖x‖, ∀x ∈ X. (1.5)

Hence, if A is a bounded linear operator, then it is continuous.

Exercise 2. Show the converse of the above assertion.

In view of this exercise, the notion of bounded linear operators is nothing

but that of continuous linear operators.
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Let A be a bounded linear operator. Then the following nonnegative

number

‖A‖ := inf{c ∈ R : ‖Ax‖ ≤ c‖x‖, ∀x ∈ X} (1.6)

is called the norm of A.

Exercise 3. Let L(X) denote the set of all bounded linear operators on the

given Banach space X. Then L(X) endowed with the norm (1.6) is again a

Banach space.

As we have seen in the above example, there are linear operators that

are not bounded. Among the class of unbounded linear operators the class

of closed operators is particularly important. There are two reasons, to our

view, for this importance. The first one is that we encounter the operators

of this class everywhere in problems involving partial differential equations,

functional differential equations, integro-differential equations, etc. The

second one is that the requirement on the closedness is indeed not too

much. Every linear operator with nonempty resolvent set is closed, as

shown below. Now we give a precise definition of this class.

Definition 1.3. A linear operator A from D(A) ⊂ X to X is said to be

closed if its graph, i.e., the set {(x,Ax) ∈ X × X, ∀x ∈ D(A)} is closed.

If a linear operatorA is not closed, one may expect that there is an extension

so that the extension of it is closed. In this case, we say that the linear

operator A is closable. The smallest extension is called the closure of A.

We are ready to define the notion of spectrum of a closed linear operator

A. Let X be a given complex Banach space.

Definition 1.4. We call the set

ρ(A) := {λ ∈ C : λ−A : D(A) → X is bijective}
the resolvent set and its complement σ(A) := C\ρ(A) the spectrum of A.

For λ ∈ ρ(A), the inverse

R(λ,A) := (λ−A)−1

is, by the closed graph theorem, a bounded linear operator on X and will

be called the resolvent of A in the point λ.

Remark 1.2. Definition (1.4) can be extended to general linear operators,

which are not necessarily closed, if we require that the map A : D(A) ⊂
X → X has bounded inverse.
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Exercise 4. Show that if a linear operator A : D(A) ⊂ X → X has nonempty

resolvent set, then it is closed.

Example 1.7. Let A be any linear operator of the finite dimensional com-

plex Banach space Cn. Then σ(A) is exactly the set of all eigenvalues of

A, i.e. the set of all λ ∈ C such that there is a nonzero vector x of Cn with

Ax = λx.

Any bounded linear operator A has nonempty spectrum. Its spectrum

is contained in the disk of radius

r(A) := lim
n→∞

(

‖A‖n
)1/n

. (1.7)

This number is called spectral radius of the bounded operator A.

In contrast to the finite dimensional case, in general, a bounded linear

spectrum may have no eigenvalue, for instance,

Example 1.8. Let c0 be the Banach space of numerical two-sided se-

quences which converge to zero with sup-norm, i.e.,

c0 := {{xn}∞n=0, xn ∈ R, lim
n→∞

xn = 0}.
Then we define the translation T : c0 → c0 which maps every sequence

{xn} to the sequence {yn} such that yn = xn−1, ∀n > 1, y1 = 0. It is seen

that
∞
⋂

n=1

Tnc0 = {0}.

So, if there is an eigenvalue λ, then there is an invariant nontrivial subspace

of T . This is impossible.

1.1.3.1 Several Properties of Resolvents

An important property of ρ(A) is that it is an open subset of the complex

plane. The map ρ(A) 3 λ→ R(λ,A) ∈ L(X) (resolvent map) is analytic in

the open subset ρ(A). One can show that any closed subset of the complex

plane can serve as a spectrum of a closed linear operator.

Theorem 1.1. For a closed linear operator A : D(A) ⊂ X → X, the

following properties hold true:

(1) The resolvent set ρ(A) is open in C, and for µ ∈ ρ(A) one has

R(λ,A) =

∞
∑

n=0

(µ− λ)nR(µ,A)n+1 (1.8)

for all λ ∈ C such that |µ− λ| < 1/‖R(µ,A)‖.
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(2) The resolvent map λ 7→ R(λ,A) is locally analytic with

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1, ∀n ∈ N.

(3) Let λn ∈ ρ(A) with limit limn→∞ λn = λ0. Then λ0 ∈ σ(A) if and only

if

lim
n→∞

‖R(λn, A)‖ = ∞.

Proof. For the proof see e.g. Chap. IV in [Engel and Nagel (30)]. �

The following is concerned with another elementary property of resol-

vents:

Theorem 1.2. Let A be a closed linear operator on a Banach space X.

Then for all λ ∈ ρ(A) we have

‖R(λ,A)‖ ≥ 1

dist (λ, σ(A))
.

Proof. This will be an immediate consequence of the fact that

‖R(λ,A)‖ ≥ r(R(λ,A)) once we prove that

σ(R(λ,A)) =
1

λ− σ(A)
.

But it is trivial to check that (λ− µ)(λ −A)R(µ,A) is a two-sided inverse

for (λ− µ)−1 −R(λ,A) whenever µ ∈ ρ(A), which proves the inclusion ⊂.

Similarly, (λ − µ)−1R(λ,A)((λ − µ)−1 − R(λ,A))−1 is a two-sided inverse

for µ−A whenever (λ− µ)−1 ∈ ρ(R(λ,A)), which proves the inclusion ⊃.
�

Let A be a closed linear operator. Then we introduce some finer notions

of spectrum for A.

Definition 1.5.

(1) Each λ ∈ σ(A) such that λ − A is not injective, is called eigenvalue of

A, and each nonzero vector x ∈ D(A) such that (λ−A)x = 0 is called

eigenvector corresponding to λ. The subset of σ(A) consisting of all

eigenvalues of A, is denoted by Pσ(A) and is called the point spectrum

of A.

(2) We call approximate eigenvalue each λ ∈ σ(A) such that there is a

sequence {xn} ⊂ D(A) ( called approximate eigenvector) satisfying

‖xn‖ = 1 and limn→∞ ‖Axn − λxn‖ = 0.
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1.2 Strongly Continuous Semigroups of Operators

In this section we collect some well-known facts from the theory of strongly

continuous semigroups of operators on a Banach space for the reader’s

convenience. We will focus the reader’s attention on several important

classes of semigroups such as analytic and compact semigroups which will

be discussed in the next chapters. Among the basic properties of strongly

continuous semigroups we will emphasize on the spectral mapping theorem.

Since the materials of this section as well as of this chapter in the whole can

be found in any standard book covering the area, here we aim at freshening

up the reader’s memory rather than giving a logically self contained account

of the theory.

1.2.1 Definition and Basic Properties

Definition 1.6. A family (T (t))t≥0 of bounded linear operators acting on

a Banach space X is called a C0-semigroup if the following three properties

are satisfied:

(1) T (0) = I , the identity operator on X;

(2) T (t)T (s) = T (t+ s) for all t, s ≥ 0;

(3) limt→0+ ‖T (t)x− x‖ = 0 for all x ∈ X.

The infinitesimal generator of (T (t))t≥0, or briefly the generator, is the

linear operator A with domain D(A) defined by

D(A) = {x ∈ X : lim
t↓0

1

t
(T (t)x− x) exists},

Ax = lim
t↓0

1

t
(T (t)x− x), x ∈ D(A).

The generator is always a closed, densely defined operator. A strongly

continuous semigroup of bounded linear operators on X will be called C0-

semigroup.

We now consider several examples of strongly continuous semigroups.

Example 1.9. Let A be a bounded linear operator on a Banach space X.

Then (etA))t≥0, defined by the formula

etA :=

∞
∑

k=0

(tA)k

k!
, (1.9)
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is a strongly continuous semigroup of bounded linear operators on the Ba-

nach space X. Moreover, its generator is the operator A with D(A) = X.

Proof. First, it may be noted that the formula (1.9) is well defined. In

fact, since A is bounded
∞
∑

k=0

‖(tA)k‖
k!

≤ e|t|‖A‖, ∀t.

Hence, the series is absolutely convergent. To check that this family is

indeed a semigroup we will prove the following

e(t+s)A = etAesA, ∀s, t ∈ R.

From the absolute convergence of the above series it follows that the product

of two series
∑∞

k=0
(tA)k

k! , and esA :=
∑∞

n=0
(sA)n

n! is absolutely convergent,

i.e.,
∞
∑

k=0

(tA)k

k!
×

∞
∑

n=0

(sA)n

n!

is convergent. Moreover, it does not depend on the way of summation, in

particular,

etAesA =
∞
∑

k=0

(tA)k

k!
×

∞
∑

n=0

(sA)n

n!

=

∞
∑

m=0

∑

k+n=m

(tA)k

k!

(sA)n

n!
(1.10)

=

∞
∑

m=0

(tA)m

m!
(1.11)

= e(t+s)A. (1.12)

We now show that this semigroup is strongly continuous. By definition, we

have to show that

lim
t→0+

etAx = x, ∀x ∈ X.

By (1.9), ∀x ∈ X

‖etAx− x‖ ≤ ‖
∞
∑

k=1

(tAx)kx

k!
‖

≤ |t|‖A‖‖x‖
∞
∑

k=0

‖(tA)k‖
(k + 1)!

≤ |t|‖A‖‖x‖
∞
∑

k=0

‖(tAx)k‖
(k)!

= |t|‖A‖‖x‖e|t|‖A‖.
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Hence

lim
t→0+

‖etAx− x‖ = 0.

Now we show that A is the generator of this semigroup with D(A) = X,

i.e., we have to show that for all x ∈ X, the following holds true

lim
t→0+

etAx− x

t
= Ax. (1.13)

In fact, by (1.9), ∀x ∈ X

‖e
tAx− x

t
−Ax‖ ≤ |t|e|t|‖A‖‖A‖‖x‖. (1.14)

Hence (1.13) holds true. �

Example 1.10. Let (S(t))t≥0 be the translation semigroup on BUC(R,X),

where X is a Banach space, i.e.,

S(t)f(s) := f(t+ s), ∀t ≥ 0, s ∈ R, f ∈ BUC(R,X).

It is easy to check that (S(t))t≥0 is a semigroup of bounded linear oper-

ators on BUC(R,X). From the uniform continuity of every function in

BUC(R,X) it follows that this translation semigroup is strongly continu-

ous.

As an example of a non strongly continuous semigroup we can consider the

translation semigroup (S(t))t≥0 in BC(R,X). The non-strong continuity

follows from the fact that there exists a bounded function which is not

uniformly continuous. Indeed, we can take the following example

Example 1.11. The function f(t) = sin t2, t ∈ R, is a continuous and

bounded function that is not uniformly continuous.

In fact, we can choose a sequence t2n =
√

2nπ + π/2, t2n+1 =
√

(2n+ 1)π.

Obviously, f(t−2n) = 1 and f(t2n+1) = 0 while |t2n−t2n+1| → 0 as n→ ∞.

Theorem 1.3. Let (T (t))t≥0 be a C0-semigroup. Then there exist con-

stants ω ≥ 0 and M ≥ 1 such that

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Proof. For the proof see e.g. p. 4 in [Pazy (90)]. �

Corollary 1.1. If (T (t))t≥0 is a C0-semigroup, then the mapping (x, t) 7→
T (t)x is a continuous function from X × R+ → X.
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Proof. For any x, y ∈ X and t ≤ s ∈ R+ := [0,∞),

‖T (t)x− T (s)y‖ ≤ ‖T (t)x− T (s)x‖ + ‖T (s)x− T (s)y‖
≤ Meωs‖x− y‖+ ‖T (t)‖‖T (s− t)x− x‖
≤ Meωs‖x− y‖+Meωt‖T (s− t)x− x‖. (1.15)

Hence, for fixed x, t (t ≤ s) if (y, s) → (x, t) then ‖T (t)x − T (s)y‖ → 0.

Similarly, for s ≤ t

‖T (t)x− T (s)y‖ ≤ ‖T (t)x− T (s)x‖ + ‖T (s)x− T (s)y‖
≤ Meωs‖x− y‖ + ‖T (s)‖‖T (t− s)x− x‖
≤ Meωs‖x− y‖ +Meωs‖T (t− s)x− x‖. (1.16)

Hence, if (y, s) → (x, t) then ‖T (t)x− T (s)y‖ → 0. �

Other basic properties of a C0-semigroup and its generator are listed in the

following:

Theorem 1.4. Let A be the generator of a C0-semigroup (T (t))t≥0 on X.

Then

(1) For x ∈ X,

lim
h→0

1

h

∫ t+h

t

T (s)xds = T (t)x.

(2) For x ∈ X,
∫ t

0 T (s)xds ∈ D(A) and

A

(∫ t

0

T (s)xds

)

= T (t)x− x.

(3) For x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax.

(4) For x ∈ D(A),

T (t)x− T (s)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)xdτ.

Proof. For the proof see e.g. p. 5 in [Pazy (90)]. �

We continue with some useful facts about semigroups that will be used

throughout this book. The first of these is the Hille-Yosida theorem that

characterizes the generators of C0-semigroups among the class of all linear

operators.

Theorem 1.5. Let A be a linear operator on a Banach space X, and let ω ∈
R and M ≥ 1 be constants. Then the following assertions are equivalent:
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(1) A is the generator of a C0-semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤
Meωt for all t ≥ 0;

(2) A is closed, densely defined, the half line (ω,∞) is contained in the

resolvent set ρ(A) of A, and we have the estimates

‖R(λ,A)n‖ ≤ M

(λ− ω)n
, ∀λ > ω, n = 1, 2, ... (1.17)

Here, R(λ,A) := (λ−A)−1 denotes the resolvent of A at λ. If one of the

equivalent assertions of the theorem holds, then actually {Reλ > ω} ⊂ ρ(A)

and

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
, ∀Reλ > ω, n = 1, 2, ... (1.18)

Moreover, for Reλ > ω the resolvent is given explicitly by

R(λ,A)x =

∫ ∞

0

e−λtT (t)x dt, ∀x ∈ X. (1.19)

We shall mostly need the implication (i)⇒(ii), which is the easy part of

the theorem. In fact, one checks directly from the definitions that

Rλx :=

∫ ∞

0

e−λtT (t)x dt

defines a two-sided inverse for λ−A. The estimate (1.18) and the identity

(1.19) follow trivially from this.

A useful consequence of (1.17) is that

lim
λ→∞

‖λR(λ,A)x − x‖ = 0, ∀x ∈ X. (1.20)

This is proved as follows. Fix x ∈ D(A) and µ ∈ ρ(A), and let y ∈ X be

such that x = R(µ,A)y. By (1.17) we have ‖R(λ,A)‖ = O(λ−1) as λ → ∞.

Therefore, the resolvent identity

R(λ,A) −R(µ,A) = (µ− λ)R(λ,A)R(µ,A) (1.21)

implies that

lim
λ→∞

‖λR(λ,A)x − x‖ = lim
λ→∞

‖R(λ,A)(µR(µ,A)y − y)‖ = 0.

This proves (1.20) for elements x ∈ D(A). Since D(A) is dense in X and

the operators λR(λ,A) are uniformly bounded as λ → ∞ by (1.17), (1.20)

holds for all x ∈ X.
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1.2.2 Compact Semigroups and Analytic Strongly Contin-

uous Semigroups

Definition 1.7. A C0-semigroup (T (t))t≥0 is called compact for t > t0 if

for every t > t0, T (t) is a compact operator. (T (t))t≥0 is called compact if

it is compact for each t > 0.

If a C0-semigroup (T (t))t≥0 is compact for t > t0, then it is continuous in

the uniform operator topology for t > t0.

Theorem 1.6. Let A be the generator of a C0-semigroup (T (t))t≥0. Then

(T (t))t≥0 is a compact semigroup if and only if T (t) is continuous in the

uniform operator topology for t > 0 and R(λ;A) is compact for λ ∈ ρ(A).

Proof. For the proof see e.g. p. 49 in [Pazy (90)]. �

In this book we distinguish the notion of analytic C0-semigroups from

that of analytic semigroups in general. To this end we recall several notions.

Let A be a linear operator D(A) ⊂ X → X with not necessarily dense

domain.

Definition 1.8. A is said to be sectorial if there are constants ω ∈ R, θ ∈
(π/2, π),M > 0 such that the following conditions are satisfied:















i) ρ(A) ⊃ Sθ,ω = {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ},

ii) ‖R(λ,A)‖ ≤M/|λ− ω| ∀λ ∈ Sθ,ω.

If we assume in addtion that ρ(A) 6= �, then A is closed. Thus, D(A),

endowed with the graph norm

‖x‖D(A) := ‖x‖ + ‖Ax‖,
is a Banach space. For a sectorial operator A, from the definition, we can

define a linear bounded operator etA by means of the Dunford integral

etA :=
1

2πi

∫

ω+γr,η

etλR(λ,A)dλ, t > 0, (1.22)

where r > 0, η ∈ (π/2, θ) and γr,η is the curve

{λ ∈ C : |argλ| = η, |λ| ≥ r‖} ∪ {λ ∈ C : |argλ| ≤ η, |λ| = r},
oriented counterclockwise. In addition, set e0Ax = x, ∀x ∈ X.

Theorem 1.7. Under the above notation, for a sectorial operator A the

following assertions hold true:
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(1) etAx ∈ D(Ak) for every t > 0, x ∈ X, k ∈ N. If x ∈ D(Ak), then

AketAx = etAAkx, ∀t ≥ 0;

(2) etAesA = e(t+s)A, ∀t, s ≥ 0;

(3) There are positive constants M0,M1,M2, ..., such that















(a) ‖etA‖ ≤M0e
ωt, t ≥ 0,

(b) ‖tk(A− ωI)ketA‖ ≤Mke
ωt, t ≥ 0,

where ω is determined from Definition 1.8. In particular, for every

ε > 0 and k ∈ N there is Ck,ε such that

‖tkAketA‖ ≤ Ck,εe
(ω+ε)t, t > 0;

(4) The function t 7→ etA belongs to C∞((0,+∞), L(X)), and

dk

dtk
etA = AketA, t > 0,

moreover it has an analytic extension in the sector

S = {λ ∈ C : |argλ| < θ − π/2}.

Proof. For the proof see pp. 35-37 in [Lunardi (65)]. �

Definition 1.9. For every sectorial operator A the semigroup (etA)t≥0 de-

fined in Theorem 1.7 is called the analytic semigroup generated by A in

X. An analytic semigroup is said to be an analytic strongly continuous

semigroup if in addition, it is strongly continuous.

There are analytic semigroups which are not strongly continuous, for in-

stance, the analytic semigroups generated by nondensely defined sectorial

operators. From the definition of sectorial operators it is obvious that for a

sectorial operator A the intersection of the spectrum σ(A) with the imagi-

nary axis is bounded. In this book, if otherwise stated, by ”analytic semi-

groups” we mean analytic semigroups that are strongly continuous. We use

this convention because most of the results presented here are concerned

with C0-semigroups.
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1.2.3 Spectral Mapping Theorems

If A is a bounded linear operator on a Banach space X, then by the Dunford

Theorem [Dunford and Schwartz (29)] σ(exp(tA)) = exp(tσ(A)), ∀t ≥
0. It is natural to expect this relation holds for any C0-semigroups on a

Banach space. However, this is not true in general as shown by the following

counterexample (p. 44 in [Pazy (90)])

Example 1.12.

Let X be the Banach space of all continuous functions on the interval [0, 1]

which are equal to zero at x = 1 with the supremum norm. Define

(T (t)f)(x) =

{

f(x+ t), if x+ t ≤ 1

0, if x+ t > 1.

(T (t))t≥0 is obviously a C0-semigroup of contraction on X. Its generator A

is given by

D(A) = {f : f ∈ C1([0, 1]) ∩ X, f ′ ∈ X}
and

Af = f ′, for f ∈ D(A).

For every λ ∈ C and g ∈ X the equation λf − f ′ = g has a unique solution

f ∈ X given by

f(t) =

∫ 1

t

eλ(t−s)g(s)ds.

Therefore, σ(A) = ∅. On the other hand, since for every t ≥ 0, T (t) is a

bounded operator, σ(T (t)) 6= 0, so the relation σ(T (t)) = exp(tσ(A)) does

not hold for any t ≥ 0.

In this section we prove the following Spectral Inclusion Theorem for

C0-semigroups:

Theorem 1.8. Let (T (t))t≥0 be a C0-semigroup on a Banach space X with

generator A. Then we have the spectral inclusion relation

σ(T (t)) ⊃ etσ(A), ∀t ≥ 0.

Proof. By Theorem 1.4 for the semigroup (T λ(t))t≥0 := {e−λtT (t)}t≥0

generated by A− λ, for all λ ∈ C and t ≥ 0

(λ−A)

∫ t

0

eλ(t−s)T (s)x ds = (eλt − T (t))x, ∀x ∈ X,
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and
∫ t

0

eλ(t−s)T (s)(λ− A)x ds = (eλt − T (t))x, ∀x ∈ D(A). (2.1.1)

Suppose eλt ∈ ρ(T (t)) for some λ ∈ C and t ≥ 0, and denote the inverse of

eλt − T (t) by Qλ,t. Since Qλ,t commutes with T (t) and hence also with A,

we have

(λ−A)

∫ t

0

eλ(t−s)T (s)Qλ,tx ds = x, ∀x ∈ X,

and
∫ t

0

eλ(t−s)T (s)Qλ,t(λ−A)x ds = x, ∀x ∈ D(A).

This shows the boundedness of the operator Bλ defined by

Bλx :=

∫ t

0

eλ(t−s)T (s)Qλ,tx ds

is a two-sided inverse of λ−A. It follows that λ ∈ %(A). �

As shown by Example 1.12 the converse inclusion

etσ(A) ⊃ σ(T (t))\{0}
in general fails. For certain parts of the spectrum, however, the Spectral

Mapping Theorem holds true. To make it more clear we recall that for a

given closed operator A on a Banach space X the point spectrum σp(A) is

the set of all λ ∈ σ(A) for which there exists a non-zero vector x ∈ D(A)

such that Ax = λx, or equivalently, for which the operator λ − A is not

injective; the residual spectrum σr(A) is the set of all λ ∈ σ(A) for which

λ−A does not have dense range; the approximate point spectrum σa(A) is

the set of all λ ∈ σ(A) for which there exists a sequence (xn) of norm one

vectors in X , xn ∈ D(A) for all n, such that

lim
n→∞

‖Axn − λxn‖ = 0.

Obviously, σp(A) ⊂ σa(A).

Theorem 1.9. Let (T (t))t≥0 be a C0-semigroup on a Banach space X, with

generator A. Then

σp(T (t))\{0} = etσp(A), ∀t ≥ 0.

Proof. For the proof see e.g. p. 46 in [Pazy (90)]. �
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Recall that a family of bounded linear operators (T (t))t∈R is said to be

a strongly continuous group if it satisfies

(1) T (0) = I,

(2) T (t+ s) = T (t)T (s), ∀t, s ∈ R,

(3) limt→0 T (t)x = x, ∀x ∈ X.

Similarly as C0-semigroups, the generator of a strongly continuous group

(T (t))t∈R is defined to be the operator

Ax := lim
t→0

T (t)x− x

t
,

with the domain D(A) consisting of all elements x ∈ X such that the above

limit exists.

In the next chapter we need the following lemma:

Lemma 1.1. Let (T (t))t≥0 be a uniformly bounded C0-group on a Banach

space X 6= {0}, with generator A. Then σ(A) 6= ∅.

For bounded strongly continuous groups of linear operators the following

Weak Spectral Mapping Theorem holds:

Theorem 1.10. Let (T (t))t∈R be a bounded strongly continuous group, i.e.,

there exists a positive M such that ‖T (t)‖ ≤ M, ∀t ∈ R with generator A.

Then

σ(T (t)) = etσ(A), ∀t ∈ R. (1.23)

Proof. For the proof see e.g. [Nagel (73)] or Chapter 2 in [van Neerven

(78)]. �

Example 1.13. Let M be a closed translation invariant subspace of the

space of X-valued bounded uniformly continuous functions on the real line

BUC(R,X), i.e., M is closed and S(t)M ⊂ M, ∀t, where (S(t))t∈R is the

translation group on BUC(R,X). Then

σ(S(t)|M) = etσ(DM), ∀t ∈ R,

where DM is the generator of the restriction of translation group to M.

In the next chapter we will consider situations similar to this example

which arise in connection with invariant subspaces of so-called evolution

semigroups.
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1.2.4 Commuting Operators

Let A,B be two bounded linear operators on a given Banach space X which

is assumed to be complex. The definition of commutativeness of these

operators in this case is natural, i.e., the identity AB = BA holds. In the

general case, where the operators A and B are not necessarily everywhere

defined, we have the following definition:

Definition 1.10. Let A and B be linear operators on a Banach space G

with non-empty resolvent sets. We say that A and B commute if one of the

following equivalent conditions hold:

(1) R(λ,A)R(µ,B) = R(µ,B)R(λ,A) for some (all) λ ∈ ρ(A), µ ∈ ρ(B),

(2) x ∈ D(A) implies R(µ,B)x ∈ D(A) and AR(µ,B)x = R(µ,B)Ax for

some (all) µ ∈ ρ(B).

Exercise 5. Show that if A,B are bounded linear operators which are com-

mutative in the usual sense, i.e., AB = BA, then they are commuting

operators in the sense of Definition 1.10.

Exercise 6. Show that if A is a bounded linear operator on a Banach space

X and (T (t))t≥0 is a strongly continuous semigroup on X. Then, if A

commutes with T (t) for all t ≥ 0, A must commute with the infinitesimal

generator of the semigroup (T (t))t≥0.

Let us consider the generator of the product of two commuting semi-

groups (G(t))t≥0, (H(t))t≥0, that is, the semigroup (P (t))t≥0 defined by

P (t) = G(t) ·H(t). Generally, this semigroup may not be strongly contin-

uous. Below, we assume that the product semigroup (P (t))t≥0 is strongly

continuous. Let us denote by G,H,P the generators of (G(t))t≥0, (H(t))t≥0,

(P (t))t≥0, respectively.

Exercise 7. Under the above assumptions and notations prove that

P = G + H.

Hint. First show that for every t ≥ 0, G(t)D(H) ⊂ D(H) from which the

following holds: D(G) ∩D(H) ⊂ D(P). Next, for every x ∈ X, t > 0 using

the following

y(t) =
1

t2

∫ t

0

H(ξ)

∫ t

0

G(η)xdξdη (1.24)

to prove that D(G) ∩ D(H) is dense in X. Using this fact, complete the

proof by showing that G + H = P .
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For θ ∈ (0, π), R > 0 we denote Σ(θ,R) = {z ∈ C : |z| ≥ R, |argz| ≤ θ}.

Definition 1.11. Let A and B be commuting operators. Then

(1) A is said to be of class Σ(θ + π/2, R) if there are positive constants

θ,R such that 0 < θ < π/2, and

Σ(θ + π/2, R) ⊂ ρ(A) and sup
λ∈Σ(θ+π/2,R)

‖λR(λ,A)‖ <∞, (1.25)

(2) A and B are said to satisfy condition P if there are positive constants

θ, θ′, R, θ′ < θ such that A and B are of class Σ(θ + π/2, R),Σ(π/2 −
θ′, R), respectively.

If A and B are commuting operators, A+ B is defined by (A +B)x =

Ax+Bx with domain D(A+B) = D(A) ∩D(B).

We will use the following norm, defined by A on the space X, ‖x‖TA
:=

‖R(λ,A)x‖, where λ ∈ ρ(A). It is seen that different λ ∈ ρ(A) yields

equivalent norms. We say that an operator C on X is A-closed if its graph

is closed with respect to the topology induced by TA on the product X×X.

It is easily seen that C is A-closable if xn → 0, xn ∈ D(C), Cxn → y with

respect to TA in X implies y = 0. In this case, A-closure of C is denoted

by C
A
.

Theorem 1.11. Assume that A and B commute. Then the following as-

sertions hold:

(1) If one of the operators is bounded, then

σ(A+B) ⊂ σ(A) + σ(B). (1.26)

(2) If A and B satisfy condition P, then A+B is A-closable, and

σ((A +B)
A
) ⊂ σ(A) + σ(B). (1.27)

In particular, if D(A) is dense in X, then (A+B)
A

= A+B , where

A+B denotes the usual closure of A+B.

Proof. For the proof we refer the reader to Theorems 7.2, 7.3 in [Arendt,

Räbiger and Sourour (6)]. �
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1.3 Spectral Theory and Almost Periodicity of Functions

1.3.1 Introduction

As is known, for a 2π-periodic continuous function f : R → X the Fourier

exponents are defined to be the set:

{λ ∈ Z :

∫ π

−π

e−iλξf(ξ)dξ 6= 0}. (1.28)

The notion of spectrum of a bounded function is a generalization of this

notion of Fourier exponents. However, for any bounded function it is not

expected that the integral in the above set is used, but instead of it another

integral on the whole real line. This section will give a very short intro-

duction to this spectral theory. We will take several examples to show how

our abstract definition can be incorporated into simple cases in which the

notions of Fourier, Bohr exponents are well known.

1.3.2 Spectrum of a Bounded Function

We denote by F the Fourier transform, i.e.

f̂(s) :=

∫ +∞

−∞
e−istf(t)dt (1.29)

(s ∈ R, f ∈ L1(R)). Then the Beurling spectrum of u ∈ BUC(R,X) is

defined to be the following set

sp(u) := {ξ ∈ R : ∀ε > 0∃f ∈ L1(R), suppf̂ ⊂ (ξ − ε, ξ + ε), f ∗ u 6= 0}
(1.30)

where

f ∗ u(s) :=

∫ +∞

−∞
f(s− t)u(t)dt.

We consider the simplest case

Example 1.14. Let f(t) = aetλt, where λ ∈ R, a ∈ X. Then sp(f) = λ.

Proof. As is well known, for any real µ 6= λ there exists a function

φ ∈ L1(R) such that the support of the Fourier transform of φ is contained

in the interval [µ − ε, µ+ ε] for any ε such that λ 6∈ [µ− ε, µ + ε]. Hence,
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the convolution

ψ(s) =

∫ ∞

−∞
φ(s− t)f(t)dt =

= a

∫ ∞

−∞
φ(s− t)eiλtdt

= −a
∫ ∞

−∞
φ(ξ)eiλξ+sdξ

= −aeiλs

∫ ∞

−∞
φ(ξ)eiλξ

= −aeiλsφ̂(λ)

= aeiλs × 0 = 0. (1.31)
�

This shows that sp(f) ⊂ {λ}. On the other hand, if in the above argument

we take µ = λ and φ ∈ L1(R) such that φ̂(λ) = 1 , then ψ(s) = aeiλs 6= 0.

This yields that sp(f) = {λ}.

As an immediate consequence of this example, the following holds true:

Example 1.15. Let

f(t) =

N
∑

k=0

ake
iλkt,

where ak 6= 0, λk ∈ R, ∀k = 1, 2, ..., N. Then sp(f) = {λ1, ..., λN}.

Example 1.16. If f(t) is a 2π-periodic function with Fourier series
∑

k∈Z

ake
2iπkt,

then

sp(f) = {2πk : ak 6= 0}.

Proof. For every λ 6= 2k0π, k0 ∈ Z or λ = 2k0π at which fk0 = 0, where

fn is the Fourier coefficients of f , and for every positive ε, let φ ∈ L1(R) be

a complex valued continuous function such that the support of its Fourier

transform suppφ̂(ξ) ⊂ [λ− ε, λ+ ε]. Put

u(t) = f ∗ φ(t) =

∫ ∞

−∞
f(t− s)φ(s)ds.
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Since f is periodic, there is a sequence of trigonometric polynomials

Pn(t) =

N(n)
∑

k=1

an,ke
2ikπt

that is convergent uniformly to f with respect to t ∈ R such that

limn→∞ an,k = fn. We have

u(t) = f ∗ φ(t) = lim
n→∞

Pn ∗ φ(t)

= lim
n→∞

N(n)
∑

k=1

an,ke
2ikπ· ∗ φ(t)

= lim
n→∞

N(n)
∑

k=1

an,ke
2ikπt

∫ ∞

−∞
e−2ikπsφ(s)ds

= lim
n→∞

N(n)
∑

k=1

an,ke
2ikπtφ̂(2kπ)

= 0.

This, by definition, shows that sp(f) ⊂ {m ∈ 2πZ : fm 6= 0}. Conversely,

for λ ∈ {m ∈ 2πZ : fm 6= 0} and for every sufficiently small positive ε

we can choose a complex function ϕ ∈ L1(R) such that ϕ̂(ξ) = 1, ∀ξ ∈
[λ − ε/2, λ+ ε/2] and ϕ̂(ξ) = 0, ∀ξ 6∈ [λ − ε, λ + ε]. Repeating the above

argument, we have

w(t) = f ∗ ϕ(t) = lim
n→∞

Pn(t) ∗ ϕ(t)

= lim
n→∞

N(n)
∑

k=1

an,ke
2ikπtϕ̂(2kπ)

= lim
n→∞

an,k0e
2ik0πt. (1.32)

Since limn→∞ an,k0 = fk0 this shows that w 6= 0. Thus, λ ∈ sp(f). �

Exercise 8. Let f(t) = ae−|t|. Show that sp(f) = R.

Exercise 9. Let f be a continuous function with compact support. Show

that

sp(f) = {ρ ∈ R :

∫ ∞

−∞
f(t)e−iρtdt 6= 0}.

From this show that if f is positive and has compact support, then 0 6∈
sp(f).
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There is another way to approach the notion of spectrum of a bounded

function via the Fourier- Carleman transform of a bounded function u de-

fined by the formula

û(λ) =















∫∞
0 e−λtu(t)dt, (Reλ > 0);

−
∫∞
0 eλtu(−t)dt, (Reλ < 0).

(1.33)

In fact, we will define the notion of Carleman spectrum of a bounded con-

tinuous function u as the set σ(u) of all reals λ at which the Fourier-

Carleman transform has a no holomorphic extension to any neighbor-

hood of iλ. In fact, we compute σ(u) in several simplest cases. Let

u(t) = aeiλ0t, λ0 ∈ R, a 6= 0. Then, for Reλ > 0

û(λ) =

∫ ∞

0

e−λtu(t)dt

=

∫ ∞

0

e−λtaeiλ0tdt

= a
(

lim
t→+∞

1

iλ0 − λ
e(iλ0−λ)t − 1

iλ0 − λ

)

= − a

iλ0 − λ
.

Similarly, for Reλ < 0 we can compute û(λ) which is of the same form.

Hence, û(λ) has holomorphic extension at any iξ 6= iλ0. Obviously, σ(u) =

{λ0}.

We consider now a more general case in which f is a τ -periodic contin-

uous function.

Example 1.17. Let f be a X-valued τ -periodic continuous function. Then

σ(f) = {2πn/τ | n ∈ Z,

∫ τ

0

e−i2πnt/τf(t)dt 6= 0}. (1.34)
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Proof. By definition, for Reλ > 0,

f̂(λ) =

∫ ∞

0

e−λtf(t)dt

=
∞
∑

n=1

∫ nτ

(n−1)τ

e−λtf(t)dt

=

∞
∑

n=1

∫ τ

0

e−λ(t+(n−1)τ)f(t+ (n− 1)τ)dt

=

∞
∑

n=1

e−(n−1)λτ

∫ τ

0

e−λtf(t)dt

=

∫ τ

0

e−λtf(t)dt

∞
∑

n=1

e−(n−1)λτ

=

∫ τ

0

e−λtf(t)dt
1

1 − e−λτ
. (1.35)

Similarly, for Reλ < 0, (1.35) holds true as well. From (1.35) it is seen that

if λ is such that e−λτ 6= 1, i.e, λ 6= 2πin/τ for n ∈ Z, then λ 6∈ σ(f) because

at this point f̂(λ) has a holomorphic extension. Moreover, at λn = 2πin/τ ,

f̂(λ) has a holomorphic extension if and only if
∫ τ

0 e
−2πnt/τf(t)dt = 0. This

shows that (1.34) holds true. �

We have just shown that σ(f) = sp(f) for periodic functions. In general,

for bounded continuous functions they coincide with each other.

Theorem 1.12. Under the notation as above, sp(u) coincides with the set

σ(u).

Proof. For the proof we refer the reader to Proposition 0.5, p.22 in [Pruss

(91)]. �

Every definition of spectrum has its advantages. We will see this in the

next chapter. Below we collect some main properties of the spectrum of a

function, which we will need in the sequel.

Theorem 1.13. Let f, gn ∈ BUC(R,X), n ∈ N such that gn → f as

n→ ∞. Then

(i) sp(f) is closed,

(ii) sp(f(· + h)) = sp(f),

(iii) If α ∈ C\{0} sp(αf) = sp(f),
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(iv) If sp(gn) ⊂ Λ for all n ∈ N then sp(f) ⊂ Λ,

(v) If A is a closed operator, f(t) ∈ D(A)∀t ∈ R and Af(·) ∈ BUC(R,X),

then, sp(Af) ⊂ sp(f),

(vi) sp(ψ ∗ f) ⊂ sp(f) ∩ suppFψ, ∀ψ ∈ L1(R).

Proof. The proofs of (i)-(iii) are straightforward. We refer the reader to

Proposition 0.4, p. 20, Theorem 0.8 , p. 21 in [Vu (102)] and pp. 20-21 in

[Pruss (91)] for the proofs of the remaining assertions. �

As a consequence of Theorem 1.13 we have the following:

Corollary 1.2. Let Λ ⊂ R be closed. Then, the set

{f ∈ BUC(R,X) : sp(f) ⊂ Λ} (1.36)

is a closed subspace of BUC(R,X).

We consider the translation group (S(t))t∈R on BUC(R,X). One of the

frequently used properties of the spectrum of a function is the following:

Theorem 1.14. Under the notation as above,

i sp(u) = σ(Du), (1.37)

where Du is the generator of the restriction of the group S(t) to Mu :=

span{S(t)u, t ∈ R}.

Proof. For the proof see Theorem 8.19, p. 213 in [Davies (27)]. �

1.3.3 Uniform Spectrum of a Bounded Function

Notice that for every λ ∈ C with <λ 6= 0 and f ∈ BC(R,X) the function

ϕf (λ) : R 3 t 7→ Ŝ(t)f(λ) ∈ X belongs to Mf ⊂ BC(R,X). Moreover,

ϕf (λ) is analytic on C\iR.

Definition 1.12. Let f be in BC(R,X). Then,

(1) α ∈ R is said to be uniformly regular with respect to f if there exists a

neighborhood U of iα in C such that the function ϕf (λ), as a complex

function of λ with <λ 6= 0, has an analytic continuation into U .

(2) The set of ξ ∈ R such that ξ is not uniformly regular with respect to

f ∈ BC(R,X) is called uniform spectrum of f and is denoted by spu(f).
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If f ∈ BUC(R,X), then α ∈ R is uniformly regular if and only if it is regular

with respect to f . In fact, this follows from the fact that for bounded

uniformly continuous functions u, the identity (1.37) holds. Next, using

the identity

R(λ,Du)u =

∫ ∞

0

e−(λ)ξS(ξ)udξ, <λ 6= 0

we get the claim. For f ∈ BC(R,X), in general, the above (1.37) may not

hold. We now study properties of uniform spectra of functions in BC(R,X).

Proposition 1.1. Let g, f, fn ∈ BC(R,X) such that fn → f as n → ∞
and let Λ ⊂ R be a closed subset. Then the following assertions hold:

(i) spu(f) = spu(f(h+ ·));
(ii) spu(αf(·)) ⊂ spu(f), α ∈ C;

(iii) sp(f) ⊂ spu(f);

(iv) spu(Bf(·)) ⊂ spu(f), B ∈ L(X);

(v) spu(f + g) ⊂ spu(f) ∪ spu(g);

(vi) spu(f) ⊂ Λ.

Proof. (i) - (v) are obvious from the definitions of spectrum and uniform

spectrum. Now we prove (vi). Let ρ0 6∈ Λ. Since Λ is closed, there is a

positive constant r < dist(ρ0,Λ). We can prove that since

‖ϕfn
(λ)‖ ≤ 2‖f‖

|<λ| , ∀λ ∈ B̄r(iρ0) (1.38)

for sufficiently large n ≥ N , one has

‖ϕfn
(λ)‖ ≤ 4‖f‖

3r
, ∀λ ∈ B̄r(iρ0), n ≥ N. (1.39)

Obviously, for every fixed λ such that <λ 6= 0 we have ϕfn
(λ) → ϕf (λ).

Now applying Vitali Theorem to the sequence of complex functions {ϕfn
}

we see that ϕfn
is convergent uniformly on Br(iρ0) to ϕf . This yields that

ϕf is holomorphic on Br(iρ0), that is ρ0 is a uniformly regular point with

respect to f and ρ0 6∈ spu(f). �

As an immediate consequence of (iii) of the above proposition, we have

Corollary 1.3. For any closed subset Λ ⊂ R, the set Λu(X) := {f ∈
BC(R,X) : spu(f) ⊂ Λ} is a closed subspace of BC(R,X) which is invariant

under translations.
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The following result will be needed in the sequel.

Lemma 1.2. Let Λ be a closed subset of R and let DΛu
be the differential

operator acting on Λu(X). Then we have

σ(DΛu
) = iΛ. (1.40)

Proof. Since the function gα defined by gα(t) := eiαtx, α ∈ R, t ∈ R, x 6=
0, is in Λu(X) and spu(gα) = sp(gα) = {α} we see that iα ∈ σ(DΛu

), that

is, iΛ ⊂ σ(DΛu
). Now we prove the converse. For β ∈ R\Λ we consider the

equation

iβg − g′ = f, f ∈ Λu(X). (1.41)

We will prove that (1.41) is uniquely solvable for every f ∈ Λu(X). This

equation has at most one solution. In fact, if g1, g2 are two solutions, then

g = g1 − g2 is a solution of the homogeneous equation, that is for f = 0.

Taking Carlemann transform of both sides of the correspoding equation we

may see that sp(g) ⊂ {β}. Since g ∈ Λu(X) we have sp(g) ⊂ Λ. Combining

these facts we have sp(g) = ∅, that is g = 0.

Now we prove the existence of at least one solution to Eq. (1.41). For

<λ 6= 0 Eq. (1.41) has a unique solution which is nothing but ϕf (λ), so by

definition,

ϕf (λ) = (λ−Df )−1f, <λ 6= 0.

Using a similar argument as in the proof of (iii) of Proposition 1.1 we

can show that (λ − Df )−1u is bounded on B̄r(iβ) uniformly in u ∈
span{S(h)f, h ∈ R}, ‖u‖ ≤ 1 for certain positive constant r indepen-

dent of u and λ. Since iβ is a limit point of σ(Df ), this boundedness

yields in particular that iβ ∈ ρ(Df ). Hence, there exists a unique solution

g ∈ Mf ⊂ Λu(X) to (1.41). �

1.3.4 Almost Periodic Functions

1.3.4.1 Definition and basic properties

A subset E ⊂ R is said to be relatively dense if there exists a number l > 0

(inclusion length) such that every interval [a, a + l] contains at least one

point of E. Let f be a function on R taking values in a complex Banach

space X. f is said to be almost periodic if to every ε > 0 there corresponds

a relatively dense set T (ε, f) (of ε-translations, or ε-periods ) such that

sup
t∈R

‖f(t+ τ) − f(t)‖ ≤ ε, ∀τ ∈ T (ε, f).
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A typical example of an almost periodic function that is not periodic is the

following:

Example 1.18.

f(t) = a sin t+ a sin
√

2t , ∀ 0 6= a ∈ X. (1.42)

In general, the function

f(t) = aeit + bei
√

2t, a, b ∈ X, a 6= 0, b 6= 0,

is an almost periodic one that is not periodic.

Proof. We will make use of only the definitions and the following fact

from the elementary mathematics: for every constant ε > 0 there exists a

positive integer N(ε) such that N
√

2 − [N
√

2] < ε, where [r] denotes the

integer part of the real number r. By this fact, for a positive ε there is an

interval (2Mπ − α, 2Mπ+ α), where M is an integer and α > 0, such that

‖bei
√

2(t+τ) − bei
√

2t‖ < ε

2
, ∀t, τ ∈ (2Mπ − α, 2Mπ + α).

Hence, for sufficiently small α and l = 2Mπ every inteval of length l contains

at least an ε-period of the function f . This shows that f is almost periodic.

Now we are going to prove that f is not periodic. In fact, suppose to the

contrary that f is periodic with period T . By this assumption, the function

g(t) := aei(t+T ) + bei
√

2(t+T ) − aeit − bei
√

2t = 0 ∀t ∈ R,

Thus,

0 =

∫ 2π

0

g(t)dt = b

∫ 2π

0

(ei
√

2(t+T ) − ei
√

2t)dt

=
1

i
√

2
(ei

√
22π − 1)(ei

√
2T − 1). (1.43)

This shows that T/
√

2 must be rational. Similarly, we can show that T is

rational. This leads to a contradiction showing that f is not periodic. �

Generally, the sum of almost periodic functions are an almost periodic

function.

Example 1.19. All trigonometric polynomials

P (t) =

n
∑

k=1

ake
iλkt, (ak ∈ X, λk ∈ R)

are almost periodic.
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We collect some basic properties of an almost periodic function in the fol-

lowing:

Theorem 1.15. Let f and fn, n ∈ R be almost periodic functions with

values in X. Then the following assertions hold true:

(1) The range of f is precompact, i.e., the set {f(t), t ∈ R} is a compact

subset of X, so f is bounded;

(2) f is uniformly continuous on R;

(3) If fn → g as n→ ∞ uniformly, then g is almost periodic;

(4) If f ′ is uniformly continuous, then f ′ is almost periodic.

Proof. For the proof see e.g. pp. 5-6 [Amerio and Prouse (3)]. �

As a consequence of Theorem 1.15 the space of all almost periodic func-

tions taking values in X with sup-norm is a Banach space which will be

denoted by AP (X). For almost periodic functions the following criterion

holds (Bochner’s criterion):

Theorem 1.16. Let f be a continuous function taking values in X. Then

f is almost periodic if and only if given a sequence {cn}n∈N there exists

a subsequence {cnk
}k∈N such that the sequence {f(t+ cnk

)}k∈N converges

uniformly.

Proof. For the proof see e.g. p. 9 in [Amerio and Prouse (3)]. �

Exercise 10. Let f ∈ BUC(R,X) such that eisp(f) is finite. Show that f is

of the form (1.44), so f is almost periodic.

Proof. By Theorem 1.14

eisp(f) = eσ(Df ).

On the other hand, by the Weak Spectral Mapping Theorem,

eσ(Df ) = σ(S(1)|Mf
).

Hence, using Riesz Integral we can decompose Mf into the direct sum of

finite closed subspaces M1, ...,Mk invariant under the translation group

(S(t))t∈R. Moreover, the spectrum of S(1) restricted to every subspace

consists of only one point. By Gelfand Theorem, S(1) should have the

following form: S(1)|Mj
= eiλj I, λj ∈ R. It is easy to see that if, by the
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above decomposition, f = f1+ ...+fk then the function gj(t) := e−iλj tfj(t)

satisfies

gj(t+ 1) = e−iλj(t+1)fj(t+ 1)

= e−iλjte−iλj eiλjfj(t)

= e−iλjteiλjfj(t)

= gj(t), ∀t ∈ R, j = 1, 2, ..., k.

Finally,

f(t) =

k
∑

j=1

eiλtgj(t), (1.44)

where gj(·) is 1-periodic. This shows that f is almost periodic. �

1.3.5 Sprectrum of an Almost Periodic Function

There is a natural extension of the notion of Fourier exponents of periodic

functions to almost periodic functions. In fact, if f is almost periodic

function taking values in X, then for every λ ∈ R the average

a(f, λ) := lim
T→∞

1

2T

∫ T

−T

e−iλtf(t)dt

exists and is different from 0 at most at countably many points λ. The set

{λ ∈ R : a(f, λ) 6= 0} is called Bohr spectrum of f which will be denoted by

σb(f) . The following Approximation Theorem of almost periodic functions

holds

Theorem 1.17. (Approximation Theorem) Let f be an almost periodic

function. Then for every ε > 0 there exists a trigonometric polynomial

Pε(t) =
N
∑

j=1

aje
iλjt, aj ∈ X, λj ∈ σb(f)

such that

sup
t∈R

‖f(t) − Pε(t)‖ < ε.

Proof. For the proof see e.g. pp. 17-24 in [Levitan and Zhikov (58)]. �

Remark 1.3. The trigonometric polynomials Pε(t) in Theorem 1.17 can

be chosen as an element of the space

Mf := span{S(τ)f, τ ∈ R}
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(see p. 29 in [Levitan and Zhikov (58)]. Moreover, without loss of gen-

erality by assuming that σb(f) = {λ1, λ2, · · · } one can choose a sequence

of trigonometric polynomials, called trigonometric polynomials of Bochner-

Fejer, approximating f such that

Pm(t) =

N(m)
∑

j=1

γm,ja(λj , f)eiλjt,m ∈ N,

where limm→∞ γm,j = 1. As a consequence we have:

Corollary 1.4. Let f be almost periodic. Then

Mf = span{a(λ, f)eiλ·, λ ∈ σb(f)}.

Proof. By Theorem 1.17,

Mf ⊂ span{a(f, λ)eiλ·, λ ∈ σb(f)}.
On the other hand, it is easy to prove by induction that if P is any trigono-

metric polynomial with different exponents {λ1, · · · , λk}, such that

P (t) =
k
∑

j=1

xje
iλkt,

then xje
iλj ∈ MP , ∀j = 1, · · · , k. Hence by Remark 1.3, obviously,

a(λj , f)eiλj ∈ Mf , ∀j ∈ N. �

The relation between the spectrum of an almost periodic function f and

its Bohr spectrum is stated in the following:

Proposition 1.2. If f is an almost periodic function, then sp(f) = σb(f).

Proof. Let λ ∈ σb(f). Then there is a x ∈ X such that xeiλ· ∈ Mf . Obvi-

ously, λ ∈ σ(D|Mf
). By Theorem 1.14 λ ∈ sp(f). Conversely, by Theorem

1.17, f can be approximated by a sequence of trigonometric polynomials

with exponents contained in σb(f). In view of Theorem 1.13 sp(f) ⊂ σb(f).

�

1.3.6 A Spectral Criterion for Almost Periodicity of a

Function

Suppose that we know beforehand that f ∈ BUC(R,X). It is often possible

to establish the almost periodicity of this function starting from certain a

priori information about its spectrum.

Theorem 1.18. Let E and G be closed, translation invariant subspaces of

BUC(R,X) and suppose that
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(1) G ⊂ E;

(2) G contains all constant functions which belong to E;

(3) E and G are invariant under multiplications by eiξ· for all ξ ∈ R;

(4) whenever f ∈ G and F ∈ E, where F (t) =
∫ t

0 f(s)ds, then F ∈ G.

Let u ∈ E have countable reduced spectrum

spG := {ξ ∈ R : ∀ε > 0∃f ∈ L1(R) such that

suppFf ⊂ (ξ − ε, ξ + ε) and f ∗ u 6∈ G}.

Then u ∈ G.

Proof. For the proof see p. 371 in [Arendt and Batty (5)]. �

Remark 1.4. In the case where G = AP (X) the condition iv) in Theorem

1.18 can be replaced by the condition that X does not contain c0 (see

Proposition 3.1, p. 369 in [Arendt and Batty (5)]). Another alternative

of the condition iv) is the total ergodicity of u which is defined as follows:

u ∈ BUC(R,X) is called totally ergodic if

Mηu := lim
τ→∞

1

2τ

∫ τ

−τ

eiηsS(s)ds

exists in BUC(R,X) for all η ∈ R. From this remark the following example

is obvious:

Example 1.20. A function f ∈ BUC(R,X) is 2π-periodic if and only if

sp(f) ⊂ 2πZ.

1.3.7 Almost Automorphic Functions

Definition and Basic Properties. A function f ∈ C(R,X) is said to be

almost automorphic if for any sequence of real numbers (s′n), there exists a

subsequence (sn) such that

lim
m→∞

lim
n→∞

f(t+ sn − sm) = f(t) (1.45)

for any t ∈ R.

The limit in (1.45) means

g(t) = lim
n→∞

f(t+ ss) (1.46)

is well-defined for each t ∈ R and
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f(t) = lim
n→∞

g(t− sn) (1.47)

for each t ∈ R.

Remark 1.5. Because of pointwise convergence the function g is measur-

able but not necessarily continous.

Remark 1.6. It is also clear from the definition above that constant func-

tions and continuous almost periodic functions are almost automorphic.

If the limit in (1.41) is uniform on any compact subset K ⊂ R, we say

that f is compact almost automorphic.

Theorem 1.19.

Assume that f , f1, and f2 are almost automorphic functions taking

values in a Banach space X, φ is a scalar almost automorphic function,

and λ is any scalar, then the following hold true.

(i) λf and f1 + f2 are almost automorphic,

(ii) fτ (t) := f(t+ τ), t ∈ R is almost automorphic;

(iii) f̄(t) := f(−t), t ∈ R is almost automorphic;

(iv) The Range Rf of f is precompact, so f is bounded;

(v) The function t 7→ φ(t)f(t) is almost automorphic.

Proof. See Theorems 2.1.3 and 2.1.4 in [N’Guérékata (79)], for the proofs

of (i)-(iv). The proof of (v) is straightforward, and is left to the reader. �

Theorem 1.20. If {fn} is a sequence of almost automorphic X-valued

functions such that fn → f uniformly on R, then f is almost automor-

phic.

Proof. See Theorem 2.1.10 in [N’Guérékata (79)], for proof. �

Remark 1.7. If we equip AA(X), the space of almost automorphic func-

tions with the sup norm

‖f‖∞ = sup
t∈R

‖f(t)‖

then it turns out to be a Banach space. If we denote KAA(X), the space

of compact almost automorphic X-valued functions, then we have

AP (X) ⊂ KAA(X) ⊂ AA(X) ⊂ BC(R,X) .
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Theorem 1.21. If f ∈ AA(X), then

i) ‖f‖∞ = ‖g‖∞
ii) Rg ⊂ Rf

where g is the function defined in (1.41)-(1.42).

Proof. i) Using (1.41) we may write

‖g(t)‖ ≤ ‖g(t) − f(t+ sn)‖ + ‖f(t+ sn)‖

and choosing n large enough, we get

‖g(t)‖ < ε+ sup
σ∈R

‖f(σ)‖

Hence

sup
t∈R

‖g(t)‖ ≤ sup
t∈R

‖f(t)‖

Similarly by (1.42), we obtain

sup
t∈R

‖f(t)‖ ≤ sup
t∈R

‖g(t)‖ (1.48)

which proves the theorem.

ii) This statement is straight forward. �

Theorem 1.22. If f ∈ AA(X) and its derivative f ′ exists and is uniformly

continuous on R, then f ′ ∈ AA(X).

Proof. It suffices observe that for each n ∈ N, n(f(t + 1
n ) − f(t)) is an

almost automorphic function and the sequence of these functions converges

uniformly to f ′ on R (see Theorem 2.4.1 in [N’Guérékata (79)] for a detailed

proof). �

Theorem 1.23. Let us define F : R 7→ X by F (t) =
∫ t

0
f(s)ds where

f ∈ AA(X). Then F ∈ AA(X) iff RF = {F (t)/t ∈ R} is precompact.

Before we prove the Theorem, let us introduce some useful notations

(due to S. Bochner).

Remark 1.8. If f : R → X is a function and a sequence of real numbers

s = (sn) is such that we have

lim
n→∞

f(t+ sn) = g(t), pointwise on R,

we will write Tsf = g.
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Remark 1.9.

i) Ts is a linear operator.

Indeed, given a fixed sequence s = (sn) ⊂ R, the domain of Ts is

D(Ts) = {f : R → X /Tsf exists}. D(Ts) is a linear set for if f, f1, f2 ∈
D(Ts), then f1 + f2 ∈ D(Ts) and λf ∈ D(Ts) for any scalar λ. And

obviously, Ts(f1 + f2) = Tsf1 + Tsf2 and Ts(λf) = λTsf .

ii) Let us write −s = (−sn) and suppose that f ∈ D(Ts) and Tsf ∈
D(T−s). Then the product operator As = T−s Tsf is well defined. It is

easy to verify that As is also a linear operator.

iii) As maps bounded functions into bounded functions, and for almost

automorphic functions f , we get Asf = f .

We are now ready to prove the previous Theorem:

Proof. It suffices to prove that F (t) is almost automorphic if RF is pre-

compact. Let (s′′n) be a sequence of real numbers. Then there exists a

subsequence (s′n) such that

lim
n→∞

f(t+ s′n) = g(t)

and

lim
n→∞

g(t− s′n) = f(t),

pointwise on R, and

lim
n→∞

F (s′n) = α1,

for some vector α1 ∈ X .

We get for every t ∈ R:

F (t+ s′n) =

∫ t+s′
n

0

f(r) dr =

∫ s′
n

0

f(r) dr +

∫ t+s′
n

s′
n

f(r) dr

= F (s′n) +

∫ t+s′
n

s′
n

f(s) dr.

Using the substitution σ = r − s′n, we obtain

F (t+ s′n) = F (s′n) +

∫ t

0

f(σ + s′n) dσ.

If we apply the Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

F (t+ s′n) = α1 +

∫ t

0

g(σ̇) dσ

for each t ∈ R.
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Let us observe that the range of the function G(t) = α1 +
∫ t

0 g(r) dr is

also precompact and

sup
t∈R

‖G(t)‖ = sup
t∈R

‖F (t)‖

by Theorem 1.21 i), so that we can extract a subsequence (sn) of (s′n) such

that

lim
n→∞

G(−sn) = α2,

for some α2 ∈ X .

Now we can write

G(t− sn) = G(−sn) +

∫ t

0

g(r − sn) dr

so that

lim
n→∞

G(t− sn) = α2 +

∫ t

0

f(r) dr = α2 + F (t).

Let us prove now that α2 = θ.

Using the notation above we get

AsF = α2 + F, where s = (sn).

Now it is easy to observe that F as well as α2 belong to the domain of As;

therefore AsF also is in the domain of As and we deduce the equation

A2
sF = Asα2 +AsF = α2 + α2 + F = 2α2 + F

We can continue indefinitely the process to get

An
sF = nα2 + F, ∀n = 1, 2, . . . .

But we have

sup
t∈R

‖An
sF (t)‖ ≤ sup

t∈R

‖F (t)‖

and F (t) is a bounded function.

This leads to a contradiction if α2 6= 0. Hence, α2 = 0 and AsF = F ;

so F ∈ AA(X) .

The proof is complete. �

Remark 1.10. If X is a uniformly convex Banach space, the assumption

on RF can be weakened. Indeed, the result holds true if RF is bounded

(see, Theorem 2.4.4 and Theorem 2.4.6 in [N’Guérékata (79)] ).
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We can recall this other important result:

Theorem 1.24. Let (T (t))t∈R be a C0-group of bounded linear operators,

and assume that the function x(t) = T (t)x0 : R 7→ X, where x(0) = x0 ∈ X

is almost automorphic. Then either inf t∈R ‖x(t)‖ > 0, or x(t) = 0 for every

t ∈ R.

Proof. Assume that inf t∈R ‖x(t)‖ = 0. Then there exists a minimizing

sequence (s′n) such that ‖x(s′n)‖ 7→ 0 as n 7→ ∞. Since x(t) is almost

automorphic, there exists a subsequence (sn) ⊂ (s′n) such that

lim
n→∞

x(t + sn) = y(t)

exists for every t ∈ R, and

lim
n→∞

y(t− sn) = x(t)

for every t ∈ R.

We have

x(t+ sn) = T (t+ sn) − T (t)T (sn)x0 = T (t)x(sn) .

So,

‖y(t)‖ = lim
n→∞

‖T (t)x(sn)‖ ≤ lim
n→∞

‖T (t)‖‖x(sn)‖ = 0

for every t ∈ R. We infer that x(t) = 0 for every t ∈ R. The theorem is

proved. �

Definition 1.13. A function f ∈ C(R+,X) is said to be asymptotically

almost automorphic, if there exists g ∈ AA(X) and h ∈ C(R+,X) with the

property that limt→∞ ‖h(t)‖ = 0, such that

f(t) = g(t) + h(t), t ∈ R+ . (1.49)

The functions g and h are called respectively the principal and the corrective

terms of f .

Theorem 1.25. If f is asymptotically almost automorphic then its princi-

pal and corrective terms are uniquely determined.

Proof. See Theorem 2.5.4 in [N’Guérékata (79)]. �

Exercise 11. Prove that every asymptotically almost function is bounded

over R+.
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Exercise 12. Let f ∈ C(R+,X) and ν ∈ C(R+,C) be asymptotically almost

automorphic. Show that fτ (t) := f(t+τ), for a fixed τ ∈ R+ and (νf)(t) =

ν(t)f(t) are also asymptotically almost automorphic.

Exercise 13. Let AAA(X) be the space of asymptotically almost automor-

phic functions with the norm ‖f‖AAA(X) = ‖g‖AA(X) + ‖h‖C(R+,X), where g

and h are respectiveley the prinicipal and the corrective terms of f . Show

that if (fn) is a sequence of functions in AAA(X) that converges uniformly

to f , then f ∈ AAA(X).
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Chapter 2

Stability and Exponential Dichotomy

of Solutions of Homogeneous

Equations

This chapter is devoted to the study of the behavior of homogeneous equa-

tions of the form u′(t) = A(t)u(t), t ∈ R. The exponential dichotomy and

stability will be characterized in terms of Perron’s criteria.

2.1 Perron Theorem

In this section we will extend the Perron Theorem for ordinary differ-

ential equations to equations in Banach spaces. Throughout this sec-

tion we consider only processes defined on the whole line. We denote

∆ := {(t, s) ∈ R : t ≥ s}.

Definition 2.1. A family of bounded linear operators (U(t, s))t≥s, t, s ∈ R

from a Banach space X to itself is called a strongly continuous evolutionary

process if the following conditions are satisfied

(1) U(t, t) = I for all t ∈ R,

(2) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,

(3) The map ∆ 3 (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X,

(4) ‖U(t, s)‖ ≤ Neω(t−s) for some positive N,ω independent of (t, s) ∈ ∆.

Definition 2.2. Let (U(t, s))t≥s be a strongly continuous evolutionary pro-

cess on a Banach space X. (U(t, s))t≥s is said to have an exponential di-

chotomy if there exist a family of projections Q(t), t ∈ R and positive

constants M,α such that the following conditions are satisfied:

(1) For every fixed x ∈ X the map t 7→ Q(t)x is continuous,

(2) Q(t)U(t, s) = U(t, s)Q(s), ∀(t, s) ∈ ∆,

(3) ‖U(t, s)x‖ ≤Me−α(t−s)‖x‖, ∀(t, s) ∈ ∆, x ∈ KerQ(s),

39
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(4) ‖U(t, s)y‖ ≥M−1eα(t−s)‖y‖, ∀(s, t) ∈ ∆, y ∈ ImQ(s),

(5) U(t, s)|ImQ(s) is an isomorphism from ImQ(s) onto ImQ(t) , ∀(t, s) ∈
∆.

In this section we will establish a relation between the exponential di-

chotomy of a given strongly continuous process (U(t, s))t≥s and the unique

solvability of the following integral equation in appropriate function spaces:

u(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ)dξ, ∀(t, s) ∈ ∆. (2.1)

Next, we define an operator L : D(L) ⊂ C0(R,X) → C0(R,X) as follows:

u ∈ C0(R,X) if there exists a function f ∈ C0(R,X) such that (2.1) holds.

For u ∈ D(L) we define Lu = f .

Lemma 2.1. The operator L is a well-defined, closed and linear operator.

Proof. To prove the well-definedness of the operator we suppose that

u(t) := U(t, s)u(s) +

∫ t

s

U(t, ξ)g(ξ)dξ, ∀(t, s) ∈ ∆

u(t) := U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ)dξ, ∀(t, s) ∈ ∆.

Then,
∫ t

s

U(t, ξ)g(ξ)dξ =

∫ t

s

U(t, ξ)f(ξ)dξ.

Hence,
∫ t

s

U(t, ξ)[f(ξ) − g(ξ)]dξ = 0.

Thus,

1

(t− s)

∫ t

s

U(t, ξ)[f(ξ) − g(ξ)]dξ = 0.

Letting t − s → 0, by the strong continuity of the process (U(t, s))t≥s we

obtain that

f(t) = g(t), t ∈ R.

So, L is well-defined.
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Let {vn} be a sequence in D(L), such that limn→∞ ‖vn − v‖ = 0 for some

v ∈ C0(R,X) and ∃f ∈ C0(R,X) such that limn→∞ ‖Lvn − f‖ = 0. Now

we prove that v ∈ D(L) and Lv = f . In fact, we have

vn(t) = U(t, s)vn(s) +

∫ t

s

U(t, ξ)Lvn(ξ)dξ, (t, s) ∈ ∆. (2.2)

For fixed (t, s) ∈ ∆, we have

‖
∫ t

s

U(t, ξ)Lvn(ξ)dξ−
∫ t

s

U(t, ξ)f(ξ)dξ‖ ≤
∫ t

s

‖U(t, ξ)‖.‖Lvn(ξ)−f(ξ)‖dξ

≤ N1

∫ t

s

‖Lvn(ξ) − f(ξ)‖dξ ≤ N1(t− s)‖Lvn − f‖

From this we obtain

lim
n→∞

‖
∫ t

s

U(t, ξ)Lvn(ξ)dξ −
∫ t

s

U(t, ξ)f(ξ)dξ‖ = 0. (2.3)

This yields

v(t) = U(t, s)v(s) +

∫ t

s

U(t, ξ)f(ξ)dξ, (t, s) ∈ ∆.

Therefore, v ∈ D(L) and Lv = f . The linearity of the operator L can be

easily shown. �

Theorem 2.1. Let (U(t, s))t≥s be a given strongly continuous evolutionary

process. Then the following assertions are equivalent:

(i) The process (U(t, s))t≥s has an exponential dichotomy;

(ii) For every given f ∈ C0(R,X) the integral equation (2.1) has a unique

solution xf ∈ C0(R,X);

(iii) For every given bounded and continuous function f the integral equa-

tion (2.1) has a unique bounded solution.

Proof. We first prove the equivalence between (i) and (ii). The equiva-

lence between (i) and (ii) can be established in the same way.

”(i) ⇒ (ii)”: Let P (t) := I−Q(t), t ∈ R, where Q(t) are determined from

the exponential dichotomy of the process (U(t, s))t≥s. We now show that

the equation Lu = 0 has the only trivial solution u = 0. In fact, by the

definition of exponential dichotomy (Definition 2.2), we have

‖P (t)u(t)‖ = ‖U(t, s)P (s)u(s)‖
≤ Me−α(t−s)‖u(s)‖
≤ Me−α(t−s)‖u‖, ∀t ≥ s.
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Hence, letting s → −∞ we get P (t)u(t) = 0, ∀t ∈ R. Similarly, we can

show Q(t)u(t) = 0, ∀t ∈ R. This yields that u(t) = 0, ∀t ∈ R.

Next, we define a so-called Green function

G(t, s) =

{

U(t, s)P (s), t ≥ s

−U(t, s)Q(s), t < s.

By the exponential dichotomy, we see that there are positive constants K,α

such that

‖G(t, s)‖ ≤ Ke−α|t−s|, ∀t, s ∈ R.

We claim that the function

u(t) =

∫ ∞

−∞
G(t, ξ)f(ξ)dξ, t ∈ R

is a (unique) bounded continuous solution to the integral equation (2.1).

In fact, for any t ≥ s we have

u(t) =

∫ t

−∞
U(t, ξ)P (ξ)f(ξ)dξ −

∫ +∞

t

U(t, ξ)Q(ξ)f(ξ)dξ

= U(t, s)

(∫ s

−∞
U(s, ξ)P (ξ)f(ξ)dξ −

∫ +∞

s

U(s, ξ)Q(ξ)f(ξ)dξ

)

+

∫ t

s

U(t, ξ)P (ξ)f(ξ)dξ +

∫ t

s

U(t, ξ)(Q(ξ)f(ξ)dξ

= U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ)dξ.

On the other hand, we have

‖u(t)‖ = ‖
∫ +∞

−∞
G(t, s)f(s)ds‖

≤
∫ +∞

−∞
Ke−α|t−s|‖f(s)‖ds

≤
∫ +∞

−∞
Ke−α|η|‖f(t− η)‖dη.

An easy computation shows that as f ∈ C0(R,X), the above estimate yields

u ∈ C0(R,X).

Now we prove the implication ”(ii) ⇒ (i)”. First, we notice that by the

above lemma and the Closed Graph Theorem (ii) yields that there exists a

positive constant k such that

‖L−1f‖ ≤ c‖f‖, ∀f ∈ C0(R,X). (2.4)
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To proceed we need several lemmas:

Lemma 2.2. Let (ii) hold. Then there exist positive constants M,β > 0

depending only on c such that

‖U(t, t0)x‖ ≤Me−β(t−s)‖U(s, t0)x‖, ∀t ≥ s ≥ t0, (2.5)

provided that

lim
t→+∞

U(t, t0)x = 0. (2.6)

Proof. Without loss of generality we may assume that x 6= 0. Set u(t) :=

U(t, t0)x, ∀t ≥ t0 and t1 := sup{t ≥ t0 : u(t) 6= 0}. Obviously, by definition,

u(t) 6= 0 for all t ∈ [t0, t1) and u(t) = 0 for all t ≥ t1. Next, we define a

smooth function φn(t) for every n ∈ N with compact suppφn in [t0, t1) such

that 0 ≤ φn(t) ≤ 1, φn(t) = 1 for all t ∈ [t0 + 1/n,min(n, t1 − 1/n)]. Set

f(t) =
φn(t)

‖u(t)‖u(t), t ∈ R.

It is clear that f is a well-defined continuous function on R and f ∈
C0(R,X). Consider the function

xf (t) := u(t)

∫ t

t0

φn(s)

‖u(s)‖ds, t ≥ t0.

By the definition of φn we see that xf can be naturally extended to

the whole line as a continuous function by setting xf (t) = 0 for all

t 6∈ [t0,min(n, t1)]. Consequently, we have

xf (t) = U(t, s)u(s)

∫ s

t0

φn(ξ)‖u(ξ)‖−1dξ +

∫ t

s

U(t, ξ)u(ξ)φn(ξ)‖u(ξ)‖−1dξ

= U(t, s)xf (s) +

∫ t

s

U(t, ξ)f(ξ)dξ, ∀ t ≥ s,

i.e., xf ∈ C0(R,X) is a solution to Eq. (2.1). By assumption and (2.4) we

have

‖xf‖ ≤ c‖f‖,
so, since ‖f‖ = 1,

‖u(t)‖
∫ t

t0

φn(s)

‖u(s)‖ds ≤ c, ∀t ≥ t0.

Letting n→ ∞ we get

‖u(t)‖
∫ t

t0

‖u(s)‖−1ds ≤ c, ∀t ≥ t0. (2.7)
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It is easy to see that the above inequality and the bounded growth of the

process yield that there are positive constants K,β independent of x, t0
such that

‖U(t, t0)x‖ = u(t) ≤ Ke−β(t−s)u(s) = Ke−β(t−s)U(s, t0), ∀t ≥ s ≥ t0.

(2.8)

In fact, set g(t) =
∫ t

t0
‖u(s)‖−1ds. Then by (2.7) we obtain

d

dt
ln g(t) ≥ 1

c
, ∀t > t0.

Next, assuming that τ > 1 is given, integrating both sides of the above over

the interval [t0 + 1, t0 + τ) we get

ln g(t0 + τ) − ln g(t0 + 1) ≥ τ − 1

c
.

Hence,

g(t0 + τ) ≥ g(t0 + 1)e
τ−1

c . (2.9)

Now, by the bounded growth, i.e., ‖U(t, s)‖ ≤ Neω(t−s), ∀t ≥ s, for any

s ∈ [t0, t0 + 1] we have

‖u(s)‖ ≤ ‖u(t0)‖Neω.

Consequently, without loss of generality assuming that t1 > t0 + 1 we have

g(t0 + 1) =

∫ t0+1

t0

‖u(s)‖−1ds ≥ 1

N
e−ω‖u(t0)‖−1. (2.10)

By (2.7), for τ > 1 we get

‖u(t0 + τ)‖ ≤ c

g(t0 + τ)
.

By (2.9),

c

g(t0 + τ)
≤ ce−(τ−1)c

g(t0 + 1)
.

Next, by (2.10)

ce−(τ−1)c

g(t0 + 1)
≤ Neω‖u(t0)‖ce−(τ−1)c = N1e

−τ/c‖u(t0)‖
where

N1 = cNe1/c+ω.

Thus for τ > 1 we have

‖u(t0 + τ)‖ ≤ N1e
−τ/c‖u(t0)‖ (2.11)

On the other hand, for 0 ≤ τ ≤ 1 using the bounded growth we have

‖u(t0 + τ)‖ ≤ Ne1/c+ωe−τ/c‖u(t0)‖ . (2.12)

Finally, combining (2.12) with (2.11) we have

‖u(t0 + τ)‖ ≤ N2e
−τ/c‖u(t0)‖, ∀0 < τ < t1,

where N2 := max{N1, Ne
1/c+ω}. This finishes the proof. �
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Corollary 2.1. Let (ii) hold. Then

X1(t0) := {x ∈ X : lim
t→+∞

U(t, t0)x = 0} (2.13)

is a closed subspace of X.

Proof. This corollary is an immediate consequence of the above lemma.�

To proceed we need a notion of extension.

Definition 2.3. We say that the function u(t) := U(t, t0)x for t ≥ t0 is

extendable to a function on the whole line as a solution of the corresponding

homogeneous equation (also denoted by u(·)), if u is extendable to the whole

line such that u(t) = U(t, s)u(s), ∀t ≥ s, t, s ∈ R.

Note that if (ii) holds, then u(t) has at most one extension on (−∞, t0]

such that it vanishes at infinity. In fact if we have two extensions, then by

denoting by u1(t) and u2(t) the two functions defined on the whole line,

respectively, we see that

w(t) =

{

0, ∀t ≥ t0

u1(t) − u2(t), ∀t ≤ t0

is a solution in C0(R,X) to (2.1) with f = 0. Hence, by (ii), u1(t) =

u2(t), ∀t ≤ t0.

Lemma 2.3. Let (ii) hold and let u(t) := U(t, t0)x. Then there exist posi-

tive constants K ′, β′ independent of x such that

‖u(t)‖ ≤ K ′e−β′(s−t)‖u(s)‖, ∀t ≤ s ≤ t0, (2.14)

provided that u has an extension to the whole line as a solution of the

corresponding homogeneous equation vanishing at −∞.

Proof. Suppose that u(t) := U(t, t0)x, t ≥ t0 can be extended to the

whole line as a solution to Eq. (2.1). Consider the function

f(t) = − ϕn(t)

‖u(t)‖u(t), t ∈ R, (2.15)

where for every n ∈ N

ϕn(t) :=















1, ∀2/n ≤ t ≤ t0 + n,

1 − (t− t0 − n), ∀t0 + n ≤ t ≤ t0 + n+ 1

0, ∀t ≥ t0 + n+ 1, or t ≤ 1/n.
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Clearly that

y(t) = u(t)

∫ ∞

t

ϕn(s)‖u(s)‖−1ds

is a solution of (2.1) with f defined by (2.15). By the same reasoning as

above and by letting n to infinity we can show that

‖u(t)‖
∫ ∞

t

‖u(s)‖−1ds ≤ c,

where c is defined by (2.4). Finally, as above we can prove (2.14). �

A consequence of this lemma is the following:

Corollary 2.2. Let (ii) hold. Then

X2(t0) := {x ∈ X : u(t) := U(t, t0)x has an extension on (−∞, t0]

as a solution to the homogeneous equation vanishing at −∞}

is a closed subspace of X.

Lemma 2.4. Let (ii) hold. Then for every t0 ∈ R

X = X1(t0) ⊕X2(t0), (2.16)

where X1(t0) and X2(t0) are defined by (2.13) and (2.16).

Proof. For every x ∈ X let φ(t) be a continuously differentiable function

on R with the following properties: suppφ ⊂ [t0,+∞), φ(t) = 1, ∀t ≥ t0 +1

and |φ′(t)| ≤ 2. Next, let f(t) = φ′(t)U(t, t0)x. Obviously, f can be

continuously extended to the whole line by setting f(t) = 0, ∀t ≤ t0. By

the assumption there exists a unique solution xf ∈ C0(R,X) to (2.1). The

function v(t) := φ(t)U(t, t0)x, t ≥ t0 is also a solution on [t0,+∞) of (2.1).

Set z(t) := v(t)−xf (t) and y(t) = U(t, t0)x−z(t) for t ≥ t0. Then obviously

z(t) and y(t) are solutions of the corresponding homogeneous equation of

(2.1) on (−∞,+∞) and [t0,∞), respectively. By definition, we have

lim
t→−∞

‖z(t)‖ = 0, lim
t→+∞

‖y(t)‖ = 0

that is, z(t0) = −xf (t0) ∈ X2(t0) and y(t0) = x − z(t0) ∈ X1(t0). This

proves the lemma. �

Now we finish the proof of the theorem by choosing the projection Q(t) as

the projection of X = X1(t) ⊕ X2(t) onto X2(t) for every t ∈ R. �
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Remark 2.1. If the evolutionary process (U(t, s))t≥s is determined by a

C0-semigroup T ((t))t≥0 that is generated by an operator A, then the con-

dition σ(A) ∩ iR = ∅ does not guarantee the hyperbolicity of T ((t))t≥0, so

it does not imply the exponential dichotomy of (U(t, s))t≥s. This is be-

cause in general the Spectral Mapping Theorem does not hold for arbitrary

C0-semigroup. As a counterexample we can take the semigroup (T (t))t≥0

in Example 1.12. Obviously, since σ(A) = ∅, we have σ(A) ∩ iR = ∅ and

‖T (t)‖ = 1 for all t ≥ 0. Hence, if (T (t))t≥0 is hyperbolic, then the pro-

jection Q in the Definition 2.2 must be trivial, i.e., Q = I . That means

‖T (t)‖ ≤ Ke−αt for all t ≥ 0, where K,α are some positive numbers. But

this contradicts to the fact that ‖T (t)‖ = 1 for all t ≥ 0.

2.2 Evolution Semigroups and Perron Theorem

In this section we will discuss the relation between the Perron Theorem and

the so-called evolution semigroup of bounded linear operators on C0(R,X)

associated with a given evolutionary process.

Definition 2.4. Let (U(t, s))t≥s be a strongly continuous evolutionary pro-

cess on R in a Banach space X. Then the following family (T h)h≥0 of linear

operators on C0(R,X) is called the evolution semigroup associated with

(U(t, s))t≥s on the function space C0(R,X):
[

T hv
]

(t) = U(t, t− h)v(t− h), ∀v ∈ C0(R,X), h ≥ 0, t ∈ R. (2.17)

Lemma 2.5. (T h)h≥0 is a strongly continuous semigroup of linear opera-

tors on C0(R,X) with the infinitesimal generator G such that D(G) = D(L)

and Gu = −Lu for all u ∈ D(L).

Proof. First, we show that for every v ∈ C0(R,X) with compact support

we have

lim
h↓0

T hv = v.

Since suppv is compact, the range R(v) of v is compact. By the strong con-

tinuity of the process (U(t, s))t≥s we have that the map ∆×X 3 (t, s, x) 7→
U(t, s)x ∈ X is continuous (here ∆ := {(t, s) ∈ R2 : t ≥ s}. Thus it is

uniformly continuous on (∆ ∩ [0, t0]
2) × R(v). On the other hand, v is

uniformly continuous on R. Thus, for every ε > 0 there exists a positive δ

such that for |h| < δ

‖T hv − v‖ = sup
t∈R

‖U(t, t− h)v(t − h) − v(t)‖ < ε.



April 22, 2008 10:13 World Scientific Book - 9in x 6in stability

48 Topics on Stability and Periodicity in Abstract Differential Equations

Obviously, since there are positive constants M,ω such that ‖U(t, s)‖ ≥
Meω(t−s) for all t ≥ s, we have ‖T hv‖ ≤ Meh‖v‖, ∀h ≥ 0. Thus, for

arbitrary w ∈ C0(R,X) there is a sequence vn with compact support in

C0(R,X)) convergent to w as n→ ∞. We have

0 ≤ lim sup
h↓0

‖T hw − w‖ ≤ (1 +Meω)‖vn − w‖.

This shows that limh↓0 T hw = w, i.e., the strong continuity of the evolution

semigroup.

Now we suppose that u ∈ D(L). Then there is a unique f ∈ C0(R,X)

such that (2.1) holds. We have
[

T hu− u

h

]

(t) =
1

h
(U(t, t− h)u(t− h) − u(t))

= − 1

h

∫ t

t−h

U(t, ξ)f(ξ)dξ.

Since f ∈ C0(R,X), f is uniformly continuous and R(f) is relatively

compact. Consequently, (t, s, x) 7→ U(t, s)x is uniformly continuous on

(∆ ∩ [0, t0]
2) ×R(f). This yields that

lim
h↓0

sup
t∈R

1

h

∫ t

t−h

‖U(t, ξ)f(ξ) − f(ξ)‖dξ = 0,

i.e.,

lim
h↓0

[

T hu− u

h

]

= −f. (2.18)

Conversely, let u ∈ D(G). By the basic properties of C0-semigroups we

have that the map (0,∞) 3 h 7→ T hu is differentiable and
d

dh
T hu = Gu, ∀h > 0

and

T hu− u =

∫ h

0

T ξGudξ, ∀h ≥ 0.

Setting f := Gu we have
[

T hu− u
]

(t) = U(t, t− h)u(t− h) − u(t) =

∫ h

0

[[Tξf ] (t)dξ

=

∫ t

t−h

U(t, ξ)f(ξ)dξ.

Hence,

u(t) = U(t, t− h)u(t− h) −
∫ t

t−h

U(t, ξ)f(ξ)dξ, ∀t ∈ R, h ≥ 0.

This shows that u is a solution of (2.1) with the forcing term −f and finishes

the proof of the lemma. �
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Remark 2.2. It is easy to see that if

U(t, s) = e(t−s)A :=

∞
∑

k=0

((t− s)A)k

k!
,

where A ∈ L(X), then D(G) = {u ∈ C0(R,X) : ∃u′ ∈ C0(R,X)} and G is of

the form

Gu(t) = − d

dt
u(t) +Au(t), ∀u ∈ D(G).

Let U(t, s) = T (t − s) for certain C0-semigroup (T (t))t≥0 with generator

A. For unbounded A, the above formula is no longer true. To see how

it should be modified we consider the evolution semigroup (T h)h≥0 as the

product of two commutative semigroups (R(h))h≥0 and (S(h))h≥0 defined

as follows

[R(h)v](t) = T (h)v(t); [S(h)v](t) = v(t− h), ∀h ≥ 0, v ∈ C0(R,X).

Let A be the operator with

D(A) = {u ∈ C0(R,X) : u(t) ∈ D(A), ∀t ∈ R, Au(·) ∈ C0(R,X)},
and Au = Au(t), ∀t ∈ R, u ∈ D(A). Clearly that the infinitesimal gen-

erator of (S(t))t∈R is −d/dt with D(−d/dt) = {f ∈ C0(R,X) : ∃f ′ ∈
C0(R,X)}. Thus, by Exercise 7, we have

G = −d/dt+ A.

As an immediate consequence of the above lemma we have

Corollary 2.3. The process (U(t, s))t≥s has an exponential dichotomy if

and only if the generator G of the evolution semigroup (T h)h≥0 associated

with (U(t, s))t≥s is invertible.

Corollary 2.4. If λ ∈ σ(G), then λ+ iµ ∈ σ(G) for all µ ∈ R.

Proof. Let Uµ(t, s) := e−iµ(t−s)U(t, s), for fixed µ ∈ R. Note

that (U(t, s))t≥s has an exponential dichotomy if and only if so does

(Uµ(t, s))t≥s. Obviously, the generator of the evolution semigroup asso-

ciated with (Uµ(t, s))t≥s is the operator G− iµI with the same domain. By

the above corollary, G is invertible if and only if so is G − iµI . �

Definition 2.5. Let (T (t))t≥0 be a C0-semigroup on X. It is said to be

hyperbolic if σ(T (1))∩Γ = ∅, where Γ denotes the unit circle on the complex

plane.
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Theorem 2.2. Let (U(t, s))t≥s be a strongly continuous evolutionary pro-

cess and let (T h)h≥0 be its evolution semigroup associated with it on

C0(R,X). Then (U(t, s))t≥s has an exponential dichotomy if and only if

(T h)h≥0 is hyperbolic.

Proof. By the inclusion of C0-semigroups, if σ(T 1) ∩ Γ = ∅, then 0 6∈
σ(G). By the above corollaries (U(t, s))t≥s has an exponential dichotomy.

Conversely, if (U(t, s))t≥s has an exponential dichotomy, then we set C1 :=

{u ∈ C0(R,X) : u(t) ∈ ImP (t), ∀t ∈ R} and C2 := {u ∈ C0(R,X) : u(t) ∈
ImQ(t), ∀t ∈ R}, where projections P (t), Q(t), t ∈ R are determined from

the exponential dichotomy of (U(t, s))t≥s. It is easy to see that T 1 is strictly

contractive on C1 and is left C2 invariant. Moreover, the restriction of T 1 to

C2 is invertible and its inverse is also strictly contractive. By the Spectral

Radius Theorem σ(T 1) ∩ Γ = ∅. �

The following spectral mapping theorem holds for evolution semigroups.

Theorem 2.3. We have the spectral mapping theorem for the evolution

semigroup (T h)h≥0

σ(T h)\{0} = ehσ(G), ∀h ≥ 0. (2.19)

Proof. By the above theorem 1 ∈ ρ(T 1) if and only if Γ ⊂ ρ(T 1). For any

positive µ ∈ R+ consider the process Vµ(t, s) := e−µ(t−s)U(t, s), applying

the above theorem to this process we have that µ ∈ ρ(T 1) if and only if the

whole circle {|z| = µ} is contained in ρ(T 1). Since 0 ∈ ρ(G) if and only if

1 ∈ ρ(T 1), by Lemma 2.4 we have

σ(T 1)\{0} = eσ(G).

For arbitrary η > 0 we consider the process Vh(t, s) := e−η(t−s)U(t, s).

Its evolution semigroup is T h
η )h≥0 defined by T h

η v(t) = e−ηT h. Hence,

1 ∈ ρ(T 1
η ) = eηρ(T 1) if and only if Γ ⊂ ρ(T 1

η ) = eηρ(T 1). Repeating the

above reasoning we have (2.19). �

Next, we consider the perturbation theory of exponential dichotomy of

processes. Let (U(t, s))t≥s be a strongly continuous evolutionary process

and let B : R → L(X) be continuous. Then we can associated with the

following integral equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, ξ)B(ξ)x(ξ)dξ, ∀t ≥ s (2.20)

a strongly continuous evolutionary process (V (t, s))t≥s as follows: for any

t ≥ s we define V (t, s)y as the unique solution to the above equation
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such that x(s) = y. We can show without difficulty that such a fam-

ily of operators forms a strongly continuous evolutionary process. More-

over, denoting its evolutionary process by (T h
B)t≥s we can prove that

‖T 1
B − T 1‖ ≤ supt∈R ‖B(t)‖. Hence, we have the following

Corollary 2.5. Let (U(t, s))t≥s have an exponential dichotomy. Then the

process (V (t, s))t≥s defined as above has an exponential dichotomy as well

provided that supt∈R ‖B(t)‖ is sufficiently small.

Proof. By the above theory, 1 ∈ ρ(T 1). For sufficiently small

supt∈R ‖B(t)‖ we have 1 ∈ ρ(T 1
B). This yields the hyperbolicity of T h

B ,

and hence the exponential dichotomy of (V (t, s))t≥s follows. �

Example 2.1. If U(t, s) = T (t − s), where (T (t))t≥0 is a C0-semigroup,

then we can easily show that (U(t, s))t≥s has an exponential dichotomy if

and only if T (1) is hyperbolic. In fact, in this case we consider the Riesz

projection

P =
1

2πi

∫

Γ

(λ− T (1))−1dλ,

where Γ is positively oriented. By the general theory of linear operators

X = ImP ⊕KerP and, σ(T (1)) = σ(T (1)|ImP )tσ(T (1)|KerP ). Hence, by

the Spectral Radius Theorem there are positive constants K,α such that

‖T (t)x‖ ≤ Ke−αt‖x‖, ∀t ≥ 0;x ∈ ImP

‖T (s)y‖ ≤ Ke−αs‖y‖, ∀s ≤ 0; y ∈ KerP,

where T (s)|KerP is the inverse of T (−s)|KerP for s > 0 whose existence is

guaranteed by the above decomposition of spectrum of T (1). Thus, we can

check that the process U(t, s) = T (t− s) has an exponential dichotomy.

If (T (t))t≥0 is eventually norm continuous with generator A, then by

Spectral Mapping Theorem, for (T (t))t≥0 to have an exponential dichotomy

it is necessary and sufficient that

σ(A) ∩ iR = ∅.

2.3 Stability Theory

2.3.1 Exponential Stability

In this subsection we consider the exponential stability of a strongly con-

tinuous evolutionary process (U(t, s))t≥s with t, s ∈ R+.
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Definition 2.6. An evolutionary process (U(t, s))t≥s is said to be expo-

nentially stable if there are positive constants K,α such that

‖U(t, s)‖ ≤ Ke−α(t−s), ∀t ≥ s.

The main result of this subsection is the following

Theorem 2.4. Let (U(t, s))t≥s with t ≥ s ≥ 0 be a strongly continuous

evolutionary process. Then, (U(t, s))t≥s is exponentially stable if and only

if for every f ∈ C0(R,X) the following function

uf (t) =

∫ t

0

U(t, ξ)f(ξ)dξ, t ∈ R+ (2.21)

is in C0(R,X).

Proof. For every t ≥ 0 we define an operator V (t) ∈ L(C0(R,X),X)

V (t) : C0(R,X) 3 f 7→
∫ t

0

U(t, ξ)f(ξ)dξ ∈ X.

By the assumption, for every f ∈ C0(R,X) we have

sup
t≥0

‖V (t)f‖ <∞.

Thus, by the Uniform Boundedness Principle,

sup
t≥0

‖V (t)‖ <∞.

Consequently, there is a positive constant c > 0 such that

‖uf‖ ≤ c‖f‖, f ∈ C0(R,X).

By the same reasoning as in the proof of Lemma 2.2 we can show that there

are positive constants K,α depending only on c such that

‖U(t, s)‖ ≤ Ke−α(t−s), ∀t ≥ s ≥ 0.

This finishes the proof of the theorem. �

We are now interested in the stability of individual orbits in the case the

process is not exponentially stable. To this end we introduce an operator

G : D(G) ⊂ BC(R+,X) → BC(R+,X), where we denote by BC(R+,X)

the space of all X valued bounded and continuous functions on R+ with

sup-norm as follows:

D(G) := {u ∈ BC(R+,X) such that ∃f ∈ BC(R+,X)

u(t) =

∫ t

0

U(tξ)f(ξ)dξ, ∀t ∈ R+}

Gu := f, ∀u ∈ D(G).
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As for the operator L in the previous section we can show that G is closed.

Theorem 2.5. Assume that there is a positive constant ν > 0 such that

‖Gu‖ ≥ ν‖u‖, ∀u ∈ D(G). (2.22)

Then there exist positive constants K,α depending only on ν such that

‖U(t, t0)x‖ ≤ Ke−α(t−s)‖U(s, t0)x‖, ∀t ≥ s ≥ t0

provided that

sup
t≥0

‖U(t, t0)x‖ <∞.

Proof. The proof can be done in the same manner as in Lemma 2.2, so

the details are omitted. �

Now we consider the perturbation theory of an exponentially stable

process (U(t, s))t≥s. As in the previous section for a given bounded B :

R+ → L(X) we can show that the following integral equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, ξ)B(ξ)x(ξ)dξ, ∀t ≥ s ≥ 0

generates a strongly continuous evolutionary process (V (t, s))t≥s. Using

the Gronwall inequality it is easy to prove the following assertion:

Proposition 2.1. Let (U(t, s))t≥s be an exponentially stable strongly con-

tinuous evolutionary process. Then the process (V (t, s))t≥s is also exponen-

tially stable provided that supt≥0 ‖B(t)‖ is sufficiently small.

Proof. Let

ε := sup
t≥0

‖B(t)‖

and η(t) := V (t, s)x for any fixed s ∈ R+, x ∈ X. Then

η(t) ≤ Ke−α(t−s)‖x‖ +

∫ t

s

εKe−α(t−ξ)η(ξ)dξ, ∀t ≥ s.

Applying the Gronwall inequality to the function ζ(t) := eαtη(t) we get

η(t) ≤ Ke−(α−Kε)(t−s)‖x‖, ∀t ≥ s.

Thus

‖V (t, s)‖ ≤ Ke−(α−Kε)(t−s), ∀t ≥ s.

Therefore, if

ε <
α

K
then (V (t, s))t≥s is exponentially stable. �
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2.3.2 Strong Stability

In this subsection we will prove the following theorem: if (T (t))t≥0 is a

uniformly bounded C0-semigroup such that the unitary spectrum σ(A)∩iR
is at most countable and σp(A

∗)∩ iR = ∅, then (T (t))t≥0 is strongly stable,

i.e. limt→∞ ‖T (t)x‖ = 0 for all x ∈ X.

Definition 2.7. A bounded operator T on a Banach space X is called an

isometry if ‖Tx‖ = ‖x‖ for all x ∈ X.

Lemma 2.6. Let (T (t))t≥0 be a C0-semigroup of isometries on a Banach

space X, and let A be its generator. Then the following hold:

(i) For all x ∈ D(A) and λ ∈ C we have ‖(λ−A)x‖ ≥ |<λ| ‖x‖;
(ii) If E ⊂ R is closed and x ∈ X is such that the map λ 7→ R(λ,A)x has

a holomorphic extension F to a connected neighbourhood V of {<λ ≥
0}\iE, then for all λ ∈ V \iR we have ‖F (λ)‖ ≤ |<λ|−1‖x‖.

Proof. (i): First, we may assume that <λ 6= 0. From the identity

e−λtT (t)x = x+

∫ t

0

e−λs(A− λ)T (s)x ds

we have

e−Reλt‖x‖ = e−Re λt‖T (t)x‖

≤ ‖x‖ +

∫ t

0

e−Re λs‖T (s)(λ−A)x‖ ds

= ‖x‖ +

(
∫ t

0

e−Re λs ds

)

‖(λ−A)x‖

= ‖x‖ +
e−Reλt − 1

−Reλ
‖(λ−A)x‖.

This proves the lemma for <λ < 0. For <λ > 0 the inequality follows from

the Laplace transform representation of the resolvent.

(ii): This is proved in the same way, after first substituting R(λ,A)x

for x in the first formula and passing to the holomorphic extension. �

Theorem 2.6. Let (T (t))t≥0 be C0-semigroup of contractions on a Banach

space X, with generator A. Then there exists a Banach space Y , a bounded

operator π : X → Y with dense range, and a C0-semigroup (U(t))t≥0 of

isometries on Y with generator B such that:

(i) U(t)π = πT (t) for all t ≥ 0. Moreover, πD(A) ⊂ D(B) and Bπx =

πAx for all x ∈ D(A);
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(ii) limt→∞ ‖T (t)x‖ = ‖πx‖ for all x ∈ X;

(iii) σ(B) ⊂ σ(A).

If σ(A)∩ iR is a proper subset of iR, then (U(t))t≥0 extends to a C0-group

of isometries.

Proof. On X we define the seminorm l by l(x) := limt→∞ ‖T (t)x‖. Since

(T (t))t≥0 is contractive, this limit indeed exists. Let π : X → Y0 := X/ker l

be the quotient mapping. The seminorm l induces a norm l0 on Y0 by

l0(πx) := l(x), and hence

l0(πx) = l(x) = lim
t→∞

‖T (t)x‖.

For t ≥ 0, we define U0(t) : Y0 → Y0 by U0(t)πx := πT (t)x. We have

l0(U0(t)πx) = l0(πT (t)x) = l(T (t)x) = l(x) = l0(πx).

This shows that U0(t) is isometric with respect to the norm l0. Let Y be

the completion of Y0 with respect to l0. Then each operator U0(t) extends

to an isometry U(t) on Y . Strong continuity of the family (U(t))t≥0 follows

from the density of πX in Y , the contractivity of the operators U(t), and

the estimate

lim sup
t↓0

‖U(t)πx− πx‖ = lim sup
t↓0

(

lim
s→∞

‖T (t+ s)x− T (s)x‖
)

≤ lim sup
t↓0

‖T (t)x− x‖ = 0, x ∈ X.

If x ∈ D(A), then

lim
t↓0

1

t
(U(t)πx − πx) = π lim

t↓0

1

t
(T (t)x− x) = πAx,

proving that πx ∈ D(B) and Bπx = πAx.

We have proved (i) and (ii). Next, we prove (iii). Let λ ∈ %(A). We

define a linear operator Rλ on Y0 as follows

Rλπx := πR(λ,A)x.

This operator is well-defined and

l0(Rλπx) = lim
t→∞

‖T (t)R(λ,A)x‖
≤ ‖R(λ,A)‖ lim

t→∞
‖T (t)x‖ = ‖R‖ l0(πx).

Therefore, Rλ extends to a bounded operator on Y and ‖Rλ‖ ≤ ‖R(λ,A)‖.
For all x ∈ X we have Rλπx = πR(λ,A)x ∈ πD(A) ⊂ D(B) and (λ −
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B)Rλπx = (λ−B)πR(λ,A)x = π(λ−A)Rx = x. Similarly, for all x ∈ D(A)

we have πx ∈ D(B) and Rλ(λ−B)πx = Rλπ(λ−A)x = πR(λ−A)x = x.

Therefore, to prove that Rλ is a two-sided inverse of λ − B, in view of

the closedness of B it remains to prove that πD(A) is dense in D(B) with

respect to the graph norm. So let y ∈ D(B) be arbitrary. Fix µ > 0

arbitrary and choose z ∈ Y such that y = R(µ,B)z. Take a sequence

{xn} ⊂ X such that πxn → z in Y and put yn := πR(µ,A)xn. Then yn ∈
πD(A), yn = R(µ,B)πxn → R(µ,B)z = y, and Byn = BR(µ,B)πxn →
BR(µ,B)z = By. Here we used that πR(µ,A) = R(µ,B)π by the Laplace

transform representation of the resolvents and that BR(µ,B) = µR(µ,B)−
I is a bounded operator on Y . Thus, yn → y in D(B) with respect to the

graph norm. This concludes the proof of (iii).

Suppose σ(A) ∩ iR is properly contained in iR. We have to prove that

(U(t))t≥0 extends to a C0-group of isometries. By Lemma 2.6 (i), for all

y ∈ D(B) and <λ < 0 we have

‖(λ−B)y‖ ≥ |<λ| ‖y‖.

It follows that the open left half-plane C− contains no approximate eigen-

values for B. In particular, C− contains no elements of the boundary of

σ(B). Hence, either C− ⊂ σ(B) or C− ∩ σ(B) = ∅. But in the first case,

also iR ⊂ σ(B) since σ(B) is closed. This contradicts the assumption, so

we must have the second alternative.

It follows that σ(B) ⊂ iR. For <λ > 0 we have

‖R(λ,−B)‖ = ‖R(−λ,B)‖ ≤ 1

|<(−λ)| =
1

<λ .

By the Hille-Yosida theorem, −B is the generator of a C0-semigroup

(V (t))t≥0 of contractions on Y . We check that U(t) is invertible for all t ≥ 0

with inverse V (t). For all x ∈ D(B) = D(−B), the maps t 7→ U(t)V (t)x

and t 7→ V (t)U(t)x are differentiable with derivative identically zero. It

follows that the maps are constant, and by letting t ↓ 0 it follows that

U(t)V (t) = V (t)U(t) = I on the dense set D(B), hence on all of Y . Finally,

each operator V (t) is an isometry, being the inverse of an isometry. �

The triple (Y, π, (U(t))t≥0) will be called the isometric limit (semi)group

associated to (T (t))t≥0.

Corollary 2.6. If (T (t))t≥0 is an isometric C0-semigroup on X with σ(A)∩
iR 6= iR, then (T (t))t≥0 extends to an isometric C0-group.
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Proof. By the isometric nature of (T (t))t≥0 we have l(x) = x for all

x ∈ X , so Y = X and (T (t))t≥0 = (U(t))t≥0. But (U(t))t≥0 extends to a

C0-group since σ(A) ∩ iR 6= iR. �

An invertible operator is called doubly power bounded if

sup
k∈Z

‖T k‖ <∞.

Lemma 2.7. Let T be a doubly power bounded operator on a Banach space

X with σ(T ) = {1}. Then T = I.

Proof. Since ln z is holomorphic in a neighbourhood of z = 1, by Dunford

calculus we may define the bounded operator S := −i lnT. Then T = eiS

and the spectral mapping theorem implies that σ(mS) = {0} for all m ∈ N.

Also, for all m ∈ N we have σ(sin(mS)) = sin(σ(mS)) = {sin 0} = {0}, and

‖(sin(mS))n‖ =

∥

∥

∥

∥

(

Tm − T−m

2i

)n∥
∥

∥

∥

≤ sup
k∈Z

‖T k‖.

Let
∑∞

n=0 cnz
n be Taylor series of the principle branch of arcsin z at z =

0. As is well-known, cn ≥ 0 for all n and
∑∞

n=0 cn = arcsin(1) = π
2 .

Consequently,

‖mS‖ = ‖ arcsin(sin(mS))‖ ≤
∞
∑

n=0

cn‖(sin(mS))n‖ ≤ π

2
sup
k∈Z

‖T k‖.

Since this holds for all m ∈ N, it follows that S = 0 and T = eiS = I. �

Theorem 2.7. Let (T (t))t≥0 be a uniformly bounded C0-semigroup on a

Banach space X, with generator A. If

(i) σ(A) ∩ iR is countable, and

(ii) σp(A
∗) ∩ iR = ∅,

then (T (t))t≥0 is strongly stable, i.e. limt→∞ ‖T (t)x‖ = 0 for all x ∈ X.

Proof. By renorming with the equivalent norm ‖x‖∗ := supt≥0 ‖T (t)x‖,
we may assume that (T (t))t≥0 is contractive. Let (Y, π, (U(t))t≥0) be the

isometric limit semigroup associated to (T (t))t≥0, and let B be the gen-

erator of (U(t))t≥0. By (i), σ(A) ∩ iR cannot be all of iR, and therefore

(U(t))t≥0 extends to an isometric group on Y . Assuming that (T (t))t≥0

is not strongly stable, we shall prove that (i) implies σp(A
∗) ∩ iR 6= ∅.

In fact, since (T (t))t≥0 is not strongly stable, the definition of Y implies

that Y 6= {0}. By Lemma 1.1, σ(B) 6= ∅. Also, since σ(B) ⊂ σ(A),
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it follows that σ(B) is countable. In particular, since σ(B) is closed and

countable, it contains an isolated point, say iω. Let Pω be the associated

spectral projection in Y , let (Uω(t))t≥0 be the restriction of (U(t))t≥0 to

PωY and let Bω denote its generator. Since σ(Bω) = {iω}, Theorem 1.10

implies that σ(Uω(t)) = {eiωt} for all t ∈ R. By Lemma 2.7, this implies

that Uω(t) = eiωtI . Hence, for all y ∈ Y we have Uω(t)Pωy = eiωtPωy, so

Pωy ∈ D(Bω) and BωPωy = iωPωy. Fix an arbitrary non-zero y∗ω ∈ (PωY )∗

and define x∗ ∈ X∗ by

< x∗, x >:=< y∗ω, Pωπx >, x ∈ X.

Then x∗ 6= 0. For all x ∈ D(A) we have πx ∈ D(B), Bπx = πAx, and

< x∗, Ax > = < y∗ω, PωπAx >=< y∗ω, PωBπx >

= < y∗ω, BωPωπx >= iω < y∗ω, Pωπx >= iω < x∗, x > .

Hence, x∗ ∈ D(A∗) and A∗x∗ = iωx∗. �

2.4 Comments and Further Reading Guide

2.4.1 Further Reading Guide

So far we have discussed conditions for the stability and exponential di-

chotomy of homogeneous equations. Below we state without proofs further

important results on the asymptotic behavior of C0-semigroups. The reader

is referred to Chap. 5 §7 in [van Neerven (78)]) for more information.

Definition 2.8. A C0-semigroup (T (t))t≥0 on X is said to be almost peri-

odic if for each x ∈ X the set {T (t)x, t ∈ [0,+∞)} is relatively compact in

X.

Theorem 2.8. (Theorem 5.7.10 in [van Neerven (78)]) Let (T (t))t≥0 be a

uniformly bounded C0-semigroup on a Banach space X, with generator A,

and assume that σ(A) ∩ iR is countable. Then the following assertions are

equivalent:

(1) (T (t))t≥0 is almost periodic,

(2) For every iω ∈ σ(A)∩ iR the limit limt→∞
1
t

∫ t

0 e
−iωsT (s)x ds exists for

every x ∈ X,

(3) For every iω ∈ σ(A) ∩ iR, R(A− iω) +N(A− iω) is dense in X.

The following is referred to as the splitting Theorem of Glicksberg and

DeLeeuw.
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Theorem 2.9. (Theorem 5.7.7 in [van Neerven (78)]) Let (T (t))t≥0 be

an almost periodic C0-semigroup on a Banach space X. Then there exists

a direct sum decomposition X = X0 ⊕X1 of (T (t))t≥0-invariant subspaces,

where

X0 = {x ∈ X : lim
t→∞

‖T (t)x‖ = 0}

and X1 is the closed linear span of all eigenvectors of the generator A with

purely imaginary eigenvalues. Moreover, the restriction of (T (t))t≥0 to X1

extends to an almost periodic C0-group on X1. If (T (t))t≥0 is contractive,

this group is isometric.

Exponential dichotomy of homogeneous equations that are defined on the

half line is more difficult for us to study. Evolution semigroups method

actually fails. However, Perron type characterization of exponential di-

chotomy can be used for these equations. We refer the reader to [Minh,

Räbiger and Schnaubelt (70)] for more details in this direction. Neverthe-

less, evolution semigroups method is a strong tool to study the exponential

dichotomy of linear skew products. We refer the reader to [Chicone and

Latushkin (19)] for more details in this direction. New applications of evo-

lution semigroups to the stability problem of homogeneous equations can

be found in [Batty, Chill and Tomilov (15); Latushkin and Tomilov (56)].

The explicit formula for the generators of evolution semigroups gives rise

to new applications of this method to the study of inhomogeneous linear

and semilinear equations. This is the content of the next chapter.

2.4.2 Comments

Perron Theorem for evolutionary processes in Banach spaces was first

proved by Zhikov (see [Zikov (108)]). The proof that is given in Section 1

is an adaptation of this proof for the function space C0(R,X). Another re-

cent proof of the characterization of exponential dichotomy using evolution

semigroups was given by Latushkin and Montgomery-Smith in [Latushkin,

Monthomery-Smith (55)] (see also [Chicone and Latushkin (19); van Neer-

ven (78)]). The explicit formula for the generators of evolution semigroups

was found in [Aulbach and Minh (10)] for general semilinear evolution

equations. In the linear case, it was also found in [Baskakov (13)]. The

presentation of Section 2 follows [Minh (69)].

The Perron condition (that is similar to the condition in Theorem 2.4)

for exponential stability was first proved by Datko [Datko (25)]. The
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proof of Theorem 2.4 is taken from [Minh, Räbiger and Schnaubelt (70)].

Theorem 2.7, that is widely referred to as ABLV Theorem, was first proved

by Sklyar and Shirman for the bounded case [Skylar and Shirman (97)]

(we thank G.M. Sklyar for sending us their original paper). It is amazing

that their result and method of proving can be extended to the unbounded

case by Lyubich and Vu in [Lyubich and Vu (66)]. The ABLV Theorem

was proved independently by Arendt and Batty in [Arendt and Batty (4)].
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Chapter 3

Existence of Almost Periodic

Solutions to Inhomogeneous

Equations

The problem of our primary concern in this chapter is to find spectral con-

ditions for the existence of almost periodic solutions of periodic equations.

Although the theory for periodic equations can be carried out similarly to

that for autonomous equations, there is always a difference between them.

This is because in general there is no Floquet representation for the mon-

odromy operators in the infinite dimensional case. Section 1 will deal with

evolution semigroups acting on invariant function spaces of AP (X). Since,

originally, this technique is intended for nonautonomous equations we will

treat equations with as much nonautonomousness as possible, namely, pe-

riodic equations. The spectral conditions are found in terms of spectral

properties of the monodromy operators. Meanwhile, for the case of au-

tonomous equations these conditions will be stated in terms of spectral

properties of the operator coefficients. This can be done in the framework

of evolution semigroups and sums of commuting operators in Section 2.

Section 3 will be devoted to the critical case in which a fundamental tech-

nique of decomposition is presented. In Section 4 we will present another,

but traditional, approach to periodic solutions of abstract functional differ-

ential equations. The remainder of the chapter will be devoted to several

extensions of these methods to discrete systems and nonlinear equations.

3.1 Evolution Semigroups and Almost Periodic Solutions

of Periodic Equations

3.1.1 An Example

We begin this section with an example which is a trivial case where the

system has an exponential dichotomy. Let us consider the equation

61
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dx

dt
= Ax+ f(t), t ∈ R, x ∈ Rn, (3.1)

where A is an n× n-matrix and f is a 1-periodic continuous function. We

assume that the corresponding homogeneous equation of Eq.(3.1) has an

exponential dichotomy. This is equivalent to the fact that σ(A) ∩ iR = �,

or S1 ∩ σ(eA) = � (here S1 denotes the unit circle in the complex plane).

As is well known, in this case, for every almost periodic f , Eq.(3.1) has a

unique bounded solution which can be represented in the form

xf (t) =

∫ t

−∞
etAPe−sAf(s)ds−

∫ +∞

t

etA(I − P )e−sAf(s)ds, (3.2)

where the projection P is determined from the exponential dichotomy of the

homogeneous equation (P is the spectral projection from Rn onto the in-

variant subspace corresponding to the part of eigenvalues of A with negative

real parts). We now prove that this bounded solution is almost periodic.

In fact, we will use the Bochner’s criterion. Let {tk}k∈N be any sequence

of reals. We have to show that there is a subsequence {tkl
} such that the

sequence xf (tkl
+ ·) is convergent to a bounded uniformly continuous func-

tion uniformly with respect to t ∈ R. Note that, in this case, without loss

of generality, we can assume that the projection P is commutative with the

fundamental matrix etA. So, by assumption, Pf(·) is almost periodic. By

Bochner’s criterion, there is a subsequence of {tkl
} such that Pf(tkl

+ ·) is

convergent uniformly. Let us consider the integral

∫ t+tkl

−∞
e(t+tkl

−s)APf(s)ds =

∫ t

−∞
e(t−s)APf(s+ tkl

)ds.

Now from the uniform convergence of f(tkl
+·) and the absolute convergence

of the integral in (3.2) follows the uniform convergence of the above integral.

Similarly, we can prove the almost periodicity of the other integral in (3.2).

Hence, xf is almost periodic.

It is interesting to find the relationship between sp(f) and sp(xf ). First,

we assume that f(t) = eiλt, λ ∈ R, and n = 1 (hence A is 1×1-matrix with

nonzero entry). Then we have (assuming that A = a < 0)

∫ t

−∞
ea(t−s)f(s)ds =

1

iλ− a
eiλt.
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Therefore, sp(xf ) = {λ}. By using the Approximation Theorem, this proof

can be extended to the general case of almost periodic f . In the general

case we get the following inclusion:

sp(xf ) ⊂ sp(f) = σb(f).

The aim of our theory which will be presented here is to go futher in this

direction. We will give conditions as sharp as possible for the existence

of such almost periodic solutions as xf . We will show that the exponen-

tial dichotomy assumption on the homogeneous equation is too strong and

redundant if the spectrum of f is a strict subset of R.

Exercise 14. Show that under the above assumption we have σb(xf ) ⊂
σb(f).

Hint. Use Bohr transform.

3.1.2 Evolution Semigroups

Let us consider the following linear evolution equations

dx

dt
= A(t)x, (3.3)

and

dx

dt
= A(t)x + f(t), (3.4)

where x ∈ X, X is a complex Banach space, A(t) is a (unbounded) linear

operator acting on X for every fixed t ∈ R such that A(t) = A(t + 1) for

all t ∈ R , f : R → X is an almost periodic function. Under suitable

conditions Eq.(3.3) is well-posed, i.e., one can associate with equation (3.3)

an evolutionary process (U(t, s))t≥s which satisfies, among other things,

the conditions in the following definition.

Definition 3.1. A family of bounded linear operators (U(t, s))t≥s, (t, s ∈
R) from a Banach space X to itself is called 1-periodic strongly continuous

evolutionary process if it is a strongly continuous evolutionary process and

satisfies U(t+ 1, s+ 1) = U(t, s) for all t ≥ s.

If it does not cause any danger of confusion, for the sake of simplicity, we

shall often call 1-periodic strongly continuous evolutionary process (evolu-

tionary) process. Note that the assumption that the period of the process

is 1 is not a restriction. It is merely to shorten the notations.
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Once the well-posedness of the equations in question is assumed, instead

of the equations with operator-coefficient A(t), we are in fact concerned

with the evolutionary processes generated by these equations. In light of

this, throughout the book we will deal with the asymptotic behavior of

evolutionary processes as defined in Definition 3.1. Our main tool to study

the asymptotic behavior of evolutionary processes is to use the notion of

evolution semigroups associated with given evolutionary processes, which

is defined in the following:

Definition 3.2. The following formal semigroup associated with a given

1-periodic strongly continuous evolutionary process (U(t, s))t≥s

(T hu)(t) := U(t, t− h)u(t− h), ∀t ∈ R, h ≥ 0, (3.5)

where u is an element of some function space F , is called evolutionary

semigroup associated with the process (U(t, s))t≥s on F .

3.1.3 The Finite Dimensional Case

We assume in this section that the evolutionary process (U(t, s))t≥s is gen-

erated by the ordinary differential equation

dx

dt
= A(t)x, t ∈ R, x ∈ Cn, (3.6)

where A(t) is 1-periodic continuous matrix function. Hence, by the Exis-

tence and Uniqueness Theorem, the fundamental matrix X(t) associated

with (3.6) exists, i.e., the matrix satisfying the Cauchy problem
{

dX
dt = A(t)X, t ∈ R,

X(0) = I.
(3.7)

Now setting U(t, s) = X(t)X−1(s) we get the so-called Cauchy operators,

or evolution operators associated with (3.6). We consider the evolution

semigroup (T h)h≥0 associated with this evolutionary process (U(t, s))t≥s

in the function space AP (X). First, note that, by the 1-periodicity of A(t)

and the Existence and Uniqueness Theorem, U(t+1, s+1) = U(t, s), ∀t, s.
Thus, it is seen that

T h : AP (X) → AP (X), ∀h ≥ 0.

Moreover, the strong continuity of the evolution semigroup can be proved

easily by using classical rules of differentiation. Here we are interested in

the infinitesimal generator L of this evolution semigroup. It is elementary
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to compute the generator by using the rules of differentation that is the

following form: L = −d/dt+A(t), i.e.,

g ∈ D(L) ⊂ AP (X) if and only if g is differentiable and

−g′(·) +A(·)g(·) ∈ AP (X).

This information suggests that the inhomogeneous equation

dx

dt
= A(t)x + f(t), f ∈ AP (X) (3.8)

has an almost periodic solution x(·) if and only if Lx = −f . This is very

useful because if we can find conditions so that the operator L is invert-

ible, i.e., 0 6∈ σ(L), then the inhomogeneous equation has a unique almost

periodic solution. In turn, this condition can be found using the spectral in-

clusion of strongly continuous semigroups, i.e., 1 6∈ σ(T 1). This section will

discuss the question as how to use the above ideas for the general infinite

dimensional case.

Exercise 15. Prove the formula for the generator of the evolution semigroup

in the finite dimensional case.

3.1.4 The Infinite Demensional Case

In the infinite dimensional case many difficulties arise. First, the formula

for the generator turns out to be more complicated. This is due to the fact

that the Existence and Uniqueness Theorem for classical solutions does not

applied to inhomogeneous equations. Hence, the classical rules of differ-

entiation do not applied. Instead of the notion of classical solutions one

introduces the one of mild solutions which saves several classical results in

this case. Below we are mainly concerned with the following inhomogeneous

equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, ξ)f(ξ)dξ, ∀t ≥ s (3.9)

associated with a given strongly continuous 1-periodic evolutionary process

(U(t, s))t≥s. A continuous solution u(t) of Eq.(3.9) on an interval J will be

called mild solution to Eq.(3.4) on J . If we do not mention the interval J

for a mild solution, we mean that the mild solution is defined on the whole

real line.

The following lemma will be the key tool to study spectral criteria for al-

most periodicity in this section which relates the generator of the evolution

semigroup (3.5) with the operator defined by Eq.(3.9).
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Lemma 3.1. Let (U(t, s))t≥s be a 1-periodic strongly continuous evolution-

ary process. Then its associated evolutionary semigroup (T h)h≥0 is strongly

continuous in AP (X). Moreover, the infinitesimal generator of (T h)h≥0 is

the operator L defined as follows: u ∈ D(L) and Lu = −f if and only if

u, f ∈ AP (X) and u is the solution to Eq.(3.9).

Proof. Let v ∈ AP (X). First we can see that T h acts on AP (X). To

this end, we will prove the following assertion: Let Q(t) ∈ L(X) be a family

of bounded linear operators which is periodic in t and strongly continuous,

i.e., Q(t)x is continuous in t for every given x ∈ X. Then if f(·) ∈ AP (X),

Q(·)f(·) ∈ AP (X). The fact that supt ‖Q(t‖ <∞ follows from the Uniform

Boundedness Principle. By the Approximation Theorem of almost periodic

functions we can choose sequences of trigonometric polynomials fn(t) which

converges uniformly to f(t) on the real line. For every n ∈ N, it is obvious

that Q(·)fn(·) ∈ AP (X). Hence

sup
t

‖Q(t)fn(t) −Q(t)f(t)‖ ≤ sup
t

‖Q(t)‖ sup
t

‖fn(t) − f(t)‖

implies the assertion.

We continue our proof of Lemma 3.1. By definition we have to prove

that

lim
h→0+

sup
t

‖U(t, t− h)v(t− h) − v(t)‖ = 0. (3.10)

Since v ∈ AP (X) the range of v(·) which we denote by K (consisting of

x ∈ X such that x = v(t) for some real t) is a relatively compact subset of

X. Hence the map (t, s, x) 7→ U(t, s)x is uniformly continuous in the set

{1 ≥ t ≥ s ≥ −1, x ∈ K}. Now let ε be any positive real. In view of the

uniform continuity of the map (t, s, x) 7→ U(t, s)x in the above-mentioned

set, there is a positive real δ = δ(ε) such that

‖U(t− [t], t− [t] − h)x− x‖ < ε (3.11)

for all 0 < h < δ < 1 and x ∈ K, where [t] denotes the integer n such that

n ≤ t < n+ 1. Since (U(t, s))t≥s is 1-periodic from (3.11) this yields

lim
h→0+

sup
t

‖U(t, t− h)v(t − h) − v(t− h)‖ = 0. (3.12)

Now we have

lim
h→0+

sup
t

‖U(t, t− h)v(t− h) − v(t)‖

≤ lim
h→0+

sup
t

‖U(t, t− h)v(t− h) − v(t− h)‖

+ lim
h→0+

sup
t

‖v(t− h) − v(t)‖. (3.13)
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Since v is uniformly continuous this estimate and (3.13) imply (3.10), i.e.,

the evolutionary semigroup (T h)h≥0 is strongly continuous in AP (X).

For the proof of the remainder we can do as in Section 2 of the previous

chapter.

To present another proof which works also for semilinear equations, let

us consider the affine semigroup (T h
f )h≥0 associated with the inhomoge-

neous equation (3.9) for f ∈ AP (X), defined as follows:

T h
f v = T hv +

∫ h

0

T h−ξfdξ = T hv +

∫ h

0

T ξfdξ, (3.14)

where v ∈ AP (X), h ≥ 0. It is easily checked that for all v ∈ AP (X) we

have

[T h
f v](t) = Uf (t, t− h)v(t− h), t ∈ R, h ≥ 0,

where Uf (t, s) is the evolutionary operator defined by the integral equation

(3.9). In other words, the assertion that g, f ∈ AP (X) and g is a solution

of (3.9), is equivalent to T h
f g = g (∀h ≥ 0) . From (3.14) this is equivalent

to

g = T h
f g = T hg +

∫ h

0

T ξfdξ, ∀h ≥ 0 ,

T hg − g =

∫ h

0

T ξAgdξ = −
∫ h

0

T ξfdξ ∀h ≥ 0. (3.15)

From the general theory of linear operator semigroups (see Theorem 1.4)

this is equivalent to the assertion Ag = −f . �

Remark 3.1. It may be noted that in the proof of Lemma 3.1 the precom-

pactness of u and f are essiential. Hence, in the same way, we can show the

strong continuity of the evolution semigroup (T h)h≥0 in C0(R,X). Finally,

combining this remark and Lemma 3.1 we get immediately the following

corollary.

Corollary 3.1. Let (U(t, s))t≥s be a 1-periodic strongly continuous process.

Then its associated evolutionary semigroup (T h)h≥0 is a C0-semigroup in

AAP (X) := AP (X) ⊕ C0(R,X).

One of the interesting applications of Corollary 3.1 is the following.

Corollary 3.2. Let (U(t, s)t≥s be a 1-periodic strongly continuous evolu-

tionary process. Moreover, let u, f ∈ AAP (X) such that u is a solution of

Eq.(3.9). Then the almost periodic component uap of u satisfies Eq.(3.9)

with f := fap, where fap is the corresponding almost periodic component of

f .
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Proof. The evolution semigroup (T h)h≥0 leaves the subspaces AP (X)

and C0(R,X) invariant. Let us denote by Pap, P0 the projections on these

function spaces, respectively. Then since u is a solution to Eq.(3.9), by

Lemma 3.1,

lim
h→0+

T hu− u

h
= −f.

Hence,

Pap lim
h→0+

T hu− u

h
= lim

h→0+

T hPapu− Papu

h
= −Papf.

This, by Lemma 3.1, shows that Papu := uap is a solution of Eq.(3.9) with

f := Papf := fap. �

3.1.5 Almost Periodic Solutions and Applications

3.1.5.1 Invariant functions spaces of evolution semigroups

Below we shall consider the evolutionary semigroup (T h)h≥0 in some special

invariant subspaces M of AP (X).

Definition 3.3. The subspace M of AP (X) is said to satisfy condition H

if the following conditions are satisfied:

(1) M is a closed subspace of AP (X),

(2) There exists λ ∈ R such that M contains all functions of the form

eiλ·x, x ∈ X,

(3) If C(t) is a strongly continuous 1-periodic operator valued function and

f ∈ M, then C(·)f(·) ∈ M,

(4) M is invariant under the group of translations.

In the sequel we will be mainly concerned with the following concrete

examples of subspaces of AP (X) which satisfy condition H:

Example 3.1. Let us denote by P(1) the subspace of AP (X) consisting of

all 1-periodic functions. It is clear that P(1) satisfies condition H.

Example 3.2. Let (U(t, s))t≥s be a strongly continuous 1-periodic evolu-

tionary process. Hereafter, for every given f ∈ AP (X), we shall denote by

M(f) the subspace of AP (X) consisting of all almost periodic functions u

such that sp(u) ⊂ {λ+ 2πn, n ∈ Z, λ ∈ sp(f)}. Then M(f) satisfies con-

dition H.
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In fact, obviously, it is a closed subspace of AP (X), and moreover it satisfies

conditions ii), iv) of the definition. We now check that condition iii) is also

satisfied by proving the following lemma:

Lemma 3.2. Let Q(t) be a 1-periodic operator valued function such that

the map (t, x) 7→ Q(t)x is continuous. Then for every u(·) ∈ AP (X), the

following spectral estimate holds true:

sp(Q(·)u(·)) ⊂ Λ, (3.16)

where Λ := {λ+ 2kπ, λ ∈ sp(u), k ∈ Z}.

Proof. Using the Approximation Theorem of almost periodic functions

we can choose a sequence of trignometric polynomials

u(m)(t) =

N(m)
∑

k=1

eiλk,mtak,m, ak,m ∈ X

such that λk,m ∈ σb(u) (:= Bohr spectrum of u), limm→∞ u(m)(t) = u(t)

uniformly in t ∈ R. The lemma is proved if we have shown that

sp(Q(·)u(m)(·)) ⊂ Λ. (3.17)

In turn, to this end, it suffices to show that

sp(Q(·)eiλk,m ·ak,m) ⊂ Λ. (3.18)

In fact, since Q(·)ak,m is 1-periodic in t, there is a sequence of trignometric

polynomials

Pn(t) =

N(n)
∑

k=−N(n)

ei2πktpk,n, pk,n ∈ X

converging to Q(·)ak,m uniformly as n tends to ∞. Obviously,

sp(eiλk,m·Pn(·)) ⊂ Λ. (3.19)

Hence,

sp(eiλk,m·Q(·)ak,m) ⊂ Λ.
�

An important class of invariant subspaces is that of subspaces satisfying

condition H.

Proposition 3.1. Every subspace of AP (X) satisfying condition H is in-

variant under the evolution semigroup (T h)h≥0 associated with a given 1-

periodic strongly continuous evolutionary process on X.
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Proof. The proof is an easy exercise which is left to the reader. �

The following corollary will be the key tool to study the unique solvability

of the inhomogeneous equation (3.9) in various subspaces M of AP (X)

satisfying condition H.

Corollary 3.3. Let M satisfy condition H. Then, if 1 ∈ ρ(T 1|M), the

inhomogeneous equation (3.9) has a unique solution in M for every f ∈ M.

Proof. Under the assumption, the evolutionary semigroup (T h)h≥0

leaves M invariant. The generator A of (T h|M)h≥0 can be defined as the

part of L in M. Thus, the corollary is an immediate consequence of Lemma

3.1 and the spectral inclusion eσ(A) ⊂ σ(T 1|M). �

3.1.5.2 Monodromy operators

In view of Corollary 3.3 the problem of finding conditions for the existence

of a unique almost periodic mild solution to Eq.(3.4) is now reduced to

that of finding conditions for 1 6∈ σ(T 1|M). To this end, we now analyse

the spectrum of T 1|M. By definition T 1v(t) := U(t, t−1)v(t−1), so it is the

composition of a translation and a multiplication operator. In the theory

of ordinary differential equations the operator U(t, t−1) is well studied and

called monodromy operator (more precisely, the operator U(1, 0)).

Exercise 16. In the finite dimensional case, i.e., the process (U(t, s))t≥s

is the Cauchy operators of an ordinary differential equation, using the 1-

periodicity and the Existence and Uniqueness Theorem show that

U(t, t− 1) = U(t− 1, 0)U(1, 0)U−1(t− 1, 0) ∀t ∈ R. (3.20)

Proof. Let U(t, 0) be the solution of the Cauchy problem
{

dU(t)
dt = A(t)U(t),

U(0) = I.
(3.21)

Also, the operator U1(t) = U(t+ 1, 0)U−1(1, 0) is another solution to this

equation due to its 1-periodicity. Using the Existence and Uniqueness The-

orem for ODE we see that U(t+1, 0)U−1(1, 0) = U(t, 0). Now (3.20) follows

from this. �

Hence, the spectrum of U(t, t− 1) is the same as that of U(1, 0). In the

infinite dimensional case, in general the process is not invertible, so this

property does not hold. However, the spectral properties of U(1, 0) and

U(t, t− 1) are almost the same.



April 22, 2008 10:13 World Scientific Book - 9in x 6in stability

Almost Periodic Solutions 71

First we collect some results which we shall need in the book. Recall

that for a given 1-periodic evolutionary process (U(t, s))t≥s the following

operator

P (t) := U(t, t− 1), t ∈ R (3.22)

is called monodromy operator (or sometime, period map, Poincaré map).

Thus we have a family of monodromy operators. Throughout the paper

we will denote P := P (0). The nonzero eigenvalues of P (t) are called

characteristic multipliers. An important property of monodromy operators

is stated in the following lemma.

Lemma 3.3. Under the notation as above the following assertions hold:

(1) P (t+ 1) = P (t) for all t; characteristic multipliers are independent of

time, i.e. the nonzero eigenvalues of P (t) coincide with those of P ,

(2) σ(P (t))\{0} = σ(P )\{0}, i.e., it is independent of t,

(3) If λ ∈ ρ(P ), then the resolvent R(λ, P (t)) is strongly continuous.

Proof. The periodicity of P (t) is obvious. In view of this property we

will consider only the case 0 ≤ t ≤ 1. Suppose that µ 6= 0, Px = µx 6= 0,

and let y = U(t, 0)x, so U(1, t)y = µy 6= 0, y 6= 0 and P (t)y = µy. By the

periodicity this shows the first assertion.

Let λ 6= 0 belong to ρ(P ). We consider the equation

λx − P (t)x = y, (3.23)

where y ∈ X is given. If x is a solution to Eq.(3.23), then λx = y+w, where

w = U(t, 0)(λ − P )−1U(1, t)y. Conversely, defining x by this equation, it

follows that (λ−P (t))x = y so ρ(P (t)) ⊃ ρ(P )\{0} . The second assertion

follows by the periodicity. Finally, the above formula involving x proves

the third assertion. �

By this lemma, once we are interested in the spectrum of P (t) rather

than the operators P (t) for different t, we see that they are almost the same.

So, by monodromy operator we may understand the operator P := P (0)

for convenience if this does not cause any confusion.

Let M be a subspace of AP (X) invariant under the evolution semi-

group (T h)h≥0 associated with the given 1-periodic evolutionary process

(U(t, s))t≥s in AP (X). Below we will use the following notation

P̂Mv(t) := P (t)v(t), ∀t ∈ R, v ∈ M.
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If M = AP (X) we will denote P̂M = P̂ .

In the sequel we need the following lemma:

Lemma 3.4. Let (U(t, s))t≥s be a 1-periodic strongly continuous evolu-

tionary process and M be an invariant subspace of the evolution semigroup

(T h)h≥0 associated with it in AP (X). Then for all invariant subspaces M

satisfying condition H,

σ(P̂M)\{0} = σ(P )\{0}.

Proof. For u, v ∈ M , consider the equation (λ− P̂M)u = v . It is equiva-

lent to the equation (λ−P (t))u(t) = v(t), t ∈ R. If λ ∈ ρ(P̂M)\{0}, for ev-

ery v the first equation has a unique solution u, and ‖u‖ ≤ ‖R(λ, P̂M)‖‖v‖.
Take a function v ∈ M of the form v(t) = yeiµt, for some µ ∈ R ; the

existence of such a µ is guaranteed by the axioms of condition H. Then

the solution u satisfies ‖u‖ ≤ ‖R(λ, P̂M)‖‖y‖. Hence, for every y ∈ X the

solution of the equation (λ−P (0))u(0) = y has a unique solution u(0) such

that

‖u(0)‖ ≤ sup
t

‖u(t)‖ ≤ ‖R(λ, P̂M)‖ sup
t

‖v(t)‖ ≤ ‖R(λ, P̂M)‖‖y‖.

This implies that λ ∈ ρ(P )\{0} and ‖R(λ, P (t))‖ ≤ ‖R(λ, P̂M)‖ .

Conversely, suppose that λ ∈ ρ(P )\{0}. By Lemma 3.3 for every v the

second equation has a unique solution u(t) = R(λ, P (t))v(t) and the map

taking t into R(λ, P (t)) is strongly continuous. By definition of condition H,

the function taking t into (λ−P (t))−1v(t) belongs to M. Since R(λ, P (t))

is a strongly continuous, 1-periodic function, by the uniform boundedness

principle it holds that r := sup{‖R(λ, P (t))‖ : t ∈ R} < ∞. This means

that ‖u(t)‖ ≤ r‖v(t)‖ ≤ r supt ‖v(t)‖, or ‖u‖ ≤ r‖v‖. Hence λ ∈ ρ(P̂M),

and ‖R(λ, P̂M)‖ ≤ r . �

Remark 3.2. By similar argument as above we can show that if P is the

operator of multiplication by P (t) in C0(R,X) then σ(P)\{0} = σ(P )\{0}.
As a consequence of this we have

Corollary 3.4. Let (U(t, s))t≥s be a strongly continuous 1-periodic evolu-

tionary process with monodromy operator P and let σ(P ) be disjoint from

the unit circle. Then, the process (U(t, s))t≥s has an exponential dichotomy.

Proof. By the above remark we have that σ(P) is disjoint from the unit

circle as well. Let us denote the translation group in C0(R,X) by (S(t))t∈R.

Then,

T 1v = PS(−1)v, h ≥ 0, v ∈ C0(R,X).
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Note that S(−1) and P are bounded linear operators that commute with

each other. Therefore,

σ(T 1) = σ(PS(−1)) ⊂ σ(P) · σ(S(−1)).

From the Spectral Radius Theorem it is easy to see that σ(S(−1)) is con-

tained in (actually coincides with) the unit circle. Hence, σ(T 1) is disjoint

from the unit circle. By Theorem 2.2, the process (U(t, s))t≥s has an ex-

ponential dichotomy. �

3.1.5.3 Unique solvability of the inhomogeneous equations in P(1)

We now illustrate Corollary 3.2 in some concrete situations. First we will

consider the unique solvability of Eq.(3.9) in P(1).

Proposition 3.2. Let (U(t, s))t≥s be 1-periodic strongly continuous. Then

the following assertions are equivalent:

(i) 1 ∈ ρ(P ),

(ii) Eq.(3.9) is uniquely solvable in P(1) for a given f ∈ P(1).

Proof. Suppose that i) holds true. Then we show that ii) holds by apply-

ing Corollary 3.2. To this end, we show that σ(T 1|P(1))\{0} ⊂ σ(P )\{0} .

To see this, we note that

T 1|P(1) = P̂P(1).

In view of Lemma 3.4 1 ∈ ρ(T 1|P(1)). By Example 3.1 and Corollary 3.2

ii) holds also true.

Conversely, we suppose that Eq.(3.9) is uniquely solvable in P(1). We

now show that 1 ∈ ρ(P ). For every x ∈ X put f(t) = U(t, 0)g(t)x for t ∈
[0, 1], where g(t) is any continuous function of t such that g(0) = g(1) = 0,

and
∫ 1

0

g(t)dt = 1.

Thus f(t) can be continued to a 1-periodic function on the real line which

we denote also by f(t) for short. Put Sx = [L−1(−f)](0) . Obviously, S is

a bounded operator. We have

[L−1(−f)](1) = U(1, 0)[L−1(−f)](0) +

∫ 1

0

U(1, ξ)U(ξ, 0)g(ξ)xdξ

Sx = PSx+ Px.

Thus

(I − P )(Sx+ x) = Px+ x− Px = x.

So, I − P is surjective. From the uniqueness of solvability of (3.9) we get

easily the injectiveness of I − P . In other words, 1 ∈ ρ(P ). �
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3.1.5.4 Unique solvability in AP (X) and exponential dichotomy

This subsection will be devoted to the unique solvability of Eq.(3.9) in

AP (X) and its applications to the study of exponential dichotomy. Let us

begin with the following lemma which is a consequence of Proposition 3.2.

Lemma 3.5. Let (U(t, s))t≥s be 1-periodic strongly continuous. Then the

following assertions are equivalent:

(i) S1 ∩ σ(P ) = �.

(ii) For every given µ ∈ R, f ∈ P(1) the following equation has a unique

solution in AP (X)

x(t) = U(t, s)x(s) +

∫ t

s

U(t, ξ)eiµξf(ξ)dξ, ∀t ≥ s. (3.24)

Proof. Suppose that i) holds, i.e S1 ∩ σ(P ) = � . Then, since

T 1 = S(−1) · P̂ = P̂ · S(−1)

in view of the commutativeness of two operators P̂ and S(−1) we have

σ(T 1) ⊂ σ(S(−1)).σ(P̂ ).

It may be noted that σ(S(−1)) = S1. Thus

σ(T 1) ⊂ {eiµλ, µ ∈ R, λ ∈ σ(P̂ )}.

Hence, in view of Lemma 3.4

σ(T 1) ∩ S1 = �.

Let us consider the process (V (t, s))t≥s defined by

V (t, s)x := e−iµ(t−s)U(t, s)x

for all t ≥ s, x ∈ X. Let Q(t) denote its monodromy operator, i.e. Q(t) =

e−iµV (t, t−1) and (T h
µ )h≥0 denote the evolution semigroup associated with

the evolutionary process (V (t, s))t≥s . Then by the same argument as above

we can show that since σ(T h
µ ) = e−iµσ(T h),

σ(T h
µ ) ∩ S1 = �.

By Lemma 3.1 and Corollary 3.2, the following equation

y(t) = V (t, s)y(s) +

∫ t

s

V (t, ξ)f(ξ)dξ, ∀t ≥ s
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has a unique almost periodic solution y(·) . Let x(t) := eiµty(t) . Then

x(t) = eiµty(t) = U(t, s)eiµsy(s) +

∫ t

s

U(t, ξ)eiµξf(ξ)dξ

= U(t, s)x(s) +

∫ t

s

U(t, ξ)eiµξf(ξ)dξ ∀t ≥ s.

Thus x(·) is an almost periodic solution of Eq.(3.24). The uniqueness of

x(·) follows from that of the solution y(·) .

We now prove the converse. Let y(t) be the unique almost periodic

solution to the equation

y(t) = U(t, s)y(s) +

∫ t

s

U(t, ξ)eiµξf(ξ)dξ, ∀t ≥ s. (3.25)

Then x(t) := e−iµty(t) must be the unique solution to the following equa-

tion

x(t) = e−iµ(t−s)U(t, s)x(s) +

∫ t

s

e−iµ(t−ξ)U(t, ξ)f(ξ)dξ), ∀t ≥ s. (3.26)

And vice versa. We show that x(t) should be periodic. In fact, it is easily

seen that x(1+ ·) is also an almost periodic solution to Eq.(3.25). From the

uniqueness of y(·) (and then that of x(·)) we have x(t + 1) = x(t), ∀t. By

Proposition 3.2 this yields that 1 ∈ ρ(Q(0)), or in other words, eiµ ∈ ρ(P ).

From the arbitrary nature of µ, S1 ∩ σ(P ) = �. �

Theorem 3.1. Let (U(t, s))t≥s be given 1-periodic strongly continuous evo-

lutionary process. Then the following assertions are equivalent:

(i) The process (U(t, s))t≥s has an exponential dichotomy;

(ii) For every given bounded and continuous f the inhomogeneous equation

(3.9) has a unique bounded solution;

(iii) The spectrum of the monodromy operator P does not intersect the unit

circle;

(iv) For every given f ∈ AP (X) the inhomogeneous equation (3.9) is

uniquely solvable in the function space AP (X) .

Proof. The equivalence of i) and ii) has been established in Theorem 2.1

and the remarks that follow. Now we show the equivalence between i), ii)

and iii). The fact that iii) implies i) is the content of Corollary 3.4. Now we

prove that i) implies iii). Let the process have an exponential dichotomy.

We now show that the spectrum of the monodromy operator P does not

intersect the unit circle. We will follow the argument of Lemma 3.5. Since
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i) is equivalent to ii), for every fixed real number µ and f ∈ P(1), there

exists a unique bounded solution y to (3.25). By the argument of Lemma

3.5, the function x(t) := e−iµty(t) must be the unique bounded solution to

(3.26) and that should be 1-periodic. Therefore, actually the solution y is

almost periodic. By Lemma 3.5, S1 ∩ σ(P ) = ∅. So i) is equivalent to iii).

It remains to show the equivalence between iii) and iv). We first show

the implication iii) ⇒ iv). By Lemma 3.4 the operator P̂ of multiplication

by P (t) on AP (X) has the property that σ(P̂ ) ∩ S1 = ∅. Therefore, since

P̂ commutes with translation operator S(t) the evolution semigroup T h on

AP (X) has the property that

σ(T 1) = σ(P̂ S(−1)) ⊂ σ(P̂ ) · σ(S(−1)).

Since σ(S(−1)) = S1 we have that σ(T 1) ∩ S1 = ∅. By the Spectral Inclu-

sion Theorem for C0-semigroup and Lemma 3.1 we have iv). Conversely,

let iv) hold. Then by Lemma 3.5 we have iii). �

3.1.5.5 Unique solvability of the inhomogeneous equations in

M(f)

Now let us return to the more general case where the spectrum of the

monodromy operator may intersect the unit circle.

Theorem 3.2. Let (U(t, s))t≥s be a 1-periodic strongly continuous evo-

lutionary process. Moreover, let f ∈ AP (X) such that σ(P ) ∩
{eiλ, λ ∈ sp(f)} = � . Then the inhomogeneous equation (3.9) has an

almost periodic solution which is unique in M(f) .

Proof. From Example 3.2 it follows that the function space M(f) sat-

isfies condition H. Since (S(t))t∈R is an isometric C0-group, by the weak

spectral mapping theorem for isometric groups (see e.g. [Nagel (73)]) we

have

σ(S(1)|M(f)) = eσ(D|M(f)),

where D|M(f) is the generator of (S(t)|M(f))t≥0. From the general spectral

theory of bounded functions we have

σ(D|M(f)) = iΛ,

where Λ = {λ+ 2πk, λ ∈ sp(f), k ∈ Z}. Hence, since

eσ(D|M(f)) = eiΛ ⊂ eisp(f) ⊂ eiΛ,
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we have

σ(S(1)|M(f)) = eσ(D|M(f)) = eisp(f) .

Thus, the condition

σ(P ) ∩ eisp(f) = �
is equivalent to the following

1 6∈ σ(P ).σ(S(−1)|M(f)).

In view of the inclusion

σ(T 1|M(f))\{0} ⊂ σ(P̂M(f)).σ(S(−1)|M(f))\{0}
⊂ σ(P ).σ(S(−1)|M(f))\{0}

which follows from the commutativeness of the operator P̂M(f) with the

operator S(−1)|M(f), the above inclusion implies that

1 6∈ σ(T 1|M(f)).

Now the assertion of the theorem follows from Corollary 3.2. �

The inverse of the above theorem is the following:

Theorem 3.3. Let (U(t, s))t≥s be a 1-periodic strongly continuous evolu-

tionary process. Moreover, let the inhomogeneous equation (3.9) have a

unique almost periodic solution in M(f). Then σ(P ) ∩ {eiλ, λ ∈ sp(f)} =

�.

Proof. Let µ ∈ sp(f). Consider the function fλ(t) := eiµtf(t), where

f(t) ∈ P(1). Then there is a unique solution xµ(·) ∈ AP (X) of the equation

(3.24), or equivalently, a unique solution y(t) = e−iµtx(t) to the equation

(3.26). Since, the equation (3.26) is periodic in t, if there is a solution y(·),
then y(1+·) is also a solution. From the uniqueness it follows that y(1+·) =

y(·). This means that y(·) is 1-periodic. Hence, for every f ∈ P(1) Eq.(3.26)

has a unique 1-periodic solution y(·). By Proposition 3.2 0 6∈ σ(Q(0)) which

is equivalent to eiµ 6∈ σ(P ). Hence, {eiµ, µ ∈ sp(f)} ∩ σ(P ) = �. �

3.1.5.6 Unique solvability of nonlinearly perturbed equations

Let us consider the semilinear equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, ξ)g(ξ, x(ξ))dξ. (3.27)
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We shall be interested in the unique solvability of (3.27) for a larger class

of the forcing term g. We shall show that the generator of evolutionary

semigroup is still useful in studying the perturbation theory in the critical

case in which the spectrum of the monodromy operator P may intersect the

unit circle. We suppose that g(t, x) is Lipschitz continuous with coefficient

k and the Nemystky operator F defined by (Fv)(t) = g(t, v(t)), ∀t ∈ R acts

in M. Below we can assume that M is any closed subspace of the space of

all bounded continuous functions BC(R,X). We consider the operator L in

BC(R,X). If (U(t, s))t≥s is strongly continuous, then L is a single-valued

operator from D(L) ⊂ BC(R,X) to BC(R,X).

Lemma 3.6. Let M be any closed subspace of BC(R,X), (U(t, s))t≥s be

strongly continuous and Eq.(3.9) be uniquely solvable in M. Then for suf-

ficiently small k , Eq.(3.27) is also uniquely solvable in this space.

Proof. First, we observe that under the assumptions of the lemma we

can define a single-valued operator L acting in M as follows: u ∈ D(L)

if and only if there is a function f ∈ M such that Eq.(3.9) holds. From

the strong continuity of the evolutionary process (U(t, s))t≥s one can easily

see that there is at most one function f such that Eq.(3.9) holds. This

means L is single-valued. Moreover, one can see that L is closed. Now we

consider the Banach space [D(L)] with graph norm, i.e. |v| = ‖v‖ + ‖Lv‖.
By assumption it is seen that L is an isomorphism from [D(L)] onto M.

In view of the Lipschitz Inverse Mapping Theorem for Lischitz mappings

for sufficiently small k the operator L − F is invertible. Hence there is a

unique u ∈ M such that Lu − Fu = 0. From the definition of operator L

we see that u is a unique solution to Eq.(3.27). �

Corollary 3.5. Let M be any closed subspace of AP (X), (U(t, s))t≥s be

1-periodic strongly continuous evolutionary process and for every f ∈ M

the inhomogeneous equation (3.9) be uniquely solvable in M . Moreover let

the Nemytsky operator F induced by the nonlinear function g in Eq.(3.27)

act on M . Then for sufficiently small k , the semilinear equation (3.27)

is uniquely solvable in M .

Proof. The corollary is an immediate consequence of Lemma 3.6. �

3.1.5.7 Example 1

In this example we shall consider the abstract form of parabolic partial

differential equations (see e.g. [Henry (46)]) and apply the results obtained
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above to study the existence of almost periodic solutions to these equations.

It may be noted that a necessary condition for the existence of Floquet

representation is that the process under consideration is invertible. It is

known for the bounded case (see e.g. Chap. V, Theorem 1.2 in [Daleckii

and Krein (24)]) that if the spectrum of the monodromy operator does

not circle the origin (of course, it should not contain the origin), then the

evolution operators admit Floquet representation. In the example below, in

general, Floquet representation does not exist. For instance, if the sectorial

operator A has compact resolvent, then monodromy operator is compact

(see [Henry (46)] for more details). Thus, if dimX = ∞, then monodromy

operators cannot be invertible. However, the above results can apply.

Let A be sectorial operator in a Banach space X, and the mapping

taking t into B(t) ∈ L(Xα,X) be Hölder continuous and 1-periodic. Then

there is a 1-periodic evolutionary process (U(t, s))t≥s associated with the

equation

du

dt
= (−A+B(t))u. (3.28)

We have the following:

Claim 1 For any x0 ∈ X and τ there exists a unique (strong) solution

x(t) := x(t; τ, x0) of Eq.(3.28) on [τ,+∞) such that x(τ) = x0. Moreover,

if we write x(t; τ, x0) := T (t, τ)x0, ∀t ≥ τ , then (T (t, τ))t≥τ is a strongly

continuous 1-periodic evolutionary process. In addition, if A has compact

resolvent, then the monodromy operator P (t) is compact.

Proof. This claim is an immediate consequence of Theorem 7.1.3,

pp. 190-191 in [Henry (46)]. In fact, it is clear that (T (t, τ))t≥τ is strongly

continuous and 1-periodic. The last assertion is contained in Lemma 7.2.2,

p. 197 in [Henry (46)]). �

Thus, in view of the above claim if dimX = ∞, then Floquet repre-

sentation does not exist for the process. This means the problem cannot

reduced to the autonomous and bounded case. To apply our results, let the

function f taking t into f(t) ∈ X be almost periodic and the spectrum of

the monodromy operator of the process (U(t, s))t≥s be separated from the

set eisp(f). Then the following inhomogeneous equation

du

dt
= (−A+B(t))u+ f(t)

has a unique almost periodic solution u such that

sp(u) ⊂ {λ+ 2πk, k ∈ Z, λ ∈ sp(f)}.
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We now show

Claim 2 Let the conditions of Claim 1 be satisfied except for the compact-

ness of the resolvent of A . Then
dx

dt
= (−A+B(t))x (3.29)

has an exponential dichotomy if and only if the spectrum of the monodromy

operator does not intersect the unit circle. Moreover, if A has compact

resolvent, it has an exponential dichotomy if and only if all multipliers

have modulus different from one. In particular, it is asymptotically stable

if and only if all characteristic multipliers have modulus less than one.

Proof. The operator T (t, s), t > s is compact if A has compact resolvent

(see e.g. p. 196 in [Henry (46)]). The claim is an immediate consequence

of Theorem 3.1. �

3.1.5.8 Example 2

We examine in this example how the condition of Theorem 3.2 cannot be

dropped. In fact we consider the simplest case with A = 0
dx

dt
= f(t), x ∈ R, (3.30)

where f is continuous and 1-periodic. Obviously,

σ(eA) = {1} = ei sp(f).

We assume further that the integral
∫ t

0 f(ξ)dξ is bounded. Then every

solution to Eq.(3.30) can be extended to a periodic solution defined on the

whole line of the form

x(t) = c+

∫ t

0

f(ξ)dξ, t ∈ R.

Thus the uniqueness of a periodic solution to Eq.(3.30) does not hold.

Now let us consider the same Eq.(3.30) but with 1-anti-periodic f , i.e.,

f(t+ 1) = f(t), ∀t ∈ R. Clearly,

ei sp(f) = {−1} ∩ σ(eA) = �.
Hence the conditions of Theorem 3.2 are satisfied. Recall that in this theo-

rem we claim that the uniqueness of the almost periodic solutions is among

the class of almost periodic functions g with ei sp(g) ⊂ ei sp(f). Now let

us have a look at our example. Every solution to Eq.(3.30) is a sum of

the unique 1-anti-periodic solution, which existence is guaranteed by Theo-

rem 3.2, and a solution to the corresponding homogeneous equation, i.e., in

this case a constant function. Hence, Eq.(3.30) has infinitely many almost

periodic solutions.
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3.2 Evolution Semigroups and Sums of Commuting Oper-

ators

Let X be a given complex Banach space and M be a translation invariant

subspace of the space of X-valued bounded uniformly continuous functions

on the real line (that is denoted by BUC(R,X)). The problem we consider

in this section is to find conditions for M to be admissible with respect to

differential equations of the form

du

dt
= Au+ f(t), (3.31)

where A is an (unbounded) linear operator with nonempty resolvent set on

the Banach space X. By a tradition, by admissibility here we mean that

for every f ∈ M Eq.(3.31) has a unique solution (in a suitable sense) which

belongs to M as well. The main condition obtained in this section is of the

form

σ(A) ∩ isp(f) = ∅.

We will show that the method of sums of commuting operators can be

extended to larger classes of equations, including abstract functional differ-

ential equations.

3.2.1 Invariant Function Spaces

By (S(t))t∈R we denote the translation group on the function space

BUC(R,X), i.e., S(t)v(s) := v(t + s), ∀t, s ∈ R, v ∈ BUC(R,X) with in-

finitesimal generator D := d/dt defined on D(D) := BUC1(R,X). Let M
be a subspace of BUC(R,X), and let A be a linear operator on X. We

will denote by AM the operator f ∈ M 7→ Af(·) with D(AM) = {f ∈
M|∀t ∈ R, f(t) ∈ D(A), Af(·) ∈ M}. When M = BUC(R,X) we will use

the notation A := AM. Throughout the paragraph we always assume that

A is a given operator on X with ρ(A) 6= �, (so it is closed).

In this paragraph we will use the notion of translation-invariance of a

function space, which we recall in the following definition, and additional

conditions on it.

Definition 3.4. A closed and translation invariant subspace M of the

function space

BUC(R,X), i.e., S(τ)M ⊂ M for all τ ∈ R, is said to satisfy
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(1) condition H1 if the following condition is fulfilled:

∀C ∈ L(X), ∀f ∈ M ⇒ Cf ∈ M,

(2) condition H2 if the following condition is fulfilled:

For every closed linear operator A, if f ∈ M such that f(t) ∈ D(A),

∀t, Af ∈ BUC(R,X), then Af ∈ M,

(3) condition H3 if the following condition is fulfilled: For every bounded

linear operator B ∈ L(BUC(R,X)) which commutes with the transla-

tion group (S(t))t∈R one has BM ⊂ M.

Remark 3.3. As remarked in p.401 in [Vu and Schuler (103)], condition

H3 is equivalent to the assertion that

∀B ∈ L(M,X) ∀f ∈ M ⇒ BS(·)f ∈ M.

Obviously, conditions H2, H3 are stronger than condition H1. In the sequel,

we will define the autonomousness of a functional operator via condition

H3.

Example 3.3. If Λ(X) = {f ∈ BUC(R,X) : sp(f) ⊂ Λ} , where Λ is

a given closed subset of R. Then Λ(X) is a translation invariant closed

subspace of BUC(R,X). Moreover, it satisfies all conditions H1, H2, H3.

In connection with the translation-invariant subspaces we need the fol-

lowing simple spectral properties.

Lemma 3.7.

(i) Let M satisfy condition H1. Then

σ(AM) ⊂ σ(A) = σ(A)

and

‖R(λ,AM)‖ ≤ ‖R(λ,A)‖ = ‖R(λ,A)‖, ∀λ ∈ ρ(A);

(ii) Let M satisfy condition H3 and B be a bounded linear operator

on BUC(R,X) which commutes with the translation group. Then

σ(BM) ⊂ σ(B) and

‖R(λ,BM)‖ ≤ ‖R(λ,B)‖, ∀λ ∈ ρ(B).

Proof. i) Let λ ∈ ρ(A). We show that λ ∈ ρ(AM). In fact, as M
satisfies condition H1, ∀f ∈ M, R(λ,A)f(·) := (λ − A)−1f(·) ∈ M. Thus

the function R(λ,A)f(·) is a solution to the equation (λ − AM)u = f .

Moreover, since λ ∈ ρ(A) it is seen that the above equation has at most
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one solution. Hence λ ∈ ρ(AM). Moreover, it is seen that ‖R(λ,AM)‖ ≤
‖R(λ,A)‖. Similarly, we can show that if λ ∈ ρ(A), then λ ∈ ρ(A) and

‖R(λ,A)‖ ≤ ‖R(λ,A)‖.
ii) The proof of the second assertion can be done in the same way. �

In the section, as a model of the translation - invariant subspaces, which

satisfy all conditions H1, H2, H3 we can take the spectral spaces

Λ(X) := {u ∈ BUC(R,X) : sp(u) ⊂ Λ},

where Λ is a given closed subset of the real line.

3.2.2 Differential Operator d/dt − A and Notions of Ad-

missibility

We start the main subsection of this section by discussing various notions of

admissibility and their inter-relations via the differential operator d/dt−A,

or more precisely its closed extensions, for the following equation

dx

dt
= Ax + f(t), x ∈ X, t ∈ R, (3.32)

where A is a linear operator acting on X.

We first recall that

Definition 3.5.

(1) An X-valued function u on R is said to be a solution on R to Eq.(3.32)

for given linear operator A and f ∈ BUC(R,X) (or sometime, classical

solution) if u ∈ BUC1(R,X), u(t) ∈ D(A), ∀t and u satisfies Eq.(3.32)

for all t ∈ R.

(2) Let A be the generator of a C0 semigroup of linear operators. An X-

valued continuous function u on R is said to be a mild solution on R

to Eq.(3.32) for a given f ∈ BUC(R,X) if u satisfies

u(t) = e(t−s)Au(s) +

∫ t

s

e(t−r)Af(r)dr, ∀t ≥ s.

Definition 3.6.

(1) A closed translation invariant subspace M ⊂ BUC(R,X) is said to be

admissible for Eq.(3.32) if for each f ∈ M0 := M∩BUC1(R,X) there

is a unique solution u ∈ M0 of Eq.(3.32) and if fn ∈ M0, n ∈ N, fn → 0

as n→ ∞ in M0 imply un → 0 as n→ ∞.
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(2) Let A be the generator of a C0-semigroup. A translation - invariant

closed subspace M of BUC(R,X) is said to be mildly admissible for

Eq.(3.32) if for every f ∈ M there exists a unique mild solution xf ∈ M
to Eq.(3.32).

Exercise 17. By definition it is obvious that admissibility implies that if

DM −AM is closable, one has 0 ∈ ρ(DM −AM).

Proof. Set B := DM −AM. Obviously, B is injective. In fact, if Bf = 0

then from the uniqueness assumption f = 0. By assumption, from the

continuity of the Green operator G, defined as the unique extension of

f ∈ M0 7→ u ∈ M0 it follows that there exists m > 0 such that ‖Bx‖ ≥ ‖x‖
for all x ∈ D(B). We now show that B is injective. Indeed, it sufficies to

show that if By = 0, then y = 0. By definition, there exist (yn, xn) ∈ Γ(B)

such that yn → y, Byn = xn → 0 = By. Hence, 0 = limn→ ∞‖xn‖ =

‖By‖ ≥ m‖y‖, so y = 0. We show that B is surjective. Let f ∈ M. We show

that Gf is in D(B and BGf = f . In fact, by definition of the extension

G, there are fn ∈ M0 such that fn → f and Gfn → Gf . Obviously,

BGfn = BGfn = fn. This completes the proof of the exrcise. �

We now discuss the relationship between the notions of admissibility,

weak admissibility and mild admissibility if A is the generator of a C0-

semigroup. To this end, we introduce the following operator LM which will

be the key tool in our construction.

Definition 3.7. Let M be a translation invariant closed subspace of

BUC(R,X). We define the operator LM on M as follows: u ∈ D(LM) if

and only if u ∈ M and there is f ∈ M such that

u(t) = e(t−s)Au(s) +

∫ t

s

e(t−r)Af(r)dr, ∀t ≥ s (3.33)

and in this case LMu := f .

The following lemma will be needed in the sequel

Lemma 3.8. Let A be the generator of a C0-semigroup and M be a closed

translation invariant subspace of AAP (X) which satisfies condition H1.

Then

DM −AM = LM.
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Proof. Let us consider the semigroup (T h)h≥0

T hv(t) := ehAv(t− h), v ∈ M, h ≥ 0.

By condition H1, clearly, (T h)h≥0 leaves M invariant. By Corollary 3.1,

since M ⊂ AAP (X) this semigroup is strongly continuous which has −LM
as its generator. On the other hand, since (T h)h≥0 is the composition of

two commuting and strongly continuous semigroups, by p. 24 in [Nagel

(73)] this generator is nothing but −DM + AM. �

Corollary 3.6. Let A be the generator of a C0-semigroup and M be a

translation invariant closed subspace of BUC(R,X). Then the notions of

admissibility and mild admissibility of M for Eq.(3.32) are equivalent pro-

vided that M satisfies condition H1 and M ⊂ AAP (X).

Proof. Since, by Exercise 17 the admissibility of M for Eq.(3.32) implies

in particular that 0 ∈ ρ(DM −AM), and by Lemma 3.8

DM −AM = DM −AM
A

= LM

the implication ”admissibility ⇒ mild admissibility” is clear. It remains

only to show ”mild admissibility ⇒ admissibility”, i.e., if

0 ∈ ρ(LM),

then M is admissible with respect to Eq.(3.32). In fact, by assumption, for

every f ∈ M there is a unique mild solution u := L−1
Mf of Eq.(3.32). It can

be seen that the function u(τ + ·) ∈ M is a mild solution of Eq.(3.32) with

the forcing term f(τ + ·) for every fixed τ ∈ R. Hence, by the uniqueness,

u(τ + ·) = L−1
Mf(τ + ·). We can rewrite this fact as

S(τ)L−1
Mf = L−1

MS(τ)f, ∀f ∈ M, τ ∈ R.

From this and the boundedness of L−1
M ,

lim
τ→0+

S(τ)u− u

τ
= L−1

M lim
τ→0+

S(τ)f − f

τ
.

Thus, the assumption that f ∈ M0 implies that the left hand side limit

exists. Thus, u = L−1
Mf ∈ M0. As is well known, since f is differentiable

∫ t

s
e(t−ξ)Af(ξ)dξ is differentiable (see Theorem, p. 84 in [Goldstein (36)]).

Thus, by definition of mild solutions, from the differentiability of u it follows

that e(t−s)Au(s) is differentiable with respect to t ≥ s. Thus, u(s) ∈ D(A)

for every s ∈ R. Finally, this shows that u(·) is a classical solution to

Eq.(3.32) on R. Hence the admissibility of M for Eq.(3.32) is proved. �
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3.2.3 Admissibility for Abstract Ordinary Differential

Equations

In this subsection we shall demonstrate some advantages of using the op-

erator d/dt − A as the sum of two commuting operators to study the ad-

missibility theory for Eq.(3.32).

In the sequel we shall need the following basic property of the translation

group on Λ(X) which proof can be done in a standard manner.

Lemma 3.9. Let Λ be a closed subset of the real line. Then

σ(DΛ(X)) = iΛ.

Proof. First, we note that for every λ ∈ Λ, iλ ∈ σ(DΛ(X)). In fact,

Deiλ·x = iλeiλ·x. Now suppose that λ0 6∈ Λ. Then we shall show that

iλ0 ∈ ρ(DΛ(X)). To this end, we consider the following equation
du

dt
= iλ0u+ g(t), g ∈ Λ(X). (3.34)

Since isp(g) = σ(DMg
), where Mg is the closed subspace of BUC(R,X),

spanned by all translations of g (see e.g., [Arendt and Batty (5)],[Vu

(101)]), we get iλ0 6∈ σ(DMg
); and hence the above equation has a unique

solution h ∈ Mg ⊂ Λ(X). If k is another solution to Eq.(3.34) in Λ(X),

then h − k is a solution in Λ(X) to the homogeneous equation associated

with Eq.(3.34). Thus, a computation via Carleman transform shows that

sp(h − k) ⊂ {λ0}. On the one hand, we get λ0 6∈ sp(h − k) because of

sp(h − k) ⊂ Λ. Hence, sp(h − k) = �, and then h − k = 0. In other

words, Eq.(3.34) has a unique solution in Λ(X). This shows that the above

equation has a unique solution in Λ(X) , i.e. iλ0 ∈ ρ(DΛ(X)). �

Theorem 3.4. Let A be the generator of a C0-semigroup (T (t))t≥0 of linear

operators on X and let Λ(X) be mildly admissible for Eq.(3.32). Then,

iΛ ∩ σ(A) = �.
Proof. Suppose that G is the operator which takes every g ∈ Λ(X) into

the unique mild solution uf of Eq. (3.32). We show that G commutes with

the translation group (S(t))t∈R. In fact, for every τ ∈ R we see that if

f ∈ Λ(X), then

[Gf ](τ + t) = T ((τ + t) − (τ + s))[Gf ](τ + s)

+

∫ τ+t

τ+s

T (τ + t− ξ)f(ξ)dξ, ∀t ≥ s

= T (t− s)[Gf ](τ + s) +

∫ t

s

T (t− η)f(τ + η)dη,
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and hence, the function u(t) = [Gf ](τ + t) = [S(τ)Gf ](t) is the unique

solution to Eq. (3.32) with the forcing term f(τ + t). That is S(τ)Gf =

GS(τ)f , i.e., G commutes with the translation group (S(t))t∈R.

Let λ ∈ Λ. We consider the function f(t) := aeiλt, t ∈ R with 0 6= a ∈
X. By the above remark on the commutativeness of G and (S(t))t∈R, we

have

dGf

dt
= lim

τ→0

S(τ)Gf −Gf

τ

= lim
τ→0

G
S(τ)f − f

τ

= G lim
τ→0

S(τ)f − f

τ
= iλGf.

This shows that u(t) := [Gf ](t) = beiλt. Substituting this expression into

the equation

u(t) = T (t− s)u(s) +

∫ t

s

T (t− s)f(s)ds,

we have

b = R(h)b+

∫ h

0

R(h− ξ)adξ,

where R(h) = e−iλhT (h), h = t−s.Obviously, (R(h))h≥0 is a C0-semigroup

with generatorAλ = A−iλI . Then from the general theory of C0-semigroup

the above expression yields that

b ∈ D(Aλ) = D(A), (A− iλI)b = a.

It may be noted that b is unique. By the arbitrary nature of a and λ ∈ Λ

it follows that λ ∈ ρ(A). This proves the theorem. �

We are now in a position to formulate a main result of this section:

Theorem 3.5. Λ be a closed nonemty subset of the real line. Moreover let

iΛ ∩ σ(A) = �. (3.35)

Then for every f ∈ Λ(X) Eq.(3.32) has a unique (classical) bounded solution

in Λ(X) provided one of the following conditions holds

(i) either Λ is compact, or

(ii) the operator A is bounded on X.
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In particular, the subspace Λ(X) is admissible for Eq.(3.32) in both cases.

Proof. i) First of all by assumption, it is seen that the operator DΛ(X) is

bounded (see e.g. p. 88 in [Levitan and Zhikov (58)]). Since Λ(X) satisfies

also condition H1, by Lemma 3.7,

σ(AΛ(X)) ⊂ σ(A). (3.36)

Thus, applying Theorem 1.11 to the pair of operators DΛ(X) and AΛ(X) we

get the assertion of the theorem. we get the required.

ii) The second case can be proved in the same manner. �

We now consider a more general case where the operators A and D
satisfy condition P

Theorem 3.6. Let (A+α) be of class Σ(θ+π/2, R) for some real α and M
be a translation - invariant subspace of BUC(R,X). Moreover, let σ(A) ∩
σ(DM) = �. Then the following assertions hold true:

(i) If M satisfies condition H1, then M is weakly admissible for (3.32).

(ii) If M satisfies condition H2 and A is the generator of a C0-semigroup,

then M is admissible, weakly admissible and mildly admissible for

(3.32).

(iii) If M ⊂ AAP (X) satisfies condition H1 and A is the generator of

a C0-semigroup, then M is admissible, weakly admissible and mildly

admissible for (3.32).

Proof. Note that under the theorem’s assumption the operators A + α

and D satisfy condition P for some real α. In fact, we can check only that

sup
λ∈Σ(π/2−ε,R)

‖λR(λ,DM)‖ <∞,

where 0 < ε < π/2. Since λ ∈ Σ(π/2 − ε,R) with 0 < ε < π/2

‖λR(λ,DM)f‖ = |λ|‖
∫ ∞

0

e−λtf(· + t)dt‖

≤ |λ|
∫ ∞

0

e−Reλtdt‖f‖

≤ |λ|
Reλ

‖f‖
≤ M‖f‖,

where M is a constant independent of f . Thus, by Theorem 1.11,

σ(DM −AM)A − α = σ(DM −AM
A − α) = σ(DM − (AM + α))A

⊂ σ(DM) − σ(AM + α)

⊂ σ(DM) − σ(AM) − α.
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Hence

σ(DM −AM
A
) ⊂ σ(DM) − σ(A). (3.37)

By assumption and by Lemma 3.7 since σ(DM) ∩ σ(A) = � we have

σ(DM) ∩ σ(A) = �. From (3.37) and this argument we get

0 6∈ σ(DM −AM
A
).

Hence, this implies in particular the weak admissibility of the function

space M for Eq.(3.32) proving i). Now in addition suppose that A gen-

erates a strongly continuous semigroup. Then ii) and iii) are immediate

consequences of Corollary 3.6 and i). �

3.2.4 Higher Order Differential Equations

In this subsection we consider the admissibility of the function space M∩
Λ(X) where M is assumed to satisfy condition H1 and Λ is a closed subset

of the real line for the equation

dnu

dtn
= Au+ f(t), (3.38)

where n is a natural number. To this end, we first study the operator

dnu/dtn := Dn on M∩ Λ(X).

Proposition 3.3. With the above notation the following assertions hold

true:

(i)

σ(Dn
M∩Λ(X)) ⊂ (iΛ)n.

(ii)

σ(Dn
Λ(X)) = (iΛ)n.

Proof. We associate with the equation

dnu

dtn
= µu+ f(t), f ∈ M∩ Λ(X)

the following first order equation






















x′1 = x2

x′2 = x3,

...

x′n = µx1 + f(t)

f ∈ M∩ Λ(X). (3.39)
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Obviously, the unique solvability of these equations in the function space

M ∩ Λ(X) are equivalent. On the other hand, by Theorem 3.5 for every

f ∈ M ∩ Λ(X) Eq.(3.39) has a unique (classical) solution x(·) ∈ M ∩
Λ(X), x = (x1, · · · , xn)T if

iΛ ∩ σ(I(µ)) = �,
where I(µ) denotes the operator matrix associated with Eq.(3.39). A simple

computation shows that σ(I(µ)) consists of all solutions to the equation

tn − µ = 0. Thus,

σ(Dn
M∩Λ(X)) ⊂ {µ ∈ C : µ = (iλ)nfor someλ ∈ Λ}.

Hence i) is proved. On the other hand, let µ ∈ Λ. Then g(·) := xeiµ· ∈
Λ(X). Obviously, Dn

Λ(X)g = (iµ)ng and thus, (iµ)n ∈ σ(Dn
Λ(X)). Hence, ii)

is proved. �

To proceed we make a definition

Definition 3.8. The definition of admissibility for the first order equations

is naturally extended to higher order equations.

Observe that (iΛ)n is compact if Λ is compact.

Theorem 3.7. Let Λ be a compact subset of the real line and M be a trans-

lation invariant subspace of BUC(R,X) satisfying condition H1. Moreover,

let A be any closed operator in X such that σ(A)∩ (iΛ)n = �. Then for ev-

ery f ∈ M∩Λ(X) there exists a unique (classical) solution uf ∈ M∩Λ(X)

of Eq.(3.38). In particular, M∩ Λ(X) is admissible for Eq.(3.38).

Proof. The theorem is an immediate consequence of Theorem 3.5 and

the above computation of the spectrum of Dn. �

We recall the following notion.

Definition 3.9. By a mild solution of Eq.(3.38) we understand a bounded

uniformly continuous function u : R → X such that
∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

u(s)ds ∈ D(A)

and

u(t) = x0 + tx1 + ...tn−1xn−1 +A

∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

u(s)ds

+

∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−1

0

f(s)ds (t ∈ R)
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for some fixed x0, x1, ..., xn−1 ∈ X. For u ∈ BUC(R,X) we say that u

is a classical solution to Eq.(3.38) if u(t) ∈ D(A), ∀t ∈ R and the n-th

derivative of u (denoted by u(n) ) exists as an element of BUC(R,X) such

that Eq.(3.38) holds for all t ∈ R.

Remark 3.4. Obviously, a classical solution is also a mild solution. In case

n = 1 if A generates a strongly continuous semigroup the above definition

of mild solution on R coincides with the usual notion which we have used

so far. In fact we have:

Lemma 3.10. Let A be the generator of a C0-semigroup and u satisfy
∫ t

0 u(s)ds ∈ D(A), ∀t such that

u(t) = u(0) +A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds. (3.40)

Then u satisfies

u(t) = T (t− s)u(s) +

∫ t

s

T (t− ξ)f(ξ)dξ, ∀t ≥ s (3.41)

where T (t) = etA. Conversely, if u satisfies Eq.(3.41), then
∫ t

0 u(s)ds ∈
D(A), ∀t and u satisfies Eq.(3.40).

Proof. Suppose that u is a solution to Eq.(3.40). Then, we will show

that it is also a solution to Eq.(3.41). In fact, without loss of generality we

verify that u satisfies Eq.(3.41) for s = 0. To this purpose let us define the

function

w(t) = T (t)u(0) +

∫ t

0

T (t− ξ)f(ξ)dξ, t ≥ 0.

We now show that w satisfies Eq.(3.40) for t ≥ 0 as well. In fact, using the

following facts from semigroup theory

T (t)x− x = A

∫ t

0

T (s)xds, ∀x ∈ X,

and the following which can be verified directly by definition

A

∫ t

η

T (s− η)f(η)ds = lim
h↓0

(1/h)(T (h)− I)

∫ t

η

T (s− η)f(η)ds

= T (t− η)f(η) − f(η)

we have

A

∫ t

0

w(s)ds = T (t)u(0) − u(0) +A

∫ t

0

∫ s

0

T (s− η)f(η)dη.
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By a change of order of integrating we get

A

∫ t

0

∫ s

0

T (s− η)f(η)dη = A

∫ t

0

dη

∫ t

η

T (s− η)f(η)ds.

By the above facts we have
∫ t

0

dηA

∫ t

η

T (s− η)f(η)ds =

∫ t

0

T (t− η)f(η)dη −
∫ t

0

f(η)dη.

This shows that w satisfies Eq.(3.40) for all t ≥ 0. Define g(t) = w(t)−u(t).
Obviously,

g(t) = A

∫ t

0

g(s)ds, ∀t ≥ 0.

Since A generates a strongly continuous semigroup the Cauchy problem

x′ = Ax, x(0) = 0 ∈ D(A)

has a unique solution zero. Hence, u(t) = w(t), ∀t ≥ 0, i.e. u(t) satisfies

Eq.(3.41) for all t ≥ 0.

By reversing the above argument we can easily show the converse.

Hence, the lemma is proved. �

Lemma 3.11. Let A be a closed operator and u be a mild solution of

Eq.(3.38) and φ ∈ L1(R) such that its Fourier transform has compact sup-

port. Then φ ∗u is a classical solution to Eq.(3.38) with forcing term φ ∗ f .

Proof. Let us define

U1(t) =

∫ t

0

u(s)ds, F1(t) =

∫ t

0

f(s)ds, t ∈ R,

Uk(t) =

∫ t

0

Uk−1(s)ds, Fk(t) =

∫ t

0

Fk−1(s)ds, t ∈ R, k ∈ N.

Then, by definition, we have

u(t) = Pn(t) +A(Un(t)) + Fn(t), t ∈ R,

where Pn is a polynomial of order of n− 1. From the closedness of A, we

have

u ∗ φ(t) = Pn ∗ φ(t) +A(Un ∗ φ(t)) + Fn ∗ φ(t), t ∈ R.

Since the Fourier transform φ has compact support all convolutions above

are infinitely differentiable. From the closedness of A we have that (Un ∗
φ)(k)(t) ∈ D(A), t ∈ R and

A((Un ∗ φ)(k)(t)) =
dk

dtk
A(Un ∗ φ(t)), t ∈ R.
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Set Vn(t) = Un∗φ(t). Since U
(k)
n (t) = Un−k(t), k = 0, 1, 2 · · · , n and U0(t) =

u(t) we have V (k)(t) = Un−k ∗φ(t), k = 0, 1, 2, · · · , n and V
(n)
n (t) = u∗φ(t).

Hence,

Un ∗ φ(t) = Vn(t)

=

n−1
∑

k=0

tk

k!
Un−k ∗ φ(0) +

1

(n− 1)!

∫ t

0

(t− s)n−1u ∗ φ(s)ds.

Since Un ∗ φ(t) ∈ D(A), Un−k ∗ φ(0) ∈ D(A), k = 1, 2, · · · , n − 1 it follows

that the integral above belongs also to D(A). Furthermore, we can check

that

u ∗ φ(t) = Pn ∗ φ(t) +Qn(t) +A

(

1

(n− 1)!

∫ t

0

(t− s)n−1u ∗ φ(s)ds

)

+
1

(n− 1)!

∫ t

0

(t− s)n−1f ∗ φ(s)ds,

where Pn, Qn are polynomials of order of n − 1 which appears when one

expands A(Un ∗ φ(t)) and Fn ∗ φ(t), respectively. Now, since all functions

in the above expression are infinitely differentiable, Pn, Qn are polynomials

of order of n− 1 and A is closed we can differentiate the expression to get

dn

dtn
(u ∗ φ)(t) = A(u ∗ φ(t)) + f ∗ φ(t), ∀t ∈ R.

This proves the lemma. �

We now recall the notion of Λ-class of functions.

Definition 3.10. A translation invariant subspace F ⊂ BUC(R,X) is said

to be a Λ-class if and only if it satisfies

(1) F is a closed subspace of BUC(R,X) ;

(2) F contains all constant functions;

(3) F satisfies condition H1;

(4) F is invariant by multiplication by eiξ·, ∀ξ ∈ R.

Let F be a Λ-class and u be in BUC(R,X). Then, by definition

spF(u) := {ξ ∈ R : ∀ε > 0∃f ∈ L1(R)

such that suppFf ⊂ (ξ − ε, ξ + ε) and f ∗ u 6∈ F}.

Lemma 3.12. If f ∈ F , where F is a Λ-class, then ψ∗f ∈ F , ∀ψ ∈ L1(R)

such that the Fourier transform of ψ has compact support.

Proof. For the proof we refer the reader to p.60 in [Basit (12)]. �
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Hence, Theorem 3.7 yields the following:

Theorem 3.8. Let F be a Λ-class, A be a closed linear operator with non-

empty resolvent set. Then for any mild solution u to Eq.(3.38) with f ∈ F ,

spF(u) ⊂ {λ ∈ R : (iλ)n ∈ σ(A)}. (3.42)

Proof. Let λ0 ∈ R such that (iλ0)
n 6∈ σ(A). Then, since σ(A) is closed

there is a positive number δ such that for all λ ∈ (λ0 − 2δ, λ0 +2δ) we have

(iλ)n 6∈ σ(A). Let us define Λ := [λ0 − δ, λ0 + δ]. Then by Theorem 3.7

for every y ∈ Λ(X) ∩ F there is a unique (classical) solution x ∈ Λ(X) ∩ F .

Let ψ ∈ L1(R) such that suppFψ ⊂ Λ. Put v := ψ ∗ u, g := ψ ∗ f . Then,

by Lemma 3.12 g ∈ F and by Proposition 2.5 in [Basit (12)] spF(g) ⊂
suppFψ ∩ spF (f) ⊂ Λ. Thus g ∈ Λ(X)∩F . Since spF(v) ⊂ Λ by Theorem

3.7 we see that Eq.(3.38) has a unique solution in Λ(X) which should be

v. Moreover, applying again Theorem 3.7 we can see that the function v

should belong to Λ(X) ∩ F . We have in fact proved that λ0 6∈ spF(u).

Hence the assertion of the theorem has been proved. �

In a standard manner we get the following:

Corollary 3.7. Let F be a Λ-class, σ(A) ∩ (iR)n be countable. Moreover,

let u be such a mild solution to Eq.(3.38) that

lim
t→∞

1

t

∫ t

0

e−iλsu(x+ s)ds

exists for every λ ∈ spF (u) uniformly with respect to x ∈ R. Then u ∈ F .

Proof. The corollary is an immediate consequence of Theorem 1.18 and

Theorem 3.8. �

In particular, we can take F = AP (X), AAP (X) and get spectral criteria

for almost periodicity and asymptotic almost periodicity for solutions to the

higher order equations (3.38).

Next, we consider the admissibility of a given translation invariant

closed subspace M for the higher order equation (3.38). Since the geo-

metric properties of the set (iR)n play an important role, we consider here

only the case n = 2, i.e., the following equation

d2u

dt2
= Au+ f(t). (3.43)

It turns out that for higher order equations conditions onA are much weaker

than for the first order ones. Indeed, we have
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Theorem 3.9. Let A be a linear operator on X such that there are positive

constants R, θ and

Σ(θ,R) ⊂ ρ(A) and sup
λ∈Σ(θ,R)

|λ|‖R(λ,A)‖ <∞.

Furthermore, let M be a translation invariant closed subspace of

BUC(R,X) which satisfies condition H1 such that

σ(D2
M) ∩ σ(A) = �.

Then M is admissible for the second order equation (3.43).

Proof. We will apply Theorem 1.11 to the pair of linear operators D2
M

and AM. To this end, by Proposition 3.3 we observe that

σ(D2
M) ⊂ (iR)2 = (−∞, 0].

On the other hand, for 0 < ε < θ we can show that there is a constant M

such that the following estimate holds

‖R(λ,D2
M)‖ ≤ M

|λ| , ∀λ 6= 0, |arg(λ) − π| < ε.

In fact, this follows immediately from well known facts in Chapter 2 in

[Daleckii and Krein (24)]. To make it more clear, we consider the first order

equation of the form (3.39) for the case n = 2. For every λ ∈ ρ(D2
M) the

associated equation has an exponential dichotomy and its Green function

is nothing but R(λ,D2
M). Furthermore, since M is translation invariant

note that D(D2
M) is dense in M. Thus, applying Theorem 1.11 to the pair

of operators D2
M,AM we have

0 ∈ ρ(D2
M −AM).

It remains to show that for every f ∈ M0 := D(D2
M) there is a unique

classical solution u on R. In fact, denoting

G := (D2
M −AM)−1,

we can easily see that since D2
M,AM commute with D2

M , so does G. By

definition, for λ ∈ ρ(D2
M) , since G is bounded on M

GR(λ,D2
M) = R(λ,D2

M)G.

Hence there is g ∈ M such that f = R(λ,D2
M)g. Thus, by the above

equality Gf = R(λ,D2
M)Gg ∈ D(D2

M). This shows the admissibility of M
for Eq.(3.43). �
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3.2.5 Abstract Functional Differential Equations

This subsection will be devoted to some generalization of the method dis-

cussed in the previous ones for functional differential equations of the form

dx(t)

dt
= Ax(t) + [Bx](t) + f(t), ∀t ∈ R, (3.44)

where the operator A is a linear operator on X and B is assumed to be an

autonomous functional operator.

We first precise the notion of autonomousness for functional operators

B:

Definition 3.11. Let B be an operator, everywhere defined and bounded

on BUC(R,X) into itself. B is said to be an autonomous functional operator

if for every φ ∈ BUC(R,X)

S(τ)Bφ = BS(τ)φ, ∀τ ∈ R,

where (S(τ))τ∈R is the translation group S(τ)x(·) := x(τ+·) in BUC(R,X).

In connection with autonomous functional operators we will consider closed

translation invariant subspaces M ⊂ BUC(R,X) which satisfy condition

H3. Recall that if B is an autonomous functional operator and M satisfies

condition H3, then by definition, M is left invariant under B.

Definition 3.12. Let A be the generator of a C0-semigroup and B be an

autonomous functional operator. A function u on R is said to be a mild

solution of Eq.(3.44) on R if

u(t) = e(t−s)Au(s) +

∫ t

s

e(t−ξ)A[(Bu)(ξ) + f(ξ)]dξ, ∀t ≥ s.

As we have defined the notion of mild solutions it is natural to extend

the notion of mild admissibility for Eq.(3.44) in the case where the operator

A generates a strongly continuous semigroup. It is interesting to note that

in this case because of the arbitrary nature of an autonomous functional

operator B nothing can be said on the “well posedness” of Eq.(3.44). We

refer the reader to Chapter 1 for particular cases of “finite delay” and

“infinite delay” in which Eq.(3.44) is well posed.) However, as shown below

we can extend our approach to this case. Now we formulate the main result

for this subsection.
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Theorem 3.10. Let A be the infinitesimal generator of an analytic strongly

continuous semigroup, B be an autonomous functional operator on the func-

tion space BUC(R,X) and M be a closed translation invariant subspace of

AAP (X) which satisfies condition H3. Moreover, assume that

σ(DM) ∩ σ(A + B) = �.
Then M is mildly admissible for Eq. (3.44), i.e., for every f ∈ M there is

a unique mild solution uf ∈ M of Eq.(3.44).

Proof. Since M satisfies condition H3, for every f ∈ M we have Bf ∈
M. Thus,

D((A + B)M) = {f ∈ M : Af(·) + Bf ∈ M}
= {f ∈ M : Af(·) ∈ M}
= D(AM).

Hence

(A + B)M = AM + BM.

As M satisfies condition H3 it satisfies condition H1 as well. Thus, by

Lemma 3.7,

σ(AM) ⊂ σ(A) ⊂ σ(A)

and

‖R(λ,AM)‖ ≤ ‖R(λ,A)‖, ∀λ ∈ ρ(A).

Since B is bounded DM and (A + B)M = AM + BM satisfy condition P.

From Lemma 2 and the remarks follows in [Naito and Minh (74)] it may

be seen that AM is the infinitesimal generator of the strongly continuous

semigroup (T (t))t≥0

T (t)f(ξ) := etAf(ξ), ∀f ∈ M, ξ ∈ R.

Hence D((A+B)M) = D(AM) is dense everywhere in M. It may be noted

that R(λ,A + B) commutes with the translation group. Since M satisfies

condition H3 we can easily show that

σ((A + B)M) ⊂ σ(A + B).

Applying Theorem 1.11 we get

σ(DM − (A + B)M) ⊂ σ(DM) − σ((A + B)M).

Hence

0 ∈ ρ(DM − (A + B)M).
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On the other hand, since BM is bounded on M
DM − (A + B)M = DM −AM − BM

= LM − BM

we have

0 ∈ ρ(LM − BM). (3.45)

If u, f ∈ M such that (LM − BM)u = f , then

LMu = BMu+ f.

By definition of the operator LM , this is equivalent to the following

u(t) = e(t−s)Au(s) +

∫ t

s

e(t−ξ)A[(BMu)(ξ) + f(ξ)]dξ, ∀t ≥ s,

i.e., u is a mild solution to Eq.(3.44). Thus (3.45) shows that M is mildly

admissible for Eq.(3.44). �

Remark 3.5. Sometime it is convenient to re-state Theorem 3.10 in other

form than that made above. In fact, in practice we may encounter difficulty

in computing the spectrum σ(A+B). Hence, alternatively, we may consider

D−A−B as a sum of two commuting operators D−B and A if B commutes

with A. In subsection 3.4 we again consider this situation.

3.2.6 Examples and Applications

In this subsection we will present several examples and applications and

discuss the relation between our results and the previous ones.

As typical examples of the function spaces Λ(X) , where Λ is a closed

subset of the real line we will take the following ones:

Example 1 The space of all X valued continuous τ -periodic functions P(τ).

In this case Λ = {2kπ/τ, k ∈ Z}.

Example 2 Let Λ be a discrete subset of R. Then Λ(X) will consists of

almost periodic functions.

Example 3 Let Λ be a countable subset of R. Then Λ(X) will consists

of almost periodic functions if in addition one assumes that X does not

contain any subspace which is isomorphic to the space c0 (see [Levitan and

Zhikov (58)]).
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Below we will revisit one of the main results of [Langenhop (53)] to

show how our method fits in the problem considered in [Langenhop (53)].

Moreover, our method can be easily extended to the infinite dimensional

case.

Example 4 (cf. [Langenhop (53)]) Consider the following ordinary func-

tional differential equation

x′(t) =

∫ ∞

0

[dE(s)]x(t − s) + f(t), x ∈ Cn, t ∈ R, (3.46)

where E is an n× n matrix function with elements in C, f is a Cn-valued

almost periodic function. In addition, we assume that E is continuous from

the left and of bounded total variation on [0,∞) , i.e.

0 < γ =

∫ ∞

0

|dE(s)| <∞.

As is well known for every f ∈ AP (Cn) there is a corresponding Fourier

series
∞
∑

k=0

ake
iλkt.

We define

A0
q := {f ∈ AP (Cn) : a0 = 0, |λk| ≥ q, k = 1, 2, · · · }

and Aq = A0
q +Vc , where Vc is the set of all Cn-valued constant functions.

Now we define our operator

Bu(t) :=

∫ ∞

0

[dE(s)]u(t− s), t ∈ R, u ∈ AP (Cn).

Obviously, B is an autonomous functional operator with ‖B‖ ≤ γ. If we

define Λ := {η ∈ R : |η| ≥ q} , then A0
q = AP (Cn)∩Λ(Cn). Now we prove

the following:

Assertion 1 Under the above notations and assumptions Eq.(3.46) has a

unique almost periodic solution xf ∈ A0
q for every f ∈ A0

q if γ < q.

Proof. In fact, by assumption it is obvious that the spectral radius

rσ(B) < γ. Hence, iΛ ∩ σ(B) = �. �

If in addition we assume that

M :=

∫ ∞

0

dE(s) (3.47)
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is a nonsigular matrix, then Assertion 1 implies the following:

Assertion 2 Under Assertion 1’s assumptions and the nonsingularity of

the matrix (3.47) there exists a unique solution xf ∈ Aq to Eq.(3.46) for

every f ∈ Aq.

Proof. In this case the operator d/dt−B is a direct sum of two invertible

operators in A0
q and Vc. �

Remark 3.6. In Section 3 in [Langenhop (53)] Assertion 2 has been proved

with a little stronger assumption, namely, γδ < q , where δ ≥ 1 is an

“absolute constant” (in terminology of p.401 in [Langenhop (53)]). The

condition γ < q of Assertion 2 becomes also necessary in many cases. To

show this, we consider the case

Bu(t) = Bu(t+ τ), ∀t ∈ R, u ∈ BUC(R,X),

where τ is a given constant, B is a matrix. Now suppose that there exists a

unique solution xf ∈ Aq to Eq.(3.46) for every f ∈ Aq . Denoting Gf := xf

we see that G is a bounded linear operator on Aq . Moreover, since B
commutes with translation group so does G , i.e., DGf = GDf, ∀f ∈ D(D).

Taking f := eiλty we have Dxf = DGf = GDf = λGf = λxf . Hence,

xf (t) = eiλtx for some x. Substituting this into Eq.(3.46) we get the

assertion that given |λ| ≥ q

for every y ∈ Cn there exists a unique x ∈ Cn such that

iλx− eiτλBx = y.

This shows that iλ ∈ ρ(eiτλB) = eiτλρ(B) and yields γ < q.

In the following example we will revisit a problem discussed in [Sljusar-

cuk (98)] with an unbounded A.

Example 5 Let us consider the equation

dx(t)

dt
= Ax(t) +

N
∑

k=1

Bkx(t+ τk) + f(t), t ∈ R, (3.48)

where A is the infinitesimal generator of an analytic C0-semigroup, Bk, k =

1, · · · , N are bounded linear operators on X which are commutative with

each other and A , τk , k = 1, · · · , N are given reals and f is a bounded

uniformly continuous function. We denote Λ = sp(f).
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Assertion 3 Let Λ be bounded. Then if

σ(A) ∩ ∪λ∈Λσ(iλ−
N
∑

k=1

Bk)eiτkλ) = �,

Eq.(3.48) has a unique classical solution in Λ(X).

Proof. If Λ is bounded , then DΛ(X) is bounded. Hence, if

σ(DΛ(X) −
N
∑

k=1

Bke
τkDΛ(X)) ∩ σ(A) = �

Eq.(3.48) has a unique classical solution in Λ(X). In turn, using the esti-

mates of spectra as in [Sljusarcuk (98)] we get

σ(DΛ(X) −
N
∑

k=1

Bke
τkDΛ(X)) ⊂ ∪λ∈Λσ(iλ −

N
∑

k=1

Bke
iτkλ).

�

Assertion 4 Let f be almost periodic and Bk, k = 1, · · · , N be commutative

with each other and A and

iΛ ∩ (σ(A) + ∪
λk∈eiτkΛσ(

N
∑

k=1

Bkλk)) = �.

Then Eq.(3.48) has a unique almost periodic mild solution in Λ(X).

Proof. First using the Weak Spectral Mapping Theorem (see e.g. [Nagel

(73)]) we have

σ(S(τk)) = eiτkΛ.

In view of Theorem 1 in [Sljusarcuk (98)], denoting the multiplication

operator by Bk by also Bk for the sake of simplicity, we have

σ(

N
∑

k=1

BkS(τk)) ⊂ ∪
λk∈eiτkΛσ(

N
∑

k=1

Bkλk).

By the commutativeness assumption applying Theorem 3.10 and then The-

orem 1.11 we get the conclusion of the assertion. �

In case A is the generator of a C0-semigroup which is not necessarily

analytic we can still apply Theorem 3.2 and the commutativeness of the

operators A,B as shown in the following example:
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Example 6 Let A be the infinitesimal generator of a strongly continuous

semigroup of linear operators on X, B be an autonomous functional opera-

tor on BUC(R,X) and M be a translation invariant subspace of AAP (X).

Moreover, we assume that B and A commute. The only difference between

this example and the previous one is that the semigroup generated by A

may not be analytic. However, we can find conditions for the admissibil-

ity of M by using evolution semigroup associated with A as in Theorem

3.2. In fact, in M, since BM is bounded it generates the norm continu-

ous semigroup (Bh)h≥0. Hence, −DM + AM + BM generates a strongly

continuous semigroup (T hBh)h≥0. Thus, in view of spectral inclusion of

strongly continuous semigroups, this generator is invertible if 1 6∈ σ(T 1B1).

Using the commutativeness of the operators under consideration and the

Weak Spectral Mapping Theorem for the translation group on M we have

σ(T 1B1) ⊂ σ(T 1).σ(B1) ⊂ e−DMσ(eA).σ(B1). (3.49)

Hence the following is obvious:

Assertion 5 If

1 6∈ e−DMσ(eA).σ(B1),

then
dx(t)

dt
= Ax(t) + [Bx](t) + f(t), (3.50)

has a unique mild solution in M for every given f ∈ M.

As an application suppose that we are given an almost periodic function

f . Let M ⊂ AP (X) consisting of all functions g such that sp(g) ⊂ sp(f).

Then the above condition can be written as

1 6∈ e−isp(f)σ(eA).eσ(BM) (3.51)

which implies the existence of an almost periodic mild solution to Eq.(3.49).

To illustrate the usefulness of (3.51) we consider the following case of

Eq.(3.50)

dx(t)

dt
= Ax(t) + bx(t+ 1) + f(t), (3.52)

where b ∈ R and f is 1-periodic and continuous. In this case, B = bS(1).

Hence, sp(f) = 2πZ and condition (3.51) can be written as

1 6∈ σ(eA)eb. (3.53)

Hence, if condition (3.53) holds true, then Eq.(3.52) has a unique 1-periodic

mild solution.
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3.3 Decomposition Theorem and Periodic, Almost Periodic

Solutions

We begin this section with several classical examples showing that in the

resonant case when the conditions of the type σ(A) ∩ iR 6= ∅ are not satis-

fied, the problem of finding almost periodic solutions becomes much more

complicated.

Example 3.4. Consider the simplest form of inhomogeneous equations

when A = 0. In this case, actually we are concerned with conditions for

the integral

F (t) :=

∫ t

0

f(ξ)dξ, t ∈ R

is τ -periodic, where f is assumed to be a scalar τ -periodic continuous func-

tion. A simple computation shows that F is of the form

F (t) = mt+G(t),

where

m :=
1

τ

∫ τ

0

f(ξ)dξ

G is a τ -periodic function.

Thus F is τ -periodic if and only if m = 0, or equivalently, F is bounded on

R (actually on any half line). That is, a boundedness condition is needed.

In the infinite dimensional case, the boundedness condition of the above

type is not sufficient. Further conditions on the geometry of the Banach

space, in which the equation is studied, is needed.

Example 3.5. Let c0 be the Banach space of numerical sequences ξ :=

{ξn}n∈N ⊂ C such that limn→∞ ξn = 0 with ‖ξ‖ := supn∈N
|ξn|. Let

f(t) := {1/n cos t/n}n∈N, F (t) =

∫ t

0

f(η)dη = {sin t/n}n∈N.

One can shows that the range of the function F is not precompact, and so

the function F cannot be almost periodic. In fact, suppose that the range

of F is precompact. Then, consider the sequence of functionals φn ∈ c∗0
defined by the formula φn(ξ) = ξn if ξ = {ξn}n∈N. If the range R(F ) of F

is precompact, then the convergence φn(ξ) would be uniform for ξ ∈ R(F ).

But φn(F (t)) = sin(t/n) → 0 non-uniformly with respect to t ∈ R. This

contradicts the assumption on the precompactness of R(F ).
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To see how the resonance influences on the amplitude of oscillation we

consider the following example.

Example 3.6. Consider the equation

ẍ(t) + x(t) = sin t, t ∈ R, x(t) ∈ R.

One can show that the function x1(t) = − t
2 cos t is a solution of this equa-

tion. Below is the graph of this solution on the interval [−60, 60] which

exhibits its unboundedness of the amplitude as time tends to infinity.
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And any solution of the above equation is of the form

x(t) = C1 cos t+ C2 sin t+ x1(t).

Hence any solution of the equation is unbounded, so it is not almost peri-

odic.

We consider in this section the following linear inhomogeneous integral

equation

x(t) = U(t, s)x(s) +

∫ t

s

U(t, ξ)g(ξ)dξ, ∀t ≥ s; t, s ∈ R, (3.54)

where f is continuous, x(t) ∈ X, X is a Banach space, (U(t, s))t≥s is as-

sumed to be a 1-periodic evolutionary process on X. As is known, contin-

uous solutions of Eq.(3.54) correspond to the mild solutions of evolution

equations

dx

dt
= A(t)x + f(t), t ∈ R, x ∈ X, (3.55)
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where A(t) is a (in general, unbounded) linear operator for every fixed t

and is 1-periodic in t, and (U(t, s))t≥s is generated by Eq.(3.55).

In the previous sections we have studied conditions for the existence

and uniqueness (in some classes of function spaces) of almost periodic solu-

tions of Eq.(3.54). In fact we have shown that if the following nonresonant

condition holds

(σ(P ) ∩ S1) ∩ eisp(f) = �, (3.56)

where P := U(1, 0), S1 denotes the unit circle of the complex plane, and

f is almost periodic, then there exists an almost periodic solution xf to

Eq.(3.54) which is unique if one requires

eisp(xf ) ⊂ eisp(f).

We may ask a question as what happens in the resonant case where condi-

tion (3.56) fails. Historically, this question goes back to a classical result of

ordinary differential equations saying that supposing the finite dimension

of the phase space X and the 1-periodicity of f Eq.(3.54) has a 1-periodic

solution if and only if it has a bounded solution (see e.g. Theorem 20.3, p.

278 in [Amann (1)]). It is the purpose of this section to give an answer

to the general problem as mentioned above (Massera-type problem): Let

Eq.(3.54) have a bounded (uniformly continuous) solution xf with given

almost periodic forcing term f . Then, when does Eq.(3.54) have an almost

periodic solution w (which may be different from xf ) such that

eisp(w) ⊂ eisp(f) ?

In connection with this problem we note that various conditions are

found on the bounded solution, itself, and the countability of the part of

spectrum σ(P )∩S1 so that the bounded solution itself is almost periodic, or

more generally, together with f belongs to a given function space F . Here

we note that this philosophy in general does not apply to the Massera-

type problem for almost periodic solutions. In fact, it is not difficult to

give a simple example in which f is 1-periodic and a bounded (uniformly

continuous) solution to Eq.(3.54) exists, but this bounded solution itself is

not 1-periodic.

Our method is to use the evolution semigroup associated with the pro-

cess (U(t, s))t≥s to study the harmonic analysis of bounded solutions to

Eq.(3.54). As a result we will prove a spectral decomposition theorem for

bounded solutions (Theorem 3.12 and Theorem 3.13) which seems to be

useful in dealing with the above Massera-type problem. In fact, we will
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apply the spectral decomposition theorem to find new spectral criteria for

the existence of almost periodic solutions and will consider particular cases

to show the usefulness of this spectral decomposition technique. More con-

cretely, even in the case where condition (3.56) fails we can still prove the

existence of a bounded uniformly continuous solution w to Eq.(3.54) such

that eisp(w) = eisp(f) provided that (σ(P ) ∩ S1)\eisp(f) is closed, and that

Eq.(3.54) has a bounded uniformly continuous solution u (Corollary 3.8).

Since w is a ”spectral component” of u in case u is almost periodic the

Fourier series of w is part of that of u (Corollary 3.9). Our Corollary 3.10

will deal with a particular autonomous case in which Corollary 3.8 fails to

give a spectral criterion for the existence of quasi-periodic mild solutions.

For the sake of simplicity of notations we will use throughout the

section the following notation: σ(g) := eisp(g) for every bounded uni-

formly continuous function g. Throughout the section we will denote by

σΓ(P ) = σ(P ) ∩ S1. Throughout this section (U(t, s))t≥s will be assumed

to be a 1-periodic strongly continuous evolutionary process. The operator

U(1, 0) will be called the monodromy operator of the evolutionary process

(U(t, s))t≥s and will be denoted by P throughout this section. Note that

the period of the evolutionary processes is assumed to be 1 merely for the

sake of simplicity. Recall that

Definition 3.13. Let (U(t, s))t≥s, (t, s ∈ R) be a 1-periodic strongly con-

tinuous evolutionary process and F be a closed subspace of BUC(R,X)

such that for every fixed h > 0, g ∈ F the map t 7→ U(t, t − h)g(t − h)

belongs to F. Then the semigroup of operators (T h)h≥0 on F, defined by

the formula

T hg(t) = U(t, t− h)g(t− h), ∀t ∈ R, h ≥ 0, g ∈ F,

is called evolution semigroup associated with the process (U(t, s))t≥s on F.

We refer the reader to the previous section for further information on this

semigroup. In the case where the evolution semigroup (T h)h≥0 is strongly

continuous on F the explicit formula for the generator A of (T h)h≥0 is as

follows:

Lemma 3.13. Let (T h)h≥0 be strongly continuous on F, a closed subspace

of BUC(R,X). Then its generator A is the operator on F with D(A)

consisting of all g ∈ F such that g is a solution to Eq.(3.54) with some

f ∈ F (in this case such a function f is unique), by definition, Ag = −f .

Proof. See the proof of Lemma 3.1. �
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3.3.1 Spectral Decomposition

Let us consider the subspace M ⊂ BUC(R,X) consisting of all functions

v ∈ BUC(R,X) such that

eisp(v) := σ(v) ⊂ S1 ∪ S2 , (3.57)

where S1, S2 ⊂ S1 are disjoint closed subsets of the unit circle. We denote

by Mv = spann{S(t)v, t ∈ R}, where (S(t))t∈R is the translation group on

BUC(R,X) , i.e. S(t)v(s) = v(t+ s), ∀t, s ∈ R.

Theorem 3.11. Under the above notation and assumptions the function

space M can be split into a direct sum M = M1 ⊕M2 such that v ∈ Mi

if and only if σ(v) ⊂ Si for i = 1, 2.

Proof. Let v ∈ M . Then, as is known (see Chapter 1 )

isp(v) = σ(DMv
). (3.58)

Thus, by the Weak Spectral Mapping Theorem (see Chapter 1)

σ(S(1)|Mv
) = eσ(DMv ) = σ(v) ⊂ S1 ∪ S2. (3.59)

Hence there is a spectral projection in Mv (note that in general we do not

claim that this projection is defined on the whole space M)

P 1
v :=

1

2iπ

∫

γ

R(λ, S(1)|Mv
)dλ ,

where γ is a contour enclosing S1 and disjoint from S2, (or in general a

union of fintely many such countours) by which we have

σ(P 1
v S(1)P 1

v ) ⊂ S1. (3.60)

On the other hand, denote Λi ⊂ BUC(R,X) consisting of all functions u

such that σ(u) ⊂ Si for i = 1, 2 . Then obviously, Λi ⊂ M . Moreover, they

are closed subspaces of M, Λ1 ∩ Λ2 = {0} . Now we show that if v ∈ M,

then P 1
v v ∈ Λ1 and v − v1 := v2 ∈ Λ2 . If this is true, then it yields that

M = Λ1 ⊕ Λ2.

To this end, we will prove

σ(vj) ⊂ Sj , ∀j = 1, 2. (3.61)

In fact we show that Mv1 = ImP 1
v . Obviously, in view of the invariance

of ImP 1
v under translations we have Mv1 ⊂ ImP 1

v . We now show the

inverse. To this end, let y ∈ ImP 1
v ⊂ Mv . Then, by definition, we have

y = lim
n→∞

xn,
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where xn can be represented in the form

xn =

N(n)
∑

k=1

αk,nS(tk,n)v, αk,n ∈ C, tk,n ∈ R ∀n.

Hence, since y, xn ∈ Mv

y = P 1
v y = lim

n→∞

N(n)
∑

k=1

αk,nS(tk,n)P 1
v v

= lim
n→∞

N(n)
∑

k=1

αk,nS(tk,n)v1 . (3.62)

This shows that y ∈ Mv1 . Thus, by the Weak Spectral Mapping Theorem

and (3.60),

eisp(v1) = σ(S(1)|Mv1
) = σ(S(1)|ImP 1

v
) ⊂ S1.

By definition, v1 ∈ Λ1 and similarly, v2 ∈ Λ2 . Thus the theorem is proved.

�

Remark 3.7. Below for every v ∈ M we will call vj , j = 1, 2, as defined

in the proof of Theorem 3.11, spectral components of the functions v. It is

easily seen that if in the proof of Theorem 3.11, v is assumed to be almost

periodic, then both spectral components vj are almost periodic.

We will need the following lemma in the sequel

Lemma 3.14. Let f be in BUC(R,X) and (U(t, s))t≥s be a 1-periodic

strongly continuous evolutionary process. Then the following assertions

hold:

(i) If T : R → L(X) be 1-periodic and strongly continuous, then

σ(T (·)f(·)) ⊂ σ(f).

(ii) If f is of precompact range, then

σ

(∫ t+1

t

U(t+ 1, ξ)f(ξ)dξ

)

⊂ σ(f).

Proof. (i) Let Tn be the nth Cesaro mean of the Fourier series of T , so

Tn is 1-periodic trignometric polynomial with value in L(X) and ‖Tn(s)‖ ≤
sup0≤t≤1 ‖T (t)‖ and Tn(s)x → T (s)x uniformly in s for fixed x ∈ X. For

every n it is easily seen that σ(Tn(·)f(·)) ⊂ σ(f). Set Λ := {λ ∈ R : eiλ ∈
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σ(f)}. Obviously, Λ is closed and sp(Tn(·)f(·) ⊂ Λ. Thus, if φ ∈ L1(R)

and (suppφ̂) ∩ Λ = �, then

0 =

∫ ∞

−∞
φ(t − s)Tn(s)f(s)ds→

∫ ∞

−∞
φ(t− s)T(s)f(s)ds

as n→ ∞, by Dominated Convergence Theorem. Thus
∫ ∞

−∞
φ(t− s)T(s)f(s)ds = 0

for all such φ. This proves (i).

(ii) Since f is of precompact range the evolution semigroup (T h)h≥0 asso-

ciated with the process (U(t, s))t≥s is strongly continuous at f . Thus, in

view of (i)

σ

(

∫ h

0

T ξfdξ

)

⊂ (f), ∀h ≥ 0.

On the other hand
∫ 1

0

T ξfdξ(t+1) =

∫ 1

0

U(t+1, t+1−ξ)f(t+1−ξ)dξ =

∫ t+1

t

U(t+1, η)f(η)dη.

This proves (ii). �

Lemma 3.15. Let u be a bounded uniformly continuous solution to (3.54)

and f be of precompact range. Then the following assertions hold true:

(i)

σ(u) ⊂ σΓ(P ) ∪ σ(f), (3.63)

(ii)

σ(u) ⊃ σ(f) . (3.64)

Proof. (i) Set P (t) := U(t, t− 1), ∀t ∈ R, G := {λ ∈ C : eλ ∈ ρ(P )}.

g(t) :=

∫ t+1

t

U(t+ 1, ξ)f(ξ)dξ, t ∈ R.

By Lemma 3.14 σ(g) ⊂ σ(f). By the definition of Carleman spectrum,

û(λ) =















∫∞
0
e−λtu(t)dt, (Reλ > 0);

−
∫∞
0
eλtu(−t)dt, (Reλ < 0).
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Hence, for Reλ > 0 and λ ∈ G we have

û(λ) =

∫ ∞

0

e−λtu(t)dt,

=

∫ ∞

0

e−λtR(eλ, P (t))(eλ − P (t))u(t)dt

=

∫ 1

0

e−λteλR(eλ, P (t))u(t)dt

+

∫ ∞

0

e−λtR(eλ, P (t))(u(t+ 1) − P (t)u(t))dt

= H(λ) +

∫ ∞

0

e−λtR(eλ, P (t))g(t)dt, (3.65)

where

H(λ) :=

∫ 1

0

e−λteλR(eλ, P (t))u(t)dt.

Obviously, H(λ) is analytic in G. On the other hand, since R(eλ, P (t)) is 1-

periodic strongly continuous (see Lemma 3.3), by Lemma 3.14 the function

g1(t) := R(eλ, P (t))g(t) has the property that σ(g1) ⊂ σ(f). Thus from

(3.65), for Reλ > 0, λ ∈ G,

û(λ) = H(λ) + ĝ1(λ). (3.66)

Finally if ζ0 ∈ R : eζ0 6∈ σΓ(P ) ∪ σ(f), then û has an analytic continuation

at ζ0. This completes the proof of (i).

(ii) Under the assumptions it may be seen that the evolution semi-

group (T h)h≥0 associated with (U(t, s))t≥s is strongly continuous at the

functionu ∈ BUC(R,X) (this can be checked directly using Eq.(3.54)), and

f . Hence, by Lemma 3.13

lim
h→0+

T hu− u

h
= Au = −f . (3.67)

Hence, to prove (3.64) it suffices to show that σ(T hu) ⊂ σ(u) . In turn,

this is clear in view of Lemma 3.14. �

We are now in a position to state the main result of this section.

Theorem 3.12. (Spectral Decomposition Theorem) Let u be a bounded,

uniformly continuous solution to Eq.(3.54). Moreover, let f have pre-

compact range and the sets σ(f) and σ(P ) ∩ S1 be contained in a dis-

joint union of the closed subsets S1, · · · , Sk of the unit circle. Then

the solution u can be decomposed into a sum of k spectral components
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uj , j = 1, · · · , k such that each uj , j = 1, · · · , k is a solution to Eq.(3.54)

with f = fj , j = 1, · · · , k, respectively, where f =
∑k

j=1 fj is the decomposi-

tion of f into the sum of spectral components as described in Theorem 3.11,

i.e. u =
∑k

j=1 uj , σ(uj), σ(fj) ⊂ Sj , j = 1, · · · , k and uj ∈ BUC(R,X) is a

solution to Eq.(3.54) with f := fj for j = 1, · · · , k.

Proof. Let us denote by N the subspace of BUC(R,X) consisting of all

functions u such that σ(u) ⊂ ∪k
j=1Sj . Then, by assumptions and Theorem

3.11 there are corresponding spectral projections P1, · · · , Pk on N with

properties that

(1) PjPn = 0 if j 6= n,

(2) Σk
j=1Pj = I ,

(3) If u ∈ ImPj , then σ(Pju) ⊂ Sj for all j = 1, · · · , k .

Note that by Lemma 3.15 for every positive h and j = 1, · · · , k the operator

T h leaves ImPj invariant. Hence, N and ImP1, · · · , ImPk are invariant un-

der the semigroup (T h)h≥0. Consequently, since u is a solution to Eq.(3.54)

and f has precompact range the evolution semigroup (T h)h≥0 is strongly

continuous at u and f . Using the explicit formula for the generator of

(T h)h≥0 as described in Lemma 3.13 we have

Pjf = Pj lim
h→0+

T hu− u

h
= Pj lim

h→0+
Σk

n=1Pn
T hu− u

h

= lim
h→0+

T hPju− Pju

h
. (3.68)

This yields that Pju is a solution to Eq.(3.54) with corresponding fj = Pjf .

�

Remark 3.8. If in Theorem 3.12 we assume furthermore that f and u are

both almost periodic, then the spectral components uj , j = 1, · · · , k are all

almost periodic. This is not the case if neither u, nor f is almost periodic.

However, if we have some additional information on the spectral sets Sj ,

e.g., their countability and the phase space X does not contain c0, then the

almost periodicity of uj are guaranteed.

Now we are going to focus our special attention on autonomous equations

of the form

dx/dt = Ax+ f(t), (3.69)
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where A is the generator of a C0-semigroup (T (t))t≥0, and f ∈ BUC(R,X)

has precompact range. Below we will use the following notation: σi(A) =

{λ ∈ R : iλ ∈ (σ(A) ∩ iR)}. By mild solutions of Eq.(3.69) we will

understand in a standard way that they are solutions to Eq.(3.54) with

U(t, s) := T (t− s), ∀t ≥ s. As shown below, in this case we can refine the

spectral decomposition technique to get stronger assertions which useful-

ness will be shown in the next subsection when we deal with quasi-periodic

solutions. To this purpose, we now prove the following lemma.

Lemma 3.16. Let Eq.(3.69) satisfy the above conditions, i.e., A generates

a C0-semigroup and f ∈ BUC(R,X) has precompact range. Moreover, let

u be a bounded uniformly continuous mild solution to Eq.(3.69). Then the

following assertions hold:

(i)

sp(u) ⊂ σi(A) ∪ sp(f), (3.70)

(ii)

sp(u) ⊃ sp(f). (3.71)

Proof. (i) For (3.70) we compute the Carleman transform of u. For

Reλ > 0,

û(λ) =

∫ ∞

0

e−λtu(t)dt,

=

∫ ∞

0

e−λtT (t)u(0)dt+

∫ ∞

0

e−λt

(∫ t

0

T (tξ)f(ξ)dξ

)

dt

= R(λ,A)u(0) +

∫ ∞

0

e−λt

(∫ t

0

T (tξ)f(ξ)dξ

)

dt. (3.72)

Note that in the same way as in the proof of Lemma 3.14 we can easily

show that

sp

(

t→
∫ t

0

T (t− ξ)f(ξ)dξ

)

⊂ sp(f). (3.73)

Hence, (3.70) is proved.

(ii) Note that since for every h > 0 the operator T h is a multiplication

by a bounded operator T (h) we have sp(T hu) ⊂ sp(u). Thus, using the

argument of the proof of Lemma 3.15 (ii) we have

sp(f) = sp(−f) = sp

(

lim
h→0+

T hu− u

h

)

⊂ sp(u) .

This completes the proof of (ii). �
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The main result for the autonomous case is the following:

Theorem 3.13. Let A generate a C0-semigroup and f ∈ BUC(R,X) have

precompact range. Moreover, let u be a bounded uniformly continuous mild

solution to Eq.(3.69). Then the following assertions hold true:

(i) If

eiσi(A)\σ(f)

is closed, Eq.(3.69) has a bounded uniformly continuous mild solution

w such that σ(w) = σ(f),

(ii) If σi(A) is bounded and

σi(A)\sp(f) (3.74)

is closed, then Eq.(3.69) has a bounded uniformly continuous mild so-

lution w such that sp(w) = sp(f).

Proof. (i) Note that in this case together with (3.70) the proof of The-

orem 3.12 applies.

(ii) Under the assumptions there exists a continuous function ψ which be-

longs to the Schwartz space of all C∞-functions on R with each of its deriva-

tives decaying faster than any polynomial such that its Fourier transform

ψ̃ has σi(A)\sp(f) as its support (which is compact in view of the assump-

tions). Hence, every bounded uniformly continuous function g such that

sp(g) ⊂ σi(A) ∪ sp(f) can be decomposed into the sum of two spectral

components as follows:

g = g1 + g2 = ψ ∗ g + (g − ψ ∗ g),
where g1 = ψ ∗g, g2 = (g−ψ ∗g) . Moreover, this decomposition is continu-

ous in the following sense: If g(n), n = 1, 2, · · · is a sequence in BUC(R,X)

with sp(g(n)) ⊂ σi(A) ∪ sp(f) such that limn g
(n) = g in BUC(R,X) , then

limn g
(n)
1 = g1, limn g

(n)
2 = g2 . Hence we have in fact proved a version of

Theorem 3.11 which allows us to employ the proof of Theorem 3.12 for this

assertion (ii). �

Remark 3.9.

(1) In view of the failure of the Spectral Mapping Theorem for general

C0-semigroups the condition in the assertion (i) is a little more general

than that formulated in terms of σ(T (1)).

(2) If we know beforehand that u is almost periodic, then in the statement

of Theorem 3.13 we can claim that the spectral component w is almost

periodic.
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3.3.2 Spectral Criteria For Almost Periodic Solutions

This subsection will be devoted to some applications of the spectral decom-

position theorem to prove the existence of almost periodic solutions with

specific spectral properties. In particular, we will revisit the classical result

by Massera on the existence of periodic solutions as well as its extensions.

To this end, the following notion will play the key role.

Definition 3.14. Let σ(f) and σΓ(P ) be defined as above. We say that

the set σ(f) and σΓ(P ) satisfy the spectral separation condition if the set

σΓ(P )\σ(f) is closed.

Corollary 3.8. Let f be almost periodic, σ(f) and σΓ(P ) satisfy the spec-

tral separation condition. Moreover, let σ(f) be countable and X not contain

any subspace which is isomorphic to c0. Then if there exists a bounded uni-

formly continuous solution u to Eq.(3.54), there exists an almost periodic

solution w to Eq.(3.54) such that σ(w) = σ(f).

Proof. We define in this case S1 := σ(f), S2 := σΓ(P )\σ(f). Then, by

Theorem 3.12 there exists a solution w to Eq.(3.54) such that σ(w) ⊂ σ(f).

Using the estimate (3.64) we have σ(w) = σ(f). In particular, since σ(w)

is countable and X does not contain c0, w is almost periodic. �

Remark 3.10.

(1) If σ(f) is finite, then sp(w) is discrete. Thus, the condition that X does

not contain any subspace isomorphic to c0 can be dropped.

(2) In the case where σΓ(P ) is countable it is known that with additional

ergodic conditions on u the solution u has ”similar spectral properties”

as f . However, in many cases it is not expected that the solution u itself

has similar spectral properties as f as in the Massera-type problem (see

[Massera (68)], [Chow and Hale (20)], [Shin and Naito (96)], [Naito,

Minh, R. Miyazaki and Shin (75)] e.g.).

(3) In the case where P is compact (or merely σΓ(P ) is finite) the spectral

separation condition is always satisfied. Hence, we have a natural ex-

tension of a classical result for almost periodic solutions. In this case

see also Corollary 3.9 below.

(4) We emphasize that the solution w in the statement of Corollary 3.8 is

a ”σ(f)-spectral component” of the bounded solution u. This will be

helpful to find the Fourier coefficients of w as part of those of u.
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(5) In view of estimate (3.64) w may be seen as a ”minimal” solution in

some sense.

Corollary 3.9. Let all assumptions of Corollary 3.8 be satisfied. Moreover,

let σΓ(P ) be countable. Then if there exists a bounded uniformly continuous

solution u to Eq.(3.54), it is almost periodic. Moreover, the following part

of the Fourier series of u

Σbλe
iλt , bλ = lim

T→∞

1

2T

∫ T

−T

e−iλξu(ξ)dξ, (3.75)

where eiλ ∈ σ(f), is again the Fourier series of another almost periodic

solution to Eq.(3.54).

Proof. The assertion that u is almost periodic is standard in view of

(3.63) (see Chapter 1). It may be noted that in the case u is almost peri-

odic, the spectral decomposition can be carried out in the function space

AP (X) instead of the larger space BUC(R,X). Hence, we can decompose

the solution u into the sum of two almost periodic solutions with spectral

properties described in Theorem 3.12. Using the definition of Fourier series

of almost periodic functions we arrive at the next assertion of the corollary.

�

The next corollary will show the advantage of Theorem 3.13 which allows

us to take into account the structure of sp(f) rather than that of σ(f). To

this end, we introduce the following terminology. A set of reals S is said to

have an integer and finite basis if there is a finite subset T ⊂ S such that

any element s ∈ S can be represented in the form s = n1b1 + · · · + nmbm,

where nj ∈ Z, j = 1, · · · ,m, bj ∈ T, j = 1, · · · ,m. If f is quasi-periodic and

the set of its Fourier-Bohr exponents is discrete (which coincides with sp(f)

in this case), then the spectrum sp(f) has an integer and finite basis (see

p.48 in [Levitan and Zhikov (58)]). Conversely, if f is almost periodic and

sp(f) has an integer and finite basis, then f is quasi-periodic. We refer the

reader to pp. 42-48 in [Levitan and Zhikov (58)] more information on the

relation between quasi-periodicity and spectrum, Fourier-Bohr exponents

of almost periodic functions.

Corollary 3.10. Let all assumptions of the second assertion of Theorem

3.13 be satisfied. Moreover, assume that X does not contain c0. Then if

sp(f) has an integer and finite basis, Eq.(3.69) has a quasi-periodic mild

solution w with sp(w) = sp(f).
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Proof. Under the corollary’s assumptions the spectrum sp(w) of the

solution w, as described in Theorem 3.13, is in particular countable. Hence

w is almost periodic. Since sp(w) = sp(f), sp(w) has an integer and finite

basis. Thus w is quasi-periodic. �

Below we will consider some particular cases

Example 3.7. Periodic solutions.

If σ(f) = {1} we are actually concerned with the existence of periodic so-

lutions. Hence, Corollary 3.8 extends the classical result to a large class of

evolution equations which has 1 as an isolated point of σΓ(P ). Moreover,

Corollary 3.9 provides a way to approximate the periodic solution. In par-

ticular, suppose that σΓ(P ) has finitely many elements, then we have the

following:

Corollary 3.11. Let σΓ(P ) have finitely many elements {µ1, · · · , µN} and

u(·) be a bounded uniformly continuous solution to Eq.(3.54). Then it is of

the form

u(t) = u0(t) +
N
∑

k=1

eiλktuk(t), (3.76)

where u0 is a bounded uniformly continuous mild 1-periodic solution to

the inhomogeneous equation (3.54), uk, k = 1, · · · , N, are 1-periodic solu-

tions to Eq.(3.54) with f = −iλkuk , respectively, v(t) =
∑N

k=1 e
iλktuk(t)

is a quasi periodic solution to the corresponding homogeneous equation

of Eq.(3.54) and λ1, · · · , λN are such that 0 < λ1, · · · , < λN < 2π and

eiλj = µj , j = 1, · · · , N .

Example 3.8. Anti-periodic solutions.

An anti-periodic (continuous) function f is defined to be a continuous one

which satisfies f(t+ω) = −f(t), ∀t ∈ R and here ω > 0 is given. Thus, f is

2−ω-periodic. It is known that, the space of anti-periodic functions f with

antiperiod ω, which is denoted by AP (ω) , is a subspace of BUC(R,X)

with spectrum

sp(f) ⊂ {2k + 1ω

,
k ∈ Z}.

Without loss of generality we can assume that ω = 1. Obviously, σ(f) =

{−1}, ∀f ∈ AP (ω). In this case the spectral separation condition is nothing

but the condition that {−1} is an isolated point of σΓ(P ).
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Example 3.9.

Let u be a bounded uniformly continuous solution to Eq.(3.54) with f 2-

periodic. Let us define

F (t) =
f(t) − f(t+ 1)

2
, G(t) =

f(t) + f(t+ 1)

2
, ∀t ∈ R.

Then, it is seen that F is 1-anti-periodic and G is 1-periodic. Applying

Theorem 3.12 we see that there exist two solutions to Eq.(3.54) as two

components of u which are 1-antiperiodic and 1-periodic with forcing terms

F,G, respectively. In particular, the sum of these solutions is a 2-periodic

solution of Eq.(3.54) with forcing term f .

Example 3.10.

Let A be a sectorial operator in a Banach space X and the map t 7→ B(t) ∈
L(Xα,X) be Hölder continuous and 1-periodic. Then, as shown in Theorem

7.1.3 in [Henry (46)] the equation

dx

dt
= (−A+B(t))x, (3.77)

generates a 1-periodic strongly continuous evolutionary process (U(t, s))t≥s.

If, furthermore, A has compact resolvent, then the monodromy operator P

of the process is compact. Hence, for every almost periodic function f the

sets σ(f) and σΓ(P ) always satisfy spectral separation condition. In Section

1 we have shown that if σΓ(P ) ∩ σ(f) = �, then there is a unique almost

periodic solution xf to the inhomogeneous equation

dx

dt
= (−A+B(t))x + f(t) (3.78)

with property that σ(xf ) ⊂ σ(f) . Now suppose that σΓ(P )∩σ(f) 6= �. By

Corollary 3.8, if u is any bounded solution (the uniform continuity follows

from the boundedness of such a solution to Eq.(3.78)), then there exists

an almost periodic solution w such that σ(w) = σ(f). We refer the reader

to [Henry (46)] and [Pazy (90)] for examples from parabolic differential

equations which can be included into the abstract equation (3.78).

Example 3.11.

Consider the heat equation in materials














vt(t, x) = ∆v(t, x) + f(t, x), t ∈ R, x ∈ Ω

v(t, x) = 0, t ∈ R, x ∈ ∂Ω,

(3.79)
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where Ω ⊂ Rn denotes a bounded domain with smooth boundary ∂Ω. Let

X = L2(Ω), A = ∆ with D(A) = W 2,2(Ω)∩W 1,2
0 (Ω) . Then A is self-adjoint

and negative definite (see e.g. [Pazy (90)]). Hence σ(A) ⊂ (−∞, 0). In

particular σi(A) = � . Eq.(22) now becomes

dv

dt
= Av + f. (3.80)

We assume further that f(t, x) = a(t)g(x) where a is a bounded uniformly

continuous real function with sp(a) = Z ∪ πZ, g ∈ L2(Ω), g 6= 0. It may

be seen that σ(f) = S1 and sp(f) has an integer and finite basis. Hence,

Theorem 3.12 does not give any information on the existence of a solution

w with specific spectral properties. However, in this case Theorem 3.13

applies, namely, if Eq.(3.79) has a bounded solution, then it has a quasi

periodic solution with the same spectrum as f .

3.4 Comments and Further Reading Guide

3.4.1 Further Reading Guide

The almost periodicity of a bounded solution to the evolution equation

u′(t) = Au(t)+f(t), t ∈ R is an interesting topic in the asymptotic behavior

of evolution equations. The method of sums of commuting operators has

been widely used in the study of the existence and regularity of solutions

on finite intervals. The reader can find more in [Prato and Grisvard (23);

Pruss (91)]. There is another approach to the admissibility theory via

an operator equation AX −XB = C. The reader can find details of this

method in [Vu and Schuler (103); Schweiker (94)]. Recently, the method of

Fourier multipliers (see [Weis (104)]) has been used to study the existence

and regularity of periodic solutions of inhomogeneous equations in [Arendt

and Bu (8); Keyantuo and Lizama (51)], the stability and control in

[Latushkin and Räbiger (57)]. There are many deep results discussing

the conditions for a bounded and uniformly continuous mild solution u

of this equation to be almost periodic. These conditions are stated in

terms of the countability of imaginary spectrum of A and the phase space

not containing c0. In this direction we refer the reader to [Arendt, Batty,

Hieber and Neubrander (7); Levitan and Zhikov (58)] and the references

therein for more details. The decomposition method was first studied in

[Naito, Minh, R. Miyazaki and Shin (75); Naito, Minh and Shin (76)].

Massera type criteria for the existence of almost periodic solutions with the

same structure of spectrum as f are studied in detail for general classes
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of abstract functional differential equations in [Furumochi (35); Murakami,

Naito and Minh (71); Minh and Minh (72)]. In [Minh and Minh (72)]

the countability of spectrum condition is relaxed considerably.

3.4.2 Comments

The method of evolution semigroups was first used in [Naito and Minh

(74)] to study the existence and uniqueness of almost periodic solutions.

Subsequently, it was used in [Batty, Hutter and Räbiger (14); Murakami,

Naito and Minh (71); Naito, Minh, R. Miyazaki and Shin (75); Naito,

Minh and Shin (76)] and others. Section 1 is mainly taken from [Naito

and Minh (74); Murakami, Naito and Minh (71)]. Section 2 is the main

part of [Murakami, Naito and Minh (71)]. Section 3 with the decomposition

method is taken from [Naito, Minh and Shin (76)]. The upper spectral

estimate (3.63) was first found by Zhikov (see [Levitan and Zhikov (58)])

for autonomous equations. It was extended to periodic equations in [Batty,

Hutter and Räbiger (14)]. The lower spectral estimate (3.64) was first

found in [Naito, Minh and Shin (76)].
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Chapter 4

Almost Automorphic Solutions

In this chapter we will study conditions under which an evolution equa-

tion has an almost automorphic (classical/mild) solution. The concept of

almost automorphic functions was introduced by S. Bochner three decades

ago. However, only recently the interest in almost automorphic solutions of

evolution equations has been resurgent. We begin this chapter with some

fundamental results on almost automorphic solutions of evolution equations

in Section 4.1. In the next section we will present a new method using in-

variant subspaces. An existence result based on Fixed Point Theorems for

semilinear equations will be given in Section 4.3. One difficulty we have to

overcome in this section is due to the fact that almost automorphic func-

tions are not necessarily uniformly continuous. We deal with this situation

in Sections 4.4 and 4.5 by using the method of sums of commuting opera-

tors and the notion of uniform spectrum recently introduced in [Diagana,

N’Guérékata and Minh (28)]. In Section 4.5, we are concerned with a

second-order linear evolution equation.

4.1 The Inhomogeneous Linear Equation

In this section we will consider in a (real or complex) Banach space X the

differential equation

ẋ(t) = Ax(t) + f(t), t ∈ R (4.1)

where f ∈ AA(X), the Banach space of all almost automorphic functions

R 7→ X (see Section 1.3.7) and A is a (generally unbounded, unless otherwise

stated) linear operator with domain D(A) ⊂ X. Our concern is to look at

121
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conditions under which (classical or mild) bounded solutions of (4.1) are

also in AA(X).

This problem was initially raised and solved by Bohr and Neugebauer

in the case where f ∈ AP (X) and X is a finite dimensional space. The

almost automorphic version of this result is well-known.

We begin our study with the following result

Theorem 4.1. If A = λ is a complex number and f ∈ AA(Cn), then the

solution x(t) of (4.1) is in AA(Cn).

Proof. We first consider the case where λ = iθ, where θ ∈ R. In this

case,

x(t) = eiθtx(0) +

∫ t

0

eiθ(t−ξ)f(ξ)dξ, ∀t ∈ R.

Therefore, from the boundedness of x(·) it follows the boundedness of

the function t 7→
∫ t

0 e
iθ(t−ξ)f(ξ)dξ. Consequently, the function t 7→

∫ t

0 e
iθ(−ξ)f(ξ)dξ is bounded. Observe that the function ξ 7→ eiθ(−ξ)f(ξ)dξ

is almost automorphic, and so the integral function t 7→
∫ t

0 e
iθ(−ξ)f(ξ)dξ is

almost automorphic. Finally, we get the almost automorphy of the bounded

solution x(·).

If <e λ 6= 0, then x(t) is equal to x1(t) if <e λ > 0, and x2(t) if <e λ < 0,

where

x1(t) = −
∫ ∞

t

eλ(t−s)f(s)ds t ∈ R,

x2(t) =

∫ t

−∞
eλ(t−s)f(s)ds t ∈ R

Let us prove that x1(t) ∈ AA(Cn). The proof of x2(t) ∈ AA(Cn) is

similar.

Use the change of variable σ = t− s to obtain

x1(t) = −
∫ 0

−∞
eλσf(t− σ)dσ t ∈ R

Let now (σ
′

n) be an arbitrary sequence of real numbers. Since f ∈
AA(Cn), there exists a subsequence (σn) of (σ

′

n) such that

g(t) = lim
n→∞

f(t+ σn)
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is well defined for each t ∈ R, and

f(t) = lim
n→∞

g(t− σn)

for each t ∈ R.

Now fix t ∈ R. Then we get

lim
n→∞

f(t− σ + σn) = g(t− σ)

for each given σ ∈ R. Clearly

x1(t+ σn) = −
∫ 0

−∞
eλσf(t− σ + σn) dσ

We observe also that

‖eλσf(t− σ + σn)| ≤ e(<e λ)σ sup
t∈R

‖f(t)‖

and
∫ 0

−∞
e(<eλ)σ sup

t∈R

‖f(t)‖ dσ =
1

<eλ sup
t∈R

‖f(t)‖ < ∞

We know also the g is a bounded and measurable function. Using now

the Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

x1(t− σn) = −
∫ 0

−∞
eλσg(t− σ) dσ = y1(t)

for each t ∈ R. We can apply the same reasoning to y1(t) to obtain

lim
n→∞

y1(t− σn) = x1(t)

for each t ∈ R, which proves that x1(t) ∈ AA(Cn) and completes the proof.

�

Now we have:

Theorem 4.2. ([N’Guérékata (79)][Remark 4.2.2]) If A is a linear oper-

ator Rn 7→ Rn, then every bounded solution of (4.1) is in AA(Rn).

Proof. First, we note that by Floquet Theory of periodic ordinary dif-

ferential equations, without loss of generality we may assume that A is

independent of t.

Next we will show that the problem can be reduced to the one-

dimensional case. In fact, if A is independent of t, by a change of variable
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if necessary, we may assume that A is of Jordan normal form. In this di-

rection we can go further with assumption that A has only one Jordan box.

That is, we have to prove the theorem for equations of the form










ẋ1(t)

ẋ2(t)
...

ẋn(t)











=









λ 1 0 . . . 0

0 λ 1 . . . 0

. . . . . . . . . . . .

0 0 0 . . . λ









+











f1(t)

f2(t)
...

fn(t)











.

Let us consider the last equation involving xn(t). We have

ẋn(t) = λxn(t) + fn(t), t ∈ R, x(t) ∈ C. (4.2)

If <λ 6= 0, then we can easily check that either

y(t) =

∫ t

−∞
eλ(t−ξ)fn(ξ)dξ, (<λ < 0)

or

z(t) =

∫ ∞

t

eλ(t−ξ)fn(ξ)dξ, (<λ > 0)

is a unique bounded solution of Eq. (4.2) Moreover, by Theorem 4.1, in

both cases, y(t) and z(t) are in AA(C). Hence, xn is in AA(C).

If <λ = 0, then λ = iη for η ∈ R. By assumption, there is a constant c

such that the function

xn(t) := ceiηt +

∫ t

0

eiη(t−ξ)f(ξ)dξ,

is bounded on R. This yields the boundedness of
∫ t

0
e−iηξf(ξ)dξ on R.

Hence,
∫ t

0
e−iηξf(ξ)dξ is in AA(X). Finally, this yields that xn is in AA(X).

Let us consider next the equation involving xn−1 and xn. Since xn is in

AA(X), by repeating the above argument we can show that xn−1 is also in

AA(X). Continuing this process, we can show that all xk(·) are in AA(X).

The proof is completed. �

Suppose now f ∈ C(R,X)∩L1(R+,X) and A is the infinitesimal gener-

ator of a C0-group (T (t))t∈R.

Consider the function x ∈ C(R,X) defined by

x(t) = T (t)x(0) +

∫ t

0

T (t− s)f(s)ds, t ∈ R

Let us assume that T (t)y ∈ AA(X) for every y ∈ X, which implies that

T (−t)y ∈ AA(X) for every y ∈ X.
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Now we write

x(t) = u(t) + v(t), t ∈ R

where

u(t) = T (t)x(0) +

∫ ∞

0

T (t− s)f(s)ds

and

v(t) = −
∫ ∞

t

T (t− s)f(s)ds.

It is clear that u ∈ AA(X) by Theorem 1.19 i) and v ∈ C(R+,X) with

limt→∞ ‖v(t)‖ = 0.

Finally x(t)|
t∈R+

is an asymptotically almost automorphic function.

We continue our study of (4.1) with the following result ([N’Guérékata

(82)]).

Theorem 4.3. Let A be the infinitesimal generator of a C0-group of

bounded linear operators (T (t))t∈R. Assume that there exists a subspace

X1 of D(A) with dim X1 <∞ such that:

i) AX1 ⊂ X1

ii) (T (t) − I)f(s) ∈ X1, ∀s, t ∈ R

iii) A commutes with the projection P : X 7→ X1, on D(A).

Then every solution x(t) of (4.1) with x(0) ∈ X1 and precompact range

Rx = {x(t)/t ∈ R} is in AA(X).

Proof. Basically the proof uses the so-called method of decomposition of

the space in order to apply a result of the Bohr-Neugebauer type (Theorem

4.1).

We let P : X 7→ X1, be the natural projection on X1 and consider the

associated decomposition

X = X1 ⊕ kerP

where kerP = {x ∈ X/Px = 0} is the kernel of P .

Let Q = I − P ; then QX1 = {0} and Q2 = I . We recall also that both

P and Q are bounded linear operators.

Now if x(t) is a solution of (4.1) as given in the Theorem, then we can

write

x(t) = x1(t) + x2(t), t ∈ R
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where x1(t) = Px(t) ∈ X1 and x2(t) = Qx(t) ∈ kerP for each t ∈ R. Since

Rx is precompact, it is also clear that both Rx1 and Rx2 are precompact.

We have

x(t) = T (t)x(0) +

∫ t

0

T (t− s)f(s)ds =

T (t)x(0) +

∫ t

0

f(s)ds+

∫ t

0

(T (t− s) − I)f(s)ds

Note that
∫ t

0
(T (t − s) − I)f(s)ds ∈ X1, by ii) in the Theorem, hence

Q
∫ t

0
(T (t− s) − I)f(s)ds = 0.

Consequently

x2(t) = Qx(t) = QT (t)x(0) +Q

∫ t

0

f(s)ds = QT (t)x(0) +

∫ t

0

Qf(s)ds

Now

ẋ2(t) = QAT (t)x(0) +Qf(t) = QT (t)Ax(0) +Qf(t) = Qf(t)

Since Ax(0) ∈ X1, that yields T (t)Ax(0) ∈ X1 and consequently

QT (t)Ax(0) = 0.

By Exercise 4.1 below, Qf(t) is almost automorphic; so is ẋ2(t). Now

since Rx2 is precompact, we deduce that x2 is in AA(X).

Now it suffices to prove that x1(t) is almost automorphic in order to

reach the conclusion based on Theorem 1.19 i).

We rewrite (4.1) as follows

ẋ(t) = Ax1(t) +Ax2(t) + Pf(t) +Qf(t)

and we apply P to both sides of the previous equation to get

ẋ1(t) = PAx1(t) + PAx2(t) + P 2f(t) + PQf(t)

= PAx1(t) +APx2(t) + P 2f(t) + PQf(t) = PAx1(t) + g(t)

where g(t) = P 2f(t) + PQf(t) is almost automorphic.

This last equation holds true in the finite dimensional space X1. It is of

the Borh-Neugebauer type (Theorem 4.1). So its solution x1(t) is almost

automorphic. The proof is achieved. �

Exercise 18. Let f ∈ AA(X) and A ∈ B(X), the space of all bounded linear

operators on X. Show that Af ∈ AA(X).

Exercise 19. Let H be a Hilbert space and A : H 7→ H a linear operator

such that Aφn = λnφn n = 1, 2, 3, ... where {φ1, φ2, ...} is an orthonormal

base for H and |<eλn| ≤ M for all n = 1, 2, 3, .... Find the subspace X1 of

H such that AX1 ⊂ X1, and A commutes with the projection P : H 7→ X1.
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4.2 Method of Invariant Subspaces and Almost Automor-

phic Solutions of Second-Order Differential Equations

In this section we are concerned with the almost automorphic solutions to

the homogeneous second-order hyperbolic differential equation of the form

d2

ds2
u(s) + 2B

d

ds
u(s) +A u(s) = 0, (4.3)

and the associated nonhomogeneous differential equation

d2

ds2
u(s) + 2B

d

ds
u(s) + A u(s) = f(s), (4.4)

where A,B are densely defined closed linear operators acting in a Hilbert

space H and f ∈ AA(H).

We use invariant subspaces theory (see Appendix 6.4) to show that under

appropriate assumptions, every solution to the equations (4.2) and/or (4.3)

is an almost automorphic vector-valued function. The idea of using the

method of invariant subspaces to study the existence of almost automorphic

solutions is recent and due to Diagana and N’Guérékata.

Let us indicate that the invariant subspaces method works smoothly in

the framework of abstract differential equations involving the algebraic sum

of unbounded linear operators.

Now setting v(s) =
d

ds
u(s), the problem (4.2)-(4.3) can be rewritten in

H × H of the form

d

ds
U(s) = (A + B) U(s), (4.5)

and

d

ds
U(s) = (A + B) U(s) + F (s), (4.6)

where U(s) = (u(s), v(s)), F (s) = (0, f(s)) and A,B are the operator

matrices of the form

A =

(

O I

−A O

)

and B =

(

O O

O −2B

)

,

on H×H with D(A) = D(A)×H, D(B) = H×D(B), and O, I denote the

zero and identity operators on H, respectively.

Since (4.2)-(4.3) is equivalent to (4.4)-(4.5), instead of studying (4.2)-

(4.3), we will focus on the characterization of almost automorphic solutions

to (4.4)-(4.5).
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Throughout the section, H, D(C), R(C) and N(C), denote a Hilbert

space, the domain, the range and the kernel of the linear operator C, re-

spectively.

Let A and B be densely defined closed unbounded linear operators on

H. Recall that their algebraic sum is defined by

D(A+B) = D(A) ∩D(B) and (A+B)x = Ax +Bx,

∀x ∈ D(A) ∩D(B).

Since both A and B are densely defined, then the algebraic sum of A
and B, S = A + B is also a densely defined operator and

D(A + B) = D(A) ×D(B), and (A + B)U = AU + BU .
Throughout the section, A and B will play similar roles.

Setting our main result, we make the following assumptions:

The operators A and B are infinitesimal generators of C0-groups of

bounded operators (T (t))s∈R, (R(t))s∈R, respectively, such that

(i) T (s)U : s 7→ T (s)U is almost automorphic for each U ∈ H × H,

R(s)V : s 7→ R(s)V is almost automorphic for each V ∈ H × H,

respectively.

(ii) there exists S ⊂ H × H, a closed subspace that reduces both A and

B.

We denote by PS and QS = (I × I − PS) = P[H×H]	S , the orthogonal

projections onto S and [H × H] 	 S, respectively.

(iii) R(A) ⊂ R(PS) = N(QS)

(iv) R(B) ⊂ R(QS) = N(PS)

Remark 4.1.

1. Recall that if A,B generate C0-groups, then their sum A + B need

not be a generator of a C0-group .

2. The assumption (ii) implies that both S and [H×H	S] are invariant

for the algebraic sum A + B (note that it is well-defined as stated above).

Now we state and prove:

Theorem 4.4. Under assumptions (i)-(ii)-(iii)-(iv), every solution to the

differential equation (4.4) is almost automorphic.

Proof. Let X(s) be a solution to (4.4). Clearly X(s) ∈ D(A) ∩D(B) =

D(A)×D(B) (notice that the algebraic sum S = A+B exists since D(S) =

H × H).
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Now decompose X(s) as follows

X(s) = PSX(s) + (I × I − PS)X(s),

where PSX(s) ∈ R(PS) = N(QS), and QSX(s) ∈ N(PS) = R(QS).

We have

d

ds
(PSX(s)) = PS

d

ds
X(s)

= PSAX(s) + PSBX(s)

= APSX(s) + PSBX(s) (according to(ii))

= APSX(s) (according to(iv))

From
d

ds
(PSX(s)) = APSX(s), it follows that

PSX(s) = T (t)PSX(0).

Now according to (i), the vector-valued function s 7→ PSX(s) =

T (t)PSX(0) is almost automorphic.

In the same way, since [H×H]	 ([H×H]	 S) = S. It follows that the

closed subspace S reduces A and B if and only if [H×H]	S does. In other

words, [H × H]	 S reduces A and B. That is, a similar remark as Remark

6.1 in Appendix holds when S is replaced by [H × H] 	 S. Thus, we have

d

ds
(QSX(s)) = QS

d

ds
X(s)

= QSAX(s) +QSBX(s)

= QSAX(s) + BQSX(s) (according to(ii))

= BQSX(s) (according to(iii))

From the equation
d

dt
(QSX(s)) = BQSX(s), it follows that s 7→

QSX(s) = R(s)QSX(0) is almost automorphic (according to (i)).

Therefore X(s) = PSX(s) +QSX(s) is also almost automorphic as the

sum of almost automorphic vector-valued functions. �

Corollary 4.1. Let B : H 7→ H be a bounded linear operator in the Hilbert

space H. Assume that assumptions (i)-(ii)-(iii)-(iv) hold true.

Then every solution to the equation (4.5) is almost automorphic.

Proof. This an immediate consequence of Theorem 4.5 to the case where

B is a bounded linear operator, it is straightforward. �
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Consider now the nonhomogeneous equation (4.5). Assume that the

vector valued function f : R 7→ H is almost automorphic. In fact, this

implies that F : s 7→ (0, f(s)) is in AA(H × H).

We have

Theorem 4.5. Under assumption (i)-(ii)-(iii)-(iv), assume in addition

that f ∈ AA(H) and
∫ t

0
T (−s)f(s)ds and

∫ t

0
R(−s)f(s)ds are bounded over

R.

Then every solution to the equation (4.5) is almost automorphic.

Proof. Let X(s) be a solution to (4.5). As in the proof of Theorem

4.5, the solution X(s) ∈ D(A) ∩ D(B). Now express X(s) as X(s) =

PSX(s) + QSX(s), where PS , QS = (I × I − PS) = P[H×H]	S are the

orthogonal projections defined above.

We have

d

ds
(PSX(s)) = PS

d

ds
X(s)

= PSAX(s) + PSBX(s) + PSF (s)

= APSX(s) + PSBX(s) + PSF (s) (according to(ii))

= APSX(s) + PSF (s) (according to(iv))

From
d

ds
(PSX(s)) = APSX(s) + PSF (s); it follows that

PSX(s) = T (s)PSX(0) +

∫ s

0

T (s− σ)PSF (σ)dσ.

Set G(s) =
∫ s

0
T (s− σ)PSF (σ)dσ .

First observe that σ 7→ T (−σ) PS F (σ) is almost automorphic. More-

over the function x(s) =:
∫ s

0
T (−σ)PSF (σ)dσ is bounded (as it can be

easily proved), thus it is almost automorphic. Now T (s) x(s) = G(s) is

almost automorphic.

According to assumption (i), the vector-valued function

s 7→ PSX(s) = T (s)PSX(0)

is almost automorphic. Therefore s 7→ PSX(s) is almost automorphic as

the sum of almost automorphic vector-valued functions.

In the same way, it is not hard to see that

d

ds
(QSX(s)) = BQSX(s) +QSF (s),



April 22, 2008 10:13 World Scientific Book - 9in x 6in stability

Almost Automorphic Solutions 131

and that QSX(s) can be expressed as

QSX(s) = R(s)QSX(0) +

∫ s

0

R(s− σ)QSF (σ)dσ.

Using similar arguments as above, it can be shown that s 7→ QSX(s) is

almost automorphic. Therefore X(s) = PSX(s)+QSX(s) is also an almost

automorphic vector-valued function. �

Remark 4.2. Let us notice that the previous results (Theorem 4.5 and

Theorem 4.6) still hold in the case where A,B : H × H 7→ H × H are

bounded linear operator matrices on H × H. In such a case, the similar

assumptions are required, that is, (i)-(ii)-(iii) and (iv).

4.3 Existence of Almost Automorphic Solutions to Semi-

linear Differential Equations

This section is concerned with the differential equation in a Banach space

X:

x′(t) = Ax(t) + f(t, x(t)), t ∈ R (4.7)

where A is the infinitesimal generator of an exponentially stable C0-

semigroup (T (t))t≥0; that is, there exist K > 0, ω < 0 such that

‖T (t)‖ ≤ Keωt, ∀t ≥ 0.

We assume that f : R×X 7→ X satisfies a Lipschitz condition in x uniformly

in t, that is,

‖f(t, x) − f(t, y)‖ ≤ L‖x− y‖

∀t ∈ R, x, y ∈ X.

We like to establish existence and uniqueness of almost automorphic

mild solutions to the Eq. (4.6). We first prove the existence of almost

automorphic mild solution of the differential equation

x′(t) = Ax(t) + f(t), t ∈ R, (4.8)

where f is almost automorphic.

Theorem 4.6. Let f ∈ AA(X). Then equation (4.7) has a unique almost

automorphic mild solution.
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Proof. We first prove existence of an almost automorhic solution. It is

well-known that Eq. (4.7) possesses a mild solution of the form

x(t) = T (t− a)x(a) +

∫ t

a

T (t− s)f(s)ds, for all a ∈ R, t ≥ a.

It remains to prove that it is almost automorphic.

First, we consider the function u(t) :=
∫ t

−∞ T (t− s)f(s)ds, defined as

∫ t

−∞
T (t− s)f(s)ds = lim

r→−∞

∫ t

r

T (t− s)f(s)ds.

Clearly for each r < t, the integral
∫ t

r T (t− s)f(s)ds exists. Moreover

‖
∫ t

r

T (t− s)f(s)ds‖ ≤ K

|ω|‖f‖∞, ∀r < t.

which shows
∫ t

−∞ T (t− s)f(s)ds is absolutely convergent.

Now let (s′n) be an arbitrary sequence of real numbers. Since f ∈
AA(X), there exists a subsequence (sn) of (s′n) such that

g(t) = lim
n→+∞

f(t+ sn)

is well-defined for each t ∈ R and

f(t) = lim
n→+∞

g(t− sn)

for each t ∈ R

Now consider

u(t+ sn) =

∫ t+sn

−∞
T (t+ sn − s)f(s)ds

=

∫ t

−∞
T (t− σ)f(σ + sn)dσ

=

∫ t

−∞
T (t− σ)fn(σ)dσ,

where fn(σ) = f(σ + sn), n = 1, 2, ...

We also have

‖u(t+ sn)‖ ≤ K

|ω| ‖f‖∞, ∀n = 1, 2, ...

and by continuity of the semigroup, T (t − σ)fn(σ) 7→ T (t − σ)g(σ), as

n→ ∞ for each σ ∈ R fixed and any t ≥ σ.
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If we let v(t) =
∫ t

−∞ T (t− s)g(s)ds, we observe that the integral is ab-

solutely convergent for each t. So, by the Lebesgue’s dominated convergent

theorem,

u(t+ sn) 7→ v(t), as n→ ∞
for each t ∈ R.

We can show in a similar way that

v(t− sn) 7→ u(t) as n→ ∞
for each t ∈ R. This shows that u ∈ AA(X).

Now let u(a) =
∫ a

−∞ T (a − s)f(s)ds. So T (t − a)u(a) =
∫ a

−∞ T (t −
s)f(s)ds.

If t ≥ a, then
∫ t

a

T (t− s)f(s)ds =

∫ t

−∞
T (t− s)f(s)ds−

∫ a

−∞
T (t− s)f(s)ds

= u(t) − T (t− a)u(a).

so that, u(t) = T (t−a)u(a)+
∫ t

a T (t− s)f(s)ds. If we fix x(a) = u(a), then

x(t) = u(t), that is x ∈ AA(X).

We finally prove the uniqueness of the almost aumorphic solution.

Assume x and y are two such solutions and we let z = x − y. Then

z ∈ AA(X) and satisfies the equation

z′(t) = Az(t), t ∈ R.

Note that z is bounded and satisfies also the equation

z(t) = T (t− s)z(s) ∀t, s ∈ R, t ≥ s

We also have the inequality

‖z(t)‖ ≤ Keω(t−s).

Take a sequence of real numbers (sn) such that sn → −∞. For any

fixed t ∈ R, we then can find a subsequence (snk
) of (sn) with snk

< t for

all k = 1, 2, .... Using the fact that ω < 0, we obtain z = 0.

This shows uniqueness of the solution and ends the proof. �

Theorem 4.7. Assume that f : R × X 7→ X satisfies a Lipschitz condition

in x uniformly in t, that is,

‖f(t, x) − f(t, y)‖ ≤ L‖x− y‖, ∀x, y ∈ X,

where L <
|ω|
K

. Let also f be almost automorphic in t for each x ∈ X.

Then equation (4.6) has a unique almost automorphic mild solution.
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Proof. Let x be a mild solution of Eq. (4.6). It is continuous and satisfies

the integral equation

x(t) = T (t− a)x(a) +

∫ t

a

T (t− s)f(s, x(s))ds, ∀a ∈ R, ∀t ≥ a.

Consider
∫ t

a
T (t− s)f(s, x(s))ds and the nonlinear operator G : AA(X) 7→

AA(X) given by

(Gφ)(t) :=

∫ t

−∞
T (t− s)f(s, φ(s))ds.

In view of Theorem 2.2.6 in [N’Guérékata (79)], if φ ∈ AA(X), then Gφ ∈
AA(X), so G is well-defined.

Now for φ1, φ2 ∈ AA(X), we have:

‖Gφ1 −Gφ2‖∞ = sup
t∈R

‖
∫ t

−∞
T (t− s){f(s, φ1(s)) − f(s, φ2(s))}ds‖

≤ sup
t∈R

∫ t

−∞
‖T (t− s)‖B(X)L‖φ1(s) − φ2(s)‖ds

≤ L‖φ1 − φ2‖∞. sup
t∈R

∫ t

−∞
‖T (t− s)‖B(X)ds

≤ L‖φ1 − φ2‖∞. sup
t∈R

∫ t

−∞
Keω(t−s)ds

=
LK

|ω| ‖φ1 − φ2‖∞.
So

‖Gφ1 −Gφ2‖∞ ≤ LK

|ω| ‖φ1 − φ2‖∞,

which proves that G is continuous. And since
LK

|ω| < 1, then G is a con-

traction. So there exists a unique u ∈ AA(X), such that Gu = u, that is

u(t) =
∫ t

−∞ T (t− s)f(s, u(s))ds.

If we let u(a) =
∫ a

−∞ T (a− s)f(s, u(s))ds, then

T (t− a)u(a) =

∫ a

−∞
T (t− s)f(s, u(s))ds.

But for t ≥ a,
∫ t

a

T (t− s)f(s, u(s))ds =

∫ t

−∞
T (t− s)f(s, u(s))ds

−
∫ a

−∞
T (t− s)f(s, u(s))ds

= u(t) − T (t− a)u(a).

So u(t) = T (t − a)u(a) +
∫ t

−∞ T (t − s)f(s, u(s))ds is a mild solution of

equation (4.6) and u ∈ AA(X). The proof is now complete. �
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4.4 Method of Sums of Commuting Operators and Almost

Automorphic Functions

In this section we will extend the method of sums of commuting operators

in the previous chapter to almost automorphic solutions of inhomogeneous

linear evolution equations of the form

du

dt
= Au+ f(t), (4.9)

where A is an (unbounded) linear operator which generates a holomorphic

semigroup of linear operators on a Banach space X and f ∈ AA(X).

The main difficulty that arises here is concerned with the non-uniform

continuity of almost automorphic functions. This implies the non-strong

continuity of translation semigroup in the functions space AA(X). There-

fore, many elegant proofs using semigroup theory fail. To overcome this

difficulty it is appropriate to use the concept of uniform spectrum defined

in Chapter 1.

For any closed subset Λ ⊂ R we denote

AAΛ(X) := {u ∈ AA(X) : spu(u) ⊂ Λ}.
By the basic properties of uniform spectra of functions, AAΛ(X) is a closed

subspace of BC(R,X). Below we denote DΛ the part of the differential

operator d/dt in AAΛ(X). We have the following:

Lemma 4.1. Under the above notations and assumptions we have

σ(DΛ) = iΛ. (4.10)

Proof. The proof can be taken from the one of Lemma 1.2. The details

are left to the reader. �

As a standing assumption in the remaining part of the section we always

assume that A is the infinitesimal generator of an analytic semigroup of

linear operators on X.

Let Λ be a closed subset of R. We first consider the operator AΛ of

multiplication by A and the differential operator d/dt on the function space

AAΛ(X).

By definition the operator AΛ of multiplication by A is defined on

D(AΛ) := {g ∈ AAΛ(X) : g(t) ∈ D(A) ∀t ∈ R, Ag(·) ∈ AAΛ(X)}, and

Ag := Ag(·) for all g ∈ D(AΛ).
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Lemma 4.2. Assume that Λ ⊂ R is closed. Then the operator AΛ of

multiplication by A in AAΛ(X) is the infinitesimal generator of an analytic

C0-semigroup on AAΛ(X).

Proof. We will prove that AΛ is a sectorial operator on AAΛ(X). In fact,

first we check that AΛ is densely defined. Consider the semigroup TΛ(t)

of operators of multiplication by T (t) on AAΛ(X). We now show that it

is strongly continuous. Indeed, suppose that g ∈ AAΛ(X), since R(g) is

relatively compact we see that the map [0, 1] × R(g) 3 (t, x) 7→ T (t)x ∈ X

is uniformly continuous. Hence,

sup
s∈R

‖T (t)g(s) − g(s)‖ → 0

as t→ 0, i.e., the TΛ(t) is strongly continuous. By definition, g ∈ D(AΛ) if

and only if g(s) ∈ D(A), ∀s ∈ R and Ag(·) ∈ AAΛ(X). Thus,

T (t)g(s) − g(s)

t
=

1

t

∫ t

0

T (ξ)Ag(s)dξ, ∀t ≥ 0, s ∈ R.

Therefore,

lim
t→0+

sup
s∈R

‖T (t)g(s) − g(s)

t
− 1

t

∫ t

0

T (ξ)Ag(s)dξ‖ = 0,

i.e., g is in D(G), where G is the generator of TΛ(t) and AΛg = Gg. Con-

versely, we can easily show that G ⊂ AΛ.

Now it suffices to prove that σ(AΛ) ⊂ σ(A) to claim that AΛ is a

sectorial operator. In fact, let µ ∈ ρ(A). To prove that µ ∈ ρ(AΛ) we show

that for each h ∈ AAΛ(X) the equation µg−AΛg = h has a unique solution

in AAΛ(X).

But this follows from the fact that (µ−AΛ)−1h(·) ∈ AAΛ(X) and that

the equation

µx−Ax = y

has a unique solution x in X for any y ∈ X. �

Theorem 4.8. Let A be the generator of an analytic semigroup. Then

the operator AΛ of multiplication by A and the differential operator DΛ on

AAΛ(X) are commuting and satisfy condition P (for the definition see the

Appendix).
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Proof. By the above lemma the operator AΛ is sectorial. It suffices to

show that it commutes with the differential operator DΛ. In fact, since

1 ∈ ρ(DΛ) we will prove that

R(1,DΛ)R(ω,AΛ) = R(ω,AΛ)R(1,DΛ), (4.11)

for sufficiently large real ω.

Since AΛ generates the semigroup TΛ(t), using well-known facts from the

semigroup theory the above indentity for sufficiently large ω is equivalent

to the following

R(1,DΛ)

∫ ∞

0

e−ωtTΛ(t)dt =

∫ ∞

0

e−ωtTΛ(t)dtR(1,DΛ). (4.12)

In turn, (4.12) follows from the following

R(1,DΛ)TΛ(τ) = TΛ(τ)R(1,DΛ), ∀τ ≥ 0. (4.13)

which is obvious. �

So, by the spectral properties of sums of commuting operators, we have

Corollary 4.2. If σ(A) ∩ iΛ = �, then for every f ∈ AAΛ(X) there exists

a unique u ∈ AAΛ(X) such that

AΛ + DΛu = f.

Proof. Since AΛ and DΛ commute and satisfy Condition P, the sum

AΛ + DΛ is closable (denote its closure by AΛ + DΛ).

From σ(A) ∩ iΛ = � and Theorem 1.11 in Appendix, it turns out that

0 ∈ ρ(AΛ + DΛ).

Therefore for every f ∈ AAΛ(X) there exists a unique u ∈ D(AΛ + DΛ)

such that

AΛ + DΛu = f. �

Now our remaining task is just to explain what the above closure means.

More precisely, we will relate it with the notion of mild solutions to evolution

equations.

Lemma 4.3. Let u, f ∈ AA(X). If u ∈ D(AΛ + DΛ) and AΛ + DΛu = f ,

then u is a mild solution of Eq. (4.11).

Proof. This lemma follows immediately from the following:

For every u ∈ AA(X) we say that it belongs to D(L) of an operator L

acting on AA(X) if there is a function f ∈ AA(X) such that

u(t) = T (t− s)u(s) +

∫ t

s

T (t− ξ)f(ξ)dξ, ∀t ≥ s, t, s ∈ R. (4.14)
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By a similar argument as in the proof of Lemma 3.1 in [Murakami, Naito

and Minh (71)] we can prove that L is a closed single-valued linear operator

acting on AA(X) which is an extension of AΛ + DΛ.

Thus, L is an extension of AΛ + DΛ. This yields that u is a mild solution

of Eq. (4.11). �

As an immediate consequence of the above argument we have:

Theorem 4.9. Let A be the generator of an analytic semigroup and let Λ

be a closed subset of R.

Then it is necessary and sufficient for each f ∈ AAΛ(X) there exists a

unique mild solution u ∈ AAΛ(X) to Eq. (4.11) that the condition σ(A) ∩
iΛ = � holds.

Proof. The sufficiency follows from the above argument. The necessity

can be shown as follows:

For every ξ ∈ Λ, obviously that the function h : R 3 t 7→ aeiξt is in

AAΛ(X), where a ∈ X is any given element.

By assumption, there is a unique g ∈ D(AΛ) such that iξg(t)−Ag(t) =

h(t) for all t ∈ R.

Following the argument in the proof of Theorem 3.4 one can easily show

that g(t) is of the form beiξt. Hence, b is the unique solution of the equation

iξb−Ab = a.

That is iξ 6∈ σ(AΛ), so iΛ ∩ σ(AΛ) = �. �

Corollary 4.3. Let A be the generator of an analytic semigroup such that

σ(A) ∩ i spu(f) = �.
Then Eq. (4.11) has a unique almost automorphic mild solution w such

that spu(w) ⊂ spu(f).

Proof. Set Λ = spu(f). Then by the above argument we get the theorem.

�

Remark 4.3. We notice that all results stated above for almost automor-

phic solutions hold true for compact almost automorphic solutions if the

assumption on the almost automorphy of f is replaced by the compact

almost automorphy of f . Details of the proofs are left to the reader.
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4.5 Almost Automorphic Solutions of Second Order Evolu-

tion Equations

In this section we deal with the existence of almost automorphic mild so-

lutions to second order evolution equations of the form

d2u

dt2
= Au+ f(t), (4.15)

where A is an (unbounded) linear operator which generates a holomorphic

semigroup of linear operators on a Banach space X and f ∈ AA(X).

We will use the method of sums of commuting operators, a method due

to Murakami, Naito and Minh [Murakami, Naito and Minh (71)], to study

the existence of almost periodic solutions is . This method works well with

the problem of finding almost automorphic solutions of first order evolution

equations as shown in the previous section 4.4.

We will show that the method of sums is still useful for second order

evolution equations. Our main results are Theorems 4.9, 4.11. Notice

that in [Schweiker (94)], [Schuler and Vu (95)], similar results for f ∈
BUC(R,X) were proved using an operator equation. This method that

needs the uniform continuity of f is inapplicable to the problem we are

considering due to the fact that an almost automorphic function may not

be uniformly continuous.

Notation. Throughout the section, R, C, X stand for the sets of all

real, all complex numbers and a complex Banach space, respectively;

L(X), BC(R,X), BUC(R,X) denote the spaces of all linear bounded op-

erators on X, all X-valued bounded continuous functions, all X-valued

bounded uniformly continuous with sup-norm, respectively. The translation

group in BC(R,X) is denoted by (S(t))t∈R which is strongly continuous in

BUC(R,X) whose infinitesimal generator is the differential operator d/dt.

For a linear operator A, we denote by D(A), σ(A) and ρ(A) the domain,

spectrum and resolvent set of A, respectively. If Y is a metric space and

B is a subset of Y , then B̄ denotes its closure in Y . In this section by the

notion of sectorial operators means the one defined in [Pazy (90)]. The

notion of closure of an operator is referred to the one defined in [Davies

(27)].
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4.5.1 Mild Solutions of Inhomogeneous Second Order

Equations

4.5.1.1 Mild Solutions

Let A be any closed linear operator on a Banach space X. We now define

the concept of mild solutions on R to Eq. (4.15).

Definition 4.1. (See p. 374 in [Arendt and Batty (5)] ) A continuous

X-valued function u is called a mild solution on R of Eq. (4.15) if
∫ t

0

(t− s)u(s)ds ∈ D(A) ∀t ∈ R (4.16)

and

u(t) = x+ ty +A

∫ t

0

(t− s)u(s)ds+

∫ t

0

(t− s)f(s)ds (t ∈ R)(4.17)

for some fixed x, y ∈ X. If u ∈ C2(R,X), u(t) ∈ D(A), ∀t ∈ R and Eq.(4.15)

holds for all t ∈ R we say that u is a classical solution to Eq.(4.15). It is

easily seen that if u ∈ C(R,X) is a classical solution of Eq. (4.15), then it

is a mild solution of Eq. (4.15).

4.5.1.2 Mild Solutions and Weak solutions

Definition 4.2. A function u ∈ BC(R,X) is said to be a weak solution

to Eq. (4.15) if there is a sequence of fn ∈ BC(R,X) and a sequence of

classical solutions un ∈ BC(R,X) of Eq. (4.15) with f replaced by fn such

that fn → f and un → u in the sup-norm topology of BC(R,X).

Definition 4.3. We define an operator L on BC(R,X) with domain D(L)

consisting of all u ∈ BC(R,X) such that there exists at least a function

f ∈ BC(R,X) for which u is a mild solution of Eq. (4.15), that is, (4.16)

and (4.17) hold.

Lemma 4.4. If A is a closed linear operator, then L is a single-valued

closed linear operator BC(R,X) ⊃ D(L) → BC(R,X).

Proof. First we show that L is a single-valued linear operator. For this

it suffices to show that if u(t) ≡ 0 is a mild solution of Eq. (4.15), then

f(t) ≡ 0. In fact, by taking t = 0 we can see that in Eq. (4.17), x = 0.

Hence, we have

0 = ty +

∫ t

0

(t− s)f(s)ds (t ∈ R). (4.18)
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Differentiating (4.18) twice, we have f(t) = 0 for all t ∈ R. Therefore, the

operator L is a single-valued linear operator.

Next, we show its closedness. Let un be in D(L) that are mild solutions

of Eq. (4.15) with f replaced by fn ∈ BC(R,X) such that un → u ∈
BC(R,X) and fn → f ∈ BC(R,X). We have to prove that u is a mild

solution to Eq. (4.15). Indeed, by our assumption, we have

un(t) = x+ ty +A

∫ t

0

(t− s)un(s)ds+

∫ t

0

(t− s)fn(s)ds (t ∈ R).

Since A is closed and un, fn ∈ BC(R,X), for a fixed t ∈ R, letting n → ∞
we have

∫ t

0
(t−s)u(s)ds ∈ D(A), and A

∫ t

0
(t−s)un(s)ds → A

∫ t

0
(t−s)u(s)ds.

Therefore,

u(t) = x+ ty +A

∫ t

0

(t− s)u(s)ds+

∫ t

0

(t− s)f(s)ds (t ∈ R).

Thus, by definition, u is a mild solution of Eq. (4.15). �

Remark 4.4. By a similar argument, we can easily show that the part of

L on AAΛ (here Λ is a closed subspace of R) that is denoted by LΛ is a

closed linear operator.

Proposition 4.1. Let A be a closed linear operator. Then every weak

solution of Eq. (4.15) is a mild solution.

Proof. The proof is obvious in view of the above lemma and the remark

that classical solutions are mild solutions. �

4.5.2 Operators A

Let Λ be a closed subset of R. We first consider the operator AΛ of mul-

tiplication by A and the differential operator d/dt on the function space

AAΛ(X). By definition the operator AΛ of multiplication by A is defined

on D(AΛ) := {g ∈ AAΛ(X) : g(t) ∈ D(A) ∀t ∈ R, Ag(·) ∈ AAΛ(X)}, and

Ag := Ag(·) for all g ∈ D(AΛ).

In the following result we assume that Λ is a closed subset of the real

line and the second order differential operator D2
Λ defined in AAΛ(X) with

domain D(D2
Λ) consisting of all functions u ∈ AAΛ(X) that are of class

C2 such that d2u/dt2 ∈ AAΛ(X). Let us define −Λ2 := {ξ ∈ R|ξ =

−λ2, for some λ ∈ Λ}.
Proposition 4.2. With the above notations the following assertions hold

true

σ(D2
Λ) = −Λ2. (4.19)
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Proof. We associate with the equation

d2u

dt2
= µu+ f(t), f ∈ AAΛ(X) (4.20)

the following first order equation
{

x′1 = x2x
′
2 = µx1 + f(t), f ∈ AAΛ(X). (4.21)

It is easily seen from the theory of ODE that the solvability of these equa-

tions in BC(R,X) are equivalent. As shown in Theorem 4.10, if f ∈ AAΛ(X)

and

iΛ ∩ σ(I(µ)) = �, (4.22)

where I(µ) denotes the operator matrix associated with Eq.(4.21). A simple

computation shows that σ(I(µ)) consists of all solutions to the equation

t2 − µ = 0. Thus,

σ(D2
Λ) ⊂ {µ ∈ C : µ = −λ2 for some λ ∈ Λ}.

Hence σ(D2
Λ) ⊂ −Λ2.

On the other hand, let µ ∈ Λ. Then g(·) := xeiµ· ∈ AAΛ(X). Obviously,

D2
Λg = −µ2g and thus, −µ2 ∈ σ(D2

Λ). Therefore, σ(D2
Λ) ⊃ −Λ2. That is,

the proposition is proven. �

Proposition 4.3. Let Λ be a closed subset of the real line and let Σ(ε)

denote the set {z ∈ C|z 6= 0, | arg z| < π − ε}, where ε is a given small

positive number. Then the resolvent R(λ,D2) of the operator D2 in AAΛ(X)

satisfies

‖R(λ,D2)‖ ≤ M

|λ| , ∀λ ∈ Σ(ε), (4.23)

where M is a positive constant depending only on ε.

Proof. Consider the equation

x′′(t) − λx(t) = f(t), t ∈ R, (4.24)

for every given λ ∈ Σ(ε) and f ∈ AAΛ(X). As shown in the previous

proposition, there exists a unique function xf ∈ AAΛ(X) that satisfies the

above equation. For λ ∈ Σ(ε) there are exactly two distinct solutions

λ1, λ2 = −λ1 of the equation x2 − λ = 0. Without loss of generality, we

assume that <eλ1 < 0. It is easy to check that the unique bounded solution

to Eq. (4.24) is given by

xf (t) =
1

2λ1

(∫ t

−∞
eλ1(t−ξ)f(ξ)dξ +

∫ ∞

t

e−λ1(t−ξ)f(ξ)dξ

)

(4.25)
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that is in AAΛ(X). By definition, xf = −R(λ,D2)f . Obviously, since

λ ∈ Σ(ε), we have

‖xf‖ ≤ 1

2|λ1|
· 2

<eλ1
≤ M

|λ| ,

where M is a positive constant depending on ε. �

Proposition 4.4. Let A be a closed linear operator such that σ(A)∩−Λ2 =

�. Then for every f ∈ BC(R,X) with sp(f) ⊂ Λ, Eq. (4.15) has at most

one mild solution u ∈ BC(R,X).

Proof. Since the operator L is a closed linear operator, it suffices to show

that if u ∈ BC(R,X) is a mild solution of Eq. (4.15) with f replaced by 0,

then sp(u) = �. This can be checked directly as follows. Assume that u is

a solution of Eq. (4.17) with f replaced by 0.

Taking Carleman-Laplace transforms of both sides of Eq. (4.17) we

have

û(λ) =
x

λ
+

y

λ2
+A

û(λ)

λ2
(<λ 6= 0).

Therefore,

(λ2 −A)û(λ) = λx+ y, (<λ 6= 0). (4.26)

If ξ ∈ R and ξ 6∈ σ(A), then (ξ2 − A) is invertible and (λ2 − A)−1 is holo-

morphic in a small neighborhood of ξ. Therefore, û(λ) has a holomorphic

extension to a neighborhood of ξ, so sp(u) ⊂ R ∩ σ(A). On the other

hand, by the assumption that sp(u) ⊂ −Λ2 and −Λ2 ∩ σ(A) = �, we have

sp(u) = �. And hence, u = 0. �

Lemma 4.5. Let A be the generator of an analytic semigroup. Then the

operator AΛ of multiplication by A and the differential operator D2
Λ on

AAΛ(X) are commuting and satisfy condition P of Definition 1.11.

Proof. Let us denote by T (t) the semigroup generated by A. As shown

in the previous section 4.4, the operator A of multiplication by A generates

an analytic semigroup T (t) of multiplication by T (t) on AAΛ(X). So, it

is sufficient to prove that the semigroup T (t) commutes with D2, that is

T (t)D(D2) ⊂ D(D2) and

T (t)D2x = D2T (t)x, ∀x ∈ D(D2), t ≥ 0.

By the definition of the operator T (t) of multiplication by T (t), the above

claim is obvious. The lemma now follows from the above propositions. �
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So, by the spectral properties of sums of commuting operators, we have

Corollary 4.4. If A generates an analytic semigroup with σ(A)∩−Λ2 = �,
then for every f ∈ AAΛ(X) there exists a unique u ∈ AAΛ(X) such that

D2
Λ −AΛu = f.

Proof. Since AΛ and −D2
Λ commute and satisfy Condition P, the sum

D2
Λ −AΛ is closable (denote its closure by D2

Λ −AΛ). From σ(A) ∩−Λ2 =

� and Theorem 1.11 in Appendix, it turns out that 0 ∈ ρ(D2
Λ −AΛ).

Therefore, for every f ∈ AAΛ(X) there exists a unique u ∈ D(D2
Λ −AΛ)

such that

D2
Λ −AΛu = f.

�

Now our remaining task is just to explain what the above closure means.

More precisely, we will relate it with the notion of mild solutions to evolution

equations.

Lemma 4.6. Let u, f ∈ AA(X). If u ∈ D(D2
Λ −AΛ) and D2

Λ −AΛu = f ,

then u is a mild solution of Eq. (4.15).

Proof. The lemma follows from the fact that weak solutions are mild

solutions. �

As an immediate consequence of the above argument we have:

Theorem 4.10. Let A be the generator of an analytic semigroup and let

Λ be a closed subset of R. Then it is necessary and sufficient for each

f ∈ AAΛ(X) there exists a unique mild solution u ∈ AAΛ(X) to Eq. (4.15)

that the condition σ(A) ∩ −Λ2 = � holds.

Proof. The sufficiency follows from the above argument. The necessity

can be shown as follows: For every ξ ∈ Λ, obviously that the function

h : R 3 t 7→ aeiξt is in AAΛ(X), where a ∈ X is any given element. By

assumption, there is a unique g ∈ D(AΛ) such that −ξg(t) − Ag(t) = h(t)

for all t ∈ R. Following the argument in p. 252 of [Murakami, Naito and

Minh (71)] one can easily show that g(t) is of the form beiξt. Hence, b is

the unique solution of the equation −ξb−Ab = a. That is −ξ 6∈ σ(AΛ), so

−Λ ∩ σ(AΛ) = �. �

Corollary 4.5. Let A be the generator of an analytic semigroup such that

σ(A) ∩ [−spu(f)]2 = �. Then Eq. (4.15) has a unique almost automorphic

mild solution w such that spu(w) ⊂ spu(f).
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Proof. Set Λ = spu(f). Then by the above argument we get the theorem.
�

Remark 4.5. We notice that all results stated above for almost automor-

phic solutions hold true for compact almost automorphic solutions if the

assumption on the almost automorphy of f is replaced by the compact

almost automorphy of f . Details of the proofs are left to the reader.

4.5.3 Nonlinear Equations

In this subsection we consider nonlinear equations of the form

d2

dt2
u(t) = Au(t) + F (t, u(t)), t ∈ R, (4.27)

where F : R×X → X is assumed to satisfies the following conditions: F (t, x)

is almost automorphic in t for every fixed x ∈ X and F is continuous jointly

in (t, x), Lipschtz in x uniformly in t, that is, there is a positive number ε

independent of t, x such that

‖F (t, x) − F (t, y)‖ ≤ ε‖x− y‖, ∀x, y ∈ X. (4.28)

We will say that Condition H holds for F in AAΛ(X) if for a closed subset

Λ ⊂ R the Nemystky operator F , defined by

Fg(t) := F (t, g(t)), ∀g ∈ AAΛ(X), t ∈ R

is an operator AAΛ(X) → AAΛ(X).

Lemma 4.7. If F (t, x) is almost automorphic in t for every fixed x ∈ X,

F is continuous jointly in (t, x) and satisfies (4.28), then the Nemystky

operator F is a continuous operator acting on AA(X), that is, condition H

holds for F on AAR(X).

Proof. For the proof see Theorem 2.2.6 in [N’Guérékata (79)]. �

Remark 4.6. In general, we are still puzzled with conditions on F and

Λ such that condition H holds for F on AAΛ(X). In the linear case, if

F (t, x) = L(t)x is T -periodic in t and Λ = {ξ ∈ R|eiξ ∈ G}, where G is a

closed subset of the unit circle, then condition H holds for F and Λ (see

e.g. [Batty, Hutter and Räbiger (14)]). In the general nonlinear case, this

question is still open.

Definition 4.4. A continuous X-valued function u is called a mild solution

on R of (4.27) if
∫ t

0

(t− s)u(s)ds ∈ D(A), ∀t ∈ R (4.29)
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and

u(t) = x+ ty +A

∫ t

0

(t− s)u(s)ds+

∫ t

0

(t− s)f(s, u(s))ds (t ∈ R)

(4.30)

for some fixed x, y ∈ X. If u ∈ C2(R,X), u(t) ∈ D(A), ∀t ∈ R and Eq.(4.27)

holds for all t ∈ R we say that u is a classical solution to Eq.(4.27). It is

easily seen that if u ∈ C(R,X) is a classical solution of Eq. (4.27), then it

is a mild solution of Eq. (4.27).

The following is a main result of this subsection:

Theorem 4.11. Let A be the generator of an analytic semigroup, and let

condition H hold for F on AAΛ(X). Furthermore, we assume that σ(A) ∩
−Λ2 = � and the Lipshitz coefficient ε in (4.28) is sufficiently small. Then,

Eq. (4.27) has a unique almost automorphic mild solution u ∈ AAΛ(X).

Proof. First we consider the operator LΛ defined in Definition 4.3 and

the remark that follows. Under the assumptions, by Theorem 4.10, this

operator is invertible on AAΛ(X). Next, we consider the operator LΛ −F .

This operator may be seen as a nonlinear perturbation of LΛ. Since LΛ

is a closed linear operator, if ε is sufficiently small, and if we consider

D(LΛ) ⊂ AAΛ(X) with the graph norm of LΛ, then by the Inverse Function

Theorem, the operator LΛ − F is an invertible Lipschitz operator from

D(LΛ) onto AAΛ(X). Hence, Eq. (4.27) has a unique almost automorphic

mild solution. �

4.6 The Equations x’=f(t,x)

In this section we are going to study the existence of almost automorphic

solutions of nonlinear differential equations and characterize some topolog-

ical properties of the almost automorphic solutions sets . Thus we consider

in a Banach space X the Cauchy problem CP

x′ = f(t, x), x(0) = x0, t ∈ R

where x0 ∈ X and f : R × X → X.

Let us recall the following:

Definition 4.5. Let X, Y be metric spaces, f : X → Y be a continuous

function and let y ∈ Y . f is said to be proper at the point y provided

that there exists ε > 0 such that for any compact set K ⊂ B(y, ε) the set
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f−1(K) is compact, where B(y, ε) is the open ball in Y of center y and

radius ε.

If f−1(K) is compact for any compact K ⊂ Y , then f is called proper.

Now we denote by α the Kuratowski measure of noncompactness and

assume the following:

10 f is a continuous mapping such that

‖f(s, x)‖ ≤ φ(s) and

+∞
∫

−∞

φ(s)ds < +∞;

20 for each bounded subset M ⊂ X and for each interval

[min(0, a),max(0, a)], there exists a continuous nondecreasing function

hM,a : R+ → R+ such that the inequality

u(t) ≤
max(0,t)
∫

min(0,t)

hM,a(u(s))ds, for t ∈ [min(0, a),max(0, a)],

has only a trivial solution u ≡ 0 and

α(f(A ×E)) ≤ hM,a(α(E))

for A ⊂ [min(0, a),max(0, a)] and E ⊂M .

Now we start with the following:

Theorem 4.12. Under the above assumptions the set S of all solutions

of the above CP, defined on R and considered as a subset of the space

C = Cb(R,X) of all bounded continuous functions R → X with the topology

of uniform convergence, is an Rδ.

Proof. Define the mapping

F (x)(t) = x0 +

t
∫

0

f(s, x(s))ds for t ∈ R and x ∈ C.

Obviously F (C) ⊂ C. In view of the inequalities

‖F (x)(t1)−F (x)(t2)‖ ≤
t2
∫

t1

‖f(s, x(s))‖ds ≤
t2
∫

t1

φ(s)ds for t1, t2 ∈ R, x ∈ C

and from the assumption about φ, it is clear that the family F (C) is equicon-

tinuous. Now we verify that F is a continuous operator. Let (xn) be a
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sequence of elements from C such that xn → x uniformly as n → ∞.

Fix ε > 0. First consider the halfline R+. Choose t0 > 0 such that

2
+∞
∫

t0

φ(s)ds < ε
2 . In view of Krasnosielskii-Krein lemma there exists δ > 0

such that

sup
s∈[0,t0]

‖f(s, u(s)) − f(s, x(s))‖ < ε

2t0
,

whenever u ∈ C and sup
s∈[0,t0]

‖u(s) − x(s)‖ < δ. Choose N ∈ N such that

sup
s∈[0,t0]

‖xn(s) − x(s)‖ < δ for n ≥ N . For n ≥ N and t > t0 we have

‖F (xn)(t) − F (x)(t)‖ = ‖
t
∫

0

[f(s, xn(s)) − f(s, x(s))]ds‖ ≤

t0
∫

0

‖f(s, xn(s)) − f(s, x(s))‖ds+

t
∫

t0

‖f(s, xn(s)) − f(s, x(s))‖ds <

ε

2
+
ε

2
= ε,

so F (xn)|R+ → F (x)|R+ pointwise, as n → ∞. A similar reasoning estab-

lishes that F (xn)|R−
→ F (x)|R−

pointwise, as n → ∞. Since the family

F (C) is equicontinuous, we infer that F (xn) → F (x) uniformly on R, as

n→ ∞, which proves the continuity of F .

Define

Fn(x)(t) =



























x0, if − 1
n ≤ t ≤ 1

n ,

x0 +
t− 1

n
∫

0

f(s, x(s))ds, if t > 1
n ,

x0 +
t+ 1

n
∫

0

f(s, x(s))ds, if t < − 1
n ,

where x ∈ C and n ∈ N.

Obviously Fn maps C into itself. Essentially the same reasoning as in

the case of F proves that mappings Fn are continuous. Put Tn = I − Fn

for n ∈ N, where I denotes the identity map on C. The mappings Tn

are continuous. We establish that they are homeomorphisms. Indeed, fix

n ∈ N. It is easy to see that for any x1, x2 ∈ C:

Tn(x1) = Tn(x2) =⇒ x1 = x2.

Now, it is enough to prove the continuity of T−1
n . Suppose (xi) is a sequence

of elements from C such that Tn(xi) → Tn(x) uniformly as i → ∞. Since
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Fn(xi)(t) = x0 = Fn(x)(t) for |t| ≤ 1
n , xi → x uniformly on {t : |t| ≤ 1

n},
as i→ ∞. Further, applying the Krasnoselskii-Krein lemma, we infer that

t− 1
n

∫

0

f(s, xi(s))ds →
t− 1

n
∫

0

f(s, x(s))ds for
1

n
< t ≤ 2

n
,

uniformly, so xi → x on {t : 1
n < t ≤ 2

n} uniformly, as i → ∞. The similar

reasoning establishes that xi → x uniformly on [0, t0 + 1
n ], as i → ∞. For

t > t0 + 1
n we have

‖Fn(xi)(t) − Fn(x)(t)‖ = ‖
t− 1

n
∫

0

[f(s, xi(s)) − f(s, x(s))]ds‖ ≤

t0
∫

0

‖f(s, xi(s)) − f(s, x(s))‖ds+

t− 1
n

∫

t0

‖f(s, xi(s)) − f(s, x(s))‖ds

The above inequalities and similar arguments as in the case of the continuity

of F prove that Fn(xi) → Fn(x) uniformly on [t0 + 1
n ,+∞), so xi → x

uniformly on this interval, as i → ∞. In a similar manner we argue in the

case of the halfline R−. Hence xi → x uniformly on R, as i → ∞. This

proves the continuity of T−1
n .

Now we shall show that lim
n→∞

Tn = T uniformly. We have the following

inequalities

‖Fn(x)(t) − F (x)(t)‖ = ‖
t
∫

0

f(s, x(s))ds‖ ≤

1
n
∫

0

φ(s)ds

for x ∈ C and |t| ≤ 1

n
,

‖Fn(x)(t) − F (x)(t)‖ ≤
t
∫

t− 1
n

‖f(s, x(s))‖ds ≤
t
∫

t− 1
n

φ(s)ds

for x ∈ C and t >
1

n
.

In particular, for t > t0 + 1
n we have

‖Fn(x)(t) − F (x)(t)‖ ≤
t
∫

t− 1
n

φ(s)ds <
ε

4
.
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Thus Fn(x) → F (x) uniformly in x on R+. Arguing in a similar way we

infer that Fn(x) → F (x) uniformly in x on R.

To complete the proof it is enough to show that T is proper at 0 ∈
C. Let Z be any compact set in C and put U = T−1(Z). Consider the

sequence (un), where un ∈ U for n ∈ N. Set V = {un : n ∈ N}. Since

V (t) ⊂ T (V )(t) + F (V )(t) ⊂ Z(t) + F (V )(t) and Z(t) is compact, in view

of the properties of the index α we obtain

α(V )(t) ≤ α(Z(t)) + α(F (V )(t)) = α(F (V )(t)) for t ∈ R.

Thus the similar reasoning as in the proof of Theorem 3 [Bugajewska (16)]

proves that V (t) is compact for every t ∈ R. In view of Ascoli’s theorem we

infer that V is relatively compact and thus (un) has a limit point. Therefore

U is a compact, so T is proper. In view of Theorem 6.7, T−1(0) is an Rδ

set. Since T−1(0) coincides with the set of all fixed points of F , i.e. it

coincides with S, the proof is complete. �

Now assume

30 (s, x) → f(s, x) is a function from R×X to X, which is almost automor-

phic in s for each x and satisfies a Lipschitz condition in x uniformly

in s ∈ R;

40 for each x ∈ AA(X) the range RF (x) = {F (x)(s) : s ∈ R}, where F

is the operator defined in the proof of the above theorem, is relatively

compact.

We now give the following important result:

Theorem 4.13. Suppose 20, 30, 40 are satisfied and that the function f

satisfies the inequality as in 10. Then CP has a solution in AA(X). More-

over, the set S of all such solutions is compact.

Proof. In view of 30 and [N’Guérékata (79)] Theorem 2.2.6, the function

s→ f(s, x(s)), s ∈ R is almost automorphic for any x ∈ AA(X). By 40 and

[N’Guérékata (79)], Theorem 2.4.4, F (x) ∈ AA(X) for any x ∈ AA(X).

Hence F maps AA(X) into itself. Let D = conv(F (AA(X))). It is clear

that F maps D into itself. Essentially the same reasoning as in the proof

of Theorem 3 proves that the family F (AA(X)) is equicontinuous and that

F is a continuous mapping. Now, let V be a subset of D such that V ⊂
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conv(F (V )∪{0}), where 0 ∈ AA(X). In view of the properties of the index

α we obtain

α(V (t)) ≤ α(convF (V )(t) ∪ {0}) = α(F (V )(t) ∪ {0}) =

max(α(F (V )(t)), α({0})) = α(F (V )(t)) for t ∈ R,

and therefore the same reasoning as in the proof of Theorem 3 [Bugajewska

(16)] proves that V (t) is relatively compact for t ∈ R. In view of Ascoli’s

theorem we infer that V is relatively compact. The operator F satisfies

all assumptions of Theorem 1 and, therefore, there exists z ∈ D such that

z = F (z).

Finally, since S = F (S), the same reasoning as in Theorem 3 [Buga-

jewska (16)] proves that S is relatively compact. Since S is closed, it is

compact, which completes the proof. �

Remark 4.7. In the case of uniformly convex Banach spaces the assump-

tion 40 in Theorem 4 can be weaken. Namely, in view of [N’Guérékata

(79)], Theorem 2.4.6 it is enough to assume then that the range RF (x) is

bounded for each x ∈ AA(X).

Remark 4.8. By the assumption 30 and [N’Guérékata (79)] Theo-

rem 2.2.6, the function s → f(s, x(s)), s ∈ R is almost automorphic for

each x ∈ AA(X). Thus by [N’Guérékata (79)] Theorem 2.2.6 the range

{f(s, x(s)) : s ∈ R} is relatively compact in X for each x ∈ AA(X). Further,

since F (x) is almost automorphic if and only if the range RF (x) is relatively

compact in X ([N’Guérékata (79)], Theorem 2.4.4.), the assumption 40 is

natural in the considered situation.

4.7 Comments and Further Reading Guide

Recently, numerous contributions were made to the study of abstract evo-

lution equations with almost automorphic solutions. These include work

by D. Bugajewski, T. Diagana, S. G. Gal, S. C. Gal, J. A. Goldstein, K.

Ezzinbi, Y. Hino, J. Liu, S. Murakami, G. M. N’Guérékata, Nguyen Van

Minh, A. S. Rao, S. Zaidman, etc.

Note that Theorem 4.2 is usually referred as Bohr-Neugebauer type

theorem. The proof presented here is a slight modification of Theroem

4.2.2 [N’Guérékata (79)]. There exist several generalizations of the Bohr-

Neuhegauer Theorem. We send the reader for instance to: [N’Guérékata

(81)], [N’Guérékata (83)], [N’Guérékata (88)].
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Existence of almost automorphic solutions to differential equations is

a fundamental problem still under investigation. Various methods were

used including fixed point theorems for linear equations x′ = Ax(t) + f(t)

([N’Guérékata (87)]), as well as nonlinear and inte-grodifferential equations

([Bugajewski and N’Gurkata (17)]) and semilinear equation x′ = Ax(t) +

f(t, x) ([N’Guérékata (79)], [N’Guérékata (88)]) when A generates an

asymptotically stable semigroup of linear operators; the method of invariant

subspaces, introduced in 2003 by T. Diagana and G. M. N’Guérékata for

perturbed equations of the form x′ = (A+B)x+f(t) where both operators

A and B are unbounded; the method of sums of commuting operators

(Theorems 4.9, 4.11). In this latter case, the challenge is to overcome

the difficulty due to the fact that almost automorphic functions are not

necessarily uniformly continuous. This implies the non-strong continuity

of translation semigroup in the function space AA(X). This approach, as

well as the method of invariant subspaces are also used successfully in the

case of higher order differential equations in various recent papers by T.

Diagana, J. Liu, G. M. N’Guérékata, and Nguyen van Minh.

Readers interested in fuzzy settings of the theory of almost automorphy

may consult [N’Guérékata (88)] and other papers by S. G. Gal and G. M.

N’Guérékata.
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Chapter 5

Nonlinear equations

5.1 Periodic Solutions of Nonlinear equations

5.1.1 Nonlinear Equations Without Delay

In this section, we study the existence of periodic solutions of the following

nonlinear differential equation without delay in a general Banach space

X = (X, ‖ · ‖),
u′(t) +A(t)u(t) = f(t, u(t)), t > 0, u(0) = u0. (5.1)

To this end, we make the following assumptions.

Assumption 5.1. For a constant T > 0, A(t + T ) = A(t), t ≥ 0. The

function f is continuous in all its variables, T -periodic in the first variable

t and Lipschitzian in the other variables uniformly in t.

Remark 5.1. We used “variable(s)” in the assumption 5.1 because then

it can be used for other cases where the function f is of more than two

variables.

Assumption 5.2. For t ∈ [0, T ],

(H1). The domain D(A(t)) = D is independent of t and is dense in X.

(H2). For t ≥ 0, the resolvent R(λ,A(t)) = (λI − A(t))−1 exists for all λ

with Reλ ≤ 0 and is compact, and there is a constantM independent

of λ and t such that

‖R(λ,A(t))‖ ≤M(|λ| + 1)−1, Reλ ≤ 0.

(H3). There exist constants L and 0 < a ≤ 1 such that

‖(A(t) −A(s))A(r)−1‖ ≤ L|t− s|a, s, t, r ∈ [0, T ].

153
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Under these assumptions, the results in, e.g., Pazy [Pazy (90)], imply

the existence of a unique evolution system U(t, s) (0 ≤ s ≤ t ≤ T ) for Eq.

(5.1). The materials presented here are based on [Liu (60)].

Theorem 5.1. Let the assumptions 5.1 and 5.2 be satisfied and let u0 ∈ X.

Then there exists a constant α > 0 such that Eq. (5.1) has a unique mild

solution (also called solution here) u : [0, α] → X satisfying

u(t) = U(t, 0)u0 +

∫ t

0

U(t, h)f(h, u(h))dh, t ∈ [0, α]. (5.2)

Proof. We only need to set up the framework for the use of the contrac-

tion mapping principle. With u0 ∈ X being fixed and with α > 0 yet to be

determined, we define a map (operator) Q on C([0, α],X) such that

(Qu)(t) = U(t, 0)u0 +

∫ t

0

U(t, h)f(h, u(h))dh, for t ∈ [0, α]. (5.3)

Using the property of the evolution system U , we have Q : C([0, α],X) →
C([0, α],X). Next, for u, v ∈ C([0, α],X), one has

(Qu)(t) − (Qv)(t) =

∫ t

0

U(t, h)
[

f(h, u(h)) − f(h, v(h))
]

dh. (5.4)

Now, f is Lipschitzian in the second variable and U(t, h) is a bounded oper-

ator, it is then clear that we can obtain the result by using the contraction

mapping principle. Details are left in an exercise. �

Note that we are concerned with periodic solutions here, so we assume

that solutions exist on [0,∞). We will write u = u(·, u0) for the unique

solution with the initial value u0.

Next, we give some basic results concerning the search of periodic solu-

tions.

Lemma 5.1. Let the assumptions 5.1 and 5.2 be satisfied.

(a). If u(t) is a solution of Eq. (5.1), then so is u(t+ T ), t ≥ 0.

(b). Let u(t, u0) be a solution of Eq. (5.1) with u(0, u0) = u0. Then u(t, u0)

is T -periodic if and only if u(T, u0) = u0.

Proof. (a): Let y(t) = u(t + T ). Now, for t ≥ 0, we can use the known

formulas ([Pazy (90)]) U(t, s) = U(t, r)U(r, s), 0 ≤ s ≤ r ≤ t ≤ T , and

U(t + T, s + T ) = U(t, s) (since the operator A(t) is T -periodic in t) to

obtain:
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y(t) = u(t+ T ) = U(t+ T, 0)u0 +

∫ t+T

0

U(t+ T, h)f(h, u(h))dh

= U(t+ T, T )U(T, 0)u0 +

∫ T

0

U(t+ T, h)f(h, u(h))dh

+

∫ t+T

T

U(t+ T, h)f(h, u(h))dh

= U(t, 0)U(T, 0)u0 +

∫ T

0

U(t+ T, T )U(T, h)f(h, u(h))dh

+

∫ t

0

U(t+ T, T + s)f(T + s, u(T + s))ds

= U(t, 0)U(T, 0)u0 +

∫ T

0

U(t, 0)U(T, h)f(h, u(h))dh

+

∫ t

0

U(t, s)f(s, y(s))ds

= U(t, 0)
[

U(T, 0)u0 +

∫ T

0

U(T, h)f(h, u(h))dh
]

+

∫ t

0

U(t, s)f(s, y(s))ds

= U(t, 0)u(T ) +

∫ t

0

U(t, s)f(s, y(s))ds

= U(t, 0)y(0) +

∫ t

0

U(t, s)f(s, y(s))ds. (5.5)

The equality (5.5) implies that y(t) = u(t+ T ) is also a solution of Eq.

(5.1).

(b): If u(t, u0) is a T -periodic solution of Eq. (5.1), then u(T, u0) =

u(0, u0) = u0. On the other hand, if u(T, u0) = u0, then, from (a), y(t) =

u(t + T, u0) is also a solution of Eq. (5.1) with y(0) = u(T, u0) = u0. By
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uniqueness, y(t) = u(t, u0), or u(t+ T, u0) = u(t, u0), t ≥ 0, thus u(t, u0) is

T -periodic. This completes the proof. �

Accordingly, we can define a map P : X → X (called a Poincaré map or

a Poincaré operator) such that for each u0 ∈ X and for the corresponding

unique solution u(t) = u(t, u0) with u(0, u0) = u0, define

P (u0) = u(T ) = U(T, 0)u0 +

∫ T

0

U(T, r)f(r, u(r, u0))dr. (5.6)

Now, Lemma 5.1 (b) indicates that Eq. (5.1) has a T -periodic solution

if and only if there exists an u0 ∈ X such that P (u0) = u0. This is the same

as saying that the Poincaré map P has a fixed point. We formulate this

as follows.

Lemma 5.2. Eq. (5.1) has a T -periodic solution if and only if the Poincaré

map P : X → X defined in (5.6) has a fixed point.

We will see that Lemma 5.2 provides a very useful approach for deriving

periodic solutions, as it reduces the search of periodic solutions to that of

fixed points of the Poincaré map P , for which some well-known fixed point

theorems from Functional Analysis can be applied.

By Massera’s theorems for nonlinear differential equations in <n, n ≤ 2

([Liu (59)]), the existence of one bounded solution is good enough to guaran-

tee the existence of a periodic solution. However, for nonlinear differential

equations in <n, n ≥ 3, the situations become very complicated. For ex-

ample, for the Lorenz equation in <3 ([Liu (59)]) where chaos occurs, the

solutions may be bounded, but periodic solutions may not exist.

Next, note that if u0 is in some set, then P (u0) = u(T, u0) may not be in

the same set. Therefore, we will make use of some kind of asymptotic fixed

point theorems, where the idea is to let P k (for some positive integer k) map

a set into the same set and then prove the existence of a unique fixed point

of P k, which then implies the existence of a fixed point of P (not necessarily

unique). Among the asymptotic fixed point theorems, Horn’s fixed point

theorem is easy to use with the notion of boundedness of solutions. So we

state Horn’s fixed point theorem here and make the following definitions

concerning boundedness of solutions.

Theorem 5.2. (Horn’s fixed point theorem) Let E0 ⊂ E1 ⊂ E2 be convex

subsets of a Banach space Z, with E0 and E2 compact subsets and E1 open

relative to E2. Let P : E2 → Z be a continuous operator such that for some
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integer m, one has

P j(E1) ⊂ E2, 1 ≤ j ≤ m− 1, (5.7)

P j(E1) ⊂ E0, m ≤ j ≤ 2m− 1, (5.8)

then P has a fixed point in E2.

Definition 5.1. [Burton (18)] The solutions of Eq. (5.1) are said to be

bounded if for each B1 > 0 there is a B2 = B2(B1) > 0 such that {‖u0‖ ≤
B1, t ≥ 0} implies ‖u(t, u0)‖ < B2.

Definition 5.2. [Burton (18)] The solutions of Eq. (5.1) are said to be

ultimate bounded if there is a bound B > 0 such that for each B3 > 0,

there is a K = K(B,B3) > 0 such that {‖u0‖ ≤ B3, t ≥ K} implies

‖u(t, u0)‖ < B.

Definition 5.3. An operator S : X → X is said to be a compact operator

on X if S is continuous and maps a bounded set into a precompact set.

For the relationship between boundedness and ultimate boundedness,

we have the following result.

Theorem 5.3. Assume that f(t, u) is continuous and is Lipschitzian in

u. If the solutions of Eq. (5.1) are ultimately bounded, then they are also

bounded.

Proof. Let B > 0 be the bound in the definition of ultimate boundedness,

then for any B1 > 0, there is a K = K(B,B1) > 0 such that {‖u0‖ ≤
B1, t ≥ K} imply ‖u(t, u0)‖ ≤ B. Next, for t in the interval [0,K], we have

‖u(t, u0)‖ ≤‖U(t, 0)u0‖+

∫ t

0

‖U(t, s)f(s, u(s, u0))‖ds

≤‖U(t, 0)u0‖+

∫ t

0

‖U(t, s)[f(s, u(s, u0)) − f(s, 0)]‖ds

+

∫ t

0

‖U(t, s)f(s, 0)‖ds

≤‖U(t, 0)u0‖ + c

∫ t

0

|U(t, s)|‖u(s, u0)‖ds

+

∫ t

0

‖U(t, s)f(s, 0)‖ds,
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where c is a Lipschitz constant. For 0 ≤ s ≤ t ≤ K, there are positive

constants G1 and G2 such that

|U(t, s)| ≤ G1, |U(t, 0)|B1 +

∫ t

0

‖U(t, s)f(s, 0)‖ds ≤ G2.

Then for t ∈ [0,K] and ‖u0‖ ≤ B1,

‖u(t, u0)‖ ≤ G2 + c

∫ t

0

G1‖u(s, u0)‖ds.

Hence, Gronwall’s inequality implies, for t ∈ [0,K] and ‖u0‖ ≤ B1,

‖u(t, u0)‖ ≤ G2e
cG1t ≤ G2e

cG1K , (5.9)

which implies that for ‖u0‖ ≤ B1, the solutions u(t, u0) are bounded

on [0,K]. That is, there is a B3 = B3(B1,K) = B3(B1, B) > 0 such

that ‖u(t, u0)‖ ≤ B3 for t ∈ [0,K] and ‖u0‖ ≤ B1. Now, we see that

{‖u0‖ ≤ B1, t ≥ 0} imply ‖u(t, u0)‖ ≤ B2 = max{B3, B}, which verifies

the boundedness of the solutions. This completes the proof. �

To derive periodic solutions, the following lemma from Amann [Amann

(2)] will be used to show that the Poincaré map P defined in (5.6) is a

compact operator. Recall that in the usual way (see, e.g., Amann [Amann

(2)], Pazy [Pazy (90)]) we define fractional power operator Aα and Banach

space Xα for 0 ≤ α ≤ 1, where A = A(0) and Xα = (D(Aα), ‖ · ‖α) with

‖x‖α ≡ ‖Aαx‖ . We also write the norm in L(Xα,Xβ) (space of bounded

linear operators from Xα to Xβ) as ‖ · ‖α,β.

Lemma 5.3. [Amann (2)] (i) Suppose that 0 ≤ α ≤ β < 1. Then for

β − α < γ < 1, there is a constant C(α, β, γ) such that

‖U(t, h)‖α,β ≤ C(α, β, γ)(t − h)−γ , 0 ≤ h < t ≤ T.

(ii) For 0 ≤ γ < 1, there is a constant C(γ), such that for g ∈ C([0, L],X)

(L > 0 is a constant), one has for 0 ≤ s, t ≤ L,

‖
∫ t

0

U(t, h)g(h)dh−
∫ s

0

U(s, h)g(h)dh‖ ≤ C(γ)|t− s|γ max
0≤h≤L

‖g(h)‖.

(iii) Let 0 ≤ α < β ≤ 1. Then

K(x, g)(t) ≡ U(t, 0)x+

∫ t

0

U(t, h)g(h)dh, 0 ≤ t ≤ T,

defines a continuous linear operator from Xβ × C([0, T ],X) into

Cγ([0, T ],Xα) for every γ ∈ [0, β − α).
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Now we prove that the Poincaré map P : X → X defined in (5.6) is

compact.

Theorem 5.4. Let assumptions 5.1 and 5.2 be satisfied and assume that

solutions of Eq. (5.1) are bounded. Then the Poincaré map P : X → X

defined in (5.6) is a compact operator.

Proof. The continuity of P is left as an exercise. Next, fix η ∈ (0, 1).

Then from Lemma 5.3 (i), U(T, 0) : X → Xη is bounded. Next, let E

be bounded in X. Since solutions of Eq. (5.1) are bounded, there exists

M1 = M1(E, f) > 0 such that

‖f(t, u(t, u0))‖ ≤M1, t ∈ [0, T ], u0 ∈ E.

Now for u0 ∈ E, we let g(t) = f(t, u(t, u0)). Then
∫ T

0

U(T, r)f(r, u(r, u0))dr ≡ K(0, g)(T ) ∈ Xη

according to Lemma 5.3 (ii). Also note that by Lemma 5.3 (i), there are

constants γ ∈ (0, 1) and M2 > 0 such that

‖U(T, s)‖0,η ≤M2(T − s)−γ , 0 ≤ s < T.

Thus

‖
∫ T

0

U(T, r)f(r, u(r, u0))dr‖η ≤M1M2T
1−γ/(1 − γ), u0 ∈ E.

Therefore P : X → Xη is bounded. Next, the embedding Xη → X is

compact (see, e.g., [Hale (40)]), thus P : X → X is a compact operator.

This completes the proof. �

Now, we are ready to state and prove the existence of periodic solutions

for Eq. (5.1) without delay.

Theorem 5.5. Let the assumptions 5.1 and 5.2 be satisfied. If the solutions

of Eq. (5.1) are ultimate bounded, then Eq. (5.1) has a T -periodic solution.

Proof. From Theorem 5.3, the solutions of Eq. (5.1) are also bounded.

Let B be the bound in the definition of ultimate boundedness, then by

boundedness, there is a B1 > 0 such that ‖u0‖ ≤ B implies ‖u(t, u0)‖ < B1

for t ≥ 0. Furthermore, there is a B2 > B1 such that ‖u0‖ ≤ B1 implies

‖u(t, u0)‖ < B2 for t ≥ 0. Now, using ultimate boundedness, there is a

positive integer m such that ‖u0‖ ≤ B1 implies ‖u(t, u0)‖ < B for t ≥
(m− 1)T .
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We know from Lemma 5.1 that u(T + t, u0) is also a solution, then the

uniqueness implies that u(T + t, u0) = u(t, u(T, u0)), t ≥ 0. Letting t = T ,

this means P 2(u0) = u(2T, u0). By an induction, it can be shown (see an

exercise) that

P k(u0) = u(kT, u0), k ≥ 1. (5.10)

Thus, we have the following

‖P j−1(u0)‖ = ‖u((j − 1)T, u0)‖ < B2, j = 1, 2, ...,m− 1 and ‖u0‖ ≤ B1,

‖P j−1(u0)‖ = ‖u((j − 1)T, u0)‖ < B, j ≥ m and ‖u0‖ ≤ B1.

Now let






















H = {u0 ∈ X : ‖u0‖ < B2} , E2 = cov.(P (H)),

K = {u0 ∈ X : ‖u0‖ < B1} , E1 = K ∩ E2,

G = {u0 ∈ X : ‖u0‖ < B} , E0 = cov.(P (G)),

(5.11)

where cov.(F ) is the convex hull of the set F defined by cov.(F ) =

{∑n
i=1 λifi : n ≥ 1, fi ∈ F, λi ≥ 0,

∑n
i=1 λi = 1}. From Theorem 5.4,

the operator P is compact. It is also known that a convex hull of a precom-

pact set is also precompact, then we see that E0, E1 and E2 are convex

subsets of X with E0 and E2 compact subsets and E1 open relative to E2.

Next, from (5.11), we have

P j(E1) ⊂ P j(K) = PP j−1(K) ⊂ P (H) ⊂ E2, 1 ≤ j ≤ m− 1,

P j(E1) ⊂ P j(K) = PP j−1(K) ⊂ P (G) ⊂ E0, m ≤ j ≤ 2m− 1.

Consequently, we know from Horn’s fixed point theorem that the operator

P has a fixed point u0 ∈ X. This completes the proof by using Lemma 5.2.

�

Next, we provide a result which asserts that the existence of a proper

Liapunov function implies boundedness and ultimate boundedness of solu-

tions.

Theorem 5.6. Assume that there exist functions (“wedges”) Wi, i = 1, 2, 3,

with Wi : [0,∞) → [0,∞),Wi(0) = 0,Wi strictly increasing, and W1(t) →
∞, t → ∞. Further, assume that there exists a (Liapunov) function V :

X → < (reals) such that for some constant M > 0, when u is a solution of

Eq. (5.1) with ‖u(t)‖ ≥M , then

(a). W1(‖u(t)‖) ≤ V (u(t)) ≤W2(‖u(t)‖), and
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(b). d
dtV (u(t)) ≤ −W3(‖u(t)‖).

Then solutions of Eq. (5.1) are bounded and ultimate bounded.

Proof. Let u(t) = u(t, u0) and let B1 > 0 be given with B1 ≥ M .

Find B2 ≥ B1 with W1(B2) = W2(B1). If for some interval [t1, t2] with

t1 ≥ 0, ‖u(t1)‖ = B1, and ‖u(t)‖ ≥ B1 on [t1, t2], then for t ∈ [t1, t2],

W1(‖u(t)‖) ≤ V (u(t)) ≤ V (u(t1))

≤ W2(‖u(t1)‖) = W2(B1) = W1(B2), (5.12)

and hence ‖u(t)‖ ≤ B2 for t ∈ [t1, t2]. This implies that if ‖u0‖ ≤ B1, then

‖u(t)‖ ≤ B2, t ≥ 0, which gives the boundedness.

Next, find B ≥ M + 1 with W1(B) = W2(M + 1). Then, similar to

(5.12), one shows, for t1 ≥ 0,
{

‖u(t1)‖ = M + 1, ‖u(t)‖ ≥M + 1, t ∈ [t1, t2]
}

⇒
{

‖u(t)‖ ≤ B, t ∈ [t1, t2]
}

. (5.13)

Let B3 > 0 be given. We need to prove that there is a K > 0 such that

if ‖u0‖ ≤ B3 and t ≥ K, then ‖u(t)‖ ≤ B.

According to (5.13), we only need to show that there is a K > 0 such

that when ‖u0‖ ≤ B3, there is a t0 ∈ [0,K] with ‖u(t0)‖ ≤M+1. (Because

then if there is a t2 ≥ K with ‖u(t2)‖ > B ≥ M + 1, we can find such a

t1 < t2 that ‖u(t1)‖ = M+1 and that (5.13) can be used to get ‖u(t2)‖ ≤ B,

a controdiction.)

Now, if ‖u(t)‖ > M + 1 for t ≥ 0, then

0 < W1(M +1) ≤ V (u(t)) ≤ V (u0)−W3(M +1)t≤W2(B3)−W3(M +1)t.

This fails when t ≥ W2(B3)/W3(M + 1). Thus we can choose K ≡
W2(B3)/W3(M + 1) to finish the proof. �

Exercise 20.

(1) Complete the proof of Theorem 5.1.

(2) In the proof of Theorem 5.4, show that the Poincaré map P : X → X

defined in (5.6) is continuous.

(3) In the proof of Theorem 5.5, use an induction to show that

P k(u0) = u(kT, u0), k ≥ 1.

(4) Prove that a convex hull of a precompact set is also precompact.
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5.1.2 Nonlinear Equations With Finite Delay

Consider the following nonlinear differential equation with finite delay,

u′(t) + A(t)u(t) = f(t, u(t), ut), t > 0, u(s) = φ(s), s ∈ [−r, 0],(5.14)

in a general Banach space X, where r > 0 is a constant, and ut(s) =

u(t+ s), s ∈ [−r, 0].

The materials presented here are based on [Liu (61)]. We still assume

that the assumptions 5.1 and 5.2 are satisfied, so similar to the previous

section, we have

Theorem 5.7. Let the assumptions 5.1 and 5.2 be satisfied and let φ ∈
C([−r, 0],X) (the Banach space with the sup-norm). Then there exists a

constant α > 0 such that Eq. (5.14) has a unique (mild) solution u :

[−r, α] → X satisfying u0 = φ (i.e., u(s) = φ(s), s ∈ [−r, 0]), and

u(t) = U(t, 0)φ(0) +

∫ t

0

U(t, h)f(h, u(h), uh)dh, t ∈ [0, α]. (5.15)

To derive periodic solutions, we assume that solutions exist on [0,∞).

We will write u = u(·, φ) for the unique solution with the initial function

φ.

Note that for equations without delay, the Poincaré operator maps a

single element of the Banach space X to a single element of X. Now, for

equations with finite delay, the difference is that the Poincaré operator

will map an element φ of C([−r, 0],X) (thus a function) to an element of

C([−r, 0],X), given by

Pφ = uT (·, φ), φ ∈ C([−r, 0],X), (5.16)

or, for s ∈ [−r, 0],

(Pφ)(s) = uT (s, φ) = u(T + s, φ)

=



























U(T + s, 0)φ(0) +

∫ T+s

0

U(T + s, h)f(h, u(h), uh)dh,

T + s > 0,

φ(T + s), T + s ≤ 0.

Similar to lemmas 5.1 and 5.2, we have

Lemma 5.4. Let the assumptions 5.1 and 5.2 be satisfied.

(a). If u(t) is a solution of Eq. (5.14), then so is u(t+ T ), t ≥ 0.
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(b). Equation (5.14) has a T -periodic solution if and only if the Poincaré

map P : C([−r, 0],X) → C([−r, 0],X) defined in (5.16) has a fixed

point.

Definitions concerning boundedness and ultimate boundedness given in

the previous section can be revised as follows to suit Eq. (5.14).

Definition 5.4. Denote C = C([−r, 0],X). The solutions of Eq. (5.14)

are said to be bounded if for each B1 > 0 there is a B2 = B2(B1) > 0

such that {|φ|C ≤ B1, t ≥ 0} implies ‖u(t, φ)‖ < B2. (Here | · |C means the

sup-norm.)

Definition 5.5. The solutions of Eq. (5.14) are said to be ultimate

bounded if there is a bound B > 0 such that for each B3 > 0, there is a

K = K(B,B3) > 0 such that {|φ|C ≤ B3, t ≥ K} implies ‖u(t, φ)‖ < B.

For the relationship between boundedness and ultimate boundedness,

we also have the following result.

Theorem 5.8. Assume that f(t, u, v) in Eq. (5.14) is continuous and is

Lipschitzian in u and in v. If the solutions of Eq. (5.14) are ultimately

bounded, then they are also bounded.

From the study for equations without delay, we see that for Eq. (5.14)

with finite delay, the most important step will be the proof of the compact-

ness of the Poincaré operator defined in (5.16). This is getting a little hard

since now we need to deal with functions rather than single elements. The

following Ascoli-Arzela theorem for general Banach spaces is needed here

to treat a set of functions.

Theorem 5.9. (Ascoli-Arzela) Let E ⊂ C([−r, 0],X) be bounded. Then E

is precompact if and only if functions in E are equicontinuous and for each

t ∈ [−r, 0], the set {f(t) : f ∈ E} is precompact in X.

Accordingly, for a bounded set E ⊂ C([−r, 0],X), we need to prove the

precompactness of

[P (E)](s) = {(Pφ)(s) : φ ∈ E}
for every s ∈ [−r, 0].

Now, note from geometry that the operator P defined in (5.16) maps

an initial function φ on [−r, 0] to the function Pφ on [T − r, T ] along the

unique solution u(·, φ). If T −r ≤ 0, then the restrictions of Pφ on [T −r, 0]

for φ ∈ E are parts of the initial functions φ ∈ E, and they may be
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arbitrary, or “bad”, i.e., noncompact. Therefore, to avoid this, we require

T − r > 0. Now, for φ ∈ C([−r, 0],X), Pφ = uT (·, φ) is a function defined

on [T − r, T ] ⊂ (0,∞), thus the possibly “bad” history on [−r, 0] is cut

off. Then the operator P can smooth things out so that the same idea for

equations without delay and Horn’s fixed point theorem can be applied to

derive periodic solutions.

Theorem 5.10. Let the assumptions 5.1 and 5.2 be satisfied and let T >

r. If the solutions of Eq. (5.14) are bounded, then P : C([−r, 0],X) →
C([−r, 0],X) defined in (5.16) is a compact operator.

Proof. The continuity of P is left as an exercise. Let H ⊂ C([−r, 0],X)

be bounded. Since the solutions of Eq. (5.14) are bounded, it follows that

E = P (H) ⊂ C([−r, 0],X) is bounded. In the following, we will use the

Ascoli-Arzela theorem to show that E is precompact.

Note that T − r > 0, so for s ∈ [−r, 0], a function in E can be expressed

as

(Pφ)(s) = uT (s, φ) = u(T + s, φ)

= U(T + s, 0)φ(0) +

∫ T+s

0

U(T + s, h)f(h, u(h), uh)dh, φ ∈ H.

Also, as T − r > 0, there is a k > 0 such that T + s > k for s ∈ [−r, 0].

From the properties for the evolution system U(t, s), one has, for s ∈ [−r, 0],

U(T + s, 0)φ(0) = U(T + s, k)U(k, 0)φ(0), φ ∈ H. (5.17)

Fix η ∈ (0, 1). Then from Lemma 5.3 (i), U(k, 0) : X → Xη is bounded.

Next the embedding Xη → X is compact, thus {U(k, 0)φ(0) : φ ∈ H} is

precompact in X since {φ(0) : φ ∈ H} is bounded in X. Therefore, the

closure of {U(k, 0)φ(0) : φ ∈ H} is compact in X. Now, one can verify that

as functions on · ∈ [−r, 0],

{U(T + ·, 0)φ(0) : φ ∈ H} = {U(T + ·, k)
[

U(k, 0)φ(0)
]

: φ ∈ H} (5.18)

is equicontinuous. Next, from Lemma 5.3 (ii), for 0 ≤ γ < 1, there is a

constant C(γ), such that for s1, s2 ∈ [−r, 0],

‖
∫ T+s2

0

U(T +s2, h)f(h, u(h), uh)dh−
∫ T+s1

0

U(T +s1, h)f(h, u(h), uh)dh‖

≤ C(γ)|s1−s2|γ max
0≤h≤T

‖f(h, u(h), uh)‖.
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Since solutions of Eq. (5.14) are bounded and f maps a bounded set

into a bounded set, there exists M1 = M1(H) > 0 such that

‖f(t, u(t, φ), ut(φ))‖ ≤M1, t ∈ [0, T ], φ ∈ H.

Thus, as functions on · ∈ [−r, 0],

{
∫ T+·

0

U(T + ·, h)f(h, u(h), uh)dh : φ ∈ H} (5.19)

is also equicontinuous. Therefore, functions in E are equicontinuous.

Next, to check the precompactness of the functions at every point of

[−r, 0], we fix s0 ∈ [−r, 0]. From the above arguments, we also know that

{U(T + s0, 0)φ(0) : φ ∈ H} (5.20)

is precompact in X. Now for φ ∈ H , we let g(t) = f(t, u(t, φ), ut(φ)). Then
∫ T+s0

0

U(T + s0, h)f(h, u(h, φ), uh(φ))dh ≡ K(0, g)(T + s0) ∈ Xη

according to Lemma 5.3 (iii). Also note that by Lemma 5.3 (i), there are

constants γ ∈ (0, 1) and M2 > 0 such that

‖U(T + s0, h)‖0,η ≤M2(T + s0 − h)−γ , 0 ≤ h < T + s0.

Thus

‖
∫ T+s0

0

U(T+s0, h)f(h, u(h, φ), uh(φ))dh‖η ≤M1M2T
1−γ/(1−γ), φ ∈ H.

Therefore

{
∫ T+s0

0

U(T + s0, h)f(h, u(h, φ), uh(φ))dh : φ ∈ H} (5.21)

is bounded in Xη . Then use the fact that the embedding Xη → X is compact

again, we see that the set defined by (5.21) is precompact in X. Now the

Ascoli-Arzela theorem implies that the map P is a compact operator. �

Similar to the case for equations without delay, we have

Theorem 5.11. Let the assumptions 5.1 and 5.2 be satisfied and let T > r.

If the solutions of Eq. (5.14) are ultimate bounded, then Eq. (5.14) has a

T -periodic solution.

Theorem 5.12. Assume that there exist functions (“wedges”) Wi, i =

1, 2, 3, with Wi : [0,∞) → [0,∞),Wi(0) = 0,Wi strictly increasing, and

W1(t) → ∞, t → ∞. Further, assume that there exists a (Liapunov) func-

tion V : X → < (reals) such that for some constant M > 0, when u is a

solution of Eq. (5.14) with ‖u(t)‖ ≥M , then
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(a). W1(‖u(t)‖) ≤ V (u(t)) ≤W2(‖u(t)‖), and

(b). d
dtV (u(t)) ≤ −W3(‖u(t)‖).

Then solutions of Eq. (5.14) are bounded and ultimate bounded.

Exercise 21.

(1) Prove Theorem 5.7.

(2) Prove Lemma 5.4.

(3) Prove Theorem 5.8.

(4) In the proof of Theorem 5.10, show that the Poincaré map P defined

in (5.16) is continuous.

(5) In the proof of Theorem 5.10, verify that as functions on · ∈ [−r, 0],

{U(T + ·, 0)φ(0) : φ ∈ H} = {U(T + ·, k)
[

U(k, 0)φ(0)
]

: φ ∈ H}

given in (5.18) is equicontinuous.

(6) Prove Theorem 5.11.

(7) Prove Theorem 5.12.

5.1.3 Nonlinear Equations With Infinite Delay

Consider the following nonlinear differential equation with infinite delay,

u′(t) +A(t)u(t) = f(t, u(t), ut), t > 0, u(s) = φ(s), s ≤ 0, (5.22)

in a general Banach space X, where ut(s) = u(t+ s), s ≤ 0.

The materials presented here are based on [Liu (62); Liu Naito and

Minh (63)]. Similar to equations with finite delay, we now need to con-

sider functions defined on (−∞, 0], where in general only a seminorm is

available. In this regard, an approach using axioms for seminormed ab-

stract spaces can be made, see Henriquez [Henriquez (45)] and Hale and

Kato [Hale and Kato (41)]. Here, we will approach in a simpler way by con-

sidering functions in the continuous functions space C((−∞, 0],X) against

a fixed function g. These spaces are called “weighted” (or “friendly” in

some literature) phase space and are denoted by Cg .

To define such a phase space Cg for Eq. (5.22), we have

Lemma 5.5. There exists an integer K0 > 1 such that

(
1

2
)K0−1M0 < 1, (5.23)
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where M0 = supt∈[0,T ] ‖U(t, 0)‖ is finite. Next, let w0 = T/K0, then there

exists a function g on (−∞, 0] such that g(0) = 1, g(−∞) = ∞, g is

decreasing on (−∞, 0], and for d ≥ w0 one has

sup
s≤0

g(s)

g(s− d)
≤ 1

2
. (5.24)

Proof. Such a function g exists, e.g., we can take g(s) = e−as where

a > 0 is such that eaw0 ≥ 2. �

For the function g given in Lemma 5.5, define the continuous functions

space

Cg =
{

φ : φ ∈ C((−∞, 0],X) and lim
s→−∞

‖φ(s)‖
g(s)

= 0
}

. (5.25)

Then Cg coupled with the norm

|φ|g = sup
s≤0

‖φ(s)‖
g(s)

, φ ∈ Cg , (5.26)

is a Banach space, see an exercise.

Similar to the study of equations with finite delay, we have

Theorem 5.13. Let the assumptions 5.1 and 5.2 be satisfied and let φ ∈
Cg. Then there exists a constant α > 0 such that Eq. (5.22) has a unique

(mild) solution u : (−∞, α] → X satisfying u0 = φ (i.e., u(s) = φ(s), s ≤
0), and

u(t) = U(t, 0)φ(0) +

∫ t

0

U(t, h)f(h, u(h), uh)dh, t ∈ [0, α]. (5.27)

To derive periodic solutions, we assume that solutions exist on [0,∞).

We will write u = u(·, φ) for the unique solution with the initial function

φ.

Now, for equations with infinite delay, the Poincaré operator will map

an element φ of C((−∞, 0],X) to an element of C((−∞, 0],X), given by

Pφ = uT (·, φ), φ ∈ C((−∞, 0],X), (5.28)

or, for s ∈ (−∞, 0],

(Pφ)(s) = uT (s, φ) = u(T + s, φ)

=



























U(T + s, 0)φ(0) +

∫ T+s

0

U(T + s, h)f(h, u(h), uh)dh,

T + s > 0,

φ(T + s), T + s ≤ 0.
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Similar to Lemma 5.4, we have

Lemma 5.6. Let the assumptions 5.1 and 5.2 be satisfied.

(a). If u(t) is a solution of Eq. (5.22), then so is u(t+ T ), t ≥ 0.

(b). Equation (5.22) has a T -periodic solution if and only if the Poincaré

map P : C((−∞, 0],X) → C((−∞, 0],X) defined in (5.28) has a fixed

point.

Definitions concerning boundedness and ultimate boundedness given in

the previous sections can be revised as follows to suit Eq. (5.22).

Definition 5.6. The solutions of Eq. (5.22) are said to be bounded if

for each B1 > 0 there is a B2 = B2(B1) > 0 such that {|φ|g ≤ B1, t ≥ 0}
implies ‖u(t, φ)‖ < B2.

Definition 5.7. The solutions of Eq. (5.22) are said to be ultimate

bounded if there is a bound B > 0 such that for each B3 > 0, there is a

K = K(B,B3) > 0 such that {|φ|g ≤ B3, t ≥ K} implies ‖u(t, φ)‖ < B.

For the relationship between boundedness and ultimate boundedness,

we also have the following result.

Theorem 5.14. Assume that f(t, u, v) in Eq. (5.22) is continuous and is

Lipschitzian in u and in v. If the solutions of Eq. (5.22) are ultimately

bounded, then they are also bounded.

For equations without delay and with finite delay, we obtained periodic

solutions because we were able to prove the compactness of the Poincaré

operators for those equations, therefore compact sets could be constructed

and Horn’s fixed point theorem could be applied to derive fixed points and

hence periodic solutions.

Now, for Eq. (5.22) with infinite delay, the geometry of the Poincaré

operator defined in (5.28) is that the function φ defined from 0 all the way

to the left (−∞) is now mapped to a function from T (> 0) all the way to the

left. Thus, under the Poincaré operator, the history of the initial function

φ on (−∞, 0] is carried over to become the part of Pφ from 0 all the way

to the left. Now, to obtain the compactness of the Poincaré operator, we

need to use the Ascoli-Arzela theorem and verify that the solution set (for

the initial functions in a bounded set) is precompact for every s ≤ T . This

is impossible now because when s ≤ 0, the solution set is the same as the

initial functions, which may be arbitrary, or “bad”, i.e., noncompact.

That is, it is possible that under the Poincaré operator P defined in

(5.28), a bounded set gets mapped into a noncompact set. Therefore,
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the Poincaré operator P defined in (5.28) is not compact. Hence, all the

fixed point theorems requiring compactness, such as Browder’s, Horn’s,

Schauder’s, and Schauder-Tychonov’s, are not applicable now for equations

with infinite delay in general Banach spaces.

This causes the major difficulty for the study of periodic solutions of in-

finite delay equations in general Banach spaces. To overcome this difficulty,

one way is to use Kuratowski’s measure of non-compactness for condens-

ing operators to get fixed points and hence periodic solutions, where by

the name of “non-compactness”, the compactness requirement is removed.

Let’s introduce these notions.

Definition 5.8. The Kuratowski’s measure of non-compactness (or

the α measure) for a bounded set H of a Banach space Y is defined as

α(H) = inf
{

d > 0 : H has a finite cover of diameter < d
}

. (5.29)

We need to use the following basic properties of the α measure here.

Lemma 5.7. [Lakshmikantham and Leela (52)] Let A and B be bounded

sets of a Banach space Y . Then

(1) α(A) ≤ dia(A). (dia(A) = sup{|x− y|Y : x, y ∈ A}.)
(2) α(A) = 0 if and only if A is precompact.

(3) α(λA) = |λ|α(A), λ ∈ <. (λA = {λx : x ∈ A})
(4) α(A ∪ B) = max{α(A), α(B)}.
(5) α(A+B) ≤ α(A) + α(B). (A+B = {x+ y : x ∈ A, y ∈ B})
(6) α(A) ≤ α(B) if A ⊆ B.

Lemma 5.8. Let A with norm | · |A and C with norm | · |C be bounded. If

there is a surjective map Q : C → A such that for any c, d ∈ C one has

|Q(c) −Q(d)|A ≤ |c− d|C , then α(A) ≤ α(C).

Proof. For any ε > 0, there exist bounded sets Gi ⊆ C, i = 1, ...,m,

such that

dia(Gi) ≤ α(C) + ε, C = ∪m
i=1G

i. (5.30)

Now, Q is surjective, so that A = ∪m
i=1Q(Gi). And for a, b ∈ Q(Gi) we may

assume that a = Q(c), b = Q(d) for some c, d ∈ Gi. Thus

|a− b|A = |Q(c) −Q(d)|A ≤ |c− d|C ≤ dia(Gi)

≤ α(C) + ε. (5.31)

This implies dia(Q(Gi)) ≤ α(C) + ε, and hence from Lemma 5.7 (i),

α(Q(Gi)) ≤ dia(Q(Gi)) ≤ α(C) + ε. Therefore Lemma 5.7 (iv) implies

that α(A) ≤ α(C) + ε. Since ε > 0 is arbitrary, the result is true. �
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Definition 5.9. An operator P is said to be a condensing operator on a

Banach space Y if P is continuous and takes a bounded set into a bounded

set, and α(P (B)) < α(B) for every bounded set B of Y with α(B) > 0,

(where α(·) is the α measure).

For condensing operators, the following asymptotic fixed point theorem

from Hale and Lunel [Hale and Lunel (42)] is very useful. It is similar to

Horn’s and Browder’s asymptotic fixed point theorems but doesn’t require

compactness.

Theorem 5.15. (Hale and Lunel [Hale and Lunel (42)]) Suppose S0 ⊆
S1 ⊆ S2 are convex bounded subsets of a Banach space Y , S0 and S2 are

closed, and S1 is open in S2, and suppose P : S2 → Y is (S2)-condensing

in the following sense: if U and P (U) are contained in S2 and α(U) > 0,

then α(P (U)) < α(U). If P j(S1) ⊆ S2, j ≥ 0, and, for any compact set

H ⊆ S1, there is a number N(H) such that P k(H) ⊆ S0, k ≥ N(H), then

P has a fixed point.

Based on Theorem 5.15, we have

Theorem 5.16. Suppose S0 ⊆ S1 ⊆ S2 are convex bounded subsets of a

Banach space Y , S0 and S2 are closed, and S1 is open in S2, and suppose

P is a condensing operator in Y . If P j(S1) ⊆ S2, j ≥ 0, and there is

a number N(S1) such that P k(S1) ⊆ S0, k ≥ N(S1), then P has a fixed

point.

The advantage of these is that the compactness requirement is removed,

as long as the operator shrinks sets under α measure. We will apply the

fixed point theorem 5.16 to Eq. (5.22) with infinite delay in Cg and derive

periodic solutions using ultimate boundedness.

For the Banach space Cg defined above, we have

Lemma 5.9. Let u be a continuous function on (−∞, T ] such that |ut|g is

finite for every t ∈ [0, T ]. Then for any 0 ≤ h < r ≤ T with r − h ≥ w0

(w0 is from Lemma 5.5), one has

|ur|g ≤ max
{

sup
s∈[h,r]

‖u(s)‖, 1

2
|uh|g

}

. (5.32)
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Proof. We have

|ur|g = sup
s≤0

‖ur(s)‖
g(s)

= sup
s≤0

‖u(r + s)‖
g(s)

= sup
l≤r

‖u(l)‖
g(l − r)

(r + s = l)

≤ max
{

sup
l∈[h,r]

‖u(l)‖ 1

g(l− r)
, sup

l≤h

‖u(l)‖
g(l − r)

}

= max
{

sup
l∈[h,r]

‖u(l)‖ 1

g(l− r)
, sup

l≤h

‖u(l)‖
g(l − h)

g(l− h)

g(l− r)

}

≤ max
{

sup
l∈[h,r]

‖u(l)‖, sup
s≤0

‖u(h+ s)‖
g(s)

g(s)

g(s− (r − h))

}

(l − h = s)

≤ max
{

sup
s∈[h,r]

‖u(s)‖, 1

2
|uh|g

}

(5.33)

by using Lemma 5.5. �

To estimate the solutions, we have

Lemma 5.10. Let the assumptions 5.1 and 5.2 be satisfied and let u and y

be two solutions of Eq. (5.22) (with initial functions u0 and y0 respectively)

on (−∞, L], L > 0. Then for t ∈ [0, L],

|ut − yt|g ≤ K1|u0 − y0|geK2t, (5.34)

where K1 and K2 are some constants.

Proof. Similar to the proof of Lemma 5.9, we have, for t ∈ [0, L],

|ut − yt|g ≤ max
{

sup
s∈[0,t]

‖u(s) − y(s)‖, |u0 − y0|g
}

. (5.35)

Next, using Lipschitz conditions, we may assume that

‖f(h, u(h), yh) − f(h, y(h), yh)‖ ≤ k0‖u(h) − y(h)‖, (5.36)

‖f(h, u(h), uh) − f(h, u(h), yh)‖ ≤ k1|uh − yh|g, (5.37)
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for some constants k0 and k1. Let M0 = supt∈[0,T ] ‖U(t, 0)‖, M1 =

sup0≤h≤s≤T ‖U(s, h)‖, which are finite. Then for s ∈ [0, t],

‖u(s) − y(s)‖ = ‖U(s, 0)(u(0) − y(0))

+

∫ s

0

U(s, h)
[

f(h, u(h), uh) − f(h, y(h), yh)
]

dh‖

= ‖U(s, 0)(u(0) − y(0))

+

∫ s

0

U(s, h)
[

f(h, u(h), uh) − f(h, u(h), yh)
]

dh‖

+

∫ s

0

U(s, h)
[

f(h, u(h), yh) − f(h, y(h), yh)
]

dh‖

≤ M0‖u(0)− y(0)‖ +

∫ s

0

M1k0‖u(h) − y(h)‖dh

+

∫ s

0

M1k1|uh − yh|gdh

≤ M0|u0 − y0|g +

∫ t

0

M1(k0 + k1)|uh − yh|gdh. (5.38)

Thus, from (5.35), we have

|ut − yt|g ≤ sup
s∈[0,t]

‖u(s) − y(s)‖ + |u0 − y0|g

≤ (M0 + 1)|u0 − y0|g +

∫ t

0

M1(k0 + k1)|uh − yh|gdh.

Now, the Gronwall’s inequality implies (5.34). �

An immediate consequence of Lemma 5.10 is the following local bound-

edness property of the solutions.

Theorem 5.17. Let the assumptions 5.1 and 5.2 be satisfied and let D ⊂
Cg be bounded. Then for any L > 0, solutions of Eq. (5.22) with initial

functions in D are bounded on [0, L]. That is, there exists a constant E =

E(D,L) > 0 such that if u(·) = u(·, φ) with φ ∈ D, then ‖u(t)‖ ≤ E for

t ∈ [0, L].
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Proof. Let y = y(φ0) be a fixed solution with φ0 ∈ D. Then |uL|g ≤
|uL − yL|g + |yL|g , and hence Lemma 5.10 implies that {|uL(φ)|g : φ ∈ D}
is bounded. Therefore the result is true by using the definition of the norm

in Cg . �

Next, for D ⊂ Cg and u(φ) the unique solution with u0(φ) = φ, we

define Wl(D) = {ul(φ) : φ ∈ D} and W[h,r](D) = {u[h,r](φ) : φ ∈ D},
where u[h,r] means the restriction of u on [h, r].

Lemma 5.11. Let the assumptions 5.1 and 5.2 be satisfied. If D ⊂ Cg

is bounded, then W[0,T ](D) ⊂ C([0, T ],X) is bounded and Wr(D) ⊂ Cg is

bounded for each r ∈ [0, T ]. And for any 0 ≤ h < r ≤ T with r − h ≥ w0

(w0 is from Lemma 5.5), one has

α(Wr(D)) ≤ max
{

α(W[h,r](D)),
1

2
α(Wh(D))

}

. (5.39)

Proof. First, Theorem 5.17 implies that W[0,T ](D) ⊂ C([0, T ],X) is

bounded. This result and Lemma 5.9 (with h = 0) imply that for each

r ∈ [0, T ], Wr(D) is bounded in Cg . Now, for any ε > 0, there ex-

ist bounded sets P i ⊆ W[h,r](D), i = 1, ...,m, and bounded sets Qj ⊆
Wh(D), j = 1, ..., n, such that

dia(P i) ≤ α(W[h,r](D)) + ε, W[h,r](D) = ∪m
i=1P

i, (5.40)

dia(Qj) ≤ α(Wh(D)) + 2ε, Wh(D) = ∪n
j=1Q

j . (5.41)

Put

Y i,j
r =

{

ur ∈ Wr(D) : u[h,r] ∈ P i, uh ∈ Qj
}

. (5.42)

Then we have

Wr(D) = ∪m
i=1 ∪n

j=1 Y
i,j
r . (5.43)

For each Y i,j
r , if ur, wr ∈ Y i,j

r , then from the proof of Lemma 5.9,

|ur − wr|g ≤ max
{

sup
s∈[h,r]

‖u(s) − w(s)‖, 1

2
|uh − wh|g

}

≤ max
{

dia(P i),
1

2
dia(Qj)

}

≤ max
{

α(W[h,r](D)) + ε,
1

2
(α(Wh(D)) + 2ε)

}

= max
{

α(W[h,r](D)),
1

2
α(Wh(D))

}

+ ε. (5.44)
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This implies, using Lemma 5.7 (i), that

α(Y i,j
r ) ≤ dia(Y i,j

r ) ≤ max
{

α(W[h,r](D)),
1

2
α(Wh(D))

}

+ ε. (5.45)

Then Lemma 5.7 (iv) implies that

α(Wr(D)) ≤ max
{

α(W[h,r](D)),
1

2
α(Wh(D))

}

+ ε. (5.46)

Since ε > 0 is arbitrary, the result is true. �

By using the Ascoli-Arzela theorem, we have the following result. The

idea of the proof is similar to the case for equations with finite delay.

Lemma 5.12. Let the assumptions 5.1 and 5.2 be satisfied and let D ⊂ Cg

be bounded. Then α(W[l,r](D)) = 0 for any 0 < l < r ≤ T .

Proof. By Lemma 5.7 (ii), we need to prove that the Ascoli-Arzela the-

orem can be applied to the bounded set E = W[l,r](D) ⊂ C([l, r],X).

Note that a function in E can be expressed as, for s ∈ [l, r],

u(s, φ) = U(s, 0)φ(0) +

∫ s

0

U(s, h)f(h, u(h), uh)dh, φ ∈ D. (5.47)

Since l > 0, there is k > 0 such that s > k for s ∈ [l, r]. For s ∈ [l, r],

one has

U(s, 0)φ(0) = U(s, k)U(k, 0)φ(0), φ ∈ D. (5.48)

Fix η ∈ (0, 1). Then from Lemma 5.3 (i), U(k, 0) : X → Xη is bounded.

Next the embedding Xη → X is compact, thus {U(k, 0)φ(0) : φ ∈ D} is

precompact in X since {φ(0) : φ ∈ D} is bounded in X. Therefore, the

closure of {U(k, 0)φ(0) : φ ∈ D} is compact in X. Now, one can verify that

as functions on · ∈ [l, r],

{U(·, 0)φ(0) : φ ∈ D} = {U(·, k)
[

U(k, 0)φ(0)
]

: φ ∈ D} (5.49)

is equicontinuous. Next, from Lemma 5.3 (ii), for 0 ≤ γ < 1, there is a

constant C(γ), such that for s1, s2 ∈ [l, r],

‖
∫ s2

0

U(s2, h)f(h, u(h), uh)dh−
∫ s1

0

U(s1, h)f(h, u(h), uh)dh‖

≤ C(γ)|s1 − s2|γ max
0≤h≤T

‖f(h, u(h), uh)‖. (5.50)

By using Lemma 5.11, we see that the variables in f are bounded. Now f

maps a bounded set into a bounded set, thus there exists M2 = M2(D) > 0

such that

‖f(t, u(t), ut(φ))‖ ≤M2, t ∈ [0, T ], φ ∈ D.
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Therefore, as functions on · ∈ [l, r],

{
∫ ·

0

U(·, h)f(h, u(h), uh)dh : φ ∈ D} (5.51)

is also equicontinuous. Therefore, functions in E are equicontinuous.

In the following, to check the precompactness of the functions at every

point of [l, r], we fix s0 ∈ [l, r]. From the above arguments, we also know

that

{U(s0, 0)φ(0) : φ ∈ D} (5.52)

is precompact in X. Next, for φ ∈ D, we let g(t) = f(t, u(t), ut(φ)). Then
∫ s0

0

U(s0, h)f(h, u(h), uh(φ))dh ≡ K(0, g)(s0) ∈ Xη

according to Lemma 5.3 (iii). Also note that by Lemma 5.3 (i), there are

constants γ ∈ (0, 1) and M3 > 0 such that

‖U(s0, h)‖0,η ≤M3(s0 − h)−γ , 0 ≤ h < s0.

Thus

‖
∫ s0

0

U(s0, h)f(h, u(h), uh(φ))dh‖η ≤M3M2T
1−γ/(1 − γ), φ ∈ D.

Therefore

{
∫ s0

0

U(s0, h)f(h, u(h), uh(φ))dh : φ ∈ D} (5.53)

is bounded in Xη . Then use the fact that the embedding Xη → X is compact

again, we see that the set defined by (5.53) is precompact in X. Now the

Ascoli-Arzela theorem implies that E is precompact. Thus by Lemma 5.7

(ii), α(W[l,r](D)) = α(E) = 0. �

Next, we prove that the operator P defined in (5.28) is condensing in

Cg .

Theorem 5.18. Let the assumptions 5.1 and 5.2 be satisfied. Then the

operator P defined in (5.28) is condensing in Cg with g given in Lemma

5.5.

Proof. From Lemma 5.10, we have

|P (φ) − P (ϕ)|g = |uT (φ) − uT (ϕ)|g ≤ K1e
K2T |φ− ϕ|g , (5.54)
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thus P is continuous, and takes a bounded set into a bounded set. Next,

let D ⊂ Cg be bounded with α(D) > 0. By using Lemmas 5.11 and 5.12

repeatedly, we have (w0 is from Lemma 5.5)

α(P (D)) = α(WT (D)) ≤ max
{

α(W[T−w0 ,T ](D)),
1

2
α(WT−w0 (D))

}

=
1

2
α(WT−w0 (D))

≤ 1

2
max

{

α(W[T−2w0,T−w0](D)),
1

2
α(WT−2w0(D))

}

= (
1

2
)2α(WT−2w0 (D))

≤ (
1

2
)2 max

{

α(W[T−3w0 ,T−2w0](D)),
1

2
α(WT−3w0(D))

}

= (
1

2
)3α(WT−3w0 (D))

......

≤ (
1

2
)K0−1 max

{

α(W[0,T−(K0−1)w0](D)),
1

2
α(D)

}

. (5.55)

Next, for · ∈ [0, T − (K0 − 1)w0],

W[0,T−(K0−1)w0](D) ⊆
{

U(·, 0)φ(0) : φ ∈ D
}

+
{

∫ ·

0

U(·, h)f(h, u(h), uh(φ))dh : φ ∈ D
}

.

And for t ∈ [0, T − (K0 − 1)w0],

‖U(t, 0)φ(0) − U(t, 0)ϕ(0)‖ = ‖U(t, 0)(φ(0) − ϕ(0))‖

≤ M0‖φ(0) − ϕ(0)‖ ≤M0|φ− ϕ|g ,
where M0 = supt∈[0,T ] ‖U(t, 0)‖, then we have from Lemma 5.7 (iii) and

Lemma 5.8 that (for · ∈ [0, T − (K0 − 1)w0])

α{U(·, 0)φ(0) : φ ∈ D} ≤M0α(D). (5.56)

Similar to the proof in Lemma 5.12 we see that for · ∈ [0, T − (K0 − 1)w0],

α{
∫ ·

0

U(·, h)f(h, u(h), uh(φ))dh : φ ∈ D} = 0. (5.57)

Therefore we have from Lemma 5.7 (v) that

α(W[0,T−(K−1)w0](D)) ≤M0α(D). (5.58)
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Thus, from Lemma 5.5, (5.55), and (5.58), we have (note that M0 =

supt∈[0,T ] ‖U(t, 0)‖ ≥ 1)

α(P (D)) ≤ (
1

2
)K0−1 max

{

M0α(D),
1

2
α(D)

}

≤ (
1

2
)K0−1M0α(D) < α(D). (5.59)

This proves that the operator P is condensing in Cg . �

Now, we are ready to prove the existence of periodic solutions for infinite

delay differential equations in general Banach spaces.

Theorem 5.19. Let assumptions 5.1 and 5.2 be satisfied. If the solutions of

Eq. (5.22) are ultimate bounded, then Eq. (5.22) has a T -periodic solution.

Proof. From Theorem 5.14, the solutions of Eq. (5.22) are also bounded.

Let the operator P be defined in (5.28). Similar to the study of equations

without delay and with finite delay, we have

Pm(φ) = umT (φ), φ ∈ Cg , m = 1, 2, · · · . (5.60)

Next, let B > 0 be the bound in the definition of ultimate boundedness.

Using boundedness, there is a B1 > B such that {|φ|g ≤ B, t ≥ 0} implies

‖u(t, φ)‖ < B1. Also, there is a B2 > B1 such that {|φ|g ≤ B1, t ≥ 0} im-

plies ‖u(t, φ)‖ < B2. Next, using ultimate boundedness, there is a positive

integer J such that {|φ|g ≤ B1, t ≥ JT} implies ‖u(t, φ)‖ < B.

Now let

S2 ≡ {φ ∈ Cg : |φ|g ≤ B2},

W ≡ {φ ∈ Cg : |φ|g < B1}, S1 ≡W ∩ S2,

S0 ≡ {φ ∈ Cg : |φ|g ≤ B},

(5.61)

so that S0 ⊆ S1 ⊆ S2 are convex bounded subsets of Banach space Cg , S0
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and S2 are closed, and S1 is open in S2. Next, for φ ∈ S1 and j ≥ 0,

|P jφ|g = |ujT (φ)|g = sup
s≤0

‖ujT (s)‖
g(s)

= sup
s≤0

‖u(jT + s)‖
g(s)

≤ max
{

sup
s≤−jT

‖u(jT + s)‖
g(s)

, sup
s∈[−jT,0]

‖u(jT + s)‖
g(s)

}

≤ max
{

sup
l≤0

‖u(l)‖
g(l − jT )

, sup
l∈[0,jT ]

‖u(l)‖
}

≤ max
{

sup
l≤0

‖u(l)‖
g(l)

, sup
l∈[0,jT ]

‖u(l)‖
}

≤ max
{

|φ|g , B2

}

≤ B2, (5.62)

which implies P j(S1) ⊆ S2, j ≥ 0. Now, we prove that there is a number

N(S1) such that P k(S1) ⊆ S0 for k ≥ N(S1). To this end, we choose a

positive integer m = m(B1) such that

(
1

2
)m <

B

B1
, (5.63)

and then choose an integer N = N(S1) > J such that

NT > mw0 and
B2

g(−(N − J)T )
< B, (5.64)

where w0 is from Lemma 5.5. Then for φ ∈ S1 and k ≥ N ,

|P kφ|g = |ukT (φ)|g = sup
s≤0

‖ukT (s)‖
g(s)

= sup
s≤0

‖u(kT + s)‖
g(s)

≤ max
{

sup
s≤−kT

‖u(kT + s)‖
g(s)

, sup
s∈[−kT,−(k−J)T ]

‖u(kT + s)‖
g(s)

,

sup
s∈[−(k−J)T,0]

‖u(kT + s)‖
g(s)

}

. (5.65)

For the terms in (5.65), we have

sup
s∈[−(k−J)T,0]

‖u(kT + s)‖
g(s)

≤ sup
l∈[JT,kT ]

‖u(l)‖ < B, (5.66)
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and

sup
s∈[−kT,−(k−J)T ]

‖u(kT + s)‖
g(s)

≤ sup
l∈[0,JT ]

‖u(l)‖
g(l − kT )

≤ B2

g(−(k − J)T )
≤ B2

g(−(N − J)T )
< B, (5.67)

and

sup
s≤−kT

‖u(kT + s)‖
g(s)

= sup
l≤0

‖u(l)‖
g(l − kT )

= sup
l≤0

‖u(l)‖
g(l)

g(l)

g(l− kT )

≤ |φ|g sup
l≤0

g(l)

g(l − kT )

≤ B1 sup
l≤0

g(l)

g(l − w0)

g(l− w0)

g(l − 2w0)
· · ·

· · · g(l − (m− 1)w0)

g(l −mw0)

g(l−mw0)

g(l − kT )
. (5.68)

Now, from Lemma 5.5, for i ≥ 0,

sup
l≤0

g(l − iw0)

g(l − (i+ 1)w0)
= sup

s≤−iw0

g(s)

g(s− w0)

≤ sup
s≤0

g(s)

g(s− w0)
≤ 1

2
. (5.69)

Thus, (5.68) becomes

sup
s≤−kT

‖u(kT + s)‖
g(s)

≤ B1(
1

2
)m sup

l≤0

g(l −mw0)

g(l − kT )

< B1
B

B1
sup
l≤0

g(l −mw0)

g(l −NT )
≤ B sup

l≤0

g(l −mw0)

g(l −mw0)
= B. (5.70)

Therefore, (5.65) becomes

|P kφ|g ≤ B, k ≥ N, (5.71)

which implies P k(S1) ⊆ S0, k ≥ N(S1). Now, Theorem 5.16 can be used

to obtain a fixed point for the operator P , which, from Lemma 5.6, gives

rise to a T -periodic solution of Eq. (5.22). This proves the theorem. �
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Theorem 5.20. Assume that there exist functions (“wedges”) Wi, i =

1, 2, 3, with Wi : [0,∞) → [0,∞),Wi(0) = 0,Wi strictly increasing, and

W1(t) → ∞, t → ∞. Further, assume that there exists a (Liapunov) func-

tion V : X → < (reals) such that for some constant M > 0, when u is a

solution of Eq. (5.22) with ‖u(t)‖ ≥M , then

(a). W1(‖u(t)‖) ≤ V (u(t)) ≤W2(‖u(t)‖), and

(b). d
dtV (u(t)) ≤ −W3(‖u(t)‖).

Then solutions of Eq. (5.22) are bounded and ultimate bounded.

Exercise 22.

(1) Verify that Cg coupled with the norm defined in (5.26) is a Banach

space.

(2) Prove Theorem 5.13.

(3) Prove Lemma 5.6.

(4) Prove Theorem 5.14.

(5) Prove Theorem 5.16.

(6) Verify (5.43).

(7) In the proof of Lemma 5.12, verify that as functions on · ∈ [l, r],

{U(·, 0)φ(0) : φ ∈ D} = {U(·, k)
[

U(k, 0)φ(0)
]

: φ ∈ D}

given in (5.49) is equicontinuous.

(8) In the proof of Theorem 5.19, verify (5.60).

(9) Prove Theorem 5.20.

5.1.4 Non-Densely Defined Equations

In the above studies of the existence of periodic solutions, the operator

A(t) is assumed to be densely defined, which is the case if we look at

partial differential equations in Lp spaces. However, if we use the sup-

norm to measure continuous functions, the corresponding operators may

be non-densely defined.

Example 5.1. Consider the partial differential equation






















∂
∂tu(t, x) = ∂2

∂x2u(t, x) + f(t, x), (t, x) ∈ (0,∞) × (0, 1),

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = Φ(x), x ∈ [0, 1].

(5.72)
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If we study Eq. (5.72) in C[0, 1] (the space of all continuous functions

on [0, 1] with the sup-norm), and define

Au = u′′, D(A) = {u ∈ C2[0, 1] : u(0) = u(1) = 0}. (5.73)

Then the closure of D(A) is

D(A) = {u ∈ C[0, 1] : u(0) = u(1) = 0} 6= C[0, 1], (5.74)

thus A is not densely defined on C[0, 1].

In the following, we will look at

u′(t) = Au(t) + f(t, u(t), ut), t > 0, u0 = φ ∈ C ([−r, 0] ,X) , (5.75)

where the linear operator A is non-densely defined and satisfies the Hille-

Yosida condition. And we will present some results of [Ezzinbi and Liu

(31)] without details.

Since now the operator A is non-densely defined, the semigroup theory

cannot be used. Therefore, we will apply the integrated semigroup theory.

For differential equations with finite delay, the wellposedness is established

in the space

C0 =
{

φ ∈ C ([−r, 0] ,X) : φ(0) ∈ D(A)
}

,

so that C0 will become the base space for this setting, replacing

C([−r, 0],X).

The part A0 of A in D(A) is defined by

A0 = A on D(A0) =
{

x ∈ D(A) : Ax ∈ D(A)
}

.

Then it is known that the part A0 of A generates a strongly continuous

semigroup S0(·) on D(A). Following [Liu (61)], we assume T > r and

we need to verify the compactness of the Poincaré operator P : C0 → C0

defined by

Pφ = uT (·, φ), φ ∈ C0. (5.76)

Assumption 5.3. Let T > 0 be a constant. The function f is continuous in

all its variables, T -periodic in the first variable t and uniformly Lipschitzian

in other variables.

Assumption 5.4. The semigroup (S0(t))t≥0 is compact on D(A). That

means for each t > 0, the operator S0(t) is compact on D(A).
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The definitions on boundedness and ultimate boundedness are the same

as those for finite delay equations studied before. With some conditions,

the approach of [Liu (61)] can be modified to construct some sets so that

Horn’s fixed point theorem can be applied to derive fixed points for the

Poincaré operator defined in (5.76), and hence periodic solutions. We state

these results as follows.

Theorem 5.21. Assume that f(t, u, v) in Eq. (5.75) is continuous and is

Lipschitzian in u and in v. If the solutions of Eq. (5.75) are ultimately

bounded, then they are also bounded.

Theorem 5.22. Let the assumptions 5.3 and 5.4 be satisfied and let T > r.

If the solutions of Eq. (5.75) are bounded, then the Poincaré operator

Pφ = uT (·, φ) on C0 defined in (5.76) is compact.

Theorem 5.23. Let the assumptions 5.3 and 5.4 be satisfied and let T > r.

If the solutions of Eq. (5.75) are ultimately bounded, then Eq. (5.75) has

a T -periodic solution.

Theorem 5.24. Assume that there exist functions (“wedges”) Wi, i =

1, 2, 3, with Wi : [0,∞) → [0,∞),Wi(0) = 0,Wi strictly increasing, and

W1(t) → ∞, t → ∞. Further, assume that there exists a (Liapunov) func-

tion V : X → < (reals) such that for some constant M > 0, when u is a

solution of Eq. (5.75) with ‖u(t)‖ ≥M , then

(a). W1(‖u(t)‖) ≤ V (u(t)) ≤W2(‖u(t)‖), and

(b). d
dtV (u(t)) ≤ −W3(‖u(t)‖).

Then solutions of Eq. (5.75) are bounded and ultimate bounded.

Exercise 23.

(1) In Example 5.1, verify that

D(A) = {u ∈ C[0, 1] : u(0) = u(1) = 0} 6= C[0, 1].

(2) Study the wellposedness of Eq. (5.75) in

C0 =
{

φ ∈ C ([−r, 0] ,X) : φ(0) ∈ D(A)
}

.

(3) Prove that the part A0 of A generates a strongly continuous semigroup

T0(·) on D(A).

(4) Prove Theorem 5.21.

(5) Prove Theorem 5.22.

(6) Prove Theorem 5.23.

(7) Prove Theorem 5.24.
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5.2 Evolution Semigroups and Almost Periodic Solutions

The studies of the previous sections can be extended to almost periodic

solutions of nonlinear equations. The first question we are faced with is how

to associate to a given nonlinear evolution equation evolution semigroups

in suitable function spaces. The next one is to find common fixed points

of these semigroups in chosen function spaces. It turns out that using

evolution semigroups we can not only give simple proofs of some results

in the finite dimensional case, but also extend them easily to the infinite

dimensional case.

5.2.1 Evolution Semigroups

In this subsection we are mainly concerned with the existence of almost

periodic solutions of evolution equations of the form
dx

dt
= Ax+ f(t, x, xt) (5.77)

where A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 and f is

a continuous operator from R×X×C to X. Note that our method used in

this subsection applies to nonautonomous equations with almost periodic

coefficients, not restricted to periodic or autonomous equations as in the

previous sections.

Throughout this section we will denote by C = BUC((−∞, 0],X) the

space of all uniformly continuous and bounded functions from (−∞, 0] to

X, and by xt the map x(t + θ) = xt(θ), θ ∈ (−∞, 0], where x(·) is defined

on (−∞, a] for some a > 0.

In this subsection we will deal with evolution equations of the form
dx

dt
= Ax+ f(t, x) , x ∈ X (5.78)

where X is a Banach space, A is the infinitesimal generator of a C0-

semigroup of linear operators (S(t))t≥0 of type ω, i.e.

‖S(t)x− S(t)y‖ ≤ eωt‖x− y‖, ∀ t ≥ 0, x, y ∈ X ,

and f is a continuous operator from R × X to X. Hereafter, recall that

by a mild solution x(t), t ∈ [s, τ ] of equation (5.78) we mean a continuous

solution of the integral equation

x(t) = S(t− s)x+

∫ t

s

S(t− ξ)f(ξ, x(ξ)dξ, ∀s ≤ t ≤ τ. (5.79)

Definition 5.10. (condition H4). Equation (5.78) is said to satisfy condi-

tion H4 if
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(1) A is the infinitesimal generator of a linear semigroup (S(t))t≥0 of type

ω in X,

(2) f is a continuous operator from R × X to X,

(3) There is a constant γ such that for every fixed t ∈ R, the operator

(−f(t, ·) + γI) is accretive in X.

The following condition will be used frequently:

Definition 5.11. (condition H5). Equation (5.78) is said to satisfy con-

dition H5 if for every u ∈ AP (X) the function f(·, u(·)) belongs to AP (X)

and the operator f∗ taking u into f(·, u(·)) is continuous.

The main point of our study is to associate with equation (5.78) an

evolution semigroup which plays a role similar to that of the monodromy

operator for equations with periodic coefficients. Hereafter we will denote

by U(t, s), t ≥ s, the evolution operator corresponding to equation (5.78)

which satisfies the assumptions of Theorem A.30, i.e. U(t, s)x is the unique

solution of Eq. (5.79).

Proposition 5.1. Let the conditions H4 and H5 be satisfied. Then with

Eq. (5.78) one can associate an evolution semigroup (T h)h≥0 acting on

AP (X), defined as

[T hv](t) = U(t, t− h)v(t− h), ∀h ≥ 0, t ∈ R, v ∈ AP (X).

Moreover, this semigroup has the following properties:

(1) T h, h ≥ 0 is strongly continuous, and

T hu = Shu+

∫ h

0

Sh−ξf∗(T
ξu)dξ, ∀h ≥ 0, u ∈ AP (X),

where (Shu)(t) = S(h)u(t− h), ∀h ≥ 0, t ∈ R, u ∈ AP (X).

(2)

‖T hu− T hv‖ ≤ e(ω+γ)h‖u− v‖, ∀h ≥ 0, u, v ∈ AP (X).

Proof. We first look at the solutions to the equation

w(t) = St−az +

∫ t

a

St−ξf∗(w(ξ))dξ ∀z ∈ AP (X), t ≥ a ∈ R. (5.80)

It may be noted that (Sh)h≥0 is a strongly continuous semigroup of linear

oparators in AP (X) of type ω. Furthermore, for λ > 0, λγ < 1 and u, v ∈



April 22, 2008 10:13 World Scientific Book - 9in x 6in stability

Nonlinear equations 185

AP (X), from the accretiveness of the operators −f(t, ·) + γI we get

(1 − λγ)‖x− y‖ = (1 − λγ) sup
t

‖u(t) − v(t)‖

= sup
t

(1 − λγ)‖u(t) − v(t)‖

≤ sup
t

‖u(t) − v(t) − λ[f(t, u(t)) − f(t, v(t))]‖

= ‖u− v − λ(f∗u− f∗v)‖. (5.81)

This shows that (−f∗ + γI) is accretive. In virtue of Theorem A.30 there

exists a semigroup (T h)h≥0 such that

T hu = Shu+

∫ h

0

Sh−ξf∗T
ξudξ,

‖T hu− T hv‖ ≤ e(ω+γ)h‖u− v‖, ∀h ≥ 0, u, v ∈ AP (X).

From this,

[T hu](t) = [Shu](t) +

∫ h

0

[Sh−ξf∗(T
ξu)](t)dξ, ∀t ∈ R.

Thus

[T hu](t) = S(h)u(t− h) +

∫ h

0

S(h− ξ)[f∗(T
ξu](t− h+ ξ)dξ

= S(h)u(t− h) +

∫ h

0

S(h− ξ)f(t+ ξ − h, [T u](t+ ξ − h))dξ

= S(h)u(t− h) +

∫ t

t−h

S(t− η)f(η, [T η−(t−h)u](η)dη.

If we denote [T t−su](t) by x(t), we get

x(t) = S(t− s)z +

∫ t

s

S(t− ξ)f(ξ, x(ξ))dξ, ∀t ≥ s, (5.82)

where z = u(s). Consequently, from the uniqueness of mild solutions of

Equation (5.78) we get [T t−su](t) = x(t) = U(t, s)u(s) and [T hu](t) =

U(t, t − h)u(t − h) for all t ≥ s, u ∈ AP (Q). This completes the proof of

the proposition. �
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5.2.2 Almost periodic solutions

5.2.2.1 Almost periodic solutions of differential equations without

delay

The main idea underlying our approach is the following assertion.

Corollary 5.1. Let all assumptions of Proposition 5.1 be satisfied. Then a

mild solution x(t) of Eq. (5.77), defined on the whole real line R, is almost

periodic if and only if it is a common fixed point of the evolution semigroup

(T h)h≥0 defined in Proposition 5.1.

Proof. Suppose that x(t), defined on the real line R, is an almost periodic

mild solution of Eq. (5.78). Then from the uniqueness of mild solutions we

get

x(t) = U(t, t− h)x(t − h) = [T hx](t), ∀t ∈ R.

This shows that x is a fixed point of T h for every h > 0. Conversely,

suppose that y(·) is any common fixed point of T h, h ≥ 0. Then

y(t) = [T t−sy](t) = U(t, s)y(s), ∀t ≥ s.

This shows that y(·) is a mild solution of Eq. (5.78). �

We now apply Corollary 5.1 to find sufficient conditions for the existence

of almost periodic mild solutions of Eq. (5.78).

Corollary 5.2. Let all conditions of Proposition 5.1 be satisfied. Further-

more, let ω + µ be negative and −f∗ − µI be accretive. Then there exists a

unique almost periodic mild solution of Eq. (5.78).

Proof. It is obvious that there exists a unique common fixed point of the

semigroup (T h)h≥0. The assertion now follows from Corollary 5.1. �

Remark 5.2.

(1) A particular case in which we can check the accretiveness of −f∗ − µI

is ω + γ < 0. In fact, this follows easily from the above estimates for

‖u− v‖ (see the estimate (5.81)).

(2) It is interesting to ”compute” the infinitesimal generator of the evolu-

tion semigroup (T h)h≥0 determined by Proposition 5.1. To this pur-

pose, let us recall the operator L which relates a mild solution u of the

equation ẋ = Ax + f(t) to the forcing term f by the rule Lu = f (see
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Sections 2.1 and 2.2 for more discussion on this operator). From the

proof of Proposition 5.1 it follows in particular that the infinitesimal

generator G of the evolution semigroup (T h)h≥0 is −L+ f∗.
(3) It can be seen that u is a mild solution of Eq. (5.78) if and only if

(−L+ f∗)u = 0, so it is the fixed point of the semigroup (T h)h≥0.

(4) Let f∗ act on the function space Λ(X) ∩ AP (X). Then by the same

argument as in the proof of Proposition 5.1 we can prove that the

evolution semigroup (T h)h≥0 leaves Λ(X)∩AP (X) invariant. This will

be helpful if we want to discuss the spectrum of the unique almost

periodic solution in Corollary 5.2.

5.2.2.2 Almost periodic solutions of differential equations with de-

lays

In this subsection we apply the results of the previous subsection to study

the existence of almost periodic mild solutions of the equation

dx

dt
= Ax+ f(t, x, xt) (5.77)

where A is defined as in the previous subsection, and f is an everywhere

defined continuous mapping from R × X × C to X. Hereafter we call a

continuous function x(t) defined on the real line R a mild solution of Eq.

(5.77) if

x(t) = S(t− s)x(s) +

∫ t

s

S(t− ξ)f(ξ, x(ξ), xξ)dξ, ∀t ≥ s.

We should emphasize that our study is concerned only with the existence

of almost periodic mild solutions of Eq. (5.77), and not with all mild

solutions in general.

Definition 5.12. (condition H6). Equation (5.77) is said to satisfy condi-

tion H6 if the following is true:

(1) For every g ∈ AP (X) the mapping F (t, x) = f(t, x, gt) satisfies condi-

tions H4 and H5 with the same constant γ.

(2) There exists a constant µ with ω − µ < 0 such that −(µI + F∗) is

accretive for every g ∈ AP (X).

(3) [x − y, f(t, x, φ) − f(t, y, φ′)] ≤ γ‖x − y‖ + δ‖φ − φ′‖, ∀t ∈ R, x, y ∈
X, φ, φ′ ∈ C.

Theorem 5.25. Let condition H6 hold. Then for δ sufficiently small (see

the estimate (5.86) below), Eq. (5.77) has an almost periodic mild solution.
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Proof. First we fix a function g ∈ AP (X). In view of Proposition 5.1 we

observe that the equation

dx

dt
= Ax+ F (t, x)

has a unique almost periodic mild solution, where F (t, x) = f(t, x, gt). We

denote this solution by Tg. Thus, we have defined an operator T acting on

AP (X). We now prove that T is a strict contraction mapping. In fact, let

us denote by U(t, s) and V (t, s) the Cauchy operators

U(t, s)x = S(t− s)x+

∫ t

s

S(t− ξ)f(ξ, U(ξ, s)x, gξ)dξ, (5.83)

V (t, s)x = S(t− s)x+

∫ t

s

S(t− ξ)f(ξ, V (ξ, s)x, hξ)dξ, (5.84)

for given g, h ∈ AP (X), x ∈ X, t ≥ s.

Putting u(t) = U(t, s)x, v(t) = V (t, s)x for given s, x, from the assump-

tions we have

[u(t) − v(t), f(t, u(t), gt − f(t, v(t), ht] ≤ m(t, ‖u(t) − v(t)‖),
where m(t, ‖u(t) − v(t)‖) = γ‖u(t) − v(t)‖ + δ‖h− g‖. Using this we get

‖u(t) − v(t)‖ ≤ ‖u(t− η) − v(t− η)‖ + ηm(t, ‖u(t) − v(t)‖)

+

∫ t

t−η

‖S(t− ξ)f(ξ, u(ξ), hξ) − f(t, u(t), ht)‖dξ

+

∫ t

t−η

‖S(t− ξ)f(ξ, v(ξ), gξ) − f(t, v(t), gt)‖dξ.

Now let us fix arbitrary real numbers a ≤ b. Since the functions S(t −
ξ)f(ξ, u(ξ), hξ) and S(t − ξ)f(ξ, v(ξ), gξ) are uniformly continuous on the

set a ≤ ξ ≤ t ≤ b, for every ε > 0 there exists an η0 = η0(ε) such that

‖S(t− ξ)f(ξ, u(ξ), hξ) − f(t, u(t), ht)‖ < ε,

‖S(t− ξ)f(ξ, v(ξ), gξ) − f(t, v(t), gt)‖ < ε,

for all ‖t − ξ‖ < η0 and t ≤ ξ ∈ [a, b]. Hence, denoting ‖u(t) − v(t)‖ by

α(t), for η < η0 we have

α(t) − eωηα(t− η) ≤ ηm(t, α(t)) + 2ηε. (5.85)

Applying this estimate repeatedly, we get

α(t) − eω(t−s) ≤
n
∑

i=1

eω(t−ti)m(ti, α(ti))∆i + 2ε

n
∑

i=1

eω(t−ti)∆i,
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where t0 = s < t1 < t2 < ... < tn = t and |ti − ti−1| = ∆i. Thus, since ε is

arbitrary, and since the function m is continuous, we get

α(t) − eω(t−s)α(s) ≤
∫ t

s

eω(t−ξ)m(ξ, α(ξ))dξ

=

∫ t

s

eω(t−ξ)(γα(ξ) + δ‖h− g‖)dξ.

Applying Gronwall’s inequality we get

α(t) ≤ e(γ+ω)(t−s)α(s) + eγ(t−s)+ωt(
e−ωs − e−ωt

ω
)δ‖h− g‖.

Because of the identity α(s) = ‖u(s) − v(s)‖ = ‖U(s, s)x − V (s, s)x‖ = 0,

from the above estimate we obtain

sup
t−1≤ξ≤t

‖U(ξ, t− 1)x− V (ξ, t− 1)x‖ ≤ eγ+ω − eγ

ω
δ‖h− g‖.

Now let us denote by T t
h, T

t
g , t ≥ 0 the respective evolution semigroups

corresponding to Eq. (5.83) and Eq. (5.84). Since Th and Tg are defined

as the unique fixed points u0, v0 of T 1
h , T

1
g , respectively, we have

‖Th− Tg‖ = ‖u0 − v0‖ = ‖T 1
hu0 − T 1

g v0‖ ≤
≤ ‖T 1

hu0 − T 1
g u0‖ + ‖T 1

g u0 − T 1
g − v0‖

≤ eγ+ω − eγ

ω
δ‖h− g‖+ eω−µ‖u0 − v0‖

= Nδ‖h− g‖+ eω−µ‖Th− Tg‖,
where N = (eγ+ω − eγ)/ω. Finally, we have

‖Th− Tg‖ ≤ eγ(eω − 1)

ω(1 − eω−µ)
.

Thus, if the estimate

δ <
ω(1 − eω−µ)

eγ(eω − 1)
(5.86)

holds true, then T is a strict contraction mapping in AP (X). By virtue of

the Contraction Mapping Principle T has a unique fixed point. It is easy to

see that this fixed point is an almost periodic mild solution of Eq. (5.77).

This completes the proof of the theorem. �

Remark 5.3.

(1) In case ω = 0, γ = −µ we get the estimate

δ < eµ − 1 = µ+ µ2/2 + ...

which guarantees the existence of the fixed point of T .
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(2) If ω + γ < 0 , then we can choose µ = −γ, and therefore we get

the accretiveness condition on −(F∗ + µI). However, in general, the

condition ω + γ < 0 is a very strong restriction on the coefficients of

Eq. (5.77), if f depends explicitly on t.

5.2.2.3 Examples

In applications one frequently encounters functions f from R×X×C → X

of the form

f(t, x, gt) = F (t, x) +G(t, gt), ∀t ∈ R, x ∈ X, gt ∈ C,

where F satisfies condition ii) of Definition 5.12 and G(t, y) is Lipschitz

continuous with respect to y ∈ C, i.e.

‖G(t, y) −G(t, z)‖ ≤ δ‖y − z‖, ∀t ∈ R, y, z ∈ C

for some positive constant δ. In order to describe a concrete example we

consider a bounded domain Ω in Rn with smooth boundary ∂Ω and suppose

that

A(x,D)u =
∑

|α|≤2m

aα(x)Dαu

is a strongly elliptic differential operator in Ω. Then, defining the operator

Au = A(x,D)u, ∀u ∈ D(A) = W 2m,2(Ω) ∩Wm,2
0 (Ω)

we know from Theorem 3.6 in [Pazy (90)] that the operator −A is the

infinitesimal generator of an analytic semigroup of contractions on L2(Ω).

Now let f, g : R × Ω × R → R be Lipschitz continuous and define the

operators F (t, w)(x) = f(t, x, w(x)) and G(t, w)(x) = g(t, x, w(x)) where

t ∈ R, x ∈ Ω and w ∈ L2(Ω). Then, for any positive constant r, the

boundary value problem

∂u(t, x)

∂t
= A(x,D)u(t, x) + f(t, x, u(t, x)) + g(t, x, u(t− r, x)) in Ω ,

u(t, x) = 0 on ∂Ω

fits into the abstract setting of Eq. (5.77).

5.3 Comments and Further Reading Guide

5.3.1 Further Reading Guide

For Eq. (5.22), the idea of deriving periodic solutions using boundedness

has been recently extended to general fading memory phase spaces with
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axioms in [Ezzinbi, Liu and Minh (32)]. So that in some sense, the study

along this line is getting complete.

A phase space for Eq. (5.22) is called a fading memory space if it is

a Banach space (Γ, ‖ · ‖Γ) consisting of functions from (−∞, 0] to X that

satisfy the following axioms ([Hale and Kato (41); Hino and Murakami

(47)]):

(A1). There exist a positive constant H and locally bounded non-negative

continuous functions K(·) and M(·) on [0,∞) with the property that

if u : (−∞, a) → X is continuous on [σ, a) with uσ ∈ Γ for some

σ < a, then for all t ∈ [σ, a),

(i). ut ∈ Γ,

(ii). ut is continuous in t (with respect to ‖ · ‖Γ),

(iii). H‖x(t)‖ ≤ ‖xt‖Γ ≤ K(t− σ) supσ≤s≤t ‖x(s)‖ +M(t− σ)‖xσ‖Γ.

(A2). If {φk}, φk ∈ Γ, converges to φ uniformly on any compact set in

(−∞, 0] and if {φk} is a Cauchy sequence in Γ, then φ ∈ B and

φk → φ in Γ, k → ∞.

A fading memory space is called a uniform fading memory space if it

satisfies (A1) and (A2) with K(·) ≡ K1 (a constant) and M(t) → 0 as

t→ ∞.

In [Ezzinbi, Liu and Minh (32)], the Poincaré operator is shown to be

condensing in Γ under the condition that

M(0) < 1,

which simplifies a condition in [Henriquez (45)] of the form

inf
0<σ<T

M(T − σ)[
1

H
K(σ) sup

0≤t≤σ
‖T (t)‖+M(σ)] < 1. (5.87)

Then, when the phase space Γ is a uniform fading memory space, it

is shown that Eq.(5.22) has periodic solutions if its solutions are ultimate

bounded.

5.3.2 Comments

Most results here are obtained under the condition that the nonlinear func-

tion f is Lipschitzian in variables other than t. If f is an arbitrary nonlinear

function, then we need to also assume that f maps a bounded set into a

bounded set and require that the solutions are also bounded (in addition

to being ultimate boundeded) in order to carry the proofs.
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Appendix

A.1 Lipschitz Operators

Let X and Y be given Banach spaces over the same field R, C. An operator

A : X → Y is called Lipschitz continuous if there is a positive constant L

such that

‖Ax−Ay‖Y ≤ L‖x− y‖X, ∀x, y ∈ X.

For a Lipschitz continuous operator A the following

‖A‖ := sup
x,y∈X, x6=y

‖Ax−Ay‖/‖x− y‖

is finite and is called the Lipschitz constant of A. The set of all Lip-

schitz continuous operators from X to Y is denoted by Lip(X;Y) and

Lip(X;X) = Lip(X) for short. A member A ∈ Lip(X) is said to be invert-

ible if there is a B ∈ Lip(X) such that A · B = B · A = I . B is called the

inverse of A and is denoted by A−1

Theorem A.26. (Lipschitz Inverse Mapping) Let X be a Banach space, A

is an invertible member of Lip(X) and B is a member of Lip(X) such that

‖B‖ · ‖A−1‖ < 1. Then A+B is invertible in Lip(X) and

‖(A+B)−1‖ ≤ ‖A−1‖(1− ‖B‖ · ‖A−1‖)−1.

Proof. We first prove the following assertion: If A ∈ Lip(X) such that

‖A‖ < 1. Then (I −A) is invertible in Lip(X) and

‖(I −A)−1‖ ≤ (1 − ‖A‖)−1. (A.1)

In fact, for x, y ∈ X

‖(I −A)x − (I −A)y‖ ≥ ‖x− y‖ − ‖Ax−Ay‖ ≥ (1 − ‖A‖)‖x− y‖.

193
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Thus I −A is injective. If z, w ∈ R(I −A), then

‖(I −A)−1z − (I −A)−1w‖ ≤ (1 − ‖A‖)−1‖z − w‖.
For x ∈ X by induction we can prove that

‖Bn+1x−Bnx‖ ≤ ‖A‖n‖Ax‖, ∀n = 0, 1, 2, ...

where by induction we define B0 := I , Bn := I + ABn−1, ∀n = 1, 2....

Indeed, this holds true for n = 0, so if we assume it to be true for n − k,

then

‖Bk+1x−Bkx‖ = ‖ABkx−ABk−1x‖
≤ ‖A‖ · ‖Bkx−Bk−1x‖
≤ ‖A‖ · ‖A‖k−1‖Ax‖,

so the assertion follows by induction. For any positive integer p,

‖Bn+px−Bnx‖ =

∥

∥

∥

∥

∥

p−1
∑

k=0

(Bn+k+1x−Bn+kx)

∥

∥

∥

∥

∥

≤
p−1
∑

k=0

‖(Bn+k+1x−Bn+kx)‖

≤
p−1
∑

k=0

‖A‖n+k‖Ax‖ ≤ ‖An‖‖Ax‖(1− ‖A‖)−1.

Since ‖A‖ < 1 and X is a Banach space, Cx = limm→∞Bmx exists for all

x ∈ X and

‖Cx−Bnx‖ = lim
p→∞

‖Bn+px−Bnx‖ ≤ ‖A‖n‖Ax‖(1 − ‖A‖)−1.

Since A is continuous,

Cx = lim
n→∞

Bnx = lim
n→∞

(I −ABn−1)x = x+ACx.

This shows that C = I+AC, so C is a right inverse of I−A, i.e. (I−A)C =

I . Finally, this shows the surjectiveness of I−A, proving the assertion that

I −A is invertible in Lip(X).

We are now in a position to prove the theorem. In fact, we have (A +

B) = (I + BA−1)A and ‖BA−1‖ ≤ ‖B‖ · ‖A−1‖ < 1. By the above

assertion, (I+BA−1)−1 exists as an element of Lip(X). Hence (A+B)−1 =

A−1(I +BA−1)−1. and

‖(I +BA−1)−1‖ ≤ (1 − ‖B‖ · ‖A−1‖)−1.
�
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A modification of the above theory for Lipschitz continuous operators

from a Banach space X to another Banach space Y can be easily made.

For instance, the following is true:

Theorem A.27. Let A be an invertible member of Lip(X,Y). Then for

sufficiently small positive k, the operator A+B is an invertible member of

Lip(X,Y) if ‖B‖ < k.

Proof. Set C = A−1(A + B) − I . Then C is a member of Lip(X), and

for all x, y ∈ X,

‖Cx− Cy‖X = ‖(A−1(A+B) −A−1A)x− (A−1(A+B) −A−1A)y‖
≤ ‖A−1‖ · ‖B‖ · ‖x− y‖.

Thus for sufficiently small positive k, I + C is invertible, so is A+B. �

A.2 Fixed Point Theorems

The following fixed point theorems can be found in Smart [Smart (99)],

Burton [Burton (18)], and Hale and Lunel [Hale and Lunel (42)].

Definition. A mapping (operator) P on a metric space (X, ρ) is called a

contraction mapping if there is an r ∈ (0, 1) such that

ρ(Px, Py) ≤ rρ(x, y).

Theorem (Contraction mapping principle). Let P be a contraction

mapping on a complete metric space X, then there is a unique x ∈ X with

Px = x. Moreover, x = limn→∞ xn, where x0 is any element of X and

xj+1 = Pxj , j = 0, 1, · · · .

Proof. Now, for some 0 < r < 1, we have ρ(Py, Pz) ≤ rρ(y, z) when

y, z ∈ X . Let x0 be any element of X and define xj+1 = Pxj , j = 0, 1, · · · .
Then x1 = Px0, x2 = Px1 = P 2x0, · · · , xj = Pxj−1 = · · · = P jx0, j =
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1, 2, · · · . Thus, for m > n,

ρ(xn, xm) = ρ(Pnx0, P
mx0)

≤ rρ(Pn−1x0, P
m−1x0)

...

≤ rnρ(x0, P
m−nx0) = rnρ(x0, xm−n)

≤ rn
[

ρ(x0, x1) + ρ(x1, x2) + · · · + ρ(xm−n−1, xm−n)
]

≤ rn
[

ρ(x0, x1) + rρ(x0, x1) + · · · + rm−n−1ρ(x0, x1)
]

= rnρ(x0, x1)
[

1 + r + · · · + rm−n−1
]

≤ rnρ(x0, x1)
1

1 − r
. (A.2)

As 0 < r < 1, the right-hand side goes to zero when n→ ∞. Thus {xn}
is a Cauchy sequence, and hence has a limit x ∈ X because X is a complete

metric space. Now, it is easily seen that P is continuous, therefore

Px = P
(

lim
n→∞

xn

)

= lim
n→∞

(

Pxn

)

= lim
n→∞

xn+1 = x, (A.3)

and x is a fixed point of P . If y is also a fixed point of P , then

ρ(x, y) = ρ(Px, Py) ≤ rρ(x, y), (A.4)

and, as 0 < r < 1, we must have ρ(x, y) = 0, which implies x = y. This

completes the proof.

Theorem (Brouwer’s fixed point theorem). Let B ⊂ <n be nonempty,

convex, and compact, and let F : B → B be a continuous operator. Then

F has a fixed point in B.

Theorem (Schauder’s first fixed point theorem). Let X be a

nonempty, convex, and compact subset of a Banach space Y , and let

P : X → X be a continuous operator. Then P has a fixed point in X.

Theorem (Schauder’s second fixed point theorem). Let X be a

nonempty, convex, and bounded subset of a Banach space Y and let P :

X → X be a compact operator. Then P has a fixed point in X.

The following are called “asymptotic fixed point theorems” since they

use the idea that if Pm has a unique fixed point for some positive integer

m, then P itself has a fixed point.
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Definition. Let A and B be subsets of a Banach space Z. If A = B ∩ C
for an open subset C of Z, then A is open relative to B.

Theorem (Horn’s fixed point theorem). Let E0 ⊂ E1 ⊂ E2 be convex

subsets of a Banach space Z, with E0 and E2 compact subsets and E1 open

relative to E2. Let P : E2 → Z be a continuous operator such that for some

integer m, one has

P j(E1) ⊂ E2, 1 ≤ j ≤ m− 1, (A.5)

P j(E1) ⊂ E0, m ≤ j ≤ 2m− 1, (A.6)

then P has a fixed point in E2.

Theorem (Browder’s fixed point theorem). Let E0 ⊂ E1 ⊂ E2 be

convex subsets of a Banach space Z, with E0 closed and E1, E2 open. Let

P : E2 → Z be a compact operator such that for some integer m, one has

P j(E0) ⊂ E1, 0 ≤ j ≤ m, (A.7)

Pm(E1) ⊂ E0, (A.8)

then P has a fixed point in E2.

Theorem (Hale and Lunel’s fixed point theorem). Suppose S0 ⊆
S1 ⊆ S2 are convex bounded subsets of a Banach space Y , S0 and S2 are

closed, and S1 is open in S2, and suppose P : S2 → Y is (S2)-condensing

in the following sense: if U and P (U) are contained in S2 and α(U) > 0,

then α(P (U)) < α(U). If P j(S1) ⊆ S2, j ≥ 0, and, for any compact set

H ⊆ S1, there is a number N(H) such that P k(H) ⊆ S0, k ≥ N(H), then

P has a fixed point.

A.3 Invariant Subspaces

Let S ⊂ H be a closed subset and PS , the orthogonal projection onto

the subspace S. The operator is still a densely defined closed (possibly

unbounded) linear operator in H .

Definition A.13. S is said to be an invariant subspace for A if we have

the inclusion A(D(A) ∩ S) ⊂ S.

Example A.2. Let us mention the following classical invariant subspaces

for the closed unbounded linear operator A defined into the Hilbert space

H .
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1. S = N(A) = {x ∈ D(A) : Ax = 0} is an invariant subspace for A.

2. If A is a self-adjoint linear operator, then any eigenspace Sλ =

N(λI − A) is an invariant for A. In fact it can be easily shown that Sλ

reduces A.

Theorem A.28. The equality PSAPS = APS is a necessary and sufficient

condition for a subspace S to be invariant for a linear operator A.

Proof. Assume PSAPS = APS and if x ∈ D(A) ∩ S, then x = PSx ∈
D(A) and Ax = APSx = PSAPSx ∈ S.

Conversely, if S is invariant for A; let x ∈ H be such that PSx ∈ D(A).

Then APSx ∈ S and then PSAPSx = APSx. Therefore APS ⊂ PSAPS .

Since D(APS) = D(PSAPS), it turns out that APS = PSAPS . �

Definition A.14. A closed proper subspace S of the Hilbert space H is

said to reduce an operator A if PSD(A) ⊂ D(A) and both S and H 	 S,

the orthogonal complement of S, are invariant for A.

Using the above Theorem , the following key result can be proved.

Theorem A.29. A closed subspace S of H reduces an operator A if and

only if PSA ⊂ APS .

Proof. See the proof in [Locker (64)] Theorem 4.11., p. 29. �

Remark A.4. In fact the meaning of the inclusion PSA ⊂ APS is that: if

x ∈ D(A) , then PSx ∈ D(A) and PSAx = APSx .

A.4 Semilinear Evolution Equations

We recall in this section a result on the well posedness for semilinear equa-

tions of the form
dx

dt
= Ax +Bx , x ∈ X (A.9)

where X is a Banach space, A is the infinitesimal generator of a C0-

semigroup S(t), t ≥ 0 of linear operators of type ω, i.e.

‖S(t)x− S(t)y‖ ≤ eωt‖x− y‖, ∀ t ≥ 0, x, y ∈ X ,

and B is an everywhere defined continuous operator from X to X. Here-

after, by a mild solution x(t), t ∈ [s, τ ] of equation (A.9) we mean a contin-

uous solution of the integral equation

x(t) = S(t− s)x+

∫ t

s

S(t− ξ)Bx(ξ)dξ, ∀s ≤ t ≤ τ. (A.10)
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Before proceeding we recall some notions and results which will be fre-

quently used later on. We define the bracket [·, ·] in a Banach space Y as

follows (see e.g. [Martin (67)] for more information)

[x, y] = lim
h→+0

‖x+ hy‖ − ‖y‖
h

= inf
h>0

‖x+ hy‖ − ‖y‖
h

Definition A.15. Suppose that F is a given operator on a Banach space

Y. Then (F + γI) is said to be accretive if and only if for every λ > 0 one

of the following equivalent conditions is satisfied

(1) (1 − λγ)‖x− y‖ ≤ ‖x− y + λ(Fx − Fy)‖, ∀x, y ∈ D(F ),

(2) [x− y, Fx− Fy] ≥ −γ‖x− y‖, ∀x, y ∈ D(F ).

In particular, if γ = 0 , then F is said to be accretive.

Remark A.5. From this definition we may conclude that (F + γI) is ac-

cretive if and only if

‖x− y‖ ≤ ‖x− y + λ(Fx− Fy)‖ + λγ‖x− y‖ (A.11)

for all x, y ∈ D(F ), λ > 0, 1 ≥ λγ .

Theorem A.30. Let the above conditions hold true. Then for every fixed

s ∈ R and x ∈ X there exists a unique mild solution x(·) of Eq.(A.9)

defined on [s,+∞). Moreover, the mild solutions of Eq.(A.9) give rise to a

semigroup of nonlinear operators T (t), t ≥ 0 having the following properties:

i) T (t)x = S(t)x+

∫ t

0

S(t− ξ)BT (ξ)xdξ, ∀t ≥ 0, x ∈ X, (A.12)

ii) ‖T (t)x− T (t)y‖ ≤ e(ω+γ)t‖x− y‖, ∀t ≥ 0, x, y ∈ X. (A.13)

More detailedly information on this subject can be found in [Martin

(67)].

Theorem A.31. Let D be a closed and convex subset of a Hausdorff locally

convex space such that 0 ∈ D, and let G be a continuous mapping of D into

itself. If the implication

(V = convG(V ) or V = G(V ) ∪ {0}) =⇒ V is relatively compact

holds for every subset V of D, then G has a fixed point.
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In what follows we shall need the following definition of the proper

mapping at a given point.

Let X, Y be metric spaces, f : X → Y be a continuous function and

let y ∈ Y . f is said to be proper at the point y provided that there exists

ε > 0 such that for any compact set K ⊂ B(y, ε) the set f−1(K) is compact,

where B(y, ε) is the open ball in Y of center y and radius ε.

If f−1(K) is compact for any compact K ⊂ Y , then f is called proper.

The proofs of Aronszajn type results (see [Aronszjan (9)]) are based on

the following Browder-Gupta type theorem (see [Górniewicz (38)])

Theorem A.32. Let E be a Banach space and f : X → E be a continuous

map such that the following conditions are satisfied:

(i) f is proper at 0 ∈ E,

(ii) for every ε > 0 there exists a continuous map fε : X → E for which

we have:

(a) ‖f(x) − fε(x)‖ < ε for every x ∈ X,

(b) the map f̃ε : f−1
ε (B(0, ε)) → B(0, ε), f̃ε(x) = fε(x) for every x ∈

f−1
ε (B(0, ε)), is a homeomorphism.

Then the set f−1({0}) is an Rδ set.
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équations différentielles, Ann. Math. 43 (1942), 730-738.
B. Aulbach , N.V. Minh, Nonlinear semigroups and the existence, stability of
semilinear nonautonomous evolution equations, Abstract and Applied Analysis
1(1996), 351-380.
B. Aulbach, N.V. Minh, Almost periodic mild solutions of a class of partial
functional differential equations, Abstract and Applied Analysis. To appear.
B. Basit, Harmonic analysis and asymptotic behavior of solutions to the abstract
Cauchy problem, Semigroup Forum 54(1997), 58-74.
A.G. Baskakov, Semigroups of difference operators in the spectral analysis of
linear differential operators, Funct. Anal. Appl. 30(1996), no. 3, 149–157 (1997).
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