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The numerical approximation of Maxwell’s equations, computational electromag-
netics (CEM), has emerged as a crucial enabling technology for radio-frequency,
microwave, and wireless engineering. The three most popular “full-wave” meth-
ods – the Finite Difference Time Domain method, the Method of Moments, and
the Finite Element Method – are introduced in this book by way of one- or two-
dimensional problems. Commercial or public domain codes implementing these
methods are then applied to complex, real-world engineering problems, and a care-
ful analysis of the reliability of the results obtained is performed, along with a dis-
cussion of the many pitfalls that can result in inaccurate and misleading solutions.
The book will empower readers to become discerning users of CEM software,
with an understanding of the underlying methods, and confidence in the results
obtained. It also introduces readers to the art of code development. This book has
a dedicated website making available a number of MATLAB scripts, implementing
much of the theory discussed, and including additional material on the practical
applications of CEM. Suitable for senior undergraduate and graduate students tak-
ing courses on CEM, this would also be a valuable reference book for practicing
engineers in the industry.
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Preface

On graduating twenty years back, in 1984, my first job was as a research engi-
neer working on computational electromagnetics (CEM) at the National Institute
for Aeronautical Systems Technology (as it was then called) of the Council for
Scientific and Industrial Research (CSIR) in Pretoria, South Africa. It was an ex-
citing time to be working in this field. Although a number of methods had already
been successfully introduced, including the three which will be discussed in detail
in this book, major advances were being made in all of these methods, and the
power of desktop computers was growing in leaps and bounds. No commercial
programs (or codes, as they are generally called) were then available for RF prob-
lems, but some US government-sponsored codes, in particular the NEC-2 code,
were becoming available for general use.

The 1980s saw the final decade of the Cold War, which in some areas (such
as Southern Africa) was far from cold. New military technologies, in particular
stealth, were driving CEM to address progressively more electromagnetically com-
plex problems. However, when the Cold War ended, far from CEM work coming to
a halt, new commercial markets, such as the rapidly developing market in mobile
telephony and personal communication systems, and the proliferation of electronic
systems in motor vehicles, continued to drive the technology forward at breakneck
speed throughout the 1990s. This was also due to the widespread availability of
cheap and progressively more powerful personal computers as a crucial enabling
technology.

CEM has now reached a modicum of maturity, with a number of powerful meth-
ods available, able to solve problems of real engineering interest at radio frequen-
cies, and with a number of commercial codes available. This has brought a signif-
icant change in the profile of CEM practitioners, which has not been fully appre-
ciated in the community at the time of writing. In addition to the traditional group
of CEM users – largely academics, post-graduate students and research engineers
at large corporations or research establishments – an entirely new generation of

xi
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users has arisen. Their interest is typically in using an existing commercial packet
to solve a particular problem as rapidly as possible. They may well not have any
post-graduate exposure to CEM methods, and questions which may appear ele-
mentary to CEM researchers (such as which technique is most appropriate for the
problem at hand) are actually far from obvious to the beginner in the field; further-
more, marketing can “hype” a particular implementation/technique to the point
where it appears omnipotent. Commercial codes aside, even academic papers are
not free of such bias.

This book aims to serve the interest of both “traditional” CEM users, primar-
ily academics, researchers and research students, and also this new non-specialist
user community in industry. The book aims to fill the gap between traditional un-
dergraduate textbooks, which generally have at most a very cursory discussion of
numerical methods; antenna texts, which concentrate only on the analysis of an-
tennas using the methods; and the specialist books on each method which are fre-
quently formidable reading for students, or unnecessarily detailed for engineers
whose primary interest is in using the powerful CEM codes now available. In
this book, the computational methods will generally be introduced using simple
one-dimensional or two-dimensional examples, so that the core of the method can
be appreciated without being overwhelmed by the problems of handling complex
three-dimensional geometries. Following this, the extensions required to deal with
the real three-dimensional world of RF engineering are outlined, so that one gains
an appreciation for the operation of complex codes. Such is the complexity of
general-purpose three-dimensional CEM codes that realistic applications cannot
be undertaken with anything a post-graduate student can realistically be expected
to develop during a typical course, and product cycles are too short in industry to
make the development of general-purpose three-dimensional codes feasible, given
that off-the-shelf codes are now available.

Research students will find some features not often described in other books in
this field, such as how to go about debugging and verifying a CEM code. Industrial
users should find the discussions of the strengths and weaknesses of each method,
as well as frequent modelling hints, comprehensive discussions of typical mod-
elling errors, and the necessity of careful evaluation and verification of results, of
great interest and utility. In short, the book discusses not only the science of CEM
modelling, which can be gleaned from (much) reading, but also the art of devel-
oping and verifying reliable codes and computing reliable data, which is a skill
generally derived from (sometimes bitter!) experience.

This book concentrates on the “big three” techniques in CEM – the Finite Dif-
ference Time Domain (FDTD) method, the Method of Moments (MoM) and the
Finite Element Method (FEM). It was decided to focus on these three methods,
since they are the most widely used in the field and all have been implemented
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in successful commercial codes; some other methods are very briefly discussed so
that readers are at least aware of them, but this book makes no pretense of address-
ing these other methods in any detail. Furthermore, the discussion in this book is
focussed exclusively on applications in RF engineering. Methods such as the FEM
have been used with great success for magnetostatic problems, such as motor de-
sign, but this will not be discussed here at all. A feature not often found in other
books at this level is a discussion of stratified media, using the Sommerfeld po-
tentials. Although a theoretically advanced topic, the widespread use of integrated
antennas, especially microstrip, has made an appreciation of at least the basics of
this approach very important. Finally, the book does not pretend to be a compre-
hensive text on electromagnetic theory, high-frequency circuit theory, or antenna
theory and design. There are a number of superb books addressing these topics and
this book is designed to complement, not compete, with them. Frequent references
are made to suitable books.

Readers will also note that the level of the material becomes increasingly so-
phisticated as the book progresses. This is by design. The FDTD method is the
only method where one can realistically hope to develop useful code oneself in a
reasonable timeframe, so the discussion of this method is rather more “nuts and
bolts” than for the MoM or FEM. CEM methods can also be approached as es-
sentially an exercise in applied mathematics; although interesting theoretical in-
sights can be thus gained, it is the author’s experience that engineers do not readily
take to this approach, certainly not for their initial introduction to the methods, so
the introductory discussions of at least the FDTD method and MoM draw mainly
on engineering physics, rather than applied mathematics. Some of the more the-
oretical approaches to CEM are introduced towards the end of the book, in the
chapters on the MoM and FEM. (Perhaps because of the enormous amount of
work on the FEM in applied mechanics, this is probably the method with the most
well-developed mathematical background.) These include some elementary con-
cepts from functional analysis, with the associated concepts of inner products and
weighted residuals, as well as a brief mention of differential forms. A difficult de-
cision was how much of the great volume of recent advances to reflect in the book.
Topics such as the fast multipole method have revitalized the MoM in particular,
and cannot be ignored, but the treatment of this and some other “research frontier”
material is of necessity cursory.

A highly problematic issue was the selection of which commercial CEM codes
to use to illustrate complex real-world implementations. One factor influencing
this was the availability of a no-cost limited feature version of the software, as in
the case of the MoM code FEKO; however, the FDTD and FEM codes discussed
are unfortunately not available in such a format. The discussion tries to high-
light generic features which a code should offer, and how users can exploit these.
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User-manual style descriptions of how to use particular codes have been avoided
as far as possible, so that discussions of one particular code should extend to other
commercial codes implementing the same method, at least to a degree. At the time
of writing, FEKO supported a type of scripting language, which has been used in
places to automate the generation of complex geometries for MoM analysis; the
constructs (FOR loops, IF-THEN-ELSE conditionals) are felt to be sufficiently
generic to be useful in other codes supporting similar features.

Where appropriate, references are provided for further reading. In general, only
those readily available in the English language archival open literature have been
listed. On one or two occasions, internal reports have been included. The engi-
neering community is divided on the use of such references; authors in the USA in
particular often reference such reports in journal papers, which often prove frus-
tratingly difficult to locate, sometimes being limited to US distribution only. In
consequence, this has only been done when there is no other published version
of the material. A similar problem can be encountered with theses; here, however
some significant recent research has necessitated limited reference to recent dis-
sertations, since these results are yet to appear in the archival literature.

The book draws primarily on the literature of Western science. Much work was
done on computational electromagnetics in especially the former Soviet Union, but
unfortunately little has been translated, and what has been is very difficult reading
for electronic engineers trained in the Western tradition; it also tends to be at a
much higher theoretical level than the main thrust of this book.

This book is an outgrowth of notes developed over a fifteen year period for a
post-graduate course taught by the author at the University of Stellenbosch, South
Africa, as well as a short course for industry taught by the author and several
colleagues in 1999. Extensive integration of the material was undertaken during the
author’s sabbatical visit as a Guest Professor at the Delft University of Technology
during 2003, where the course was also taught. Chapter 2 is adapted and extended
from notes originally prepared by James T. Aberle at Arizona State University,
Tempe, AZ, USA, and he is credited accordingly, but the rest of the authorship is
that of DBD.
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To the reader

This book is designed to serve as an introduction to computational electromagnet-
ics for radio-frequency applications. It assumes the reader has completed typical
undergraduate courses in electromagnetic field theory, and has some basic knowl-
edge of antenna design and microwave systems.

For readers in a hurry, who already know which of the techniques discussed they
would like to learn more about, it is possible to go directly to the relevant chapters,
but it would nonetheless be useful first to read the introductory chapter. For those
in a hurry, but who need first to find out which method (or methods) to use, this
chapter is essential reading.

For readers who intend working through most of the book, it would be best
to work through it in the sequence presented, although the chapters on the Som-
merfeld formulation and practical applications thereof could be omitted without
interrupting the sequence of presentation. A more detailed outline of the book may
be found in Section 1.11; this will also assist readers to locate rapidly the parts of
the book of interest to them.

At the end of each chapter, a list of references linked to the chapter topic is
presented, for further reading and study.

xvii



Notation

Throughout this book, the following notation is used. Spatial vectors are indicated
as �E (in this case, the electric field). Vectors in the linear algebra sense are indi-
cated as {x}, and matrices as [A]. The individual elements of a vector or matrix are
of course indicated as xi or Ai j respectively. Otherwise, the notation is as generally
encountered in engineering books on this topic. A summary is presented below.

The time convention used for phasor quantities is e jωt , hence, an e− jkr plane
wave propagates in the direction of increasing r . (Note that physics books often
adopt the e−iωt convention, in which case the sign also changes in the plane wave
exponential factor.)

∇× the curl operation
∇· the divergence operation
× the vector cross product of two vectors
�E the (field) vector E
ε0 the permittivity of free space (≈ 8.854 × 10−12 F/m)
εr relative permittivity of a dielectric material (dimensionless)
µ0 the permeability of free space (4π × 10−7 H/m)
µr relative permeability of a magnetic material (dimensionless)
c the speed of light in free space (≈ 2.9979 × 108 m/s)
λ wavelength [m/s] or real part of spectral variable kρ

(the meaning will be clear from the context)
λi simplex coordinate i
O(Mn) of the order of Mn , formally,

N = O(Mn) ⇒ lim
M→∞ logN / log M = n

[A] the matrix A
ai j the i j th element of matrix A
{x} the (algebraic) vector x

xviii



List of notation xix

xi the i th element of vector {x}
||{x}|| the Euclidean norm of the vector {x} of length n,

||{x}|| ≡
√∑n

i=1 |xi |2
≡ is defined as
∀ for all
|z| absolute value of z
⇒ implies
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An overview of computational electromagnetics for RF
and microwave applications

Even if we do discover a complete unified theory, it would not mean that we would be able
to predict events in general . . . even if we do find a complete set of basic laws, there will still
be in the years ahead the intellectually challenging task of developing better approximation
methods, so that we can make useful predictions of the probable outcomes in complicated
and realistic situations.

From [1, pp. 168–169] (the present author’s emphasis).

Computations: no-one believes them, except the person who made them.
Measurements: everyone believes them, except the person who made them . . .

Attributed to Professor B. Munk, Ohio State University.

1.1 Introduction

Electromagnetics, the study of electrical and magnetic fields and their interaction,
has been one of the core technologies of the twentieth century, and shows every
sign of continuing this into the twenty-first. Whilst there are many useful ways
of subdividing the field, power frequency versus radio frequency, or alternatively
quasi-static versus full-wave, is one of the most insightful here. This book focusses
exclusively on radio-frequency, full-wave electromagnetic modelling, as typically
encountered in communication systems.

The core of modern electromagnetic engineering is of course Maxwell’s equa-
tions. Written in modern form,1 they are:

∇ × �E = − ∂

∂t
�B (1.1)

∇ × �H = �J + ∂

∂t
�D (1.2)

1 Maxwell did not actually write his equations in this form; vector analysis was a late nineteenth-century devel-
opment.

1



2 An overview of computational electromagnetics

∇ · �D = ρ (1.3)

∇ · �B = 0 (1.4)

with the associated constitutive equations

�B = µ �H (1.5)

�D = ε �E (1.6)

The actual solution of the Maxwell equations is complex, and for realistic prob-
lems, approximations are usually required – as indicated by the introductory quote
from Hawking, although he had in mind an altogether more ambitious theory (of
everything!). The numerical approximation of Maxwell’s equations, the subject of
this book, is known as computational electromagnetics (CEM).

CEM techniques have been available for close on four decades now. These
techniques have gestated, grown and matured to the point where they form an
invaluable part of current RF and microwave engineering practice [2]. However,
the widespread adoption of computational methods to complement the traditional
tools of analysis and measurement has attracted criticism, summarized with more
than a grain of truth by the second quote at the beginning of the chapter. Ironi-
cally, the availability of powerful, commercial codes may well have made the sit-
uation worse, not better, since more and more frequently, codes are being applied
by users unfamiliar with the basic formulations underlying the codes, and not in-
frequently to problems for which the codes were not designed. One of the major
aims of this book is to make RF computational electromagnetics comprehensible
and accessible to a far wider group of RF engineers than has been the case in the
past.

CEM is a multi-disciplinary field. Its core disciplines are electromagnetic theory
and numerical methods, but for useful implementations, geometric modelling and
visualization, computer science and algorithms all have important roles to play. In
this book, the focus falls on the core disciplines.

The applications of CEM are legion, and include antennas, biological EM ef-
fects, medical diagnosis and treatment, electronic packing and high-speed cir-
cuitry, superconductivity, microwave devices, monolithic microwave integrated
circuits, law enforcement, environmental issues, materials, avionics, communica-
tions, energy generation and conservation, low observable vehicles (stealth), radars
and imaging, surveillance and intelligence gathering. In this book, we focus pri-
marily on applications in antennas, wireless communications, radar, and (passive)
microwave devices, although an example will be given of a biological EM effect
study.
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An historical aside – a brief history of electromagnetics

Interest in static electricity and magnetism, of course, dates back to ancient
times. The Ancient Greeks circa 400 BC noted that rubbing amber attracted
bits of straw, and the Chinese reportedly found lodestones (natural magnets)
circa 2600 BC, first using them for burial purposes, and later for navigation. The
modern study of electromagnetic phenomena dates to the late eighteenth century,
with the great progress in experimental methods by Alessandro Volta (1745–
1827), Hans Christian Oersted (1777–1851) and Michael Faraday (1791–1867)
on the one hand, and the more mathematical modelling approach of Charles
Augustin de Coloumb (1736–1806) and André-Marie Ampère (1775–1836) on
the other. Amongst these, the following milestones stand out: the development
of the battery by Volta provided a continuous source of electricity for the first
time; Coloumb’s careful measurements of the electric force resulted in the fa-
mous inverse square law; Oersted’s 1820 discovery showed that (direct) current
deflected a magnet; Ampère developed mathematical laws describing this and
the force between current carrying wires; and finally, Faraday’s crucial contribu-
tion in 1831 showed that a changing magnetic field sets up an alternating current
(i.e. an electric field), and for the first time connected two forces of nature which
until then had been thought quite independent.

James Clark Maxwell (1831–1879), the most brilliant physicist of the nine-
teenth century,a combined the work of his predecessors in elegant theoretical
fashion and postulated that changing electric fields should generate magnetic
fields; he then showed that this implied wave motion. Hermann Ludwig-
Ferdinand Helmholtz (1821–1894) was one of the first to recognize the signif-
icance of Maxwell’s predictions in this regard; in 1888, his student Heinrich
Rudolph Hertz (1857–1894) showed experimentally that electromagnetic fields
indeed propagate, and at the speed of light. Oliver Heaviside (1850–1925) also
made contributions in this regard, although his work is not widely recognized
nowadays [3]. In what we would now describe as the first commercial spin-off
of this work, Guglielmo Marconi (1874–1937) was the first to profit financially
from the emerging field of wireless.

Electromagnetics was also to have a profound influence on the outstanding
physicist of the twentieth century, Albert Einstein (1879–1955). Perhaps less
well known than some of his results – certainly amongst the general public –
Einstein showed that the magnetic field is the relativistic correction of the electric

aMaxwell not only unified electricity and magnetism in 1864, he also developed the kinetic theory of gases,
before his life was cut tragically short by illness.
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field, confirming the unified field theoretic nature of Maxwell’s electromagnetic
theory.

The above is the conventional Western history of electromagnetics. Contribu-
tions to the theory of light, intimately connected to electromagnetics, were made
by many over an extremely long period of time, including contributions from
Arabic scholars. An exceptionally erudite historical perspective may be found
in [4].

1.2 Full-wave CEM techniques

Full-wave CEM methods approximate the Maxwell equations numerically, with-
out any initial physical approximations being made. These are also some-
times called low-frequency methods, to distinguish them from asymptotic high-
frequency methods, but this can be confusing for several reasons.2 The full-wave
techniques which will be studied in this book are the finite difference time domain
(FDTD) method; the method of moments (MoM), and the finite element method
(FEM). Whilst there are other methods available, these are the most widely used,
and all have been implemented in powerful computer codes. These techniques are
frequently classified further by whether they are based on integral or differential
equations, and by whether they operate in the time or frequency domain. We will
discuss this in the context of each method subsequently.

Sometimes, the expressions “static” or “quasi-static” will be used. The former
applies obviously to the situation where one is dealing with either steady-state
charges (and the associated electric fields) or currents (and the associated mag-
netic fields). The latter applies to situations where the time rate of change is low
enough that the fields still satisfy the static equations to a very good approxima-
tion – or put differently, the ∂

∂t
�B term in Eq. (1.1) is negligible (in which case one

obtains electroquasistatics) or similarly for the ∂
∂t

�D term in Eq. (1.2) (which yields
magnetoquasistatics). A very detailed discussion of these approximations and their
use may be found in [5]. However, we will not pursue this far in this book, which
deals almost entirely with full-wave methods.

There is another class of numerical method for solving the Maxwell equations,
generally called the asymptotic techniques. These methods require fundamental
approximations in the Maxwell equations, the validity of which increases asymp-
totically with frequency. Examples are physical optics (PO), geometrical optics

2 Firstly, the high-frequency radio band is specifically the spectrum from 3–30 MHz; secondly, the meaning of
low and high are entirely relative, and the same methods may be, and are, useful from power frequencies up to
the visible spectrum and beyond; and finally, “high-frequency” as a general term in electronic engineering is
widely used to distinguish from “power frequency,” with the latter usually using quasi-static approaches.
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(GO) and the uniform theory of diffraction (UTD). This is a field of study in
its own right. For suitable problems, these methods are very powerful, but the
underlying approximations of the physics limits their use for general problems.
Furthermore, unlike the full-wave methods, where Moore’s law and the resulting
increase in computer speed and memory continually extend the limits of applica-
bility, the asymptotic methods have fundamental limits. Hence, in this book, only
full-wave methods are considered. However, a hybridization with an asymptotic
technique will be discussed as an example of an advanced application.

The full-wave techniques are potentially very accurate. Central to all these meth-
ods is the idea of discretizing some unknown electromagnetic property, typically
the surface current for the MoM, and the �E field for the FEM and FDTD method.
(For the latter, the �H field is also discretized.) This process of discretization is
also known as meshing. It entails subdividing the geometry into a (large) num-
ber of small elements. These may be one-dimensional segments, two-dimensional
surface “patches” (often triangles), three-dimensional tetrahedral elements, or a
regular three-dimensional “staggered” grid, depending on the problem at hand and
the method used. Within each element, a simple functional dependence is assumed
for the spatial variation of the unknown – for instance, a linear approximation –
but the amplitude (and possibly phase) of the unknown is determined by applica-
tion of the method to the patchwork of elements which approximates the original
geometry. This functional dependence is also known as the basis (or expansion)
function.3

Generally, the accuracy of the methods is related to the discretization (i.e. mesh
size). The finer is the mesh, the better is the accuracy of the methods.4 The largest
mesh size (alternatively, the finest geometrical resolution) is limited by the avail-
able computational resources. In other fields such as structural mechanics, the
mesh fineness is usually determined by the requirement to resolve the structural
geometry adequately; in radio-frequency electromagnetics, the requirement on the
mesh is usually to sample the phase adequately. For many years, the CEM com-
munity has worked with a rule of thumb of ten segments per wavelength. This was
originally derived for wire antenna problems, where the mesh is one-dimensional;
for surfaces, this guideline becomes 100 segments per square wavelength (and
a similar extension for volumetric meshes to 1000 per cubic wavelength). Much
work on better elements has been done to reduce this requirement – it will readily
be appreciated that as the dimensionality of the problem goes up, so this becomes

3 With the FDTD method as usually introduced, the fields are sampled at points; it is however possible to define
basis functions for the FDTD, a topic we discuss briefly in Chapter 10.

4 This is not invariably true: limitations imposed by approximations in the formulations may place some lower
bound on element size. A classic example is a thin-wire MoM formulation, where using too many segments
may violate the underlying thin-wire assumptions. This is discussed in detail in Section 4.3.
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progressively more crucial. It should also be noted that when very accurate field
data are required – for example, when computing antenna input impedance – a finer
mesh may be required, at least locally around the feed point of the antenna. Fur-
thermore, this guideline ignores the problem of dispersion in differential equation
based solvers, which effectively requires denser meshes for electromagnetically
larger problems.

Although the full-wave methods share the basic idea of discretization, and in-
deed have been viewed within a very general framework as simply different im-
plementations of one overarching theoretical formulation, in practice, the methods
have quite different challenges for theoreticians, code developers and users, as
well as different optimal areas of application, and as such, they will be consid-
ered separately in this overview chapter. In Chapter 10, some of the underlying
mathematical connections between the methods will emerge.

In the rest of this overview chapter, the MoM, FEM and FDTD method will
be reviewed qualitatively, emphasizing basic principles such as the underlying
formulation (integral/differential equation based, frequency or time domain) and
areas of application (perfectly or highly conducting materials versus homogeneous
or inhomogeneous penetrable structures; microwave devices versus radiation or
scattering analysis). This review is especially designed for readers who have a par-
ticular problem to solve, but are not sure which is the best method to use. Details of
each method will be found in the subsequent chapters of the book. Key references
only are given; a far more extensive list of references will be found at the end of
each chapter.

By way of introduction, some of the most important characteristics of the MoM,
FEM and FDTD method are presented in Tables 1.1 and 1.2. Table 1.1 provides a
comparison of the methods for open region (radiation and scattering) problems. It
is important to note that what is presented in this table are the key characteristics of
the method as widely implemented and understood in the CEM community. As will
be seen in the description of each method in the following sections, a number of

Table 1.1 Strengths and weaknesses of CEM methods as widely implemented for
open region problems

Equation Radiation PEC Homogeneous Inhomogeneous
Formulation type Domain condition only penetrable penetrable

MoM Integral Frequency Yes � � �
FEM Differential Frequency No � � �
FDTD Differential Time No � � �

Key: � good; � not optimal.
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Table 1.2 Strengths and weaknesses of CEM methods for guided wave problems

Equation PEC Homogeneous Inhomogeneous
Formulation type Domain Wideband only penetrable penetrable

MoM Integral Frequency ∼ � � �
FEM Differential Frequency ∼ � � �
FDTD Differential Time � � � �

Key: � good; ∼ satisfactory, but not necessarily the best; � not optimal.

simplifications have been made in this table: the MoM, for instance, can be seen in
a more general sense as including the FEM, although this is not normal usage; and
to give another example, the FEM can also operate in the time domain, but there
are no commercial implementations of this at present. For the MoM, homoge-
neous penetrable materials (dielectrics, for instance) can either be modelled using
equivalent surface currents or, if the problem consists of layered materials, using a
Sommerfeld formulation. This has not been noted in the table, since it depends on
the details of the problem. Table 1.2 provides a similar comparison of the methods
for guided wave problems.5 Again, the details of the precise implementation have
not been commented on.

1.3 The method of moments (MoM)

The MoM is probably the most widely used numerical technique in RF CEM,
and has a long history in the field; some of this is presented in Chapter 4. For
antenna engineering, the MoM has been the most widely used CEM method.6 In
the method of moments, the radiating/scattering structure is replaced by equiv-
alent currents. These are normally surface currents. (Volumetric currents can be
used for inhomogeneous dielectric bodies. This is however very expensive com-
putationally.) This surface current is discretized into wire segments and/or surface
patches. A matrix equation is then derived, representing the effect of every seg-
ment/patch on every other segment/patch. This interaction is computed using the
Green function for the problem. (Green functions will be discussed later in this

5 It is tempting to use the term “closed problems” here, but a number of important guiding structures, such as
microstrip, are partially open. It is assumed in this table that FEM and FDTD codes have an appropriate method
of terminating this region. Since the energy decays rapidly away from the guiding structure, and this radiation
is a secondary effect in most applications, the open boundary is usually less problematic here than in the case
of the radiation and scattering problems.

6 The name “method of moments” is peculiar to the CEM community. Perhaps the most descriptive alterna-
tive name is the “method of weighted residuals.” The term “boundary element method” is frequently used
synonymously with MoM, and for surface formulations this is correct, but there are some moment method
formulations which use volume, not boundary, elements. We discuss this further in Chapter 4.
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book – indeed, an entire chapter, Chapter 7, is devoted to one such function.) Most
MoM codes use the free-space Green function. The relevant boundary condition is
then applied to all the interactions, yielding a set of linear equations. The solution
of this linear system yields the (approximate) current on each segment/patch. The
resulting matrix which must be factored (or used in an iterative solution scheme)
is fully populated, with complex valued entries. Typical matrix dimensions range
from some hundreds for small antenna problems to several thousand – the upper
limit is imposed by computational limitations, either limited memory and/or ex-
cessive run-time.

Traditionally, the MoM has been applied in the frequency domain, i.e. single
frequency, or monochromatic, sinusoidal excitation, with an e jωt convention as-
sumed. The working variables (unknowns) are thus complex valued, with a magni-
tude and phase, as for any phasor analysis. Time domain integral equation (TDIE)
formulations have been used on occasions, but stability and other issues have
proven difficult, and TDIE codes are rare.

The use of the MoM for antenna analysis was given a major boost by the
US government’s de facto decision during the late 1980s to release the Numeri-
cal Electromagnetic Code – Method of Moments (widely known as NEC-2) into
the public domain. NEC-2 is a powerful, general-purpose antenna modelling pro-
gram, but with no graphical abilities whatsoever and very limited meshing abilities.
NEC-2 is discussed in Chapter 5. A later version, NEC-4, added some specialized
functionality. At present, there are some excellent commercial codes which offer
all the functionality of NEC-2, but with proper graphical user tools and frequently
greatly enhanced abilities; examples are FEKO (which will be used quite exten-
sively in this book), SuperNEC, Ensemble, and IE3D. (Only SuperNEC is a direct
descendant of NEC, the others are independent implementations.) There are also
some semi-commercial packages such as GEMACS which are limited to US De-
partment of Defense contractors, and hence not generally available for commercial
use world-wide.

The strong points of the MoM (as usually applied) are the following.

• Efficient treatment of perfectly or highly conducting surfaces. Only the surface is
meshed; no “air region” around the antenna need be meshed. For wire antennas, the
treatment is even more efficient, since only a one-dimensional discretization of the wire
is undertaken.

• The MoM automatically incorporates the “radiation condition” – i.e. the correct behavior
of the field far from the source (proportional to 1/r in free space). This is very important
when dealing with radiation or scattering problems.

• The working variable is the current density, from which many important antenna param-
eters (impedance, gain, radiation patterns etc.) may be derived, some directly and some
via straightforward numerical integration.
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• Via the Sommerfeld potentials, efficient formulations may be derived for stratified (lay-
ered) media. Important examples are printed antennas, components and feed networks
(e.g. microstrip technology) and antenna-above-real-earth calculations.

• The availability of NEC-2 in the public domain – this powerful code has served as the
basis for much MoM based antenna design, and due to the open source nature, has lent
itself to all manner of numerical experimentation and improvement.

The weak points of the MoM may be summarized as follows.

• The MoM does not handle electromagnetically penetrable materials as well as differ-
ential equation formulations. (If the materials are homogeneous a, fictitious, equivalent
surface current formulation may be used, but inhomogeneous materials require fictitious
equivalent volumetric currents, and become very expensive computationally.)

• The MoM does not scale gracefully with frequency – for typical applications requiring a
surface mesh, the scaling is O((kd)6) where kd is the electromagnetic size of the struc-
ture.7 (This assumes a cubic structure, for simplicity.) Note that this is implies an O( f 6)

scaling – doubling the frequency can result in a run-time 64 times as long! We will see
that this is a major problem with all the computational methods, although the details
do vary slightly from method to method. For an MoM volumetric mesh, required by an
inhomogeneous structure, the scaling is O((kd)9); this is so large that such methods are
usually very limited in application.

• Some MoM formulations, in particular those based on the magnetic field integral equa-
tion (MFIE), require the surface to be closed. This is frequently impractical.

In conclusion, the MoM is the preferred method for frequency domain radiation
and scattering problems involving perfectly or highly conducting wires and/or sur-
faces. If the problem involves inhomogeneous dielectric materials, it is unlikely to
be the best formulation, but if hybridized with the FEM a very efficient formulation
can result.

1.4 The finite difference time domain (FDTD) method

The finite difference time domain (FDTD) method is of a similar vintage to the
MoM and FEM in electromagnetics, dating back to the 1960s. Like the FEM, it is
partial differential equation based, and one does not need a Green function. Un-
like the FEM, the FDTD method does not use variational functionals or weighted
residuals – it directly approximates the differential operators in the Maxwell curl
equations, on a grid staggered in time and space. �E and �H fields are computed
on a regular grid, with a marching-on-in-time discretization of time, with field

7 The notation O(x)p means of the (asymptotic) order of and indicates to the highest power (p) present in the
variable (x); note that it says nothing of the constants. This can be important, since CEM analysis is quite often
undertaken in the “pre-asymptotic” region, where lower powers in x may dominate especially run-time.
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components being offset by �s/2 relative to each other and the �E and �H fields
evaluated �t/2 apart in time, where �s and �t are the spatial and temporal dis-
cretizations respectively. This permits a scheme which uses first-order numerical
differentiation to provide second-order accuracy. It is also the only widely used
CEM scheme to operate in the time domain. (Time domain MoM and FEM formu-
lations have been used, but usually for a rather specialized application. Frequency
domain finite difference formulations are also available, but again have never be-
come very popular for general problems.)

Some history of the FDTD method may be found in Chapter 2. For various rea-
sons, the method languished in relative obscurity throughout most of the 1960s
and 1970s, but sprang to prominence in the 1980s. There were both technological
driving factors behind this – on the one hand, increasing interest in the modelling
of inhomogeneous materials, in particular for the assessment of human exposure to
RF fields, and on the other, the development of low-observable “stealth” technol-
ogy – and enabling technology in the shape of the enormous growth in computer
power – in particular, memory, for which the FDTD method has a voracious ap-
petite in three dimensions. The development by Berenger of the perfectly matched
layer in 1994 solved the previously problematic issue of mesh termination, and
removed the last hurdle to the widespread adoption of the method. In the new mil-
lennium, with desktop PCs with hundreds of megabytes available at relatively low
cost, the FDTD method has firmly established itself as one of the most popular
methods in CEM, both in industry and academia. The apparent simplicity of the
basic implementation also means that it is very popular with graduate students in
the university research community, where “do-it-yourself” FDTD codes are com-
monly encountered.

Critics have dismissed the method as a “brute force” technique and, certainly,
compared to the mathematical elegance and subtleties of a Sommerfeld inte-
gral formulation, the basic method appears to make limited demands on higher
mathematics. Most engineers trying to solve tough problems are of course more
impressed by how well a code works, rather than by how elegant the formulation
is, and the FDTD method has been enormously successful in many diverse applica-
tions. Nonetheless, extensions of the FDTD method have required subtle thinking,
as have stability proofs, so the “brute force” epithet is undeserved.

The FDTD method is an “explicit” finite difference approach, i.e. no matrix
equation is set up and solved.8 The term comes from the update equations, where
the field values at the next time-step are given entirely in terms of the field at this
and the previous time-steps. (Implicit finite difference approaches, where the field

8 In Chapter 10, it is shown that one can alternatively view the FDTD as derived from a diagonalized matrix
equation.
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values at the next time-step at a point in space also involve the values at adjacent
points at the next time-step, generate a sparse matrix, which must be solved at
each time-step.) This has the great advantage of keeping the required operations
very simple – essentially just a stencil involving differencing neighbors in time
and space – but does mean that the method is not unconditionally stable. This
means that there is an upper limit on the time-step, and it turns out to be rather less
than the Nyquist sampling criteria would imply, which is the price one pays for
the simplicity of the explicit approach. In three dimensions, the stability criterion
(widely known as the Courant limit) is �t < �s/(

√
3c) where �s is the smallest

grid dimension and c is the speed of light in the mesh.
There are three very good texts on the FDTD method; Kunz and Luebber’s

was the first [6], appearing in 1993, but Taflove’s 1995 volume [7] (recently re-
vised [8]) and the 1998 companion [9] are currently the state of the art. (Kunz
and Luebbers were unfortunate to publish their book just before the revolutionary
perfectly matched layer (PML) was invented by Berenger in 1994, although the
book still contains useful material, not least a working FDTD code. This code has
served as the basis for a number of academic codes.)

The time domain formulation of the FDTD method is both an attractive fea-
ture and a drawback. Using wideband sources, the FDTD method can compute a
wideband response in one run, whereas frequency domain methods must obviously
recompute the system response for each frequency point.9 However, the majority
of RF devices operate over quite a narrow frequency band, and this may be less of
an advantage than one might expect. In particular, for high-Q devices, a very large
number of time-steps may be required to obtain sufficient frequency resolution.10

Many systems exhibit dispersive properties; examples are waveguides and most
real dielectric and magnetic materials. In the frequency domain, this is simple to
handle by the obvious expedient of simply changing the material/device properties
with frequency, but in the time domain this is more challenging since a convolution
is implied. Many techniques have been proposed and implemented to address this
issue, but do complicate the method somewhat [8, 9].

Although there are some FDTD codes available on the internet, they are really
“toy” codes by comparison with NEC-2, for instance. Commercial versions are
available, including CST MICROWAVE STUDIO R© and REMCON’s XFDTD; the
former actually uses the finite integration technique, but this is very closely related
to the FDTD. It is perhaps surprising that more contenders have not emerged, but
this is in no small part because a useful commercial code has to incorporate not

9 Continuing research for frequency domain codes on model based parameter estimation (MBPE) aims to reduce
dramatically the number of frequency points required, and good results have been obtained; some commercial
frequency domain codes already incorporate this.

10 Again, work similar to the MBPE, using system approximation techniques, can assist here.



12 An overview of computational electromagnetics

only a decent user interface, but also a number of extensions to the standard FDTD
to make it generally useful.

The strong points of the FDTD method are the following.

• Exceptionally simple implementation for a full-wave solver – at least an order of mag-
nitude less work than either an MoM or FEM implementation for a basic FDTD imple-
mentation. (One should be warned however that there are a number of subtleties which
can take a while to appreciate, even with an apparently simple problem. Also, many
practical problems require more than just a basic implementation, and the simplicity of
the method is often compromised by these extra factors.) It is the only method which
one can realistically implement oneself in a reasonable timeframe, although even then
only for quite specific problems.

• Very straightforward treatment of material inhomogeneities (as for the FEM).11

• Fairly accurate geometrical modelling ability (but not as versatile as the FEM in this
regard, due to the “stair-stepping” effect of the regular mesh – see comments below on
non-orthogonal grids). (Commercial codes frequently include extensions to the method
to improve this, so it is not necessarily a problem.)

• Since the method is a time domain one, wideband data are potentially available from one
run.

• Reasonable scaling behavior, O((kd)5.5), with the same N ∝ (kd)1.5 assumption to con-
trol dispersion as for the FEM, which we will discuss shortly. Note that as for the FEM,
this is not affected by the material composition of the structure. For wideband systems,
this is very attractive, since the other methods have an implied fn multiplicative term (not
shown in the preceding sections), where fn is the number of frequency points required.

• The PML has made implementing very good absorbing boundary conditions as mesh
termination relatively straightforward.

The main drawbacks are the following.

• Inflexible meshing – much work has been done on non-orthogonal FDTD grids, but the
method then loses much of its appealing simplicity.

• Some uncertainty about the precise position of boundaries – usually an uncertainly of
about �s/2. This is due to the offset nature of the �E and �H field grids.12

• Dispersive materials require considerable effort to implement correctly – but it is possi-
ble and good results have been obtained.

• As with the FEM, the FDTD method is not as efficient as the MoM when modelling
structures consisting entirely of perfectly or highly conducting radiators/scatterers.

11 A point worth making here is that for typical RF applications, the dielectric properties of materials are usually
the most significant, and relative permittivities at RF and microwave frequencies rarely exceed single figures.
For low-frequency magnetoquasistatic problems, magnetic properties are often the most significant, with rela-
tive permeabilities which can be very large indeed. In this case, the matter is not quite as simple when accurate
modelling is desired, and both the FDTD method and the FEM can exhibit problems. This, however, is not the
focus of this book.

12 Work has been done on improving this, typically using some averaging of properties in the FDTD cells on the
boundaries, but this can impact on the second-order accuracy of the method.
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• Although considerable theoretical work has been done on higher-order FDTD ap-
proaches, none appears to have been successfully implemented in a general-purpose
FDTD code. The problem is intimately linked to that mentioned above regarding the
ambiguity of the boundary positions.

In conclusion, the FDTD method is the preferred method for wideband systems.
Even in its standard Yee form, it is also a strong contender for any electromagnetic
radiation or scattering problem for which quick answers are needed, great accuracy
is not the primary concern, and quite large run-times and memory usage is accept-
able. Furthermore, by using a sufficiently fine mesh, and in particular using various
extensions to the standard FDTD method, very accurate results may be obtained;
the potential accuracy of the FDTD method should not be underestimated.

1.5 The finite element method (FEM)

The finite element method (FEM) has been widely used in structural mechanics
and thermodynamics; its first application in the modern form dates to the 1950s,
although its mathematical roots are older, and the first application in electromag-
netics was undertaken in the late 1960s. Chapter 9 gives some more historical
background on the method.

As with its main competitor, the FDTD method, the FEM handles inhomoge-
neous materials and complex geometries with aplomb; these become problems in
mesh generation rather than in electromagnetic theory. The FEM may be derived
from two viewpoints: one uses variational analysis, the other weighted residuals.
Both start with the partial differential equation (PDE) form of Maxwell’s equa-
tions. The former finds a variational functional whose minimum13 corresponds
with the solution of the PDE, subject to certain boundary conditions. The lat-
ter also starts with the PDE form of Maxwell’s equations, and then introduces
a “weighted” residual (error); using Green’s theorem, one of the differentials in
the PDE is “shifted” to the weighting functions.14 For most applications, these
procedures result in identical equations. In both cases, the unknown field is dis-
cretized using a finite element mesh; typically, triangular elements are used for
surface meshes and tetrahedrons for volumetric meshes, although many other types
of elements are available. Triangles and tetrahedrons have certain attractive prop-
erties best summarized as “simplicial” – these are the simplest geometrical forms
with which two-dimensional and three-dimensional regions respectively can be
meshed.

13 More precisely, extremal point, since it may also be a maximum or stationary point.
14 From which comes the name “weak” formulation, sometimes encountered in the literature, since the finite

element basis functions need only be once differentiable, whereas the wave equation has second-order deriva-
tives.
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Finite element analysis (FEA) can handle two different types of problem, viz.
eigenanalysis (source-free) and deterministic (driven) FEA problems.15 Problems
without any internal (or external) field source fall into the category of eigenanal-
ysis problems. A classic example is a cavity resonator. What emerges from the
analysis is a set of eigenvalues and associated eigenmodes; these represent the
resonant frequencies and associated field distribution within the cavity. For mi-
crowave dielectric heating, this information can be used to design feed locations
and optimize load positioning.16 It should be noted that eigenanalysis applications
are neither time nor frequency but rather eigenvalue domain solvers; using a sim-
ple transformation, it is possible to include operating frequency in a waveguide
simulation, to compute dispersion curves.

Deterministic problems analyzed using FEA involve a source; the response of
the structure to this excitation is then computed. This represents a very large class
of electromagnetic engineering applications of the FEM, including antenna, radar
cross-section, microwave circuit and periodic structure analyses.

As with the FDTD method, the FEM does not include the radiation condition.
For closed regions (e.g. waveguide devices or cavities) this is of no concern. How-
ever, for open regions (e.g. radiation or scattering problems), this requires spe-
cial treatment, and this must be incorporated using either an artificial absorbing
region within the mesh (the numerical analogy of an anechoic chamber) or using a
hybridization with the MoM to terminate the mesh.

Traditionally, the FEM has been formulated in the frequency domain, although
time domain formulations have also been used for specialized applications.

There are a number of excellent and up-to-date texts on the FEM, including
those by Jin (revised in 2002) [10], Silvester and Ferrari [11] (the third edition
appearing in 1996), Volakis et al. [12] and Peterson et al. [13] (both published in
1998, the last also including comprehensive coverage of the MoM). The collection
of papers edited by Silvester and Pelosi [14] is also very useful, although quite
a number of significant papers have appeared since its 1994 publication. Another
useful source is the 1996 volume edited by Itoh et al. [15].

Several companies market commercial finite element products for radio-
frequency electromagnetics. Ansoft’s HFSS package is widely regarded as the
market leader; Ansys have a suitable product, and a fairly recent entry, FEMLAB,
has also attracted users.

15 The MoM and finite difference methods in general can also be used for eigenanalysis, but are not very com-
monly encountered. Harrington’s original text on the MoM included a chapter on eigenvalue problems, but the
MoM has not been as widely used as the FEM for this class of problem. The FDTD method is by definition
deterministic, and requires a source.

16 In this real-world application, there is now a source and the problem is strictly speaking no longer an eigen-
analysis one, but the source location can be optimized by knowledge of the resonant field behavior within the
cavity, since these fields are what one is attempting to excite with the feed.
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The strong points of the FEM are the following.

• Very straightforward treatment of complex geometries and material inhomogeneities.
• Very simple handling of dispersive materials (i.e. materials with frequency-dependent

properties).
• Ability to handle eigenproblems as above.
• Potentially better frequency scaling than the MoM – although the requirement to mesh

a volume rather than a surface means that the number of unknowns in the problem is
usually much larger.17

• Straightforward extension to higher-order basis functions. The FEM lends itself to the
use of higher-order basis functions; although the book-keeping within an FEM code is a
little complicated by this, the theoretical extensions are now well understood. It is also
possible to use conformal elements to better approximate curved geometries.

• “Multi-physics” potential – this means the ability to couple EM solutions with, for in-
stance, mechanical or thermal solutions. Due no doubt to the widespread popularity
and maturity of the FEM in other fields of engineering, one is starting to see pack-
ages which can compute such coupled solutions. It is probably only significant in high-
power applications, where thermal effects can be important – either desired, as in the
case of microwave dielectric heating, or undesired, such as with high-power transmitter
design.

The weak points of the FEM include the following.

• Inefficient treatment of highly conducting radiators when compared to the MoM (due to
the requirement to have some mesh between the radiator and the absorber).18

• The FEM meshes can become very complex for large three-dimensional structures –
indeed, some workers have reported mesh generation times starting to exceed solution
time.

• The FEM is rather more complex to implement than the FDTD method. This impacts in
particular in terms of the suitability of the FEM for parallel computing. It also implies
that “home-built” FEM codes are quite rare compared to such FDTD codes.

• Efficient preconditioned iterative solvers are required when higher-order elements
are used; so important is this in commercial applications that these are usually
treated as proprietary information, making “do-it-yourself” implementation even more
challenging.

17 The exact scaling behavior depends on how efficiently the sparsity of the finite element matrix can be ex-
ploited – and the sparsity pattern is problem dependent. The lowest bound on this is O(N ), N being the
number of degrees of freedom (unknowns). For a scheme with second-order accuracy, N ∝ (kd)1.5, where
the exponential indicates that as the problem size grows, so the mesh must become proportionally finer to
control mesh dispersion. This effect was often overlooked in earlier analyses of differential equation based
solvers. With these assumptions, the lowest bound on the FEM is O((kd)4.5); it must be emphasized that
this is a lowest bound and assumes that matrix sparsity is essentially fixed, which is not so in reality. A more
realistic estimate is probably O((kd)5) – O((kd)6).

18 The FEM/MoM hybrids overcome this problem.
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In conclusion, the FEM is the preferred method for microwave device simula-
tion and eigenproblem analysis. Using FEM/MoM hybrids, scattering problems
involving electromagnetically penetrable media and specialized antenna problems
can be accurately and efficiently solved.

1.6 Other methods

The MoM, FEM and FDTD method are the most popular methods in current use.
There are a number of other methods which will be encountered in the literature,
and some commercial codes are based on these methods. Here we will briefly
outline some of them.

1.6.1 Transmission line matrix (TLM) method

The TLM method is conceptually very similar to the FDTD method. Instead of
directly discretizing the Maxwell equations, an equivalent array of short transmis-
sion lines is used. The method is appealing to engineers with a strong circuit but
weak field background, but for most CEM practitioners the circuit approximation
of the field equations seems rather circuitous. It should be commented that the
circuit approach can be more direct than the FDTD approach when one is deal-
ing with high-frequency circuits, which is a major reason for continuing work on
the TLM. The method has a dedicated following in some circles, and at least one
commercial code, Micro-Stripes, is available.

1.6.2 The method of lines (MoL)

The MoL is a specialized method for primarily waveguiding structures. It uses
a semi-analytical solution along a number of lines (in its two-dimensional form)
and is especially memory efficient. It is also very accurate. Because it requires the
extraction of eigenvalues, it can be computationally expensive. Most MoL applica-
tions can be done as well with an FEM formulation. A commercial implementation
does not appear to be available at present.

1.6.3 The generalized multipole technique (GMT)

The GMT uses multipoles as the basis functions; these are special function so-
lutions of the Maxwell equations. It is not especially similar to any of the meth-
ods that we have discussed thus far. It does require some intelligent user input in
terms of placing the multipoles. Good results have been obtained for a variety of
problems; a good reference is Hafner’s book [16], which is also useful for placing
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the other methods in perspective. (The book will appear somewhat idiosyncratic
though for CEM novices.)

1.7 The CEM modelling process

Before we now proceed to study these methods in more detail in subsequent chap-
ters, it is useful to comment on the modelling process in general. Some astonishing
claims have been made about the predictive power of Maxwell’s equations [17,
p. 4]:

Most physicists believe that if you lock a graduate student in a room and have him perform
an electromagnetic calculation correctly, and if you perform an experiment that does not
agree with the graduate student’s calculation, then you better check your experiment.

Whilst at its heart this observation is true, in that we believe that for non-quantum
interactions, Maxwell’s equations provide a complete description of electromag-
netic phenomena,19 for many aspects of CEM modelling, one needs to be ex-
tremely cautious of such sentiments. The modelling process is about the art of
acceptable approximation, and this path is strewn with pitfalls.

Firstly, we are replacing the real world with a mathematical model, or put dif-
ferently, replacing a real field problem with an approximate one. Here are some
examples of possible problems.

Limitations of the mathematical model Mathematical models of electromagnetic
devices usually have some underlying assumptions. An example is the infinitely
large planar ground assumed in a Sommerfeld formulation. Most integrated anten-
nas radiate primarily on broadside, so the finite ground of a real antenna is usually
not a problem. However, endfire integrated antennas (a Yagi, for instance, photo-
etched on a printed circuit board) radiate most strongly along the ground interface,
and the main beam on endfire apparently disappears when a Sommerfeld code is
used.

Tolerances Any engineered system has some measure of tolerances. Some are re-
ally of little concern; others impact directly on device performance. An example
of the former is surface roughness of average dimensions far less than a wave-
length; this usually has little impact on the operation of the system. An example of
the latter are uncertainties in dielectric constant or overall device dimensions. For
antennas relying on standing-wave operation (most wire antennas, microstrip

19 By replacing the field vectors with operators, Maxwell’s equations become quantum theoretically correct.
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patch structures etc.) these translate directly into variations in resonant frequency.
(Since such devices are usually quite narrowband, this can be highly problem-
atic.)

Manufacturing deviations The device which is being simulated may differ subtly
from what was designed and analyzed, in a more fundamental way than simply
due to device tolerances. An example of a frequency selective surface with such a
problem will be discussed in the next section in detail; there, an air inclusion was
de-tuning the device, and measurements and computations stubbornly refused to
agree until the problem was identified.

Simplifications in the formulation Currents flowing on thin wires are usually ap-
proximated by current filaments (in other words, wire thickness is ignored). This
can cause problems when the wire thickness no longer justifies this assump-
tion.

Once we have an acceptable approximate field problem, it will then be solved using
an approximate numerical solution. Once again, there are many pitfalls in this next
step.

Finite discretization This is usually the biggest single limitation on the accuracy of
numerical techniques in electromagnetics. There are typically two different types
of error which accompany this: one is interpolation error, and is the (in)ability
of the basis functions to model the field locally; the other is mesh dispersion er-
ror (also sometimes called pollution error) which is cumulative error through the
mesh.20 Both can usually be controlled by refining the mesh. Unfortunately, the
computational cost of especially three-dimensional modelling is such that this is
not always practical.

Finite problem space Neither the FDTD method nor the FEM incorporates the
radiation condition, and the mesh needs to be truncated at some point when a
radiation or scattering problem is undertaken. Absorbing boundary conditions are
widely used for this. After creating an (in)adequately refined mesh, this is probably
the second largest source of error in FDTD and FEM computations; in reality, the
problems are interwoven, since a poor mesh termination scheme requires a larger
solution region, which in turn makes it difficult to ensure that the mesh is fine
enough.

20 The MoM does not suffer from mesh dispersion, only the differential equation based FDTD method and
FEM do.
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Numerical approximations FEM and MoM codes in particular require numerical
integration. This is usually done using quadrature or cubature (multi-dimensional
numerical integration), and if not carefully done, may easily result in poor perfor-
mance, in particular for the MoM which involves the integration of nearly singular
or singular fields.

Finite machine precision The infinite number of real (or complex) numbers are
represented on a computer in a very finite fashion. Typically, in single precision,
4 bytes (i.e. 16 bits) is used to represent a real number; this gives some 5 signifi-
cant digits of accuracy. (Double precision uses 8 bytes, and approximately doubles
this.) For problems which are ill conditioned (that is, the solution depends rather
drastically on small changes in input data) this may not be adequate. This is usually
a less serious problem than the others.

1.8 Verification and validation

The discussion of the previous section leads directly to the issues of the verification
and validation of code. One might define the former as ensuring that the code has
correctly implemented the formulation, and the latter as checking that the formu-
lation as implemented in the code produces results agreeing with reality. However,
for users of codes in practice, the processes are integrated, especially since users
cannot change commercial codes. Throughout this book, the necessity of validat-
ing and verifying code will be continually emphasized, but it is such an important
topic in CEM that it deserves this section on its own.

There are several methods currently in widespread use.

Comparison with analytically computed solutions This was the classical approach
taken by most of the early researchers in the field. Typically, radiation or scattering
solutions involving canonical shapes (usually cylinders in two dimensions, and
spheres in three dimensions) were used to compare results with those of the code.
The problem with this is that it is a necessary, but not sufficient, condition for a
code to be working correctly.

Comparison with approximate solutions Quite often, approximate solutions of
electromagnetic problems are known from simplified models, which have usu-
ally been experimentally tested, or may even represent experimental data. Many
antennas are a good example of this, with parameters such as gain often a design
parameter. Comparison of computed results with these provides some reassurance
that the code is in the correct “ballpark,” although of course this is not a rigorous
process.
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Comparison with measurements In a sense, this is the most satisfying and con-
vincing method. However, it is strewn with difficulties. Unlike CEM, where the
basic tools have dropped enormously in price, radio-frequency measurement de-
vices have remained expensive, and accurate measurements of radiation or scatter-
ing require an anechoic chamber. Making reliable and repeatable measurements is
also both a science and an art, and usually requires considerable experience.

Comparison with other CEM codes This is a relatively recent innovation, promp-
ted both by the availability of powerful general-purpose codes and the difficulty
of obtaining reliable measured data. Once again, caution is required. This is one
place where the difference between validation and verification can be significant:
to give an example, validating a thin-wire code by comparison to another thin-
wire code will not detect a fundamental problem with the thin-wire assumption.
In general, this is most convincingly done by comparing results computed using
codes implementing different formulations.

We will see examples of the use of all these techniques throughout this book.

1.8.1 An example: a frequency selective surface

The process of validating computations can sometimes lead to enhanced under-
standing of the device under test. An example is the following, originally pre-
sented in [18, 19] for a device called a frequency selective surface (FSS). There
are various applications thereof: in this case, a bandpass radome was required. The
structure consists of a slot cut in a metallic sheet, which transmits an incident wave
when the frequency is such that the slot is resonant.

When an FSS is fabricated, a dielectric support is generally required, lowering
the resonant frequency and complicating the analysis. An FDTD code, originally
developed by the author, was used to simulate the dielectric support. However,
initial results yielded a consistent offset in center frequency between measured and
computed data, which was sufficiently large to be problematic. The usual FDTD
checks – refining the mesh, and moving the absorbing boundary condition further
away – did not solve the problem.

Eventually, the problem was traced to a very subtle manufacturing problem.
When manufacturing a dielectric-supported FSS structure, the finite thickness of
the metal screen can be surprisingly significant, whether a sandwiched or single-
sided support is used; this results effectively in a slot. Although the slot is small in
cross-section, the material filling it plays a significant role in the electromagnetic
behavior of the device. An example of the slot forming the FSS element in a finite
thickness conductor is illustrated in Fig. 1.1. This is a cross-section of a circular
ring FSS element, with diameter 5.9055 mm, slot width 0.537 mm, and element
spacing 10.738 mm.
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Figure 1.1 A cross-section of a slot forming the FSS in a conductor of finite thick-
ness, w, sandwiched between two dielectrics. (Reproduced by permission of IEE from
[18].)
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Figure 1.2 Predicted transmission coefficient of an O-ring FSS with one side perspex only.
Legend: solid line (o), infinitely thin metal sheet, single-cell perspex in the slot; solid line
(x), infinitely thin metal sheet, single-cell air in the slot; dashed line (+), actual 0.26845
mm thick metal sheet; air in the slot. (Reproduced by permission of IEE from [18].)

The FDTD code can accurately predict the effect of different dielectrics, pro-
vided the significance of this effect is realized and correctly modelled. Figure 1.2
shows this effect clearly; the resonant frequency is off by around 13% for the
FDTD model which (incorrectly) assigned perspex to the slot. Two of the mod-
els in Fig. 1.2 used an infinitely thin metal sheet in the FDTD model; in one case



22 An overview of computational electromagnetics

meas.
comp.

 
 

10 11 12 13 14 15 16 17
−10

−8

−6

−4

−2

0

Freq [GHz]

T
ra

ns
m

is
si

on
 [d

B
]

Figure 1.3 Transmission coefficient of PVC sandwiched FSS with petroleum jelly fill-
ing in the slot. The solid line is measured data, the broken line is the FDTD simulation.
(Reproduced by permission of SAIEE from [19].)

perspex of a single FDTD cell thickness was used to model the cavity formed by
the slot; in the other case air was assigned to the slot cavity – however, the depth of
the actual slot was not entirely correctly simulated. The final model used the cor-
rect actual metal thickness and the slot was air filled, also to the correct thickness.
The difference in predicted resonance frequency is significant.

Figure 1.3 shows measured and predicted results at normal incidence for a hor-
izontal tri-slot sandwiched between PVC (εr = 2.86), with petroleum jelly (Vase-
line, εr = 2.16) used to fill the slot which has been carefully modelled with the
FDTD mesh. (This particular tri-slot had arm length 3.732 mm, arm width 1.0 mm,
and inter-element spacing 12.5 mm.) The results demonstrate the accuracy achiev-
able with careful modelling.

This is an example of a discrepancy between the real and approximate field
problems, due in this case to a manufacturing problem. It is especially useful in
that it led to improved understanding of the design, and a revised manufactur-
ing process. CEM tools (the FDTD in this case) allowed very quick experimen-
tation to establish that the air inclusion (in this case) was the problem; laboratory
experiments with various prototypes would have been very tedious and time con-
suming indeed.

1.9 Extending the limits of full-wave CEM methods

It should be clear from the preceding sections that no one CEM method should lay
claim to being able to address all problems with optimum efficiency. Both the FEM
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and FDTD method are theoretically capable of addressing any arbitrary problem,
but both can be unnecessarily or prohibitively expensive computationally for prob-
lems more suited to the MoM, and in practice of course no full-wave method still
works at asymptotically high frequencies.

The computational cost of the major methods has been briefly reviewed in this
chapter. Although the individual methods vary significantly, it is clear that in the
case of all the full-wave solvers, as the frequency increases, so the mesh must
become finer (and thus the number of unknowns become larger). We have seen
that although the methods have different scaling properties, all of them scale badly
with frequency. Even the most attractive scales at around the fifth to sixth power of
frequency.21 Much ingenuity has been devoted to developing new or modified full-
wave methods with better scaling behavior – the present class of “fast methods”
being an excellent case in point – and to exploiting high-performance computers,
in particular parallel computing.

“Fast” methods, including the fast multipole method and the adaptive integral
method, aim to reduce the asymptotic cost of the methods. Put very simply, the
methods replace the traditional direct matrix solution algorithms with iterative
solvers, and use methods to approximate the interaction between parts of the mesh
which are separated by some reasonable distance (usually at least a few wave-
lengths). The matrix-vector product – which lies at the heart of iterative solvers –
is implemented using a fast technique similar to the FFT, which reduces the cost
from O(N 2) to O(N log N ) per iteration. Recent work has claimed an asymp-
totic dependence of O(kd)3. This appears very attractive indeed, but one should
be warned that this is an asymptotic calculation and there are some very large con-
stants associated with this, as well as some possibly optimistic assumptions about
rapid convergence of the iterative solver. Hence this attractive scaling behavior
only manifests itself for electromagnetically very large problems. The convergence
of iterative methods is also very problem dependent, so a particular analysis may
not yield the expected asymptotic behavior if the solver should converge unexpect-
edly slowly. For an overview of recent progress on fast methods, see Chew et al.’s
review paper [20]. We will discuss fast methods in Chapter 6.

Whilst great advances have been made, the full-wave techniques eventually
make impossible demands on even the largest supercomputers, and asymptotic
techniques become important. These methods generally use rays as field propaga-
tors, and essentially localize electromagnetic interaction, describing the field at a
point as the sum of the direct, reflected, and various diffracted rays, all of which
originate at points (or sometimes lines) on the structure. With these methods, there
is no concept of discretization of an unknown field – although the surface may

21 Assuming at least a surface discretization for the MoM.
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well be approximated by facets.22 These methods generally rely on the asymp-
totic nature of some underlying integral or series solution, and the approximation
improves with frequency. An excellent overview of this may be found in [21]. Be-
cause the asymptotic techniques rely on approximations of the physics from the
start, they do not lend themselves as well as the full-wave methods to general-
purpose computer programs. However, when hybridized with the full-wave meth-
ods, some very significant extensions to the frequency range of full-wave codes
become possible. Jakobus has made significant contributions recently using hybrid
MoM/PO approaches [22, 23] and much of this work is reflected in the commer-
cial program FEKO. Again, in Chapter 6, hybrid methods will be discussed in
more detail.

To paraphrase Hafner [16], CEM is a field which depends not just on “big ideas,”
but also on getting lots of details right. This chapter has concentrated on the former,
with the aim of providing the CEM beginner with some idea of what method is
appropriate for what problem. Actually implementing a reliable CEM code makes
enormous demands on the latter, and requires an on-going process of validation.
One should be warned that even the most apparently straightforward method (the
FDTD) is not as straightforward to implement as one might expect; development
times for even the most specialized CEM codes involve at least months of work,
and powerful, general-purpose codes involve many years of effort.

1.10 CEM: the future

CEM has passed through several phases: the 1960s and 1970s saw primarily work
on CEM formulations; the 1980s saw the techniques starting to receive significant
acceptance by non-specialists, and the 1990s saw the first widely available com-
mercial codes for radio-frequency electromagnetic problems appear on the market.
What does the next decade or so hold in store?

Firstly, it appears that we can look forward to continuing giant strides in com-
puter performance. Looking back over the last decade, a typical PC has increased
its clock-speed from some tens to megahertz to over a gigahertz, while memory
sizes have grown from under one megabyte to hundreds of megabytes, and disk
sizes have increased from ten or twenty megabytes to the same or more in giga-
bytes. (Workstations have also grown greatly in power, although their edge over
top-end PCs is rather tenuous compared to the situation a decade ago.) This revo-
lution in affordable computing has revolutionized potential CEM applications for
engineers based in industry.

22 In the case of physical optics (PO), the surface current is indeed discretized, but the amplitude of the current
is assumed in terms of the known incident field, rather than being computed from a matrix equation enforcing
a boundary condition.
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CEM theory has also advanced enormously since the first work in the 1960s,
and far more RF electromagnetic problems are potentially amenable to a CEM
solution. Much work can be expected on hybridizing methods – the benefits of
FEM/MoM and MoM/PO hybrids have been noted in this chapter, and will be
discussed in more detail later in this book.

Intelligently refining meshes automatically is also an important topic, both in the
research community and in commercial codes. Closely linked to this are methods
for estimating errors in computed solutions; how this can be done will be briefly
described in Chapter 10. Another significant trend is the incorporation of automatic
optimizers using full-wave CEM tools for the analysis part of each iterative step
in the optimization procedure. A number of commercial packages are starting to
incorporate such abilities.

It can also be expected that the user interfaces will continue to improve, mak-
ing modelling complex three-dimensional devices quicker and easier. Furthermore,
it is notable that some commercial packages are starting to offer more than one
method within the same graphical user interface. A point that has been made often
in this chapter, and will continue to be made frequently in this book, is that one
should chose the appropriate method for the problem at hand; working within a
consistent user interface, it will be far easier for users to exploit the full power of
the CEM techniques available.

Perhaps the most important trend will be the use of increasingly powerful com-
mercial packages, and a decline in the number (or at least use) of CEM “freeware.”
This reflects both the difficulty (and hence expense) of developing general-purpose
CEM packages; unless government sponsored (such as NEC), the cost of develop-
ing and maintaining code has to be recovered by licensing. Intimately connected
to this, CEM developers should expect an increasing number of non-expert users
of CEM tools (in much the same way that FEM analysis is now routinely taught
to undergraduate civil and mechanical engineers, and routinely used in industrial
design). Codes increasingly need to be robust, incorporating warnings of inappro-
priate meshing etc. for users without an extensive post-graduate training in electro-
magnetics. Electromagnetics remains a challenging discipline, and educating users
of CEM tools, as well as making the tools more robust, will become increasingly
important – it is hoped that this book will contribute to the former.

1.11 A “road map” of this book

This book comprises essentially three parts. The first part, Chapters 2 and 3, deals
with the finite difference time domain method, in one and (primarily) two dimen-
sions respectively. Chapter 2 uses a simple transmission line problem to intro-
duce many of the basic ideas of the FDTD method. Chapter 3 goes on to extend
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these ideas to two dimensions, and considers a number of the issues raised when
handling radiation and scattering in free space, in particular the use of absorbing
boundary conditions. In this context, an example is given of a perfectly matched
layer. The three-dimensional FDTD method is briefly discussed, and examples of
the use of a commercial three-dimensional code are presented. These two chapters
form an integrated unit.

The second part, Chapters 4–8, deals with the method of moments. Here, the
five chapters largely alternate theoretical devolopment with practical application.
Chapters 4 and 5 form a unit, first introducing MoM theory for thin-wire antennas,
and then applying it using both a commercial and a public domain code. Chap-
ter 6, on modelling surfaces (and also volumes) using the MoM, is largely self
contained. The material in Chapter 6 on the hybrid MoM/PO, as well as on high-
performance computing and fast methods, could be omitted without interrupting
the flow of the book on a first reading. Chapters 7 and 8 form a further unit on
the theory and application of the Sommerfeld mixed potential integral equation
approach to modelling stratified media (of which microstrip antennas are the most
widely encountered application at radio frequencies). The material in Chapter 7
is amongst the most theoretically challenging in the book, and could be omitted
or covered only superficially, whilst still allowing time for some of the examples
in Chapter 8 to be studied. Similar comments also apply of course to readers in
industry whose prime focus is on using the MoM.

The third and final part, Chapters 9 and 10, is devoted to the finite element
method. Chapter 9 goes directly into two-dimensional vector element FEM theory;
it is also used to illustrate the solution of an eigenvalue problem. The material in
the last chapter, Chapter 10, is primarily to sensitize readers to more advanced
formulations and applications (in this case, of the FEM).

For a course on CEM methods, there is probably more material here than can be
covered in a typical semester course, and instructors can be guided by the above
discussion regarding what to omit. Some suggested exercises are also included in
Appendix D. They are intended primarily for use in a formal classroom environ-
ment, but would be useful for self-study as well.

Regarding the other appendices: good antenna and electromagnetic texts usu-
ally include material on vector calculus, and it is assumed that the reader has at
least one, so repeating it here seems superfluous. Instead, the appendices contain
material which the author has found useful specifically in CEM, and which is not
easy to find in the literature.

A final comment. Electromagnetics, antenna engineering and microwave circuit
design are all extremely well-established fields, with excellent textbooks avail-
able. This book is designed to complement, not compete, with them. It is a text
specifically on the theory and applications of computional electromagnetics. It is
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assumed that the reader has a suitable reference in his or her field of interest, so
this book does not define antenna radiation patterns, S-parameters or other well
known and widely used concepts in this field. For readers who would like to add
to their libraries, the following can be highly recommended. On electromagnet-
ics in general, a very comprehensive reference is [24]; for antenna engineering,
[25], [26] or [27] are all excellent references, as is [28] for microwave circuits and
systems. There are many older texts which would also of course be suitable; the
above are highlighted since they are all currently in print and have almost all been
recently revised.
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2

The finite difference time domain method:
a one-dimensional introduction

David B. Davidson and James T. Aberle

2.1 Introduction

The finite difference time domain method, usually referred to as the FDTD, is a
particular implementation of a general class of methods known as finite difference
techniques. The FDTD is so widely used in the CEM community that although
finite difference methods cover a wide spectrum of complexity and accuracy, it
is the FDTD which is almost always implied in CEM when finite differences are
mentioned.

Finite difference methods are numerical methods in which derivatives are di-
rectly approximated by finite difference quotients. The general class of such meth-
ods is the most intuitive numerical approach, and was the first to be extensively
developed by the scientific computing community. To this day, it probably remains
the most universally applicable numerical technique and the one most widely used
for scientific computation. As just discussed, for dynamic problems in CEM, the
most popular is the FDTD method. The opening discussion in this chapter will
discuss finite differences in general, before moving on to the specifics of the
FDTD.

At this point, a general comment about the philosophy underlying the mathe-
matical treatment of the computational algorithms in this book would be in or-
der. Although we endeavor not to be “sloppy” mathematically, the emphasis in
this book is in presenting well-known methods for well-known problems in CEM,
rather than on the basic mathematical requirements of the methods, as one would
expect to find in an applied mathematics text, for instance. An example of the
type of issue which we will gloss over, at least initially, is the differentiation of
discontinuous functions, which requires the generalized (weak) derivative, prop-
erly the field of functional analysis. Fortunately, the physics-based problems we
are addressing usually do not evidence the type of pathological behavior which
can (rightly so) concern mathematicians, and issues such as existence proofs will

29
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generally be treated superficially, if at all, in this book. The reader should be
cautioned about applying the methods discussed here in other fields of engi-
neering or applied science without first mastering the underlying theory in more
detail.

2.2 An overview of finite differences

2.2.1 The basic solution procedure

The basic steps of any finite difference method can be summarized as follows.

• Divide the solution region into a grid of nodes.
• Approximate derivatives in the given partial differential equation by finite differences

involving the value of the solution at various nodes.
• Solve the finite difference equations for the value of the solution at each node subject

to boundary and/or initial conditions. If operating in the time domain, this amounts to
finding the values at the next time-step. This process is variously called time marching,
time integration, or specifically in the context of the FDTD, “leap-frogging.”

The FDTD method, being a time domain approach, is an initial value method
(although material boundaries are of course included). Finite difference methods
in general can operate as either boundary value or initial value methods.

2.2.2 Approximating derivatives using finite differences

Central to all finite difference methods is the approximation of derivatives with
finite differences. From the basic definition of the derivative of a function, various
numerical approximations can be proposed. However, these are usually derived
from a Taylor series expansion, since this provides a handle on the error. Depend-
ing on whether the “next,” “previous,” or “central” nodes are involved, one obtains
forward, backward or central differencing as follows:

Forward difference formula for first derivative

dU (x)

dx
= U (x + �x) − U (x)

�x
− (�x)

2

d2U

dx2
+ O(�x)2 (2.1)

Backward difference formula for first derivative

dU (x)

dx
= U (x) − U (x − �x)

�x
+ (�x)

2

d2U

dx2
+ O(�x)2 (2.2)
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Central difference formula for first derivative

dU (x)

dx
= U (x + �x) − U (x − �x)

2�x
− (�x)2

6

d3U

dx3
+ O(�x)4 (2.3)

These expressions are obtained by performing a Taylor series expansion of the
function around x . Let us consider the derivation of the central difference formula.
The Taylor series expansion about x0, evaluated at x0 + �x , is:

U (x0 + �x) = U (x0) + �x
∂U

∂x

∣∣∣∣
x=x0

+ (�x)2

2

∂2U

∂x2

∣∣∣∣
x=x0

+ (�x)3

6

∂3U

∂x3

∣∣∣∣
x=x0

+ (�x)4

24

∂4U

∂x4

∣∣∣∣
x=ξ

(2.4)

ξ is a point located in the interval (x0, x0 + �x). This can alternatively be written
as

U (x0 + �x) = U (x0) + �x
∂U

∂x

∣∣∣∣
x=x0

+ (�x)2

2

∂2U

∂x2

∣∣∣∣
x=x0

+ (�x)3

6

∂3U

∂x3

∣∣∣∣
x=x0

+ (�x)4

24

∂4U

∂x4

∣∣∣∣
x=x0

+ O(�x)5 (2.5)

A similar expansion is performed about x0, evaluated at x0 − �x :

U (x0 − �x) = U (x0) − �x
∂U

∂x

∣∣∣∣
x=x0

+ (�x)2

2

∂2U

∂x2

∣∣∣∣
x=x0

− (�x)3

6

∂3U

∂x3

∣∣∣∣
x=x0

+ (�x)4

24

∂4U

∂x4

∣∣∣∣
x=x0

+ O(�x)5 (2.6)

Subtracting the two expressions, grouping terms, dividing by �x and noting that
the remaining terms in �x cancel, we obtain Eq. (2.3).

A mathematical aside – finite difference approximations of the second
derivative

If, instead of differencing Eqs. (2.5) and (2.6) as above, we add them, we obtain
a formula for the central difference approximation of the second derivative of
the function. The result, with remainder term of second order, is:

d2U (x)

dx2
= U (x + �x) − 2U (x) + U (x − �x)

(�x)2

− (�x)2

12

d4U

dx4
+ O(�x)4 (2.7)
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(Note that the terms in (�x)3 also cancel.) In the FDTD, we will not directly use
this formula, but it turns out that the FDTD scheme is also second-order accurate.
The reason is that the central difference formula for the second derivative can
also be derived by combining the expressions for the forward and backward
derivatives to first order, which is what the FDTD effectively does.

Although Eqs. (2.1), (2.2) and (2.3) appear similar – indeed, the first part of each
is identical – the remainder (error) terms are not. For both forward and backward
differencing, the error is proportional to the cell length (�x) (also known as a first-
order scheme), but for central differencing, it is proportional to the square thereof,
or alternatively, a second-order scheme.1 Clearly, in the limit �x → 0, the central
difference formula will converge more rapidly to the true value of derivative.

This idea of direct discretization of the derivatives underlies the FD method; one
should rather view this as a class of methods, since there are a variety of choices
which one can make with regard to the specific FD algorithm. Before moving
onto the FDTD method, one last general point should be made: FD methods can
be either implicit or explicit. This is particularly relevant when time is one of the
variables. An implicit method requires the solution of a set of simultaneous equa-
tions – a matrix equation – in order to evaluate the unknowns. (The resulting matrix
is generally highly sparse, i.e. has only a few non-zero entries. Efficient FD solvers
exploit this to save both memory and computational time.) From a physics view-
point, with an explicit method, the “next” value at a point is a function not only of
the current and past values at this and the surrounding points, but also the “next”
values of some or all of these. In an explicit method, each unknown can be obtained
directly in terms of given or previously computed values. Physically, the next value
is computed entirely from current or past values. Explicit methods do not require
any matrix solution. However, they usually have some maximum time-step size,
which if exceeded, produces instability (generally known as the Courant limit).

It should be noted that there are other methods for obtaining numerical deriva-
tives. By using more points, higher-order schemes can be derived. However, the
Yee scheme, to be discussed, does not readily accommodate these in general.

2.3 A very brief history of the FDTD

The FDTD is based on a particular FD scheme (Yee’s algorithm) that is applied
to Maxwell’s curl equations in the time domain. It is an explicit marching-in-time
procedure that simulates the propagation and interaction of electromagnetic waves

1 A reminder: if a function σ(x) is said to be O(xn), then there exists some constant A such that σ(x) <

Axn , ∀ x .
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in a region of space. At present, the FDTD is probably the most popular numerical
method for the solution of RF electrodynamic problems, due to its simplicity and
generality.

The algorithm was first proposed by Yee in 1966 [1]. For around a decade,
the method attracted little, if any, attention; the computational electromagnetics
community was primarily exploring the method of moments during this period. In
1975, Taflove and Brodwin obtained the correct stability criteria, and computed
sinusoidal steady-state solutions using the method. In 1977, Holland, Kunz and
Lee applied the method to electromagnetic pulse problems. In 1981, Mur obtained
the first numerically stable, second-order accurate absorbing boundary conditions.
From then on, the popularity of the method grew in leaps and bounds, as a number
of theoretical issues were solved in rapid succession, culminating in Berenger’s
perfectly matched layer in 1994. The rapid adoption of the method was also due
to the explosive growth in especially personal computing; in 1966, realistic ap-
plications of the FDTD made what were then outrageous demands on contempo-
rary computers, whereas those of the MoM were decidedly more modest; by the
1990s, Moore’s law had ensured that many realistic FDTD simulations could be
undertaken on a PC in minutes or at most hours. Hence both theoretical develop-
ments and technological progress played crucial roles in the development of the
method.

Theoretical work on the FDTD continues to this day, although the main thrust of
most work is now in terms of applications. A detailed chronology, with extensive
references, may be found in [2, Section 1.5].

2.4 A one-dimensional introduction to the FDTD

2.4.1 A one-dimensional model problem: a lossless transmission line

To introduce the FDTD algorithm, we will consider a lossless transmission line
problem. From basic transmission line theory, the reader will be aware that for
transverse electromagnetic (TEM) modes, there is a one-to-one correspondence
between electric fields and voltage, and magnetic fields and current. Hence in the
following, although we use voltage and current, this is fully equivalent to a field
description of a TEM transmission line.

A reminder – TEM modes

As noted in the main text, for fields which are entirely transverse electromag-
netic in nature, there is a one-to-one correspondence between electric fields and
voltage, and magnetic fields and current. The best known example is a coaxial
line. If the voltage between the inner (radius a) and outer (radius b) is V , then the
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radial electric field is V
ln(b/a)

1
r , and with current I , the circumferential magnetic

field is I/2πr . The simplest example is the parallel plate waveguide, separa-
tion d, at potential difference V , where the electric field is V/d and the surface
current density and magnetic field are numerically equal, although orthogonal in
space since �Js = n̂ × �H .

For guiding structures supporting more complex modes, such as TE or TM, a
correspondence may still be found but it is no longer unique.

The well-known equivalent circuit of an infinitesimal piece of transmission line
is shown in Fig. 2.1. L is the inductance per unit length and C is the capacitance
per unit length of the lossless transmission line. On this section of line, the voltage
and current on the line are described by a pair of coupled first-order differential
equations, frequently known as the telegraphist’s equations:

∂ I (z, t)

∂z
= −C

∂V (z, t)

∂t
(2.8)

∂V (z, t)

∂z
= −L

∂ I (z, t)

∂t
(2.9)

As already noted, the transmission line equations are a special case of Maxwell’s
curl equations in one dimension.

At this stage, we could decouple the differential equations to obtain the wave
equation (which is a second-order partial differential equation) for the voltage on
the line as a function of position and time. (This is the approach generally taken in
introductory electromagnetics texts; the result is the one-dimensional wave equa-
tion, in either voltage or current.) However, we will instead work directly with the
coupled pair of first-order equations.

Consider the following transmission line circuit problem, illustrated in Fig. 2.2.
Assume L = 1 H/m, C = 1 F/m, h = 0.25 m, RS = 1 �, and RL = 2 �. (Note that

∆L   z

-

+
I(z + ∆z,t)

V(z + ∆z,t)C∆z  V(z,t)

I(z,t)

-

+

Figure 2.1 Infinitesimal section of a one-dimensional transmission line.
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0V (t)

z = 0
z

z = h

RL

RS

-

+

Figure 2.2 Model transmission line problem.

this choice of L and C produces a characteristic impedance of 1 �, and velocity of
propagation of 1 m/s. Clearly, this is a normalized version of the actual problem;
normalized equations such as these are quite frequently used in physics [3, 4].)
The following, then, will be our model problem:

The model 1D problem

Determine the phasor representation of the steady-state response V (z) versus z for

V0(t) = cos (8π t) , t > 0 (2.10)

The boundary conditions (BCs) at z = 0 and z = h are:

V (0, t) = V0(t) − RS I (0, t) (2.11)

V (h, t) = RL I (h, t) (2.12)

Take the initial conditions (ICs) to be:

V (z, 0) = I (z, 0) = 0 (2.13)

A mathematical aside – classification of this problem

This problem is a deterministic, interior problem controlled by a hyperbolic par-
tial differential equation, with mixed boundary conditions. It is deterministic
since there is a source. It is an interior problem since the domain lies inside the
boundaries. The vector wave equation is a hyperbolic partial differential equa-
tion, and the boundary conditions involve both voltage and current.

The exact solution can of course be readily derived used standard transmission
line theory. (This is extremely useful, since it will permit us to test the accuracy of
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our solution.) Noting that the source is matched, the result is:

Vss(z) = V + (
e− jβ(z−h) + �e jβ(z−h)

)
(2.14)

where

V + = 1/2 (2.15)

� = 1/3 (2.16)

β = 8π rad/m (2.17)

Before moving on to the FDTD solution, it should be noted that the above solu-
tion is the phasor – i.e. frequency domain – solution of the problem. The excitation
is a single-frequency sinusoid, radial frequency ω = 8π rad/s, or f = 4 Hz. Since
the speed of propagation is 1 m/s, the phase constant/wavenumber is also 8π rad/m,
and the wavelength is 1/4 m. The FDTD is a time domain solver, so we need to
bear in mind that we are either going to have to convert the above solution into
the time domain, or transform our FDTD solution into the frequency domain. The
Fourier transform will of course provide the connection. We will also have to bear
in mind that the above is the steady-state solution of the problem; there is also the
transient part of the solution, which the FDTD solution is also going to include.
We will discuss how to deal with these issues subsequently.

2.4.2 FDTD solution of the one-dimensional lossless transmission
line problem

The first step in obtaining an FDTD solution is to set up a a regular grid in space
and time. The points on this grid can be designated as (zk, tn) where

zk = (k − 1)�z, k = 1, 2, . . . , Nz (2.18)

�z = h

Nz − 1
, Nz ≥ 2 (2.19)

tn = (n − 1)�t, n = 1, 2, 3, . . . (2.20)

�t = T

M − 1
, M ≥ 2 (2.21)

As noted in the introductory remarks of this chapter, additional grid points at
half-time and half-space points are now also introduced. These additional points
can be designated as (zk+1/2, tn+1/2) where

zk+1/2 =
(

k − 1

2

)
�z, k = 1, 2, . . . , Nz − 1 (2.22)

tn+1/2 =
(

n − 1

2

)
�t, n = 1, 2, 3, . . . (2.23)
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We shall compute V (z, t) at the points (zk, tn), and I (z, t) at the points
(zk+1/2, tn+1/2), i.e. the voltage and currents are computed at offset locations in
space and also in time. We now have two two-dimensional arrays representing the
voltage and current. In each array, a row represents the temporal evolution of the
field at a particular point in space, and a column represents the spatial distribution
of the field at a particular point in time. (This is very convenient in understanding
the method, but we should note now that the FDTD generally stores only two or
three rows of each array – we will see subsequently how this is possible.)

To assist us in imposing the mixed BCs at z = 0 and z = h, two additional
fictitious columns outside of the boundaries of the problem will be introduced,
corresponding to:

z1/2 = −1

2
�z (2.24)

zNz+1/2 = h + 1

2
�z (2.25)

Similarly, to assist in the imposition of the the initial conditions at t = 0, an
additional row will be introduced corresponding to:

t1/2 = −1

2
�t (2.26)

Figure 2.3 shows these grid points graphically. The “◦” indicates points at which
V (z, t) is computed, and “+” points at which I (z, t) is computed. (As drawn here,
vertical cuts correspond to temporal evolution at a particular point in space, hori-
zontal cuts to spatial distribution at a particular point in time.)

The first transmission line equation, Eq. (2.8), is approximated at zk and tn+1/2

using central differencing in both space and time, i.e.,

∂ I
(
zk, tn+1/2

)

∂z
≈ I n+1/2

k+1/2 − I n+1/2
k−1/2

(�z)
(2.27)

∂V
(
zk, tn+1/2

)

∂t
≈ V n+1

k − V n
k

(�t)
(2.28)

Thus, the update equation for V may be obtained as

V n+1
k = V n

k − �t

C�z

(
I n+1/2
k+1/2 − I n+1/2

k−1/2

)
(2.29)

This update equation for V may be represented schematically by the “computa-
tional molecule” or “stencil” shown in Fig. 2.4. From this, it is clear that the update
equation can be used for k = 2, ..., Nz − 1 and n ≥ 2. Special update equations
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Figure 2.3 The Yee grid.

n

n+1

n+1/2

k
k-1/2 k+1/2

k-1 k+1

Figure 2.4 The voltage stencil.

must be devised from the initial and boundary conditions to treat n = 1 and k = 1
and k = Nz .

The second transmission line equation, Eq. (2.9), is approximated at zk+1/2 and
tn using central differencing in both space and time, i.e.,

∂V
(
zk+1/2, tn

)

∂z
≈ V n

k+1 − V n
k

(�z)
(2.30)

∂ I
(
zk+1/2, tn

)

∂t
≈ I n+1/2

k+1/2 − I n−1/2
k+1/2

(�t)
(2.31)
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n+1/2

k
k-1/2 k+1/2

k-1 k+1

n

n-1/2

Figure 2.5 The current stencil.

Thus, the update equation for I may be obtained as

I n+1/2
k+1/2 = I n−1/2

k+1/2 − �t

L�z

(
V n

k+1 − V n
k

)
(2.32)

The update equation for I may be represented schematically as in Fig. 2.5.
Again, it is clear that the update equation can be used for k = 1, . . . , Nz − 1 and
n ≥ 2. Special update equations must be devised from the ICs to treat n = 1. How-
ever, no special treatment for the boundaries at z = 0 or z = h needs to be imple-
mented.

The update equation for V must be modified at k = 1 and k = Nz to incorporate
the BCs into the solution. Consider the update equation for V at k = 1 and k = Nz:

V n+1
1 = V n

1 − �t

C�z

(
I n+1/2
3/2 − I n+1/2

1/2

)
(2.33)

V n+1
Nz

= V n
Nz

− �t

C�z

(
I n+1/2

Nz+1/2 − I n+1/2
Nz−1/2

)
(2.34)

The values of I n+1/2
1/2 and I n+1/2

Nz+1/2 must be obtained from the BCs. Consider the
BC at z = 0:

V (0, tn) + RS I (0, tn) = V0(tn) (2.35)

Using

V (0, tn) = V n
1 (2.36)

I (0, tn) ≈ 1

2

[
I n+1/2
1/2 + I n+1/2

3/2

]
(2.37)

the discretized BC gives

I n+1/2
1/2 = −I n+1/2

3/2 − 2

RS
V n

1 + 2

RS
V0(tn) (2.38)
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A mathematical aside – semi-implicit approximations

Equation (2.38) is sometimes known as a semi-implicit approximation, since
the “next” value at point 1/2 also uses the “next” value at point 3/2. This is
also used when conduction currents are included in a full-wave solver. Although
widely and successfully used, this approximation can degrade both the stability
and accuracy of the solver.

Consider the BC at z = h:

V (h, tn) − RL I (h, tn) = 0 (2.39)

Using

V (h, tn) = V n
Nz

(2.40)

I (h, tn) ≈ 1

2

[
I n+1/2

Nz−1/2 + I n+1/2
Nz+1/2

]
(2.41)

the discretized BC gives

I n+1/2
Nz+1/2 = −I n+1/2

Nz−1/2 + 2

RL
V n

Nz
(2.42)

Using the values of I n+1/2
1/2 and I n+1/2

Nz+1/2 derived from the BCs, we obtain the update
equations for V at k = 1 and k = Nz:

V n+1
1 =

(
1 − 2�t

RSC�z

)
V n

1 − 2�t

C�z
I n+1/2
3/2

+ 2�t

RSC�z
V0(tn) (2.43)

V n+1
Nz

=
(

1 − 2�t

RLC�z

)
V n

Nz
+ 2�t

C�z
I n+1/2

Nz−1/2 (2.44)

To start the FD scheme, we need to obtain the values of V 1
k and I 3/2

k for k =
1, . . . , Nz .

The values of V 1
k may be obtained from the initial condition V (z, 0) = 0. Hence,

V 1
k = 0 for k = 1, . . . , Nz .
The update equation for I for n = 1 is:

I 3/2
k+1/2 = I 1/2

k+1/2 − �t

L�z

(
V 1

k+1 − V 1
k

)

= I 1/2
k+1/2 (2.45)
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The value of I 1/2
k+1/2 must be obtained from the initial condition. Consider the initial

condition:

I (zk+1/2, 0) = 0 (2.46)

Clearly, I must be zeroed at all points at both time-step 1/2 and 3/2.

Summary: FDTD scheme for the model problem

In summary, the FD scheme for this problem is:

V 1
k = 0, for k = 1, . . . , Nz (2.47)

I 3/2
k+1/2 = 0, for k = 1, . . . , Nz − 1 (2.48)

For n ≥ 2,

V n
1 =

(
1 − 2�t

RSC�z

)
V n−1

1 − 2�t

C�z
I n−1/2
3/2

+ 2�t

RSC�z
V0(tn−1) (2.49)

V n
k = V n−1

k − �t

C�z

(
I n−1/2
k+1/2 − I n−1/2

k−1/2

)
, for k = 2, . . . , Nz − 1

(2.50)

V n
Nz

=
(

1 − 2�t

RLC�z

)
V n−1

Nz
+ 2�t

C�z
I n−1/2

Nz−1/2 (2.51)

I n+1/2
k+1/2 = I n−1/2

k+1/2 − �t

L�z

(
V n

k+1 − V n
k

)
, for k = 1, . . . , Nz − 1 (2.52)

Programming aspects: avoiding half-steps

Half-integer values are inconvenient to program. To avoid them, we can simply
make the following changes:

n + 1/2 −→ n (2.53)

k + 1/2 −→ k (2.54)

However, this is only a matter of notational convenience, the voltages and cur-
rents are still located at the relevant points and times, with half-offsets as ap-
propriate! This must always be kept in mind. This also extends to both two- and
three-dimensional FDTD solvers.

Programming aspects: “in-place” operations

A careful study of the update equations above shows that once all the next values
of voltage (i.e. V n

k ) have been obtained, the current values V (n−1)
k are never needed

Administrator
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again. (The update equation for current, viz. I n+1/2
k+1/2 , requires only V n

k .) As such,

it is usual practice in an FDTD code to overwrite V (n−1)
k with V n

k at the end of
each time-step. Indeed, it can be done immediately on a point-by-point basis, but
it is usually more convenient to do this all in one vector update. Hence only four
vectors need be stored, two for voltage and two for current. If, for some reason,
one wants the complete time history at a point (or plane or volume) then this is
usually stored in a separate array. In signal processing, such operations are known
as “in place” operations.

Programming aspects: reducing the “operation count”

It is also possible to reduce the number of operations per time-step (and reduce
memory requirements in inhomogeneous problems) if the following change of
variables is made:

Ṽ n
k = C�z

�t
V n

k (2.55)

The algorithm becomes:

Ṽ 1
k = 0, for k = 1, . . . , Nz (2.56)

I 1
k = 0, for k = 1, . . . , Nz − 1 (2.57)

For n ≥ 2,

Ṽ n
1 = (1 − β1) Ṽ n−1

1 − 2I n−1
1 + 2

RS
V0(tn−1) (2.58)

Ṽ n
k = Ṽ n−1

k −
(

I n−1
k − I n−1

k−1

)
, for k = 2, . . . , Nz − 1 (2.59)

Ṽ n
Nz

= (1 − β2) Ṽ n−1
Nz

+ 2I n−1
Nz−1 (2.60)

I n
k = I n−1

k − r
(

Ṽ n
k+1 − Ṽ n

k

)
, for k = 1, . . . , Nz − 1 (2.61)

β1 = 2�t

RSC�z
(2.62)

β2 = 2�t

RLC�z
(2.63)

r = (�t)2

LC(�z)2
(2.64)

Obtaining and evaluating preliminary results

As commented in the opening of this chapter, the FDTD computes results in the
time domain. The analytical (phasor – steady state) solution is in the frequency
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Figure 2.6 Solution for Nz = 11, M = 64, and ε = 0.002.

domain. As is well known from circuit theory, the response of a system is the
superposition of the transient and steady-state responses. By Fourier transform-
ing the solution at different times, and noting the change in the solution, we can
effectively eliminate the transient part of the solution. An estimate of the phasor
representation of the steady-state response is obtained at the end of each period
(of the sinusoid of 4 Hz frequency, i.e. every 250 ms) by evaluating the Fourier
coefficient at frequency ω = 8π rad/s of the time domain data from the FDM so-
lution. In computing the response, time domain data are stored for one period, and
then overwritten. Steady state is taken to be achieved when the normalized RMS
discrepancy between consecutive estimates is less than some positive error bound,
i.e., Drms ≤ ε > 0. As a measure of accuracy, we evaluate the normalized RMS
error of Yee’s algorithm with respect to the exact solution, viz. (Erms). The result
of this is given in Fig. 2.6. This particular solution required N = 6 for convergence
with Erms = 0.0432. Note that since this is a phasor, the result is of course complex,
with both real and imaginary parts.

2.4.3 Accuracy, convergence, consistency and stability of the method

For any numerical method, important questions which one must pose include the
following.
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Accuracy The degree to which the numerical solution to the approximate field
problem approximates the exact solution to the approximate field problem.

Consistency A finite difference equation is said to be consistent with a PDE pro-
vided that the local discretization error tends to zero as the mesh density increases,
or alternatively, the mesh increment decreases. This is another statement of con-
vergence: the numerical solution should converge to the exact solution as the mesh
is refined (for this FDTD problem, this implies �z → 0).

Stability A process (e.g., a finite difference scheme) is said to be stable if and
only if errors introduced at any stage in the process remain bounded throughout
the entire evolution of the process.

The Lax equivalency theorem states that if a finite difference scheme is consistent
with a properly posed2 linear problem, then stability is the necessary and sufficient
condition for convergence. (Stability proofs can fortunately be readily obtained.)

With regard to accuracy, we will first investigate this by numerical experimenta-
tion. In short, we are verifying the FDTD scheme. We have discussed this topic in
Chapter 1; it is so important that further comments are in order at this point. Right
at the start, we must stress that we can only meaningfully talk about accuracy of
our numerical model with respect to the field problem which we posed – what
we defined as the approximate field problem in Chapter 1. This problem is almost
always a simplified version of the real-world problem. For instance, in our trans-
mission line model, we assume no loss; no matter how good our FDTD solution,
if the transmission line we are modelling has significant loss, our solution cannot
be an accurate simulation of the real problem. Hence, to verify a numerical model,
results are often compared to a known analytical solution of the same approximate
field problem.

In practice of course, we want to use EM simulators to model the real world,
and for this, comparison with measured data is highly desirable or even essential in
many cases. Good agreement between measured data and numerically computed
results indicates that all the important physics of the problem has been captured
in the field description of the problem; the numerical approximation of the field
problem is accurate and reliable; and (a point all too often overlooked) that reliable
measurements on properly calibrated equipment have been made.

In Fig. 2.7, the effect of decreasing the size of time-step (or as plotted, by equiv-
alently increasing the number of time points per period) is investigated. In Fig 2.8,

2 A problem is said to be properly posed if: (i) a unique solution exists; (ii) the solution depends continuously on
the initial and/or boundary conditions.
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Figure 2.7 Normalized RMS error with exact solution versus number of time points per
period (M) with Nz = 11. Note that Yee’s algorithm is unstable in this case for M < 16.
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the effect of decreasing the size of spatial step is investigated (again, the plot shows
the equivalent effect of increasing the number of spatial points along the length
of the line).

In both cases, one notes that stability imposes limits on the discretization. As
already hinted at, with an explicit method such as the FDTD, there will be some
maximum time-step size. As Fig. 2.7 implies, this will also be linked to spatial
step size. The oft quoted stability criterion for Yee’s algorithm in one, two, or
three dimensions is

u�t

�s
≤ 1√

n
(2.65)

where �s is the length of a side of a uniform cell and n is the number of space
dimensions in the problem. For our one-dimensional problem, the above becomes
r ≤ 1 or

u�t

�z
≤ 1 (2.66)

where u = 1/
√

LC is the velocity of propagation on the line.
The above stability criterion is also called the Courant condition, and it can be

derived using Von Neumann’s method applied to Yee’s algorithm. The essential
idea is to discretize a known plane wave in the algorithm, and require that its
amplitude remain bounded as time-stepping progresses.

A physical interpretation of the Courant condition may be obtained by consid-
ering both the numerical domain of dependence and the physical domain of depen-
dence for an arbitrary point in the grid. This is illustrated in Fig. 2.9. The region
within the solid lines is the numerical domain of dependence and the region within
the dashed lines is the physical domain of dependence. The solid lines have slopes
of magnitude �t/�z and the dashed lines have slopes of magnitude 1/u. Yee’s
algorithm is stable provided that the physical domain of dependence is contained
within the numerical domain of dependence. If this is not the case, then grid points
outside of the numerical domain of dependence should be influencing the solution
but cannot. Hence, instability is the result. The physical domain of dependence
is contained within the numerical domain of dependence provided 1/u ≥ �t/�z,
which is the Courant condition.

The Courant condition guarantees the stability of the basic update equations de-
rived from the transmission line equations. However, it does not guarantee stability
of the overall algorithm. Additional stability criteria exist for the update equations
at the boundaries. Unfortunately, these are not usually known analytically, and nu-
merical experimentation is often required. In practice, many FDTD simulations
use either perfect electrical conductors (PECs) or absorbing boundary conditions
on the exterior boundaries; the former simply zero the tangential fields, the latter
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Figure 2.9 Physical interpretation of the Courant limit.

aim to match the interior wave properties as far as possible. Hence, this is generally
not as serious a problem as this example might lead one to believe. Nonetheless, it
is a point worth bearing in mind.

We have already seen that for our particular example, we experience instability
for values of r greater than about 1/2 (r is the fraction of the Courant limit; r = 1
implies one is at the limit). Consider the transmission line circuit problem shown in
Fig. 2.10. Assume L = 1 H/m, C = 1 F/m, h = 0.25 m, and RL is allowed to vary.
Figure 2.11 shows the number of periods required for convergence of the solution
and normalized RMS error with the exact solution versus reflection coefficient at
the load.3 Computations were made with Nz = 11, M = 64, and ε = 0.002. The
algorithm is found to be unstable for values of RL equal to or less than about
0.15 �, in spite of the very small value of r = 0.0252.

Further on the topic of stability, consider the normalized RMS error with the
exact solution versus the number of periods used in the calculation for RL = 200 �,
as show in Fig. 2.12. Note that in the context of a 1 � system, this load is almost an
open circuit. So-called “late time instabilities” in Yee’s algorithm are rumored to
manifest themselves when dealing with high Q structures – such as this example –
that require a large number of time-steps for convergence to the steady state. These
instabilities are usually attributed to the accumulation of round-off errors.

3 For RL < 1 �, the value of Erms is normalized by dividing by the maximum value of voltage on the line.
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Figure 2.10 Transmission line circuit problem illustrating effect of load on stability.
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Figure 2.11 Number of periods required for convergence of the solution and normalized
RMS error with the exact solution versus reflection coefficient at the load.

2.5 Obtaining wideband data using the FDTD

The transmission line example we have discussed follows the same historical path
as the first FDTD work, by using a single-frequency excitation, waiting for the
transients to die out, and then using the Fourier transform to give the frequency
domain solution. It also connects elegantly with phasor circuit theory as taught
worldwide at undergraduate level. However, this is a very inefficient use of the
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Figure 2.12 Illustration of late-time instabilities.

FDTD. The frequency spectrum associated with an excitation can directly produce
the desired system response using some elementary concepts from system theory.
Given an input signal and its s(= jω) domain transform x(t) ⇔ X ( jω), a transfer
function h(t) ⇔ H( jω) and output signal y(t) ⇔ Y ( jω), we can find the transfer
function as

H( jω) = Y ( jω)

X ( jω)
(2.67)

In introductory courses in circuit theory, one may have been asked to measure
a transfer function in the laboratory, using a signal generator and an oscilloscope,
with one channel monitoring the input and the other the output; in this case, H( jω)

has to be computed point by point across the required spectrum (a very painful
process, not least since the signal generator needs to be continually re-set to a con-
stant amplitude and phase as its frequency is changed, or these data must be noted
for subsequent processing). What we have just done with our transmission line
problem is the same, although done computationally. However, by using sources
with more than just one frequency component, we can readily evaluate a num-
ber of points simultaneously. Ideally, we would like signal containing all possible
frequencies (the Dirac delta function, of course, with spectrum X (s) = 1); for rea-
sons we will appreciate shortly, this is neither practical nor desirable in real FDTD
code (although it is possible in the very special case of a 1D code running at the
“magic time-step,” to be discussed subsequently).
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Figure 2.13 A Gaussian pulse.

Examples of wideband sources used in FDTD simulation include the follow-
ing forms: Gaussian, Gaussian derivative, Rayleigh, chirp and wavelet pulses. The
properties of the first two, perhaps the most popular in introductory FDTD work,
are discussed in the following sections, as well as another interesting polynomial
pulse.

2.5.1 The Gaussian pulse

The Gaussian pulse (Fig. 2.13) is popular in FDTD simulations:

v0(t) = 1√
2πσ

e−(t−m)2/2σ 2
(2.68)

It has the advantage of having an analytically known spectrum – one of the pecu-
liarities of the Fourier transform is that the spectrum of a Gaussian pulse is also a
Gaussian (Fig. 2.14):

V0(ω) = e− jωm e−ω2σ 2/2 (2.69)

The energy contained in the pulse is also readily obtained:

E =
∫ ∞

−∞
v2

0(t) dt = 1

2π

∫ ∞

−∞
|V0(ω)|2 dω

= 1

2σ
√

π
(2.70)
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Figure 2.14 Spectrum of a Gaussian pulse.

However, the Gaussian pulse has some significant disadvantages. The most im-
portant are:

• it exists for all time, including t < 0,
• it has a strong frequency component at ω = 0, i.e. DC.

The former requires that the pulse be windowed at some time (i.e. set to zero)
which means there is a slight discontinuity of switch-on. The latter is a more subtle
point; it turns out the static (DC) component can cause problems with charge build-
up in FDTD grids4 and it is better to avoid strong DC spectral components in
FDTD simulations.

2.5.2 The Gaussian derivative pulse

A simple variant on the Gaussian, namely its derivative (Fig. 2.15), is also very
popular in FDTD simulations, since it removes the DC component. It is defined as
follows:

v0(t) = −1√
2π

(t − m)

σ 3
e−(t−m)2/2σ 2

(2.71)

4 Showing this is beyond the scope of this introductory discussion – for a detailed analysis, refer to [5].
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The spectrum of the Gaussian derivative pulse is (Fig. 2.16):

V0(ω) = jωe− jωm e−ω2σ 2/2 (2.72)

The energy of a Gaussian derivative pulse is also easily computed:

E =
∫ ∞

−∞
V 2

0 (t) dt = 1

2π

∫ ∞

−∞
|V0(ω)|2 dω

= 1

4σ 3
√

π
(2.73)

2.5.3 A polynomial pulse

A pulse with finite support and interesting properties is the following, of quartic
polynomial form:

f (t) =
{
(1 − t2)4 ∀|t | ≤ 1
0 otherwise (2.74)

This pulse does not appear to have a specific name. Its derivative has the important
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Figure 2.16 Spectrum of a Gaussian derivative pulse.

property of also being zero at |t | = 1:

d f (t)

dt
=

{−8t (1 − t2)3 ∀|t | ≤ 1
0 otherwise (2.75)

The first derivative has no DC content.
Interestingly, its second derivative has the same zero property at |t | = 1:

d2 f (t)

dt2
=

{
48t2(1 − t2)2 − 8(1 − t2)3 ∀|t | ≤ 1
0 otherwise (2.76)

Thus, the pulse has extremely smooth switch-on and switch-off characteristics,
with the pulse and both its first and second derivatives all being zero at |t | = 1.
These properties are clearly visible in Fig. 2.17. (Although not shown, this property
even extends to the third derivative.)

By replacing t with

τ(t) = 1 − 2(t/T ) (2.77)

in the above, a pulse is obtained with switch-on time τ = 0 and duration T .
The Fourier transform of these pulses must be computed numerically.
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Figure 2.17 The (1 − t2)4 pulse, and its first and second derivatives.

This pulse is especially suitable for use as a windowed sinusoid (continuous
wave):

FCW = [1 − τ(t)2]4 sin[m(2π t/T )] (2.78)

with integer m controlling the number of cycles in the pulse. Clearly, m = 1 cor-
responds to one cycle only, since the windowing function is non-zero only in the
interval t = [0, T ]. An example of a ten cycle windowed sinsusoid is shown in
Fig. 2.18.

This specific pulse, and its use as a window, appear to have been introduced
in [6], although windowed sinusoids have been quite widely used in FDTD
analysis.

2.5.4 The 1D transmission line revisited from a wideband perspective

We will now revisit our model 1D transmission line problem, and pose a slightly
different question.

Find the frequency response VL(ω)/V0(ω) of the transmission line circuit shown
in Fig. 2.19 from 0 ≤ ω ≤ 16π rad/s. Assume L = 1 H/m, C = 1 F/m, h = 0.25 m,
RS = 0.5 �, and RL = 2 �.
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Figure 2.19 One-dimensional transmission line.

Using standard frequency domain transmission line analysis, we can obtain an
exact solution for this problem as

VL(ω)

V0(ω)
= Z0

Z0 + RS

1 + �L

e jβh − �L�Se− jβh
(2.79)

where

�L = RL − Z0

RL + Z0
(2.80)

�S = RS − Z0

RS + Z0
(2.81)
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Z0 =
√

L

C
(2.82)

β = ω
√

LC (2.83)

To obtain the transfer function of the circuit using a Gaussian pulse source, we
need to do the following.

• Set the bandwidth of the source to be wide enough to cover the frequencies of interest
by choosing the standard deviation of the frequency spectrum of the source to be equal
to ωmax, the maximum radian frequency of interest, i.e.

1/σ = ωmax (2.84)

In the results to be shown, ωmax = 16π was used. This is sufficient to demonstrate the
behavior of the transfer function over frequency, as well as the dispersive nature of the
FDTD algorithm (more on this subsequently).

• Set the mean value of the time domain source function to be equal to four standard
deviations so that the source can safely be assumed to be zero for t ≤ 0, i.e.,

m = 4σ = 4/ωmax (2.85)

• Choose a space step such that

�z ≤ λmin

10
(2.86)

or equivalently,

�z ≤ π

5ωmax
√

LC
(2.87)

• Choose a time-step which satisfies both the stability criterion for Yee’s algorithm
(Courant condition) and the required Nyquist sampling rate for the highest frequency
in the pulse.

�t ≤ min

(
�z

√
LC,

π

4ωmax

)
(2.88)

where we assumed that the highest frequency in the pulse is 4ωmax. (All finite-time
sources have a theoretically infinite spectrum; we have to decide some reasonable upper
limit on the spectrum. Recall that the Nyquist theorem states that a signal with maximum
frequency content fm must be sampled at at least twice this frequency, i.e. �t = 1/2 fm ,
or �t = π/ωm in terms of radian frequency. In this case, we chose ωm = 4ωmax. Be
careful not to confuse ωmax, the maximum frequency of interest, with ωm , the maximum
frequency present in the simulation!) Remember that the Courant condition does not
guarantee the stability of the update equations at the boundaries, as the inequality in
Eq. (2.88) reminds us.

• Use the FDTD update equations to let the system evolve during the source “on” time,
which can be taken to be 0 ≤ t ≤ m + 4σ . At the end of this time, compute the total
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energy of the source as5

Esource =
∫ m+4σ

0
v2

0(t) dt (2.89)

Also, compute the Fourier transform of the response and the first estimate of its total
energy as

E (1)
L =

∫ ∞

−∞
|VL(ω)|2 dω (2.90)

• Allow the time evolution of the system to proceed. Periodically interrupt the time evo-
lution to compute the Fourier transform of the response and a new estimate of the total
energy of the response. Stop the time evolution of the system when the difference be-
tween the Kth and (K − 1)th estimates of the total energy of the response normalized
to the total energy of the source are less than or equal to some positive error bound,
i.e.,

∣∣∣E (K )
L − E (K−1)

L

∣∣∣
Esource

≤ ε > 0 (2.91)

and the total energy of the response is greater than some small fraction of the total energy
of the source.

2.5.5 Estimating the Fourier transform

The Fourier transform X (ω) of a time domain signal x(t), for angular frequencies
ω = 2π f is defined as

X (ω) =
∫ ∞

−∞
(t) e− jωt dt (2.92)

and inverse transform

x(t) = 1

2π

∫ ∞

−∞
X ( f ) e jωt dω (2.93)

The pair are also often written as

X ( f ) =
∫ ∞

−∞
X (t) e− j2π f t dt (2.94)

and inverse transform

x(t) =
∫ ∞

−∞
X ( f ) e j2π f t d f (2.95)

5 This can be done conveniently in MATLAB using the trapz function.

x



58 The FDTD method: a 1D introduction

We will approximate the Fourier transform using the discrete Fourier transform
(DFT) defined by

X (k) =
N∑

n=1

x(n) e− j2π(k−1)(n−1)/N , 1 ≤ k ≤ N (2.96)

Signal processing experts sometimes view the two as entirely different trans-
forms, and indeed, there are significant differences: the Fourier transform is de-
fined for aperiodic signals, whereas the DFT automatically renders the signals pe-
riodic (at the Nyquist frequency); the Fourier transform is continuous, the DFT is
discrete. However, we can very usefully approximate the Fourier transform with
the DFT if we bear this in mind, ensure that we satisfy the sampling theorem and
note that the DFT as defined above is missing the correct normalization. By replac-
ing the infinite limits in Eq. (2.92) with 0 and T = N�t , and then approximating
the integral as a finite sum with �t = T/N , we see that the DFT approximates
the Fourier transform, but with a �t scale factor missing, and also with the signal
repeated with period T .

The DFT can be confusing when first used in this context, since the DC com-
ponent is not in the middle as one might expect, but is rather the first component
k = 1. Some definitions of the DFT include a 1/N scaling factor in the forward
transform; other include this in the inverse transform. The DFT implementation in
MATLAB (fft) uses the latter convention. The DFT yields N discrete frequency
samples with a spacing � f = 1/T = 1/N�t . The number of samples N is usu-
ally taken to be a power of 2 (also sometimes known as radix-2) so that efficient
algorithms, specifically the FFT, can be used to compute the DFT.6 For an even
number of samples N , the actual frequencies are defined as:

fk = (k − 1)� f (2.97)

for k = 1, 2, . . . , N/2 and

fk = (k − N − 1)� f (2.98)

for k = N/2 + 1, . . . , N (the negative frequencies). The frequency at k = N/2 + 1
(which can equally validly be viewed as a positive frequency) ∓ N

2 � f is also
known as the folding frequency or the Nyquist frequency, and the Fourier trans-
form is symmetric about this.

An aside – gaining confidence with the DFT (and FFT)

Despite undergraduate exposure, the DFT can remain rather mysterious to many
students. One way to gain confidence with the DFT is to Fourier transform

6 In Chapter 6, the fast Fourier transform (FFT) is discussed in some detail.
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simple signals, whose transforms are known. Consider a cosine signal of an-
gular frequency 1 rad/s. Its period is 2π s, and its frequency 1/(2π) Hz. (From
elementary courses on signal theory, it will be recalled that its Fourier transform
is π{δ(ω + 1) + δ(ω − 1)}.) Let us take eight samples over one period (remem-
ber that we must take more than two to satisfy the sampling theorem!). These
should be equally spaced from t = 0 to t = (7/8)2π . (Including the sample at
t = 2π would be incorrect, since this point has already been included at t = 0.)
This can be achieved very simply in MATLAB by using the command:
t=linspace(0,(7/8)*2*pi,8).
Now we create the cosine signal:
x=cos(t)
and apply the DFT (implemented as the FFT) to this:
X=fft(x).
The result is the following vector:
X=[0 4 0 0 0 0 0 4]
Inserting the �t = T/N scale factor, with T = 2π and N = 8 in this case,
which MATLAB omits, this vector is
X=pi*[0 1 0 0 0 0 0 1]
and we immediately recognize the positive frequency component X (k = 1) at
f1 = 1/(2π), and negative frequency component X (k = 8) at f8 = −1/(2π).
(Note that the FFT is complex, but by choosing a signal with even time symme-
try, only the real parts of the Fourier transform are non-zero.)

Since most of our applications of the Fourier transform will be in computing
ratios of spectra, the constants are not of great concern, but should be included
for completeness.

The highest (non-aliased) frequency in the spectrum produced by the FFT is
Fmax = 1/2�t and the frequency points are spaced by � f = 1/N�t . Additional
frequency points (i.e., smaller values of � f ) can be obtained by zero-padding of
the time domain data. The spectrum obtained by zero-padding of the time domain
data is equivalent to that obtained by sinc-interpolation of the frequency domain
data. (As an aside, we note that zero-padding to improve frequency resolution
is a questionable practice, since no additional real data have been added to the
system.)

To compare the FDTD solution to the exact solution, define the normalized RMS
error with respect to the exact solution as

Erms =
√√√√ 1

N

∑
r

∣∣∣∣∣
V (FDTD)

L (ωr )

V (FDTD)
0 (ωr )

− V (exact)
L (ωr )

V (exact)
0 (ωr )

∣∣∣∣∣
2

(2.99)
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Figure 2.20 Generator and load voltages in the time domain for a Gaussian pulse.

2.5.6 Simulation using Gaussian and Gaussian derivative pulses

The FDTD solution with Gaussian pulse excitation required 694 total time-steps
for convergence and results in Erms = 0.189. Results are shown in Figs. 2.20, 2.21
and 2.22. The “ringing” in Fig. 2.20 is characteristic in telecommunications theory
of a wideband signal on a dispersive channel, and we will see shortly that the
FDTD indeed has dispersive properties.

The FDTD solution with Gaussian derivative pulse excitation requires 820 total
time-steps for convergence and results in Erms = 0.190. The generator and load
voltages in the time domain for a Gaussian derivative pulse are shown in Fig. 2.23.

2.6 Numerical dispersion in FDTD simulations

2.6.1 Dispersion

Dispersion is the phenomenon of signal distortion caused by the dependence of
phase velocity (vp) on frequency. In a dispersive medium, either ε or µ or both
are frequency dependent. The resulting dispersion is called natural dispersion. In
general, normal dispersion occurs when dvp/dω < 0 and anomalous dispersion
occurs when dvp/dω > 0. Numerical solutions (such as the FDTD) can also in-
troduce numerical dispersion – we will return to this shortly.
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Figure 2.23 Generator and load voltages for a Gaussian derivative pulse.

The phase velocity in a medium is given by:

vp = ω

β
(2.100)

A dispersion relation describes the relationship between β and ω. In a distortion-
less medium, β is a linear function of ω and hence the phase velocity is constant
with frequency. The signal (group) velocity is the velocity with which the signal
(i.e., information) moves. It is the signal velocity which can never exceed the speed
of light in a vacuum. The signal velocity can be computed as:

vg = h

Td
(2.101)

where Td is the delay time experienced by the signal in traveling over the distance
h.

Assume that the signal at z = 0 is given by v0(t), and that the signal at z = h is
given by vL(t). The delay time in traveling from z = 0 to z = h (Td ) is the value
of τ which maximizes the cross-correlation between vL(t) and v0(t),

χL(τ ) =
∫ ∞

−∞
vL(t) v0(t − τ) dt (2.102)

In a distortionless medium, the group velocity is equal to the phase velocity.
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Figure 2.24 Theoretical generator and load voltages in the time domain for a Gaussian
pulse.

A numerical algorithm can introduce numerical dispersion, even when waves
are propagating in a distortionless medium. Yee’s FDTD algorithm causes numer-
ical dispersion. We will illustrate this by comparing theoretical and FDTD results
for our simple transmission line circuit shown in Fig. 2.19. Assume L = 1 H/m,
C = 1 F/m, h = 0.5 m, RS = 1 �, and RL = 1 �. This transmission line is distor-
tionless with β = ω

√
LC . The phase velocity on the line (vp) is a constant versus

frequency and is equal to 1 m/s. The source and load impedances are equal to the
characteristic impedance of the line. Hence, there are no reflections at either end
of the line. The theoretical generator and load voltages in the time domain for the
following Gaussian pulse excitation are shown in Fig. 2.24

vL(t) = 1

2
v0 (t − 0.5) (2.103)

Compare these with the results computed in the time domain using the FDTD
shown in Fig. 2.25. The ringing clearly visible on the load voltage is the result of
numerical dispersion.

2.6.2 Derivation of the dispersion equation

To obtain the numerical dispersion relation resulting from Yee’s algorithm, we as-
sume monochromatic plane-wave trial solutions. Substituting these trial solutions
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Figure 2.25 FDTD generator and load voltages in the time domain for a Gaussian pulse.

into the update equations and performing some straightforward algebraic manipu-
lations yields the numerical dispersion relation. The procedure is as follows.

Firstly, assume trial solutions of plane-wave form. In continuous space-time, a z-
propagating plane wave has the form e jωt e− jβz . In discretized form, and allowing
for arbitrary amplitude, this becomes:

V n
k = A e jωn�t e− jβk�z (2.104)

A similar equation can be written for the discretized current:

I n
k = B e jω(n+1/2)�t e− jβ(k+1/2)�z (2.105)

noting the offset between voltage and current.
These are now substituted into the update equations (2.29) and (2.32) to obtain

the expression for the next time-step:

V n+1
k = A e jωn�t e− jβk�z − �tβ

c�z

×
(

e jωn�t e jω�t/2[e− jβ(k+1/2)�z − e− jβ(k−1/2)�z]
)

(2.106)

Obviously, the last exponential term can be simplified as a sinusoid.
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The crucial step in the derivation is to recognize that the discretized plane wave
can also be written as:

V n+1
k = A e jω(n+1)�t e− jωk�z (2.107)

Since these two equations represent the same wave (albeit via the FDTD up-
date and the analytical solution respectively), we can equate them. Thus, equating
Eqs. (2.106) and (2.107), noting that for a plane wave the ratio of voltage to current
is Z0 = √

L/C , and simplifying Eq. (2.106), we obtain the dispersion equation:

sin

(
ω�t

2

)
− �t√

LC�z
sin

(
β�z

2

)
= 0 (2.108)

In the limit as �z → 0 (and thus, from the Courant limit, �t → 0), the small
argument approximation (Taylor series expansion) of the sine function can be ap-
plied, and the expression becomes the exact (dispersionless) relation for the trans-
mission line. This is important, because it indicates that dispersion in an FDTD
mesh can be controlled by making the mesh sufficiently fine. This is a general re-
sult, and applies in 2D and 3D (although the dispersion equation is more complex,
of course).

2.6.3 Some closing comments on dispersion in FDTD grids

Given ω, L , C , �t , and �z, the above non-linear equation can be solved numeri-
cally for β, allowing us to determine the phase velocity as a function of frequency.
This is shown graphically in Fig. 2.26.

The exact group velocity is vexact
g = 1 m/s, and the group velocity resulting from

using Yee’s algorithm varies over the range of frequencies simulated in our model
problem from this value to around 0.984 m/s, a difference exceeding 10%.

As a closing comment on the subject of dispersion, it is interesting to note, from
Eq. (2.108), that if the FDTD simulation is run at the Courant limit, viz. �t =
�z/c, with c = 1/

√
LC , the term in front of the second sinusoid becomes unity,

hence the sinusoids are equal and hence their arguments, thus ω/β = �z/�t ≡ v,
in other words, there is no dispersion. This is also sometimes known as the “magic”
time-step. This implies that an FDTD simulation run at this time-step can (in theory
at least) handle Dirac delta functions (of infinitely wide bandwidth). Unfortunately,
this does not extend to two or three dimensions, and is thus just a curiosity of no
practical value. In 2D and 3D, it turns out that dispersion is minimized (but not
eliminated) by operating at the Courant limit. FDTD beginners often run their
codes well below the Courant limit, believing that their results will be better with
a smaller time-step, but due to numerical dispersion, this is not the case.

We can summarize this rather counter-intuitive fact as follows: FDTD codes
should be run as close to the Courant limit as possible. It should also be noted that
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numerical dispersion is frequency dependent, and worsens rapidly above a certain
frequency. As such, when using a wideband source, we should be careful to ensure
that we use a source whose spectrum does not have significant frequency content in
this region. This is where rules-of-thumb such as 10 cells per wavelength criteria
used earlier in this chapter arise; we appreciate here that the concept of “wave-
length” is rather nebulous in the case of a wideband simulation, and we should
rather interpret this as the wavelength corresponding to the maximum frequency
of interest – often chosen as the point where the spectrum of the source is 1/e of its
maximum value (this is −8.6859 dB; −10 dB is also sometimes used). It must be
appreciated that these are guidelines rather than exact rules. It should also be ap-
preciated that these rules arose in an era when structures being simulated where at
most a wavelength or two in size; for larger structures, as can now be undertaken,
a finer discretization is required since dispersion accumulates over the length of
the simulation.

2.7 Conclusion

In this chapter, we have used a very simple one-dimensional transmission line
example to introduce the FDTD algorithm. We have seen from first principles how
to derive the update equations; this has also given us a handle of the accuracy
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of the method. Due to its second-order nature, the Yee algorithm is surprisingly
accurate. The important issue of stability has been discussed, and we have seen
that the Courant stability criterion is a necessary, but not sufficient, condition for
stability – the boundary conditions can also cause instabilities, although as we
have commented, in most FDTD simulations, this is not usually a major cause of
concern.

Although the FDTD method can be used in the frequency domain, by simply
waiting for the transients to die out – and indeed, our first example did just that –
this is an inefficient use of the method, which is capable of generating wideband
data in one run. This has been discussed in depth in this chapter.

Finally, the fact that the FDTD method has numerical dispersion has been dis-
cussed, as well as the implications. Importantly, and perhaps counter-intuitively,
FDTD codes should be run as close to the stability limit as possible to minimize
dispersion.

With some very simple substitutions, one can solve one-dimensional TEM field
problems using the same theory that we have introduced. However, we prefer now
to move into two dimensions, and immediately address field problems there. This
is the topic of the next chapter.
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3

The finite difference time domain method in two
and three dimensions

3.1 Introduction

In the previous chapter, the basic concepts of the finite difference time domain
method were introduced via a one-dimensional example. We will briefly reprise
the issues one must attend to when doing an FDTD simulation, as follows.

• An FDTD mesh (or grid) must be created for the problem. (This is trivial in 1D, requires
a little thought in 2D, and becomes quite a major problem in 3D.)

• This mesh must be fine enough – i.e. �s must be no more than perhaps one-tenth of the
minimum wavelength (i.e. maximum frequency) of interest (�s represents the spatial
step size; quite often, �x , �y and �z are chosen equal and �s is used as shorthand for
this).

• The time step �t must satisfy the Courant limit (but be as close to this as possible to
minimize dispersion).

• Boundary conditions (the source and load resistors in our 1D example) must be
specified.

• An appropriate signal shape (e.g. differentiated Gaussian) with suitable time duration
for the desired spectral content must be chosen. Also, in general, its spatial position
must be specified. (In the transmission line example, it was fixed as the source voltage
generator.)

In this chapter, we will study the FDTD method in two and three dimen-
sions. Firstly, we will develop a 2D simulator for a problem of scattering in free
space. Following this, a very important development, the perfectly matched layer
absorbing boundary condition, will be discussed and implemented. This is fol-
lowed by a brief discussion of the extension to three dimensions. We conclude

the chapter with a discussion of the use of CST MICROWAVE STUDIO
TM

,
a commercial electromagnetics simulation package which includes an FDTD
solver.

68
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3.2 The 2D FDTD algorithm

We will now apply these ideas to a free-space scattering problem in two dimen-
sions. Firstly, we remind the reader that although the real world is obviously three
dimensional, many useful problems can be solved when one of the dimensions is
much longer than the other two. In this case, we generally assume that the field
solution does not vary in this dimension – often arbitrarily chosen to be the z-
direction, which allows us to simplify the analysis greatly. (A note: assuming that
there is no variation in z, for instance, does not preclude ẑ-directed fields; this
point can sometimes cause confusion.) In electromagnetics, this assumption per-
mits us to decouple the Maxwell equations into two sets of fields or modes, as
they are often called: transverse magnetic and transverse electric.1 Any field sub-
ject to the assumption of no variation in z can be written as the sum of these
modes:

Transverse magnetic TM, often written TMz , modes contain the following field
components: Ez(x, y, t), Hx (x, y, t) and Hy(x, y, t).

Transverse electric TE, often written TEz , modes contain the following field com-
ponents: Hz(x, y, t), Ex (x, y, t) and Ey(x, y, t).

At the risk of repetition, there is no z variation in any of the above fields.

3.2.1 Electromagnetic scattering problems

When an electromagnetic field encounters a target,2 currents are excited on it,
which in turn re-radiate. This process is called “electromagnetic scattering.” Obvi-
ous applications are in radar, and also in multi-path analysis for radio-wave prop-
agation. Since the Maxwell equations are linear, the fields are often decomposed
into an incident field �E inc and a scattered field �E scat. The overall field, called the
total field �E tot, is then:

�E tot = �E inc + �E scat (3.1)

By definition, the incident field is the field which would exist if the scatterer were
absent. This is very useful; often, this will be a plane wave which can easily be
expressed mathematically in closed form. We will see shortly how useful this idea
can be when studying scattering.

1 Readers who have previously studied waveguide analysis will immediately recognize these concepts.
2 Because most of the original work was done for radar applications, the military term “target” is frequently used

for describing the scatterer in such circumstances.
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3.2.2 The TEz formulation

At this stage, we could solve either (or both) transverse modes; the FDTD process
is essentially identical. We will chose the TEz formulation, because TEz waves
exhibit interesting behavior when scattering off circular targets – creeping waves
are excited on the structure, i.e. a wave “attaches” itself to the cylinder, goes around
the target and then comes back towards the source, potentially in or out of phase
with the incident field. (TMz waves do not do this; the reason is that the boundary
conditions are different.)

The TEz mode set is described by the following parts of Maxwell’s equa-
tions:

∂ Ex

∂t
= 1

ε

(
∂ Hz

∂y
− σ Ex

)
(3.2)

∂ Ey

∂t
= 1

ε

(
−∂ Hz

∂x
− σ Ey

)
(3.3)

∂ Hz

∂t
= 1

µ

(
∂ Ex

∂y
− ∂ Ey

∂x

)
(3.4)

We will simplify these further by assuming that the materials are lossless:

∂ Ex

∂t
= 1

ε

∂ Hz

∂y
(3.5)

∂ Ey

∂t
= −1

ε

∂ Hz

∂x
(3.6)

∂ Hz

∂t
= 1

µ

(
∂ Ex

∂y
− ∂ Ey

∂x

)
(3.7)

In the transmission line case of the previous chapter it will be recalled that we
chose “half-step” increments for the current. We will apply the same idea to de-
veloping a 2D FDTD solution of the above equations. We will make the following
choices:

xi = (i − 1)�x, i = 1, 2, . . . , Nx

�x = X

Nx − 1
, Nx ≥ 2 (3.8)

yk = ( j − 1)�y, j = 1, 2, . . . , Ny

�y = Y

Ny − 1
, Ny ≥ 2 (3.9)
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tn = (n − 1)�t, n = 1, 2, 3, . . .

�t = T

M − 1
, M ≥ 2 (3.10)

Here, X and Y are the dimensions of the region we will be gridding (in the x and
y directions) and Nx and Ny obviously are the number of cells in each dimension.
It is traditional, but certainly not essential, to associate the indices i , j and k in an
FDTD code with x , y and z, and m or n with t .

Coding hints – the indices i , j and MATLAB

At this point, it is worth sounding a warning that using these traditional indices
can cause very frustrating problems in MATLAB, where i , and j , are usually
defined as

√−1. A useful programming habit to develop is instead to use i i and
j j as indices.

A similar array of half-index points will also be defined:

xi+1/2 = (i − 1/2)�x, i = 1, 2, . . . , Nx (3.11)

y j+1/2 = ( j − 1/2)�y, j = 1, 2, . . . , Ny (3.12)

tn+1/2 = (n − 1/2)�t, n = 1, 2, 3, . . . (3.13)

Following Yee’s choice, we will locate Hz(i, j, n) at xi+1/2; y j+1/2; tn+1/2.
Ex (i, j, n) will be located at xi+1/2; y j ; tn and Ey(i, j, n) at xi ; y j+1/2; tn . This
choice is far from random; it provides a spatial grid with the magnetic field Hz sur-
rounded in space by the electric fields – Ex (i, j, k) and Ex (i, j + 1, k), Ey(i, j, k)

and Ey(i + 1, j, k) – and offset in time by �t/2. The spatial locations are indi-
cated in Fig. 3.1.

Now we will turn our attention to the discretization of the FDTD TEz modes.
Consider Eq. (3.7). We apply central differencing to both time and space, produc-
ing:

Hz(i + 1
2 , j + 1

2 , n + 1
2) − Hz(i + 1

2 , j + 1
2 , n − 1

2)

�t

= 1

µ

[
Ex (i + 1

2 , j + 1, n) − Ex (i + 1
2 , j, n)

�y

]

− 1

µ

[
Ey(i + 1, j + 1

2 , n) − Ey(i, j + 1
2 , n)

�x

]
(3.14)
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Figure 3.1 The Yee grid for the i, j th cell for the FDTD 2D TEz mode.

Now, keeping only Hz(i + 1
2 , j + 1

2 , n + 1
2) on the left-hand side of the equa-

tion, we rewrite this as:

Hz

(
i + 1

2
, j + 1

2
, n + 1

2

)
= Hz

(
i + 1

2
, j + 1

2
, n − 1

2

)

+ �t

µ�y

[
Ex

(
i + 1

2
, j + 1, n

)
− Ex

(
i + 1

2
, j, n

)]

− �t

µ�x

[
Ey

(
i + 1, j + 1

2
, n

)
− E

(
i, j + 1

2
, n

)]
(3.15)

Similar procedures, applied to Eqs. (3.5) and (3.6), produce the update equations
for the E-field components:

Ex

(
i + 1

2
, j, n + 1

)
= Ex

(
i + 1

2
, j, n

)
+ �t

ε�y

[
Hz

(
i + 1

2
, j + 1

2
, n + 1

2

)

− Hz

(
i + 1

2
, j − 1

2
, n + 1

2

)]
(3.16)

y
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Ey

(
i, j + 1

2
, n + 1

)
= Ey

(
i, j + 1

2
, n

)
− �t

ε�x

[
Hz

(
i + 1

2
, j + 1

2
, n + 1

2

)

−Hz

(
i − 1

2
, j + 1

2
, n + 1

2

)]
(3.17)

Just as in the 1D case, the half space and time increments are inconvenient to
program, and we will refer simply to i, j, n for Ex , Ey and Hz , but keeping in
mind the actual locations. We will also assume �x = �y = �s. This allows us
the simplify the above to the following:

Hz(i, j, n) = Hz(i, j, n − 1) + �t

µ�s
[Ex (i, j + 1, n)

− Ex (i, j, n) + Ey(i, j, n) − Ey(i + 1, j, n)] (3.18)

Ex (i, j, n + 1) = Ex (i, j, n) + �t

ε�s
[Hz(i, j, n) − Hz(i, j − 1, n)] (3.19)

Ey(i, j, n + 1) = Ey(i, j, n) − �t

ε�s
[Hz(i, j, n) − Hz(i − 1, j, n)] (3.20)

Note that when the electric fields are updated, the magnetic field values used are
the newly updated ones.

We now have our update equations, and the Courant limit for two dimensions:

�t ≤ �s√
2c

(3.21)

where c is the (largest) speed of light in the FDTD region (in non-vacuum regions,
the speed of light is of course slowed). We are not quite ready to program, however.
There are two things we still need to consider: injecting a source, and terminating
the mesh.

3.2.3 Including a source: the scattered/total field formulation

If we want to study scattering, we need a method for simulating a plane wave.
(Usually, scattering problems assume that whatever source setup the incident field
is far removed from the scatterer, and hence the field incident on the target is a
uniform plane wave.) The simplest method for doing this is to exploit the con-
cepts of incident, scattered and total fields introduced in Section 3.2.1. Since the
Maxwell equations are linear, and we will only work with linear materials here,
we can use the FDTD to solve for either the scattered or total fields. (Remember
that the incident field is assumed known in this type of formulation.) We will split
the computational area into two zones using a (non-physical) line, as in Fig. 3.2:
in one region, we will have only scattered fields, and in the other, total fields. For
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Figure 3.2 The scatterer and surrounding FDTD zones, showing scattered field and total
field regions.

convenience, we will choose a constant x coordinate; we will assume this corre-
sponds to index iL = L (the subscript L short for left; we could also position
another scattered field zone to the right of the scatterer, etc.).

Now we note one of the points which can sometimes cause problems with the
FDTD algorithm. Do we interpret iL as being on a spatial step or half-step? There
is no correct answer to this, we need to make a decision and then work consistently
with this. Since three of the five field components in the two-dimensional Yee cell
are located at half-step values of x , let us choose this. Hence our scattered/total
field demarcation is located at xL = (L − 1

2)�. Fields located on and to the right
of this line this will be chosen as total fields. Fields to the left will be scattered
fields.

Clearly, we cannot simultaneously work with scattered and total fields in the
update equations. However, because we know the incident field, we can add or
subtract this as necessary. Let us consider the update equation for Hz . Here, we
will retain the full notation (including half-steps) to avoid confusion. For i < iL ,
we use Eq. (3.15), with all the fields scattered fields. For i > iL , we use the same
Eq. (3.15), but now all the fields are total fields.
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On the zoning interface, i = iL , we have a total H tot
z (i + 1

2 , j + 1
2) field, total

E tot
x fields, a total E tot

y (i + 1, j + 1
2) field and a scattered E scat

y (i, j + 1
2 , n) field.

We can make this last consistent by adding the known incident field E inc
y y(i, j +

1
2 , n). The update equation for i = iL becomes:
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(3.22)

For the Ey component located at xL = (L − 1), i.e. just to the left of the in-
terface, all the fields in the update equations are scattered, except for the Hz field
located at xL = (L − 1

2)�x . The update equation for this becomes:
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)]
(3.23)

The update equation for the other component, Ex , involves either only total
fields (for i ≥ iL ) or only scattered fields (for i < iL ) and hence can be used with-
out change.

As an example, if the incident field is a plane wave, propagating in the x-
direction, in free space, with time history x(t), with a z-polarized magnetic field,
the expressions for the incident fields are:

E inc = x(t − tDE )ŷ (3.24)

H inc = 1

η0
x(t − tDH )ẑ (3.25)

η0 = √
µ0/ε0 is the wave impedance of free space. tD is the delay time from some

arbitrary start location. For the problem shown in Fig. 3.2, this could conveniently

iL
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be taken as x = 0. For the magnetic fields located at xL = (L − 1
2)�x , the delay

time is tDH = (L − 1
2)�x/c; for the electric fields located at xL = (L − 1)�x , the

delay time is tDE = (L − 1)�x/c. In short, the half-delta difference in spatial po-
sition of the fields must be taken into account. Note that these delay times are only
valid for the specific case of a field propagating only in the x̂-direction. Formulas
are easily derived for plane waves propagating in other directions, but the above is
sufficient for now.

Considering how simple it was to include the 1D source, one might wonder why
this apparently much more complex approach is necessary in 2D. It is possible
to include a simple line source in 2D in much the same way as in 1D, by simply
specifying the value of the source at a particular point in the mesh. This however
radiates cylindrical, not plane, waves; hence, this approach is not useful for most
scattering problems. However, it is convenient for initial code testing, and also
for checking the operation of absorbing boundary conditions. The next idea that
springs to mind is simply to drive a line of points in the mesh with some source
function. The problem with this is more subtle; suffice it to say for now that al-
though this seems like a simple approach, it does not give good results in practice.

3.2.4 Meshing the scatterer

The process of generating a suitable FDTD grid for a problem is often called
“meshing.” As already indicated, this can be a formidable problem in general. We
will be using a very simple test problem – a circular cylinder.3 This will allow us to
make a very simple “mesher.” We will place the cylinder, radius a, at a convenient
location in the mesh and then simply compute the distance to a point in the mesh;
if this distance exceeds a, the point lies outside the cylinder, if it is less than or
equal to a, it lies inside or on the surface. Since the Ex and Ey field components
are offset in space, we must do this for each component. As a first pass, we will
make the cylinder highly conducting, indeed perfectly conducting, so that the (to-
tal) fields inside the cylinder are zero. The appropriate boundary condition will be
to zero the fields tangential to the cylinder.

The above sounds very straightforward. It is only when coding that a whole
number of problematic issues suddenly appear. The first is that we have spoken
about “tangential” fields. With a round cylinder, the tangent will only lie in the ±x̂
or ±ŷ directions at four points (top, bottom, right and left in Fig. 3.2). Elsewhere,
in all the other FDTD cells which the boundary of the cylinder passes through,

3 “Cylinder” is the general mathematical description of any object generated by translating a two-dimensional
cross-section along its normal. For instance, a “cylinder” may be square. (In normal English usage, a cylinder
is round.) The full mathematical term for what is commonly called a cylinder is a “right circular cylinder.”
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we are only going to be able to approximate the boundary, and because we use a
rectangular grid, the resulting approximation is often called a “stair-step” approx-
imation.

This problem emerged because we are modelling round (or more generally,
curvilinear) structures with a rectangular grid. But even if we only model rect-
angular structures which can be aligned to the FDTD grid, another problem still
remains. Refer back to Fig. 3.1. Now, instead of modelling a PEC (perfect elec-
trical conductor) scatterer, let us rather model a cylinder made of some dielectric
material, with permittivity εR . In the update equations, we need to specify the
value for ε = εRε0. Assume we do this for E y(i + 1, j + 1

2). Now, what do we do
with the two E x components located �x/2 to the left of this interface? If we set
εR for them as well, the interface has effectively been “moved” slightly to the left,
and now we have the same problem with E y(i, j + 1

2) . . . If we do not, the inter-
face is then located somewhere between (i + 1

2)�x and (i + 1)�x . Again, this is
a problem without a simple answer. Due to the half-step offsets in the FDTD Yee
grid, there is an uncertainty about the precise position of material interfaces in the
basic Yee algorithm. Since it is a maximum of a half-cell, and the cells are usually
quite small, it is normally acceptable, but can be problematic. (“Averaging” meth-
ods have been used successfully to correct this, and to improve the modelling of
curvilinear structures, but we will not consider these at present.)

One final issue still remains to be solved before we develop a 2D FDTD code
for scattering off a cylinder: how do we terminate the mesh? The problem is
the following: we want to simulate a free-space environment, which means that
waves scattered off the target should radiate radially away to infinity, diminishing
in strength and eventually disappearing. Clearly, we cannot make an FDTD grid
sufficiently large to simulate this. If one has seen an anechoic chamber used for
antenna measurements, one will know that antenna designers have a similar prob-
lem; they have solved this by coating the walls of the anechoic chamber with an
absorbing material. This, effectively, is what we will attempt to do now.

3.2.5 Absorbing boundary conditions

The field of absorbing boundary conditions (ABCs) attracted much research
throughout the 1980s and early 1990s. Two methods have historically been pur-
sued: radiation BCs and absorbing BCs. The term ABC is also used more gener-
ally for both. The former modifies the FDTD update equations; the latter modifies
the material properties in the mesh.

Having really good ABCs, and here is meant ABCs with a reflection coefficient
less than −60 or −70 dB, means that it is possible to bring the ABC close to
the radiating/scattering structure, “wasting” as few Yee cells as possible meshing
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up free space. Due to the great interest in the field, one will find a large number
of references on the topic. Later in this chapter, we will introduce a revolutionary
boundary condition, the perfectly matched layer, but for the time being, we will use
a very simple ABC. The idea is the following, for a −x traveling wave on plane
x = 0. It uses the concept of one-way wave equation, also known as the advective
equation, with a wave solution f (x + ct), traveling only in the −x̂ direction:

[
∂

∂x
− 1

c

∂

∂t

]
φ(x, t) = 0 (3.26)

φ(x, t) represents one of the components of the wave. This leads then to a 1D
ABC, as follows. We impose this one-way wave equation on a wave incident on a
surface normal to x̂ :

∂

∂x
φ(x, t)

∣∣∣∣
x=0

= 1

c

∂

∂t
φ(x, t)
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x=0

(3.27)

Applying forward differencing in x and t , one obtains:

φn
1 − φn

0 ≈ �x

c�t
(φn+1

0 − φn
0 ) (3.28)

Finally, rewrite this to give the desired ABC:

φn+1
0 = φn

0

(
1 − c�t

�x

)
+ c�t

�x
φn

1 (3.29)

This analysis must be repeated at the boundary x = xmax. In this case, the rele-
vant one-way wave equation, with solution in this case f (x − ct), traveling only
in the +x̂ direction, is

[
∂

∂x
+ 1

c

∂

∂t

]
φ(x, t) = 0 (3.30)

Imposed on a wave incident on a surface normal to x̂ , the wave is again “absorbed.”
This leads then to the other 1D ABC:
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(3.31)

Applying backward differencing in x and forward differencing in t as before, one
obtains:

φn
Nx

− φn
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c�t
(φn+1
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− φn

Nx
) (3.32)

Finally, rewrite this to give the desired ABC:
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= φn
Nx
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)
+ c�t

�x
φn

Nx−1 (3.33)
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Interestingly, the equation is identical in form to Eq. (3.29). The extension to ±ŷ
propagating waves on the planes y = 0 and y = ymax is obvious.

As noted, φ was used here; clearly, we need to apply this to the various tangential
field components at each boundary. Note that we only need apply it to either �E
or �H ; once we establish one of the fields “outside” the computational domain,
the usual update equations, combined of course with the half-space step offset,
establishes the other.

Because this ABC used forward differencing, it is only accurate to first order.
(Remember that the Yee scheme has second-order accuracy.) It is “exact” in 1D;
in 2D and 3D, for paraxial incidence, reflection coefficients of � < − 25 dB may
be obtained, but it degrades rapidly off-normal. Mur, in 1981, published a more
complete first-order ABC, as well as a second-order one. Details are available
in [1, Chapter 6]. These first- and second-order Mur ABCs are still widely used,
owing to their simplicity and reasonable effectiveness; however, commercial codes
should also offer perfectly matched layers.

We now have all the tools needed to produce a 2D FDTD simulation of elec-
tromagnetic scattering from a cylinder in free space – we already have suitable
wideband pulses from our 1D work. We will now proceed to develop the simula-
tor.

3.2.6 Developing the simulator

There are a number of issues to consider when turning this algorithm into code.
Although we will not be excessively concerned with computational efficiency ini-
tially, it is good practice nonetheless to consider some issues. Firstly, division is
a much more expensive process in terms of computing time than multiplication.
Equation (3.18) contains a term �t/µ�s, and Eqs. (3.19) and (3.20) both contain
the term �t/ε�s. Usually, there will only be a few different material regions in
an FDTD code. So, it would be better to store these as an array representing mate-
rial properties, perform the division once before the time-stepping starts, and then
simply use the relevant value of this array at each stage. One of these is needed per
field component:

Hz(i, j, n) = Hz(i, j, n − 1) + DH z(i, j) [Ex (i, j + 1, n)

− Ex (i, j, n) + Ey(i, j, n) − Ey(i + 1, j, n)
]

(3.34)

Ex (i, j, n + 1) = Ex (i, j, n) + CEx (i, j) [Hz(i, j, n + 1) − Hz(i, j − 1, n + 1)]

(3.35)

Ey(i, j, n + 1) = Ey(i, j, n) − CEy(i, j) [Hz(i, j, n + 1) − Hz(i − 1, j, n + 1)]

(3.36)



80 The FDTD method in 2D and 3D

with

CEx (i, j) = �t

ε([i − 1/2]�s, [ j − 1]�s)
(3.37)

CEy(i, j) = �t

ε([i − 1]�s, [ j − 1/2]�s)
(3.38)

DH z(i, j) = �t

µ([i − 1/2]�s, [ j − 1/2]�s)
(3.39)

where the (x, y) coordinates at which ε and µ are to be evaluated are explicitly
indicated. The previous discussion in Section 3.2.4 regarding the exact position of
material interfaces refers again.

Coding hints – programming the update equations efficiently

The obvious way of programming Eqs. (3.34)–(3.36) is to use a double-loop
(a DO-loop in FORTRAN, a FOR-loop in many other languages, including
MATLAB). However, with MATLAB, this is not a good idea. The problem is
that MATLAB is an interpreted language, as opposed to a compiled one, and only
runs efficiently when its (highly optimized) vector commands can be used by the
interpreter. So, an update such as Eq. (3.36) is best programmed as in Fig. 3.3 –
note that the . . . is the MATLAB line continuation character.

E_y_n(2:N_x,2:N_y) = E_y_nmin1(2:N_x,2:N_y) ...
- C(2:N_x,2:N_y).*( H_z_n(2:N_x,2:N_y) - H_z_n(1:N_x-1,2:N_y) )

Figure 3.3 MATLAB code stub for updating Ey .

This looks somewhat cryptic on a first reading: the key operation
is H z n(2:N x,2:N y) - H z n(1:N x-1,2:N y) which effectively
shifts the second occurrence of the H z n array along its first dimension (cor-
responding to x) and permits the difference to be formed as a vector operation.
It is also clear why the indices must run from 2 to Nx , rather than from 1 to Nx

(and similarly along the second dimension); otherwise, the operation would re-
fer to non-existing array elements at 0 when shifted. These, the boundary values,
must be computed separately. The .* operation in MATLAB denotes element-
by-element multiplication (also sometimes known as the outer product of two
matrices).

A point to note when coding is that because the FDTD algorithm is explicit,
the new values that we compute at a point are not affected by the new values
at any other points. Hence, we do not need to take particular care at the line
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% Update H fields:
H_z_n(1:N_x-1,1:N_y-1) = H_z_nmin1(1:N_x-1,1:N_y-1) ...

+ D(1:N_x-1,1:N_y-1).*( E_x_nmin1(1:N_x-1,2:N_y) - E_x_nmin1(1:N_x-1,1:N_y-1) ...
+ E_y_nmin1(1:N_x-1,1:N_y-1) - E_y_nmin1(2:N_x,1:N_y-1) ) ;

% Special update on scat/tot field boundary
E_y_nmin1_inc = ones(1,N_y)*gaussder((m-1)*delta_t - (L-1)*delta_s/c,m_offset,sigma) ;
H_z_n(L,1:N_y-1) = H_z_nmin1(L,1:N_y-1) ...

+ D(L,1:N_y-1).*( E_x_nmin1(L,2:N_y) - E_x_nmin1(L,1:N_y-1) ...
+ E_y_nmin1(L,1:N_y-1) + E_y_nmin1_inc(1:N_y-1) - E_y_nmin1(L+1,1:N_y-1)) ;

Figure 3.4 MATLAB code stub for updating Hz .

corresponding to scattered/total field interface i = L . We can update values at this
point as usual with a vector operation, and then overwrite them with the correct
values. (Obviously, the values of Hz , for instance, must be correct before we start
the updates of the electric fields, and vice versa.) Although this involves a small
amount of unnecessary computation – in this case, we compute the values along
the line separating the scattered/total field twice – the savings in code complexity
are so significant that this is almost universal practice in FDTD codes. In the code
stub shown in Fig. 3.4, we show the update for the �H field, demonstrating this
idea. The semicolons at the end of each line prevent the results being written to the
command window, which is essential with the large datasets which the FDTD can
easily generate. gaussder is a function which returns a suitable differentiated
Gaussian.

With the 1D FDTD, the algorithm is simple enough that it is relatively easy
to program correctly. However, our 2D FDTD simulator is already sufficiently
complex that to try to program it in its entirety in one go is likely to lead to great
frustration. There are no less than three major, different types of errors that can be
made. How to test the code systematically, and locate likely errors, will now be
discussed.

Coding hints – frequently made errors in MATLAB

MATLAB is an excellent environment for quickly testing and demonstrating algo-
rithms. However, from the viewpoint of programming, it has a number of “fea-
tures” which would be seen as deficiencies in most programming languages.
The most prominent of these is that it is not a strictly typed language – indeed,
MATLAB has many properties of a scripting language. This means that variables
do not need to be declared before they are used. The advantage is convenience;
the drawback is reliability. Firstly, one can accidentally overwrite an existing
variable; in particular, i and j offer suffer this fate. A variant of this is that a
subtle spelling error creates a different (and usually undefined) variable. Some
other errors frequently made in MATLAB, in particular by programmers used to
other languages, include:
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Indices in for loops The correct format for the for loop indices is for
ii=1:N x, for example. FORTRAN programmers in particular are inclined to
code this as for ii=1,N x, which is incorrect in MATLAB.

Testing equality versus assignment The correct logical expression to test if ii is
equal to jj is if ii == jj (as in C). Again, FORTRAN programmers often
code this as if ii = jj, which assigns the value of jj to ii.

Both these errors are especially frustrating to locate; MATLAB executes the
former incorrectly (or at least incorrectly in terms of the programmer’s ex-
pectations), and earlier versions also executed the latter (later versions issue a
warning).

Implementing the update equations

The easiest mistakes to make here are with the indices. In particular, the repeti-
tiveness of FDTD equations encourages cutting-and-pasting, and one has be very
careful to correct all the indices (and also field subscripts) when doing this. A sim-
ple test which can be used is to note that an FDTD update equation involving (say)
the x component of a field on the right-hand side never involves a partial derivative
(which is of course a difference equation in the code) in x (i.e. the first index). For
instance, look at the term in the update for Hz (Fig. 3.4):

E_x_nmin1(1:N_x-1,2:N_y) - E_x_nmin1(1:N_x-1,1:N_y-1)

Clearly, the following would be incorrect:

E_x_nmin1(2:N_x,2:N_y) - E_x_nmin1(1:N_x-1,2:N_y) % THIS IS WRONG!

It is essential to check the update equations by very carefully reading through
each one as programmed.

To check that the update equations are working, a very simple source at one
point can be used. Physically, this represents an infinitely long line source. Instead
of the full scattered/total field approach shown in Fig. 3.4, the code in Fig. 3.5
injects a source of cylindrical waves in the center of the mesh. Again, note that
the source update at (Nx/2, Ny/2) simply overwrites the just updated value. Note
also that the E field update equations in this case are simply those of free space.
Also combined with this, the outer boundaries at this stage can simply be set as
PECs by zeroing the relevant tangential electric field components; see Fig. 3.6 for
an example.
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% Update H fields:
H_z_n(1:N_x-1,1:N_y-1) = H_z_nmin1(1:N_x-1,1:N_y-1) ...

+ D(1:N_x-1,1:N_y-1).*( E_x_nmin1(1:N_x-1,2:N_y) - E_x_nmin1(1:N_x-1,1:N_y-1) ...
+ E_y_nmin1(1:N_x-1,1:N_y-1) - E_y_nmin1(2:N_x,1:N_y-1) ) ;

% Drive a test line source - used to check basic operation
H_z_n(N_x/2,N_y/2) = gaussder((m-1)*delta_t,m_offset,sigma);

Figure 3.5 MATLAB code stub for updating Hz , using a point (line) source.

% Fix outer values of E_tangential as PEC:
E_y_n(1,:) = 0;
E_y_n(N_x,:) = 0;
E_x_n(:,1) = 0;
E_x_n(:,N_y) = 0;

Figure 3.6 MATLAB code stub for setting PEC boundaries.

Implementing the plane-wave source

Once one has confidence that the update equations are working, one can proceed to
test the full scattered/total field formulation, incorporating the plane-wave source.
Now, one needs to start thinking about the electromagnetics of the problem. In the
1D case, we simplified matters by using a set of equations with the speed of light
set to 1 m/s. Now, we are working with the real world, and c ≈ 3 × 108 m/s. Since
we are primarily interested in radio-frequency (RF) problems, we will select an RF
source, with Gaussian derivative shape, with frequency content in the gigahertz
range. It turns out to be convenient to select a signal with σ ≈ 1 × 10−10; this
produces a signal with peak spectral amplitude at about 1.5 GHz; reference to
Fig. 2.16 4 shows that at around twice the frequency of peak spectral amplitude,
the spectrum has decayed to around 30% of the peak value. In the present case, this
is 3 GHz; the wavelength in free space is 10 cm (0.1 m) and now we have some
guidelines to setting �s: we should make this around 1/10 of the wavelength at
3 GHz, viz. �s = 0.01 m. (Note that we must be careful to work in SI units!) �t
will be set by the Courant limit (a maximum of 23.587 ps, when using the exact
value for c).

For testing the code, it is tempting to set Nx and Ny quite small, for instance,
5 or 10. Whilst this is occasionally necessary when something is really wrong
and one is having to step through the code, it is actually a bad idea in general.
The reason is that the absorbing boundary conditions are not included yet, and the
temporary PEC boundaries suggested above result of course in the wave reflecting
back. With small domains, these reflections mean that it is not possible to observe
the field develop and propagate properly. A good test uses Nx = 200 and Ny =
100 (corresponding physically with �s = 0.01 m to an area 0.2 × 0.1 m2). The
scattered/total field zone is placed at L = 50.

4 That plot was normalized to σ = 1; the extension is obvious.
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Figure 3.7 Gaussian derivative pulse used for 2D FDTD simulation.

The Gaussian derivative pulse defined in Eq. (2.71) was obtained by differenti-
ating Eq. (2.68), and has inconvenient amplitude behavior (being proportional to
1/σ 2). The following pulse has a far more convenient, almost normalized ampli-
tude:

v0(t) = −4√
2π

(t − m)

σ
e−(t−m)2/2σ 2

(3.40)

Its time history for σ = 1 × 10−10, and with m = 4σ , is shown in Fig. 3.7. The
peak amplitude is 0.9670, at 0.3322 ns.

Coding hints – a normalized Gaussian derivative pulse

The following equation defines a properly normalized Gaussian derivative pulse:

v0(t) = −e1/2

σ
(t − m) e−(t−m)2/2σ 2

(3.41)

The normalizing constant e1/2/σ provides a unit peak amplitude at t − m = ±σ .
Since the results in this chapter do not require this, the signal in Eq. (3.40) is used
in the following discussion.
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Figure 3.8 Gaussian derivative pulse at a point just to the right of the scattered/total field
zone.

This can now be injected into the scattered/total field code. We will monitor
the Hz field (scaled by η0, to give a peak value close to unity). We will do this
at point 1, with indices (L + 1 = 51; 50), just to the right of the scattered/total
field interface, and at point 2, with indices (101; 50). The result, for M = 400
time-steps, in shown in Fig. 3.8. The first peak value is at 1.9577 ns, the second, at
3.6559 ns. Now, we establish whether this checks with basic physics. The time dif-
ference between the peaks of these pulses is 1.6982 ns. In free space, it should take
1.6678 ns propagating at the speed of light to cover the distance of 50�x = 0.5 m.
This is a difference of around 1.8%. This is very probably due to numerical dis-
persion. To confirm this, the problem should be rerun, using a finer mesh. If this is
done with �s reduced by half to 0.005 m, the time difference reduces to 1.6746 ns,
corresponding to an error of around 0.41%, and confirming that numerical disper-
sion was indeed the cause of the problem.

The above results demonstrate a working code. If, however, one is not this for-
tunate, where does one look for the errors? The first thing to do is to ensure that
the source really is working correctly. In MATLAB, the source was implemented as
a function, in a separate m-file. This allows one to write a short test routine to see
what the signal looks like. If this is correct, then the likely errors are in the scat-
tered/total field equations. Be especially careful to ensure that the half-step offsets
are correctly taken care of in both space and time.
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Figure 3.9 Gaussian derivative pulse and reflection.

Implementation of the ABC

Now that we have a code with working update equations, and can inject a plane
wave into it, the PEC boundaries must be replaced with ABCs. An implementation
note in passing: in order to test the ABCs, it is sufficient initially, using the plane-
wave source in the previous section, to implement only the ABC at Nx , keeping
PEC ABCs at the other boundaries. This permits one to get one set of ABCs work-
ing first.

Monitoring the signal at a location mid-way between the zone interface at i = L
and the right-hand boundary at i = Nx , the signal shown in Fig. 3.9 is recorded for
M = 600. “Zooming-in” on the reflection, we see Fig. 3.10. The first (negative)
peak, with a value of around −0.03 V/m, corresponds to the reflection of the first
(positive) peak, which was around 0.8 (see Fig. 3.9), so the reflection coefficient
of the ABC is around −30 dB.5

3.2.7 FDTD analysis of TE scattering from a PEC cylinder

Now that the basic FDTD code is working, we are in position to study TEz scat-
tering from a PEC cylinder. Again, we will work in the microwave region. A

5 One could compute this more accurately but all that is needed at present is a “ball-park” figure. The correct
method for numerically evaluating reflection off ABCs is to run two simulations, one using a reference solution
computed on a very large grid, and the other a much smaller grid using the ABC. The reflection is then computed
by subtracting the reference solution from the ABC-corrupted solution. We will do this when we evaluate the
PML ABC later in this chapter.
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Figure 3.10 An enlargement of the signal in the region of the reflection.

convenient dimension will be a radius of a = 0.03 m. As a first pass, we will
choose a rectangular domain, 2 m × 1 m (we will see shortly why we chose this).
We will choose �s = 0.005 m; this will allow a moderate approximation of the
curvature of the cylinder. Even so, this means that the stair-step approximation of
the cylinder will be quite crude – across the diameter of the cylinder there are only
six cells – and we should bear this in mind when interpreting the results we will
generate.

The simplest method of introducing the cylinder into the mesh is by simply
zeroing the relevant C(i, j) coefficients, see Eqs. (3.37) and (3.38). This ensures
that the relevant electric fields inside and on the surface of the cylinder are zero.
It is tempting to do the same with the magnetic fields; this however is incorrect,
since it effectively also forces the tangential magnetic fields to zero at the cylinder’s
“surface,” which is not the correct boundary condition.

We want to compute the echo width of the target, usually abbreviated σw. It is
defined as follows:

σw = lim
	→∞ 2π	

|E scat|2
|E inc|2 (3.42)

In an FDTD simulation, some finite limit on 	 is essential. The conventional 3D
criterion for establishing the onset of the far-field, viz. 	 > 2D2/λ, where D is
the largest dimension of the target, D = 2a in this case, can be used. If we set
	 ≈ 1 m, the minimum wavelength (and hence maximum frequency) at which this
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still satisfies the far-field criterion is around 7 mm, or over 40 GHz, so this is more
than adequate for our purposes.

We also now appreciate how convenient the scattered/total field formulation is;
we can immediately obtain the scattered field by placing our sample point in the
scattered field zone. Here, we have the following considerations: we would like to
be as far away from the cylinder as possible, but since the reflected signal can be
expected to be quite small, we should also be far away enough from the left-hand
wall that we can “gate out” unwanted reflections – remember that our ABC is far
from perfect. Since we are only going to look at back-scattered fields, we can place
the scatterer to the right in our grid.

With these considerations in mind, then, we make the following choices.

• Locate the cylinder at x = 1.5 m, y = 0.5 m.
• Place the scattered/total field boundary at x = 1 m.
• Record the scattered field at x = 0.5 m, y = 0.5 m (i.e. 1 m away from the target, and

0.5 m away from the closest walls).

We will see shortly (Fig. 3.13) that TEz back-scattering from a PEC cylinder
increases rapidly with frequency up to a first resonance. This occurs when ka ≈
0.8, which for our cylinder with a ≈ 0.03 corresponds to a frequency of just over
1 GHz. We also want to be able to capture the next resonances, so we need a signal
with significant frequency content in this region. A differentiated Gaussian pulse
with σ = 5.0 × 10−11 has a spectrum peaking at around 3.2 GHz, which will be
adequate here. A longer pulse would work from the viewpoint of spectral content,
but this shorter pulse is convenient for another reason we will see shortly.

Finally, we note that Eq. (3.42) is a frequency domain expression. The Fourier
transforms of both the scattered and the incident fields must be computed, and
divided pointwise.6 Note also that this expression, being a power ratio, requires
squaring the magnitude of the resultant transforms. (The phase information is ir-
relevant here.)

The back-scattered signal computed with the FDTD, with grid and problem as
set up above, is shown in Fig. 3.11. Although we can go ahead and transform this,
we should note that the main signal lies in the region 8–11 ns; the signal at 12 ns is
almost certainly an unwanted reflection of some type. Similarly, the small “glitch”
at 6 ns is also very likely to be some form of computational artifact. It is usual
practice to remove these by “windowing” – although quite sophisticated windows
exist, here it is sufficient simply to zero the signal outside this window. This is
shown in Fig. 3.12. Finally, the echo width is plotted in Fig. 3.13, normalized
by πa and compared to results computed using an exact eigenfunction solution
[2, Figs. 12–34]. (The frequency axis is also normalized; this is usual practice with

6 In MATLAB, the ./ operation.
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Figure 3.11 Back-scattered signal from the PEC cylinder. Medium mesh, �s = 0.0025 m,
σ = 5 × 10−11.
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Figure 3.12 Windowed back-scattered signal from the PEC cylinder. Medium mesh, �s =
0.0025 m, σ = 5 × 10−11.
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Figure 3.13 Normalized echo width for the PEC cylinder: FDTD results and eigenfunction
solution. Medium mesh, �s = 0.0025 m, σ = 5 × 10−11.

canonical shapes such as cylinders. k is the free-space wavenumber, and a the
cylinder radius.)

The results in Fig. 3.13 show reasonable agreement at the first resonance, but
the comparison is quite poor for the next resonances. To improve this, we first
need to understand the physics of the scattering process. The first peak is simply
energy which reflects directly off the cylinder, back in the direction of propaga-
tion. (This is the reflection which asymptotic methods, such as geometrical optics,
would compute.) The next peak is due to energy which attaches itself to the top
(bottom) of the cylinder, and “creeps” around the shadowed side of the cylinder
before detaching itself from the bottom (top). Clearly, this signal travels a longer
distance than the direct reflection; depending on the cylinder’s size, it may rein-
force the direct reflection or partially cancel it. This then accounts for the peak at
around ka ≈ 2. The extra distance traveled is a + πa + a = (2 + π)a; this signal
travels at the speed of light which should result in a delay of about 514 ps. If we
inspect Fig. 3.12, we can see these two signals; the (negative) peak of the direct
reflection is at around 8.3 ns and the (same) peak of the creeping wave is at around
8.8 ns, i.e. around 500 ps apart. On this figure, there is another rather smaller sig-
nal, approximately 800 ps later; this is the creeping wave which has gone right
around the cylinder for a second time. It travels an extra 2πa, a slightly longer
distance.
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Figure 3.14 Windowed back-scattered signal from the PEC cylinder, comparing the
medium and fine mesh solutions. For both solutions, σ = 5 × 10−11.

The problem is that the approximation of the round cylinder with the FDTD
stair-step approximation is inadequate at higher frequencies; we need to refine the
mesh. Time domain results comparing a finer mesh (with �s = 0.00125) with
the medium mesh above are shown in Fig. 3.14; note the better pulse shape in the
finer mesh case. Results for both this finer mesh and for a coarser mesh (�s =
0.005, and using a longer signal with σ = 1 × 10−10) are shown in Fig. 3.15.
The eigenfunction data have been interpolated to make it easier to compare the
respective results. The agreement is satisfactory, bearing in mind that although we
satisfy the far-field criterion, ideally one should be a much larger distance from the
scatterer. It is also clear that the solution will require an even finer mesh to get good
agreement at the higher frequencies. We also note, perhaps surprisingly, that the
coarse mesh solution appears to give a more accurate solution for the amplitude of
the first resonance. However, we should bear in mind that we used a longer pulse,
with lower spectral content, for this solution; the other meshes used pulses with
peak spectra somewhat higher than this.

3.2.8 Computational aspects

One last aspect we should at least get an appreciation of before finishing this in-
troduction to the two-dimensional FDTD is the question of the amount of com-
putation required – and also the amount of computer storage needed. The most
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Figure 3.15 Normalized echo width for the PEC cylinder showing three different FDTD
results compared with the eigenfunction solution.

computation is required in Eqs. (3.18)–(3.20), because each of these needs to be
updated at all Nx × Ny points at each of M time-steps. All other operations, such
as boundary conditions, sources via the scattered/total field interface etc., involve
only either Nx or Ny points. Counting the number of operations, we see that to up-
date the Hz field at each point requires five floating-point operations (±, ×), usu-
ally abbreviated as flops. (The shift operations on the field components are ignored
in this type of count. The reason is that efficient computer languages recognize this
type of operation and perform the shift indirectly by an offset in memory access.)
The Ex and Ey field updates each require three flops. Thus, in total, the number of
operations required per time step is approximately 11 × Nx × Ny flops. The over-
all number of operations is thus 11 × Nx × Ny × M flops. If we also keep track of
the run-time (which MATLAB allows us to do, the cputime command being one
way of doing this, or one can simply use a stopwatch), the speed of the computer
for floating point operations can be computed – often known as the floprate, and
given as megaflops,7 a million floating-point operations per second, or gigaflops
(109 flops per second). Some very fast supercomputers are specified in terms of

7 The results in this book were originally prepared largely on an IBM A31 notebook computer in 2003. The
machine had a Pentium R© 4, 1.8 GHz, 512 MB RAM. According to this test, the computer produced around
11.7 megaflops, which is quite slow; the clock speed on its own of course says little about especially floating-
point speed. However, it is quite possible that an implementation in FORTRAN or C would be much faster;
factors of two orders of magnitude are not unusual when converting code which does not readily vectorize in
MATLAB to FORTRAN etc. In the present context, one would expect a less dramatic speed-up, given the vector
nature of the update equations as coded.



3.2 The 2D FDTD algorithm 93

teraflops (1012 flops per second) or even petaflops (1015 flops per second). Now it
can be appreciated that halving the mesh size will increase the run time by a factor
of 23 = 8; to put this into practical terms, a run which took perhaps some minutes
with one mesh may take an hour or so with a mesh twice as fine.

The analysis just performed leads to a field of computational science known as
complexity analysis. What is of interest is the asymptotic computational cost of the
algorithm. For CEM algorithms, this is usually performed on a square region, di-
mension d per side, with �x = �y = �s (or in 3D, a cube), thus Nx = Ny = N ;
furthermore, we note that the number of time-steps M is also essentially propor-
tional to N . Hence the run-time is proportional to N 3 for the 2D FDTD algorithm;
alternatively, we describe this as an O(N )3 algorithm.

This analysis in terms of number of unknowns is correct. Since N is inversely
proportional to �s, which in turn is often assumed to be inversely proportional
to frequency f (via rules of thumb such as �s < 1/λmin), the 2D FDTD al-
gorithm is also often viewed as O( f )3 or equivalently, noting that kmaxd is the
size of the region in wavelengths,8 O(kmaxd)3. This, however, is optimistic. The
problem is that the assumption that �s, and hence N , is directly proportional
to λmin is incorrect as the electromagnetic size of the problem increases. The
reason is numerical dispersion in the FDTD grid. As an example, a phase er-
ror of 5% over a region of one wavelength results in around an 18◦ cumulative
error, probably acceptable; the same percentage error over a region ten wave-
lengths in length will produce a cumulative error of 180◦, clearly unacceptable.
The dispersion error can be reduced by using a finer mesh. A more realistic as-
sumption is that N ∝ (kmaxd)1.5; hence the 2D FDTD algorithm has an asymp-
totic complexity of O(kmaxd)4–O(kmaxd)4.5, depending on whether the number
of time steps is assumed proportional to N or kmaxd. (One will find both in the
literature.)

Regarding storage, the 2D FDTD does not make especially heavy demands on
modern computers. The amount of storage required is the following, per cell:

• three field components – times two, for past and present;
• three material constants.

There are Nx × Ny cells, so the total storage required is 9Nx × Ny . In MATLAB,
each real number is stored in double precision, requiring 8 bytes (most conven-
tional languages, such as C and FORTRAN, permit the user to choose single or
double precision). The storage in bytes is 72Nx × Ny . Of course, there are some
other variables to store as well, but these are generally the largest. The fine mesh
solution of the PEC discussed in the previous section required around 92 Mbytes
of storage.

8 Since kmax = 2π/λmin.
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3.3 The PML absorbing boundary condition

3.3.1 An historical perspective

By the early 1990s, the FDTD method had become very popular. However, the
problem of terminating the mesh remained problematic. As we have seen, simple
ABCs such as the first-order one already outlined only provide −20 to −30 dB
of absorption, and then only close to normal incidence; whilst there were already
better ones available, they were non-trivial to implement, and battled to provide
more than −50 dB or so. By comparison, good anechoic chambers were able to
provide 70 dB or more of dynamic range. Most of the work on ABCs had concen-
trated on analytical ABCs, using the properties of the wave operators. However,
another type of absorber had also been experimented with – perhaps inspired by
the pyramidal absorbers used in anechoic chambers. This was the use of absorbing
material at the periphery of the mesh. As we will shortly see, a material with both
electric and magnetic loss (carefully chosen in the correct ratios) can provide a per-
fect match, but only at normal incidence. The advantage of this is that the update
equations do not need to be modified. Early efforts had achieved some success, but
only worked well near normal incidence.

In 1994, Berenger published a truly seminal paper 9 [3]. His idea, like most
really good ones, was in essence quite simple. He noted that the problem with arti-
ficial absorbers was their inability to operate over a wide range of incidence angles,
and proposed that the solution was to increase the degrees of freedom available to
provide the match. He proposed a method to do this in two dimensions, by “split-
ting” one of the field components in two – in the case of the TEz problem we have
investigated, it is Hz which is thus treated, viz. Hz = Hzx + Hzy – and assigning
different electric and magnetic loss to each component. Despite the initially worri-
some nature of the split field, he showed that the result was what he called a per-
fectly matched layer (PML) which, in theory at least, absorbed incident waves of
all polarizations, at all frequencies, and at all angles of incidence. Furthermore, the
wave transmitted into the PML had the same wave speed as the incident wave, the
same characteristic impedance, but attenuated (potentially rapidly) in the normal
direction. All that was needed to implement the absorber was to modify the FDTD
update equations in the PML region to accommodate the split field. Perhaps even
more incredibly, “corner regions” of a mesh, which had long caused problems,
could be treated by simply overlapping an x-attenuating and a y-attenuating PML.

This almost appeared to good to be true in 1994; within an extremely short time,
the entire FDTD community identified the crucial importance of Berenger’s work,

9 In retrospect, ideas in CEM can often be attributed to several independent inventors, but his invention was
unique and certainly deserving of the subsequent accolades. It is interesting that he appears to have published
nothing on the FDTD in English language journals prior to this, although he had worked on ABCs before,
publishing in French.
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validated it independently, and quickly extended it to three dimensions. Further-
more, two different approaches were quickly introduced to avoid the split field
formulation, whilst retaining the superb performance of the PML. The one ap-
proach used “stretched coordinates,” and was independently introduced by Chew
and Weedon [4] and Rappaport [5]; the other used an anisotropic medium with uni-
axial permittivity and permeability tensors, and was introduced by Sacks et al. [6];
the latter approach is generally known as the UPML formulation (Uniaxial PML).
The stretched coordinate formulation is rather mathematical in nature, but is very
useful for other coordinate systems; the UPML, due to its physical plausibility
(usually described as Maxwellian), is probably the most popular contemporary
approach. Note that even the UPML material is nonetheless fictitious; however,
Ziolkowski has investigated the physical realizabilty of such material [7].

In this chapter, we are going to use Berenger’s original split field formulation.
The reason is that it is both the simplest and also the most efficient approach in two
dimensions. Using the UPML, for instance, requires introducing the electric and
magnetic flux vectors, �D and �B, which doubles the amount of storage required in
the UPML region, whereas the split field formulation requires only one extra field
component. Additionally, using the UPML requires that we deal with dispersive
materials: although this is not too difficult to implement, it is additional complex-
ity we choose to avoid now. It is important to note that this benefit accrues only
in two dimensions; in three dimensions, there is little to choose between the for-
mulations from the viewpoint of efficiency, since all fields must then be split in
the Berenger approach. Furthermore, dispersive materials with the specific form
required by the UPML can be quite efficiently handled by the FDTD. Should the
reader want to undertake a three-dimensional implementation, a detailed discus-
sion of the UPML approach is available in [8, Chapter 7] and would be the present
author’s recommendation.

3.3.2 A numerical absorber – pre-Berenger

Before discussing Berenger’s contribution, we will review the case of a normally
matched numerical absorber. Our presentation is based on Gedney and Taflove’s
approach [1, Chapter 7] and we very largely use their notation here. Firstly, we
consider the case of a TEz wave �H inc = H0e− j (β1x x+β1y y) ẑ incident on a half-
space interface with an absorber at x = 0. Importantly, the (fictitious) absorber
has both electrical (σ ) and magnetic (σ ∗) loss. The fields on the incident (x < 0)
side, region 1, are the usual free-space fields:

�H1 = H0(1 + � e j2β1x ) e− j (β1x x+β1y y)

�E1 =
[
− β1y

ωε1
(1 + � e j2β1x )x̂ + β1x

ωε1
(1 − � e j2β1x )ŷ

]
H0 e− j (β1x x+β1y y)
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The fields on the transmitted (x > 0) side are:

�H2 = H0τ e− j (β2x x+β2y y)

�E2 =
[
− β2y

ωε2(1 + σ
jωε2

)
x̂ + β2x

ωε2(1 + σ
jωε2

)
ŷ

]
H0τ e− j (β2x x+β2y y)

Here, � and τ are the usual plane-wave reflection and transmission coefficients
at the interface. These equations follow simply from the Maxwell equations, if a
(fictitious) magnetic current and hence loss term are included in Faraday’s law;
they are generalizations of the case discussed by Balanis in [9, Section 5.4.2].

Similarly, the dispersion relationships are:

β1x = k1 cos θi , β1y = k1 sin θi , ∀x < 0

β2x =
√

k2
2

(
1 + σ

jωε2

) (
1 + σ ∗

jωµ2

)
− (β2y)2, ∀x > 0 (3.43)

with ki = ω
√

εiµi , i = (1, 2).
Enforcing continuity of the tangential fields at the interface, x = 0, one obtains:

� =
β1x
ωε1

− β2x
ωε2(1+σ/jωε2)

β1x
ωε1

+ β2x
ωε2(1+σ/jωε2)

τ = 1 + �

β2y = β1y = k1 sin θi

For normal incidence (θi = 0), this simplifies to:

� = η1 − η2

η1 + η2

with

η1 =
√

µ1

ε1
, η2 =

√
µ2(1 + σ ∗/jωµ2)

ε2(1 + σ/jωµ2)

Now, the core idea: set µ2 = µ1, ε2 = ε1 and further, enforce

σ ∗

µ1
= σ

ε1
⇒ σ ∗ = σµ1/ε1 = σ(η1)

2 (3.44)

Then, k1 = k2, η1 = η2, and thus we obtain perfect absorption: � = 0. Also, very
importantly,

β t
x =

(
1 + σ

jωε1

)
k1 = k1 − jση1 (3.45)
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and the transmitted fields in region 2 are

�E2 = η1 H0 e− jk1x e−ση1x ŷ

�H2 = H0 e− jk1x e−ση1x ẑ

In summary, note the following important features of this solution.

• At normal incidence, there is no reflection at the interface: hence (at this angle at least)
we have a perfectly matched layer (PML).

• The transmitted wave in the absorber has the same velocity as in region 1, but attenuates
in the normal direction.

• Although lossy, the absorbing material is dispersionless (that is, the wave speed is inde-
pendent of frequency).

3.3.3 Berenger’s split field PML formulation

The previous fictitious absorber exhibits PML behavior only at normal incidence;
its properties degrade rapidly off-normal. As discussed in the introductory com-
ments, Berenger recognized that an additional degree of freedom would permit a
match off-normal as well. He did this by “splitting” the transverse fields into two
orthogonal components, for example Hz = Hzx + Hzy in his notation. Associated
with these were two components10 of σ ∗ (σ ∗

x and σ ∗
y ) and similarly, two compo-

nents of σ (σx and σy).
Applying this to our previous two-dimensional TE problem, instead of the usual

three equations in Ex , Ey and Hz – for example, as in Eqs. (3.5)–(3.7) – we now
have four:

jωε2

(
1 + σy

jωε2

)
Ex = ∂(Hzx + Hzy)

∂y
(3.46)

jωε2

(
1 + σx

jωε2

)
Ey = −∂(Hzx + Hzy)

∂x
(3.47)

jωµ2

(
1 + σ ∗

x

jωµ2

)
Hzx = −∂ Ey

∂x
(3.48)

jωµ2

(
1 + σ ∗

y

jωµ2

)
Hzy = ∂ Ex

∂y
(3.49)

Introducing the variables

sk = (1 + σk/jωε2) , s∗
k = (

1 + σ ∗
k /jωµ2

)
, k = x, y (3.50)

10 In retrospect, this was the crucial idea, and the split field simply a mathematical device to accomplish this:
clearly this defines an anisotropic medium of some type.
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it may be shown that:

Hz = H0τ e− j
√

sx s∗
x β2x x− j

√
sys∗

y β2y y (3.51)

Ex = −H0τ
β2y

ωε2

√
s∗

y

sy
e− j

√
sx s∗

x β2x x− j
√

sys∗
y β2y y (3.52)

Ey = H0τ
β2x

ωε2

√
s∗

x

sx
e− j

√
sx s∗

x β2x x− j
√

sys∗
y β2y y (3.53)

with

(β2x )
2 + (β2y)

2 = (k2)
2 (3.54)

Clearly, these can be discretized using the central-differenced leapfrog Yee ap-
proach.

The phase-matching condition at the interface requires that the propagation con-
stants in the y-direction are identical; this can be achieved if sys∗

y = 1, or equiv-
alently σy = σ ∗

y = 0. Thus, β2y = β1y = k1 sin θi . Further, the H -field reflection
coefficient may be shown to be:

� =
β1x
ωε1

− β2x
ωε2

√
s∗

x
sx

β1x
ωε1

+ β2x
ωε2

√
s∗

x
sx

, τ = 1 + � (3.55)

Now, let ε1 = ε2, µ1 = µ2, and sx = s∗
x . This is equivalent to k1 = k2, η1 =√

µ1/ε1 = √
µ2/ε2 = η2 and σx/ε1 = σ ∗

x /µ1. Thus, from Eq. (3.54), β1x = β2x ,
and from Eq. (3.55), � = 0. The resultant TEz field transmitted into the PML is
then:

Hz = H0 e− jβ1x x− jβ1y e−σxη1 cos θi x (3.56)

and similar expressions for Ey and Ez .
These have the same behavior as the previous normal-only PML, but attenuate

without dispersion for all incident angles.
These results are so important that we will highlight them again in summary

form.

• Theoretically, the PML absorbs incident waves of all polarizations, at all frequencies,
and at all angles of incidence.

• Further, the wave transmitted into the PML has the same wave speed as the incident
wave, the same characteristic impedance, but attenuates (potentially rapidly) in the nor-
mal distance.

• All that is needed to implement the absorber is to modify the FDTD update equations in
the PML region. (Again, in retrospect what is required is the ability to handle a certain
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type of lossy anistropic material; this at heart is why the update equations need to be
modified.)

• Although perhaps not immediately clear from the above, a “corner region” of a mesh
can be treated by simply overlapping an x-attenuating and a y-attenuating PML. This
had long been a very troublesome problem with analytical ABCs.

We have already discussed the alacrity with which Berenger’s idea was adopted
in the FDTD community; within a few months, the PML had been extended to
three dimensions by Katz, Thiele and Taflove [10]; Berenger himself also extended
his formulation to three dimensions [11].

3.3.4 The FDTD update equations for a PML

With the theoretical background in place, we turn our attention to implementing
and then testing a split field PML. The time domain equivalents of Eqs. (3.46)–
(3.49) are

(
ε2

∂

∂t
+ σy

)
Ex = ∂(Hzx + Hzy)

∂y
(3.57)

(
ε2

∂

∂t
+ σx

)
Ey = −∂(Hzx + Hzy)

∂x
(3.58)

(
µ2

∂

∂t
+ σ ∗

x

)
Hzx = −∂ Ey

∂x
(3.59)

(
µ2

∂

∂t
+ σ ∗

y

)
Hzy = ∂ Ex

∂y
(3.60)

Compared to Eqs. (3.5)–(3.7), the loss terms bring a slight complication: we
require the value of the electric field, for instance, at a half time-step, e.g.
Ex (i + 1

2 , j, n + 1
2), a point at which it is not available. (Note that this prob-

lem is due to the presence of loss, and not specifically because of the PML –
even a normal material with finite electrical conductivity presents this problem.) A
method widely used with success is the “semi-implicit”11 approximation: the re-
quired value is computed as the arithmetic average of the previous (known) value
and the as-yet-to-be-computed value, i.e.

Ex (i + 1
2 , j, n + 1

2) = Ex (i + 1
2 , j, n + 1) + Ex (i + 1

2 , j, n)

2
(3.61)

11 The FDTD method is an explicit method; “future” values are computed entirely from “present” and “past”
ones. The approach discussed here uses a “future” value as unknown in the update equation, albeit itself, and
hence the name “semi-implicit.”
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Using this approximation, and otherwise proceeding as before, the result is the
following set of update equations:

Hzx (i, j, n) = DaH zx (i, j) · Hzx (i, j, n − 1) − DbH zx (i, j) ·
[Ey(i + 1, j, n) − Ey(i, j, n)] (3.62)

Hzy(i, j, n) = DaH zy (i, j) · Hzy(i, j, n − 1) + DbH zy (i, j) ·
[Ex (i, j + 1, n) − Ex (i, j, n)] (3.63)

Ex (i, j, n + 1) = CaEx (i, j) · Ex (i, j, n) + CbEx (i, j) ·
[Hz(i, j, n + 1) − Hz(i, j − 1, n + 1)] (3.64)

Ey(i, j, n + 1) = CaEy (i, j) · Ey(i, j, n) − CbEy (i, j) ·
[Hz(i, j, n + 1) − Hz(i − 1, j, n + 1)] (3.65)

where we have combined12 the H field in Eqs. (3.64) and (3.65):

Hz(i, j, n) = Hzx (i, j, n) + Hzy(i, j, n) (3.66)

and the material constants are defined as

CaEx (i, j) = 1 − σy(i, j)�t
2ε2(i, j)

1 + σy(i, j)�t
2ε2(i, j)

(3.67)

CbEx (i, j) =
�t

ε2(i, j)�y

1 + σy(i, j)�t
2ε2(i, j)

(3.68)

CaEy (i, j) = 1 − σx (i, j)�t
2ε2(i, j)

1 + σx (i, j)�t
2ε2(i, j)

(3.69)

CbEy (i, j) =
�t

ε2(i, j)�x

1 + σx (i, j)�t
2ε2(i, j)

(3.70)

DaH zx (i, j) = 1 − σ ∗
x (i, j)�t
2µ2(i, j)

1 + σ ∗
x (i, j)�t
2µ2(i, j)

(3.71)

DbH zx (i, j) =
�t

µ2(i, j)�x

1 + σ ∗
x (i, j)�t
2µ2(i, j)

(3.72)

12 This is slightly more convenient to code. However, note that the split fields must be retained, and updated as
usual before the next iteration.
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DaH zy (i, j) = 1 − σ ∗
y (i, j)�t

2µ2(i, j)

1 + σ ∗
x (i, j)�t
2µ2(i, j)

(3.73)

DbH zy (i, j) =
�t

µ2(i, j)�y

1 + σ ∗
y (i, j)�t

2µ2(i, j)

(3.74)

As usual with an FDTD equation set, there are subtle differences between the
otherwise very repetitive equations which one must be careful to code correctly. In
particular, note that σx is associated with the Ey update (and vice versa), whereas
σ ∗

x and σ ∗
y are associated with the Hzx and Hzy updates respectively.

3.3.5 PML implementation issues

One issue which one needs to decide upon when implementing an FDTD PML
code is whether the PML update equations are going to be used throughout the
entire computational domain, or whether different code will be written for each
section. (By simply setting the conductivities to zero, the PML reduces to the
usual update equations; alternatively, the electrical conductivity may be retained
if required, etc.) The former has the advantage of being far simpler – and cor-
ner regions are very simply catered for automatically – but it does increase the
memory requirement. The latter is far more tedious to code and the potential for
coding error is much higher, but it is more memory efficient. In 2D, the overhead
is only 33% in the non-PML regions, and since 2D FDTD codes are in any case
not especially memory intensive, it is almost certainly better to use the PML up-
date equations throughout. In 3D, however, the overhead is 100% in the non-PML
regions, and the decision is not quite so straightforward. Bear in mind though that
the PML works so well that the absorbing boundary can be brought quite close to
the scatterer, reducing the memory required in any case.

Remember also that the exact positions of the material parameters are implied
but not explicitly stated in the Eqs. (3.67)–(3.74); for example, in Eqs. (3.67)
and (3.68), σy(i, j) must be evaluated at ([i − 1

2 ]�x , [ j − 1]�y), the position
of the relevant Ex field component; similarly, in Eqs. (3.69) and (3.70), σx (i, j)
must be evaluated at ([i − 1]�x , [ j − 1

2 ]�y); and in Eqs. (3.71)–(3.74), σ ∗
x (i, j)

and σ ∗
y (i, j) must be evaluated at ([i − 1

2 ]�x , [ j − 1
2 ]�y). (Note that Hzx and

Hzy are located at the same grid point, the usual Hz location.) This implies of
course that σx , σy , and the pair σ ∗

x ; σ ∗
y are always evaluated a half-grid point

apart. Since the usual polynomial scaling results in quite rapidly changing con-
ductivities, this is an important point to bear in mind for a high-performance
PML.
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Theoretically, the PML can be made as thin as desired by simply making the
material extremely lossy. In practice, the FDTD discretization, with the accompa-
nying half-cell offset, produces some “numerical” reflection. To ameliorate this,
practical PML schemes use a number of FDTD cells to implement the absorber,
with a “graded” loss profile, increasing from zero loss at the PML/free space in-
terface to some maximum value at the boundary of the grid. A widely used pro-
file is polynomial grading; for a PML of thickness d, the value of σx at depth
x is

σx = (x/d)mσx,max (3.75)

where σx,max is the maximum value attained at x = d. Typical practical PMLs are
five to ten FDTD cells thick, with a polynomial order loss profile from two to four.

When discretized in an FDTD mesh, the discretization error produces a filtering
effect, which produces some frequency dependence – typically low frequencies are
not absorbed as well as higher frequencies.

Thus far, nothing has been said about suitable values for σ . An extensive series
of numerical experiments has demonstrated that an optimal choice of this parame-
ter for polynomial grading is

σx,max = 0.8(m + 1)

η�s
(3.76)

Usually, the external walls are treated as PECs for simplicity, i.e. the relevant
tangential field is set to zero.

When implementing a PML, one needs to think carefully about the slight lack
of symmetry in FDTD grids. As an example, consider σy in the layer of the cells
with, on the one hand, j = 1 and on the other, j = Ny . Setting the tangential fields
(Ex ) to zero, the result is that in the layer of cells with j = Ny , there is no field,
since the relevant Ex field component is “below” the last cell (in the geometry of
Fig. 3.1). Thus, the value of σy in cell layer j = 1 actually corresponds to that in
cell layer j = Ny − 1, rather than j = Ny . Also, once σy has been computed, it is
tempting to find σ ∗

y using σ ∗
y = η2σy , but as we have already commented above,

this is subtly incorrect due to the �s/2 offset between electric and magnetic field
points.

Coding hints – testing a PML

The first test to run with a PML is a free-space test: set all the conductivities
to zero, which effectively reduces the PML to free space. Errors in the update
equations will often quickly make themselves apparent without having to worry
about whether conductivity profiles have been set correctly, for instance.
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Figure 3.16 Normalized reflection from a split field PML.

3.3.6 Results for a split field PML

The PML performs so well as an absorber that trying to identify the reflection
visually, as we did with the first-order ABC earlier, is impossible. The correct
approach to testing a PML (or indeed any ABC) is to run two simulations, with
identical discretization and source: one with the ABC under test, and another with
a rather larger computational space. The signal is then compared at a point near
the ABC. In this case, a 200 × 200 simulation was compared with a 400 × 400
simulation. The two signals cannot be distinguished on a graph, so on Fig. 3.16,
the difference between the signals is shown – this is the reflection. Note the vertical
scale. This has also been normalized by the signal peak, and further time-gated to
remove double reflections, etc. When expressed in dBs in Fig. 3.17, the results
are deeply impressive: the five cell thick, third-order polynomial grading PML has
a maximum reflection of around −65 dB; the ten cell thick PML improves this
to −85 dB.

Prior to the Berenger PML, the best ABCs were challenged to produce reflection
coefficients significantly less than around −50 dB. As we have seen, the Berenger
PML offers astounding performance – broadband reflection coeffecients far less
than this are easily achieved, and with care (for example, optimized conductivity
profile, double precision), absorptions of the order of −100 dB and significantly
less have been obtained. The FDTD is in a position to out-perform very careful
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Figure 3.17 Normalized reflection from a split field PML, in dB.

measurements; as mentioned earlier, sophisticated anechoic chambers have dy-
namic ranges of around 70 dB but there is little prospect of dramatic improvements
there.

3.3.7 Drawbacks of the Berenger PML

It may seem curmudgeonly to offer any criticism at all of such an innovation,
but despite its superb performance, the PML has some drawbacks, especially in
three dimensions. For 3D formulations, the PML requires that all field compo-
nents be split, doubling the memory requirements in the absorbing region; with a
5–10 cell thick layer in 3D this can become a significant overhead. (Other for-
mulations, such as the UPML, do not split the field but instead require the �D
and �B fields to be stored as well in each cell, so the overhead is the same.) The
Berenger PML is non-Maxwellian; the field splitting is a mathematical artifact
which works very well but leaves niggling questions about physical reality. These
drawbacks led to the investigation of other equivalent formulations, aiming to re-
produce the superb performance of the PML with a (potentially) physical real-
izable material. This is also important for applications in FEM codes, where the
splitfield formalism has no counterpart. Two approaches have emerged: the uniax-
ial anisotropic absorber and the stretched coordinate formulations. Although our
implementation is the original split field one, we will briefly outline these other
approaches.



3.3 The PML absorbing boundary condition 105

3.3.8 Uniaxial absorber theory

A uniaxial material has the following tensor characterization:

ε = ε1




a 0 0
0 b 0
0 0 b


 , µ = µ1




c 0 0
0 d 0
0 0 d


 (3.77)

with �D = ε �E and �B = µ �H . It has been shown that if the tensors are chosen as
follows:

ε = ε1s, µ = µ1s, s =



s−1
x 0 0
0 sx 0
0 0 sx




then a plane wave is completely transmitted (i.e. � = 0), independent of angle,
frequency and polarization – a uniaxial PML (UPML).

The identity with Berenger’s PML is reinforced with the choice:

sx = 1 + σx

jωε
(3.78)

Note that this material is dispersive. This UPML and Berenger’s split field PML
have been shown to have the same propagation characteristics. The associated
Gauss’ laws are different (but irrelevant in an FDTD code, which discretizes only
Ampère’s and Faraday’s laws).

The UPML can be discretized relatively simply in an FDTD fashion; the best
source here is [1, Chapter 7]. However, instead of split fields, the �D and �B vectors
must also be stored and updated in the PML region. As mentioned, the material
is dispersive; fortunately, there are some elegant approaches available to deal with
this [1].

3.3.9 Stretched coordinate theory

Another formulation shown to be equivalent is the “stretched coordinate” theory.
The Cartesian coordinates (x, y, z) are mapped into complex space using

x̃ →
∫ x

0
sx (x ′) dx ′ (3.79)

and similarly y and z. Partial derivatives then become:

∂

∂ x̃
= 1

sx

∂

∂x
(3.80)

and these are carried into the Maxwell equations. Stretched coordinates have been
useful in extending the PML to cylindrical and spherical coordinate systems.
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3.3.10 Further reading on PMLs

An excellent description by Gedney and Taflove may be found in [1, Chapter 7]. (A
very similar treatment is also available in the slightly earlier [12, Chapter 5].) The
treatment presented here is based on this approach. Gedney and Taflove well sum-
marize the fervor with which the FDTD community adopted, expanded and gener-
alized Berenger’s work, and provide an extremely useful unified view of the origi-
nal split field formulation, the UMPL and the stretched coordinate viewpoints, with
a consistent notation. The original paper by Berenger remains interesting reading
[3]. There are a very large number of papers on the subject of PML and the FDTD;
the interested reader is referred to the extensive list of references in [1, Chapter 7].
One paper which is worth highlighting is Wittwer and Ziolkowski’s contribution
[13], since this discusses a number of practical issues in PML implementation.

3.3.11 Conclusions on the PML

Berenger’s PML (and the related UPML) came close to putting the ABC “indus-
try” out of business, at least in the FDTD community. Using the Berenger PML,
a numerical absorber for the FDTD with essentially arbitrarily good performance
can be produced. This has been extended to terminating conductive and/or disper-
sive regions, as well as half-spaces [1, Chapter 7]. There are still some detail issues
to consider – although the basic formulation has been done, details for the PML in
other coordinate systems are not always readily available.

The PML has some computational overhead and does complicate a code to some
extent, whether one uses the split field, UPML or stretched coordinate formula-
tions.

It should be commented that such superb absorption is not always required, and
a simple ABC is sometimes sufficient, especially if combined with time-gating.

A final comment: the issue of high-performance numerical absorbers in FEM
codes is not such a closed topic; UPML in an FEM mesh can wreck matrix condi-
tioning and radically slow iterative solvers to the point of uselessness. With time
domain FEM, the dispersive nature of the UPML is especially problematic.

3.4 The 3D FDTD algorithm

Extending the two-dimensional algorithm to three dimensions is straightforward
from the viewpoint of the update equations. However, there is no analogy to the
TM and TE modes, and all six field components must be updated. The field com-
ponents are located on the full Yee cell. Again, the field components are offset in
both space and time. Details are available in a number of texts. A good introduc-
tion is available in [2, Chapter 11]. For a very comprehensive study of the FDTD
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method, including state-of-the art material, refer to [1]. We will not discuss the 3D
FDTD algorithm further here, except to note the greatly increased computational
cost associated with adding another dimension. The algorithm is now O(N )4, or
O(kmaxd)5–O(kmaxd)5.5. Halving the mesh size increases the run time by a fac-
tor of 16, doubling the frequency, by between 32 and 45 or so (when numerical
dispersion is correctly controlled as discussed previously).

In 3D, memory also starts becoming a serious issue; the storage requirements for
the six field components (times two, for past and present) and the material arrays
(in double precision) become 144Nx × Ny × Nz bytes. A computational volume
with 100 cells on a side will require 144 MB. This will run on most contemporary
personal computers (depending obviously on the amount of memory installed),
but just doubling this to 200 cells increases the memory requirement to well over
1 Gbyte. This is well within the scope of most workstations, but beyond most PCs
at the time of writing. Double precision is unnecessary for most applications, and
one can save storage by storing an integer index rather than the material arrays as
done here, but even so, the storage requirement grows very rapidly.

It is for these reasons that the development of efficient ABCs was so crucial
as the enabling technology which permitted widespread adoption of the FDTD.
Highly efficient ABCs permit one to place the scatterer very close to the bound-
ary, and one can also obtain scattered fields very close to the boundary without
unphysical reflections corrupting the fields.

We will not discuss the three-dimensional FDTD further, but rather turn now to
the use of a commercial code which implements the FDTD.

3.5 Commercial implementations

Perhaps the most well-known commercial implementations of the FDTD are

XFDTD and CST MICROWAVE STUDIO
TM

(MWS). The former is an imple-
mentation of the standard FDTD. The latter is actually a suite of codes, including
a transient solver which uses the finite integration technique (FIT) [14, 15]; its
predecessor was known as MAFIA and one may still encounter reference to this
in the literature. Although apparently based on an integral equation approach to
the Maxwell equations, for Cartesian grids the FIT can be rewritten as a standard
FDTD method, and in the following we will use the term FDTD when discussing
MWS.

It is worth commenting here that the FDTD method also sometimes uses finite
integration methods, in particular for deriving subcellular models. The idea is the
following. Referring back to Fig. 3.1, instead of writing the Maxwell equations in
differential form, we will write them in integral form in this Yee cell. (As before,
we will restrict ourselves to the TEz mode here.) Specifically, we write Faraday’s
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Law on contour C , the boundary of the Yee cell:
∮

C

�E · �dl = − ∂

∂t

∫∫

A
µ �H · �d S (3.81)

Approximating the Ex and Ey components by their values at the Yee locations as
in Fig. 3.1, and approximating Hz by its value in the center of the cell, one obtains:

− ∂

∂t
µHz(i + 1

2 , j + 1
2)�x�y = Ex (i + 1

2 , j)�x + Ey(i + 1, j + 1
2)�y

−Ex (i + 1
2 , j + 1)�x − Ey(i, j + 1

2)�y

(3.82)

Dividing by the area �x�y, and using the usual finite difference approximation in
time for ∂

∂t Hz , we obtain Yee’s FDTD algorithm.
This form is especially useful when one wants to model fine geometrical features

which are rather smaller than the Yee cell in the rest of the model, since the field
behavior can be taken into account when performing the integral. (As a simple
example, the quasi-static 1/r nature of the magnetic field near a thin wire is used
to incorporate thin wires.) These are generally known as local subcell models.13

Typical examples include thin sheets, better approximations of curved boundaries,
thin wires, and thin cracks.

3.5.1 An introductory example – a waveguide “through”

The following is the first use of a commercial code in this book – in this case,
MWS – and we will use this to highlight some important points about using an
unfamiliar simulation tool.

Firstly, most packages nowadays ship with good documentation, usually with
some form of “Getting Started” manual, or some variant on this theme, and time
spent working through this type of manual is time very well spent indeed. Most
simulators have some features and functions which are not immediately obvious,
even if one is familiar with the method implemented, and the introductory manuals
will often highlight these and save much time and subsequent frustration.

Secondly, even with the very best user interfaces – and MWS has a very impres-
sive one – modelling complex three-dimensional geometries is not straightforward.
One needs to try out simpler structures first, before attempting to model some com-
plex device, quite possibly of unknown performance. Although MWS is at heart an
FDTD code, the mesh is very largely invisible to the user. Model creation proceeds

13 Another term often used is partially filled cells. Subcell is also sometimes used to describe submeshing, a
method whereby a cell is divided into a number of smaller cells to improve accuracy.
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Figure 3.18 An MWS simulation of an empty piece of waveguide, showing an extremely
low reflection coefficient as expected.

by defining geometrical primitives, which are then combined into more complex
structures, before finally adding electrical parameters such as ports, field monitors
etc. (One exception in MWS is the electrical and/or magnetic properties of mate-
rials, which are defined as needed during model building; in some other packages,
this is only done once the geometrical model is finished.)

So, with the notes of caution in mind, before analyzing a real device, the first
structure which we will simulate is an empty piece of waveguide. We will do this at
X band (8.2–12.4 GHz), using a piece 40 mm long. (This is long enough to test the
model without requiring a significant run-time.) In MWS, we create the waveguide
using either of the pre-defined waveguide “templates.” (Templates simplify gener-
ating particular types of frequently used models; in the case of a waveguide, for
instance, the exterior region is set to PEC.) Then, the “brick” primitive is used to
generate the length of waveguide (the standard cross-section inside dimensions are
22.86 mm × 10.16 mm). Finally, the “pick face” function is used twice, to assign
waveguide ports to each end of the length of waveguide. Since the waveguide is
empty, the magnitude of the transmission coefficient should be unity, and the re-
flection coefficient zero. A result is shown in Fig. 3.18.14 The reflection coefficient

14 Throughout this book, results have generally been plotted from MATLAB, using data computed by the relevant
program, so as to provide some visual unity. Most programs provide a command to export data to some type
of neutral file format.
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Port 1

Port 2

Figure 3.19 The waveguide filter geometry, showing the metallic septa (not to scale).

is less than −100 dB across the band, showing excellent performance, and giving
confidence in basic modelling and simulation setup.

3.5.2 A waveguide filter

With some confidence that one has basic modelling skills with a particular pack-
age, one can turn to more interesting and challenging problems. Again, we will use
a waveguide example, but now a more complex double-pole filter. The following
example was originally designed by Meyer and van der Walt [16]. This X-band
waveguide filter consists of three metal septa along its center, normal to the broad
walls of the waveguide. The smaller septa are each 6.556 mm in length, and the
longer is 16.788 mm. The inter-septa spacing is 12.148 mm. The septa are 0.2 mm
thick. See Fig. 3.19 for a sketch of the filter.

When dealing with waveguide discontinuities, one of the first things one must
note is that only the dominant waveguide mode should be present at the ports. In
this case, an extra section of empty guide, 23.9 mm, was added, but any similar
value would be acceptable. (The evanescent modes dampen exponentially, and at
10 GHz, the guide wavelength is around 40 mm, so the above length is around
one-half a guide wavelength, more than sufficient.)

The modelling process in MWS is very similar to that already discussed in
the previous introductory example, although here the “waveguide filter” template
is chosen. (This sets some internal analysis parameters which are optimized for
highly resonant structures.) The septa inside the waveguide are added quite easily
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Figure 3.20 An MWS simulation of the waveguide filter in the text.

using the “brick” primitive. (There are various ways of doing this; using the “work-
ing coordinate system” – a local coordinate system which can be easily reposi-
tioned – which the package supports can simplify this.)

In this case, the initial results were not especially accurate. The reason is that a
filter relies on resonances and anti-resonances for its operation, and these must be
computed extremely accurately for good overall accuracy. MWS offers an adap-
tive mesh facility, which automatically refines the mesh in regions it determines.
Using this option provides a much more accurate result in this case. In Fig. 3.20,
three results are shown: MWS pass 1 is the result after one solution; MWS pass 4
is the result after four adaptive passes have been undertaken; and the FEM results
were computed using FEMFEKO, an experimental FEM program that will be de-
scribed in Chapter 10, using complete second-order vector elements.15 Clearly, the
FEM results and pass 4 are in excellent agreement. For this filter, measured data
are also available; the measured center frequency was 10.47 GHz. This is an ex-
ample of the difference we have already discussed between the approximate field
problem (which these two different techniques have solved with great accuracy,
the difference in center frequency being less than 0.1%) and the actual problem
(both analyses differ from the measured result by about 2%); the difference is very
likely due to manufacturing tolerances.

15 More details on the FEM simulation may be found in Section 10.9; this solution had an average edge length
of 3.0 mm, with 4968 tetrahedral elements and 41 526 degrees of freedom.
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3.5.3 A microstrip patch antenna

FDTD codes can also be applied to antennas, provided a suitable ABC is avail-
able. MWS offers a PML-based ABC; as we have seen, this is a very accurate
mesh truncation technique. An “antenna on planar substrate” template is available,
although for an accurate model we will have to work a little harder. One important
point which one must bear in mind is that with the FDTD, the substrate will not
be of infinite extent, unless we use a suitable boundary condition to simulate this.
This is different to the simulations we will discuss in Chapter 8, which use a form
of the method of moments which includes stratified media in the formulation.

The particular patch we will analyze is discussed in some detail in Section 8.2;
here, we will only give dimensions. It is 31.18 mm × 46.75 mm in size, on a sub-
strate 2.87 mm thick with εr = 2.2. The patch is fed via a pin (diameter 1.3 mm),
offset by 8.9 mm from the center of the long edge, to provide a match close to
50 �.

In MWS, there are two ways to simulate such an antenna. The first uses a “dis-
crete port.” This is an approximation of a real feeding region, and implements ei-
ther a voltage, current or “S-parameter” source (the last being a current source with
internal impedance, which is needed when computing S-parameters). It amounts
to forcing a field value at a point (or points) in the mesh. Since it is not a particu-
larly accurate model of a physical source, there will be limitations on the accuracy
expected, but it is fast to model and also more rapid to compute. If using a dis-
crete port, the model is almost trivial to build: one defines the substrate using,
once again, the “brick” primitive, then adds the patch, defines the discrete port
at the appropriate offset location and runs the simulation. The only point which
can cause some delay, in particular for users used to MoM codes, is that all struc-
tures in MWS have finite thickness – MoM codes usually work with infinitely thin
metallic sheets. For the patch, a typical metalization thickness would be 25 µm, al-
though the value is really not critical. MWS uses an elegant subcell model, known
as the perfect boundary approximation [17] so that thin metal sheets do not have
to comprise a full FDTD cell.

A more accurate model of the patch uses a coaxial feed and waveguide port.
One way to do this is to add explicitly a ground plane of PEC of finite thickness,
in which the coaxial feed will be embedded. (For reasons of internal code opera-
tion, MWS recommends that the length of the coaxial feed should be several times
the thickness of the substrate; in this case, a length of 10 mm was chosen.) When
adding the coaxial feed pin, one needs to be careful, since one is adding struc-
tures in regions where material already exists. In this case, it is easiest first to add
the outer dielectric coaxial region cutting through the ground plane (and to use
the same dielectric filler as the substrate material) and then to add the PEC inner
conductor, which extends to become the feed pin. Although in general different
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Figure 3.21 An MWS simulation of a microstrip patch antenna. FEKO results are also
shown for comparison.

materials cannot be defined in the same geometrical region,16 MWS permits PECs
and dielectrics to coexist, but the region is effectively treated as perfectly conduct-
ing.

An alternative approach is to use a thin ground plane, and construct a coaxial
cable on the reverse side.

Results for two such models are compared to a FEKO computation in Fig. 3.21.
There are actually three MWS results in the plot. Model one used the discrete port
approach, and a 100 mm × 100 mm substrate, using open boundaries on the sub-
strate sides, an open boundary with additional space above the patch, and an elec-
tric boundary on the ground plane. Model two used the same substrate and bound-
ary treatment, but a full coaxial feed model.17 Model three used the same coaxial
feed model and boundary treatment, but with a smaller substrate, 50 mm × 50 mm
in size; the results are very similar to those of model two, indicating that the open
boundary is simulating an infinite substrate quite well. All models were also run
through the adaptive meshing process. The agreement between all three models
and the FEKO computation is good; the discrete port model indicates the least

16 One makes use of various Boolean operations to combine, intersect, etc. such overlapping regions to resolve
this.

17 The outer diameter of the coaxial feed, i.e. the region penetrating the ground plane, was chosen to give
Z0 = 50 �. For a coaxial cable of course, Z0 = 60√

εr
ln(b/a) with b and a the outer radius and inner radius

respectively. In this case, with the same dielectric constant as the substrate, the outer radius was 2.24 mm.
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good match, but the results are still quite usable. The difference in center frequen-
cies between all four analyses is less than 1%. As we will see frequently in this
book, this is a commonly encountered limit in CEM for resonant antenna mod-
els, unless tremendous care is taken with the model. (It is worth commenting that
manufacturing and material tolerances will often render this moot in any case.)

Modelling hints – open boundaries and MWS

MWS has two types of open boundaries, both simulated using the PML, and
the difference between them is subtle. Although we did not discuss this, PMLs
can also terminate a region with two different materials; see, for example, [1,
Section 7.10]. An open boundary in MWS places a PML at the plane indicated,
permitting the code effectively to continue the substrate indefinitely. An open
boundary (add space) does much the same, but adds some additional (free) space
first; hence, this will not produce an infinite substrate.

Modelling hints – parametric modelling

Many CEM codes now permit one to “parametrize” the model. This means that
instead of entering an actual length as the model is constructed, one instead
defines this as a parameter which can then be changed subsequently. (We will see
extensive use of this type of feature in Chapter 5.) MWS offers this capability,
although we did not use it in these examples.

3.6 Further reading

The FDTD literature is truly massive, and a search on any of the electrical engi-
neering databases will produce more hits than one will be able to process. One’s
first reference should be Taflove and Hagness [1], which provides encylopedic cov-
erage of most aspects of the FDTD. The Schneider–Schlager FDTD database (see
Appendix F) is also a very valuable resource.

We have only touched the surface of the modelling possibilities of the FDTD
method. There are a whole number of issues which one can still address. Here
follows just a selection of these.

• Our 2D example already indicated that the rectangular cells of the standard FDTD
method may not approximate curved geometries very well. Methods of improving fine
geometrical detail are generally known as “subcell” models, and usually rely on an
equivalent formulation of the FDTD in terms of Faraday’s and Ampère’s laws, as briefly
introduced in Section 3.5. See [1, Chapter 10] for more on this topic. Thin wires are
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another type of structure which do not fit into the Yee grid very well. Bingle, the present
author and Cloete describe a formulation incorporating finitely conducting wires in [18].

• When dealing with wideband pulses, one should appreciate that many materials cannot
be represented accurately by a fixed value of εR . Again, elegant methods have been
developed for dealing with materials with frequency-dependent material parameters; this
is discussed in detail in [1, Chapter 9].

• For larger scatterers, it is extremely inefficient to try to position a field point in the far
field. Formulations are available to compute the far field from a near field time domain
computation, which permits one to use a much smaller mesh. See [1, Chapter 8] for
details.

• Non-linear problems can only be addressed using time domain methods. A considerable
amount of work has been done using the FDTD for such materials, including work at
optical frequencies. FDTD codes have also been hybridized with circuit simulators to
include non-linear devices (e.g. diodes). [1, Chapters 9 and 15] addresses these issues.

• We have discussed one-, two- and three-dimensional formulations of the FDTD. There is
another interesting formulation, suitable for rotationally symmetric structures: the body
of revolution FDTD. (This has been described as a two-and-a-half dimensional formu-
lation; the full three-dimensional fields are computed, but using a two-dimensional grid
for each Fourier mode present – for some problems, only one such mode is needed.) A
discussion of this may be found in [1, Chapter 12]. The present author and Ziolkowski
also used this formulation for modelling optical wave phenomena; in [19], we presented
the formulation. Rather importantly, the correct numerical stability criterion (the Courant
limit) for this case is also given in this paper.

• The FDTD can also be used for handling periodic structures. The present author, Smith
and van Tonder used this for modelling frequency selective surfaces [20]. The treatment
by Maloney and Kesler [1, Chapter 13] provides an up-to-date account of the formula-
tions available in this context.

• Another type of boundary condition of interest is the complementary operator. Ramahi
has worked extensively on this, and a summary may be found in [1, Chapter 6]. Work
also continues on other types of ABCs for the FDTD; see, for instance, [21].

• A recently (re-)discovered algorithm, the alternating direction implicit (ADI) formula-
tion of the FDTD method, permits one to exceed the Courant limit, but retain stability.
The ADI-FDTD method does pose some other challenges [22].

3.7 Conclusions

Our treatment of the FDTD method, which started out in the previous chapter
with a very simple 1D transmission line problem, solved essentially in the fre-
quency domain, continued in this chapter with a quite sophisticated 2D simula-
tion, incorporating wideband pulses, absorbing boundary conditions, and a physi-
cal analysis of scattering in the resonance regime18 in both the time and frequency

18 The region in which the dimension(s) of the scatterer are on the order of several wavelengths at most.
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domains, and finished with some examples computed using the commercial pack-
age MWS.

We have also looked at computational issues, both run-time and memory, which
impact on our ability to perform useful FDTD simulations. Berenger’s PML has
been introduced, and its extraordinary performance demonstrated. The 3D FDTD
was briefly outlined; theoretically, there are no new issues to understand, but in
practice writing a 3D code is challenging, since it needs to be very efficient in or-
der to handle realistic problems (in 2D, far less optimal code can still be useful).
Furthermore, for good results one should ideally use some of the more advanced
FDTD approaches, in particular subcellular models and better modelling of curved
boundaries. Unless one is fortunate enough to have access to an existing 3D FDTD
code, such codes are generally best left to experts unless one has a very specific ap-
plication in mind. The commercial code we discussed, MWS, provides a powerful
implementation of the FDTD, offering (amongst other advanced modelling fea-
tures) thin sheets, and a method called “perfect boundary approximation” which is
essentially a type of subcell formulation improving geometrical modelling. It also
features a user interface which at the time of writing was state-of-the-art. Other
commercial FDTD codes are also available.

The FDTD has truly become the workhorse of CEM computation over the last
decade – even when it is not necessarily the best technique to use! In the next
chapter, we introduce the method of moments, which is a very powerful method
for dealing with highly conducting structures, and often more efficient for these
applications than the FDTD method.
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4

A one-dimensional introduction to the method
of moments: thin-wire modelling

4.1 Introduction

The method of moments – MoM – was one of the first numerical methods to
achieve widespread acceptance in electronic engineering for the analysis of an-
tennas and scatterers. It is generally defined as a method for reducing an integro-
differential equation to a set of linear equations. The origins of the method are old;
as was already indicated in Chapter 1, some of the early work was done over a
century ago. One of the widely used integral equation formulations still used for
the analysis of thin wires (that due to Pocklington) was first presented in 1897
(although he used a series expansion method, rather than the modern segmenta-
tion approach). The first publications in the antenna and propagation professional
literature were in the early 1960s, and some of the canonical papers (those of
Harrington, Richmond, Mei and Andreasen) appeared at much the same time
as Yee’s paper. The specific name “method of moments” was introduced by
Harrington in his early work, and the name caught on quickly; this was perhaps
unfortunate, since the name has a slightly different meaning in contemporary ap-
plied mathematics. In that field, and also fields such as computational mechan-
ics, the term “method of weighted residuals” is generally used for what has be-
come known as the MoM in radio-frequency engineering. Another term widely
used in other fields of engineering is “boundary element method”; for highly
conducting structures, this term and the MoM as used in electromagnetics are
synonymous.1

Primarily for two reasons, the MoM rapidly achieved widespread acceptance.
Firstly, to a generation of engineers and scientists trained on analytical methods,
along the lines of Harrington’s classic text on time-harmonic fields [1] 2 – which in
turn was based on methods of mathematical physics, as expounded by Stratton [2]

1 We return to the topic of nomenclature in the penultimate section of this chapter.
2 Originally published in 1961, but reprinted since.
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and Morse and Feshbach [3] – the method was clearly based on sound electromag-
netic theory and more generally, methods of mathematical physics, in particular
variational calculus (which was then in widespread use). Secondly, because the
method discretized only the metallic wires or surfaces of the antennas, it was far
more efficient than methods such as the FDTD for analyzing the relatively small –
typically resonance regime – antenna structures which were then the main topic
of research. (As we have seen, the FDTD requires the discretization of all space
surrounding the antenna or scatterer.) Furthermore, many problems then of current
research interest could be solved used the MoM in a reasonable time – this was far
less true of the FDTD, whose requirements for memory and computer time could
generally not be accommodated on 1960s era computers.

In this chapter, we will present an introduction to the MoM, starting with an ex-
tremely simple electrostatic example. Again, as with the FDTD, the simple physics
and geometry permit us to illustrate a number of core ideas without becoming
overwhelmed by implementation details. Following this, we will extend the discus-
sion to electrodynamics. Thin-wire modelling uses locally one-dimensional basis
functions, but for general wire geometries, one must of course take the full three-
dimensional geometry into account, and hence writing one’s own MoM program
for any reasonably interesting engineering problem is well beyond the scope of an
introductory book of this nature. Fortunately, there are some excellent commercial
implementations of the MoM, as well as one very useful public domain code; these
are the topics of Chapter 5.

4.2 An electrostatic example

The problem we will address as an illustration of the MoM is the charge distri-
bution ρ(z) on a perfectly conducting straight thin wire, of radius ρ = a, charged
to a potential V volts relative to ground. It is based on an example presented in
[4, Chapter 12]. The wire could, for instance, be charged by induction. It is im-
portant to note that this is the opposite of typical work in introductory courses in
electromagnetics, where ρ(z) is given and one must then establish the potential
(and hence field). Given ρ(z), V (�r) (and hence �E = −∇V ) is easily found:

V (�r) = 1

4πε0

∫

V

ρ(�r ′)
R(�r , �r ′)

dV ′ (4.1)

with

R(�r , �r ′) = |�r − �r ′|
=

√
(x − x ′)2 + (y − y′)2 + (z − z′)2
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The primed coordinates (�r ′(x ′, y′, z′)) are those of the source point. The field point
coordinates are �r(x, y, z).

However, our problem now is, given the voltage on the wire, to establish how
the charge distributes itself. (In passing, we note that it cannot be a uniform distri-
bution; the charges near the ends would clearly experience an unbalanced electro-
static force which would push them towards the ends of the wire.) This falls into
the general class of inversion problems, and cannot generally be solved in closed
form, i.e. analytically. A numerical approach is the only general solution method
for such problems.

Before we proceed further, some terminology: Eq. (4.1) is known as an integral
equation; the part inside the integral operator is frequently called the kernel. The
function V (�r) is the forcing function. Two other concepts that are central to this
theory is that the physical environment surrounding the radiator/scatterer (in this
case, free space, i.e. an infinitely large and empty vacuum) and the boundary con-
ditions are all included in the formulation. This is what permits the MoM to solve
typical antenna problems (at least those involving perfect or highly conducting
conductors) very efficiently. We will later encounter Green functions; it is these
that effectively take the environment surrounding the structure into account, but
they are only available for a very limited number of environments.

The critical idea is that Eq. (4.1) is valid everywhere – including on the wire
itself, where V (x, y, z) is known. This is the boundary condition (BC) for the
problem. The idea that we will pursue to solve this problem is to approximate the
charge by a number of simple functions, of unknown amplitude, which we will
then find by assembling a matrix equation representing the geometry of the model
and the BCs in discrete form.

4.2.1 Some simplifying approximations

Before we proceed further with the MoM solution of this problem, we will
make a number of assumptions, which will considerably simplify the solution
process.

• Equation (4.1) contains a volumetric integral. If we assume that the wire is a perfect
electrical conductor (PEC), the charge is restricted to the surface and becomes a surface
charge ρs(z, ρ = a, φ). (Note that we use cylindrical coordinates here, and that ρ refers
both to the radius in this coordinate system and to the charge. The meaning will be clear
from the context.)

• Secondly, we will simplify the geometry, by assuming a ẑ-directed wire.
• Thirdly, we will assume that the charge distribution is uniform in the circumferen-

tial direction, i.e. we can simply write ρs(z, ρ = a, φ) = ρs(z, ρ = a). This permits us
to approximate further the surface charge ρs(z, ρ = a) by an equivalent line charge,
ρl(z) = 2πaρs(z, ρ = a), placed on the ẑ-axis.
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Using these approximations, the integral equation Eq. (4.1) becomes:

V (z, ρ = a) = 1

4πε0

∫ �

0

ρ�(z′)
R(z, z′)

dz′ (4.2)

with (a is the wire radius):

R(z, z′) =
√

[(x − x ′)2 + (y − y′)2] + (z − z′)2

=
√

a2 + (z − z′)2

Note that we now write V (z, ρ = a), rather than V (�r), since V is restricted to
be on the wire surface (where the boundary is) and is rotationally invariant by
assumption.

4.2.2 Approximating the charge

Up to this point, the approximations have been in the mathematical formulation
(the integral equation). Now, we introduce the MoM as a method of approximately
solving this equation. The wire, of length L , is broken up into N segments, using
N + 1 nodes, defined as follows:

zn = (n − 1)�, n = 1, 2, . . . , N + 1 (4.3)

� = L

N
(4.4)

In the following, “segment n” will mean the segment located between zn and zn+1.
The charge is approximated as

ρ(z′) ≈
N∑

n=1

anhn(z
′) (4.5)

Here, an are unknown (but constant) coefficients, and hn(z′) are basis functions –
also often known as expansion functions. (Many texts use fn(z′), but we want to
reserve f and g for a specific purpose, discussed later in this chapter.) An example,
with N = 5, is shown in Fig. 4.1. (Note that this is the solution obtained after
the procedure to be discussed has been performed and the unknown coefficients
obtained.) Equation (4.2) thus becomes:

V (z) = 1

4πε0

∫ �

0

1

R(z, z)

[
N∑

n=1

anhn(z
′)
]

dz′ (4.6)

Basis functions

The choice of the basis function is one of the most crucial parts of the MoM. A
large variety of possible basis functions exists. Popular choices include functions
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Figure 4.1 Equivalent line charge density for an N = 5 segment MoM solution using
piecewise constant basis functions. L = 1 m, V = 1 V, a = 0.001 m.

with the following spatial variation: constant (also known as pulse or stair-step);
linear; polynomial; piecewise sinusoidal; etc. Although deficient in some aspects,
we will chose pulse basis functions for our introductory example. Each function is
defined as:

hn(z
′) =





0 ∀ z′ < (n − 1)�

1 ∀ (n − 1)� ≤ z′ ≤ n�

0 ∀ n� < z′
(4.7)

In other words, the nth function is unity in one segment (segment n) and zero
elsewhere.

Using these pulse basis functions in Eq. (4.5), and interchanging the order of
integration and summation, one obtains:

4πε0V (z) = a1

∫ �

0

h1(z′)
R(z, z′)

dz′ + a2

∫ 2�

�

h2(z′)
R(z, z′)

dz′ + · · ·

+ aN

∫ N�

(N−1)�

hN (z′)
R(z, z′)

dz′ (4.8)

This is one equation in N unknowns, viz. {a1, a2, . . . , aN }. To obtain a unique
solution, one requires N equations, or constraints.3

3 Strictly speaking, these must be linearly independent equations.
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4.2.3 Collocation

To provide these N constraints, we enforce (match) the boundary condition at N
points along the wire, zm ; this is also described as testing (sampling) V (z, ρ = a).
This method is called collocation or point-matching. It is convenient to locate these
points in the middle of each segment, in between the nodes:

zm = (n − 1/2)�, m = 1, 2, . . . , N (4.9)

Note that unlike the FDTD method, this “half-point” offset has no adverse effect
on the accuracy of the method, and is not essential to its implementation; sam-
pling points at other locations within the segment would also work, this is merely
convenient.

Sampling Eq. (4.6) at each of these N points, the following set of N equations
is obtained:

4πε0V (z1) = a1

∫ �

0

h1(z′)
R(z1, z′)

dz′ + · · · + aN

∫ N�

(N−1)�

hN (z′)
R(z1, z′)

dz′

...

...

4πε0V (zN ) = a1

∫ �

0

h1(z′)
R(zN , z′)

dz′ + · · · + aN

∫ N�

(N−1)�

hN (z′)
R(zN , z′)

dz′ (4.10)

4.2.4 Solving the system of linear equations

The above set of equations is a system of linear equations. At this point, it is im-
portant to appreciate that the original integral equation inversion problem has
now been reduced to a matrix equation inversion problem. It can be written
as

{V } = [Z ]{I } (4.11)

sometimes known as generalized network parameters. Square braces indicate a
matrix, curled braces a vector. The relevant entries are:

Vm = 4πε0V (zm)

In = an

Zmn =
∫ n�

(n−1)�

1

[(zm − z′)2 + a2]1/2
dz′ (4.12)
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The n subscript refers to source points; m refers to testing (sampling) points. Sym-
bolically, the solution is

{I } = [Z ]−1{V } (4.13)

However, a linear system, usually written in the form [A]{x} = {b}, is almost never
solved by inverting the matrix explicitly. Instead, the matrix [A] is factored into the
product of lower and upper triangular matrices:

[A] = [L][U ] (4.14)

Hence [L][U ]{x} = {b}. An auxiliary vector {z} = [U ]{x} is introduced, and then
[L]{z} = {b} is solved by forward substitution to yield {z}; finally, {x} is solved
from {z} = [U ]{x} using backward substitution. (This process, an extension of
Gaussian elimination, is generally covered in introductory undergraduate courses
in numerical analysis.)

There are a number of reasons for pursuing this rather than direct inversion of the
matrix; the most important is that solving a linear system using LU-factorization
has a cost ∼O(N 3), whereas inverting a matrix costs at least twice this, since
following the factorization N forward and backward substitutions are required,
each of cost ∼O(N 2).

Before the matrix equation can be solved, however, there is still one issue to
attend to. In Eq. (4.12), the term Zmn is given as an integral over the nth segment.
This usually has to be done numerically using quadrature (numerical integration).
In this specific case, analytical results are available [4, p. 674]:

Zmn =





2 ln

(
�/2+

√
a2+(�/2)2

a

)
∀m = n

ln

(
d+

mn+
√

(d+
mn)2+a2

d−
mn+

√
(d−

mn)2+a2

)
∀m 	= n but |m − n| ≤ 2

ln d+
mn

d−
mn

∀|m − n| > 2

(4.15)

with

d+
mn = lm + �/2

d−
mn = lm − �/2

lm =
√

[(m − n)�]2 + a2 (4.16)

The last parameter is the distance between the mth matching point and the center
of the nth source segment.
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Figure 4.2 Comparison of 5 segment and 100 segment solutions.

4.2.5 Results and discussion

Results are shown in Figs. 4.1 and 4.2. In Fig. 4.1, the piecewise constant nature
of the basis function has been explicitly shown (the bar command in MATLAB

provides a simple way of doing this). In Fig. 4.2, one observes that the N = 5
solution is surprisingly accurate, although of course it does not correctly predict
the behavior of the charge at the ends of the wire.

A number of approximations have been made in this development. These in-
clude the following, with the implications indicated.

• An equivalent line charge was assumed. This relied on a rotationally symmetric charge
distribution. For a thin wire, this is generally a very good approximation.

• The ends of the wire were ignored; for instance, was the wire a hollow or solid tube?
Again, for thin wires, this is a reasonable approximation.

• In the collocation process, the integrals (which represent the boundary conditions) were
only exactly enforced at N discrete points. In between these points, the potential will
depart from the specified value. Fortunately, using more (i.e. smaller) segments will
reduce the impact of this.

• The specific basis function that was chosen – constant – is discontinuous at segment
ends. Since we were approximating charge, which is continuous, this is non-physical.
This is clearly evident in Fig. 4.1. (Again, the impact of this can be mitigated using
smaller segments.)
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• We assumed that the surface of the wire was perfectly conducting, so that the wire was
an equipotential surface. For most good conductors, this is a very good approximation.

The reason that we are discussing these in detail is that all these comments also
apply to electrodynamics.

4.3 Thin-wire electrodynamics and the MoM

With these basics behind us, electrodynamics (or full-wave behavior) can now be
investigated. The ideas of incident and scattered field decomposition are important
here. Other than this, and the more complex equations, we will find the overall
process very similar indeed.

4.3.1 The electrically thin dipole

The problem that we now want to solve is the current distribution I (z) on a straight
thin wire. It is assumed here that the basics of the dipole radiator have already
been studied. In such introductory courses on electrodynamics, some assumption
is generally made regarding the distribution. For very short dipoles, a linear or even
constant approximation of current can yield quite good results, and for the typical
resonant dipole, the widely assumed sinusoidal distribution also produces useful
results. However, the most obvious information which cannot be thus obtained is
the reactance of the dipole.

Although the overall process is very similar to the electrostatic charge distri-
bution problem just worked out, there are two important differences. Firstly, the
boundary condition: for a perfect electric conductor, the boundary condition is:

�Etan = 0 (4.17)

We will use the incident/scattered field decomposition method. This was already
introduced with the FDTD. To revise this briefly: since the Maxwell equations are
linear, the fields may be decomposed into an incident field �E inc and a scattered
field �E scat. The overall field, called the total field �E tot, is then:

�E tot = �E inc + �E scat (4.18)

By definition, the incident field is the field which would exist if the scatterer were
absent. As an example, if the incident field is a plane wave, propagating in the
x-direction, in free space, with a z-polarized electric field, the expressions for the
incident fields are:

�E inc = e− jkx ẑ (4.19)

�H inc = − 1

η0
e− jkx ŷ (4.20)
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As usual, η0 = √
µ0/ε0 is the wave impedance of free space, and k = 2π/λ0 is

the wavenumber. It is of interest to compare these expressions to those used in
Section 3.2.3. The main difference is of course that these expressions are frequency
domain ones. (A rather more minor difference is that the electric field is polarized
in the ẑ-direction rather than ŷ.) On the surface of a PEC wire, �Etot = 0. The
boundary condition on the surface of the wire thus becomes

�E inc = − �E scat (4.21)

As indicated above, �E inc typically has a simple form. The scattered fields, �E scat,
must be computed from the surface current.

In general, the electric field can be computed from the magnetic vector potential
�A and electric scalar potential 
 as

�E = − jω �A − ∇
 (4.22)

It will be recalled that various gauges can be applied to these potentials.4 The
Lorenz 5 gauge is widely used in this context:

∇ · �A = − jωµ0ε0
 (4.23)

Applied now to the ẑ-directed surface current source, and assuming that the wire is
in free space, so that ε, µ and the wavenumber k have the usual values in vacuum 6

this becomes

∂ Az

∂z
= − jωµ0ε0
 (4.24)

Hence,

E scat
z (r) = − j

1

ωµ0ε

(
k2 Az + ∂2 Az

∂z2

)
(4.25)

with

Az = µ0

4π

∫ l/2

−l/2

∫ 2π

0
Jz(φ

′, z′)e− jk R

R
a dφ′ dz′ (4.26)

We have used the “free-space Green function” here (ψ(z, z′) = e− jk R

4π R ), which
gives the resulting magnetic vector potential for a current element.7 R is the dis-
tance from source to field point coordinates. Substituting Eq. (4.26) in Eq. (4.25),

4 The potentials are not unique, and contain elements of arbitrariness, which the gauging resolves.
5 More properly attributed to L. Lorenz than H. Lorentz.
6 This formulation is actually valid in any linear, isotropic and uniform medium, with µ and ε taking the appro-

priate values. For simplicity, we show only the free-space case.
7 A more detailed discussion of Green functions is deferred to Chapter 7.
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and integrating over the source region, one obtains

E scat
z (r) = 1

jωε0

∫ 2π

0

∫ l/2

−l/2

[
∂2ψ(z, z′)

∂z2
+ k2ψ(z, z′)

]
Jz(φ

′, z′)a dφ′ dz′

(4.27)

Note that the differentiation in Eq. (4.25) has been taken inside the integral oper-
ator. This is valid since the differentiation is with respect to the field point coordi-
nates, and the integration is over the source points.

At this stage, the unknown is still the ẑ-directed (by assumption) surface cur-
rent Jz(φ

′, z′). For sufficiently thin wires, this can be reduced to the Pocklington
equation, first introduced in 1897:

E scat
z (r) = 1

jωε0

∫ l/2

−l/2

[
∂2ψ(z, z′)

∂z2
+ k2ψ(z, z′)

]
Iz(z

′) dz′

= −Ei
z(r) (4.28)

This equation is obtained by assuming that (as for the electrostatic case), we locate
the filament on the axis and enforce the boundary condition on the surface (the
reciprocal case is sometimes more convenient in deriving this). Although it looks
fairly straightforward, the presence of the second derivative of z inside the integral
kernel, acting on the Green function, makes this non-trivial to implement. A useful
further simplification can be made if the wire is assumed very thin (a 
 λ):
∫ l/2

−l/2
Iz(z

′)e− jk R

4π R5

[
(1 + jk R)(2R2 − 3a2) + (ka R)2

]
dz′ = − jωε0 Ei

z(ρ = a)

(4.29)

with a the wire radius and R = √
a2 + (z − z′)2. This is now a convenient form

to program. It appears in numerous texts (for example, [4, p. 720]) and appears to
have been first introduced by Richmond [5] (reprinted in [6]).

Further discussion on these and other integral equations (such as Hallén’s) may
be found in [4, 7].

Before solving this numerically, recall that we are assuming the following.

• Circumferential currents are negligible.
• The axial current I (z′) does not vary circumferentially. (This is not the same as the first

assumption!)
• As for the electrostatic case, we locate the filament on the axis and enforce the boundary

condition on the surface, or the reciprocal case.

The reason that we offset the source filament and testing surface (or vice versa)
is, as in the electrostatic case, to avoid the singularity present at z = z′. Although
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approximate, this method works well for thin wires. As for the static case, the ker-
nel is not singular, but for small a can become more nearly so than in the electro-
static case – the R5 term in the denominator of Eq. (4.29) is largely responsible –
and more sophisticated treatments are frequently used. The problem usually oc-
curs with the “self” term (the element of [Z ] with m = n). The usual remedy is
to subtract a term with the same order of singularity but which can be integrated
analytically, and then to integrate numerically the difference between the singular
term and the remainder, since this is usually quite well behaved. Examples of this
type of treatment of singular integrals will be discussed in Chapter 7 (although in
a slightly different context).

Approximating the current

The same idea is used for approximation of the current as we used for charge,
namely some sort of discrete approximation using a set of functions of known
shape but unknown amplitude. The most widely used basis functions are pulse
(piecewise constant, as used for the electrostatic problem), triangular (piecewise
linear) and piecewise sinusoidal. An especially convenient form arises when piece-
wise sinusoidal basis functions are chosen. In this case, for a wire � in length, lying
on the z-axis from −�/2 to �/2, the nodes are defined as

zn = −�/2 + (n − 1) �, n = 1, 2, . . . , N + 1 (4.30)

� = �

N
(4.31)

The basis function on the nth segment is:

hn(z) =
{

In sin k(zn+1−z)+In+1 sin k(z−zn)

sin k�zn
∀|z − zn| ≤ �

0 otherwise (4.32)

It actually consists of two parts, with two associated (and unknown) coefficients
In and In+1. It is often convenient to reinterpret the function as spanning two
segments, with one associated coefficient In . With this interpretation, it may be
shown 8 that the ẑ-directed scattered field from the nth basis function is given by:

�E scat
z = − j30

[
e− jk Rn−1

Rn−1 sin k(zn − zn−1)
− e− jk Rn sin k(zn+1 − zn−1)

Rn sin k(zn − zn−1) sin k(zn+1 − zn)

+ e− jk Rn+1

Rn+1 sin k(zn+1 − zn)

]
(4.33)

8 A detailed derivation of this was given in the first edition of Stutzman and Thiele’s antenna text [8, p. 330], but
was removed from the second edition [7].
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The lengths Rn−1, Rn , and Rn+1 are respectively the distances from nodes n − 1,
n and n + 1 to the field point.

With this particular choice of basis function, the integrals can be carried out
analytically, and this has been quite widely used in MoM codes. Note that at the
ends of the wire, the terms I0 and IN+1 are ignored, essentially forcing them to
zero (which is the expected behavior of the current).

As for the electrostatic case, a linear system is assembled using the results for
the field scattered by each segment. The simplest “testing” scheme is again collo-
cation: this is most conveniently done at the nodes in the case of sinusoidal basis
functions, which are in the center of the basis functions as defined above.

The incident field

It is important to realize that an MoM problem requires some form of excitation
(in the same way as an FDTD model, for instance); commercial codes are no ex-
ception. A key difference between the electrostatic and electrodynamic cases is the
concept of the incident field, as already outlined, which provides this excitation.
For an incident plane wave, peak value E0 V/m normally incident on the z-directed
dipole (along the x-axis in this case), the expression is:

E inc
z = E0 e− jkx (4.34)

as already discussed.
For an antenna problem, a very simple form of feed is the “delta-gap”; in this

case

E inc
z = ±V/δ (4.35)

for an impressed voltage of V at the terminals of the antenna and gap length δ

(quite often, the length of the segment). This source is also sometimes placed at
the node between segments. The sign depends on the convention adopted regarding
voltage. For the basis functions discussed, the direction of positive current flow is
from node n to n + 1.

More realistic models are available, such as the “frill” source. This models a
coaxial line, whose center conductor becomes a monopole and whose outer con-
ductor opens into an infinite ground plane. In this case, the electric field on the
axis of the ẑ-directed monopole is (again, similar comments pertain regarding the
sign):

E inc
z = ± V

2 ln(b/a)

(
e− jk R1

R1
− e− jk R2

R2

)
(4.36)
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Figure 4.3 Current on a resonant dipole computed with the MoM using piecewise sin-
suoidal basis functions and collocation. L = 0.47λ, a = 0.005λ, with N = 60 segments.

with

R1 =
√

z2 + a2

R2 =
√

z2 + b2 (4.37)

where a and b are the inner and outer radii of the coaxial feedline. V is the ter-
minal voltage. Usually, this is used an an equivalent model, in which case a is
the radius of the wire and b is then chosen as some reasonable value – often the
equivalent characteristic feedline impedance Z0 = 60 ln(b/a) is chosen as 50 �,
i.e. b ≈ 2.3a. It is worth commenting that the current (and hence antenna terminal
impedance) is very little affected by this value.

Some computed results

An example for the current distribution on a thin resonant dipole (L = 0.47λ,

a = 0.005λ) computed using the MoM is shown in Fig. 4.3. This MoM code, im-
plementing the theory in this chapter in MATLAB, uses piecewise sinsuoidal basis
functions and collocation. Results are shown for both the delta-gap and magnetic
frill sources, using N = 60 segments. The impedance computed with the former
was ZL = 76.7 + j4.7 � and for the latter, ZL = 74.8 + j8.2 �. Considering the
relative simplicity of the approximation, this agreement is excellent. An even bet-
ter comparison is to look at the magnitude of the reflection coefficient �; a 75 �
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system is appropriate here (and was also used for the equivalent coaxial radius in
the frill model); the results are −29.7 dB and −25.3 dB respectively. Anyone who
has ever tried to measure the reflection coefficients of antennas will be aware that
such agreement is more than satisfactory.

However, this computed result appears better than it actually is! What is
not shown on Fig. 4.3 is that the magnetic frill source converges very slowly;
60 segments corresponds to a sampling density of around 120 per wavelength,
approximately an order of magnitude times the usual rule-of-thumb for full-wave
MoM codes. Using N = 6, the delta-gap model produces ZL = 62.1 − j67.8 �;
the real part is moderately accurate although the reactive part is not; however, the
magnetic frill prediction, ZL = 13.8 − j15.1 �, is unconverged and entirely mis-
leading. In Chapter 5, we discuss checking convergence of computed data in some
detail. Commercial codes use somewhat more sophisticated treatments than those
discussed here to obtain more rapid convergence.

4.3.2 A caveat regarding thin-wire formulations

An important point to note with thin-wire formulations is that they admit no exact
solution, and exhibit a phenomenon known as relative convergence: as the number
of unknowns in an MoM solution is increased, the solution converges initially to
a value close to the exact solution (what has been called the region of rapid ini-
tial convergence), then enters a stable region, and finally diverges in a region of
instability. For wires which are too thick for effective use of the thin-wire approx-
imation, there is no stable region at all. This was considered in detail by Collin [9]
(reprinted in [6]) and is also discussed in his textbook [10].

4.4 More on basis functions

Suitable basis functions were the topic of research for many years, and in this
section, some details are provided of two other solutions which have been widely
adopted. Firstly, it is appropriate to provide some background on a public domain
code, NEC-2, which for many years was the workhorse of MoM computation. The
basis function used by NEC-2 had some particularly elegant features. Following
this, some more details are provided on piecewise linear basis functions, which are
also very popular.

4.4.1 The numerical electromagnetic code (NEC) – method of moments

It would be inappropriate in a book of this nature not to include some discussion
of NEC, or NEC-2 in the case of the public domain version. This code has a long
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lineage, with its genesis in a code called BRACT (released in 1970), which was de-
veloped by contractors MBA Associates, primarily for US Air Force applications.
The code that eventually became NEC started as the AMP (Antenna Modelling
Program), first released in 1974, again with US military funding. A discussion
of the theoretical background and a number of applications for what is clearly
this code (although unnamed in the article) may be found in [11], available in the
collection [6].

NEC-1 was released in 1977, and NEC-2 in 1981. NEC-2 became, and still is,
the most widely used public domain MoM code.9 NEC-3 was an intermediate ver-
sion, and saw only limited distribution; NEC-4 was released in 1992 and was the
last major release of the code, which is no longer being actively developed fur-
ther. Until very recently, NEC-4 was still US Military Restricted technology,10

although all NEC-4 functionality is now available in commercial codes (most
prominently FEKO). The various NEC codes were developed at the Lawrence
Livermore National Laboratory, one of the major US government research lab-
oratories. Here, we will focus on NEC-2, owing to its ready availability; despite
its even more venerable age, it is still a useful tool and quite widely used as a
benchmark.

NEC-2 incorporates the Pocklington integral equation formulation for thin
wires, as well as a treatment for closed conducting surfaces (the magnetic field
integral equation, which will be discussed in Chapter 6). It includes support for
a number of features very useful in modelling wire antennas, including: non-
radiating networks (e.g. transmission lines); lumped element loading; perfectly or
highly conducting wires; incident plane-wave or voltage sources; and treatments
of perfect or imperfect grounds. The last included the Sommerfeld formulation
for half-spaces; this will be discussed in Chapter 7. It can compute induced cur-
rents and charges; near- and far-fields (electric or magnetic); radar cross-section;
antenna impedance (and admittance); gain and directivity; and antenna to antenna
coupling. It can exploit symmetry of rotation or reflection.

NEC-2 was primarily developed for wire antenna modelling, and many of the
problems which have been reported with NEC-2 arose because users tried to use
it for modelling surfaces via meshes of wires. Although one can obtain useful
answers with careful work with this approach, it is not the purpose for which the
code was primarily designed. Provided that NEC-2 is used within its limits, it is
still a very useful code.

9 Whether it was indeed the intention of the US government to make the code public domain is still not entirely
clear, but this became the de facto situation by the 1990s.

10 Since 2003, NEC-4 has been available for a very modest license fee for users in most countries.
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4.4.2 NEC basis functions

Much of the success of NEC was due to the basis function used. (In the follow-
ing discussion, NEC and NEC-2 will be used interchangeably; this theory is also
applicable to NEC-4.) A highly desirable requirement of a good basis function is
that it should satisfy physical requirements of current and charge continuity. This
implies that both the current and its first derivative should be continuous. NEC
makes the usual thin-wire approximations, viz. transverse currents are negligible;
the circumferential variation of current is negligible; current can be represented
by filament on the wire axis; and the boundary conditions on the tangential elec-
tric field are only enforced axially, so the basis function is one-dimensional, as
in our preceding discussion in this chapter. In developing the basis function, the
following interpolation function is first introduced for segment j :

I j = A j + B j sin k(s − s j ) + C j cos k(s − s j ), ∀ |s − s j | < � j/2 (4.38)

The parameter s is a local coordinate along the length of the wire, with s j the value
of s at the center of segment j . � j is the length of segment j . This is based on a
function originally proposed by Yeh and Mei [12] (reprinted in [6]). Although this
is quite often described loosely as the basis function, this is not entirely correct.
The full basis function is rather more complex. Each NEC basis function spans at
least three segments: central, left (minus) and right (plus), supporting interpolation
functions of the form of Eq. (4.38) on each segment, f 0

i , f −
i j

and f +
i j

respectively.
The double subscript is used to identify the j th segment connected to segment i .
Figure 4.4 shows the situation for a wire segment with two wire segments connect-
ing to the left and two to the right of the central segment. (In this case, the basis
function “centered” on segment i spans all five segments.) For a straight wire,
with only one segment on the left and one on the right, one can drop the double
subscript and the basis function comprises interpolation functions f 0

i , f −
i and f +

i
associated with it (nine unknowns in total) – each interpolating as Eq. (4.38). For a

2−

end −

1−

1 2

Segment i

2+

end +

1+

Figure 4.4 Segments covered by the i th basis function.
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wire junction as in Fig. 4.4, there are contributions from five segments (and hence
15 unknowns).

The unknowns are now reduced to one per segment by the following constraints:

(1) The current must go to zero at outer edges of connected segments.
(2) The derivative of the current must go to zero at outer edges of connected segments.
(3) The current must be continuous at a segment junction.
(4) At a segment junction, the charge must satisfy a condition known as the Wu–King

condition; it is continuous for a straight, uniform wire.

These conditions are then enforced on each individual basis function – these are
sufficient (but not necessary) conditions to ensure current and charge continuity,
since the final approximation of current is a linear sum of these basis functions.
This was a crucial insight.

For example, these constraints for a segment in a straight wire are as follows.

(1) One from end 1− and one from end 1+.
(2) Again, one from end 1− and one from end 1+.
(3) Two (one at each end of the central segment).
(4) Four (one each from the segments connected to the − and + ends, two from the central

segment itself ).

This amounts to ten constraints. From Eq. (4.38), there are three unknowns per
interpolation function, and three such functions, making nine unknowns. A charge-
related parameter at the segment junctions provides two additional (“invisible”)
unknowns, producing eleven unknowns per wire segment (more details on this
are given below). The ten constraints are then applied to yield one unknown per
segment, which is arbitrarily chosen as −A0

i , i.e. the coefficient associated with
the constant part of the interpolation function centered on segment i . The details
of this process are quite lengthy, and are available in [13].

The advantage of this formulation is that it can be generalized to handle multi-
wire connections. Although it appears complex (and indeed the implementation is
non-trivial), it is handled entirely within the code and the user is unconcerned with
the details.

NEC-2 can also handle junctions involving wires of different radii. The so-called
Wu–King condition (an attempt to enforce the continuity of scalar potential, which
is the correct quasi-static continuity condition) is applied at each junction:

∂ I (s)

∂s

∣∣∣∣∣
at junction

= Q

ln(2/ka) − γ
(4.39)

In this expression, γ = 0.5772, Euler’s constant. Q is an unknown related to
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charge: it is constant for all wires at a junction and is the “invisible” unknown
in the previous discussion.

4.4.3 Piecewise linear basis functions

The NEC-2 basis function is very useful for modelling wire antennas, but is dif-
ficult to apply when the structure to be modelled comprises large amounts of
conducting surfaces. We will discuss effective methods for modelling surfaces in
Chapter 6; at present, all we need to know is that the usual basis function for
this is piecewise linear. Hence, such basis functions are very convenient for mod-
els including both wires and surfaces. The formulation is very similar to that of
Eq. (4.32):

hn(z) =
{

In(zn+1−z)+In+1(z−zn)

�
∀|z − zn| ≤ �

0 otherwise (4.40)

As with the piecewise sinusoid, the basis function consists of two parts, with two
associated (and unknown) coefficients In and In+1 , and again, it is often conve-
nient to reinterpret the function as spanning two segments, with one associated
coefficient In . This idea is very useful at wire junctions.

4.4.4 Junction treatments with piecewise linear basis functions

The NEC junction treatment is sophisticated, but a simpler approach first intro-
duced by Chao and Strait in 1970 is worth mentioning, since it is still quite widely
used. The only place the proof appears to have been published is a report for a
government research laboratory [14, pp. 22–25] and given that these are frequently
rather difficult to obtain, even when unlimited distribution was approved as was the
case here, it is worth briefly deriving their approach. A description of the method
(without proof) appears in [15, Chapter 4]. Chao and Strait used a slightly more
complex variant of the piecewise linear function, with an interior node in each
segment to permit better approximation of curved wires; here, we use straight seg-
ments.

Consider a three-wire junction at node n, as shown in Fig. 4.5. (The method
works for any number of wires, but this keeps things simple. The general case
is outlined at the end of the discussion.) Firstly, we introduce a “half-triangle”
function of the form

hn(s) =
{

In(s−sn−1)

�
∀s − sn−1 ≤ �

0 otherwise (4.41)
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I1 I2

I3

Figure 4.5 A three-wire junction.

This is simply half the basis function defined in Eq. (4.40), but with z replaced
by s, a local distance parameter along each wire. In this discussion, it is conve-
nient if s = 0 corresponds to the end of each wire away from the junction, with
s increasing as one approaches the junction. There are three currents to consider:
the current on wire 1, just before the junction; and the same for wires 2 and 3.
Note that at these points, the only basis functions contributing to the current are
these half-triangle functions. We will call the corresponding coefficients I1, I2 and
I3. (We will not include the node n in the notation since it is unnecessary here.)
With only two wires, it is sufficient to set I1 = −I2 and Kirchoff’s current law is
automatically satisfied. (The negative sign is due to the convention on s adopted
above.) With three wires, one possibility is to allow the MoM procedure to include
I1, I2 and I3, and then impose the additional constraint

I1 + I2 + I3 = 0 (4.42)

However, this often results in a constraint equation with very different magnitudes
to the usual impedance matrix elements.

The approach suggested by Chao and Strait is to consider each half-triangle
coefficient as the sum of two components, hence:

I1 = I ′
1 + I ′′

1

I2 = I ′
2 + I ′′

2

I3 = I ′
3 + I ′′

3 (4.43)

Further, they propose that

I ′′
1 = −I ′

3

I ′′
2 = −I ′

1

I ′′
3 = −I ′

2 (4.44)

What this implies is that these basis functions are simply the usual piecewise
linear basis functions, spanning both the last segment of the relevant wire and
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Wire 1 Wire 2

Wire 3

Figure 4.6 The three-wire junction, with the wires overlapped.

Wire 1 Wire 2

Wire 3

Figure 4.7 The final junction treatment, with two overlapped wires, and one not.

overlapping by one segment onto the next wire: that is wire 1 overlaps onto wire 2,
wire 2 onto wire 3, and wire 3 onto wire 1. This is shown in Fig. 4.6. (Our previous
comment regarding sign convention applies here too.) Substituting Eq. (4.44) into
Eq. (4.43),

I1 = I ′
1 − I ′

3

I2 = I ′
2 − I ′

1

I3 = I ′
3 − I ′

2 (4.45)

one notes that this choice identically satisfies Eq. (4.42) for any values of I ′
1, I ′

2
and I ′

3. A unique solution is obtained by arbitrarily choosing one of the degrees of
freedom; it is convenient to set I ′

3 = 0. This yields

I1 = I ′
1

I2 = I ′
2 − I ′

1

I3 = −I ′
2 (4.46)

A little thought shows that this implies that we overlap wire 1 onto wire 2, wire 2
onto wire 3, but do not overlap wire 3 onto wire 1, as in Fig. 4.7. For a gen-
eral N wire junction, the procedure is to overlap wire n onto wire n + 1, but not
wire N onto wire 1. Each of these overlapped wires is then treated with the usual
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MoM procedure as an open wire, with zero current at the end, as is the one non-
overlapped wire.

This is a somewhat cruder approximation than in NEC-2, since it satisfies only
Kirchoff’s current law, and not the continuous scalar potential. However, for junc-
tions involving wires of the same or similar radius it works satisfactorily. It also
incorporates an element of arbitrariness, since which wire is not to be overlapped
can be chosen at will. Finally, note that this procedure also works with piecewise
sinusoidal basis functions.

4.5 The method of weighted residuals

Even at an introductory level, one cannot leave the subject of the method of mo-
ments without introducing a very important extension. It was commented that the
point-matched procedure which was used only enforced the boundary condition at
the sample points. A method generally known in the applied mathematics literature
as the method of weighted residuals provides a systematic method for improving
this. Before we do this, some notation needs to be introduced first. We return to
Eq. (4.2), repeated here for convenience:

V (z, ρ = a) = 1

4πε0

∫ �

0

ρ(z′)
R(z, z′)

dz′ (4.47)

and introduce linear operator notation

L f = g (4.48)

where L is the operator which maps function f to function g. In the case of
Eq. (4.47), for instance, the function f is the charge ρ; the function g is the voltage
on the wire; and the linear operator L is

L = 1

4πε0

∫ �

0

1

R(z, z′)
(·) dz′ (4.49)

The bracketed dot is used as a place-holder for the function on which this operator
acts. Using this notation, the previous development then produces

L
N∑

n=1

anhn = g (4.50)

where, as before, f has been approximated using the basis functions, viz.

f ≈
N∑

n=1

anhn
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Using point-matching, the N × N linear system can be obtained by testing the
above at N test points. But now, instead of doing this, we form the residual as:

R = L
N∑

n=1

anhn − g (4.51)

This residual is the difference between the approximate solution and the actual
solution. (At the risk of belaboring the obvious, if this was one of the very rare
problems which can be solved exactly using the MoM procedure, then the residual
would be zero.) The point-matching procedure forces this residual to zero at N
discrete points. A better approach would be to try to obtain some type of average
value of the residual over the domain of the problem (the length of the wire in this
case), and set this to zero. One can do this in a quite general fashion by introducing
the idea of a weighting function, which is multiplied by the residual (and hence the
name, method of weighted residuals) and integrated over the domain. The weight-
ing function (also often known as a testing function) is also usually expressed as
some type of finite series:

w =
M∑

m=1

wm (4.52)

In this case, the equality is appropriate, since we are not approximating this func-
tion. Note also that there are no unknown coefficients. Symbolically, the weighted
residual method becomes

∫

L
R

M∑
m=1

wmdz =
∫

L

M∑
m=1

wmL
N∑

m=1

anhn −
∫

L

M∑
n=1

wng = 0 (4.53)

Usually, the number of basis functions (N ) and the number of weighting func-
tions (M) are equal. Because this integration process frequently defines an inner
product, an equivalent notation frequently encountered is

〈wm,Lanhn〉 = 〈wm, g〉 (4.54)

This is of course the bracket notation widely used in quantum mechanics, for the
matrix algebra formulation of Heisenberg. We will not pursue this further, other
than to note that the reason for this analogy is that both classical electromagnetics
and quantum mechanics are at heart field theories.

It is easy to show that the method of weighted residuals produces a matrix equa-
tion, of the same form as Eq. (4.11), repeated here:

{V } = [Z ]{I } (4.55)



4.5 The method of weighted residuals 141

except that the matrix entries are now

Zmn = 〈wm,Lhn〉
Vm = 〈wm, g〉
In = an (4.56)

In addition to the question of which type of basis functions to adopt, one now can
also choose a variety of weighting functions. This matter has been quite extensively
researched. In practice, however, there are two very popular choices. The Galerkin
procedure uses the same basis and weighting functions. The collocation method,
which we have already studied, uses Dirac delta functions, which of course reduce
to just testing the operator at the sample points.

Before concluding this section, one or two points which can (and have) caused
confusion in the past should be highlighted. Firstly, the inner product implied
above for two functions f and g defined on domain D is:

〈 f, g〉 =
∫

D
f g dV (4.57)

For real valued functions, the operation thus defined satisfies the mathematical re-
quirements of an inner product. However, for complex valued functions, it defines
a symmetric rather than inner product, and in this case, the Galerkin procedure re-
quires weighting functions which are the complex conjugate of the basis functions.
(The symmetric product defines a quantity known as reaction in electromagnetic
theory [7, Section 10.7; 4, Section 7.6].) A valid inner product for complex-valued
functions is:

〈 f, g〉 =
∫

D
f g∗ dV (4.58)

where g∗ is the complex conjugate of g. In this case, the basis and weighting func-
tions are identical in the Galerkin procedure. Heated debates have arisen over this
in the literature; mathematically, it is important, because functions and operators
defined within the framework of a proper inner product (and also with some ad-
ditional properties) are known to be elements of Hilbert and/or Sobolev spaces,
which confer various properties, important with regard to error analysis and con-
vergence studies, on the problem. In practical engineering applications, the differ-
ence is usually unimportant.

On a different topic, the use of Dirac delta functions to derive the collocation ap-
proach from the method of weighted residuals has been criticized by some writers
[16]. The core of this criticism is the observation that functions such as these are
only properly defined in a distributional sense (i.e. under an integral sign). Again,
whilst valid from a theoretical viewpoint, in practice the collocation method stands
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on its own merits, does not need to be derived thus, and is often a very effective
formulation.

One final point we can now explain – the origin of the name “method of mo-
ments.” Again, consider a one-dimensional problem, such as the electrostatic one
we started the chapter with. If we use a method of weighted residuals approach,
but select as weighting functions the set {z, z2, z3, . . .} we form the moments of
the residual. In applied mathematics, the method of moments is this specific form
of the method of weighted residuals. Harrington chose it as the generic name for
method of weighted residuals approaches in electromagnetics, and the name stuck.
(In [17], he explained that when first working with the method, he tried to avoid in-
troducing new jargon, and that the name method of moments had previously been
used by the Russian mathematicians Kantorovich and Akilov.) Arguably, it may
not have been the best choice of name, but four decades of usage in computational
electromagnetics have established it so firmly as to be beyond debate. One will also
sometimes find the term boundary element method used instead of MoM; usually,
these terms are identical, although we caution that volumetric MoM formulations
are available which are not boundary, but rather volume, element methods. (We
briefly discuss volume elements in Chapter 6.)

4.6 Further reading

Although elegant theoretically, the MoM is probably the most difficult formulation
of those presented in this book to implement accurately and efficiently. In the next
chapter, we will turn our attention to the use of commercial codes, and not attempt
to develop the simple codes presented in this chapter further. For those intending
to develop codes themselves, the MoM is surprisingly badly served by textbooks
for applications significantly more advanced than the introductory level treatment
presented here, and the following notes may be of use.

Firstly, one still needs to refer to some of the original papers on the topic –
there is no MoM equivalent of the books by Silvester and Ferrari or Jin on the
FEM [16, 18] or Taflove on the FDTD [19]. In this context, the original paper by
Pocklington [20] is both still available in specialized libraries, and still interesting
reading, although it will be of little help in developing an MoM code.

An historical aside – H. C. Pocklington

Reading scientific papers from this age can be a little humbling for modern re-
searchers. At the same meeting of the Cambridge Philosophical Society where
Pocklington presented his work (25 October 1897), a paper by C. T. R. Wilson
on his cloud chamber was presented. At other meetings of that year, numerous
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papers appear by J. J. Thomson. 1897 was of course the year that Thomson
announced the discovery of the electron at the 30 April, 1897 meeting of the
Royal Institution – although he called it a corpuscle at that time. Pocklington
was a fellow of St. John’s College, Cambridge, and during a sabbatical visit to
Cambridge the present author tried to obtain more details about his life. Sadly,
no photograph or any other information about him was available, unlike Thom-
son, who went on to become Master of Trinity College, Cambridge, one of the
most prestigious positions at that University, as well as of course winning the
Nobel prize. Both Trinity and St. John’s have a proud tradition of scientific ac-
complishment, Trinity numbering Newton and Maxwell amongst its fellows in
addition to Thomson, and St. John’s Dirac.

The collection of reprints edited by Miller et al. is very useful in this context,
over a decade after publication [6]. It contains a number of seminal papers, many
of which have been referenced in this chapter, as well as a translation from the
original German of an important basic theoretical paper by Maue [21], dating back
to 1949, which derived what have become known as the electric/magnetic field
integral equations, discussed in Chapter 6. The original text by Harrington [22],
although reprinted on several occasions and still very widely referenced, is not
particularly useful when implementing complex RF simulation codes since its fo-
cus is more on basic concepts. However, several important chapters in the now
hard to find [23], such as [24], are of considerable interest when implementing
complex wire codes, and this still appears to be the only comprehensive derivation
available of the magnetic field integral equation as generally used; this work gen-
eralized some aspects of Maue’s original derivation. Another hard to find reference
with useful information on MoM procedures for arbitrarily oriented wire antennas
is [25]. In this context, Moore and Pizer’s monograph [15] was useful in its time,
but unfortunately has never been revised and may be difficult to locate. Finally,
another useful source on this topic, which should be far easier to obtain, is the the-
ory manual for NEC-2 [13]. Good introductory treatments of the MoM for antenna
applications are available in [4, 7, 26], which provide a somewhat more extended
coverage of the subject than in this chapter; however, these are by no means fully
comprehensive treatments. The only extended text on the MoM is Wang’s [27], and
the book has some material which has dated quickly, specifically in the context of
a controversy then raging in the literature about iterative methods. Peterson et al.’s
book [28] has a good theoretical treatment of canonical problems, but as with the
introductory MoM treatment in the antenna textbooks mentioned above (and also
Wang’s volume), it does not deal with the complexities of arbitrarily oriented wire
antennas, providing only a brief overview of the topic.
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Finally, the question of the convergence of the MoM has proven far from trivial;
a brief discussion may be found in Appendix C.

4.7 Conclusions

Although highly simplified, the theory discussed in this first chapter on the MoM
is at the core of very complex and powerful MoM programs such as NEC-2 and
FEKO. The former uses collocation, with a variant of the sinusoidal basis func-
tion as discussed; the latter uses a Galerkin formulation with piecewise linear ba-
sis functions, also as discussed. Extensions to arbitrarily oriented wire antennas
rapidly become complex, due to the presence of different components of the elec-
tric field (set up by the arbitrarily oriented currents) which need to be taken into
account. Highly (as opposed to perfectly) conducting metallic structures can also
be addressed with very similar theory. NEC-2 was one of the first codes to incor-
porate a large number of such facilities; modern commercial codes such as FEKO
incorporate all these, as well as many other powerful analysis capabilities.

In the next chapter, we will look specifically at the use of FEKO and NEC-2
for wire antenna modelling. Following this, we return to more theoretical topics,
considering modelling highly conducting surfaces in Chapter 6, as well as hybrid
formulations to reduce the computational cost of this, and we conclude our study of
the MoM in Chapters 7 and 8 with a discussion of Green functions, stratified media
formulations, and the Sommerfeld potentials. In Chapter 10, we will introduce a
very powerful hybrid of the MoM with the finite element method, which permits a
very efficient solution of certain classes of problems.
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5

The application of the FEKO and NEC-2 codes
to thin-wire antenna modelling

5.1 Introductory comments

With the theoretical background now established, one is in a position to start using
commercial and public domain MoM programs intelligently. In this chapter, we
will discuss primarily the application of the commercial code FEKO for antenna
modelling, but will also discuss the use of the public domain code NEC-21 in this
regard. Other than FEKO, few commercial programs (other than some proprietary
NEC-2 extensions) provide good support for modelling thin-wire antennas, the
topic of this chapter; such antennas are still very widely used indeed. For com-
mercial programs, material is usually available to assist novice users to get started
with the codes.2 Hence we will not describe the basic concepts of entering the
geometry of the problem, including the source, and specifying parameters such as
operating frequency and radiation patterns, since these vary from program to pro-
gram, indeed quite often from release to release, and are usually quite well docu-
mented by the suppliers. However, in the case of NEC-2, some comments are in
order.

NEC-2 is a “card driven” program, dating back to the days of “decks” of
punched cards. A NEC model is described by a geometry file, usually with a .nec
extension. An example is given in Fig. 5.1. If using NEC in this form, one must
obtain a copy 3 of the usual manual [1]. Each line in this file describes either a geo-
metrical element or an analysis operation; the first two lines are simply comments;
the third line GW is a straight wire, with a tag of 1 in this case (a tag is a number
referring to the particular wire, and is used to simplify later references), divided
into 41 segments, with (x, y, z) coordinates of the first end (0, 0, −0.25), of the

1 Again, as in the previous chapter, we will use NEC-2 and NEC interchangeably in this chapter. All the com-
ments made are equally applicable to NEC-4.

2 In the case of FEKO, a “Getting Started” manual is provided.
3 This has been made available on the Internet. See Appendix F for a list of websites which can assist in this

regard.

146
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CM Dipole Example
CE Start of geometry
GW 1 41 0.000000 0.000000 -0.250000 0.000000 0.000000 0.250000 0.00500
GE 0 0
FR 0 51 0 0 250.00000 2.0000000
EX 0 1 21 00 1.00000 0.00000
XQ 0
EN

Figure 5.1 A sample NEC input file.

second end (0, 0, 0.25) and radius 0.005. All dimensions are in meters by default.
The fourth line GE indicates that the geometry section has ended. The fifth line
FR specifies the frequency; the sixth, EX, specifies a voltage-source excitation on
the 21st segment of the wire with tag 1; and the penultimate line, XQ, executes the
program, computing input impedances and (possibly) radiation patterns. The final
line EN ends the “deck.”

Code tip – using NEC-2

NEC-2 is only the computational engine, originally written in one of the ear-
lier versions of FORTRAN, which performs the MoM computations as specified
in the input file, and writes data to an output file. No graphical support is pro-
vided at all. An entire industry grew up providing such support; some packages
are fully featured commercial products with major additional computational fea-
tures, such as SuperNEC; others, such as Wiregrid for Windows, are freeware,
providing only graphical user interface (GUI) support. Wiregrid does have one
feature worth highlighting; it is able to generate wire-mesh approximations of
surfaces, using an algorithm published in [2]; no other NEC-2 GUI appears to
support this at the time of writing. (Generating such a mesh by hand is an in-
credibly tedious operation.)

Although not clear from Fig. 5.1, the column spacing can be crucial – i.e.
the x coordinate of end 1 must be entered between columns 11 and 20 for some
versions of NEC-2. There are many slightly different versions of the code, com-
piled by different authors, and the earlier versions had limited parsing ability on
data files. Later versions relaxed this, and also permitted the use of commas to
demarcate data fields. One is well advised to get one of the many GUI inter-
faces mentioned above, since otherwise preparing a NEC-2 data file can be very
frustrating indeed.

An advantage of the NEC-2 open-source mode of operation is that it lends
itself to use in a variety of applications – optimization, for instance – since it
is relatively easy to generate NEC-2 input files automatically, and using tools
such as grep, the output file can be parsed for the required output parameters.
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However, this is not an operation recommended for beginners. In some cases the
code has even been partially or entirely rewritten in other languages – part of
the present author’s doctoral dissertation was an implementation in a language
called Occam, to permit efficient parallelization of the code [3].

FEKO was also influenced by NEC; at the time of writing FEKO still referred
to “cards” in the input file. The actual input file used by FEKO has a .fek ex-
tension, and consists of lines of data, usually preceded by a two-letter label. (It
is either in ASCII or binary format; the former is advantageous when generating
geometry files on a PC for running on a more powerful computer such as a work-
station or even supercomputer.) However, this is a very difficult format for users to
comprehend. At the time of writing, FEKO was usually run from a PREFEKO file
(with extension .pre). PREFEKO is a type of scripting language which generates
the .fek file from elementary geometrical and other primitives.4

The code FEKO

This code had its genesis in the doctoral work of Jakobus at the University of
Stuttgart in Germany during the early 1990s. It is an acronym of the German
name: “FEldberechnung bei Körpern beliebiger Oberfläche”, which translates
as field computations involving bodies of arbitrary shape. It incorporates a pow-
erful MoM treatment using piecewise linear triangular functions for metallic
structures – both wires and surfaces. It also supports the MoM treatment of di-
electric structures, using either surface or volumetric treatments. A unique fea-
ture of FEKO is the approximate hybrid treatment available using physical op-
tics. We will discuss many of these topics in Chapter 6. FEKO is available across
a wide range of platforms, including supercomputers. The code ships with a
very usable GUI (although this was being redesigned at the time of writing). Re-
cent additions have included the Sommerfeld treatment for stratified media (the
topic of Chapters 7 and 8) and the fast multipole method (see Chapter 6). The
code is very popular in Europe, and is starting to penetrate the USA and Asian
markets at the time of writing. A version with restricted capabilities (some-
times called FEKO Lite) is available at no cost. See Appendix F for contact
details.

4 Many CEM codes have an entirely graphical geometry-enter process; although attractive for first-time users
this does not offer the same fine control as the current FEKO approach, but this may well change in future
releases of the code. FEKO does of course provide visual feedback of the geometry which has been created as
soon as PREFEKO is run. Some, such as MWS, discussed in Chapter 3, offer both.
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Historical note – other thin-wire codes

MININEC is another program which one quite frequently sees mentioned. The
name is slightly misleading, since it implies that it is a stripped-down version of
NEC-2 – this was indeed the original intent of authors Rockway and Logan when
the project was first mooted in 1980. However, it evolved into an entirely separate
implementation, using a different formulation, and different basis functions (in
the current version, triangular ones). See Appendix F for contact details.

Wire (also known as Thin Wire) was a program originally developed by Rich-
mond at Ohio State University; it still has a loyal following there and versions
have been made publicly available. See [4, Appendix F] for more details of the
code in its 1989 incarnation, WIRE89, with a FORTRAN listing.

5.2 An introductory example: the dipole

No matter what numerical technique has been used – MoM, FDTD, FEM – one of
the first things to check is that the solution is indeed converged. What we mean by
this is that, after a certain point, refining the mesh (making segment size smaller,
for a simple MoM problem) does not change the solution. (In Chapter 3, Sec-
tion 3.2.7, we saw how making � smaller improved the quality of the solution by
comparison to the analytical result.) To investigate this we will study the half-
wavelength dipole. A note is in order here: this term can cause confusion for
newcomers in antenna engineering, since what is usually meant is the wavelength
at which the dipole exhibits its first resonance – i.e. has no reactive part of the
impedance. This is usually equivalent to the wavelength at which the reflection
coefficient is minimized in a typical 50 � or 75 � system, since the real part of
the input impedance is generally on the order of 50–70 � and changes far less
rapidly than the reactance at resonance. It generally occurs at somewhere between
0.46λ ∼ 0.49λ, depending on the dipole thickness.

Modelling hints – convergence studies using FEKO

In FEKO, there is unfortunately no simple way to undertake a convergence study
by creating multiple structures in one file, and one needs to change the discretiza-
tion manually in the PREFEKO file, run PREFEKO again, and also of course
re-run FEKO.a There are various ways of proceeding from here, but probably
the easiest is to save the output file (out) after each run with a distinctive name,
and then use the Import – Select File option in the FEKO graphical post-
processor to read the data in from each file.
a It is possible to do this with OptFEKO, the FEKO optimizer, but this is beyond the scope of the present

discussion.
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Figure 5.2 Results of convergence study for a dipole of length 0.5 m, radius 0.005 m. A1
feed model.

The result of such a convergence study is shown in Fig. 5.2. The default refer-
ence impedance of 50 � was used to create these plots.5 All produce a minimum
reflection coefficient of around −15 dB except for the coarsest mesh (−14 dB); in-
terpolating a little, the frequency of this varies from 292 MHz (5 segments) through
281 MHz (11 segments) and 278 MHz (21 segments) to 276 MHz (41 segments).
The five segment model has a segment size of just under λ/10, which is about the
largest segment length which should be used in thin-wire modelling, certainly near
a source. FEKO will issue a warning or an error if the segmentation is grossly inad-
equate. NEC, however, does not – many of the preprocessors now available provide
this functionality, another reason that it is strongly recommended to use one!

The obvious course is now to proceed with further refining of the mesh (81 seg-
ments, etc.) but for subtle theoretical reasons, this is not wise. The problem is that
the FEKO solution is based on the thin-wire approximation, discussed in Chap-
ter 4. With a large number of segments, each segment becomes very short, and
although the wire overall may indeed be thin, this is no longer true for a particular
segment. FEKO issues a warning if the ratio of segment length to radius is less than
around 3.3, and an error if this is less than 1. (The developers of NEC suggest an
even more conservative ratio of around 8 as a preferred lower bound [1, p. 4].) In-
deed, our 41 segment model actually violated this, with a ratio of 2.5. If one opens

5 FEKO offers the ability to load sources – this is not the same as setting the reference impedance Z0.
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the output file and views the warnings, one will observe that a warning was indeed
issued with the 41 segment model. (FEKO computes the ratio as radius to segment
length, so the values reported in the file are the inverse of those in this discussion.)

The difference in resonant frequencies between the 21 and 41 segmentation runs
is under 1%. It is important to note that resonant frequencies predicted numerically
are often in error, typically by some few percent; indeed, this is perhaps the least
accurate physical parameter computed by the MoM (and other numerical meth-
ods). This is especially true of thin-wire structures, but is generally true of resonant
devices. To illustrate this further, we also show a result computed using NEC-2 in
Fig. 5.2. NEC-2 predicts a center frequency of around 273 MHz using 41 seg-
ments, as opposed to the 276 MHz of the corresponding FEKO computation, an
error also on the order of around 1%. NEC-2 uses different basis functions and
a collocation approach, whereas FEKO uses piecewise linear basis functions and
the Galerkin formulation, so one cannot expect the NEC-2 and FEKO results to be
identical. To improve this further, one will need a more sophisticated source model
for both codes 6 and one should be aware that this is about the level of accuracy
for this parameter which can be expected from standard thin-wire codes.

FEKO offers other methods for driving dipoles, and it is worth looking at them
briefly. The A1 model essentially replaces a segment with a region of impressed
electric field. It is important to note that this is done within the code!

Modelling hints – feed points for wire antennas

Many new users of MoM codes – FEKO, NEC-2 etc. – try to create a dipole from
two wires, with a gap in the middle for the feed. This is incorrect! The correct
approach is to specify a feed on an existing segment. In the region of the feed,
the current is of course displacement current, rather than conduction current; it
is effectively the former which the MoM is approximating in the feed region, but
it still needs a segment (even though it is fictitious) and its associated expansion
function in order to do this.

The other feed models for thin-wire structures offered by FEKO are the A2
and A3 models. The former uses a very thin gap between two nodes. The latter
models a coaxial feed; it is derived by considering the TEM fields in a coaxial cable
feeding a monopole against a very large ground plane, as discussed in Section 4.3.
In Fig. 5.3, the results obtained by applying these three different feed models to

6 One such approach uses a quasi-static MoM model first to establish the incident field, which is usually assumed
in such MoM models, and then uses this in the full-wave solution. One also needs to treat end-caps carefully.
The best source on this is [5], whose results were also supported by careful measurements.
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Figure 5.3 Comparison of different sources using 20 or 21 segments: voltage gap on seg-
ment (A1); voltage gap at node between segments (A2); magnetic frill feed (A3).

this dipole are shown. Twenty-one segments were used for the A1 and A3 sources,
and 20 for the A2 source. (Because the A2 source models a feed at a node rather
than on a segment, the model requires an even number of segments for this case
in order to place the feed at the dipole center.) For the A3 source, an equivalent
inner and outer radius must be specified; usually, the former is chosen as the wire
radius, and hence the latter is 2.3 times this for a 50 � system. This was used
to produce the results shown in Fig. 5.3. For this example, excellent agreement
between the various feed models is observed, which is very gratifying. However,
for other problems, one or other model may be far easier to use, hence the provision
of different models.

A final comment on convergence testing. For complex models, in particular
ones using geometrical data imported from other programs, checking convergence
may be very difficult. This example gives some guidelines for the type of errors
one should expect. Our coarsest mesh (� ≈ λ/10) produced an error of around
5.5% (with respect to the finest mesh). Refining the mesh to � ≈ λ/20 more than
halved the error to around 2%. Refining the mesh again to � ≈ λ/40 once again
halved the error. However, the actual values of the errors will vary from problem
to problem, and we caution that if it is not possible to use a quite fine mesh (i.e.
small segment size of � ≈ λ/20) one needs to be very careful indeed in accepting
results generated using any MoM program. In the examples to follow, we will
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generally use quite fine meshes satisifying at least this criterion, and will not ex-
plicitly remark again on convergence, but it should always be kept in mind.

Code tips – structural versus control cards in NEC

NEC differentiates between two different types of cards, namely structural and
control cards. The former define actual metallic segments and patches, either via
the direct creation of a wire or surface, or via operations on structural elements
such as copying or reflection. The latter control parameters such as the location
of the excitation, operating frequencies, grounds, near- and far-fields requested
etc.

Note that a NEC file requires at least one card which triggers execution, such
as a field computation. The XQ card is a convenient way of forcing execution
otherwise.

FEKO also distinguishes cards in a similar fashion, using the terms geometry
and control cards respectively.

5.3 A wire antenna array: the Yagi–Uda antenna

In the preceding section, we discussed how to specify feed models, as well as the
importance of checking that the analysis has converged. However, the thin-wire
half-wavelength dipole is not a very stimulating engineering design on its own. A
much more interesting example is an array of dipoles. Two well-known examples
here are the Yagi–Uda antenna7 and the log-periodic antenna, invented at the Uni-
versity of Illinois Urbana-Champaign during the 1950s. Design tables are available
for both antennas, and some are reproduced in [6, 7]. The main difference is that
the former is a narrowband, moderately high-gain structure, but with only one ele-
ment (the driven element) fed; the latter is a wideband structure, somewhat lower
in gain, with all the elements fed in parallel via a transmission line network. Both
are very widely used for VHF and UHF communication, as well as TV reception
from terrestrial broadcasts. (Satellite transmissions are in the microwave band and
a high-gain dish is generally used.) As an example, we will analyze a simple Yagi–
Uda array, with one reflector, one driven element and four director elements. This
is illustrated in Fig. 5.4.

We use the design data of Viezbicke, available in [6, Section 5.4] or in [7, Sec-
tion 10.3.3]. Viezbicke’s design process usually consists of two stages: firstly,
establish the director and reflector lengths for the prototype Yagi [6, Table 5.4];

7 S. Uda is credited with the original design in 1926; the first English language publication was by his professor,
H. Yagi, in 1927 [6, p. 188].
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Table 5.1 Design data for a six-element Yagi array, wire radius
a = 0.00425λ, using Viezbicke’s results

Element Length (in wavelengths) Spacing (in wavelengths)

Reflector 0.482 −0.2
Driven 0.475 N/A

D1 0.428 0.25
D2 0.420 0.25
D3 0.420 0.25
D4 0.428 0.25

Spacing is relative to the previous element.

Reflector Driven D1 D2 D3 D4

0.2 λ 0.25 λ 0.25 λ 0.25 λ 0.25 λ

Figure 5.4 The six-element Yagi array described in the text.

secondly, compensate for the actual wire radius using [6, Fig. 5–37]. By using
the wire diameter d = 2a = 0.0085λ of the prototype given in [6, Table 5.4], no
compensation is required. These tables do not give the length of the driven ele-
ment; this is usually the resonant dipole length in free space [6, p. 190]. (This
can be established from standard results, for instance [6, Table 5.2]: for L ≈ 0.5λ,
L/2a ≈ 59, the required shortening is about 5%, i.e. 0.475 λ.) Hence our design
is as summarized in Table 5.1. Director 1 is closest to the driven element. Extracts
from the FEKO .pre file are given in Fig. 5.5; a NEC-2 data file is shown in
Fig. 5.6.

Results for the reflection coefficient and the H -plane pattern at 291 MHz (the
actual resonant frequency) are given in Figs. 5.7 and 5.8 respectively. The simula-
tion indicates around a 5% −10 dB impedance bandwidth (the range of frequencies
for which |S11| is less than −10 dB, corresponding to VSWR ≤ 2), which is as ex-
pected for a thin-wire structure. (These results were obtained for a segment length
of around λ0/40 at the center frequency.) The resonant frequency is 291 MHz,
some 3% lower than the design frequency. Since quite fine segmentation has been
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.

.

#freq_o = 300.0e6 ** centre frequency in Hertz
#lam_o = #c0/#freq_o ** wavelength in metre, #c0 = speed of light in vacuum

#rf_len = 0.482*#lam_o ** Reflector

#dr_len = 0.475*#lam_o ** driven element

#d1_len = 0.428*#lam_o

#d2_len = 0.420*#lam_o

#d3_len = 0.420*#lam_o

#d4_len = 0.428*#lam_o

#S_R = 0.2*#lam_o

#S_D = 0.25*#lam_o

#diam = 0.0085*#lam_o

#num_seg=21

#delta=#dr_len/#num_seg

** Parameters for segmentation

IP #diam/2 #delta

** Geometry of radiating structure

DP rf_n -#S_R 0 -#rf_len/2

DP rf_p -#S_R 0 #rf_len/ 2

BL rf_n rf_p

DP dr_n 0 0 -#dr_len/2

DP dr_p 0 0 #dr_len/ 2

BL dr_n dr_p

DP d1_n 1*#S_D 0 -#d1_len/2

DP d1_p 1*#S_D 0 #d1_len/2

BL d1_n d1_p

DP d2_n 2*#S_D 0 -#d2_len/2

DP d2_p 2*#S_D 0 #d2_len/2

BL d2_n d2_p

DP d3_n 3*#S_D 0 -#d3_len/2

DP d3_p 3*#S_D 0 #d3_len/2

BL d3_n d3_p

DP d4_n 4*#S_D 0 -#d4_len/2

DP d4_p 4*#S_D 0 #d4_len/2

BL d4_n d4_p

** End of geometric input

EG 1 0 0 0 0

.

.

.

Figure 5.5 Part of a PREFEKO file for the six-element Yagi array illustrating the use of
user-defined variables and scaling.
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CM 6 element Yagi

CE Start of geometry

GW1,21,-0.200000,0.000000,-0.241000,-0.200000,0.000000,0.241000,0.00425

GW2,21,0.000000,0.000000,-0.237500,0.000000,0.000000,0.237500,0.00425

GW3,19,0.250000,0.000000,-0.214000,0.250000,0.000000,0.214000,0.00425

GW4,19,0.500000,0.000000,-0.210000,0.500000,0.000000,0.210000,0.00425

GW5,19,0.750000,0.000000,-0.210000,0.750000,0.000000,0.210000,0.00425

GW6,19,1.000000,0.000000,-0.214000,1.000000,0.000000,0.214000,0.00425

GE 0 0

FR 0 51 0 0 275.00000 1.0000000

EX 0 2 11 00 1.00000 0.00000

XQ 0

EN

Figure 5.6 A NEC-2 file for the six-element Yagi array. This file uses the comma-delimited
format.
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Figure 5.7 Reflection coefficient of the six-element Yagi array.

used, this is probably a real effect, and were one to build this antenna, all the
dimensions should be scaled by a factor of 0.97 to obtain a resonant frequency
of 300 MHz. The peak directivity is just over 11 dBi (i.e. referred to an isotropic
radiator). Viezbicke’s tables indicated a gain of 10.2 dBd (referred to a half-wave
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Figure 5.8 H -plane pattern of the six-element Yagi array at its resonant frequency.

dipole), which is equivalent to 12.35 dBi. The reason for the difference is that
the directivity quoted here has been computed at the resonant frequency, whereas
the peak gain is achieved at around 305 MHz, and is indeed about 12.3 dBi. From
Fig. 5.8, the front-to-back ratio (the difference between the radiation in the forward
and rear directions) is around 10 dB; Viezbicke’s tables indicated around 19 dB,
but again, the comparison is at a different frequency. Note that gain and directivity
are not synonymous in antenna engineering, but since our antenna is lossless, we
can use the terms interchangably here.

Also shown on Fig. 5.7 are the results of a NEC-2 simulation, run with a similar
segmentation. The NEC-2 data file is shown in Fig. 5.6. The NEC-2 results show a
yet lower resonant frequency of about 287 MHz, some 1.4% lower than the FEKO
results. As we commented in the previous example, this is about as accurate a
result as one can expect with two different MoM codes using relatively basic feed
models. Interestingly, both simulations show another very narrow quasi-resonance
just above the design frequency.

Code tip – using Wiregrid for Windows

This very useful NEC-2 preprocessor and postprocessor is available free, and
is very largely self-explanatory, with on-line documentation, but here are a few
useful tips which can otherwise cause frustration.
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• The program has a function which permits one to see the actual wire radius visually.
However, this deactivates most of the editing functions and needs to be switched off
before proceeding further.

• There is an extremely useful function which forces an odd number of segments on all
wires.

• Finally, after graphing etc., the NEC output file must be Released before one can
edit the model again.

Figure 5.8 also shows the NEC radiation pattern predictions (the NEC results
are computed at 287 MHz, the resonant frequency computed by NEC); we use
these to illustrate an important point, namely the far-field radiation patterns are not
as sensitive a parameter as the input impedance, and hence excellent agreement
with other codes can usually be expected. (Agreement with measurements tends to
be less satisfactory; frequently, the problem lies with the experimental setup, for
instance problems with the feed cables interfering with the patterns.)

We did not explicitly perform a convergence check, since we are using a fine
discretization with around 40 segments per wavelength, but of course the com-
ments in our introductory dipole section apply. Due to the relatively thick dipoles
in use, one cannot refine the mesh further without starting to violate the thin-wire
assumptions.

Aside from the lower center frequency – which as we commented above, is
easily fixed in practice (or indeed in simulation) by scaling – our six-element Yagi
array works moderately satisfactorily. Now, we are in a position to evaluate quickly
the effect of having to use a different wire radius etc., as is quite probable in an ac-
tual design. This however might degrade the performance of the antenna. We might
also not be satisfied with the front-to-back ratio, for instance, and wish to improve
this. This leads into the field of optimization, which FEKO supports, although we
will not pursue this further here.

Modelling hints – using user-defined variables and scaling

When developing a general-purpose model, it is often useful to specify dimen-
sions in terms of λ0, which makes it very easy to change the operating frequency.
Also, all the dimensions are given in terms of user-defined variables, so that if
we want to change the design of the antenna (perhaps by optimization), we have
already done a lot of the work. An example of this is shown in Fig. 5.5, which
shows part of the PREFEKO file exploiting user-defined variables. Some other
commercial codes, such as MWS, have similar abilities. Connected to this is
scaling: a popular use of this is to permit microwave structures to be entered in
millimeters. Whilst NEC-2 does support scaling, it does not support user-defined
variables.
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Modelling hints – wire radius versus diameter

Here is an important point to note, which even experienced users forget from
time to time: wire thicknesses in FEKO and NEC-2 are specified in terms of
radius, whereas especially older texts in antenna design often use diameter. Ac-
cidentally confusing these is a common source of error; to make things worse,
the simulation will often still appear to work, but the results produced are usually
subtly incorrect.

5.4 A log-periodic antenna

The Yagi–Uda example highlighted a number of points, but in a sense was simply
an extension of the dipole problem, since the additional wires – the reflector and
the directors – were passive, and it was just a case of adding these into the .pre
file. The problem we will now investigate, however, brings some new points, with
regard to both FEKO modelling and antenna engineering. It also serves as an in-
troduction to some ideas in wideband antennas.

The log-periodic (log-p) antenna consists of a number of wire dipoles, but unlike
the Yagi–Uda antenna, they are all fed (by means of a transmission line, which
provides a parallel feed). Also, each element is smaller than and more closely
spaced to its predecessor; the ratio is constant, and τ is the design parameter which
specifies this. With dipole lengths Ln and spacing dn , this is defined as:

τ = Ln+1

Ln
= dn+1

dn
(5.1)

The other parameter which defines a log-periodic array is the spacing factor σ ,
defined as

σ = dn

2Ln
(5.2)

One can also compute α, the angle of the wedge bounding the dipole arms of the
log-p, from these parameters:

α = 2 arctan

(
1 − τ

4σ

)
(5.3)

A value of τ close to 1 indicates a log-p with a very slow expansion, i.e. long
overall length, but also higher gain. The design of a log-p is typically a trade-off
between length, gain and impedance match. Most design data are based on tables
originally published by Carrel in 1961; subsequent research has improved these
tables and a typical set are presented in [6, Section 6.7]. We will base our FEKO
simulation on [6, Example 6.2].
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Table 5.2 Design data for a nine-element log-periodic array

Element Length (in meters) Spacing to next element (in meters)

1 2.78 0.828
2 2.29 0.682
3 1.88 0.560
4 1.54 0.459
5 1.27 0.378
6 1.04 0.310
7 0.858 0.256
8 0.705 0.210
9 0.579 —

Zload

1
2

3
4

5
6 7 8 9

Feeding end

Figure 5.9 The nine-element log-periodic array described in the text. The details of the
crossed feed are only shown for the largest three elements, but repeat to the end of the
array. Also shown is the feeding end, as well as the position for a possible terminating
load, as discussed in the text.

To summarize this briefly for readers without ready access to this reference,
the design specification is for a 6.5 dB gain antenna over the VHF-TV and FM
broadcast bands, which span the frequency range 54–216 MHz (a 4:1 bandwidth).
From the design tables, τ = 0.822 and σ = 0.149 are selected to satisfy the gain
requirement. The lowest frequency determines the length of the longest element,
usually chosen as λmax/2, or 2.78 m in this case. Elements are then placed until an
element shorter than λmin/2 is produced. In this case, nine elements are required.
The tabulated data are for a dipole radius 1/250 of the dipole length, clearly varying
from element to element. The characteristic impedance of the transmission line is
100 �. The design is summarized in Table 5.2 and illustrated in Fig. 5.9.
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To implement this in FEKO, there are several approaches that can be taken. The
first is simply to create nine wires. A better approach is to use the !!FOR ...
!!NEXT loop structure, as illustrated in Fig. 5.10. It will also be noted that we
construct the elements from four points: two at each end, but also two very close to
the center. We do the latter for two reasons. Firstly, there is then always a segment
at the center of the element to feed, no matter what the segment length. Secondly,
we use the label (LA) card (the equivalent of a tag in NEC) to attach a unique
label to these central segments; this makes connecting these fed segments (which
represent the terminals of the elements) via a transmission line much easier. This
is the next step to consider.

Modelling hints – using iteration loops and conditional execution structures
in PREFEKO

Many antennas consist of repeated components, and PREFEKO has a very useful
feature to implement this, namely the !!FOR ... !!NEXT loop (iteration)
structure. This is illustrated in Fig. 5.10. We have used another useful feature
as well, namely the !!IF ... !!THEN ... !!ELSE conditional. Note
that dn is computed from the current length, and is computed before we update
(reduce) the length for the next execution of the loop.

NEC-2 has no such functionality – the closest NEC-2 gets is the coordinate
transformation GM card, which allows one to copy, translate or rotate parts of the
geometry.

We also have to consider how to interconnect the radiating elements. The obvi-
ous way is to connect wires to the elements to form a transmission line explicitly.
However, this is not a very efficient way of handling the problem. Transmission
lines are non-radiating structures, and can be succinctly described using two-port
circuit theory. FEKO incorporates this feature, implemented using the TL card.
(This functionality is also available within NEC-2, with the same name.) We need
eight of these transmission lines; a subtle design point is that the transmission lines
are crossed, i.e. reverse phase, from element to element; this is done to compress
the overall length of the antenna. (In NEC, such crossed lines are specified by us-
ing a negative characteristic impedance.) These are also implemented using a loop.
Finally, the transmission lines of log-periodic antennas are often terminated with
a resistive load (usually equal to the transmission line characteristic impedance,
100 � in this case) to improve the impedance match. This is done here via the spe-
cial handling of the last transmission line, which adds a shunt (parallel) admittance
of 1/100 S to the feed segment of the last antenna.
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** Analysis of a 9-element logarithmic periodic antenna.

** Some definitions for the geometry

#sigma = 0.149 ** scaling factor for spacing [eqn.6.83,S&T]

#tau = 0.822 ** scaling factor for elements [eqn.6.85,S&T]

#len = 2.78 ** length of element (initially L_1)

#rad = #len/250.0 ** radius of first element: L/2a = 125

#Zline = 100 ** transmission line impedance

#Zload = 100 ** load impedance at the last element (set to very large value
if not present)

#num =9 ** number of elements

** Frequency specification and segmentation

#freq_min = 50.0e6 ** start frequency

#freq_max = 250.0e6 ** stop frequency

#lambda_min = #c0/#freq_max ** minimum

#seglen = #lambda_min / 20

IP #seglen

** Initial values for the loop

!!FOR #i = 1 to #num

!!IF (#i = 1) THEN

** This is the first element to be created, at origin

#x = 0

!!ELSE

** Other elements spaced logarithmically

#x = #x+#d

!!ENDIF

** Create the wire with the correct radius, use a unique

** label #i for the centre segment

#z = #seglen ** ensure that just one segment at the centre

DP P1 #x 0 -#len/2.0

DP P2 #x 0 -#z/2.0

DP P3 #x 0 #z/2.0

DP P4 #x 0 #len/2.0

LA 0

Figure 5.10 PREFEKO file for the nine-element log-periodic array.
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BL P1 P2 #rad

LA #i

BL P2 P3 #rad

LA 0

BL P3 P4 #rad

** Compute inter-element spacing to next element. Note that d_n is the spacing
between elements

** L_n and L_n+1 and must be computed using current length.

#d = 2.0*#sigma*#len

** Now apply scaling for next element (shorter)

#len = #len*#tau

#rad = #rad*#tau

!!NEXT

** End of the geometry

EG 1 0 0 0 0

** Create all the transmission lines (again a loop is very useful)

!!FOR #i = 1 to #num-1

** Extra shunt admittance at the first element

!!IF #i=1 THEN

#YS = 1 / #Zload

!!ELSE

#YS = 0

!!ENDIF

** Define the transmission line from label #i to label #i+1 (crossed)

TL 1 #i #i+1 1 -1 #Zline #YS

!!NEXT

** Excitation by a voltage source at the last (shortest) element

FR 2 #freq_min #freq_max

A1 0 #num 1 0

** Vertical radiation pattern - gain

FF 1 1 1 1 90 0

** Vertical radiation pattern - directivity

FF 1 1 1 0 90 0

EN

Figure 5.10 (Continued)
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CM 9 element log-p

CE Start of geometry

GW1,47,0.000000,0.000000,-1.390000,0.000000,0.000000,1.390000,0.01110

GW2,39,0.828400,0.000000,-1.142600,0.828400,0.000000,1.142600,0.00910

GW3,33,1.509400,0.000000,-0.939200,1.509400,0.000000,0.939200,0.00750

GW4,27,2.069200,0.000000,-0.772000,2.069200,0.000000,0.772000,0.00620

GW5,23,2.529300,0.000000,-0.634600,2.529300,0.000000,0.634600,0.00510

GW6,19,2.907500,0.000000,-0.521600,2.907500,0.000000,0.521600,0.00420

GW7,15,3.218400,0.000000,-0.428800,3.218400,0.000000,0.428800,0.00340

GW8,13,3.474000,0.000000,-0.352500,3.474000,0.000000,0.352500,0.00280

GW9,11,3.684100,0.000000,-0.289700,3.684100,0.000000,0.289700,0.00230

GE 0 0

PT -1

PL 3 1 0 1

TL 1 24 2 20 -100.0000 0.00000 0.01000 0.00000 0.00000 0.00000

TL 2 20 3 17 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

TL 3 17 4 14 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

TL 4 14 5 12 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

TL 5 12 6 10 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

TL 6 10 7 8 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

TL 7 8 8 7 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

TL 8 7 9 6 -100.0000 0.00000 0.00000 0.00000 0.00000 0.00000

EX 0 9 6 00 1.00000 0.00000

FR 0 101 0 0 50.00000 2.0000000

RP 0 1 1 1000 90.00000 0.00000 0.00000 0.00000 0.00000 0

EN

Figure 5.11 NEC file for the nine-element log-periodic array.

In NEC, the absence of user-defined variables, loops etc. means that we have no
option other than to compute the values explicitly and enter them by hand, either
into a NEC file directly, or using a preprocessor. An example of a NEC file for this
log-periodic array is given in Fig. 5.11.

Code tip – some useful NEC functions

In Fig. 5.11, two cards PT and PL are used which offer useful functionality. The
former is used for selectively or entirely suppressing outputting of the currents,
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which is, perhaps unfortunately, the NEC default, since this otherwise inflates
output files with data which are rarely used. The latter produces an extra data file
(the specific name varies from implementation to implementation) with radiation
patterns or currents suitable for later plotting.

Results for the reflection coefficient and the gain of the log-periodic array
are given in Figs. 5.12 and 5.13 respectively. Results computed with NEC-2 us-
ing a similar segment length are given for some of the parameters, and excel-
lent agreement is noted. Also indicated on Fig. 5.12 is the reflection coefficient
level corresponding to a VSWR of 2, widely used as a specification for antenna
impedance. (A VSWR ≤ 2 actually corresponds to |S11 ≤ −9.54| dB, as indi-
cated, but |S11 ≤ −10| dB is often used instead for convenience.) It will be noted
how the use of the terminating resistance improves the impedance match; the an-
tenna has |S11| < −10 dB over almost the entire band in this case. Without the
terminating resistance, the reflection coefficient varies far more over the frequency
band, sometimes lower, but also sometimes unacceptably high. Another point to
note is that the log-p array must be fed from the shorter end; if fed from the
longer end, the long dipoles are excited (but not very effectively) so that there
is too little power at the higher frequencies to radiate properly from the shorter
dipoles.
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Figure 5.12 Reflection coefficient of the nine-element log-periodic antenna in the text, for
both resistively terminated and unterminated cases.
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Figure 5.13 A comparison of gain and directivity for the nine-element resistively termi-
nated log-periodic antenna. The gains computed by FEKO and NEC lie essentially on top
of one another.

On Fig. 5.13, both gain and directivity (also sometimes known as directive gain)
are given. To revise these terms briefly, the former indicates how well the antenna
focusses power spatially, relative to the power delivered to it; the latter indicates
how well the antenna focusses power spatially, relative to the power radiated by it.
Clearly, if the antenna has any loss, the two will not be identical, and the difference
on Fig. 5.13 is due to the losses in the termination. We have traded off a better
impedance match for a slightly poorer gain. (At the very top of the band, we are
slightly under the 6.5 dB gain design specification. To improve this, we would
have to repeat the design using a longer array, i.e. with more elements, but we
will leave this as an exercise.) A final point: because the transmission line has a
characteristic impedance of 100 �, it is tempting to use this as the impedance level
when computing S11 etc. However, one should recall that this line is in parallel with
the radiating dipole(s), with an impedance of typically 50 ∼ 70 �. The net result
is that this antenna is quite well matched to a 50 � system, which is the FEKO
default. Note also that we only compute the gain at one angle, in the direction
along the axis of the antenna. A log-p is an end-fire antenna, and radiates in the
direction from longest to shortest element.

This example also introduces another feature which FEKO supports, namely the
use of adaptive frequency sampling (this is not supported by NEC). This example
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is sufficiently complex (227 wire segments as discretized) that FEKO takes a no-
ticeable amount of time, typically a second or two, to compute each frequency
point. However, the data change rapidly over frequency, requiring a lot of points;
to obtain good results with uniformly spaced frequency points over the frequency
band of interest, one would need at least 100 points, preferably more. FEKO has
the ability to determine where to place frequency points in a non-uniform fash-
ion, as well as then intelligently interpolating the data by using what is termed a
model based parameter representation. We use the defaults for this option in the
frequency card in the PREFEKO file in Fig. 5.10.

Modelling hints – gains in dB or actual values

Be very careful when plotting gains for these relatively low-gain structures; the
gains in dB or in actual value are quite similar numerically, and it is easy to plot
the wrong dataset, especially when exporting data!

5.5 An axial mode helix antenna

Helical antennas are another interesting type of antenna. The axial mode helix was
invented by Kraus at Ohio State University in 1946, and his textbook on anten-
nas is a mine of information on the subject [8]. Their bandwidth ratio is given
theoretically as approximately 1.78 [6, Section 6.2.2]. (A wideband antenna is
conventionally defined as one where this ratio exceeds 2, so the helix is close to
being “wideband.”) Details are also available in [7, Section 10.3.1]. It is also a wire
structure, but unlike all the previous antennas we have analyzed, which all relied
on a standing wave on some part of the structure, this is a traveling wave antenna,
at least in its axial mode of operation, which is the most common mode of employ-
ment. The circumference of the antenna is chosen such that currents on opposite
sides of the antenna (which would radiate fields out of phase due to the winding
of the helix, if the currents were in phase) are delayed by a half-wavelength, so
that the resulting radiation is now in phase again along the axis of the helix (and
hence the name, axial mode). The radiation is circularly polarized, with the sense
of the winding, i.e. a right(left)-hand wound helix generates right(left)-hand po-
larization. Compared to other candidates, the axial mode helix is quite compact –
the helical structure permits a lot of wire to be contained in a moderately small
volume – and the design is very popular in the UHF band, especially for satel-
lite communication. (A closely related structure, namely the normal mode helix, is
very popular for mobile telephones. It radiates almost isotropically.)

FEKO provides the HE card, which greatly simplifies creation of a helix. Indeed,
all that is required other than this card is to add a short segment below the helix to
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feed it with, and to add a ground plane of some type underneath it. A ground plane
of around 0.75λ on each side is usually adequate [6, Section 6.2.2].

To create a ground plane, one can use a mesh of wires – and indeed this was a
very widely used method with NEC-2. However, FEKO supports the creation and
meshing of surfaces. A simple method of defining a surface is using the parallelo-
gram card (BP). This surface is then meshed using triangles.

Modelling hints – connecting wires and plates

Here is something to be careful of. The obvious approach when grounding the
helical wire is to generate one surface in the plane z = 0, where the feed seg-
ment terminates. However, this usually will not work properly! The reason is
that FEKO, and indeed any MoM code, needs the nodes defining the segments
on the wire and the triangular segments on the surface to coincide. Many new
users overlook this and it is a frequently encountered fault. In the PREFEKO file,
we have generated only a quarter of the ground; this of course includes a point at
the origin, where the feed segment connects. We then use geometrical symmetry
in two planes (x = 0 and y = 0) first to create half the ground plane, and then
to create the entire ground plane. (The PREFEKO file supplied does this in first
the x = 0 plane, then the y = 0 plane, but the order is actually irrelevant in this
example.) A recent addition to FEKO permits users to specify internal nodes
in polygonal plates, using the PM card, which makes it easier to make sure that
wires correctly connect to nodes on surfaces.

One final point regarding creating the geometry. FEKO also offers a ground
plane (BO) card, and this would appear to be very useful. However, one needs to
read the “fine print” in this case. This card uses a reflection coefficient approxi-
mation; i.e. the fields radiated by the structure are imaged in the ground plane, but
the ground plane is not taken into account when the currents are computed by the
MoM. As such, it is very useful for antennas some distance above a ground plane,
where the currents are indeed hardly changed by the presence of the ground, but
entirely inappropriate for an antenna fed right against a ground, as the helix is. A
careful reading of the user manual cautions that segments should not connect to the
ground, but does not describe in detail why this ground plane would be incorrect
in this application.

A detailed design example is given in [6, Example 6.2]. The antenna is to operate
in the microwave band, with center frequency 8 GHz. The circumference of the
antenna, C , is specified as 0.92λ = 34.5 mm. (It will be noted that the scaling
card is also used in the PreFEKO file to permit all dimensions to be entered in
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millimeters, which is far more convenient than meters in this frequency range.)
The pitch angle α is chosen as 13◦ (a value based on prior design experience).
The spacing between turns, S, works out at 7.96 mm, and the antenna has N = 10
turns. With the 1.78 bandwidth ratio and center frequency of 8 GHz, the lower and
upper frequencies are 5.75 GHz and 10.25 GHz respectively. The PREFEKO file
is given in Fig. 5.14, and Fig. 5.15 shows a FEKO model of the antenna.

Radiation patterns at the lower, center and upper frequencies are shown in
Fig 5.16 with a ground plane 1.5λ on a side, somewhat larger than the minimum
recommended. The gain at 8 GHz is exactly 13 dBi, somewhat higher than the
10.5 dBi gain predicted by the approximate formula [6, Eq. (6-34)]

G ≈ 6.2

(
C

λ

)2

N
S

λ
(5.4)

Commensurate with this increased gain, the half-power (HP) beamwidth of 40◦ is
somewhat smaller than that predicted by the approximate formula [6, Eq. (6–33)]

H P ≈ 65◦

C
λ

√
N S

λ

(5.5)

of 48◦. It must be emphasized that these are approximate empirical formulas, so
some differences are to be expected. Kraus provides another formula [8, Eq. (7),
p. 235] for directivity, which he describes as more realistic:

D ≈ 12

(
C

λ

)2

N
S

λ
(5.6)

Using this formula yields a gain of around 13.3 dBi, almost exactly as simulated.
(Since the antenna is essentially lossless, we are again using gain and directivity
interchangeably.)

From Fig. 5.16, the gain at the lower frequency is almost 3 dB less than at the
center frequency, and the pattern is starting to show some “squint”; the main beam
has moved slightly to the left. At the upper frequency band, the gain has increased
and the main beam has narrowed (which may or may not be acceptable, depending
on the design requirements).

Impedance results are shown in Fig. 5.17. (These data were generated using
adaptive frequency sampling.) It will be noted that the antenna is largely resistive
across most of the frequency band. However, towards the lower end of the band,
the otherwise smooth impedance curves break down. This type of behavior is not
predicted by the simple description of operation as a traveling wave antenna [6].
Measured data by Baker [8, Fig. 8–73], who worked on helix arrays with Kraus,
indicate almost exactly the same impedance behavior at around 0.7 of the center
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** A 10-turn helical antenna

**

** Variables

** Optional scaling factor (set to 0.001 for geometrical data

** coordinates etc. defined in cm instead of metres)

#scaling = 0.001

** Frequency and wavelength

#freq = 8e9 ** frequency in Hertz

#freq_min=5.75e9

#freq_max=10.25e9

#lam = #c0/#freq ** wavelength in metre, #c0 = speed of light in vacuum

#lam_mm = #lam/#scaling

#circum = 34.5 ** helix cicumference

#h_rad = #circum/(2*#pi)

#h_len = 79.6 ** helix length

#gnd = 1.5*#lam_mm

** Parameters for segmentation

#seg_rad = #lam_mm/100 ** radius of the wire segments

#seg_len = #lam_mm/20 ** maximum length of wire segments

#tri_len = #lam_mm/10 ** maximum size of triangles

IP #seg_rad #tri_len #seg_len

** Quarter of ground plane

DP G1 0.0 0.0 0.0

DP G2 #gnd/2 0.0 0.0

DP G3 #gnd/2 #gnd/2 0.0

DP G4 0.0 #gnd/2 0.0

BP G1 G2 G3 G4

** Generate rest of ground - imaged first in x=0, then y=0 planes.

SY 1 1 0 0

SY 1 0 1 0

** Helix

DP ZERO 0.0 0.0 0.0

DP A1 0.0 0.0 2*#seg_len

DP B1 0 0.0 #h_len

DP C1 #h_rad 0.0 2*#seg_len

HE A1 B1 C1 0 10

** Wire

LA 1

BL A1 ZERO

Figure 5.14 PREFEKO file for the 10 turn helix.
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** Apply the scaling factor

SF 1 #scaling

** End of geometric input

EG 1 0 0 0 0

** Voltage gap excitation at segment just above ground

A1 0 1 1.0

** Note: using adaptive frequency sampling permits only

** ONE of the following analysis options:

** ** Set the frequency card for adaptive frequency sampling.

** FR 2 #freq_min #freq_max

**

** ** Trigger execution, no patterns.

** FF 0

**

** Set discrete frequency for radiation patterns.

FR 3 0 #freq_min #freq_max

** Radiation pattern

FF 1 181 1 0 -90 0 1.0

FF 1 181 1 0 -90 90 1.0

** End

EN

Figure 5.14 (Continued)

frequency, with the reflection coefficient suddenly increasing dramatically from
less than −20 dB to −2 dB or worse over a very small frequency change. (Baker’s
helix was not precisely the same as the one simulated here, hence the frequency
at which this effect occurs is slightly different.) The reason is that the axial mode
ceases effective operation quite abruptly; [8, Fig. 8–34] provides more information
on this, in particular via the phase velocity.

In the region near the design frequency, the resistance and reactance values are
well behaved, as shown in Fig. 5.18. An approximate formula for the input resis-
tance of the axial mode helix is

R ≈ 140C/λ � (5.7)

At 8 GHz, this gives a value of ≈129 �, whereas FEKO indicates a value closer
to 170 �. It should be noted that the above formula is to be regarded only as
an approximation, so the FEKO result is very credible. Also giving confidence in
the FEKO results is the approximately linear increase in resistance, at least in the
central part of the frequency band. In practice, such an antenna would probably be
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Figure 5.15 The FEKO model of the axial mode helix antenna discussed in the text.

fed via an impedance matching transformer, probably with a 3:1 ratio. As such,
a reference impedance of Z0 = 150 � is appropriate when plotting the reflection
coefficient, which is shown in Fig. 5.19.

To evaluate this antenna fully for an actual design exercise, one should also
check the axial ratio of the polarization, since this is an important parameter when
designing circularly polarized antennas. This information is also available in the
.out file, but may require some manipulation to present graphically. More details
are available in [8].

In summary, the helix performs well from around 6.2 GHz to at least 10.75 GHz,
in terms of impedance match (S11 less than −10 dB, assuming a 3:1 impedance
transformer for a 50 � system, as above) and offering reasonable pattern behavior.
This is a bandwidth ratio of 1.73. The gain at the center frequency agrees very
well with Kraus’s improved formula, and at the lower end of operation, the re-
flection coefficient shows the same behavior as measured data for a similar (but
not identical) helix. The empirical design formulas give reasonable guidelines for
gain and half-power beamwidth, but the numerical simulation provides much more



5.5 An axial mode helix antenna 173

−80 −60 −40 −20 0 20 40 60 80
−15

−10

−5

0

5

10

15

Freq [GHz]

G
ai

n 
[d

B
i]

5.75 GHz
8 GHz
10.25 GHz

Figure 5.16 The gain of the axial mode helix antenna at the lower, center and upper ends
of its operating band.
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Figure 5.18 Resistance (R) and reactance (X) of the helix antenna near the design
frequency.
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Figure 5.19 Reflection coefficient of the helix.
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accurate data. In an actual design, the helix as simulated may be acceptable for the
application; if not, one at least is aware that a redesign is likely to be advisable,
without even the need first to build a prototype.

Code tips – modelling this structure in NEC

Later versions of NEC-2 included a GH card, which permits one to specify a
helix or spiral with the same ease as the FEKO model discussed in this section.
However, modelling grounds in NEC is more problematic. One is tempted to use
the SP card, which generates a surface patch model. However, this uses the mag-
netic field integral equation, which as we will see in Chapter 6 is not suitable for
modelling an open structure. Instead, a ground plane will have to be built from
a wire mesh, either by hand (there is no automatic means to do this in NEC)
or using the Wiregrid for Windows package, which supports this functionality.a

Wiregrid approximations of surfaces were studied in detail by Ludwig [9], who
confirmed using a careful analysis that the long-used “equal area rule” produced
a good approximation. This rule requires that the surface area of the wires paral-
lel to one linear polarization when “rolled flat” should equal the surface area of
the solid surface. (For an arbitrary polarization, the wire surface area should be
doubled.) One quickly see that this implies that segment length � ≈ 2πa, with
a the wire radius, which is pushing the limits of the thin-wire approximation.
Also, we repeat our earlier warning: one must be very careful to ensure that the
helix wire and wires representing the ground plane actually connect.

aFEKO includes a WG card to do this, although due to its surface meshing capabilities, one will probably not
use this too often.

5.6 A Wu–King loaded dipole

Thus far, all the antennas discussed in this chapter were assumed to consist of
perfectly conducting wires. (The log-periodic antenna included a terminating re-
sistance, which was introduced to improve the impedance match, although the ele-
ments were still assumed to be perfectly conducting.) In practice, the conductance
of the metals traditionally used for constructing wire antennas (aluminum, steel
etc.) is sufficiently high that this is an excellent assumption. In this example, how-
ever, we are going to study an antenna deliberately loaded with resistance – the
Wu–King resistively loaded dipole. This antenna, first described in [10, 11], has a
continuous resistive loading. In practice, this can be made either using thin tubular
sections of varying radius and material [10], or by approximating the continuous
loading by discrete resistors [12].
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Wu and King showed that if the loading on a dipole, half-length h, had the
following form:8

Z(z) = η0	

2πh(1 − |z|/h)
[�/m] (5.8)

then the current had the following approximate form:

I (z) ∼ h(1 − |z|/h) e− jk0|z| (5.9)

This is clearly a traveling wave. By comparison, on the usual half-wave resonant
PEC dipole, the current has the standing wave form sin[k(h − |z|)].

The dimensionless parameter 	 is complex valued, and a function of the elec-
trical dimensions of the antenna. It is usually approximated by its DC value, 	0.
It must be computed numerically; typical values are from just under 10 for moder-
ately thick dipoles to around 20 for very thin ones.

We will study the loaded dipole described by Maloney and Smith [12]; for their
antenna, the ratio of half-height to radius h/a was 65.8, and 	0 = 7.79. For conve-
nience, we will work with h = 0.25 m, so that the unloaded PEC dipole resonates
close to 300 MHz.

In FEKO, loading can be accomplished using several different cards: LD, LS
and LP. The first implements distributed loading, in �/m, which is what we need
here. (The other two cards implement lumped loads in series and parallel respec-
tively.) FEKO loads segments via their label number, and hence one needs to la-
bel each segment on the dipole separately. (A FEKO label is the equivalent of
a NEC tag.) One way of doing this is shown in Figs. 5.20 and 5.21, where the
dipole is first built from individual segments, and then loading is applied to each of
these.

The reflection coefficient of the Wu–King dipole is compared to a PEC (un-
loaded) one of the same dimensions in Fig. 5.22. In these results, two values
of loading are shown: the “high” value is as in Eq. (5.8), the “low” value is
as given in their original paper, with an 8 instead of 2 in the denominator. The
Wu–King dipole has a rather high input impedance (given approximately by
60	0), so Z0 = 300 � was used when computing the reflection coefficient (for
the PEC dipole, Z0 = 75 � was used). The loaded dipole clearly has a much larger
impedance bandwidth, and is indeed a wideband antenna. The rather poor result
for the higher loading is due to a large, but slowly varying, reactive component,
as shown in Fig. 5.23; this could be removed by adding a tuning component in an
actual application, but this has not been done here. Figure 5.24 shows the current
distributions along both loaded and unloaded dipoles at 280 MHz, the resonant

8 Note the major corrections in [11]; the corresponding expression [12, Eq. (1)] is correct.
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** A resistively loaded (Wu-King profile) dipole.

** As in Maloney and Smith, IEEE T-AP, May 1993 p.668-676.

** Variables

** Frequency and wavelength

#lam = 1.00 ** wavelength in metre

#freq = #c0/#lam ** frequency in Hertz

#h = #lam/4 ** half-height of antenna [m]

#seg_rad = #h/65.8 ** radius of wire

#f_l = 200e6

#f_u = 600e6

#psi_0 = 7.79 ** Wu-King parameter

#eta_0 = sqrt(#mu0/#eps0)

** Parameters for segmentation

#seg_ln = #lam/40 ** nominal length of wire segments

IP #seg_rad #seg_ln

#num_sg2 = ceil(#h/#seg_ln) ** segments on each dipole half (excl. source)

#num_sg = 2*#num_sg2+1 ** to ensure odd number of overall segments

#delta = 2*#h/#num_sg ** actual length of wire segments

** Geometry of radiating structure

** Has to be constructed with two loops and a special source segment, since a
separate label

** is required for each segment

** Construct centre (source) segment

#lab = #num_sg

LA #lab

DP A 0.0 0.0 -#delta/2

DP B 0.0 0.0 #delta/2

BL A B

** Construct upper half

#ell1 = #delta/2

#ell2 = #delta/2+#delta

!!for #ii = 1 to #num_sg2

#lab = #ii

LA #lab

DP A 0.0 0.0 #ell1

DP B 0.0 0.0 #ell2

BL A B

#ell1 = #ell1+#delta

#ell2 = #ell2+#delta

!!next

.

.

.

Figure 5.20 PREFEKO file for the Wu–King loaded dipole, geometry.
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** Construct lower half

#ell1 = -#delta/2

#ell2 = -#delta/2-#delta

!!for #ii = 1 to #num_sg2

#lab = #ii+#num_sg2

LA #lab

DP A 0.0 0.0 #ell1

DP B 0.0 0.0 #ell2

BL A B

#ell1 = #ell1-#delta

#ell2 = #ell2-#delta

!!next

** End of geometric input

EG 1 0 0 0 0

Figure 5.20 (Continued)

.

.

.

** Load the structure - again, a loop structure is used.

** Load source segment

#load = #psi_0*#eta_0/(8*#pi*#h)

#lab = #num_sg

LD #lab #load ** Loss

** Upper half and lower half at same time now:

!!for #ii = 1 to #num_sg2

#z = #ii*#delta

#load = #psi_0*#eta_0/(8*#pi*#h*(1-#z/#h))

#lab = #ii

LD #lab #load ** Loss

#lab = #ii+#num_sg2

LD #lab #load ** Loss

!!next

** Set the frequency

FR 41 0 #f_l #f_u

** Voltage gap excitation at a segment

#lab = #num_sg

A1 0 #lab 1.0

** Calculate surface currents for current display

OS 1 1

EN

Figure 5.21 PREFEKO file for the Wu–King loaded dipole, loading.
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Figure 5.22 The reflection coefficient of the Wu–King dipole compared to a PEC dipole.
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Figure 5.23 The impedance of the Wu–King dipole, “high” loading.

frequency of the unloaded dipole. (The magnitudes have been normalized; the
higher impedance of the loaded dipole results of course in smaller values of cur-
rent.) The loaded dipole with the higher loading clearly supports a traveling wave,
with a phase difference along the dipole arm of a little more than the 90◦ predicted
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Figure 5.24 The current (normalized magnitude and phase) on the Wu–King and PEC
dipoles.

by Eq. (5.9) for h ≈ λ0/4, and with an almost linear current distribution, also as
predicted. The phase for the unloaded dipole is almost constant, as one would
expect from a standing wave distribution. The results for the lower loading are
somewhere in between the pure standing wave of the unloaded dipole and the pure
traveling wave of the dipole with higher loading.

The wide bandwidth is, however, bought at a price: efficiency. Wu and King
originally predicted a theoretical efficiency of 50% for h = λ0/4, but FEKO shows
a much lower efficiency of around 7% at 300 MHz (Fig. 5.25). In a subsequent
correction [11], Wu and King drastically revised their calculation, predicting a
very similar value to the FEKO computation. The result for the lower loading
case is around 23%, rather better. Interestingly and serendipitously, the original
(incorrect) result by Wu and King provides generally better antenna performance,
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Figure 5.25 The efficiency of the Wu–King dipole.

certainly in terms of reflection coefficient and efficiency, even though the current
is not a pure traveling wave.

Unfortunately, the Wu–King loaded dipole is one structure for which measured
data are very scarce, and hence we have had to evaluate this model in terms of
expected theoretical behavior. Useful measured data were published in [12], but in
the time domain. (Although FEKO has a time domain option, it is only available
for scattering problems.)

Before leaving this structure, a fundamental point should be noted about wide-
band antennas. The definition of this is inherently a frequency domain concept,
and one should be careful to differentiate between a wideband antenna on the one
hand, and a non-dispersive antenna on the other. The former type of antenna works
well over a wide range of operating frequencies; the latter can radiate actual time
domain pulses without distortion (obviously, it will also be wideband). A little
thought about this from the viewpoint of the Fourier transform shows that this
translates to requirements on not just constant magnitude response, but also phase
linearity. Many wideband antennas (such as spirals and log-periodics) are disper-
sive because different frequencies radiate from different parts of the structure. We
will not pursue this further, but will mention in closing that the loaded dipole ex-
hibits limited dispersion, and because of this is widely used in time domain antenna
systems despite its low efficiency.
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Code tips – modelling this structure in NEC

The LD card provides the same functionality as in FEKO, but the absence of
user-defined variables in NEC means that one will have to compute the load-
ing manually at each segment, so this will be a tedious structure to model in
NEC.

5.7 Conclusions

In this chapter, we have discussed modelling thin-wire antennas using FEKO
and NEC-2. Starting with a very simple dipole example, we progressed to more
complex antennas, including Yagi–Uda and log-periodic dipole antennas, an ax-
ial mode helix and a loaded dipole. The helix example also introduced the use of
surface modelling. We highlighted a number of points which one must be care-
ful with; perhaps the most crucial is to check that the solution is converged (but
also not over-converged, due to the limits of the thin-wire approximation). We
also emphasized the importance of validation, that is, checking computed results
in some way. Historically, comparison to measured data or an analytical solution
has been the most convincing method of validation. Nowadays, comparisons with
data computed using other codes and/or formulations are increasingly widely used
and accepted, and we have directly compared FEKO and NEC-2 results on sev-
eral occasions, noting that one cannot expect exact agreement. (It has also been
commented in this context that measured data must also be used with discretion.)
A number of features supported by FEKO (but not NEC-2) which simplify an-
tenna modelling were introduced, including iteration and conditional execution.
Several other FEKO and NEC-2 features were also discussed, including the use
of labels/tags, transmission lines, and various types of grounds. We also took the
opportunity afforded by numerical simulation to improve an antenna design, by
adding a terminating resistance to a log-periodic antenna and evaluating the change
in antenna performance.

Properly used, within its region of validity, we have seen that the thin-wire for-
mulation is both accurate and very efficient computationally. Having completed
this chapter, the reader should feel far more confident in modelling a wide range
of wire antennas using tools such as FEKO and NEC-2.

During this chapter, we very briefly touched on the modelling of surfaces in
Section 5.5. This is an important part of many antenna designs – and also for
scattering problems – and in the next chapter we will comprehensively discuss
the modelling of surfaces and volumes using the MoM, as well as the attendant
problems of high computational cost.
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6

The method of moments for surface modelling

The helix antenna discussed in the previous chapter used a new type of element to
model surfaces. The theory underlying this is described in this chapter. Not only is
the basic theory quite complex, but implementations are especially challenging, so
we focus largely on an introductory discussion, followed by some examples of us-
ing available codes, rather than going into the frequently lengthy details of full 3D
implementations. We will see that not only can perfectly (or highly) conducting
structures be efficiently modelled using surface currents, but also homogeneous
dielectric and/or magnetic regions, using fictitious equivalent currents. (We will
even briefly describe how inhomogeneous bodies can be modelled using volumet-
ric currents, but note at the outset that this is not one of the strong points of the
MoM.) Modelling surfaces is far more computationally expensive than modelling
wires, and some methods for reducing the computational cost will also be dis-
cussed. These include a hybrid of the MoM and physical optics, and the general
class of fast methods, including both those based on the FFT and the fast multipole
method. We will also briefly touch on the use of parallel processing.

6.1 Electric and magnetic field integral equations

Following the same lines as the Pocklington equation (Chapter 4), integral equa-
tions in either the magnetic or electric fields can be derived for problems with
currents flowing on surfaces. The derivation is quite complex, and only the results
will be presented here. One integral equation couples the incident electric field to
the induced surface current, and is known as the electric field integral equation
(EFIE):

n̂ × �E inc(�r) = n̂ ×
∫

S

[
jkη �JS(�r ′)G(�r , �r ′)

+ η

jk
{∇′

s · �JS(�r ′)}∇′G(�r , �r ′)
]

d S ′, ∀ �r , �r ′ ∈ S (6.1)
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The ∇′ operator implies differentiation in the source coordinates. n̂ is the unit
vector on the surface S. G(�r , �r ′) is the scalar free-space Green function given by

G(�r , �r ′) = e− jk R

4π R
(6.2)

R = |�r − �r ′| (6.3)

Equation (6.1) is valid for both closed and open surfaces. In the latter case, �JS is
the sum of surface currents on both sides of the sheet.

The other integral equation couples the incident magnetic field to the induced
surface current, and is known as the magnetic field integral equation (MFIE):

1

2
�JS(�r) = n̂ × �H inc(�r)

+ n̂ ×
∮

S

�JS(�r ′) × ∇′G(�r , �r ′)d S ′, ∀ �r , �r ′ ∈ S (6.4)

This is valid only for closed surfaces. (The reason is not by any means straight-
forward, and emerges during the derivation thereof.) It is interesting to note that if
we neglect the surface integral, what remains is the physical optics approximation,
�JS(�r) = 2n̂ × H inc(�r), of which more later.

The integrals in the above should be interpreted as the principal value of the
integral. (The principal value of an integral with a singularity at �r0 is essentially
the value of the integral with a δ neighborhood around �r0 removed; then the limit
as δ → 0 is found.) In both these equations, the presence of singularities raises
delicate issues and requires careful treatment. The simple expedient of slightly
offsetting field and source points as was done with the one-dimensional wire prob-
lem (in that case, by treating the source as a filament on the wire axis, but still
imposing the boundary condition on on the surface of the wire) can still be done,
although in this case one offsets the quadrature points corresponding to source and
field points rather than concentrating the source elsewhere.

Mathematically, the EFIE is a Fredholm integral equation of the first kind – the
unknown is present only in the kernel. The MFIE is a Fredholm integral equation of
the second kind – the unknown is present both inside and outside the kernel. The
reason for the difference is due to the boundary condition. The EFIE and MFIE
are both derived from the Statton–Chu formula, which states that for points on the
surface, the following relations hold [1, p. 172]:

�E inc(�r) + PV
∫

S

�Es d S′ = 1

2
�E(�r)

�H inc(�r) + PV
∫

S

�Hs d S′ = 1

2
�H(�r) (6.5)
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The PV here reminds us that these are the principal values of the relevant integrals.
In the equations above, Es and Hs are not directly the scattered fields, but rather
the kernels which are integrated to obtain these (the full expressions may be found
in [1, p. 173]). For a PEC, the boundary condition on n̂ × �E , i.e. tangential E , is
of course zero, whereas n̂ × �H is the surface current �Js ; hence the different nature
of the two integral equations. For more details, see [1, Section 12.3].

Mathematically, it is well known that Fredholm type two integral equations are
generally more well posed – this motivated much work using the MFIE. (Put sim-
ply, a well-posed problem is one whose solution is not strongly dependent on the
physics and geometry of the problem.) However, the requirement for a closed sur-
face S is frequently a problem in applied CEM work, with the result that the EFIE
is usually preferred in practical codes. Finally, linear combinations of the EFIE and
MFIE have also been used; not surprisingly, this method is known as the combined
field integral equation (CFIE). The CFIE will not be discussed here.

Because the EFIE and MFIE are both quite complex, it is convenient to intro-
duce a simplifying notation. As an example, for the EFIE, the right-hand side of
Eq. (6.1), which represents the scattered field, is often written in the following
shorthand:

Es = LE
J JM M

L, which represents all the mathematical operations to be performed on the current
�J , is known as an operator – it is an extension of the concept of a function.

A mathematical aside – functions, functionals and operators

A function, of course, maps a number (integer, real or complex) to another num-
ber; a functional maps a function to a number; and an operator maps a function
to another function. (We will encounter functionals in Chapter 9.) The Fourier
transform is a commonly encountered example of an operator: it maps a function
of time to a function of frequency (or more generally, from one domain to the
corresponding spectral domain). Operator notation will be used subsequently in
this chapter.

6.2 The Rao–Wilton–Glisson (RWG) element

When dealing with surfaces using the MoM, two matters need attention. The first
is that we need to split the geometry up into small elements. The simplest ap-
proach, and the first one explored historically in codes such as NEC-2, was to use
square (or rectangular) patches. However, for general two-dimensional geometries,
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triangular elements are better for approximating the geometry, and this is the ap-
proach which most modern codes (including FEKO) use. The second matter is that
the physical parameter being approximated, �JS , is now two dimensional. The basis
function must also incorporate this.

In this context, a very widely used basis function for the triangular patch was
introduced by Rao, Wilton and Glisson in 1982 [2]. The basis function is often
known simply as the RWG element. Subsequent work led to the realization that
this basis function is very closely related to the edge-based elements widely used
in contemporary finite element analysis. We will return to this later in this book
when we address finite elements.

The basis function includes some new features which have not yet been en-
countered in this book. Most importantly, the basis function is vector in nature,
which means that the individual scalar components (eg Jx , Jy , and Jz), can only
be recovered with some manipulation. The essential idea is to enforce current con-
tinuity over an edge of a patch. The interpolation function used to achieve this is
the following:

�fn(�r) =





ln
2A+

n
�ρ+

n ∀�r in T +
n

ln
2A−

n
�ρ−

n ∀�r in T −
n

0 otherwise (6.6)

Figure 6.1 defines the vectors �ρ+
n and �ρ−

n . Note that the basis function is defined
over two adjoining triangles T +

n and T −
n which share a common edge. A+

n is the
area of triangle T +

n (and similarly A−
n ). ln is the length of the shared edge. The

vector �ρ+
n is the vector position within triangle T +

n , with the left-hand node of T +
n

as origin; similarly, �ρ−
n is the (negative of the) vector position, with the right-hand

node of T −
n as origin. There exists a coordinate system known as simplex coordi-

nates which makes the study of interpolation functions on triangles much simpler,

����������

��������������������

����������

Edge 3

Edge 2

Edge 1

� �ρ+
n ��ρ−

n

T +
n T −

n

Figure 6.1 The two connected triangles T +
n and T −

n , sharing a common edge, which sup-
port a RWG basis function.
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Figure 6.2 A vector plot of the RWG basis functions.

and is widely used in finite element analysis; these vectors can be written rather
simply in that coordinate system. The terms ln/2A−

n and ln/2A+
n are normalizing

constants.
The resulting current interpolation is shown in Fig. 6.2. The following points

may not be immediately apparent. Firstly, it should be noted that this basis func-
tion has no component normal to the upper or lower sides of either of the triangles,
but only to the central (shared) edge. Without more detailed theoretical analysis,
the following is not obvious, and is stated without proof here:1 the current crossing
this shared edge is linearly interpolated in the tangential direction (i.e. along the
edge) and interpolated as a constant normal to (i.e. across) the edge. This latter
value is usually the “degree of freedom” (the unknown value of current) which is
associated with this basis function; the current associated with this edge is thus ap-
proximated as �Jn(�r) ≈ In �fn(�r). Note that all these terms are expressed in terms of
the local coordinates on the triangle; again, the conversion to Cartesian coordinates
is readily performed using simplex coordinates.

What of the current flowing across the two other edges? To approximate these,
one defines additional basis functions on each of the other two connected triangles;
thus on any one triangle, there are three such basis functions, with three associated
unknowns, which are the normal components of current on each edge. Within the
element, it should be appreciated that the total current is thus approximated by the
sum of these three basis functions. With the edges numbered as on Fig. 6.1, the
total current on triangle T +

n is given by:

�J (�r) ≈ I1 �f1(�r) + I2 �f2(�r) + I3 �f3(�r), ∀�r in T +
n (6.7)

At the risk of repetition, note that the basis functions carry the vector informa-
tion; the unknowns for which the code solves (I1, I2 etc.) are just scalars.

1 Again, because this RWG basis function is so intimately related to the edge-based Whitney function of finite
element analysis, we postpone detailed mathematical analysis of this class of element until Chapter 9.
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Some MoM formulations use what is called the “mixed potential integral equa-
tion” – MPIE. In this case, charge is also present as an unknown. From the conti-
nuity equation,2 this implies that charge will be thus be approximated as piecewise
constant. We will see an example of the MPIE in Chapter 7.

With the integral equations posed, and suitable basis functions defined, one is
now in a position to solve problems involving surfaces using the MoM. We will
not attempt to implement such a code, since this is a complex task, but rather
move directly to the study of a problem using a commercial package. The problem
we choose is one of the classic canonical problems of electromagnetic analysis,
namely scattering from a PEC sphere in the resonance regime.

6.3 Some examples of surface modelling

6.3.1 Scattering from a sphere

One of the classical problems of analytical electromagnetics was that of scatter-
ing from a sphere. Early work on this was done in the nineteenth century by
Lord Rayleigh (John William Strutt, 1842–1919), who has lent his name to the
general field of scattering from electrically small objects. For electrically small
spheres, Lord Rayleigh showed that scattering was proportional to the fourth power
of frequency; this permitted him to explain the color of the sky. For electrically
large spheres, the scattering cross-section is simply the cross-sectional area of the
sphere. In between these extremes, the resonant regime is encountered, where en-
ergy creeping around the surface of the sphere results in constructive and destruc-
tive interference. The process of electromagnetic scattering will be recalled from
Chapter 3.

A brief historical aside – why is the sky (usually) blue?

The color of the sky is due to the presence of the earth’s atmosphere. On the
moon or in space, the sky appears black. For our present purposes, we can view
the atmosphere as consisting of a large number of small particles and molecules
in suspension. These are considerably smaller than the wavelength of visible
light (approximately 400 to 700 nm), so that the scattering from each particle is
proportional to 1/λ4, as in the text. Hence, the scattering from the violet (short-
wavelength) end of the spectrum is almost an order of magnitude larger than
that from the red (long-wavelength) end. The spectral irradiance of sunlight –
see for example [3, Fig. 7.49] – which peaks near the wavelength of blue light,

2 The time rate of change of charge is the negative of the divergence of the current.
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470 nm, and varies by about 30% over the visible spectrum, makes the overall
calculation slightly more complex. It is this scattered radiation which colors the
sky blue. (It is worth noting in passing that the scattered light is also polarized,
although we will not pursue this here.) At sunset, however, the radiation has to
pass through much more of the atmosphere, and the blue scatters out completely,
leaving the red sunset. When there is dust in the air, this exacerbates the effect,
leading to spectacular sunsets. More details of this may be found in many texts,
such as [4, Chapter 12] and [3, Chapter 7]. The latter has a particularly insightful
discussion, and also provides extensive historical background on this topic.

The echo width of a three-dimensional target is also known as its radar cross-
section (RCS). It is usually abbreviated σ . The RCS is defined as follows:

σ(θ, φ, f ) = lim
R→∞ 4π R2 |E scat|2

|E inc|2 (6.8)

R is the distance to the target. The dimensions of the RCS are square meters, since
it is in essence an equivalent area. Frequently, results are given in dB form, and
quite often normalized to 1 m2, in which case the symbol dBsm is often used. The
RCS of a target is in general a function of orientation and frequency, and this has
been explicitly indicated above. Note that this definition is entirely equivalent to

σ(θ, φ, f ) = lim
R→∞ 4π R2 Pscat

P inc
(6.9)

The RCS is a far-field parameter; once the surface currents are have been found
using the MoM, the radiated fields may be computed in a straightforward fashion
using standard antenna theory.

As a simple example of a scattering problem, we will now study the RCS of
a sphere. A highly conducting sphere with a radius of 5 cm will be chosen; this
is the typical size of anti-personnel landmines (although of course these are gen-
erally buried, and also unfortunately usually made largely of non-metallic mate-
rials to make detection even more difficult). We expect the interesting resonance
interactions to occur when the circumference of the sphere is of the order of a
wavelength, hence λ ≈ 2πa. This corresponds to a frequency of around 1 GHz.
Running the simulation from 300 MHz to 6 GHz should produce some interesting
results.

Note that we are only going to investigate the back-scatter from the sphere;
hence, only one RCS angle is required (the same one the field is incident from).
The results of the analysis are shown in Fig. 6.3. The RCS has been normalized
by the high-frequency limit πa2 to illustrate more clearly the different scattering
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Figure 6.3 Normalized RCS of a PEC sphere plotted against circumference in wavelengths
ka.

regimes; note how the RCS initially climbs steeply (this is the Rayleigh scattering
regime), then oscillates sharply through the resonance regime, before finally con-
verging to the high-frequency limit. The horizontal axis has also been normalized,
by plotting ka = 2π

λ
a (the sphere circumference in wavelengths). Note the peak

as expected at ka = 1. Also shown on this plot is the exact analytical solution,
computed as a sum of spherical Hankel functions [5, Eq. (11–247), p. 657] – more
on this shortly. When compared with the exact solution, we note that the accuracy
with which the resonances are computed decreases as the frequency increases.

If we were to analyze this problem over a rather larger frequency band, we
would find that eventually, the result should converge to the high-frequency limit.
We cannot do this with the present file, because our discretization will not be suf-
ficiently fine for frequencies much beyond 6 GHz. Refining the discretization will
result in far longer execution times. However, some thought about the problem
shows that we can use symmetry to generate a more efficient solution. The inci-
dent electric field is x̂ polarized, traveling in the −ẑ direction. As such, there is
a plane of electric symmetry in the plane x = 0. Similarly, there is a a plane of
magnetic symmetry in the plane y = 0. Finally, there is a plane of geometrical
symmetry in the plane z = 0. (In this last plane, the geometry is symmetrical, but
not the excitation.) Results for a wider frequency range computed using symmetry
are shown in Fig. 6.4. Note the improvement in the resonances when compared to
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Figure 6.4 Normalized RCS of a PEC sphere plotted against circumference in wavelengths
ka. Results were computed exploiting symmetry.

Fig. 6.3. However, at the high-frequency end, the mesh is too coarse even with this
model, as is clear by comparison with the analytical solution.

Modelling hints – modelling spheres

All meshers generate some approximation of the actual spherical surface; in the
case of FEKO, the triangular mesh is inscribed within the sphere. (FEKO pro-
vides the KU card to generate a spherical section or a sphere, which makes mod-
elling the sphere very straightforward.) The model can be improved by using a
slightly larger radius, chosen to provide the same surface area as the sphere. Con-
veniently, FEKO computes the surface area of the triangles; for the first model,
the area was 0.03096 m2, whereas the surface of a 0.05 m radius sphere should be
0.03142 m2. Increasing the radius by 1.007, the square root of this ratio, should
provide a slightly better model.

A couple of closing comments on this study would be in order. Firstly, because
a sphere is rotationally symmetric, we could have used a field incident from any
angle. The choice of the x̂-polarized field, traveling in the −ẑ direction, was how-
ever convenient. Note that if a different incident field were used, results would
(or should) be very similar, but would not be identical, since the mesh is slightly
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“directional.” Similar comments apply if one compares results computed using a
sphere created using symmetry to results from a sphere created directly in its en-
tirety.

Finally, an important point about the physics and engineering of scattering
should be made. We computed the RCS in only one direction – straight back in
the direction of the incident field. In applied physics, this parameter is generally
known as the back-scatter cross-section; in radar engineering, this is called the
monostatic RCS, and is the parameter usually used in radar systems analysis. It
is (normally) the parameter appearing in the radar range equation. Most radars
are monostatic, which means that they use the same antenna for transmit and re-
ceive, or at least the transmitter and receiver are located very close to one another.
As already mentioned, the monostatic RCS of a sphere is not a function of an-
gle – note that this is the only structure of which this is true! However, there is
another type of RCS, bistatic RCS. In this case, the transmit and receive anten-
nas are not in the same location, and the angles of incidence and reflection are
no longer the same. (Very few bistatic radars have been built, even fewer – if
any – deployed operationally.) Although the monostatic RCS of a sphere is not
angle dependent, the bistatic RCS is. The bistatic RCS can also be computed effi-
ciently using MoM codes, since it requires only a different excitation vector to be
computed.

6.3.2 The analytical solution

The exact solution of scattering from a PEC sphere, plotted in Figs. 6.3 and 6.4, is
one of the classic analytical solutions in electromagnetics, dating back to the turn
of the previous century. Nonetheless, despite the venerable status of the solution,
there are some points which are worth making about it, and indeed about analytical
solutions in general.

A brief historical aside – Mie scattering

The analytical solution for scattering from a PEC sphere was originally derived
by Mie and published in 1908, and the solution bears his name to this day.
Debye undertook a very similar study, published in 1909. For details, see [6,
p. 415]; for elegant sketches of the fields for the first four modes, reproduced
from Mie’s paper, see [6, p. 567]. Stratton’s book is unfortunately difficult to
obtain nowadays; the derivation may also be found in somewhat more recent
texts, such as [7, Chapter 6], and a particularly detailed derivation is given in
[5, Section 11.8].
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The monostatic RCS is given by the following expression:

σ = λ2

4π

∣∣∣∣∣
∞∑

n=1

(−1)n(2n + 1)

Ĥ (2) ′
n (ka)Ĥ (2)

n (ka)

∣∣∣∣∣
2

(6.10)

with a the radius of the sphere and k the free-space wavenumber. The function
Ĥ (2)

n (ka) is the alternative spherical Hankel function. It is related to the regular
cylindrical Hankel function by [5, p. 938]

Ĥ (2)
n (x) =

√
πx

2
H (2)

n+1/2(x) (6.11)

The prime in Ĥ (2)′
n (ka) indicates differentiation with respect to the argument.

This would really appear to be a relatively straightforward formula to imple-
ment. MATLAB provides only the regular cylindrical Hankel function, but the scal-
ing required by Eq. (6.11) is very easy to implement. For FORTRAN implemen-
tations, routines are available in [8, Chapter 6], although one will need to build
the Hankel function from its constitutive Bessel functions of the first and second
kinds, viz. H (2)

p (x) = Jp(x) − jYp(x). The derivative requires some simple ma-
nipulation to evaluate, using the rule for the differentiation of products applied to
Eq. (6.11), and the standard identity [5, p. 936]

d

dx
[H (2)

p (αx)] = −αH (2)
p+1(αx) + p

x
H (2)

p (αx) (6.12)

to obtain:

Ĥ (2)′
n (x) = 1

2

√
π

2x
H (2)

n+1/2(x) +
√

πx

2

[
−H (2)

n+3/2(x) + n + 1
2

x
H (2)

n+1/2(x)

]

(6.13)

Hence, Eq. (6.10) can be implemented within a few lines of code. However, one
needs to be cautious! Routines to compute Bessel functions (by which we include
Hankel functions) are not bulletproof. In particular, when the argument (ka in this
case) or the order (n) becomes very large, the results lose accuracy. Good imple-
mentations should warn of such problems: MATLAB, for instance, provides five
different error flags, ranging from warnings of possible loss of precision to out-
right error messages and not returning a numeric value at all. One must check such
error flags! In the present case, exceeding some hundred terms or so is sufficient
to trigger error messages.

Needless to say, the infinite sum in Eq. (6.10) must also be truncated at some
point. In Fig. 6.5, results are shown for the RCS for the sphere as the maximum
number of terms is increased; this has been graphed on a semi-logarithmic scale,
so that the variation is more easily seen. Plotting against ka is especially insightful,
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Figure 6.5 Convergence of the analytical solution for the RCS of a PEC sphere, as a func-
tion of the number of terms used.

since it is clear that the number of terms required is approximately equal to this
product. (This is not coincidental: these terms correspond to circumferentially
varying modes, and modes with significantly more rapid variation than ka con-
tribute primarily to the reactive near-field only.)

For electrically large spheres, Eq. (6.10) is clearly going to be problematic to
evaluate directly, and one needs to use asymptotic forms to retain accuracy.

A philosophical aside – on “exact” analytical solutions

The above discussion raises a number of interesting points about the nature of
“exact” analytical solutions. Critics of our present-day reliance on numeric codes
sometimes forget that even pristine analytical solutions are usually approximate
in reality, when it comes to evaluating them; such solutions, derived from sep-
aration of variables and suitable special functions, usually involve infinite sum-
mations which must in practice be truncated. Furthermore, the evaluation of the
special functions is almost always done computationally nowadays, and as we
have commented, this process is by no means always reliable. (Even tables of
functions are not always error free.) It is perhaps the ultimate irony that the au-
thor verified his MATLAB implementation of Eq. (6.10) by comparing the results
to FEKO computations . . .
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Figure 6.6 Love’s form of the equivalence principle.

6.4 Modelling homogeneous material bodies using equivalent currents

In the preceding section, we discussed modelling structures consisting of PEC
(perfect electric conductor) material.3 The current which the MoM computes in
this case is the real, physical current, and is what would be measured were one to
probe the surface current using a loop, for instance. However, there is another in-
teresting application of surface currents: modelling homogeneous material bodies,
that is, dielectric (or magnetic) regions.

All of these rest on the application of the surface equivalence theorem, first
introduced in 1936 by Schelkunoff. It states that the fields outside an imaginary
closed surface can be obtained by placing, over the closed surface, suitable electric
and magnetic current densities that satisfy the boundary conditions. Furthermore,
the fields inside the surface can be chosen essentially arbitrarily, since the problem
is only “equivalent” in the exterior region. When this imaginary surface coincides
with a real surface, interesting physics emerges with specific choices of the internal
fields. For PEC modelling, the form of the equivalence principle which is generally
used is Love’s equivalence principle, illustrated in Fig. 6.6 for a general surface.
With this form, the fields inside the body are assumed zero; since the boundary
condition at a PEC surface requires that the tangential total electric field be zero
(and hence also the magnetic surface current), only the electric surface current is
non-zero and since it is equal to n̂ × ( �Htot − 0), where �Htot is the total magnetic
field just above the surface, and the 0 represents the internally zeroed fields, it is
also the actual current. It is also very convenient because since the field has been
chosen as zero in the internal region, the material in this region can be replaced
arbitrarily; usually, it is chosen to have the same value as the exterior region, which

3 The approach can be extended to work for highly conducting structures.
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is usually free space in antenna problems.4 This is very important, since it permits
the use of the free space Green function – we usually apply this without fully
discussing the underlying justification.

In passing, note that there is another variant of this principle which one quite of-
ten encounters in the theoretical analysis of aperture antennas. In this case, instead
of replacing the internal region with free space, one uses a PEC body. If this is a
half-space, one can then use image theory and hence the Green function for free
space (again) to solve the problem. There are yet other forms which are useful in
specific circumstances.

When the material body is an homogeneous dielectric or magnetic structure,
we can apply the same approach as with the PEC body; there are two differences,
however. Firstly, the currents are now fictitious (in other words, one would not be
able to measure them with some cleverly devised experiment), and secondly, both
electric and magnetic equivalent surface currents are required.

6.5 Scattering from a dielectric sphere

Having just discussed a PEC sphere, it is now an interesting exercise to repeat
the analysis for a dielectric sphere. The model is very similar to the PEC sphere.
Results are shown in Fig. 6.7. A moderate value, εr = 4, has been chosen for the
relative permittivity, otherwise the sphere has a very low signature. Results are
normalized to the asymptotic limit for the PEC sphere, πa2. It is interesting that
the RCS of the dielectric sphere exceeds that of the PEC sphere for ka > 1.5. Both
unfortunately and surprisingly, there do not appear to be computed data for this
particular problem of RCS versus ka widely available in the literature, although
the analytical solution has long been well known. In [9, Fig. 6a], results are given
for the bistatic scattering from a ka = 3 sphere, and the similarly normalized result
for θ = 0 is around 25; the FEKO result is a little smaller but in the same region at
ka ≈ 3.3.

To validate this computation, we can use another approach for modelling di-
electrics available within FEKO, namely equivalent volumetric currents. In this
case, the entire volume is meshed using cubical cells – this permits the material
properties to vary from cell to cell, but at much higher computational cost (we will
discuss this shortly). Results computed using the volumetric approach, as well as
a surface current model using a slightly finer mesh, are also shown on Fig. 6.7.
The agreement between the surface and volume formulations is very good up to
just above ka = 2, which is about the point at which the mesh density drops below

4 Note that the whole argument also works in reverse for the interior region: in this case, it is the fields in the
exterior region which are arbitrary. This is not very useful in antenna modelling, however.
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Figure 6.7 RCS of a dielectric sphere, radius a, εr = 4, compared to a PEC sphere. All
results are normalized by πa2. k is the free-space wavenumber.

λd/10, where λd is the wavelength in the dielectric . (Because we are effectively
modelling fields in an electrically denser medium, it is the wavelength in the di-
electric which concerns us.) Since the volume approach meshes the sphere with
small rectangular cubes, as opposed to a conforming triangular surface mesh, one
can expect the volume approach to be slightly less accurate geometrically, in par-
ticular at higher frequencies. This is confirmed by a calculation using a slightly
smaller edge length for the surface mesh; the agreement between the two surface
current meshes is good.

A note of caution here: such intracode validation is usually questionable, but in
this case, FEKO is using two quite different techniques to compute the RCS, so we
can place some faith in this result.

Although the equivalent surface current model is probably the most compu-
tationally efficient available for general problems,5 the requirement to treat both
the equivalent electric and magnetic surface currents doubles the number of un-
knowns, and hence quadruples the amount of memory, and increases the run-time
by between four and eight, depending on the problem size, when compared to a
PEC sphere. (Eight is the asymptotic limit, for problems with a very large num-
ber of unknowns where the matrix solution dominates the run-time – we discuss

5 For the dielectric sphere, the Green function is known analytically, so for this special case only, one could
develop a faster solver.
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Table 6.1 Comparison of computational requirements for the PEC versus
dielectric sphere

PEC Dielectric (surface) Dielectric (volume)

λd/8 λd/10 λd/8 λd/10

N 663 2 × 663 = 2 × 1008 = 3 × 772 = 3 × 1370 =
1326 2016 2316 4110

Memory (Mbyte) 27.6 108 249 329 1033
Relative 1 4.8 11.5 11.5 N/A
run-time

N is the number of unknowns. Run-time is per frequency point. The edge lengths are given
for ka = π .

this shortly.) A summary of the computational requirements is given in Table 6.1.
The run-times are given normalized to the PEC case. Note how execution time in-
creases by a factor of about five for the dielectric sphere using surface equivalence,
and more than ten when using the volumetric mesh. (The N/A indicates that the
problem was too large to run with the available resources.)

Also shown in this table is the effect of refining the discretization. Changing the
edge length from λd/8 to λd/10, with the corresponding frequency in this case
chosen as that corresponding to ka = π (towards the upper end of the frequency
band), results in an enormous change in computational requirements. Indeed, the
λd/10 volumetric discretization was too large for a typical laptop or desktop PC at
the time of writing, indicated by N/A in the table.

6.6 Computational implications of surface and volume modelling
with the MoM

As has just been seen with the analysis of the sphere, modelling surfaces is far
more computationally expensive than modelling wires. As already discussed in
Chapter 4, for a typical wire model the number of unknowns N is linearly related
to the length of the wire. We will use the product kd to characterize this, with k the
wavenumber and d the length of wire. There are two time-consuming operations
required by an MoM code with N unknowns, viz. matrix filling and factoring.
The former is of O(N 2), the latter O(N 3) when using direct solvers (iterative
solvers will be discussed later). However, the constants associated with matrix
filling can be quite large (that of the matrix solve is close to unity) and in practice
one often finds that MoM codes are in the pre-asymptotic region as far as timing
goes, spending more time filling than factoring the matrix. Since N is proportional
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to kd, we have an asymptotic cost of O([kd]3). To store the interaction matrix
[Z ], N 2 memory locations are required. Hence the amount of memory required
is O([kd]2) for wires. These properties are also known as the frequency scaling
behavior of the algorithm.

For a surface, although triangles using the vector RWG basis functions are the
approach generally used in practice, when doing a frequency scaling analysis it
is easier to consider square patches. To model a surface of size kd × kd, it is
clear that the number of unknowns will now be M = N × N ; thus the asymptotic
computational cost is clearly O([kd]6). (The asymptotic analysis neglects the fact
that when modelling a surface, one needs to approximate the two components
of current on each patch – so in practice surface modelling is costly. As for the
one-dimensional case however, the matrix fill tends to dominate the run-time for
many problems, with a somewhat lower asymptotic behavior.) In terms of memory,
the requirements are O([kd]4) for surfaces.

To give a concrete example, consider doubling the size of ground plane in the
helix example discussed in Chapter 5; equivalently, double the frequency – the
product kd expresses this product of wavenumber and size succinctly. The run-
time will increase by between 24 = 16 and 26 = 64, and the amount of mem-
ory required will increase by a factor of 24 = 16. (This is approximate since the
helix must also be modelled more finely, but as a wire structure, the frequency
scaling is somewhat better; however, the requirements of the ground plane in-
creasingly dominate the considerations.) A factor of 64 is almost precisely the
difference between minutes and hours and one should appreciate that modelling
surfaces may require powerful computers and take considerable time. Fortunately,
there are some methods available to assist in this regard, which we will discuss
shortly.

Modelling volumes is even more costly. To model a volume of size kd × kd ×
kd, it is clear that the number of unknowns will now be M = N × N × N ; thus the
asymptotic computational cost is clearly O([kd]9). (Again, the asymptotic analysis
neglects the fact that when modelling a volume, one needs to approximate the
components of current on each cell – now three of them. On the other hand, once
again the matrix fill tends to dominate the run-time for many problems.) In terms of
memory, the requirements are O([kd]6) for volumes. We saw these effects clearly
at work in Table 6.1, where a slight change in edge length for the volumetric case
meant that we were unable to solve the problem in a reasonable time, or indeed
even run it all due to memory limitations.

6.7 Hybrid MoM/asymptotic techniques for large problems

This section is based on a review paper originally published as [10].
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Figure 6.8 Wire radiator together with an electromagnetically large scatterer, whose effect
is taken into account using a hybrid formulation. (After [10], c©1999 SAIEE.)

6.7.1 Introduction

Any combination of CEM techniques can be termed a hybrid. Here it is conve-
nient to distinguish between exact and approximate hybrid approaches. In the for-
mer, also known as MoM/Green’s function hybrids, special Green’s functions are
used to take the effect of the scatterer in Fig. 6.8 into account implicitly. Although
very powerful for appropriate problems, the restricted number of special Green’s
functions available limits the generality of this approach. In the latter case, high-
frequency methods such as physical optics are used to describe approximately the
interaction between parts of the structure far removed from one another.

Probably the best known of the exact hybrids is the Sommerfeld potential treat-
ment for radiators near, on or within stratified media. This will be discussed subse-
quently in this book. For slotted waveguide array analyses, the appropriate waveg-
uide Green function has been widely used in MoM formulations. Another special
Green function that has been used is that for layered spheres [11].

Deriving such Green functions is a formidable task: [5] gives a good introduc-
tion to the process of deriving a Green function, but for more advanced purposes a
detailed description of dyadic Green functions may be found in [12]. A review of
this type of hybrid method may be found in [13].

We use the term “exact” hybrid method for this approach since the only ap-
proximations made involve the conventional MoM discretization of the current on
the radiator/scatterer. There is some disagreement about the use of the term “hy-
brid” for the MoM/Green function method; we follow the nomenclature of [13]
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here. As regards the use of “exact”, we have already commented that many spe-
cial Green’s functions involve theoretically infinite series expansions or, as we will
see, pose challenging integration problems in the complex plane, as is the case with
Sommerfeld potentials.

6.7.2 Moment method/asymptotic hybrids

Hybridizations of the MoM with various asymptotic techniques are approximate
in the sense that in addition to the conventional MoM discretization, assumptions
are made that are only exact in the high-frequency limit. (The MoM is sometimes
described as a “numerically exact” formulation, in that the only approximations
are those required to produce a linear system. This type of hybrid is no longer
numerically exact – even if the equations could be solved exactly, without any er-
rors introduced by discretization or numerical evaluation of integrals, the method
is still approximate.) However, these methods are potentially more generally ap-
plicable than the MoM/Green function hybrids outlined above and we will now
review physical optics for this purpose.

6.7.3 Physical optics and MoM hybridization

Physical optics (PO) is a well established concept in electromagnetic theory [5,
Section 7.10]. The essence is that the equivalent surface current on a smooth con-
ducting surface is given by:

Js = 2n̂ × Hi (6.14)

We have already seen in Section 6.1 that this is an approximation of the MFIE. It
may also be seen as an application of the equivalence principle, with the follow-
ing approximations for a sufficiently large structure: firstly, H can be replaced by
2Hi (this essentially assumes no end effects); secondly, currents can be “locally”
imaged (hence the factor 2). Note that unlike a ray-based method, integration over
the surface current is still required – but the current in the integrand is now known,
as opposed to the MoM where the current is unknown .

In terms of hybridization with the MoM, PO has an enormous advantage in
being current based – most asymptotic methods (UTD etc.) are field based, and
this leads to a rather natural MoM/PO hybridization process. The essential idea is
to use the MoM on small, resonant structures, and in regions near edges, and to
use PO on large, smooth areas. If applied appropriately, smooth “blending” should
occur between these regions. The overview in this section closely follows the de-
velopment presented by Jakobus and Landstorfer [14] and retains their notation.
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The mechanics of hybridization require a brief review of basic MoM theory us-
ing linear operator notation. The scattered fields are set up by currents on surfaces
(JMM) and wires (IMM):

Es = LE
J JMM + LE

I IMM

Hs = LH
J JMM + LH

I IMM (6.15)

LE
J , LE

J etc. are linear operator short-hand for the actual integrodifferential opera-
tors (for example, the EFIE and the MFIE as in Section 6.1). Standard MoM basis
functions are used:

JMM =
N MM

J∑
n=1

αnfn

I MM =
N MM

I∑
n=1

βngn (6.16)

Jakobus and Landstorfer use piecewise linear basis functions for gn and fn; the
latter are the Rao–Wilton–Glisson triangular vector functions for surfaces as al-
ready discussed. For a PEC, the standard boundary condition Etan = 0 is applied,
resulting in:

−Ei
tan =

N MM
J∑

n=1

αn(LE
J fn)tan +

N MM
I∑

n=1

βn(LE
I gn)tan (6.17)

Either collocation or weighted residuals can be used to solve for the unknown
coefficients αn and βn (in total, N MM

J + N MM
I of them).

Now, in the region of the scatterer not treated by the MoM, the PO surface
current is approximated using the same surface patch treatment as in the MoM
region as

JPO =
N MM

J +N PO
J∑

n=N MM
J +1

γnfn (6.18)

with fn as before and γn coefficients of surface current in the PO region. It is very
important to note that γn are known (in terms of the αn and βn coefficients) from
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the PO approximation, as shown later. Hence they are not obtained by the solution
of a linear system – thus the matrix size remains N MM

J + N MM
I .

In the PO region, the PO current JPO is given by:

J(r)PO = 2δi · n̂ × Hi (r)

+
N MM

J∑
n=1

2αnδJ,n · n̂ × LH
J fn

+
N MM

I∑
n=1

2βnδI,n · n̂ × LH
I gn (6.19)

δJ,n and δI,n account for possible shadowing, with values of ±1 or 0; the optical
basis of the method will be recalled.

When currents in the PO region are included as well, the equation from the
boundary condition in the MoM region becomes:

LE
J JMM + LE

I IMM + LE
J JPO = −Ei,tan (6.20)

Note that there are two different PO/MoM coupling mechanisms.

1. The currents in the MoM region contribute to the PO currents via Eq. (6.19) (via the
summation terms).

2. The currents in the PO region in turn contribute to the fields in the MoM region and thus
impact on the boundary condition represented by Eq. (6.20).

It might appear that this would require some iterative process for self-
consistency, but the “feedback” effects can be taken into account in closed form.
The PO currents can be found in terms of the unknown MoM currents as

γk = τi,k +
N MM

J∑
n=1

αn · τJ,n,k +
N MM

I∑
n=1

βn · τI,n,k (6.21)

with

τi,k = (t̂+k + t̂−k ) · (δi n̂ × Hi )

τJ,n,k = (t̂+k + t̂−k ) · (δJ,nn̂ × LH
J fn)

τI,n,k = (t̂+k + t̂−k ) · (δI,nn̂ × LH
I gn) (6.22)

t̂+k and t̂−k are unit vectors associated with the kth triangle edge; see [14] for further
details. It is important to note that all the terms in the above equation are known,
being either derived from the geometry of the problem, the discretization or the
chosen basis function.
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The central idea here is that these PO currents in terms of the MoM unknowns
can now be substituted into Eq. (6.20). The final result is the following:

N MM
J∑

n=1

αn ·

(LE

J fn)tan +
N MM

J +N PO
J∑

k=N MM
J +1

τJ,n,k · (LE
J fk)tan


 +

N MM
I∑

n=1

βn ·

(LE

I gn)tan +
N MM

J +N PO
J∑

k=N MM
J +1

τI,n,k · (LE
J fk)tan




= −Ei,tan −
N MM

J +N PO
J∑

k=N MM
J +1

τi,k · (LE
J fk)tan (6.23)

The above equation summarizes the MoM/PO interaction: the effect of the PO
is to alter the MoM matrix entries. Note that each MoM entry is modified by
contributions from all the PO currents; this can become computationally expensive
and can be neglected under certain conditions, usually when the PO and MoM
regions are physically separated. (An example is a reflector antenna, where the
feed is treated with the MoM and the reflector with the PO.) Note further that the
boundary condition of zero tangential E is only rigorously enforced in the MoM
region.

In the basic MoM/PO hybridization outlined above, edge effects are not taken
into account by the PO. It is possible to use Fock theory to account for these effects;
see for example [14]. The approach used is related to Umfitsev’s physical theory
of diffraction.

For very large structures, the integration over the entire structure can still be-
come very time consuming – although the O( f 6) dependence of the MoM is re-
duced enormously, the PO asymptotic dependence is still O( f 2).

Hodges and Rahmat-Samii have shown recently that the MoM/PO hybrid can
be seen as a special case of a more general EFIE/MFIE hybridization, with the
MoM/PO as the first term in an iterative Neumann series technique [15]. They
show good results for two monopoles mounted on opposite sides of a cylinder,
and thus in each other’s shadow region. However, the use of the MFIE restricts the
method to smooth closed bodies.

6.7.4 A FEKO example using the MoM/PO hybrid

The above theory is available within FEKO, and we will now consider an example
of its applications. For this example, one of the simplest (and also most effective)
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applications of the MoM/PO hybrid will be chosen. We will mount a λ/2 dipole
antenna horizontally above a finite ground plane, of 1λ × 1λ in size. From basic
image theory, the “image” in the ground plane is out of phase, so the distance
above the ground plane should be an odd multiple of λ/4 above the ground plane
to produce constructive interference.

Modelling hints – symmetry

Once again, symmetry can be exploited to build the model and improve the com-
putational efficiency. By mounting and feeding the dipole symmetrically about
the y = 0 and z = 0 planes, magnetic and electric symmetry can be used. Note
that the quarter-ground plane is imaged first in the y = 0 plane before the half-
dipole is added; one does not want to image a wire on top of itself! Following
this, the half-ground plane and half-dipole are then imaged in the z = 0 plane to
create the whole model, and the feed segment is then added.

Two approaches have been used to solve this problem: firstly, the MoM has
been used for the entire problem; then, the MoM is applied to the dipole only, and
the effect of the reflector is approximated using the PO. The FEKO models for
both are shown in Fig. 6.9 – note that the models appear identical, since it is the
mathematical approach, rather than the geometrical model, which differs. Results
comparing the far-field H -plane (z = 0) radiation patterns computed using the two
approaches are shown in Fig. 6.10.

The results shown in Fig. 6.10 compare favorably. Using some advanced meth-
ods within FEKO which correct the PO currents at the edge of the reflector, it is
possible to do even better. However, a caution is in order. It must be appreciated
that the MoM/PO hybrid is approximate; how good the approximation is relies
quite heavily on the experience of the user. As such, it is useful to build confidence
by initially comparing results using MoM/PO hybrids with full MoM solutions
as far as possible. Efficient use of symmetry usually allows the solution of quite
electrically large MoM problems, although these may of course take some time to
compute. Once one is reasonably confident of the level of accuracy for a particular
class of applications, one may then do production runs investigating changes to
and optimization of the structure, etc. It would, however, be very unwise to base
major design decisions on an MoM/PO hybrid solution which one has not carefully
evaluated beforehand. (Of course, this is true in general of computed solutions, but
even more so in this case.) Problems which generally lend themselves very well
to the MoM/PO hybrid approach are reflector-type problems, since the radiating
feed element is largely decoupled from the reflector, and ray-tracing issues are not
problematic.
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Figure 6.9 FEKO model of a dipole in front of a reflector.

Modelling hints – using the MoM/PO hybrid within FEKO

FEKO is the only commercial code offering this functionality at the time of
writing, so the following discussion only applies to FEKO. Physical optics is
controlled using the PO card, which offers a number of parameters which require
some brief discussion. The first parameter, requiring a label, is obvious; the PO
is applied to the structures with this label. The second parameter controls ray
tracing. Because the PO is an optics-based method, in general one needs to ray
trace to determine whether a triangle is in the “lit” or “shadow” region relative
to the source. In this case, it is clear that all triangles are illuminated, and ray
tracing may be switched off to save time. The third parameter relates to the
use of symmetry in ray tracing and is irrelevant here since ray tracing has been
deactivated. The fourth parameter controls MoM–PO coupling, as described in
the previous theoretical section; here, the full treatment is applied and the regions
are fully coupled. The fifth parameter is another optics based one; it determines
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the number of multiple reflections to be taken into account. In this case, none
are required. The final parameter is for specialized use and the default should be
used here.

FEKO offers additional functionality to improve PO modelling. The KA card
permits one to define the boundary of the PO region, and “fringe wave” currents
are then used in this region to improve the approximation. The VS card allows
one to specify “visibility” information, to reduce the time required when multiple
reflections are present. The FO card uses Fock theory to improve the PO surface
current.

6.8 Other approaches for the solution of electromagnetically
large problems

6.8.1 Background

By the late 1980s, research on the MoM was confronted with the basic problem of
the high asymptotic cost of the method – O(N 3) in terms of number of unknowns,
or O([kd]6) for surfaces, as we have seen for direct solvers. Little can be done to
improve this further, apart from the application of high-performance computing (of
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Figure 6.10 A comparison of the H -plane far-field patterns computed using the MoM and
MoM/PO hybrid.
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which more anon). Iterative solvers started attracting much attention in CEM the
late 1980s – even though the basic algorithms, in particular the conjugate gradient
(CG) algorithm, have been known since the 1940s – since the computational cost
is O(N 2) per iteration, with overall cost O(Niter N 2) for Niter iterations. Clearly, if
Niter can be kept well below N , algorithms with better scaling properties are pos-
sible. It has to be said here that unfortunately, the considerable experience accu-
mulated by many researchers over the years has indicated that it is very difficult to
predict Niter for arbitrary problems; testing the algorithms on canonical problems,
such as spheres, has frequently resulted in highly over-optimistic predictions. (The
reason is the relatively simple eigenvalue structure of such problems; since the it-
erative methods usually used variants of the CG method, the rate of convergence
is heavily determined by the eigenvalue spectrum.) So, using iterative techniques
alone is not sufficient – and in any case, this does nothing to the O(N 2) memory
requirements of the method, which is frequently as serious a problem as computa-
tional cost.

From a slightly different perspective, the integral equation formulations which
we have worked with are essentially convolutions of the Green function with the
currents. Familiarity with signal processing methods immediately suggests that
convolution in one domain may be more easily implemented by multiplication in
the Fourier transform domain; we will exploit this idea in Chapter 7, although for
a slightly different purpose. But for now, the idea that one could use a Fourier
transform immediately suggests the use of the fast Fourier transform (FFT), and
indeed, this was one of the first successful “fast” methods in electromagnetics.
However, it was limited in terms of application to general structures with arbi-
trary meshes. An extension of this concept, the adaptive integral method, removes
this restriction. However, it is an alternative approach, the fast multipole method
(FMM), which provided the theoretical breakthrough in the early 1990s. In its
most powerful multi-level form it reduced the asymptotic cost from O(N 2) to
O(N log N ), and it is the most popular of the fast methods today. It was a break-
through as significant as Berenger’s PML absorber,6 although the theory is rather
more complex, and efficient implementation in particular is challenging. (By com-
parison, the PML is really quite straightforward to code.) Despite the complexity
of the theory underlying the FMM, since it is starting to be offered by commercial
codes at the time of writing,7 an elementary introduction is certainly appropriate
at this stage. Before looking at fast techniques, however, we will briefly discuss

6 Hopefully, this comparison will not cause confusion: the PML and FMM are entirely different methods, with
quite different aims.

7 FEKO appears to have been the first publicly available commercial code to incorporate the FMM; the frequently
referenced Fast Illinois Solver Code (FISC) has numerous restrictions on its distribution, especially outside the
USA, due to US military funding during its development.
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high-performance computing, which is also an important topic when the solution
of large electromagnetic problems is considered.

6.8.2 High-performance computing

All the methods and technologies described in this section had their genesis in
the late 1980s. One approach to the problem of high computational cost, and one
which is still bearing fruit today, was exploitation of the emerging technology of
parallel processing. Parallel processing – or indeed high-performance computing
(HPC) in general – simply provides more computational power, it does not address
the fundamental algorithmic issue of computational cost, but can significantly push
the envelope of any particular computational technique. At its heart, there are only
two ways of making a given computation faster: either increase the rate at which a
computer can process information, or do more operations at the same time. The for-
mer of course has been the dominant technological drive through several decades,
manifested by clock speeds which, for typical personal computers, have increased
from some tens of MHz at the start of the 1990s to some GHz by the millennium,
only a decade later. The latter has spawned a variety of methods; historically, par-
allel processing originally split into pipelining and replication.

Pipelining involves overlapping parts of operations in time and was the approach
taken by the vector supercomputers, such as the early CRAY machines (the first
of which was installed in 1976). Replication provides more than one functional
unit (e.g. CPU), permitting operations to be performed simultaneously, and was
the competing approach taken by large processing arrays. Another nomenclature
encountered in the earlier literature was single instruction multiple data (SIMD)
and multiple instruction multiple data (MIMD) machines. This taxonomy was was
introduced by in the early 1970s [16]; a MIMD system described a computer con-
sisting of a number of nodes, each with at least a processing element, operating
independently on its own local instruction stream and data, whereas a SIMD sys-
tem performed the same operation in lockstep to all data. Machines were also
characterized in terms of how data were exchanged; many of the early experi-
mental systems used were local memory, message passing systems. In these, all
memory was divided up locally amongst the available processors, and a processor
could only directly access its own memory. Access to the memory on other pro-
cessors was done by explicit message passing, which was much slower than direct
memory access. However, the problem of memory contention that complicated
the other main competing approach to memory allocation, namely global memory,
was removed with this approach. Technological advances have however blurred
many of the traditional distinctions. Even the ubiquitous CPUs encountered in
personal computers contain significant elements of pipelining and replication,
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and increasingly sophisticated architectures now blur the global/local memory
dichotomy.

The basic concept of parallel processing was, and still remains, to provide P
processors or processing elements, and by splitting the computational load, reduce
the overall run-time by a factor as close to P as possible. Several methods have
been proposed to characterize parallel computers, but the most widely used are
speed-up and efficiency. Speed-up, S, is the ratio of time taken by an equivalent
serial algorithm running on one processor, Ts , to the time taken by the parallel
algorithm using P processors, Tp. Efficiency, ε, is the speed-up normalized by the
number of processors. Formally,

S = Ts

Tp
(6.24)

ε = S

P
(6.25)

S is usually bounded from above 8 by P , and ε is hence usually bounded from
above by 1.

Some algorithms can be parallelized very easily and efficiently: examples are the
FDTD and iterative methods. Some, such as LU decomposition, are rather less ob-
vious, but can nonetheless be very efficiently parallelized with some clever data de-
composition techniques. All the major algorithms in CEM have been parallelized
with varying degrees of success over the last decade; perhaps the most problem-
atic one has been the FEM, due to the large, unstructured, but highly sparse matrix
characterizing the method. Examples of measured efficiencies on a transputer ar-
ray are shown in Fig. 6.11. (The results are shown for slightly different numbers
of processors; this was due to different interconnection topologies used for the al-
gorithms.) These data were measured in the early 1990s, hence the problem sizes
are small by contemporary standards, but nonetheless, establish the principle.

An historical aside – the transputer

In the late 1980s, PCs were limited by the 640 kB limitation on RAM im-
posed by the then dominant operating system, DOS, and clock speeds were
low. Supercomputers were (and for that matter still are) extremely expensive.
A British company, INMOS, introduced the transputer, one of the first “comput-
ers on a chip,” incorporating a CPU, floating point unit, memory and commu-
nication links. (This was to become quite standard later, but at the time was

8 Sometimes, architectural quirks resulted in “superlinear” improvement on specific problems, i.e. a speed-up in
excess of P; usually, this was a result of the cache design.
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revolutionary.) The transputer came in several different variants – the T800
model was the one widely used in parallel processing.

The transputer was a 32-bit RISC a design, capable of internal operation at up
to 30 MHz – again, this must be seen from the viewpoint of the technology of the
time! One T800 transputer was able to produce a peak floating point throughput
of 1.5 Mflop/s. A novel feature, still not widely seen on other systems to this day,
was the provision of four serial links providing comparatively high-speed com-
munication either with a host processor or with other transputers. Additionally,
all components could execute concurrently; each of the four links and the float-
ing point processor could perform useful work while the other elements were
executing other instructions.

The transputer was a very powerful processor in its own right when intro-
duced, out-performing the microVax, which was then the usual system of choice
for numeric computations in universities and most research laboratories (out-
side US government research laboratories). However, it was ideally suited for
application in parallel processing applications, in particular due to the on-chip
links, and a number of experimental prototypes and some commercial products
incorporating transputers were produced around the world.

The relentless advance of clock speeds in personal computer CPUs during
the 1990s, combined with an over-dependence on a novel but ultimately com-
mercially unsuccessful language-cum-operating system, Occam, eventually con-
signed the transputer to historical notes such as this. However, its role as an inno-
vative catalyst in affordable parallel processing should not be underestimated; its
do-it-yourself bargain-basement philosophy, if not technology, inspired a gen-
eration of computational scientists working at institutions unable to afford the
extremely expensive supercomputers of the time, and still resonates today in
current systems using Linux clusters.

aReduced instruction set computer.

In this context, it is necessary to mention Amdahl’s “law,”9 which states that
if an algorithm contains both a serial and a parallel part, the relative time taken
by the serial part increases as parallelization reduces that of the parallel part, and
a law of diminishing returns holds: further parallelization has increasingly little
influence on run-time. While this observation is perfectly true, for many prob-
lems the ultimate aim is to increase the problem size that can be handled. Thus as
more parallelization is made available, larger problems are tackled and the overall

9 As with Moore’s “law” – that the number of transistors in integrated circuits doubles approximately every
18 months – this is really an observation rather than a law in the sense as used in physics.
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Figure 6.11 Comparison of measured efficiencies of parallel CG and LU algorithms on a
transputer array, for an MoM problem with a total of N unknowns running on P processors.
(Adapted from [17, Fig. 18] and [18, Fig. 12]).

serial/parallel split remains fairly constant. In particular, the efficiency of many
parallel algorithms is a function of grain size – the number of unknowns per pro-
cessor, N/P . An example of this is shown in Fig. 6.12, which indicates that for a
particular grain size, the algorithm has approximately constant efficiency.

When HPC first came to the attention of the CEM community, it was often
accompanied by highly specialized hardware, frequently purpose built, such as
the transputer-based arrays mentioned here. However, relatively mainstream en-
vironments are now the norm, reflecting a degree of maturity in the field. It is
also notable that the old SIMD-MIMD classification has largely fallen away –
HPC environments now are generally classified either as SMP (symmetric multi-
processor), MPP (massively parallel processor) or distributed processing environ-
ments. The first is currently epitomized by systems such as the Silicon Graphics
Origin; the number of processors is typically fairly modest, but memory is essen-
tially shared. The second is epitomized by the Cray T3-E, with a large number of
processors accessing distributed memory, and the last by heterogeneous networks
of standard workstations, again with distributed memory but much slower com-
munication networks than the purpose-built ones incorporated into MPPs. (The
T3-E actually combines elements of both SMP and MPP paradigms, since it also
contains a globally addressable memory subsystem.) At the time of writing, yet
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Figure 6.12 Measured efficiency of a parallel CG algorithm on a transputer array, for an
MoM problem with a total of N unknowns running on P processors. (After [17, Fig. 7],
c©1993 ACES, reprinted with permission.)

another new paradigm, “grid computing,” is emerging, with the aim of using the
Internet as a global computer.

During the 1990s, there was also a major shake-out in the HPC sector; a number
of the machines (and manufacturers) referenced in papers at that time have long
ceased trading. Thinking Machines Corp. and their Connection Machines (CM-2
and CM-5), which were some of the few truly deserving the massively parallel tag,
with thousands of SIMD processors, are gone. Kendall Square Research, whose
machines had some innovative features, not least a physically distributed memory
which was accessed as shared memory by application programs, using a system of
multi-level caches, has also long ceased to function commercially. Cray Inc. and
Silicon Graphics remain arguably the most influential commercial vendors in this
field at the time of writing.

A noteworthy aspect of the work reported in the literature on parallel process-
ing is that no new specifically parallel algorithms have arisen in computational
electromagnetics. Well over a decade back, when parallel computing first attracted
serious interest, there was speculation in some quarters that the rise of massively
parallel computers would trigger entirely new algorithms that were only feasible
in massively parallel computing environments. With hindsight, such claims appear
as primarily marketing “hype.” Additionally, it has to be commented that at the
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Figure 6.13 Run-times for LU decomposition, compared for systems capable of sustaining
1 megaflop, 1 gigaflop and 1 teraflop.

time of writing, the usability of current high-performance computing platforms re-
mains disappointing: a major bottleneck has been the inadequacy of parallel com-
pilers and system software. Although considerably improved over the systems of
a decade ago (where such system software was sometimes entirely absent), fun-
damental items such as parallel I/O and easy-to-use parallel debuggers have not
appeared. What is encouraging has been the emergence of two standardized “har-
nesses” – parallel virtual machine (PVM) and message passing interface (MPI).
These provide standardized high-level communication routines (via libraries) to
route data between processes, removing, or at least greatly reducing, the hardware
dependent implementations which characterized earlier work.

Nonetheless, despite implementation issues which remain challenging, parallel
processing has emerged as a very useful enabling technology; several commercial
codes (such as FEKO) are available in parallelized versions for various platforms.
Whilst one does not always appreciate the impact of incremental increases in per-
formance, when compounded over decades the results are deeply impressive. In
Fig. 6.13, the time required for direct matrix solution (LU decomposition) on sys-
tems capable of sustaining 1 megaflop, 1 gigaflop and 1 teraflop respectively are
compared.10 Comparing a 1 megaflop (typical of the late 1980s) and a 1 gigaflop

10 The operation count for LU decomposition for a matrix of dimension N with complex valued entries is ap-
proximately 8/3N 3 floating point operations.
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machine (typical of current systems), one sees that for a problem with around 1000
unknowns, the time has dropped from around an hour to a few seconds. A similar
improvement is noted for a 10 000 unknown problem when comparing a 1 gigaflop
and a 1 teraflop machine.11

6.8.3 FFT-based methods

If we refer back to the very simple introductory thin-wire example of Chapter 4,
specifically to Eqs. (4.15) and (4.16), we note that Zmn is a function of only m − n
and �. With a uniform discretization, as used there, the latter is constant, and hence
we actually only need to compute one row of the matrix. This is known as Toeplitz
(or translational) symmetry. The reason that this observation is important is that in
this case, the product of this matrix with a vector can be implemented as a discrete
convolution.

In general, a discrete convolution is an operation of the form

em =
N−1∑
n=0

jngm−n (6.26)

or in matrix form



g0 g−1 g−2 · · · g1−N

g1 g0 g−1
. . .

g2 g1 g0
. . .

...

gN−1 gN−2 gN−3 · · · g0







j0
j1
...

jN−1


 =




e0

e1
...

eN−1


 (6.27)

The N × N matrix in the above is a general Toeplitz matrix; all the elements of
this matrix are described by the 2N − 1 entries in the first row and column. If the
elements repeat with period N , so that

gn−N = gn, n = 1, 2, . . . , N − 1 (6.28)

then the operation is known as a circular discrete convolution, and the N × N ma-
trix above is circulant. Otherwise, the operation is a linear discrete convolution.
Any linear discrete convolution of length N can be embedded into a circular dis-
crete convolution of length 2N − 1 by extending the original sequence g to repeat

11 In November 1998, a CRAY T3-E became the first supercomputer to sustain the latter rate of computation on
a real-world computation.
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with period 2N − 1, zero padding the sequence to length 2N − 1 and changing the
upper limit of summation in Eq. (6.26) to 2N − 2.

The discrete convolution theorem states that if Eq. (6.26) is a circular discrete
convolution, it is equivalent to

ẽn = j̃n g̃n, n = 0, 1, . . . , N − 1 (6.29)

where the ẽ is the N -point discrete Fourier transform (DFT) of e, and similarly
j̃n and g̃n . The DFT will of course be implemented using the FFT algorithm. If
Eq. (6.26) is a linear discrete convolution, then embedding as described above is
used.

Hence, the matrix-vector product of Eq. (6.27) can be efficiently implemented
as

e = FFT−1
N {FFTN ( j)FFTN (g)} (6.30)

In the MoM context, with a Toeplitz matrix, the matrix-vector product is thus ex-
pressed as

n∑
i=1

Zmn In = Zm ⊗ Im (6.31)

where Zm = Zm1 and ⊗ indicates cyclic convolution, evaluated as

[Z ]{I } = FFT−1
N {FFTN (Zm)FFTN (I )} (6.32)

Usually, {I } is an approximation of the current, typically {I }k at the kth iteration
of an iterative solver.

Note that the convolution has become the Hadamard, or outer, product (i.e.
element-by-element) and hence for an iterative algorithm, the O(N 2) cost of the
matrix-vector product (usually required once or twice per iteration) has been re-
duced to O(N log N ). Also very importantly, the memory requirement is reduced
from O(N 2) to O(N ).

This can of course be extended to two and three dimensions, using two- and
three-dimensional FFTs as appropriate; the requirement remains that the grid
should be a regular Cartesian one. Indeed, three-dimensional FFT-based methods
provide quite efficient ways of dealing with the volume integral MoM discretiza-
tions.

The adaptive integral method is an extension of this idea to triangular sur-
face grids. In this case, the triangular subdomain basis functions are projected
onto a rectangular grid so that the FFT can be applied for the matrix-vector
product.
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A mathematical aside – what makes the fast Fourier transform (FFT) fast?

The FFT must rate as one of the top numerical algorithms of the twentieth cen-
tury. Although first popularized by J. W. Cooley and J. W. Turkey in the mid
1960s, perhaps as many as a dozen individuals had independently discovered,
and in some cases implemented, efficient methods for evaluating the discrete
Fourier transform (DFT), starting with no less a figure than Gauss in 1805. As
usual, the treatment in [8] is both highly entertaining and informative, and the
following is a summary thereof.

Firstly, until the mid 1960s, the standard method for evaluating an N -point
DFT of the discrete function hk ,

Hn ≡
N−1∑
k=0

hk e2π ikn/N (6.33)

was to define the complex number W as (note that i = √−1, the unit imaginary
number, not a counter!)

W ≡ e2π i/N (6.34)

and then the DFT can be written as

Hn =
N−1∑
k=0

W nkhk, n = 0, 1, . . . , N − 1 (6.35)

Clearly, for each n, this is the product of a matrix of size N × N (whose (n, k)th
entry is W to the power of n × k) times a vector of length N ; this must be done
N times (for each value of n) yielding an O(N 2) algorithm.

One of the “rediscoveries” of the algorithm which provides one of the clear-
est derivations of the FFT is that of Danielson and Lanczos in 1942. The
DFT is written as the sum of two DFTs, each of length N/2. One is formed
from the even-numbered points, one from the odd-numbered points. Mathe-
matically,

Fk =
N−1∑
j=0

e2π i jk/N f j

=
N/2−1∑

j=0

e2π ik(2 j)/N f2 j +
N/2−1∑

j=0

e2π ik(2 j+1)/N f2 j+1
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=
N/2−1∑

j=0

e2π ik j/(N/2) f2 j + W k
N/2−1∑

j=0

e2π ik j/(N/2) f2 j+1

= Fe
k + W k Fo

k (6.36)

Fe
k is the kth component of the Fourier transform of length N/2 formed from the

even components of the original f j , and similarly Fo
k is the corresponding trans-

form formed from the odd components. Although in the last line of Eq. (6.36), k
varies from 0 to N − 1, not just N/2 − 1, the transforms Fe

k and Fo
k are periodic

in k with length N/2, so each is simply repeated through two cycles.a

The neat point about this algorithm is that is can be applied recursively. For
instance, Fe

k can now be subdivided in Fee
k and Feo

k . For N a power of two, this
can be continued down to the point where one is left with the transform of length
one – which simply copies the input to the output. There are log2 N such recur-
sions. These one-point transforms are then combined appropriately. Each such
combination takes of order N operations, there are log2 N such combinations,
hence we have the O(N log2 N ) operation count of the FFT.

The above is not a complete description of the algorithm; one still needs to
perform some book-keeping to keep track of which one-point transform corre-
sponds to which combination of even–odd subdivisions, e.g. Feoe for an eight-
point transform. By bit-reversing the binary representation of each index of the
input vector, it turns out that this can be done very efficiently. The interested
reader can refer to [8, Section 12.2] for the details.

aAnother way of looking at this is that taking even-numbered points is equivalent to halving the sampling
density, hence the aliasing frequency also halves.

6.8.4 The fast multipole method

A two-dimensional FMM prototype

Whereas the FFT-based methods rely on the algebraic properties of the DFT, the
fast multipole method (FMM) is based on the analytical properties of the Green
function. Before we briefly introduce the full FMM, it is worth discussing a two-
dimensional example originally developed by Lu and Chew, which captures the
essence of the algorithm in a far more readily accessible form; it is presented in
the following form in [19, Section 4.13]

Assume a TMz PEC scattering problem. In this case, the EFIE is [19, Section
2.1]

E inc
z (t) = jkηAz(t) (6.37)
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where

Az(t) = 1

4 j

∫
Jz(t

′)H (2)
0 (k R) dt ′

R =
√

[x(t) − x(t ′)]2 + [y(t) − y(t ′)]2 (6.38)

with t a parametric variable describing position around the contour of the cylinder
surface, and the unprimed and primed coordinates indicate source and field points
as usual. Using subsectional pulse basis functions, as in Chapter 4, one obtains the
usual MoM matrix equation, with impedance matrix entries which, for segments
small compared to a wavelength, may be approximated by

Zmn ≈ kη

4
wn H (2)

0 (k Rmn) dt ′, ∀ m = n (6.39)

with wn the width of cell n and

Rmn =
√

(xm − xn)2 + (ym − yn)2 (6.40)

This, then, is the conventional MoM solution of this problem. We will assume
that there are no geometrical properties of the shape of the circumference that
we can exploit. (For instance, if it is a right circular cylinder, and the discretiza-
tion is uniform, we have a Toeplitz matrix and we can apply the FFT approach
to reduce the cost.) If we seek the solution of [Z ]{I } = {V } using a conventional
iterative solver, the cost per iteration will be O(N 2). The memory requirement is
also O(N 2).

Now, consider a fast approach for computing the product of the matrix-vector
product. As usual, the circumference of the cylinder will be divided into N seg-
ments (which need not be equal in size in this approach). Now, the new idea: we
collect these segments into p groups 12 of roughly equal size and number of un-
knowns. We index the groups as i = 1, 2, . . . , p; there are now N/p segments per
group, indexed as n = 0, 1, . . . , N/p − 1 in each group. One segment per group
will be centered at a local origin (xi0, yi0), whilst the other segment centroids
are denoted by (xin, yin). For source and field cells closely located, the “near-
zone,” the calculation proceeds as usual. However, for other segments, sufficiently
far separated that they are in the “far-zone,” an approximation will be used as
follows.

12 In the presentation of [19, Section 4.13], the terms “cells” and “segments” are used respectively. The lat-
ter is rather confusing, since a segment in an MoM formulation is usually the sub-domain spanned by one
(or sometimes a few) basis functions. The nomenclature used in this section corresponds to typical FMM
usage.
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Figure 6.14 Groups i and j , with segments in and jm

Consider the calculation of the field at (x jm, y jm) due to sources on group i (see
Fig. 6.14)

E scat
z (x jm, y jm) = −ωµ

4

N/p−1∑
n=0

jnwn H (2)
0 (k R jmin) (6.41)

The distance function R jmin is approximated as

R jmin ≈ R j0i0 + R jm − Rin (6.42)

where

R j0i0 =
√

(x j0 − xi0)2 + (y j0 − yi0)2 (6.43)

R jm = (x jm − x j0) cos φ + (y jm − y j0) sin φ (6.44)

Rin = (xin − xi0) cos φ + (yin − yi0) sin φ (6.45)

The angle φ denotes the orientation of R j0i0 with respect to the x-axis. (This is
just the usual far-field approximation used in the derivation of the potential of a
two-dimensional dipole.)

Now, the asymptotic form of the Hankel function for large arguments,

H (2)
0 (kρ) =

√
2 j

πkρ
e− jkρ (6.46)

is applied, yielding

H (2)
0 (k R jmin) ≈ H (2)

0 (k R j0 j0)e
− jk R jm e+ jk Rin (6.47)
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and thus Eq. (6.41) can be replaced by

E scat
z (x jm, y jm) ≈ −ωµ

4
H (2)

0 (k R j0i0)e
− jk R jm

N/p−1∑
n=0

jnwne+ jk Rin (6.48)

Hence, all interactions between the cells in groups i and j can be obtained from
a single summation over the coefficients jn , and one Hankel function calculation.
This involves O(N/p) operations. There are approximately p2 combinations of
far-zone groups, so the overall complexity grows as O(N p). It can be shown that
the optimal grouping is p = √

N , in which case the complexity is O(N 3/2).
It is useful to separate the operations contained in Eq. (6.48). First, the sources

on group i are aggregated together via the summation

Si ≈
N/p−1∑

n=0

jnwne+ jk Rin (6.49)

Then, translation uses the Hankel function

E scat
z (x j0, y j0) ≈ −ωµ

4
H (2)

0 (k R j0i0)Si (6.50)

to shift the field to the center of group j . Finally, the scattered field is disaggregated
throughout group j by a multiplication with the phase correction

E scat
z (x jm, y jn) ≈ e− jk R jm E scat

z (x j0, y j0) (6.51)

We find analogous steps in the full FMM.

The full three-dimensional FMM

The FMM rests on two identities. The first, a form of Gegenbauer’s addition theo-
rem, states that

e− jk0|�r+�d|

|�r + �d| = − jk0

∞∑
l=0

(−1)l(2l + 1) jl(k0d)h(2)
l (k0r)Pl( �d · �r) (6.52)

where jl(x) is a spherical Bessel function of the first kind, h(2)
l (x) is a spherical

Hankel function of the second kind, Pl(x) is a Legendre polynomial, and d < r .
All the special functions are as defined in standard texts, e.g. [20]. The second
identity is a spectral decomposition of the product of the Bessel function and the
Legendre polynomial, into propagating plane waves:

4π(− j)l jl(k0d)Pl(d̂ · d̂) =
∮

S
e− j �k· �d Pl(d̂ · r̂) d2k̂ (6.53)
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where the integral is over a unit sphere S and �k = k0k̂. Substituting Eq. (6.53) into
Eq. (6.52), and interchanging the order of addition and summation (which has been
described as “illegitimate but expedient” [21]), we obtain the approximation

e− jk0|�r+�d|

|�r + �d| = − jk0

4π

∮

S
e− j �k· �d TL(k̂ · r̂) d2k̂ (6.54)

with

TL(k̂ · r̂) =
L∑

l=0

(− j)l(2l + 1)h(2)
l (k0r)Pl(k̂ · r̂) (6.55)

The first key point in the FMM is the function TL(k̂ · r̂) = TL(κ, θ) with
κ = k0r precomputed for various values of distance κ and various angles θ . This
is a truncated multipole expansion, hence the name: it has been shown semi-
empirically that the number of multipoles is approximately k0 D + 6(k0 D)1/3

(with D the maximum dimension applicable) for an accuracy of 10−6.
The second key point of the FMM is that the interaction matrix is divided into

near and far parts. Near interactions are computed as usual with the MoM, and the
FMM does not change these at all (by contrast, FFT methods evaluate all matrix
elements). Far interactions are evaluated approximately, using the above function
TL . Basis functions in the far region are grouped into M localized groups – it has
been shown that the optimal value of this is

√
N , with N the number of basis

functions.
The third key point in the FMM is that the (approximate) matrix-vector product

may be done in O(N 3/2) operations. This is done by first computing the far fields
of each group, then computing the Fourier components of the field in the neighbor-
hood of each group generated by non-near sources, and finally adding the effects
of the near- and far-group interactions. These steps are also known as aggregation,
lumping the fields radiated by a group to the group center, translation and summa-
tion, which sends the fields from one group to another and then sums them, and
finally disaggregation, which distributes the received field to each point within the
receiving group.

By introducing a recursive hierarchy of groups, the operation count can be fur-
ther reduced to O(N log N ); this is known as the multilevel fast multipole algo-
rithm (MLFMA).

The above description is very cursory, and the interested reader is referred to
Section 6.9 for references which provide far more detail. We should caution that
the constants in the operation counts can be very large, easily on the order of many
thousands or more (by contrast, for direct methods or matrix-vector multiplication,
the constants are usually on the order of unity) so the FMM and MLFMA are
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Figure 6.15 Run-times for typical LU decomposition, a very rapidly converging iterative
solution and a well-optimized FMM solution on a 1 gigaflop system. (Adapted from [22,
Fig.14.8].)

only asymptotically “fast”; indeed for small to medium size problems, the FMM
will probably be slower than the MoM. Furthermore, for large problems, highly
efficient implementation is essential, otherwise the benefits are lost, so an FMM
implementation is emphatically not a project for beginners.

The impact of a reduction in asymptotic cost is not always immediately ap-
parent. To illustrate this, Fig. 6.15 compares the run-time on a system capable of
sustaining 1 gigaflop for N 3, 100N 2 (as one might hope to obtain with a very
rapidly converging iterative solver) and 1000N log N , as one might obtain with a
very well optimized FMM code, as suggested by [22, Fig. 14.8]. Clearly, the im-
pact of reducing this asymptotic cost is enormously significant for large problems;
the difference with the assumed operation counts for 1 million unknowns is that
of minutes versus decades! (In reality, the FMM code is likely to run for many
hours at least, but the point remains valid.) It must be commented that the con-
stants assumed in both the iterative and FMM cases above may well be extremely
optimistic.

The impact on memory is also highly significant; Fig. 6.16 compares the mem-
ory required to store the full MoM matrix compared to the storage requirements of
a proposed FMM implementation, as suggested by [22, Fig. 14.9]. (Note that each
complex word requires 8 bytes to store in single precision on typical systems.)
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Again, one should note that a real FMM implementation is unlikely to be this
memory efficient.

6.9 Further reading

The electric and magnetic field integral equations are covered in a number of texts
on electromagnetic theory and CEM. There are many equivalent different forms,
depending on how the differentials are treated; those in this chapter are based on
[23]. An introductory treatment may be found in [5, Chapter 12]. Good treatments
will also be found in [22, Chapter 14], with more on the underlying theory in [1,
Sections 6–9 and 12–3]. The topic is also discussed in [24]. A point which we
have glossed over in this chapter is that both the EFIE and MFIE exhibit a phe-
nomenon known as interior resonance. Essentially, a (theoretically) non-radiating
interior eigenmode is also present in the MoM solution procedure,13 and due to nu-
merical inaccuracies, the eigenmode incorrectly contributes to radiation. Canning
showed that there is a component of the field equations which should annihilate this
term, but that this term is slightly “off” in frequency in the discrete MoM solution,
hence the problem. He proposed a method using singular value decomposition to

13 We assume here the usual exterior field problem.
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remove this term [25]; although it worked well for canonical problems, Steyn and
the present author showed that it was difficult to apply to more general problems
[26]. The topic of interior resonances in general has been quite extensively dis-
cussed in the literature; in practice, it is usually a very narrowband phenomenon,
and for simple problems (in particular ones where the eigenvalues can be predicted
analytically) can simply be “smoothed” through, but a rigorous solution requires
a combination of both EFIE and MFIE, as the combined field integral equation. A
particularly comprehensive discussion of this may be found in [19, Chapter 6].

In the context of equivalent surface current modelling, discussions of the equiv-
alence principle will be found in several standard texts; that in [5, Section 7.8] is
especially useful. For the modelling of homogeneous and inhomogeneous material
bodies, few textbooks discuss this topic – [1, Chapter 12] being a notable exception
– and one will need to refer largely to journal papers. One of the earliest papers
to consider this was Richmond’s [27], although his formulation was essentially a
volume equivalence one. For details of the surface equivalence formulation, [28]
provides a comprehensive discussion and an extensive, although not exhaustive,
list of references. The discussion of the equivalence principle is often quite cur-
sory; a particularly detailed study has recently been published by Booysen [29].

On hybrid MoM/PO methods, Jakobus and Landstorfer’s original papers [14,
30] remain the best reference.

Regarding parallel processing, the present author made some of the earlier con-
tributions in this regard [17, 18, 31]; other early work may be found in [32]. With
Cwik, the present author recently summarized much of the state-of-the-art [33];
this special issue contains papers by many of the researchers active in the field in
the mid to late 1990s.

There is now a large body of literature dealing with fast techniques in CEM. A
very readable introductory treatment will be found in [19, Chapter 4]. Jin provides
a detailed, up-to-date and yet succinct overview of fast methods in general in [22,
Chapter 14], and this would serve well as a first reference for more detailed study;
a fairly extensive list of references complements the technical descriptions. On a
historical note, Bojarski is credited with the first use of the FFT method in electro-
magnetics for this purpose,14 in a US Air Force technical report of 1971, although
the work was only published in the archival open literature a decade later [34]. The
application of the FFT to surface and volumetric scattering is well illustrated by
the work of Zwamborn and van den Berg, of which [35] is a good example, and
also by Borup and Gandhi [36]. For some of the early work on iterative methods,
the papers by Sarkar contain useful descriptions of the iterative algorithms ([37]
is typical), but it should be noted that there are misconceptions in this and other

14 He used the term “k-space” in his work rather than CGFFT.
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papers about the nature of discrete operators. This led to a lengthy debate in the
literature (see [38], for instance, as well as comments in [24, Chapter 1]); this was
finally settled by Ray and Peterson [39]. Their closing comment is conclusive:

While direct iterative methods may be very efficient for some problems, they are no more
accurate than their moment-method analogs.

On the FMM, the paper by Coifman, Rokhlin and Wandzura [21] remains a clas-
sic; the paper belies its title, providing the essential ideas and outlining the imple-
mentation in only six pages. (Note that they use the e−iωt convention widely used
in physics, so the signs of i are reversed relative to the discussion in Section 6.8.4,
and the spherical Hankel function is of the first kind.) Chew and colleagues at
Illinois have been prolific users of the method; their recent book provides a de-
tailed discussion of the many applications [40], and their review paper provides a
succinct overview of the field [41]. On the question of error control, the paper by
Botha and the present author presents a detailed discussion [42].

6.10 Concluding comments

In this chapter, we have studied methods of solving currents on surfaces using
the MoM, starting with the electric and magnetic field integral equations. These
may be real currents, in the case of a PEC, or fictitious ones, in the case of an
homogeneous dielectric (or magnetic) body. Some theoretical background on the
RWG surface basis functions has also been provided, since these are widely used
in commercial codes. The ability to model homogeneous material bodies using fic-
titious equivalent surface currents is very useful indeed; some MoM codes, such as
FEKO, can also handle inhomogeneous material bodies, using an equivalent vol-
ume current method, but the computational cost associated with this is extremely
high, as we have seen (unless FFT-based methods are used).

The much larger computational requirements of surface modelling as opposed
to thin-wire modelling have been discussed comprehensively. A hybrid MoM/PO
formulation has been outlined. Although inherently approximate, this permits large
structures to be modelled with good accuracy provided caution is exercised; it is
particularly useful for what is often called “installed antenna performance mod-
elling,” which frequently involves electrically small antennas mounted on elec-
trically large vehicles (used here in the general sense to include aircraft, space-
craft and ships). A commercial implementation of this theory is available and we
have shown an example of its use. High-performance computing has also been dis-
cussed; this continues to be an important enabling technology driving very large
applications of the method. Finally, “fast” methods have been considered, includ-
ing the original FFT-based methods, extensions in the form of the adaptive integral
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method, and of course the fast multipole method. The last in particular rejuve-
nated the method of moments in the early 1990s and has proven one of the most
important theoretical advances in the MoM over the last two decades.
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7

The method of moments and stratified media: theory

7.1 Introduction

Modelling stratified media is an important application of the MoM. A stratified
medium is one consisting of homogeneous layers of material, each layer having
different electromagnetic properties. This includes the general category of printed
antennas, of which microstrip is the best known. (Microstrip technology is dis-
cussed in more detail in the next chapter.) It also brings with it the problem of
dealing with dielectric materials. Central to this is the issue of the Green func-
tion1 for the problem. The MoM relies on an appropriate Green function as the
“field propagator.” Due to its perceived complexity, the topic of stratified media is
generally regarded as an advanced one, and the coverage tends to be highly the-
oretical, and frequently impenetrable without lengthy study. One reason for this
is that historically, analysis focussed on the problem of a dipole above a dielectric
half-space. There are a number of complex issues which this raises, requiring quite
sophisticated analytical techniques to understand, in particular for the asymptotic
cases where interesting radiation physics can be extracted. However, the analysis
of a very important special case, namely the grounded single-layer microstrip line
(or patch antenna), can be undertaken without undue complexity, at least for most
practical cases where the substrate is relatively thin.

In this chapter, a static analysis of a microstrip transmission line is first under-
taken, to demonstrate the basic principles of the spectral domain and the derivation
of the Green function. Following this, the dynamic analysis is introduced, and the
Sommerfeld potentials derived from first principles. Although the work in this
chapter is certainly not original, being based on a synthesis of the literature – in
particular [1] – the presentation in the present format does not appear to have been
thus undertaken in other works to date.

1 Contemporary usage is “Green function” rather than “Green’s function,” in line with “Dirac delta function,”
“Heaviside step function” etc.
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7.2 Dyadic Green functions: some introductory notes

The main reason for efficiency of the MoM formulation already discussed is the
existence of suitable Green functions. The Green function G(�r) is equivalent to
the impulse response h(t) of system theory. Just as h(t) gives the response (in
time) to a temporally impulsive source, so G(�r) gives the response (in space) to a
spatially impulsive (current) source. The response to a spatially distributed source
is obtained by integration, and plays the same role in space that convolution in
system theory does in time:

y(t) = h(t) ∗ x(t) ⇐⇒ �E(�r) = ¯̄G(�r , �r ′) ∗ �J (�r ′) (7.1)

We have already encountered the free-space Green function in our work in
Chapter 4, although we made only passing reference to it then. In free space, the
function is (moderately) simple:

¯̄G(�r , �r ′) =
(

k2 ¯̄I + ∇∇
)

g(�r , �r ′), g(�r , �r ′) = e− jk R

4π R
(7.2)

where R = |�r − �r ′| is the distance from source to field point. Green functions can
be obtained for either fields or potentials, and in the above, ¯̄G(�r , �r ′) is the electric
field Green function for free space, and g(�r , �r ′) is the potential Green function for
free space. We will primarily use Green functions for potentials in this chapter. It
is worth highlighting that the Green function for free space is given in closed form
and is trivial to compute (although the singularities which accompany it make an
accurate MoM implementation anything but!).

Some new notation has been introduced in the above. The double-overbar nota-
tion indicates a dyad; this is a mathematical device which after multiplication by
a vector, yields a vector. A dyad typically consists of the following terms, when
written as a matrix:

¯̄G =



Gxx Gxy Gxz

G yx G yy G yz

Gzx Gzy Gzz


 (7.3)

It is also frequently written out in its component form:

¯̄G = Gxx x̂ x̂ + Gxy x̂ ŷ + Gxz x̂ ẑ +
G yx ŷx̂ + G yy ŷ ŷ + G yz ŷẑ +
Gzx ẑx̂ + Gzy ẑ ŷ + Gzz ẑẑ (7.4)

The product of a dyad and vector is then computed using normal matrix theory
or the usual vector dot-products. ¯̄I is the identity dyad. Note that although both
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operations ŝ · ¯̄G(�r , �r ′) and ¯̄G(�r , �r ′) · ŝ with ŝ a unit vector (i.e. x̂ , ŷ or ẑ) are de-
fined, only the latter has physical meaning as the potential due to an ŝ-oriented
source.

However, for many applications (such as printed antennas, antennas above or
buried in a real earth) radiation occurs in a stratified media environment, not free
space. The presence of the stratified media greatly complicates the analysis. The
Green function for an elementary dipole radiating in the vicinity of the strati-
fied medium needs to be worked out. This was done many years ago by Arnold
Sommerfeld – in 1909, he determined the field radiated by a short vertical electri-
cal dipole above a dielectric interface. However, the passage of time has not made
the theory any easier. In particular, the required integration in the complex plane
brings with it a number of complex issues. Finally, the Green functions obtained
are not given in closed form, and are computationally expensive to compute, so
even implementations of seemingly simple problems require some thought.

Before concluding this introductory section, it should be commented that there
are a number of MoM formulations for stratified media. This chapter uses the
mixed potential integral equation formulation (MPIE), introduced by Mosig and
Gardiol [2] and used with great success for MoM formulations by a number of
workers. However, before we outline this approach, we will consider a much sim-
pler problem, which illustrates many of the issues: deriving the Green function for
stratified media for electrostatics from first principles.

7.3 A static example of a stratified medium problem: the grounded
dielectric slab

Central to stratified media formulations is the spectral domain transform. The
Fourier transform is used to simplify the problem by transforming the partial dif-
ferential equation(s) of electromagnetics in the spatial domain into an ordinary
differential equation in the spectral domain. (Once again, the analogy with linear
systems theory is strong.) To illustrate the basic concepts, we will derive the static
spectral domain Green function for a microstrip structure, as shown in Fig. 7.1.
This does not include radiation effects, which requires the full-wave solution of the
problem, the topic of later parts of this chapter. This is still quite useful, nonethe-
less: the quasi-TEM approach often used for transmission-line analysis renders
the problem (quasi-)static. A solution can be used to compute the characteristic
impedance and phase constant of the transmission line by making the calculation
twice – once with the dielectric present, and once with the dielectric replaced by
free space [3, p. 166]. Note that the structure is assumed to be of infinite length,
thus there is no variation in y.
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Figure 7.1 Typical microstrip structure.
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Figure 7.2 Stratified medium equivalent with impulsive source q(x, z) = δ(x)δ(z − d).

This formulation appears to have been originally presented in the engineering
literature by Yamashita and Mittra [4]. They did not actually derive the Green func-
tion; they were formulating a variational expression for the unknown charge dis-
tribution on the strip, but the extension is straightforward. Their notation is largely
followed here, except that kx is used as the Fourier transform variable instead of
β, and d instead of h for the substrate thickness. Booton provides a similar deriva-
tion [5, Section 10.3]. It is interesting to note that an almost identical derivation
may be found in Schwinger’s lecture notes [6, Chapter 14]; although only recently
published, these lectures were originally given in 1976.

To derive the Green function, the Poisson equation for a spatially impulsive
source of unit magnitude located at x = 0, z = d must be solved (subsequently, the
case x �= 0 is also considered); see Figs. 7.1 and 7.2. Thus the partial differential
equation to solve is:

∇2�(x, z) = −1

ε
δ(x)δ(z − d) (7.5)

The equation is transformed into the spectral domain; using the linearity of the
Fourier transform, the ∂

∂x ⇐⇒ jkx transform property, and the Fourier transform
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of the Dirac delta function, one obtains
[
−k2

x + d2

dz2

]
�̃(kx , z) = −1

ε
δ(z − d) (7.6)

with �̃(kx , z) the Fourier transform of the potential, also known as the spectral
domain representation:

�̃(kx , z) =
∫ ∞

−∞
�(x, z)e− jkx x dx (7.7)

Note that this is now an ordinary differential equation in �̃(kx , z). The homoge-
neous differential equation (with the inhomogeneous source taken into account via
a Neumann boundary condition) is now solved:

[
−k2

x + d2

dz2

]
�̃(kx , z) = 0, ∀z �= d (7.8)

The boundary conditions are: zero potential at z = 0 and z → ∞; continuous
potential at the material interface at z = d; and flux discontinuous by the source
singularity at z = d. These boundary conditions transform in a straightforward
fashion to the spectral domain. The solution to Eq. (7.8) must be written in the two
regions demarcated by the material interface. Note that even if εr = 1, this two-
region approach is still necessary, so that the jump discontinuity can be enforced.

The boundary conditions, transformed into the spectral domain, are:

�̃(kx , 0) = 0 (7.9)

�̃(kx , ∞) = 0 (7.10)

�̃(kx , d+) = �̃(kx , d−) (7.11)

ε0
d

dy
�̃(kx , d+) = ε0εr

d

dy
�̃(kx , d−) − 1 (7.12)

The solution of Eq. (7.6) is in the form of exponentials in each region:

�̃1(kx , z) = A e−kx z + B ekx z, ∀0 ≤ z < d (7.13)

�̃2(kx , z) = C e−|kx |z + D, ∀z ≥ d (7.14)

Equation (7.10) immediately yields D = 0, and Eq. (7.9) yields A = −B. Thus

�̃1(kx , z) = −2A sinh kx z (7.15)

Applying Eq. (7.11) in the limit d± → d one obtains

A = −C
e−|kx |d+

2 sinh kx d− (7.16)
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The d/dz terms in Eq. (7.12), again in the limit d± → d, are thus:

d�̃1(kx , z)

dz

∣∣∣∣∣
z=d−

= +Ckx e−|kx |d coth kx d+

d�̃2(kx , z)

dz

∣∣∣∣∣
z=d+

= −C |kx | e−|kx |d−

Equation (7.12) yields:

C = e|kx |d

ε0|kx |[1 + εr coth |kx |d] (7.17)

where the even property of the product of coth(kx d) and kx d has been used to
make the required simplification kx coth kx d = |kx | coth |kx |d (assuming d ≥ 0).
The solution for �̃2(kx , z), valid in the limit d+ → d for z ≥ d is thus:

�̃(kx , z) = e|kx |(d−z)

ε0|kx |[1 + εr coth |kx |d] (7.18)

We have dropped the subscript 2 since we are now on the interface. Note that for
z = d, this reduces to:

�̃(kx , d) = 1

ε0|kx |[1 + εr coth |kx |d] (7.19)

This can also be written as:

�̃(kx , d) = sinh |kx |d
ε0|kx |{sinh |kx |d + εr cosh |kx |d} (7.20)

(An interesting special case can be identified, viz. εr = 1. For this case, by ex-
panding the hyperbolic terms in the denominator, Eq. (7.20) reduces to

�̃(kx , d) = 1

ε0

e−|kx |d sinh |kx |d
|kx | (7.21)

This can be useful in asymptotic analysis, where the Green function for a homo-
geneous dielectric is used.)

Equation (7.20) is the spectral domain Green function for a source located on
the z-axis. The Green function is then the inverse Fourier transform of this:

G(x, 0) = 1

2π

∫ ∞

−∞
�̃(kx , d) e jkx x dkx (7.22)
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and for the general case of the source located at x ′, this becomes

G(x, x ′) = 1

2π

∫ ∞

−∞
�̃(kx , d) e jkx (x−x ′) dkx (7.23)

The required integral equation for the potential in terms of the charge distribution
ρ(x, d) is thus

�(x, d) =
∫ ∞

−∞
G(x, x ′)ρ(x ′, d) dx ′ (7.24)

This, then, is the spectral domain static Green function for a grounded dielectric
slab. Unfortunately, we note that it must first be inverse Fourier transformed to the
spatial domain, and doing this for each possible value of the argument x − x ′ is
very time consuming, since numerical integration is required. Interpolation tables
are often used to accelerate the evaluation of the functions. Another approach is
to formulate the entire MoM problem in the spectral domain, by using basis func-
tions which have analytical Fourier transforms. This is described in detail for the
quasi-static microstrip analysis problem in [7]. However, we will not pursue this
further here. Instead, we turn our attention to the full-wave case, after first revising
some concepts from electromagnetic theory regarding scalar and vector potential
representations.

7.4 The Sommerfeld potentials

7.4.1 A brief revision of potential theory

Before confronting the full-wave stratified medium problem, we will briefly revise
some basic electromagnetic theory, in particular, potential theory. It is often useful
to represent fields in terms of potentials. Classic elementary electrostatics uses
�E = −∇�. For high-frequency electromagnetics the electrostatic potential is of
course incomplete, and a very widely used set of potentials is

�E = −∇� − ∂ �A
∂t

(7.25)

�B = ∇ × �A (7.26)

It will be recalled that there is considerable arbitrariness surrounding the choice of
potential (as is well known, a potential �A′ = �A + ∇φ with φ any suitable scalar
function results in the same set of fields); this is usually resolved via a gauging
process. The most widely used in RF engineering is the “Lorenz gauge,” with

∇ · �A = −(1/c2)
∂�

∂t
(7.27)
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A and φ must to be worked out from

∇2φ − 1

c2

∂2�

∂t2
= −ρ

ε
(7.28)

∇2 �A − 1

c2

∂2 �A
∂t2

= −µ �J (7.29)

In the frequency domain, these become
(
∇2 + k2

)
� = −ρ

ε
(7.30)

(
∇2 + k2

) �A = −µ �J (7.31)

and these solutions – for differential current elements dρ and d �J – are the potential
Green functions.

We have already commented that within one potential representation, the poten-
tials are not unique. There is also more than one possible potential representation.
Another set involving only electric and magnetic vector potentials may be used;
this was originally introduced by Hertz. In this case, the potentials satisfy the fol-
lowing Helmholtz equations:

(
∇2 + k2

) �A = −µ �J (7.32)
(
∇2 + k2

) �F = −ε �M (7.33)

where �M is the (fictitious) magnetic current. These are also sometimes written

as �	e = �A
jωµε

and �	h = �F
jωµε

. For the Hertz potentials, the fields in the spatial
domain are given as:

jωµε �E = k2 �A + ∇ · ∇ �A − jωµ∇ × �F (7.34)

jωµε �H = k2 �F + ∇ · ∇ �F + jωµ∇ × �A (7.35)

7.4.2 The Sommerfeld potentials

Preliminaries

In the stratified medium case, at least two approaches using potentials have been
used. The former uses the field components normal to the interface as potentials.
We will retain the convention of the preceding sections that the interfaces are in
planes of constant z; hence, in this case, the potentials would be Ez and Hz . An-
other possibility is the use of the (Hertz) potentials, of both electric ( �A) and mag-
netic ( �F) type. If only z-directed components Az and Fz are retained, this choice is
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traditionally called the Hertz–Debye potentials. The final possibility, and the one
we will investigate since it is the most popular, is the Sommerfeld potentials.

The Sommerfeld potentials, in the absence of magnetic currents, assume �F = 0.
A vertical electric dipole (VED), i.e. z-directed in our convention, needs only the
Az component. A horizontal electric dipole (HED) (i.e. parallel to the x–y plane)
will require a component parallel to the source. Hence, the dyadic in this approach
will have only five non-zero terms:

¯̄G A = (x̂Gxx
A + ẑGzx

A )x̂ + (ŷG yy
A + ẑGzy

A )ŷ + ẑGzz
A ẑ (7.36)

In order to find these terms, we first need some additional background on the spec-
tral domain.

The spectral domain transform

In the static case discussed previously, no ŷ variation was assumed, and the Fourier
transform was the usual one-dimensional one. For a general structure, we cannot
make this assumption, and the transform (and inverse) becomes two dimensional:

f̃ (kx , ky) = 1

2π

∫ ∫ ∞

−∞
f (x, y) e− jkx x e− jky y dx dy (7.37)

f (x, y) = 1

2π

∫ ∫ ∞

−∞
f̃ (kx , ky) e jkx x e jky y dkx dky (7.38)

It is useful to introduce the polar vector ρ = x x̂ + y ŷ (this is simply the usual
radius vector in cylindrical coordinates, | �ρ| = √

x2 + y2) and the radial spectral
variable �kρ = kx x̂ + ky ŷ. This permits the “del” operator ∇ to be split into its
transverse and normal parts as ∇ = ∇t + ∂

∂z ẑ. In the spectral domain, this becomes

∇̃ = j �kp + ∂

∂z
ẑ (7.39)

Since the only spatial derivative remaining in the spectral domain is with respect to
z, the shorter dot notation for derivatives will frequently be used in the following,

for example ∂�̃/∂z = ˙̃
�. Using the Bessel function J0, the above transforms may

be written as

f̃ (kρ) =
∫ ∞

0
J0(kρ ρ) f (ρ) ρ dρ (7.40)

f (ρ) =
∫ ∞

0
J0(kρ ρ) f̃ (kρ) kρ dkρ (7.41)

This is known as the Fourier–Bessel or Hankel integral transform pair. These are
best known amongst RF and microwave engineers as Sommerfeld integrals.
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As in the two-dimensional static case, the introduction of these transforms
permits the spatial domain differential equation (the Helmholtz, rather than the
Laplace of the static case)

(
∇2 + k2

)
� = 0 (7.42)

to be written in the spectral domain as the solution of an ordinary differential
equation

(
∂2

∂z2
− u2

)
�̃ = 0 (7.43)

where the parameter u in the traditional notation of Sommerfeld is given by

u2 = −k2
z = k2

x + k2
y − k2 = k2

ρ − k2 (7.44)

The spectral variable kρ is complex valued, and by convention written as kρ =
λ + jν. λ in this context is the real part of kρ , and should not be confused with
wavelength.

Normal component representation

One possibility for stratified media is the use of the normal fields Ez and Hz as
potentials. The normal components satisfy Eq. (7.42) or (7.43) in the spatial or
spectral domain respectively. In the spectral domain, the transverse components
are given by:

k2
ρ Ẽx = jkx

˙̃Ez − ωµky H̃z (7.45)

k2
ρ Ẽy = jky

˙̃Ez + ωµkx H̃z (7.46)

k2
ρ H̃x = jkx

˙̃H z + ωεky Ẽz (7.47)

k2
ρ H̃y = jky

˙̃H z − ωεkx Ẽz (7.48)

As in the static case, the boundary conditions transform in a straightforward
fashion to the spectral domain. Hence, tangential field continuity across the layers

is satisfied if ε Ẽz , ˙̃Ez , µH̃z and ˙̃H z are continuous. Rather importantly, this means
that the boundary conditions do not introduce coupled equations in Ẽz and H̃z .
From the viewpoint of the Green functions, the potentials are the normal compo-
nents, but we will not pursue this further now. The Sommerfeld potentials make
use of some normal components, hence the discussion here.
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Sommerfeld potentials

In the absence of magnetic currents,2 the Sommerfeld approach assumes �F = 0.
A VED requires only the Az component, obtained from the spectral domain rela-
tionship

jωµε Ẽz = k2
ρ Ãz (7.49)

This is obtained from the spectral domain equivalent of Eq. (7.34). Ẽz is obtained
as above. The other components may be computed from the spectral domain equiv-
alents of Eqs. (7.34) and (7.35). It may be shown that one obtains the following in
terms of the normal component representation:

G̃xx
A = −µG̃zx

H

jky
(7.50)

kρ G̃zx
A = jωµεG̃zx

E + kxµ
˙̃Gzx

H

ky
(7.51)

G̃ yy
A = µG̃zy

H

jkx
(7.52)

kρ G̃zy
A = jωµεG̃zy

E − kyµ
˙̃Gzy

H

kx
(7.53)

kρ G̃zz
A = jωµεG̃zz

E (7.54)

Regarding boundary conditions at the interface, it may be shown – from Eqs. (7.34)
and (7.35) – using these Sommerfeld potentials, that transverse field continuity
implies that Ãz and Ãz/ε must be continuous for a VED. For an x-directed HED,

Ãx , ˙̃Ax , Ãz , and ∇ · �̃A/ε must be continuous, and a similar expression holds for
a y-directed HED. The last condition couples normal and transverse components
of the Green function, which hence cannot be independently computed. For this
reason, it is usually easier to work with the normal field components, as will be
done shortly.

Symmetry also results in the following expressions, which we note although we
will not use them further:

G̃xx
A = G̃ yy

A (7.55)

G̃zx
A

jkx
= G̃zy

A

jky
(7.56)

2 As an aside, it should be noted that it is possible to have non-zero �F even with zero magnetic current �M , due
to the amount of arbitrariness in the potentials.
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7.4.3 An example: derivation of Gxx
A for single-layer microstrip

General multi-layered substrates are best handled using a matrix formulation.
Within each substrate, the normal field components are computed for a unit Hertz
dipole embedded in the layered medium. The boundary conditions are handled
using “chain” matrices. A particularly complete description may be found in [1].
However, for the simple but very important case of a single-layer microstrip, we
can directly compute the potentials in a fashion very similar to that described in
Section 7.3. Once again, Fig. 7.2 is relevant, although now the impulsive source
is a horizontal Hertzian dipole, and for convenience the air–dielectric interface,
rather than the ground plane, is at z = 0 (and hence the ground plane is located at
z = −d). In general, the derivation must be repeated for the five non-zero compo-
nents of the Green function, viz. Eq. (7.36), but we will only derive one of these
here – the x-directed magnetic Green function. We also restrict the derivation to
non-magnetic lossy dielectric substrates, i.e. µ1 = µ0 and ε1 = ε0ε

′
r (1 − tan δ).

We will use εr = ε′
r (1 − tan δ) to represent the complex relative permittivity in the

following; it is useful to be able to distinguish between εr and ε′
r .

The source-free ODE to be solved for the normal magnetic field in the spectral
domain is of the form of Eq. (7.43), repeated here for the Hz case:

(
∂2

∂z2
− u2

)
H̃z = 0 (7.57)

The solution in each region may either be written as the sum of exponentials, as in
Section 7.3, or as hyperbolic functions. In the upper region z ≥ 0, the solution is
of the form

H̃z = a0 e−u0z (7.58)

which already incorporates the boundary condition at infinity. In the dielectric re-
gion, the solution is of the form

H̃z = a1 cosh u1(z + d) + b1 sinh u1(z + d) (7.59)

The remaining boundary conditions on H̃z are:

µ0µr H̃z|z=0− = µ0 H̃z|z=0+ (7.60)

˙̃H z|z=0− = ˙̃H z|z=0+ (7.61)

˙̃H z|z=−d = 0 (7.62)

The last boundary condition may not be immediately apparent. The perfect electric
conductor at z = −d imposes a zero tangential electric field condition, implying
zero normal derivative of magnetic field.
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Table 7.1 Values of the amplitude coefficients Ui and Li associated with the upper
and lower parts of the layer containing the source (after [1, Table 1, p. 150])

Gzx
H Gzy

H Gzx
E Gzy

E Gzz
E

Ui − jky/4πu0 jkx/4πu0 − jkx/4π jωε − jky/4π jωε k2
ρ/4π jωεu0

Li Ui Ui −Ui −Ui Ui

The above are for the source-free case. In Section 7.3, the effect of the source
was introduced via a boundary condition. Here, we will introduce another method
of dealing with this. For a layer with a source inside it, this can be taken into
account by adding a solution ψ∞, which is the particular solution corresponding
to the source embedded in an unbounded homogeneous medium. In the spectral
domain, the solution can be written as

ψ∞
i =

{
Ui e−ui (zi −D) D ≤ zi ≤ di

Li e+ui (zi −D) 0 ≤ zi < D
(7.63)

for a source at zi = D, with zi = z + di the local normal coordinate in each layer.
The amplitude coefficients Ui and Li depend on the physical quantity represented
by ψ , and are tabulated in Table 7.1. (In the spectral domain, the transform of
an HED of unit magnitude, δ(x)δ(z = −D), is 1/2π . The table takes this and
other factors into account.) In the present case, this source will be located in the
upper medium (free space) at D > 0; the limit case D → 0 will be considered
subsequently.

In the free-space region then, the solution is

H̃z = a0 e−u0z − jky

4πu0
e+ui (zi −D), ∀ d ≤ z < D (7.64)

in the region just above the interface, and for the rest of the region

H̃z = a0 e−u0z − jky

4πu0
e−ui (zi −D), ∀ z ≥ D (7.65)

It is tempting to set D to zero and use this latter equation immediately, but it yields
the incorrect solution.

We now apply the boundary conditions and eliminate the three unknown coef-
ficients, a0, a1 and b1. Application of Eq. (7.62) immediately yields a1 = 0. Ap-
plying Eq. (7.60) for the non-magnetic substrate case (µr = 1) in the limit D → 0
yields

b1 = a0 − jky
4πu0

sinh u1d
(7.66)
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Application of Eq. (7.61), again in the limiting case, gives

a0 = − jky
4π

+ jky
4πu0

u1coth u1d

DTE
(7.67)

where

DTE = u0 + u1 coth u1d (7.68)

The DTE term (and a similar DTM term, to be defined shortly) are written in this
specific notation because they are linked to surface waves. These can be important
as a mechanism both for loss, and for increasing coupling between elements in a
microstrip patch array. Neither is usually desirable. We will return to this later.

The last coefficient, b1, may now be obtained, and we find for the fields in the
dielectric that

H̃z = − jky

2π sinh u1d

1

DTE
sinh u1(z + d) (7.69)

For the case where both source and observer lie on the air–dielectric interface,
z → 0 and this reduces to

H̃z = − jky

2π

1

DTE
(7.70)

What has now been computed is the spectral domain normal magnetic field due
to an elementary x-directed dipole, i.e. G̃zx

H . From Eq. (7.50), we find that

G̃xx
A = −µG̃zx

H

jky
= µ0

2π

1

DTE
(7.71)

The other components required for a HED may be derived in a similar fash-
ion. The results are given in Table 7.2. Here, the subscript 1 has been dropped
on u, since it clearly refers to the substrate. For convenience, the spectral domain
parameters u and u0 are also listed.

7.4.4 The scalar potential and the mixed potential integral equation

The third entry in Table 7.2 lists a term which requires a brief comment, viz. G̃V . In
Section 7.4.1, the usual “mixed potential” formulation, Eq. (7.25) (which is valid
for F = 0) was presented. It is actually by no means obvious that the usual scalar
potential,

V (�r) =
∫

S
GV (�r , �r ′)qs(�r ′) d S′ (7.72)
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Table 7.2 Spectral domain Green’s functions for
a single-layer grounded microstrip structure

Sommerfeld potentials
2π G̃xx

A
µ0

= 1
DTE

2π G̃zx
A

µ0
= jkx (εr −1)

DTE DTM

2πε0G̃V = u0+u tanh ud
DTE DTM

DTE = u0 + u coth ud, DTM = εr u0 + u tanh ud

u2 = k2
ρ − k2, u2

0 = k2
ρ − k2

0

Both source and observer are on the air–dielectric
interface (after [1, Table 2, p. 153]). k0 is the
wavenumber in free space, and k is the wavenumber
in the dielectric.

can be extended to a layered medium under dynamic conditions. Fortunately, in the
case of horizontal conducting surfaces, it can be shown that this is indeed valid,
and further that the required scalar Green function is given in the spectral domain
by [1, Section 3.3]

G̃V = jω

k2
ρ

( ˙̃Gzx
E

jkx

)
−

(
k

kρ

)2
(

G̃zx
H

jkyε

)
(7.73)

for the Sommerfeld potentials.
Once the potentials are known, the fields can be computed from the potentials, as

in Section 7.4.1. Before proceeding, it is worthwhile reminding the reader that the
Green functions we have obtained are spectral domain representations; the spatial
domain equivalents are of course defined by:

Gxx
A ( �ρ | �ρ′ = 0) ≡ Ax ( �ρ) = µ0

2π

∫ ∞

0
J0(kρρ)

kρ

DTE
dkρ (7.74)

GV ( �ρ | �ρ′ = 0) ≡ V ( �ρ) = 1

2πε0

∫ ∞

0
J0(kρρ)kρ

u0 + u tanh ud

DTE DTM
dkρ (7.75)

and these are the functions we require. Again, as a reminder, ρ is radial distance on
the patch surface,

√
x2 + y2; kρ is the integration variable; by convention, z = 0

is the air–dielectric interface; and J0(x) is the Bessel function of the first kind of
order zero

J0(x) ≡ 1

π

∫ π

0
cos(x sin ψ) dψ (7.76)
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Note also that these are the Green functions for a source located at ρ′ = 0; due
to the translation symmetry, for sources located at a point other than the origin,
all we need do is interpret the radial parameter as the distance from the observer
to the source, i.e. ρ = √

(x − x ′)2 + (y − y′)2. This is also sometimes expressed
as

G(x, y|x ′, y′) = G(x − x ′, y − y′|0, 0) (7.77)

Equipped with these Sommerfeld potentials, we can now write the mixed poten-
tial integral equation (MPIE) for the x-directed HED:

�z × �E inc = �z ×
[

jω
∫

S

¯̄G A · �JS d S′ + ∇
∫

S
GV qS d S′ + ZS �JS

]
(7.78)

The vector potential ¯̄G A and scalar potential GV are as in the preceding section
and are of course known, even if difficult to compute, as is the excitation �E inc.

7.4.5 Surface waves

We commented earlier that the DTE and DTM terms are written in this specific
form since they can be interpreted as surface waves. It can be shown that these
expressions are the characteristic equations for the surface waves of, respectively,
TE and TM waves propagating in a dielectric layer backed by a perfect conduc-
tor [1, Section 6]. Surface waves can decay as slowly as 1/

√
ρ, and hence can

be an important coupling mechanism between patches in a microstrip patch array.
In the integrals required to compute the spatial domain Sommerfeld potentials,
Eqs. (7.74) and (7.75), these enter in the denominator of the integrand, and zeros
in DTE and DTM hence represent poles in the kernel, complicating the integra-
tion process. Fortunately, if k0d

√
ε′

r − 1 < π/2, then DTE has no zeros and DTM

has only one, corresponding to the dominant zero-cutoff TM surface wave. This
condition is equivalent to the restriction:

f [GHz] ≤ 75

d[mm]√ε′
r − 1

(7.79)

For practical substrates, this condition is generally satisfied over most of the mi-
crowave band. Only in the case of a thick substrate of high dielectric constant need
one be concerned with this requirement.

The position of the pole is also required for the integration process. For loss-
less substrates, the pole is real (kρ = λp0) and lies inside the segment of the
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real axis 1 < λp0/k0 <
√

εr . For thin substrates, an approximation of its position
is [1, Section 6]:

λp0/k0 ≈ 1 + (k0d)2 (εr − 1)2

2ε2
r

(7.80)

This expression also holds for low-loss substrates, although the pole then migrates
below the real axis, as in Figure 7.3:

λp ≈ λp0

νp ≈ (ε′
r − 1) tan δ

(
k0d

ε′
r

)2

(7.81)

7.5 Evaluating the Sommerfeld integrals

7.5.1 Approximate evaluation of the Sommerfeld integrals

In general, the semi-infinite integrals in the spatial domain Sommerfeld potentials,
Eqs. (7.74) and (7.75), have no closed-form solution and numerical evaluation, the
topic of this section, is required. In certain cases, however, approximate solutions
can be used, and one useful one in the present context is for the magnetic vector
potential Ax for the HED case. Equation (7.74) does not contain the TM pole, with
the result that the vector potential can be approximated by the vector potential
for the homogeneous region εr = 1. (Physically, the argument is that this is the
magnetic vector potential, which should not be much affected by thin dielectric
sheets.) In this case, the approximation is

4π

µ
Ax = e− jk0 R0

R0
− e− jk0 R1

R1
(7.82)

with R2
0 = ρ2 and R2

1 = ρ2 + (2d)2. The latter is of course the distance from the
image of the HED in the ground plane, and we recognize this expression as that
of a dipole and its (reversed) image. Although not generally valid, this is a useful
approximation, especially for thin substrates of moderate dielectric constant. Al-
though an approximation of the scalar potential is also available [1, Section 7.2],
it turns out to be far less useful in this case and will not be discussed here.

Before proceeding further, the very important point must be made that the tech-
niques to be discussed here emphasize simplicity, frequently exploiting knowledge
of the specific problem: for instance, we restrict the analysis to the case of a sin-
gle pole, and concentrate largely on the lossless substrate case. General-purpose
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programs using the Sommerfeld potentials have to handle potentially far more
complex problems, and research still continues on efficient and robust implemen-
tations.

A mathematical aside – integration on the complex plane

The Sommerfeld integrals involve integration on the complex plane, kρ = λ +
jν in the present context, or more usually z = x + iy in mathematical notation
which we will use in this brief note. A few refreshers might be useful here.
Firstly, a function f (z) is analytic (or regular) in a region of the complex plane
if it has a unique derivative at every point of the region. This is a far stronger
condition in the complex plane than on the real line, since an analytic function
has derivatives of all orders. (Many real functions have only derivatives to a
certain order.) The Cauchy–Riemann conditions can be used to test whether a
function is analytic in a region. A singularity is a point where f (z) is not an-
alytic; in the present context, it usually corresponds to an infinite value of the
function.

Cauchy’s theorem, and the resulting integral formula, are crucial: the theorem
states that on a closed contour a C :

∮

C
f (z) dz = 0

provided that the function is analytic on and inside C .
A very important consequence of this is that if C = C1 + C2, then∫

C1
f (z) dz = ∫

C2
f (z) dz. This is so important in the context of the

Sommerfeld potentials that it is worth reiterating: provided that the function is
analytic, different integration paths between two points in the complex plane
yield the same result.

Cauchy’s integral formula states that under the same limitations as above, the
value of f(z) at z = a, a inside C , is given by

f (a) = 1

2π i

∮

C

f (z)

z − a
dz

We usually apply this in reverse: for a function analytic except for a simple
pole at z = a, the above theorem permits us to evaluate the integral. Combined
with Laurent’s theorem, this produces the residue theorem, which states that for

aThere are some limitations on the form of C – it must not cross itself, and only a finite number of corners are
permitted.
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isolated singularities within C ,
∮

C
f (z) dz = 2π i�k Rk

where Rk are the residues of f (z) inside C . We will discuss finding the residues
subsequently.

7.5.2 Numerical integration in the spectral domain

The spatial domain Sommerfeld potentials, Eqs. (7.74) and (7.75), require inte-
gration over the real positive axis λ.3 We also note that since the integration is in
the complex plane, the theory of complex functions permits deformation of the
integration path, and a number of approaches avoid the pole(s), deforming the in-
tegral into the first quadrant. (The reason that the deformation takes this route is
as follows. As already noted, for a lossy dielectric, the pole lies below the real
axis, and the integration (along the real axis) lies above it. In the limit, as the loss
tends to zero, the integration path must remain above the pole.) However, the most
straightforward approach for the case of a simple pole is to to integrate along the
real positive axis and this is the approach discussed here. There are, however, two
points along the axis that require special care – the branch cut and the pole – and
an asymptotic case needing caution.

Firstly, at k = k0, the function u0 =
√

k2
ρ + k2

0 introduces a branch point. This is
due to the multi-valued nature of the complex valued square root function. Which
value to choose is mathematically described as the process of selecting the cor-
rect Riemann sheet. Fortunately, all we need note here is that we should choose
Re[u0] ≥ 0; since the integrand remains bounded at this point, we can integrate
straight through the branch point.

A mathematical aside – branch points and branch cuts

Branch points and cuts arise due to multi-valued functions in the complex plane.
The branch cut is used to demarcate “Riemann sheets,” which resolve the ambi-
guities. As a simpler example, consider f (z) = z1/2. Obviously, with z = Ceiθ ,
f (z) = √

Ceiθ/2. This is periodic, but with period 4π , and this is where the prob-
lems arise. For instance, consider θ = 3π/2 and θ = −π/2, the same point on
the complex plane. Now, the two solutions for f(z) are

√
Cei3π/4 and

√
Ceiπ/4,

clearly not the same point anymore.

3 Once again, readers are reminded that in this context, λ = Re[kρ ]. Since we will continue to use λ0 as the
free-space wavelength, the potential for confusion is present, but we follow the notation of the literature in this
context.
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Riemann sheets adopt some convention to resolve this ambiguity. In this case,
f (z) for −π < θ < π is associated with the “top” Riemann sheet, and f (z) for
π < θ < 3π with the “bottom” Riemann sheet. This is best illustrated as below:

Im[z]

Re[z]Re[ f ] = 0 A

B

Im[ f (z)]

Re[ f (z)]

Re[ f ] < 0 Re[ f ] > 0

A

B

Bottom

Riemann Sheet

Top

Riemann Sheet

The negative real axis forms the branch cut in the z-plane, which opens up to
define the boundary between the Riemann sheets in the f (z) plane. By alter-
nating between Riemann sheets, the function f (z) can be made continuous. For
instance, as one moves from θ = π− (on the top Riemann sheet) to θ = π+,
one must move onto the bottom Riemann sheet, which effectively resolves the
ambiguity of which value of

√−1 to choose, since we now know we must use
π+ and not −π− when evaluating the function with this convention. In this
case, there were only two Riemann sheets. Other multi-valued functions, such as
ln z, can have infinitely many values and require an infinite number of Riemann
sheets.

Which Riemann sheet one must work in the present context of Sommerfeld
integrals often requires physical arguments, such as the radiation condition. This,
and related issues, have caused many problems in the history of Sommerfeld
potentials, with incorrect choices having led to unphysical artifacts and much
debate in the literature. An extended discussion may be found in [8, 2.2].
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kρ = λ + jν

Branch cut

k0

x1

x2

k0
√

εr

Integration path C

Figure 7.3 Topology of the complex plane for a thin grounded substrate, showing the
branch cut, pole positions and the integration path C. For a lossless dielectric, the pole
is on the real axis (x1); when loss is present, it migrates into the fourth quadrant (x2).
(Adapted from [1, Fig. 5].)

The second point requiring attention is the pole, due to the TM surface wave.
This introduces a rapidly varying integrand. Here, we follow [1, Section 8] and in-
tegrate through the pole (which lies on the real positive axis in the case of a lossless
substrate), using a special method to extract the singularity which we will describe
shortly. Note that for the HED, and assuming that the inequality of Eq. (7.79)
holds (i.e. only the TM pole is present) it is only the scalar potential V which is
thus affected.

The final point which one must bear in mind is that the oscillating integrands
have an envelope which converges very slowly in the asymptotic case λ → ∞. All
these issues are summarized in Fig. 7.3.

In Fig. 7.4, the general properties of the function to be integrated are shown
for a rather thick substrate with relatively large dielectric contrast; this has been
done for clarity, to separate clearly the pole and the branch point, which in many
practical cases lie close to one another. This figure shows the integrand of the scalar
potential, Eq. (7.75), written in the following as:

V ( �ρ) = 1

2πε0

∫ ∞

0
F(λ) dλ (7.83)

F(λ) = J0(λρ) λ
u0 + u tanh ud

DTE DTM

= J0(λρ) f (λ) (7.84)

where we have used kρ = λ + jν since the integration is on the real axis.
It has been proposed [1, Section 8] that the real axis be split into three subin-

tervals, namely [0, k0], [k0, k0
√

εr ] and [k0
√

εr , ∞], and we will follow this
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Figure 7.4 Properties of integrand associated with the scalar potential V for an HED.
Parameters as for [1, Fig. 11]: ε′

r = 5; k0d = 0.2π ; k0ρ = 3; tan δ = 0.01. Note the omis-
sion of π in the expression for k0d [1].

approach here. We will investigate only the scalar potential V , since as mentioned
above, the vector potential does not contain the TM pole and can be approxi-
mated using Eq. (7.82) for the case we will study. In each region, we proceed as
follows.

Region 1 [0, k0]
No special care is needed in this region, since the function is well behaved, apart
from an infinite derivative at λ = k0. A change of variables λ = k0 cos t suffices
to make the function very smooth and easily integrated using standard procedures.
Hence, in region 1, the integral to evaluate numerically is:

∫ π/2

0
F(k0 cos t)k0 sin t dt (7.85)

Note that the minus sign present in the differential dλ = −k0 sin dt is cancelled by
the interchange of the lower and upper limits of integration required.

The numerical integration in this and all the remaining regions can be per-
formed in MATLAB using the quad function, which implements adaptive Simpson
quadrature. (Simpson quadrature, the classic numerical integration routine, fits a
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Figure 7.5 Detail of Fig. 7.4 in the region k0 ∈ [0.9k0, 1.4k0].

quadratic polynomial to the data points to be integrated; due to symmetry, it is
exact to third order. The adaptive variant recursively divides the intervals until the
difference between successive evaluations is less than some specified tolerance.)
Many other types of numerical integration are available and can be applied; see,
for instance, [9, Chapter 4] for an especially entertaining discussion.

Region 2 [k0, k0
√

εr ]
In this region, enlarged in Fig. 7.5, the singularity caused by the pole is clearly
present. Strictly speaking, with finite loss this is a numerical singularity (or a
quasi-singularity), since the pole is now slightly below the real axis and the value
of the function is not truly infinite at the pole; however, for practical situations
with low-loss substrates, the values are numerically so large that the effect is that
of a singularity; furthermore, for a lossless substrate, this is a true mathematical
singularity.

The approach used here is widely used for dealing with singular and quasi-
singular integrands in integral equations. To the integrand is added and subtracted
a function containing the singularity, whose integral can be evaluated analytically.
In this case, the following is a suitable function:

F(λ) = [
J0(λρ) f (λ) − Fsing

] + Fsing (7.86)
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where

Fsing = R

λ − (λp − jνp)
(7.87)

Here λp − jνp is the complex pole (with νp > 0) and R is the residue of the
integrand at the pole. (We will discuss how to compute this shortly.) To simplify
matters, we will limit ourselves to the case of a lossless substrate, hence the pole
is on the real axis at λ = λp; the extension to the low-loss case is moderately
straightforward, however. In this case, the integral in this region of the singular
function may be found as [1, Eq. (110)]4

Is =
∫ k0

√
ε′

r

k0

R

λ − λp
dλ = R ln

(
k0

√
ε′

r − λp

λp − k0

)
− jπ R (7.88)

It is worth noting that this is the sum of the principal value (or Cauchy principal
value) of the integral, and the contribution of the pole. (The principle value of a
singular integral avoids the singularity.) The result for lossy materials is useful
[1, Eq. (109)]

Is = R

2
ln

(
v2

p + (k0
√

ε′
r − λp)

2

v2
p + (k0 + λp)2

)
+ j R arctan

k0
√

ε′
r − λp

νp
+ j R arctan

λp − k0

νp

(7.89)

In Fig. 7.6, the original function F, the singular function Fsing and the dif-
ference function have been plotted. The last is clearly smooth and readily inte-
grated numerically. The smoothness has been enhanced by the change of variables
λ = k0 cosh t . The integral in this region is the sum of Is , the analytically inte-
grated singular function as above, and Id , the numerically integrated difference
function:5

Id =
∫ k0

√
ε′

r

k0

[
F(λ) − Fsing

]
dλ

=
∫ arccosh ε′

r

0

[
F(k0 cosh t) − Fsing(k0 cosh t)

]
k0 sinh t dt (7.90)

One point that should be mentioned here is that for λ = k0
√

ε′
r , u = 0, and the

coth ud term in DTE, in the denominator of the integrand, results in a zero at this

4 Note that this reference incorrectly includes the jπ R term, jπ P in their notation, on the left-hand side as well.
Alternatively, the integral on the left-hand side should be a principal value integral.

5 When performing the change of variables, recall that the derivative of cosh t is + sinh t!
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Figure 7.6 The original function (F), the singular function Fsing and the difference func-
tion, with the change of variables λ = k0 cosh t . All parameters as in Fig. 7.4, except that
tan δ = 0.

point. Attempting to evaluate this numerically is inadvisable, and the upper inte-
gration limit should be set fractionally below this value. (Since this is a zero and
not a pole, this simple remedy suffices.)

One final point requiring discussion is the evaluation of the residue. For a func-
tion of a complex variable z, with simple pole at z = z p, which is the case we have
here, the residue can be computed by multiplying the function by z − z p and eval-
uating the result at z = z p. It is instructive to attempt this numerically, as shown in
Fig. 7.7. The theoretical value is R = 15.1107; if the numerical result is interpo-
lated through the pole, one will obtain a value very close to this. The reason that
the curve in Fig. 7.7 exhibits a linear decay to zero in a small region around the
pole is no doubt due to numerical approximations made (by MATLAB, in this case)
when evaluating extremely large-valued functions.

The residue may be found rigorously noting that the integrand is of the form
g(z)/h(z), with h(z p) = 0, but h′(z p) �= 0 and g(z p) �= 0. In this case, the residue
may be computed from

R(z p) = g(z p)

h′(z p)
(7.91)
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Figure 7.7 Result of attempting to evaluate the residue at the pole numerically. Parameters
as in Fig. 7.6.

For the TM pole, the result is:

R(λp) = J0(λpρ)λp(u0 + u tanh ud)

DTM
d

dλ
DTE + DTE

d
dλ

DTM
(7.92)

with

d

dλ
DTE = λ

u0
+ λ

u
coth ud − λ d csch2ud (7.93)

d

dλ
DTM = εr

λ

u0
+ λ

u
tanh ud + λ d sech2ud (7.94)

In deriving this result, note that du/dλ = λ/u and du0/dλ = λ/u0.

Region 3 [k0
√

εr , ∞]
In this region, the function has no singularities or branch points, but contains a
slowly converging integrand, as shown in Fig. 7.8. To accelerate the convergence,
the static term

J0(λρ)

1 + εr
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Figure 7.8 The integrand in region 3, before and after subtraction of the static term.
Parameters as in Fig. 7.6.

is extracted. Beyond a certain point λ > λ′, the resulting integral is negligible.
Using the standard result (for example, [10, Eq. 24.92])

∫ ∞

0
J0(λρ) dλ = 1

ρ

one obtains
∫ ∞
√

ε′
r k0

F(λ) dλ ≈
∫ λ′

√
ε′

r k0

[
F(λ) − J0(λρ)

1 + εr

]
dλ

+ 1

ρ(1 + εr )
− 1

1 + εr

∫ √
ε′

r k0

0
J0(λρ) dλ (7.95)

The question of how large to set λ′ can be determined iteratively. The results to
be shown started with λ′ = 10k0; the resulting integral was evaluated, as well as
the integral with λ′ = 20k0. The difference, normalized by the integral in region 2,
between the integrals was then compared, and if too large, the procedure was re-
peated with the upper limits doubled. (The integral in region 2 is usually the largest
contributor to the integral, since it includes the contribution of the pole, and hence
was used to normalize this result.) This process is not especially robust, and more
sophisticated procedures are available [1, Section 8.2].
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Figure 7.9 Plot of DTM. Parameters as in Fig. 7.6.

7.5.3 Locating the pole

The position of the pole must of course be found with considerable accuracy for
the above process to work properly, in particular in region 2. An approximation of
its position has already been given in Eq. (7.80), but this is not sufficient for the
singularity extraction procedure. Finding the pole is equivalent to locating the roots
of DTM. In general, finding the roots of a non-linear function is a very challenging
problem, but in the case under consideration, the pole is known to be single, and
located on the real axis in the interval [k0,

√
ε′

r k0]. Furthermore, as Fig. 7.9 shows,
the function is purely real valued for λ > k0 (the branch point) and changes sign
in this interval [k0,

√
ε′

r k0]. A very simple algorithm, such as interval bisection,
yields the root easily. Interval bisection starts with an interval containing a root,
with the function having opposite signs at the interval limits. The function is then
evaluated at the midpoint of the interval, which then replaces whichever limit has
the same sign. This proceeds until the root is found with satisfactory precision.
Despite its simplicity, the algorithm is failsafe in the present case – since it will
always find at least one root, and there is only one. The method also converges
linearly which is more than sufficient. The algorithm is so simple as not to require
listing; details can be found in any book on numerical analysis, such as [9].

Slightly lossy materials can also be accommodated, although the root finder
must now work with complex values; fortunately, although DTM is now complex-
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valued in the search interval, the overall shape of the function remains very similar
to that of Fig. 7.9, and the imaginary part is small in the search interval.

Here we should comment that all the above holds only for the case of the single
pole. As soon as more than one pole is present, the pole finding becomes far more
complex. It is this type of complexity which makes robust, general-purpose codes
so time-consuming to develop. Further details may be found in [1].

7.5.4 General source locations

The above potentials all assume that the source is located at (x ′ = 0; y′ = 0),
i.e. ρ′ = 0. For sources at other locations, all that is required is to substitute
ρ = √

(x − x ′)2 + (y − y′)2. This is sometimes written as V (ρ|ρ′).

7.5.5 Some results for the Sommerfeld potentials

Now that the question of the integration of the potentials has been addressed, we
can turn our attention to the potentials themselves. Results are shown in Figs. 7.10
and 7.11, which illustrate the variation due to different substrate thicknesses; note
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Figure 7.10 The modulus of the normalized scalar potential for various normalized thick-
nesses as a function of normalized distance. εr = 10; b = 2k0d

√
εr − 1/π .
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Figure 7.11 The phase of the scalar potential for various normalized thicknesses as a func-
tion of normalized distance. εr = 10; b = 2k0d
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that the results all converge for very small distances; this is the quasi-static limit.
Figure 7.12 shows the effect of various dielectric constants. It is interesting to
note the “knee” which sets in at progressively smaller distances as the dielectric
constant increases; this corresponds to the transition from static to surface wave
behavior. It will be noted that the potential decays at a slower rate once the surface
wave sets in. It will also be noted that the surface wave is absent in the case of
εr = 1.01; this is essentially free space, which does not support a surface wave. (To
avoid problems in the routines used, a value slightly larger than unity was used.)
The effect of increasing dielectric constant has already been noted; for practical
antenna design, this means that high-εr substrates are likely to have more problems
with mutual coupling between array elements. The same effect is also present as
the substrate thickness is increased.

These results are very similar to [1, Figs. 19–21] and serve to validate the im-
plementation thus far.

7.6 MoM solution using the Sommerfeld potentials

Now that the potentials are available, the MoM discretization of the MPIE,
Eq. (7.78), can be undertaken. Before we do this, it is useful to identify a suitable
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Figure 7.12 Effect of the dielectric constant on the scalar potential. d/λ0 = 0.05.

problem. Although microstrip patch antennas6 are the dominant application of this
theory at present, they require a surface discretization, supporting vector currents
(that is, the basis function must be able to support both x̂- and ŷ-directed currents).
A printed dipole is a rather easier problem, since so long as the dipole is relatively
thin, the current flows essentially along the axis of the structure, much as for the
thin dipole in free space that we have already studied in Chapter 4. A printed dipole
is also easily simulated using a commercial code, such as FEKO.

With a suitable problem identified, various possibilities arise with the MoM.
Perhaps the most popular, especially for “do-it-yourself” research codes, have
been “rooftop” basis functions, defined on rectangular elements.7 More sophisti-
cated codes generally use the Rao–Wilton–Glisson element. For testing functions,
Galerkin procedures have been widely used; another popular option has been a
pulse-doublet testing function. Collocation techniques have also been used. We
will take the opportunity to do something a little different (although also used in
the literature), namely utilize entire domain basis functions. A very obvious one
here is a Fourier series expansion; for a symmetrically excited dipole (e.g. center
fed) only a cosine series is needed, and only the odd numbered terms.

6 Readers not familiar with this technology should note that some more background on these antennas is pre-
sented in Chapter 8.

7 The term patch instead of element is frequently encountered in the literature; the potential for confusion with
the patch antenna is obvious and hence element is used here.
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It is useful to develop the MoM equations from basic principles as another exam-
ple of the application of the method. Referring back to the mixed potential integral
equation, Eq. (7.78), repeated here, but with the last term dropped:

�z × �E inc = �z ×
[

jω
∫

S

¯̄G A · �JS d S′ + ∇
∫

S
GV qS d S′

]
(7.96)

the current is expanded as

�J ≈
N∑

m=1

αm �Fm (7.97)

From the continuity equation, the charge is therefore expanded as

qS ≈
N∑

m=1

αm
−∇ · �Fm

jω
(7.98)

Note that the basis functions are effectively scalar in this case.
Introducing testing functions Wn and carrying out the weighted residual process

as usual, we obtain:

�z ×
∫

S

�Wn · �E incd S = �z ×
N∑

m=1

αm

[
jω

∫

S

�Wn

∫

S

¯̄G A · �Fm d S′ d S

− 1

jω

∫

S

�Wn · ∇
∫

S
GV ∇′ · �Fm d S′ d S

]
(7.99)

One subtlety worth commenting on here is the manipulation of the second surface
integral on the right-hand side of the above equation. Using the vector identity
∇(a�b) = a∇ · �b + �b∇a, and identifying �b = �W and a as the inner integral, one
obtains

�z ×
∫

S

�Wn · ∇
∫

S
GV ∇ · �Fm d S′d S = �z ×

∫

S
∇

[
�Wn

∫

S
GV ∇′ · �Fm d S′

]
d S −

�z ×
∫

S
∇ · �Wn

∫

S
GV ∇′ · �Fm d S′d S

(7.100)

The first term on the right-hand side in the above may be eliminated by applying
a variant of the divergence theorem, known as the surface divergence theorem. For
an open surface S bounded by contour C , this states that for a vector function �f

∫

S
∇s · �f =

∮

C
m̂ · �f dC (7.101)
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with m̂ the unit vector normal to contour C , but tangential to surface S [11, p. 712].
∇s · is the divergence operator in the surface, and this is precisely what �z× selects.8

Note that unlike Stoke’s theorem, the contour integral in this case evaluates normal
fields on the boundary. Hence this term can be written in terms of a contour integral
of a quantity related to current, normal to the bounding contour. Since normally
directed current should go to zero at the edge of the dipole, this term is zero.
Strangely, few references on this topic explain this point.

The MPIE thus results in the standard MoM matrix equation [Z ]{I } = {V }. For
convenience, it is useful to split the impedance matrix in two

Zmn = amn + vmn (7.102)

with matrix and vector entries as follows:

amn = jω
∫

S

�Fm(ρ) ·
∫

S′
¯̄G A · �Fn d S′ d S

vmn = 1

jω

∫

S
∇ · �Fm(ρ) ·

∫

S′
GV ∇′ · �Fn d S′ d S

bm =
∫

S
Fm(ρ) · �E inc d S (7.103)

For the case of a thin printed dipole, we will make a number of assumptions
similar to those of our earlier work on the thin-wire dipole. It will be assumed
that the current flows only in the x̂-direction, and that the surface integrals can be
approximated as line integrals. In this case, the integral in the transverse direction,
ŷ, simply results in a constant W , present in both [Z ] and [V ], and thus cancelling.
Further, the equations (7.103) can be rewritten in scalar form. The result is the
following:

amn = jω
∫

�

Fm(x)

∫

�′
Ax (|x − x ′|)Fn(x ′) dx ′ dx

vmn = 1

jω

∫

�

∂

∂x ′ Fn(x ′)
∫

�′
V (|x − x ′|) ∂

∂x
Fn(x) dx ′ dx

bm =
∫

�

Fm(x)E inc
x dx (7.104)

As already mentioned, we intend using entire domain basis functions. In this
case, the source (primed coordinates) and field integrals are over the same domain,
namely the length of the wire. Assuming that we center the wire at the origin,

8 The surface divergence operator can be defined in terms of general curvilinear coordinates for curved surfaces,
but in the present case it is unnecessary.
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suitable entire domain basis functions are:

Fm = cos
(mπx

L

)
, m = 1, 3, . . . (7.105)

Note that by this choice, the current goes to zero at the ends of the wire (x =
±L/2) as required – for all the basis functions and hence also for their sum. With
the above geometrical assumptions and these basis functions, and noting that the
domain of integration is the same for both source and field points (the length of
the wire), the matrix entries become:

amn = jω
∫ L/2

−L/2
cos

(mπx

L

) ∫ L/2

−L/2
Ax (|x − x ′|) cos

(
nπx ′

L

)
dx ′ dx

vmn = 1

jω

mnπ2

L2

∫ L/2

−L/2
sin

(mπx

L

) ∫ L/2

−L/2
V (|x − x ′|) sin

(
nπx ′

L

)
dx ′ dx

bm =
∫ L/2

−L/2
cos

(mπx

L

)
E inc

x dx (7.106)

For the source, we will assume a very short feed section, of length �s. The
incident (impressed) electric field is thus Vs/�s , where Vs is the source voltage.
The result is that

bm ≈ Vs (7.107)

It is interesting to note that the same result is obtained by assuming an infinitely
thin Dirac delta source, with E inc

x = Vsδ(x).
The code can now be developed. The integration required must be performed

numerically. In this case, a simple trapezoidal scheme will suffice (implemented in
MATLAB as trapz). An issue which requires a little care is that of singularities;
both the vector and scalar potentials exhibit singularities at the origin. Fortunately,
the singularities are of low order – this is one of the appealing features of the MPIE.
The rigorous method for handling this extracts the singular component (which in
both cases is the static limit), integrates this analytically and the remaining part is
integrated numerically, in a fashion already applied in region 2 when evaluating the
scalar Sommerfeld potential. This works very well for subdomain MoM methods
and is relatively easy to implement, since it need only be applied to the “self”
term; unfortunately, with entire domain basis and testing functions, it is rather
more difficult to use. Because the singularity is of relatively low order, it can be
side-stepped numerically, by using integration points for the field and source point
integrals which are slightly offset from one another. If there are N equally spaced
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integration points � = L/N apart, instead of sampling at

x j = −L/2 + �/2 + �( j − 1)

(and similarly for x ′
k) one can use, for instance,

x j = −L/2 + �/3 + �( j − 1)

and

x ′
k = −L/2 + 2�/3 + �( j − 1)

which offsets the points by �/3.
To keep things simple, it will also be assumed that the substrate is thin enough

that the low-frequency approximation of the magnetic vector potential may be
used, namely Eq. (7.82).

One other issue which requires attention is computational efficiency. Usually,
the first implementation of a new method can be done with little regard for this.
However, the Sommerfeld potentials are sufficiently time consuming to evaluate
that if some thought is not given to this, even simple problems take far too long
to solve. Because of the dependence on wavenumber, the potentials are frequency
dependent, and nothing can be done about this. However, for a particular antenna
geometry at a specific frequency, the potentials are only a function of radial dis-
tance ρ (and in this one-dimensional case, |x − x ′|) and a widely used approach
is to pre-compute the potentials and use interpolation when constructing the MoM
matrices. This significantly reduces the time required to fill the impedance matrix.

Results for a MATLAB implementation are shown in Fig. 7.13. The printed
dipole has length L = 0.39λ0 and width W = 0.002λ0, with relative permittiv-
ity εr = 2.55, as in [12]. This dipole was designed as an element in a very large
array, with λ0 the free-space wavelength corresponding to the center frequency.
For this simulation, this was chosen as 10 GHz, well into the microwave band and
a typical frequency where microstrip is an attractive technology. (Because this is
a single element, one can expect the actual center frequency to differ from this
value; it turns out to be around 0.9 of the design value.) The substrate used in [12]
is very thick (although only the TM mode propagates), and the approximation of
the magnetic vector potential with its static value is insufficiently accurate, so the
simulation here used a thinner substrate, h = 0.12λ0 thick.

Figure 7.13 shows three results: one computed using FEKO (h/λ = 50 dis-
cretization), and two computed with a MATLAB code based on the formulation
developed here. The “coarse” result was computed using only 1 mode, with 32
integration points; the “fine” result used 5 modes and 128 integration points. The
reflection coefficient is computed in a Z0 = 50 � system. (It should be commented
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Figure 7.13 Reflection coefficient of a thin printed dipole.

that this antenna is not very well matched: the reason is that the substrate is not
thick enough to provide sufficient spacing between the antenna and its image in
the ground plane.) Improving the MoM model (the “fine” result) produces a value
for minimum S11 very similar to the FEKO result, although at a frequency some
8% higher.

This is not very accurate – certainly not sufficient for engineering design pur-
poses – but provides verification of our formulation and implementation. The aim
of this section has not been to develop an accurate engineering tool per se, but
rather to demonstrate the basic operation of the Sommerfeld approach and this
has been achieved. Nonetheless, there are various things one could to to improve
this scheme. Firstly, the magnetic vector potential should be implemented as a full
Sommerfeld integral, rather than approximated by its low-frequency value as at
present. Secondly, the integration scheme used in region 3 of the Sommerfeld inte-
gral would benefit from some refinement. Thirdly, the singularities in the MoM
impedance matrices should be properly addressed; a subdomain MoM scheme
might make this easier. We will not, however, pursue this here. There are suffi-
cient problems remaining in this field that entire books can (and have) been writ-
ten on this topic. Instead, we turn our attention in the next chapter to the use of
a commercial package which has a very comprehensive implementation of this
theory [13].
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Coding hints – coping with complexity

The implementation of the Sommerfeld formulation discussed here is one of
the most complex coding tasks in this book. The author’s implementation used
one main MATLAB m-file and some nine or ten functions, each of course in its
own file. The total code ran to around 300 lines of MATLAB. This sounds quite
modest, but MATLAB is particularly terse due to the vector nature of much of
the code, implicit typing and high-level functions available (e.g. matrix solution,
Bessel functions), so this would probably run to several thousand lines of code
in languages such as FORTRAN, C, C++ or Java. How does one cope with the
complexity that this brings? Here are some tips gleaned from twenty years of
coding.

• Firstly, start modestly. Do not try to develop a general-purpose program from the
start – unless of course this is one’s job description. (Even then, one would be advised
to code a simple implementation first, to learn the basics of the method if one is not
familiar with it.) Writing general-purpose software is astonishingly difficult and time
consuming, which is why good CEM software is not cheap.

• Secondly, use existing packages where possible. Writing an LU factorization routine
is really unnecessary: there are industrial strength routines available in the excellent
public domain LAPACK suite. Evaluating special functions is also more complex
than it appears; books such as [9] offer routinesa for Bessel functions, root finding
etc.

• Thirdly, use a proper scientific programming environment. Writing one’s own code
for complex numbers is absurd – find an environment which supports this, or at least
has proper libraries. Life is too short to code a + jb! By and large, computer sci-
entists appear to prefer to ignore complex numbers, and it usually takes some time
for whatever the latest fashionable programming language is to include this. This re-
mains one of the strengths of FORTRAN – complex numbers are a built-in datatype.
MATLAB is especially suited for the type of development discussed in this book, due to
the very large number of high-level routines available, excellent support for complex
numbers, and ease of graphing. For CEM coding, systematic, disciplined and modu-
lar work usually leads to far better code than supposedly state-of-the-art advances in
languages.

• Fourthly, modularity is a key to successful code development. Whilst languages such
as C++ have taken this concept much further with object orientation, the basic idea
of this is common sense: test sections of the code independently as far as possible. It
is much easier to locate the problem in the evaluation of, for instance, the scalar Green
function in region 2 when this is implemented and tested separately, than to track this
down as part of a complex code.

aBe warned that these are not public domain codes.
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• Fifthly, debug intelligently. This is best discussed by anecdote. The key question is:
what are the symptoms of the bug? Two which caused problems in the present case
were: evaluation of a special function at a singular point (fortunately, MATLAB warns
of this, and then it was just a question of locating the specific call and value of the
argument); and overlooking the factor 2 in R2

1 = ρ2 + (2d)2 in Eq. (7.82). The symp-
toms in the latter case were an incorrect reactance, which was traced to incorrect [Z ]
elements; since the contributions from the scalar potential had already been validated,
the error probably lay in the vector potential, and thus the bug was located. This lat-
ter case is an example of a strange phenomenon of bugs: they are frequently located
in some part of the code which should be very simple. Perhaps it is human nature
to concentrate on the hard tasks and pay insufficient attention to the straightforward
ones?

• Finally, validate your code carefully. This is very important, and we have emphasized
this on several occasions.

7.7 Further reading

The development in this chapter is largely based on that of Mosig [1]. A similar,
although not quite as comprehensive, treatment may be found in [14], and most
of the key equations are also available in this source. Both of these contain quite
extensive lists of references for further reading. For the specific development of an
MoM code for microstrip antennas using the Sommerfeld potentials, these are the
key references, containing a wealth of detail of implementation issues. Another
contemporary publication was the monograph by Hansen [15]; this is somewhat
more general in scope, addressing not just microstrip structures, but also compu-
tational issues in detail.

The formulation as discussed in this chapter addressed only single-layer
grounded lossy dielectrics. It can be be extended to include multi-layer substrates
and superstrates, with conductors of finite conductivity, so complex microstrip an-
tenna arrays can be accurately modelled; details may be found in [1, 14]. (The
half-space problem can also of course be addressed – this was the subject of
Sommerfeld’s original investigations.) Microstrip antennas can be fed via feed
pins, side feeds, or aperture coupling; the first two are readily implemented within
the electric field MPIE MoM as in this chapter. It is possible to extend the formu-
lation to include magnetic currents as well, which permits aperture coupling to be
modelled efficiently.

For other, more general, treatments of stratified media, Chew’s work is par-
ticularly lucid [8]. Chew takes a slightly different approach, developing the
Sommerfeld integral as a sum (spectrum) of cylindrical waves, and using plane-
wave theory to handle stacked layers. His treatment is oriented more at buried
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antennas (or scatterers) than microstrip structures, reflecting a geophysical back-
ground. Ishimaru and Kong both provide coverage of these stratified media in their
textbooks [16, 17]. (The transmission matrix formulation widely used for multi-
layered media was formulated by Kong in an earlier book.) The latter is especially
concise, perhaps too much so for introductory reading. Again, the emphasis is on
half-space problems rather than microstrip structures. None of these references
considers the numerical evaluation of the integrals in any detail.

Work continues to be published on quite fundamental issues on this topic. Work
on wires penetrating interfaces between different media was published by Burke
and Miller [18] and was implemented in NEC-3 and NEC-4. An important general-
ization of this was Michalski and Zheng’s work [19, 20], which permitted arbitrary
conducting objects to penetrate the interfaces between dielectrics, using the RWG
basis functions for the surface discretization. A very comprehensive invited review
paper by Michalski on handling the “tails” of Sommerfeld integrals appeared quite
recently [21]. Improved methods for efficient evaluation of the functions also con-
tinue to appear [22]. Some aspects of the extension of the MPIE discussed in this
chapter to problems involving both electric and magnetic surface currents are dis-
cussed in [23]; an attractive feature of this treatment is that it permits very efficient
modelling of slots in ground planes.
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8

The method of moments and stratified media: practical
applications of a commercial code

8.1 Printed antenna and microstrip technology: a brief review

Microstrip patch antennas are an example of a large class of modern antennas
known as “printed antennas.” Microstrip was originally developed in the early
1950s as a transmission line, and the first publication on using this structure as
a radiator appears to have been by Deschamp in 1953 [1, Section 1.1]. Almost
twenty years then passed until the first patent of the modern microstrip antenna
was registered in 1973 by Munson, although the structure was independently dis-
covered in at least one other location.1

Microstrip antennas are generally constructed using the same photo lithographic
process using to create printed circuit boards. In their simplest form, radiation is
due primarily to energy leaking out of the cavity formed by the patch located close
to a ground plane; physically, the patch is simply a very wide microstrip line.
For the basic rectangular patch, the radiation from two opposite sides reinforces,
whereas that from the other two sides cancels. The patch is usually supported on
a dielectric substrate of some form, primarily for structural reasons. Typical ma-
terials are Teflon and glass-reinforced plastics, as used in printed circuit board
technology. Typical material properties for these are εr in the range from 2–2.5,
and tan δ from 0.0004–0.002. High-εr substrates such as alumina ceramics produce
physically small patches, but with very limited bandwidth. Typical material prop-
erties in this case are: εr 9.7–10.3, tan δ ≈ 0.0004. For some applications, plastic
foam substrates have been used. These materials (sometimes using cheap materials
such as expanded polystyrene tiles) have properties close to free space: εr ≈ 1.05,
and tan δ ≈ 0.0008.

1 In 1972, at the National Institute for Defence Research, Council for Scientific and Industrial Research, Pretoria,
South Africa. Unfortunately, the only references are internal classified memoranda and reports by C. A. van
der Neut and A. Dubbelman.
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Popular shapes are the original rectangular shape, which is still the most com-
mon, as well as square and circular patches. Patches are usually fed either from the
side, typically using a microstrip line, or from below, using either a feed pin (usu-
ally the center pin of a coaxial cable) or aperture coupling. It is particularly easy
to manufacture arrays using this technology (compared with wire antennas, for
instance), since the corporate feed network can share the same substrate as the an-
tenna. High-performance antennas usually split the feed network and the antenna
onto two separate layers, to improve bandwidth and minimize unwanted radiation
from the feed network. Even these are far easier to manufacture than a waveguide
or wire array.

The main advantages of the technology are the following: it can be readily in-
tegrated with microwave circuitry; the antennas are flat, and can be conformed
to surfaces, since the substrates can be moderately flexible; and it is at least po-
tentially cheap, although high-quality substrates are not. The main drawbacks are
limited bandwidth and power-handling capability. The former is the more serious
problem in most applications and extensive research has focussed on the use of
more complex geometries (doubled-stacked patches, for instance) in an attempt to
increase this.

To read more about this class of antennas, the very comprehensive introductory
discussion in [2, Chapter 14] can be recommended. Coverage is also available in
[3, Section 5.8]. For serious designers, [1] is essential reading.

Figure 8.1 FEKO model of a rectangular patch antenna on a grounded substrate at λd/15
discretization.
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8.2 A single patch antenna

In this example, a simple patch antenna is analyzed. The antenna is fed from be-
low using an offset “feed pin” – this a quite typical arrangement. The offset is
used to obtain matching; the patch has its highest impedance at the edges, and
lowest impedance in the middle. A rectangular patch will exhibit two orthogo-
nal resonances, at frequencies where the length or width corresponds to ≈0.48λd

(λd = √
εr λ0 is the wavelength in the substrate dielectric). In this case, the feed

is offset in the x-direction, so the relevant resonance should be expected at about
λ0 ≈ √

εr 2.08 · 31.18 mm, i.e. around 3.1 GHz. The geometry is illustrated in
Fig. 8.1. It was generated using FEKO and is based on one of the examples shipped
with the code.

Modelling hints – microstrip antennas

The PREFEKO model is shown in Fig. 8.2. A few points in this file require
comment. Firstly, the feed pin must contact a node on the triangular mesh of the
patch. This problem has been encountered before; the solution is explicitly to
introduce a node on the patch at this point. (Once again, we comment that this is
quite a general issue with MoM codes.) Half the patch is then generated using a
triangle and a quadrilateral both of which include this feed pin node; the entire
patch is then obtained by imaging in the y = 0 plane as usual (the feed pin lies
on this plane of symmetry).

The properties of the substrate are defined using the GF card. Here, we use
the planar multi-layer option 10, for a grounded single dielectric substrate. The
other parameters are comprehensively described in the FEKO manual and do not
require further comment.

Results for the reflection coefficient of the patch are given in Fig. 8.3, showing
computations for both λd/15 and λd/25. (In Chapter 3, the antenna was also ana-
lyzed using the FDTD, and it was noted that the resonance was just under 3 GHz
for a converged solution.) The antenna is well matched at 2.97 GHz. Compared to
our simple estimate above, this is an error of around 4%, but it should be empha-
sized that that was a very crude approximation. The −10 dB impedance bandwidth
is about 100 MHz, or 3%. A simple formula for the bandwidth of microstrip anten-
nas predicts a bandwidth of around h/λ0, which corresponds well with this result
for this h = 2.87 mm thick substrate at λ0 ≈ 100 mm.

8.3 Mutual coupling between microstrip antennas

In a number of practical applications, radiating antennas are located sufficiently
close to one another that significant amounts of energy couple between antennas.
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** Example30a: A rectangular patch antenna on a dielectric substrate with

** a metallic ground plane (wire pin feed)

** Scaling factor since all dimensions below in mm

SF 1 0.001

** Dimensions of the patch

#len_x = 31.18

#len_y = 46.75

** Feed location and wire diameter

#feed_x = 8.9

#diam = 1.3

** Substrate parameters

#h = 2.87 ** Height

#epsr = 2.2 ** Relative permittivity

** Frequency (for the discretisation)

#freq = 3.0e9

#lam = 1000 * #c0 / #freq / sqrt(#epsr) ** Wavelength in mm

** Segmentation parameters

IP #diam/2 #lam/15 #lam/15

** Generate one quarter of the structure

** Define the points

#x = #len_x - #feed_x

DP A -#feed_x 0.0 0.0

DP B #x 0.0 0.0

DP C #x #len_y/2 0.0

DP D 0.0 0.0 0.0

DP E -#feed_x #len_y/2 0.0

DP N 0.0 0.0 -#h

** Patch

BT D B C

BQ D C E A

** Symmetry to create the full structure

SY 1 0 3 0

** Feed wire with label 1

LA 1

BL N D

** End of geometry

EG 1 0 0 0 0

** Substrate (with groundplane)

GF 10 1 0 1.0 1.0

#h #epsr 1.0

** Voltage source at feed point

A2 1 -1 1.0 0.0 0.0 0.0 -#h

** Frequency loop in order to compute the impedance

FR 17 0 2.8e9 3.2e9

** Change the line above as shown below to run with FEKO LITE

** FR 10 0 2.8e9 3.2e9

** Just compute the impedance, no output of surface currents

OS 0

** Far-field pattern at centre frequency

FR 1 0 3.0e9

FF 1 73 1 1 0 0 5

FF 1 73 1 1 0 90 5

** End

EN

Figure 8.2 PREFEKO file for the rectangular microstrip patch.
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Figure 8.3 Reflection coefficient of the rectangular patch antenna for two discretizations.

This is known as mutual coupling.2 In a typical antenna array, this is an important
parameter to establish, since it determines the active impedance – also known as
the driving point impedance. This is the impedance at each port of the antenna,
taking into account mutual coupling from all the other antennas. In a simple two-
element array, the formula is:

Za ≡ V1

I1
= Z11 + Z12

I2

I1
(8.1)

If both elements are fed with equal amplitude and phase excitations (i.e. I2 = I1),
the mutual coupling term Z12 adds to the self-impedance term Z12. Alternatively,
if the antennas are not part of an array, but connected to different RF systems,
mutual coupling can result in undesired energy leaking between the systems. This
leads into the field of radiated EMC.

Mutual coupling, in terms of voltage (or power) transfer, is complicated by pos-
sible mismatches at both transmitter and receiver. The general formula is quite
complex, but if both antennas are well matched (in the same Z0) then S12 (or S21,
which is identical in reciprocal systems) is the voltage transfer ratio. This can be

2 Mutual coupling is used for two related, but not identical, physical parameters. In the one case, it refers to the
mutual impedance or admittance. In the other, it refers to the energy coupled from one port to another. The
specific usage is usually clear from the context.
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seen from

V −
1 = S11V +

1 + S12V +
2 = S12V +

2 |S11=0 (8.2)

Since microstrip patch antennas are frequently used in an array, it is an inter-
esting exercise to compute the mutual coupling. We are fortunate in that good
measured data are available [4]. Jedlicka et al. measured the mutual coupling be-
tween two patch antennas in both the E-plane (radiating edges adjacent) and the
H -plane (non-radiating edges adjacent). The former results in far stronger cou-
pling than the latter, so we will compute E-plane coupling. The elements were
L = 10.57 cm (radiating edge) × W = 6.55 cm rectangular patch antennas. The
substrate thickness was 0.1575 cm, with εR = 2.5. The loss parameter tan δ was
not specified, and we will assume it was negligible. The measured resonance fre-
quency was 1.410 GHz. The patches were pin fed. The feed point impedance at the
edge of a patch is quite high, and can be reduced by moving the pin a distance x0

from the edge. This feed-pin offset was not specified in the original article, but can
be computed as follows. The maximum resistance is approximated by Munson’s
value:

Rm ≈ 60λ0/W (8.3)

and the input resistance at feed point position x0 in from the patch edge is

R∈ ≈ Rm cos2
(πx0

L

)
(8.4)

For this patch, Rm ≈ 195 � and x0/L ≈ 0.33 for a 50 � match. Since this is an
approximate value, some fine-tuning is necessary with the simulation package to
establish the optimal x0/L as about 0.31. This produces a resonant frequency of
fr = 1.425 GHz, around 1% higher than the measured center frequency. Such dif-
ferences are very common for narrowband structures; the most probable source
of error is uncertainty of the exact value of εR , which is usually easily of this
order unless very high quality (and hence expensive) substrates are used. Fig-
ure 8.4 shows the computed reflection coefficient. Results are given for both the
isolated element case here, as well as the array case, with another patch one wave-
length away (terminated in a matched load). As before, the predicted bandwidth
of around 0.7% agrees quite well with the computed −10 dB bandwidth of just
under 1%.

With the design of the basic patch finalized, the patch is replicated to generate
another patch (Fig. 8.5).
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Figure 8.4 Reflection coefficient of the rectangular patch antenna in [4].

Figure 8.5 FEKO model of the two-element rectangular patch antenna array as in [4], for
1λ spacing. Only the patches are shown.
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Modelling hints

As can be appreciated from the preceding material on the Sommerfeld poten-
tials, the computational cost of this formulation is quite high. Symmetry should
be exploited as far as possible to reduce this. For this E-plane coupling prob-
lem, there is a plane of magnetic symmetry in the plane containing the feed pins.
Note that many codes support both geometrical modelling, which is largely a
modelling aid, and does not usually significantly reduce computational cost,a

as well as field (electric or magnetic) symmetry, which does. For this example,
using symmetry correctly reduced the number of unknowns and the memory re-
quired by a quarter. Unfortunately, the H -plane coupling has no field symmetry,
since the feed pin is offset in this plane.

Most simulation packages have the ability to copy parts of the geometrical
model. In FEKO, this is done using the translate geometry facility.

aAn exception is the present case of the Sommerfeld potentials, where using geometrical symmetry can speed
up the matrix fill significantly.

Computing the mutual coupling is a little tedious; one specifies the inter-element
spacing, runs the code at fr , extracts S12 and then repeats the process for the next
spacing. Results computed using FEKO with a λ0/15 discretization are given in
Fig. 8.6. (Note that the distance referred to here (and throughout this section) is the
distance between adjacent edges, as in [4], rather than the inter-element spacing of
array theory.) A convergence check was performed on the D = 0.2λ0 case using a
λ0/25 mesh which confirmed that λ0/15 is quite adequate. There are differences
between the measured and computed data, at most around 2 dB, but this is to be
expected. One reason for this discrepancy is the sensitive nature of this parame-
ter. Figure 8.7 shows S21 as a function of frequency; clearly, very small changes
in frequency can easily result in the type of discrepancy noted in Fig. 8.6, in ei-
ther measurement or computation. Another possibility is the experimental setup,
whereby dielectric spacers were inserted as the inter-element spacing increased;
this is clearly only an approximation of a continuous substrate. Finally, data for
the same problem computed by Mosig et al. [5, Fig. 8.27] also show differences
of a similar type between measured and computed data, although in their case the
agreement is better in some places and worse in others compared with our sim-
ulation. Their code used entire domain basis functions, so the numerical results
cannot be expected to be identical.

For typical narrowband broadside patch array designs, the mutual coupling lev-
els are relatively small, as we have seen, and may be neglected, a result which
rather surprised antenna designers – who were used to the much higher levels of
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Figure 8.6 S12 for the rectangular patch antennas in the text. Measured data from [4].
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Figure 8.7 E-plane mutual coupling between two patches, one wavelength apart, showing
strong frequency dependence.
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mutual coupling in wire or slotted waveguide arrays – when microstrip patch ar-
rays were first developed [6, p. 270]. This is not however true of arrays using thick
substrates and/or high dielectric constants, since surface waves can be strongly ex-
cited, resulting in higher levels of coupling. It is also not true of phase scanned
arrays, the topic of the next section.

8.4 An array with “scan blindness”

The elementary theory of phased arrays can be found in almost any book on an-
tennas. By adjusting the relative phase between array elements, the position of
the main lobe (and of course the side lobes) can be moved; if the phasing can be
changed (either manually or electronically) the beam can be “steered.” Phased ar-
rays, as such antennas are called, were a crucial defense technology throughout
the Cold War, with one of the most dramatic examples of the technology being
the DEWS (Distant Early Warning System) radars deployed by the USA to warn
of ICBM attack. More recently, “smart” antennas also exploit this effect, although
usually to move nulls to cancel undesired signal sources rather than position main
beams to detect targets.

In practice, however, arrays can exhibit an effect called “scan blindness,” which
few textbooks discuss, [3, p. 470] being an exception, since the effect is not pre-
dicted by simple antenna theory. Scan blindness occurs at a specific angle (or
angles), and at this angle the antenna becomes extremely badly matched, radiat-
ing essentially no energy. Different types of arrays can suffer from this, including
waveguide and wire arrays, and also printed arrays such as microstrip patch arrays.
The common factor in the scan blindness phenomenon is a structure near or on the
array face capable of supporting a slow wave; a slow wave is one whose phase
velocity is much less than the velocity of light. (Classic examples are helices, cor-
rugated surfaces and grounded dielectric slabs.) TM and TE surface waves have
already been discussed, so it is not surprising that microstrip arrays can suffer
from this. For printed antennas, two papers by Pozar and Schaubert [7, 8] are the
key references, with a comprehensive exposition of the problem supported by re-
sults computed using one of the earlier MoM codes able to handle this type of
antenna.

Strictly speaking, scan blindness only occurs in infinite arrays, but in sufficiently
large finite arrays, the effect in practice is the same: a very poorly matched antenna
which hardly radiates. It is possible to formulate the problem in the spectral domain
to produce an infinite array [7, 8], but most commercial codes cannot do this. To
demonstrate the effect, we will study a large array of thin printed strip dipoles.
We use this structure, rather than patches, to permit a larger array to be simulated.
Symmetry should also be used as far as possible to increase the effective array size;
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Figure 8.8 256 element printed dipole array.

unfortunately, the phasing of the feeds required to scan the array limits the use of
symmetry.

An example of an array produced in FEKO is shown in Fig. 8.8. Each element
is a strip dipole, length L = 0.39λ0 and width W = 0.002λ0, with substrate thick-
ness h = 0.19λ0 and relative permittivity εR = 2.55, as in [7].

Modelling hints – generating a large array

Generating the array can be an exercise in programming; in FEKO, perhaps the
simplest approach is to use two nested FOR loops, the inner loop generating the
dipoles in the E-plane, the outer loop generating “lines” of these dipoles. The
key loops are shown in Fig. 8.9; the variable #a is the inter-element spacing, and
#N is the square root of the number of elements – the array is square. Similar
ideas could also be used in other simulation packages supporting some form of
scripting.

It is interesting firstly to study the effect of the array environment on the element.
The concept of active impedance has already been introduced in Eq. (8.1) for two-
element arrays. For an N element array, the active impedance of element i is

Zai ≡ Vi

Ii
= Zii +

N , j �=i∑
j=1

Zi j
I j

Ii
(8.5)



282 The MoM and stratified media: applications

.

.

.

#yc = #a/2

!! FOR #j = 1 to #N/2 ** Outer loop

#xc = (-#N+1)/2*#a

!! FOR #i = 1 to #N ** Inner loop

#lb = (2*#N)*(#j-1)+2*#i-1

** Generate the strip dipole antenna

DP A #xc #yc-#w/2 #h

DP B #xc+#L/2 #yc-#w/2 #h

DP C #xc+#L/2 #yc+#w/2 #h

DP D #xc #yc+#w/2 #h

LA #lb

BP A B C D

DP E #xc #yc-#w/2 #h

DP F #xc-#L/2 #yc-#w/2 #h

DP G #xc-#L/2 #yc+#w/2 #h

DP H #xc #yc+#w/2 #h

LA #lb+1

BP E F G H

#xc = #xc+#a

!!NEXT

#yc = #yc+#a

!!NEXT

SY 1 0 3 0 #Nˆ2

.

.

.

** Set up array feeds.

!! FOR #k = 0 to 10 ** Start of phase angle loop

#thet = RAD(0+#k*5) ** scan angle theta in radians

#delfz = #k_0 * #a * sin(#thet)

#lb1 = 1

#lb2 = 2

** Impose progressive phase shift in voltage in E-plane (phi=zero)

!! FOR #j = 1 to #N ** Outer loop

#phs = 0 ** re-set phase to zero for each constant-y iteration

!! FOR #i = 1 to #N ** Inner loop

!!IF (#j = 1) and (#i=1) THEN

** This is the first feed point, new feed (to zero all others).

AE 0 #lb1 #lb2 0 1.0 DEG(#phs) 75

!!ELSE

** Additional feedpoints - add to sources.

AE 1 #lb1 #lb2 0 1.0 DEG(#phs) 75

!!ENDIF

#phs = #phs + #delfz

#lb1 = #lb1+2

#lb2 = #lb2+2

!! NEXT

!! NEXT

Figure 8.9 Key components of the PREFEKO file used to generate the printed dipole array.
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Figure 8.10 Reflection coefficient (in a Z0 = 75 � system) versus frequency for both an
isolated element and a central element in a 16 element array.

When array feeds are used, this is the impedance automatically computed by
codes such as FEKO – although it is not explicitly called the active impedance.
In Fig. 8.10, the reflection coefficient of an isolated element is compared with that
of an element in the center of a 16 element array. (The elements were discretized
at around λ0/50 for this figure.) Note that the resonance frequency moves upwards
by around 10% due to the array enviroment. To compute this result, voltages of
the same magnitude and phase were applied to each element. Note that this does
not guarantee a uniformly illuminated array! The reason is that it is the currents
which determine the radiation pattern, and since the active impedance differs from
element to element, so does the resulting current.

Now, the effect of scan angle can be determined. For an m × n array of sources,
to scan a beam an angle θs, φs off broadside requires that the m, nth source should
be phased as

e jk0(ma sin θs cos φs+nb sin θs sin φs) (8.6)

This assumes that the array axes are aligned with the x- and y-axes, as in Fig. 8.8,
and that the spacing along these axes is a and b respectively. For reasons discussed
in detail in [7], only the E-plane scan (the x–z plane in Fig. 8.8, i.e. φ = 0) exhibits
scan blindness, and our simulation will only investigate this plane of scan. We also
assume that the inter-element spacings are equal in both planes, that is, a = b.
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Figure 8.11 Reflection coefficient versus scan angle for a 256 element array and an infinite
array; the latter data are from [7].

Hence the progressive phase advance (or delay) to add to each element in this
plane is

� = k0a sin θs (8.7)

No progressive phase shift is required in the other plane.
The results of a simulation of a 256 element array are shown in Fig. 8.11. The

inter-element spacing is a = 0.5λ0 in both planes. Except where mentioned, the
substrate was assumed lossless. These results were computed using a λ0/25 dis-
cretization, which gave acceptable accuracy. For comparison, results computed us-
ing an infinite array code [7] are also plotted. The agreement is suprisingly good,
and demonstrates how scan blindness can impact on a finite antenna which is of
a quite practical size. (Although not shown, an 8 × 8 array gives a similar result,
although the reflection coefficient peak is somewhat lower.) Note that, as in [7], all
reflection coefficients for this array are referred to a Z0 = 75 � system.

Radiation patterns for scan angles of 40◦, 45◦ and 50◦ for this 256 element
array are shown in Fig. 8.12. (The phasing actually produces a scan angle of −40◦,
−45◦ and −50◦; we note this and do not mention it again.) For this computation,
a small amount of loss was added to the substrate; tan δ = 0.002 was used, which
is representative of a good low-loss Teflon-fiberglass substrate. Figure 8.12 plots
gain, so substrate loss is taken into account; it is clear that the array works very
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Figure 8.12 E-plane radiation patterns for scan angles of 40◦, 45◦ and 50◦, showing scan
blindness at 45◦.

poorly at θs = 45◦. In reality, the situation is even worse, since the gain G does not
take into account the mismatch loss (1 − |	|2) which the antenna presents to the
source. The literature on antennas does not seem to adopt a consistent approach to
incorporating this effect; some authors [2] incorporate it into antenna efficiency.
The product of G(1 − |	|2) is also sometimes referred to as realized gain. At the
blind scan angle, 	 ≈ 1 so the product G(1 − |	|2) is almost zero. At θs = 50◦,
the pattern has improved again, although the peak gain is not quite as large as at
40◦. The reason for this is no doubt that the magnitudes and phases of the element
currents on the outside of the array differ significantly from those of the central
elements due to the different active impedances, and this effect becomes more
pronounced as the scan angle increases off broadside.

Modelling hints – array feeds

When modelling an array, the feeds need to imposed. Most MoM codes permit
a number of sources to be used. Most sources are essentially impressed volt-
age feeds: a voltage is specified at each feed point – or port in network theory.
The code then computes the resulting current, and from this, the impedance at
the port. Multiple feeds simply augment the right-hand side (or forcing) vector
{V } of the generalized MoM impedance matrix [Z ]{I } = {V }. Note that active
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impedance calculations, unlike mutual power coupling ones, are not affected by
the terminating impedance(s) at the other ports.

If some type of loop structure is used to apply feeds – for instance, for different
scan angles – it is very important to ensure that all the previous feeds are zeroed.
How this is done varies from code to code; in FEKO, one tags the first source as
a new source and the code zeros all previous ones.

Modelling hints – a useful equivalence for strip dipoles

A strip dipole is often very thin in comparison to its length, and currents are thus
essentially constrained to flow along its length in much the same way as with
a wire dipole. In this case, it is possible to model a strip as a thin dipole. For a
strip width W , the equivalent wire radius a to use is a = W/4 [3]. In the case just
discussed, we chose to model the strip with surface patches, but using equivalent
dipoles would be an option worth pursuing.

8.5 A concluding discussion of stratified media formulations

The printed dipole array example concludes this chapter on the practical applica-
tion of Sommerfeld potentials. Before leaving this topic, it is worth briefly men-
tioning the issue of memory requirements and run-times. For the former, there
is little overhead when using the Sommerfeld formulation, since the memory re-
quirement is still dominated by the matrix storage, which remains N 2, with N
the number of unknowns. For the 256 element array, the FEKO simulation with
h/λ0 = 1/25 had 4864 basis functions, but the use of symmetry resulted in only
2432 unknowns. This required around 183 MB of RAM to store. The statistics for
run-time are interesting: this is a moderately large problem in MoM terms, and in
a free-space environment one would expect the matrix solution time to start dom-
inating the run-time. In this case, however, using the Sommerfeld potentials, the
time required to compute the impedance matrix elements exceeded the time re-
quired to solve the linear system by a factor of around fifteen.3 By comparison, for
a free-space problem with the same number of unknowns (and the same memory
requirement), the ratio was around two and a half. Note that we are comparing run-
times for problems with the same number of unknowns, to get an idea of the cost of
the Sommerfeld potentials compared to the free-space Green function. This is not
equivalent to running the simulation with a grounded substrate with εR = 1, i.e.
vacuum. In this case, one needs to image the patches and the feeds in the ground

3 Actual “wall clock” run-times are so dependent on computer technology that, in common with much of this
book, we prefer to use ratios where possible.
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plane, using symmetry, so the equivalent problem will have more unknowns.
Hence for the same physical problem of a grounded “dielectric” (actually vacuum)
slab, the Sommerfeld formulation is actually little more costly.4 Of course, this
is not relevant in practice, since most substrates have dielectric constants signifi-
cantly larger than unity, and there is no alternative but the Sommerfeld approach.

Summarizing the development in this and the preceding chapter, stratified media
MoM formulations are theoretically complex, challenging to implement but poten-
tially very efficient. This is largely due to only the metallic regions of the antenna
(wire, patch, feed network etc.) being discretized – hence quite large microstrip an-
tennas can be modelled. In the context of RF and microwave engineering, the most
important contemporary application of this theory is to printed antenna technology,
of which microstrip is the most commercially important type, and our examples
have concentrated on this technoloqy. Historically, terrestrial broadcasting, espe-
cially LF, MF and HF was another important application – indeed, this prompted
Sommerfeld’s original work – but with the exception of some specialized mili-
tary systems, this is hardly a dominant technology at present. Subsurface imaging
is another significant contemporary application; however, real grounds are not al-
ways well stratified, and even if so, the stratifications may not be parallel with the
ground–air interface.

In concluding this chapter, some final points should be noted. Firstly, the
Sommerfeld–MoM assumes an infinitely large substrate on a similarly infinite
ground plane. Hence, such MoM programs do not provide any information
about the effects of finite substrates/grounds. Also, many programs based on the
Sommerfeld potentials are not truly general purpose. There are theoretical reasons
for this: the near-fields are typically obtained via interpolation tables, the far-fields
via asymptotic integrals, which may neglect some terms. Using such a program,
especially for fields very close to interfaces, may result in anomalies; see for exam-
ple [9]. However, for the purpose most commercial codes are designed for, usually
microstrip and printed structures, the codes are generally robust and accurate.
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An introduction to the finite element method

9.1 Introduction

The finite element method (FEM) is one of the best-known methods for the so-
lution of partial differential equations in applied mathematics and computational
mechanics. It is a method for solving a differential equation subject to certain
boundary values, and in its modern form originated in the field of structural me-
chanics during the late 1950s; the first specific usage of the term “element” is
due to no lesser a person than Courant. In common with the MoM, its histori-
cal antecedents are far older than this, in this case dating back to the nineteenth
century and the variational methods first described by Lord Rayleigh. It is very
widely and routinely used in structural mechanics today, as well as in compu-
tational fluid dynamics, computational thermodynamics, the numerical solution
of Schrödinger’s equation, field problems in general, and of course, in electro-
magnetics.

An historical aside – Courant and the finite element method

The finite element method as presently accepted can be credited to Courant –
whom we have already encountered in the context of the Courant limit for the
FDTD method. The published version of his 1942 address to the American
Mathematical Society contained an appendix added after the talk, to show by
example how variational methods could be put to wider use in potential theory.
He used piecewise linear approximations, on a set of triangles which he called
“elements” – and thus the method was born [1, p. 5].

With the background we have now acquired with the FDTD and MoM, read-
ers will recognize many features in common with both of these methods in the

289
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treatment to follow; indeed, they will probably not be surprised to learn that both
can be formulated within an FEM setting. In common with the MoM, the core
idea is to replace some unknown function on a domain by an ensemble of ele-
ments, with known shape but unknown amplitude. Unlike the basic FDTD, where
the approximation of the �E and �H fields is always done on a rectangular, stag-
gered grid, the FEM permits very general geometrical elements to be used and
(usually) only uses one grid. The most widely used elements are known as sim-
plicial – this simply means line elements in 1D, triangular in 2D and tetrahedral
in 3D. Nonetheless, rectangular, prismatic and even curvilinear elements also find
widespread application. Since the improved geometrical modelling made possible
especially by triangular or tetrahedral meshes is one of the major features distin-
guishing the FEM from the FDTD, our study of the FEM will be restricted to these
elements. Interested readers may find treatments of other element shapes in the
references.

Similar to the FDTD, but unlike the MoM, the FEM is based on a local descrip-
tion of the field quantities, derived from the differential equation description of the
Maxwell equations, and does not automatically incorporate the Sommerfeld radi-
ation condition.1 In practice, this means some form of mesh termination scheme
is required. The easiest is usually an absorbing boundary condition of some type.
(However, it is also possible to use an “exact” termination scheme using the MoM
on the boundary. This is covered in Chapter 10.) In common with the FDTD, and
due to the differential equation basis of the two methods, the FEM permits very
straightforward treatment of material discontinuities.

The FEM was first applied in electromagnetics during the late 1960s, at much
the same time as the initial work using the MoM and FDTD. The two earliest ap-
plications were independently published by Silvester, and by Arlett, Bahrani and
Zienkiewicz. Some of the history of the FEM in electromagnetics may be found
in [1, p. 5]. However, this promising start was arrested during the 1970s and early
1980s because of a problem called “spurious modes” which, combined with sub-
stantial computational cost and complex coding, held back widespread adoption
of the FEM in electromagnetics. Fortunately, there was a major theoretical break-
through with edge elements in 1980s, which led to a far greater understanding
of the spurious mode problem, and the introduction of largely effective solutions.
This improved theoretical understanding, combined with the widespread availabil-
ity of very powerful computers, and increasing interest in wave interaction with
non-metallic structures, has made the FEM a major analysis tool of contemporary
CEM.

1 This should not be confused with the Sommerfeld potentials for stratified media.
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9.2 Variational and Galerkin weighted residual formulations:
the Laplace equation

9.2.1 The weighted residual approach

The FEM can be derived via two different, but equivalent, procedures. On the one
hand, there is the Galerkin weighted residual formulation, already encountered in
Chapter 4.2 On the other hand, there is the variational approach (or more fully, the
variational boundary value problem). The latter is used by most textbooks. The
former is more direct at the formulation level, but incorporating the boundary con-
ditions is somewhat less obvious. We will discuss both approaches in this chapter.

As usual, we will first illustrate the ideas with a simple example. Consider the
following partial differential equation (PDE) in two dimensions:

∇ · ε∇φ = 0 (9.1)

For linear, isotropic media, we have ε = εrε0, and this is equivalently

∇ · εr∇φ = 0 (9.2)

In a materially homogeneous region, this reduces to the Laplace equation:

∇2φ = 0 (9.3)

With a PDE, boundary conditions must of course be specified. For a second-
order PDE such as this, the following on the closure (boundary) are necessary and
sufficient for a unique solution.3

• A value of function φ is specified – this is a Dirichlet boundary condition. If φ = 0, this
is called a homogeneous boundary condition.

• A value of the normal derivation, ∂φ
∂n , is specified – this is a Neumann boundary condi-

tion. Again, if ∂φ
∂n = 0, this is called a homogeneous Neumann boundary condition.

• A linear combination of the above is specified – ε
∂φ
∂n + γφ = q. This is known as

a mixed boundary condition (also sometimes as a Cauchy boundary condition); the
Neumann boundary condition is a special case of this with γ = 0.

Note that these may be mixed in any ratio along the boundary: the boundary may be
entirely Dirichlet, or entirely Neumann,4 or entirely mixed, or some combination
of these along different sections of the boundary. However, they must be disjoint –
that is, more than one may not be simultaneously specified along the same part of
the boundary.

2 Readers who are not working through this book sequentially might wish to read Chapter 4 at this stage.
3 Note that for higher-order PDEs, additional boundary conditions are required.
4 In which case, the PDE can be solved only to within an unknown constant.
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In terms of our previous work on the method of weighted residuals in Chapter 4,
the linear operator for the Laplace equation is L = ∇2·; the unknown function
f = φ and the forcing function g = 0. (Again, in this case, the mathematical term
homogeneous is sometimes used, this time in the context of the PDE.) We proceed
as with the MoM, by introducing basis functions, weighting functions W and an
inner product. The unknown function (the potential φ in this case) is expanded as

φ ≈
N∑

i=1

anhn (9.4)

Suitable weighting functions wm are introduced:

W =
M∑

m=1

wm (9.5)

and an inner product is defined for this two-dimensional problem as

〈a, b〉 =
∫ ∫

S
ab d S (9.6)

Hence, as before, a linear system is obtained, with entries of the following form
for the m, nth system matrix element:

〈wm,Lanhn〉 (9.7)

At this stage, this looks so similar to the MoM that one might wonder why the
FEM is regarded as a different method. (Indeed, a number of workers in the 1980s
tried to unify the methods thus.) Although in general terms there are indeed simi-
larities at this very fundamental functional analysis level, in practice there are great
differences which lead to different algorithms being required. The most important
is that the operator L is now a differential as opposed to an integral operator; this
means that only elements in close geometrical proximity have non-zero system
matrix entries, and hence a very large number of the matrix entries are zero. Math-
ematically, this is a sparse matrix; the MoM with integral equations generates full
matrices. Another important difference is that with the MoM integral equation for-
mulation, the boundary conditions are built into the formulation; with the FEM,
these must be explicitly imposed (and we have not discussed at all how to do this).

In short, the devil is in the detail, which we must now address, and to do this
it is convenient to use the variational approach, the topic of the next section. But
first, some finite element terminology will be introduced. With finite elements,
we usually employ basis functions which span only a small part of the domain –
subsectional as opposed to entire domain, in MoM parlance. This region is gen-
erally known as the element, and the basis function is also frequently called the
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shape function. The term elemental function is also sometimes encountered. (It is
frequently thought that the term “finite element” comes from this geometrical de-
composition into finite regions – as opposed to infinite elements, which are also
sometimes used – but it has also been attributed to the finite energy in an element.)
As with the MoM, a variety of shape functions have been used. Generally, the
most useful are polynomial interpolation functions – although shortly we will see
another type of incomplete polynomial function, which is not interpolatory, but is
very widely used, namely the edge-based element.

9.2.2 The variational approach

The equivalent variational functional

At this stage, we are going to look at the finite element method from a different
viewpoint, namely that of the variational functional approach. Instead of directly
solving Eq. (9.1), we are going to work with an equivalent problem, namely an
energy functional, whose minimum corresponds to the solution of the PDE. For
Eq. (9.1), a suitable functional is:

W (φ) = 1

2

∫ ∫
ε(∇φ)2 d S (9.8)

We state this without proof for the present – subsequently we will return to this,
since the proof yields important information about the boundary conditions. We
note that this is the energy 1

2

∫∫ �D · �E d S. We also note that the function φ in the
original equation had to be at least twice differentiable; in the above, it need only be
once differentiable. Due to this “weakening” of the requirements on the function,
this is sometimes called the weak formulation. For a linear, isotropic medium, we
have ε = εrε0 and since we are eventually going to set the derivative of W to zero,
we can just as well divide out by ε0 at this stage, leaving only the εr term:

W (φ) = 1

2

∫ ∫
εr (∇φ)2 d S (9.9)

The shape functions

In one dimension, the only choice to make is the shape of the basis function, but
in two and three dimensions, we can choose both the shape function and the ge-
ometrical shape of the element. The most popular choices in two dimensions are
triangular and quadrilateral elements; for reasons already discussed, we will fo-
cus on triangular elements, although we will use rectangular elements to introduce
some ideas regarding vector elements. Assuming that the geometrical region (the
domain) has been decomposed into elements – later, we will discuss ways of doing
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this – we note that Eq. (9.8) is valid within each element, and in the following we
will initially focus on this energy functional on an element-by-element basis.

Zero-order elements (the equivalent of the pulse basis functions we used for the
first MoM example back in Chapter 4) cannot be differentiated even once, so are
not admissable in this problem. Hence, we will start with first-order elements. In
this case, the approximating function can be written as

φ ≈ a + bx + cy (9.10)

The constants a, b and c are, of course, what we require the FEM eventually to
compute for us. However, it is more convenient to write this in a form where the
unknowns are the potentials at the three triangle nodes, or in other words:

φ ≈ α1(x, y)φ1 + α2(x, y)φ3 + α3(x, y)φ3 (9.11)

This assumes the existence of suitable functions α1(x, y), α2(x, y) and α3(x, y);
their properties will emerge shortly.

Noting φ1 = a + bx1 + cy1 and similarly for the other two nodes, we have



φ1

φ2

φ3


 =




1 x1 y1

1 x2 y2

1 x3 y3







a
b
c


 (9.12)

Inverting the nodal coordinate matrix, we find:




a
b
c


 =




1 x1 y1

1 x2 y2

1 x3 y3




−1 


φ1

φ2

φ3


 (9.13)

Now we have:

φ = [1 x y ]



1 x1 y1

1 x2 y2

1 x3 y3




−1 


φ1

φ2

φ3


 (9.14)

which may be rewritten as

φ =
3∑

i=1

φiαi (x, y) (9.15)

with

α1 = 1

2A
[(x2 y3 − x3y2) + (y2 − y3)x + (x3 − x2)y] (9.16)
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and A the triangle area (which is conveniently half the determinant of the nodal
coordinate matrix).5 The other functions α2 and α3 are obtained by cyclic inter-
change of the indices, modulus three.

Note that the functions αi are interpolatory on the three vertexes (nodes): i.e.
unity at node i , and zero at the other nodes. (Once again, we caution that not all
the finite elements we will study have this property.)

Manipulating the energy term

Substituting Eq. (9.15) into Eq. (9.8), the following is obtained for the energy in
an element e:

W e = 1

2

∫ ∫

Se
εe

r ∇φ · ∇φ d S

= 1

2

3∑
i=1

3∑
j=1

εe
r φi

[∫ ∫

Se
∇αi · ∇α j d S

]
φ j (9.17)

where we have now assumed that the permittivity is constant within element e.
This is very compactly written in matrix notation as:

W e = 1

2
{φ}T εe

r [Se]{φ} (9.18)

with {φ} the vector of nodal potentials and

Se
i j =

∫ ∫

Se
∇αi · ∇α j d S (9.19)

This matrix is often called the stiffness matrix, from the structural mechanics origin
of the method, but this has no physical meaning in electromagnetics and we will
not use this term frequently. (In this chapter, we will use [S] for this matrix, and
[T ] for another frequently encountered matrix. This notation is due to Silvester
and Ferrari [2]. Unfortunately, there is no standard notation in this regard in the
literature. Peterson, for instance, uses [E] and [F] respectively [3], as does Jin
[4].) The expressions are simple to evaluate, for example,

Se
12 = 1

4A
[(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)] (9.20)

Connecting the elements

At this stage, we have worked in isolation, considering the element on its own.
Each element has nodes numbered locally from one to three. In practice of course,
there will be a (perhaps very large) number of elements, with nodes numbered

5 Note here that A is a signed quantity, whose sign depends on whether the nodes are numbered clockwise or
anticlockwise. See Section 9.7.2 for further discussion.
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Figure 9.1 Two triangular elements, disconnected (left) and connected (right).

according to some global numbering scheme. (It is worth commenting that map-
ping local to global information, and vice versa, usually requires a significant
amount of book-keeping in the average FEM code.) We need some method to con-
nect the elements; various approaches are available. At present, we will assume
the existence of a connection matrix which tells us how to map the unconnected
nodes to the connected mesh. As a simple example, see Fig. 9.1, which shows two
such triangles. The connection matrix for this system is

[C] =




1
1

1
1

1
1




(9.21)

and thus

{φdis} = [C]{φcon} (9.22)

with

{φdis} = {φ1 φ2 φ3 φ4 φ5 φ6}T
dis

{φcon} = {φ1 φ2 φ3 φ4}T
con (9.23)

Although this may be belaboring the obvious, this connection matrix ensures that
the potential at each node is the same on all elements sharing that node. (This
seems simple and obvious, but we will see that in the context of vector fields, this
may not always be desirable.)

Using this, the resulting equation for the energy in the whole system is:

W = 1

2
{φcon}T [S]{φcon}

[S] = [C]T [εe
r Sdis][C]
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The term [εe
r Sdis] requires that the stiffness matrix of each element be multiplied by

the relative permittivity associated with the element before one proceeds further;
it is included in the overall [S] matrix for the problem.

However, the formulation is not completed yet. It will be recalled that it is the
solution which minimizes the variational functional which corresponds to the so-
lution of the PDE, and all we have here is an expression for the energy in the
connected elements. We must now establish this minimum. In doing this, we need
to distinguish formally between free ( f) and prescribed ( p) potentials here. The
latter are those prescribed by the Dirichlet boundary conditions. The former are the
degrees of freedom (the unknowns) in the problem. It is convenient if we choose to
number first the free and then the prescribed potentials; this can be done relatively
easily, even for moderately complex geometries.

Differentiating with respect to the free potentials, and setting the resultant ex-
pression to zero, one obtains

∂W

∂{φ f } = ∂

∂{φ f }
(

{φ f φp}T
[

S f f S f p

Sp f Spp

]{
φ f

φp

})
= 0 (9.24)

Expanding the quadratic, differentiating, and then using [S f p] = [Sp f ], yields:

[
S f f S f p

] {
φ f

φp

}
= 0 (9.25)

or, more conveniently,

[S f f ]{φ f } = −[S f p]{φp} (9.26)

Once again, this is a system of linear equations which can be solved using stan-
dard techniques. Here we should note that the matrices [S f f ] and [S f p] are sparse,
containing only entries where nodes are shared by elements; for initial implemen-
tation work we need not exploit this, but FEM codes for practical applications
must, or much of the benefit of the FEM is lost. Note also that these terms include
εe

r in the S matrix elements as above.

A mathematical aside – partial differentiation of matrices and vectors

Since the free potentials are most conveniently written as a vector, it is useful to
note that vectors can be differentiated much as scalars, viz.

∂C{x}
∂{x} = C

∂{x}T [A]{x}
∂{x} = 2[A]{x}
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etc. In the above, C is a scalar constant and [A] a constant matrix. This re-
sult greatly simplifies the analytical work required in minimizing the functional.
Such identities can be proven by expanding the vector expression into its com-
ponents, and then differentiating with respect to each of them in turn. A good
reference to read more on this topic is [5, Appendix B].

Coding hints – FEM data structures

Note that in practice one rarely numbers all the nodes in an unconnected
fashion first; instead, node 4 on the right-hand triangle would probably be
referenced using some data structure of the form element(m)%nodeone,
with m the element number, in a language such as FORTRAN 90 which sup-
ports derived data types – i.e. objects of a type defined by the user. The %
in FORTRAN 90 is a component selector, and returns the component called
nodeone from the mth entry in derived data type element. In MATLAB

(which does not support this type of derived data structure), one might have
a variable named element nodeone(m), or use a two-dimensional array of
the form element nodes(m,local node num); there are a variety of pos-
sibilities.

Furthermore, even if used, the connection matrix is also not stored as ex-
plained here; the reason is that it is highly sparse and could be stored far more
efficiently in some type of compressed storage scheme.

9.2.3 Some practical issues: assembling the system

In FEM parlance, the process of filling the finite element system matrix is fre-
quently known as matrix assembly. For practical codes, it is generally convenient
to loop over the elements rather than the nodes (recall that the degrees of freedom
are the nodal potentials for this first-order scheme). This is known as assembly
by elements. For a particular global degree of freedom i , any element which con-
tains this node will contribute to the matrix. For triangles, this number depends on
the mesh. We will now discuss two practical methods which simplify this matrix
assembly process.

Connecting the system

The connection matrix is useful for explaining the method, but inconvenient. Prac-
tical programs do this essentially by inspection. A global numbering system is
adopted from the start. As each element’s [S] matrix is computed, it is entered
into the global matrix. A formal method for doing this has been described in
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[2, pp. 51–53], but essentially one simply adds the contributions of each elemen-
tal matrix at the appropriate global row and column entry. Once again, note that
sparsity has not yet been exploited.

Handling the boundary conditions

Repeating the matrix equation to solve,

[S f f ]{φ f } = −[S f p]{φp}
we see that the prescribed boundaries form the right-hand side of the matrix equa-
tion. The easiest approach is to number free unknowns first, then prescribed un-
knowns, as already briefly mentioned. Entries of the form S f f (i.e. both nodes free)
are entered into the system matrix; entries of the form S f p (i.e. one node free) are
multiplied by the prescribed potential and entered into the right-hand side vector.
Entries of the form Sp f and Spp play no role. (Actually, [Sp f ]T = [S f p] and this
is implicitly included during the minimization process, when this is exploited.)

Another method has been described in the literature [2, pp. 49–50] which is
useful when it is not possible, or very inconvenient, to number first free then pre-
scribed elements; it uses dummy entries, and increases the matrix size slightly.

9.2.4 More on variational functionals

Earlier, we mentioned that the equivalence between the PDE and the variational
functional lies at the heart of the variational FEM approach. Having now seen a
basic FEM formulation developed, we need to return to the theoretical underpin-
nings of the method. We will work with the more general Poisson PDE, which
includes a source term, for a homogeneous region:

∇2φ = −ρ

ε
(9.27)

where ρ is the source, and the boundary conditions on S ≡ S1 + S2, as before, are
Dirichlet on S1 and Neumann on S2. There does not appear to be a systematic pro-
cess to construct variational functionals from PDEs (the reverse process is called
Euler’s method), and usually one instead shows that the proposed variational func-
tional has the required properties. Thus we propose that the following variational
functional has an extremal point, which corresponds to the solution of the Poisson
equation above, with the required boundary conditions:

W (φ) = 1

2

∫ ∫
∇φ · ∇φ d S −

∫ ∫
φ

ρ

ε
d S (9.28)

and we will then show that it indeed has these properties.
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Proving the equivalence of the functional and PDE

We will now apply what is known as a variational analysis. We postulate the fol-
lowing:

φ′ = φ + θh (9.29)

where φ′ is the trial solution; φ is the solution of the PDE; h is some (differentiable)
function (which, rather importantly, must be zero at prescribed boundaries since
by definition φ is known there) and θ is a (real valued) perturbation parameter.
This is then substituted into the variational functional, Eq. (9.28):

W (φ + θh) = W (φ) + θ

∫ ∫
∇φ · ∇h d S

− θ

∫ ∫
ρ

ε
h d S + 1

2
θ2

∫ ∫
∇h · ∇h d S

The first and last terms are always greater than or equal to zero (positive semi-
definite in mathematical terms). The term in θ is the first variation; what we must
now show is that this is zero. To do this, we will use Green’s theorem, which is
essentially multi-dimensional integration by parts:

∫ ∫

S
u∇2v d S =

∮

C
u(∇v) · d �C −

∫ ∫

S
∇u∇v d S (9.30)

Using this, one finds:
∫ ∫

∇φ · ∇h d S =
∮

h
∂φ

∂n
dC −

∫ ∫
h∇2φ d S (9.31)

Now, a subtle argument is introduced. The contour integral must be zero to elimi-
nate the first variation. Clearly, on S1, h = 0 by definition, since the value of φ is
known. If ∂φ

∂n = 0 on S2, then we have achieved our aim. This, of course, is just the
homogeneous Neumann boundary condition.

The other surface integral term yields

−
∫ ∫

h∇2φ d S =
∫ ∫

ρ

ε
h d S (9.32)

since φ is the solution of the PDE. This cancels with the other term in θ . Hence,
the first variation is zero, subject to either Dirichlet boundary conditions on S1 or
homogeneous Neumann boundary conditions on S2, and we have shown what we
set out to achieve.

In the finite element procedure, we actually perform the operation in the inverse
order. Minimizing6 the energy functional, by differentiating with respect to the

6 In general, one should rather speak of rendering the functional stationary, or finding the extremal point, but for
this problem the functional is indeed minimized.
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free potentials, is equivalent to forcing the first variation to zero; given prescribed
boundary conditions on S1, we then naturally enforce homogeneous Neumann
boundary conditions on S2. (It is worth noting that the latter boundary condition is
enforced in an average sense on S2; that is, it is not exactly enforced at each point
on S2.)

Summary of boundary conditions

The issue of boundary conditions is so important with the FEM that it deserves
to be highlighted. There are two types of boundary conditions in elementary FEM
analysis.

• Dirichlet boundary conditions: these are essential and must be explicitly set.
• Homogeneous Neumann boundary conditions: these are natural and are implicitly en-

forced. An homogeneous Neumann boundary condition corresponds to a symmetry
plane; it is often used to reduce the computational domain.

The reason that it is so important to be aware of this is that even if one is only
using an FEM code and has no intention of ever writing one, code developers as-
sume that users know this. In particular, it is very important to realize that an unset
boundary condition is not an error in the FEM process: it is a natural homogeneous
Neumann boundary condition.

As mentioned earlier, more complex boundary conditions may also be encoun-
tered, including inhomogeneous Neumann boundary conditions and mixed bound-
ary conditions.

Boundary conditions at material interfaces

One of the great strengths of the FEM is that handling inhomogeneous regions
is very simple. There are, however, one or two subtleties worth highlighting. The
boundary conditions on the electrostatic potential at the interface between regions
1 and 2, with appropriate dielectric constants, are:

φ1 = φ2 (9.33)

εr1
∂φ1

∂n
= εr2

∂φ2

∂n
(9.34)

The former comes from the requirement of tangential electric field continuity, the
latter from normal electric flux continuity.

With the connection matrix approach, we force potentials to be continuous at a
material interface. It turns out that the latter is a natural boundary condition of the
variational approach. This is an important point. To show this, one starts with

∇ · ε∇φ = −ρ

ε
(9.35)
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and the variational functional

W (φ) = 1

2

∫ ∫
ε∇φ · ∇φ d S −

∫ ∫
φρ d S (9.36)

and proceeds with an analysis along exactly the same lines as before, but with
the domain split in two.7 Two additional terms then appear in the first variation,
representing the flux continuity condition at the interface. From the stationarity
requirement, flux continuity follows (for details, refer to [4, Section 3.2]).

Within a code, the above is usually entirely invisible to the user.

9.2.5 The Poisson equation: incorporating a source term

Including the term −1
ε

∫
φρ d S representing the source in the functional results in

a new matrix, [T ]. (Again, for historical reasons, this is sometimes called the mass
matrix.) The (known) source term ρ is discretized using the same interpolation
scheme as φ, i.e. first-order triangular finite elements in this case, but with known
coefficients. The entries in [T ] are computed from

T e
i j =

∫ ∫

Se

αiα j d S (9.37)

with α the nodal interpolation functions as before.
The result is a matrix equation of the following form:

[S f f ]{φ f } = 1

ε
[T ]{ρ} − [S f p]{φp} (9.38)

It is interesting to note that the inhomogeneous part of the PDE ({ρ}) plays the
same role in the finite element system matrices as the inhomogeneous part of the
boundary conditions ({φp}).

9.2.6 Discussion

This completes our introductory discussion of the method. An obvious extension
for the Laplace (and Poisson) equations is to introduce higher-order elements, us-
ing quadratic, cubic, quartic or even higher. This has been very comprehensively
addressed in [2], and for static problems works very well. However, for dynamic
problems, our main interest, we need to introduce a different type of element,
called variously the edge element, vector element or Whitney element, so we will
not pursue scalar elements any further. However, before we can address vector

7 The extension to an arbitrary number of different materials is obvious.
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elements, we need to introduce a concept widely used in FEM analysis, namely
simplex coordinates, the topic of the next section.

9.3 Simplex coordinates

Simplex coordinates – also known as homogeneous or barycentric (or in 2D, area)
coordinates – provide an entirely local geometrical description within a triangle
(in 2D) or tetrahedron (in 3D). This is very convenient, since it allows much
of the work required to be done once (on what is often called the “parent” tri-
angle) and then with some simple geometrical scaling, it can be applied to any
triangle or tetrahedron. They are intimately linked to simplicial elements – the
simplest possible geometrical shape in the space, that is line elements in one di-
mension, triangles in two dimensions and tetrahedra in three dimensions. (The
concept can be extended to higher dimensions, but loses any geometrical inter-
pretation.)

In general, simplex coordinates are defined as the ratios of lengths (1D), areas
(2D) or volumes (3D) that a point in the interior (or on the boundary) splits the
line/triangle/tetrahedron into. The size σ(S) of a simplex S is defined as:

σ(S) = 1

N !

1 x (1)
1 x (2)

1 . . . x (N )
1

1 x (1)
2 x (2)

2 . . . x (N )
2

...

1 x (1)
N+1 x (2)

N+1 . . . x (N )
N+1

(9.39)

where superscripts denote space directions and subscripts denote vertices.

9.3.1 Simplex coordinates in one, two and three dimensions

In one dimension, we have

λ1 = σ(S1)

σ (S)
=

1 x
1 x2

L
= x2 − x

L

λ2 = σ(S2)

σ (S)
=

1 x1

1 x

L
= x − x1

L

These express the ratios of length from the right and left nodes respectively to
point x , to the total length of the element. These are frequently encountered in
MoM analysis as local coordinates.
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In two dimensions, we have

λ1 = σ(S1)

σ (S)

=

1 x y
1 x2 y2

1 x3 y3

2A

= (x2y3 − x3y2) + (y2 − y3)x + (x3 − x2)y

2A
(9.40)

This represents the ratio of the area of the triangle P23 to 123 – see Fig. 9.3, in
Section 9.6.3. It will be noted that λ1 = α1, the first-order interpolatory function
used in our earlier analysis, indicated how convenient the simplex coordinates are
for functions defined over a triangle. There are three simplex coordinates in 2D:
λ1, λ2 and λ3, describing the three area ratios.

In three dimensions, we have

λ1 = σ(S1)

σ (S)

=

1 x y z
1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

6V

This represents the ratio of the volume of the tetrahedron P234 to the volume of
the element.

There are four simplex coordinates in 3D: λ1, λ2, λ3 and λ4, describing the four
volumetric ratios.

9.3.2 Some properties of simplex coordinates

Aside from the interpretation as the ratio of sizes, simplex coordinates have other
important properties. Some of these are as follows.

• The coordinates are normalized, thus
∑N+1

i=1 λi = 1.
• In two and three dimensions, the gradient of each simplex coordinate is a constant, and

normal to the relevant edge (2D) or face (3D). In 2D, for example:

∇λi = li
2A

n̂i (9.41)
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with A the area of the triangle, li the length of edge i , and n̂i the normal to edge i . This
property is extensively exploited in vector elements, of which more later.

• Because of the normalization, 0 ≤ λi ≤ 1 ∀i . This can be a useful and quick test to see
whether a point lies inside or outside an element.

9.4 The high-frequency variational functional

For electrodynamic problems, subject to the deterministic vector wave equation,

∇ × 1

µr
∇ × �E − k2

0εr �E = − jk0 Z0 �J (9.42)

with �J a source internal to domain 
 and k0 the free-space wavenumber, the equiv-
alent variational functional which must be rendered stationary is:8

F( �E) =
∫




[
1

µr
|∇ × �E |2 − k2

0εr | �E |2
]

d
 + jk0 Z0

∫




�E · �J d
 (9.43)

This assumes either homogeneous Dirichlet or Neumann boundary conditions or a
mixture of the two on the boundary of domain 
.

A closely related functional for the source-free vector wave equation

∇ × 1

µr
∇ × �E − k2

i εr �E = 0 (9.44)

is the following:

F( �E) =
∫




[
1

µr
|∇ × �E |2 − k2

i εr | �E |2
]

d
 (9.45)

subject to the same boundary conditions. In this case, the solution is the set of
eigenvalues ki and associated eigenvectors �Ei .

In order to show the above properties, one proceeds in a fashion similar to the
Poisson equation, using a vector Green’s theorem for the double-curl operator. The
details are available in [2, 4] and although more complex than the Poisson case,
the method is the same, so we will not repeat them here.

This form (often called the curl-curl form) has been used for high-frequency
FEM analysis for many years. However, although it appears fairly straightfor-
ward to discretize, it turned out to have a number of problems which occupied
analysts for some years. One of the most important advances was the introduc-
tion of vector (edge) elements in the late 1980s, and this is the topic of the next
section.

8 This is actually the functional for lossless materials; see [4, Chapter 6] for further discussion of this.
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9.5 Spurious modes

One of the supposed strengths of the FEM was its accuracy, in particular when
compared to a method such as the FDTD, until serious problems with “spurious
modes” were found using standard (node-based) FEM for electromagnetic eigen-
value problems (we will define these later). The traditional, nodal FEM approach,
typical of structural mechanics, deals with a vector field by approximating each
component separately:

Ex ≈
∑

Exi f (x, y, z) (9.46)

with f (x, y, z) a standard basis function such as those we have already seen (al-
though extended to three dimensions). This was then repeated for Ey and Ez and
substituted into Eq. (9.43) or (9.45). As Silvester and Pelosi comment [1, p. 8]:

The first approach (nodal elements) may be called the structural mechanics approach. . . . at
least some theory and much practical experience should be transferable to electromag-
netics. Further, it has the appeal of simplicity and familiarity. The same approximating
functions can be called upon to serve for both scalar and vector cases, and the vectorial
coefficients have clear meaning as component representations of �E or �H . . . . the structural
mechanics approach has one major flaw for electromagnetic field analysis: it doesn’t work
very well. The reason is simply that the fields that occur in structural mechanics and those
encountered in EM are fundamentally different. The electromagnetic field vectors not only
obey the Maxwell curl equations, but they are also constrained by the divergence equations.

Before discussing some of the more intricate details of spurious modes, we note
an immediate and practical problem with the nodal approach: since the field is ap-
proximated by its values at the nodes, if we use the method we used for the static
problems for connecting the elements (that is, all values at a node are set equal on
all the elements which share the node), then the result is that we force all compo-
nents of the field to be continuous. At an interface between two different types of
material, only the tangential components of �E or �H should be continuous. If the
material boundary happens to coincide with a plane parallel to one of the coordi-
nate axes, then it would not be too difficult to arrange that we do this with only the
tangential field components, leaving additional degrees of freedom to permit the
normal field to be discontinuous. But in general, we are unlikely to be so fortunate,
and the material interface will create a very tricky problem indeed.

By comparison, the vector FEM approach approximates the full vector field

�E ≈
∑

ei j �wi j (9.47)

with the edge-based vector function:

�wi j = λi∇λ j − λ j∇λi (9.48)
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As before, λi is the simplex coordinate with respect to node i . This is then used to
discretize Eq. (9.43) or (9.45).

It is far from immediately apparent why what appears to be a minor change
in approach should yield significantly better solutions – after all, the vector basis
functions are simply another way of representing the vector nature of the problem.
In order to understand this, we need first to look a little more carefully at the
high-frequency functionals. We will start with the eigenvalue problem, where the
problems originate.

Following the standard discretization and substitution of the basis functions,
the stationary points of the functional, Eq. (9.45), correspond to solutions of the
following generalized eigenmatrix equation:

[S]{ei } = k2
i [T ]{ei } (9.49)

where [S] and [T ] represent the discretized versions of the first and second terms
in Eq. (9.45). The eigenvalues ki represent the resonance frequencies of the cavity,
and the vectors {ei } the eigenvalues, i.e. the various resonant modes (or eigen-
modes).

Various approaches are now possible. A particularly revealing one is to note that
the divergence constraint,

∇ · ε �E = 0 (9.50)

is implied within the functional, but in frequency dependent form. We can see this
by taking the divergence of both sides of Eq. (9.44); noting the vector identity
∇ · ∇ × �a ≡ 0 ∀ �a, it is clear that

k2
i ∇ · εr �E = 0 (9.51)

For the dynamic case (that is, ki 
= 0) the divergence equation is indeed satisfied.
The problem, however, enters via the other possibility for satisfying this equa-

tion, namely ki = 0. In this case, the divergence equation is no longer necessarily
satisfied. This corresponds of course to the static case, where �E = −∇V , and we
note (since ∇ × ∇V = 0 ∀V ) the theoretically infinite number of solutions of the
form of the field as the gradient of a potential and zero eigenvalue {(∇V, 0)} also
satisfies the vector wave equation, constituting its null-space (also known as ker-
nel, abbreviated ker , in some of the literature).

A particularly elegant example of such a null-space eigenmode for the well-
known rectangular waveguide problem was given by [6], and it is so illuminating
that it is worth repeating here. Peterson considered the classic eigenvalue prob-
lem of a rectangular waveguide with PEC walls, dimensions a by b, with the
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solutions

�Emn = −x̂
nπ

b
cos

mπx

a
sin

nπy

b

+ ŷ
mπ

a
sin

mπx

a
cos

nπy

b
(9.52)

with eigenvalues:

k2
mn =

(mπ

a

)2 +
(nπ

b

)2
(9.53)

This is very well known and features prominently in almost any undergraduate
electromagnetic text. However, these texts never mention that there is another valid
solution of the vector wave equation, viz. the static solution:

�E spur
mn = x̂

mπ

a
cos

mπx

a
sin

nπy

b

+ ŷ
nπ

b
sin

mπx

a
cos

nπy

b
(9.54)

with eigenvalues kmn = 0.
The spurious solution(s) look almost identical to the waveguide solutions, but

are critically different – note that they can be written in the form

�E spur
mn = ∇

(
sin

mπx

a
sin

nπy

b

)
(9.55)

Also very importantly, unlike Eq. (9.52), these static solutions do not have zero
divergence, as can quickly be established by inspection.

Because the eigenvalues of these “spurious modes” are zero, these are simply
rejected as unwanted solutions when one does an analytical solution of the prob-
lem (using separation of variables, for instance). However – and this is a critical
point! – the variational functional admits these solutions, and the finite element
procedure will also compute them. (Unless, that is, one can modify the functional
to exclude these solutions – there has been success with such approaches and we
will mention this again later, but the formulation is somewhat more involved.)

So, to summarize, due to the properties of the high-frequency variational func-
tional, the finite element procedure will produce not only the wanted, dynamic
eigenvalues and eigenvectors, but also a number of “zero” eigenvalues and asso-
ciated static eigenvectors. Since the finite element solution is of course approx-
imate, the “zero” eigenvalues will not be exactly zero, but may shift up in fre-
quency. If their values become sufficiently large, they may creep into the range
of the dynamic eigenvalues and we will no longer be able to distinguish between
the dynamic eigenvalues and these (very poor) approximations of zero. In this
case, we have a “spurious mode” – an eigenvalue and associated eigenvector in the
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high-frequency range, but not satisfying the divergence criteria and hence entirely
unphysical.

There was significant confusion in some of the earlier papers on edge elements,
as they were then known, and when reading some of these, one may find claims
that edge elements entirely eliminate spurious modes. This is not correct – edge
elements still compute these modes, but with better fidelity, so that they do not
corrupt the desired range of eigenmodes. There have been other approaches which
aim to eliminate the spurious modes entirely, but edge elements do not accomplish
this.

Regarding deterministic problems, since ki 
= 0 will have been set in a deter-
ministic problem, the numerical process, now being capable of reproducing an
irrotational mode spectrum, instead ensures that such a modal content is absent
[2, p. 313].9

It is interesting that spurious modes were not encountered in the FDTD commu-
nity. The reason is that the Yee grid implicitly satisfies Gauss’ laws (the divergence
criteria).

9.6 Vector (edge) elements

9.6.1 An historical perspective

What are now called vector elements, but were originally known as “edge-based”
elements, date back to the 1980s in CEM, although the underlying ideas of the
structure of the electromagnetic field date back to 1957 and what are known as
Whitney forms. In 1980, the French mathematician J. C. Nedelec published a pa-
per which has since become the canonical reference in this field [8] although,
ironically, he did not define the edge-based element itself; instead, the paper in-
vestigates the structure of the polynomial spaces which the basis functions should
span in a highly mathematical format, which is not readily accessible to electronic
engineers. (He was clearly influenced by earlier ideas of Raviart and Thomas [9]
and it is useful to read their paper before attempting to read Nedelec’s.) Some
of the earliest work in electrical engineering is due to Bossavit [10]; Barton and
Cendes [11] were among the first to address high-frequency electromagnetics with
edge elements and their derivation is the one now generally given. Another type
of related element, also a vector element, was the hexahedral element, originally
introduced by Welij in its lowest order straight-sided form in 1985 [12], and in

9 There is another school of thought on this topic. It has been argued that the driven solution can be viewed as a
sum of eigenvectors, and hence incorrect eigenvectors may also corrupt a deterministic problem [7, p. 408]. In
any case, by either argument, edge elements also lead to better solutions for deterministic problems.
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generalized form by Crowley, Silvester and Hurwitz in 1988 [13]. Cendes’ subse-
quent work produced one of the first higher-order tetrahedral elements [14]. Webb
and Forghani’s work on hierarchal tetrahedral elements was the standard reference
for many years [15], until succeeded by Webb’s later work [16].

During the 1990s, many researchers made excellent use of these elements and
also advanced the theory underlying them. The following is only a selection of
the work: Lee and Mittra worked on cavity eigenvalue problems [17] (and this pa-
per remains useful today, since it contains analytical expressions for the elemental
matrices); Dibben and Metaxas used edge elements for time domain analysis [18];
Savage and Peterson introduced alternative higher-order tetrahedral elements in
[3]; Jin, Volakis, Kempel and their students made significant contributions to appli-
cations, especially cavity backed patches (this work is well summarized in [4, 19]),
and also in new hierarchal elements [20]; Dyczij-Edlinger, Peng and Lee made ad-
vances in understanding the impact of the low-frequency ill-conditioning of the
curl-curl formulation [21]; Graglia, Wilton and Peterson made progress with inter-
polatory as opposed to hierarchal elements [22]; and the present author extended
work on waveguide analysis using higher-order mixed and complete elements [23],
and with Botha, worked on error estimation [24].

9.6.2 Theory of vector elements

With this historical background, we now return to the elements. Before we study
them in detail, we will first look at the impact they had on CEM. Although much of
the early literature concentrates on the “spurious mode” problem, there are prac-
tical reasons which make these elements very useful in analysis. Firstly, for the
lowest order elements, the degrees of freedom are proportional to the tangential
electric field along an edge (and hence the widely used name, edge elements);
we will show this shortly. Thus tangential continuity is very simple to enforce.
Secondly, flux continuity is a natural boundary condition. Thirdly, it is easier to
model corners, or other regions where the field becomes singular, since there is no
nodal value at the singularity. Finally, they greatly ameliorated the problems with
spurious modes: we will return to this subsequently.

Vector elements are most easily introduced using a 2D vector element for the
rectangular element, shown in Fig. 9.2. The field is approximated as:

�Ee ≈
4∑

i=1

�N e
i Ee

i (9.56)

Here, �N e
i is the vector basis function and Ee

i is a scalar degree of freedom, the
tangential field along the i th edge in this case. The vector functions �N e

i are
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Figure 9.2 The rectangular edge element. Based on [4, Fig. 8.1].

given by:

�N e
1 = 1

le
y

(
ye

c − y + le
y

2

)
x̂

�N e
2 = 1

le
y

(
y − ye

c + le
y

2

)
x̂

�N e
3 = 1

le
x

(
xe

c − x + le
x

2

)
ŷ

�N e
4 = 1

le
x

(
x − xe

c + le
x

2

)
ŷ

with (xe
c ; ye

c ) the coordinates of the center of the element, and le
x and le

y the element
lengths in x- and y-directions respectively.

Now, note the following: �N e
1 is zero on edge 2 (since y = ye

c + le
y/2 everywhere

on edge 2) and it is unity on edge 1; also, it is purely tangential (x̂-directed) along
this edge. On edges 3 and 4 it increases linearly from the top to the bottom, and it
is purely normal (x̂-directed) along these edges. One quickly establishes that �N e

2

has the same properties, but with edges 1 and 2 interchanged, and that �N e
3 and �N e

4
also have similar properties, but obviously with x and y interchanged. In short,
these basis functions provide a mixed-order approximation of the field – on the
edges, the approximation is constant tangentially, and linear normally. (Indeed,
these elements are frequently called CT/LN elements, constant tangential/linear
normal.) Note also that due to these properties, Ee

1 is the tangential field along
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edge 1, and similarly Ee
2, Ee

3 and Ee
4 are the tangential fields along edges 2, 3 and

4 respectively. These are the degrees of freedom for this element. Very importantly,
these properties permit enforcing tangential continuity without affecting the nor-
mal components, and this is precisely the boundary condition required by �E or �H
fields, or indeed any 1-forms in the language of differential forms.

A mathematical aside – differential forms

Some of the work on vector elements uses the mathematics of differential
forms – Bossavit is one of the main proponents of this [25]. Although the ideas
can be readily understood without any knowledge of this field, it is useful to
know a smattering of the terminology.

• 0-forms: this is a scalar function with functional but not derivative continuity, an ex-
ample being the electric static potential φ.

• 1-forms: these are vector functions with tangential but not normal continuity, such
as �E . These are also known as polar, or true, vectors, and are time-even under time
reversal.

• 2-forms: these are vector functions with normal but not tangential continuity, such as
�B. These are also known as axial vectors, or pseudo-vectors, and are time-odd under
time reversal.

• 3-forms: discontinuous scalar functions, such as ∇ · �D.

For an elegant discussion of polar versus axial vectors, and time symmetry, Feyn-
man’s chapter on this is a classic [26, Chapter 52].

Note that this element is not by design interpolatory, although for this lowest
order element it can be made thus.10 The degrees of freedom (Ee

1, Ee
2, Ee

3 and
Ee

4) represent field quantities along an edge; indeed, in Nedelec’s original work,
they are defined as integrals of the tangential field component along the edge, i.e.
the average tangential field value. This is quite different to the nodal elements
discussed earlier.

We should also comment that there are a variety of names for this element, in-
cluding mixed order; “first” order; “half-th order”, H0(curl); and as already men-
tioned, constant tangential/linear normal (CT/LN). This last is especially insightful
and is the present author’s preference.

These elements have other additional significant properties. Interestingly, by
taking ẑ × �N e

i , another class of elements is derived with the complementary
property of providing normal continuity; these are useful for problems involving

10 The degrees of freedom have been interpreted as the tangential field value at the center of the relevant edge by
some researchers who have worked with interpolatory vector elements.
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current, or 2-forms. Furthermore, we have already seen that the full-wave func-
tional has a term of the form

∫
Se ∇ × �E · ∇ × �E d S. It is important to note that

x̂-directed terms linear in x do not contribute to this term; i.e. these would be
“wasted” degrees of freedom, which have been removed from these elements.
This observation, at heart, was the core of Nedelec’s contribution. Finally, within
the element, the approximated �E field has zero divergence. (Recall that this is
not explicitly enforced in the curl-curl functional.) Because the spurious modes
are associated with solutions with non-zero divergence, many early papers on
vector elements concentrated on this property. Whilst low-order vector elements
are indeed divergence free within the elements, the divergence is discontinu-
ous at element boundaries, and furthermore, a number of successful vector el-
ements are not divergence free. (Indeed, an argument has be made that since
one is not removing the spurious modes, but computing them more accurately,
the element should not be divergence free!) The superior suppression of spuri-
ous modes is now understood to be due to a better approximation of the null-
space of the vector wave equation, that is, the zero frequency solutions we dis-
cussed above. The vector elements do a better job of representing these static ∇φ

eigenmodes; the reason is that the tangential-continuity-only of the vector ele-
ments admits a larger number of functions in the null-space. We noted earlier
that φ should be continuous, implying that ∇φ must be tangentially continuous
(which is all that is imposed by edge elements), but the natural boundary condition
permits the normal derivative to exhibit the correct jump discontinuity at mate-
rial interfaces. Webb’s 1993 paper remains one of best discussions of edge-based
elements [27].

9.6.3 Vector elements on triangles – the Whitney element

Our preceding discussion considered rectangular elements. As mentioned on sev-
eral occasions, one of the main advantages of the FEM over the FDTD is the
geometrical modelling flexibility afforded by triangular and tetrahedral elements
in two and three dimensions respectively, so it is important to understand how the
same properties can be obtained for these types of elements.

Vector elements on simplicial elements are defined in terms of simplex coor-
dinates. Again, these have acquired a variety of names during their development,
including Whitney, Nedelec, Bossavit or simply edge-based elements. In its lowest
order form, the element has the following definition:

�wi j = λi∇λ j − λ j∇λi (9.57)

There are three such elements per triangle, or six per tetrahedron, each associated
with the edge from node i to node j , as will now be demonstrated.
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Figure 9.3 The right-angled parent triangle.

The Whitney element is the basis for all vector simplicial elements, both in-
terpolatory and hierarchal, so its properties are of great importance. Firstly, an
obvious question is, why does it have this specific form? To answer this, it is use-
ful to study the right-angled triangle shown in Fig. 9.3, of unit length along the
x- and y-axes. (It is also a useful exercise in understanding simplex coordinates.)
The simplex coordinates are the ratios as follows:

λ1 = area�P23

area�123

= 1/2 base × height

1/2
= y (9.58)

since the area of triangle 123 is 1/2, and the base of triangle P23 is unity and its
height is y.

Similarly,

λ2 = 1 − (x + y)

λ3 = x (9.59)

The expression for λ2 is easily derived from the property
∑3

i=1 λi = 1. Now that
we have explicit expressions for the simplex coordinates, their gradients follow
trivially:

∇λ1 = ŷ (9.60)

∇λ2 = −x̂ − ŷ (9.61)

∇λ3 = x̂ (9.62)
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We note that ∇λ1 is normal to edge 1 (that is, the edge opposite node 1), and
similarly ∇λ2 and ∇λ3 are normal to edges 2 and 3 respectively.

Now, the Whitney functions can be written in explicit Cartesian form as follows:

�N1 = �w23 = λ2∇λ3 − λ3∇λ2

= (1 − x − y)x̂ − x(−x̂ − ŷ)

= (1 − y)x̂ + x ŷ

�N2 = − �w13 = −yx̂ + x ŷ

�N3 = �w12 = −yx̂ + (−1 + x)ŷ (9.63)

These are illustrated in Fig. 9.4.
Due to the simple form of these functions on this right-angled parent element,

we can immediately establish some of the crucial features of these functions. Let
us focus on �N1 = �w23. Along edges 2 and 3, this function is purely normal, and
increases linearly from node 1 to node 2 along edge 3, and similarly from node 1 to
node 3 along edge 2. Along edge 1, it has both tangential and normal components.
These are easily separated on this right-angled parent element; on edge 1, they are
the x̂ and ŷ components respectively, that is, (1 − y)|y=0 = 1 and x respectively.
Thus, on this edge, the tangential component is constant, and the normal com-
ponent is linear. In short, �N1 = �w23 is a basis function with a constant tangential
component on edge 1, and linear normal components along all the edges. The same
is easily shown for the other two basis functions. Hence, this Whitney element has
the same mixed-order CT/LN behavior as the rectangular element studied earlier.
Furthermore, suitable degrees of freedom are again the average tangential fields
along each edge. It is also immediately obvious from Eq. (9.63) that the diver-
gence of the Whitney functions is zero.

An important note: although we have established these properties on a right-
angled parent element, they are generally true for Whitney elements on any trian-
gle; we will not however show this now. (Some further discussion on the Whitney
element may be found in Appendix A.)

Another important point: what of the normal field components? The boundary
condition in this case is normal flux continuity; it turns out that this is a natural
boundary condition of the variational process, and hence is automatically satisfied
at material interfaces [4, Section 5.8.3].

It is an interesting question to ask why this function might originally have been
proposed. Firstly, as already noted, the gradient of a simplex coordinate is constant,
and is directed perpendicular to the edge opposite the relevant node. Hence, using
the gradient of the simplex coordinates promises a method to separate normal and
tangential components, which it will be recalled is highly desirable, due to the
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continuity requirements of vector fields. Now, using ∇λi alone can only given a
constant approximation; multiply by λ j and a linear form is obtained. To make
this linear along an edge, both non-zero simplex coordinates are needed. Thus
λi∇λ j ± λ j∇λi is a reasonable guess. The + form can be rewritten as ∇(λiλ j ),
which is in the null-space of the curl operator (the first term in the functional),
hence the − form is a good guess. Our detailed analysis above on the right-angled
parent element confirms this.

In closing this introductory discussion on Whitney elements, it is very impor-
tant to note that that the vector field can only be recovered by the vector sum of
the three vector basis functions and the appropriate amplitudes (the degrees of
freedom which the finite element procedure yields); the degrees of freedom lose
the convenient interpretation of nodal elements as a field component value at a
node.

Whitney elements revolutionized HF FEM analysis from the mid 1980s on;
Ansoft’s Eminence package (now HFSS) was one of the first commercial codes
to exploit these elements for the three-dimensional finite element analysis of high-
frequency devices. Extending the elements to higher order has been a controversial
topic; many different forms have been published. The most comprehensive publi-
cation in the electrical engineering literature is Webb’s relatively recent work [16].
A comparison of a number of these elements has been published by the present
author [23]. This is discussed in Chapter 10.

9.7 Application to waveguide eigenvalue analysis

9.7.1 The two-dimensional variational functional
for homogeneous waveguide

Waveguide eigenanalysis is one of the classic applications of the FEM. It is useful
in its own right, but also serves as an excellent tool to illustrate the application of
vector elements. We will analyze a rectangular waveguide, homogeneously filled,
since then the eigenmodes split into pure TE and TM modes; an inhomogeneously
loaded waveguide requires a more complex approach since the propagation modes
are then hybrid in nature. (A discussion of this and suitable formulation may be
found in [4, Section 8.2].) The functional for the transverse field components, sub-
ject to the prescribed boundary condition n̂ × �Et = 0, is:

F( �Et ) = 1

2

∫ ∫

S

[
1

µr
(∇t × �Et ) · (∇t × �Et ) − k2

i εr �Et · �Et

]
d S (9.64)

This is Eq. (9.45), with Ez = 0, i.e. no longitudinal field components, and again
assuming lossless materials. The eigenvectors of this eigenvalue problem are the



318 Introduction to the finite element method

TE modes, and the eigenvalues ki are the corresponding cut-off wavenumbers,11

with kz = 0. ∇t is the transverse del operator.
It is important to note that the prescribed boundary conditions, which amount

to the edges lying on the PEC, must be explicitly enforced. This implies that the
vector of unknowns, e , in the generalized eigenvalue problem:

[S] e = k2[T ] (9.65)

would appear to include prescribed, i.e. zero, values. This is incorrect. It may be
shown that this equation includes only contributions from the free edges, i.e.

[S f f ] e f = k2[T f f ] (9.66)

To derive this, write the discretized functional before it is rendered stationary as:

F = e f ep
T

[
S f f S f p

Sp f Spp

]
e f ep (9.67)

Now, differentiating with respect to the free edges, and then applying the pre-
scribed boundary condition ep ≡ 0, one obtains Eq. (9.66).

This does of course require (globally) numbering the free edges first, and then
the prescribed edges. If using a connection matrix approach, another renumbering
matrix could be used afterwards to implement this. Alternatively, during matrix
assembly, any entries corresponding to prescribed edges can simply be removed
from the system.

If the TM modes are sought, then Eq. (9.64) must be solved with �Ht as the
working variable. In this case, homogeneous Neumann boundary conditions are
appropriate – i.e. no explicit boundary conditions need be set at all.

This problem is especially easy to solve using rectangular elements, but since
we would like to illustrate the application of the Whitney elements, we will use tri-
angular elements. Firstly, we will need a mesh of such elements, but we will defer
consideration of this until later, and concentrate initially on the theoretical analy-
sis. For each element, we need the elemental (that is, stiffness [S] and mass [T ])
matrix elements. Using simplex coordinates, we can evaluate these quite easily.

9.7.2 Explicit formula for the elemental matrix entries

Before deriving expressions for the elemental matrices, it is worth briefly review-
ing the two approaches which have been used. The approach we will use is es-
sentially a direct approach, where we evaluate the simplex coordinates in terms of

11 This is a special case of the more general functional [4, Eq. 8.36], which includes non-zero values of kz .

{ }
{ } e{ }

{ } e f{ }

e{ } { } { }

{ }
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the Cartesian coordinates of the actual element. The other approach uses the right-
angled parent element of Fig. 9.3, and computes the matrices for this element; a
coordinate transformation is then performed to the actual element, and the inverse
of the Jacobian of this transformation is used to scale the matrix elements. The
former approach is that of Lee and Mittra, who published some of the first explicit
formulas in [17] for tetrahedral CT/LN elements (these formulas were extended
by the present author to diagonally anisotropic materials in [28]), Savage and
Peterson, who presented a very useful alternative formulation in [3], and Jin [4].
The latter approach is best exemplified by [7]. Savage and Peterson’s approach
leads to particularly compact expressions, and is the one we will use here. The fol-
lowing is based on their work, but simplified to triangles, using notation consistent
with that of this chapter, and using the standard Whitney elements. (Savage and
Peterson further scale the elements by the edge lengths.)

Recall that the variational formulation requires the evaluation of two matrices:

Si j =
∫ ∫

S
∇t × �Ni · ∇t × �N j d S (9.68)

and

Ti j =
∫ ∫

S

�Ni · �N j d S (9.69)

With z the direction of propagation, the ∇t× and ∇t operators reduce to the two-
dimensional operators in the (x, y) plane, which we will imply in the following.

The CT/LN elements are given by �Ni = �wi1,i2 = λi1∇λi2 − λi2∇λi1 per edge.
Here, i1 and i2 are the endpoints of edge i . The local triangular numbering scheme
is as already discussed.

Now, the three simplex coordinates λi are given by

λi = ai + bi x + ci y (9.70)

and the gradient thereof by

∇λi = bi x̂ + ci ŷ (9.71)

The actual coefficients {ai ; bi ; ci } may be computed by inverting the coordinate
matrix




b1 c1 a1

b2 c2 a2

b3 c3 a3


 =




x1 x2 x3

y1 y2 y3

1 1 1




−1

(9.72)

This equation may be obtained by writing Eq. (9.70) for each node i and not-
ing that λi = 1 at node i . Now the following two vectors are defined for nodes i
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and j :

�vi j = ∇λi × ∇λ j

= ẑ(bi c j − b j ci )

= −�v j i (9.73)

This vector is easily computed once {bi ; ci } are known. Similarly we define

φi j = ∇λi · ∇λ j

= bi b j + ci c j (9.74)

Note that both �vi j and φi j are constant within a triangle, and hence may be taken
outside integrals in which they appear.

Consider the evaluation of the curl-curl term, Eq. (9.68):

∇ × �Ni = ∇ × (λi1∇λi2 − λi1∇λi2)

= ∇ × (λi1∇λi2) − ∇ × (λi2∇λi1)

= 2∇λi1 × ∇λi2

= 2�vi1,i2 (9.75)

From the second to third line in the above, the vector identities ∇ × (φ �A) = φ∇ ×
�A + ∇φ × �A and ∇ × ∇φ ≡ 0 have been used.

Using this, Eq. (9.68) becomes:

Si j = 4
∫ ∫

S
�vi1,12 · �v j1, j2 d S

= 4A�vi1,12 · �v j1, j2 (9.76)

Note that the widely used expression for element area in terms of the determi-
nant of the coordinate matrix,

2A′ =
∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
(9.77)

actually yields a potentially signed area A′, whose sign depends on the sense
(clockwise or anticlockwise) of the coordinate numbering. A in the above is the
unsigned area of the element, that is A = |A′|.

The second term that appears in Eq. (9.69) requires the computation of dot prod-
ucts:

�Ni · �N j = (λi1∇λi2 − λi2∇λi1) · (λ j1∇λ j2 − λ j2∇λ j1)

= [λi1λ j1(∇λi2 · ∇λ j2) − λi1λ j2(∇λi2 · ∇λ j1)

−λi2λ j1(∇λi1 · ∇λ j2) + λi2λ j2(∇λi1 · ∇λ j1)] (9.78)
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Using the notation of Eq. (9.74), this can be written as:

�Ni · �N j = [λi1λ j1φi2, j2 − λi1λ j2φi2, j1 − λi2λ j1φi1, j2 + λi2λ j2φi1, j1] (9.79)

Thus the associated matrix elements become:

Ti j = φi2, j2

∫ ∫

S
λi1λ j1 d S − φi2, j1

∫ ∫

S
λi1λ j2 d S

−φi1, j2

∫ ∫

S
λi2λ j1 d S + φi1, j1

∫ ∫

S
λi2λ j2 d S (9.80)

Using the general integration formula for integrals in simplex coordinates
[2, p. 458]:

∫ ∫

S
λi

1λ
j
2λ

k
3 d S = 2! i ! j ! k!

(2 + i + j + k)! A (9.81)

the expression for Ti j may be simplified (note that 0! ≡ 1). In Eq. (9.80), each in-
tegral involves integration over two simplex coordinates, possibly identical. These
can be expressed in matrix form as

Mi j =
∫ ∫

S
λiλ j d S = 1

12




2 1 1
1 2 1
1 1 2


 (9.82)

Using this, Eq. (9.80) reduces to

Ti j = A[φi2, j2 Mi1, j1 − φi2, j1 Mi1, j2

−φi1, j2 Mi2, j1 + φi1, j1 Mi2, j2] (9.83)

9.7.3 Coding

We now have all the theory we need. However, finite element codes require a lot
of “house-keeping” – the unstructured nature of finite element meshes is both their
strong point (permitting very accurate local geometrical modelling) and a signif-
icant complication (since a lot of lists need to be generated and the maintained).
We will now discuss a number of these issues.

Edge and node numbering schemes

With an FEM code, adopting sensible local and global numbering conventions and
then using these consistently is absolutely essential. The local edge numbering
scheme we discussed earlier (whereby the edge number corresponds to the node
opposite) is not widely used in practice. The following is the most widely used in
the literature:
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Edge Local edge number

e12 1
e13 2
e23 3

In the above, ei j is the edge directed from node i to node j . It is important to
note that although the degree of freedom associated with the edge is a scalar, it is
nonetheless signed.

A convention that can be recommended is first to sort the nodes in each element
into ascending global order. This ensures that when edges are assigned, they are
always directed from lower to higher node numbers, and thus the edges shared by
two or more elements always have the same sign. All the local edge numbering
schemes in use in the literature are consistent [3, 17] (taking into account that
some number from 0 and some from 1). (Note that the sign of the edges is not,
however, consistent: for example, edge 3 in [4, Fig. 8.2] has the opposite sense to
that above.)

Global edge numbers are assigned from 1 upwards; within an element, global
edges are incremented in the same pattern as the local edges. To illustrate this by
example, element e1 will always contain edges 1, 2 and 3 (although not necessarily
global nodes 1, 2, 3 and 4, of course, since these are assigned by the mesher); if
element e2 shares its first edge with element e1, then its remaining edges will be
globally numbered 4 and 5, local edges ee2

13 and ee2
23 respectively.

The above sounds more complex than it is, as is often the case with finite element
data structures, and becomes clear when coding.

Data structures

Before programming starts, it is useful to establish the major data structures that
will be needed. For a mesh with Nn nodes, Ne elements, and E edges, the major
data structures required will include at least the following.

vertices Dimensioned as (Nn, 2). This stores the (x, y) coordinates of each vertex
(node).

nodes Dimensioned as (Ne, 3). This stores the three nodes associated with each
element.

edge nodes Dimensioned as (E, 2). This stores the global nodes that each edge
connects.
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materials Dimensioned as (Ne). This stores the material number. Another (usually
very much smaller) data structure will be required to store the actual constitutive
parameters for each material.

dof Dimensioned as E for Whitney elements. These are the degrees of freedom.

Two major data structures omitted here (deliberately) are the [S] and [T ] matrices
for the system. For initial work, these can simply be stored as full matrices, but to
exploit fully the power of the FEM, sparse storage schemes must be used. This is
discussed in Chapter 10.

The above data structures are accessed so frequently that they should be globally
accessible. In MATLAB, this is done using the global statement. In FORTRAN 90,
one uses modules.

Meshing

For the beginner, this often seems the most challenging task. For 2D problems
however, one can build quite satisfactory meshes by hand. The easiest way of gen-
erating triangular meshes for a rectangular domain is first to divide the domain into
smaller rectangles, and then to split each of these further into two triangles. An ex-
ample of such a mesh is shown in Fig. 9.5. (Also shown on this plot are global
node and element numbers; the manner in which these are assigned is essentially
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Figure 9.5 An eight-element triangular mesh.
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arbitrary, and the finite element code should be able to handle this.) It is also easy
to automate this type of meshing procedure.

Book-keeping

The issue of making the edges has already been discussed. The book-keeping re-
quired does not end here, however. One also needs connection information (the
equivalent of the connection matrix discussed earlier). For a “regular” triangular
mesh such as that of Fig. 9.5, it is clear that an edge can be connected to at most
two triangles, but in general, no such assumption can be made.

Building the interconnectivity data is primarily a problem in list-searching. The
simplest method of doing this is for each edge, to search through all elements and
see whether the edge nodes coincide. This is not a good idea for large meshes,
since this is an O(E N ) ∼ O(N 2) operation, but for small meshes it works. Real
codes use additional node-element lists to accelerate the search.

One also needs some type of renumbering scheme, so that the free edges may
be numbered first. An approach which works is first to flag each edge as free or
prescribed. In the present case, simply checking whether the nodal coordinates of
the edge coincide with x = 0, x = a, y = 0 or y = b is sufficient, but in general
this can also be quite a complex search. Once this has been done, an index list is
then built which gives the original global edge number for each degree of freedom.
Again, this sounds more complex than it actually is. With these data, and with the
convention that shared edges have the same sign, matrix assembly proceeds very
quickly.

Solving the eigenvalue problem

From a mathematical viewpoint, the most complex part of the finite element anal-
ysis (and certainly the most computationally expensive) is actually the solution of
the generalized eigenvalue problem represented by Eq. (9.49), repeated here:

[S]{ei } = k2
i [T ]{ei }

Fortunately, modern scientific programming environments such as MATLAB make
this very simple; for instance, in MATLAB, the function eig solves this with one
command! (Similar routines are available in LAPACK, if using FORTRAN 90 or C,
although calling them requires a little more work.) What emerges from the analysis
is a set of eigenvalues, each with its associated eigenvectors.

As should be anticipated from our earlier discussion, this vector element FEA
includes static modes. (This very important point is often not mentioned explicitly,
and causes novices no end of problems.) Interestingly, it is possible to predict the
number of such modes. The idea is the following. For the Whitney element, the
curl of the field is represented by a constant. For the null-space of the eigenvalue
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problem, where the field can be represented by a potential, this potential function
must thus be linear. The obvious approximation of a linear potential using nodal
elements would require one degree of freedom per unconstrained (free) node. One
of the solutions is actually the trivial solution �E = 0 (corresponding to a constant
potential) and must be discounted (since it is also a valid, albeit trivial, solution of
the dynamic problem) and thus the dimension of the null-space, K , is the number
of unconstrained nodes minus one for Whitney elements. Hence K can be very
large. In the 2D case, the ratio of edges to nodes tends to around three, so almost
one-third of computed eigenvalues are actually null-space ones.

In practice, the trivial solution is also irrelevant. So, once the eigenvalue problem
has been solved, we must first sort the computed eigenvalues into ascending order,
then count the number of free nodes, i.e. K + 1, and then finally, eigenvalue K + 2
is the first eigenvalue of interest. (Again, this type of operation is very easily im-
plemented in MATLAB, using the sort function.)

Post-processing

Once the finite element analysis is complete, the vector degrees of freedom need
to be post processed to yield meaningful field data. As has been commented previ-
ously, unlike interpolatory nodal-based elements, where a degree of freedom typi-
cally represents a field component at a particular node, hierarchal vector elements
only reconstruct a physically meaningful field when summed together. In this case,
the eigenvector corresponding to a particular eigenvalue does not in itself directly
represent a field. Given the degrees of freedom and the corresponding basis func-
tions, the field �E(x, y) can be computed at any point within the element.

For this, one needs to compute directly the sum of the Whitney elements within
each element, that is:

�Ee(x, y) = Ee
12 �w12 + Ee

13 �w13 + Ee
23 �w23 (9.84)

with Ee
i j the degrees of freedom and wi j the basis functions. (Here, it is worthwhile

pointing out that some authors include the appropriate edge lengths in the basis
function, e.g. wi j = �i j (λi∇λ j − λ j∇λi .) The reason this is sometimes done is
that the degree of freedom is then the tangential field at each edge. In this case, the
[S] and [T ] matrix entries are scaled appropriately [3], and the basis functions in
Eq. (9.84) must of course also include the edge length. This is obvious, but easy to
overlook, since the lengths are often implied but not consistently retained in some
of the literature.)

All the theory needed for this has already been presented. The simplex coor-
dinates for point (x, y) are computed from its basic definition as in Eq. (9.40),
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expanded here for all three coordinates:

λ1 =

1 x y
1 x2 y2

1 x3 y3

2A

λ2 =

1 x1 y1

1 x y
1 x3 y3

2A

λ3 =

1 x1 y1

1 x2 y2

1 x y

2A
(9.85)

The gradients are computed as in Section 9.7.2, using specifically Eq. (9.71).

9.7.4 Results

The eigenvalues can be put into one-to-one correspondence with the analytically
known eigenvalues. For a standard X-band guide, with a = 22.86 mm and b =
10.16 mm, the first eight TE eigenmodes are listed in Table 9.1.

The relative error of the eigenvalues computed with the FEM compared to the
analytical results is shown in Fig. 9.6. Clearly, refining the mesh has the desired re-
sult of decreasing the error. Individually, the eigenmodes display different conver-
gence with, for instance, the seventh eigenmode (TE31) being accurately computed

Table 9.1 First eight transverse electric modes
in a standard X-band waveguide, giving cut-off
wavenumber and frequency

kc fc
Mode (rad/m) (GHz)

TE10 137.43 6.5573
TE20 274.86 13.1146
TE01 309.21 14.7539
TE11 338.38 16.1455
TE30 412.28 19.6719
TE21 413.71 19.7401
TE31 515.35 24.5899
TE40 549.71 26.2292
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Figure 9.6 The relative error in the first eight eigenmodes.

by even the very coarse 16 element mesh. This behavior has been observed in many
implementations, and what is usually studied is an average error. In Fig. 9.7, the
result for the RMS error of the first eight eigenmodes is plotted versus average
triangle length h. Theoretically, the Whitney element is complete to zeroth order,
so the error term should be of O(h). Since the functional depends on the square of
the field, and is stationary at the true solution, the resulting error is O(h2). We can
confirm this on the log-log plot; this is (approximately) a straight line, with slope
2.14 (this can be conveniently obtained using the MATLAB function polyfit).
Hence the error E is:

E = K h2 (9.86)

where K is an unknown coefficient. This is a well-known result in finite element
analysis [2, p. 148] (note that the exponent has the incorrect sign in this refer-
ence). It is also confirmed by the interpolation error bound of chk , with c a con-
stant and k = 1 in this case, originally given by Nedelec [8, Eq. 22] (although
this is not exactly the same as the overall error, which is what we are evaluating)
if one recalls that the eigenvalue, as a stationary property, is the square of this
estimate. (Morishita and Kumagai showed that with the curl-curl functional, the
eigenvalue is stationary [29, Section IV]; this is also discussed by Chen and Lien
[30].)
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The eigenmodes are conveniently compared visually. Figures 9.8 and 9.9 show
the first six eigenmodes, computed analytically and with a 256 element FEM so-
lution respectively. These results were plotted with the MATLAB quiver func-
tion.12 Note that the sign of the eigenmode is essentially arbitrary; for instance,
the TE01 eigenmode has been computed with opposite sign by the analytical and
finite element methods. Also, for interest, the first six “spurious” eigenmodes are
shown in Fig. 9.10. The wavenumbers appear to be complex; this is simply due
to taking the square root of numbers approximating zero, but slightly negative.
There are 105 such eigenvalues and associated eigenmodes, in a problem with
360 degrees of freedom. One notes that, in general, these modes satisfy the bound-
ary condition of zero tangential field, but cannot of course be recognized as tradi-
tional TE modes.

9.8 The three-dimensional Whitney element

The FEM using vector elements in 3D is in a sense just a straightforward exten-
sion of the 2D analysis; however, the mesh generation and book-keeping problems
become formidable and we will not discuss the actual implementation of such a
code in detail; developing a truly general-purpose 3D FEM code is a challenging

12 Readers should note that this is a rather tricky function to use.
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Figure 9.8 Quiver plot of the first six eigenmodes, computed analytically.
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Figure 9.9 Quiver plot of the first six eigenmodes, computed with a 256 element FEM
solution.
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Figure 9.10 Quiver plot of the first six “spurious” eigenmodes, computed with a 256 ele-
ment FEM solution.

task, although developing a special purpose 3D finite element analysis code is not
an entirely unreasonable undertaking. References that can assist in this regard may
be found in Section 9.9.

The three-dimensional Whitney element is exactly the same as in two dimen-
sions

�wi j = λi∇λ j − λ j∇λi (9.87)

with the obvious difference that there are now six degrees of freedom per tetra-
hedron, rather than three per triangle, since a tetrahedron has six edges. This ele-
ment has exactly the same well-known properties of constant tangential/linear nor-
mal field (CT/LN) approximation along edges (hence, of mixed order) as its two-
dimensional counterpart and needs no further discussion. Once again, conventions
should be adopted right from the start; since we are going to address higher-order
elements later, which have degrees of freedom linked to faces as well as edges, we
need also to number faces. See Table 9.2 for one such convention. (The face num-
bering conventions in the literature are generally not consistent. This one follows
[3, Table II], but differs from [17], for example.)

All the comments made in the context of two-dimensional elements are equally
germane here; however, the coding effort is at least an order of magnitude more,
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Table 9.2 Local edge and face numbering convention for
3D tetrahedrons

Local edge numbering Local face numbering

Edge Local nodes Face Local nodes

1 1 2 1 1 2 3
2 1 3 2 1 2 4
3 1 4 3 1 3 4
4 2 3 4 2 3 4
5 2 4
6 3 4

due to the complexity of three-dimensional tetrahedral meshes and the much larger
problem size required by realistic problems, and hence we conclude our introduc-
tory coverage at this point.

9.9 Further reading

This chapter has focussed heavily on vector finite elements; the explanations of
the properties of the elements reflect what might be called the current orthodoxy.
It should be mentioned that there has been criticism of these elements from some
quarters, most stridently from Mur [31]. One should note that his criticism is heav-
ily influenced by his work on magnetostatic problems, where the permeability can
vary enormously from element to element and vector elements may indeed ex-
hibit serious problems due to this. Recall also our earlier discussion about material
interfaces and field continuity, and the problems with node-based elements, in Sec-
tion 9.5; de Lager and Mur were able to introduce a node-based element which can
indeed handle material discontinuities [32]. However, at the time of writing, this
element had not been applied to 3D high-frequency analysis, and it seems likely
that the current vector elements will continue to dominate finite element analysis
in the forseeable future. On the topic of spurious modes, work by Vardapetyan and
Demkowicz has addressed the problem at a quite fundamental level, introducing
Lagrange multipliers in the functional; [33] is representative of their work.

More generally, the reader is fortunate that there are a number of excellent and
current texts on the FEM available. Silvester and Ferrari’s book [2] (first published
in 1983, approximately doubling in length with the 1990 second edition, and in-
creasing again in length significantly with the 1996 third edition) was for years
the only reference in the field, and the current edition contains good coverage of
high-frequency topics, in addition to extensive coverage of statics and magneto-
statics. (Incidentally, the second edition contains some useful material which was
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not in the third, and is also worth acquiring if the opportunity presents itself.)
Jin’s text has recently been revised [4] and is probably the book of first choice for
high-frequency electromagnetics, which it concentrates on exclusively. Volakis,
Chatterjee and Kempel’s text also focusses on high-frequency applications, and
contains much useful information on various elements [19]. Pelosi, Coccioli and
Selleri’s book lives up to its name, and is a good starter text [34]. Peterson, Ray and
Mittra’s book is somewhat more general in scope than just the FEM, but provides
particularly deep coverage of coupled FEM/MoM formulations [35]. The text by
Salazar-Palma et al. [7] is more of a research monograph; it concentrates primar-
ily on interpolatory elements. The coverage is more theoretical than the other texts
discussed here, and it is especially useful as preparatory reading if one intends
working through mathematical papers such as Nedelec’s.

Two other very useful sources are the 1996 anthology edited by Silvester and
Pelosi [1]; the extensive annotations are especially useful for putting the work in
perspective, and the anthology contains a number of earlier papers which are oth-
erwise hard to come by. Some important papers have appeared since the anthology
was published (and have been referenced in this chapter) but these are generally
easily accessible. The collection edited by Itoh, Pelosi and Silvester [36] (also in
1996) contains a number of important contributions; in the context of vector el-
ements, [6] deserves particular mention. For readers who would like to embark
on their own three-dimensional implementation, there are two papers which will
be of considerable interest, since they provide an eminently practical viewpoint on
finite element coding. The first is by the present author [37]; the second reflects ex-
perience by Kempel’s group [38], and was written specifically to complement the
former. In [37], a number of practical issues are discussed, but mesh generation and
linear algebra are only very briefly considered. In [38], an excellent overview of
the many meshing packages available is provided, as well as a discussion of some
sparse matrix solution routines. Sparse matrix schemes are on the one hand essen-
tially an entirely practical problem, but on the other their efficient use is essential
for commercial codes – we will briefly discuss this in the next chapter. The book
by Duff et al. [39] is the standard reference on this. It has to be commented that
specifically the topic of sparse matrices is not well treated in the CEM literature
on finite elements.

9.10 Conclusions

This chapter has introduced the finite element method for high-frequency elec-
tromagnetic field solutions. Using primarily the variational formulation, the ba-
sic method was introduced for the scalar Laplace equation, following which we
immediately addressed vector (edge) elements for the vector wave equation. An
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eigenvalue problem was solved, and used to illustrate ideas both about the the-
ory of finite element solutions of the vector wave equation, as well as a plethora of
practical issues which one must address when writing an actual finite element code.
Two-dimensional finite element codes require only moderate coding complexity,
and it is quite realistic to attempt development of such a code oneself. The exten-
sion to three dimensions has been discussed. Without wishing to dissuade readers
from attempting a full higher-order 3D finite element implementation using tetra-
hedral elements, we should caution that getting all the aspects required working
together efficiently, and reliably, is no small undertaking. One way of “easing” into
this would be to start with a “brick” mesh; the bricks can be subdivided into tetra-
hedra. (One way to do this was shown in [40, Fig. 9.5], unfortunately not repeated
in the third edition.) Of course, this does not truly exploit the power of the FEM
for modelling complex geometries. Another approach is to use prismatic meshes;
Volakis, Kempel and their colleagues have been very successful with such meshes
for a variety of antenna problems [19, 38]. One might term this 2 1

2D-modelling,
although of course the full 3D field solution is obtained.

In the following chapter, a variety of more advanced topics on the FEM are
introduced. Starting with the extension of vector elements to higher orders, the
application of these will be illustrated by way of a deterministic problem (an ob-
stacle in a rectangular waveguide, analyzed using both commercial and research
codes). The FEM/MoM hybrid formulation will be introduced, and some results
shown. Then a time domain formulation of the finite element method for the vector
wave equation is outlined. The issue of sparse matrix storage schemes and solu-
tion methods is considered, before finishing the coverage with an introduction to
the field of error estimation and mesh adaptation.
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10

A selection of more advanced topics on the finite
element method

In this final chapter, we discuss a selection of more advanced topics, primarily
relating to the finite element method. However, as will be seen, a linkage to the
method of moments will be established, and perhaps rather less expectedly, the
finite difference time domain method will also emerge as a special case of a finite
element time domain treatment, so amongst other purposes, the chapter serves to
draw together these three apparently quite different methods.

We will start by considering a very important extension of the vector ele-
ments, namely higher-order elements. Following this, the stationary functional
formulation for deterministic (driven) problems will be outlined. In the pre-
ceding chapter, an eigenvalue problem was used to illustrate the FEM in two
dimensions; in this chapter, a deterministic three-dimensional problem will be
discussed, namely the analysis of waveguide obstacles. Finite element analysis is
ideal for this problem, and good results have been obtained by a number of work-
ers. Results for two waveguide problems computed using FEM codes incorporat-
ing higher-order elements will be shown. Then, a hybrid FEM/MoM formulation,
which has proven very powerful for specialized applications, will be introduced,
and an application to radiation exposure assessment near a base-station antenna
will be presented. Following this, time domain finite element analysis is briefly
discussed.

We conclude the chapter with a discussion on two issues which impact on ef-
ficiency. Firstly, sparse matrix storage schemes are briefly outlined, and secondly,
error estimation and the use of mesh adaptation based on this is discussed.

The coverage in this chapter is at a higher level than in much of the rest of
this book. Generally, the topics discussed are too complex to permit a simple im-
plementation, and the intention of this chapter is rather to sensitize the reader to
current topics of interest in the field. Nonetheless, with the exception of time do-
main FEM, aspects of all the topics discussed are either already incorporated in
commercial codes, or can be expected to be available shortly.

336
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10.1 Higher-order elements

Although extending “edge” elements to higher orders became a topic of interest as
soon as the CT/LN elements achieved widespread acceptance, it remains a topic
of active research at present, a decade or more later. Development of such ele-
ments raises a number of issues, including: hierarchal versus interpolatory behav-
ior; methods for the construction of the element shape functions; the interpretation
of the degrees of freedom; the construction of prototype elemental matrices (an-
alytical versus quadrature); and the efficient iterative solution of the poorly con-
ditioned linear algebra systems which unfortunately often result. Various names
are in use: the two-part field description as used in the preceding chapter (e.g.
linear tangential/quadratic normal, LT/QN) is particularly insightful and is used
here. However, before introducing higher-order elements, it is worthwhile briefly
discussing the question of completeness and vector elements.

10.1.1 Complete versus mixed-order elements

A family of polynomials is complete to order N if a linear combination of its
members can exactly express any polynomial of degree not exceeding N , but no
higher [1, p. 272]. For a complete first-order approximation of a function in x and
y, three terms are needed; one constant and two terms linear in x and y respec-
tively. Clearly, for a first-order complete expansion of a two-dimensional vector
field, each component will require three terms, hence six degrees of freedom will
be required. For a tetrahedral element, approximating a three-dimensional field,
twelve are needed (there is an additional linear term in z for each component, and
of course, three components). By comparison, the Whitney triangular element has
three degrees of freedom, and the tetrahedral element six; as we have seen in Sec-
tion 9.6, this results in certain field components being approximated by a constant,
and clearly these elements are of mixed order.

So many of the early papers on Whitney elements emphasized the mixed-order
nature of the element that it is not always appreciated that being of mixed order
is not an essential property of vector elements per se. Complete sets of vector
elements have also been described [2], with degrees of freedom proportional to
tangential field components, as for mixed-order elements. This permits enforce-
ment of only tangential field continuity, as for mixed-order elements, with normal
(dis)continuity following as a natural boundary condition, as discussed in Chap-
ter 9. (It is easy to produce complete scalar or nodal elements, but then of course
we are back with the inconvenient problem of having degrees of freedom repre-
senting a Cartesian component at a point, rather than a tangential field component,
which was one of the major motivations for the development of vector elements,
as we saw in in Chapter 9.) For wave eigenvalue problems, such complete sets
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Table 10.1 Webb’s hierarchal elements (to second order complete) [3]

CT/LN (6 × 1 = 6 edge-based degrees of freedom)
Edge-based 1 per edge ζi∇ζ j − ζ j∇ζi

Additional LT/LN functions (6 × 1 = 6 extra edge-based degrees of freedom)
Edge-based 1 per edge ∇ (

ζiζ j
)

Additional LT/QN functions (4 × 2 = 8 extra face-based degrees of freedom)
Face-based 2 per face ζ jζk∇ζi + ζiζk∇ζ j − 2ζiζ j∇ζk

for {i; j; k; } = {1; 2; 3} and {2; 3; 1}
Additional QT/QN functions (6 × 1 edge-based + 4 × 1 face-based = 10 extra
degrees of freedom)
Edge-based 1 per edge ∇ (

ζiζ j [ζi − ζ j ]
)

Face-based 1 per face ∇ (
ζiζ jζk

)

After [4], c©2003 IEEE, reprinted with permission.

of vector elements produce “wasted” degrees of freedom, as we have already dis-
cussed. In essence, Nedelec’s constraints provide mixed-order elements that model
the curl-space as efficiently as possible, for a given number of degrees of freedom.
However, not all problems, in particular deterministic ones, share these character-
istics. Recent work by Webb [3] and the present author [4] has indicated that some
vector electromagnetic problems are more efficiently analyzed using complete-
order vector elements, typically when the solution is dominated by electric fields
strongly “gradient” in nature.

10.1.2 Hierarchal vector basis functions

There are presently two competing approaches to higher-order vector elements.
One approach is interpolatory; in this case, a degree of freedom is typically asso-
ciated with a tangential field at a specific point. The other approach is hierarchal,
in which case a specific higher-order set contains all the lower-order basis func-
tions.1 For mesh refinement/enrichment purposes, hierarchal elements are very
useful, and here we consider only the use of such elements, in particular those
presented in [3]. (For a comprehensive discussion of interpolatory elements, see
[5]. These elements can be used for h-adaptation, but are inconvenient at least
for p-adaptation. We will discuss these topics in Section 10.9.) These elemental
basis functions are summarized in Table 10.1, along with the number of degrees
of freedom per tetrahedron and their respective associations with edges or faces.
Webb presented the information slightly differently in his paper [3, Tables III, IV

1 Nodal elements can be both interpolatory and hierarchal; there does not appear to be a proof prohibiting a set
of vector elements from having both properties. However, no such vector elements have yet been proposed.
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Table 10.2 Comparison of various hierarchal element schemes (to LT/QN)

CT/LN, all
Edge-based 1 per edge ζi∇ζ j − ζ j∇ζi

LT/QN, Savage [10]
Edge-based 1 per edge ∇(ζiζ j )
Face-based 2 per face ζi (ζ j∇ζk − ζk∇ζ j )

(and { j; i; k} but not {k; i; j})
LT/QN, Webb and Forghani [7]

Edge-based 1 per edge ∇(ζiζ j )
Face-based 2 per face ζiζk∇ζ j

(and { j; k; i} but not {i; j; k})
LT/QN, Andersen and Volakis [11]

Edge-based 1 per edge (ζi − ζ j )×
(ζi∇ζ j − ζ j∇ζi )

Face-based 2 per face ζi (ζ j∇ζk − ζk∇ζ j )
(as for Savage’s elements)

LT/QN, Webb [3]
Edge-based 1 per edge ∇(ζiζ j )
Face-based 2 per face ζ jζk∇ζi + ζiζk∇ζ j − 2ζiζ j∇ζk

for {i; j; k; } = {1; 2; 3} and {2; 3; 1}

After [4], c©2003 IEEE, reprinted with permission.

and V]; here, the additional gradient-space functions required for the LT/LN and
QT/QN elements have been explicitly written as gradients of products of simplex
coordinates to highlight this functional dependence. Note that only the additional
basis functions required are tabulated, to avoid repetition; i.e. the full second-order
QT/QN set of basis functions will include all thirty listed.

Webb’s approach is elegant in that one progressively enriches the curl space,
and then the gradient space.2 (Earlier proposals did not follow this approach.) For
example, moving from CT/LN to LT/LN, one adds elements of the form ∇ (

ζiζ j
)
,

one per edge, which is clearly in the gradient space. (The curl of this is identi-
cally zero.) This then gives a complete first-order approximation function. Mov-
ing from LT/LN to LT/QN, an additional eight face-based degrees of freedom are
added, giving twenty vector-based functions and degrees of freedom per tetrahe-
dron. “Face-based” means that the degree of freedom is associated with the integral
of the tangential field over the face.

Many other hierarchal elements have been published, in particular of LT/QN
order. Some of these are summarized in Table 10.2. This table should serve as a
useful summary of some of the various elements in current use. Another recent

2 The Whitney element is actually a special case; it includes elements of both.
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contribution on hierarchal elements is the work of Sun and Lee [6]; they use a
slightly different approach to construct the elements, but the resulting basis func-
tions are very similar, although not identical, to [3]. Most of these (including those
of Savage described above) can be seen as variants of the elements originally pro-
posed by Webb and Forghani [7]. (Indeed, not only are these variants on a theme,
they are also linear transforms.) A number are summarized in Table 10.2. Note that
all the face elements exclude (arbitrarily) one possible combination of {i; j; k};
this asymmetry has long been noted, and is required to avoid linearly dependent
basis functions.

These elements are generally constructed by “inspection,” using the properties
of simplex coordinates, and the gradients thereof. Webb’s recent work is the most
comprehensive and theoretically motivated development along these lines to ap-
pear in the electrical engineering literature. It is worth investigating the properties
of these elements a little further, since some of these are far from trivially obvi-
ous. For instance, it is not immediately apparent why the higher-order hierarchal
elements have degrees of freedom associated with edges, faces or in some cases,
with neither of these (the “volume-centered” degrees of freedom).

10.1.3 Properties of hierarchal basis functions

For this, it is useful to return to some basic properties of these elements, as orig-
inally laid down by Nedelec [8]. (It should be commented that not all vector el-
ements which have been proposed satisfy his criteria, but those presently under
discussion do.) Nedelec focussed on degrees of freedom, rather than basis func-
tions; indeed, his original work simply states the necessary properties, rather than
proposing actual basis functions. The degrees of freedom as he defined them are
not unique,3 even for the lowest order (Whitney) element, although in practice the
non-uniqueness is only a matter of a constant for the lowest order case and does
not impact on the code at all. However, as seen in the previous section, a variety of
different basis functions have been proposed for higher-order elements.

This is rather cryptically implied in Definition 4 of Nedelec’s original work [8].
For “kth” mixed-order elements, the 6k edge-based degrees of freedom for 3D
elements (3k in 2D) should be given by

∫

a
�u · t̂q dC, ∀q ∈ Pk−1 (10.1)

�u is a basis function and t̂ is the unit vector along edge a. Pk is the linear space
of polynomials of degree ≤ k. For the Whitney element, with k = 1, we see that

3 The polynomial space described is, however.
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q may only be a constant. In the case of this element, with (ζi∇ζ j − ζ j∇ζi ) form,
this constant is often implicitly unity, and the associated Nedelec degree of free-
dom (which may be viewed as located at the middle of the relevant edge, al-
though this is not essential) is the tangential field on this edge. We commented
earlier in Section 9.6 that it may be shown that the integral of the tangential
component of the Whitney element along an edge is constant; we will now do
this.

This proof is rather simple. Integrating the Whitney element along an edge
yields two integrals. The first is of the form

∫

a
ζi (∇ζ j · t̂) dC (10.2)

and the other has i and j interchanged, and is of opposite sign. Throughout the
element, ∇ζ j is constant, and it is perpendicular to the edge opposite node j (this
was discussed in Section 9.6). Clearly, ∇ζ j · t̂ is thus also a constant along any
particular edge. Along the edge directed from nodes i to j , what remains is an
integral of a simplex coordinate, varying linearly from 0 to 1, along the edge. The
result is ±1/2�, with � the edge length, and the sign depending on the direction of
integration. Clearly, this is a constant, as is the other integral. Obviously, incorpo-
rating additional constants, such as Nedelec’s q, changes only the final constant,
which is irrelevant in practice. The result is as in Appendix A,

�Etan|edgei
= Ei

�i
(10.3)

When �Etan|edgei
is integrated along edge i , the result is the well-known identity

that the appropriate degree of freedom is the tangential field along edge i .
Importantly, on the other two sides, one or the other simplex coordinate will be

zero, and the other entirely normal to the edge. Thus Eq. (10.1) will yield zero for
this term on the other two edges (due to the �u · t̂ term). The argument is precisely
the same for tetrahedra.

Additional edge-based degrees of freedom, as required for Webb’s scheme for
LT/LN order elements and higher, of the form

∇(ζiζ j ) = ζi∇ζ j + ζ j∇ζi

yield exactly the same result – they contribute additional degrees of freedom on
edge {i; j} and nothing to the other edges. (Note that a different choice of q may
be required in this case, otherwise the degree of freedom is zero. A linear function
is an obvious possibility, such as a suitable Legendre polynomial.)

Now, the face-based elements. Nedelec’s original definition of the 4k(k − 1)

face-based degrees of freedom for higher-order elements of maximum (but not



342 More advanced topics on the FEM

complete) order k was
∫ ∫

f
�u × n̂ · �q d S, ∀�q ∈ (Pk−2)

2 (10.4)

Here, n̂ is the unit vector normal to edge f , and the polynomial q is now two
dimensional (for k = 2, this must be a constant). Let us now see why these addi-
tional degrees of freedom, which enrich the curl space for the LT/QN element,
are associated only with faces. We will consider vector elements of the form
ζi (ζ j∇ζk − ζk∇ζ j ); the Webb LT/QN enrichment in Table 10.1 is a linear com-
bination of two such forms, so the argument includes these. On face i, j, k, one of
the simplex coordinates will always be zero on each edge; for example, ζi is zero
on edge { j, k}, so these do not contribute to the edge-based degrees of freedom.
(This extends to faces, e.g. ζi is zero everywhere on face { j, k, l}. Hence this basis
function will have no tangential projection on any other face.)

Over face {i, j, k}, the degrees of freedom are thus
∫ ∫

f
ζiζ j (∇ζk × n̂) · �q d S −

∫ ∫

f
ζiζk(∇ζ j × n̂) · �q d S (10.5)

The (∇ζk × n̂) and (∇ζ j × n̂) terms are constant over this face, as is q, and what
remains are two standard integrals in simplex form, proportional to the triangle
area and thus constant.

The higher-order elements (quadratic tangential/cubic normal, QT/CuN, etc.)
involve additional “volume-centered” degrees of freedom. These each involve
products of all the simplex coordinates, so are clearly zero on all faces and edges.
For these basis functions, the associated degree of freedom as defined by Nedelec
is a weighted integral over the volume.

10.1.4 Practical impact of higher-order basis functions in an FEM code

The discussion in the preceding section may appear highly theoretical, so it is
worthwhile summarizing the practical impact hereof. Finite element codes do not
usually actually compute the degrees of freedom as defined by Eqs. (10.1) and
(10.4), since this usually serves no particular purpose. The “degrees of freedom”
for which an FEM code solves are usually simply the unknowns associated with
each basis function; as we have seen, for the Webb elements (and most other prop-
erly defined vector elements) these degrees of freedom can be correctly associated
with edges, faces or the volume, and for the first two, the degrees of freedom are
tangential field projections onto the edge or face, as required by Nedelec’s original
work. To enforce field continuity correctly, a degree of freedom associated with an
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edge or face must simply be shared between all connected elements; we discussed
this in the context of edges in the preceding chapter. Note that edges have direc-
tions; the numbering scheme used there ensured that the directions were consistent
between elements, and one must do the same with faces. Volume-centered degrees
of freedom have no projection on the edges or faces and hence are not shared by
adjoining elements.

A tricky problem which was surprisingly neglected in the literature until re-
cently was the question of how to match fields when using hierarchal elements
to an actual specified field, as required by a Dirichlet boundary condition, for
instance. With interpolatory elements, this would be trivial, since each degree
of freedom would, by design, correspond to a tangential field component at a
point on each element. With hierarchal elements however, this is only uniquely
defined for Whitney elements. Webb [9] has very elegantly addressed this issue
for higher-order hierarchal elements using the elements in [3]. As we have seen,
starting with the conventional Whitney elements, Webb’s elements enrich alter-
nately the gradient and curl spaces. Webb exploits this in [9] to match alternately
the tangential components of the electric field, and then the normal component
of the electric field (the curl space). Since any such matching using hierarchal ele-
ments is approximate, he uses a projective approach to improve the accuracy of the
matching.

10.2 The FEM from the variational boundary value problem viewpoint

It is useful at this stage to introduce some further ideas from functional analysis,
extending the introduction in Section 4.5. This approach is strongly influenced by
the methods used in applied mechanics, and is based on a development presented
by Botha [12]. It will be especially useful when error estimation methods are dis-
cussed later in this chapter.

Firstly, we define a bilinear form. If X and Y are vector spaces, a bilinear form
B : X × Y → C is an operator with the properties

B(αu + βw, v) = αB(u, v) + βB(w, v), u, w ∈ X, v ∈ Y

B(u, αv + βw) = αB(u, v) + βB(w, v), u ∈ X, v, w ∈ Y (10.6)

with α and β complex numbers. In short, the operator B is linear in each of its
“slots.”

In the context of the high-frequency functional, the boundary value problem to
be solved on domain �, in terms of the electric field, is the vector wave equation
with appropriate boundary conditions, either Dirichlet on �D or Neumann on �N ,
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with of course the boundary (also called closure) � = �D + �N :

∇ × 1

µr
∇ × �E − k2

0εr �E = − jk0 Zo �J on �

n̂ × �E = 0 on �D

n̂ × ∇ × �E = �N on �N (10.7)

This is a “strong” version of the problem; a vector field �E which satisfies the vector
wave equation must be twice differentiable.

Note that from one of Maxwell’s curl equations, the Neumann boundary condi-
tion can also be written as

n̂ × �H = j

µω
�N on �N (10.8)

Thus, the Neumann boundary condition can be seen equivalently as a constraint
on tangential �H .

Using a method of weighted residuals approach, with an arbitrary testing func-
tion �W , and otherwise proceeding in a very similar manner to that of Section 9.2.4,
it may be shown that the following is the “weak” representation of the boundary
value problem represented by Eq. (10.7):

∫ ∫ ∫

V

[
1

µr
(∇ × �E) · (∇ × �W ) − k2

0εr �E · �W
]

dV

−
∫ ∫

�D

1

µr
(∇ × �E) · (n̂ × �W ) d S

= −
∫ ∫

�N

1

µr

�N · �W d S − jk0 Z0

∫ ∫ ∫

V

�J · �W d S (10.9)

with n̂ × �E = 0 on �D

A symmetry argument is used to establish that �W must also satisfy the homoge-
neous boundary condition on �D , so that the surface integral over �D on the left-
hand side falls away. The final form of the variational boundary value problem is

B( �E, �W ) = L( �W ) ∀ �W ∈ W, �E ∈ W (10.10)

The bilinear and linear forms are defined as

B( �E, �W ) =
∫ ∫ ∫

V

[
1

µr
(∇ × �E) · (∇ × �W ) − k2

0εr �E · �W
]

dV (10.11)

L( �W ) = −
∫ ∫

�N

1

µr

�N · �W d S − jk0 Z0

∫ ∫ ∫

V

�J · �W d S (10.12)
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The space in which the solution and testing vector functions lie is defined as

W = {�a ∈ H(curl, �)|n̂ × �a = 0 on �D} (10.13)

This is the space of curl-conforming vector basis functions which we have already
discussed, with the additional constraint of the homogeneous Dirichlet boundary
condition.

In this development, the Neumann boundary condition has been “absorbed” into
the variational boundary value problem – via the first term on the right-hand side of
Eq. (10.12). (It will be recalled that in Section 9.2.4, a similar result was obtained
in the context of a homogeneous Neumann boundary condition.) The Dirichlet
boundary condition must however be explicitly enforced via a restriction on the
space W . (This sounds more complex than it is; as was seen in Section 9.7, this is
implemented in practice by zeroing the prescribed edges.)

With the variational boundary value problem established, one can then proceed
to demonstrate that the stationary functional representation of the problem is the
following:

F( �E) = 1

2
B( �E, �E) − L( �E), �E ∈ W (10.14)

This is the familiar curl-curl functional, which we used in the preceding chapter
(although the linear term was zero for the eigenvalue problem). Note that this (and
indeed the variational boundary value problem from which the stationary func-
tional form is obtained) is known as a “weak” form; the differentiability require-
ments on the solution space have been reduced (the function �E need only be once
differentiable now).

10.3 A deterministic 3D application: waveguide obstacle analysis

10.3.1 Introduction

The analysis of waveguide discontinuities has been a canonical problem for an-
alytical, approximate, and now numerical approaches since the pioneering work
of Marcuvitz and colleagues during the Second World War, now some sixty years
back. Using variational formulations, and quasi-static approximations of the fields,
Marcuvitz et al. were able to analyze an extraordinary variety of problems, docu-
mented in the classic text originally published in 1951 and now fortunately avail-
able again [13]. Subsequently, mode-matching methods were introduced for the
analysis of “stepped” discontinuities, – i.e. structures where the waveguide modes
could be computed in a stepwise fashion, and matched at two-dimensional planes.
However, for general, arbitrary discontinuities, and of course those involving non-
metallic discontinuities such as dielectrics, differential equation based methods
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such as the finite element method (FEM) and finite difference time domain (FDTD)
method are now the methods of choice. In this section, we will first present the for-
mulation for this, which also affords the opportunity to deal with the more general
version of the curl-curl functional as discussed in Section 10.2, and then analyze a
waveguide device using both a code developed by the present author, as well as a
commercial FEM package.

10.3.2 The waveguide formulation

The formulation to be discussed is a straightforward extension of Jin’s approach
[14], published by the present author in [15]. His formulation addressed two-port,
single-mode analysis, with the waveguide oriented in the ẑ-direction. Here, gen-
eral waveguide orientation(s) will be considered. The formulation assumes hollow,
rectangular guide at the ports (although the extension to homogeneously filled
guide is straightforward). The TE10 mode is assumed in the following. In be-
tween the ports, in the region to be discretized using finite elements, the waveguide
may contain linear, inhomogeneous, lossy, dielectric and/or magnetic material(s);
and/or conductors (for instance, posts or irises); and may change orientation (e.g.
E-plane bends) or dimension (e.g. E- and/or H-plane steps). The formulation to
be used does, however, assume isotropic media. The generalization of the analysis
to multiple ports, the inclusion of higher-order modes, and the extension to more
general waveguide, will be outlined subsequently.

Formulation overview

The key part of the formulation is to write the electric field at port 1 (S1) as the
sum of the known incident and unknown reflected fields in terms of the (ξ, η, ζ )

coordinate system local to the port, with ζ in the local direction of propagation,
and set to zero at each port, as follows:

�E(ξ, η, ζ ) = �E inc(ξ, η, ζ ) + �E ref(ξ, η, ζ )

= (E0�e10(ξ, η)e− jkζ10ζ + RE0�e10(ξ, η)e+ jkζ10ζ )|ζ=0 (10.15)

�e10(ξ, η) is the relevant waveguide eigenmode (the TE10 eigenmode here) and kζ10

is the modal propagation constant. Note that it is necessary to retain the e− jkζ10ζ

term, even though the field is evaluated at ζ = 0, since the boundary condition to
be discussed involves the derivative of the field, which must be evaluated before
setting ζ = 0.

The next key element of the formulation is to convert Eq. (10.15) to a boundary
condition of the third type involving both the field and its normal derivative. Such
boundary conditions can be incorporated in the bilinear functional, as will be seen
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shortly. The detail is given in [14, Section 8.5], briefly, the result is:

n̂ × (∇ × �E) + γ n̂ × (n̂ × �E) = �U inc (10.16)

with

γ = jkζ10,
�U inc = −2 jkζ10

�E inc (10.17)

It should be noted that, in obtaining Eq. (10.16), the transverse only nature of
the TE field is exploited. TM modes contain axial �E field components, and the
boundary condition cannot thus be written for an �E field solver. TM mode analysis
could be undertaken by using an �H field solver.

The same is repeated at port 2, but at that port, there is only an unknown trans-
mitted field:

�E(ξ, η, ζ ) = �E trans(ξ, η, ζ )

= T E0�e10(ξ, η)e− jkζ10ζ |ζ=0 (10.18)

Similar comments apply as regards the e− jkζ10ζ term. The boundary condition at
port 2 is

n̂ × (∇ × �E) + γ n̂ × (n̂ × �E) = 0 (10.19)

In Jin’s original formulation, the phase was referenced to each port. In the
present formulation, the transmission coefficient T incorporates the “insertion”
phase, i.e. for a section of empty guide length �, T will have phase angle −kz10�.
This produces the same phase that would be measured using a vector network an-
alyzer, with reference planes calibrated at the ports.

The equivalent variational functional (assuming isotropic but possibly lossy ma-
terials), subject to these boundary conditions on the ports and �Etan = 0 on the per-
fectly conducting walls, is:

F( �E) = 1

2

∫ ∫ ∫

V

[
1

µr
(∇ × �E) · (∇ × �E) − k2

0εr �E · �E
]

dV

+
∫ ∫

S1

[γ

2
(n̂ × �E) · (n̂ × �E) + �E · �U inc

]
d S

+
∫ ∫

S2

[γ

2
(n̂ × �E) · (n̂ × �E)

]
d S (10.20)

This can be obtained from the development in Section 10.2. In this case, in the
Neumann boundary condition of Eq. (10.7), repeated here,

n̂ × ∇ × �E = �N on �N
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the vector function �N is �U inc − γ n̂ × (n̂ × �E); this is substituted into the linear
operator L of Eq. (10.12), and a vector identity is used to shift one of the n̂ × n̂ ×
operators to the weighting function.

For readers interested in the details of the finite element discretization of this
functional, [14] and [15] are recommended.

Computation of the S-parameters

The above formulation produces R and T for port 1 (S11 and S21). It must be
repeated with an incident field at port 2 to obtain S12 and S22. Only the excitation
vector changes, so this is simply a question of repeating the matrix solve. For
multiple ports, the extension is obvious: T is computed at each port, producing
one column of the S matrix. The excitation is then repeated at each port to produce
other columns.

The S-parameters may be computed directly from the fields on the ports. A
more accurate approach uses the orthogonality of the modes to integrate the fields
computed over each port [14, Section 8.5]; as an example, for two ports the trans-
mission coefficient is given by:

T = 2

abE0

∫ ∫

S2

�E(ξ, η, ζ ) · �e10(ξ, η) d S (10.21)

As before, �e10(ξ, η) is the relevant waveguide eigenmode; a and b are the waveg-
uide dimensions.

The waveguide formulation: another perspective

The formulation can be viewed as a finite element/boundary integral (FE/BI) for-
mulation, using the waveguide Green function for “exact” mesh termination. (For
radiation or scattering problems, FE/BI formulations use the free-space, or some-
times the half-space, Green function, e.g. [14, Section 10.4]; this is discussed later
in this chapter.) The current dominant-mode-only analysis uses only the first in
the infinite series of modes comprising the waveguide Green function. It is accu-
rate provided that the ports are sufficiently far removed from the discontinuities
(assuming, of course, that only the dominant mode is above cut-off). Higher-order
modes are easily included in the formulation; this does require re-computing both
the left-hand side matrix and right-hand side vector, since the former has one term
dependent on the propagation constant, and the latter is obviously dependent on
the incident mode shape. The formulation presently assumes hollow waveguide at
the ports, i.e. only TE (and TM modes, if an �H field solver is also implemented)
are included. More exotic modes, or numerically determined ones, could also be
incorporated into the formulation.
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10.4 Application to two waveguide discontinuity problems

With the formulation in hand, we will now proceed to analyze two waveguide
discontinuity problems. The first demonstrates multi-port analysis; the second
demonstrates the use of complete vector basis functions. The latter is based on [4].

10.4.1 Application to a Magic-T

Introduction

The “Magic-T” (see Fig. 10.1) is a 180◦ hybrid. Such devices are four-port
structures, with the following interesting properties. A signal applied to port 1
is evenly split into two in-phase components at ports 2 and 3, and port 4 is
isolated. Conversely, a signal applied to port 4 is evenly split, but with 180◦ phase
difference, between ports 2 and 3, and port 1 is isolated. It can also be operated
as a combiner, in which case when input signals are applied to ports 2 and 3, the
sum appears at port 1 and the difference at port 4. Ideally, the S-parameters of the
device are [16, p. 402]:

[S] = − j√
2




0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0


 (10.22)

ŷ

ẑ

x̂

Port 3

n̂3

t̂3

Port 4
n̂4

t̂4

Port 1

n̂1

t̂1

Port 2

Figure 10.1 The Magic-T hybrid waveguide junction.
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The 180◦ hybrids can be made in various ways, e.g. microstrip or stripline, the “rat
race” being a very popular implementation in planar technologies. The Magic-T
is a waveguide implementation of a 180◦ hybrid [16, p. 411].

This is an example of a structure where the approximate analytical techniques of
Marcuvitz et al. are unable to provide useful data and a full-wave solution becomes
imperative. (A complex equivalent circuit is presented for the Magic-T [13, p. 386],
but only measured data at one frequency point are provided.) The behavior of the
waveguide Magic-T departs very significantly from the ideal of Eq. (10.22), as will
be seen.

Setting up the problem

The setup procedure for the junction as shown in Fig. 10.1 illustrates a number of
features one would expect in any RF FEM code. The specific code described in
detail is FEMFEKO, which is an experimental FEM code using FEKO-like input
and output files, but not available for general use at the time of writing. However,
the meshing is done using a commercial FEM mesher, FEMAP. In most pack-
ages, this type of structure is straightforward to model; in FEMAP, for instance,
the Solid modelling options are the easiest. First, one 40 mm long section of
X-band (22.86 mm × 10.16 mm) guide is generated (as a solid); then the other
40 mm section (at right angles to the first) is added. The structure is then meshed,
using the meshing commands within the package. Following this, the mesh is then
export-ed as a neutral file, from which it can be used by various analysis pack-
ages. (This last step is of course unnecessary in integrated FEM packages incorpo-
rating mesher and solver.)

Boundary conditions must then be applied to the structure. “Port” boundaries
are required at the four ports of the device, a port corresponding to the region
where the modal boundary condition of the preceding theoretical discussion is
applied. In FEMFEKO, a port requires two vectors to define it. The first defines
the outward directed normal on each port. The second defines the relative “sense”
of each port; there is an ambiguity regarding the “sense” of the ports, which this
helps resolve. The problem is that for a straight section of waveguide, it is obvious
that the sense of each port should be the same, either up or down, but for a bent
section of guide, the sense is essentially arbitrary. For instance, the tangent vector
defining the positive modal sense on port 4 could equally well be chosen as +ŷ or
−ŷ. (For the results presented, the former was chosen. On ports 1, 2 and 3, +ẑ was
chosen as the tangent vector.) Various packages deal with this issue in different
ways.

This problem was also solved using a commercial package, ANSOFT’s HFSS
code. Constructing the finite element model is very similar to the procedure
described above, but since the mesher is integrated within the package, it is
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appreciably more user-friendly. Nonetheless, the requirement of correctly speci-
fying boundaries in particular rests with the user. HFSS meshes the structure au-
tomatically, and then refines the mesh until a user-specified level of accuracy is
reached (usually, a negligible change in S-parameters from one iterative pass to
the next).

For the results to be presented, the geometrical primitive cubes which defined
port 1 had a length of 40 mm (i.e. approximately 20 mm of guide from the junc-
tion), for ports 2 and 3 they were 30 mm (also approximately 20 mm of guide)
and for port 4, 30 mm (again, approximately 20 mm of guide). These lengths were
based on the results for other waveguide structures; the requirement is that there
be sufficient length to allow evanescent modes to die out before the ports. As in
our 2D eigenvalue problem, the waveguide was an X-band guide with dimensions
22.86 mm × 10.16 mm.

Results

This geometry has no simple analytical solution, as already discussed. To obtain
data to compare with these results, ANSOFT’s HFSS code was used to generate
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Figure 10.2 S-parameters of the Magic-T for port 1; magnitude.
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Figure 10.3 S-parameters of the Magic-T for port 1; phase.

another FEM solution of the problem. The HFSS model was identical in size to the
FEMAP (and FEMFEKO) models, so that phase results could also be compared.

The S-parameter data for port 1 are presented in Figs. 10.2 and 10.3. Port 4
is indeed isolated; since S41 is very small, some discrepancy between the
FEMFEKO and HFSS results is to be expected. Ports 2 and 3 show equal, in-
phase, power splitting. Note, however, how far S11 departs from the theoretical
ideal of no reflection at port 1. A brief consideration of the problem shows that
this is not unexpected, since the waveguide fed by port 1 sees two identical waveg-
uides in parallel at the junction (those connected to ports 2 and 3). Thus mismatch
of around 1/3 (about −10 db)4 is to be expected. We see that the actual reflection
coefficient (as computed) is worse than this.

The phase data computed by HFSS for ports 2, 3 and 4 originally had a 180◦
phase difference compared to the FEMFEKO results, due to the mode sense ambi-
guity discussed above. (HFSS has an option to define the mode sense, but this was
not used.) This has been corrected in the results shown.

4 The reflection coefficient of a system with a load equal to half the characteristic impedance.
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The HFSS data used 1458 tetrahedra; the FEMFEKO result, using LT/QN ele-
ments, used 802 tetrahedra (with an average mesh length of around 6.5 mm). HFSS
refines its solution using adaptive meshing techniques, so one has reasonable con-
fidence that the results are accurate.

Conclusions

This discussion has demonstrated the application of two FEM codes to a Magic-T
hybrid, a device whose complex geometry precludes approximate analytical solu-
tions. Higher-order elements were used and very good results obtained. It was also
shown that the device’s performance (certainly in terms of S11) departs signifi-
cantly from the ideal found in textbooks, highlighting the importance of numerical
simulation as a valuable tool in microwave engineering.

10.4.2 Application to a capacitive iris

A rationale for complete basis functions

In Section 10.1, complete vector basis functions were introduced, although little
motivation was given for their use. The work of Webb is particularly useful in
this context; [3] comprehensively discusses the motivation for both mixed-order
and full-order elements. The main thrust of the argument can be summarized as
follows: the variational functional which is rendered stationary by the finite ele-
ment procedure consists (at its simplest) of two terms, one related to the curl of the
electric field and one related to the electric field itself. (This discussion assumes
the electric field is the working variable. The magnetic field can of course also be
used.) The curl of the electric field is the time rate of change of the magnetic field.
As already discussed in Section 10.1, the rationale behind mixed-order vector ele-
ments is to remove terms from the polynomial approximation of the electric field
which do not contribute to the magnetic field. In problems where the electric and
magnetic fields are of more or less equal importance, it makes sense only to use
the polynomial terms which contribute to both fields, to obtain maximum accuracy
for a given number of degrees of freedom.

However, there are a number of problems of interest in RF engineering where
the fields are dominated by either electric or magnetic fields. In general, a sharp
edge will result in a singularity in both the electric and the magnetic fields, but
for certain field and discontinuity orientations, such as the capacitive iris problem
to be discussed, the singularity is in the electric field alone, and hence the field is
dominated by the quasi-static electric field behavior. Hence it can be expected that
full-order elements should be useful for such problems.
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Figure 10.4 The capacitive iris. After [4], c©2003 IEEE, reprinted with permission.
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Figure 10.5 Results for a capacitive iris, compared with Marcuvitz’s result, as a function
of (inverse) mesh size. After [4], c©2003 IEEE, reprinted with permission.

Results

Here, a capacitive iris is considered.5 The metallic iris, shown in Fig. 10.4, is half
the height of the waveguide, and again, the analysis is performed at X-band. The
results shown in Figs. 10.5 and 10.6 were computed at 8.25 GHz, towards the

5 This example was first published as [4].



10.4 Two waveguide discontinuity problems 355

10
2

10
3

10
4

10
5

−30

−25

−20

−15

−10

−5

0

Degrees of freedom

|S
11

| (
dB

)

Marcuvitz
CT/LN    
LT/LN    
LT/QN    
QT/QN    

10
2

10
3

10
4

10
5

−250

−200

−150

−100

−50

Degrees of freedom

P
ha

se
 a

ng
le

 S
11

Marcuvitz
CT/LN    
LT/LN    
LT/QN    
QT/QN    

Figure 10.6 Results for a capacitive iris, compared with Marcuvitz’s result, as a function
of degrees of freedom. After [4], c©2003 IEEE, reprinted with permission.

bottom end of the X-band frequency range. A number of different meshes were
generated for the problem; the average edge length in the mesh varied from around
h ≈ λg/6 for the coarsest mesh to h ≈ λg/25 for the finest.

Of interest here are the excellent results for the polynomial complete QT/QN
elements, which agree very well indeed with Marcuvitz’s (approximate) results
[13]. (Marcuvitz’s models actually give equivalent circuit parameters. A discus-
sion of how to convert these to S-parameters may be found in [15].) In the re-
gion 4b/λg < 1, which is the case at this frequency in X-band waveguide, the
error bound on Marcuvitz’s results is given as within 1%, a result verified by this
QT/QN FEM solution. It is clear that LT/QN elements converge very slowly to
the correct solution for this problem. A commercial FEM code using conventional
mixed-order elements also produced unconverged results for this problem, despite
incorporating adaptive mesh refinement techniques.

In retrospect, it is clear that this is an especially difficult problem for general-
purpose finite element solvers. Even with quite a fine mesh overall, it is likely that
the mesh above the iris may only be two or three elements “thick” (this could be
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improved by manual “seeding” ). This of course is precisely the direction in which
the field is changing most rapidly, and furthermore, the electric field is strongly
dominated by the quasi-static field with singular behavior. To describe this field
adequately, one would expect to need full-order elements, thus also approximating
the gradient space as accurately as possible (for the given maximum element order
available).

It is also of interest to note that the relative improvement of the QT/QN ele-
ments compared to the LT/QN ones appears more marked than the improvement
of LT/LN over CT/LN. It is quite possible that the mesh in the vicinity of the iris
(as discussed above) is limiting the performance of the linear elements – indeed,
only the finest mesh in the above results had three elements “thickness” above the
iris.

The above results, using S-parameters, concentrate on what are essentially inte-
grated field quantities (also known as observables). It is also of interest to examine
the actual field behavior in the vicinity of the iris. In Figs. 10.7 and 10.8, the
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Figure 10.7 Vertically directed electric field along a line in the center of the guide, directly
above the iris. Coarse mesh, h ≈ λg/6. After [4], c©2003 IEEE, reprinted with permission.
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Figure 10.8 Vertically directed electric field along a line in the center of the guide, directly
above the iris. Fine mesh, h ≈ λg/20. After [4], c©2003 IEEE, reprinted with permission.

vertically directed electric field (the field component aligned with the TE10 mode
electric field) on a vertical line directly above the iris is plotted. (The modal exci-
tation E0, see Eq. (10.15), at the port was 1 V/m, in this and subsequent plots.) The
cut-line is located in the center of the width of the waveguide, shown in Fig. 10.4
by the dashed line. The half-height iris runs from 0 to 5.08 mm; the figures show
the field from 5.08 to 10.16 mm, the roof of the guide. The superior performance of
the QT/QN elements is clear in these figures; even in the fine mesh case, Fig. 10.8,
the CT/LN results are poor, and evidence a considerable (and non-physical) dis-
continuity at around 7.5 mm. The LT/LN results are close to the LT/QN results, and
the discontinuity evidenced by the CT/LN results has gone. The QT/QN results in
both cases give the largest field value at the iris, indicating superior modelling of
the field in this case.

Some further comments here, especially on the CT/LN results, are called for.
In the coarse mesh case, the mesh generator produced only one row of elements
above the iris; for the finer mesh, it produced two. In Fig. 10.7, the cut-line ran on
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the boundary of an element, hence the uniform CT/LN result is to be expected. In
Fig. 10.8, the cut-line went through four elements (the mesh was not symmetrical
about the center-line), hence the four distinct and different values on the plot. In
both these figures the CT/LN results are plotted only at the points where the field
was computed, to avoid an incorrect linear interpolation being imposed by the
plotting program.

It might be argued that this comparison is unfair, since obviously the QT/QN
solution involves many more degrees of freedom than, for example, the CT/LN
solution on the same mesh. This is not so in this case. The CT/LN results shown
in Fig. 10.8 used 5523 degrees of freedom; the QT/QN solution in Fig. 10.7 used
1302, and the solution quality of the latter is clearly far better than that of the
former, for fewer degrees of freedom. (The issue of the potentially slower con-
vergence of the higher-order elements will not be considered, since appropriate
preconditioners can rectify this problem [6].)

Discussion

This capacitive iris problem has clearly highlighted the utility of full-order ele-
ments for problems where quasi-static electric fields dominate the solution. Fur-
thermore, electric field results for this problem have demonstrated that full-order
elements can provide enhanced field modelling for a similar (or sometimes even
smaller) computational effort in situations where the field itself, rather than an in-
tegrated quantity such as the transmission or reflection coefficient, is of primary
concern. An interesting idea is to consider how finite element solvers might auto-
matically identify the appropriate element type in different regions; some prelim-
inary results show promise [12, Chapter 6; 17]. Work has also recently appeared
on independently controlling the gradient and rotational polynomial orders [18].

10.5 Hybrid finite element/method of moments formulations

10.5.1 Introduction

As we have seen, finite element formulations offer powerful methods for the nu-
merical solution of electromagnetic fields in inhomogeneous media. The major
drawback for high-frequency simulation is the requirement for terminating the fi-
nite element mesh as a finite distance. Various mesh termination schemes have
been proposed and implemented, including mathematical absorbing boundary con-
ditions – requiring special treatment of “boundary” elements – and more recently,
perfectly matched layers. In Chapter 3, we studied the application of both these
methods within the context of the FDTD, and these methods have also been used in
FEM approaches. In this section, we will instead consider an “exact” termination
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scheme, which effectively uses the method of moments applied on the open bound-
ary to terminate the FEM region, producing the FEM/MoM hybrid method. (This
method is also sometimes called the boundary element/finite element method, or
boundary integral/finite element method).

10.5.2 Theoretical background

Before addressing the theory of the FEM/MoM hybrid method, a connection be-
tween the Rao–Wilton–Glisson (RWG) element [19], widely used in MoM formu-
lations, and the Whitney (CT/LN) element which we have discussed extensively
here needs to be highlighted. Much earlier, in Chapter 6, it was commented that
the RWG element [19] and the Whitney element are intimately connected. The re-
lationship is the following: by simply taking the normal crossed with the Whitney
element, the RWG element is obtained. It will be recalled that the Whitney ele-
ment is also sometimes called “curl conforming”; the RWG element is an example
of a “divergence conforming” element. (Nedelec’s original work also considered
such elements, although the RWG element was derived independently.) This close
relationship is fortunate and not by any means serendipitous: the underlying re-
quirements of field continuity are the reason for the close relationship. This is an
important practical point, because it implies that edge-element FEM codes, with
volumetric fields as unknowns, and RWG-based MoM codes, with surface currents
as unknowns,6 can at least potentially conform on a boundary.

With this background, we can now consider the FEM/MoM formulation. The
following is based on the presentation in [1, Chapter 9]. Within a region �,
with closure (bounding surface) S, and free space in the exterior region, a finite
element discretization of Maxwell’s equations, via the stationary functional as in
Section 10.2, results in the following matrix equation:

[A]E {e} + [B]E {h}S = {c}E (10.23)

In this equation, the superscript E indicates that the �E field has been chosen as
the main working variable. Matrix [A] is the usual FEM matrix obtained from
the bilinear functional applied throughout the volume; vector {e} is the vector of
unknown coefficients of the electric field in the volume; matrix [B] represents the
Neumann boundary condition applied on the surface;7 and vector {h} is the vector
of unknown coefficients of the magnetic field on the closure. Finally, vector {c}
accounts for current sources internal to the volume. Specifically, the elements of

6 Recall that an equivalent surface current is obtained from the normal crossed with the appropriate tangential
field component.

7 Recall Eq. (10.8) and the connection with the tangential magnetic fields.
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each are given by

AE
i j =

∫

�

{µ−1
r (∇ × �Ni ) · (∇ × �N j ) − k2εr �Ni · �N j } d�,

∀ i and j = 1, . . . , N (10.24)

B E
i j = jkη

∮

S

�Ni · ( �N j × ) d S,

∀ i = 1, . . . , N , j = 1, . . . , NS (10.25)

cE = −
∫

�

�Ni · { jkηJint + ∇ × (µ−1
r

int)} d�,

∀ i = 1, . . . , N (10.26)

In the above expressions, �Ni and �N j are the element shape functions. The ele-
ments of [A] are immediately recognized as the [S] and [T ] matrix elements dis-
cussed in Section 9.7 (albeit now three- rather than two-dimensional), for which
closed form expressions are available. int and int represent sources internal
to �.

The problem is clear: there are N + NS degrees of freedom (N unknowns in
{e} and a further NS unknowns in {h}S , the latter is the field on the boundary
surface S). An additional constraint is required to connect the surface magnetic
fields with the volumetric electric fields (which also of course exist on the closing
surface). In the waveguide formulation, knowledge of the modal structure of the
field was sufficient, but now a further matrix equation must be derived in terms of
the surface fields.

Deriving essentially the EFIE and MFIE, one can obtain the following, suitable
for an MoM representation on the boundary S:8

�E(�r) = �E inc(�r) +
∮

S

(
∇ × ¯̄G(�r , �r ′) · {n̂′ × ES(�r ′)}

− jkη ¯̄G(�r , �r ′) · {n̂′ × HS(�r ′)}
)

d S′ (10.27)

and

�H(�r) = �H inc(�r) +
∮

S

(
∇ × ¯̄G(�r , �r ′) · {n̂′ × HS(�r ′)}

+ jk

η

¯̄G(�r , �r ′) · {n̂′ × ES(�r ′)}
)

d S′ (10.28)

Note that the S subscript refers to quantities on surface S, not the scattered field.
¯̄G is the dyadic free-space Green function, and n̂′ is the outward directed normal.

8 Also known as a Huygen’s integral representation.

K�

J� K�

H�

n̂
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Writing these in a more compact notation, one obtains

− �E + L S
e1(

�Es × n̂′) + L S
e2(

�Hs × n̂′) + �E inc(�r) = 0 (10.29)

Using a Galerkin procedure, this may be discretized as

[B]M {e}S + [P]E {e}S + [Q]E {h}S + {y}E = 0 (10.30)

The matrix [B]M in the above is of the same form as [B]E in Eq. (10.25): the
only difference is that the constant term is − jk/η instead of jkη [1, pp. 408–409].
The other matrices are given by

P E
i j = j

k

η

∮

S

�Ni ·
{

L S
e1(

�N j × n̂) × n̂
}

d S (10.31)

QE
i j = j

k

η

∮

S

�Ni ·
{

L S
e2(

�N j × n̂) × n̂
}

d S (10.32)

yE
i = j

k

η

∮

S

�Ni · ( �E inc × n̂) d S (10.33)

The matrix size of [B]M is N × NS , but for the boundary element terms in
Eq. (10.30), only the relevant NS × NS submatrix is retained, so that the above
matrix equation (10.30) is of dimension NS . Similarly, Eq. (10.28) can be dis-
cretized to yield

[B]E {h}S + [P]M {h}S + [Q]M{e}S + {y}M = 0 (10.34)

Either Eq. (10.30) or (10.34) is sufficient to eliminate {h}S in terms of {e}S ,
which is then substituted into Eq. (10.23). (Note that {e}S ⊂ {e}, since these are
just the components of electric field on the surface.)

The [P] and [Q] matrices are not straightforward to compute, since they involve
integrals of Green’s functions, containing integrable singularities, acting on the
basis functions; see [1, p. 413]. (As we saw in Chapter 6, this is standard in MoM
formulations involving a rigorous surface current treatment.) The case of a cavity
in a conducting half-space has been worked further by Jin [14, Chapter 10]; his
results are also summarized in [1, Chapter 9]. For more general problems, see [14,
Chapter 10; 20, Chapter 11; 21, Chapter 7].

A computational problem which emerges is that the resulting system of lin-
ear equations is overwhelmingly sparse, but contains a dense submatrix repre-
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senting the MoM (BEM) interactions. The overall matrix is also not, in general,
symmetric.

10.6 An application of the FEM/MoM hybrid – GSM base stations

10.6.1 Applications of FEM/MoM hybrid formulations

The hybrid FEM/MoM formulation outlined above is applicable to many prob-
lems. In general antenna analysis, the FEM is not the method of choice for wire
antennas, where the standard MoM formulation provides a straightforward and
robust solution. However, when such antennas are radiating in the presence of
electromagnetically penetrable bodies, the FEM/MoM hybrid comes into its own.
Modelling the interaction of operators and personal communications systems, in
particular cellular phones, has emerged as an important field of application of this
formulation, and the example presented here is a variant on this theme. However,
there are a number of other applications, which will now be outlined.

Cavity-backed antennas were one of the first applications of the FEM/MoM
(BEM) hybrid formulations, see [14], and they continue to attract interest [21].
Although the original formulation assumed that the cavity was recessed into an in-
finite ground plane, recently work has extended this to cavities on elliptical shapes,
permitting analysis of conformal airborne antennas. Microstrip antennas have also
been efficiently analyzed using this approach; since the substrate, which is dis-
cretized with the FEM, need not be uniform in this approach, some interesting
work has been done on the use of perforated substrates (a type of electromagnetic
band-gap material) to reduce mutual coupling [22]. An important class of cavity-
backed antenna is the spiral, both Archimedes and logarithmic. Again, stratified
media MoM codes assume infinite planar media, whereas an FEM/BEM formula-
tion need not.

General FEM/MoM hybrids also permit the analysis of microstrip antennas,
removing the assumptions of infinite substrate and permitting the effect of edge
diffraction to be studied. However, this is computationally quite expensive.

The use of CEM tools in what are often EMC problems can be problematic,
due to the great complexity of the systems. Work by Hubing’s group has proposed
the use of the FEM for regions of geometric and material complexity, combined
with a MoM treatment of the interconnects [23]. Work has also been done on the
coupling of energy through deep slots using FEM/MoM hybrids.

Inhomogeneous objects buried in stratified media are another interesting appli-
cation; perhaps the most obvious candidates here are landmines and other unex-
ploded ordnance. The formulation required becomes extremely complex, since the
“exterior” Green functions involve the Sommerfeld potentials. Eibert and Hansen
present the necessary formulation in [24].
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10.6.2 Human exposure assessment near GSM base stations

The widespread adoption of personal communication devices, in particular mobile
(cellular) telephones, during the 1990s and the continuing growth in the present
decade presented significant challenges for CEM analysis. When first introduced,
there were widespread concerns over safety issues associated with the widespread
and prolonged use of mobile handsets, perhaps triggered by the term “radia-
tion.”9 After much research, it would appear that these concerns were fortunately
unfounded, due primarily to the low power levels of the handsets. However,
a case where there are indeed valid concerns for health issues is that of base
stations, due to the much higher power levels encountered there (60 W is typ-
ical) and the requirement for maintenance workers to operate close to the
antennas.

An aside – mobile telephony

Mobile telephony has been one of the most extraordinary technical success sto-
ries over the last decade. In many countries, in particular outside the First World,
the number of mobile telephones now exceeds the number of fixed lines, and
the Group Special Mobile (GSM) standard, originally operating at 900 MHz
and now also 1800 MHz, has proven wildly popular everywhere apart from the
USA. Indeed, at the start of 2004, figures from the International Telecommuni-
cation Union indicate that the number of mobile subscribers worldwide – 1.14
billion – has just overtaken the number of fixed-line subscribers, at 1.1 billion.
When one considers that the current fixed-line infrastructure has been under de-
velopment for the better part of a century, compared to that of less than one
decade for cellular phones, this is an extraordinary and largely unheralded tech-
nical achievement, compared to the Internet, for instance. It has had a major
impact on the lives of many people in less wealthy countries, who would other-
wise no doubt still be waiting for a fixed line, frequently provided by parastatals
with very limited capabilities.

The FDTD, FEM with ABC, FEM/MoM and also volume equivalence principle
MoM formulations have all been used successfully for the analysis of human expo-
sure assessment of radiation from handsets. However, for base stations, one has the
problem both of complex wire antennas, typically mounted on a mast, and consid-
erable distance between the human phantom and the antenna. Figure 10.9 shows an

9 It must say something of human nature that a number of users who express such concerns are prepared to
operate their mobile phones while driving, a well-known and much documented hazard, and illegal in many
countries for precisely this reason!
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Figure 10.9 Near-field base-station exposure setup. After [25], c©2003 IEEE, reprinted
with permission.

example of a typical setup. (Handsets are usually analyzed in very close proximity
to the head, which has been the major health concern.) Although this was not dis-
cussed in our theoretical development, a very powerful feature of the FEM/MoM
formulation is that the exterior region may also contain scatterers/radiators, it
need not be purely free space, as shown in Fig. 10.10. These scatterers and radia-
tors are treated with the MoM in a self-consistent manner.
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Region V: FEM Volume

MoM Connection Points Region W

Figure 10.10 Hybrid FEM/MoM problem setup. After [25], c©2003 IEEE, reprinted with
permission.

Meyer has implemented an outward-looking FEM/MoM hybrid (using a number
of FEKO routines, as well as elements of the FEM code discussed in Section 10.4),
and in [25], results are shown for base-station exposure assessment in terms of IC-
NIRP10 guidelines. In that paper, results are also shown for careful validation of
some smaller problems, using both an FDTD code and FEKO; readers are referred
to the paper as a good example of this process for complex problems. Here, results
for only the FEM/MoM hybrid will be shown. Of particular interest are expo-
sure results for particular organs, shown in Figs. 10.11 and 10.12. As discussed
in [25], this particular problem could not be analyzed in any way other than the
FEM/MoM, since it was electrically too large for both the FDTD and the MoM
volume equivalence principle.

10.7 The time domain FEM

Time domain finite elements are widely used in other fields of engineering, but
have not seen especially widespread use in CEM. This probably reflects both
the technological driving forces behind the development of CEM, which until
the 1980s emphasized the development of frequency domain formulations (since
most RF communication and radar systems were inherently narrowband), as well
as the competing algorithm in the time domain, the FDTD, which is so firmly

10 International Commission on Non-Ionizing Radiation Protection.
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Figure 10.11 Average specific absorption rate (SAR) in different body organs compared
with whole-body (0.08 W/kg) and spatial-peak (2 W/kg) ICNIRP basic restriction, x-
direction (transverse across antenna), for the base-station/half-body problem shown in
Fig. 10.9. Prad = 60 W. Front of base-station antenna at y = −0.428 m and to-center of
phantom head at y = 0 m. Adapted from [25], c©2003 IEEE, reprinted with permission.

established in CEM and has produced so many excellent results that it is difficult
to “sell” another time domain formulation. Nonetheless, the finite element time
domain (FETD) method has seen a considerable amount of work and development
in CEM over the last decade. In particular for devices with fine geometrical detail,
it can be expected to emerge as a competitor for specialized applications. Perhaps
the most interesting use is as a hybrid form with the FDTD, which exploits the
superior geometrical modelling ability of finite elements with the robustness and
speed of the FDTD method; no commercial implementation is presently available,
nor is likely to be for some time, but recent research has produced good results
[26, 27]. In a book which is otherwise devoted to methods already implemented
in widespread public domain and commercial codes, coverage of this method may
seem slightly anomalous, but at least one interesting point which emerges is a more
general view of the FDTD method, which is actually a special case of the general
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Figure 10.12 Average SAR specific absorption rate in different body organs for the z-
direction (along antenna length), for the base-station/half-body problem. Details as in
Fig. 10.11. Adapted from [25], c©2003 IEEE, reprinted with permission.

FETD formulation, and furthermore, this is a method which we can expect to see
more of in the future.

10.7.1 Basic formulation and implementation

Basic finite element formulation

The following formulation is based on the second-order (curl-curl) wave equation
approach, presented in [14, Section 12.1]:

∇ ×
[

1

µ
∇ × �E(�r , t)

]
+ ε

∂2

∂t2
�E(�r , t) + σ

∂

∂t
�E(�r , t) = − ∂

∂t
�Ji (�r , t), �r ∈ V

(10.35)
The boundary condition is

n̂ ×
[

1

µ
∇ × �E(�r , t)

]
+ Y

∂

∂t

[
n̂ × n̂ × �E(�r , t)

]
= �U (�r , t), �r ∈ S (10.36)



368 More advanced topics on the FEM

Y is the surface admittance of the boundary, n̂ is the outward unit normal to S, and
�U is a known quantity representing the boundary source (if present).

The corresponding weak-form solution of the boundary value problem is given
by:
∫ ∫ ∫

V

{
1

µ

[
∇ × �Ni (�r) · ∇ × �E(�r , t)

]
+ εNi (�r) · ∂2

∂t2
�E(�r , t)

+ σ Ni (�r) · ∂

∂t
�E(�r , t) + Ni (�r) · ∂

∂t
�Ji (�r , t)

}
dV

+
∫ ∫

S

{
Y
[
n̂ × Ni (�r)

] ·
[

∂

∂t
n̂ × �E(�r , t)

]
+ �Ni (�r) · �U (�r)

}
d S = 0 (10.37)

The electric field is expanded as

�E(�r , t) =
N∑

j=1

u j (t) �N j (�r) (10.38)

with N the total number of unknowns, and �N j (�r) the usual vector basis functions.
Substituting this into Eq. (10.37), the following partial differential equation is
obtained:

[T ] ∂2

∂t2
{u} + ([R] + [Q]) ∂

∂t
{u} + [S]{u} + { f } = {0} (10.39)

In the above, {u} = [u1, u2, . . . , uN ]T ; and the matrices are given by:

Ti j =
∫ ∫ ∫

V
ε �Ni (�r) · �N j (�r) dV (10.40)

Ri j =
∫ ∫ ∫

V
σ �Ni (�r) · �N j (�r) dV (10.41)

Qi j =
∫ ∫

S
Y [n̂ × �Ni (�r)] · [n̂ × �N j (�r)] d S (10.42)

Si j =
∫ ∫ ∫

V

1

µ
[∇ × �Ni (�r)] · [∇ × �N j (�r)] dV (10.43)

and { f } is a column vector given by

fi =
∫ ∫ ∫

V

�Ni (�r) · ∂

∂t
�Ji (�r , t) dV +

∫ ∫

S

�Ni (�r) · �U (�r , t) d S (10.44)

Equation (10.39) is an ordinary differential equation in the time domain and can
be solved used a direct integration or finite difference method.

Before departing from this, it should be commented that these equations
are essentially identical in form to those arising in standard frequency domain



10.7 The time domain FEM 369

formulations, and the matrices already computed within a typical finite element
frequency domain code can be largely re-used.

Time integration

For the time domain discretization, the Newmark-β method is used. (An outline of
the derivation of the method is given in Appendix B.) The equation to be solved at
each time-step is the following:

{
1

(�t)2
[T ] + 1

2�t
[Tσ ] + β[S]

}
{u}n+1

=
{

2

(�t)2
[T ] − (1 − 2β[S])

}
{u}n

−
{

1

(�t)2
[T ] − 1

2�t
[Tσ ] + β[S]

}
{u}n−1

−
[
β{ f }n+1 + (1 − 2β){ f }n + β{ f }n−1

]
(10.45)

with

[Tσ ] = [R] + [Q] (10.46)

This can be more conveniently written as

[A]{u}n+1 = [B]{u}n + [C]{u}n−1 −
[
β{ f }n+1 + (1 − 2β){ f }n + β{ f }n−1

]

(10.47)

Clearly, the solution of this is:

{u}n+1 = [A]−1
(
[B]{u}n + [C]{u}n−1 −

[
β{ f }n+1 + (1 − 2β){ f }n + β{ f }n−1

])

(10.48)

The matrix [A] is time invariant, and may be factored once, each time-step re-
quiring then just a backward and forward substitution to establish the next solu-
tion vector {u}n+1. With β ≥ 0.25, the method is unconditionally stable, i.e. the
Courant limit does not apply.

10.7.2 Preliminary results

To test the time domain formulation, propagating a plane wave through the mesh
is usually a good initial test, since one has a simple analytical solution to com-
pare with the results. A differentiated Gaussian pulse with σ = 1 × 10−10 was
used; as in Chapter 2, m = 4σ was used. This produces a wideband pulse with
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Figure 10.13 The differentiated Gaussian having propagated through a free-space “box”
meshed using tetrahedral Whitney finite elements. �t = 20 ps.

significant spectral content to around 3 GHz. A cuboidal free-space volume
0.1 × 0.1 × 0.2 m3 was meshed using tetrahedral elements; some 804 elements
produced a mesh with an average edge length of about 0.0285 m. The plane wave
was injected traveling in the −ẑ-direction. The result in Fig. 10.13 shows the plane
wave at three points in the mesh. First z = 0.19 m is illuminated, then z = 0.1 m
and finally z = 0.01 m. Measuring the distance between the first and last peaks
shows a delay of 0.60 ps (within the accuracy with which the graph can be read); to
cover a distance of 0.18 m at the speed of light takes 0.6 ps, so this is very accurate.
In particular, considering the coarse mesh, the result is really surprisingly good; at
3 GHz the mesh density is less than four unknowns per wavelength. (At the center
frequency of the signal, around 1.5 GHz, there are around seven, somewhat better
but still a very coarse discretization using Whitney (CT/LN) elements.) Inciden-
tally, the pulse may appear to have undergone a 180◦ phase reversal, but this was
simply due to a coding convention. The late time signal is very likely a reflection
from the absorbing boundary condition; the value is around 1/20 of the incident
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Figure 10.14 As for Fig. 10.13, but with �t = 50 ps.

signal, or −26 dB, not by any means excellent absorber performance, but not out
of line with what is expected from a first-order ABC.

Figures 10.14 and 10.15 show the results for �t = 50 ps and 100 ps respec-
tively. Clearly, the result in Fig. 10.15 is very poor, but it is still stable, and what
is significant is the size of �t . For a similar FDTD mesh with spatial step size
0.0285 m, the Courant limit would require �t < 54.8 ps. The FETD code has re-
mained stable at almost twice this limit. (Theoretically of course there is no limit
for the Newmark-β scheme, but it is gratifying to have this confirmed by numerical
experimentation.)

10.7.3 The FDTD method as a special case of the FETD

If the parameter β is set to zero, the Newmark algorithm reduces to the central
difference algorithm. If, furthermore, we use Galerkin’s method applied to edge
elements defined on cubes rather than tetrahedra, and use 3D trapezoidal inte-
gration (i.e. sample the unknown function only at the center of each side when
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Figure 10.15 As for Fig. 10.13, but with �t = 100 ps.

integrating), the standard Yee FDTD algorithm emerges. This may initially be a
suprising result, since the FDTD appears to start from a different premise to the
FETD, but has been noted by a number of workers. In the language of structural
mechanics, this is a “lumping” method, where the mass and stiffness matrices are
reduced to only diagonal elements. This of course implies that the matrix solution
is trivial, which is why the FDTD method apparently has no matrix associated with
it, and hence the explicit nature of the method. For more details, see, for example,
[26].

10.8 Sparse matrix solvers

The development of an FEM code often goes through two major stages: the first
concentrates on getting the code to work; the second concentrates on optimizing
the code with regard to both memory usage and run-time. In Chapter 9, for in-
stance, we focussed exclusively on the former. This process is frequently iterative,
since new theoretical extensions must again be validated first, and then optimized.
Furthermore, certain validation can only be undertaken once some optimization is
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already in place. Since the finite element system matrices are usually highly sparse
(i.e. have a very large number of zero entries), the efficiency of the sparse solver(s)
is probably the single most important factor in determining the overall efficiency
on an FEM code, since the matrix solution time usually dominates all other con-
tributors to the total run-time, and FEM codes cannot work efficiently unless the
sparsity of the finite element system matrix is properly exploited. There are two
choices to make when exploiting sparsity.

Iterative solvers Iterative matrix solvers have the major advantage of requiring
no additional memory beyond that required to store the coefficient matrices. They
have the major disadvantage that each new solution of the system requires the
iterative process to be repeated from scratch.

Direct solvers These are usually variations on the LU decomposition theme, and
factor the matrix into a lower (and an upper, if the matrix is not symmetric) trian-
gular matrix which permits very rapid subsequent solution of the system. However,
they have the major disadvantage that the factorization process generates a number
of non-zero entries in the matrix; this is known as “fill-in.” Various methods are
used to handle this; here, a method called “skyline storage” will be used.

Which choice is best is in general problem dependent; surprisingly, even in the
case of a finite element time domain solver, where the same matrix is involved at
each time-step, a direct solver is not necessarily the best solution. (In that specific
case, the real valued system generated appears to be well conditioned, resulting
in very rapid convergence of the iterative process. Dibben and Metaxas reported
this in some of the earlier work in the field [28].) The memory overhead of the
profiled storage scheme can also be prohibitive. For frequency domain solvers, the
complex valued matrix can become very ill conditioned, and generally some form
of preconditioning is required if an iterative solver is used.

First, two methods for storing a sparse matrix will be discussed.

10.8.1 Profile-in skyline storage

Consider the symmetrical matrix [A]:

[A] =




a11 a12

a21 a22 a24 a25

a33 0 0
a42 0 a44 0
a52 0 0 a55




(10.49)

with a12 = a21, etc. Here, an observation will be made. If this matrix is factored,
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without pivoting, then possible11 fill-ins will occur in [L] to the right of the first
non-zero entry in a row across to the diagonal (and similarly, in [U ] under the
first non-zero entry in a column down to the diagonal). Hence, if all the zeros
indicated above are stored, the factored matrix is guaranteed to fit into the data
structure. This type of data structure is called a “skyline” matrix. There are several
methods for storing the data: the one adopted here is called “profile-in,” and what
is stored is the elements in each row (column) from the first non-zero element to
the diagonal (hence “in,” since one moves inwards to the diagonal). Additionally,
the index of the diagonal element is stored. For this matrix, the profile-in storage
looks as follows:

AL = [a11, a21, a22, a33, a42, 0, a44, a52, 0, 0, a55]
I AL DI AG = [1, 3, 4, 7, 11] (10.50)

Since the matrix is symmetric, these structures could equally have been AU and
I AU DI AG. The dimension of I AL DI AG is n. The dimension of AL is at least
nzs , the number of non-zeros in the lower (or upper) triangular half. Unfortunately,
it is frequently many times this number.

10.8.2 Compressed row storage

Skyline storage is convenient when factoring a matrix but has a very high over-
head, which only becomes clear when much larger finite element matrices are
considered. The percentage of non-zero elements rapidly drops under one percent,
but the profiled storage results in a very large number of zeros being stored, fre-
quently an appreciable fraction of the original matrix. For iterative solvers, which
require only a matrix-vector product, a much more efficient scheme is compressed
row storage (CRS). Here, absolutely only the non-zero elements are stored. Since
the storage requirements of a CRS matrix are so small, it is convenient to store
each row completely, even if the matrix is symmetrical – this makes the sparse
matrix-vector product far easier to write. In addition to an array storing the non-
zero matrix elements, two other pointer arrays are needed. One stores the starting
index of each row, the other stores the column indices. For the above matrix, the
CRS equivalent is:

A C RS = [a11, a12, a21, a22, a24, a25, a33, a42, a44, a52, a55]
J A = [1, 2, 1, 2, 4, 5, 3, 2, 4, 2, 5] (10.51)

I A = [1, 3, 7, 8, 10, 1 ] (10.52)

11 Not all these positions will indeed be filled. More sophisticated methods do a better job of this process.

2
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The n + 1-element of I A is nz + 1, where nz is the number of non-zeros. The
dimension of I A is n + 1, and the dimensions of both A C RS and J A are nnz.
These are known a priori, as soon as the matrix entries are known.

This storage scheme is also known as “general storage by rows.”
A very similar storage scheme (and the one implemented in MATLAB) is com-

pressed column storage; the procedure simply interchanges the storage direction.
Since finite element matrices are generally symmetrical (unless one is dealing with
non-reciprocal materials) the schemes are in practice essentially identical for finite
element applications.

10.8.3 Implementation of matrix solution using these storage schemes

Sparse matrices are important for two reasons: firstly, to save memory, and sec-
ondly, to reduce run-time. Unfortunately, at the time of writing there is no analogy
of the excellent public domain LAPACK routines for sparse matrices. If work-
ing with languages such as FORTRAN 90, sparse libraries may be available, either
bundled with the compiler or for purchase separately.12 However, actually storing
the matrix in sparse form is a complex book-keeping task; one has firstly to estab-
lish the connections between all the degrees of freedom present (and this becomes
increasingly more complex as higher-order elements are added) to determine the
number of non-zero entries, following which the compressed matrices may then
be filled as the matrix is assembled. Alternatively, and rather more easily, a full
matrix may be generated first, and a sparse matrix then generated from this – the
MATLAB function sparse does precisely this. However, the requirement to store
the full matrix first wastes large amounts of memory, and is not practical for FEM
codes designed for electromagnetically large problems.

It should be mentioned that especially higher-order elements appear to generate
ill-conditioned matrices. When using iterative methods, such as conjugate gradient
schemes (CG, Bi-CG), QMR and GMRES, convergence tends to be erratic. (For a
description and discussion of these algorithms, see [14].) Some recent approaches
have focussed on the use of more sophisticated preconditioners. Incomplete LU
preconditioning is one possibility; another is the use of a direct solution of the
CT/LN solution (which can generally be computed quite cheaply) as a precon-
ditioner for the LT/QN matrix. This has been extended to higher-order schemes
by [6]. Most of the more sophisticated preconditioner schemes trade off quicker
convergence for increased matrix storage requirements.

Direct solvers have a place; generally, ill-conditioning is far less problematic,
but the fill-ins can result in very large matrices indeed. Renumbering schemes

12 As an example, the Compaq Visual Fortran (previously Digital Fortran) Fortran 90/95 compiler includes a
library package called Compaq Extended Maths Libray (CXML). Included are direct and iterative solvers.
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Figure 10.16 Solver times for the cubic example given in Section 10.7.2. Solve times are
for 100 time-steps. The CG solver normalized residual target was 1 × 10−5.

can ameliorate this, but unfortunately 3D finite element meshes tend to generate
meshes with significant “bandwidth.”

10.8.4 Results for sparse storage schemes

Some results illustrating the impact of sparse matrix solvers on an FEM code –
in this case the FETD implementation by the author discussed in Section 10.7 –
are shown in Figs. 10.16 and 10.17. The times shown in Fig. 10.16 compare the
time using the sparse skyline or iterative CG solver (using CRS) with those of a
full matrix solver (the latter not exploiting symmetry, i.e. worst case). Similarly,
the memory percentages shown in Fig. 10.17 compare the relevant storage scheme
with a full matrix scheme not using symmetry. The skyline storage is actually
considerably less efficient than might be inferred from Fig. 10.17. Because with
either of the sparse schemes, the [B] and [C] matrices in Eq. (10.47) can be (and
are) stored in the much more efficient CRS form, whereas in a full matrix scheme
they are of course stored as full matrices, there is already a saving by a factor of
very close to three which is reflected in this figure. (CRS stored matrices require
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Figure 10.17 Memory usage for the cubic example given in Section 10.7.2. This is ex-
pressed as a percentage of the memory required by a full matrix scheme making no use of
symmetry.

negligible storage compared to even skyline schemes, hence the factor of approxi-
mately three.)

These results are significant for code developers. Firstly, the timing results in
Fig. 10.16 indicate that any sparse scheme is significantly better than none, as
would be expected. Another interesting result is the comparison of the run-time
of the CG solver with the skyline solver (lower left-hand plot in Fig. 10.16). The
reason is that, for this problem at least, the number of iterations is almost con-
stant, irrespective of problem size. This is shown in the lower right-hand graph
in Fig. 10.16. (Although not shown on the figures, the number of iterations re-
quired also did not change from time-step to time-step.) One must be cautious
of extrapolating this result to electromagnetically larger and more complex prob-
lems. These results were generated by increasingly refining the same problem. It
is well known that the convergence rate of iterative solvers is a function of the
ratio of maximum to minimum eigenvalues; furthermore, for any given electro-
magnetic problem, discretization beyond a certain point does not yield more sig-
nificant eigenvalues. Electromagnetically larger problems may of course contain
a wider eigenvalue spectrum. This note of caution notwithstanding, the results for
the iterative solvers are highly encouraging, since no effort was made with these
results to increase the rate of convergence, and an entire class of methods using
various preconditioners exists which can still be applied. The memory savings of
the iterative solver are of course very impressive (right-hand graph in Fig. 10.17)
and imply that the limit on large problems is more likely to be run-time than
memory.

A final comment on these results. The graphs comparing memory savings are
actually in terms of memory locations required, rather than actual Mbytes of RAM
used. The CXML libraries use double precision, so in RAM, the percentages are
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twice that shown in the graphs. (Double precision was presumably used since the
sparse factorizer does not apply pivoting. All the results were tested against a full
matrix direct solver, and results were generally identical within working preci-
sion, around 4–5 significant figures after 100 time-steps. The CG solver normal-
ized residual was set as 1 × 10−5 to ensure that inaccuracies did not accumu-
late during time-stepping.) This is a peculiarity of the particular implementation
rather than the method per se. It also means that the computation times using the
sparse schemes are slightly longer than would be the case if single precision were
used.

10.9 A posteriori error estimation and adaptive meshing

As a final topic, some interesting recent work by Botha on the problem of esti-
mating errors in the finite element solution will be outlined [12]. One of the main
advantages of the FEM over the FDTD is that, theoretically at least, it is easy to
refine a finite element mesh selectively. This can either be done by increasing the
element order (p adaptation), decreasing the element size (h adaptation), or doing
both (h − p adaptation). In practice of course, mesh refinement does bring some
complexity.

However, before one can undertake any form of mesh refinement, one needs an
idea of in which part of the mesh the greatest benefits will be obtained. (Simply
refining the entire mesh is of course a valid process, but computationally expen-
sive. This is sometimes known as uniform mesh refinement.) It is here that the
complex topic of error estimation comes to the fore. Here, one needs firstly to dis-
tinguish between a priori and a posteriori error estimates. The former are derived
theoretically, and do not use the specific geometrical data represented by the mesh;
examples are the analysis of dispersion error in a finite element or finite difference
mesh. The latter are derived from the approximate solution, and it is these that will
be considered here.

A posteriori error estimates can themselves be categorized as follows.

Explicit, residual-based These estimators are usually rigorously derived in the
sense that the sum of the errors in each element is an upper bound on the error.
(Here, we assume some suitable norm is available; often, the energy norm, dis-
cussed subsequently, is used.) Typically, field discontinuities at element edges and
faces are evaluated.

Implicit, residual-based These estimators are based on the solution of local vari-
ational boundary value problems, usually on an element-wise basis. Usually, an
estimate of the error is made using additional basis functions of higher order than



10.9 A posteriori error estimation 379

the initial solution. Since this is done on an element-by-element basis, this is not
prohibitively expensive computationally – certainly not when compared to uniform
refinement.

Estimation through post-processing These methods estimate the error in a deriva-
tive of the solution field, by comparing it with an improved version. Although this
may seem counter-intuitive, some methods are available for computing improved
versions of the solution field and its derivatives.

Targeted quantities These are also known as goal-oriented or targeted error esti-
mation. They attempt to bound the error of a quantity based on some functional
output of the the solution field. An example is the S-parameters discussed in the
context of the waveguide formulation.

Botha’s work focussed on explicit and implicit residual-based methods; the best
results in general were obtained with the former, and a very brief summary of the
method will now be presented.

10.9.1 Explicit, residual-based error estimators

Firstly, one must define the error in the solution as

�eh = �E − �Eh (10.53)

where �E is the (usually unknown) exact solution of the problem, and �Eh is the
approximate, finite element computed solution. Botha showed that an estimate of
the error in the CT/LN solution may be obtained as

||�eh||2Ea(V,τ,1) ≤ C
N∑

i=1


h2

i || �Rv||2L2(Ki )
+ 0.5

∑
f ⊂∂Ki

h f || �R f ||2L2(Ki )


 (10.54)

N is the number of elements in the mesh; τ refers to the current discretization and
solution, which will be used to compute the error indicators. The constant C is
in general unknown, but is independent of solution field and source terms; error
estimates usually contain such constants.

The term || �Rv||2L2(Ki )
is the volume residual on element i , with volume Ki , mea-

sured in the L2 norm – the space of square integrable functions. The volume resid-
ual in element i is computed from

�Rv = −∇ × 1

µr
∇ × �Eh + k2

0εr �Eh − jk0 Zo �J in Ki (10.55)
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In other words, this is the difference between the finite element computed so-
lution, and the specified impressed current – in short, the residual of the vector
wave equation. (If the latter is zero, then this term should of course be zero.) Were
the solution exact, then this residual would be zero throughout the finite element
volume.

The face residual on the surfaces of element i is computed from

�R f = n̂(12) ×
[

1

µ
(1)
r

∇ × �E (1)
h − 1

µ
(2)
r

∇ × �E (2)
h

]
on fm, m = 1, 4 (10.56)

fm is a specific face of the element, and the superscripts (1) and (2) indicate the
elements shared by a particular face. In other words, this is the discontinuity in
tangential magnetic field on the inter-element boundaries; again, were the solution
exact, then this residual would be zero at all inter-element boundaries. Note that a
special treatment, not shown here, is required at the Neumann boundary.

Whilst it may seem obvious that such residuals provide an indication of the error
in the solution, some subtle mathematical arguments are required to show that the
sum of residuals in Eq. (10.54) does indeed produce a bounded estimate of the
overall error; the details may be found in [12, Chapter 5].

It should also be commented that the “norm” on �eh on the left-hand side of
Eq. (10.54) is not a proper norm of the error field, but rather an approximate energy
norm. (The reason that this does not conform to the usual definition is that this
energy norm can be zero, without the field being zero. However, the converse is
indeed true, i.e. the energy norm of a zero-valued field is zero.) The reason that this
needs to be introduced is rooted in the complex valued nature of the functional. The
approximate energy norm for space of maximum (but not necessarily complete)
polynomial order p is defined as

||�v||Ea(V,τ,p) ≡ | ∫∫∫V
1
µr

∇ × �v · ∇ × �v − k2
0εr �v · �v dV |

|∑N
m=1 |v|2

(H p(Km))3 |1/2
(10.57)

The term in the denominator, |v|2
(H p(Km))3 , represents the vector Sobolev semi-

norm of derivative order p on domain Km . Details of its evaluation may be found
in [12].

10.9.2 An example of the application of an error estimator

An insightful example of the application of an error estimator may be found in
[29]. The problem is an X-band waveguide filter (Fig. 10.18), with three metal
septa along its center, normal to the broad walls of the waveguide (we have already
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Figure 10.18 The waveguide filter geometry. After [29], c©2002 IEEE, reprinted with
permission.

Figure 10.19 The waveguide filter: 2.5% elements with highest indicated error. After [29],
c©2002 IEEE, reprinted with permission.

encountered this problem in Chapter 3). The explicit residual-based error indicator
was applied, and results were obtained indicating where the computed errors were
the highest. These are shown in Figs. 10.19–10.22. As expected, the errors cluster
around the edges of the septa.

Once one has an indication of where the errors are most serious, one has various
options to improve the solution. In this case, the results were used to drive a p-
adaptive scheme, using the hierarchal elements of both mixed and complete order
discussed earlier in this chapter. This permits a variety of possible schemes. The
original solution was obtained with CT/LN elements; one possibility is to upgrade
all the elements with the highest indicated error to QT/QN (which was the highest
order available within the code); another is to upgrade to LT/QN elements; and a
final possibility is a graded scheme, whereby the third of the elements with the
highest errors are upgraded to QT/QN, then the next third to LT/QN and the last
third to LT/LN. Results are shown in Fig. 10.23. The percentage error in center
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Figure 10.20 The waveguide filter: 5% elements with highest indicated error. After [29],
c©2002 IEEE, reprinted with permission.

Figure 10.21 The waveguide filter: 10% elements with highest indicated error. After [29],
c©2002 IEEE, reprinted with permission.

frequency is plotted against the number of degrees of freedom, which obviously
grows as more and more elements are refined. Interestingly, the performance of
the QT/QN and LT/QN schemes was similar, but the graded scheme was not very
successful, primarily due to the inclusion of the LT/LN elements. It should be em-
phasized that this particular graded scheme is an heuristic one, and others could of
course be proposed. These elements do not appear to be very beneficial in waveg-
uide finite element analysis, a phenomenon noted and discussed in [4].
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Figure 10.22 The waveguide filter: 20% elements with highest indicated error. After [29],
c©2002 IEEE, reprinted with permission.
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10.10 Further reading and conclusions

Most of the references cited in Section 9.9 are also of course relevant here. Jin’s
second edition [14] is probably the best single-volume reference in this regard, and
includes a chapter devoted to time domain FEA and another to matrix solution.

In the context of higher-order vector elements, it should be noted that there
is another school of thought regarding the construction of higher-order basis
functions, which might be described as the degree of freedom centered approach
(as opposed to that given in this chapter, which could be described as the ba-
sis function centered approach). Salazar-Palma et al. [30] use elements from the
Nedelec polynomial space and enforce Lagrangian interpolatory properties on the
degrees of freedom. This produces interpolatory elements with well-defined de-
grees of freedom at points, but at the time of writing, no-one had yet succeeded
in doing this in general with higher-order hierarchal elements. Yioultsis and Tsi-
boukis take a similar degree of freedom centered approach, but working with sim-
plex instead of Cartesian coordinates [31].

The work of Hiptmair should also be mentioned; he has also recently published
a general scheme for the construction of higher-order elements, but from a far more
mathematical viewpoint, and couched in the language of differential forms [32].

An important topic which we have not discussed is curvilinear elements. Whilst
higher-order elements can do an excellent job of representing the fields very
accurately, the limitations imposed by straight-sided triangular or tetrahderal el-
ements in terms of accurate modelling of curved geometries can be very signifi-
cant for many practical problems. There are in essence two questions to answer
here: firstly, given a geometrical transformation, how does one implement this as a
curvilinear element, and secondly, what transformation should be used. The former
is the more theoretical issue, the latter a more practical one. Strangely, although
curvilinear elements have been used in CEM, the literature on this is rather in-
complete, in particular in the context of vector elements. The following references
either deal with the issue in passing, touch on the issue, or summarize some aspects
thereof [5, 33, 34, 35]. In the context of nodal elements, the discussion in [1, Chap-
ter 7] is also useful. Recent work by Marais is amongst the more comprehensive
treatments, although limited to two-dimensional problems [36].

Although an obvious application of the FEM, discontinuities in rectangular
waveguides have not been as widely addressed in the literature as one might ex-
pect. Ise et al. [37] used “brick” elements of “first” order (CT/LN) to analyze both
a dielectric post and a concentric step discontinuity in a rectangular waveguide; Jin
presented a detailed formulation in [14, Chapter 8], also using CT/LN elements;
Webb’s review paper discussed a number of related issues [38]; and Pekel and Lee
addressed theoretical aspects of mesh refinement using an empty piece of waveg-
uides [39]. Scott addressed rotationally symmetric waveguides and obtained very
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good results using special purpose higher-order elements [40]. The present author
studied LT/QN elements in [15], and then considered the use of both mixed- and
full-order elements in [4].

Ferrari has recently published a new formulation for the analysis of scattering
discontinuities in waveguides, using an extended Huygens’ principle [41]. The
scatterer is discretized using finite elements, and the waveguide Green functions
are used on the boundary of the scatterer, so this is a type of FEM/MoM hybrid.
Geschke et al. reported the first successful implementation of the formulation in
[42]; the details and many additional examples may be found in [43].

Regarding the FEM/MoM hybrid formulation, Peterson et al. [20] proposed that
FEM/MoM hybrids be classified as either outward-looking or inward-looking. In
the former case, the surface integral formulation represented by the MoM is used to
augment the variational functional form of the vector wave equation, and this was
the approach used in this chapter. It is also the most commonly encountered in the
literature and in practice, since the effect is to increase the size of the FEM matrix
somewhat. Furthermore, this outward-looking approach is also readily amenable
to the introduction of approximate radiation boundary conditions, such as absorb-
ing boundary conditions, rather than the rigorous Green function approach im-
plicit in the MoM. Inward-looking formulations use the interior problem to con-
strain equivalent sources on the bounding surface. In this case, a large FEM matrix
must first be solved before a smaller dense matrix can be constructed. Examples
of the latter approach are the unimoment method, first suggested by Mei in 1974.
More details on this topic may be found in [20, Chapter 3]. One problem with the
outward-looking approach outlined here is that the matrix symmetry is generally
destroyed. Botha and Jin have recently proposed a formulation which hybridizes
the FEM and MoM on the formulation level (rather than on the matrix level)
and which preserves the matrix symmetry [44]. It also offers some alternative ap-
proaches, including one which uses both �E and �H as working variable, permitting
both fields to be computed to the same level of accuracy. The FEM/MoM formula-
tion given in this chapter can suffer from internal resonances; the problem comes
from the MoM treatment, and has already been mentioned in Section 6.9. The usual
solution is to combine the EFIE and MFIE on the boundary. The formulation of
Botha and Jin apparently also solves the problem, and computed results support the
claim [44].

In terms of time domain formulations and applications, the paper by Gedney and
Navsariwala [45] is one of the earlier in the field to discuss the FETD. It discusses
an unconditionally stable formulation using the Newmark-β method. Although
brief, it discusses most of the important topics and provides a stability analysis.
The formulation is similar to that presented recently in [14]. The paper by Dibben
and Metaxas [28] is also one of the earlier publications, and also uses the Newmark
method. Together, these two represent well some of the earlier work on FETD
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formulations and implementations within CEM. The review paper by Lee et al.
[46] appeared in a special issue of the IEEE Transactions on Antennas and Propa-
gation on numerical methods some years back, but presents a very good overview
of the state of the art then – which it should be commented does not appear to
have advanced enormously since, with the exception of boundary conditions. It
presents an elegant theoretical framework for the general class of FETD meth-
ods, and is more general than the approach presented in [14], which focusses on
the conventional curl-curl functional formulation. One very troublesome problem
with FETD methods has been the development of efficient ABC-based boundary
conditions; the paper by Jiao et al. [47] appears to have been the first to report a
rigorous PML-type implementation for the FETD, although several workers, in-
cluding the present author, have encountered problems with this implementation,
in particular regarding stability.

Error estimation and mesh adaptation has a rather small bibliography in the
engineering electromagnetics literature. Earlier work on this was done by Meyer,
in the context of scalar, two-dimensional electromagnetic scattering and radiation
problems, and results may be found in [48] and [49]. His results remain one of the
most complete investigations of that specific problem. Some of the earlier work on
the three-dimensional vector problem was done by Pekel and Lee [39].

In a field as large as finite elements, it is inevitable that there will be some
important topics which we have not discussed at all. One which has produced
important and interesting results is the analysis of dispersion error in finite element
meshes (this is also sometimes called pollution error). The work of Cangellaris
and Lee is an important reference here [50]; an overview of more recent work may
be found in [14]. Also, modelling microwave ovens for commercial electro-heat
applications has been a significant radio-frequency application of the FEM, using
both eigenvalue and driven problem analysis. Details may be found in the books
by Metaxas [51] and Chan and Reader [52].

Finally, serious students of the FEM who would like to read the large applied
mechanics and applied mathematics literature will find that much of it uses the
language of functional analysis. A very readable introduction is the text by Reddy
[53], not least since it focusses on FEM formulations, unlike many of the more
general texts on functional analysis.
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Appendix A

The Whitney element

The Whitney form λi∇λ j − λ j∇λi is so widely used in vector elements that it is worth
discussing in more detail. The development here is for two-dimensional elements, which
has the benefit of simplicity; however, the essential argument is the same for the
three-dimensional case.

Firstly, note the following very important property of the gradient of a simplex
coordinate: it is constant, and is directed perpendicular to an edge. As an example, for the
triangle shown in Fig. A1, ∇λ1 is perpendicular to edge 1, opposite vertex (node) 1. The
formula is

∇λi = li
2A

n̂i (A.1)

with A the area of the triangle and n̂i the normal on edge i .
We now investigate the properties of an approximation using the Whitney basis

functions

�E ≈ E3(λ1∇λ2 − λ2∇λ1) + E2(λ1∇λ3 − λ3∇λ1) + E1(λ2∇λ3 − λ3∇λ2) (A.2)

where E1, E2 and E3 are constants whose physical meaning will shortly become clear.
We consider edge 3; anywhere on edge 3, λ3 ≡ 0, and ∇λ3 is perpendicular to it.

Finding the tangential component of the field on edge 3, we obtain:

ê3 · �E = E3(λ1∇λ2 − λ2∇λ1) + E2 · 0 + E1 · 0

= �Etan
∣∣
edge3

(A.3)

where the second and third terms are zero due either to λ3 = 0 on edge 3 or ∇λ3 being
perpendicular to this edge.

Using the sin rule for triangles (that the ratios of edge lengths and sines of opposite
angles are equal) and Eq. (A.1), and the geometrical meaning of the dot product, we
find

�Etan
∣∣
edge3

= E3(λ1
�2

2A
n̂2 · ê3 − λ2

�1

2A
n̂1 · ê3)

= E3
1

2A
(λ1�2 sin θ1 + λ2�1 sin θ2)
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= E3
1

2A
�2 sin θ1(λ1 + λ2)

= E3
1

2A
�2 sin θ1 (A.4)

where the identity λ1 + λ2 + λ3 ≡ 1 has been used in the last line (noting that λ3 = 0 on
this edge). sin θi is the included angle at vertex i . Clearly, this is constant; now it is clear
that E3 is the tangential field on edge 3. Similar results follow for E1 and edge 1, and E2
and edge 2.

It can be simplified further by noting (from Fig. A1) that �2 sin θ1 is just the height of
the triangle above edge 3. Since the area of the triangle is

, it follows that

�Etan
∣∣
edge3

= E3

�3
(A.5)

This is a well-known result, derived independently here. The general form for edge i is:

�Etan
∣∣
edgei

= Ei

�i
(A.6)

If the vector basis function includes the edge length, as some published versions have,
then the result is

�Etan
∣∣
edgei

= Ei (A.7)

A = 1/( 2 �h) �3�2 sin θ1= 1/( 2)



Appendix B

The Newmark-β time-stepping algorithm

The Newmark-β algorithm is rather more challenging to derive than is generally indicated
in the literature, and its derivation is worth outlining. Most references cite the original
paper by Newmark [1], which perhaps surprisingly does not derive the recurrence
relationship, Eq. (10.45), which is generally associated with the name. This recurrence
relationship was first given in a much later and very important paper by Zienkiewicz [2]
published almost twenty years after the original method appeared. It is worth outlining the
formulation, since it underlies the time-stepping approach implemented and does not
appear to be available anywhere apart from Zienkiewicz’s paper, which can be difficult to
obtain.

The method is only relevant to the following differential equation representing a
general second-order system with damping:

Mẍ + Cẋ + K x + f = 0 (B.1)

It was derived for structural mechanics, where x is the displacement,1 and ẋ and ẍ the
velocity and acceleration respectively. It is also based on a Taylor series expansion. For
discrete samples at t = n�t and t = (n + 1)�t , the Taylor series expansion of the first
derivative is

ẋn+1 = ẋn + ẍn�t + ẍn
�t2

2
+ · · · (B.2)

Newmark proposed that for sufficiently smooth functions this can be evaluated as

ẋn+1 = ẋn + ̂̈x�t (B.3)

where ̂̈x represents some value of ẍ (in structural dynamics, the acceleration) intermediate
between ẍn and ẍn+1. This is where the parameter γ in Newmark’s scheme is introduced:

ẋn+1 = ẋn + (1 − γ )ẍn�t + γ ẍn+1�t (B.4)

Clearly, this is a second-order accurate scheme (for sufficiently smooth functions). The
Newmark-β scheme uses γ = 1/2, hence the approximation of the second differential
places equal weight on the values at n and n + 1. The function itself (in structural

1 The extension to two and three dimensions is straightforward, x is replaced by �x .

392



The Newmark-β time-stepping algorithm 393

dynamics, the displacement) is approximated in a similar fashion, although in this case
retaining an additional term in the Taylor series:

xn+1 = xn + ẋn�t + (1 − 2β)ẍn�t2/2 + 2β ẍn+1�t2/2 (B.5)

Note that this is not the time integral of the approximate velocity, but rather the
expansion of the displacement.

Most textbooks which discuss the technique indicate that by writing Eq. (B.1) at
time-step n + 1

Mẍn+1 + Cẋn+1 + K xn+1 + fn+1 = 0 (B.6)

and by also using Eqs. (B.4) and (B.5), one obtains values for xn+1, ẋn+1 and ẍn+1 in
terms of xn , ẋn and ẍn and this is what Newmark implied in his original paper. This,
however, is not the desired recurrence relation, Eq. (10.45). Zienkiewicz indicates the
process required to obtain this. One writes the governing equation, Eq. (B.1), additionally
at the time-steps n and n − 1; further, the integration formulas, Eqs. (B.4) and (B.5), are
written at time-step n − 1, n. This provides seven equations in nine unknowns (three
displacements, three velocities and three accelerations) from which all the velocities and
accelerations can be eliminated to produce the conventional recurrence scheme:

[
M + γ�tC + β�t2K

]
xn+1

+
[
−2M + (1 − 2γ )�tC +

(
1

2
+ γ − 2β

)
�t2K

]
xn

+
[

M + (−1 + γ )�tC +
(

1

2
− γ + 2β

)
�t2K

]
xn−1

+ (β�t2) fn+1

+
(

1

2
+ γ − 2β

)
fn�t2 +

(
1

2
− γ + 2β

)
fn−1�t2 = 0 (B.7)

The derivation as outlined above does not appear ever to have been published, only the
results.

Importantly, Zienkiewicz then proposed that this recurrence relation can alternatively
be derived by applying a weighted residual process to Eq. (B.1). In addition to providing
an independent check of Eq. (B.7), this procedure permits a far more general approach to
the problem, and proceeds as follows. Firstly, x is approximated by the three-term
expansion:

x ≈
∑

i

Ni xi , i = n − 1, n, n + 1 (B.8)

Obviously, this will support a second-order expansion in time, as required by the
second-order derivative in Eq. (B.1). The shape functions Ni (which represent the
temporal expansion functions) are the usual node-based quadratic functions and are given
in detail in [2, Eq. (10)]. It is further assumed that xn and xn−1 are known, and that the
only unknown is xn+1. Hence only one weighting function is required. Replacing the
interval [−�t;�t] with the normalized variable −1 ≤ ξ = t/�t ≤ 1, Zienkiewicz shows
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that if we identify

γ =
[∫ 1

−1
Wξ dξ

/∫ 1

−1
W dξ

]
+ 1

2

β = 1

2

∫ 1

−1
Wξ(1 + ξ) dξ

/ ∫ 1

−1
W dξ = 1

2

(
γ − 1

2

)
+ 1

2

∫ 1

−1
Wξ2 dξ

/∫ 1

−1
W dξ

(B.9)

then we obtain Eq. (B.7). This is a very useful result, since it makes the approximations
involved far clearer. It also permits us to extend the Newmark scheme if necessary.
Zienkiewicz used the result to show how a variety of weighting functions yield different
three “time-stations” time-stepping schemes, of which the Newmark scheme is the most
general. For instance, with γ = 1

2 and β = 0, the weighting function is a Dirac delta at
t = n, and the central difference scheme results. The Newmark-β scheme, on the limit of
stability with γ = 1

2 and β = 1
4 , corresponds to the “average acceleration” scheme and

the weighting function is the linear function |ξ |, zero at the center of the interval (t = n)
and unity at the ends of the interval (n − 1 and n + 1) [2, Fig. 1]. It is also possible to
produce higher-order schemes. Using cubic functions, for instance, a third-order scheme
can be derived with four time-stations and Zienkiewicz also outlines this.
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Appendix C

On the convergence of the MoM

Throughout this book, checking convergence numerically has been continually
emphasized. However, we have not discussed the more theoretical issues of whether the
underlying numerical formulations are indeed convergent, in the sense that the
approximate numerical solution f N of the continuous operator equation L f = g has the
property f N → f as N → ∞. The aim of this appendix is to give a brief summary of the
current status of this – which readers may be surprised to learn is far from a closed
subject.

With the FDTD, the Lax equivalence theorem (discussed in Chapter 2) provides us with
confidence that refining the FDTD mesh will indeed result in a convergent solution. With
the FEM, work in applied mechanics has provided a rich set of convergence results –
although we should note that convergence for high-frequency electromagnetics problems
is often in terms of the energy norm, as discussed in Chapter 10. This is a slightly weaker
statement of convergence, since the energy norm does not satisfy all the properties of the
norm. Also, these proofs are usually in terms of interpolation error; as has been noted,
dispersion (or pollution) error is a different problem specific to the differential equation
based solvers, but can usually be controlled by adequate meshing. (Integral equation
formulations using exact Green functions do not suffer from this problem of cumulative
error resulting from dispersion error [1, p. 200].)

However, with the MoM, the problem has been studied somewhat less, presumably
since the Green function is specific to electromagnetics. Rather surprisingly, only one
form of operator has been rigorously shown to be convergent. (A recent summary may be
found in [1, Chapter 5], which we summarize very briefly here.) This is the “identity plus
compact” operator, of which the (two-dimensional) TE MFIE is an example. Proofs
follow either via Galerkin’s method, or via degenerate kernel analysis. Other types of
operators are “compact” (the TM EFIE) and “unbounded” (the TE EFIE) – for neither of
these do rigorous convergence proofs currently exist. (Incidentally, this nomenclature
derives from the behavior of the eigenvalues of the operators.)

On the one hand, this is a somewhat disturbing situation, since important engineering
designs are based on a field of mathematics which it transpires is far from complete. On
the other hand, some forty years of development of the MoM has produced methods
which have solved an enormous number of practical engineering problems with great
accuracy, so it would appear most likely that what is missing is a convergence proof,
rather than a fundamental problem. It would be satisfying were such proofs to be
provided – or if they exist, popularized in the engineering literature. Here, we can but
quote Peterson et al. [1, p. 224].
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Our previous experience with integral equation formulations supports the notion that, if constructed
with sufficient care, numerical solutions appear to converge under much more general conditions.
Despite this observation, the authors are not aware of more general convergence proofs applicable
to the specific integral operators arising in electromagnetic scattering.

On the subject of convergence, another topic which has aroused controversy is whether
the Galerkin formulation is superior to other forms of testing procedure. The controversy
arose because the far-zone characteristics of the antenna or scatterer can be expressed as
quadratic functionals of the surface current, which can sometimes be defined in such a
way that they have a stationary point at the true solution. The work of Peterson et al. [1,
Section 5.12] has shed new light on this matter: they have shown that provided the testing
functions have similar accuracy properties as the basis functions, the overall error from
either a true stationary functional (as can be obtained using a Galerkin procedure) or a
general continuous functional form is of similar magnitude. They took this further, by
numerical tests using high-order spline basis and testing functions; their results support
the contention that the error is actually a function of the combined order of basis (P) and
testing function (Q), and that a Galerkin solution with P = Q is no more accurate than a
non-Galerkin solution with the same total P + Q.

Reference
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Suggested exercises and assignments

For graduate level courses, the following are suitable exercises. Most have been tested
over the years by the author in a classroom environment. The approximate time required
by a student to complete the assignment is also indicated, to assist in planning. This must
be treated as only a guideline; it can change significantly, perhaps by as much as a factor
of two either way, depending in particular on the programming ability of students or their
familiarity with a particular code. The times given are for code development from scratch,
and are based on the time the author and/or typical students have spent developing the
routines or models; if some existing material is made available to the students, these can
be greatly reduced. A number of MATLAB files, .pre files etc. are available to assist
readers.

Chapter 2

1D FDTD analysis

1. Write a program to implement the 1D FDTD analysis of a transmission line, as discussed in this
chapter. In particular, repeat the results given for the single-frequency source (Fig. 2.6), and also
for the wideband source (Figs. 2.20, 2.21 and 2.22). Also investigate the effects of other
termination conditions, such as a matched load. [20 hours]

Chapter 3

2D FDTD analysis

1. Repeat the TEz scattering analysis discussed in this chapter using longer (in time) pulses and
shorter pulses. Explain the time domain results obtained with each of these. Keep the grid size at
800 × 400 and M = 1024 so that run-times remain minutes rather than hours. [20–30 hours]

2. Modify the code to compute TMz scattering from a cylinder. Does the TMz polarization also
show creeping waves? [10 hours]

3. Finally, extend the code (either TM or TE) to use the PML ABC. Since one needs to verify the
PML, this is quite time consuming. [20–30 hours]

3D FDTD analysis

1. A ring hybrid, or rat-race, is a four-port device which functions as a 180◦ hybrid. (These are
discussed in some detail in Section 10.4.) Descriptions may be found in many books on
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microwave circuits, such as [1, Section 7.8]. Using a commercial package, predict the behavior
of such a device fabricated in microstrip. [5–10 hours, depending on the ease of use of the
package, and also the student’s familiarity with it]

Partial solution

The device was designed to operate at 1.8 GHz. One must first obtain the dimensions for
the microstrip; this was based on the example in [1, p. 163]. The substrate was chosen as
d = 1.27 mm thick, εr = 2.2. For the 50 � feedlines, the strip width to substrate
thickness ratio W/d is 3.0981, hence W = 3.91 mm. For the 70.7 � components in the
rat-race, W/d works out as 1.768, hence W = 2.24 mm. The effective dielectric constant
in the 70.7 � section is 1.82 (it is slightly dependent on W/d). Hence, at 1.8 GHz, a
quarter-wavelength in the dielectric is 30.8 mm. The average radius of the ring is thus
29.4 mm.

The four ports were modelled as discrete ports on the ends of sections of 50 � feedline
approximately 15 mm long. In this case, the standard planar coupler template was used,
and the space on top is five times the substrate thickness, as recommended by a MWS
tutorial. In this case, however, open boundaries should be used (apart obviously from the
ground plane).

At the design frequency, the results show the expected good match at port 1, 3 dB
coupling to ports 2 and 3, and some 45 dB of isolation with respect to port 4
(Fig. D1).
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Chapter 4

1D MoM analysis

1. Using the theory presented in Section 4.3, develop a thin-wire MoM code for a ẑ-directed dipole.
Use sinusoidal weighting functions and collocation, so that Eq. (4.33) is applicable. Use both the
delta-gap and magnetic frill source models, and replicate Fig. 4.3. [10 hours]

Chapter 5

Application of FEKO and NEC-2

This chapter consists largely of material which lends itself to assigning as tasks, as well as
simple variants on the designs presented. Most of these will take 5–10 hours if the FEKO
or NEC-2 models are developed from scratch. If time is pressing, a good alternative is to
make available an existing model and ask students to modify them for a different
geometry, frequency range etc.

Chapter 6

2D MoM analysis and hybrid methods

The material in this chapter does not readily lend itself to tasks.

Chapter 7

Sommerfeld potentials

1. Develop a code to replicate the results in Figs. 7.4 and 7.9, and then Figs. 7.10, 7.11 and 7.12.
[40 hours]

2. Using this, develop an MoM code for a thin printed dipole and repeat the results of Fig. 7.13. [10
hours]

3. As an advanced task Instead of using the quasi-static approximation of Eq. (7.82), evaluate this
rigorously as well. [Estimate 20 hours]

Chapter 8

Practical application of the Sommerfeld potentials

Again, this chapter consists largely of material which lends itself to assigning as tasks, as
well as simple variants on the designs presented. Similar comments apply as for
Chapter 5.

Chapter 9

2D finite elements

1. Using the theory developed in this chapter, develop a code to compute the TM eigenmodes.
(Note that in this case, the problem is formulated in terms of the �H field, and one uses the
natural boundary condition on the waveguide walls.) [30–40 hours]
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Chapter 10

Advanced FEM topics

As with Chapter 6, the material in this chapter does not readily lend itself to tasks.
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Useful formulas for simplex coordinates

Basic properties

On a triangle:

λ1 + λ2 + λ3 = 1 (E.1)

On a tetrahedron:

λ1 + λ2 + λ3 + λ4 = 1 (E.2)

Integration

Integration over a triangle:

∫ ∫

S
λi

1λ
j
2λ

k
3 dS = 2! i ! j ! k!

(2 + i + j + k)! A (E.3)

A is the area of the triangle.

Integration over a tetrahedron:

∫ ∫ ∫

V
λi

1λ
j
2λ

k
3λ

l
4 dS = 3! i ! j ! k! l!

(3 + i + j + k + l)!V (E.4)

V is the volume of the tetrahedron.

Gradient

Gradient on a triangle:

∇λi = li
2A

n̂i (E.5)
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with A the area of the triangle, li the length of edge i and n̂i the normal on edge i ,
pointing into the triangle.

Gradient on a tetrahedron:

∇λi = �Ai

3V
(E.6)

with V the volume of the tetrahedron and �Ai the area of face { j, k, l}, with normal
pointing into the tetrahedron.



Appendix F

Web resources

These sites, which include a number of commercial companies, were correct as of 2004 –
web sites do change from time to time. This list is far from exhaustive, but gives a flavor
of the variety of CEM products on offer, as well as the international technology base in
this regard.

Ansoft Corporation A Pittsburgh, USA based company specializing in commercial FEM
code suites.
URL: http://www.ansoft.com/

Applied Computational Electromagnetics Society An organization supporting the
development, validation, and distribution of numerical EM modelling codes. Presently
hosted by the University of Mississippi. Contains a number of very useful CEM links,
including links to the public domain code NEC-2.
URL: http://aces.ee.olemiss.edu/

Computer Simulation Technology Based in Darmstadt, Germany, this company
specializes in commercial Finite Integration Technique (largely FDTD) code suites, in
particular MWS.
URL: http://www.cst.de/ or
http://www.cst-world.com/

COMSOL A Swedish company, their main product is FEMLAB, a multi-physics FEM
solver.
URL: http://www.comsol.se/

EMLIB This site, maintained at JPL, has been created for the free distribution of
electromagnetics software and related information. This related information includes
relevant conference information, a list of other EM sites, and a user-defined searchable
directory of people working in the EM field.
URL: http://emlib.jpl.nasa.gov/

403



404 Appendix F

EMSS (Electromagnetic Software and Systems) Originally based in Stellenbosch, South
Africa, this company now also has a German branch and US offices. Their main product
is FEKO. They also provide a free GUI for NEC-2, Wiregrid for Windows.
URL: http://www.emss.co.za/ or
http://www.feko.info/

MININEC website EM Scientific, Inc market a professional version of this code.
URL: http://www.emsci.com/

NEC-2 homepage An unofficial homepage with a number of links, as well as much of the
NEC-2 documentation.
URL: http://www.nec2.org/

REMCON A US company, offering XFDTD, an FDTD-based package.
URL: http://www.remcom.com/

Poynting Software Another South African company, based in Johannesburg, offering
SuperNEC.
URL: http://www.supernec.com/

The Schneider–Schlager FDTD database An exhaustive bibliography of published work
dealing primarily with applications of, or extensions to, the FDTD method.
URL: http://www.fdtd.org/

Zeland Software Based in California, their best known product is probably IE3D, a planar
and 3D MoM simulation package. It is widely used for microstrip structure simulation.
URL: http://www.zeland.com/
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ABC
alternate formulations for FDTD, 115
complementary operator, 115
FDTD, 77
FDTD 1D, 78
FEM time domain, 386
impact on 3D FDTD, 107
Mur 1st and 2nd order, 79
PML, see PML 1
radiation vs absorbing BC, 77

Absorbing Boundary Condition(s), see ABC
accuracy of CEM techniques, 5

effect of finite discretization, 18
effect of finite machine precision, 19
effect of finite problem size, 18
effect of numerical approximation, 19

active impedance, 275, 281
Adaptive Integral Method, 23
advective equation, 78
analytical solutions

on “exactness” thereof, 195
asymptotics, 4

importance of methods, 23

barycentric coordinates, see simplex
coordinates

basis functions (MoM)
entire domain, 261
for EQS thin-wire problem, 121
NEC, see NEC, basis functions
piecewise linear, 136
piecewise sinusoidal, 129
various types, 121

Boundary Element Method, 7
relationship to MoM, 118, 142

branch points and cuts, 249

capacitive iris, 353
CFIE, 186
collocation, 123, 140, 141
Combined Field Integral Equation, see CFIE
commercial codes

Ansys, 14

Ensemble, 8
FDTD, 11–12, 107
FEKO, see FEKO
FEM, 14
FEMLAB, 14
GEMACS, 8
general points about using, 108
HFSS, see HFSS
IE3D, 8
increasing use of, 25
MoM, 8
MWS, see MWS
SuperNEC, 8, 147
websites, 403–404
XFDTD, 11, 107

complex plane
integration on, 248

computational complexity, see operation count
computational cost, see operation count
computers

performance, 24
Courant limit, 11, 32

2D, 73
for FDTD BOR formulation, 115
in 1D, 46
limitations of, 46
physical interpretation of, 46
running close to, 65
Von Neumann’s method, 46

debugging
coping with complexity, 267–268
FDTD ABC’s, 86
FDTD plane-wave source, 83
FDTD update equations, 82

deterministic problems
FEM, 14, 345

DFT, 58
differential forms, 312
differentiating vectors, 297
dipole

general modelling hints, 151
Discrete Fourier Transform, see DFT
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dispersion, 6
accurate FDTD modelling of material properties,

115
dispersive materials, 11
dispersive systems, 11
effect on cumulative phase error, 93
example of numerical, 85
in FDTD simulations, 60–66
in FEM meshes, 386
magic time step, 65

dispersion equation
derivation of, 63

Dyadic Green function, see Green function, dyadic

edge elements, see FEM, vector elements
edge-based elements, see FEM, vector elements
EFIE, 184, 225

Fredholm equation of first kind, 185
interior resonance, 225

eigenanalysis
FEM, 14
MoM, 14

eigenproblem
solution using LAPACK, 324
solution using MATLAB, 324

Electric Field Integral Equation, see EFIE
electromagnetics

history of, 3
expansion functions, see basis functions

Fast Fourier Transform, see FFT
fast methods

adaptive integral method, 217
general, 184, 226
k-space, 226
misconceptions about iterative methods, 226

Fast Multipole Method, 23, 184, 227
Multilevel Fast Multipole Algorithm, 223
three-dimensional formulation, 222–225
two-dimensional prototype, 219–222

FDTD
accuracy, 43
Alternating Direction Implicit algorithm, 115
application to human exposure assessment, 363
avoiding half-steps, 41
Body of Revolution formulation, 115
commercial codes, see commercial codes, FDTD
comparison with FEM and MoM, 6
computational molecule, 37
consistency of method, 43
Courant limit, see Courant limit
FDTD as special case of time domain FEM, 371
half-space step, 36
half-time step, 36
history, 32
in one dimension, 29–67
in three dimensions, 106–107
in two dimensions, 69–93
late time instabilities, 47
near field to far field transformation, 115
overview, 9–13

semi-implicit approximation, 40, 99
spurious modes, absence of, 309
stencil, 37
strong and weak points, 12–13
sub-cell models, see sub-cell models (FDTD)
wideband sources, see wideband sources (FDTD)
Yee algorithm, 32
Yee algorithm, 2D, 71
Yee algorithm, 3D, 106

FEKO, 8
adaptive frequency sampling, 164, 169
application to antenna above reflector, 205
application to dipole, 149
application to helix antenna, 167
application to log-p, 159
application to microstrip patch, 273
application to patch coupling, 273
application to printed dipole, 266
application to RCS of a dielectric sphere, 197
application to RCS of PEC sphere, 190
application to Wu-King loaded dipole, 175
application to Yagi-Uda, 153
conditional execution, 161
convergence, 149
different source models, 151
FEKO Lite, 148
ground plane, 168
history, 148
input file (.fek), 148
iteration loops, 161
label, 176
loading, 176
modelling spherical surface, 192
planar substrate, 273
PREFEKO file (.pre), 148
radius vs. diameter, 159
scaling, 158
scripting language, 148
source models, 151
transmission line modelling, 161
use of MoM/PO hybrid, 207
use of RWG element, 187
use of symmetry, 191, 206, 278
use of volumetric currents, 197
user-defined variables, 158
wire to plate connection, 168

FEM
(dis)similarity with MoM, 292
application to capacitive iris, 353–358
application to Magic-T hybrid, 349–353
application to waveguide discontinuities, 345–358
book-keeping, 324
boundary conditions, at material interfaces, 301
boundary conditions, flux continuity, 302
boundary conditions, practical handling, 299
boundary conditions, specification of, 291, 305
boundary conditions, summary of, 301
commercial codes, see commercial codes, FEM
comparison with FDTD and MoM, 6
connection matrix, 295, 324
Courant’s contribution, 289
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curvilinear elements, 384
data structures, 298, 322
edge numbering, 321, 330
eigenanalysis, 318
element connection, 295–299
element shape, 293
elements, 290
error estimation and adpative meshing, 378–383,

386
face numbering, 330
FDTD as special case of time domain FEM, 371
formulation in three dimensions, 328–331
formulation in two dimensions, 317–328
free potentials, 297
functional for eigenvalue problem, 305
high-frequency variational functional, 305
history, 289–290
Lagrange multipliers, 331
mass matrix, 302
matrix assembly, 298
matrix entries, explicit formula for, 318–321
meshing, 323
Method of Weighted residuals formulation, 291
minimum of functional, 297
Newmark-β method, 369
Newmark-β method, derivation of, 392–394
Newmark-β method, unconditional stability of,

369, 385
node numbering, 321
overview, 13–16
post-processing, 325–326
practical implementation in 3D, 332
prescribed potentials, 297
rationale for complete elements, 353
rectangular elements, 293
results of eigenanalysis, 326
shape function, 293
simplicial elements, 290, 303
sparse solvers, see sparse solvers
spurious modes, 306–309, 324, 331
spurious modes, predicting number of, 324
stiffness matrix, 295
strong and weak points, 15
strong form, 344
time domain, 365–372, 385
time domain ABC, 386
time domain formulation, 367–368
triangular elements, 293
variational boundary value problem viewpoint,

343–345
variational functional for Poisson equation,

299–301
variational functional formulation, 293,

299–301
vector elements, see vector elements
vector wave equation, kernel, 307
vector wave equation, null-space, 307
vector wave equation, solution of, 305
waveguide formulation, 345–348
waveguide formulation using Huygens’ principle,

385

waveguide formulation, extracting S-parameters,
348

weak form, 344
Whitney element, 313–317, 328–331, 390–391

FEM/MoM hybrid
application to human exposure assessment,

363–365
applications, general, 362
inward-looking, 385
outward-looking, 365, 385
theory, 358–359

FFT, 58
description of algorithm, 218
fast methods, 184, 216–219
MATLAB implementation, 58

Finite Difference Time Domain, see FDTD
finite differences, 30–32

backward differencing, 30
central differencing, 30
explicit methods, 32
forward differencing, 30
implicit methods, 32
overview, 30

Finite Element Method, see FEM
finite integration technique, 11, 107

equivalence with FDTD, 107
Fourier transform, 36

and spectral domain analysis, 233
estimating, 57

Fredholm integral equation, see EFIE and
MFIE

frequency scaling, see operation count
frequency selective surface, 20, 115
full-wave, 4–6

extending limits, 22
functional analysis

and FEM, 386
function, 186
functional, 186
Hilbert and Sobolev spaces, 141
inner product, 141
linear operator notation, 139, 186
operator, 186
symmetric product, 141

gain
dB vs. actual value, 167

Galerkin
and FEM, 291
and MoM, 141

generalised network parameters, 123
Generalized Multipole Technique, 16
geometrical optics, 4
Green function, 7, 120, 231

dyadic, 232–233
free-space, 185
static spectral domain, for microstrip,

233–237
Group Special Mobile, see GSM
GSM, 363

base station, 363
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Hankel function
evaluation in FORTRAN, 194
evaluation in MATLAB, 194

helix antenna
axial mode, 167
normal mode, 167

HFSS, 14, 317
application to Magic-T hybrid, 350
using, 350

High Performance Computing
Amdahl’s law, 212
efficiency (parallel processing), 211
parallel processing, 184, 210–216, 226
speed-up (parallel processing), 211
transputer, 211

homogeneous coordinates, see simplex coordinates
hybrid

approximate, 201
exact, 201
FEKO implementation of MoM/PO, 205
general definition, 201
MoM/PO, 184, 202, 226
MoM/PO, mechanics of, 203–205
Sommerfeld formulation, 201

hybrid FEM/MoM, see FEM/MoM hybrid

in place operation, 41
incident field

for thin-wire MoM, 130
inner product, see functional analysis, inner product
integral equation, 120

forcing function, 120
kernel, 120

junction treatements
NEC, 135

junction treatments
piecewise linear basis functions, 136
piecewise sinusoidal basis functions, 139

LAPACK, 267
Laplace equation

FEM solution of, 291
Lax Equivalency Theorem, 44
linear operator, see functional analysis, linear

operator
log-periodic antenna, 159

Magic-T hybrid, 349
Magnetic Field Integral Equation, see MFIE
MATLAB

efficient FDTD programming, 80
frequently made errors, 81
problems with indices, 71

matrix equation solution, see solution of linear
equations

matrix inversion, see solution of linear equations
Maxwell, 3
Maxwell’s equations, 1

predictive power, 17
memory requirements

2D FDTD, 92
3D FDTD, 107
surface MoM, 200
thin-wire MoM, 200
volumetric MoM, 200
impact of sparse storage schemes for FEM, 376
MoM Sommerfeld, 286

mesh refinement, 25
meshing

FDTD stairstep approximation, 77, 91
Method of Lines, 16
Method of Moments, see MoM
Method of Weighted Residuals, 7, 139

equivalence with MoM, 118
Method of Weighted residuals

for FEM, 291
MFIE, 185, 225

Fredholm equation of second kind, 185
interior resonance, 225

microstrip, 231
transmission line, 231

microstrip patch
FEKO simulation of, 273
history, 271
materials, 271
mutual coupling, 273
MWS simulation of, 112
overview, 271

microwave dielectric heating, 14, 386
Microwave Studio, see MWS
Mie scattering, see scattering from PEC sphere
Mixed Potential Integral Equation, see MPIE
Mobile telephony, 363
modelling process

accuracy, 17
formulation simplications, 18
manufacturing deviations, 18
mathematical model limitations, 17
tolerances, 17

MoM
commercial codes, see commercial codes, MoM
comparison of source models, 151
comparison with FEM and FDTD, 6
convergence, 395–396
delta-gap source model, 130
electrodynamic example, 126
electrostatic example, 119
history, 118
history of name, 142
hybrid with FEM, see FEM/MoM hybrid
in one dimension, 118–144
magnetic frill source models, 130
overview, 7–9
stratified media, see MPIE, for stratified media
strong and weak points, 8–9
surface modelling, see surface modelling (MoM)
thin-wire codes, see thin-wire codes
volume modelling, see volume modelling (MoM)

Moore’s Law, 5, 33
MPIE, 189, 233, 246

for stratified media, 244–246
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MoM formulation for printed dipole, 262–266
results for printed dipole, 265

Multi-physics, 15
mutual coupling, see microstrip patch, mutual

coupling, 275
MWS, 11, 107

advanced modelling features, 116
application to microstrip patch antenna, 112
application to rat race hybrid, 398
application to waveguide “through”, 108
application to waveguide filter, 110
improving results using adaptive meshing, 111
open boundary simulation, 114
parametric modelling, 114
Perfect Boundary Approximation, 112

NEC, 8
PL and PT cards, 164
application to dipole, 149
application to log-p, 159
application to Yagi-Uda, 153
basis functions, 134
column spacing in input file, 147
comma demarcated input file, 147
control cards, 153
geometry file (.nec), 146
GUI, 147
overview, 132
radius vs. diameter, 159
structural cards, 153
tag, 176
transmission line modelling, 161
Wiregrid for Windows, 147, 157
wiremesh ground plane, 175
wires penetrating real ground, 269

NEC2, see NEC
NEC4, see NEC
non-linear problems

application of FDTD, 115
Numerical Electromagnetics Code, see NEC
Nyquist, 11

effect on time step, 56

Occam, 148
operation count

2D FDTD, 92
3D FDTD, 107
surface MoM, 200
thin-wire MoM, 200
volumetric MoM, 200
FDTD, 12
FEM, 15
MoM, 9
MoM Sommerfeld, 286
prohibitive cost of large MoM problems, 208
reducing FDTD, 42

parallel processing, see High Performance
Computing, parallel processing

parametric modelling, 114
partially filled cells, see sub-cell models (FDTD)

Perfectly Matched Layer, see PML
periodic structures

FDTD modelling of, 115
phased array

feeding of, 285
phased arrays

overview, 280
scan blindness, 280–286

physical optics, 4
PML, 10, 33, 78

corner regions, 99
drawbacks, 104
evaluation of, 103
implementation issues, 101
implementation of 2D split-field, 99
polynomial grading, 102
results, 103
split field, 94, 97–99
split field (in 2D), 95
split field (in 3D), 95
stretched coordinates, 95, 105
summary of properties, 98
uniaxial, 95, 105

Pocklington
historical background, 142
integral equation, 118, 128, 184
integral equation and NEC, 133

point-matching, see collocation
Poisson equation

FEM solution of, 299
potentials

basics, 237–238
Hertz, 238
Lorenz gauge, 237

principal value, 185
printed antennas, see microstrip antenna
printed dipole

equivalence to wire dipole, 286
MPIE solution of, 261

quantum mechanics
bra-cket notation, 140

quasi-static, 4
magnetoquasistatics, 12

radiation condition, 8, 290
absence of in FEM and FDTD, 14

Rao–Wilton–Glisson element, see RWG element
rat-race hybrid, 398
RCS, 190

bistatic, 193
monostatic, 193
of PEC sphere, 190

rectangular waveguide, FEM solution of, 318
residual, 140
residue

evaluation of, 255
Riemann sheets, 249
RWG element, 186–189

connection with edge-based finite element, 187,
359
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SAR, 366, 367
ICNIRP guidelines for, 365

scan blindness, see phased arrays, scan blindness
scattering

incident/scattered field decomposition, 69, 73, 126
overview of process, 69
source inclusion, 73
total field, 69

scattering from a dielectric sphere, 197
scattering from PEC sphere, 189–196

analytical (Mie) solution , 193
blue sky explanation of Lord Rayleigh, 189
history of Mie solution, 193

simplex coordinates
one dimension, 303
overview, 303
properties of, 304
three dimensions, 305
two dimensions, 304
useful formulae, 401–402

singularities
in EFIE and MFIE, 185
in MPIE, 264

slow wave, 280
solution of linear equations, 123

conjugate gradient algorithm, 209
direct solvers, 208
iterative solvers, 209, 375

Sommerfeld potentials
alternate treatments, 268
computational efficiency of, 286
definition of, 238–241
derivation of single-layer microstrip, 242–244
evaluation of, 247–260
evaluation of tail, 269
extension to aperture coupling, 268
half-space problems, 269, 287
history of, 233
illustrative results, 259–260
limitations of implementations, 287
locating the pole, 258–259
MoM solution using, 260–266
multiple layers, 268
numerical integration in spectral domain,

249–258
transmission matrix, 269
wires penetrating interfaces, 269

sparse matrices, 332
sparse solvers, 372–378

Compressed Column Storage, 375
Compressed Row Storage, 374
direct, 373
iterative, 373
profile-in skyline storage, 373
results, 376–378

Specific Absorption Rate, see SAR
spectral domain, 231, 238–258

transform, 233, 239
spurious modes, see FEM,spurious modes
stability

effect of load on FDTD, 47
of FDTD method, 43

statified medium
definition, 231

sub-cell models (FDTD)
curved boundaries, 107
MWS implementation, 112
overview, 107
thin cracks, 107
thin sheets, 107
thin wires, 107, 114

Surface Equivalence Principle, 226
Surface Equivalence Theorem, 196

Love’s form, 196
surface modelling (MoM)

conducting structures, 184
homogeneous material regions, 184, 196

surface waves, 244, 246–247, 280
condition for dominant TM only, 246
position of poles, 247

symmetric product, see functional analysis,
symmetric product

TE
FDTD formulation for scattering, 70
guided wave mode, 34, 318
scattering, 69
scattering from PEC cylinder, 86

telegraphist’s equations, 34
TEM

guided wave modes, 33
testing functions, see weighting functions
testing points, 124
thin-wire approximation

electrodynamics, 128
electroquasistatics, 120
impact of, 125
limitations on accuracy, 132, 150

thin-wire codes
MININEC, 149
Wire (WIRE89), 149

thin-wire modelling (MoM)
source models, see source models
arbitrarily orientated wires, 143

TM
guided wave mode, 318, 399
scattering, 69

transmission line, 33
Transmission Line Matrix method, 16
Transverse Electric, see TE
Transverse Magnetic, see TM
triangle area

signed, 295

Uniform Theory of Diffraction, 5

validation and verification, 19
analytical solutions, 19
approximate solutions, 19
code comparisons, 20
frequency selective surface example, 20
measurements, 20
of 1D FDTD problem, 44
summary of for FEKO and NEC2, 182



Index 411

vector elements, 293, 309–317
complete, 337–338
contributions to, 310
criticism of, 331
CT/LN, 311, 337
hierarchal higher-order, definition of, 338–340
hierarchal higher-order, impact on code, 342–343
hierarchal higher-order, properties of, 340–342
higher-order, 15, 337
higher-order elements, alternate methods for

constructing, 384
interpolatory higher-order, 338, 384
LT/LN, 339
LT/QN, 337, 339, 352
matching hierarchal elements to a field, 343
mixed-order, 337–338
QT/QN, 339

volume modelling (MoM), 184
application to human exposure assessment, 363

waveguide discontinuities
FEM solution of, 345

weighting functions, 140
wide-band antennas

compared to non-dispersive, 181
definition of, 167

wideband sources (FDTD), 50
DC content of and FDTD simulations,

51
Gaussian Derivative pulse, 51, 84
Gaussian pulse, 50
polynomial pulse, 52

Wiregrid for Windows, see NEC, Wiregrid for
Windows

Wu-King condition, 135
Wu-King loaded dipole, 175

Yagi-Uda antenna, 153
Yee algorithm, see FDTD, Yee algorithm
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