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Preface

Complex population dynamics such as limit cycles and chaos are
intrinsically fascinating. Why do organisms become extremely abun-
dant one year, and then apparently disappear a few years later? Why
do population outbreaks in certain species in certain locations hap-
pen more or less regularly, while in other locations such eruptions
are irregular, or never occur at all? One would not find a general
and definitive answer to these questions in any of the standard ecol-
ogy textbooks. Partly this is because population ecologists do not, as
yet, have a definitive, as well as empirically tested, general theory
of complex population dynamics. On the other hand, much progress
toward such a theory has been made. One goal of Complex Popula-
tion Dynamics is to review these developments, and proffer tentative
answers to the question of why populations oscillate in at least some
of the best-studied examples.
But there is a deeper reason for studying population oscillations.

Could these complex dynamics have simple causes, at least in some
cases? If we are successful in answering this question, then we shall
surely gain a better understanding of population dynamics in general.
Physicists were able to formulate general laws of physical motion by
studying periodic orbits of planets. Perhaps ecologists will be able to
formulate general laws of population dynamics by studying periodic
oscillations in population density. I think this is actually the case; in
fact, on closer examination, it turns out that there is a lot in common
between the two disciplines—classical (Newtonian) mechanics and
population dynamics. If so, then population ecology may be on the
brink of maturity, rapidly becoming a quantitative and predictive sci-
ence. Constructing and defending this argument is the second broad
theme of the book.
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The third and final theme is methodological. Population dynam-
ics have been studied in a variety of ways: mathematical models,
statistical analyses of time-series data, and field experiments. The
paradigmatic approach of how one “does ecology” is the manipu-
lative experiment. Yet, the actual experience of solving the puzzle
of population cycles suggests that experiments in isolation do not
result in serious progress. Significant progress in understanding pop-
ulation mechanisms occurs only when we combine the three major
approaches in a synthetic whole.
Although this book is about a synthesis of mathematical models

and empirical ecology, I am assuming very little mathematical back-
ground on the part of readers. Essentially, readers need to know what
a derivative is, and have some experience with differential and differ-
ence equations. There is little explicit algebraic manipulation in the
text, and what there is focuses almost completely on model develop-
ment. This does not mean that this is an elementary text, however.
There is too much ground to cover, and therefore I assume that read-
ers are conversant with basic ecological concepts such as functional
responses, Allee effects, and general types of species interactions. (I
do, however, provide definitions of these concepts in the glossary.)
Complex Population Dynamics can serve two functions. First, it is

intended for the audience of working scientists: graduate students and
researchers in ecology. It is to their judgment that I submit my view
of how the synthesis in population dynamics is shaping up. I hope
that they will find the developments I review in the book as I exciting
as I find them, and will join in the endeavor of making the “grand
synthesis” a reality.
Second, it can be used as a textbook for a course in population

dynamics or population ecology. True, the main focus is on popu-
lation oscillations, but on the way to complex dynamical behaviors
the book covers the basics of simple dynamics. And, I argue, the
study of complex dynamics advances us substantially along the road
of figuring out general principles of population ecology.
Finally, I need to say what this book is not about. First, and most

important, I barely touch on the spatial aspects of population ecology.
I wish I could review the recent exciting developments in complex
spatiotemporal dynamics, but there is simply not enough space to do
that in this volume. Second, although all general approaches discussed
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in the book are based on an explicit incorporation of stochasticity, my
main focus is on endogenous mechanisms (those that involve popula-
tion density feedbacks). Thus, dynamics in which populations largely
respond to exogenous perturbations are relatively neglected. Again,
the main reason is not because I think such dynamics are uninter-
esting or unimportant, but because I lack space to do full justice to
this topic. Third, this is not a text on ecological theory. Although I
extensively review certain classes of population models, I included
only those parts of theory that are useful to me in studying population
oscillations. And, as mentioned above, my main focus in the theoret-
ical part is on model development. Thus, I devote little space to the
discussion of how to solve the developed models. And, fourth, I limit
the empirical case studies to the terrestrial field ones, because excel-
lent summaries of fisheries (Quinn and Deriso 1999) and laboratory
(Mueller and Joshi 2000) dynamics already exist.
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Mathematical Symbols

The general scheme is to use capital Roman-alphabet letters for vari-
ables, and lowercase Roman and Greek letters for parameters. There
are a few exceptions to these rules, primarily for variables or parame-
ters that have traditional symbols associated with them (e.g., t). Vari-
ables used in discrete-time models are subscripted with t, as in the
symbol for population at time t: Nt . In continuous-time models, I usu-
ally omit explicit time dependence, but when I want to emphasize it,
I use t in parentheses: N�t�. A list of symbols commonly used in the
book follows.

STATE VARIABLES IN CONTINUOUS-TIME MODELS

t Time
N Population density in general, or of herbivore

in trophic models
P Population density of predators, parasitoids,

or parasites
� Parasitism rate
V Biomass density of vegetation
H Host density
X Generic state variable (“some factor X”)
Q Index of plant quality
Y Index of individual quality (e.g., average weight)

STATE VARIABLES IN DISCRETE-TIME MODELS

Nt Population density at time t

Xt Generic state variable, or some intrinsic variable
at time t



xvi MATHEMATICAL SYMBOLS

Pt Parasitoid density at time t

�t Parasitism rate at time t

Qt Index of plant quality at time t

TIME-SERIES ANALYSIS VARIABLES AND PARAMETERS

r�t� Realized per capita rate of population change
(continuous case)

rt Realized per capita rate of population change
(discrete case)

Yt Log-transformed Nt

Zt Vector of state variables
n The number of data points in a data series
�t Exogenous influence
�2 Variance of process noise
�2
obs Variance of observation noise

�� Global Lyapunov exponent
��t� Distribution of local Lyapunov exponents
R2 Coefficient of determination in regression

(proportion of variance explained)
R2
pred Coefficient of prediction

� Base lag, or time delay

GENERIC CONSTANTS AND PARAMETERS

a� b� c � � � Generic constants
� Exponents

PARAMETERS OF EXPONENTIAL AND LOGISTIC TERMS

� Per capita birth rate
� Per capita death rate
r0 Intrinsic rate of population increase, general or

herbivore
v0 Intrinsic rate of population increase, vegetation
u0 Initial regrowth rate of vegetation
s0 Intrinsic rate of population increase, predators



MATHEMATICAL SYMBOLS xvii

k Carrying capacity in the logistic term, general or
herbivore

m Carrying capacity in the logistic term, vegetation
# Carrying capacity in the logistic term, predator

FUNCTIONAL RESPONSE (FR) PARAMETERS

a Attack rate (mechanistic form)
h Handling time (mechanistic form)
w Wasted time (predator interference)
c Saturation killing rate (phenom. form)
d Half-saturation constant of the hyperbolic FR

(phenom. form)
a Saturation rate, herbivore (phenom. form)
b Half-saturation constant, herbivore (phenom. form)
g Saturation rate in the sigmoid FR
h Half-saturation constant in the sigmoid FR

NUMERICAL RESPONSE PARAMETERS

( ZPG predator intake
) Prey-predator conversion rate
* ZPG herbivore intake
+ Vegetation-herbivore conversion rate
�0 Consumer death rate in the absence of resource
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THEORY





CHAPTER 1

Introduction

1.1 AT THE SOURCES

Population dynamics is the study of how and why population numbers
change in time and space. Thus, population dynamicists document the
empirical patterns of population change and attempt to determine the
mechanisms explaining the observed patterns. Temporal population
dynamics is not the only subject that population ecologists study.
Among other things, they are also interested in statics (what sets the
level around which populations fluctuate) and population structure
(e.g., age distribution). More recently, there has been a lot of progress
in spatiotemporal dynamics of populations. Nevertheless, population
dynamics in time has been at the core of population ecology ever
since the origins of the discipline during the 1920s (Kingsland 1995),
largely as a result of efforts of Charles Elton, Alfred Lotka, Vito
Volterra, and A. J. Nicholson.

1.1.1 The Puzzle of Population Cycles

Abrupt and seemingly inexplicable changes in population numbers
have fascinated and puzzled humanity from prehistoric times. The
Bible records the effects of locust swarms and mice “plagues” on
humans. Hunters and trappers surely knew about periodic changes
in populations of furbearing mammals and game birds. Norwegians
have long been aware of mysterious invasions by lemmings (Stenseth
and Ims 1993a). Nordic folklore has provided the basis of the modern
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myth of lemmings marching off to the sea to commit mass suicide,
as popularized by Walt Disney’s White Wilderness.
The scientific study of population oscillations begins with the work

of Charles Elton (Stenseth and Ims 1993a; Lindström et al. 2000). In
1923 the young Elton passed through the Norwegian town of Tromsø
on his way back from a zoological expedition to the Spitsbergen. In
a Tromsø bookstore, he noticed Norges Pattedyr (Norwegian mam-
mals) by Robert Collett. Although Elton could not read Norwegian,
he noticed a very curious—apparently periodic—pattern in the abun-
dance of Norwegian lemmings. With some of the last of his money,
Elton bought the book, brought it with him back to Oxford, and had
it translated into English. In 1924, Elton published the pioneering
article “Periodic Fluctuations in the Number of Animals: Their Cause
and Effects” (Elton 1924), based largely on Collett’s data (Stenseth
and Ims 1993a; Crowcroft 1991).
About the same time, Elton read The Conservation of the Wild

Life of Canada by Gordon Hewitt, which contained graphs of the
annual fur returns of the Hudson’s Bay Company showing remark-
ably regular oscillations in the numbers of lynx and snowshoe hare
pelts (Crowcroft 1991:4). Elton was appointed biological consultant
to the Hudson’s Bay Company in 1925, and examined the company’s
records to trace the dynamics of Canada lynx populations back to
1736. The results of this research were eventually published in 1942
(Elton and Nicholson 1942). A second line of attack consisted of
empirically studying fluctuations in the numbers of British voles,
using Oxford as a base (Crowcroft 1991:6). While Elton and his group
were engaged in these empirical studies, momentous changes were
occurring in the field of theoretical ecology.

1.1.2 Modeling Nature

By a curious coincidence, the mathematical study of population oscil-
lations started practically at the same time as Elton was puzzling
over lemming cycles (Lotka 1925; Volterra 1926). The two traditions,
the empirical and the mathematical, although having started almost
simultaneously, developed largely separately. Only three-quarters of a
century later we are starting to see a true synthesis.
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Theory is important because there is a tendency for common
phenomena to be overlooked or misinterpreted in the absence of
a well-known body of theory (Abrams 1998:211). One ecological
illustration of this tendency is the meager experimental evidence for
apparent competition that Holt (1977) could marshal in the article
where he proposed the concept, compared with the large body of
evidence reviewed by Holt and Lawton (1993) seventeen years later
(Abrams 1998). So it was at the beginning of the study of population
cycles. In his first paper on population cycles, Elton wrote: “It will
be shown in the body of this paper that the periodic fluctuations
in the numbers of certain animals there dealt with, must be due to
climatic variations” (Elton 1924:119). When Volterra’s 1926 article
appeared in Nature, Julian Huxley, Elton’s former tutor at Oxford,
brought it to him, and Elton immediately realized its importance.
The generation of population cycles through endogenous causes was
new and unexpected (Kingsland 1995:127).

1.1.3 The Balance of Nature

Whereas the study of population oscillations originated with the
empirical work of Elton and the theoretical work of Lotka and
Volterra, time-series analysis of population fluctuations can be traced
to the famous debate about population regulation, which crystallized
at the 1957 meeting in Cold Spring Harbor. One of the protagonists
in the debate was A. J. Nicholson, who developed the theory of
population regulation by density-dependent mechanisms (Nicholson
1933, 1954). Nicholson’s views were supported by Elton, who wrote,
“it is becoming increasingly understood by population ecologists that
the control of populations, i.e., ultimate upper and lower limits set
to increase, is brought about by density-dependent factors” (Elton
1949:19). Andrewartha and Birch (1954:649) disagreed: density-
dependent factors “are not a general theory because � � � they do
not describe any substantial body of empirical facts.” The debate
reached a peak at the Cold Spring Harbor Symposium (Andrewartha
1957; Nicholson 1957). It has continued ever since, reaching another
peak of intensity during the 1980s (a review in Turchin 1995b),
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although currently some consensus is apparently beginning to emerge
(section 5.4).
An interesting thing happened while the regulation debate was

raging. First, empirical ecologists began collecting long-term data
on population fluctuations of a wide variety of organisms. It is
curious that a lot of long-term data sets were started during the
1940s and 1950s (i.e., just when the debate was at one of its peaks!).
Next, quantitative ecologists started analyzing these time-series data
(Moran 1953; Bulmer 1974; Berryman 1978; Royama 1981; Potts
et al. 1984; Turchin 1990) using, in the beginning, such linear
approaches as the Box-Jenkins time-series analysis. Then, ecologists
(most notably, Robert May) participated in the nonlinear dynamics
revolution (Gleick 1988). When physicists invented the new technique
of attractor reconstruction in time-delayed coordinates (Takens 1981;
Packard et al. 1980), some ecologists began applying it to ecological
time series (Schaffer 1985). Classical time-series analyses and non-
linear dynamics approaches were eventually merged in a synthetic
approach to the analysis of ecological data (these approaches will
be discussed in part II), and applied to issues ranging beyond mere
density dependence. Presently, we are seeing how these nonlinear
time-series methods are being merged with the theoretical tradition
(see chapter 8), and there are also promising beginnings of the syn-
thesis between the population-regulation analyses and experimental
approaches (Cappuccino and Harrison 1996).

1.2 GENERAL PHILOSOPHY OF THE APPROACH

Most ecologists do their science without giving much thought to the
broad philosophical issues underlying what they do. Among those
ecologists who do worry about philosophical foundations, the most
vocal, and not afraid of making strong recommendations, are the Pop-
perians (e.g., Chitty 1996; Murray 2000; Lambin et al. 2002). Other
ecologists take the view that there are many ways of doing ecology,
and one should not be too dogmatic about it (e.g., Fagerstrom 1987;
Pickett et al. 1994). I believe that such philosophical discussions are
important, because they affect how we do ecology. Furthermore, one
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of the broad themes of this book is methodological (see the preface):
what are the best approaches to solving the puzzle of population
cycles? Thus, I need to describe the philosophical basis of the general
approach that I advocate.
While Popper’s idea that all theories have to be testable in order

even to be called scientific seems quite reasonable to me, I find the
rest of his philosophy of science, at least as expounded by his eco-
logical disciples, not to be a very useful way of doing science. I am
particularly bothered by the emphasis of Popperians on falsification-
ism as the way of doing science. First, the view that data are “hard
facts” is untenable for methodological and psychological reasons (see
Fagerstrom 1987 for a very clear discussion of this point). Thus, it
is not true that in any contest between theory and data, it is theory
that should necessarily lose. Second, I don’t think that ecologists are
in the business of rejecting theories. “Ecologists, like many others,
do not reject theories for the futile reason that they are wrong; theo-
ries are retained until better ones emerge” (Fagerstrom 1987). A very
good idea of how futile a rejectionist program can be is conveyed by
the book of Dennis Chitty (1996), Do Lemmings Commit Suicide?
There Chitty relates how a consistent application of the rejectionist
approach led him to reject all hypotheses that could be tested, leaving
him with the explanation that nobody could figure out how to test.
I think that we (ecologists) are, instead, in the business of deciding

which of the available alternative theories is the best, or “least wrong”
(I shall make this idea more precise later in this section). One thing
that any scientist has to come to terms with is that all our theories
are, in the final account, wrong (the alternative of not being wrong is
to become untestable, that is, nonscientific). The more explicitly we
formulate our theories (which, at least in the context of population
dynamics, means translating them into mathematical statements) the
more wrong they become, simply because our simple theories can
never capture all the complexity and detail of nature. So falsifying
theories is trivial: just collect detailed data about any aspect of the
theory, and you are certain to show that the theory is wrong. If you
have not, it simply means that you either collected too few data points
or did not measure them carefully enough.
If all our theories are a priori wrong, what can we do? Well, sci-

ence is still the search for truth, but any scientific truth that we find is
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both approximate and tentative. Approximate, because of the reasons
discussed in the paragraph above; tentative, because we have no guar-
antee that somebody smarter or possessing better data and analytical
tools will not come up with a better “truth” sometime in the future.
Therefore, we should not be in the business of rejecting theories, as
ecological Popperians would have us do, but in the business of con-
trasting two or more theories with each other, using the data as an
arbiter. The corollary of this approach is that our best theory may
not explain or predict data very well, but we should still use it until
we have something better. Even the theory that explains only 10%
variation in the data is useful, because it sets a standard to be bettered.
In the rest of the section, I make this idea precise for the spe-

cific context of population dynamics. The basic notions are three:
(1) define very carefully what you are trying to explain; (2) translate
your verbal theories into explicit mathematical models (note the plural
here); and (3) use formal statistical methods to quantify the relative
ability of the rival models to predict data. Data may already be avail-
able, or they may be specifically collected to distinguish between pre-
dictions of the rival hypotheses (the latter constitutes an experiment).

1.2.1 Defining the Phenomenon to Be Explained

The broad question that I address in this book is, why do population
numbers change with time? Or, to put it more succinctly, “why do
populations behave as they do?” (Royama 1992:1). In any particu-
lar case study, this broad question can be broken into more specific
issues. First, are dynamics of the studied population characterized by
a stationary distribution of densities? (This is the issue of popula-
tion regulation.) If yes, there is some characteristic mean level around
which the population fluctuates, and fluctuations are characterized by
a certain (finite) variance. What ecological mechanisms are respon-
sible for setting this mean level? (This is the focus of population
statics.) What mechanisms set the amplitude of fluctuations? Finally,
are there detectable statistical periodicities, and what is the order and
trajectory stability characterizing dynamics?
At the most general level, the phenomenon to be explained is quan-

tified by a temporal record of population fluctuations, or time-series
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data. Time-series data are often available even before the beginning of
the formal inquiry into dynamics of a particular population (although
we often have to do with an index of population rather than an abso-
lute measure of population density; examples include fur returns, bag
records, and pheromone trap catches). If time-series data are not avail-
able, a systematic program for their collection should be initiated
immediately. (One should not worry too much about limited use-
fulness of short time series; after all, it may take many decades to
approach the solution, by which time time-series data will be long
enough to be useful!)
I will call the density measurements of the “focal species” (the

one whose dynamics we are trying to understand), �Nt�, the pri-
mary data.1 We may have time-series data on other aspects of sys-
tem dynamics available (e.g., temporal changes in mean body mass,
fluctuations in the availability of food, and densities of predators or
parasitoids). Such ancillary data may be extremely useful, but are
secondary in the sense that we do not require that our explanation
of the focal species dynamics would account for all of them. For
example, if we are studying a forest defoliator, then a model based
on plant quality does not need to explain why parasitism rates vary
(perhaps parasitoids are simply responding to the oscillations of their
food supply, without a detectable feedback effect on defoliator den-
sities). Vice versa, a parasitism-based explanation does not need to
account for changes in plant quality. Of course, the model based on
a particular factor has to be consistent with time-series data for this
factor.
A focus on the primary data permits us to use the same met-

ric when comparing hypotheses based on very different factors. One
particular metric that I will use extensively is the coefficient of pre-
diction, R2pred (the proportion of variance in log-transformed density
explained by the hypothesis). However, this is not the only metric that
can be employed to quantitatively compare the performance of dif-
ferent hypotheses. Another approach is to first quantify the observed
dynamical pattern with probes such as the period and amplitude of
oscillations (and others, see section 6.2.2), and then to determine how
well rival models predict the numerical values of probes.

1Concepts emphasized in boldface type are defined in the glossary.
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Defining the problem the way I do here is not the only way to
study population cycles. One alternative way, as practiced by the
Canadian school (Chitty, Krebs, Boonstra, and others), is to define a
“cyclic syndrome,” which includes such features of dynamics as rapid
changes of population density, systematic variation in body weight
with the phase of the cycle, and perhaps certain changes in behav-
ior, such as aggressiveness versus “docility.” The problem with this
approach is twofold. First, the “cyclic syndrome” is often defined
without reference to whether population dynamics are characterized
by a periodicity or not. In the cases where population dynamics
are not periodic (or when there are no long-term data to determine
whether there is periodicity or not), we find ourselves in a situation
of studying a population “cycle” that is not a cycle by any formal
definition. The second problem is that by including in the defini-
tion changes in individual quality and behavior, the Canadians tilt
the field in favor of their favorite hypotheses. Suppose, for example,
that periodic dynamics in a particular rodent population are driven by
an interaction between rodents and their food supply. By measuring
such processes as food requirements of rodents and growth dynam-
ics of vegetation after being consumed, we may be able to construct
an empirically based model that would predict the cyclic changes in
rodent numbers (the primary data) very well. However, since we have
not explicitly dealt with the physiological or behavioral responses of
individuals to food scarcity or abundance, the model will say noth-
ing about systematic changes of body weights with the cycle phase.
Thus, the model will fail to explain the “cyclic syndrome.” We could,
of course, include such individual responses in the model. But this
would be done at the expense of complicating the model structure,
with the only yield an explanation of what really are side effects
of population cycles—that individuals would be of low weight and
fight more when food is scarce and population density is collapsing.
This argument suggests to me that we should give logical preemi-
nence to the primary data. I repeat that this does not mean that we
should ignore various kinds of ancillary data, but neither should we
necessarily aim at a theory that explains every bit of data collected
about the focal population.
Before leaving the subject of problem definition, I want to reit-

erate that in this book I focus exclusively on nonspatial aspects of
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population dynamics. I recognize that movement and spatial dynam-
ics are very important. However, one has to start somewhere, and
the magnitude of the task—disentangling the mechanistic causes of
temporal oscillations in any particular system—is already enormous.

1.2.2 Formalizing Hypotheses as Mathematical Models

Having defined the explanandum (what is to be explained), I now turn
to the explanans (the means of explanation). The question is, what
ecological mechanisms underlie temporal change in natural popula-
tions? This issue is at the core of the book.
But what do I mean by ecological mechanisms? I believe that the

most useful approach to understanding population dynamics is the
reductionist one. Thus, the mechanistic basis for population ecology
should be provided by the properties of entities one hierarchical level
lower than populations, that is, by the behavior and physiology of
individual organisms (Metz and Diekmann 1986; Caswell et al. 1997):
individual consumption, growth, and reproduction rates; the proba-
bilities of being killed by a predator or succumbing to a pathogen;
characteristics of individual movement; and so on. I believe that such
methodological individualism is a valid principle, but in practice it is
not always possible, nor desirable, to follow this reductionist program
to the logical extreme.
For example, when studying a predator-prey interaction, we need

not follow each individual predator while keeping track of its size,
sex, hunger level, spatial position, and so on. We might instead sum-
marize this wealth of information with just a few numbers, for exam-
ple, the number of predators in each size class at any given time,
or the density of predators in each patch, or even, most simply, the
density of all predators. The mapping here is “many to one,” because
many potential descriptions in individual terms will map to a single
number or set of numbers at the population level. Thus, an under-
standing of predator-prey dynamics may be approached in two steps.
In the first step, the investigator performs a careful study of the indi-
vidual predation process and attempts to summarize it with simple
relationships, such as the functional response curve. In the second
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step, functions summarizing behavior and physiology of individuals
serve as building blocks in a population dynamics model.
Ecological mechanisms, as used in this book, can refer both to

detailed descriptions of what individuals do and to functions sum-
marizing salient features of individual behaviors. I agree that it is
more satisfying to build fully mechanistic explanations of population
dynamics that are firmly based on what individuals do. However, it
is not necessary to do it in one step. The history of population ecol-
ogy shows that such concepts as “population density,” “functional
response,” and “density-dependent population growth rate” turn out to
be very useful conceptualizations for connecting population dynamics
to individual-based explanations. Thus, we should continue employ-
ing these concepts, while keeping in mind their limitations.
The next step is to decide how to connect specific ecological mech-

anisms to testable predictions. I will require that the answer take the
form of a fully specified model. The main reason for this requirement
is that translating each rival hypothesis into an explicit model will
allow us to perform quantitative cross-comparisons between differ-
ent hypotheses. In other words, we shall be able to say which model
explains the data better.
Constructing a fully specified model is done in three steps. First,

we choose the mathematical framework and, most important, the state
variables. Mathematical framework is often suggested by the biology
of the system. For example, if we are dealing with a forest defolia-
tor who has one generation a year, then we should probably use the
discrete (difference) equations. If, on the other hand, we deal with
a large ungulate population, in which the time step at which repro-
duction occurs (one year) is a small fraction of an average life span,
then a continuous differential equations framework provides a good
approximation (we might also consider adding seasonality explicitly
to the model).
State variables are typically determined by the verbal hypothesis

on which the model is based. For example, if we are modeling the
interplay between the individual quality and dynamics, then a minimal
model would have two state variables: population density and average
individual quality. If we think that taking an average of quality is
too restrictive, then we might explicitly model discrete quality classes
(e.g., the numbers of “poor”-quality and “high”-quality individuals).
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Alternatively, we might employ a partial differential equations frame-
work, and model variation in individual quality smoothly. The choices
of mathematical framework and state variables are not independent
of each other.
The second step is to choose functional forms. These are specific

functions that relate state variables and their rates of change to each
other. One example is the functional form of the self-limitation term—
we could choose to model it using the logistic model, or theta-logistic,
and so forth. Another example is the functional response: depending
on what we know about the modeled system, we may choose Type I,
II, III, or ratio dependence.
The third step is determine the values of parameters. Examples

are the intrinsic rate of population increase, the carrying capacity,
the searching rate, the handling time, and so forth. This task can
be accomplished in three basic ways. One is to use the information
about the natural history of organisms to deduce the parameter values
or, more likely, to deduce the interval where plausible values should
be found. The second approach of obtaining parameter values is by
fitting models to time-series data (see chapter 8). The disadvantage
of this method is that if we wish to use the time-series data to test
model predictions, such a test would not be as rigorous, since a degree
of circularity is involved. The third way is to design a short-term
experiment and directly measure the parameter. This is the best way,
but the most laborious one. A short-term experiment may also be
designed to measure a whole function, thus providing the empirical
foundation for the functional form choice.
These three steps take the model builder progressively from gen-

eral to specific issues. With each successive step the freedom of
choice (or the degree of arbitrariness) increases. The choice of state
variables is largely determined by the nature of the hypothesis and
the mathematical framework. For functional forms, we usually have
a greater latitude, but we usually are limited to discrete choices (e.g.,
should we use Type II or Type III functional response?). Of course,
one could use a qualitative approach; that is, instead of choosing
a specific function, one could just say that a function should be
monotonically increasing. Such approaches, however, are more use-
ful in building general theory (examples: Rosenzweig 1969; Oksanen
et al. 1981) than in the analyses of specific case studies (but see Ellner
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et al. 1998 for semimechanistic approaches). Finally, parameter val-
ues typically vary continuously, and are least constrained by a priori
considerations.
For all the above reasons, any single hypothesis can in principle be

translated into an infinite number of fully specified models, depending
on the choices we make at each stage. This means that rejecting a
specific model in favor of another model based on a rival hypothesis
may indeed indicate that the rival hypothesis is closer to the truth, but
it may also indicate that we did not use the correct functional form in
the first model, or perhaps misestimated a key parameter. This is not
a lethal problem, since all scientific knowledge is approximate and
tentative, but we should keep this caveat in mind.

1.2.3 Contrasting Models with Data

Once we have translated a set of competing hypotheses into models,
we are ready to start the process of reducing this set to fewer
(ideally, one) “winners.” For example, suppose we are trying to
understand why the population system we are studying exhibits a
periodic second-order oscillation (dynamical classes are explained
in chapter 5). The first basic test that each model has to pass
is the ability to generate the qualitative type of dynamics char-
acterizing the system, a periodic second-order oscillation in our
example. Some models simply cannot generate second-order cycles
(e.g., one-dimensional differential equation models cannot exhibit
cyclic behaviors no matter what functional forms and parameters
we use). We immediately eliminate such models, and by implication
the hypotheses on which they are based, from the set of plausible
explanations of the system’s dynamics. The elimination of the verbal
hypothesis is somewhat tentative, because it still may be possible
to translate the hypothesis into a model (perhaps using a different
mathematical framework) that would be able to generate the required
qualitative type of dynamics. In any case, no rejection is final ( just as
no confirmation is final). However, if we do our best and still cannot
translate the hypothesis into a model that generates cyclic dynamics,
then we shall succeed in throwing a very grave shadow of doubt on
the hypothesis. It will now be up to the advocates of the hypothesis
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(if there are such) to show that the hypothesis can be translated into
a model that generates cycles, and that this translation can be done
in a biologically reasonable way.
The next hurdle that each model in the set has to clear is the ability

to predict the correct type of dynamics for biologically reasonable
parameter values. Lacking good information, we may have to use a
wide range for plausible values of some parameters. In such cases,
the fact that the model passes this test does not count very heavily
in its favor. However, we may find (by numerical explorations) that
a certain parameter or parameters are critical for the ability of the
model to generate the right dynamics. This means that we have a
model prediction that may be tested with an experiment.
Once we are finished with these qualitative tests, we may find our-

selves in a situation that none of the models managed to pass them.
This means that we have to go back to the drawing board and exer-
cise our creativity again. No cut-and-dried guidelines for generating
new hypotheses exist (except, perhaps, Edison’s famous dictum about
10% inspiration and 90% perspiration), which is what makes science
interesting! Alternatively, there may be only one model still standing.
This is a rather happy outcome, since it means that we are essentially
done. Not everybody is likely to be satisfied with the conclusion, but
it is no longer sufficient simply to advance a verbal hypothesis as an
alternative explanation. Having a fully specified model that predicts
the correct qualitative dynamics with biologically plausible parameter
values substantially raises the stakes for any potential challenger—any
alternative hypothesis will have to do at least as well.
A more likely outcome is that two or more models will be able

to pass the qualitative tests. This means that we need to subject the
remaining hypotheses to quantitative and, ultimately, experimental
tests. The most rigorous and objective approach to quantitative test-
ing is to construct the fully specified models using only ancillary
data (ideally, by performing focused short-term experiments to quan-
tify functional forms and parameter values), and then use each model
to predict the primary data. Models can be compared by (1) how
well they predict actual population densities and (2) how well they
predict quantitative measures of population dynamics (the probes).
Additionally, (3) models must describe the dynamics of other vari-
ables on which they are based, and (4) their parameters and functional
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forms need to be consistent with what we know about the system
biology. Finally, (5) since a simpler explanation is always prefer-
able to a more complex one, models with fewer parameters are given
more weight than complicated models. Comparisons (1) and (2) can
be translated into a single metric, allowing us to establish a rank-
ing order for the models. Issue (5), although seemingly dependent
on investigator judgment, can actually also be incorporated into the
overall measure, using approaches based on information criteria, such
as AIC (Burnham and Anderson 1998). Issues (3) and (4), by con-
trast, are difficult to translate into a common quantitative metric. For
example, a parasitoid-host model for a forest defoliator may predict
parasitism rates better than a food quality model for the same sys-
tem predicts the changes in food quality. But this does not mean that
these are grounds on which to prefer the parasitism model. Perhaps
the food quality data are characterized by a higher measurement error.
Similarly, one model may be able to predict the dynamics best for a
rather marginal value of one of the parameters. But again, we have no
common metric to downgrade this model in relation to others. This
means that not everything can be formalized, and some aspects of
model performance will have to be left to the judgment of individual
ecologists.



CHAPTER 2

Population Dynamics

from First Principles

2.1 INTRODUCTION

Ecologists rarely discuss the philosophical foundations of research
into population dynamics. Foundational issues tend to work in the
background shaping inquiry, and are rarely hauled out into the day-
light to be closely examined (Cooper 2001). Several controversies in
population ecology can be traced to a misunderstanding or a disagree-
ment at the very basic level, for example, the density dependence
debate (section 5.4).

My goal in this chapter is to explicitly discuss the logical foun-
dations of population dynamics. The starting point is provided by a
set of “self-evident truths” or postulates, from which much of the
logical structure of the theory of population ecology can be derived.
I will use these postulates to construct several foundational principles
of ecological theory that we shall find particularly useful in explain-
ing population oscillations. Furthermore, I will argue that one of the
implications following from the principles is that there are three fun-
damental classes of population dynamics. This typology turns out to
be of great practical utility in studying dynamics of specific popula-
tions. In particular, it provides a basis for classifying (1) qualitative
kinds of dynamical behaviors and (2) the dynamical role of various
ecological mechanisms. Additionally, the typology provides (3) the
appropriate null hypotheses for testing ideas about population dynam-
ics. In sum, the foundational principles and dynamical classes together
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serve as a general framework for investigating complex population
dynamics.

Does Population Ecology Have “Laws”? Like many scientists who
are not physicists, ecologists are unable to resist unfavorable compar-
isons between their science and physics. Some argue that ecologists
do not think like physicists, and that is why there is little progress in
ecology (Murray 1992). Others reply that biologists should not think
like physicists, because of the nature of biological science (Quenette
and Gerard 1993; Aarsen 1997). On both sides of the debate, there
is a widespread belief that ecology is different from physics because
it lacks general laws, and is not a predictive (and, therefore, not a
“hard”) science. For example, Cherrett (1988) lamented that “there
is unease that we still do not have an equivalent to the Newtonian
Laws of Physics, or even a generally accepted classificatory frame-
work” (see Kingsland 1995:222–223 for a commentary). Even emi-
nent theoretical ecologists appear to subscribe to this view: ecology,
apparently, is different from physics because one of its distinguishing
features is the near absence of universal facts and theories (Rough-
garden 1998:xi). As to ecology’s ability to generate testable theories,
Aarsen (1997:177) thinks that “on this scale, ecology admittedly has
a weak record” (see also Weiner 1995). “Ecology was not and is not
a predictive science” (McIntosh 1985).

Much can be said to counter these arguments. For one, I doubt that
many ecologists truly suffer from physics envy (as opposed to using it
as a rhetorical technique to motivate colleagues to do better science).
The ones I know would much rather chase butterflies in the field than
become the one-hundredth member of a supercyclophasotron team!
I also think that population dynamics is a much more exciting field,
being (as I hope to demonstrate in this book) on the brink of a major
synthesis, compared with high-energy particle physics, where most of
the excitement is in the past. Furthermore, physics is not a monolithic
science. In certain highly respectable fields, such as astrophysics,
manipulative experiments are impossible. Does it mean that there is
no progress in astrophysics? The number of articles on astrophysics
in Science or Nature seems to belie that claim. Finally, it is a gross
exaggeration to claim that physics is a predictive science in all its
branches. Physicists assure us, on one hand, that they have a complete
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understanding of the laws of fluid dynamics that govern atmospheric
movements. On the other hand, neither they nor anybody else can
accurately predict weather more than five to seven days in advance.

I could go on, but I do not think that trying to counter each charge
of the critics is necessary. A more productive approach is simply
to do population ecology and eventually show that it is a vigorous,
theoretical, and, yes, predictive science. I submit the synthesis part
of this book (chapters 9–14) as evidence that population ecology is
a mature science in this sense. Furthermore, I think that population
dynamics has a set of foundational principles that are very similar, in
spirit and in logic, to Newton’s laws. Accordingly, my second agenda
for this chapter is to highlight the similarities between the logical
foundations of population dynamics and Newtonian mechanics.

The Concept of Population The final task I need to address in this
introduction is the definition of population, since that is the central
object of study in population dynamics. Following Berryman (2001;
see also Camus and Lima 2001), I define population1 as a group of
individuals of the same species that live together in an area of suffi-
cient size to permit normal dispersal and migration behavior, and in
which population changes are largely determined by birth and death
processes. Groups of organisms living in smaller regions become
local populations, whose dynamics are strongly affected by disper-
sal and migration (Berryman 2001). Because I cannot address spa-
tial issues in this book, its central focus must be on global rather
than local populations, that is, on populations for whom emigra-
tion/immigration terms can be neglected without a serious loss of
predictability.

2.2 EXPONENTIAL GROWTH

Practically all textbooks start exposition of population ecology with
the exponential law of population growth (Malthus 1798). The
exponential law is a good candidate for the first principle of popu-
lation dynamics (Ginzburg 1986; see also Brown 1997; Berryman

1Boldface type indicates terms whose definitions are in the glossary.
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1999). Before discussing why exponential growth may qualify as a
law, let us briefly review the logic underlying its derivation.

2.2.1 Derivation of the Exponential Model

I begin with two postulates. Postulate 1 states that the number of
organisms in a population can change only as a result of births, deaths,
immigrations, and emigrations. If we use an area of sufficient size in
the definition of population, then we can approximately set immigra-
tion and emigration terms to zero, so that the number of organisms
would change only as a result of births and deaths.

Postulate 2 states that population mechanisms are individual-based.
That is, all population processes affecting population change (births,
deaths, movements) are a result of what happens to individuals. Thus,
the expected number of new individuals appearing in a population per
unit of time is obtained by summing the offspring produced by each
adult in the population. Similarly, the rate at which population num-
bers are decreased is a summary result of the probabilities that any
individual would die during the time interval. This postulate reflects
the principle of methodological individualism, which provides the
philosophical basis for the reductionist agenda in studying population
dynamics (section 1.2.2).

From these two postulates, we can derive the first foundational
principle of population dynamics, which states that a population will
grow (or decline) exponentially as long as the environment experi-
enced by all individuals in the population remains constant. Environ-
ment here refers to all environmental influences affecting vital rates
of individuals: abiotic factors, the degree of interspecific crowding,
and densities of all other species in the community that could interact
with the focal species.

The derivation of the exponential law for the case when all individ-
uals in the population are absolutely identical (in particular, there is
no age, sex, size, or genetic structure) and reproduce continuously is
very simple. We start by expressing population change as the balance
between births and deaths (postulate 1), and then change to per capita
rates using postulate 2:

dN

dt
= B −D = bN − dN = �b − d�N = r0N (2.1)
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where B and D are the total birth and death rates, b and d are the
per capita rates, N is the total number of individuals in the popula-
tion, and r0 is the per capita rate of population change. There are no
immigration/emigration terms, because I assumed that the population
is closed. I have also glossed over the fact that individuals typically
come in discrete packages, while N is a continuous variable. This
is not a serious problem, since we can think of N as the expected
number of individuals per unit of area in the population at time t.
(Another approach is to think of N as biomass.)

This elementary derivation readily generalizes to more realistic
settings:

1. For semelparous organisms (such as annual grasses or
insects) we obtain the discrete form of the exponential law:
Nt+1 = 
Nt .

2. Adding age or stage structure is also relatively straightforward.
However, we now have to wait awhile for the population
to achieve a stable age distribution, after which all age
classes (as well as total number of individuals) begin to
grow according to the exponential law.

3. The general pattern of growth is still exponential when we
consider finite populations and add demographic stochasticity.
For example, Bartlett (1966) shows that the expected
population size in a stochastic birth process is N�t�=
N�0� exp�r0t�, same as in the deterministic model. It is also
possible to calculate the probability distribution of N�t�,
including variance. The stochastic framework provides a
natural way of handling discrete individuals. However, there
is a caveat: when the number of individuals in a population
becomes very low, we can observe deviations from the
exponential law (Lande 1998).

4. The environment does not have to be constant. If the
environment varies in such a way that the per capita rates
b and d have stationary probability distributions, then we
obtain a model of stochastic exponential growth/decline
(Maynard Smith 1974:14–15). The expected population
density is again N�t� = N�0� exp�r0t�.

5. Finally, adding space and diffusive movements leads to
a simple partial differential equation model, analyzed by
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Fisher (1937) and Skellam (1951). In this model, the total
number of individuals continues to grow exponentially, even
as they diffuse out from the initial center.

In short, as long as the environmental influences do not change
in a systematic manner, we end up with one or another version of
the exponential law. In fact, we can formulate it even more generally
by substituting “stationary environment” for “constant environment”
in the definition given above. The exponential law is a very robust
statement.

2.2.2 Comparison with the Law of Inertia

But is it a law? Let us consider the nature of something about which
there is no argument regarding whether it is a law—Newton’s first
law. Here is a very clear explanation, which incidentally comes from
a persistent critic of theoretical population ecology:

In their survey of the development of the concepts of physics,
Einstein and Infeld (1938) begin with the discovery by Galileo
and Newton of a new way of thought, “scientific reasoning.” The
important lesson in this new thinking was that “intuitive conclu-
sions based on immediate observations are not always trusted for
they sometimes lead to the wrong clews.” Fundamental problems,
such as the motion of bodies, are often obscured by their com-
plexity. For example, if we give a cart a push, it will move some
distance before stopping. If we give it a bigger push, it will move
farther before stopping. The intuitive interpretation is that of Aris-
totle, a “moving body comes to a standstill when the force which
pushes it along can no longer so act as to push it.”
Today we all “know” that Aristotle’s concept is false. We can all

recite Newton’s law of inertia. “Every body continues in its state
of rest, or of uniform motion in a right [= straight] line, unless
it is compelled to change that state by forces impressed upon it”
(Newton 1729). But, how did Newton achieve this insight?
Einstein and Infeld (1938) return to the motion of the cart. If

we give it a push, it will move a certain distance and stop. Sup-
pose we oil the wheels and smooth the road? If we give the cart



2.2 EXPONENTIAL GROWTH 23

the same push, it will move farther before stopping (because we
have reduced the forces tending to stop the cart). Suppose we now
remove all impediments to motion? If we give the cart any push
at all, it will move at a constant speed in a straight line and never
stop. But, we cannot do this experiment. We can only think it.
As Einstein and Infeld (1938) state, “this law of inertia cannot be
derived directly from experiment, but only by speculative thinking
consistent with observation. The idealized experiment can never be
actually performed, although it leads to a profound understanding
of real experiments.” The law allowed Newton to predict how far
an apple would fall each second of free-fall near the earth’s sur-
face, the elliptical shape of planetary orbits, the flattening of the
poles, and much else (Murray 1992:594).

of the system in the absence of any “influences” acting on it. The
law of inertia says how a body will move in the absence of forces
acting on it. The exponential law specifies how population numbers
will change in the absence of systematic changes in the environment.
Second, the action of both laws is obscured by complexities char-

acterizing real-life motions of bodies or population fluctuations. As a
result, neither statement can be subjected to a direct empirical test.
Just as we cannot observe a body on which no forces are acting,
we cannot observe a population growing exponentially indefinitely.
Inevitably, as a result of population growth, individuals will begin
experiencing a higher degree of crowding, start running out of food,
and suffer greater predation or disease. Thus, both laws have to be
arrived at by speculative thinking, and only their consequences can
be empirically tested.
Third, both statements are in some sense self-evident (at least, in

retrospect!), so there is a suspicion that they are trivial, or tautological
in some sense. However, we can also imagine an alternative universe
in which different versions of first laws of population dynamics and
classical mechanics would hold. The alternative to the law of inertia
is Aristotle’s concept, discussed by Murray in the quotation above.
In fact, in pre-Galileo and Newton days, Aristotle’s “first law” was
widely believed.

The similarity between the exponential law and the law of inertia
is striking (Ginzburg 1986). First, both statements specify the state
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Similarly, in pre-Pasteur days, many biologists believed that life
could spontaneously generate from nonliving matter. During the Mid-
dle Ages it was thought that mice and flies spontaneously generated
from dirty laundry and refuse, and that frogs fell from the skies with
rain. If spontaneous generation were possible, then population dynam-
ics theory would be completely different (just as classical dynamics
based on Aristotle’s first law would be a completely different science).
In particular, the equivalent of equation (2.1) would be

dN

dt
= S + B −D = S + bN − dN = S + r0N (2.2)

All notation is as in equation (2.1) except S, which is a constant
rate of spontaneous generation. For N near 0, equation (2.2) can be
approximated as

dN

dt
≈ S� which solves to N�t� = N�0�+ St (2.3)

In other words, when population density is small, population will
grow linearly with time. In contrast, population growing according
to the exponential law exhibits a nonlinear, accelerating pattern of
growth. Actually, equation (2.2) is not quite as ridiculous as it sounds.
It can be used to model population dynamics in a sink habitat, domi-
nated by immigration from some source habitat (S, then, would repre-
sent a constant flow of immigrants). Additionally, the plant regrowth
equation in certain plant-herbivore models (see section 4.4.2) has the
same relationship to equation (2.3) that the logistic has to the expo-
nential. We shall see that regrowth is a strongly stabilizing feature in
herbivory models, which allows us to conjecture that in the alternative
universe where spontaneous generation occurs routinely, we would
have much more stable population dynamics!

The fourth way in which the two “first laws” are similar is that
they provide the basis for building predictive theories for population
dynamics and for classical mechanics. Just as Newton was able to
predict how far an apple would fall by using the law of inertia (plus
several other laws, to be sure), population ecologists use the expo-
nential law as the basis for modeling populations. This can be seen
by rewriting equation (2.2) slightly, and making the per capita rate of
population change a function of “all sorts of things”:

dN

N dt
≡ r�t� = f �N � weather, food, predators, etc.� (2.4)
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Practically all population dynamics models have this form (or an
equivalent if we use some other mathematical framework than ordi-
nary differential equations). In fact, the exponential law is most prof-
itably thought of as the null state in which any population would be if
no forces (= environmental changes) were acting on it. It is a direct
equivalent of the law of inertia, and is used in the same way, as a
starting point to which all kinds of complications are added. Thus,
the starting point in the analysis of time-series data is the discrete
version of (2.4):

rt ≡ ln
Nt

Nt−1

= f
(
Nt−1� Nt−2� � � � � U

1
t � U

2
t � � � � � �t

)
(2.5)

where rt is the realized per capita rate of change and Nt is the density
at time t. The lagged densities Nt−1� Nt−2� � � � represent endogenous
feedbacks, U i

t are known (measured) exogenous influences, and �t
represents the unknown exogenous influences modeled as a random
variable (section 7.2.1).

2.2.3 “Laws”: Postulates, Theorems,
Empirical Generalizations?

Note that up to now I have avoided defining just what exactly I mean
by “law.” I did this on purpose, because I wanted to avoid definitional
wrangles. Instead, I adopted the approach of arguing by analogy with
the law of inertia from classical mechanics. At this point, however,
it is becoming clear that we have to think more carefully about the
logical status of various “lawlike” statements. In particular, perhaps
we should distinguish between elementary propositions that are taken
without proof (postulates or axioms) and statements derived from a
set of these postulates (theorems). Note, however, that this distinction
is not absolute. For example, we can take exponential growth as a
postulate. On the other hand, we can also derive it from more ele-
mentary principles (my postulates 1 and 2). In the second approach
(which I favor), exponential growth is a theorem.

We may, therefore, have several kinds of lawlike statements in pop-
ulation ecology. Some have the logical status of axioms, and others
theorems. Yet a third kind is an “empirical law” that arises as a gener-
alization from some body of facts (e.g., many allometric laws, such as
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the relationship between body size and population cycle period; see
Calder 1983). My preference is to reserve the label “law” for those
foundational principles that guide theory building in population ecol-
ogy. Laws, thus, provide the hard core of a research program (using
Lakatosian terms). Therefore, a law, in the sense that I use, does
not need to be directly substantiated by empirical tests (just as the
law of inertia cannot be directly tested). Instead, we make judgments
whether the whole research program is fruitful, or not. I shall return
to this idea in section 2.6, but first let us consider whether there may
be other foundational principles in population dynamics, in addition
to the exponential law.

2.3 SELF-LIMITATION

2.3.1 Upper and Lower Density Bounds

One cannot predict the motion of planets with just the law of inertia.
Similarly, we need more principles in addition to the exponential law
to predict population dynamics, so that we can eventually subject the
whole framework to empirical tests. The second foundational princi-
ple that I would like to propose is a formalization of the notion that
population growth cannot go forever.

The notion of some upper bound beyond which population density
cannot increase seems uncontroversial. There must be some absolute
upper bound on density, simply because one can physically cram only
so many organisms into a unit of area. Let us call the existence of
an upper density bound postulate 3. The problem with this postu-
late is that it is not very useful in practical applications, because few
organisms ever attain this upper limit in population density by com-
pletely filling their physical space. Thus, we shall need to come up
with a better formalization of the notion of self-limitation (in the next
section).

In contrast to the absolute upper bound, there could be no such
hard lower bound, as some consideration of the issue shows. Most
obviously, populations and whole species have been known to go
extinct. It is true that on the ecologically relevant time scale the
vast majority of species do not go extinct routinely, because at some
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low population density the rate of population growth becomes posi-
tive. However, we must qualify this statement with several important
caveats. First, a population may need to spend some time at low den-
sity before ecological mechanisms acting with a delay would relax
their downward pressure on the rate of population growth. Second,
at extremely low densities, population growth may be negative as a
result of an Allee effect. Thus, a population fluctuating around the
mean level �N may be prevented from extinction by positive growth
rates around the N+ � �N level, which typically provides a lower
bound on population fluctuations. However, should the population
decrease below another threshold, N− � N+, where the growth rate
becomes negative due to an Allee effect, then it would go extinct.
Third, in a stochastic world it is not enough for persistence that the
population growth rate is positive; it has to be positive enough to
counteract the detrimental effect of environmental stochasticity (see
Lande 1998; Holsinger 2000). Finally, individuals come in discrete
packages. Models based on discrete-valued population state variables
generally have an unhelpful property that eventual extinction occurs
with probability 1 (Chesson 1981).

In short, I would argue that the notion of a lower limit on popula-
tion fluctuations is not as obvious as one might think. Thus, it is not
surprising that a very sophisticated mathematical apparatus is needed
to handle it rigorously (Chesson 1978, 1982). Given these complexi-
ties, I feel that at this point in time it would be premature to attempt to
codify the notion of a lower bound with some general principle. For-
tunately, this issue is more important in conservation ecology, where
the concern is with populations that are prone to extinction. For the
main subject of this book, species that exhibit sustained oscillations,
we can largely ignore these complications.

2.3.2 Formalizing the Notion of Self-Limitation

One way to formalize the notion of population self-limitation is to tie
it to an upper density bound. Thus, we may require the rate of pop-
ulation change to become negative above some (possibly very high)
density threshold: r�t� < 0 if N > Nupper, where the per capita rate
of change r�t� ≡ dN/�Ndt�. The problem with this approach is that
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the value of Nupper is likely to change with time depending on envi-
ronmental conditions, such as resource or natural enemy abundances.
For example, individuals may defend smaller territories when food is
abundant, and larger territories when it is scarce. It is desirable to sep-
arate the effects of self-limitation, understood as direct (or undelayed)
density dependence, from population feedbacks involving time lags,
such as depletion of food (when food is a slow dynamical variable),
or increase in specialist natural enemies.

The alternative approach, thus, is to require that the partial deriva-
tive of r�t� with respect to N is negative

�r�t�

�N
< 0 for N > �N (2.6)

The biological meaning of this statement is that as we vary N , while
keeping all other variables that affect r�t� constant, increasing N leads
to a decrease in r�t�, while decreasing N increases r�t�. In the exam-
ple above of territories varying with food availability, we fix food
density and then consider how increasing density will affect the per
capita growth rate. Clearly, as N becomes large enough so that there
are not enough territories for all individuals, r�t� will decrease, and
so equation (2.6) holds. We now also see why we have to hedge (2.6)
with a condition that it should hold only for high enough densities.
It is conceivable that r�t� will not change with N when N is low.
In fact, any relationship between r�t� and N at low N is possible:
negative if effects of density “percolate” all the way down to N = 0,
positive if we have Allee effects, or none if density has to reach some
high value before density-dependent effects begin operating. What is
important for self-limitation is that there is a negative relationship
between r�t� and N at higher population densities, for N > �N , where
�N is related to some average level of density. To be maximally spe-
cific, let us define �N as the long-term mean density. Now that we
have a mathematical statement of this requirement—I will call it pos-
tulate 3—it is easy enough to check whether any particular ecological
model includes self-limitation or not. We simply rewrite the equation
for the focal species in per capita form, differentiate the right-hand
side with respect to N , and check whether it is negative for N greater
than the long-term mean density.
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2.3.3 The Logistic Model

The existence of upper and lower bounds on population density, with
all the caveats discussed above, clearly implies that most popula-
tions are in some sense regulated, and that the rate of population
change must be density dependent (section 5.4). The simplest differ-
ential model of density-dependent population growth is the logistic
equation, formulated by Verhulst in the nineteenth century, and pro-
moted by Raymond Pearl during the 1920s (Pearl and Reed 1920; see
Kingsland 1995 for the history of the ensuing debate).

There are two ways to view the logistic model: (1) the formulation
as a differential model, and (2) the solution of the model, the infa-
mous S-shaped curve. It was a great mistake, in my opinion, for Pearl
to focus exclusively on the solution, rather than on the more mech-
anistic formulation as a differential equation. The S-shaped curve is
the solution of the logistic for a rather special set of initial conditions,
namely, when N�0� is very small. Starting with an initial condition
near the equilibrium, k, or above it, results in a J-shaped curve. Since
most natural populations fluctuate within some typical bounds, we
shall see an (even approximately) S-shaped trajectory only after a
catastrophic decline, or after an invasion into a new habitat.

To make matters worse, when confronted with deviations from the
symmetric S-shaped curve in applications, Pearl and Reed chose to
modify the logistic curve in a completely phenomenological manner.
In particular, using the logistic solution as the starting point,

N�t� = k

1+ beat

they simply added extra terms to the exponent:

N�t� = k

1+ bea1t+a2t
2+···+ant

n

(Kingsland 1995:70). In my opinion, they would have done much
better were they to focus on the differential form—the dynamical
rule underlying population change. The failings of the logistic model
are well known: it assumes linear relationship between the realized
per capita rate of population change and density, and there are no
explicit consideration of effects of noise and, most important, no lags.
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However, the diagnosis of these problems can be turned around as a
prescription on how to modify the logistic equation in any specific
case study. Thus, allowing for nonlinearities in density dependence
results in an asymmetric pattern of growth. Adding noise changes the
nature of the equilibrium from a stable point to a stationary distri-
bution. Finally, time lags allow density to overshoot the equilibrium,
potentially leading to cycles and chaos (e.g., in the discrete versions,
such as the Ricker model).

My conclusion, therefore, is that the logistic model is a useful start-
ing point for modeling density-dependent population dynamics. Its
primary value is not in the specific equation but in the general frame-
work it provides, both for including realistic features of single-species
dynamics and for inclusion into models of multispecies interactions.

2.4 CONSUMER-RESOURCE OSCILLATIONS

Ecologists distinguish five general classes of pairwise species inter-
actions, classified by the positive �+�, negative �−�, or no (0) effect
of species on each other: interference competition �−�−�, mutual-
ism �+�+�, commensalism �+� 0�, amensalism �−� 0�, and trophic
�+�−�. Note that I consider the exploitative kind of interspecific
competition as not a binary interaction but one that requires at least
three species: two consumers and one resource. Although resource-
consumer, or trophic, interaction is only one of five types, population
ecologists have devoted a massive share of their attention to studying
trophic interactions. This is not to say that other interactions, such
as mutualisms, are unimportant. But unlike the trophic interactions,
they do not seem to be of universal importance: mutualism could be
the most important interaction in some specific population systems,
but all organisms are consumers of something, and most are also
a resource to some other species. Furthermore, the current state of
empirical evidence suggests that population oscillations are primarily
driven by trophic mechanisms (section 15.1). Thus, we need a thor-
ough understanding of the logical foundations of consumer-resource
models.
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2.4.1 Three More Postulates

I propose that we need at least three postulates to begin develop-
ing general models of trophic interactions. Postulate 4, mass action,
states that at low resource densities the number of resource individu-
als encountered and captured by a single consumer is proportional to
resource density. In mathematical terms,

the capture rate = aN as N → 0 (2.7)

where N is the population density of resources and a a constant
of proportionality. This principle in an ecological setting was first
formulated by Vito Volterra, who used it in his derivation of the
Lotka-Volterra predator-prey model (although Volterra did not stress
the important qualification that N needs to be low for the linear rela-
tionship to hold). In the modern ecological jargon, relationship (2.7)
is called the linear functional response.

Postulate 5, biomass conversion, states that the amount of energy
that an individual consumer can derive from captured resource, to
be used for growth, maintenance, and reproduction, is a function of
the amount of captured biomass (Maynard Smith 1974; Getz 1991;
Ginzburg 1998). Most predator-prey models in ecology use a spe-
cial case of this postulate: consumers will assimilate a constant pro-
portion of energy in the resource biomass they capture. It is clear,
however, that this version of the principle lacks generality, since noth-
ing prevents consumers from eating a variable proportion of cap-
tured resource biomass. In fact, many predators indulge in what is
known as “surplus killing,” so we in fact would expect that at high
resource density the proportion consumed would decrease. Thus, a
most general version of postulate 5 should be prohibitive in nature
(as are many laws of physics, including the law of energy conserva-
tion, which clearly underlies postulate 5): a consumer cannot derive
more energy from captured resource than the energy contained in the
resource multiplied by a maximum conversion rate characterizing the
consumer species.

The last postulate that I would like to propose is complementary
to postulate 4. Postulate 6, maximum consumption rate, states that no
matter how high the resource density is, an individual consumer can
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ingest resource biomass no faster than some upper limit imposed by
its physiology (e.g., the size of its gut and the speed with which food
can be passed through the gut). Similarly, there is a maximum repro-
duction rate characterizing different species. Let us call this postu-
late 6′ (maximum reproduction rate). This proposition may be thought
of as a consequence of postulate 6, since a maximum rate of energy
acquisition imposes a limit on maximum reproduction rate, although
in practice the latter may be prevented by other mechanisms from
reaching the energetically imposed maximum.

Postulates 4 and 6 specify the functional form of the relationship
between resource density and the rate of consumption at two ends of
the scale: very low N and very high N . Connecting the two limiting
cases by a smooth curve, we obtain the familiar hyperbolic functional
response (or Type II) curve (figure 2.1). This functional relationship
is one of the best-supported generalizations in population ecology.
Essentially whenever there is a situation in which a single consumer
is foraging without interference for a single type of resource, its con-
sumption rate will have the shape depicted in figure 2.1. Holling
(1965) thought that hyperbolic functional response would character-
ize only invertebrate predators, while vertebrates would exhibit an
S-shaped (Type III) response. However, it is now clear that the hyper-
bolic functional response is a characteristic of specialist predators,
whether invertebrate or vertebrate. (The functional responses char-
acterizing generalist predators will be considered in section 4.2.4).
Hyperbolic functional responses are a general feature of all kinds of
consumers, not only predators (narrowly understood). Thus, arthropod
parasitoids exhibit hyperbolic responses (Hassell 1978). The ingestion
rate of herbivores is related to the forage biomass density by a hyper-
bolic curve (Spalinger and Hobbs 1992). The relationship between
consumption rate and resource density becomes complicated when
there is more than one kind of resource, when consumers interfere
with each other, and when resources are highly clumped.

The clear logical foundations and generality of the hyperbolic
functional response make it a logical candidate for a general law
of population dynamics. Additionally, it is one of the most impor-
tant ingredients in population ecological models. For these reasons, it
deserves to be added to the list of foundational principles.
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Figure 2.1. Constructing the hyperbolic functional response from postu-
lates 4 and 6.

2.4.2 The Lotka-Volterra Predation Model

Putting postulate 4 (linear functional response) and a simplified ver-
sion of postulate 5 (a constant proportion of prey biomass converted
into new predators) together with assumptions that resource and con-
sumer populations will grow or decline exponentially in the absence
of the other species, we have the Lotka-Volterra model (Lotka 1925;
Volterra 1926):

dN

dt
= r0N − aNP

dP

dt
=�aNP − �P

(2.8)

where N and P are population densities of resources and consumers,
r0 is the per capita rate of population growth of resources in the
absence of predators, � is the per capita rate of population decline of
consumers in the absence of resources, a is the constant of propor-
tionality from (2.7) (assuming that this relationship holds at all N ),
and � is the constant of proportionality relating the number of con-
sumed resources to the number of new predators produced per unit
of time.

The Lotka-Volterra is not a very realistic model for real resource-
consumer systems. To my knowledge, there has been no successful
application of it to any field or laboratory population system. But this
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is all beside the point, because the Lotka-Volterra model seems to get
at some extremely basic feature of trophic interactions: their inherent
proneness to oscillation. In fact, the Lotka-Volterra model predicts a
rather special kind of oscillation that has no fixed amplitude. Such
dynamics, in which the amplitude of oscillation depends on initial
conditions, and does not either decrease or increase with time (unless
perturbed by an external force), are called neutral oscillations.

Let us rewrite model (2.8) using per capita growth rates (remem-
ber, this is the right thing to do, because it is what the first law of
population dynamics tells us):

dN

N dt
= r0 − aP

dP

P dt
=−�+ �aN

(2.9)

Model (2.9) has one extremely interesting feature: the per capita rate
of each species depends only on the density of the other species. For
example, N does not appear on the right-hand side of the resource
equation. Thus, there is no direct population feedback to resource
density, although there is, of course, an indirect connection (since
increase in prey density will eventually cause the predator to increase,
which will in turn have a negative effect on prey per capita rate
of change). Similarly, consumer dynamics depend directly only on
resource density. A system in which per capita rates of change of both
resource and consumer do not depend on their own density is a pure
resource-consumer system. Also note that the right-hand sides in
model (2.9) are linear functions. Thus, the Lotka-Volterra model is the
simplest possible formulation of a pure resource-consumer system.

Two features of model (2.9), that it is a pure resource-consumer
system, and that its dynamics are oscillatory, are clearly connected.
This observation suggests that the Lotka-Volterra model has identi-
fied for us an important general principle, which may deserve the
status of a law of population dynamics. Here is how I would formu-
late this consumer-resource oscillations principle: a pure resource-
consumer system will inevitably exhibit unstable oscillations. By
“unstable oscillations” I understand population oscillations that do
not converge to a point equilibrium. Either they can be neutral, as in
the Lotka-Volterra model, or they may actually diverge, getting away
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from the point equilibrium with each cycle, as in the Nicholson-Bailey
model.

Does this statement depend on details of the Lotka-Volterra model?
In particular, model (2.9) assumes that the right-hand sides are linear
functions. However, the local stability of nonlinear generalizations of
the Lotka-Volterra model will be determined by the stability of the
linearized version. As long as the linearized version has the same
signs in front of its coefficients (and lacks direct population feedbacks
in both equations), we should obtain neutrally stable oscillations. (Of
course, what happens when the oscillation gets away from the equi-
librium will depend on the nonlinearities.) Interestingly, this is the
argument by which Lotka accomplished his derivation of the Lotka-
Volterra model. Unlike Volterra, who started by considering a specific
mechanism of predators encountering prey, Lotka first wrote predator-
prey equations in general form. He then considered the linearization
of the general equations that leads to model (2.9).

We also need to check on how the general insight from model (2.9)
depends on its mathematical formulation as a system of ordinary dif-
ferential equations. One alternative framework is discrete difference
equations. May (1973a) considered a discrete version of the Lotka-
Volterra model, and showed that it is characterized by diverging oscil-
lations for all values of parameters. The oscillations are not neutral,
as in the continuous variant, because discretization introduces a lag in
the responses of predators and prey to each other’s densities, and lags
are an inherently destabilizing feature in any model. By making the
time step increasingly smaller, we can make the oscillations to diverge
very slowly, and in the limit, when the time step is 0, we recover
the neutral stability of the Lotka-Volterra model. May (1973a) further
showed that the Nicholson-Bailey parasitoid-host model is equivalent
in its stability properties to the discrete Lotka-Volterra model (despite
different functional forms used by Nicholson and Bailey). In sum-
mary, it appears that the tendency of pure consumer-resource systems
to show unstable oscillations does not depend sensitively on the spe-
cific assumptions of the Lotka-Volterra model.

There may be two objections to my proposal of consumer-resource
oscillations as a general law of population dynamics. First, we know
very well from experience that not all (and perhaps a minority)
of real-life consumer-resource systems show persistent oscillations.
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This objection, however, misunderstands the nature of a general law.
Like the law of exponential growth, the law of consumer-resource
oscillations is not meant to be tested directly. In real life, we never
expect to encounter pure resource-consumer systems. Necessarily,
the per capita growth rate of both resource and consumer populations
would be affected by their densities (as postulate 3 tells us). Fur-
thermore, there will be other species in the community. Consumers
may be generalists. Resources may not be killed during the process
of consumption, but only lose a part. There are refuges, spatial
and temporal heterogeneity, and many other potentially stabilizing
mechanisms known to ecologists. What the third law says, however,
is that there is an inherent tendency for specialist consumer-resource
systems to oscillate. This “signal” may or may not come through the
“noise” of real-life complications.

2.5 PROCESS ORDER

In sections 2.2–2.4 I argued that the exponential, logistic, and Lotka-
Volterra predation models illustrate three foundational concepts of
population dynamics: exponential population growth, self-limitation,
and trophic oscillations. The three elementary models are very simple,
and usually we need to add various realistic features to use them in
real-life applications. Yet, because of their simplicity, they lay bare
some of the fundamental features of population dynamics, which we
can capture with the concept of process order.

Order in Differential Models Consider the general form of the three
models (table 2.1). Taking the Lotka-Volterra model first, note that the
per capita rate of population change, r�t�, depends on N indirectly,
via some other dynamical variable, X (which in this case happens
to be predator density, P ). Thus, in order to describe the dynam-
ics of this system fully, we need two equations, one for the rate of
change of each state variable (N and P ). Two-equation models such
as the Lotka-Volterra are sometimes called second-order dynamical
processes. In the logistic, by contrast, r�t� depends only on N , lead-
ing to a one-dimensional system, or a first-order process. Finally, in
the exponential model, the per capita rate of population change, r�t�,
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Table 2.1. The concept of process order as illustrated by the three
elementary models. r�t� ≡ dN/�N dt�

Model Equations General Form Order

Exponential dN/dt = r0N r�t� = r0 Zero

Logistic dN/dt = r0N�1− N/k� r�t� = f �N� First

Lotka-Volterra
dN/dt = r0N − aNP
dP/dt = −dP + �aNP

r�t� = f �X�
dX/dt = g�N�

Second

does not depend on N , and therefore, by extension, I will call this
type of models a zero-order process.

Dynamical systems of different order are characterized by funda-
mentally different kinds of behaviors. Zero-order systems can only
exhibit nonstationary behaviors—they tend to either increase to infin-
ity or decline to zero. First-order systems, by contrast, are capable of
stable equilibria, because they are characterized by population feed-
backs. Finally, second-order systems add the ability to exhibit cycles
to the spectrum of dynamical behaviors. However, such a strict map-
ping of process order to the qualitative type of dynamics occurs only
in models formulated as ordinary differential equations. We need to
make sure that the concept of order generalizes well enough to be
useful to other mathematical frameworks. Thus, let us consider how
we can define process order in the framework of difference equations.

Order in Difference Equations The concept of order extends natu-
rally to discrete-time population models. Note that in difference equa-
tions the per capita rate of population change rt ≡ lnNt/Nt−1. For
the discrete exponential model rt is a constant, and therefore this
model has order zero. First-order models have the general form rt =
f �Nt−1�. An example of a first-order model in ecology is the Ricker
equation:

Nt = Nt−1 exp�r0�1− Nt−1/k��

A second-order model has the following general form:

Nt = F �Nt−1� Xt−1�

Xt =G�Nt−1� Xt−1�
(2.10)
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where Xt is some other state variable. An example of a second-order
ecological model is the Nicholson-Bailey model:

Nt =
Nt−1 exp�−aPt−1�

Pt =Nt−1�1− exp�−aPt−1��
(2.11)

Here Xt ≡ Pt stands for parasitoid density.
The general model (2.10) that involves two state variables that

depend only on their first lags can be transformed into a model with
a single variable and multiple lags, such as

Nt = f �Nt−1� Nt−2� (2.12)

For example, solving for Pt−1 in the first equation of the Nicholson-
Bailey model (2.11), substituting it into the second equation, and
rearranging terms, we have

Nt = 
Nt−1 exp
[
a



Nt−1 − aNt−2

]
(2.13)

or, equivalently,

rt = ln 
+ a



Nt−1 − aNt−2 (2.14)

In general, we should not expect to get closed-form expressions such
as (2.13)—this “trick” works only in the simplest cases, to which the
Nicholson-Bailey model belongs. We can see that it is a very simple
model, because it actually implies a linear relationship between rt and
lagged densities. Furthermore, sometimes we will need more than two
lags to represent a system with two state variables (more on this later
in this section).

Finally, it is easy to do the reverse procedure, that is, to translate a
model involving a single variable with multiple lags into a model of
multiple variables with single lags. For example, taking model (2.12),
let us equate Nt−2 with Xt−1 (and, therefore, Xt ≡ Nt−1). Then we can
write an equivalent model,

Nt = f �Nt−1� Xt−1�

Xt =Nt−1

(2.15)

which has the same form as model (2.10).
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To summarize, the notion of order for discrete systems generalizes
as follows:

rt = r0 zero-order dynamics

rt = f1�Nt−1� first-order dynamics (2.16)

rt = f2�Nt−1� Nt−2� second-order dynamics (2.17)

Qualitative dynamics of discrete systems are in many ways sim-
ilar to those of continuous systems. Thus, zero-order processes in
both frameworks are capable only of nonstationary behaviors. Second-
order discrete models are capable of producing “smooth” cycles, in
which both the increase and decrease phase can take several time
steps, which is very similar to limit cycles in continuous second-
order systems. However, first-order systems in the discrete framework,
unlike analogous ODE (ordinary differential equation) models, are
capable of limit cycles, and even chaotic dynamics. Such first-order
oscillations, nevertheless, are fundamentally different from second-
order cycles. The typical period of first-order cycles is two, and thus
unstable trajectories produced by first-order systems look saw-shaped.
In contrast, periods of second-order cycles are typically longer. For
example, in the generic second-order model of Ginzburg and Taney-
hill (1994) the minimum period is 6 generations. Trajectories pro-
duced by second-order systems look much smoother.

First-order systems also can generate long periods. For example,
the Ricker model goes through a series of period-doubling bifurca-
tions. However, all resulting cycles of period 4, 8, and so on are
dominated by 2-year periodicity. Adding a little stochastic noise usu-
ally makes such cycles indistinguishable from a 2-cycle (with noise).
First-order systems can also generate 3-, 4-, and longer n-year cycles
by the following mechanism: it takes n − 1 years for the trajectory
to increase exponentially to the peak, and then collapse in one year
to a very low value, after which the cycle repeats itself. However,
such first-order cycles longer than 3 or 4 years are unusual, because
one has to “tune” parameters very finely to get them. And, unlike
second-order cycles, the population decline is accomplished in one
time step.
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Order in Other Mathematical Frameworks How well does the con-
cept of process order generalize to mathematical frameworks other
than differential and difference equations? First, consider models with
population structure, for example, age structure. Such models can be
framed either as partial differential equations or as matrix models.
These models have been particularly well understood for the linear
case, in which there are no population feedbacks. As is well known,
the typical behavior for such models is an exponential trend (increase
or decline), around which there are oscillations with a period of
roughly one generation. In other words, such models add another kind
of behavior, which we can call zero-order cycles (or, using more
established terminology, generation cycles). In density-independent
models, generation cycles are usually a transitory feature of dynam-
ics, because for most parameters and initial conditions the amplitude
of generation cycles gradually decays with time, as stable age distri-
bution establishes itself. However, generation cycles can be stabilized
by population feedbacks, as some models for periodic insects and
fish, such as salmon, show.

The second general framework that is increasing in popularity
among theoretical ecologists is that of delayed differential equation
models. As reviewed by Gurney and Nisbet (1998), these models
can exhibit a large variety of dynamical behaviors, but we can clas-
sify them into the three general classes, according to the relationship
between the period of oscillations and the value of developmental
delay, # . The first type of oscillations are with a period roughly the
same as # (these are generation cycles). In the second class, cycle
periods are typically in the range of 2–4# (these are first-order oscil-
lations in my terminology). Finally, there are “Lotka-Volterra” type
of cycles, with periods ranging from 6# and greater, which corre-
spond to second-order oscillations. It appears that the notion of order
generalizes rather well from discrete models to delayed differential
models.

A Somewhat More Formal Definition of Order The brief review of
theory in the preceding paragraphs leads me to propose the follow-
ing definition of process order for ecological systems. This definition
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assumes that we can describe the behavior of the system by a general
nonlinear autoregressive model,

rt = f �Nt−# � Nt−2# � Nt−p# � �t� (2.18)

where rt is defined in terms of the base lag #% rt = lnNt/Nt−# . Pro-
cess order is the number of lagged densities, p, that we need to
adequately describe the behavior of the focal population. It is clear
that p depends on the temporal scale at which we choose to sample
the dynamics, # . If we use very small temporal steps, we shall need
more lagged densities to capture the system’s dynamics. Thus, any
specific estimate of order must be conditioned on whatever value of
# was chosen. Therefore, it is a good idea to use the value of # that
is biologically relevant to the issues that we investigate. Usually, this
means that # should be closely related to generation time. An alter-
native, in certain cases, is to choose the periodicity of some external
driver (e.g., seasonality). The issue of which base lag to choose will
be further discussed in section 7.2.2.

Note that the concept of process order, as it is used in this book, is
similar to, but not the same as, the dynamical dimension—the num-
ber of state variables employed in the model (and thus the dimension-
ality of the phase space). Dimension is well defined for mechanistic
models such as

Nt = f �Nt−1� Xt−1� Yt−1� � � � �

Xt = g�Nt−1� Xt−1� Yt−1� � � � �

Yt = h�Nt−1� Xt−1� Yt−1� � � � �

and so on

(2.19)

in which all state variables (Nt� Xt� Yt� � � � ) have some biological
meaning. As we discussed earlier in this section, one can translate
back and forth between single-lag multiequation formulations such as
(2.19) and multiple-lag, single-equation ones such as (2.18). However,
according to a mathematical theorem (Takens 1981), in order to prop-
erly “reconstruct” the dynamics of model (2.19) one may need twice
as many (plus one) lags in (2.18) as there are equations in (2.19). This
line of argument suggests that the estimated process order may be
much larger than the actual dimension of the underlying mechanistic
model.



42 FIRST PRINCIPLES

On the other hand, suppose that we choose to model a multi-
species community with a system of equations where each species is
represented by a separate state variable. We may then find out that
certain groups of species act as a dynamical complex with respect
to the focal species. For example, several generalist predators feed-
ing on the focal species may all act in a “first-order” manner, that
is, in such a way that their influence is folded into the first lag, Nt−#

(a possible example is provided by the generalist predators of voles;
see chapter 12). Furthermore, several specialist predators may oscil-
late in great synchrony with each other, so that their combined effect
would be folded into the second lag (a possible example is the larch
budmoth system; see chapter 9). Thus, at a mechanistic level, we
would have a model with a large number of state variables, while
at the level of population feedbacks we could adequately represent
the dynamics with just second-order process. I suspect that this is
precisely what happens with many real-life applications. This line of
argument would suggest that the estimated process order could be
much less than the actual dimension of the underlying mechanistic
model. In other words, the description in terms of the autoregressive
model could often be more parsimonious than the description in terms
of the mechanistic model (if we insist on modeling each interacting
species with a separate state variable).

My conclusion is that the process order and the dynamical dimen-
sion, while related, are logically separate concepts, and that there is no
rigid connection between the two. Process order reflects the feedback
structure of population dynamics, and can be estimated from time-
series data on the focal species alone. It is independent of the specific
mechanistic model we would construct and defend (and the dynamical
dimension is the property of such a model). Estimated process order
provides a very useful probe for choosing among alternative mecha-
nistic models, but there is no reason why process order and the model
dimension should always coincide. Thus, analytical approaches that
mechanically equate order and dimension (e.g., Stenseth et al. 1997)
are, in my opinion, methodologically flawed (at the very least, such
attempts should establish by simulation that the postulated equiva-
lence holds for the specific combination of models and data employed
in the project).
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An important addition to the preceeding discussion is that the
equivalence between order and dimension begins to break down pri-
marily for second- and higher-order systems. Zero-order and first-
order systems are described by a single-dimensional equation (where
Nt enters with a single lag). Thus, both the mechanistic model and the
autoregressive model have the same general form, Nt = f �Nt−1�. This
is in contrast with a second-dimensional mechanistic model, to recon-
struct which we may need an autoregressive model with order two,
three, four, or even five (according to the Takens theorem). I suggest,
therefore, that the primary utility of the concept of process order is in
distinguishing between the crude classes of zero-, first-, and second-
or higher-order dynamics. This classification is particularly appropri-
ate, because as we go from zero-order to first-order, and also from
first-order to second-order models, we see qualitative changes in the
spectrum of dynamical behaviors. But as we go from second-order
to third-order models (and further), we do not see such fundamen-
tal changes. For example, discrete second- and higher-order models
are all capable of stability, limit cycles, quasiperiodicity, and different
kinds of dynamical transitions to chaos (e.g., both period-doubling
and quasiperiodic routes). This makes it both more difficult to esti-
mate the precise order and less compelling to try.

To finish, I see the concept of process order as primarily of heuris-
tic value. In practice, we shall often run into various kinds of dif-
ficulties in assigning any empirical system, or even model output,
to one of the three discrete classes. These difficulties may have to
do with paucity of data, or with trying to impose discrete bound-
aries on the continuous world. For example, two-dimensional differ-
ence equations, depending on specific functional forms and parameter
values, are capable of all kinds of behaviors, including unbounded
growth/decline, first-order stability, and second-order oscillations. If
both first and second lagged densities affect the rate of population
change negatively, then by varying the coefficients we can make the
system exhibit cycles of all dominant periods, from two to infinity. It
is not clear where we should stop calling the system first-order and
start calling it second-order in this progression. Thus, the classifica-
tion based on process order appeals to “ideal types” of dynamics, and
some imprecision when trying to fit nature within the ideal typol-
ogy is inevitable. Nevertheless, I believe that, with all the caveats,
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the concept of process order offers a very useful heuristic device for
organizing information about complex population dynamics.

2.6 SYNTHESIS

Table 2.2 summarizes the postulates, foundational principles, and gen-
eral classes of dynamics that I discussed in this chapter. Postulates are
statements that are assumed to be true without proof (in other words,
they are axioms). Statements about general dynamical classes, on the
other hand, are logically derived from the postulates (in other words,
they are theorems). In between are foundational principles, which are
a mixture of axioms and theorems. In fact, there is some overlap
between different categories (e.g., biomass conversion postulate and
trophic coupling principle; or exponential growth, which is both a
principle and a dynamical type). The reason for putting principles into
a separate group is that they are the ones that are of immediate rele-
vance to building theory. Of course, there is some unavoidable degree
of arbitrariness in creating this group. For example, others may pre-
fer to use mass action and maximum physiological rates postulates
directly, rather than combine them in a hyperbolic functional response
(see, e.g., the discussion of mass action law in Metz and Diekmann
1986%89–90). Additionally, the hyperbolic functional response could
be criticized as not going far enough toward realism. My personal
preference is to draw the line between the hard core and auxiliary
belt (using Lakatosian terms) at the hyperbolic functional response,
but I freely admit that others may do it differently, especially if they
are addressing a different subject area (thus, the emphasis of Metz
and Diekmann on the law of mass action in the context of their theory
of physiologically structured populations).

Revisiting once again the comparison between population dynam-
ics and classical mechanics, my current thinking is as follows. The
analogy between the exponential law and the law of inertia appears to
be complete. Both laws describe the null situation that would obtain
if no forces were acting on the object of study: an ecological popula-
tion or a physical body, respectively. (Incidentally, another analogous
principle is the Hardy-Weinberg equilibrium, which describes the null
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Table 2.2. Three kinds of “laws” in population dynamics

Dynamical Classes
Postulates Principles (order)

1. Conservation Exponential growth Exponential (0)

2. Method. individualism

3. Upper density bound Self-limitation Bounded (1)

4. Mass action Hyperbolic func. resp.

5. Biomass conversion Trophic coupling Oscillatory (2)

6. Max. physiol. rates

state of a population genetics system, obtaining in the absence of
such forces as selection, assortative mating, and genetic drift.) Beyond
the first laws, however, the analogy between population dynamics
and classical mechanics cannot be pushed. Whereas the exponential
growth principle describes population dynamics in the absence of
forces, other population principles that I tentatively identified in this
chapter really describe the nature of forces that may act on the pop-
ulation. I focused on two particular forces, self-limitation and trophic
interaction. Conceivably, other principles may be advanced for other
ecological forces. An example of another intrinsic mechanism (in
addition to self-limitation) is cooperation, potentially leading to the
Allee effect. In fact, Berryman (1999) chose to add cooperation to
his proposed set of fundamental principles. Other interspecific inter-
actions than resource-consumer may also require their own guiding
principles, for example, mutualism and interference competition.

Here is an illustration of how principles of population dynamics are
routinely used by ecologists in building mechanistically based theory.
Consider the Lotka-Volterra model (2.8). As was discussed above,
this model violates two of the four principles in table 2.2: it does not
have any self-limitation terms, and it assumes a linear, rather than a
hyperbolic, functional response. Substituting the hyperbolic response
in place of the linear one, and adding self-limitation to prey in the
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simplest possible way (logistic), we have the following model:

dN

dt
= r0N

(
1− N

k

)
− cNP

d + N

dP

dt
= �

cNP

d + N
− �P

This is of course the Rosenzweig-MacArthur model (1963), which
has been gainfully employed in many real-life applications (in con-
trast to the Lotka-Volterra model). This is not to say, however, that
this model cannot be improved. Notice, for example, that it “half-
violates” the principle of self-limitation, because there is no direct
density dependence in the predator equation. Additionally, the model
accommodates the foundational principles with the simplest possible
forms. For example, prey’s per capita rate of change is affected by
prey density in a linear manner. This, and other assumptions, may
need to be modified in specific case studies (see chapter 4).



CHAPTER 3

Single-Species Populations

In this chapter I present an overview of mathematical models for
single-species populations. The basic format is to show and explain
model equations, and then to discuss the dynamical behaviors that
the models can exhibit. As I stated in the preface, I will not discuss
how the results are obtained, but simply provide the references to the
appropriate literature. I will also not attempt to provide a comprehen-
sive account of models of single-population dynamics. My primary
focus is on models that can potentially exhibit complex dynamics,
although I will review some models that are not capable of complex
dynamics, but are useful as submodules in more complex models.

The survey begins with unstructured models, that is, models that
have a single state variable: population density. Following the estab-
lished conventions, I will denote it as N�t� in continuous-time models
(or simply N ), and as Nt in discrete-time models. Both purely endoge-
nous and mixed endogenous/exogenous models are discussed. Next,
I review models with population structure, primarily focusing on age
or stage dynamics. Finally, I discuss second-order models that incor-
porate some other population property as an extra state variable in
addition to population density.

3.1 MODELS WITHOUT POPULATION STRUCTURE

There are two simple mathematical frameworks with which to
approach modeling population dynamics: ordinary differential equa-
tions (ODE) and difference equations. ODE models, framed in
continuous time, are a more natural starting point for building
mechanistic population models than difference equations, because
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even individuals of annual species do not really perform all their
actions—eating, reproducing, and dying—at one point in time once
per generation. This observation is particularly true with respect to
such time-distributed processes as foraging and mortality. For this
reason, I begin the survey with ODE models (section 3.1.1).

The preceding is not an argument against using discrete-time mod-
els employing difference equations. Rather, I am saying that discrete
models, by integrating over a period of time during which state vari-
ables may be changing, make a greater stride in abstracting away
from individual-level processes than continuous time models. There-
fore, to avoid excessive phenomenology, it is important to understand
precisely what we assume when we make this abstraction. Thus, it is a
good procedure to derive discrete models explicitly as approximations
of continuous models (or, alternatively, directly as approximations of
individual-based continuous-time processes). This is the approach that
I follow in section 3.1.2.

Note that within the general class of continuous-time models, ODE
present the simplest approach. The important assumption underlying
ODE models is that all action and reaction is instantaneous. A more
realistic framework that does not make this simplifying assumption
is that of the delayed differential equations, to be discussed in sec-
tion 3.1.3.

3.1.1 Continuous-Time Models

The simplest model for single-species dynamics that can exhibit long-
term stationary dynamics is the logistic:

dN

dt
= r0N

(
1− N

k

)
(3.1)

The two parameters are the intrinsic rate of population growth, r0,
and the carrying capacity, k. As long as r0 > 0 and k > 0, this model
is always stable. The stable point equilibrium is k, and the population
density approaches it monotonically.

The logistic equation is a very simple model, and its potential fail-
ings are well known: (1) the assumption that realized per capita rate
of change, r�t� = dN/�Ndt�, is related to N linearly; (2) the rate of
population change responds to variations in density instantaneously,
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without a time lag; (3) the model does not incorporate the effects of
exogenous influences; and (4) it ignores effects of population struc-
ture. Despite these failings, the logistic model is taught by all ecology
texts. The reason is that it provides a simple and powerful metaphor
for a regulated population, and a reasonable starting point for mod-
eling single-population dynamics, since it can be modified to address
all four criticisms listed above. I now proceed to the discussion of
how various realistic features can be added to the logistic model.

First, let us deal with the assumption of linearity. (Note, however,
that although the realized per capita rate of change is a linear function
of N , the logistic model itself is a nonlinear model.) This feature of
the model arises during its derivation, when we make an assumption
that per capita birth and death rates are linear functions of density
(or, most generally, the difference between these two rates is a linear
function of N ). Readers wishing to refresh their recollection of how
the logistic model is derived can consult a very clear explanation
by Gotelli (1995). There is no particular biological reason why the
relationship between vital rates and density should be linear; linear
relationship is simply the most parsimonious functional form.

It is easy to modify the logistic model in a way that allows non-
linear relationship between the realized rate of population change and
density. For example, the theta-logistic model is described by this
equation:

dN

dt
= r0N

[
1−

(
N

k

)
]
(3.2)

The exponent 
 controls the shape of the relationship between r�t�

and N (figure 3.1a). On biological grounds, we may suspect that
the case of 
 > 1 is the most realistic one. The argument goes like
this: As N increases from 0, the per capita rate of change should
stay nearly constant until N gets near k, where density dependence
would finally kick in. As a result, the relationship between r�t� and N

should be convex: first flat, and then near k we should observe a rapid
falloff. Although this argument seemingly makes sense, in practice we
observe a variety of shapes for the r�t� function (Turchin 1999), both
concave and convex, and also approximately linear. To see why the
above argument, based on biological intuition, is misleading, let us
frame it in terms of logN instead of N . After all, initially a population
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Figure 3.1. Relationship between the realized per capita rate of increase,
r�t� = dN/Ndt, and population density in the theta-logistic model. Same
three functions are plotted using (a) natural scale for N and (b) log-
transformed N .

starting from N near 0 will increment itself in steps of constant logN ,
rather than N . Plotting the several theta-logistic curves against log-
transformed N , we observe that they all become much more convex
(figure 3.1b). This point of view on the shape of r�t�, then, resolves
the apparent paradox: when population starts growing from near 0, it
will make such tiny steps in N that r�t� will remain near r0 for quite
a while. The take-home message from this is that perhaps the linear
approximation for r�N � is not so bad, after all, and it certainly has a
virtue of simplicity, since the alternatives require an extra parameter.
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Figure 3.2. Allee-type population growth: dN/dt = bN�N − a��k −
N�/k2 (parameters b = 6, a = 25, and k = 100).

The theta-logistic model belongs to a broader class of logistic-like
models that are defined as those models in which the per capita rate
of population change r�t� is characterized by a maximum at N = 0,
is positive for all N < k, and negative for all N > k. An important
example of not logistic-like population growth is the Allee effect.1

The simplest phenomenological form for per capita growth rate in
an Allee population employs a quadratic polynomial (e.g., Lewis and
Kareiva 1993):

r�t� = b�N − a��k − N�

k2
(3.3)

where k is the carrying capacity, a (satisfying the condition 0 <

a < k) is the density below which population growth is negative,
and b > 0 a constant related to how fast the population will grow
at its maximum possible growth rate. The rate of population change,
dN/dt, is cubic and is illustrated in figure 3.2.

1All terms emphasized with boldface are defined in the glossary.



52 SINGLE-SPECIES POPULATIONS

3.1.2 Discrete-Time Models

The discrete analogues of the logistic model are usually derived
in a completely phenomenological fashion. Thus, we start with the
discrete exponential model Nt+1 = �Nt , and then make � a function
of population density. Next, we attempt to figure out what the shape
of the � function should be like. A number of phenomenological
relationships have been proposed (table 3.1). The problem with this
approach, however, is that we do not really know how the postulated
functional forms are related to assumptions about individual-based
processes.

A better approach is to derive discrete models as approximations of
continuous models. We know what assumptions we made when deriv-
ing, for example, the logistic equation; by going through an explicit
derivation from the logistic to a discrete equivalent we shall have
a good understanding of what assumptions we have to make about
individuals in order to obtain the result. The point here is not that
following this prescription will result in a more realistic model, but
rather that we shall know better in what ways our model is unrealis-
tic. Additionally, an explicit connection to individuals means that the
resulting model’s parameters are functions of quantities observable at
the individual level. This feature makes parameter estimation much
more rigorous.

There are at least three ways to “discretize” the logistic model
known to theoretical ecologists (see, e.g., Gurney and Nisbet
1998:61–64). The naive (and flawed) approach is to discretize the
derivative in the logistic model:

�N

�t
≈ dN

dt
= r0N

(
1− N

k

)
(3.4)

Next we set �t = 1 (measured in generation units), add a subscript
t to N = Nt to emphasize that we are now dealing with discrete-
time density, and replace �N with Nt+1 −Nt . After some algebra, we
obtain:

Nt+1 = aNt − bN 2
t (3.5)
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Table 3.1. Some functional forms proposed for single-species
discrete-time models of population growth (�0 = exp�r0� is the
intrinsic discrete or multiplicative rate of population increase, k
is the carrying capacity, b some positive constant, and 


an exponent)

Label Function

Exponential Nt+1 = �0Nt

Quadratic map Nt+1 = �0Nt�1− Nt/k�

Ricker Nt+1 = �0Nt exp�−bNt�

Gompertz Nt+1 = �0N


t

Beverton-Holt Nt+1 = �0Nt/�1+ bNt�

Depensation Nt+1 = �0N
2
t /�1+ bN 2

t �

Theta-Ricker Nt+1 = �0Nt exp�−bN 

t �

where a = 1+ r0 and b = r0/k. This model is known as the discrete
logistic, or better (to distinguish it from the Ricker model, which is
also sometimes called discrete logistic) the “quadratic map.” The rea-
son model (3.5) is flawed for ecological applications is because if,
for whatever reason, population density at time t happens to exceed
k�1+ r0�/r0, then at time t + 1 population density becomes negative.
For example, if r0 = 2 (a rather typical value for biological popula-
tions; recollect that this value implies that population would increase
by a factor of e2 ≈ 7 when Nt is near 0), then Nt would need to
exceed only 1�5k in order for Nt+1 to become negative. Clearly, we
do not want to use a model that so easily produces nonsensical pre-
dictions.

The second derivation employs the following trick. We integrate
the logistic model one time step forward, from t to t + 1, while pre-
tending that the per capita growth rate, r�t� = r0�1 − N/k�, stays
constant during this interval of time (we fix it at the value obtaining at
the start of the time interval, t). Since r�t� is by assumption constant,
we use the integrated solution of the exponential model:

N�t + 1� = N�t� exp�r�t��
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Next, we substitute r�t� = r0�1− N�t�/k� and change to subscripts,
obtaining the well-known Ricker model:

Nt+1 = Nt exp
[
r0

(
1− Nt

k

)]
(3.6)

Because r�N � is inside the exponential, the Ricker model avoids the
flaw of the quadratic map: for any Nt > 0 the model predicts a posi-
tive Nt+1.

The third derivation is also based on integrating the logistic model
for one time step (Gurney and Nisbet 1998:63). The integrated solu-
tion of the logistic model is

N�t + 1� = k

1+ ��k − N�t�/N�t��e−r0

Rearranging the terms, substituting �0 = exp�r0�, and switching to
subscripts, as usual, we have

Nt+1 =
�0Nt

1+ ���0 − 1�/k�Nt

(3.7)

It is readily apparent that equation (3.7) has the same functional form
as the Beverton-Holt model (table 3.1).

In summary, I have reviewed three approaches to deriving a dis-
crete equivalent of the continuous-time logistic model. The first one,
based on direct discretization of the derivative, results in a model with
pathological properties, namely, the tendency of the model to predict
negative population density for certain initial conditions. This problem
is of particular importance if we wish to add a stochastic component
to the model, in which case sooner or later population density will
go over the threshold and become negative. When simulating trajec-
tories based on the quadratic map, it is certainly possible to prevent
this from happening by, for example, setting population density to
some small positive constant when a crash happens. However, this
approach smacks of ad-hockery, and is not really necessary, since
a well-behaved alternative exists (the Ricker model). The quadratic
map, thus, is of primarily historical interest in population ecology
(it happened to be the model using which Robert May discovered
dynamical chaos; see May 1974a; Gleick 1988:69–73).

The other two approaches, leading respectively to the Ricker
and Beverton-Holt models, are a different matter. Both of these
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approaches are very useful, but in different ways. If we want to
obtain a discrete model that is the most faithful dynamical analogue
of the continuous logistic, then we should opt for the Beverton-Holt.
Like the logistic, the Beverton-Holt model is characterized by an
exponential approach to a stable point equilibrium for all parameter
values. In fact, the trajectories predicted by the Beverton-Holt are
numerically very near the trajectories generated by the logistic model
(Gurney and Nisbet 1998:63). On the other hand, it is well known
that the Ricker model is capable not only of stability but also of
limit cycles and chaos. The reason for the difference between these
two models is clear from their different derivations. The deriva-
tion leading to the Ricker model makes explicit our assumption of
imposing a generation-long lag on population dynamics: all vital
rates depend only on the conditions at the beginning of the growth
season. This feature leads to the possibility of a serious overshoot
of equilibrium density. In the continuous logistic model, by contrast,
vital rates are instantaneously adjusted to conditions throughout the
growth season. By utilizing the integrated solution of the logistic
model, the Beverton-Holt model also implicitly assumes no lag in the
effect of the environment on vital rates. Adding lags in regulation is
potentially a destabilizing feature in almost any model of population
dynamics.

One advantage of the derivation leading to the Ricker model is
that it is a general approach that can be used to discretize almost
any continuous model of population dynamics. This is because the
overwhelming majority of population dynamical models have the fol-
lowing form:

dN

Ndt
= f �all sorts of stuff� (3.8)

It is natural to approximate (3.8) with

Nt+1 = Nt exp�f �all sorts of stuff�� (3.9)

and in fact a number of discrete population models are obtained in
just this way (e.g., see Berryman 1991). This procedure is certainly
better than the one based on discretizing derivatives, but carries its
own subtle dangers (Gurney and Nisbet 1998:64). Unfortunately, we
can follow the third approach (exemplified by the derivation of the
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Beverton-Holt model) in only few cases, since explicit solutions for
nonlinear ecological models are rare. Therefore, in most cases, we
are limited to the second procedure, but we should use it cautiously,
and check the correspondence with the underlying continuous-time
process by judiciously chosen simulations.

Although I have focused on deriving discrete-time models as
approximations of continuous-time processes, I do not wish to imply
that this is the only “correct” approach. A viable alternative is a direct
derivation of a discrete model from postulates about how intraspecific
competition affects individual reproduction and mortality. An exam-
ple of this approach has been provided by Royama (1992:144–146).
He considers the scenario where individuals possessing circular
“areas of influence” are distributed randomly in space. As population
density increases, so does the overlap between individual areas of
influence. As a result, individuals tend to obtain fewer resources, and
their mean reproductive rate is decreased. Royama show that this
“geometric model” leads to the functional form of intraspecific com-
petition that is identical to that assumed by the Ricker model. The
subsequent section (Royama 1992:149–155) on the generalization of
the discrete logistic theory is also well worth reading (even despite
his less than flattering assessment of my multiple-lag extension of
the Ricker model!).

3.1.3 Delayed Differential Models

The third mathematical framework, combining some features of both
ordinary differential and difference equations, is the delayed differen-
tial equations (DDE). The simplest DDE model in population dynam-
ics is the delayed logistic (Hutchinson 1948):

dN�t�

dt
= r0N�t�

[
1− N�t − ��

k

]
(3.10)

As far as I know, this model does not have a rigorous derivation, and
is simply based on an argument that the self-regulatory mechanism
may involve a time lag (Hutchinson 1948:237). Below I will consider
DDE models that have a more explicit connection to individuals.

The dynamics of the delayed logistic model are well understood
(e.g., May 1981). The qualitative type of dynamics is controlled by a
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single parameter combination, r0� . Model (3.10) has a monotonically
damped stable point for 0 < r0� < e−1, an oscillatory damped sta-
ble point for e−1 < r0� < �/2, and a stable limit cycle for r0� >

�/2. Once stable limit cycles arise, their period is approximately 4� .
Increasing r0� beyond �/2 simultaneously lengthens (slightly) the
cycle period and increases the amplitude. An unpleasant feature of the
delayed logistic is that the amplitude of cycles depends very sensi-
tively on r0� . For example, changing r0� from 2.4 to 2.5 increases the
amplitude from approximately 1,000-fold to 3,000-fold (May 1981:
table 2.1). At the same time, the period increases only slightly, from
5.11 to 5.36� .

May (1981:23) suggested that the delayed logistic model provides
a “detail-independent explanation of ‘wildlife’s 4-year cycle.’ ” In par-
ticular, he observed that a lag of � = 9 months in the delayed logistic
model would produce a period intermediate between 3 and 4 years.
Although May was careful to stress that this explanation is “inde-
pendent of the biological mechanism(s) producing the time delay,”
empirical ecologists working on rodent cycles pursued his suggestion
by searching for the putative 9-month delay in their data (e.g., Hörn-
feldt 1994; Korpimäki 1994). This direction, in my opinion, is a blind
alley, and it is worth discussing why this is so. One of the common
themes in this book is that the most useful model for explaining pop-
ulation cycles has an intermediate complexity: it is neither too simple
nor too complex. Well, the delayed logistic model, with its dynam-
ics determined by a single parameter combination, is just too simple
to be useful in investigating population oscillations. Worse, it has a
very tenuous connection to mechanisms. Its only significance for an
investigation of population cycles is that it provides further support to
a well-known theoretical idea that time-delays promote the possibil-
ity of oscillations. Fitting this model to real population data does not
get us any closer to an identification of ecological mechanisms that
may be responsible for oscillations. There is no particular significance
in the 9-month delay—this is a complete artifact of the simplistic
structure of this model. As we shall see in chapter 12, predator-prey
models explain the rodent cycle without any explicit time delays. The
delay arises naturally as a result of population interaction between
prey and their specialist predators.



58 SINGLE-SPECIES POPULATIONS

A better, more mechanistic approach to deriving DDE models is to
separate the birth and death rates, and consider separately how these
vital rates may be affected by time delays (May 1981; Nisbet and
Gurney 1982). Death rate should be related to the current population
density, but birth rate most plausibly depends on population density
some time ago, as a result of developmental delays. These assump-
tions lead to an equation of the form (Nisbet and Gurney 1982:41)

dN

dt
= B�N�t − ��� − D�N�t�� (3.11)

Nisbet and Gurney (1982) used this general model in their investiga-
tion of population cycles in Nicholson’s blowflies. This model with
biologically plausible functions and parameter values predicted pop-
ulation cycles that were very similar to those observed by Nicholson,
even capturing the “double-peak” shape of the observed cycles (see
Nisbet and Gurney 1982:285–308).

3.2 EXOGENOUS DRIVERS

Real-world populations are complex, even messy, systems. They are
affected by a multitude of different factors, some of which we model
explicitly (as reviewed in this and the next chapters), while oth-
ers we have no choice but to leave out of the model. Neverthe-
less, these exogenous factors—fluctuations in weather, immigration
events, erratic fluctuations in food resources or natural enemies, and
so on—continuously affect population change. Although we cannot
model such factors explicitly, we need to include their effect some-
how in the model. The reason is that even small effects of a multitude
of exogenous factors add up, and can potentially change the nature
of dynamics. A very useful approach in such situations is to model
the collective effect of such influences with random variables.

“Randomness” in models can potentially represent three kinds of
processes. The first one is “true randomness,” a process that is, as
far as we know, irreducible to any deterministic explanation. Physi-
cists tell us that the behavior of subatomic particles is random in this
sense. It is not clear whether the behavior of such micro-level entities
is relevant to the macro world inhabited by ecological entities. One
hypothesis is that population dynamics is insulated against effects at
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the subatomic level by all the intervening levels of physical and bio-
logical organization. However, now that we understand the nature of
dynamical chaos better, we know that small random influences at the
micro level can potentially be amplified (rather than damped, as the
insulation hypothesis would have it) and have macro consequences
for nonlinear dynamical systems.

The second meaning of “randomness” is a reflection of our igno-
rance. For example, suppose we are studying a population of mice
who are eaten by owls. Owl numbers may fluctuate in response to
dynamics of another rodent, for example, a vole species. After a
vole outbreak and collapse there will be lots of hungry owls severely
impacting the population of mice we are studying. However, we have
no data on voles, and do not even suspect that owl numbers are
actually predictable. To us it would appear that owl numbers fluctu-
ate randomly, and therefore the best model, under the circumstance,
would be to model owl numbers as a stochastic variable with a cer-
tain mean and variance, and perhaps some autocorrelation structure.
Ignorance is probably the most common reason why we need to use
random variables in population dynamics models.

The third kind of randomness arises when we know about certain
processes affecting population change, but decide not to incorporate
them explicitly in the model, modeling them instead as random vari-
ables. This situation can arise only in well-studied and -understood
systems. We may know about several processes that each have a minor
effect on population rate of change. We may find out that explicitly
modeling these processes doubles the model complexity (as measured,
e.g., by the number of parameters), but increases our ability to pre-
dict dynamics (as measured by R2

pred) by only a couple of percentage
points. In such situations, we may decide that the extra prediction
ability is simply not worth substantially increasing model complex-
ity. Alternatively, we may find that adding extra state variables to the
model decreases its prediction accuracy. This may happen because
parameters are never known precisely. Additionally, extra state vari-
ables may be measured with a substantial observation error. Thus, we
may be in a seemingly paradoxical situation that we know perfectly
well that some process is operating, but we cannot capitalize on it for
prediction purposes. I argue that in such situations we should ruth-
lessly expunge these processes from the model. We should keep in
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mind, however, that the optimal mix of explanatory mechanisms to
be included in the model may change depending on the purpose of
the model.

3.2.1 Stochastic Variation

As I discussed above, the usual reason that we need to include
stochasticity is our ignorance. By its nature, then, a stochastic factor
has to be modeled phenomenologically. The question is how best to
include it in the model. The most direct approach is to add noise to
the population rate of change:

rt+1 = f �Zt� + �t (3.12)

Here rt+1 = ln�Nt+1/Nt�, Zt is the vector of state variables (i.e.,
processes that are modeled explicitly), and �t is a random variable
characterized by some probability distribution; for example, it could
be normally distributed with mean = 0 and variance �2. Once every
time step, we choose an �t from the specified distribution, add it to
rt+1, and calculate the new Nt+1. Note that noise is added to rt+1 in
an additive manner (which means that Nt+1 is affected by noise mul-
tiplicatively). The justification for it is that environmental fluctuations
are likely to affect per capita death and birth rates, and those two
rates are combined additively in determining rt+1.

An alternative approach is to add a random number directly to Nt .
This approach is rarely used, because it does not have as ready justi-
fication as the first one. One possible mechanism is random immigra-
tion events, but we would still expect that environmental fluctuations
would affect vital rates, so it seems better to simply perturb rt+1.
Additionally, if adding or subtracting from Nt , we need to ensure that
we do not inadvertently decrease Nt below zero.

The third approach is to randomly vary parameters of the model.
This approach is perhaps the most mechanistic, especially if we have
some information about where in the population process the environ-
mental influences are the most important. An example is provided by
the wildebeest model in Hilborn and Mangel (1997), in which the
carrying capacity was assumed to be a function of annual rainfall.

So far I have been focusing on including noise in discrete mod-
els, where there is a natural time step, and therefore it makes sense
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to add noise once per step (e.g., a generation). In continuous-time
models exogenous factors should affect population dynamics contin-
uously. This creates a problem of how such continuous effect should
be modeled. Of course, continuous models have to be discretized in
order to be simulated on the computer, but it is a bad idea to add a
random variable to dN/�Ndt� once per iteration step. The problem
is that the effect of noise becomes affected by the step length. For
example, if we solve an ODE model and use a time step of 0.1 yr,
then we “kick” population trajectory 10 times per year, but if use a
time step of 0.01, then we kick it 100 times per year. Clearly, in the
second case, we add more noise to the trajectory, even though we
are drawing � from the same distribution. The situation is even worse
if we are employing some variable-step ODE-solving routine. Math-
ematically rigorous approaches to simulating stochastic differential
equations exist, but a simpler solution, and in my opinion perfectly
adequate for most population applications, is to add noise once per
some natural time unit, rather than discretization step.

3.2.2 Deterministic Exogenous Factors

Not all exogenous factors should be modeled with random variables.
Effects of seasonality, for example, are clearly exogenous (since pop-
ulation density does not affect the change of seasons), but at the same
time highly predictable. Another class of nonstochastic exogenous
factors is systematic environmental trends, for example, long-term
successional change of the community within which the studied pop-
ulation is embedded. Yet another class is exogenous factors that may
change erratically from year to year, but for which we have measure-
ments, so that we can treat them as “fixed.” For example, a mouse
population may be strongly affected by fluctuations of their food sup-
ply caused by tree masting. If we have measured the amount of seeds
produced over a long period of time, then one approach to modeling
the effect of masting on mouse dynamics could be simply to include
the measured mast time-series into the model in some mechanistic
fashion.

In this section I focus on seasonality as one of the most ubiqui-
tous deterministic exogenous factors that affect population dynamics.
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Let us consider how we can model seasonality, using the logistic
model as an example. It is clear that seasonality could affect both
birth and death rates. During the unfavorable season, such as win-
ter in temperate communities, individuals will be forced to reduce
or even completely curtail their reproduction. Additionally, we might
expect that death rates would be higher due to inclement weather,
reduced food, or higher vulnerability to predation. A naive approach
to including such an effect into the logistic model is to make the
intrinsic rate of population growth, r0, a function of time while keep-
ing carrying capacity constant. In the simplest case, the seasonality
function would take one of two values, r0�t� = rw during winter and
r0�t� = rs during summer (other seasonal functions will be consid-
ered later). The reason why this modeling approach is not satisfactory
becomes clear when we consider what would happen if rw < 0. Such
a situation is perfectly possible, in fact expected in those cases in
which reproduction ceases in winter while mortality factors continue
to operate. However, allowing a negative rw leads to nonsensical pre-
diction (figure 3.3). The line labeled “summer” in figure 3.3 depicts
the usual configuration assumed by the logistic model. If rw > 0, we
have a similar relationship in winter, although the slope (or strength
of density dependence) is decreased compared with the summer situa-
tion. However, if rw < 0, then we observe a positive slope, or inverse
density dependence! Clearly, varying r0 seasonally while keeping k

constant does not make sense. We run into a similar problem if we
attempt to change k seasonally while keeping r0 constant. Thus, sim-
ple assumptions about how seasonality might affect logistic growth
fail to yield meaningful models.

There is actually a general lesson here. Parameters of the logis-
tic model combine individual-level parameters in subtle ways, and it
is dangerous to modify them in a phenomenological fashion. If we
wish to build models that behave in ways consistent with biology of
organisms, than it is a better procedure to derive models from first
principles (which means basing the derivation on what individuals
do). To give a simple example, let us assume that per capita birth
rate is density independent, and varies seasonally, so that b�t� = bs

in summer and b�t� = 0 in winter. Per capita death rate, on the other
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Figure 3.3. Relationship between the per capita rate of population change
and population density: when seasonality affects r0, but not k.

hand, does not change seasonally, but is affected by density, d�N� =
d0 + d1N . Putting these assumptions together, we have

r�N � t� = r0�t� − d1N (3.13)

where r0�t� = bs − d0 in summer and r0�t� = −d0 in winter. In other
words, the intrinsic rate of population growth changes with season,
while the slope of density dependence is kept constant. This argument
suggests that if we want to model seasonal effects within the logistic
framework, and wish to do it in the simplest possible way, by adding a
single parameter, than the way to do it is by varying r0�t� while keep-
ing the slope of density dependence constant. A detail-independent
equation for seasonal logistic model takes, then, the following form:

dN

dt
= ravg�1− e��t��N − ravg

k
N 2 (3.14)

where ��t� is some periodic function with period of 1 year, varying
between −1 and 1 (for example, a sine function). The parameter ravg
is the intrinsic rate of population increase averaged over all seasonal
values, and k is the carrying capacity, similarly averaged over all sea-
sonal values. Equation (3.14) is illustrated in figure 3.4. Note that if
e > ravg, then both the intrinsic rate of increase and carrying capac-
ity during the worst season will be negative. As discussed above,
this is the situation that should be characteristic of most organisms
inhabiting temperate environments, where there is no possibility of



64 SINGLE-SPECIES POPULATIONS

Figure 3.4. Relationship between the per capita rate of population change
and population density: varying r0 while keeping the slope of density
dependence constant.

reproduction during winter, nor enough resources to indefinitely sup-
port the population. As a result, these populations are always decreas-
ing during winter, and denser populations decrease faster. Organisms
are prevented from going extinct only by periodic recurrence of the
favorable season, summer.

3.3 AGE- AND STAGE-STRUCTURED MODELS

Whereas the first part of this chapter focused on models that lumped
all different kinds of individuals in the population into a single state
variable, N , in this section I review models that explicitly address
population structure. Whether to include population structure in a
model of a particular dynamical system is a very important issue. The
advantages of structured models are twofold (Caswell et al. 1997).
First, population structure may have important consequences for pop-
ulation dynamics. A population responds to environmental changes
with time lags that reflect individual development. These lags may
result in oscillatory dynamics, which would not appear in an unstruc-
tured variant of the model (although note that delayed differential
models provide an approach of intermediate complexity to handle
these kinds of phenomena). Second, because structured models are
written in terms of the vital rates of individuals, their parameters often
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have a clear operational definition, and so are amenable to direct mea-
surement (Caswell et al. 1997). The third reason that I would add to
this list is that sometimes we are explicitly interested in issues that
can be addressed only with a structured model, for example, oscilla-
tions in age structure.

On the other hand, adding structure to population models
inevitably increases their complexity. The important question that
needs to be resolved by the model builder is whether this added
complexity is warranted: whether the gain in accuracy is worth the
price of extra parameters. In this book, I advocate a hierarchical
approach to model building that yields a series of models of vari-
able complexity. Determination of optimal complexity, thus, can
be put on an empirical basis. More specifically, the question of
whether to include population structure or not can be resolved by
constructing and contrasting with data two versions of the model:
one that explicitly incorporates individual variability, and the other
that averages over this variability with judiciously chosen functional
forms. Additionally, as one gains experience with various kinds of
models, it becomes possible to make an educated guess as to whether
population structure may or may not be important. For example, if
we are trying to understand population oscillations of southern pine
beetles (chapter 10), we may note that the cycle period is around 6–9
years, and that there are about 6 generations per year. This means
that cycle period is on the order of 40–50 generations. As we shall
see below, structured population models without trophic interactions
produce cycles of much shorter period. This suggests that an attempt
at explaining cycles in this beetle with a single-species structured
population model is highly unlikely to succeed.

3.3.1 Mathematical Frameworks

There are three general mathematical frameworks for modeling popu-
lation structure: matrix models, systems of delayed differential equa-
tions (DDE), and partial differential equations (PDE) (Caswell et al.
1997). These frameworks differ in how they represent time and popu-
lation structure. As Gurney and Nisbet (1998:237) point out, discrete-
time formalism yields conceptually simple models that are especially
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well adapted to numerical simulation, but analytical treatment beyond
determination of steady states poses considerable mathematical chal-
lenge. By contrast, continuous-time models are much less adapted to
numerical realization, but they are often easier to treat analytically.
PDE models, in which both time and structure are continuous vari-
ables, are thus a very powerful framework for obtaining theoretical
insights. However, they can boast few empirical applications, proba-
bly because their numerical solution is a highly technical field (see
the discussion in Gurney and Nisbet 1998:242–245), it is difficult to
add stochasticity to these models, and parameterizing them is concep-
tually not straightforward.

Matrix population models are formulated within the discrete-time,
discrete-structure framework. These models, therefore, assume that
each individual can be assigned to one of a set of discrete age (or
stage, size, etc.) classes. Matrix models are formally the same as a
system of difference equations, such as

N 1
t+1 = f1

(
N 1

t � N
2
t � � � � � Nm

t

)
N 2

t+1 = f2
(
N 1

t � N
2
t � � � � � Nm

t

)
� � �

Nm
t+1 = fm

(
N 1

t � N
2
t � � � � � Nm

t

)
where m is the number of classes, N i

t is the number (or density) of
individuals in class i, and fi are functions relating the past densities
to the future ones. The same model can be also written in the matrix
form

Nt+1 = ANt (3.15)

where Nt is the vector of N i
t , and A is a matrix whose ij coefficient

specifies how many individuals of class i appear at time t + 1 per
individual of stage j at time t (Caswell et al. 1997). Matrix models
may be linear or nonlinear (A is constant or not), and either deter-
ministic or stochastic (elements of A change randomly over time).

Matrix models enjoy a great amount of popularity in ecological
applications. Their main advantage is that they are easy to construct
using life-table data. Additionally, since they are framed as discrete-
time models, they are easy to simulate on the computer. Another
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advantage of a discrete-time framework is that adding stochasticity is
quite straightforward (section 3.2.1). The only disadvantage of matrix
models is that they require discrete stages, which may cause diffi-
culties if natural stages do not exist (Caswell et al. 1997, but see
Easterling et al. 2000).

The third popular class of models, delayed differential equations
(DDE), employs the continuous-time but discrete-structure frame-
work. We have already encountered an example of a DDE model in
the context of models without population structure (section 3.1.3).
Adding structure simply means that we need multiple equations, one
for each of the population classes. For example, if we have two stages,
larvae and adults, than we might write the following model

dL

dt
= "A − $1L − M�t� (3.16)

dA

dt
= M�t� − $2A (3.17)

where L and A are densities of larvae and adults. Parameter " is the
per capita fecundity rate, while $1 and $2 are per capita death rates of
larvae and adults, respectively. The most interesting part of the model
is M�t�, the maturation rate of larvae into adults. One specific form
investigated by Gurney and Nisbet (1998:253) is as follows:

M�t� = " exp�−$1t�A�t − ��
L�t − ��

L�t�
(3.18)

where the new quantity � is the larval developmental time. This for-
mulation assumes that larvae compete among themselves for a single
limiting resource supplied at a constant rate (for details, see Gurney
and Nisbet 1998).

The literature on structured population models in ecology is volu-
minous, and I cannot review it in this book. Readers comfortable with
mathematics should consult Metz and Diekmann (1986). A good sur-
vey is Tuljapurkar and Caswell (1997; see in particular chapters by
Caswell and Nisbet). The definitive book on matrix models in ecology
is Caswell (2000). Finally, an excellent, and mathematically not-too-
demanding introduction to structured models is chapter 8 of Gurney
and Nisbet (1998).
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3.3.2 An Example: Flour Beetle Dynamics

Flour beetles in the genus Tribolium have been a subject of popu-
lation dynamic investigations since the “golden age” of population
ecology (Chapman 1928; Park 1948). Recently, laboratory studies
showed that it is possible to demonstrate “chaos in a bottle” using
this organism (Costantino et al. 1997), although rather heroic mea-
sures had to be taken in order to get flour beetle populations to oscil-
late chaotically. As part of their theoretical/empirical investigation,
Costantino, Desharnais, Dennis, and Cushing constructed and param-
eterized a model of Tribolium population dynamics, which provides
a good illustration of the discrete-time, discrete-stage framework.

The formulation of the model capitalizes on the fact that the mat-
uration interval of the feeding larvae, 2 weeks, is about the same as
the cumulative time spent in the prepupal, pupal, and callow adult
stage (Dennis et al. 1995; Costantino et al. 1995; Costantino et al.
1997). Thus, the natural time step is 2 weeks, and model equations
are written as

Lt+1 = "At exp�−c1At − c2Lt�

Pt+1 = Lt�1− $1�

At+1 = Pt exp�−c3At� + At�1− $2�

The state variables in this model are Lt , the number of larvae, Pt ,
the number of all nonfeeding stages (prepupae, pupae, and callow
adults), and At , the number of adults. The model, thus, is known as
the “LPA model” (larvae-pupae-adults). Parameter " is the fecundity
rate, or the number of larval recruits per mature adult per unit of
time (two weeks). Parameter $1 is the fraction of larvae dying of
causes other than cannibalism, while $2 is the death rate of adults
per unit of time. Finally, c1 and c2 are cannibalistic rates by larvae
and adults on eggs. Thus, the fraction exp�−c1At� is the probability
that an egg is not eaten during the 2-week period in the presence
of At adults, and similarly for larval cannibalism. Cannibalism of
adults on pupae is modeled analogously, with parameter c3. Note that
the functional form of cannibalism is the same as Nicholson-Bailey
parasitism. Stochasticity can be added to the model by multiplying
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Figure 3.5. Dynamics of the LPA model. Solid circles: larvae. Open circles
in (a): adults. In (a) parameters are " = 11�7, $1 = 0�51, $2 = 0�11,
c1 = 0�011, c2 = 0�009, c3 = 0�018. In (b–d) common parameters are
" = 6�598, $1 = 0�2055, $2 = 0�96, c1 = 0�01209, c2 = 0�0155, and c3 is
varied: (b) 0.05; (c) 0.35; (d) 0.50.

each state variable with a lognormally distributed random variable
(Dennis et al. 1995; Costantino et al. 1995; Costantino et al. 1997).

The LPA model is capable of a usual variety of dynamics typical
for this class of discrete-time models: stable point equilibria, limit
cycles, quasiperiodicity, and chaos (figure 3.5). There are two inter-
esting observations. First, for parameter values that obtain in unma-
nipulated populations, the dynamics are typically characterized by a
2-point cycle (figure 3.5a) or a stable-point equilibrium with oscil-
latory convergence, also with 2-point periodicity (not shown). Adult
survival over a 2-week period is high, and, as a result, adult numbers
fluctuate very little (figure 3.5a: open circles). In other words, the
cycles are primarily in the stage structure of the model, not the total
numbers. Second, reducing adult survival and increasing cannibalism
rate on pupae (Costantino et al. 1997) results in a variety of nonlin-
ear oscillatory dynamics depicted in figure 3.5b–d. However, in every
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case the dominant oscillation period is between 2 and 3. By “dominant
period” I mean the average length of a typical excursion from peak
to peak, or from trough to trough. Note that even in the 8-point cycle,
each “mathematical” cycle consists of two oscillations of 3 time steps
each, and one oscillation of 2 steps. In the presence of noise, this fine
structure would be largely washed out, leaving an average period of
2–3 steps. The reason that this observation is interesting is that the
LPA model appears to fit the general mold of single-species models.
Single-species models tend to produce oscillations with periods of
2–4 � , where � is the developmental delay (section 3.1.3). The LPA
model produces oscillation periods in the same range.

3.4 SECOND-ORDER MODELS

Single-species second-order models have the following structure:

Nt+1 =Ntf �Nt� Xt�

Xt+1 = g�Nt� Xt�
(3.19)

where Xt is some intrinsic dynamical variable, that is, some charac-
teristic of the focal population that changes with time. These models
are slightly suspect because of the phenomenology resulting from
reducing the distribution of some variable, for example, population
quality, to dynamics involving only its average. However, some mod-
els of population interactions, for example, herbivore–plant quality
(section 4.4.4), suffer from the same problem. Here I review two
second-order models of intrinsic hypotheses that were proposed for
explanation of population cycles.

3.4.1 Maternal Effect Hypothesis

Ginzburg and Taneyhill (1994) proposed the following general model
for dynamics of populations affected by maternal effects:

Nt+1 =Ntf �Xt�

Xt+1 = g�Nt+1� Xt�
(3.20)
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The Nt equation in this model has no direct density dependence. Thus,
population density grows exponentially, but with the intrinsic rate of
change being a function of average quality, Xt . In the quality equation,
note that Xt+1 depends on N with the subscript of t + 1, reflecting the
assumption that quality is affected by density in the current generation
(as a result of intraspecific competition). (Despite this feature, the
model is still a special case of equations 3.19, as can be seen by
substituting Nt+1 from the first equation into the second one.)

Ginzburg and Taneyhill argued that f should be a monotonically
increasing function of Xt (the higher the average quality, the greater
the per capita rate of population increase). Function g decreases with
Nt+1, and increases with Xt . The last assumption is why we call this
model “maternal effects,” because the quality of offspring is positively
correlated with the quality of mothers. Ginzburg and Taneyhill pro-
posed the following specific functions that conform to the postulated
shapes:

Nt+1 =�0Nt

Xt

b + Xt

Xt+1 =Xt

*0

1+ dNt+1

(3.21)

The relationship between the realized discrete rate of increase and
quality is hyperbolic, with b the half-saturation quality, and �0 the
maximum reproductive rate (realized when Xt → �). The second
equation is analogous to the first, but the hyperbolic function is of
the decreasing, rather than increasing, kind. Parameter *0 is the max-
imum (proportional) rate of increase in quality, occurring when Nt+1

is near zero. As density increases, the rate of proportional change
declines below 1. Thus, when Nt+1 exceeds �*0 − 1�/d, quality begins
to decline.

The analysis of this model by Ginzburg and Taneyhill indicated
that it produces undamped oscillations when parameters �0 and *0

are greater than 1. Thus, if the population persists, then it inevitably
undergoes cycles. Furthermore, these cycles are neutrally stable.
In other words, this model is analogous to the Lotka-Volterra pre-
dation model, which also exhibits neutral cycles for all parameter
values. In fact, if we rewrite equations 3.21 in the per capita form,
we see that this is a pure second-order model (similar to the
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Lotka-Volterra predation, which is a pure resource-consumer model;
see section 2.4.2), although formulated in a discrete-time framework:

Nt+1

Nt

= f �Xt� =
�0Xt

b + Xt

Xt+1

Xt

= g�Nt+1� =
*0

1+ dNt+1

It appears, therefore, that the neutrally stable oscillatory dynamics in
this model are due to lack of direct feedback either in density or in
quality.

Another interesting feature of this model is that the period of oscil-
lations depends only on parameters �0 and *0 (this is another anal-
ogous feature to the Lotka-Volterra model, in which the period is a
function of the exponential growth/decline rates of predator and prey).
Low values of �0 and *0 lead to longer oscillations. This is under-
standable: the longer it takes for density, for example, to increase
above the threshold where quality begins to be negatively affected, the
longer the cycle length will be. What is of particular interest, however,
is that even for high values of �0 and *0 the minimum cycle length is
6 time steps. Thus, the range of periods that can be generated by this
pure second-order model, 6–�, is clearly differentiated from periods
in first-order models (2–4).

3.4.2 Kin Favoritism Model

The basic idea that interactions between kin may play an important
role driving a population cycle was proposed by Charnov and Finerty
(1980). This idea was extended and applied to red grouse dynamics
by Robert Moss, Adam Watson, and their coworkers. As Moss and
Watson (2000) explain in their recent review of tetraonid population
dynamics, young red grouse cocks tend to settle near their fathers,
thus forming spatial clusters of related territory owners. It is pos-
sible that population change can be related to the size of such kin
clusters (Mountford et al. 1990), as a result of the following mech-
anism. Bigger kin clusters may facilitate a higher recruitment rate,
which in turn results in bigger kin clusters, setting a positive feed-
back loop during the increase phase of a cycle. At peak densities,
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crowding halts this positive feedback, and kin clusters decay because
they are not replenished by new recruits. Smaller kin clusters result in
lower recruitment, setting the stage for the decline phase. When low
enough densities are reached, kin clusters can start forming again,
and the cycle repeats itself (Moss and Watson 2000). This proposed
mechanism for population cycles has been modeled with a spatially
explicit, individual-based simulation (Hendry et al. 1997) and with a
simple analytically tractable model (Matthiopoulos et al. 1998). Here
I discuss the simpler model developed by Matthiopoulos et al. (1998)
(for the general assessment of the “kin favoritism” hypothesis in the
context of red grouse population cycles, see chapter 11).

The kin favoritism model of Matthiopoulos et al. (1998) has the
basic form of a stage-structured model, and has two state variables:
Ot , the number of old males that have survived and reproduced for at
least one year, and Yt , the number of young males that were recruited
last year. The model keeps track only of male numbers, because it
is assumed that only territorial birds reproduce, and the number of
territories is determined by the interactions between males only. That
is, there are always enough females to populate all male territories.

Dynamics of red grouse numbers are driven by territorial interac-
tions between males. In the absence of differential treatment of kin
versus nonkin, the model is

Nt+1 = Nt

(
s + b

1+ cNt

)
(3.22)

where Nt = Ot + Yt is the total number (or density) of territorial
males. The first term in the parentheses, s, reflects the yearly survival
rate of territorial males. The second term reflects recruitment, and has
two components: b is the number of new (male) recruits reared by
each territory, and 1/�1 + cNt� is the probability that a recruit will
establish a territory. Note that the only way density dependence enters
in this model is via probability of acquiring a territory: it is 1 when Nt

is near zero, and declines monotonically with increased Nt . Parameter
c is proportional to the minimum territory size (see Matthiopoulos
et al. 1998 for derivation details). Checking with table 3.1, we see
that the recruitment function assumed by Matthiopoulos et al. is in
the Beverton-Holt form. Thus, it is not surprising that model (3.22)
can have only one kind of stationary dynamical behavior, stable point
with monotonic damping (Matthiopoulos et al. 1998).
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To add the effect of kin favoritism, Matthiopoulos et al. made the
key assumption that the minimum territory size required for establish-
ment of males is proportional to the ratio (index of crowding)/(index
of kinship). “Crowding” reflects the number of kin clusters that are
competing for space. If cocks can recognize only their fathers and
brothers, then, as Matthiopoulos and colleagues argue, the density
of old birds, Ot , can serve as the crowding index. “Kinship” should
be related to the cluster size. Matthiopoulos et al. propose that the
kinship index should be proportional to Yt/Ot . When Yt = 0 all clus-
ters consist of a single old male, and the kinship index is zero. When
many young birds are added, the ratio Yt/Ot will be large, as will the
kinship index. Putting together these assumption leads to the follow-
ing functional form for the parameter c in equation (3.22):

c ∼ index of crowding
index of kinship

∼ Ot

Yt/Ot

= O2
t

Yt

(3.23)

The model resulting from these assumptions is

Ot+1 = s�Ot + Yt�

Yt+1 =
b�Ot + Yt�

1+ kO2
t �Ot + Yt�/Yt

(3.24)

where k is the constant of proportionality between c and O2
t /Yt .

Model (3.24) is derived by assuming the dynamics of kinship clus-
ters, but the final product is expressed in terms of state variables
of a stage-structured population dynamics. This makes it difficult to
see what really is going on in the model’s guts. Thus, I am going
to rewrite this model in terms of different state variables, the total
population density of males, Nt = Ot + Yt , and the kinship index, as
defined by Matthiopoulos and colleagues, Xt = Yt/Ot . Furthermore,
to reduce the number of parameters, I will scale the density as fol-
lows: N ′

t =
√

kNt . After some algebra, I obtain the following model:

Nt+1 =Nt

{
s + b

[
Xt�Xt + 1�

Xt�Xt + 1� + N 2
t

]}

Xt+1 =
b

s

[
Xt�Xt + 1�

Xt�Xt + 1� + N 2
t

] (3.25)

(where the primes associated with Nt have been dropped). We see that
the Nt equation is a modification of model (3.22), in which the recruit-
ment probability (the quantity in square brackets) is now a function
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of both density and kinship. The recruitment probability has a gen-
eral form of a2/�a2 + b2�. It is S-shaped in Xt for fixed Nt , and vice
versa. The same factor (note that the quantities in square brackets are
identical in both equations) enters the Xt equation. Note that kinship
at time t + 1 is simply a linear function of recruitment at time t.

The model appears to work as follows. For low to medium Nt val-
ues (below the flex point of the S-curve), the factor N 2

t is very small.
Thus, recruitment at time t is near maximum, 1. Correspondingly,
kinship at time t + 1 is also near its maximum (b/s). As a result, pop-
ulation grows at the maximum rate �s + b�. When Nt passes through
the flex point, recruitment collapses, causing a decline in both den-
sity, Nt+1, and kinship, Xt+1. At the next time step, density continues
to decline because kinship (and, therefore, recruitment) is very low.
Only after kinship comes back to near its maximum can density start
increasing again. As a result, the model exhibits a typical second-
order cycle (several time steps of increase, followed by at least two
steps of decrease).

The kin favoritism model is an interesting attempt to include the
influence of behavioral interactions between territorial animals on
their population dynamics. Because this attempt opens up a largely
unexplored territory, it should not be judged too harshly. However, I
have two major criticisms of the approach taken by Matthiopoulos and
colleagues. First, I am bothered by the formulation of the model in
terms of age-structured dynamics. This approach required the authors
to translate their assumptions about behavioral interactions first into
demographic dynamics, and only secondly and indirectly into pop-
ulation dynamics. For example, I do not really understand why the
relationship between the density-dependent parameter (related to the
minimum territory size) and stage class densities should be as derived
by Matthiopoulos et al.:

C ∼ O2
t

Yt

(3.26)

Currently Matthiopolous et al. (2000a, b) are attempting to remedy
this problem, but only the future will show whether more mecha-
nistically explicit models of kin favoritism would yield oscillatory
dynamics for biologically plausible parameter values.

The second serious problem with model (3.25) is that it has only
two parameters affecting its qualitative dynamics, s and b, neither of
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which measures the strength of the mechanism that is postulated to
drive the oscillations. As Matthiopoulos et al. show, model (3.25) will
cycle whenever values of b and s are large enough (their figure 2B).
What it means is that the kin favoritism effect has been hardwired in
the model. Generally, this is not a good theoretical approach, because
we usually wish to investigate the following question: “how strong
should the effect A be in relation to effects B, C, � � � in order for
population to cycle (or to be stable, etc.)?”

3.5 SYNTHESIS

The survey of theory for single-species population dynamics suggests
certain recurrent themes. In particular, oscillations predicted by mod-
els appear to fall within three general classes, corresponding to zero-,
first-, and second-order dynamics (section 2.5). Zero-order cycles
with periods approximating a generation time arise in the simplest
models of age-structured populations (e.g., in linear matrix models).
Stochastic exogenous influences (e.g., an episodic massive die-off of
a particular age class) may help perpetuate generation cycles in sit-
uations where deterministically the system would tend to a stable
age distribution. Furthermore, interesting dynamics may result when
periodic exogenous influences resonate with the periodicity due to
age-structure oscillations. It should not be forgotten that annual popu-
lations, which we often model within a discrete-time framework, have
a basic generation cycle underlying all other kinds of dynamics.

Another type of dynamics that arises naturally in first-order dis-
crete models, such as the Ricker equation, is stable cycles with the
typical period of about 2–3 time steps. Unlike generation cycles,
whose origin is due to population inertia, first-order cycles are a result
of negative feedback (strong enough to cause an overshoot of equi-
librium density). First-order cycles also arise in delayed differential
equations, and their periods are typically between 2 and 4� , where
� is the developmental delay. Note that � is typically less than the
generation time. Whereas � can be interpreted as the age of first repro-
duction, the generation time, Tc, is usually defined as the mean age
of reproduction. Thus, typically Tc ≥ � , with equality obtaining when
all reproduction is concentrated in one pulse. Furthermore, Ginzburg
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(1970) showed that in PDE models of age-structured populations, the
dominant period of oscillations, T ≤ 2B, where B is the last possible
age of reproduction. In sum, the typical period of oscillations that
arise as a result of feedbacks acting directly on the population growth
rate is roughly 2 generations.

The final generic class is second-order oscillations, which arise
when population feedback operates indirectly, via some slow dynam-
ical variable other than population density. Pure second-order models
(those that do not include first-order feedback) generate longer periods
than those characterizing generation or first-order cycles. For exam-
ple, the minimum period in the Ginzburg and Taneyhill model is 6
time steps. However, models that include both first- and second-order
feedbacks are capable of the complete spectrum of cycle periods,
depending on parameter values.

To summarize, even if at risk of oversimplifying, periods of cycles
characterizing single-population models fall into the trichotomy of
“one-two-many” generation times, corresponding to generation, first-
order, and second-order cycles. I believe that this trichotomy offers a
useful heuristic device for imposing some structure on the chaos of
observed variety of empirical population dynamics. It is important,
however, not too approach this classificatory scheme too dogmati-
cally. First, in both real-world and more complex models, there is
a great degree of overlap in periods predicted by various population
processes, depending on the specific mix of mechanisms and param-
eter values. Second, dynamical systems can be affected by more than
one cycle, “nested” within each other. As a simple example, take
the Ricker model for parameter values that generate 2-year cycles.
There is actually another, generation, cycle occurring at the same
time, although we typically ignore it by sampling the population only
once a year.



CHAPTER 4

Trophic Interactions

Consumer-resource interactions are inherently prone to oscillations
and are, therefore, the obvious suspect to investigate as a potential
mechanism of a population cycle. However, not all models of trophic
interactions exhibit cycles. The purpose of this chapter is to survey
the theory of consumer-resource dynamics, and ask two major ques-
tions: how is the propensity to cycle affected by (1) structural assump-
tions of the model, and (2) parameter values? Theoretical literature on
resource-consumer interactions is enormous, and even answering this
narrow question could take a whole book in itself. To make the task
more manageable, I shall primarily focus on models that have been
invoked by authors in discussions of real-life case studies of complex
population dynamics.

Consumer-resource interactions can be classified along two inde-
pendent axes: intimacy (the closeness and duration of the relationship
between the individual consumer and the organism it consumes) and
lethality (the probability that a trophic interaction results in the death
of the organism being consumed) (e.g., Stiling 1999). Thus, predators
are high on lethality and low on intimacy, parasitoids are high on
both scales, parasites are high on intimacy and low on lethality, and,
finally, grazers are low on both scales. This functional classification
affects the form of trophic interaction models. I start this chapter with
predation as the paradigmatic trophic interaction, and then discuss the
other three functional classes of consumers.

Throughout this chapter I discuss a multitude of equations, which
use the same symbols over and over again. In order to avoid unnec-
essary repetition, I chose to explain the symbols only when they are
first encountered. Additionally, all symbol definitions are given in the
list of mathematical symbols at the front of the book.
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4.1 RESPONSES OF PREDATORS TO FLUCTUATIONS
IN PREY DENSITY

Changes in prey density affect predators at both individual and pop-
ulation levels. Temporal variation in prey density affects the rate at
which prey are killed by predators (functional response). Predators
often respond to spatial variation in prey density by moving in ways
that result in their aggregation in areas where prey are abundant
(aggregative response). Functional and aggregation responses are a
direct result of individual behaviors, and as a rule occur on a fast
timescale. Variation in prey density also affects predator population
numbers, via its effect on predator reproduction and death rates. Such
a numerical response typically occurs on a slower timescale. For
example, many predators reproduce only once a year. Thus, if prey
density increases right after a reproduction period, it may take another
year before predators could respond by increasing their population
numbers. Even more important, it often takes an appreciable time
for predators to increase numerically to the point where they impact
prey survival rates. In general, therefore, functional and aggregative
responses, occurring on a fast behavioral timescale, tend not to intro-
duce time lags into population dynamics of predator-prey interaction,
while numerical responses, occurring on a slower timescale, often
do introduce time delays. This tendency is not absolute, however.
Aggregation responses may be very slow if predator movement rate is
slow compared to the scale of prey patchiness. For example, Abrams
(2000) suggests that aggregation responses may introduce enough of
a lag to have major effects on population dynamics. Vice versa, some
natural enemies, most notably pathogenic microorganisms, are char-
acterized by very fast numerical responses.

4.1.1 Functional Response

Functional response is defined as the temporal rate at which an indi-
vidual predator kills prey. Note that functional response is a double
rate: it is the average number of prey killed per individual preda-
tor per unit of time. Thus, units of functional responses are [prey]



80 TROPHIC INTERACTIONS

[predator]−1 [time]−1. Alternatively, the quantity of prey killed may
be measured as biomass, rather than individuals (this is particularly
appropriate for plant-herbivore models). Finally, note that I define
functional response in terms of the number of prey individuals killed,
rather than eaten. The reason for this is that functional responses
are part of the prey equation, and from the point of view of prey
the important factor is how many prey are removed from the popu-
lation, rather than how many are actually consumed. The consump-
tion part (translated into increased predator survival and reproduction)
belongs to the predator equation, where it becomes an important input
into the predator numerical response. For plants, similarly, functional
response refers to the amount of biomass removed by a herbivore,
which includes both what is consumed and what is “wasted”: cut off
and discarded, trampled, etc.

In the following, I provide an overview of most commonly used
functional responses, starting from the simplest ones. The formulas
that I discuss are listed together in table 4.1 where they can easily be
compared.

Linear Response The basic classification of functional responses
(Types I, II, and III) was proposed by Holling (1959). This was
an extremely important conceptual breakthrough, which continues to
serve as the basis of modern theory of predator-prey interactions.
Unfortunately, Holling muddied the waters by defining Type I func-
tional response as a linearly increasing function up to a point where
it abruptly becomes a flat horizontal line. There are several prob-
lems with this particular definition. First, it leaves the basic functional
response used in the Lotka-Volterra model unnamed (after all, their
equations assume no ceiling for the functional response). Second, it is
my opinion that the difference between Type I as defined by Holling
and Type II is rather minor. In fact, both of them satisfy the postulates
of mass action and maximum physiological rate (see chapter 2), and
consequently are characterized by two parameters. Both have similar
dynamical consequences (destabilization of the neutrally stable Lotka-
Volterra cycle). Finally, I dislike the sharp corner in the functional
response Type I—nature seems to abhor sharp corners, smoothing
them by averaging over event stochasticity and individual heterogene-
ity. In short, Type I does the same job as Type II, but more poorly.
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Table 4.1. Some functional responses. Variables: N , prey density;
P , predator density. Parameters: c, maximum killing rate; a, predator

searching rate; h, handling time; w, wasted time; b, maximum searching
rate; g, parameter regulating how fast search rate saturates with prey

density; d, half-saturation constant; 
, an exponent

Label Functional Form

Constant c

Linear aN

Hyperbolic
aN

1 + ahN

Exponential (Ivlev) c�1 − exp�−N/a��

Sigmoid
cN 2

d2 + N 2

Sigmoid (mechanistic)
bN 2

1 + gN + bhN 2


-sigmoid
cN 


d
 + N


Predator interference (mechanistic)
aN

1 + awP

Predator interference (phenom.) aNP−


Beddington1 aN

1 + awP + ahN

Hyperbolic ratio dependent
cN

dP + N

Linear ratio dependent c
N

P

1Combines the hyperbolic response with predator interference.
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Adding to the terminological confusion, many authors define Type I
as a purely linear functional response. Thus, I decided to abandon
the usage of “Types I, II, and III,” switching instead to descriptive
labels. Accordingly, the linear functional response is f �N� = aN .
It embodies the mass action principle in its purest form, and is the
component of the Lotka-Volterra predation model.

Hyperbolic Response Two functional forms have been proposed for
the saturating response (Holling’s Type II): exponential (Ivlev 1961),
which is now rarely used, and hyperbolic:

f �N� = aN

1 + ahN
= cN

d + N
(4.1)

The hyperbolic form is solidly based on mechanisms at the individ-
ual level (Holling 1965:8; for a more gentle exposition, see Gotelli
1995:150). The first parameterization in equation (4.1) is based on the
searching rate, a, and the handling time, h. The second parameteri-
zation employs c = h−1, the maximum killing rate, and d = �ah�−1,
the half-saturation constant (prey density at which the killing rate is
half of the maximum).

Recall that the hyperbolic functional response simultaneously sat-
isfies the principles of mass action and maximum physiological rates.
Thus, it has two limiting cases, each embodying one of the two princi-
ples: the linear and constant functional responses. The latter is rarely
used in the theoretical literature, but I nevertheless list it in table 4.1
for completeness.

Sigmoid Response Sigmoid (Holling’s Type III) functional responses
are often used in ecological theory without much thought given to
their mechanistic underpinnings. The phenomenological form

f �n� = cN 


d
 + N

(4.2)

as far as I know, has no mechanistic derivation. Originally, it was
thought (e.g., Holling 1965) that hyperbolic functional responses were
characteristic of invertebrate predators, while sigmoid responses were
characteristic of vertebrate predators. Since then, it has become clear
that the distinction is functional rather than taxonomic: specialist
predators should be characterized by the hyperbolic response, while



4.1 RESPONSES OF PREDATORS 83

generalists are expected to exhibit a sigmoid response, if they are
characterized by switching behavior. Generalist predators, by defini-
tion, kill several kinds of prey, including the focal species (the one
we study). Accordingly, when the density of the focal species is low,
generalist predators should focus on other prey species. When the
density of the focal prey is high, predators will switch to hunting it
(Murdoch 1969), because it becomes profitable for them to do so.
Perhaps the most likely mechanism for such switching behavior is
habitat choice. For example, a house cat (an ultimate generalist preda-
tor!) will hunt voles in the grassy patch when voles are abundant
there. When voles become sparse, cats will shift their attention to
birds coming to the feeder. Meanwhile, cat numbers will not respond
numerically to changes in either vole or bird abundance, since they
are regulated by the amount of cat food provided by their doting
owners.

A more mechanistic form of the sigmoid response can be derived
by starting with the hyperbolic response and assuming that predators
will search more actively as prey density rises (Hassell 1978:38).
Specifically, let us suppose that the search rate, a, is an increasing
function of prey density (Hassell 1978:43):

a�N� = bN

1 + gN
(4.3)

The saturating functional form assumed by equation (4.3) reflects the
obvious biological constraint that there is a maximum search rate
above which a�N� cannot increase no matter how high prey density
becomes. Substituting this form into the equation for the hyperbolic
response, we have

f �N� = a�N�N

1 + a�N�hN
= bN 2

1 + gN + bhN 2
(4.4)

Although this form of the sigmoid functional response has a clear
derivation from first principles, it is rarely used in population models.
A much more common form to be found in current theoretical liter-
ature is the following one

f �N� = cN 2

d2 + N 2
(4.5)
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This form is a special case of (4.4), which assumes a�N� = bN ; that
is, we set g = 0 in equation (4.3). New parameters are c = 1/h and
d2 = 1/�bh�.

If we replace the second power in (4.5) with an exponent parameter

, we obtain equation (4.2). This allows us to regulate the nonlinearity
of the transition between low predation rate at N near 0, and the
saturated level of predation at N → �.

Although equation (4.5) has obvious limitations, I believe that it
strikes the right balance between detailed mechanistic and detail-free
phenomenological approaches to generalist predation for most case
studies where we do not desire to model generalist dynamics explic-
itly. Its main practical advantage is the parsimony (only two parame-
ters). And it does have a derivation from first principles, so we know
exactly in what ways we oversimplify nature when we employ equa-
tion (4.5). This form has certainly been useful in both theoretical
investigations (e.g., Yodzis 1989:84–104) and practical applications
(e.g., Turchin and Hanski 1997). If more detailed description of the
process of generalist predation is desired, then perhaps we need to
model the switching process explicitly.

Predator Interference So far my survey has dealt only with prey-
dependent functional responses; that is, the assumption is that the
killing rate by a predator, f �·�, is a function of prey density only
f �·� = f �N�. This may be a tenable assumption for an experimental
situation where a single predator searches for prey in an arena, but
in real life it is likely that individual predators will interact with each
other. Leaving aside the issue of predator cooperation in hunting and
subduing prey, it is likely that predator encounters will lead to antag-
onistic interactions. Intraspecific competitive interactions between
individual predators can affect their birth and death rates (this will
be discussed later in the context of predator numerical responses).
Antagonistic interactions may also affect predator efficiency in find-
ing and killing prey, that is, predator functional response. It seems
most natural to model predator interference using the same logic as
that used to derive the hyperbolic functional response. Accordingly,
let us assume that each encounter between predators results in wasted
time, w′ (this is analogous to handling time, h). If predators encounter
each other at rate b (analogous to the encounter rate, a, with prey),
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then these assumptions lead to the following formula (Beddington
1975):

f �N ′� P ′� = aN ′

1 + bw′�P ′ − 1�

Beddington derived his functional response in terms of prey and
predator numbers, N ′ and P ′, so I am using primes here to distin-
guish from densities N and P , as used throughout my book. The term
�P ′ − 1� in Beddington’s formulation arises because he accounts for
the fact that an individual predator cannot encounter itself. Expressing
this term in terms of densities (i.e., P = P ′/A, where A is the area
occupied by the population), we have P − 1/A. Further, neglecting
the 1/A, which is likely to be close to 0, we have

f �N � P� = aN

1 + bw′P

Next we note that parameters b and w′ enter the above formula as a
single combination. This suggests that we do not actually need two
separate parameters. Predator encounter rate, b, is likely to be similar
to the search rate, a (differing only if predators detect each other at
distances much different from those at which they detect prey). This
observation suggests the following reparameterization: w = w′b/a,
leading to

f �N � P� = aN

1 + awP
(4.6)

This form is clearly analogous to the hyperbolic functional response,
which should not be surprising, since it was derived following the
same logic.

Equation (4.6) is what I call the mechanistic form of the func-
tional response with predator interference because it was derived from
first principles. There is also a more phenomenological form (see
table 4.1). This form was proposed by Hassell and Varley (1969), but
later Hassell (1978:84) pointed out that it has problems, and suggested
that the more mechanistic form is more appropriate for modeling host-
parasitoid systems. Unfortunately, the phenomenological form con-
tinues to be used. I strongly recommend the more mechanistic form:
it has the same number of parameters, it has a clear derivation from
first principles, its parameters are interpretable in terms of individual
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behavior, and it does not make a biologically implausible assumption
that predator efficiency would increase indefinitely as predator den-
sity declines to zero (Hassell 1978:84). In short, the contrast between
the two forms once again illustrates the value of theory derived from
first principles.

Yet another advantage of the form (4.6) is that it allows us a
natural method for including predator interference in the hyperbolic
functional response. The logic is that predators “waste” time both
handling prey and dealing with other predators. Thus, both handling
time and wasted time are added together to reduce the amount of time
left for search. This logic leads to the following form for combined
functional response:

f �N � P� = aN

1 + awP + ahN
(4.7)

This functional form was first proposed by Beddington (1975) and
independently (although without a derivation from first principles) by
DeAngelis et al. (1975).

Ratio-Dependent Responses Perhaps the most direct way to derive
a ratio-dependent functional response is to start with the interference
response, equation (4.7), and simplify it by assuming that “1” in the
denominator is small relative to awP + ahN . We might expect that
this would not be a bad approximation in situations where predator
interference is very strong (awP � 1). Following this logic, we have

f �N �P�= aN

1+awP+ahN
≈ aN

awP+ahN
= cN

dP+N
= cN/P

d+N/P
(4.8)

which is the hyperbolic functional response, but with the ratio N/P

replacing prey density, N . The advantage of equation (4.8) over (4.7)
is that it has one fewer parameters.

Ratio-dependent predation has been a subject of intense contro-
versy (see, e.g., Arditi and Ginzburg 1989; Abrams 1994; Akcakaya
et al. 1995). Recently, two of the most vocal opponents in this debate
collaborated on a very useful summary that clearly delineated the
areas of agreement and disagreement (Abrams and Ginzburg 2000).
Surprisingly, Abrams and Ginzburg agreed on many more issues than
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they disagreed on. Most important, it seems clear that predator den-
sity should have a strong effect on predator functional response in
nature. Many biological processes can produce such predator depen-
dence: (1) group hunting by the predator, (2) facultative and costly
antipredator defense by the prey, (3) density-dependent and time-
consuming social interactions between predators, (4) aggressive inter-
actions between searching predators that encounter each other, and (5)
a limited number of high-quality sites where predators capture prey
rapidly (for references, see Abrams and Ginzburg 2000:339). How-
ever, including such realistic processes into the functional response
f �N � P� typically leads to complex, multiparameter functions. Prey-
dependent, f �N�, and ratio-dependent, f �N/P�, responses offer sim-
pler, less parameter-rich formulations. Such functions, therefore, are
better starting points for modeling real predator-prey systems, since
starting with simple equations and building in complexity only where
necessary is a much better methodology than jumping into complex-
ity right away. Of course, the cost of simplicity is lack of realism.
Precise prey- or ratio-dependence should be rare. In particular, prey
dependence must break down for sufficiently high predator densities,
while ratio dependence must break down for sufficiently low predator
densities (Abrams and Ginzburg 2000:338–339).

All these issues are ones on which Abrams and Ginzburg agree.
The disagreement is on which of the alternative simpler approaches
provides a better starting point. Ginzburg feels that averaging of
functional responses (e.g., over reproductive intervals) shifts trophic
functions toward ratio dependence, and that such averaged responses
should be the basis of both differential and difference equation mod-
els because these averages determine long-term population dynamics.
By contrast, Abrams favors prey-dependent models as the basic build-
ing blocks for theory because they are based on a single well-defined
set of assumptions; this makes it clear how to modify them when
the assumptions are known to be deficient (Abrams and Ginzburg
2000:341).

My philosophy of modeling inclines me to agree with Abrams. I
feel that the hyperbolic (i.e., prey-dependent) functional response pro-
vides the appropriate starting point, especially if we formulate mod-
els within the differential equations framework. Predator interference
can be added transparently, leading to the Beddington response. If
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reproduction and predation occur on different timescales (e.g., repro-
duction is seasonal), reproduction can be appropriately modeled in a
pulsed (or some other time-varying) fashion. Logically, I do not see
the need to use any averaging, as suggested by Ginzburg; the differen-
tial equations framework allows us to model both predation and repro-
duction processes explicitly and mechanistically. Matters are different
when we employ discrete-time (difference) equations, where some
temporal averaging is inevitable (see section 4.3.1). Furthermore, it is
not necessary to be dogmatic about this choice. For example, if the
ratio-dependent response fits data better than the prey-dependent one
with the same number of parameters, then by all means we should
consider basing our model on the ratio-dependent form.

As a final comment, I wish that ecologists would write more papers
like Abrams and Ginzburg (2000). If we did so, we might find that
our disagreements are not as deep and wide as they may appear. Fur-
thermore, clearly stating the remaining areas of disagreement allows
the protagonists in the controversy to advance the empirical research
agenda, as Abrams and Ginzburg did.

4.1.2 Aggregative Response

Aggregation is an explicitly spatial process and consequently does not
fit easily within the dichotomy of functional and numerical responses
postulated by the standard (aspatial) theory of predator-prey inter-
actions. Most textbooks do not even mention aggregative responses,
and there is some confusion in the literature about appropriate ways
of treating aggregation. For example, some authors consider it as a
kind of a numerical response. Indeed, aggregation results in a local
increase of predator numbers. However, in most cases it is inap-
propriate to confuse aggregative and numerical responses, because
the numerical response results from births and deaths, and typically
occurs on a much slower timescale than behavior-based aggregative
(and functional) responses. In reality, a full treatment of aggregative
responses requires an explicitly spatial approach, and therefore can-
not be pursued here (interested readers may wish to consult my book
on movement and spatial dynamics, Turchin 1998). There are some
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circumstances, however, when aggregative responses can be approxi-
mated with simple, spatially implicit functional forms.

Consider a landscape of many patches with very variable prey den-
sity in each. Suppose that predators can move freely over the whole
landscape. The simplest possible scenario for predator aggregation is
provided by the ideal free distribution, which suggests that predators
should forage in a patch only if prey density there is greater than a
certain threshold, say h. The number of predators in low-prey patches
will be zero, and in high-prey patches it will be Phigh, equal to the
total number of predators within the landscape, divided by the number
of high-prey patches. This is not a terribly realistic foraging model,
but let us see how far it will take us. Let us make a further simplifi-
cation and assume that each predator will kill prey at a constant rate,
c. The reason for this assumption is that in high-prey patches, where
all predators are, their functional responses are likely to be saturated.
These assumptions imply that in a patch with prey density N

total killing rate =
{

0 if N < h

cPhigh otherwise

Because both c and Phigh are constants, we can reparameterize their
product as g. Thus, the total killing rate will be 0 if N < h and g

if N > h. It is not very likely, however, that killing rate will change
in such a discontinuous, steplike fashion at density threshold h. For
example, predators will probably need to forage in a patch for some
time before they can obtain enough information to decide whether to
leave it or stay. This and other considerations suggest that the sharp
corners of the step function that we derived above should in reality
be blurred. We can represent this blurring with the phenomenological
sigmoid form:

total killing rate = gN 


h
 + N

(4.9)

The exponent 
 controls the degree of sharpness, so that as 
 → �
equation (4.9) approaches the step function.

The argument leading to equation (4.9) rides roughshod over all
kinds of biological sensibilities, some of which were touched upon
and others were not. This is clearly an extremely crude approxima-
tion, but the alternative is an explicitly spatial approach, which would
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require collecting much more data than are typically available in real-
life applications. As often is the case, the question of applicability of
equation (4.9) becomes empirical—how bad an approximation is it in
any particular application?

One interesting feature of equation (4.9) is that it is clearly related
to the sigmoid functional response (table 4.1). However, it is very
important to note that equation (4.9) refers to the total killing rate,
rather than killing rate per predator, which is the functional response.

4.1.3 Numerical Response

Numerical response refers to the rate of change of predator popu-
lation as a function of prey and predator densities. There are three
major components of numerical response (Beddington et al. 1976b):
growth of individual predators, predator reproduction, and predator
death. All of these processes require energy derived from consumed
prey. Individual growth and reproduction can be thought of as two
aspects of a single process, increase in predator biomass. The proba-
bility of death, on the other hand, should be related to the amount of
energy needed for maintenance. Recollect that postulate 5 connects
the amount of energy derived from consumed prey to that available
for growth/reproduction and maintenance. The simplest assumption is
that energy available for growth, reproduction, and maintenance is a
linear function of food intake—the linear conversion rule (Ginzburg
1998). Translating this assumption into per capita rate of growth of
predator population, we have

dP

P dt
= ��I − �� (4.10)

The easiest way to understand equation (4.10) is by casting it in ener-
getic terms. Accordingly, let P be the energy contained in predator
biomass, and I the rate at which energy in prey biomass is ingested by
an individual predator. Then, � is the assimilation efficiency, and �I

is the rate at which prey energy is assimilated by an individual preda-
tor. A part of assimilated energy, ��, is used for maintenance (or
respiration), and the rest, ��I − ��, is allocated to growth and repro-
duction (or secondary production). Finally, if the rate of ingestion is
zero, biomass of an individual predator will decrease at the rate ��.
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Recasting equation (4.10) in population-level terms, let P be preda-
tor density, rather than biomass. Parameter � is the ZPG (zero pop-
ulation growth) consumption rate, because it is the consumption rate
at which an individual predator just manages to satisfy its mainte-
nance requirements and replace itself. Parameter � is the rate at which
ingested prey in excess of the replacement requirement is translated
into predator population increase. Finally, �� is now seen to be the
death rate of predators in the absence of prey.

Numerical response based on equation (4.10) provides a very use-
ful starting point for modeling predator-prey interactions. However,
because it is the simplest implementation of postulate 5, it may need
to be modified in real-life applications. For example, some theoret-
ical ecologists argued that the assumption of constant death rate of
predators in the absence of prey is unrealistic (Ginzburg 1998).

The next step is to link equation (4.10) to quantities appearing
in the prey equation. The simplest assumption is that ingestion rate
equals the killing rate, or functional response. Thus, if predators
are characterized by a hyperbolic functional response, then equa-
tion (4.10) becomes

dP

P dt
= �

(
cN

d + N
− �

)
(4.11)

This relationship between the per capita rate of predator increase and
prey density is depicted in figure 4.1. Note that the relationship satu-
rates at high prey density, so that predator’s r0 = ��c − ��. In other
words, equation (4.11) does not violate the principle of maximum
physiological rates (postulate 6).

How likely is the assumption that ingestion rate equals functional
response? Some predators, such as predatory fish, swallow their prey
whole. Other predators, such as many mammalian ones, always leave
some parts of prey unconsumed (hooves, horns, large bones, etc.). If
the proportion of prey biomass that is not consumed does not depend
on prey density, then no special handling is required. We simply fold
the proportion of biomass that is edible into the constant �. However,
if predators consume a smaller proportion of biomass at higher prey
density, or even indulge in surplus killing , then we need to modify
the predator numerical response accordingly.

How should the proportion consumed vary with prey density?
When prey density is low, it should be at the maximum. Let us set it
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Figure 4.1. The relationship between the per capita rate of predator change
and prey density, resulting from the hyperbolic functional response and the
assumption of equation (4.10).

to 1, without any loss of generality (essentially I am assuming that we
are talking about the proportion of edible biomass). As prey density
increases, this proportion should decrease, approaching either 0 or
some small positive number. Here is a possible approach to modeling
this process. Let us assume that a predator spends hs units of time
subduing prey (this includes the whole process of pursuing, subduing,
and killing prey, and perhaps resting before starting the search again).
On the consumption side, let hd be the time needed to digest one
prey item. Because digestion is a slower process than subduing prey,
hd > hs . These assumptions imply that both the functional response,
f �N�, and the consumption rate, c�N�, are hyperbolic functions, and
that the proportion consumed is the ratio c�N�/f �N�:

f �N� = aN

1 + ahsN

c�N� = aN

1 + ahdN

c�N�

f �N�
= 1 + ahsN

1 + ahdN

We see that this simple modeling of proportion consumed satis-
fies the constraints we set on it a priori. In particular, as N → 0,
c�N�/f �N� → 1, and as N → �, c�N�/f �N� → hs/hd < 1, since
hs < hd. Furthermore, the proportion consumed would be 0 only if
the subduing time, hs , were 0, that is, if the functional response is
linear.
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So far I discussed only how predator consumption of prey affects
predator numerical response. Predators also interact directly in a vari-
ety of competitive and cooperative ways, and these interaction terms
affect their numerical dynamics. Such mechanisms, however, are best
considered within the context of dynamical consequences of various
assumptions about functional and numerical responses, which is the
next topic to be discussed.

4.2 CONTINUOUS-TIME MODELS

Predator-prey theory is one of the best-developed areas in popula-
tion ecology, so that modeling any particular predator-prey system is
increasingly an application of craft rather than art. The most popular
framework for modeling specialist predator-prey interactions has the
following structure:

dN

dt
= +

prey growth in
the absence of

predators
− total killing rate

by predators

dP

dt
= −

predator growth
(decline) in the
absence of prey

+
conversion of

eaten prey into
new predators

where N and P are densities of prey and predators, respectively. The
majority of ecological predator-prey models make a further assump-
tion that the rate at which eaten prey is converted into new predators
is directly proportional to the killing rate, yielding

dN

dt
= r�N �N − f �N � P�P

dP

dt
=�f �N � P�− ��P�P

(4.12)

Here r�N � is the density-dependent per capita rate of prey growth
in the absence of predators, ��P� is the per capita decline rate of
predators in the absence of prey, f �N � P� is the predator functional
response, and � the conversion rate of eaten prey into new predators.
The origins of equations (4.12) go clearly back to the Lotka-Volterra
model, which is the simplest possible example of it (since it assumes
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exponential growth/decline terms and the linear functional response).
Much of the standard predator-prey theory, therefore, is an elabora-
tion of the Lotka-Volterra model that substitutes more sophisticated
assumptions in one box or another of the framework depicted at the
beginning of this section. In fact the state of the theory is such that
one can simply take modules appropriate to the specific empirical
system “off the shelf,” fit them within the general framework, and
usually have a reasonable starting point for modeling the system.

In the following review of predator-prey models, I start with those
that conform to the generalized Lotka-Volterra form (4.12) and then
consider models that fall outside this framework. At the end of the
section I also discuss generalist predation. My primary concern is
what various assumptions mean for real-life applications, and the
qualitative dynamics that the resulting models are capable of. To keep
track of different models, I label them with the name(s) of people
who first proposed or analyzed them (to the best of my knowledge;
I apologize to any authors whom I inadvertently slight by not giving
them proper credit).

4.2.1 Generalized Lotka-Volterra Models

The Volterra Model The first obvious place to add some realism to
the Lotka-Volterra model is by relaxing the assumption of density-
independent prey growth. Volterra (1931) proposed a model in which
prey grows logistically in the absence of predator:

dN

dt
= r0N�1 − N/k�− aNP

dP

dt
=�aNP − �0P

(4.13)

The effect of assuming density-dependence in prey growth is to rotate
the prey isocline clockwise (see figure 4.2). A good rule of thumb
in evaluating the effect of structural assumptions on the stability of
a predator-prey model is to check whether the modifications rotate
the isoclines clockwise (this yields more stable dynamics) or counter-
clockwise (this tends to destabilize the system). The Volterra model,
accordingly, should be more stable than the Lotka-Volterra model. In
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Figure 4.2. Clockwise rotation of the prey isocline in the Volterra model,
as a result of adding the logistic self-limitation term to the Lotka-Volterra
model.

fact, the Volterra model is characterized by a globally stable equilib-
rium point: any trajectory starting at positive prey and predator density
will be attracted to this equilibrium. This should not be surprising,
since we expect that any density dependence should contribute to the
stability of the system.

The Rosenzweig-MacArthur Model The Volterra model is a step in
the right direction (and it gets us away from the pathological neutral
stability of the Lotka-Volterra model), but it does not go far enough.
We also need to do something about the assumption of the linear
functional response. Rosenzweig and MacArthur (1963) are gener-
ally credited with adding the assumption of the hyperbolic functional
response to the Volterra model:

dN

dt
= r0N

(
1 − N

k

)
− cNP

d + N

dP

dt
=�

cNP

d + N
− �0P

(4.14)

This is perhaps the simplest model that can actually be applied to
real-life systems. As a result, it has become something of a standard
predator-prey model for resource-consumer interactions in theoretical
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ecology. Sometimes a different parameterization of the predator equa-
tion is used:

dP

P dt
= �

(
cN

d + N
− �

)
(4.15)

The ZPG consumption rate, �, is the rate of prey consumption
that an individual predator needs to survive and replace itself (see
section 4.1.3). This parameterization is often useful in relating the
Rosenzweig-MacArthur model to the data, since it is often easier to
estimate � from bioenergetic considerations than the predator death
rate in the absence of prey, �0.

This basic model is capable of two nontrivial kinds of dynamic
behaviors: a stable equilibrium and a limit cycle. Cycles occur for
parameter values satisfying the inequality d/k < �c − ��/�c + ��.
In general, decreasing the d/k ratio destabilizes dynamics (via the
well-known mechanism of the paradox of enrichment). In addition,
the model becomes more prone to cycle when � is decreased in rela-
tion to c. Parameter r0 does not affect qualitative stability, but affects
quantitative aspects of dynamics: low values of r0 result in long cycles
with high amplitude, while high values produce shorter, less extreme
oscillations.

The Rosenzweig-MacArthur model succeeds as the paradigmatic
model for predator-prey interactions for two reasons. First, it fixes
the worst failings of the Lotka-Volterra model. It does not satisfy all
the postulates proposed in chapter 2 (there is no density dependence
in the predator equation), but this can be considered a minor prob-
lem in applications where predators do not directly affect each other’s
performance, so that predator regulation occurs solely as a result of
their running out of food. Second, the Rosenzweig-MacArthur model
is capable of the complete spectrum of dynamical behaviors that can,
in principle, characterize this kind of model (a system of two ordi-
nary differential equations): a stable point equilibrium and stable limit
cycles (and extinction of predator or both species, but these are not
interesting outcomes from the point of view of population dynamics).

The Yodzis Model If, instead of hyperbolic response, predators are
characterized by a sigmoid functional response, then we have the
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following model

dN

dt
= r0N

(
1 − N

k

)
− cN 2

h2 + N 2
P

dP

dt
=�

cN 2P

d2 + N 2
− �0P

(4.16)

I will name this model after Peter Yodzis, who extensively ana-
lyzed its dynamics (Yodzis 1989:84–99; this is a good nontechnical
introduction to the mathematical analysis of predator-prey models),
although he probably was not the first to propose it. Despite their
rich diapason of behaviors, however, I do not recommend using equa-
tions (4.16) in practical applications. My main problem with this
model is its assumption of the sigmoid functional response. Equa-
tions (4.16) model specialist predator-prey interaction, since in the
absence of its primary prey (N → 0) the predator would rapidly die
out. However, it does not make sense for specialist predators to reduce
their searching effort at low prey density, because they do not have
an alternative prey to switch to. One might suggest that predators go
into hibernation to wait for better times, but that is not what model
(4.16) implies: although at low prey density predators stop hunting,
they continue to die off at the maximum rate �0. To conclude, it is
my opinion that sigmoid functional responses should be used only
for generalist predators (whose numerical dynamics, therefore, should
not change in response to variations in prey density).

The DeAngelis Model The next step in our consideration of the
effect of various functional responses on predator-prey dynamics is
the Beddington form that combines hyperbolic response with predator
mutual interference:

dN

dt
= r0N

(
1 − N

k

)
− cNP

d + bP + N

dP

dt
=�

cNP

d + bP + N
− �0P

(4.17)

This model was analyzed by DeAngelis et al. (1975; their equations 5
and 6 include density dependence in predator growth rate, but in the
actual analysis they set this density dependence to zero). The DeAn-
gelis model is dynamically very similar to the Rosenzweig-MacArthur
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model (to which it collapses as b → 0), and has a similar spec-
trum of dynamics. However, mutual interference between consumers
reduces predator killing efficiency at high predator densities, therefore
imposing a positive feedback on predator density. This is a stabilizing
influence, and in general the chance of oscillations in the DeAngelis
model tends to be reduced (DeAngelis et al. 1975:888).

Setting parameter d = 0 in the DeAngelis model leads to the
model analyzed by Arditi and Ginzburg (1989). Thus, the Arditi-
Ginzburg model results from an incorporation of a ratio-dependent
functional response into the Lotka-Volterra framework.

The Bazykin Model Returning to the assumption of the hyperbolic
functional response, let us consider the effect of adding self-limitation
terms in the predator equation. Assuming linear density dependence,
we have

dN

dt
= r0N

(
1 − N

k

)
− cNP

d + N

dP

dt
=�

cNP

d + N
− �0P − �1P

2

(4.18)

This model was proposed by Bazykin (1974). The assumption of lin-
ear self-limitation is really the logistic term in disguise. To see this,
let us assume that prey density is at the level where predator func-
tional response is saturated. In other words, we are removing prey
dependence from the second equation in (4.18) to highlight the self-
limitation term:

dp

dt
= �cP − �0P − �1P

2 = s0P

(
1 − P

�

)

We see that we end up with a logistic model, in which s0 = �c − �0

and � = ��c− �0�/�1. One interpretation of � may be as the greatest
number of territories that can be fitted into a unit of space.

The Bazykin model is inherently more stable than the Rosenzweig-
MacArthur model. In order for it to cycle, its parameters must satisfy
all the conditions for cycles in the Rosenzweig-MacArthur model, and
in addition the self-limitation coefficient, �1, must be weak enough.

Variable Territory Model One possible biological mechanism that
could lead to the self-limitation term in the Bazykin model is ter-
ritoriality. Note, however, that the Bazykin model assumes a fixed
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territory size; in particular, it is independent of food availability. In
situations where the size of territories is affected by food availability,
we would need to use a somewhat different model, as the follow-
ing argument shows. Assume that dominant individuals will defend
an area that is sufficient to fulfill their energetic requirements. If q

is the minimum amount of prey biomass required by an individual
predator, then the territory size that needs to be defended for a par-
ticular value of prey biomass, N , is T = q/N . The predator carrying
capacity is the number of territories that can be fitted within 1 unit
of area, in other words, � = 1/T . Thus, this argument suggests that
predator carrying capacity should be directly proportional to current
prey biomass, � = N/q. Rewriting the Bazykin model in terms of s0

and �, and then substituting N/q, we obtain the following equation
for consumer rate of change (Turchin and Batzli 2001):

dN

dt
= r0N

(
1 − N

k

)
− cNP

d + N

dP

dt
=�

cNP

d + N
− �0P − s0q

N
P 2

(4.19)

I call this modification of the Bazykin model a variable territory
model, because it is derived by assuming that the territory size
changes in response to food availability.

4.2.2 Models Not Conforming to the LV Framework

Logistic Predation Abandoning the general LV framework, I now
consider two models based on a direct generalization of the logistic
equation. The first model was proposed by Leslie (1948):

dN

dt
= r0N

(
1 − N

k

)
− aNP

dP

dt
= s0P

(
1 − q

P

N

) (4.20)

It retains the prey equation from the Volterra model, but for predators
it assumes a logistic-like term, in which predator carrying capacity
is directly proportional to prey density. Parameter s0 is the intrinsic
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rate of predator increase. May (1974b) modified the Leslie model by
assuming the hyperbolic functional response in the prey equation

dN

dt
= r0N

(
1 − N

k

)
− cNP

d + N

dP

dt
= s0P

(
1 − q

P

N

) (4.21)

This model was later used by Tanner (1975) to investigate dynamics
of mammalian predator-prey systems, and by Hanski et al. (1991) to
model vole-weasel dynamics (see chapter 12).

One problem with the Leslie and May models is that they violate
postulate 5, trophic coupling (Ginzburg 1998). This leads to some
anomalies in their predictions. For example, the May model predicts
that even at very low prey density, when the killing rate by an individ-
ual predator is essentially zero, predator populations can nevertheless
increase, if predator/prey ratio is very small (that is, predator popula-
tion is even smaller than prey). Clearly, this feature of the model vio-
lates the energetic principle—how can predator populations increase
when individual predators are starving?

It is instructive to consider whether the logistic predation term
may be derived as an approximation of some other, more mechanistic
model. For example, the May model appears to be related to the
variable territory model: if we approximate cNP/�d + N� term in
the predator equation of model (4.19) with cP (this is a reasonable
approximation as long as N � d), then we obtain the May model. In
other words, the May model can be justified as an approximation of
the variable territory variant of the Bazykin model. We now see why
the May model breaks down for low prey densities: the approximation
cN/�d + N� ≈ c cannot hold.

The logic that connects the May and the variable territory models
can be pushed one step further. Recollect that the May model can
be derived by assuming that predator consumption rate is located
within the saturated region; in other words, it does not depend on
prey density. The functional response in the May model, however, is
still modeled by the hyperbolic function. To harmonize the killing and
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consumption rate, therefore, we might consider the model in which
the functional response is constant:

dN

dt
= r0N

(
1 − N

k

)
− cP

dP

dt
= s0P

(
1 − q

P

N

) (4.22)

Here the predator intrinsic rate of increase, s0, and the (constant)
consumption rate, c, are connected: s0 = �c − �0, where �0 is the
predator density-independent death rate in the absence of prey con-
sumption, and � is the conversion efficiency, as usual. I will call this
the Eberhardt model since a discretized version of equations (4.22)
was used by Eberhardt (1997) in an analysis of wolf-ungulate dynam-
ics. This is not a good model for investigating population cycles,
because prey density would periodically achieve low values, where
approximations on which the model is based cannot hold. On the other
hand, it may be a reasonable model for small-scale fluctuations in the
vicinity of the equilibrium (providing that d 
 k). It certainly has the
advantage of great simplicity, and its parameters can be approximated
from regularly available life-history information. In particular, one
great advantage of model (4.22) is that it does not require estimation
of the search rate, a (or, alternatively, the half-saturation constant, d).

Prey-Dependent Consumption The final model that I consider is
the one based on the idea explored in section 4.1.3 that predators
may consume an increasingly smaller proportion of killed prey as
prey density increases. To investigate the effect of this assumption
on model stability, I use the extreme form of prey dependence in
predator consumption rate that leads to the linear functional response
and hyperbolic numerical response:

dN

dt
= r0N

(
1 − N

k

)
− aNP

dP

dt
=�

aNP

1 + ahN
− �0P

(4.23)

A little algebra shows that this model has the same isocline structure
as the Volterra model. Thus, this model is characterized by a glob-
ally stable point equilibrium for all values of parameters. Because
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this model is intermediate between the Volterra and the Rosenzweig-
MacArthur, this interesting result suggests that the destabilizing fea-
ture in the RM model is not the limited ability of predators to increase
numerically, but their limited ability to kill prey. This conclusion fol-
lows from the observation that leaving linear functional response in
the prey equation prevents the model from being able to exhibit stable
limit cycles.

4.2.3 Anatomy of a Predator-Prey Cycle

The population interaction between a specialist predator and its prey
has certain stereotypical features that affect the topology of the
predator-prey cycle. More specifically, predator and prey cyclic peaks
tend to be characterized by different shapes—“sharp” versus “blunt,”
and this feature can be a useful diagnostic in time-series analysis
(see section 7.1.3). In many trophic systems, prey reproduce faster
than predators. Faster intrinsic rate of increase of prey means that
during the initial phase of the cycle, when both prey and predators
are at low densities, prey numbers easily outgrow predator numbers.
Prey numbers then approach some population “ceiling,” typically
imposed either by food availability or by prey social interactions
(or both). Meanwhile predators, who have plenty of food, increase
more slowly. As a result, prey populations remain at peak densities
for some extended time, depending primarily on predator intrinsic
population growth rate. Prey peaks, thus, have a blunt shape.

By contrast, predator peaks are sharp. When predators eventually
increase to the point where they begin to affect prey density, the
whole system enters rather abruptly a new regime, in which there are
too many predators chasing too few prey. As prey begin collapsing,
predator density also starts declining. The decline phase continues
until predator densities drop to the point where they cannot affect
prey anymore. Thus, from the point of view of a predator in an oscil-
latory trophic system, there are only two cyclic phases: one of prey
abundance and few competitors, and the other of prey scarcity and
many competitors. The transitions between the two phases are quite
abrupt, and the resulting dynamics are of the saw-toothed pattern.
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Figure 4.3. Peak shapes in a predator-prey system. Solid curve: prey den-
sity (N ). Broken curve: predator density (P ).

From the prey point of view, a cycle has three phases. First, there
is plenty of food and no predators. This phase smoothly grades into
the second one, when predators are still absent, but there is high
competition for food or space. Finally, there is an abrupt transition to
the phase of high predation mortality. The transition between the third
and first phases is also fairly abrupt. The typical topology of predator-
prey cycles is exemplified by numerical solutions of the Rosenzweig-
MacArthur model (figure 4.3).

The topological pattern in figure 4.3 does not depend on the
details of the Rosenzweig-MacArthur model, and is exhibited by
other predator-prey models. In practice, however, it is not always
going to be easy to detect that prey peaks are blunter than predator
peaks. First, oscillations must be of high enough amplitude to reveal
the pattern. Second, predators must have a lower r0 than prey, so
that the predator increase phase is long enough for prey to reach
the plateau imposed by first-order regulatory factors (competition
for food or space). If predators increase too fast, then the plateau
phase in the prey trajectory may be hard to detect. Finally, popu-
lation trajectories must be sampled finely enough. Obviously, if we
have only two points per oscillation, all we would see would be
an alternation between high and low values. Thus, a saw-toothed
pattern may be consistent with either prey or predator dynamics in
a trophic interactions model. The reverse is not true, however: in a
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two-species oscillatory system, predators cannot have blunt peaks.
An imposition of a first-order regulatory mechanism strong enough to
slow the approach of predator density to the peak, necessary for the
blunt-peak pattern, has a side effect of stabilizing the predator-prey
system.

4.2.4 Generalist Predators

As I discussed in section 4.1.2, there are two main approaches to
modeling the effect of generalist predators. The more realistic, but
also more complicated, approach is to model explicitly densities of
alternative prey species and behavioral mechanisms that generalists
use to switch between them. The second, much simpler, approach is
to assume that generalist predators exhibit no numerical response to
variations in prey density (i.e., predators are an exogenous factor in
the system). This is the approach that I review here.

Since the numerical response is set to zero, and by convention in
this book I do not consider explicitly spatial aggregation responses,
the only choice we need to make in the generalist predation model is
the form of the functional response. There are two sensible options:
hyperbolic versus sigmoid responses (section 4.1). A simple model
employing the hyperbolic response and assuming that prey population
growth in the absence of predators is logistic is

dN

dt
= rN

(
1 − N

k

)
− gN

d + N
(4.24)

Note that the parameter g is the total killing rate by generalist preda-
tors. That is, g = cP , where c is the saturation killing rate by individ-
ual predator and P is the density of generalist predators. Since both
c and P are assumed to be constant, so is g. There is no equation
for predator density, since it is constant (at least in the deterministic
version of the model; we can make parameter g a random function
of time to model stochastic variation in generalist predator density).

The effect of generalist predators on prey dynamics can be eas-
ily understood by plotting together two per capita rates: that of prey
growth and that of prey death due to predators (figure 4.4a). Prey
density will increase if the dashed curve (predation rate) is below
the solid line (growth rate in the absence of predators), and decline
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Figure 4.4. Effect of generalist predators on prey dynamics: (a) hyperbolic
functional response; (b) sigmoid functional response. Solid lines: per capita
growth rates of prey population in the absence of predators. Dashed curves:
per capita death rate of prey as a result of predation. Numbers correspond
to various cases discussed in the text.

otherwise. Equilibrium points occur where the two curves intersect.
There are three possible configurations. In case 1, prey death rate is
always greater than its reproduction rate, and therefore prey popula-
tion will go extinct. In case 2, there are two equilibria. The upper
one is stable, the lower one unstable. Thus, if prey density starts high
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enough (above the lower unstable equilibrium), then it will approach
the upper equilibrium. However, if for some reason prey density
decreases below the lower equilibrium, prey goes extinct. In case 3,
only one equilibrium (upper and stable) is present. In sum, there are
two generic outcomes: either generalist predators drive prey extinct,
or prey exists at an upper stable equilibrium, where predator impact
is slight. In this model, predators cannot control prey at a low stable
density.

Model (4.24), unlike the Ludwig model to be considered next,
is not often utilized by population ecologists, probably for two rea-
sons. First, we typically associate the sigmoid response with generalist
predators, rather than the hyperbolic one as assumed by this model
(but see a note on this in the next paragraph). Second, the model pre-
dicts either a slight effect of predation on prey equilibrium densities,
or an unstable (and therefore nonstationary) situation in which prey
go extinct (or both). Neither of these outcomes is terribly interesting
in practical applications. However, model (4.24) is important from the
theoretical point of view, because it elucidates the population-level
consequences of generalist predation with the hyperbolic functional
response.

The Ludwig Model The assumption of the sigmoid functional
response leads to the following model:

dN

dt
= rN

(
1 − N

k

)
− gN 2

h2 + N 2
(4.25)

This model, analyzed by Ludwig et al. (1978), can also be char-
acterized by three possible configurations of per capita growth and
death rates (figure 4.4b). In case 1, only the lower equilibrium is
present, which is stable unlike in model (4.24). In case 2, we have
the metastable situation, in which prey density may be attracted to
either the upper or the lower stable equilibrium, depending on the ini-
tial conditions. The intermediate equilibrium is unstable, and serves
as the separatrix between the basins of attraction of the two stable
equilibria. In case 3, only the upper (stable) equilibrium is present.
Thus, the qualitative difference between models (4.24) and (4.25) is
that in the latter predators can control prey at a low density without
driving prey to extinction. On biological grounds, we would expect
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that the model with the sigmoid response would be more likely to
describe any particular generalist predator-prey system, because there
is no reason for generalists to waste time searching for very rare prey.
Unlike specialist predators, they are likely to have other prey species
to switch to. This is the basis for associating the hyperbolic response
with specialists and the sigmoid one with generalists. There is, how-
ever, one important exception to this rule. It occurs when alternative
prey are found in the same spatial locations and habitats as focal prey.
In this case, generalist predators will continue encountering focal prey
even if those prey are very rare, simply as a side effect of search-
ing for other more common prey species. Assuming that predators do
not form a search image, then encounters are likely to result in prey
death. In this case, the predator’s functional response is likely to be
of the hyperbolic kind. The population consequence of this biological
feature is that prey will be driven to extinction (at least, locally) if
they become rare.

The Hanski Model Finally, it is very straightforward to combine
generalist and specialist predators in the same model, assuming that
these predators do not interfere with each other. For example, let us
assume that specialist predator-prey interaction is described by the
May model, while the generalist predators are characterized by the
sigmoid functional response:

dN

dt
= r0N

(
1 − N

k

)
− cNP

d + N
− gN 2

h2 + N 2

dP

dt
= s0P

(
1 − q

P

N

) (4.26)

The conceptual basis for this model was developed by Hanski et al.
(1991) in the context of small rodent cycles. This model presents a
very interesting paradigm for population dynamics of prey attacked
by a community of specialist and generalist predators. In a commu-
nity where generalist predators are rare, the dynamics of the Hanski
model will be essentially the same as those predicted by the May
model: either stable limit cycles or a stable point equilibrium. Let
us assume that the parameters of the interaction between specialists
and prey are such that the dynamics of this model are fairly deep
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in the cyclic region, and examine the effect of “cranking up” gen-
eralist predation pressure. At first, as generalist predators increase,
they will depress the prey equilibrium in the absence of specialists
only slightly (this is the situation associated with case 3 in figure
4.4b). Then, for some (rather narrow) range of generalist predator
densities, we obtain case 2 with its three equilibria. Increasing gen-
eralist numbers even further, we move to case 1, with its low stable
equilibrium. Recollect that the May model belongs to the class of
models that are characterized by the paradox of enrichment. In other
words, as prey equilibrium density in the absence of specialist preda-
tors decreases, the model dynamics switch from stable limit cycles
to a stable point equilibrium. Thus, in our scenario of both generalist
and specialist predators present, case 3 corresponds to cycles, while
case 1 is likely to lead to stability (observe that prey equilibrium is
at a very low prey density: this is likely to lead to stable dynamics).
What is particularly remarkable about this biological mechanism for
the stabilization of specialist predator-prey dynamics is that rather
minor changes in generalist predator densities are needed to transit
between cases 1 and 3 (figure 4.4b). Note that this is a generic result,
and a very similar scenario would obtain if we add generalist preda-
tors to the Rosenzweig-MacArthur model (or, in fact, to any model
that enjoys the paradox of enrichment). Thus, smooth geographic gra-
dients in generalist predation pressure may translate into very abrupt
changes in population dynamics. This idea will be pursued within
the context of a specific case study, field voles in Fennoscandia (see
chapter 12).

4.3 DISCRETE-TIME MODELS: PARASITOIDS

In most ways parasitoid-host models are very similar to predator-
prey ones. However, parasitoid models are usually formulated as
discrete-time equations, while models of predation often utilize the
continuous-time framework. The focus of this section (in contrast to
the preceeding one), thus, will be on discrete-time models.
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4.3.1 Functional and Numerical Responses

Functional responses of parasitoids tend to be modeled using the same
logic as that reviewed in section 4.1.1. The most important differ-
ence is that parasitoid models are discrete, and we need to replace
the instantaneous rate at which prey is killed by an integral of this
rate over the period of time during which parasitoids search for prey.
Derivation of various functional responses for discrete models is given
by Hassell (1978: appendix I); here I simply give the resulting for-
mulas. The discrete-time form of the linear functional response is

Natt = Nt�1 − exp�−aPt�� (4.27)

Here Natt is the number of hosts attacked (killed), Nt and Pt are the
numbers of hosts and parasitoids in generation t, and a is the attack
rate (Hassell’s formulation also involves T , the total time available
for parasitoids to search for and kill hosts, but we can set T to 1
without any loss of generality).

The expression for the hyperbolic functional response is derived
using the same logic:

Natt = Nt

(
1 − exp

[
− aPt

1 + ahNt

])
(4.28)

The perceptive reader will by now realize that equations (4.27) and
(4.28) are derived using the second approach for discretizing con-
tinuous models in section 3.1.2. Recollect that this approach works
by assuming that the various conditions stay approximately constant
during the period corresponding to each time step. In terms of equa-
tion (4.28) it means that we have to assume that parasitoid and host
numbers do not change during the time step (one generation), and
are approximately Pt and Ht , the numbers at the beginning of the
time step. This is clearly a great oversimplification. Parasitoid num-
bers should change during the time step as a result of death (not all
parasitoids will survive to the end of the season). However, if para-
sitoid death rate is independent of host numbers, then we can include
it by multiplying a by some constant (less than 1). Host densities will
also decline during the course of the season, particularly as a result
of parasitism. However, if parasitized hosts continue to be available
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to repeated parasitism, then we can assume that Nt is approximately
constant. This assumption, however, really breaks down if we con-
sider predators instead of parasitoids, because predators remove prey
(by consuming it). Thus, prey density is constantly declining as a
result of predation. Hassell (1978: appendix I) shows that if prey are
removed as a result of parasitism or predation, then the expression
for the discrete version of the hyperbolic response is

Natt = Nt

{
1 − exp

[
−aPt

(
1 − h

Natt

Pt

)]}
(4.29)

The problem is that the quantity that we need, Natt , enters this for-
mula in an implicit way, and to determine it we have to solve equa-
tion (4.29) numerically. Thus, two alternative approaches are often
followed: either use the parasitism version (4.28) because of its sim-
plicity, and hope for the best, or construct a two-scale model. At the
within-generation timescale, the process of predator search is mod-
eled using standard continuous-time predator-prey models (excluding
prey and predator reproduction terms). At the between-generations
timescale, the model uses the number of prey killed to calculate the
prey and predator numbers in the next generation.

Turning now to the numerical response, we note that the connec-
tion between prey killed and the production of new offspring tends to
be more direct in parasitoids. While predators typically have to use
some part of consumed prey biomass to sustain their life processes,
and only surplus goes to production of new predators, in many par-
asitoids the number of new parasitoids equals the number of hosts
parasitized. This is true for the so-called solitary parasitoids, or the
ones that deposit a single egg onto a host (and if more than one egg
is deposited, only one completes development). In “gregarious” par-
asitoids that lay multiple eggs on a single host, the number of new
parasitoids will be directly proportional to the number of hosts par-
asitized (although the constant of proportionality could conceivably
vary in time, if the average host size changes and the number of
parasitoids that can hatch is a function of host size). A final compli-
cation is host feeding by parasitoids. In the final analysis, therefore,
the general numerical response in parasitoid-host models will be of
the following form:

Pt+1 = ��Natt − Nhf� (4.30)
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where Pt+1 is the number of parasitoids in the next generation, Natt

is the number of hosts killed (attacked), Nhf those hosts that were
eaten by the adult parasitoid (host feeding), and � is the average
number of new parasitoids hatching from a single host. Comparing
this model with equation (4.10) in section 4.1.3, we see that they
follow essentially the same logic.

4.3.2 Dynamical Models

The basis of parasitoid-host models is provided by the Nicholson-
Bailey model:

Nt+1 =Nt exp�r0 − aPt�

Pt+1 =Nt�1 − exp�−aPt��
(4.31)

(a is the parasitoid search rate). As is well known, the Nicholson-
Bailey model is characterized by unstable diverging oscillations
(although not a very realistic feature for field applications, it is
apparently possible to mimic such dynamics in the lab; see Burnett
1958). Whole books have been written on the topic of how including
greater biological realism can stabilize the Nicholson-Bailey model
(e.g., Hassell 1978). Perhaps the easiest way to do so, and certainly
the most obvious from the point of view of chapter 2, is to add self-
limitation to the prey equation. Beddington et al. (1976a) combined
the Nicholson-Bailey and Ricker models, yielding

Nt+1 =Nt exp
[
r0

(
1 − Nt

k

)
− aPt

]

Pt+1 =Nt�1 − exp�−aPt��

(4.32)

This model, depending on parameter values, can generate a great
variety of dynamical behaviors, including stable points, stable limit
cycles, quasiperiodicity, and chaos (Beddington et al. 1976a). This is
one of the reasons that make the Beddington model a good paradigm
for host-parasitoid interactions.

Adding other realistic features to the basic host-parasitoid model
is straightforward. Instead of running through the whole sequence of
models that include a variety of possible functional responses, I give
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here the equations for the Beddington model with the Beddington-
type functional response (yielding the “Beddington2” model, if I may
be forgiven this bit of creative nomenclature):

Nt+1 =Nt exp
[
r0

(
1 − Nt

k

)
− aPt

1 + ahNt + awPt

]

Pt+1 =�Nt

(
1 − exp

[
− aPt

1 + ahNt + awPt

]) (4.33)

(h and w are handling and wasted times defined in section 4.1.1).
Parameter � is the average number of next-generation parasitoids pro-
duced per parasitized host. Additionally, the probability of survival
through winter can be folded into this parameter (so that � conceiv-
ably could be less than 1). Models with a pure hyperbolic or predator-
interference functional responses may be obtained from (4.33) simply
by setting w or h to 0. The dynamical consequences of these various
assumptions are largely analogous to continuous-time models (host
self-limitation and parasitoid interference are stabilizing, while hyper-
bolic functional response is a destabilizing feature).

4.4 GRAZING SYSTEMS

According to the functional classification of trophic interactions (see
the chapter opening preceding section 4.1), a grazer is a consumer
that scores low on both intimacy and lethality scales. In other words,
grazers rarely kill the resource individuals on which they feed, and
throughout their life grazers will take a bite from many resource indi-
viduals. Most grazers are herbivores, that is, consumers of primary
producers, usually plants. However, not all herbivores are grazers.
Most insect herbivores—for example, aphids—are functional para-
sites (because they score high on the intimacy scale). As we shall
see, both the nature of grazing and the nature of autotroph growth
affect how we should model grazer-vegetation systems. This section
reviews models of grazer-vegetation interaction (because grazing car-
nivores are relatively rare, I do not devote space to them here). My
main focus in sections 4.4.1–4.4.3 is on the interplay between her-
bivory and quantity of vegetation, assuming that plant quality does
not change dynamically. In the last section (4.4.4), I shift gears and
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consider models in which plant quantity remains the same but quality
is a dynamical variable.

4.4.1 Grazer’s Functional Response

Whereas predators tend to kill their prey, and thus it is natural to mea-
sure a predator’s functional response in the units of prey individuals,
grazers consume only part of a resource individual. Accordingly, a
grazer’s functional response is typically measured in units of resource
biomass removed. The second important difference between preda-
tors and grazers is that grazers often specialize on particular organs
or tissues of their resources. The distinction between edible versus
inedible biomass is especially stark where inedible biomass is simply
inaccessible to the herbivore. For example, aboveground and below-
ground plant biomasses serve as resource bases for two completely
separate grazing communities. Furthermore, different plant tissues are
characterized by widely different nutrient content, digestibility, tem-
poral availability, and antiherbivore defenses, so there are typically
different herbivore guilds that specialize as leaf chewers, sap suckers,
twig browsers, stem borers, and so on. The importance of this special-
ization for grazing functional responses is that we need to measure
the available vegetation biomass, V , appropriately: only that which
constitutes the true resource for the herbivore. This often creates
great practical difficulties in defining what the appropriate biomass
is. The task is further complicated because two seemingly similar
patches of vegetation may differ in nutritional quality, and structural
or spatial arrangement of plants, and therefore constitute two different
food availabilities for herbivores. As a result, quantifying functional
responses of herbivores is a much more challenging task than doing
the same for predators.

It may also seem that the hyperbolic functional response, paradig-
matic of predators’ killing rate, may not apply to herbivores. The
world is green, and therefore herbivores should have no difficulty fill-
ing their guts. This argument would suggest that herbivores should
be characterized by constant functional responses. In fact, numer-
ous studies show that herbivores are characterized by the hyperbolic
response, and that herbivore intake rate can decline well below the
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saturation level at the lower end of the natural variation in food avail-
ability (e.g., Spalinger and Hobbs 1992: figure 2).

Theoretical arguments also suggest that the hyperbolic response
should be a reasonable approximation of grazer foraging, although,
as we shall see, food availability may have to be measured appropri-
ately. Herbivore foraging is affected by food distribution at several
spatial scales (Spalinger and Hobbs 1992). At the smallest scale,
food comes in different bite sizes. Bites are typically arranged in
patches. Finally, patches are distributed within a landscape. Spalinger
and Hobbs (1992) consider three scenarios. In the first case, bites
are dispersed within a patch, requiring that the herbivore spend
some time traveling between them. Additionally, bites are not readily
apparent, so at low bite density the herbivore’s encounter rate with
them is directly proportional to the bite density within patch. Clearly,
this description closely matches the typical derivation of the preda-
tor’s functional response, and leads to the hyperbolic response, as
Spalinger and Hobbs (1992) show. In the second case, bites are also
dispersed within the patch, but are very apparent, so that herbivores
travel directly from one bite to the next nearest one. Spalinger and
Hobbs (1992) show that the functional response of the herbivore in
this scenario will have the following form:

f �V � = a
√
V

b +√
V

(4.34)

where V is the density of bites and a and b are some parameters.
Equation (4.34) is similar to the hyperbolic form, except that veg-
etation density appears in it in the square-root transformed form.
Spalinger and Hobbs note that this model cannot be a good descrip-
tion of the foraging process at very low V , when average distance
between food items is much larger than the perception range of the
herbivore. They propose a piecewise form that is hyperbolic at low
V and then shifts to the form (4.34) for medium V , and finally hits
the constant “ceiling” (figure 4.5). In my opinion, in dynamical mod-
els of plant-herbivore interactions, we might simply approximate this
complex curve with the hyperbolic functional response.

The third case considered by Spalinger and Hobbs is the one where
bites are concentrated and apparent. In this situation, herbivores will
consume bites at a constant rate, determined by their ability to pro-
cess them. Herbivore food intake, then, will be determined not by
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Figure 4.5. The composite functional response proposed by Spalinger and
Hobbs (1992: figure 1C).

bite density (which is effectively assumed to be infinite), but by bite
size. Spalinger and Hobbs derive the following formula for herbivore
intake:

f �S� = aS

b + S
(4.35)

where S is the bite size and a and b are some constants. We see that
we again obtain a hyperbolic response, albeit a function of a different
independent variable.

The consequences of this scenario for long-term population
dynamics of herbivores and vegetation will depend, in my opinion,
on the landscape-level arrangement of patches. Two extreme cases
can be distinguished. In the first case, the landscape consists of a
number of discrete patches of the same size, characterized by the
same bite size. While in the food patch, an individual herbivore feeds
at the maximum rate (determined by the bite size in the patch), and
leaves the patch once it is depleted. The important variable in this
case is the density of patches within the landscape, since that will
affect the travel time between patches. Thus, the natural approach
to modeling herbivore functional response in such a situation is to
treat each patch as an individual resource item. In effect, we shift to
a larger spatiotemporal scale: measuring resource availability at the
landscape level (patch density) and herbivore consumption over long
enough periods that cover consumption of multiple patches, as well
as travel between them. It is clear that this idealized situation should
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again lead to the usual hyperbolic functional response: as patch
density within the landscape increases, herbivores spend less time
traveling, and their long-term intake rate will eventually approach the
maximum possible. On the other hand, the fewer patches there are,
the more time a herbivore needs to travel between them. Thus, at the
lower end of the patch density spectrum, long-term herbivore intake
will be directly proportional to patch density. In turn, patch density
will be determined by the balance between some process creating
new patches, and herbivores destroying the existing ones.

The other extreme is when plant biomass is evenly spread through
the landscape. In effect, the whole landscape is one huge patch. In
this case, the relevant variable is how much biomass can be taken by
a herbivore in a single bite. For example, consider a grazer within a
grass sward. If the density of grass blades is constant, then the amount
of grass biomass per unit of area will be determined by the average
length of grass blades. The bite size will also be directly proportional
to blade length. Thus, at very low biomass density, the larger the
biomass, the greater the bite that a herbivore can take, suggesting that
the functional response will be linear. As we increase grass length,
however, at some point herbivores will not be limited by the bite size,
and will be feeding at the maximum (saturation) rate. Grass length
(and therefore bite size) will be determined by the balance between
plant regrowth rate, and herbivore cropping rate.

The point of the preceding discussion is that the hyperbolic func-
tional response provides a reasonable starting point for modeling
grazer foraging. Spatial arrangements of plants can influence herbi-
vores in a variety of complex ways, but we can reduce this com-
plexity to two limiting situations. In the first, food comes in discrete
packages—which could be single bites or whole patches—and grazer
foraging is not conceptually different from what predators do. In the
other limit, the relevant variable is the average bite size, and how it
may be decreased by herbivore foraging. In both cases, the relevant
variable is average plant biomass density, although in the first case
it is related to the average density of bites or patches, while in the
second case it is related to the average bite size. And, finally, in both
cases herbivore functional response is hyperbolic. This is, perhaps, as
much as one can say generally, and more complex functional response
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curves would depend on the details of the empirical system that is
modeled.

4.4.2 Dynamics of Vegetation Regrowth

As I mentioned above, one distinctive feature that distinguishes graz-
ers from predators is the tendency of grazers to specialize on attacking
only some portion of vegetation biomass. Simple theoretical models
of herbivore-plant interactions (Caughley and Lawton 1981; Crawley
1983) implicitly ignore this feature, by employing the logistic model
for vegetation regrowth after herbivory:

dV

dt
= v0V

(
1 − V

m

)
(4.36)

where V is the vegetation biomass (per unit of area), and v0 and m

are the intrinsic (per capita) rate of plant growth and the maximum
biomass approached in the absence of herbivory, “carrying capacity.”
The logistic implies that when vegetation biomass V is near 0, its
growth rate is an accelerating function of V that reaches its maximum
at m/2, and then slows to 0 as V approaches m (figure 4.6). The
logic underlying the logistic model is that the more plant biomass is
present, the more solar energy it can fix, and the faster it will grow
(until it starts approaching the limit, m). The problem with this logic,
when applied to herbivore-vegetation systems, can be illustrated with
the following example. Suppose a grass-eating grazer reduces grass
biomass in a savanna to practically zero. Do we expect grass to regrow
logistically, with an initial acceleration phase? No, because the total
biomass of grass has been hardly affected. Typically, at least 80% (and
usually close to 90%) of graminoid—grasses and sedges—biomass is
underground (Wielgolaski 1975), where it is protected from above-
ground herbivory. What is likely to happen, therefore, is that plants
will mobilize nutrients from belowground storage to fuel aboveground
growth. If plants allocate a constant amount of energy/nutrients for
regrowth, then the initial regrowth pattern will be linear, eventually
saturating to the maximum standing biomass, m (figure 4.6).

This informal argument can be made more precise with the fol-
lowing simple model. Let A be the aboveground biomass density, and
B the corresponding belowground biomass. Belowground biomass is
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Figure 4.6. Temporal dynamics of vegetation obeying the logistic (broken
curve) and regrowth (solid curve) equations.

increased by moving some portion of photosynthates down. Assum-
ing that photosynthesis rate is directly proportional to the amount of
aboveground biomass, and that a constant proportion of fixed energy
is transferred belowground, the rate at which B increases is therefore
sA, where s is a constant of proportionality. Similarly, some propor-
tion of belowground energy is mobilized for the growth of above-
ground biomass. Thus, when A is near 0, it will grow at the rate cB.
However, as A approaches the maximum possible standing biomass,
m, less energy should be mobilized for growth from belowground.
Accordingly, I assume that A increases as cB�1 − A/m�. In addition,
aboveground biomass will increase because a portion of energy fixed
aboveground will be allocated to growth. This term is rA�1 − A/m�,
where r reflects the rate at which energy is fixed by A and the pro-
portion of the fixed energy that is allocated to growth when A is
near 0. The term �1 − A/m� governs how the proportion allocated to
aboveground growth declines as A approaches m. Finally, I assume
that belowground biomass is degraded at the rate d. The resulting
model is

dB

dt
= sA− cB

(
1 − A

m

)
− dB

dA

dt
= �cB + rA�

(
1 − A

m

) (4.37)

At the equilibrium, Â = m and B̂ = sm/d; that is, the above-
ground biomass approaches the vegetation carrying capacity, and
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the belowground biomass reaches the equilibrium determined by
the balance of decay rate and transport of fixed energy from above
ground.

To simplify this model even further, let us suppose that B is well
buffered against fluctuations of aboveground biomass, so that we can
set it to some constant. Furthermore, since B � A, the term �cB +
rA� ≈ cB = u0, a constant (u0 is interpreted as the initial regrowth
rate, when A is near 0). Then, the second equation in (4.37) simpli-
fies to

dA

dt
= u0

(
1 − A

m

)
(4.38)

where I replaced A with V (since we are not keeping track of
the belowground biomass anymore). This model was proposed by
Turchin and Batzli (2001), who called it the linear initial regrowth
model, or the regrowth model in short. This equation has been
previously used in models of nutrient dynamics in a chemostat (see,
e.g., Edelstein-Keshet 1988:121), as well as in theoretical treatments
of species competing for “abiotically” growing resources (MacArthur
1972; Schoener 1976; Abrams 1977; Gurney and Nisbet 1998).
In contrast to the logistic, equation (4.38) implies no acceleration
period; instead, when V is low it increases linearly at the maximum
rate, u0, and gradually slows to 0 as V approaches m (figure 4.6).

The logistic and regrowth models are oversimplifications of reality,
and it is best to think of them as ideal cases, rather than representing
the growth dynamics of actual plants. In fact, the logistic model is the
limiting case of (4.37) for B → 0. As noted above, theoretical popu-
lation ecologists interested in the dynamics of herbivory have histori-
cally represented plant dynamics with the logistic model. By contrast,
both empirical and theoretical ecosystem ecologists interested in veg-
etation dynamics developed models that imply the regrowth equation
(see equation 14 in Parton et al. 1993; equations 8.1 and 9.5 in Ågren
and Bosatta 1996). For example, in the Century model of grassland
primary productivity, aboveground production rate in the beginning
of the season is not affected by accumulating biomass, and foliage
initially grows linearly (Parton et al. 1993). As the season progresses,
growth slows down and eventually stops as a result of several pro-
cesses (e.g., increased shading, shoot death, and depletion of nutrients
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in the soil). Clearly, the implied growth of aboveground biomass is of
the regrowth type, with m a phenomenological parameter reflecting
the combined action of several mechanistic processes.

Depending on the characteristics of the empirical system, plant
growth can be represented with one or the other simple model. For
example, in the arctic systems where Norwegian or brown lemmings
(Lemmus spp.) are the dominant herbivore, different types of veg-
etation are characterized by different types of regrowth dynamics:
green mosses may be better described by the logistic because nearly
all of their living biomass is accessible to herbivores, while many
graminoids (grasses and sedges), in which 80–90% of biomass is
underground, may be better described by the regrowth equation. On
the other hand, even graminoid dynamics may be better described by
the logistic if there is extensive damage to their root systems resulting
from a herbivore outbreak. For example, at high population densities
during the spring thaw brown lemmings grub for rhizomes (Pitelka
1957), and root voles eat rhizomes of graminoids during winter (Tast
1974).

4.4.3 Dynamics of Grazer-Vegetation Interactions

We expect that the primary productivity of the plant community
would be one of the most important factors affecting grazer-vegetation
dynamics. As we shall see in a minute, this is indeed the case.
However, the qualitative choice of the model for vegetation growth
dynamics (logistic versus regrowth) has very profound effects on
the resulting dynamics. Taking first the case of logistically growing
vegetation, combining it with the hyperbolic functional response
by grazers as the simple but reasonable assumption (section 4.4.1),
and assuming no density-dependent interactions between grazers, we
obtain the Rosenzweig-MacArthur model (section 4.2.1):

dV

dt
= v0V

(
1 − V

m

)
− aVN

b + V

dN

dt
= )N

(
cV

d + V
− *

) (4.39)

where dynamic variables V and N are biomass density of plants
and herbivore density, respectively. Recollect that the stability of
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this model is determined by the relationship between b/m and
�a − *�/�a + *�. The second quantity is completely determined
by the characteristics of the grazer. Plant productivity affects only
the first quantity, via m, the equilibrium standing crop biomass
approached in the absence of herbivory. Thus, the dynamics of
herbivore-plant systems obeying the Rosenzweig-MacArthur model
will suffer from the “paradox of enrichment”: as plant standing
biomass is increased, the dynamics of the system become increasingly
less stable. In fact, the Rosenzweig-MacArthur model is extremely
easy to destabilize, and it is likely to be in the oscillatory region for
almost any parameter values that would characterize rodent-vegetation
systems (Turchin and Batzli 2001), or indeed any mammalian graz-
ing system. The logic underlying this insight is readily apparent
in the condition of stability for the Rosenzweig-MacArthur model
b/m > �a− *�/�a+ *�. In mammalian grazers, *, the consumption
rate needed to sustain and replace one herbivore, is likely to be not
much less than a, the maximum rate of vegetation consumption,
because by far the greatest proportion of ingested energy is used by
mammals for thermoregulation (mammalian secondary productivity
rarely exceeds a few percentage points). Taking a rather low value
of * = a/2, we observe that the ratio �a − *�/�a + *� should be
at least 1/3. The ratio b/m, on the other hand, is likely to be less
than 1/3. Remember that b is the half-saturation constant, that is,
vegetation biomass density at which herbivore consumption rate is
half of the maximum. Unless we deal with a highly unproductive
system (e.g., arctic desert), we would expect that herbivore functional
response would saturate well before vegetation density reaches m,
implying that b is an order of magnitude less than m. Assuming that
b = m/10, we see that the stability condition is easily violated for
mammalian grazing systems: b/m = 1/10 < 1/3 = �a−*�/�a+*�.

The inescapable conclusion is that were real-world mammalian
grazing system to obey the Rosenzweig-MacArthur model, then
all but the least productive systems would exhibit oscillations.
Furthermore, these oscillations would likely be of very great ampli-
tude, because once the Rosenzweig-MacArthur system enters the
oscillatory regime, the parameter range for which oscillations are
characterized by “reasonable” amplitude (e.g., less than three orders
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of magnitude) is exceedingly narrow. Of course, the Rosenzweig-
MacArthur model is not a reasonable description of most herbivore-
vegetation systems, as we shall see in part III (see particularly
chapters 12–14).

As we saw in section 4.2.1, adding consumer self-limitation
terms (e.g., the Bazykin or variable-territory models) or employing
a consumer-dependent functional response tends to result in models
characterized by greater stability than the Rosenzweig-MacArthur
one. It then becomes an empirical question, to be answered in
any specific case study, whether herbivore self-limitation (or her-
bivore interference in the functional response) is strong enough to
stabilize the inherently oscillatory dynamics of these generalized
Lotka-Volterra models.

The models based on the Lotka-Volterra framework utilize the
logistic equation for vegetation growth dynamics. However, as I
argued in section 4.4.2, in most situations where only a part of
vegetation biomass is accessible to herbivores, a more appropriate
simplification is not the logistic but the regrowth equation. Replacing
the logistic growth in the vegetation equation of the Rosenzweig-
MacArthur model with the regrowth term has a profound effect on
model dynamics. Model equations for this herbivory-regrowth model
are (Turchin and Batzli 2001)

dV

dt
= u0

(
1 − V

m

)
− aVN

b + V

dN

dt
= )N

(
aV

b + V
− *

) (4.40)

Here V is the vegetation biomass density, N is the population density
of grazers, u0 is the (linear) regrowth rate of vegetation at V = 0, and
other parameters are as in the Rosenzweig-MacArthur model. It turns
out that model (4.40) is globally stable for all values of its param-
eters. The key difference between this model and the Rosenzweig-
MacArthur model is that logistic growth has an inherent lagtime built
into it—the more vegetation is depleted by herbivory, the longer it
takes to grow back. Thus, logistically growing vegetation consumed
down to 0.01% of its maximum standing crop will take a much longer
time to grow back compared with vegetation decreased to 1% of m.
By contrast, regrowing vegetation will need essentially the same time
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to get back to m whether it starts from 1%, 0.01%, or even 0% of
m. We might expect that in most temperate and tropical ecosystems,
regrowth-type vegetation will essentially come back within one grow-
ing season. As a result, it acts as a fast dynamical variable, explaining
why model (4.40) behaves as a quasi-first-order dynamical system.

Another way to think about model (4.40) is to consider it a model
of consumer-resource interaction in which resources possess an abso-
lute refuge. In this interpretation, the belowground plant biomass,
inaccessible to herbivores, is a refuge, and there is movement of
biomass from the refuge to the vulnerable, aboveground biomass, rep-
resented by V . An absolute, or “constant-number” refuge should exert
a powerful stabilizing influence on dynamics in consumer-resource
models (Maynard Smith 1974; see McNair 1986 for the distinction
between “constant-number” and “constant-proportion” refuges, and
the potentially contrasting effects of these refuge types on stability).

4.4.4 Plant Quality

The preceding discussion of herbivore-plant systems has focused
exclusively on plant quantity as the relevant variable. However,
another characteristic that distinguishes grazing from predation
systems is that dynamical changes in resource quality are much
more likely. There are two main sources of changes in average
plant quality. First, by preferentially consuming better-quality plant
individuals or tissues, herbivores may depress the average quality
of what vegetation remains. Second, upon experiencing herbivory,
plants may increase the degree to which they defend their remaining
biomass, or their biomass newly produced to replace losses due to
herbivory.

The theory of herbivore–plant quality dynamics has been largely
neglected by mathematical ecologists. An exception is the work
by Edelstein-Keshet (1984; Edelstein-Keshet and Rausher 1989),
which I discuss next. The theory formulated by Edelstein-Keshet
was framed in terms of continuous-time partial and ordinary differ-
ential equations, and it would be useful to adopt it for discretely
reproducing organisms, such as forest insects. Thus, after reviewing
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the Edelstein-Keshet model, I discuss a discrete-time model of
herbivore–plant quality interaction.

The Edelstein-Keshet Model Edelstein-Keshet assumed that the
state of vegetation at any particular point in time could be represented
by a frequency distribution of plant qualities. Herbivory modifies
this distribution. Typically, increased herbivory tends to depress the
average plant quality. In the absence of herbivory, average plant
quality tends to increase. Based on these principles, Edelstein-Keshet
derived a general model of herbivore–plant quality dynamics, framed
in terms of partial differential equations (PDE), which I do not
give here. Edelstein-Keshet further considered the conditions under
which the full PDE model could be reduced to mathematically
simpler equations. One particular case she discussed was herbivores
that “integrate” over plant quality distribution by virtue of their
high mobility. She showed that this assumption resulted in a model
framed as a system of ordinary differential equations. For the specific
functional forms suggested by Edelstein-Keshet, the following model
results:

dQ

dt
= k − cQN�N − d�

dN

dt
= r0N

(
1 − q

N

Q

) (4.41)

Here Q is the average plant quality and N is the herbivore density.
The first equation assumes that in the absence of herbivores Q will
increase at a constant rate k. The second term, cQN�N − d�, reflects
the influence of herbivores. Thus, as long as herbivore density is
small, N < d, plant quality will be further increased. When herbivore
density is above the threshold d, plant quality will be decreased by
herbivory. The effect of herbivory is magnified by high values of Q.
This means that when herbivores are abundant, the high-quality plants
will gradually dwindle in quality, while the lower-quality plants will
be initially ignored. The second equation is simply the logistic, but
assumes that herbivore carrying capacity is directly proportional to
average plant quality.

The dynamics of model (4.41) are stable (Edelstein-Keshet and
Rausher 1989). Typically, herbivore attack will lead to decaying
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oscillations in both average plant quality and herbivore density which
will eventually settle to an equilibrium unless constantly perturbed
by some exogenous factors. Edelstein-Keshet further investigated
the dynamics of the full PDE model, using numerical methods,
and showed that if herbivores preferentially attack plants at the
high-quality end of the spectrum (certainly a reasonable supposition),
then plant quality will tend to become more uniform with time. This
central tendency results from lower-quality plants becoming better,
since they are largely spared herbivory, while higher-quality plants
are being reduced in quality, as a result of herbivore attack. Mean-
while, the whole quality distribution oscillates toward an equilibrium,
as predicted analytically by the simplified model (4.41).

The important theoretical insight from the work by Edelstein-
Keshet is that, under certain conditions, a simplified model that tracks
only average plant quality is capable of capturing the essence of the
dynamical interaction between herbivores and plant quality. Build-
ing on this insight, we can extend the approach of Edelstein-Keshet
to modeling plant-herbivore systems in discrete time. For example,
it has been theorized that the interaction between inducible plant
defenses and herbivory may drive population cycles in forest insects
(Haukioja et al. 1987). Here is one possible approach of modeling
such a hypothesis.

A Discrete-Time Plant Quality Model To make derivation of the
model more transparent, let us start by formulating it in terms of
induced plant defenses, Dt , which have a negative effect on herbivore
population growth, and later switch to plant quality, defined as Qt =
1 − Dt . Let us start with the discrete logistic (Ricker) model for the
insect population, and further postulate that Dt affects the intrinsic
rate of population growth, rather than carrying capacity:

Nt+1 = Nt exp
[
r0

(
1 −Dt −

Nt

k

)]
(4.42)

When Dt is 0, insect population grows according to the Ricker model.
It is prevented from expanding by direct competition for food quantity
(this imposes the carrying capacity, k). Next year, the same quantity of
vegetation is available for herbivores; thus vegetation quantity acts as
a first-order check on population density. As Dt increases, the intrin-
sic rate of insect population growth declines, and can even become
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negative should Dt increase beyond 1. The dynamics of Dt should be
governed by two processes. First, there is induction by herbivory. I
will assume that the increase in plant defenses is hyperbolic in form.
That is, at low Nt , Dt is incremented by an amount directly propor-
tional to Nt . However, at very high Nt , the increment approaches a
constant ceiling. This would suggest the following equation: Dt+1 =
cNt/�d + Nt�. This equation is not a complete model, because there
is the second process that affects Dt: carryover from one year to the
next. Suppose that herbivore density crashes. It is not likely, then,
that Dt next year will immediately decrease to 0. Instead, it is likely
to decrease gradually. A simple model for this mechanism is a lin-
ear autoregressive process: Dt+1 = -Dt . Putting the two processes
together, we have the equation for Dt:

Dt+1 = -Dt +
cNt

d + Nt

(4.43)

This model suggests that Dt will fluctuate in the range between 0
and c/�1 − -�. The minimum is the equilibrium that Dt approaches
in the absence of herbivory. The rate with which Dt decays to 0 is
determined by - (the smaller the value of -, the faster Dt approaches
0). The upper end of the range is the equilibrium for Nt = �, which
is determined by the balance of induction (at the maximum rate, c)
and decay toward 0 (governed by -).

The final step is to translate the model into terms of plant quality,
defined as Qt = 1 − Dt . That is, the maximum of Qt is 1, when the
herbivore population enjoys the highest intrinsic rate of increase, r0.
The lowest that Qt can get is 1 − c/�1 − -�, which, depending on
parameters c and -, can be negative. The complete model is

Nt+1 =Nt exp
[
r0

(
Qt −

Nt

k

)]

Qt+1 = �1 − -�+ -Qt −
cNt

d + Nt

(4.44)

The application of this model to the larch budmoth system will be
pursued in section 9.3.1.
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4.5 PATHOGENS AND PARASITES

There are two general kinds of pathogen-host models. One class, gen-
erally applied to macroparasites such as parasitic worms, is broadly
similar to usual trophic models in that we keep track of both resource
and consumer densities. In the second class, applied to micropara-
sites such as bacteria and viruses, we do not track pathogen numbers
directly, instead focusing on the numbers of healthy versus infected
hosts. This simplification results in more tractable models, and is jus-
tified in cases where within-host pathogen dynamics are rather stereo-
typical.

In this section I review the form and dynamics of pathogen-host
models. As usual, I start by discussing dynamical coupling terms for
these trophic systems (in this case, the disease transmission process).
Then I review models of microparasite-host interactions. Finally, I
discuss the somewhat more complex models of macroparasitism.

4.5.1 Transmission Rate

Dynamics of disease transmission is the key process in host-pathogen
interaction. The starting point for modeling transmission rate is the
mass action assumption, which takes the following form in micropar-
asitism models:

transmission rate = .SI (4.45)

where S is the density of susceptible (pathogen-free) hosts, I is the
density of infected hosts, and . is a constant of proportionality. The
logic underlying the mass action transmission rate is the same as that
for the linear functional response. It is assumed that the encounter
rate between susceptibles and infectives is proportional to their den-
sities (assuming homogeneous space and complete mixing). In other
words, this is another example of the mass action principle (section
2.4.1). The constant . is analogous to the search rate in predator-prey
models. Transmission in macroparasitism systems is modeled analo-
gously, but instead of I in (4.45) we substitute the density of infective
parasite stages.
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The assumption of linear functional response in predator-prey
models is difficult to defend, because high prey density must satu-
rate the predator killing rate (section 2.4.1). In the microparasitism
models, by contrast, there is no saturation of transmission rate at
high host density, because it is assumed that each infected host has
an effectively infinite supply of pathogenic spores (or whatever the
actual transmission agent is). In macroparasitism models, once an
infective parasite stage has encountered and parasitized a host, it is
immediately removed from the population of free-living parasites. In
effect, the parasitism rate of free-living infective stages is saturated
by a single host, thus not requiring any additional modeling (as in
the hyperbolic response with its extra parameter of handling time).

Mass action transmission has been the standard assumption in host-
pathogen models since they have been developed at the beginning of
the twentieth century (McCallum et al. 2001). Alternative functional
forms, proposed in the theoretical literature, are listed in table 1 of
McCallum et al. (2001). One alternative is frequency-dependent trans-
mission, .SI/N , where N is the total population size. This mode of
transmission is often assumed in models of sexually transmitted dis-
eases, because the number of sexual partners of an individual usually
depends on the mating system and is weakly related to host den-
sity. Another alternative is the negative binomial form, arising when
hosts differ in their susceptibility to infection (more on this in section
4.5.3). Field studies reviewed by McCallum et al. generally suggest
that mass action transmission is not an adequate model. Unfortunately,
a clear alternative that could serve as a starting point for modeling
host-pathogen interactions has not yet emerged.

4.5.2 Microparasitism Models

The approach to constructing simple models for microparasitic dis-
eases proceeds by dividing all hosts into discrete classes with respect
to their disease status. For example, for viral diseases such as measles,
three classes of hosts are typically distinguished. Susceptible hosts
are those that can be infected (their density is S), infectious are those
that have already contracted disease and can now infect susceptibles
(density I), and recovered, those that are immune to the disease, and
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cannot be infected (density R). Sometimes, another class is added—
exposed (density E), or those that have already been infected, but are
not infectives themselves (are in a latent period). Similarly to the LPA
(larvae-pupae-adults) models (section 3.3.2), these models are known
by the acronyms referring to their state variables, SIR or SEIR. A
simple SEIR model proposed for measles epidemics in human popu-
lations is (e.g., Anderson and May 1991):

dS

dt
= �N − .SI − �S

dE

dt
= .SI − 1E − �E (4.46)

dI

dt
= 1E − �I − �I

N = S +E + I +R is the total number, assumed to be constant, since
the primary interest is on relative frequencies of people in different
classes (this assumption is justified because numerical dynamics of
human populations are slow in relation to dynamics of measle epi-
demics; also, it is assumed that there is no pathogen-induced mortal-
ity). To make sure that N does not change, the model forces birth
rate to be equal to death rate (both parameterized with �). Thus, �N
models births (who are added to the class of susceptibles), and �S,
�E, and �I are density-independent (as well as disease-independent)
death rates of susceptibles though infectives, respectively. Note that
there is no separate equation for R, because R = N − �S + E + I�

is uniquely determined by the three equations of model (4.47). Rate
parameters 1 and � govern the speed with which latent exposeds
become infectives, and infectives turn into recovered. The key part
of the model is the mass action term .SI , which governs the rate
at which susceptibles contract the disease. Note that this is the only
nonlinear term in this very simple model.

Model (4.47) looks eerily similar to the Lotka-Volterra equations.
To accentuate this similarity, let us further simplify it by assuming
that infected individuals become infectives without a lag. This allows
us to eliminate variable E:

dS

dt
=��N − S�− .SI

dI

dt
=.SI − �2 + ��I

(4.47)
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Apart from the term ��N − S�, this model has the same structure as
the Lotka-Volterra model, with susceptibles playing the role of “prey”
and infectives playing the role of “predators.” The only difference
between this and the Lotka-Volterra model is in the “prey” birth rate:
in the epidemic model the birth rate is proportional to N − S = I +R,
rather than S, as is the case in the predator-prey model. Note that if
only susceptibles can reproduce, and if we relax the assumption that
birth and death rates must balance out, then we obtain the Lotka-
Volterra model, pure and simple:

dS

dt
=�S − .SI

dI

dt
=.SI − 2I

(4.48)

Here � is reinterpreted as the difference between per capita birth and
death rates of susceptibles, while 2 is the death rate of infectives
(now pathogen-induced).

This comparison shows that epidemic models belong to the general
class that contains predator-prey, parasitoid-host, and herbivore-plant
models. In short, they all are trophic models, and all are prone to
oscillatory dynamics. Simple models for epidemics are constructed
using the same general principles as the ones determining the struc-
ture of predator-prey models. In particular, the coupling between the
state variables is based on the mass action principle. Other realistic
features such as density-dependent population growth can be added to
the epidemic models in the same way that they are added to predator-
prey models. There is one important difference, however. Whereas in
the predator-prey models the interaction term is based on the hyper-
bolic functional response, in epidemic models the coupling term is
based on the equivalent of the linear functional response. Thus, we
expect that epidemic models may be somewhat more stable than pre-
dation models (since the hyperbolic response is generally a destabiliz-
ing feature of trophic models). Furthermore, epidemiological theory
suggests that one important factor that has a strong effect on the trans-
mission rate, as well as the resulting dynamics, is the heterogeneity
between hosts in their likelihood to become infected (often modeled
with negative binomial transmission rate). This heterogeneity in risk
of infection is also widely prevalent in natural populations, making it
an important feature to add to models to make them more realistic.
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As we shall see below, heterogeneity of risk is another factor that
leads to greater stability in pathogen-host interactions.

4.5.3 Macroparasitism Models

The foundations of the theory for host-macroparasite interactions
were laid by Anderson and May (Anderson and May 1978; May
and Anderson 1978). These authors assumed that both hosts and
parasites reproduce continuously and that parasite transmission is
virtually instantaneous, allowing them to formulate their models as
systems of ordinary differential equations. Let H be the population
density of hosts, and P parasite density. Thus, the average number
of parasites per host is P/H . Furthermore, there must be some
frequency distribution describing the probability that any particular
host will have i parasites.

In the basic Anderson-May model, host population is assumed to
grow exponentially in the absence of parasites. Parasite loads (the
number of parasites that a host bears) increase the probability of death
of infested hosts. Assuming a linear relationship between the host
death rate and parasite load, Anderson and May showed that the aver-
age per capita death rate will be directly proportional to the average
number of parasites per host, -P/H . The total death rate of hosts
will be then -�P/H�H = -P . Thus, for the host equation we have

dH

dt
= r0H − -P (4.49)

If parasite fecundity is density independent, then the rate of produc-
tion of transmissible stages (eggs, spores, or cysts) per parasite, 4, is
constant, and the total rate at which transmissible stages are produced
is 4P . Let us temporarily introduce another variable, the density of
free-living transmissible stages, W (by the time we get to the basic
Anderson-May model, we will get rid of this variable, but employing
it at intermediate stages makes it easier to understand the derivation).
Transmissible stages suffer a constant per capita death rate, 2, while
they are waiting to infest a host. In addition, their density is decreased
when they encounter and successfully infest a host, at the rate .WH

(mass action principle):

dW

dt
= 4P − 2W − .WH (4.50)
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The density of parasites, P , will be incremented by the rate at
which infective stages encounter and parasitize hosts, .WH . It will
be decreased by density-independent death rate, � (this rate has
two components: density-independent death rate of parasites within
hosts, and parasitism-independent death rate of hosts, which causes
death of all their parasites). Additionally, parasites will be lost as a
result of parasitism-dependent host death rate. Anderson and May
showed that this term has a component that depends on the variance
of the frequency distribution of parasites per host. Assuming that
the distribution is clumped, and can be approximately described
by the negative binomial, the parasitism-dependent death rate is
-+ -�k+ 1�P/�kH� (this is a per capita rate). Here k is the clump-
ing parameter of the negative binomial distribution (smaller k values
indicating greater degree of clumping; recollect that as k → �, the
negative binomial distribution converges to the Poisson). The parasite
density equation, therefore, is

dP

dt
= .WH − ��+ -�P − -�k + 1�P 2

kH
(4.51)

Putting together the three equations for H , W , and P , we have a model
of host-parasite interaction. This model, however, can be simplified
without a great loss of biological realism. Note that in many host-
parasite systems transmissible stages are very short-lived compared
with the long-lived parasitic stages. This observation suggests that W
may act as a fast variable, quickly approaching a quasi equilibrium,
Ŵ , determined by current (and very slowly changing) densities of
hosts and parasites. We solve for Ŵ by setting the derivative of W to
zero:

Ŵ = 4P

2 + .H

Substituting this value instead of W in the equation for P , we finally
obtain the basic Anderson-May model:

dH

dt
= r0H − -P

dP

dt
= 4HP

�+H
− ��+ -�P − -�k + 1�P 2

kH

(4.52)

where the new parameter � = 2/..
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Note that we can rewrite the second equation of this model as

dP

P dt
=

(
4H

�+H
− �− -

)
− -�k + 1�

kH
P (4.53)

The right-hand side of this equation is linear in P and formally is
the same as the logistic equation (but with intrinsic rate of change
and carrying capacity being functions of host density, H ). The self-
limitation term includes the clumping parameter as �k+ 1�/k. Recol-
lect that large values of k correspond to essentially random (Poisson)
distribution of parasite burden, while small k imply highly aggregated
distribution. As the degree of clumping increases (k → 0), the ratio
�k + 1�/k → �. In other words, the self-limitation term becomes
increasingly more important the more clumped parasites are. This
mechanism appears to be the source of the connection between the
degree of clumping and dynamical stability of the Anderson-May
model.

One important application of the Anderson-May framework is the
model of red grouse–nematode parasite interaction by Dobson and
Hudson (1992). I defer the discussion of the parameterization and
dynamics of this model until section 11.2.2.

4.6 TRITROPHIC MODELS

The final topic of this chapter is a brief discussion of modeling
tritrophic systems, such as the interaction of vegetation-herbivores-
predators. This discussion will be brief because the preceding material
has provided us with all the elements we need to use in constructing
tritrophic models. The key idea is that we take a vegetation-herbivore
model, and add a predation term to the right-hand side of the her-
bivore equation. The vegetation and the predator equations remain
unchanged. Thus, the only issues to be resolved are which com-
ponents to use (vegetation growth terms, functional and numerical
responses of herbivores and predators).

Probably the most common model used in describing tritrophic
systems is the Oksanen model, which results from stacking two



134 TROPHIC INTERACTIONS

Rosenzweig-MacArthur models, one for herbivores and one for
predators:

dV

dt
= v0V

(
1 − V

m

)
− aVN

b + V

dN

dt
= )N

(
aV

b + V
− *

)
− cNP

d + N
(4.54)

dP

dt
= �P

(
cN

d + N
− �

)

This model was graphically analyzed by Oksanen et al. (1981; actu-
ally, they considered a more general version, as well as extending
their approach to quadritrophic systems).

The only self-limitation term in the Oksanen model is the logistic
growth of vegetation. As a result, this model is easily destabilized.
One particular route from stability to oscillations, considered by
Oksanen and coworkers, is the increased productivity of the vegeta-
tion, or the paradox of enrichment. As I discussed in section 4.4.3,
the Rosenzweig-MacArthur model should be in the oscillatory regime
for the parameter values characterizing most herbivores. When on
top of the vegetation-herbivore instability we add the potential for
herbivore-predator cycles, we end up with a potentially very unstable
model. Numerical investigations show that when both vegetation-
herbivore and herbivore-predator links are oscillatory, it becomes
difficult to keep the tritrophic system from falling apart. Usually,
predators are the ones that go extinct (or effectively go extinct if
their trough densities reach exceedingly low values).

This observation should not be interpreted as a theoretical state-
ment that all tritrophic systems should be highly unstable, because
in real-life systems there are other stabilizing influences, apart from
the logistic vegetation growth, which is the only one assumed by the
Oksanen model. To take one specific taxon, consider mammalian her-
bivores. Although this is a very diverse group (e.g., the spectrum of
body sizes covers four orders of magnitude: from a 50 g vole to a
500 kg moose), I believe that it is possible to write a generic model
for most of them (at least, a model that can serve as a useful starting
point). First, I assume that vegetation is characterized by regrowth,
rather than logistic dynamics (which already introduces a stabilizing
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influence, compared with the Oksanen model). Second, I assume that
there is no direct density dependence in the herbivore, but there is
such a mechanism in the predator (e.g., territoriality). These modifi-
cations lead to the following generic mammalian herbivore model:

dV

dt
= u0

(
1 − V

m

)
− aVN

b + V

dN

dt
= )N

(
aV

b + V
− *

)
− cNP

d + N
(4.55)

dP

dt
= �P

(
cN

d + N
− �

)
− s0

�
P 2

The last term in the predator equation represents self-limitation in
the predator (in the Bazykin form). It is written in a somewhat more
mechanistic way, with s0 and � representing the intrinsic rate of
increase and the carrying capacity due to territoriality, respectively
(this way of writing the term makes it easier to estimate it). Although
a priori it may seem unlikely that a model such as (4.56) could serve
as a reasonable description of many mammalian systems, this appears,
nevertheless, to be the case. We shall see that this model, with minor
modifications, applies to voles, hares, and ungulate systems (but not
lemmings!).

A very useful survey of dynamics in linear chain ecosystems can
be found in Gurney and Nisbet (1998:185–200). These authors first
consider trophic systems based on primary producers growing accord-
ing to the regrowth model (which they call “constant production”).
If functional responses of herbivores and predators are linear, then
all the resulting mono-, di-, and tritrophic chains are characterized
by a single nontrivial stable-point equilibrium. If primary producers
grow according to the logistic equation (but we still assume that all
functional responses are linear), then again the dynamics of mono-,
di-, and tritrophic systems are characterized by stable point equilibria.
The situation changes when we replace linear functional responses
with hyperbolic ones. The ditrophic model with regrowth vegetation
is still globally stable, but the tritrophic one can exhibit stable cycles
for certain parameter values. Finally, the logistic growth combined
with the hyperbolic functional response is capable of exhibiting unsta-
ble dynamics even with only two trophic levels (this is, of course,
the Rosenzweig-MacArthur model). To summarize, consideration of
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linear chain models confirms the insights from two-species ones:
regrowth-based models are more stable than those based on logistic
growth, and hyperbolic functional responses are destabilizing. Fur-
thermore, greater food chain length is also destabilizing (the message
that has been enunciated by May 1973b).

4.7 SYNTHESIS

Although the functional class of trophic interaction (predators,
grazers, etc.) and details of specific systems affect the form of
equations, at a deeper level all trophic models are based on the
same logical foundations. For example, the Nicholson-Bailey reduces
to the Lotka-Volterra model as the time step is made increasingly
small (May 1973a). Similarly, in section 4.5.2 I show that simple
microparasite-host models also reduce to the Lotka-Volterra equa-
tions. Thus, the structure of consumer-resource interaction makes
trophic models inherently susceptible to oscillations. Pure trophic
systems (i.e., systems lacking first-order feedbacks) exhibit unstable
oscillations, such as the neutrally stable cycles in the Lotka-Volterra
model, or diverging Nicholson-Bailey oscillations. Furthermore,
trophic oscillations are typically second-order cycles.

Adding various realistic features to models may make them either
more stable or more prone to violent oscillations, but again there are
several unifying themes. First, self-limitation terms in both resource
and consumer are inherently stabilizing features (with a caveat that
in discrete systems strong intraspecific regulation may lead to first-
order cycles). It is important to note that a self-limitation term can
arise indirectly, as a result of some other feature of the system. For
example, aggregated distribution of parasites within hosts indirectly
introduces a first-order feedback term (see equation 4.53).

Second, trophic chains based on primary producers growing
logistically are less stable compared with those based on producers
obeying the regrowth model. Third, saturating functional responses
(e.g., the hyperbolic one) are a destabilizing feature of models,
compared with the linear response. S-shaped functional response can
result in multiple equilibria. Finally, greater food chain length is a
destabilizing influence.



CHAPTER 5

Connecting Mathematical Theory

to Empirical Dynamics

5.1 INTRODUCTION

In this chapter, I review different kinds of dynamical behaviors that

ecological models can exhibit, and interpret these mathematical pre-

dictions in terms of observable variables. The basic premise underly-

ing the material here is that inasmuch as mathematical models reflect

ecological reality, the “bestiary” of model-predicted dynamics pro-

vides us with patterns that might be matched with behaviors of real

populations. Until recently, ecologists interested in nonlinear dynam-

ics tended to focus exclusively on behaviors of deterministic models,

that is, population fluctuations resulting only from endogenous fac-

tors (Schaffer 1985; Pimm 1991). Real-world populations are always

affected by exogenous factors (“noise”), and the taxonomy of dynam-

ics should reflect this fact. However, it is easier to start describing

dynamical types by first focusing on models without noise. Accord-

ingly, section 5.2 introduces basic types of dynamics that characterize

deterministic population models. Next, in section 5.3, I review the

kinds of dynamics that are exhibited by mixed deterministic/stochastic

models. Finally, armed with the material in the first two sections, I

address the question of what is population regulation, an issue that

has caused a considerable degree of controversy (section 5.4).
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Definitions First, however, let us make some definitions. Exoge-
nous1 refers to density-independent factors that affect population den-
sity, but are not, in turn, affected by it. Thus, there is no dynamic
feedback between these factors and population density. The exoge-
nous component of population change is often modeled as a stochastic
process, but it does not have to be purely random. Nonrandom exoge-
nous effects include trends and periodic changes in the environment,
such as seasonality. By contrast, endogenous refers to the density-
dependent component of dynamics, or population feedbacks. These
feedbacks can occur with a lag, for example, the effect of special-
ist predators on prey. Thus, we distinguish two kinds of endogenous
factors. First-order feedbacks act on the realized per capita rate of
change without an appreciable lag (they sometimes are referred to as
direct density-dependent mechanisms). Second-order feedbacks are
mediated by variables that change relatively slowly, and therefore
their effect on the realized rate of per capita change occurs with a
time lag (they are sometimes referred to as delayed density-dependent
mechanisms). In reality all population feedbacks involve some lag, so
we operationalize the distinction between the first- and second-order
feedbacks by whether the lag time involved is less or greater than the
generation time (see section 2.5).

For completeness of definition, let us also add two further cate-
gories. First, null factors are those that do not affect the realized
per capita rate of population change. Finally, we note that exogenous
and endogenous factors explain variation in r�t�, and therefore in
population density. Yet there are other important quantities, for exam-
ple, the mean density. Nondynamical factors that set mean density
are called parameters. Parameters do not change with time, but may
vary from place to place. In addition to setting statics (e.g., mean
level of fluctuations), they may also influence other structural proper-
ties of population regulation, such as process order, periodicity, and
Lyapunov stability.
Fluctuations is my generic term for any kind of population

dynamics, as long as there is some element of temporal change.
Oscillations is a general term for population dynamics that have

1As usual, the definitions of concepts emphasized in bold type are given in the
glossary.
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some element of regularity, which makes population density some-
what predictable at least a few time steps ahead. Typically, population
oscillations have some sort of periodic or chaotic deterministic
attractor at their heart. Oscillations can be classified by whether they
are first- or second-order, whether they are periodic, and whether
they are stable or chaotic.

5.2 QUALITATIVE TYPES OF DETERMINISTIC DYNAMICS

5.2.1 Attractors

Purely endogenous, or deterministic, dynamics are basically classified
by the qualitative type of the attractor. An attractor is a geometrical
object in the phase space that attracts all trajectories starting within
its domain of attraction (recollect that phase space is constructed
by representing each dynamical variable with its own axis in multidi-
mensional euclidean space). The simplest kind of purely endogenous
dynamics is stability around a point equilibrium. A stable equilibrium
is the point in phase space to which the trajectory returns after a small
perturbation (a large perturbation may take the trajectory outside the
domain of attraction of the stable point, in which case the trajec-
tory will not return to it). Because stable point equilibrium attracts
nearby trajectories, it is one kind of an attractor. The approach to
the stable point may be either monotonic (also known as exponen-
tial) or oscillatory (also known as damped oscillations). In discrete
systems, monotonic approach is sometimes called “undercompensa-
tion,” because it takes several time steps for the dynamical system to
compensate for perturbation (return to the equilibrium). Oscillatory
approach to equilibrium, by contrast, leads to “overcompensation,”
since the system overshoots the equilibrium. Finally, “perfect com-
pensation” occurs when the system returns exactly to the equilibrium
in one time step.

A more complex dynamical behavior is a stable limit cycle. In
continuous models, the limit cycle attractor is a closed curve in the
phase space that all trajectories approach. In order for a differential
model to be able to exhibit stable cycles, it has to be of order two
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or higher (first-order models can exhibit only one kind of attractor—
the stable point). In discrete models, a limit cycle is a finite set of
points, visited in turn by the trajectory. In both cases, a limit cycle is
a periodic attractor in the strict mathematical sense because the trajec-
tory on the attractor repeats itself exactly after some time (called the
period). Quasiperiodicity is a very similar behavior to limit cycles.
A quasiperiodic attractor can occur in discrete models with two or
higher dimensions and consists of an infinite set of points lying on
a closed curve. It is like a stable limit cycle, but with an irrational
period, so that the trajectory never exactly repeats itself. In continu-
ous models, the equivalent of quasiperiodicity is motion on a torus,
which can occur in three- or higher-dimensional systems.

Unlike zero-dimensional (e.g., a stable point) or integer-dimensional
attractors (e.g., quasiperiodicity), a chaotic attractor is usually fractal.
A chaotic trajectory of a purely deterministic system never repeats
itself, and is “random-looking.” A formal definition of chaos will be
discussed in detail in the next section (5.2.2). In continuous systems,
chaos cannot arise unless the dimensionality of the system is three
or higher. In discrete systems, chaos can arise even when the dimen-
sion is one, but higher dimensionality increases the likelihood that
biologically reasonable parameters will lie in the chaotic region.

Nonlinear dynamical systems may also be characterized by multi-
ple coexisting attractors—fixed points, cycles, and fractal structures
each having its own attraction basin within the phase space. The tra-
jectory will go to one of the attractors, depending on initial conditions
(whose attractor’s basin it starts in). Such systems are sometimes
called “metastable.” For example, a one-dimensional continuous sys-
tem can have three point equilibria: two stable ones, and one unstable
one serving as the boundary between the attraction domains of the
stable equilibria (Berryman et al. 1984).

5.2.2 Sensitive Dependence on Initial Conditions

Before discussing how the taxonomy of deterministic dynamics
described above is affected by dynamical noise, I need to define
precisely what I mean by chaos, and also discuss how chaotic
dynamics can exist in the noisy world. The best definition of chaos
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for our purposes is bounded fluctuations with sensitive dependence
on initial conditions (Eckmann and Ruelle 1985; Ellner and Turchin
1995). A measure of sensitive dependence is the dominant Lyapunov
exponent, which is a generalization of the notion of stability from
point equilibria to trajectories.

Stability of Point Equilibria Before discussing Lyapunov exponents
and stability of trajectories, let us review the stability of point equi-
libria. Consider a discrete deterministic system such as

Zt = F �Zt−1� (5.1)

where Zt is the state variable, which could be a vector. For example,
Zt could consist of two values: the prey density, Nt , and the predator
density, Pt . The steady-state solution, or equilibrium, of (5.1) is a
value of Z∗ that satisfies the equation

Z∗ = F �Z∗�

A steady state is stable if it attracts all nearby trajectories, and unsta-
ble if nearby trajectories diverge away from it. Let us consider two
trajectories: one that starts right on the steady state, Z0

t = Z∗, and
another one very close to the equilibrium, Z1

t . Because the first tra-
jectory starts on the equilibrium, it will remain there indefinitely. The
second trajectory, however, can either approach or diverge from the
equilibrium. The difference between the two trajectories, Z′

t = Z1
t −

Z0
t = Z1

t − Z∗, thus, will either grow or shrink. If Z′
t is small (tra-

jectory Z1
t close to the steady state), then its behavior will be largely

governed by the linearized equation:

Z′
t = J �X∗� · Z′

t−1 (5.2)

where · denotes matrix multiplication, and J is the Jacobian matrix,
whose components are partial derivatives of F . For example, in a
two-dimensional system

xt = f �xt−1
 yt−1�

yt = g�xt−1
 yt−1�

the Jacobian matrix is

J �x
 y� =
(
�f /�x �f /�y

�g/�x �g/�y

)
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Equation (5.2) is obtained by using Taylor series expansion of the
function F (for a very clear explanation of the stability analysis of
nonlinear discrete equations, see Edelstein-Keshet 1988:55). Equation
(5.2) is linear because J �Z∗� does not depend on Z′ (it is a constant
matrix).

The Jacobian evaluated at the equilibrium point, J ∗ = J �Z∗�, can
be of two fundamental kinds: it either stretches or shrinks Z′. If
the magnitude of Z′ increases as we iterate equation (5.2), then the
Jacobian is of the stretching kind. In other words, small deviations
from the steady state will be amplified, and therefore the steady state
is unstable. If the magnitude of Z′ is decreased with each iteration,
then the Jacobian is of the shrinking type, which implies stability,
since small perturbations from the steady state will be damped.
There is also a borderline state of neutral stability, when J ∗ will
leave the magnitude of Z′ unchanged (this is what happens in the
Lotka-Volterra predation model). Whether the Jacobian is of the
amplifying or damping kind can be determined simply on the com-
puter, by iterating equation (5.2) and observing whether Z′ grows or
shrinks. Alternatively, the stability can be investigated analytically (at
least for lower-dimensional models) by calculating J ∗’s eigenvalues
(Edelstein-Keshet 1988). To summarize, the stability of a steady state
is determined by the Jacobian matrix of partial derivatives of F ,
evaluated at the steady state.

Stability of Trajectories: Deterministic Systems This notion of sta-
bility for equilibrium points can be extended to the notion of stability
of trajectories on other kinds of attractors. Again, consider two nearby
trajectories, but this time the “reference” trajectory X0

t is evolving
with time. For example, it could “sit” on a limit cycle. The other
trajectory, X1

t , starts very close to X0
t , and again, let X ′

t be the vector
separating the two trajectories. Analogously to the case of a point
equilibrium, X ′ will either grow or shrink depending on the nature of
the Jacobian. However, because the reference trajectory moves in the
phase space, the Jacobian will be evaluated at each successive point
of X0

t , and thus it will change. (In a linear system the Jacobian will be
constant.) Thus, the divergence/convergence rate of trajectories will
vary. In fact, in some regions of the phase space, the Jacobian may be
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of the shrinking kind, while in other regions it could be of the stretch-
ing kind. This means that we need to talk about what will happen to
two nearby trajectories in the long term. Iterating equation (5.2), we
observe that the Jacobians are multiplied:

Z′
t = Jt−1 · Jt−2 · · · J0 · Z′

0 (5.3)

where Jt = J �Z0
t �, the Jacobian evaluated at the point Z0

t on the ref-
erence trajectory. Whether Z′

t has grown in comparison to Z′
0 depends

on the product of the Jacobians. The quantity

�� = lim
t→�

1
t

log �Jt−1 · Jt−2 · · · J0� (5.4)

measures the average exponential rate of growth of Z′, and is called
the Lyapunov exponent. Here � � is any matrix norm, for example, the
dominant eigenvalue. Positive Lyapunov exponent implies trajectory
divergence and chaos; negative Lyapunov exponent implies trajectory
convergence, and stability in the general sense that includes not only
stable points but also stable limit cycles (figure 5.1).

Some observations are in order. First, �� measures divergence
between two trajectories very close to each other. In practice, two
chaotic trajectories that start a finite distance from each other will
eventually stop diverging (see figure 5.1b). This is a consequence of
the second part of the definition of chaos—boundedness. Second, the
convergence rate is averaged over all the points of the attractor, in
proportion to how often they are visited. This is an automatic conse-
quence of following the reference trajectory. A third, and most impor-
tant, point is that �� is the long-term growth rate, thus the infinity in
equation (5.4). The rate of convergence/divergence varies as the tra-
jectory visits different regions of the attractor; it even may switch sign
(this is a consequence of nonlinearity of dynamics). Therefore, the
long-term average ��, being only a single number, retains only the
information about the mean convergence rate, not about short-term
fluctuations in sensitivity to initial conditions. However, short-term
variation in local Lyapunov exponents can be quite significant, and
another important way to characterize dynamics of the system, in
addition to the global Lyapunov exponent (Ellner and Turchin 1995;
Turchin and Ellner 2000a). A local Lyapunov exponent is defined as

�t =
1
t

log �Jt−1 · Jt−2 · · · J0�
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Figure 5.1. Sensitive dependence on initial conditions in purely endoge-
nous dynamical systems. In (a) trajectories converge, implying lack of sen-
sitive dependence (�� < 0). In (b) trajectories diverge, implying sensitive
dependence on initial conditions (�� > 0) and chaos.

which is the same as the definition in equation (5.4), but without
taking the limit t → � (as a notational convention, I emphasize the
difference between the global and local Lyapunov exponents by using
subscripts � and t, respectively. Thus, �� is the long-term average
trajectory divergence rate, while �t is the short-term rate (over the
period of 1 year, for example).

Stability of Trajectories: Systems Affected by Noise In mixed
stochastic/deterministic systems, trajectories will diverge because
of exogenous noise, without respect to whether the endogenous
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Figure 5.2. Trajectory convergence in a stable mixed endoge-
nous/exogenous dynamical system. This is a linear (and thus globally sta-
ble) system with large amounts of noise. Two trajectories, affected by
the same sequence of random perturbations, start far from each other, but
rapidly converge, thus implying lack of sensitive dependence (�� < 0).

component is chaotic or stable. However, the Lyapunov exponent
of a mixed system should measure sensitive dependence on initial
conditions that is due only to the endogenous part. One way of doing
this is to use the same definition as the one used for the deterministic
systems (5.4). The difference between systems with and without
noise, then, would only be that the sequence of points visited by
the trajectory, �Zt�, will be affected by process noise in the latter
case. One way to think about �� in a stochastic system is the rate
of divergence or convergence of two nearby trajectories that are
influenced by random, but exactly the same sequence of, external
perturbations (figure 5.2). Note that, in general, adding process noise
to a purely deterministic system will change the numerical value of
�� (indirectly, by affecting which parts of the phase space are visited
more often by trajectories). As will be discussed below (section
5.3.3), adding stochasticity can even flip the sign of ��.

Chaos and Periodicity The defining feature of chaotic oscillations
is sensitive dependence on initial conditions. This definition does not
preclude the possibility of imperfect statistical periodicity in chaotic
dynamics. This is in contrast to the common characterization of chaos
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as “deterministic nonperiodic flow” (Lorenz 1963), but the “nonperi-
odic” is used in its mathematical sense—the trajectory never repeats
itself. In fact, many examples of chaotic dynamics arising in ecolog-
ical models do exhibit strong statistical periodicities (Kendall et al.
1993). After a bifurcation from a limit cycle to chaos, for example, the
new strange attractor usually consists of several distinct pieces, each
visited by the trajectory in turn. Such dynamical behavior will look
somewhat like a noisy limit cycle. In addition, a trajectory may tem-
porarily exhibit bouts of near periodicity, by “shadowing” an unstable
periodic orbit within the chaotic attractor, or by getting trapped in
the neighborhood of a “semi-periodic semi-attractor” (Kendall et al.
1993). In short, chaos and statistical periodicity are not mutually
exclusive concepts.

5.3 POPULATION DYNAMICS IN THE PRESENCE OF NOISE

5.3.1 Simple Population Dynamics

The simplest stochastic model that has only an exogenous but
no endogenous component is stochastic exponential growth (or
decline), in which the per capita rate of population change is
completely unaffected by any population feedbacks, but only by
exogenous factors. Because the stochastic exponential growth/decline
implies the absence of population regulation, it is the starting point,
or null hypothesis, for any investigation of population regulation.
Note that exponential growth (with or without noise) is characterized
by sensitive dependence on initial conditions. However, we do not
consider such dynamics chaotic, because they fail the condition of
boundedness.

The next simplest model to consider is the one whose endogenous
component is characterized by a monotonic convergence to a point
equilibrium (e.g. the logistic model). When adding a purely stochas-
tic exogenous component to monotonically stable dynamics, we do
not get a qualitative change in dynamical behavior of the system.
Depending on relative strengths of each component, such a stability
with noise system will either hover very near the equilibrium (tight
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regulation), or go on long excursions away from the equilibrium, but
always eventually returning to it (weak regulation).

Stochastic exponential dynamics and monotonic stability with
noise together define simple population dynamics. Simple dynamics
combine an essentially linear endogenous component with an additive
noise; they have no statistical periodicities, nor are they chaotic.
These dynamics, zero-order (exponential growth) and first-order
(monotonic stability) simple dynamics, provide two null models,
or starting points, for an investigation into complex population
dynamics.

5.3.2 Stable Periodic Oscillations

When the endogenous component of a mixed deterministic-stochastic
model is characterized by an oscillatory approach to the equilibrium,
the exogenous component will prevent the system from settling to
the equilibrium. The trajectories of such a stable periodic system will
look like noisy cycles. This is the first example of how an interac-
tion between the endogenous and exogenous components can create
something novel. Without noise, the system would simply sit at the
equilibrium forever. Without the endogenous component, there would
be no periodicity. Put them together, and you have sustained oscilla-
tions.

When we add noise to stable limit cycles or to a quasiperiodic
system, we obtain the same qualitative type as described above—
noisy-looking fluctuations characterized by statistical periodicities.
Quantitatively, the strength of periodicity is likely to be more promi-
nent when the underlying deterministic dynamics are limit cycles, as
opposed to a stable oscillatory point, but qualitatively it is the same
type of dynamics. Assuming that the addition of noise did not change
the sign of the Lyapunov exponent (i.e., it is still negative), I refer to
all these dynamics collectively as stable periodic oscillations. The
defining features are �� < 0 and a statistically significant periodicity,
as measured, for example, by ACF.
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5.3.3 Chaotic Oscillations

Chaotic oscillations are defined as bounded population dynamics
that are characterized by sensitive dependence on initial conditions
(�� > 0), as defined in section 5.2.2. As a result of sensitive depen-
dence on initial conditions, a chaotic system is a “noise amplifier”
(Ellner and Turchin 1995). The effects of random perturbations are
amplified by the nonlinearities of the endogenous part, and at least
some of the system unpredictability is due to the endogenous fac-
tors. A stable system, by contrast, damps the effects of exogenous
perturbations. It is a “noise muffler.” In a stable, nonchaotic system
unpredictability is entirely due to the action of exogenous factors.

The deterministic attractor underlying noisy chaotic oscillations
will often be chaotic itself. However, it is also possible for dynamical
noise to transform a deterministically stable attractor into a chaotic
one (“noise-induced chaos”). Vice versa, noise can also transform a
deterministically chaotic attractor into a stable one.
Noise-induced chaos is another striking example of how nonlinear

endogenous dynamics can create something novel when interacting
with exogenous noise (Rand and Wilson 1991). One possible route to
this behavior is when a dynamical system is characterized by chaotic
transients that in the absence of stochasticity would eventually die
out, allowing the trajectory to settle on a stable point equilibrium or a
limit cycle. In the presence of even a little noise, however, the chaotic
transients never die out, so that the system behavior is chaotic.

Here is an informal example illustrating this idea. Consider a
simple discrete one-dimensional model Nt+1 = f �Nt�, illustrated in
figure 5.3a. The function f was constructed by taking the Ricker
equation in the chaotic regime (r0 = 3�5), and adding a little “hump”
in the vicinity of the equilibrium (where f intersects the Nt+1 = Nt

line), to make the slope of f there less in magnitude than 1. Thus,
the equilibrium is stable, but elsewhere f has steep slopes that are
conducive to chaos. If we provide an initial condition, N0, and iter-
ate this dynamical model without noise, then the trajectory will jump
around chaotically, until it hits the vicinity of the equilibrium, and will
rapidly converge to it (figure 5.3b). Thus, the deterministic system is
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Figure 5.3. A chaotic system with a stable deterministic “skeleton.” Noise-
free dynamics: the shape of the Nt+1 = f �Nt� relationship (a), and a typical
trajectory (b). Dynamics with noise: in the phase space (c) and a typical
trajectory (d).

stable—no matter what initial conditions, the trajectory will eventu-
ally reach the vicinity of the equilibrium, and will be trapped there.
Adding just a little noise, however, is enough to knock the trajectory
away from the equilibrium whenever it gets into its vicinity, leading
to persistent oscillations (figure 5.3d). In other words, noise “stabi-
lizes” the chaotic transient, and we have a paradoxical situation, in
which the system is stable without noise, but chaotic in its presence.
But how can we be sure that the fluctuations in figure 5.3d are really
chaotic, and not simply noisy? This is made clear by plotting the tra-
jectory generated by the model with noise in the Nt+1 −Nt phase plot
(figure 5.3c). The data points clearly trace out the function f , with
very little “fuzz” resulting from the exogenous noise. The inescapable
conclusion is that the dynamics of this mixed deterministic/stochastic
system are largely driven by the endogenous chaos. In sum, noise is
necessary for pushing the system from stability into chaos, but the
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system is chaotic in the usual sense, since practically all irregularity
in the trajectory is due to the endogenous part.

This example shows that endogenous chaos and exogenous noise
are not mutually exclusive and opposed explanations of patterns in
population dynamics. “Noise” is always present in real population
systems. In fact, exogenous ecological factors are an integral part of
population dynamics, and are of no less intrinsic interest than the
endogenous ones. Noise can creatively interact with nonlinearities
(e.g., transforming a stable system into a chaotic one). The erratic
component in population dynamics can be entirely due to noise, or
it can be a sum of exogenous stochasticity and endogenous irregular
motion—chaos.

Certain authorities in modern nonlinear time-series analysis see the
goal of analysis as the characterization of the purely endogenous part
underlying fluctuations, also known as the “deterministic skeleton”
(Tong 1990; Dennis et al. 1995). I believe that such a focus is not
productive, and can be seriously misleading, as the thought experi-
ment illustrated in figure 5.3 shows. Although the specific example
was carefully contrived to produce the desired result, the general phe-
nomenon, noise-induced stabilization of chaotic transients, is ubiqui-
tous in ecological models. When a complex chaotic attractor loses
stability to a limit cycle, or a fixed point, the attractor may persist
as a weakly repelling invariant set. Trajectories starting near this set
exhibit a long chaotic transient, before eventually collapsing on the
simple attractor and staying there. With noise, trajectories are soon
kicked back to the complex, weakly repelling invariant set, initiat-
ing another long chaotic transient. Thus, in the presence of noise
the trajectories act as if the invariant set was still attractive, and
“ignore” the deterministically stable attractor. Ecological examples
include the epidemiological model parameterized for measles (Rand
and Wilson 1991), a spatial model of Dungeness crab dynamics (Hast-
ings and Higgins 1994), and a predator-prey model parameterized for
Fennoscandian voles (Turchin and Ellner 2000a). Note that these are
not contrived examples, but a behavior exhibited by the best model
with empirically estimated parameter values. As Steve Ellner and I
argued in a paper titled “Chaos in a Noisy World” (Ellner and Turchin
1995), both our conceptual approaches and our specific methodolo-
gies must explicitly take into account the fact that ecological systems
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are governed by mixed endogenous and exogenous mechanisms. This
means, in particular, that we should abandon deterministic approaches
that do not generalize well to systems affected by noise, including
those that rely on characterization of deterministic skeletons.

5.3.4 Quasi-Chaotic Oscillations

Fully embracing “noise” (exogenous influences) as an integral com-
ponent of population dynamics has an important consequence: disap-
pearance of sharp boundaries between different classes of dynamics.
Above I have already referred to the observation that, in the pres-
ence of noise, there is no sharp boundary between stable oscillatory
dynamics and limit cycles. Consider, for example, the Ricker model
as it goes through the first bifurcation (at r0 = 2), in which the stable
point equilibrium becomes a two-point limit cycle. In the absence of
noise, there is indeed a very visible difference between the attractor
for r0 = 1�99 and r0 = 2�01. In the first case, the dynamics eventually
approach the equilibrium point N ∗ = 1, while in the second case,
the trajectory jumps between N1 = 0�88 and N2 = 1�12. But if we
add even a tiny amount of additive noise to rt (e.g., � = 0�01), we
find that dynamics for both r0 values are essentially the same: both
show a pronounced 2-point periodicity with somewhat variable ampli-
tude. The variation between different realizations far outweighs the
small difference in the average amplitude. Adding even a little noise
destroys, for all intents and purposes, the sharp boundary between
dynamics observed in the deterministic case. The quantitative differ-
ence remains, so that dynamics of the Ricker model with the dominant
eigenvalue near zero differ greatly from those for which the eigen-
value greatly exceeds 1, even in the presence of large amounts of
noise, but the difference between eigenvalues slightly greater or less
than 1 is not noticeable.

The same insight applies to the boundary between chaotic and
stable oscillations. Formally, we distinguish between nonchaotic
dynamics with the dominant Lyapunov exponent �� < 0, and
chaotic dynamics with �� > 0. In practice, however, the difference
is not qualitative but quantitative, and the mechanism is analogous
to the one discussed in the previous paragraph, with one important
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difference: whereas stability of a point-equilibrium can be described
with a single number (the dominant eigenvalue evaluated at the
steady state), trajectory stability is not fully described by the global
Lyapunov exponent.

As I discussed in section 5.2.2, the global Lyapunov exponent,
��, is the long-term exponential rate of trajectory divergence (in the
limit t → �). Negative �� indicates that trajectories are converg-
ing rather than diverging. Another, and arguably better, measure of
sensitive dependence on initial conditions (Ellner and Turchin 1995;
Turchin and Ellner 2000a) is the distribution of local Lyapunov expo-
nents, ��t� (recollect that I am using subscripts � and t to empha-
size the difference between the global and local Lyapunov exponents,
respectively). Local exponents measure the divergence over a finite
interval of time (for example, over one year, or one generation), and
they depend on the current state of the system and on the trajec-
tory that it follows over the time interval (Bailey et al. 1997). Local
Lyapunov exponents, thus, characterize the variation in sensitivity to
perturbations in different parts of state space, which provides more
information about the underlying dynamics than a single �� (Bailey
et al. 1997).

A dynamical system characterized by a value of �� near zero
will typically have a spectrum of local Lyapunov exponents extend-
ing from negative to positive values. Thus, the system goes through
recurrent stages of trajectory divergence interspersed with instances
of trajectory convergence (Ellner and Turchin 1995). The short bouts
of “local chaos” can be quite intense. For example, the best model
for the vole Clethrionomys rufocanus in northern Finland suggests
that one year in four (i.e., a typical cycle) the amplification factor is
seven or larger, and one year in ten, the amplification is twenty or
larger (Turchin and Ellner 2000a). Thus, small exogenous perturba-
tions (if they occur during the period of local chaos) have large effect.
Even relatively small demographic stochasticity can be amplified into
periods of high unpredictability (Ellner et al. 1998).

In sum, the boundary between chaotic and nonchaotic dynamics
is not abrupt. Population dynamics characterized by �� near zero
(both positive and negative values) are not qualitatively different from
“strong chaos”: in both cases systems go through recurrent periods of
trajectory divergence interspersed with periods of convergence. The
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difference is quantitative: what is the relative strength of the con-
vergence/divergence tendencies, and does one or the other dominate
in the long term, or are they evenly balanced? Because there is no
clear-cut boundary between the chaotic and nonchaotic dynamics, we
recently proposed that population dynamics characterized by a global
�� near zero, let us say in the range −0�1 < �� < 0�1, should
be called quasi-chaotic (Turchin and Ellner 2000a). As we shall see
later, quasi chaos is an important category that is frequently encoun-
tered in the analysis of empirical ecological systems.

5.3.5 Regular Exogenous Forcing

The final point to make in the discussion of mixed exoge-
nous/endogenous dynamics is that the exogenous part does not have
to be purely stochastic, “white” noise. The exogenous component
can have a strong periodic component (section 3.2.2), in which case
it is often called periodic forcing. Periodic forcing can also interact
with the nonlinear endogenous dynamics, and produce unexpected
patterns. For example, a purely deterministic periodic exogenous
component combined with an endogenously driven limit cycle, under
certain conditions, can produce chaos (Schaffer and Kot 1985; Kot
et al. 1992). This is yet another example of how nonlinear popu-
lation dynamics can create something novel when interacting with
an exogenous driver. In this case, two regular, periodic kinds of
motion in the absence of noise produce a seemingly noisy, irregular
trajectory.

5.3.6 Synthesis

Nonlinear endogenous dynamics combined with stochastic exogenous
factors and periodic forcing can produce a variety of complicated
dynamical behaviors. Furthermore, ecological theory is rich in mul-
tidimensional models (e.g., species interactions; age, stage, or size
structure; and spatial dynamics) that are much more likely to exhibit
complex dynamics than simpler one-dimensional models. Trying to
impose a discrete classification system on dynamics is not productive.
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However, a more quantitative scheme is possible. Thus, dynamical
systems may be periodic or not, and if periodic, the degree of period-
icity may vary. Second, systems can be characterized as stable, quasi-
chaotic, or chaotic, but even better simply by the estimated value of
the global, and the spectrum of local, Lyapunov exponents. Third, dif-
ferent systems are characterized by different strengths of endogenous
versus exogenous components of dynamics. In sum, instead of a dis-
crete classification, such as the one based on classifying the determin-
istic “skeletons,” we should estimate such quantities as the strength of
periodicity, trajectory stability, and noise/signal ratio. Practical issues
concerned with the estimation of these and other “probes” will be
taken up in chapter 7.

5.4 POPULATION REGULATION

Although population regulation is one of the central themes in ecol-
ogy (Royama 1981; Berryman et al. 1987; Lawton 1991; Murdoch
1994), it has also been a most contentious issue, and has been the
subject of a highly acrimonious debate since the very beginning of
population ecology (history of the early debate in Kingsland 1995;
some amusing quotes in Turchin 1995b). Much of the controversy
was a result of ecologists speaking past one another (this particularly
affected the dialogue between theorists and empiricists). Furthermore,
until recently many ecologists were unfamiliar with the basic con-
cepts of dynamical theory. Now that dynamical thinking has become
much more prevalent, the debate seems to be finally dying out, or at
least shifting to secondary issues (Turchin 1999).

My goal in this section is to discuss the notion of population reg-
ulation, and proffer a perhaps not ironclad but workable definition of
the concept. I begin by defining a subsidiary notion, density depen-
dence. Then I discuss some early attempts at defining regulation,
before moving to the one I prefer, based on the notion of station-
arity. Finally, I discuss some of the limitations of the stationarity
definition.
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5.4.1 Definition of Density Dependence

Different ecologists sometimes mean different things when they
talk about density dependence, a tendency that made an important
contribution to the controversy surrounding the related concept of
regulation. As a result, many ecologists prefer to use other terms that
do not carry as much conceptual baggage, for example, stabilization
(Den Boer and Reddingius 1996) or resiliency (Pimm 1991). Some
even propose to do away with this concept (Berryman et al. subm.).
The situation is made worse by the tendency not to specify the con-
text, so that density dependence may refer to the general property of
a system (e.g., detecting density-dependent regulation), to a property
of the vital rates (e.g., birth rate is, or is not, density dependent),
or to a specific mechanism that is responsible for bringing about
this property (e.g., territoriality results in density dependence). Some
authors include both the state and a mechanism in their definition:
“Ecological density dependence � � � is a return tendency in population
abundance coupled with a scientifically defensible identification of a
regulatory mechanism” (Wolda and Dennis 1993:589).

Here is the definition that I prefer: density dependence is some
(nonconstant) functional relationship between the per capita rate of
population change and population density, possibly involving lags
(Murdoch 1994). Thus, density dependence is a general property of
the dynamical system, and does not imply that any particular vital
rate must be density dependent. Neither does this definition require
a specification of the ecological mechanism that is responsible for
density dependence (pace Wolda and Dennis 1993): the property of a
dynamical system and the mechanism explaining it are two logically
distinct issues.

Translating this definition into more formalized language, we have
(using the discrete-time framework):

rt = f �Nt−1
 Nt−2
 ��� 
 �t� (5.5)

where rt ≡ ln�Nt/Nt−1� is the per capita rate of population change,
Nt is the population density at time t, and �t represents the action of
exogenous factors.
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5.4.2 Regulation: Evolution of the Concept

The first clearly formulated definition of population regulation
employed the concept of a stable point equilibrium. For example,
Varley et al. (1973:19) gave the following definition: “a regulated
population (is) � � � one which tends to return to an equilibrium
density following any departure from this level.” The applicability
of the notion of a stable point equilibrium to natural populations
was challenged by Andrewartha and Birch (1954), as well as more
recently (e.g., see Wolda 1989). There are, indeed, two serious limi-
tations of this definition. First, nonlinear dynamical systems, such as
natural populations, can be characterized by dynamical behaviors that
are more complex than a stable point equilibrium, but do nevertheless
fit our intuitive notion of being regulated. Second, the definition
relying on a stable point equilibrium does not explicitly acknowledge
that population density is affected by both density-dependent factors
(that may be responsible for a stable point equilibrium) and density-
independent factors that provide a continuous source of stochastic
fluctuations in population density.

A generalization of the stable point equilibrium that addresses its
first shortcoming is the notion of a deterministic attractor (section
5.2.1). The notion of a deterministic attractor, however, is still not
general enough to be useful in ecological applications, because it does
not explicitly incorporate the stochastic sources of population change.

In the presence of noise, a deterministic attractor becomes a sta-
tionary probability distribution of population density (May 1973b). In
intuitive terms, the “equilibrium” is no longer a point, but a cloud
of points (Wolda 1989; Dennis and Taper 1994). Similarly, periodic
attractors (a finite number of points) and chaotic attractors (fractals
with fine complex structure) are “smeared” into probabilistic clouds
of points (for examples, see Schaffer et al. 1986).

5.4.3 The Stationarity Definition of Regulation

Thus, one defensible notion of population regulation is to identify it
with the presence of a long-term stationary probability distribution of
population densities (Dennis and Taper 1994; Turchin 1995b). Other
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names for the same thing are May’s (1973b) stochastic equilibrium
probability distribution, Chesson’s (1982) convergence in distribution
to a positive random variable, and Wolda’s (1989) probabilistic cloud
of points. In addition to noisy stable points, periodic oscillations, and
chaos, this notion also includes multiple stable states, or “metastable
dynamics.” The latter kind of a behavior results when there are two
or more deterministic attractors, each with its own basin of attraction,
which in the presence of noise become “connected” into one stochas-
tic attractor. The stationary probability distribution in such popula-
tions may have a bimodal shape.

A generalization of the “stationarity” definition of population regu-
lation is “stationarity in the wide sense” of Royama (1977). Royama’s
definition does not require a stationary probability distribution of pop-
ulation density, but only that the mean and the variance of the distri-
bution do not change with time. The distinction between narrow-sense
and wide-sense stationarities is a rather minor one, and unlikely to be
important in practice.

5.4.4 Beyond Stationarity: Stochastic Boundedness

One shortcoming of the stationarity distribution of population regula-
tion is that it excludes certain dynamical behaviors that we intuitively
feel should be regarded as examples of regulation. In particular, a
population fluctuating around a trend is not stationary, since its mean
is changing with time. Thus, by the stationarity definition, the popu-
lation is not regulated. Nevertheless, if the trend does not lead to zero
or infinite density, many ecologists would prefer to include this kind
of behavior in our notion of regulation. One answer to this quandary
may be provided by the notion of stochastic boundedness (Chesson
1978, 1982). Stochastic boundedness is a characteristic of persistent
populations. Mathematical details are given in Chesson (1982), but
the main intuitive idea behind stochastic boundedness is that “small
populations are seen infrequently. Stochastic boundedness implies a
steadiness to population fluctuations. No trends to ever lower popula-
tion densities are possible and the average frequency of fluctuations
to low density does not increase with time” (Chesson 1982).
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In general, the presence of a lower bound on population density
seems to be much less controversial than stronger notions of pop-
ulation regulation. In favorable environments and when population
density is low so that there is plenty of food and few natural enemies,
the average rate of population change has to be positive, and the pop-
ulation should increase; otherwise it would go extinct and we would
not have to worry about it. Unfortunately, further consideration shows
that the concept of a lower bound is much more complex than one
would think (see section 2.3.1). Additionally, in order for the concept
to be useful, we need to know how to detect stochastic boundedness
in practice. While we have well-developed statistical tests for station-
arity, the same can hardly be said for boundedness. It is also clear
that a test for boundedness would require massive amounts of data,
simply because typical populations spend a small proportion of time
near the lower bound on density fluctuations.

Practical considerations also limit the usefulness of tests that would
attempt to detect “regulation around a trend.” Our typical time series
are, at best, several decades long. A very high proportion of time
series of this length generated by unregulated dynamical systems (e.g.,
random walk) look just like “regulation around a trend.” The Statis-
tical power of tests that distinguish stationary from unregulated pro-
cesses is not very high, given the typical length of data sets (Dennis
and Taper 1994). If we extend the notion of regulated to include regu-
lated around a trend, then we will need such massive amounts of data
that we will not be able to make much headway in practical appli-
cations. For these reasons, I will continue to stick to the stationarity
definition of regulation, even while acknowledging its limitations.

5.4.5 Synthesis

Although population ecologists continue to debate regulation, the
broad outlines of a consensus are emerging (Royama 1981, 1992;
Berryman et al. 1987; Berryman 1999; Hanski 1990; Murdoch 1994;
Dennis and Taper 1994; Den Boer and Reddingius 1996; Hassell
et al. 1998). I believe that most population ecologists are in agree-
ment on the major, strategic issues in population regulation, while
the ongoing debate increasingly focuses on narrow tactical questions



5.4 POPULATION REGULATION 159

(Turchin 1995b). Here are some areas of agreement (Turchin 1999):

1. The central quantity of interest in the analyses of population
regulation is the realized per capita rate of population change,
defined as rt = ln�Nt/Nt−1�, where lnNt is the natural logarithm
of population density at time t. As an aside, this point follows
directly from the first law of population dynamics (chapter 2).

2. The realized per capita rate of change, rt , is affected by both
exogenous and endogenous factors. Exogenous factors are not
“noise” to be tuned out. They represent important biological
processes affecting population change, and are a legitimate
and an interesting subject for study in their own right.

3. Some negative feedback between rt and population density
is a necessary (but not sufficient) condition for population
regulation.

4. Population dynamics are inherently nonlinear. A wide variety
of functional relationships between the expected rt and
population density are possible, including monotonic—either
convex or concave—but also more complex relationships such
as the Allee effect or metastable dynamics. For some ranges
of density the expected per capita rate of change may be flat,
with population dynamics dominated by exogenous factors
(the so-called density-vagueness).

5. The rate of population change may be affected not only by
the current population density but also by lagged density.
Specific mechanisms may involve either intrinsic or extrinsic
factors (reviewed in chapters 3 and 4, respectively). The lag
structure of population regulation may be quite complex, with
more than one time delay affecting rt .

6. Finally, a focus on testing null hypotheses against unspecified
alternatives has proved to be unproductive in investigations
of population regulation. In other words, the interesting
question is not whether we can reject the hypothesis that a
population is “unregulated.” A much more fruitful approach
is to investigate the structure of population regulation (see
section 6.2.1). Ultimately, we need to determine what
ecological mechanisms explain population regulation in any
particular case study.
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CHAPTER 6

Empirical Approaches: An Overview

6.1 INTRODUCTION

There are three general approaches to studying population fluctu-
ations: statistical analysis of observational (e.g., time-series) data,
mathematical modeling of mechanisms, and experiments. Until
recently, ecologists (at least, in North America) have tended to
emphasize manipulative experiments as the way to address ecological
questions. For example, the eminent empirical ecologist C. J. Krebs
argues against both time-series analysis and mathematical models.
He suggests that we should avoid collecting long-term data simply
for the purpose of analyzing it for density dependence, because “this
approach has been a bankrupt paradigm” (Krebs 1991:6). Further-
more, “mathematical models are more seductive than useful at this
stage of the subject” (Krebs 1988). Krebs argues that progress in
elucidating the mechanisms of population regulation can be achieved
only by careful experimentation (Krebs 1995). I strongly disagree
with this philosophical stance. In fact, I believe that the reason why it
took us so long to begin understanding the mechanisms of population
dynamics is precisely because of the narrow focus on experimental
approaches by empirical ecologists (especially in North America;
Europeans have adopted a much more synthetic framework), and lack
of integration between experimental, theoretical, and data-analytic
approaches. In contrast to Krebs, who argues that we should start
with experiments, I propose that we should end with them. The
experimental approach is most powerful during the later stages of
an investigation into dynamics of any particular population, after
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time-series analyses have reduced the number of viable hypotheses,
and the potential mechanisms have been modeled mathematically to
obtain quantitative predictions that can now be tested experimentally.

I begin this chapter by discussing the role of time-series analy-
sis in the investigation of population fluctuations (section 6.2). Then
I discuss how experiments can be integrated into the synthetic frame-
work (section 6.3). The next two chapters are devoted to two general,
but also rather technical, subjects of population data analysis: phe-
nomenological time-series analysis (chapter 7) and fitting mechanis-
tic models to data (chapter 8). Because many issues of experimental
approach are system- or question-specific, I chose not to devote a
specific chapter to a general treatment of experiments, but instead
review experimental results for specific empirical systems in appro-
priate chapters.

6.2 ANALYSIS OF POPULATION FLUCTUATIONS

6.2.1 The Structure of Density Dependence

Time-series analysis is particularly useful during the initial stages
of investigation, when little is known about mechanisms underlying
the pattern of population change. One goal of time-series analysis is
a quantitative description of the fluctuation pattern (mean, variance,
autocorrelations, etc). Another is to characterize the structure of den-
sity dependence, by which I mean the following aspects of dynamics:
process order, the shape of the functional relationship between rt and
lagged population densities, trajectory stability, and signal/noise ratio.

Time-series analysis has the potential of reducing the list of
hypotheses for potential ecological mechanisms underlying the
observed dynamics. For example, during the 1980s the most popular
explanation for southern pine beetle dynamics was that its fluctuations
were driven by variable climate (see chapter 10). Yet our analysis of
time-series data showed that the greatest proportion of variance in
the realized per capita rate of change was explained by second-order
endogenous factors. Because the predictions of the hypothesis and
data patterns did not match, we concluded that we need to investigate
other mechanisms to understand this system.
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Because any given pattern of density dependence may be produced
by many different ecological mechanisms, time-series analysis alone
cannot prove that a specific mechanism is the one underlying oscil-
lations. For example, an apparent Allee effect, a positive relationship
between rt and Nt−1 at low Nt−1, could be either a result of direct
cooperation between organisms, or a side effect of Type II functional
response by natural enemies, to name just two mechanisms. Simi-
larly, delayed density dependence can arise as a result of a variety of
mechanisms, as was extensively discussed in chapters 3 and 4. It is
important not to oversell the value of time-series approaches, since
characterizing the structure of density dependence can, at best, get us
only a part of the way to an understanding of mechanisms. Yet, it
is equally important not to neglect the usefulness of this approach.
And we should not forget that other scientific approaches (including
manipulative experiments) also cannot prove a hypothesis.

In section 1.2.2 I suggested that there is a sequence of model
types used in population ecology, ranging from most mechanistic
(individual-based models) to less mechanistic (models employing
functions of summarizing features of individuals). Models of density
dependence are the next step toward the phenomenological end of
the scale. Thus, I view “density dependence” not as a hypothesis to
be falsified or corroborated but as a research program: a theoretical
framework with which to investigate the causal factors of population
fluctuations. Although quantifying density dependence does not
uniquely identify the biological mechanisms responsible for various
aspects of population dynamics, it allows us to make the first step
toward this goal.

6.2.2 Probes: Quantitative Measures of Time-Series Patterns

To make progress toward identifying the mechanism(s) of population
fluctuations, we must define a set of alternative hypotheses, translate
them into specific models, and use the models to generate predictions
about time-series patterns (section 1.2). We can then attempt to dis-
tinguish between the competing models by doing parallel time-series
analyses on the data and on model outputs, to obtain quantitative
measures of their relative success at matching the patterns in the data.
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A basic premise of this book is that there is a correspondence
between patterns in time-series data and ecological mechanisms that
can explain population fluctuations (Kendall et al. 1999; Turchin and
Ellner 2000b). Clearly the correspondence between mechanisms and
patterns is not one-to-one (see the previous section). Nevertheless,
there is a sufficient mechanism/pattern congruence to allow us to nar-
row down the field of competing hypotheses. Thus, even in circum-
stances where experimental studies are not possible, characterization
of the fluctuations by time-series analysis may provide useful infor-
mation for testing hypotheses. In summary, time-series analysis can
point out promising avenues to explore, and when combined with
mathematical modeling and short-term experiments it can also distin-
guish between rival hypotheses.

A critical ingredient in the program of matching ecological mech-
anisms with data on population fluctuations is some systematic quan-
tification of time-series patterns. Some quantitative measures—let us
call them time-series probes—are straightforward, and require con-
ceptually simple analytical methods. The sample mean and variance
of population data are the most obvious simple probes. Another set of
simple probes is the average period and some measure of periodicity
strength.

Other probes are less straightforward. One very useful probe would
be an estimate of the order of the dynamical process. From the sta-
tistical point of view, the order of a process is the number of values
that are useful for predicting future changes, for example, the number
that gives predictions with the lowest mean square error (Cheng and
Tong 1992). Another way to characterize dynamics is by their stability
(section 5.3) with, for example, Lyapunov exponents (section 5.2.2).
An even more basic distinction is between regular oscillations and
random fluctuations. These two types of dynamics are distinguished
by whether future values of population density are at all predictable
based on past values. Thus, a useful probe would be a measure of
the relative strengths of endogenous versus exogenous contributions
to population fluctuations, because many ecological mechanisms fall
into one or the other category.

It is important to choose probes that are “physically” meaning-
ful and relate directly to properties of the real-world dynamics. Any
good model of the system should be able to approximate probes of
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this sort in a robust fashion and not yield grossly biased estimates
due to inevitable inaccuracies of any fitted model. An example of a
bad probe, in this sense, is the fractal dimension of the attractor (Ell-
ner 1989). The presence of dynamic noise means that the attractor
dimension is really infinite, so any finite dimension that we compute
is simply a reflection of how we choose to view the attractor in finite
dimensional space.

Amplitude and periodicity can be directly calculated from an
observed time series of population numbers, but process order, trajec-
tory stability, and predictability cannot. To estimate these probes, we
need to fit models to data, and use the models to calculate the probes.
This brings us to a central topic: choosing and fitting time-series
models.

6.2.3 Phenomenological versus Mechanistic Approaches

Analysis of time-series data can be approached with a spectrum of
models, ranging from mechanistic to purely phenomenological. One
extreme is a fully specified model: it is assumed that all functional
relationships between variables are completely known, and there are
independent estimates for all parameters. Such a model can be used
to predict patterns in time-series data. A quantitative comparison
between model predictions and data patterns constitutes a test of the
hypothesis that mechanisms underlying population oscillations are
understood and correctly modeled.

At the opposite end of the spectrum are completely phenomenolog-
ical models, in which some flexible functional form is used to describe
the pattern of temporal relationships in the data. The extreme of flex-
ibility is to use nonparametric regression, such as smoothing spline,
neural net, or kernel regression (Nychka et al. 1996), which are now
generally available in commercial statistical software. The functional
form and the order of the process may be left unspecified, and are
estimated from the data. In such a model, the only assumption being
made is that the population dynamics are driven by a combination of
density-dependent feedbacks and random exogenous perturbations.

Both approaches have their strengths and weaknesses. Phenomeno-
logical models make fewer assumptions, but require more data, espe-
cially for fitting high-dimensional models. More mechanistic models,



168 EMPIRICAL APPROACHES

on the other hand, are much more parsimonious with data, but may
completely miss the mark by including a grossly wrong assumption.

As a result, most practical approaches to modeling time-series data
fall in between the two extremes. For example, we might develop
a model in which all variables and parameters have a clear biolog-
ical interpretation, and in which specific functional relationships are
assumed, but values of parameters are not known and need to be
estimated. Such a model would fall near the mechanistic end of the
spectrum. Moving further to the phenomenological end, we may par-
tially specify the mechanistic structure of the model, but leave some
functional relationships unspecified and fit them empirically using
flexible general forms (Ellner et al. 1998; Wood 2001).

Thus, it can be argued that the art of time-series modeling consists
of “hardwiring” in the model what is definitely known, and using the
time-series data to estimate what is not known. Clearly, the optimum
mix of mechanism and phenomenology will depend on how much is
already known about the system and how much data are available.
As we learn more about the system, we should expect to employ
increasingly more mechanistic models.

6.3 EXPERIMENTAL APPROACHES

I define experiment as a planned comparison between data and a
novel, nontrivial prediction derived from a hypothesis. The purpose
of the scientific experiment is to test a theory, that is, to increase or
decrease its empirical support. A novel prediction is the one whose
truth is not known to the investigator at the time when he/she derives
it from the hypothesis. Often predictions are made about some future
(as yet unobserved) event or measurement, but logically it is not nec-
essary that the event take place in the future. For example, if one
investigator makes a prediction about some data already collected by
another scientist, then I consider it a strong prediction if the first
investigator had no knowledge of the data when making the predic-
tion.1 The key to novelty is not predicting the future, but the potential

1Logically, in fact, it should not matter whether the investigator knows the outcome
while making a prediction, but from the psychological point of view predictions about
a currently unknown outcome carry more weight.
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for falsification (understood broadly as the potential for increasing or
decreasing empirical support of a hypothesis).

The second aspect of prediction, its lack of triviality, is also related
to the falsifiability potential. Intuitively, a trivial prediction is one that
we could easily make without the theory we are aiming to test. Trivial
predictions could be simply vague and all-encompassing (“population
density will fluctuate in the future”), or something that we would
expect to happen anyway. For example, practically all ecological mod-
els predict that if population density increases much above the nor-
mal level of fluctuations, then we should expect a population decline.
Deriving this “prediction” from, say, a predation-based hypothesis
and determining that, indeed, a population decline occurred provides
very little empirical support for the predation hypothesis. Thus, poten-
tial for falsifiability is an important feature of an empirical test of a
theory. Clearly a theory that makes a strikingly unexpected predic-
tion that eventually turns out to be true gains more empirical support
than a theory that makes a rather trivial prediction that also is found
to be true. But what constitutes a striking, unexpected prediction is
difficult to define, especially because people’s expectations tend to
change. What was striking and unexpected ten years ago may now
be commonplace. The only way I know that allows us to measure
this property of prediction (and therefore the empirical value of the
experiment) is by contrasting it with a prediction derived from some
alternative theory. In other words, I do not believe that a hypoth-
esis can be tested in isolation; we can only test predictions from
two or more hypotheses against each other (see also section 1.2). In
the context of multiple hypotheses, the idea of nontriviality is much
easier to define. Essentially, a nontrivial prediction is the kind of out-
come that is predicted by hypothesis 1 with high probability while all
other hypotheses assign this outcome a low probability. This defini-
tion directly leads to the quantification of empirical support for one
hypotheses relative to others in terms of likelihood ratios or Bayesian
posteriors.

An important aspect of nontriviality is making predictions quan-
titative. A qualitative prediction of the kind “upon increasing factor
X the theory predicts that factor Y will decrease” is of little use. If
under the null hypothesis, the factor Y can increase with probabil-
ity 0.5 or decrease with the same probability, then a decrease in Y
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could have happened by chance alone. Thus, an experiment showing
that Y indeed decreased provides little support to the tested hypoth-
esis. In somewhat more technical terms, this experiment does not
allow us to distinguish between the tested and the null hypotheses,
because the probability of the outcome “Y decreases” is rather high
under both hypotheses. Making the prediction quantitative (“Y will
be in the region between Ymin and Ymax”) decreases the probability of
this particular outcome under the null hypothesis, and thus makes the
experiment more meaningful.

Obtaining predictions to be tested experimentally is a serious busi-
ness, requiring much thought and effort. It is amazing to me that many
ecologists will lavish an enormous amount of energy on the construc-
tion of the experimental apparatus and data collection while paying
very little attention to predictions that they are trying to test. There
seems to be a stock of “the usual suspects” that are supposed to be
tested. One of the worst examples of this channelized way of thinking
is empirical tests of the role of predators in population cycles. Some-
how a notion became established that the only way to “prove” that
predators are driving cycles is to remove them and observe whether
the cycle stops. One problem with this idea is that it assumes that the
only definitive experiment has to be the manipulative kind. However,
from the logical point of view, a mensurative experiment has equal
validity for testing hypotheses. If two alternative hypotheses make
very different predictions about some feature of population dynam-
ics, then we can distinguish between the two hypotheses simply by
measuring the appropriate variables. For example, food-based and
predator-based explanations will make different predictions about pre-
dation mortality patterns and about some food-related patterns (e.g.,
how body weights should change throughout the cycle). If we can
figure out a way to measure these variables during the complete
cycle, then we should be able to determine which of the explana-
tions comes closer to the patterns observed in the data. The ability
to manipulate an ecological system is not an essential feature of the
experimental approach (Krebs 1991; see also Chitty 1996:55). How-
ever, although ecologists are well familiar with this idea in theory,
in practice they still believe that a manipulative experiment somehow
provides a stronger test of a hypothesis.



6.3 EXPERIMENTAL APPROACHES 171

Another problem with “stopping the cycle” is that it is very diffi-
cult to do in practice. In fact, as far as I know nobody has succeeded
in this yet (this is true at least with respect to the main case studies
I review in part III). For example, in the remarkable experiment at
Lake Kluane, Krebs et al. (1995) carved the boreal forest into giant
1 km × 1 km chunks. They put up an electrified fence to exclude
ground predators and an aerial net to exclude avian predators from
some experimental areas, and did other manipulations in others (more
on this in chapter 13). Their intent was to “stop the cycle” of the
snowshoe hare population. Instead what happened was that remov-
ing predators increased the peak density and delayed the population
collapse, but it did not stop the cycle. Does this experimental result
falsify the predation hypothesis? Dennis Chitty (1996:45) thinks so,
while Krebs and coworkers disagree. We shall return to the question
of what this experiment tells us in chapter 13, but what is important
for the point in hand is that even a high-powered group of accom-
plished field ecologists, after decades of studying snowshoe hares,
designed a multimillion dollar experiment and still were unable to
stop the hare cycle. What’s more, even after failing to stop the cycle,
these authors nevertheless concluded that predators were one of the
two factors driving the hare cycle. This seems clear evidence to me
that stopping the cycle is not necessary to establish empirical sup-
port for a hypothesis! Another experimental study (on the red grouse)
came even closer to stopping the cycle (Hudson et al. 1998), but still
failed (Lambin et al. 1999; response in Hudson et al. 1999). The
problem is that if a predator (or parasite) removal manipulation fails
to stop a cycle, then several explanations are possible:

1. Predation is not the mechanism that drives the cycle.
2. Experimenters did not manage to remove enough predators

to obtain a detectable effect.
3. Prey diffused out of experimental areas into low-density

areas outside.
4. Removal of predators caused prey density to increase to

the point where another factor came into play (exhaustion
of food, an epidemic, etc.) that caused the decline of prey
density.
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Thus, a negative result by no means amounts to a “refutation” of the
predation hypothesis (item 1 in the preceding list), since one also
needs to exclude all the other logical possibilities (items 2–4).

I think it is time to admit that the “stop the cycle” attitude is actu-
ally counterproductive. By raising the level of proof that we require
of a hypothesis very high, and then failing to achieve that level for
any current theory, we ignore equally valid, although less spectacular,
advances in testing alternative hypotheses, and create an impression
that no progress has been accomplished since Elton’s 1924 paper. Fur-
thermore, those who criticize trophic hypotheses for various empirical
systems on the grounds that no experiment has managed to stop the
cycle by removing consumers are typically adherents of some intrin-
sic mechanism. Yet, I know of no instance of where an experimental
manipulation of an intrinsic factor resulted in stabilizing a cycling
population.

“Stopping the cycle” is a prediction that is intellectually easy to
make—it requires no hard thinking and diligent modeling—but it
turns out to be very difficult to do in the field. Perhaps it would be
better to turn it around, and spend some intellectual effort on deriv-
ing equally informative predictions that are easy to test in the field.
Perhaps we should also take some lessons from physicists, who never
tried to do a fool thing like stopping a planet from revolving around
the Sun to prove that Newton was right. In fact, most of the exper-
iments that changed the course of physics were of the mensurative
kind. Perhaps the most influential physical experiment of the 20th
century was the observation that the gravitational field of the Sun
bends Mercury’s light. This mensurative experiment in one stroke
changed Einstein’s theory of relativity from an esoteric hypothesis to
the established theory (Oksanen and Oksanen 2001).



CHAPTER 7

Phenomenological

Time-Series Analysis

At the start of an investigation into population dynamics of some spe-
cific system we typically do not know enough about it to begin formu-
lating intelligent hypotheses about its behavior. Thus, the first phase
of the investigation should be exploratory, and we need to answer the
following questions (see chapter 5): Are dynamics periodic? What
kind of stability does the system possess? What is the process order
of fluctuations? What are relative contributions of endogenous and
exogenous factors? To answer these questions, we need to fit to data
some generic, or phenomenological, models. The goal of this chapter,
therefore, is to review phenomenological approaches to time-series
analysis of population fluctuations. In addition to discussing general
approaches, I describe one particular implementation, the nonlinear
time-series modeling (NLTSM) approach, which evolved from the
original paper by Turchin and Taylor (1992; see also Turchin 1993,
1996).

7.1 BASICS

7.1.1 Variance Decomposition

The traditional approach to time-series analysis is based on decom-
posing the variance of a series into trend, seasonal variation, other
cyclic oscillations, and the remaining irregular fluctuations (Chatfield
1989). This framework can be adapted to ecological problems with a
few modifications, as follows.
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Trend is a long-term, exogenously driven, systematic change in the
environment. The most frequent consequence for population dynam-
ics is a change in the mean level of fluctuations. The change can
be either gradual or abrupt (a step trend). Trend is one example of
nonstationarity. Other kinds of nonstationarity include systematic
changes in the variance, and in the dynamical type of fluctuations.
Periodic changes in the environment are another kind of non-

stationarity. The most common example of periodic environmental
“forcing” is seasonality. Although seasonality affects most natural
populations, I largely sidestep the issue of how to model it, because
the main goal of methods reviewed in this chapter is the understand-
ing and quantification of multiannual population fluctuations. If data
are collected several times a year, they can be aggregated into yearly
indices of population density either by averaging within a year or by
subsampling once per year. Some approaches to the explicit modeling
of seasonal oscillations can be found in Ellner and Turchin (1995),
and an example of fitting a mechanistic seasonal model will be dis-
cussed in chapter 12.

The sources of variation discussed above represent systematic
exogenous influences (changes in the environment that affect pop-
ulation change, but are not themselves influenced by population
numbers). The endogenous factors (dynamical feedbacks affecting
population numbers, possibly involving time lags) are another impor-
tant source of variation, particularly if the underlying endogenous
dynamics belong to the class of complex dynamics (limit cycles,
quasiperiodicity, and chaos).

Irregular fluctuations, finally, are the residuals left after system-
atic environmental changes and endogenous oscillations have been
extracted from the series. These residuals are usually interpreted as
exogenous “environmental stochasticity,” but they will actually con-
tain at least two fundamentally different sources of variation. Process
noise is the technical term I use in the book for exogenous envi-
ronmental stochasticity. Measurement noise arises from observation
errors. Process noise and measurement errors are treated very dif-
ferently in time-series analysis. A perturbation due to process noise
affects not only Nt but also the following densities, since there is
a functional dependence between Nt+1 and Nt , due to the endoge-
nous dynamics of the system. By contrast, a perturbation due to
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measurement error affects only the data point Nt that we use in the
analysis, not the actual density. As a consequence, there is no influ-
ence (from this particular perturbation) on subsequent density values.

7.1.2 Data Manipulations Prior to Analysis

An ideal time series to analyze is long, has been collected at com-
pletely regular time intervals, has no zero measurements or missing
values, and comes from a stationary dynamical system. Unfortunately,
in the real world such ideal data sets are rare. Below I discuss some
practical approaches for dealing with two particularly problematic
issues, zero values and nonstationarity.

Handling Zero Values Presence of zero values in the data presents
a serious difficulty, because data will usually be subjected to various
transformations, most notably logarithmic. The standard approach to
dealing with this situation, which I do not recommend, is to add 1
to the whole series. The problem with this approach is that it can
seriously distort the data patterns, because it ignores the natural scale
of variation in the data. For example, suppose that the minimum
(apart from zeros) and the maximum of a data series is 0.0001 and
0.01, respectively. Adding 1 to such a series will cause it to fluctuate
between 1 and 1.01, completely hiding the true variation. Similarly, if
nonzero numbers vary between 100 and 200, then adding 1 to zeros
will result in exaggerating the actual amplitude.

A good practical approach is to replace zeros with the value that
could be the smallest potentially observable number in a given study,
as determined by the apparatus used to measure density. For example,
if in a mammal-trapping program we have used 100 traps per hectare,
then the smallest nonzero measure of population density that we could
observe would be 1/100 individuals per ha (if we capture just one
individual). Thus, we can substitute 0.01 for zeros in this data set.
Another approach, which can be used when no information about
measuring apparatus is available, is to substitute the smallest observed
value for zeros.

Detrending Presence of exogenous trends in the data, for exam-
ple, a gradual change in the mean level of fluctuations, leads to a
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lack of stationarity, and may seriously degrade our ability to extract
endogenous dynamics (Nychka et al. 1992). In nontechnical terms,
a dynamical system is stationary when the mechanisms generating
its fluctuations do not change with time. In other words, a stationary
system is dynamical and its state constantly changes with time, but
the rules underlying change do not. If we attempt to fit a statisti-
cal model assuming stationarity to data generated by a nonstationary
system, then the model will not fit data well, and its estimate of the
random element in dynamics (“irregular fluctuations”) will be inflated
as a result of failing to take the systematic trend into account.

A commonly used approach in time-series analysis is first to
remove the suspected trend (this is called detrending), and only
then attempt to characterize endogenous dynamics. Unfortunately,
detecting and properly characterizing trends is not particularly easy
(Berryman et al. 1988). Furthermore, when detrending is done in
a completely phenomenological manner, without any biological
information, it can lead to highly spurious results. For example,
detrending a random walk (an unregulated population) will introduce
spurious autocorrelations at small lags (Jassby and Powell 1990),
thus possibly giving an illusion of regulation. In other words, a
time series of an unregulated or weakly regulated population can be
“decomposed” into a spurious trend and equally spurious endogenous
regulation component. Another potential problem is that not all sys-
tematic changes in population density are a result of environmental
trends. For example, a population may appear to exhibit a gradual
trend of increasing numbers, suggesting that the carrying capacity
of the environment is increasing while in reality the population is
recovering from a catastrophic event just prior to the beginning of
observations. Thus, it is best to reserve detrending for situations
where there is some external evidence of environmental change.
In case such evidence is lacking, but there are strong indications
of nonstationarity, data should be analyzed both with and without
detrending, to document the effect of detrending on results. Finally,
if data are long enough, then they can be split into shorter pieces and
analyzed separately (see next page).

As to specific methods to detrend a time series, the classical
ARIMA approach (Box and Jenkins 1976) employs differencing,
which would be equivalent to constructing a new series based on
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realized per capita rates of change, �rt�. In my opinion, differencing is
usually not a useful approach in population dynamics, because results
of fitting models to the rt series are much more difficult to interpret
in ecological terms than doing the same for the nondifferenced data.
While we have some intuition and even formal results allowing us to
interpret results of fitting rt to Nt−1� Nt−2� � � � � there is no comparable
framework for interpreting models like rt = f 	rt−1� rt−2� � � � ).

The most straightforward and useful approach to detrending in
ecological applications is to fit the temporal trend with a curve, and
then subtract it from the data. For example, removing a linear trend
involves first fitting a line to the data by regressing Yt = logNt on
t. This gives us the intercept and slope parameters, a and b. The
detrended series then is

Y ′
t = Yt − 	a+ bt


If a trend appears to exhibit curvilinear characteristics, than a second-
degree (or higher) polynomial could be used in the same way.

Data Splitting Data splitting involves cutting the series into pieces
and analyzing each segment separately. This approach is particularly
useful when we deal with a step trend, because we may suspect that
the nature of the dynamical process has somehow changed in the
middle of the observation period. Note that a step trend may affect
the mean, the variance, and/or the autocorrelation structure (e.g., see
the red grouse data in figure 11.1).

Data splitting should be practiced only with relatively long data
series. Extensive experience with time-series analysis of ecological
data suggests that data series shorter than about 20 years rarely yield
satisfactory results, especially when we are investigating second-order
dynamics. Of course, if we are interested in quantifying first-order
oscillations, we may get away with just ten data points, which could
allow us to fit a simple three-parameter model, such as the theta-
Ricker. For second-order dynamics, for which period lengths are sub-
stantially longer (typically 6–12 years), we need longer series. The
general rule of thumb is that we need at least three “data points”—
three complete oscillations. Depending on the average period of each
cycle, then, we may need from 18 to 36 years or, rounding, a series
of 20–30 years. In fact, it may be a good idea to check on one’s
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results by routinely splitting long series, and analyzing shorter pieces
separately, even when no obvious nonstationarity is detected by pre-
liminary examination of the data.

In sum, the rules of thumb that I suggest for data splitting are as
follows (this assumes second-order dynamics; for shorter cycles one
can correspondingly multiply the number of pieces beyond the ones
I suggest here). Aim at 20–30 years per piece. Thus, a series that is
40–60 years long should be split in half, 60–90 years long should
be split in three pieces, and so on. However, if cycle period is rather
long, than increase the length of pieces. Attempt to have no fewer
than three oscillations per piece.

7.1.3 Diagnostic Tools

The Time Plot The very first step in time-series analysis should
always be to plot observed values of population numbers at time t, Nt ,
against time. The graph may reveal such features of data as a trend
(gradual or step), presence of periodic oscillations, and outliers. The
data should be log-transformed by calculating Yt = log10 Nt . The base
of 10 is useful because we can immediately see “orders of magnitude”
in population fluctuations, by comparing the degree of population
variability against a single tick (corresponding to a tenfold change)
on the y-axis.

The Phase Plot Phase portraits plot current population density, Nt ,
against lagged density, Nt−1 (again, it is customary to plot these vari-
ables on a log scale). Points corresponding to successive t are con-
nected by lines to indicate population trajectory through the phase
space. A useful variation of this approach is to plot rt = ln	Nt/Nt−1


against Nt−1. The phase plot often provides useful clues. Thus, pop-
ulations that are regulated by direct density-dependent mechanisms
show back-and-forth fluctuations around the mean value, while pop-
ulations regulated by delayed density-dependent feedbacks show cir-
cular clockwise orbits.

A Measure of Amplitude An intuitive measure of amplitude is the
ratio of peak to trough density. Unfortunately, this measure has an
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undesirable property of being affected by the length of data, because
in longer series unusually low or high values are more likely than in
short data. An alternative measure that has better statistical properties
is the standard deviation of log-transformed data:

S = 1
n− 1

n∑
i=1

	Yt − �Y 
2 (7.1)

where Yt = log10 Nt , �Y is the mean of Yt , and n is the number of
observations. S was introduced as a measure of relative variability
by Lewontin (1966), and used in the context of population dynam-
ics by Stenseth and Framstad (1980). Because S is calculated based
on log-transformed densities, it is linearly related to the peak/trough
ratio. For example, a sine wave with peak/trough ratio of 10 and 100
has S = 0�35 and 0.7, respectively. In other words, S = 0�35 can
be interpreted as one order of magnitude between peak and trough
density.

Frequency Distribution of rt Population oscillations are often asym-
metric, because the rise phase is longer than the decline phase (Moran
1953; Ginzburg and Inchausti 1997). The reason is that there is no
biological limit on how fast organisms can die, while there is a limit
on how fast they can reproduce. Asymmetry can be noticeable by
the naked eye, but it would also be useful to be able to quantify
it. A simple approach is to divide a population series into rise and
decline intervals, and calculate the mean duration of each phase.
This approach works well with very regular data such as the lynx
fur returns (see Royama 1992:187–188; also Ginzburg and Inchausti
1997), in which peak and trough years can be assigned unambigu-
ously. For messier data sets, a more robust procedure would be to
examine the frequency distribution of rt . Cycle asymmetry is revealed
by less numerous but more extreme negative values combined with
more numerous, but smaller in magnitude, positive rt . This pattern can
be quantified (and statistically tested for) by calculating the skewness
of the rt distribution.

Frequency Distribution of Yt Another topological characteristic of
cycles, in addition to asymmetry, is the peak shape. Two general sce-
narios can be distinguished. In one, population density grows expo-
nentially (linearly on the log-transformed plot) until it reaches the
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peak, when there is an abrupt switch and density begins declining.
Such population cycles have a saw-toothed pattern characterized by
“sharp” peaks. The second possibility is for density to approach the
peak value and remain at high density for a more or less extended
period of time. These dynamics yield a series of “blunt” peaks. As
I discussed in section 4.2.3, predator-prey models in an oscillatory
regime tend to produce saw-toothed predator dynamics and blunt-
peak prey dynamics (see figure 4.3 in chapter 4). We can quantify
peak shape by examining the frequency distribution of Yt values, and
testing whether its skewness is significantly different from zero.

Autocorrelation Function (ACF) The most ubiquitous and a very
useful diagnostic tool in time-series analysis is the autocorrelation
function, or ACF. ACF is estimated by calculating the correlation
coefficient between pairs of log-transformed population densities Yt−�
and Yt separated by lag � , with � = 1� 2� � � � . These correlation coef-
ficients, plotted together as a function of lag � , are known as a correl-
ogram. By averaging over a noisy series, ACF reveals the trend and
periodic patterns more clearly than the time plot (Box and Jenkins
1976; Chatfield 1989; for ecological interpretation of ACF, see Fin-
erty 1980; Nisbet and Gurney 1982; and Turchin and Taylor 1992).

The simplest ACF pattern is exhibited by stationary monotonically
damped systems (simple dynamics). ACF of such systems is positive
at small lags, and then decays exponentially to zero at high lags. If
ACF decreases slowly with lag, in a somewhat linear fashion, and
at high lags becomes increasingly negative, the data are probably
affected by a trend. Oscillatory ACF can arise either as a result of
exogenous periodic forcing, or as a result of periodic endogenous
dynamics. The former case is also known as “phase-remembering
quasi-cycles” (Nisbet and Gurney 1982), and its ACF will not decay
to zero at high lags, but continue to cycle indefinitely. The latter
case is known as “phase-forgetting quasi-cycles” (Nisbet and Gurney
1982); its ACF eventually decays to zero at high lags. Thus, in theory
ACF patterns can help distinguish between a series that is oscillating
in response to an exogenous oscillator with a set period from a series
that undergoes endogenous cycles. In practice, however, ecological
series are rarely long enough to resolve this issue.
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A crude (but sufficient for most applications) procedure of deter-
mining the statistical significance of ACF patterns is as follows. First,
we determine the lag T at which ACF reaches its first maximum: this
is the estimated dominant period. Next, we check whether ACF at
lag T , ACF[T ], is greater than 2/

√
n, where n is the number of data

points in the series. If yes, then we have strong evidence of statistical
periodicity. If not, then we check the ACF at the lag nearest half the
estimated period. If ACF�T /2� < −2/

√
n, then we have weak evi-

dence of statistical periodicity. If ACF is not significantly different
from zero at either period or half-period, then we conclude that there
is no evidence of periodicity.

Spectrum The spectral density function, or spectrum, shows the
decomposition of the variance of the process into contributions due to
each frequency. The estimated spectrum (usually referred to as peri-
odogram) exhibits peaks at those frequencies that contribute most to
population oscillations. Chatfield (1989) provides a readable expo-
sition of calculating and interpreting spectra; for an application in
ecology see Finerty (1980). The spectrum provides much the same
insights as ACF (in fact, the spectrum is the Fourier transform of the
autocovariance function, a close relative of ACF). Spectra are widely
used in engineering and physics. Their utility in ecology, however, is
probably limited. First, interpretation of spectra is much less intuitive
than interpretation of ACF, and a steep “learning curve” is involved in
learning to use spectral analysis properly. Second, estimating spectra
from data is a highly technical field, because a periodogram has to be
smoothed to provide a consistent estimate of the spectrum. Finally,
spectral analysis requires large amounts of data. For short series typ-
ically found in ecological applications one can often obtain more
reliable results with ACF (Jassby and Powell 1990), so I chose not to
include spectrum in the current implementation of NLTSM.

Partial Autocorrelation Function (PACF) While ACF is a very use-
ful diagnostic for presence of trends and periodicities, it cannot tell
us much about the lag structure of density dependence. A statistically
significant ACF spike at lag 10 does not necessarily mean that there
is a direct effect of density 10 years ago on present density, since it is
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much more likely that Nt−10 affects Nt indirectly through the interme-
diate N values. For example, a model with only two lags, Nt−1 and
Nt−2, can generate limit cycles with period 10 yr. The question is, how
many lags do we need to model population fluctuations adequately,
or what is the order of the process? This problem is analogous to
deciding on the number of terms to include in a multiple regression
(Box and Jenkins 1976). Box and Jenkins recommend using the par-
tial autocorrelation function (PACF) as an indicator of the order of
the process. If dynamics of the system can be at least approximately
represented as a linear (in logs) autoregressive process of order p (�t
represents the exogenous dynamical component, ai are constants)

Yt = a0 + a1Yt−1 + · · · + adYt−p + �t (7.2)

then the theoretical PACF will have nonzero values at lags that are
less than or equal to p, and will be equal to zero at lags greater than
p. This observation suggests the following practical rule (Box and
Jenkins 1976): if PACF has spikes significantly different from zero
at p lowest lags, and at higher lags PACF abruptly drops off, then
one candidate model for the system is an autoregressive process of
order p.

Partial Rate Correlation (PRCF) Functions The major problem
with using PACF as a diagnostic tool in ecology is that model (7.2)
is not well suited to the analysis of population fluctuations. This
is because most factors affecting population change—birth, death,
and emigration—are per capita rates. Thus, in populations for which
immigration can be neglected, a better model will have the general
form

Nt = Nt−1F 	Nt−1� Nt−2� � � � Nt−p� �t
 (7.3)

The consequence of this functional form is that PACF at first lag
(PACF[1]) does not contain much useful information about regulation
at first lag. For example, if there is no regulation, PACF is still going
to have a positive spike at first lag. Even in the presence of a neg-
ative effect of Nt−1 on population change, PACF[1] will be positive
if regulation is of the undercompensating kind. Only in the presence
of overcompensatory regulation (tendency to overshoot equilibrium)
will PACF[1] be expected to be negative.
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The nature of the problem suggests the remedy. Instead of calcu-
lating partial autocorrelations between Y s separated by various lags,
Berryman and Turchin (2001) proposed that partial correlation coeffi-
cients are to be calculated between rt = lnNt/Nt−1 and Yt−1� Yt−2� � � � .
Thus we have an analog of PACF, which we will call the partial rate
correlation function (PRCF).

7.2 FITTING MODELS TO DATA

The diagnostic approaches discussed in section 7.1.3 are essential
tools in exploratory analysis of data, but in order to quantitatively
characterize the structure of density dependence—process order,
functional shapes, trajectory stability, and signal/noise ratio—we need
to fit models to data. In this section, I discuss general approaches to
fitting phenomenological models, and describe one particular imple-
mentation, the nonlinear time-series modeling (NLTSM) approach.

7.2.1 General Framework

The most general model underlying phenomenological approaches to
ecological time-series analysis is

N	t + �pred
 = F �N	t
� N 	t − �
� � � � � N 	t − 	p − 1
�
�

U 1	t
� U 2	t
� � � � � �	t
� (7.4)

As usual, N	t
 represents population numbers or density measured
at time t. Reconstruction parameters �pred, � , and p are, respectively,
the prediction time, the base lag, and the process order. U i	t
 are
the exogenous factors that have been measured, and whose effects
can be quantified. Finally, �t represents the process noise—action of
exogenous factors that are not explicitly modeled (either because we
have not measured them, or because we have a multitude of small-
effect factors that we do not care to explicitly include in the model).
Lacking data on exogenous influences, we usually have to lump all
exogenous factors together into �t , but this need not be so. We shall
discuss approaches to estimating effects of measured exogenous vari-
ables in section 8.2. As an important note, the formalism on which
model (7.4) is based applies equally well to discrete and continuous
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dynamics. We can translate back and forth between a phenomenolog-
ical model like (7.4) and a model formulated as a system of ODEs
(an example in chapter 12).

In equation (7.4) the prediction time, �pred, is allowed to be differ-
ent from the base lag, � . Actually, we do not even have to reconstruct
dynamics with densities lagged at regular intervals, as is assumed by
(7.4). In theory, given unlimited data and computer power, we could
use the data to help us select the best values of reconstruction param-
eters, using approaches similar to cross-validation discussed below. In
practice, however, allowing too much flexibility in the general model
is self-defeating—there are too many options that can be adjusted,
while data are always limited. Experience suggests that we should
limit the number of parameters that we estimate, and thus the custom-
ary approach is to set �pred = � (Ellner and Turchin 1995), leading to
the following simplified model

Nt = F 	Nt−� � Nt−2� � � � � � Nt−p� � �t
 (7.5)

Here I also dropped exogenous variables U i, and switched to sub-
scripts for improved readability. Furthermore, note that I switched to
Nt instead of Nt+� as the dependent variable in (7.5). This lag shift
reflects the convention that I employ throughout the book: models for
data analysis have Nt on the left-hand side (because we are trying
to explain the present state of the system from knowledge of its past
state), while theoretical models use Nt+1 (because we are trying to
predict the future based on the present state of the system).

A further modification of model (7.5) is suggested by the first law
of population dynamics (section 2.2):

rt = f 	Nt−� � Nt−2� � � � � � Nt−p�
+ �t (7.6)

where I assume that random environmental influences affect pop-
ulation dynamics approximately multiplicatively, via vital rates.
Log-transforming the dependent variable (rt ≡ logNt/Nt−1) translates
these multiplicative influences into additive ones.

To illustrate the advantages of using rt as the response vari-
able, consider the following example: fluctuations of a laboratory
Drosophila population (data collected by Rodriguez 1989; analysis in
Turchin 1991). When we plot these data in the Nt − Nt−1 phase plot,
we observe a rather noisy relationship (figure 7.1a). We know that the
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Figure 7.1. Three views of structure of density dependence in Drosophila.
(a) Nt = f 	Nt−1
+ �t . (b) Nt/Nt−1 = f 	Nt−1
+ �t . (c) rt = f 	Nt−1
+ �t .
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curve must go through the origin (no immigration was allowed in this
population), but the data scatter obscures any underlying relationship.
Plotting the per capita replacement rate Nt/Nt−1 against Nt−1 results
in a much better definition of the functional relationship (figure 7.1b).
However, the distribution of residuals is clearly heteroscedastic: the
variance decreases from left to right. A logarithmic transformation
takes care of this problem (figure 7.1c). We can now fit a simple
linear relationship to the data (although a slight curvature suggests
that employing a theta-Ricker model with � < 1 could improve the
fit). The data are still noisy, but the rt versus Nt−1 plot reveals a clear
density-dependent relationship in the data, something that is not very
apparent on the Nt versus Nt−1 plot.

Of course, we could fit the theta-Ricker model directly to the Nt
versus Nt−1 data, using nonlinear methods and an appropriate statis-
tical model for the residuals. So the primary advantage of using rt
instead of Nt as the response variable is heuristic. Nevertheless, it
is an important advantage, because it is much easier to see density-
dependence relationships in the rt-based phase plot. As a result, we
are more likely to choose an intelligent model for fitting data. For
example, until we plotted the data in an appropriate way, it was not
apparent that we should use the theta-Ricker model to capture the
downward curvature.

Model (7.6) provides the foundation of time-series analyses for
the rest of this chapter. Although we have already made a number of
simplifying assumptions, more work is needed before we can use it
to investigate dynamics of a specific population system. We need to
choose an appropriate base lag (section 7.2.2), select functional forms
for approximating the relationship between rt and lagged densities
(section 7.2.3), and estimate model complexity (section 7.2.4).

7.2.2 Choosing the Base Lag

The choice of the base lag � (which also serves as the prediction inter-
val, since I advocate setting �pred = �) can have a strong effect on the
results of a dynamical analysis of the data. There are no universally
accepted guidelines for making this choice, although we now under-
stand that we need to avoid two pitfalls—redundance and irrelevance
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(Casdagli et al. 1991). Redundance occurs when � is very small, so
that the expectations of Nt , Nt−� , Nt−2� , and so on are practically
the same. In such a case, knowing Nt−� and Nt−2� in addition to Nt
does not help to characterize the state of the system any better than
knowledge of Nt only. Attempting to fit a relationship between Nt and
lagged densities will only model measurement noise. The opposite
problem of irrelevance occurs when � is so large that Nt and Nt−�
are not functionally related anymore, because of cumulative effects
of noise (and trajectory divergence, if the system is chaotic).

An optimal choice of � , therefore, falls somewhere between these
extremes of redundance and irrelevance. If the population trajectory
has been undersampled (i.e., sampled at too long intervals), then we
will have a problem of irrevelance. The only remedy in this case,
unfortunately, is to collect the data again using a smaller time interval.
If the data are oversampled, by contrast, we can avoid the problem of
redundance by using � equal to multiple intervals. The general rule
of thumb is to avoid using a base lag for which the autocorrelation
between Nt and Nt−� is too high (Casdagli et al. 1991). Thus, Ell-
ner and Turchin (1995) recommend using the first � at which ACF
decreases below 1

2 . This rule typically leads to � equal to between
1
6 th and 1

8 th of the dominant cycle.
It is also important for the choice of � to make biological sense;

that is, � should correspond to some notion of generation time. If
time delay used in the analysis approximately matches the generation
time, then it becomes much easier to connect estimated process order
to biological mechanisms that may be driving population dynamics.
The simplest case is when we are dealing with discrete-generation
systems such as many forest insects. The obvious choice is � =
1 yr, which matches both the generation times of the focal popula-
tion (insect herbivore) as well as many of potential interacting species
(e.g., parasitoids). As long as the dominant cycle period is less than
8–10 yr, the ACF[�] will not exceed 0.5 too much, and so we shall
not run into the problem of redundance. For longer cycles, we should
repeat the analysis with longer � (2–3 yr, depending on which choice
is suggested by the ACF��� < 0�5 rule), and check how the analysis
results are affected. An annual system with long-period cycles is also
one kind of system for which we should consider decoupling � from
�pred (e.g., leave � = 1 yr, but use longer �pred).
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Whenever a biological system is better described by a continuous
rather than a discrete model, we do not have a natural choice of the
base lag. In systems with continuous reproduction, and generation
times (Tc) of about a year or somewhat less (e.g., many rodents), I rec-
ommend using the same delay, � = 1 yr. Using a delay smaller than
a year would force us to model seasonal dynamics explicitly, signifi-
cantly increasing model complexity. Additionally, one might take into
consideration the possibility that generation times of significant inter-
acting species (e.g., predators) might be somewhat longer (or shorter).
However, no specific choice can possibly satisfy all the conflicting
demands, so in a phenomenological analysis setting, opting for an
annual clock may not be a bad overall decision. (Different generation
times for the focal species versus its interactants can be built in, but
this is best done with mechanistic models; see chapter 8.)

When the generation time is much shorter than a year, than we
should set � approximately equal to it. In such cases, we may have to
model seasonality explicitly, unless the whole time series fits within a
single season during which we can assume that the environment does
not change substantially (i.e., we can assume quasi-stationarity).

For systems where generation time is much greater than a year
(e.g., large mammals), again the best procedure is to set � equal to
Tc. It is also a good idea to vary � somewhat to determine how much
analysis results depend on any specific choice of the delay.

In summary, I recommend that � should generally be set equal to
1 yr, unless the generation time, Tc, is much different from 1 yr. In
the latter case the base time delay should be chosen to approximate
Tc. In any case, the analyst should check the ACF at � . If ACF��� is
too close to 1, (e.g., above 0.5), then the analysis should be repeated
with longer delays. Finally, in some situations the values of base lag
and prediction period may have to be uncoupled.

7.2.3 Functional Forms

Model (7.6) does not specify the functional form of the depen-
dence between rt and lagged densities, f 	·
. This relationship is
unknown and must be estimated from data (after all, at this—
phenomenological—stage of analysis we do not yet know which
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mechanisms may be driving dynamics). Many approaches for approx-
imating functional relationships exist, but it is essential to recognize
that a good fit for some purposes may be a bad fit for others (Ellner
and Turchin 1995). For example, if our purpose is to characterize the
qualitative dynamics of the system with Lyapunov exponents, then it
is important to keep in mind that the estimates of Lyapunov expo-
nents are calculated from partial derivatives of f 	·
. A method that
gives accurate estimates of f may give poor estimates of derivatives
of f . For example, a piecewise constant approximation can come
arbitrarily close to a smooth function, just as a staircase with many
tiny steps can approximate a straight line with constant slope. But the
derivative of this staircase approximation is zero at all flat portions,
and undefined at vertical portions, so it cannot be used to generate
estimates of the Lyapunov exponent (Ellner and Turchin 1995).

Another consideration is the amount of data one has. Physical
applications often deal with tens of thousands of very accurately
measured data points, and thus can employ very sophisticated but
data-hungry methods for approximating functional relationships. For
shorter data sets, in the range of 50–500 data points, coming from
systems affected by substantial amounts of dynamical noise, two
approaches seem to work well: feedforward neural networks (McCaf-
frey et al. 1992) and thin-plate splines (Wahba 1990). The majority of
ecological data sets, however, fall in the range of 10–100 data points.
In my experience, employing sophisticated and flexible approaches
like neural nets and splines for such short data is an overkill. I found
that a modified polynomial scheme, response surface method (RSM)
of Box and Draper (1987), works well for typical ecological series.

Ellner and Turchin (1995) applied all three approaches (neural nets,
thin-plate splines, and RSM) to a set of ecological time-series data,
and found that all three approaches gave similar results. The great
advantage of RSM over the more sophisticated approaches, however,
is that it is very easy to fit a response surface model to data. Fits
can be obtained with standard statistical software, such as STATIS-
TICA, are almost instantaneous on modern personal computers, and
do not suffer from the problems of being trapped in local minima,
unlike more sophisticated approaches such as neural nets. The disad-
vantage of RSM is that it is not as flexible as the more sophisticated



190 TIMES-SERIES ANALYSIS

alternatives, and therefore it can approximate only rather simple rela-
tionships in the data. Furthermore, RSM is best at fitting data coming
from low-dimensional dynamical systems (process order of no more
than three to four). However, given the typical length of ecologi-
cal time series, we simply do not have enough data points to char-
acterize high-dimensional complicated attractors. Accordingly, RSM
appears to provide the optimal mixture of flexibility and simplicity,
and I chose to use it in the NLTSM approach.

NLTSM Implementation Response surface method is based on gen-
eralizing polynomial regression by allowing Box-Cox (1964) transfor-
mation of the independent variables, as suggested by Box and Draper
(1987). The Box-Cox transformation is basically a power transforma-
tion that includes many commonly used statistical transformations:
square root (� = 0�5), inverse (� = −1), and no transformation
(� = 1). Additionally, the logarithmic transformation is the same as
the Box-Cox transformation with � = 0. The form of the RSM model
is

rt = Pq

[
N
�1
t−1� N

�2
t−2� � � � � N

�p
t−p

]
+ �t (7.7)

where Pq is a polynomial of degree q, p is the process order as before,
and �is are transformation parameters. For example, for second-order
process (p = 2) and assuming second-degree polynomials (q = 2),
the general RSM model becomes

rt = a0 + a1X + a2Y + a11X
2 + a22Y

2 + a12XY + �t (7.8)

where X = N
�1
t−1 and Y = N

�2
t−2 are Box-Cox transformed lagged den-

sities (remember that by convention N 0
t is interpreted as logNt).

Once the structural RSM parameters—p, q, and �i—are selected
by cross-validation (see section 7.2.4), fitting model (7.7) is done
simply by least squares (the model is linear in parameters). The sim-
plest approach, which appears to work well, is to treat transformation
parameters �i as discrete quantities, to be selected together with p and
q (see p. 191). Experience shows that the set �−1�−0�5� 0� 0�5� 1�,
corresponding to most commonly used transformations, is sufficient
in most applications. An alternative approach is to estimate transfor-
mation parameters together with coefficients ai using nonlinear fitting
methods (this approach was advocated, e.g., by Perry et al. 1993). In



7.2 FITTING MODELS TO DATA 191

practice, allowing �i to vary continuously usually has only a slight
effect on the estimates of such quantities as R2

pred and "	. However, it
is a good practice to check on this by fine-tuning parameter estimates
with nonlinear least squares that treat �i as continuous parameters, as
a final step in the analysis.

7.2.4 Model Selection by Cross-Validation

The most critical step in nonlinear time-series analysis (and this
applies to all methods, not just RSM) is choosing the complexity
of the model. Model complexity, for my purposes, can be defined
as simply the number of free parameters (i.e., parameters that we
need to estimate from data). Complexity of the model fitted to
time-series data has an enormous effect on estimates of all dynamical
quantities, such as signal/noise ratio, or trajectory stability. In our
initial approach to nonlinear time-series analysis with RSM models
(Turchin and Taylor 1992), we used a model of fixed complexity,
model (7.8). We were well aware that by applying a model of stan-
dard complexity we risked misclassifying the qualitative dynamics
of some case studies (Turchin and Taylor 1992:304). In fact, the
contrast between our results and those of Hassell et al. (1976), who
employed a much simpler first-order model (and, correspondingly,
found much simpler dynamics), speaks eloquently for the need for
model selection. A model with too small a number of lagged densities
will not be able to approximate the dynamics of a high-order system.
It will assign most of variation to “noise,” and will more likely than
not classify the model as stable. A graphic example of this bias in
favor of stability is the misclassification by Hassell et al. (1976) of
the larch budmoth data as the most stable data set in their collection,
although this is perhaps the best example of a high-amplitude cyclic
dynamics in ecology (see chapter 9). The converse problem is that
a model with too high p will have many parameters and will “fit
the noise” instead of fitting the endogenous feedbacks. An overfitted
model will often produce a spurious chaotic result.

In the absence of a priori information that would help us to select
an appropriate model structure, we have to use time-series data them-
selves. One approach that seems to work well is cross-validation. The
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basic idea is to fit a variety of models on a part of data (the fitting set),
to predict the data points that were not used for fitting (the validation
set), and to then select the model that predicts the validation data
the best. Cross-validation guards against selecting an overly complex
(overfitted) model, because such models will be fitting to the noise
rather than the signal, and will thus produce poor predictions on the
validation set. To make efficient use of limited data, cross-validation
is done repeatedly on different divisions of the data into fitting and
validation sets. For example, the data may be divided into k equally
sized subsets, and cross-validation is done k times with one of the
blocks as the validation set and the remainder as the fitting set; the
sum of squared prediction errors from the entire process is used to
measure the model’s accuracy. The NLTSM approach uses an extreme
version of such sequential-blocks cross-validation, in which k = 1
(see p. 193).

Cross-validation becomes impractical with even moderately large
data sets. For splines one can use instead an analytic approximation
to cross-validation that is valid for large sample sizes and can be
computed from a single fit to the entire data set (Wahba 1990)—this
is called “generalized cross-validation” (GCV). For neural nets, the
Bayesian information criterion (BIC) seems to be reliable for avoiding
spurious overfitting on short, noisy time-series data (Nychka et al.
1992).

Complexity of a phenomenological time-series model, such as
(7.7), has two components. The first one is the question of what
is the optimal process order, or embedding dimension (p). Process
order has a very strong influence on the model complexity: typically,
the number of fitted parameters grows exponentially with p. The
second questions is how flexible should the surface be. In the RSM
approach, functional flexibility is controlled by the parameter q, or
the polynomial degree. Unlike p, the polynomial degree does not
have a ready biological interpretation (the functional shape of the
relationship between rt and lagged densities is determined jointly
by q, �i, and ai). I now discuss approaches to selecting model
complexity, starting with the process order.

Choice of the process order, p, is conceptually straightforward,
but often difficult in practice with short data sets. Cheng and Tong
(1992) showed that a consistent estimate of the correct order can be
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obtained by a cross-validation procedure, fitting successively mod-
els with p = 1� 2� 3� � � � , and choosing the value of p at which the
mean square prediction error is minimized. Their analysis assumes
that the data are fitted with a fully nonparametric model (they consider
specifically the kernel regression model), so their procedure inherits
a hunger for data in higher dimensions. The analysis and simulation
study in Cheng and Tong (1996) suggest that the data requirements
are not catastrophically high, for example, that 1,000 data points are
sufficient to yield reliable results even for p = 10. However, as many
as 200–300 data points may still be necessary for p = 2 or 3. In
ecological applications, these data requirements will rarely be met
outside the laboratory.

If the data are too sparse for nonparametric estimation of p, one
option is to impose some mechanistic constraints that reduce the num-
ber of parameters in the higher-dimensional models. For example,
if a suitable parametric model (or set of candidate models) can be
identified for rt as a function of lagged population densities, we can
similarly fit the model at a series of p values, estimate prediction
accuracy by cross-validation, and select the p giving the most accu-
rate predictions. While this is not guaranteed to find the correct p, it
does give a value that can be regarded as optimal for the available
data, according to a sensible criterion for model selection. A more
conservative approach is to first fit a model with p = 1 (only direct
density dependence), and test for significant effects of other lags, for
example, by linear regression of residuals on lagged population den-
sities.

NLTSM Implementation As indicated above, the NLTSM approach
employs sequential-blocks cross-validation. To understand the logic
of this approach, consider first cross-validation as it was originally
proposed. The procedure is to split the data set into the part on which
the model is fitted, and the part where the model is “validated,” that
is, where values predicted by the fitted model are compared with the
data. This could be repeated for all possible choices of p, and the
p that allows the best prediction is the final choice. This approach,
however, is wasteful of data. For example, suppose we have only
twenty observations. We can use ten of them to fit the model, but
this is really not enough to explore different possibilities. Increasing
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the allocation to the fitting part, however, leaves us with too few data
points for the validation part. An approach that is much more frugal
with data points works like this. We form a fitting data set by omitting
one data point, fit the model on this reduced data set, and predict
the omitted point. The difference between the predicted and observed
values is saved. Next, we omit another point and repeat the procedure.
The process is repeated by omitting each data point in turn, and, at
the end, we calculate a measure of prediction accuracy, the sum of
squared differences between the predicted and actual data. Finally, we
repeat the process for all different model specifications (e.g., different
values of p), and choose the model form that produces the least MSS.
This is a computer-intensive procedure, but it allows us both “to have
the cake and eat it,” since the fitting part at any given time is all
but one of the data points, and the validation part is all data points.
Cross-validation allows us to squeeze the data set dry of information,
an important advantage when data are sparse.

Cross-validation for p proceeds largely as described above. For
each choice of p, there are several models with different q and �.
We fit all combinations of p up to 3, q up to 2, and �i from the set
�−1� 0�5� 0� 0�5� 1�. Ideally, � should be allowed to be different for
each lag, since the response surface can have very different nonlinear
properties in different directions, or axes, corresponding to Nt−1, Nt−2,
and so on. Allowing �s to vary among lags, however, would result
in more parameter combinations at higher lags and a larger pool of
prediction error estimates. For example, for five choices of � and two
choices of q, there are ten possible models for p = 1 (5 �1s times 2
qs), but fifty possibilities for p = 2 (5 �1s times 5 �2s times 2 qs).
Thus, we would be comparing a R2

pred minimized over ten choices to
a R2

pred minimized over fifty choices. A minimum over fifty choices
is likely to be less than a minimum over ten choices, even if there
is no real difference (i.e., the second lag does not add to prediction
accuracy). In other words, such an approach may bias model selection
in favor of higher p.

To avoid this bias, we are forced to use the same � for all lags,
which leads to the same number of possibilities in each p class. This
penalizes higher lags, but it is better to be overly conservative than
to find a spuriously high p, with all the consequent problems. After
p has been chosen, we can use cross-validation to select q and �is.
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At this point we can allow � to vary from lag to lag, because we
are comparing R2

pred values minimized over the same number of pos-
sibilities. To summarize, cross-validation is done in two steps: first
determining p, second determining q and �s. This two-step procedure
avoids a bias in favor of selecting a higher-dimensional model.

Finally, there is the question of what quantity to predict. There are
several possible choices: rt , Nt , or Yt = logNt . NLTSM uses Yt . In
applications, we usually need to predict the future population levels
rather than the population change (rt), and log-transformed population
density often has a better statistical distribution, compared with Nt .

The accuracy of one-step-ahead prediction of Yt is measured by
R2

pred:

R2
pred = 1−

∑n
t=1	Y

∗
t − Yt


2∑n
t=1	�Y − Yt


2
(7.9)

where Y ∗
t is the prediction, and Yt is the “predictee” (the data point

omitted). I call this quantity the coefficient of prediction (by analogy
with the coefficient of determination used in regression analysis). R2

pred

tells us how much better a model does compared with using the mean
of time series as a simple-minded forecaster. The closer R2

pred to one,
the better is the accuracy of one-step-ahead prediction. If R2

pred is close
to 0, however, then the model is not increasing our ability to forecast
the population density, and R2

pred < 0 indicates that the model is fitting
the noise, and thus predicting more poorly than the mean. The value
of the coefficient of prediction is a useful diagnostic in its own right.
When it is around 0, the dynamics are either simple, with fluctuations
driven by noise, or so complex that we cannot characterize them given
the amount of data and present technology. If R2

pred is substantially
greater than 0, then dynamics are complex, and are governed by a
sufficiently low-dimensional attractor so that we can capitalize on that
for prediction purposes.

7.3 SYNTHESIS

In this chapter I reviewed general approaches to nonlinear time-series
analysis of ecological data. I also described a particular, fully devel-
oped approach (NLTSM) based on the response surface method of fit-
ting the relationship between the realized per capita rate of change and
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lagged densities (equation 7.7), and sequential-blocks cross-validation
for selection of model complexity. The advantage of using NLTSM
is that it can be completely automated, allowing rapid processing of
both empirical data series and model output. In other words, the soft-
ware accepts time-series data as input, and generates a set of numeric
probes as the output. I will use these outputs in two ways: (1) in
the initial phenomenological analysis of empirically observed popu-
lation fluctuations, to generate and, perhaps, reject hypotheses about
mechanisms underlying dynamics; and (2) in quantitative compar-
isons between data and trajectories generated by mechanistic models
purporting to explain the observed dynamics. Incidentally, the soft-
ware is available (free of charge and free of responsibility) from the
author’s website.



CHAPTER 8

Fitting Mechanistic Models

While the previous chapter focused on exploring the structure of
density dependence, without worrying too much about the mecha-
nistic content, in this chapter we shall consider more mechanistic
approaches to analyzing time-series data. Recollect that phenomeno-
logical methods employ lagged population densities as state vari-
ables. The distinguishing feature of the approaches reviewed here is
that we, at the very least, can postulate the ecological nature of state
variables that drive the dynamics. The functional forms of dependen-
cies between state variables may be completely known, in which case
we need to estimate only the numeric values of parameters. Alter-
natively, we may have to decide among several candidate functions,
and we have to use the data to help us with this choice. Finally,
we may have to resort to semimechanistic methods that represent
functional relationships with flexible nonparametric curves or sur-
faces subject, perhaps, to some qualitative constraints. For example,
we might require that increased predator density must have a neg-
ative effect on prey, without specifying the functional form of the
relationship.
This chapter is organized as follows. First, I revisit the issue of

model selection that was already raised in section 7.2.4, but now
discuss it in the context of mechanistic models (section 8.1). Next,
I consider the various approaches to an exploratory analyses when
we have access to ancillary data (section 8.2). Ancillary data docu-
ment fluctuations of variables other than the population density of the
focal species that, we suspect, may have an effect on focal species
population. The topic of ancillary data leads us naturally to fitting
models using the method of “one-step-ahead prediction,” which can
be applied when we have time-series data on all the state variables
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of the fitted model (section 8.3). Finally, I tackle the most difficult
topic: fitting mechanistic models when we are missing information
about some state variables. I review two general approaches: trajec-
tory matching (section 8.4) and nonlinear forecasting (section 8.5).
Fitting mechanistic models to data is already a huge field in ecol-

ogy, and one that is growing very rapidly. Given space limitations,
I must focus only on issues that are of direct relevance to the main
subject, complex population dynamics. One particular aspect of the
problem that I cannot give justice here is the statistical issues. Fortu-
nately, there exist an excellent book by Hilborn and Mangel (1997)
that fills the gap. Another useful book is Quinn and Deriso (1999).

8.1 MODEL SELECTION

When fitting models to ecological data, we rarely find ourselves in
the situation where the functional form of the model is completely
known, so that the only task is the estimation of its parameters. More
typically, the theory can suggest several alternative models, and we
have to contrast each of them with the data in order to determine
which one is “the best.” When comparing alternative models that have
the same number of free parameters (a free parameter is one whose
value is not fixed a priori and must be estimated using the data),
we can simply pick the one that explains the greatest proportion of
variance in the data. This approach, however, does not work when
we must choose among models of variable complexity, because it is
clear that a model with many free parameters will generally capture a
greater proportion of variance in the data than a simpler model, even
if the actual process that generated the data is better described by the
simple model. In other words, we need to guard against the problem
of overfitting the data (see section 7.2.4).
One situation in which a standard statistical approach is available

is when one of the alternative models is nested within the other. A
simple model is nested within a more complex one if its functional
form is a special case of the more complex model, obtained by setting
one or more parameters to some constant (typically, 0). For example,
the hyperbolic functional response is nested within the Beddington
response (see table 4.1 in section 4.1.1), because we can obtain it
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by setting the parameter w to 0 in the Beddington form. When alter-
native models are nested, we can use a likelihood ratio test (almost
any standard statistical text treats this topic; for an exposition in an
ecological context, readers can consult Hilborn and Mangel 1997:
chapter 7). However, in most situations of interest to an ecological
analyst, alternative models are not nested within each other. This is
usually the case when we wish to compare models based on different
ecological mechanisms.
The most general approaches to model selection are cross-

validation and the information criteria. I have already discussed
cross-validation in the context of phenomenological time-series anal-
ysis (see section 7.2.4). I think that cross-validation is the way to
go in a serious analysis of data, because it is based on the ability to
predict out-of-sample data, the most stringent test a model can be
subjected to (short of collecting more data). However, implementing
cross-validation is laborious, because it requires programming, and
there are also several conceptual issues that need to be resolved
in order for cross-validation to work properly (this is discussed
in section 7.2.4). Unfortunately, I know of no widely available
statistical software package that implements the sequential-blocks
cross-validation. By contrast, the information criteria, discussed
below, are easily calculated using the standard output of statistical
software (in fact, many packages routinely print them out). The
information criteria, therefore, provide a “quick and dirty” approach
to model selection.
The best-known tool for model selection, although perhaps a

flawed one, is the Akaike information criterion (AIC). AIC is equal
to [−2 × ln�maximized likelihood� + 2 × (number of independent
parameters estimated)] (Chatfield 1989:197). Another widely used
index, the Bayesian information criterion (BIC) substitutes p+ p ln n
in place of 2p (p is the number of estimated parameters) in this
formula (Chatfield 1989:197). A useful recent book on the use of
information criteria is by Burnham and Anderson (1998). These
authors advocate AIC as the main tool for model selection. However,
AIC has a serious problem: it is overly liberal. For this reason, and
because BIC enjoys the property of consistency, Nychka et al. (1992)
suggest that we should use BIC.
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8.2 ANALYSIS OF ANCILLARY DATA

Analysis of ancillary data is very straightforward when models are
formulated in the discrete-time framework. For example, suppose that
we have time-series data on the focal species, Nt , and its parasitoids,
Pt , collected once a year. We can use the following general host-
parasitoid model in the analysis:

Nt+1 = Nt exp	r�Nt�− a�Nt� Pt�Pt
 (8.1)

where r�Nt� is the density-dependent function, and a�Nt� Pt� is the
parasitoid attack rate. Writing this function in terms of realized per
capita rate of change (and shifting subscripts, as usual), we have the
following general model:

rt = r�Nt−1�− a�Nt−1� Pt−1�Pt−1 + �t (8.2)

Note that I explicitly added an exogenous noise term, �t , to the right-
hand side. We are now in position to explore the effect of para-
sitism on the dynamics of the focal species using nonlinear regression
(offered by any serious statistical software package). Usually we will
not know which particular functional forms to use, so we can try a
number of different ones, taking them “off the shelf” (for density-
dependent functions, see table 3.1; for functional response functions,
see table 4.1). For example, using the Ricker form and hyperbolic
response, we have the following specific model:

rt = r0

(
1− Nt−1

k

)
− aPt−1
1+ ahNt−1

+ �t (8.3)

Fitting a variety of combinations of r�N � and a�N � P� functions to
data, we observe how much variance the inclusion of the parasitism
term helps to explain. A more formal comparison of models can be
performed using an information criterion such as BIC, which penal-
izes models with a large number of parameters.
Thus, the general approach to the analysis of ancillary data is to

fit time-series data with models of the form

Xt = f �Xt−1� Yt−1� Zt−1� � � � � �t� (8.4)

where Xt is the response variable whose dynamics we are investi-
gating. The potential predictor variables are, first, the variable we
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are investigating lagged by one year, Xt−1, and, next, other variables
(Yt−1� Zt−1� � � � ) that we have information about. The time subscripts
are shifted (t and t − 1 instead of t + 1 and t) to emphasize that we
are not modeling (predicting the future given the present state of the
system) but analyzing data (understanding the present given the past).
Finally, �t represents, as usual, the effect of stochastic factors. The
form of the function f is partly, but not completely, data driven. The
idea is to model mechanistic relationships between various variables
(this is not phenomenological time-series analysis). Thus, we want
to try a variety of functional forms suggested by ecological theory
(logistic population growth, functional responses, etc.). We make a
decision on which model is best supported by data based on formal
criteria such as AIC or BIC, and on the basis of whatever diagnostic
tools the software package supports.
The preceding discussion assumes that we are investigating a system

that is well described by discrete-time models. If we are dealing with
a system operating in continuous time (data, though, always comes in
discrete bits), thenwe can follow one of two alternative approaches. The
first one is to discretize the continuous models that we can write for
the system (see section 3.1.2). After that, we follow the steps outlined
above. The second, more general approach is to smooth the Nt data
and calculate the derivative of N at each point t for which we have
data. This approach gives us the response variable, which we can
place on the left-hand side of the differential model that we have for
the system. Thus, the logic is the same as with fitting discrete models,
but we have to perform an extra step of estimating derivatives. For
examples see Ellner et al. (1998) and Kendall et al. (1999).
An extended example of ancillary data analysis will be considered

in chapter 9. There I use ancillary data analysis to test two rival expla-
nations for the larch budmoth cycle, based on two different driving state
variables: budmoth–plant quality and budmoth–parasitoid hypotheses.

8.3 ONE-STEP-AHEAD PREDICTION

Ancillary data analysis focuses on how the dynamics of the focal
species are affected by various environmental factors for which we
have data. The next logical step is to extend this approach by also
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fitting dynamical models to these other factors. Thus, suppose that
fitting some form of equation (8.2) suggests that parasitism data help
to explain a large portion of variation in rt of the focal species. In
that case, we should perform analysis of the second equation of this
model, for example,

Pt = Nt−1�1− exp	a�Nt−1� Pt−1�Pt−1
� (8.5)

An added complexity is that, in exploring the effect of different func-
tional forms on the degree of fit, we must ensure that we use the same
forms in both equations.
The general (deterministic) model underlying this approach to fit-

ting data is

Nt = f �Nt−1� Xt−1� Yt−1� � � � �

Xt = g�Nt−1� Xt−1� Yt−1� � � � � (8.6)

� � �

I call it the “one-step-ahead prediction” approach, because our fitting
criterion is the accuracy with which this year’s values of Nt , Xt , and
so on are predicted on the basis of the values of the same variables
last year. This approach is clearly a relative of the phenomenological
time-series model such as equation (7.6) (see section 7.2.1). The dif-
ference is in the state variables: real ecological variables in equations
(8.6) and “reconstructed” in equation (7.6). This relatedness suggests
that we can use many methods developed for phenomenological time-
series analysis in the analysis of equations (8.6). Thus, we can use
cross-validation to determine which of the ancillary variables are rel-
evant, just as we determine the order of the phenomenological model
(section 7.2.4). We can also use flexible functional forms, such as
response surfaces or neural nets, to fit the relationships between dif-
ferent variables, and then check whether the fitted curves or surfaces
correspond to the theoretically suggested (quantitative or qualitative)
shapes. This is the semimechanistic approach to which I referred
above.
Models fitted with the one-step-ahead approach should always be

iterated on the computer to check whether their long-term dynamics
match the observed behavior of the studied system. This comparison
constitutes an important diagnostic test of the fitted model, because a
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good ability to predict one step ahead is no guarantee of being able to
generate correct long-term dynamics. For example, in the empirical
example of larch budmoth dynamics, our analyses could not detect
any effects of self-limitation (adding such terms did not noticeably
increase the proportion of variance explained). Even though the fitted
model explained near to 90% of variance in rt , when iterated it gen-
erated diverging oscillations (section 9.3.2). To fix this problem, we
had to add a self-limitation term, even though it was not supported
by the regression analysis. A general message here is that fitting well
on a short timescale is no guarantee of correct long-term behavior.
Some of the considerations related to choosing the prediction interval,
discussed in the context of phenomenological analysis (section 7.2.2),
may be well worth checking on.
There are few examples of application of the one-step-ahead anal-

ysis, perhaps due to the practical difficulty of collecting information
on all important state variables. One empirical example is considered
in the context of the larch budmoth (chapter 9). Another excellent
example deals with the flour beetle in the laboratory (Dennis et al.
1995, Costantino et al. 1995).

8.4 TRAJECTORY MATCHING

Model fitting based on one-step-ahead prediction requires time-series
measurements for all state variables in the model. Such a happy sit-
uation is rare; usually we have to fit models when dynamics of some
important variables are unknown. Two general methods have been
developed to deal with this situation: trajectory matching and non-
linear forecasting, which is a generalization of the one-step-ahead
prediction approach. The two approaches differ fundamentally in the
assumptions they make about the source of stochasticity in the data.
As we discussed on several occasions, there are two fundamental
kinds of “noise”: process noise, which reflects the action of exoge-
nous variables affecting vital rates, and measurement noise, which
reflects our inability to measure variables such as Nt very precisely.
It is very difficult, perhaps impossible, to estimate the variances asso-
ciated with both kinds of noise simultaneously (Hilborn and Mangel
1997). Put simply, trajectory matching and nonlinear forecasting differ
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in that the first method sets the variance of process noise to zero and
estimates the measurement error, while the second does the reverse.
The logic underlying trajectory matching is simple, and can be

illustrated by the example of fitting a parasitoid-host model to data.
Let us suppose that we have only a set of measurements of host data,
�Nt�, where t = 1� 2� � � � � n. The model has a vector of parameters
(e.g., r0� k, and a if we are fitting the Beddington model; see equation
4.32) that we are interested in estimating. For any particular choice of
parameter values and initial host and parasitoid densities (N0 and P0,
respectively) we can solve the model forward for n steps, and obtain
the model-predicted sequence �N ∗

t � (the star superscript denotes val-
ues generated by the model). We also obtain a sequence of parasitoid
densities, which we have to discard since we have no data against
which to compare it. To calculate the degree of fit between the model
predictions and data, we employ some measure such as the coeffi-
cient of prediction, R2pred (section 7.2.4). We have now defined a
mapping from a set of parameters and initial values (r0� k� a� N0, and
P0) to R2pred. The next step is to use some standard software for func-
tion minimization, and ask it to find the set of parameters and initial
values that will minimize 1− R2pred (i.e., maximize the coefficient of
prediction).
Because of its conceptual simplicity, and because it can be pro-

grammed quite easily, trajectory matching is often used in ecological
applications (e.g., Harrison 1995; Hunter and Dwyer 1998). A pop-
ular exposition of the statistical issues can be found in Hilborn and
Mangel (1997). A particularly sophisticated application to an ecolog-
ical problem is by Wood (2001). Nevertheless, I cannot recommend
this approach wholeheartedly.
The main problem with the approach is in its assumption that

system dynamics are completely deterministic, and that the difference
between model predictions and data is entirely due to measure-
ment error. As I stressed repeatedly in this book, this assumption
is simply not tenable for ecological systems. Ecological systems
are “phase-forgetting,” using the terminology of Nisbet and Gurney
(1982). Repeated influence by exogenous factors, coupled with tra-
jectory divergence due to endogenous dynamics (if the system is
chaotic), means that the system “forgets” its initial conditions after
repeated iterations, certainly after several complete oscillations. Yet,
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the trajectory-matching method assumes that, knowing the initial
state of the system, we can predict the last data point in the time
series! Note that the longer the data series, the worse would be this
problem. Paradoxically, therefore, longer series make our estimates
worse rather than better.
Furthermore, trajectory matching also has a tendency to fit more

chaotic models than necessary. Suppose we are given a set of highly
variable randomly generated data, and we can use a nonlinear model
with parameters that allow chaotic dynamics. Then what can hap-
pen is that the fitting routine might push the model into the chaotic
regime, where each slight variation in the initial values and param-
eters results in wildly different trajectories. If the fitting routine is
good enough, by sorting through many such trajectories, it will be
able to find some that will fit the data quite well. Needless to say,
the parameter estimates from such an exercise would be completely
useless. This is not a thought experiment; I once got a manuscript for
review where authors did just that, but with a real data set.
In summary, one must be extremely careful about using the

trajectory-matching approach. With a dynamical system that retains
memory of its initial conditions for a long time (at least, for a time
comparable to the length of the data series), this approach can give
meaningful results. And, as we shall see shortly, the alternative
approaches have their problems. Hilborn and Mangel (1997) suggest
that data should be analyzed both ways: in one approach setting pro-
cess noise to zero, and in the other setting measurement noise to zero.
If both approaches agree, then we can probably believe the results.
In any case, the ability of the approach to yield correct parameter
estimates should always be checked by subjecting simulated data to
the same analysis that was used on real data.

8.5 FITTING BY NONLINEAR FORECASTING

The nonlinear forecasting method is a generalization of the one-step-
ahead prediction approach for the case when we are missing infor-
mation about some state variables. The basic approach was suggested
by Tidd et al. (1993), and further developed by Turchin and Ellner
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(2000a). Recollect that in the one-step-ahead method we assume that
data are generated by a model such as

Nt = f �Nt−1� Xt−1� �t�

Xt = g�Nt−1� Xt−1� �t�
(8.7)

where Nt and Xt are state variables (for simplicity, I am assuming
a two-dimensional system), f and g are some functions, and �t and
�t represent exogenous variables. Since we have data only on Nt , we
cannot use model (8.7). The Takens theorem, however, tells us that
there is another function, call it F , that gives us the value of Nt , given
lagged densities:

Nt = F �Nt−1� Nt−2� � � � Nt−p� �t� (8.8)

Equations 8.7 and 8.8 are equivalent in the sense that they are differ-
ent representations of the same dynamical rule.
In some special cases we can go algebraically from model (8.7) to

model (8.8) (e.g., the Nicholson-Bailey model; see equation 2.13 in
section 2.5). In general, however, a closed-form solution is not avail-
able, and in order to predict �Nt� from a mechanistic model, we must
use nonparametric regression techniques to numerically construct the
function F that holds for the model (Turchin and Ellner 2000a). Here
is how this works in practice. We first iterate the mechanistic model
to produce a long time series of simulated data �N ∗

t � (star superscripts
again denote values generated by simulating the mechanistic model,
and curly braces indicate a set, in this case the whole time series).
This is the atlas generated by the model. We then treat the atlas as
if it were a data set and apply nonparametric regression to produce
an estimate of F . The F constructed from the model can then be applied
to data values, forecasting Nt from Nt−1� Nt−2� � � � , in the data. A vari-
ety of nonparametric regression methods are available for estimating F ,
but we used kernel regression, because properties of kernel regression
make it possible to reestimate F relatively quickly when model parame-
ters are adjusted and a new atlas is generated (Turchin andEllner 2000a).
As usual, we quantify the accuracy of atlas-based forecasts by cal-

culating the coefficient of prediction (equation 7.9). We are now again
in the situation where we can predict future population densities using
the mechanistic model, when given parameter values. We now invert
this process and ask, what values of the parameters maximize the
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forecasting accuracy? In other words, we find the parameter values
for which the model does the best job of predicting the observed data,
and take those as estimates of the true parameter values. This method,
which we call NLF (for nonlinear forecasting), is an example of sim-
ulated quasi-maximum likelihood and yields parameter estimates that
are consistent and asymptotically normal as sample size increases (see
Turchin and Ellner 2000a for technical details).
One of the outputs of the NLF method is the coefficient of predic-

tion characterizing the model with best-fit parameters. This raises the
following conceptual issue: how should we judge the success of an
attempt at predicting future population densities? One approach that
seems to make sense is, first, to determine how well the data predict
themselves, and then compare this with the accuracy of atlas-based
forecasts from the mechanistic model (Turchin and Ellner 2000a).
To make the results comparable, we again used kernel regression,
treating the real data exactly the same as the simulated data, with
one exception: when predicting Nt from Nt−1� Nt−2, we omitted from
the data set the “predictee,” Nt , and a window of temporal neigh-
bors before and after time t. This is, of course, the cross-validation
approach already discussed in section 7.2.4. As a quantitative measure
of forecasting accuracy, we employed the coefficient of prediction,
using the notation R2data to denote the prediction R

2 from the data pre-
dicting themselves via kernel regression, and R2atlas for the data being
predicted using an atlas derived from a mechanistic model.
To recapitulate, R2data provides us with a measure of how predictable

the data are in the absence of any knowledge about the mechanisms
driving population dynamics. However, we must keep in mind that
R2data is biased toward underestimating the true predictability, because
the forecasts are based on a limited and imperfectly measured set of
data. A more accurately measured or, most important, a longer empiri-
cal time series would increase our ability to make accurate predictions.
Despite this limitation, R2data provides a useful benchmark for evaluat-
ing the accuracy of predictions made by the mechanistic model.
Three possible outcomes can occur when we compare R2data and

R2atlas:

1. If R2data ≈R2atlas, then the model has successfully passed
the test. This outcome does not necessarily mean that the
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model is correct, because another model, perhaps based on
different mechanisms, may do as well. Additionally, it does
not mean that the model fully captures the predictability in
the data, because we expect that R2data underestimates the
true predictability. Nevertheless, this outcome raises the
stakes by requiring any alternative models to perform at
least as well.

2. If on the other hand R2data >R2atlas, then it is likely that the
model failed to capture all the predictability in the data,
suggesting that either the model is based on incorrect
mechanisms, the model equations contain some incorrect
functional forms, or model parameters have been estimated
poorly. In general, this outcome means that we should go
back to the drawing board.

3. Finally, an outcome of R2data <R2atlas is a strong endorsement
of the model (with the caveats listed above still applicable,
however). It suggests that independent data, on which the
model and parameter estimates are based, provide an even
better prediction accuracy than the data themselves. If
we have a reasonably long time series, then this outcome
provides strong support for the mechanistic model.

In summary, the nonlinear forecasting method offers a general
solution of fitting mechanistic models that include dynamical noise
in situations where data do not provide a complete specification of
the state variable vector. The specific application of the method to
vole data will be discussed in chapter 12. Technical issues, as well
as results of testing the approach with artifical data, are discussed
in Turchin and Ellner (2000a). Looking forward, we believe that
nonlinear forecasting is generalizable to almost any kind of the model:
“if you can simulate it, then you can fit it.” In particular, nothing pre-
vents us from adding measurement noise to the simulated data, and
then treating it as the atlas for forecasts. We should not expect to be
able to estimate the parameters of both dynamical and measurement
noise from data, but we can test the effect of measurement noise if its
variance is known from some external information (this is in fact the
case for the vole data). This is an important advantage of nonlinear
forecasting over trajectory matching.
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What are the drawbacks associated with nonlinear forecasting?
There is a practical disadvantage: nonlinear forecasting requires a sig-
nificant amount of coding, and also it takes a long time to run. On a
more fundamental level, nonlinear forecasting relies on the presence
of strong signal in the data. If such a signal is lacking, then the method
will fail. Essentially, this means that one cannot gainfully employ the
method when dynamics of the studied system are simple. In the worst
case of perfect regulation, there are only two numbers that completely
specify the dynamics of the system: the mean and variance of fluc-
tuations. Clearly, one cannot fit even a simple model with just three
parameters (one of which must be noise variance) to such data series.
Crudely speaking, one parameter will set the mean, another the vari-
ance, and � � � we have run out of degrees of freedom to estimate the
third. Of course, this is a generic problem of any methodology for fit-
ting models to time-series data, including trajectory matching. Finally,
a potential problem affecting any one-step-ahead approach, including
nonlinear forecasting, is that care must be exercised in choosing the
appropriate prediction interval �pred (see the discussion in the context
of phenomenological model fitting, section 7.2.1).
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CHAPTER 9

Larch Budmoth

9.1 INTRODUCTION

If there were a beauty contest for complex population dynamics, then
population oscillations of the larch budmoth (LBM), Zeiraphera dini-
ana, in the Swiss Alps would be a credible contender for first place
(figure 9.1). Not only are these oscillations remarkably regular, but
the moth population swings through a stunning range of densities
during a typical cycle, covering five orders of magnitude! It is, there-
fore, not surprising that the larch budmoth was featured as one of the
best examples of complex population systems in a recent news arti-
cle in Science (Zimmer 1999). However, the ecological mechanisms
that drive this remarkable oscillation have not been unambiguously
identified, although a number of hypotheses have been advanced.

Food Quality Larch trees suffering greater than 50% defoliation lack
nutrient resources to grow high-quality needles during the following
spring. Needles grown after the LBM peak are short (< 20 mm, com-
pared with normal length of > 30 mm) and have a high raw fiber con-
tent of about 18% (compared with the normal 12%), while the protein
content falls from 6% to 4%. Low quality of food (as measured by
high raw fiber, and indexed by low needle length) strongly depresses
larval survival and female fecundity in bioassays (Benz 1974; Omlin
1977). Furthermore, poor needle quality persists for several years
after an outbreak. This “quality transmission” effect imposes delayed
density dependence on LBM population growth rates, and can theo-
retically lead to cycles (see section 4.4.4).
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Figure 9.1. Population oscillations in the larch budmoth at Sils (Upper
Engadine Valley, Switzerland). Moth density is the number of larvae per
kg of larch branches.

Pathogens Theory suggests that the interaction between pathogens
and their hosts can exhibit oscillatory dynamics (section 4.5.2). In
1957, after the first cycle that was studied intensively, it seemed obvi-
ous to everybody that a granulosis virus disease played a critical role
in suppressing the LBM outbreak (Baltensweiler and Fischlin 1988).
Unfortunately, the virus incidence decreased during the next outbreak,
and then the virus disappeared completely. As a result, the pathogen
hypothesis fell out of vogue, at least among the field-workers. Never-
theless, Anderson and May (1980) used LBM as their prime example
of how an epidemiological model may explain population cycles in a
forest insect.

Parasitoids General theory suggests that parasitoids may play an
important role in population dynamics of forest insects, and therefore
LBM parasitoids were intensively studied from the beginning of the
systematic research program on LBM oscillations (e.g., Baltensweiler
1958). Once the data on parasitism rates became available, how-
ever, the initial enthusiasm for the parasitoid hypothesis waned. Par-
asitism rates at population peak are typically low, around 10–20%
(Baltensweiler and Fischlin 1988), suggesting that parasitoids play a
minor role in limiting LBM densities, that is, in preventing further
LBM increase. The parasitism rate reaches a high of around 90%
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during the collapse stage, but this high is reached only during the sec-
ond (or even third) year after the peak. Accordingly, Delucchi (1982)
concluded that control of LBM by parasitoids alone is not possible.

Polymorphic Fitness Hypothesis There are two races of larch bud-
moth with distinct differences in color and ecological traits: a dark
morph that feeds primarily on deciduous larch, and a light morph
that feeds primarily on evergreens (Pinus cembra and Picea abies).
The frequency of the dark morph tends to increase together with den-
sity increase, and decrease after the outbreak collapses (Baltensweiler
1993a: figure 1). Baltensweiler (1977, 1993a) proposed the following
explanation of this pattern. During population increase, dark morphs
increase because they are characterized by faster development time
and higher survival than light morphs. During population collapse,
the dark morphs decrease faster than light morphs, because they rely
primarily on larches for food, and the quality of larch foliage declines
after defoliation. Once the effects of the previous defoliation on host
quality dissipate, dark morphs begin increasing faster than light ones,
and the cycle repeats itself. Baltensweiler (1993a) argued that this
polymorphism plays a key role in explain the LBM cycle. In particu-
lar, he suggested that it helps explain why the LBM population at low
densities switches immediately from the decline to the increase phase.
However, as we shall see, the abrupt switch from decline to increase
is not a pattern that needs a special explanation: it arises naturally in
several trophic models considered later in this chapter. Furthermore,
the polymorphic fitness hypothesis is not an elemental mechanism,
because it invokes plant quality as the primary factor causing popula-
tion collapse (without prolonged decrease in plant quality, the popula-
tion density of dark morphs would not decrease, and no cycle would
ensue). In fact, it is not clear how the polymorphic fitness hypothesis
adds to the explanation of the primary question (why LBM popula-
tions oscillate). It is rather an explanation of why morph frequencies
change regularly during the LBM cycle.

Other Hypotheses Several other theoretical possibilities need to be
briefly discussed. First, the natural history of the LBM-larch system
is such that food quantity is an unlikely factor to explain LBM oscil-
lations. Mortality of the host trees due to defoliation is less than 1%
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(Baltensweiler and Fischlin 1988). Although the length of needles is
reduced after a severe defoliation, the total amount of needle biomass
is decreased by only about twofold. Such a small variation in food
availability cannot drive a second-order population cycle in which
the ratio of peak/trough densities is around 100,000. Food, however,
should have strong first-order effects on LBM dynamics, since most
LBM outbreaks are accompanied by widespread defoliation of host
trees (Baltensweiler and Fischlin 1988), leading to high starvation
mortality of larvae during peak years. Second, the role of special-
ist predators of LBM, other than parasitoid wasps, is poorly studied,
but it is believed that they play a minor role. However, some para-
sitoids act as functional predators because they host-feed on LBM lar-
vae. Third, maternal effects constitute a theoretically well-established
intrinsic mechanism of second-order oscillations (section 3.4.1). How-
ever, there are no data that would suggest that this mechanism oper-
ates in the LBM, and, as far as I know, there are no advocates of the
maternal effect hypothesis as the explanation of LBM cycles.

Hypotheses: Summary The influential review of Baltensweiler and
Fischlin (1988) concluded that food quality change induced by pre-
vious budmoth feeding was the most plausible explanation for this
insect’s cycles. During the 1990s various reviews of insect population
dynamics (e.g., Bowers et al. 1993; Ginzburg and Taneyhill 1994; Den
Boer and Reddingius 1996; Hunter and Dwyer 1998; Berryman 1999)
generally concurred with the “received view” that budmoth cycles are
driven by the interaction with food quality. Baltensweiler and Fis-
chlin also stated that empirical studies of LBM parasitoids “generally
indicate that parasitism merely tracks the larch budmoth population;
that is, budmoth fluctuations regulate the numbers of parasitoids and
not vice versa” (Baltensweiler and Fischlin 1988:344). Indeed, data
do not support an important role of parasitoids in stopping LBM
increases. However, this observation does not mean that parasitoids
do not play an important role in driving LBM cycles: stopping pop-
ulation increase is a first-order effect, while population oscillations
result from the action of second-order factors. This consideration sug-
gests that the parasitism hypothesis should remain a viable contender
for the explanation of LBM cycles, in addition to the plant quality
hypothesis.
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The rest of this chapter is organized as follows. I begin with phe-
nomenological analyses of time-series data to establish the basic pat-
tern of density dependence exhibited by larch budmoth populations.
Next, I focus on the two main hypotheses for LBM cycles: plant qual-
ity and parasitism. For each hypothesis, I start with analyses of appro-
priate time-series data, and then discuss dynamical models. Finally, I
consider a model of joint effects of plant quality and parasitism.

9.2 ANALYSIS OF TIME-SERIES DATA

The best data on LBM dynamics come from the Upper Engadine Val-
ley (Switzerland). Population census started in 1949 and with minor
modifications continued until 1977 (Baltensweiler and Fischlin 1988).
The valley was divided into twenty sites, and data were collected
at each site separately (Auer 1977; data tabulated in Fischlin 1982:
table 10). The twenty sites oscillated in close synchrony, and thus
we can average them into a single series, hereafter called “Enga-
dine.” After 1977, sampling the Upper Engadine Valley continued on
a reduced scale. At one site, Sils, data were collected in an uninter-
rupted sequence from 1951 to 1992 (Baltensweiler 1993b). We call
this data series “Sils” (depicted in figure 9.1). Furthermore, there
are several shorter data sets on larch budmoth dynamics from other
valleys in the Alps: Lungau, Goms, Val Aurina, and Briançonnais
(Baltensweiler and Fischlin 1988: Figure 4). These data can serve as
replicates of the main series (table 9.1).

The first striking feature of LBM time-series data is the sheer
amplitude of oscillations (figures 9.1–9.2). Values of the amplitude
index, S, range between 1.1 and 1.5 (table 9.1). Of the case studies
that I discuss in this book, only lemming systems rival this amplitude.
The second feature of LBM data is the very regular periodicity (see
the ACF plot in figure 9.2). The dominant period is practically the
same in all series.

What about the process order? PRCF estimated for the Engadine
series is characterized by a strong spike at lag 2 (figure 9.2). In fact,
all series are characterized by highly significant PRCF[2]. Addition-
ally, the PRCF for Briançonnais and Sils exhibit significant spikes at
lag 3. Cross-validation results are evenly split between p estimates
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Table 9.1. LBM primary data: summary of results of nonlinear time-series
analysis. Quantities: number of data points, n; measure of amplitude (SD of
log-transformed densities), S; dominant period, T ; the autocorrelation at the
dominant period, ACF[T ]; estimated process order, p; polynomial degree, q;

the coefficient of prediction of the best model, R2
pred; and the estimated

dominant Lyapunov exponent, 	�

Location n S T ACF[T ] p q R2
pred 	�

Sils 42 1.35 9 0.67** 3 2 0.79 0.05

Engadine 31 1.53 9 0.79** 2 2 0.91 −0.01

Briançonnais 20 1.25 8 0.68** 3 2 0.94 0.45

Goms 21 1.28 9 0.90** 2 2 0.94 0.23

Val Aurina 20 1.08 10 0.63** 2 1 0.83 −0.06

Lungau 19 1.15 9 0.76** 3 1 0.85 −0.01

Figure 9.2. Graphical output of the NLTSM analysis of Engadine data.
Upper left: time plot; upper right: response surface; lower right: phase
plot.
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Figure 9.3. Graphical output of the NLTSM analysis of Sils data. Upper
left: time plot; upper right: response surface; lower right: phase plot.

of 2 and 3 (table 9.1). Thus, we can conclude that the evidence
for second-order dynamics is overwhelming. There are indications of
even higher-order dynamics, but the case for that is not as compelling.

Regulatory process in the LBM is characterized by a high degree
of nonlinearity. The estimates of the polynomial degree, q, are mostly
2 (except for the two shortest series), suggesting highly nonlinear rela-
tionship between rt and lagged densities. Examination of the response
surface fitted to the Engadine data (figure 9.2) suggests that the non-
linearity mainly affects the Nt−2 axis. This particular pattern of non-
linearity is easy to understand. For low Y values, lagged population
density is very low, and rt is essentially at r0. However, when Y

approaches the peak levels, rt finds itself on an increasingly precip-
itous slope. In other words, this type of nonlinearity arises because
of a very large amplitude of LBM oscillations. Visual inspection
of response surfaces fitted to other data sets indicates that this is a
generic feature of the structure of LBM regulation. In two or three
series, there are even more extreme nonlinearities, for example, the
Sils data (figure 9.3).
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Finally, additional indications of complex dynamics are the high
predictability, as indicated by R2 values usually in excess of 0.8, and
estimates of the dominant Lyapunov exponent clustering around zero.
In fact, the mean (± SE) 	� = +0�11 �± 0�08� is positive, although
not statistically different from zero.

Taken together, the results of nonlinear time-series analysis suggest
the following probe values for LBM dynamics: S values in excess of
1.1; dominant period of 9 with ACF at this lag around 0.5; second-
or even higher-order dynamics; R2

pred around 0.9; and 	� between
−0�05 and +0�25. These are the quantitative patterns of dynamics
that a good mechanistic model for LBM cycles needs to match.

9.3 HYPOTHESES AND MODELS

9.3.1 Plant Quality

The plant quality hypothesis is currently the “reigning” explanation
for larch budmoth oscillations. In this section I evaluate the previous
analytical and modeling efforts, as well as attempt some improve-
ments of previous analyses. The ultimate goal is to contrast predic-
tions of models based on the plant quality hypothesis with predictions
of models based on the alternative, the parasitism hypothesis.

Needle Length as an Index of Plant Quality As an indirect measure
of plant quality dynamics, we have a long time series of average nee-
dle lengths at Sils during 1961–1992 (Baltensweiler 1993b). Needle
length provides us with a good index of plant quality because it is
related to both raw fiber and protein content of larch needles (Omlin
1977), which directly affect LBM survival and reproduction. Previous
analyses of the interaction between plant quality and LBM dynam-
ics emphasized the raw fiber content of larch needles as the main
food quality index (raw fiber content measures the physical toughness
of needles). However, there are no time-series data available for this
index, unlike the average needle length. How good an index of food
quality is the needle length? We can answer this question with the
bioassay data of Benz (1974: table 8). Benz fed LBM larvae foliage
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Figure 9.4. Effect of average needle length on the relative multiplicative
rate of change, �′ (calculations based on data from Benz 1974: table 8).

from larch trees with known defoliation history, and measured larval
survival and pupal weight. Because female pupal weight is linearly
related to fecundity, we can translate the measured pupal weights into
expected fecundity using the relationship estimated by Benz (1974:
figure 2). Multiplying larval survival by the calculated fecundity, we
then obtain a measure related to the multiplicative rate of population
increase, �′ (the prime is to remind us that this measure is not the true
�, because it does not include the effects of egg and adult mortalities).
Plotting �′ against the needle length index, we observe that there is
a well-defined relationship between these two quantities (figure 9.4),
with a high coefficient of determination (R2 = 0�86). Interestingly,
the alternative index, raw fiber quality, explains a somewhat lower
percent of variance in �′ (R2 = 0�66). Thus, the somewhat surpris-
ing conclusion is that needle length appears to be a better index of
effects of food quality on LBM rate of population change than the
index based on raw fiber content. Clearly, food quality is a complex
variable, whose effect on LBM survival and fecundity is mediated by
physical (e.g., toughness as measured by raw fiber content) and nutri-
tional (e.g., protein content) properties of needles, as well as, perhaps,
tree chemical defenses, such as resin content (Benz 1974). However,
the result that the average length of needles is an accurate explanans
of LBM rates of population change is encouraging, because we can
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now proceed, using this index in subsequent analyses with greater
confidence.

Analysis of the Ancillary Data The general approach to the analysis
of ancillary data is discussed in section 8.2. The first step is to inves-
tigate the interrelations between LBM density and plant quality (as
indexed by the needle length index). The basic model used is equa-
tion (4.44) from section 4.4.4. Rewriting the first equation in terms
of rt , we have

rt = r0
Lt−1 − a

b
− r0

k
Nt−1

where Nt and Lt are LBM density and average needle length in year t.
Parameters a and b are needed to rescale Lt , measured in mm, into
the unitless Qt . The equation is overparameterized, so in practice we
fit the model

rt = ��Lt−1 − a�− �Nt−1 (9.1)

to estimate parameters a, �, and �. The dynamical equation for needle
length is

Lt = �+ �Lt−1 −
cNt−1

d + Nt−1

(9.2)

where the extra parameter � again reflects the need to rescale the
needle length into unitless plant quality.

Fitting equation (9.1) to the Sils data on LBM density and nee-
dle lengths, we find that the effect of Lt−1 is statistically significant
(although the density-dependent effect—the logistic term—is not).
However, the model explains a disappointing 31% of variance in the
data. Trying different functional forms, or adding the current year’s
plant quality (Lt), does not increase R

2.
The dynamics of Lt , by contrast, are well explained by LBM den-

sity and the previous year’s plant quality (R2 = 0�76). The effect of
“memory,” represented by the autoregressive parameter �, is highly
significant, and by itself explains about 47% of variance. The effect
of LBM by itself explains about 37% of variance. It appears that both
factors are needed in the model.

To summarize, the surprising result from the analyses of ancil-
lary data is that an index of plant quality explains, at best, a measly
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31% of variance in the LBM rate of change. The low level of pre-
dictability yielded by plant quality contrasts unfavorably with R2 of
around 90% characterizing phenomenological response-surface mod-
els (section 9.2) or ancillary analyses utilizing parasitism data (see
section 9.3.2 below). While the regression analyses described above
do not constitute a “proof” that plant quality is an unimportant vari-
able in the LBM dynamical system, they considerably weaken the
case for plant quality as the primary factor responsible for LBM oscil-
lations. However, in order to pass the final verdict, we need more
information. Specifically, we need to know whether a model based
on the plant quality hypothesis with empirically supported parameters
is capable of mimicking the observed LBM dynamics (since that is
what we shall be doing with the parasitism hypothesis below). I first
review the previous most credible effort of building such a model
(Fischlin 1982), and then offer a somewhat different, and hopefully
improved, approach.

The Fischlin Model The model of Fischlin (1982; see also Fischlin
and Baltensweiler 1979) has two state variables, LBM density and
food quality, indexed by the raw fiber content of needles. Fischlin
used the data of Benz (1974) and Omlin (1977) to fit three linear
regressions to small larva survival, large larva survival, and adult
fecundity as functions of raw fiber content. The overall relationship
between the net replacement rate and food quality is a curve similar
to the one depicted in figure 9.4.

Dynamics of food quality were modeled as follows. A severe defo-
liation in year t drastically lowers food quality in year t + 1 (raises
food’s raw fiber content). Further defoliation would keep food quality
at low levels. However, after LBM density collapses, plant quality
does not jump immediately to its maximum value. Return of quality
after defoliation to its maximum value is regulated by a key param-
eter, the recovery rate. Lacking direct estimates, Fischlin simulated
his model for a large set of postulated values for this parameter, and
chose the one that mimicked the observed LBM dynamics best.

Using the description in Fischlin (1982), I simulated the dynamics
of LBM density and the food quality index implied by the Fischlin
model. In order to be able to directly compare the predictions of
the Fischlin’s model to the one I develop below, I translated raw
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Figure 9.5. Dynamics of LBM density and food quality index predicted
by the Fischlin model.

fiber content into unitless food quality, Qt . (The maximum raw fiber
content, corresponding to the lowest food quality, maps into Qt = 0,
while the minimum raw fiber content maps into Qt = 1).

It is clear that the LBM dynamics generated by the Fischlin model
match qualitatively the observed LBM dynamics; that is, both pre-
dicted and observed dynamics are second-order oscillations of about
the same period (figure 9.5). Quantitatively, however, there is a certain
degree of mismatch between model predictions and data. First, mod-
eled LBM density peaks at somewhat higher values than observed.
Second, and more important, the Fischlin model does not capture the
behavior of the LBM system during the troughs. Note that the Fischlin
model predicts a “soft landing” characterized by a gradual turnaround
of the LBM trend (figure 9.5), while in the data the declining trend
changes abruptly to the increasing trend (figure 9.1). Additionally,
predicted trough density is one or two orders of magnitude too high.
The third, and perhaps most important, difference between predic-
tions and data is the very gradual increase in food quality generated
by the Fischlin model. This pattern is a result of assuming a low
value of the recovery rate parameter, discussed above. Thus, Qt inches
up with small incremental steps, and then collapses before reaching
the maximum value during the next LBM outbreak. This is clearly a
problematic prediction for the model, because empirical observations
suggest that plant quality recovers fully 3–4 years after the outbreak. I
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conclude that, although the Fischlin model was an important develop-
ment showing that a mechanism based on plant quality can generate
the correct qualitative dynamics in the LBM system, the model fails
to accurately match the quantitative aspects of the data.

A Model Based on the Needle Length Index An alternative approach
to modeling the LBM–plant quality hypothesis is to switch to the
average needle length as the food quality index. There are two impor-
tant reasons for preferring this approach: (1) we have a lengthy time
series for this index (figure 9.6), and (2) the reanalysis of Benz (1974)
data suggests that needle length is a better index of the effects of plant
quality on LBM rate of increase (figure 9.4). The needle length index,
Lt , varies between a minimum of 15 mm and a maximum of around
30 mm. I reparameterize the needle length data into a Qt index as
follows: Qt = �Lt − 15mm�/15mm.

In developing the model for LBM–food quality interactions, I will
follow the discrete-time plant quality framework introduced in sec-
tion 4.4.4 (see equation 4.44). That model, however, assumed a linear
relationship between the quality index and the realized per capita rate
of change, while the data from the LBM system suggest a curvilinear
relationship (figure 9.4). Fortunately, we can use the data directly to
model the effect of Qt on the budmoth per capita rate of population
change. After trying several two-parameter relationships, I found that
the one fitting the data best appears to be a negative exponential func-
tion (this is a purely phenomenological approach, as we do not have
any mechanistic basis for postulating a functional form). The fitted
curve was

r ′t = a

(
1− exp

[
−Qt−1

�

])
(9.3)

where a = 3�8 is the saturation level, or maximum r ′t , occurring at the
best food quality (Qt = 1), and � = 0�22 is the parameter determining
how fast r ′t approaches the saturation plateau.

There are two things still missing in this model. First, it assumes
that there is no mortality in the adult and small larva stages. We
can remedy this omission by replacing the saturation level, a, with
the average per capita rate of population change observed when
plant quality is at its maximum. A good choice for this parameter
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Figure 9.6. Observed dynamics of LBM density and the average needle
length (the food quality index) in Sils.

is r0 = 2�5, corresponding to about tenfold increase in Nt per year
(because this is the average rate at which the LBM density climbs
out of the trough). Second, the model lacks a self-limitation term
that is due to larvae overeating their food supply and starving. As in
section 4.4.4 I will assume the Ricker-type self-limitation term. This
assumption appears to be consistent with the results of ancillary data
analyses in the previous section. Adding these two ingredients, we
have the Nt equation of the LBM–plant quality model:

Nt+1 = Nt exp
{
r0

(
1− exp

[
−Qt

�

])
− r0

k
Nt

}
(9.4)

where k is the carrying capacity, as usual.
For the Qt equation, we simply use the second equation in

model (4.44). Nonlinear regressions of Qt on Qt−1 and Nt−1, using a
variety of functional forms, suggest that this three-parameter equation
provides a good description of the data, explaining about 75% of
variation in Qt (see figure 9.7).

In summary, the empirically based model for LBM–food quality
interaction is

Nt+1 =Nt exp
{
r0

(
1− exp

[
−Qt

�

])
− r0

k
Nt

}

Qt+1 = �1− ��+ �Qt −
cNt

d + Nt

(9.5)
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Figure 9.7. The relationship between plant quality (Qt) and LBM density
(Nt−1) and plant quality (Qt−1) last year (Sils data).

The regression-based parameter estimates (mean ± SE) are � =
0�22 ± 0�05, � = 0�5 ± 0�1, c = 0�7 ± 0�2, and d = 150 ± 150.
Additionally, we have guesstimates (means ± some reasonable range)
r0 = 2�5± 0�2 and k = 500± 200.

Numerical exploration of model dynamics for the parameters
within the ranges defined by mean ± SE indicates that model (9.5)
is readily capable of generating population trajectories resembling
data (figure 9.8). Comparison of figures 9.8 and 9.6 suggests that
the output of model (9.5) matches tolerably well both the period and
the amplitude of the observed LBM oscillations. Additionally, the
model mimics the quantitative pattern of the quality index dynamics
reasonably faithfully, including the amplitude of variation and the
timing of declines and increases (compare figures 9.6 and 9.8).
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Figure 9.8. Predicted dynamics of LBM density and the food quality
index. Equations: model (9.5). Parameters: r0 = 2�3, k = 600, � = 0�17,
� = 0�5, c = 0�9, and d = 100. No process noise (� = 0).

In summary, the model of LBM–plant quality interactions with
biologically reasonable parameters is capable of matching the empir-
ically observed quantitative patterns in the time-series data. Does it
mean that we have found the explanation for the LBM oscillations?
Unfortunately, there remains one serious problem for this hypothesis:
lack of empirical evidence for a strong feedback from plant quality
to LBM rate of population change. Perhaps it is in general difficult to
detect this feedback in a model such as (9.5). To investigate this pos-
sibility, I added process noise to the model (choosing the maximum
value of � for which dynamics are not too “wild”), and analyzed the
model output using an identical approach to the one applied to the real
data. I found that even a simple linear regression, rt = a+ bQt−1 + �t ,
captured approximately three-quarters of the variance in the simu-
lated data, despite the strong nonlinearity in the actual relationship
between rt and plant quality. Fitting the data with a power model for
Qt−1, which allows for nonlinearities in the relationship between the
two variables, yielded an R2 of more than 0.9. Note that, in order to
make this exercise more realistic, I did not use the true model in these
regressions (using the correct functional form results in R2 = 0�99).

There is, therefore, a key mismatch between the predictions of the
plant quality hypothesis and data: lack of detectable feedback from



9.3 HYPOTHESES AND MODELS 229

Qt to LBM rate of change. It gets even worse. If we examine the last
documented LBM outbreak, which peaked in 1989, we notice that
the plant quality index hardly declined, with needle lengths remaining
above the 30 mm threshold throughout the whole period. As dis-
cussed by Baltensweiler (1993b), a sequence of unusual weather in
1989–1991 was conducive to high egg mortality. As a result, budmoth
population never reached the level at which widespread defoliation
occurs (the 1989 peak density was only 240 larvae per kg of larch
branches, while previous peak densities observed at Sils were 490,
590, 800, and 560 larvae/kg). Correspondingly, no defoliation resulted
in no decline in plant quality. Yet, the LBM population collapsed dur-
ing 1990–1992! In other words, we have here a natural experiment
suggesting that a large decrease in plant quality is not necessary for
driving LBM cycles (since a population decline after peak sustained
for 3–4 years is a necessary condition for LBM oscillation).

9.3.2 Parasitism

Our investigation of the parasitism hypothesis employs a structure
paralleling the one used in assessing the plant quality hypothesis.
Therefore, first I discuss some characteristics of the Engadine data
on LBM fluctuations and parasitism rates. Next, I subject the data
to the ancillary analysis. Finally, I develop an empirically based
LBM-parasitoids model that attempts to mimic the observed LBM
dynamics.

Ancillary Data: Parasitism Rate Although more than hundred
species of parasitoids are associated with the larch budmoth, there
are two groups that are particularly important in affecting LBM
dynamics (Delucchi 1982). The first group consists of a complex
of three eulophid species (Sympiesis punctifrons, Dicladocerus
westwoodii, and Elachertus argissa). The second group are several
ichneumonids, of which the most important is Phytodietus griseanae.
Eulophids attack primarily the third (and to a lesser extent, the
fourth) LBM instar, while the ichneumonid attacks primarily the fifth
instar. LBM parasitoids and their effect on the moth dynamics have
been extensively studied (Baltensweiler 1958; Aeschlimann 1969;



230 LARCH BUDMOTH

Renfer 1974, 1975; Herren 1976, 1977; Delucchi and Renfer 1977;
Delucchi 1982). Combining the results obtained by these authors, we
have an almost continuous sequence of parasitism rates from 1952
to 1976 (with only 1968 missing). Our approach in constructing the
total parasitism data set essentially followed previous compilations
by Baltensweiler, Auer, and Delucchi, with the exception that we
traced the origin of all the cited data, and excluded those that turned
out not to be based on actual observations.

It is worth discussing the problems encountered in compiling time-
series data on LBM parasitism rates, because they are symptomatic
of forest insect systems in general. It is often difficult to obtain an
unbiased estimate of parasitism rates, because most simple approaches
tend to miss some instances of parasitism. This is a general problem
in studies of insect population dynamics. It is ironic that one of the
initial reasons that insect ecologists have focused on parasitoids so
intensively is the ease of quantifying parasitism rates (an additional
consideration, of course, is that parasitoids are a ubiquitous and highly
important component of insect communities; see Godfray 1994). In
fact, obtaining unbiased estimates of parasitism in most systems is
as laborious as measuring predation rates. This general problem is
illustrated with the larch budmoth.

Because routine parasitism data are obtained by collecting LBM
larvae during regular census, that is, during their third instar, such
data will not only miss parasitism by the ichneumonids (who attack
fourth and fifth instars) completely but also underestimate parasitism
due to eulophids (who also attack fourth instar larvae). Additional col-
lections of fifth-instar caterpillars are, therefore, necessary in order to
correct for this bias. However, a single collection of fifth instars will
still miss the parasitism that could occur during the period between
collection and pupation. In other words, any method of measuring
parasitism rate that is based on collecting larvae and rearing them
in the lab underreports the true rate to an unknown degree. This
problem is compounded by another feature of ichneumonid biology:
P. griseanae tends to impose substantial direct mortality on LBM lar-
vae via hostfeeding (Renfer 1974). In cage experiments, wasps killed
and fed upon 30% of the larvae (Delucchi and Renfer 1977). In short,
the available parasitism data underestimate the true contribution of
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parasitoids to LBM mortality to an unknown degree, and this fact has
to be taken into account in the analysis.

That is the bad news. The good news is that the data provide
reasonable estimates of the parasitoid numbers in the next generation.
There is a curious asymmetry here: slight errors in parasitism rate
have little effect on the estimate of parasitoid density, while having a
disproportionately large effect on estimates of parasitoid impact. This
idea is best illustrated with a simple numerical example. Suppose that
the true parasitism rate is 95%, and therefore host survival is 5%. Our
estimate of parasitoid density next year, Pt+1, is the product of the
parasitism rate and host density. If host density is Nt = 100 larvae
per larch tree, then Pt+1 = 95 wasps per tree (assuming no overwinter
mortality; including mortality does not affect the argument). An error
of 1% in either direction, for example, a parasitism rate of 96%,
would affect this estimate by about 1% (96 wasps instead of 95). The
estimate of host density next year, on the other hand, is the product
of larvae surviving parasitism and average fecundity, �. Suppose � =
10. The host density next year, therefore, Nt+1 = 10 × �1 − 0�95�×
100 = 50. The same error in parasitism rate (96% instead of 95%)
affects this estimate as follows: Nt+1 = 10× �1− 0�96�× 100 = 40.
That is, a 1% error in parasitism rate imposes a 20% error in host
density estimate!

The take-home message here is that the parasitism rate may not be
a very good predictor of next year’s host density, due to measurement
errors. On the other hand, it gives a good estimate of next year’s para-
sitism density. If there is a tight coupling between parasitoid numbers
and host mortality, then, paradoxically, we may be able to make bet-
ter forecasts of host density two years ahead, using a host-parasitoid
model, than one year ahead, using the simple demographic model.

Analysis of Ancillary Data Our general model is the Beddington2

(see equation 4.33 in section 4.3.2), but we rewrite it in terms of the
proportion parasitized in year t, !t:

!t = 1− exp
[
− aPt−1

1+ ahNt−1 + asPt−1

]
(9.6)

The parasitoid density last year, Pt−1, is not directly observed, and
therefore we need to estimate it by multiplying the host density
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during the previous year, t − 2, by that year’s parasitism rate:
Pt−1 = !t−2Nt−2. In other words, we are indirectly sneaking in the
delayed density dependence! Note that our estimate of Pt−1 does
not incorporate the (unknown) overwintering mortality. Thus, Pt is
actually a relative index that is linearly related to the true parasitoid
density, but with an unknown proportionality constant. This has no
effect on the estimate of the proportion of variance resolved by
parasitism; however, the estimate of parameter a is affected by the
same proportionality constant.

Results of nonlinear regression suggest that the parasitism rate
is very well resolved. Almost 90% of variance in the ichneumonid
parasitism rate is explained by a simple two-parameter model (see
table 9.1). A similar R2 is obtained for the eulophid parasitism rate,
but at the expense of an extra parameter. The total parasitism rate is
less well modeled (see table 9.1). This probably reflects the fact that
“total” parasitism is a compilation of several heterogeneous sets of
observations.

Similarly high coefficients of determination are obtained when
modeling LBM dynamics as a function of parasitoid density. Essen-
tially all measures of parasitism (eulophids, the ichneumonid, and
total parasitism) resolve a high proportion of variance (table 9.2).
What is particularly impressive is that a very simple model, with only
one predictor variable, Pt−1, manages to capture such a high propor-
tion of variance in rt (see figure 9.9). Interestingly, adding eulophids
as an extra predictor variable after the ichneumonid does not increase
R2 (and vice versa). The reason, most likely, is that the two para-
sitoids are highly cross-correlated, acting essentially as a dynamical
complex. Thus, both eulophid and the ichneumonid parasitism rates
appear to provide basically the same information for predicting rt .

The best model suggested by this analysis (high R2 with fewest
parameters) is the one based on the parasitoid interference functional
response,

rt =
aPt−1

1+ awPt−1

+ �t (9.7)

The degree of predictability achieved by this parasitoid model is quite
impressive. However, as I remarked above, the parasitoid density used
in regressions, Pt−1, is calculated by multiplying Nt−2 with !t−2.
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Table 9.2. Results of ancillary analyses: parasitism rate. #t , $t , and !t :
proportion parasitized by inchneumonids, eulophids, and total. rt : LBM
realized per capita rate of change. Nt , It , Et , and Pt : population densities
of LBM, ichneumonids, eulophids, and total parasitoids. Pq : polynomial

of degree q

Variable Model R2

Ichneumonid #t = 1− exp'−aIt−1/�1+ awIt−1�( 0.871

Eulophid $t = 1− exp'−aEt−1/�1+ ahNt−1 + awEt−1�( 0.870

All parasitoids !t = 1− exp'−aPt−1/�1+ ahNt−1 + awPt−1�( 0.712

LBM rt = r0 − aIt−1/�1+ awIt−1� 0.861

LBM rt = r0 − aEt−1/�1+ awEt−1� 0.810

LBM rt = r0 − aPt−1/�1+ awPt−1� 0.865

LBM rt = r0 − aPt−1/�1+ ahNt−1 + awPt−1� 0.880

LBM rt = a+ b logNt−2 + c�logNt−2�
2 0.646

LBM rt = P5'logNt−2( 0.688

LBM rt = P2'logNt−1* logNt−2( 0.877

Figure 9.9. The relationship between the realized per capita rate of LBM
change and parasitoid density (Engadine data). Note that parasitoid density
is plotted on a logarithmic scale in order to resolve the relationship for
small Pt−1; this changes the J shape of the relationship into an S shape.
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Thus, one might ask, how much of the effect, which we ascribe to
the parasitoid impact, is due simply to delayed density dependence?
To answer this question, I fitted rt with a variety of three-parameter
functions of Nt−2 (i.e., the same number of parameters as in the best
parasitism model). The best R2 (obtained with a quadratic polynomial
in logNt−2 (see table 9.2) was far below R2 yielded by equation (9.7).
In fact, increasing functional flexibility by fitting a fifth-degree poly-
nomial still results in R2 of only 0.687, suggesting that this predictor
variable by itself cannot approach the level of resolution achieved
by Pt−1. The reason why is apparent when we examine the phase
plot of Sils data in figure 9.3, where rt is plotted against Nt−2 (Nt−2

is log-transformed, as indicated by the legend “theta = 0” in the
upper left corner of the graph). It can be seen in this phase plot that
the observed LBM trajectory exhibits noticeable cycling—the ascend-
ing and descending phases do not go through the same region of
the phase space. Although by plotting the trajectory in the rt − Nt−2

instead of rt −Nt−1 phase space we have considerably “flattened” the
reconstructed attractor, we did not manage to collapse it to a one-
dimensional curve. In fact, as we know from the phenomenological
analysis in section 9.2, we need a three-dimensional phase space to
resolve all the variation in the Sils data.

To summarize, a simple but theoretically sound model based on
the parasitism hypothesis resolves close to 90% of variation in the
LBM rt . This parasitoid effect is no simple artifact of “sneaking” the
delayed density dependence “through the back door.” Knowing para-
sitism rates allows us to predict the rate of LBM population change
with much greater precision than is possible on the basis of only Nt−2.
Furthermore, the performance of the parasitism hypothesis should be
contrasted with the disappointing results yielded by analyses of the
index of plant quality, which explains less than a third of variance in
LBM rate of change. Incidentally, this result is not due to some subtle
difference between the Sils and the Engadine data sets: for example,
the Engadine parasitism rate predicts Sils data much better than the
Sils plant quality index does. Taken together, the regression analyses
of ancillary data are consistent with the hypothesis that the primary
factor responsible for LBM oscillations is the larch budmoth’s inter-
action with parasitoids.
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Modeling the Parasitism Hypothesis The analysis of ancillary data
suggests a simple model of LBM-parasitoid interactions. It is based on
the Nicholson-Bailey model, to which we add host limitation (in the
Ricker form) and parasitoid interference functional response (since
that is the functional form suggested by the regression analysis):

Nt+1 = Nt exp
[
r0

(
1− Nt

k

)
− aPt

1+ awPt

]

Pt+1 = Nt

{
1− exp

[
aPt

1+ awPt

]}

The regression analysis also suggests parameter values a = 2�5 ± 1
and w = 0�17± 0�02 (means ± SE estimated when fitting the LBM rt
as a function of Pt−1). We have already estimated r0 and k above (thus,
r0 = 2�5± 0�2 and k = 250± 50). Simulating the model within these
parameter ranges, we find that it produces high-amplitude oscillations
for all reasonable values of parameters. For the median parameter
values, however, the period is a bit short, T = 7 yr. It is necessary to
reduce w to 0.15 in order to lengthen the period to 8 yr, and to 0.13
(2 SE from the point estimate—still within the realm of the possi-
ble) in order to lengthen the period further to 9 yr. The model output
matches other probes, such as the amplitude and the cross-correlation
function between Nt and !t , quite well. In particular, proportion par-
asitized peaks on average 2 yr after the LBM peak, similarly to the
pattern observed in the data.

9.3.3 Putting It All Together: A Parasitism–Plant Quality Model

The preceding analyses of data and models suggest an interesting
conclusion. On one hand, the model with plant quality as the only
mechanism driving second-order oscillation fails to match data pat-
terns as well as the LBM-parasitoid model. On the other hand, short-
term experiments suggest that there is a strong effect of changes in
plant quality on LBM survival and reproduction. This raises an impor-
tant question: should we be satisfied with the parasitism-only expla-
nation of the LBM dynamics, or do we really need a multifactorial
model, combining plant quality and parasitism effects? One way to
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address this issue is to investigate the dynamics predicted by the mul-
tifactorial model, and contrast its ability to match empirical patterns
with the two simpler alternatives.

Combining the effects of plant quality and parasitism is quite
straightforward, now that we have invested so much effort in build-
ing models for each component separately. The equations of this
parasitism-quality model are

Nt+1 = Nt exp
{
r0

(
1− exp

[
− Qt

�

])
− r0

k
Nt −

aPt
1+ awPt

}

Pt+1 = Nt

{
1− exp

[
aPt

1+ awPt

]}
(9.8)

Qt+1 = �1− ��+ �Qt −
cNt

d + Nt

Parameter estimates are the same as before: r0 = 2�5 ± 0�2, k =
250 ± 50, a = 2�5 ± 1�0, w = 0�17 ± 0�2, � = 0�22 ± 0�05, � =
0�5 ± 0�1, c = 0�7 ± 0�2, d = 150 ± 150. Simulating the model
within these parameter ranges, we find that the model does very well
for parameters essentially at, or very near, their median values. In
particular, with slight modifications (specifically, r0 = 2�3, c = 0�9,
and d = 100; note that we are staying within 1 SE of the median
estimate), the model output matches the periodicity, amplitude, and
cross-correlations between LBM and parasitism or plant quality index.
Note that this is an improvement on the parasitism-only model, which
required a rather low value of w = 0�13.

In order to compare the quantitative patterns predicted by the
parasitism–plant quality model with data, we need to add to the model
some terms representing the action of exogenous variables. I added
three such terms: (1) process noise with parameter � = 0�2; (2) obser-
vation noise with �obs = 0�2; and (3) a small amount of immigration,
i = 0�01 moths per kg of branches per year (modeled as a random
variable uniformly distributed between 0 and 0.02). The values for
these parameters were chosen by the method of trial and error (the
model output does not appear to be very sensitive to the specific
values).

A typical series predicted by the parasitism–plant quality model is
shown in figure 9.10. The graphical output in this figure is arranged
in exactly the same way as in figure 9.3 to aid visual comparison.
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Figure 9.10. Nonlinear analysis of the output of the parasitism-quality
model. Upper left: time plot; upper right: response surface; lower right:
phase plot.

The model output appears to be somewhat less noisy than data (this
is particularly clear when comparing the phase plots), suggesting that
higher noise parameters are called for. The period and amplitude are
matched by the model very well. But what is particularly interesting
is that the model also manages to match the shape of the response
surface, in particular the slight upturn observed at high values of Y
(the delayed density-dependence axis).

9.4 SYNTHESIS

Theoretical and empirical analyses in this chapter suggest the fol-
lowing conclusions. First, a simple model of LBM–plant quality
interaction with biologically plausible parameters predicts population
dynamics that are quite similar to the observed pattern (second
order, correct periodicity and amplitude). However, the plant quality
hypothesis has weaknesses: although it predicts that there should
be a strong feedback effect from plant quality to the LBM rate of
change, analysis of real data does not reveal it. Additionally, lack
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of plant quality decline during the last recorded cyclic collapse is
hard to understand, if plant quality is the main factor driving LBM
oscillations. Second, an empirically based model of LBM-parasitoid
interaction is also capable of mimicking the observed LBM dynam-
ics. Unlike the rival explanation, however, the parasitism hypothesis
is supported by regression analyses of the feedback relationship from
parasitism rates to the LBM rate of change. To get the appropri-
ate period, however, we have to “stretch” some parameters values.
Finally, a tritrophic model combining both hypotheses does the best
job in matching the observed dynamics for biologically reasonable
parameter values. Whether this improvement is compelling enough
to accept the more complex hypothesis over the two simpler alter-
natives cannot, probably, be resolved on the basis of existing data.
What seems clear, however, is that previous authors have incorrectly
rejected the parasitism hypothesis. Both empirical and modeling
analyses in this chapter suggest that parasitoids play a key role in
driving LBM cycles.



CHAPTER 10

Southern Pine Beetle

10.1 INTRODUCTION

The southern pine beetle, Dendroctonus frontalis, belongs to the fam-
ily of scolytid bark beetles. Its generic name, Dendroctonus, can be
loosely translated as “tree death.” This is an apt name for this bee-
tle, because it is the most important agent of mortality for several
pine species, most notably the loblolly (Pinus taeda), in the southern
United States, Mexico, and parts of Central America (Flamm et al.
1988). The estimated damage due to the southern pine beetle (SPB)
over the last three decades is well over $1 billion (see Price et al.
1992).

Pine trees protect themselves from insects and fungi by exud-
ing resin. As long as a pine continues to produce resin, SPBs are
unable to utilize its tissues for feeding and reproduction. This beetle,
however, has evolved a remarkable strategy to overcome the tree’s
defenses. Pioneering beetles (individuals initiating attack) emit a con-
gregation pheromone that attracts other conspecific beetles. As more
beetles bore into the tree, they release more pheromone to attract addi-
tional beetles, resulting in a positive-feedback process known as mass
attack. As beetles congregate on the tree, they literally drain it of its
resin resources, nullifying the tree’s ability to defend itself (Hodges
et al. 1979). Around two thousand beetles are needed to overcome
the defenses of a healthy pine tree (Goyer and Hayes 1991). As the
mass attack progresses, and the larval resource—inner bark of the
tree (phloem)—starts to fill up with beetles, they begin to release a
repelling pheromone that eventually inhibits congregation at the tree
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(Payne 1980) and shifts the attack focus to adjacent hosts. Successful
attacks almost invariably result in the death of attacked trees because
the destruction of phloem by beetles prevents the tree from moving
photosynthates down to its roots (this is known as “girdling”). One
result of mass attack spilling over onto adjacent trees is that the spa-
tial pattern of SPB attack is very patchily distributed. Typically, there
is an area containing tens or hundreds (and on rare occasions much
greater numbers) of dead trees, surrounded by normal forest. Such
compact areas of trees killed by the SPB are known as spot infesta-
tions, or simply “spots.”

Southern pine beetles do not go into a diapause, and there is some
SPB activity (new trees coming under attack) occurring year-round.
However, while it takes only about a month for one complete SPB
generation in summer, during winter months it may take up to four
months, depending on weather (mainly temperature; see Thatcher and
Pickard 1964). There are about six SPB generations per year (Reeve
et al. 1995). Because the SPB has fast generation times, growth of
spot infestations begins to be fueled primarily by internally generated
beetles within a few months after initiation. Other aspects of SPB
biology are covered in a very useful compendium by Thatcher et al.
(1980). Reviews emphasizing population dynamics are Flamm et al.
(1988) and Reeve et al. (1995, 2002).

10.2 ANALYSIS OF TIME-SERIES DATA

Although direct measurements of SPB density exist (and will be dis-
cussed in a later section), they are too short for meaningful anal-
ysis with phenomenological models. The longest series come from
indirect measurements of SPB activity, such as the Texas Forest Ser-
vice records of SPB activity in East Texas since 1958. The Texas
Forest Service conducts aerial surveys at 3–6 week intervals from
May to October (Billings 1979). Spot infestations of more than ten
trees are located from the air, and later visited on the ground to
ensure that tree mortality is due to SPB activity. Currently, the sur-
veys cover some 44�000 square km in thirty eight East Texas counties
(before 1973, however, spots were recorded only for Southeast Texas).
Adding together all spots detected by aerial surveys in one year gives



10.2 ANALYSIS OF TIME-SERIES DATA 241

us an index of SPB activity. Clearly, the relationship between this
index and SPB density must be nonlinear. The nonlinearity may arise
as a result of most beetles being found in small infestations below the
detection threshold during periods of low SPB activity. Additionally,
during outbreaks, the average spot size is larger than during troughs.
As a result, the spot-based index probably exaggerates the degree of
SPB fluctuations (this supposition is confirmed by the comparison
between SPB densities and SPB spots during the 1990–1994 outbreak
in Louisiana; see figure 10.7). Nevertheless, the relationship between
spot index and SPB density, while nonlinear, is probably monotonic.
Thus, these data provide useful material for phenomenological anal-
yses (it is clearly not a good idea to fit mechanistic models to these
data). One other problem with the data is that during the period of
1979–1981, the Texas Forest Service temporarily discontinued aerial
surveys, because SPB activity was extremely low. Following the usual
procedure (section 7.1.3), I substituted these zeros with the smallest
nonzero number of spots observed.

Results of the nonlinear analysis of these data are very instruc-
tive (figure 10.1). Examining the time plot, we are struck by how
irregular—even noisy—the population trajectory appears to be. ACF
suggests oscillatory dynamics, but none of the autocorrelations are
significantly different from 0. The PRCF, however, indicates a second-
order process, thus providing the first indication that fluctuations in
SPB activity may not be simply a result of some exogenous noisy
driver. The real surprise comes from the response surface fitted to
these data. First, the cross-validation suggests p = 2 (thus support-
ing the PRCF result). Second, the coefficient of prediction is very
respectable 0.71. Finally, the estimated Lyapunov exponent is 0.16,
suggesting that SPB dynamics are quasi-chaotic or weakly chaotic.
It is interesting to note that when I first analyzed these data in late
1980s, using the records up to 1987 (Turchin et al. 1991), I obtained
similar results to the ones described above.

Simulations of the fitted RSM model without noise indicate that the
purely deterministic component of SPB dynamics is characterized by
a stable point equilibrium. Adding noise, however, has a greater effect
than simply creating random fluctuations around this point equilib-
rium, as would be expected in a linear model. Note that the response
surface fitted for the SPB data (figure 10.1) is highly nonlinear in the
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Figure 10.1. NLTSM analysis of SPB data. Upper left: time plot; upper
right: response surface; lower right: phase plot.

Y direction (Y = logNt−2 quantifies delayed density dependence): it
is very flat in the lower range of Y and then steeply declines for high
Y . Without stochasticity, or with low amounts of noise, the trajec-
tory never enters the region where the relationship between rt and Y

is characterized by a steep slope. Adding more substantial amounts
of noise ensures that the population density recurrently enters this
region. Such events are then followed by a sustained collapse of den-
sity (because Y is the delayed density dependence, density will con-
tinue collapsing for at least two years after a peak). Thus, adding
noise to this nonlinear dynamical system changes its dynamics from
stable (with � strongly negative) to quasi-chaotic (with � ≈ 0). The
response surface model, estimated for the SPB data, therefore pro-
vides another example of the general notion of noise-induced chaos
discussed in section 5.3.3.

The most robust conclusion from the time-series analysis is the one
pointing to the importance of delayed density dependence in the SPB
dynamics. Note that each of the major peaks was followed by two
years of decline. Taken together with the PRCF, cross-validation, and
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RSM results, this observation suggests that SPB dynamics have a very
strong second-order component, despite weak periodicity. Thus, what
we apparently have here is an aperiodic (or very weakly periodic)
second-order dynamical system with high signal/noise ratio. Note,
further, that in the analysis of spot numbers I used the base time
delay of 1 year, while SPB have about six generations per year. This
result—that the dynamical process driving SPB oscillations is second-
order on the temporal scale of years, while SPB generation time is
on the order of a few months—provides an important clue for the
inquiry into causes of SPB outbreaks.

10.3 HYPOTHESES AND MODELS

10.3.1 General Review of Hypotheses

Exogenous Factors When I started working on SPB dynamics in
1987, the prevailing idea in the field was that its oscillations were
driven by climatic variables (Wyman 1924; Craighead 1925; Beal
1927; 1933; St. George 1930; King 1972; Kroll and Reeves 1978;
Kalkstein 1981; Michaels 1984; Michaels et al. 1986). Most of these
papers linked SPB outbreaks to fluctuations in rainfall, but some
also argued for the importance of cold temperatures in winter (e.g.,
McClelland and Hain 1979). The impact of rainfall on SPB pop-
ulation was postulated to be mediated by the physiological condi-
tion of host trees. In particular, it was thought that drought condi-
tions would weaken pine trees, and make them more susceptible to
SPB attack. Subsequent research showed that the actual relationship
between drought and susceptibility to SPB attack is more complex
than was previously envisioned (Lorio 1986; Lorio et al. 1990). Very
severe drought, indeed, brings trees to the brink of death, at which
point they are easily attacked by bark beetles, such as the SPB and Ips
spp. However, moderate water stress actually increases the ability of
pines to defend themselves against the SPB, because it limits growth
more than photosynthesis, resulting in an increase in energy allocated
to secondary metabolism (Reeve et al. 1995). In sum, the relation-
ship between moisture stress and resistance to the SPB is curvilinear:
resistance increases at moderate levels and declines at extreme levels
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of stress. Thus, new ideas and experimental results (Dunn and Lorio
1993; Wilkens et al. 1998) undermine the mechanistic basis of the
moisture stress hypothesis.

Even more important, fluctuations in such weather factors as the
amount of rainfall are by definition an exogenous factor in population
dynamics that cannot drive second-order oscillations. One remaining
possibility that would save the climate hypothesis is that SPB are
driven by a second-order exogenous process. For example, annual
rainfall amounts could oscillate in a second-order manner, and the
SPB populations could simply follow along. We tested this possibil-
ity by analyzing the relationship between several climatic variables
(temperature, moisture, etc.) and the SPB per capita rate of popula-
tion increase (Turchin et al. 1991). We found no effect of weather
on SPB population change. Furthermore, there were no indications
that variation in climatic variables follows a second-order dynamical
process. Our results, therefore, contradicted the voluminous previous
literature that had no trouble finding statistical connections between
weather and SPB outbreaks. Examination of the statistical methods
used by previous authors suggested that their results were most likely
spurious (Turchin et al. 1991). One common problem was a tendency
to run hundreds of analyses and then select only those that yielded
“significant” results. For example, one paper performed more than
500 regressions, and found that 42 of them were significant at the
0.05 level. Another study tried eleven independent variables in fitting
a data set consisting of eleven observations. It was hardly surprising
that the “best” model, employing four predictor variables, managed to
explain >90% of variation	 	 	 . Finally, almost all studies ignored the
first law of population dynamics by using a measure of current popu-
lation numbers as the response variable in the analyses (i.e., Nt , rather
than rt as I advocate). Ignoring this basic fact of population dynam-
ics can lead to embarrassing predictions. Thus, one article made the
following prediction of the course of the SPB epidemic in Hardin
County, Texas, in 1979: 0 spots in June, 1,254 spots in July, and 0
spots again in August. The highest number of spots ever observed in
that county was 836 in 1985, and it took three years to build up to
that level from 3 spots observed in 1982. Given the inertial nature
of SPB dynamics, it is biologically impossible for this population to
increase from 0 to 1�254 spots in one month.
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The only study that avoided these pitfalls (Michaels 1984) found
that weather exerts a very weak influence on SPB rate of change.
Michaels’s final regression included seven predictor variables, but
explained only 25% of variance in rt . This is quite typical: climate
usually accounts for less than 30% of variance in insect population
dynamics (Martinat 1987).

In summary, while the exogenous factors hypothesis is initially
appealing, given the pattern of apparently irregular SPB fluctuations,
it fails to account for the high signal/noise ratio and the strong evi-
dence for second-order dynamics revealed by the phenomenological
time-series analysis.

First-Order Factors There are several ecological factors potentially
affecting SPB rate of change that we expect to act in a first-order
manner. These factors are intraspecific competition, generalist preda-
tion (particularly from such avian predators as woodpeckers), and per-
haps interspecific competition (e.g., from other bark beetles). If SPB
dynamics are indeed dominated by some second-order mechanism or
mechanisms (and the evidence for this seems quite strong), then first-
order mechanisms cannot be “primary movers” of SPB oscillations.
However, this does not mean that these factors are irrelevant to our
understanding of SPB dynamics. First-order factors may play a key
role in imposing an upper limit on population density, and perhaps
they can be responsible for some short-term fluctuations around some
equilibrium or mean density.

There are, thus, two key things we need to know about these
mechanisms. First, we need to test empirically whether a mechanism
such as intraspecific competition indeed acts in a first-order man-
ner. Second, we need to empirically measure its strength and other
attributes in order to be able to model it. These empirical issues will
be addressed in section 10.4.

Second-Order Factors: Overview Having discussed exogenous and
first-order endogenous factors, our next step is to consider ecologi-
cal mechanisms that are in principle capable of acting in a second-
order manner. The theory (part I) supplies many candidate processes:
maternal effects, interaction with host (quantity or quality), and spe-
cialist natural enemies (pathogens, parasitoids, and predators). One of
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these hypotheses, maternal effects, we shall not be able to evaluate
empirically. Although we know that there is a substantial amount of
variation among individual beetles (e.g., in their energy reserves upon
emergence; Kinn et al. 1994), we lack systematic data to evaluate the
potential of this mechanism to explain SPB cycles. Furthermore, the-
oretical considerations (discussed below in section 10.5) suggest that
the maternal effect hypothesis is not a particularly likely explanation
of SPB oscillations.

Another ecological mechanism, pathogens, also does not appear
to hold much promise for explaining SPB dynamics. Pathogens (par-
ticularly, viral diseases) commonly attack another large class of for-
est insect herbivores, lepidopteran defoliators (Dwyer et al. 2000).
Because caterpillars become infected by ingesting viral particles as
they feed on foliage, viral diseases can easily spread through a defo-
liator population. In bark beetles, by contrast, each larva feeds in its
own mine, without coming in direct contact with other larvae. This
feature of bark beetle biology is probably responsible for lack of
known viral pathogens in the southern pine beetle (Berisford 1980).
A pathogen, in order to be able to transmit itself between bark bee-
tle larvae, would need an ability to cross from one larval gallery to
another. Some organisms associated with the SPB are, indeed, capa-
ble of growing through the wood on their own. For example, the
bluestain fungus Ophiostoma minus negatively affects the survival of
SPB larvae (Barras 1970; Reeve et al. 1998). However, this fungus
affects SPB dynamics not by infecting beetles but by decreasing the
amount and quality of resources available to feeding larvae. In other
words, it is a competitor, not a natural enemy. Accordingly, we expect
that competition from the bluestain fungus may act as a first-order
regulatory factor, rather than a second-order factor that can promote
oscillations (this assumption will be tested with empirical data in sec-
tion 10.4).

I argue, therefore, that considerations of the SPB natural history
allow us to rate certain hypotheses, for example, microparasites, as
inherently unlikely to explain second-order oscillations in this organ-
ism. Another hypothesis that we can remove from the candidate list,
using similar qualitative reasoning, is the interaction between the SPB
and induced plant defenses. As discussed in section 4.4.4, previous
feeding by herbivores may induce the plant to increase the amount of
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physical and/or chemical defenses, which in turn will negatively affect
the herbivore’s rate of population change. This mechanism cannot
operate in the SPB system, because these beetles are “parasitoids” of
pines rather than their parasites, since successful reproduction by the
SPB almost invariably implies that their host was killed. Unless dying
pines can communicate their distress to trees that will be attacked
next (which seems quite far-fetched), therefore, we lack a mechanistic
basis for inducible defenses.

In summary, we are left with three mechanisms whose potential
contribution to SPB oscillations warrant a closer theoretical scrutiny:
interactions with hosts (food quantity), parasitoids, and predators. In
the following paragraphs I review what we know about each of these
mechanisms in the context of the SPB, and advance simple models
whose purpose is to investigate certain quantitative features of SPB
oscillations implied by each mechanism, with a particular focus on
the oscillation period.

10.3.2 Interaction with Hosts

There are two empirical observations that create serious difficulties
for any explanation of SPB oscillations based on interactions between
this beetle and the availability of food (host trees). First, even during
the most severe outbreaks, the SPB kills only 1–2% of available hosts
(Price et al. 1992). Second, major SPB outbreaks occur at intervals
of 8–10 years. It is difficult to imagine how such relatively short-
period oscillations could occur when one of the interacting species
is a slowly growing tree. Even in the southern United States, where
stand rotations are quite short, it still takes at least 15–20 years for
pines to mature to the point where they become a good habitat for
the SPB.

To test this intuition, I developed the following simple model of
SPB-host interaction. The starting point of the model is

Ht+1 = �tHt + �t (10.1)

Here Ht is the density of mature host trees in year t. Mature host
trees are defined as those trees that are at least 
 years old. These
trees are old enough to be susceptible to SPB attack. Additionally,
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in order not to introduce an extra parameter, I assume that 
 is also
the minimum age of reproduction. The function �t is the survival
rate from year t to year t + 1, and �t is the recruitment of new trees
to the population of mature trees. The subscript t reminds us that
these quantities are not fixed parameters but dynamic functions, with
arguments to be specified shortly.

To write down the recruitment function, I assume that each mature
tree every year produces � seedlings. Seedling establishment rate is
density dependent, and the proportion of seedlings successfully estab-
lishing equals the proportion of space unoccupied by mature trees:
1 − Ht/k, where k is the tree density at which all space is occu-
pied by trees (and seedling establishment rate is 0). Finally, � is the
proportion of seedlings surviving from establishment to mature trees
(assumed to be density independent). Thus, the recruitment rate is a
product of the following quantities: mature tree density, number of
seedlings produced per mature tree, proportion successfully establish-
ing, and proportion surviving to maturity:

�t = �Ht−


(
1 − Ht−
+1

k

)
� (10.2)

Note the time subscripts: because seedlings are produced 
 time units
before they mature into trees, seedling production rate is proportional
to Ht−
 . On the other hand, the establishment rate depends on the
tree density next year; thus, the t − 
 + 1 subscript. Substituting this
formula for �t in equation (10.1), we have

Ht+1 = �tHt + �Ht−


(
1 − Ht−
+1

k

)
(10.3)

where I replaced the product �� with �, since we do not need two
separate parameters for this combination. We are not yet done: equa-
tion (10.3) allows the density of mature trees to exceed the maximum
density k. We fix this problem by a simple expedient of killing all
trees in excess of k:

Ht+1 = min
{
k��tHt + �Ht−


(
1 − Ht−
+1

k

)}
(10.4)

Now we are ready to specify the form of the survivorship func-
tion, �t . Because the SPB is functionally a parasitoid of pines
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(section 10.1), the simplest possible approach is to use the Nicholson-
Bailey form:

�t = exp�−aNt�

Although I could use a more complex and realistic functional
response, I am content with this simple term because I am primarily
interested in the dynamical consequences of disparate temporal scales
on which the two interacting species operate. The equation for the
SPB follows directly from this assumption:

Nt+1 = sHt

(
1 − exp�−aNt�

)
Next, I scale the SPB and tree densities to reduce the number of

model parameters: H ′
t = Ht/k and N ′

t = Nt/�sk�. Parameter a is also
rescaled: a′ = ask. Substituting these relations and dropping primes,
I have the following model of SPB-pine interaction:

Ht+1 =min
{
1� Ht exp�−aNt�+ �Ht−
 �1 −Ht−
+1�

}
Nt+1 =Ht

(
1 − exp�−aNt�

) (10.5)

The model has three parameters: 
 is the pine generation time, and �

is the maximum per capita reproductive rate of pines. The interpreta-
tion of a can be seen if we rewrite the second equation in (10.5) as
follows:

Nt+1

Nt

= Ht�1 − exp�−aNt��

Nt

For periods when host density is at its maximum (Ht = 1) and SPB
density is very low (Nt � 1), we can further simplify this equation,
employing the approximate relationship exp�x� ≈ 1 − x for x near
zero:

Nt+1

Nt

≈ 1 − �1 − aNt�

Nt

= a

Thus, for small Nt and large Ht , the SPB replacement rate is a. In
other words, parameter a can be interpreted as the multiplicative rate
of increase of beetles at low densities.

Numerical investigation of this model showed that it is very prone
to unstable dynamical behavior. Setting 
 = 20 yr, which seems
to fit the biology of loblolly pines, I simulated model dynamics
for all combinations of parameter values of � = 2� 3� 	 	 	 � 10 and
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a = 1	1� 1	2 	 	 	 10. (The lower bound on both � and a is 1, since

otherwise populations would not be able to replace themselves.) I

sampled values of a more thoroughly because this parameter had a

stronger effect on dynamics than �. The dynamical behavior of model

(10.5) is very complex: for different values of parameters it can

generate cyclic, quasiperiodic, and chaotic attractors. Additionally,

multiple coexisting attractors are possible. None of the parameter

combinations yielded stability, while many led to SPB extinction

(typically, after some very violent fluctuations). As a increases, it

becomes increasingly more difficult to obtain bounded dynamics. A

thorough characterization of the dynamics of this model, however, is

not what we are after. We are interested in determining whether it

is capable of generating oscillations characterized by short periods

of around 8–10 years, as observed in the SPB. Plotting the dominant

period against the parameter a, and frequency distribution of periods

characterizing those series where the SPB does not go extinct, we

see that there appear to be three or four typical periodicities in this

model (for 
 = 20) (figure 10.2). The first peak in the frequency

distribution is periodicities between 26 and 32 years, which I interpret

as generation cycles, because this period is near the fundamental

lag of 
 = 20. These generation cycles are somewhat longer than 20

years, for the following reasons. After a destructive SPB outbreak it

takes 20 years for pines to grow back to densities where the SPB

replacement rate can go above 1. An additional 6–12 years are, then,

required for the SPB population to “climb out of the trough,” at

which time another outbreak occurs, and the whole “cycle” repeats

(actually, all generation “cycles” were chaotic, as far as I could

determine, so we are talking about statistical rather than mathematical

periodicity here).

Within the range 40–80 years (2− 4
) there is one major group of

periods in the range 42–48 years, and another subsidiary peak around

60 years (figure 10.2b). These dynamics fit my definition of first-
order oscillations (see section 2.5). Finally, there is a large group

of periods located between 80 and 140 years (4 − 7
) which can be

interpreted as second-order oscillations.
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Figure 10.2. Dominant period in the output of the SPB-tree model: (a)
periods as a function of parameter a, (b) frequency distribution of dominant
periods. Results shown are for 1 < a ≤ 5 only, because for a > 5 few
parameter combinations result in SPB persistence.

Similar results were obtained with 
 = 30 yr, although dynam-
ics, in general, were more violent (a smaller proportion of parameter
combinations yielded bounded oscillations), and all dominant periods
for bounded cases were longer than for 
 = 20.

Returning to the main question that motivated this theoretical
exercise—can the SPB-tree interaction drive the observed SPB
oscillations?—we now see that the answer is no, it cannot. Even
generation cycles, which are characterized by the shortest periods,
are still too long: around 30 years versus the observed 7–9 years.
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And generation cycles occurred for <5% of parameter values; first-
and second-order oscillations were much more common.

To summarize, the explanation based on the SPB–food quantity
interaction encounters very grave theoretical difficulties. Granted, the
SPB-tree model advanced above is overly simplistic, but it is diffi-
cult to see how one could in principle devise a model that would get
around the main theoretical difficulty: it takes a long time for tree
stands to regenerate after a destructive outbreak. The only possibility
that I see is to bring food quality into the model. As I discussed above,
the possibility of induced defenses is contradicted by the biology of
the system. However, it is conceivable that hosts vary in their quality,
and that SPB outbreaks collapse after depleting high quality, rather
than total resources. This scenario is, in fact, a plausible explanation
for dynamics of some other bark beetles in the Dendroctonus genus,
such as the mountain pine beetle (D. ponderosae) (Berryman 1976).
In the mountain pine beetle (MPB) system, bark beetles primarily
attack large pines with thick phloem (population rate of change in
small trees is, in fact, negative). When the supply of large trees is
exhausted, MPB population declines, even though many (small) trees
still remain. This hypothesis, however, does not fit the biology of the
SPB. The SPB is much less discriminating than the MPB. Within
spot infestations, all trees (practically speaking) are destroyed, while
few trees outside the infestations are attacked (primarily, trees struck
by lightning). Thus, the major difficulty of the SPB-host hypothe-
sis is to explain why a huge proportion of apparently suitable trees
remain unattacked by the end of the SPB outbreak. Furthermore, note
that MPB population cycles are characterized by long intervals (30–
60 years) between outbreaks. This observation is consistent with the
hypothesis that MPB cycles are driven by their interaction with host
trees (and thus consistent with the model advanced above). After a
destructive outbreak, practically all old trees are killed. It then takes
10–20 years for smaller trees to grow to the point where they become
a suitable resource for the MPB. Then, some time has to pass before
the MPB populations can build up to the point where they start inflict-
ing serious mortalities on pines. This scenario can probably be mod-
eled by a slight modification of model (10.5), and provides a plausible
explanation of MPB dynamics.
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10.3.3 Interaction with Parasitoids

Arthropods are among the principal natural enemies of the SPB
(Berisford 1980). These enemies fall into two general classes: para-
sitoids (including several wasp species in the braconid and pteromalid
families) and predators (primarily coleopteran, but also including
a dipteran and some predacious mites) (see Berisford 1980 for a
general overview).

We can assess the potential of parasitoids to drive SPB oscilla-
tions using the same logic that underlined the SPB-tree model. The
SPB parasitoids tend to have rather fast development times, so that a
generation is completed in around 2–3 weeks in summer (Berisford
1980). Since the dominant periodicity of SPB oscillations is around
8 years, each oscillation requires about 50 SPB generations and >50
parasitoid generations. Can a host-parasitoid model exhibit such long-
period oscillations? As a first step to addressing this question, let
us assume that the Nicholson-Bailey framework offers a reasonable
approximation to the SPB-parasitoid dynamics. Since, in actuality,
parasitoids have faster generation times than those assumed in the
model, we would expect that any answer we obtain would be con-
servative with respect to finding long cycles. The simplest model for
host-parasitoid interactions (that is not limited to diverging oscilla-
tions of the Nicholson-Bailey model) is the model of Beddington et al.
(1976a):

Nt+1 = Nt exp
[
r0�1 − Nt�− aPt

]
Pt+1 = Nt�1 − exp�−aPt��

where Nt is host density (scaled so that the carrying capacity k = 1),
and Pt is the parasitoid density. Parameters r0 and a have their usual
interpretations: the intrinsic rate of host population growth and the
parasitoid attack rate, respectively. Historical data on SPB density
suggests that the intrinsic rate of population increase is r0 ≈ 1	8
yr−1 or ≈ 0	3 gen−1 (Reeve et al. 2002). We have no data on a,
but we know that a > 1, in order for parasitoids to be able to
increase, and a cannot be too high, because then violent oscillations
in parasitoid density cause it to go extinct. In order to determine the
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Figure 10.3. Frequency distribution of dominant periods found in the SPB-
parasitoid model.

spectrum of dominant periods characterizing the Beddington model,
therefore, I investigated the range of r0 = �0	20� 0	21� 	 	 	 � 0	40�
and a = �1	1� 1	2� 	 	 	 � 10	0�. Excluding parameter combinations for
which the parasitoid goes extinct, and those for which the dynamics
are stable, I plotted the frequency distribution of dominant periods
(figure 10.3). We see that the bulk of dominant periods lies substan-
tially below 50 gen (the 90% range, excluding the shortest 5% and
the longest 5%, is 13–41 gen). In fact, it is necessary to balance the
parameter values just right, pushing r0 to the lower bound of 0.2 and
a = 5	7 ± 0	1, in order to obtain T = 50 gen.

To summarize, it is possible, but difficult, to get oscillations of the
correct period (≈50 SPB generations) in the Beddington model. In
order to obtain the right period, one needs to push the value of r0 quite
low (perhaps unrealistically low) and select just the right value of the
parameter a. This value of a also happens to lie on the boundary in the
parameter space where the parasitoid persists (increasing a slightly
causes the parasitoid to fluctuate violently and eventually go extinct).
Although this result is not as strong as our rejection of the SPB-tree
hypothesis, it still throws doubt on the viability of the SPB-parasitoid
model.
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10.3.4 The Predation Hypothesis

A number of studies (reviewed in Reeve et al. 1995) suggest that the
clerid beetle Thanasimus dubius may be a particularly important nat-
ural enemy of the SPB. It is one of the first species to appear on trees
mass-attacked by the SPB, because it is attracted by SPB pheromones
and volatiles emitted by the damaged host tree. Adult clerids capture
adult SPBs participating in mass attack, while larval clerids attack
SPB larvae under the tree bark. Population oscillations of clerid bee-
tles are shifted in phase with respect to SPB oscillations (Reeve et al.
2002). As a result, clerids achieve high densities during the years of
SPB population decline. For example, in 1993–1994 clerid density
on mass-attacked trees averaged 1.25 beetle per dm2 of bark (Reeve
1997). Variation in clerid density has a strong explanatory effect on
SPB population change (Billings 1990). For example a simple regres-
sion model, rt = a+ bNt−1 + cPt−1/Nt−1, where Nt and Pt are SPB
and clerid densities, explains 70% of variance in SPB realized rate of
change, rt (Reeve et al. 2002).

Adult clerids can inflict a substantial amount of mortality on
attacking SPBs. Reeve (1997) showed that up to 60% of adult SPB
can be killed by clerids before the bark beetles enter the galleries
within the tree bark. We lack comparable experiments to quantify
the impact of clerid larvae on SPB larvae within trees. However,
exclusion experiments have shown that the whole complex of SPB
natural enemies can reduce SPB survival severalfold: from 32% in
treatments where enemies were excluded to 5.6% where they were
not (Linit and Stephen 1983). Linit and Stephen (1983) attributed a
substantial proportion of this mortality to clerids.

A particularly interesting feature of T. dubius biology is its ten-
dency to undergo an extended period of development inside the host
tree (Reeve et al. 1996): while some clerids emerge from mass-
attacked trees about half a year after the trees were attacked, the
majority of clerids emerge 1� 1	5, or even 2 years later. This puzzling
but well-documented feature of clerid biology (see Reeve et al. 1996)
has profound implications for hypotheses attempting to explain SPB
oscillations.
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Reeve et al. (2002) developed the following model to investigate
the dynamical consequences of extended development in the clerid
predators. The model is based on the Nicholson-Bailey framework (as
are the SPB-tree and SPB-parasitoid models, allowing for direct cross-
comparisons between the three hypotheses). For the SPB equation,
we simply use the Beddington model:

Nt+1 = Nt exp
[
r0

(
1 − Nt

k

)
− aPt

]

Here the units of t are SPB generations (of which there are six per
year).

Upon completing development, new clerids do not immediately
emerge to attack SPB, but instead join the population of “diapausers,”
whose density is Qt . The equation for Qt is

Qt+1 = Qt +  Nt�1 − exp�−aPt��
In other words, every generation Qt is incremented by the number of
newly developed clerids. Parameter  specifies how many new clerids
are produced per each killed SPB (since each clerid larva needs to
consume several SPB larvae to complete development,  < 1). Mean-
while, the population of adult predators is governed by the following
equation, assuming density-independent dynamics:

Pt+1 = Pt − !Pt

where ! is the proportion of adult predators dying each SPB genera-
tion. The last ingredient in the model is the connection between the
diapausing and free-flying clerids. We assume that twice per year (or
every three SPB generations) a certain proportion of diapausers, "0,
leaves the tree and becomes free-flying adults.

The model has six parameters, but two of them, k and  , can be
scaled out. The equations of the scaled model are

Nt+1 = Nt exp�r0�1 − Nt�− aPt�

Qt+1 = Qt − "tQt + Nt�1 − exp�−aPt��
Pt+1 = Pt − !Pt + "tQt (10.6)

"t =
{

0 for t = 1� 2� 4� 5� 7� 	 	 	

"0 for t = 3� 6� 9� 	 	 	
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Figure 10.4. Frequency distribution of dominant periods found in the SPB-
clerid model (for the parameter ranges described in the text).

For the SPB intrinsic rate of increase, we use the same range of
values as was justified above: r0 = �0	2� 0	4�. We lack data to directly
estimate the clerid attack rate, so we will use a very broad range
for this parameter: a = �1� 10�. The proportion of clerids breaking
diapause is around 0.5, with the range "0 = �0	3� 0	7� (Reeve et al.
2002). Finally, the death rate of free-flying clerids can be crudely
estimated by observing how fast their numbers decline after episodes
of spring and fall emergence. Our estimate lies in the range ! =
�0	5� 0	9�.

Numerical solution of the SPB-clerid model for all combinations
of the four parameters showed that this model behaves as a typical
second-order difference model. The mode of the distribution is at
7 years, and the bulk of periods (around 90%) falls within the range
of 6–13 years (figure 10.4).

This is a striking result, especially when contrasted with the pre-
dictions of models based on the two rival hypotheses. While the SPB-
tree model could not generate the correct period for any biologically
reasonable values of its parameters, and the SPB-parasitoid model
could do it only for the most extreme values, the SPB-clerid model
generates approximately correct periods for almost any biologically
reasonable combination of its parameter values. Our conclusion from
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this theoretical exercise is that the likelihood of the clerid model is
much higher than the likelihood of the parasitoid or (especially) the
tree models.

Strictly speaking, our argument in favor of the clerid model cannot
be extended more broadly to argue in favor of the clerid hypothe-
sis. Without checking many different models for rival hypotheses, we
cannot know whether under some of them the observed period may
not, indeed, be quite probable. However, general theory of population
dynamics suggests that it would be difficult to construct a model to
produce either an unusually long period (which we would need for
the parasitism hypothesis) or an unusually short period (needed for
the tree hypothesis). Furthermore, Reeve et al. (2002) explored the
effect of using a more realistic functional response than the linear one
used in model (10.6), and found qualitatively the same result. Thus,
given what we know about population dynamics, it seems likely that
if we were to perform a survey of many different kinds of models
for the three hypotheses, we would still come to essentially the same
conclusion.

Two other caveats need to be kept in mind. First, there may be
other hypotheses, in addition to the ones we have explicitly considered
here, and there is no guarantee that one of them would not outperform
the clerid hypothesis. Nevertheless, finding that a model based on the
clerid hypothesis explains the observations better than the rivals is
clearly a step forward. Second, all the hypotheses that we have con-
sidered in this section are monocausal, yet the world is likely to be
complex. Thus, the results of the theoretical exercise we have worked
through should not be interpreted as denying any dynamical role
for parasitoids or hosts. The observation that the monocausal clerid
hypothesis explains the observed period well enhances our belief in
the proposition that the primary factor driving SPB oscillations is SPB
interaction with the clerid predators. However, it does not preclude
the possibility that parasitoids may play an important secondary role
in, for example, providing some first-order feedback instrumental in
stabilizing SPB-clerid cycles. In fact, our experimental results appear
to support such a role for some natural enemies of the SPB, as will
be discussed in the next section.
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10.4 AN EXPERIMENTAL TEST
OF THE PREDATION HYPOTHESIS

10.4.1 Rationale

Theoretical arguments and comparisons to dynamical patterns
observed in time-series data, discussed in the previous section,
strongly suggest (to me) that the predation hypothesis is a better
explanation of the SPB oscillations than the rival hypotheses that I
considered. I suspect, however, that most ecologists would not be
particularly swayed by “just” logic, and would require an experi-
mental test. How can we test the predation hypothesis? The most
drastic proof would be to exclude predators and to see whether
SPB cycles would stop. This approach, of course, is completely
unrealistic, simply because of the large spatial scale on which such
an experiment would have to be conducted. The median dispersal
distance for the SPB was measured to be around 0.5–1 km (Turchin
and Thoeny 1993). Even a 1 km2 chunk of pine forest is too small a
scale on which to try to “stop the cycle,” because of the highly patchy
distribution of SPB attack, which is organized in spot infestations.
During a major outbreak, there are only about 0.3 large spots per
1 km2 area (data from historical records for East Texas), so we would
need at least 10 × 10 km experimental units to capture areawide SPB
dynamics (rather than local spot growth and collapse).

Although it is physically impossible to experimentally stop the
SPB cycle, given present knowledge and realistic resources, there are
other empirical ways to test the predation hypothesis. First, it is pos-
sible to exclude the SPB natural enemies on a local scale (one tree,
or a portion of a tree). By comparing SPB survival and reproduction
in predator exclosures versus controls, this experimental manipula-
tion allows us to measure the predation impact on SPB population
change. Second, both the general theory and the specific model based
on the predation hypothesis (equation 10.6) make quantitative predic-
tions about the pattern and the magnitude of predation impact, and
these predictions can be empirically tested.

Before we consider these predictions, it is worth reiterating the fol-
lowing point. Demonstrating that predators impose a substantial (or
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even overwhelming) mortality at any particular point in the population
cycle does not tell us whether predators are in fact the mechanism
driving the oscillations. If predators kill the same proportion of SPB
every year, then some other factor must be driving the cycle. What
we need to determine is how the predator impact changes with time,
or more precisely with cycle phase. In other words, we need to mea-
sure predation impact throughout the complete increase-peak-decline
cycle.

We can distinguish three broad outcomes that such a long-term
predator exclusion experiment can have. These outcomes correspond
to the hypotheses that predators are


 an exogenous (or zero-order) factor

 a first-order endogenous factor

 a second-order endogenous factor

(figure 10.5). The graphs in figure 10.5 were constructed by, first,
postulating a particular time course of a single SPB oscillation (the
dotted lines). Second, assuming for simplicity that fecundity does
not change systematically with the cycle phase, the numerical course
of the outbreak is completely determined by the dynamics of sur-
vival rate. The survival rate that produces the oscillation is plotted in
figure 10.5 as the solid curves. Note that the dotted and solid lines do
not vary between cases. The only thing that varies is the survival rate
of beetles protected from predators (the dashed lines), corresponding
to three general scenarios of how predators may affect SPB dynamics.

In the first case (figure 10.5a), there is no dynamical feedback
between prey density and predation impact. As I pointed out above,
the average predator-induced mortality may be very high and still
predators might have no dynamical impact, simply reducing the intrin-
sic rate of population increase to a lower value. Random (phase-
independent) fluctuations in predator-imposed mortality will affect
prey density in a stochastic manner, but cannot drive a regular oscilla-
tion. In the second case (figure 10.5b), predators respond to changes
in prey population without a significant lag time. The dynamical role
of predators, therefore, is stabilizing rather than causing oscillations.
Generalist predators may act in this manner, reducing the amplitude
of oscillations or preventing diverging oscillations. Only in the third
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Figure 10.5. Dynamical effects of predation. Dotted line: SPB density.
Solid line: SPB survival in the presence of predators. Dashed line: SPB
survival when predators are excluded. (After Turchin et al. 1999.)

case (figure 10.5c), when acting in a delayed density-dependent man-
ner, are predators actually causing the oscillation. Note that the three
scenarios represent extremes of a continuum, since it is possible for
the predator community to act in a mixed manner. For example, a
mixture of generalist and specialist predators would act in a manner
intermediate between cases (b) and (c).

The predation hypothesis for SPB cycles predicts that the empir-
ical outcome of the predator exclusion experiment should resemble
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Figure 10.6. Dynamics predicted by the SPB-clerid model (10.6) for the
reference set of parameter values. Solid circles: SPB density. Hollow cir-
cles: clerid density. Note that although the model has six time steps per
year, SPB and clerid densities were averaged within each year, to provide
a direct comparison with data such as shown in figure 10.7.

case (c). In fact, we can obtain an even more specific and quantitative
prediction, by solving the SPB-clerid model developed in the previ-
ous section (equation 10.6) for best parameter values, and calculating
the expected predation impact with respect to the phase of the cycle.
To arrive at a set of such “best” values, I used the data-suggested
estimates of parameters r0 = 0	3, " = 0	5, and ! = 0	7. Parameter
a must be estimated indirectly. I selected a = 5, which gives the
closest match to the observed period and amplitude of SPB oscilla-
tions. Dynamics predicted by the SPB-clerid model with these param-
eters are shown in figure 10.6. The comparison between the predation
impact values predicted by this model and the data in the predator
exclusion experiment will be considered below (see figure 10.11).
Note that this is a very strong test of the hypothesis, because there
is no circularity in obtaining predictions: the data from the predator
exclusion experiment were not used in estimating model parameters.

Experimental Method Our empirical approach for testing the pre-
dictions of the predation hypothesis relied on using cylindrical cages
to exclude SPB natural enemies from a portion of a tree trunk
(Turchin et al. 1999). The cage design is explained in Reeve et al.
(1998). In each iteration of the experiment, we selected a stand
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of predominantly loblolly pine within Kisatchie National Forest,
and located experimental trees within the stand. The trees were
of approximately the same diameter, and were separated by about
100 m. Some trees were designated as “cage” trees, and others as
“control” trees. On cage trees we installed 2 m–long cylindrical
exclosures made from polyethylene screening. The cage contained
a central 1 m–long experimental area, and two 0.5 m buffer zones,
which acted as barriers to the movement of insects (both SPB and
its natural enemies) into the experimental area. These buffer zones
were not completely successful in excluding predators. However, we
suspect that predators who entered the central zone did so toward
the end of the SPB development period (when the beetles construct
pupation chambers in the outer bark), and thus did not affect SPB
survival very much. In any case, the possible semipermeability of our
predator exclosures does not affect our main conclusions, although it
raises the possibility that our measures may underestimate the actual
predator impact.

The control trees did not have cages installed on them, but in
all other respects were treated in the same way as the cage trees.
After exclosures were installed on cage trees, all experimental trees
were baited with SPB congregation pheromone to induce attack. A
total of two thousand adult SPB were added to exclosures, generating
attack density that was similar to that outside cages. We monitored
the temporal course of the mass attack on the cage tree (outside the
exclosure) and matched by varying the frequency and the size of SPB
additions within the cage.

Several measurements were made to estimate SPB reproduction
and survival on cage trees within exclosures and in areas above and
below exclosures, and on control trees. First, we estimated the density
of successful attacks and eggs by taking bark samples (see Reeve et al.
1998 for details). Second, when brood development was complete,
we cut sections of trunks, placed them in individual rearing cans, and
recorded the numbers of emerging SPB. Our two primary measures
of SPB performance were (1) survival from egg to emerging adult,
estimated by dividing the numbers of emerging SPB by the numbers
of eggs laid; and (2) the ratio of increase �′, estimated by dividing
the numbers of emerging SPB (or the offspring generation) by the
numbers of successful attacks (or the parent generation). The prime
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Figure 10.7. Population densities of SPB (solid circles) and clerids (solid
triangles) during 1989–1994, measured by a network of pheromone-baited
traps within Kisatchie National Forest (KNF), Louisiana. Also shown are
the number of spots detected in KNF (hollow circles).

reminds us that the ratio of increase is not the true multiplicative rate
of population change, because it does not take into account mortality
of adult beetles between emergence and successful attack.

Each experimental iteration described above was replicated (1)
spatially, by using two stands separated by at least 3 km; and (2)
seasonally, by conducting one study in late spring–early summer and
another in late summer–fall. Finally, the whole study was repeated
for five years. The 5 yr period covered a complete cycle, including
increase (1990–1991), peak (1992), and decrease (1993–1994; see
figure 10.7).

10.4.2 Results

The first thing we need to check is how well our experimental
manipulation succeeded in mimicking patterns of SPB attack and
reproduction inside cages. Figure 10.8 compares the densities of
successful attacks and egg densities inside cages (protected from
predation) versus outside cages (exposed to predation; this category
combines measurements taken on control trees with those taken
above and below exclosures on cage trees). Fluctuations in attack
density inside cages paralleled those occurring naturally, and there
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Figure 10.8. Successful attack (a) and egg (b) densities in the preda-
tion exclusion experiment. Solid circles: measurements inside cages (“pro-
tected”). Solid triangles: measurements outside cages (“exposed”). Hollow
circles: the temporal course of the SPB cycle, as measured by a network
of pheromone traps (from figure 10.7).

were no statistically significant differences between the two variables
in any year (figure 10.8a). The same pattern held for egg density
trajectories, apart from the last year (1994), when egg density inside
cages was significantly higher than that outside cages. Because
SPB survival from egg to adult is strongly density dependent (this
will be discussed below), we expect that our estimate of predation
impact in 1994 may be underestimated (lower survival inside cages
decreases the difference between it and survival outside cages). The
general message from the data in figure 10.8 is that our experimental
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Figure 10.9. SPB survival (a) and log-transformed ratio of increase, r ′ =
log�′ (b) in the predation exclusion experiment. Solid circles: measure-
ments inside cages (“protected”). Solid triangles: measurements outside
cages (“exposed”). Hollow circles: the temporal course of the SPB cycle,
as measured by a network of pheromone traps. ∗ = P < 0	05. ∗∗∗ = P <

0	001.

technique was successful in creating similar starting conditions for
SPB populations inside versus outside cages. In one instance where
initial conditions diverged (egg densities in 1994), our measure of
predation impact should be conservative; that is, we expect that it
will underestimate the true impact.

Turning to the main results of the experiment, I begin by consider-
ing the predation impact on SPB survival (figure 10.9). The survival
on control trees versus cage trees outside exclosures (note that both
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are exposed treatments) was not significantly different in all but one
iteration of the experiment (fall 1992). For this reason, we treated
these replicates as a single category, “exposed.” The P -values reported
below are, thus, based on within-year comparisons between exposed
and protected replicates (each tree serving as an experimental unit)
employing t-tests.

In 1990 and 1991, during the increase phase of the cycle, the sur-
vival of protected (inside cages) SPB broods did not differ from that
of broods exposed to predation, indicating negligible predation impact
during the increase phase. Predators imposed detectable mortality dur-
ing the peak year (1992; P < 0	05), but numerically the strongest
(and statistically most significant, P < 0	001) effect of predation was
observed during the first year of decline (1993), when SPB survival
rate was halved (from 0.32 to 0.16) by predators. The survival dif-
ference in the second year of decline (1994) was not significantly
different from zero.

We observed a qualitatively similar pattern in the effect of preda-
tors on the SPB ratio of increase (figure 10.9b). However, this mea-
sure of predation was statistically significant during both decline years
(1993–1994), and not during the peak year. As in survival rate, the
ratio of increase during the two increase years (1990–1991) was indis-
tinguishable between the exposed and protected replicates.

As I noted above, egg densities were significantly different
between the exposed and protected treatments in 1994, raising the
possibility that the predation impact on brood survival in that year
was masked by this difference. Furthermore, experiments that manip-
ulated SPB density within trees documented a strong effect of it on
both survival and the ratio of increase (Reeve et al. 1998). Analysis
of density dependence in the vital rates of SPBs inside predation
exclosures yielded similar results (e.g., figure 10.10 shows density
dependence in the ratio of increase). Because different replicates var-
ied in initial SPB densities, it is possible that this variation obscures
some of the patterns in the data. To check on this possibility, we
reanalyzed the data in which effects of density were removed. For
example, we defined a new variable, the adjusted survival rate:

S∗
i� j = Si� j − �Ei� j



268 SOUTHERN PINE BEETLE

Figure 10.10. The relationship between the ratio of increase (emerging
beetles/attacking beetles) and the density of attacking beetles inside cages.
Linear regression results: F1� 51 = 42	8, P < 0	00001, R2 = 0	456.

where Si� j is the observed survival in replicate i of treatment j (j = 1
is protected, j = 2 is exposed), Ei� j is the egg density in this replicate,
and � is the slope of linear regression of Si� 1 on Ei� 1. Analyzing the
adjusted survival rates S∗

i� j using the same approach as before (t-tests
within each experimental year), we found that for years 1990–1993
the qualitative results were unchanged, but for 1994 the difference
between protected and exposed was borderline significant (P < 0	07).
This result suggests that the difference between survival inside versus
outside cages is detectable even two years after the peak.

Performing similar reanalysis of the ratio of increase, we found
that, as before, during the increase years there were no differences
between the exposed and protected treatments. However, the differ-
ence in the peak (1992) year became significant (P > 0	05), and the
results during the years of decline were also strengthened (P -values
of 0.001 and 0.03, respectively). In short, we get much crisper results
after tuning out variance due to different initial densities in replicates.

Taken together, these results suggest that the predator complex
acts primarily as a second-order process, with an admixture of a
weaker first-order impact. This qualitative result is consistent with
the predictions of the predation hypothesis. What about a quantitative
comparison? Recollect our earlier discussion of the fully specified
SPB-clerid model. The expected impact of predation as a function of
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Figure 10.11. Comparison of predicted and observed predation impact in
relation to cycle phase. Hollow circles: predicted by the SPB-clerid model.
Solid circles: observed in the predator-exclusion experiment. Predation
impact, )r ′, is the difference between log-transformed ratios of increase
inside versus outside cages.

the phase of the cycle, predicted by the SPB-clerid model, is plotted
in figure 10.11. The SPB-clerid model predicts negligible predation
impact during the increase and peak years, and strong impact dur-
ing the two years of decrease, especially in the second year, when
)r ′ = 0	7. Note that, since exp�0	7� = 2, predators impose a 2-fold
decrease on SPB survival. This may not appear to be a strong impact,
but remember that there are six SPB generations per year, so a 2-fold
survival differential per generation translates into 26 = 64-fold dif-
ferential per year. This survival differential is strong enough to drive
substantial cycles in SPB density (as seen in figure 10.6).

The observed pattern in )r ′ is very similar to the SPB-clerid
model predictions (figure 10.11). As predicted, the greatest impact
of predators occurs during the two years of population decline. Most
important, the observed impact matches numerically the predicted
magnitude of predation impact (in fact, it is even greater than pre-
dicted, but not significantly so, because the predictions lie within 1 SE
of observed means). The importance of this match is that it suggests
that the predation impact measured in the experiment is numerically
strong enough to drive the oscillation by itself.

The observed impact deviates from the predicted in one way: it
begins to increase already during the peak year. While evidence for
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increased predation impact during 1992 is not as strong as that for
the decline years (1993–1994), it is substantial enough to suggest
that something more is going on than is predicted by the SPB-clerid
model. This is perhaps not surprising, given the extreme simplicity of
the model. In particular, an argument was made earlier that another
important group of natural enemies of the SPB, parasitoid wasps,
should act largely as a first-order factor. Additionally, some arthro-
pod predators that, unlike the clerid beetle, do not have an extended
diapause could contribute to the first-order effect seemingly present
in the data. Finally, vertebrate predators such as woodpeckers should
also act in a nondelayed density-dependent manner. Thus, it is likely
that this diverse group of SPB natural enemies contributes to first-
order regulation of SPB density.

I should also note that our predator exclusion method excluded
not only natural enemies but also some potential competitors, such
as sawyer beetles or the bluestain fungus. However, neither sawyer
beetles nor bluestain fungi exhibit any signs of second-order control
(Reeve et al. 2002). Thus, these associates most likely add to the first-
order regulation in the SPB (although numerically their effect may
be swamped by the much stronger direct density dependence in the
SPB).

Another caveat is that we should not be too hasty in attributing
the second-order component of predation impact, demonstrated by
the predator exclusion experiment, entirely to the effect of clerids.
After all, as discussed in the previous two paragraphs, our experimen-
tal cages excluded not only clerids but also many other organisms
potentially detrimental to SPB reproduction and survival. Our evi-
dence implicating clerids as the main factor driving SPB oscillations
is indirect: because of their extended development, clerid populations
behave in the dynamically appropriate way to drive SPB oscillations,
as demonstrated by the SPB-clerid model. We do not know enough
about other enemies of the SPB, particularly other insect predators,
to either support or refute their potential role in helping to drive SPB
cycles. Our direct experimental evidence implicates the whole com-
plex of SPB natural enemies, rather than any particular species.

The final caveat is that our experiment examined only one oscil-
lation in only one (broad) area. Ideally, it would be very useful to
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repeat this experiment in another state during the next oscillation. For-
tunately, we have some additional observations that suggest that the
1990–1994 cycle in Louisiana was not unusual. Stephen et al. (1989)
conducted a longitudinal study of the 1975–1978 SPB outbreak in
Arkansas, in which they measured SPB egg and late-stage immature
densities, as well as densities of its natural enemies. As SPB density
increased from 1975 to 1976, the survival rate from eggs to late-stage
immatures decreased. However, the most substantial drop in survival
occurred after the peak, during the decline year of 1978. This pattern
parallels the one we observed in our long-term predator exclusion
study.

10.5 SYNTHESIS

SPB populations in the southern United States exhibit a rather
irregular-looking pattern of outbreaks, occurring at intervals of 6–9
years. Time-series analysis suggests that despite this apparent irregu-
larity, SPB outbreaks are driven by a strong second-order dynamical
process. Theoretical investigation of three likely hypotheses (interac-
tion with hosts, parasitoids, and specialist predators) suggest that only
models based on the last hypothesis (predation) can generate oscilla-
tions of appropriate periodicity for biologically plausible parameter
values. Most important, the predation hypothesis successfully passes
the severe test of a long-term predator exclusion experiment. It
correctly predicts not only the observed second-order pattern of
predator-imposed mortality but also the magnitude of predation
impact. The experimental results do not preclude the possibility that
other second-order factors than specialist predators may contribute
to oscillatory dynamics in the SPB. However, the observation that
the experimentally observed predation impact is numerically strong
enough to drive SPB oscillations of correct period and amplitude
suggests that if such other mechanisms are present, then their effect
is weak.



CHAPTER 11

Red Grouse

Periodic dynamics are not common in bird populations (Kendall et al.
1998: table 1). A major exception to this general pattern is birds of
the grouse family (Tetraonidae, order Galliformes) (Middleton 1934;
Williams 1954). Population cycles have been reported in Scottish rock
ptarmigan (Watson et al. 1998); black grouse, capercaillie, and hazel
grouse (Lindén 1989); ruffed grouse and prairie grouse (Keith 1963);
and red grouse (Potts et al. 1984; Williams 1985). Most nontetraonid
examples of oscillations in bird populations appear to be exogenously
driven (e.g., owls feeding on cyclic voles or arctic geese periodically
suffering from lemming predators; see chapter 12).

Red grouse (Lagopus lagopus scoticus, a subspecies of the willow
grouse) is the best-studied tetraonid bird. Because red grouse is the
favorite game bird of the British sportsman (Hudson 1992), we have
a multitude of long-term data indexing grouse population dynamics.
Equally important is the willingness of British foundations to support
empirical research on grouse ecology. As a result, we may be in good
position to resolve the question of what ecological mechanisms are
responsible for grouse oscillations, having time-series data, short-term
data on grouse ecology, parameterized mathematical models, and field
experiments testing the models.

In my review of red grouse cycles, I follow the standard sequence:
I start with phenomenological modeling of time-series data, then
review the hypotheses and mechanistic models based on them, and
finally discuss the experiments. The literature on red grouse cycles
is voluminous; fortunately, there are two recent reviews that provide
very useful guides to this complex topic (Moss and Watson 2000;
Hudson et al. 2002).
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11.1 NUMERICAL PATTERNS

The main fodder for phenomenological analysis of red grouse fluctua-
tions comes from bag data—records of the number of grouse shot per
year on a hunting estate. There is an approximately linear, although
rather noisy, relationship between the log-transformed grouse density
and the log of number shot plus 1 (Hudson 1992: figure 4.2). The bag
data, however, exaggerate the degree of fluctuation observed in grouse
populations. Thus, judging by figure 4.2 in Hudson (1992), as bird
density increases by one order of magnitude (between approximately
30 and 300 birds km−2), the log of number shot plus 1 increases by
two orders of magnitude (100-fold). These data, therefore, suggest
that the estimate of S (standard deviation of log-transformed num-
bers) indicated by the analysis of bag data inflates the true amplitude
by a factor of about two.

Williams (1985) Analysis First analyses of grouse bag data were
done by Middleton (1934) and MacKenzie (1952), although these
investigators did not employ very sophisticated statistical approaches.
Another study of tetraonid dynamics using qualitative data is by
G. R. Williams (1954). Using modern methods of time-series analysis,
Jennifer Williams (1985) reanalyzed the data tabulated by Middle-
ton and MacKenzie. Because data show temporal trends (see, e.g.,
figure 11.1), Williams detrended them using polynomials of up to
sixth order. Generally, I advocate against routine detrending. However,
bag data are particularly prone to trends (Hudson 1992). British soci-
ety underwent abrupt structural shifts, particularly during the twen-
tieth century, on top of which one should add the impact of two
world wars. As a result, the management of game estates evolved,
perhaps changing the nature of red grouse dynamics (this will be
discussed below), and the “measuring apparatus” did not always faith-
fully reflect fluctuations in grouse numbers. Thus, some approach to
dealing with this nonstationarity is necessary, although fitting poly-
nomials of sixth order seems excessive.

ACFs estimated by Williams (1985) for the fourteen time series
indicate that there is strong evidence for periodicity in four data
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Figure 11.1. Annual numbers of red grouse shot on a Lanarkshire estate.
(Data from Middleton 1934.)

sets (ACF statistically significant at the dominant period; see sec-
tion 7.1.3). In five other series, there is weaker evidence of periodicity
(ACF significantly less than zero at half the dominant period), and in
the last five series ACF is not statistically significant at any lags. The
most common dominant period is 6 years (six cases), but there are
also single instances of 4-, 5-, and 10-year periodicities. In summary,
Williams’s analysis of the Middleton and MacKenzie data suggests
that the oscillatory tendency in the grouse bag data is real, but while
some populations undoubtedly exhibit cycles, others fluctuate in a
much less regular manner.

NLTSM Analysis of the Middleton Data To place the red grouse
cycles in the general context of oscillatory dynamics, I submitted the
Middleton data to the NLTSM analysis (I focused on the Middle-
ton data because MacKenzie presented data only as averages over a
whole region, which may hide important differences in fluctuations
between individual estates). Unlike Williams (1985), however, I did
not detrend the data. Visual examination of the series suggested that
not only the mean of fluctuations drifts with time, but the character
of dynamics themselves may also change from the first to second half
(figure 11.1). Thus, I used the alternative approach of splitting the
series (see section 7.1.2). Splitting each series in half yields segments
of 26–30 years long, which should be rather optimal for NLTSM
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Table 11.1. Red grouse bag data from Middleton (1934) and Thirgood
et al. (2000a): summary of results of nonlinear time-series analysis. Number
of data points, n; measure of amplitude (SD of log-transformed densities),
S; dominant period, T ; the autocorrelation at the dominant period, ACF[T ]

(∗∗ = significantly > 0 at T ; ∗ = significantly < 0 at T /2); estimated
process order, p; polynomial degree, q; the coefficient of prediction of the

best model, R2
pred; and the estimated dominant Lyapunov exponent, 
�

Location/segment n S T ACF[T ] p q R2
pred 
�

Middleton data

Cumberland 1 29 0.45 6 0.67 ** 2 2 0.64 0.12

Cumberland 2 28 0.37 — — 2 1 0.06 −0.91

Aberdeenshire 1 28 0.38 6 0.83 ** 2 2 0.37 0.53

Aberdeenshire 2 28 0.20 7 0.35 * 3 1 0.16 −0.30

Lanarkshire 1 26 0.38 6 0.65 ** 3 2 0.51 0.45

Lanarkshire 2 26 0.16 8 0.37 * 1 0 0 −�
Thirgood et al. data

Moor F 24 0.45 7 0.48 ** 2 2 0.18 0.22

Moor G 24 0.47 7 0.48 ** 3 1 0.41 −0.12

Hudson et al. data

Gunnerside 15 0.26 — — 2 1 0.09 −0.16

Watson et al. data

Kerloch 18 0.19 8 0.09 * 3 2 0.87 0.57

Rickarton 1 20 0.41 — — 1 1 0.38 −0.58

Rickarton 2 21 0.37 10 0.20 * 2 1 0.65 −0.41

analysis, especially since, at 6 years per cycle, we end up with 4–5
oscillations per piece (section 7.1.2).

The summary of NLTSM results is presented in table 11.1. We see
that there is very strong evidence for dynamic nonstationarity. Almost
all probes change in a systematic fashion. First pieces are classi-
fied as characterized by strong periodicity (with the dominant period
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Figure 11.2. Graphical output of the NLTSM analysis of grouse bag data:
first 30 years of Aberdeenshire (Middleton 1934). Upper left: time plot;
upper right: response surface; lower right: phase plot.

of 6 years), strong nonlinearities (q = 2), high signal-to-noise ratio
(R2 around 0.8), and, rather surprisingly, positive Lyapunov expo-
nents. An example of analysis is shown in figure 11.2.

Second segments have much weaker (and in two cases statistically
not significant) periodicity, more linear and less predictable dynam-
ics, and are characterized by trajectory stability (negative Lyapunov
exponents). In fact, cross-validation suggested that none of the models
predict Lanarkshire 2 better than the mean (thus, the best model for
that series is simply its mean with variance around it). However,
in the other two cases cross-validation selected second- or higher-
order models, hinting that some oscillatory process, although weaker
than during the first period, may still underlie grouse population
fluctuations.

In line with other probes, the amplitude declines from first to
second halves (table 11.1). Note, however, that the amplitude of
oscillations is generally rather low. Because S estimated for bag
data is probably twice the S of densities, the real S, therefore, is
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probably around 0.2 during the first period, and 0.1 during the second
one. Such S values roughly correspond to fourfold and twofold
peak/trough ratios (see section 7.1.3), respectively. In other words,
even during the more oscillatory periods, grouse fluctuations are
rather mild.

In summary, the NLTSM analysis of the Middleton data yielded
quite interesting results. The general finding of second-order periodic
dynamics supports the previous conclusions of Williams (1985).
Furthermore, the analysis strongly suggests that grouse dynamics
changed qualitatively around 1880, from more complex to simpler
dynamical patterns. The insistence of NLTSM on estimating chaotic
models (
>0) for data observed during 1850–1880 is somewhat
puzzling, given the generally low amplitude of grouse oscillations.
This finding, however, is strengthened by several observations:
generally high R2 characterizing first halves (around 0.8) and the
consistency between time-series patterns observed at such widely
separated locations as Lanarkshire (southern Scotland) and Aberdeen-
shire (northeastern Scotland). On the other hand, the three time
series cannot be taken as completely independent replicates. For
example, the two most pronounced collapses (in 1866 and 1872)
were synchronized across all three sites.

Analysis by Potts et al. (1984) and Hudson (1992) Potts et al. (1984)
and Hudson (1992:138–144) obtained long-term bag records from 63
estates in England and 110 estates in Scotland. The longer time series
extended back into the 1870s. Many series showed a declining trend,
and other signs of non-stationarity, such as low bag numbers during
World War I and II (Hudson 1992: figure 24.1). These trends were
removed by smoothing (see Potts et al. 1984:22 for details). Smoothed
time series were subjected to the autocorrelation analysis. Appar-
ently, autocorrelations were calculated on raw (not log-transformed)
data, which is generally not a good idea in the analysis of population
dynamics (see section 7.1.3).

Very few of the ACFs yielded significant positive autocorrelations
at dominant periods, but a substantial proportion were characterized
by significantly negative ACFs at the estimated half-period. Thus, the
strength of periodicity in red grouse dynamics is not very strong.
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This result is in agreement with my reanalysis of Middleton data,
which showed that periodicity substantially declined after 1880 in the
three Scottish data sets. Around 60% of English and 70% of Scottish
data were deemed periodic, on the basis of significantly negative ACF
at half-period.

Autocorrelation analysis suggested that English and Scottish pop-
ulations were characterized by slightly different periodicities. The
modal periodicity for English data was 4 yr (range: 4–6 yr), while for
Scotland it was 5 yr (most series within the range of 3–8 yr, but a few
exhibiting 10-yr or longer cycles). The cycle period tends to increase
toward northwest within the British Isles, and wetter and colder sites
tend to be more likely to have periodic oscillations than drier, warmer
sites.

NLTSM Analysis of Thirgood et al. (2000a) Data Thirgood et al.
(2000a: figure 5) reported grouse bag numbers at three moors in South
Scotland. On one of the moors, Langholm, control of predatory rap-
tors was relaxed in 1990, while on the other two, moors F and G,
management of predators continued throughout the complete period
covered by data. I will focus on the two moors (F and G) where
conditions were stationary.

NLTSM analysis of the two moors reveals a pattern that is
very similar to that exhibited by Middleton’s series before 1880
(figure 11.3; table 11.1). The amplitude and periodicity of fluctua-
tions are almost identical. Second-order (or higher) response surface
models are selected for both data series. Most interestingly, note
that both data sets are characterized by similar shapes of fitted
response surfaces: the surface tends to be flat both along the X and
Y axes, but then declines nonlinearly and precipitously for jointly
high values of Nt−1 and Nt−2. This shape is characteristic of all five
series, and is probably a result of the tendency of bag numbers to
collapse precipitously, and often in one time step, after spending
several years at high levels. This is a feature that is probably also
responsible for the chaotic or quasi-chaotic dynamics detected in the
data sets (
 positive or near 0). However, we should remember that
this particular feature may have nothing to do with the biology of red
grouse cycles, being, rather, a result of the measuring apparatus. For
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Figure 11.3. Graphical output of the NLTSM analysis of grouse bag
data: Thirgood et al. (2000a), moor F. Upper left: time plot; upper right:
response surface; lower right: phase plot.

example, when grouse numbers on an estate decline, the owners may
cancel the shooting in an attempt to preserve the breeding stock.

NLTSM Analysis of Watson et al. (1984) Data The final data that
I analyze here—Kerloch and Rickarton—come from two areas in
northeastern Scotland intensively studied by Robert Moss, Adam Wat-
son, and coworkers. The longer Rickarton series is clearly nonsta-
tionary, so I split it into equal-size segments. Like data analyzed
above, Kerloch and Rickarton have a mild amplitude of oscillations
(S = 0�2–0.4). The first Rickarton segment is characterized by very
noisy dynamics (at least, NLTSM was unable to find any signal in
these data). Kerloch and Rickarton 2, however, show very similar pat-
terns (see Kerloch data in figure 11.4). The evidence for second-order
dynamics is quite strong (note the strongly negative PRCF[2]). The
ACF exhibits weak evidence of periodicity (it is significant at half
the period). The response surface model selected for these data cap-
tures a high proportion of variance in rt , and the associated Lyapunov
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Figure 11.4. Graphical output of the NLTSM analysis of grouse bag data:
Kerloch (Watson et al. 1984). Upper left: time plot; upper right: response
surface; lower right: phase plot.

exponents suggest chaotic or quasi-chaotic dynamics (again, this is
an interesting result, given the mild amplitude of oscillations).

Despite these similarities, however, Kerloch and Rickarton 2
exhibit a clearly different structure of density dependence compared
with other data sets, which are characterized by a slow buildup to the
peak, a tendency to linger there, followed by a precipitous collapse.
Thus, the oscillations are markedly asymmetric (figures 11.1–11.3).
By contrast, Kerloch and Rickarton 2 are characterized by very
symmetric cycles (figure 11.4). The difference between the asymmet-
ric and symmetric oscillations is also apparent in the shape of the
response surface (compare the upper right panels of figures 11.1–11.3
and figure 11.4). This interesting difference has been previously com-
mented on by Moss et al. (1993). Systematic differences in the shape
of oscillations may provide important clues about the ecological
mechanisms responsible for population cycles (section 4.2.3). I shall
return to this point below.
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11.2 HYPOTHESES AND MODELS

11.2.1 Overview

Current research has focused on two rival hypotheses for red grouse
cycles: intrinsic factors and interaction with macroparasites. Before
dealing with these hypotheses in depth, I need to say a few words
about other oscillatory mechanisms suggested by population theory
and why they do not appear as viable hypotheses for red grouse
cycles. The first obvious factor to consider is food. Red grouse is a
specialist herbivore on heather (Hudson 1992). However, birds are
selective feeders and consume only a small proportion of total food
biomass even during periodic population peaks (Moss and Watson
2000). Thus, any dynamical effects of food must be due not to total
plant biomass but to availability of high-quality food, which may
include food accessibility, physical form, proportion of digestible
nutrients, and concentration of secondary compounds (Moss and Wat-
son 2000). Indeed, food quality, in particular the content of digestible
protein, declined at high grouse density in one intensively studied
population (Moss et al. 1993). However, there is no evidence that
heavier browsing of food plants in peak years results in lower-quality
diet in subsequent years (Moss and Watson 2000). Since the critical
delayed-density effect on food quality appears to be lacking, it is
unlikely that food quality is the mechanism driving the red grouse
cycles.

Turning to natural enemies, we note that the main predators of red
grouse in unmanaged moorlands are red foxes and crows (Hudson
1992). In managed populations, grouse can be subject to predation
by hen harriers and peregrine falcons (Thirgood et al. 2000b), unless
they are (illegally) controlled by managers. None of these species is a
specialist on red grouse (Moss and Watson 2000). Accordingly, preda-
tors also do not appear as likely agents to drive population cycles.
However, predator density varies between sites (partly as a result of
management practices), and generalist predators may be an important
factor in explaining why some grouse population cycle, and others
do not.
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Another important source of grouse mortality is game shooting.
The impact of hunting is somewhat mitigated by its taking place in
the fall, before the winter population bottleneck, when most of the
density-dependent mortality occurs (Hudson et al. 1992). Thus, espe-
cially during high-density years, hunters may be killing many birds
that would die anyway during the following winter. The dynamical
pattern of shooting mortality conforms well to the generalist pre-
dation paradigm. First, human numbers do not fluctuate as a result
of changes in grouse densities (and, in any case, human numbers
change very slowly on the temporal scale relevant to grouse cycles).
As a result, hunting mortality can respond to elevated grouse numbers
without a time lag. Second, the functional response of human hunters
to grouse density is sigmoid: when grouse density declines below a
certain threshold, hunting usually completely ceases. Taken together,
these observations imply that generalist predation by humans will at
most have a stabilizing first-order effect on grouse dynamics. If hunt-
ing impact is largely compensated by winter mortality, then shooting
mortality will have only a weak effect on regulating grouse numbers.

Red grouse do have specialist enemies, but they are parasites, not
predators. A particularly important macroparasite is the nematode Tri-
chostrongylus tenuis. The population interaction between red grouse
and this parasitic worm has been the subject of an intensive study
by Hudson, Dobson, and coworkers. I review this research below.
Next, I consider the rival hypotheses, advanced by Moss, Watson, and
coworkers, focusing on factors intrinsic to grouse populations.

11.2.2 Parasite-Grouse Hypothesis

Adult nematodes inhabit the large cecum of red grouse (Hudson et al.
1992). Nematode eggs pass from the host in the bird’s feces, and
embryos begin developing when the temperature exceeds 5°C. Devel-
opment from the egg to the infective larval stage (under optimal con-
ditions) takes seven days. Infective third-stage larvae migrate to the
growing tips of heather, where they are ingested by feeding grouse
(Hudson et al. 1992). Most grouse older than two months are infested
with worms, but parasite burdens (average number of worms per bird)
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vary substantially across individual birds. As we know from sec-
tion 4.5.3, the frequency distribution of the number of parasites per
host has an important effect on dynamics, because a greater hetero-
geneity of risk leads to a greater degree of dynamic stability. However,
the degree of heterogeneity in red grouse is relatively low (the param-
eter k of the negative binomial distribution ranged between 1.2 and
5.8, with a mean of 2.85; Hudson et al. 1992). Such a low degree of
contagion is probably due to the lack of acquired immunity (Hudson
and Dobson 1996) and the virtually universal prevalence of infection
in older birds.

To model the dynamics of the red grouse–nematode parasite sys-
tem, Dobson and Hudson (1992) employed the theoretical framework
developed by Anderson and May (section 4.5.3). The model proposed
by Dobson and Hudson was essentially equations (4.49–4.51), but
with a slightly different parameterization and adding direct density
dependence in the grouse equation:

dH

dt
= �a− b�H − gH 2 − ��+ ��P

dW

dt
= �P − �W − �WH (11.1)

dP

dt
= �WH − � + b + ��P − �

P 2

H

k + 1
k

Here a and b are per capita rates of birth and death, respectively
(in the Anderson-May model, they enter as a single parameter, r0 =
a − b). Parameters � and � reflect how per capita death and birth
rate are affected by increased parasite load (see section 4.5.3 for the
explanation of the term associated with �; the � term is analogous).
Other parameters are the same as in the Anderson-May model. How-
ever, the second term on the right-hand-side of the parasite equation
is � + b+ ��P , rather than � + ��P , because in my formulation of
the Anderson-May model, I included the effect of b into  . Finally,
the term gH 2 in the first equation reflects self-limitation in the grouse
population. The assumed mechanism of density dependence is grouse
territorial behavior.

Dobson and Hudson (1992; Hudson et al. 1992) used a variety of
data sources to estimate the parameters of model (11.1). Using the
median values of parameters in their table 2 (a = 1�8, b = 1�05,
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Figure 11.5. Output of the Dobson-Hudson parasitism model; analyzed
with NLTSM. Upper left: time plot; upper right: response surface; lower
right: phase plot.

� = 11, � = 13, � = 0�0005, � = 0�0003, k = 1, and � = 0�1) and
the value of density-dependence parameter from Hudson et al. (1998)
(g = 0�004), I solved model (11.1) numerically. A small amount of
process noise has been added to the simulation by periodically (once
per year) perturbing grouse density. For these values of parameters,
the parasitism model generates cycles with 8–9 year periodicity and
amplitude S ≈ 0�5 (figure 11.5). Although the period and amplitude
of model output are greater than those in the majority of data sets
analyzed in section 11.1, informal experimentation with parameter
values suggests that it is easy to get shorter, less violent cycles in
model (11.1). For example, increasing the strength of density depen-
dence decreases the amplitude and shortens the period.

In the analysis of time-series data on grouse bags (section 11.1),
we noted that the structure of density dependence in many popula-
tions has one stereotypical feature: grouse density approaches peaks
slowly but collapses rapidly. The response surface fitted to this tra-
jectory tends to be flat along both X and Y axes, but have a nonlinear
“fold-down” in the part of the phase space where both X and Y
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are high (see, e.g., Aberdeenshire data, plotted in figure 11.2). It is
interesting that the output of the parasite-grouse model matches this
feature of the data. This is a striking result. My informal numeri-
cal explorations of model (11.1) suggest that the “fold-down” is a
robust feature of its output, obtaining as long as the parameters are
such that the model is in the limit cycles regime. (When the model
is characterized by oscillatory stability, adding dynamical noise, as
usual, generates persistent pseudoperiodic oscillations. However, the
response surface for such dynamics does not have a nonlinear fold-
down, being instead quite flat.) Because the Anderson-May model
was taken “off the shelf,” we can be sure that this match between
theory and data was not contrived by fiddling with model structure. In
other words, the fact that the parasite-grouse model captures a recur-
ring structural feature of grouse density dependence should greatly
strengthen our degree of belief in this hypothesis.

11.2.3 Kin Favoritism Hypothesis

Development of theory attempting to explain red grouse cycles using
intrinsic mechanisms has proceeded along two tracks: simple ana-
lytical models (Matthiopoulos et al. 1998, 2000b, 2000a) and com-
plex individually based simulations (Mountford et al. 1990; Hendry
et al. 1997). I reviewed the analytical models in section 3.4.2, and
came to the conclusion that the theory has not yet developed to the
point where we could see how assumptions about individual behavior
and demography would cause population cycles (although work in
progress by J. Matthiopoulos and coworkers may soon be able to fill
this gap). For this reason I do not review those models further in this
section. Instead I focus on the individual-based simulation developed
by Hendry et al. (1997).

The basic idea underlying the kin favoritism hypothesis was
already discussed in section 3.4.2. Strong philopatric behavior by
new recruits causes them to settle near their fathers. The result of this
behavior is formation of spatial clusters of related territory owners.
Males behave aggressively toward nonkin, but tolerate closely related
individuals (fathers, sons, brothers). One result of this behavior is
that individuals finding themselves surrounded by kin are prepared
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to accept smaller territories. Furthermore, presumably because males
do not fight relatives, larger kin clusters produce relatively more
offspring per unit of area. Recruitment of young males into kin
clusters is initially facilitated by reduced aggression. However, as kin
clusters grow, eventually territory sizes approach an irreducible min-
imum. As a result, recruitment falls, and kin clusters can no longer
be maintained. Because most males begin interacting with nonkin,
aggression levels increase, minimum territories grow, recruitment
continues to fall, and population density declines. Eventually, density
becomes low enough so that recruitment can increase and new kin
clusters can begin forming, and the cycle repeats itself.

Hendry et al. (1997) modeled this mechanism by simulating terri-
torial behavior and recruitment rates of red grouse males inhabiting
two-dimensional spatial “arenas.” The heart of the simulation is the
algorithm for acquisition of territories in the fall. A family group
consisting of a father with any surviving sons (or a group of broth-
ers if the father did not survive to the fall) is initially placed within
the father’s spring territory. The simulation then allocates territory
space to each bird according to the concept of “pressure.” The pres-
sure that each cock exerts on its neighbors’ territories depends on its
fighting ability (chosen from a random distribution), its territory size
(cocks with greater territories exert less pressure on their neighbors),
and whether the two birds are kin or not. The simulation iteratively
adjusts territories until the pressure from each side is equalized. If a
male is left with a territory smaller than the minimum size (which is
a function of how many relatives are in the kin cluster), then he is
removed, and his territory is apportioned to neighbors by running the
pressure algorithm again. The procedure is repeated until all males
have territories exceeding the minimum size. The territory-acquisition
algorithm is coupled to a module for winter survival and summer
reproduction, to produce a complete model of grouse dynamics.

To determine the effect of kin favoritism, Hendry et al. (1997)
first ran the “null” simulation in which the effect of kin tolerance
was turned off (i.e., birds exerted the same territorial pressure on
both kin and nonkin, and the minimum territory size was a constant
independent of how many relatives were in the same kin cluster). In
the null simulation the number of territories quickly approached an
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equilibrium of around 150 males per modeled area, and showed very
little fluctuation around this value.

Adding kin favoritism to the null simulation also generated a rapid
approach to an equilibrium. However, the equilibrium number of ter-
ritories was around 300, or twice that in the null simulation. Addi-
tionally, there appeared to be a greater degree of fluctuation around
the equilibrium. Hendry et al. (1997:31) concluded that kin-tolerant
behavior destabilized the dynamics of the model grouse populations,
because “kin-tolerant populations had much noisier dynamics than
intolerant populations.” This conclusion is not warranted by their
modeling results, however. First, and most important, the question
that we are trying to resolve is what mechanisms explain second-
order oscillations in red grouse populations. The observation that kin-
tolerant populations fluctuated with somewhat greater amplitude than
kin-intolerant ones does not address this question in any meaning-
ful manner, especially since both populations did not exhibit second-
order dynamics. Second, “much noisier” is an exaggeration. Judging
by eye, the numbers in kin-tolerant populations probably fluctuated
within 10% of the mean (see figure 3a in Hendry et al. 1997; the
authors unfortunately did not quantify the amplitude of fluctuations
in their model output).

When Hendry et al. (1997) added dispersal to their simulation, they
discovered that the model output exhibited oscillations with 2-year
period and amplitude of about twofold. The mechanism leading to
this oscillation is somewhat obscure, but my guess is that a high pro-
portion of males emigrate during the years of high density, leading to
an undershoot of the equilibrium next year. Whatever the mechanism,
the oscillations exhibited by the model are clearly first-order in nature,
and thus again fail to address the question posed in the previous para-
graph. In fact, the results of the grouse simulation reviewed so far
agree completely with the general lesson in chapter 3 that intrinsic-
factors models typically generate first-order dynamics (either stability
or first-order oscillations).

The models considered up to now have been firmly based on
mechanisms of individual behavior and demography. The next two
modifications considered by Hendry et al. (1997) departed from
this approach by assuming that the phase of population cycle has a
direct effect on individual behavior. The first modification assumed
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that individual males keep track of whether population declined or
increased from last year. If population declined, males then increase
their aggressiveness toward kin (a certain proportion start treating kin
as nonkin). Conversely, a year of increasing density is accompanied
by decreased aggressiveness toward kin. The second modification
assumed that dispersal rate is a function of the cycle phase. Not
surprisingly, both models incorporating these modifications were
found to generate second-order oscillations for certain values of
parameters.

I argue that the two last models, in which behavior is cycle
phase-dependent, do not contribute to our theoretical understanding
of grouse cycles. I am not convinced by the argument advanced by
the authors that grouse would first perceive changes in population
density between years, and second choose to modify their behavior
toward kin on the basis of such observations. Even more tellingly,
the logic of this modeling is circular in the following sense. Second-
order oscillations occur as a result of some equivalent of inertia in
population dynamics. For example, the inertia in predator-prey cycles
during the collapse stage occurs because even though prey density is
already low, there are still lots of hungry predators running around
trying to kill the last few prey individuals. Some time has to pass
before enough predators die off, releasing mortality pressure on prey
population. This population inertia is not built in by fiat; instead, it
is an epiphenomenon arising from behavioral and demographic char-
acteristics of prey and predator individuals. By contrast, assuming
that some individual characteristic is directly affected by whether
population declines or increases is putting inertia in by fiat. There is
no individual-based mechanism here. As a result, this procedure does
not help us to understand how second-order cycles may arise. If we
build second order into the model by assumption, then we should not
be surprised that the model generates second-order oscillations.

The paper of Hendry et al. (1997) is often cited in the red grouse
literature as a theoretical basis of the kin facilitation hypothesis. My
reading of this paper is very different. First, a model including only
kin favoritism exhibits very stable dynamics with minor oscillations
around the equilibrium. Second, adding density-dependent dispersal
causes the model to undergo first-order oscillations for certain values
of parameters. Note that certain parameter values have to be rather
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large in order for these oscillations to occur. For example, the param-
eter !Tol, the proportion by which the minimum required territory
is decremented by each additional kin individual in the group, must
be 0.2 in order for any oscillatory behaviors to occur in the model
(Hendry et al. 1997: figures 3b and 5). Because the average brood
size assumed by the model is 3.6, many individuals will have their
territories reduced by more than 70%, and some by 100% (the latter
could happen if brood size is 5 and all individuals survive, a situation
that is possible under the assumptions of the simulation). It would be
interesting to know whether this is a realistic description of red grouse
natural history. However, the most important point is that models with
defendable structure among those advanced by Hendry et al. (1997)
cannot generate second-order cycles. This observation, taken with the
review of the analytic model of Matthiopoulos et al. (1998) in sec-
tion 3.4.2 suggests to me that we still do not have a firm theoretic
basis for the kin favoritism hypothesis.

11.3 EXPERIMENTS

11.3.1 Density Manipulation

The red grouse cycle is an unusual system, because it was subjected
to two manipulative experiments (whereas most ecological systems
are lucky to get even one). The first experiment attempted to “stop
the cycle” by manipulating grouse density. This experiment was con-
ducted on Rickarton moor in northeastern Scotland by Robert Moss,
Adam Watson, and coworkers (Moss et al. 1993; Moss et al. 1996).
The expected outcomes of the experiment were published prior to
conducting the experiment (Moss and Watson 1985).

Moss et al. divided the moor into two sections: the experimental,
from which they removed territorial males, and the control, which
was left unmanipulated. The experimental and control areas were 203
and 318 ha, respectively. There was a buffer zone about 500 m wide
between the two areas. Using a time-series model fitted to historical
data, the investigators predicted that grouse numbers would peak in
1982–1983. The main goal of the experimental manipulation was to
prevent the cyclic decline by not allowing the population to reach
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Figure 11.6. Population numbers of territorial grouse (cocks and hens) on
the experimental (hollow squares) and control (filled circles) areas of the
Rickarton moor. Grouse numbers in the experimental area are shown twice
each spring, before and after experimental removals. Data from Moss et al.
(1993: figure 4).

high (peak) density during the period of 1982–1986. To accomplish
this, each spring the investigators reduced the numbers of territorial
cocks to the 1981 (prepeak) level. The removal of cocks resulted in a
similar number of hens lost from the population, so the experimental
manipulation had an effect of keeping total density of territorial birds
(both males and females) at the 1981 level.

Grouse density on the control area peaked in 1983 as expected,
and exhibited a sustained decline during the next five years, until
1989 (figure 11.6). On the experimental area, by contrast, grouse den-
sity had a tendency to increase (and, therefore, had to be repeatedly
thinned) until 1986. After that year, however, the experimental area
also entered the decline phase. Thus, the experimental manipulation
did not entirely “stop the cycle,” instead delaying the decline phase
by four years. Moss et al. (1996) speculated that the transient 1-year
decline was caused by density-independent factors. Another possibil-
ity is the emigration of grouse to nearby areas (such as the control),
where grouse densities were low and therefore territories could easily
be established.

In conclusion, the hypothesis of Moss et al. that grouse cycles are
driven by density-dependent factors is supported by their data. If the
cycle were driven by exogenous, density-independent drivers, then
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the population in the experimental area should have declined in 1983
despite the density manipulation, four years before it actually did so.
We must, of course, keep in mind that the study was not replicated.
However, doing large-scale experiments is inherently laborious and
expensive, so I would argue that even a single “replicate” is better
than no data at all.

Moss et al. measured numerous population parameters throughout
the complete cycle, which allows us to clarify the demographic
machinery producing cyclic increases and declines. Of particular
interest are the dynamics of the cecal parasite Trichostrongylus tenuis.
To measure parasite prevalence, the investigators counted worm eggs
in grouse feces for eight years (1982–1989) corresponding to the
peak and decline of the cycle. They made two interesting obser-
vations. First, the worm loads at Rickarton were much lower than
those observed at the northern England sites, where it is believed
that grouse cycles are driven by the interaction with their parasites
(Hudson et al. 2002). At Rickarton, average worm burdens varied
between 100 and 2,600, depending on the year. By contrast, worm
burdens in northern England sites typically vary between 1,000 and
10,000. Second, there was no apparent relationship between the aver-
age worm burden and rate of population increase. These observations
suggest that the interaction between grouse and their worm parasites
was not supported as the mechanism driving cycles at Rickarton.

11.3.2 Parasite Manipulation

The objective of the experiment by Hudson et al. (1998) was to test
the parasitism hypothesis. Earlier, Hudson (1986) developed a pro-
cedure for reducing parasite prevalence in a grouse population by
catching and treating grouse in spring with an anthelmintic drug. It is
not practical to treat all birds in a population, so we need some quanti-
tative predictions about what would be the effect on grouse dynamics
of treating x% of a population. Hudson et al. (1998) addressed this
question with a modified model (11.1), in which they added a second
set of equations for treated grouse density and adult worm popula-
tion within the treated hosts. They found that even if relatively small
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proportions of grouse are treated, the amplitude of oscillations is sub-
stantially reduced. For example, if 20% of grouse are treated, then the
model predicts that population trajectory approaches the stable point
after 1–2 oscillations (Hudson et al. 1998: figure 3). This is a deter-
ministic prediction. In the presence of exogenous noise, this model
would probably continue to oscillate, but at a reduced amplitude and
with weaker periodicity than the model with all birds untreated (con-
trol population).

Hudson et al. selected six independently managed moors for use
as replicates. Long-term data from these moors were used to pre-
dict the years of crushes in these populations (1989 and 1993). On
two moors, as many birds as possible were treated in both 1989 and
1993; on two other moors, birds were treated only in 1989; and the
last two moors were unmanipulated controls. Hudson et al. estimated
that they treated from 15 to 50% of grouse in manipulated popu-
lations. Thus, according to the model of grouse-parasite interaction,
the treated populations should exhibit a much reduced amplitude of
oscillations. This indeed appeared to be the case (figure 11.7). Note
that not only the magnitude of decline was reduced by anthelmintic
treatment, but also the height of the subsequent peak was reduced,
compared with controls.

There is, however, one potential problem with this experiment
(Lambin et al. 1999). Rather than estimate grouse density directly,
Hudson et al. relied on recording the number shot. As we discussed
above, the relationship between grouse density and bag statistics is a
nonlinear one; in particular, bag data amplify the variance of oscil-
lations. An additional problem was that grouse were not shot in the
untreated areas during low years, unlike in treated areas. Assigning
zero values to replicates where grouse were not shot during certain
years tends to exaggerate the difference between untreated and treated
areas. In my opinion, this is a minor flaw that does not invalidate the
basic result of the experiment. Although it would certainly be better
to have direct estimates of density, if this was not practical (Hudson
et al. 1999), it is much better to have indirect statistics than noth-
ing at all. However, I do want to criticize Hudson and colleagues
for overstating their results. Although their 1998 paper is titled “Pre-
vention of Population Cycles by Parasite Removal,” in actuality they
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Figure 11.7. Population trajectories in the Hudson et al. parasite-reduction
experiment.

failed to “stop the cycle.” What they actually did was show that treat-
ing a proportion of grouse with anthelmintic substantially reduces the
amplitude. This observation is in line with the quantitative prediction
of the empirically based model for grouse cycles, and therefore these
experimental results provide strong evidence in favor of the parasitism
hypothesis.

In summary, the study of Hudson et al. (1998) is one of the best
currently available experimental tests of a trophic mechanism for
population cycles (May 1999). Among its remarkable features is its
spatial scale (17–20 km2), the degree of replication (six replicates
over two separate cycles), and quantitative predictions obtained from
an empirically based model. Clearly, the huge scale demanded trade-
offs, such as reliance on indirect indices of population dynamics, and
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ability to treat with anthelmintic only a portion of the experimental
population. Thus, although Hudson and colleagues failed to “stop the
cycle,” the match between their predictions and data, in my opinion,
constitutes a successful confirmation of the parasitism hypothesis for
red grouse cycles.

11.4 SYNTHESIS

Time-series analysis of grouse bag data indicates that grouse popula-
tion dynamics are quite variable in time and space. As the contrast
between the first and second pieces of Middleton data shows, at times
grouse oscillate in a regular (quasi-chaotic) manner, while at other
times fluctuations have a much weaker endogenous component, and
can be characterized as stability with noise. Furthermore, the struc-
ture of density dependence documented at northeastern Scotland sites,
studied by Moss, Watson, and colleagues, is quite different from that
observed at northern England sites, studied by Hudson, Dobson, et al.
(table 11.1).

The best hypothesis explaining population oscillations at the north-
ern England sites currently appears to be the interaction of grouse
with their worm parasites. The support for this hypothesis is as fol-
lows. First, a parameterized empirically based model of grouse-worm
interaction predicts dynamics that, generally, match the observed
ones. Although the model with independently estimated parameters
predicted slightly longer periods than observed, the ability to predict
correct period lies well within the biologically reasonable parameter
ranges. What is particularly striking is the ability of the model to
predict the correct structure of density dependence (slow buildup to
the peak followed by a rapid collapse; the shape of the response
surface). Second, the parasitism hypothesis has strong experimental
support: grouse populations treated with an anthelmintic drug exhibit
reduced amplitude of oscillations. Moreover, the experiment supports
the quantitative predictions of the model that connect the proportion
of birds treated with the degree of reduction in oscillatory tendency.
Third, the free-living stages of the worm parasite require moisture for
development to the infective stage. Thus, parasite transmission, and
therefore propensity to cycle, should be reduced in drier red grouse
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habitats. Analyses of time-series data are in agreement with this
prediction (Hudson et al. 2002). Finally, the kin selection hypothesis,
currently the main alternative to parasitism, suffers from several
problems. The first problem is its current lack of theoretical support.
Second, unlike the parasitism hypothesis, the kin selection explana-
tion has not yet been challenged experimentally (and survived the
challenge).

The situation at the Scottish sites (Rickarton and Kerloch) studied
by Watson, Moss, and coworkers is much less clear. The Rickarton
experiment provides evidence in favor of the endogenous source of
red grouse cycles, since the density manipulation succeeded in pre-
venting a cyclic decline for at least four years. Furthermore, the
data of Moss et al. on worm burden dynamics apparently contradicts
the predictions of the parasitism hypothesis. This observation, cou-
pled with different dynamical patterns of oscillations, suggests that
mechanisms driving oscillations may differ between the two areas.
What mechanism may drive oscillations at the Scottish sites, however,
remains obscure. An explanation based on the kin selection hypothesis
or, in fact, any intrinsic-factor hypotheses is currently unconvincing
for reasons stated in the previous paragraph.



CHAPTER 12

Voles and Other Rodents

12.1 INTRODUCTION

Ecologists who are not working on small rodents may consider that
the subject of population cycles in voles and lemmings remains as
muddled as ever, if not increasingly more muddled. Small rodent ecol-
ogists appear to be in the business of proposing new hypotheses rather
than rejecting old ones: the number of hypotheses has increased with
time instead of being reduced to (ultimately) one plausible expla-
nation. For example Batzli (1992) lists more than twenty distinct
hypotheses, and more were added since the publication of his article
(e.g., Boonstra 1994; Jedrzejewski and Jedrzejewska 1996; Inchausti
and Ginzburg 1998).
In a recent article (Turchin and Hasnki 2001) we argued that this

impression is incorrect: a certain degree of consensus has actually
been emerging among small rodent ecologists during the 1990s, as
manifested by discussions at two workshops held in Grand Forks
and Oslo in 1996. Writing about the Grand Forks, North Dakota,
workshop, George Batzli (1996) observed that “perhaps the most sur-
prising outcome of the meeting was the degree to which consensus
emerged regarding the most important issues.” One area of agreement
was that there are three hypotheses that are more likely than others to
explain small rodent population cycles: predation, food, and maternal
effects. All three hypotheses have now been translated into mathe-
matical models, enabling us to directly and quantitatively assess their
relative merits by contrasting their predictions with data.
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In this chapter I review the progress toward elucidating the eco-
logical mechanisms driving rodent population cycles. My main focus
here is on Microtus and Clethrionomys voles, but I also devote a
section to lemming population dynamics.

12.2 ANALYSIS OF TIME-SERIES DATA

Beginning with the formal discovery of rodent population oscillations
by Elton (1924) and until the 1970s, population ecologists believed
that all vole populations cycled (e.g., Krebs and Myers 1974). This
mistaken impression was a result of two factors: lack of formal meth-
ods for distinguishing cycling from noncycling populations, and lack
of long time-series data to apply these methods to. In fact, the lack
of rigor in definitions led some ecologists to deny that any rodent
populations exhibited such periodic dynamics (Cole 1951; Garsd and
Howard 1981). The truth lies between the two extremes. While not
all vole populations oscillate (Hansson and Henttonen 1988), some
most certainly do. Motivated by Elton’s paper, population ecologists,
especially those based in northern Europe (Fennoscandia, Russia, and
Poland), started collecting long-term data on rodent population fluc-
tuations. As a result, it is now possible to attempt a synthesis of
microtine rodent fluctuation patterns, especially in such well-studied
areas as northern Europe.

12.2.1 Methodological Issues

Few of the data series I shall be surveying are based on absolute
estimates of rodent population density. Such estimates are usually
obtained by intensive mark-recapture programs that are very diffi-
cult to sustain beyond the length of research time for a typical Ph.D.
thesis. Clearly, such data are too short even to attempt to quantify
long-term rodent dynamics, yielding at most a single data point—an
oscillation 3–5 years long. Furthermore, an observation of a single
event of population increase followed by a decrease tempts investiga-
tors to claim that they have observed a “cycle,” without having any
knowledge whether it is really periodic. In order to properly analyze
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a time series, we need at least three oscillations (section 7.1.2). Given
the average period of 3–5 years, this means that the shortest usable
series would have a length of 9–15 years.
Because mark-recapture estimates are labor-intensive, the bulk of

the data long enough for time-series analysis have been obtained using
indirect methods. The most common and very useful relative index of
population fluctuations is obtained by snap-trapping, for example, the
small quadrat method widely practiced in Fennoscandia (Myllimäki
et al. 1971). The index is usually expressed as the number of rodents
trapped per 100 trap nights. This index is linearly related to the abso-
lute population density (Hanski et al. 1994). Another indirect method
that has been applied to the study of Microtus arvalis dynamics is
counting holes (Dombrovsky 1971; Romankow-Zmudovska and Grala
1994). Because the relationship between population density and the
density of holes is nonlinear (and rather noisy), this method is primar-
ily useful for establishing if there are any periodicities in fluctuations.

The Issue of Multiple Species Because most locations are inhabited
by more than one rodent species, another conceptual issue for anal-
ysis, which has caused some controversy (Falck et al. 1995; Turchin
1995a), is to decide whether we should analyze the combined density
of all species, or each species separately. This is a general issue that
is of relevance not only in the phenomenological analysis but also in
fitting mechanistic models to data (see section 12.3.3).
To make the discussion more concrete, let us suppose that we

are dealing with a dynamical system consisting of two vole species
and a predator, along the lines of the model investigated by Han-
ski and Henttonen (1996). If we analyze the pooled vole density, we
have implicitly simplified the system from three-dimensional to two-
dimensional. In other words, we have assumed that the vole dynami-
cal complex, consisting of two species, interacts as a whole with the
predator population. This simplification, of course, does some vio-
lence to the biology of the system because in reality the two vole
species are likely to be characterized by different values of parame-
ters, and their respective population trajectories will not be completely
in synchrony with each other. On the other hand, we should keep
in mind that having one state variable (population density) for each
of the vole species also does violence to reality: each population is
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structured in a variety of ways, including age and spatial structure. So
it is improper to reject the approach of pooling vole species on the
grounds that in reality they are two separate populations. “In reality,”
all models are wrong. The properly posed question is which degree
of simplification yields better results.
Analyzing each species separately, we implicitly deal with a

higher-dimensional system. Thus, it is quite possible that dynamics
of each vole species would be less regular than the dynamics of
their pooled densities: in one peak one species may predominate, in
the next peak another. Given long time series and low observation
errors, we should be able to characterize these dynamics by fitting
higher-order models. However, chances are that in an ecological
setting, with short and noisy data, we would end up missing the
high-dimensional signal, and assigning it to noise.
Furthermore, observation errors associated with pooled numbers

are lower than errors for each species separately. This is especially
important during the population troughs, when we see zero counts
for many species if analyzed separately, while pooled numbers are
much less affected by this problem. Again, lower measurement noise
associated with pooled numbers gives us a better chance to correctly
characterize the type of dynamics of the system.
In summary, if our goal is the characterization of dynamics, then

my inclination would be to give more credence to results based on the
analysis of pooled numbers. The arguments above suggest that this
approach should perform better on short and noisy data sets character-
istic of ecology. Indeed, empirical results suggest that the dynamics of
pooled numbers are often characterized by higher signal/noise ratios
than those for each species alone (Turchin 1996). On the other hand,
it is always a good idea also to analyze each species separately, as a
check on the results obtained with pooled numbers. Additionally, the
analysis of nonpooled data may yield interesting patterns that could
provide useful insights. An example is the systematic difference in
the stability of fitted response surface models to the field vole versus
bank vole data, discussed below. Thus, in the final analysis, I advocate
a synthetic approach of analyzing the data in a variety of ways, and
then interpreting the results in light of the considerations discussed
above. An example of this omnivorous approach is the analysis of
vole data below.
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Multiple Observations per Year The next issue to consider is what
to do when there are multiple measurements of density per year. For
example, many Fennoscandian data are routinely collected twice a
year: once in spring–early summer, and once in late summer–early
fall. Other data sets may have more than two or even a variable num-
ber of measurements per year. Analyzing data affected by seasonal
influences as though it came from a completely endogenous system
leads to severe problems. In particular, one may fit a more unstable
model than the mechanism driving the data, because the phenomeno-
logical model will attempt to capture seasonal periodicity with (spu-
rious) endogenous terms (Ellner and Turchin 1995). It is possible
to add explicit seasonal terms to the model (see, e.g., discussion in
Ellner and Turchin 1995), but in my experience it is better to reduce
the data to one measurement per year. The main subject of this book
is multiannual cycles, after all, not seasonal drivers. Thus, it is not a
good idea to waste degrees of freedom on estimating seasonal terms
that are peripheral to the main issue at hand. (Of course, there are sit-
uations where we are interested in characterizing seasonality, e.g., the
fitting of the seasonally driven predator-prey model discussed below.
In such cases, we shall want to utilize all the measurements within
years that we have.)
Thus, the question is how we reduce multiple observations within

a year to a single one. One possible approach is to add these measures
together. The advantage of this approach is the reduced observation
noise. However, if dynamics are too fast, then spring and fall mea-
surements will not really be detecting approximately the same quan-
tity, and by summing them we may lose an important part of signal.
Because rodent dynamics are quite fast (oscillations of 3–5 years),
I chose not to follow this approach (but it may be a reasonable one
when dealing with, for example, 10-year cycles). The approach I did
follow was to select either spring or fall data, depending on which
season was characterized by higher average density (because higher
density implies lower measurement noise and zero incidence). In vole
data, it is the fall data that yield higher averages, while in lemming
data the same is true for spring measurements.

Trends and Detrending As with any collection of long-term data
sets in ecology, a certain proportion of vole time series suffers from
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nonstationarity. As I argued in section 7.1.2, whether to detrend or
not is an important issue in the analysis. Not removing a trend, where
it is present, will result in not being able to characterize any com-
plex dynamics underlying population fluctuations. On the other hand,
unnecessarily detrending data may result in spuriously detecting reg-
ulation where there may not be any operating.
Population trends at some locations are fairly well documented.

For example, during the 1980s at several northern Fennoscandian
locations, one of the main vole species, Microtus agrestis, became
rare. This change in the dynamical system apparently caused a
decrease of least weasel density (who require M. agrestis for popu-
lation persistence) and an increase in C. glareolus (see Hanski and
Henttonen 1996 for a possible explanation of this pattern). Several
other data sets in the collection were also clearly nonstationary, thus
indicating that a flexible approach may be needed. Accordingly,
I detrended those time series that had all of the following indications
of nonstationarity: (1) visible trends in the mean on the time plot;
(2) nonstationary type of ACF (i.e., ACF slopes down toward consis-
tently negative values at high lags); and (3) higher signal/noise ratio
in the detrended series, as indicated by fitting a series of response
surface models of increasing order. The results I report below are all
based on quadratic detrending for consistency.

12.2.2 Numerical Patterns

Northern European Voles: Pooled Data The first collection of data
I shall focus on is the database on population fluctuations of Microtus
and Clethrionomys voles in northern Europe. This geographic area
has the best collection of long-term time series on rodent population
dynamics. Some of the data collection was begun before World War
II by Russian researchers (this is the “Kola” data set; unfortunately
the war interrupted data collection, so we shall analyze this series
only from 1946, when trappings were resumed). Another remarkable
data set, from Kilpisjärvi, Finnish Lapland, extends from 1949 to
the present. Many more shorter data are available form the rest of
Fennoscandia (Norway, Sweden, and Finland), Russia, Poland, and
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the British Isles. The summary of patterns detected by NLTSM anal-
ysis is given in table 12.1.
Let us look at the NLTSM results for the longest series, Kilpisjärvi

(figure 12.1). Simply looking at the data on the time plot, we can see
very clearly that there is a lot of structure and regularity in the dynam-
ics of this system. However, the regularity is not of the familiar, peri-
odic kind. While the data are undoubtedly characterized by statistical
periodicity (ACF at the dominant peak of 5 years is significantly dif-
ferent from zero), this periodicity is not very strong (ACF�5� < 0�5).
In fact, oscillations vary a lot in their lengths. Starting with the first
complete oscillation, we count their lengths in years as follows: 6–4–
4–6–5–3–5–5. First, we notice a slight nonstationarity in the period
(longer periods during the first half). Second, cycle lengths vary by a
factor of twofold (between 3 and 6 years). This is in contrast with, for
example, larch budmoth dynamics, where each complete oscillation
is exactly 9 years in length (figure 9.1).
Turning to the order of dynamics, all indications point in the same

direction: PRCF shows clear spikes at the first two lags, the phase plot
exhibits a characteristic cycling pattern, and cross-validation selects
p = 2. Examining the response surface, we see that it slopes down
in both the X and Y direction (unlike, e.g., the larch budmoth data,
where the second lag clearly predominates). The importance of the
first lag is emphasized by increasing the lag in the phase plot to 2,
and observing no clear-cut pattern (not shown in figure 12.1).
The dominant Lyapunov exponent of the fitted response surface

model is �� = +0�02. It suggests that the dynamics of Kilpisjärvi
voles are quasi-chaotic. We shall return to this issue with more sophis-
ticated approaches later in this chapter. Checking on the result by
analyzing the two halves of the data (since the series is long enough
to allow this kind of test), we observe that �� = 0�11 and 0.12,
respectively. These values are somewhat larger than the one for the
whole series, but still suggestive of quasi-chaotic dynamics.

Northern European Voles: Species Separated The analysis above
lumped together all vole species found at a locality, and now we need
to check on its results by analyzing the three most common species
separately. I shall particularly focus on the estimated Lyapunov expo-
nent, as a good summary of dynamics (figure 12.2). In M. agrestis
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Table 12.1. Summary of NLTSM results: voles in northern Europe; pooled
densities at each location (“Lat.” is the latitude of each site). Number of
data points, n; measure of amplitude (SD of log-transformed densities), S;
dominant period, T ; the autocorrelation at the dominant period, ACF[T ]
(∗∗ = ACF is significant at T ; * = ACF is significant at half-period);
estimated process order, p; polynomial degree, q; the coefficient of

prediction of the best model, R2pred; and the estimated dominant Lyapunov

exponent, ��

Location Lat. n S T ACF[T ] p q R2pred ��

Finnmark 70 22 0.69 5 0.67∗∗ 3 1 0�57 0.18

Kilpisjärvi 69 44 0.63 5 0.46∗∗ 2 1 0�52 0.02

Pallasjärvi 68 23 0.73 4 0.50∗∗ 2 2 0�45 1.36

Kola 67 19 0.80 4 0.12∗ 2 2 0�30 0.70

Umeå 64 21 0.53 4 0.63∗∗ 2 2 0�68 0.16

Sotkamo 64 27 0.34 4 0.69∗∗ 3 2 0�55 0.52

Stromsund 64 19 0.53 4 0.41∗ 3 2 0�77 1.41

Ruotsala 63 20 0.62 3 0.77∗∗ 2 2 0�46 0.36

Alajoki 63 16 0.74 3 0.58∗∗ 2 1 0�35 −0�04
Loppi 61 21 0.27 6 0.57∗∗ 1 0 0 −�
Karelia 61 21 0.35 3 0.03 1 0 0 −�
Boda 61 28 0.54 4 0.63∗∗ 2 1 0�51 −0�16
Uppsala 1 60 19 0.46 5 0.23∗ 2 1 0�09 −0�24
Uppsala 2 60 17 0.46 4 0.37 3 1 0�05 0.07

Grimsö 59 22 0.45 3 0.33∗ 2 2 0�56 0.02

Zvenigorod 57 31 0.31 3 0.29 2 1 0�15 −0�73
Revinge 56 13 0.15 — 1 0 0 −�
Tataria 56 23 0.34 4 0.24 1 0 0 −�
Kielder 55 15 0.25 3 0.33∗ 2 1 0�39 −0�14

(Continued)



304 VOLES AND OTHER RODENTS

Table 12.1. (Continued)

Location Lat. n S T ACF[T ] p q R2pred ��

Serpukhov 55 28 0.32 3 0.26 1 0 0 −�
Tula 54 23 0.25 2 0.06∗ 1 0 0 −�
Bialowieza 52 21 0.42 — 1 1 0�08 −0�11
Wytham 51 22 0.27 — 1 2 0�12 −0�79
Data sources: Finnmark (Ekerholm et al. 2000); Kilpisjärvi and Pallasjärvi (Hentto-

nen and Hanski 2000); Kola (Koshkina 1966); Umeå (Hörnfeldt 1994); Sotkamo and
Loppi (Hanski et al. 1993, data collected by A. Kaikusalo); Stromsund and Uppsala
(Hansson 1999); Ruotsala and Alajoki (Korpimäki 1994); Karelia, Tataria, Serpukhov,
and Tula (Ivanter 1981); Boda (Marcström et al. 1990); Grimsö (Lindström et al.
1994); Zvenigorod (Ivankina 1987); Revinge (Lennart Hansson, personal communica-
tion); Kielder (Lambin et al. 2000); Bialowieza (Pucek et al. 1993); Wytham (Southern
1979).
Series that were detrended: Finnmark, Umeå, Sotkamo, Ruotsala, Alajoki, Uppsala 1,
Grimsö, Zvenigorod, and Tula.

Figure 12.1. Graphical output of the NLTSM analysis: Kilpisjärvi. Upper
left: time plot; upper right: response surface; lower right: phase plot.
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Figure 12.2. Relationship between trajectory stability and latitude, sepa-
rated by vole species. Trajectory stability is quantified by the Lyapunov
number (Lyapunov number is the antilog of the Lyapunov exponent). The
advantage of using the Lyapunov number over the Lyapunov exponent is
that it de-emphasizes variation in the negative range of �� (e.g., �� = −1
or −10 both mean approximately the same thing, strong stability, but look
very different on the graph).

(which has been postulated as the key species driving the dynamical
patterns in northern Fennoscandia; see Hanski et al. 1991; Hanski
et al. 1993) we observe that the overall shape of the latitudinal pat-
tern that we documented in the analysis of pooled species is pre-
served. Northern populations tend to be chaotic, they have much
higher amplitude than southern populations, and the average period
of oscillations tends to get shorter as we move south. However, this
latitudinal pattern is not as clear-cut as it appears in the analysis of
pooled species: the estimated Lyapunov exponent exhibits a lot of
variation around the general trend.

C. rufocanus appears to exhibit somewhat milder oscillations than
M. agrestis. Most interesting is the contrast in Lyapunov exponents:
rufocanus estimates are clustered very tightly (mean �� ± SE is
0�08± 0�04) in the quasi-chaotic range. Furthermore, the amplitude of
fluctuations, as measured by S, at both sites where the two species co-
occur (Pallasjärvi and Umeå), is less for rufocanus than for agrestis.
However, the average period exhibits the same declining trend with
decreased latitude (from 5 to 4 years; we do not see 3-year cycles,
because rufocanus is a northern species, not found in lower latitudes
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where we could expect such short oscillations). Finally, C. glareolus
exhibits the most stable dynamics of the three species: only one ��
estimate is in the chaotic range.
To summarize, the analysis of separate species clearly indicates

that each species has its own pattern of fluctuations. M. agrestis
exhibits the most violent oscillations, with estimated Lyapunov expo-
nents ranging into the strongly chaotic region at some locations (with
a caveat, however, that there appears to be a great degree of variation
associated with this estimate). C. rufocanus is an intermediate species,
whose dynamics are consistently characterized by quasi-chaotic oscil-
lations. Finally, C. glareolus has the most stable (and noisy) dynamics
of the three species. The latitudinal dynamical pattern is evident only
in M. agrestis. Thus, it appears that the latitudinal shift in the dynam-
ics of pooled species is partly due to shifting species composition
(more oscillatory M. agrestis and C. rufocanus in the north, less
oscillatory C. glareolus in the south), and partly due to M. agrestis
becoming more stable toward the south.

Common Voles in Europe Population dynamics of the common vole
(M. arvalis) present a great contrast with the dynamical pattern of
northern European voles discussed above. NLTSM analysis of data
from France, Poland, and Russia suggested a preponderance of first-
order dynamics (table 12.2). Few cases of periodicity were detected.
With a single exception, all estimated � were negative. Yet, the
dynamics of common voles are characterized by quite strong degrees
of oscillation (e.g., see figure 12.3). In sum, analysis of M. arvalis
data reveals no strong evidence for second-order oscillations; how-
ever, in some cases, such as the one depicted in figure 12.3, the
evidence for first-order oscillation is quite strong.

North American Voles A similar pattern was revealed by the anal-
ysis of six time series documenting fluctuations of North American
voles in the genera Microtus and Clethrionomys (table 12.3). Again,
the preponderant pattern is high amplitude (S ranged between 0.38
and 0.75), largely aperiodic (weak evidence of periodicity in only two
cases), and first-order (in five out of six cases), with stable dynamics
(all estimated Lyapunov exponents negative).
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Table 12.2. Summary of NLTSM results: the common vole M. arvalis.
Same notation as in table 12.1

Location n S T ACF[T ] p q R2pred ��

NW Tula 23 0.85 — — 1 0 0 −�
SE Tula 23 0.84 3 0.22∗ 1 2 0�12 −0�54
Beauvoir 23 0.41 — — 1 0 0 −�
Brioux 20 0.60 — — 1 0 0 −�
Stupino 21 0.87 — — 2 2 0�21 −0�32
Podole 17 0.63 — — 1 0 0 −�
Zaraysk 21 0.61 — — 1 0 0 −�
Odinzovsk 21 0.46 — — 1 0 0 −�
Mozhaisk 21 0.61 — — 1 2 0�02 −0�95
Potoschinski 21 0.66 — — 1 0 0 −�
Verhnevolzhski 17 0.59 — — 1 0 0 −�
Gorzow 16 0.42 — — 1 1 0�14 −0�65
Pila 16 0.26 7 0.53∗∗ 3 1 0�36 −0�11
Poznan 16 0.41 4 0.24∗ 2 2 0�40 0.29

Leszno 16 0.30 — — 1 0 0 −�
Opole 16 0.48 — — 2 1 0�13 −0�46
Legnica 16 0.33 — — 1 0 0 −�
Walbrzych 16 0.42 — — 2 1 0�15 −0�73
Wroclaw 16 0.49 — — 1 0 0 −�
Szczecin 16 0.33 — — 1 0 0 −�
Data sources: Tula (Myasnikov 1976); Stupino through Verhnevolzhski (Dombrovsky
1971); Gorzow through Szczecin (Romankow-Zmudovska and Grala 1994).
Series that were detrended: Beauvoir and Pila.

Water Voles in Switzerland The final vole species for which there
are abundant time-series data is the water vole, Arvicola terrestris
(table 12.4). Saucy (1988) presents data on fluctuations in seven loca-
tions. In many ways these trajectories resemble M. agrestis dynamics
(second-order, periodic, with Lyapunov exponents ranging between
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Figure 12.3. Graphical output of the NLTSM analysis: common vole,
southeastern Tula. Upper left: time plot; upper right: response surface;
lower right: phase plot.

Table 12.3. Summary of NLTSM results: Microtus and Clethrionomys
voles in North America. Same notation as in table 12.1

Location n S T ACF[T ] p q R2pred ��

Ontario 36 0.38 — — 1 1 0�03 −1�55
Wyoming 19 0.53 — — 1 0 0 −�
California 19 0.44 — — 1 0 0 −�
Illinois 24 0.75 — — 1 0 0 −�
Yukon 13 0.57 4 0.24∗ 1 0 0 −�
Vermont 16 0.47 4 0.30∗ 2 1 0�07 −0�60

Data sources: Ontario (Fryxell et al. 1998); Wyoming (Pinter 1988); California
(Garsd and Howard 1981); Illinois (Getz et al. 1987); Yukon (Gilbert and Krebs 1991);
Vermont (Brooks et al. 1998).
Series that were detrended: None.
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Table 12.4. Summary of NLTSM results: the water vole Arvicola terrestris.
Same notation as in table 12.1

Location n S T ACF[T ] p q R2pred ��

Ste-Croix 47 0.81 6 0.53∗∗ 3 2 0.48 0.06

Chenit 26 0.37 6 0.29∗ 2 1 0.44 −0�03
La Brévine 27 0.37 6 0.16∗ 3 1 0.42 −0�03
Chateau d’Oex 34 0.53 6 0.29∗ 3 1 0.45 −0�32
Rougemont 41 0.39 6 0.46∗∗ 3 2 0.64 0.08

Bulle 20 0.34 5 0.40∗ 2 1 0.12 −0�61
Baraba 14 1.35 7 0.78∗∗ 2 1 0.74 0.23

Data sources: Ste-Croix through Bulle (Saucy 1988); Baraba (Evsikov and Mosjkin
1994).
Series that were detrended: Chenit, La Brévine, Rougemont, Bulle.

−0�61 and +0�23 (three out of seven are positive). However, one
significant difference is that the average period of oscillations in the
water vole is 6 years, compared to the typical 4-year cycle in smaller
field voles.

Overview In summary, we can identify at least two groups of micro-
tine rodent communities for which second-order oscillations have
been established beyond reasonable doubt: (1) communities domi-
nated by the field vole Microtus agrestis in many northern Fennoscan-
dian localities—for instance, Pallasjärvi, Umeå, and Alajoki—and
by an ecologically very similar species Clethrionomys rufocanus in
Kilpisjärvi; (2) the water vole (A. terrestris) in Switzerland. To these
two groups, we should add Clethrionomys rufocanus in Hokkaido
(Saitoh 1987). Finally, there are lemmings, who will be discussed in
section 12.5. Most likely there are other localities where small rodents
exhibit second-order oscillations, but for which we at present lack
definitive data or statistical analyses.
We can also identify several areas where microtine rodents do

not oscillate: (1) forest communities dominated by Clethrionomys
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glareolus in Poland (Pucek et al. 1993) and in several central Rus-
sian localities—Tataria, Serpukhov, and Tula; (2) Microtus agrestis in
southern England and southern Sweden; (3) all North American pop-
ulations for which data are available (with one possible exception).
These populations show neither significant periodicities in autocorre-
lation functions nor significant evidence for second-order dynamics
(the possible exception is the Vermont data, which unfortunately are
too short at 16 years to base strong conclusions on).
Finally, there is the interesting case of the common vole M. arvalis,

in which evidence for first-order oscillations is quite strong at some
localities.
The observation that population dynamics of small rodents can be

so variable among species and geographic localities suggests to us that
there is no such universal phenomenon as “the vole cycle” (Turchin
et al. 2000), nor should we be looking for a single explanation of
small rodent dynamics that applies to all species at all localities. Even
if we are eventually successful in building a general theory for small
rodent dynamics that encompasses all known empirical instances, the
relative contributions of different factors postulated by such a theory
would most certainly vary among different environments. The realiza-
tion that small rodent dynamics are not a unitary phenomenon has one
important corollary: empirically rejecting (or supporting) a particular
hypothesis for one population does not imply that the hypothesis has
been universally rejected/supported for all microtine populations.

12.3 HYPOTHESES AND MODELS

In this and next sections I focus on one system where a large body of
information has been accumulated over the past fifty years—Microtus
and Clethrionomys voles in Fennoscandia. Analyses discussed in
the previous section have documented several repeatable patterns
that call for explanation. First, population dynamics of voles in
northern Fennoscandia are characterized by high-amplitude second-
order periodic oscillations. Second, there is a striking change in
the dynamical pattern with latitude: from chaotic or quasi-chaotic
oscillations in the north to highly stable fluctuations in the south.
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This north-south change is accompanied by reduced amplitude and a
loss of periodicity.
Our task is to construct an explanation (formalized as the “best

model”) of population dynamics of Fennoscandian voles. The field
of candidate hypotheses is narrowed to those that can in principle
produce second-order oscillations. Thus, such a formerly popular
explanation as the behavioral polymorphism hypothesis of Krebs
(1978) is immediately eliminated from consideration, because the
theoretical work by Warkowska-Dratnal and Stenseth (1985) and
Stenseth and Lomnicki (1990) has conclusively demonstrated that this
mechanism has stabilizing rather than oscillatory effect on dynamics.
As I mentioned in section 12.1, the consensus at the 1996 North
Dakota workshop was that three hypotheses for rodent cycles were
most worthy of intensive investigation: (1) predation, (2) interactions
with food, and (3) maternal effects (Batzli 1996). The task of trans-
lating the predation hypothesis into models specifically tailored to
the Fennoscandian vole situation had already been accomplished by
Hanski and coworkers, but the maternal effect and food hypotheses
had not been developed to the same level. In this section I review the
progress on this issue that has occurred since.

12.3.1 Maternal Effect Hypothesis

Two teams of investigators recently tackled the question of whether
a model based on the maternal effect hypothesis is capable of gen-
erating small rodent cycles. The first model is a modification of the
Ginzburg and Taneyhill (1994) equations (see section 3.4.1), pro-
posed by Inchausti and Ginzburg (1998). The second model (Jorde
et al. 2002) was developed specifically to address the question of vole
cycles.

The Inchausti-Ginzburg Model One conceptual problem in apply-
ing the Ginzburg and Taneyhill framework to vole population dynam-
ics is that the model is framed in discrete time, while rodents breed
continuously (even through the winter, when their population densi-
ties are low). Inchausti and Ginzburg tackled this problem by assum-
ing that there are two nonoverlapping “breeding seasons” during each
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year. They acknowledged the artificiality of imposing discrete breed-
ing seasons on a continuously reproducing population, but argued that
the simplicity of the resulting model was actually an advantage over
alternative “overparameterized models.”
The equations proposed by Inchausti and Ginzburg are

NA� t =NS� t
RSXS� t
1+ XS� t

XA� t =XS� t
M

1+ NA� t
NS� t+1=NA� t

RAXA� t
1+ XA� t

XA� t+1=XA� t
M

1+ NS� t

(12.1)

where NA� t and NS� t are scaled vole densities in autumn and spring
of year t, and XA� t and XS� t are the average quality of the moth-
ers in autumn and spring, also scaled. Parameters RS and RA are the
maximum reproductive rates during the spring and autumn reproduc-
tive seasons, respectively, and M is the maximum rate of increase of
average maternal quality.
The Inchausti-Ginzburg model of the maternal effect hypothesis is

capable of generating second-order population cycles for some param-
eter values (Inchausti and Ginzburg 1998: figure 5; see also Turchin
and Hanski 2001: figure 1). However, in my opinion, the model suf-
fers from two serious problems (see also Turchin and Hanski 2001).
The first one is the model’s main structural assumption, namely, that
vole population dynamics can be represented as occurring at two dis-
crete time steps per year. Leaving aside the issue of whether dynamics
of a continuously breeding population should even be modeled with
a discrete framework, I question the specific choice of two steps per
year made by these authors (as opposed to three, four, or more). Their
maternal effect model shares the general property of discrete second-
order models: for most parameter values, cycle periods lie between 6
and 10 generations. A cycle period of six generations is an absolute
minimum for this model, while cycles with periods of more than 10
generations require very small values of the intrinsic rate of popula-
tion increase (Ginzburg and Taneyhill 1994). Thus, it is not surprising
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at all that assuming two time steps per year would result in the model
predicting cycles of 3–5 years. The choice of the number of time
steps per year largely determines the length of the predicted period
(in years).
An alternative to assuming two time steps per year is to chose a

time step corresponding to some biological property of the modeled
population. Perhaps the most defensible choice is to equate the time
step to the cohort generation time, Tc. We can estimate Tc using the
simple model for vole population growth discussed by Turchin and
Ostfeld (1997). Tc is primarily affected by survivorship. Assuming a
maximum life span of 1 year and the monthly survival rate of 0.75
(as in Turchin and Ostfeld 1997) leads to an estimate of Tc = 3�6
months. This survival rate, however, was used to estimate the intrinsic
rate of population increase, and did not include the effect of preda-
tion. A lower, and more realistic, monthly survival rate of 0.5 (see
Norrdahl and Korpimäki 1995) would yield Tc = 2 months. In order
to obtain Tc = 6 months, we have to push monthly survival beyond
0.95, which is an unrealistically high value for natural populations of
small rodents. Thus, a more realistic assumption than the one pro-
posed by Inchausti and Ginzburg is six generations per year, which
would change the predicted cycle period to 1–2 years—much lower
than the observed.
Inchausti and Ginzburg anticipated this objection, and they cor-

rectly state that it is possible to obtain a 4-year cycle with more than
two generations per year. However, this can be accomplished only
at the expense of assuming an unrealistically low r0. The model of
Inchausti and Ginzburg employs two growth rate parameters, RS and
RA, that represent maximum discrete population growth rates dur-
ing the spring and autumn breeding periods, respectively (see equa-
tions 12.1). These rates are related to the exponential intrinsic rate
of population growth as follows: r0 = ln�RSRA�. In order for the
Inchausti-Ginzburg model to generate cycles of 4–5 years, the param-
eter r0 must be around 2–2.5 yr

−1. (This result does not depend
on assuming two discrete breeding periods; e.g., a modification of
the Inchausti-Ginzburg model with four breeding seasons yielded the
same relationship between r0 and the oscillation period.)
This value of r0 is too low for fast-breeding rodents such as voles

or lemmings. Estimates discussed in Turchin and Ostfeld (1997) place
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r0 around 5–6 yr
−1 and certainly no less than 4 yr−1 (Hanski et al.

1993; Turchin and Ostfeld 1997; Turchin and Hanski 1997). For these
more realistic values, the Inchausti-Ginzburg model produces 2-year
cycles. In other words, while the maternal effect model is capable of
qualitatively correct dynamics (second-order oscillations), it fails in
making quantitatively correct predictions (oscillation period).
Turning to a different empirical pattern, the maternal effect model

of Inchausti and Ginzburg (1998) explains the increase in the cycle
period with increasing latitude by postulating an increased growth rate
of voles with decreasing latitude. However, their own data (Inchausti
and Ginzburg 1998: figure 3) give no support for such a latitudinal
change in growth rate, and the model has a free parameter that also
contributes to cycle period. Furthermore, the model of Inchausti and
Ginzburg is unable to predict lack of cyclicity, such as observed in
southern Fennoscandia, because the model generates cycles for all
values of parameters.

The Jorde et al. Model In contrast to the unstructured modeling
approach of Ginzburg and coworkers, Jorde et al. (2002) employed
the age-structured framework. More specifically, their models were
based on a Leslie matrix with discrete time intervals of one month.
This interval was chosen because the time both from conception to
birth and from birth to sexual maturity is approximately one month.
Jorde et al. assumed that density-dependent social inhibition, stress,
or poor nutritional condition during high-density periods force young
individuals to delay reproduction. As a result, individuals born at peak
density do not mature immediately, and in seasonal environments
they may even delay reproduction until the next spring. Furthermore,
the reduced survival of offspring during the periods of population
decline was hypothesized to be a result of maternal effects, medi-
ated by (1) mothers being stressed or subject to poor nutritional con-
ditions (“maternal stress”), or (2) mothers being old and senescent
when reproducing (“maternal age”). Jorde et al. formulated two mod-
els (each based on one of these two mechanisms), as well as a third
model that added seasonality to the maternal stress mechanism.
The theoretical investigation of these three models revealed that in

order to obtain multiannual cycles, one needs to make rather extreme
assumptions about the structure of delayed density dependence, and
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about the parameter values. Thus, both nonseasonal models assume
a very strong effect of population density on delay in the matura-
tion time. In these models, populations reach peak densities of about
200 voles/ha, yet the models assume that population density of only
50 voles/ha would be sufficient to force a maturation delay of 5.5
months (parameter F ; see table 1 in Jorde et al. 2002). However, as
far as is known, intrinsic controls on female maturation have been
observed primarily after populations have approached peak density.
In the model with seasonality, when population density reaches 50
voles/ha, all juvenile females delay breeding until next year, which
adds an extra half-year to the average length of cycles. Further-
more, Jorde et al.’s assumption about senescence predicts that the
offspring of overwintered voles have dramatically reduced “intrinsic”
survival—less than 50% of the survival of females that reproduce in
their first year. Presently there are no data supporting such a predic-
tion. Finally, the model is structurally fragile, because small changes
in parameter values may shift a large-amplitude cycle into practically
noncyclic dynamics. Even with these rather extreme assumptions, the
model predicts cycles of shorter periods than what is observed in the
data: model-predicted periods are 2–3 years (figure 4 in Jorde et al.
2002), or, when noise is added, at most about 3.5 years. Additionally,
the maternal effect model of Jorde et al. cannot be used to explain
the latitudinal changes in Fennoscandian vole dynamics.

Conclusions The models considered by Inchausti and Ginzburg, and
by Jorde et al., suggest the following general conclusion. Although the
models based on maternal effect are certainly capable of generating
second-order oscillations, producing cycles that match the observed
vole dynamics even approximately requires rather strong assumptions
about model structure and parameter values. In particular, it turns out
to be quite difficult to generate longer period cycles (more than 3
years). Apparently, given the short generation times and fast repro-
ductive rates of small rodents, were their dynamics driven by the
interaction between population density and average maternal quality,
the predicted population cycles would have periods of 2 years, or
even shorter.
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12.3.2 Interaction with Food

The review of herbivore–food quantity theory in section 4.4.3
suggests that the food hypothesis encounters grave difficulties in
attempting to explain the dynamical patterns of Fennoscandian voles.
First, and most important, it seems highly likely that the food supply
of the key vole species, Microtus agrestis, is better described with
a regrowth model rather than with the logistic equation. Recollect
that model (4.40) is very stable, especially if vegetation grows back
rapidly. Thus, it is difficult to see how the interaction of small
rodents with food could generate second-order oscillations. First-
order cycles, in contrast, remain a distinct possibility, if vegetation
regrowth is strongly affected by seasonality. Such dynamics would be
characterized by winter crashes followed by 1–2 years of exponential
increase until population density exceeds its winter food supply and
crashes again, yielding 2-year cycles (3-year cycles if it takes 2 years
of exponential growth to reach the peak). However, this type of
dynamics is not what happens in Fennoscandia, even where 3-year
cycles are observed. For example, in western Finland, it typically
takes 1 year for vole densities to “bounce” back to high densities,
where the population spends 2 years. Such a dynamical pattern is
more consistent with the hypothesis that the eventual crash is caused
by predators, because it takes two years for predators to increase to
the point where they can greatly impact the prey population.
Second, the food hypothesis does not seem to help us with the

explanation of the dynamical shift within Fennoscandia from stability
in the south to oscillatory dynamics in the north. In fact, a food-vole
model without predation would predict the opposite pattern to what
is observed. As productivity of the plant community increases toward
the south, vole dynamics should become less stable as a result of the
“paradox of enrichment.” But the opposite is true.
Although the food hypothesis does not appear capable by itself

of explaining population oscillations of Fennoscandian voles, food
may play an important role in stopping vole population increase and
thus stabilizing the cycles of voles and their predators. Experimen-
tal results (Henttonen et al. 1987) support such a role for the food
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resources, since experimental addition of food did not prevent popu-
lation crash but did result in higher peak densities. Additionally, the
food hypothesis remains a viable contender for explaining population
oscillations in some lemming populations (section 12.5).

12.3.3 Predation

The view of the importance of predation in vole dynamics, prevailing
among ecologists, has changed dramatically and repeatedly over the
three-quarters of the century during which voles have been intensively
studied (see review in Hanski et al. 2001). An important conceptual
breakthrough occurred during the 1970s and 1980s, when ecologists
working on small rodent population dynamics came to realize that
not all predators are alike and that not all rodent populations oscil-
late in the same manner. Thus, Andersson and Erlinge (1977) made
an explicit distinction between three types of predators: resident spe-
cialists, nomadic specialists, and generalists. Andersson and Erlinge
proposed that generalist predators can prevent sustained multiannual
vole oscillations by switching to prey upon voles when their density
is high. The idea was later specified to refer particularly to winter
predation in temperate areas, such as southern Sweden, where voles
are not protected by snow cover and where the impact of generalists
is boosted by wintering avian predators, which stay in the area as long
as vole density is sufficiently high to ensure survival (Erlinge et al.
1983). The bottom line was that predation by generalists can prevent
cycles (Hanski et al. 2001).
If generalist predators have the capacity to inhibit rodent oscilla-

tions, resident specialists may have the opposite effect. Toward the
end of the 1980s, several teams of ecologists working in northern
Europe began to view predation by specialists as the sufficient cause
for rodent declines (review in Hanski et al. 2001). These studies did
not propose, however, that predation by specialist predators would be
the only process needed to generate recurrent rodent oscillations. The
rodent population growth rates are obviously so high that the predator
populations would never catch up unless some other factors stop prey
population growth at high densities. Possible mechanisms to do that
include resource competition, social interactions (female territoriality
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and infanticide), and the action of generalist and nomadic specialist
predators. The nomadic specialists represent a particular category of
small rodent predators. These predators include many owls and diur-
nal raptors more or less specialized in tracking populations of small
mammals in space over large regions, by moving to areas where the
prey populations are currently most abundant (Korpimäki and Nor-
rdahl 1991a). The dynamic outcome of such rapid spatial “switching”
is similar to the sigmoid functional response of resident generalists
(section 4.1.2). These insights led Hanski and coworkers (Hanski et al.
1991, 1993, 2001; Hanski and Korpimäki 1995; Turchin and Han-
ski 1997) to propose and develop a model of the interaction between
voles and their specialist and generalist predators.

Developing Model Equations The starting point for the investigation
of vole-predator dynamics is provided by the Hanski model (equa-
tions 4.26 in section 4.2.4).

dN

dt
= r0N

(
1− N

k

)
− cNP

N + d − gN 2

N 2 + h2
dP

dt
= s0P

(
1− q P

N

) (12.2)

As usual, N stands for population density of the prey (voles), and P
is the population density of the specialist predator (least weasels).
The next step is to add exogenous drivers to the model. This force

has a periodic component (seasonality) and an irregular, random com-
ponent (environmental stochasticity, or process noise). We need sea-
sonality because it has a profound effect on the rates of population
growth in temperate and boreal population systems. Moreover, adding
seasonality expands the range of the dynamical behaviors of which
the model is capable, to include chaos. Process noise is also a key
component of the model, because it modifies dynamical features of
the system, such as the amplitude and period of oscillations, and can
actually shift the dynamics from the stable into the chaotic region,
and vice versa. Without explicitly including noise in the model, we
cannot directly and quantitatively compare model output with data.
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To keep things simple, we assume that seasonality affects only the
growth rate of populations:

dN

dt
= r�1− e sin 2�t�N − rN 2

k
− cNP

N + d − gN 2

N 2 + h2
dP

dt
= s�1− e sin 2�t�P − qsP 2

N

(12.3)

This method of adding seasonality, in which the slope of density
dependence does not vary with seasonality, was introduced and dis-
cussed in section 3.2.2. The consequence of this assumption is that
the carrying capacity oscillates with season (figure 3.3), and can even
become negative if e > 1, implying that during the worst period of
the year the population always declines, even if the population density
is very low. Increased population density would further accelerate the
rate of decline.
Process noise is included by randomly perturbing the model

parameters once a year (see the discussion in section 3.2.1). The
strength of environmental stochasticity is measured by parameter !2.

Scaling the Model We define new, scaled variables, N ′ = N/K and
P ′ = KP/q, and rewrite the model (12.3) as follows (dropping primes
in order not to clutter the equations):

dN

dt
= r�1− e sin 2�t�N − rN 2 − g N 2

N 2 + h2 − a
NP

N + d
dP

dt
= s�1− e sin 2�t�P − s P

2

N

(12.4)

The new parameter combinations are g′ = g/k, h′ = h/k, d′ = d/k,
and a = c/q. In the aseasonal model, we could reduce the number
of parameters even further by appropriately scaling time, but in the
seasonal model we cannot do this, because the units of t are fixed by
our assumption that the period of seasonal forcing is exactly 1 year.
We now have six biological parameters describing the endogenous
interactions (r , s, g, h, a, and d), and two parameters for the exoge-
nous forcing (e and !). A detailed discussion of how parameters were
estimated is in Turchin and Hanski (1997). These parameter estimates
are as follows: r = 5, e = 1, s = 1�25, d = 0�04, a = 15, h = 0�1,
! = 0�12.
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Figure 12.4. Comparison of (a) observed vole dynamics (Kilpisjärvi,
Finnish Lapland, 1952–1992) and (b) dynamics predicted by the model
with the median estimates of scaled parameters r = 5, s = 1�25, d = 0�04,
a = 15, e = 1, and ! = 0�12 (generalist predation pressure g set to 0).
Note that there are two density measurements per year (spring and fall).

Dynamics Predicted by the Model Numerical solution of the model
for the case of the far north, where the generalist predation pressure
g ≈ 0, shows that model-predicted dynamics are very similar to those
observed at the northernmost location in Finnish Lapland, Kilpisjärvi
(figure 12.4).
The model output matches correctly such probes as the periodicity,

amplitude, estimated order, and Lyapunov stability. Numerical explo-
ration of the parameter space (Turchin and Hanski 1997:857–859)
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suggests that these results are quite generic for model (12.4) within
the range of parameters that we estimated. In particular, all combina-
tions of parameters are characterized by periodicities in the range of
3–5 years, with mild statistical periodicity strengths (ACF[T ] between
0.2 and 0.6). Furthermore, most parameter combinations yield chaotic
dynamics, as measured by the dominant Lyapunov exponent. How-
ever, the system is not strongly chaotic, with typical positive ��
found in the range 0–0.2. (This observation suggests that the model
mostly predicts quasi-chaotic behavior.)
When we increase the generalist predation pressure from zero to

values characterizing southern Fennoscandia, the model predicts a
rather abrupt shift in dynamics: from high-amplitude quasi-chaotic
oscillations in the north to low-amplitude stable fluctuations in the
south. This shift occurs for g hypothesized for latitudes of around 61–
63	N. In this region, dynamics are still perceptibly periodic, but with a
shorter period of around 3 years. In more southern locations, dynam-
ics cease to be periodic, and also lose any indications of second-order
regulation. These predictions match very closely the observed patterns
in vole dynamics (section 12.2.2).

12.4 FITTING THE PREDATION MODEL BY NLF

As reviewed earlier in this chapter, there are currently two distinct
lines of evidence suggesting that dynamics of northern vole popula-
tions undergo a shift from stable to chaotic (or quasi-chaotic) dynam-
ics: flexible phenomenological models fitted to time-series data, and
mechanistic models based on life history and experimental data. How-
ever, each of the two approaches has weaknesses as well as strengths.
For instance, choosing model complexity, in particular the process
order, p, is a critical step in the nonlinear time-series analysis, because
incorrect estimation of p can greatly affect the resulting characteriza-
tion of the dynamics (section 7.2). In contrast, the order of a mecha-
nistic model is determined by biological assumptions, as are all other
aspects of model complexity. However, parameter estimates for the
mechanistic model proposed to explain Fennoscandian vole oscilla-
tions were derived from heterogeneous life history and experimental
information, which has an unavoidable element of subjectivity and
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does not yield very precise estimates. Can we avoid these problems
by fitting the mechanistic model directly to the time-series data? The
discussion of nonlinear forecasting fitting methods in section 8.5 sug-
gests that we indeed can do it. The specific approach dealing with
the Fennoscandian vole data was implemented by Stephen Ellner and
myself in a recent article (Turchin and Ellner 2000a).
The overall question that we sought to answer was, what are the

stability properties of the dynamic process underlying vole oscil-
lations in northern Fennoscandia? Instead of attempting to answer
this question directly by analyzing time-series data (for the reasons
explained above), we approached it in two steps. The first, and most
critical step, was to ascertain that we had the best possible model for
this system within the limits of our present knowledge. Conclusions
about the dynamics are only as good as the model on which they
are based. We defined the “best” model as a model that is based on
defensible ecological mechanisms with biologically plausible param-
eters, and that does the best possible job of capturing the dynamical
patterns observed in time-series data. The second, and much easier,
step was to use this model to calculate various measures of stability,
such as the global Lyapunov exponent.
Our primary focus was on the analysis of the best data set

from Fennoscandia, the 41-year-long record of vole dynamics at
Kilpisjärvi, and then we supplemented the insights from this data
set with analyses of shorter series from other locations (Pallasjärvi,
Umeå, Sotkamo, Loppi, and Grimsö). The first step of the NLF anal-
ysis was to determine the baseline prediction accuracy for Kilpisjärvi,
that is, R2data (see section 8.5). Using kernel regression methods, we
estimated R2data as 0.51 (Turchin and Ellner 2000a: table 1), suggest-
ing that at least one-half of variance in vole population numbers is
explained by endogenous, density-dependent factors.
In the second step, we used the vole-weasel predation model

(equations 12.4) with parameters previously estimated by Turchin
and Hanski (1997) to predict the Kilpisjärvi data. We found that the
predation model predicted the data much better than the data-based
algorithm, since R2atlas was 0.59. Applying the same procedure to
the other data sets, we found that, in all cases but one (Sotkamo),
R2atlas > R

2
data. Because the time-series data were not used in selecting

the parameter values on which model predictions were based, this
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result provides a strong endorsement of model (12.4), as well as the
specialist/generalist predation hypothesis itself.
In the final step, we inverted the problem, and asked what parame-

ter values maximize the prediction accuracy, R2atlas? When addressing
this question, we did not attempt to fit all model parameters. For
example, we fixed the strength of exogenous forcing at ! = 0�12, as
previously estimated by Turchin and Hanski (1997). Second, we fixed
h = 0�1, because a reasonably good estimate of this parameter is
available. Thus, our analysis attempted to derive estimates of the fol-
lowing parameters: r , s, d, a, e, and g (for explanation of parameters,
see section 12.3.3). Applying the NLF method to Kilpisjärvi data, we
found that best parameter values, for which R2atlas increased to 0.66,
were not dissimilar to the biologically derived estimates. In particular,
all parameter values were within the biologically reasonable ranges,
with parameter a deviating the most (NLF-estimated a = 8–9, while
the previous estimate was a = 15).
The other five data sets were much shorter than Kilpisjärvi, so we

reduced the parameter set to be fitted even further, by focusing on
those four parameters that exert the strongest effect on model dynam-
ics (Turchin and Hanski 1997): d, a, e, and g. We fixed r and s at
values intermediate between those postulated by Turchin and Hanski
and those estimated for Kilpisjärvi data (this involved less than 10%
change). Our fitting results suggest that as latitude is decreased, we
obtain increasingly noisier fits and less reliable parameter estimates,
paralleling the decrease in the strength of the endogenous signal (as
measured by R2data). At the same time, estimated parameter g, quan-
tifying the strength of generalist predation, grew from small values
at northern locations to greater values at southern locations, just as
the generalist/specialist theory predicts (for details, see Turchin and
Ellner 2000a: table 1).

Stability Properties of the Fitted Model What do these fitting results
tell us concerning the qualitative nature of vole dynamics? One way
to answer this question is to calculate the global and local Lyapunov
exponents of the predation model with the parameters estimated on
the Kilpisjärvi data. We also quantified uncertainty associated with the
estimate by using a nonparametric bootstrap to calculate 90% confi-
dence intervals associated with each estimate. Our results suggest that
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the estimated �� is statistically indistinguishable from zero (the 90%
confidence interval is [–0.07, 0.08]). Thus, according to this particular
measure of sensitive dependence on initial conditions, the system is
poised right on the boundary between stability and chaos. (We also
calculated the local Lyapunov exponents characterizing the model
with best parameter estimates, and found that the system spends more
than half of the time in the chaotic regime characterized by sensitive
dependence on initial conditions. For details, see Turchin and Ellner
2000a.)
The fact that we obtained reasonably small confidence intervals

indicates that the dynamics are not overly sensitive to changes in
parameter values near to those estimated for Kilpisjärvi. This outcome
might be surprising given that deterministic predator-prey models
with strong periodic forcing have a complicated bifurcation diagram
that includes limit cycles, the period-doubling route to chaos, and the
quasiperiodic route to chaos. However, it is important to remember
that our model includes a component representing exogenous pertur-
bations of the system (process noise). This leads to the phenomenon
known as the “noise-induced stabilization of chaotic transients” (Rand
and Wilson 1991), which is explained in section 5.3.3. The smooth-
ing effect of noise allows us to estimate the stability properties of the
dynamics despite our inability to estimate parameters with great pre-
cision. It also provides further evidence for a point we have argued
elsewhere (Ellner and Turchin 1995): that properties of the noise-
free “skeleton” model (Tong 1995) may be very misleading for the
ecological context where exogenous noise cannot be ignored.
In summary, our analysis suggested a good fit between model pre-

dictions and data in the longest data set, Kilpisjärvi. Probably the most
remarkable result was that a priori estimates of model parameters,
derived without considering time-series data, predicted Kilpisjärvi
data better than the phenomenological, data-based algorithm. Other
data sets were also well predicted by the model (with the exception
of Sotkamo), but results of fitting these data with the model met
with variable degrees of success. However, the estimate of generalist
predation intensity, g, tended to increase as latitude decreased. This
result is in agreement with the prediction of the generalist/specialist
predation hypothesis (Turchin and Hanski 1997).
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The two measures that we used to quantify sensitive dependence
on initial conditions in model (12.4), with parameters estimated from
Kilpisjärvi data, provide somewhat different (but complementary)
viewpoints on the dynamical nature of vole oscillations. The esti-
mated global Lyapunov exponent (��) suggests that in the long
run there is neither strong divergence nor strong convergence of
trajectories (since the estimate is within ±0.08). What happens in the
long run (on the order of hundreds and thousands of years), however,
may not be a dynamical measure of high relevance for ecological sys-
tems. We expect to see few natural populations that would oscillate
unchanged for such long periods of time, unaffected by either long-
term environmental trends or evolutionary processes. Thus, when
characterizing population dynamics ��, at the very least, should
be supplemented by shorter-term measures of sensitive dependence
on initial conditions. It is therefore both significant and exciting to
find that dynamics of vole populations in northern Fennoscandia are
characterized by alternating periods of rapid trajectory convergence
or divergence.

12.5 LEMMINGS

Population dynamics of lemmings are of considerable interest,
not least because it was the observation of regularity in lemming
outbreaks that lead Charles Elton to become involved in the study of
population cycles (section 1.1.1). The study of lemming dynamics,
however, lagged behind that of their microtine relatives, simply
because lemmings inhabit such distant and difficult-to-work-with
locations. As we shall see below, key events for lemming population
dynamics take place during winter (which may last up to 10 months
in some locations lemmings inhabit). It is easy to imagine difficulties
accompanying empirical research on organisms who are active under
a meter or more of snow, while temperatures above go down to
−50°C. Nevertheless, ecologists managed to gather quite a large col-
lection of data, including some experimental work in North America
(Alaska and Canada), Russia (Wrangel Island), and Fennoscandia. In
particular, we now have several time series on lemming population
fluctuations. In this review of lemming population dynamics, I begin,
as usual, by considering empirical patterns in long-term records
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of their fluctuations. Next, I describe a test that we designed to
distinguish between two possible explanations of lemming cycles—a
predator-prey versus a herbivore-vegetation interaction (Turchin et al.
2000). Finally, I review our efforts to model lemming cycles at one
particular location, Barrow, Alaska (Turchin and Batzli 2001). My
focus throughout this section is on the lemmings in the genus Lem-
mus: the Norwegian lemming (L. lemmus) and the brown lemming
(L. sibericus). The ecology and population dynamics of the collared
lemming appear to be quite a different story (e.g., see Reid et al.
1995).

12.5.1 Numerical Patterns

Several data sets on lemming fluctuations are available from
Fennoscandian, North American, and Russian locations (table 12.5).
Most data were obtained by snap-trapping, except for the category
“indirect indices,” which includes two data sets. The provenance of
the first one, published by Schultz (1969), is unclear, and probably
includes some guesstimates. Still, I include it because this data set
has been widely cited in the secondary literature. The last data set
(Taimyr) is a very interesting one, because it does not refer to a
direct index of lemming numbers, but is actually the proportion
of juveniles among dark-bellied brant geese. These geese breed on
the Taimyr Peninsula, Russia, and overwinter in western Europe,
particularly in the Wadden Zee area of the Netherlands, Germany,
and Denmark, where the birds are counted every year. Several studies
have shown that fluctuations in the abundance of lemmings in Taimyr
have a huge effect on the breeding success of brant geese (Underhill
et al. 1993; Summers et al. 1998). Breeding success is highest
during years of high lemming densities, because arctic foxes, a major
source of egg mortality, have an abundant alternative food supply.
Breeding success is lowest during the year after lemming peak, when
arctic foxes are abundant and very hungry. Thus, percent of brant
goose juveniles provides an indirect index of lemming dynamics,
mediated by a two-link connection through the trophic web: first,
the lemming–arctic fox link and, second, the arctic fox–brant goose
connection.
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Table 12.5. Summary of NLTSM results: lemmings. Same notation as in
table 12.1

Location n S T ACF[T ] p q R2pred �

L. lemmus

Finse 25 1�25 3 0�37∗ 2 2 0�43 2�01

Kilpisjärvi 25 0�92 — — 3 2 0�31 1�01

Finnmark 20 1�06 — — 3 1 0�21 0�08

L. sibericus

Barrow 18 0�77 — — 2 2 0�35 0�53

Kolyma 12 0�79 4 0�85∗∗ 2 1 0�49 0�13

Indirect indices

Pt. Barrow 21 0�73 3 0�43∗ 2 1 0�50 0�05

Taimyr 39 0�97 3 0�56∗∗ 3 1 0�32 0�34

Data sources: Finse (Framstad et al. 1997); Kilpisjärvi (Turchin et al. 2000, data
collected by H. Henttonen); Finnmark (Ekerholm et al. 2000); Barrow (Pitelka 1976);
Kolyma (Potapov 1997); Pt. Barrow (Schultz 1969); Taimyr (Wadden Sea Newsletter,
1997).
Series that were detrended: none.

The results of the analysis of lemming data are very consistent.
All data sets are classified as second-order or higher. By contrast,
evidence for periodicity is not very strong: several data sets are char-
acterized by 3–4 year periods, but others appear to be aperiodic. The
amplitude of oscillations is huge: of the data analyzed in this book,
only the larch budmoth cycle is capable of matching such huge swings
in abundance. Note, also, that lemming densities periodically “drop
off the radar screen” (see figure 12.5). In order to analyze these data,
we must substitute a small number instead of 0 observations, which
has a side effect of reducing the amplitude. Thus, S-values appearing
in table 12.5 are an underestimate. But the most striking pattern is
observed in the Lyapunov exponents, whose estimates are uniformly
positive, and some (e.g., Finse, which is incidentally the best data
set in terms of length and accuracy of measurements) are truly huge.
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Figure 12.5. Population trajectories of lemmings in Finse and Kilpisjärvi;
and voles in Finnmark and Pallasjärvi.

Taken together with weak presence of statistical periodicity and huge
amplitude, these results strongly suggest that we are dealing here with
a case of strong chaos.

12.5.2 Testing Alternative Trophic Hypotheses

As I discussed in section 4.2.3, many models of resource-consumer
interactions predict that population cycles of the two species will be
characterized by distinct shapes: blunt rounded peaks for resources,
and sharp angular peaks in consumer density (see, e.g., figure 4.3).
This general pattern arises in predator-prey, host-parasitoid, and
herbivore-vegetation models, but is particularly prominent in models
developed specifically for small rodents (Turchin et al. 2000). Con-
sider the interaction between rodents and their specialized predators,
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weasels (e.g., section 12.3.3). A model of this system must include
a self-limitation term in the prey equation, because without rodent
self-limitation no cycle can occur—the rodent population will escape
predator control by virtue of its much higher rate of growth. In
a typical rodent-predator cycle, prey density rapidly builds up to
the point where its further growth is prevented by self-limitation
mechanisms, while predators can start increasing only after prey
density grows beyond the threshold where predators can maintain
positive energy balance. By the time predators have increased to the
point where they cause prey to decline, prey population has spent a
prolonged period of time at peak densities. As a result, the shape of
prey peaks will be blunt.
By contrast, if rodents are “predators” (i.e., the mechanism driv-

ing cycles is the interaction between rodents and their food supply),
then their population will grow exponentially while food abundance
is above the ZPG threshold. When food is depleted, rodent density
will immediately collapse as a result of starvation (or emigration).
Thus, rodent population trajectories should be characterized by “saw-
shaped” dynamics with sharp peaks if rodents are consumers, rather
than the resource.
Distinctive topological features of prey versus predator cycles are

a generic feature of two-species trophic models. Predator peaks must
be sharp: we cannot “flatten” them by adding predator self-limitation,
because this leads to a loss of oscillation (stabilization of the system).
The bluntness of prey peaks can be more variable, since the length
that prey spend at the upper density threshold will depend on the rel-
ative growth rates of prey and predators. If prey growth rate is similar
to (or slower than) that of predators, it may be difficult in practice to
detect the plateau phase in prey dynamics. However, because rodents
are characterized by much faster reproductive rates than their preda-
tors, peak topology should be a particularly useful diagnostic for their
dynamics.
These theoretical observations allow us to design an empirical test

to distinguish between the two rival hypotheses for lemming cycles,
one invoking the interaction with the food supply, and the other with
predators. To pursue this idea, we located all time-series data on the
population dynamics of Norwegian lemmings (Lemmus lemmus) that
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were at least 20 years long, and had at least two observations per year
(Turchin et al. 2000). We also analyzed a comparable set of three vole
series from the northernmost part of Fennoscandia (latitude > 68°N),
where vole populations exhibit high-amplitude oscillations. Two of
the lemming data, contrasted with two vole data sets, are plotted in
figure 12.5 (the third vole series, Kilpisjärvi, is shown in figure 12.4a).
Visual examination of the data plotted on logarithmic scale imme-
diately suggests a striking difference between the lemming and vole
time series. Lemmings have very sharp peaks, with rarely more than
one observation period at the peak, while vole populations spend at
least 2 years in the vicinity of maximum densities before their popu-
lations collapse. We applied several statistical tests to these data, and
they confirmed the results of the visual inspection (for details, see
Turchin et al. 2000). Our results, therefore, are consistent with the
hypothesis that lemmings are functional predators, while voles are
functional prey.
An additional feature of numerical dynamics, the variability of

peak densities, provides a further clue about dynamical mechanisms
that may be responsible for lemming and vole cycles. Resources
should have rather stereotypical dynamics at the population peak,
because they hit the population ceiling imposed by density-dependent
regulation. By contrast, consumer dynamics do not have a compara-
ble “hard ceiling,” because their density will start to decline when
consumers run out of food. Precisely when this occurs depends very
much on the timing of consumer increase with respect to season-
ality. Consider a threshold consumer density, Nthreshold, above which
consumers are expected to run out of winter food supply and there-
fore experience a winter crash. If this threshold is reached in the fall,
then peak density would be equal to Nthreshold. However, if Nthreshold
is achieved in the spring, then consumer density will increase much
beyond it during the favorable summer conditions, and the resulting
winter crash will be much deeper. As a result, peak density of con-
sumers (as well as the depth of collapse) should be highly variable.
In fact, this mechanism, based on the interaction between seasonality
and predator-prey dynamics, is at the root of mathematical chaos that
may arise in rodent population models. Again, numerical results are
consistent with our main hypothesis (figure 12.5; statistics in Turchin
et al. 2000: table 1).
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12.5.3 Lemming-Vegetation Dynamics at Barrow

The survey of general models in section 4.4 suggested that it is rather
easy for the interaction between plants and herbivores to produce
population cycles if vegetation dynamics are appropriately described
by a logistic growth equation. Coupled with the results in the previous
section, this suggests that we should attempt to develop an empirically
based model for the lemmings-vegetation system, to check whether
this system could exhibit population oscillations for biologically rea-
sonable functional forms and parameter values. This is the question
that was addressed by George Batzli and myself in a recent paper
(Turchin and Batzli 2001). Our focus was on the interaction between
the brown lemming, Lemmus sibiricus (formerly known as trimu-
cronatus), and its food supply.

Model Equations We began by making the important distinction
between the two kinds of vegetation that together comprise the food
supply of brown lemmings: mosses and shoots of vascular plants
(primarily graminoids, grasses and sedges). Graminoids have higher
nutritional value and provide the bulk of summer food for lemmings
(Batzli 1993). Graminoid biomass, however, is greatly reduced by
seasonal die-off in September–October, before it is preserved by
being frozen. During winter, therefore, lemmings switch to a much
higher utilization of mosses (see table 1 in Batzli 1993). The sea-
sonal dietary shift from graminoids to green mosses appears to be
paralleled by increased ability of brown lemmings to utilize mosses.
Experimental feeding of brown lemmings with green mosses showed
that during winter months animals can survive for long periods on
this kind of food, while during summer they usually die within 2–3
days (Chernyavsky et al. 1981).
Let V and M be the edible biomass (in kg of dry weight per ha)

of vascular plants and mosses, respectively. We modeled dynamics of
graminoid shoot biomass with a modification of the regrowth equation
that takes into account the seasonal dynamics: growth in summer
(two months from melt-off in mid-June to first heavy frosts in mid-
August), rapid die-off of 90% of biomass during the transition period
between summer and winter, and no change under snow during the
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winter months, except for consumption by lemmings. Moss dynamics
were modeled as a seasonally modified logistic equation with growth
in summer and neither growth nor decline in winter. We assumed
no direct competition between mosses and graminoids, so that in the
absence of herbivory, both resources would increase to their respective
“carrying capacities” (maximum standing crops), kV and kM .
We assumed that lemming populations are regulated solely by food

availability. This is probably not a bad assumption, because there
is no evidence that lemming density is regulated by direct intraspe-
cific competition, including social interactions. However, the mortality
imposed by predators on lemmings can be very high, especially in
summer (Chernyavsky and Dorogoy 1988). This consideration sug-
gests that our model should eventually be modified to include such
predation effects.
Let N be the density of lemmings (individuals per ha). Lem-

ming consumption of vegetation is modeled as the hyperbolic
functional response, and the lemming equation is in the Rosenzweig-
MacArthur form (i.e., the amount of food consumed directly affects
the growth/decline rate of N ). Because winter conditions impose
much greater energetic demands on lemmings, the ZPG parameter
& is assumed to change with season, in turn affecting the maximum
rate of lemming population growth when food is abundant, r0. The
maximum rate of increase is, therefore, high in summer (assumed
to be about 6 yr−1), while during the rest of the year it is lower at
about 4 yr−1 (see Turchin and Ostfeld 1997 for the discussion of
population growth rates characterizing arvicoline rodents).
The equations resulting from these assumptions are

dV

dt
= u�(�

(
1− V

kV

)
− aVN

V +M + b
dM

dt
= v�(�M

(
1− M

kM

)
− aMN

V +M + b
dN

dt
= +N

[
a�V +M�
V +M + b − &�(�

]
(12.5)

The variable ( indicates season (0 < ( < 1), with ( = 0 corre-
sponding to the fall (transition between summer and winter). Seasonal
dynamics are included in growth rates u�(� and v�t� and the ZPG
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consumption rate, &�(�, which are the following functions of time:


 Winter (5/6 ≤ ( < 1): u�(� = 0, v�(� = 0, and &�(� = &w.

 Summer (5/6 ≤ ( < 1): u�(� = us , v�(� = vs , and &�(� =
&s .


 In addition, at ( = 0 (transition between summer and winter),
V �t� is reduced by 90%.

Estimates (and ranges) of model parameters are derived in Turchin
and Batzli (2001). The only deviation from the account in that paper
is that I assumed that lemmings have no preference for vasculars. That
is, I set the discounting factor to 1; this assumption does not strongly
affect the model dynamics. As discussed in Turchin and Batzli (2001),
introducing preference for vascular plants tends to reduce the period
of oscillations somewhat.

Dynamics of the Model For the median values of parameters (us =
10 Mg ha−1 yr−1, vs = 12 yr−1, kV = 1 Mg ha−1, kM = 2 Mg ha−1,
a = 15 kg yr−1 ind−1, b = 70 kg ha−1, - = 10�7a, &s = 0�44a, &w =
0�63a), the model exhibits sustained oscillations with a period of
about 7 years and densities varying by more than two orders of magni-
tude. Model-predicted dynamics do not appear to be too dissimilar to
the observed lemming oscillations at Barrow (figure 12.6). Although
this is not a quantitative, rigorous comparison (for one thing, we have
not added any stochasticity to the model), some points of qualitative
similarities are immediately apparent. First, both trajectories exhibit
sharp angular peaks, consistent with the hypothesis that oscillations
are generated by a herbivore–logistic vegetation system. Second, both
data and model trajectories tend to spend some time at low densities.
In the model we know precisely why this happens: moss biomass is
extremely low after a peak, and takes several years to increase to the
point where lemmings can utilize it. Vascular biomass bounces right
back up, but is not sufficient to sustain the lemming population. As a
result, lemmings continue to decline for several years after the peak,
but at a slower rate than would happen in the absence of vascular
vegetation.
Model-predicted dynamics do not mimic the data in all particu-

lars. For example, the predicted period is a bit longer than what is
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Figure 12.6. Population trajectory of the brown lemming in Barrow,
Alaska, compared with predictions by the Barrow model.

observed, and the observed dynamics are less regular than the pre-
dicted (especially at low lemming densities). This is as it should
be, because the functional forms and parameter values of the Bar-
row model are not as well grounded in empirical data as one would
wish. In fact, it is surprising how well this “first cut” approach did
in replicating certain features of the data. Furthermore, it is possi-
ble that rather straightforward additions to the model would bring it
more in line with data. For example, adding stochasticity, particu-
larly in the growth rates of vegetation, may have a disproportionate
effect on the regularity of dynamics, especially in the low phase,
where a better growing season for vascular vegetation may actually
allow lemmings to temporarily increase, even before their main winter
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supply, mosses, grows back. Another feature of lemming biology that
should eventually be investigated is the influence of generalist preda-
tors (jaegers, snowy owls, and arctic foxes).

12.6 SYNTHESIS

In this section I begin by summarizing the modeling and empirical
results on vole and lemming dynamics, and then attempt some gen-
eralizations about population dynamics of rodents in general.

12.6.1 Summary of Findings

The Field Vole in Northern Fennoscandia The question of why
Fennoscandian voles exhibit population oscillations appears to have
the clearest answer. Of the three most likely hypotheses deemed
worthy of intensive study at the 1996 vole workshops, two appear to
meet with insuperable difficulties. If the dynamics of food supply of
Fennoscandian voles are indeed better modeled with a regrowth rather
than a logistic equation, then theory is quite emphatic that the rodent-
vegetation interaction cannot exhibit the observed second-order
cycles. Experimental evidence supports this theoretical conclusion.
First, the experiment of Klemola et al. (2001) clearly demonstrated
a lack of delayed effect of depleting food on next year’s population
growth rate in the field vole at Alajoki (Finland). A very similar
result was previously obtained in an analogous experiment on an eco-
logically similar species, M. pennsylvanicus, in New York (Ostfeld
et al. 1993). Second, adding food to an experimental population of
voles in Pallasjärvi (northern Fennoscandia) throughout a population
cycle resulted in higher peak densities, but failed to prevent or even
delay the population decline (Henttonen et al. 1987).
The maternal effect hypothesis similarly encounters grave theoreti-

cal difficulties. However, the lack of match between theory and data is
not qualitative, as with the food hypothesis, but quantitative. It is clear
that models based on the maternal effect hypothesis are capable of
producing second-order oscillations. However, they can do that only
for rather extreme assumptions about the delayed effect of population
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density on the average quality. Furthermore, maternal effect models
encounter a difficulty in attempting to match certain quantitative fea-
tures of vole cycles, most notably the oscillation period. Put simply,
these models predict too short cycle periods. On the empirical side,
the maternal effect hypothesis has not yet been properly challenged
by an experiment. Yet, now that we have explicit models capable of
making quantitative predictions, conducting experimental tests should
be a priority. The fact that the maternal effect explanation has not
yet survived such a test is another reason to downgrade the current
degree of belief associated with this hypothesis.
The remaining explanation of vole cycles in northern Fennoscan-

dia, based on the interaction between voles and their specialist
predators, is by contrast richly supported both theoretically and
empirically. Models of vole-weasel interaction, parameterized with
independent data, successfully predict all the major quantitative
features of the observed dynamical pattern. What is even more
striking is that the model outperforms the data-based one-step-ahead
prediction algorithm. Since this was achieved without any circularity
(model parameters were not estimated with time-series data), it is
a strong empirical endorsement of the predation hypothesis (and,
incidentally, provides a nice example of strong inference in popula-
tion ecology!). Furthermore, the predation hypothesis has survived
a number of experimental tests. Most notable, in this respect, is
the work by Korpimäki, Norrdahl, and Klemola at Alajoki in west-
ern Finland. These investigators showed that predator removal can
prevent summer declines in vole density (Korpimäki and Norrdahl
1998; Klemola et al. 2000). Although this is a strong endorsement
of the predation hypothesis, I am more impressed by the experiment
in which these investigators tracked vole mortality throughout one
increase-peak-decrease period (Norrdahl and Korpimäki 1995). They
showed that avian predation was directly density dependent (without
a lag), so that predation rate due to owls and kestrels was similar in
the increase and decline phase of the cycle. By contrast, predation
rate due to mustelids was characterized by marked delay: it was
practically nonexistent during the increase, and very heavy during the
decline phase (see also Korpimäki and Norrdahl 1991b; Korpimäki
and Norrdahl 1991a; Korpimäki et al. 1991; Korpimäki 1993; and see
Steen 1995) for very similar results obtained for a different species,
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M. oeconomus, in a Norwegian location. These observations are, of
course, precisely in line with the hypothesized roles of avian (treated
by theory as generalist) and weasel (treated as specialist) predators.
My general conclusion that the predation-based explanation is

currently the best-supported hypothesis when considered against the
alternatives does not mean that it is necessarily the correct one,
and that the relative degrees of belief assigned to other hypothesis
will not change with time. What I would like to claim, though, is
that the question of microtine cycles can certainly be considered
as an example of “mature science” in ecology. All the hallmarks
of mature science are present: hypotheses translated into models,
models have empirically based functional forms and parameters,
multiple hypotheses/models contrasted with each other using data,
explicit theoretical predictions tested with experiments, and, finally,
a strong differentiation (in terms of degrees of belief) among various
proposed explanations (to put it simply, there is one clear winner).

Latitudinal Shift in Vole Dynamics within Northern Europe While
the question of cycles in northern Fennoscandia appears to have a
clear-cut answer, the explanation of the latitudinal gradient in dynam-
ics, based on variation in generalist predator pressure, needs to be
hedged with some caveats. First, the analysis of the expanded data
set focusing specifically on the field vole confirms the presence of a
dynamical gradient, as quantified by changes in the amplitude, period,
and Lyapunov stability (for the latter, see figure 12.2). Thus, the
original conjecture of Hansson, Henttonen, and Hanski (Hansson and
Henttonen 1985, 1988; Hanski et al. 1991) is vindicated. However,
there is one aspect of this dynamical gradient that remains unclear:
is there a shift from second- to first-order dynamics in the southern
part of the field vole range? Note that the only indication of such a
shift comes from a single location, Revinge (which also happens to be
the shortest series). Dynamics at another southern location, Kielder,
are classified as second-order and periodic, although of quite small
amplitude. Thus, the question of whether population dynamics of M.
agrestis in the southern part of its range are stabilized to the extreme
of first-order aperiodic fluctuations must wait for further data.
What about the role of generalist predators in explaining the

dynamical gradient in M. agrestis? This explanation is well supported
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both theoretically (the modeling results when a generalist predation
term is added) and empirically (for review, see Hanski et al. 2001).
However, its logical status is not quite as strong as the explanation of
northern Fennoscandian cycles based on vole interaction with special-
ist predators, because there are several alternative hypotheses. One
is that increased generalist predation on weasels also is capable of
stabilizing the oscillations (this is based on my numerical exploration
of the appropriate modification of model 12.4). Second, Hansson
(1999) proposed a hypothesis based on habitat fragmentation changes
with latitude. These alternatives have not been formally contrasted
with the explanation based on generalist predation. In other words,
the generalist predation model has not yet survived such stringent
tests as formal contrasting against explicit alternatives, or as an
experimental challenge.

Lemming Dynamics The second case study investigated in depth
in this chapter, lemmings, offers a very interesting contrast to the
vole story, because the predation hypothesis appears to be rejected
by the preponderance of evidence. First, as we discussed in sec-
tion 12.5.2, the predation model makes wrong predictions about the
peak shapes characterizing lemming trajectories. Second, mustelids—
potential specialist predators of lemmings—are completely absent at
some locations (as on Wrangel Island; see Chernyavsky and Tkachev
1982), while at other sites they only infrequently invade lemming
habitat (typically, after vole peak years). Other predators, even mam-
mals such as arctic foxes, are unlikely to be able to play the role
of specialist predators, because they do not prey on lemmings in
winter—the period taking up most of the year, during which key
events determining dynamics happen.
Intrinsic hypotheses also appear to be an unlikely source of expla-

nations for the lemming cycle (Stenseth and Ims 1993b), although
it must be admitted that we need to know more about intrinsic fac-
tors that may influence lemming population dynamics. This leaves
interactions with food as the most plausible hypothesis for lemming
oscillations. So far, the food hypothesis has survived the first chal-
lenge: it turns out that a model based on it can generate oscillations
similar to those observed for biologically reasonable values of param-
eters. The next step should be an experimental challenge of the food
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hypothesis, although it will be a difficult task to set up, since any food
manipulation would have to be conducted during winter. Still, this
definitely would be a worthwhile attempt, given the intrinsic interest
of lemming dynamics. To conclude, I believe that the food quantity
hypothesis is best supported among the alternatives, given the current
state of affairs. However, its degree of support is nowhere near as
solid as that for the specialist predation explanation of the field vole
cycle.

12.6.2 Toward a General Trophic Theory of Rodent Dynamics

The contrasting “best models” for voles versus lemmings have an
important methodological consequence. Historically, population ecol-
ogists tended to look for “universal” explanations of small rodent
population dynamics (Chitty 1996). Given the weight of evidence
reviewed in this chapter, such a view no longer appears to be tenable.
Is this a pessimistic conclusion, then—is each species in each location
driven by a unique and idiosyncratic combination of mechanisms?
I do not think so, because I believe that we can seek generality at
the next level of explanation. In other words, I propose that instead
of looking for a general explanation based on the specific ecologi-
cal mechanism, we should instead base it on a general explanatory
framework, which in my opinion should be based on the theory of
trophic interactions. What I have in mind is a general model of the
following kind:
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Here V , N , and P are densities of vegetation biomass, rodents, and
specialist predators, and all parameters have their usual interpretation
(see the list of mathematical symbols at the front of this book). Model
(12.7) is not meant to be applied to any specific case study; it is
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too unwieldy for that. In fact, it is not even complete—we need sea-
sonality and stochastic environmental noise (I decided not to encum-
ber the equations with extra notation). It may be further complicated
by adding other rodent species to it, along the lines investigated by
Hanski and Henttonen (1996). This model, instead, is a theoretical
framework, in the sense that for different species, and for different
habitats, we would drop some terms and retain others, depending on
the ecological characteristics of the studied system. Thus, for Lem-
mus lemmus in a location like Finnmark, we would probably drop the
specialist predators, perhaps the rodent self-limitation term (r0N

2/k),
and substitute a logistic growth term in place of f �·�. With added
exogenous drivers (seasonality and noise) this could be a reasonable
model for the system. A model for the field vole in Pallasjärvi, on the
other hand, would certainly retain the specialist predators, although
we might decide to drop the generalist predation term (since general-
ist predation is quite weak at this northern location). We may decide
to model vegetation explicitly, substituting a regrowth term in place
of f �·�, or we might decide to model vegetation implicitly, by drop-
ping V as the state variable, and using a simple logistic term in the
herbivore equation.
I would further argue that model (12.7) provides a good framework

for most other studied rodent populations. It is certainly possible to
construct explanations of their dynamics, based on model (12.7), with
different qualitative structural assumptions, and different quantitative
choices of parameters. These explanations, discussed below, are in
my opinion plausible, because they do not violate known features of
empirical systems, but also speculative, because most are not sup-
ported by explicit modeling and empirical tests. Nevertheless, they
may provide useful working hypotheses for further work.

The Bank Vole One important characteristic of rodents is the
degree to which their diet depends on energy-poor (mosses, grasses)
versus energy-rich foods (seeds, insects). The more a rodent relies
on difficult-to-digest foods, the larger digestive machinery—gut—it
needs to “drag around.” In consequence, rodents characterized by
more herbivorous habits tend to be less agile and easier for predators
to catch than rodents with more omnivorous habits (Hansson 1987).
The rodent species commonly found in northern Europe, thus, can
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be ranged in a herbivory gradient from moss eaters to omnivores
as follows: Norwegian lemmings, field voles, gray-sided voles, bank
voles, yellow-necked mice. Of particular interest is the contrast
between the herbivorous field voles and the more omnivorous bank
voles, who also consume fungi, berries, and seeds. We can write
structurally the same model for both species, for example,
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(12.7)

This model is practically the same as the “standard” vole model
(equations 12.2), but the predation equation has the variable-territory
form, instead of the form developed by May (recollect that the lat-
ter can be thought of as an approximation for the former; see sec-
tion 4.2.2). However, although model equations may be the same for
the two vole species, parameter values can be quite different. The first
difference is in the search efficiency of predators, a. If weasels are
much more likely to capture a field vole compared to a bank vole,
then a in the bank vole model will be much lower than in the corre-
sponding model for field voles. Since the half-saturation constant is
related to the search efficiency inversely (section 4.1.1), bank vole’s
d should be much greater than field vole’s d.
A further difference is that the carrying capacity of bank voles is

much lower than that for field voles, partly because the bank vole
food supply is more limited, partly because they have more stringent
social controls on density. Now we recollect the fact that one of the
strongest influences on the stability of predator-prey models such as
equations (12.7) is the parameter ratio d/k (the “paradox of enrich-
ment”). We see that due to higher d and lower k, this ratio will be
much larger for bank voles than for field voles. Thus, we reach an
inescapable conclusion that bank vole dynamics should be much more
stable than dynamics of field voles. The contrast between the esti-
mates of �� in figure 12.2 provides a strong empirical confirmation
of this conjecture.
Yet another possible characteristic of bank vole food, distinguish-

ing it from that of field voles, is that it may exhibit a great degree
of fluctuation in certain habitats. For example, seed production in
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broadleaf forests in central Europe varies enormously from year to
year (this is known as masting). Accordingly, we would expect that
bank voles would rapidly increase in years of high mast and crash
in years following mast. The degree of crash should be accentuated
by the action of predators. This theoretical scenario appears to match
closely the situation observed in the Bialowieza Forest of eastern
Poland (Pucek et al. 1993).

The Gray-Sided Vole The gray-sided vole, Clethrionomys rufocanus,
is in its ecological characteristics intermediate between the field and
bank voles. However, like the field vole it is largely herbivorous.
Thus, the argument above applies, except that we would expect that
gray-sided vole parameters would be more similar to those for the
field vole than for the bank vole. Thus, our expectation is that gray-
sided vole dynamics should be quite similar to those of field voles,
but perhaps a shade more stable. This is precisely what we see in
the time-series data (figure 12.2). The Lyapunov exponents for four
gray-sided vole series sit right in the quasi-chaotic region, while �
for the northern populations of the field vole extend into the more
positive range.

The Common Vole Time-series analysis of the common vole
(M. arvalis) data suggests that its dynamics are dominated by
first-order mechanisms. However, first-order cycles with periods of
2–3 years appear to be not unusual. This observation suggests that
specialist predators do not play an important role in the dynamics
of M. arvalis (see also Jedrzejewski and Jedrzejewska 1996). One
possible explanation may be the strong presence of avian predators
that may keep weasel densities well below the threshold where they
can impact vole populations. First-order cycles may, therefore, result
from the interaction between voles and their food supply (modeled
with a regrowth equation) in a seasonal environment. It is clear
that this scenario is again a special case of the framework model
(equations 12.7).

Other Rodents Another example of second-order cycles examined
in section 12.2.2, in addition to field voles, is water voles in Switzer-
land. There are some data suggesting that these cycles are driven by
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interaction between water voles and their specialist predators, stoats
(Debrot 1981). Note that the average period of 6 years characterizing
water vole oscillations is consistent with general theory predicting
that larger body sizes, via lower intrinsic rates of population change,
should cause longer-period oscillations.
Turning to wood mice, we might consider their dynamics as an

even more extreme example of omnivory than the contrast between
the field and bank voles, discussed above. In fact, the ratio d/k char-
acterizing mouse-weasel interaction may be so high as to prevent a
weasel population from subsisting solely on mice. Thus, we should
expect first-order aperiodic dynamics in forest mouse populations,
characterized by a great degree of fluctuation where their food supply
is variable due to masting. Examples are mice in Bialowieza (Pucek
et al. 1993) and southern England (Southern 1979).
In the scenarios I considered above, the focal species was treated

as the “main player.” Yet rodent populations are embedded within
multispecies communities, and dynamics of numerically subordi-
nate species may be more affected by the ecological properties of
the numerically dominant species than of their own. It seems now
generally accepted that the dynamics of bank voles in northern
Fennoscandia are oscillatory because they are affected by weasel
predation “spilling over” after population collapses of the dominant
species, the field vole (Hanski et al. 2001). A similar mechanism may
explain the irregular dynamics of voles in North America, especially
those living in small clear-cuts within forests. There, mouse outbreaks
resulting from high-mast years may be followed by years of high
predation activity that spills over onto vole populations (Ostfeld and
Keesing 2000).
As a final thought, I should add that when discussing vole dynam-

ics in this chapter, I have largely followed my rule of ignoring spa-
tial complications. Yet, a synthesis of this issue cannot be complete
without an explicit consideration of space. Lacking space to address
spatial aspects here, I therefore refer the reader to two papers: one on
the landscape perspective by Hansson (1999), and the second on the
role of optimal to marginal patch areas by Lidicker (2000).



CHAPTER 13

Snowshoe Hare

13.1 INTRODUCTION

The snowshoe hare–lynx population cycles, like cycles in rodents, lie
at the very beginnings of the systematic study of complex popula-
tion dynamics (Finerty 1980). Although rodent cycles chronologically
were first to be noticed by Charles Elton (see section 1.1.1), at the
time there were no quantitative time-series data for rodents to be ana-
lyzed. But there were long-term records of fur returns at the Hudson’s
Bay Company, so for several decades the main focus of research
shifted from the shorter rodent cycles in Fennoscandia to the 10-year
hare-lynx cycles in boreal North America.

Early theories attempting to explain the biological mechanisms
of the 10-year cycle focused on exogenous factors, starting with
Elton himself, who suggested that lynx dynamics may be driven by
the sunspot cycle (Elton 1924; for other exogenous hypotheses, see
Royama 1992: table 5.1). Although recently the sunspot hypothesis
was partially resurrected (Sinclair et al. 1993), it was not suggested
to be the primary cause of the cycle, but at best a mechanism explain-
ing some secondary features of data (such as geographic synchrony
and variation in amplitude). Although the argument advanced by Sin-
clair et al. (1993) does not appear compelling to me, here is not the
place to discuss it, since my emphasis is on the main mechanism, or
mechanisms, that drive 10-year cycles (and Sinclair et al. are the first
to stress that they do not doubt the endogenous nature of this main
mechanism).
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The current consensus in the field appears to be that two main
factors are responsible for snowshoe hare cycles: availability of food
and predators. Exactly how these two factors interact in driving the
cycle, however, remains somewhat controversial. Keith (1990) argued
that winter food shortages stop hare population increase and initiate
the decline. This is followed by increased death rates due to pre-
dation, which drives hare density to its cyclic low. On the basis of
food addition experiments that failed to prevent declines, Krebs et al.
(1986) initially argued that predation alone is sufficient to account
for the population crash. However, this pure predation hypothesis was
later abandoned, because a manipulative experiment suggested that
simultaneous removal of predators and addition of food resulted in
much higher hare densities than either treatment by itself (Krebs et al.
1995). Thus, quantitative details of the interaction between predation
and food shortage in explaining hare cycles are currently not com-
pletely understood. An interesting idea relevant to this issue is the
predation-sensitive foraging hypothesis of Hik (1995). Additionally,
other authors argued that factors such as sublethal nematode para-
sitism (Murray et al. 1997) and predator-induced stress (Boonstra et
al. 1998) are important modifying factors of the cycle, in addition to
predation and food. Finally, some still argue that the case for preda-
tion is far from proven (Chitty 1996).

In this section I attempt to synthesize the insights from time-series
analyses, mathematical modeling, and field experiments. Because all
the major approaches to hare dynamics have been described in pri-
mary literature, in this chapter I use a somewhat different exposition
style than in previous chapters. Instead of delving into the nitty-gritty
details (for which I refer the reader to the relevant primary literature),
my focus is on connections between the empirical and theoretical
approaches. Furthermore, I attempt to place the dynamics of hares
within the general context of other taxa discussed in the book.

13.2 NUMERICAL PATTERNS

To start placing the 10-year cycles in context, let us first consult a
recent survey of 700 long time series data on population fluctuations
(Kendall et al. 1998). These authors concluded that cycle incidence
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is particularly common in mammal populations. Fully 70% of mam-
mal species had at least one cyclic population, and out of the total
of 328 mammal data series one-third were cyclic. A typical pattern
within species that exhibit both cycling and noncycling populations is
a latitudinal gradient in cyclicity. Thus, the hare-lynx cycle is not an
unusual occurrence, and understanding its causes may help to reveal
some general mechanisms of mammalian population dynamics (espe-
cially when taken in conjunction with insights from rodent and cervid
case studies).

The time series of lynx fur return statistics (Elton and Nicholson
1942) is the most famous example of oscillatory dynamics in ecology,
discussed in every ecological textbook I know of, and is probably the
most analyzed data set in ecology (Moran 1953; Leigh 1968; Bulmer
1974; Tong 1977; Finerty 1979; Schaffer 1985; Turchin and Taylor
1992; Sinclair et al. 1993; Stenseth et al. 1999 is only a partial list).
The best overview of these data and analyses is still Royama (1992:
chapter 5), whose conclusions I largely follow in this section.

There are at least three difficulties with interpreting lynx data, hav-
ing to do with the properties of trappers and traders as a “measuring
apparatus” of lynx dynamics. First, fur returns have a nonlinear rela-
tionship to lynx density, since the amplitude of oscillations in fur
returns probably exaggerates the cyclic changes in lynx population
(Royama 1992:171–175). Because company traders paid trappers a
fixed price per pelt, trappers must have been discouraged to catch ani-
mals when scarce. This property of the “measuring apparatus” would
tend to stretch the lows. To this observation, I would like to add the
following one. It is possible that at high lynx densities the ability
of the trappers to catch and process animals was saturated (both the
number of trappers that could be recruited to deploy traps, and the
number of traps that they had must have been limited). If this sup-
position is correct, then during the cyclic peaks the fur returns data
must have compressed the actual degree of change. In other words,
I suggest that the trappers behaved as generalist predators character-
ized by a sigmoid total response. The consequence of this behavior
was not only an inflation of amplitude but also some distortion of the
cycle topology when reflected in fur returns data.

The second imperfection of trapping as the measuring apparatus of
density is the possibility that lynx are more readily trapped when the
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Figure 13.1. Graphical output of the NLTSM analysis of lynx data: the
Mackenzie River District. Upper left: time plot; upper right: response sur-
face; lower right: phase plot.

population of their chief prey, the snowshoe hare, declines (Ward and
Krebs 1985). The third source of measurement error is establishment
of new collecting stations, changes in the boundaries of some districts,
missed years, and so on. The Mackenzie River District underwent the
minimum degree of changes among the ten districts, and, probably as
a result, shows the most stable oscillation pattern (Royama 1992:175).

The NLTSM analysis of the Mackenzie River data is shown in
figure 13.1. As we see, the analysis suggests that the dynamical pro-
cess driving lynx oscillations is characterized by order 2–3 (although
the selected order is 3, OCV values associated with d = 2 are almost
as good: see the analysis panel in figure 13.1). This result agrees with
most other analyses (e.g., Royama 1992; Stenseth et al. 1997). The
only exception is Tong (1977), who used an eleventh-order autoregres-
sive process to model the lynx data. From the ecological point of view,
however, it is very doubtful that the order 11 reflects any real eco-
logical processes. What seems more likely is that this estimate is an
artifact of using a linear autoregressive (AR) approach: what appears to
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be happening is that a linear model is incapable of adequately captur-
ing the nonlinear nature of the oscillation (remember that a linear AR
process cannot produce a stable limit cycle; it can only generate oscil-
latory approach to a stable point). As a result, a very high-order AR
term is needed to bring the output of the statistical model closer in line
with the pattern shown by data. In the words of Royama (1992:184),
the linear eleventh-order AR model is “like a polynomial curve fit-
ting and provides no insight into the ecological structure of the lynx
population process.”

Pelt harvest statistics for snowshoe hare are not as extensive as
those for lynx. The longest series is from the Hudson’s Bay Company,
tabulated by MacLulich (1957). The hare data are characterized by a
lower signal/noise ratio than the lynx series, but the periodic nature
of the series is very apparent.

Having data for both lynx and hare might tempt us to probe the
topology of cyclic peaks, in order to determine whether our ideas
about which species is prey and which predator coincide with the
analysis results. Unfortunately, this is a case where peak topology
analysis cannot be used, because it critically depends on the assump-
tion that the analyzed population index is linearly related to the under-
lying population density. As we know from the discussion of the
nature of fur return data, this is not the case. Thus, these data should
provide us with good indications of periodicity, signal/noise ratios,
and order, but are not useful for determining the finer probes (or even
the amplitude).

There is another use to which we can put these data, however: to
obtain an estimate of the phase lag—the time by which predator den-
sity lags behind prey density. One potential problem, of course, is the
higher trappability of lynx during the periods of their prey decline.
This feature of the data should result in recorded lynx declines occur-
ring somewhat later than the actual ones. However, in my judgment
this effect should be numerically not very strong, resulting in a post-
ponement of lynx decline by perhaps a year. This caveat should be
kept in mind. But there is an additional, historical reason for the anal-
ysis of phase lag between prey and predator densities. Gilpin (1973),
using the data tabulated by Leigh (1968), noticed that the peaks of
lynx numbers tended to occur slightly ahead of hare peaks, prompt-
ing the title of his paper “Do Hares Eat Lynx?” This observation has
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become part of ecological folklore (and even the subject of serious
attempts to explain it), and not all ecologists know that it is based on
faulty data.

As Royama (1992:233) noted, there are two sources of errors in
the Leigh-Gilpin analysis. First, there was a confusion about assign-
ing years to data points, having to do with when the furs were col-
lected, and when they were marketed (one year later). This resulted
in Leigh’s shifting lynx data one year back in time. Second, Leigh-
Gilpin data on lynx fluctuations were pooled from different districts
across Canada, while the hare data came from the shores of Hudson
Bay. Royama suggested that, in order to check on the presence of
phase lag, we need to compare the hare series with lynx data collected
in the two districts adjacent to Hudson Bay (North Central and James
Bay). Thus, the previous claims that hare and lynx dynamics do not
fit the pattern predicted by predator-prey theory are unwarranted. Fur-
thermore, the Hudson’s Bay Company is not the only source of data
where we can check whether the phase lag between prey and preda-
tors conforms to theoretical predictions. Thus, Bulmer (1974) located
two data sets from northern Russia. Both data sets clearly show that
lynx peaks lag behind hare by 2–3 years.

13.3 MODELS

Given the amount of effort lavished on empirical studies and statistical
analysis of time-series data from the hare-lynx system, it is surprising
that so little attention has been devoted to developing and parameter-
izing mechanistic models. This attitude is, most likely, a result of a
strong antitheoretical bent of some of the most influential empirical
ecologists working in the field (e.g., see Krebs 1995). In any case, all
the mechanism-based models of the snowshoe hare–lynx cycle known
to me date from the 1990s (Akcakaya 1992; Ives and Murray 1997;
King and Schaffer 2001; a pioneering attempt by Leigh 1968 must
be judged as failure, partly because he did not go beyond the overly
simplistic Lotka-Volterra model, and partly because his data set was
flawed; see above). In this section, I primarily focus on the King and
Schaffer paper, as the most developed and credible approach, but first
a few words about the earlier modeling efforts.
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The approach of Akcakaya (1992), in my opinion, suffers from his
adoption of the ratio-dependent framework for modeling predator-
prey interactions. It may be expedient to use the ratio-dependent
functional response in cases where it provides a better approximation
of data than the hyperbolic response (see section 4.1.1). However,
Akcakaya (1992) did not demonstrate this, and thus I see no reason
to prefer the less mechanistic version to the theoretically sound
and empirically highly supported hyperbolic response. Furthermore,
a predator-prey model based on the ratio-dependent response, as
Akcakaya shows, cannot exhibit stable limit cycles: when the non-
trivial equilibrium is unstable, all trajectories approach the origin
(i.e., both prey and predator go extinct). Since, obviously, the hare-
lynx system exhibits bounded oscillations, this feature of the model
presents a conceptual difficulty. Akcakaya solves it by positing the
existence of an absolute refuge. When such a refuge is added to
the model, it becomes capable of generating stable limit cycles.
Apart from the biological implausibility of an absolute refuge for the
hare-lynx system, its introduction into the model requires Akcakaya
to estimate yet another parameter without any independent empir-
ical basis. To summarize, the decision to use the ratio-dependent
functional response imposes at least two costs: lack of firm mecha-
nistic basis and the need to unnecessarily complicate the model (to
remind the reader, simple models based on the hyperbolic functional
response, such as the Rosenzweig-MacArthur, naturally generate
either stable points or stable limit cycles, depending on parameter
values, without any need to introduce additional features, such as
refuges). Because of these criticisms, I think that the models dis-
cussed next are better approaches to the theoretical investigation of
the hare-lynx cycle. However, I do not want my critique of Akcakaya
(1992) to appear too harsh, because, after all, it was the first compre-
hensive attempt at a theoretical/empirical synthesis of the hare-lynx
oscillations, which showed that a simple predator-prey model with
biologically reasonable parameters is capable of producing limit
cycles of appropriate period and amplitude.

The goal of the series of models developed by Ives and Murray
(1997) was to investigate the effect of sublethal parasitism on
predator-prey dynamics. They showed that even a relatively small
increase in the vulnerability of nematode-infested hare to predation
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may substantially destabilize the interaction between hare and their
predators (lynx, coyotes, hawks, and owls). Thus, a hare-predator-
parasite model may exhibit stable limit cycles, even though the
reduced hare-predator system is characterized by a stable point equi-
librium. One problematic feature of this very interesting paper is the
use by the authors of the discrete modeling framework (mammalian
interactive systems operate in continuous time, unlike forest insect
systems that are naturally modeled with difference equations, and the
time step of one year may be too large in relation to the length of
the cycle if we wish to employ discrete equations as approximations
of the underlying continuous process). However, it is likely that the
main message of Ives and Murray would stay unchanged were they
to use the continuous time approach, because it is a general feature
of dynamical systems that increasing their dimensionality usually
decreases their stability (May 1974b). This is all I will say about the
paper by Ives and Murray (1997), because the main question that I
wish to pursue here is what is the identity of the primary mechanism
driving the snowshoe hare population cycles. By contrast, Ives and
Murray postulate an answer to this question (predation), and address
a secondary issue, how another ecological mechanism (parasitism)
may affect the workings of the primary one.

The King and Schaffer (2001) Model As was discussed in the begin-
ning of section 13, the current consensus in the field appears to be
that the snowshoe hare cycle is driven by a trophic mechanism, or
a combination of trophic mechanisms. Thus, three hypotheses can
be explicitly formulated: (1) hare-vegetation interaction (Lack 1954),
(2) hare-predator interaction (Trostel et al. 1987), and (3) the three
trophic levels hypothesis (Keith 1990). To theoretically investigate the
plausibility of these three hypotheses, King and Schaffer (2001) pro-
posed a model of vegetation-hare-predators interaction, estimated its
parameters, and compared the model’s predictions to time-series data
and the experimental data obtained by Krebs et al. (1995). Although
the King-Schaffer model is a translation of the tritrophic hypothesis
into mathematical language, they could also have used two simplified
versions of the model to assess the dynamical effects of food and
predation acting alone (more on this below).
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The model of King and Schaffer falls squarely within the “standard
theory” of trophic interactions, as outlined in chapter 4. Somewhat
simplifying, we can write its equations as follows:
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This is the minimal model of King and Schaffer (2001: equation 9),
which I further simplified by suppressing dependence of some param-
eters on season, in order to see the model structure more clearly.
The state variables of the model are V , the biomass of hare browse;
N , hare population density; and P , density of hare predators. Note
that both V and P do not refer to single-species populations, but
to “dynamical complexes” of browse species (aspen, willow, etc.)
and predators (lynx, coyotes, hawks, and owls), respectively. This is
clearly an oversimplification, but perhaps not a fatal one.

In the vegetation equation, the first term reflects vegetation dynam-
ics in the absence of herbivores, modeled with the regrowth equation
(section 4.4.2). The second term is the standard hyperbolic functional
response of herbivores to fluctuating forage biomass. In the herbivore
equation, the first term represents herbivores’ numerical response,
written in the form of equation (4.15) (see section 4.2.1). The sec-
ond term represents predators’ functional response, again using the
hyperbolic form. Finally, the predator equation is the same as in the
Rosenzweig-MacArthur model (section 4.2.1). We see that this is a
rather generic model, and, in fact, fits well within the general frame-
work for modeling vegetation-rodent-predator systems advanced in
section 12.6.

The actual model that King and Schaffer analyze is a more com-
plex version of equation (13.2), in which several parameters vary
seasonally. This modification both increases the realism of the model
(since seasonal effects are quite strong in boreal ecosystems), and
leads the model to exhibit an array of complex dynamical behaviors.
The authors use bifurcation methods to map out the fascinating mathe-
matical structures known as “resonance horns” or “Arnold’s tongues.”
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For the results of this analysis, I refer the interested reader to the
papers by King and Schaffer (1999, 2001). For the purposes of this
book, we are primarily interested in determining how King and Schaf-
fer’s model fits within the general picture of mammalian cycles (and,
more generally, complex population dynamics). Because seasonality
has a rather mild effect on the main probes of interest, amplitude and
period, I will go ahead and use the simplified nonseasonal version of
the King-Schaffer model (but we should keep in mind the possibility
of more complex behaviors, such as multiple coexisting attractors, in
the model with seasonality).

Using a variety of available ecological information (but not time-
series data), King and Schaffer estimated biologically plausible ranges
for all the parameter values of their model. They found that for these
parameters the model generically predicts oscillations of between 8
and 12 years in period, and somewhat greater variation in the ampli-
tude (with most peak/trough ratios lying between 10 and 200). This
result is in basic agreement with the empirically observed period of
10 years, and peak/trough ratios of 13–141 (see table 2 in King and
Schaffer 2001). A “typical” trajectory is shown in figure 13.2a. To
generate this output, I solved equations (13.2) for 100 years to allow
the transients to die out, and then for the further 50 years, which are
plotted in the figure. The parameter values are those which King and
Schaffer used to compare their model output with the experimental
data of Krebs et al. (1995; this comparison will be discussed below):
the regrowth rate u0 = 84 Mg km−2 yr−1, carrying capacity of vegeta-
tion m = 120 Mg km−2, herbivore saturation rate a = 0�66 Mg hare−1

yr−1, herbivore half-saturation constant b = 40 Mg km−2, herbivore
conversion constant 	 = 5�55 hare Mg−1, herbivore ZPG consumption
rate 
 = 0�324 Mg hare−1 yr−1, predator saturation rate c = 600 hare
pred−1 yr−1, predator half-saturation constant d = 50 hare km−2,
predator conversion constant 
 = 0�0044 pred hare−1, and predator
ZPG consumption rate � = 374 hare pred−1 yr−1. (All these parame-
ters are explained in chapter 4). As we see in figure 13.2a, for these
values of parameters the model predicts oscillations of about one
order of magnitude (trough and peak densities are, respectively, 14
and 180 hare km−2) and a period of 10 years.

Assuming that the King and Schaffer model with these parameter
values is a reasonable description of the actual population dynamics of
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Figure 13.2. Output of (a) the tritrophic, (b) the hare-predator, and (c) the
vegetation-hare models.

snowshoe hare (we shall return to this question below when we com-
pare the model output to the results of the manipulative field exper-
iment), we can use it to really dissect the dynamical roles of food
and predators in generating the hare population oscillations. The main
question that motivates me is to determine whether the oscillation is
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a truly tritrophic phenomenon, or whether it is primarily due to one
or another trophic link (food versus predators). We can answer this
question by the following thought experiment: let us “turn off” food
or predators in the model, and observe whether the basic oscillatory
dynamics remain after either manipulation. Turning predators off is
easiest. We can simply set P = 0 in model (13.2), which leads us
to model (4.40), discussed in section 4.4.3. This model is globally
stable for all values of its parameters. Numerically solving it for the
parameter values given in the previous paragraph, we observe that,
after a very mild overshoot, both hare and vegetation trajectories settle
down to a very stable equilibrium (figure 13.2c). One might criticize
this result by pointing out that the appropriate method for turning off
the dynamical effects of predators is not to set them to zero, but to
stop the variation in the predation intensity with hare density. One
way of addressing this criticism would be to increase the parame-
ter 
 appropriately. Numerical investigation shows that increasing 


does not cause the model to cycle. When 
 is set too high, the hare
population simply goes extinct. To summarize the insights from the
vegetation-hare submodel, it appears that predation is necessary for
cycles. However, it is still possible that cycles are a true tritrophic
phenomenon, and to check on this we need to remove the dynamical
effects of food from the tritrophic model.

Unlike predation, we cannot simply set food to zero, because in
that case the hare population would simply go extinct due to starva-
tion. The opposite approach, fixing food biomass at some constant
level (similarly to setting predation mortality at a constant, as we
did in the previous paragraph), does not work either. Because food
limitation is what keeps hare numbers in check in the King-Schaffer
model, removing the ability of hares to depress food level leads to
hare population simply growing forever. Thus, what we need to do
is to model the effect of food as a strictly first-order factor that acts
without any lags. This is accomplished by substituting a logistic term
into the hare equation:
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We immediately recognize these equations as the Rosenzweig-
MacArthur model. The logistic parameters can be obtained from the
hare set as follows. The intrinsic rate of population growth r0 =
	�am/�b + m� − 
�, which is the hare growth rate obtained when
vegetation is at the maximum, V = m, and predators are at the mini-
mum, P = 0. To obtain the carrying capacity, we simply solve for the
equilibrium density that hares achieve in a pure vegetation-herbivore
model. Solving the resulting model, we obtain the dynamics depicted
in figure 13.2b. The remarkable result is that the basic pattern of
oscillations is little changed by shifting from the King-Schaffer
model to the Rosenzweig-MacArthur one. The period remains at the
same value, 10 years, although the amplitude is somewhat decreased.

The results of this thought experiment, therefore, suggest very
strongly that the primary factor responsible for cycles in the model is
predation. Food acting on its own is unable to cause sustained oscil-
lations, and when acting together with predation, its only role is to
increase the amplitude of the cycles. Inasmuch as the model is a faith-
ful description of the real situation, therefore, we can transfer this
insight on the functioning of the snowshoe hare–based ecosystem.

13.4 EXPERIMENTS

There are two intensively studied field sites in boreal North America:
one near Rochester, Alberta, and the other in the Kluane Lake area
of the Yukon Territory (there was also a shorter study in Minnesota
during the 1930s; see Green and Evans 1940). The research arti-
cles stemming from these two long-term studies are too numerous to
list here, but the Rochester study was reviewed by Keith (Keith and
Windberg 1978; Keith 1990), and the Kluane study is described in
Krebs et al. (2001). Both studies yielded a wealth of data, includ-
ing time-series data on actual population densities (as opposed to fur
return–based indices) of snowshoe hare and its predators, estimates of
predation mortality, food depletion, parasite loads, movement rates of
radio-collared hares, and much more. These data have been extremely
valuable both for model parameterization (section 13.3) and for test-
ing various theories of why hare populations cycle.
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The Rochester Study In their studies of the Rochester hare pop-
ulation, Keith and coworkers employed a mensurative approach (in
this review of the Rochester results I follow Keith 1990). They chose
several variables thought to be important in driving the hare cycle
and then carefully measured them throughout the complete oscilla-
tion, with a particular focus on the peak and decline phases. The
initial emphasis of the research group was on food, because it was
hypothesized as the primary cycle driver, with predation thought to
play a secondary role of deepening and extending low-density phases
(Keith 1974; Keith and Windberg 1978). Accordingly, Pease et al.
(1979) measured the food available to hares (woody browse) during
six winters (1970–1975) of population decline following the 1970
peak. Their results indicated that hares experienced food shortages
during 1970 and 1971, that is, during the peak and the first post-
peak years. After that, the amount of browse was more than sufficient
to support the existing hare density, yet the population continued to
decline for several more years (the first year of increase was in 1977).

Functional and numerical responses of the main hare predators
were monitored at Rochester during the complete 1965–1975 cycle.
From this information and a knowledge of hare densities, Keith and
coworkers calculated rates of overwinter predation on hares (Keith
et al. 1977). Predators killed an estimated 10–15% of the hare pop-
ulation during the increase and the peak years, 1966–1970 (hereafter
“winter of 1970” is short for winter of 1970–1971). After that, pre-
dation rates increased sharply, reaching 43% in 1972, with predators
accounting for about 70% of total deaths. By the fifth winter after
peak (last year of decline), predators were still responsible for 28% of
mortality (twice the increase phase level). Thus, unlike the impact of
food shortage, predation acts in a markedly delayed density-dependent
manner.

Furthermore, subsequent research showed that the indirect calcu-
lations of predation impact on hare populations, which were based
on estimates of predator numbers and their kill rates, underestimated
the actual hare mortality due to predators during the decline years
(possibly because the researchers did not properly take into account
surplus killing). Radiotelemetry studies of hare mortality at Rochester
during the subsequent 1975–1985 cycle (peak in 1980) suggested that
predators were the proximate cause of most deaths much earlier in
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declines than first envisioned, and the predation impact during the
decline years was much more severe. For example, 80–90% of hare
deaths during the second winter (1981) of decline were due to preda-
tion (Keith et al. 1984). During the same year, food was apparently
not short in three out of eight study areas, yet hare density continued
to collapse everywhere (Keith et al. 1984).

Taking into account that calculations of Keith et al. (1977) miss
some predation events (e.g., those due to surplus killing), we have
a rough estimate that overwinter mortality of hares due to predators
should peak around 50%. Is this mortality severe enough to drive
the cycle in hare density? Clearly, we have here a benchmark that
we can use to test the King and Schaffer model. The model predicts
that instantaneous predation mortality should peak at �pred = 1�6 yr−1

(King and Schaffer 2001: figure 10a). To translate this number into
the overwinter mortality rate, we note that Keith et al. assumed
winter length at 151 days. Thus, overwinter survival is equal to
exp�−�predt� = exp�−1�6 yr−1151/365 yr� = 0�52, and proportion
killed is 1 minus that, or 0.48. As we see, this theoretical prediction
is in good agreement with the empirical morality rate.

Summarizing this admittedly sketchy review of the Rochester
study (for a more detailed description, I refer the reader to Keith
1990), we see that these findings are in substantial agreement with
the predictions of the King and Schaffer model (section 13.3). In
particular, the availability of food acts as an essentially first-order
variable, whose effect on hare dynamics quickly dissipates after the
first year of decline. As the model suggests, food appears to prevent
indefinite growth of the hare population, and gives it the first nudge
toward decline. It is predation, however, that causes a prolonged
(4-yr) decline phase, and is therefore the primary factor causing the
oscillation. Furthermore, the quantitative predictions of the King and
Schaffer model about the maximum magnitude of predator-caused
mortality during the collapse phase are also in excellent agreement
with the Keith et al. (1984) data.

The Kluane Study In their study of the Kluane Lake hare pop-
ulation, the University of British Columbia (UBC) group has con-
sistently employed a manipulative experimental approach (see, e.g.,
Krebs 1996). Two of their long-term experiments deserve particular
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mention. In the first, researchers provided rabbit chow as winter food
to three experimental areas, and compared their hare densities to those
in six control areas where no food supplementation took place. The
experiment took place during 1977–1984, covering the increase, peak
(in 1980–1981), and decline phases of the cycle. The major findings
from this experiment were as follows. Generally, hare populations in
areas with extra winter food reached peak densities three times those
of the controls (although in one unusual replicate, for obscure rea-
sons, the density was little affected by food supplementation). How-
ever, in all food addition areas hare density decreased essentially
synchronously with the control areas (the beginning of decline was
delayed by 6 months in one area, but not in others). Based on these
results, the authors concluded that food shortage is not a necessary
cause of the cycle.

In the second experiment, which took place during the next hare
cycle (1986–1994), Krebs and coworkers (1995) extended the spec-
trum of experimental treatments. Each experimental unit consisted of
a huge 1 km × 1 km block of undisturbed boreal forest. Three areas
were used as unmanipulated controls. Two other areas were provided
with supplemental food. In one further area, mammalian predators
were excluded with an electrified fence (the investigators also cov-
ered 10 ha in the predator-exclusion treatment with monofilament, but
this approach was ineffective in reducing avian predation). Finally,
in one area the food addition and predator exclusion treatments were
combined. (In addition, two areas were used for a fertilizer addition
treatment, but because adding nutrients had virtually no effect on hare
densities, I mention it only briefly on p. 361.)

Summarizing their results and conclusions from this ambitious
experiment, Krebs et al. (1995) wrote: “Predator exclosure doubled,
and food addition tripled hare density during the cyclic peak and
decline. Predator exclosure combined with food addition increased
density 11-fold.� � � Food and predation together had a more than
additive effect, which suggests that a three-trophic-level interaction
generates hare cycles.” This conclusion seems to imply (and, cer-
tainly, was so interpreted by most ecologists) that food and predation
play qualitatively similar roles. It reflects an essentially linear think-
ing, epitomized by the analysis of variance: predation explains two
units of difference, food another three units, and interaction between
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the two factors the remaining six units, for a total of eleven. This
interpretation of the experimental results is radically different from
the message of the King and Schaffer model. As King and Schaffer
repeatedly emphasize, the fundamental cause of multiannual cycles is
that winter browse sets the peak density, while predation causes the
crash. In the terminology of this book, food is a first-order mecha-
nism, while predation is a second-order mechanism.

Do the Krebs et al. results contradict the insights of the King and
Schaffer model? To answer this question, King and Schaffer employed
their model to simulate the results of experimental manipulations.
They modeled supplemental feeding by adding a constant term Vsuppl

to the right-hand side of the V equation, representing the rate at
which food was added by experimenters. Partial predator exclosure
was modeled by multiplying the predator density in the N equation
by a factor Q (Q = 0 corresponds to all predators excluded, Q = 1
means no predators excluded; King and Schaffer assumed Q = 0�2).
The results of the simulation are shown in figure 13.3). Even though
there are certain differences in detail, we see that the broad patterns
in the experimental data are well captured by the model. Thus, the
model predicts a much greater peak density in food addition treat-
ments, and a delayed crash in predator-exclosure treatments. Note, in
particular, how hare density in the combined treatment collapses to a
low value, even though only 20% of predators have been assumed to
be able to get at hares in exclosures (in reality, this is an underesti-
mate, because avian predators constitute about 40% of the predation
community).

Further support for the model comes from comparing predation
mortality predicted by the model with that observed during the Krebs
et al. experiment. Krebs et al. report that annual survival during the
decline phase in the controls was 0.7%, while in the predator exclo-
sure it was 9.5%. If we assume that mortality in the exclosure was
the base rate �0, while in the controls mortality rate was a sum of
the base rate and predation rate, �0 + �pred, then a quick calculation
shows that

�pred = ln Sexcl − ln Scontr = ln 0�095 − ln 0�007 = 2�6

In other words, the measured death rate due to predators is even
greater than that assumed by the model! This difference is probably
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Figure 13.3. Comparison of (a) the experimental results of Krebs et al.
with (b) simulations using the King and Schaffer model, with modifica-
tions allowing for food addition and partial predator exclusion. Treatments:
controls (solid line), supplemental feeding (dotted line), partial predator
exclosure (dash-dot), and combined treatment (dashed line). (After King
and Schaffer 2001: figure 9.)

not statistically significant, as the next calculation suggests. In the fer-
tilizer addition treatments, the average survival rate was 1.9%, which
was not statistically different from the 0.7% rate in the controls. Sub-
stituting this survival rate in place of 0.9% in the above equation, we
obtain an estimate of the instantaneous predation rate �pred = 1�6 yr−1,
which is the same as predicted by the model.
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13.5 SYNTHESIS

Concluding my quick review of the Kluane Lake research program, I
would like to express my personal opinion of the approach taken by
the UBC group, with a specific focus on the 1986–1994 experiment.
On the positive side, I am awed by the sheer magnitude and daring
of this experiment. Its use of huge 1 km2 blocks of forest, its dura-
tion (8 years), the excellent group of researchers working together
toward the same goal, and their struggle to implement experimen-
tal treatments, particularly the predator exclosure, evoke admiration.
Some ecologists have criticized this experiment for employing only
single replicates for the key predator exclosure and combined treat-
ments. However, such criticisms are unfair. If we want to understand
what causes hare cycles, we have to use large experimental units,
and our ability to replicate them has to be limited. I personally think
that using hare-permeable fences was a mistake, because it allowed
hares to immigrate to areas of high food, and emigrate from areas
protected from predators. Thus, hare movements confounded the key
processes that were studied (reproduction and mortality). In fact, one
of the key findings of the experiment, that food addition substan-
tially elevated hare densities, was due more to hare immigration than
to their elevated reproduction or survival (Boutin 1984). Still, hav-
ing conducted my own long-term field manipulations, I know very
well that no design is perfect—one always has to balance conflicting
demands. In the case of the Kluane Lake experiment, the investiga-
tors clearly wished to avoid the “Krebs” effect, in which enclosed
populations may exhibit unnaturally high population densities. In any
case, trying to second-guess decisions made by a group of excellent
field biologists with decades of experience with the system is futile.
Furthermore, the study yielded an enormous treasure trove of infor-
mation about the functioning of the Kluane Lake system (Krebs et al.
2001), and it is unlikely that, given limited resources, more could
have been obtained.

On the negative side, the data from the Kluane Lake study, in my
opinion, were poorly analyzed. One central idea of this book is that
we simply cannot test hypotheses about complex nonlinear dynamics
without explicit mathematical models. Yet, neither the construction
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of predictions to be tested, nor the analysis of results of the Kluane
Lake experiment, were theoretically informed. For a specific exam-
ple, building the case for the tritrophic nature of the hare cycle on the
degree by which various experimental treatments increase population
density during the peak and decline is based on faulty reasoning, as I
tried to show above. These are strong words, but in this case, I believe,
my criticism is fair. Charles Krebs, the leader of the UBC group,
is on record with antitheory statements such as “avoid mathematical
models” (Krebs 1995). In his opinion, mathematical models should
be employed only after everything about the system has been learned
using the experimental approach. In my opinion, our general approach
should be exactly the reverse: first model the system (preferably with
several alternative models), then test model predictions with experi-
ments. Thus, it is important to show how the methodological stance
of the UBC group has impaired their long-term research efficiency.

It is clear that the initial intent of the Kluane Lake experiment
was to determine which of the treatments would “stop the cycle.” The
experiment failed to do that, yet the investigators still concluded that
the combination of two factors manipulated in the treatments is the
cause of the cycle. This logic is, of course, vulnerable to criticism,
as was gleefully pointed out by Dennis Chitty (1996). Unlike Chitty,
I am persuaded by arguments of Krebs et al. (1995) that hare density
declined in the predator exclosures because not all predators were
excluded, and because hares emigrated through the fences. The main
observation that persuades me that Krebs et al. are correct in assigning
predation the main role in driving the cycle is the sheer magnitude of
predation mortality during the decline phase of the hare cycle, when
practically all deaths were due to predators. Furthermore, as I dis-
cussed above, the magnitude of predation mortality is consistent with
that assumed by the model. In other words, the observed predation
rate is numerically “strong enough” to drive the cycle. Of course, this
observation was already made by the group studying the Rochester
population. Thus, in my opinion, the key contribution of the Kluane
Lake experiment was not the effect of treatments on hare density, but
the demonstration that partially excluding predators results in a huge
decrease in mortality rate. This result addresses a potential criticism
of the Rochester study that if predators would not eat the hares, they
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would die of some other cause anyway. For example, it is conceiv-
able that the hare cycle is driven solely by factor X (e.g., stress), and
predators can eat only the hares about to die as a result of high X.
In such a situation, we would observe high predation mortality dur-
ing the decline, and yet would be wrong to conclude that predation
is the cause of the cycle. The Kluane Lake experiment excluded this
possibility.



CHAPTER 14

Ungulates

14.1 INTRODUCTION

Mechanisms underlying population dynamics of North American
cervids (such as white-tailed deer, reindeer, elk, and moose) are a
subject of some controversy. The current debate centers on the impor-
tance of predation versus interactions with food, and the dynamical
role of exogenous factors (as far as is known, social population
controls are lacking in deer). For example, Mech et al. (1987) argued
that the main determinant of moose dynamics is their interaction with
food as modified by weather (specifically, the cumulative effect of
snowy winters), and that predation by wolves is secondary to winter
weather in influencing moose populations. By contrast, Messier
and Crête (1985) and Messier (1991) advocated predation as the
most important factor shaping moose population dynamics (for a
further exchange, see McRoberts et al. 1995; Messier 1995; Post and
Stenseth 1998). Subsequently, Boutin (1992) concluded that evidence
for predation as an important factor in moose population change was
not convincing, but Van Ballenberghe and Ballard (1994) and Messier
(1994) presented more data and models suggesting that predation by
wolves, especially when supplemented by predation by bears, can
substantially reduce moose population density. Another controversy
focused on factors determining moose dynamics in predator-free
environments (Saether et al. 1996; Saether 1997; Crête 1998; Saether
et al. 1998).

Such debates are a healthy sign, especially because many data
are available, and each new cycle of controversy tends to engage
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an increasingly wider spectrum of empirical information. However,
I believe that the discussion could profit from greater theoretical
rigor. Accordingly, my main goal in this chapter is to place the
ideas and data employed by ungulate ecologists within the conceptual
framework developed in the book. Note that this objective is much
less ambitious than in other case studies, where I generally attempt
to arrive at some conclusion about ecological mechanisms that are
responsible for the observed fluctuation patterns. The organization of
the chapter reflects this shift in objectives. Instead of following my
usual procedure of starting with an overview of numerical patterns, I
jump right away into model building. My focus is on trophic inter-
actions: food and predators. Model development is then followed by
comparisons between models dynamics and whatever long-term data
are available.

A Terminological Note The current debate on deer population
dynamics appears to center on the question of what are the limiting
and what are the regulating factors in deer population dynamics.
Probably the clearest definition of these concepts is given by Messier
(1991). Limiting factors are those responsible for year-to-year changes
in the rate of population growth, while regulating factors are those
that act in a density-dependent manner, and serve to keep population
density within a certain range. Thus, regulating factors are a subset
of limiting factors characterized by negative-feedback mechanisms.

I prefer to use an alternative classification (section 5.1). Like
Messier and other ungulate ecologists, I focus on factors that explain
variation in the population rate of change, quantified as the realized
per capita rate of change r�t�. Null factors are those that do not
explain any variation in r�t�. Exogenous factors are those that affect
r�t�, and therefore population density, but are not themselves affected
by density. They correspond to nonregulating limiting factors in the
classification of Messier. Endogenous factors are those that reflect
feedbacks from population density. Endogenous factors correspond to
the regulating factors in Messier’s classification. I further subdivide
endogenous factors into first- and second-order ones. First-order
endogenous mechanisms directly translate the changes of population
density into an effect on r�t�, acting without an appreciable lag.
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Second-order endogenous mechanisms are those in which popu-
lation density affects r�t� indirectly, by first acting on some other
state variable, X�t�, and then by X�t� affecting r�t�. Second-order
factors, thus, act with a time lag. Recollect also that in practice the
distinction between first- and second-order factors is not absolute, so
we usually treat factors acting with a lag less than generation time
as first-order, and those acting with a lag of greater than generation
time as second-order (section 2.5).

Although the definitions used by Messier are internally self-
consistent, my preference for the exogenous/endogenous classification
is due to the following reasons. First, limiting has all the wrong
mnemonics, because it evokes a mechanism that would keep pop-
ulation density “within limits,” which is of course the opposite of
the sense in which it is used. I do not think it is a good idea to
use terminology in which the technical sense is the opposite of the
“common” sense. By contrast, endogenous and exogenous factors
evoke mechanisms that are either part of the dynamical feedbacks or
not. Second, limiting and regulating categories are nested within each
other, leading to awkward usage; it is much better to use nonover-
lapping concepts. Additionally, “regulating” factors do not have
an associated classification comparable to first- and second-order
endogenous factors. Finally, different people use different definitions
of what are limiting and what are regulating factors, even within
the ungulate ecological community. For example, Boutin (1992:117)
defines a regulatory factor as the one whose magnitude is a direct
function of population density. This definition, of course, leaves
second-order factors beyond the pale. In fact, Boutin (1992: figures 1
and 2) finds no or an inverse relationship between predation rate on
moose and moose population density, which he uses to argue against
an important dynamical role of predation. His argument, however,
ignores the possibility (indeed, probability) that predation may cause
delayed density dependence in moose dynamics. Definitions of “pop-
ulation limitation” are even more diverse. Thus, Kunkel and Pletscher
(1999) defined a limiting factor as “one that far outweighs others in
impeding the rate of increase.” Sinclair (1991), by contrast, called
the limiting factors those that set the position of the equilibrium. In
other words, there are at least three wildly different definitions of
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the term “limiting factors” commonly used within the same scientific
community!

14.2 INTERACTION WITH FOOD

The first decision to make when building a herbivore-vegetation
model is whether to base it on the logistic or the regrowth func-
tions (section 4.4.2). Models of deer-vegetation interaction typically
use the logistic function (Schmitz and Sinclair 1997; Boyce and
Anderson 1999). However, this assumption does not make sense,
because typically only a minor proportion of vegetation is accessible
to mammalian browsers (I focus on winter food supply as the most
important population bottleneck). Browsers such as deer consume
only twigs less than a certain diameter (e.g., Vivas and Saether
1987). Additionally, most twigs are inaccessible because they are too
high to reach. Thus, the dynamics of food supply for deer should
be better approximated with a regrowth equation. The only possible
exception to this rule would be situations where deer cause high
plant mortality (even in such cases, the pure logistic model would not
be appropriate, and we would want to use a more complex equation
combing elements of both logistic and regrowth).

Thus, we can write the following simple model for the deer-
vegetation interaction (see model 4.40 in section 4.4.3):

dV

dt
= u0

(
1− V

m

)
− aVN

b + V

dN

dt
= 
N

(
aV

b + V
− �

) (14.1)

As usual, V denotes the vegetation biomass density, N is the popula-
tion density of grazers, u0 is the regrowth rate of vegetation at V = 0,
m is the maximum standing crop, a and b are the parameters of the
herbivore’s functional response, 
 is the conversion efficiency, and �

is the herbivore ZPG consumption. Note that I assumed a hyperbolic
functional response for herbivores as the simplest yet realistic form
(section 4.1.1). Schmitz and Sinclair (1997: figure 13.4) present some
data suggesting that white-tailed deer may be characterized by a sig-
moid functional response. However, their conclusion was based on
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observations of deer foraging in plots of variable forage density that
were available to deer simultaneously, and thus reflect aggregative
response, rather than a functional response (see section 4.1.2 for this
key point).

We can attempt a crude parameterization of model (14.1) for the
moose system, because published information gives us at least an
order-of-magnitude indication of parameter values (I stress that none
of these estimates should be taken too seriously; my main purpose is
to generate a reference set that provides a starting point for a numeri-
cal investigation of model dynamics). Thus, Vivas and Saether (1987)
studied moose foraging behavior in relation to winter browse avail-
ability (I interpret V as the biomass of winter food, because summer
food appears to be always present in abundance). They state that the
highest density of food biomass they used in experiments (72.5–80.5
g m−2) approximated the densest naturally occurring areas in their
experimental area. Thus, I set m equal to 100 g m−2, which translates
into m = 100 Mg km−2 (I standardized all parameters to the following
units: forage in Mg of dry weight, area in km2, time in yr, and moose
density in ind km−2). Fitting the hyperbolic functional response curve
to the data on moose food intake as a function of forage availability
(Vivas and Saether 1987: figure 3a), I obtain an estimate of b vary-
ing between 20 and 60 g m−2 (depending on a different method; the
estimate is not very precise because there are only five data points).
Thus, I set b = 40 Mg km−2.

For estimates of parameters a and � I turn to Crête and Bédard
(1975). These authors estimated daily consumption by moose as
2.5 kg ind−1 day−1, and stated that it is comparable to the theoretical
estimate, based on metabolic rate, of Gasaway and Coady (1974).
Since the interpretation of parameter � is the food intake rate at
which moose population just breaks even (deaths equal births), I set
� = 2�5 kg ind−1 day−1 = 1 Mg ind−1 yr−1. Maximum intake rates
observed by various authors are about twice the estimate of � (Crête
and Bédard 1975:373), so I set a = 2 Mg ind−1 yr−1.

Parameter 
 is related to the intrinsic rate of moose population
growth, r0, and other parameters as follows:


 = r0
am/�b +m�− �
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Using r0 = 0�2 yr−1 (Van Ballenberghe 1983; Fryxell 1988; Eberhardt
1998:382), I calculate 
 = 0�467. Finally, we need an estimate of u0,
or annual regrowth rate of moose forage. To estimate this parame-
ter, I capitalized on the observation of Messier (1994:484) that the
equilibrium density of moose at Isle Royale in the absence of preda-
tors should be N ∗ = 2 ind km−2. Because the equilibrium density in
model 14.1 is

N ∗ = u0

a− �

(
a

�
− 1− b

m

)

we can solve it for u0, and obtain an estimate of u0 = 3�33 Mg km−2

yr−1.
Numerical solution of model (14.1) with these parameters produces

a trajectory of moose density that increases to a peak of 6.5 moose
per km2, and then collapses to about 1 moose per km2 (figure 14.3a,
below). We can compare this trajectory to the observed fluctuations of
moose at Isle Royale (Mech 1966:21–22). The first moose probably
arrived on Isle Royale in the early 1900s. By 1915, there were around
200 individuals. The peak of around 3,000 moose (5.5 ind km−2) was
reached in 1934, after which the population collapsed to 400–500
(just under 1 ind km−2). A very similar sequence of events occurred
during the 1990s, when moose population reached a peak of 2,500
in 1996, followed by an 80% decline over the next two years. We
see that the model-predicted trajectory mimics these density fluctua-
tions reasonably well. However, the model predicts a somewhat higher
moose density at the peak than observed. An even more problematic
feature of model output is that it predicts a slow decline of the moose
population, taking more than 10 years to reach the low density after
the overshoot, although the actual population at Isle Royale collapsed
much faster. Still, for a very simple model and very crude estimates
of parameters, the match between the predictions and the observations
is not bad. In any case, this problem can be “fixed” by a judicious
choice of parameters (e.g., decreasing b generally causes a faster col-
lapse after peak). The point here is not to “massage” the model to
make it fit the observation, but to answer the question of whether the
model is capable of correct dynamics for parameter values within the
reasonable ranges.
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Figure 14.1. Wolf functional response to moose density. Units of moose
density: moose per square km; killing rate is in moose per wolf per year.
The fitted curve is f �N� = 12�3N/�0�47+ N�. Data from Messier (1994:
table 2).

14.3 INTERACTION WITH PREDATORS

The role of wolf predation in the dynamics of moose populations
has generated a certain amount of controversy (section 14.1). One
interesting idea posits that vegetation-moose-wolf systems are char-
acterized by multiple stable state dynamics (Messier and Crête 1985).
This proposal was elaborated and put on an empirical basis in an
important article by Messier (1994).

Messier reviewed a number of empirical studies of moose-wolf
systems at different locations in Alaska, Canada, and the northern
United States (1994: table 2). In particular, Messier collected together
data on the killing rate by wolves as a function of moose density
(figure 14.1). Fitting the hyperbolic functional response to these
data, we obtain parameter estimates c = 12�3 moose wolf−1 yr−1

and d = 0�47 moose km−2. The hyperbolic function explains 54%
of variance in the killing rate. I also fitted the Beddington predator
interference functional response to these data. This three-parameter
function explained 60% of variance in the data, which improvement
I deemed not sufficient to warrant adding an extra parameter. Finally,
I investigated the applicability of the ratio-dependent response.
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This two-parameter functional form fitted data very poorly (17% of
variance explained), so I do not consider it further.

If we assume that moose population dynamics in the absence of
predators are governed by the logistic, and that predator functional
response is of the hyperbolic kind, as suggested by data in figure
14.1, then we can write the following equation for moose dynamics:

dN

dt
= r0N

(
1− N

k

)
− cPN

d + N
(14.2)

We have already estimated parameter r0 as 0.2 yr−1 (see section 14.2),
and moose carrying capacity in the absence of wolf predation was
estimated by Messier as 2 moose km−2 (1994:484).

So far our analysis proceeds in parallel with that of Messier. The
predator equation, however, is where we must part ways. Messier
modeled wolf numerical response by fitting a function to the data
shown in figure 14.2. The data were constructed by recording moose
and wolf densities at different study locations and during different
time periods (e.g., Messier separated the Isle Royale time series into
5-year chunks, and used average densities of moose and wolves dur-
ing each time period as a data point). This approach was correctly
criticized by Eberhardt (2000) because it assumes that wolf den-
sity immediately mirrors any change in prey density. In other words,
Messier assumed that the predator equation has the following form:

log10 P = 58�7�N − 0�03�
0�76+ N

(using the function fitted by Messier to the data in figure 14.2), instead
of the normal procedure of modeling the predator’s rate of change
(section 4.1.3). Because wolf density is a slow variable, taking several
years to respond to any changes in moose density, we should follow
the standard approach, rather than that proposed by Messier.

The simplest equation we can write for wolf density would be
based on the assumption that wolf numerical response is a linear
function of their functional response:

dP

dt
= �

(
cN

d + N
− �

)
P (14.3)

which, of course, leads to the Rosenzweig-MacArthur model (sec-
tion 4.2). Note that no self-limitation terms have been added to this
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Figure 14.2. Relationship between moose and wolf densities, ind km−2.
Data from Messier (1994: table 2).

equation. Since wolf packs are fiercely territorial, we should consider
adding such terms at later stages of investigation.

We now need to estimate two additional parameters: � and �.
Parameter � we estimate using the same logic as in section 14.2:
it is related to the intrinsic rate of predator increase, s0, as follows:
� = s0�ck/�d + k�− ��−1. Parameter � we estimate using the infor-
mation about wolf energetics (Fuller and Keith 1980:594–595). In
particular, the minimum consumption rate that allows a wolf to main-
tain its body weight is 0.06 kg of meat per kg of wolf per day. The
consumption rate needed for maximum rate of population increase is
0.013 (same units) (Mech 1977, cited in Fuller and Keith 1980). This
suggests that � ≈ 0�5c. Together these relationships imply � = 6
and � = 0�1. Dynamics of the model for these parameters are shown
in figure 14.3b. Given the notorious propensity of the Rosenzweig-
MacArthur model to oscillations, perhaps we should not be surprised
by its prediction of long-term high-amplitude cycles. As we know
(section 4.2.1), the Rosenzweig-MacArthur model has only one sta-
bilizing mechanism, logistic growth of the resource (vegetation). Yet,
as I noted above, the assumption that wolf population density is reg-
ulated only indirectly, via its food supply, is highly unrealistic. I
explored the effect of adding self-limitation to the wolf equation by
switching from the Rosenzweig-MacArthur to the Bazykin model (for
equations, see section 4.2.1). This model needs an extra parameter, �,
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Figure 14.3. Dynamics predicted by various ungulate models. In all
graphs, solid curves represent moose density, and dashed curves repre-
sent wolf density (both densities in ind km−2). (a) Vegetation-moose model
(equations 14.1) with parameters u0 = 3�33, m = 100, a = 2, � = 1,

 = 0�467 and b = 40. (b) Moose-wolf model (equations 14.2 and 14.3
with parameters r0 = 0�2, k = 2, c = 12, d = 0�5, � = 6, � = 0�1.)
(c) Moose-wolf model with wolf self-limitation term, same parameters as
in (b) plus � = 0�1. (d) Vegetation-moose-wolf model (equations 14.4),
same parameters.

the maximum density reached by predators not limited by their food
supplies. The data on maximum wolf densities suggests that such a
limit should be around 0.1 wolf km−2 (figure 14.2). Dynamics of the
Bazykin model with this value of � are shown in figure 14.3c. We
note that the addition of the self-limitation term adds substantially
to the stability of the moose-wolf interaction. In fact, the Bazykin
model for reference values of parameters is characterized by a sta-
ble equilibrium (which is, however, approached very slowly; thus, in
the presence of even a little environmental stochasticity, the model
would exhibit sustained second-order oscillations). Interestingly, the
equilibrium wolf density is around 0.01 wolf km−2, which is an order
of magnitude less than the socially imposed limit, �. A numerical
investigation of the dynamical effect of � showed that it primarily
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affects stability of the system, and has a very weak effect on the equi-
librium wolf density, P ∗, which is primarily set by interaction with
the prey. One must reduce � substantially (pushing it down to below
0.01) in order to reduce P ∗.

Finally, we combine the vegetation-moose and moose-predators
interactions together to investigate the dynamics of the tritrophic sys-
tem:

dV

dt
= u0

(
1− V

m

)
− aVN

b + V

dN

dt
= 
N

(
aV

b + V
− �

)
− cPN

d + N
(14.4)

dP

dt
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)
P − s0

�
P 2

The dynamics of this model for the reference set of parameters are
shown in figure 14.3d. Note that by putting together two components,
each characterized by a mild degree of oscillations (figure 14.3a and
c), we obtain a much less stable total system (figure 14.3d).

Before summarizing the results of the theoretical investigation into
ungulate trophic dynamics, I wish to stress very much that none of the
specific parameter estimates I used above should be taken at all seri-
ously. My purpose was not to try to even approximate an empirically
based model for ungulate dynamics, but rather to derive a parameter
reference set to provide a starting point for numerical investigations of
dynamics characterizing various specific models. Therefore, none of
the patterns depicted in figure 14.3 are meant as specific predictions
for any particular empirical system. However, numerical investiga-
tions of the models suggest that the following qualitative patterns are
quite robust. First, the degree by which ungulate populations should
overshoot their carrying capacity, set by food supply, and then col-
lapse depends primarily on two parameters: m and u0. The greater is
m, the higher the densities that will be achieved by ungulates at the
peak. The smaller is u0, the lower the density to which ungulates will
collapse. This observation suggests that overshoot-collapse dynamics
are most likely where vegetation is characterized by lowest produc-
tivity but high standing crops in the absence of herbivores, such as
arctic habitats. Second, the food-chain-length effect (i.e., replacing the
herbivore logistic term with the vegetation-herbivore interaction leads
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to increased oscillation) also depends on the regrowth rate of vege-
tation, u0. Making vegetation regrow faster, while keeping herbivore
carrying capacity fixed, brings the dynamics of the tritrophic model
closer in line with the simplification that ignores vegetation dynam-
ics. Third, one initially unanticipated aspect of modeled dynamics
is the propensity for oscillations, characterizing quite a wide range
of parameters around the reference set. Finally, all models predict a
rather long period of oscillations: perhaps two or three cycles per cen-
tury. The cycle period primarily depends on intrinsic growth rates of
ungulates, as well as those of predators and the regrowth rate of veg-
etation. Because intrinsic rates of increase of moose and wolves are
known with a reasonably high degree of precision, average periods
implied by models appear to be one robust quantitative prediction.

14.4 NUMERICAL DYNAMICS

I now turn to the review of empirically observed dynamics of ungulate
populations. My purpose is not a rigorous test of the models presented
in sections 14.2 and 14.3 (quite simply, the theory has not yet been
developed to the point where it can be so tested). Instead I aim to
survey what long-term data on cervid dynamics are available and
check whether there is sufficient correspondence between the insights
from models and empirical patterns to encourage further development
of hypotheses and models.

The first conjecture worth checking out is the qualitative result
from model (14.1) that overshoot-collapse dynamics are more likely
to be found in systems with low vegetation productivity, such as the
reindeer habitat. One classic data set, which has made it into most
ecology textbooks, is the dynamics of reindeer introduced on two
Pribilof Islands off the coast of Alaska (figure 14.4a and b). As is
well known, on one island, St. George, the reindeer population went
though a mild peak, collapsed, and then fluctuated at a low density.
By contrast, the St. Paul Island population reached a peak density
an order of magnitude higher, and then collapsed to extinction. I do
not know whether these different outcomes are a result of stochastic
events, or of a difference between the ecological characteristics of
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Figure 14.4. Population dynamics of reindeer: (a) St. Paul Island, Alaska
(Scheffer 1951); (b) St. George Island, Alaska (Scheffer 1951); (c) Lapland
Wildlife Refuge, Russia (Lopatin and Abaturov 2000).

the two islands. The vegetation-herbivore model suggests one possi-
ble scenario: if St. Paul had a greater standing crop, then reindeer
should have reached a higher peak density, and also collapsed lower,
than at St. George. Only future research can tell whether this hypoth-
esis has a basis in reality. However, boom-bust dynamics appear to
be a typical feature of unmanaged (and free of predation) reindeer
populations. Another example (figure 14.4c) comes from the Lapland
Wildlife Refuge, located on the Kola Peninsula (Russia). It is signif-
icant that Lopatin and Abaturov (2000) also consider the vegetation-
herbivore interaction as the most likely explanation. They advance and
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Figure 14.5. Moose and wolf population densities at Isle Royale (in
ind km−2). Broken line: moose dynamics prior to systematic census (from
Mech 1966). Filled and hollow circles: censused densities of moose and
wolves, respectively (Peterson and Page 1988; Post et al. 1999).

parameterize a model that is very close in spirit to the one I advanced
above (although their model is somewhat more complex including,
e.g., age structure in the deer population).

Another much analyzed data set concerns the dynamics of a moose
population on Isle Royale (figure 14.5). The story is well known (it
also is featured in most ecology texts), and need not be repeated here.
There are two points important to the focus of this chapter. The first
one is that moose population numbers exhibit quite violent oscilla-
tions, which is in line with the predictions of the theory developed in
the previous section. The second observation is that ecological mecha-
nisms apparently responsible for oscillatory dynamics have repeatedly
changed in nature. The first oscillation, with the peak in the early
1930s, was undoubtedly a result of moose overeating their food sup-
ply. Note that the pointed shape of the peak (as best as we can say,
given the fragmentary nature of data) and rapidity of collapse is con-
sistent with this explanation (see section 4.2.3 for a general idea and
section 12.5.2 for an application). The second oscillation, with the
peak in the early 1970s, has a blunt rounded peak and slower decline,
which is consistent with the hypothesis of moose-predator oscillation.
Finally, for reasons that are still obscure (see Peterson 1999 for a
discussion), the wolf population never recovered after its collapse in
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the early 1980s. Thus, the third moose oscillation, ending with an
abrupt collapse in late winter of 1996, apparently was driven again
by the vegetation-moose interaction. The much higher peak densities
achieved by moose during the first and third oscillations, compared
with the second, are entirely consistent with this repeated shift in
mechanisms driving the cycles.

How much are violent dynamics of moose on Isle Royale due to
the insular nature of this population? In other words, are sustained
population oscillations the rule or exception for deer dynamics? We
can answer this question only with more time-series data. However,
the difficulty lies in the very long periods—theory predicts 30 to 50
years (figure 14.3)—characterizing the hypothesized ungulate oscil-
lations. Nevertheless, I searched the literature for any long-term data
on either deer or their predator dynamics. The best data in terms of
length and resolution I found were records of fur returns. The data
from the Hudson’s Bay Company (figure 14.6) give us an indication
of deer dynamics in the eighteenth and nineteenth centuries, prior to
massive hunting and habitat destruction, leading to large-scale extinc-
tions of deer and wolf populations. These data have several problems,
however. The first set (figure 14.6, a top) lumps together wolves and
coyotes (unfortunately, the Hudson’s Bay Company did not keep sep-
arate records). This is actually a very fascinating data set. Superim-
posed on longer oscillations, we clearly see a 10-year cycle. Bulmer
(1974) documented this 10-year periodicity statistically in the sec-
ond half of the series (Bulmer suggests that the proportion of coyotes
increased toward the end of the covered period). If we “subtract” (by
eye) the 10-year cycles, than we see three longer oscillations with
peaks in roughly 1770, 1810, and 1850. If, as is likely, these oscil-
lations are due to wolf pelts, then their period is consistent with the
theoretical prediction of 30–50 years.

The data on elk and deer pelts are more fragmentary, but are
not contaminated with the 10-year cycle (figure 14.6, middle). Four
troughs are visible or can be inferred in this data: mid-1750s, 1784,
1815, and soon after 1850. The visible peaks in the early 1770s
and 1806, and the inferred peak around 1840, coincide with, or pre-
cede, the inferred wolf peaks, which is again consistent with the
hypothesized predator-prey relationship. It is interesting that previous
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Figure 14.6. Fur return statistics: top, wolf and coyote pelts from Hudson’s
Bay Company (Jones 1914); middle, elk and deer pelts from Hudson’s Bay
Company (Jones 1914); bottom, wolf pelts in Leningrad region (Nazarov
1988).

workers apparently have completely missed the possibility of oscilla-
tory dynamics in deer and their predators. For example, in one of the
best reviews of the Hudson’s Bay data, Finerty (1980:81) suggests
that wolves are not cycling, and does not even present the deer data.

As to Eurasia, I could not locate any fur return data on deer
dynamics, but wolf pelt series are available. One example is shown
in figure 14.6 (bottom). Furthermore, there are a number of shorter
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or fragmentary data sets coming from other localities. For example,
population numbers of deer (white-tailed and moose) apparently fluc-
tuated quasi-cyclically in Algonquin Park, eastern Ontario, Canada,
with periods of high density during the 1920s, 1950s, and 1980s
(Forbes and Theberge 1996). At another location in Ontario, white-
tailed deer numbers went through two consecutive troughs in the mid-
1950s and around 1980 (Fryxell et al. 1991). The moose population in
Finland went through three oscillations since 1930 (Lehtonen 1998).

14.5 SYNTHESIS

Whereas in the previous case studies my main objective was to iden-
tify the ecological mechanisms driving population oscillations, the
goal of this chapter is much less ambitious. I believe that the current
controversy about cervid dynamics can profit from the conceptual and
theoretical framework described in the book. In particular, I think that
the language of the dynamical systems theory (e.g., exogenous ver-
sus endogenous, and first- versus second-order dynamics and mecha-
nisms) provides a better conceptual framework than the one based on
limiting versus regulating factors. Furthermore, I propose the “generic
mammalian herbivore model” (section 4.6) as an integrative frame-
work for investigating cervid population dynamics.

My initial expectations in developing trophic models for cervids
were to find generally stable dynamics, and therefore the original goal
of the investigation was to attempt to predict the statics (e.g., mean
population densities) characterizing deer in various circumstances—
with or without predators, in vegetation communities characterized by
high versus low productivity, etc. It was a considerable surprise, there-
fore, to see rather violent dynamics predicted by models in sections
14.2 and 14.3, and particularly by the tritrophic model. The tritrophic
model oscillates for a wide variety of trophic interaction parameters.
It appears that the main source of stability in the model is intraspe-
cific competition among the predators (wolf territoriality), because by
far the strongest effect on stability is exerted by parameter �. This
qualitative prediction from the models, that second-order oscillations
should not be uncommon in cervid populations, motivated my survey
of the long-term data (section 14.4). My general impression after this
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search is that wherever deer populations are not heavily affected by
humans, oscillations with a period of roughly 30–50 years appear to
be the rule, rather than an exception.

If cervid dynamics indeed turn out to be more prone to oscillation
than they are given credit for, then there are major implications for
deer population ecology. This would mean that the current discourse
about the limiting and regulating factors largely misses an important
point. If deer populations exhibit sustained second-order cycles, the
main question becomes what factors are responsible for the oscillatory
nature of dynamics (which are the second-order endogenous mecha-
nisms, in my terminology), which factors ensure that the oscillation
does not get out of hand (first-order mechanisms), and which factors
are responsible for stochastic fluctuations in the realized per capita
rate of change (exogenous mechanisms).

The very preliminary results discussed in this chapter suggest
that a further investigation melding mechanistically based theory
with empirical parameter estimates and tests employing time-series
data is highly warranted. In this book I have focused on trophic
interactions (and, clearly, more fine-tuning of functional forms and
parameter estimates are needed). However, another important mech-
anism that needs to be explicitly added to the model is the effect of
exogenous factors on ungulate population change. This task can be
accomplished within the generic mammalian herbivore framework
by making model parameters either stochastic variables, or functions
of measured exogenous variables (see section 3.2). A particularly
promising direction is the current investigation of population effects
of variability in winter weather (Post and Stenseth 1998, 1999; Post
et al. 1999). Another direction is an investigation of the effects of
adding age structure to trophic models (this is particularly interesting
because vulnerability to predation may be greatly affected by age;
see, e.g., Durant 1998). Finally, it has been proposed that predation
by black bears may cause an appearance of a low-density stable
equilibrium in the moose-wolf system (Crête 1987; Messier 1994).
This proposal also needs to be evaluated with empirically based
models.



CHAPTER 15

General Conclusions

15.1 WHAT MECHANISMS DRIVE OSCILLATIONS
IN NATURE?

Now that we have done so much work trying to understand the spe-
cific mechanisms responsible for complex population dynamics in
each of the case studies (chapters 9–14), it is time to step back and
see if any patterns emerge. Table 15.1 brings together the conclu-
sions for these case studies, together with some other studies that I
did not have space to review in this book, but for which sufficient
information exists for informed judgment. One pattern is immediately
obvious: all cases for which we can reach a reasonably well-supported
conclusion belong to one general category of ecological processes:
trophic interactions. The majority of cases are either specialist preda-
tors or parasitoids (which, essentially, amounts to the same thing). In
addition, we see one case each of food quantity, food quality (as a
contributing factor), microparasite, and macroparasite. There is not a
single case where an intrinsic hypothesis has provided a theoretically
sound and empirically supported explanation of complex dynamics in
nature. In one case, the red grouse in Scotland, an intrinsic mecha-
nism (kin favoritism hypothesis) remains a viable contender, but this
explanation has not yet reached the point where it has been trans-
lated into an empirically based model, nor has it yet been subjected
to an experimental test (chapter 11). Thus, given the present state of
knowledge, I conclude that the overwhelming majority of examples
of population oscillations in nature are explained by the mechanism
of specialist predation (including parasitoids), with a few additional
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Table 15.1. Summary of case studies with their “best-supported models”
(an empirically based model exists for all studies, although the degree of

knowledge about parameter estimates is variable). The columns “1st
order” and “2nd order” indicate the mechanisms on which models are
based. The “Expt.” column indicates whether a manipulative experiment

was performed to test the hypotheses on which models are built

Mechanisms

System 1st order 2nd order Expt.

Larch budmoth food quant. (1) parasitoids —
(2) food qual.

So. pine beetle intrasp. comp. predators Yes

Grouse food macroparasite Yes

Vole (1) food quant. predators Yes
(2) social interact.

Lemming none1 food quant. —

Hare food quant. predators Yes

Moose food quant. predators —2

Measles supply of susceptibles microparasite —3

1The best model is stabilized by the logistic term in the vegetation equation.
2Although no formal manipulative experiments have been performed in this system,

the invasion of Isle Royale by wolves constitutes a natural experiment.
3The immunization programs may be considered as a manipulative experiment.

cases involving other kinds of trophic interaction (food and parasites).
We do not yet have examples of complex dynamics driven by intrinsic
mechanisms, interspecific competition, mutualisms, commensalisms,
etc.

I should add that there are laboratory examples of intrinsic cycles,
for example, flour beetles in the genus Tribolium; although even there
one might argue that cannibalism is a kind of a trophic interaction
(Costantino et al. 1995; Costantino et al. 1997; Dennis et al. 1995).
There is also a recent report claiming to demonstrate stable population
cycles in lizards driven by natural selection—the Chitty hypothesis
(Sinervo et al. 2000; Bjornstad 2001). This is an extremely interesting
result, provided that it withstands the test of time. However, I should
note that the lizard example differs from the case studies in table 15.1
in one important regard: it is a two-year (and two-generation) cycle. In
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other words, this is an example of a first-order oscillation, rather than
second-order dynamics, which characterize all case studies examined
in this book. And as I argued in chapter 3, intrinsic population mech-
anisms are much more likely to lead to stable dynamics or first-order
cycles, rather than longer-period second-order oscillations. Thus, tak-
ing all the caveats into account, I still must conclude that the current
state of evidence overwhelmingly supports trophic mechanisms as
drivers of second-order oscillations.

Perhaps in retrospect this conclusion might appear self-evident.
After all, the very first models of ecological cycles advanced by
Lotka and Volterra were written specifically for predator-prey interac-
tions. Yet, there was a long period starting in the 1960s and extend-
ing up to the late 1980s when the predation hypothesis was held in
extremely low esteem (e.g., Krebs and Myers 1974)—a whole gener-
ation of population ecologists swayed by ideas of the “doomed sur-
plus” (Errington 1963) and genetic polymorphism hypothesis (Chitty
1967).

On the other hand, we also do not find a unique solution to the
puzzle of population cycles—the same specific mechanism that would
explain population oscillations in every single case. Different species,
and even the same species in different locations, can exhibit very
different dynamical patterns. This observation suggests that a spe-
cific mix of mechanisms underlying these fluctuations is quite vari-
able. Perhaps the best example is the variety of dynamical patterns
observed among rodents: predator-prey cycles in voles M. agrestis and
C. rufocanus in northern Fennoscandia and, most likely, water voles in
Switzerland; herbivore-food oscillations in lemmings; stable dynamics
with occasional outbreaks due to massive inputs of high-quality food
in bank voles inhabiting forests of central Europe; first-order oscil-
lations of the common vole M. arvalis; and irregular high-amplitude
fluctuations of North American voles. From what we know about the
connection between these time-series patterns and ecological mech-
anisms, such a great variety of patterns almost certainly is matched
by a great variety of ways in which specific mechanisms are mixed
in each system (and in some case we have empirical evidence for
this, as in the contrast between voles and lemmings). Thus, the hope
for a universal mechanism of population cycles (Chitty 1996) must
be abandoned once and for all. Furthermore, the fact that we do not
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yet have a single instance of a second-order oscillation driven by an
intrinsic mechanism is no guarantee that such population systems are
completely absent in nature (although it does seem likely that they
are relatively rare; otherwise we should have encountered at least one
by now).

To summarize, there appears to be one general category of ecologi-
cal mechanisms that is responsible for population oscillations: trophic
interactions. Yet, within this general class, specific mechanisms com-
bine in a variety of intricate ways leading to a complex tapestry of
different kinds of complex ecological dynamics.

15.2 STRUCTURE OF DENSITY DEPENDENCE

One of the general themes recurrent throughout the book is the value
of time-series analysis as a tool for characterizing patterns in observed
population trajectories, and connecting them with possible mecha-
nisms that produce these patterns. It is true that the relationship
between time-series patterns and mechanisms is one-to-many, so that
we cannot infer what specific mechanism (or set of mechanisms) is
responsible for each observed pattern. However, there is sufficient
congruence between time-series patterns and mechanisms that allows
us in many cases to reduce the list of plausible mechanisms for a
specific empirical system. The quantitative tools we use to connect
time-series patterns to ecological mechanisms are probes. Practical
experience with using various probes in the case studies, reviewed in
this book, suggests that not all probes are equal; some are more useful
than others in helping us to reduce the list of potential mechanisms:
the average period, the estimated process order, and the topological
characteristics of cycles.

The average period is one of the easiest-calculated probes, yet it is
extremely useful in guiding further modeling efforts and experimental
tests. The average period can provide some indications about the
process order (see below), since the periods of generation, first-order,
and second-order cycles tend to fall into classes of one-two-many
generations (section 3.5). Even within one category, for example,
second-order oscillations, the average period can provide useful
diagnostic indications about potential mechanisms driving dynamics.
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Second-order cycles typically result from an interaction between
two populations, and the period is determined by characteristics
of both species (most important, by their respective r0). If species
interacting with the focal population are very different in their bio-
logical characteristics, then different hypotheses imply very different
periods. Application of this logic can yield strong inference, as is
illustrated by the case of southern pine beetle cycles (chapter 10),
where parasitoid, specialist predator, and host hypotheses yielded
very different and practically nonoverlapping frequency distributions
of predicted periods. Thus, the average period can be an extremely
useful diagnostic tool in the analysis of population oscillations. It is
interesting that another easily calculated index, the amplitude, is of
much less value in narrowing down the field of possible mechanisms.
This is probably a result of the ability of all mechanisms that in
principle can induce oscillations to generate a wide spectrum of
amplitudes by rather minor variation in parameters.

The second very important concept that helps us connect patterns
with mechanisms is the process order. Order is more controversial
than period, and not all ecologists agree that it is a robust and use-
ful concept. In fact, it appears that the distinction between first- and
second-order dynamics particularly appeals to ecologists who have
worked on time-series analysis. By contrast, mathematical ecologists
may prefer to use different classifications. I acknowledge that there
is some validity to their criticisms of the concept of order. Real
life is messy, and we cannot neatly separate all empirical cases of
fluctuations into nonoverlapping discrete classes. As can be seen in
table 15.1, best models for well-studied case studies always have both
first- and second-order components (in the only apparent exception,
lemmings, the first-order component is in the vegetation equation).
This is not surprising, because second-order mechanisms are needed
to generate oscillations, while first-order mechanisms are required to
prevent such oscillations from diverging. Thus, even though actual
dynamics are not pure first- or second-order, the mechanisms can be
classified by their order.

There is another interesting observation related to the concept of
process order. Historically, discrete first-order models, such as the
Ricker, played a very important role in motivating ecologists to study
complex population dynamics. Such models produce characteristic
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first-order oscillations: limit cycles with periods of 2–3 generations,
or chaotic oscillations of similarly short, but variable, durations. Yet,
such dynamics are rare in nature; in fact, I know of no good exam-
ple of a classic first-order oscillation outside the lab (with the pos-
sible exception of Sinervo et al. 2000). Certainly, we have examples
where oscillations appear to be first-order on the scale of years:
the tree-dwelling aphid Drepanosiphum platanoidis (Dixon 1990),
the common vole Microtus arvalis (see figure 12.3), and the wood
mouse Apodemus sylvaticus (Southern 1979). Description as first-
order cycles, however, is good only on the phenomenological level,
as all these populations have multiple generations per year. Thus, a
more mechanistic description would not be first-order. For example,
if we were to model common vole dynamics, we would probably
add an explicit equation for seasonal regrowth of its food supply.
What I am trying to say is that a first-order discrete-time equation
would not seem (at least, to me) to be a reasonable mechanistic model
for this system. And this is the kind of system where we would be
most tempted to use it, because of results from the phenomenological
time-series analysis. I will discuss further implications of the apparent
scarcity of first-order oscillations in nature in the next section (15.3).

The discussion in the preceding paragraph highlights one of the
difficulties of applying the concept of order in practical applications:
the specific choice of base lag may (and usually does) affect the esti-
mate of order. In the common vole example, the estimate of order
as 1 critically depends on choosing the timescale of 1 year. If we
had more finely sampled data, and analyzed them with base lag equal
to average generation time, we would certainly select a more com-
plex model than the first-order equation (most likely, we would also
have to include seasonality in the model explicitly). This observation
suggests several remarks. First, we should always treat the estimated
order as a quantity that is conditioned on the base lag choice. In some
cases, different choices of base lag may yield the same maximum
order measured in natural units (e.g., the analysis of Plodia inter-
punctella dynamics in Turchin and Ellner 2000b: table 2). In most
cases, however, we will probably get diverging results, and must live
with it. Second, not all potential choices of base lag are equal, and
some make more biological sense than others (practical advice on
selecting the base lag can be found in section 7.2.2). Third, the fact
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that order is conditioned on the base lag choice does not matter when
we use it as a means for quantitative contrast between model pre-
dictions and data. We simply choose whatever base lag seems most
appropriate, and then estimate order from both data and model output,
using the same � .

Peak shape is another probe that I found to be of great use in appli-
cations, although it is perhaps the most controversial, simply because
it was proposed very recently (Turchin et al. 2000), and has not yet
been tested by time. Case studies in part III highlight both the poten-
tial and the limitations of this probe. The lemming case, of course,
provides the best example where this idea was used to most effect.
However, the change in peak shapes during the history of the moose
population at Isle Royale is at least consistent with the hypothesized
mechanisms responsible for moose density collapse in all three oscil-
lations (chapter 14). By contrast, the peak shape diagnostic was not
useful in the analysis of hare-lynx interaction. First, long-term lynx
data—fur returns—are based on an index that is nonlinearly related to
population density. Second, trajectories predicted by the best model
for this system predict a very slight difference in peak shapes between
prey and predators (figure 13.2), which would be difficult to detect in
noisy and short data sets.

Peak shape is not the only shape probe that we might gainfully
employ in analysis. Another potential probe is the asymmetry of oscil-
lations: crudely, the ratio of increase to decrease periods. Ecological
oscillations are typically asymmetric (right-skewed), because the rate
of increase is limited by r0, while the rate of collapse is potentially
unlimited (Ginzburg and Inchausti 1997). However, the degree of
asymmetry may vary between different populations, and this provides
an important clue to underlying mechanisms. One example among the
case studies in part III is the contrast between dynamics of English
and Scottish populations of the red grouse. In addition to being char-
acterized by shorter periods, English populations are more asymmet-
ric, exhibiting a much more abrupt collapse (compare figures 11.2 and
11.4). On the basis of this and other observations it seems likely that
red grouse populations in these two areas may be driven by a different
mix of ecological mechanisms. Only future work will show whether
this suggestion has a basis in reality, but it appears that an index of
asymmetry has a potential as another useful diagnostic probe.
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15.3 WHAT ABOUT CHAOS?

Original impetus to the study of chaotic dynamics in ecology came
from very simple first-order discrete models, such as the Ricker or
the discrete logistic (May 1974a, 1976). The empirical observation of
paucity of first-order oscillations in nature, remarked on in the previ-
ous section, suggests that direct analogues of strong chaos, as envi-
sioned by pioneers, are rare, or even absent from nature. By “strong
chaos” I mean very irregular-looking dynamics (lacking even statisti-
cal periodicities) with very positive �� (1 or greater). Such dynamics
can be obtained from, for example, the Ricker model with r0 = 4.

In fact, I am inclined to the opinion that first-order discrete
equations cannot really be considered as even remotely mechanistic
models for population dynamics. As I discussed before, density
dependence is not an ecological mechanism but a phenomenological
summary of ecological mechanisms that act as density feedbacks
(with various lags). And the assumption of discrete generations fits
well only a few real-life systems (of the case studies examined in
this book, only the larch budmoth). Thus, in my opinion, Ricker-style
models are closer to the phenomenological end of spectrum; they
belong to the class of models for the structure of density dependence.

Chaotic dynamics that we see in nature arise from a different
class of models. Let us consider two examples for which we have
well-developed models that show chaotic dynamics. (Remember that,
properly speaking, chaos is a characteristic not of an empirical sys-
tem, but of a model we might have for this system. Thus, saying that
a certain natural population is chaotic is a shorthand way of saying
that “the best-supported model we have for this system is chaotic.”)
The two systems, measles and Fennoscandian voles, are similar in
that ecological mechanisms driving their oscillations are well known,
that we have reasonably good parameter estimates, and that mod-
els for both systems have been extensively and quantitatively tested
against time-series data. These two systems are also similar in the
dynamical mechanism that brings about chaotic dynamics: the inter-
play between a consumer-resource cycle (microparasite for measles
and specialist predator for voles) and seasonality. Finally, both sys-
tems are not strongly chaotic in the sense defined above. In fact,
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long-term dominant Lyapunov exponents are very near zero in both
cases; thus, these systems are quasi-chaotic: roughly half of local
Lyapunov exponents are negative, half are positive, and trajectories
are characterized by recurrent short-term episodes of sensitive depen-
dence on initial conditions. Judging by the empirical observation that
most “chaotic” systems are actually characterized by �� very close to
zero (Ellner and Turchin 1995; Turchin and Ellner 2000a), Ellner and
Turchin have hypothesized that quasi-chaos is actually the most com-
mon case of complex population dynamics. Analyses of case studies
in this book appear to further confirm this conjecture, since the major-
ity of them are characterized by not very positive Lyapunov exponents
(see tables 9.1, 11.1, 12.1, and 12.4).

The only possible exception to this general observation is the case
of Norwegian and brown lemmings. Time-series analyses of available
data consistently indicate very positive �� (table 12.5). Furthermore,
if inferences made in section 12.5 are based in reality, then the mix of
ecological mechanisms that we identified there, a vegetation-herbivore
interaction of the Rosenzweig-MacArthur type combined with very
strong seasonality, is extremely prone to chaotic behaviors. Finally,
lemming outbreaks look chaotic (Oksanen and Oksanen 1992)! On
the other hand, we need also remember that the number of data sets
is not as extensive as we would wish, and many lemming series suf-
fer from some methodological problems (or we even use a different
species—brant geese—as an indirect index of lemming fluctuations).
While the mechanistic explanation based on the vegetation-herbivore
interaction seems plausible, and has been empirically tested, no for-
mal manipulative experiments have yet been done. Thus, the case for
strong chaos in lemming dynamics must be classified as tentative,
given the current state of knowledge.

To summarize, the intensive “search for holy chaos” (thanks to
Alfredo Ascioti for coining this phrase), inspired by the insights of
early workers, in one sense was a failure, because so far we have not
found any direct analogues of chaotic Ricker-style dynamics in nature.
This became clear very soon after the initial excitement (Hassell
et al. 1976). In another sense, however, the search for chaos was
extremely productive. It resulted in multifarious indirect benefits to
population ecology, and played an extremely important role, in my
opinion, in bringing about the very synthesis that is occurring in our
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field. The critical insight that allowed us to move beyond Ricker-like
models was Bill Schaffer’s importation of phase-space reconstruction
from physical literature, melded with the older tradition of using lin-
ear autoregressive models in the analysis of population data (Moran,
Bulmer, Royama, Berryman). When these two approaches were syn-
thesized, it emerged that first-order approaches substantially under-
estimate the frequency of complex dynamical behaviors in nature
(Turchin and Taylor 1992). Subsequent research showed that a most
frequently found kind of complex dynamics in nature is quasi-chaotic
second-order oscillations, characterized by various degrees of statisti-
cal periodicities and typical �� in the [−0.1, 0.1] range (Ellner and
Turchin 1995; Turchin and Ellner 2000a). The overwhelming major-
ity of case studies reviewed in this book are of this type (again, with
the possible exception of lemmings).

15.4 POPULATION ECOLOGY: A MATURE SCIENCE

In the preface I posed the question, is population ecology on the brink
of maturity? Is it becoming a predictive science? Now that we have
worked through the intervening hundreds of pages (and remember,
I could review only a fraction of what is currently done in the area
of population dynamics), I believe that the answer is a resounding
yes. In fact, my whole book can be taken as an extended answer to
this question. In part I, I reviewed the ecological theory relevant to
modeling complex dynamics, and it seems to me to be beyond doubt
that population ecology has a mature theory. We now have an excel-
lent grasp of which features of model-predicted dynamics reflect the
deep underlying ecological principles, and which are particular to the
specific mathematical framework used (e.g., difference vs. differen-
tial vs. delayed differential equations). We have good understanding,
buttressed by an extensive empirical base, of certain functional forms
we use as model components (the best example is the typology of
functional responses). Finally, we are essentially done with character-
izing the dynamics of pairwise species interactions, we have made a
lot of progress with three-species systems, and we are now building
a general theory of multispecies communities (Holt 1977; Holt and
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Lawton 1993; Hastings and Powell 1991; Abrams and Roth 1994;
Abrams 1998; Gurney and Nisbet 1998; and many other papers).

It also seems incontrovertible that there are a number of general
themes emerging from the rich theory base we have for population
dynamics. One such theme is the argument I construct in chapter 2
that population dynamics are underlaid by a set of foundational prin-
ciples, which are analogous to laws in physics. One may argue with
me about the precise logical status of these principles; also, princi-
ples (postulates, theorems) may be added or subtracted from the list I
propose. Yet, it seems clear to me that population dynamics theory is
not a random set of models; there are some general threads running
through it. Another theme, perhaps also controversial, is the process
order (see section 15.2). Finally, a third theme, perhaps the least con-
troversial, is the connection between mechanisms and parameters, on
one hand, and such obvious properties of oscillations as the average
period, on the other hand.

The maturity of mathematical theory for population dynamics is
matched by equally impressive advances along the empirical direc-
tion, as well as the theoretical/empirical synthesis. Not the smallest
achievement is the accumulation of an enormous database on pop-
ulation fluctuations in nature (thousands of time-series stored at the
Centre for Population Biology, Silwood Park, UK). But there are also
several empirical systems that have been intensively studied by multi-
ple teams of investigators over a period of decades. The combination
of empirical and theoretical work is beginning to bear fruit. Thus, one
of the hallmarks of mature science is its ability to make predictions
(which sometimes are even confirmed by experiment). With all the
caveats about not equating prediction with forecasting, I should point
out that under certain conditions dynamical models can serve as fore-
casting tools in ecology. One example is the larch budmoth, where a
three-parameter model based on host-parasitoid interaction predicted
future log-transformed density with 95% accuracy. The other example
is the vole Clethrionomys rufocanus at Kilpisjärvi, where a mechanis-
tic model with previously estimated parameters beat the data-based
forecasting scheme.

But the connection between the maturity of a field and the ability
to forecast is not strong. Sometimes forecasting is possible without
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any understanding of the underlying mechanisms (many economet-
ric applications in which the Box and Jenkins approach is used). In
other cases, we may perfectly well understand the mechanisms but
lack forecasting ability (weather prediction). The hallmark of mature
science is rather the ability to make predictions: in the strongest case,
when two or more models make conflicting predictions about some
aspect of the system that we can empirically observe or measure.
Population dynamics has certainly matured to this point, although it
reached this stage literally within the last decade. It is very interesting
from the point of view of history of science that the first manipu-
lative experiments of population oscillations suddenly began to be
published very recently, since 1995 (Krebs et al. 1995; Korpimäki and
Norrdahl 1998; Hudson et al. 1998; Turchin et al. 1999). The last two
experiments tested explicit and quantitative predictions of the theory
(and, in another sign of maturity, the predictions were published prior
to conducting the experiments). Additionally, manipulations of nature
are not the only way to conduct an experiment. An experiment is any
empirically based choice between predictions of two or more hypothe-
ses/models. The empirical test of predation vs. herbivory hypotheses
for lemming cycles, using the peak shape as the telltale characteristic,
certainly qualifies as an experiment.

The final observation is that it is striking how simple the mod-
els that we used for modeling specific case studies are. We typically
use just two or three mechanistic ingredients in constructing these
models (table 15.1). Certainly, none of the best models that we set-
tled on are simple to the point of being monofactorial. Monofactorial
(single-mechanism) explanations do not work in the explanation of
complex population dynamics, probably because we typically need
at least two mechanisms, one to cause oscillations, and the other to
prevent them from diverging (second- and first-order mechanisms, in
my classification). On the other hand, we did not need to build large
models with many ecological mechanisms to achieve success. In fact,
large models such as the conceptual scheme proposed by Lidicker
(1988, 1991) or the gypsy moth life system simulation (Shehan 1988)
do not lead to breakthroughs in our understanding of population
cycles (although when complex models are boiled down to their main
dynamic constituents, a significant insight can result; see Sharov and
Colbert 1996). Thus, an empirical conclusion (in the sense that this
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approach seems to produce the best progress) is that neither mono-
factorial nor highly polyfactorial models work; best models seem to
be oligofactorial.

If we think about it, we should be very surprised by the success
of these models of intermediate complexity. Take the Kilpisjärvi case
study, where a rather simple model produced excellent results (here I
am referring to the model without generalist predators). This model
has only two state variables (although perhaps we should count sea-
sonality as another), five scaled “biological” parameters, plus a noise
parameter. This is a very simple model (although capable of quite
complex dynamics). Now think about real voles, characterized by age,
sex, and size structure, interacting socially with other voles, compet-
ing against both conspecific and heterospecific rodents. These voles
construct burrows and nests, feed on a wide variety of plants, are
hunted by a wide variety of predators. Their spatial distribution is
highly heterogeneous, and is affected by distributions of food, pre-
dation risk, fixed features of the environment, and results of human
activity. This is an incredibly complex, messy real-life system. There
is no reason why a relatively simple oligofactorial model should be
able to capture its dynamics. Yet it does. And models of intermediate
complexity do well in several other oscillatory systems. There is a
pattern here, but I do not think we fully understand, yet, why this hap-
pens. (After writing this paragraph, I discovered that physicists have
also been puzzled by the “unreasonable effectiveness of mathematics
in natural sciences”; see Wigner 1970.)

Of course ecological models are not as precise as models in some
physical applications, such as planetary motions. To give a quantita-
tive measure to what I mean when I talk about “success,” I define it
as getting R2

pred in the range of 50–90%. This is modest prediction
ability, compared with the best physical applications, but ecologists
should not feel bad about it. The complex systems with which we deal
are unlikely to allow better prediction ability (and as I discuss in the
above paragraph, it is amazing that we can get any predictability at
all). And do not forget that in science it is not the absolute prediction
that counts, but the ability to construct alternative theories/models,
and distinguish between them on the basis of their relative prediction
ability. Thus, if one theory yields R2

pred of only 10%, but the alterna-
tive is even worse, at R2

pred = 1%, then we have made progress by
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rejecting the worse alternative. We are doing good science, although
clearly our best current model will not be a useful forecasting tool in
applications.

Finally, ecological systems affected by oscillations are typically
more predictable than stable noisy systems (unless we are able to
understand and model “noise” as exogenous signal, e.g., by including
fluctuations of food supply—masting—or climatic changes explicitly
in the model). There is an important message here, too. Presumably,
the stable noisy systems are affected by ecological mechanisms simi-
lar to those that drive oscillations. In fact, there are several examples
in which oscillatory populations smoothly grade into stable ones (e.g.,
Fennoscandian voles). Thus, it is unlikely that oscillatory systems are
qualitatively different from the stable ones; the difference is rather
a matter of quantitative parameter values. This means that by build-
ing and testing a theory for complex population dynamics we are
simultaneously perfecting a theory for all kinds of population dynam-
ics, including simple ones. In a sense, population oscillations are the
planetary motions of ecology, because they provide us with systems
where we can hone and test our approaches, before applying them to
population fluctuations in general.



Glossary

aggregative response—Local increase in predator numbers (density)
resulting from predator movements in response to spatial variation
in prey density.

Allee effect—A nonlinear relationship between the per capita rate of
population change, r�t�, and population density, N , in which r�t�
increases for small N , reaches a peak at some intermediate N , and
declines thereafter. Usually, it is also assumed that r�t� is negative
for N near zero (the strong Allee effect).

ancillary data—Quantitative information in addition to primary data
that may be useful in modeling population dynamics of the focal
species. May include data on various aspects of biology of the focal
species (e.g., age structure, or changes in average body size), as
well as time-series data on population fluctuations of interacting
species (e.g., resources or predators).

attractor—A geometric object in the phase space that attracts all
trajectories starting within its domain of attraction. Examples of
attractors include stable equilibria, stable limit cycles, and strange
attractors.

chaos—Bounded fluctuations with sensitive dependence on initial
conditions.

chaotic oscillations—Dynamics of mixed deterministic/stochastic
systems characterized by positive Lyapunov exponents (trajectory
divergence). In practice must be characterized by a fairly large
signal/noise ratio (otherwise, we shall not be able to detect the
chaotic component). May or may not have statistical periodicity
(in most ecological applications some periodicity is present).

coefficient of prediction—The proportion of variance in log-
transformed density predicted by the model R2pred (see section 7.2.4
for formula).

DDE models—Delayed differential equation models are similar to
ODE models, but their right-hand sides include lagged state vari-
ables, for example, N�t − ��, where � is the time delay.
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density dependence—Some (nonconstant) functional relationship
between the per capita rate of population change and population
density, perhaps involving time lags.

domain of attraction—A part of the phase space including the attrac-
tor itself, as well as all initial conditions from which a trajectory
will converge to the attractor.

dominant period—The lag at which the autocorrelation function has
its first maximum.

dynamical complex—Two or more state variables affected in a sim-
ilar fashion by the processes causing fluctuations in a dynamical
system. As a result, dynamics of these variables become synchro-
nized, allowing us to replace them with a single averaged variable
without a great loss of predictive power. An example is two spe-
cialist enemies preying on the same species, and having similar
characteristics (functional responses, population growth rates).

dynamical dimension—The number of state variables (and equations)
in a dynamical model.

endogenous factors—The density-dependent component of popu-
lation dynamics, or population feedbacks. May act without an
appreciable lag (direct or undelayed density dependence; first-
order feedbacks), or involve a lag (delayed density dependence, or
second-order feedbacks).

exogenous factors—Density-independent mechanisms that affect
population density without being affected by it. In other words,
there is no dynamic feedback between these processes and popu-
lation density.

experiment—A planned comparison between data and a novel, non-
trivial prediction derived from a hypothesis.

extrinsic factors—All processes affecting the focal population that
are not intrinsic factors. Not to be confused with exogenous (a
specialist predator is an extrinsic but endogenous factor).

first-order oscillations—Oscillations arising in first-order dynamical
systems, that is, systems in which population feedbacks operate
with time lags of one generation or less. Typical periods are in the
range of 2–4 generation times. One diagnostic feature of first-order
cycles is rapid (one time step in duration) population crashes.
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fluctuations—A generic term for any kind of population dynamics
(i.e., temporal changes in population density or numbers).

focal species—The species under investigation whose dynamics we
are attempting to understand.

fully specified model—A mathematical model that is specified at all
three levels, from most general to most specific: (1) all state vari-
ables identified, and interpreted in biological terms; (2) all func-
tional forms given explicitly; and (3) all parameter values given.
In other words, the model is so completely described that it can
be implemented as a computer simulation without any additional
information.

functional forms—Mathematical functions that relate state variables
(and their rates of change) to each other. There often are discrete
choices for alternative functional forms, for example, Type II ver-
sus Type III functional response. However, in certain cases one
can write a more general parametric form that includes the alter-
native functional froms as special cases. For example, substituting
quadratic exponents in Type III functional response with a parame-
ter � gives us a general functional response (the “phenomenological
form”), which includes Type II and Type III responses as special
cases (� = 1 and � = 2, respectively).

functional response—The rate at which an individual predator kills
prey (thus, its units are prey individuals per predator per unit of
time). The three general kinds of simple functional responses are
linear (or Type I), hyperbolic (or Type II), and sigmoid (or Type
III).

generation cycles—Population oscillations with period approxi-
mately equal to one generation. These dynamics arise in age- and
stage-structured models, and in DDE models. Sometimes I refer to
these dynamics as zero-order oscillations.

intrinsic factor—A process or mechanism pertaining to the focal
population. Examples include age and stage structure, dynamics of
individual quality and maternal effects, intraspecific competition,
and cooperative processes leading to an Allee effect.

logistic-like models—ODE models in which the per capita rate of
change, r�t� = dN/�N dt�, is characterized by a maximum at N =
0, is positive for all N < k, and negative for all N > k (where k

is the carrying capacity).
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Lyapunov exponents—A global Lyapunov exponent is the long-term
(t → �) exponential rate of trajectory divergence. Local Lyapunov
exponents measure trajectory divergence over a finite interval of
time (e.g., a year). Local exponents depend on the current state
of the system, thus characterizing variation in sensitivity to initial
conditions in different parts of the phase space.

measurement noise—Errors affecting only the observations. Mea-
surement noise does not affect the actual population dynamics.

mechanism in population ecology—A description of what individu-
als do that serves as a buildling block in a population model.
Mechanisms relevant to the theory of population dynamics come
in two flavors. They can be explicitly based on individuals (e.g., a
detailed description of an individual predator searching, capturing,
and consuming prey). Alternatively, a mechanism can average over
some ensemble of individuals, abstracting some important feature
of individual behavior or performance (e.g., predators’ functional
response, or density dependence in fecundity).

metastable dynamics—A special case of multiple coexisting attrac-
tors, in which attractors are stable equilibria. Depending on initial
conditions, the trajectory will approach either one or the other equi-
librium, and stay there indefinitely (unless perturbed).

methodological individualism—The principle that population dynam-
ics can be ultimately understood only with individually based
mechanisms and theories. This is an example of a reductionist
approach to doing science.

monotonically damped stable point—A stable point attractor ap-
proached exponentially (without overshooting). This is dynamics
characterizing purely deterministic models.

multiple coexisting attractors—A possible configuration of the phase
space in nonlinear models, in which more than one attractor is
present. The phase space is divided into multiple domains of attrac-
tion, each associated with its attractor.

neutral oscillations—Oscillations, poised on the boundary separating
stable oscillations (which converge to a stable point or stable limit
cycle) from unstable oscillations (which diverge without bound).
The amplitude of neutral oscillations is determined by the initial
conditions: the further away from the equilibrium the trajectory
starts, the greater will be the amplitude of oscillations.
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noise-induced chaos—Population dynamics resulting when a deter-
ministically stable endogenous component (Lyapunov exponent is
negative) is combined with a stochastic exogenous component,
yielding a chaotic system (Lyapunov exponent is positive).

nonstationarity—Absence of stationarity that occurs because the
mechanisms generating population fluctuations change with time.

null factors—Processes that have no effect on the per capita rate of
population change.

numerical response—The rate of change of predator population as a
function of prey and predator densities.

ODE models—Models employing ordinary differential equations,
that is, equations with a first temporal derivative (e.g., dN/dt) on
the left-hand side. Right-hand sides are functions of undelayed
state variables.

oscillations—Population dynamics that have some element of reg-
ularity, allowing some degree of prediction of future population
density. Usually oscillations are characterized by statistical period-
icities, but it is also possible to have aperiodic oscillations with a
strong deterministic component (chaos).

oscillatory damped stable point—A stable point attractor approached
in an oscillatory manner (with overshooting). This is dynamics
characterizing purely deterministic models.

paradox of enrichment— Increasing prey’s carrying capacity in the
Rosenzweig-MacArthur (and related) models leads to a destabiliza-
tion of the point equilibrium and emergence of limit cycles.

parameters— In a specific realization of a dynamical model (e.g.,
predicting trajectory from certain initial conditions), parameters are
constants, while state variables change with time. However, param-
eter values can change between different realizations. The most
common reason is when we apply a model to a different situation
(different habitat, or even different species).

PDE models—Partial differential equation models.

periodic forcing—A periodic exogenous component of dynamics.

phase space—Multidimensional euclidean space in which each state
variable is represented with its own axis.
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phenomenological—Approaches or models that are not based on
explicit ecological mechanisms.

population—For the purposes of this book (remember that I focus
primarily on temporal aspects of population dynamics), I define
population as a group of individuals of the same species that live
together in a defined area of sufficient size to permit normal disper-
sal and migration behaviors. Thus, temporal changes in population
abundance are primarily determined by birth and death processes,
and emigration/immigration processes can be neglected without a
serious loss of predictability.

primary data—Time-series data on population density of the focal
species, providing the basis for characterizing the quantitative pat-
tern of population dynamics. This quantified pattern of population
fluctuations is what needs to be explained (“why do populations
fluctuate as they do?”).

probes—Quantitative measures of patterns in population dynamics.

process noise—Exogenous environmental stochasticity that affects
the rate of population change. Not to be confused with measure-
ment noise.

process order—The number of lagged densities affecting the realized
per capita rate of population change.

pure resource-consumer and second-order systems—A pure resource-
consumer system is one in which the resource per capita rate of
change depends only on consumer density, while the consumer
per capita rate of change depends only on resource density. An
example is the Lotka-Volterra predation model. A pure resource-
consumer system is a special case of a pure second-order model
(a model lacking first-order feedbacks).

quasi-chaotic dynamics—Dynamics intermediate between chaotic
and stable periodic oscillations; characterized by �� near 0
(usually, in the range of ±0�1).

quasiperiodicity— In continuous models, a torus-shaped attractor. In
discrete models, an infinite set of points lying on a closed curve.
The trajectory jumps around this curve without ever exactly repeat-
ing itself. Quasiperiodicity is a property of purely deterministic
models.
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quasi-stationarity—A dynamical system is quasi-stationary if the
mechanisms generating dynamics do not appreciably change dur-
ing the period that we analyze. Thus, we can employ analytical
approaches that assume stationarity.

second-order oscillations—Oscillations arising in second-order
dynamical systems, that is, systems in which population feedbacks
operate with time lags of longer than one generation. Typical
periods are in the range of 6–12 and more generation times. One
diagnostic feature of second-order cycles is prolonged (two or
more time steps) population declines.

semimechanistic—See mechanism in population ecology.

simple population dynamics—Dynamics characterized either by
stochastic exponential growth/decline or by stability with noise.

stable limit cycle— In continuous models, a stable limit cycle is a
closed curve in the phase space that attracts all trajectories within
its domain of attraction. Once on the attractor, the trajectory is
perfectly periodic (repeats itself exactly with a certain period). In
discrete models, a stable limit cycle is an attractor consisting of
a finite set of points, visited in turn by the trajectory. Stable limit
cycles are a property of purely deterministic models.

stable periodic oscillations—Population dynamics resulting from
combining an endogenous component that is either oscillatory
damped stable point, stable limit cycle, or quasiperiodicity, and
a stochastic exogenous component. Lyapunov exponent must be
negative, implying trajectory stability, and periodicity must be
statistically detectable.

stability with noise—Population dynamics resulting from combining
an endogenous component characterized by monotonically damped
stability, and a purely stochastic exogenous component.

state variables—The main dynamical quantities of interest to the
model. The guts of the model describe how state variables interact.
Typically, the number of equations in the model equals the num-
ber of state variables. In a differential equations model, temporal
derivatives of all state variables appear on the left-hand sides of
equations. An example of state variables for a predator-prey model
is the population densities of prey and predators.
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stationarity—A dynamical system is stationary when the mechanisms
generating its fluctuations do not change with time.

stochastic exponential growth/decline—Population dynamics in
which the per capita rate of population change is unaffected by
any population feedbacks (density dependence).

structure of density dependence—Quantitative categorization of the
pattern of population dynamics, employing such probes as process
order, the shape of density dependence, trajectory stability, and
signal/noise ratio.

trend—A long-term exogenously driven systematic change in the
environment.

zero-order oscillations—See generation cycles.
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