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PREFACE

This book is based on a series of lectures I gave for M.Sc. students
repeatedly over the years at the Department of Mathematics, Quaid-
i-Azam University, Islamabad. These lectures evolved according to
the needs of the students whom I taught. The background of the
students was very different from that of Western students at a similar
level. The problem was, keeping the lectures largely self-contained,
to develop the background required for Special Relativity more or
less from scratch. Of course, this development must be made in a
finite time — one semester, to be precise. On the presumption that
these problems are faced throughout the Third World, I decided to
publish this book with a press that could make it available for the
Third World.

It is hoped that this book will be useful, not only in the Third
World, but everywhere. It is aimed at an audience making its first
real contact with the Special Theory of Relativity. A background
of matrices and vectors, of differential and integral calculus and the
rudiments of group theory is assumed. Virtually no background in
Physics is assumed except for some Classical Mechanics and a nod-
ding acquaintance with the formalisms of Lagrange and Hamilton.

A word of explanation is in order as to why the General Theory
of Relativity is not included at all in this volume. In Pakistan,
this subject is dealt with separately in a one-semester course. The
background required for it is more extensive. All things considered,
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viii Relativity: An Introduction to the Special Theory

it did not seem useful for most readers to be forced to ‘buy’
the General Theory when they are only interested in the Special
Theory. This is particularly true for students of Physics who intend
to work on the experimental side, or even in branches of Theoreti-
cal Physics other than Particle Physics, Cosmology, Astrophysics or
General Relativity itself. While General Relativity is steadily gain-
ing importance in Physics, it is by no means as basic for it as the
Special Theory is.

I have tried to maintain, throughout, a historical perspective of
the development of the Theory of Relativity. This is done for two
reasons. First, I believe that it helps to build an interest in the
subject and give credit where it is due. Second, I believe that it
helps to give a better ‘feel’ for the concepts on which the theory is
based. Many nuances are ‘lost in non-translation’ in carrying forward
earlier terms out of their original context.

Finally, I would like to record my indebtedness to my late
father, Mr. Manzur Qadir, who introduced me to the pleasures
of Relativity; to my Ph.D. supervisor, Professor Roger Penrose,
from whom I learnt precision in thinking (particularly in the field of
Relativity); to Professor John Archibald Wheeler, who brought
home to me the importance of clear and attractive presentation of
ideas; and to my numerous students on whom I experimented in
an effort to find the best method of teaching Relativity to students
with the background available in Pakistan. Thanks are also due to
many colleagues and students who refused to ‘see the Emperor’s new
clothes’ till they were put on. Of course, my gratitude goes to my
family who were neglected because of this work and in particular to
my wife, Rabiya Qadir, for giving me continual support and encour-

- agement in writing this book. Finally, I wish to thank Mr. Shabahat
Ullah Khan for his excellent typing of the manuscript.

ASGHAR QADIR
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Chapter 1

INTRODUCTION

Relativity theory as it stands may be thought of as the study
of motion. In this sense Special Relativity is the theory dealing
with uniform motion. It deals with ‘kinematics’ rather than with
‘dynamics’ (which deals with the motion of a body experiencing
force). Before going on to the subject itself, we will first take a brief
look at the history of the theories of motion. In the process we will
also need to consider the scientific method as we now think of it and
as it used to be thought of.

1. Historical Background of Motion

Familiar as we are today with the concepts of acceleration,
velocity, time, etc., it is very difficult to understand what motion
meant to the ancient mind. At the very start, it could not have
been more than the fact that an object occupied different positions
at different instants. Thus, a man seen in the village on one occasion
and in the forest on another, had moved. Similarly, a lion one ran
away from in the forest, seen in the village, had moved. If a stone
seen in one part of the village was found elsewhere, it had moved.
Those objects that were seen to be able to move of their own volition
were called ‘animate’ objects, while those that could not were called
‘inanimate’. If an inanimate object moved, but there was no appar-
ent visible object which had moved it, an invisible personality — a
spirit — was supposed to have moved it. Thus, for example, Greek
myths abound in ‘wood-spirits’ or ‘dryads’ which moved the leaves

1



2 Relativity: An Introduction to the Special Theory

of trees and ‘water nymphs’ which caused the motion of water that
was seen, but was not due to fish.

As the human mind started to grope for more general causes,
which could be impersonal, people came to search for patterns.
One of the most important of the ancient formulations was that of
Aristotle. He stated some ‘self-evident truths’, as he saw them, and
deduced the observed patterns from them. This fitted in with the
view of science as held at that time. We shall look at his ‘laws of
motion’ and the ‘self-evident truths’ supporting those laws.

It seemed an obvious truth to Aristotle that the most perfect
curve, and hence path, is a perfect circle and the most perfect shape
is a sphere. Also, that the Heavens are perfect while the Earth is
imperfect. Further, that objects tend to return to their place of
origin, whether they be animate or inanimate. Now, from the first
two principles Aristotle deduced his law of celestial motion: ‘All
Heavenly bodies move in perfect circles, except insofar as they may
be made imperfect due to the influence of the Earth, whereby they
develop epicycles — the more epicycles the closer they are to the
Earth’. Aristotle had stated that the Universe was made up of
five ‘elements’. The four Earthly elements were, in order of in-
creasing perfection: earth; water; air; fire. The Heavenly element
was ‘aether’. This belief made more concrete his law of terrestrial
motion, which states that ‘All terrestrial bodies tend to go to their
natural state of rest’. This law explains why a stone will fall to the
Earth - since it was taken from there and that had been its natural
state of rest. Similarly the apple will fall to the ground because the
seed from which the apple tree grew had been sowed in the ground.
" Again on burning wood, when smoke rises and ashes fall; this is be-
cause the earthly part is returned to the Earth, while the airy part
goes back to the air. In the process, a certain amount of water and
fire which were contained in the wood are released. It was, again,
self-evident to Aristotle that the more Earthly something was the
greater its tendency would be to get back to the Earth and therefore
it would fall faster. The Earthly ‘elements’ are what we would now
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call solid, liquid, gas, and energy. We will return to the ‘aether’
later.
The motion of the Heavenly bodies requires further discussion.
As regards their motion, there were two types of objects normally
in the sky: the fixed stars, which were points of light and moved in
perfect circles, and the planets which were larger objects and moved
in more eccentric ways. In addition there were comets and meteors
which Aristotle identified as atmospheric phenomena, and hence are
terrestrial in nature. The Heavenly objects were made of aether,
but nearness to the Earth could contaminate them. Thus the more
imperfect-seeming Heavenly objects should be closer to the Earth
“and move more eccentrically. This eccentric motion was given by
an epicycle, i.e., a perfect circle whose centre moves in a perfect
+ circle about the Earth. If the degree of contamination increased
there would be more epicycles in the orbit of the object. Thus,
there would be increasing fiery contamination of those objects which
had more epicycles. Now, aether was unchanging and eternal while
fire was changing all the time. Thus the Moon, which had the
greatest epicycles, changed the most, but still it changed cyclically.
The Sun, still with a lot of fiery contamination, but much less
changeable (changing with a cycle of a year instead of a month),
had fewer epicycles in its orbit. The other planets, again, had very
little changeability and few epicycles. '
Contemporaneous with Aristotle were scientists who saw the
Heavens very differently. They believed that the Moon went round
the Earth, but that the Earth and other planets went round the
Sun. The major proponent of this view was Aristarchus of Samos.
A follower of this view, Eratosthenes of Cyrene, made some beau-
tifully simple observations to deduce the size of the Earth. He
noticed that on the shortest day of the year, the shortest shadow cast
by an upright stick decreased to vanishing. However, 500 miles due
North of Alexandria (where the shadow vanished), a shadow was cast
corresponding to an angle of 7° (see Fig. 1). Thus, when the Sun was
directly overhead on the equator it was 7° lower at a distance 500
miles due North. Now the ratio of the circumference of the Earth to
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Fig. 1. Eratosthenese’s measurement of the Earth’s circumference and
diameter. The stick PQ casts no shadow. The stick AB casts the shadow
AC, which gives the angle subtended by PA as 7°. The ratio of the
circumference to PA is equal to the ratio of 360° to 7°.

/
/ Completed
l/ Earth’s
\ shadow

Fig. 2. By observing the shadow of the Earth on the Moon and completing
the observed arc to form a complete circle, we can see that the ratio of
the Moon’s diameter to the Earth’s diameter is the ratio of the circle’s
(representing the Moon) diameter to the completed circle’s diameter. This
is roughly 1:4.

500 miles is the ratio of 360° to 7°. From here it is easy to see
that Eratosthenes obtained the very good estimate of about 25,000
miles. This estimate was used shortly afterwards by Hipparchus to
estimate the size of the Moon. The Moon was observed during a
partial lunar eclipse. The arc of the Earth’s shadow on the Moon
could be extended to form a complete circle and the ratio of the
diameter of the Moon’s disc to the shadow of the Earth’s disc would
be the ratio of their actual diameters (see Fig. 2). The estimate was
close to 2,000 miles for the Moon’s diameter ~ again an excellent
estimate. Since the angular diameter of the Moon was known to be
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%o, the distance to the Moon could be easily worked out (see Fig. 3)
to be roughly 250,000 miles — once again an excellent estimate. The
next step was to note that during a solar eclipse the Moon just covers
the disc of the Sun. Thus the angular diameter of the Sun is also
%—o. By observing the angle made at the Earth by the Moon and the
Sun at half-moon (see Fig. 4), knowing the distance from the Earth
to the Moon, the distance to the Sun and hence the size of the Sun
could be estimated.

—
—
——
——
—
p—
—
—
——

—_—

—_———
—_—
— ——
———
—

Fig. 3. If the angular diameter of the Moon as seen on Earth, is 6
(measured in radians) the distance to the Moon, D, is df}, where d is
the Moon’s diameter.

e Sun
. (n20) $-—=—

-

Fig. 4. When there is a half-Moon the Sun-Moon-obsgiver on Earth forms
a right angle triangle. Observing the angle, # = MES, and knowing D,
the distance ME, we can work out £ = D/cos 8, the distance ES.

These estimates were available to Ibn-al-Haytham, over a
thousand years later. He revived the view of Aristarchus. If on no
other count, then just the sheer size of the Sun would have convinced
him that the Earth went round the Sun. He showed that the planets
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moved in circles around the Sun. Two centuries later, Al Zarkali
modified these results, in the light of better data, to state that they
moved in ellipses with the Sun at one focus. In the meantime Al
Kindi stated his ‘law of terrestrial gravity: “All terrestrial objects
are attracted towards the centre of the Earth”. Thus the ‘Arabs’
modified the Aristotilean laws of celestial and terrestrial motion.
' For completeness, it may be mentioned that the ancients knew
of six planets: the Moon, the Sun, Venus, Mars, Jupiter, Saturn and
the fixed stars. Before Aristotle the beliefs appear to be that there
were 7 separate moving domes. The Arabs discovered Mercury and
thus provided 7 planets. The fact that Mercury is so obviously a
satellite of the Sun may have played a significant role in convincing
Ibn-al-Haytham that all the planets (except the Moon) are satellites
of the Sun. By this stage, Muslim civilisation was on the decline and
the next developments in the study of motion came from the West.

2. The Measurement of Time

With hindsight we can say that one of the main problems in the
study of motion has been the measurement of spatial and temporal
intervals. As regards the measurement of space intervals, they were
soon refined enough for the purpose. Certainly, the ancient Greeks
were able to obtain very accurate measures of distance. However,
the measurement of time remained a problem for long afterwards.
The subjective impression of the passage of time was as inaccurate
as that of distance or temperature or other such quantities. The
problem was the lack of an objective measure that was fine enough
to study motion. There were available crude measures such as the
day, the month and the year. Early on these were broken into four
parts, and later even more parts. However none of these were refined
enough to study terrestrial motion. The first real ‘clocks’ were the
sun-dial and the water clock. The sun-dial consisted of a dial with
an upright piece which cast a shadow. Since the rate at which the
shadow moved would depend on the time of day and the season,
and could be seen only during the day and when the sky was clear,
this ‘clock’ was not very reliable. The water-clock consisted of a

o
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bucket with a hole near the bottom and a marking near the top. It
would be filled up to the marking and then allowed to empty out.
The time taken of course depended on the heat and humidity, which
would determine the loss of water not through the hole, but due to
evaporation. Also, the hole would expand at higher temperatures,
allowing more water through. In all, it was much too crude a measure
of time to be useful. In fact, there was (and remains) the notion that
there are ‘different times’ since there was no reliable time-measure
which was significantly better than the subjective impression of the
passage of time.

Fig. 5. A schematic representation of an hour-glass. The ends are closed.

The first major improvement in the technology of time measure-
ment comes with the production of smooth, clear, glass moulded into
different shapes. In the West, where the next developments arose,
the ‘hour glass’ came into use towards the start of the Middle Ages.
It consists of glass moulded in the form shown in Fig. 5 with sand
trickling from one end to the other, both ends being closed. After
the sand passes from one end completely, the glass is turned upside
down. For the first time, with this development, a time interval of
about an hour could be measured objectively distinctly better than
it could be measured subjectively. Presumably the hour glass was
invented in Arabia. which seems the most likelv to develop the tech-
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nology used for its construction. However, even this development
was not adequate for the proper study of motion. The Middle Ages
do, nevertheless, mark the start of the scientific study of terrestrial
motion, as we shall see later.

Galileo Galilei, the discoverer of so many other important facts
and principles, was the first to provide a time-measuring device for
sufficiently small intervals of time. He noticed that what we now call
a pendulum swings with the same period regardless of the amplitude
of the oscillation. He verified this belief by timing the swing against
his pulse. Further, he noticed that a shorter pendulum swings faster
than a longer one. Thus he was able to construct ‘clocks’ which
measured different intervals and could be calibrated against each
other. He himself used such clocks to measure the rate of motion in
given situations. From this empirical work he drew certain conclu-
sions which could be stated as the first modern laws of motion.

Since then there have been further improvements in the tech-
nology of time measurement. The spring watch was the earlier one
and the electronic and atomic clocks the more recent. The atomic
clock essentially measures time by ‘counting the number of elec-
tromagnetic waves’ of a given wavelength emitted by a particular
element. The current accuracy of time measurement is about
107 1° sec! It should be borne in mind that such clocks were not
available to Einstein. At the start of the development of Relativity,
the accuracy was only about 10~ ! sec.

It should be clear already that after the start of the Renaissance
there was no reason for confusion about the concept of time. As
pointed out earlier, the subjective assessment of time is unreliable
at best, as with the subjective assessment of distance, force, tem-
perature, humidity, etc. At worst, as in dreams, it can be entirely
misleading. Unfortunately, many philosophers, over the generations,
have continued to mystify the time-concept. The validity of their
hair-splitting arguments is doubtful, but there can be no doubt of
their lack of relevance for practical purposes. There are very good
objective means of measuring time. However, they are not necessar-
ily equivalent. It is necessary, when talking of time measurement, to
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specify the means of measurement. For example, if we define time
as being measured by a pendulum clock, the clock will slow down
as we go higher above the surface of the Earth. We would have to
conclude that ‘time dilates’ as we go up. For the purposes of the
present work it is adequate to take the time concept as that defined
by measurement by atomic clocks (even though they have become
available only recently and were not available for the study of motion
being discussed, at that time).

3. Classical Motion

The first major breakthrough in the study of motion was when
Baron Simon disproved Aristotle’s belief that, in general, heavier
bodies fall faster than lighter ones. He made the following arrange-
ment (see Fig. 6). A wooden board was placed over a large-hollow
in the ground to provide a sound-box such as one has in musical

21817488 0S JIIRIP NI SILLILIL IR LD

Fig. 6. A schematic representation of the demonstration that heavier and
lighter objects fall at the same rate. The hollow beneath the wooden plank
makes an enormous sound-box which can identify any beats produced.
The null result of this experiment proves that there is no significant time
lag between the falling of the smaller and the larger stone.

instruments (particularly of the stringed variety). From a second
storey he arranged to drop two stones simultaneously. He found
that, regardless of whether the stones were of equal weight or one
was mnch heavier than the other. no heats were oroduced. If the



10 Relativity: An Introduction to the Special Theory

stones had fallen at different times beats would have been produced.
Thus they fell equally fast.

Galileo used his invention of the pendulum clock to study,
quantitatively,'how bodies moved on the Earth. He found that an
object once put in motion would continue in its uniform motion if
it were not for friction or other forces acting on it. By performing
experiments on an inclined plane he inferred that the height through
which a body falls is proportional to the square of the time it takes
to fall, unless other forces act on it.

There were also major advances made in the study of celes-
tial motion. Nicolai Copernicus, a Polish monk, had revived the
views of Ibn-al-Haytham. According to this view, Mercury, Venus,
Earth, Mars, Jupiter and Saturn followed concentric, circular orbits
of increasing radius about the Sun. The Moon followed a circu-
lar path about the Earth. Beyond Saturn were the fixed stars.
(This picture is nowadays known as the Copernican system instead
of Aristarchus’ or Ibn-al-Haytham’s system.)

Again Galileo played a major role in this study. He developed
and improved the recent invention of the telescope. He used it, not
~ merely as a toy for looking at distant objects on the Earth, but as

a scientific instrument to study the Heavens. He deduced that the
" shadows on the face of the Moon were due to mountains. By carefully
measuring the shadow as a ratio of the diameter of the Moon and the
angle of the Sun, he calculated the height of the lunar mountains.
In fact he m‘apped the entire surface of the Moon very accurately.
He also discovered four satellites of Jupiter and studied their motion
- carefully. His work clearly marked the end of the Aristotilean laws
of celestial motion. His discovery of ‘novae’ (new star,s) was the
death knell of the belief that the Heavens are eternal and perfect.
With him the so-called Copernican system came into its own. Not
that everybody accepted his views and findings immediately. Quite
the contrary. There was an uproar each time he announced results
at variance with Aristotle’s beliefs and he was repeatedly forced to
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recant those views. Nevertheless, his findings gained currency - fairly
quickly for those times.

The telescope and Galileo’s findings were used to good effect
by Tycho Brahe to collect data. The data he collected was used
by Johannes Kepler. Kepler revived Al Zarkali’s law of planetary
motion, which states that planets move in ellipses with the Sun at
one focus. (This is now known as Kepler’s first law rather than Al
Zarkali’s law.) He went on, however, to state two more laws which
were quantitative. These laws were vital for the further development
of the study of the motion of celestial objects.

Then came Newton! He used Galileo’s law, which he restated
as follows: “Every body continues in its state of rest or of uniform
motion unless an external force acts on it”. This statement is nowa-
days known as Newton’s first law of motion. The second law was
stated as: “The rate of change of the amount of motion is propor-
tional to the force causing the change”. The ‘amount of motion’,
as distinct from the ‘rate of motion’, was momentum rather than
speed. A consequence of these laws was his third law of motion:
“Every action has an equal and opposite reaction”. This was not
enough to explain motion in general. Robert Hooke had earlier quan-
tified and modified Al Kindi’s law of terrestrial gravity for explaining

celestial motion to state that: “All objects are pulled towards the Sun . -

with a force proportional to their mass and inversely proportional
to the square of their distance from the Sun”. Thus he had stated
a law of celestial gravity. This law led to Kepler’s laws as a conse-
quence. Newton generalised this law to the law of universal gravity:
“Every body attracts every other body with a force proportional
to the product of their masses and inversely proportional to the
square of the distance between them”. He thus managed to unify
motion in the Heavens with that on Earth. The same laws apply
everywhere in the Universe. For completeness, it should be added
that Newton thought of light as composed of corpuscles possessing
mass and hence he expected that the path of light would be bent by
a gravitational source. He also talked of the paths of planets being
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‘refracted’ about the Sun. This is a remarkable insight presaging the
General Theory of Relativity.

The opinion on the nature of light that was generally accepted
was that of Christian Huyghens. He believed that light was a form of
energy propagated by wave motion. Of course, the motion had to be
in some medium. For this purpose Aristotle’s ‘aether’ was modified
to serve as a medium in which travelled wave-like disturbances that
we call light. Later many different ‘aethers’ were required. The
medium for light was called the ‘luminiferous aether’. The ‘aether’
also provided a frame for absolute rest.

The study of both wave motion and usual mechanical motion
continued. Most notable were the contributions of Lagrange and
Hamilton in this respect. The essential problem they tackled was of
celestial mechanics. Since every body attracted every other body,
not only did the Sun attract each of the planets, but the planets
also attracted the Sun. In fact they also attracted each other. The
procedure originally adopted was to solve the problem for the Sun
with each planet separately and then apply corrections for each of
the other planets. The corrected result would be applied to provide
further corrections, and so on. Later Lagrange developed a method
of dealing with all ten bodies together on the same footing using
generalised coordinates and velocities to express the total free-energy
of the system and minimise it. Then Hamilton used generalised
coordinates and momenta to express the total energy of the system.
These are the methods of Lagrangian and Hamiltonian mechanics
that are used so extensively nowadays. We will need to refer to
them later.

In the meantime there had been extensive investigations into
the phenomena of electricity and magnetism. In the nineteenth
' century these phenomena were unified in Maxwell’s theory of
electromagnetism. He developed a set of equations to describe these
phenomena. In addition, he showed that there were electromag-
netic waves which would travel in a vacuum with the speed of light
‘and in dielectric media with a correspondingly slower speed. The -
conclugion was quite unavoidable — light is an electromagnetic wave.
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The ‘electromagnetic aether’ is the ‘luminiferous aether’. By about
1880 Newton’s theory as augmented by Maxwell’'s work seemed
complete. Maxwell had introduced the concept of a field, which
was the tendency to influence a test particle (sufficiently small so as
not to influence the field). Such a field could be visualised as the
lines of force about a bar magnet that can be traced by placing iron
filings near it. This concept has, since then, become very important
due to its application in modern physics where it often replaces the
generalised coordinates in the Lagrangian or the Hamiltonian (the
free or the total energy).

The stage is now set to present the events which led to the
formulation of Relativity.

4. Pre-Relativistic Mechanics

Towards the end of the nineteenth century, Lorentz tried
to complete the theory of electromagnetism by including discrete
charged particles. There were some basic problems involved but the
B-rays of J. J. Thompson had been identified as streams of charged
particles, nowadays called ‘electrons’. A theory for the motion of
these particles was necessary. Lorentz published it in the form of a
book entitled ‘The Theory of Electrons’. In order to make the theory
self-consistent he had to introduce certain ad-hoc assumptions. One
was that the ‘electromagnetic mass’, i.e., the mass relevant for the
theory, was velocity-dependent according to the formula

m

Meyy = \/—'1—_—_—')—7—/_; . (1.1)

The other was that there must be a transformation of coordinates
and a new ‘local time’ parameter had to be introduced:

(1.2)

z = '15(:1: —ut), y=y, 2=z 1t =~e(t-vz/c?), }

1= V/1-v?/c? )

In the mean time Poincaré had been discussing the theory of
motion from a more philosophical and mathematical point of view.
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~ He stated categorically that only relative motion should be discussed,
that there was no meaning to be attached to absolute motion. He
called this the principle of relativity of motion.

The most significant development was Michaelson’s attempt to

measure the velocity of Earth through the aether. If a measurement

was made at a time when the rotation of the Earth (at the place

of measurement) was in the same direction as the revolution of the
Earth about the Sun, the two velocities should add. Thus, if the Sun
was at rest in the aether there would be a speed of about 30 km/sec.
of the Earth through the aether. If the Sun was moving then at some
time of the year, when the Earth’s motion was in the same direction
as the Sun’s, the speed would be even greater. He showed that with
his newly developed interferometer he should be able to measure
such a velocity accurately and thus indirectly ‘see the aether’. The
basis for this expectation is contained in the following argument.

Resultant

Revolution

&\

Fig. 7. The essentials of the Michaelson-Morley experiment. Light is sent
along the direction of motion of the Earth, (classically) at a speed (c + v) -
and back against the motion (classically) at a speed (¢ — v). Perpendicular
to the motion the speed of both legs of the journey must be the same. The
time-lag could be measured by seeing interference fringe-shifts, but none
were seen.

Consider two rays of light sent out from a point on the Earth’s
surface, one along the direction of motion and one perpendicular to
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it. Let both be reflected back, as shown in Fig. 7. For convenience,
suppose that the distance travelled in both directions is the same:
d. If the speed of light is denoted by ¢ and the speed of the Earth
through the aether by v, we can work out the time taken by the light
to travel in each direction. Along the direction of motion it is

d d 2d/c
t = = _ (L
! c+v+c—v 1-v2/c? (13)

To travel perpendicular to the direction of motion it must be
directed into the effective aether wind (see Fig. 8) so that the
resultant velocity is perpendicular to the direction of motion. As
is clear from Fig. 8, the magnitude of the resultant velocity of light

¢ =c\/1—1v2/c? . (1.4)

18

Fig. 8. If light is sent with a velocity e¢ so that the resultant velocity,
(e — v) is perpendicular to v, the magnitude of this resultant vector is

02— 02.

Thus, the time taken by this ray of light is

' 2d/c
t2 = ezl (1.5)
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The time lag, At, is then

At=t; —t, = _2dje (1-+1-v2/c?) . (1.6)

1-—v2/c?

Thus, we get
2

%:1—\/1—&/&%%% , (L.7)
1
for sufficiently small v/c. In this case, we expect v/c ~ 10~*. Thus,
2At/t, =~ 1078, Now, if the situation is changed so that the ray
that was perpendicular to the direction of motion now goes against
it and back, and the ray that went in the direction of motion now
goes perpendicular, we would get a total effect of 2At =~ 1078 x t;.
Michaelson developed an instument which split a beam of light
-into. two parts which could travel different distances, and so the
waves comprising the light beams would arrive out of phase with
each other. They would then ‘interfere’ with each other ‘construc-
tively’ at some places and ‘destructively’ at others. This instrument
is called a Michaelson interferometer. Now a change of the speed
of light would lead to a phase shift corresponding to a change in
the positions of constructive and destructive interference. Where
there is constructive interference there is a bright band and where
- there is destructive interference a dark band. These bands are called
‘interference fringes’. The change of the speed of light should, there-
fore, lead to a fringe shift. Since the wavelength of light is very
small, phase shifts of extremely small duration can be detected. It
is found that for the expected motion of the Earth there should be
a significant shift in the interference fringes. '
Michaelson’s attempt was significant because it failed. Despite
repeated attempts with many precautions taken and all sorts
of improvement made in collaboration with Morley, it failed. Not-
a fraction of a fringe shifted. It was as if the fringes were painted
onto the eye-piece, so definitely fixed they remained. By 1895 there
was no room for doubt that the Michaelson-Morley null result was
valid. An explanation of this result was required. It was suggested
" that maybe the aether ‘dragged’ along with the Earth so that there



Introduction 17

was no relative motion between the Earth and the aether. How- .
ever, if it did it should take some energy of motion from the Earth
and hence reduce the Earth’s energy causing it to spiral in towards
the Sun. This did not happen. To avoid this conclusion we must
postulate that the aether took no energy because it was massless.
In that case it would be impossible to ‘drag’ it as any force would
accelerate it infinitely. The aether already had been postulated to be
infinitely hard. This property was required to explain the fact that
the speed of light in a vacuum was greater than in any medium. The
essence of the argument is as follows. A wave travels faster in a hard
than in a soft medium. If there is aether everywhere where there
is no matter, but is displaced by matter, and it is harder than any
substance, we would expect light to travel faster where there is less
matter than where there is more matter. It might seem odd that the
aether did not stop the Earth’s motion through it, but that could be
explained away by postulating that it passes through matter with no
resistance. However, this makes the ‘dragging of aether’ even more
implausible. )
An alternative ‘explanation’ was suggested by Fitzgerald.
Suppose, he said, that because of some unknown dynamical
process, there is a contraction of length in the direction of motion
for all physical bodies, but there is no such effect in the directions
perpendicular to the motion. Let this shortening be given by '

d =d/1 = v2/c2 . (1.8)

‘Now, in Eq. (1.3) d' would appear instead of d. Thus t; would be
equal to t; and so no time-lag could be expected. Independently, but
somewhat later, Lorentz showed that if we take € = 1 in Eqs. (1.1)
and (1.2), Eq. (1.8) follows from there. He also believed that there
would be some dynamic, or electrodynamic, process which would
account for this contraction, now known as the Lorentz-Fitzgerald
contraction.
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5. A Digression on Scientific Method

Before continuing with the study of motion it is necessary
to discuss (very briefly) what is meant by ‘science’, ‘scientific
theory’ and ‘scientific method’. In ancient times they referred to the
attempt to provide causes for observed phenomena. Since these were
assigned to the whims of some unseen personalities or personality,
mythology and religion formed the basis of ‘science’. With Aristo-
tle, ‘science’ became the process of finding the ‘self-evident truth’
which explained observed phenomena. In the Muslim civilisation
‘science’ became essentially the collection and systematic collation
of data by observation. With Galileo, the data collection began to
include experimentation in a modern sense. With Newton it became
the reduction of all phenomena to mechanical models by which they
could be understood in terms of the ‘laws of Nature' discovered by
Newton. (A more detailed discussion of this subject is available in
my article ‘Modern Scientific Thought in Perspective’ in The History
of Science in Central Asia, ed. A. Qadir, Centre for the Study of
Central Asian Civilisations, Quaid-i-Azam University Press, 1975.)

The modern view, expressed by Karl Popper, is largely based
on Einstein’s work in Quantum Theory and Relativity. This is not
accepted unanimously, but it is important to grasp fully the theory of
Relativity. According to this view, ‘doing science’ means following
the ‘scientific method’ to comprehend phenomena. The ‘scientific
method’ consists of formulating ‘scientific theories’ which explain
all known phenomena and then testing them. A ‘scientific theory’
is a set of assumptions which leads to a falsifiable conclusion, i.e.,
one which could in principle be proved wrong. To be able to test
a prediction quantitatively there must be a procedure to measure
the relevant quantities explicitly. In addition, there is an infinite set
of assumptions which provide the concepts used. The collection of
all these gives us a physical theory. (Details are given in A. Qadir,
Int. J. Theoret. Phys. 15 (1976) 635-641.) It is necessary that any
‘explanation’ of observed phenomena is a physical theory.



Introduction 19

Exercise 1

Vf A man walks to work at a speed of 6km/hr. How accurately

 would it be necessary to measure his walking stick to be able to
detect the Lorentz-Fitzgerald contraction of the stick if it is 1 m
long? Is such an accuracy physically attainable?

2. An electronic device capable of measuring changes of 1072 cm is
being used at a fencing match, and it sees a 1 m foil decreased in
size. Considering the matter quantitatively, could the decrease
be due to the Lorentz-Fitzgerald contraction?

‘), What are the percentage changes in length due to the Lorentz-
Fitzgerald contraction for the following?

(a) A train.

(b) A racing car.

(c) A jet plane.

(d) A satellite.

(e) A deep-space reconaissance vehicle (like Mariner).

(f) The Earth moving round the Sun.

4. Is Fitzgerald’s suggestion a physical theory? Does Lorentz’s
suggestion improve Fitzgerald’s idea or make it worse?

5. If light is effected by gravitation, it should be possible for it to go
into orbit (i.e., a closed path) about a gravitational source. How
dense would a thousand kilogramme mass have to be for light to
be in a circular orbit about it?






Chapter 2

DERIVATION OF SPECIAL RELATIVITY

1. Einstein’s Formulation of Special Relativity

In 1905 Einstein solved the problems of the day by appealing
to kinematics rather than dynamics. It was because of the lack
of any dynamic reasoning that his theory met with such strong
resistance initially. He first analysed classical kinematics and
showed that it would lead to an observer-dependent speed of light.
He then showed that this result would lead to stellar aberration
which was not observed. The prediction was quite independent of
the Michaelson-Morley null experiment. (However, we shall use the
latter experiment in our discussion.) He then showed how, if we
assume that the speed of light is observer-independent, the Lorentz
transformations follow as a consequence. Further, he showed that
the ‘local time parameter’ must be treated as a genuine, physical,
time.

The classical kinematic transformations for uniform linear motion
with speed v, which Einstein called the Galilean transformations, are

=z—vt, y=y, 2=2 t =t, (2.1)

where motion is in the z-direction only. Differentiating these equa-
tions with respect to t', bearing in mind that ¢’ = t, gives the formula
for the resultant velocity,

' _ L L
Up = Up — U, Uy Uy, U = U, (2.2)

21
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Taking u = (¢,0,0) we see that u' = (¢ — v,0,0). Thus, if we
take v as negative the magnitude of u’, |u'|, is greater than c. This
result would lead to various problems with stellar aberration and the
theory of electromagnetism and electrons. Most important of all, it
leads to the supposedly measurable time-lag that was not found by
Michaelson and Morley.

Einstein now made explicit two assumptions. On these assump-
_tions he based his explanation. The assumptions made were the
following:

(a) The principle of special relativity, that all inertial frames are

physically equivalent;

(b) The principle of the constancy of the speed of light, that the
speed of light in vacuum (approximately 3 x 10® m/sec) is
constant for all inertial observers.

An ‘inertial frame’ is a frame of reference in which Newton’s second
law of motion holds. On the Earth, for example, it does not hold
because an object without support falls instead of continuing in its
state of rest. Here, the external force acting on it is gravity. In
an inertial frame an object without support should stay in its place
nevertheless. Principle (a) states that there is no physical difference
for any two observers in inertial frames even if they move relative to
each other in that ‘physical laws’ appear the same to both observers.
This way the absence of absolute motion gets reformulated. Principle
(b) simply says that the speed of light is independent of the speed of
the observer though it could depend on accelerations, etc. Clearly
the theory is restricted to dealing with uniform (linear) motion. It is
for this reason that it was called the Restricted, or Special, Theory of
Relativity. Einstein spent 10 more years formulating a workable Non-
restricted, or General, Theory of Relativity to deal with arbitrary
motions. Here we will not follow Einstein/’zc,)riginal derivation of his
- result, or his subsequent derivations. Rather, I would like to present
a procedure for derivation which fits in with a more general and
simpler formulation of the axioms uﬁderlying the theory. These will
be stated after deriving Einstein’s basic results.
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Fig. 9. The thought experiment of Special Relativity. Light signals (or
signals at maximum speed), sent by relatively moving observers O and o'
must travel together. This enables us to provide the moving wave-front
(P and Q) to translate from one frame to another.

Consider two observers O and O’, where O’ is moving with speed
v in the z-direction relative to O. Thus, of course, O is moving with
speed —v relative to O'. At one instant the two observers ‘coincide’.
By this, we mean that there is some small (negligible) displacement
between them in a direction perpendicular to the z-direction, but
there is no displacement in the z-direction. They both take this
instant as their origin of time, i.e., at this instant they start their
clocks. They both also send two light signals in the positive and

negative z-directions (see Fig. 9). Now, because the speed of light is

the same for all observers, the signals travel together. Let O measure.
time and space by the coordinates (¢,z,y,2) and O’ by (¢',z',¢',2').
To translate the coordinates of one into the other we need to have an

agreed point and determine how the coordinates of one are used in

terms of the coordinates of the other. Let the signal, at any instant,

be at P in the positive direction and @ in the negative direction.

The equations for P and @, respectively, according to O, are

ct—z=0(P), ct+z=0(Q), _ (2.3)
and according to O' are
ct'—z'=0(P), ct'+2'=0(Q) . ' (2.4)

Since P is given by both equations, each implies the other. For
the reciprocity implicit in principle (a) to hold,

ct' —z' = Act-z) , (2.5)
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where ) is a constant of proportionality. Similarly, for @

ct' + = p(ct +1z) , (2-6)

where u is a constant of proportionality.
Adding Egs. (2.5) and (2.6) and dividing by 2,

ct' = act — bz , (2.7)
where a and b are defined by
a=(A+up)/2 b=0O-p)/2 . (2.8)
Subtracting Eq. (2.5) from Eq. (2.6) and dividing by 2 gives
2 = —bet+az . (2.9)

We now need to determine a and b.
To determine b, notice that the equation for the position, z, of
O’ according to O is
z=vt . (2.10)

According to O’ it is, of course, ' = 0. Putting these values into
Eq. (2.9) gives us
0= —bet +avt . (2.11)

Since this equation holds for all t, we have
b=av/c . (2.12)
Thus Egs. (2.7) and (2.9) become

ct' = a(ct — %z) , (2.13)

' =a(z— %ct) . (2.14)

To determine a we have to appeal to principle (a). It may be
rephrased to say that on interchanging the primed and unprimed
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indices there should be no difference (except for a change of v to
—v). Now, let us define zo as z at t = 0 and z{, as z' at t' = 0.
Putting t = 0 in Eq. (2.14) gives

zo /2’ =1/a . (2.15)

To obtain an expression for z{, we need to obtain a relation between
z and t when ¢’ = 0 and use that relation to obtain an expression
for z’ at t' = 0. Putting ¢’ = 0 in Eq. (2.13)

v
ct|,_, = Za:L,=0 : (2.16)
Inserting this relationship in Eq. (2.14) gives us
v
1:6 = a(a: - -c' Z :l:) . (2.17)
Thus, we get _
zh/z = a(1l — v?/c?) . (2.18)
Now, by principle (a) |
To/z' = x5/ . - (2.19)
Using Egs. (2.15), (2.18) and (2.19) we see that
' 1
4= ———. (2.20)

V1—v%/c?

There has been no effect due to motion in the direction perpen-
“dicular to the motion. Thus, Egs. (2.13), (2.14) and (2.20) are in fact
the Lorentz transformations, Egs. (1.2), with a = 4 and € = 1. The
Lorentz transformations are purely kinematic and have no need to
appeal to dynamics or electrodynamics. Before drawing any further
conclusions from here, let us look at the simpler statement of the
theory. '

2. Reformulation of Relativity

A question could arise whether the speed of light is the same for
all observers, or that it changes so little from observer to observer
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that we are unable to detect that change with our present technology.
In other words ‘how reliable is Relativity theory?’ and ‘how strongly
does it depend on experimental data?’. It turns out that we do not
even really need to assume principle (b). We could construct the set
of all physically attainable speeds and without loss of generality call
its least upper bound C. If the set is not bounded from above, we
would have an infinite value of C. Now, we could repeat the previous
argument with signals sent at this maximum speed C. Since it is a
maximum speed it is the same for all observers. This may be seen
simply by noticing that the signal in the positive z-direction sent by
O cannot reach any point after that sent by O’, as it is travelling at
the fastest possible speed, and vice versa. All we have to do then is
replace ¢ by C.

Another modification is that we do not need to restrict ourselves
to inertial frames only, even for principle (a). All we really need here
is that they be relatively unaccelerated frames. In one sense this is
a weaker formulation, because the assumption is stronger. On the
other hand the theory gets wider applicability since it can deal with
non-inertial frames as well.

In this reformulation we will need one experiment to determine
C and another to test the theory. In the usual formulation one
experiment to test the theory would have been adequate. It turns
out that within the limits of experimental error C = ¢, and we do
have other predictions to test the theory with. We shall therefore
use ¢ throughout. Even if it turned out that C is not ezactly equal to
¢ it would not change the theory much; we would just use C instead
of c. We now proceed to derive the basic consequences of the theory.

3. Length Contraction, Time Dilation and Simultaneity

The Lorentz transformations are not directly physically testable.
They refer to coordinates only. For testing we need to have predic-
tions in terms of intervals. We could, for example, consider what
happens to time intervals. Let there be a time interval §¢ as seen by
O. By this we mean that there were two times when somebody in
the frame of O looked at his clock, ¢; and ¢t;. The position remained
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the same according to O. Thus, z; = z,. Let us write down the
Lorentz transformations for both points (¢;,z;) and (¢;,z,;):

tll = (tl - c_t;’ zl): tl2 = ’7(t2 - ::_;' 12) ] (221)

where we have, by definition,

ft=1t, —t;, 6t'=t\-1t, . (2.22)

Thus,
5t = '7[(t1 —t,) - 612 (z1 - zg)] . (2.23)

Since z; = z, we see that

ot

V1i—v?/e?

This is known as the time dilation formula. It implies that the unit
of time measurement of O' is larger than that of O. Thus, in the
same interval fewer of the units of O' will fit in than those of O.
Thus the clocks of O' will appear to run slow.

5t = 46t = (2.24)

Another possibility is to measure spatial intervals. Let the spatial
interval according to O be

bz =z, —z, . (2.25)

Now O' must see the two ends of the interval at the same time
according to him, i.e., t| = t,. From Eq. (2.13) we see that then

v
ty —ty = — (171 — 12) . (226)
c2

Again using the Lorentz transformations

02
6z =z — 2}, = '7((:1:1 —z3) — = (z1 - zg))

=q-6z-(1-1v%/c?) . (2.27)
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Thus, we get the Lorentz-Fitzgerald length contraction

§z' = x/y=8z\/1 —v?[c? . (2.28)

Both these formulae have been thoroughly tested: the first by
flying atomic clocks in a jet plane and comparing them with other
atomic clocks in the laboratory, the second by radar tracking space-
craft. As mentioned earlier, ¢ here has the same value as our best
estimates of the speed of light in vacuum.

Consider now two events that appear simultaneous to O, i.e., one
occurs at z; and the other at z, at the same time ¢, or in other words
t; =t3 =t. According to O', they occur at

v v
1, =t - :2—1:1) =4t - c—za:l) , (2.29)

and at v ;
t,2 = ’7(t2 e 'c—,; 1:2) = ’7(t - 0_2 1:2) . (2.30)

Thus, we see that t| # t, as
I} v v _
tl - t2 =9 'c—z‘ (1:2 1:1) . (2.31)

Hence simultanesty s relative. It is the relativity of simultaneity,
rather than of motion, that gives the theory its name. It should
be pointed out at this stage that a common error is the belief that
according to this theory (i.e., Relativity) everything is relative. This
is just not true. In fact the theory attempts to formulate that part of
physical theory that can be stated in absolute terms. It is only mo-
tion (known classically) and simultaneity (stated by Einstein) that
are taken to be relative. Some other quantities turn out to be relative
as well.

Many supposed ‘paradoxes’ were constructed to try to ‘disprove’
Relativity. In fact, they merely highlighted misconceptions that can
arise due to mixing the older concepts with the results of Relativ-
ity. The most famous one — the clock (or twin) paradox — will be
discussed later. Here I would like to discuss one which arises from
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.

—— ¢

Fig. 10. Observer O sits tending a door that can be dropped behind
observer O’ who comes running into the barn of rest-length £ with a
spear AB, also of rest-length £.

not adverting to the relativity of simultaneity. Imagine an observer
O’ running relative to an observer O with a speed v (see Fig. 10).
O’ carries a spear, AB, of length £, while O sits on a barn having
a length £, towards which O’ is running. O can control a trap-door
which he can close instantaneously. Now, according to O, the length
of AB is not £ but £ = £/~. Thus, O reasons, he can close the door
with AB inside the barn. On the other hand, O’ reasons that the
barn has a length ¢’ = £¢/~. Hence O cannot close the door with AB
inside the barn, as it has length £ > ¢'. The question is, which one
is correct?. The answer is that both are correct! How? Well, when
we say that AB is in the barn we do not mean that it is forever in
the barn. If it maintains its speed it must break through the barn
at the other end. Thus, what we are really saying is that at some
instant it is in the barn, i.e., both ends A and B are simultaneously
in the barn. Stated this way the problem is automatically resolved
since simultaneity is relative. '

We will discuss the so-called clock ‘paradox’ later, along with
some other paradoxes which arise due to the presence of a gravita-
tional field or some accelerational effect. They are of a fundamentally
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different nature to the above ‘paradox’.

4. The Velocity Addition Formulae

The whole argument, so far, began with the observation that the

Galilean transformations yield an observer-dependent speed of light.
~ The basic requirement, as far as we are concerned, is that ¢ (or C)
is observer-independent. Thus, we should obtain a different formula
for velocity addition, by which ¢ is independent of v. To obtain the
required formulae we write the Lorentz transformations, Eqgs. (1.2),
for differentials

dt' = y(dt — vdz/c?) (2.32)
dz’ = v(dz — vdt) , (2.33)
dy' =dy , (2.34)
dz' =dz . (2.35)

Now the definition of the speed of any object in the z, y and 2
directions according to O, is

A .
u; = dz/dt, u, =dy/dt, u, =dz/dt . (2.36)
According to O' the corresponding speeds must be defined by

W =dz'/dt, o =dy'/dt, o, =dz')dt . (2.37)

Thus, dividing Egs. (2.33), (2.34) and (2.35), respectively, by
Eq. (2.32), we get

y . Uz — v

uz - 1 _ uzv/cz ’ (2-38)

, U1 —0v%/c?

U.y = _T——t:,_v/—cz_ s (239)
/1 —v2/c?

w = BV ve (2.40)

1—wuzv/c?
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These are the required velocity addition formulae which give the
correct physical procedure to put velocities together. If, for example,
u = (¢,0,0), we get, as required

c—v c—v

! = = = . 241
te 1-cv/cz2 1-v/c ¢ (2.41)

5. Three Dimensional Lorentz Transformations

The previous analysis depended on the "assumption that the
motion was entirely in the z-direction. This assumption could be
justified by arguing that we could define the z-direction as the di-
rection of motion, since it would be a matter of choice. However,
it is not always convenient to define directions in that way. We
may want to use polar coordinates or to generalise to non-uniform
motion. For this reason, it would be useful to develop the Lorentz
transformations for motion in any arbitrary direction.

Xy

X
Fig. 11. The break-up of x into x| along v and x; orthogonal to v.

To state the general Lorentz transformations we note that we can
split the position vector, X, into two parts — one along the direction
of motion (x;) and the other perpendicular to it (x.), as shown in
Fig. 11,

X = x“ +x . (2.42)

Now it is clear that there is no effect of uniform motion on x, , i.e.,
x\, =x_ . (2.43)
However x| must transform as the z-coordinate transforms

x| = v(xy ~ vt) , (2.44)
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where the Lorentz factor, 4, must obviously be given by
y=(1-v-v/) % . (2.45)
Since x| v and x - v = x| - v, it is easily seen that
x=(x-v/v-v)v. (2.46)
From Eq. (2.42), we have
Xy =X—-Xy3=x-v(x-v/v.v) . (2.47)
Adding Egs. (2.43) and (2.44) we see that

(] 1 1
X =x”+x_L

= (%) —vt) +x1 .
Thus we get the Lorentz transformations for general motion

o t'=q(t-v-x/?), (2.48)
ny t T X =x4v[Eevivev)(y-1)-at] . (249)

Equation (2.49) can be used to derive the general formula
corresponding to the length contraction formula. (Notice that the
time dilation formula remains unchanged, except that v is given by
Eq. (2.45) now.) Consider the general spatial vector

r=X; —Xps . (2.50)

We want to determine r’ as seen by O', i.e., with t| = t},. Now, by
Eq. (2.48) we see that

th—t,=v-x/®~-v.-x3/t=v-r/? . (2.51)

Using Eqgs. (2.50) and (2.51) with (2.49) we obtain

r-v V-V
r’=r+V(v-—-v-) (’7—1—’772—) , (2.52)
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which is the generalised ‘length contraction formula’. It reduces to
r=r+v(-v/v-v)(y'-1). (2.53)

To obtain the general velocity addition formulae, we follow the
previous procedure of writing the relevant equations, Eqgs. (2.48)
and (2.49), as differentials and dividing the latter by the former. By
definition

u =dx/dt, u' = dx'/dt’' . (2.54)

Thus the general formulae become

Lo utv[@ vy =1)-a]

0 —a v/ (2.55)

"

Fig. 12. The rotating observer thought experiment. The rotating observer
sees the rods along the circumference shortened, but not those along the
diameter.

We shall apply this discussion to consider the instantaneous
Lorentz transformations for an observer in uniform circular motion.
Of course, this motion is accelerated. However, if we consider the
frame of reference which is inertial and at the instant has the same
motion as the rotating frame, we can meaningfully talk of Lorentz
transformations. Einstein has already shown (see The Meaning of
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Relativity by A. Einstein) that in this frame the geometry is non-
Euclidean. He proved it by the following thought experiment (see
Fig. 12). Consider a large circle with metre rods along its diameter
and making up its circumference. Let the circumference as mea-
sured by these rods be p and the diameter be d. Then, by Euclidean
geometry we know that p/d = x. Now, let the circle of rods be
rotated. Due to the motion, an observer at rest would perceive
the rods along the circumference to be shortened. This is due to the
Lorentz-Fitzgerald contraction. However, the rods along the diame-
ter would be unaffected as they would be orthogonal to the direction
of motion. Thus, instead of p the perimeter would appear to be py~!.
Hence the ratio of circumference to diameter for the moving circle,
as seen by the observer at rest, would be p’'/d' = p/vd = 7 /4. Hence
the geometry would be non-Euclidean.

To derive the Lorentz transformations notice that v-x = 0. Thus
Eqs. (2.48) and (2.49) for a frame in uniform circular motion are

. ot =t X =x — vt . (2.56)

Here, if the angular speed is €, v = (1 — r2Q12/c?)~% where the
radius of the circle is r. In cylindrical coordinates we get

t 69— Ot ,

r ) LA —_

S 1-e@/eE T 1=’
(2.57)

Many textbooks give incorrect Lorentz transformations for this case.

Exercise 2

\,//1. An observer, A, sees a body as having twice the length that
another observer, B, sees. Which of them has the greater speed
relative to the body if it lies along the direction of their relative
motion? If a third observer sees the length as three times that
seen by B and the body is in the rest-frame of one of the three
observers, which is the rest-frame of the body?
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Determine the speed with which one object must move relative
to another for its clock to be slowed by 1% as seen by the other.

Two observers, A and B, see a rocket taking off at distances
d and d' at times ¢ and t' respectively, having set their clocks
at zero when they were coincident. If their direction of relative
motion is in line with the rocket, find the speed of B relative to
A.

Two observers, A and B, see the same event. A sees it at a
distance of 3 x 107 km at exactly 10 o’clock by his watch, while
B sees it at a distance of 2 X 107 km at 5 minutes and 10 seconds
to 10 by his watch. If the time when B passed by A was exactly
10 to 10 by A’s watch and exactly a quarter to 10 by B’s watch,
and the event was in the direction of relative motion, determine
the speed of B relative to A.

Particles of half-life 10~2 secs are produced 3 km above sea level
and most of them are found at sea level. What is the least speed
at which they must be travelling? In their rest-frame there is no
time dilation. How is it that they, nevertheless, can travel 3 km?

'ﬁ./ A scientific satellite finds some cosmic radiation to be entirely

N\

composed of neutrons (which have a half-life of about 1,000 sec)
coming at (1 — 10~ 7)c. Could the radiation have been produced
outside the solar system (about 10! km across) or must it origi-
nate from within the solar system?

Prove that the relativistic resultant of three co-linear speeds
u, v, w is given by

u+ v+ w+ uvw/c?
1+ (uv + vw + wu)/c?

What will be the formula for n co-linear speeds when n is even
and when n is odd?



36

Relativity: An Introduction to the Special Theory

Mﬂ/ An observer sees a clock as showing 1 hour to be half an hour. If

he sees an object lying at an angle of 7/4 as having a length of
2 m, what is the rest-length of the object?

An observer, O, sees a rod as having a length 1 m and making an
angle x /4 with the direction of motion. If, in its rest-frame, O',
the rod makes an angle n/6 with the direction of motion, what
is the rest-length of the rod?

10/ An observer, O, sees three bodies (A, B and C) having velocities

12.

13.

(¢,0,0), (0,—v,0), (0,0, w) respectively. What is the velocity of
each body relative to the other? In particular, is the velocity
of A as seen by B exactly opposite in direction and equal in
magnitude to the velocity of B as seen by A? If not, why is there
any difference? Would the velocities be equal and opposite if the
velocity of B were (0,v,0) instead of (0, —v,0)?

. An observer, A, sees another observer, B, as moving with a

velocity (u,v,0) and B sees C moving with a velocity of (u,0,v).
What is the speed of C relative to A?

P sees Q moving with a velocity (u,0,0) and Q sees R moving
with a velocity (0,v,0) while R sees S moving with a velocity
(0,0, w). If a metre rod makes an angle of /6 with the z-axis in
the yz-plane in the frame of S, what will its length appear to be
according to A?

Three spaceships A, B, C are engaged in battle. A is a scout
ship of the fleet to which B belongs and C is an enemy ship. A
tells B that C is in its direct line of flight at a distance of 3,000
km coming at a speed of 108,000 km/h towards it. If B is behind
A at a distance of 1,000 km and moving in the opposite direction
with a velocity of 36,000 km/h relative to A, where should B aim
a laser beam? How big must the ship be for him to be able to
ignore: (a) the time-lag for the information being sent; and (b)
relativistic effects? ‘ '
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An observer, O, sees a metre rod at an angle of 7 /4 to the x-axis
as being \/g_/—é Another observer, O', sees the metre rod as a
metre rod and the clock on a body, B, running at half speed.
What is the maximum speed of B relative to O and what is its
minimum speed? Why is the velocity not uniquely given? What
is the apparent angle of the rod according to O?

An observer, O’ sees a body at a distance £ as having an angular
speed {1 and no other velocity component, while O sees O’ as
moving radially outward with a speed v. Determine the velocity
of the body as seen by O.

A rod of length £ makes angles 7/3 and x/4 with the x- and
y-axes respectively. What does the length of the rod appear to
be to an observer moving with a velocity (c/v/3, ¢/v6, ¢/v/3)?

A spaceship sends out a scout ship with a velocity (¢/2, ¢/3,
c/4). The scout ship spies an enemy ship approaching with a
velocity (c/4, ¢/3, c/2). What velocity should the scout ship tell
its mother ship that the enemy ship is approaching at?

The length of a moving object appears to be halved while a clock
on it appears to be running three times too slow. What is the
angle between the object and its direction of motion in its own
rest-frame?






Chapter 3

DIGRESSION INTO TENSOR THEORY

1. Invariant Quantities

We have been considering the transformation of some quantities
due to some actual physical processes. We found that some quanti-
ties constructed from them were invariant under the mathematical
transformations representing these physical processes. For a more
powerful formulation of Special Relativity it is necessary to obtain
- a more formal understanding of these invariant quantities. A scalar
quantity is invariant under coordinate transformations. For example,
the magnitude of a 2-dimensional vector, a, is a scalar. It remains
unchanged by translating the origin, rotating the axes through
any angle or converting to plane polar coordinates. In fact the mag-
nitude of any vector, in any space, is an invariant quantity, being a
scalar. Of course, the position vector of a point does not satisfy this
requirement as it is defined not only by the point but also by the
origin.

A wvector is also an invariant quantity. This statement may
seem strange after discussing Lorentz transformations, which seem
to give the transformation of a position 4-vector, without changing
the origin. The point is that the quantity being transformed is not
the vector but its components. In usual 3-dimensional space any
vector field, i.e., a position dependent vector A(x), can be written
as .

A(x) = A'(x)e; + A%(x)e, + A%(x)es , (3.1)

39
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Fig. 13. By transforming coordinates A = PQ is not altered. However,
it has components (A, A,) in XOY and (A;,A;) in X'0'Y’. Since the

coordinates of P and @ transform by the same matrix so does PQ = A,
in its components.

where e,, e, e; are the three basis vectors in the given coordinate
system and A!(x), A%(x), A3®(x) are the corresponding components
of the vector. The entire set of basis vectors may be more compactly
represented by e;, bearing in mind that ¢ can take the values 1, 2,
3. Similarly the components can be represented more compactly by
A*(x). Then Egq. (3.1) may be rewritten in the form

A(x) = Z At (x)e; . (3.2)

Einstein introduced a further simplification of notation by
taking the summation convention, that repeated upper and lower
indices are summed over. We will generally follow this conven-
tion, explicitly stating any deviation from it. Using this convention,
Eq. (3.2) becomes

A(x) = A*(x)e; . (3.3)
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X

Fig. 14. The vector A = PQ), has Cartesian components in the XOY-
frame A, = MN, Ay, = KL and in the X'0'Y'-frame, A, = M'N’', A} =
K'L'. It can be shown that M'N' = MNcos 8+ KLsin 0, K'L' = KL cosf—
MNsin 8.

As seen from Fig. 13, the vector A is invariant under transformations
of the coordinate system, but its components, A*, do vary. Clearly,
if there is a rotation in the XY-plane, A and A? are transformed by
the usual rotation matrix (see Fig. 14). Thus, for a rotation through
an angle 4, the transformation is given by

A:l cos§  sinf 0 Al
A? | =| —-sind cosf O A2 ] . (3.4)
A3 0 0 1 A3

This matrix also gives the transformation of coordinates.

How can we explain this transformation in terms of Eq. (3.3)?
The point is that e; are the basis vectors in one coordinate system
and will change to e} in the transformed coordinate system. Also,
A* will change to A" in such a way that

A (z)es(z) = A"%(z')el (') . (3.5)
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Now, for general coordinate transformations the generalization of
Eq. (3.4) is

A(2) = () . (3.6)
A vector satisfying the transformatlon law, given by Eq. (3.6), for its
components, is called a contravariant vector. Inserting this equation

into Eq. (3.5), we see that

A (2) (e,-(n:) -2 e(d)) =0 (3.7)

Since Eq. (3.7) holds for all A*(z), the expression inside the brackets
must be zero. Hence

e;(z) = 3o el (') . (3.8)

Now notice that in the Einstein summation convention

dz* 9z’ ° _ (6:1:‘ 0 ) ‘a _ 3z’ =6, (3.9

3z’ 3r*  \dz'® Jz* = 3zt

the Kronecker delta defined by 6f = 1ifa =5, 67 = 0if a # b. Thus
the Kronecker delta is the identity matrix and merely substitutes a
new index for a previous one, i.e.,

60 A" =A%, 6 B, =B, . (3.10)

Multiplying Eq. (3.8) by dz°/dz ® and using Eqs. (3.9) and (3.10)
we see that

e (z') = 3570 e,(n:) (3.11)

A covariant vector, B(x), is deﬁned by
B(x) = Bi(z)e'(z) . (3.12)

From the foregoing discussion it is clear that

B,(z') = B (z) (3.13)
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and

3z ® ;
327 © () . (3.14)

xt

e?(z') =

The scalar or dot product of two vectors can only be defined
if one is covariant and the other is contravariant so that the two
transformations cancel out and leave the product invariant. Using
Egs. (3.6), (3.9) and (3.13), we see that

9z Oz’
ozx' dz'e
= 6] A'(z)B;(z) = A’(z)Bi(z) .

A*(@)BL(z) = 4(2)B,(2)

(3.15)

To be able to define a scalar product of two contravariant or two
covariant vectors we need to convert one type of vector into the
other.

2. Tensors

Generally, invariant quantities are called tensors. Their invari-
ance is assured in much the same way as the invariance of vectors,
namely the variation of one part is cancelled by the variation
of another part. Thus, for example, a scalar obtained by taking
the scalar product of two vectors is a tensor. Of course, so are the
covariant and the contravariant vectors. Another example would be

the tensor
A = AY(z)e;(2)ej(2) , (3.16)

provided its components satisfy the transformation rule

dz'¢ dz'®
oz' Ozt

A%(z) = A¥(z) , (3.17)

so as to cancel the variation of e; and e; with coordinate transfor-
mations. A tensor whose components satisfy Eq. (3.17) is called a
contravariant tensor. Similarly there can be a covariant tensor

B = B,,(z)e'(z)e’ () , (3.18)
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whose components satisfy the covariant transformation law

:1:‘ o’ .
b( ') = ’a 8:1:"’ B‘J (:E) (319)
Also, there can be a mized tensor with one part contravariant and
the other covariant,

C = Cj(z)ei(z)e' (z) , (3.20)
whose components satisfy a mixed transformation law

' a:l:,“
Cba(il:'): oz mC‘(z) (321)

Notice that the terms in the above expressions can be put in any
order since the index label contains the information of how matrix
multiplication is to proceed. However, the order of the indices is
fixed. In general, A*/ # A* for example.

It is clear that tensors can be constructed using any number of
basis vectors, e, together. The number of e’s involved in a tensor is
called its rank. The nature of the tensor depends on how many of
the e’s have lower indices (like ;) and how many upper indices (like
e‘). If the number of lower index e’s is £ and the number of upper

index e’s is k, the tensor is said to be of valence (k) Clearly the

¢

rank of the tensor will be (k+£). If £ = 0 the tensor is contravariant,
if kK = 0 it is covariant and if neither is zero, it is mixed. Thus, a
scalar is a tensor of rank zero, a vector is a tensor of rank one, and
tensors of rank more than one are the new quantities defined.

Of particular interest is the metric tensor, g, which is a covari-
ant tensor that associates to every contravariant vector a unique
covariant vector, thus enabling us to define the scalar product of
two contravariant vectors. The length of a vector is the square root
of the dot product of the vector with itself. Thus, the metric tensor
enables us to define the length of a contravariant vector — hence its
name. Generally, we have

Ak = Gkj Aj =95k Aj , (322)
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where all the components may generally be position dependent. To
be able to associate back the contravariant vector with the covariant
vector, we require that g;; be invertible, i.e., g must be invertible.
Thus, there must exist g=! such that

1

gl-g=g'g =1, (3.23)

where I is the identity tensor, with components 61‘:, i.e., it is the
identity matrix in any coordinate system. It is clear that g~! must
be a contravariant tensor. Its components are generally written as
g'7, so that Eq. (3.23) can be rewritten as

g"k g9k = 5; . (324)
‘ Thus, multiplying Eq. (3.22), by ¢g** gives, using Eq. (3.23),
gF A =g* g A7 = 5;2 A=A, (3.25)

giving us back the original contravariant vector.
Now, given a vector using Cartesian coordinates,

A=A"i+AVj=Ae | (3.26)
we know that the square of its length is given by

A= (A7) + (4) = LA = g A AT
= g11 (A%)? + 2912 AAY + g2 (A”)2 .. (3.27)

By direct comparison we see that in this case g;; = 1 = g5, g12 = 0.
Generally, with Cartesian coordinates g;; = 1 if 1 = 5 and g;; =0 if
i # 7. Thus, it behaves much like the identity matrix, except that it
is entirely covariant. If we represent A* as a column vector and, for
consistency A; as a row vector, then g;; is a partitioned row matrix.
For example, in two dimensions,

;=1 0 : 0 1), (3.28)



46 Relativity: An Introduction to the Special Theory

so that
A= 0 : 0 1) (ﬁ:) = (A® AY) . (3.29)

In other words g;; simply transposes the vector. It is clear from
here why there is no difference between covariant and contravariant
vectors in Cartesian coordinates. However, this is not the case when
other coordinate systems are used.

3. Coordinate Transformations

So far we have dealt with coordinate transformations in a very
abstract way. To make the procedure more concrete we shall consider
some specific examples. To start with we consider the transformation
from Cartesian to plane polar coordinates. In this case

=z, =y zl=rz2=0, (3.30)
where the two sets of coordinates are related by

z=rcosf, y=rsinb ,
(3.31)

r=+z2+y?, §=tan"!(y/z) .

Now the coordinate transformation matrix is given by

(5)= (oo oay) o

and its inverse transformation is given by

(32) = (Setar 2xr%2) - (3.3)

Now, it is easily seen from Eq. (3.31) that

Q_:E:cosﬁ,ﬁ=2=sin0,

dz r y r

9 - y/z®  sinf 30 1l/z  cosé .
3z~ 1+tan® 0 r >3y 1+tan?8 ¢

(3.34)
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Also, we have

oz oz .
5—=cos0,%=—rsm0, :

r (3.35)
dy . P 9y _ P
3, —Sinb, o =rcosb .

Thus, the coordinate transformation matrix and its inverse are given
by
(31:“) _ cos 0 sin§ \
dz¢/  \ —sinb/r cosf/r )’
(31:")_ cosf  —rsinf
dz'e)  \sind r cos 0
It is easy to check, from Eq. (3.36), that as required
EA dz ¢\ -1
= - . 3.37
(61:'“) ( E A ) (3.37)
Consider the vector A with contravariant Cartesian components

A® and AY, so that its covariant components A, = A” and A, = AY.
Now using Egs. (3.6) and (3.36), we have

(3.36)

A" = A"l = Al cos 8 + A% sin 8
= A" cos 8+ AY sin 8 ,

A® = A'? = A'(sin 8/r) + A*(cos §/r)
= (AY cos 0§ — A® sin 6)/r .

(3.38)

This transformation is shown diagrammatically in Fig. 15.
Now let us see the transformation of the covariant components
using Egs. (3.13) and (3.36) to give

Ay = A, = A;(—r sin 8) + Azr cos § = r(AY cos § — A sin 6) ,
. (3.39)
so that A, = A" and Ay = r2A% # A®! Here we see a difference
between contravariant and covariant components.

- A=A, =A; cos 0+ Ay sin § = A® cos §+ AY sin 8 }
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)

Fig. 15. The polar and Cartesian components of the vector A-A; = MN,
A, = KL, A, = PR. Since the polar coordinates of P are (r,0), we see
that PS = rAy. Also A, = A, cosl, Ay, = A, sin¥.

Let us also consider the transformation of the metric tensor from
Cartesian to plane polar coordinates. Remember that g;; = 1 = g5,
g12 = 0= g,;. Since g is a covariant tensor, Eq. (3.19) is applicable
to it. Hence we have

o) = (2Z2) 14+ (25) 1
=cos’ O +sin® =1,
1 1 2 2
(%T) (:_:?) I (%1) (%2) U (3.40)

=—rginfcosf+rsinfcosd=0,
dzt \2 dz? \2
(&) = (577) 1+ (57) 1

=r?sginZ 0+ 1% cos® 0 =12

912()

Thus, the metric tensor in plane polar coordinates is

r

gf,b(r,0)=((1) 2) . (3.41)

Notice that this metric tensor correctly converts the contravariant
components to covariant components. Correctly speaking, of course,
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the metric tensor should be written as (1 0 : 0 r2), but it
becomes quite inconvenient to use that notation for higher dimen-
sions, or to write the inverse matrix, which here becomes

g %®(r,0) = ((1) 1/0r2> : (3.42)

To check that the scalar product of the vector A with
itself remains invariant, i.e., the length is the same whether it is
" expressed in Cartesian or polar coordinates, we use Eqs. (3.38) and
(3.41), or equivalently Eqs. (3.38) and (3.39), to give

(A)? = gl (')A (z) A ()
- (A'l)z + rz(A'Z)Z
= (A" cos 8+ AY sin 8)® + r*(AY cos § — A® sin §)? /r?
= (A%)? + (AY)? = g;;(z)A*(z) A (2) . | (3.43)

This fact is shown diagramatically in Fig. 16 for two dimensions. It
holds generally for all dimensions, of course.

Y
a0
U - |\
I\\
\ |
\\0: \\ ”_—‘Ay
A -
A ZAJ’ R
- \‘l
:'“10‘—""—._8 .
|
Ay P: * ;
[
6 ! 1
0 X

Fig. 16. The polar components are A, = PR and Ay = LPOQ. Now, PR
= PT+ TR = PScosf+ UQ = A cosf+ QSsinf = A cos 0+ A, sinf.
Ay cos 0— A, sin@ =US-TS=UT. A, <, UT/r & Ay radians.
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Now let us consider the transformation of the metric tensor for
a flat three dimensional Euclidean space into spherical polar coordi-
nates. Here we have

i

1 [
' =z=rsinfcosgdp=z'sinz’cosz?,
1 1 1
?=y=rsinfsing=z'sinz’sinz’ , (3.44)
[ [
P=z=rcosf=z'cosz?.

Also, we have in Cartesian coordinates
911 =922 = ¢33 =1, gi; = 0 otherwise. (3.45)

Thus we obtain
3 dz/dr  3z/30  8z/d¢\ -
F dy/or dy/a0 dy/d¢

z 0z/dr . 3z/38  3z/d¢

sin 8 cos ¢ r cos 8 cos ¢ —r sin 0 sin ¢
= | sin @ sin ¢ r cos # sin ¢ r sin 6 cos ¢ ,
cos —r sin 0 0 (3.46)
which yields
1 O 0
d@)=[or o |, (3.47)
0 0 r?sin®4d

since we have
g}, = sin? 0 cos® ¢ + sin” @ sin® ¢ + cos® 0 =1, )
g2 = r(sin 0 cos 8 cos® ¢ + sin @ cos 8 sin? ¢ — sin § cos §) =0,
gis = r sin® 8(—sin ¢ cos ¢+ sin ¢ cos ¢) = 0,
g2 = r*(cos? 8 cos® ¢+ cos® 0 sin® ¢+ sin® §) = r?,
g23 = r°(~sin 6 cos 0 sin ¢ cos ¢ + sin 8 cos 8 sin ¢ cos ¢) = 0,

945 = r2(sin” 0 sin® ¢ + sin® 0 cos® ¢) = r? sin® 4.

/
(3.48)
and g/, is symmetric.
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Exercise 3

. Given a 3-dimensional vector with Cartesian components A®,
AY and A*, work out the components in a frame obtained by a
rotation through 6; in the XY-plane, then a rotation through 4,
in the YZ-plane and then a rotation through 05 in the ZX-plane.
Is the result the same if the order of rotation is reversed?

. Prove that the Kronecker delta is unaltered by coordinate trans-
formations.

. Prove that the position vector, in plane polar coordinates has no
polar component. Explain this fact diagramatically.

. Given the coordinate transformation

p==zy, q=zfy,

determine the metric tensor in the (p,¢) coordinates if z and y
are the usual Cartesian coordinates.

. Work out the metric of a four-dimensional Euclidean space in
hyperspherical coordinates, i.e., having one radial coordinate and
three angular coordinates.

. By restricting the three-dimensional metric tensor in spherical
polar coordinates to the surface of a sphere, r = a, determine the
metric tensor for the surface of a sphere. (Remember that the
resultant space is two-dimensional and not three-dimensional.)






Chapter 4

THE FOUR-VECTOR FORMULATION OF
SPECIAL RELATIVITY

1. The Four-Vector Formalism

Soon after Einstein presented the Special Theory of Relativity,
his Mathematics teacher, Minkowski, published a reformulation of
the theory in more mathematical terms using 4-vectors. Einstein’s
initial reaction was to reject this approach. However, he later used it
extensively, particularly for the formulation of the General Theory of
Relativity. The reason for Einstein’s initial resistance was his lack of
familiarity with geometry. We have developed nearly all the aspects
of geometry required for the formulation of the Special Theory. Only
one more point needs to be developed, which we shall proceed with
here.

In dealing with the theory of surfaces it is found that two types
of metrics arise (corresponding to the two fundamental forms). One
is positive definite, i.e., for every vector a the metric gives

(¢)>>0 and (a)’=0<=z>a=0. (4.1)

The other type of metric is indefinite, i.e., Eq. (4.1) does not hold
at all. In fact neither part holds in general. For these metrics points
are said to be elliptic, parabolic or hyperbolic according as for any
a#0,(a)? >0, (a)? > 0or (a)? > 0. A space in which all points are
elliptic, or parabolic, or hyperbolic, is called an elliptic, parabolic or
hyperbolic space. We will not really need to deal with virtually any

53
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part of the geometry discussed here, except in passing. However,
familiarity with the terminology given will be useful. Also, the fur-
ther developments in Relativity, particularly of General Relativity,
require the use of extensions of the geometry presented here. We
now return to Special Relativity.

Consider the product of Eqgs. (2.5) and (2.6)

At? —z? = au(cP® - 7). (4.2)
Also, from Egs. (2.8) we have
@ — b =(A+p)? /4~ (A-p)?/a=2p . (4.3)
Further, from Egs. (2.12) and (2.20) we see that
a? - =a*(1-v*/?)=1. (4.4)
Thus, using Eqs. (4.3) and (4.4) in Eq. (4.2) we obtain
At —2%=c%% o7 . (4.5)

Had we dealt with a 3-dimensional vector, x, instead of only the
z-coordinate, clearly z?> would be replaced by

x-x=z°+y* +2% . (4.6)
Thus, we would have had, instead of Eq. (4.5),

! i

Ptz —y? 2= 2?2 -2 (4.7)

We would then say that the invariant quantity corresponding to the
length could be given for the {-vector, z#,

z* = (2°z',2%,7%) = (ct,2,y,2) , (4.8)
with a g,,, defined by

goo = 1= —g1; = —g22 = —gs3, 9ur =0 if p#v, (4'9)
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so that the metric is hyperbolic. Now
gnu:c”xu = guuwl“mlu . (4.10)

In other words this quantity is invariant under Lorentz transforma-
tions. Notice that since g;; # 1 for 1,5 = 1, 2, 3, there is a differ-
ence of sign between the spatial parts of covariant and contravariant
vectors.

2. The Lorentz Transformations in 4-Vectors

We now need to describe the Lorentz transformations in terms
of 4-vectors. We can write

zh = A2, (4.11)

i.e., if z* is a column vector A% is a square matrix. Let us look at the
form of A% in the case that the motion is purely in the z-direction.
For convenience we write 8 = v/c instead of v and so v = (1-42)~ 1.
Thus, we are representing the speed as a fraction of light speed. This
is more convenient than the previous way since 8 is always less than
one and has no units of measurement. Similarly, it is convenient to
have t measured in the same units as z, y and z. Thus, we write
T = ct, which is the distance covered by light in time ¢, e.g. a light
second is 3 x 10® km (or 3 x 10® m or 3 X 10'° cm) approximately.
The Lorentz transformations now become

T ~ -By 0 0 T
z' -8B~ o 0 0 [
v | = 0 0 1 0 y (4.12)
z 0 0 0 1 z

Notice that the matrix is in block diagonal form in Eq. (4.12),
with the lower block being the identity. Thus, the only relevant part
is in the upper block. For the present let us disregard the lower
block, i.e., let us consider only one spatial dimension. If we rewrite
the matrix equation, Eq. (4.12), we have

E)-(h @)
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This matrix equation may be inverted easily. The determinant of
the Lorentz transformation is

det:(__';'7 _5'7> = B = (1-f%) =1. (4.14)

T v By [T

(-’5):<ﬂ7 '7) (-’5’> ' (+.19)
In other words, to invert the Lorentz transformations for motion
in one spatial dimension we need merely invert the sign of 8, or
equivalently of v. This is an important check of consistency, since
it is required by the special relativity principle. After all, we could
have chosen to regard O’ as being at rest and O as being in uniform
motion.

It is interesting to observe that the hyperbolic functions cosh and
" sinh obey the same relation as v and S8+, i.e.,

Thus we see that

cosh’ § —sinh® § =1 . (4.16)

Thus, we could replace v and 8 in Eq. (4.15) by cosh 8 and sinh ¢

and write
Ty _ cosh 8 —sinh 8 T
(m’) - (—sinh0 cosh 0) <:z:) ’ (4.17)

Noticing that cosh § = cos 18 and sinh § = —1 sin 10, we see that
the Lorentz transformations correspond to a rotation through an
imaginary angle, just like we have for ordinary rotations

z'\ _ cos # sin 0 n:
(yl)_(—Sina cos 9) <y> : (4.18)
Thus, we should not think of space and time as separate, but rather

of space-time jointly. The essence of the argument is that they can be
‘mixed together’ through the physical process of motion in a straight
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line just as the spatial coordinates can be ‘mixed together’ by the
physical process of rotation.

Since the Lorentz transformations being considered can be
represented by square matrices with unit determinant, they form
a group in which the inverse matrix corresponds to the physical
inverse Lorentz transformations. Here the identity transformation is
the case when 8 = 0 (or v = 0, or § = 0). Associativity is anyhow
guaranteed. However, we do need to check that the combination of
two Lorentz transformations is, in fact, a Lorentz transformation.
Let the two speeds be v; and v, giving 8; and 8. and thus #; and
@>. The combination is achieved by multiplication. Then

( cosh §, —sinh 8, ) ( cosh 8, —sinh 8, )
—sinh 6, cosh 8, —sinh 6, cosh 4,

_ (cosh 8, cosh 82 + sinh 6, sinh 6,)
~ \ —(sinh 8, cosh 8, + cosh @, sinh 6,)

—(sinh 6, cosh 6, + cosh 6, sinh §,)
(cosh 8, cosh 8; + sinh 6, sinh §,)

_ cosh(8, + 6, —sinh(6, + 8,
- (— sinhéﬂl + 02; coshgﬂl + 6, ) ) (4.19)

Thus we do, in fact, get the required property with the resultant
being the sum of 4, and 6, exactly as for rotation. Now

B = B/~ =sinh 8/cosh § = tanh 4 . (4.20)

Thus, we have

tanh 6, + tanh 0,

= tanh 8 = tanh(4, + ;) = . .
f = tan anh(6, + 62) 1+ tanh 8, tanh 8, (4.21)
If we write this in terms of v;, v, and v
_BitB  uitw (4.22)

v = c=
1+ﬂ1ﬂ2 1+0102/Cz ’

which gives the velocity addition formula, Eq. (2.38). The fact that
the Lorentz transformations form a group which yields the above
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velocity addition formula was noted independently (and somewhat
earlier) by Poincaré. Poincaré also noticed that Eq. (4.22) implies
that ¢ will be the same for all observers.

Let us return to the full Lorentz transformations. Here we must
write B = v/c. Then we can rewrite Eqgs. (2.48) and (2.49) in terms
of the separate components T, z!, z2, z° and 8*, §?, #°. We retain
« as it was. In this notation, Eqs. (2.48) and (2.49) become

T = ’YT _ ,31’72:1 —IB2’7$2 _,BS'YQ:S , 3
_pal _ B . g B ,
ﬂ7T+{1+('1 l)ﬂp}m -G
g g e
+(v-1 ,
(v )ﬂ B
122 2)2
BT + (v )pp {+(7 )pp} \
p*B° 2
+(v-1 ,
(v )ﬂ B
pB° B*p°
— _. 3 T+ _1 1 _1 2
BT + (v Vg ge t )p.p”
33y2
+{1+ (-1 )(ﬂ) e )
(4.23)
In matrix form Egs. (4.23) can be written as
TI
z?
xl2 =
z3
7 ~B P ~° T
—Bly 1_+_1(ﬁ2 )p.(;_l) 8 ﬂp:;’—l) pff(; 1) 4
-B%y P_lﬁ_fg:_l_l 1+,(ﬁ, )p_(;—l) Mﬁ%_ll 2
_ﬂ37 8 ﬂp(.;—l) 8 ﬂpf;—l) 1+ (8 !p.!;_ll T
(4.24)

which gives the explicit expression for the matrix A%. It can be:

checked that these transformations have a unit determinant and the

3
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inverse is given by replacing # by —B8. The easiest way to do so is,
just to multiply the two matrices

( ’7 ﬂll;7 1 ﬂ22’7 1ﬂ33’7
1 B ) (y=1) B8 8 (y—1) 8 B8 (y-1)
B {1+ ] } 7 ]
Pk BB (v—1) {1+ (ﬁ’)’(w—l)} B28%(v—1)
7 BP pB pp
gy £2 G- =1 {1+ folbmn) }
[ —pBty —B% A
_gt {1 + Lﬁ_le:Ll} 8187 (y=1) A MG
7 BB Y] B
X 1p%(y-1 (87)* (v~1) 828%(y-1)
—F*y p_p_p(-g_L {1+ BB } BB
£ ui(%—_u Q_E_ﬁig_-_l)_ {1 n 12_%;;11}
1 0 0 O
01 0O
“lo o1 0 (4.25)
0 0 01

3. The Lorentz and Poincaré Groups

As was shown, for every Lorentz transformation, A%, there exists
an inverse Lorentz transformation (A%#)~!, obtained by changing the
three parameters #* (i = 1, 2, 3) to —#*, in A%. Formally we have

AB(ATY)y =84, (4.26)
where (A™1)2 = (A%)~' and é* is the Kronecker delta. Since the
Lorentz transformations are expressible as matrices they are closed
under multiplication and are associative. Also, the identity element
(6%) exists and inverses exist. Thus, they form a group. In fact
this set of matrices has a unit determinant. Also, we could include
rotations between the X-, Y- and Z-axes. Thus, we would generally
have, for all the Lorentz transformations, three parameters for the
rotations between T- and X-, T- and Y-, and T- and Z-axes and
three more for the purely spatial rotations. The group of all Lorentz
transformations of this type therefore has six parameters. In any
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position 4-vector we can change T to —T and obtain, from a future-
directed vector, a past-directed vector and vice-versa. Since these
transformations are not obtainable from the previously discussed
transformations, they must be included separately. They clearly
also leave g,, z#z” invariant, but their determinant is —1 (since
x — x). This is called a time reflection. Two reflections give an
identity. Clearly, these transformations also form a group. (Notice
that x — —x can be obtained from the rotation matrix by taking the
values of the parameters corresponding to a total rotation through
n.) The group of all transformations that leaves g,, z*z" invariant
is called the Lorentz-group. The reflections give the improper Lorentz
group while the rotations give the proper Lorentz group.

We could also consider the set of all translations in the 4-
dimensional space-time. These would change the position vector
by addition with the translating vector a*,

4 sz =z fa* . (4.27)

However, a physical vector would be left invariant under such a
transformation, i.e. if A* connects a point in the space-time, P,
to another point Q, A'® = A*. This is easily seen if we take the
position vector of P to be z# and of @ to be y*

Ad =gt — gt (4.28)
Using Eq. (4.27) to transform z* and y* we see that

A =y~ = (¢ +a*) - (z* + )
T (4.29)

According to the theory of Special Relativity all physical laws
are invariant under Lorentz transformations, since these are trans-
formations from one inertial frame to another. According to the
basic assumptions of physics all physical laws are also invariant un-
der spatial and temporal translations. These translations form a
group. which is the group of 4-vectors under addition. The identity
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transformation is the zero vector and every translation, a* has an
inverse, —a*. The group of translations for 4-vectors depends on
four parameters.

The entire group under which physical laws are invariant ac-
cording to Special Relativity is the ten parameter Poincaré group,
presented in 1905 by Poincaré,

P(10) = L(6)  T(4) , (4.30)

where the numbers inside the brackets refer to the number of
independent parameters of the group.

The improper Lorentz group does not correspond to a continuous
transformation like rotations do. Thus it is a discrete group. The
L(6) referred to in Eq. (4.30) is therefore only the proper Lorentz
group. It is the group of all rotations in Minkowski space, i.e.,
rotations which leave invariant the form given by Eq. (4.7) which has
the first square positive and the other three negative. The group of
rotations in n-dimensional Euclidean space is called the orthogonal
group, SO(n), where the ‘S’ signifies that the group is unimodular,
i.e. the matrix representing an element of this group has a unit
determinant. In Minkowski space the group is SO(1,3), the ‘1’ re-
ferring to the time dimension and the ‘3’ to the space dimensions.
Thus, we should really use this group rather than the entire L(6).
Now, we saw that SO(1,3) contains, as the relevant subgroups, the
group of rotations among z,y, 2 and also the rotations of time with
each of the z,y,2. Thus

SO(1,3) 2 SO(3) ® SO(3) , (4.31)

where one SO(3) refers to space and the other to space-time. The
semidirect product in Eq. (4.30), written as ‘®’, indicates that the
elements of SO(1,3) do not commute with T(4). This may be seen

by considering z * defined by
zH = AL =¥

, (4.32)

and then
z =z’ +a* =Atz"+a" . : (4.33)
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On the other hand if we define
=z +a* (4.34)

and then define

m

8>

=ALE = A0 z" + ALY, (4.35)
clearly we will have, in general,

Al "

T £z H . (4.36)

If we had a direct product, as for example in Eq. (4.31), the two
would have to be equal.

Now, according to. Noether’s theorem in classical mechanics,
for every parameter of symmetry, i.e., for every generator of the
symmetry group, there is an invariant, or conserved, quantity. For
the translations in space-time we have the conservation of energy-
momentum. For the spatial SO(3) we have angular momentum
conservation, while for the other SO(3) we get spin conservation.
Since SO(1,3) has elements which do not belong to either SO(3)
alone, we can have spin and angular momentum ‘mixing’, i.e., each
separately may not be conserved, but the total is conserved. Thus,
when relativistic quantum mechanics is considered, we get the elec-
tron spin predicted and spin-orbit coupling in atomic (and nuclear)
spectra. We will not discuss further, the physical implications of
invariance under the Poincaré group, but will proceed on to the geo-
metrical structure of the Special Relativistic, Minkowski, space-time.

4. The Null Cone Structure

Consider, first, an infinitesimal vector, dz*, which is invariant un-
der the Lorentz transformations, in the sense that its square
magnitude remains invariant, but not its components,

ds® =g,, dz* dz* =g,, dz*dz" , (4.37)
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and is invariant under translations in the sense that
dz* — dz'* = dz* . (4.38)

Thus ds? is invariant under the full Poincaré group.

A 4-vector, dz* is said to be time-like, null(light-like) or space-
like according as ds? 2 0. Let us see what this means geometrically.
For convenience we shall write

dz* = (dz°,dz*) = (edt,dx) . (4.39)
Now, we see that we have for

time-like vectors c?dt® —dx-dx >0
null vectors cdt? —dx-dx =0} . (4.40)

space-like vectors c?dt? —dx-dx <0

Dividing through by di? and transposing the second terms, we get
for
time-like vectors  ¢? > (dx/dt) - (dx/dt)
null vectors ¢ = (dx/dt) - (dx/dt) ¢ . (4.41)
space-like vectors ¢? < (dx/dt) - (dx/dt)

Now, dx/dt corresponds to a velocity, v. For time-like vectors the
magnitude of v is less than ¢. Thus dz* can represent the actual
path of a physical object in space over time. For null vectors the
magnitude of v is equal to ¢. Thus dz* can represent the path of a
physical object travelling at light-speed. In the case of null vectors,
it will be seen that the classical concept of a particle will not be
applicable. However, we can still have energy going at light speed,
even classically. For space-like vectors the magnitude of v is greater
than ¢! This is not possible for a physical object such as a particle.
Nevertheless, it could describe an object of spatial extension dx seen
from a frame such that the two ends are not seen simultaneously,
but with an interval dt.
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\J

Fig. 17. The null cone at O. The space-time is divided into the three re-
gions, time-like (I), null (II) and space-like (III). Region I is 4-dimensional
and is the interior of the null cone. It is further divided into two re-
gions, the future-directed (Ia) and the past-directed (Ib). The vector b*
is obtained from a" by a proper Lorentz transformation, while ¢* is ob-
tained from @* by an improper Lorents transformation. Region II is the
3-dimensional surface of the null cone, again divided into future directed
(IIa) and past-directed (IIb). Vectors d* and e are related by proper
Lorentz transformations. Region II is connected and all vectors like g*
and h* are related by Lorentz transformations (and a scaling). Vectors in
regions I, IT and III are called time-like, null and space-like, respectively.

Since Lorentz transformations leave ds? invariant, the type of
vector is not changed by a Lorentz transformation. Also, since trans-
lations leave ds? invariant we can always translate the origin in space-
time to the origin of dz*. In the frame of reference with its origin at
the point under consideration, measuring distance in light units, if we
plot t against z, null vectors will lie along the lines t = £z. Time-like
vectors will lie above those lines and space-like vectors below them.
Actually we should plot ¢ against +x. For easier visualisation we
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suppress one of the three coordinates and use only two axes for x.
In that case we get a cone as shown in Fig. 17. Time-like vectors lie
inside the cone and space-like vectors outside. Null vectors lie on the
surface of the cone. Notice that Lorentz transformations must leave
this structure, called the null cone structure, invariant. They rotate
vectors inside the cone into other vectors inside the cone, those out-
side are rotated to others outside, while those on the surface will be
rotated on the surface. It is clear that no Lorentz transformation of
the rotation type can then convert a vector in (on) the upper cone
to one in (on) the lower cone. Thus, there are two types of time-like
(null) vectors: those that are future-directed (i.e., have dz° > 0);
and those that are past-directed (i.e., have dz° < 0). [Clearly, if
dz® =0, ds* < 0 and ds?® = 0 <= dx = 0.] There are, thus, three
disjoint regions which contain the vectors on which the representa-
tions of the Lorentz group act. Two of them are disjoint unions
(of two regions each) for the proper Lorentz group. The improper
Lorentz group, however, connects those regions.

5. The Search For Absolutes — Proper-Time

Consider the invariant interval, ds?, in the rest-frame of the
observer O. There dz° = cdt and dz* = 0. Inserting these into .
Eq. (4.37) we see that in the frame of O

ds? = c*dt? . (4.42)
In the frame of o , we have, of course,
ds? = c?dt’? — dz'® — dy? — ds? . (4.43)
We define the proper-time, which is an invariant quantity, as
dr* =ds?*/c* . (4.44)
Thus, comparing Eqs. (4.42) and (4.44), we see that the proper-time

is exactly the time measured in the rest-frame. This is an absolute
(invariant) quantity! Any other observer can measure the coordinate
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time dt' and the spatial displacement dx’ and obtain the absolute
quantity through Eqs. (4.37) and (4.44).

The question is often raised whether time-dilation etc. are real
or apparent effects. The question is rephrased, also, in the form
of whether all quantities are relative or some are -absolute. It is

"necessary to distinguish between the two questions. There are def-
initely some absolute quantities. Any 4-vector is an absolute quan-
tity though its components appear to change. The language used
to deal with such absolute quantities, in general, is Differential Ge-

“ometry. To deal with general motion and not only uniform linear
motion, we will need to use that language. However, for the purpose
of Special Relativity, we need not bother with that language. As
regards the earlier question, it is more complicated. The problem
lies in the meaning assigned to the terms ‘real’ and ‘apparent’. The
effects are certainly not dynamical effects. They are entirely kine-
matic in origin. By this it is meant that there are no forces respon-
sible, but merely the change of frame of the observer. However, this
fact does not make the effect less physical. The point is that any
measurement made by the moving observer will show the relativis-
tic effects. There is no operational significance to the non-invariant
quantities in other frames. Speaking very loosely, the absolute quan-
tities can be regarded as ‘most real’ while all other quantities retain
their ‘reality’ for the appropriate observer. In this sense, the theo-
ry of relativity recognizes that some quantities that were classically
taken to be absolute a priori are in fact relative, and then provides
the statements that are observer-independent, i.e., absolute.

The procedure will now be to use the absolute quantities to
derive physical statements that enable us to obtain answers to ques-
tions of mechanics. We will first deal with kinematics and then with
dynamics. In the kinematic section we will look at some physical
_consequences and then proceed on to dynamics. The same proce-
dure of defining and using absolute quantities will be adopted for
dynamics.
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Exercise 4

Let an observer A see observer B moving with a speed u in the
z-direction, observer B see observer C moving in the y-direction
and observer C see observer D moving in the 2-direction. Work
out the Lorentz transformation matrix of the motion of D relative
to A and of A relative to D. Are the two matrices inverses of
each other?

Explain the relativity of simultaneity in terms of the null cone.

Explain, in terms of the null cone structure, why a massive
particle can never go at the speed of light and a massless particle
can never go less than the speed of light.

Given a contravariant vector using spherical polar coordinates

At
Ar
Ao )
A?

A* =

work out the covariant components A, and the magnitude of the
vector. Work out the value of the time component of this vector
if it is a null vector.

Prove that if the sum of two velocity 4-vectors is a velocity 4-
vector the angle between them is 2x/3, while if their difference

is a velocity 4-vector the angle between them is = /3.

* These questions use some concepts explained in the next chapter.






Chapter 5

APPLICATIONS OF SPECIAL RELATIVITY

1. Relativistic Kinematics

Having obtained some invariant quantities for kinematics, we can
proceed to define others. Since the 4-vector, dz*, is such a quantity
and the proper-time interval dr is also invariant,

z* = dz* [dr = (cdt/dr,dx/dr) (5.1)
is also an invariant quantity. Now, using Eq. (2.24), we see that
.dt/dr =q. ) (5.2)
Also, we have
dx/dr = (dx/dt)(dt/dr) =~v . (5.3)
Thus the 4-vector velocity is defined by
v* = 2* =q(c,v) . - (5.4)
Now, we can work out the magnitude of this vector
g, = (E-vev)=¢F /. (5.5)

Thus all velocity 4-vectors have a constant magnitude. Defining the
velocity 4-vector V# = v* /¢, we see that V* has unit magnitude,

69
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i.e., it is a unit 4-vector. The choice of 4-vector velocity is, then,
one of the angle it makes with the time-axis in the null cone. (It
corresponds to the unit tangent vector in the theory of curves.)

Now, the momentum of a particle is its mass, m, times its velocity.
Thﬁs, the 4-vector momentum is defined by

p* = mv* = (p°,p) = (yme,ymv) . (5.6)

Now the momentum of the moving particle, by definition, must be
the mass times the velocity. But, in this case it will be the ‘moving-
mass’, m', rather than the ‘rest-mass’, m. Hence

P=m'v=amv , (5.7)
which gives the formula for the moving mass
m' =ym. . (5.8)

The question arises what p° corresponds to. To interpret this we

shall make a slight detour through classical mechanics. ‘
Consider the Poisson bracket of any function A(¢,p;) with the

generalised position and momentum, ¢’ and p, respectively, .

(4 qf)_zzz%qz“’_zéai__eé
’ d¢' gp:  Op: 9¢*  Ip;
3A dp; A dprY a4
(A’pj):aia — ‘,:——.
¢ 9pi Ip gt g
The first term on the right side in the first e(juation and the second
in the second equation being zero since ¢* and p; are independent

(5.9)

variables. Thus, the Poisson bracket of A with position corresponds
to its derivative with respect to momentum and is multiplied by
—1. Conversely, the Poisson bracket with momentum corresponds
to differentiation with respect to position. Now consider the Poisson
~ bracket with the Hamiltonian, /

AH = —-—"F - — - .
AH) =3¢ a5 " 3p: 3¢ ° (5.10)
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bearing in mind the Hamilton-Jacobi equations

0H 0H

=d - = —p; . 5.11
ap‘. q ) aq‘ p ( )

Inserting Eq. (5.11) intb Eq. (5.10), we get

A d¢ A dp _dA

‘(A’H)=aq=' it Top, @t " dt

(5.12)

Thus, the Poisson bracket of A with the Hamiltonian corresponds
to a derivative with respect to time. In other words energy is to
momentum what time is to position (since the Hamiltonian is just
the total energy of the system). Clearly, H/c corresponds to T' which
is z°. Now the energy corresponding to the Hamiltonian is written
as E. Thus, we have

P =E/c . (5.13)

Putting Eq. (5.13) into Eq. (5.6), we see that
E=9mc® =m'® , _ (5.14)

the famous energy-mass relation of Einstein.
We notice, from Eq. (5.14), that even at rest (v = 0) there will
be a residual energy, called the rest-energy

Ey, =mc® . (5.15)
Thus, the kinetic energy is
T=E-E,=(vy- 1) mc® . (5.16)

Consider this expression for kinetic energy for small v, to lowest
order in v/c. Now we have

1
A-1=(1-v?/*)"F -1= gV /¢ 0/t . (5.1T)
Thus we see that we obtain the classical result

T= %miﬂ +0(v/c)? . (5.18)
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The relativistic correction to this result would then be obtained from

y—1= % 2/ + g vt et + 0(v/c)® (5.19)
which would yield
1 2.3 2 2 4
T = g My’ + o my (v/c)® +0(v/c)
_1 2 3,22 4
=g my (1 + Y /c? +0(v/c) ) . (5.20)

If, instead of m we know m', we have
T=(1-71')m'c?
= (1 -V1- v"/c"’) m'c?
' 1 1
= (5 v’ /c? + 3 vt/c* + O(v/c)s) m'c?

= %m'v2 (1 + i v/ + 0(0/0)4) . (5-21)‘

Another important result is obtained by considering the magni-
tude of the momentum 4-vector

PP’ gu =m’? = (p°)’ —p-p=E*/* - p* . (5.22)

Thus, we can express the energy in terms of the mass and momentum
by
E?* =m?c* + p?? . (5.23)

Taking square roots of both sides and bearing in mind that the
energy is always positive, the relativistic free-particle Hamiltonian is

H=+vym?c2+p2c. (5.24)

In the case that there is some potential ¢(x), we get

Hx,p| = Vm?c 4 p? ¢ + $(x) . ' (5.25)
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2. The Doppler Shift in Relativity

We are familiar with the Doppler effect in acoustics, whereby the
sound emitted by an approaching object appears shriller and that of
a receding object appears deeper than the sound emitted. In other
words there is a velocity dependent shift of the sound frequency.
Regarding light as waves, we could also expect a velocity dependent
shift of the frequency of light, i.e. a change of colour due to relative
motion. In sound the ratio of the observed to the emitted frequency
was the sum (difference for the opposite motion) of the velocities of
sound and the object divided by the speed of sound. In the case
of light we must, obviously, deal with the relativistic addition of
velocities and incorporate the effect of time dilation. The resultant
calculation would be extremely complicated. What is generally done,
to derive the result, is to use another discovery of Einstein (and
Planck) which relates the energy of the light to its frequency. It is
anyhow obvious that a wave of higher frequency has more energy.
What is not so clear is how to relate the energy to the frequency
quantitatively.

It was already known, in 1905, that the radiation spectrum could
be understood best by regarding electromagnetic radiation as being
absorbed or emitted by matter in discrete quanta. Einstein suggested
that this could be taken as being due to the electromagnetic radiation
consisting of discrete quanta. On this basis he predicted that in the
photo-electric effect (emission of electrons from a metal plate due to
incident electromagnetic radiation) the current would change with
the intensity of the radiation and the voltage with the frequency.
This hypothesis was tested and found to be true. The basis for this
prediction was the assumption that the energy of a ‘wave-packet’ of
light, a photon, is proportional to the frequency of the light

E=hv , (5.26)

where h is known as Planck’s constant.

Consider an observer O, seeing light emitted by a source S mov-
ing with a velocity v with frequency »'. Let the motion be along
the z-direction and, at the instant that the light is emitted, let the
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(a)

(b)
Fig. 18. The Doppler effect causes a change in the observed frequency due
to motion of the gource S, here taken to be in the z-direction. The line of
sight OS makes an angle § with the z-axis. () is in the frame of O and
(b) in the frame of S.

line of sight make an angle § with the X-axis and lie in the X plane
(see Fig. 18). Now, from Eqs. (5.14) and (5.26) the rest-mass of the
photon is

m=~"'h'/c? . (5.27)
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Since 4! is zero for light (7! = /1 — v2?/c?), the photon rest-
mass is zero. From Eq. (5.23), then, the energy is just ¢ times the
magnitude of the momentum. Let the momentum 4-vector in the
O-frame be ¢*, given by

¢* = (g, gcos b, gsin 4, 0) . (5.28)

Applying the Lorentz transformation for motion in the z-direction
only, given in Eq. (4.12), we see that

q* = (v[qg - q-tci cos 8], y[gcos 8 —¢q %], gsin g, 0) . (5.29)
Now, from Eq. (5.26), we have
g=E/c=hv/c, (5.30)
and using this expression for ¢ in Eq. (5.29), we get

¢ =E/c=hV/c

v v hv
=q(1- ~ cos 8) =~(1 - ~ cos 9) — - (5.31)

Thus, we have the ratio of the emitted to the observed frequency
V' 1-(v/c)cos@
v V1-v%/c?

It is of interest to consider some special cases. For example, if

6 = m then _
1
o _Ldvle _ fetv g (5.33)
V1 —v%/c? c—v

i.e. if the motion is radially away from the observer the frequency is
decreased. Now, we know that the wavelength is given by

(5.32)

RS

A=c/v . (5.34)

Thus, the wavelength is increased. Since blue light has a shorter
wavelength and red light a longer wavelength, the shift is towards
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the red end of the spectrum. It is called a red-shift. If § =0, i.e.,
the motion is towards the observer

vV 1-vfe  [e—wv
V—\/l—vz/cz— c+v

which gives a blue-shift. If § = x/2, i.e. the motion is perpendicular
to the line of sight there is a red-shift

L VITEE >, (5.36)

which is due to time dilation. This would not have been expected
on classical considerations but had been observed already. One may
ask for what value of # will there be no Doppler shift for a given
speed of the observer v. This is easily obtained by putting v’ = v in
Eq. (5.32). Squaring and transposing gives

<1, (5.35)

(v*/c?) cos® - 2(v/c) cos O+ v* /2 =0 , (5.37)
which is easily solved to yield

cos  =cfv—+/c2jv2 -1 . (5.38)

For sufficiently low velocities we get
0~ cos™! (v/2¢) . (5.39)

The Doppler effect is of great importance in the extraction of
information about stars from observation of the light coming from
them, It is known that every element and compound possesses its
own unique spectrum. Due to the Doppler shift the entire spectrum
gets shifted. We can work out the speed of a star if we know its
Doppler shift and the angle its motion makes with the line of sight.
Similarly, we can work out the speed of rotation of galaxies (or stars
within galaxies) etc. by the Doppler shift.
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3. The Compton Effect

Consider light incident on electrons at rest. The light, after
encountering the electrons, not only gets dispersed but it also
changes colour. This effect is seen, for example, in the reddening
of the setting Sun. The wavelength changes. This effect may be
understood in relativistic terms by regarding (once again) light as
consisting of photons. We can imagine a collision between a single
photon and an electron. To start with the electron has the mo-
mentum 4-vector p{ = (m.c,0) and the photon has the momentum
4-vector ¢* = (q,q,0,0). After the collision the electron has the
4-momentum p§ = (E/e, p cos ¢, —p sin ¢, 0) and the photon has
the 4-momentum ¢5 = (¢, ¢’ cos 8, ¢’ sin 8, 0). This is depicted in

Fig. 19. Compton scattering of light off electrons. At the microscopic
level a photon, 4y, of frequency vV scatters off an electron imparting some
momentum to it. The photon goes off at an angle 8 relative to the direction
of motion while the electron goes off at an angle ¢, measured in the
opposite sense to 0. ’

Fig. 19. Now we notice that, by the conservation of energy and
momentum

i+d =p+d . (5.40)

Thus we have

oo gm = (P + 47 — &) (P) + 47 — ¢4 )90

= PP gu + 207 (4 — ¢5)9m + (4% — 43) (¢ — & )g(;w -)
5.41
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Now, we use the fact that the magnitude squared of the momentum
4-vector is the square of the rest mass multiplied by ¢?>. Thus, the
first term on the right in Eq. (5.41) cancels the term on the left. Fur-
ther, the square of the magnitude of the photon 4-vector momentum
is zero. Thus, Eq. (5.41) reduces to

v

208 (45 — 45)9uv = 241 G5 90 - (5.42)
Using the values of p¥, ¢} and ¢, we get
mec(q—q')=qq —qq’ cos 6 . (5.43)
Dividing through by m.cqq’'/h, we get
k/q¢'" —h/q = (h/m.c) (1 —cos 8) . (5.44)

Now, we have .30
h/q¢ =he/h' =X, h/g=X . (5.45)

Thus we finally obtain
M=X+A(1-cosb), (5.46)
where A, is the Compton wavelength -
Ao =h/m.c . (5.47)

If § = 0, i.e., when light goes straight, A’ = A. If the light is
deflected at right angles the wavelength is increased exactly by the
Compton wavelength. If the light is sent back, § = x, the wavelength
is increased by twice the Compton wavelength, \' = A+2),. Clearly,
p, ¢ and E can also be determined for any given 4, i.e., the recoiling
electron’s energy and momentum are determinable.

The result is directly obtainable from Eq. (5.40) for p = 1,2:

pcosp=q—q cos b , (5.48)
psing=¢'sinf . ° (5.49)
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Dividing Eq. (5.49) by Eq. (5.48), we get
tan ¢ = ¢’ sin 8/(q¢ — ¢’ cos 8) . (5.50)
Dividing through by ¢¢' and using Eq. (5.45), we get
tan ¢ = A sin 8/(A' — X cos 6) . (5.51)

Now, using Eq. (5.46), we get
i t(8/2
¢ =tan™! ( sin 0 ) = tan~! (_cq__(_/i) .

(L+ A:/A)(1 - cos 6) (1+2:/X)
. (5.52)
In the case that A, < A we get the classical result
¢ ~tan~"' (sin 8/(1 — cos §)) = tan™! (cot 8/2) , (5.53)

while, if A, > A we get

¢ ~ tan™" (A sin 8/X.(1— cos §)) =tan™' ((A/A.) cot (6/2)) .
(5.54)
If 6 =0, clearly ¢ = x/2 and if § = m, ¢ is zero. If § = /2

p=tan"' (A/(A+1.)) . (5.55)

Now, squaring Eqgs. (5.48), and (5.49) adding and taking square roots
gives

p= \/(q— ¢’ cos 8)? + ¢'2 sin® §

=¢' /1 -(24/¢') cos 0+ (g/¢')?
h
T X+ X, (1-cos f)
X /1 —2[1+ (1 —cos 8)A./A] cos 8 + [1+ (1 — cos 8)A./A]2 .
(5.56)

Further, the energy of the electron is given by

p?c? +-mict
= pc\/1+ A2m2c? /h?

=pcy1+2A2/22 | (5.57)
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where p is given by Eq. (5.56) and ). is the De Broglie wavelength of
the electron. Thus, we have a complete description of the scattering
of the photon through an angle 8 by an electron at rest relative to
the observer, initially.

4. Particle Scattering

As mentioned earlier, kinematics though invented earlier came
into its own with the advent of Relativity. Most importantly it
was developed for the relativistic theory of scattering. Generally we
deal with two particles which are initially independent of each other
coming closer together, interacting and moving away till they are
again independent of each other. There could be long-range forces
acting between them. In mechanics, as dealt with here, we only
deal with contact forces and no long-range forces. In this case the
two particles must collide. We deal with perfectly elastic collisions
so that momentum may be transferred from one particle to another
but cannot be dissipated. In Relativity we can transform from one
frame to another and derive physically significant results, unlike the
classical case.

We have already seen the result of scattering of a massless
particle (a photon) off a massive particle (an electron). In that
case it was convenient to use the frame in which the massive par-
ticle was initially at rest. This frame was more convenient because
it was the frame in which the observer performing the experiment
would be. Generally we call this frame the ‘laboratory frame’. It is
necessary to state the final result in terms of the laboratory frame,
where the results would be tested. However, it is often convenient
to perform the calculations in the so-called centre of mass frame.
Given the momentum 4-vectors of both particles, the centre of mass
frame is the one in which the total momentum 4-vector, which is the
sum of the two 4-vector momenta of the particles, has zero spatial
components. We need to be able to find the Lorentz transformation
relating the laboratory frame to the centre of mass frame.
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Consider two particles having 4-vector momenta in the labora-
tory frame, p! and pj. Thus, the total momentum 4-vector is

Pt =pl' +p4 =(E/c,P) . (5.58)
In the centre of mass frame the momenta would be pll“ , p;“ and
P =ph4ph=(E/c0) . (5.59)
Now, from Egs. (5.7), (5.8) and (5.14) it is obvious that
P/E=V/S . (5.60)

In the centre of mass frame, of course, the velocity is zero. Thus
V is the relative velocity between the centre of mass frame and the
laboratory frame. Clearly we have

pi=-py=p (say) . (5.61)
If the z-direction is taken to be along V, we have

P, + E1V/c? . . )
Piz = '—\/= v Pry = Py, P1z = Py 5
1-V2/¢?
—pe + B3V/c? ' )
D2z = \/—— y Pay = —Py» P22 = — P, )
Ve v
g BARV L BV

By, = ——2—
Ji-vija’ T\ A-vie |

For example, consider a particle of rest-mass m; and velocity, in
the laboratory frame v, colliding with a particle of rest-mass m, at
rest in the laboratory frame. Now

(5.62)

m;Vv;
= =0.
P \/1-—\?1"’1/c2 » P2

Thus the total momentum 4-vector is

P* = (m26+ mlc/\/l—vl 'V]_/Cz, mlvl/\ll—vl ‘Vl/Cz) .

(5.64)

(5.63)
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Hence we have

Vz( M/ = Vi v/ )v1 . (5.65)
~N

ml/ l—vl-v1+m2

Or, more simply
m;Vvi

my +mg \/l—vl 'V1/02 ’

gives the velocity of the centre of mass frame relative to the labora-
tory frame. In this frame the Lorentz transformation of p} is given

V =

(5.66)

by
‘u myc -m,V
= , . 5.67
P2 (\/I—V-V/cz \/I—V-V/cz) (567)
Now, since
P +p; =0, (5.68)
we have v
[ m2
= ) 5.69
P iov.ove (569)
Also, the Lorentz transformation of the energy gives
E; — El —P1 ‘.V
V1-V.V/c?
m1c2(1 -V 'V/Cz) (5 70)

B V1-vi-vi/e2 \/1-V.V/c?
which finally yields

_ myc(l—v,-V/c?) m,V
PP\l vije Ji-V.Vje ' Ji_-V.V/a)
(5.71)
Equations (5.66), (5.67) and (5.71), between them, give the four-
momenta in the centre of mass frame.
Notice that relativistically, even if m; = m,, i.e. the particles
are of equal mass, the centre of mass frame velocity is not simply
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half the velocity of the projectile. However, in the limit ¢ — oo we
recover the classical kinematic results as Eq. (5.66) now becomes

V = m1V1/(m1 + mg) ) (5'72)

which gives V = v; /2 when m; = m,;. Also, the momenta given by
Egs. (5.67) and (5.71) now simply become

P =mV, p;=-m;V . (5.73)
Using Eq. (5.72) we see that
p; = mimgvi/(m; + mp) = —p, (5.74)
yielding the usual formula for the reduced mass

p=mumsz/(m; +ms) . (5.75)

5. Binding Energy, Particle Production and Particle Decay

One of the most important consequences of relativistic kinemat-
ics is the equivalence of mass and energy. At about the time that
the formula given by Eq. (5.14) was presented, the phenomenon of
radio-activity in radium had been observed. The question arose as
to the source of the energy emitted by radio-activity. Then, too,
with the advent of the statistical interpretation of thermodynamics
it became important to understand the physical nature of the chemi-
cal potential, which is a very important thermodynamic quantity.
Further, there was no way to understand why the Sun shines. The
sheer magnitude of the solar energy source made all known energy
generation mechanisms inadequate.

The most favoured theory was that the solar mhterial was not
in equilibrium, but was collapsing inwards. The observed amount of
solar energy was, then, the kinetic energy of the falling solar matter
being converted into radiation by the heating up of the solar gas.
To provide the observed energy output of the Sun, the solar matter
would have to fall in at a rate of about 30 km per year. This decrease
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in size was undetectable by the best experiments available at the
time. However, for the same amount of energy to have been produced
steadily over very long periods it would be necessary to suppose that
the Sun’s size was equal to the Earth’s orbit some millions of years
ago. According to this theory, then, either the Sun started shining
so strongly only recently or the Earth should be only some millions
of years old. Now geological and palaeontological evidence proved
that the Sun had been shining on the Earth as brightly as it does
today for billions of years! Thus the theory had to be wrong.

It is now understood that chemical energy comes from breaking
(or otherwise modifying) the electronic structure of atoms. The Sun
shines due to changes in the structure of nuclei and radio-activity is
essentially due to sub-nuclear forces causing changes of the nuclear
(or sub-nuclear) structure. In the first case the energy source can
be the electrostatic potential between the charged nucleus and the
atomic electrons. However, no such energy storing mechanism could
be conceived for the nuclear energy release. The equivalence of mass
and energy provided a possible answer to this problem. Energy was
stored as mass. For example the solar energy produced over bil-
lions of years would produce a negligible change in the Sun’s mass.
However, a mechanism was required to convert mass into energy.
For the Sun a partial explanation was provided by Hans Bethe in
1956. It should be mentioned that as of even date the theory still
has problems since it makes some predictions which are not found
to hold true. However, it is clear that whatever the details, mass is
being converted into energy all the time. This fact has been tested.
For heavy nuclei, the sum of the masses of two fission fragments is
less than the mass of the original nucleus. For light nuclei, on the
other hand, the sum of the masses of the fusing nuclei is greater than
the mass of the resultant nucleus. The difference of masses is called
the mass defect. This mass defect gives a measure of the difference
of binding energies for the nuclei, i.e. the potential energy of the
nucleus being bound. Essentially, the difference of binding energies
between nuclei is equal to the corresponding (fission or fusion) mass
defect times the square of the speed of light. The binding energy of
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nuclei, as determined presently, is given in Fig. 20.

Of particular importance, among the consequences of the equiv-
alence of mass and energy, is the expectation that energy could be
converted into mass, not in the sense of increasing the moving mass
of a single particle, but by creating more rest-mass in the form of a
new particle. The picture is that one particle would strike another
and move off. The target particle would also move off. In addition,

Binding
energy

per Nucleon rx

144 (Fe) » Atomic
-number

Fig. 20. The binding energy of nuclei plotted against the atomic number
gives a peak at the atomic number for iron. Fusing lower elements together
{nuclear fusion) to form elements up to iron or breaking larger elements
down {nuclear fission) releases the binding energy. ’

a new particle would be produced. Let us denote the rest-mass of the
three particles by mp (for the projectile), mr (for the target) and
my (for the new particle produced). Given these masses we could
ask what the minimum kinetic energy for particle production would
be. In the laboratory frame let the projectile have an energy E.
Then the 4-vector momenta of the projectile and the target particles
would be

pp = (E/c,p), i = (mrc,0) . (5.76)
Thus, the total 4-vector momentum before collision is

P* = (E/c+mpe, p) . (5.77)
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Thus, we have
P“P*g,, = (Efc+ mzc)® - |p|* . (5.78)
From Eq. (5.23) we know that
E?/? —pP=mic? (5.79)
which gives the invariant square of the total energy
P*Pg,, = (m% + m%)c® + 2ms E . (5.80)

We could also calculate the transformation to the centre of mass
frame, as discussed earlier. The total momentum 4-vector in that’
frame is

P'* =(W/e,0) , (5.81)

where W is the total energy of the system. Now, due to Lorentz
invariance
P PYg,, =PtPYg,, . (5.82)

Using Eqs. (5.80) and (5.81) in Eq. (5.82) gives the equation
W?/c? = (m% + m2)® + 2mr E . (5.83)

For particle production to occur, the total energy must exceed the
final rest-energy

1"‘!]02 = (mp +mr + mN)02 . (584)
The kinetic energy of the projectile, T, is then given by

T = E — mpc?

= (W? —m?2c)/2mrc? (5.85)
where m; is the initial mass
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The threshold energy, T, which is the least kinetic energy that can
lead to particle production, is given by putting

W2 =mict (5.87)
in Eq. (5.85). Thus we get
To = (m} — m})c*/2mr . (5.88)

Notice that, as far as these calculations are concerned, the number
of new particles produced does not matter — my could equally well
stand for the sum of the rest-masses of any number of particles. If
T > T, the energy of motion will get disturbed among the resultant
particles. Therefore, there would not be any unique way that the
resultant particles could move. Instead, there would be a range of
possible outcomes. The particular outcome could be worked out only
on the basis of some additional information.

Relativity also provides for the reverse of particle production —
particle decay. In this case a particle of total mass M, travelling
along with a momentum 4-vector

pP* = (E/c,P) , (5.89)

suddenly breaks into two particles of rest-masses m; and m,; and
momentum 4-vectors

9t = (Ei/c, P1), py = (E2/c,Pa) . (5.90)

In the rest-frame of the initial particle the momentum is zero. Thus,
the centre of mass frame of the final particles is the rest-frame of
the initial particle. It has a velocity relative to the laboratory frame
given by

v=P3/E . (5.91)

In that frame the initial momentum 4-vector is

P'* = (Mc,0) . (5.92)
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This must be the final momentum 4-vector, due to momentum con-
servation. The individual 4-vector momenta are

p = (Ei/c,P1)s P = (Ey/c, p3) - (5.93)
Since we also have ’ ’
pt +pf=P*, (5.94)
we have
Py =-P, =P (say), (5.95)
E| + E, = Mc* . (5.96)

If the rest-masses of the decay products are m; and m,

Ei =P +mictc, E;=4/p>+mic’c. (5.97)

Since there are three equations for the six parameters M, p, E}, E,,
m} and m/,, we need to know three of them to determine the other
three. Once these are worked out, the relevant 4-vectors can be
transformed by the Lorentz transformation given by v as specified
by Eq. (5.91).

We could have a decay of one particle into more than two con-
stituents. This happens, for example in the decay of neutrons,

noptetv, , (5.98)

where p represents the proton, e the electron and ¥, is the anti-
neutrino. In fact the original indication that there were particles
such as the neutrino came from the application of the above calcu-
lations to what was supposed to be the decay process: the neutron
decaying into a proton and an electron. Both particles were observed
and their energy worked out. There was an energy defect between
the rest-energy of the neutron and the total energy of the proton
and the electron. A particle was postulated which carried away
the extra energy. Since the neutron is neutral and the proton and .
electron have equal and opposite charges, the postulated particle,
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the anti-neutrino, must also be neutral. Neutrinos have, since, been
detected experimentally and are used regularly in many experiments
nowadays.

Exercise 5

1. A beam of protons is incident on a target of Carbon. Taking
the atomic number of the Carbon to be exactly 12 (consisting
of six protons and six neutrons) and the masses of protons and
neutrons to be 938.2 MeV/c? and 939.5 MeV/c?, respectively,
determine the threshold energy for the production of pions of
mass 140 MeV/c?.

2. Two bodies have the same rest-mass and are moving at a speed
c/2 relative to each other when they collide. What is the amount
of energy transferred according to an observer at rest relative
to one of the two bodies? If the observer sees them moving co-
linearly and sees them both coming towards him, one of them
with speed ¢/3, what will the speed of the other body seem to
him and how much energy transfer will he see?

3. A sees a body of rest-mass m as having energy 2mc? while B
sees its energy as mc?. B sees a body of rest-length £, in the
frame of C, as having a length £/3. C sees a clock in the rest-
frame of D as running 4-times too slow. Taking the object in
the frame of C as lying along the direction of relative motion
between B and C, give the possible velocities of D relative to A:
(1) if all the observers have relative motion in the same direction;
(ii) if the motions are all perpendicular; and (iii) if one motion is
perpendicular to the other two which are co-hnear (Remember
that there can be two signs in each case.)

4. If an object moves, relative to an observer, at a speed ¢/2, what
should be the angle between the velocity vector and the line
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joining the object and the observer, so that no Doppler shift
is observed?

5. An object is in a circular orbit about an observer. Neglecting
acceleration, what is the Doppler shift seen by the observer if the
radius of the orbit is R and the mass of the gravitating source
(on which the observer stands) is M?

6. What should the wavelength of light be so that the scattered
light has double the wavelength of the original light when scat-
tered through angles of: (i) € ~ 0; (ii) »/6; (iii) x/4; (iv) x/3;
(v) #/2; (vi) 27/3; (vii) 3x/4; (viil) 57/6; and (ix) #? Take
m, =9.11 x 1073 kg, h = 6.63 x 10734 J.sec, ¢ = 3 X 10° m/sec.

/ A proton (of rest-mass 938.2 MeV/c?) strikes another proton
and produces two new particles of rest-masses 1346 MeV /c? and
3154 MeV/c? in addition to the original protons. What is the
least energy that the incoming proton must have had?

8. The Glashow-Salam-Weinberg theory predicted the existence of
a Z° of rest-mass 90000 MeV/c?. These particles were to be
produced by proton-proton collisions by accelerating the protons,
splitting the beam and bringing the protons to a head-on colli-
sion. How much energy did the accelerator have to accelerate the
protons to? How can this energy requirement be reduced?

9. In the particle reaction
u—et+v.+ Yy

if the neutrinos, v, and v, are nearly massless and m, = 0.51
MeV/c? while m, = 105 MeV/c?, what limits can be put on the
speed, momentum and energy of the electrons? If the neutrinos
are not massless, but have a small rest-mass of about 50 eV /c?
(1 eV = 107® MeV) each, how accurately would we have to
measure the energy of the electron for the neutrino mass to be
detectable?
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An observer, A, sees a body of rest-mass m as having mass M.
An observer, B, comoving with that body sees another body of
test-length £ as having length L. An observer C, comoving with
this other body sees A’s watch as going at half the correct rate.
If the motion is co-linear and A’s watch is working correctly in
his frame, determine L in terms of £, m and M.

Two meteors of rest-mass 0.1 and 0.2 kg, respectively, collide. If
the relative speed before collision is 0.1 ¢ and an observer sees
them coming with equal and opposite speed and sees the lighter
meteor go off at right angles to the original direction of motion,
what will be the deflection of the heavier meteor according to the
observer? How will this process appear to an observer comoving
with: (i) the heavier meteor; and (ii) the lighter meteor? How
will it appear to the centre of mass observer?

X sees a spaceship coming towards him at a speed such that the
length of the spaceship seems to have been halved. He sees a
meteor of 1 g coming towards him from the opposite direction at
half the speed of light. He wants to warn the spaceship about
the effective mass and momentum of the meteor as it will appear
to the spaceship. What values should he give?

A spaceship of rest-mass 10 000 kg is hit by a micro-meteor of
rest-mass 0.1 kg travelling at a speed of 0.99 c relative to the
Earth at right angles to the motion of the liner. The meteor is
deflected off the spaceship’s shields. If the spaceship was travel-
ling at a speed of 100 000 km/s relative to the Earth, how much is
it deflected from its original course? If no corrections are made,
how far off target will the spaceship arrive at its destination 4%
light years from the collision?

A particle of rest-mass 3 GeV/c? (1 GeV = 1 000 MeV) strikes a
particle of 1 GeV/c? mass, at rest in the laboratory, and produces
a particle of rest-mass 2 GeV/c? along with the original particles.
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What threshold energy for this process is seen by an observer
moving at a speed 2¢/5 relative to the laboratory?

An astronomer sees the colour of a star change over a period of 5
hours, roughly corresponding to a change of frequency by a factor
of 2. How massive is the companion star of the visible star if they
both have equal masses. How much “wobble” must there be due
to the gravitational pull of the normal star (which is visible) on
its companion, if the normal star has one solar mass (2x 10*° kg)?
You may take ¢ = 3 x 10° km/s and G = 6.67 x 10~ !! Nm? /kg?.
(The “wobble” is the radius of the orbit of the companion star.)

The light from a star 10'> km away is red-shifted by 10% and
the star is seen to move across the sky at a rate of 10~3 radians
per year. Determine the velocity of the star.

An electron is moved from rest by a photon which is deflected by
7/3 and whose wavelength is doubled. Determine the resultant
momentum of the electron.

Two particles of equal rest-mass have a head-on collision in the
laboratory frame, where one particle has twice the momentum of
the other. Determine the centre of mass frame.

If the wavelength of a photon increases by 50% on being reflected
by an electron, how much will it be altered on scattering off a
proton through an angle /6?7 Take the proton to be 1840 times
as masgive as an electron.



Chapter 6

ELECTROMAGNETISM IN SPECIAL RELATIVITY

1. Review of Electromagnetism

The theory of Electromagnetism as developed by Maxwell and
modified by Lorentz (to incorporate sources of the electromagnetic
field) already led Lorentz to present his transformations as ad hoc
assumptions. We have seen that all of the results of the Special
Theory of Relativity follow from the Lorentz transformations.
Even without Einstein, his theory would have been forced on us
by Electromagnetism. The question arises, then, of whether Elec-
tromagnetism is itself Lorentz covariant, i.e. whether the theory
is consistent with Special Relativity without any modification? To
look into this question we shall briefly review the theory as finally
formulated by Maxwell, in modern notation. It will be seen that
it can be cast into 4-vector form and gives the usual results under
Lorentz transformations. In fact, a deeper understanding is obtained
by recasting Maxwell’s theory in Special Relativistic terms.

The Ancient Greeks knew (and perhaps the Ancient Chinese as
well) that there are non-gravitational forces. The force exerted
by substances which had been rubbed against other (particular)
substances was the electric force. Of course, in those days, there
was no clear concept of forces in the Newtonian sense. After much
experimentation, Coulomb was able to formulate the force due to
stationary electric charges acting on each other. This can be written

93
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in modern notation as

1 ag (ri - 1)

F,, =
127 4re Ir; —raf®

(6.1)
Here ¢ is a constant depending on the nature of the medium in which
the charges q; and ¢, are placed at the points given by position
vectors r; and r, respectively. This law is known as the Coulomb
force law for electrostatic forces. Notice the similarity between this
law and Newton’s law of gravitation. The constant in that case is G
instead of 1/47e and we have masses m;, m, instead of charges ¢;,
g2. The difference is that G is a Universal constant but £ depends
on the nature of the medium. Also all bodies have masses which are
positive while there can be electrically neutral bodies, i.e., having
zero charge, and there can be attraction as well as repulsion.

A single charged. particle is called an electric monopole. An
electric dipole is constructed by two oppositely charged monopoles
held a fixed distance apart. Whereas no magnetic analogue of the

electric monopole has been discovered, a bar magnet is a magnetic
dipole. The strength of the magnetic poles will be represented by
M; and M;. Then Coulomb’s law for magnetostatics is

B MiMa(ry —r;)

F,=2 .
Y N PN T (62)

where u is a constant which depends on the magnetic nature of
the material. The constants ¢ and u are called, respectively, the
dielectric constant and magnetic permitivity, of the medium. They
both have finite values in vacuum denoted by &, and u, respectively.
It should be pointed out that since no magnetic monopoles have been
seen, Coulomb’s law is to be taken as an approximation for two very
long bar magnets with one pole each put relatively close together.
Effectively, they would interact as monopoles.

2. The Electric and Magnetic Field Intensities

If a bar magnet is placed on a sheet of paper, putting iron
filings on the paper enables us to trace the lines of force about the
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magnet. Of course, the iron filings themselves change the lines of
force. The less (and the smaller) the filings, the less do they affect
the lines of force of the magnet by itself. To get the lines due to the
magnet with no interference by anything else, the filings would have
to be infinitesimal. The force exerted on such infinitesimal objects,
called test particles, divided by the magnetic (electric charge for the
electrostatic case) pole strength of the test particle is called the
magnetic (electric) field intensity. We can write the electric field
intensity due to a point charge, Q, as

= — 6.3
=0 q 4mey P’ (6:3)

where r is the position vector of the infinitesimal charge ¢ and r is
its magnitude. Similarly, the magnetic field intensity is

H= lim om MM
m—=0 m 47 3

(6.4)

In media with electric and magnetic properties, the constants €, and
Lo can be replaced by € and u provided that the media are isotropic
(i.e., they do not alter the direction of the field vectors).

Now, if there is a collection of charges, or a continuous charge
density, it is seen by using Gauss’ theorem that

V-E=p/e , (6.5)

where p is the charge density. For discrete charges g;, we have
V-E= () ab(- r;))/so , (6.6)

where 8(r;) is the Dirac delta function as a function of the position
vector, r; being the position vector of the ** particle. The Dirac
delta function is defined to be zero if its argument is non-zero and
infinite if the argument is zero, such that for a domain D

/D5(r——ro)f(r)dV=f(ro) ifroeD ,
=0 ifl'0¢D .

(6.7)
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It is easily verified that the volume integral of both Egs. (6.5) and
(6.8) is the total charge over €q. By Gauss’ theorem the left side of
both equations is

/Dv-Edvsz-nds : (6.8)

Using Eq. (6.3) to insert the value of E, we see that

/DV-EdV=(Q/47reO) ]((r-n/ra)dS . (6.9)

Now the integral is known to be a solid angle 4r. Thus, we see
that the volume integral of the left side of either of Egs. (6.5) and
(6.6) is also Q/eo. Hence we get Gauss’ law given by Eq. (6.5) for
a continuous charge distribution or Eq. (6.6) for a discrete charge
distribution.

In the case of magnetism, since there are no known magnetic
monopoles, there is no meaningful charge distribution to put on the
right side of Egs. (6.5) and (6.6). The only way to have a net pole
strength inside a volume is to keep half the magnet outside it. Thus,
the total strength would not remain unchanged by slight distortions
of the volume. Hence, we must keep the right side zero, i.e., Gauss’
law for magnetic fields is

V.-H=0. (6.10)

3. The Electric Current

A moving charge gives a current. The larger or faster the charge,
the greater the current. For a collection of charges ¢, moving with
velocity v, across an area element dS in time 6t, the current differ-
ential will be

dI=6Q[6t =) quVa-dS6t/6t= quv,-dS . (6.11)

We write it in terms of the current density, j

dI=j-dS . (6.12)
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The net inflow of current into a volume D bounded by a surface S
is, then (by using Gauss’ theorem)

—I=j( j.ds=/ V-jdv . (6.13)
Vs D

On the other hand the inflow is given directly in terms of the rate
of charge flow. For a continuous charge distribution

I=dQ/dt =d/dt ( / pdv) . (6.14)
D

The derivative can be taken inside the integral, bearing in mind that
there is only differentiation of the charge density with respect to time
and not position. Thus, we have a partial and not a total derivative
with respect to time. Adding Egs. (6.13) and (6.14), we get

f (8p/0t +V-3)dV =0 . (6.15)
D

Now the integral is generally zero only if the integrand is zero, which
yields
p/dt+V-3=0 . (6.16)

This is called the equation of continuity.

Two observational laws relating the electric and magnetic field
intensities were stated by Ampere and Faraday. They could be
written in modern notation as

VAH=j+¢€ dE/dt , (6.17)

VAE = —u, H/0t . (6.18)

Also, consistent with Eqgs. (6.5) and (6.10), we can define the electric
scalar potential, ¢, such that

E=-V¢ (6.19)
and the magnetic vector potential, A, such that

H=(1/p)VAA . (6.20)
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Equation (6.20) obviously implies Eq. (6.10) as an identity since
V- (VAA)=(VAV)-A=0. (6.21)

Equation (6.3) implies that for a point charge

¢ = (1/47e0) Q/r . (6.22)

4. Maxwell’s Equations and Electromagnetic Waves

Rather than proceed further with the pre-relativistic develop-
ment of Electromagnetism let us cast the entire structure into a
relativistic framework and use Relativity to deduce the standard
results of electromagnetic theory. Before proceeding with that, we
need to look at the essential structure of the theory as presented by
Maxwell, and at his deduction of the existence of electromagnetic
waves in the absence of any charge density.

The equations given by Egs. (6.5), (6.10), (6.17) and (6.18) are
known as Maxwell’s equations. We consider the case when p and
j are zero. Differentiate Eq. (6.17) with respect to time and use

Eq. (6.18). Thus
A’E/dt* = —(1/eopo) VA (VAE) . (6.23)
Now the right side may be simplified by using the identity
VA(VAE)=V(V-E)-V?E . (6.24)
Using Eqs. (6.24) and (6.5) with p = 0 in Eq. (6.23) we obtain
3*E/dt* = (1/eopo) V2E . (6.25)
This is the wave equation with the speed being the square root of

the coefficient of the right side term. The value of the speed turns
out to be the speed of light in vacuum.
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Differentiating Eq. (6.18) with respect to time and using
Egs. (6.17) and (6.10) with j = 0, and the identity given by Eq. (6.24)
for H, we see that
L]

3*H/3t* = (1/eopo) VFH . (6.26)
Thus E and H satisfy the wave equation with the wave speed being

the speed of light
c=1/\/eono - (6.27)

It is easily checked that since all materials have higher values of ¢
and u the speed of the wave in media will be less than the speed of
light in vacuum. This is true for light as well. It is obvious from
here that we should identify light as an electromagnetic wave. This
identification has since been verified by producing light by varying
electric and magnetic fields appropriately.

5. The Four-Vector Formulation

We can write the Maxwell equations in terms of tensors in
Minkowski space. The simplest to see is the 4-vector current density
which can be written as (po being the rest charge density)

3* = pov* = (poc, 1pov) = (Phe, poV)
= (pc,pv) = (5°,J) , (6.28)

where p, the moving charge density, increases due to reduction of
volume by the y-factor. This already gives the moving charge (or
charge density). Clearly the current appears as only a charge density
in the rest-frame of the charges, i.e., there is no current in a comoving
frame. Notice that j# is a vector density and not a true vector in
that it will not transform as a vector, but there will be an additional,
Jacobian factor multiplying the transformation.

Notice that there is a scalar electric potential and a vector
magnetic potential. We could try putting them together in a 4-
vector electromagnetic potential

Ay = (8/c,—A) = (A, 4) (6.29)
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We define the Mazwell field tensor by

F,, = 34, /32" — 84, /dz"
= Ay — Ay =241, = —F (6.30)

From Eq. (6.30), putting 4 =1 and v = j, we see that
Fij=Aji — Ay = e B, (6:31)

where €, is the Levi-Civita symbol, which is +1if 1, 7, k are an even
permutation of 1,2,3, is —1 if they are an odd permutation and zero
if they are not a permutation. Thus, the spatial part of the Maxwell
field tensor is

B=yuH. (6.32)

Consider, now, the case where uy = 0, v = 1. Here

1 )
Fy = (04:/3t - 84/32) = - E; (6.33)
Thus the space-time mixed part of the Maxwell field tensor is the
electric field divided by ¢. It should be pointed out that Eq. (6.19)
only applies in the absence of a magnetic field. It is clear from
Eq. (6.18) that in the absence of a purely electric potential

E=-0A/at . (6.34)

We see that the Maxwell tensor contains the electric and mag-
netic fields,

0 E]_/C Eg/c E3/C
—E]_/C 0 Bs —Bz
—Eg/c "'B3 0 Bl
~EsJc B, -B; O

F,, = (6.35)

We can raise the indices of the tensor by using the metric tensor

Fof = gorgf* F.., | ' (6.36)
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where g** is the inverse metric tensor defined by
9" 9u =67 . (6.37)

If we use Cartesian coordinates g,, is given by Eq. (4.9). In that
case

P =1=—g" = g2 =g g ¥=0ifatu. (6.38)
Thus, we get
0 -E//c —-E;/c —Es/c

Ei/c 0 B ~B.

af __ 1 3 2
FeP = Es/c —Bs 0 B, (6.39)

E3/C B, -B; 0
The dual field tensor is defined by
. 1

Frm = 2 e* P F,, (6.40)

where €#¥?" is the four dimensional Levi-Civita symbol defined as
before for 0,1, 2,3. Thus, for example

1 1
* o1 — 560123 Fs + 550132 Fyy = Fps . (6.41)

The complete dual tensor is easily seen to be

o B B, B,
—31 0 E3/C —EQ/C
—32 —E3/C 0 El/c
—B3 EQ/C —El/C 0

o (6.42)

From Eqgs. (6.35) and (6.39), we see that

J— «4&‘:;% 2(E E/c _B. B)
- E( B
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Now it can be seen from the theory of Electromagnetism that the
free energy density of the electromagnetic field is given by

fom = 3(BE-D-B-H)=_(cE-E~B-B/w) . (644)

Thus, we see that the free energy density for the electromagnetic
field, i.e., the electromagnetic Lagrangian is

1
ﬂe,m, == —Z I.lo F“UFI_‘V . (6.45)

From Egs. (6.35) and (6.42), we obtain
*F*F, =4E-BJc . (6.46)

If the electric and magnetic fields are perpendicular to each other
the dual field tensor will be orthogonal to the field tensor.
The force exerted on a test particle of charge ¢ is

F=¢E , (6.47)
or in terms of the field tensor
F; = qcF,; .
In general, then, for an arbitrary velocity 4-vector

F" = 4q FI-“' ‘I)“
= q(Foi yc + Fj; 7v")
=¢(E+VvAB) . (6.48)

This is known as the Lorentz force law. It can be seen to be a
kinematic effect. It further clarifies the sense in which a magnetic
field is just a ‘moving electric field’. The magnetic effect of moving
charges is related to the electric effect of stationary charges in the
same way.
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The observable quantity is the field tensor and not the potential
giving rise to it. The potential giving a field tensor is not unique. In
fact, if we transform the potential by

A, = A, =Au+ fu, (6.49)
for any scalar function f, the field will be transformed by
Fuo = Fuw = Fuy +2f o) = Fu . (6.50)

The transformation given by Eq. (6.49) is called a gauge transfor-
mation. Equation (6.50) expresses the fact that the field is gauge
tnvariant, i.e. invariant under gauge transformations. This fact
is intimately connected with charge conservation. It also plays a
pivotal role in the Glashow-Salam-Weinberg theory of electroweak
unification and the various attempts at extending the unification to
include strong interactions as well.

6. The Maxwell Equations Again

It can be checked that the Maxwell equations can be written in
the 4-vector formalism as

F¥ , = pog* | (6.51)

) F'[uu,p] =0. (652)
We start with g = 0 in Eq. (6.51). This clearly yields Eq. (6.5). Now
consider p = ¢, ¥ = j and p = k in Eq. (6.52). This immediately
gives Eq. (6.10), since we get

1 . . .
3 (Fijp + Fiki + Frij) =0, (i#5#k#1) . (6.53)

Now, since k # 1,7 and F;; is B* with k # 1,5, Eq. (6.53) is just
Eq. (6.10).
Let us now consider p = 1 in Eq. (6.51). Thus

F,+Fi; =7
10F

= -—z W‘ + Eijk Bk,j . (6.54)
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Thus we get, by dividing through by y,,
#iv/\ B = ¢, OE/dt + . (6.55)
0

This is Eq. (6.17). Further, take p =1, v = j, p = 0 in Eq. (6.52).
Thus

Fij,o +vFjo,i + Foi,j =0

= '1" (532 €isk B* + E; ;- Ej,i) .

(6.56)
This gives Eq. (6.18).
Consider, now, the divergence of Eq. (6.51)
F* o= —poj* u . (6.57)
The left side is zero since we have
F¥ oy =F* = —F" ., , (6.58)

but the dummy indices v, u can be interchanged without making
any difference. Hence

F# ., =—F" ,, | (6.59)

+

- which implies that »
F*Y =0 (6.60)

Thus, we have, from Eq. (6.57)

dp

5 TV (6.61)

0=5",=4"0+75=

i.e., the equation of continuity follows from the Maxwell equations.
We see that electromagnetic theory is naturally expressable in
terms of the 4-vector formalism and is consistent with Special
Relativity. Electricity and magnetism are different facets of the same
fundamental force, which transform into each other due to relative
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motion. It is found that the inter-relationships are not only more
elegantly expressed here, but are also more transparent. The effect
of electric and magnetic fields on point charges is easily derivable by
changing from the rest-frame to a moving frame. In effect, the elec-
tric field in the moving frame is given by the Lorentz transformation

E! = y(E; + €;jx v’ B*) . (6.62)

We will now deal with dynamical effects in Electromagnetism. To be
able to do so we need to discuss acceleration in Special Relativity.
We shall proceed to do so in the next chapter.

Exercise 6

1. Write the electromagnetic 4-vector potential for a point charge
and use the Lorentz transformations to work out the 4-vector and
hence the electromagnetic field potential for a charge moving with
a velocity v = (¢/2, ¢/3, c/4).

2. Given a constant electric field, E, in the z-direction and a
constant magnetic field, B, in the y-direction, work out the
acceleration of a particle of charge ¢ moving at some instant
with a velocity v = (¢/3, ¢/5, ¢/4), if the mass of the particle is
m.






Chapter 7

SPECIAL RELATIVITY
WITH SMALL ACCELERATIONS

We have seen how to deal with kinematic problems in a con-
sistent way. This treatment led to the development of the Special
Theory of Relativity. However, dynamics cannot be dealt with really
consistently by Special Relativity. Why not? Because in that case
we must deal with accelerations, while Special Relativity is geared
only to unaccelerated frames. Of course, we could deal with what
accelerations look like to inertial observers, but we will not be able
to go into the accelerated frame. We shall see the problems that
can arise by including accelerated frames. Nevertheless, it should
be possible to deal with the effects of acceleration as ‘corrections’
of the Special relativistic effects, provided the acceleration is ‘suffi-
ciently small’. We will, of course, need to define what is meant by
‘sufficiently small accelerations’ very precisely. We will then obtain
some results for relativistic dynamics. It should be pointed out that
for a consistent treatment of dynamics we will need the General
Theory of Relativity which deals with arbitrary motion. This theo-
ry is presented more fully in a separate volume.

1. Some ‘Paradoxes’ in Special Relativity

A very famous ‘paradox’ was constructed to try to prove that
relativistic time-dilation could not be true. It was variously known
as the ‘twin paradox’ or the ‘clock paradox’. The only thing wrong
with it (as we shall see) is that there is no paradox according to

107
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Special Relativity, but merely a result which would not have been
expected on the basis of everyday experience.

The supposed paradox conceives of a pair of twins, one of whom,
A, stays at home on the Earth and the other, B, visits a distant star
at near light speed. Now, according to A the clocks of B run slow and
so, when B returns, he will have aged much less than A. The point
of the ‘paradox’ is that B could have regarded himself as being at
rest and A as moving. Thus, the argument goes, B should expect A
to have aged much less. We could replace the twins by ‘twin atomic
clocks’ and the space-trip to a distant star by many trips around the
Earth in a fast jet. This experiment has been performed and B does
run slower than A. Since the experiment has been performed and it
"has given a positive result no paradox is possible. Let us now look
at the error in the argument.

The error may be seen by analogy with two people A and B
who go from point P to Q. B goes via R while A goes directly (see
Fig. 21) through point S, corresponding to R. A, of course, traverses
a shorter distance than B. Now, suppose that we are dealing with a
space-time diagram. The ‘path of A’ is simply the passage of time at
the same place in his frame. According to him B moves at a speed
v < c. He moves in one direction up to R and then in the opposite
direction from R to Q at the same speed. Now let us go back to
the purely spatial picture as seen by B. As he goes to R he sees A
staying behind him. When he reaches R he sees A at T;. Now he
changes direction instantaneously. Suddenly he sees A ahead of him
at T;. Of course, A has not moved in the instant and is still at point
T. 1t is just B’s description of T which has changed. This argument
applies equally for the space-time diagram. As B goes away he sees
the clocks of A running slow. With his instantaneous acceleration
the clocks of A suddenly jump ahead of B’s clocks and end up ahead
of his. Therefore, there is no paradox.

Another ‘paradox’ was invented to demonstrate the errors arising
from dealing with forces in Special Relativity and the methods that
should be used to avoid such errors. In this ‘paradox’ (see Fig. 22a)
an observer on a smooth table-top which has a hole of diameter £ in
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P
(a) (b)

Fig. 21. The resolution of the ‘clock paradox’. (a) Imagine A going from
P to @ via § while B goes via R along a straight line. (b) According to
B, if he insists that he is proceeding along a straight line, when he turns
around at R he sees A suddenly jumping from the point T; behind him to
the point T3 ahead of him. Actually there is only one point T seen in two
ways by B as he changes his definition of ‘in-fromnt’, i.e., his direction. If

we take these as space-time diagrams we have the resolution of the clock
paradox. Clearly PT+ TQ # PR + PQ and PT; + T2Q # PR + RQ.

it sees a thin rod of rest-length £ coming towards the hole at speed
v. He reasons that since the rod has length £ = £/~ < ¢, it will fall
through the hole. An observer comoving with the rod argues that
the hole has a diameter ¢ while the rod is of length £ > £. Thus,
the rod is too long to go through the hole and it will pass over it. To
decide which has happened a paper wall is put up along the line of
motion of the rod on the table-top beyond the hole. If the table-top
observer, O, is correct, the wall will remain intact. If the observer
who is comoving with the rod, O’, is correct, the wall will be broken.
Thus, we can test which one is correct. There can be no paradox in
this case either. The only question is ‘Which one is wrong?’

The answer must obviously be that O' is wrong since his
frame changes when he comes over the hole. O continues in a non-
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(b)

Fig. 22. (a) An observer O sees the rod of rest-length £ coming towards a
hole of diameter £ and predicts that the rod will fall through the hole due
to the Lorentz contraction due to the speed v. The paper wall, P, stays
intact. (b) The observer O’, riding on the rod does not agree till he comes
to the hole when his frame changes and he sees the table-top curving up
in front of him and he is able to go through the hole, leaving P intact,
even though the diameter appears to him to be less than £.

inertial frame. O’ is in a non-inertial frame initially, in that he can
see objects fall when released. However, over the hole, as he falls,
he sees objects float in his frame, since they are falling at the same
rate as he is. If he insists that he is moving in a straight line as he
continues, he must observe the table-top curve up in front of him
(Fig. 22b) and go through the hole that has risen up in front of him.
Thus there is, again, no paradox. Again, geometrical arguments
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are used to resolve the problem. Clearly, the consistent relativistic
treatment of acceleration must be geometrical.

2. The Range of Validity of Special Relativity

~ One may raise the question whether Special Relativity has to be
discarded if we deal with accelerated frames. Even on the Earth we
do not have a real non-accelerated, i.e., inertial, frame. In fact it
is a moot point whether a genuinely inertial frame can exist in the
Universe. The gravitational field of the object itself will cause some
non-inertial effects. However, it is clear that for any given accuracy
of observation there will be some sufficiently small acceleration which
could be considered negligible. The question is “How small must the
acceleration be?”

For Special Relativity without acceleration we know that rela-
tivistic effects only come in at speeds comparable to the speed of
light. Thus, Classical Mechanics holds to the extent that v? <« c?
and we can use relativistic corrections as O(v/c)® modifications of
the classical result. Now, given one inertial frame and another non-
inertial frame we can get an estimate of the speed attained by the
non-inertial frame relative to the inertial frame if they started at rest
initially by taking the acceleration, a, to be constant,

1
Evzma-x, (7.1)

where x is the displacement vector through which the acceleration
has been applied. Thus the acceleration is negligible if

a-x<c*/2 . (7.2)

Clearly, we can obtain ‘corrections’ of the special relativistic results
due to acceleration as O(«) terms, where

a=2a-x/*<«1. (7.3)

It is to be noticed that for the ‘clock paradox’ we cannot make
a <« 1. This is so because the spaceship travels at high speeds
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(i.e., v2/c? must not be negligible) and the acceleration is enough
to change the velocity from v to —v. If we make |x| small we will
have to make a correspondingly large but a : x will remain of the
order of v?. Thus the only way to make a negligible is to make v? /c2
negligible. In this case the relativistic effect is anyhow undetectable.

In the ‘paradox’ of the table with a hole, we see that if there were
no acceleration due to gravitation, the rod would not fall anyhow.
If there is some acceleration it would still not fall through if there
were a finite thickness of the rod. Thus, the acceleration could only
be negligible if the distance fallen was much less than the thickness
of the rod. For an ideal, infinitely thin rod there could not be any
sufficiently small acceleration. Thus, the result would remain true
anyhow (that the rod will fall through the hole).

3. The Gravitational Red-Shift

Consider a photon of frequency v rising a distance d from a
gravitating source of mass M, having started at a distance r. The
photon has an effective mass

m=E/c* =hv/c® . (74)

Thus, the work done in moving the photon up is

+d GMm hvGM /1 1
W:/r S dr = (= ). @9

c? r_r+d

This energy can come only from the photon itself. Thus if the energy
loss is small we can get

hév s h"CjM a (7.6)
2 r(r+4d

Thus the decrease in frequency per unit frequency, if d < r, is
5v. GM d
— N — =
v cr r

(7.7)
For the argument to be valid we have

a=GM/Pr<«1 . (7.8)
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The gravitational red-shift predicted here has been measured by
sending light up a 70 metre tower on the surface of the Earth. It is
found to be exactly the predicted value within the limits of experi-
mental error.

4. Gravitational Deflection of Light

Newton, a long time ago, had suggested that light should
be subject to his gravitational law just as matter was. However,
his suggestion had not been taken very seriously because light was
generally regarded as a wave — very different from matter. Einstein,
who had revived Newton’s corpuscular theory in a different form,
was perfectly ready to try to work out the gravitational deflection of
the path of light. The calculation was later repeated using General
Relativity and gave a value twice the value obtained here. The full™
relativistic result, 1.e. that obtained later, was found to be correct
within experimental errors. We shall discuss the experiment which
tested the prediction later. First we consider an idealised ‘thought
experiment’.

Consider an experimenter in a lift as shown in Fig. 23a. A beam
of light starts from A and is received at B. The width of the lift is
8. Thus the light takes a time t = s/c to cross the lift. Now, if the
experimenter releases a ball in the air it falls (demonstrating that
he is in a non-inertial frame). Having performed this experiment
he has a friend release the lift so that it falls freely (see Fig. 23b).
Now when he drops the ball it floats (demonstrating that he is in an
inertial frame) since it falls at the same rate as he does. In the time
t it falls a distance

d= % gt? = gs? /26 . (7.9)
Now, the results are valid if
a=gs/2® <1 . (7.10)
Thus we have deflection of the light path by an angle

0 s tan 0 = d/s = (gs/2c%) . (7.11)
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Fig. 23. An experimenter in a freely falling lift. (a) At first the lift is fixed,
light goes across the lift (a width s) from A to B. Also a ball released by
the experimenter drops. (b) Now the lift is allowed to fall freely. In the
time the light crosses the lift, it falls a distance d so that the light falls at
point C instead of B. Also the ball released falls with the lift and hence
appears to the experimenter to float. Thus (b) gives an inertial frame
while (a) gives an accelerated frame.

Of course, it would not be possible to test this result by a terres-
trial experiment as, even if s = 100 metre, § ~ 0.5 x 10~ rad =~
102 arc seconds. However, generally we have

9=GM/R* , (7.12)

which gives, for any gravitating source of mass M at distance R,

GMs

[/
~ 2¢2 R?

(7.13)

Now consider light grazing by the Sun. In that case R is the radius
of the Sun and s is approximately the solar diameter, 2R. Thus, for

the Sun
GM

2R

The problem now is how to see light grazing by the Sun? The
light source would have to be a star. It is not normally possible to see
a star at the edge of the Sun. However, due to the coincidence that

0 = (7.14)
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1R

Image

Fig. 24. A star behind the disc of the Sun will appear to be just away from
it due to the gravitational deflection of light. Here, of course, nothing is
drawn to scale. The point is simply that the Sun is just blotted out by
the Moon at the point of observation, while the star that was blotted out
has become visible. Notice that the effective deflection is 28 and not 6.

the lunar and solar angular diameters are equal (both %o) during a
total solar eclipse, the disc of the Sun is just blotted out. At that
time light that grazes by the Sun can just be seen. Now, as shown in
Fig. 24, light from a star that would be behind the disc of the Sun will
appear to come from a different point. By comparing the position of
the star with respect to other stars (see Fig. 25), Eddington was able
to measure the gravitational deflection of light. The result obtained
was four times that given by Eq. (7.14). As is clear from Fig. 24, the
quantity measured is 20 and not #. Thus, Eddington found a value
twice that given by the above argument. As mentioned earlier, the
correct value is predicted by General Relativity.

5. Four-Vector Acceleration and Force

If we can totally ignore the problem of having non-inertial frames
when dealing with accelerations, i.e., if we are considering what the
acceleration seen by one unaccelerated observer appears to another
accelerated observer, we can continue with the use of the four-vector
formalism. We can, then, define the {-vector acceleration

A% =

dr_d(__c v )
dr  dr \\/1-v.v/e2’ \/1-v-v/c?
Now, if we define the usual acceleration vector by

a = dv/dt = (dv/dr)(dr/dt) , (7.16)

(7.15)
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Fig. 25. Eddingh‘s observation of the gravitational deflection of light
(not drawn to scale). (a) The positions of some stars relative to each
other. In particular the position of S relative to the other stars is seen.
(b) Later, during a solar eclipse, when S should have been hidden at the
edge of the solar disc, it appears to be seen at I. The position of I is
measurably different from S. The deflection was twice the value predicted
by Special Relativity and exactly the value expected on the geometrical
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(a)

(b)

arguments of General Relativity.

we see that

a

Vi-vev/e?

dv/dr = adt/dr =
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Thus we have

= (1 v-dv/dr dv/dr v v-dv/dr )

¢ (1—v-v/e2)3/2’ /1 —v-v/c? t c? (1-v-v/c?)3/2

_ c ( a-v/c? a_ v a-v/c? ) -
(1-v-v/e2)\(1=-v:v/e?) ¢ ¢ (1-Vv-v/c?) (7.18)
Notice that in the limit ¢ — oo
A = (0,a) , (7.19)

i.e. we have the usual acceleration as the classical limit of the -
acceleration 4-vector. The factor (1 — v -v/c?)™! comes from the
time dilation which is squared, since acceleration is the second time
derivative. Let us call this classical limit of the 4-vector acceleration
A, Then, if we define the relativistic correction of this 4-vector by

Al = AR — A% | (7.20)
we find that
u a-v/c? a-v/c?
_ Ve - 2
A= AV ovjay OV = Gy ovjapn® (7:21)
Another way of expressing the change is by writing A as
1
F23 = —eee . 2 .
A A=v-v/@) (a-v/c,a+(anv)Av/c?®) . (7.22)

Thus we see that the classical dynamic result is altered by the square
of the factor (1 — v - v/c?) and by the addition of a vector triple
product. Clearly, if alv there is no ‘correction’ in the zero-
component, while if a||v the extra term in the space-component
disappears.

The 4-vector force is then defined by

m'a’ -v/c v m'a' -v/c
B g g8 — 1oy Y
Fr=mi (l—v-v/cz’ma+c1—v-v/c2>
Il , 2
L (L (7.23)

V1—-v-v/c?
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where a’ is the relativistically corrected acceleration, dv/dr, and

¢, =(0,%.) = (0,m'a’) . (7.24)
Thus the relativistic correction is
. 2
Frp= e VIC__p (7.25)

V1i—-v-.v/e?

The question arises as to the interpretation of the zero component
of the force 4-vector. Now,

F# = dp* /dr = (d/dr)(E/c,p)
_(1dE dp
=G a)
Thus, we see that the zero component corresponds to a rate of
change of energy of the particle. Hence, we see that, in general,

an accelerated particle either radiates or absorbs energy according
as dE/dr 2 0. We have

(7.26)

. Fo-v
Clearly, if ¥,Llv, as is the case in circular motion, no such radi-
ation is to be expected. It is necessary to point out, here, that
we are not dealing with motion of charged matter in the presence of
electromagnetic fields, but of neutral matter under mechanical forces
only.

To deal with accelerated charges we extend Eq. (6.47) to the
4-vector force,

FE =qF¥, v . (7.28)
Thus, we have the zero component giving
E=qcF°,v' =¢'cE-v . (7.29)
Now, also

dE/dt = (dE/dr)(dr/dt) =y~ ' dE/dr
=7y 'E . (7.30)
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Thus we get
dE/dt=¢'E-v/c . (7.31)

If a particle of charge ¢ moving at speed v is opposed by an electric
field it will radiate energy and lose speed. If, on the other hand, the
electric field is in the direction of motion, it will absorb energy from
the field and accelerate. This is the principle on the basis of which
charged particles are accelerated.

6. Restatement of the Principle of Special Relativity

In view of the fact that we have to deal with non-inertial frames
as well, we need to restate the principle of special relativity in
a consistent way. This may be managed as follows: “Relatively
unaccelerated frames are physically equivalent”. This formulation is
supported by the fact that the effect of acceleration on each frame
will be the same to the lowest order. Thus all pk,.ical laws will
remain invariant. The correction is, of course, velocity dependent,
so there will be relativistic corrections which will be different in
different, relatively unaccelerated frames.

7. Change of Metric Due to Acceleration

It had been shown in Chapter 2, Sec. 5, that the geometry of
a frame in uniform circular motion is non-Euclidean. We will now
look at the effect geometrically and more generally. (This metric was
derived by F. Hussain and A. Qadir in ZAMP 37 (1986) 387.) It is
already apparent from Eq. (7.18) that in the case that a_lv there is
only a time dilation effect. This fact is also clear from Egs. (7.23)
and (7.24). Here, by writing Eq. (2.57) in differential form, we have

&t = dt(1 - r2Q2 [c?) + (rQ2 /%)t dr
(1 - 202 /c2)3/2

Qdt(1 - r2Q2% /c?) + (rQ3t/c?)dr
(1 - r2Q02/c2)3/2

, drf =dr |

(7.32)
o’ = df —

,dZ =dz .
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Thus the metric becomes
ds? = c?dt? —dr? —r2df? — dz?
3 [dt(1 — r2Q2/c?) + dr(rQ%t/c?))? _
=¢ (1 _ r292/c2)3

dr?

Qdt(1 — r2Q2 /c?) + (rQ%t/c?)dr\2
2 49 _ 4.2
N C = oy ) —da?
(7.33)
Writing
(1-r0%/)"% =4, (7.34)
we get

t2
ds? = c2dt? + 2rQ3ty2dt dr + 2r2°Qy* dtdo — (1 - r2Q* = ~*)dr?

+ 2,2 Q° ;ti 7% drdf — r? d6? — d2* (7.35)
which gives the metric tensor
c? r(1%ty? rQyt 0
2
G = Pty —(1-r20 5 4%) S0 540 0
wv r2n,14 ,_3 na CL’ ,16 —T2 0
0 0 0 -1

(7.36)
A physically more interesting case is the acceleration of a particle
due to gravity. The frame of the accelerated particle is inertial in that
objects released in that frame will float. We can regard the frame
of a particle that remains fixed, then, as an accelerated frame, while
the other frame is unaccelerated. At any instant, the inertial frame
will be moving at a speed, say v, relative to the fixed (accelerated)
frame. Let the coordinates in the moving (inertial) frame be t', ¢/,
¢', ' and let the motion be in the radial direction. Then

ds® = c2dt? —dr? —r2df’? — r? 5in® 0 dg? . (7.37)

At any instant there will be length contraction and time dilation
between the two frames

dr=dr' \/1-v2/c? | dt=dt'/\/1-v2?/c? , (7.38)
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but r' will be unchanged, i.e.,r =¢',and § = ¢', ¢ = ¢'. Thus

dr?

2 _ 2(q_ 2/ 2\ y2_ _ O
ds?* = *(1—v?/c?)dt A= vi/e)

r? (d6? +sin® 8 d¢?) . (7.39)
Now, if the fixed frame is taken as being at an infinite distance and
the inertial frame as dropping freely from that infinite distance, the
kinetic energy will equal the potential energy. If the particle had
mass m and was falling in the gravitational field of a particle of
mass M,

%mv2 =GMm/r . (7.40)
Thus the factor
1-v?/? =1-2GM/r . (7.41)

Hence the metric becomes

dr? . 2

(1= 2GM/r) —r?(d6? +sin® § d¢?) .
(7.42)

This should represent the metric in a gravitational field as effective

for a test particle. It is found that the fully consistent treatment

of Relativity yields the same result. This metric is known as the

Schwarzschild metric and the corresponding metric tensor is

ds®* = *(1-2GM/c?y)dt® -

(1-2GM/c%*r) 0 0 0
_ 0 -(1-2GM/c?*r)"* 0 0
I = 0 0 -2 0 ’
0 0 0 -—r?sgin®@

(7.43)

We see that accelerated motion will be described in terms of non-
Euclidean geometries, in the sense that curvatures will be involved.
Such geometries are called Riemannian. Of course, the geometry of
Special Relativity is anyhow non-Euclidean in the sense of having
a different signature, i.e. a Minkowski geometry. The geometry
for General Relativity is generally known as pseudo-Riemannian,
implying both curvature and the changed signature. A better name,
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after the Russian who invented such geometries, is ‘Lobachevskian
geometry’.

We will not, here, discuss the development of the Relativistic
theory of accelerated motion, i.e. General Relativity. Nor will we
consider, here, the implications of the change of metric given by
Egs. (7.42) and (7.43). However, the reader is encouraged to ponder
how to deduce consequences of these results. They will be discussed
in more detail in a separate volume.

Exercise 7

1. Accelerated charged particles emit electromagnetic radiation.
What type of radiation will come from electrically neutral matter
when it is accelerated?

2. What will be the relativistic correction to a classical force in
the z-direction at an instant when the velocity of the object is
v = (¢/2,0,0) and the acceleration is 0.005¢ per second if its
mass is m?

3. Given two equal charges, ¢, of mass m each, coming towards each
other with speeds ¢/2 and —c¢/2 in the laboratory frame, at some
instant, determine the relativistically corrected forces they exert
on each other (where the distance between them at the instant
under consideration is r).

4. Work out the acceleration 4-vector of a particle in uniform
circular motion.

5. The frequency of light received from a quasi-stellar object (a
quasar or QSO) is three times less than the emitted frequency.
If its rest mass is taken to be one solar mass (2 x 10*® g) what is
its least speed relative to us, given that the light comes from its
surface and its density is 10% g/cc?
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6. Work out the rate of change of energy of a particle of mass m
and charge ¢ due to a radial acceleration of constant magnitude
a if the motion is circular. How is this result altered if the accel-
eration is linear?
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