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Chapter 2
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<x> =1 , by inspection.

Next, finds? first:

52 = | AR o(X- D2(4+%)? dx+ o(x- 12(6- %) dx] =g

therefore,

<x?>=s?+<x>* =

NN



(d) The answer to this question is tricky due to the discontinuous change in the slope of the

wave function at x = -4, 1, and 6. Taking this into account ,

2 2
<K.E>=-1"_3 0x-5x+0x1)= "
2m 250 50m

2-2.  Given
L 124 3px/a),for0< x<
Y(x)=_:'_ gsm( px/a),for0< x<a
10, forx £0andx3 a
(a) 2 2 242
<H >=- 2~ 2 Ouin(3px/a) I sn( 3ox/a)dx =P
2ma Ix 2ma
(b)
H sn(3px/a) = . ﬁﬂ—2“"5;'n(3 x/ a) = Esn(3px/ a)
P & 2mCy P P

©
9p%h

Y (x,t)= és’n( 3px/ a)e_I 2ma’®

(d
DH :[<H2>-<H >2J



2-3.

"2
2 A T . ap ?p?0
=-—— 3px/a)—;9n( 3px/a)dx - -+ =0
> a?sm( pX a)ﬂx4sn( px/a) dx rz 7

Yes, it is as expected. Since the given state is an eigen state of the Hamiltonian as

shown in (b), the uncertainty in the total energy must be zero as shown in (2.5d).

Prove the following commutation relationships:

@
[A+B,C] =(A+B)C- C(A+B)=(AC- CA)+(BC- CB) 0ED
= [A,C]+[B,C] LT
(b)
[ABC] = ABC- BCA= ABC- (BAC- BAC)- BCA QED
= (ABC - BAC )+ (BAC- BCA)=[ABIC+BAC] S
Prove the following commutation relations:
@ [P, .X"] = - irnX™*.
Applying the left side to an arbitrary state function Y (X) gives:
ol SN H T[ n n ﬂ
XTY(X)=-1a(—X"- X"—) Y(X
[P X"] Y (X) (ﬂx ﬂX) (x) QED.
=- it nx"tY (X
() [Xp1=i21p, .
Similar to (a) above:
A 2 2 ﬂ
[X,051Y(X)=- 7% (X —- —5X)Y(X)=r"[2=Y(X)]
X X Mx
=i 21D, Y (X) . Q.ED.

(© Not possible.
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2-5.  Consider the two-dimensional matrices s, _81 0 y=gi OI-: S, :&)
2’ [

physical significance will be discussed later in Chapter VI.
) 0 &
@ Theeigenvaluess; of s, :aé gareclearly +1land-1.
S -15
For the eigen function corresponding to the eigen values, = +1:

0 6ao +1 \ aa0
gbz gO '1ngz gbﬂ gbﬂ goz '

For the eigen function corresponding to the eigen values , =-1:

0 6a@o

gbz go '1ﬂ§bﬂ_- gbﬂ - gz glz '

: . _a® 1¢
Theeigenvaluessy of S, =§1 02 areclearly also +1 and -1.
2}

For the eigenfunction corresponding to the eigen value sy = +1:
IGGE:T) &b 1 &0
Erh ol he | b E
For the eigen function corresponding to the eigen valuesy =-1:

1oa@0 \ a@0_ 1 elo
gbz gl Ongz gb ’ gbz 2%— 1

) i
The eigen valuessy of s :g) 9 2 areclearly also +1 and -1.
2}

For the eigen function corresponding to the eigen value s = +1:

g BO_P -igmd_ @ . @ 1
vBos & ogfb, By ' b

QIIO

4

ﬁl

For the eigen function corresponding to the eigen valuesy =-1:

E-I- O:

whose



2a0_ 0 -i(‘_):'aagz_laag . aaf_ 19
Ty & oophy Thp T By 2R

A

(b) These eigen states in the Dirac notation in the representation in which §, is diagona are

asfollows:

The eigen functions corresponding to the eigen values s, = +1 and -1 are, respectively

as,=1,+>0_a0 q -1, +>o 80
s = LR R 3

The eigen functions corresponding to the eigen valuessx = +1 and -1 are, respectively

abs,=1,+>0 1 &30 «=-1, +>0

6_ 1 a6 6_ 1 el
§s, =1,->5 V25 ™ §|s =-1,->5 fé

QIIO

The eigen functions corresponding to the eigen values sy = +1 and -1 are, respectively

gs, =1,+>0_ 1 a9 ghs,=-1,+>6_ 1 el ¢
s, =1,->5 285 ™ §s, = .

QIIO

m

Note: The + and — signs in the Dirac notation for the eigen states of the Pauli spin+
matrices refer to the spinrup and spindown states, respectively, in the

representation in which §, isdiagond.

N

2-6. Consider the Hamiltonian operator H with discrete eigen values. Suppose the Hamiltonian is a

Hermitian operator which by definition satisfies the condition:



O ()AF ()dx = (OF (WA Y(x)dx)* .

(&  Theeigen values of the Hamiltonian are all real:
Let Y (X) and F(x) inthe definition of a Hermitian operator be an eigen state of the

Hamiltonian H corresponding to the eigen value E; .

oY (M HF(X)dx=aY. () H Y (Qdx=E
Similarly,

(F (OHY (dx) =(oYs (OH Y (0dx) =E;
The condition of Hermiticity of the Hamiltonian leadsto: E, = E; .

(b) Let Y (X) and F(x) in the definition of a Hermitian operator be an eigen state of the

Hamiltonian H corresponding to the eigen value Ei and E; , respectively. The

Hermiticity condition gives:

(E - E)aYe (¥ Ye (Ydx=0

Therefore, if (E - E;)* 0, then c‘)Y;i (x)YEj(x) dx=0, or the eigen functions

corresponding to different eigen values are necessarily orthogonal to each other.

2-7.  Consider a particle of mass min a potential field V(X).
@ On the basis of Heisenberg's equation of motion, (2.49) , and the commutation relation
(2.11a):

. a2
E<)’Z>:I_<[ Px
at J7i

VR K >=<Ps
m



(b) On the same basis, the time variation of the expectation value of the momentum is given
by :

d . [ P na o dV (x)
—<p, >=—<[—=+V(X),p,]>=- < >=F, ,
el iy [2m (X) . Pl dx

which is known as Ehrenfest’ s theorem.



Chapter 3

(neutron)
- 7\De Broglie

3-1.
(a) l(electror}) _ h _ 12.3 ,&
deBroglie ’\/2mE ’\/E (In EV)
0.3 0
l(proton)_ — A
deBroglie E (In eV)
u 0.3 0
(b) /I(dnees:g(;?il = ﬂfdig:ggl)ie = W A
1.24
ﬂfd’;g??gnlge = E ( eV ) H
A A
8t (electron) 0.8}
7\'De Broglie
6} 0.6}
A A
4r 0.4}
2
(proton) 0.2
De Broglie

0 2 4 6 8 10 0

E(eV)

10.8

10.6

10.4

10.2

3-2.  Suppose we know that there is a free particle initially located in the range —a<x<a with a

spatially uniform probability.

@ The normalized state function W(x,t=0) of the particle in the Schroedinger-

representation is, assuming the phase of the wave function is arbitrarily chosen to be

Zero:



3-3.

v(X)
A

_(2a)-1/2

y >

(b) The corresponding momentum representation is:

¥ p):\/%pisin(%a)

(©) The corresponding state function at an arbitrary later time W(x,t >0) in the integral
formis:

P
w SIN(TXA) | px_pd
\P(x,t):l /i r h e( 7 2mht)dpx
m\2a - Py
Consider a free particle with the initial state function in the form of:

P(x,t=0)= Ag >

@ To normalize this state function:

+ 1/4
1=|AF [e ax=|Af [ 2 o - A:(Ej
S 2a 7



(b) After a considerable amount of algebra by first completing the square of the exponential

in Fourier-transform integral, it can be shown that the corresponding momentum
representation of this state function is:

1/4 14 (py—<p>)
1 (2a —ax?+ikx—ip,x /% 1 T 4ap?
¥(p) = —| e PRI =| ——<| e o
(P) A 2nh 'E ( T j {271(Apf)}1

where

(© The corresponding state function W(x,t > 0)is:

1 I N
P(x,t) = e W elam i dp
N2k \ 27 ApX s

7<px> 2
(x m ) ] i<px>(X <py>

. 1 ; p t)+io
:[ : TM[ . +li} l/4e Lh Gapt iz
27h*) [4Ap? h2m ’

where @ is a time-dependent phase-shift of no physical consequence that goes to zero at t
=0.

(d) From c above, the expectation value and the corresponding uncertainty of the position
for t > 0 are, respectively:



(€)

Similarly, the expectation value and the corresponding uncertainty of the linear

momentum for t > 0 are, respectively:
< p, > =hk and Apx(t)zApX(O)zhx/E

The uncertainty product of the position and momentum for this state is:

1

(Ax) (Apg%{l{z—r’f]a ”zg ,

which satisfies Heisenberg’s uncertainty principle for all timet > 0.



Chapter 4

4-1. From Eq. (4-19):

—ikyd

F_ e |
y 2 2
cosk,d—i" R ging g
2k k

12

The corresponding transmission coefficient is :

F[* K4 k2 ;
=| cos® k,d + (gj sin® k,d
A 2k k,

r-%
:{1+|: (ZE_VQ)Z _1:| Sin2 k2d }_
AE(E-V,)

_ : B
- 1+—°sin2k2d}

| 4E(E-V,)

| AV N
=1+ sinzkzd}

L AE-V)E-V)

which is Eq. (4.20a).

2m(E2— o) 42

In the limit of (E -V,) -0, sin®k,d — ; therefore,

omyd?|” [ g1
E—>V0T: 1+4—hz :1+—



4 -2.

Plots of 7' for § = 4:

E/Tao

and B=10:

E+/To

0 2 4 = = 10
A particle with energy E in a region of zero potential is incident on a potential well of depth 7,
and width "d". From the expression for the probability of transmission T of the particle past the

well given in (4.20a), the approximate values of E (in terms of #°/2md?) corresponding to the

maxima and minima in 7+

(@) for B =10 are:

2 2 2 2
. hd2 (2724107 and £ =l (D7
m

E
" ! Zmdz[ 4

1

IR

+10°], respectively ;




(b) for g = 250 are:

2 2 2 2
Wi 2507 and  E =l (D7

E = - 5
2md 4

+250%], respectively.
n 2md2 ] p y

4 -3. Consider a one-dimensional rectangular potential well structure such as that shown in Figure 4.9
below.

V=1, for x< -a
V=20 for -a <x< 0
V=v/2 for 0<x< a

V=1, for x> a

The wave functions in regions | through IV and the equations describing the boundary conditions

on these wave functions for

(@) E >V, are:

\Pl :elk1x+Ae—1k1x

W, =Be" + Ce ™

W, =De™ + Fe ™

_ ikyx
Y, =Ge



where

The boundary conditions (b. c.) at x = -« are:

efikla_i_ Aeikla — Befikzx_i_ Ceikza aﬂd kl [efikla_Aefikla]: kz [Befikzx_ceikza]l

The corresponding b.c. at x = 0 are:

B+C=D+F and  k,(B—C)=k,(D-F)

The corresponding b.c. at x = a are:

De™ + Fe ™" = Ge™* and  k,(De™"—Fe ™*)= k,Ge™"

(b) For V;, > E >V,;/2, the wave functions in the various regions are:

\I]:L:Ae(llx

¥, = Be" + Ce ™"

Y, =De" + Fe ™

Y, =Ge ™" ,

where



1 1 I/jl_ 2
2m(V,- E) |2 2mE |2 2m (E=")
(Xl: T 1 k2 = hz ] k3 =

The b. c. atat x = -q are:

Ae ™™ = Be ™ +Ce™ and «, de™* =ik, [Be "~ Ce™].
The corresponding b.c. at x = 0 are:

B+C=D+F and k,(B-C)=k,(D-F)
The corresponding b.c. at x = a are:

De™ "+ Fe ™ = Ge and  ik,(De™ —Fe ™*)=—a,Ge ™"

(©) For E < V;/2 , the wave functions in the various regions are:
\I]l :Ae(xlx
W, =Be" + Ce ™

Y, =De"™" + Fe ™"

Y, =Ge ™" ,
where
1
1 1 Vl 2
2m(V,-E) 2 omE |2 2m (o~ E)
alzT , ky= 72 y Qg = 1 y Oy =04y



The b. c. atat x = -q are:
Ae ™ = Be ™+ Ce™ and «, de™** =ik, [Be "~ Ce™].
The corresponding b.c. at x = 0 are:
B+C=D+F and  ik,(B-C)=0,(D-F)
The corresponding b.c. at x = a are:
De™*+ Fe " = Ge ™" and o, (De™—-Fe *)=-a,Ge ™"

Suppose the following wave function describe the state of an electron in an infinite square

potential well, 0 <x <a, with V(x) = 0 inside the well:

P ()= {Asm(g)"os(ﬁil for0<x< a

0 elsewhere

(@) One way to normalize the wave function is to expand the given wave function in terms of

the normalized energy eigen functions fromx = 0to x = a:

‘P(x)zA\/g{ S|n(2ﬂ)+\/7sm(—)]J

1=1APT4+4 © a=2%
| |[8 8]

VZ

(b) Time-dependence of the normalized wave function is:

2n%n i n’h

sm( )l’"“zt 1sm(—) 2ma

Ja

t

Y(x,1)=

Ja



(©) If measurements of the energy of the electron are made, the values of the energy that will

be measured and the corresponding absolute probabilities are:

Energy Probability
2nh? 1
ma2 E
nh? 1
2ma’® 2

4 -5. Consider the one-dimensional potential of Figure 4.10:

Region
V= x<0 |
V=20 0<x<a ]
V=1, a>x Il
V——c0
A
I 1 11
V=V,
E
__ V=0
| |
0 a

@) The equations whose solution give the eigen energies of the bound states (E < V) of the

above potential well are the same as those for the antisymmetric solutions of a full

potential well of depth 7, from x = -a to x = a, namely:

_anCOtgnznn 4 a;zz +n5:B2 !

-7-



where

(b) The eigenfunctions of the three lowest energies assuming ¥, is sufficiently large so that

there are at least three bound states are qualitatively as shown in the following figure:

Y,
1| 1

4-6. Consider the case of an electron (m, = 0.91x107" g ) in a finite potential well of depth 1.25 V
and width 145 A.
()
2a=d2a=d=1454 , V,=125eV=2x10" erg.

1

E:[Z’ZZVO} "=575x10" cm®, B=417
a

(N-1)(n/2) <417 <N (n/2) ;

therefore, the estimated number of bound states N = 27.



(b) To calculate the energies of the lowest two bound states, we must find the numerical
solutions of the secular equations:

Etané=[p* —&%]"? for the symmetric modes ,

and

—Ecoté=[p* -&%]1"? for the anti-symmetric modes .
Solving these equations using, for example, Mathematica gives:
£ =1534 and §,=3.07

The corresponding bound-state energies are, respectively:
2 2
E = VO(%] =1.69 meV and E,= V{%} =6.79 mel .

(©) The wave functions for the lowest two bound states are sketched qualitatively below:

Wn
A

-a +a

» X

4-7. A particle of mass m is confined to move in a quantum-well in the (x,y) plane which consists of a

pair of impenetrable walls at x =+ a but is unbounded for motion in the y-direction.



@) Let the total energy of the particle be £ and the energy associated with the motion in the
x- and y-directions be £, and E,, respectively. The allowed values of £,, E,,, and E

are, respectively:

2 212
n‘n°h

E =
8ma’®

X

, E,=0—>oisunlimited, and £ =E + E, .

(b)  Eversus k, for various allowed values of E,. are sketched below:

h?m?
C E=F-F =F—
() Yy X 2ma2

(d) A possible, un-normalized, space- and time-dependent wave function to describe the

particle in Part ¢ above is:

A 2mE, i s

y—

W(x,1) =sin(ux/a)e * b

272 232

(e If the particle's total energy is E = n2h°/4ma?, n, canonlybeland E = Ik _Th
y 2 8 2

m ma

. The corresponding wave function of the particle must be of the

-10 -



(f)

form:

LI A _i[ﬁzhz]l
\P(x1y1t) :COS(ﬂx/Za)[ Ae 2‘1)+Be 2a” ]e 4dma

Suppose now an infinite potential barrier at y = £+ a is imposed. The particle's energy

cannot be measured to be 3n2/%/4ma?2, because

222

nh 2 2
E+E=——(n‘+n
8ma2(x »)

X ¥y

For the total energy to be equal to 3n27%/4ma? , (n?+n.) mustequal to 6, which is not

possible for any integer values of », and n,.

-11 -



Chapter 5

5-1.  For an eigen state of a one-dimensiona harmonic oscillator, the following results are true:

@

(b)

(©)

The expectation values of the position and momentum are zero:

N ’ 7 At A
<n|X|n>=i <nja-a)|n>=0 , ad
2mw,
A Amw, A+, A-
<n|p,|n>= > <njfa+a)|n>=0.

The expectation values of the potential energy and the kinetic energy ('f ) are
equal:

<n|T|n>=<n|

2
Aw, n A n Aaw
P n>= el CRERCRTDILEE S

2n+1)
2m 4( )

h
Wo on +1)=<n|T |n>.

A k 7 e Asmn A
<n|V(X)|n>=- <nla*-a)a-a)|n>=
V(In>= oot <nl(@- &)@ &) n>==

The uncertainty product of the position and momentum DxDp, is equa to

1,,.
(n+E)h.

DRt =<pl>- <p, >2=%(2n+3)

h
Dx?=<x*>- <x>*=

(2n+1) ,

0



\ DpXDx:(n+%)h

5-2.  For a one-dimensional harmonic oscillator, in the basis in which the Hamiltonian is
diagonal, the matrix representations of :

@ the position and momentum operators X and p, are, respectively :

gO A1 0 0 E
¢l 0 -2 0 - -
s [h %0 N2 0 43 7
2,0 0 A3 0 - i
cC. . . LT
9 -
e- 2
20 Vi o o - O
¢l 0 42 0 +
;5 = amw, 0 V2 0 43 - F ,
V2 o 0o 43 0 - = ’
c. . ~
(; -
e- 2

(b)  theoperator products a‘a” and a a* , respectively:



5-3.

© 000 - -6 000 - -6
80100..:; 80200-:;
., 0 020 - % .. G0 30 - %
a = _-,a‘]d 3t = -
2 % o003 . .} 286 004 . .3
¢ : C :

¢ + ¢ -

& 2 & 2

(© Using the above matrices, it can be shown immediately that the commutator of

a and a' is:
@ 000 . -6
80100- i
et a0 10 - 7
aa-aa=90001' ==1
Q -
G +
& >

Substituting the wave function of the form :

Ye (0= CH, (| Mo s

into the Schroedinger-equation gives :

AW, o
hw, -

2 42 hwg
_h_d Hn(X)+hW0XdHC;X(X)+THn(u)]e 20 = E_ Y, (X)

2m  dx?

[

Change the variable from x to u® J%x gives indeed Eq.(5.33), which defines the Hermit

polynomials:



2
d an(u) oY dH,, (u) + 2 E, E)Hn(u):o
du du hw, 2

5-4.  Suppose the harmonic oscillator is initialy in a superposition state | Y (t =0) > :%[ [0>+]1>],

the expectation value of the position of the oscillator <x>°<Y(t) |x|Y (t) > as afunction of

timeis

<xX>°<Y(@t)]|x|Y(t)>

1 - iwgt H h At A- iwpt
=<0l<1lle ™ ][-1 a-a 0>+e™'|1>
2[ [+<1| 1l 1/;_lmNO( M [1>]
hoo.
:/ snw,t.
2mw,

55. From Maxwell equations, (5.65 a-d), and the condition for transverse waves N>E= 0 that

m

-2= 1 TE _
N E-?‘"X2 =0

Itisclear that

EG,0° E (zt)e, =i, /@ (B - gret <), (5.684)

2
satisfies the above wave equation aslong as k* = We . Under the same condition, it can be
shown that (5.68a) and
B~ °B — thwk - Wt tikz + AW t- ikz 5.68b
(f.t)° B,(zt)e, =i T(ake - ae )ey (5.68b)

satisfy (5.65C).



Substituting (5.68a) and (5.68b) into

% g [Ex@t + Bz |z

and making use of the commutation relationship (5.69) after changing the a*’s into operators
gives (5.70):

and

Ekn=<n|ﬁ|n>:(n+§>hwo

5-6. The Rayliegh-Jeans law and Planck’s law for black-body radiation as functions of wavelength

and in units of energy per volume per wavelength interval:

Since n=|E , Planck’s radiation law as afunction of the wavelength is:

|‘|Tn|CII _8phc 1

|ﬂ| | - | 5 ehc/IkBT_ldl

rp()dl =1y (n=1)

In the limit of ln<<kBT, it reduces to the classical Rayleigh-Jeans law:

8pk, T

Ili®morb(| )= a

with its | ** dependence on wavelength and, therefore, divergesin the ultraviolet limit | ® O.



Chapter 6

A A A

6-1. The matrix representations of the angular momentum operators L, L,C,L,L,and L%

X1 —yr =z =g
for /=0,1,and 2, in the basis in which I:Z and L2 are diagonal can be found from (6.29)
—(6.31) and (6.8):

For the trivial case of /=0, all these operators are equal to zero.

For /=1, the matrices are:

2 00 100 010
2=|0 2 o|n*, L=[0 0 0]n, £X=101%,
00 2 00 -1 010
0 -1 0). 0 000
Eyzlo—l%,l;— 0 1|42, L=|1 0 0[+2%.
01 0 00 010
For /=2, the matrices are:
6 0000 2 00 0 01 0 00
06 000 010 0 10 o000
=0 0 6 0 0n", [,=[0 0 0 0 Ofn L=0 [ 0 [ op
2 2
00060 000 -1 0 00 [ 01
00006 000 0 -2 00 0 1 0
0 -1 0 0 © 02 0 0 0
10 [ o0 o 006 0 0
L=0 f o F oljn, L=[00 0 +60fn,
00 [ 0 -1 00 0 0 2
00 0 1 0 00 0 0 O




00 0 00
2 0 0 00
L=0 6 0 0 0fn
0 0 6 00
00 0 20

6-2.  From the above matrix representations of the angular momentum operators, it can be shown that
all the cyclic commutation relationships among all such operators are indeed satisfied. For

example, for /=1:

01 0)(0 -1 0 10 -1) -1 0 -1)
~ o~ i 72 ih? ~ in?
L=t o 1fj1 0 =<0 0 0=, LL=0 0 0= ;
01010 1 0 10 -1 1 0 1
100
LL,-L,L=[0 0 0|ir*=inL,
00 -1

Similarly, one can show all the other cyclic commutation relationships.

6-3.  No. All three components of the angular momentum operators can be specified precisely at the
same time if the expectation values of all the commutators of the angular momentum operators
are precisely zero in a particular state. This is the case when the hydrogen atom is in the ground

state, or the s-level (/=0).

6-4. Show that the n=2, /=1, and m, =1 wave function indeed satisfies the time-

independent Schroedinger’s equation given in the text for the hydrogen atom:

l11211("191 (I)) = R21(I’)Y11(9,(|)) = [(Zao)_S/Z%aLe—”Zao] [_ %ew Sine] )



6-5.

2

0, - 22 10 0 s 10r r r _r/2a
—(r*=)[(24 ——e "] = (24, ——J2-2—+ g P
o (7 e ooe = @a) 22 ]

2

[.iﬁsinei 1 o ]e""sme —2e"sin®

sin® 06 00 sin*0 0¢*
Therefore,

2 2

LS EY a(r i)ﬂ“ 21- Q(Sinei}“%a—z -2 Wy (r,0,0)

“om|rlor or) r°sinf oo 00) r°sin“0 oo r

el r 1 e h? 1
= - 2-2—+ -2 r.0,0)s[-——¥,,.(r,0

{ 2mr{ a, (2a0) J r}  (F00)= 2m (2a 0):I 21 (1,0,0)
= Ezl\Pzn(rae’(I))’
and

h? me*
E.. =-— =— ) .E.D.
2 2maz2?r 2m*2° Q
Also, the wave function is indeed normalized:

2 r4 3
I T 211| r’sinddrdede = T(Zao)‘s—ze‘”%dr —fsin?’ede =1 Q.E.D.
00 0 0 3a; 4

A particle is known to be in a state such that 2= 272 . 1t is also known that
measurement of I:Zwill yield the value +7# with the probability 1/3 and the value -# with

the probability 2/3.
@) The normalized wave function, W(6,¢), of this particle in terms of the spherical

harmonics is:



Y (r.0.0)= %Yn (6.9)+ \/%Yll (6,9)

(b)  The expectation value, < I:Z >, of the z-component of the angular momentum of

this particle is:

6-6. The wave function of a particle of mass m moving in a potential well is, at a particular

timet:
Y(X,y,z)=(X+y+ z)e’““xz*yz”z
@) Y in the spherical coordinate system is:
W(X,Y,2) = (X+ Y+ 2)e Y Jrsin Ocos ¢-+rsin Osin ¢+ r cosOle

-1+1) [8n 1+i /871 [4n ar
:|:[ 2 j ?Yll"F(Tj ?Yl—l—i— ?Ylo j|re .

To normalize:

i

) 2 2.8t 4=xn 1
1=[|¥(0,0)|°sin6doddp = N?| (=+=5)—+—1| : ..N
[I'¥(0,9) | si ¢ {(4+4)3+3}

The corresponding normalized wave function is:

—1+i 1+i 1
\P(e: (1)) —(T)Yu*‘ (ijll—}_\/g Y10 :

(b) The probability measurement of ©* and I:Z gives the values 272 and 0,

respectively, is:



Probability :1/—3:1
1/3+1/3+1/3 3

Consider a mixed state of hydrogen:
W=R,,(NY1,(6,8) + 2Ry, (1Y, (6, )
@ The normalized Y is:

1 2
Y= E R, (N)Yy(6,0) + E Ry (1)Y4(6,0)

(b)  Wis not an eigen function of B, but is an eigen function of B, corresponding
to the eigen value 7 .

(c)  The expectation value < ¥ | &2 | ¥ > is:

<\P|[2|\P>=3h2+f6h2=§h2 .
5 5 5
(d The<W¥|B,|¥>ish.
(e) <‘P|I—¢|‘P>:—(1-l+ﬂ-l)13.6 eV
54 59

Consider a hydrogen atom in the following mixed state at t=0:

¥(r,0,0,t=0)= 3R32( r )Y20(9,¢)+ RZl( r)Yll(el(I))

@) The normalized the wave function is:



W(r,0,0,t=0) = J‘I’—ORSZ(rmo(e 0+ J1_ Ry (1)Y,1(6,0)

(b) The atom is not in a stationary state, because it is in a mixed state of n=2 and n
=3.

(c) The expectation value of the energy fort > 0 is:

<LP|H'P|\P>:-(3-1 i1)136 eV
10 9 10 4
(d) The expectation values are :
<\P|E’Z|\P>—(—6+i 2)h2—28h
10 5
<\P|@Z|\P>=(3-0+i)h=ih
10 10 10
(e) The uncertainty of Qz in this state is:
"2 2 21 1 1/2 3
:[<‘P|LZ|‘P>—<‘I’|LZ|‘P>]2=[———] h=—nh
10 100 10

6-9.  This problem is somewhat like the finite square-well potential problem considered in the
text, Sect. 4.4. The Hamiltonian of a particle of mass m in a finite spherical potential
well:

0, if r<a
V(r)= :
Vo, ifr>a



2

H=-""v.iv(n
2m
For /=0, itis:
Ao L2020 y,vm
2m r?or°  or
The corresponding Schroedinger’s equation is
o1 0, ,
——[=—(r*—)]+V();R _(N=E.R (r) , for r<a |,
{ [ ()] ()} () =B, Ry (1)

and
. 10,,0
——[=—(r"— R,(r)=E, R _(r , for r>a
{ 2m[rzar ar”} w0 (M) = E; Ry (1)
The equation for r <a can be converted to:

d? 2mE
Uur)=-
dr? (") h*

ur

where U(r) = r R(r) . The general solution of this equation is:

U (r) = Acoskr + Bsinkr

where k = . To satisfy the boundary condition that Rn(r) must be finite at r =0,

A 2mE
h

A must be equal to 0, or



U (r) = Bsinkr , for r<a.
Similarly, for r>a,

U(r)=Ce* +De™ ,

\2m(V, —E)

. For U(r) or Rpo(r) to be finite at r — o0, C must be equal

where a =

to zero and:

U(r)=De™ : for r>a

Continuity of the wave function Ry(r) and its derivative at r =a leads to the

secular equation:

—k cotka=a

Defining £ =ka , the above equation is of exactly the same form as that corresponding

to the antisymmetric solution of the finite square potential-well problem:

—EcoteE=4p*-¢&%, where p° =M.

Q.E.D.







7-1.

7-3.

Chapter 7

The Slater-determinant for a 2-electron atom in the form given in (7.11) is.

It is indeed normalized:

NN 2 _ 1 N 02 . N 12 . N 112 . N
0QYs,s | dr.dr, =21 GY,, (0] drixqY,, ()] dr, + g, (1) dr,x0
- OYa1 (r) Y., (Fl)dflxc‘)Yaz (r,) Y, (r)dr,- oY a (r,) Y, (T,) dF2><(‘)Yaz (r) Y, (r)dr ]

=%[ 14+14- 000- 050]=1 . QE.D.

N N
Y, (F) dr,

The Slater-determinant for a 2-electron atom in terms of the radial wave functions and the
spherical harmonics in the Schroedinger-representation and the spin state functions (@

and b) in the Heisenberg representation of a hydrogenic atom is:

v = 3 R Yon @Ay R, ()Y, (@1 2)a,

a ay .\/E RTZZZ (rl)Y/ oM, (qlf 1)b1 Rn2€2 (rZ)Yf my (qu 2)b2

The total orbital and spin angular momentum quantum numbers of the ground-state of

helium atom:
2Electrons : ¢=0 , m,=0 , -1 , mszl and-i
' 2 2 2
Atom: L=0 , M =0, S=0 , Mg =0



For lithium atom:

3 Electrons :
Atom:

7-4.
Carbon:
Silicon:

7-5.

Ga:

1 1
(=0 , m=0 , s== |, == and - =
“ 2 m. 2
/=1 , m=0o0r £1 , s=— , mszl or (1
‘ 2 2
L=1 , ML=0 or +1 , :i , MS:E or _E
2 2 2
Ground state configuration Degeneracy
(197 (29 (2p)° (6:5,2=15) .
(197 (29 (2p)° (39)* (3p)? (6:5,2=15)

The ground state configuration of -

(197 (297 (2p)° (397 (3p)° (3d)*° (49)° (4p)’

As:  (197(29°(2p)° (397 (3p)° (3d)™° (49)° (4p)°



8-2.

Chapter 8
Substituting (8.17) into the left side of (8.5) gives:

(1_ ei(Wi‘ -w)t )

L R = _hi AE X - 7
|hﬂY(r,t)@iYEi(r)e +anE E AW, - W)

. l\J _ _LE»t
+ "y (e +0€?)
g

Substituting (8.17) into the right side of (8.5) givesin the limit of e® 1.

~ ~ -—Et I(le w)t W -w l:l _l j
[H,+eVY=EY, (F)e "+ 8 ez, E, eE Qe )y e
‘ i & Aw;-w g

which is the ssame as the left side.

[ Note: To derive the right side equation above, use is made of the fact that \71 in the

representation in which I:|0 isdiagona is:

N A A o

V, =1, X = a|E,.><Ej|ez§Z|EJ..><EJ..|e'th and <E,|E>=d; .]
I

For circularly polarized waves:

E()=-2(8Fig)e" ax Vi:(i/_Ez*(xily)e'W‘

Therefore,

..—pe [, + by F]1E. F dw, - w)

For spherically symmetric systems, such as atoms:



2
Wi' :Zﬂ

J 3h2

rf E:Fd(Wij'W) ,

where [rP=|xF+|yf+|zf=3|xf=3|yf=3|zf
8-3.  For the selection rules on the orbital angular momentum,

2p p
<tm, |Yy [¢'m,. >= 00Y/ s VoY, - sSngdqdf pd,, . ,

o 0

2p p
<tm, Yoy [0'm, >= OOY[m,YlOYé-m'[ snqdqdf p dm[,(mwﬂ) '

o0

and from the known properties of the integrals of three spherical harmonics,
|DZ]° |- ¢'] £1. On the basis of parity onsiderations, ¢ and /' must be of

opposite parity; therefore, D/° ¢ - ¢'==+1.

8-4.  Accoring to the Rydberg formula (8.24):

1 1
= 1- — ,
| 152 RH ( n2 )
n2

| 1520 =91.127 X e nm
For Lyman series:
n 2 3 4 5 6
Experiment 121.6 102.6 973 950 938 nm

Rydberg Formula 121.5 1025 972 949 937 nm



8-5. Give the expectation value of the z-component of the electric dipole

moment of the hydrogen atom in the mixed state:

<Y |(-e2)|Y > :1-—Cel|2< 100| z|210 >C,, + complex conjugate
+

2

¥

- . P, .

= C21e2 ORI R, r?dr QY,cosqY,,snqdq+C.C.
1+|C,[" o 0
-C,e

@—21%15a+CC.
1+[C,|

86 Andédectroninthen=3, ¢ =0, m = 0 state of hydrogen decays by a sequence of (electric
dipole) trangitions to the ground state.

@ The decay routes open to it are:

|300> ® ]R10> ® [100>

® [21x1> ® [100>

(b) The allowed transitions from the 5d states of hydrogen to the lower states are:

S P d f g

//%/

IN

w




8.7. Assume a Lorentzian fluorescence linewidth of 10 Ghz. The stimulated emission cross-section

(in cnf) defined in connection with (8.31) for a hypothetical hydrogen laser with linearly
polarized emission at 121.56 nm (Lyman-a line)is:

4 2 2
Sq= ph;a n % 9 (n) @7.1x10%| x,|”

Using the value of the dipole moment found in Problem 8-5, | x12|2 » 0.62x10"*° cm?,

\ s_. »4.4x10*2 cm?

st

Assuming al the degenerate states in the 2p level are equaly populated, the
corresponding spatial gain coefficient (in cm?) is:

g=(N,- N,)s, » 44x10° cm™*

if the total population inversion between the 1s and 2p levels of hydrogen in the gaseous medium
is 10 cm®,



Chapter 9

The spin-orbit interaction in hydrogen is of the form, (6.62) :

The corresponding matrix for ¢ =1 in the representation in which L2, ﬁz, éz, éz are diagonal is
a 6x6 matrix. To diagonalize this matrix within the manifold of degenerate states
In,/=1,m, s=1/2,m >, the columns and rows corresponding to the pairs of (m,, m.) values

are arranged in a particular order:

1 1 1 1 1 1
(Mpums) (-1-2) (L+2) (0.-2) (0 +2) (+1-2) (+1+3)

(1-v2) &2 0 0 0 0 00
(1+12) S0 -2 142 0 0 0O
(o-u2) €0 12 0 0 0 o0+
(0,+1/2) go 0 0 0 142 o. ™
(+1-1/2) ¢0 0 0 142 -1/2 0=+
(t1+/2) €0 0 O 0 0 1/2g

This matrix breaks down into two 2x2 and two 1x1 matrices which can be easily diagonalized .
Doing so according to the degenerate perturbation theory yields two new eigen values: z,, #1*/2

3

and -z, #*. These correspond to the two new sets of 4-fold ( j=—, m,
) 2

:ii,ié ) and 2-fold
2 2

( j:% ,m, :i% ) degenerate levels split from the original 6-fold degenerate level in the absence

of spin-orbit interaction as given in Sect. 6.5. The two sets of new eigen states correspond to the
spinrorbit coupled j=3/2,m; =+3/2,+1/2 ad j=1/2,m;=+1/2 hydrogenic states.

The diagonization procedure gives aso the relevant vector-coupling coefficients

9-1



</m,sm.|jm¢s> defined in (6.59) for the eigen functions for this particular case. For

example, the vector-coupling coefficients:

<jm;ls|fm,sm>=<3/2,+3/211/21,+11/2,+1/2>=1 ,

<jm rslfm sm>=<3/2,- U211/20.- 11/21/25 = |~ |
] / S 3

<jm;/slfm,sm>=<3/2,- /21,1/2]1,0,1/2- 1/2>:\/_§ ’

etc.

This is the procedure for calculating vector-coupling coefficients in general.

9-2.  The perturbation theory for the covalent bonded homo-nuclear diatomic molecule can be extend

to the case of hetero-nuclear diatomic molecules:

a:EA HABS‘BCNJ O_ aCAQ?

8 EoCop " Cayp
where
E,°<A|H|A>1 E,° <B|H|B> H,,°<A|H|B>=Hg,°<B|H|A>
Setting the corresponding secular determinant to zero gives:
E’- (Ea+Eo)E,-[Hul +EAE;=0

which gives the bonding and anti-bonding levels of the heteronuclear molecule:

9-2



9-3.

E,+E 1 v2
Eg:( A2 B)iz [(EA' EB)2+4|HAB|2]

2
»E, + —|HAB|
B (EA' EB)

for (EA' EB)>>|HAB

|2 and Ex > Eg. The corresponding wave functions of the bonding and

antibonding orbitals of the molecule are:
lb>=C{’|A>+C{’|B> and |a>=CP|A>+C{’|B> ,
where (E, - Ea,b)C/(\a'b) +H,g C =0.

More specifically, they are:

cab) = : |H gl 2 and  CEP = 2EA- Eab
IIHAB| +(EA' Ea,b) ] |[HAB| +(EA' Ea,b)z]

[Note: Hyz=-|H,g| ]

Suppose the un-normalized molecular orbital of a diatomic homo-nuclear diatomic moleculeis.
Yo =C,|A>+C, |B>

where | A> and | B > are the normalized atomic orbitals.

@ The normalized molecular orbitd is:

Yoo = - 12 [C.IA>+Cy|B>]
JIC, F+IC, F+2SC,C,

9-3



where S°<A|B > isthe overlap integral between the atomic orbitals and Ca and Cg are

assumed to bereal.

(b) The corresponding molecular energy is.

— 1Ca |2 E,t1GCs |2 Eg+2C,Cp Hag
ICs [ +1Cq f+2SC,Cy

En®<Yn|H|Y,>

and
En[IC. f +1C, F+2SC,C;]=1C, FE,+1C; FE;+2C,Co Hg

Following the basic concept of Coulson’'s molecular-orbital theory, differentiate the

above equation against variationsin Ca gives:

E,.
fiCa

[ICA F+1Gs F+2SC,Cq |+ 2E, [C,+SC;] =2[CEy + Gy Hyg]

Minimizing the molecular energy against variations in Ca, or setting fE,, /C, =0, yields one

condition that E,, Ca, and Cg must satisfy:
(EA' Em) Ca +(HAB' EmS)CB =0

Similarly, by minimizing the molecular energy against variations in Cg, oOr setting
TE,, 1MIC; =0, yields another condition En,, Ca, and Cg must satisfy:

(HBA' EmS)CA +(EB' Em)CB =0

The secular determinant of these two homogeneous equations must be zero:

9-4



9-4.

9-6.

9-7.

EA' Em HAB

0 )
HBA EB' Em @

assuming the overlap integral is negligible or S» 0. This result is the same as that obtained in

Problem 9-2 above according to degenerate perturbation theory.
The number of atoms per cubic cell of volume a® in such alattice:

N
3

8
a 3

= D (85%) + 6] =
=2(8%)+ 60 =—

The number of valence electrons per conventional unit cell of diamond lattice = 4><E3 :
a

The primitive trandational vectors for;

SCC: a=ae

FCC: a= (e, +e)

N | o

. . : . x111¢ .
Diamond lattice = FCC with 2 atoms per basisat ( 0, 0, 0) and SZ’Z’ZE . Itis, therefore,

equivalent to two inter-laced FCC lattice displaced one quarter the distance along the body
diagonal of the FCC.

K

The C-C bond length in the diamond structure = e a.

9-5
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Chapter 10

10-1. For atwo-dimensional electron gas, the density-of-state is independent of the energy;
therefore, the Fermi energy isdirectly proportional to the electron density:

m
p n*

Er

N.= ODO(E)d =" E,
0

10-2.

@ The chemical potential of a free-electron gas in two dimensions is given can be
found from Eq.(10.29):

¥
~mk;T 1 dE _ mk,T mk.T ,
= = BY 4 ;
Ne ? p hZ e(E— m/kgT +1 kBT p hZ En [e 1]

ph°Ne

\ M(T) =k, T/nfe™" - 1] ,

for Ne €lectrons per unit area.

(b) Plot n(T)/E. asafunctionof kT/E. asin Figure 10.6(b):

18
E
F
\
1.0 —
0.99
T o1
- B
0 0.1 0.2 Er
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10-3. For atypica 1-D energy band, sketch graphs of the relationships between the
wave vector, k, of an electron and its:

@ energy,

Y

(b) group velocity,

N4

(© and effective mass.

A

Y

10-2



d. The approximate density-of-states D (E)) for the energy band of part aaboveis

1)

DY(E)

10-4. The E(ky) vs. kyx dependence for an electron in the conduction band of a one-dimensional

semiconductor crystal with lattice constant a = 4 A is given by:

E(k)=E,- (E,- E)cos’[kal2]; E,>E,

@ The E(ky) for this band in the reduced and periodic zone schemes.

0
\_‘reduoed zone

Y

- — periodic zone ?

(b)  The group velocity of an electron in thisband is:

10-3



y —SLTEL (E - E)a
&

— (= ————4dnka
& Tka 2h

and is sketched below as a function of ki

(© The effective mass of an electron in this band as a function of k is:

2E = 2 Ot
m*—hZeﬂz u _hz gEZ El)a COSI&a[;]
8Tk U e 2 u

and is sketched below it in the reduced- zone scheme;

A m:

/

L L > kxa

A uniform electric field Ex is applied in the x-direction, the motion of the electron

is as follows:

10-4



kya Vg m. Acceleration

02p >0 >0 -x direction
05p >0 ® ¥ =0
09p >0 <0 +x direction

10-5. Suppose now the corresponding electron energy E(kx) vs. kx curve in the valence band is:

E(k)=- E,+ E,cos’[k.a/2]

@ The E(ky) sketch for this band in the reduced- and periodic-zone schemes:

| ! educed zone__ ‘

- periodic zone 2 -

(b) The group velocity of a hole in this band is:

and is sketched below as afunction ky:

10-5



(© The effective mass of the hole in this band as a function of ky in the reduced zone

schemeis;

-1

TE.

m*=h’ & —
17k

.1 . X
u_ ,EéEa’ u
a =h QTcostag
a é a

D: (‘Q) D~

The corresponding effective mass of an electron in the valence band is

A m

] ] »ka
p X

(d) A uniform electric field Ey is applied in the x-direction, the motion of the holeis

as follows:

10-6



kxa Vg m, Acceleration

02p >0 >0 +x direction
05p >0 ® ¥ =0
09p >0 <0 -x direction

10-6. From (10.46) and (10.47), Np(m*)*? therefore,

E +E, KT, @N,0_E +E, T, &m0
& N 2 2 S

10-7. A semiconductor has N:=4x10"" cm® and N,=6x10"® cm® at room temperature and has a
band gap of 1.4 eV. A pn junction is made in this materiad with N;=10' cm™® on one
sde, and Ng=2x10"® cm?® and N,=10" cm™ on the other side. Assume complete
ionization of donors and acceptors.

@ If the semiconductor is not doped and choosing E =0 to be at the top of the

valenceband or E, =0:

&K
E. @¥+%£n%——07 —zng@9@o 3eV |
%)

e E0
n —§N N e T+ @@2x1013) <<<N!»N, or N;»N,
2

One, therefore, assume that on the p-side:

N O
p=N,e& " 5N »N, ad E.-E, »kT/n E‘%» 0.102 eV .
ag

10-7



(b)

©

(d)

(€

Similarly, onthenside, N;» Ny =N - N,=10"cm*:
=INJNS)
E.- E- » KT Inc—=+»0.15eV
Np @
The built-in voltage across the junction at room temperature is then:

V; €1.4- 0.15- 0.102=1.148Volt

The equilibrium minority carrier (electron) density on the p-side of the junction at

room temperature is then:
np :nn e—VB/kT » NDe—VB/kT » 47 m—3 ’
which is extremely small!

When aforward bias of 0.1 eV is applied across the junction , the minority carrier

density on the p-side increased by the factor: €>¥*" @54.6.

{ Ec
0.15eV _iollé\, 0.1(izev 14ev
! i ¢
/ +
EV
n p
— 77—
thlii]
Vapp
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Chapter 11

11-1. For a dtatistical ensemble of N spin-1/2 particles per volume, the matrices representing
the Cartesan components of the spin angular momentum of such particles in the
representation in which éz and S are diagona are given in (6.50). The averaged
expectation values per volume of the three components of the spin angular momentum in
terms of the appropriate density matrix elements for the statistical ensemble of particles
are:

@r, r,0a 00pU N

< gz >=N Tracegr +SU=
21

: : —(ry,-r,,)
rzzﬂgo '1020 2 H 2

Qs

~ r, 08 -iopu j
<S,>=NTraceg * “:¢ +EL'J:M("12"‘21) ,
%rzl rzzﬂgl 0g2( 2

€r.. r.6a0 164U
: 11 12 ;EO:M(rlz.Frm) ’

< g >= NTrace + :
x a B8l 0g20 2

B8

11-2. An electrical charged particle with a spin angular momentum will have a magnetization
proportional to the spin angular momentum. Suppose the averaged expectation value of

the magnetization of the medium consdered in Problem 11-1 above is
M =N Trace[f (gS)].
@ The three Cartesian components of the magnetization in terms of the appropriate

density-matrix elements asin Problem 11-1 above are:

— Ngh

Mz:—g(rn' rzz) )
2

— _INgh

My: 5 (rip= 1) '
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(b)

(©

—  Nah
M :Tg(r12+r21)

X

The Hamiltonian of the spin-1/2 particles in the presence of a static magnetic field

H =H,X+H, y+H,Z, butinthe absence of any relaxation processes is:

H=.9

& ) H,-igH G
2 &, ¢

igH, -H, o

z

H
+

From the results of Part a above, on the basis of the density-matrix equation

(11.16), the dynamic equations describing the precession of the magnetization

M around such a magnetic field are:

d [ .
a(rn' rzz)z'EZ[lerzl' P H21]=g[| H, (ryp+r,)+H y(r12+r21)] ,

which can be shown to be
9, =g[-H, M, +H I\/IX]=gW'I-T] ,
dt y y >

making use of the results in (a) above. Similarly for the x and y-components of
v M _ e : _
M, \ T—gM H , just like in classica mechanics.

Suppose a magnetic field consisting of a static component in the Z-direction and a
weak oscillating component in the plane perpendicular to the z-axis is applied to
the medium: H =H,Z+H, X° H,Z+H coswt X. The corresponding

Hamiltonian is;
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11-3.

@

a _ gh¥ H, chosmoté
2 gH ,Coswt H, ¢

From (11.19),

(thy _ . (th
i(ru' ) =- (rll_ rzz)' (r11 )
dt T,

HigH, (- rp+ry)

Alo, M,=M, £iM, . Therefore,

M,- M S —
-z +|gH1(M+- M. ) cosw,t
T, 2

95 -
dt
Similarly, for the other components:

M igH , M. FigH, M ,cosw,t

|
=~
I
I+

These are the well-known Bloch equations in the literature on magnetic

resonance phenomena.

From the dispersion relation for light waves, k*=ew?/c? and the definitions

k°b+ia and €° €+id'=¢,+i€’,
b@/e,w,/c ad a@'w;/bc?.

Therefore, on the basis of (11.44) and near the resonance, w,»Ww,, and :
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(b)

2
g'wz  €e'w, 4p2(N1' Nz)noez|zlz| w? f
a@—2= = n,) =—= Ny)
@b e T hc %Mo) =5 T g 9r ()

where , If most of atoms are in the ground

W o\/‘]'pNe2 »\/4p(N1' Nz)ez
P m m

state, is known as the “plasma frequency” and f,° %pﬂz is known as the

“oscillator strength”.

To compare the result obtained in Part a above with the classical result based on a
damped harmonic oscillator model instead of the two-level atom model: Suppose

the equation of motion of the harmonic oscillator is of the form:

1/2
ddtzz(t) G—z(t)+w21z(t)—-f e

(éze- iWOl + é;eiwot)

which describes the oscillating motion of a particle of mass m and negative charge

of the magnitude f*?e bound to a fixed point in space similar to the oscillator

shown in Figure 5.1. The spring constant of the harmonic oscillator is equal to

mw?,; the damping constant is G ; and the deviation of the particle from its
equilibrium position in the absence of any electric field E; is z(t).

For the classicd result, assumew,»w, >>G' so that

b - Wi @w,(Ww, - w,,). Solving the above equation for a damped harmonic

oscillator:

f eE
J_—lgf (n)

m 4w,

zZ=-
and

. . 1/_ezO

e=€+ié =4p[c'+ic"] =4p c'- |4p§ )

2
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therefore, the classical model gives aso :

ew, wif

1/%0_4«\/6_00 g;(ny) =a .

which is the same as the result obtained in (a) above on the basis of the quantum

mechanic density-matrix equation.

(© Since the complex dielectric constant based on the oscillator strength f using
either the quantum mechanical model or the classical harmonic oscillator model
gives the same result for €” , it is obvious that the same should be true for €.
The classica harmonic oscillator model, therefore, can be used to characterize
the dispersion and absorption characteristics of linear optical media with only
three phenomenological parameters. the oscillator strength f, that characterizes
the strength of the charge € , the resonance frequency W»; , and the damping

constant G associated with the bound particle in the harmonic oscillator model.
11-4. Differentiating (11.51)

t 1y (th) |

Ir U iw s .
r mn (t) = C)i -I-mn +Eé [r mm' (tl)v (tl)m'n - V(tl)mm'r m'n (tl)]ge(lwmn Hm)(t t)dtl
-¥ ’I‘ m

mn

gives:

d r
—=_m 4 _
h

dt ™ T

mn

é[r mm'\/(t)m'n- V(t)mm'rm'n]- (inn+Ti)rmn '

mn

whichis EQ.(11.27). (11.51), therefore, satisfiesand isa solution of (11.27).
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11.5 The second-order nonlinear optical susceptibility ¢®(w,+w,=w,) relates the induced

macroscopic polarization component P (w,) to the applied electric field components

E;(w,) and E,(w,) in the medium:

o =z
P(w;)=a C(ijzlz(wl +W, =W,) Ej (wy) E(w,)
i K

For any such medium with inversion symmetry, inverting the coordinate axes leaves

Efﬁz (w, +w, =w,) invariant but changes the signs of all the vector components:

- P(wy) = EQw, +w, =w,)[- E; w)][ E(w,)] = Py(ws)

Therefore, ¢@ W, +w, =w,) must vanish.

11-6. Consider alaser with the following parameters: Ty ~ 10 sec, T, ~ 10" sec, Tpn ~ 5x10°%2

sec, R ..~ 10% Jem®-sec, Bhn,g; (v,)~6x10"cm*sec. The corresponding laser rate

pump

equations are:

a
dt
d

aNph =- 2>{|_011Nph + 6><lO'7(N2 -N)) Nph +O(N(psr?0m))

(N,- N,) =-10°(N,- N,) - L2X0°(N, - N,)N,, +107

— —" ——— —

Changing the scales:  t® 10t, (N,- N)® 10°n, N, ® 10“N so thet the

numbers are more manageable in the numerical computation:
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1' d—dtn:-lon-l.ZnN+104

i
i 9N = 2x0° N + 60N +ONE)
t dt

The steady-state solutions of these equationsare: n =333.3 and N, »16.6.
Changing to normalized parameters: L y and N o z , the above rate
333.3 16.6

equations become:

dity=-10y(1+2z)+3o

% 2=2X0°2( y- 1) + 0(Z¥™)

— —" ——— —

The turrnron dynamics of such a laser can be calculated numerically on the basis of these

normalized laser rate equations using, for example, the Mathematica program:

NDSol ve[{y' [Xx] == -20 y[x] Abs[z[x]] - 10 y[x] + 30,
z'[x] == -2000 z[x] + 2000 y[x] z[x] + 0.001, y[0O] == O,
z[0] == 0}, {y, z}, {x, 0, 2}]

g=20/0

Plot[ Evaluate[ y[x] /. d],{x, O, 0.5}, PlotRange-> {0, 2},
AxesOrigin->{0, 0},
AxeslLabel ->{"t", "n(t)/n(s.s)"}]

Plot[ Evaluate[ z[x] /. g], {x, 0O, 0.5}, PlotRange->{0, 10},
AxesLabel ->{"t", "N(t)/N(s.s.)"}]

The resulting calculated dynamics for the normalized population inversion and
intracavity intensity are shown in the figures (tin 107’ sec) below. These results show a
pattern of laser relaxation oscillations with the frequency in the range of a few tenths of a
Ghz and a damping time on the order of tens of nsec, numbers characteristic of a

semiconductor laser.
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Figure11l.1- Examples of the transient dynamics of a semiconductor laser.
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Errata

Chapter 4 -
- Page 48, Eeq.(419) should read :

—ikyd

F_ e
A 2 2
{cos k,d—i kL ke gy kzd}
2 1k2
not :
F g ikad
A K24k |
cosk,d —i sink,d
2 lk2

- Page 55, line 7 should read:

HPY C, ¥, (X)=X(-1)""'C,E, ¥ (\)=PHY.C,¥¢ (X)

not :

HP D C, % (X)=+ > .CE.¥. (\)=PH DY .C, ¥ ()

- Page 60, Problem 4.1, line 4 should read:

for |p=4 and 10....... |..... ,

not :



for f=2and6............

- Page 61, Problem 4.4, equation should read:

not :

- Page 62, Problem 4.6 (c), should read:

... for the lowest two bound states. ...

not :

for the lowest three bound states

Chapter 5 -
- Page 84, line 12 should read:

1
2

An=J<a|(88) |a>—(<a|d'd |a>)® < a =)

not An=y<a|(@8)?|a>-(<aldd|a>)?=|a|=(N):

- Page 82, third line from the bottom should read:



=<0|a >|sz =|<0]a>[e "
n!
~ !

not :

=<0|a >|zza =<0|a >|Ze""|2
n

n

2n
|

Chapter 6 —
- Equation (6.3) should read :

2 2 2
B I R P A L
2m| r°or or) r°sinf 0o 00) r°sin“6 od r

=EYe(r.6,9),

not :

2 2
R e Cyxas SR Ay
2mirc a\ a/) r°sin“6.70 a0) r°sin® 80 dg r

=EY.(r,6,¢)

- Equation (6.36) should read:

R [1o(,0) W+ e i
{ Zm[r2 ar(r arj r2 } r}RE[(r) E,Re (1)}

not :



R L
2mire a a)a r r ) )

- Page 91, EqQ.(6.31) should read :

1

<o, |L, [em; s=[(eFm)(£m;, +D]?78,,5

m, ,(m, +1) !

- not:
1

<o, L | emy >=[(¢Fm,)(¢+m, +D]?58,,8

m, ,(m, +1)

- Page 99, equation in should read :

2nn
JI|Ruo(r) Yoo| rdrsin6d0do =R, ()| r?dr,
00

not :

2nn
[1|Ryo (1| rdr sin ded¢ = 4Ry, (r)|" r2dr,
00

- Page 99, Equation (6.38) should read :

[
.............. and || p, >ZE(| p,>+|p,>) (6.38) ,

not :



................. and |p,>=i(p,>+]p;>). (6.38) .

- Page 103, EQq.(6.49) should read :

1

<jmy 13, 1im, >=[(jFm))(j+m| +D]2k ;.5

™ my,(mj 1)

- not:

1
<jm;[J.] j'm'j >=[(JFm;)(jtm, +1)]2h5jj'5mj,(m'jﬂ)

- Page 109, Problem 6.8(e) should read :

1
AL, =[<¥ | |¥>-<¥Y|L, |¥ >

not :

1
AL =[<¥Y|L, |¥>-<¥|L |¥>]?

- Page 108, Problem 6.8(b) should read :




not :

....... measurement of L? and L, gives ....., .

Chapter 7 —

- line 18 should read :

-

a,ay....aN_1ay (

R iy fy) = lIlaz (ﬁ)\Pa1 ().

an-1

(FN—l)\PaN (fv)

not:

Y

3,8, ...y _18y (

Chapter 8 —
- Equation (8.25) should read:

f‘i’ rzl"'l f:N,:L) f:N) = \Paz (F;_)\Ilal (Fz)-..‘{’

qt

|E, >=100>e "

+CY|210>e "

Et

not :

|E, >=|100>¢ *

Chapter 10 -
- Eq.(10.46) should read:

E,t

+CY (2105 "

ot

(k4
My -2l N-1My g Sn-aMsy , VN1 Ny d My SN,

SN

(fy)



Nc

e

a
ﬁ e

* 3/2
m kBT}

- EQ.(10.47) should read :

not :
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