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Chapter 2 
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(c)  1=>< x ,   by  inspection. 

 

 Next,  find σ2  first: 
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(d) The answer to this question is tricky due to the discontinuous change in the slope of the 

wave function at x = -4, 1, and 6.  Taking this into account , 
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 Yes,  it is as expected.  Since the given state is an eigen state of the Hamiltonian as 

shown in (b),  the uncertainty in the total energy must be zero as shown in (2.5d).   

    

2-3. Prove the following commutation relationships: 

 (a)  

  
  

[ ˆ A + ˆ B , ˆ C ] = ( ˆ A + ˆ B ) ˆ C − ˆ C ( ˆ A + ˆ B ) = ( ˆ A ˆ C − ˆ C ˆ A ) + ( ˆ B ˆ C − ˆ C ˆ B )

= [ ˆ A , ˆ C ]+ [ ˆ B , ˆ C ]
   ,   Q.E.D. 
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2-4. Prove the following commutation relations: 
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(c) Not possible . 
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2-5. Consider the two-dimensional matrices ˆ σ x =
0 1
1 0
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0 − i
i 0

 

 
 

 

 
  , and ˆ σ z =
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 ,  whose 

physical significance will be discussed later in Chapter VI.   

(a) The eigen values σz  of 
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   For the eigen function corresponding to the eigen value σz = -1 : 
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 The eigen values σx of 
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ˆ x  are clearly also +1 and -1.   

   For the eigen function corresponding to the eigen value σx = +1 : 
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 For the eigen function corresponding to the eigen value σx = -1 : 
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 The eigen values σy of 
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   For the eigen function corresponding to the eigen value σx = +1 : 
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 For the eigen function corresponding to the eigen value σx = -1 : 
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(b) These eigen states in the Dirac notation in the representation in which zσ̂  is diagonal are 

as follows:   

The eigen functions corresponding to the eigen values σz = +1 and -1 are,  respectively   
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The eigen functions corresponding to the eigen values σx = +1 and -1 are,  respectively   
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The eigen functions corresponding to the eigen values σy = +1 and -1 are,  respectively   
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Note:   The + and – signs in the Dirac notation for the eigen states of the Pauli spin-

matrices refer to the spin-up and spin-down states,  respectively,  in the 

representation in which zσ̂  is diagonal. 

 

2-6. Consider the Hamiltonian operator ˆ H   with discrete eigen values.  Suppose the Hamiltonian is a 

Hermitian operator which by definition satisfies the condition: 

 



2  -  6 

  Ψ*(x) ˆ H Φ(x)dx =∫ Φ*(x) ˆ H Ψ(x)dx∫( )*
  . 

 

 (a) The eigen values of the Hamiltonian are all real: 

 Let  )(xΨ and )(xΦ in the definition of a Hermitian operator be an eigen state of  the 

Hamiltonian ˆ H  corresponding to the eigen value Ei .    

 

  iEE EdxxHxdxxHx
ii

=∫ ΨΨ∫ =ΦΨ )(ˆ)()(ˆ)( **    . 

 

 Similarly,   
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ii

=∫ ΨΨ∫ =ΨΦ    . 

 

 The condition of Hermiticity of the Hamiltonian leads to: E i = E i
* . 

 

(b) Let  )(xΨ and )(xΦ in the definition of a Hermitian operator be an eigen state of  the 

Hamiltonian ˆ H  corresponding to the eigen value Ei and Ej  , respectively.  The 

Hermiticity condition gives: 

    

  0)()()( * =∫ ΨΨ− dxxxEE
ji EEji     . 

 

 Therefore,  if 0)( ≠− ji EE ,  then 0)()(* =∫ ΨΨ dxxx
ji EE ,  or the eigen functions 

corresponding to different eigen values are necessarily orthogonal to each other.    

 

2-7. Consider a particle of mass m in a potential field V(x).  

(a) On the basis of Heisenberg’s equation of motion,   (2.49) ,  and the commutation relation 

(2.11a): 
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(b) On the same basis,  the time variation of the expectation value of the momentum is given 

by : 
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 which is known as Ehrenfest’s theorem. 

 

 



Chapter 3 
 

 
3-1. 
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3-2. Suppose we know that there is a free particle initially located in the range −a < x < a    with a 

spatially uniform probability.  

(a) The normalized state function )t,x( 0=Ψ  of the particle in the Schroedinger-

representation is, assuming the phase of the wave function is arbitrarily chosen to be 

zero: 
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(b) The corresponding momentum representation is: 
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3-3.  Consider a free particle with the initial state function in the form of: 
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(a) To normalize this state function: 
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(b) After a considerable amount of algebra by first completing the square of the exponential 

in Fourier-transform integral,  it can be shown that the corresponding momentum 

representation of this state function is: 
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where θ  is a time-dependent phase-shift of no physical consequence that goes to zero at t 

= 0. 

 

(d) From c above,  the expectation value and the corresponding uncertainty of the position 

for t > 0 are,  respectively: 
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Similarly, the expectation value and the corresponding uncertainty of the linear 

momentum for t > 0 are,  respectively: 
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(e) The uncertainty product of the position and momentum for this state is: 
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  which satisfies Heisenberg’s uncertainty principle for all time t ≥ 0.   
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Chapter 4 
 

 
4-1.   From Eq. (4-19): 
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  In the limit of (E −V0) → 0,  
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 Plots of T for β = 4: 

    
 

 and   β = 10 : 

 

   
 

4 -2. A particle with energy E in a region of zero potential is incident on a potential well of depth Vo 

and width "d".  From the expression for the probability of transmission T of the particle past the 

well given in (4.20a), the approximate values of E (in terms of 2h /2md2)  corresponding to the 

maxima and minima in T: 

 

(a)  for β = 10 are: 
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(b)  for β = 250 are: 

  
    
En ≅

h2

2md 2 [n2 π 2 + 2502]    and       
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4
+ 2502] ,  respectively.  

 

4 –3. Consider a one-dimensional rectangular potential well structure such as that shown in Figure 4.9 

below. 

 

V  =  V1    for             x <  -a   

V  =  0    for    -a  <  x <   0  

V  = V1/ 2   for  0  <  x <   a   

V  =  V1    for              x >   a   

 

   

I II III
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IV

a
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 The wave functions in regions I through IV and the equations describing the boundary conditions 

on these wave functions for 

 

(a)   E  > V1    are: 

Ψ1 = eik1x + Ae− ik1x  

  

   Ψ2 = Beik2x + C e− ik2x  

 

   Ψ3 = Deik3x + F e− ik3x  

 

   Ψ4 = Geik4 x  
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where  
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The boundary conditions (b. c.) at x = -a are: 

 

e− ik1a + Ae ik1a = Be− ik2x + Ce ik2a   and   k1 [e− ik1a − Ae− ik1a ] = k2 [Be− ik2x − Ce ik2a ]. 

 

The corresponding b.c. at x = 0 are: 

 

 B + C = D + F   and      k2 (B − C) = k3 (D − F)   . 

 

The corresponding b.c. at x = a  are: 

 

De ik3a + F e− ik3a = Geik4 x         and     k3 (De ik3a − F e− ik3a ) = k4 Geik4 x     . 

 

 

(b)  For  V1  >  E  > V1 / 2 ,  the wave functions in the various regions are: 

 

Ψ1 = Aeα1x  

  

   Ψ2 = Beik2x + C e− ik2x  

 

   Ψ3 = Deik3x + F e− ik3x  

 

   Ψ4 = Ge−α4 x     , 

 where  
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 The b. c. at at x = -a are: 

 

Ae−α1a = Be− ik2x + Ce ik2a   and   α1 Ae−α a = i k2 [Be− ik2x − Ce ik2a ]. 

 

The corresponding b.c. at x = 0 are: 

 

 B + C = D + F   and      k2 (B − C) = k3 (D − F)   . 

 

The corresponding b.c. at x = a  are: 

 

De ik3a + F e− ik3a = Ge−α4 a         and     i k3 (De ik3a − F e− ik3a ) = − α4 Ge−α4 x  

 

 

(c)   For E  < V1 / 2  ,  the wave functions in the various regions are: 

 

Ψ1 = Aeα1x  

  

   Ψ2 = Beik2x + C e− ik2x  

 

   Ψ3 = Deα3x + F e−α3x  

 

   Ψ4 = Ge−α4 x     , 

 where  
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 The b. c. at at x = -a are: 

 

Ae−α1a = Be− ik2x + Ce ik2a   and   α1 Ae−α a = i k2 [Be− ik2x − Ce ik2a ]. 

 

The corresponding b.c. at x = 0 are: 

 

 B + C = D + F   and      i k2 (B − C) = α3 (D − F)  . 

 

The corresponding b.c. at x = a  are: 

 

De α3a + F e− α3a = Ge−α4 a         and     α3 (De α3a − F e − α3a ) = − α4 Ge−α4 x  

 

4 –4. Suppose the following wave function describe the state of an electron in an infinite square 

potential well,  0 < x < a,  with V(x) = 0 inside the well:  
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(a) One way to normalize the wave function is to expand the given wave function in terms of 

the normalized energy eigen functions from x = 0 to x = a: 

 

Ψ(x) = A a
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(b)  Time-dependence of the normalized wave function is: 
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(c) If measurements of the energy of the electron are made,  the values of the energy that will 

be measured and the corresponding  absolute probabilities are: 

  

  Energy    Probability 

 

 2

222
ma

hπ          1
2

 

   
  

π2h2

2ma2           1
2

 

 

4 -5. Consider the one-dimensional potential of Figure 4.10: 

              Region 

   V =  ∞   x < 0               I 

   V =  0   0 < x < a        II 

   V =  Vo  a > x          III 

 

 

I II III

E

V = 0

V = V0

0 a

V

�

∞

 
(a) The equations whose solution give the eigen energies of the bound states (E < Vo) of the 

above potential well are the same as those for the antisymmetric solutions of a full 

potential well of depth Vo from x = -a to x = a,  namely: 

 

   − ξn cot ξn = ηn       ,   ξn
2 + ηn

2 = β2        , 
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 where 

  
  
ξn = kna =

2mEn

h
a      ,    

 
ηn =

2m (V 0 − En )
h

a   ,    
 
β =

2mV 0

h
a  . 

 

(b) The eigenfunctions of the three lowest energies assuming V0  is sufficiently large so that 

there are at least three bound states are qualitatively as shown in the following figure: 

      

I II III

0

ψn

x
n=1

23
 

     

 

4 -6. Consider the case of an electron ( gx.me
2710910 −= ) in a finite potential well of depth 1.25 V 

and width 145 Å.   

(a)  

 2a = d 2a = d =145 A
o

   ,  Vo =125 eV = 2 ×10−12 erg. 

 

  

β
a

=
2mV0

h2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

1
2

= 5.75 ×107 cm-1 ,    β = 41.7  , 

   

  (N −1)(π 2) < 41.7 < N (π 2)   ; 

 

therefore,  the estimated number of bound states N = 27. 
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(b) To calculate the energies of the lowest two bound states,  we must find the numerical 

solutions of the secular equations:   

  

   2/122 ][tan ξ−β=ξξ    for the symmetric modes , 

 

and  

   2/122 ][cot ξ−β=ξξ−    for the anti-symmetric modes . 

  

Solving these equations using,  for example,  Mathematica gives: 

 

  ξ1 =1.534   and      ξ2 = 3.07  . 

 

The corresponding bound-state energies are,  respectively: 

 

   E1 = V0
ξ1

β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=1.69 meV   and   E2 = V0
ξ2

β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= 6.79 meV   . 

 

(c) The wave functions for the lowest two bound states are sketched qualitatively below: 

x-a +a

ψn

1

n=2

 
4-7. A particle of mass m is confined to move in a quantum-well in the (x,y) plane which consists of a 

pair of impenetrable walls at  x = ± a  but is unbounded for motion in the y-direction. 
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(a) Let the total energy of the particle be E and the energy associated with the motion in the 

x- and  y-directions be Ex and Ey,  respectively.  The allowed values of Ex, Ey ,  and E 

are,  respectively: 

 

  
Ex =

n2π2h2

8ma2     , Ey = 0 → ∞ is unlimited,  and E = Ex + Ey   . 

 

(b) E versus ky  for various allowed values of Ex. are sketched below: 

 

                    
ky

Ex3

1

E

2

0  
 

(c)  
  
Ey = E − Ex = E −

h2π2

2ma2  . 

 

(d) A possible,  un-normalized,  space- and time-dependent wave function to describe the 

particle in Part c above is: 

 

  Ψ(x, t) = sin(πx /a)e
i

2mEy

h
y −

i
h

Et
    

 

(e) If the particle's total energy is  E = π2 2h /4ma2,  nx  can only be 1 and 
  
E y =

h2k 2

2m
=

π2h2

8ma2  

.  The corresponding wave function of the particle must be of the  
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form: 

      Ψ(x, y,t) = cos(πx /2a)[ Ae
i π

2a
y
+ Be

− i π
2a

y
] e

− i
π 2 h

4 ma 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ t

 .  

     

(f) Suppose now an infinite potential barrier at y  = ± a  is imposed.   The particle's energy  

cannot be measured to be 3π2 2h /4ma2 ,   because 

 

    
  
Ex + Ey =

π2h2

8ma2 ( nx
2 + ny

2 ) . 

 

 For the total energy to be equal to 3π2 2h /4ma2  , ( nx
2 + ny

2 )  must equal to 6,  which is not 

possible for any integer values of nx and ny. 
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Chapter 5 
 

 
5-1. For an eigen state of a one-dimensional harmonic oscillator,  the following results are true: 

(a)  The expectation values of the position and momentum are zero: 

 

 0|)ˆˆ(|
2

|ˆ|
0

=>−<
ω

=>< −+ naan
m

inxn
h

   ,     and 

 

0|)ˆˆ(|
2

|ˆ| 0 =>+<
ω

=>< −+ naan
m

npn x

h
 . 

 

(b) The expectation values of the potential energy and the kinetic energy (T̂ ) are 

equal:   

   

)12(
4

|)ˆˆ()ˆˆ(|
4

|
2

||ˆ| 00
2

+
ω

=>++<
ω

=><=>< −+−+ nnaaaann
m

p
nnTn x hh

   , 

 

 >=<+
ω

=>−−<
ω

−=>< −+−+ nTnnnaaaan
m

k
nxVn ||)12(

4
|)ˆˆ()ˆˆ(|

22
|)(ˆ| 0

0

hh
. 

 

(c) The uncertainty product of  the position and momentum ∆x∆ px  is equal to 

  
(n +

1
2

)h : 

   

  
∆ px

2 = < px
2 > − < px >2 =

hmω0

2
(2n + 1)  , 

 

  
  
∆ x 2 = < x 2 > − < x >2 =

h
2mω0

(2n + 1)  ; 
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∴ ∆ px ∆x = (n +

1
2

)h . 

 

 

 

 

5-2. For a one-dimensional harmonic oscillator, in the basis in which the Hamiltonian is 

diagonal, the matrix representations of  : 

(a) the position and momentum operators ˆ x  and ˆ p x  are, respectively : 

 

  

ˆ x = −i
h

2mω0

0 − 1 0 0 • •
1 0 − 2 0 • •
0 2 0 − 3 • •
0 0 3 0 • •
• • • • • •
• • • • • •

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

    , 

 

  

ˆ p x =
hmω0

2

0 1 0 0 • •
1 0 2 0 • •

0 2 0 3 • •
0 0 3 0 • •
• • • • • •
• • • • • •

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

     ; 

 

 

 

(b) the operator products ˆ a + ˆ a −  and ˆ a − ˆ a +  , respectively: 
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 ˆ a + ˆ a − =

0 0 0 0 • •
0 1 0 0 • •
0 0 2 0 • •
0 0 0 3 • •
• • • • • •
• • • • • •

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

   ,    and     ˆ a − ˆ a + =

1 0 0 0 • •
0 2 0 0 • •
0 0 3 0 • •
0 0 0 4 • •
• • • • • •
• • • • • •

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

     . 

 

 

 

 

(c) Using the above matrices,  it can be shown immediately that the commutator of   
ˆ a −   and  ˆ a +  is : 

 

  

ˆ a − ˆ a + − ˆ a + ˆ a − =

1 0 0 0 • •
0 1 0 0 • •
0 0 1 0 • •
0 0 0 1 • •
• • • • • •
• • • • • •

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

= 1 . 

 
 

5-3. Substituting the wave function of the form : 

 

   
  
ΨEn

(x) = CnH n (
mω0

h
x)e

−
mω0

2h
x 2

 

 

  into the Schroedinger-equation gives : 

 

  
[ −

h2

2m
d2H n(x)

dx 2 + hω0 x
dHn (x)

dx
+

hω0

2
H n(u) ] e

−
h ω0

2 h
x2

= En Ψn (x)

. 

 

Change the variable from x to 
  
u≡

mω0

h
x  gives indeed Eq.(5.33), which defines the Hermit 

polynomials: 



5 – 4  

 

  

d2Hn(u)
du2 − 2u

dHn (u)
du

+ 2(
En

hω0

−
1
2

)Hn (u) = 0 . 

 

5-4. Suppose the harmonic oscillator is initially in a superposition state | Ψ(t = 0) > =
1
2

[ |0 > + |1>], 

the expectation value of the position of the oscillator < x >t ≡< Ψ(t) | x | Ψ(t) > as a function of 

time is: 

 

.sin
2

]1|0|[])ˆˆ([]|1|0[
2
1

)(||)(

0
0

0

00

t
m

eaa
m

ie

txtx

titi

t

ω
ω

=

>+>−
ω

−<+<=

>ΨΨ<≡><

ω−+ω−

h

h
h

 

 

5-5. From Maxwell equations,  (5.65 a-d),  and the condition for transverse waves 0=⋅∇ E
r

  that   

 

  
  
∇ 2

r 
E −

1
c 2

∂2
r 
E 

∂x2 = 0   . 

It is clear that   

  

r 
E (

r 
r , t) ≡ Ex (z,t)ex = i

2πhωk

L
ak

−e− iωk t + i kz − ak
+e iω k t− ik z( )ex                  (5.68a) 

 

satisfies the above wave equation  as long as  k2 = ωk
2

c 2
 .   Under the same condition,  it can be 

shown that (5.68a)  and  

 

  
  

r 
B (

r 
r , t) ≡ By (z,t)ey = i

2πhωk

L
ak

−e− iωk t + ik z − ak
+e iω k t− ik z( )ey   (5.68b) 

 

satisfy (5.65c). 
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Substituting  (5.68a)  and (5.68b) into  

  

  
1

8π
Ex

2(z,t) + By
2(z, t)[ ]0

L∫ dz  

and making use of the commutation rela tionship (5.69) after changing the ±a ’s into operators  

gives (5.70): 

    

  
ˆ H = [ ˆ a k

+ ˆ a k
− +

1
2

] hωk  

 

and     

   
  
Ek n = < n | ˆ H | n > = (n +

1
2

) hω0   . 

 

5-6. The  Rayliegh-Jeans law and Planck’s law for black-body radiation as functions of wavelength 

and in units of energy per volume per wavelength- interval: 

  Since ν=
c
λ

  ,   Planck’s  radiation law as a function of the wavelength is: 

 

   ρb (λ)dλ = ρb(ν =
c
λ

)
∂ ν
∂λ

dλ =
8π hc

λ5 ⋅
1

ehc / λkBT −1
dλ    . 

 

 In the limit of  
h
λ

<< kB T ,  it reduces to the classical Rayleigh-Jeans law: 

 

    lim
λ→0

ρb (λ) =
8πkBT

λ4  

 

with its λ−4  dependence on wavelength  and,  therefore,  diverges in the ultraviolet limit λ → 0. 
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Chapter 6 
 

 
6-1. The matrix representations of the angular momentum operators ˆ L x, ˆ L y, ˆ L z, ˆ L +, ˆ L −, and ˆ L 2,  

for   l = 0 ,1, and 2,  in the basis in which ˆ L z  and ˆ L 2 are diagonal can be found from (6.29) 

– (6.31) and (6.8): 

For the trivial case of   l=0 ,  all these operators are equal to zero. 

 

For   l=1,  the matrices are: 

 

  

ˆ L 2 =
2 0 0
0 2 0
0 0 2

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

h2   ,       

  

ˆ L z =
1 0 0
0 0 0
0 0 −1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

h  ,    

 

ˆ L x =
0 1 0
1 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

h

2
 ,   

 

  

ˆ L y =
0 −1 0
1 0 −1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

i h
2

  , 

  

ˆ L + =
0 1 0
0 0 1
0 0 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

2 h ,   

 

ˆ L − =
0 0 0
1 0 0
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

2 h  . 

 

For   l=2,  the matrices are: 

 

  

ˆ L 2 =

6 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

h2 ,  

 

ˆ L z =

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

h,  h

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

01000
1000
000
0001
00010

ˆ

2
3

2
3

2
3

2
3

xL  

 

hiLy

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

= −

−

01000
1000

000
0001
00010

ˆ

2
3

2
3

2
3

2
3

   ,        

 

ˆ L + =

0 2 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 2
0 0 0 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

h    , 
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h

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=−

02000
00600
00060
00002
00000

L̂        . 

 

6-2.   From the above matrix representations of the angular momentum operators,  it can be shown that 

all the cyclic commutation relationships among all such operators are indeed satisfied.  For 

example,  for   l=1: 

 

      

  

ˆ L x ˆ L y =
0 1 0
1 0 1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

0 −1 0
1 0 −1
0 1 0

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

ih2

2
=

1 0 −1
0 0 0
1 0 −1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

i h2

2
 ,     

2
101
000
101

ˆˆ
2hiLL xy

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−
=   ; 

 

   

  

∴ ˆ L x ˆ L y − ˆ L y ˆ L x =
1 0 0
0 0 0
0 0 −1

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

i h2 = ih ˆ L z   . 

 

Similarly,  one can show all the other cyclic commutation relationships. 

 

6-3. No.  All three components of the angular momentum operators can be specified precisely at the 

same time if the expectation values of all the commutators of the angular momentum operators 

are precisely zero in a particular state.  This is the case  when the hydrogen atom is in the ground 

state,  or the s-level  (  l=0). 

 

6-4. Show that the n=2, 1=l ,  and 1=lm  wave function indeed satisfies the time-

independent Schroedinger’s equation given in the text for the hydrogen atom:  

 

Ψ211(r,θ,φ) = R21(r)Y11(θ,φ) = [(2a0)−3 / 2 1
3

r
a0

e−r / 2a0 ] [− 3
8π

eiφ sinθ]   , 
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∂
∂r

(r2 ∂
∂r

)[(2a0)−3 / 2 1
3

r
a0

e−r / 2a0 ] = (2a0)−3 / 2 1
3

r
a0

[2 − 2 r
a0

+
r2

(2a0)2 ] e−r / 2a0   , 

 

1
sinθ

∂
∂θ

sinθ
∂

∂θ
+

1
sin2 θ

∂2

∂φ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ eiφ sinθ = −2eiφ sinθ   . 

 

Therefore, 

 

,),,(

),,(]
)2(

1
2

[),,(2
)2(

221
2

),,(
sin
1sin

sin
11

2

21121

2112
0
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2
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0

2

0
2
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2

2
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222
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∂

∂
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−

rE

r
am

r
r

e
a
r

a
r

rm

r
r

e
rrr

r
rrm

hh

h

 

 

and  

  
  
E211 = −

h2

2m a0
2 22 = −

me4

2h2 22  .    Q.E.D.   

 

Also,  the wave function is indeed normalized: 

 

Ψ211
0

∞

∫
0

2π

∫
0

π

∫
2

r2 sinθdr dθdφ = (2a0)−3 r4

3a0
2 e−r / a0 dr

0

∞

∫
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

3
4

sin3θ dθ
0

π

∫
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =1.   Q.E.D. 

 

 

6-5. A particle is known to be in a state such that ˆ L 2= 2h 2 .  It is also known that 

measurement of ˆ L zwill yield the value +h  with the probability 1/3 and the value -h  with 

the probability 2/3. 

(a) The normalized wave function, ),( φθΨ ,  of this particle in terms of the spherical 

harmonics is: 
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),(
3
2),(

3
1),,( 1111 φθ+φθ=φθΨ −YYr     . 

 (b) The expectation value, >< zL̂ ,  of the z-component of the angular momentum of 

this particle is: 

  
< ˆ L z > =

1
3

h −
2
3

h = −
1
3

h  . 

 

6-6. The wave function of a particle of mass m moving in a potential well is,  at a particular 

time t : 

   
222 zyxe)zyx()z,y,x( ++α−++=Ψ  

 

(a) Ψ  in the spherical coordinate system is: 

 

.
3

4
3

8
2

1
3

8
2

1

]cossinsincossin[)(),,(

101111

222

r

rzyx

erYYiYi

errrezyxzyx

α−
−

α−++α−

⎥
⎦

⎤
⎢
⎣

⎡ π
+

π
⎟
⎠
⎞

⎜
⎝
⎛ +

+
π

⎟
⎠
⎞

⎜
⎝
⎛ +−

=

θ+φθ+φθ=++=Ψ
 

  To normalize: 

   

.
4
1;

3
4

3
8)

4
2

4
2(sin|),(|1 22

π
=∴⎥⎦

⎤
⎢⎣
⎡ π

+
π

+∫ =φθθφθΨ= NNdd  

 . 

  The corresponding normalized wave function is: 

 

.
3
1

6
1

6
1),( 101111 YYiYi

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +−
=φθΨ −  

 

(b) The probability measurement of 2Lö  and ˆ L z  gives the values  2h 2 and 0,  

respectively,  is:  
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Probability =

1/3
1/3 + 1/3 +1/3

=
1
3

  . 

 

6-7. Consider a mixed state of hydrogen:  

  

   Ψ = R21(r)Y11(θ,φ) + 2R32(r)Y21(θ,φ) 

  

(a)   The normalized Ψ is: 

 

  ),()(
5

2),()(
5

1
21321121 φθ+φθ=Ψ YrRYrR  . 

 

(b) Ψ is not an eigen function of  2Lö ,  but is an eigen function of  zLö corresponding 

to the eigen value h . 

(c) The expectation value >ΨΨ< |Lö| 2  is : 

 

   2222

5
266

5
4

5
2|ˆ| hhh =+=>ΨΨ< L . 

 

(d) The >ΨΨ< |Lö| z  is h . 

 

(e) eVH 6.13)
9
1

5
4

4
1

5
1(|ö| ⋅+⋅−=>ΨΨ<        . 

 

6-8. Consider a hydrogen atom in the following mixed state at t=0:  

  

 ),(Y)r(R),(Y)r(R)t,,,r( φθ+φθ==φθΨ 1121203230  

  

(a) The  normalized the wave function is: 
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  ),()(
10
1),()(

10
3)0,,,( 11212032 φθ+φθ==φθΨ YrRYrRtr   . 

 

(b) The atom is not in a stationary state,  because it is in a mixed state of n=2 and n 

=3. 

(c)   The expectation value of the energy for t > 0 is: 

 

  eVH 6.13)
4
1

10
1

9
1

10
9(|ö| ⋅+⋅−=>ΨΨ<      . 

 

 (d)   The expectation values are : 

  

   222

5
28)2

10
16

10
9(|ö| hh =⋅+⋅=>ΨΨ< L  

 

   hh
10
1)

10
10

10
9(|ö| =+⋅=>ΨΨ< zL  

    

 (e)  The uncertainty of zLö  in this state is: 

 

  hh
10
3]

100
1

10
1[]|ˆ||ˆ|[ 2/12

1
22 =−=>ΨΨ<−>ΨΨ<=Δ zzz LLL    . 

 

. 

 

6-9. This problem is somewhat like the finite square-well potential problem considered in the 
text,  Sect. 4.4.   The Hamiltonian of a particle of mass m in a finite spherical potential 
well: 
  

   
⎩
⎨
⎧

≥
≤

=
arif,V
arif,

)r(V
0

0
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is: 

   )(
2

ˆ
2

rV
m

H +∇−=
h   . 

 

For 0=l ,  it is: 

 

   )(])(1[
2

ˆ 2
2

2

rV
r

r
rrm

H +
∂
∂

∂
∂

−=
h   . 

 

The corresponding Schroedinger’s equation is  

  

   )()()(])(1[
2

2
2

2

rRErRrV
r

r
rrm nonno =

⎭
⎬
⎫

⎩
⎨
⎧

+
∂
∂

∂
∂

−
h   ,      for    ar ≤    , 

 

 and  

   )()(])(1[
2

2
2

2

rRErR
r

r
rrm nonno =

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

−
h       ,      for    ar ≥    . 

 

  The equation for  ar ≤  can be  converted to: 

 

    )(2)( 22

2

rUmErU
rd

d
h

−=       , 

 

 where U(r) = r R(r) .  The general solution of  this equation is:   

 

    krBkrArU sincos)( +=  

 

 where  
h

mEk 2
=  .  To satisfy the boundary condition that  Rn0(r) must be finite at r =0,  

A must be equal to 0,  or  
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     krBrU sin)( =  , for    ar ≤ . 

 

 Similarly,     for   ar ≥  ,   

 

        rr eDeCrU α−α +=)(   , 

 where  
h

)(2 0 EVm −
=α   .    For U(r)  or Rn0(r) to be finite at ∞→r ,  C must be equal 

to zero and: 

     reDrU α−=)(   ,      for    ar ≥    . 

  

 

Continuity of the wave function Rn0(r) and its derivative at ar =  leads to the 

secular equation: 

 

    α=− kak cot   . 

 

Defining ka=ξ  ,  the above equation is of exactly the same form as that corresponding 

to the antisymmetric solution of the finite square potential-well problem: 

 

   22cot ξ−β=ξξ− ,   where   2

2
02 2

h

amV
=β . 

 

Just like in that problem,  there is no solution,   if  
2
π

<β  or 

 

    
m

aV
8

22
2

0
hπ

<   .   Q.E.D. 
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Chapter 7 
 

 
7-1.  The Slater-determinant for a 2-electron atom in the form given in (7.11) is: 

 

  
Ψa1a2

=
1
2

Ψa1
(
r 
r 1) Ψa1

(
r 
r 2)

Ψa2
(
r 
r 1) Ψa2

(
r 
r 2)

  . 

 

It is indeed normalized: 

 

  

Ψa1a2

2∫∫ d
r 
r 1 d

r 
r 2 =

1
2

[ Ψa1
(
r 
r 1)

2
d

r 
r 1 ⋅ Ψa 2

(
r 
r 2)

2
d

r 
r 2∫ + Ψa1

(
r 
r 2)

2
d

r 
r 2∫ ⋅ Ψa2

(
r 
r 1)

2
d
r 
r 1∫∫

− Ψa1
(
r 
r 1)

* Ψa2
(
r 
r 1)d

r 
r 1∫ ⋅ Ψa2

(
r 
r 2)* Ψa1

(
r 
r 2)d

r 
r 2∫ − Ψa1

(
r 
r 2)* Ψa 2

(
r 
r 2) d

r 
r 2∫ ⋅ Ψa2

(
r 
r 1)* Ψa1

(
r 
r 1) d

r 
r 1∫ ]

=
1
2

[ 1⋅1+ 1⋅1− 0⋅0 − 0⋅0 ] = 1 . Q.E .D.

 

7-1. The Slater-determinant for a 2-electron atom in terms of the radial wave func tions and the 

spherical harmonics in the Schroedinger-representation and the spin state functions (α 

and β) in the Heisenberg-representation of a hydrogenic atom is: 

 

    

  
Ψa1a2

=
1
2

Rn1l1
(r1)Yl1m1

(θ1φ1)α1 Rn1l1
(r2)Yl 1m1

(θ2 φ2)α 2

Rn 2l 2
(r1)Yl 2m2

(θ1φ1)β1 Rn2l 2
(r2)Yl 2m2

(θ2φ 2)β2

 

 

7-3. The total orbital and spin angular momentum quantum numbers  of  the ground-state of 

helium atom: 

  2 Electrons  : 
  
l = 0 , ml = 0 , s=

1
2

, ms =
1
2

and −
1
2

    . 

 

  Atom:     L = 0 , ML = 0 , S = 0 , M S = 0 . 
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For lithium atom: 

 

3 Electrons  : 
  
l = 0 , ml = 0 , s=

1
2

, ms =
1
2

and −
1
2

    . 

    
  
l =1 , ml = 0 or ± 1 , s=

1
2

, ms =
1
2

or −
1
2

 

 

  Atom:   L = 1 , ML = 0 or ±1 , S=
1
2

, M S =
1
2

or −
1
2

 . 

 

7-4.     Ground state configuration   Degeneracy 

 

Carbon:  (1s)2 (2s)2 (2p)2   ( 6 ⋅ 5 ÷ 2 =15 )   . 

 

  Silicon:  (1s)2 (2s)2 (2p)6 (3s)2 (3p)2  ( 6 ⋅ 5 ÷ 2 =15 )    . 

 

7-5. The ground state configuration of -  

 

Ga : (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (3d)10 (4s)2 (4p)1   

 

As : (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (3d)10 (4s)2 (4p)3  . 

 

   

 

 



Chapter 8 
 

 
8-1. Substituting (8.17) into the left side of (8.5) gives: 

 
 

)(0)(
)(

)1(~
)(),( 2)(

)(

ε+∑ Ψ











+

ω−ω
−

+Ψ≅Ψ
∂
∂

≠

−ω−ω
ω−ω

−

ij

tE
i

E
ti

ij

ti

jzij

tE
i

Ei
j

j

ij
ij

i

i
ere

e
EEezerEtr

t
i hh

r
h

rr
h   . 

 
 
Substituting (8.17) into the right side of (8.5) gives in the limit of ε→1: 
 
 

∑ Ψ











+

ω−ω
−

+Ψ=Ψε+
≠

−ω−ω
ω−ω

−

ij

tE
i

E
ti

ij

ti

jzij

tE
i

Ei

j

j

ij

ij
i

i
ere

e
EEezerEVH hh r

h
r

)(
)(

)1(~)(]ˆˆ[ )(
)(

10
   ,       

 
 
which is the same as the left  side. 
 
[ Note:  To derive the right side equation above,  use is made of the fact that ˆ V 1 in the 

representation  in which ˆ H 0  is diagonal is: 

 

  

ˆ V 1 = ˆ 1 ⋅ ˆ V 1 ⋅ ˆ 1 = | E j >< E j | ez ˜ E z
j≠ j'

∑ | E j' >< E j' |e − iω t    and    < E j' | Ei > = δ j' i  .  ] 

 

8-2. For circularly polarized waves: 

 

  

r 
E (

r 
r ,t) =

˜ E ±
2

( ˆ e x m i ˆ e y )e iω t  and 
  
ˆ V ± =

e ˜ E ±
2

(xm i y )e iω t  . 

 

  Therefore, 

    
  
W i j = π e2

h2
|x i j |

2 + |y i j |
2[ ]| E± |2 δ(ω i j − ω)  . 

 

 For spherically symmetric systems,  such as atoms: 

 



    
  
W i j =

2 πe2

3h2 | r |2 E± |2 δ(ω i j − ω)  , 

  

 where    | r |2 = | x |2 + | y |2 + | z |2 = 3 | x |2 = 3 | y |2 = 3 | z |2  . 

 

8-3. For the selection rules on the orbital angular momentum,   

 

  
< lml |Y10 |l 'ml ' > = Yl ml

*

0

π

∫
o

2π

∫ Y10Y
l' ml

' sin θdθd φ ∝δml m l '
  , 

  

  
  
< lml |Y1±1 |l' ml ' > = Ylm l

*

0

π

∫
o

2π

∫ Y10Y
l ' ml

' sin θdθdφ ∝ δm l ,(m l' ±1)  , 

 

 and from the known properties of the integrals of three spherical harmonics,  

  |∆l |≡ |l − l' | ≤ 1.  On the basis of parity considerations,   l  and   l '  must be of  

opposite parity;  therefore,   ∆l ≡ l − l' = ±1. 

 

8-4.   Accoring to the Rydberg formula (8.24): 

 

1
λ1s,2 p

= RH (1−
1
n 2 )   , 

 

λ1s,2 p = 91.127 x
n 2

n2 −1
    nm . 

 For Lyman series: 

 

 n   2      3          4           5 6 

 

 Experiment         121.6   102.6        97.3      95.0       93.8 nm 

 

 Rydberg Formula   121.5          102.5       97.2      94.9        93.7 nm 



8-5.   Give the expectation value of the z-component of the electric dipole 

moment of the hydrogen atom in the mixed state: 

 

 

  

< Ψ | (−ez) | Ψ > =
−e

1+ C12
2 < 100 | z | 210 >C12 + complex conjugate

=
−C21e

1+ C12
2 R10 r R21 r 2 dr Y00 cosθY10 sin θ dθ + C.C.

0

π

∫
0

∞

∫

≅ −C21 e
1+ C12

2 1.5a0 + C .C. .

 

 

8.6 An electron in the n = 3,  l  = 0,  m = 0 state of hydrogen decays by a sequence of (electric 

dipole) transitions to the ground state.   

(a) The decay routes open to it are: 

 

  |300>   →  |210 >    →    |100 >   

             →   |21±1>  →    |100 > . 

 

(b)   The allowed transitions from the 5d states of hydrogen to the lower states are: 

 

 

s p d f g

1

2

3

4

5

 



8.7. Assume a Lorentzian fluorescence linewidth of 10 Ghz.  The stimulated emission cross-section 

(in cm2) defined in connection with (8.31) for a hypothetical hydrogen laser with linearly 

polarized emission at 121.56 nm (Lyman-α line)is:  

 

    
  
σ st =

4 π2 e2ν
hc

x12 g f (ν) ≅ 7.1x104 x12
2   . 

  

 Using the value of the dipole moment found in Problem 8-5, x12
2 ≈ 0.62x10−16 cm2,   

    

    ∴ σst ≈ 4.4 x10−12 cm 2   . 

 

Assuming all the degenerate states in the 2p level are equally populated, the 

corresponding spatial gain coefficient (in cm-1) is: 

 

g = (N 2 − N1)σ st ≈ 4.4 x10−2 cm−1   , 

 

if the total population inversion between the 1s and 2p levels of hydrogen in the gaseous medium 

is 1010 cm-3.  
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Chapter 9 
 

9-1. The spin-orbit interaction in hydrogen is of the form, (6.62) : 

 

ŜL̂)r(ŜL̂
rcm

Ze
Ĥ os

rrrr
⋅ζ≡⋅










=− 322

2

2
 

 

The corresponding matrix for 1=l  in the representation in which 2L̂ , zL̂ , ˆ S 2, ˆ S z  are diagonal is 

a 6x6 matrix.   To diagonalize this matrix within the manifold of degenerate states 

    |n,l = 1, ml, s = 1/2,ms > ,  the columns and rows corresponding to the pairs of   (ml , ms) values 

are arranged in a particular order:   

 

         ),( smml   )
2
1

,1( −− )
2
1

,1( +− )
2
1

,0( −  ( 0, +
1

2
)  )

2
1

,1( −+ )
2
1

,1( ++                

                   

    

(−1,−1/ 2)
(−1, +1 /2)

( 0,−1/ 2)
( 0, +1 /2)
(+1,−1 /2)

(+1, +1 / 2)

1/2 0 0 0 0 0
0 −1/2 1/ 2 0 0 0

0 1/ 2 0 0 0 0
0 0 0 0 1/ 2 0
0 0 0 1/ 2 −1/2 0

0 0 0 0 0 1/2

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

⋅ζ nl h2
  . 

 

 

This matrix breaks down into two  2x2  and two 1x1 matrices which can be easily diagonalized .   

Doing so according to the degenerate perturbation theory yields two new eigen values:     ζ nl h2 /2 

and     −ζ nl h2 .   These correspond to the two new sets of 4-fold ( j=
3
2

, mj = ±
1
2

, ±
3
2

 )  and 2-fold 

( j=
1
2

, mj = ±
1
2

 ) degenerate levels split from the original 6-fold degenerate level in the absence 

of spin-orbit interaction as given in Sect. 6.5.  The two sets of new eigen states correspond to the 

spin-orbit coupled   j= 3 / 2 , m j = ± 3 / 2, ±1 / 2 and j =1/ 2 , m j = ± 1/ 2  hydrogenic states.  

The diagonization procedure gives also the relevant vector-coupling coefficients 
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  < lmlsms | jm jls >   defined in (6.59) for the eigen functions for this particula r case.  For 

example,  the vector-coupling coefficients: 

 

  < j m j l s |lml sms > =< 3/2,±3/2,1,1/2 |1,± 1,1/2,± 1/2> = 1 , 

 

  
< j m j l s |lml sms > =< 3/2,−1/2,1,1/2|1,−1,1/2,1/2> =

1
3

 , 

 

  
< j m j l s |lml sms > =< 3/2,−1/2,1,1/2|1,0,1/2,−1/2> =

2
3

 , 

 

etc. 

This is the procedure for calculating vector-coupling coefficients in general. 

 

9-2. The perturbation theory for the covalent bonded homo-nuclear diatomic molecule can be extend 

to the case of hetero-nuclear diatomic molecules: 

 

  

EA
ˆ H AB

ˆ H BA EB

 

 
  

 

 
  

CAγ

CBγ

 

 
 

 

 
 = Eγ

CAγ

CBγ

 

 
 

 

 
   

 

where 

 

EA ≡ < A | ˆ H | A > ≠ EB ≡ < B | ˆ H | B >, HAB ≡ < A | ˆ H | B > = HBA
* ≡ < B | ˆ H | A >*      . 

 

Setting the corresponding secular determinant to zero gives: 

 

     Eγ
2 − (EA + EB ) Eγ − HAB

2
+ EA EB = 0 , 

 

which gives the bonding and anti-bonding levels of the heteronuclear molecule: 
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Ea
b

=
( EA + EB )

2
±

1
2

( EA − EB )2 + 4 HAB
2[ ]1/ 2

≈ EA
B

±
HAB

2

( EA − E B )
,

  

 

for  ( EA − EB ) >> HAB
2   and EA > EB.   The corresponding wave functions of the bonding and 

antibonding orbitals of the molecule are: 

  

 |b > = CA
(b ) | A > + CB

(b ) | B >      and      | a > = CA
(a ) | A > + CB

(a ) | B >    , 

 

where  ( EA − Ea,b )CA
(a,b ) + HAB CA

(a,b) = 0. 

 

More specifically,  they are: 

 

CA
(a ,b ) =

HAB

HAB
2
+ (EA − Ea,b )2[ ]

       and      CA
(a ,b ) =

EA − Ea,b

HAB
2
+ (EA − Ea,b )2[ ]

 . 

  

[ Note:  HAB = − H AB  .] 

 

9-3.  Suppose the un-normalized molecular orbital of a diatomic homo-nuclear diatomic molecule is: 

 

Ψmo = CA | A > +CB | B > 

  

where | A > and  | B > are the normalized atomic orbitals.   

(a) The normalized molecular orbital is: 

 

Ψm.o. =
1

| CA |2 + | CB |2 + 2SCA CB

CA | A > + CB | B >[ ] , 
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where S ≡< A | B >  is the overlap integral between the atomic orbitals and CA and CB are 

assumed to be real.   

 

 

(b) The corresponding molecular energy is: 

 

E m ≡ < Ψm | ˆ H | Ψm > =
|CA |2 EA + |CB |2 EB + 2CA CB HAB

|CA |2 + |CB |2 +2SCA CB

 , 

 

and  

 

   Em |CA |2 + |CB |2 + 2SCACB[ ]= |CA |2 EA + | CB |2 EB + 2CACB HAB  . 

 

Following the basic concept of Coulson’s molecular-orbital theory,  differentiate the 

above equation against variations in CA gives: 

 

 
  

∂Em

∂CA

|CA |2 + | CB |2 + 2SCACB[ ]+ 2Em CA + S CB[ ]= 2 CA EA + CB HAB[ ]  

 

Minimizing the molecular energy against variations in CA,  or setting ∂Em /∂CA = 0,  yields one 

condition that Em,  CA,  and CB must satisfy: 

 

     (EA − Em) CA + ( HAB − EmS ) CB = 0   . 

 

Similarly,  by minimizing the molecular energy against variations in CB,  or setting 

∂Em /∂CB = 0,  yields another condition Em,  CA,  and CB must satisfy: 

 

   (HBA − EmS ) CA + ( EB − Em ) CB = 0   . 

 

The secular determinant of these two homogeneous equations must be zero: 
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EA − Em HAB

HBA EB − Em

≅ 0   , 

 

assuming the overlap  integral is negligible or S ≈ 0.  This result is the same as that obtained in 

Problem 9-2 above according to degenerate perturbation theory.   

 

9-4. The number of atoms per cubic cell of volume a3  in such a lattice: 

   

     
N
a3 = 2⋅[(8 ⋅

1
8

) + 6 ⋅
1
2

] =
8
a3    . 

 

 The number of valence electrons per conventional unit cell of diamond lattice = 4 ⋅
8
a3   . 

 

9-5. The primitive translational vectors for; 

 

  SCC:    
r 
a = a ex   ,   

r 
b = a ey   ,   

r 
c = a ez      ; 

 

  FCC:  
  

r 
a =

a
2

(ex + ey )  , 
  

r 
b =

a
2

(ey + ez )   , 
  

r 
a =

a
2

(ex + ez )       

 

9-6. Diamond lattice =  FCC with 2 atoms per basis at ( 0, 0, 0)  and  
1
4

,
1
4

,
1
4

 
 
 

 
 
  .   It is,  therefore,  

equivalent to two inter- laced FCC lattice displaced one quarter the distance along the body 

diagonal of the FCC. 

 

9-7. The C-C bond length in the diamond structure = 3
4

a . 
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Chapter 10 
 
 
 
 
10-1.  For a two-dimensional electron gas,  the density-of-state is independent of the energy;  

therefore,  the Fermi energy is directly proportional to the electron density: 

 

    
    
N e = D(2)(E)d =

m
π h2

0

EF

∫ EF   . 

 

10-2.   

(a) The chemical potential of a free-electron gas in two dimensions is given can be 

found from Eq.(10.29): 

 

    
N e =

m kBT
π h2

0

∞

∫ 1
e(E −µ) / kBT +1

d E
kBT

=
m kBT
π h2 ln e µ / kBT + 1[ ] ; 

 

   ∴   µ (T) = kBTln[e
πh 2Ne

mkBT −1] , 

 

 for Ne electrons per unit area. 

 

(b) Plot µ(T ) / EF   as a function of kT / EF   as in Figure 10.6(b): 

 

    

µ
E

F

k
B

T

E
F0 0.1 0.2

1.00

0.95

  . 
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10-3. For a typical 1-D energy band,  sketch graphs of the relationships between the 

wave vector, k,  of an electron and its:    

(a)  energy,   

E

k
0  

 

(b)  group velocity,   

             

Vg

k
0

 
 

(c) and effective mass.   

            

m*

k
0
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d.  The approximate density-of-states     D
(1) (E) ) for the energy band of part a aboveis 

 

 

D  (E)

k
0

(1)

 
 

 

10-4. The E(kx) vs. kx dependence for an electron in the conduction band of a one-dimensional  

semiconductor crystal with lattice constant a = 4 Å is given by: 

 

   E (kx )= E2 −(E2 − E1)cos2[kxa /2] ; E2 > E1     . 

 

(a) The E(kx) for this band in the reduced and periodic zone schemes.    

 

   
periodic zone

reduced zone

2ππ− 2π − π
0

E1

E2

E

kxa

 
 

 

 (b) The group velocity of an electron in this band is:    
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vg =

1
h

∂E
∂k

 

 
 

 

 
 =

( E2 − E1) a
2h

sin kxa  

 

and is sketched below as a function of kx:  

 

             

π
− π

0

Vg

kxa

 
 

(c) The effective mass of an electron in this band as a function of kx is: 

 

  
m *= h2 ∂2 E

∂2k

 

 
 

 

 
 

−1

= h2 (E2 − E1)a2

2
coskx a

 

 
 

 

 
 

−1

 

 

and is sketched below it in the reduced-zone scheme:   

 

   

π− π
0

m*

kxa

e

 
 

A uniform electric field Ex is applied in the x-direction,  the motion of the electron 

is as follows: 
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 kxa  vg  me
*   Acceleration 

  

 0.2 π  > 0  > 0  -x direction 

 

 0.5 π  > 0  →∞  = 0 

 

 0.9 π  > 0  < 0  +x direction . 

   

10-5. Suppose now the corresponding electron energy E(kx) vs. kx  curve in the valence band is: 

   

    E (kx ) = − E3 + E3 cos2[kxa /2] 

 

(a) The E(kx) sketch for this band in the reduced- and periodic-zone schemes: 

 

  
periodic zone

reduced zone

2ππ− 2π − π 0

E3

E

kxa

 
 

  

(b) The group velocity of a hole in this band is: 

 

   
      
vg = −

1
h

∂Eh

∂ k

 

 
 

 

 
 =

E3 a
2h

sin kxa  

 

 and is sketched below as a function kx:  

 



10 - 6 

 

 

π
− π

0

Vg

kxa

 
 

(c) The effective mass of the hole in this band as a function of kx  in the reduced zone 

scheme is: 

 

 
12

32

1

2

2
2 cos

2
*

−−









=








∂
∂

−= ak
aE

k
E

m x
e hh   . 

 

The corresponding effective mass of an electron in the valence band is  

 

             

π− π
0

m*

kxa

h

 
 

 

(d) A uniform electric field Ex is applied in the x-direction,  the motion of the holeis 

as follows: 
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 kxa  vg  mh
*   Acceleration 

  

 0.2 π  > 0  > 0  +x direction 

 

 0.5 π  > 0  →∞  = 0 

 

 0.9 π  > 0  < 0  -x direction . 

 

10-6.  From (10.46) and (10.47),  N∝(m*)3 / 2;  therefore, 

 

   
      
EF ≅

EC + EV

2
+

kT
2

ln
NV

N c

 

 
 

 

 
 =

EC + EV

2
+

3kT
4

ln
mh

*

me
*

 

 
 

 

 
   . 

 

 

10-7. A semiconductor has Nc=4x1017 cm-3 and Nv=6x1018 cm-3 at room temperature and has a 

band gap of 1.4 eV.   A p-n junction is made in this material with Na=1017 cm-3 on one 

side,  and Nd=2x1015 cm-3 and Na=1015 cm-3 on the other side.  Assume complete 

ionization of donors and acceptors. 

(a) If the semiconductor is not doped and choosing   E = 0 to be at the top of the 

valence band or   Ev =0 : 

 

 
      
EF ≅

EC + EV

2
+

kT
2

ln
NV

N c

 

 
 

 

 
 = 0.7+

1
80

ln
60
4

 
 
 

 
 
 ≅ 0.73 eV    , 

 ni = N c N v e
−

E g

kT
 

 
 
 

 

 
 
 

1/ 2

≅ 12x10−13( )1/ 2
<<< Nd

+ ≈ Nd or Na
− ≈ Na    . 

 One, therefore,  assume that on the p-side: 

 

p = N v e− (EF − EV ) / kT ≈ N a
− ≈ N a      and     

    
EF − EV ≈ kT ln

N v

Na

 

 
 

 

 
 ≈ 0.102 eV   . 
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(b) Similarly,  on the n-side,    N D
+ ≈ ND = N d − N a = 1015 cm−3 : 

   
    
EC − EF ≈ kT ln

NC

ND

 

 
 

 

 
 ≈ 0.15 eV    . 

  

 (c) The built- in voltage across the junction at room temperature is then: 

 

     VB ≅1.4 − 0.15 − 0.102 = 1.148Volt   . 

 

(d) The equilibrium minority carrier (electron) density on the p-side of the junction at 

room temperature is then: 

 

     np = nn e−VB / kT ≈ ND e−VB / kT ≈ 47 m−3   , 

  

which is extremely small! 

 

(e) When a forward bias of 0.1 eV is applied across the junction , the minority carrier 

density on the p-side increased by the factor:  6.54/1.0 ≅kTe . 

 

       

0.102 eV
0.15 eV 0.1 eV 1.4 eV

Ec

Ev

pn

Vapp   
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Chapter 11 
 

 
11-1. For a statistical ensemble of N spin-1/2 particles per volume,  the matrices representing 

the Cartesian components of the spin angular momentum of such particles in the 

representation in which ˆ S z  and ˆ S 2  are diagonal are given in (6.50).  The averaged 

expectation  values per volume of the three components of the spin angular momentum in 

terms of the appropriate density matrix elements for the statistical ensemble of particles 

are: 

    
    
< ˆ S z > = N Trace

ρ11 ρ12

ρ21 ρ22

 

 
 

 

 
 

1 0
0 −1

 

 
 

 

 
 
h
2

 

 
 

 

 
 =

Nh
2

( ρ11− ρ22 )     , 

 

    
< ˆ S y > = N Trace

ρ11 ρ12

ρ21 ρ22

 

 
 

 

 
 

0 −i
i 0

 

 
 

 

 
 
h
2

 

 
 

 

 
 =

i Nh
2

(ρ12 − ρ21) , 

 

    
< ˆ S x > = N Trace

ρ11 ρ12

ρ21 ρ22

 

 
 

 

 
 

0 1
1 0

 

 
 

 

 
 
h
2

 

 
 

 

 
 =

Nh
2

(ρ12 + ρ21)  , 

 

 

11-2. An electrical charged particle with a spin angular momentum will have a magnetization 

proportional to the spin angular momentum.  Suppose the averaged expectation value of 

the magnetization of the medium considered in Problem 11-1 above is 

  
r 

M = N Trace [ ˆ ρ (γ ˆ 
r 
S ) ].   

(a) The three Cartesian components of the magnetization in terms of the appropriate 

density-matrix elements as in Problem 11-1 above are: 

 

  
M z =

N γh
2

(ρ11− ρ22 )   , 

 

  
M y =

i N γh
2

(ρ12 − ρ21)  , 
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M x =

N γh
2

(ρ12 + ρ21)   . 

 

 

(b) The Hamiltonian of the spin-1/2 particles in the presence of a static magnetic field 

        
r 

H = H x
r 
x + H y

r 
y + H z

r 
z  ,  but in the absence of any relaxation processes is: 

   

   
    
ˆ H = −

γh
2

H z H x - iγH y

H x+ iγH y - H z

 

 
 

 

 
  

 

 From the results of Part a above, on the basis of the density-matrix equation 

(11.16),    the dynamic equations describing the precession of the magnetization 

  
r 

M  around such a magnetic field are: 

 

      

d
d t

(ρ11 − ρ22) = −
i
h

2 H12 ρ21 − ρ12 H21[ ]= γ i H x (−ρ12 + ρ21)+ H y ( ρ12 + ρ21)[ ]     , 

 

which can be shown to be 

 

    

d
dt

M z = γ −H x M y + H y M x[ ]= γ
r 

M ×
r 

H [ ]
z
  , 

 

making use of the results in (a) above.  Similarly for the x- and y-components of 

  
r 

M  ,  
    
∴ d

r 
M 

dt
= γ

r 
M ×

r 
H , just like in classical mechanics. 

 

(c) Suppose a magnetic field consisting of a static component in the   
r 
z -direction and a 

weak oscillating  component in the plane perpendicular to the   
r 
z -axis is applied to 

the medium:         
r 

H = H 0

r 
z + H x

r 
x ≡ H 0

r 
z + H 1cosω0t

r 
x .   The corresponding 

Hamiltonian is: 
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ˆ H = −

γh
2

H 0 H 1cosω0 t
H 1cosω0t H 0

 

 
 

 

 
  . 

  

 From (11.19),   

 

 
  

d
dt

(ρ11− ρ22) = −
(ρ11 − ρ22 )− (ρ11

( th) − ρ22
( th) )

T1

+ iγ H x (−ρ12 + ρ21)  . 

 

Also,   M ± =M x ± iM y  .  Therefore, 

 

  

d
dt

M z = −
M z − M z

( th)

T1

+ i
γ H 1

2
(M + − M −)cosω0 t  . 

 

Similarly,  for the other components: 

 

 
      

d
d t

M ± = −
M ±
T2

± iγ H 0 M m m iγ H 1 M zcosωot  . 

 

These are the well-known Bloch equations in the literature on magnetic 

resonance phenomena. 

 

11-3.    

(a) From the dispersion relation for light waves,  k2 = εω2 /c 2,  and the definitions 

k ≡ β+ iα   and   ε≡ ε'+iε" = ε0 + iε" ,  

    

  β ≅ ε0 ω0 /c   and    α ≅ ε"ω0
2 /β c 2  . 

 

Therefore,  on the basis of (11.44) and near the resonance,  ω0 ≈ ω21 and : 
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α ≅

ε"ω0
2

β c2 =
ε"ω0

ε0 c
=

4 π 2 ( N1− N 2 )ν 0 e2 z12

2

ε0 hc
g f (ν 0) =

ω p
2 f

4 ε0 c
g f (ν 0)    , 

 

where   ω p ≡
4πNe2

m
≈

4π(N1 − N2)e2

m
,  if most of atoms are in the ground 

state,  is known as the “plasma frequency”  and 
  
f z ≡

2mω21

h
z21

2  is known as the 

“oscillator strength”.  

 

(b) To compare the result obtained in Part a above with the classical result based on a 

damped harmonic oscillator model instead of the two-level atom model:  Suppose 

the equation of motion of the harmonic oscillator is of the form: 

  

 
  

d 2

d t 2 z(t) + Γ
d
d t

z(t)+ ω21
2 z(t) = −

f 1/ 2e
m

( ˜ E ze
−iω0t + ˜ E z

*e iω 0t)   

 

which describes the oscillating motion of a particle of mass m and negative charge  

of the magnitude f 1/ 2e bound to a fixed point in space similar to the oscillator 

shown in Figure 5.1.   The spring constant of the harmonic oscillator is equal to 

mω21
2 ;  the damping constant is Γ ; and the deviation of the particle from its 

equilibrium position in the absence of any electric field Ez is z(t).  

For the classical result, assumeω0 ≈ ω21 >> Γ−1 so that 

ω0
2 −ω21

2 ≅ 2ω0(ω0 − ω21).  Solving the above equation for a damped harmonic  

oscillator: 

   

   )(
4

1
~

0

ν
ω

−= fg
m

Eef
z   ; 

and  

    
Q ε = ε' + i ε" = 4π [ χ '+ i χ"] = 4π χ ' − i 4 π

N f e z
˜ E 

 

 
 

 

 
   , 
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therefore, the classical model  gives also : 

 

  

ε"ω0

ε0 c
=

ω p
2 f

4 ε0 c
g f (ν 0) = α   , 

 

which is the same as the result obtained in (a) above on the basis of the quantum 

mechanic density-matrix equation. 

 

(c) Since the complex dielectric constant based on the oscillator strength f using 

either the quantum mechanical model or the classical harmonic oscillator model 

gives the same result for ε” ,  it is obvious that the same should be true for ε’.   

The classical harmonic oscillator model,  therefore,  can be used to characterize 

the dispersion and absorption characteristics of linear optical media with only 

three phenomenological parameters:  the oscillator strength f,  that characterizes 

the strength of the charge e2 ,  the resonance frequency ω21  ,  and the damping 

constant Γ   associated with the bound particle in the harmonic oscillator model.   

 

11-4. Differentiating (11.51)  

 

')]'()'()'()'([)( )')(/1(
''

'
''

)(

dtettVtVt
i

T
t ttTi

t

nmmm
m

nmmm
mn

th
mn

mn
mnmn −+ω

∞−
∫









ρ−∑ ρ+
ρ

=ρ
h

 

 

 gives:  

 

  

d
d t

ρmn =
ρ

mn

( th )

Tmn

+
i
h

[ρmm'V (t)m' n
m'
∑ − V (t)mm'ρm 'n ]− ( iωmn +

1
Tmn

)ρmn   , 

 

which is Eq.(11.27).  (11.51),  therefore,  satisfies and is a solution of (11.27). 
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11.5 The second-order nonlinear optical susceptibility ˜ ˜ χ (2 )(ω1 + ω2 = ω3)  relates the induced 

macroscopic polarization component Pi(ω3)  to the applied electric field components 

E j (ω1)  and Ek (ω2)  in the medium: 

 

Pi(ω3) = ˜ ˜ χ ijk
(2)(ω1 + ω2 = ω3) E j (ω1) Ek (ω2)

j ,k

∑   . 

 

For any such medium with inversion symmetry,  inverting the coordinate axes leaves 

˜ ˜ χ ijk
(2)(ω1 + ω2 = ω3) invariant but  changes the signs of all the vector components: 

 

   − Pi(ω3) = ˜ ˜ χ ijk
(2)(ω1 + ω2 = ω3) − E j (ω1)[ ] −Ek (ω2)[ ]

j,k

∑ = Pi(ω3)    . 

 

 Therefore, ˜ ˜ χ (2 )(ω1 + ω2 = ω3)  must vanish. 

 

11-6. Consider a laser with the following parameters: T1 ~ 10-9 sec, T2  ~ 10-12 sec, Tph ~ 5x10-12 

sec , Rpump~ 1027   /cm3 - sec ,    Bhν 0g f (v0)~ 6x10−7cm3/sec .  The corresponding laser rate 

equations are:   

 

d
d t

(N2 − N1) = −109 (N2 − N1) −1.2 ⋅10−6 ( N2 − N1 )N ph +1027

d
d t

N ph =− 2 ⋅1011 N ph + 6 ⋅10−7 (N2 − N1 )Nph + 0(N ph
(spont))

 

 
  

 
 
 

 

 

  Changing the scales:   t → 10τ, (N2 − N1) →1015n, Nph →1014 N   so that the 

numbers are more manageable in the numerical computation: 
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d
d τ

n = −10n −1.2n N + 104

d
d τ

N =− 2 ⋅103 N + 6 n N + 0(N (spont))

 

 
  

 
 
 

  . 

 

 The steady-state solutions of these equations are: nss = 333.3  and  Nss ≈16.6.  

Changing to normalized parameters:   
  

n
333.3

≡ y   and  
  

N
16.6

≡ z   ,  the above rate 

equations become: 

 

  

  

d
d τ

y = −10 y (1+ 2 z ) + 30

d
d τ

z =2 ⋅103 z ( y−1) + 0(z(spont))

 

 
  

 
 
 

  . 

  The turn-on dynamics of such a laser can be calculated numerically on the basis of these 

normalized laser rate equations using,  for example, the  Mathematica program:  

 

NDSolve[{y'[x] == -20 y[x] Abs[z[x]] - 10 y[x] + 30,  
z'[x] == -2000 z[x] + 2000 y[x] z[x] + 0.001, y[0] == 0,  
z[0] == 0}, {y, z}, {x, 0, 2}] 

g = 0/0 

Plot[Evaluate[ y[x] /. g],{x, 0, 0.5},PlotRange-> {0, 2}, 
AxesOrigin->{0, 0}, 
AxesLabel->{"t", "n(t)/n(s.s)"}] 

Plot[Evaluate[ z[x] /. g], {x, 0, 0.5}, PlotRange->{0, 10}, 
AxesLabel->{"t", "N(t)/N(s.s.)"}] 

 

The resulting calculated dynamics for the normalized population inversion and 

intracavity intensity are shown in the figures  ( t in 10-7 sec) below.   These results show a 

pattern of laser relaxation oscillations with the frequency in the range of a few tenths of a 

Ghz and a damping time on the order of tens of nsec,  numbers characteristic of a 

semiconductor laser. 
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 Figure 11.1 -  Examples  of the transient dynamics of a semiconductor laser. 

 

 



Errata 
 

 

Chapter 4 - 
-  Page 48,  Eeq.(419)  should read :  

 

⎥
⎦

⎤
⎢
⎣

⎡ +
−

=
−

dk
kk
kk

idk

e
A
F dik

2
21

2
2

2
1

2 sin
2

cos

3

  , 

    not : 

 

  

F
A

=
e− ik3d

cosk2d − i
k1

2 + k 2

2k1k2

sin k2d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

      

                                                                . 

-  Page 55,  line 7 should read: 

 

 x)(CĤˆx)(EC(-1)x)(CˆĤ
nnn E

n
nE

n
nn

1+n
E

n
n Ψ∑=Ψ∑=Ψ∑ PP       , 

 

    not : 

 

 

    
ˆ H ˆ P Cn

n
∑ ΨE n

(x) = ± CnEn
n

∑ ΨE n
(x) = ˆ P ˆ H Cn

n
∑ ΨE n

(x)    . 

 

-  Page 60,  Problem 4.1,  line 4 should read: 

 

   for   .......10and4=β …..          , 

 

    not : 



   for   β = 2 and 6 .......…..          . 

  

 

-  Page 61,  Problem 4.4,  equation should read: 

 

   ............)( =Ψ x     , 

 

    not : 

   V(x) = ………   . 

 

-  Page 62,  Problem 4.6 (c),  should read: 

 

   … for the lowest two bound states…..         , 

 

    not : 

   for the lowest three bound states   …..          . 

 

 

 

Chapter 5 - 
-  Page 84,  line 12 should read:  

 

2
1

)(||)|ˆˆ|(|)ˆˆ(| 22 naaaan =α=>αα<−>αα<=Δ −+−+     , 

 

     not   Δ n = < α | ( ˆ a + ˆ a )2 |α > − (< α | ˆ a + ˆ a |α >)2 = |α | = (n )
1
2          . 

 

-  Page 82,  third line from the bottom should read: 

 



  
= < 0 |α > 2 |α |2n

n!n
∑ = < 0 |α > 2e|α | 2

,   

    not  : 

  
= < 0 |α > 2 α 2n

n!n
∑ = < 0 |α > 2e|α | 2

. 

 

 

Chapter 6 – 
- Equation (6.3) should read : 

 
  

,),,(

),,(
sin
1sin

sin
11

2

2

2

2

222
2

2

2

φθΨ=

φθΨ
⎭
⎬
⎫

⎩
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡
∂φ
∂

θ
+⎟

⎠
⎞

⎜
⎝
⎛

∂θ
∂

θ
∂θ
∂

θ
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−

rE

r
r

e
rrr

r
rrm

E

E
h

 

 
not  : 

 

   

    

−
h2

2m
1
r 2

∂
∂r

r 2 ∂
∂r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

1
r 2 sin2 θ

∂
∂θ

sinθ ∂
∂θ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

1
r 2 sin2 θ

∂ 2

∂φ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −

e2

r

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

ΨE (r,θ,φ)

= EΨE (r,θ,φ) .
 

 
- Equation (6.36) should read: 

 

 )()()1(1
2

2

2
2

2

2

rRErR
r

e
rr

r
rrm EE lll

llh
=

⎭
⎬
⎫

⎩
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡ +
−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

− , 

 

   not : 

 



     
    

−
h2

2m
1
r 2

∂
∂r

r 2 ∂
∂r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

∂
∂r

−
l(l +1)

r 2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ −
e2

r

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

REl (r) = El REl (r) . 

 

 
-  Page 91,  Eq.(6.31) should read : 

 

)1(,'
2
1

,,,
')]1)([('|ˆ|
±± δδ+±>=<

ll
llllll hlmlll

mm
mmmLm      , 

 
  -  not : 

)1(,'
2
1

,
')]1)([('|ˆ|
±± δδ+±>=<

ll
llllll hlmlll

mm
mmmLm     . 

 
 

-  Page 99, equation in should read : 

 

 

 drrrRdddrrYrR 22
10

2

0 0

22
0010 )(sin)(∫ =∫ φθθ

ππ

, 

 

not : 

 drrrRdddrrrR 22
10

2

0 0

22
10 )(4sin)( π∫ =∫ φθθ

ππ
, 

 

 

-  Page 99, Equation (6.38) should read : 

 

 ………….. and  
 
| py >=

i
2

(| p+1 > + | p−1 >) .  (6.38)   , 

 

not : 



 …………….. and   | py >= i (| p+1 > + | p−1 >).  (6.38)  . 

 

 

 

 

-  Page 103,  Eq.(6.49) should read : 

 

)1(,'
2
1

'''
')]1)([('|ˆ|
±± δδ+±>=<

jj mmjjjjjj mjmjmjJjm hm      , 

 
  -  not : 

 

  
< jm j | ˆ J ± | j 'm j

' >= [( j m m j )( j ± m j +1)]
1
2 hδ jj 'δm j ,(m j

' ±1)    . 

 
 

-  Page 109,  Problem 6.8(e)  should read : 

 

2
1

22 ]|ˆ||ˆ|[ >ΨΨ<−>ΨΨ<=Δ zzz LLL  , 
not : 

  ΔLz = [< Ψ | ˆ L z | Ψ > − < Ψ | ˆ L z | Ψ >2]
1
2  . 

 
 

 

-  Page 108,  Problem 6.8(b)  should read : 

 

……measurement of  L2  and Lz that gives ….., 
 



not : 

 

…….measurement of  L2  and Lz  gives ….., . 
 

 

Chapter 7 – 
- line 18 should read : 

 

 )()()...()(),,...,,( 121121.... 112121 NaNaaaNNaaaa rrrrrrrr
NNNN

rrrrrrrr
ΨΨΨΨ=Ψ −− −−

   , 

   not:

 

)()()...()(),,...,,( 121121.... 1111112121 NmsmnNmsmnaaNNaaaa rrrrrrrr
NsNNNNNsNNNNNN

rrrrrrrr
ll ll ΨΨΨΨ=Ψ −− −−−−−−

 

 

Chapter 8 – 
- Equation (8.25) should read: 

 

tEitEi

f eCeE 21 210|100|| )1(
12

hh
−−

>+>>=  , 

 

 not  : 

    | Ef >=|100 > e
−

i
h

E1t
+ C12

(1) | 210 >,e
−

i
h

E2t
 . 

 

 

Chapter 10 – 
- Eq.(10.46) should read:       

  



 
    
NC =

π
2

me
*kBT

π 2 h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3 / 2

   ,   not :     
  
NC =

1
2

me
*kBT

π 2 h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3 / 2

   .  

  

 

-  Eq.(10.47) should read : 

    

2/3

22

*

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

π
=

h

Tkm
N Bh

V    ,      not : 
  
NV =

1
2

mh
*kBT

π 2 h2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3 / 2

    .   
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