Introduction to Fourier Optics
Third Edition
Problem Solutions

Joseph W. Goodman
Stanford University

Copyright Joseph W. Goodman, all rights reserved.

September 22, 2005



Preface

Doing problems is an essential part of the learning prooasary scientific or technical subject. This is
particularly true for subjects that are highly mathematiaa is the subject dhtroduction to Fourier Optics.
However, there are many different types of problems thatam#d imagine. Some involve straightforward
substitution into equations that have been establishdaeinext; such problems are useful in so far as they
relate an abstract mathematical result to a real situatiiih,physical numbers that might be encountered in
practice. Other problems may ask students to apply methodsisto those used in the text, but to apply
them to a problem that is different in some significant asfrect the one they have already encountered. By
far the best problems are those that leave the studentdeélit he or she has learned something new from
the exercise.

With the above in mind, | would like to mention some of my fat@problems from this text, with some
indication as to why they are especially valuable:

Problem 2-4 introduces the student to the idea that a sequdwo Fourier transforms, perhaps with
different scaling factors, results in an “image” with mdiggdtion or demagnification.

Problem 2-8, which explores the conditions under which ance®idal object results in a cosinusoidal
image, is highly instructive.

Problem 2-14 introduces the student to the Wigner disfidbyta valuable concept which they will
encounter nowhere else in the book.

Problem 3-6 shows how the diffraction integrals for monachatic light can be generalized to apply
for non-monochromatic but narrowband light.

Problem 4-4 is has a particularly simple and satisfying froo
Problem 4-11 asks the student to derive an important prppédiffraction gratings.

Problem 4-12 introduces a very important and simple methoddlculating the diffraction efficiency
of a grating.

Problem 4-15 analyzes a particularly interesting and ingmttype of grating.

Problem 4-16 also introduces an important idea.

Problem 4-18 is an excellent exercise that increases uadeling of the self-imaging phenomenon.
Problem 5-5 increases understanding of the vignettinglenob

Problem 5-6 introduces the student to an astigmatic process

Problem 5-9 increases understanding of the paraxial appetion.



Problem 5-14 introduces the student to the idea of a Fresmel glate and its effects on a transmitted
wave.

Problem 6-2 introduces the concepts of line spread funstom step responses.
Problem 6-3 illustrates the effects on the OTF of a centratalation.

Problem 6-7, which asks the student to derive the optimumdaiizhe pinhole in a pinhole camera, is
one of my personal favorites.

Problem 6-8 is very instructive.
Problem 6-15 provides further introduction to step respens
Problem 6-17, while very simple, carries an important mgssa

Problem 7-5 provides an interesting exposure to Joneslaoaltusolving a problem somewhat different
than those treated in the text itself.

Problem 7-6 introduces a different method for use of the raagoptic spatial light modulator.
Problem 7-7 is an interesting and very practical problem.
Problem 8-1 is a simple introduction to the importance of laectent background in coherent imaging.

Problem 8-5 provides the student with the real alignmentiiregnents in a typical coherent optical
processing system.

Problem 8-10 provides a system that uses both coherent eoldrent light, and is an excellent exer-
cise for the student.

Problem 8-11 is a good exercise pertinent to the VanderLibgt fi
Problem 8-15 requires some ingenuity and is instructive.

Problem 8-16 is an excellent exercise related to inversifily, and happens to be another of my
favorites.

Problem 9-5 is a good exercise for the student to test higfimwledge of image locations and magni-
fications in holography.

Problem 9-6, concerning the problem of X-ray holographiidgghly instructive.

Problem 9-7, while rather lengthy and involved, providemeaeal numbers regarding wavelength and
angle sensitivity of thick holograms.

Problem 9-10 is highly recommended.

Problem 9-12 is a worthwhile exercise in understanding trepding requirements for computer-
generated holograms.

Problem 10-3 yields a simple and intuitively satisfyinguiésibout the allowable time separation of
the reference and signal pulses in spectral holography.

Problem 10-6 provides an excellent exercise to help theestughderstand the wavelength mapping
properties of an arrayed waveguide grating.



In closing, | would thank Mr. Daisuke Teresawa, who servethggeaching Assistant in 1995 and who
created LaTeX versions of the solutions to several of thélpros.

| would be grateful if instructors would report to me any esror possible simplifications of these solu-
tions, so that changes can be introduced in future versibilmsodocument.

Joseph W. Goodman
Stanford University
October, 2004



Chapter 2

2-1. (a) We can determine the meaning of this symbol by exagiits behavior under integration. Let
g(z,y) be a function that is continuous at the origin, anddet= az,y’ = by. Initially assume

a>0,b>0.Then:

! /
r v ngtgt _ 1
// g(x,y) 6(ax, by) dedy = //( ) x,y)dadb—abg(0,0).

If eithera,b or both are negative, then by properly treating the chanfiaedimits of integration,
the right-hand side of the equation can be represented tas#ls byﬁg(o, 0). We conclude

thatd(az, by) = |a_1b\6(x y), since both yield the same result under integration.

(b) Using the result above, we have

comblax) combby) = Z Z d(ax —n)d(by —n)

n=—0o0 Mm=—00

- |ab| Z Z (w__) (y_%)

—0o0 M=—0Q

2-2. (a) F {rectx recty} = fi{% L[l{% exp [—727 (fxz + fyy)] dzdy.

The integral separates in rectangular coordinates. Exaaonie of the two separated integrals:

1/2 1
/_1/2 exp (—j2rfxx) dx ~onfx [exp(—j fox)] 1/2

[~2jsin(rfx)] = Wfﬂzsianx).
Tfx

- —j2nfx
The integral with respect tg is carried out the same way. The total result is the produth®f
two sinc functions:

F {rectx recty} = sincfx sincfy.
(b) F{A() Aw)} = J2, J1, (1= J2]) (1 = [y]) exp[—j2r (fxz + fry)] dzdy.

The integral again separates in rectangular coordinatesffices to concentrate on one of these
separated integrals. Use the convolution relation

A(z) = rect(z) @ rect{x)

1



and the convolution theorem to write
F{A(z)} = F{rectz) @ recfy)} = sinc(fx).
Thus
F{A(z) A(y)} = sin€(fx) sinc(fy).
(c) Clearly the functiory(z,y) = 1 can be represented as the limit of a sequence of well behaved
functions, e.g.
. 22 + y?
g(z,y)=1= ngnoo exp (—w NE ) .
Then according to the philosophy of transforms-in-theitlime would say

F{1} = lim F TPV gy w2 N2 (f% + f2
= Jim_ exp ( —T—r = Jim exp [-7N? (f% + f¥)] -

For every function in the sequence on the right, the area ity.umn addition, the width of
these functions grows smaller and smaller with increagingHence this sequence approaches

6(fx, fr)-
(d) By separability, we need only prove
1
Jrfx’
The Fourier transform of this function doesn’t exist. We é&v find a generalized Fourier trans-
form. To do so, use the following sequence definition:

F{sgn(z)} =

sgn(z) = lim gn(z)
where

—exp(z/N) <0 .
0 z=0

We Fourier transform each of thyg; (=) to produce a sequence of transforifig; (fx ), where

gn(x) =

{ exp(—z/N) x>0

0

Gn(fx) = /0 exp(—z/N) exp(—j2ﬁfxx)dx—[ exp(z/N) exp(—j2n fxx) dx
oo 1 0 1
= xp |— | — + 527 x| dx — xp |— [ —— 27 x| dx
[ o |- (g iomts ) o] do- [ ow |- (-5 +izmix) o
B 1 B 1  —janfx
L +genfx & —g2mfx (%)24—(2wa)2.

Now if N — oo, the right hand side of this equation approaches

1
Jmfx

G(fx) = i Gn(fx) =

as was to be proved. Hence

F tsaroysortn) = () (57 )

Jmfx Jjmfy




2-3. (@) FF{g(z,y)} = foj"dfxdfy{ foj‘dgdng(g,n) 6—4727T(E.fx+nfy)}6—47'277(fxz+fyy),

Interchange the orders of integration, yielding
[ [ deingeny [ [ arcary expi-gzniic + ) fx + (a4 ).

But the right-hand double integral is identically the samse&l@ + =,7 + y), and the sifting
property can be applied to the remaining double integral,

// dédn g(§,m) 6(§ +z,m +y) dédn = g(—z, —y).

The result forF ~t F~1{g(x,y)} is derived the same way with a change of sign in both exponen-
tials.

(b) The simplest method of proof is to show that

FHG(fx, fy)® H(fx, fv)} = g(z,y) h(z,y).

Remembering that th&—! operator operates on the variables, fv ),
- { // GEmH(fx =& fv — n)dédn}
= [[etcmF s~ e gy —m)yacan

= [ [ e exslizntee + m) dedo hiay)
= g(z,y) h(z,y)
where the shift theorem for inverse transforms has been used
© F{Vg(z.y)} = f{aa—;g(x,y) + %;g(x,y)} - Now
62
{ gaotan)} - / [ Gt oy gpapy
X

= // fX,fY 2 UxatI) df  dfy

B / / (=47 1%) Gfx, fy) 7= dfdfy



Similarly,
2 o0
f{aa_yzg(“”y)} = // (—4m2f2) G(fx, fy) P2TUXTHID ap e dfy,.

We conclude that
F{Vig(x,y)} = —47*(f% + /) G(fx, fy) = —47*(f%x + [3) F{g(z,v)} .

2-4. (a) Apply the two operators one after the other,

Fp{Fa{g(z y)}} //dfxdfye i%E (@ fx+yfy)

// dedng(€,n)e 2 (fx&+fym)

//dgdngg n) //dfxdfye p2nfx (548 )+ (3+4)]

b

£.2m Y\ _ 2 a a
5(a+ b’a+b> = a3 €+ Fen+gy).
Substituting this expression and using the sifting propefthe delta function, we obtain

Fol{Falgw oty =30 (-5 -3v).

The last double integral t‘s(g a4+ %) . But this delta function can be simplified as follows:

(b) Interpretation:
Reversal of the signs of the arguments reflects the fungtiony) about the origin. We say that
g(x,y) has been “inverted”.
The multiplier§ preceding the argumentsandy results in either a stretcla (< b) or a contrac-
tion (@ > b) of g(x, y). These two cases can be referred to as a “magnification” oem&dnifi-
cation” of g(x, y).

2-5. Note that sincé& (fx, fy) = [ [ g(z,y) e 72Ux2+/vy) dady, we see that

[ [ soasas

Similarly, sinceg(z,y) = [ [ G(fx, fy) /2 Ux2+¥v) df v dfy, we have

/7G(fX7fY)dede-



Thus

ﬁ 9(z,y) dady

— 00

G(0,0) ' G(0,0) 1

Axy = ’ = = :
9(070) 9(070) ffG(fX,fY) df x dfy Afxfy

HenceA,,As, ¢ = 1.
2-6. (@) B{d(r—ro)} =2 [ rd(r —ro) Jo(2mrp) dr = 27roJo(27r0p).
(b) B{gr(r)} =2« fal rJo(27rp) dr. Use the identity

/ wJo(z) dz = 2 (z).

Change variables to = 27rp, from which it follows thatdz = 27pdr. Then

1 mp 1 - J1(27mp) — aJy(27a
= o9 92 / xJO(‘T)d‘T = 2 [‘TJl(x)]gﬂ'Zp = 1( p) 1( p)
27Tp 2mwap 27Tp P

B{gr(r)}

(c) B{gr(ar)} = 27TfOOOTgR(aT) Jo(2mrp)dr = 27 fooo 2 gr(ar)Jo (2mart) d%. Define a
new variable of integratioa = ar. The limits do not change. We have

B{gr(ar)} = i—g /000 o gr(o) Jo (27TU§) do = a_12G0 (g) .

(d) The functiorexp(—r?) is separable in both polar coordinates and rectanguladeuates, since
exp(—m1%) = exp[—m(a® +y7)].
From the table of two dimensional Fourier transforms, wevktizat
F{expl—n(a® +y*)]} = exp [-7 (fX + 17)] -

Hence
B {exp(mr?)} = exp(mp?).

2-7. (a) Givery(r,0) = gr(r)e’™?,
27 00
.7:{9(7’, 9)} — ]_—{gR(,,,) ejm@} — / doejmé/ dr TQR(T) e—j27rrp(cos0r:os ¢+sin 0 sin @)
0 0

2T 00
/ dfei™o / dr TgR(T) efj27rrpcos(¢79)
0 0

27 00
/ dfe’™? / drrgg(r) e 92mrpsin(3+0-¢),
0 0

Using the hint, we obtain

oo

2m o)
/ dﬁejme/ drrgr(r) Z Jk(2ﬂ'7’p)efjk(%+9*¢).
0 0

k=—o0



Noteexp(—jkn/2) = (—j)*. Invert the orders of the two integrations, yielding

o0

o0 2m
> (_j)kejW/ dTTQR(”)Jk(%er)/ dei(m—ke.
0

0

k=—o0

The last integral is zero except whénr= m, in which case it i2x. It follows that
F{gr(r) e} = (=)™ e’ Hum {gr(r)},

where -
Hm {gr(r)} = 27T/0 rgr(r) Jm (2mrp) dr.

(b) An arbitrary function separable in polar coordinates(r) ge (6), is periodic inf. Therefore
go(0) can be expanded in a Fourier series, yielding

o0

gr(r) ge(0) = > cme’™ gr(r)

m=—0o0

where the Fourier coefficients, are given by

1 2 .
Cm = — ge(0) e 7™ dg.
2m Jo
It follows that -
Flgr(r)ge®)} = Y cmF {™ gr(r)}

The results of part (a) can now be applied, demonstratirtg tha

oo

Flor(r)go(0)} = Y cm(—i)" exp(ime) Hum {gr(r)} -

m=—o0

2-8. To avoid confusion, let’s call the frequencies of thplegal cosinusoidal signdlfx, fy ). Note that the
input can be expanded into a sum of two complex exponentials,

g(z,y) = cos2n(fxa + fyy)] = % expli2r(fxz + fry)] + % exp[—j2n(fxz + fyy)).

Now to have any hope of producing a cosine at the output, wéater insist that the system bwari-

ant, for only then can we expect the exponential nature of theitywat components to be preserved.

For an invariant system, each complex-exponential inpatipces a complex-exponential output of

the same frequency, but with a possible change of amplitadghase, as determined by the transfer
function. Remembering that the complex exponentials ayendunctions of linear, invariant systems,

we write the output(zx, y) as

o(e,) = SH(Fx, Jy) esljzn(fxe + o)) + 5H(=Fx, ~fy) expl—j2n(fxe + fry)l,

whereH (fx, fy) is the transfer function of the system, given by the Fourgmdform of the impulse
responseéi(x,y). The transfer function can be written as the product of anliéumde function and a
phase function,

H(fx,fy)=A(fx, fy) eﬁb(fx,fY)’



whereA(fx, fy) > 0. Thus the output can be written

Wey) = AU fy) esljzn(fxe + fyy) + o(Fx, )
£ SAC-Fx— ) explgan(Fxa + Fry) + 6(-Fx, )

Now we ask under what conditions can the above two expori¢etias be combined to form a cos-
inusoidal output of frequencyfx, fy)? The answer is that the following two conditions must be
satisfied:

Al=fx.=fv) = Alfx. fr)
¢(_fXa_fY) = _¢(fX1fY)7

i.e. the magnitude of the transfer function must be even hagphase must be odd. These symmetry
relations will be satisfied if and only if the impulse resperts the systemh(z, y), is real-valued.
Thus, to summarize, the required conditions are that theesybe linear and invariant, and that its
impulse response be real-valued.

2-9. Consider a linear, invariant system with a circulayynmetric impulse respongér), and a corre-
sponding circularly-symmetric transfer functidf(p). First take the Fourier-Bessel transform of the
input Jy (27 por), which from Prob. 2-6(a) is

1
B{Jo(2mpor)} = 2—5(/) = po)-
TPo
The output from the system is found by multiplying the spattiof the input by the transfer function.
Thus the spectrum of the outplf(p), must be given by

Vip) =H(p) %p(f(p —po) = I;ippz)

(p = po).

An inverse Fourier-Bessel transform can now be appliechguie same transform pair listed above,
yielding and output

v(r) = H(po) Jo(2mpor).
Clearly the function/y(27por) is an eigenfunction of the system. The corresponding emjanvis
H(po).

2-10. Consider the Fourier transform operator as a system.

(a) The system is linear by virtue of the linearity theorenfotirier transforms.

(b) The system will have a transfer function only if it is gkiivariant. It will be shift-invariant only if
a shift of the input produces a simple shift in the output. ldegr, we know from the shift theorem
of Fourier analysis that a shift of the function to be tramsfed produces a multiplicative phase
factor in the transform domain, but no shift of the transforimerefore the Fourier transform
operator is not shift-invariant, and the system can havearsfer function.

2-11. (a) By the convolution theorem,

P(fx, fr) = G(fx, fy) XY comi( X fx) comi(Y fy),



where we have used the similarity theorem and the fact tleFturier transform of a comb
function is another comb function. Further simplificati@sults from the following relation:

XYcombX fx)comiYfy) = XY > > §(Xfx—nYfr—m)

n=—0o0 Mm=—0o0

doo> dUx - < =3

n=—0o0 m=—0oQ

where we have used the fact thidtz, by) = |a1b\5('r7y)' We have assumed in the above that
X >0,Y>0.

(b) The Fourier transform of the giverix, y) is found as follows:
XY . X . Y
Flg(z,y)} = Ts'nc<5fx) SlnC(ng) ;

where the similarity theorem has been used. The figure bethmws sketches of(z,0) and
p(z,0) in this case.

J
9(x,0)
1
-X/4 X/4 X
b p(x,0)
1
-5X/4 -3X/4 -X/4 X4 3X/4 5X/4 X
Figure 2-11:

2-12. For a function with no spectral components outsideaifce with radiusB,
_ irc (2
G(fx, fv) = Gs(fx, fv)circ (B) ,

whereG,(fx, fy) is the spectrum of the sampled function. By the convolutireotem, the equivalent
expression in the space domain is

g(z,y) = [g(x,y) comb(%) comb(%)} @Bt {circ (%)} .

Recognizing that there is no difference between the fonaadireverse transforms for circularly sym-
metric functions, and using the similarity theorem, we have

B! {circ (%)} = B@.



2-13.

Expanding the comb functions into sumsédlunctions, we have
Jl (27TBT)

r

g(z,y) = XYZZg(gc,y)§(x—nX,y—mY)®B

2rB\/(x — §)* + (y — 77)2)

(oo} Jl
XYBY > 9(&m) 6(¢ —nX,n—nY) ( dédn
n m "o \/(I_€)2+(y_77)2

Ji (27B/(e —nX)2 + (y — mY)?
= XYBY Y gnX.mY) (¢<x—nx>2+<y—mm2 |

By the same arguments used in the case of the rectangulaidib@tadion, the maximum allowable
sampling intervals without overlap of the spectral islaadsX =Y = %. With these values

S (2B G- EV T &)
g(z,y) = 4322 ( ) (\/(\/ n)ii( _yﬂ 2 )

T~ 5B 2B)
n o my 7w Ji(27B/(x— 35)% +( 5)2)
;;g(ﬁ’ﬁ)Z{Q 21B\/(x — 7% )2 y—ﬂ:)32 }

The objecU,(x,y) has a band-unlimited spectrum, while the transfer funcfibyx, fy) of the
system is bandlimited to the regidfix| < Bx, |fy| < By. Because of the bandlimitation di, it is
possible to write

Since the imaging system is both linear and invariant, treegerand object spectr@, andG,, respec-
tively, can be related by

Gi(fy, fy) = H(fx, fv)Go(fx, fy) = H(fx, fvr) {reCt<2fTX> reCt<2f?Y> Go(vafY):| :
X Y

From this equation we can see directly that the output spectan be viewed as resulting from the
application of a new fictitious object with spectrum

G, (fx, fv) = f90t<f—X) reCt<f—Y) Go(fx, fr).

2Bx 2By
In the space domain, the relation between the fictitiousablajed the actual object is
U(;(SC, y) = U, (:c, y) ® 4BxBySinC(2Bfo')SinC(2.Byy)

4Bx By // Uo(&,m) sinc[2Bx (x — §)] sinc[2By (y — n)] dédn.

SinceU! is bandlimited, it can be reconstructed from samples takéineaNyquist rate, i.e. samples
taken at coordinates,, = B The sampled object which will yiel& after low pass
filtering is given by

Ul(x,y) = comb(2Bxx> comb(2Byy> Ul(z,y)

_ Z Z m Ny M
- 2Bxx 2Byy v Qvay 2By '

n=—0o0 m=—0oQ

n J—
ngvym =
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Substituting the expression derived abovelfgr

Ue,y) = > > [ / / U,(z,y) sindn — 2Bx€) sindm — 2Byn) dédn

n=—0o0 m=—0oQ

(o P M
2Bx’ 2By |’

This array of point sources will yield the same image as thgiral objectU, (x, y).

2-14. (@) Substituting the infinite-length chirp functiaria the definition of the Wigner distribution func-
tion, we obtain

W(fz) = / T InBete/2) —imBla—g/D? g—i2n i€ g
_ / e 27 (f—Px)E de = 6(f — pBx).

(b) For the finite-length chirp function we obtain

W(f,z) = /Oo ej”ﬁ(”f”frect(L —;5/2> e‘j’fﬁ(m_g/zﬁrect(L _25/2) EARAY3

o0

_ % jon(f—Br)E z+§/2 x—§/2
/Oo e rect<72 7 rect 5T d&

Now note that £/2 £/2 ¢
T+ T —
reCt( 27, ) reCt( 27, ) = reCt<m) 5

as can be verified by sketching the two rectangle functiodsdgtermining their region of over-
lap. Thus the Wigner distribution will be given by a Fourieartsform of the rectangle on the
right, evaluated at frequengy— Gx. Using the similarity theorem, we have

W (f,x) = [4(L — |2[)] sinc[(4(L — |z[))(f — Bz)]

for |x| < L and 0 otherwise.

(c) The two requested figures are shown below.



Figure 2-14:

W(0,x)
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Chapter 3

3-1. Begin with Maxwell’s equations,

- OH L OE
ng = —IUE VXH—EE
V-e€ = 0 V- uH =0,

wheree is dependent on spatial coordinates but independent ofipalin, andy is independent of
both spatial coordinates and polarization. Elimirfaten the left by taking the curl of the first equation
for £, and using the vector identity x (V x £) = V(V - &) — V2¢, giving

o oz > A(V x H)
ot

Use the first equation fai to reduce this equation to

- 02€

VIE-V(V-€) = pegg =0,

The second Maxwell equation fércan be expanded as follows:
V() =€(V-E)+&-Ve=0.

It follows that -
V~§:—5~—€:—5-Vlne.

€
Hence the wave equation becomes

02€

25 < —

Using the definitions given in Egs. (3-5) and (3-6), this emurecan be rewritten

n2 928 B

o5 -

3-2. The Sommerfeld radiation condition is

lim R <8—U —jk:U) =0.
on

R—oo

13
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A diverging spherical wave can be written in the form

ejkr

U =

r

For a diverging spherical wave ,

ou  oU ,ke-jkr ekt

%_E_] ro o2

Lettingr — R and inserting this expression in the left-hand side of thrai®@erfeld radiation condition,

we obtain

eikR  oikR pikR
lim R(jkS— - S — —jk
[ (*7 R r "R )

As R — oo, the result approaches zero, and thus the Sommerfeldicadéndition is satisfied.

. We begin by stating Eq. (3-26),

U(Ry) = i // explikror) [Z—Z — jkU cos(ii, 7"01)} ds.
)

Assume that the aperture is illuminated with the divergipigesical wave

A ik
Upy) = AR,

Now at P,

Jkra1
ou = Acos(ﬁ,f’gl)e <jk: - i) .

21

on T21

If gk > 1/T21, then

ou eIkra
— =~ jkA T
o jkAcos(f, a1) -

Substitute this expression in Eq. (3-26),

)

1 edkro1 edkra1 edkra1
UPR) = — // ds {jkA cos(f, 1) — jkAcos(f, Fo1)
721 721
ik A jk(ra1+ro1)
= ‘7 // © [COS(fL,fgl) — COS(ﬁ, f‘gl)].
21701
kA _ A
But L= = — 555+ SO
U(Ry) = = // exp[jk(re1 + ro1)] [ cos(7, 7o1) — cos(7, 71) s
J

21701

which is Eq. (3-27).

2
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3-4. We begin with an expression f6f,,

eJkron eJkTo1
G+ (Pl) - =
To1 To1

Taking the normal derivative of this function,

oG 1 Jkro1 . 1 ko1

il cos(f, o1) {jk — —} ¢ + cos(f, 7'o1) [jk — —] e~ .

on ro1| To1 Tor| fTou

Note thatP, and P, are mirror images of each other, 89 = 71, andcos(1, ?01) = — cos(n, To1)-

Substituting these facts into the above equation, we s¢adthass the screen and aperture

oG,
o
3-5. Using Eq. (3-63) we have the following:

(a) For acircular aperture of diametér

4(ore) =len()y

Using the similarity theorem for Fourier-Bessel transferfiq. (2-34)) and the Fourier-Bessel
transform pair of Eq. (2-35),

Fx=a/X
Fy=B/X

A(E B. O> @ (M) _ dJi(mpd)

AN 1 e T2y

Finally, note thap = \/f% + f¢ = % § y|eld|ng

2 2
2mpd Ju|lm/($) + () d
o(220) -2 0F) (-0
AN 4 o T2 5 2 '
: (£ +(3)
(b) A circular opaque disk of diametércan be modeled by the following amplitude transmittance

function:
. 2
ta(z,y) =1—circ (—;) .

From the linearity theorem of Fourier analysis it followatkhe angular spectrum of this structure

is
a 3 a f
A(X’X’()) 6<)\ /\) 3 ;
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3-6. We start with the equation after Eq. (3-56),

(Pot) // cos (7, 7o1) / — 2/ U(Py, —)e 2 (1=75) au/ ds.0

27T’UT‘01

Sinceu_ (P, t) has center frequency” and bandwidttAv, the inner integral is non-zero only for
V' in the rangev — Av/2,0 + Av/2). The firstv’ in the equation varies by only a small fractional
amount if Av <« 7; it can be replaced by and taken out of the integral. Alsexp[j27v/'ro1/v] —
explj2nwror /v], providedAr > ro; /v. Thus:

1 = = B [o') ) ,
u_(Pp,t) = — //wexp[jkrm]/ U(Py, —v)e 2™ dy' ds
j)\ 5 o1 — o

Definingu_(Py,t) = 0 for P; outsideX:,

1 o expljkr
’u_(Po,t) = —5\ / Pl, )% COS (n T‘Ol)d

(Note: A =v/v , k = 21/)\.)

3-7. (a) Substituting/(z,y, z) ~ A(x,vy, z)e’** into the Helmholtz equatio(V? + k?)U = 0,

2 o
[@Jra? 922

+ ==+ kﬂ Az, y, 2)e’** = 0.

Then,
(92 52 (9 0A . . )
2
VfAejkz ZA jkz + 2jkgAejkz (jk)2Aejkz + k2Aejkz _—
Z

Dividing by e?*# and simplifying,

2

0 0
Vid+ 2k A+ 55 A =0.

The “slowly varying” approximation for A implies that:

0? 0A
52 5AK ]2ka—

leaving,
0A

FA+ 2k— =0
ViA+j oz
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(b) We first evaluate a number of different derivatives:

A(z,y,z) = Al 7k22quy)
q
0 A dq peten® Ay at P dg g etas®
—A = 2 N k 1. )
0z (z,9.2) 2 4 ’ q J 2q? dz° ’
1 z% + dq
= —_ —_ .k A
(q T g ) R
0 CTA 22t
D awns) - M
62 A 42 2 A 22442
oAy, 2) = jk lejk + (sz> T
Ox 7 q q

2
(jk% - kQZ—Q) A(z,y, 2)

Similarly,
2
a7 Alz,y,2)

2
(jk% — kQ‘Z—2> Az, y, 2).

Now substitute the partial derivatives df into the paraxial Helmholtz equation. Noting that
dq/dz is equal to 1,

0A 1 22 4 y? 1dq a® +y* dg
VIA+ j2k— = |(2jk——k* = — 2jk—— + k* A
i 0z <j q q? qdz @ dz
= 0.

(c) Substituting the given expression into the result frart ),

B 1A [k, 5 o (1 A
A = A1<R+J7TW2>€XP_2(~’C +y)<R+J7TW2>}

T2 2
= A (l A )exp _p_} exp |:]]€p—:|

R TW?2 w2 2R
U = Aexp[jkz]
B 1 ) A r p2 ) ' p2
= Al (E +]7T—VV2> exp __W:| exp |:j/€2 +]kﬁ
B Wo p2 2
= AOW(Z)exp[ Wz]exp [jkz+]/€2R+39( )
where:
1/2
AW, M 2 L 1Y
W "I\R TW?2

0(z) = tan! (;};).

To show thati¥, is independent of, we differentiatelV? with respect toz and show that it
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equals zero:
A 2 W 2 A 2
WO2 = 2 RAA I A
Ao R W
dWd) (A (2WRPW' —2RW2R 2)*W
dz o AO R4 T2 W3
_ o (A PWIRW - mWOR - N ROW
B Ap m2W3R3 ’

where the prime sign designates a derivative with respectiow, using the conditiodg/dz =
1, we can expresB’ andW’ in terms of R andW:

d(1/q)

dz

d (1 A
gz(%*”%%%)
—-R 2,)\W’
" me

—1dq_—_1

TETP

1 2
_<_*”EW5)
-1 A2 A

R
— —92j .
2 Wt Y rrme

A

Solving for both the real and the complex parts of the eqnatie get

A2 R?
R = L
w
w o= —.
R
Substituting,
d(WOQ) _ Ay ? 1 21174 w 21175 N R? 2 3W
= - N\a) e TV ER WL g ) MR
Ay ? 1 21175 21175 2 2 2 2
0 ™



Chapter 4

4-1. (a) According to Eq. (4-21):
sl L gmeen _ (i)
JAz

Using the area (or volume) property of the Fourier transfdmainfinite integral of the function in
the (x,y) domain is equal to the Fourier transform of the fiorcevaluated atf(y = 0, fy = 0).

Thus,
// o= @) g dy = o ImA(FX+13) _
JAz fx=fy=0
(b) Expanding the exponential,
1 1 s ] T
g ,[-_ 2 2] I {-_ 2 2}
j/\ze ’ JAz o8 j)\z(I +v7) +j)\z St j/\z(I +v7)

The volume is one, so the volume under the imaginary gzér(tos [A_FZ(IQ + y2)] must be zero
and all the volume must come from the real sine term.

4-2. Remember, if we start on the left and propagate a distario the right, there is a phase delay of
kz radians incurred, which is represented by multiplicatignekp(+;kz) since the phasors rotate

counterclockwise.
(a) We first find the exact phase distribution:

22 + y?
2

(bezact = kZO 1+

(b) Next we find the approximate phase distribution:

k 2 2
¢approz - kzO + 2_20(56 + Yy )

(c) The phase error is

A¢ = ¢approz - d’ezact

k 2
= k2o + — (2% +y?) — k2 1+ 2 —i—y'
229 22

19



20

Now, we see that in binomial approximatid,+ b)'/2 < 1 + b/2 by noting that
LHS*=1+b< RHS?* =1+b+ b

Hence, phase errof 0, of ¢approz > Pezact- SINCEPegact @8NAPgppro, DOth correspond to phase
delay, it follows that the approximate phatags behind the exact phase. (In other words, since
total phase= —jwt + ¢, more time is needed for the approximate phase to reach the &dal
phase as the exact phase.)

4-3. This time we can imagine propagating backwards (toitite)rfrom the focus point to the sphere or
parabolic surface, as if time were reversed. If we must gwards distance, then in effect the phase
on the left leads the phase at the focal poinkbyas represented by a multiplicative factap(—jkz).

(a) Again we first find the exact phase distribution:

.1'2 + 2
(bezact = _kZO 1+ 22 y .
0
(b) Next we find the approximate phase distribution:
k 2 2
¢approm = _kZO - 2_20(55 +vy )
(c) The phase error is
A¢ = ¢approz - (bemact
koo, 2 r? +y?

Now, we see that in binomial approximatidm,+ b)'/2 < 1 + b/2 by noting that
LHS*=1+b<RHS*=1+b+V"

Hence, phase error this time 45 0, Of ¢approz < Pezact- SINCEPegqact AN Pyppror DOt COI-
respond to phasdelay, it follows that the approximate phaseads the exact phase. (In other
words, since total phase —jwt + ¢, less time is needed for the approximate phase to reach the

same total phase as the exact phase.)

4-4. Over any distance;, Fresnel propagation can be described by the transferiéunct
H(fx, fy; z) = e/F emdman (X 7),

Propagation over several distaneesz,, - - -, z,, can be represented by multiplication of the successive
transfer functions,

H(fx, fyizm+z+-+2) = [[ H(fx, fviz)
k=1

Performing the product,

H(fx,fr;zi+z0+ - +2,) = ek(z1tz2t+zn) efj”A(Zl+z2+”'+Z")(f§<+f12’)

Clearly, sincez = z1 + z2 + - - - + 2, propagation over distanceis equivalent to propagation over
the sum of the distances, zs, - - -, z,,.
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4-5. We have seen in Section 4.2.2 that the majority of théritmrion to the convolution integral describing
Fresnel diffraction comes from a square with sides of ledgthz, centered on the poirtt = =, =
y). For a slit aperture (widtlw), the boundary between the transition region and the dayiome
occurs when this square region lies entirely behind the o@amprtion of the aperture. The figure
below illustrates the geometries for both edges of the itiangegion.

. (x,y)
otk
. W) :
» A % » A %
w w
§ Y / g v \\
[z Aperture
Aperture 4 7\Z¢ \\ (x,y)
Figure 4-5:
The illustration on the left{ > 0) defines an equation
(x —w) =2V Az,
while that on the rightz < 0) defines an equation
(x4 w) = —-2V\z.
When these two equations are squared on the left and thewightbtain the two parabolas of interest,
(w—1x)> = 4\z
(w+2)? = 4\z.

4-6. For converging illumination of the aperture, we seefirob. 4-3 that:

phase error = Gupprow — Pevact

k 2+ 2
= —kzo——(§2+772)+kzm/1+§ 2"
229 z5

< 0

wherez is the distance from the point source to the aperture plane.
For the Fresnel approximation, assuming an observatiant fojy) at distance: from the aperture,

phase error = Guppros — Pewact

= {kz+2—kz [(x—§)2+(y—n)z}}—{kz\/1+ (x—§)2:2(y—77)2}

= 0,

since(1+b)'/? < 1+b/2. Hence, the phase error due to the quadratic approximarti¢meoillumina-
tion and the phase error due to Fresnel approximation hgvesite signs and at least partially cancel.
Exact cancellation occurs when= z, and(x = 0,y = 0), i.e. for the particular point towards which
the spherical illumination is converging.
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4-7. (a) The amplitude transmittance of this aperture canriiten

ta(&,m) = rect(%) [rect(y_TM> +rect<#>} .

The Fourier transform of this function is
F{ta(§,m)} =2XY sindX fx)sindY fy) cos(mAfy).

The Fraunhofer diffraction pattern is therefore

2
I(z,y) = (Zli\(—zy) sinc (%) sinc (%) cos? (W/\Azy) .

(b) The required sketch is shown below.

1(x,0)/1g 10,y)g

Figure 4-7:

4-8. (a) The amplitude transmittance function is separabteeach factor can be considered separately;
le.ta(&,m) = tx () ty (n), where

rect<§) ®4(¢) = rect<§>

ty(n) = [rect(%) ® %comb(%)} rect(%) .

The behavior oftx (¢) is quite clear. The behavior af (n) requires more thought. Since
Lcomb(4) =3, 6(n —mA), we have

tx (&)

ty(n) =

rect(%) ® Y d(n—mA) rect(%) .

SinceA > Y, the delta functions are more widely spaced that the widtthefrectangles. The
fact that NV is odd means that the outer rectangle function subtends ansymical pattern of
rectangle functions, i.e. with the same number of smalletarggles above and below the small
rectangle centered on the origin. The structure df, n) is illustrated in the figure above for
N =5.



(b)

(©
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Figure 4-8:

To find the Fraunhofer diffraction pattern, we must Feutiansform the amplitude transmittance
and evaluate the scaled transform at properly scaled freige Since the amplitude transmit-
tance is separable, we can perform one-dimensional transfon each of the factors:

Ftx(§)} = XsindXfx)

Flty(n)} = [YsinqY fx) x AcomiAfy)] ® NAsingNA fy)
= i Ysinc(mfy) ) (f - %) ® NAsindNAfy)

= NAYmioosinchTY)sinc[NA(f —%)}

The full expression for the intensity distribution in theabinhofer diffraction pattern becomes:

I(z,y) = (N%\i(Y)2{ i Sinc(me) sinc(%) sinc [A)\[—ZA (y - m%)} }2-

m=—o0

The sum appearing above can be viewed (considering baly direction) as a sum of terms of
the form sing $2) sinc[52 (y — m2Z)], each with a weighting factor sif¢%"). We wish to
find conditions under which the weighting factors of the teffior even values ofn will be as

small as possible. Since the sinc function has zero valugeger arguments, this requires

2kY /A = integer

for each integek. This will be the case i’/ A is any integer multiple of /2. For example, if
the slit spacing is twice the slit width, this will be the cabite that the weighting factor for the
m = 0 term is independent of ratio &f to A, so the strength of the “zero order” remains at its
maximum possible value.

4-9. The amplitude transmittance of this aperture is given b

talz,y) = rect<£> rect<i> — rect<£) rect(i) .
Wo Wo w; Wi
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The Fourier transform of this transmittance function is

Flta(z,y)} = w; sinqw, fx) sindw, fy) — wi sindw fx ) sindwi fy).

It follows that the Fraunhofer diffraction pattern of thigeature is
4w§ 2 . 2wox . 2w,y
I(z,y) = <V> S|nc2< o )SIHC2< = >
- 2 Awow 2sinc 2wor sinc 2woy sinc 2wz sinc
Az Az Az Az

dw? : 2w;x . 2wy
</\z> S|nc2< - > sm&( e )
4-10. The amplitude transmittance function for this aperts

ta(q) = circ (w%,) — circ <w%) .

The Fourier-Bessel transform of this function is

B{ta(e)} =

2w,y
Az

+

w? J1(2mwep) Cw? J1(2mw; p) .

Wop Y wip

The Fraunhofer diffraction pattern is therefore

- () [

Az

oy [205) [422)

Az Az

ut\? [ ()]
Az Se

4-11. (a) From Eq. (4-41), for the case of a sinusoidal phaasting),

I(z,y) ~ (%)2 ioo J7 ( ) sinc { (z —qfo/\z)] sinc (%) .

The first zero for ordeg and wavelength; will occur at the value of satisfying

+

2w

e (x — qforz) =1,

or

A
x=qfolz+ A
2w

Now consider the same ordeibut a different wavelength,. This wavelength will produce a
maximum of the order at

x = qforez.
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Equating these two values ofyields the equation

)\12’

qfoz(Aa — A1) = S0

DefiningAX = A — A1, we obtain the resolving power of the grating in thk diffraction order,

ﬁ = 2qw.f07
where in the numerator ~ \; ~ \2. Note that the number of grating periofis in the aperture
is 2w fy, SO
A

(b) The use of arbitrarily high diffraction orders is limitdy (i) eventual decrease of diffraction
efficiency in arbitrarily high orders, and (ii) the evanasiceave phenomenon, which prevents
sufficiently high orders from propagating.

4-12. (a) The Fourier transform of the amplitude transmdeafunction is

o0

Flta@© = Y. e F{e ) = i end (Fx = 7).

n=—oo n=—oo

Assuming unit amplitude, normally incident plane waveriination, the intensity in any order
will be proportional to the squared magnitude of the Fowafficient associated with that order.
More generally, for arbitrary strength of illuminationgtliffraction efficiency of a given order is
the squared magnitude of the Fourier coefficient of the deftation corresponding to that order.
Thus

2
e = ekl

(b) We must find the Fourier coefficients of the amplitude $raittance function

cos (F—g) ‘ .
L

Do so as follows:
L/2 .
cy = l/ cos (w_f)‘ eI TS d¢ = l]—"{rect<£) cos <7T—£>}

LJ 1) L L L L Fx—k/L
1

— % (Lsinc [L (fx - i)} +LSinC[L(fX + ﬁ):|)fx—k/L

1. 2k —1 . 2k+1
= —|sinc -+ sinc .
2 2 2

The diffraction efficiency is seen to be

=lc |2—l sinc( 21 4 sinc( 21 i
Nk = |Ck =1 B) 5 .

For the particular case of the first diffraction order 1),

2 2
1 1 3 172 2 4
2 _ L laine( X incl 2 — |22 = X —45%
lea” = 4 [SII’IC(Q) SIﬂC(z)] 4 |:7T 371'} 972 4.5%.

ta(§) =
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4-13. We first obtain a Fourier series expansion of the gyagimplitude transmittance, and then use the
results of the previous problem. First note that in the redfo < L/2, the amplitude transmittance

can be written
ta(é) = <% - tm> rect<%> + 2tmrect<Li/2> .

1 {(1 3 :
o= () () ()

= <% - tm> singn) + tm, sinc(g) .

(&) The fraction of light absorbed by the grating is found bptsacting the spatial average (i.e. an
average over one period) fify (¢)|? from unity,

Thus

1 (L
fraction absorbed = 1 — — / [ta(&)|? de
LJ_ 1)

L1t2+L1+t2—3 t
2\2 ™) “2\2 ") | 4 ™

(b) The fraction of light transmitted by the grating is simftlminus the fraction absorbed. Therefore

1
L

. . 1
fraction transmitted- - + 2.

(c) The fraction of light appearing in a single first orderlwi¢ given by|c;|2. We have

le1? = 2tm 2:%
! ™ w2’

4-14. We begin by writing an equation for the amplitude traitsance of the grating:

ta(z) = 1—[(1-¢€?) x (square wavg
= 1- [(1—6‘j¢) X Z cnejzﬂ;zl
where,
T et ) et ge = L =z _ Laine(™
Cp = T /_Oorect<L/2) e L dé = L}‘{rect(L/2>}fX_n/L = 2smc(2) .
Continuing,
. © 1 n S2nna
— (1 — pJ? Zgj = J=E
Fltal@)} = o(fx)—(1—e )n_z_:oo2smc(2)]-"{e }

o0

= () - (1—e?) Y %sinc(g)é(f -9,

n=—oo
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(a) Now finding the diffraction efficiency of the first order,

2 2
Ny =1 _equ‘? Bsinc(%)] — i <%> (2 —2cos ¢)

_ 2 (1 — cos o).

T2

Uit

(b) To maximizen; andrn_, we requirecos ¢ = —1, or ¢ = . In this case the diffraction efficiency

becomes A
m=mnN-1= - = 405%
o
4-15. (a) To find the diffraction efficiency, we find the Foureefficients as follows:
1 L s 4T - n 1 L S 27

1 eBE(14n)g

———— = ejﬁ(lJrn) sing(1 +n).
Lj%”(l—l—n) d )

0

The diffraction efficiency is thus given by
N = |en|? = sin (1 + n).

Note thatall of the light is transmitted into a first-order componémt= —1).
(b) In this case,

L . L . 33 (n+42)€
/ I8 j2me d§:1/ Gt ge) ge = L TR
0 L 0

Sk

— im(n+32) sinc<n + ﬁ) .
2

The diffraction efficiency becomes

Nn = Sinc (n+ ﬁ) .
27

4-16. (a) The wavefrontin the aperture will be of the farmd* o1, with a minus sign because the wave is
converging, and withy; being the distance between a paffitin the aperture (coordinatés, ))
and the poinf? (coordinateg0, Y)) in the (x, y) plane. An exact expression for the distange
is

ror = V22 +E+ (1 -Y)

Factoring the distance outside the square root, and making the usual quadratieEFwoxi-
mation, based on the assumption th& much larger than the aperture and much larger than the
distance of the poinP off axis, we obtain

r01=2\/1+52+(”‘y>2 oy &=V

~

22 2z
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(b) We must consider two quadratic phase factors, the onecatepresenting the illumination, and
a second one that occurs as part of the integrand in the Hréiinaction equation. Let the
amplitude transmittance of the aperture be representeg(lgyr), and suppose that the amplitude
of the illuminating wave at the apertureds Then the full equation for amplitude of the Fresnel
diffraction pattern in théz, y) plane is

jkz
v = /;)\z //tAfn RO e 0T o gean,

where the first quadratic phase factor represents the iflatioin, while the second is the normal
exponential factor associated with the Fresnel diffracctimegral. Expanding the quadratic phase
factor and noting that the terms (& + 1?) exactly cancel, we obtain

A—;— §—1+y

Ulz,y) = / / ta(€, m)e I &) geay,

Since all the phase factors in the integrand are lineg@eindn, we see that the integral is a Fourier
transform, and therefore the result iBraunhofer diffraction formula, with the Fraunhofer pattern
centered on coordinatég, V).

4-17. Onthe axisy = 0 andy = 0, and therefore the Fresnel diffraction equation becomes

Jkz > . 2, 2
U(0,0) =& / / ta(e,m)e = E7) gean,
JjAz

(a) Forta(&,n) = circy/&2 + 12, we can change to polar coordinates and write

27T€jkz 1 ik 2
U(0,0) = == =4 dq,
(0,0) B /0 qe q

whereq = /&2 +n?. Now change variables of integration, letting= 2> ik 42, from which it
follows thatdo = 7kqdq The lower limit remain$ while the upper limit becomegS Thus the
integral becomes

2 Jkz by ) ik
U(,0) = Ziz jik exp(o) do = —e** exp(0)] 7

. ik . j k
= —elkz exp A 1| = —2je-7kze§ sin | — ).
2z 2z

The intensity is then given by

k s
_ 2 _ a2 — Aain?
1(0,0) = |U(r)|* = 4sin (42) 4sin (2)\2) .

Note that the argument of the sin is dimensionally corrésteswe took the radius of the circular
aperture to be unity. The more general argument for an agesfuadius-; would besx2 ”1
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(b) For this aperture, the only change to the above equatiomes from the fact that the lower limit
of integration with respect to radius is nawand the upper limit i$. After the change to polar
coordinates and the change of variable of integration, #ie €n axis is given by

jkb2
22

kb2 jka?

exp(0)do = —e** {e = —e' 2 } .

U(0,0):—ejkz/_ ,

jka
-

Multiplying this expression by its complex conjugate toaibtthe intensity, we find after some
algebra that

1(0,0) = 2{1 — cos [21‘6—2(172 — QQ)} }

4-18. Let the period of the periodic object heand assume that the variations run in ihéirection. Then
the spectrum of the object will have delta-function compusat frequencies

fx =— m=0,+1,+2,....
In the paraxial or Fresnel approximation, the transfer fiemcof the propagation phenomenon is

H(fx, fy) =™ exp [—jmAz (fX + f¥)] -

For an image to appear, we require that
my 2
exp{ JTAZ i ]

TAZ (%)2 = k2w

for some integek. Note that a different integér can be chosen for each integer An infinite set of
distanceg, call themz,,, will satisfy this requirement. Solve farto yield

for all m, or

2k L2
2 ="
m2\

Clearly one solution would be, for each choosek = m?, yielding z; = % Another solution

would be to choosé = 2m?, yielding z, = %. The general expression for the distances where
self-imaging occurs is
2nL?
Zn = n/\ n:1,2,....

4-19. Since the transfer function for propagation is, inFhesnel approximation,
H(p) _ ejkze—jfr)\zp27
imaging of this object requires that
e ImA=(2ma) — m=0,1,2,...,

or equivalently
wAz(2ma) = 2k



30

4-20.

4-21.

for some integek for each givenm. If for eachm we choosek = m, the we obtain a distance

z1 = 5. If we choosek = 2m, then the imaging distance is = . More generally the self-
imaging distances are
n
n — 3 _ = 1, 2, e
V4 Aa n

Consider the Fourier transforms of each of the two amrepts of the object:
F{emlo(2mr)} = 6(p—1)
FlanJo(dnr)} = 6(p—2).
Since the transfer function for free-space propagatiodeuparaxial conditions, is
H(p) = eh=eImer"
after propagation over distanedhe field will be given by
U(r) = elk= [27TJ0 (27r7°)e_j”z + 47TJ0(47rr)e_j4”)‘Z} ,
or
U(r) = eIkzgmimAz [27TJO(27TT‘) + 47TJ0(47rr)efj3’T)‘Z} .

Remembering that only intensity is important, for imagiagtcur, we require that
3tz = 2km

where k is any integer. Thus images will appear at distanives gy

2k

== k=0,1,2,....
3A s Ly Sy

2k

Starting with the given wavefront,
LT

U(y1) = exp []E(yl - yo)Q} ;

we calculate the local spatial frequency in the input plane,

91 1 8 s

— P — 2
Sy = A 21 Oy [/\z (v1 = w0) }

yielding
0, = Y1 — yo_
z
The above relationship between incident angle and incigesition can also be derived geometri-
cally by noting that the line source which gives rise to thevevis located atyy, —z), wherez = 0
corresponds to the plane where the wave has been specified.

Now,

7N\
<L
NN
N~
| Il
7N
Qe
(wley
~
7N
<
=
~_
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Substituting the expressions fgr andd,

1 1 DyQ — B92
- (_ AH — |2 Pr2
Ap —po Oyt A%) | ap—Bc ¥
which simplifies to
0, — Y2 — Yo2
z2
where,
_ AD-BC
Yoz = D+Cz Yo
Az + B
V4 = .
2 D+ Cxz

The phase anglé, of the field at the output plane is given as

b2

/27Tfly2 dy2

21
= — [ 62d
)\/23/2

_ 21 (Y2 —Yo2 J
= | T
<2

- T 2

B VN (y2 — Yoz2)
where in the last equality, the integration constant wagrarily chosen so that the phase is zero at
Y2 = yo2. Hence, the field at the output plane is

.
Uout(y2) = exp [J)\—Zz(?ﬁ - yo2)2} :

Again, this result can also be obtained by geometrical clamations by noting that the emerging rays at
the output plane represent a cylindrical wave with the selocated atyos, zo.t — 22) (Or a cylindrical
wave converging towarthoz, zout — 22) If 22 is negative).
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Chapter 5

5-1. We start with the expression for the focal length of aiteary lens in air,

or

To determine whether a lens is positive or negative, we nagddetermine whether its focal length is
positive or negative.

Double Convex: SinceR; > 0andR, < 0, f > 0.

Plano-convex: SinceR; = oo andR, < 0, f > 0.

Positive Meniscus: SinceR; > 0, R2 > 0andR; < Ry, f > 0.
Double Concave: SinceR; < 0andR; > 0, f < 0.

Plano-concave: SinceR; = cc andRs > 0, f < 0.

Negative Meniscus: SinceR; < 0 andRs < 0 and|R;| < |Rz|, f < 0.

5-2. Consider the geometry shown in in the figure below, wischtop view of the cylindrical lens.

Figure 5-2:

(a) The thickness of the lers(y) at an arbitrary vertical point is seen to be

A(y) = Ao_(R_\/RQ—yQ)—AO—R<1— 1-%2)

1y? y?
~ A —-Rl1—(1-2L )| =, - L.
Rji-(1-30)] 227
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The lens amplitude transmittance function now becomes
ti(a,y) = eFBo dhn=DAW) — kAo o=ikAo giknAo o= HGrty?

. jk(n—1) y2
e]knAoef—R yT

(b) Let+ = (n—1)%. Then

ti(z,y) = et e 5V

Such a lens will transform a normally incident plane wave iatconverging cylindrical wave,

bringing light to a line focus at distange= —£-- behind the lens.

5-3. (a) Without loss of generality, assume tbat> a%. The expression for the amplitude transmittance
can be expanded as follows:

talz,y) = exp {—jw[asz + (by + 0)2]}
— 6—_]’71'02 e—j?ﬂbcy e—jﬂ'a2(m2+y2) e—jﬂ'(b2—a2)y2.

The first exponential term represents a constant phasetslgifsecond a prismatic wavefront tilt

in the y direction, the third a positive spherical lens, and the ttoar positive cylindrical lens

exerting focusing power in thg direction. By comparing these exponentials to the form$ief t

amplitude transmittances for a positive spherical lengsitipe cylindrical lens and a prism,

biay) = exp —j%(xuy?)]
ti(y) = exp —j%yz}
b = e |5 sin0)].

respectively, we find the following parameter relations:

1
fspherical V]
1
feylindrical = N2 —a?)
6 = arcsin[Abc].

(b) Consider a positive cylindrical lens with focal lengthinitially with power along the: axis. The
corresponding amplitude transmittance is

ti(z,y) = exp [—j%wﬂ :

Now rotate this lens so that, instead of exerting power inutloérection, it exerts power along a
direction at+45 degrees to the-axis. The amplitude transmittance becomes

™

2
ti(x,y) = exp [—j% (% + %) 1 = exp [—jm(xg + 22y +4?)| .
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Now consider a negative cylindrical lens with focal lengthrotated to have power along a line
at +135 degrees to the-axis. The amplitude transmittance becomes

2
T x Y — S B
ﬂﬁ (—E—i—ﬁ) ] = exp [—sz)\f(:cz 22y +y?)| .

Now place the two lenses in contact. Their amplitude trattamies multiply, yielding

ta(z,y) = exp

T (g2 2 =T (22— 2 —jiz
tiotal(z, y) = e BT (T H2IYY) oI (07 20ty — oISy,

This has the form of the amplitude transmittance we sougitt, w

2

d=—.
Af

(a) Following the logic of the problem dealing with aiogrical lens, we can write the lens thickness

function as

iZ?2

Awy) = M)~ 5z,

whereA(y) is the thickness af andR(y) is the radius of curvature gt Geometrical considera-
tions yield

A = A—2R

h
— _Y
Ry) = R (1 h) .
Substitution into the equation fdk(y) gives
2
Yy X
A =A,—*R— ————~.

The lens amplitude transmittance function may now be wriée

k-1 (A, — Yo P
N

t(z,y) = e exp
_ —1)42
A, — (n—1Ry (n—1)z
h 2R (1 - %)

= exp {jk
h

B exp{jk[nAo_(n—l)Ry_ o2 ]}

h 2f(y)
where R(1-12)
1—5%
Fy)=——
(b) Start with the final result from part (a):
N 2
o = cofu o]

RO-§)

n—1

fly) =
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The first term in the exponent is independent of coordinatelshes no effect on the incoming

light other than a constant phase delay. The second ternfilectsprism in that we can identify
(n—1)R

—-——= with a direction cosine. Thus this term introduces a dowitr to the wavefront,
with the tilt angles with respect to the axis satisfying
T L _ (n-1R
cos (5 - a) =sin(o) = PR
The third term represents a focusing of light along a linedeitned by the variable focal length.
The axial distance of the top of this line focus away from #eslis—£- (1 — £) where L is the

lens height, while the bottom of the line focus is at axiatadiu;en—]f1 from the lens.

5-5. This s a vignetting problem. The two cases of inteme$a) and (c) below are shown in the figure.

Lot
D/2m | pAf

f A T

i pAf

D/2

Figure 5-5:

(a) Vignetting occurs when the projection of the lens pupiioothe object plane does not cover the
entire object. The center of the back-projected lens peiffset from the center of the object by
pAf, wherep = \/f% + fZ, so the object will start falling outside of the pupil when:

D L
Z e =g
_ 1(L_D
VAT A
(b)
_ 1 0.04 0.02
P 6x10-105 \ 2 2
1
= o (0.01)

0.33 x 10°m~! = 33 cycles/mm
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(c) Here we are to find the where the object falls completely outside of the projectibthe lens
pupil. This happens when:

L D
A= gty

_ 1 (LD
Fr=x\a"2 )

5-6. We wish to perform a 1-D Fourier transform in thelirection, and tamage in then direction. The
imaging operation will preserve the array structure of thieo$ transforms (with an inversion); since
only the intensity is of interest, we can ignore phase facdto¢ or . There are a number of different
possible solutions to this problem, of which we show only faresach part.

(a) Consider part (a) of the figure below:

y \"
n Ly Ly
g X u
f f
(a)
y \
n Ly Lo
X
& u
f f
(b)

Figure 5-6:

Lens L, has power only in the direction, and lend., has power only in the direction. The
focal lengths of the two lenses are chosen to be

fi = [f/2
f2 = F
The cylindrical lenses are placed in contact at distarfdesm the input and output planes. This

distance is two focal lengths with respect to power inghdirection, but only one focal length
with respect to power in the direction. Therefore the optical systémages in the y direction
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andFourier transforms in the x direction. Neglecting phase factors associated with treging
operation, this yields the array of Fourier transforms thakesired.

(b) With reference to part (b) of the figure, in this case a sphklens and a cylindrical lens are
placed in contact. The focal lengths of both the sphericed &nd the cylindrical lens agge The
cylindrical lens is oriented with power in thedirection, while the spherical lens has power in
both directions. The input and output planes are placedstamiesf in front of and behind
the lens combination, respectively. In thedirection, only the spherical lens has power, and
for this direction, the input and output planes are in thaef@nd back focal planes of the lens
combination. Hence the system performs a Fourier transfothe x direction. In they direction,
both lenses have power, and the equivalent focal lengthisndirection is onlyf /2, as can be
seen by multiplying their two amplitude transmittances)sidering only the, variation,

tror(y) = te(y) ts(y) = exp (—j%yz) exp (—j;—f@f) = exp (—j%/zyg) :
Thus the lens combination wilinage in the z direction.

5-7. Since the projected pupil function of the lens is coasadlly larger than the finite size of the object, we
can neglectit. From Eq. (5-22), we then have the followingregsion for the field in the focal plane,

Aexp [§ & (u? +v?

)] 5 [7%(5,77) exp {—ji—g(uf—kvn)] dédn.

The problem is identical in form to that treated in sectiof.d. Adapting the result of that analysis,
Eq. (4-36), to the problem at hand, we see that

2
I(u,v) = {2//\152} sinc <%) {siné’ <%>

+ Leine [i(u + fo)\d)} + %sinc2 {é(u — fo)\d)} }

4 Ad
For the particular parameter values given,
d 0.633 x 1078 x 1
— = =63.3 um
L 102 K
fodd = 10% x 0.633 x 107° x 1 = 0.633 x 10~?m = 6.33 mm

A plot of the (normalized) intensity pattern is shown belaith all distances expressed in meters.

5-8. (a) The Fourier plane is found in the plane where thecgisrimaged. Therefore the distangeof
the Fourier plane to the right of the lens must satisfy

11 1
n oz f
in which casez; is given by
Zf = fZI .
’ 21— f

For the distance of the object to the left of the lens to edualdistance of the Fourier plane to
the right of the lens, we require
[z

A
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1k
0.8
0.6
0.4
02 0.633 X 1074
N P

-0.006 -0.004 -0.002 0.002 0.004 0.006 u
Figure 5-7:

(b) Letz; represent the distance of the image from the lens. Then fnertens law,

1,11

d =z f
Substitute the expression fdrobtained in part (a) into this equation and solve forThe result
is

2i = 21.
The magnification is given by
Zi z
M=1G1=17

5-9. Thefield in the plane at distange- A from the lens is given by

o kE24y?) k242 27 (zutyv)

1 B
Ur_a(u,v) = v //P(a:,y)e ITTEr TG A) T TAGEAY dady.

The first quadratic phase factor in the integrand represeaisffect of the lens, while the second arises
from the Fresnel diffraction kernel. In order for the difften pattern to be approximately Fraunhofer,
we want the total quadratic-phase exponential factor téstar his requires

ol (g )] =

or,

2 .
’—W(xz +9?) < lradian

2\ f(f—=A4A) ’max
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5-10.

5-11.

In the worst casey? + y? — (D/2)?. Also, assuming)\ is small compared tg, f — A — f in the
denominator. Thus,

wD?A <1
M f?
or
ANf?
A< ——.
< s
The distancd to the Fourier plane can be determined by finding where theceas imaged. The

object transparency can be removed for this purpose. Thmallyrincident plane wave at; will
be transformed into a spherical wave diverging from a pdirdistancef to the left of that lens, or
equivalently at distanc2f to the left of lensl,. That point source will be imaged at distarigeto the
right of lensL,, so the Fourier plane will appear at distar2geto the right of lens.s.

As for the location of the image of the object, we can replaeedbject by a point-source in the object
plane. According to the lens law, the negative lens prodandmage of that point source at distance
z;1 satisfying

1 1 1

=
zin 2f f
or
2
Zi1 = —gf

This initial image is thu%f to the left of lensL;. Now this point is imaged by lens;. The image
distancez;, from lensL, must now satisfy

or

Thus the image appea?é to the right of lensl.,.
Fourier planes will be found at the following location

¢ In the plane where the illumination beam comes to focusdistancef to the right of the object.

¢ In the plane where the above Fourier plane is imaged by thee leecording to the lens law, this
will be at distance f to the right of the lens.

There will be only one image plane, namely the plane wherdethelaw is satisfied for an obje8f

in front of the lens. We have
1,11
from which it follows that
3f

Zi = —

2
to the right of the lens.
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(@) Letr? = £2 + 5%, Then we seek the radiug for which

kr%
221 o
Then 5
7‘(2) = 7;21 = Az1,
or

ro = \/)\21.

(b) For an ideal image located at the origin, Eq. (5-33) misdhat

AQ Z1%9

L 2o
h(oaové—an) ~ // P(x7y)e-7 2>\21;4 (Ez+ny) dl'dy

The pupil function in this case is given by

P(z,y) = circ <7”x2+y2> ,

R

yielding a (normalized) impulse response (from Eq. (4-3ffhe form

~ o Jl(kRT‘/Zl)
hr) =2 kRr/z

where this function is referred to the object space and we haed that fact that//z, = 1/2;.
The radius to the first zero of this function will be

Az
r = 0.61?1.
(c) We require that the radiug of part (b) be smaller than the radiug of part (a), in which case
over the mostimportant part of the impulse response thegdaator will not change appreciably.

Thus we require

061% < )\Zl
or
0.61 ”?;1 <1

Consider a typical exampld? = 1cm, A = 0.633 um, z; = 10cm. The left-hand side of the
above inequality is found to b&015, showing that the inequality is well satisfied.

(a) Expand the amplitude transmittance as follows:

1 1 2 1 _. 2
ta(r) = (5 + Ze.ﬂT + Ze 7 ) )
and compare the second and third term with the amplitudesitnéatance of a lens with focal

length f:
- g2
ti(r) =e’ 57
We see that the second and third terms of this transmittanuetibn are of the same form as
the transmittance function of a lens. Thus the structurebehsimultaneously as two different
lenses, one positive and one negative, in addition to haaibas term that only attenuates the
incident wavefront.
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(b) If v is positive, the first quadratic-phase ternt jncan be interpreted as a negative lens with focal

length
k
f=—5
Y
while the second quadratic-phase term can be interpretegasitive lens with focal length
k
f=5
v

(c) The focal lengths given by the above two equations are fumtctions of wavelength, sinde=
27/ X. Therefore if the object has any significant spectral sprit@dmage will experience severe
degradation.

5-14. The circular bounding aperture will not affect thelgem, so we ignore it. From the definition pro-

5-15.

vided by Fig. P5.14, it is clear that the following is true:

ta(r) = [1 - lsg«cowﬂ
2 2
B 2y = [sin(mn/2) .
= f(r*)= n;m {77”1 exp (jnyr?),
where we have used the fact that the petddhust be replaced by
x=2T
Y

Noting that quadratic-phase structures can be interpetdmbing equivalent to lenses, we see that the
structure is equivalent to an infinite number of positive ardative lenses of different focal lengths,

)
plus a bias term. Comparing these terms with the amplitiatesinittance of a leng;(r) = eﬂg—f,
the focal length of thesth term in the series is seen to be

k

n=t—.
f 2nry

where the positive sign is used for all terms having a negatiadratic-phase factor, the negative sign
is used for those with a positive quadratic-phase factatjan 27/\. The relative amount of optical
power contributing to theth term is the squared magnitude of the corresponding Focoifficient

in the expansion with respect 8. Thus for thenth term the fraction of power contributing is

. {sin(m/mr

™

Change variables of integration in Eq. (5-33)ite= /22,5 = y/Az2. Then the equation can be
re-written

h(u, v; €m) ~ M / / P(Azai, Azag) exp {—j2n[(u — ME)2 + (v — M)gl} didj.

Now consider the behavior of this Fourier transform\as> 0. Remembering that, v, M andz, are
to be considered fixed, we see that\ashrinks the effect is to broaden the functiB\z2&, Az29) in
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the (z, ¢) plane indefinitely. In the limit, the integral is the Fourteansform of a function that is unity
everywhere, yielding

h(u,v;€,n) =~ M // 1-exp{—j2n[(u — M&)Z + (v — Mn)g|} didj = Md(u — ME, v — Mn).
Equivalently we can write

1 U v
h(uvv7§an)’\’ Ma (g_Man_M) .

5-16. Referringto Eq. (5-57), we see the following:

(@) Forz; — oo andd — 0, we have plane wave illumination and the object againstehs.lUnder
such conditions, the distaneg is equal to the focal lengtfi. The equation becomes

exp jM 00 T
Uslu) = % | oo |-i3ue) de

(b) Forz; — oo andd — f, we have the object illuminated by a normally incident plarsee and
situated in the front focal plane. Agaia — f. In this case we obtain

Un(u) = ﬁ / Z U1(€) exp [—ji—;uﬁ} dt.

(c) Forz; — oo andd an arbitrary distance, again we haye— f and we find

ey~ 2 (- 9) ) JCGEE
u) = <D | —
2 NoNi . 1 P {—J
(a) Passage of light of wavelengtifrom the front focal plane to the back focal plane of a pos-
itive lens with focal lengthf is described by the operatdt [/\Lf F. Thus the sequence of
two Fourier transforms performed by this optical system banrepresented by the operator
1 1
% [V} FV [V} F.

(b) Equation (5-46) can be used to simplify these operatidfeshave

2T
5-17.

Yl 7l 7= [l e 2=y 2 v [

where Egs. (5-47) and (5-45) have both been used. Thus tlgeiméoth inverted and scaled by
the magnification/ = f5/ f1.
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Chapter 6

6-1. We can answer the questions posed in this problem if wktfie intensity point-spread function.
From Egs. (6-4) and (6-5), we know that the intensity popriead function of an incoherent system
is the squared magnitude of the (properly scaled) Fouaasform of the exit pupil illumination. The
amplitude transmittance of the exit pupil in this case cawbgen

ta(z,y) = circ (%) ®[0(x —s/2,y) +6(x+s/2,y)]

wherer = /22 + y2. The Fourier transform of this expression is

d>2 o J1(mdp)

Flta(z,y)} == (5 wdp x 2cos(msfx),

wherep = /f% + fZ. Taking the squared magnitude of this expression, usinggthvgity cos® § =

%(1 + cos 26), and introducing the scaling parameters appropriate #ofitical Fourier transform, we
obtain the following expression for the intensity pointesgud function (under the assumption that the
intensity of the wave at the exit pupil is unity):

772d4 Jl (ﬂd\/u2+v2

2z ) 2msu
I v) = b )l = 53 |2 [1 e (/\—z)] '
K2 T 1

We can now answer the specific questions of the problem:

(a) The spatial frequency of the fringe is clearly given by

S

fo= o

Note that the fringe frequency increases as the separatiwrebn the two apertures increases.
(b) The envelope of the fringe pattern is seen to be an Airlepabf the form

A=)

wdvu?+v2 !

>\Zi

E(u,v) =

where the scaling factor preceding the Airy pattern has peglected.

6-2. The physical quantities to follow are amplitudes in¢hse of a coherent system and intensities in the
case of an incoherent systepiz, y) represents the (amplitude or intensity) point-spreadtfanc

45
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6-3.

(@)

(b)

(©)

A line excitation lying along the axis would be represented by

o(z,y) = 6(y).

The response to such an excitation would be

i(z,y) = plr,y) @o(r,y) = p(r,y) @(y)

= // (& m) oy — n)dédn—L p(&,y)d§ = U(y)

Consider a one-dimensional Fourier transform of the-Bpread function:

Fly)} = //p(f,y)exp[—j%fy]dédy

fy=f

/ / p(E,y) exp [—g2n((Efx +yfy)] dedy [0 = P(O, f).

The unit step function will be represented by

0 y<0
S(w,y)Z{l ‘Z>O :

Therefore the response of the system will be
Yy o Y
in(z,y) = p(z,y) @ s(z,y) = / / p(&,m) d&dn = / L(n)dn

Thus ’
step response / I(n)dn.

(a) The thefx-axis andfy -axis sections of the OTF of a clear square pupil are alreadywk to be

(b)

identical triangle functions, dropping linearly to zerofequency2f, = 2” from value unity
at the origin. Such a curve is included in part (a) of the figiere mterestmg is the case with
a central obscuration. We can calculate either fhesection or thefy section, since they are
identical. Note that the total area of the obscured pupihi8 — w? = 3w?, which must be
used as a normalizing factor for the autocorrelation funmctiln calculating the autocorrelation
function of the pupil, we shift one version of the pupil in thelirection with respect to the other
version. As the shift takes place, the area of overlap draps 8w? with no shift, linearly to
3w? /2 at a shift of fo /2. With further shift, the curve changes slope, droppingdiheto value
w? at shift f,. Continuing shift results in no change of overlap until thitds 3£, /2, following
which the curve falls linearly to zero af,. Part (a) of the figure shows the properly normalized
OTF that results.

Suppose that the width of the stopis — 2¢. The total clear area of the pupil become? —
(2w — 2¢)? = Swe — 4€? ~ S8we. As the two pupils are shifted, the overlap area quickly drop
to 2(2w — €)e ~ 4we after a shift ofe. The overlap then continues to drop linearly, but with a
shallower slope, reaching valde? for a shift of2w — 2e. Continued shifting results in a rapid
linearrise in the overlap to a value dfwe when the displacement & — ¢, following which

it falls linearly to zero at displacemeBtv. After proper normalization, the resulting OTF is as
shown in part (b) of the figure.
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f f f t } ' >
-2fy -3fg2 £y fo/2 fo/2 fy Bfg/2 2fy X
(a)
H(fy
1
1/ 1/4
T =fx
2o 2fgew  2fgew 2f,
(b)
Figure 6-3:

6-4. Forthe calculation of the OTF section along fReaxis, displacement in this direction does not change
thenormalized area of overlap with respect to the result for a full circléetefore,

02 [ (L)~ (L), (5}2)1

for |fx| < 2f,, and zero otherwise. Herg = SVt The figure below shows the overlap of the
half-circular pupils under displacement in thelirection.

Half of the area of overlap, represented fyn the figure, is found by taking the area of the circular
sector defined by angl and subtracting from it the triangle that composes theoboftortion of that
sector. The resulting area of overlap is

2A = iwa — %(Ay)\/wQ — (Ay)2.

27
6 = cos™! (ﬁ) .
w

After normalization by the total area of the half circle , tB€F section becomes

H(0, fy) :% [ <J}_Y> _ (‘;—Y) - (é_y>2]

The angle) can be written
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6-5.

//Ri

Figure 6-4:

for |fy| < f,. Note that the OTF extends only half as far in the direction as it does in th¢x
direction.

The figure below illustrates the overlap of two triarsghen one is displaced along thaxis and also
when one is displaced along thexis.

y A y
T T
J3 s/2 V3 s/2 i
# > : :Ay >
—>| AX |<— X - S —» * X
(a) (b)
Figure 6-5:

Note that the area of the pupil is that of an equilateral gfiamof sides, or

1 V3 352

A=gsx 5=

When the shift between triangles is horizontal, as showraim (@) of the figure, and equal thzx, the
region of overlap remains an equilateral triangle, but #regth of a side is reduced to— Axz. The
area thus becomeég(s — Axz)?2, which after normalization and proper scaling yields an @TEhe

form )
(g0 = (1- 2,

where in this cas¢, = i and the OTF vanishes fofx| > f,. If the displacement is vertical, as
shown in part (b) of the figure, and equalAgy, the region of overlap remains an equilateral triangle,
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but with a height@g — Ay, and therefore with a side of Iengr\ﬁp3 (@s — Ay). The area of this

triangle is
, 1 (V3 2 (V3 1 (V3 ’

Normalizing by the area of the pupil we obtain an OTF given by

H(O, fy) = <1_%J}_Y>

where agairf, = 5%- and the OTF vanishes fofy | > @fo,

6-6. In thefx direction, shift of the pupil with respect to itself yields averlap which, when normalized
by the total area of the pupil, is indistinguishable from sheocorrelation of just one of the circular

openings. Therefore
2
a2 () () 3]

wheref, = <. When the displacement is in thedirection, the behavior of the autocorrelation is
quite d|fferent In this case the autocorrelation congi$ts central island and two islands displaced to
the left and the right of the origin, each with a strength thdualf that of the central island. The shape
of the islands is identical to the shape obtained in the chan o-displacement. Thus we have

1 ~ 1 _
H(O, fy) = Q(fy) + §Q(fy -+ §Q(fy + ),
where the functior) is defined above anfl = 24 Plots of these functions are shown in the figure.

Hix0) HOS)

f
— AWz, - f — - Y
X = 4whz; = Awiz, —= 4w/hz; =—

- 2dAZ{—e—o 2dMz;—>

(b)

Figure 6-6:

6-7. To find the OTF of this system under various assumptiamsfirst find the intensity point-spread
functions under those conditions. If the object is a poiniree, then under the assumption thais
very large, we can assume that the pinhole is illuminated fgrenally-incident plane wave.
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(@)

(b)

(©

Under the assumption that geometrical optics can be whked the pinhole is large, the point-
spread function is in this case simply a projection of theilfupction onto the image plane. Since
the incident wave has been approximated as plane, the dianfahe circular spread function is
the same as the diameter of the circular pupil. Thus the spir¢ad function is given by

s(u,v) = Acirc (%)

whereA is an arbitrary constant, and= +/u? + v2. The corresponding OTF is the normalized
Fourier transform of(u, v), so
J1 (2mwp)
= 27
H(p) 2mwp

3

wherep = \/f% + f. The first zero of this OTF occurs at

0.61

Pol = ——.
w

Note that the cutoff frequenajecreases as the pinhole size increases.

Now the pinhole is assumed to be so small that Fraunhdfeaation occurs between the aperture
and the image plane. The point-spread function of the systéhmow be the scaled optical
Fourier transform of the circular aperture distributioanrely

J1(2mwr) / Az } 2 .

s(u,v) = L, [2 2mwr [ Az;

A scaled and normalized Fourier transform of this functigrids the OTF

= 2 oot (22 ) - () 1~ ()

which vanishes at

2w
Note that this cutoff frequendycreases as the diameter of the pinhole increases.

Po2

If we start with a large pinhole, geometrical optics willd, and the cutoff frequency will in-
crease as we make the pinhole smaller. However, eventheallpibhole size will be so small that
geometrical optics does not hold, and eventually the Frafamtapproximation will be valid. In
this case the cutoff frequency will decrease as we make titeofg smaller. A good approxima-
tion to the optimum choice of pinhole diameter can be founddpyating the two expressions for
cutoff frequency,

0.61/w = 2w/ Az;,

yielding a solution for the radiug given by
Woptimum = Vv 0.305/ Az;.

This solution has chosen the smallest pinhole size posséflae diffraction spreads the point-
spread function appreciably.
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If the point-spread function is to be the convolutioritad diffraction-limited spread function with the
geometrical-optics spread function, the OTF must be thdymbof the two corresponding OTFs. We
focus on the OTFs from this point on. We wish to compare the 6ffé&misfocused system, given by
Eq. (6-41) and repeated below,

H(fx, fy) = A<§;>A<§}/)
. [8Wi ([ fx | fx| | 8Wi ([ fy | fy |
< sne 552 (55 (1- ) see 552 (27) (- 52

with the product of the diffraction-limited OTF, given by

_ Ix fx
H““ﬁ”‘A<zm)A(zm)’

and the geometrical-optics OTF (from Eq. (6-42))

H(fx, fy) = Sinc[% (;}i)] sinc{% (;};H :

Itis clear that the first equation is not the product of theoselcand third equations, due to the presence

of the terms(l — %) and (1 — ‘Qf—f‘ in the arguments of the sinc functions. Therefore the point-
spread function can not be the convolution of the spreadtimmalue to diffraction and the spread
function due to geometrical optics.

. Note that the point-spread function, with or withoueahtions, can be expressed (up to a constant

multiplier) by

|h(u,v)|* = //HumthW”ﬂww&#y

Since the peak of the point-spread function is assumed & akihe origin (i.e. on the optical axis),
the relevant expression for that peak is

h(0,0)]* = //H(fx7fY)dede,

whether aberrations are present or not. Since the Strehiititwiiis the ratio of the peak intensities in
the point-spread functions with and without aberrationfgliows that

foj H(fx, [y )with df x dfy
D— —o0

[(7 H(fx [y )withoutd x dfy

The fundamental frequency of the square wavg is 1/L = 100 cycles/mm. Since the focal length
is 10 cm and the object distance is 20 cm, the image distaritkkewvise be 20 cm.
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6-11.

6-12.

(a) For coherentillumination we require that< f,, wheref, is the coherent cutoff frequency,

w
)\Zi '

fo

We are given the parameter values- 10~2 mm, z; = 200 mm, and we find the requirement that

w

fi<

leads to the requirement that

w > Azifi = 1073 x 200 x 100 = 20 mm= 2cm,

which implies that the lens diameten should be at least 4 cm.

(b) In the incoherent case the period of the square-wavecblgenains unchanged, but the cutoff
frequency is now2 f,. It follows that the lens diameter can be half as bigger> 2 cm.

The intensity transmittance is given by

T(&n) = % {1 + cos (27rf§)}

and the object has uniform, constant phase shift. To findriq@itude transmittance, we note

7(&,m) = cos® |27 <

implying that

ta(&n) = V7(&n) =

o[- ()

)

%

whereg is a constant phase shift that will hereafter be droppeditandbsolute value signs are required
due to the fact that the amplitude transmittance can notggaign if its phase is constant. It is clear
that for incoherent illumination, the frequency of the aions of object intensity ig. For coherent

illumination, we must use the fact that the fundamentaldergy of the magnitude of a cosine is twice
the frequency of the cosine without absolute signs. Theedfte fundamental frequency of amplitude

variations isf. The coherent cutoff frequency j§ =
incoherent case B&f, = ;%w

W
>\Zi

= 37. Thus in the coherent case we require

_w

INF

while the cutoff frequency in the

Thus the frequency of the object can be twice as large in the incoherent case @mibe in the

. w
< —_—
T< 5y
while in the incoherent case we require
= w
< —.
fF=x 7
coherent case.

From the statement of the problem we can see that weeatmd with a coherent system. The object

illumination can be represented by

Uo(&,m) = exp (527 fi)

where
cos(m/2 —6)

sin 6

fi = S

A



53

(@) The light transmitted by the object will be the producttioé illumination amplitude and the
amplitude transmittance, or

Ug(&,m) = % [1 + cos (%fg)] 2 fif

The Fourier spectrum of this object is
FUUEM) = | 330x = £+ 30U = F = )+ 380+ F = £)] 6(sv),

(b) The figure illustrates the finite amplitude transfer filmt and the object frequency components
present. Noting that; = 2f, the cutoff frequency of the amplitude transfer function is

°f
T\
Amplitude Spectral

transfer - Components
function of input
Figure 6-12;
fo=w/2)f.

To obtain any variations of intensity in the image, it is rexa@y that at least two spectral compo-
nents of the object be passed by the amplitude transferiamdtrom the figure, this will be the
case (assuming < 2f,) provided

f’i S an
or equivalently provided

. w
sinf < —.

(c) Assuming two components of the spectrum of the objecipassed by the amplitude transfer
function, the intensity will be

1 1 a0 |2
I(u,v) _ ‘—eﬂﬂfiu—kzeﬂﬁ(fif)u

1 o Fo |2
- -1 ) —j27 fu
2 pliee

= % [5—1—4 cos (27Tf~uﬂ .
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The corresponding intensity whén= 0 is (assuming thaf < f,) is
2

I(u,v) = ’% {1 + cos (Qqu)] = i [1 + 2 cos (27Tfu) + cos? (Qqu)}

= i E + 2 cos (27rfu) + %cos (47rfu)] .

(d) When the maximum angle of illumination is used, the maximvalue off that will yield inten-
sity variations in the image is

fmax= 2fo,
which is twice the frequency that will yield intensity vai@s when the illumination is not
oblique.
6-13. Recall that
=
C Az A

where the last step holds because the object s at infinii@mtis from the lens, and the lens law implies
thatz; = f. The F-number of the lens is

pp L

2w’
Solving for f in the equation above, and substituting that expressidmgfitst equation yields

1
Jo= o3

6-14. Lets(u) = |h(u,0)|?. Then the Sparrow resolution distance (in the image spaitepeavthe § that

satisfies the equation
d—2 s|u— é +s|u+ é =0
du? 2 2) o

(a) By the symmetry of(u), dd—;s(u) is also symmetric ini, as proved by the following argument.
Sinces(u) is real and even$(fx) must also be real and even (from the symmetry properties of
Fourier transforms). But

d2
ws(u)} = —(27fx)*S(fx)-

Sincef% is real and even, we see that the entire transform of the dederivative is real and

even, implying that its inverse transform (i.e. the secoerildtive) must be real and even. It now

follows that
d? 0 n d? n 1)
du? \Y 2 du? S\ 2

must be satisfied, as was to be proved.

At

d2

u=0

(b) The intensity point-spread function for an incohergstem with a square aperture is known to
have au-dependence if the form siﬁ%ﬁ. For simplicity, lety = Q;U—Z“ Then we wish to find the

value ofy for which

d2
—sincy = 0.
dy? Y
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Note that
d . . d .
—sindy = 2sincy —sincy
dy dy
&2 e d . 1?
—sindy = 2sincy —sincy + 2 | —sincy| .
dy? Y Y S T [dy y}
Performing the required differentiations we find
d2 ) 1 92 _ 2,,2) o —9 2
& sincy = 1y(2—m*y?)sinmy — 27my° cos my
dy? T yt
d . 1 si —
Loincy = = sin 7y Zy cos Y ’
dy m y
so that
d? . 2 (3 — n%y?)sin® my — 4y coswy sinwy + w2y? cos® Ty
—sincy = — .
dy2 7T2 y4

Finally, j—;sin(?y = 0 implies

(3 — w2y sin? my — 4wy cosmy sinwy + w2y® cos® 1y = 0,

which must be solved numerically. The resulyis- 0.415. Sincey = 2/\7“”7“ the solution is

)\Zi

2w

u = 0.415

The Sparrow separation is twice this distance, or

AZi
2w’

0 =0.83

Note that this is a smaller separation than the RayleigHutisn 1.22%.

6-15. Problem 6-2 is a great help in this problem. From Pre&(d) we know

v

step response / I(n)dn
and from Prob. 6-2(b) we know that
F{i(v)} = PO, f)

whereP(fx, fy) is the Fourier transform of the amplitude point-spread fiomcin the coherent case,
and the Fourier transform of the intensity point-spreaafiom in the incoherent case.

(a) With coherent illumination, the Fourier transform ofthmplitude point-spread function is a
scaled version of the pupil. If the two pupils have the samgtiw2w in the y-direction, then
P(0, f) will be identical for the two systems. Therefore the lineesul functions will be the
same and the step responses will be the same.
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(b) With incoherentillumination, the Fourier transformth& intensity point-spread function is pro-
portional to an autocorrelation function of the pupil. Theacorrelation functions of a circular
pupil of diameteRw and a square pupil of sidav, are different, even when evaluated only along
the vertical axis. For the square pupil we have a (up to cotsta

P(O’ﬁ_A(;;z)’

while for the circular pupil we have

2
ro.n =2l (a7) + (a0)y' - (37)

Therefore the line spread functions of the two systems dfereint and the step responses must
likewise be different.

(c) The simplest approach to calculating step responsekiveeLthe following procedure:

e Since a unit step is the same function with coherent illutidmeas with incoherent illumi-
nation, we would first calculate the Fourier transform of & step using the Fast Fourier
Transform algorithm. The calculation can be one-dimeraion

e We would then multiply this spectrum by the transfer funetagppropriate for the system of
interest, whether it be a circular aperture or a square a@erand whether the illumination
be coherent or incoherent. The calculation would be one iineal, using a slice of the
appropriate transfer function.

e An inverse Fourier transform, again one dimensional andnagerformed using the Fast
Fourier Transform, would yield the desired step responsaah case.

6-16. The amplitude point-spread function for a coherestesy with a square aperture of widdw is
given(up to a constant multiplier) by

. 2wu . 2w
h = sinc sinc .
(u’ 1)) ( /\Zi > ( /\Zi >

The input to the system is a one-dimensional coherent stéptiné step taking place along theaxis.
The response(u, v) will be

o(u,v) = h(u,v) ® s(u,v) = // h(a, B)s(u — a, B) dadf

where

0 u<0
s(u,v) = 1 u>0

is the unit step function. Sincg«, 3) is independent off, integration with respect to that variable
yields a constant, which we drop. The result is

: 2rwa
a(uw):/ smc(%) da=/ %dw

—o0 “i —0o0 Az;
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Changing the variable of integration to

we find

2zi sint (2
o(u,v) = K ST g = K [g—l—SI( ﬂ'wu>].

whereK is a constant and

Si(z) = / st gy
0

t
It follows that the intensity response to the step excitatio

2
. _ 2 _ 2|7 [ 2mwu
Ii(u,v) = |o(u,v)|* = K 2—i—SI( N, )‘ .

The intensities in the two cases are as follows:
I = |A+a|?=A*+24a+d> coherent
I = A?’+4? incoherent

It follows that in the two cases

Al 24a + a?

W = — coherent
Al o’ incoherent
|A|2 - A2

SinceA > a, it is clear that the perturbation of the desired intensstynuch greater in the case of
coherent noise than in the case of incoherent noise.

Consider a coherent wavefield described by
Ulz,y;t) = Ul(z,y) e 2™
The mutual intensity of such a wavefield at poifits, y;) and(z2, y2) is given by

J(@1,yi22,y2) = (Ulzy,y:t) Ut(22,y2;1)) = U(w1,y1) U (22, y2) (™2™ I271)
= U(w1,y1) U™ (22,92)-

From Eq. (6-11) we see that this wavefield is fully coherent.
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Chapter 7

7-1.

7-2.

The intensity distribution exposing the film is knowrb® of the form
Z(CC, y) = ZO + AI(Ia y)7

with the further restriction that
AT < .

Using Eq. (7-2), we know that the intensity transmittancéhef processed transparency is related to
the exposing intensity by

T = K, =K,(T,+AL) "
= KT, (14 AT/T,) " ~ KoI, " (1 — v AT /L),

where the first two terms of a binary expansion have beennetlain the last step. Letting, =

Ton + ATn, we have
AT

Ton + ATn = an-()_’yn - ’YnKnIo_’yn T P

from which we conclude that

Ton = KpZ,™
AT
A n = - nKnI_’yn
T /y o Zo
At, AT
Ton B o 7z, .

Thus the contrast of the variations of intensity transmittais linearly related to the contrast of the
exposing intensity distribution, regardless of the phodpgic gamma.

The intensity distribution in the interference pattergiven by
T = |Aexp(j2nf1y) + Bexp(j?wﬁgy)|2 = A% + B? + 2AB cos(2rABY)

whereAS = (1 — [B2. We then pass this intensity pattern through the frequehayacteristic of the
MTF yielding an effective exposing intensify as follows:

T = F HF{ZTyM(f)} = M(0) (A* + B?) + 2M (AB) AB cos(2ABy).
A positive transparency with a gamma-ef is made, yielding an intensity transmittance
T = KP(ZI)2

59
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and an amplitude transmittance
ta =T =rT =k [M(0) (A + B?) + 2M(AB) AB cos(2rABy)] .
The field in the rear focal plane can now be written

1 x
v]-‘ {tA rect— rect2 }fX:IN

U
(z,y) L "L Jax=erns

- . Lx . Ly
= I? smc)\—f smcv ®
{/@M(O) (A2 + B2) 0(y) + kM (AB) AB [6(y — AfAB) +0(y + /\fAﬂ)]} .

Continuing, and noting that/ (0) = 1,
Ulz,y) = L? nsinci—; {(A2 + B?%) sinc%

+M(AB) AB {sinc(%(y — Aﬁ/\f)) + sinc(%(y + Aﬁ/\f))} } :

We plot the distribution of light intensity along theaxis (It has been assumed that the cross-products
between the three terms of the field can be ignored) :

L2k (A2+B2)2 10.y)

[L2xABM(AB)2 [L2xABM(ABJ2

ABM —|a/Lfe—  apAf Y

Figure 7-2:

7-3. The matrix manipulations required to prove the id@giare outlined below:

L B [ cos®, —sinb, 1 0 costl; sinf,
o | sinf;  cosb; 0 e 9Pd —sinf; cosb;

- [ cosf, —sinb, 1 0 cos; sinb;

| sinf;  cosO; 0 -1 —sin#; cosb;
- [ cosf, sinb; cos; sinb;

| sinf; —cos0; —sin#; cosb;
[ cos? 0, — sin? 6, 2 cos 6, sin 6,

2 cos 6, sin 6; sin® 0; — cos? 6,

. [ cos20, sin26,
| sin26; —cos26;
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L_ = same ad.; except, is replaced by-6,
- cos20;  —sin26,
—sin260; —cos20; |’

7-4. We will follow the path of the light incident on the celhé find the Jones matrix for each element
(polarizer and FLC); by multiplying these matrices togetivee can find the overall Jones matrix
which relates the polarization vector of the light incidentthe mirror with that of the light incident
on the front of the device. We then multiply this matrix bytitanspose to calculate the overall Jones
matrix of the reflective device, in accord with Eq. (C-17) gigendix C. Finally we apply the matrix
R of Appendix C to return to a right-hand coordinate system.

First, we find the Jones matrices for the case with the longratiparallel to the polarizer. We pick
our coordinate system so that the direction of the poladeercides with the y axis.

e Polarizer: Using equation (C-16) with = 90°, we obtain:

00
Lpolarizer = [0 1 }

e FLC: 0, = 45°:
- cosy —sinj 1 0 cosy  sinjg
Lrc = [sin% cos ][0 e % —sing  cos
_ 1 1=5 14y
T2 144 1—7

e Single pass matrix:

5 1)

1—-7 143 0 0
Lsingle = LFLCLpoIarizer—{l_H' 1_]-}{0 1]— 0 1—j

For a double pass, we have
_ ¢ _ -1 0 0 0 0 1+5 ] |00
Ldouble—RLsingIeLSIngIe— [ 0 1 ] { 145 1—j } { 0 1—3j ] = { 0 0 } ‘

Thus, we see that in the state where the molecular axis istedeaway from the polarizer direc-
tion, no light is transmitted by the cell.

When the molecular long axis is parallel to the polarizerhaeet; = 0° so that:
1 0
Lrc = [ 0 —j }
1 0 0 0 0 O
Lsingle = LFLCLpoIarizer: { 0 —j ] { 0 1 ] = { 0 —j ]
The double-pass Jones matrix becomes

1 07[0 0 1[0 o 0 0
Liouble= RLgjnglel'single = { 0 1 } [ 0 —j } { 0 —j ] B [ 0 -1 ]
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Ux
Uy

= 88118

Thus, the two states of the FLC cell correspond to the outgahsities) and|Uy |?; i.e. the cell can
be used as a binary intensity modulator.

If the incident polarization vector i% } , the emerging polarization vector is:

7-5. (a) Write the polarization vector of the given wave arpress that vector as a weighted sum of left-
and right-hand circularly polarized waves (coefficiefig for right-hand and’y, for left-hand):

- 1 cosf) —sinf 1 cos
Up = LR(G)[O}_{siDG cos 0 }[O}_{sirﬂ}

x| 3]s 1]

This allows us to write two equations in the two unknowfsandCr,,

%(CR +Cr) = cosf
L'(—C +CL) = sinf
\/53 R L .
Solving for the unknowns, we find the coefficients to be
1 ,
Cp = ——eti
T
1 .
Cp = —=e 97
Y
Thus we have demonstrated that such an expansion is poasiblse have found the expansion
coefficients.
(b) First make the following definitions:
Al = 27TTL1 d//\o,
Ag = 27Tn2d//\0,

A = 271'(711 —7’L2)d/)\0.

Now, when the magnetic field points in the direction of wavepamgation, we write the output
polarization vector as

. - 1 1 ; 1 1
Upt = MCr—=| . | +e220p— { . }
! Lﬁ[]} VA

= ej#l (ej%eje { 1 } —|—67j%e+j9 { 1, ])
2 J —J

- | oyl
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_ juxse | cosA/2cosf —sinA/2sind
- c sin A/2cosf + cos A/2sin 6
jA1t% | cosA/2 —sinA/2 cos @
- c sinA/2  cosA/2 sin 6

N .
= e 2 L+U9.

The constant phase factor in the front can be ignored, salescribes the given polarization
transformation.

(c) Let the direction of the magnetic field be reversed. Suifitg the signs ofi; andn; in the ex-
pression forA only changes its sign. Hence, we can obtain the expressidn fdy substituting
—A for A in the expression foL . Thus:

L - [098(—A>/2 —sin(—A)/2}
sin(—A)/2 4 cos(=A)/2
- [—C:isnAA//zz fii?ﬁg]-

7-6. First write the Jones matrix of the polarization anatyz

1 0
Lanalyzer = [ 0 0 } :
Now express the output polarization vector in terms of thmutrvector and the appropriate Jones

matrices for the case of the magnetic field in the directiowafe propagation:

= 0
Ugs = LanalyzeLJr { Uy ]

oo [ a1 ]

[ —Uy sin A/2 } _

0

Now repeat the calculation with the magnetic field directieversed:

Uput = Lanalyzef- [ on}
_ [1 0}[ cos A/2 sinA/2][ 0 }
B 0 0 —sinA/2 cosA/2 Uy
_ [UysinA/Z}
0
Thus,
05,2 = [Tl = |Uy[2sin® A/2
and
(jgzt = _(jo_ut

Thus the sign of the field has reversed, d88° phase shift has been introduced.
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7-7. From equation (7-24),
T =npe % sin?(26z).
Differentiating and setting the derivative equal to zerfind the maximum,

dr

i np(—a)e” sin® (28zx) + npe™**(2) sin(208z) cos(26x)(20)

= npe *sin(20z)[—asin(28z) 4+ 45 cos(2[z))
= 0.

The solutionsin(28x) = 0 corresponds te = 0, and therefore is an uninteresting solution. So set
—asin(206z) 4+ 40 cos(26z) = 0.
Solving for the film thickness,
1 4
T = % tan ™! (g)
1 -1 <4>< 1.46><7r/180>
tan

2(1.46 x w/180) 0.086
17 pm.

7-8. (a) The amplitude transmittance of the unquantizetingravithin a single period can be represented

by
ej27r(1+21/L) _ ej47rw/L _ L <x<0
tA(:Z? { 2 =

ej27r(1—2m/L) _ e—j47rm/L 0<z< %

To find the diffraction efficiency of the grating, we must erddahe amplitude transmittance in a
Fourier series and find the Fourier coefficients. The reduireegrals can be expressed as

1 /0 } 1 L2
Ch = — / e—_]27r(n—2)m/LdI + _/ 6_'72F(n+2)I/LdI.
L) 1) L Jo

Skipping some of the steps in the evaluation, we have

87j27r(n72)m/L 0 efj27r(n+2)z/L L/2

——| =
—j2r(n—=2) [_p,, —j2r(n+2)

eim(n=2) _ 1 1 — e—in(nt2)
{ j2m(n —2) } { j2m(n +2) }

Cp, —

0

- L2jr<n —12>} i [3'12;(23] |

With some work the squared magnitude of the Fourier coeffisiean be shown to be

=[] ]

Forn even andh # +2, both terms vanish. These orders are missing.-#odd, both terms are
non-zero. We focus only on the orders= —4, -3, -2, —1,0, 1, 2, 3, 4. The squared magnitudes
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are
le—a’ = Jea =0
16
2 _ 2 _ ~
|C_3| = |C3| = m ~ 0.065
1
le_o? = |eof? = 7 =02
16
2 2
- = = —=0.18
le—1] e 92
|CO|2 = 0.

These are the diffraction efficiencies of the nine ordersitefrest. Note that the1, +2, and+3
orders contain about 99% of the total power incident on tiadiryg.

(b) Consider now the quantized grating. In this case we havanaplitude transmittance over one
period of

el =1 —L/2<x<—-3L/8

em/? = j —3L/)8<x< —LJ/4

7 =1  _L/A<z<-L/8
ta(x) =< B2 =_—j —L/8<xz<L/8

em =1 L/8<xz<L/4
eIm/? = j L/A<x<3L/8
el =1 3L/8<zx < L/2

Alternatively we can write 4 (z) as

~ifreet§ (2= 55 )| +reet|§ (24 55|}
L 16 L 16

{rect 8 (:v - %> + rect Ll (:H— %) }

L 16 / | L 16 / |

+ J {rect{ﬁ <:c - %)] + rect[§ (:z: + %ﬂ }

L 16 L 16

+ rect_§ I—E _—l—rect_ﬁ x—l—E _
L 16 ) | L 16 ) |

The Fourier coefficients of this structure can now be evahlias

tA(,T)

1 T
Cn = —]-'{tA x rect—}
L (z) L) jx=2n
Sincn —J ™ n —1 3mn n j 57N n 1 T
= — | ——= cos — + — cos — + = cos —— + — cos — | .
8| 4 8 4 8 4 8 4 8

It is now possible to evaluate, |2, either with a lengthy numerical calculation or with theghel
of a computer. The results are:

o> = 0

lei]* = Je_1]* = 0.203
lea|* = Je_2|® =0.203
les|> = Je_3]? =0.023

leal> = Je-af*=0.
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Note that only about 86% of the light incident on this gratampears in this set of orders.



Chapter 8

8-1. The opaque stop on the optical axis blocks only the “DQamstant Fourier component of the object,
which is equivalent to subtracting the constant 4/5 fromgiven amplitude function. The intensity
is found by taking the squared magnitude of this field. Theltes intensity of the filtered object is
shown in the figure. Note the reversal of contrast in the image

1(x)
— — 16/25

| L 1/25

e L
Figure 8-1:

8-2. Assume a unit magnification imaging system and negheage inversion for simplicity. The phase
object is represented by an amplitude transmittance

ta(&n) =M 1+ o€, ),

where the approximation is allowable becagsex 27. Assuming that the spectrum e{¢, n) is
broad, the introduction of the small stop will have littidesft on it, other than shifting its average
value to zero. The shift of the phase by a constant phase faét@wonsequential, since we can always
redefine the phase reference as we please. The stop will eetin@constant 1, however. The intensity
observed in the image plane will be

I(ua v) = |¢(u7 U)|2'

8-3. (@) The Fourier transforms of the object and image aog#s are related by
F{Ui(u,v)} = F{Us(@,y)} ta(Af fx, Af fy).
Therefore the object and image amplitudes are related by

Ui(u,v) = Us(u,v) @ F {ta(Affx, Affr)}
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(b)

(©

= U,(u,v) ® .7:_1{%(1 +sgnfx)}

%Uo(u,v) ® {5@) + i]

[ [ %]

We first approximate the object amplitude using the spiadise approximation:
U(€,m) = e exp(jA®) = ei% (1 + jAP).

Using the result of part (a), the corresponding image intgrs

[ Us(,
Uo(u7v)+%[ u(f;f)dg

.o . 2
6j¢°<1+jA¢+1/ %ﬁf’v)dé)

1

4
1 A¢(§, v) 1 1 /°° 1
_4[1 w/,oo —¢ © +4A¢’+w 55
The second integral has value zero. In addition, we are a@sgutmtA¢ is small, which allows
us to make the approximatigrh¢)? — 0. Thus,

Ii(u,v) % [1 - —/_OO A¢>(§,€ v) dg}

™

Hl_E/_OO Af(—&ﬁ) 4

where we have used the binomial expansion in the last stepirasg that, due to the smallness

of Ag,
Ag( £,
7T/i00 dg‘ < 1.

The object is taken to have the phase distribution

2

1
Li(u,v) = |Ui(u7v)|2:z

%

Ap=2> rect(%) .

. 2<1>/U/2 d¢
0 —U/2U—§
- e B,
4 T

u+U/2
Note that the above expression is only valid when the assampe have made in part (b) is sat-
isfied. That is, it is only valid when the intensity is closeltol. Thus the infinite discontinuities
in the figure below are artifacts of the approximations. kerfigure, the following values have
been assumedi = 0.5, ® = 0.1.

The image intensity then takes the form

Ii(u,v) =

RNy
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0.4
0.3
0.2

0.1

Figure 8-3:

Assume that the phase shifting dot retards the phase byadians. Represent the absorption of the
dot by an amplitude transmittanggn applied only to the constant component. The intensity of the
image (corresponding to Eq. (8-3)) becomes

I; = Vaexplj(r/2)] + jA¢]* = [j(Va + A¢)|* = a +2Va Ag.
Note that the contrast of the image variations,

o 2ale _ 2A¢
~ T

is increased whea < 1. A similar argument applies when the phase shifzig2, yielding

Ilza—2\/aA¢

Suppose we are trying to remove a delta function fromathiect spectrum (we choose the delta

function because it gives the tightest alignment requirgineTreating the problem as one dimen-

sional, with an input aperture function régtD), the delta function appears in the Fourier plane as
sindD(xz —z,)/Af], wherez, /A f is the spatial frequency corresponding to the delta funcflaking

its width to be the width of the main lobe, we have:

A _ 2(0.6328)(10)

W =2
“D 3

=4.22 ym.
Since the problem states that the mask has feature sizesacabipto the input spectrum, assume that
the opaque spot has this width. To find the alignment requérenwe arbitrarily pickt1/10 of this
width to be the maximum we can be off and still block “most” bétsinc function. We then calculate
the allowable misalignment as

w

AW = — = 0.42 um.

10 K
That is, our tolerance i40.42 pum. Notice that if the input aperture were infinite in extehg sinc
function would become a delta function and the alignmergrasice would become zero; that is, any
misalignment would cause the opaque dot to miss the deltdifumcompletely.
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8-6. Since the photographic gammadi8, the amplitude transmittance of the input transparency is

a(€,n) = RT(€ ) rect€/ L) recn/ L) = 5 (1 -+ cos 2m,€) rect¢/L) rect/L).

This object, when optically Fourier transformed, will hamac function spectral components centered
at locations

(Iay) = (050)
(iC,y) = ()‘ffoao)
($,y) = (_/\ffoao)'

The widths of these sinc functions in tkeandy directions, between first zeros, will ler = Ay =
2\f/L.

(a) The locations of the absorbing spots should be at theeplathere the three sinc functions are
centered, as listed above.

(b) The diameter of the absorbing spots should be at leastibe of Ax above.

(c) At (fx = 0,fy = 0), we can not place a perfectly absorbing spot, for this woeltiove
the constant component of the desired image amplitudeinigad strange effects on the ideal
image intensity, such as contrast reversals. Rather, witapartially absorbing spot there, with
enough transmittance to allow the object variations tooida suitable bias, avoiding the creation
of negative values of the image amplitude. Exactly how dtisgrthe spot should be depends on
the structure of the desired object from which the noise isdoe2moved.

8-7. The object amplitude transmittance is given by
1
ta(z,y) = 5[1 + cos 27 fox].

Since we are restricted to using a pure phase filter, we reptréise amplitude transmittance of that
filter in the frequency plane by¢(/x), Thus the image amplitude can be written

U, = F1 {f{tA}ej¢(fX)}
— N | 8(hx) + 3B~ f) + 10U + £)])

= f’l{%eﬂ’(o)&(fx) + iem(fo)g(fx — fo) + iem(*fo)(g(fx + fo)}

1 . 1 e 1 . .
= Zei90) | Zpid(fo) pi2nfor | Z pid(=fo) g—i2m for
2 4 4

The image intensity is given by

U = 2+ g eoslolfa) — 6(0) +2mfoa] + 5 coslb(—1o) = 6(0) — 2mfuc]
+ 5 cos[plfo) — B~ o) + A foz].

We wish to cancel out the first two cosine terms, since theyttaenly terms that have spatial fre-
guency components correspondingfto With some thought, we see that we can accomplish this by
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setting:
o(fo) = m/2,
o(—fo) = 7/2,
6(0) = 0.

(Many other answers are possible.) Note that we only neechéavkhe phase of the filter at three
points,0, — f,, and f,, since the original object contains only these frequencymanents.

In the focal plane where the photographic transparenecorded,

I S A S )
=10 = i T (Af’ Af) Ta (Af’Af)'

With v = —2, the amplitude transmittance of the developed transpgiemroportional taZ:
/ _ L YN (2 Y
e = KT (55 3) 7 (57 3)
The intensity in the back focal plane when this transparénplaced against the lens is:
T YN (2 Y
(57 37) 1 (Gpor) )

= K (\)?[ta(=z, —y) @ th(z,y)°
= K|tA(—£C, —y)*tA(—CC, _y)|2

2
If(z,y) = K’

fx=z/Af
Fy =v/Xf

Thus, the intensity in the back focal plane during the seatap is proportional to the squared mag-
nitude of the autocorrelation of the amplitude transmiteaaf the original object, inverted or reflected
about ther andy axes.

The image amplitude can be written

Ui(u,v) = %f”{%f{m(w’y)}\ﬁ(Affx,/\ffy)}
1
VL

Using the Fourier transform property

FH{F{expljo(z, y) VoM (Fx + 7))

f{(aa_; n %) g(x,y)} = —4r*(f% + f2)Flg(z, )},

we obtain,
Vi) = MO F (g + ) F(espliote. )
\/a

0? 0? ,
= T2 <@ + a—yQ) exp[jo(z, y)]

= epljo(e.y)] {j (f—; + %) ) = [(%)2 " (%)Q] }
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8-10.

8-11.

The image intensity is thus given by

2 2 272
e o i ¢ ¢
L= = {[(ax o )otew)| +|(52) +(50) | ¢t
The first part of the system is purely coherent. Indidenthe moving diffuser will be an amplitude
distribution
- 1 T Yy
U(Iay) - )\f81 (Afv )\f> 9
whereS: (fx, fy) = F {s1(¢,n)}. The moving diffuser destroys the spatial coherence ofiti &nd

therefore the second part of the system must be modeled iga®erent imaging system. For this
system the object intensity is the squared magnitude of ¢tk dbove,
Lo(2,y) = 575

orE | <;_f Ai)

Since the amplitude transmittance function in the pupihafincoherent imaging system has the form

1 2

tA(xvy) = SQ(xvy)a

2

the intensity point-spread function of this system is
1
7w, 0)]? = 5

02| (v’ rf>

The intensity distribution in the final image plane is therefa convolution as follows
u v u v
s (537)| el (357)

As in the previous treatment of the VanderLugt filtee teference wave is represented by

2 2

£i(w.v) = () © L) = 7oy

This is the simplest form of the result.

Ur(z2,y2) = 1o exp(—j2mays).

In this case the wave from the object is the product of the iEotransform of that object and a
guadratic phase factor, because the object is againstrtbeThus

exp | Y5 (3 + 3)
Us(22,y2) = [ ! }S (xQ yg)

A A
These two waves interfere at the film. After exposure andldpweent, the amplitude transmittance of
the film is given by

2

exp [.7)\_7}(17% + y%):| <172 Y2 )

ta(xa,y2) = kiroexp(—j2mays2) + Y SYAbY:
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- ol s ()|

s

ro exp |J { Vi (23 +y3) +]27ray2} (:1:2 y2>

A ATAS
+roexp{ j)\l(x2+y2)—327ray2} o (96_2’3/_2)}
bYi MO

Now by moving the input of the final processing system so thiatdistancel in front of the first lens,
rather than distancg, we are introducing a multiplicative quadratic phase faessociated with the
spectrum of the input as it is incident on the filter. glfr1, 1) is the input, then (from Eq. (5-20))
incident on the filter in the Fourier plane we will have the ditage distribution

U(za,y2) = o [jzif (1 - %) (o2 ng)} G <2 2) .
’ Af YRS

(a) To force cancellation of quadratic phase factors whenctinvolution term (impulse response
s(zs,ys)) is to be used, we mustintroduce a quadratic phase factbedbtmexp [—j%f (23 + y%)} .
The previous equation shows this is achievedi# 2 f.

(b) To force cancellation of quadratic phase factors whenntiatched filter term is used (impulse
response™*(—x3, —ys)), we require a quadratic phase factor of the farp [j/\lf(:cg + y%)}.
This is achieved ifl = 0, i.e. the input is placed against the lens.

8-12. Suppose the inpytz1,y1) is shifted by(zo, yo). Thus the inputig(x; — x0,y1 — yo). The effect of

this space-domain shift will be, according to the shift tteo of Fourier analysis, the introduction of
a linear phase shift in the frequency domain, changing thetspm of the input as follows:

T2 Y2 T2
0 (5537) =0 (5 35) o [5Gt
This change must be made for every occurrenc€ afi the equation above Eq. (8-17). The inverse

transform of that equation will then result simply in a shifteach output term involving(zs, y3),
again by the shift theorem of Fourier analysis.

8-13. From Egs. (8-22) through (8-24),

1 *
Us(ws,y3) = BY; [ h(w3,y3) @ h* (=23, —y3) + 9(73,¥3) @ g" (—x3, —y3)

2W 21,

+ h(x3,y3) ® 9" (=73, —y3) @ 6(z3,y3 = Y)
W+ W),

+ (=3, —y3) ® g(3,y3) ® 0(z3,y5 +Y) |.
W+ W),

The width of each of the terms is indicated below it. The fingi terms are centered at the origin, and
the third and fourth terms are centeredafy”) and(0, —Y"), respectively. Since the on-axis component
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8-14.

8-15.

(the first and second terms combined) is non zero betweenx {W,, W}, } andmax {W,, W}, and

the cross correlation components extend fraf” — (W, + Wi)/2] to £[Y + (Wy + Why)/2], we
need

W, + W,
Y — % > max {W,, W, }
or,
W, + W),
Y > max {W,, Wy} + %

in order to ensure that the cross correlation terms are atgubfrom the on-axis terms.

(a) By inspection, the point-spread function of tHisrting process is

K U — %
s(u,v) = ﬁrect< VT ) 5(v),

whereK is a constant.

(b) The Fourier transform of this impulse response is of trenf
S(fx, fy) = KsinqVT fx)e ™V TIx,

The transfer function of an inverse filter would therefore be

1 VT
Hinversd fx, fy) = SaVTTY) IV fx

(c) Given a signal-to-noise ratio of 10 over all frequengtbe transfer function of a Wiener filter
would be

sindVT fx)el™VTix
[sin¢(VT fx) +0.1]

A plot of the magnitude of this function for the special ca&8€ = 1 is shown in part (a) of the

figure. The sign of the central and even-numbered lobes is\@ghat of odd-numbered lobes
is negative.

HWiener(va fr)=

(d) The impulse response of the filter is obtained by subjgctne transfer function to an inverse
Fourier transform. Part (b) of the figure illustrates the itsp response obtained in this way. Note
the the sign discontinuities of the impulse response of tihen®f filter occur with a separation
equal to the width of the original rectangular blur. You maighlwto contemplate the result of
convolving the original blur function with this deblur imjze response.

(a) Since we wish to remove the periodic pattern, wa neegemove the nearly impulsive compo-
nents of its the spectrum while leaving the rest of the spattapproximately intact. Thus we
need to generate a mask with opaque spots at the locatiohe ahpulsive components. One
way to generate such a mask is to use a defect-free objecptsesa film in the Fourier plane. If
a defect-free object is not available, we can still gendraaeeded mask by developing the film
in a non-linear region so as to make the film more sensitivegb imcident intensities; this will

allow the delta functions to get exposed while low intensignals corresponding to defects get
suppressed.
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Figure 8-14:

(b) The object with the defect can be written as
Uo = p((E, y) [1 - d(l’,y)],

where
1 inthe defect

d(z,y) = { 0 outside the defect’
andp(z, y) is the ideal periodic object. In the Fourier plane we have
Ur = P(fx, fr)®[0(fx, fy) = D(fx, fr)]
= P(vafY)_P(fXafY)®D(fXafY)7

whereP(fx, fy) consists of a series of delta functions:

P(fx,fyv)= >, Y. camd(fx —=n/L,fy —m/L).

n=—0o0 Mm=—0o0

Thus,

Us = Z Z Crm [6(fx—%,fy—%)—D(fX_%fY_%) .

n=—oo0 m=—0oo
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The filter removes the delta functions, and does not padityubkffect the multiple replicas of
D(fx, fy). Thus we have,

UJ/":_ i i Can(fX_%afY_%)-

n=—oo m=—oo

Now, since we know thak is much larger than the size of the defect, in the Fourier domnee
width of D must be much greater than the sizel¢f; that is, all the replicas of D in the above
equation are offset from one another by a very small distaoogpared to their width. Also,
note thatc,,, approaches zero &s| and|m| are increased, so that the replicas which are offset
significantly from the origin contribute very little to themmation. Thus, we have

U = =D(fx, fv)
and, taking the inverse Fourier transform,

U =~ —d(u,v)
I; d?*(u,v).

Q

8-16. The basic approach would be to construct a filter wittaasfer function approximating

H(fx, fy)= 7A(fX7fY),
F(fx, fy)
where A(fx, fy) is the Fourier transform of the letter “A” anH(fx, fy) is the Fourier transform
of the letter “F”. We can do so by constructing a relative af thverse filter. Construction of such
a filter would be a two-step process, similar to what was desdrin Section 8.8.3. However, there
are differences because what we are creating is not an afiktes in the usual sense. The procedure
would be as follows:

e Expose photographic film with the Fourier transform of thtele“F”, and process the film to cre-
ate a negative transparency with a gamma of 2. The resulbwidl transparency with amplitude
transmittance satisfying

1
|F(fx, fy)>

e Now expose a second piece of film to the interference pattetwden the Fourier transform of
the letter “A” and the Fourier transform of the letter “F”. iltan be done with an optical system
such as is used to create the filter for a joint transform tatoe A transparency containing the
letters “A” and “F”, side-by-side but separated from onetheq, is optically Fourier transformed
and the resulting two spectra interfere on the film. This expe is recorded in the linear region
ofthet 4 vs. E curve. The resultis a transparency with one component ofiardp transmittance
satisfying

ta1 X

taz < F*(fx, fy) A(fx, fv)-

e Now place these two transparencies in contact and use thégma fiser in a conventional “4f”"coherent
processing system. If the letter “F” is presented at thetinpthat system, then the field trans-
mitted through the Fourier plane will be of the form

F*(fx, fy) A(fx, fy)

Ur < F(fx, fy) |F(fx, fy)|?

=A(fx, fy)-
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Inverse Fourier transformation of this field results in tedr “A” appearing at the output of the

processor. If the letter “A” was placed above the letter “R’the input plane when the second
transparency was recorded, the output of interest will apga the inverted coordinate system
of Fig. 8.16(b)), at locatiori0, —Y"), whereY is the separation of the centers of the letters “A’
and “F”.

8-17. (a) Since the illuminated patch on the ground,is; /D meters wide, the length of flight path over
which the given scatterer on the ground would be illuminasealso\,r,/D.

(b) The doppler shift encountered while approaching thgetaand receding from the target can be
deduced from Eq. (8-65). Note from that equation that thesplud the radiation returned from a
point scatterer at locatian, is

27 (Vat — T )2

t) = —
(bn( ) )\rrl
Without loss of generality we can consider the particuldnpscatterer at,, = 0. The shift of
instantaneous frequency,f, associated with this term is found from

1d 202t

)\rrl .

But we are interested in the frequency when the point seatjiest begins to enter the illumination
beam and when it just leaves the illumination beam. Sincé#aen is\,.r1 /D meters wide, the
times when the point scatterer enters and leaves the bealewiespectively)

tl _ _)\rrl
20,D
fy = T
2u,D

Substituting these values into the expression for the Eaqu shift, we find in the two cases

202 AT Vg

A = a = —

h N 20.D D
21}2 ArT1 g

Afy — =Y
f2 N1 20,D D

(c) The signal arriving from the point scatterer chirps cadandwidth
B = Afl — Afg = 2’Ua/D.
This chirping signal can be compressed to a pulse of durdtien1/B, and indeed such com-

pression is done spatially by the coherent optical systencofpressed pulse of duratidn
corresponds to a dimension on the ground

v
Az =v,T = = = D/2.
xr=w B /

This is the resolution achieved on the ground by a perfeatgesing system. The factor bf2
arises becaudamth the transmitter and the receiver are moving with respedtdcstatterer.
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8-18. Start with Eq. (7-34). While this has been derived fffrattion in the Raman-Nath regime, the only
difference in the Bragg regime lies in the strengths of thieows orders. In addition, this equation holds
for only a single CW component driving the acousto-optit¢.d@dbwever, it holds for a component of
any frequency, and therefore by changing the frequency wedistover what happens to the many
different frequency components of a broadband signal. In(E®4), the factoei27¥/* corresponds
to a wavefront tilt, which results in this diffraction ordeeing focused by the lens that follows to a
diffraction-limited spot centered at coordinate

Y
20T Y

Thus an RF frequency. is mapped to the spatial coordinateabove. As is also evident from Eq. (7-
34), the phasor representation of this field component haseavariatione’27/<*, in addition to the
rotatione727"* at the optical frequency that has been suppressed. Henéethency of the light
being focused to this position in the focal planeis f., which was to be proved. This equation holds
for the +1 order. For the-1 order the frequency i8 + f..

Je-



Chapter 9

9-1. A complicated but correct solution to the problem wowtite all the fields incident on the film, find
the intensity, and find the fields transmitted by the hologramuch simpler solution is based on
Eq. (9-38) withA, = A;. That equation states that
1 1
2 Zp Zr Zo

This equation should now be compared with the lens law, whielmust adapt to the sign convention
used in the discussion of holographic image locations. Relpeeing that:, is negative for an object
to the left of the hologram or lens, the lens law can be written

Equating these two expressions 1grz;, we see immediately that

1 1 1 1
:—j:_q:___’
Zp  Zr  Zo %o

=

yielding two focal lengths

-1 -1
L) e pe(Lelon)
Zp 2y Zp Zr 2o

Note that one of the two lenses has a focal length that depentiee location of the object.

9-2. Again we use Eq. (9-38) to find solutions. In both casgss 0.488 um, and\s = 0.6328 um.

(a) Letz, =00, 2, = 00, 2z, = —10cm. Then

1 0.6328 1

% OO E RS X 1
or 4.88

i =+——— =4+7.71cm.

%= gz~ T
From Egs. (9-40) and (9-41),

M, = 1

0.488
M, = 06328 — 0.771.

79
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9-3.

9-4.

(b) Inthis casez, = oo, 2z, = 2z,, 20 = —10cm. Then

70488 20 0488 10

1 0.6328 1 | 0.6328 1
0 +

or
z; = +15.4cm
As for the magnifications,
AL — |Pe| _06328x154
©T Nz 0488x10
Ao, 06328
M, = —M;=———x4=3.1.
N T 0488 "

Take first the case ef, = z,. The image distance is

-1
1 1 1

zi = (— + — + —) .
Zy Zy Zo

Thus the two solutions are (lower set of signs first)

-1
2 1 ZrZ
Zi = Zo and zi=|—— — e
Zr 2o 220 — 2y

Note that since, < 0 (i.e. the object lies to the left of the hologram), the firsaie also lies to the
left of the hologram (a virtual image), while the second darid the left or to the right, depending on
the particular values of, andz,.. The transverse magnifications in the two cases are

Zi

%o

Zr

Mt =1 and Mt = =

220 — Zp

Thus one of the images is virtual and has unit transverse ificaion.
Now consider the case faf, = —z,. The two solutions for image distance are now (again loweofse

signs first)
2 1\ " —ZrZo
2 = (—— + —) = QL and Z2i = —Z2o-

Zy Zo Zo — Rr

The transverse magnifications in the two cases are

and M; =1.

Note that, since, is negative, the second image is realositive) and has unit transverse magnifica-
tion.

(&) The transverse magnification will be the ratio ofithage distance to the object distance, since
the wavelengths are the same during recording and recatisttuThe image appears in the rear
focal plane of the Fourier-transforming lens, and therefor
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LetU’(x,,,) be defined to be
U (20, o) = ta (2o, yo) € %= (0702

wherez is taken to be a positive number (the objeatoordinate is-z), and the amplitude of the
plane wave illuminating the object transparency has bdamtto be unity. The reference point
has been taken to be displaced from the center of the objaee iy distance; along they,
axis. The intensity distribution incident on the hologralane is

2

I(Ia y) = Aeji_gyly + fF{Ué}fx:w/Az

A fy=vy/Xz

For this problem, we are interested only in the on-axis tefrth@hologram transmittance, which
in the linear region of the, vs. E curve yields

1 2

tr(z,y) = A + (\z)2

f{Ué}fX:I/*z

fy=y/Xz

The reconstruction process subjects the film amplitudesinittance to a further Fourier trans-
form, but with a slightly different scaling factor. The fidldthe focal plane of the reconstruction
lens will be (assuming a unit-amplitude reconstructiomplevave)

1
Uf(uav) = —F 1{t1(xvy)}fx:u/>\f = Afé(u,v)
Af Fy=v/Af

1 s 1 [ e
- _(um+7j ) —Ixz ToT+Yo!
+v //dwdye Ixf Y W //dxodyoe Ix ( Y U)U(I)(%,yo)
. / / datdy, 755 Tt U (2] y).
The integrals can be rearranged so that one of the doubfgraideeduces to
P O RCRY
B:v//d:cdyej Mo (s Jv

by 2
= ( Z) 6(‘Ti) — 2o _]\/[tuayé — Yo —Mt'l}),
Af
whereM; = f/z. Substitution of this delta function into the remaining tdouble integrals
causes one of those double integrals to vanish, leaving

1 o
Us(u,v) = v //U’(xo,yo)U(')*(xo—l—u/Mt,yo—i—U/Mt)dwodyo.

Since the object transparency has size L, and since the autocorrelation of the object can
have size at mostL x 2L, the reference point source should be at I8dst2 above the object
transparency.
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9-5. (a) We know the magnification to be 2 from the object anagensizes given. We also know

M; = =2

A2%;
Alzo

Choosing the appropriate signs by noting that- 0 andz, < 0,

A2z (488nm)(Im)
= A <2 (63zsnmyz) oM

Using this result in the expression for,

1 A X\ 7! 1 X 2\!
“ (zp A1Zr + )\120) Zp M2 %

A 2 1 1\
S (——i—zF—)
A1 Z Z 0 Zp

AQ(—1 1>‘1 AQ(—3 1>‘1
= ——|— - — or — | — + —
/\1 Zi Zp /\1 Zi Zp

= 0.7Tm or —0.15m.

Solving forz,,

Since the problem specifies that< 0,

zp = —0.15m.

(b) The same effect as flipping the hologram can be obtainda@eging the hologram unflipped but
exposing the film from the other side. This has the effect wérging the signs of, and z,,
making both of them positivez, must now bet-0.38 m to assuré/, = 2. Carrying out the same
calculations as part (a) with the new signs fgrandz,., we find

zo = +0.38m
zr = +0.15m.

9-6. (a) We can find the maximum spatial frequency with th@ lbéthe figure.
The maximum spatial frequency will be the maximum distamoenfthe reference point to any
point on the objecty04 pm in this case), divided b¥z,,

l 304 pm

—_ = = 152000 cycles/mm
Moy 1x10-1pmx 20mm y

fmax=

(b) The experiment will fail because the periods of all comgmis of the holographic grating are
much smaller than the wavelength of the reconstructioncgouks a consequence, all diffraction
orders will be evanescent, and there will be no way to fornmaagie.

9-7. (a) Leth andd represent the wavelength and half-angle between beanid®tlie emulsion (i.e. in
air wheren = 1). In terms of these parameters the predicted fringe pesiod i

A

= 2sing’
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100mm

100mm Object

T/ (B00R+(502

= 304mm

200mm

Reference

Figure 9-6:

For the values\ = 0.488 x 10~%m and26 = 60°, the period is given by = 0.488um.
Inside the emulsion the wavelengths= A\ /n = 488nm/1.52 = 321nm and from Snell’s law,

in ¢
sinf = 227 = 0.5/1.52 andf = 19.2°.
n

Using the parameters inside the emulsion the predicteddnperiod is

N A

= —— = —— = (0.488um.
2sin ¢’ 2sin 6 H

We conclude fringe period predicted from parameters oeatlié recording medium is exactly
the same as that predicted from parameters inside the iagareedium.

(b) From Eq. (9-70), under Bragg-matched conditions,
np = sin’® @,

where, from Eqg. (9-68),
_ mnud
~ Ncos@’
and we are using the values of wavelength and angle insiderthdsion. To achieve 100%

diffraction efficiency with the smallest possible refraetindex modulation, we requife = 7 /2.
This implies that the peak refractive index modulation nbesthen, that satisfies

mnid T

Ncos® — 2°

Remembering that is 1/2 the angle between the two bead®(in this case), the required value
of ny is therefore

sin?
Neos' _ NVI—sin@ V- W= 0321umx 0043 o
- 2d - -

2d 2d 2 x 15 um

ny =
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(c) We assume thait = /2 (Bragg aligned)Ad = 0 but thatA\ # 0. From Eq. (9-69),

(d)

2
L+ =y

’[7:

)

where by Eq. (9-68)
_ Kd AN wmdAN
X= 2cosfy 2N 2A%cosf’
with 85 and A)X being the Bragg angle and wavelength change within the éomulsAgain

noting thatAX = AX/n, andcos 05 = /1 — ““;—293 as wellas\ = A\/(2sinfp), we have
TdAN/n 2rdANsin® O

X: = .
sin2 6 2 2 i
Q(my\/l_m’ﬂn—za A2y/n2 —sin®0p

Next we must determine what value pfcauses the diffraction efficiency to drop to value 1/2.
The desired value of satisfies the equation

1 X2

2 < i (w/2>2>

in2 1)2 2
sin l (2 +x

Equivalently, lettingX = /(7/2)% + x2, we seek the value oX that satisfies

sin® X = %XQ.
T
The solution isX = 2.0, or (7/2)? + x? = 4.0. Solving fory, we obtain
y = 1.255.
Equating this value ofy to the general expression found above, and substituting 1.52,
A =0.488 um,d = 15 um, andfp = 30°, we obtain
2\/n? —sin’0p

A/\:2><1.255><)\ —
2wdsin” Op

= 18.2nm.

In this case, according to Eq. (9-68) and noting that tlaging is unslantedi = 0),

Kd d

o / e /
X_720059§A9 cos 6 AA@,

wheref’; and A¢’ are both measured in the emulsion. In addition, Snell’'s laplies that
sin(6p — Af) = sin(d — A6’)/n and for smallA¢’, we have

AW = pgy | L7505
n2 —sin?f0p

SubstitutingA = \/(2sinfp) and noting that the same valuepfas found in part (c) is appro-
priate, we obtain for a change of angle external to the emlsi

2 _ sin? 2 _ qin2 o
Af =1.255 x /\ x 4|2 51112 05 _ L1255 x 0-488.,Um « 1.52 s;n 30 .
2wdsinbp 1 —sin“f0p 21 x 15 pm x sin 30° 1 — sin? 30°




9-8.

9-9.

85

Thus
A6 =1.23°.
From Eg. (9-44),
27TAOd
Q= Az 27.
Solving forA?2, we find
A= —.
n

In addition, we know that\ = X\q/2sin6, where both\, andd are measured in air. Equating two
expressions foA? and solving fosin 4, we obtain

N
4d’

gt f10
6 = sin R

Substituting the numerical values= 1.52, d = 15 um andXg = 0.633 um, we find

sinf =

from which it follows that

f = 0.127 radians= 7.28°.
The angle between the beam@ts= 14.6°.
From Eq. (9-75) withy; = «g, we have

_ 20a0d apd
ng =e 5 sinh? 0 .
2cosfp

As stated in the text, this quantity is maximized when

(I)I aod

= =0.55
¢ 2cosfp ’

from which we conclude
0 1.10 30°
ap = a; = 1.10 x Cosd B X;OS —0.953/d.

Now densityD is related to intensity transmittaneghroughD = — log;, 7, and thdocal value ofr
is by definition (c.f. Eq. (9-72) and see Eq. (9-55) with = «y)

T = exp [—2a0d - 2a0dcoslz . F} .

It follows that the local value of density is
- 20&0d
~ In10
which when averaged over many cycles of the fringe pattesiuyian average density given by
. 20éod
T Inl10°
Now using the expression far, in terms ofd derived above, we find

2 % 0.953
Dy = 22707
0 In10

[1+cosf()-?},

0

= 0.83.
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9-10.

9-11.

From Eq. (9-66) with no wavelength mismatch,
¢ =A0 Kcos(0p — ).

Let « be the angular separation between the object and referema@swrhen from Eq. (9-48),

Kz%sin(%).

Also, since the grating peaks run in the direction that ligstee object and reference wave directions,
«
0 —v =—.
B—Y¥ =73
Hence, the expression for the detuning parameter becomes

AH%T sin (%) cos (E)

¢ 2

2
= AHTF sin a.
To find the angular sensitivity, differentiate the detunragameter with respect thg:

¢ o
FIN = b\ S111 Cx.
The above quantity is easily seen to be maximized when90°.

First calculate the bandwidth of the object. SincdRtngrier-transform hologram dimensions are (from
the discussion of Section 9.9.1) x Ly, the bandwidths of interest are

Lx

2b = —
X Y
Ly

2b = —.
Y Y

Thus given an object of dimensiotig x L,, if the object is sampled at the Nyquist rate, the number
of samples will be

L¢eL

nx = LgXQbX: f\fX
L,Ly

= L, x2by = ——.

ny UX Y /\f

This is precisely the same number of samples required indgheér plane, as evidenced by Eq. (9-90).

9-12. The geometry is such that we can apply Eq. (5-19) tée¢tee object and hologram fields,

exp i35 (1 22 (@ + )]
Y,

X // Uo(&,m) exp [—ji—;(§w+ny)} dédn.

Uh(xvy)
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We know from Eg. (9-88) that the bandwidths of the Fouriensfarm factor of this expression are

N Le

2By = =
X )\f
. L

2B =
Y )\f

In accord with the philosophy used in deriving Eq. (9-90) agle to this the bandwidth of the quadratic
phase term. The local spatial frequencies of the factor

TAz

exp _.] )\fg (IQ =+ yQ)
are easily shown to be limited to
|AZ|LX
<
|fix] < N
|AZ|LY
< .
lfiv] < oA f?

The total bandwidths can now be approximated as

- Lg-i—‘AZ'LX
2Bx = 2BX+2|le|:+
i L,+ &L,
2By = 2By+2|fly|=n/\7ff

It follows that the number of samples required in the holaghathis case becomes

Lx (Lg + %Lx)

Ny 7
Ly (Ln + ‘ﬁZILY)
Ny = v .

9-13. The figure illustrates the structure of the hologranmafepectrum that is constant.

(a) The coefficients of a two-dimensional Fourier seriesaespn are found by Fourier transforming
the structure of a single cell, and substitutifg = n/L, fy = m/L:

L/2 L/2 ( :
Cnom = rect— rect ¢—i2m (£ o+ %y dxdy
' L2 /L/2/L/2 oL’

= 10 smc(lo) sinc(am) .

(b) The fraction of incident light that end up in the zero-@rdpot is given by

a2

2 _ -
0.0l = 155°
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Figure 9-13:

L/10

(c) The fraction of incident light that is blocked by the opagart of the hologram is simply the
fractional area of a cell that is opaque. Simple geometryshbat this isl — a/10.

(d) The diffraction efficiencies of the two first-order imaggre represented By o|? and|c_1 o|?,
since their direction of deflection from the origin is thelirection. We have

le10)? = |e—10/* = 1—Oosmc2 ( ) = 0.0097a>.

9-14. For simplicity, assume that the reference point ishendptical axis. The spatial frequency associated
with the fringe pattern generated by interference of thisrence with a point-source object distantce
away from the reference point will be

d
fo - E

Equatingf, to the cutoff frequency. of each type of film and solving for the resulting valuedpfve
obtain: .

Tri-X 1.6 mm

High-Contrast Copy 1.9 mm

d=X2fe =9 s0.243 9.5mm
Agepan FF 19.0mm

9-15. The exposure to which the emulsion is subjected is
E = A? + a® + 2Aa cos[2max — ¢@].
The variations of exposure about the bias contributed bydfezence are
By = a® 4 2Aa cos[2max — ¢@)].
(a) Taking the cube aof’; and expanding the square and the cube of the cosine obtainduhd

E} = a®+6a*A% + (6a°A + 60> A®) cos[2rax — ¢)
+6a* A? cos[drax — 2¢] + 2a3 A® cos[6rax — 3¢).

The portion of the transmitted field that generates the éirder images is the term involving
cos[2rax — @], or

Ui(z,y) = [6a°(z,y)A + 6a°(z,y)A®] cos [2maz — ¢(z,y)] .
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(b) If A> a,then
Ui(z,y) ~ 6a°(z,y)A® cos [2maz — ¢(z,y)].

(c) The phase modulation is correct, but the amplitude nadthr is distorted from its ideal value of
2Aa(x,y).
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Chapter 10

10-1. We start with the relation of Eq. 10-9,

-1

2
1%

sinh? <(I> 1-— %2)

First use the relatiom/ sinh® 2 = cosh® z to write

2 2 B
X X
1+ <1 - —¢2> csclt <<I>\/1 - —(1)2)]
Then using Eq. 10-7,

~ ~ 2
X\2 (AN N\ AN\ w2
(3) = < oAz~ msne) = (2A35n = (25)
where we have used the fact thAt /XA = AX/A << 1, allowing AM\/2A2 to be replaced by
2AM/Ap = 2z. In addition, using the definitiolV = ¢/A, we have
monl wonl wonN
A B 2

n= |1+

’[7:

@:

yielding the final result of Eq. 10-10,

472 Ton N 422\ |
1+<1—W)cscﬁ< 5 1_6?>]

10-2. From Eq. 10-12, the effective length of the gratinghgg by
6A 3\ 3\p

’[’I:

fo= wén  won  mnong

Now with A\g = 1550 nm,n; = 1.45, and the three values 6f., we find

on fo
1074  1cm
1073  1mm
10~2 100 um

91
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10-3.

10-4.

Choosing the time of the reference pulse as the tinggnothe signal pulse is writtes(t — ), where
70 is the time difference between the reference pulse anddghelsirigin. Thus, from the shift theorem,
the Fourier transform of the signal is given by

F{s(t —10)} = S(v)exp(—j27v1),

where S(v) is the Fourier transform of(¢). Let Av represent the resolution of the grating in the
spectral space. To avoid destructive cancellation of &sarising from the various frequencies that lie
within a single spectral resolution cell, we require that thase shift above caused by the time delay
7o be less tha2w within any one resolution element of widthw. Thus we require

2 Avty < 2.

Now we call upon the result presented in Prob. 4-11, notiagA /A = Av /v, with the result that
Av 1

v N

whereN is the number of grating periods illuminated by the signal eeference pulses at the input
grating, and a first diffraction order has been assumed.irBpthis equation forAr and substituting
this result in the equation above, we find that we require

N
T0 < — = NT
14
to assure that the fringes do not cancel one another, whésethe period of the optical carrier fre-
guency.

We begin the solution with a restatement of the gragipgation (cf. Eq. 10-13 and Fig. 10.8),
C
J’
where we have used the fact that ¢/v, ¢ being the velocity of light . We can solve this expression
for v, yielding

A
sin @y = sin 6y — N sin 61 —

B c/A
sinf; — sinfy "
The ray traveling with anglé, arrives at the focal plane at position
fsinfy
If we multiply through by the denominator of this equationfg and square both sides of the equation,
we can solve fogin? 6, with the result

= ftanfy =

72

f2 + 2 :
Sincef, is positive and less tha®0 deg, we must take the positive square root of both sides of this
equation, yielding

sin? 0y =

T

Substituting this expression fein 6 in the previous expression for we find
c/A

sinf; —

sin 92 =

V= o/F

1—(z/f)?
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10-5. The location of wavelength,, = Ao + m d\ at the output is found by first finding the location of the
inverted image of the input port on which the wavelength apgpeand then cyclic shifting (i.e. with
wrapping) the output port downward by locations. The result is

A )
kzj A \\\: A3
Ao

A3

Figure 10-5:

10-6. A complicating factor in this case is that an odd numesf input ports yields an even numb2aN
of output ports. Thus some assumption must be adopted iegdrdw the input ports are mapped to
output ports for the “design wavelengthy. We assume the system has been designed such that for
wavelength)\y, the N input ports are mapped (with inversion) to ttog N output ports. (Note for
instructors: if you assign this problem to students, you mvant to add this assumption in order to
have uniform answers.) Other assumptions are equally,\alicourse, and will yield different details
in the answer to part (b).

(a) Since the grating section h2d’ waveguides, we can use Eq. (10-35) for wavelength resalutio
with N replaced b2 N,
Ao

o\ =
2Nm’

wherem is the grating order used. Similarly, Eq. (10-36) can be tsgttld the spatial resolution

Xof

0w = 2nsNA

(b) The problem does not specify how many wavelengths agepten each of the input ports. We
assume that there aré wavelengths, as in the case shown in Fig. 10.23. Again, thveleagths
are assumed to be the same on all input ports and to consigtiep 6\ forp =0,1,---, N — 1.
We adopt the notation used earlier with two subscripts o eavelength, the first being the
label for the input port (0 at the bottom input pak,— 1 at the top input port) and the second for
the wavelength index. Thus, , is theg!" wavelength on the'" input port.

The geometry described is shown below for the particulag 0%/ = 5. The numbering system
for the output ports is also shown. Rather than attemptirggjieeeze the wavelength sequences
for each output port into the figure above, instead we preséable, where the top row corre-



Figure 10-6:

sponds to the top output port, the next row the second outptiffom the top, etc.

0.0
Ao Ao
A2,0 A1 Ao

A30 A21 A2 Aogs
A0 A1 A2z A3 Aoa

A1 A2 A2z Aig

A2 A3 Aos
A3 Aza
A4

Note that only output ports 0 through 8 are occupied by wangtles, and only output port 4 has
a full complement of 5 wavelengths.



