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Preface

Doing problems is an essential part of the learning process for any scientific or technical subject. This is
particularly true for subjects that are highly mathematical, as is the subject ofIntroduction to Fourier Optics.
However, there are many different types of problems that onecould imagine. Some involve straightforward
substitution into equations that have been established in the text; such problems are useful in so far as they
relate an abstract mathematical result to a real situation,with physical numbers that might be encountered in
practice. Other problems may ask students to apply methods similar to those used in the text, but to apply
them to a problem that is different in some significant aspectfrom the one they have already encountered. By
far the best problems are those that leave the student feeling that he or she has learned something new from
the exercise.

With the above in mind, I would like to mention some of my favorite problems from this text, with some
indication as to why they are especially valuable:

• Problem 2-4 introduces the student to the idea that a sequence of two Fourier transforms, perhaps with
different scaling factors, results in an “image” with magnification or demagnification.

• Problem 2-8, which explores the conditions under which a cosinusoidal object results in a cosinusoidal
image, is highly instructive.

• Problem 2-14 introduces the student to the Wigner distribution, a valuable concept which they will
encounter nowhere else in the book.

• Problem 3-6 shows how the diffraction integrals for monochromatic light can be generalized to apply
for non-monochromatic but narrowband light.

• Problem 4-4 is has a particularly simple and satisfying proof.

• Problem 4-11 asks the student to derive an important property of diffraction gratings.

• Problem 4-12 introduces a very important and simple method for calculating the diffraction efficiency
of a grating.

• Problem 4-15 analyzes a particularly interesting and important type of grating.

• Problem 4-16 also introduces an important idea.

• Problem 4-18 is an excellent exercise that increases understanding of the self-imaging phenomenon.

• Problem 5-5 increases understanding of the vignetting problem.

• Problem 5-6 introduces the student to an astigmatic processor.

• Problem 5-9 increases understanding of the paraxial approximation.
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• Problem 5-14 introduces the student to the idea of a Fresnel zone plate and its effects on a transmitted
wave.

• Problem 6-2 introduces the concepts of line spread functions and step responses.

• Problem 6-3 illustrates the effects on the OTF of a central obscuration.

• Problem 6-7, which asks the student to derive the optimum size of the pinhole in a pinhole camera, is
one of my personal favorites.

• Problem 6-8 is very instructive.

• Problem 6-15 provides further introduction to step responses.

• Problem 6-17, while very simple, carries an important message.

• Problem 7-5 provides an interesting exposure to Jones calculus in solving a problem somewhat different
than those treated in the text itself.

• Problem 7-6 introduces a different method for use of the magneto-optic spatial light modulator.

• Problem 7-7 is an interesting and very practical problem.

• Problem 8-1 is a simple introduction to the importance of a coherent background in coherent imaging.

• Problem 8-5 provides the student with the real alignment requirements in a typical coherent optical
processing system.

• Problem 8-10 provides a system that uses both coherent and incoherent light, and is an excellent exer-
cise for the student.

• Problem 8-11 is a good exercise pertinent to the VanderLugt filter.

• Problem 8-15 requires some ingenuity and is instructive.

• Problem 8-16 is an excellent exercise related to inverse filtering, and happens to be another of my
favorites.

• Problem 9-5 is a good exercise for the student to test his/herknowledge of image locations and magni-
fications in holography.

• Problem 9-6, concerning the problem of X-ray holography, ishighly instructive.

• Problem 9-7, while rather lengthy and involved, provides some real numbers regarding wavelength and
angle sensitivity of thick holograms.

• Problem 9-10 is highly recommended.

• Problem 9-12 is a worthwhile exercise in understanding the sampling requirements for computer-
generated holograms.

• Problem 10-3 yields a simple and intuitively satisfying result about the allowable time separation of
the reference and signal pulses in spectral holography.

• Problem 10-6 provides an excellent exercise to help the student understand the wavelength mapping
properties of an arrayed waveguide grating.
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In closing, I would thank Mr. Daisuke Teresawa, who served asmy teaching Assistant in 1995 and who
created LaTeX versions of the solutions to several of the problems.

I would be grateful if instructors would report to me any errors or possible simplifications of these solu-
tions, so that changes can be introduced in future versions of this document.

Joseph W. Goodman
Stanford University
October, 2004



Chapter 2

2-1. (a) We can determine the meaning of this symbol by examining its behavior under integration. Let
g(x, y) be a function that is continuous at the origin, and letx′ = ax, y′ = by. Initially assume
a > 0, b > 0. Then:

∞∫

−∞

∫

g(x, y) δ(ax, by) dxdy =

∞∫

−∞

∫

g

(
x′

a
,
y′

b

)

δ(x′, y′) d
x′

a
d
y′

b
=

1

ab
g(0, 0).

If eithera,b or both are negative, then by properly treating the changes of the limits of integration,
the right-hand side of the equation can be represented in allcases by 1

|ab|g(0, 0). We conclude

thatδ(ax, by) = 1
|ab|δ(x, y), since both yield the same result under integration.

(b) Using the result above, we have

comb(ax) comb(by) =

∞∑

n=−∞

∞∑

m=−∞
δ(ax− n) δ(by − n)

=
1

|ab|

∞∑

n=−∞

∞∑

m=−∞
δ
(

x− n

a

)

δ
(

y − m

b

)

.

2-2. (a) F {rectx recty} =
∫ 1/2

−1/2

∫ 1/2

−1/2 exp [−j2π (fXx+ fY y)] dxdy.

The integral separates in rectangular coordinates. Examine one of the two separated integrals:

∫ 1/2

−1/2

exp (−j2πfXx) dx =
1

−j2πfX
[exp(−j2πfXx)]

1/2
−1/2

=
1

−j2πfX
[−2j sin (πfX)] =

sin (πfX)

πfX
= sinc(fX).

The integral with respect toy is carried out the same way. The total result is the product ofthe
two sinc functions:

F {rectx recty} = sincfX sincfY .

(b) F {Λ(x) Λ(y)} =
∫ 1

−1

∫ 1

−1
(1 − |x|) (1 − |y|) exp [−j2π (fXx+ fY y)] dxdy.

The integral again separates in rectangular coordinates. It suffices to concentrate on one of these
separated integrals. Use the convolution relation

Λ(x) = rect(x) ⊗ rect(x)

1
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and the convolution theorem to write

F{Λ(x)} = F{rect(x) ⊗ rect(y)} = sinc2(fX).

Thus
F{Λ(x) Λ(y)} = sinc2(fX) sinc2(fY ).

(c) Clearly the functiong(x, y) = 1 can be represented as the limit of a sequence of well behaved
functions, e.g.

g(x, y) = 1 = lim
N→∞

exp

(

−πx
2 + y2

N2

)

.

Then according to the philosophy of transforms-in-the-limit, we would say

F {1} = lim
N→∞

F
{

exp

(

−πx
2 + y2

N2

)}

= lim
N→∞

N2 exp
[
−πN2

(
f2

X + f2
Y

)]
.

For every function in the sequence on the right, the area is unity. In addition, the width of
these functions grows smaller and smaller with increasingN . Hence this sequence approaches
δ(fX , fY ).

(d) By separability, we need only prove

F{sgn(x)} =
1

jπfX
.

The Fourier transform of this function doesn’t exist. We have to find a generalized Fourier trans-
form. To do so, use the following sequence definition:

sgn(x) = lim
N→∞

gN (x)

where

gN (x) =







exp (−x/N) x > 0
− exp (x/N) x < 0

0 x = 0
.

We Fourier transform each of thegN (x) to produce a sequence of transforms,GN (fX), where

GN (fX) =

∫ ∞

0

exp(−x/N) exp(−j2πfXx) dx −
∫ 0

−∞
exp(x/N) exp(−j2πfXx) dx

=

∫ ∞

0

exp

[

−
(

1

N
+ j2πfX

)

x

]

dx−
∫ 0

−∞
exp

[

−
(

− 1

N
+ j2πfX

)

x

]

dx

=
1

1
N + j2πfX

− 1
1
N − j2πfX

=
−j4πfX

(
1
N

)2
+ (2πfX)

2
.

Now if N → ∞, the right hand side of this equation approaches

G(fX) = lim
N→∞

GN (fX) =
1

jπfX

as was to be proved. Hence

F {sgn(x) sgn(y)} =

(
1

jπfX

) (
1

jπfY

)

.
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2-3. (a) FF {g(x, y)} =
∞∫

−∞

∫
dfXdfY

{
∞∫

−∞

∫
dξdη g(ξ, η) e−j2π(ξfX+ηfY )

}

e−j2π(fXx+fY y).

Interchange the orders of integration, yielding

∞∫

−∞

∫

dξdη g(ξ, η)

∞∫

−∞

∫

dfXdfY exp {−j2π [(ξ + x)fX + (η + y)fY ]} .

But the right-hand double integral is identically the same as δ(ξ + x, η + y), and the sifting
property can be applied to the remaining double integral,

∞∫

−∞

∫

dξdη g(ξ, η) δ(ξ + x, η + y) dξdη = g(−x,−y).

The result forF−1F−1{g(x, y)} is derived the same way with a change of sign in both exponen-
tials.

(b) The simplest method of proof is to show that

F−1 {G(fX , fY ) ⊗H(fX , fY )} = g(x, y)h(x, y).

Remembering that theF−1 operator operates on the variables(fX , fY ),

F−1







∞∫

−∞

∫

G(ξ, η)H(fX − ξ, fY − η)dξdη







=

∞∫

−∞

∫

G(ξ, η)F−1 {H(fX − ξ, fY − η)} dξdη

=

∞∫

−∞

∫

G(ξ, η) exp[j2π(ξx+ ηy)] dξdη h(x, y)

= g(x, y)h(x, y)

where the shift theorem for inverse transforms has been used.

(c) F
{
∇2g(x, y)

}
= F

{
∂2

∂x2 g(x, y) + ∂2

∂y2 g(x, y)
}

. Now

F
{
∂2

∂x2
g(x, y)

}

=
∂2

∂x2

∞∫

−∞

∫

G(fX , fY ) ej2π(fX x+fY y) dfXdfY

=

∞∫

−∞

∫

G(fX , fY )
∂2

∂x2
ej2π(fX x+fY y) dfXdfY

=

∞∫

−∞

∫
(
−4π2f2

X

)
G(fX , fY ) ej2π(fX x+fY y) dfXdfY .
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Similarly,

F
{
∂2

∂y2
g(x, y)

}

=

∞∫

−∞

∫
(
−4π2f2

Y

)
G(fX , fY ) ej2π(fXx+fY y) dfXdfY .

We conclude that

F
{
∇2g(x, y)

}
= −4π2(f2

X + f2
Y )G(fX , fY ) = −4π2(f2

X + f2
Y )F {g(x, y)} .

2-4. (a) Apply the two operators one after the other,

FB {FA {g(x, y)}} =
1

ab

∞∫

−∞

∫

dfXdfY e
−j 2π

b (xfX+yfY )

×
∞∫

−∞

∫

dξdη g(ξ, η) e−j 2π
a (fXξ+fY η)

=
1

ab

∞∫

−∞

∫

dξdη g(ξ, η)

∞∫

−∞

∫

dfXdfY e
−j2π[fX( ξ

a + x
b )+fY ( η

a + y
b )].

The last double integral isδ
(

ξ
a + x

b ,
η
a + y

b

)

. But this delta function can be simplified as follows:

δ

(
ξ

a
+
x

b
,
η

a
+
y

b

)

= a2 δ
(

ξ +
a

b
x, η +

a

b
y
)

.

Substituting this expression and using the sifting property of the delta function, we obtain

FB {FA {g(x, y)}} =
a

b
g
(

−a
b
x,−a

b
y
)

.

(b) Interpretation:
Reversal of the signs of the arguments reflects the functiong(x, y) about the origin. We say that
g(x, y) has been “inverted”.
The multiplier a

b preceding the argumentsx andy results in either a stretch (a < b) or a contrac-
tion (a > b) of g(x, y). These two cases can be referred to as a “magnification” or a “demagnifi-
cation” ofg(x, y).

2-5. Note that sinceG(fX , fY ) =
∞∫

−∞

∫
g(x, y) e−j2π(fXx+fY y) dxdy, we see that

G(0, 0) =

∞∫

−∞

∫

g(x, y) dxdy.

Similarly, sinceg(x, y) =
∞∫

−∞

∫
G(fX , fY ) ej2π(fXx+fY y) dfXdfY , we have

g(0, 0) =

∞∫

−∞

∫

G(fX , fY ) dfXdfY .
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Thus

∆XY =

∣
∣
∣
∣
∣
∣
∣
∣

∞∫

−∞

∫
g(x, y) dxdy

g(0, 0)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

G(0, 0)

g(0, 0)

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

G(0, 0)
∞∫

−∞

∫
G(fX , fY ) dfXdfY

∣
∣
∣
∣
∣
∣
∣
∣

=
1

∆fXfY

.

Hence∆xy∆fXfY = 1.

2-6. (a) B {δ(r − r0)} = 2π
∫∞
0
r δ(r − r0)J0(2πrρ) dr = 2πr0J0(2πr0ρ).

(b) B {gR(r)} = 2π
∫ 1

a rJ0(2πrρ) dr. Use the identity
∫

xJ0(x) dx = xJ1(x).

Change variables tox = 2πrρ, from which it follows thatdx = 2πρdr. Then

B {gR(r)} =
1

2πρ2

∫ 2πρ

2πaρ

xJ0(x)dx =
1

2πρ2
[xJ1(x)]

2πρ
2πaρ =

J1(2πρ) − aJ1(2πaρ)

ρ
.

(c) B {gR(ar)} = 2π
∫∞
0
r gR(ar)J0(2πrρ) dr = 2π

∫∞
0

ar
a gR(ar)J0

(
2πar ρ

a

)
dar

a . Define a
new variable of integrationσ = ar. The limits do not change. We have

B {gR(ar)} =
2π

a2

∫ ∞

0

σ gR(σ)J0

(

2πσ
ρ

a

)

dσ =
1

a2
G0

(ρ

a

)

.

(d) The functionexp(−πr2) is separable in both polar coordinates and rectangular coordinates, since

exp(−πr2) = exp[−π(x2 + y2)].

From the table of two dimensional Fourier transforms, we know that

F
{
exp[−π(x2 + y2)]

}
= exp

[
−π
(
f2

X + f2
Y

)]
.

Hence
B
{
exp(πr2)

}
= exp(πρ2).

2-7. (a) Giveng(r, θ) = gR(r)ejmθ ,

F {g(r, θ)} = F
{
gR(r) ejmθ

}
=

∫ 2π

0

dθejmθ

∫ ∞

0

dr rgR(r) e−j2πrρ(cos θ cos φ+sin θ sin φ)

=

∫ 2π

0

dθejmθ

∫ ∞

0

dr rgR(r) e−j2πrρ cos(φ−θ)

=

∫ 2π

0

dθejmθ

∫ ∞

0

dr rgR(r) e−j2πrρ sin( π
2 +θ−φ).

Using the hint, we obtain

∫ 2π

0

dθejmθ

∫ ∞

0

dr rgR(r)

∞∑

k=−∞
Jk(2πrρ) e−jk( π

2 +θ−φ).
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Noteexp(−jkπ/2) = (−j)k. Invert the orders of the two integrations, yielding

∞∑

k=−∞
(−j)kejkφ

∫ ∞

0

dr rgR(r)Jk(2πrρ)

∫ 2π

0

dθej(m−k)θ .

The last integral is zero except whenk = m, in which case it is2π. It follows that

F
{
gR(r) ejmθ

}
= (−j)mejmφHm {gR(r)} ,

where

Hm {gR(r)} = 2π

∫ ∞

0

rgR(r)Jm(2πrρ) dr.

(b) An arbitrary function separable in polar coordinates,gR(r) gΘ(θ), is periodic inθ. Therefore
gΘ(θ) can be expanded in a Fourier series, yielding

gR(r) gΘ(θ) =

∞∑

m=−∞
cme

jmθ gR(r)

where the Fourier coefficientscm are given by

cm =
1

2π

∫ 2π

0

gΘ(θ) e−jmθ dθ.

It follows that

F {gR(r)gΘ(θ)} =
∞∑

m=−∞
cmF

{
ejmθ gR(r)

}

The results of part (a) can now be applied, demonstrating that

F {gR(r) gΘ(θ)} =

∞∑

m=−∞
cm(−j)m exp(jmφ)Hm {gR(r)} .

2-8. To avoid confusion, let’s call the frequencies of the applied cosinusoidal signal(f̄X , f̄Y ). Note that the
input can be expanded into a sum of two complex exponentials,

g(x, y) = cos[2π(f̄Xx+ f̄Y y)] =
1

2
exp[j2π(f̄Xx+ f̄Y y)] +

1

2
exp[−j2π(f̄Xx+ f̄Y y)].

Now to have any hope of producing a cosine at the output, we hadbetter insist that the system beinvari-
ant, for only then can we expect the exponential nature of the twoinput components to be preserved.
For an invariant system, each complex-exponential input produces a complex-exponential output of
the same frequency, but with a possible change of amplitude and phase, as determined by the transfer
function. Remembering that the complex exponentials are eigenfunctions of linear, invariant systems,
we write the outputv(x, y) as

v(x, y) =
1

2
H(f̄X , f̄Y ) exp[j2π(f̄Xx+ f̄Y y)] +

1

2
H(−f̄X ,−f̄Y ) exp[−j2π(f̄Xx+ f̄Y y)],

whereH(fX , fY ) is the transfer function of the system, given by the Fourier transform of the impulse
responseh(x, y). The transfer function can be written as the product of an amplitude function and a
phase function,

H(fX , fY ) = A(fX , fY ) ejφ(fX ,fY ),
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whereA(fX , fY ) ≥ 0. Thus the output can be written

v(x, y) =
1

2
A(f̄X , f̄Y ) exp[j2π(f̄Xx+ f̄Y y) + φ(f̄X , f̄Y )]

+
1

2
A(−f̄X ,−f̄Y ) exp[−j2π(f̄Xx+ f̄Y y) + φ(−f̄X ,−f̄Y )]

Now we ask under what conditions can the above two exponential terms be combined to form a cos-
inusoidal output of frequency(f̄X , f̄Y )? The answer is that the following two conditions must be
satisfied:

A(−f̄X ,−f̄Y ) = A(f̄X , f̄Y )

φ(−f̄X ,−f̄Y ) = −φ(f̄X , f̄Y ),

i.e. the magnitude of the transfer function must be even and the phase must be odd. These symmetry
relations will be satisfied if and only if the impulse response of the system,h(x, y), is real-valued.
Thus, to summarize, the required conditions are that the system be linear and invariant, and that its
impulse response be real-valued.

2-9. Consider a linear, invariant system with a circularly-symmetric impulse responseh(r), and a corre-
sponding circularly-symmetric transfer functionH(ρ). First take the Fourier-Bessel transform of the
inputJ0(2πρ0r), which from Prob. 2-6(a) is

B {J0(2πρ0r)} =
1

2πρ0
δ(ρ− ρ0).

The output from the system is found by multiplying the spectrum of the input by the transfer function.
Thus the spectrum of the output,V (ρ), must be given by

V (ρ) = H(ρ)
1

2πρ0
δ(ρ− ρ0) =

H(ρ0)

2πρ0
δ(ρ− ρ0).

An inverse Fourier-Bessel transform can now be applied, using the same transform pair listed above,
yielding and output

v(r) = H(ρ0)J0(2πρ0r).

Clearly the functionJ0(2πρ0r) is an eigenfunction of the system. The corresponding eigenvalue is
H(ρ0).

2-10. Consider the Fourier transform operator as a system.

(a) The system is linear by virtue of the linearity theorem ofFourier transforms.

(b) The system will have a transfer function only if it is shift-invariant. It will be shift-invariant only if
a shift of the input produces a simple shift in the output. However, we know from the shift theorem
of Fourier analysis that a shift of the function to be transformed produces a multiplicative phase
factor in the transform domain, but no shift of the transform. Therefore the Fourier transform
operator is not shift-invariant, and the system can have no transfer function.

2-11. (a) By the convolution theorem,

P (fX , fY ) = G(fX , fY )XY comb(XfX) comb(Y fY ),



8

where we have used the similarity theorem and the fact that the Fourier transform of a comb
function is another comb function. Further simplification results from the following relation:

XY comb(XfX) comb(Y fY ) = XY

∞∑

n=−∞

∞∑

m=−∞
δ(XfX − n, Y fY −m)

=

∞∑

n=−∞

∞∑

m=−∞
δ(fX − n

X
, fY − m

Y
),

where we have used the fact thatδ(ax, by) = 1
|a,b|δ(x, y). We have assumed in the above that

X ≥ 0, Y ≥ 0.

(b) The Fourier transform of the giveng(x, y) is found as follows:

F{g(x, y)} =
XY

4
sinc

(
X

2
fX

)

sinc

(
Y

2
fY

)

,

where the similarity theorem has been used. The figure below shows sketches ofg(x, 0) and
p(x, 0) in this case.

x

g(x,0)

X/4-X/4

1

x

p(x,0)

X/4

1

-X/4 3X/4-3X/4 5X/4-5X/4

Figure 2-11:

2-12. For a function with no spectral components outside of acircle with radiusB,

G(fX , fY ) = Gs(fX , fY ) circ
( ρ

B

)

,

whereGs(fX , fY ) is the spectrum of the sampled function. By the convolution theorem, the equivalent
expression in the space domain is

g(x, y) =
[

g(x, y) comb
( x

X

)

comb
( y

Y

)]

⊗ B−1
{

circ
( ρ

B

)}

.

Recognizing that there is no difference between the forwardand reverse transforms for circularly sym-
metric functions, and using the similarity theorem, we have

B−1
{

circ
( ρ

B

)}

= B
J1(2πBr)

r
.
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Expanding the comb functions into sums ofδ functions, we have

g(x, y) = XY
∑

n

∑

m

g(x, y) δ(x− nX, y −mY ) ⊗B
J1(2πBr)

r

= XYB
∑

n

∑

m

∞∫

−∞

∫

g(ξ, η) δ(ξ − nX, η − nY )
J1

(

2πB
√

(x − ξ)2 + (y − η)2
)

√

(x − ξ)2 + (y − η)2
dξdη

= XYB
∑

n

∑

m

g(nX,mY )
J1

(

2πB
√

(x − nX)2 + (y −mY )2
)

√

(x − nX)2 + (y −mY )2
.

By the same arguments used in the case of the rectangular bandlimitation, the maximum allowable
sampling intervals without overlap of the spectral islandsareX = Y = 1

2B . With these values

g(x, y) =
1

4B

∑

n

∑

m

g
( n

2B
,
m

2B

) J1

(
2πB

√
(x − n

2B )2 + (y − m
2B )2

)

√
(x− n

2B )2 + (y − m
2B )2

=
∑

n

∑

m

g
( n

2B
,
m

2B

) π

4

{

2
J1

(
2πB

√
(x − n

2B )2 + (y − m
2B )2

)

2πB
√

(x− n
2B )2 + (y − m

2B )2

}

.

2-13. The objectUo(x, y) has a band-unlimited spectrum, while the transfer functionH(fX , fY ) of the
system is bandlimited to the region|fX | ≤ BX , |fY | ≤ BY . Because of the bandlimitation onH , it is
possible to write

H(fX , fY ) = H(fX , fY ) rect

(
fX

2BX

)

rect

(
fY

2BY

)

.

Since the imaging system is both linear and invariant, the image and object spectra,Gi andGo, respec-
tively, can be related by

Gi(fY , fY ) = H(fX , fY )Go(fX , fY ) = H(fX , fY )

[

rect

(
fX

2BX

)

rect

(
fY

2BY

)

Go(fX , fY )

]

.

From this equation we can see directly that the output spectrum can be viewed as resulting from the
application of a new fictitious object with spectrum

G′
o(fX , fY ) = rect

(
fX

2BX

)

rect

(
fY

2BY

)

Go(fX , fY ).

In the space domain, the relation between the fictitious object and the actual object is

U ′
o(x, y) = Uo(x, y) ⊗ 4BXBY sinc(2BXx)sinc(2BY y)

= 4BXBY

∞∫

−∞

∫

Uo(ξ, η) sinc[2BX(x− ξ)] sinc[2BY (y − η)] dξdη.

SinceU ′
o is bandlimited, it can be reconstructed from samples taken at the Nyquist rate, i.e. samples

taken at coordinatesxn = n
2BX

, ym = m
2BY

. The sampled object which will yieldU ′
o after low pass

filtering is given by

Û ′
o(x, y) = comb(2BXx) comb(2BY y)U

′
o(x, y)

=
∞∑

n=−∞

∞∑

m=−∞
U ′

o

(
n

2BXx
,

m

2BY y

)

δ

(

x− n

2BX
, y − m

2BY

)

.
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Substituting the expression derived above forU ′
o,

Û ′
o(x, y) =

∞∑

n=−∞

∞∑

m=−∞





∞∫

−∞

∫

Uo(x, y) sinc(n− 2BXξ) sinc(m− 2BY η) dξdη





× δ

(

x− n

2BX
,m− m

2BY

)

.

This array of point sources will yield the same image as the original objectUo(x, y).

2-14. (a) Substituting the infinite-length chirp function into the definition of the Wigner distribution func-
tion, we obtain

W (f, x) =

∫ ∞

−∞
ejπβ(x+ξ/2)2 e−jπβ(x−ξ/2)2 e−j2πfξ dξ

=

∫ ∞

−∞
e−j2π(f−βx)ξ dξ = δ(f − βx).

(b) For the finite-length chirp function we obtain

W (f, x) =

∫ ∞

∞
ejπβ(x+ξ/2)2rect

(
x+ ξ/2

2L

)

e−jπβ(x−ξ/2)2rect

(
x− ξ/2

2L

)

e−j2πfξdξ

=

∫ ∞

∞
e−j2π(f−βx)ξ rect

(
x+ ξ/2

2L

)

rect

(
x− ξ/2

2L

)

dξ

Now note that

rect

(
x+ ξ/2

2L

)

rect

(
x− ξ/2

2L

)

= rect

(
ξ

4(L− |x|)

)

,

as can be verified by sketching the two rectangle functions and determining their region of over-
lap. Thus the Wigner distribution will be given by a Fourier transform of the rectangle on the
right, evaluated at frequencyf − βx. Using the similarity theorem, we have

W (f, x) = [4(L− |x|)] sinc[(4(L− |x|))(f − βx)]

for |x| ≤ L and 0 otherwise.

(c) The two requested figures are shown below.
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Chapter 3

3-1. Begin with Maxwell’s equations,

∇× ~E = −µ∂
~H
∂t

∇× ~H = ǫ
∂~E
∂t

∇ · ǫ~E = 0 ∇ · µ ~H = 0,

whereǫ is dependent on spatial coordinates but independent of polarization, andµ is independent of
both spatial coordinates and polarization. Eliminate~H on the left by taking the curl of the first equation
for ~E , and using the vector identity∇× (∇× ~E) = ∇(∇ · ~E) −∇2~E , giving

∇× (∇× ~E) = ∇(∇ · ~E) −∇2~E = −µ∂(∇× ~H)

∂t
.

Use the first equation for~H to reduce this equation to

∇2~E −∇(∇ · ~E) − µǫ
∂2~E
∂t2

= 0.

The second Maxwell equation for~E can be expanded as follows:

∇ · (ǫ~E) = ǫ(∇ · ~E) + ~E · ∇ǫ = 0.

It follows that

∇ · ~E = −~E · ∇ǫ
ǫ

= −~E · ∇ ln ǫ.

Hence the wave equation becomes

∇2~E + ∇(~E · ∇ ln ǫ) − µǫ
∂2~E
∂t2

= 0.

Using the definitions given in Eqs. (3-5) and (3-6), this equation can be rewritten

∇2~E + 2∇(~E · ∇ lnn) − n2

c2
∂2~E
∂t2

= 0.

3-2. The Sommerfeld radiation condition is

lim
R→∞

R

(
∂U

∂n
− jkU

)

= 0.

13
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A diverging spherical wave can be written in the form

U =
ejkr

r
.

For a diverging spherical wave ,

∂U

∂n
=
∂U

∂r
= jk

ejkr

r
− ejkr

r2
.

Lettingr → R and inserting this expression in the left-hand side of the Sommerfeld radiation condition,
we obtain

lim
R→∞

R

(

jk
ejkR

R
− ejkR

R2
− jk

ejkR

R

)

= lim
R→∞

ejkR

R
.

AsR→ ∞, the result approaches zero, and thus the Sommerfeld radiation condition is satisfied.

3-3. We begin by stating Eq. (3-26),

U(P0) =
1

4π

∫

Σ

∫
exp(jkr01)

r01

[
∂U

∂n
− jkU cos(~n,~r01)

]

ds.

Assume that the aperture is illuminated with the diverging spherical wave

U(P1) =
A exp(jkr21)

r21
.

Now atP1,
∂U

∂n
= A cos(n̂, r̂21)

ejkr21

r21

(

jk − 1

r21

)

.

If jk ≫ 1/r21, then
∂U

∂n
≈ jkA cos(n̂, r̂21)

ejkr21

r21
.

Substitute this expression in Eq. (3-26),

U(P0) =
1

4π

∫

Σ

∫

ds
ejkr01

r01

[

jkA cos(n̂, r̂21)
ejkr21

r21
− jkA cos(n̂, r̂01)

ejkr21

r21

]

=
jkA

4π

∫

Σ

∫

ds
ejk(r21+r01)

r21r01
[cos(n̂, r̂21) − cos(n̂, r̂21)].

But jkA
4π = − A

2jλ , so

U(P0) =
A

jλ

∫

Σ

∫
exp[jk(r21 + r01)]

r21r01

[
cos(~n,~r01) − cos(~n,~r21)

2

]

ds,

which is Eq. (3-27).



15

3-4. We begin with an expression forG+,

G+(P1) =
ejkr01

r01
+
ejkr̃01

r̃01
.

Taking the normal derivative of this function,

∂G+

∂n
= cos(n̂, r̂01)

[

jk − 1

r01

]
ejkr01

r01
+ cos(n̂, ˆ̃r01)

[

jk − 1

r̃01

]
ejkr̃01

r̃01
.

Note thatP0 andP̃0 are mirror images of each other, sor01 = r̃01, andcos(n̂, ˆ̃r01) = − cos(n̂, r̂01).
Substituting these facts into the above equation, we see that across the screen and aperture

∂G+

∂n
= 0.

3-5. Using Eq. (3-63) we have the following:

(a) For a circular aperture of diameterd:

A

(
α

λ
,
β

λ
; 0

)

= B
{

circ

(
2r

d

)} ∣
∣
∣
∣fX=α/λ

fY =β/λ

.

Using the similarity theorem for Fourier-Bessel transforms (Eq. (2-34)) and the Fourier-Bessel
transform pair of Eq. (2-35),

A

(
α

λ
,
β

λ
; 0

)

=
d2

4

J1

(
2πρd

2

)

dρ
2

=
d

2

J1(πρd)

ρ
.

Finally, note thatρ =
√

f2
X + f2

Y =

√
(

α
λ

)2
+
(

β
λ

)2

yielding

A

(
α

λ
,
β

λ
; 0

)

=
d2

4

J1

(
2πρd

2

)

dρ
2

=
d

2

J1

(

π

√
(

α
λ

)2
+
(

β
λ

)2

d

)

√
(

α
λ

)2
+
(

β
λ

)2
.

(b) A circular opaque disk of diameterd can be modeled by the following amplitude transmittance
function:

tA(x, y) = 1 − circ

(
2r

d

)

.

From the linearity theorem of Fourier analysis it follows that the angular spectrum of this structure
is

A

(
α

λ
,
β

λ
; 0

)

= δ

(
α

λ
,
β

λ

)

− d

2

J1

(

π

√
(

α
λ

)2
+
(

β
λ

)2

d

)

√
(

α
λ

)2
+
(

β
λ

)2
.
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3-6. We start with the equation after Eq. (3-56),

u−(P0, t) =

∫

Σ

∫
cos(~n,~r01)

2πvr01

∫ ∞

−∞
−j2πν′U(P1,−ν′)e−j2πν′(t− r01

v ) dν′ ds.0

Sinceu−(P, t) has center frequency−ν̄ and bandwidth∆ν, the inner integral is non-zero only for
ν′ in the range(ν̄ − ∆ν/2, ν̄ + ∆ν/2). The firstν′ in the equation varies by only a small fractional
amount if∆ν ≪ ν̄; it can be replaced bȳν and taken out of the integral. Also,exp[j2πν′r01/v] →
exp[j2πν̄r01/v], provided∆ν ≫ r01/v. Thus:

u−(P0, t) =
1

jλ̄

∫

Σ

∫
cos(~n,~r01)

r01
exp[jk̄r01]

∫ ∞

−∞
U(P1,−ν′)e−j2πν′t dν′ ds

Definingu−(P1, t) = 0 for P1 outsideΣ,

u−(P0, t) =
1

jλ̄

∞∫

−∞

∫

u−(P1, t)
exp[jk̄r01]

r01
cos(~n,~r01) ds

(Note: λ̄ = v/ν̄ , k̄ = 2π/λ̄.)

3-7. (a) SubstitutingU(x, y, z) ≈ A(x, y, z)ejkz into the Helmholtz equation(∇2 + k2)U = 0,

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

]

A(x, y, z)ejkz = 0.

Then,

[
∂2

∂x2
+

∂2

∂y2

]

Aejkz +
∂

∂z

[
∂A

∂z
ejkz + jkAejkz

]

+ k2Aejkz = 0

∇2
tAe

jkz +
∂2A

∂z2
ejkz + 2jk

∂A

∂z
ejkz + (jk)2Aejkz + k2Aejkz = 0.

Dividing by ejkz and simplifying,

∇2
tA+ j2k

∂

∂z
A+

∂2

∂z2
A = 0.

The “slowly varying” approximation for A implies that:

∂2

∂z2
A≪ j2k

∂A

∂z

leaving,

∇2
tA+ j2k

∂A

∂z
= 0.
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(b) We first evaluate a number of different derivatives:

A(x, y, z) =
A1

q
ejk x2+y2

2q(z)

∂

∂z
A(x, y, z) = −A1

q2
dq

dz
ejk x2+y2

2q − A1

q

(

jk
x2 + y2

2q2

)
dq

dz
ejk x2+y2

2q

= −
(

1

q
+ jk

x2 + y2

2q2

)
dq

dz
A(x, y, z)

∂

∂x
A(x, y, z) = jk

xA1

q2
ejk x2+y2

2q

∂2

∂x2
A(x, y, z) = jk

A1

q2
ejk x2+y2

2q +

(

jk
x

q

)2
A1

q
ejk x2+y2

2q

=

(

jk
1

q
− k2x

2

q2

)

A(x, y, z)

Similarly,

∂2

∂y2
A(x, y, z) =

(

jk
1

q
− k2 y

2

q2

)

A(x, y, z).

Now substitute the partial derivatives ofA into the paraxial Helmholtz equation. Noting that
dq/dz is equal to 1,

∇2
tA+ j2k

∂A

∂z
=

(

2jk
1

q
− k2x

2 + y2

q2
− 2jk

1

q

dq

dz
+ k2x

2 + y2

q2
dq

dz

)

A

= 0.

(c) Substituting the given expression into the result from part (b),

A = A1

(
1

R
+ j

λ

πW 2

)

exp

[
jk

2
(x2 + y2)

(
1

R
+ j

λ

πW 2

)]

= A1

(
1

R
+ j

λ

πW 2

)

exp

[

− ρ2

W 2

]

exp

[

jk
ρ2

2R

]

U = A exp[jkz]

= A1

(
1

R
+ j

λ

πW 2

)

exp

[

− ρ2

W 2

]

exp

[

jkz + jk
ρ2

2R

]

= A0
W0

W (z)
exp

[

− ρ2

W 2

]

exp

[

jkz + jk
ρ2

2R
+ jθ(z)

]

where:

A0W0

W
= A1

[(
1

R

)2

+

(
λ

πW 2

)2
]1/2

θ(z) = tan−1

(
λR

πW 2

)

.

To show thatW0 is independent ofz, we differentiateW 2
0 with respect toz and show that it
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equals zero:

W 2
0 =

(
A1

A0

)2
[(

W

R

)2

+

(
λ

πW

)2
]

d(W 2
0 )

dz
=

(
A1

A0

)2(
2WR2W ′ − 2RW 2R′

R4
− 2λ2W ′

π2W 3

)

= 2

(
A1

A0

)2
π2W 4RW ′ − π2W 5R′ − λ2R3W ′

π2W 3R3
,

where the prime sign designates a derivative with respect toz. Now, using the conditiondq/dz =
1, we can expressR′ andW ′ in terms ofR andW :

d(1/q)

dz
=

−1

q2
dq

dz
=

−1

q2

d

dz

(
1

R
+ j

λ

πW 2

)

= −
(

1

R
+ j

λ

πW 2

)2

−R′

R2
− 2j

λW ′

πW 3
=

−1

R2
+

λ2

π2W 4
− 2j

λ

πRW 2
.

Solving for both the real and the complex parts of the equation, we get

R′ = 1 − λ2R2

π2W 4

W ′ =
W

R
.

Substituting,

d(W 2
0 )

dz
= 2

(
A1

A0

)2
1

π2W 3R3

[

π2W 4R
W

R
− π2W 5

(

1 − λ2R2

π2W 4

)

− λ2R3W

R

]

= 2

(
A1

A0

)2
1

π2W 3R3

(
π2W 5 − π2W 5 + λ2R2W − λ2R2W

)

= 0.



Chapter 4

4-1. (a) According to Eq. (4-21):

F
{

1

jλz
ej π

λz (x2+y2)

}

= e−jπλz(f2
X+f2

Y ).

Using the area (or volume) property of the Fourier transform, the infinite integral of the function in
the (x,y) domain is equal to the Fourier transform of the function evaluated at (fX = 0, fY = 0).
Thus,

∞∫

−∞

∫
1

jλz
ej π

λz (x2+y2) dx dy = e−jπλz(f2
X+f2

Y )
∣
∣
∣
fX=fY =0

= 1.

(b) Expanding the exponential,

1

jλz
ej π

λz (x2+y2) =
1

jλz
cos
[

j
π

λz
(x2 + y2)

]

+
j

jλz
sin
[

j
π

λz
(x2 + y2)

]

The volume is one, so the volume under the imaginary part−1
λz cos

[
π
λz (x2 + y2)

]
must be zero

and all the volume must come from the real sine term.

4-2. Remember, if we start on the left and propagate a distance z to the right, there is a phase delay of
kz radians incurred, which is represented by multiplication by exp(+jkz) since the phasors rotate
counterclockwise.

(a) We first find the exact phase distribution:

φexact = kz0

√

1 +
x2 + y2

z2
0

.

(b) Next we find the approximate phase distribution:

φapprox = kz0 +
k

2z0
(x2 + y2).

(c) The phase error is

∆φ = φapprox − φexact

= kz0 +
k

2z0
(x2 + y2) − kz0

√

1 +
x2 + y2

z2
0

.
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Now, we see that in binomial approximation,(1 + b)1/2 ≤ 1 + b/2 by noting that

LHS2 = 1 + b ≤ RHS2 = 1 + b+ b2.

Hence, phase error≥ 0, orφapprox ≥ φexact. Sinceφexact andφapprox both correspond to phase
delay, it follows that the approximate phaselags behind the exact phase. (In other words, since
total phase= −jωt+ φ, more time is needed for the approximate phase to reach the same total
phase as the exact phase.)

4-3. This time we can imagine propagating backwards (to the right) from the focus point to the sphere or
parabolic surface, as if time were reversed. If we must go backwards distancez, then in effect the phase
on the left leads the phase at the focal point bykz, as represented by a multiplicative factorexp(−jkz).

(a) Again we first find the exact phase distribution:

φexact = −kz0

√

1 +
x2 + y2

z2
0

.

(b) Next we find the approximate phase distribution:

φapprox = −kz0 −
k

2z0
(x2 + y2).

(c) The phase error is

∆φ = φapprox − φexact

= −kz0 −
k

2z0
(x2 + y2) + kz0

√

1 +
x2 + y2

z2
0

.

Now, we see that in binomial approximation,(1 + b)1/2 ≤ 1 + b/2 by noting that

LHS2 = 1 + b ≤ RHS2 = 1 + b+ b2

Hence, phase error this time is≤ 0, or φapprox ≤ φexact. Sinceφexact andφapprox both cor-
respond to phasedelay, it follows that the approximate phaseleads the exact phase. (In other
words, since total phase= −jωt+ φ, less time is needed for the approximate phase to reach the
same total phase as the exact phase.)

4-4. Over any distancezk, Fresnel propagation can be described by the transfer function

H(fX , fY ; zk) = ejkzk e−jπλzk(f2
X+f2

Y ).

Propagation over several distancesz1, z2, · · · , zn can be represented by multiplication of the successive
transfer functions,

H(fX , fY ; z1 + z2 + · · · + zn) =

n∏

k=1

H(fX , fY ; zk)

Performing the product,

H(fX , fY ; z1 + z2 + · · · + zn) = ejk(z1+z2+···+zn) e−jπλ(z1+z2+···+zn)(f2
X+f2

Y )

Clearly, sincez = z1 + z2 + · · · + zn, propagation over distancez is equivalent to propagation over
the sum of the distancesz1, z2, · · · , zn.



21

4-5. We have seen in Section 4.2.2 that the majority of the contribution to the convolution integral describing
Fresnel diffraction comes from a square with sides of length4

√
λz, centered on the point(ξ = x, η =

y). For a slit aperture (width2w), the boundary between the transition region and the dark region
occurs when this square region lies entirely behind the opaque portion of the aperture. The figure
below illustrates the geometries for both edges of the transition region.

2w

(x,y)

η

ξ

Aperture

2w

(x,y)

η

ξ

Aperture

4   λz

4   λz

Figure 4-5:

The illustration on the left (x > 0) defines an equation

(x− w) = 2
√
λz,

while that on the right(x < 0) defines an equation

(x + w) = −2
√
λz.

When these two equations are squared on the left and the right, we obtain the two parabolas of interest,

(w − x)2 = 4λz

(w + x)2 = 4λz.

4-6. For converging illumination of the aperture, we see from Prob. 4-3 that:

phase error = φapprox − φexact

= −kz0 −
k

2z0
(ξ2 + η2) + kz0

√

1 +
ξ2 + η2

z2
0

≤ 0,

wherez0 is the distance from the point source to the aperture plane.

For the Fresnel approximation, assuming an observation point (x, y) at distancez from the aperture,

phase error = φapprox − φexact

=

{

kz +
k

2z

[
(x− ξ)2 + (y − η)2

]
}

−
{

kz

√

1 +
(x− ξ)2 + (y − η)2

z2

}

≥ 0,

since(1+ b)1/2 ≤ 1+ b/2. Hence, the phase error due to the quadratic approximation on the illumina-
tion and the phase error due to Fresnel approximation have opposite signs and at least partially cancel.
Exact cancellation occurs whenz = z0 and(x = 0, y = 0), i.e. for the particular point towards which
the spherical illumination is converging.
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4-7. (a) The amplitude transmittance of this aperture can bewritten

tA(ξ, η) = rect
( x

X

) [

rect

(
y − ∆/2

Y

)

+ rect

(
y + ∆/2

Y

)]

.

The Fourier transform of this function is

F{tA(ξ, η)} = 2XY sinc(XfX) sinc(Y fY ) cos(π∆fY ).

The Fraunhofer diffraction pattern is therefore

I(x, y) =

(
4XY

λz

)2

sinc2
(
Xx

λz

)

sinc2
(
Y y

λz

)

cos2
(
π∆y

λz

)

.

(b) The required sketch is shown below.
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I(x,0)/I0 I(0,y)/I0

Figure 4-7:

4-8. (a) The amplitude transmittance function is separableand each factor can be considered separately;
i.e. tA(ξ, η) = tX(ξ) tY (η), where

tX(ξ) = rect

(
ξ

X

)

⊗ δ(ξ) = rect

(
ξ

X

)

tY (η) =

[

rect
( η

Y

)

⊗ 1

∆
comb

( y

∆

)]

rect
( η

N∆

)

.

The behavior oftX(ξ) is quite clear. The behavior oftY (η) requires more thought. Since
1
∆comb

(
η
∆

)
=
∑

m δ(η −m∆), we have

tY (η) =

[

rect
( η

Y

)

⊗
∑

m

δ(η −m∆)

]

rect
( η

N∆

)

.

Since∆ > Y , the delta functions are more widely spaced that the width ofthe rectangles. The
fact thatN is odd means that the outer rectangle function subtends a symmetrical pattern of
rectangle functions, i.e. with the same number of smaller rectangles above and below the small
rectangle centered on the origin. The structure oftA(ξ, η) is illustrated in the figure above for
N = 5.
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ξ

η

∆N∆

X

Y

Figure 4-8:

(b) To find the Fraunhofer diffraction pattern, we must Fourier transform the amplitude transmittance
and evaluate the scaled transform at properly scaled frequencies. Since the amplitude transmit-
tance is separable, we can perform one-dimensional transforms on each of the factors:

F{tX(ξ)} = X sinc(XfX)

F{tY (η)} = [Y sinc(Y fX) × ∆comb(∆fY )] ⊗N∆sinc(N∆fY )

=

[ ∞∑

m=−∞
Y sinc

(
mY

∆

)

δ
(

fY − m

∆

)
]

⊗N∆sinc(N∆fY )

= N∆Y

∞∑

m=−∞
sinc

(
mY

∆

)

sinc
[

N∆
(

fY − m

∆

)]

.

The full expression for the intensity distribution in the Fraunhofer diffraction pattern becomes:

I(x, y) =

(
N∆XY

λz

)2
{ ∞∑

m=−∞
sinc

(
mY

∆

)

sinc

(
Xx

λz

)

sinc

[
N∆

λz

(

y −m
λz

∆

)]}2

.

(c) The sum appearing above can be viewed (considering only they direction) as a sum of terms of
the form sinc

(
Xx
λz

)
sinc

[
N∆
λz

(
y −mλz

∆

)]
, each with a weighting factor sinc

(
mY
∆

)
. We wish to

find conditions under which the weighting factors of the terms for even values ofm will be as
small as possible. Since the sinc function has zero value at integer arguments, this requires

2kY/∆ = integer

for each integerk. This will be the case ifY/∆ is any integer multiple of1/2. For example, if
the slit spacing is twice the slit width, this will be the case. Note that the weighting factor for the
m = 0 term is independent of ratio ofY to ∆, so the strength of the “zero order” remains at its
maximum possible value.

4-9. The amplitude transmittance of this aperture is given by

tA(x, y) = rect

(
x

wo

)

rect

(
y

wo

)

− rect

(
x

wi

)

rect

(
y

wi

)

.
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The Fourier transform of this transmittance function is

F{tA(x, y)} = w2
o sinc(wofX) sinc(wofY ) − w2

i sinc(wifX) sinc(wifY ).

It follows that the Fraunhofer diffraction pattern of this aperture is

I(x, y) =

(
4w2

o

λz

)2

sinc2
(

2wox

λz

)

sinc2
(

2woy

λz

)

− 2

(
4wowi

λz

)2

sinc

(
2wox

λz

)

sinc

(
2woy

λz

)

sinc

(
2wix

λz

)

sinc

(
2wiy

λz

)

+

(
4w2

i

λz

)2

sinc2
(

2wix

λz

)

sinc2
(

2wiy

λz

)

.

4-10. The amplitude transmittance function for this aperture is

tA(q) = circ

(
q

wo

)

− circ

(
q

wi

)

.

The Fourier-Bessel transform of this function is

B{tA(q)} = w2
o

J1(2πwoρ)

woρ
− w2

i

J1(2πwiρ)

wiρ
.

The Fraunhofer diffraction pattern is therefore

I(r) =

(
w2

o

λz

)2
[

J1

(
2πwor

λz

)

wor
λz

]2

− 2
(wowi

λz

)2
[

J1

(
2πwor

λz

)

wor
λz

] [

J1

(
2πwir

λz

)

wir
λz

]

+

(
w2

i

λz

)2
[

J1

(
2πwir

λz

)

wir
λz

]2

.

4-11. (a) From Eq. (4-41), for the case of a sinusoidal phase grating,

I(x, y) ≈
(
A

λz

)2 ∞∑

q=−∞
J2

q

(m

2

)

sinc2
[
2w

λz
(x− qf0λz)

]

sinc2
(

2wy

λz

)

.

The first zero for orderq and wavelengthλ1 will occur at the value ofx satisfying

2w

λ1z
(x− qf0λ1z) = 1,

or

x = qf0λ1z +
λ1z

2w
.

Now consider the same orderq but a different wavelengthλ2. This wavelength will produce a
maximum of the order at

x = qf0λ2z.
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Equating these two values ofx yields the equation

qf0z(λ2 − λ1) =
λ1z

2w
.

Defining∆λ = λ2 −λ1, we obtain the resolving power of the grating in theqth diffraction order,

λ

∆λ
= 2qwf0,

where in the numeratorλ ≈ λ1 ≈ λ2. Note that the number of grating periodsM in the aperture
is 2wf0, so

λ

∆λ
= qM.

(b) The use of arbitrarily high diffraction orders is limited by (i) eventual decrease of diffraction
efficiency in arbitrarily high orders, and (ii) the evanescent wave phenomenon, which prevents
sufficiently high orders from propagating.

4-12. (a) The Fourier transform of the amplitude transmittance function is

F{tA(ξ)} =

∞∑

n=−∞
cn F{ej 2πnξ

L } =

∞∑

n=−∞
cnδ

(

fX − n

L

)

.

Assuming unit amplitude, normally incident plane wave illumination, the intensity in any order
will be proportional to the squared magnitude of the Fouriercoefficient associated with that order.
More generally, for arbitrary strength of illumination, the diffraction efficiency of a given order is
the squared magnitude of the Fourier coefficient of the deltafunction corresponding to that order.
Thus

ηk = |ck|2 .

(b) We must find the Fourier coefficients of the amplitude transmittance function

tA(ξ) =

∣
∣
∣
∣
cos

(
πξ

L

)∣
∣
∣
∣
.

Do so as follows:

ck =
1

L

∫ L/2

−L/2

∣
∣
∣
∣
cos

(
πξ

L

)∣
∣
∣
∣
e−j 2πkξ

L dξ =
1

L
F
{

rect

(
ξ

L

)

cos

(
πξ

L

)}

fX=k/L

=
1

2L

(

Lsinc

[

L

(

fX − 1

2L

)]

+ Lsinc

[

L(fX +
1

2L
)

])

fX=k/L

=
1

2

[

sinc

(
2k − 1

2

)

+ sinc

(
2k + 1

2

)]

.

The diffraction efficiency is seen to be

ηk = |ck|2 =
1

4

[

sinc

(
2k − 1

2

)

+ sinc

(
2k + 1

2

)]2

.

For the particular case of the first diffraction order (k = 1),

|c1|2 =
1

4

[

sinc

(
1

2

)

+ sinc

(
3

2

)]2

=
1

4

[
2

π
− 2

3π

]2

=
4

9π2
= 4.5%.
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4-13. We first obtain a Fourier series expansion of the grating amplitude transmittance, and then use the
results of the previous problem. First note that in the region |ξ| ≤ L/2, the amplitude transmittance
can be written

tA(ξ) =

(
1

2
− tm

)

rect

(
ξ

L

)

+ 2tmrect

(
ξ

L/2

)

.

Thus

cn =
1

L
F
{(

1

2
− tm

)

rect

(
ξ

L

)

+ 2tmrect

(
ξ

L/2

)}

fX=n/L

=

(
1

2
− tm

)

sinc(n) + tm sinc
(n

2

)

.

(a) The fraction of light absorbed by the grating is found by subtracting the spatial average (i.e. an
average over one period) of|tX(ξ)|2 from unity,

fraction absorbed = 1 − 1

L

∫ L/2

−L/2

|tA(ξ)|2 dξ

= 1 − 1

L

[

L

2

(
1

2
− tm

)2

+
L

2

(
1

2
+ tm

)2
]

=
3

4
− t2m.

(b) The fraction of light transmitted by the grating is simply 1 minus the fraction absorbed. Therefore

fraction transmitted=
1

4
+ t2m.

(c) The fraction of light appearing in a single first order will be given by|c1|2. We have

|c1|2 =

(
2tm
π

)2

=
4t2m
π2

.

4-14. We begin by writing an equation for the amplitude transmittance of the grating:

tA(x) = 1 −
[
(1 − ejφ) × (square wave)

]

= 1 −
[

(1 − ejφ) ×
∞∑

n=−∞
cne

j 2πnx
L

]

where,

cn =
1

L

∫ ∞

−∞
rect

(
ξ

L/2

)

e−j 2πnξ
L dξ =

1

L
F
{

rect

(
x

L/2

)}

fX=n/L

=
1

2
sinc

(n

2

)

.

Continuing,

F {tA(x)} = δ(fX) − (1 − ejφ)

∞∑

n=−∞

1

2
sinc

(n

2

)

F
{

ej 2πnx
L

}

= δ(fx) − (1 − ejφ)

∞∑

n=−∞

1

2
sinc

(n

2

)

δ
(

fX − n

L

)

.
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(a) Now finding the diffraction efficiency of the first order,

η1 = η−1 =
∣
∣1 − ejφ

∣
∣
2
[
1

2
sinc

(
1

2

)]2

=
1

4

(
2

π

)2

(2 − 2 cosφ)

=
2

π2
(1 − cosφ).

(b) To maximizeη1 andη−1, we requirecosφ = −1, orφ = π. In this case the diffraction efficiency
becomes

η1 = η−1 =
4

π2
= 40.5%.

4-15. (a) To find the diffraction efficiency, we find the Fourier coefficients as follows:

cn =
1

L

∫ L

0

ej 2πξ
L ej2πξ n

L dξ =
1

L

∫ L

0

ej 2π
L (1+n)ξ dξ

=
1

L

e
j2π
L (1+n)ξ

j 2π
L (1 + n)

]L

0

= ejπ(1+n) sinc(1 + n).

The diffraction efficiency is thus given by

ηn = |cn|2 = sinc2(1 + n).

Note thatall of the light is transmitted into a first-order component(n = −1).

(b) In this case,

cn =
1

L

∫ L

0

ej φoξ
L ej2πξ n

L dξ =
1

L

∫ L

0

ej 2πξ
L (n+ φo

2π ) dξ =
1

L

ej 2π
L (n+ φo

2π )ξ

j 2π
L

(

n+ φo

2π

)





L

0

= ejπ(n+ φo
2π ) sinc

(

n+
φo

2π

)

.

The diffraction efficiency becomes

ηn = sinc2
(

n+
φo

2π

)

.

4-16. (a) The wavefront in the aperture will be of the forme−jkr01 , with a minus sign because the wave is
converging, and withr01 being the distance between a pointP1 in the aperture (coordinates(ξ, η))
and the pointP (coordinates(0, Y )) in the(x, y) plane. An exact expression for the distancer01
is

r01 =
√

z2 + ξ2 + (η − Y )2.

Factoring the distancez outside the square root, and making the usual quadratic phase approxi-
mation, based on the assumption thatz is much larger than the aperture and much larger than the
distance of the pointP off axis, we obtain

r01 = z

√

1 +
ξ2 + (η − Y )2

z2
≈ z +

ξ2 + (η − Y )2

2z
.
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(b) We must consider two quadratic phase factors, the one above representing the illumination, and
a second one that occurs as part of the integrand in the Fresnel diffraction equation. Let the
amplitude transmittance of the aperture be represented bytA(ξ, η), and suppose that the amplitude
of the illuminating wave at the aperture isA. Then the full equation for amplitude of the Fresnel
diffraction pattern in the(x, y) plane is

U(x, y) =
Aejkz

jλz

∞∫

−∞

∫

tA(ξ, η)e−
jk
2z [ξ2+(η−Y )2]e

jk
2z [(x−ξ)2+(y−η)2] dξdη,

where the first quadratic phase factor represents the illumination, while the second is the normal
exponential factor associated with the Fresnel diffraction integral. Expanding the quadratic phase
factor and noting that the terms in(ξ2 + η2) exactly cancel, we obtain

U(x, y) =
Ae−

jk
2z Y 2

e
jk
2z (x2+y2)

jλz

∞∫

−∞

∫

tA(ξ, η)e−j 2π
λz [ξx+η(y−Y )] dξdη.

Since all the phase factors in the integrand are linear inξ andη, we see that the integral is a Fourier
transform, and therefore the result is aFraunhofer diffraction formula, with the Fraunhofer pattern
centered on coordinates(0, Y ).

4-17. On the axis,x = 0 andy = 0, and therefore the Fresnel diffraction equation becomes

U(0, 0) =
ejkz

jλz

∞∫

−∞

∫

tA(ξ, η)ej k
2z (ξ2+η2) dξdη.

(a) FortA(ξ, η) = circ
√

ξ2 + η2, we can change to polar coordinates and write

U(0, 0) =
2πejkz

jλz

∫ 1

0

qe
jk
2z q2

dq,

whereq =
√

ξ2 + η2. Now change variables of integration, lettingσ = jk
2z q

2, from which it
follows thatdσ = jk

z qdq. The lower limit remains0 while the upper limit becomesjk
2z . Thus the

integral becomes

U(0, 0) =
2πejkz

jλz

z

jk

∫ jk
2z

0

exp(σ) dσ = −ejkz exp(σ)
] jk

2z

0

= −ejkz

[

exp

(
jk

2z

)

− 1

]

= −2jejkze
jk
2z sin

(
k

2z

)

.

The intensity is then given by

I(0, 0) = |U(r)|2 = 4 sin2

(
k

4z

)

= 4 sin2
( π

2λz

)

.

Note that the argument of the sin is dimensionally correct, since we took the radius of the circular

aperture to be unity. The more general argument for an aperture of radiusr1 would beπr2
1

2λz .
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(b) For this aperture, the only change to the above equationscomes from the fact that the lower limit
of integration with respect to radius is nowa and the upper limit isb. After the change to polar
coordinates and the change of variable of integration, the field on axis is given by

U(0, 0) = −ejkz

∫ jkb2

2z

jka2

2z

exp(σ)dσ = −ejkz

[

e
jkb2

2z − e
jka2

2z

]

.

Multiplying this expression by its complex conjugate to obtain the intensity, we find after some
algebra that

I(0, 0) = 2

{

1 − cos

[
k

2z
(b2 − a2)

]}

.

4-18. Let the period of the periodic object beL, and assume that the variations run in thex direction. Then
the spectrum of the object will have delta-function components at frequencies

fX =
m

L
m = 0,±1,±2, . . . .

In the paraxial or Fresnel approximation, the transfer function of the propagation phenomenon is

H(fX , fY ) = ejkz exp
[
−jπλz

(
f2

X + f2
Y

)]
.

For an image to appear, we require that

exp

[

−jπλz
(m

L

)2
]

= 1,

for all m, or

πλz
(m

L

)2

= k2π

for some integerk. Note that a different integerk can be chosen for each integerm. An infinite set of
distancesz, call themzn, will satisfy this requirement. Solve forz to yield

z =
2kL2

m2λ
.

Clearly one solution would be, for eachm choosek = m2, yielding z1 = 2L2

λ . Another solution

would be to choosek = 2m2, yielding z2 = 4L2

λ . The general expression for the distances where
self-imaging occurs is

zn =
2nL2

λ
n = 1, 2, . . . .

4-19. Since the transfer function for propagation is, in theFresnel approximation,

H(ρ) = ejkze−jπλzρ2

,

imaging of this object requires that

e−jπλz(2ma) = 1 m = 0, 1, 2, . . . ,

or equivalently
πλz(2ma) = 2kπ
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for some integerk for each givenm. If for eachm we choosek = m, the we obtain a distance
z1 = 1

λza . If we choosek = 2m, then the imaging distance isz2 = 2
λa . More generally the self-

imaging distances are

zn =
n

λa
n = 1, 2, . . . .

4-20. Consider the Fourier transforms of each of the two components of the object:

F {2πJ0(2πr)} = δ(ρ− 1)

F {4πJ0(4πr)} = δ(ρ− 2).

Since the transfer function for free-space propagation, under paraxial conditions, is

H(ρ) = ejkze−jπλzρ2

,

after propagation over distancez the field will be given by

U(r) = ejkz
[
2πJ0(2πr)e

−jπλz + 4πJ0(4πr)e
−j4πλz

]
,

or
U(r) = ejkze−jπλz

[
2πJ0(2πr) + 4πJ0(4πr)e

−j3πλz
]
.

Remembering that only intensity is important, for imaging to occur, we require that

3πλz = 2kπ

where k is any integer. Thus images will appear at distances given by

zk =
2k

3λ
k = 0, 1, 2, . . . .

4-21. Starting with the given wavefront,

U(y1) = exp
[

j
π

λz
(y1 − y0)

2
]

,

we calculate the local spatial frequency in the input plane,

fly1 =
θ1
λ

=
1

2π

∂

∂y1

[ π

λz
(y1 − y0)

2
]

yielding

θ1 =
y1 − y0
z

.

The above relationship between incident angle and incidentposition can also be derived geometri-
cally by noting that the line source which gives rise to the wave is located at(y0,−z), wherez = 0
corresponds to the plane where the wave has been specified.

Now,
(
y2
θ2

)

=

(
A B
C D

)(
y1
θ1

)

(
y1
θ1

)

=
1

AD −BC

(
D −B
−C A

)(
y2
θ2

)

.
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Substituting the expressions fory1 andθ1,

1

AD −BC
(−Cy2 +Aθ2) =

1

z

[
Dy2 −Bθ2
AD −BC

− y0

]

which simplifies to

θ2 =
y2 − y02
z2

where,

y02 =
AD −BC

D + Cz
y0

z2 =
Az +B

D + Cz
.

The phase angleφ2 of the field at the output plane is given as

φ2 =

∫

2πfly2 dy2

=
2π

λ

∫

θ2 dy2

=
2π

λ

∫
y2 − y02
z2

dy2

=
π

λz2
(y2 − y02)

2

where in the last equality, the integration constant was arbitrarily chosen so that the phase is zero at
y2 = y02. Hence, the field at the output plane is

Uout(y2) = exp

[

j
π

λz2
(y2 − y02)

2

]

.

Again, this result can also be obtained by geometrical considerations by noting that the emerging rays at
the output plane represent a cylindrical wave with the source located at(y02, zout−z2) (or a cylindrical
wave converging toward(y02, zout − z2) if z2 is negative).
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Chapter 5

5-1. We start with the expression for the focal length of an arbitrary lens in air,

1

f
= (n− 1)

(
1

R1
− 1

R2

)

or

f =
1

n− 1

R1R2

R2 −R1
.

To determine whether a lens is positive or negative, we need only determine whether its focal length is
positive or negative.

Double Convex: SinceR1 > 0 andR2 < 0, f > 0.

Plano-convex: SinceR1 = ∞ andR2 < 0, f > 0.

Positive Meniscus: SinceR1 > 0,R2 > 0 andR1 < R2, f > 0.

Double Concave: SinceR1 < 0 andR2 > 0, f < 0.

Plano-concave: SinceR1 = ∞ andR2 > 0, f < 0.

Negative Meniscus: SinceR1 < 0 andR2 < 0 and|R1| < |R2|, f < 0.

5-2. Consider the geometry shown in in the figure below, whichis a top view of the cylindrical lens.

y

R-  R2-y2

R2-y2

∆o

R

Figure 5-2:

(a) The thickness of the lens∆(y) at an arbitrary vertical pointy is seen to be

∆(y) = ∆o − (R −
√

R2 − y2) = ∆o −R

(

1 −
√

1 − y2

R2

)

≈ ∆o −R

[

1 −
(

1 − 1

2

y2

R2

)]

= ∆o −
y2

2R
.

33
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The lens amplitude transmittance function now becomes

tl(x, y) = ejk∆o ejk(n−1)∆(y) = ejk∆o e−jk∆o ejkn∆o e−
jk(n−1)

2R y2

= ejkn∆oe−
jk(n−1)

R
y2

2 .

(b) Let 1
f = (n− 1) 1

R . Then

tl(x, y) = ejkn∆o e−
jk
2f y2

.

Such a lens will transform a normally incident plane wave into a converging cylindrical wave,
bringing light to a line focus at distancef = R

n−1 behind the lens.

5-3. (a) Without loss of generality, assume thatb2 > a2. The expression for the amplitude transmittance
can be expanded as follows:

tA(x, y) = exp
{
−jπ[a2x2 + (by + c)2]

}

= e−jπc2

e−j2πbcy e−jπa2(x2+y2) e−jπ(b2−a2)y2

.

The first exponential term represents a constant phase shift, the second a prismatic wavefront tilt
in the y direction, the third a positive spherical lens, and the fourth a positive cylindrical lens
exerting focusing power in they direction. By comparing these exponentials to the forms of the
amplitude transmittances for a positive spherical lens, a positive cylindrical lens and a prism,

tl(x, y) = exp

[

−j π
λf

(x2 + y2)

]

tl(y) = exp

[

−j π
λf
y2

]

tp(y) = exp

[

−j 2π

λ
sin(θ)y

]

,

respectively, we find the following parameter relations:

fspherical =
1

λa2

fcylindrical =
1

λ(b2 − a2)

θ = arcsin[λbc].

(b) Consider a positive cylindrical lens with focal lengthf , initially with power along thex axis. The
corresponding amplitude transmittance is

tl(x, y) = exp

[

−j π
λf
x2

]

.

Now rotate this lens so that, instead of exerting power in thex direction, it exerts power along a
direction at+45 degrees to thex-axis. The amplitude transmittance becomes

t1(x, y) = exp

[

−j π
λf

(
x√
2

+
y√
2

)2
]

= exp

[

−j π

2λf
(x2 + 2xy + y2)

]

.
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Now consider a negative cylindrical lens with focal lengthf , rotated to have power along a line
at+135 degrees to thex-axis. The amplitude transmittance becomes

t2(x, y) = exp

[

+j
π

λf

(

− x√
2

+
y√
2

)2
]

= exp

[

+j
π

2λf
(x2 − 2xy + y2)

]

.

Now place the two lenses in contact. Their amplitude transmittances multiply, yielding

ttotal(x, y) = e−j π
2λf (x2+2xy+y2) e+j π

2λf (x2−2xy+y2) = e−j 2π
λf xy.

This has the form of the amplitude transmittance we sought, with

d =
2

λf
.

5-4. (a) Following the logic of the problem dealing with a cylindrical lens, we can write the lens thickness
function as

∆(x, y) = ∆(y) − x2

2R(y)
,

where∆(y) is the thickness aty andR(y) is the radius of curvature aty. Geometrical considera-
tions yield

∆ = ∆o −
y

h
R

R(y) = R
(

1 − y

h

)

.

Substitution into the equation for∆(y) gives

∆(x, y) = ∆o −
y

h
R− x2

R
(
1 − y

h

) .

The lens amplitude transmittance function may now be written as

tl(x, y) = ejk∆o exp

[

jk(n− 1)

(

∆o −
y

h
R− x2

R
(
1 − y

h

)

)]

= exp

{

jk

[

n∆o −
(n− 1)Ry

h
− (n− 1)x2

2R
(
1 − y

h

)

]}

= exp

{

jk

[

n∆o −
(n− 1)Ry

h
− x2

2f(y)

]}

,

where

f(y) =
R
(
1 − y

h

)

n− 1
.

(b) Start with the final result from part (a):

tl(x, y) = exp

{

jk

[

n∆o −
(n− 1)Ry

h
− x2

2f(y)

]}

f(y) =
R
(
1 − y

h

)

n− 1
.
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The first term in the exponent is independent of coordinates and has no effect on the incoming
light other than a constant phase delay. The second term actslike a prism in that we can identify
− (n−1)R

h with a direction cosine. Thus this term introduces a downward tilt to the wavefront,
with the tilt angleσ with respect to the axis satisfying

cos
(π

2
− σ

)

= sin(σ) = − (n− 1)R

h
.

The third term represents a focusing of light along a line determined by the variable focal length.
The axial distance of the top of this line focus away from the lens is R

n−1

(
1 − L

h

)
where L is the

lens height, while the bottom of the line focus is at axial distance R
n−1 from the lens.

5-5. This is a vignetting problem. The two cases of interest in (a) and (c) below are shown in the figure.

L/2D/2

φ

φ

(a)

f f

L/2D/2

φ

φ

(c)

f f

ρλf

ρλf

Figure 5-5:

(a) Vignetting occurs when the projection of the lens pupil onto the object plane does not cover the
entire object. The center of the back-projected lens pupil is offset from the center of the object by
ρλf , whereρ =

√

f2
X + f2

Y , so the object will start falling outside of the pupil when:

D

2
+ ρλf =

L

2

ρ =
1

λf

(
L

2
− D

2

)

.

(b)

ρ =
1

(6 × 10−7)0.5

(
0.04

2
− 0.02

2

)

=
1

3 × 10−7
(0.01)

= 0.33 × 105 m−1 = 33 cycles/mm.
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(c) Here we are to find theρ where the object falls completely outside of the projectionof the lens
pupil. This happens when:

ρλf =
L

2
+
D

2

ρ =
1

λf

(
L

2
+
D

2

)

.

5-6. We wish to perform a 1-D Fourier transform in theξ direction, and toimage in theη direction. The
imaging operation will preserve the array structure of the set of transforms (with an inversion); since
only the intensity is of interest, we can ignore phase factors in ξ or η. There are a number of different
possible solutions to this problem, of which we show only onefor each part.

(a) Consider part (a) of the figure below:

f f

(b)

(a)

f f

L1

L1

L2

L2

x

y

x

y

ξ

η

ξ

η

u

v

u

v

Figure 5-6:

LensL1 has power only in they direction, and lensL2 has power only in thex direction. The
focal lengths of the two lenses are chosen to be

f1 = f/2

f2 = f.

The cylindrical lenses are placed in contact at distancesf from the input and output planes. This
distance is two focal lengths with respect to power in they direction, but only one focal length
with respect to power in thex direction. Therefore the optical systemimages in they direction
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andFourier transforms in thex direction. Neglecting phase factors associated with the imaging
operation, this yields the array of Fourier transforms thatis desired.

(b) With reference to part (b) of the figure, in this case a spherical lens and a cylindrical lens are
placed in contact. The focal lengths of both the spherical lens and the cylindrical lens aref . The
cylindrical lens is oriented with power in they direction, while the spherical lens has power in
both directions. The input and output planes are placed at distancesf in front of and behind
the lens combination, respectively. In thex direction, only the spherical lens has power, and
for this direction, the input and output planes are in the front and back focal planes of the lens
combination. Hence the system performs a Fourier transformin thex direction. In they direction,
both lenses have power, and the equivalent focal length in this direction is onlyf/2, as can be
seen by multiplying their two amplitude transmittances, considering only they variation,

ttot(y) = tc(y) ts(y) = exp

(

−j π
λf
y2

)

exp

(

−j π
λf
y2

)

= exp

(

−j π

λf/2
y2

)

.

Thus the lens combination willimage in thex direction.

5-7. Since the projected pupil function of the lens is considerably larger than the finite size of the object, we
can neglect it. From Eq. (5-22), we then have the following expression for the field in the focal plane,

Uf (u, v) =
A exp

[
j k

2d (u2 + v2)
]

jλd

f

d

∞∫

−∞

∫

tA(ξ, η) exp

[

−j 2π

λd
(uξ + vη)

]

dξdη.

The problem is identical in form to that treated in section 4.4.3. Adapting the result of that analysis,
Eq. (4-36), to the problem at hand, we see that

I(u, v) ≈
[
Af

2λd2

]2

sinc2
(
Lv

λd

){

sinc2
(
Lu

λd

)

+
1

4
sinc2

[
L

λd
(u + f0λd)

]

+
1

4
sinc2

[
L

λd
(u − f0λd)

]}

.

For the particular parameter values given,

λd

L
=

0.633 × 10−6 × 1

10−2
= 63.3 µm

f0λd = 104 × 0.633× 10−6 × 1 = 0.633 × 10−2m = 6.33 mm

A plot of the (normalized) intensity pattern is shown below,with all distances expressed in meters.

5-8. (a) The Fourier plane is found in the plane where the source is imaged. Therefore the distancezf of
the Fourier plane to the right of the lens must satisfy

1

z1
+

1

zf
=

1

f

in which casezf is given by

zf =
fz1
z1 − f

.

For the distance of the object to the left of the lens to equal the distance of the Fourier plane to
the right of the lens, we require

d = zf =
fz1
z1 − f

.
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Figure 5-7:

(b) Letzi represent the distance of the image from the lens. Then from the lens law,

1

d
+

1

zi
=

1

f
.

Substitute the expression ford obtained in part (a) into this equation and solve forzi. The result
is

zi = z1.

The magnification is given by

M =
∣
∣
∣
zi

d

∣
∣
∣ =

∣
∣
∣
z1
d

∣
∣
∣ .

5-9. The field in the plane at distancef − ∆ from the lens is given by

Uf−∆(u, v) =
1

λf

∞∫

−∞

∫

P (x, y)e−j
k(x2+y2)

2f ej
k(x2+y2)
2(f−∆) e−j

2π(xu+yv)
λ(f−∆) dxdy.

The first quadratic phase factor in the integrand representsthe effect of the lens, while the second arises
from the Fresnel diffraction kernel. In order for the diffraction pattern to be approximately Fraunhofer,
we want the total quadratic-phase exponential factor to vanish. This requires

exp

[
jk

2
(x2 + y2)

(
1

f − ∆
− 1

f

)]

≈ 1

or,
∣
∣
∣
∣

2π

2λ
(x2 + y2)

∆

f(f − ∆)

∣
∣
∣
∣
max

≪ 1 radian.
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In the worst case,x2 + y2 → (D/2)2. Also, assuming∆ is small compared tof , f − ∆ → f in the
denominator. Thus,

πD2∆

λ4f2
≪ 1

or

∆ ≪ 4λf2

πD2
.

5-10. The distanced to the Fourier plane can be determined by finding where the source is imaged. The
object transparency can be removed for this purpose. The normally incident plane wave atL1 will
be transformed into a spherical wave diverging from a point at distancef to the left of that lens, or
equivalently at distance2f to the left of lensL2. That point source will be imaged at distance2f to the
right of lensL2, so the Fourier plane will appear at distance2f to the right of lensL2.

As for the location of the image of the object, we can replace the object by a point-source in the object
plane. According to the lens law, the negative lens producesan image of that point source at distance
zi1 satisfying

1

zi1
+

1

2f
= − 1

f

or

zi1 = −2

3
f.

This initial image is thus23f to the left of lensL1. Now this point is imaged by lensL2. The image
distancezi2 from lensL2 must now satisfy

1

zi2
+

1
5
3f

=
1

f

or

zi2 =
5f

2
.

Thus the image appears5f
2 to the right of lensL2.

5-11. Fourier planes will be found at the following locations:

• In the plane where the illumination beam comes to focus; i.e.distancef to the right of the object.

• In the plane where the above Fourier plane is imaged by the lens. According to the lens law, this
will be at distance2f to the right of the lens.

There will be only one image plane, namely the plane where thelens law is satisfied for an object3f
in front of the lens. We have

1

zi
+

1

3f
=

1

f

from which it follows that

zi =
3f

2

to the right of the lens.
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5-12. (a) Letr2 = ξ2 + η2. Then we seek the radiusr0 for which

kr20
2z1

= π.

Then

r20 =
2πz1
k

= λz1,

or
r0 =

√

λz1.

(b) For an ideal image located at the origin, Eq. (5-33) predicts that

h(0, 0; ξ, η) ≈ 1

λ2z1z2

∞∫

−∞

∫

P (x, y)e
j 2πM

λz2
(ξx+ηy)

dxdy

The pupil function in this case is given by

P (x, y) = circ

(√

x2 + y2

R

)

,

yielding a (normalized) impulse response (from Eq. (4-31))of the form

h̃(r) = 2
J1(kRr/z1)

kRr/z1

where this function is referred to the object space and we have used that fact thatM/z2 = 1/z1.
The radius to the first zero of this function will be

r1 = 0.61
λz1
R
.

(c) We require that the radiusr1 of part (b) be smaller than the radiusr0 of part (a), in which case
over the most important part of the impulse response the phase factor will not change appreciably.
Thus we require

0.61
λz1
R

<
√

λz1

or

0.61

√
λz1
R

< 1.

Consider a typical example:R = 1 cm,λ = 0.633µm, z1 = 10 cm. The left-hand side of the
above inequality is found to be0.015, showing that the inequality is well satisfied.

5-13. (a) Expand the amplitude transmittance as follows:

tA(r) =

(
1

2
+

1

4
ejγr2

+
1

4
e−jγr2

)

,

and compare the second and third term with the amplitude transmittance of a lens with focal
lengthf :

tl(r) = e−j kr2

2f .

We see that the second and third terms of this transmittance function are of the same form as
the transmittance function of a lens. Thus the structure behaves simultaneously as two different
lenses, one positive and one negative, in addition to havinga bias term that only attenuates the
incident wavefront.
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(b) If γ is positive, the first quadratic-phase term intA can be interpreted as a negative lens with focal
length

f = − k

2γ

while the second quadratic-phase term can be interpreted asa positive lens with focal length

f =
k

2γ
.

(c) The focal lengths given by the above two equations are both functions of wavelength, sincek =
2π/λ. Therefore if the object has any significant spectral spread, the image will experience severe
degradation.

5-14. The circular bounding aperture will not affect the problem, so we ignore it. From the definition pro-
vided by Fig. P5.14, it is clear that the following is true:

tA(r) =

[
1

2
+

1

2
sgn(cos γr2)

]

= f(r2) =
∞∑

n=−∞

[
sin(πn/2)

πn

]

exp
(
jnγr2

)
,

where we have used the fact that the periodX must be replaced by

X =
2π

γ
.

Noting that quadratic-phase structures can be interpretedas being equivalent to lenses, we see that the
structure is equivalent to an infinite number of positive andnegative lenses of different focal lengths,

plus a bias term. Comparing these terms with the amplitude transmittance of a lens,tl(r) = e−j kr2

2f ,
the focal length of thenth term in the series is seen to be

fn = ± k

2nγ
.

where the positive sign is used for all terms having a negative quadratic-phase factor, the negative sign
is used for those with a positive quadratic-phase factor, and k = 2π/λ. The relative amount of optical
power contributing to thenth term is the squared magnitude of the corresponding Fourier coefficient
in the expansion with respect tor2. Thus for thenth term the fraction of power contributing is

ηn =

[
sin(πn/2)

πn

]2

.

5-15. Change variables of integration in Eq. (5-33) tox̂ = x/λz2, ŷ = y/λz2. Then the equation can be
re-written

h(u, v; ξ, η) ≈M

∞∫

−∞

∫

P (λz2x̂, λz2ŷ) exp {−j2π[(u−Mξ)x̂+ (v −Mη)ŷ]} dx̂dŷ.

Now consider the behavior of this Fourier transform asλ → 0. Remembering thatu, v, M andz2 are
to be considered fixed, we see that asλ shrinks the effect is to broaden the functionP (λz2x̂, λz2ŷ) in
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the(x̂, ŷ) plane indefinitely. In the limit, the integral is the Fouriertransform of a function that is unity
everywhere, yielding

h(u, v; ξ, η) ≈M

∞∫

−∞

∫

1 · exp{−j2π[(u−Mξ)x̂+ (v −Mη)ŷ]} dx̂dŷ = Mδ(u−Mξ, v −Mη).

Equivalently we can write

h(u, v; ξ, η) ≈ 1

|M |δ
(

ξ − u

M
, η − v

M

)

.

5-16. Referring to Eq. (5-57), we see the following:

(a) Forz1 → ∞ andd→ 0, we have plane wave illumination and the object against the lens. Under
such conditions, the distancez2 is equal to the focal lengthf . The equation becomes

U2(u) =
exp

[

j ku2

2f

]

√
λf

∫ ∞

−∞
U1(ξ) exp

[

−j 2π

λf
uξ

]

dξ.

(b) Forz1 → ∞ andd → f , we have the object illuminated by a normally incident planewave and
situated in the front focal plane. Againz2 → f . In this case we obtain

U2(u) =
1√
λf

∫ ∞

−∞
U1(ξ) exp

[

−j 2π

λf
uξ

]

dξ.

(c) Forz1 → ∞ andd an arbitrary distance, again we havez2 → f and we find

U2(u) =
exp

[

j k
2f

(

1 − d
f

)

u2
]

√
λf

∫ ∞

−∞
U1(ξ) exp

[

−j 2π

λf
uξ

]

dξ.

5-17. (a) Passage of light of wavelengthλ from the front focal plane to the back focal plane of a pos-

itive lens with focal lengthf is described by the operatorV
[

1
λf

]

F . Thus the sequence of

two Fourier transforms performed by this optical system canbe represented by the operator

V
[

1
λf2

]

FV
[

1
λf1

]

F .

(b) Equation (5-46) can be used to simplify these operations. We have

V
[

1

λf2

]

F V
[

1

λf1

]

F = V
[

1

λf2

]

V [λf1] F F = V
[
f1
f2

]

V [−1] = V
[

−f1
f2

]

where Eqs. (5-47) and (5-45) have both been used. Thus the image is both inverted and scaled by
the magnificationM = f2/f1.
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Chapter 6

6-1. We can answer the questions posed in this problem if we find the intensity point-spread function.
From Eqs. (6-4) and (6-5), we know that the intensity point-spread function of an incoherent system
is the squared magnitude of the (properly scaled) Fourier transform of the exit pupil illumination. The
amplitude transmittance of the exit pupil in this case can bewritten

tA(x, y) = circ

(
2r

d

)

⊗ [δ(x− s/2, y) + δ(x+ s/2, y)]

wherer =
√

x2 + y2. The Fourier transform of this expression is

F {tA(x, y)} = π

(
d

2

)2

2
J1(πdρ)

πdρ
× 2 cos(πsfX),

whereρ =
√

f2
X + f2

Y . Taking the squared magnitude of this expression, using theidentity cos2 θ =
1
2 (1+cos2θ), and introducing the scaling parameters appropriate for the optical Fourier transform, we
obtain the following expression for the intensity point-spread function (under the assumption that the
intensity of the wave at the exit pupil is unity):

I(u, v) = |h(u, v)|2 =
π2d4

16λ2z2
i



2
J1

(
πd

√
u2+v2

λzi

)

πd
√

u2+v2

λzi





2
[

1 + cos

(
2πsu

λzi

)]

.

We can now answer the specific questions of the problem:

(a) The spatial frequency of the fringe is clearly given by

f0 =
s

λzi
.

Note that the fringe frequency increases as the separation between the two apertures increases.

(b) The envelope of the fringe pattern is seen to be an Airy pattern of the form

E(u, v) =



2
J1

(
πd

√
u2+v2

λzi

)

πd
√

u2+v2

λzi





2

,

where the scaling factor preceding the Airy pattern has beenneglected.

6-2. The physical quantities to follow are amplitudes in thecase of a coherent system and intensities in the
case of an incoherent system.p(x, y) represents the (amplitude or intensity) point-spread function.
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(a) A line excitation lying along thex axis would be represented by

o(x, y) = δ(y).

The response to such an excitation would be

i1(x, y) = p(x, y) ⊗ o(x, y) = p(x, y) ⊗ δ(y)

=

∞∫

−∞

∫

p(ξ, η) δ(y − η) dξdη =

∫ ∞

−∞
p(ξ, y) dξ = l(y)

(b) Consider a one-dimensional Fourier transform of the line-spread function:

F{l(y)} =

∞∫

−∞

∫

p(ξ, y) exp[−j2πfy] dξdy

=

∞∫

−∞

∫

p(ξ, y) exp [−j2π((ξfX + yfY )] dξdy |fX=0

fY =f

= P (0, f).

(c) The unit step function will be represented by

s(x, y) =

{
0 y < 0
1 y > 0

.

Therefore the response of the system will be

i2(x, y) = p(x, y) ⊗ s(x, y) =

∫ y

−∞

∫ ∞

−∞
p(ξ, η) dξdη =

∫ y

−∞
l(η)dη

Thus

step response=
∫ y

−∞
l(η)dη.

6-3. (a) The thefX-axis andfY -axis sections of the OTF of a clear square pupil are already known to be
identical triangle functions, dropping linearly to zero atfrequency2fo = 2w

λzi
from value unity

at the origin. Such a curve is included in part (a) of the figure. More interesting is the case with
a central obscuration. We can calculate either thefX section or thefY section, since they are
identical. Note that the total area of the obscured pupil is4w2 − w2 = 3w2, which must be
used as a normalizing factor for the autocorrelation function. In calculating the autocorrelation
function of the pupil, we shift one version of the pupil in thex direction with respect to the other
version. As the shift takes place, the area of overlap drops from 3w2 with no shift, linearly to
3w2/2 at a shift off0/2. With further shift, the curve changes slope, dropping linearly to value
w2 at shiftfo. Continuing shift results in no change of overlap until the shift is 3fo/2, following
which the curve falls linearly to zero at2fo. Part (a) of the figure shows the properly normalized
OTF that results.

(b) Suppose that the width of the stop is2w − 2ǫ. The total clear area of the pupil become4w2 −
(2w − 2ǫ)2 = 8wǫ − 4ǫ2 ≈ 8wǫ. As the two pupils are shifted, the overlap area quickly drops
to 2(2w − ǫ)ǫ ≈ 4wǫ after a shift ofǫ. The overlap then continues to drop linearly, but with a
shallower slope, reaching value4ǫ2 for a shift of2w − 2ǫ. Continued shifting results in a rapid
linear rise in the overlap to a value of2wǫ when the displacement is2w − ǫ, following which
it falls linearly to zero at displacement2w. After proper normalization, the resulting OTF is as
shown in part (b) of the figure.
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Figure 6-3:

6-4. For the calculation of the OTF section along thefX axis, displacement in this direction does not change
thenormalized area of overlap with respect to the result for a full circle. Therefore,

H(fX , 0) =
2

π



cos−1

(
fX

2fo

)

−
(
fX

2fo

)
√

1 −
(
fX

2fo

)2




for |fX | ≤ 2fo, and zero otherwise. Herefo = w
λzi

. The figure below shows the overlap of the
half-circular pupils under displacement in they direction.

Half of the area of overlap, represented byA in the figure, is found by taking the area of the circular
sector defined by angleθ, and subtracting from it the triangle that composes the bottom portion of that
sector. The resulting area of overlap is

2A =
θ

2π
πw2 − 1

2
(∆y)

√

w2 − (∆y)2.

The angleθ can be written

θ = cos−1

(
∆y

w

)

.

After normalization by the total area of the half circle , theOTF section becomes

H(0, fY ) =
2

π



cos−1

(
fY

fo

)

−
(
fY

fo

)
√

1 −
(
fY

fo

)2
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y
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A

θ
w ∆y

Figure 6-4:

for |fY | ≤ fo. Note that the OTF extends only half as far in thefY direction as it does in thefX

direction.

6-5. The figure below illustrates the overlap of two triangles when one is displaced along thex axis and also
when one is displaced along they axis.

x

y

∆y

s

3 s/2

∆x

3 s/2

(a) (b)

y

x

Figure 6-5:

Note that the area of the pupil is that of an equilateral triangle of sides, or

A =
1

2
s×

√
3

2
s =

√
3s2

4
.

When the shift between triangles is horizontal, as shown in part (a) of the figure, and equal to∆x, the
region of overlap remains an equilateral triangle, but the length of a side is reduced tos − ∆x. The
area thus becomes

√
3

4 (s − ∆x)2, which after normalization and proper scaling yields an OTFof the
form

H(fX , 0) =

(

1 − fX

fo

)2

,

where in this casefo = s
λzi

and the OTF vanishes for|fX | > fo. If the displacement is vertical, as
shown in part (b) of the figure, and equal to∆y, the region of overlap remains an equilateral triangle,
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but with a height
√

3
2 s − ∆y, and therefore with a side of length2√

3

(√
3

2 s− ∆y
)

. The area of this

triangle is

A′ =
1

2

(√
3

2
s− ∆y

)

× 2√
3

(√
3

2
s− ∆y

)

=
1√
3

(√
3

2
s− ∆y

)2

.

Normalizing by the area of the pupil we obtain an OTF given by

H(0, fY ) =

(

1 − 2√
3

fY

fo

)2

,

where againfo = s
λzi

and the OTF vanishes for|fY | >
√

3
2 fo.

6-6. In thefX direction, shift of the pupil with respect to itself yields an overlap which, when normalized
by the total area of the pupil, is indistinguishable from theautocorrelation of just one of the circular
openings. Therefore

H(fX , 0) = Q(fX) =
2

π



cos−1

(
fX

2fo

)

−
(
fX

2fo

)
√

1 −
(
fX

2fo

)2




wherefo = w
λzi

. When the displacement is in they direction, the behavior of the autocorrelation is
quite different. In this case the autocorrelation consistsof a central island and two islands displaced to
the left and the right of the origin, each with a strength thatis half that of the central island. The shape
of the islands is identical to the shape obtained in the case of anx-displacement. Thus we have

H(0, fY ) = Q(fY ) +
1

2
Q(fY − f̄) +

1

2
Q(fY + f̄),

where the functionQ is defined above and̄f = 2d
λzi

. Plots of these functions are shown in the figure.
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Figure 6-6:

6-7. To find the OTF of this system under various assumptions,we first find the intensity point-spread
functions under those conditions. If the object is a point source, then under the assumption thatzo is
very large, we can assume that the pinhole is illuminated by anormally-incident plane wave.
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(a) Under the assumption that geometrical optics can be usedwhen the pinhole is large, the point-
spread function is in this case simply a projection of the pupil function onto the image plane. Since
the incident wave has been approximated as plane, the diameter of the circular spread function is
the same as the diameter of the circular pupil. Thus the point-spread function is given by

s(u, v) = A circ
( r

w

)

whereA is an arbitrary constant, andr =
√
u2 + v2. The corresponding OTF is the normalized

Fourier transform ofs(u, v), so

H(ρ) = 2
J1 (2πwρ)

2πwρ
,

whereρ =
√

f2
X + f2

Y . The first zero of this OTF occurs at

ρo1 =
0.61

w
.

Note that the cutoff frequencydecreases as the pinhole size increases.

(b) Now the pinhole is assumed to be so small that Fraunhofer diffraction occurs between the aperture
and the image plane. The point-spread function of the systemwill now be the scaled optical
Fourier transform of the circular aperture distribution, namely

s(u, v) = Io

[

2
J1(2πwr)/λzi

2πwr/λzi

]2

.

A scaled and normalized Fourier transform of this function yields the OTF

H(ρ) =
2

π



cos−1

(
ρ

2w/λzi

)

−
(

ρ

2w/λzi

)
√

1 −
(

ρ

2w/λzi

)2




which vanishes at

ρo2 =
2w

λzi
.

Note that this cutoff frequencyincreases as the diameter of the pinhole increases.

(c) If we start with a large pinhole, geometrical optics willhold, and the cutoff frequency will in-
crease as we make the pinhole smaller. However, eventually the pinhole size will be so small that
geometrical optics does not hold, and eventually the Fraunhofer approximation will be valid. In
this case the cutoff frequency will decrease as we make the pinhole smaller. A good approxima-
tion to the optimum choice of pinhole diameter can be found byequating the two expressions for
cutoff frequency,

0.61/w = 2w/λzi,

yielding a solution for the radiusw given by

woptimum=
√

0.305
√

λzi.

This solution has chosen the smallest pinhole size possiblebefore diffraction spreads the point-
spread function appreciably.



51

6-8. If the point-spread function is to be the convolution ofthe diffraction-limited spread function with the
geometrical-optics spread function, the OTF must be the product of the two corresponding OTFs. We
focus on the OTFs from this point on. We wish to compare the OTFof a misfocused system, given by
Eq. (6-41) and repeated below,

H(fX , fY ) = Λ

(
fX

2fo

)

Λ

(
fY

2fo

)

× sinc

[
8Wm

λ

(
fX

2fo

)(

1 − |fX |
2fo

)]

sinc

[
8Wm

λ

(
fY

2fo

)(

1 − |fY |
2fo

)]

,

with the product of the diffraction-limited OTF, given by

H(fX , fY ) = Λ

(
fX

2fo

)

Λ

(
fX

2fo

)

,

and the geometrical-optics OTF (from Eq. (6-42))

H(fX , fY ) = sinc

[
8Wm

λ

(
fX

2fo

)]

sinc

[
8Wm

λ

(
fY

2fo

)]

.

It is clear that the first equation is not the product of the second and third equations, due to the presence

of the terms
(

1 − |fX |
2fo

)

and
(

1 − |fY |
2fo

)

in the arguments of the sinc functions. Therefore the point-

spread function can not be the convolution of the spread function due to diffraction and the spread
function due to geometrical optics.

6-9. Note that the point-spread function, with or without aberrations, can be expressed (up to a constant
multiplier) by

|h(u, v)|2 =

∞∫

−∞

∫

H(fX , fY ) ej2π(fXu+fY v) dfXdfY .

Since the peak of the point-spread function is assumed to exist at the origin (i.e. on the optical axis),
the relevant expression for that peak is

|h(0, 0)|2 =

∞∫

−∞

∫

H(fX , fY ) dfXdfY ,

whether aberrations are present or not. Since the Strehl definition is the ratio of the peak intensities in
the point-spread functions with and without aberrations, it follows that

D =

∞∫

−∞

∫
H(fX , fY )with dfXdfY

∞∫

−∞

∫
H(fX , fY )withoutdfXdfY

.

6-10. The fundamental frequency of the square wave isf1 = 1/L = 100 cycles/mm. Since the focal length
is 10 cm and the object distance is 20 cm, the image distance will likewise be 20 cm.
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(a) For coherent illumination we require thatf1 ≤ fo, wherefo is the coherent cutoff frequency,

fo =
w

λzi
.

We are given the parameter valuesλ = 10−3 mm,zi = 200 mm, and we find the requirement that

f1 ≤ w

λzi

leads to the requirement that

w ≥ λzif1 = 10−3 × 200 × 100 = 20 mm= 2 cm,

which implies that the lens diameter2w should be at least 4 cm.

(b) In the incoherent case the period of the square-wave object remains unchanged, but the cutoff
frequency is now2fo. It follows that the lens diameter can be half as big, or2w ≥ 2 cm.

6-11. The intensity transmittance is given by

τ(ξ, η) =
1

2

[

1 + cos
(

2πf̃ξ
)]

and the object has uniform, constant phase shift. To find the amplitude transmittance, we note

τ(ξ, η) = cos2

[

2π

(

f̃

2

)

ξ

]

,

implying that

tA(ξ, η) =
√

τ(ξ, η) =

∣
∣
∣
∣
∣
cos

[

2π

(

f̃

2

)

ξ

]∣
∣
∣
∣
∣
ejφ

whereφ is a constant phase shift that will hereafter be dropped, andthe absolute value signs are required
due to the fact that the amplitude transmittance can not change sign if its phase is constant. It is clear
that for incoherent illumination, the frequency of the variations of object intensity is̃f . For coherent
illumination, we must use the fact that the fundamental frequency of the magnitude of a cosine is twice
the frequency of the cosine without absolute signs. Therefore the fundamental frequency of amplitude
variations isf̃ . The coherent cutoff frequency isfo = w

λzi
= w

2λf while the cutoff frequency in the

incoherent case is2fo = 2w
λzi

= w
λf . Thus in the coherent case we require

f̄ ≤ w

2λf
,

while in the incoherent case we require

f̄ ≤ w

λf
.

Thus the frequencỹf of the object can be twice as large in the incoherent case as itcan be in the
coherent case.

6-12. From the statement of the problem we can see that we are dealing with a coherent system. The object
illumination can be represented by

Uo(ξ, η) = exp (j2πfiξ)

where

fi =
cos(π/2 − θ)

λ
=

sin θ

λ
.
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(a) The light transmitted by the object will be the product ofthe illumination amplitude and the
amplitude transmittance, or

U ′
o(ξ, η) =

1

2

[

1 + cos
(

2πf̃ξ
)]

ej2πfiξ.

The Fourier spectrum of this object is

F{U ′
o(ξ, η)} =

[
1

2
δ(fX − fi) +

1

4
δ(fX − f̃ − fi) +

1

4
δ(fX + f̃ − fi)

]

δ(fY ).

(b) The figure illustrates the finite amplitude transfer function and the object frequency components
present. Noting thatzi = 2f , the cutoff frequency of the amplitude transfer function is

~
fi

fo

f

f
~

Spectral
components
of input

Amplitude 
transfer
function

Figure 6-12:

fo = w/2λf.

To obtain any variations of intensity in the image, it is necessary that at least two spectral compo-
nents of the object be passed by the amplitude transfer function. From the figure, this will be the
case (assuming̃f ≤ 2fo) provided

fi ≤ fo,

or equivalently provided

sin θ ≤ w

2f
.

(c) Assuming two components of the spectrum of the object arepassed by the amplitude transfer
function, the intensity will be

I(u, v) =

∣
∣
∣
∣

1

2
ej2πfiu +

1

4
ej2π(fi−f̃)u

∣
∣
∣
∣

2

=
1

4

∣
∣
∣1 + 2 e−j2πf̃u

∣
∣
∣

2

=
1

4

[

5 + 4 cos
(

2πf̃u
)]

.
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The corresponding intensity whenθ = 0 is (assuming that̃f ≤ fo) is

I(u, v) =

∣
∣
∣
∣

1

2

[

1 + cos
(

2πf̃u
)]
∣
∣
∣
∣

2

=
1

4

[

1 + 2 cos
(

2πf̃u
)

+ cos2
(

2πf̃u
)]

=
1

4

[
3

2
+ 2 cos

(

2πf̃u
)

+
1

2
cos
(

4πf̃u
)]

.

(d) When the maximum angle of illumination is used, the maximum value off̃ that will yield inten-
sity variations in the image is

f̃max= 2fo,

which is twice the frequency that will yield intensity variations when the illumination is not
oblique.

6-13. Recall that
fo =

w

λzi
=

w

λf
,

where the last step holds because the object is at infinite distance from the lens, and the lens law implies
thatzi = f . The F-number of the lens is

F# =
f

2w
.

Solving forf in the equation above, and substituting that expression in the first equation yields

fo =
1

2λF#
.

6-14. Lets(u) = |h(u, 0)|2. Then the Sparrow resolution distance (in the image space) will be the δ that
satisfies the equation

d2

du2

[

s

(

u− δ

2

)

+ s

(

u+
δ

2

)]

u=0

= 0.

(a) By the symmetry ofs(u), d2

du2 s(u) is also symmetric inu, as proved by the following argument.
Sinces(u) is real and even,S(fX) must also be real and even (from the symmetry properties of
Fourier transforms). But

F{ d
2

du2
s(u)} = −(2πfX)2S(fX).

Sincef2
X is real and even, we see that the entire transform of the second derivative is real and

even, implying that its inverse transform (i.e. the second derivative) must be real and even. It now
follows that

d2

du2
s

(

u− δ

2

)

+
d2

du2
s

(

u+
δ

2

)∣
∣
∣
∣
u=0

= 2
d2

du2
s(δ/2) = 0

must be satisfied, as was to be proved.

(b) The intensity point-spread function for an incoherent system with a square aperture is known to
have au-dependence if the form sinc2 2wu

λzi
. For simplicity, lety = 2wu

λzi
. Then we wish to find the

value ofy for which
d2

dy2
sinc2y = 0.
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Note that

d

dy
sinc2y = 2 sincy

d

dy
sincy

d2

dy2
sinc2 y = 2 sincy

d2

dy2
sincy + 2

[
d

dy
sincy

]2

.

Performing the required differentiations we find

d2

dy2
sincy =

1

π

y(2 − π2y2) sinπy − 2πy2 cosπy

y4

d

dy
sincy =

1

π

sinπy − πy cosπy

y2
,

so that

d2

dy2
sinc2 y =

2

π2

(3 − π2y2) sin2 πy − 4πy cosπy sinπy + π2y2 cos2 πy

y4
.

Finally, d2

dy2 sinc2y = 0 implies

(3 − π2y2) sin2 πy − 4πy cosπy sinπy + π2y2 cos2 πy = 0,

which must be solved numerically. The result isy = 0.415. Sincey = 2wu
λzi

, the solution is

u = 0.415
λzi

2w
.

The Sparrow separation is twice this distance, or

δ = 0.83
λzi

2w
.

Note that this is a smaller separation than the Rayleigh resolution 1.22λzi

2w .

6-15. Problem 6-2 is a great help in this problem. From Prob. 6-2(c) we know

step response=
∫ v

−∞
l(η) dη

and from Prob. 6-2(b) we know that
F{l(v)} = P (0, f)

whereP (fX , fY ) is the Fourier transform of the amplitude point-spread function in the coherent case,
and the Fourier transform of the intensity point-spread function in the incoherent case.

(a) With coherent illumination, the Fourier transform of the amplitude point-spread function is a
scaled version of the pupil. If the two pupils have the same width 2w in the y-direction, then
P (0, f) will be identical for the two systems. Therefore the line-spread functions will be the
same and the step responses will be the same.
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(b) With incoherent illumination, the Fourier transform ofthe intensity point-spread function is pro-
portional to an autocorrelation function of the pupil. The autocorrelation functions of a circular
pupil of diameter2w and a square pupil of side2w, are different, even when evaluated only along
the vertical axis. For the square pupil we have a (up to constants)

P (0, f) = Λ

(
f

2fo

)

,

while for the circular pupil we have

P (0, f) =
2

π



cos−1

(
f

2fo

)

+

(
f

2fo

)
√

1 −
(
f

2fo

)2


 .

Therefore the line spread functions of the two systems are different and the step responses must
likewise be different.

(c) The simplest approach to calculating step responses would be the following procedure:

• Since a unit step is the same function with coherent illumination as with incoherent illumi-
nation, we would first calculate the Fourier transform of a unit step using the Fast Fourier
Transform algorithm. The calculation can be one-dimensional.

• We would then multiply this spectrum by the transfer function appropriate for the system of
interest, whether it be a circular aperture or a square aperture, and whether the illumination
be coherent or incoherent. The calculation would be one dimensional, using a slice of the
appropriate transfer function.

• An inverse Fourier transform, again one dimensional and again performed using the Fast
Fourier Transform, would yield the desired step response ineach case.

6-16. The amplitude point-spread function for a coherent system with a square aperture of width2w is
given(up to a constant multiplier) by

h(u, v) = sinc

(
2wu

λzi

)

sinc

(
2wv

λzi

)

.

The input to the system is a one-dimensional coherent step with the step taking place along theη axis.
The responseσ(u, v) will be

σ(u, v) = h(u, v) ⊗ s(u, v) =

∞∫

−∞

∫

h(α, β)s(u − α, β) dαdβ

where

s(u, v) =

{
0 u < 0
1 u > 0

is the unit step function. Sinces(α, β) is independent ofβ, integration with respect to that variable
yields a constant, which we drop. The result is

σ(u, v) =

∫ u

−∞
sinc

(
2wα

λzi

)

dα =

∫ u

−∞

sin
(

2πwα
λzi

)

2πwα
λzi

dα.



57

Changing the variable of integration to

t =
2πwα

λzi

we find

σ(u, v) = K

∫ 2πwu
λzi

−∞

sin t

t
dt = K

[
π

2
+ Si

(
2πwu

λzi

)]

.

whereK is a constant and

Si(z) =

∫ z

0

sin t

t
dt.

It follows that the intensity response to the step excitation is

Ii(u, v) = |σ(u, v)|2 = K2

∣
∣
∣
∣

π

2
+ Si

(
2πwu

λzi

)∣
∣
∣
∣

2

.

6-17. The intensities in the two cases are as follows:

I = |A+ a|2 = A2 + 2Aa+ a2 coherent

I = A2 + a2 incoherent.

It follows that in the two cases

∆I

|A|2 =
2Aa+ a2

A2
coherent

∆I

|A|2 =
a2

A2
incoherent.

SinceA ≫ a, it is clear that the perturbation of the desired intensity is much greater in the case of
coherent noise than in the case of incoherent noise.

6-18. Consider a coherent wavefield described by

U(x, y; t) = U(x, y) e−j2πνt.

The mutual intensity of such a wavefield at points(x1, y1) and(x2, y2) is given by

J(x1, y1;x2, y2) = 〈U(x1, y1; t)U
∗(x2, y2; t)〉 = U(x1, y1)U

∗(x2, y2)
〈
e−j2πνt ej2πνt

〉

= U(x1, y1)U
∗(x2, y2).

From Eq. (6-11) we see that this wavefield is fully coherent.
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Chapter 7

7-1. The intensity distribution exposing the film is known tobe of the form

I(x, y) = Io + ∆I(x, y),

with the further restriction that
∆I ≪ I0.

Using Eq. (7-2), we know that the intensity transmittance ofthe processed transparency is related to
the exposing intensity by

τn = KnI−γn = Kn(Io + ∆I)−γn

= KnI−γn
o (1 + ∆I/Io)

−γn ≈ KnI−γn
o (1 − γn∆I/Io),

where the first two terms of a binary expansion have been retained in the last step. Lettingτn =
τon + ∆τn, we have

τon + ∆τn = KnI−γn
o − γnKnI−γn

o

∆I
Io

,

from which we conclude that

τon = KnI−γn
o

∆τn = −γnKnI−γn
o

∆I
Io

∆τn
τon

= −γn
∆I
Io

.

Thus the contrast of the variations of intensity transmittance is linearly related to the contrast of the
exposing intensity distribution, regardless of the photographic gamma.

7-2. The intensity distribution in the interference pattern is given by

I = |A exp(j2πβ1y) +B exp(j2πβ2y)|2 = A2 +B2 + 2AB cos(2π∆βy)

where∆β = β1 − β2. We then pass this intensity pattern through the frequency characteristic of the
MTF yielding an effective exposing intensityI ′ as follows:

I ′ = F−1{F{I}M(f)} = M(0) (A2 +B2) + 2M(∆β)AB cos(2π∆βy).

A positive transparency with a gamma of−2 is made, yielding an intensity transmittance

τp = Kp(I ′)2

59
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and an amplitude transmittance

tA =
√
τp = κI ′ = κ

[
M(0) (A2 +B2) + 2M(∆β)AB cos(2π∆βy)

]
.

The field in the rear focal plane can now be written

U(x, y) =
1

λf
F
{

tA rect
x

L
rect

y

L

}

fX=x/λf

fY =y/λf

= L2 sinc
Lx

λf
sinc

Ly

λf
⊗

{
κM(0) (A2 +B2) δ(y) + κM(∆β)AB [δ(y − λf∆β) + δ(y + λf∆β)]

}
.

Continuing, and noting thatM(0) = 1,

U(x, y) = L2 κ sinc
Lx

λf

{

(A2 +B2) sinc
y

λf

+M(∆β)AB

[

sinc

(
L

λf
(y − ∆βλf)

)

+ sinc

(
L

λf
(y + ∆βλf)

)]}

.

We plot the distribution of light intensity along they-axis (It has been assumed that the cross-products
between the three terms of the field can be ignored) :

y

I(0,y)[L2κ(A2+B2)]2

[L2κABM(∆ β)]2 [L2κABM(∆ β)]2

∆ β λ f- ∆ β λ  f 2λf / L

Figure 7-2:

7-3. The matrix manipulations required to prove the identities are outlined below:

L+ =

[
cos θt − sin θt

sin θt cos θt

] [
1 0
0 e−jβd

] [
cos θt sin θt

− sin θt cos θt

]

=

[
cos θt − sin θt

sin θt cos θt

] [
1 0
0 −1

] [
cos θt sin θt

− sin θt cos θt

]

=

[
cos θt sin θt

sin θt − cos θt

] [
cos θt sin θt

− sin θt cos θt

]

=

[
cos2 θt − sin2 θt 2 cos θt sin θt

2 cos θt sin θt sin2 θt − cos2 θt

]

=

[
cos 2θt sin 2θt

sin 2θt − cos 2θt

]
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L− = same asL+ exceptθt is replaced by−θt

=

[
cos 2θt − sin 2θt

− sin 2θt − cos 2θt

]

.

7-4. We will follow the path of the light incident on the cell and find the Jones matrix for each element
(polarizer and FLC); by multiplying these matrices together, we can find the overall Jones matrix
which relates the polarization vector of the light incidenton the mirror with that of the light incident
on the front of the device. We then multiply this matrix by itstranspose to calculate the overall Jones
matrix of the reflective device, in accord with Eq. (C-17) of Appendix C. Finally we apply the matrix
R of Appendix C to return to a right-hand coordinate system.

First, we find the Jones matrices for the case with the long axis not parallel to the polarizer. We pick
our coordinate system so that the direction of the polarizercoincides with the y axis.

• Polarizer: Using equation (C-16) withα = 90◦, we obtain:

Lpolarizer =

[
0 0
0 1

]

.

• FLC: θt = 45◦:

LFLC =

[
cos π

4 − sin π
4

sin π
4 cos π

4

] [
1 0
0 e−j π

2

] [
cos π

4 sin π
4

− sin π
4 cos π

4

]

=
1

2

[
1 − j 1 + j
1 + j 1 − j

]

.

• Single pass matrix:

Lsingle = LFLC Lpolarizer=

[
1 − j 1 + j
1 + j 1 − j

] [
0 0
0 1

]

=

[
0 1 + j
0 1 − j

]

.

For a double pass, we have

Ldouble= RL
t
singleLsingle=

[
−1 0
0 1

] [
0 0

1 + j 1 − j

] [
0 1 + j
0 1 − j

]

=

[
0 0
0 0

]

.

Thus, we see that in the state where the molecular axis is oriented away from the polarizer direc-
tion, no light is transmitted by the cell.

When the molecular long axis is parallel to the polarizer, wehaveθt = 0◦ so that:

LFLC =

[
1 0
0 −j

]

Lsingle = LFLCLpolarizer=

[
1 0
0 −j

] [
0 0
0 1

]

=

[
0 0
0 −j

]

.

The double-pass Jones matrix becomes

Ldouble= RL
t
singleLsingle=

[
−1 0
0 1

] [
0 0
0 −j

] [
0 0
0 −j

]

=

[
0 0
0 −1

]

.
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If the incident polarization vector is

[
UX

UY

]

, the emerging polarization vector is:

~Uout =

[
0 0
0 −1

] [
UX

UY

]

=

[
0

−UY

]

.

Thus, the two states of the FLC cell correspond to the output intensities0 and|UY |2; i.e. the cell can
be used as a binary intensity modulator.

7-5. (a) Write the polarization vector of the given wave and express that vector as a weighted sum of left-
and right-hand circularly polarized waves (coefficientsCR for right-hand andCL for left-hand):

~Uθ = LR(θ)

[
1
0

]

=

[
cos θ − sin θ
sin θ cos θ

] [
1
0

]

=

[
cos θ
sin θ

]

= CR
1√
2

[
1
−j

]

+ CL
1√
2

[
1
j

]

.

This allows us to write two equations in the two unknownsCR andCL,

1√
2
(CR + CL) = cos θ

1√
2
j(−CR + CL) = sin θ.

Solving for the unknowns, we find the coefficients to be

CR =
1√
2
e+jθ

CL =
1√
2
e−jθ.

Thus we have demonstrated that such an expansion is possibleand we have found the expansion
coefficients.

(b) First make the following definitions:

∆1 = 2πn1d/λ0,

∆2 = 2πn2d/λ0,

∆ = 2π(n1 − n2)d/λ0.

Now, when the magnetic field points in the direction of wave propagation, we write the output
polarization vector as

~Uout = ej∆1CL
1√
2

[
1
j

]

+ ej∆2CR
1√
2

[
1
−j

]

= ej
∆1+∆2

2
1

2

(

ej ∆
2 ejθ

[
1
j

]

+ e−j ∆
2 e+jθ

[
1
−j

])

= ej
∆1+∆2

2

[
cos(∆/2 + θ)
sin(∆/2 + θ)

]
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= ej
∆1+∆2

2

[
cos∆/2 cos θ − sin ∆/2 sin θ
sin∆/2 cos θ + cos∆/2 sin θ

]

= ej
∆1+∆2

2

[
cos∆/2 − sin∆/2
sin ∆/2 cos∆/2

] [
cos θ
sin θ

]

= ej
∆1+∆2

2 L+
~Uθ.

The constant phase factor in the front can be ignored, soL+ describes the given polarization
transformation.

(c) Let the direction of the magnetic field be reversed. Switching the signs ofn2 andn1 in the ex-
pression for∆ only changes its sign. Hence, we can obtain the expression for L− by substituting
−∆ for ∆ in the expression forL+. Thus:

L− =

[
cos(−∆)/2 − sin(−∆)/2
sin(−∆)/2 + cos(−∆)/2

]

=

[
cos∆/2 sin ∆/2
− sin∆/2 + cos∆/2

]

.

7-6. First write the Jones matrix of the polarization analyzer:

Lanalyzer =

[
1 0
0 0

]

.

Now express the output polarization vector in terms of the input vector and the appropriate Jones
matrices for the case of the magnetic field in the direction ofwave propagation:

~U+
out = LanalyzerL+

[
0
UY

]

=

[
1 0
0 0

] [
cos∆/2 − sin∆/2
sin ∆/2 cos∆/2

] [
0
UY

]

=

[
−UY sin ∆/2

0

]

.

Now repeat the calculation with the magnetic field directionreversed:

~U−
out = LanalyzerL−

[
0
UY

]

=

[
1 0
0 0

] [
cos∆/2 sin ∆/2
− sin∆/2 cos∆/2

] [
0
UY

]

=

[
UY sin ∆/2

0

]

.

Thus,

|~U+
out|2 = |~U−

out|2 = |UY |2 sin2 ∆/2

and

~U+
out = −~U−

out

Thus the sign of the field has reversed, or a180◦ phase shift has been introduced.
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7-7. From equation (7-24),
τ = ηP e

−αx sin2(2βx).

Differentiating and setting the derivative equal to zero tofind the maximum,

dτ

dx
= ηP (−α)e−αx sin2(2βx) + ηP e

−αx(2) sin(2βx) cos(2βx)(2β)

= ηP e
−αx sin(2βx)[−α sin(2βx) + 4β cos(2βx)]

= 0.

The solutionsin(2βx) = 0 corresponds toτ = 0, and therefore is an uninteresting solution. So set

−α sin(2βx) + 4β cos(2βx) = 0.

Solving for the film thicknessx,

x =
1

2β
tan−1

(
4β

α

)

=
1

2(1.46× π/180)
tan−1

(
4 × 1.46 × π/180

0.086

)

= 17µm.

7-8. (a) The amplitude transmittance of the unquantized grating within a single period can be represented
by

tA(x) =

{
ej2π(1+2x/L) = ej4πx/L −L

2 ≤ x < 0

ej2π(1−2x/L) = e−j4πx/L 0 ≤ x < L
2

.

To find the diffraction efficiency of the grating, we must expand the amplitude transmittance in a
Fourier series and find the Fourier coefficients. The required integrals can be expressed as

cn =
1

L

∫ 0

−L/2

e−j2π(n−2)x/Ldx+
1

L

∫ L/2

0

e−j2π(n+2)x/Ldx.

Skipping some of the steps in the evaluation, we have

cn =
e−j2π(n−2)x/L

−j2π(n− 2)

∣
∣
∣
∣

0

−L/2

+
e−j2π(n+2)x/L

−j2π(n+ 2)

∣
∣
∣
∣

L/2

0

=

[
ejπ(n−2) − 1

j2π(n− 2)

]

+

[
1 − e−jπ(n+2)

j2π(n+ 2)

]

=

[
ejπn − 1

j2π(n− 2)

]

+

[
1 − e−jπn

j2π(n+ 2)

]

.

With some work the squared magnitude of the Fourier coefficients can be shown to be

|cn|2 =

[
n sinπn

π(n− 2)(n+ 2)

]2

+

[
2(1 − cosπn)

π(n− 2)(n+ 2)

]2

.

Forn even andn 6= ±2, both terms vanish. These orders are missing. Forn odd, both terms are
non-zero. We focus only on the ordersn = −4,−3,−2,−1, 0, 1, 2, 3, 4. The squared magnitudes
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are

|c−4|2 = |c4|2 = 0

|c−3|2 = |c3|2 =
16

25π2
≈ 0.065

|c−2|2 = |c2|2 =
1

4
= 0.25

|c−1|2 = |c1|2 =
16

9π2
≈ 0.18

|c0|2 = 0.

These are the diffraction efficiencies of the nine orders of interest. Note that the±1,±2, and±3
orders contain about 99% of the total power incident on the grating.

(b) Consider now the quantized grating. In this case we have an amplitude transmittance over one
period of

tA(x) =







ej0 = 1 −L/2 ≤ x < −3L/8

ejπ/2 = j −3L/8 ≤ x < −L/4
ejπ = −1 −L/4 ≤ x < −L/8
ej3π/2 = −j −L/8 ≤ x < L/8
ejπ = −1 L/8 ≤ x < L/4
ejπ/2 = j L/4 ≤ x < 3L/8
ej0 = 1 3L/8 ≤ x < L/2

.

Alternatively we can writetA(x) as

tA(x) = −j
{

rect

[
8

L

(

x− L

16

)]

+ rect

[
8

L

(

x+
L

16

)]}

−
{

rect

[
8

L

(

x− 3L

16

)]

+ rect

[
8

L

(

x+
3L

16

)]}

+ j

{

rect

[
8

L

(

x− 5L

16

)]

+ rect

[
8

L

(

x+
5L

16

)]}

+

{

rect

[
8

L

(

x− 7L

16

)]

+ rect

[
8

L

(

x+
7L

16

)]}

.

The Fourier coefficients of this structure can now be evaluated as

cn =
1

L
F
{

tA(x) rect
x

L

}

fX= n
L

= sinc
n

8

[−j
4

cos
πn

8
+

−1

4
cos

3πn

8
+
j

4
cos

5πn

8
+

1

4
cos

7πn

8

]

.

It is now possible to evaluate|cn|2, either with a lengthy numerical calculation or with the help
of a computer. The results are:

|c0|2 = 0

|c1|2 = |c−1|2 = 0.203

|c2|2 = |c−2|2 = 0.203

|c3|2 = |c−3|2 = 0.023

|c4|2 = |c−4|2 = 0.
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Note that only about 86% of the light incident on this gratingappears in this set of orders.



Chapter 8

8-1. The opaque stop on the optical axis blocks only the “DC” or constant Fourier component of the object,
which is equivalent to subtracting the constant 4/5 from thegiven amplitude function. The intensity
is found by taking the squared magnitude of this field. The resulting intensity of the filtered object is
shown in the figure. Note the reversal of contrast in the image.

4 1

16/25

I(x)

x

1/25

Figure 8-1:

8-2. Assume a unit magnification imaging system and neglect image inversion for simplicity. The phase
object is represented by an amplitude transmittance

tA(ξ, η) = ejφ(ξ,η) ≈ 1 + jφ(ξ, η),

where the approximation is allowable becauseφ ≪ 2π. Assuming that the spectrum ofφ(ξ, η) is
broad, the introduction of the small stop will have little effect on it, other than shifting its average
value to zero. The shift of the phase by a constant phase factor is inconsequential, since we can always
redefine the phase reference as we please. The stop will remove the constant 1, however. The intensity
observed in the image plane will be

I(u, v) = |φ(u, v)|2.

8-3. (a) The Fourier transforms of the object and image amplitudes are related by

F{Ui(u, v)} = F{Uo(x, y)} tA(λffX , λffY ).

Therefore the object and image amplitudes are related by

Ui(u, v) = Uo(u, v) ⊗F−1{tA(λffX , λffY )}

67
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= Uo(u, v) ⊗F−1{1

2
(1 + sgnfX)}

=
1

2
Uo(u, v) ⊗

[

δ(u) +
j

πu

]

=
1

2

[

Uo(u, v) +
j

π

∫ ∞

−∞

Uo(ξ, v) dξ

u− ξ

]

.

(b) We first approximate the object amplitude using the smallphase approximation:

Uo(ξ, η) = ejφo exp(j∆φ) ≈ ejφo(1 + j∆φ).

Using the result of part (a), the corresponding image intensity is

Ii(u, v) = |Ui(u, v)|2 =
1

4

∣
∣
∣
∣
Uo(u, v) +

j

π

∫ ∞

−∞

Uo(ξ, v)

u− ξ
dξ

∣
∣
∣
∣

2

=
1

4

∣
∣
∣
∣
ejφo

(

1 + j∆φ+
j

π

∫ ∞

−∞

1 + j∆φ(ξ, v)

u− ξ
dξ

)∣
∣
∣
∣

2

=
1

4

[

1 − 1

π

∫ ∞

−∞

∆φ(ξ, v)

u− ξ
dξ

]2

+
1

4

[

∆φ+
1

π

∫ ∞

−∞

1

u− ξ
dξ

]2

.

The second integral has value zero. In addition, we are assuming that∆φ is small, which allows
us to make the approximation(∆φ)2 → 0. Thus,

Ii(u, v) =
1

4

[

1 − 1

π

∫ ∞

−∞

∆φ(ξ, v)

u− ξ
dξ

]2

≈ 1

4

[

1 − 2

π

∫ ∞

−∞

∆φ(ξ, v)

u− ξ
dξ

]

where we have used the binomial expansion in the last step, assuming that, due to the smallness
of ∆φ, ∣

∣
∣
∣

1

π

∫ ∞

−∞

∆φ(ξ, v)

u− ξ
dξ

∣
∣
∣
∣
≪ 1.

(c) The object is taken to have the phase distribution

∆φ = Φ rect
( u

U

)

.

The image intensity then takes the form

Ii(u, v) ≈ 1

4

[

1 − 2Φ

π

∫ U/2

−U/2

dξ

u− ξ

]

=
1

4

[

1 +
2Φ

π
ln

∣
∣
∣
∣

u− U/2

u+ U/2

∣
∣
∣
∣

]

.

Note that the above expression is only valid when the assumption we have made in part (b) is sat-
isfied. That is, it is only valid when the intensity is close to1/4. Thus the infinite discontinuities
in the figure below are artifacts of the approximations. For the figure, the following values have
been assumed:U = 0.5, Φ = 0.1.
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-1 -0.5 0.5 1

0.1

0.2

0.3

0.4

0.5

I(u,0)

u

Figure 8-3:

8-4. Assume that the phase shifting dot retards the phase byπ/2 radians. Represent the absorption of the
dot by an amplitude transmittance

√
α applied only to the constant component. The intensity of the

image (corresponding to Eq. (8-3)) becomes

Ii = |
√
α exp[j(π/2)] + j∆φ|2 = |j(

√
α+ ∆φ)|2 ≈ α+ 2

√
α∆φ.

Note that the contrast of the image variations,

C =
2
√
α∆φ

α
=

2∆φ√
α
,

is increased whenα < 1. A similar argument applies when the phase shift is3π/2, yielding

Ii ≈ α− 2
√
α∆φ.

8-5. Suppose we are trying to remove a delta function from theobject spectrum (we choose the delta
function because it gives the tightest alignment requirement). Treating the problem as one dimen-
sional, with an input aperture function rect(ξ/D), the delta function appears in the Fourier plane as
sinc[D(x−xo)/λf ], wherexo/λf is the spatial frequency corresponding to the delta function. Taking
its width to be the width of the main lobe, we have:

W = 2 × λf

D
=

2(0.6328)(10)

3
= 4.22µm.

Since the problem states that the mask has feature sizes comparable to the input spectrum, assume that
the opaque spot has this width. To find the alignment requirement, we arbitrarily pick±1/10 of this
width to be the maximum we can be off and still block “most” of the sinc function. We then calculate
the allowable misalignment as

∆W =
W

10
= 0.42µm.

That is, our tolerance is±0.42µm. Notice that if the input aperture were infinite in extent, the sinc
function would become a delta function and the alignment tolerance would become zero; that is, any
misalignment would cause the opaque dot to miss the delta function completely.
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8-6. Since the photographic gamma is−2, the amplitude transmittance of the input transparency is

tA(ξ, η) = κ I(ξ, η) rect(ξ/L) rect(η/L) =
κ

2
(1 + cos 2πfoξ) rect(ξ/L) rect(η/L).

This object, when optically Fourier transformed, will havesinc function spectral components centered
at locations

(x, y) = (0, 0)

(x, y) = (λffo, 0)

(x, y) = (−λffo, 0).

The widths of these sinc functions in thex andy directions, between first zeros, will be∆x = ∆y =
2λf/L.

(a) The locations of the absorbing spots should be at the places where the three sinc functions are
centered, as listed above.

(b) The diameter of the absorbing spots should be at least thevalue of∆x above.

(c) At (fX = 0, fY = 0), we can not place a perfectly absorbing spot, for this would remove
the constant component of the desired image amplitude, leading to strange effects on the ideal
image intensity, such as contrast reversals. Rather, we need a partially absorbing spot there, with
enough transmittance to allow the object variations to rideon a suitable bias, avoiding the creation
of negative values of the image amplitude. Exactly how absorbing the spot should be depends on
the structure of the desired object from which the noise is being removed.

8-7. The object amplitude transmittance is given by

tA(x, y) =
1

2
[1 + cos 2πfox].

Since we are restricted to using a pure phase filter, we represent the amplitude transmittance of that
filter in the frequency plane byejφ(fX ). Thus the image amplitude can be written

Ui = F−1
{

F{tA}ejφ(fX )
}

= F−1{ejφ(fX)

[
1

2
δ(fX) +

1

4
δ(fX − fo) +

1

4
δ(fX + fo))

]

}

= F−1{1

2
ejφ(0)δ(fX) +

1

4
ejφ(fo)δ(fX − fo) +

1

4
ejφ(−fo)δ(fX + fo)}

=
1

2
ejφ(0) +

1

4
ejφ(fo)ej2πfox +

1

4
ejφ(−fo)e−j2πfox.

The image intensity is given by

|Ui|2 =
3

8
+

1

4
cos[φ(fo) − φ(0) + 2πfox] +

1

4
cos[φ(−fo) − φ(0) − 2πfox]

+
1

8
cos[φ(fo) − φ(−fo) + 4πfox].

We wish to cancel out the first two cosine terms, since they arethe only terms that have spatial fre-
quency components corresponding tofo. With some thought, we see that we can accomplish this by
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setting:

φ(fo) = π/2,

φ(−fo) = π/2,

φ(0) = 0.

(Many other answers are possible.) Note that we only need to know the phase of the filter at three
points,0,−fo, andfo, since the original object contains only these frequency components.

8-8. In the focal plane where the photographic transparencyis recorded,

I = |Uf |2 =
1

(λf)2
TA

(
x

λf
,
y

λf

)

T ∗
A

(
x

λf
,
y

λf

)

.

With γ = −2, the amplitude transmittance of the developed transparency is proportional toI:

t′A(x, y) = K TA

(
x

λf
,
y

λf

)

T ∗
A

(
x

λf
,
y

λf

)

.

The intensity in the back focal plane when this transparencyis placed against the lens is:

If (x, y) = K ′
∣
∣
∣
∣
F
{

TA

(
x

λf
,
y

λf

)

T ∗
A

(
x

λf
,
y

λf

)}∣
∣
∣
∣

2

fX=x/λf

fY =y/λf

= K ′ (λf)2|tA(−x,−y) ⊗ t∗A(x, y)|2

= K |tA(−x,−y) ⋆ tA(−x,−y)|2.

Thus, the intensity in the back focal plane during the secondstep is proportional to the squared mag-
nitude of the autocorrelation of the amplitude transmittance of the original object, inverted or reflected
about thex andy axes.

8-9. The image amplitude can be written

Ui(u, v) =
1

λf
F−1{ 1

λf
F{tA(x, y)}

√

τ (λffX , λffY )}

=
1

(λf)2
F−1{F{exp[jφ(x, y)]}

√
α(λf)2(f2

X + f2
Y )}.

Using the Fourier transform property

F
{(

∂2

∂x2
+

∂2

∂y2

)

g(x, y)

}

= −4π2(f2
X + f2

Y )F{g(x, y)},

we obtain,

Ui(u, v) =

√
α

−4π2
F−1{−4π2(f2

X + f2
Y )F{exp[jφ(x, y)]}}

=

√
α

−4π2

(
∂2

∂x2
+

∂2

∂y2

)

exp[jφ(x, y)]

=

√
α

−4π2
exp[jφ(x, y)]

{

j

(
∂2

∂x2
+

∂2

∂y2

)

φ(x, y) −
[(

∂φ

∂x

)2

+

(
∂φ

∂y

)2
]}
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The image intensity is thus given by

Ii = |Ui|2 =
α

16π4







[(
∂2

∂x2
+

∂2

∂y2

)

φ(x, y)

]2

+

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]2





.

8-10. The first part of the system is purely coherent. Incident on the moving diffuser will be an amplitude
distribution

U(x, y) =
1

λf
S1

(
x

λf
,
y

λf

)

,

whereS1(fX , fY ) = F {s1(ξ, η)}. The moving diffuser destroys the spatial coherence of the light and
therefore the second part of the system must be modeled as anincoherent imaging system. For this
system the object intensity is the squared magnitude of the field above,

Io(x, y) =
1

(λf)2

∣
∣
∣
∣
S1

(
x

λf
,
y

λf

)∣
∣
∣
∣

2

.

Since the amplitude transmittance function in the pupil of the incoherent imaging system has the form

tA(x, y) = s2(x, y),

the intensity point-spread function of this system is

|h(u, v)|2 =
1

(λf)2

∣
∣
∣
∣
S2

(
u

λf
,
v

λf

)∣
∣
∣
∣

2

.

The intensity distribution in the final image plane is therefore a convolution as follows

Ii(u, v) = |h(u, v)|2 ⊗ Ii(u, v) =
1

(λf)4

∣
∣
∣
∣
S2

(
u

λf
,
v

λf

)∣
∣
∣
∣

2

⊗
∣
∣
∣
∣
S1

(
u

λf
,
v

λf

)∣
∣
∣
∣

2

.

This is the simplest form of the result.

8-11. As in the previous treatment of the VanderLugt filter, the reference wave is represented by

Ur(x2, y2) = ro exp(−j2παy2).

In this case the wave from the object is the product of the Fourier transform of that object and a
quadratic phase factor, because the object is against the lens. Thus

Uo(x2, y2) =
exp

[
π
λf (x2

2 + y2
2)
]

λf
S

(
x2

λf
,
y2
λf

)

These two waves interfere at the film. After exposure and development, the amplitude transmittance of
the film is given by

tA(x2, y2) = k

∣
∣
∣
∣
∣
∣

ro exp(−j2παy2) +
exp

[

j π
λf (x2

2 + y2
2)
]

λf
S

(
x2

λf
,
y2
λf

)
∣
∣
∣
∣
∣
∣

2
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= k

{

r2o +
1

(λf)2

∣
∣
∣
∣
S

(
x2

λf
,
y2
λf

)∣
∣
∣
∣

2

+
ro exp

[

j π
λf (x2

2 + y2
2) + j2παy2

]

λf
S

(
x2

λf
,
y2
λf

)

+
ro exp

[

−j π
λf (x2

2 + y2
2) − j2παy2

]

λf
S∗
(
x2

λf
,
y2
λf

)






Now by moving the input of the final processing system so that it is distanced in front of the first lens,
rather than distancef , we are introducing a multiplicative quadratic phase factor associated with the
spectrum of the input as it is incident on the filter. Ifg(x1, y1) is the input, then (from Eq. (5-20))
incident on the filter in the Fourier plane we will have the amplitude distribution

U(x2, y2) =
exp

[

j k
2f

(

1 − d
f

) (
x2

2 + y2
2

)]

λf
G

(
x2

λf
,
y2
λf

)

.

(a) To force cancellation of quadratic phase factors when the convolution term (impulse response

s(x3, y3)) is to be used, we must introduce a quadratic phase factor of the formexp
[

−j π
λf (x2

2 + y2
2)
]

.

The previous equation shows this is achieved ifd = 2f .

(b) To force cancellation of quadratic phase factors when the matched filter term is used (impulse

responses∗(−x3,−y3)), we require a quadratic phase factor of the formexp
[

j π
λf (x2

2 + y2
2)
]

.

This is achieved ifd = 0, i.e. the input is placed against the lens.

8-12. Suppose the inputg(x1, y1) is shifted by(x0, y0). Thus the input isg(x1 − x0, y1 − y0). The effect of
this space-domain shift will be, according to the shift theorem of Fourier analysis, the introduction of
a linear phase shift in the frequency domain, changing the spectrum of the input as follows:

G

(
x2

λf
,
y2
λf

)

→ G

(
x2

λf
,
y2
λf

)

exp

[

−j 2π

λf
(x2x0 + y2y0)

]

.

This change must be made for every occurrence ofG in the equation above Eq. (8-17). The inverse
transform of that equation will then result simply in a shiftof each output term involvingg(x3, y3),
again by the shift theorem of Fourier analysis.

8-13. From Eqs. (8-22) through (8-24),

U3(x3, y3) =
1

λf
[ h(x3, y3) ⊗ h∗(−x3,−y3)
︸ ︷︷ ︸

2Wh

+ g(x3, y3) ⊗ g∗(−x3,−y3)
︸ ︷︷ ︸

2Wg

+ h(x3, y3) ⊗ g∗(−x3,−y3) ⊗ δ(x3, y3 − Y )
︸ ︷︷ ︸

Wg+Wh

+ h∗(−x3,−y3) ⊗ g(x3, y3) ⊗ δ(x3, y3 + Y )
︸ ︷︷ ︸

Wg+Wh

] .

The width of each of the terms is indicated below it. The first two terms are centered at the origin, and
the third and fourth terms are centered at(0, Y ) and(0,−Y ), respectively. Since the on-axis component
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(the first and second terms combined) is non zero between−max {Wg,Wh} andmax {Wg,Wh}, and
the cross correlation components extend from±[Y − (Wg + Wh)/2] to ±[Y + (Wg + Wh)/2], we
need

Y − Wg +Wh

2
> max {Wg,Wh}

or,

Y > max {Wg,Wh} +
Wg +Wh

2

in order to ensure that the cross correlation terms are separated from the on-axis terms.

8-14. (a) By inspection, the point-spread function of this blurring process is

s(u, v) =
K

V T
rect

(

u− V T
2

V T

)

δ(v),

whereK is a constant.

(b) The Fourier transform of this impulse response is of the form

S(fX , fY ) = K sinc(V TfX) e−jπV TfX .

The transfer function of an inverse filter would therefore be

Hinverse(fX , fY ) =
1

sinc(V TfX)
ejπV TfX .

(c) Given a signal-to-noise ratio of 10 over all frequencies, the transfer function of a Wiener filter
would be

HWiener(fX , fY ) =
sinc(V TfX) ejπV TfX

[
sinc2(V TfX) + 0.1

] .

A plot of the magnitude of this function for the special caseV T = 1 is shown in part (a) of the
figure. The sign of the central and even-numbered lobes is positive, that of odd-numbered lobes
is negative.

(d) The impulse response of the filter is obtained by subjecting the transfer function to an inverse
Fourier transform. Part (b) of the figure illustrates the impulse response obtained in this way. Note
the the sign discontinuities of the impulse response of the Wiener filter occur with a separation
equal to the width of the original rectangular blur. You may wish to contemplate the result of
convolving the original blur function with this deblur impulse response.

8-15. (a) Since we wish to remove the periodic pattern, we need to remove the nearly impulsive compo-
nents of its the spectrum while leaving the rest of the spectrum approximately intact. Thus we
need to generate a mask with opaque spots at the locations of the impulsive components. One
way to generate such a mask is to use a defect-free object to expose a film in the Fourier plane. If
a defect-free object is not available, we can still generatethe needed mask by developing the film
in a non-linear region so as to make the film more sensitive to high incident intensities; this will
allow the delta functions to get exposed while low intensitysignals corresponding to defects get
suppressed.
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Figure 8-14:

(b) The object with the defect can be written as

Uo = p(x, y) [1 − d(x, y)],

where

d(x, y) =

{
1 in the defect
0 outside the defect

,

andp(x, y) is the ideal periodic object. In the Fourier plane we have

Uf = P (fX , fY ) ⊗ [δ(fX , fY ) −D(fX , fY )]

= P (fX , fY ) − P (fX , fY ) ⊗D(fX , fY ),

whereP (fX , fY ) consists of a series of delta functions:

P (fX , fY ) =

∞∑

n=−∞

∞∑

m=−∞
cnm δ(fX − n/L, fY −m/L).

Thus,

Uf =
∞∑

n=−∞

∞∑

m=−∞
cnm

[

δ(fX − n

L
, fY − m

L
) −D(fX − n

L
, fY − m

L
)
]

.
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The filter removes the delta functions, and does not particularly affect the multiple replicas of
D(fX , fY ). Thus we have,

U ′
f = −

∞∑

n=−∞

∞∑

m=−∞
cnmD

(

fX − n

L
, fY − m

L

)

.

Now, since we know thatL is much larger than the size of the defect, in the Fourier domain the
width ofD must be much greater than the size of1/L; that is, all the replicas of D in the above
equation are offset from one another by a very small distancecompared to their width. Also,
note thatcnm approaches zero as|n| and|m| are increased, so that the replicas which are offset
significantly from the origin contribute very little to the summation. Thus, we have

U ′
f ≈ −D(fX , fY )

and, taking the inverse Fourier transform,

Ui ≈ −d(u, v)
Ii ≈ d2(u, v).

8-16. The basic approach would be to construct a filter with a transfer function approximating

H(fX , fY ) =
A(fX , fY )

F (fX , fY )
,

whereA(fX , fY ) is the Fourier transform of the letter “A” andF (fX , fY ) is the Fourier transform
of the letter “F”. We can do so by constructing a relative of the inverse filter. Construction of such
a filter would be a two-step process, similar to what was described in Section 8.8.3. However, there
are differences because what we are creating is not an inverse filter in the usual sense. The procedure
would be as follows:

• Expose photographic film with the Fourier transform of the letter “F”, and process the film to cre-
ate a negative transparency with a gamma of 2. The result willbe a transparency with amplitude
transmittance satisfying

tA1 ∝ 1

|F (fX , fY )|2 .

• Now expose a second piece of film to the interference pattern between the Fourier transform of
the letter “A” and the Fourier transform of the letter “F”. This can be done with an optical system
such as is used to create the filter for a joint transform correlator. A transparency containing the
letters “A” and “F”, side-by-side but separated from one another, is optically Fourier transformed
and the resulting two spectra interfere on the film. This exposure is recorded in the linear region
of thetA vs.E curve. The result is a transparency with one component of amplitude transmittance
satisfying

tA2 ∝ F ∗(fX , fY )A(fX , fY ).

• Now place these two transparencies in contact and use them asthe filter in a conventional “4f”coherent
processing system. If the letter “F” is presented at the input to that system, then the field trans-
mitted through the Fourier plane will be of the form

Uf ∝ F (fX , fY )
F ∗(fX , fY )A(fX , fY )

|F (fX , fY )|2 = A(fX , fY ).
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Inverse Fourier transformation of this field results in the letter “A” appearing at the output of the
processor. If the letter “A” was placed above the letter “F” in the input plane when the second
transparency was recorded, the output of interest will appear (in the inverted coordinate system
of Fig. 8.16(b)), at location(0,−Y ), whereY is the separation of the centers of the letters “A”
and “F”.

8-17. (a) Since the illuminated patch on the ground isλrr1/D meters wide, the length of flight path over
which the given scatterer on the ground would be illuminatedis alsoλrr1/D.

(b) The doppler shift encountered while approaching the target and receding from the target can be
deduced from Eq. (8-65). Note from that equation that the phase of the radiation returned from a
point scatterer at locationxn is

φn(t) = −2π(vat− xn)2

λrr1
.

Without loss of generality we can consider the particular point scatterer atxn = 0. The shift of
instantaneous frequency,∆f , associated with this term is found from

∆f =
1

2π

d

dt
φn = − 2v2

at

λrr1
.

But we are interested in the frequency when the point scatterer just begins to enter the illumination
beam and when it just leaves the illumination beam. Since thebeam isλrr1/D meters wide, the
times when the point scatterer enters and leaves the beam will be (respectively)

t1 = − λrr1
2vaD

t2 =
λrr1
2vaD

.

Substituting these values into the expression for the frequency shift, we find in the two cases

∆f1 =
2v2

a

λrr1
× λrr1

2vaD
=
va

D

∆f2 = − 2v2
a

λrr1
× λrr1

2vaD
= −va

D
.

(c) The signal arriving from the point scatterer chirps overa bandwidth

B = ∆f1 − ∆f2 = 2va/D.

This chirping signal can be compressed to a pulse of durationT = 1/B, and indeed such com-
pression is done spatially by the coherent optical system. Acompressed pulse of durationT
corresponds to a dimension on the ground

∆x = vaT =
va

B
= D/2.

This is the resolution achieved on the ground by a perfect processing system. The factor of1/2
arises becauseboth the transmitter and the receiver are moving with respect to the scatterer.
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8-18. Start with Eq. (7-34). While this has been derived for diffraction in the Raman-Nath regime, the only
difference in the Bragg regime lies in the strengths of the various orders. In addition, this equation holds
for only a single CW component driving the acousto-optic cell. However, it holds for a component of
any frequency, and therefore by changing the frequency we can discover what happens to the many
different frequency components of a broadband signal. In Eq. (7-34), the factorej2πy/λ corresponds
to a wavefront tilt, which results in this diffraction orderbeing focused by the lens that follows to a
diffraction-limited spot centered at coordinate

y2 =
λf

Λ
=
λf

V
fc.

Thus an RF frequencyfc is mapped to the spatial coordinatey2 above. As is also evident from Eq. (7-
34), the phasor representation of this field component has a time variationej2πfct, in addition to the
rotatione−j2πνt at the optical frequency that has been suppressed. Hence thefrequency of the light
being focused to this position in the focal plane isν− fc, which was to be proved. This equation holds
for the+1 order. For the−1 order the frequency isν + fc.



Chapter 9

9-1. A complicated but correct solution to the problem wouldwrite all the fields incident on the film, find
the intensity, and find the fields transmitted by the hologram. A much simpler solution is based on
Eq. (9-38) withλ2 = λ1. That equation states that

1

zi
=

1

zp
± 1

zr
∓ 1

zo
.

This equation should now be compared with the lens law, whichwe must adapt to the sign convention
used in the discussion of holographic image locations. Remembering thatzo is negative for an object
to the left of the hologram or lens, the lens law can be written

1

zi
=

1

f
+

1

zo
.

Equating these two expressions for1/zi, we see immediately that

1

f
=

1

zp
± 1

zr
∓ 1

zo
− 1

zo
,

yielding two focal lengths

f =

(
1

zp
− 1

zr

)−1

and f =

(
1

zp
+

1

zr
− 2

zo

)−1

.

Note that one of the two lenses has a focal length that dependson the location of the object.

9-2. Again we use Eq. (9-38) to find solutions. In both cases,λ1 = 0.488µm, andλ2 = 0.6328µm.

(a) Letzp = ∞, zr = ∞, zo = −10 cm. Then

1

zi
= 0 + 0 ± 0.6328

0.488
× 1

10
,

or

zi = ± 4.88

0.6328
= ±7.71 cm.

From Eqs. (9-40) and (9-41),

Mt = 1

Ma =
0.488

0.6328
= 0.771.

79
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(b) In this case,zp = ∞, zr = 2zo, z0 = −10 cm. Then

1

zi
= 0 ∓ 0.6328

0.488
× 1

20
± 0.6328

0.488
× 1

10

or
zi = ±15.4 cm.

As for the magnifications,

Mt =

∣
∣
∣
∣

λ2zi

λ1zo

∣
∣
∣
∣
=

0.6328× 15.4

0.488 × 10
= 2

Ma =
λ1

λ2
M2

t =
0.6328

0.488
× 4 = 3.1.

9-3. Take first the case ofzp = zr. The image distance is

zi =

(
1

zr
± 1

zr
∓ 1

zo

)−1

.

Thus the two solutions are (lower set of signs first)

zi = zo and zi =

(
2

zr
− 1

zo

)−1

=
zrzo

2zo − zr
.

Note that sincezo < 0 (i.e. the object lies to the left of the hologram), the first image also lies to the
left of the hologram (a virtual image), while the second can lie to the left or to the right, depending on
the particular values ofzo andzr. The transverse magnifications in the two cases are

Mt = 1 and Mt =

∣
∣
∣
∣

zi

zo

∣
∣
∣
∣
=

∣
∣
∣
∣

zr

2zo − zr

∣
∣
∣
∣
.

Thus one of the images is virtual and has unit transverse magnification.

Now consider the case forzp = −zr. The two solutions for image distance are now (again lower set of
signs first)

zi =

(

− 2

zr
+

1

zo

)−1

=
−zrzo

2zo − zr
and zi = −zo.

The transverse magnifications in the two cases are

Mt =

∣
∣
∣
∣

zi

zo

∣
∣
∣
∣
=

∣
∣
∣
∣

zr

2zo − zr

∣
∣
∣
∣

and Mt = 1.

Note that, sincezo is negative, the second image is real (zi positive) and has unit transverse magnifica-
tion.

9-4. (a) The transverse magnification will be the ratio of theimage distance to the object distance, since
the wavelengths are the same during recording and reconstruction. The image appears in the rear
focal plane of the Fourier-transforming lens, and therefore

Mt =

∣
∣
∣
∣

f

zo

∣
∣
∣
∣
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(b) LetU ′(xo, yo) be defined to be

U ′(xo, yo) = tA(xo, yo) e
j π

λz (x2
o+y2

o),

wherez is taken to be a positive number (the objectz-coordinate is−z), and the amplitude of the
plane wave illuminating the object transparency has been taken to be unity. The reference point
has been taken to be displaced from the center of the object plane by distancey1 along theyo

axis. The intensity distribution incident on the hologram plane is

I(x, y) =

∣
∣
∣
∣
∣
Aej 2π

λz y1y +
ej π

λz (x2+y2)

λz
F {U ′

o}fX=x/λz

fY =y/λz

∣
∣
∣
∣
∣

2

.

For this problem, we are interested only in the on-axis term of the hologram transmittance, which
in the linear region of thetA vs.E curve yields

t1(x, y) = A2 +
1

(λz)2

∣
∣
∣
∣
F{U ′

o}fX=x/λz

fY =y/λz

∣
∣
∣
∣

2

.

The reconstruction process subjects the film amplitude transmittance to a further Fourier trans-
form, but with a slightly different scaling factor. The fieldin the focal plane of the reconstruction
lens will be (assuming a unit-amplitude reconstruction plane wave)

Uf (u, v) =
1

λf
F−1{t1(x, y)}fX =u/λf

fY =v/λf

= λf δ(u, v)

+
1

λf

∞∫

−∞

∫

dxdy e−j 2π
λf (ux+vy) 1

(λz)2

∞∫

−∞

∫

dxodyo e
−j 2π

λz (xox+yoy)U ′
o(xo, yo)

×
∞∫

−∞

∫

dx′ody
′
o e

j 2π
λz (x′

ox+y′

oy)U ′∗
o (x′o, y

′
o).

The integrals can be rearranged so that one of the double integrals reduces to

B =
1

λf

∞∫

−∞

∫

dxdy e
−j2π

[(
u

λf + xo
λz − x′

o
λz

)

x+

(

( v
λf + yo

λz − y′

o
λz

)

y

]

=
(λz)2

λf
δ (x′o − xo −Mtu, y

′
o − yo −Mtv) ,

whereMt = f/z. Substitution of this delta function into the remaining twodouble integrals
causes one of those double integrals to vanish, leaving

Uf(u, v) =
1

λf

∞∫

−∞

∫

U ′(xo, yo)U
′∗
o (xo + u/Mt, yo + v/Mt) dxodyo.

(c) Since the object transparency has sizeL × L, and since the autocorrelation of the object can
have size at most2L × 2L, the reference point source should be at least3L/2 above the object
transparency.
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9-5. (a) We know the magnification to be 2 from the object and image sizes given. We also know

Mt =

∣
∣
∣
∣

λ2zi

λ1zo

∣
∣
∣
∣
= 2.

Choosing the appropriate signs by noting thatzi > 0 andzo < 0,

zo = − λ2zi

λ1 × 2
= − (488 nm)(1 m)

(632.8 nm)(2)
= −0.38 m.

Using this result in the expression forzi,

zi =

(
1

zp
± λ2

λ1zr
∓ λ2

λ1zo

)−1

=

(
1

zp
± λ2

λ1zr
± 2

zi

)−1

.

Solving forzr,

zr =
λ2

λ1

(

− 2

zi
± 1

zi
∓ 1

zp

)−1

= −λ2

λ1

(−1

zi
− 1

zp

)−1

or
λ2

λ1

(−3

zi
+

1

zp

)−1

= 0.77 m or − 0.15 m.

Since the problem specifies thatzr < 0,

zr = −0.15 m.

(b) The same effect as flipping the hologram can be obtained bykeeping the hologram unflipped but
exposing the film from the other side. This has the effect of reversing the signs ofzo andzr,
making both of them positive.zo must now be+0.38 m to assureMt = 2. Carrying out the same
calculations as part (a) with the new signs forzo andzr, we find

zo = +0.38 m

zr = +0.15 m.

9-6. (a) We can find the maximum spatial frequency with the help of the figure.
The maximum spatial frequency will be the maximum distance from the reference point to any
point on the object (304µm in this case), divided byλzo,

fmax=
l

λzo
=

304µm
1 × 10−4 µm× 20 mm

= 152000 cycles/mm.

(b) The experiment will fail because the periods of all components of the holographic grating are
much smaller than the wavelength of the reconstruction source. As a consequence, all diffraction
orders will be evanescent, and there will be no way to form an image.

9-7. (a) Letλ andθ represent the wavelength and half-angle between beams outside the emulsion (i.e. in
air wheren = 1). In terms of these parameters the predicted fringe period is

Λ =
λ

2 sin θ
.
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100mm

200mm

100mm

(300)2+(50)2 

= 304mm

Object

Reference

Figure 9-6:

For the valuesλ = 0.488 × 10−6m and2θ = 60◦, the period is given byΛ = 0.488µm.

Inside the emulsion the wavelength isλ′ = λ/n = 488nm/1.52 = 321nm and from Snell’s law,

sin θ′ =
sin θ

n
= 0.5/1.52 andθ = 19.2◦.

Using the parameters inside the emulsion the predicted fringe period is

Λ =
λ′

2 sin θ′
=

λ

2 sin θ
= 0.488µm.

We conclude fringe period predicted from parameters outside the recording medium is exactly
the same as that predicted from parameters inside the recording medium.

(b) From Eq. (9-70), under Bragg-matched conditions,

ηB = sin2 Φ,

where, from Eq. (9-68),

Φ =
πn1d

λ′ cos θ′
,

and we are using the values of wavelength and angle inside theemulsion. To achieve 100%
diffraction efficiency with the smallest possible refractive index modulation, we requireΦ = π/2.
This implies that the peak refractive index modulation mustbe then1 that satisfies

πn1d

λ′ cos θ′
=
π

2
.

Remembering thatθ is 1/2 the angle between the two beams (30◦ in this case), the required value
of n1 is therefore

n1 =
λ′ cos θ′

2d
=
λ′
√

1 − sin2 θ′

2d
=

λ
n

√

1 − sin2 θ
n2

2d
=

0.321µm× 0.9443

2 × 15µm
= 0.0101.



84

(c) We assume thatΦ = π/2 (Bragg aligned),∆θ = 0 but that∆λ 6= 0. From Eq. (9-69),

η =
sin2

(
π
2

√

1 + χ2

(π/2)2

)

1 + χ2

(π/2)2

,

where by Eq. (9-68)

χ =
Kd

2 cos θ′B

∆λ′

2Λ
=

πd∆λ′

2Λ2 cos θ′B
,

with θ′B and∆λ′ being the Bragg angle and wavelength change within the emulsion. Again

noting that∆λ′ = ∆λ/n, andcos θ′B =
√

1 − sin2 θB

n2 , as well asΛ = λ/(2 sin θB), we have

χ =
πd∆λ/n

2( λ
2 sin θB

)2
√

1 − sin2 θB

n2

=
2πd∆λ sin2 θB

λ2
√

n2 − sin2 θB

.

Next we must determine what value ofχ causes the diffraction efficiency to drop to value 1/2.
The desired value ofχ satisfies the equation

sin2

[√
(π

2

)2

+ χ2

]

=
1

2

(

1 +
χ2

(π/2)2

)

.

Equivalently, lettingX =
√

(π/2)2 + χ2, we seek the value ofX that satisfies

sin2X =
2

π2
X2.

The solution isX = 2.0, or (π/2)2 + χ2 = 4.0. Solving forχ, we obtain

χ = 1.255.

Equating this value ofχ to the general expression found above, and substitutingn = 1.52,
λ = 0.488µm, d = 15µm, andθB = 30◦, we obtain

∆λ = 2 × 1.255× λ2
√

n2 − sin2 θB

2πd sin2 θB

= 18.2 nm.

(d) In this case, according to Eq. (9-68) and noting that the grating is unslanted (ψ = 0),

χ =
Kd

2 cos θ′B
∆θ′ cos θ′B =

πd

Λ
∆θ′,

whereθ′B and ∆θ′ are both measured in the emulsion. In addition, Snell’s law implies that
sin(θB − ∆θ) = sin(θ′B − ∆θ′)/n and for small∆θ′, we have

∆θ′ = ∆θ

√

1 − sin2 θB

n2 − sin2 θB

.

SubstitutingΛ = λ/(2 sin θB) and noting that the same value ofχ as found in part (c) is appro-
priate, we obtain for a change of angle external to the emulsion

∆θ = 1.255 × λ

2πd sin θB
×

√

n2 − sin2 θB

1 − sin2 θB

=
1.255× 0.488µm

2π × 15µm× sin 30◦
×

√

1.522 − sin2 30◦

1 − sin2 30◦
.
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Thus
∆θ = 1.23◦.

9-8. From Eq. (9-44),

Q =
2πλ0d

nΛ2
= 2π.

Solving forΛ2, we find

Λ2 =
λ0d

n
.

In addition, we know thatΛ = λ0/2 sin θ, where bothλ0 andθ are measured in air. Equating two
expressions forλ2 and solving forsin θ, we obtain

sin θ =

√

nλ0

4d
,

from which it follows that

θ = sin−1

√

nλ0

4d
.

Substituting the numerical valuesn = 1.52, d = 15µm andλ0 = 0.633µm, we find

θ = 0.127 radians= 7.28◦.

The angle between the beams is2θ = 14.6◦.

9-9. From Eq. (9-75) withα1 = α0, we have

ηB = e
− 2α0d

cos θB sinh2

(
α0d

2 cos θB

)

.

As stated in the text, this quantity is maximized when

Φ′
a =

α0d

2 cos θB
= 0.55,

from which we conclude

α0 = α1 = 1.10 × cos θB

d
=

1.10 × cos 30◦

d
= 0.953/d.

Now densityD is related to intensity transmittanceτ throughD = − log10 τ , and thelocal value ofτ
is by definition (c.f. Eq. (9-72) and see Eq. (9-55) withα1 = α0)

τ = exp
[

−2α0d− 2α0d cos ~K · ~r
]

.

It follows that the local value of density is

D =
2α0d

ln 10

[

1 + cos ~K · ~r
]

,

which when averaged over many cycles of the fringe pattern yields an average density given by

D0 =
2α0d

ln 10
.

Now using the expression forα0 in terms ofd derived above, we find

D0 =
2 × 0.953

ln 10
= 0.83.
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9-10. From Eq. (9-66) with no wavelength mismatch,

ζ = ∆θ K cos(θB − ψ).

Letα be the angular separation between the object and reference waves. Then from Eq. (9-48),

K =
4π

λ
sin
(α

2

)

.

Also, since the grating peaks run in the direction that bisects the object and reference wave directions,

θB − ψ =
α

2
.

Hence, the expression for the detuning parameter becomes

ζ = ∆θ
4π

λ
sin
(α

2

)

cos
(α

2

)

= ∆θ
2π

λ
sinα.

To find the angular sensitivity, differentiate the detuningparameter with respect to∆θ:

dζ

d∆θ
=

2π

λ
sinα.

The above quantity is easily seen to be maximized whenα = 90◦.

9-11. First calculate the bandwidth of the object. Since theFourier-transform hologram dimensions are (from
the discussion of Section 9.9.1)LX × LY , the bandwidths of interest are

2bX =
LX

λf

2bY =
LY

λf
.

Thus given an object of dimensionsLξ × Lη, if the object is sampled at the Nyquist rate, the number
of samples will be

nX = Lξ × 2bX =
LξLX

λf

nY = Lη × 2bY =
LηLY

λf
.

This is precisely the same number of samples required in the Fourier plane, as evidenced by Eq. (9-90).

9-12. The geometry is such that we can apply Eq. (5-19) to relate the object and hologram fields,

Uh(x, y) =
exp

[

j π
λf

(

1 − f+∆z
f

)

(x2 + y2)
]

λf

×
∞∫

−∞

∫

Uo(ξ, η) exp

[

−j 2π

λf
(ξx+ ηy)

]

dξdη.



87

We know from Eq. (9-88) that the bandwidths of the Fourier transform factor of this expression are

2B̃X =
Lξ

λf

2B̃Y =
Lη

λf
.

In accord with the philosophy used in deriving Eq. (9-90), weadd to this the bandwidth of the quadratic
phase term. The local spatial frequencies of the factor

exp

[

−j π∆z

λf2
(x2 + y2)

]

are easily shown to be limited to

|flX | ≤ |∆z|LX

2λf2

|flY | ≤ |∆z|LY

2λf2
.

The total bandwidths can now be approximated as

2BX = 2B̃X + 2|flX | =
Lξ + |∆z|

f LX

λf

2BY = 2B̃Y + 2|flY | =
Lη + |∆z|

f LY

λf
.

It follows that the number of samples required in the hologram in this case becomes

NX =
LX

(

Lξ + |∆z|
f LX

)

λf

NY =
LY

(

Lη + |∆z|
f LY

)

λf
.

9-13. The figure illustrates the structure of the hologram for a spectrum that is constant.

(a) The coefficients of a two-dimensional Fourier series expansion are found by Fourier transforming
the structure of a single cell, and substitutingfX = n/L, fY = m/L:

cn,m =
1

L2

∫ L/2

−L/2

∫ L/2

−L/2

rect
10x

L
rect

x

aL
e−j2π( n

L x+ m
L y) dxdy

=
a

10
sinc

( n

10

)

sinc(am) .

(b) The fraction of incident light that end up in the zero-order spot is given by

|c0,0|2 =
a2

100
.
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L

aL

L/10

Figure 9-13:

(c) The fraction of incident light that is blocked by the opaque part of the hologram is simply the
fractional area of a cell that is opaque. Simple geometry shows that this is1 − a/10.

(d) The diffraction efficiencies of the two first-order images are represented by|c1,0|2 and|c−1,0|2,
since their direction of deflection from the origin is thex-direction. We have

|c1,0|2 = |c−1,0|2 =
a2

100
sinc2

(
1

10

)

= 0.0097a2.

9-14. For simplicity, assume that the reference point is on the optical axis. The spatial frequency associated
with the fringe pattern generated by interference of this reference with a point-source object distanced
away from the reference point will be

fo =
d

λz
.

Equatingfo to the cutoff frequencyfc of each type of film and solving for the resulting value ofd, we
obtain:

d = λzfc =







Tri-X 1.6 mm
High-Contrast Copy 1.9 mm
SO-243 9.5 mm
Agepan FF 19.0 mm

.

9-15. The exposure to which the emulsion is subjected is

E = A2 + a2 + 2Aa cos[2παx− φ].

The variations of exposure about the bias contributed by thereference are

E1 = a2 + 2Aa cos[2παx− φ].

(a) Taking the cube ofE1 and expanding the square and the cube of the cosine obtained,we find

E3
1 = a6 + 6a4A2 + (6a5A+ 6a3A3) cos[2παx − φ]

+6a4A2 cos[4παx− 2φ] + 2a3A3 cos[6παx− 3φ].

The portion of the transmitted field that generates the first-order images is the term involving
cos[2παx − φ], or

U1(x, y) =
[
6a5(x, y)A+ 6a3(x, y)A3

]
cos [2παx− φ(x, y)] .
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(b) If A≫ a, then
U1(x, y) ≈ 6a3(x, y)A3 cos [2παx− φ(x, y)] .

(c) The phase modulation is correct, but the amplitude modulation is distorted from its ideal value of
2Aa(x, y).
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Chapter 10

10-1. We start with the relation of Eq. 10-9,

η =






1 +

1 − χ2

Φ2

sinh2

(

Φ
√

1 − χ2

Φ2

)







−1

.

First use the relation1/ sinh2 x = cosh2 x to write

η =

[

1 +

(

1 − χ2

Φ2

)

csch2
(

Φ

√

1 − χ2

Φ2

)]−1

.

Then using Eq. 10-7,

(χ

Φ

)2

=

(

πℓ∆λ̃

2Λ2
× λ̃

π δn ℓ

)2

=

(

2
∆λ

λB δn

)2

=
(

2
x

δn

)2

,

where we have used the fact that∆λ̃/λ̃ = ∆λ/λ << 1, allowing ∆λ̃λ̃/2Λ2 to be replaced by
2∆λ/λB = 2x. In addition, using the definitionN = ℓ/Λ, we have

Φ =
π δn ℓ

λ̃
≈ π δn ℓ

λ̃B

=
π δnN

2
,

yielding the final result of Eq. 10-10,

η =

[

1 +

(

1 − 4x2

δn2

)

csch2
(

π δnN

2

√

1 − 4x2

δn2

)]−1

.

10-2. From Eq. 10-12, the effective length of the grating is given by

ℓ0 ≈ 6Λ

π δn
=

3λ̃B

π δn
=

3λB

πn δn1
.

Now with λB = 1550 nm,n1 = 1.45, and the three values ofδn, we find

δn ℓ0
10−4 1 cm
10−3 1 mm
10−2 100µm

.
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10-3. Choosing the time of the reference pulse as the time origin, the signal pulse is writtens(t− τ0), where
τ0 is the time difference between the reference pulse and the signal origin. Thus, from the shift theorem,
the Fourier transform of the signal is given by

F {s(t− τ0)} = S(ν) exp(−j2πντ0),
whereS(ν) is the Fourier transform ofs(t). Let ∆ν represent the resolution of the grating in the
spectral space. To avoid destructive cancellation of fringes arising from the various frequencies that lie
within a single spectral resolution cell, we require that the phase shift above caused by the time delay
τ0 be less than2π within any one resolution element of width∆ν. Thus we require

2π∆ντ0 ≤ 2π.

Now we call upon the result presented in Prob. 4-11, noting that∆λ/λ = ∆ν/ν, with the result that

∆ν

ν
=

1

N

whereN is the number of grating periods illuminated by the signal and reference pulses at the input
grating, and a first diffraction order has been assumed. Solving this equation for∆ν and substituting
this result in the equation above, we find that we require

τ0 ≤ N

ν
= NT

to assure that the fringes do not cancel one another, whereT is the period of the optical carrier fre-
quency.

10-4. We begin the solution with a restatement of the gratingequation (cf. Eq. 10-13 and Fig. 10.8),

sin θ2 = sin θ1 −
λ

Λ
= sin θ1 −

c

νΛ
,

where we have used the fact thatλ = c/ν, c being the velocity of light . We can solve this expression
for ν, yielding

ν =
c/Λ

sin θ1 − sin θ2
.

The ray traveling with angleθ2 arrives at the focal plane at position

x = f tan θ2 =
f sin θ2

√

1 − sin2 θ2
.

If we multiply through by the denominator of this equation for x, and square both sides of the equation,
we can solve forsin2 θ2 with the result

sin2 θ2 =
x2

f2 + x2
.

Sinceθ2 is positive and less than90 deg, we must take the positive square root of both sides of this
equation, yielding

sin θ2 =
x

√

f2 + x2

Substituting this expression forsin θ2 in the previous expression forν, we find

ν =
c/Λ

sin θ1 − x/f√
1−(x/f)2

.
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10-5. The location of wavelengthλm = λ0 +mδλ at the output is found by first finding the location of the
inverted image of the input port on which the wavelength appears, and then cyclic shifting (i.e. with
wrapping) the output port downward bym locations. The result is

λ2λ3

λ4

λ4

λ2 λ3

Figure 10-5:

10-6. A complicating factor in this case is that an odd numberN of input ports yields an even number2N
of output ports. Thus some assumption must be adopted regarding how the input ports are mapped to
output ports for the “design wavelength”λ0. We assume the system has been designed such that for
wavelengthλ0, theN input ports are mapped (with inversion) to thetop N output ports. (Note for
instructors: if you assign this problem to students, you maywant to add this assumption in order to
have uniform answers.) Other assumptions are equally valid, or course, and will yield different details
in the answer to part (b).

(a) Since the grating section has2N waveguides, we can use Eq. (10-35) for wavelength resolution,
with N replaced by2N ,

δλ =
λ0

2Nm
,

wherem is the grating order used. Similarly, Eq. (10-36) can be usedto yield the spatial resolution

δx =
λ0f

2nsNΛ
.

(b) The problem does not specify how many wavelengths are present on each of the input ports. We
assume that there areN wavelengths, as in the case shown in Fig. 10.23. Again, the wavelengths
are assumed to be the same on all input ports and to consist ofλ0 + p δλ for p = 0, 1, · · · , N − 1.
We adopt the notation used earlier with two subscripts on each wavelength, the first being the
label for the input port (0 at the bottom input port,N − 1 at the top input port) and the second for
the wavelength index. Thusλp,q is theqth wavelength on thepth input port.

The geometry described is shown below for the particular case ofN = 5. The numbering system
for the output ports is also shown. Rather than attempting tosqueeze the wavelength sequences
for each output port into the figure above, instead we presenta table, where the top row corre-
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λ 0,
0

,  λ
0,

1
, 

...
 λ 0,

4

λ 1,
0

,  λ
1,

1
, 

...
 λ 1,

4λ4,0
,  λ4,1

, .
.. λ4,4

0

1
2

9

3
4

5
6

78

Figure 10-6:

sponds to the top output port, the next row the second output port from the top, etc.


















λ0.0

λ1.0 λ0,1

λ2,0 λ1,1 λ0,2

λ3,0 λ2,1 λ1,2 λ0,3

λ4,0 λ3,1 λ2,2 λ1,3 λ0,4

λ4,1 λ3,2 λ2,3 λ1,4

λ4,2 λ3,3 λ2,4

λ4,3 λ3,4

λ4,4



















Note that only output ports 0 through 8 are occupied by wavelengths, and only output port 4 has
a full complement of 5 wavelengths.


