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Preface

This book presents the basic tools of modern analysis within the context of
what might be called the fundamental problem of operator theory: to cal-
culate spectra of specific operators on infinite-dimensional spaces, especially
operators on Hilbert spaces. The tools are diverse, and they provide the
basis for more refined methods that allow one to approach problems that go
well beyond the computation of spectra; the mathematical foundations of
quantum physics, noncommutative K-theory, and the classification of sim-
ple C∗-algebras being three areas of current research activity that require
mastery of the material presented here.

The notion of spectrum of an operator is based on the more abstract
notion of the spectrum of an element of a complex Banach algebra. Af-
ter working out these fundamentals we turn to more concrete problems of
computing spectra of operators of various types. For normal operators, this
amounts to a treatment of the spectral theorem. Integral operators require
the development of the Riesz theory of compact operators and the ideal L2

of Hilbert–Schmidt operators. Toeplitz operators require several important
tools; in order to calculate the spectra of Toeplitz operators with continuous
symbol one needs to know the theory of Fredholm operators and index, the
structure of the Toeplitz C∗-algebra and its connection with the topology of
curves, and the index theorem for continuous symbols.

I have given these lectures several times in a fifteen-week course at
Berkeley (Mathematics 206), which is normally taken by first- or second-
year graduate students with a foundation in measure theory and elementary
functional analysis. It is a pleasure to teach that course because many deep
and important ideas emerge in natural ways. My lectures have evolved sig-
nificantly over the years, but have always focused on the notion of spectrum
and the role of Banach algebras as the appropriate modern foundation for
such considerations. For a serious student of modern analysis, this material
is the essential beginning.

Berkeley, California William Arveson
July 2001
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CHAPTER 1

Spectral Theory and Banach Algebras

The spectrum of a bounded operator on a Banach space is best studied
within the context of Banach algebras, and most of this chapter is devoted
to the theory of Banach algebras. However, one should keep in mind that
it is the spectral theory of operators that we want to understand. Many
examples are discussed in varying detail. While the general theory is elegant
and concise, it depends on its power to simplify and illuminate important
examples such as those that gave it life in the first place.

1.1. Origins of Spectral Theory

The idea of the spectrum of an operator grew out of attempts to understand
concrete problems of linear algebra involving the solution of linear equations
and their infinite-dimensional generalizations.

The fundamental problem of linear algebra over the complex numbers is
the solution of systems of linear equations. One is given

(a) an n× n matrix (aij) of complex numbers,
(b) an n-tuple g = (g1, g2, . . . , gn) of complex numbers,

and one attempts to solve the system of linear equations

a11f1 + · · ·+ a1nfn = g1,

. . .

an1f1 + · · ·+ annfn = gn

(1.1)

for f = (f1, . . . , fn) ∈ Cn. More precisely, one wants to determine if the
system (1.1) has solutions and to find all solutions when they exist.

Elementary courses on linear algebra emphasize that the left side of (1.1)
defines a linear operator f �→ Af on the n-dimensional vector space Cn. The
existence of solutions of (1.1) for any choice of g is equivalent to surjectivity
of A; uniqueness of solutions is equivalent to injectivity of A. Thus the
system of equations (1.1) is uniquely solvable for all choices of g if and only
if the linear operator A is invertible. This ties the idea of invertibility to the
problem of solving (1.1), and in this finite-dimensional case there is a simple
criterion: The operator A is invertible precisely when the determinant of
the matrix (aij) is nonzero.

However elegant it may appear, this criterion is of limited practical value,
since the determinants of large matrices can be prohibitively hard to com-
pute. In infinite dimensions the difficulty lies deeper than that, because for

1



2 1. SPECTRAL THEORY AND BANACH ALGEBRAS

most operators on an infinite-dimensional Banach space there is no mean-
ingful concept of determinant. Indeed, there is no numerical invariant for
operators that determines invertibility in infinite dimensions as the deter-
minant does in finite dimensions.

In addition to the idea of invertibility, the second general principle be-
hind solving (1.1) involves the notion of eigenvalues. And in finite dimen-
sions, spectral theory reduces to the theory of eigenvalues. More precisely,
eigenvalues and eigenvectors for an operator A occur in pairs (λ, f), where
Af = λf . Here, f is a nonzero vector in Cn and λ is a complex number. If
we fix a complex number λ and consider the set Vλ ⊆ Cn of all vectors f
for which Af = λf , we find that Vλ is always a linear subspace of Cn, and
for most choices of λ it is the trivial subspace {0}. Vλ is nontrivial if and
only if the operator A − λ1 has nontrivial kernel: equivalently, if and only
if A− λ1 is not invertible. The spectrum σ(A) of A is defined as the set of
all such λ ∈ C, and it is a nonempty set of complex numbers containing no
more than n elements.

Assuming that A is invertible, let us now recall how to actually calculate
the solution of (1.1) in terms of the given vector g. Whether or not A
is invertible, the eigenspaces {Vλ: λ ∈ σ(A)} frequently do not span the
ambient space Cn (in order for the eigenspaces to span it is necessary for A
to be diagonalizable). But when they do span, the problem of solving (1.1)
is reduced as follows. One may decompose g into a linear combination

g = g1 + g2 + · · ·+ gk,

where gj ∈ Vλj
, λ1, . . . , λk being eigenvalues of A. Then the solution of (1.1)

is given by
f = λ−1

1 g1 + λ−1
2 g2 + · · ·+ λ−1

k gk.

Notice that λj �= 0 for every j because A is invertible. When the spectral
subspaces Vλ fail to span the problem is somewhat more involved, but the
role of the spectrum remains fundamental.

Remark 1.1.1. We have alluded to the fact that the spectrum of any
operator on Cn is nonempty. Perhaps the most familiar proof involves the
function f(λ) = det(A − λ1). One notes that f is a nonconstant polyno-
mial with complex coefficients whose zeros are the points of σ(A), and then
appeals to the fundamental theorem of algebra. For a proof that avoids
determinants see [5].

The fact that the complex number field is algebraically closed is cen-
tral to the proof that σ(A) �= ∅, and in fact an operator acting on a real
vector space need not have any eigenvalues at all: consider a 90 degree
rotation about the origin as an operator on R2. For this reason, spectral
theory concerns complex linear operators on complex vector spaces and their
infinite-dimensional generalizations.

We now say something about the extension of these results to infinite
dimensions. For example, if one replaces the sums in (1.1) with integrals, one
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obtains a class of problems about integral equations. Rather than attempt
a general definition of that term, let us simply look at a few examples in
a somewhat formal way, though it would not be very hard to make the
following discussion completely rigorous. Here are some early examples of
integral equations.

Example 1.1.2. This example is due to Niels Henrik Abel (ca 1823),
whose name is attached to abelian groups, abelian functions, abelian von
Neumann algebras, and the like. Abel considered the following problem.
Fix a number α in the open unit interval and let g be a suitably smooth
function on the interval (0, 1) satisfying g(α) = 0. Abel was led to seek a
function f for which ∫ x

α

1
(x− y)α

f(y) dy = g(x)

on the interval α < x < 1, and he wrote down the following “solution”:

f(y) =
sinπα

π

∫ y
α

g′(x)
(y − x)2−α dx.

Example 1.1.3. Given a function g ∈ L2(R), find a function f such that

(1.2)
∫ ∞

−∞
eixyf(y) dy = g(x), x ∈ R.

The “solution” of this problem is the following:

f(y) =
1
2π

∫ ∞

−∞
e−ixyg(x) dx.

In fact, one has to be careful about the meaning of these two integrals. But
in an appropriate sense the solution f is uniquely determined, it belongs to
L2(R), and the Fourier transform operator defined by the left side of (1.2) is
an invertible operator on L2. Indeed, it is a scalar multiple of an invertible
isometry whose inverse is exhibited above. This is the essential statement
of the Plancherel theorem [15].

Example 1.1.4. This family of examples goes back to Vito Volterra (ca
1900). Given a continuous complex-valued function k(x, y) defined on the
triangle 0 ≤ y ≤ x ≤ 1 and given g ∈ C[0, 1], find a function f such that

(1.3)
∫ x

0
k(x, y)f(y) dy = g(x), 0 ≤ x ≤ 1.

This is often called a Volterra equation of the first kind. A Volterra equation
of the second kind involves a given complex parameter λ as well as a function
g ∈ C[0, 1], and asks whether or not the equation

(1.4)
∫ x

0
k(x, y)f(y) dy − λf(x) = g(x), 0 ≤ x ≤ 1

can be solved for f .
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We will develop powerful methods that are effective for a broad class of
problems including those of Example 1.1.4. For example, we will see that the
spectrum of the operator f �→ Kf defined on the Banach space C[0, 1] by
the left side of (1.3) satisfies σ(K) = {0}. One deduces that for every λ �= 0
and every g ∈ C[0, 1], the equation (1.4) has a unique solution f ∈ C[0, 1].
Significantly, there are no “formulas” for these solution functions, as we had
in Examples 1.1.2 and 1.1.3.

Exercises. The first two exercises illustrate the problems that arise
when one attempts to develop a determinant theory for operators on an
infinite-dimensional Banach space. We consider the simple case of diagonal
operators acting on the Hilbert space �2 = �2(N) of all square summable
sequences of complex numbers. Fix a sequence of positive numbers a1, a2, . . .
satisfying 0 < ε ≤ an ≤ M < ∞ and consider the operator A defined on �2

by

(1.4) (Ax)n = anxn, n = 1, 2, . . . , x ∈ �2.

(1) Show that A is a bounded operator on �2, and exhibit a bounded
operator B on �2 such that AB = BA = 1 where 1 is the identity
operator.

One would like to have a notion of determinant with at least these
two properties: D(1) = 1 and D(ST ) = D(S)D(T ) for operators
S, T on �2. It follows that such a “determinant” will satisfy D(A) �=
0 for the operators A of (1.4). It is also reasonable to expect that
for these operators we should have

(1.5) D(A) = lim
n→∞ a1a2 · · · an.

(2) Let a1, a2, . . . be a bounded monotone increasing sequence of posi-
tive numbers and let Dn = a1a2 · · · an. Show that the sequence Dn
converges to a nonzero limit D(A) iff

∞∑
n=1

(1− an) <∞.

Thus, this attempt to define a reasonable notion of determinant
fails, even for invertible diagonal operators of the form (1.4) with
sequences such as an = n/(n+1), n = 1, 2, . . . . On the other hand,
it is possible to develop a determinant theory for certain invertible
operators, namely operators A = 1+ T , where T is a “trace-class”
operator; for diagonal operators defined by a sequence as in (1.4)
this requirement is that

∞∑
n=1

|1− an| <∞.
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The following exercises relate to Volterra operators on the Banach
space C[0, 1] of continuous complex-valued functions f on the unit
interval, with sup norm

‖f‖ = sup
0≤x≤1

|f(x)|.

Exercise (3) implies that Volterra operators are bounded, and the
result of Exercise (5) implies that they are in fact compact opera-
tors.

(3) Let k(x, y) be a Volterra kernel as in Example (1.1.4), and let f ∈
C[0, 1]. Show that the function g defined on the unit interval by
equation (1.3) is continuous, and that the linear map K : f → g
defines a bounded operator on C[0, 1].

(4) For the kernel k(x, y) = 1 for 0 ≤ y ≤ x ≤ 1 consider the corre-
sponding Volterra operator V : C[0, 1]→ C[0, 1], namely

V f(x) =
∫ x

0
f(y) dy, f ∈ C[0, 1].

Given a function g ∈ C[0, 1], show that the equation V f = g has a
solution f ∈ C[0, 1] iff g is continuously differentiable and g(0) = 0.

(5) Let k(x, y), 0 ≤ x, y ≤ 1, be a continuous function defined on
the unit square, and consider the bounded operator K defined on
C[0, 1] by

Kf(x) =
∫ 1

0
k(x, y)f(y) dy, 0 ≤ x ≤ 1.

Let B1 = {f ∈ C[0, 1] : ‖f‖ ≤ 1} be the closed unit ball in C[0, 1].
Show that K is a compact operator in the sense that the norm
closure of the image KB1 of B1 under K is a compact subset of
C[0, 1]. Hint: Show that there is a positive constant M such that
for every g ∈ KB1 and every x, y ∈ [0, 1] we have |g(x) − g(y)| ≤
M · |x− y|.

1.2. The Spectrum of an Operator

Throughout this section, E will denote a complex Banach space. By an
operator on E we mean a bounded linear transformation T : E → E; B(E)
will denote the space of all operators on E. B(E) is itself a complex Banach
space with respect to the operator norm. We may compose two operators
A,B ∈ B(E) to obtain an operator product AB ∈ B(E), and this defines
an associative multiplication satisfying both distributive laws A(B + C) =
AB+AC and (A+B)C = AB+BC. We write 1 for the identity operator.

Theorem 1.2.1. For every A ∈ B(E), the following are equivalent.
(1) For every y ∈ E there is a unique x ∈ E such that Ax = y.
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(2) There is an operator B ∈ B(E) such that AB = BA = 1.

Proof. We prove the nontrivial implication (1) =⇒ (2). The hypothesis
(1) implies that A is invertible as a linear transformation on the vector space
E, and we may consider its inverse B : E → E. As a subset of E ⊕ E, the
graph of B is related to the graph of A as follows:

Γ(B) = {(x,Bx) : x ∈ E} = {(Ay, y) : y ∈ E}.
The space on the right is closed in E⊕E because A is continuous. Hence the
graph of B is closed, and the closed graph theorem implies B ∈ B(E). �

Definition 1.2.2. Let A ∈ B(E).
(1) A is said to be invertible if there is an operator B ∈ B(E) such that

AB = BA = 1.
(2) The spectrum σ(A) of A is the set of all complex numbers λ for

which A− λ1 is not invertible.
(3) The resolvent set ρ(A) of A is the complement ρ(A) = C \ σ(A).
In Examples (1.1.2)–(1.1.4) of the previous section, we were presented

with an operator, and various assertions were made about its spectrum. For
example, in order to determine whether a given operator A is invertible,
one has exactly the problem of determining whether or not 0 ∈ σ(A). The
spectrum is the most important invariant attached to an operator.

Remark 1.2.3. Remarks on operator spectra. We have defined the spec-
trum of an operator T ∈ B(E), but it is often useful to have more precise
information about various points of σ(T ). For example, suppose there is a
nonzero vector x ∈ E for which Tx = λx for some complex number λ. In
this case, λ is called an eigenvalue (with associated eigenvector x). Obvi-
ously, T −λ1 is not invertible, so that λ ∈ σ(T ). The set of all eigenvalues of
T is a subset of σ(T ) called the point spectrum of T (and is written σp(T )).
When E is finite dimensional σ(T ) = σp(T ), but that is not so in general.
Indeed, many of the natural operators of analysis have no point spectrum
at all.

Another type of spectral point occurs when T − λ is one-to-one but not
onto. This can happen in two ways: Either the range of T−λ is not closed in
E, or it is closed but not all of E. Terminology has been invented to classify
such behavior (compression spectrum, residual spectrum), but we will not
use it, since it is better to look at a good example. Consider the Volterra
operator V acting on C[0, 1] as follows:

V f(x) =
∫ x

0
f(t) dt, 0 ≤ x ≤ 1.

This operator is not invertible; in fact, we will see later that its spectrum is
exactly {0}. On the other hand, one may easily check that V is one-to-one.
The result of Exercise (4) in section 1 implies that its range is not closed
and the closure of its range is a subspace of codimension one in C[0, 1].
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Exercises.
(1) Give explicit examples of bounded operators A, B on �2(N) such

that AB = 1 and BA is the projection onto a closed infinite-
dimensional subspace of infinite codimension.

(2) Let A and B be the operators defined on �2(N) by

A(x1, x2, . . . ) = (0, x1, x2, . . . ),

B(x1, x2, . . . ) = (x2, x3, x4, . . . ),

for x = (x1, x2, . . . ) ∈ �2(N). Show that ‖A‖ = ‖B‖ = 1, and
compute both BA and AB. Deduce that A is injective but not
surjective, B is surjective but not injective, and that σ(AB) �=
σ(BA).

(3) Let E be a Banach space and let A and B be bounded operators
on E. Show that 1 − AB is invertible if and only if 1 − BA is
invertible. Hint: Think about how to relate the formal Neumann
series for (1−AB)−1,

(1−AB)−1 = 1+AB + (AB)2 + (AB)3 + . . . ,

to that for (1−BA)−1 and turn your idea into a rigorous proof.

(4) Use the result of the preceding exercise to show that for any two
bounded operators A,B acting on a Banach space, σ(AB) and
σ(BA) agree except perhaps for 0: σ(AB) \ {0} = σ(BA) \ {0}.

1.3. Banach Algebras: Examples

We have pointed out that spectral theory is useful when the underlying field
of scalars is the complex numbers, and in the sequel this will always be the
case.

Definition 1.3.1 (Complex algebra). By an algebra over C we mean
a complex vector space A together with a binary operation representing
multiplication x, y ∈ A �→ xy ∈ A satisfying

(1) Bilinearity: For α, β ∈ C and x, y, z ∈ A we have

(α · x+ β · y)z = α · xz + β · yz,
x(α · y + β · z) = α · xy + β · xz.

(2) Associativity: x(yz) = (xy)z.

A complex algebra may or may not have a multiplicative identity. As a
rather extreme example of one that does not, let A be any complex vector
space and define multiplication in A by xy = 0 for all x, y. When an algebra
does have an identity then it is uniquely determined, and we denote it by
1. The identity is also called the unit, and an algebra with unit is called a
unital algebra. A commutative algebra is one in which xy = yx for every
x, y.
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Definition 1.3.2 (Normed algebras, Banach algebras). A normed al-
gebra is a pair A, ‖ · ‖ consisting of an algebra A together with a norm
‖ · ‖ : A→ [0,∞) which is related to the multiplication as follows:

‖xy‖ ≤ ‖x‖ · ‖y‖, x, y ∈ A.

A Banach algebra is a normed algebra that is a (complete) Banach space
relative to its given norm.

Remark 1.3.3. We recall a useful criterion for completeness: A normed
linear space E is a Banach space iff every absolutely convergent series con-
verges. More explicitly, E is complete iff for every sequence of elements
xn ∈ E satisfying

∑
n ‖xn‖ <∞, there is an element y ∈ E such that

lim
n→∞ ‖y − (x1 + · · ·+ xn)‖ = 0;

see Exercise (1) below.

The following examples of Banach algebras illustrate the diversity of the
concept.

Example 1.3.4. Let E be any Banach space and let A be the algebra
B(E) of all bounded operators on E, x · y denoting the operator product.
This is a unital Banach algebra in which the identity satisfies ‖1‖ = 1. It is
complete because E is complete.

Example 1.3.5. C(X). Let X be a compact Hausdorff space and
consider the unital algebra C(X) of all complex valued continuous func-
tions defined on X, the multiplication and addition being defined pointwise,
fg(x) = f(x)g(x), (f+g)(x) = f(x)+g(x). Relative to the sup norm, C(X)
becomes a commutative Banach algebra with unit.

Example 1.3.6. The disk algebra. Let D = {z ∈ C : |z| ≤ 1} be
the closed unit disk in the complex plane and let A denote the subspace of
C(D) consisting of all complex functions f whose restrictions to the interior
{z : |z| < 1} are analytic. A is obviously a unital subalgebra of C(D). To
see that it is closed (and therefore a commutative Banach algebra in its own
right) notice that if fn is any sequence in A that converges to f in the norm
of C(D), then the restriction of f to the interior of D is the uniform limit
on compact sets of the restrictions fn and hence is analytic there.

This example is the simplest nontrivial example of a function algebra.
Function algebras are subalgebras of C(X) that exhibit nontrivial aspects
of analyticity. They underwent spirited development during the 1960s and
1970s but have now fallen out of favor, due partly to the development of
better technology for the theory of several complex variables.

Example 1.3.7. �1(Z). Consider the Banach space �1(Z) of all doubly
infinite sequences of complex numbers x = (xn) with norm

‖x‖ =
∞∑

n=−∞
|xn|.
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Multiplication in A = �1(Z) is defined by convolution:

(x ∗ y)n =
∞∑

k=−∞
xkyn−k, x, y ∈ A.

This is another example of a commutative unital Banach algebra, one that
is rather different from any of the previous examples. It is called the Wiener
algebra (after Norbert Wiener), and plays an important role in many ques-
tions involving Fourier series and harmonic analysis. It is discussed in more
detail in Section 1.10.

Example 1.3.8. L1(R). Consider the Banach space L1(R) of all inte-
grable functions on the real line, where as usual we identify functions that
agree almost everywhere. The multiplication here is defined by convolution:

f ∗ g(x) =
∫ ∞

−∞
f(t)g(x− t) dt, f, g ∈ L1(R),

and for this example, it is somewhat more delicate to check that all the
axioms for a commutative Banach algebra are satisfied. For example, by
Fubini’s theorem we have∫ ∞

−∞

(∫ ∞

−∞
|f(t)||g(x− t)| dt

)
dx =

∫
R2
|f(t)||g(x− t)| dx dt = ‖f‖ · ‖g‖,

and from the latter, one readily deduces that ‖f ∗ g‖ ≤ ‖f‖ · ‖g‖.
Notice that this Banach algebra has no unit. However, it has a nor-

malized approximate unit in the sense that there is a sequence of functions
en ∈ L1(R) satisfying ‖en‖ = 1 for all n with the property

lim
n→∞ ‖en ∗ f − f‖ = lim

n→∞ ‖f ∗ en − f‖ = 0, f ∈ L1(R).

One obtains such a sequence by taking en to be any nonnegative function
supported in the interval [−1/n, 1/n] that has integral 1 (see the exercises
at the end of the section).

Helson’s book [15] is an excellent reference for harmonic analysis on R

and Z.

Example 1.3.9. An extremely nonunital one. Banach algebras may not
have even approximate units in general. More generally, a Banach algebra A
need not be the closed linear span of the set A2 = {xy : x, y ∈ A} of all of its
products. As an extreme example of this misbehavior, let A be any Banach
space and make it into a Banach algebra using the trivial multiplication
xy = 0, x, y ∈ A.

Example 1.3.10. Matrix algebras. The algebra Mn = Mn(C) of all
complex n× n matrices is a unital algebra, and there are many norms that
make it into a finite-dimensional Banach algebra. For example, with respect
to the norm

‖(aij)‖ =
n∑

i,j=1

|aij |,
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Mn becomes a Banach algebra in which the identity has norm n. Other
Banach algebra norms on Mn arise as in Example 1.3.4, by realizing Mn as
B(E) where E is an n-dimensional Banach space. For these norms on Mn,
the identity has norm 1.

Example 1.3.11. Noncommutative group algebras. Let G be a locally
compact group. More precisely, G is a group as well as a topological space,
endowed with a locally compact Hausdorff topology that is compatible with
the group operations in that the maps (x, y) ∈ G×G �→ xy ∈ G and x �→ x−1

are continuous.
A simple example is the “ax+b” group, the group generated by dilations

and translations of the real line. This group is isomorphic to the group of all
2× 2 matrices of the form

(
a b
0 1/a

)
where a, b ∈ R, a > 0, with the obvious

topology. A related class of examples consists of the groups SL(n,R) of all
invertible n× n matrices of real numbers having determinant 1.

In order to define the group algebra of G we have to say a few words
about Haar measure. Let B denote the sigma algebra generated by the
topology of G (sets in B are called Borel sets). A Radon measure is a Borel
measure µ : B → [0,+∞] having the following two additional properties:

(1) (Local finiteness) µ(K) is finite for every compact set K.
(2) (Regularity) For every E ∈ B, we have

µ(E) = sup{µ(K) : K ⊆ E,K is compact}.
A discussion of Radon measures can be found in [3]. The fundamental

result of A. Haar asserts essentially the following:

Theorem 1.3.12. For any locally compact group G there is a nonzero
Radon measure µ on G that is invariant under left translations in the sense
that µ(x ·E) = µ(E) for every Borel set E and every x ∈ G. If ν is another
such measure, then there is a positive constant c such that ν(E) = c · µ(E)
for every Borel set E.

See Hewitt and Ross [16] for the computation of Haar measure for spe-
cific examples such as the ax+ b group and the groups SL(n,R). A proof of
the existence of Haar measure can be found in Loomis [17] or Hewitt and
Ross [16].

We will write dx for dµ(x), where µ is a left Haar measure on a locally
compact groupG. The group algebra ofG is the space L1(G) of all integrable
functions f : G→ C with norm

‖f‖ =
∫
G
|f(x)| dx,

and multiplication is defined by convolution:

f ∗ g(x) =
∫
G
f(t)g(t−1x) dt, x ∈ G.
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The basic facts about the group algebra L1(G) are similar to the commuta-
tive cases L1(Z) and L1(R)) we have already encountered:

(1) For f, g ∈ L1(G), f ∗ g ∈ L1(G) and we have ‖f ∗ g‖ ≤ ‖f‖ · ‖g‖.
(2) L1(G) is a Banach algebra.
(3) L1(G) is commutative iff G is a commutative group.
(4) L1(G) has a unit iff G is a discrete group.

Many significant properties of groups are reflected in their group algebra, (3)
and (4) being the simplest examples of this phenomenon. Group algebras are
the subject of continuing research today, and are of fundamental importance
in many fields of mathematics.

Exercises.
(1) Let E be a normed linear space. Show that E is a Banach space

iff for every sequence of elements xn ∈ X satisfying
∑
n ‖xn‖ <∞,

there is an element y ∈ X such that

lim
n→∞ ‖y − (x1 + · · ·+ xn)‖ = 0.

(2) Prove that the convolution algebra L1(R) does not have an identity.
(3) For every n = 1, 2, . . . let φn be a nonnegative function in L1(R)

such that φn vanishes outside the interval [−1/n, 1/n] and∫ ∞

−∞
φn(t) dt = 1.

Show that φ1, φ2, . . . is an approximate identity for the convolution
algebra L1(R) in the sense that

lim
n→∞ ‖f ∗ φn − f‖1 = 0

for every f ∈ L1(R).
(4) Let f ∈ L1(R). The Fourier transform of f is defined as follows:

f̂(ξ) =
∫ ∞

−∞
eitξf(t) dt, ξ ∈ R.

Show that f̂ belongs to the algebra C∞(R) of all continuous func-
tions on R that vanish at ∞.

(5) Show that the Fourier transform is a homomorphism of the convo-
lution algebra L1(R) onto a subalgebra A of C∞(R) which is closed
under complex conjugation and separates points of R.

1.4. The Regular Representation

Let A be a Banach algebra. Notice first that multiplication is jointly con-
tinuous in the sense that for any x0, y0 ∈ A,

lim
(x,y)→(x0,y0)

‖xy − x0y0‖ = 0.
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Indeed, this is rather obvious from the estimate

‖xy − x0y0‖ = ‖(x− x0)y + x0(y − y0)‖ ≤ ‖x− x0‖‖y‖+ ‖x0‖‖y − y0‖.
We now show how more general structures lead to Banach algebras, after

they are renormed with an equivalent norm. Let A be a complex algebra,
which is also a Banach space relative to some given norm, in such a way
that multiplication is separately continuous in the sense that for each x0 ∈ A
there is a constant M (depending on x0) such that for every x ∈ A we have

(1.6) ‖xx0‖ ≤M · ‖x‖ and ‖x0x‖ ≤M · ‖x‖.
Lemma 1.4.1. Under the conditions (1.6), there is a constant c > 0 such

that
‖xy‖ ≤ c · ‖x‖‖y‖, x, y ∈ A.

Proof. For every x ∈ A define a linear transformation Lx : A → A
by Lx(z) = xz. By the second inequality of (1.6), ‖Lx‖ must be bounded.
Consider the family of all operators {Lx : ‖x‖ ≤ 1}. This is is a set of
bounded operators on A which, by the first inequality of (1.6), is pointwise
bounded:

sup
‖x‖≤1

‖Lx(z)‖ <∞, for all z ∈ A.

The Banach–Steinhaus theorem implies that this family of operators is uni-
formly bounded in norm, and the existence of c follows. �

Notice that the proof uses the completeness of A in an essential way.
We now show that if A also contains a unit e, it can be renormed with an
equivalent norm so as to make it into a Banach algebra in which the unit
has the “correct” norm ‖e‖ = 1.

Theorem 1.4.2. Let A be a complex algebra with unit e that is also a
Banach space with respect to which multiplication is separately continuous.
Then the map x ∈ A �→ Lx ∈ B(A) defines an isomorphism of the algebraic
structure of A onto a closed subalgebra of B(A) such that

(1) Le = 1.
(2) For every x ∈ A, we have

‖e‖−1‖x‖ ≤ ‖Lx‖ ≤ c‖e‖‖x‖,
where c is a positive constant.

In particular, ‖x‖1 = ‖Lx‖ defines an equivalent norm on A that is a Banach
algebra norm for which ‖e‖1 = 1.

Proof. The map x �→ Lx is clearly a homomorphism of algebras for
which Le = 1. By Lemma 1.4.1, we have

‖Lxy‖ = ‖xy‖ ≤ c · ‖x‖‖y‖,
and hence ‖Lx‖ ≤ c‖x‖. Writing

‖Lx‖ ≥ ‖Lx(e/‖e‖)‖ = ‖x‖
‖e‖ ,
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we see that ‖Lx‖ ≥ ‖x‖/‖e‖, establishing the inequality of (2).
Since the operator norm ‖x‖1 = ‖Lx‖ is equivalent to the norm on A

and since A is complete, it follows that {Lx : x ∈ A} is a complete, and
therefore closed, subalgebra of B(A). The remaining assertions follow. �

The map x ∈ A �→ Lx ∈ B(A) is called the left regular representation, or
simply the regular representation of A. We emphasize that if A is a nonunital
Banach algebra, then the regular representation need not be one-to-one.
Indeed, for the Banach algebras of Example 1.3.9, the regular representation
is the zero map.

Exercises. Let E and F be normed linear spaces and let B(E,F ) denote
the normed vector space of all bounded linear operators from E to F , with
norm

‖A‖ = sup{‖Ax‖ : x ∈ E, ‖x‖ ≤ 1}.
We write B(E) for the algebra B(E,E) of all bounded operators on a normed
linear space E. An operator A ∈ B(E) is called compact if the norm-closure
of {Ax : ‖x‖ ≤ 1}, the image of the unit ball under A, is a compact subset
of E. Since compact subsets of E must be norm-bounded, it follows that
compact operators are bounded.

(1) Let E and F be normed linear spaces with E �= {0}. Show that
B(E,F ) is a Banach space iff F is a Banach space.

(2) The rank of an operator A ∈ B(E) is the dimension of the vector
space AE. Let A ∈ B(E) be an operator with the property that
there is a sequence of finite-rank operators A1, A2, . . . such that
‖A−An‖ → 0 as n→∞. Show that A is a compact operator.

(3) Let a1, a2, . . . be a bounded sequence of complex numbers and let
A be the corresponding diagonal operator on the Hilbert space
�2 = �2(N),

Af(n) = anf(n), n = 1, 2, . . . , f ∈ �2.

Show that A is compact iff limn→∞ an = 0.
Let k be a continuous complex-valued function defined on the

unit square [0, 1] × [0, 1]. A simple argument shows that for every
f ∈ C[0, 1] the function Af defined on [0, 1] by

(1.7) Af(x) =
∫ 1

0
k(x, y)f(y) dy, 0 ≤ x ≤ 1,

is continuous (you may assume this in the following two exercises).

(4) Show that the operator A of (1.7) is bounded and its norm satisfies
‖A‖ ≤ ‖k‖∞, ‖ · ‖∞ denoting the sup norm in C([0, 1]× [0, 1]).

(5) Show that for the operator A of (1.7), there is a sequence of finite-
rank operators An, n = 1, 2, . . . , such that ‖A−An‖ → 0 as n→∞
and deduce that A is compact. Hint: Start by looking at the case
k(x, y) = u(x)v(y) with u, v ∈ C[0, 1].
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1.5. The General Linear Group of A

Let A be a Banach algebra with unit 1, which, by the results of the previous
section, we may assume satisfies ‖1‖ = 1 after renorming A appropriately.
An element x ∈ A is said to be invertible if there is an element y ∈ A such
that xy = yx = 1.

Remark 1.5.1. If x is an element of A that is both left and right in-
vertible in the sense that there are elements y1, y2 ∈ A with xy1 = y2x = 1,
then x is invertible. Indeed, that is apparent from the string of identities

y2 = y2 · 1 = y2xy1 = 1 · y1 = y1.

We will write A−1 (and occasionally GL(A)) for the set of all invert-
ible elements of A. It is quite obvious that A−1 is a group; this group is
sometimes called the general linear group of the unital Banach algebra A.

Theorem 1.5.2. If x is an element of A satisfying ‖x‖ < 1, then 1− x
is invertible, and its inverse is given by the absolutely convergent Neumann
series (1−x)−1 = 1+x+x2+. . . . Moreover, we have the following estimates:

(1.8) ‖(1− x)−1‖ ≤ 1
1− ‖x‖ ,

(1.9) ‖1− (1− x)−1‖ ≤ ‖x‖
1− ‖x‖ .

Proof. Since ‖xn‖ ≤ ‖x‖n for every n = 1, 2, . . . , we can define an
element z ∈ A as the sum of the absolutely convergent series

z =
∞∑
n=0

xn.

We have

z(1− x) = (1− x)z = lim
N→∞

(1− x)
N∑
k=1

xk = lim
N→∞

(1− xN+1) = 1;

hence 1 − x is invertible and its inverse is z. The inequality (1.8) follows
from

‖z‖ ≤
∞∑
n=0

‖xn‖ ≤
∞∑
n=0

‖x‖n = 1
1− ‖x‖ .

Since

1− z = −
∞∑
n=1

xn = −xz,

we have ‖1− z‖ ≤ ‖x‖ · ‖z‖, thus (1.9) follows from (1.8). �
Corollary 1. A−1 is an open set in A and x �→ x−1 is a continuous

map of A−1 to itself.
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Proof. To see that A−1 is open, choose an invertible element x0 and an
arbitrary element h ∈ A. We have x0 + h = x0(1+ x−1

0 h). So if ‖x−1
0 h‖ < 1

then by the preceding theorem x0 + h is invertible. In particular, if ‖h‖ <
‖x−1

0 ‖−1, then this condition is satisfied, proving that x0 + h is invertible
when ‖h‖ is sufficiently small.

Supposing that h has been so chosen, we can write

(x0 + h)−1 − x−1
0 = (x0(1+ x−1

0 h))−1 − x−1
0 = [(1+ x−1

0 h)−1 − 1] · x−1
0 .

Thus for ‖h‖ < ‖x−1
0 ‖−1 we have

‖(x0 + h)−1 − x−1
0 ‖ ≤ ‖(1+ x−1

0 h)−1 − 1‖ · ‖x−1
0 ‖ ≤ ‖x

−1
0 h‖ · ‖x−1

0 ‖
1− ‖x−1

0 h‖ ,

and the last term obviously tends to zero as ‖h‖ → 0. �

Corollary 2. A−1 is a topological group in its relative norm topology;
that is,

(1) (x, y) ∈ A−1 ×A−1 �→ xy ∈ A−1 is continuous, and
(2) x ∈ A−1 �→ x−1 ∈ A−1 is continuous.

Exercises. Let A be a Banach algebra with unit 1 satisfying ‖1‖ = 1,
and let G be the topological group A−1.

(1) Show that for every element x ∈ A satisfying ‖x‖ < 1, there is a
continuous function f : [0, 1] → G such that f(0) = 1 and f(1) =
(1− x)−1.

(2) Show that for every element x ∈ G there is an ε > 0 with the
following property: For every element y ∈ G satisfying ‖y− x‖ < ε
there is an arc in G connecting y to x.

(3) Let G0 be the set of all finite products of elements of G of the form
1 − x or (1 − x)−1, where x ∈ A satisfies ‖x‖ < 1. Show that G0
is the connected component of 1 in G. Hint: An open subgroup of
G must also be closed.

(4) Deduce that G0 is a normal subgroup of G and that the quotient
topology on G/G0 makes it into a discrete group.

The group Γ = G/G0 is sometimes called the abstract index group of
A. It is frequently (but not always) commutative even when G is not, and
it is closely related to the K-theoretic group K1(A). In fact, K1(A) is in a
certain sense an “abelianized” version of Γ.

We have not yet discussed the exponential map x ∈ A �→ ex ∈ A−1 of a
Banach algebra A (see equation (2.2) below), but we should point out here
that the connected component of the identity G0 is also characterized as the
set of all finite products of exponentials ex1ex2 · · · exn , x1, x2, . . . , xn ∈ A,
n = 1, 2, . . . . When A is a commutative Banach algebra, this implies that
G0 = {ex : x ∈ A} is the range of the exponential map.
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1.6. Spectrum of an Element of a Banach Algebra

Throughout this section, A will denote a unital Banach algebra for which
‖1‖ = 1. One should keep in mind the operator-theoretic setting, in which
A is the algebra B(E) of bounded operators on a complex Banach space E.

Given an element x ∈ A and a complex number λ, it is convenient to
abuse notation somewhat by writing x− λ for x− λ1.

Definition 1.6.1. For every element x ∈ A, the spectrum of x is defined
as the set

σ(x) = {λ ∈ C : x− λ /∈ A−1}.
We will develop the basic properties of the spectrum, the first being that

it is always compact.

Proposition 1.6.2. For every x ∈ A, σ(x) is a closed subset of the disk
{z ∈ C : |z| ≤ ‖x‖}.

Proof. The complement of the spectrum is given by

C \ σ(x) = {λ ∈ C : x− λ ∈ A−1}.
Since A−1 is open and the map λ ∈ C �→ x − λ ∈ A is continuous, the
complement of σ(x) must be open.

To prove the second assertion, we will show that no complex number λ
with |λ| > ‖x‖ can belong to σ(x). Indeed, for such a λ the formula

x− λ = (−λ)(1− λ−1x),

together with the fact that ‖λ−1x‖ < 1, implies that x− λ is invertible. �
We now prove a fundamental result of Gelfand.

Theorem 1.6.3. σ(x) �= ∅ for every x ∈ A.

Proof. The idea is to show that if σ(x) = ∅, the A-valued function
f(λ) = (x−λ)−1 is a bounded entire function that tends to zero as λ→∞;
an appeal to Liouville’s theorem yields the desired conclusion. The details
are as follows.

For every λ0 /∈ σ(x), (x−λ)−1 is defined for all λ sufficiently close to λ0
because σ(x) is closed, and we claim that

(1.10) lim
λ→λ0

1
λ− λ0

[(x− λ)−1 − (x− λ0)−1] = (x− λ0)−2

in the norm topology of A. Indeed, we can write

(x− λ)−1 − (x− λ0)−1 = (x− λ)−1[(x− λ0)− (x− λ)](x− λ0)−1

= (λ− λ0)(x− λ)−1(x− λ0)−1.

Divide by λ− λ0, and use the fact that (x− λ)−1 → (x− λ0)−1 as λ→ λ0
to obtain (1.10).
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Contrapositively, assume that σ(x) is empty, and choose an arbitrary
bounded linear functional ρ on A. The scalar-valued function

f(λ) = ρ((x− λ)−1)

is defined everywhere in C, and it is clear from (1.10) that f has a complex
derivative everywhere satisfying f ′(λ) = ρ((x − λ)−2). Thus f is an entire
function.

Notice that f is bounded. To see this we need to estimate ‖(x− λ)−1‖
for large λ. Indeed, if |λ| > ‖x‖, then

‖(x− λ)−1‖ = 1
|λ|‖(1− λ−1x)−1‖.

The estimates of Theorem 1.5.2 therefore imply that

‖(x− λ)−1‖ ≤ 1
|λ|(1− ‖x‖/|λ|) =

1
|λ| − ‖x‖ ,

and the right side clearly tends to zero as |λ| → ∞. Thus the function
λ �→ ‖(x − λ)−1‖ vanishes at infinity. It follows that f is a bounded entire
function, which, by Liouville’s theorem, must be constant. The constant
value is 0 because f vanishes at infinity.

We conclude that ρ((x− λ)−1) = 0 for every λ ∈ C and every bounded
linear functional ρ. The Hahn–Banach theorem implies that (x− λ)−1 = 0
for every λ ∈ C. But this is absurd because (x − λ)−1 is invertible (and
1 �= 0 in A). �

The following application illustrates the power of this result.

Definition 1.6.4. A division algebra (over C) is a complex associative
algebra A with unit 1 such that every nonzero element in A is invertible.

Definition 1.6.5. An isomorphism of Banach algebras A and B is an
isomorphism θ : A→ B of the underlying algebraic structures that is also a
topological isomorphism; thus there are positive constants a, b such that

a‖x‖ ≤ ‖θ(x)‖ ≤ b‖x‖
for every element x ∈ A.

Corollary 1. Any Banach division algebra is isomorphic to the one-
dimensional algebra C.

Proof. Define θ : C → A by θ(λ) = λ1. θ is clearly an isomorphism of
C onto the Banach subalgebra C1 of A consisting of all scalar multiples of
the identity, and it suffices to show that θ is onto A. But for any element
x ∈ A Gelfand’s theorem implies that there is a complex number λ ∈ σ(x).
Thus x− λ is not invertible. Since A is a division algebra, x− λ must be 0,
hence x = θ(λ), as asserted. �
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There are many division algebras in mathematics, especially commu-
tative ones. For example, there is the algebra of all rational functions
r(z) = p(z)/q(z) of one complex variable, where p and q are polynomials
with q �= 0, or the algebra of all formal Laurent series of the form

∑∞
−∞ anz

n,
where (an) is a doubly infinite sequence of complex numbers with an = 0
for sufficiently large negative n. It is significant that examples such as these
cannot be endowed with a norm that makes them into a Banach algebra.

Exercises.
(1) Give an example of a one-dimensional Banach algebra that is not

isomorphic to the algebra of complex numbers.
(2) Let X be a compact Hausdorff space and let A = C(X) be the

Banach algebra of all complex-valued continuous functions on X.
Show that for every f ∈ C(X), σ(f) = f(X).

(3) Let T be the operator defined on L2[0, 1] by Tf(x) = xf(x), x ∈
[0, 1]. What is the spectrum of T? Does T have point spectrum?

For the remaining exercises, let (an : n = 1, 2, . . . ) be a bounded
sequence of complex numbers and let H be a complex Hilbert space
having an orthonormal basis e1, e2, . . . .

(4) Show that there is a (necessarily unique) bounded operator A ∈
B(H) satisfying Aen = anen+1 for every n = 1, 2, . . . . Such an op-
erator A is called a unilateral weighted shift (with weight sequence
(an)).

A unitary operator on a Hilbert space H is an invertible isometry
U ∈ B(H).

(5) Let A ∈ B(H) be a weighted shift as above. Show that for every
complex number λ with |λ| = 1 there is a unitary operator U =
Uλ ∈ B(H) such that UAU−1 = λA.

(6) Deduce that the spectrum of a weighted shift must be the union of
(possibly degenerate) concentric circles about z = 0.

(7) Let A be the weighted shift associated with a sequence (an) ∈ �∞.
(a) Calculate ‖A‖ in terms of (an).
(b) Assuming that an → 0 as n→∞, show that

lim
n→∞ ‖A

n‖1/n = 0.

1.7. Spectral Radius

Throughout this section, A denotes a unital Banach algebra with ‖1‖ = 1.
We introduce the concept of spectral radius and prove a useful asymptotic
formula due to Gelfand, Mazur, and Beurling.

Definition 1.7.1. For every x ∈ A the spectral radius of x is defined
by

r(x) = sup{|λ| : λ ∈ σ(x)}.
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Remark 1.7.2. Since the spectrum of x is contained in the central disk
of radius ‖x‖, it follows that r(x) ≤ ‖x‖. Notice too that for every λ ∈ C

we have r(λx) = |λ|r(x).
We require the following rudimentary form of the spectral mapping the-

orem. If x is an element of A and f is a polynomial, then

(1.11) f(σ(x)) ⊆ σ(f(x)).

To see why this is so, fix λ ∈ σ(x)). Since z �→ f(z)− f(λ) is a polynomial
having a zero at z = λ, there a polynomial g such that

f(z)− f(λ) = (z − λ)g(z).

Thus
f(x)− f(λ)1 = (x− λ)g(x) = g(x)(x− λ)

cannot be invertible: A right (respectively left) inverse of f(x)−f(λ)1 gives
rise to a right (respectively left) inverse of x− λ. Hence f(λ) ∈ σ(f(x)).

As a final observation, we note that for every x ∈ A one has

(1.12) r(x) ≤ inf
n≥1

‖xn‖1/n.

Indeed, for every λ ∈ σ(x) (1.11) implies that λn ∈ σ(xn); hence

|λ|n = |λn| ≤ r(xn) ≤ ‖xn‖,
and (1.12) follows after one takes nth roots.

The following formula is normally attributed to Gelfand and Mazur,
although special cases were discovered independently by Beurling.

Theorem 1.7.3. For every x ∈ A we have

lim
n→∞ ‖x

n‖1/n = r(x).

The assertion here is that the limit exists in general, and has r(x) as its
value.

Proof. From (1.12) we have r(x) ≤ lim infn ‖xn‖1/n, so it suffices to
prove that

(1.13) lim sup
n→∞

‖xn‖1/n ≤ r(x).

We need only consider the case x �= 0. To prove (1.13) choose λ ∈ C

satisfying |λ| < 1/r(x) (when r(x) = 0, λ may be chosen arbitrarily). We
claim that the sequence {(λx)n : n = 1, 2, . . . } is bounded.

Indeed, by the Banach–Steinhaus theorem it suffices to show that for
every bounded linear functional ρ on A we have

|ρ(xn)λn| = |ρ((λx)n)| ≤Mρ <∞, n = 1, 2, . . . ,

where Mρ perhaps depends on ρ. To that end, consider the complex-valued
function f defined on the (perhaps infinite) disk {z ∈ C : |z| < 1/r(x)} by

f(z) = ρ
(
(1− zx)−1) .
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Note first that f is analytic. Indeed, for |z| < 1/‖x‖ we may expand (1 −
zx)−1 into a convergent series 1+ zx+ (zx)2 + · · · to obtain a power series
representation for f :

(1.14) f(z) =
∞∑
n=0

ρ(xn)zn.

On the other hand, in the larger region R = {z : 0 < |z| < 1/r(x)} we can
write

f(z) =
1
z
ρ
(
(z−11− x)−1) ,

and from formula (1.10) it is clear that f is analytic on R. Taken with
(1.14), this implies that f is analytic on the disk {z : |z| < 1/r(x)}.

On the smaller disk {z : |z| < 1/‖x‖}, (1.14) gives a power series repre-
sentation for f ; but since f is analytic on the larger disk {z : |z| < 1/r(x)}, it
follows that the same series (1.14) must converge to f(z) for all |z| < 1/r(x).
Thus we are free to take z = λ in (1.14), and the resulting series converges.
It follows that ρ(xn)λn is a bounded sequence, proving the claim.

Now choose any complex number λ satisfying 0 < |λ| < 1/r(x). By the
claim, there is a constant M = Mλ such that |λ|n‖x‖n = ‖λx‖n ≤ M for
every n = 1, 2, . . . . after taking nth roots, we find that

lim sup
n→∞

‖xn‖1/n ≤ lim sup
n→∞

M1/n

|λ| =
1
|λ| .

By allowing |λ| to increase to 1/r(x) we obtain (1.13). �
Definition 1.7.4. An element x of a Banach algebra A (with or without

unit) is called quasinilpotent if

lim
n→∞ ‖x

n‖1/n = 0.

Significantly, quasinilpotence is characterized quite simply in spectral
terms.

Corollary 1. An element x of a unital Banach algebra A is quasinilpo-
tent iff σ(x) = {0}.

Proof. x is quasinilpotent ⇐⇒ r(x) = 0 ⇐⇒ σ(x) = {0}. �
Exercises.
(1) Let a1, a2, . . . be a sequence of complex numbers such that an → 0

as n→∞. Show that the associated weighted shift operator on �2

(see the Exercises of Section 1.6) has spectrum {0}.
(2) Consider the simplex ∆n ⊂ [0, 1]n defined by

∆n = {(x1, . . . , xn) ∈ [0, 1]n : x1 ≤ x2 ≤ · · · ≤ xn}.
Show that the volume of ∆n is 1/n!. Give a decent proof here: For
example, you might consider the natural action of the permutation
group Sn on the cube [0, 1]n and think about how permutations act
on ∆n.
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(3) Let k(x, y) be a Volterra kernel as in Example 1.1.4, and letK be its
corresponding integral operator on the Banach space C[0, 1]. Esti-
mate the norms ‖Kn‖ by showing that there is a positive constant
M such that for every f ∈ C[0, 1] and every n = 1, 2, . . . ,

‖Knf‖ ≤ Mn

n!
‖f‖.

(4) Let K be a Volterra operator as in the preceding exercise. Show
that for every complex number λ �= 0 and every g ∈ C[0, 1], the
Volterra equation of the second kind Kf − λf = g has a unique
solution f ∈ C[0, 1].

1.8. Ideals and Quotients

The purpose of this section is to collect some basic information about ideals
in Banach algebras and their quotient algebras. We begin with a complex
algebra A.

Definition 1.8.1. An ideal in A is linear subspace I ⊆ A that is invari-
ant under both left and right multiplication, AI + IA ⊆ I.

There are two trivial ideals, namely I = {0} and I = A, and A is called
simple if these are the only ideals. An ideal is proper if it is not all of A.

Suppose now that I is a proper ideal of A. Forming the quotient vector
space A/I, we have a natural linear map x ∈ A �→ ẋ = x + I ∈ A/I of
A onto A/I. Since I is a two-sided ideal, one can unambiguously define a
multiplication in A/I by

(x+ I) · (y + I) = xy + I, x, y ∈ A.

This multiplication makes A/I into a complex algebra, and the natural map
x �→ ẋ becomes a surjective homomorphism of complex algebras having the
given ideal I as its kernel.

This information is conveniently summarized in the short exact sequence
of complex algebras

(1.15) 0 −→ I −→ A −→ A/I −→ 0,

the map of I to A being the inclusion map, and the map of A onto A/I be-
ing x �→ ẋ. A basic philosophical principle of mathematics is to determine
what information about A can be extracted from corresponding information
about both the ideal I and its quotient A/I. For example, suppose that A
is finite-dimensional as a vector space over C. Then both I and A/I are
finite-dimensional vector spaces, and from the observation that (1.15) is an
exact sequence of vector spaces and linear maps one finds that the dimen-
sion of A is determined by the dimensions of the ideal and its quotient by
way of dimA = dim I + dimA/I (see Exercise (1) below). The methods of
homological algebra provide refinements of this observation that allow the
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computation of more subtle invariants of algebras (such as K-theoretic in-
variants), which have appropriate generalizations to the category of Banach
algebras.

Proposition 1.8.2. Let A be a Banach algebra with normalized unit 1
and let I be a proper ideal in A. Then for every z ∈ I we have ‖1+ z‖ ≥ 1.
In particular, the closure of a proper ideal is a proper ideal.

Proof. If there is an element z ∈ I with ‖1+ z‖ < 1, then by Theorem
1.5.2 z must be invertible in A; hence 1 = z−1z ∈ I, which implies that I
cannot be a proper ideal. The second assertion follows from the continuity
of the norm; if ‖1+ z‖ ≥ 1 for all z ∈ I, then ‖1+ z‖ ≥ 1 persists for all z
in the closure of I. �

Remark 1.8.3. If I is a proper closed ideal in a Banach algebra A with
normalized unit 1, then the unit of A/I satisfies

‖1̇‖ = inf
z∈I
‖1+ z‖ = 1;

hence the unit of A/I is also normalized. More significantly, it follows that
a unital Banach algebra A with normalized unit is simple iff it is topolog-
ically simple (i.e., A has no nontrivial closed ideals; see the corollary of
Theorem 1.8.5 below). That assertion is false for nonunital Banach alge-
bras. For example, in the Banach algebra K of all compact operators on
the Hilbert space �2, the set of finite-rank operators is a proper ideal that is
dense in K. Indeed, K contains many proper ideals, such as the ideal L2 of
Hilbert–Schmidt operators that we will encounter later on. Nevertheless, K
is topologically simple (for example, see [2], Corollary 1 of Theorem 1.4.2).

More generally, let I be a closed ideal in an arbitrary Banach algebra A
(with or without unit). Then A/I is a Banach space; it is also a complex
algebra relative to the multiplication defined above, and in fact it is a Banach
algebra since for any x, y ∈ A,

‖ẋẏ‖ = inf
z∈I
‖xy + z‖ ≤ inf

z1,z2∈I
‖xy + xz2 + z1y + z1z2︸ ︷︷ ︸

∈ I
‖

= inf
z1,z2∈I

‖(x+ z1)(x+ z2)‖ ≤ ‖ẋ‖‖ẏ‖.
Notice, too, that (1.15) becomes an exact sequence of Banach algebras and
continuous homomorphisms. If π : A→ A/I denotes the natural surjective
homomorphism, then we obviously have ‖π‖ ≤ 1 in general, and ‖π‖ = 1
when A is unital with normalized unit.

The sequence (1.15) gives rise to a natural factorization of homomor-
phisms as follows. Let A, B be Banach algebras and let ω : A → B be a
homomorphism of Banach algebras (a bounded homomorphism of the un-
derlying algebraic structures). Then kerω is a closed ideal in A, and there
is a unique homomorphism ω̇ : A/ kerω → B such that for all x ∈ A we
have ω(x) = ω̇(x + kerω). The properties of this promotion of ω to ω̇ are
summarized as follows:
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Proposition 1.8.4. Every bounded homomorphism of Banach algebras
ω : A → B has a unique factorization ω = ω̇ ◦ π, where ω̇ is an injec-
tive homomorphism of A/ kerω to B and π : A → A/ kerω is the natural
projection. One has ‖ω̇‖ = ‖ω‖.

Proof. The assertions in the first sentence are straightforward, and we
prove ‖ω̇‖ = ‖ω‖. From the factorization ω = ω̇◦π and the fact that ‖π‖ ≤ 1
we have ‖ω‖ ≤ ‖ω̇‖; the opposite inequality follows from

‖ω̇(ẋ)‖ = ‖ω(x)‖ = ‖ω(x+ z)‖ ≤ ‖ω‖‖x+ z‖, z ∈ kerω,

after the infimum is taken over all z ∈ kerω. �

Before introducing maximal ideals, we review some basic principles of
set theory. A partially ordered set is a pair (S,≤) consisting of a set S and a
binary relation ≤ that is transitive (x ≤ y, y ≤ z =⇒ x ≤ z) and satisfies
x ≤ y ≤ x =⇒ x = y. An element x ∈ S is said to be maximal if there
is no element y ∈ S satisfying x ≤ y and y �= x. A linearly ordered subset
of S is a subset L ⊆ S for which any two elements x, y ∈ L are related by
either x ≤ y or y ≤ x. The set L of all linearly ordered subsets of S is itself
partially ordered by set inclusion.

The Hausdorff maximality principle makes the assertion that every par-
tially ordered set has a maximal linearly ordered subset; that is, the partially
ordered set L has a maximal element. Zorn’s lemma makes the assertion
that every partially ordered set S that is inductive, in the sense that every
linearly ordered subset of S has an upper bound in S, must contain a maxi-
mal element. While the maximality principle appears to be rather different
from Zorn’s lemma, they are actually equivalent in any model of set theory
that is appropriate for functional analysis. Indeed, both Zorn’s lemma and
the maximality principle are equivalent to the axiom of choice. Our experi-
ence has been that most proofs in functional analysis that require the axiom
of choice, or some reformulation of it in terms of transfinite induction, usu-
ally run more smoothly (and are simpler) when they are formulated so as
to make use of Zorn’s lemma. That will be the way such things are handled
throughout this book.

An ideal M in a complex algebra A is said to be a maximal ideal if it
is a maximal element in the partially ordered set of all proper ideals of A.
Thus a maximal ideal is a proper ideal M ⊆ A with the property that for
any ideal N ⊆ A,

M ⊆ N =⇒ N = M or N = A.

Maximal ideals are particularly useful objects when one is working with
unital Banach algebras.

Theorem 1.8.5. Let A be a unital Banach algebra. Then every maximal
ideal of A is closed, and every proper ideal of A is contained in some maximal
ideal.
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Proof. For the first assertion, let M be a maximal ideal of A. Remark
1.8.3 implies that the unit 1 cannot belong to the closure M of M ; hence
M is a proper ideal of A. Since M ⊆ M , maximality of M implies that
M = M is closed.

Suppose now that I is some proper ideal of A, and consider the set P
of all proper ideals of A that contain I. The family of sets P is partially
ordered in the natural way by set inclusion, and we claim that it is inductive
in the sense that every linearly ordered subset L = {Jα : α ∈ S} of P has
an upper bound in P. Indeed, the union ∪αJα is an ideal in A because it is
the union of a linearly ordered family of ideals. It cannot contain the unit
1 of A because 1 /∈ Jα for every α ∈ S. Hence ∪αJα is an element of P as
well as an upper bound for L.

Zorn’s lemma implies that P has a maximal element M , and M is a
proper ideal that contains I. It is a maximal ideal because if N is any ideal
containing M , then N must contain I and hence N ∈ P. Since M is a
maximal element of P, we conclude that M = N . �

Corollary 1. A unital Banach algebra is simple iff it is topologically
simple.

Exercises.
(1) Review of linear algebra. Let V and W be finite-dimensional vector

spaces over C and let T : V → W be a linear map satisfying
TV = W , and having kernel K = {x ∈ V : Tx = 0}. Then we have
a short exact sequence of vector spaces

0 −→ K −→ V −→W −→ 0.

Show that dimV = dimK + dimW . Your proof should proceed
from the definition of the dimension of a finite-dimensional vector
space as the cardinality of any basis for it.

(2) More linear algebra. For n = 1, 2, . . . , let V1, V2, . . . , Vn be finite-
dimensional vector spaces and set V0 = Vn+1 = 0 (the trivial vector
space). Suppose that for each k = 0, 1, . . . , n we have a linear map
of Vk to Vk+1 such that the associated sequence of vector spaces

0 −→ V1 −→ V2 −→ · · · −→ Vn −→ 0

is exact. Show that
∑n
k=1(−1)k dimVk = 0.

(3) Show that every normed linear space E has a basis B ⊆ E consisting
of unit vectors, and deduce that every infinite-dimensional normed
linear space has a discontinuous linear functional f : E → C. Re-
call that a basis for a vector space V is a set of vectors B with
the following two properties: every finite subset of B is linearly in-
dependent, and every vector in V is a finite linear combination of
elements of B.

(4) Let A be a complex algebra and let I be a proper ideal of A. Show
that I is a maximal ideal iff the quotient algebra A/I is simple.
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(5) Let A be a unital Banach algebra, let n be a positive integer, and
let ω : A→Mn be a homomorphism of complex algebras such that
ω(A) = Mn, Mn denoting the algebra of all n× n matrices over C.
Show that ω is continuous (where Mn is topologized in the natural
way by Cn

2
). Deduce that every linear functional f : A → C

satisfying f(xy) = f(x)f(y), x, y ∈ A, is continuous.

1.9. Commutative Banach Algebras

We now work out Gelfand’s generalization of the Fourier transform. Let
A be a commutative Banach algebra with unit 1 satisfying ‖1‖ = 1. We
consider the set hom(A,C) of all homomorphisms ω : A → C. An element
ω ∈ hom(A,C) is a complex linear functional satisfying ω(xy) = ω(x)ω(y)
for all x, y ∈ A; notice that we do not assume that ω is continuous, but as
we will see momentarily, that will be the case. The Gelfand spectrum of A
is defined as the set

sp(A) = {ω ∈ hom(A,C) : ω �= 0}
of all nontrivial complex homomorphisms of A. It is also called the maximal
ideal space of A, since there is a natural bijection of sp(A) onto the set of
all maximal ideals of A (see Exercise (2) below).

Remark 1.9.1. Every element ω ∈ sp(A) satisfies ω(1) = 1. Indeed,
for fixed ω the complex number λ = ω(1) satisfies λω(x) = ω(1 · x) = ω(x)
for every x ∈ A. Since the set of complex numbers ω(A) must contain
something other than 0, it follows that λ = 1.

Remark 1.9.2. Every element ω ∈ sp(A) is continuous. This is an
immediate consequence of the case n = 1 of Exercise (5) of the preceding
section, but perhaps it is better to supply more detail. Indeed, we claim
that ‖ω‖ = 1. For the proof, note that kerω is an ideal in A with the
property that the quotient algebra A/ kerω is isomorphic to the field of
complex numbers. Hence kerω is a maximal ideal in A. By Theorem 1.8.5,
it is closed. Because of the decomposition ω = ω̇ ◦ π where π is the natural
homomorphism of A onto A/ kerω and ω̇ is the linear map between the two
one-dimensional Banach spaces A/ kerω and C given by ω̇(λ1̇) = λω(1) = λ,
we have ‖ω̇‖ = 1. Hence ‖ω‖ ≤ ‖ω̇‖‖π‖ ≤ 1. The opposite inequality is
clear from ‖ω‖ ≥ |ω(1)| = 1.

With these observations in hand, one can introduce a topology on sp(A)
as follows. We have seen that sp(A) is a subset of the unit ball of the dual A′
of A, and by Alaoglu’s theorem the latter is a compact Hausdorff space in its
relative weak∗-topology. Thus sp(A) inherits a natural Hausdorff topology
as a subspace of a compact Hausdorff space.

Proposition 1.9.3. In its relative weak∗-topology, sp(A) is a compact
Hausdorff space.
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Proof. It suffices to show that sp(A) is a weak∗-closed subset of the
unit ball of the dual of A. Notice that a linear functional f : A→ C belongs
to sp(A) iff ‖f‖ ≤ 1, f(1) = 1, and f(yz) = f(y)f(z) for all y, z ∈ A. These
conditions obviously define a weak∗-closed subset of the unit ball of A′. �

Remark 1.9.4. The Gelfand map. Every element x ∈ A gives rise to a
function x̂ : sp(A) → C by way of x̂(ω) = ω(x), ω ∈ sp(A); x̂ is called the
Gelfand transform of x, and x �→ x̂ is called the Gelfand map. The functions
x̂ are continuous by definition of the weak∗-topology on sp(A). For x, y ∈ A
we have

x̂(ω)ŷ(ω) = ω(x)ω(y) = ω(xy) = x̂y(ω).
Moreover, since every element ω of sp(A) satisfies ω(1) = 1, it follows that
1̂ is the constant function 1 in C(sp(A)). It follows that the Gelfand map is
a homomorphism of A onto a unital subalgebra of C(sp(A)) that separates
points of sp(A). The previous remarks also imply that ‖x̂‖∞ ≤ ‖x‖, x ∈ A.

Most significantly, the Gelfand map exhibits spectral information about
elements of A in an explicit way.

Theorem 1.9.5. Let A be a commutative Banach algebra with unit. For
every element x ∈ A, we have

σ(x) = {x̂(p) : p ∈ sp(A)}.

Proof. Since for any x ∈ A and λ ∈ C, x̂− λ = x̂− λ and σ(x− λ) =
σ(x) − λ, it suffices to establish the following assertion: An element x ∈ A
is invertible iff x̂ never vanishes.

Indeed, if x is invertible, then there is a y ∈ A such that xy = 1; hence
x̂(ω)ŷ(ω) = x̂y(ω) = 1, ω ∈ sp(A), so that x̂ has no zeros.

Conversely, suppose that x is a noninvertible element of A. We must
show that there is an element ω ∈ sp(A) such that ω(x) = 0. For that,
consider the set xA = {xa : a ∈ A} ⊆ A. This set is an ideal that does not
contain 1. By Theorem 1.8.5, xA is contained in some maximal idealM ⊆ A,
necessarily closed. We will show that there is an element ω ∈ sp(A) such that
M = kerω. Indeed, A/M is a simple Banach algebra with unit; therefore
it has no nontrivial ideals at all. Since A/M is also commutative, this
implies that A/M is a field (for any nonzero element ζ ∈ A/M , ζ ·A/M is a
nonzero ideal, which must therefore contain the unit of A/M). By Corollary
1 of Theorem 1.6.3, A/M is isomorphic to C. Choosing an isomorphism
ω̇ : A/M → C, we obtain a complex homomorphism ω : A → C by way of
ω(x) = ω̇(x +M). It is clear that kerω = M , and finally x̂ vanishes at ω
because x ∈ xA ⊆M . �

Theorem 1.9.5 provides an effective procedure for computing the spec-
trum of elements of any unital commutative Banach algebra A. One first
identifies the Gelfand spectrum sp(A) in concrete terms as a topological
space and the Gelfand map of A into C(sp(A)). Once these calculations
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have been carried out, the spectrum of an element x ∈ A is exhibited as
the range of values of x̂. In the following section we discuss two important
examples that illustrate the method.

Exercises. In the first four exercises, A denotes a commutative Banach
algebra with unit.

(1) Show that if A is nontrivial in the sense that A �= {0} (equivalently,
1 �= 0), one has sp(A) �= ∅.

(2) Show that the mapping ω ∈ sp(A) → kerω is a bijection of the
Gelfand spectrum onto the set of all maximal ideals in A. For this
reason, sp(A) is often called the maximal ideal space of A.

(3) Show that the Gelfand map is an isometry iff ‖x2‖ = ‖x‖2 for every
x ∈ A.

(4) The radical of A is defined as the set rad(A) of all quasinilpotent
elements of A,

rad(A) =
{
x ∈ A : lim

n→∞ ‖x
n‖1/n = 0

}
.

Show that rad(A) is a closed ideal in A with the property that
A/rad(A) has no nonzero quasinilpotents (such a commutative Ba-
nach algebra is called semisimple).

(5) Let A and B be commutative unital Banach algebras and let θ :
A→ B be a homomorphism of the complex algebra structures such
that θ(1A) = 1B. Do not assume that θ is continuous.
(a) Show that θ induces a continuous map θ̂ : sp(B) → sp(A) by

way of θ̂(ω) = ω ◦ θ.
(b) Assuming that B is semisimple, show that θ is necessarily

bounded. Hint: Use the closed graph theorem.
(c) Deduce that every automorphism of a commutative unital

semisimple Banach algebra is a topological automorphism.

1.10. Examples: C(X) and the Wiener Algebra

We now look more closely at two important examples of commutative Ba-
nach algebras. Following the program described above, we calculate their
maximal ideal spaces, their Gelfand maps, and describe an application of
the method to prove a classical theorem of Wiener on absolutely convergent
Fourier series.

Example 1.10.1. C(X). The Gelfand spectrum of the Banach algebra
A = C(X) of all continuous functions on a compact Hausdorff space X can
be identified with X in the following way. Every point p ∈ X determines a
complex homomorphism ωp ∈ sp(C(X)) by evaluation:

ωp(f) = f(p), f ∈ C(X).

The map p �→ ωp is obviously one-to-one, and it is continuous by definition
of the weak∗-topology on the dual space of C(X). The work amounts to
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showing that every ω ∈ sp(C(X)) arises in this way from some point of
X. The method we use is based on a characterization of positive linear
functionals on C(X) in terms of an extremal property of their norm (Lemma
1.10.3). This is a useful technique for other purposes, and we will see it again
in Chapter 4.

Remark 1.10.2. Every compact convex set K ⊆ C is the intersection of
all closed half-spaces that contain it. It is also true that K is the intersection
of all closed disks that contain it. Equivalently, if z0 ∈ C is any point not
in the closed convex hull of K, then there is a disk D = Da,R = {z ∈ C :
|z − a| ≤ R} such that K ⊆ D and z0 �= D. The reader is encouraged to
draw a picture illustrating this geometric fact.

Lemma 1.10.3. Let ρ be a linear functional on C(X) satisfying ‖ρ‖ =
ρ(1) = 1. Then, for every f ∈ C(X),

ρ(f) ∈ convf(X),

convf(X) denoting the closed convex hull of the range of f .
In particular, if f∗ denotes the complex conjugate of f ∈ C(X), then we

have ρ(f∗) = ρ(f).

Proof. Fix f ∈ C(X). In view of Remark 1.10.2, to prove the first
assertion it suffices to show that every disk D = {z ∈ C : |z − a| ≤ R} that
contains f(X) must also contain ρ(f); equivalently,

|f(p)− a| ≤ R, ∀p ∈ X =⇒ |ρ(f)− a| ≤ R.

But if |f(p)−a| ≤ R for every p, then ‖f−a ·1‖ ≤ R. Since ‖ρ‖ = ρ(1) = 1,
this implies |ρ(f)− a| = |ρ(f − a · 1)| ≤ R, as required.

For the second assertion, let f = g+ ih ∈ C(X) with g and h real-valued
continuous functions. By the preceding paragraph, ρ(g) and ρ(h) are real
numbers; hence ρ(f∗) = ρ(g − ih) = ρ(g) − iρ(h) is the complex conjugate
of ρ(f) = ρ(g) + iρ(h). �

Theorem 1.10.4. The map p ∈ X �→ ωp ∈ sp(C(X)) is a homeomor-
phism of X onto the Gelfand spectrum of C(X). This map identifies X with
sp(C(X)) in such a way that the Gelfand map becomes the identity map of
C(X) to C(X).

In particular, the spectrum of f ∈ C(X) is f(X).

Proof. In view of the preliminary remarks above, the proof reduces to
showing that every complex homomorphism ω is associated with some point
p ∈ X, ω = ωp. Fixing ω, we have to show that⋂

f∈C(X)

{p ∈ X : f(p) = ω(f)} �= ∅.

The left side is an intersection of compact subsets of X; so if it is empty,
then by the finite intersection property there is a finite set of functions



1.10. EXAMPLES: C(X) AND THE WIENER ALGEBRA 29

f1, . . . , fn ∈ C(X) such that
n⋂
k=1

{p ∈ X : fk(p) = ω(f)} = ∅.

Define g ∈ C(X) by

g(p) =
n∑
k=1

|fk(p)− ω(fk)|2, p ∈ X.

Then g is obviously nonnegative, and by the choice of fk, it has no zeros on
X. Hence there is an ε > 0 such that g(p) ≥ ε, p ∈ X.

Since ‖ω‖ = ω(1) = 1 and g − ε1 ≥ 0, Lemma 1.10.3 also implies that
ω(g − ε1) ≥ 0; hence

ω(g) ≥ ε · ω(1) = ε > 0.

On the other hand, Lemma 1.10.3 also implies that for each k,

ω(|fk − ω(fk)1|2) =ω((fk − ω(fk)1)∗(fk − ω(fk)1))

=|ω(fk − ω(fk)1)|2 = |0|2 = 0,

and after summing on k we obtain ω(g) = 0, contradicting the preceding
inequality. �

Example 1.10.5. The Wiener algebra. Consider the spaceW of all con-
tinuous functions on the unit circle whose Fourier series converges absolutely,
that is, all functions f : T → C whose Fourier series have the form

(1.16) f(eiθ) ∼
∞∑

n=−∞
ane

inθ,

where
∑
n |an| <∞. One may verify directly thatW is a subalgebra of C(T)

(because �1(Z) is a linear space closed under convolution), which obviously
contains the constant functions. The algebra of functions W is called the
Wiener algebra.

In connection with his study of Tauberian theorems in the 1930s, Norbert
Wiener carried out a deep analysis of the translation-invariant subspaces
of the Banach spaces �1(Z) and L1(R); notice that since both Z and R

are additive groups, they act naturally as groups of isometric translation
operators on their respective L1 spaces. For example, the kth translate
of a sequence (an)n∈Z in �1(Z) is the sequence (an−k)n∈Z. Among other
things, Wiener proved that the translates of a sequence (an) ∈ �1(Z) have
all of �1(Z) as their closed linear span iff the function f defined in (1.16)
never vanishes. He did this by establishing the following key property of the
algebra W.

Theorem 1.10.6. If f ∈ W and f has no zeros on T, then the reciprocal
1/f belongs to W.



30 1. SPECTRAL THEORY AND BANACH ALGEBRAS

Wiener’s original proof of Theorem 1.10.6 was a remarkable exercise in
hard classical analysis. Subsequently, Gelfand gave an elegant conceptual
proof using the elementary theory of Banach algebras, basing the critical
step on Theorem 1.9.5. We now describe Gelfand’s proof.

Consider the Banach algebra A = �1(Z), with multiplication defined by
convolution ∗. The unit of A is the sequence 1 = (en), where e0 = 1 and
en = 0 for n �= 0. We show first that sp(A) can be identified with the unit
circle T.

Indeed, for every λ ∈ T we can define a bounded linear functional ωλ on
A by

ωλ(a) =
∞∑

n=−∞
anλ

n, a = (an) ∈ �1(Z).

Obviously, ωλ(1) = 1, and one verifies directly that ωλ(a ∗ b) = ωλ(a)ωλ(b).
Hence ωλ ∈ sp(A).

We claim that every ω ∈ sp(A) has the form ωλ for a unique point λ ∈ T.
To see that, fix ω ∈ sp(A) and define a complex number λ by λ = ω(ζ),
where ζ = (ζn) is the sequence ζn = 1 if n = 1, and ζn = 0 otherwise. Then
ζ has unit norm in A, and hence |λ| = |ω(ζ)| ≤ ‖ζ‖ = 1. Another direct
computation shows that ζ is invertible in A, and its inverse is the sequence
ζ̃ = (ζ̃n), where ζ̃n = 1 for n = −1, and ζ̃n = 0 otherwise. Since ‖ζ̃‖ = 1
and |1/λ| = |1/ω(ζ)| = |ω(ζ̃)| ≤ ‖ζ̃‖ = 1, we find that |λ| = 1. Notice that
ω = ωλ. Indeed, we must have ω(ζn) = λn = ωλ(ζn) for every n ∈ Z, ζn

being the unit sequence with a single nonzero component in the nth position.
Since the set {ζn : n ∈ Z} obviously has �1(Z) as its closed linear span, it
follows that ω = ωλ. Then λ = ω(ζ) is obviously uniquely determined by ω.

These remarks show that the map λ �→ ωλ is a bijection of T on sp(A).
The inverse of this map (given by ω ∈ sp(A) �→ ω(ζ) ∈ T) is obviously
continuous, so by compactness of sp(A) it must be a homeomorphism. Thus
we have identified sp(A) with the unit circle T and the Gelfand map with
the Fourier transform, which carries a sequence a ∈ �1(Z) to the function
â ∈ C(T) given by

â(eiθ) =
∞∑

n=−∞
ane

inθ.

Having computed sp(A) and the Gelfand map in concrete terms, we
observe that the range of the Gelfand map {â : a ∈ A} is exactly the Wiener
algebra W. The proof of Theorem 1.10.6 can now proceed as follows. Let
f be a function in W having no zeros on T and let a be the element of
A = �1(Z) having Gelfand transform f . By Theorem 1.9.5, there is an
element b ∈ A such that a ∗ b = 1; hence â(λ)b̂(λ) = 1, λ ∈ T. It follows
that 1/f = b̂ ∈ W, as asserted.

Exercises. Let B be the space of all continuous functions f defined on
the closed unit disk ∆ = {z ∈ C : |z| ≤ 1}, which can be represented there
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by a convergent power series of the form

f(z) =
∞∑
n=0

anz
n, z ∈ ∆,

for some sequence a0, a1, a2, . . . in C satisfying
∑
n |an| <∞.

(1) Prove the following analogue of Wiener’s theorem, Theorem 1.10.6.
If f ∈ B satisfies f(z) �= 0 for every z ∈ ∆, then g = 1/f belongs
to B.

In the following exercise, Z+ denotes the additive semigroup of
all nonnegative integers.

(2) Let T be the isometric shift operator that acts on �1(Z+) by

T (x0, x1, x2, . . . ) = (0, x0, x1, x2, . . . ),

and let a = (a0, a1, a2, . . . ) ∈ �1(Z+). Show that the set of trans-
lates {a, Ta, T 2a, . . . } spans �1(Z+) if and only if the power series

f(z) =
∞∑
n=0

anz
n, |z| ≤ 1,

has no zeros in the closed unit disk. Hint: Use the previous exercise.

1.11. Spectral Permanence Theorem

Let A be a Banach algebra with (normalized) unit; A is not necessarily
commutative. Suppose we also have a Banach subalgebra B ⊆ A of A that
contains the unit of A. Then for every element x ∈ B it makes sense to
speak of the spectrum σB(x) of x relative to B as well as the spectrum
σA(x) of x relative to A. There can be significant differences between these
two versions of the spectrum of x, and we now discuss this phenomenon.

Proposition 1.11.1. Let B be a Banach subalgebra of A that contains
the unit of A. For every element x ∈ B we have σA(x) ⊆ σB(x).

Proof. This is an immediate consequence of the fact that invertible
elements of B are invertible elements of A. �

Example 1.11.2. Consider the Banach algebra A = C(T) of continuous
functions on the unit circle, and let B be the Banach subalgebra generated
by the current variable ζ(z) = z, z ∈ T. Thus B is the closure (in the sup
norm of T) of the algebra of polynomials

p(z) = a0 + a1z + · · ·+ anz
n.

Let us compute the two spectra σA(ζ) and σB(ζ). The discussion of C(X)
in the previous section implies that

σA(ζ) = ζ(T) = T.

We now show that σB(ζ) is the closed unit disk ∆ ⊆ C. Indeed, the
general principles we have developed for computing spectra in commutative
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Banach algebras imply that, in order to compute σB(ζ), we should first com-
pute the Gelfand spectrum sp(B). We will identify sp(B) with ∆. Indeed,
for every z ∈ ∆ the maximum modulus principle implies that

(1.17) |p(z)| ≤ sup
|λ|=1

|p(λ)|.

It follows that the linear functional ωz on B defined on polynomials by
ωz(p) = p(z) satisfies ‖ωz‖ ≤ 1, and hence extends uniquely to a linear
functional on B, which we denote by the same letter ωz. Obviously, ωz
belongs to sp(B). The map z ∈ ∆ �→ ωz ∈ sp(B) is continuous and one-to-
one. It is onto because for every ω ∈ sp(B), the complex number z = ω(ζ)
satisfies |z| = |ω(ζ)| ≤ ‖ζ‖ = 1, and it has the property that that ω(p) =
p(z) = ωz(p) for every polynomial p. Hence ω = ωz on B.

Having identified sp(B) with ∆ and observing that ζ̂ is identified with
the current variable ζ̂(z) = z, z ∈ ∆, we can appeal to Theorem 1.9.5 to
conclude that σB(ζ) = ∆.

The following result is sometimes called the spectral permanence theo-
rem, since it implies that points in the boundary of σB(x) cannot be removed
by replacing B with a larger algebra.

Theorem 1.11.3. Let B be a Banach subalgebra of a unital Banach
algebra A which contains the unit of A. Then for every x ∈ B we have

∂σB(x) ⊆ σA(x).

Proof. It suffices to show that 0 ∈ ∂σB(x) =⇒ 0 ∈ σA(x). Contra-
positively, assume that 0 �= σA(x) and 0 ∈ ∂σB(x). Then x is invertible in A
and there is a sequence of complex numbers λn → 0 such that λn /∈ σB(x).
Thus (x−λn)−1 is a sequence of elements of B with the property that, since
inversion is continuous in A−1, converges to x−1 as n→∞. It follows that
x−1 = limn(x− λn)−1 ∈ B̄ = B, contradicting the fact that 0 ∈ σB(x). �

One can reformulate the preceding result into a more precise description
of the relation between σB(x) and σA(x) as follows. Given a compact set K
of complex numbers, a hole of K is defined as a bounded component of its
complement C \K. Let us decompose C \ σA(x) into its connected compo-
nents, obtaining an unbounded component Ω∞ together with a sequence of
holes Ω1,Ω2, . . . ,

C \ σA(x) = Ω∞ ! Ω1 ! Ω2 ! · · · .
Of course, there may be only a finite number of holes or none at all.

We require an elementary topological fact:

Lemma 1.11.4. Let Ω be a connected topological space, and let X be a
closed subset of Ω such that ∅ �= X �= Ω. Then ∂X �= ∅.
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Proof. If ∂X = ∅, then Ω = int(X) ! (Ω \ X) is a decomposition
of Ω into disjoint open sets; hence either int(X) = ∅ or X = Ω, and hence
int(X) = ∅. But this implies thatX = int(X)∪∂X = ∅, a contradiction. �

Corollary 1. Let 1A ∈ B ⊆ A be as above, let x ∈ A, and let Ω be a
bounded component of C\σA(x). Then either Ω∩σB(x) = ∅ or Ω ⊆ σB(x).

Proof. Let Ω be a hole of σA(x). Consider X = Ω ∩ σB(x) as a closed
subspace of the topological space Ω. Since Ω is an open set in C, the
boundary ∂ΩX of X relative to Ω is contained in

∂σB(x) ⊆ σA(x) ⊆ C \ Ω.
Hence ∂ΩX = ∅. Lemma 1.11.4 implies that either X = ∅ or X = Ω, as
asserted. �

We deduce the following description of σB(x) in terms of σA(x).

Corollary 2. Let x ∈ B ⊆ A be as in the previous theorem. Then
σB(x) is obtained from σA(x) by adjoining to it some (and perhaps none)
of its holes.

For example, if σA(x) is the unit circle, then the only possibilities for
σB(x) are the unit circle and the closed unit disk.

Exercises.
(1) Let A be a unital Banach algebra, let x ∈ A, and let Ω∞ be the

unbounded component of C \ σA(x). Show that for every λ ∈ Ω∞
there is a sequence of polynomials p1, p2, . . . such that

lim
n→∞ ‖(x− λ1)−1 − pn(x)‖ = 0.

(2) Let A be a unital Banach algebra that is generated by {1, x} for
some x ∈ A. Show that σA(x) has no holes.

(3) Deduce the following theorem of Runge. Let X ⊆ C be a compact
set whose complement is connected. Show that if f(z) = p(z)/q(z)
is a rational function (p, q being polynomials) with q(z) �= 0 for
every z ∈ X, then there is a sequence of polynomials f1, f2, . . .
such that

sup
z∈X

|f(z)− fn(z)| → 0, as n→∞.

1.12. Brief on the Analytic Functional Calculus

The analytic functional calculus provides an effective way of forming new
operators having specified properties out of given ones, in a very general
context. We will not have to make use of the analytic functional calculus
in this book. In this section we describe this calculus in some detail, but
refer the reader to other sources (such as [12]) for a treatment that includes
proofs we have omitted.
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Let C be a simple closed oriented curve in the complex plane C that
is piecewise continuously differentiable. We refer to such objects simply
as oriented curves. Thus, an oriented curve C can be parameterized in
different ways by continuous functions γ : [0, 1] → C that are piecewise
continuously differentiable, one-to-one on [0, 1), and periodic γ(0) = γ(1).
Every continuous function f on C can be integrated around C by either
forming a limit of appropriate Riemann sums that respect the orientation of
C, or alternatively by choosing a parameterization γ : [0, 1]→ Γ consistent
with the orientation and setting∫

C
f(λ) dλ =

∫ 1

0
f(γ(t))γ′(t) dt.

The notion of integral over C generalizes in a straightforward way to
vector-valued functions, namely to continuous functions f defined on C that
take values in a Banach space E. Fixing such a function f , one considers
finite oriented partitions P = {γ0, γ1, . . . , γn} of the curve C (that is, parti-
tions of C that are consistent with its orientation). With every such partition
there is a corresponding Riemann sum

R(f,P) =
n∑
k=1

f(γk)(γk − γk−1),

and the techniques of elementary calculus can be adapted in a straightfor-
ward way to show that the limit of these Riemann sums exists (as the norm
‖P‖ = maxk |γk − γk−1| of the partition P tends to 0) relative to the norm
topology of E. See Exercise (1) below. Thus one can define∫

C
f(λ) dλ = lim

‖P‖→0
R(f,P),

and one has the estimate

(1.18)
∥∥∥∥∫
C
f(λ) dλ

∥∥∥∥ ≤ ∫
C
‖f(λ))‖ d|λ| ≤ sup

λ∈C
‖f(λ)‖�(C),

�(C) denoting the length of C. It follows that for every bounded linear
functional ρ on E we have

ρ

(∫
C
f(λ) dλ

)
=
∫
C
ρ(f(λ)) dλ.

Reversing the orientation of C has the effect of replacing
∫
C f(λ) dλ with

its negative − ∫C f(λ) dλ. Thus we have assigned a clear meaning to the
integral of a continuous function f : C → E as an element of E.

We also require a few facts about the classical notion of winding number.
Let C be an oriented curve. Then for every λ in C \ C we can define an
integer [1]

n(C, λ) =
1
2πi

∫
C

d z

z − λ
.
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If λ belongs to the bounded component of the complement of C then one
has n(C, λ) = 1 when C is oriented counterclockwise and n(C, λ) = −1
otherwise. On the other hand, n(C, λ) = 0 if λ belongs to the unbounded
component of C \ C, regardless of orientation.

A cycle is an element of the abelian group generated by oriented curves,
subject to the relation C+C∗ = 0, where C∗ denotes the curve obtained by
reversing the orientation of C. To review terminology, let S be a set that
is endowed with an involutory map s �→ s∗, s ∈ S, and let G(S) be the
free abelian group generated by S modulo the subgroup generated by s+s∗,
s ∈ S. In more concrete terms, the free abelian group generated by S can be
realized as the abelian group Z(S) of integer-valued functions n : S → Z that
satisfy n(s) = 0 off some finite subset of S, with the pointwise operations

(m+ n)(s) = m(s) + n(s), s ∈ S.

There is a natural notion of linear combinations of elements of Z(S); for
p, q ∈ Z andm,n ∈ Z(S), p·m+q ·n denotes the function s �→ pm(s)+qn(s).
If we identify elements of S with their image in Z(S) by way of s ∈ S �→ χ{s},
then the elements of Z(S) are linear combinations of elements of S,

p1 · s1 + · · ·+ pn · sn, pk ∈ Z, sk ∈ S.

The subgroupH ⊆ Z(S) generated by elements of the form s+s∗ is identified
with the subgroup of all functions n ∈ Z(S) satisfying n(s) ∈ 2Z if s∗ = s
and n(s∗) = n(s) if s∗ �= s (note that for the example in which S consists
of oriented curves, the case s∗ = s never occurs). Letting ṡ denote the coset
s + H ∈ G(S), then ṡ∗ = −ṡ, and the most general element of G(S) is a
linear combination

p1 · ṡ1 + · · ·+ pn · ṡn.
The universal property that follows from this construction asserts that

every function φ from S to an abelian group G that satisfies φ(s∗) = −φ(s)
for all s can be extended uniquely to a group homomorphism φ̂ : G(S)→ G,
which acts on elements of G(S) as follows:

φ̂

(
n∑
k=1

pk · ṡk
)

=
n∑
k=1

pk · φ(sk).

A cycle can be visualized as a conglomerate of several oriented curves,
traversed one by one, perhaps several times. Every nonzero cycle Γ can
be written as a linear combination Γ = p1Ċ1 + · · · + pnĊn with nonzero
integer coefficients pk, where the Ck are oriented curves with the property
Ck /∈ {Cj , C∗

j } for k �= j. This expression for Γ is not unique, but the lack
of uniqueness is characterized by the simple fact that p · ṡ = −p · ṡ∗, p ∈ Z,
s ∈ S. Thus the union of sets C1∪· · ·∪Cn (point sets without orientation) is
uniquely determined, and we think of this set as the underlying point set of Γ.
The empty set is the underlying point set of the zero cycle. Fixing λ ∈ C, the
set of all cycles that do not contain λ is a subgroup of the group of all cycles
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(it is the universal group of cycles generated by all oriented curves that do
not contain λ); hence for every such Γ there is a well-defined winding number
n(Γ, λ) ∈ Z defined by general principles as above by taking φ(C) = n(C, λ)
on oriented curves C. The map Γ �→ n(Γ, λ) is a homomorphism of the
group of all cycles that do not contain λ into Z.

It is important that cycles, like curves, have well-defined interiors.

Definition 1.12.1. Let Γ be a cycle. The interior of Γ is defined as the
set of all points λ ∈ C \ Γ such that n(Γ, λ) �= 0, and it is written int(Γ).

It is a worthwhile exercise to experiment with this definition. For ex-
ample, consider a cycle Γ consisting of two concentric circles of different
radii about the origin. If the outer circle and inner circle have the same
orientation, then that cycle has interior consisting of all points within the
outer circle that do not belong to the inner circle. If the two circles have
opposite orientations, then the interior of the cycle consists of the annular
region lying between the two circles.

If we are given an open set U ⊆ C, a Banach space E, and a continuous
function f : U → E, then we have seen how to define the integral of f over
any oriented curve C ⊆ U . The set of all cycles whose underlying point sets
are contained in U is also a group with a similar universal property, namely
the universal group generated by the oriented curves contained in U . Thus
by general principles we have a definition of∫

Γ
f(λ) dλ ∈ E

for all cycles Γ ⊆ U , and this integral satisfies∫
Γ1+Γ2

f(λ) dλ =
∫

Γ1

f(λ) dλ+
∫

Γ2

f(λ) dλ.

Finally, we introduce the algebra of locally analytic functions on a com-
pact subset of C. Let X ⊆ C be compact. By a locally analytic function on
X we mean an analytic function f defined on some open set U ⊇ X. Two
such functions f (defined on U ⊇ X) and g (defined on V ⊇ X) are said to
be equivalent if there is an open set W such that X ⊂W ⊂ U ∩ V and the
restrictions of f and g to W agree. The set of equivalence classes of locally
analytic functions on X forms a complex algebra, whose unit is the class of
the constant function f(z) = 1, z ∈ C. This commutative algebra is denoted
by A(X).

We now have an effective notion of cycle, a notion of the integral of a
vector-valued function over a cycle contained in the interior of its domain,
and the notion of an algebra of locally analytic functions A(X) associated
with a compact set X ⊆ C. These are the basic constituents of the analytic
functional calculus, which we now describe.

Let A be a Banach algebra with normalized unit 1 and fix an element
a ∈ A with spectrum X = σ(a). Given f ∈ A(X) we want to define f(a)
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in a manner consistent with the Cauchy integral theorem. To do this we
choose a cycle Γ with the following properties:

• f is analytic on Γ ∪ int(Γ).
• Γ ∩X = ∅.
• n(Γ, z) = 1 for all z ∈ X.

The first and third conditions together imply that there is a representative
in the class of f whose domain contains not only X and Γ, but also all points
interior to Γ. The third condition asserts that the cycle winds around every
point of X exactly once in the positive direction, allowing for cancellations
as one moves along the various components of Γ.

For example, if X is the unit circle and f is an analytic function defined
on some annular region U = {z ∈ C : r < |z| < R} where 0 < r < 1 < R <
∞, one may take Γ to be the union of two circles Γk = {|z| = rk}, k = 1, 2,
where r < r1 < 1 < r2 < R, where Γ2 is oriented in the counterclockwise
direction, and Γ1 is oriented clockwise.

Consider the resolvent function (λ1− a)−1. This is certainly defined for
all λ in an open set containing Γ, and it is a continuous function with values
in A. Thus we can define

(1.19) f(a) =
1
2πi

∫
Γ
f(λ)(λ1− a)−1 dλ.

The fact is that f(a) depends on neither the particular choice of Γ nor
the choice of representative of f (this is an exercise in the use of the Cauchy
integral theorem of complex analysis). Moreover, f ∈ A(X) �→ f(a) is a
unital homomorphism of complex algebras that has the following property:
For every power series

f(z) = c0 + c1z + c2z
2 + · · ·

converging on some open disk {|z| < R} containing X, the corresponding
series c01+ c1a+ c2a

2 + · · · is absolutely convergent relative to the norm of
A, and we have

f(a) =
∞∑
n=1

cna
n.

The reader is referred to pp. 566–577 of [12] for further detail.

Exercises.
(1) Let C be an oriented curve in C, let f be a continuous function

defined on C taking values in a Banach space E, and consider the
set of all finite oriented partitions P of C.
(a) Show that for every ε > 0 there is a δ > 0 with the prop-

erty that for every pair of oriented partitions P1, P2 satisfying
‖Pk‖ ≤ δ for k = 1, 2, one has ‖R(f,P1)−R(f,P2)‖ ≤ ε.

(b) Verify the estimate (1.18).

Let T be a bounded operator on a Banach space E.
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(2) Let D = {z ∈ C : |z| < R} be an open disk containing σ(T ). Let
f : D → C be an analytic function defined on D, with power series

f(z) =
∞∑
n=0

cnz
n, z ∈ D.

Show that the infinite series of operators
∞∑
n=0

cnT
n

converges absolutely in the sense that
∑
n |cn|‖Tn‖ <∞.

(3) Give a definition of sinT and cosT using power series.
(4) Use your definitions in the preceding exercise to show that

(sinT )2 + (cosT )2 = 1.



CHAPTER 2

Operators on Hilbert Space

We now take up the theory of operators on Hilbert space. It is appropri-
ate to develop this subject within the context of C∗-algebras, and the most
basic properties of C∗-algebras, their ideals, quotients, and morphisms, are
worked out in this chapter. We discuss commutative C∗-algebras in detail,
including the characterization of C(X), the functional calculus for normal
operators, and the spectral theorem. Unfortunately, the literature of op-
erator theory contains at least three dissimilar statements that are called
the spectral theorem. The assertions are that normal operators are associ-
ated with multiplication operators, that they are associated with spectral
measures, and that they admit a Borel functional calculus. While these
statements are all in some sense equivalent, only the first of them is a clear
generalization of the idea of diagonalizing a matrix, and that is the one we
offer as the proper up-to-date formulation of the spectral theorem.

Throughout this chapter, Hilbert spaces will be assumed separable or
finite dimensional. This is an unnecessary restriction, since all the results
we discuss have appropriate generalizations to the inseparable cases. But
the formulation of the spectral theorem that we use becomes somewhat
esoteric for inseparable spaces, and in dealing with traces or Hilbert–Schmidt
operators, the fact that orthonormal bases {eα : α ∈ I} are uncountable
while the corresponding sums of numbers

∑
α ‖Aeα‖2 have only countably

many nonzero terms can distract attention from the fundamental issues of
analysis. In some cases we offer comments to assist the generalizers in
carrying out their work.

2.1. Operators and Their C∗-Algebras

In this section, we discuss the operator-theoretic version of the Riesz lemma,
we introduce some commonly used terminology, and we discuss the multi-
plication algebra of a measure space. Throughout, H will denote a Hilbert
space with inner product 〈ξ, η〉, linear in ξ and antilinear in η.

The Riesz lemma asserts that every bounded linear functional f on H
can be represented uniquely as the inner product with a vector η ∈ H,

f(ξ) = 〈ξ, η〉, ξ ∈ H;

moreover, one has ‖f‖ = ‖η‖. The Riesz lemma implies that the mapping
f → η is an antilinear isometry of the dual of H onto H.

39
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Every operator A ∈ B(H) gives rise to a complex-valued function of two
variables [ξ, η] = 〈Aξ, η〉, ξ, η ∈ H. Notice that this form is linear in ξ and
antilinear in η; such bilinear forms are called sesquilinear. The sesquilinear
form associated with A is also bounded in the sense that there is a positive
constant C such that |[ξ, η]| ≤ C‖ξ‖‖η‖ for all ξ, η ∈ H, and the smallest
such constant is the operator norm C = ‖A‖. Frequently, the easiest way to
define a bounded operator is to specify its sesquilinear form. The following
result guarantees the existence of a unique operator in such definitions, and
is also called the Riesz lemma.

Proposition 2.1.1. For every bounded complex-valued sesquilinear form
[·, ·] on H there is a unique bounded operator A on H such that

[ξ, η] = 〈Aξ, η〉, ξ, η ∈ H.

Proof. Fix a vector ξ ∈ H and consider the linear functional f defined
on H by f(η) = [ξ, η], the bar denoting complex conjugation. Since f is a
bounded linear functional, the Riesz lemma in its above form implies that
there is a unique vector Aξ ∈ H satisfying f(η) = 〈η,Aξ〉; and after taking
the complex conjugate we find that the function A : H → H that we have
defined must satisfy

[ξ, η] = 〈Aξ, η〉, ξ, η ∈ H.

It is straightforward to verify that this formula implies that A is a linear
transformation. It is bounded because

sup
‖ξ‖≤1

‖Aξ‖ = sup
‖ξ‖≤1,‖η‖≤1

|[ξ, η]| <∞.

The uniqueness of the operator A is evident from the uniqueness assertion
of the Riesz lemma for linear functionals. �

Similarly, there is a characterization of bounded operators A ∈ B(H,K)
from one Hilbert space to another in terms of bounded sesquilinear forms
[·, ·] : H×K → C by way of the identification [ξ, η] = 〈Aξ, η〉, ξ ∈ H, η ∈ K.
Note that the inner product on the right is that of K, not H.

We immediately deduce the existence of adjoints of bounded operators
from one Hilbert space to another. When more than one Hilbert space is
involved there might be confusion about the meaning of inner products;
when we want to be explicit about which inner product is involved we will
write 〈ξ, η〉H for the inner product of two vectors ξ, η ∈ H.

Corollary 1. Let H,K be Hilbert spaces and let A ∈ B(H,K) be a
bounded operator from H to K. There is a unique operator A∗ ∈ B(K,H)
satisfying

〈Aξ, η〉K = 〈ξ, A∗η〉H , ξ ∈ H, η ∈ K.
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Proof. One simply applies the above results to the bounded sesquilin-
ear form [·, ·] defined on K×H by [η, ξ] = 〈η,Aξ〉 to deduce the existence of
a unique operator A∗ ∈ B(K,H) satisfying 〈A∗η, ξ〉H = 〈η,Aξ〉K , and then
takes the complex conjugate of both sides. �

The case H = K is of particular importance, since we may deduce
that for every A ∈ B(H) there is a unique operator A∗ ∈ B(H) such that
〈Aξ, η〉 = 〈ξ, A∗η〉. The basic properties of the mapping A �→ A∗ are sum-
marized as follows:

(1) A∗∗ = A.
(2) (λA+ µB)∗ = λ̄A∗ + µ̄B∗.
(3) (AB)∗ = B∗A∗.
(4) ‖A∗A‖ = ‖A‖2.

Properties (1), (2), (3) together define an involution in a complex algebra.
Property (4) is the critical relation between the norm in B(H) to the invo-
lution. It is the characteristic property of a C∗-algebra (see Definition 2.2.1
below). To verify property (4), note that ‖A∗A‖ is given by

sup
‖ξ‖,‖η‖≤1

|〈A∗Aξ, η〉| = sup
‖ξ‖,‖η‖≤1

|〈Aξ,Aη〉| ≤ sup
‖ξ‖,‖η‖≤1

‖Aξ‖‖Aη‖ = ‖A‖2

while on the other hand,

‖A‖2 = sup
‖ξ‖≤1

〈Aξ,Aξ〉 = sup
‖ξ‖≤1

〈A∗Aξ, ξ〉 ≤ ‖A∗A‖.

We will also make use of standard terminology for various types of op-
erators A ∈ B(H). An operator A is called normal if it commutes with its
adjoint, A∗A = AA∗. An operator A onH is an isometry iff 〈Aξ,Aξ〉 = 〈ξ, ξ〉
for every ξ ∈ H and in turn this is equivalent to the equation A∗A = 1. An
invertible isometry A is characterized by A∗A = AA∗ = 1 and is called
a unitary operator. A self-adjoint operator with nonnegative spectrum is
called a positive operator. It is a nontrivial fact that positivity is charac-
terized by the condition 〈Aξ, ξ〉 ≥ 0 for every ξ ∈ H, as we will see. More
generally, for two self-adjoint operators A and B one writes A ≤ B if B−A
is positive. Finally, a projection is a self-adjoint idempotent: A2 = A = A∗.

The following elementary facts about the geometry of Hilbert spaces will
be used freely below:

(1) Every nonempty closed convex set C in a Hilbert space H has a
unique element of smallest norm; that is, there is a unique element
x ∈ C such that ‖x‖ = inf{‖y‖ : y ∈ C}.

(2) Let M be a closed linear subspace of H. Then every vector ξ ∈ H
has a unique decomposition ξ = ξ1 + ξ2 where ξ1 ∈ M and ξ2 ∈
M⊥ = {η ∈ H : 〈η,M〉 = {0}}.

(3) Let P be any projection in B(H). Then M = {ξ ∈ H : Pξ = ξ} is
a closed subspace of H. Conversely, every closed subspace of H is
associated in this way with a unique projection P ∈ B(H).
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Definition 2.1.2. A C∗-algebra of operators is a norm-closed subalgebra
A ⊆ B(H) of the algebra of all bounded operators on some Hilbert space,
which is also closed under the adjoint operation A∗ = A.

There are many examples of such C∗-algebras. For example, let S ⊆
B(H) be any nonempty set of operators. The intersection of all C∗-algebras
in B(H) that contain S is called the C∗-algebra generated by S, often written
C∗(S). It can be realized in somewhat more concrete terms as follows.
Consider the set P of all finite products T1T2 · · ·Tn, n = 1, 2, . . . , where
Tk ∈ S ∪ S∗. The set of all finite linear combinations of elements of P is
obviously the smallest self-adjoint algebra containing S, and hence its norm-
closure is the C∗-algebra generated by S. While this “construction” appears
to exhibit the elements of C∗(S) in a systematic way, it is not very useful
for obtaining structural information about C∗(S), since the nature of the
limits of such linear combinations has not been made explicit.

A substantial amount of current work in noncommutative analysis has
gone into determining the properties and structure of the C∗-algebra gener-
ated by a finite set of operators that satisfy certain relations.

The norm topology on B(H) is inappropriate for topological issues that
require more flexibility, and B(H) has several useful and natural topologies
that are weaker than the norm topology. We will have to make use of only
two of them. In general, a locally convex topology can be defined on a
complex vector space V by specifying a family S of seminorms on V that
separates the points of V . Given a finite subset F = {| · |1, . . . , | · |n} ⊆ S
and a positive ε, one associates a corresponding subset of V :

UF,ε = {x ∈ V : |x|1 < ε, . . . , |x|n < ε}.
The set of all such UF,ε is a basic system of neighborhoods of the origin for
a unique locally convex Hausdorff topology on V .

For example, the norm topology is defined by the somewhat degenerate
family S = {‖ · ‖}, where ‖ · ‖ is the operator norm. The weak operator
topology is defined by the family of seminorms |A| = |〈Aξ, η〉|, ξ, η ranging
over all vectors in H. The strong operator topology is defined by the family
of seminorms |A| = ‖Aξ‖, where ξ ∈ H. For example, a net of operators
An ∈ B(H) converges strongly to 0 if and only if for every ξ ∈ H,

lim
n→∞ ‖Anξ‖ = 0.

A von Neumann algebra is a self-adjoint subalgebra of B(H) that con-
tains the identity operator and is closed in the weak operator topology.
While it is true that von Neumann algebras are C∗-algebras of operators,
they have many properties that are not shared by more general C∗-algebras.
For example, von Neumann algebras contain enough projections to generate
them as C∗-algebras, while more general unital C∗-algebras may contain no
projections other than the trivial ones 0 and 1. The theory of von Neumann
algebras has undergone extensive development, and it has a different flavor
from that of the general theory of C∗-algebras. It is appropriate to view
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the theory of von Neumann algebras as a noncommutative generalization of
measure theory, and to view the theory of C∗-algebras as a noncommutative
generalization of the theory of topological spaces [8].

Let S ⊆ B(H) be a set of operators. The commutant of S is the set of
all operators T ∈ B(H) satisfying ST = TS for every S ∈ S; it is denoted
by S ′. The commutant of any set of operators is an algebra containing the
identity operator, and one may easily check that S ′ is a weakly closed unital
subalgebra of B(H). If S = S∗ is closed under the involution of B(H), then
S ′ is a von Neumann algebra.

We conclude the section with a discussion of multiplication operators on
Hilbert spaces associated with measure spaces. Let (X,B, µ) be a σ-finite
measure space; we suppress explicit reference to the σ-algebra of sets B
unless there is cause for confusion. L2(X,µ) is a Hilbert space, which may
or may not be separable; the measure space (X,µ) is called separable when
L2(X,µ) is a separable Hilbert space. Every function f ∈ L∞(X,µ) gives
rise to an operator Mf that acts as follows:

(Mfξ)(p) = f(p)ξ(p), p ∈ X, ξ ∈ L2(X,µ).

L∞(X,µ) is a commutative C∗-algebra with unit relative to its pointwise
operations and its essential norm

‖f‖∞ = ess sup{|f(p)| : p ∈ X}.
In more detail, the involution in L∞(X,µ) is defined by f∗(p) = f(p), p ∈ X;
the norm is

‖f‖∞ = sup{t > 0 : µ{p ∈ X : |f(p)| > t} > 0};
and the involution is related to the norm by ‖f∗f‖∞ = ‖f‖2∞.

Theorem 2.1.3. For every f ∈ L∞(X,µ) Mf is a bounded operator on
L2(X,µ). The map f �→ Mf is an isometric ∗-isomorphism of L∞(X,µ)
onto a commutative C∗-algebra of operators M⊆ B(H).

Proof. The key assertion here is ‖Mf‖ = ‖f‖∞. Indeed, the inequality
≤ is clear from the fact that |f(p)| ≤ ‖f‖∞ for almost every p ∈ X, since
this entails |f · ξ| ≤ ‖f‖∞|ξ| pointwise almost everywhere for ξ ∈ L2(X,µ),
hence ‖f · ξ‖2 ≤ ‖f‖∞‖ξ‖2. For the opposite inequality, assume f �= 0 and
choose a number c, 0 ≤ c < ‖f‖∞. The set {p ∈ X : |f(p)| > c} has positive
measure, so by σ-finiteness we can find a subset E ⊆ {p ∈ X : |f(p)| > c}
having finite positive measure. Thus χE ∈ L2(X,µ) and from

|f(p) · χE(p)| ≥ cχE(p), p ∈ X,

we obtain ‖MfχE‖2 ≥ c‖χE‖2 after squaring and integrating. Since χE is
not the zero element of L2(X,µ), ‖Mf‖ ≥ c. The inequality ‖Mf‖ ≥ ‖f‖∞
follows after one takes the supremum over such c.

Obviously, f �→ Mf is a homomorphism of algebras that carries the
unit of L∞(X,µ) to 1, and one may verify M∗

f = Mf∗ directly. The set of
operators {Mf : f ∈ L∞} is norm-closed because L∞ is a Banach space. �
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The set of operators M = {Mf : f ∈ L∞(X,µ)} is called the multipli-
cation algebra of the measure space (X,µ). It is an abelian von Neumann
algebra, since it is closed in the weak operator topology, though that is not
obvious from what has been said. We will look more closely at multiplication
algebras in Chapter 4.

Let us now compute the spectra of multiplication operators. Since an
element of L∞(X,µ) is not a function but an equivalence class of functions
that agree almost everywhere, the notion of the range of f ∈ L∞(X,µ) must
be approached with some care. Choose a representative in the class of f ,
which we will call f . We can use f to define a measure mf on the σ-algebra
of Borel sets in C:

mf (S) = µ{p ∈ X : f(p) ∈ S}, S ⊆ C.

It is a straightforward exercise to show that every function g that agrees
almost everywhere with f gives rise to the same measure, mg = mf ; hence
this measure depends only on the equivalence class of f as an element of
L∞(X,µ). If µ is a finite measure, then so is mf . But if µ is only σ-finite,
then mf need not be σ-finite; indeed, in such cases points of C can have
infinite mf -measure (consider the case of a constant function f). In all
cases, however, mf is a countably additive measure defined on the Borel
σ-algebra of the complex plane. As such it has a uniquely defined closed
support, defined as follows. By the Lindelöf property, the union G of all
open subsets of C having mf -measure zero can be reduced to the union
of a countable subfamily of open sets of measure zero; hence G satisfies
mf (G) = 0. Obviously, G is the largest open set of mf -measure zero. It
follows that the complement F = C \ G is a closed set with the following
property: A complex number λ belongs to F if and only if for every ε > 0
we have

(2.1) µ{p ∈ X : |f(p)− λ| < ε} > 0.

Moreover, every point of the complement of F has a neighborhood of mf -
measure zero.

The set F is called the essential range of f . To reiterate: λ belongs to
the essential range of f if and only if every neighborhood of λ has positive
mf -measure. The essential range of f is a compact set F with the property
that

‖f‖∞ = sup{|λ| : λ ∈ F}.
Theorem 2.1.4. For every f ∈ L∞(X,µ), the spectrum of the multipli-

cation operator Mf is the essential range of f .

Proof. If λ does not belong to the essential range of f , then there is
an ε > 0 such that {p ∈ X : |f(p)− λ| < ε} = 0, i.e., |f(p)− λ| ≥ ε almost
everywhere (dµ). It follows that the function

g(p) =
1

f(p)− λ
, p ∈ X,
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belongs to L∞(X,µ), and its multiplication operator Mg is a left and right
inverse of Mf − λ1.

Conversely, suppose λ is a point in the essential range of f . We will
exhibit a sequence of unit vectors ξ1, ξ2, . . . ∈ L2(X,µ) with the property

lim
n→∞ ‖Mfξn − λξn‖ = 0,

showing that λ ∈ σ(Mf ). Indeed, {p ∈ X : |f(p) − λ| ≤ 1/n} is a set of
positive measure for every n = 1, 2, . . . , and using σ-finiteness of µ we find
a subset

En ⊆ {p ∈ X : |f(p)− λ| ≤ 1/n}
satisfying 0 < µ(En) <∞. Letting ξn be the unit vector µ(En)−1/2χEn one
has

|(f(p)− λ)ξn(p)| ≤ n−1|ξn(p)|, p ∈ X,

and hence ‖(f − λ)ξn‖L2 ≤ 1/n tends to 0 as n→∞. �

Exercises.
(1) Let [·, ·] : H ×H → C be a sesquilinear form defined on a Hilbert

space H. Show that [·, ·] satisfies the polarization formula

4[ξ, η] =
3∑
k=0

ik
[
ξ + ikη, ξ + ikη

]
.

(2) Let A ∈ B(H) be a Hilbert space operator. The quadratic form
of A is the function qA : H → C defined by qA(ξ) = 〈Aξ, ξ〉. The
numerical range and numerical radius of A are defined, respectively,
by

W (A) = {qA(ξ) : ‖ξ‖ = 1} ⊆ C,

w(A) = sup{|qA(ξ)| : ‖ξ‖ = 1}.
(a) Show that A is self-adjoint iff qA is real-valued.
(b) Show that w(A) ≤ ‖A‖ ≤ 2w(A) and deduce that qA = qB

only when A = B. Hint: Polarize.
(3) Show that the adjoint operation A �→ A∗ in B(H) is weakly con-

tinuous but not strongly continuous. Hint: Consider the sequence
of powers of the unilateral shift S, S2, S3, . . . .

(4) Show that the only operators that commute with all operators in
B(H) are the scalar multiples of the identity.

(5) Let C be the closure in the strong operator topology of the set of
all unitary operators in B(H). Show that C consists of isometries.

(6) Show that the unilateral shift S belongs to C by exhibiting a se-
quence of unitary operators U1, U2, . . . that converges to S in the
strong operator topology. Hint: Consider the matrix of S relative
to the obvious basis, and look for unitary matrices that strongly
approximate large n× n blocks of it.
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(7) Let (X,µ) be a σ-finite measure space and let f : X → C be a
bounded complex-valued Borel function. Show that the essential
range of f can be characterized as the intersection⋂

{g(X) : g ∼ f}
of the closed ranges of all bounded Borel functions g : X → C that
agree with f almost everywhere (dµ).

2.2. Commutative C∗-Algebras

Definition 2.2.1. A C∗-algebra is a Banach algebra A that is endowed
with an involution x �→ x∗ satisfying ‖x∗x‖ = ‖x‖2 for every x ∈ A.

More explicitly, the involution ∗ is an antilinear mapping of A into itself
that satisfies (xy)∗ = y∗x∗, x∗∗ = x, and is related to the norm of A by
the asserted formula. C∗-algebras need not contain a unit. Any norm-
closed self-adjoint subalgebra A of B(H) is a C∗-algebra, as we have seen
in the previous section. On the other hand, abstract C∗-algebras are not
necessarily associated with operators on any specific Hilbert space.

We now show that every commutative C∗-algebra with unit is isomet-
rically ∗-isomorphic to the algebra C(X) of all complex-valued continuous
functions on a compact Hausdorff spaceX. A similar result holds for nonuni-
tal commutative C∗-algebras, provided that one is willing to replace X with
a locally compact Hausdorff space and C(X) with the algebra of continuous
functions vanishing at infinity. We will confine attention to the unital case
here; the nonunital generalization can be found in [2], for example.

This C∗-algebraic characterization of spaces has led analysts to think
of noncommutative C∗-algebras as noncommutative generalizations of topo-
logical spaces, and of problems concerning the classification of these alge-
bras up to ∗-isomorphism as a noncommutative generalization of (algebraic)
topology. For example, the K-theory of spaces developed by Grothendieck,
Atiyah, Bott, and others during the period 1955–1965 has now been general-
ized to C∗-algebras in a way that provides effective tools for the computation
of these invariants [8]. Indeed, contemporary work on the classification of
simple C∗-algebras has led to the expectation that the most important sim-
ple C∗-algebras are completely determined by their K-theory! Since very
different topological spaces can have the same K-theory, this is an aspect of
“noncommutative topology” that is entirely new and has no counterpart in
the classical theory of topological spaces.

We begin with a brief discussion of the exponential map in a (perhaps
noncommutative) unital Banach algebra A. For every element x ∈ A the
exponential of x is defined by

(2.2) ex =
∞∑
n=0

1
n!
xn.
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Notice that this series converges absolutely, since
∞∑
n=0

‖ 1
n!
xn‖ ≤

∞∑
n=0

‖x‖n/n! = e‖x‖ <∞,

and we have the estimate ‖ex‖ ≤ e‖x‖. Obviously, e0 = 1.

Remark 2.2.2. Rearranging products of series. Let a0, a1, a2, . . . and
b0, b1, b2, . . . be two sequences of elements of A such that

∑
n ‖an‖ < ∞,∑

n ‖bn‖ < ∞, and let x =
∑
n an, y =

∑
n bn. Then the product xy is

given by the series xy =
∑
n cn, where

(2.3) cn = a0bn + a1bn−1 + · · ·+ anb0, n = 0, 1, 2, . . . ,

the series
∑
n cn being absolutely convergent in the sense that

∑
n ‖cn‖ <∞.

The proof is an instructive exercise in making estimates, and is left for the
reader in Exercise (1) below.

Proposition 2.2.3. Let x, y be elements of a unital Banach algebra A
satisfying xy = yx. Then ex+y = exey.

Proof. Using formula (2.3), we have

exey =
∞∑
p,q=0

1
p!
xp

1
q!
yq =

∞∑
n=0

( ∑
p+q=n

1
p!q!

xpyq

)
.

Since xy = yx, the proof of the binomial theorem applies here to give

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k = n!

∑
p+q=n

1
p!q!

xpyq;

hence the right side of the preceding formula becomes
∞∑
n=0

1
n!
(x+ y)n = ex+y.

�

Much of the terminology introduced in the preceding section can be
applied to abstract C∗-algebras as well as C∗-algebras of operators. For
example, a normal element of a C∗-algebra is an element that commutes
with its adjoint, and a unitary element of a unital C∗-algebra is an element
u satisfying u∗u = uu∗ = 1. A unitary element has norm 1, since ‖u‖2 =
‖u∗u‖ = ‖1‖ = 1.

Theorem 2.2.4. Let A be a commutative C∗-algebra with unit, and let
X = sp(A) be the Gelfand spectrum of A. Then the Gelfand map is an
isometric ∗-isomorphism of A onto C(X).
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Proof. We show first that every ω ∈ sp(A) preserves the adjoint in the
sense that ω(x∗) = ω(x), x ∈ A. Since every x ∈ A can be written uniquely
in the form x = x1 + ix2 where x1 and x2 are self-adjoint, it suffices to
show that ω(x) is real for any self-adjoint element x ∈ A. To prove this, fix
x = x∗ ∈ A, fix t ∈ R, and consider the exponential

ut = eitx =
∞∑
n=0

(it)n

n!
xn.

Notice that

(2.4) ω(ut) =
∞∑
n=0

(it)n

n!
ω(xn) =

∞∑
n=0

(it)n

n!
ω(x)n = eitω(x).

Note, too, that ut is unitary. Indeed, by inspection of the exponential series
(noting that tn is real and xn is self-adjoint for every n ≥ 0), we have
u∗
t = e−itx, and hence u∗

tut = e−itxeitx = e0 = 1 by Proposition 2.2.3.
Similarly, utu∗

t = 1. It follows that ‖ut‖ = 1, and thus |ω(ut)| ≤ ‖ω‖ = 1 for
every t ∈ R. Using formula (2.4) and the fact that *(itω(x)) = −t+ω(x),
we find that

e−t�ω(x) = e�(itω(x)) = |eitω(x)| = |ω(ut)| ≤ 1, t ∈ R.

Since t ∈ R is arbitrary, this implies that the imaginary part of ω(x) must
vanish, proving that ω(x) is real.

This shows that the Gelfand map of A to C(X) is self-adjoint in the sense
that the Gelfand transform of x∗ is the complex conjugate of the function
x̂, for every x ∈ A. It follows that {x̂ : x ∈ A} is a self-adjoint subalgebra
of C(X) that separates points and contains the constant functions. The
Stone–Weierstrass theorem implies that {x̂ : x ∈ A} is norm-dense in C(X).

We complete the proof by showing that the Gelfand map is isometric.
We claim first that for x ∈ A, ‖x2‖ = ‖x‖2. Indeed, using the formula
‖z∗z‖ = ‖z‖2 and the fact that x∗ commutes with x we have∥∥x2∥∥ = ∥∥(x2)∗x2∥∥1/2 = ‖x∗xx∗x‖1/2 =

∥∥(x∗x)2
∥∥1/2 = ‖x∗x‖ = ‖x‖2.

Replacing x with x2 gives ‖x4‖ = ‖x‖4, and after further iteration∥∥x2n∥∥ = ‖x‖2n
, n = 1, 2, . . . .

The Gelfand–Mazur formula for the spectral radius (Theorem 1.7.3) implies

‖x‖ = ‖x2n‖1/2n
= lim
n→∞ ‖x

2n‖1/2n
= r(x),

while from Theorem 1.9.5, we have

r(x) = sup{|λ| : λ ∈ σ(x)} = sup{|x̂(ω)| : ω ∈ sp(A)} = ‖x̂‖∞,

and hence the asserted formula ‖x‖ = ‖x̂‖∞. �

Corollary 1. Let A be a (perhaps noncommutative) unital C∗-algebra.
Then the spectrum of any self-adjoint element x of A is real.
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Proof. Choose an element x = x∗ of A, and let B be the norm-closure
of the set of all polynomials in x. Then B is a commutative C∗-subalgebra
of A that contains the unit of A, hence σA(x) ⊆ σB(x). On the other hand,
Theorem 2.2.4 implies that ω(x) is real for every ω ∈ sp(B), and hence
spA(x) ⊆ σB(x) = {ω(x) : ω ∈ sp(B)} ⊆ R. �

The following result strengthens the spectral permanence theorem for
the category of C∗-algebras:

Corollary 2. Let A be a unital C∗-algebra and let B ⊆ A be a C∗-
subalgebra of A that contains the unit of A. Then for every x ∈ B we have
σB(x) = σA(x). In particular, for every self-adjoint x ∈ A,

‖x‖ = r(x).

Proof. We know that σA(x) ⊆ σB(x) in general, and to prove the
opposite inclusion it suffices to show that for any element x ∈ B which is
invertible in A one has x−1 ∈ B.

Fix such an x. Then x∗x is a self-adjoint element of B that is also
invertible in A. By the preceding corollary, σB(x∗x) is real. In particular,
every point of σB(x∗x) is a boundary point. By Theorem 1.11.3, σB(x∗x) =
∂σB(x∗x) ⊆ σA(x∗x). Since 0 /∈ σA(x∗x), 0 /∈ σB(x∗x), and hence x∗x is
invertible in B, equivalently, (x∗x)−1 ∈ B. Obviously, (x∗x)−1x∗ is a left
inverse of x; hence x−1 = (x∗x)−1x∗ must belong to B.

The assertion that ‖x‖ = r(x) follows after an application of Theorem
2.2.4 to the C∗-subalgebra of A generated by x and 1. �

Thus we may compute the spectrum of a Hilbert space operator T rel-
ative to any C∗-algebra that contains T and the identity. In particular,
we may restrict attention to the unital C∗-algebra generated by T . This
is particularly useful in dealing with normal operators, since in those cases
the generated C∗-algebra is commutative. We will pursue applications to
normal operators in the following section.

Exercises.
(1) Prove the assertions made in Remark 2.2.2.
(2) Let A be a C∗-algebra.

(a) Show that the involution in A satisfies ‖x∗‖ = ‖x‖.
(b) Show that if A contains a unit 1, then ‖1‖ = 1.

In the following exercises, X and Y denote compact Hausdorff
spaces, and θ : C(X) → C(Y ) denotes an isomorphism of com-
plex algebras. We do not assume continuity of θ:

(3) Let p ∈ Y . Show that there is a unique point q ∈ X such that

θf(p) = f(q), f ∈ C(X).

(4) Show that there is a homeomorphism φ : Y → X such that θf =
f ◦ φ. Hint: Think in terms of the Gelfand spectrum.



50 2. OPERATORS ON HILBERT SPACE

(5) Conclude that θ is necessarily a self-adjoint linear map in the sense
that θ(f∗) = θ(f)∗, f ∈ C(X).

(6) Formulate and prove a theorem that characterizes unital algebra
homomorphisms θ : C(X) → C(Y ) in terms of certain maps φ :
Y → X. Which maps φ give rise to isomorphisms?

In the remaining exercises, let H be a Hilbert space and let
T ∈ B(H)−1 be an invertible operator. Define θ : B(H) → B(H)
by

θ(A) = TAT−1, A ∈ B(H).

(7) Show that θ is an automorphism of the Banach algebra structure
of B(H).

(8) Show that the map θ : B(H) → B(H) of the preceding exercise
satisfies θ(A∗) = θ(A)∗ for all A ∈ B(H) if and only if T is a scalar
multiple of a unitary operator.

2.3. Continuous Functions of Normal Operators

One can reinterpret Theorem 2.2.4 so as to provide a powerful functional
calculus for normal operators. Sometimes this functional calculus is referred
to as a weak form of the spectral theorem, or even as the spectral theorem
itself; but that is a half-truth at best. The spectral theorem proper will be
taken up in Section 2.4.

Throughout this section T will denote a normal operator on a Hilbert
space H. The spectrum of T is a compact subset X of the complex plane,
and by the Stone–Weierstrass theorem polynomials in z and z̄ of the form

(2.5) f(z) =
N∑

m,n=0

cmnz
mz̄n, z ∈ X,

form a unital self-adjoint subalgebra of C(X) that is norm-dense in C(X).
Given such a function f (or more properly, given the set of coefficients
{cmn : 0 ≤ m,n ≤ N}), one can write down a corresponding operator

(2.6) f(T ) =
N∑

m,n=0

cmnT
mT ∗n.

Notice that this much could have been done even if the operator T were not
normal, since we have been explicit about the order of the factors Tm and
T ∗n on the right side of (2.6). However, for nonnormal operators f �→ f(T )
is not a well-defined map of functions on X to B(H), even for holomorphic
polynomials f(z) = a0 + a1z + · · · + aNz

N (one can easily see why this is
so by considering the case of nilpotent 2× 2 matrices acting as operators on
C2).

But for normal operators, we have:
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Theorem 2.3.1. Let T ∈ B(H) be a normal operator with spectrum
X ⊆ C. Then the map that carries polynomials f of the form (2.5) to
operators of the form f(T ) in (2.6) extends uniquely to an isometric ∗-
isomorphism of C(X) onto the C∗-algebra generated by T and 1.

Proof. Let A be the C∗-algebra generated by T and 1. We apply
Theorem 2.2.4 to A as follows.

We claim first that the map ω ∈ sp(A) �→ ω(T ) ∈ C is a homeomorphism
of the Gelfand spectrum of A onto X = σ(T ). Indeed, this map is obviously
a continuous map of sp(A) into C, and it is injective because if ω1 and ω2
are two elements of sp(A) with ω1(T ) = ω2(T ), then by Theorem 2.2.4

ω1(T ∗) = ω1(T ) = ω2(T ) = ω2(T ∗),

and hence ω1 and ω2 agree on the linear span of all products TmT ∗n, a dense
subspace of A. By compactness of sp(A), this map is a homeomorphism of
sp(A) onto the spectrum of T relative to A which, by Corollary 2 of Theorem
2.2.4, is X = σ(T ).

These remarks identify sp(A) with X in such a way that the Gelfand
map carries an operator of the form f(T ) in (2.6) to a polynomial f ∈ C(X)
of the form f(z) in (2.5).

We conclude from Theorem 2.2.4 that the inverse of the Gelfand map
defines an isometric ∗-isomorphism of C(X) onto A that uniquely extends
the map f �→ f(T ) described above. �

Exercises.

(1) Show that the spectrum of a normal operator T ∈ B(H) is con-
nected if and only if the C∗-algebra generated by T and 1 contains
no projections other than 0 and 1.

Consider the algebra C of all continuous functions f : C → C.
There is no natural norm on C, but for every compact subsetX ⊆ C

there is a seminorm

‖f‖X = sup
z∈X

|f(z)|.

C is a commutative ∗-algebra with unit.

(2) Given a normal operator T ∈ B(H), show that there is a natural
extension of the functional calculus to a ∗-homomorphism f ∈ C →
f(T ) ∈ B(H) that satisfies ‖f(T )‖ = ‖f‖σ(T ).

(3) Continuity of the functional calculus. Fix a function f ∈ C and let
T1, T2, . . . be a sequence of normal operators that converges in norm
to an operator T , limn ‖Tn − T‖ = 0. Show that f(Tn) converges
in norm to f(T ).
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2.4. The Spectral Theorem and Diagonalization

The spectral theorem is a generalization of the familiar theorem from linear
algebra asserting that a self-adjoint n × n matrix A can be diagonalized;
more precisely, there is a diagonal matrix D and a unitary matrix U such
that A = UDU−1. The diagonal components of D are the eigenvalues of
A listed in some order, repeated according to their multiplicity. A similar
diagonalization result is valid for normal n× n complex matrices.

In reading this section one should keep in mind not only the finite-
dimensional case, or the infinite-dimensional case of self-adjoint operators
having pure point spectrum, but also the case of operators having continuous
spectrum and no eigenvalues at all, such as the operator X acting on L2 of
the unit interval [0, 1] by

(2.7) Xf(t) = tf(t), 0 ≤ t ≤ 1.

We assume that we are given a normal operator A acting on a separa-
ble infinite-dimensional Hilbert space H. There is an appropriate version
of the spectral theorem for operators acting on inseparable spaces, which
we describe briefly at the end of the section. However, we point out that
operators acting on inseparable Hilbert spaces (in particular, normal ones)
rarely arise in practice.

In order to properly formulate the spectral theorem we must general-
ize the notion of an orthonormal basis so as to accommodate “continuous”
bases, and we must introduce a precise notion of “diagonalizable” operator
relative to this generalized notion of basis.

Consider first the classical notion of orthonormal basis for H. This is
a sequence E = {e1, e2, . . . } of mutually orthogonal unit vectors in H that
have H as their closed linear span. Fixing such an E we can define a unitary
operator W : �2 → H as follows:

(2.8) Wλ = λ1e1 + λ2e2 + · · · , λ ∈ �2.

It is clear that every unitary operator W : �2 → H arises in this way
from a unique orthonormal basis E for H. We conclude that specifying a
particular orthonormal basis for H is the same as specifying a particular
unitary operator from �2 to H.

Continuing in this vein, suppose we are also given a normal operator
A ∈ B(H) that has each of the given basis vectors as an eigenvalue:

(2.9) Aek = akek, k = 1, 2, . . . .

It follows that the sequence of eigenvalues (ak) belongs to �∞, and for the
unitary operator W : �2 → H of (2.8) we find that the transformed operator
B = W−1AW ∈ B(�2) is a multiplication operator:

(Bλ)k = akλk, λ ∈ �2, k = 1, 2, . . . .
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Thus, an operator A acting on H is diagonalized by a given orthonormal
basis if and only if the unitary operator associated with the basis implements
an equivalence between A and a multiplication operator acting on �2.

This notion of diagonalization is inadequate as it stands, since it involves
only normal operators having pure point spectrum. However, it can be
generalized in a natural way so as to include the possibility of continuous
spectrum.

Definition 2.4.1. An operator A acting on a separable Hilbert space
H is said to be diagonalizable if there is a (necessarily separable) σ-finite
measure space (X,µ), a function f ∈ L∞(X,µ), and a unitary operator
W : L2(X,µ)→ H such that WMf = AW , Mf denoting multiplication by
f :

(Mfξ)(x) = f(x)ξ(x), x ∈ X, ξ ∈ L2(X,µ).

Notice that a diagonalizable operator is necessarily normal, simply be-
cause multiplication operators are normal. Note, too, that the operator X
of (2.7) is diagonalizable, since it is already a multiplication operator. Some
more subtle examples are described in the exercises. The spectral theorem
asserts that conversely, every normal operator is diagonalizable. We have
broken the proof into a sequence of three simpler assertions.

Lemma 2.4.2. Let A1, A2, . . . be a finite or infinite sequence of diago-
nalizable operators acting on respective Hilbert spaces H1, H2, . . . , satisfying
supn ‖An‖ < ∞. Then the direct sum A1 ⊕ A2 ⊕ · · · is a diagonalizable
operator on H1 ⊕H2 ⊕ · · · .

Proof. This assertion follows from the fact that the countable direct
sum of σ-finite measure spaces is a σ-finite measure space. In more detail,
by hypothesis, we may find σ-finite measure spaces (Xn, µn), functions fn ∈
L∞(Xn, µn), and unitary operators Wn : L2(Xn, µn) → Hn, n = 1, 2, . . .
such that

WnMfn = AnWn, n = 1, 2, . . . .
Since An is unitarily equivalent to Mfn , our previous work with multi-
plication operators implies that the norm of fn ∈ L∞(Xn, µn) satisfies
‖fn‖∞ = ‖An‖, hence

sup
n
‖fn‖∞ = sup

n
‖An‖ <∞.

Let X = X1 ! X2 ! · · · be the disjoint union of sets with the obvious
σ-algebra of subsets and consider the measure µ defined on X by

µ(E) = µ1(E ∩X1) + µ2(E ∩X2) + · · ·
for Borel sets E ⊆ X. The measure µ is σ-finite because each µn is.
Moreover, there is a natural identification of L2(X,µ) with the direct sum
of L2-spaces L2(X1, µ1) ⊕ L2(X2, µ2) ⊕ · · · . Thus the direct sum of uni-
tary operators W = W1 ⊕W2 ⊕ · · · gives rise to a unitary operator from
L2(X,µ) to H1 ⊕ H2 ⊕ · · · . The unique function f : X → C satisfying
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f �Xn= fn belongs to L∞(X,µ), it determines a bounded multiplication
operator Mf ∈ B(L2(X,µ)), and the unitary operator W intertwines Mf

and A1 ⊕A2 ⊕ · · · . Hence A1 ⊕A2 ⊕ · · · is diagonalizable. �

Lemma 2.4.3. Let A be a bounded operator on a separable Hilbert space
H and let A be the complex algebra generated by A,A∗, and the identity.
Then there is a (finite or infinite) sequence of nonzero A-invariant subspaces
H1, H2, . . . such that:

(1) H = H1 ⊕H2 ⊕ · · · .
(2) Each Hn contains a cyclic vector ξn for A: Hn = Aξn, n = 1, 2, . . . .

Proof. This is a standard exhaustion argument. By Zorn’s lemma we
can find a family of mutually orthogonal nonzero subspaces {Hα : α ∈ I} of
H, each of which is A-invariant, each containing a vector ξα such that Hα
is spanned by Aξα, and that is maximal with respect to these properties.
Since H is separable, the index set I must be finite or countable, and we
can replace it with a subset of the positive integers if we wish.

It remains only to show that the spaces Hα span H. But if they did
not then the orthocomplement K of

∑
αHα would be a nonzero A-invariant

subspace of H (note that since A is a self-adjoint set of operators, the
orthocomplement of an A-invariant subspace is A-invariant). Picking any
nonzero vector ξ in K we obtain a nonzero cyclic subspace K0 = Aξ ⊆ K
that can be adjoined to the family {Hα} to contradict maximality. �

The key step follows:

Lemma 2.4.4. Let A be a normal operator on a Hilbert space H and
assume that the ∗-algebra generated by A and the identity has a cyclic vector.
Then A is diagonalizable.

Proof. The cyclic vector hypothesis means that there is a vector ξ ∈ H
such that the set of vectors Aξ is dense in H, where A is the ∗-algebra
generated by A and 1. Fix such a vector ξ and let X ⊆ C be the spectrum of
A. We will show that there is a finite measure µ on X with the property that
A is unitarily equivalent to the multiplication operator Mζ ∈ B(L2(X,µ)),
ζ(z) = z (z ∈ X) being the current variable function in C(X) ⊆ L∞(X,µ).
Recalling that the functional calculus for normal operators provides a ∗-
homomorphism f ∈ C(X) �→ f(A) ∈ B(H), we define a linear functional ρ
on C(X) by ρ(f) = 〈f(A)ξ, ξ〉. Since

ρ(|f |2) = ρ(f̄f) = 〈f(A)∗f(A)ξ, ξ〉 = ‖f(A)ξ‖2 ≥ 0,

ρ is a positive linear functional; hence the Riesz–Markov theorem provides
a unique finite positive Borel measure µ on X such that∫

X
f(x)dµ(x) = 〈f(A)ξ, ξ〉, f ∈ C(X).
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If we consider C(X) as a subspace of L2(X,µ), then C(X) is dense, and for
f, g ∈ C(X) we have

〈f(A)ξ, g(A)ξ〉 = 〈g(A)∗f(A)ξ, ξ〉 = ρ(ḡf)

=
∫
X
f(x)ḡ(x)dµ(x) = 〈f, g〉L2(X,µ).

Thus the map f ∈ C(X) �→ f(A)ξ ∈ H is an isometry of the dense subspace
C(X) ⊆ L2(X,µ) onto the subspace {f(A)ξ : f ∈ C(X)} ⊆ H, which is
dense in H because ξ is cyclic for the ∗-algebra generated by A and 1. The
closure of this operator is a unitary operator W : L2(X,µ)→ H.

It remains to verify that for every f ∈ C(X) we have WMf = f(A)W
(the assertion of Lemma 2.4.4 being that this formula holds for f(z) = z,
z ∈ X). For that, fix f ∈ C(X). Since C(X) is dense in L2(X,µ) it is
enough to check that

WMfg = f(A)Wg, g ∈ C(X).

But for fixed g, WMfg = W (fg) = (fg)(A)ξ = f(A)g(A)ξ = f(A)Wg. �
Spectral Theorem 2.4.5. Every normal operator acting on a separable

Hilbert space is diagonalizable.

Proof. Let A be the ∗-algebra generated by A and the identity. By
Lemma 2.4.3 we can decompose H into a finite or countably infinite direct
sum of nonzero subspaces H1 ⊕ H2 ⊕ · · · such that AHk ⊆ Hk and the
restriction of A to Hk has a cyclic vector, k = 1, 2, . . . . By Lemma 2.4.4,
the restriction Ak of A to Hk is diagonalizable. Since the decomposition

A = A1 ⊕A2 ⊕ · · ·
exhibits A as a uniformly bounded orthogonal direct sum of diagonalizable
operators, Lemma 2.4.2 above implies that A is diagonalizable. �

Remark 2.4.6. Comments on inseparability. If one insists on general-
izing this form of the spectral theorem so as to include normal operators
acting on inseparable Hilbert spaces, then it is possible to do so but some
technical changes are necessary.

The definition of diagonalizable operator must be generalized so as to
allow inseparable measure spaces that are not σ-finite. Thus one says that
an operator A ∈ B(H) is diagonalizable if there is a positive measure space
(X,µ), a function f ∈ L∞(X,µ), and a unitary operator W : L2(X,µ)→ H
such that WMf = AW . One must replace Lemma 2.4.2 with the assertion
that the direct sum of a uniformly bounded family {Aα : α ∈ I} of diag-
onalizable operators is diagonalizable, where I is an index set of arbitrary
cardinality. The proof of that result is similar to the one given, except that
one has to construct uncountable direct sums of measure spaces. This re-
quires some care but poses no substantial difficulties. No change is required
for the key Lemma 2.4.4, but one must replace Lemma 2.4.3 with the as-
sertion that every normal operator is a perhaps uncountable direct sum of
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normal operators having cyclic vectors. Once these preparations are made,
the proof of the spectral theorem can be pushed through in general.

Exercises.
(1) Let X be a Borel space, let f be a bounded complex-valued Borel

function defined on X, and let µ and ν be two σ-finite measures on
X. The multiplication operatorMf defines bounded operatorsA on
L2(X,µ) and B on L2(X, ν). Assuming that µ and ν are mutually
absolutely continuous, show that there is a unitary operator W :
L2(X,µ)→ L2(X, ν) such that WA = BW . Hint: Use the Radon–
Nikodym theorem.

(2) Show that every diagonalizable operator on a separable Hilbert
space is unitarily equivalent to a multiplication operator Mf acting
on L2(X,µ) where (X,µ) is a probability space, that is, a measure
space for which µ(X) = 1.

The following exercises concern the self-adjoint operator A de-
fined on the Hilbert space of bilateral sequences H = �2(Z) by

Aξn = ξn+1 + ξn−1, n ∈ Z, ξ ∈ �2(Z).

(3) Show that A is diagonalizable by exhibiting an explicit unitary
operator W : L2(T, dθ/2π)→ H for which WMf = AW , where f :
T → R is the function f(eiθ) = 2 cos θ. Deduce that the spectrum
of A is the interval [−2, 2] and that the point spectrum of A is
empty.

(4) Let U be the operator defined on L2(T, dθ/2π) by

Uf(eiθ) = f(e−iθ), 0 ≤ θ ≤ 2π.

Show that U is a unitary operator on L2(T, dθ/2π) that satisfies
U2 = 1, and which commutes with A.

(5) Let B the the set of all operators on L2(T, dθ/2π) that have the
form Mf +MgU where f, g ∈ L∞(T, dθ/2π) and U is the unitary
operator of the preceding exercise. Show that B is ∗-isomorphic to
the C∗-algebra of all 2× 2 matrices of functions M2(B0), where B0
is the abelian C∗-algebra L∞(X,µ), X being the upper half of the
unit circle X = T ∩ {z = x + iy ∈ C : y ≥ 0} and µ being the
restriction of the measure dσ = dθ/2π to X.

The following exercises ask you to compare the operator A to a
related operator B that acts on the Hilbert space L2([−2, 2], ν), ν
being Lebesgue measure on the interval [−2, 2]. The operator B is
defined by

Bf(x) = xf(x), x ∈ [−2, 2], f ∈ L2([−2, 2], ν).

(6) Show that B has spectrum [−2, 2], that it has no point spectrum,
and deduce that for every f ∈ C[−2, 2] we have ‖f(A)‖ = ‖f(B)‖.
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(7) Show that A and B are not unitarily equivalent. Hint: What is the
commutant of B?

(8) Show that A is unitarily equivalent to B ⊕B.

2.5. Representations of Banach ∗-Algebras

We now discuss some basic facts of representation theory that are best for-
mulated in very general terms.

Definition 2.5.1. A Banach ∗-algebra is a Banach algebra A that is
endowed with an involution x �→ x∗ satisfying ‖x∗‖ = ‖x‖, x ∈ A.

Every C∗-algebra is, of course, a Banach ∗-algebra; but we will see many
examples of Banach ∗-algebras for which the C∗-condition ‖x∗x‖ = ‖x‖2

fails.

Definition 2.5.2. A representation of a Banach ∗-algebra is a homo-
morphism π : A → B(H) of A into the ∗-algebra of bounded operators on
some Hilbert space satisfying π(x∗) = π(x)∗ for all x ∈ A.

Notice that we have not postulated that representations π are bounded,
but merely that they are homomorphisms of the complex ∗-algebra structure.
The set of all representations of A on a fixed Hilbert space H is denoted
rep(A,H). The image π(A) of A under a ∗-representation is a self-adjoint
subalgebra of B(H) that may or may not be closed in the operator norm. A
representation π : A→ B(H) is said to be nondegenerate if for every ξ ∈ H,

π(x)ξ = 0, ∀x ∈ A =⇒ ξ = 0.

Remark 2.5.3. A representation π ∈ rep(A,H) is nondegenerate iff
H = [π(A)H] is the closed linear span of the set of vectors

π(A)H = {π(x)ξ : x ∈ A, ξ ∈ H}.
More generally, letting Nπ = {ξ ∈ H : π(A)ξ = {0}} be the null space of
the operator algebra π(A), H decomposes into an orthogonal direct sum of
π(A)-invariant subspaces:

H = Nπ ⊕ [π(A)H].

See Exercise (1) below. The closed subspace [π(A)H] is called the essential
space of π.

Given two representations πk ∈ rep(A,Hk), k = 1, 2, there is a natural
notion of the direct sum of representations π1 ⊕ π2 ∈ rep(A,H1 ⊕H2),

π1 ⊕ π2(x) = π1(x)⊕ π2(x), x ∈ A.

A subrepresentation of a representation π ∈ rep(A,H) is a representation
π0 ∈ rep(A,H0) obtained from π by restricting to a π(A)-invariant subspace
H0 ⊆ H as follows:

π0(x) = π(x) �H0∈ B(H0), x ∈ A.
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Finally, two representations πk ∈ rep(A,Hk), k = 1, 2, are said to be
unitarily equivalent (or simply equivalent) if there is a unitary operator
W : H1 → H2 such that Wπ1(x)W ∗ = π2(x) for every x ∈ A. It is clear
that equivalent representations are indistinguishable from each other.

Thus we may paraphrase Remark 2.5.3 as follows: Every representation
π of a Banach ∗-algebra on a Hilbert space is equivalent to the direct sum
πe⊕π0 of a nondegenerate representation πe with the zero representation π0
on some Hilbert space. Thus, the representation theory of Banach ∗-algebras
reduces to the theory of nondegenerate representations.

Proposition 2.5.4. Every nonunital Banach ∗-algebra can be embedded
as a maximal ideal of codimension 1 in a unital Banach ∗-algebra for which
‖1‖ = 1.

Proof. Let A be a nonunital Banach ∗-algebra. The vector space A⊕C

can be made into a ∗-algebra Ã by introducing the operations

(a, λ) · (b, µ) = (ab+ λb+ µa, λµ), (a, λ)∗ = (a∗, λ̄).

The element 1 = (0, 1) is a unit for Ã, and we have (a, λ) = a + λ1. Ob-
viously, A is a maximal ideal of codimension 1 in Ã. Ã becomes a Banach
∗-algebra by way of the norm ‖(a, λ)‖ = ‖a‖+ |λ|, with respect to which the
inclusion map of A in Ã is an isometric ∗-homomorphism. �

The following implies that representations of Banach ∗-algebras are nec-
essarily bounded. There are many applications of this remarkable result.

Theorem 2.5.5. Let π ∈ rep(A,H) be a representation of a Banach
∗-algebra A on a Hilbert space H. Then ‖π‖ ≤ 1.

Proof. By the preceding remarks, it suffices to consider the case in
which π is nondegenerate.

We deal first with the case in which A has a unit 1. Because of nonde-
generacy we have π(1) = 1 (see Exercise (2), below). Notice that for every
a ∈ A, σ(π(a)) ⊆ σ(a). Indeed, if λ ∈ C\σ(a), then (a−λ)−1 ∈ A, and since
π(1) = 1, π((a− λ)−1) is the inverse of π(a)− λ. Hence λ ∈ C \ σ(π(a)).

We show next that ‖π(a)‖ ≤ ‖a‖ for every a ∈ A. To see that, we use
the C∗-property of the norm in B(H) to write

‖π(a)‖2 = ‖π(a)∗π(a)‖ = ‖π(a∗a)‖.
Since π(a∗a) is a self-adjoint element of B(H), its norm agrees with its
spectral radius, so that by the preceding paragraph,

‖π(a∗a)‖ = r(π(a∗a)) ≤ r(a∗a) ≤ ‖a∗a‖ ≤ ‖a∗‖‖a‖ = ‖a‖2.

Hence ‖π(a)‖ ≤ ‖a‖.
Suppose now that A has no unit, and let Ã be its unital extension

discussed in Proposition 2.5.4. The natural extension of π to Ã is

π̃(a+ λ1) = π(a) + λ1,
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and one readily verifies that π̃ is a representation of Ã on H. By what was
just proved we have ‖π̃‖ ≤ 1, and since A is isometrically included in Ã, it
follows that ‖π‖ ≤ 1. �

Exercises.
(1) Let A = A∗ ⊆ B(H) be a self-adjoint algebra of operators on a

Hilbert space, and let

N = {ξ ∈ H : Aξ = {0}}
be the null space of A. Show that the orthogonal complement of
N is the closed linear span of AH = {Tξ : T ∈ A, ξ ∈ H} and that
both N and [AH] are A-invariant subspaces.

(2) Let A be a Banach ∗-algebra with unit 1, and let π ∈ rep(A,H) be
a representation of A. Show that π is nondegenerate iff π(1) = 1H .

(3) Let A be a Banach ∗-algebra. A representation π ∈ rep(A,H) is
said to be cyclic if there is a vector ξ ∈ H with the property that
the set of vectors π(A)ξ is dense in H. Show that a representation
π ∈ rep(A,H) is nondegenerate iff it can be decomposed into a
direct sum of cyclic subrepresentations in the following sense: There
is a family Hi ⊆ H, i ∈ I, of nonzero subspaces of H that are
mutually orthogonal, π(A)-invariant, that sum to H, and such that
for each i ∈ I there is a vector ξi ∈ Hi with π(A)ξi = Hi.

(4) Let A be a Banach ∗-algebra. A representation π ∈ rep(A,H) is
said to be irreducible if the only closed π(A)-invariant subspaces of
H are the trivial ones {0} and H. Show that π is irreducible iff
the commutant of π(A) consists of scalar multiples of the identity
operator.

(5) Let X be a compact Hausdorff space and let π be an irreducible
representation of the C∗-algebra C(X) on a Hilbert space H. Show
that H is one-dimensional and there is a unique point p ∈ X such
that

π(f) = f(p)1, f ∈ C(X).

2.6. Borel Functions of Normal Operators

Let N be a normal operator acting on a Hilbert space H with spectrum
X ⊆ C. We have discussed how to form continuous functions of N of the
form f(N), f ∈ C(X). We now show how this functional calculus can be
extended, in a more or less ultimate way, to bounded Borel functions.

Let X be a compact metrizable space. A complex-valued function de-
fined on X is called a Borel function if it is measurable with respect to
the Borel σ-algebra B of X, the σ-algebra of subsets of X generated by its
topology. The space of all bounded complex-valued Borel functions on X
is denoted B(X); it is closed in the sup norm and is a unital commutative
C∗-algebra relative to the pointwise operations and the natural involution
f∗(p) = f̄(p), p ∈ X. Clearly C(X) ⊆ B(X), but the difference between
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these two C∗-algebras is significant. Notice, for example, that while C(X)
is separable, B(X) is typically inseparable; while C(X) has nontrivial pro-
jections only when X fails to be connected, B(X) is always generated by its
projections.

We will show that every representation π ∈ rep(C(X), H) can be ex-
tended in a particular way to a representation π̃ ∈ rep(B(X), H).

Definition 2.6.1. A representation π ∈ rep(B(X), H) is called a σ-
representation if it has the following property: For every uniformly bounded
sequence f1, f2, . . . ∈ B(X) which converges pointwise to zero in that

lim
n→∞ fn(p) = 0, p ∈ X,

the sequence of operators π(fn) converges strongly to 0,

lim
n→∞ ‖π(fn)ξ‖ = 0, ξ ∈ H.

Remark 2.6.2. It is significant that because π is a representation, we can
replace strong convergence in the definition above with weak convergence.
To see that the two definitions are equivalent, suppose π ∈ rep(B(X), H)
has the property that for every uniformly bounded sequence f1, f2, . . . that
converges pointwise to 0, π(fn) converges weakly to 0. We claim that π is a
σ-representation. Indeed, for fixed ξ ∈ H we have

(2.10) ‖π(f)ξ‖2 = 〈π(f)ξ, π(f)ξ〉 = 〈π(f)∗π(f)ξ, ξ〉 = 〈π(f∗f)ξ, ξ〉.
If f1, f2, . . . is a bounded sequence converging pointwise to 0, then f∗

nfn(p) =
|fn(p)|2, p ∈ X, is also a bounded sequence converging pointwise to 0, and
hence π(f∗

nfn) → 0 weakly by hypothesis. The identity (2.10) implies that
π(fn)→ 0 strongly, as required.

Theorem 2.6.3. Let X be a compact metrizable space and let H be a
Hilbert space. Every nondegenerate representation π ∈ rep(C(X), H) ex-
tends uniquely to a σ-representation π̃ ∈ rep(B(X), H).

Proof. We deal first with uniqueness, and for that some notation will
be useful. Let B be the σ-algebra of all Borel sets in X and let M(X) be the
Banach space of all complex-valued Borel measures µ : B → C. An element
of M(X) is a function µ : B → C satisfying µ(∅) = 0, and for every sequence
of mutually disjoint Borel sets E1, E2, . . . ,

µ(E1 ∪ E2 ∪ · · · ) =
∞∑
n=1

µ(En),

where the right side is interpreted as a convergent series of complex numbers.
For every measure µ ∈M(X) there is a smallest positive Borel measure |µ|
satisfying

|µ(S)| ≤ |µ|(S), S ∈ B,
and the norm is given by ‖µ‖ = |µ|(X) <∞.
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Given a σ-representation π̃ that extends π, fix ξ, η ∈ H and consider the
set function µξ,η : B → C defined by

µξ,η(S) = 〈π̃(χS)ξ, η〉, S ∈ B.
It is clear that µξ,η is a finitely additive measure because π̃ preserves the
algebraic operations of multiplication and addition. We claim that, in fact,
µξ,η is countably additive. To see this, let E1, E2, . . . be a sequence of
mutually disjoint Borel sets with union F = ∪nEn. We have to show that

µξ,η(F ) = lim
n→∞

n∑
k=1

µξ,η(Ek).

Letting Fn = E1 ∪ · · · ∪ En, we have

µξ,η(F )−
n∑
k=1

µξ,η(Ek) = µξ,η(F \ Fn) = 〈π̃(χF\Fn
)ξ, η〉.

Since the sequence of functions fn = χF\Fn
is uniformly bounded and tends

to zero pointwise, the right side of the preceding formula must tend to zero
as n→∞ because π̃ is σ-representation.

We claim next that for every f ∈ B(X) we have

(2.11) 〈π̃(f)ξ, η〉 =
∫
X
f dµξ,η.

Indeed, (2.11) is true when f = χE is a characteristic function by definition
of µξ,η. By taking linear combinations it follows for simple functions f ; it
follows in general by an obvious limiting argument, since every function in
B(X) can be uniformly approximated by a sequence of simple functions (see
Exercise (1) below).

To prove uniqueness, let π̃ and π̃′ be two σ-representations that extend
the same representation π of C(X). It suffices to show that for every f ∈
B(X) and ξ, η ∈ H,

(2.12) 〈π̃(f)ξ, η〉 = 〈π̃′(f)ξ, η〉.
Notice that (2.12) holds for all f ∈ C(X) because π̃(f) = π̃′(f) = π(f) in
that case. Consider the measure µξ,η and its counterpart µ′

ξ,η for π̃
′. Taking

f ∈ C(X), formulas (2.11) and (2.12) together imply that∫
X
f dµξ,η =

∫
X
f dµ′

ξ,η,

and hence µξ,η = µ′
ξ,η by the uniqueness assertion of the Riesz–Markov

theorem on the representation of bounded linear functionals on C(X) in
terms of measures. Applying (2.11) we conclude that for all g ∈ B(X),

〈π̃(g)ξ, η〉 =
∫
X
g dµξ,η =

∫
X
g dµ′

ξ,η = 〈π̃′(g)ξ, η〉,

and uniqueness is proved.
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Turning now to existence one simply reverses the argument as follows.
Starting with π ∈ rep(C(X), H), fix a pair of vectors ξ, η ∈ H and consider
the linear functional

f ∈ C(X) �→ 〈π(f)ξ, η〉.
This is a bounded linear functional of norm at most ‖ξ‖‖η‖. By the Riesz–
Markov theorem there is a unique µξ,η ∈M(X) such that

(2.13) 〈π(f)ξ, η〉 =
∫
X
f dµξ,η, f ∈ C(X),

and moreover, ‖µξ,η‖ ≤ ‖ξ‖‖η‖. Notice, too, that the map ξ, η �→ µξ,η ∈
M(X) is linear in ξ and antilinear in η.

Fix a function f ∈ B(X). We define an operator π̃(f) ∈ B(H) by
appealing to the Riesz lemma for sesquilinear forms as follows: Since

ξ, η �→
∫
X
f dµξ,η

is a bounded sesquilinear form of norm at most ‖f‖‖ξ‖‖η‖, there is a unique
operator π̃(f) ∈ B(H) such that

(2.14) 〈π̃(f)ξ, η〉 =
∫
X
f dµξ,η, ξ, η ∈ H.

Obviously, the operator mapping π̃ : C(X) → B(H) is linear and satisfies
‖π̃(f)‖ ≤ ‖f‖, for f ∈ B(X). It is also clear from the definition (2.13) of the
measures µξ,η and the defining formula (2.14) for π̃ that π̃(f) = π(f) when
f ∈ C(X). A straightforward argument (which we omit) shows that π̃ carries
real-valued functions to self-adjoint operators, and hence π̃(f∗) = π̃(f)∗,
f ∈ B(X).

Thus it remains to show that π̃ is multiplicative, π̃(fg) = π̃(f)π̃(g), for
f, g ∈ B(X) and that it satisfies the continuity property of Definition 2.6.1.

To prove the multiplication property, note first that for every ξ, η ∈ H
and g ∈ C(X) we have g · µξ,η = µπ(g)ξ,η. Indeed, this follows from the fact
that for every f ∈ C(X),∫

X
fg dµξ,η = 〈π(fg)ξ, η〉 = 〈π(f)π(g)ξ, η〉 =

∫
X
f dµπ(g)ξ,η.

We claim next that for F ∈ B(X), F · µξ,η = µξ,π̃(F )∗η. This is a similar
string of identities, where we note that for g ∈ C(X) we have∫

X
g d(F · µξ,η) =

∫
X
gF dµξ,η =

∫
X
F dµπ(g)ξ,η = 〈π̃(F )π(g)ξ, η〉

= 〈π(g)ξ, π̃(F )∗η〉 =
∫
X
g dµξ,π̃(F )∗η.
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Finally, we claim that π̃(FG) = π̃(F )π̃(G), for F,G ∈ B(X). Indeed,
fixing F and G and choosing ξ, η ∈ H we have

〈π̃(FG)ξ, η〉 =
∫
X
FGdµξ,η =

∫
X
Gdµξ,π̃(F )∗η

= 〈π̃(G)ξ, π̃(F )∗η〉 = 〈π̃(F )π̃(G)ξ, η〉.
The proof that π̃ is a σ-representation is a straightforward application of

the bounded convergence theorem. Let F1, F2, . . . be a uniformly bounded
sequence in B(X) converging pointwise to 0. For every ξ, η in H we have,

|〈π̃(Fn)ξ, η〉| =
∣∣∣∣∫
X
Fn dµξ,η

∣∣∣∣ ≤ ∫
X
|Fn| d|µξ,η|

and the right side tends to 0 as n→∞ by the bounded convergence theorem,
since |µξ,η| is a finite positive measure on X and |Fn| is a uniformly bounded
sequence of functions tending pointwise to zero. In view of Remark 2.6.2, π̃
is a σ representation of B(X). �

Applying these results to a normal operator N ∈ B(H) we consider the
continuous functional calculus f ∈ C(σ(N)) �→ f(N). By Theorem 2.6.3
there is a unique σ-representation of the algebra B(σ(N)) that extends the
original. This map is also written as if we were applying bounded Borel
functions f ∈ B(σ(N)) to the operator to obtain f(N). The properties of
this Borel functional calculus will be exploited in the following section.

Exercises.
(1) Show that for every f ∈ B(X) and every ε > 0, there is a finite

linear combination of characteristic functions inB(X) (i.e., a simple
function)

g = c1χE1 + c2χE2 + · · ·+ cnχEn

such that ‖f − g‖ ≤ ε. Hint: Cover the range f(X) ⊆ C with a
finely meshed grid and “pull back.”

(2) Let (X,B) be a Borel space. For every σ-finite measure µ on X let
πµ be the representation of B(X) on L2(X,µ) defined by

πµ(f)ξ(p) = f(p)ξ(p), ξ ∈ L2(X,µ).

(a) Show that πµ is a σ-representation of B(X) on L2(X,µ). (No-
tice that the definition of σ-representation makes good sense
in this more general context.)

(b) Given two σ-finite measures µ, ν on (X,B), show that πµ and
πν are unitarily equivalent iff µ and ν are mutually absolutely
continuous.

(c) Deduce that a multiplication operator acting on the L2 space
of a σ-finite measure is unitarily equivalent to a multiplication
operator acting on the L2 space of a finite measure space.
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2.7. Spectral Measures

We have formulated the spectral theorem in terms of diagonalizing operators.
In this section we present an equivalent formulation of the spectral theorem
in terms of spectral measures. While this is the more classical form of the
spectral theorem, it suffers from certain defects (mostly aesthetic) that are
associated with the somewhat peculiar technology of spectral measures. In
the defense of spectral measures we point out that they can provide a very
effective tool for dealing with broader issues, such as the multiplicity theory
of normal operators. And there are important results that are most clearly
formulated in terms of spectral measures. Example: Stone’s theorem, that
makes the elegant assertion that a strongly continuous one-parameter group
of unitary operators is the Fourier transform of a spectral measure on the
real line.

Let us first revisit the idea of diagonalizing a normal matrix. Let N be
a normal operator acting on a Hilbert space H of finite dimension n. There
is an orthonormal basis e1, . . . , en for H consisting of eigenvalues of N ,

Nek = λkek, k = 1, . . . , n,

where λ1, . . . , λn are complex numbers. There may be repetitions among
the λk, but the set {λ1, . . . , λn} is exactly the spectrum of N .

This decomposition of H into eigenspaces can be reformulated in a basis-
free way as follows. For every λ ∈ C let Hλ be the eigenspace

Hλ = {ξ ∈ H : Nξ = λξ}.
The subspaces {Hλ : λ ∈ C} are mutually orthogonal, they sum to H,
each is invariant under both N and N∗, and Hλ is nonzero iff λ ∈ σ(N).
These observations can be converted into a structural statement about N
as follows. Let Eλ be the projection onto Hλ. The Eλ form a system of
mutually orthogonal projections in B(H), they sum to 1, Eλ �= 0 ⇐⇒ λ ∈
σ(N), and we have

(2.15) N =
∑
λ∈σ(N)

λ · Eλ.

Functions of N can be expressed in a similar way:

f(N) =
∑
λ∈σ(N)

f(λ) · Eλ.

What is peculiar here is that these sums have a multiplicative property that
runs counter to the intuition of numerical sums, ∑

λ∈σ(N)

f(λ) · Eλ

 ∑
λ∈σ(N)

g(λ) · Eλ

 =
∑
λ∈σ(N)

f(λ)g(λ) · Eλ,

a consequence of the fact that the Eλ are projections satisfying EλEµ = 0
for λ �= µ.
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In any case, formula (2.15) expresses the operator N as a “spectral
integral” in which the right side represents the integral of the complex-
valued function f(z) = z, z ∈ σ(N), against the projection-valued measure

E(S) =
∑
λ∈S

Eλ, S ⊆ C.

Despite its somewhat awkward appearance, the projection-valued function
λ ∈ C �→ Eλ (or the projection-valued measure associated with it) contains
critical information about the operator N . For example, σ(N) is the set of
points λ for which Eλ �= 0. More significantly, the multiplicity m(λ) of an
eigenvalue λ ∈ σ(N) is given by

(2.16) m(λ) = rankEλ = dimHλ.

The function m : σ(N)→ N is called the multiplicity function of the normal
operator N . It has these properties: m(λ) > 0 for every λ ∈ σ(N), and∑

λ∈σ(N)

m(λ) = dimH.

Once one knows the spectrum and the multiplicity function of a normal
operator N on a finite-dimensional Hilbert space, one knows N up to unitary
equivalence (see Exercise (1) below). There is a natural generalization of
this classification of normal operators to the infinite-dimensional case (see
[2]), but we are not concerned with that here.

Our goal in this section is to point out how the formula (2.15) can be
generalized to normal operators acting on infinite-dimensional Hilbert spaces
by simply reformulating the results of the preceding section. Let B denote
the σ-algebra of all Borel sets in C. By a spectral measure (on C) we mean
a function E ∈ B → P (E) ∈ B(H) taking projections as values, such that
P (∅) = 0, P (C) = 1, and for every sequence E1, E2, . . . of mutually disjoint
sets, we have

(2.17) P (E1 ∪ E2 ∪ · · · ) =
∞∑
n=1

P (En).

The sum on the right of (2.17) is interpreted as the limit in the strong
operator topology of the sequence of partial sums P (E1)+ · · ·+P (En). The
fact that this limit exists is a consequence of the following observations.

Proposition 2.7.1. A spectral measure P has the following properties:
(1) E1 ⊆ E2 =⇒ P (E1) ≤ P (E2).
(2) E ∩ F = ∅ =⇒ P (E) ⊥ P (F ).
(3) For every E,F ∈ B, P (E ∩ F ) = P (E)P (F ).

Proof. The first assertion follows from finite additivity of P , together
with the decomposition F = E ∪ (F \ E) and the fact that P (F \ E) ≥ 0.

For (2), we can write

1 = P (E ∪ (C \ E)) = P (E) + P (C \ E).
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Hence by (1), P (F ) ≤ P (C \E) = 1−P (E), the latter being the projection
onto P (E)H⊥.

To deduce (3) from (2), one can write P (E) = P (E ∩ F ) + P (E \ F ),
P (F ) = P (E ∩ F ) + P (F \ E), and observe that because of (2), P (E ∩ F ),
P (E \ F ), and P (F \ E) are mutually orthogonal projections. �

These observations imply that the projections P (E1), P (E2), . . . appear-
ing on the right of (2.17) are mutually orthogonal, so that the infinite sum
has a clear meaning.

Starting now with a spectral measure P : B → B(H) and a bounded
Borel function f : C → C, we want to give meaning to the spectral integral∫
f dP . This is done as follows. For every pair of vectors ξ, η ∈ H we

can define a complex-valued measure µξ,η on C by µξ,η(E) = 〈P (E)ξ, η〉.
Then µξ,η is a countably additive complex-valued measure on B whose total
variation is estimated as follows:

‖µξ,η‖ ≤ ‖ξ‖‖η‖, ξ, η ∈ H.

Moreover, the map of H × H into the space of measures on C defined by
ξ, η �→ µξ,η is linear in ξ and antilinear in η. Thus we can define a bounded
sesquilinear form [·, ·] on H ×H by simple integration,

[ξ, η] =
∫

C

f dµξ,η,

and a straightforward estimate shows that

|[ξ, η]| ≤ sup
z∈C

|f(z)|‖ξ‖‖η‖ = ‖f‖∞‖ξ‖‖η‖.

By the Riesz lemma, there is a unique operator π(f) ∈ B(H) satisfying

〈π(f)ξ, η〉 =
∫

C

f dµξ,η, ξ, η ∈ H,

and one has ‖π(f)‖ ≤ ‖f‖∞. This defines the operator π(f) as a weak
integral, and we can now interpret it as

∫
f dP .

More precisely, for every spectral measure P defined on C and taking
values in the set of projections of B(H) and every bounded Borel function
f : C → C there is a unique operator

∫
f dP defined by〈(∫

f dP

)
ξ, η

〉
=
∫

C

f(z) 〈P (dz)ξ, η〉, ξ, η ∈ H.

We leave it for the reader to verify that f �→ ∫ f dP is a σ-representation of
the C∗-algebra B(C) of all bounded Borel functions on C, using the methods
of the preceding section.

Spectral measures as we have discussed them are more general than
required for the discussion of bounded normal operators. However, if a
spectral measure P has compact support in the sense that there is a compact
subset K ⊆ C with P (C \ K) = 0, then P is associated with a bounded
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operator as follows. Since P is concentrated on K, the function f(z) = z is
bounded almost everywhere with respect to P , and hence

N =
∫

C

z dP (z) =
∫
K
z dP (z)

defines a bounded normal operator with the property that

(2.18)
∫

C

f(z) dP (z) = f(N), f ∈ B(C).

Thus, spectral integrals are simply another way of looking at the functional
calculus for Borel functions.

Indeed, if we turn this around by starting with a bounded normal oper-
ator N ∈ B(H) and asking how to construct its spectral measure P , then
the reply is simply to apply the characteristic functions of Borel sets to N
according to the calculus of the preceding section:

P (E) = χE(N), E ∈ B.
Because f ∈ B(σ(N)) �→ f(N) is a σ-representation extending the continu-
ous functional calculus for N , P can be regarded as a spectral measure that
is supported on σ(N). Again, the preceding formula (2.18) simply provides
a reinterpretation of the extended functional calculus as a spectral integral.

Exercises.
(1) Let N1 ∈ B(H1) and N2 ∈ B(H2) be two normal operators acting

on finite-dimensional Hilbert spaces H1, H2. Show that there is a
unitary operator W : H2 → H2 such that WN1W

−1 = N2 iff N1
and N2 have the same spectrum and the same multiplicity function.

(2) Calculate the spectral measure of the multiplication operator X
defined on L2[0, 1] by (Xξ)(t) = tξ(t), 0 ≤ t ≤ 1.

(3) A resolution of the identity is a function λ ∈ R �→ Pλ ∈ B(H)
from R to the projections on a Hilbert space with the following
properties:
• λ ≤ µ =⇒ Pλ ≤ Pµ.
• Relative to the strong operator topology,

lim
λ→−∞

Pλ = 0, lim
λ→+∞

Pλ = 1.

• (Right continuity) For every λ ∈ R,

lim
µ→λ+

Pµ = Pλ.

Early formulations of the spectral theorem made extensive use of
resolutions of the identity. It was gradually realized that these ob-
jects are equivalent to spectral measures, in much the same way
that Stieltjes integrals are equivalent to integrals with respect to
a measure. This exercise is related to the bijective correspondence
that exists between resolutions of the identity and spectral mea-
sures on the real line.
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(a) Consider the Borel space (R,B) of the real line. Given a
spectral measure E : B → B(H), show that the function
Pλ = E((−∞, λ]), λ ∈ R, is a resolution of the identity.

(b) Given two spectral measures E,F : B → B(H) that give rise
to the same resolution of the identity, show that E = F .

2.8. Compact Operators

An operator A on a Hilbert space H is compact if the image of the unit
ball {Aξ : ‖ξ‖ ≤ 1} is totally bounded. There is an enormous literature
concerning classes of compact operators acting on Hilbert spaces. In this
section we scratch the surface by discussing normal compact operators and
Hilbert–Schmidt operators.

Compact normal operators can be diagonalized in the classical sense, in
that there is an orthonormal basis consisting of eigenvectors. We base this
on the following assertion about “approximate” eigenvectors.

Proposition 2.8.1. Let N be a normal operator acting on an infinite-
dimensional Hilbert space H. For every accumulation point λ ∈ σ(N) there
is an orthonormal sequence ξ1, ξ2, . . . in H such that

lim
n→∞ ‖Nξn − λξn‖ = 0.

Proof. By the Spectral Theorem we may assume that H = L2(X,µ)
has been coordinatized by a σ-finite measure space and that N = Mf is
multiplication by an L∞ function. By Theorem 2.1.4 the spectrum of N is
the essential range Λ of f .

Since λ is an accumulation point of Λ, we can find a sequence of distinct
points λn ∈ Λ that converges to λ. For each n choose εn > 0 small enough
that εn → 0 and the disks Dn = {z ∈ C : |z − λn| < εn}, n = 1, 2, . . . ,
are mutually disjoint. For each n the set {p ∈ X : f(p) ∈ Dn} has positive
measure because λn belongs to the essential range of f ; and by σ-finiteness
there is a subset En ⊆ {p ∈ X : f(p) ∈ Dn} of finite positive measure,
n = 1, 2, . . . . Considered as elements of L2(X,µ), the characteristic func-
tions χE1 , χE2 , . . . are mutually orthogonal because the sets E1, E2, . . . are
mutually disjoint. Moreover,

|f − λ| · χEn ≤ (|f − λn|+ |λn − λ|)χEn ≤ (εn + |λn − λ|)χEn .

It follows that

‖(N − λ)χEn‖ ≤ (εn + |λn − λ|)‖χEn‖2 = (εn + |λn − λ|)µ(En)1/2,
and the orthonormal sequence can be taken as ξn = µ(En)−1/2χEn , n =
1, 2, . . . . �

We obtain the following description of compact normal operators acting
on infinite-dimensional separable Hilbert spaces.
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Theorem 2.8.2. Let N ∈ B(H) be a compact normal operator. Then
0 ∈ σ(N), and σ(N) is either finite or has the form {0, λ1, λ2, . . . }, where
(λn) is a sequence of distinct complex numbers converging to 0. For each
λ �= 0 in σ(N) the space Hλ = {ξ ∈ H : Nξ = λξ} is nonzero and finite-
dimensional.

Let Ek be the projection onto Hλk
. The Ek are mutually orthogonal and

we have

N =
∞∑
k=1

λkEk,

the partial sums of the series converging in the operator norm to N . In par-
ticular, there is an orthonormal basis e1, e2, . . . for H consisting of eigen-
vectors of N .

Proof. A compact operator on H cannot be invertible; for if it were,
then some open ball about 0 would be totally bounded, a clear absurdity as
one sees by considering an orthogonal sequence of vectors having the same
norm r > 0. Hence 0 ∈ σ(N).

We claim that σ(N) \ {0} consists of isolated points. Indeed, for every
accumulation point λ ∈ σ(N), Proposition 2.8.1 implies that there is an
orthonormal sequence e1, e2, . . . satisfying ‖Nen − λen‖ → 0 as n → ∞.
Since N is compact, ‖Nek‖ → 0 as k →∞ (see Exercise (1) below); hence

|λ| = lim
n→∞ ‖λen‖ = lim

n→∞ ‖Nen − λen‖ = 0.

It follows that σ(N) \ {0} cannot contain accumulation points of σ(N).
Thus σ(N) is either finite or it consists of 0 together with a sequence

λ1, λ2, . . . of distinct isolated points converging to 0. Consider the case where
σ(N) = {0, λ1, λ2, . . . } is infinite. For each n = 1, 2, . . . , the characteristic
function un = χ{λn} belongs to C(σ(N)), and we can express the current
variable ζ(z) = z, z ∈ σ(N), as an infinite series

ζ =
∞∑
k=1

λkuk

converging uniformly in the norm of C(σ(N)); indeed, we have

‖ζ −
n∑
k=1

λkuk‖∞ = ‖
∞∑

k=n+1

λkuk‖∞ = sup
k>n

|λk|,

which tends to 0 as n→∞. By the properties of the continuous functional
calculus it follows that

lim
n→∞

∥∥∥∥∥N −
n∑
k=1

λkEk

∥∥∥∥∥ = lim sup
k→∞

|λk| = 0,
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where Ek is the projection Ek = uk(N). Once one has such a series repre-
sentation

N =
∞∑
k=1

λkEk

of N , one easily identifies the range of Ek as {ξ ∈ H : Nξ = λkξ}. That
completes the proof in the case where σ(N) is infinite. The case of finite
spectrum will be left for the reader. �

Turning away from normal operators, let us fix an orthonormal basis
e1, e2, . . . for H. A Hilbert–Schmidt operator is an operator A on H with
the property that

(2.19)
∞∑
n=1

‖Aen‖2 <∞.

As we will see, Hilbert–Schmidt operators are not only bounded, but com-
pact. They form an ideal L2 in the C∗-algebra K of all compact operators,
and L2 is a Hilbert space in its own right.

Most (but not all) of the integral operators that we have encountered are
Hilbert–Schmidt operators, and that is why the theory of Hilbert–Schmidt
operators is important for approaching classical problems involving integral
equations. While in this book we have concentrated on the idea of solv-
ing such equations, Hilbert–Schmidt operators enter into many aspects of
operator theory and functional analysis, including the theory of Gaussian
stochastic processes, representations of the canonical commutation and an-
ticommutation relations of mathematical physics, and the theory of unitary
representations of locally compact groups.

We first rephrase the definition of Hilbert–Schmidt operator so as to
emphasize the role of the trace. Recall that an operator A on H is said to be
positive if A is self-adjoint and has nonnegative spectrum. This is equivalent
to the assertion 〈Aξ, ξ〉 ≥ 0 for every ξ ∈ H, as one can see in concrete terms
by appealing to the spectral theorem and Exercise (5) below. It follows that
the set B(H)+ of all positive operators on H is a cone, being closed under
sums and multiplication by nonnegative scalars. For every positive operator
A we can define an extended real number traceA ∈ [0,+∞] as follows:

traceA =
∞∑
k=1

〈Aek, ek〉,

e1, e2, . . . being an orthonormal basis for H, which for the moment we hold
fixed as A varies. It is clear that

trace (A+B) = traceA+ traceB,

trace (λA) = λ · traceA(2.20)

for A,B ∈ B(H)+ and positive scalars λ, with the obvious conventions for
handling sums and products of extended numbers in (0,+∞].
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Proposition 2.8.3. The trace has the following properties:
(1) traceA∗A = traceAA∗, for any A ∈ B(H).
(2) For B ≥ 0 and U unitary, traceUBU∗ = traceB.
(3) The trace does not depend on the choice of basis {ek}.
Proof. For (1), consider the double sequence of nonnegative terms

|〈Aep, eq〉|2 = |〈ep, A∗eq〉|2, p, q = 1, 2, . . . . Summing first on q and then
on p, we obtain

∞∑
p=1

∞∑
q=1

|〈Aep, eq〉|2 =
∞∑
p=1

‖Aep‖2,

while summing in the opposite order gives
∞∑
q=1

∞∑
p=1

|〈ep, A∗eq〉|2 =
∞∑
q=1

‖A∗eq‖2.

Since the sum of a nonnegative double sequence is independent of the order
of summation, this proves (1). Assertion (2) follows from it by setting A =
UB1/2 in (1), noting that B = A∗A and UBU∗ = AA∗.

To prove (3) let f1, f2, . . . be another orthonormal basis and let U be the
unique unitary operator on H satisfying Uek = fk for k = 1, 2, . . . . Then
fk = U∗ek, and for every positive operator B, (2) implies

∞∑
k=1

〈Bfk, fk〉 =
∞∑
k=1

〈BU∗ek, U∗ek〉 = traceUBU∗ = traceB,

as asserted. �
By (2.20), the set of all positive operators with finite trace is a cone. By

analogy with integration theory, we define L1 to be the linear space spanned
by the positive operators having finite trace. Operators in L1 are called
trace class operators. Every trace class operator can be written in the form

A = P1 − P2 + i(P3 − P4),

where Pk is positive and has finite trace. This decomposition is not unique,
but the basic properties (2.20) imply that there is a unique linear functional
defined on L1 by

traceA = traceP1 − traceP2 + i(traceP3 − traceP4).

Obviously, for every A ∈ L1 and every orthonormal basis e1, e2, . . . we have

traceA =
∞∑
n=1

〈Aen, en〉,

where the series on the right is absolutely convergent. The value traceA of
the sum does not depend on the choice of basis.

There is a natural norm on L1 that makes it into a Banach space (namely
‖A‖L1 = trace |A|), having many important operator-theoretic properties,
and we refer the reader to [19] for a fuller development. What is important
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for us here is the relation between L1 and Hilbert–Schmidt operators, which
we now describe.

According to (2.19), A is a Hilbert–Schmidt operator precisely when
traceA∗A < ∞, equivalently, when A∗A ∈ L1. The set of all Hilbert–
Schmidt operators on H is denoted by L2. It is clear that L2 is closed under
multiplication by scalars, and note that it is closed under addition as well.
Indeed, for any two operators A,B we have the “parallelogram law”

(2.21) (A+B)∗(A+B) + (A−B)∗(A−B) = 2A∗A+ 2B∗B,

from which it follows that 0 ≤ (A + B)∗(A + B) ≤ 2A∗A + 2B∗B. If both
A and B belong to L2, then

trace (A+B)∗(A+B) ≤ 2 traceA∗A+ 2 traceB∗B <∞;

hence A+B ∈ L2.
Thus L2 is a complex vector space, which by Proposition 2.8.3 (1) is

closed under the adjoint operation. That it is a left ideal is an obvious
consequence of the defining property (2.19); and since L2 is self-adjoint, it
must be a two-sided ideal.

The operator space L2 has a natural inner product, defined as follows.
Corresponding to the polarization formula for sesquilinear forms on a com-
plex vector space there is a polarization formula for bounded operators
A,B ∈ B(H):

(2.22) 4B∗A =
3∑
k=0

ik(A+ ikB)∗(A+ ikB).

The proof is a similar computation (see Exercise (2) below). If both A and
B belong to L2, then each of the four terms on the right of (2.22) belongs
to L1; hence so does B∗A, and we have

4 traceB∗A =
3∑
k=0

ik trace (A+ ikB)∗(A+ ikB).

It follows that one can define an inner product on L2 as follows:

(2.23) 〈A,B〉2 = traceB∗A, A,B ∈ L2.

It is significant that this inner product space is complete (see Exercise (3)
below). L2 is therefore a Hilbert space.

Proposition 2.8.4. Every Hilbert–Schmidt operator A is compact, and
satisfies ‖A‖2 ≤ traceA∗A.

Proof. We first prove the inequality ‖A‖2 ≤ traceA∗A. Indeed, for
every unit vector e we can find an orthonormal basis e1, e2, . . . starting with
e1 = e. Hence ‖Ae‖2 ≤∑n ‖Aen‖2 = traceA∗A, and since e is arbitrary we
obtain

‖A‖2 = sup
‖e‖=1

‖Ae‖2 ≤ traceA∗A.
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To see that every Hilbert–Schmidt operator A is compact, fix an or-
thonormal basis e1, e2, . . . and for every n ≥ 1 let Qn be the projection onto
the subspace spanned by en+1, en+2, . . . . Obviously, Fn = A(1 − Qn) is a
finite-rank operator, and by the preceding paragraph we have

‖A− Fn‖2 = ‖AQn‖2 ≤ trace (QnA∗AQn) =
∞∑

k=n+1

‖Aek‖2.

The right side tends to 0 as n → ∞ because
∑
k ‖Aek‖2 < ∞. Hence

A = limn Fn is the norm limit of a sequence of finite-rank operators, and is
therefore compact. �

Example 2.8.5. Hilbert–Schmidt integral operators. Let (X,µ) be a
(separable) σ-finite measure space and let k ∈ L2(X×X,µ×µ) be a square-
integrable function of two variables on X. We want to define an integral
operator A on L2(X,µ) by way of

(2.24) Aξ(x) =
∫
X
k(x, y)ξ(y) dµ(y), ξ ∈ L2(X,µ),

but there are several things that have to be checked.
In the first place, since∫

X×X
|k(x, y)|2 dµ(x)dµ(y) <∞,

the Fubini theorem implies that for almost every x ∈ X (dµ) the section
k(x, ·) belongs to L2(X, dµ), and for such x the function y �→ k(x, y)ξ(y)
belongs to L1(X,µ). This implies that the integral in (2.24) is well defined
for almost every x, and writing its value as Aξ(x), we have the estimate

|Aξ(x)| ≤
∫
X
|k(x, y)||ξ(y)| dµ(y).

Moreover, another application of Fubini’s theorem implies that for every
η ∈ L2(X,µ) we have∫

X
|Aξ(x)||η(x)| dµ(x) ≤

∫
X×X

|k(x, y)||η(x)||ξ(y)| dµ(x)dµ(y),

which by the Schwarz inequality is dominated by

‖k‖
(∫
X×X

|η(x)|2|ξ(y)|2 dµ(x)dµ(y)
)1/2

= ‖k‖‖ξ‖2‖η‖2,

where ‖k‖ denotes the norm of k as an element of L2(X ×X,µ× µ).
It follows that formula (2.24) defines a linear operator A on L2(X,µ)

satisfying |〈Aξ, η〉| ≤ ‖k‖‖ξ‖2‖η‖2 for every ξ, η ∈ L2(X,µ), and hence
‖A‖ ≤ ‖k‖.
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Let us now calculate traceA∗A. Choose an orthonormal basis e1, e2, . . .
for L1(X, dµ). For every m,n = 1, 2, . . . , we have

〈Aem, en〉 =
∫
X
Aem(x)ēn(x) dµ(x)

=
∫
X×X

k(x, y)ēn(x)em(y) dµ(y)dµ(x).

Writing umn(x, y) = en(x)ēm(y), we find that {umn : m,n = 1, 2, . . . } is an
orthonormal basis for L2(X×X,µ×µ), and the preceding formula becomes

〈Aem, en〉 = 〈k, umn〉,
the inner product on the right being that of L2(X × X,µ × µ). It follows
that traceA∗A is given by

∞∑
m=0

‖Aem‖2 =
∞∑
m=0

∞∑
n=0

|〈Aem, en〉|2 =
∞∑
m=0

∞∑
n=0

|〈k, umn〉|2 = ‖k‖2.

We summarize the results of this discussion as follows:

Proposition 2.8.6. Let (X,µ) be a separable σ-finite measure space.
For every function k ∈ L2(X ×X,µ×µ) there is a unique bounded operator
Ak on L2(X,µ) satisfying

Akξ(x) =
∫
X
k(x, y)ξ(y) dµ(y), ξ ∈ L2(X,µ).

The map k �→ Ak is an isometric isomorphism of the Hilbert space L2(X ×
X,µ × µ) onto the Hilbert space L2 of all Hilbert–Schmidt operators on
L2(X,µ).

Exercises.
(1) Let A be a compact operator on a Hilbert space H. Show that for

every sequence of mutually orthogonal unit vectors ξ1, ξ2, . . . ∈ H
we have

lim
n→∞ ‖Aξn‖ = 0.

Hint: Consider the decreasing sequence of projections Pn defined
by the decreasing sequence of closed subspaces [ξn, ξn+1, ξn+2, . . . ],
n = 1, 2, . . . .

(2) Let e1, e2, . . . be an orthonormal basis for a Hilbert space H and
let A ∈ B(H). Show that A is compact iff

lim
n→∞ ‖(1− En)A(1− En)‖ = 0,

where En denotes the projection onto span{e1, . . . , en}.
(3) Verify the polarization formula for bounded operators on a Hilbert

space H:

4B∗A =
3∑
k=0

ik
(
A+ ikB

)∗ (
A+ ikB

)
.
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(4) Let ‖A‖2 = 〈A,A〉1/22 for every Hilbert–Schmidt operator A.
(a) Let A1, A2, . . . be a sequence in L2 that satisfies

lim
m,n→∞ ‖Am −An‖2 = 0.

Show that there is an operator A ∈ B(H) such that ‖An −
A‖ → 0 as n→∞.

(b) Show that L2 is a Hilbert space relative to the inner product
(2.23).

(5) Show that a multiplication operator Mf is self-adjoint and has non-
negative spectrum iff 〈Mfξ, ξ〉 ≥ 0 for every ξ ∈ L2(X,µ).

2.9. Adjoining a Unit to a C∗-Algebra

We have discussed the procedure of adjoining a unit to a nonunital Banach
algebra so as to obtain a unital one. Proposition 2.5.4 describes the corre-
sponding procedure for the category of Banach ∗-algebras. If one applies the
latter to a nonunital C∗-algebra such as the compact operators K ⊆ B(H),
the result is a unital Banach ∗-algebra, but its norm fails to satisfy the C∗
condition ‖x∗x‖ = ‖x‖2. Fortunately, one can always renorm this unital-
ization so that it becomes a C∗-algebra, without changing the norm on the
ideal representing the original algebra, in a unique way. The details are as
follows.

Let A be a C∗-algebra without unit and let L : A → B(A) be the left
regular representation of A, in which Lx represents left multiplication by
x, x ∈ A. For any Banach algebra, L is a homomorphism of the algebra
structure of A such that ‖Lx‖ ≤ ‖x‖ for every x ∈ A. Let Ae denote the set
of operators on A given by

Ae = {La + λ1 : a ∈ A, λ ∈ C}.
Then Ae is a complex algebra with unit, and we may define an involution in
Ae by (La+λ1)∗ = La∗ + λ̄1, a ∈ A, λ ∈ C. The operator norm determines
a norm on Ae, which makes it into a normed algebra. Moreover, the natural
map π : A → Ae defined by π(a) = La is a ∗-homomorphism satisfying
π(a) = 0 =⇒ a = 0, a ∈ A. We will show that (a) there is a C∗-algebra
norm on Ae and (b) with respect to that norm, π is an isometry.

Remark 2.9.1. Suppose one is given a Banach algebra A that is also
endowed with an involution ∗ satisfying ‖x∗x‖ ≥ ‖x‖2 for all x ∈ A. Then
A is a C∗-algebra: ‖x‖2 = ‖x∗x‖, x ∈ A. To see this, note that the given
inequality implies that ‖x‖2 ≤ ‖x∗x‖ ≤ ‖x∗‖ · ‖x‖, so that ‖x‖ ≤ ‖x∗‖ for
all x ∈ A. By replacing x with x∗ we obtain the opposite inequality; hence
‖x‖ = ‖x∗‖. It follows that ‖x∗x‖ ≤ ‖x∗‖ · ‖x‖ = ‖x‖2, providing the other
half of the asserted equality.

Proposition 2.9.2. The involution in Ae satisfies ‖X∗X‖ = ‖X‖2 for
every X ∈ Ae, and Ae is closed in the operator norm of B(A); hence it is
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a unital C∗-algebra. Moreover, the regular representation is an isometric
∗-isomorphism of A onto a maximal ideal of codimension one in Ae.

Proof. Notice first that ‖La‖ = ‖a‖ for every a ∈ A. Indeed, ≤ is true
for any Banach algebra, and the opposite inequality follows for an element
a of norm 1 because

‖La‖ ≥ ‖La(a∗)‖ = ‖aa∗‖ = ‖a∗‖2 = ‖a‖2 = 1.

The set {La : a ∈ A} is obviously an ideal in Ae of codimension at most
one. If the codimension were zero, then the identity operator would have
the form Lf for some element f ∈ A; that would imply f was a unit for A,
contrary to hypothesis. Hence {La : a ∈ A} has codimension one. Since L
is an isometry, this ideal must be closed in the operator norm of B(A); and
since Ae is obtained from this ideal by adjoining the one-dimensional space
spanned by 1, it follows that Ae must also be norm closed.

It remains to show that the involution in Ae satisfies ‖X∗X‖ = ‖X‖2.
By Remark 2.9.1, it is enough to verify the inequality ‖X‖2 ≤ ‖X∗X‖ for
X = La + λ1 in Ae. For such an X, we have

‖X‖2 = sup
‖b‖≤1

‖(La + λ1)(b)‖2 = sup
‖b‖≤1

‖ab+ λb‖2

= sup
‖b‖≤1

‖(ab+ λb)∗(ab+ λb)‖ = sup
‖b‖≤1

‖b∗(X∗X(b))‖

≤ sup
‖b‖≤1

‖X∗X(b)‖ ≤ ‖X∗X‖.

�

The following result asserts that C∗-algebras have a remarkable property
of rigidity that is not shared by other types of Banach ∗-algebras.

Proposition 2.9.3. Every ∗-homomorphism π : A→ B of C∗-algebras
has norm at most 1. If π has trivial kernel, then it is an isometry.

Proof. Suppose first that A has a unit 1A. By passing from B to the
closure of the ∗-subalgebra π(A) if necessary, we may assume that π(A) is
dense in B. In this case, π(1A) is the unit 1B of B. Thus we may argue
as we did for nondegenerate representations. For example, since π must
map invertible elements of A to invertible elements of B, it follows that
σ(π(x)) ⊆ σ(x) for every element x ∈ A. Corollary 2 of Theorem 2.2.4
implies that for self-adjoint elements x ∈ A we have

‖π(x)‖ = r(π(x)) ≤ r(x) = ‖x‖,
so that for general elements z ∈ A we have

‖π(z)‖2 = ‖π(z)∗π(x)‖ = ‖π(z∗z)‖ ≤ ‖z∗z‖ = ‖z‖2.

If, in addition, π has trivial kernel, then we claim that ‖π(x)‖ = ‖x‖
for every x ∈ A. As above, this reduces to the case where x = x∗ is self-
adjoint; and by Corollary 2 of Theorem 2.2.4 it is enough to show that x
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and π(x) have the same spectrum when x = x∗. We have already seen
that σ(π(x)) ⊆ σ(x). For the opposite inclusion, suppose that λ is a point
of σ(x) that does not belong to σ(π(x)). There is a continuous function
f : σ(x) → R such that f vanishes on σ(π(x)) and f(λ) �= 0. Since f = 0
on σ(π(x)), we must have f(π(x)) = 0. Notice that f(π(x)) = π(f(x)) (this
is obvious if f is a polynomial, and it follows for general continuous f by
an application of the Weierstrass approximation theorem and the previously
established fact that π is a bounded linear map of A to B). But π(f(x)) = 0
implies that f(x) = 0 because π has trivial kernel; in turn, f(x) = 0 implies
that f = 0 on σ(x), contradicting the fact that f(λ) �= 0.

Now assume that A has no unit and let Ae be the unital extension of A,
identifying A with its image in Ae. By adjoining a unit to B if necessary,
we may assume that B has a unit 1B. One may verify directly that the map
π̃ : Ae → B defined by

π̃(a+ λ1) = π(a) + λ1B

is a ∗-homomorphism carrying the unit of Ae to 1B. The argument above
implies that ‖π‖ ≤ ‖π̃‖ ≤ 1. Finally, assuming that π is one-to-one, we
claim that π̃ is one-to-one. For if a ∈ A and λ �= 0 is a scalar for which
π(a) + λ1B = π̃(a + λ1) = 0, set f = −λ−1a ∈ A. Since π(f) = 1B, π(f)
is a unit for π(A), and since π has trivial kernel, f must be a unit for A,
contrary to hypothesis. Thus π(a) + λ1B = 0 =⇒ λ = 0 and a = 0, and
thus π̃ is one-to-one as asserted. The preceding paragraphs imply that π̃ is
isometric; hence π is isometric. �

Corollary 1. Let A be a complex algebra with involution. If there is
a norm on A that makes it into a C∗-algebra, then that norm is unique.

Proof. Let ‖ · ‖1 and ‖ · ‖2 be two (complete) Banach algebra norms
on A satisfying ‖x∗x‖k = ‖x‖2

k for x ∈ A, and let Ak be the algebra A
considered as a C∗-algebra in each norm respectively, k = 1, 2. The identity
map of A can be regarded as a ∗-isomorphism of A1 onto A2. By Proposition
2.9.3 this map must be an isometry; hence ‖x‖1 = ‖x‖2 for all x ∈ A. �

Corollary 2. Let A be a nonunital C∗-algebra, let π : A→ Ae be the
natural map of A into its unitalization, and endow Ae with its C∗-norm.
Then π is an isometric ∗-isomorphism of A onto an ideal of codimension 1
in Ae.

Exercises.

(1) Let A be a nonunital C∗-algebra and let π : A→ Ae be the natural
map of A into its unitalization. Considering Ae as a C∗-algebra,
suppose that there is an isometric ∗-homomorphism σ : A → B
of A into another unital C∗-algebra B such that σ(A) is an ideal
of codimension 1 in B. Show that there is a unique isometric ∗-
isomorphism θ : Ae → B such that θ ◦ π = σ.
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(2) Let K be the C∗-algebra of compact operators on a Hilbert space
H. Show that the space of operators {λ1 +K : λ ∈ C,K ∈ K} is
a C∗-algebra ∗-isomorphic to Ke.

(3) Let X be a compact Hausdorff space and let F be a proper closed
subset of X. Let A be the ideal of all functions f ∈ C(X) that
vanish throughout F , f(p) = 0, p ∈ F . Note that A is a C∗-algebra
in its own right.
(a) Show that A has a unit if and only if F is both closed and

open.
(b) Assuming that F is not open, identify the unitalization of A

in concrete terms by exhibiting a compact Hausdorff space Y
such that Ae ∼= C(Y ), describing the precise relationship of Y
to X and F .

2.10. Quotients of C∗-Algebras

In order to discuss compact perturbations of operators on a Hilbert space
one must bring in the Calkin algebra (the C∗-algebra B(H)/K obtained by
passing to the quotient modulo compact operators), and that requires some
basic results about the formation of quotients of C∗-algebras. We work out
the relevant material in this section, in a general setting.

Throughout, A will denote a C∗-algebra that need not contain a unit.
When no unit is present there is an effective substitute, called an approxi-
mate unit. More precisely, an approximate unit for A is a net {eλ : λ ∈ I}
indexed by an increasing directed set I (which need not be the positive
integers N and which need not even be countable) that has the following
properties:

(1) eλ = e∗
λ and σ(eλ) ⊆ [0, 1].

(2) limλ→∞ ‖xeλ − x‖ = 0, for every x ∈ A.

The meaning of the second assertion of (1) requires clarification, since our
discussion of spectra has so far been limited to unital Banach algebras and
unital C∗-algebras. The spectrum of an element x of a nonunital C∗-algebra
A is defined by embedding A in its unitilization Ae; σ(x) is then well defined
by considering x to be an element of Ae. The spectrum of an element of a
nonunital C∗-algebra is a compact set of complex numbers which necessarily
contains 0.

Significantly, approximate units exist in arbitrary C∗-algebras (see The-
orem 1.8.2 of [2], for example); but all we require here is the following:

Lemma 2.10.1. Let A be a C∗-algebra and let J be a closed left ideal
in A. For every element x ∈ J there is a sequence e1, e2, . . . of self-adjoint
elements of J such that σ(en) ⊆ [0, 1] and

lim
n→∞ ‖xen − x‖ = 0.
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Proof. By adjoining a unit to A if necessary, we can assume that A is
unital. Suppose first that the given element x is self-adjoint, and define

en = nx2(1+ nx2)−1 = fn(x), n = 1, 2, . . . ,

fn being the real function

fn(t) =
nt2

1 + nt2
, t ∈ R.

Since fn is continuous and vanishes at the origin, en belongs to the closed
linear span of the positive powers of x, hence en ∈ J . Moreover, since
0 ≤ fn(t) ≤ 1 for all t ∈ R, we have σ(en) ⊆ [0, 1].

Writing

‖xen − x‖2 = ‖x(1− en)‖2 = ‖(1− en)x2(1− en)‖ ≤ ‖x2(1− en)‖,
and using the fact that 1− fn(t) = 1/(1 + nt2), we find that

x2(1− en) = x2(1+ nx2)−1 =
1
n
nx2(1+ nx2)−1

has norm at most 1/n. Thus ‖x2(1− en)‖ → 0 as n→∞, and (2) is proved
for the case x∗ = x.

In the general case, we apply the preceding paragraph to the self-adjoint
element x∗x ∈ J to find a sequence of self-adjoint elements en ∈ J satisfying
σ(en) ⊆ [0, 1], for which ‖x∗x−x∗xen‖ → 0 as n→∞. In this case we have

‖x− xen‖2 = ‖(1− en)x∗x(1− en)‖ ≤ ‖x∗x(1− en)‖,
and (2) follows because the right side tends to 0 as n→∞. �

Theorem 2.10.2. Every closed ideal in a C∗-algebra is self-adjoint.

Proof. Let J be a closed ideal in a C∗-algebra A and choose an element
x ∈ J . We have to show that x∗ ∈ J . By Lemma (2.10.1) there is a sequence
of self-adjoint elements e1, e2, . . . in J such that xen converges in norm to x
as n→∞. Taking adjoints we find that enx∗ converges to x∗; since enx∗ ∈ J
it follows that x∗ ∈ J̄ = J . �

Suppose now that we are given a closed ideal J in a C∗-algebra A. We
form the quotient Banach algebra as in Section 1.8. Since J∗ = J , we can
introduce an antilinear mapping on cosets by

(x+ J)∗ = x∗ + J, x ∈ A,

and this defines an involution of the quotient algebra A/J .

Theorem 2.10.3. The involution above makes A/J into a C∗-algebra.

Proof. It suffices to show that for every element x ∈ A the coset ẋ =
x + J satisfies ‖ẋ‖2 ≤ ‖ẋ∗ẋ‖. To prove this, consider the following set of
elements of J :

E = {e ∈ J : e∗ = e, σ(e) ⊆ [0, 1]}.
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We claim that for every x ∈ A,

(2.25) ‖ẋ‖ = inf
e∈E

‖x− xe‖.

Indeed, the inequality ≤ is clear from the fact that xe ∈ J for every e ∈ E.
For the opposite inequality, fix an element k ∈ J and choose a sequence of
elements e1, e2, . . . satisfying the conditions of Lemma 2.10.1 with ken → k.
Then

(x+ k)(1− en) = (x− xen) + (k − ken).

The second term on the right tends to 0 as n → ∞, and since ‖x + k‖ ≥
‖(x+ k)(1− en)‖ for every n, we have

‖x+ k‖ ≥ lim inf
n→∞ ‖x− xen‖ ≥ inf

e∈E
‖x− xe‖.

If we now take the infimum over all k ∈ J , we obtain

‖ẋ‖ = inf
k∈J

‖x+ k‖ ≥ inf
e∈E

‖x− xe‖,

and formula (2.25) is proved.
To see that ‖ẋ‖2 ≤ ‖ẋ∗ẋ‖, fix x and apply (2.25) as follows:

‖ẋ‖2 = inf
e∈E

‖x− xe‖2 = inf
e∈E

‖(1− e)x∗x(1− e)‖
≤ inf
e∈E

‖x∗x(1− e)‖ = ‖x∗x+ J‖ = ‖ẋ∗ẋ‖.

�

Theorem 2.10.4. Let A and B be C∗-algebras and let π : A → B be
a ∗-homomorphism. Then π(A) is a C∗-subalgebra of B, and the natural
promotion of π,

π̇ : A/ kerπ → B,

is an isometric ∗-isomorphism of A/ kerπ onto π(A).

Proof. The map π̇ : A/ kerπ → B is a ∗-homomorphism having ker-
nel {0}. Since A/ kerπ is a C∗-algebra Proposition 2.9.3 implies that π̇ is
isometric. Hence its range π(A) = π̇(A/ kerπ) is norm-closed in B. �

Exercises.

(1) Let {e1, e2, . . . } be an orthonormal basis for a separable Hilbert
space H, and let En be the projection on the span of {e1, . . . , en}.
Show that an operator T ∈ B(H) is compact iff

lim
n→∞ ‖T − TEn‖ = 0,

and deduce that {En : n ∈ N} is an approximate unit for the
C∗-algebra K.
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(2) Let U be a unitary operator on a Hilbert space H. Then σ(U) ⊆ T,
and hence there is a unique representation ρ ∈ rep(C(T), H) satis-
fying ρ(f) = f(U) for f ∈ C(T). Identify ker ρ as an ideal in C(T),
identify the quotient C(T)/ ker ρ in concrete terms as a commu-
tative C∗-algebra, and similarly describe the natural factorization
ρ = ρ̇ ◦ π, where

π : C(T)→ C(T)/ ker ρ

is the natural map onto the quotient C∗-algebra.

The remaining exercises relate to the Stone–Čech compactification
of the real line, and of more general locally compact Hausdorff
spaces. Let Cb(R) be the space of all bounded continuous complex-
valued functions of a real variable.

(3) Show that there is a compact Hausdorff space βR and an isometric
∗-isomorphism of Cb(R) onto C(βR). (Hint: Cb(R) is a unital C∗-
algebra. You must be explicit about this isomorphism or you will
have trouble later on.)

(4) For every t ∈ R, show that there is a (naturally defined) point
t̂ ∈ βR, and that the map t �→ t̂ is a homeomorphism of R onto a
dense subspace of βR.

The space βR is called the Stone–Čech compactification of the
real line R.

(5) Identifying R with its image in βR, the subspace βR \ R is called
the corona of R. Show that the corona is closed (and hence, R is an
open subset of βR). Hint: For which points p ∈ βR does evaluation
at p vanish on the ideal C0(R) ⊆ Cb(R)?

(6) Deduce that the quotient C∗-algebra Cb(R)/C0(R) is isometrically
isomorphic to C(βR \ R).

A compactification of R is a pair (φ, Y ) where Y is a compact
Hausdorff space and φ : R → Y is a continuous map such that
φ(R) is dense in Y .

(7) Show that (t �→ t̂, βR) is a universal compactification of R in the
following sense: If (φ, Y ) is any compactification of R, then there
is a unique extension of φ : R → Y to a continuous surjection
φ̂ : βR → Y . Hint: The map φ induces a ∗-isomorphism of C(Y )
onto a unital C∗-subalgebra of Cb(R).

Your proof above extends easily to give a more general theorem, in
which R is replaced by any locally compact noncompact Hausdorff
space X (such as Rn, Zn, or an open manifold), and one obtains a
universal compactification βX called the Stone-Čech compactifica-
tion of X. Formulate this theorem for yourself.
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CHAPTER 3

Asymptotics: Compact Perturbations and
Fredholm Theory

Operator theory modulo compact perturbations should be regarded as a
study of the “asymptotic” properties of operators. After making this vague
notion more precise in the context of Hilbert space operators, we take up
the general theory of compact and Fredholm operators acting on Banach
spaces and discuss a remarkable asymptotic invariant, the Fredholm index.

3.1. The Calkin Algebra

Let H be a separable Hilbert space and let K be the C∗-algebra of all
compact operators on H. We have seen that K is a closed ideal in B(H).
The quotient C∗-algebra C = B(H)/K is called the Calkin algebra. The
Calkin algebra is important because it is the repository of all asymptotic
information about operators on H. The purpose of this section is to discuss
this aspect of operator theory in preparation for the more precise results to
follow.

Let us begin in a simpler, commutative, context. A bounded sequence
x = (x1, x2, . . . ) of complex numbers is an element of the C∗-algebra �∞,
where addition, scalar multiplication, and multiplication are defined point-
wise, and the norm is the usual one:

‖x‖∞ = sup
n≥1

|xn|.

We want to discuss properties of the sequence x that depend only on the
behavior of the sequence at infinity, for example, the notion of a convergent
sequence. Such properties can be expressed in terms of certain functions
defined on all of �∞, such as

lim sup
n→∞

|xn| = lim
n→∞(sup{|xn|, |xn+1|, |xn+2|, . . . }).

Other examples are the limit inferior and the limit superior of the sequence of
real parts *xn of the components of x. In particular, a sequence x converges
if and only if

lim sup
n→∞

*xn = lim inf
n→∞ *xn and lim sup

n→∞
+xn = lim inf

n→∞ +xn.
One can formalize the idea of an asymptotic invariant as follows. Let us
say that a function φ : �∞ → C is asymptotic if it is continuous relative to
the norm topology of �∞ and has the property that for any two sequences

83
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x, y ∈ �∞ for which limn→∞ |xn − yn| = 0, one has φ(x) = φ(y). Notice
that we do not require that φ be a linear functional; in fact, many of the
important asymptotic properties of sequences, such as the examples above,
are nonlinear.

The proper domain for asymptotic functions is the quotient C∗-algebra
�∞/c0. More precisely, consider the space c0 of all sequences x that converge
to zero:

lim
n→∞xn = 0.

Here c0 is a closed ideal in �∞, and the quotient �∞/c0 is a commutative
C∗-algebra, whose Gelfand spectrum is identified with the corona βN \N of
the Čech compactification of N. Notice that by their definition, asymptotic
functions φ : �∞ → C promote naturally to continuous functions

φ̇ : �∞/c0 → C

by way of φ̇(x + c0) = φ(x). Conversely, every continuous complex-valued
function defined on �∞/c0 is associated with an asymptotic function defined
on �∞.

These remarks show that the asymptotic properties of sequences are
tied to the quotient C∗-algebra �∞/c0, or equivalently, to the corona space
βN \ N. The latter is a very mysterious object: It is a compact Hausdorff
space without isolated points, but whose topology is so large that no point
p of βN \N can be approached with a sequence p1, p2, . . . of distinct points
of βN \N. In particular, it is not possible to realize this space as a subset of
any metric space. Thus one does not approach the analysis of asymptotic
properties by analyzing βN \N as a topological space, but rather by dealing
directly with concrete properties of the quotient C∗-algebra �∞/c0.

Turning now to operator theory, the noncommutative counterpart of
�∞ is the algebra B(H) of all bounded operators on a separable infinite-
dimensional Hilbert space H. Let us introduce coordinates in H by choosing
an orthonormal basis {e1, e2, . . . }. Let En be the projection of H onto the
n-dimensional space spanned by e1, . . . , en. The sequence En is increasing
in the sense that En ≤ En+1, and we have

lim
n→∞En = 1

relative to the strong operator topology of B(H). Choose an operator A ∈
B(H) and consider its matrix (aij) relative to this basis:

aij = 〈Aej , ei〉, i, j = 1, 2, . . . .

Notice that the matrix of (1 − En)A(1 − En) is obtained from (aij) by
replacing the first n rows and columns of (aij) with zeros and leaving the
remaining entries fixed. Moreover, the result of Exercise (2) of Section 2.8
implies that A is compact iff

lim
n→∞ ‖(1− En)A(1− En)‖ = 0.
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Thus the ideal K of compact operators in B(H) becomes the noncommuta-
tive counterpart of the ideal c0 of all null-convergent sequences in �∞.

Similarly, one may consider asymptotic invariants of operators. For ex-
ample, this could mean a continuous function φ : B(H) → C with the
property that φ(A) = φ(B) whenever A− B is compact. As before, such a
function promotes naturally to a continuous function on the Calkin algebra

φ̇ : B(H)/K → C,

and every continuous complex function defined on the Calkin algebra arises
in this way from an asymptotic function defined on B(H).

The most obvious example of an asymptotic invariant of operators A ∈
B(H) is their coset norm in the Calkin algebra,

‖A+K‖ = lim
n→∞ ‖(1− En)A(1− En)‖,

corresponding to the coset norm of sequences x ∈ �∞,

‖x+ c0‖ = lim
n→∞ ‖(xn, xn+1, xn+2, . . . )‖∞.

Another example is the essential spectrum, or more specifically the essential
spectral radius,

re(A) = sup{|λ| : λ ∈ σe(T )}.
Further examples are described in the Exercises.

Exercises. These exercises concern Banach limits and their noncom-
mutative counterparts. Let �∞ = �∞(N) denote the Banach space of all
bounded sequences of complex numbers a = (an : n ≥ 1), with the sup
norm. We regard �∞ as a commutative C∗-algebra with unit 1 = (1, 1, 1, . . . )
relative to the pointwise operations. Let T be the linear operator defined on
�∞ by translating one step to the left and discarding the initial component:

(Ta)n = an+1, n = 1, 2, . . . .

A Banach limit is a linear functional Λ on �∞ satisfying ‖Λ‖ = Λ(1) = 1,
that is translation invariant in the sense that Λ(Ta) = Λ(a), a ∈ �∞. For
the following exercises, Λ will denote a Banach limit.

(1) Show that Λ is a positive linear functional in the sense that

an ≥ 0, n = 1, 2, . . . =⇒ Λ(a) ≥ 0.

(2) Show that for every real-valued sequence a ∈ �∞,

lim inf
n≥1

an ≤ Λ(a) ≤ lim sup
n≥1

an,

and deduce that Λ(a) = limn→∞ an whenever a is a (complex)
convergent sequence in c; in particular, for every b ∈ �∞ and k ∈ c0,

Λ(b+ k) = Λ(b).
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(3) For n = 1, 2, . . . , let σn be the linear functional on �∞ defined by

σn(a) =
a1 + a2 + · · ·+ an

n
, a ∈ �∞.

Then σn obviously satisfies ‖σn‖ = σn(1) = 1. By estimating the
norm, show that limn→∞ ‖σn ◦ T − σn‖ = 0.

(4) (Existence of Banach limits) For every n = 1, 2, . . . , let Kn be the
closure (in the weak∗-topology of the dual of �∞) of the set of linear
functionals {σn, σn+1, σn+2, . . . }. Show that ∩nKn �= ∅, and that
every linear functional in this intersection is a Banach limit.

In the remaining exercises, you will consider “noncommutative”
Banach limits, as linear functionals on the noncommutative coun-
terpart of �∞. Let e1, e2, . . . be an orthonormal basis for a Hilbert
space H, let S ∈ B(H) be the unilateral shift associated with this
orthonormal basis by requiring Sen = en+1, n = 1, 2, . . . , and let
Λ be a Banach limit. Define a bounded linear functional ρ on
B(H) as follows: ρ(A) = Λ(a), where a = (an) is the sequence
an = 〈Aen, en〉, n = 1, 2, . . . . It is obvious that ρ is a positive
linear functional in the sense that A ≥ 0 =⇒ ρ(A) ≥ 0, and of
course ρ(1) = 1.

(5) Show that ρ(K) = 0 for every compact operator K.

For the last exercise, it may help to compare the matrix of an
operator A (relative to a fixed orthonormal basis (en)) to the matrix
of its kth “translate” Sk∗ASk, noting that the latter is obtained
from the matrix (amn) of A by deleting the first k rows and columns
of (amn) and repositioning the result. How is the matrix of SkASk∗
related to (amn)?

(6) Show that ρ(S∗AS) = ρ(A) and ρ(SAS∗) = ρ(A), for every opera-
tor A ∈ B(H).

3.2. Riesz Theory of Compact Operators

Let E be a complex Banach space. An operator T ∈ B(E) is said to be
compact if the image of the unit ball {Tξ : ‖ξ‖ ≤ 1} of E has compact
closure relative to the norm topology of E. The set of all compact operators
on E is denoted by K(E).

Since bounded sets in finite-dimensional Banach spaces are precompact,
a finite-rank operator must be compact. The result of Exercise (3) below
implies that K(E) is a norm-closed two-sided ideal in B(E). In particular,
any operator T that can be norm-approximated by a sequence of finite-rank
operators Fn, in the sense that ‖T −Fn‖ → 0 as n→∞, must be compact.
If E is a Hilbert space, then K(E) is the norm closure of the space of finite-
rank operators, and that fact is useful for proving results about compact
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operators on Hilbert spaces. However, the reader should keep in mind that
this convenient approximation property can fail for Banach spaces: K(E)
can be properly larger than the norm closure of the finite-rank operators.

Remark 3.2.1. Kernels and cokernels. We introduce some terminology
that will be useful throughout the sequel. Suppose that A ∈ B(E) is a
bounded operator that, for simplicity, we assume has closed range. There
are two natural Banach spaces associated with A, namely, its kernel and
cokernel:

kerA = {x ∈ E : Ax = 0}, cokerA = E/AE.

The notion of cokernel bears some elaboration. An elementary result from
the theory of Banach spaces asserts that there is a natural isomorphism
between the annihilator AE⊥ ⊆ E′ of AE and the dual space of E/AE. On
the other hand, the annihilator of AE is precisely the kernel of the operator
adjoint A′ ∈ B(E′) of A. Thus we conclude that

dim cokerA = dimkerA′

at least for every operator A ∈ B(E) whose range is closed and of finite
codimension in E.

For such operators the two integers dimkerA and dim cokerA provide
important information about solutions of linear equations of the form

Ax = y,

where y is given and x is to be found. The number dimkerA measures
the degree of failure of uniqueness of solutions, and the number dim cokerA
measures the degree of failure of existence of solutions. Much of what follows
in this chapter has subtle and important implications for understanding
these numerical invariants and their relation to each other.

The purpose of this section is to establish the following two general
results about compact operators and their spectra.

Theorem 3.2.2 (Fredholm alternative). Let T ∈ K(E) and let λ be a
nonzero complex number. Then either

(1) λ− T is invertible, or
(2) ker(λ− T ) �= {0}.

Moreover, the kernel of λ− T is finite dimensional, the range of λ− T is a
closed subspace of E of finite codimension, and we have

dimker(λ− T ) = dim coker (λ− T ).

Theorem 3.2.3 (Countability of spectrum). Let T be a compact operator
on an infinite-dimensional Banach space E. Then 0 ∈ σ(T ), and every
nonzero point of σ(T ) is an isolated point of σ(T ).
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Remark 3.2.4. The Fredholm alternative leads to an effective procedure
for solving linear equations of the form

(3.1) Tx− λx = y,

where T is a given compact operator, λ �= 0 is a complex number, and y
is a given vector in E. One first determines whether or not there are non-
trivial eigenvectors with eigenvalue λ, by carrying out an analysis with the
specific information one has about T . If there are no nonzero eigenvectors,
then equation (3.1) is uniquely solvable for every given y ∈ E. Otherwise,
there is a finite linearly independent set of vectors x1, . . . , xn that span the
eigenspace {x ∈ E : Tx = λx}. In this case the equation has a solution iff
y belongs to (λ− T )E; moreover, the general solution x of (3.1) can be de-
termined from any particular solution x0 as in undergraduate linear algebra
and differential equations:

x = x0 + a1x1 + · · ·+ anxn,

where a1, . . . , an are arbitrary complex numbers.
This begs the issue of whether or not y belongs to the range of λ − T .

To approach that, one first computes the adjoint T ′ ∈ B(E′). Noting that
the annihilator of (λ− T )E is the dual eigenspace {g ∈ E′ : T ′g = λg}, one
sees from Theorem 3.2.2 that there is a set of n linearly independent linear
functionals f1, . . . , fn ∈ E′ which span the space {g ∈ E′ : T ′g = λg}. Once
one has computed such a basis f1, . . . , fn one may conclude that for a given
y ∈ E, (3.1) has a solution iff

f1(y) = · · · = fn(y) = 0.

Finally, notice that Theorem 3.2.3 implies that when E is infinite di-
mensional, the spectrum of any compact operator is either just {0} (which
is, by the Gelfand–Mazur theorem, equivalent to the assertion that T is
quasinilpotent), or it consists of 0 and a finite number of nonzero points, or
else it has the form

σ(T ) = {0} ∪ {λ1, λ2, . . . },
where λ1, λ2, . . . is a sequence of nonzero complex numbers converging to 0.

Remark 3.2.5. Note first that by replacing T with λ−1T , we may with-
out loss of generality assume that λ = 1 in the assertions of Theorem 3.2.2.
The kernel of 1−T is finite dimensional. This is an immediate consequence
of Exercise (1) below, since T is a compact operator whose restriction to
ker(1− T ) is the identity operator of ker(1− T ).

Similarly, if R denotes the closure of (1− T )E, then R must be of finite
codimension in E because the annihilator of R in the dual of E is the kernel
of the operator 1−T ′, and T ′ is compact by the result of Exercise (4) below.

The proof of the Fredholm alternative (Theorem 3.2.2) involves three
steps, which we establish as Lemmas:
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Lemma 3.2.6. Let T ∈ K(E), and let M ⊆ E be a closed subspace of E.
Then (1− T )M is closed.

Proof. We first point out that it suffices to prove the assertion for
the case where the restriction of 1 − T is one-to-one. Indeed, let F =
M ∩ ker(1− T ). By Remark 3.2.5, F is a finite-dimensional subspace of M ,
and thus it must have a complement, a closed subspace N ⊆ M with the
property that N ∩ F = {0} and N + F = M (see Exercise (2) below). It
follows that (1 − T )M = (1 − T )N , and the restriction of 1 − T to N has
trivial kernel.

Thus we may assume that M ∩ ker(1− T ) = {0}. Pick an element y in
the closure of (1 − T )M . We will show that y ∈ (1 − T )M . To see that,
choose a sequence xn ∈ M such that xn − Txn → y as n → ∞. We claim
that ‖xn‖ is bounded. Indeed, if it is not, then there is a subsequence xn′ of
xn such that ‖xn′‖ → ∞. Set en′ = ‖xn′‖−1xn′ . This defines a sequence of
unit vectors ofM for which ‖Ten′−en′‖ → 0. Since T is a compact operator,
there must be a subsequence en′′ with the property that Ten′′ converges in
the norm of E. Since ‖en′ −Ten′‖ → 0, it follows that en′′ must converge to
some vector f , which must be a unit vector in M because each en has these
properties and M is closed. Finally, we have f = Tf , contradicting the fact
that the restriction of 1− T to M is injective.

Thus the sequence x1, x2, . . . is bounded. Again, compactness of T im-
plies that there is a subsequence xn′ with the property that Txn′ converges
in norm to some vector. Since xn − Txn → y, it follows that xn′ must itself
converge to some vector x ∈M , and we have

x− Tx = lim
n′→∞

xn′ − Txn′ = y,

and hence y ∈ (1− T )M . �

Lemma 3.2.7. For every compact operator T on E,

ker(1− T ) = {0} ⇐⇒ (1− T )E = E.

Proof. We first prove =⇒ . For every n = 0, 1, 2, . . . , set

Mn = (1− T )nE.

We have E = M0 ⊇ M1 ⊇ M2 ⊇ · · · , each Mn is T -invariant in that
TMn ⊆Mn, and from Lemma 3.2.6 and an obvious induction it follows that
Mn is closed.

We claim that if (1−T )E �= E, then Mn �= Mn+1 for every n = 0, 1, . . . .
To see this, assume that there is a vector x0 ∈ E that fails to belong to
(1 − T )E, and fix n. We will show that (1 − T )nx0 /∈ Mn+1. Indeed,
if there were to exist a y0 ∈ E such that (1 − T )nx0 = (1 − T )n+1y0,
then (1 − T )n(x0 − (1 − T )y0) = 0. Since we are assuming that 1 − T
is injective, (1 − T )n is also injective; hence the previous formula implies
x0 = (1− T )y0 ∈ (1− T )E, contrary to assumption.
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Thus, assuming (1−T )E �= E, it follows that the sequenceM0,M1, . . . is
strictly decreasing. For each n = 0, 1, 2, . . . we choose a unit vector en ∈Mn

such that

(3.2) d(en,Mn+1) = inf
y∈Mn+1

‖en − y‖ ≥ 1
2
.

Notice that

(3.3) ‖Ten − Ten+k‖ ≥ 1
2
, k ≥ 1, n = 0, 1, 2, . . . .

Indeed, we have

Ten − Ten+1 = en − [(1− T )en + Ten+k)].

The bracketed term on the right belongs to Mn+1, since Ten+k ∈ Mn+k ⊆
Mn+1 and (1− T )en ∈ (1− T )Mn ⊆Mn+1. Hence

‖en − [(1− T )en + Ten+k)]‖ ≥ d(en,Mn+1) ≥ 1
2
,

which proves (3.3). Clearly, (3.3) violates the compactness hypothesis on T ,
and hence (1− T )E = E.

For the proof of ⇐=, consider the adjoint operator T ′ ∈ B(E′). The
hypothesis (1−T )E = E implies that ker(1−T ′) = {0}. Since T ′ is compact
(see Exercise (4)), the argument just given implies that (1 − T ′)E′ = E′.
In turn, this implies that ker(1 − T ) = {0}. Indeed, every bounded linear
functional f on E has the form f = g ◦ (1−T ) by hypothesis; hence for any
vector x ∈ ker(1 − T ) we have f(x) = g((1 − T )x) = 0, and x = 0 follows
from the Hahn–Banach theorem. �

To summarize progress, we have shown that ker(1−T ) and coker (1−T )
are both finite dimensional and that 1 − T has closed range; and we have
the assertion of Lemma 3.2.7. We now extend the result of Lemma 3.2.7, as
follows:

Lemma 3.2.8. For every compact operator T on E,

dimker(1− T ) = dim coker (1− T ).

Proof. Choose a basis x1, . . . , xm for ker(1 − T ) and choose vectors
y1, . . . , yn ∈ E whose cosets ẏ1, . . . , ẏn are a basis for the cokernel E/(1 −
T )E. Notice that the linear span [y1, . . . , yn] intersects trivially with (1 −
T )E. We have to show that m = n.

The alternatives m ≤ n or m ≥ n can be dealt with in turn. Assuming
first that m ≤ n, we choose a closed complement N for ker(1 − T ) and
consider the finite-rank operator F ∈ B(E) defined as zero on N and so as
to map xk to yk for k = 1, 2, . . . ,m. Notice that ker(1 − T ) ∩ kerF = {0}.
The operator T̃ = T +F , being a finite-rank perturbation of T , is compact.
We claim that 1 − T̃ has trivial kernel. Indeed, if T̃ x = x, then x − Tx =
Fx ∈ (1 − T )E ∩ [y1, . . . , yn] = {0}. Hence x ∈ ker(1 − T ) ∩ kerF = {0},
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proving the claim. It follows from Lemma 2.4.3 that E = (1 − T̃ )E. Now,
on the one hand,

E/(1− T )E = [ẏ1, . . . , ẏn],
while since (1− T̃ )E ⊆ (1− T )E + FE = (1− T )E + [y1, . . . , ym], we also
have

(1− T̃ )E/(1− T )E ⊆ [ẏ1, . . . , ẏm].
Since E = (1 − T̃ )E, these relations imply that [ẏ1, . . . , ẏn] ⊆ [ẏ1, . . . , ẏm],
from which we conclude that n = m.

Assuming that m ≥ n, one can construct a finite-rank operator G map-
ping [x1, . . . , xm] onto [y1, . . . , yn]. By arguing with the perturbation T +G
in a similar way one shows that 1− (T +G) is injective, and argues to the
conclusion that m can be no larger than n. The reader is asked to flesh out
this argument in Exercise (5) below. �

Proof of Theorem 3.2.2. We deduce Theorem 3.2.2 from the pre-
ceding discussion as follows. If 1 − T is not invertible, then ker(1 − T )
must be nontrivial, since if the kernel is trivial, then by Lemma 3.2.7, 1−T
is onto, hence invertible. The finite dimensionality of ker(1 − T ), and the
closure and finite codimensionality of (1− T )E, have also been established,
and Lemma 3.2.8 provides the formula relating the dimensions of the kernel
and cokernel. �

Proof of Theorem 3.2.3. We show first that 0 ∈ σ(T ). Indeed, if 0
does not belong to σ(T ), then T is invertible. Since K(E) is an ideal, it
follows that 1 = T−1T is compact. This implies that the unit ball in E is
compact, and hence E is finite dimensional (Exercise (1) below).

In order to establish the remaining assertions of Theorem 3.2.3, it suffices
to prove the following: If λ1, λ2, . . . is a sequence of distinct nonzero complex
numbers in σ(T ), then

(3.4) lim
n→∞λn = 0.

To prove this, assume that λ1, λ2, . . . is a sequence of distinct nonzero
points in σ(T ) that does not converge to 0. By passing to a subsequence if
necessary, we can assume that there is an ε > 0 such that |λn| ≥ ε for every
n = 1, 2, . . . .

Theorem 3.2.2 implies that λn−T has nonzero kernel for every n; hence
we can find a unit vector en such that Ten = λnen for every n. No-
tice that the sequence e1, e2, . . . is linearly independent. Indeed, for fixed
n, λ1, . . . , λn are distinct complex numbers, so we can find polynomials
p1, . . . , pn such that pi(λj) = δij for 1 ≤ i, j ≤ n. If some linear combination
of e1, . . . , en vanishes,

a1e1 + · · ·+ anen = 0,
then after applying pk(T ) to this equation and using pk(T )ej = δkjek we
obtain

akek = a1pk(T )e1 + · · ·+ anpk(T )en = pk(T )(a1e1 + · · ·+ anen) = 0,
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and hence ak = 0 for all k.
The subspaces M1,M2, . . . defined by Mn = [e1, e2, . . . , en] are strictly

increasing with n; hence we can find unit vectors u1, u2, . . . such that uk ∈
Mk and d(uk,Mk−1) ≥ 1

2 for every k = 2, 3, . . . . Finally, notice that (T −
λn)Mn ⊆Mn−1 for every n ≥ 2, simply because each ek is an eigenvector of
T with eigenvalue λk. In particular, (T − λn)en ∈Mn−1 for n ≥ 2.

It follows that for 1 ≤ k < n we have

Tun − Tuk = λnun + [(T − λn)un − Tuk].

Since the bracketed vector on the right belongs to Mn−1, it follows that

‖Tun − Tuk‖ ≥ d(λnun,Mn−1) = |λn|d(un,Mn−1) ≥ ε/2,

and the latter inequality contradicts the compactness hypothesis on T . �

Exercises.
(1) (a) Let r be a real number satisfying 0 < r < 1. Show that an

infinite-dimensional Banach space E contains a sequence of
unit vectors e1, e2, . . . satisfying ‖ek − ej‖ ≥ r for all j �= k.
Hint: Use induction and elementary properties of the quotient
norm in E/F where F is a finite-dimensional subspace of E.

(b) Deduce that the unit ball of a Banach space E is compact iff
E is finite dimensional.

(2) (a) Let F be a finite-dimensional subspace of a Banach space E.
Show that there is an operator P ∈ B(E) satisfying P 2 = P
and PE = F . Hint: Pick a basis x1, . . . , xn for F and find
bounded linear functionals f1, . . . , fn on E such that fi(xj) =
δij .

(b) Deduce that every finite-dimensional subspace F ⊆ E is com-
plemented in the sense that there is a closed subspace G ⊆ E
with G ∩ F = {0} and G+ F = E.

(c) Show that every closed subspace M ⊆ E of finite codimension
in E is complemented.

(3) Show that for any Banach space E, K(E) is a norm-closed two-sided
ideal in B(E).

(4) Let T be a compact operator on a Banach space E. Show that the
adjoint T ′ ∈ B(E′) is compact. Hint: Use Ascoli’s theorem.

(5) Supply the missing details to the last paragraph of the proof of
Lemma 3.2.8.

3.3. Fredholm Operators

A bounded operator T on a Banach space E is said to be a Fredholm op-
erator if kerT is finite dimensional and TE is a closed subspace of finite
codimension in E. More briefly, one says that T has finite-dimensional ker-
nel and cokernel. Notice that the assertion about cokerT is subtle, in that
one must verify that the range of T is closed, and of finite codimension. In
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general, there are nonclosed subspaces of Banach spaces that are of finite
codimension, such as the kernels of discontinuous linear functionals. On the
other hand, if a linear subspace R of finite codimension in E is the range of a
bounded linear operator T ∈ B(E), then R must be closed (see Exercise (1)
below). Thus, one can make a more symmetric linear-algebraic definition
of a Fredholm operator as a bounded operator on E with the property that
both kerT and cokerT = E/TE are finite dimensional as complex vector
spaces.

Remark 3.3.1. Obviously, invertible operators have the Fredholm prop-
erty. A noninvertible example is the unilateral shift acting on �2(N): Its
range is a closed subspace of codimension 1, and its kernel is {0}. In the
preceding section we have seen that any operator λ+T , with T compact and
λ a nonzero scalar, is a Fredholm operator. In this section we summarize the
basic properties of Fredholm operators and establish an important criterion,
Atkinson’s theorem. These results imply that Fredholmness is an asymptotic
property in the sense that it is stable under compact perturbations.

Throughout the section E denotes an infinite-dimensional Banach space,
andK(E) denotes the closed ideal of all compact operators in B(E). The nat-
ural homomorphism of B(E) onto the quotient Banach algebra B(E)/K(E)
is denoted by T �→ Ṫ = T +K(E).

Theorem 3.3.2 (Atkinson’s theorem). A bounded operator T on E is a
Fredholm operator iff Ṫ is invertible in B(E)/K(E).

Before giving the proof, we collect some of its immediate consequences.
Let F(E) be the set of all Fredholm operators on E.

Corollary 1. A bounded operator T belongs to F(E) iff there is an
operator S ∈ B(E) such that 1− ST and 1− TS are both compact.

Proof of Corollary 1. If Ṫ is invertible in B(E)/K(E), then its in-
verse is an element of the form Ṡ for some S ∈ B(E), and the operators
1−ST and 1−TS must be compact because they map to 0 in the quotient
algebra. The converse follows immediately from Atkinson’s theorem. �

Corollary 2. The set F(E) of Fredholm operators is open in the norm
topology of B(E), it is stable under compact perturbations, it contains all
invertible operators of B(E), and it is closed under operator multiplication.

Proof of Corollary 2. Atkinson’s theorem implies that F(E) is the
inverse image of the general linear group of B(E)/K(E) under the continuous
homomorphism T �→ Ṫ ; hence these assertions all follow from the fact that
the set of invertible elements of a unital Banach algebra A forms a group
that is open in the norm topology of A. �

The essential spectrum σe(T ) of an operator T ∈ B(E) is defined as the
spectrum of the image Ṫ of T in B(E)/K(E). σe(T ) is a compact subset of
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σ(T ). The following result implies that there are points in the spectrum of
T that cannot be removed by perturbing T with compact operators.

Corollary 3. Let T be a bounded operator on an infinite-dimensional
Banach space E. Then σe(T ) �= ∅, and

σe(T ) ⊆ ∩{σ(T +K) : K ∈ K(E)}.
Perhaps it is overkill to present this Corollary as a consequence of Atkin-

son’s theorem, since it can be readily deduced from more basic considerations
(see Exercise (2) below).

Proof of Theorem 3.3.2. For the proof of Atkinson’s theorem, sup-
pose first that Ṫ is invertible, and let S ∈ B(E) be an operator such that
Ṡ = Ṫ−1. From the formulas ṠṪ = 1 and Ṫ Ṡ = 1, it follows that there are
compact operators K1,K2 such that

1− ST = K1, 1− TS = K2.

We have to show that kerT is finite dimensional and that TE is a closed
subspace of finite codimension in E.

For the first assertion, we have ST = 1−K1, so that kerT ⊆ kerST =
ker(1−K1), and Theorem 3.2.2 implies that ker(1−K1) is finite dimensional.
Consider now the range TE. Since TS = 1 − K2, we have TE ⊇ TSE =
(1 −K2)E, and by Theorem 3.2.2, (1 −K2)E is a closed subspace of E of
finite codimension. Using elementary linear algebra we can make an obvious
inductive argument to find a finite set of vectors v1, . . . , vr such that

TE = (1−K2)E + [v1, . . . , vr],

exhibiting TE as a closed subspace of finite codimension in E.
Conversely, suppose that T is a Fredholm operator on E. Since kerT is

finite dimensional and TE is a closed subspace of finite codimension, there
are bounded operators P , Q on E such that P 2 = P , Q2 = Q, PE = kerT ,
and QE = TE (see Exercise (2) of the preceding section). Notice that since
P and 1−Q are finite-rank idempotents, it suffices to show that there is a
bounded operator S on E such that

(3.5) ST = 1− P, TS = Q = 1− (1−Q).

The formulas (3.5) imply that ṠṪ = Ṫ Ṡ = 1 in B(E)/K(E). The operator
S is obtained as follows. Let N = (1−P )E. The restriction T0 of T to N is
an operator with trivial kernel that maps onto TE (since TP = 0). By the
closed graph theorem T0 is an invertible operator. Let S0 ∈ B(TE,N) be
its inverse. We have S0Tx = x for all x ∈ N , and TS0y = y for all y ∈ TE.
Letting S be the composition S = S0 ◦Q, one finds that formulas (3.5) are
satisfied. �

Remark 3.3.3. The proof of Atkinson’s theorem shows somewhat more
than we have asserted, namely that for any bounded operator T on E the
following three conditions are equivalent:
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(1) T is a Fredholm operator.
(2) There is an operator S ∈ B(E) such that 1 − ST and 1 − TS are

compact.
(3) There is an operator S ∈ B(E) such that 1 − ST and 1 − TS are

finite-rank operators.
In particular, we have the remarkable conclusion that invertibility modulo
compact operators is the same as invertibility modulo finite-rank operators.

Exercises.
(1) Let E be a Banach space and let T be a bounded operator on E

such that the vector space E/TE is finite dimensional. Show that
the range of T is closed.

The Weyl spectrum σW (T ) of a bounded operator T on E is de-
fined as the intersection ∩{σ(T +K) : K ∈ K(E)} of the spectra
of all compact perturbations of T . It is empty when E is finite
dimensional.

(2) Show that when E is infinite-dimensional the essential spectrum
σe(T ) is a nonempty subset of σW (T ). Use elementary properties
of Banach algebras and their quotients, but not Atkinson’s theorem.

Let S be the unilateral shift, realized on a Hilbert space H with
orthonormal basis e1, e2, . . . as the unique bounded operator S sat-
isfying Sen = en+1, n = 1, 2, . . . .

(3) Show that the essential spectrum of S is the unit circle

T = {λ ∈ C : |λ| = 1}.
(4) Show that the Weyl spectrum of S is the closed unit disk.

3.4. The Fredholm Index

We introduce the Fredholm index, develop its basic properties in general,
and end the section with a brief discussion of the index in the more concrete
setting of operators on a Hilbert space.

Let T be a Fredholm operator on a Banach space E. Both vector spaces
kerT = {x ∈ E : Tx = 0} and cokerT = E/TE are finite-dimensional, and
the index of T is defined as the difference

indT = dimkerT − dim cokerT.

The Fredholm alternative (Theorem 3.2.2) becomes the assertion that an
operator of the form λ + T , with T compact and λ a nonzero scalar, is
a Fredholm operator of index zero. The unilateral shift S is a Fredholm
operator with indS = −1 (see Remark 3.3.1). We have also pointed out
in the last section that the dimension of cokerT is the same as dimkerT ′,
where T ′ ∈ B(E′) is the adjoint of T , so that

indT = dimkerT − dimkerT ′.
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This formula is perhaps most useful for operators on Hilbert spaces, where
one can replace T ′ with the Hilbert space adjoint T ∗.

Atkinson’s theorem implies that the product ST of two Fredholm oper-
ators S, T ∈ B(E) is a Fredholm operator. The most important property of
the index is its logarithmic additivity,

(3.6) indST = indS + indT,

which will be proved shortly. Once this formula is established, the remaining
properties of the Fredholm index follow easily. Thus it is significant that
formula (3.6) is fundamentally a result in infinite-dimensional linear algebra,
having nothing to do with the topology of E or B(E). While it is not
operator-theoretic orthodoxy to do so, we have chosen to present the general
algebraic result and deduce (3.6) from it. This proof is not only natural from
a formal point of view, it is also quite transparent.

For the moment, we shift attention away from the category of Banach
spaces with bounded linear operators as maps to the category of complex
vector spaces with linear transformations as maps. Let V be a complex
vector space. By an operator on V we simply mean a linear transformation
T : V → V , and the set of all such is denoted by L(V ), which is a complex
algebra with unit. Every operator T ∈ L(V ) has two vector spaces associated
with it, namely, its kernel and cokernel

kerT = {x ∈ V : Tx = 0}, cokerT = E/TE.

T is said to be a Fredholm operator if both of these vector spaces are finite
dimensional. The set of Fredholm operators on V is denoted by F(V ). Every
operator T ∈ F(V ) has an index, namely,

indT = dimkerT − dim cokerT.

Notice that if E is a complex Banach space and V is its underlying vector
space structure, then, as we have already seen, a bounded operator belongs
to F(E) iff it defines an algebraic Fredholm operator on V , that is, F(E) =
F(V ) ∩ B(E). Thus the following result implies the addition formula (3.6)
for Fredholm operators on Banach spaces.

Theorem 3.4.1 (Addition formula). Let V be a complex vector space
and let A,B be Fredholm operators on V . Then AB is a Fredholm operator,
and

indAB = indA+ indB.

We will deduce Theorem 3.4.1 from two more precise formulas, in which
both defects

dimkerA+ dimkerB − dimkerAB

and
dim cokerA+ dim cokerB − dim cokerAB

are computed explicitly.
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Lemma 3.4.2. Let V be a vector space, and let A,B ∈ F(V ). Then

(3.7) dimkerA+ dimkerB = dimkerAB + dim(kerA/(BV ∩ kerA)).

Proof. Noting that kerB ⊆ kerAB we claim

(3.8) dim(kerAB/ kerB) = dim(BV ∩ kerA).

To prove this, it is enough to exhibit a linear map L from kerAB onto
BV ∩ kerA whose kernel is exactly kerB. It is defined by L : x �→ Bx,
x ∈ kerAB. Clearly, L(kerAB) ⊆ BV ∩ kerA, and Lx = 0 iff x ∈ kerB. L
is surjective, since if y has the form y = Bv ∈ kerA for some v ∈ V , then
ABv = Ay = 0; hence v ∈ kerAB and Lv = Bv = y.

We now add dimkerB+dim(kerA/(BV ∩kerA)) to both sides of (3.8).
Since dim(kerAB/ kerB) + dimkerB = dimkerAB, the left side becomes

dimkerAB + dim(kerA/(BV ∩ kerA));

for a similar reason, the right side becomes

dimkerB + dimkerA,

and we obtain the asserted formula. �

Lemma 3.4.3. Let V be a vector space, and let A,B ∈ F(V ). Then

(3.9) dim cokerA+dim cokerB = dim cokerAB+dim((BV +kerA)/BV ).

Proof. We first establish an elementary formula. If M is a subspace of
V of finite codimension, then

(3.10) dim(V/M) = dim(AV/AM) + dim((M + kerA)/M).

For the proof, consider the natural linear map L : V/M → AV/AM defined
by L(v+M) = Av+AM . The range of L is obviously AV/AM , and we claim
that kerL = (M + kerA)/M . Indeed, a coset v +M belongs to the kernel
of L iff Av+AM = 0 iff Av ∈ AM iff there is an element m ∈M such that
A(v−m) = 0, and the latter is equivalent to v ∈M +kerA. Formula (3.10)
now follows from a familiar identity of finite-dimensional linear algebra:

dimdomainL = dim ranL+ dimkerL.

Taking M = BV in (3.10), we obtain

dim(V/BV ) = dim(AV/ABV ) + dim((BV + kerA)/BV ).

If we add dimV/AV to both sides, the left side becomes

dim cokerA+ dim cokerB,

while the right side becomes

dim(V/AV ) + dim(AV/ABV ) + dim((BV + kerA)/BV ).

Since ABV ⊆ AV , the first two terms sum to dimV/ABV = dim cokerAB,
completing the proof. �



98 3. ASYMPTOTICS: COMPACT PERTURBATIONS AND FREDHOLM THEORY

Proof. Turning to the proof of Theorem 3.4.1, Lemma 3.4.2 implies
that

dimkerAB ≤ dimkerA+ dimkerB <∞,

while Lemma 3.4.3 implies

dim cokerAB ≤ dim cokerA+ dim cokerB <∞.

Thus A,B ∈ F(V ) =⇒ AB ∈ F(V ). Now, for any two subspaces M,N of
a vector space there is an obvious linear map of M onto (N +M)/N with
kernel N ∩M ; hence M/(N ∩M) ∼= (N +M)/N . It follows that

kerA/BV ∩ kerA ∼= (BV + kerA)/BV,

and in particular,

dim(kerA/BV ∩ kerA) = dim((BV + kerA)/BV ).

We infer from Lemmas 3.4.2 and 3.4.3 that
dimkerA+dimkerB − dimkerAB =

dim cokerA+ dim cokerB − dim cokerAB,
(3.11)

and the required formula indAB = indA+indB follows after one rearranges
terms in (3.11). �

Returning now to the setting in which E is an infinite dimensional Ba-
nach space, we obtain a fundamental result:

Corollary 1. For any two Fredholm operators A,B on E, the product
AB is Fredholm, and

indAB = indA+ indB.

Proof. Atkinson’s theorem implies that F(E) is closed under operator
multiplication. If we forget the topology of E and apply Theorem 3.4.1, we
obtain the asserted formula. �

Corollary 2 (Stability of index). For every Fredholm operator A ∈
B(E) and compact operator K,

ind (A+K) = indA.

Proof. By Atkinson’s theorem there is a Fredholm operator B ∈ B(E)
such that AB = 1 + L with L ∈ K(E). We have (A + K)B = 1 + L′
where L′ = L−KB ∈ K(E). As we have already pointed out, the Fredholm
alternative implies that ind (1 + L) = ind (1 + L′) = 0; hence indAB =
ind (A+K)B = 0. Using Corollary 1 one has

ind (A+K) + indB = ind (A+K)B = indAB = indA+ indB,

and the formula follows after one cancels the integer indB. �
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Remark 3.4.4. Given a Fredholm operator A and an integer n, one can
find finite-rank operators F and F ′ such that

dimker(A+ F ) > n, dim coker (A+ F ′) > n

(it is an instructive exercise to carry this out with A the unilateral shift).
In particular, both dimker(A + F ) and dim coker (A + F ) fluctuate in an
unbounded way as F varies over the finite-rank operators. It is quite re-
markable that these fluctuations cancel each other, so that the difference
dimker(A+ F )− dim coker (A+ F ) remains at the constant value indA.

Corollary 3 (Continuity of index). Given a Fredholm operator A,
let A1, A2, . . . be a sequence of bounded operators that converges to A,
limn→∞ ‖An − A‖ = 0. There is an n0 such that for n ≥ n0, An is a
Fredholm operator with indAn = indA.

Proof. By Atkinson’s theorem, F(E) is open, so that An ∈ F(E) for
sufficiently large n. We can also find a Fredholm operator B such that
AB = 1 + K with K compact. Writing An = A + Tn with ‖Tn‖ → 0 as
n→∞, we can find n0 so that, for n ≥ n0, ‖TnB‖ < 1 and hence 1+ TnB
is invertible. For such n, we have

indAn + indB = ind (A+ Tn)B = ind (1+ TnB +K).

The right side vanishes because 1+ TnB +K is a compact perturbation of
an invertible operator (see Exercise (1) below). On the other hand,

indA+ indB = indAB = ind (1+K) = 0

by the Fredholm alternative; hence indAn = −indB = indA for sufficiently
large n. �

Finally, let us consider the case of Fredholm operators acting on a Hilbert
space H. The unique feature of Hilbert space is the existence of the adjoint
operation A �→ A∗, carrying B(H) to itself. One cannot identify A∗ with
the Banach space adjoint A′ ∈ B(H ′), as one sees by considering the fact
that A �→ A∗ is an antilinear map, while, for operators A on Banach spaces,
A �→ A′ is a linear map. That is because the identification of H ′ with
H given by the Riesz lemma is not a linear map but an antilinear map.
But the difference between A∗ and A′ is slight; and when one is working
with Hilbert spaces it is customary to use A∗ rather than A′. Thus for
Fredholm operators A acting on a Hilbert space we have AH⊥ = kerA∗;
hence dim cokerA = dimkerA∗ and

indA = dimkerA− dimkerA∗.

Exercises.

(1) Let E be an infinite-dimensional Banach space.
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(a) Show that a Fredholm operator T on E is a compact pertur-
bation of an invertible operator iff its index vanishes. Hint: If
indT = 0, show how to construct a finite-rank perturbation of
T that is one-to-one and onto.

(b) Deduce the following concrete description of the equivalence
relation A ∼ B ⇐⇒ indA = indB: Two Fredholm operators
A and B on E have the same index iff there is an invertible
operator C such that A−BC is compact.

(2) Let S be the unilateral shift acting on a Hilbert space H (see the
Exercises of the preceding section).
(a) Show that there is no compact operator K such that S+K is

invertible.
(b) Let T ∈ F(H) be a Fredholm operator of positive index n.

Show that there is an invertible operator C ∈ B(H) and a
compact operator K such that T = S∗nC +K.

(3) (a) Let N be a normal Fredholm operator on a Hilbert space H.
Show that the index of N vanishes.

(b) Deduce that the unilateral shift S is not a compact perturba-
tion of a normal operator.

(4) With S as in the preceding exercises, let S ⊕ S∗ ∈ B(H ⊕ H) be
the direct sum of S with its adjoint S∗. Show that S ⊕ S∗ is a
Fredholm operator and calculate its index.

(5) Let U be the bilateral shift, defined on a Hilbert space H by its
action on a bilateral orthonormal basis {en : n ∈ Z} forH by Uen =
en+1, n ∈ Z. Let P be the projection onto the one-dimensional
space spanned by e0. Show that U − UP is unitarily equivalent
to the operator S ⊕ S∗ of the preceding exercise, and deduce that
S ⊕ S∗ is a compact perturbation of a normal operator.

(6) Show that the spectrum of S ⊕ S∗ is the closed unit disk, but the
Weyl spectrum of S ⊕ S∗ is the unit circle.



CHAPTER 4

Methods and Applications

In this chapter, a variety of operator-theoretic methods are developed within
the context of determining the spectra of Toeplitz operators.

Let Z+ be the additive semigroup of nonnegative integers, and let A be
a bounded operator that acts as follows on the Hilbert space �2(Z+):

(4.1) (Aξ)n =
∞∑
k=0

cn−kξk, n = 0, 1, 2, . . . ,

where (cn) is a bilateral sequence of complex numbers. Such an operator A is
called a Toeplitz operator with associated sequence (cn). More invariantly,
a Toeplitz operator is a bounded operator A on a Hilbert space H with
the property that there is an orthonormal basis e0, e1, e2, . . . for which the
matrix (aij) of A relative to this basis depends only on i− j,

(4.2) (aij) =


c0 c−1 c−2 c−3 . . .
c1 c0 c−1 c−2 . . .
c2 c1 c0 c−1 . . .
c3 c2 c1 c0 . . .

. . .

 .

Toeplitz operators arise in diverse applications, and a great deal of effort
has gone into computing their spectra. The results are definitive for Toeplitz
operators with “continuous symbol,” and these results are presented in Sec-
tion 4.6. For more general Toeplitz operators the results are incomplete,
and this is an area of continuing research.

The results of Section 4.6 require tools that have significance extend-
ing well beyond the immediate problem of computing spectra, and we de-
velop these methods in a general context appropriate for broader application.
Topics treated in this chapter include a discussion of maximal abelian von
Neumann algebras, the characterization of bounded Toeplitz matrices and
the notion of symbol, the structure of the Toeplitz C∗-algebra including the
identification of its Fredholm operators and their relation to the topology
of curves, the elementary theory of the Hardy space H2, and the index the-
orem. We conclude the chapter with a discussion of states of C∗-algebras
and the Gelfand–Naimark theorem.
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4.1. Maximal Abelian von Neumann Algebras

A von Neumann algebra is an algebraM of operators on a Hilbert space H
that contains the identity operator, is self-adjoint in the sense thatM∗ =M,
and is closed in the weak operator topology of B(H). We will not have much
to say about general von Neumann algebras, but we will look closely at the
commutative ones. The set of all commutative self-adjoint operator algebras
acting on H is partially ordered with respect to inclusion, and a maximal
element of this set is called a maximal abelian self-adjoint algebra. They
are commonly denoted by the colorless acronym MASA.

Remark 4.1.1. Since the closure in the weak operator topology of any
commutative self-adjoint subalgebra of B(H) is a commutative self-adjoint
algebra, a MASA is a weakly closed subalgebra of B(H). It must contain
the identity operator, since otherwise, it could be enlarged nontrivially by
adjoining the identity to it. Hence a MASA is an abelian von Neumann
algebra.

Actually, a MASA M coincides with its commutant M′ = {T ∈ B(H) :
TA = AT,A ∈ M}. It is clearly a subset of M′ because it is commutative.
On the other hand, if A ∈ M′, then writing A = X + iY with X,Y self-
adjoint elements of M′ (here we use the fact that M is self-adjoint) we
find that X must belong to M because the algebra generated by M and
X is a commutative algebra containing M. Similarly, Y ∈ M, and hence
M′ = M. Finally, A straightforward application of Zorn’s lemma shows
that every self-adjoint family of commuting operators is contained in some
MASA.

Theorem 4.1.2. Let (X,µ) be a σ-finite measure space. Then the mul-
tiplication algebra M = {Mf : f ∈ L∞(X,µ)} is a maximal abelian von
Neumann algebra in B(L2(X,µ)).

Proof. Let T �= 0 be a bounded operator on L2(X,µ) that commutes
with every operator in M. We have to show that T ∈M.

Consider first the case in which µ is a finite measure. The constant
function 1 belongs to L2(Xµ), and we can define a function g in L2(X,µ)
by g = T1. We will show that g ∈ L∞, ‖g‖∞ ≤ ‖T‖, and T = Mg. Note
that for every f ∈ L∞(X,µ) we have fg = MfT1 = TMf1 = Tf . Since
T �= 0, it follows that g �= 0, and moreover,

‖fg‖2 ≤ ‖T‖ · ‖f‖2.

Choosing E ⊆ X to be a Borel set and taking f = χE , we obtain

(4.3)
∫
E
|g|2 dµ = ‖χEg‖2

2 ≤ ‖T‖2‖χE‖2
2 = ‖T‖2µ(E).

This inequality implies that |g(p)| ≤ ‖T‖ almost everywhere. Indeed, if
c ≥ 0 is any number such that E = {p ∈ X : |g(p)| > c} has positive
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measure, then (4.3) implies

c2µ(E) ≤
∫
E
|g|2 ≤ ‖T‖2µ(E),

and hence c ≤ ‖T‖. Since ‖g‖∞ is the supremum of all such c, we conclude
that g ∈ L∞(X,µ) and ‖g‖∞ ≤ ‖T‖.

We have shown that Mg is a bounded operator that satisfies Mgf =
fg = Tf for all f ∈ L∞(X,µ); hence Mg = T because L∞(X,µ) is dense in
L2(X,µ).

In the general case where µ is σ-finite, we decompose X into a sequence
of disjoint Borel sets of finite measure:

X = X1 !X2 ! · · · .
Letting µn be the restriction of µ to Xn, µn(E) = µ(E ∩Xn), we find that
L2 decomposes into a direct sum of Hilbert spaces:

L2(X,µ) = L2(X1, µ1)⊕ L2(X2, µ2)⊕ . . . .

Since the projection of L2(X,µ) onto L2(Xn, µn) belongs toM (it is the op-
erator that multiplies by the characteristic function ofXn), it must commute
with T , and we obtain a corresponding decomposition

T = T1 ⊕ T2 ⊕ · · · ,
where Tn is the restriction of T to L2(Xn, µn). Since Tn commutes with the
multiplication algebra of L2(Xn, µn), the argument just given implies that
there is a function fn ∈ L∞(Xn, µn) such that Tn = Mfn , and moreover,
‖fn‖∞ ≤ ‖Tn‖ ≤ ‖T‖ for every n. Thus the fn are uniformly bounded, and
we can define a function f ∈ L∞(X,µ) via f = fn on Xn, n = 1, 2, . . . . The
desired conclusion T = Mf follows. �

Every normal operator N generates a von Neumann algebra W ∗(N),
namely the closure in the weak operator topology of the ∗-algebra gener-
ated by N and 1. Since N is normal, W ∗(N) is an abelian von Neumann
algebra; and in some cases it is a maximal abelian von Neumann algebra.
These are the normal operators that are “multiplicity-free.” A comprehen-
sive treatment of multiplicity theory would be inappropriate here, and we
refer the reader to [2] for more detail. What we do require is the following
sufficient condition for a multiplication operator to have this useful property.

Theorem 4.1.3. Let X be a compact subset of C, let f ∈ C(X) be a
continuous function that separates points of X in the sense that f(p) �= f(q)
for distinct points p �= q ∈ X, and let µ be a finite measure on X.

Consider the multiplication operator Mf ∈ B(L2(X,µ)). Then W ∗(Mf )
is the multiplication algebraM of L2(X,µ), and every operator A that doubly
commutes Mf ,

(4.4) AMf = MfA, AM∗
f = M∗

fA

belongs to M = W ∗(Mf ).
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Proof. Since f separates points of X, the Stone–Weierstrass theorem
implies that C(X) is generated as a C∗-algebra by f and the constant func-
tion 1. Theorem 2.1.3 implies that A = {Mg : g ∈ C(X)} is a C∗-subalgebra
of the multiplication algebra, and in fact, it is the C∗-algebra generated by
the two operators Mf and 1.

We claim now that the closure of A in the weak operator topology is
the multiplication algebra M. Indeed, for every bounded Borel function
h : X → C there is a uniformly bounded sequence g1, g2, . . . of continuous
functions such that limn gn(p) = h(p) for almost every p ∈ X. Choosing
such a sequence gn, then for every pair of functions ξ, η ∈ L2(X,µ) the
function ξη̄ is integrable, so by the dominated convergence theorem

lim
n→∞〈Mgnξ, η〉 = lim

n→∞

∫
X
gn(p)ξ(p)η̄(p) dµ =

∫
X
h(p)ξ(p)η̄(p) dµ = 〈Mhξ, η〉.

Hence Mh ∈ Aweak, and we conclude thatM is generated as a von Neumann
algebra by Mf and 1.

Finally, let A be a bounded operator on L2(X,µ) that commutes with
Mf and M∗

f . Then A commutes with the weakly closed algebra generated
by Mf , M∗

f , and 1, which, by the preceding paragraphs, contains the mul-
tiplication algebra M. By Theorem 4.1.2, A ∈M. �

Remark 4.1.4. It is significant that the second hypothesis AM∗
f = M∗

fA

in (4.4) is redundant. That is a consequence of a theorem of Bent Fuglede
([19], Proposition 4.4.12), which asserts that any operator that commutes
with a normal operator N must also commute with its adjoint N∗.

We also remark that the finiteness hypothesis on the measure σ can be
relaxed to σ-finiteness, in view of the fact that for mutually absolutely equiv-
alent σ-finite measures µ, ν on X, the multiplication algebras of L2(X,µ)
and L2(X, ν) are naturally unitarily equivalent (Exercise (2) of Section 2.6).

Finally, we point out that the hypotheses on f can be replaced with the
hypothesis that f is a bounded Borel function that separates points of X;
but that generalization requires more information about Borel structures
than we have at our disposal (see chapter 3 of [2]).

Corollary 1. Let X be the standard operator on L2[0, 1],

Xξ(t) = tξ(t), 0 ≤ t ≤ 1, ξ ∈ L2[0, 1].

For every operator A that commutes with X, there is a function f ∈ L∞[0, 1]
such that A = Mf .

Corollary 2. Let {en : n ∈ Z} be a bilateral orthonormal basis for a
Hilbert spaceH, and let U be the bilateral shift defined onH by Uen = en+1,
n ∈ Z. Then the von Neumann algebra W ∗(U) generated by U is maximal
abelian, and consists of all operators in B(H) that commute with U .

Proof. We have seen that U is unitarily equivalent to the multiplication
operator Mζ acting on L2(T) by Mζξ(z) = ζ(z)ξ(z), ζ being the current
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variable ζ(z) = z, z ∈ T. Since Mζ is unitary, any operator commuting with
it must also commute with its adjoint M∗

ζ = M−1
ζ . On the other hand, since

ζ separates points of T, it follows from Theorem 4.1.3 that any operator
commuting with {Mζ ,M

∗
ζ } must belong to the multiplication algebra of

L2(T), and that the multiplication algebra coincides with the von Neumann
algebra generated by U . �

Exercises.

(1) Show that the unit ball of B(H) is compact in its weak operator
topology. Hint: Show that the unit ball of B(H) can be embedded
as a closed subset of a Cartesian product of copies of the complex
unit disk ∆ = {z ∈ C : |z| ≤ 1}, and appeal to the Tychonoff
theorem.

In the following exercises, H denotes a separable Hilbert space.

(2) (a) Let ξ1, ξ2, . . . be a sequence of vectors dense in the unit ball
of H. Show that

d(A,B) =
∞∑

m,n=1

2−m−n |〈Aξm, ξn〉 − 〈Bξm, ξn〉|
1 + |〈Aξm, ξn〉 − 〈Bξm, ξn〉|

is a metric on the unit ball of B(H) that is separately contin-
uous in the weak operator topology.

(b) Show that, with its weak operator topology, the unit ball of
B(H) is homeomorphic to a compact metric space.

(3) Deduce that every von Neumann algebra M acting on H contains
a unital C*-subalgebra A that is (1) separable (i.e., A contains a
countable norm-dense subset) and (2) weakly dense in M.

In the following exercises, you will show that every maximal abelian
von Neumann algebra M ⊂ B(H) is unitarily equivalent to the
multiplication algebra of a finite measure space, and deduce the
spectral theorem from that result.

(4) If an abelian von Neumann algebraM⊂ B(H) has a cyclic vector,
then there is a compact metric space X and a probability measure
µ on X such that M is unitarily equivalent to the multiplication
algebra of L2(X,µ). Hint: Use Exercise (3).

(5) Let M⊂ B(H) be a MASA. Show that there is a sequence of mu-
tually orthogonal cyclic projections inM that sum to the identity.
Hint: The projection onto any M-invariant subspace must belong
to M.

(6) Deduce that every MASA has a cyclic vector, and hence is unitarily
equivalent to a multiplication algebra as in Exercise (4).
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(7) Show that every commutative ∗-subalgebra A ⊆ B(H) is contained
in a maximal abelian von Neumann algebra in B(H), and deduce
the spectral theorem from the result of the preceding exercise.

4.2. Toeplitz Matrices and Toeplitz Operators

Starting with a “symbol” (a function in L∞), we introduce its associated
Toeplitz operator acting on the Hardy space H2 and develop the basic re-
lations between the symbol and the operator. Then we discuss the more
classical notion of Toeplitz matrix, and relate the two. Historically, Toeplitz
matrices came first.

We begin by reviewing some notation and terminology that will be used
throughout the following sections. L2 will denote the Hilbert space L2(T, σ),
where σ is the normalized length dσ = dθ/2π on the unit circle T of the
complex plane. Let ζ ∈ C(T) be the current variable, ζ(z) = z, z ∈ T. The
set {ζn : n ∈ Z} of powers of ζ is an orthonormal basis for L2, and H2 is
defined as the closed subspace

H2 = [1, ζ, ζ2, . . . ]

spanned by the nonnegative powers of ζ. The orthocomplement of H2 is
spanned by the negative powers of ζ,

H2⊥ = [ζn : n < 0].

Elements of H2 are functions f in L2 whose Fourier series have the form

(4.5) f(eiθ) ∼
∞∑
n=0

ane
inθ.

Similarly, L∞ denotes the algebra L∞(T, σ). It is a commutative C∗-
algebra which, in addition to its norm topology, has a weak∗ topology defined
by its natural pairing with L1. The corresponding subace of L∞ is denoted
by H∞,

H∞ = L∞ ∩H2.

By definition, a bounded measurable function f belongs toH∞ iff its Fourier
series has the form (4.5). Given f ∈ L∞, the following observation relates
membership in H∞ to properties of the multiplication operator Mf , and
implies that H∞ is a weak∗-closed unital subalgebra of L∞.

Proposition 4.2.1. H∞ = {φ ∈ L∞ : MφH
2 ⊆ H2}.

Proof. Let φ ∈ L∞. If φ ∈ H∞, then for n ≥ 0,

Mφζ
n = ζn · φ ∈ ζn ·H2 ⊆ H2;

hence Mφ leaves H2 = [1, ζ, ζ2, . . . ] invariant.
Conversely, if MφH

2 ⊆ H2, then φ = Mφ1 ∈ H2. �
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For every φ ∈ L∞, let Tφ ∈ B(H2) be the compression of Mφ to H2,

Tφ = P+Mφ �H2 ,

P+ denoting the projection of L2 onto H2. The operator Tφ is called the
Toeplitz operator with symbol φ.

Remark 4.2.2. The map φ �→ Tφ is obviously a ∗-preserving bounded
linear mapping of the commutative C∗-algebra L∞ into B(H2), which carries
the unit of L∞ to the identity operator and is positive in the sense that

φ ≥ 0 =⇒ Tφ ≥ 0.

Certainly, it is not a representation, but it has the following restricted mul-
tiplicativity property. For f ∈ H∞ and g ∈ L∞, we have

(4.6) Tfg = TgTf , Tf̄g = Tf̄Tg.

Indeed, the first formula follows from

Tfg = P+Mgf �H2= P+MgMf �H2= P+MgP+Mf �H2= TgTf ,

using MfH
2 ⊆ H2; the second formula follows from the first by taking

adjoints.

A fundamental problem concerning Toeplitz operators is to determine
σ(Tφ) in terms of the properties of φ. While the answer is known for impor-
tant classes of symbols (e.g., when φ is real-valued, or belongs to H∞, or
is continuous), the general problem remains unsolved. The difficulty stems
from the fact that the map φ �→ Tφ fails to be multiplicative. We now direct
our attention to developing tools for calculating σ(Tφ) when φ ∈ C(T).

A Toeplitz matrix is a matrix of the form (4.2) whose entries aij i, j =
0, 1, . . . , depend only on i − j. We first show that Toeplitz matrices corre-
spond to Toeplitz operators Tφ, and we determine their norm in terms of the
symbol φ. The unilateral shift is identified in this context as the Toeplitz
operator S = Tζ .

Proposition 4.2.3. Let A be a bounded operator on H2. The matrix of
A relative to the natural basis {ζn : n = 0, 1, 2, . . . } is a Toeplitz matrix iff
S∗AS = A.

Proof. The hypothesis on the matrix entries aij = 〈Aζj , ζi〉 of A is
equivalent to requiring

ai+1,j+1 = aij , i, j = 0, 1, 2, . . . .

Noting that Sζn = ζn+1 for n ≥ 0 we find that this is equivalent to the
requirement that

〈S∗ASζj , ζi〉 = 〈ASζj , Sζi〉 = 〈Aζj+1, ζi+1〉 = 〈Aζj , ζi〉
for all i, j ≥ 0; hence it is equivalent to the formula S∗AS = A. �
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Thus, in order to determine which Toeplitz matrices (4.2) correspond to
bounded operators, we must characterize the bounded operators A on H2

that have the property S∗AS = A. This is accomplished as follows. Notice
first that any Toeplitz operator Tφ with φ ∈ L∞ satisfies S∗TφS = Tφ, since
by (4.6) we have

S∗TφS = Tζ̄TφTζ = Tζ̄φTζ = Tζ̄ζφ = Tφ,

since ζ̄ζ = 1. Conversely:

Theorem 4.2.4 (Characterization of Toeplitz operators). Let A be a
bounded operator on H2 satisfying S∗AS = A. There is a unique function
φ ∈ L∞ such that A = Tφ, and one has ‖A‖ = ‖φ‖∞.

Proof. For every n = 0, 1, 2, . . . let Mn be the following subspace of
L2:

Mn = [ζ−n, ζ−n+1, ζ−n+2, . . . ].
We have H2 = M0 ⊆ M1 ⊆ M2 ⊆ · · · and the union ∪nMn is dense in L2.
Let U = Mζ ∈ B(L2). U is a unitary operator whose restriction to H2 is the
unilateral shift S, and it maps Mn into Mn−1 for n ≥ 1. Thus UnMn ⊆ H2,
and we can define a sequence of operators An ∈ B(Mn) as follows:

An = U−nAUn �Mn .

Each An is obviously unitarily equivalent to A; hence ‖An‖ = ‖A‖. More-
over, we claim:

• The sequence A1, A2, . . . is coherent in the sense that

(4.7) 〈An+1ξ, η〉 = 〈Anξ, η〉, ξ, η ∈Mn.

• For every n ≥ 1,

(4.8) P+An �H2= A.

Indeed, since Unξ and Unη belong to H2, we have

〈An+1ξ, η〉 = 〈U−(n+1)AUn+1ξ, η〉 = 〈ASUnξ, SUnη〉
= 〈S∗ASUnξ, Unη〉.

Since S∗AS = A, the right side is 〈AUnξ, Unη〉 = 〈Anξ, η〉 as (4.7) asserts.
For (4.8), note that for ξ, η ∈ H2 one has

〈P+Anξ, η〉 = 〈U−nAUnξ, η〉 = 〈AUnξ, Unη〉 = 〈ASnξ, Snη〉
= 〈S∗nASnξ, η〉 = 〈Aξ, η〉.

It follows from (4.7) that we can use the Riesz lemma to define a unique
operator Ã ∈ B(L2) as a weak limit

〈Ãξ, η〉 = lim
n→∞〈Anξ, η〉, ξ, η ∈ ∪n≥1Mn,

and since ‖An‖ = ‖A‖ for every n, we have ‖Ã‖ ≤ ‖A‖. We claim that
Ã is a multiplication operator Mφ, φ ∈ L∞. In view of Corollary 2 of
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Theorem 4.1.3, this follows from the fact that Ã commutes with U ; indeed,
for ξ, η ∈ ∪n≥1Mn we have

〈U−1ÃUξ, η〉 = lim
n→∞〈U

−1AnUξ, η〉 = lim
n→∞〈An+1ξ, η〉 = 〈Ãξ, η〉.

We have ‖φ‖∞ = ‖Mφ‖ = ‖Ã‖ ≤ ‖A‖. Formula (4.8) implies that the
compression of Ã to H2 is A; hence A = Tφ. The inequality ‖A‖ = ‖Tφ‖ ≤
‖φ‖∞ is obvious, and uniqueness of φ follows from ‖Tφ‖ = ‖φ‖∞. �

In more concrete terms, Theorem 4.2.4 makes the following assertion:
Let (aij) be a formal Toeplitz matrix

(aij) =


c0 c−1 c−2 c−3 . . .
c1 c0 c−1 c−2 . . .
c2 c1 c0 c−1 . . .
c3 c2 c1 c0 . . .

. . .

 ,

where cn, n ∈ Z, is a doubly infinite sequence of complex numbers. Then
(aij) is the matrix of a bounded operator iff there is a function φ ∈ L∞ with
Fourier series

φ(eiθ) ∼
∞∑

n=−∞
cne

inθ.

When such a function φ exists, it is unique, ‖(aij)‖ = ‖φ‖∞, and in that
case, the operator defined on �2(Z+) by the matrix

(Aξ)n =
∞∑
k=0

cn−kξk, ξ ∈ �2(Z+),

is unitarily equivalent to the Toeplitz operator Tφ ∈ B(H2). The function φ
is called the symbol of the Toeplitz matrix (aij) or of the operator Tφ.

Corollary 1. Every Toeplitz operator Tφ, φ ∈ L∞, satisfies

inf{‖Tφ +K‖ : K ∈ K} = ‖Tφ‖ = ‖φ‖∞.

In particular, the only compact Toeplitz operator is 0.

Proof. Let S be the unilateral shift acting onH2 by Sζn = ζn+1, n ≥ 0.
It suffices to show that for any operator A ∈ B(H2) satisfying S∗AS = A
and for any compact operator K we have

‖A+K‖ ≥ ‖A‖.
The hypothesis S∗AS = A implies that S∗nASn = A for every n = 1, 2, . . . ;
noting that Pn = SnS∗n is the projection onto [ζn, ζn+1, . . . ] we have

‖A+K‖ ≥ ‖Pn(A+K)Pn‖ = ‖S∗n(A+K)Sn‖ = ‖A+ S∗nKSn‖.
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The norm of the compression of K to the subspace [ζn, ζn+1, . . . ] is given by
‖PnKPn‖ = ‖S∗nKSn‖, which tends to 0 as n→∞ because K is compact
and Pn ↓ 0. Thus

‖A+K‖ ≥ lim
n→∞ ‖A+ S∗nKSn‖ = ‖A‖,

as asserted. �

Exercises. Let Λ be a Banach limit on �∞ (see the Exercises of Section
3.1). Given a sequence a = (a1, a2, . . . ) ∈ �∞ we will write Λnan for the
value of Λ on a. Let S = Tζ be the natural realization of the unilateral shift
on H2.

(1) Show that for every operator A ∈ B(H2) there is a unique operator
φ(A) ∈ B(H2) satisfying

〈φ(A)ξ, η〉 = Λn〈S∗nASnξ, η〉, ξ, η ∈ H2.

(2) Show that φ(A) is a Toeplitz operator (i.e., has the form Tf for
some f ∈ L∞) for every A ∈ B(H2).

(3) Deduce that φ is a projection of norm 1 of the Banach space B(H2)
onto the subspace S = {Tf : f ∈ L∞} of all Toeplitz operators on
H2, satisfying φ(ATf ) = φ(A)Tf for f ∈ H∞ and φ(K) = 0 for
every compact operator K.

4.3. The Toeplitz C∗-Algebra

Let H be a Hilbert space having an orthonormal basis e0, e1, e2, . . . and let
S be the unique operator defined by Sen = en+1, n ≥ 0. The operator S
is called the unilateral shift. The C∗-algebra generated by S is of central
importance in modern analysis; it is called the Toeplitz C∗-algebra and is
often denoted by T . In this section we give a concrete description of the
Fredholm operators in T ; and in the next we calculate their index.

This is accomplished by relating T to Toeplitz operators with continuous
symbol. We have seen that S can be realized as the Toeplitz operator
Tζ ∈ B(H2), ζ being the current variable, and throughout this section we
take S = Tζ . Recall that the map φ ∈ L∞ �→ Tφ ∈ B(H2) is a positive linear
map of norm 1, and satisfies T1 = 1.

Proposition 4.3.1. Let f, g ∈ L∞. If one of the functions f , g is
continuous, then Tfg − TfTg ∈ K.

Proof. Since T ∗
fg = Tf̄ ḡ and (TfTg)∗ = TḡTf̄ , it suffices to prove the

following assertion: If f ∈ C(T) and g ∈ L∞, then Tfg − TfTg ∈ K. More-
over, since C(T) is the norm-closed linear span of the monomials ζn, n ∈ Z,
and K is a norm-closed linear space, we may reduce to the case f = ζn and
g ∈ L∞, n ∈ Z.

If n ≥ 0, then ζn ∈ H∞, so that by (4.3.1) we have Tfζn = TfTζn . Thus
Tfg − TfTg = 0 in this case.
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If n < 0, say n = −m with m ≥ 1, then ζn is the complex conjugate
of the H∞ function ζm, and another application of (4.3.1) gives Tfζn =
TζnTf = S∗mTf . Noting that S∗mTfSm = Tf (by iterating the basic formula
S∗TfS = Tf valid for any Toeplitz operator) we can write

TfTζn = TfS
∗m = S∗mTfSmS∗m = S∗mTf − S∗mTf (1− SmS∗m).

Hence

Tfζn − TfTζn = S∗mTf − TfS
∗m = −S∗mTf (1− SmS∗m),

which is a finite-rank operator, since 1 − SmS∗m is the projection onto
[1, ζ, ζ2, . . . , ζm−1]. �

Theorem 4.3.2. The Toeplitz C∗-algebra T = C∗(S) consists of all
operators of the form Tf +K, where f ∈ C(T) and K is compact. Moreover,
this decomposition is unique: For f, g ∈ C(T) and K,L ∈ K,

Tf +K = Tg + L =⇒ f = g and K = L.

Proof. We claim first that the set of operators

A = {Tf +K : f ∈ C(T), K ∈ K}
is a C∗-algebra. To see this, consider the map ρ : C(T) → B(H2)/K given
by

ρ(f) = Tf +K, f ∈ C(T).

This defines a self-adjoint linear mapping of C(T) to the Calkin algebra. By
Theorem 4.3.1, ρ is actually a homomorphism of C∗-algebras. By Theorem
2.10.4, ρ(C(T)) is a C∗-subalgebra of the Calkin algebra; and the inverse
image of this C∗-algebra under the natural projection T ∈ B(H2) �→ Ṫ ∈
B(H2)/K is exactly A.

Clearly, A contains S = Tζ , and hence A ⊇ T . On the other hand, for
n ≥ 0 we have Tζn = Sn ∈ T , and for n < 0 we have Tζn = S∗|n| ∈ T ; thus
Tζn ∈ T for all n ∈ Z. Using Exercise (1) below, we see that T contains all
compact operators, and thus

Tζn +K ∈ T , n ∈ Z, K ∈ K.
Since C(T) is the norm-closed linear span of the set of functions {ζn : n ∈ Z},
it follows that T contains all operators Tf +K with f ∈ C(T), K compact.
Hence A ⊆ T .

Finally, the uniqueness of the representation of operators as compact
perturbations of Toeplitz operators is an obvious consequence of Corollary
1 of Theorem 4.2.4. �

Remark 4.3.3. If we compose the linear map f ∈ C(T) �→ Tf ∈ T with
the natural homomorphism of T to the Calkin algebra, then we obtain an
injective ∗-homomorphism f �→ Ṫf of C(T) into the Calkin algebra. Using
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this map to identify C(T) with the quotient T /K, we obtain a short exact
sequence of C∗-algebras and ∗-homomorphisms

(4.9) 0 −→ K −→ T −→
π

C(T) −→ 0,

π being the ∗-homomorphism of T to C(T) given by π(Tf + K) = f , f ∈
C(T), K ∈ K. The sequence (4.9) is called the Toeplitz extension of K by
C(T). The Toeplitz extension is semisplit in the sense that there is a natural
positive linear map φ : C(T) → T , such that φ(1) = 1, with the property
that π ◦ φ is the identity map of C(T) (namely, φ(f) = Tf ). It is significant
that φ is not a ∗-homomorphism but rather a positive linear map. Indeed,
we will see later that this extension is not split; more explicitly, there does
not exist a ∗-homomorphism θ : C(T) → T with the property that π ◦ θ is
the identity map of C(T). The nonexistence of a splitting homomorphism θ
has to do with the Fredholm index (see Exercise (4) below).

We immediately obtain the following description of the Fredholm oper-
ators in T :

Corollary 1. The Fredholm operators in T are precisely the operators
of the form Tf +K where f is an invertible symbol in C(T)−1 and K ∈ K.

Consider a Fredholm operator in T , say Tf +K where f ∈ C(T) has no
zeros on the circle and K is a compact operator. By the stability results of
Chapter 3 we see that Tf is also a Fredholm operator and

ind (Tf +K) = ind (Tf ).

We know that for f = ζ, Tf is the shift; hence ind (Tf ) = −1. However, we
still lack tools for computing the index of more general Toeplitz operators
with symbols in C(T)−1. This issue will be taken up in the following section.

Exercises. Let e0, e1, . . . be an orthonormal basis for a Hilbert space
H, and realize the unilateral shift S as the unique operator on H satisfying
Sen = en+1, n ≥ 0. Let T = C∗(S) be the C∗-algebra generated by S.

(1) Show that for every m,n ≥ 0,

SmS∗n − Sm+1S∗(n+1) = Sm(1− SS∗)S∗n

is a rank-one operator and describe this operator in terms of its
action on e0, e1, . . . . Deduce that T contains the C∗-algebra K of
all compact operators on H.

(2) Noting that K is a closed ideal in T , identify the quotient C∗-
algebra by showing that there is a unique ∗-isomorphism σ : T /K →
C(T) that satisfies σ(S + K) = ζ, where ζ is the current variable
in C(T), ζ(z) = z for all z ∈ T. Hint: Show that the image of S in
the Calkin algebra is a unitary operator whose spectrum is T.

(3) Let K be another Hilbert space, and let W be a unitary operator in
B(K). Deduce that there is a unique representation π : T → B(K)
such that π(S) = W .
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(4) Let T be a Fredholm operator acting on a Hilbert space.
(a) Assuming that the index of T is nonzero, show that T cannot

be decomposed T = N +K into a compact perturbation of a
normal operator N .

(b) Deduce that the unilateral shift is not a compact perturbation
of a unitary operator and that the Toeplitz extension (4.9) is
not split.

In the following exercises, V denotes an arbitrary isometry acting
on some (separable) Hilbert space K. The subspaces V nK decrease
with n, and V is called a pure isometry if ∩nV nK = {0}. A closed
subspace M ⊆ K is said to be reducing for V if it is invariant
under both V and V ∗. The (self-adjoint) projections onto reducing
subspaces are the projections in B(K) that commute with V .

(5) Show that for every isometry V ∈ B(K) there is a unique decom-
position of K into reducing subspaces K = L ⊕ M , where the
restriction of V to L is a pure isometry and the restriction of V
to M is a unitary operator. Hint: Let N = (V K)⊥ be the or-
thogonal complement of the range of V . Show that V pN ⊥ V qN
if p �= q and N ⊕ V N ⊕ V 2N ⊕ · · · is the orthocomplement of
M = V K ∩ V 2K ∩ V 3K ∩ · · · .

(6) Show that the restriction of V to the “pure” subspace L is unitarily
equivalent to a (finite or infinite) direct sum S ⊕ S ⊕ · · · of copies
of the shift S, and that the number of copies is the dimension of
N .

The result of Exercises (5) and (6) asserts that every isometry de-
composes uniquely into a direct sum of two operators, one of which
is a multiple copy of the unilateral shift, the other being a unitary
operator. This is called the Wold decomposition of an isometry V ,
after the statistician who discovered the result in connection with
the theory of stationary Gaussian processes. The following result
is due to Lewis Coburn (1968), and should be compared with the
result of Exercise (2). It implies that the Toeplitz C∗-algebra is
universal for all C∗-algebras generated by isometries.

(7) For every isometry V acting on a Hilbert space K, there is a unique
representation π : T → B(K) such that π(S) = V . Hint: Use the
Wold decomposition.

The result of Exercise (7) is sometimes formulated in purely ∗-algebraic
terms as follows. Let A be a C∗-algebra with unit and let v be an element
of A. Then the following are equivalent:

• There is a (necessarily unique) ∗-homomorphism π : T → A such
that π(S) = v.

• v∗v = 1.
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The difference between Exercise (7) and this more abstract uniqueness result
involves the Gelfand–Naimark theorem, which asserts that every abstract
C∗-algebra has a nondegenerate isometric representation as a C∗-algebra of
operators on some Hilbert space. The Gelfand–Naimark theorem will be
established in Section 4.8 below.

4.4. Index Theorem for Continuous Symbols

Consider the multiplicative group G = C(T)−1 of all complex-valued con-
tinuous functions on the circle that have no zeros. G is a commutative
topological group relative to its norm topology. We seek a nontrivial ho-
momorphism of G into the additive group Z. This homomorphism is a
generalization of the winding number, about the origin, of piecewise smooth
functions in G. We first describe this generalized winding number in some
detail. Then we relate this topological invariant of functions f ∈ G to the
index of their Toeplitz operators Tf ∈ B(H2). Throughout, C× denotes the
multiplicative group of nonzero complex numbers.

We begin with a result about the general linear group of a related C∗-
algebra C[0, 1]. While one can base that result on the fact that [0, 1] is
a contractible space, or on the properties of covering maps of spaces, the
argument we give uses only elementary methods. The reader should keep
in mind that the range of a function f ∈ C[0, 1]−1 can be very complicated,
perhaps having nontrivial interior.

Proposition 4.4.1. For every function F ∈ C[0, 1] such that F (t) �= 0
for every t ∈ [0, 1], there is a function G ∈ C[0, 1] such that

F (t) = eG(t), 0 ≤ t ≤ 1.

Proof. On the domain {z ∈ C : |z − 1| < 1}, let log z be the principal
branch of the logarithm,

log z = −
∞∑
n=1

(1− z)n

n
.

The log function is holomorphic, satisfies log 1 = 0, and of course elog z = z
for |z − 1| < 1. Let

M = sup
0≤t≤1

|F (t)|−1.

By uniform continuity of F , we can find a finite partition of the interval
[0, 1], 0 = t0 < t1 < · · · < tn = 1, such that

sup
tk−1≤t≤tk

|F (t)− F (tk−1)| < 1
2M

.

It follows that for k = 1, . . . , n and t ∈ [tk−1, tk],

(4.10)
∣∣∣∣1− F (t)

F (tk−1)

∣∣∣∣ = |F (t)− F (tk−1)|
|F (tk−1)| ≤ 1

2M |F (tk−1)| ≤
1
2
< 1.



4.4. INDEX THEOREM FOR CONTINUOUS SYMBOLS 115

Setting
Gk(t) = log(F (t)/F (tk−1)), tk−1 ≤ t ≤ tk,

we find that Gk is continuous, Gk(tk−1) = 0, Gk(tk) = log(F (tk)/F (tk−1)),
and it satisfies

F (t) = F (tk−1)eGk(t)

throughout the interval [tk−1, tk]. There is an obvious way to piece the
Gk together so as to obtain a continuous function G : [0, 1] → C, namely
G(t) = G1(t) for t ∈ [0, t1] and, for k = 2, . . . , n,

G(t) = G1(t1) + · · ·+Gk−1(tk−1) +Gk(t), t ∈ [tk−1, tk].

It follows that
F (t) = F (0)eG(t), 0 ≤ t ≤ 1.

Writing F (0) ∈ C× as an exponential F (0) = ez0 , we obtain a continuous
function G̃ satisfying F = eG̃ by way of G̃(t) = G(t) + z0. �

We can now define the winding number (about the origin) of a function
f ∈ G = C(T)−1. The function F : [0, 1]→ C× defined by

F (t) = f(e2πit)

is continuous, and hence by Proposition 4.4.1 there is a continuous function
G : [0, 1]→ C such that

(4.11) f(e2πit) = e2πiG(t), 0 ≤ t ≤ 1.

Note that G(1)−G(0) ∈ Z because e2πiG(1) = e2πiG(0). The function G is not
uniquely determined, but if G̃ is another such, then G − G̃ is a continuous
function with

e2πi(G(t)−G̃(t)) = f(e2πit)/f(e2πit) = 1, 0 ≤ t ≤ 1,

and hence G(t) and G̃(t) differ by a constant. It follows that for any choice
of a continuous function G satisfying (4.11),

(4.12) #(f) = G(1)−G(0)

is a well-defined integer. This integer is called the winding number of f . The
properties of this generalized winding number are summarized as follows:

Proposition 4.4.2. For f, g ∈ G = C(T)−1,
(1) #(fg) = #(f) + #(g).
(2) #(f) = n ∈ Z iff there is a function h ∈ C(T) such that f = ζneh.

Proof. For (1), pick continuous functions F,G : [0, 1]→ C such that

f(e2πit) = e2πiF (t), g(e2πit) = e2πiG(t), t ∈ [0, 1].

Then
f(e2πit)g(e2πit) = e2πi(F (t)+G(t)), t ∈ [0, 1],

and the winding number of fg is given by

F (1) +G(1)− (F (0) +G(0)) = #(f) + #(g).
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For (2), consider first the case n = 0. If f = eh is the exponential of a
function h ∈ C(T), then we have

(4.13) f(e2πit) = e2πiF (t), 0 ≤ t ≤ 1,

where F (t) = (2π)−1h(e2πit). Clearly, F (1) = F (0), so that #(f) = F (1)−
F (0) = 0. Conversely, if #(f) = 0, then there is a function F ∈ C[0, 1] such
that (4.13) is satisfied and F (1)−F (0) = #(f) = 0. Since F is periodic, we
have f = eh, where h ∈ C(T) is the function h(e2πit) = 2πiF (t), 0 ≤ t ≤ 1.

To deal with the case of arbitrary n ∈ Z note first that #(ζ) = 1. Indeed,
this is immediate from the fact that

ζ(e2πit) = e2πit, 0 ≤ t ≤ 1.

From the property (1) it follows that #(ζn) = n for every n ∈ Z; hence
#(ζneh) = #(ζn)+#(eh) = n, as asserted. Conversely, if f ∈ C(T) satisfies
#(f) = n, consider g = ζ−nf ∈ C(T)−1. Using (1) again we have #(g) = 0,
and by the preceding paragraph there is an h ∈ C(T) such that g = eh.
Thus f = ζng = ζneh has the asserted form. �

We now complete the computation of the index of Fredholm operators
in the Toeplitz C∗-algebra T :

Theorem 4.4.3. For every f ∈ G = C(T)−1,

indTf = −#(f).

Proof. In view of Proposition 4.4.2, it suffices to show that for f = ζneg

with n ∈ Z and g ∈ C(T) we have indTf = −n.
We claim first that indTeg = 0. Indeed,

Aλ = Teλg , 0 ≤ λ ≤ 1,

defines a continuous arc of Fredholm operators in B(H2) satisfying indA0 =
ind1 = 0 and indA1 = indTeg . By continuity of the index, we must have
indA1 = indA0 = 0.

Notice that the map f ∈ G = C(T)−1 �→ indTf ∈ Z is a homomorphism
of abelian groups. For fixed f, g ∈ G Proposition 4.3.1 implies that Tfg =
TfTg +K for some compact operator K. Hence

indTfg = ind (Tfg +K) = ind (TfTg) = indTf + indTg

by the stability and additivity properties of the index. Finally, since Tζ is
the unilateral shift, its index is −1; hence

indTf = indTζneg = indTζn + indTeg = n · indTζ = −n.
�
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Exercises. In Exercises (1) through (5), {an : n ∈ Z} denotes a doubly
infinite sequence of complex numbers that is summable,

∑
n |an| < ∞, and

φ is the continuous function defined on the unit circle by

φ(z) =
∞∑

n=−∞
anz

n, z = eiθ, 0 ≤ θ ≤ 2π.

As usual, Z denotes the additive group of integers, and Z+ = {0, 1, 2, . . . }
denotes the additive semigroup of nonnegative integers.

(1) Consider the Hilbert space H = �2(Z). Show that the convolution
operator A defined by

(Aξ)n =
∞∑

k=−∞
an−kξk =

∞∑
j=−∞

ajξn−j

is bounded, and in fact, ‖A‖ ≤∑n |an|. Labor-saving hint: Realize
A appropriately as

∑
m amT

m where T is a translation operator.
(2) Show that A is a normal operator by calculating A∗, AA∗, and

A∗A.
(3) Determine the spectrum of A in concrete terms. Hint: A is unitarily

equivalent to a multiplication operator on some Hilbert space of
functions L2(X,µ): What is the multiplication operator?

(4) Assuming that {an} is not a trivial sequence satisfying an = 0 for all
n �= 0, deduce that A has no point spectrum (i.e., no eigenvalues),
determine when it is invertible in terms of φ, and calculate ‖A‖
exactly.

In Exercises (5) and (6), you will consider a related operator B,
defined on the subspace K = �2(Z+) ⊂ H by

(4.14) (Bξ)n =
∞∑
k=0

an−kξk =
n∑

j=−∞
ajξn−j ,

for n = 0, 1, 2, . . . , ξ ∈ K.

(5) Show that B∗B − BB∗ is compact, and show that the essential
spectrum of B is the spectrum of A.

(6) Specialize the operator B in (4.14) as follows: (Bξ)n = ξn−1− ξn−2
for n ≥ 2, (Bξ)1 = ξ0, (Bξ)0 = 0. Sketch the essential spectrum
σe(B) of B and calculate the Fredholm index of B − λ1 for all
λ ∈ C\σe(B). Give a clear sketch with an indication of the various
values of the index; it may help to indicate the points where σe(B)
meets the x-axis and the y-axis. Precise numerical computations
are unnecessary, provided that you have a clear picture and good
qualitative remarks.
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4.5. Some H2 Function Theory

In this section, we present several results connecting the function theory
and the operator theory of the Hardy space H2. The results are important
for many aspects of functional analysis, including but certainly not limited
to the computations of operator spectra that we will carry out in the next
section.

We begin with a result characterizing the (closed) subspaces of H2 that
are invariant under the unilateral shift. This is a famous result of Arne
Beurling [6]; it is remarkable because there are very few operators whose
invariant subspaces are completely known. Indeed, it is not even known
whether an arbitrary operator on a (separable) Hilbert space H must have
a closed invariant subspace other than the trivial ones {0} and H.

An inner function is a function f ∈ H∞ satisfying |f(eiθ)| = 1 almost
everywhere on the unit circle. The term “inner” has classical origins, and
refers to the fact that if f is a rational function of a complex variable whose
restriction to the unit circle has no poles and defines an inner function
as above, then the zeros of f are all contained in the interior of the unit
disk {z : |z| < 1}. Such rational functions are important in linear systems
theory (they correspond to “causal” filters), and in the prediction theory of
stationary Gaussian random processes.

For every function f ∈ H∞, the multiplication operator Mf carries H2

into itself, f ·H2 ⊆ H2 by Proposition 4.2.1; and if f is an inner function,
then M = f · H2 is a closed subspace of H2 that is invariant under the
unilateral shift Tζ = Mζ �H2 .

Theorem 4.5.1 (Beurling). For every closed shift-invariant subspace
M ⊆ H2 there is an inner function v such that M = v ·H2.

A complete proof of Beurling’s theorem is outlined in the exercises at the
end of the section. The following consequence is a classical theorem of the
brothers Riesz, whose original method was quite different. It has attracted a
great deal of attention over the years, and far-reaching generalizations have
been discovered that relate to diverse areas, including (a) effective general-
izations of Hp theory that can be formulated whenever one has a flow acting
on a space [18], (b) the theory of one-parameter groups of automorphisms of
von Neumann algebras that satisfy a “positive energy” condition [4], and (c)
the properties of annihilating measures of abstract function algebras [13].

Theorem 4.5.2 (F. and M. Riesz). The set Z = {z ∈ T : f(z) = 0} of
zeros of any nonzero function f ∈ H2 is a set of Lebesgue measure 0.

Proof. Fix a function f �= 0 in H2 and consider the closed subspace
M = [f, ζf, ζ2f, . . . ] of H2. Then M �= {0}, it is invariant under the shift
Tζ , and every function in M vanishes almost everywhere on the zero set Z.
Beurling’s Theorem 4.5.1 implies that M contains an inner function v. Since
|v(eiθ)| = 1 almost everywhere on T, Z must have measure 0. �
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Remark 4.5.3. Some remarks on H1. We collect some details relating
to the function theory of H1 that will be used in the proof of the following
theorem: H1 is defined as the space of all functions f ∈ L1 whose Fourier
series has the form

(4.15) f(eiθ) ∼
∞∑
n=0

ane
inθ.

If g ∈ H1 is such that its conjugate ḡ also belongs to H1, then g must be a
constant. Indeed, (4.15) implies that all the negative Fourier coefficients of
g are zero, while ḡ ∈ H1 implies that the positive coefficients of g are zero.
Hence the Fourier series of g is the Fourier series of a constant function, and
g must be a constant. Let H1

0 denote the space of all functions f in H1 with
zero constant term, 〈f, 1〉 = 0. We may conclude from these remarks that

H1 ∩H1 = C · 1 and H1 ∩H1
0 = {0}.

Second, we point out that the product of two functions in H2 must
belong to H1. Indeed, if f, g ∈ H2, then fg ∈ L1, and moreover, ‖fg‖1 ≤
‖f‖2‖g‖2. Thus for a fixed negative integer n the Fourier coefficient 〈fg, ζn〉
defines a bounded bilinear functional on H2 × H2 that vanishes whenever
f and g are finite sums of the form a0 + a1ζ + · · · + apζ

p. It follows that
〈fg, ζn〉 = 0 identically on H2 ×H2. We conclude that the Fourier series of
fg has the required form (4.15).

Finally, let H2
0 = {f ∈ H2 : 〈f, 1〉 = 0}. Then H2

0 = [ζ, ζ2, ζ3, . . . ]; hence
the orthocomplement of H2 in L2 is related to H2

0 by

H2⊥ = H2
0 = {f̄ : f ∈ H2

0}.
The following result of Lewis Coburn [7] implies that when a Toeplitz

operator is a Fredholm operator of index zero, it must be invertible:

Theorem 4.5.4 (Coburn). Let φ be any nonzero symbol in L∞. Then
either kerTφ = {0} or kerT ∗

φ = {0}.

Proof. We show that if both kernels are nontrivial, then φ = 0. For
that, choose nonzero functions f, g ∈ H2 such that Tφf = T ∗

φg = 0. With
P+ ∈ B(H2) denoting the projection onto H2, we have P+φf = 0, i.e.,
φf ∈ H2⊥ = H2

0 . Therefore,

(4.16) φ̄f̄ ∈ H2
0 .

Similarly, T ∗
φg = 0 implies that P+φ̄g = 0, that is, φ̄g ∈ H2

0 . Therefore,

(4.17) φḡ ∈ H2
0 .

Multiplying the term of (4.16) by g, we obtain

φ̄f̄g ∈ H2
0 ·H2 ⊆ H1

0 ,
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by Remark 4.5.3. On the other hand, multiplying the term of (4.17) by f
gives

φ̄f̄g = φḡf ∈ H2
0 ·H2 ⊆ H1

0 .

Thus φ̄f̄g ∈ H1
0 ∩ H1

0 = {0}. Since neither f nor g is the zero function,
the F. and M. Riesz theorem implies that the product f̄(z)g(z) is nonzero
for almost every z ∈ T. Thus φḡf = 0 implies that φ̄(z) vanishes almost
everywhere. �

Exercises. In these exercises, you will deduce Beurling’s theorem from
the following more general result, which characterizes certain subspaces of
L2 that are invariant under the unitary multiplication operator U = Mζ ∈
B(L2). Notice that for any such subspace M , the sequence of subspaces
UnM decreases with n.

Theorem A. Let M ⊆ L2 be a nonzero closed U -invariant subspace
of L2 that is pure in the sense that ∩n≥0U

nM = {0}. There is a function
v ∈ L∞ such that |v(eiθ)| = 1 almost everywhere on the unit circle and
M = v ·H2.

For the following exercises, let M ⊆ L2 be a nonzero closed subspace
satisfying the hypotheses of Theorem A.

(1) Let N = M 1 UM be the orthocomplement of UM in M . Show
that N �= {0} and that it is a wandering subspace in the sense that
for m,n ∈ Z with m �= n we have UmN ⊥ UnN .

(2) For every operator A ∈ B(N) define Ā ∈ B(L2) by

Ā =
∞∑

n=−∞
UnAPNU

−n,

APN ∈ B(L2) denoting the composition of A with the projection
onto N . Show that Ā belongs to the multiplication algebra M =
{Mf : f ∈ L∞}.

(3) Deduce that B(N) is abelian, hence N must be one-dimensional.

Choose an element v ∈ N with ‖v‖L2 = 1.

(4) Show that for every m,n ∈ Z with m �= n one has 〈v · zm, v · zn〉 =
0, and deduce that |v(eiθ)| = 1 almost everywhere on the unit circle.

(5) Show that M is spanned by N,UN,U2N, . . . and deduce that M =
v ·H2.

That completes the proof of Theorem A.

(6) Deduce Beurling’s theorem from Theorem A.

4.6. Spectra of Toeplitz Operators with Continuous Symbol

Given a continuous symbol f ∈ C(T), we are now in position to give a
description of σ(Tf ). Let us first consider the essential spectrum σe(Tf ) ⊆
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σ(Tf ). By the exact sequence (4.9) the essential spectrum of Tf is the
spectrum of f as an element of the commutative C∗-algebra C(T), namely,

(4.18) σe(Tf ) = f(T).

What remains is to determine the other points of the spectrum. Let us
decompose C\f(T) into its connected components, obtaining an unbounded
component Ω∞ together with a finite, infinite, or possibly empty set of holes
Ω1,Ω2, . . . ,

C \ f(T) = Ω∞ ! Ω1 ! Ω2 ! · · · .
Choose λ ∈ C \ f(T). Then f − λ ∈ C(T)−1, and hence Tf − λ = Tf−λ is a
Fredholm operator. Consider the behavior of ind (Tf − λ) as λ varies over
one of the components Ωk of C \ f(T). Since λ �→ Tf − λ is a continuous
function from Ωk to the set of Fredholm operators on H2 and since the index
is continuous, it follows that ind (Tf − λ) is constant over Ωk. Let nk ∈ Z

be this integer, k =∞, 1, 2, . . . .
Obviously, n∞ = 0 because Tf−λ is invertible for sufficiently large λ (for

example, when |λ| > ‖Tf‖). When holes exist, nk can take on any integral
value for k = 1, 2, . . . . In such cases Theorem 4.4.3 allows us to evaluate nk

nk = ind (Tf − λ) = ind (T(f−λ)) = −#(f − λ),

in terms of the generalized winding number of the symbol f about λ. Thus
we have calculated ind (Tf − λ) throughout the complement of f(T).

If k is such that nk �= 0, then Tf − λ is a Fredholm operator of nonzero
index for all λ ∈ Ωk. Obviously, such operators cannot be invertible; hence
Ωk ⊆ σ(Tf ). On the other hand, if nk = 0, then Tf−λ is a Fredholm
operator of index zero for all λ ∈ Ωk. By Theorem 4.5.4 such operators
must be invertible; hence Ωk is disjoint from σ(Tf ). We assemble these
remarks about Toeplitz operators with continuous symbol into the following
description of their spectra.

Theorem 4.6.1. Let f ∈ C(T), and let C\f(T) = Ω∞!Ω1!Ω2!· · · be
the decomposition of the complement of f(T) into its unbounded component
Ω∞ and holes Ωk, k ≥ 1. For each finite k and λ ∈ Ωk, the winding number
wk = #(f − λ) is a constant independent of λ.

The spectrum of Tf is the union of f(T) and the holes Ωk for which
wk �= 0.

In particular, the spectrum of a Toeplitz operator with continuous sym-
bol contains no isolated points, and is in fact a connected set. The problem
of giving a similarly detailed description of the spectra of Toeplitz operators
with symbol in L∞ remains open in general. However, a theorem of Harold
Widom asserts that σ(Tf ) is connected for every f ∈ L∞ (see [11]). The
case of self-adjoint Toeplitz operators is treated in the Exercises below.

Exercises.
(1) Let φ ∈ L∞, and consider its associated multiplication operator

Mφ ∈ B(L2) and Toeplitz operator Tφ ∈ B(H2).
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(a) Given ε > 0 such that ‖Tφf‖ ≥ ε‖f‖ for all f ∈ H2, show that
‖Mφg‖ ≥ ε‖g‖ for all g ∈ L2. Hint: The union of the spaces
ζnH2, n ≤ 0, is dense in L2.

(b) Prove: If Tφ is invertible, then Mφ is invertible.
(c) Deduce the spectral inclusion theorem of Hartman and Wint-

ner: For φ ∈ L∞, σ(Tφ) contains the essential range of φ.

Let φ be a real-valued function in L∞ and let m ≤ M be the
essential infimum and essential supremum of φ,

m = inf{t ∈ R : σ{z ∈ T : φ(z) < t} > 0},
M =sup{t ∈ R : σ{z ∈ T : φ(z) > t} > 0},

σ denoting normalized Lebeggue measure on T. Thus, [m,M ] is
the smallest closed interval I ⊆ R with the property that φ(z) ∈ I
almost everywhere dσ(z). Equivalently, it is the smallest inter-
val containing the essential range of φ. In the remaining exercises
you will obtain information about the spectrum of the self-adjoint
Toeplitz operator Tφ.

(2) Let λ be a real number such that Tφ − λ is invertible. Show that
there is a nonzero function f ∈ H2 such that Tφf − λf = 1, 1
denoting the constant function in H2.

(3) Show that (φ − λ)|f |2 = (φ − λ)f̄ · f belongs to H1 and deduce
that there is a real number c such that (φ(z) − λ)|f(z)|2 = c for
σ-almost every z ∈ T.

(4) Deduce that φ(z)− λ is either positive almost everywhere on T or
negative almost everywhere on T. Hint: Use the F. and M. Riesz
theorem.

(5) Deduce the following theorem of Hartman and Wintner (1954): For
every real-valued symbol φ ∈ L∞,

σ(Tφ) = [m,M ],

m and M being the essential inf and essential sup of φ.

4.7. States and the GNS Construction

Throughout this section, A will denote a Banach ∗-algebra with normalized
unit 1. A linear functional ρ : A → C is said to be positive if ρ(x∗x) ≥ 0
for every x ∈ A. A state is a positive linear functional satisfying ρ(1) = 1.
This terminology has its origins in the connections between C∗-algebras
and quantum physics, an important subject that is not touched on here.
Notice that we do not assume that states are bounded, but Proposition
4.7.1 below implies that this is the case. It is a fundamental result that
starting with a state ρ of A, one can construct a nontrivial representation
π : A → B(H). This procedure is called the GNS construction after the
three mathematicians, I.M. Gelfand, M.A. Naimark, and I.E. Segal, who
introduced it. The purpose of this section is to discuss the GNS construction



4.7. STATES AND THE GNS CONSTRUCTION 123

in the general context of unital Banach ∗-algebras. Applications to C∗-
algebras will be taken up in Section 4.8.

Proposition 4.7.1. Every positive linear functional ρ on A satisfies the
Schwarz inequality

(4.19) |ρ(y∗x)|2 ≤ ρ(x∗x)ρ(y∗y)

and moreover, ‖ρ‖ = ρ(1). In particular, every state of A has norm 1.

Proof. Considering A as a complex vector space,

x, y ∈ A �→ [x, y] = ρ(y∗x)

defines a sesquilinear form which is positive semidefinite in the sense that
[x, x] ≥ 0 for every x. The argument that establishes the Schwarz inequality
for complex inner product spaces applies verbatim in this context, and we
deduce (4.19) from |[x, y]|2 ≤ [x, x][y, y].

Clearly, ρ(1) = ρ(1∗1) ≥ 0, and we claim that ‖ρ‖ ≤ ρ(1). Indeed, for
every x ∈ A the Schwarz inequality (4.19) implies

|ρ(x)|2 = |ρ(1∗x)| ≤ ρ(x∗x)ρ(1).

If, in addition, ‖x‖ ≤ 1, then x∗x is a self-adjoint element in A of norm at
most 1; consequently, 1 − x∗x must have a self-adjoint square root y ∈ A
(see Exercise (2b) below). It follows that ρ(1 − x∗x) = ρ(y2) ≥ 0, i.e.,
0 ≤ ρ(x∗x) ≤ ρ(1). Substitution into the previous inequality gives |ρ(x)|2 ≤
ρ(x∗x)ρ(1) ≤ ρ(1)2, and ‖ρ‖ ≤ ρ(1) follows. Since the inequality ‖ρ‖ ≥ ρ(1)
is obvious, we conclude that ‖ρ‖ = ρ(1). �

Definition 4.7.2. Let ρ be a positive linear functional on a Banach
∗-algebra A. By a GNS pair for ρ we mean a pair (π, ξ) consisting of a
representation π of A on a Hilbert space H and a vector ξ ∈ H such that

(1) (Cyclicity) π(A)ξ = H, and
(2) ρ(x) = 〈π(x)ξ, ξ〉, for every x ∈ A.

Two GNS pairs (π, ξ) and (π′, ξ′) are said to be equivalent if there is a
unitary operator W : H → H ′ such that Wξ = ξ′ and Wπ(x) = π′(x)W ,
x ∈ A.

Theorem 4.7.3. Every positive linear functional ρ on a unital Banach ∗-
algebra A has a GNS pair (π, ξ), and any two GNS pairs for ρ are equivalent.

Proof. Consider the set

N = {a ∈ A : ρ(a∗a) = 0}.
With fixed a ∈ A, the Schwarz inequality (4.19) implies that for every
x ∈ A we have |ρ(x∗a)|2 ≤ ρ(a∗a)ρ(x∗x), from which it follows that ρ(a∗a) =
0 ⇐⇒ ρ(x∗a) = 0 for every x ∈ A. Thus N is a left ideal: a linear subspace
of A such that A ·N ⊆ N .
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The sesquilinear form x, y ∈ A �→ ρ(y∗x) promotes naturally to sesquilin-
ear form 〈·, ·〉 on the quotient space A/N via

〈x+N, y +N〉 = ρ(y∗x), x, y ∈ A,

and for every x we have

〈x+N,x+N〉 = ρ(x∗x) = 0 =⇒ x+N = 0.

Hence A/N becomes an inner product space. Its completion is a Hilbert
space H, and there is a natural vector ξ ∈ H defined by

ξ = 1+N.

It remains to define π ∈ rep(A,H), and this is done as follows. Since N
is a left ideal, for every fixed a ∈ A there is a linear operator π(a) defined
on A/N by π(a)(x+N) = ax+N , x ∈ A. Note first that

(4.20) 〈π(a)η, ζ〉 = 〈η, π(a∗)ζ〉,
for every pair of elements η = y+N, ζ = z+N ∈ A/N . Indeed, the left side
of (4.20) is ρ(z∗ay), while the right side is ρ((a∗z)∗y) = ρ(z∗ay), as asserted.

We claim next that for every a ∈ A, ‖π(a)‖ ≤ ‖a‖, where π(a) is viewed
as an operator on the inner product space A/N . Indeed, if ‖a‖ ≤ 1, then
for every x ∈ A we have

〈π(a)(x+N), π(a)(x+N)〉 = 〈ax+N, ax+N〉 = ρ((ax)∗ax)
= ρ(x∗a∗ax).

(4.21)

Since a∗a is a self-adjoint element in the unit ball of A, we can find a
self-adjoint square root y of 1 − a∗a (see Exercise (2b)). It follows that
x∗x− x∗a∗ax = x∗(1− a∗a)x = x∗y2x = (yx)∗yx; hence

ρ(x∗x− x∗a∗ax) = ρ((yx)∗yx) ≥ 0,

from which we conclude that ρ(x∗a∗ax) ≤ ρ(x∗x). This provides an upper
bound for the right side of (4.21), and we obtain

〈π(a)(x+N), π(a)(x+N)〉 ≤ ρ(x∗x) = 〈x+N,x+N〉.
It follows that ‖π(a)‖ ≤ 1 when ‖a‖ ≤ 1, and the claim is proved.

Thus, for each a ∈ A we may extend π(a) uniquely to a bounded operator
on the completion H by taking the closure of its graph; and we denote the
closure π(a) ∈ B(H) with the same notation. Note that (4.20) implies that
〈π(a)η, ζ〉 = 〈η, π(a∗)ζ〉 for all η, ζ ∈ H, and from this we deduce that
π(a∗) = π(a∗), a ∈ A. It is clear from the definition of π that π(ab) =
π(a)π(b) for a, b ∈ A; hence π ∈ rep(A,H).

Finally, note that (π, ξ) is a GNS pair for ρ. Indeed,

π(A)ξ = π(A)(1+N) = {a+N : a ∈ A}
is obviously dense in H, and

〈π(a)ξ, ξ〉 = 〈a+N,1+N〉 = ρ(1∗a) = ρ(a).
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For the uniqueness assertion, let (π′, ξ′) be another GNS pair for ρ,
π′ ∈ rep(A,H ′). Notice that there is a unique linear isometry W0 from the
dense subspace π(A)ξ onto π′(A)ξ′ defined by W0 : π(a)ξ �→ π′(a)ξ′, simply
because for all a ∈ A,

〈π(a)ξ, π(a)ξ〉 = 〈π(a∗a)ξ, ξ〉 = ρ(a∗a) = 〈π′(a)ξ′, π′(a)ξ′〉.
The isometry W0 extends uniquely to a unitary operator W : H → H ′, and
one verifies readily thatWξ = ξ′, and thatWπ(a) = π′(a)W on the dense set
of vectors π(A)ξ ⊆ H. It follows that (π, ξ) and (π′, ξ′) are equivalent. �

Remark 4.7.4. Many important Banach ∗-algebras do not have units.
For example, the group algebras L1(G) of locally compact groups fail to have
units except when G is discrete. C∗-algebras such as K do not have units.
But the most important examples of Banach ∗-algebras have “approximate
units,” and it is significant that there is an appropriate generalization of
the GNS construction (Theorem 4.7.3) that applies to Banach ∗-algebras
containing an approximate unit [10], [2].

Exercises.
(1) (a) Fix α in the interval 0 < α < 1. Show that the binomial series

of (1− z)α has the form

(1− z)α = 1−
∞∑
n=1

cnz
n,

where cn > 0 for n = 1, 2, . . . .
(b) Deduce that

∞∑
n=1

cn = 1.

(2) (a) Let A be a Banach algebra with normalized unit, and let
c1, c2, . . . be the binomial coefficients of the preceding exercise
for the parameter value α = 1

2 . Show that for every element
x ∈ A satisfying ‖x‖ ≤ 1, the series

1−
∞∑
n=1

cnx
n

converges absolutely to an element y ∈ A satisfying

y2 = 1− x.

(b) Suppose in addition that A is a Banach ∗-algebra. Deduce that
for every self-adjoint element x in the unit ball of A, 1−x has
a self-adjoint square root in A.

In the remaining exercises, ∆ = {z ∈ C : |z| ≤ 1} denotes the
closed unit disk and A denotes the disk algebra, consisting of all
functions f ∈ C(∆) that are analytic on the interior of ∆.
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(3) (a) Show that the map f �→ f∗ defined by

f∗(z) = f(z̄), z ∈ ∆,

makes A into a Banach ∗-algebra.
(b) For each z ∈ ∆, let ωz(f) = f(z), f ∈ A. Show that ωz is a

positive linear functional if and only if z ∈ [−1, 1] is real.
(4) Let ρ be the linear functional defined on A by

ρ(f) =
∫ 1

0
f(x) dx.

(a) Show that ρ is a state.
(b) Calculate a GNS pair (π, ξ) for ρ in concrete terms as follows.

Consider the Hilbert space L2[0, 1], and let ξ ∈ L2[0, 1] be the
constant function ξ(t) = 1, t ∈ [0, 1]. Exhibit a representation
π of A on L2[0, 1] such that (π, ξ) becomes a GNS pair for ρ.

(c) Show that π is faithful; that is, for f ∈ A we have

π(f) = 0 =⇒ f = 0.

(d) Show that the closure of π(A) in the weak operator topology
is a maximal abelian von Neumann algebra.

4.8. Existence of States: The Gelfand–Naimark Theorem

Turning our attention to C∗-algebras, we now show that every unital C∗-
algebra has an abundance of states. The GNS construction implies that
every state is associated with a representation; these two principles combine
to show that every unital C∗-algebra has an isometric representation as a
concrete C∗-algebra of operators on some Hilbert space.

LetA be a unital C∗-algebra, fixed throughout. A positive element ofA is
a self-adjoint element with nonnegative spectrum, σ(x) ⊆ [0,∞). One writes
x ≥ 0. Notice that x2 ≥ 0 for every self-adjoint element x ∈ A. Indeed,
one can compute σ(x2) relative to any unital C∗-subalgebra containing it,
and if one uses the commutative C∗-algebra generated by x and 1, the
result follows immediately from Theorem 2.2.4 and basic properties of the
Gelfand map. Significantly, this argument does not imply that z∗z has
nonnegative spectrum for nonnormal elements z ∈ A, and in fact, the proof
that z∗z ≥ 0 in general (Theorem 4.8.3) is the cornerstone of the Gelfand–
Naimark theorem.

We let A+ denote the set of all positive elements of A. It is clear that A+

is closed under multiplication by nonnegative scalars, but it is not obvious
that the sum of two positive elements is positive.

Lemma 4.8.1. If x, y are two positive elements of A, then x+y is positive.

Proof. By replacing x, y with λx, λy for an appropriately small positive
number λ, we can assume that ‖x‖ ≤ 1 and ‖y‖ ≤ 1. This implies that both
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x and y have their spectra in the unit interval [0, 1]. Hence 1− x and 1− y
have their spectra in

{1− λ : λ ∈ [0, 1]} = [−1, 0] ⊆ [−1,+1].
Since they are self-adjoint, their norms agree with their spectral radii, and
we conclude that ‖1− x‖ ≤ 1 and ‖1− y‖ ≤ 1.

It suffices to show that z = 1
2(x+y) is positive. z is obviously self-adjoint

and
‖1− z‖ = ‖1

2
(1− x) +

1
2
(1− y)‖ ≤ 1

2
+

1
2
= 1.

Hence
σ(z) ⊆ {t ∈ R : |1− t| ≤ 1} ⊆ [0,∞).

�
Lemma 4.8.2. If a ∈ A satisfies σ(a∗a) ⊆ (−∞, 0], then a = 0.

Proof. If a, b are elements of any Banach algebra with unit, then the
nonzero points of σ(ab) and σ(ba) are the same (see Exercises (3) and (4) of
Section 1.2). It follows that σ(aa∗) ⊆ (−∞, 0]. From the preceding lemma
we conclude that σ(a∗a+ aa∗) ⊆ (−∞, 0].

Let a = x + iy be the Cartesian decomposition of a, with x = x∗ and
y = y∗. Expanding a∗a = (x − iy)(x + iy) and aa∗ = (x + iy)(x − iy) and
canceling where possible, we obtain

a∗a+ aa∗ = 2x2 + 2y2.

Hence −(2x2 + 2y2) ≥ 0. Adding the positive element 2y2 we find that
−2x2 ≥ 0, and thus −x2 ≥ 0. Since x2 is a positive element, the preceding
sentence implies that its spectrum is contained in (−∞, 0] ∩ [0,∞) = {0};
hence ‖x2‖ = r(x2) = 0, and x = 0 follows. Similarly, y = 0. �

The key result on the existence of positive elements is the following:

Theorem 4.8.3. In a unital C∗-algebra A, every element of the form
a∗a has nonnegative spectrum.

Proof. Fix a ∈ A, and consider the following continuous functions
f, g : R → R:

f(t) =

{√
t , t ≥ 0,

0 , t < 0,

and

g(t) =

{
0 , t ≥ 0,√−t , t < 0.

We have f(t)2 − g(t)2 = t and f(t)g(t) = 0, t ∈ R. The properties of the
continuous functional calculus imply that x = f(a∗a) and y = g(a∗a) are
self-adjoint elements of A satisfying xy = yx = 0 and

a∗a = x2 − y2.
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Consider the element ya∗ay = y(x2−y2)y = −y4. The spectrum of ya∗ay is
nonpositive, so that Lemma 4.8.2 implies that ay = 0. Hence y4 = −ya∗ay =
0, and since y is self-adjoint, this entails y = 0. We conclude that a∗a = x2

is the square of a self-adjoint element of A and is therefore positive. �

Corollary 1. Let ρ be a linear functional on a unital C∗-algebra A
satisfying ‖ρ‖ = ρ(1) = 1. Then ρ is a state.

Proof. We have to show that ρ(a∗a) ≥ 0 for every a ∈ A. By Theorem
4.8.3 it is enough to show that for every self-adjoint element x ∈ A having
nonnegative spectrum, we have ρ(x) ≥ 0. More generally, we claim that for
every normal element z ∈ A,

ρ(z) ∈ conv σ(z).

To see this, let B be the commutative C∗-subalgebra generated by z and 1.
The restriction ρ0 of ρ to B satisfies the same hypotheses ‖ρ0‖ = ρ0(1) = 1.
By Theorem 2.2.4, B is isometrically ∗-isomorphic to C(X), and for C(X)
this is the result of Lemma 1.10.3. �

Corollary 2. For every element x in a unital C∗-algebra A there is a
state ρ such that ρ(x∗x) = ‖x‖2.

Proof. Consider the self-adjoint element y = x∗x, and let B be the sub
C∗-algebra generated by y and the identity. Again, since B ∼= C(X) there
is a complex homomorphism ω ∈ sp(B) such that ω(y) = ‖y‖. Let ρ be any
extension of ω to a linear functional on A with ‖ρ‖ = ‖ω‖ = 1. We also
have ρ(1) = ω(1) = 1. Thus ‖ρ‖ = ρ(1) = 1, and the preceding corollary
implies that ρ is a state. �

Let us examine the implications of Corollary 2. Fixing an element x ∈ A,
choose a state ρ satisfying ρ(x∗x) = ‖x‖2. Applying the GNS construction
to ρ we obtain a Hilbert space H, a vector ξ ∈ H, and a representation
π ∈ rep(A,H) with the property

ρ(a) = 〈π(a)ξ, ξ〉, a ∈ A.

Taking a = 1 we have ‖ξ‖2 = ρ(1) = 1; hence ξ is a unit vector. Taking
a = x we find that ‖π(x)ξ‖2 = ρ(x∗x) = ‖x‖2; hence ‖π(x)‖ = ‖x‖. We
conclude that for every element x ∈ A there is a representation πx of A on
some Hilbert space Hx such that ‖πx(x)‖ = ‖x‖. Considering the direct
sum of Hilbert spaces

H = ⊕x∈AHx
and the representation π ∈ rep(A,H) defined by

π = ⊕x∈Aπx,
we see that π is an isometric representation of A on H. Thus we have proved
the following result:
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Theorem 4.8.4 (Gelfand–Naimark). Every unital C∗-algebra can be rep-
resented isometrically and ∗-isomorphically as a C∗-algebra of operators on
some Hilbert space.

Of course, the Hilbert space ⊕x∈AHx is never separable, and a natural
question is whether A can be represented faithfully on a separable Hilbert
space. There is no satisfactory answer in general, but for the important
class of C∗-algebras that are generated by a countable set of elements the
answer is yes (see Exercise (4) below).

Remark 4.8.5. Pure states: Irreducible representations. Let A be a
unital C∗-algebra. The set S(A) of all states is a convex set in the unit
ball of the dual of A, and it is closed and therefore compact in its relative
weak∗-topology. By the Krein–Milman theorem, S(A) is the closed convex
hull of its set of extreme points.

An extreme point of S(A) is called a pure state. The result of Exercise (6)
below implies that Corollary 2 can be strengthened so that ρ(x∗x) = ‖x‖2 is
achieved with a pure state ρ. It is significant that pure states correspond to
irreducible representations in the sense that a state ρ is pure if, and only if,
its GNS pair (π, ξ) has the property that π is an irreducible representation.
Thus one may infer that for every element x ∈ A there is an irreducible
representation π ∈ rep(A,H) such that ‖π(x)‖ = ‖x‖. The reader is referred
to [2] and [10] for more detail and further applications.

Exercises.
(1) Show that the Gelfand–Naimark theorem remains true verbatim for

C∗-algebras without a unit.
(2) Show that in the disk algebra A, considered as a Banach ∗-algebra

with involution f∗(z) = f(z̄), z ∈ ∆, there are elements a for which
the spectrum of a∗a is the closed unit disk.

A C∗-algebra is separable if it contains a countable norm-dense set.

(3) Let A be a C∗-algebra that is generated as a C∗-algebra by a finite
or countable set of its elements. Show that A is a separable C∗-
algebra.

(4) Show that every separable C∗-algebra can be represented (isomet-
rically and ∗-isomorphically) on a separable Hilbert space.

(5) Let X be a compact Hausdorff space. Show that for every p ∈ X
the point evaluation f ∈ C(X) �→ f(p) is a pure state of C(X).

(6) Let A be a unital C∗-algebra and let x be an element of A. Show
that there is a pure state ρ of A such that ρ(x∗x) = ‖x‖2. Hint:
Apply Exercise (5) to the unital C∗-subalgebra A0 ⊆ A generated
by x∗x, and show that a pure state of A0 can be extended to a pure
state of A.
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spectral permanence
for Banach algebras, 32
C∗-algebras, 49

spectral radius, 19
spectral radius formula, 19
spectral theorem, 55
spectrum
and Gelfand transform, 26
and solving equations, 2
and the complex number field, 2
compactness, 16
Gelfand, 25
in a Banach algebra, 16
nontriviality, 16
of a compact operator, 87
of a multiplication operator, 44
of a Toeplitz operator, 121, 122
of an operator, 6

state, 122

pure, 129
Stone–Čech compactification of X, 81
subrepresentation, 58
symbol
of a Toeplitz matrix, 109
of a Toeplitz operator, 107

T , 110
Tauberian theorems, 29
Toeplitz C∗-algebra, 110
Toeplitz matrix, 101, 107
Toeplitz operator, 101, 107
characterization of, 107
index of, 116
spectrum of, 121, 122

topology
locally convex, 42
strong operator topology, 42
weak operator topology, 42

trace class operator, 71

unilateral shift, 110
unit
approximate, 9
of an algebra, 7

unital algebra, 7
unitarily equivalent representations, 58
unitary operator, 41

von Neumann algebra, 42, 102

weighted shift, 18
Weyl spectrum, 95
Widom’s theorem, 121
Wiener algebra, 29
winding number
of a curve, 35
of a cycle, 36
of an element of C(T)−1, 115

Wold decomposition, 113

Zorn’s lemma, 23
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