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Preface

Goals of this book
This is a textbook for a second course on formal languages and automata theory.

Many undergraduates in computer science take a course entitled “Introduc-
tion to Theory of Computing,”in which they learn the basics of finite automata,
pushdown automata, context-free grammars, and Turing machines. However,
few students pursue advanced topics in these areas, in part because there is no
really satisfactory textbook.

For almost 20 years I have been teaching such a second course for fourth-
year undergraduate majors and graduate students in computer science at the
University of Waterloo: CS 462/662, entitled “Formal Languages and Parsing.”
For many years we used Hopcroft and Ullman’s Introduction to Automata
Theory, Languages, and Computation as the course text, a book that has proved
very influential. (The reader will not have to look far to see its influence on the
present book.)

In 2001, however, Hopcroft and Ullman released a second edition of their
text that, in the words of one professor, “removed all the good parts.”In other
words, their second edition is geared toward second- and third-year students,
and omits nearly all the advanced topics suitable for fourth-year students and
beginning graduate students.

Because the first edition of Hopcroft and Ullman’s book is no longer easily
available, and because I have been regularly supplementing their book with my
own handwritten course notes, it occurred to me that it was a good time to write
a textbook on advanced topics in formal languages. The result is this book.

The book contains many topics that are not available in other textbooks. To
name just a few, it addresses the Lyndon–Scḧutzenberger theorem, Thue’s re-
sults on avoiding squares, state complexity of finite automata, Parikh’s theorem,
the interchange lemma, Earley’s parsing method, Kolmogorov complexity, and
Cook’s theorem on the simulation of 2DPDAs. Furthermore, some well-known

ix
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x Preface

theorems have new (and hopefully simpler) proofs. Finally, there are almost
200 exercises to test students’knowledge. I hope this book will prove useful to
advanced undergraduates and beginning graduate students who want to dig a
little deeper in the theory of formal languages.

Prerequisites
I assume the reader is familiar with the material contained in a typical first course
in the theory of computing and algorithm design. Because not all textbooks
use the same terminology and notation, some basic concepts are reviewed in
Chapter 1.

Algorithm descriptions
Algorithms in this book are described in a “pseudocode”notation similar to
Pascal or C, which should be familiar to most readers. I do not provide a formal
definition of this notation. The readers should note that the scope of loops is
denoted by indentation.

Proof ideas
Although much of this book follows the traditional theorem/proof style, it does
have one nonstandard feature. Many proofs are accompanied by “proofideas,”
which attempt to capture the intuition behind the proofs. In some cases, proof
ideas are all that is provided.

Common errors
I have tried to point out some common errors that students typically make when
encountering this material for the first time.

Exercises
There are a wide variety of exercises, from easy to hard, in no particular order.
Most readers will find the exercises with one star challenging and exercises
with two stars very challenging.

Projects
Each chapter has a small number of suggested projects that are suitable for term
papers. Students should regard the provided citations to the literature only as
starting points; by tracing forward and backward in the citation history, many
more papers can usually be found.

Research problems
Each chapter has a small number of research problems. Currently, no one knows
how to solve these problems, so if you make any progress, please contact me.
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1

Review of formal languages
and automata theory

In this chapter we review material from a first course in the theory of computing.
Much of this material should be familiar to you, but if not, you may want to
read a more leisurely treatment contained in one of the texts suggested in the
notes (Section 1.12).

1.1 Sets

A set is a collection of elements chosen from some domain. If S is a finite
set, we use the notation |S| to denote the number of elements or cardinality of
the set. The empty set is denoted by ∅. By A∪B (respectively A∩B, A− B)
we mean the union of the two sets A and B (respectively intersection and set
difference). The notation A means the complement of the set A with respect
to some assumed universal set U ; that is, A = {x ∈ U : x �∈ A}. Finally, 2A

denotes the power set, or set of all subsets, of A.
Some special sets that we talk about include N = {0, 1, 2, 3, . . .}, the natural

numbers, and Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the integers.

1.2 Symbols, strings, and languages

One of the fundamental mathematical objects we study in this book is the string.
In the literature, a string is sometimes called a word or sentence. A string is
made up of symbols (or letters). (We treat the notion of symbol as primitive
and do not define it further.) A nonempty set of symbols is called an alphabet
and is often denoted by �; in this book, � will almost always be finite. An
alphabet is called unary if it consists of a single symbol. We typically denote
elements of � by using the lowercase italic letters a, b, c, d .

1
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2 1 Review of formal languages and automata theory

A string is a finite or infinite list of symbols chosen from �. The symbols
themselves are usually written using the typewriter font. If unspecified, a
string is assumed to be finite. We typically use the lowercase italic letters
s, t, u, v,w, x, y, z to represent finite strings. We denote the empty string by
ε. The set of all finite strings made up of letters chosen from � is denoted by
�∗. For example, if � = {a, b}, then �∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . .}.
Note that �∗ does not contain infinite strings. By �+ for an alphabet �, we
understand �∗ − {ε}, the set of all nonempty strings over �.

If w is a finite string, then its length (the number of symbols it contains)
is denoted by |w|. (There should be no confusion with the same notation used
for set cardinality.) For example, if w = five, then |w| = 4. Note that |ε| = 0.
We can also count the number of occurrences of a particular letter in a string.
If a ∈ � and w ∈ �∗, then |w|a denotes the number of occurrences of a in w.
Thus, for example, if w = abbab, then |w|a = 2 and |w|b = 3.

We say a string y is a subword of a string w if there exist strings x, z such
that w = xyz. We say x is a prefixof w if there exists y such that w = xy. The
prefix is proper if y �= ε and nontrivial if x �= ε. For example, if w = antsy,
then the set of prefixes of w is {ε, a, an, ant, ants, antsy} (see Exercise 4).
The set of proper prefixes of w is {ε, a, an, ant, ants}, and the set of nontrivial
prefixes of w is {a, an, ant, ants, antsy}.

Similarly, we say that z is a suffix of w if there exists y such that w = yz.
The suffix is proper if y �= ε and nontrivial if z �= ε.

We say that x is a subsequence of y if we can obtain x by striking out 0 or
more letters from y. For example, gem is a subsequence of enlightenment.

If w = a1a2 · · · an, then for 1 ≤ i ≤ n, we define w[i] = ai . If 1 ≤ i ≤ n

and i − 1 ≤ j ≤ n, we define w[i..j ] = aiai+1 · · · aj . Note that w[i..i] = ai

and w[i..i − 1] = ε.
If w = ux, we sometimes write x = u−1w and u = wx−1.
Now we turn to sets of strings. A language over � is a (finite or infinite) set

of strings—in other words, a subset of �∗.

Example 1.2.1. The following are examples of languages:

PRIMES2 = {10, 11, 101, 111, 1011, 1101, 10001, . . .} (the primes represen-

ted in base 2)

EQ = {x ∈ {0, 1}∗ : |x|0 = |x|1} (strings containing an equal number

of each symbol)

= {ε, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, . . .}
EVEN= {x∈{0, 1}∗ : |x|0≡0 (mod 2)} (strings with an even number of 0s)

SQ = {xx : x ∈ {0, 1}∗} (the language of squares)
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1.3 Regular expressions and regular languages 3

Given a language L ⊆ �∗, we may consider its prefix and suffix languages.
We define

Pref(L) = {x ∈ �∗ : there exists y ∈ L such that x is a prefix of y};
Suff(L) = {x ∈ �∗ : there exists y ∈ L such that x is a suffix of y}.
One of the fundamental operations on strings is concatenation. We concate-

nate two finite strings w and x by juxtaposing their symbols, and we denote
this by wx. For example, if w = book and x = case, then wx = bookcase.
Concatenation of strings is, in general, not commutative; for example, we have
xw = casebook. However, concatenation is associative: we have w(xy) =
(wx)y for all strings w, x, y.

In general, concatenation is treated notationally like multiplication, so that,
for example, wn denotes the string www · · ·w (n times).

If w = a1a2 · · · an and x = b1b2 · · · bn are finite words of the same length,
then by wXx we mean the word a1b1a2b2 · · · anbn, the perfect shuffle of w and
x. For example, shoeX cold = schooled, and clipX aloe = calliope,
and (appropriately for this book) termX hoes = theorems.

If w = a1a2 · · · an is a finite word, then by wR we mean the reversal of the
word w; that is, wR = anan−1 · · · a2a1. For example, (drawer)R = reward.
Note that (wx)R = xRwR . A word w is a palindrome if w = wR . Examples
of palindromes in English include radar, deified, rotator, repaper, and
redivider.

We now turn to orders on strings. Given a finite alphabet �, we can impose an
order on the elements. For example, if � = �k = {0, 1, 2, . . . , k − 1}, for some
integer k ≥ 2, then 0 < 1 < 2 < · · · < k − 1. Suppose w, x are equal-length
strings over �. We say that w is lexicographically smaller than x, and write w <

x, if there exist strings z,w′, x ′ and letters a, b such that w = zaw′, x = zbx ′,
and a < b. Thus, for example, trust < truth. We can extend this order to the
radix order defined as follows: w < x if |w| < |x|, or |w| = |x| and w precedes
x in lexicographic order. Thus, for example, rat < moose in radix order.

1.3 Regular expressions and regular languages

As we have seen earlier, a language over � is a subset of �∗. Languages may be
of finite or infinite cardinality. We start by defining some common operations
on languages.

Let L,L1, L2 ⊆ �∗ be languages. We define the product or concatenation
of languages by

L1L2 = {wx : w ∈ L1, x ∈ L2}.
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Common Error 1.3.1. Note that the definition of language concatenation
implies that L∅ = ∅L = ∅. Many students mistakenly believe that L∅ = L.

We define L0 = {ε} and define Li as LLi−1 for i ≥ 1. We define

L≤i = L0 ∪ L1 ∪ · · · ∪ Li.

We define L∗ as
⋃

i≥0 Li ; the operation L∗ is sometimes called Kleene
closure. We define L+ = LL∗; the operation+ in the superscript is sometimes
called positive closure. If L is a language, then the reversed language is defined
as follows: LR = {xR : x ∈ L}.

We now turn to a common notation for representing some kinds of languages.
A regular expression over the base alphabet � is a well-formed string over
the larger alphabet � ∪A, where A = {ε, ∅, (, ), +, *}; we assume
� ∩A = ∅. In evaluating such an expression, * represents Kleene closure and
has highest precedence. Concatenation is represented by juxtaposition, and has
next highest precedence. Finally, + represents union and has lowest precedence.
Parentheses are used for grouping. A formal definition of regular expressions
is given in Exercise 33.

If the word u is a regular expression, then L(u) represents the language
that u is shorthand for. For example, consider the regular expression u =
(0 + 10)*(1 + ε). Then L(u) represents all finite words of 0s and 1s that do not
contain two consecutive 1s. Frequently we will abuse the notation by referring
to the language as the naked regular expression without the surrounding L( ).
A language L is said to be regular if L = L(u) for some regular expres-
sion u.

1.4 Finite automata

A deterministic finite automaton, or DFA for short, is the simplest model of a
computer. We imagine a finite control equipped with a read head and a tape,
divided into cells, which holds a finite input. At each step, depending on the
machine’s internal state and the current symbol being scanned, the machine
can change its internal state and move right to the next square on the tape.
If, after scanning all the cells of the input the machine is in any one of a
number of finalstates, we say the input is accepted; otherwise it is rejected (see
Figure 1.1).

Formally, a DFA is a 5-tuple (Q,�, δ, q0, F ), where

• Q is a finite nonempty set of states;
• � is a finite nonempty input alphabet;
• δ : Q×�→ Q is a transition function;
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Finite
control

i n p u t

Figure 1.1: A deterministic finite automaton

• q0 ∈ Q is the start or initial state;
• F ⊆ Q is the set of final states.

The transition function δ can be extended to a transition function δ∗ : Q×
�∗ → Q as follows:

• δ∗(q, ε) = q for all q ∈ Q;
• δ∗(q, xa) = δ(δ∗(q, x), a) for all q ∈ Q, x ∈ �∗, and a ∈ �.

Since δ∗ agrees with δ on the domain of δ, we often just write δ for δ∗.
Now we give the formal definition of L(M), the language accepted by a

DFA M . We have

L(M) = {x ∈ �∗ : δ(q0, x) ∈ F }.
We often describe deterministic finite automata by providing a transition

diagram. This is a directed graph where states are represented by circles, final
states represented by double circles, the initial state is labeled by a headless
arrow entering a state, and transitions represented by directed arrows, labeled
with a letter. For example, the transition diagram in Figure 1.2 represents the
DFA that accepts the language EVEN = {x ∈ {0, 1}∗ : |x|0 ≡ 0 (mod 2)}.

Representation as a transition diagram suggests the following natural gener-
alization of a DFA: we allow the automaton to have multiple choices (or none
at all) on what state to enter on reading a given symbol. We accept an input if
and only if some sequence of choices leads to a final state. For example, the

0

0

1 1

q 10
q

Figure 1.2: Transition diagram for a DFA
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0, 1

1 0, 1 0, 1 0, 1

q q q q q1 2 3 40

Figure 1.3: Transition diagram for an NFA

transition diagram in Figure 1.3 represents a nondeterministic finite automaton
(NFA) that accepts the language L4, where

Ln := {x ∈ {0, 1}∗ : the nth symbol from the right is 1}.
It is possible to show that the smallest DFA accepting Ln has at least 2n states

(see Exercise 3.14), so NFAs, while accepting the same class of languages as
DFAs, can be exponentially more concise.

Formally, an NFA is a 5-tuple M = (Q,�, δ, q0, F ), where δ : Q×�→
2Q. We define the extended transition function δ∗ by

• δ∗(q, ε) = {q};
• δ∗(q, xa) =⋃

r∈δ∗(q,x) δ(r, a).

The language accepted by an NFA, L(M), is then given by

L(M) = {x ∈ �∗ : δ∗(q0, x) ∩ F �= ∅}.
The following theorem shows that NFAs accept exactly the regular lan-

guages.

Theorem 1.4.1. If M is an NFA, then there exists a DFA M ′ such that L(M) =
L(M ′).

Proof Idea. We let the states of M ′ be all subsets of the state set of M . The
final states of M ′ are those subsets containing at least one final state of M .

Exercise 31 asks you to show that the subset construction for NFA-to-DFA
conversion can be carried out in O(kn2n) time, where k = |�| and n = |Q|.

Yet another generalization of DFA is to allow the DFA to change state spon-
taneously without consuming a symbol of the input. This can be represented in a
transition diagram by allowing arrows labeled ε, which are called ε-transitions.
An NFA-ε is a 5-tuple M = (Q,�, δ, q0, F ), where δ : Q× (� ∪ {ε})→ 2Q.

The most important theorem on regular languages is Kleene’s theorem:

Theorem 1.4.2. The following language classes are identical:

(a) the class of languages specified by regular expressions;
(b) the class of languages accepted by DFAs;
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1.4 Finite automata 7

(c) the class of languages accepted by NFAs;
(d) the class of languages accepted by NFA-ε’s.

As a corollary, we can deduce some important closure properties of regular
languages. We say a class of languages is closed under an operation if whenever
the arguments to the operation are in the class, the result is also. If there are
any counterexamples at all, we say the class is not closed.

Corollary 1.4.3. The class of regular languages is closed under the operations
of union, concatenation, Kleene ∗, and complement.

The pumping lemma is an important tool for proving that certain languages
are not regular.

Lemma 1.4.4. Suppose L is a regular language. Then there exists a constant
n ≥ 1, depending on L, such that for all z ∈ L with |z| ≥ n, there exists a
decomposition z = uvw with |uv| ≤ n and |v| ≥ 1 such that uviw ∈ L for all
i ≥ 0. In fact, we may take n to be the number of states in any DFA accept-
ing L.

Proof Idea. The basic idea of the proof is that the path through the transition
diagram for any sufficiently long accepted word must contain a loop. We may
then go around this loop any number of times to obtain an infinite number of
accepted words of the form uviw.

Example 1.4.5. Let us show that the language

PRIMES1 = {a2, a3, a5, . . .},
the prime numbers represented in unary, is not regular. Let n be the pumping
lemma constant, and choose a prime p > n; we know such a prime exists
by Euclid’s theorem that there are infinitely many primes. Let z = ap. Then
there exists a decomposition z = uvw with |uv| ≤ n and |v| ≥ 1 such that
uviw ∈ PRIMES1 for all i ≥ 0. Suppose |v| = r . Then choose i = p + 1. We
have |uviw| = p + (i − 1)r = p(r + 1). Since r ≥ 1, this number is not a
prime, a contradiction.

Example 1.4.6. Here is a deeper application of the pumping lemma. Let us
show that the language

PRIMES2 = {10, 11, 101, 111, 1011, 1101, 10001, . . .},
the prime numbers represented in binary, is not regular. Let n be the pumping
lemma constant and p be a prime p > 2n. Let z be the base-2 representation
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of p. If t is a string of 0s and 1s, let [t]2 denote the integer whose base-2
representation is given by t . Write z = uvw. Now

[z]2 = [u]22|vw| + [v]22|w| + [w]2,

while

[uviw]2 = [u]22i|v|+|w| + [v]2(2|w| + 2|vw| + · · · + 2|v
i−1w|)+ [w]2.

Now 2|w| + 2|vw| + · · · + 2|v
i−1w| is, by the sum of a geometric series, equal

to 2|w| 2
i|v|−1

2|v|−1 . Now by Fermat’s theorem, 2p ≡ 2 (mod p) if p is a prime.
Hence, setting i = p, we get [uvpw]2 − [uvw]2 ≡ 0 (mod p). But since z has
no leading zeroes, [uvpw]2 > [uvw]2 = p. (Note that 2|v| − 1 �≡ 0 (mod p)
since |v| ≥ 1 and |uv| ≤ n⇒ 2|v| ≤ 2n < p.) It follows that [uvpw]2 is an
integer larger than p that is divisible by p, and so cannot represent a prime
number. Hence, uvpw �∈ PRIMES2. This contradiction proves that PRIMES2 is
not regular.

1.5 Context-free grammars and languages

In the previous section, we saw two of the three important ways to specify
languages: namely, as the language accepted by a machine or the language
specified by a regular expression. In this section, we explore a third important
way, the grammar. A machine receives a string as input and processes it, but a
grammar actually constructs a string iteratively through a number of rewriting
rules. We focus here on a particular kind of grammar, the context-free grammar
(CFG).

Example 1.5.1. Consider the CFG given by the following production rules:

S → a

S → b

S → aSa

S → bSb.

The intention is to interpret each of these four rules as rewriting rules. We
start with the symbol S and can choose to replace it by any of a, b, aSa, bSb.
Suppose we replace S by aSa. Now the resulting string still has an S in it, and
so we can choose any one of four strings to replace it. If we choose the rule
S → bSb, we get abSba. Now if we choose the rule S → b, we get the string
abbba, and no more rules can be performed.
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It is not hard to see that the language generated by this process is the set of
palindromes over {a, b} of odd length, which we call ODDPAL.

Example 1.5.2. Here is a somewhat harder example. Let us create a CFG to
generate the nonpalindromes over {a, b}.

S → aSa | bSb | aT b | bT a
T → aT a | aT b | bT a | bT b | ε | a | b.

The basic idea is that if a string is a nonpalindrome, then there must be at
least one position such that the character in that position does not match the
character in the corresponding position from the end. The productions S → aSa

and S → bSb are used to generate a prefix and suffix that match properly, but
eventually one of the two productions involving T on the right-hand side must
be used, at which point a mismatch is introduced. Now the remaining symbols
can either match or not match, which accounts for the remaining productions
involving T .

Example 1.5.3. Finally, we conclude with a genuinely challenging example.
Consider the language

L = {x ∈ {0, 1}∗ : x is not of the form ww} = SQ

= {0, 1, 01, 10, 000, 001, 010, 011, 100, 101, 110, 111, 0001, 0010,
0011, 1000, . . .}.

Exercise 25 asks you to prove that this language can be generated by the
following grammar:

S → AB | BA | A | B
A→ 0A0 | 0A1 | 1A0 | 1A1 | 0
B → 0B0 | 0B1 | 1B0 | 1B1 | 1.

Formally, we define a CFG G to be a 4-tuple G = (V,�,P, S), where V

is a nonempty finite set of variables, � is a nonempty finite set of terminal
symbols, P is a finite set of productions of the form A→ α, where A ∈ V and
α ∈ (V ∪ �)∗ (i.e., a finite subset of V × (V ∪�)∗), and S is a distinguished
element of V called the start symbol. We require that V ∩ � = ∅. The term
context-free comes from the fact that A may be replaced by α, independent of
the context in which A appears.

A sentential form is any string of variables and terminals. We can go from
one sentential form to another by applying a rule of the grammar. Formally,
we write αBγ =⇒ αβγ if B → β is a production of P . We write

∗=⇒ for the
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reflexive, transitive closure of =⇒. In other words, we write α
∗=⇒ β if there

exist sentential forms α = α0, α1, . . . , αn = β such that

α0 =⇒ α1 =⇒ α2 =⇒ · · · =⇒ αn.

A derivation consists of 0 or more applications of=⇒ to some sentential form.
If G is a CFG, then we define

L(G) = {x ∈ �∗ : S
∗=⇒ x}.

A leftmost derivation is a derivation in which the variable replaced at each
step is the leftmost one. A rightmost derivation is defined analogously. A
grammar G is said to be unambiguous if every word w ∈ L(G) has exactly one
leftmost derivation and ambiguous otherwise.

A parse tree or derivation tree for w ∈ L(G) is an ordered tree T where
each vertex is labeled with an element of V ∪ � ∪ {ε}. The root is labeled
with a variable A and the leaves are labeled with elements of � or ε. If a node
is labeled with A ∈ V and its children are (from left to right) X1, X2, . . . , Xr ,
then A→ X1X2 · · ·Xr is a production of G. The yield of the tree is w and
consists of the concatenation of the leaf labels from left to right.

Theorem 1.5.4. A grammar is unambiguous if and only if every word generated
has exactly one parse tree.

The class of languages generated by CFGs is called the context-free lan-
guages (CFLs).

We now recall some basic facts about CFGs. First, productions of the form
A→ ε are called ε-productions and productions of the form A→ B unit
productions. There is an algorithm to transform a CFG G into a new grammar
G′ without ε-productions or unit productions, such that L(G′) = L(G) − {ε}
(see Exercise 27). Furthermore, it is possible to carry out this transformation
in such a way that if G is unambiguous, G′ is also.

We say a grammar is in Chomsky normal form if every production is of
the form A→ BC or A→ a, where A,B,C are variables and a is a single
terminal. There is an algorithm to transform a grammar G into a new grammar
G′ in Chomsky normal form, such that L(G′) = L(G)− {ε}; (see Exercise 28).

We now recall a basic result about CFLs, known as the pumping lemma.

Theorem 1.5.5. If L is context-free, then there exists a constant n such that for
all z ∈ L with |z| ≥ n, there exists a decomposition z = uvwxy with |vwx| ≤ n

and |vx| ≥ 1 such that for all i ≥ 0, we have uviwxiy ∈ L.

Proof Idea. If L is context-free, then we can find a Chomsky normal form
grammar G generating L− {ε}. Let n = 2k , where k is the number of variables



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

1.5 Context-free grammars and languages 11

Finite
control

i n p u t

C
K

S
T
A

Figure 1.4: A pushdown automaton

in G. If z ∈ L and |z| ≥ n, then the parse tree for z must contain a relatively
long path—long enough, in fact, that some variable A gets repeated. We then
have derivations of the form

S
∗=⇒ uAy

A
∗=⇒ vAx

A
∗=⇒ w

for some strings u, v,w, x, y. Thus, uviwxiy ∈ L for all i ≥ 0. (The length
conditions on |vwx| and |vx| come from a more precise analysis of the
path.)

We now turn to a machine model for the CFLs. Consider augmenting an
NFA-ε with the ability to store symbols on a stack or pushdown store (see
Figure 1.4). (Recall that in a stack we are only able to push elements on top of
the stack and pop an element from the top of the stack.)

Formally, a pushdown automaton (or PDA) is a 7-tuple M =
(Q,�,�, δ, q0, Z0, F ). Here Q,�, q0, and F are defined as earlier, and �

is a finite alphabet of symbols that may appear in the stack, Z0 is the symbol
representing the initial stack contents, and δ is the transition function. The
function δ maps Q× (� ∪ {ε})× � to finite subsets of Q× �∗. The meaning
of

δ(q, a,X) = {(p1, γ1), . . . , (pr, γr )}
is that the machine M in state q with X on top of the stack may on input a

consume that symbol from the input and nondeterministically choose an i such
that it changes state to pi , pops X from the stack, and pushes the symbols of γi

on top of the stack in its place.
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We now define the notion of configuration, which is intended to be a com-
plete description of the current state of the machine. A configuration is an
element of Q×�∗ × �∗. A triple of the form (q,w, α) means that the ma-
chine is currently in state q, with w the input not yet read (and the tape head
currently scanning the first symbol of w) and α the stack contents. We write
the contents of the stack with the top at the left.

Moves of the machine take us from one configuration to the next. We write

(q, aw,Xα) � (p,w, βα)

for q ∈ Q, a ∈ � ∪ {ε}, w ∈ �∗, X ∈ �, α, β ∈ �∗ if there exists a transition

of the form (p, β) ∈ δ(q, a,X). We write
∗� for the reflexive, transitive closure

of �.
We are now ready to define acceptance by final state in a PDA. We have

L(M) = {x ∈ �∗ : (q0, x, Z0)
∗� (q, ε, α) for some q ∈ F and α ∈ �∗}.

Note that this definition requires that in order for a string to be accepted, all
of its symbols must actually be processed by the PDA.

There is another possible definition of acceptance in a PDA, namely, accep-

tance by empty stack. We have Le(M) = {x ∈ �∗ : (q0, x, Z0)
∗� (q, ε, ε) for

some q ∈ Q}.

Theorem 1.5.6. The two conventions of acceptance (final-state, empty stack)
are equivalent in the sense that for all PDAs M , there exists a PDA M ′ such
that L(M) = Le(M ′) and vice versa.

We now come to the most important theorem of this section.

Theorem 1.5.7. For all CFGs G, there exists a PDA M such that L(G) =
Le(M). For all PDAs M , there exists a CFG G such that Le(M) = L(G).

Proof Idea. Let G = (V,�,P, S) be a CFG. We create a one-state PDA
M = ({q}, �, V ∪ �, δ, q, S,∅), which accepts L(G) by empty stack, as
follows: for each A ∈ V , we define

δ(q, ε,A) = {(q, α) : A→ α is a production}.,

and for each a ∈ �, we define

δ(q, a, a) = {(q, ε)}.

An easy induction now proves that M accepts exactly L(G).
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For the other direction, assume M = (Q,�,�, δ, q0, Z0,∅). Create a gram-
mar G = (V,�,P, S), where

V = {S} ∪ {[q,A, p] : p, q ∈ Q, A ∈ �},
and the productions P are given by

S → [q0, Z0, q] for each q ∈ Q

[q,A, qm+1]→ a[q1, B1, q2][q2, B2, q3] · · · [qm,Bm, qm+1] for each q,

q1, . . . , qm, qm+1 ∈ Q, each a ∈ � ∪ {ε}, each A,B1, . . . ,

Bm ∈ � such that (q1, B1B2 · · ·Bm) ∈ δ(q, a,A).

A nontrivial argument now proves that Le(M) = L(G).

Theorem 1.5.7 is useful for proving some theorems where CFGs are not a
useful characterization of the CFLs. For example:

Theorem 1.5.8. If L is a CFL and R is regular, then L ∩ R is a CFL.

Proof Idea. If L is a CFL, then L = L(M1) for some PDA M1 = (Q1, �, �, δ1,

q1, Z1, F1). If R is regular then R = L(M2) for some DFA M2 = (Q2, �,

δ2, q2, F2). We create a PDA M = (Q1 ×Q2, �, �, δ, q0, Z1, F1 × F2) ac-
cepting L ∩ R. The idea is that M simulates M1 in the first component of its
state and M2 in the second component. We define q0 = [q1, q2] and

δ([p, q], a, A) = {([p′, q ′], γ ) : (p′, γ ) ∈ δ1(p, a,A) and δ2(q, a) = q ′}.
To complete the proof, prove by induction on |x| that ([q1, q2], x, Z1)

∗� ([p, q], ε, α) in M if and only if (q1, x, Z1)
∗� (p, ε, α) in M1 and δ(q2, x) =

q in M2.

Corollary 1.5.9. If R ⊆ �∗ is a regular language, then R is a CFL.

Proof. In Theorem 1.5.8 take L = �∗. Then R = L ∩ R is a CFL.

1.6 Turing machines

In previous sections we have reviewed machine models such as the finite
automaton and pushdown automaton. We now turn to a more powerful model
of computation, the Turing machine.

A Turing machine (or TM for short) is a computing device equipped with
an unbounded tape divided into individual cells. For purposes of reference,
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Figure 1.5: A Turing machine

we number the cells 0, 1, 2, . . ., but the TM itself has no access to the cell
numbers. The TM has a finite control, and based on its current state and
the current symbol being scanned, the TM can change state, rewrite the
symbol, and move either left or right. The input initially appears in cells
1, 2, . . . , n. Cell 0 and cells n+ 1, n+ 2, . . . initially hold a distinguished
character called the blank symbol, which we will write as B. This character, as
well as all others, can be rewritten during the course of the computation (see Fig-
ure 1.5).

Formally, a TM is a 6-tuple (Q,�,�, δ, q0, h), where Q is a finite set of
states, � ⊆ � is the input alphabet, � is the tape alphabet, q0 is the initial
state, and h ∈ Q is a special distinguished state called the halting state. By
convention we have B �∈ �, but B ∈ �. The transition function δ is a partial
function from Q× � to Q× � × {L,R, S}. By partial function, we mean that
it may not be defined for some pairs (q, α) in its domain. By convention, a TM
has no transitions leaving its halting state.

In a single move, the TM examines the current cell, and based on the contents
and its current state, it rewrites the current cell, changes state, and moves either
left (L), right (R), or stays stationary (S).

Informally, a TM M accepts its input if, when M starts with x as its input,
scanning cell 0, it eventually enters the halting state h. Note we do not require
that M actually read all its input.

In order to define acceptance formally, we need to define the notion of
configuration. A configuration of a TM is a string of the form wqx, where
w, x ∈ �∗ and q ∈ Q. The meaning of wqx is that the M is in state q, the
current contents of the tape is wx, and q is scanning the first symbol of x.
Since the tape is unbounded, some clarification is needed about the string wx

representing the tape contents. Our convention is that all characters to the right
of the rightmost character of x must be B. This means that our definition of
configuration is not unique, but is unique up to trailing blank symbols.

Transitions of the TM correspond to moving from one configuration to
another:
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(a) If δ(p,X) = (q, Y, L), then αZpXβ � αqZYβ.
(b) If δ(p,X) = (q, Y,R), then αpXβ � αYqβ.
(c) If δ(p,X) = (q, Y, S), then αpXβ � αqYβ.

We use
∗� for the reflexive, transitive closure of �, and we define L(M) =

{x ∈ �∗ : q0Bx
∗� αhβ for some α, β ∈ �∗}.

Starting with a given input, a TM may eventually either

(a) enter a configuration that has no further move (i.e., for which δ is unde-
fined);

(b) attempt to move left off the edge of its tape;
(c) enter an infinite loop; or
(d) enter the halting state h.

In cases (a)–(c)we say that M does not accept its input. In the last case we
say that M accepts its input. In cases (a)–(b)we say that M crashes.

If L = L(M) for some TM M , then we say L is recursively enumerable
(often abbreviated r.e.). (The origin of this somewhat obscure term appears in
Exercise 32.) If L = L(M) for some TM M that has the property that M never
enters an infinite loop on any input, then we say L is recursive.

There are many variations on TMs, such as allowing extra tracks on a
single tape, or allowing multiple tapes, or allowing tapes to be unbounded
to both the right and the left, or allowing two-dimensional tapes, or allowing
nondeterminism. All of these variations can be shown to be equivalent in
computing power to the vanilla TM model (see Exercise 29).

There is a special TM, MU , called the universal TM. This TM has the
property that it takes an input consisting of an encoded version of some TM T

and an encoded version of an input x and simulates T on x, accepting if and
only if T accepts x.

Which encoding should be used? To some extent it is not important, as long
as all machines use the same convention. One possible encoding is as follows:
we fix an infinite universal alphabet �U = {a1, a2, . . .} and assume that all
inputs and tape symbols are drawn from �U . Similarly, we fix an infinite
universal set of states QU = {q0, q1, . . .} and assume that all TMs use state
names chosen from QU . We then encode an element ai ∈ �U by the string
e(ai) = 0i+1 and encode the blank symbol B by the string 0. We encode an
alphabet � = {b1, b2, . . . , br} by the string

e(�) = 111e(b1)1e(b2)1 · · · 1e(br )111.

We encode an element qi ∈ QU by the string e(qi) = 0i+1. We encode the
directions of moves of a TM by e(L) = 0, e(R) = 00, and e(S) = 000. To
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encode a move m of a TM, say δ(q, a) = (p, b,D), we write

e(m) = 11e(q)1e(a)1e(p)1e(b)1e(D)11.

Finally, to encode an entire TM M with moves m1,m2, . . . , mt , we define

e(M) = 11111e(q0)1e(h)1e(�)1e(�)1e(m1)1 · · · 1e(mt )11111.

Theorem 1.6.1. There exists a universal TM MU that has the following behav-
ior: on input e(T )e(x), MU simulates T on input x and halts if and only if T

halts on x.

Proof Idea. The TM MU uses three tapes. The first tape is used to hold the
input e(T )e(x). The second tape holds an encoded version of T ’s tape and
the third tape holds the encoded state that T is in. A step of MU consists of
determining if any moves on tape 1 match the current configuration and then
performing the move on tape 2. If the simulated machine enters the halt state,
so does MU . A move may require replacing an encoded version of one symbol
with another. Since these encodings could be of different lengths, some shifting
of tape 2 may be required. Finally, the new state is written on tape 3.

We now turn to two classes of languages that are based on TMs. The
following theorem gives an alternative characterization of the class of recursive
languages.

Theorem 1.6.2. A language L is recursive if and only if there exists a TM M

that on input x halts with either 1 or 0 written in cell 1 on its tape (and blank
symbols on the rest of the tape) such that 1 is written if x ∈ L and 0 is written
if x �∈ L.

Such a TM is sometimes said to decide L.
The following theorems are easy exercises.

Theorem 1.6.3. The class of recursive languages is closed under the operations
of union, intersection, complement, Kleene ∗, and concatenation.

Theorem 1.6.4. The class of r.e. languages is closed under the operations of
union, intersection, Kleene ∗, and concatenation.

We can view the TM in Theorem 1.6.2 as computing a function—in that
case, a function from �∗ to {0, 1}. We can generalize this to allow TMs to
compute a function from �∗ to �∗.
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1.7 Unsolvability

A decision problem is a problem with at least one parameter that takes infinitely
many values, and for which the answer is always “yes”or “no.”

We can associate a language with a decision problem as follows: we take the
set of all encodings of instances of the decision problem for which the answer
is “yes.”Of course, this raises the question of what encoding to use, but often
there is a “natural”encoding that suggests itself.

Example 1.7.1. Consider the following decision problem: given an integer n,
decide whether or not n is a prime number. The input n can take infinitely many
values (all n ≥ 2, for example), and the answer is “yes”(the number is prime)
or “no”(the number is not).

A natural encoding of an integer n is representation in base 2. The language
associated with the previous decision problem is therefore

PRIMES2 = {10, 11, 101, 111, 1011, 1101, 10001, . . .}.
We say a decision problem is solvable if its associated language L is

recursive—in other words, if there is a TM M that decides L. Note that a
solvable decision problem corresponds to what we ordinarily think of as solv-
able by mechanical means: there exists a finite deterministic procedure that,
given an instance of the problem, will halt in a finite amount of time and answer
either “yes”or “no.”

Turing’s fundamental paper of 1936 proved that there exist unsolvable (or
“uncomputable”)decision problems. The next theorem concerns what is prob-
ably the most famous one.

Theorem 1.7.2. The decision problem “Given a Turing machine T and an
input w, does T halt on w?”is unsolvable.

Proof. Let us assume that this problem, called the halting problem, is solvable.
This means that there exists a TM, call it MH , that takes an input of the form
e(T )e(w) and eventually halts, writing 1 on its output tape if T halts on w and
0 otherwise. This is illustrated by Figure 1.6.

e(T )e(w)

MH

1

0

if T halts on input w

if T does not halt on input w

Figure 1.6: Hypothetical TM MH
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e(T )e(w)

M

if T halts on input w

if T does not halt on input wL

loops forever

halts

1

0

MH

Figure 1.7: Constructing TM ML from MH

Now let us create a new TM ML as follows: it simulates MH and then
examines the tape after MH halts. If the tape contains a 1, then ML enters an
infinite loop (e.g., by moving right on every tape symbol). If the tape contains
a 0, then ML halts. This is illustrated by Figure 1.7.

Finally, we make a new TM MD as follows: on input e(T ), MD computes
the encoding of e(T ), that is, e(e(T )), and writes it on the tape after e(T ). Then
it calls ML. This is illustrated in Figure 1.8.

We are now ready to obtain a contradiction. Feed MD with e(MD) as input.
The result is that MD halts on input e(MD) if and only if it does not halt. This
contradiction proves that our original assumption, the existence of MH , must
not hold.

Another way to state Turing’s theorem is the following.

Corollary 1.7.3. The halting language LH = {e(T )e(w) : T halts on w} is
recursively enumerable but not recursive.

We can obtain additional unsolvable problems by using reductions. We say
a problem P1 Turing-reduces to a problem P2, and we write P1 ≤ P2, if, given
a TM T2 that solves P2, we could use T2 as a subroutine in a TM T1 that solves
P1. Similarly, we say a language L1 Turing-reduces to a language L2, and we
write L1 ≤T L2, if, given a TM T2 deciding L2, we could use T2 as a subroutine
in another TM deciding L1.

e(T ) e(T )e(e(T ))
ML

loops forever
if T halts on input e(T )

if T does not halt on input e(T )
MD

loops
forever

halts

halts

Figure 1.8: Constructing TM MD from ML
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Theorem 1.7.4

(a) If P1 is unsolvable, and P1 ≤ P2, then P2 is unsolvable.
(b) If L1 is not recursive, and L1 ≤T L2, then L2 is not recursive.

Proof. We prove only (a), leaving (b) to the reader.
Suppose P2 were solvable, say by a TM T2. Since P1 ≤T P2, we could use

T2 as a subroutine in a TM T1 to solve P1, a contradiction.

Example 1.7.5. Let us use reductions to show that the decision problem

Pnonempty : Given a TM T , is L(T ) �= ∅?
is unsolvable. It suffices to show that the halting problem reduces to Pnonempty.
Suppose there were a TM M solving Pnonempty; M takes an encoding of a TM
e(T ) as input and eventually writes 1 on its output tape if T accepts some string,
and writes 0 if T accepts no string. Then we could use M to solve the halting
problem as follows: on input e(T ) and w, create the encoding e(T ′) of a TM T ′

that ignores its input, writes w out on its tape, and then simulates T on w. If T

accepts w, then T ′ halts; otherwise it crashes. Thus, L(T ′) = �∗ if T accepts
w and L(T ′) = ∅ otherwise.

To solve the halting problem, we now run M on e(T ′) and answer whatever
M answers.

1.8 Complexity theory

In the previous section, we exhibited some problems (such as the halting
problem) that are, in general, unsolvable by a TM no matter how much time and
space are allocated to the solution. We might instead consider what problems
are solvable using only a reasonable amount of time and space. By putting
restrictions on the amount of time and space used by a TM, we obtain various
complexity classes of languages.

Many of the most important complexity classes deal with time. We say that
a TM M is of time complexity T (n) if, whenever M is started with an input w

of length n on its tape, it eventually halts after making at most T (n) moves.
The complexity class P is defined to be the set of all languages that are

accepted by a deterministic TM of time complexity T (n), where T is a polyno-
mial. This complexity class includes many of the languages discussed in this
book, such as PRIMES1, EQ, EVEN, SQ, and ODDPAL. Roughly speaking, the
class P represents those languages in which membership is feasibly solvable,
that is, solvable in a reasonable length of time, in terms of the size of the input.
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Similarly, the complexity class NP is defined to be the set of all languages
that are accepted by a nondeterministic TM of time complexity T (n), where T

is a polynomial. Of course, a nondeterministic TM may have many computa-
tional paths, and these paths could be of different lengths. Here, then, the time
complexity of a nondeterministic TM on a given input is taken to be the length
of the longest computational path over all nondeterministic choices.

A classical example of a language in NP is SAT, the language of encodings
of Boolean formulas in conjunctive normal form that have a satisfying assign-
ment, that is, an assignment to the variables that makes the formula evaluate
to “true”(or 1). Here a Boolean formula is an expression consisting of vari-
ables connected with the operations “and”(∧), “or”(∨), and “not”(typically
represented by an overline). A formula is said to be in conjunctive normal
form if it consists of clauses joined by ∧, where each clause is an ∨ of vari-
ables or their negations. For example, a typical formula in conjunctive normal
form is

f = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x3 ∨ x4),

and (x1, x2, x3, x4, x5) = (1, 1, 0, 1, 0) is a satisfying assignment for f .
In order to define the class NPC, the NP-complete languages, we need

the notion of Karp reduction. We say L1 Karp-reduces to L2, and we write
L1 ≤ L2, if there is a polynomial-time computable function f such that x ∈ L1

if and only if f (x) ∈ L2.

Theorem 1.8.1. If L1 ∈ P and L1 ≤ L2, then L2 ∈ P.

Proof. On input x, run a TM for f , obtaining f (x). Since f is polynomial-
time computable, we have |f (x)| ≤ T (|x|) for some polynomial T . Now run
a polynomial-time algorithm M2 to decide L2 on f (x). Return whatever M2

says. The total time is bounded by a polynomial.

We say a language L is NP-complete if

(a) L ∈ NP;
(b) for all L′ ∈ NP, we have L′ ≤ L.

Thus, in some sense, the NP-complete problems are the “hardest”problems
in NP.

Theorem 1.8.2. SAT is NP-complete.

Proof Idea. It is easy to see that SAT is in NP, for all we need do is guess
a satisfying assignment and then verify it. To show that every problem in NP
reduces to SAT, take a polynomial-time-bounded TM M . We need to transform
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an input x to a Boolean formula ϕx , such that ϕx is satisfiable if and only if M

accepts x. We encode the computation of M on x as a string s of configurations
separated by delimiters and then create Boolean variables ci,a that are true if and
only if the ith symbol of s equals a. Using these variables, we can construct
ϕx to enforce the conditions that the configurations are legal, that the first
configuration represents the initial state, that a final state is eventually reached,
and that each configuration follows from the previous one by a legitimate move
of the machine.

A useful variation on SAT is 3-SAT; in this variant we force every clause to
have exactly three literals.

Theorem 1.8.3. 3-SAT is NP-complete.

Proof Idea. The basic idea is to introduce new variables to create a formula
where every clause has exactly three literals in such a way that the new for-
mula is satisfiable if and only if the old formula is satisfiable. A clause such
as (x1 ∨ x2) can be replaced by (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1). Similarly, a
clause such as (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5) can be replaced by (x1 ∨ x2 ∨ y1) ∧
(y1 ∨ x3 ∨ y2) ∧ (y2 ∨ x4 ∨ x5).

We now turn to space complexity. If a TM uses at most f (n) cells on any
input of length n, we say it is of space complexity f (n). One of the most
important theorems about space complexity is Savitch’s theorem.

Theorem 1.8.4 (Savitch). If L is decidable in f (n) nondeterministic space,
and f (n) ≥ n, then it is decidable in O(f (n)2) deterministic space.

Proof Idea. Use the divide-and-conquer strategy coupled with recursion to
decide if a nondeterministic TM M accepts x.

We define PSPACE to be the class of languages decidable in space bounded
by a polynomial on a deterministic TM and NPSPACE to be the class of
languages decidable in space bounded by a polynomial on a nondetermini-
stic TM.

Corollary 1.8.5. PSPACE = NPSPACE.

1.9 Exercises

1. Prove that for all words u, v ∈ �∗ and integers e ≥ 0 we have (uv)eu =
u(vu)e.
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2. Let A, B, and C be languages. For each of the following identities, prove it
or give a counterexample:
(a) (A ∪ B)C = AC ∪ BC.
(b) (A ∩ B)C = AC ∩ BC.

3. Find palindromes in languages other than English.
4. The English word antsy has the property that every nontrivial prefix is

a valid English word. Can you find a longer English word with this pro-
perty?

5. What is the smallest class of languages over � containing each singleton
{a} for a ∈ � and closed under the operations of union, intersection, and
complement?

6. Give regular expressions for each of the following languages:
(a) The set of strings over {a, b, c} in which all the a’s precede all the b’s,

which in turn precede all the c’s.
(b) The complement of the language in (a).
(c) The same as in (a), but only the nonempty strings satisfying the condi-

tions.
(d) The set of strings over {a, b} that do not contain the substring aa.
(e) The set of strings over {a, b} that do not contain the substring aab.
(f) The set of strings over {a, b} containing both an even number of a’s and

an even number of b’s.
(g) The set of strings over {a, b} that do not contain two or more consecutive

occurrences of the same letter.
(h) The set of strings that contain at least one occurrence of ab and at least

one occurrence of ba. (These occurrences may overlap.)
(i) The set of strings over {a, b} that contain exactly one occurrence of

the string bbb. Note: Overlapping occurrences should be counted more
than once, so that the string abbbbba contains three occurrences of
bbb.

(j) The set of strings over {a, b} having an equal number of occurrences of
ab and ba.

(k) The set of strings over {a, b} containing at least one a and at least one
b.

7. Let L = {x ∈ (a+ b)∗ : |x|a �= |x|b}. Give a regular expression for L2.
8. Suppose M = (Q,�, δ, q0, F ) is a DFA, and suppose there exists a state

q ∈ Q, a string z ∈ �∗, and integers i, j > 0 such that δ(q, zi) = q =
δ(q, zj ). Prove that δ(q, zgcd(i,j )) = q.

9. Let x, y be words. Prove that xy = yx if and only if there exists a word z

such that x2y2 = z2.
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10. A regular expression r is said to be in disjunctive normal form if it can be
written in the form r = r1 + r2 + · · · + rn for some n ≥ 1, where none of
the regular expressions r1, r2, . . . , rn contains the symbol + (union). For
example, the regular expression a∗b∗ + (ab)∗ + (c(acb)∗)∗ is in disjunc-
tive normal form, but (a+ b)∗ is not. Prove that every regular language
can be specified by a regular expression in disjunctive normal form.

11. In an extended regular expression, intersection and complementation may
be used. Show how to write (aba)∗ as a star-free extended regular expres-
sion. (That is, your expression can use intersection, union, concatenation,
and complementation, but may not use the Kleene closure or positive
closure operators.)

∗12. Show that allowing intersection in a regular expression can permit dra-
matically more concise regular expressions. More precisely, show that the
shortest regular expression for (· · · (((a2

0a1)2a2)2a3)2 · · · an)2 is of length

(2n), while there exists a regular expression involving intersection of
length O(n2).

13. Prove that each of the following languages is not regular:
(a) {ai bj : gcd(i, j ) = 1};
(b) {aibjck : i2 + j 2 = k2}.

14. Consider the language

L = {xcy : x, y ∈ {a, b}∗ and y is a subsequence of x}.
Show that L is not context-free.

15. Consider the language

L = {xRcy : x, y ∈ {a, b}∗ and y is a subsequence of x}.
Show that L is context-free but not regular.

16. Prove that each of the following languages is not context-free:
(a) {xx : x ∈ {a, b}∗};
(b) {x ∈ {a, b, c}∗ : |x|a = |x|b = |x|c};
(c) {wxw : w, x ∈ {a, b}+};
(d) {x ∈ {a, b, c}∗ : |x|a = max(|x|b, |x|c)};
(e) {x ∈ {a, b, c}∗ : |x|a = min(|x|b, |x|c)}.

17. Let L1 and L2 be languages, and define

join(L1, L2) = {z : there exist x1 ∈ L1, x2 ∈ L2, with |x1| = |x2|,
such that z = x1x2}.

Prove that if L1 and L2 are regular, then join(L1, L2) is context-free.
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18. The order of a language L is the smallest integer k such that Lk = Lk+1.
(Note that the order may be infinite.) Show that for each k ≥ 0, there exists
a regular language of order k.

19. Prove that the converse of the pumping lemma holds if L is a unary
language. Prove that it does not hold, in general, for larger alphabets.

20. Consider the following CFG: G = ({S}, {a, b}, P , S), where the set of
productions P is given by S → SSa | b.

Give an interpretation for L(G) based on the evaluation of an algebraic
expression.

Give another characterization for L(G) in terms of the number of a’s
and b’s in any word w ∈ L(G). Prove that your characterization is correct.

21. In our definition of CFG we demanded that V ∩ � = ∅. What happens if
we do not make this restriction?

22. Give CFGs for the following languages:
(a) the set of strings over {a, b} containing twice as many a’sas b’s;
(b) the complement of {(anb)n : n ≥ 1};
(c) {aibj : i, j ≥ 0 and i �= j and i �= 2j};
(d) {aibj : j ≤ i ≤ 2j}.

23. Show that the following decision problems are unsolvable:
(a) Given a TM T , does T enter an infinite loop on input ε?
(b) Given a TM T , does T accept ε in an even number of moves?
(c) Given a TM T and an input w, does T accept both w and wR?

24. Show that the following decision problems are solvable:
(a) Given a TM T , does T ever enter a state other than the initial state q0?
(b) Given a TM T , does T ever make a right move on input ε?
(c) Given a TM T , does T ever make a left move on input ε?

25. Give a formal proof that the grammar in Example 1.5.3 is correct.
26. A symbol of a CFG is called useless if it never participates in the derivation

of any terminal string. Give an algorithm that, on input a CFG G, outputs
a CFG G′ such that L(G′) = L(G) and G′ contains no useless symbols.
Your algorithm should not introduce any new ambiguities.

27. Give an algorithm that, on input a CFG G, outputs a CFG G′ such that
L(G′) = L(G)− {ε} and G′ has no ε-productions or unit productions. Your
algorithm should not introduce any new ambiguities.

28. Give an algorithm that, on input a CFG G, outputs a CFG G′ such that
L(G′) = L(G)− {ε} and G′ is in Chomsky normal form. Your algorithm
should not introduce any new ambiguities. Suppose G has m productions
and the length of the longest production is k. Show that G′ can be con-
structed in time polynomial in m and k.
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29. In this exercise we explore some variations on the TM model and show that
they are all equivalent in computing power to the vanilla TM model. For
each suggested model, give a formal definition and proof that the model
accepts the same class of languages as an ordinary TM.
(a) A multitrack TM. Here the TM has a single tape that is divided into

parallel tracks. In a single move, the TM can read all the tracks at once
and, based on the contents, move and change the contents of the tracks.

(b) A multitape TM. Here the TM has an arbitrary, but fixed, number
of tapes with independent heads. At any step the TM can read the
contents of the symbols under all the tape heads and move the heads
independently in any direction (or stay stationary).

(c) A TM with doubly infinite tape. Here the tape has no “leftedge”and
the head can move arbitrarily far in either direction.

(d) A TM with two-dimensional tape. Here the head is assumed to be
scanning a cell in an infinite array of cells and, at any point, can move
up, down, right, or left one cell, or remain stationary.

(e) A nondeterministic TM. Here the machine accepts if some series of
choices leads to the halting state.

30. Show that every TM can be simulated by a TM that never writes the blank
symbol B on the tape. Hint: Instead of writing a blank symbol, write an
alternate symbol B.

31. Show that the subset construction for NFA-to-DFA conversion can be
performed in O(kn2n) time, where k is the alphabet size and n is the
number of states. Hint: Precompute all the possible unions.

32. Show that a language L is recursively enumerable if and only if there exists
a TM M with a special output tape, such that M never moves left on its
output tape, writes out a string of the form #x1#x2#x3#x4 · · · on its output
tape, where each xi ∈ L, and every element of L eventually appears on the
output tape and exactly once.

33. Consider the following CFG for regular expressions:

S → E+ | E• | G
E+ → E+ + F | F + F

F → E• | G
E• → E•G | GG

G→ E∗ | C | P
C → ∅ | ε | a (a ∈ �)

E∗ → G ∗
P → (S)
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The meaning of the variables is as follows:
• S generates all regular expressions.
• E+ generates all unparenthesized expressions where the last operator

was +.
• E• generates all unparenthesized expressions where the last operator

was · (implicit concatenation).
• E∗ generates all unparenthesized expressions where the last operator

was ∗ (Kleene closure).
• C generates all unparenthesized expressions where there was no last

operator (i.e., the constants).
• P generates all parenthesized expressions.

Here, by parenthesized we mean there is at least one pair of enclosing
parentheses. Note this grammar allows a ∗ ∗ but disallows ( ). Prove that
this grammar is correct and unambiguous.

34. Let L be a language. Show that the following are equivalent:
(a) ε ∈ L and if x, y ∈ L, then xy ∈ L;
(b) L = L∗;
(c) there exists a language T such that L = T ∗.

1.10 Projects

1. Read some of the foundational papers in the theory of computing, such
as Turing [1936], Rabin and Scott [1959], and Cook [1971], and contrast
the presentation you find there with the presentation found in more recent
books. Did Turing actually state the halting problem in his 1936 paper?

1.11 Research problems

1. Is there an infinite family of distinct unary languages (Ln)n≥1 and constants
c, d such that Ln is accepted by an NFA with≤ cn states, but every regular
expression for Ln has ≥ dn2 symbols?

1.12 Notes on Chapter 1

There are many excellent textbooks that introduce the reader to the theory
of computation, for example, Martin [1997], Hopcroft, Motwani, and Ullman
[2001], and Lewis and Papadimitriou [1998].

1.2 Some textbooks use the symbols λ or � to denote the empty string. We
use ε in this book.
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Some writers, particularly Europeans, use the term “factor”for what
we have called “subword”and the term “subword”for what we have
called “subsequence.”

1.3 Brzozowski [1962b] is a good introduction to the properties of regular
expressions.

1.4 The origins of finite automata include the neural net model of McCulloch
and Pitts [1943]. Rabin and Scott [1959] is the fundamental paper in
this area.

Although most writers agree on the conventions for finite automata
as specified here, there are some minor differences. For example, some
writers do not enforce the condition that the transition function of a DFA
be a complete function (defined on all elements of its domain Q×�).
Some writers allow an NFA to have an initial “state”that is actually a
set of states.

1.5 The Indian philologist Panini (ca. 400 b.c.e.) used grammars to describe
the structure of Sanskrit. The modern mathematical treatment is due to
Chomsky [1956].

For a delightful collection of examples of ambiguous English sen-
tences, see Thornton [2003].

1.6 TMs were introduced by Turing [1936].
1.7 Oddly enough, Turing’s original paper [1936] did not state exactly what

we call the halting problem today. The first use of the term seems to be
in Davis [1958, p. 70]. Also see Strachey [1965].

What we have called “unsolvable”is, in the literature, also called
“undecidable”or “uncomputable.”

1.8 The classic reference for NP-completeness and related topics is Garey
and Johnson [1979]. The book of Papadimitriou [1994] is a good gen-
eral reference on computational complexity. In this text, we have used
polynomial-time reductions, although it is more fashionable these days
to use logspace reductions.
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Combinatorics on words

In 1906, the Norwegian mathematician Axel Thue initiated the study of what is
now called combinatorics on words—the properties of finite and infinite strings
of symbols over a finite alphabet. Although combinatorics on words does not
directly involve machine models, its results have implications for many areas
of computer science and mathematics.

2.1 Basics

We start by defining infinite strings (or infinite words or infinite sequences—we
use the terms interchangeably). We let Z denote the integers, Z+ denote the pos-
itive integers {1, 2, 3, . . .}, and N denote the nonnegative integers {0, 1, 2, . . .}.
Then we usually take an infinite string a0a1a2 · · · to be a map from N to
� (a finite alphabet), although occasionally we instead use a map from Z

+

to �.

Example 2.1.1. The following is an example of a right-infinite string:

p = (pn)n≥1 = 0110101000101 · · · ,
where pn = 1 if n is a prime number and 0 otherwise. The sequence p is called
the characteristic sequence of the primes.

The set of all infinite strings over � is denoted by �ω. We define �∞ =
�∗ ∪�ω. In this book, infinite strings are typically given in boldface.

The notions of subword, prefix, and suffix for finite strings have evident
analogues for infinite strings. Let w = a0a1a2 · · · be an infinite string. For
i ≥ 0, we define w[i] = ai . Also, for i ≥ 0 and j ≥ i − 1, we define w[i..j ] =
aiai+1 · · · aj .

28
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For a sequence of words (wi), we let∏
i≥1

wi

denote a string w1w2w3 · · · , which is infinite if and only if wi �= ε infinitely
often. We can also concatenate a finite string on the left with an infinite string
on the right, but not vice versa. If x is a nonempty finite string, then xω is the
infinite string xxx · · · . Such a string is called purely periodic. An infinite string
w of the form x yω for y �= ε is called ultimately periodic. If w is ultimately
periodic, then we can write it uniquely as x yω where |x|, |y| are as small as
possible. In this case y is referred to as the period of w, and x is called the
preperiod of w. In some cases, the word period refers to the length |y|, and
similarly for “preperiod.”

If L is a language, we define

Lω = {w1w2w3 · · · : wi ∈ L − {ε} for all i ≥ 1}.

2.2 Morphisms

In this section we introduce a fundamental tool of formal languages, the homo-
morphism, or just morphism for short. Let � and � be alphabets. A morphism
is a map h from �∗ to �∗ that obeys the identity h(xy) = h(x)h(y) for all
strings x, y ∈ �∗. Typically, we use the roman letters f, g, h and the Greek
letters µ, τ to denote morphisms.

Clearly if h is a morphism, then we must have h(ε) = ε. Furthermore, once
h is defined for all elements of �, it can be uniquely extended to a map from
�∗ to �∗. Henceforth, when we define a morphism, we usually give it by
specifying its action only on �.

Example 2.2.1. Let � = {e, m, o, s} and � = {a, e, l, n, r, s, t}, and define

h(m) = ant;

h(o) = ε;

h(s) = ler;

h(e) = s.

Then h(moose) = antlers.

If � = �, then we can iterate the application of h. We define h0(a) = a and
hi(a) = h(hi−1(a)) for all a ∈ �.
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Example 2.2.2. Let � = � = {0, 1}. Define the Thue–Morse morphism
µ(0) = 01 and µ(1) = 10. Then µ2(0) = 0110 and µ3(0) = 01101001.

We can also apply morphisms to infinite strings. If w = c0c1c2 · · · is an
infinite string, then we define

h(w) = h(c0)h(c1)h(c2) · · · .

2.3 The theorems of Lyndon–Schützenberger

In this section, we prove two beautiful and fundamental theorems due to Lyndon
and Schützenberger.

We start with one of the simplest and most basic results on strings, sometimes
known as Levi’s lemma:

Lemma 2.3.1. Let u, v, x, y ∈ �∗, and suppose that uv = xy. If |u| ≥ |x|,
there exists t ∈ �∗ such that u = xt and y = tv. If |u| < |x|, there exists
t ∈ �+ such that x = ut and v = ty.

Proof. Left to the reader.

To motivate the first theorem of Lyndon–Scḧutzenberger, consider the fol-
lowing problem: under what conditions can a string have a nontrivial proper
prefix and suffix that are identical? Examples in English include reader, which
begins and ends with r, and alfalfa, which begins and ends with alfa. The
answer is given by the following theorem.

Theorem 2.3.2. Let x, y, z ∈ �+. Then xy = yz if and only if there exist
u ∈ �+, v ∈ �∗, and an integer e ≥ 0 such that x = uv, z = vu, and y =
(uv)eu = u(vu)e.

Proof. (⇐): This direction is easy. We have

xy = uv(uv)eu = (uv)e+1u;

yz = u(vu)evu = u(vu)e+1;

and these strings are equal by Exercise 1.1.

(⇒): The proof is by induction on |y|. If |y| = 1, then y = a for a ∈ �.
Then xa = az. Thus, x begins with a and z ends with a, so we can write
x = ax ′ and z = z′a. Thus, ax ′a = xa = az = az′a, and so x ′ = z′. Thus we
can take u = a, v = x ′, and e = 0.
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Now suppose that |y| > 1. There are two cases:

Case I: If |x| ≥ |y|, then we have a situation like the following:

x

zy

y

w

By Levi’s lemma there exists w ∈ �∗ such that x = yw and z = wy. Now
take u = y, v = w, e = 0, and we are done.

Case II: Now suppose that |x| < |y|. Then we have a situation like the following:

y z

x y

w

By Levi’s lemma there exists w ∈ �+ such that y = xw = wz. By induction
(since 0 < |w| = |y| − |x| < |y|), we know there exist u ∈ �+, v ∈ �∗, e ≥ 0
such that

x = uv;

z = vu;

w = (uv)eu = u(vu)e.

so it follows that y = xw = uv(uv)eu = (uv)e+1u.

To motivate the second theorem of Lyndon and Schützenberger, consider the
following problem: what are the solutions in strings to the equation x2 = y3?
If we take the positive integers as an analogy, then unique factorization into
primes suggests that the only possible solutions are when x is a cube of some
string z and y is the square of z.

Another motivation comes from the problem of determining when words
can commute: when can xy = yx? There are not too many nontrivial examples
in English; some examples are x = do, y = dodo and x = tar, y = tartar.

The general case is given by the following result.
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Theorem 2.3.3. Let x, y ∈ �+. Then the following three conditions are equiv-
alent:

1. xy = yx.
2. There exist z ∈ �+ and integers k, l > 0 such that x = zk and y = zl .
3. There exist integers i, j > 0 such that xi = yj .

Proof. We show that (1)⇒ (2), (2)⇒ (3), and (3)⇒ (1).
(1)⇒ (2): By induction on |xy|. If |xy| = 2, then |x| = |y| = 1, so x = y

and we may take z = x = y, k = l = 1.
Now assume that the implication is true for all x, y with |xy| < n. We prove

it for |xy| = n. Without loss of generality, assume |x| ≥ |y|. Then we have a
situation like the following:

x

y

y

w

x

Hence there exists w ∈ �∗ such that x = wy = yw. If |w| = 0, then x = y,
so we may take z = x = y and k = l = 1. Otherwise w ∈ �+. Now |wy| =
|x| < |xy| = n, so the induction hypothesis applies, and there exist z ∈ �+ and
integers k, l > 0 such that w = zk , y = zl . It follows that x = wy = zk+l .

(2)⇒ (3): By (2) there exist z ∈ �+ and integers k, l > 0 such that x = zk

and y = zl . Hence, taking i = l, j = k, we get

xi = (zk)i = zkl = (zl)k = (zl)j = yj ,

as desired.
(3)⇒ (1): We have xi = yj . Without loss of generality, assume |x| ≥ |y|.

Then we have a situation like the following:

x x x x

y y y y y y

w

That is, there exists w ∈ �∗ such that x = yw. Hence, xi = (yw)i = yj , and
so y(wy)i−1w = yj . Therefore, (wy)i−1w = yj−1 and so, by multiplying by y
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on the right, we get (wy)i = yj . Hence, (yw)i = (wy)i , and hence yw = wy.
It follows that x = yw = wy and xy = (yw)y = y(wy) = yx.

We now make the following definition: a string w ∈ �+ is a power if there
exists a string z and an integer k ≥ 2 such that w = zk . A string w ∈ �+

that is not a power is called primitive. For example, door is primitive, but
dodo = (do)2 is not.

Theorem 2.3.4. Every nonempty string w can be expressed uniquely in the
form w = xn, where n ≥ 1 and x is primitive.

Proof. Choose n as large as possible so that w = xn has a solution; clearly,
1 ≤ n ≤ |w|. We claim that the resulting x is primitive. For if not, we could
write x = yk for some k ≥ 2 and then w = ykn, where kn > n.

To prove uniqueness, suppose that w has two representations w = xn = ym,
where both x, y are primitive and n,m ≥ 1. Then by Theorem 2.3.3, there
exists z with |z| ≥ 1 such that x = zk and y = z�. Since x, y are primitive,
however, we must have k = � = 1. But then x = y = z, and hence n = m, and
the two representations are actually the same.

If w = xn, where x is primitive, then x is sometimes called the primitive
root of w.

The following theorem can be thought of as a generalization of Theo-
rem 2.3.3.

Theorem 2.3.5. Let w and x be nonempty words. Let y ∈ w{w, x}ω and z ∈
x{w, x}ω. Then the following conditions are equivalent:

(a) y and z agree on a prefix of length at least |w| + |x| − gcd(|w|, |x|).
(b) wx = xw.
(c) y = z.

Proof.
(a)⇒ (b): We prove the contrapositive. Suppose wx �= xw.
Then we prove that y and z differ at a position ≤ |w| + |x| − gcd(|w|, |x|).

The proof is by induction on |w| + |x|.
The base case is |w| + |x| = 2. Then |w| = |x| = 1 and |w| + |x| −

gcd(|w|, |x|) = 1. Since wx �= xw, we must have w = a, x = b with a �= b.
Then y and z differ at the first position.

Now assume the result is true for |w| + |x| < k. We prove it for |w| + |x| =
k. If |w| = |x|, then y and z must disagree at the |w|th position or earlier, for
otherwise w = x and wx = xw; since |w| ≤ |w| + |x| − gcd(|w|, |x|) = |w|,
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the result follows. So, without loss of generality, assume |w| < |x|. If w is not
a prefix of x, then y and z disagree on the |w|th position or earlier, and again
|w| ≤ |w| + |x| − gcd(|w|, |x|).

So w is a proper prefix of x. Write x = wt for some nonempty word t .
Now any common divisor of |w| and |x| must also divide |x| − |w| = |t |, and
similarly any common divisor of both |w| and |t | must also divide |w| + |t | =
|x|. So gcd(|w|, |x|) = gcd(|w|, |t |).

Now wt �= tw, for otherwise we have wx = wwt = wtw = xw, a con-
tradiction. Then y = ww · · · and z = wt · · · . By induction (since |w| + |t | <
k), w−1y and w−1z disagree at position |w| + |t | − gcd(|w|, |t |) or earlier.
Hence, y and z disagree at position 2|w| + |t | − gcd(|w|, |t |) = |w| + |x| −
gcd(|w|, |x|) or earlier.

(b) ⇒ (c): If wx = xw, then by the second theorem of Lyndon–
Schützenberger, both w and x are in u+ for some word u. Hence, y = uω = z.

(c)⇒ (a): Trivial.

There is another possible generalization of Theorem 2.3.3. To state it, we
need the notion of fractional power. If z = xnx ′, where n ≥ 1, 1 ≤ |x ′| ≤ |x|,
and x ′ is a prefix of x, then we say z is a |z|/|x| power. For example, alfalfa
is a 7/3 power, as it equals (alf)2a. Similarly, if p/q is a rational number >

1, and |x| is divisible by q, then by xp/q we mean z = xax ′, where a =
�p/q�, x ′ is a prefix of x, and |z|/|x| = p/q. For example, (entanglem)4/3 =
entanglement.

Theorem 2.3.6. Let x and y be nonempty words. Then xy = yx if and only if
there are rational numbers α, β ≥ 2 such that xα = yβ .

Proof. Suppose xy = yx. Then by Theorem 2.3.3, there must be integers
i, j ≥ 1 such that xi = yj . Hence we can take α = 2i, β = 2j .

Now suppose xα = yβ . Without loss of generality, we can assume |x| ≥ |y|.
Then xω and yω agree on a prefix of length ≥ α|x| ≥ 2x ≥ |x| + |y| > |x| +
|y| − gcd(|x|, |y|). Hence by Theorem 2.3.5, xy = yx.

2.4 Conjugates and borders

We say a word w is a conjugate of a word x if w is a cyclic shift of x, that
is, if there exist words u, v such that w = uv and x = vu, and we write w ∼
x. For example, enlist and listen are conjugates (take u = en, and v =
list).
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Theorem 2.4.1. The conjugacy relation ∼ is an equivalence relation.

Proof. Left to the reader as Exercise 10.

Theorem 2.4.2. Let w and x be conjugates. Then w is a power if and only if x

is a power. Furthermore, if w = yk , k ≥ 2, then x = zk , where z is a conjugate
of y.

Proof. Since w and x are conjugates, there exist u, v such that w = uv,
x = vu. Furthermore, since w is a power, there exists a word y and an integer
k ≥ 2 such that w = yk . Hence, yk = uv.

If |u| is a multiple of |y|, then u = yi for some i, and so v = yk−i . Thus,
x = vu = yk .

Otherwise, assume |u| is not a multiple of |y|. Then we can write u =
yir , v = syk−i−1, where r, s �= ε and rs = y. Then x = vu = syk−i−1yir =
s(rs)k−1r = (sr)k . Thus, x is a power. Letting z = sr , we also see that x = zk ,
and z is a conjugate of y.

Now we turn to borders. A word w ∈ �+ is said to be bordered if it can
be written as w = xyx, where x ∈ �+, y ∈ �∗. Alternatively, a word w is
bordered if and only if it is an α-power, for α a rational number > 1. Examples
of bordered words in English include outshout and photograph. If a word
is not bordered, it is unbordered.

Theorem 2.4.3. Let w be a nonempty word. Then w is primitive if and only if
w has an unbordered conjugate.

Proof. Suppose w is primitive. Let x be the lexicographically least conjugate
of w. I claim x is unbordered. For if x were bordered, we could write x = uvu,
where u ∈ �+ and v ∈ �∗. Now z = uuv is a conjugate of x and so is a
conjugate of w. If x = z, then uv = vu. If v = ε, then x = u2. Otherwise,
by Theorem 2.3.3, there exist a string t and integers i, j ≥ 1 such that u =
t i , v = t j . Then x = uvu = t2i+j . By Theorem 2.4.2, w is also a power, a
contradiction.

Now x < z, since x was lexicographically least among all conjugates of
w. Then uvu < uuv, so vu < uv. Then vuu < uvu = x, so we have found a
conjugate of w that is lexicographically smaller than x, a contradiction.

For the other direction, suppose w is not primitive, and let x be any conjugate
of w. By Theorem 2.4.2, x is also a power; that is, x = tk for some nonempty
t and integer k ≥ 2. Then x = t tk−2t , so x is bordered.
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We now apply our results about conjugates and borders to determine the
solutions to the equation in words xiyj = zk . But first, we need a technical
lemma.

Lemma 2.4.4. Let x be a power, x = zk , k ≥ 2, and let w be a subword of x

with |w| > |z|. Then w is bordered.

Proof. Since w is a subword of x, we have x = ywz for some words y, z.
Now consider wzy, a conjugate of x. By Theorem 2.4.2, since x is a kth power
of z, we know that wzy is a kth power of some conjugate t of z. Write w = tj t ′,
where j ≥ 1 and t ′ is a nonempty prefix of t (possibly equal to t). Then w

begins and ends with t ′.

Now we turn to a famous equation in words, which might be considered as
the noncommutative version of Fermat’s last theorem.

Theorem 2.4.5. The equation

xi = yj zk (2.1)

holds for strings x, y, z ∈ �+ and i, j, k ≥ 2 if and only if there exist a word
w ∈ �+ and integers l, m, n ≥ 1 such that x = wl , y = wm, z = wn, with
li = mj + nk.

Proof. Suppose x = wl , y = wm, and z = wn and li = mj + nk. Then xi =
wli = wmj+nk = wmjwnk = yj zk .

For the other direction, without loss of generality, assume x, y, and z are
primitive; otherwise, replace a nonprimitive string with its primitive root and
adjust the exponent. Assume x is of minimal length, satisfying an equation of
the form (2.1), and also assume, contrary to what we want to prove, that there
is no w ∈ �+ with x, y, z ∈ w+.

If yp ∈ x+ for some p, 1 ≤ p ≤ j , then by Theorem 2.3.3, y and x are both
powers of a word w, which can be assumed to be primitive. Now we can cancel
powers of w on both sides of Eq. (2.1) to get an equation of the form ws = zk .
It follows that z is also a power of w, a contradiction. By symmetry, the same
conclusion follows if zq ∈ x+ for some q, 1 ≤ q ≤ k. Thus we can assume
yp, zq �∈ x+ for 1 ≤ p ≤ j , 1 ≤ q ≤ k. In particular, |x| �= |y| and |x| �= |z|.

If |y| > |x|, then we have, by looking at a prefix of Eq. (2.1), that xα = y2

for some rational α > 2. Then by combining Theorems 2.3.6 and 2.3.3, we
see that there exists a string w and integers r, s ≥ 1 such that y = wr , x = ws .
Since |y| > |x|, we must have r ≥ 2. So y is not primitive, a contradiction. A
similar conclusion follows if |z| > |x|, by considering the reversal of Eq. (2.1).
So we can assume that |y|, |z| < |x|.
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Suppose i > 2. By Theorem 2.4.3, x has an unbordered conjugate f . Write
x = uv and f = vu. Then xi = (uv)i = u(vu)i−1v. Thus at least two copies
of f lie within xi = yj zk , so at least one copy is either entirely within yj or
entirely within zk . By Lemma 2.4.4, f is bordered. This is a contradiction.

It remains to consider the case i = 2. If |yj | = |zk|, then x = yj = zk , a
contradiction. Without loss of generality, we can assume |yj | > |zk|. Hence,
yj = xur for some primitive word u and integer r ≥ 1. Similarly, urzk = x.
Thus, multiplying both sides by ur , we get u2rzk = urx. Thus, u2rzk is a
conjugate of yj . Hence, by Theorem 2.4.2, u2rzk = vj for some v a conjugate of
y. Now we have an equation of the form (2.1) with |v| = |y| < |x|, contradicting
the minimality of x.

Thus our original assumption that there is no w ∈ �+ with x, y, z ∈ w+ is
false, and such a w must exist.

2.5 Repetitions in strings

A square is a string of the form xx, such as the English word hotshots. If
w is a (finite or infinite) string containing no nonempty subword of this form,
then it is said to be squarefree. Note that the string square is squarefree, while
the string squarefree is not.

It is easy to verify (see Exercise 3) that there are no squarefree strings of
length >3 over a two-letter alphabet. However, there are infinite squarefree
strings over a three-letter alphabet. We construct one later in Theorem 2.5.2.

Similarly, a cube is a string of the form xxx, such as the English sort-of-word
shshsh. If w contains no nonempty cube, it is said to be cubefree. The string
cubefree is not squarefree, since it contains two consecutive occurrences of
the string e, but it is cubefree.

An overlap is a string of the form cxcxc, where x is a string and c is a single
letter. (The term overlap refers to the fact that such a string can be viewed as
two overlapping occurrences of the string cxc.) The English string alfalfa,
for example, is an overlap with c = a and x = lf. If w contains no overlap, it
is said to be overlap-free.

In this section, we prove some simple results in the theory of repetitions in
strings. We start by constructing an infinite overlap-free string over an alphabet
of size 2.

Define

tn =
{
0, if the number of 1s in the base-2 expansion of n is even;

1, if the number of 1s in the base-2 expansion of n is odd.
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tkt0

k
︷ ︸︸ ︷

m
︷ ︸︸ ︷

· · ·xxau aa

tk+2mtk+m

t = v

Figure 2.1: Hypothesized overlap in t

Note that t2n = tn, because the base-2 expansions of n and 2n have the same
number of 1s. Similarly, t2n+1 = 1− tn, since we get the base-2 expansion of
2n+ 1 by concatenating the base-2 expansion of n with a 1.

We define t = t0t1t2 · · · = 01101001 · · · . The infinite string t is usually
called the Thue–Morse sequence, named after Axel Thue and Marston Morse,
two of the first mathematicians to study its properties. This infinite sequence
occurs in many different areas of mathematics, physics, and computer sci-
ence (for a brief tour, see Section 2.6). In a moment we will prove Thue’s
theorem that t is overlap-free. It is interesting to note that Thue published
his result in an obscure Norwegian journal and it was overlooked for many
years. In the meantime, many people rediscovered the sequence and its
properties.

Theorem 2.5.1. The Thue–Morse sequence t is overlap-free.

Proof Idea. Assume that t has an overlap; this implies that a certain set of
equations holds on the symbols of t. Use the identities t2n = tn and t2n+1 =
1− tn for n ≥ 0 to derive a contradiction.

Proof. Assume, contrary to what we want to prove, that t contains an overlap.
Then we would be able to write t = uaxaxav for some finite strings u, x, an
infinite string v, and a letter a (see Figure 2.1).

In other words, we would have tk+j = tk+m+j for 0 ≤ j ≤ m, where m =
|ax| and k = |u|. Assume m ≥ 1 is as small as possible. Then there are two
cases: (i) m is even and (ii) m is odd.

(i) If m is even, then let m = 2m′. Again there are two cases: (a) k is even and
(b) k is odd.
(a) If k is even, then let k = 2k′. Then we know tk+j = tk+m+j for 0 ≤

j ≤ m, so it is certainly true that tk+2j ′ = tk+m+2j ′ for 0 ≤ j ′ ≤ m/2.
Hence, t2k′+2j ′ = t2k′+2j ′+2m′ for 0 ≤ j ′ ≤ m′, and so tk′+j ′ = tk′+j ′+m′

for 0 ≤ j ′ ≤ m′. But this contradicts the minimality of m.
(b) If k is odd, then let k = 2k′ + 1. Then as before we have tk+2j ′ =

tk+m+2j ′ for 0 ≤ j ′ ≤ m/2. Hence, t2k′+2j ′+1 = t2k′+2j ′+2m′+1 for 0 ≤
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j ′ ≤ m′, and so tk′+j ′ = tk′+j ′+m′ for 0 ≤ j ′ ≤ m′, again contradicting
the minimality of m.

(ii) If m is odd, then there are three cases: (a) m ≥ 5, (b) m = 3, and (c) m = 1.
For n ≥ 1, we define bn = (tn + tn−1) mod 2. Note that b4n+2 = (t4n+2 +
t4n+1) mod 2. Since the base-2 representations of 4n+ 2 and 4n+ 1 are
identical, except that the last two bits are switched, we have t4n+2 = t4n+1,
and so b4n+2 = 0. On the other hand, b2n+1 = (t2n+1 + t2n) mod 2, and the
base-2 representations of 2n+ 1 and 2n are identical except for the last bit;
hence, b2n+1 = 1.
(a) m odd, ≥ 5. We have bk+j = bk+m+j for 1 ≤ j ≤ m. Since m ≥ 5,

we can choose j such that k + j ≡ 2 (mod 4). Then for this value of
k + j , we have from earlier that bk+j = 0, but k + j +m is odd, so
bk+m+j = 1, a contradiction.

(b) m = 3. Again, bk+j = bk+j+3 for 1 ≤ j ≤ 3. Choose j such that k +
j ≡ 2 or 3 (mod 4). If k + j ≡ 2 (mod 4), then the reasoning of the
previous case applies. Otherwise k + j ≡ 3 (mod 4) and then bk+j = 1,
while bk+j+3 = 0.

(c) m = 1. Then tk = tk+1 = tk+2. Hence, t2n = t2n+1 for n = �k/2�, a con-
tradiction.

This completes the proof.

Using the fact that t is overlap-free, we may now construct a squarefree
infinite string over the alphabet �3 = {0, 1, 2}.
Theorem 2.5.2. For n ≥ 1, define cn to be the number of 1s between the
nth and (n+ 1)th occurrence of 0 in the string t. Set c = c1c2c3 · · · . Then
c = 210201 · · · is an infinite squarefree string over the alphabet �3.

Proof. First, observe that c is over the alphabet {0, 1, 2}. For if there were
three or more 1s between two consecutive occurrences of 0 in t, then t would
not be overlap-free, a contradiction.

Next, assume that c is not squarefree. Then it contains a square of the form
xx, with x = x1x2 · · · xn and n ≥ 1. Then, from the definition of c, the string t
would contain a subword of the form

01x101x20 · · · 01xn01x101x20 · · · 01xn0,

which constitutes an overlap, a contradiction.

For alternate definitions of c, see Exercise 25.
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2.6 Applications of the Thue–Morse sequence
and squarefree strings

Both the Thue–Morsesequence and squarefree strings turn out to have many
applications in many different fields of mathematics and computer science. In
this section we briefly survey some of these applications.

2.6.1 The Tarry–Escott problem

Let us begin with the Tarry–Escott problem (also known as the problem of
multigrades). This old problem, still not completely solved, asks for solutions
to the equation ∑

i∈I
ik =

∑
j∈J

j k

for k = 0, 1, 2, . . . , n, where I and J are disjoint sets of integers.

Example 2.6.1. The equation

0k + 3k + 5k + 6k = 1k + 2k + 4k + 7k

holds for k = 0, 1, 2 (but not for k = 3). Of course, we define 00 = 1.

Although Escott and Tarry discussed the problem in 1910 and 1912, re-
spectively, Étienne Prouhet found an interesting connection between the Thue–
Morse sequence and the Tarry–Escottproblem in 1851. Here is (a weak version
of) what Prouhet discovered.

Theorem 2.6.2. Let t = t0t1t2 · · · be the Thue–Morse sequence and N be a
positive integer. Define

I = {i ∈ {0, 1, . . . , 2N − 1} : ti = 0};
J = {j ∈ {0, 1, . . . , 2N − 1} : tj = 1}.

Then for 0 ≤ k < N , we have ∑
i∈I

ik =
∑
j∈J

j k.

Example 2.6.1 is the case N = 3 of this theorem. The proof is not terribly
difficult, but is left to the reader as Exercise 21.
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2.6.2 Certain infinite products

Next we turn to some interesting infinite products. Consider the following
infinite sequence:

1/2,
1

2
/

3

4
,

1
2
3
4

/

5
6
7
8

, . . .

What is the limit of this sequence? Computing the first few terms suggests that
the limit is about 0.7071, which you may recognize as

√
2/2. But how can we

prove this?
The first step is to recognize the hidden occurrence of the Thue–Morse

sequence. In fact, it is not hard to see that we can write the limit as

∞∏
n=0

(
2n+ 1

2n+ 2

)εn

, (2.2)

where εn = (−1)tn and tn is the nth symbol of the Thue–Morsesequence. We
now prove that this infinite product equals

√
2/2.

Let P and Q be the infinite products defined by

P =
∞∏

n=0

(
2n+ 1

2n+ 2

)εn

, Q =
∞∏

n=1

(
2n

2n+ 1

)εn

.

Then

PQ = 1

2

∞∏
n=1

(
n

n+ 1

)εn

= 1

2

∞∏
n=1

(
2n

2n+ 1

)ε2n ∞∏
n=0

(
2n+ 1

2n+ 2

)ε2n+1

.

(We have to check convergence, but this is left to the reader.) Now, since
ε2n = εn and ε2n+1 = −εn, we get

PQ = 1

2

∞∏
n=1

(
2n

2n+ 1

)εn

( ∞∏
n=0

(
2n+ 1

2n+ 2

)εn

)−1

= 1

2

Q

P
.

Since Q �= 0, this gives P 2 = 1/2, and the result follows since P is positive.

2.6.3 Chess and music

Now let us turn to applications of squarefree words. One of the first applications
was to the game of chess.

Modern-day chess has several rules to avoid the possibility of infinite games.
Rule 9.3 of the FIDE Laws of Chess states that if 50 consecutive moves are
made by each player without a pawn being moved or a piece being captured,
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then a draw can be claimed. Rule 9.2 states that if the same position occurs
three times, then a draw can be claimed.

Max Euwe (1901–1981), the Dutch chess grandmaster and world chess
champion from 1935 to 1937, discussed what would happen if Rule 9.3 were
discarded and Rule 9.2 were weakened to the following “German rule”: if
the same sequence of moves occurs twice in succession and is immediately
followed by the first move of a third repetition, then a draw occurs. Could an
infinite game of chess then be played?

Euwe showed the answer is yes, and his technique was based on what we
now call the Thue–Morsesequence. If we take the Thue-Morse sequence, and
replace each 0 by the following sequence of four moves

Ng1–f3 Ng8–f6
Nf3–g1 Nf6–g8

and each 1 by the following sequence of four moves

Nb1–c3 Nb8–c6
Nc3–b1 Nc6–b8

then the fact that t is overlap-free means that the German rule can never apply.
This may not be the world’s most interesting chess game, but it is infinite.

The Thue–Morsesequence even appears in music. The Danish composer
Per Nørgård (1932–) independently rediscovered the Thue–Morse sequence
and used it in some of his compositions, such as the first movement of his
Symphony No. 3.

2.6.4 The Burnside problem

Finally, we mention the occurrence of repetition-free sequences in the solution
of the Burnside problem for groups.

Recall that a group G is a nonempty set together with a binary operation ·
that satisfies the following properties:

(a) a · b ∈ G for all a, b ∈ G.
(b) a · (b · c) = (a · b) · c.
(c) There exists a distinguished element e ∈ G such that e · g = g · e = g for

all g ∈ G.
(d) For all g ∈ G there exists an element g′ ∈ G such that g · g′ = g′ · g = e.

We usually write g′ = g−1.

For group multiplication we often write gg′ for g · g′.
If G is a group and X a nonempty subset of G, then 〈X〉, the subgroup

generated by X, is the set

{ae1
1 a

e2
2 · · · aet

t : ai ∈ X, t ≥ 0, and ei ∈ {1,−1}}.
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If there exist finitely many elements b1, b2, . . . , bn such that G = 〈b1, b2,

. . . , bn〉 then G is said to be finitely generated.
The exponent of a group G is the least integer n > 0 such that xn = e for

all x ∈ G. If no such n exists then G has exponent∞. Note that it is possible
for each element to have finite order (i.e., for there to exist an r , depending on
x, such that xr = e) and yet the group’s exponent is infinite (see Exercise 31).
If every element has finite order, the group is called “periodic”or “torsion.”

Burnside asked in 1902 if every group of finite exponent n with a finite
number of generators m is necessarily finite.

For m = 1 the answer is trivially yes, and for m > 1 and n = 2, 3, the answer
is also yes, although more work is needed. Sanov proved in 1940 that the answer
is yes for m > 1 and n = 4, and Hall proved in 1957 that the answer is yes for
m > 1 and n = 6. However, in 1968 Novikov and Adian proved that the answer
is no for m > 1 and n ≥ 4381 and odd. Later, Adian improved the bound from
4381 to 665. The proof is based in part on the existence of cubefree sequences.

2.7 Exercises

1. Define the strings Fn (n ≥ 1) as follows:

F1 = 0;

F2 = 1;

Fn = Fn−1Fn−2 for n ≥ 3.

Thus, for example, we find F3 = 10, F4 = 101, and so on.
(a) Prove that no Fi contains either 00 or 111 as a substring.
(b) Guess the relationship between FiFi+1 and Fi+1Fi , and prove your

guess by induction.
2. Is the decimal expansion of π a squarefree string? Is it cubefree? Answer

the same questions for e (the base of natural logarithms), Euler’s constant,√
2, and log 2. What are the highest powers you can find in the decimal

expansions of these numbers?
3. Show there are no squarefree strings of length >3 over a two-letter alphabet.
4. Find necessary and sufficient conditions for a bordered word to equal a

square.
5. Show that if x,w are strings, then xw cannot equal wx in all positions

except one.
6. A morphism h : �∗ → �∗ is overlap-free if for any overlap-free word

w ∈ �∗, h(w) is overlap-free. Prove that if |�| > |�|, then the only overlap-
free morphism h is the morphism defined by h(a) = ε for all a ∈ �.
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7. Let t = (tn)n≥0 = 01101001 · · · be the Thue–Morseinfinite word. Show
that t = µ(t), where µ is the Thue–Morsemorphism introduced in Exam-
ple 2.2.2.

8. Show that every finite nonempty prefix of the Thue–Morse word
01101001 · · · is primitive.

9. Prove the following variation on Theorem 2.3.2: let y ∈ �∗, and x, z ∈ �+.
Then xy = yz if and only if there exist u, v ∈ �∗, and an integer e ≥ 0
such that x = uv, z = vu, and y = (uv)eu = u(vu)e.

10. Show that the relation ∼ (“isa conjugate of”)is an equivalence relation.
11. Show that x and y are conjugates if and only if there exists a string t such

that xt = ty.
12. Consider the equation w2 = x2y2z2 in nonempty words. Show that there

exist solutions in which no pair of words chosen from {w, x, y, z} com-
mutes.

13. Let y, z be palindromes. Show that if at least one of |y|, |z| is even, then
some conjugate of yz is a palindrome. Show that if both |y|, |z| are odd,
then the result need not hold.

14. Find all solutions to the equation (vu)n = unvn in nonempty words for
n ≥ 1.

15. Prove that every conjugate of µn(0) is overlap-free, for n ≥ 0, where µ is
the Thue–Morsemorphism.

16. Let x ∈ {0, 1}∗. Define x to be the string obtained by changing every 0 in
x to 1 and every 1 to 0. Define X0 = 0 and Xn+1 = XnXn for n ≥ 0. Thus,
X1 = 01, X2 = 0110, and so on. Show that Xn = µn(0), where µ is the
Thue–Morsemorphism of Section 2.2.

17. Prove the following “repetition theorem” for infinite words. Let w =
w1w2w3 · · · , and suppose w = wk+1wk+2wk+3 · · · for some k > 0. Then
w = (w1w2 · · ·wk)ω.

18. Suppose x, y are words with xy �= yx. Show that, for all n ≥ 1, at least
one of xny and xn+1y is primitive.

19. Let x, y, z be words. Show that xyz = zyx if and only if there exist words
u, v and integers i, j, k ≥ 0 with x = (uv)iu, y = (vu)j v, and z = (uv)ku.

20. Suppose xyz is a square and xyyz is a square. Show that xyiz is a square
for all i ≥ 0.

21. Prove Theorem 2.6.2 by induction on N .
22. Let

w = a1a2a3 · · ·
be an infinite squarefree word. Show that all the “shifts”of w (namely, the
words a1a2a3 · · · , a2a3a4 · · · , a3a4a5 · · · , etc.) are distinct.
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23. Call a word w uneven if every nonempty subword has the property that
at least one letter appears an odd number of times. For example, abac is
uneven.
(a) Show that if w is an uneven word over an alphabet with k letters,

then |w| < 2k .
(b) Prove that the bound in (a) is sharp, by exhibiting an uneven word

of length 2k − 1 over every alphabet of size k ≥ 1.
24. Let w = c0c1c2 · · · = 0010011010010110011 · · · be the infinite se-

quence defined by cn = the number of 0s (mod 2) in the binary expansion
of n. Prove or disprove that w is overlap-free.
Note: c0 = 0 because the binary expansion of 0 is understood to be ε,
the empty string.

25. In this exercise we explore some alternative constructions of c, the infinite
squarefree word introduced in Section 2.5.
(a) Let t0t1t2 . . . be the Thue–Morse word. Define bn = τ (tn, tn+1),

where

τ (0, 0) = 1;

τ (0, 1) = 2;

τ (1, 0) = 0;

τ (1, 1) = 1.

Show that c = b0b1b2 · · · .
(b) Let f be the morphism that maps 2→ 210, 1→ 20, and 0→ 1.

Show that f (c) = c.
(c) Let g be the morphism that maps a→ ab, b→ ca, c→ cd, d→

ac, and let h be the coding that maps a→ 2, b→ 1, c→ 0, d→ 1.
Show that c = h(gω(a)).

26. Is the Thue–Morse sequence mirror invariant, that is, if w is a finite
subword of t, need its reversal wR also be a subword of t?

∗27. An infinite string x is said to be recurrent if every subword that occurs
in x occurs infinitely often in x.
(a) Show that an infinite string is recurrent if and only if every subword

that occurs in x occurs at least twice.
(b) Show that if an infinite string is mirror invariant, then it is recur-

rent.
∗∗28. Let x, y, z,w be finite strings. Find necessary and sufficient conditions

for the following two equations to hold simultaneously: xy = zw and
yx = wz.
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29. Recall the definition of the Möbius function,

µ(n) =
{

0, if n is divisible by a square > 1;

(−1)j , if n = p1p2 · · ·pj , where the pi are distinct primes.
(2.3)

(Hopefully, there will be no confusion with the morphism µ defined in
Section 2.2.)

Show that there are
∑

d | n µ(d)kn/d distinct primitive strings of length
n over a k-letter alphabet. (Here

∑
d | n means that the sum is over the

positive integer divisors d of n.)
30. Give an example of an infinite periodic group.
31. Give an example of a group G where each element has finite order but the

group’s exponent is∞.
∗32. It was once conjectured that if A and B are finite sets with AB = BA,

then both A and B are a union of powers of some finite set E.
(a) Prove that this conjecture holds if |A| = 1 and |B| = 2.
(b) Prove that the conjecture does not hold in general.

33. Let w = a1a2a3 · · · be any infinite squarefree word over � = {0, 1, 2}.
Show that the infinite word a1a1a2a2a3a3 · · · contains no subword of the
form ycy for y ∈ �+ and c ∈ �.

34. Let v, x ∈ �+ and w ∈ �∗. Show that the following two conditions are
equivalent:
(a) There exist integers k, l ≥ 1 such that vkw = wxl .
(b) There exist r, s ∈ �∗ and integers m, n ≥ 1, p ≥ 0 such that v =

(rs)m, w = (rs)pr , and x = (sr)n.
35. Find all solutions in words x1, x2, x3 to the system of equations

x1x2x3 = x2x3x1 = x3x1x2.

36. Let � = {0, 1}. Let h : �∗ → �∗ be the morphism defined by h(0) = 0,
h(1) = 10, and let k : �∗ → �∗ be the morphism defined by k(0) = 0,
k(1) = 01. Prove that h(0w) = k(w0) for all finite words w.

37. Show that if x, y ∈ �∗ with xy �= yx, then xyxxy is primitive.
38. Show that for all words w ∈ {0, 1}∗, either w0 or w1 is primitive (or

both).
39. Consider the equation in words xXy = z2. Describe all solutions to this

equation. Hint: there are separate cases depending on whether |x|, |y| are
even or odd.
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40. Let x, y, z be strings. In the Lyndon–Scḧutzenberger theorems, we proved
a necessary and sufficient condition for xy = yx and xy = yz. Find similar
necessary and sufficient conditions for
(a) xy = yRx;
(b) xy = yRz.

2.8 Projects

1. Investigate ω-languages, that is, those languages that consist of infinite
words. Ordinary finite automata accept an ω-word if, according to one
criterion, the path labeled by the word passes through an accepting state
infinitely often. Start with the survey by Thomas [1991] and the book of
Perrin and Pin [2003].

2. Look into efficient algorithms for determining if a word has repetitions
of various kinds (overlaps, squares, cubes, etc.). Start with the papers of
Crochemore [1981] and Kfoury [1988].

3. Find out more about the Burnside problem mentioned in Section 2.6 and
how the Thue–Morseword 0110100110010110 · · · played a role in its
solution. Start with the book of Adian [1979] and the survey paper of Gupta
[1989].

2.9 Research problems

1. An abelian square is a word of the form xx′, |x| = |x ′| > 0, with x ′

a permutation of x. An example in English is reappear. Similarly, an
abelian cube is a word of the form xx′x ′′, |x| = |x ′| = |x ′′| > 0, with x ′

and x ′′ both permutations of x. An example in English is deeded.
(a) Does there exist an infinite word over a three-letter alphabet avoiding

abelian squares xx ′ with |x| = |x ′| ≥ 2?
(b) Does there exist an infinite word over a two-letter alphabet avoiding

abelian cubes xx′x ′′ with |x| = |x ′| = |x ′′| ≥ 2?
2. Find a simple characterization of the lexicographically least squarefree

word over a three-letter alphabet.

2.10 Notes on Chapter 2

Combinatorics on words is a vast subject that is becoming increasingly popular,
especially in Europe. For an introduction to this area, see Lothaire [1983, 2002].
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For the historical roots of combinatorics on words, see Berstel and Perrin
[2007].

2.1 The book of Perrin and Pin [2003] is a very good source of information
on infinite words.

2.2 Harju and Karhumäki [1997] is an excellent discussion of morphisms.
2.3 For Theorems 2.3.2 and 2.3.3, see Lyndon and Schützenberger [1962].

Theorems 2.3.5 is a new generalization of a classical theorem of Fine
and Wilf [1965].

Theorem 2.3.6 is a new generalization of Theorem 2.3.3.
Some of the material of this section was taken essentially verba-

tim from Allouche and Shallit [2003], with permission of Cambridge
University Press.

2.4 Theorem 2.4.2 is due to Shyr and Thierrin [1977].
Theorem 2.4.5 is from Lyndon and Schützenberger [1962]. Our proof

is based on Harju and Nowotka [2004].
2.5 Much of the material of this section was taken essentially verbatim from

Allouche and Shallit [2003], with permission of Cambridge University
Press.

The area of repetitions on words is a huge one, with many dozens
of papers; see Allouche and Shallit [2003] for an extensive annotated
bibliography. Thue [1906] and Thue [1912] are the earliest papers on the
subject. For an English translation of Thue’s work, see Berstel [1995].

2.6 For more on the strange and wonderful properties of the Thue–Morse
sequence, see the survey paper of Allouche and Shallit [1999].

For the Tarry–Escottproblem, see Wright [1959] and Borwein and
Ingalls [1994].

The infinite product (2.2) is due to Woods [1978]. The proof that it
equals

√
2/2 is due to Jean-Paul Allouche and is from Allouche and

Shallit [1999].
For the work of Max Euwe, see Euwe [1929] or the Web site

www.maxeuwe.nl. For the official rules of chess, see the FIDE Web
site,www.fide.com. For the Burnside problem, see Adian [1979].
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3

Finite automata and regular languages

The finite automaton is one of the simplest and most fundamental computing
models. You are almost certainly familiar with this model from your first course
in the theory of computing, but if not, you may want to review the material in
Sections 1.3–1.4.

In this chapter we reexamine the theory of finite automata from a more
advanced standpoint. In particular, we prove the very important Myhill–Nerode
theorem in Section 3.9.

We begin with some generalizations of the finite automaton model.

3.1 Moore and Mealy machines

In most introductory courses on automata theory, finite automata are viewed
as language recognizers, not as computers of functions. A deterministic finite
automaton (DFA), for example, takes a string as input and either accepts or
rejects it. Of course, we can view a DFA as computing a function f : �∗ →
{0, 1}, where 0 represents rejection and 1 acceptance, but there are other ways
to associate outputs with machines.

In this section, we introduce two simple models of finite-state machines
with output, called Moore and Mealy machines. A Moore machine has outputs
associated with its states, while a Mealy machine has outputs associated with
its transitions.

We can use transition diagrams to represent both Moore and Mealy ma-
chines. In a Moore machine, a state labeled q/b indicates that when state q is
entered, the output b is produced. In a Mealy machine, a transition labeled a/b

indicates that when this transition is taken on input symbol a, the output b is
produced. The output corresponding to a given input string is the concatenation
of all the outputs produced successively by the machine.

Let us consider some examples.

49
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q
20/0

q
1

0

1

01

1

q /1 /2
0

Figure 3.1: Example of a Moore machine

Example 3.1.1. Given n represented in base 2, the Moore machine in Figure 3.1
computes r mod 3 for all numbers r whose base-2 representation is a prefix of
that for n.

On input 101001, which is the base-2 representation of the number 41, we
successively enter states q0, q1, q2, q2, q1, q2, q2 and output 0122122.

We now consider examples of Mealy machines.

Example 3.1.2. The simplest nontrivial Mealy machine is illustrated in Fig-
ure 3.2. It takes an input w ∈ {0, 1}∗ and complements it, changing each 0 to 1

and each 1 to 0.

Example 3.1.3. Our next example is a little less trivial. The Mealy machine in
Figure 3.3 takes as input n expressed in base 2, starting with the least significant
digit. The output is n+ 1 in base 2. Note that if the input is all 1s, we must
also include a trailing 0 to get the correct output. This is necessary because
if n = 2k − 1, then the binary representation of n+ 1 is 1 bit longer than the
binary representation of n.

We now turn to formal definitions of Moore and Mealy machines. Both
machines are 6-tuples of the form M = (Q,�,�, δ, τ, q0), where � is the
nonempty output alphabet and τ is the output function. The difference is that in
a Moore machine we have τ : Q→ �, while in a Mealy machine τ : Q×�→
�.

On input x = a1a2 · · · an, a Moore machine M enters the states

q0, δ(q0, a1), δ(q0, a1a2), . . . , δ(q0, a1a2 · · · an)

q
0

0/1

1/0

Figure 3.2: Example of a Mealy machine computing the complementary string
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1/0

0/1

0/0
1/1

q
0 1

q

Figure 3.3: Example of a Mealy machine for incrementing in binary

and outputs

y = τ (q0) τ (δ(q0, a1)) τ (δ(q0, a1a2)) · · · τ (δ(q0, a1a2 · · · an)).

We write TM (x) = y. A Mealy machine M outputs

z = τ (q0, a1) τ (δ(q0, a1), a2) · · · τ (δ(q0, a1a2 · · · an−1), an).

We write UM (x) = z. Note that on an input of length n, a Moore machine
outputs a string of length n+ 1 and a Mealy machine outputs a string of length
n. This is because a Moore machine always provides an output associated with
the initial state. In some sense, this output is not meaningful because it does
not depend at all on the input.

Despite this difference, we can define a notion of equivalence for Moore and
Mealy machines: we say a Moore machine M is equivalent to a Mealy machine
M ′ if their input–outputbehavior is identical except that the first output of the
Moore machine is disregarded. More formally, we say M is equivalent to M ′

if, for all x ∈ �∗, we have TM (x) = TM (ε)UM ′(x).

Theorem 3.1.4. Let M = (Q,�,�, δ, τ, q0) be a Moore machine. Then there
exists an equivalent Mealy machine M ′ with the same number of states.

Proof Idea. The idea is to define the output function τ ′ of a simulating machine
so that its value depends on the output from the state that is reached after the
transition is made.

Proof. Formally, let M ′ = (Q,�,�, δ, τ ′, q0), where τ ′(q, b) = τ (δ(q, b)).
If the input to M is x = a1a2 · · · an, then M ′ outputs

τ ′(q0, a1) τ ′(δ(q0, a1), a2) τ ′(δ(q0, a1a2), a3) · · · τ ′(δ(q0, a1a2 · · · an−1), an).

But by our definition of τ ′, this is

τ (δ(q0, a1)) τ (δ(δ(q0, a1), a2)) · · · τ (δ(δ(q0, a1a2 · · · an−1), an))

= τ (δ(q0, a1))τ (δ(q0, a1a2)) · · · τ (δ(q0, a1a2 · · · an)).

It follows that TM (x) = TM (ε)UM ′(x).
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Theorem 3.1.5. Let M ′ = (Q′, �,�, δ′, τ ′, q ′0) be a Mealy machine. Then
there exists an equivalent Moore machine M with |Q′||�| states.

Proof Idea. The idea is to store in the state of the simulating Moore machine
M both the state of the original Mealy machine M ′ and the symbol that M ′

would have output in its immediately previous transition. Thus states of M are
chosen from Q′ ×�. (For the first state, there is no previous transition, so we
simply arbitrarily choose an element c from �.)

Proof. Formally, let M = (Q,�,�, δ, τ, q0), where

• Q = Q′ ×�;
• δ([q, b], a) = [δ′(q, a), τ ′(q, a)] for all q ∈ Q′, b ∈ �, a ∈ �;
• q0 = [q ′0, c] for some arbitrary fixed c ∈ �.
• τ ([q, b]) = b for all q ∈ Q′, b ∈ �.

Now on input x = a1a2 · · · an, M ′ enters the states

q ′0, δ
′(q ′0, a1), . . . , δ′(q ′0, a1a2 · · · an)

and outputs

τ ′(q ′0, a1)τ ′(δ′(q ′0, a1), a2) · · · τ ′(δ′(q ′0, a1 · · · an−1), an).

On the other hand, M enters the states

[q ′0, c], [δ′(q ′0, a1), τ ′(q ′0, a1)], [δ′(q ′0, a1a2), τ ′(δ′(q ′0, a1), a2)], . . . ,

[δ′(q ′0, a1 · · · an), τ ′(δ′(q ′0, a1 · · · an−1), an)]

and outputs

cτ ′(q ′0, a1)τ ′(δ′(q ′0, a1), a2) · · · τ ′(δ′(q ′0, a1 · · · an−1), an).

It follows that TM (x) = cUM ′ (x).

In Section 3.5 we consider a generalization of Mealy machines, the finite-
state transducer.

3.2 Quotients

In this section we introduce a new operation on languages, the quotient. Let
L1, L2 ⊆ �∗. We define

L1/L2 = {x ∈ �∗ : there exists y ∈ L2 such that xy ∈ L1}.
Quotient is a kind of inverse to concatenation (but see Exercise 2).
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Example 3.2.1. Let L1 = a+bc+, L2 = bc+, and L3 = c+. Then L1/L2 = a+

and L1/L3 = a+bc∗.

Example 3.2.2. Let L = {an2
: n ≥ 0}. Then L/L = a(aa)∗ + (aaaa)∗. For

we have

L/L = {x : there exists y ∈ L such that xy ∈ L}
= {at : ∃ m, n with t +m2 = n2}
= {an2−m2

: 0 ≤ m ≤ n}.
I now claim that t can be written in the form n2 −m2 for some 0 ≤ m ≤ n iff t is
of the form 2k + 1 or 4k for some k ≥ 0. For if t = n2 −m2, then both n and m

are of either the same parity, or different parity. If they are the same parity, then
t = (2n′)2 − (2m′)2 ≡ 0 (mod 4) or t = (2n′ + 1)2 − (2m′ + 1)2 ≡ 0 (mod 4).
If n and m are of different parity, then t = (2n′)2 − (2m′ + 1)2 ≡ 1 (mod 2) or
t = (2n′ + 1)2 − (2m′)2 ≡ 1 (mod 2).

On the other hand, if t = 2k + 1, then we can choose n = k + 1, m = k to
get t = n2 −m2. If t = 0, then we choose n = 0, k = 0. Otherwise, if t = 4k

with k ≥ 1, we choose n = k + 1, m = k − 1, so n2 −m2 = t .

Theorem 3.2.3. Let L,R ⊆ �∗ and suppose R is regular. Then R/L is regular.

Proof Idea. Let R,L ⊆ �∗ and let M = (Q,�, δ, q0, F ) be a DFA accepting
R. Our goal is to create a machine M ′ accepting R/L. On input x, the machine
M ′ must somehow determine if there exists a y such that if M were to process
the symbols of y starting in the state δ(q0, x), it would arrive in a final state.

Proof. Let M ′ = (Q,�, δ, q0, F
′), where

F ′ = {q ∈ Q : there exists y ∈ L such that δ(q, y) ∈ F }.
Notice that M ′ is exactly the same as M , except that we have changed the set
of final states. Now we have

x ∈ L(M ′)⇐⇒ δ(q0, x) ∈ F ′

⇐⇒ δ(q0, x) = q and there exists y ∈ L such that δ(q, y) ∈ F

⇐⇒ there exists y ∈ L such that δ(q0, xy) ∈ F

⇐⇒ there exists y ∈ L such that xy ∈ R

⇐⇒ x ∈ R/L.

Note that Theorem 3.2.3 is not constructive in the sense that no algorithm
is provided to compute F ′. In fact, no such algorithm is possible in general,



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

54 3 Finite automata and regular languages

since L is arbitrary, and could be nonrecursive. You should not let this bother
you—much of mathematics is nonconstructive.

Under certain circumstances, M ′ becomes effectively constructible. For
example, if L itself is specified by giving a DFA accepting it, then there is an
easy algorithm for computing F ′ (see Exercise 36).

Now let us look at two applications of the quotient operation.

Example 3.2.4. We consider the effect of removing “trailing zeros” from
words in a language. Let � be an alphabet containing the symbol 0, and let
L ⊆ �∗.

By removing trailing zeros from words of L, we mean the language

rtz(L) = {x ∈ �∗(� − {0}) ∪ {ε} : there exists i ≥ 0 with x0i ∈ L}.
If L is regular, must rtz(L) necessarily be regular?

With quotient we can easily solve this problem. We claim that

rtz(L) = (L/0∗) ∩ (�∗(� − {0}) ∪ {ε}).
Hence if L is regular, so is rtz(L).

Similarly, we can remove leading zeros with

rlz(L) = rtz(LR)R.

Example 3.2.5. Recall the definition of the prefix language from Section 1.2:

Pref(L) = {x ∈ �∗ : there exists y ∈ L such that x is a prefix of y}.
If L is regular, need Pref(L) be regular? Noting that Pref(L) = L/�∗, the
answer is yes.

3.3 Morphisms and substitutions

In this section we study two very useful transformations on languages, namely
morphisms and substitutions.

Recall from Section 2.2 that a homomorphism, or just morphism for short,
is a map that sends a letter to a string and is then extended to arbitrary strings
by concatenation. Alternatively, we say that h : �∗ → �∗ is a morphism if
h(xy) = h(x)h(y) for all x, y ∈ �∗. Note that h(xε) = h(x)h(ε), and so it
follows that h(ε) = ε.

A morphism is then extended to a language L as follows: h(L) :=⋃
x∈L{h(x)}.
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Theorem 3.3.1. For all languages L,L1, L2 ⊆ �∗ and morphisms h : �∗ →
�∗, we have

(a) h(L1L2) = h(L1)h(L2);
(b) h(L1 ∪ L2) = h(L1) ∪ h(L2);
(c) h(L∗) = h(L)∗.

Proof. We omit the proof as a more general result is proved in Theorem 3.3.5
later.

Example 3.3.2. Define h(0) = a and h(1) = ba. Then we have h(010) = abaa

and h(0∗1) = a∗ba.

Common Error 3.3.3. Students sometimes try to define “morphisms”as fol-
lows: h(aa) = ab. This is not a morphism, because for whatever choice of h(a)
we make, the identity h(aa) = h(a)h(a) fails.

A substitution is a map s : �∗ → 2�∗ that sends each letter a ∈ � to a
language La and obeys the rules s(ε) = {ε}, and s(xy) = s(x)s(y) for all x, y ∈
�∗. We extend s to languages as we did for morphisms: s(L) :=⋃

x∈L s(x).

Example 3.3.4. Define s(0) = {a, ab}∗ and s(1) = (cd)∗. Then s(101) =
(cd)∗(a+ ab)∗(cd)∗.

The previous example is an example of substitution by regular languages,
since each letter is mapped to a regular language.

Although, strictly speaking, a morphism is not a substitution (since a mor-
phism is word-valued, whereas a substitution is language-valued), we may
identify the word w with the language {w}. Thus if we prove that the class of
regular languages is closed under substitution by regular languages, we will
also have proved that this class is closed under morphism.

Theorem 3.3.5. The class of regular languages is closed under substitution by
regular languages.

Proof. Let s be a substitution. We first prove that, for languages L1, L2, L,
we have

(a) s(L1 ∪ L2) = s(L1) ∪ s(L2);
(b) s(L1L2) = s(L1)s(L2);
(c) s(L∗) = s(L)∗.
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For (a), we prove more generally that for any index set I, finite or infinite,
we have s(

⋃
i∈I Li) =

⋃
i∈I s(Li). We have

s

(⋃
i∈I

Li

)
=

⋃
x∈⋃i∈I Li

s(x)

=
⋃
i∈I

⋃
x∈Li

s(x)

=
⋃
i∈I

s(Li).

For (b), we have

s(L1L2) = s({xy : x ∈ L1, y ∈ L2})
=

⋃
x∈L1, y∈L2

s(xy)

=
⋃

x∈L1, y∈L2

s(x)s(y)

=
( ⋃

x∈L1

s(x)

) 
 ⋃

y∈L2

s(y)




= s(L1)s(L2).

For (c), we first show by induction on n that s(Ln) = s(L)n. For n = 0, this
follows since L0 = {ε}. Now assume that the result is true for n < N ; we prove
it for n = N . We then have

s(LN ) = s(LN−1L) = s(LN−1)s(L)

by part (b). By induction s(LN−1) = s(L)N−1. Then s(LN ) = s(L)N−1s(L) =
s(L)N , as was to be shown.

Now we have

s(L∗) = s

(⋃
i≥0

Li

)
=

⋃
i≥0

s(Li) =
⋃
i≥0

s(L)i = s(L)∗.

This completes the proof of part (c).
Now we can complete the proof of the theorem. If L ⊆ �∗ is regular, then

it can be represented as a regular expression r . We prove by induction on n, the
number of operators in r , that s(L) is regular. (Here we count all occurrences
of +, ∗, and implicit occurrences of concatenation.)

If r has no operators, then L equals either {a} for some a ∈ �, or {ε}, or ∅.
It is easy to see that s(L) is regular in each of these cases.
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Now assume the result is true for all n < N ; we prove it for n = N . Assume
r has N operators. Then L can be written as L1L2, or L1 ∪ L2, or L∗1, where
L1, L2 are regular languages that can be represented by regular expressions
with≤N − 1 operators. Then s(L1 ∪ L2) = s(L1) ∪ s(L2) by part (a), which
proves regularity by induction. Similarly, s(L1L2) = s(L1)s(L2) by part (b),
which is regular by induction. Finally, s(L∗1) = s(L1)∗ by part (c), which is
regular by induction.

Example 3.3.6. Suppose L ⊆ {a, b}∗ is a regular language. Let us show that
the language formed by inserting the letter c in all possible ways into strings of
L is still regular. Define the substitution s(a) = c∗ac∗ and s(b) = c∗bc∗. Then
if L does not contain ε, then s(L) is the desired language, while if L contains
ε, then s(L)∪ c∗ is the desired language. In both cases the result is regular.

We now turn to a new type of transformation of languages, the inverse
morphism. If h : �∗ → �∗ is a morphism, and L ⊆ �∗, then we define

h−1(L) = {x ∈ �∗ : h(x) ∈ L}.
The map h−1 can be viewed as a sort of inverse of h (see Exercise 6).

Example 3.3.7. In the previous example, we inserted the letter c in all possi-
ble ways into strings of L. We can accomplish the same result using inverse
morphisms. Define h(a) = a, h(b) = b, and h(c) = ε. Then h−1(L) achieves
our goal. For example, h−1({aba}) = c∗ac∗bc∗ac∗.

Example 3.3.8. More generally, we can use inverse morphism to give a formal
definition of a new operation on languages, the shuffle. The shuffle of two words
x and w (not necessarily of the same length) consists of all words obtained by
interleaving the letters as in shuffling a deck of cards. (Note this is not the same
as the perfect shuffle defined in Section 1.2.) For example, shuff(ab, cd) =
{abcd, acbd, acdb, cabd, cadb, cdab}. The shuffle of two languages L1, and
L2 is defined to be

shuff(L1, L2) =
⋃

x∈L1, y∈L2

shuff(x, y).

We can define the operation shuff in terms of morphisms and inverse mor-
phisms, as follows. Suppose L1, L2 ⊆ �∗ for some alphabet �. For each letter
a ∈ �, construct a new letter a′ and let �′ = {a′ : a ∈ �}. Define morphisms
h by h(a) = h(a′) = a for each a ∈ �; h1(a) = a and h1(a′) = ε for each
a ∈ �; and h2(a) = ε and h2(a′) = a for each a ∈ �. Then we have

shuff(L1, L2) = h(h−1
1 (L1) ∩ h−1

2 (L2)).
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We now prove that the class of regular languages is closed under inverse
morphism.

Theorem 3.3.9. If L ⊆ �∗ is regular, and h : �∗ → �∗ is a morphism, then
h−1(L) is regular.

Proof Idea. Consider trying to build a DFA M ′ for h−1(L), based on the DFA
M for L. What must M ′ do? On input x, M ′ must compute h(x) and determine
if it is in L, accepting x if and only if M accepts h(x). The easiest way to do
that is to “rewire”the DFA M ′ so that on input x, M ′ simulates M on h(x).

Think of it this way: L is a language of French words, and h is a map that
takes an English word to its French translation. How can we accept h−1(L)?
On input an English word, we apply h to get the equivalent French word, and
then see if the result is in L.

Proof. Let M = (Q,�, δ, q0, F ) be a DFA accepting L. We create a DFA
M ′ = (Q′, �, δ′, q ′0, F

′), accepting h−1(L). We define

• Q′ := Q;
• δ′(q, a) := δ(q, h(a));
• q ′0 := q0;
• F ′ := F .

We now prove by induction on |x| that δ′(q, x) = δ(q, h(x)). The base case
is |x| = 0; that is, x = ε. Then δ′(q, x) = q = δ(q, h(x)).

Otherwise, assume the result is true for all x with |x| < n; we prove
it for |x| = n. Let x = ya, where a ∈ �. Then δ(q, h(x)) = δ(q, h(ya)) =
δ(δ(q, h(y)), h(a)) = δ(δ′(q, y), h(a)) = δ′(δ′(q, y), a) = δ′(q, ya)=δ′(q, x),
as desired.

It now follows that δ′(q ′0, x) ∈ F ′ if and only if δ(q0, h(x)) ∈ F ; in other
words, x ∈ L(M ′) if and only if h(x) ∈ L(M). Thus, L(M ′) = h−1(L(M)).

3.4 Advanced closure properties of regular languages

In this section we introduce two new operations on regular languages and
show that the class of regular languages is closed under them. In both cases,
nondeterminism plays an essential role in the proofs.

We start with 1
2L. If L ⊆ �∗, we define

1

2
L = {x ∈ �∗ : there exists y ∈ �∗ with |y| = |x| such that xy ∈ L}.

Thus, 1
2L consists of the first halves of even-length strings of L.

Theorem 3.4.1. If L is regular, then so is 1
2L.
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Proof Idea. There are a number of different ways to approach the solution.
Here is one. On input x, if we knew what state q we would be in after reading all
the symbols of x, we could simply step forward in tandem from q and q0. (From
q, of course, we would have to move forward in all possible ways, because the
only thing we demand about y is that |x| = |y|.) Then we would accept if we
got from q0 to q on x and from q to a state of F on the guessed symbols of y.
Of course, we do not know q, but using nondeterminism we can guess it and
check. The “thereexists”in the definition of 1

2L is a hint that nondeterminism
will be useful.

This suggests starting with a DFA M = (Q,�, δ, q0, F ) for L and con-
verting it into a nondeterministic finite automaton with ε-transitions (NFA-ε)
M ′ = (Q′, �, δ′, q ′0, F

′) for 1
2L. In M ′, states will be triples; the first element

records the guessed state q and does not change once it is initially recorded,
the second element records what state we are in after having processed some
prefix of the input x, starting from state q0, and the third element records what
state we are in after having processed some prefix of the guessed y, starting
from q.

Proof. Formally, we define Q′ = {q ′0} ∪ Q×Q×Q and F ′ = {[q, q, p] :
p ∈ F }. We also define

δ′(q ′0, ε) = {[q, q0, q] : q ∈ Q};
δ′([q, p, r], a) = {[q, δ(p, a), δ(r, b)] : b ∈ �}.

An easy induction on |x| now shows that [q, p, r] ∈ δ′(q ′0, x) if and only if
there exists y ∈ �∗, |x| = |y|, such that δ(q0, x) = p and δ(q, y) = r . Thus,

δ′(q ′0, x) ∩ F ′ �= ∅
�

∃y ∈ �∗, |x| = |y|, with δ(q0, x) = q, δ(q, y) ∈ F

�
∃y ∈ �∗, |x| = |y|, with δ(q0, xy) ∈ F

�
∃y ∈ �∗, |x| = |y|, with xy ∈ L.

It follows that L(M ′) = 1
2L.

There is a different approach to the preceding proof. Instead of guessing
q and moving forward from it, we could guess the appropriate final state and
move backwards. This approach is left as Exercise 38.

Now, let us turn to another operation on formal languages, the cycle operation
cyc. Roughly speaking, cyc sends every string to the set of all its cyclic shifts,
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q q
f

q
0

x x 

In M

qq
x x ε

q
0
′ ε

q
f

q
0In M ′

Figure 3.4: An NFA-ε for cyc(L)

or conjugates, as defined in Section 2.4. For a language L, we define

cyc(L) := {x1x2 : x2x1 ∈ L}.
Example 3.4.2. Suppose L = 0∗1∗. Then cyc(L) = 0∗1∗0∗ + 1∗0∗1∗.

It turns out that the class of regular languages is closed under the cyc
operation, as the following theorem shows.

Theorem 3.4.3. If L is regular, then so is cyc(L).

Proof Idea. Let M = (Q,�, δ, q0, F ) be a DFA accepting L. We construct
an NFA-ε M ′ that accepts cyc(L). The idea is to “guess”the state the DFA M

would be in after reading all the symbols of x2, then process the symbols x1,
verify that a final state has been reached, and then continue with the symbols
of x2, returning to the first state. This is illustrated by Figure 3.4.

Figure 3.4 is a little misleading, because we will actually need the states of
our machine for cyc(L) to be triples: if [p, q, a] ∈ Q′, then

• p records the current state in the simulation of M;
• q records the “guessed”initial state; and
• a records whether or not a final state has been reached.

Proof. More formally, let M ′ = (Q′, �, δ′, q ′0, F
′), where

Q′ = {q ′0} ∪ Q×Q× {y, n}.
The transition function δ′ is defined as follows:

δ′(q ′0, ε) = {[q, q, n] : q ∈ Q} (get started)

δ′([p, q, n], a) = {[δ(p, a), q, n]} (simulate moves of M)

δ′([p, q, n], ε) = {[q0, q, y]} for all p ∈ F

(allow transition to y if final state is encountered)

δ′([p, q, y], a) = {[δ(p, a), q, y]} (simulate moves of M).
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q0

ε εx x
 

] q,q,n[ ]p,q,n[ q,q,y[ ]]q  ,q,y0[′

Figure 3.5: An acceptance path for x2x1

Finally, we define F ′ = {[q, q, y] : q ∈ Q}. We now claim that L(M ′) =
cyc(L).

First we show cyc(L) ⊆ L(M ′). Suppose x2x1 ∈ L. Then x2x1 is accepted
by M . Then, as in Figure 3.4, M starts in state q0, reads the symbols of x2 until
it reaches a state q, and then reads the symbols of x1 until it reaches a final state
qf ∈ F . In other words,

δ(q0, x2) = q;

δ(q, x1) = qf ∈ F.

How does M ′ behave on input x1x2? First, it starts in state q ′0. Then there is an
ε-transition to the state [q, q, n]. Then M ′ simulates M on input x1, eventually
reaching [qf , q, n]. Since qf ∈ F , there is an ε-transition to [q0, q, y]. Now
M ′ simulates M on input x2, eventually reaching [q, q, y] at which point M ′

accepts x1x2.
Next we show L(M ′) ⊆ cyc(L). If x ∈ L(M ′), then there must be a path

from q ′0 to [q, q, y] labeled with x. From q ′0, the machine M ′ must enter a
state of the form [q, q, n] on an ε-transition. Since x is accepted, the path
must look like as shown in Figure 3.5 for some x1, x2 with x = x2x1. Hence,
δ(q, x2) = p for some p ∈ F and δ(q0, x1) = q. It follows that δ(q0, x1x2) ∈ F .
Hence, x1x2 ∈ L. It follows that x2x1 ∈ cyc(L), as desired.

3.5 Transducers

In Section 3.1, we studied the Mealy machine, which transformed inputs into
outputs. We now study a useful generalization of this idea, called the finite-state
transducer, or just transducer for short.

A finite-state transducer is similar to a Mealy machine, but differs in the
following ways:

• It is nondeterministic,
• It has final states,
• Transitions are labeled with x/y, where x, y are strings, not necessarily just

single symbols. Here x is an input string, and y is an output string.
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q2

q1q0

1/1
0/01/0

0/1

ε/1

Figure 3.6: Transducer for incrementing in binary

Example 3.5.1. Recall Example 3.1.3, where we constructed a Mealy ma-
chine to compute the base-2 representation of n+ 1, given the base-2 repre-
sentation of n, starting with the least significant digit. That example was not
completely satisfactory, because it did not behave properly if the input was of
the form 11 · · · 1. With the transducer in Figure 3.6, however, we can correct this
problem.

Example 3.5.2. Recall Example 3.2.4, where we showed how to remove lead-
ing zeros using a rather complicated expression involving quotient, intersection,
and reversal. With the transducer in Figure 3.7, however, we can easily solve
this problem (over the alphabet {0, 1}).

Now let us give the formal definition of a transducer. A finite-state transducer
is a 6-tuple T = (Q,�,�, S, q0, F ), where Q is a finite nonempty set of states,
� is the input alphabet, � is the output alphabet, q0 is the start state, and F is the
set of final states. The transition set S is a finite subset of Q×�∗ ×�∗ ×Q.
The intent is that if (p, x, y, q) ∈ S, then if T is in state p, and reads the
string x, it has the option of entering state q and outputting y. An accepting
computation of T is a list of elements of S of the form

(p0, x0, y0, p1), (p1, x1, y1, p2), . . . , (pi, xi, yi, pi+1),

where p0 = q0 and pi+1 ∈ F . In that case, the transducer maps the input string
x = x0x1 · · · xi to y = y0y1 · · · yi , and we write x →T y. By convention, there
is always an implicit transition of the form (p, ε, ε, p) for every state p. The

q1

1/1
q0

0/ε

1/1
0/0

Figure 3.7: Transducer for removing leading zeros
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set of all pairs {(x, y) : x →T y} is called the rational relation computed
by T .

Now we define how a transducer acts on a string x and a language L. We
define

T (x) = {y ∈ �∗ : x →T y},
and

T (L) =
⋃
x∈L

T (x).

As we have seen, a transducer T = (Q,�,�, q0, F, S) can be viewed as
computing a transduction, that is, a function from 2�∗ to 2�∗ . The follow-
ing theorem, sometimes called Nivat’s theorem, precisely characterizes those
functions.

Theorem 3.5.3 (Nivat). Suppose f is a map from 2�∗ to 2�∗ . Then f is com-
puted by a transducer T = (Q,�,�, q0, F, S) iff there exist a finite alphabet
�, a regular language R ⊆ �∗, and morphisms g : �∗ → �∗ and h : �∗ → �∗

such that f (z) = g(h−1(z)∩R) for all z ∈ �∗.

Proof Idea. The basic idea is to replace each transition in T with a new symbol.
We then mimic the reading of an input z by performing an inverse morphism
(to factorize z into elements of �) and intersecting with a regular language R

(to enforce the condition that the factorization correspond with a path through
T ). Finally, we get the output by applying another morphism. For the other
direction, we just reverse this construction.

Proof. Suppose f is computed by the transducer T . Let � be a new alphabet
with a letter ax,y for each transition labeled x/y in S. Now define R to be the
language accepted by the NFA M = (Q,�, δ, q0, F ), where each transition in
T , (p, x, y, q) ∈ S, is replaced with δ(p, ax,y) = q in M . Finally, define the
morphisms g, h by g(ax,y) = y and h(ax,y) = x. We claim that for all z ∈ �,
we have T (z) = g(h−1(z)∩R).

To see this, let w ∈ T (z). Then we can factor z = z0z1 · · · zi , w =
w0w1 · · ·wi , such that there is an accepting computation of T of the form
(p0, z0, w0, p1), (p1, z1, w1, p2), . . . , (pi, zi, wi, pi+1) with pi+1 ∈ F . Then
h−1(z) and R both contain the string az0,w0 · · · azi ,wi

, so g(h−1(z)∩R) con-
tains w. The other direction is similar.

For the other direction, we are given g, h, and R. Since R is regular, there
is a DFA M = (Q,�, δ, q0, F ) accepting R. Now create a transducer T =
(Q,�,�, q0, F, S), where S = {(p, h(a), g(a), q) : δ(p, a) = q}. We claim
that T (z) = g(h−1(z)∩R). The details are left to the reader.
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Example 3.5.4. Consider the transducer depicted in Figure 3.7 that removes
leading zeroes. Define the new symbols b1, b2, b3 as follows:

b1 = a0,ε

b2 = a0,0

b3 = a1,1.

Then in the proof of Theorem 3.5.3 we get R = b∗1 ∪ b∗1b3{b2, b3}∗. Now define
the morphisms g, h by

g(b1) = ε h(b1) = 0

g(b2) = 0 h(b2) = 0

g(b3) = 1 h(b3) = 1.

Thus, to remove leading zeros from strings in a language L, we can use the
expression

g(h−1(L)∩ (b∗1 ∪ b∗1b3{b2, b3}∗)).
Corollary 3.5.5. If L is regular, and T is a transducer, then T (L) is regular.

Proof. We know that regular languages are closed under intersection, mor-
phism, and inverse morphism.

For the last result of this section, we prove that the composition of two
transductions is still a transduction.

Theorem 3.5.6. Suppose f : 2�∗ → 2�∗ and g : 2�∗ → 2�∗ are two transduc-
tions. Then so is f ◦ g.

Proof. First we observe that any transducer can be rewritten in a so-called
normal form, where every transition is of the form x/y with |x|, |y| ≤ 1. To see

c/c′

a/a b/b
c/c

q0

p1

T2

T1
b/ba/c

a/a′ b/b′

q1

a/a

p0

b/b

ε

Figure 3.8: Transducers T1 and T2 to be composed
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p1p2p0

b/b

b/ε

a/a
a/cb/εT ′

1

Figure 3.9: The normal form T ′1 for transducer T1

this, simply add extra states so that each transition inputs and outputs at most
one letter. Do this for both transducers and then employ the usual cross-product
construction for automata. If the first transducer has a transition labeled x/y,
and the second has a transition labeled y/z, the new transducer has a transition
labeled x/z. (Note we must take into account the implicit transitions labeled
ε/ε from each state to itself.)

Example 3.5.7. Consider Figure 3.8, where two transducers T1 and T2 are
illustrated. Since T1 is not in the normal form, we convert it to a transducer T ′1
in Figure 3.9. Then the cross-product construction gives the transducer T for
the composition of T ′1 and T2 in Figure 3.10.

3.6 Two-way finite automata

As is proved in nearly every first course on the theory of computation, the three
computing models

• deterministic finite automata (DFA)
• nondeterministic finite automata (NFA)
• nondeterministic finite automata with ε-transitions (NFA-ε)

[p0, q0]

[p2, q0]

[p0, q1]

[p2, q1]

b/ε

T

b/b

[p1, q0] [p1, q1]

b/b′ b/ε

a/c′

a/ab/

a/a′

b/

a/c

ε

ε

Figure 3.10: The transducer T for the composition T ′1 ◦ T2
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have equal computing power in the sense that they accept exactly the same
class of languages: the regular languages. Another way to say this is that the
class of regular languages is robust, by which we mean that small changes to
the model (such as adding nondeterminism, or ε-transitions, etc.) do not affect
the class of languages accepted.

In this section, we consider yet another variation on the computing model
of the finite automaton: we give the automaton the extra capability of moving
both left and right on its input tape. We call this new model a two-way finite
automaton, or 2DFA for short. As we will see, this extra power does not enlarge
the class of languages accepted.

A transition in a 2DFA is of the form δ(q, a) = (p,D), where D ∈ {L, R}.
The meaning is that if the 2DFA is currently in state q scanning the symbol a,
then it first changes to state p and then moves in direction D.

Recall that a DFA is said to accept an input string x if it is in a final state
after processing the symbols of x. Similarly, we say a 2DFA accepts x if it
eventually walks off the right edge of the tape while in a final state. However,
a 2DFA can exhibit more complex behavior than a DFA, because its ability to
move left and right means that it could

• walk off the left edge of the tape, which causes a crash; or
• enter an infinite loop (e.g., a nonterminating computation where the 2DFA

never walks off either edge of the tape).

Formally, a 2DFA is a 5-tuple (Q,�, δ, q0, F ). Each of these components
is exactly the same as for a DFA, with the exception of δ, which now maps
Q×�→ Q× {L, R}. Here, L and R are codes that refer to a left and right
move, respectively.

As in the case of a DFA, we can represent a 2DFA by a transition diagram.
For example, consider a 2DFA

M = ({q0, q1}, {0, 1}, δ, q0, {q1}),

where δ is given as follows:

δ 0 1

q0 (q0, R) (q1, R)
q1 (q1, L) (q0, L)

This 2DFA can be represented by a transition diagram as shown in Fig-
ure 3.11.
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0,R 1,R
0,L

1,L
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Figure 3.11: Example of a 2DFA

It is not hard to see that this 2DFA accepts the regular language 0∗1. You
should verify that the following behaviors occur:

Input Behavior
000 Walks off right edge in nonfinal state
001 Walks off right edge in final state
100 Walks off left edge
111 Enters an infinite loop

We now provide a way to record the current configuration of a 2DFA.
A configuration describes the input string, the current state, and the current
symbol being scanned. Formally, a configuration is an element of �∗Q�∗. The
meaning of the configuration wqx is that the input to the 2DFA is wx and the
machine is currently in state q and is scanning the first symbol of x (or has
fallen off the right edge of the tape if x = ε). (Using this convention, there is
no way to represent having walked off the left edge of the tape.)

Now it is possible to formally define the moves of a 2DFA. If the current
configuration is wqax and there is a move δ(q, a) = (p, R), then the next
configuration is wapx. We write wqax � wapx. If the current configuration
is waqbx and there is a move δ(q, b) = (p, L), then the next configuration is
wpabx. We write waqbx � wpabx. If the current configuration is qbx and
there is a move δ(q, b) = (p, L), then the machine falls off the left edge of the
tape and crashes.

For example, for the 2DFA in Figure 3.11, we have

q0111 � 1q111 � q0111 � 1q111 � · · ·
and

q0001 � 0q001 � 00q01 � 001q1.

We write
∗� for the reflexive, transitive closure of �. In other words, if

c
∗� c′, then there exists a sequence of configurations c1, c2, . . . , cr , r ≥ 1, such

that

c = c1 � c2 � c3 � · · · � cr = c′.
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1 2 ... s-1 s

q

q ′

Figure 3.12: Path of a 2DFA

Finally, we are ready to give a formal definition of acceptance. We say a
string w is accepted by a 2DFA M = (Q,�, δ, q0, F ) if q0w

∗� wp for some
p ∈ F . We define L(M), the language accepted by the 2DFA M , as follows:

L(M) = {w ∈ �∗ : q0w
∗� wp for some p ∈ F }.

We now prove that the class of languages accepted by 2DFAs is exactly the
regular languages. In other words, there is no gain in the ultimate computing
power if we allow the tape head to move both right and left (but see Exercise 22).

The idea behind the proof is a simulation. Clearly, a 2DFA can simulate an
ordinary DFA. Indeed, an ordinary DFA is a 2DFA in which every move is to
the right. The other direction, the simulation of a 2DFA by a DFA, is more
complicated.

Theorem 3.6.1. We can simulate the computations of a 2DFA with a DFA.

Proof Idea. The idea behind the simulation is to keep track of the possible
behaviors of the 2DFA when it moves left from the current position. If the tape
head is currently scanning cell number s of the input, the only way cells 1, 2, . . .,
s − 1 can affect the computation is if the tape head moves left, moves around
a bit, and exits back through cell s, having changed state. This is illustrated by
Figure 3.12.

We can therefore simulate the 2DFA if we keep track of a table, which tells
us for each state q ∈ Q in what state we will eventually exit to the right. We also
need to know whether the input we have seen so far is potentially acceptable.

We build these tables, one for each possible nonempty input w, as follows:
the table τw is a map Q ∪ {q} → Q ∪ {0}. Here, q and 0 are two new symbols
assumed not to be in Q. If q ∈ Q, then τw(q) := q ′ if M , when started in state q

with w on the tape, scanning the rightmost symbol of w, ultimately falls off the
right edge of the tape in state q ′, and 0 otherwise. We also define τw(q) := q ′

if M , when started in state q0 with w on the tape, scanning the leftmost symbol
of w, ultimately falls off the right edge of the tape in state q ′, and 0 otherwise.
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There are only finitely many distinct tables, so the automaton we create has
finitely many states.

Proof. Define

τw(q) :=
{

q ′, if w = w′a, a ∈ �, and w′qa
∗� w′aq ′;

0, otherwise.

τw(q) :=
{

q ′, if w ∈ �+ and q0w
∗� wq ′;

0, otherwise.

We now prove the fundamental.

Lemma 3.6.2. If w, x are nonempty strings, a ∈ �, and τw = τx , then τwa =
τxa .

Proof. Consider the behavior of the machine started in state q with tape
contents wa and xa, reading the rightmost symbol of each. The movement of
the machine depends only on δ(q, a), and so if we move right in either case,
we move right in both. If we move left, and enter state p, we encounter the last
symbol of w and x. Since τw = τx , we know when we reemerge, exiting to the
right, the machine will be in the same state whether w or x was on the tape. If
we do not reemerge, this must be due to falling off the left edge of the tape or
entering an infinite loop, and τw(p) = τx(p) = 0. Then τwa(p) = τxa(p) = 0.
Thus, τwa(q) = τxa(q) for all q ∈ Q.

It remains to consider q. If τw(q) = τx(q) = q ′ �= 0, then on processing
either w or x we eventually fall off the right edge of the tape in state q ′. If in
fact there is an a after either w or x, then if we move right on input a we will fall
off the edge of the tape in the same state. If we move left then by the preceding
argument we will have the same behavior for both inputs. If τw(q) = τx(q) = 0,
then we either fall off the left edge of the tape or enter an infinite loop, and this
behavior is the same for wa and xa.

Now we build a simulating DFA for a 2DFA M = (Q,�, δ, q0, F ), where
δ : Q×�→ Q× {L,R}. Define M ′ := (Q′, �, δ′, q ′0, F

′), where

Q′ := {q ′0} ∪ {τw : w ∈ �+};
δ′(q ′0, a) := τa for each a ∈ �;

δ′(τw, a) := τwa for w ∈ �+, a ∈ �;

F ′ := {τw : τw(q) ∈ F } ∪ {q ′0 : q0 ∈ F }.
By the lemma, our definition δ′(τw, a) = τwa is consistent. An easy induction
now gives δ′(q ′0, w) = τw for all w ∈ �+.
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Now w ∈ L(M) if and only if there exists a state p ∈ F such that q0w
∗� wp,

if and only if τw(q) ∈ F , iff δ′(q ′0, w) = τw and τw ∈ F ′. It follows that w ∈
L(M) if and only if w ∈ L(M ′).

Remark. It may be worth noting that τw can be effectively computed. Simply
simulate M starting in the various states on the last symbol of w. Within |w||Q|
moves, one either falls off the left or right edge of the tape, or repeats a pair of
the form (state, input position), and so M is in an infinite loop.

Remark. If M has n states, then M ′ has ≤ (n+ 1)n+1 + 1 states.

Let us look at an example of Theorem 3.6.1. Apply the construction to the
2DFA in Figure 3.11. We find

w τw(q0) τw(q1) τw(q) State name
0 q0 0 q0 B

1 q1 0 q1 C

00 q0 0 q0 B

01 q1 q1 q1 D

10 q0 0 0 E

11 q1 0 0 F

010 q0 0 0 E

011 q1 0 0 F

100 q0 0 0 E

101 q1 q1 0 G

110 q0 0 0 E

111 q1 0 0 F

1010 q0 0 0 E

1011 q1 0 0 F

which corresponds to the DFA shown in Figure 3.13, where A = q ′0:
Sometimes 2DFAs are useful for showing that certain languages are regular.

For example, define the following operation on languages:

root(L) := {w ∈ �∗ : ∃ n ≥ 1 such that wn ∈ L}.
Theorem 3.6.3. If L is regular, then so is root(L).

Proof. We build a 2DFA M ′ accepting L′ := B root(L) E, where B, E are
new symbols not in the alphabet of L. The symbols B and E are delimiters
representing the beginning and end, respectively, of the input.

On input B w E, the 2DFA scans the input from left to right, simulating the
DFA M for L. If a final state of M is reached on reading the endmarker E, we
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Figure 3.13: An equivalent DFA

move off the right edge. Otherwise, we store the current state q of M , rewind
the read head to the start marker B, and continue processing the symbols of w

again, starting from state q in M . We keep doing this. If wi ∈ L for some i,
we eventually accept and walk off the right edge of the input tape. Otherwise
we are in an infinite loop and hence do not accept. It follows that L′ is regular.
Now define a morphism h mapping the symbols B, E to ε and every element of
� to itself. Then h(L′) = root(L), so root(L) is regular.

3.7 The transformation automaton

Given a DFA M = (Q,�, δ, q0, F ), there exists an associated automaton M ′ =
(Q′, �, δ′, q ′0,−) with interesting properties. Echoing the construction of the
previous section, the states of M ′ are functions with domain and range Q. The
intent is that if M ′ reaches state f after processing the input string x, then
f (q) gives the state that M would be in, had it started in state q and pro-
cessed x.

We call M ′ the transformation automaton of M . Note that we do not specify
the set of final states, which means that we are, in effect, defining many different
automata, one for each choice of final states.

Formally, here is the definition of the transformation automaton: the states
Q′ are QQ, which means all functions f : Q→ Q. The initial state q ′0 is the
identity function i that maps each q ∈ Q to itself. The transition function δ′ is
defined as follows: δ′(f, a) = g if g(q) = δ(f (q), a) for all q ∈ Q.

Theorem 3.7.1. Let M = (Q,�, δ, q0, F ) be a DFA and M ′ =
(Q′, �, δ′, q ′0,−) its transformation automaton. Suppose δ′(q ′0, w) = f . Then
for each q ∈ Q, f (q) = δ(q,w).
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0

0

0, 1
11

q2q1q0

Figure 3.14: A DFA for the language {x ∈ {0, 1}∗ : x contains no 11}

Proof. By induction on |w|. If |w| = 0, then w = ε. Then δ′(q ′0, ε) = q ′0 = i,
the identity function. So i(q) = q for all q, and δ(q, ε) = q.

Now assume the result is true for all |w| < n; we prove it for w = n. Write
w = xa. Then δ′(q ′0, xa) = δ′(δ′(q ′0, x), a). By induction if f = δ′(q ′0, x),
then f (q) = δ(q, x). By definition if g = δ′(f, a), then g(q) = δ(f (q), a). So
g(q) = δ(f (q), a) = δ(δ(q, x), a) = δ(q, xa) = δ(q,w).

One property of the transformation automaton that makes it useful is the
following.

Theorem 3.7.2. If δ′(q ′0, x) = f and δ′(q ′0, y) = g, then δ′(q ′0, xy) = g ◦ f .

Proof. We have δ(q, x) = f (q) for all q ∈ Q and δ(r, y) = g(r) for all r ∈
Q. Now let r = f (q) to get δ(q, xy) = δ(δ(q, x), y) = δ(f (q), y) = δ(r, y) =
g(r) = g(f (q)).

Corollary 3.7.3. Let g = δ′(q ′0, x
n). Then g = f n, where f = δ′(q ′0, x).

Example 3.7.4. An example may make this clearer. Figure 3.14 illustrates a
DFA that accepts the language of strings over {0, 1}∗ that contain no occurrence
of the subword 11, and Figure 3.15 illustrates the associated transformation
automaton (with only the states reachable from the start state shown).

The transformation automaton can be used to solve many problems that
would otherwise be difficult. The following example illustrates this.

Example 3.7.5. Consider the following transformation on languages. Given a
language L ⊆ �∗, consider the language

T (L) = {x ∈ �∗ : x∗ ⊆ L}.
Suppose L is regular. Then must T (L) be regular?

Using our familiar techniques, this might seem a difficult problem, since
it would seem to require simulating a DFA for L on infinitely many differ-
ent powers of x and ensuring that all are accepted. Using the transformation
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Figure 3.15: The corresponding transformation automaton

automaton, however, the solution is easy. Given a DFA M for L, create its
transformation automaton M ′. Now let the set of final states of M ′ be

F ′ = {f ∈ Q′ : f n(q0) ∈ F for all n ≥ 0}.
Using Corollary 3.7.3, we see that M ′ accepts T (L).

In Figure 3.15, for example, we would make the states p0, p1, p3, and p4

final.

3.8 Automata, graphs, and Boolean matrices

In the previous section, we showed how to compute a function fw(q) that, for
each state q, determined the state a DFA A would be in after reading the input
word w. Now imagine that A is, instead, an NFA. Instead of being in a single
state after reading w, the NFA A could be in a set of states. How can we handle
this more complicated situation?

The transition diagram of an NFA or DFA can be viewed as a directed graph,
with a distinguished source vertex, the start state, and a set of distinguished sink
vertices, the final states. Directed graphs, in turn, can be viewed as Boolean
matrices—that is, matrices with entries in {0, 1}—and doing so allows us to
easily solve problems that would otherwise be hard.

Boolean matrices are multiplied like ordinary matrices, except that instead
of addition and multiplication as the operations, we instead use the Boolean
operators ∨ (or) and ∧ (and).

Let us assume that the states of our automaton are {q0, q1, . . . , qn−1} for some
integer n ≥ 1 and that q0 is the start state. Given an NFA A = (Q,�, δ, q0, F ),
we can form the Boolean incidence matrix Ma for each a ∈ � as follows: the
entry in row i and column j is 1 if qj ∈ δ(qi, a), and 0 otherwise. To put it
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another way, (Ma)i,j = 1 if and only if in A’s transition diagram there is a
directed edge labeled a from state qi to state qj .

We can generalize this definition as follows: for a word w, the entry in row
i and column j of Mw is 1 if qj ∈ δ(qi, w), and 0 otherwise. The next theorem
shows why matrices are useful.

Theorem 3.8.1. Let w = a1a2 · · · ai , i ≥ 0. Then Mw = Ma1Ma2 · · ·Mai
.

Proof. By induction on i. (As usual, if w = ε, then Mw is the n× n identity
matrix.) The theorem is clearly true for i = 0, 1. Now assume that it is true for
i; we prove it for i + 1. Write w = xa with |w| = i + 1. Then |x| = i, and we
have Mw = Mxa . The entry in row i and column j of Mxa is, by definition,
1 if and only if qj ∈ δ(qi, xa). But qj ∈ δ(qi, xa) if and only if there exists a
state qk such that qk ∈ δ(qi, x) and qj ∈ δ(qk, a). This occurs iff there exists
k with a 1 in row i, column k of Mx , and a 1 in row k, column j of Ma . But
this occurs if and only if MxMa has a 1 in row i and column j . It follows that
Mxa = MxMa . By induction, Mx = Ma1Ma2 · · ·Mai

. Since a = ai+1, we get
Mw = Ma1Ma2 · · ·Mai

Mai+1 , as desired.

Corollary 3.8.2.

(a) For all words w, x, we have Mwx = MwMx .
(b) For all words w and integers n ≥ 0, we have Mwn = Mn

w.

With Boolean incidence matrices, we can turn the computations of an NFA
into an algebraic problem.

Theorem 3.8.3. Let A = (Q,�, δ, q0, F ) be an NFA with n states, and let Ma

be its associated matrices. Let u be the vector [1

n−1︷ ︸︸ ︷
0 0 · · · 0] and let v be the

vector where the ith entry is 1 if qi ∈ F and 0 otherwise. Then A accepts w if
and only if uMwv = 1.

Proof. The NFA A accepts w if and only if qj ∈ δ(q0, w) for some qj ∈ F ,
if and only if Mw has 1 entry in row 0 and column j for some qj ∈ F , if and
only if uMwv = 1.

Now let us look at an application of this approach. Consider an n-state NFA
A. Given a word w, how can we efficiently decide if A accepts wr for very
large r? We could, of course, simply simulate A on wr , but this would take
O(n2r|w|) steps by the usual approach. Can we do this more efficiently?

Using the incidence matrix approach solves this problem. Given w =
a1a2 · · · ai , we first form the matrix M = Mw by multiplying together the
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matrices Ma1 , . . . ,Mai
. Next, we raise M to the r power using the usual

“binary method.” In this approach, we use the identities M2i = (Mi)2 and
M2i+1 = M2iM to raise M to the r power using only O(log r) matrix multipli-
cations. Each multiplication uses O(ne) steps, where e is the optimal exponent
for matrix multiplication. (Currently, e = 2.376.) Finally, we look in row 0 to
see if there are any 1 entries in columns corresponding to final states. Thus we
have shown

Theorem 3.8.4. For a word w, we can decide if an n-state NFA accepts wr in
O(ne(|w| + log r)) steps, where e is the exponent for matrix multiplication.

Here is another application of the matrix approach. Suppose we are given a
unary NFA A that accepts a finite language, and we want to enumerate all the
elements of L(A). How efficiently can we do this? The naive approach would
be to maintain a list L of the states of A, perhaps represented as a bit vector,
and update this list as we read additional symbols of input. If A has n states,
then the longest word accepted is of length ≤n− 1. To update L after reading
each new symbol potentially requires a union of n sets, each with at most n

elements. Thus, the total cost is O(n3).
We can improve this using the incidence matrix approach. Suppose A has n

states. Take 2k to be the smallest power of 2 that is ≥n.
Now add 2k new states to A, labeled p0, p1, . . . , p2k−1. Let p0 be the new

initial state and add transitions from pi to pi+1 for 0 ≤ i < p2k−1 and from
p2k−1 to q0. Call the result A′, and let M be the incidence matrix of A.

Now A accepts a word of length i if and only if there is a path of length i

from q0 to a final state of A, if and only if there is a path of length 2k from pi

to a final state of A′. So compute M2k

through repeated squaring and check the
entry corresponding to the row for pi and the columns for the final states of A′.
We must do this for each possible length, 0 through n− 1, and so the total cost
is O(ne log n+ n2).

We have proved

Theorem 3.8.5. If M is a unary NFA that accepts a finite language L, we
can enumerate the elements of L in O(ne log n) steps, where e is the optimal
exponent for matrix multiplication.

Up to now we have been considering Boolean matrix multiplication. But
ordinary matrix multiplication can also be useful, as the following theorem
shows.

Theorem 3.8.6. Let A be a DFA and Ma be the associated incidence matrix
corresponding to transitions on the symbol a. Let M =∑

a∈� Ma . Then the
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(ordinary) matrix power Mn has the property that the element in row i and
column j is the number of strings of length n that take A from state qi to state qj .

Proof. Similar to the proof of Theorem 3.8.1.

Example 3.8.7. Consider the DFA from Figure 3.14. The associated matrices
M0, M1, and M = M0 +M1 are then

M0 =

 1 0 0

1 0 0
0 0 1


 M1 =


 0 1 0

0 0 1
0 0 1


 M =


 1 1 0

1 0 1
0 0 2


 .

Thus, for example, to count the number of strings of length 4 accepted by
this DFA, we square M twice:

M2 =

 2 1 1

1 1 2
0 0 4


 M4 =


 5 3 8

3 2 11
0 0 16


 .

Thus, there are five strings of length four that take the DFA from state q0 to
q0 (namely, {0000, 0010, 0100, 1000, 1010}) and three strings from q0 to q1

(namely, {0001, 0101, 1001}) for a total of eight strings.

Let’s look at one more application of the Boolean matrix approach. Recall
that in Theorem 3.4.1, we proved that if L is regular, then so is

1

2
L = {x ∈ �∗ : there exists y ∈ �∗ with |y| = |x| such that xy ∈ L}.

Given a language L, define the analogous transformation log(L) as follows:

log(L) = {x ∈ �∗ : there exists y ∈ �∗ with |y| = 2|x| such that xy ∈ L}.
We now prove

Proposition 3.8.8. If L is regular, then so is log(L).

Proof. Given a DFA A = (Q,�, δ, q0, F ) for L, let Ma be the incidence
matrix corresponding to the input symbol a. Let M =∨

a∈� Ma , the Boolean
“or”of all the matrices Ma . Then M has the property that there is an entry in
row i and column j if and only if there is a transition in A on some symbol
from qi to qj .

We now make a DFA A′ = (Q′, �, δ′, q ′0, F
′) for log(L). Here

Q′ = {[B,C] : B,C are n× n Boolean matrices},
where n is the number of states in Q. The basic idea is that if on input x we
arrive at the state [B,C], then B = Mx and C = M2|x| . To enforce this, we set



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

3.9 The Myhill–Nerode theorem 77

q ′0 = [I,M], where I is the n× n identity matrix and define δ′([B,C], a) =
[BMa,C

2]. We also set

F ′ = {[B,C] : BC has a 1 in row 0 and column j such that qj ∈ F }.
Then x is accepted by A′ if and only if MxM

2|x| has a 1 in row 0 and a
column corresponding to a final state, which occurs if and only if there exists
y, |y| = 2|x|, such that xy ∈ L(M).

3.9 The Myhill–Nerode theorem

The Myhill–Nerodetheorem is probably the single most important characteri-
zation of regular languages.

To begin, let us recall the definition of equivalence relation. A relation R

over a nonempty set S is a subset R ⊆ S × S. We write xRy if (x, y) ∈ R. A
relation R is said to be an equivalence relation if it obeys the following three
properties:

(a) Reflexive property. For all x, we have xRx.
(b) Symmetric property. If xRy, then yRx.
(c) Transitive property. If xRy, and yRz then xRz.

An equivalence relation partitions S into a number of disjoint equivalence
classes. An equivalence class E with representative x is E = {y ∈ S : xRy}.
We sometimes write E = [x]. The number of distinct equivalence classes is
called the index of the equivalence relation; it may be infinite. If the index is
finite, we say that R is of finite index.

If we have two equivalence relations R1 and R2 over S, we say that R1 is a
refinement of R2 if R1 ⊆ R2, that is, if xR1y ⇒ xR2y for all x, y ∈ S. If R1 is
a refinement of R2, then each equivalence class of R2 is a union of some of the
equivalence classes of R1.

Example 3.9.1. Let us consider some equivalence relations over Z, the integers.
For a positive integer n, define En as follows: xEny means x ≡ y (mod n).
Then the index of En equals n, as En partitions Z into equivalence classes
corresponding to each of the residue classes, mod n.

We have x ≡ y (mod 6) implies that x ≡ y (mod 3), and so E6 is a refinement
of E3. In fact, each equivalence class of E3 is a union of two of the equivalence
classes of E6.

Now let us consider two equivalence relations on �∗. For a DFA M =
(Q,�, δ, q0, F ), define RM by xRMy means δ(q0, x) = δ(q0, y). The index
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of this equivalence relation is at most |Q|, the number of states, and hence is
finite.

This particular equivalence relation has a very nice property: namely, it is
right invariant. We say that an equivalence relation R is right invariant if xRy

implies that for all z ∈ �∗, we have xzRyz. Suppose xRMy. Then

δ(q0, xz) = δ(δ(q0, x), z)

= δ(δ(q0, y), z)

= δ(q0, yz),

so xzRMyz and hence RM is right invariant.
Another property of RM is that L(M) is the union of some of RM’s equiva-

lence classes, namely, those classes corresponding to final states of M .
Now let us turn to another equivalence relation. Consider any language (not

necessarily regular) L ⊆ �∗. With L we associate the equivalence relation
RL defined by xRLy means that for all z ∈ �∗, we have xz ∈ L if and only
if yz ∈ L. This equivalence relation is sometimes called the Myhill–Nerode
equivalence relation. Once again, we have that RL is right-invariant: suppose
xRLy. Then xu ∈ L if and only if yu ∈ L. Take u = zv to get

(xz)v ∈ L⇐⇒ x(zv) ∈ L⇐⇒ y(zv) ∈ L⇐⇒ (yz)v ∈ L.

Now L is the union of some of the equivalence classes of RL: namely, those
equivalence classes corresponding to elements of L.

Common Error 3.9.2. One very common error that students make when first
exposed to the Myhill–Nerodeequivalence relation is to think that it only deals
with strings in L. In fact, this equivalence relation can be used to compare any
pair of strings chosen from �∗. Of course, not all pairs are necessarily related.

Now we are ready for the fundamental observation about the Myhill–Nerode
equivalence relation:

Lemma 3.9.3. Let L ⊆ �∗, and let E be any right-invariant equivalence
relation on �∗ such that L is the union of some of E’s equivalence classes.
Then E is a refinement of RL, the Myhill–Nerode equivalence relation.

Proof. Suppose xEy. Then xzEyz for all z ∈ �∗. Since L is the union of
some of E’s equivalence classes, this gives that xz ∈ L if and only if yz ∈ L.
Hence, xRLy.
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Example 3.9.4. It is worthwhile pointing out that Lemma 3.9.3 holds even if
E or RL has infinite index. For example, consider � = {a, b}, L = ({a, b}3)∗,
and let E be the equivalence relation xEy if |x| = |y|. Then each of the
three equivalence classes of RL is the union of infinitely many equivalence
classes of E. For example, L itself is the union of the equivalence classes
[ε], [a3], [a6], . . . of E.

Now we are ready for the Myhill–Nerodetheorem:

Theorem 3.9.5. Let L ⊆ �∗ be a language. The following statements are
equivalent:

(a) L is regular.
(b) L can be written as the union of some of the equivalence classes of E,

where E is a right-invariant equivalence relation of finite index.
(c) Let RL be the Myhill–Nerode equivalence relation. Then RL is of finite

index.

Proof. (a) ⇒ (b): If L is regular, it is accepted by some DFA M . By the
preceding discussion L is the union of some of the equivalence classes of RM ,
and RM is right-invariant and of finite index.

(b) ⇒ (c): By Lemma 3.9.3, E is a refinement of RL. Then the index of
RL must be ≤ the index of E. But E is of finite index, so RL is of finite
index.

(c)⇒ (a): We construct a DFA M ′ = (Q′, �, δ′, q ′0, F
′) accepting L. To do

so we let Q′ = {[x] : x ∈ �∗}, q ′0 = [ε], F ′ = {[x] : x ∈ L}, and δ′([x], a) =
[xa].

As usual when dealing with equivalence relations, we must see that the
definition is meaningful. In other words, we need to see that if we pick a
different representative from the equivalence class [x], say y, then [xa] = [ya].
But this is just what it means to be right-invariant.

Now a simple induction on |y| gives that δ′([ε], y) = [y] for all y ∈ �∗. It
follows that L(M) = L.

We now consider some applications of the Myhill–Nerode theorem. By
Theorem 1.4.1, we know that every NFA with n states can be simulated by a
DFA with at most 2n states. But is this bound of 2n best possible? The Myhill–
Nerode theorem allows us to prove that 2n is best possible for alphabets of
size ≥2.
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Figure 3.16: The NFA M4

Theorem 3.9.6. Let Mn = (Qn,�, δn, q0, {q0}) be the NFA definedas follows:

• Qn = {q0, q1, . . . , qn−1};
• � = {0, 1};
• δn(qi, 0) = {q0, qi} for 1 ≤ i < n;
• δn(q0, 0) = ∅;
• δn(qi, 1) = {q(i+1) mod n}.

Then any DFA for Mn has at least 2n states.

For example, Figure 3.16 illustrates M4.

Proof Idea. Our plan is to generate 2n inequivalent strings, one corresponding
to each of the 2n possible subsets of states of Mn. By the Myhill–Nerode
theorem, it will then follow that any DFA for Mn must have at least 2n states.

To generate these strings, we use the structure of the NFA Mn. Note that
processing an input of 1 increments the subscript number of the state, modulo
n, and processing an input of 0 has the effect of both staying in the same state
and resetting the state to q0 (unless the machine is already in q0).

Proof. For each subset S ⊆ Qn, we define a string w(S) such that δ(q0, w(S)) =
S, as follows: if S = {qe1 , qe2 , . . . , qek

} with e1 < e2 < · · · < ek , then

w(S) =



0, if S = ∅;
1i , if S = {qi};
1ek−ek−101ek−1−ek−20 · · · 1e2−e101e1 , otherwise.

To see that δ(q0, w(S)) = S for |S| ≥ 2, note that successively reading the
blocks of 1s separated by single 0s gives the following sequence of states
encountered:
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1ek−ek−1 qek−ek−1

0 q0, qek−ek−1

1ek−1−ek−2 qek−1−ek−2 , qek−ek−1

0 q0, qek−1−ek−2 , qek−ek−1

1ek−2−ek−3 qek−2−ek−3 , qek−1−ek−3 , qek−ek−3

...
...

1e2−e1 qe2−e1 , qe3−e1 , . . . , qek−e1

0 q0, qe2−e1 , qe3−e1 , . . . , qek−e1

1e1 qe1 , qe2 , . . . , qek

We now show that if S, T ⊆ Qn with S �= T , then the strings w(S) and
w(T ) are inequivalent under the Myhill–Nerodeequivalence relation. If S �= T ,
then one of S, T contains an element qs not contained in the other. Without
loss of generality, assume qs ∈ S and qs �∈ T . Then w(S)1n−s ∈ L(Mn) but
w(T )1n−s �∈ L(Mn). Since there are 2n subsets of Qn, the result follows.

The Myhill–Nerode theorem can even be used to generate the “minimal”
infinite automaton for nonregular languages, as the following example shows.

Example 3.9.7. Let L = {0n1n : n ≥ 0} and let us compute the equivalence
classes for the Myhill–Nerodeequivalence relation.

The equivalence classes are

{[ε], [0], [00], . . . , } ∪ {[1], [01], [001], . . .}.
To see that these classes are pairwise distinct, consider w = 0m and x = 0n

for m < n. By choosing z = 1m we see wz ∈ L but xz �∈ L. Similarly, given
w = 0m1 and x = 0n1with m < n, choose z = 1n−1 to get wz �∈ L but xz ∈ L.
Finally, if w = 0m and x = 0n1, choose z = 01m+1 to get wz ∈ L and xz �∈ L.

We leave it to the reader to verify that these are all the equivalence classes.
We can generate an infinite automaton from the equivalence classes, as in
Figure 3.17.

3.10 Minimization of finite automata

One of the important consequences of the Myhill–Nerodetheorem is that the
automaton constructed from the equivalence relation RL is actually the smallest
possible for the regular language L.

Theorem 3.10.1. The automaton M ′ in Theorem 3.9.5 is the unique minimal
automaton for L, up to renaming of the states.
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1
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1 1

0, 1

[0001]

[000]
0 0 0 0

[01] [001]

. . .

. . .

[00]

[1]

[ε]

1

0,1

[0]

1
1 1

Figure 3.17: Minimal infinite automaton for {0n1n : n ≥ 0}

Proof. Let M = (Q,�, δ, q0, F ) be a minimal DFA for L, and consider the
equivalence relation RM . From Lemma 3.9.3 we have that RM is a refinement
of RL and hence the index of RM is ≥ the index of RL. It follows that M has
at least as many states as M ′, where M ′ is the DFA constructed in the proof of
Theorem 3.9.5.

Assume M has the same number of states as M ′. We now show how to
create an isomorphism between Q and Q′. Let q be a state of M . Then q must
be reachable from q0; that is, there must be an x such that δ(q0, x) = q. For
if not, we could remove q from M and hence obtain a smaller DFA. Now
associate q ∈ Q with [x] in M ′. This is consistent, since both RM and RL are
right-invariant.

Furthermore, we can use the Myhill–Nerode theorem as the basis of an
algorithm for minimizing a finite automaton. Suppose we are given a DFA M =
(Q,�, δ, q0, F ) for a regular language L. From the results given before, we
know that RM is a refinement of RL, the Myhill–Nerodeequivalence relation.
It follows that if M is not minimal, then there must be at least two distinct states
p, q ∈ Q such that both {x ∈ �∗ : δ(q0, x) = p} and {y ∈ �∗ : δ(q0, y) = q}
are contained in some equivalence class of RL. In other words, for all z,
we have δ(p, z) ∈ F if and only if δ(q, z) ∈ F . We call the states p and q

indistinguishable if this is the case, and we write p ≡ q. It is easy to see that≡
is actually an equivalence relation.

One way to minimize a DFA is to determine the distinguishable states. Once
they have been determined, we can construct a minimal equivalent automaton
in two steps: first, discard all states not reachable from the start state q0, and
second, collapse any maximal set of mutually indistinguishable states into a
single state. The states of M reachable from q0 can be determined in O(kn)
time through depth-first or breadth-first search if M is over a k-letter input
alphabet and has n states. This time is dominated by the time for the rest of the
algorithm, so we do not discuss it further in this section.
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Algorithm Worst-case complexity In practice Implementation

NAIVE-MINIMIZE O(n3) Reasonable Easy
MINIMIZE O(n2) Good Moderately easy
FAST-MINIMIZE O(n log n) Very good Quite difficult
BRZOZOWSKI O(n22n) Often good Easy

Figure 3.18: Four different minimization algorithms compared

There are several different minimization algorithms known. The properties
of some of the most important algorithms are listed in Figure 3.18. The running
times given assume a fixed alphabet size.

We now present the algorithm NAIVE-MINIMIZE:

NAIVE-MINIMIZE(M)
0. For all unordered pairs {p, q}, p �= q, set U ({p, q}) := 0
1. For all unordered pairs {p, q} with p ∈ F and q ∈ Q− F ,

set U ({p, q}) := 1
2. Set done := false
3. while not(done) do

4. done := true
5. T := U

6. for each unordered pair {p, q} with T ({p, q}) = 0, do
7. For each a ∈ � do

8. If T ({δ(p, a), δ(q, a)}) = 1 then set U ({p, q}) := 1
and set done := false

9. return(U )

If we set U ({p, q}) to 1 in the algorithm, then we say the pair {p, q} is
marked.

Theorem 3.10.2. Algorithm NAIVE-MINIMIZE terminates and correctly re-
turns an array

U ({p, q}) =
{

1, if p �≡ q;

0, if p ≡ q.

Furthermore, the pair {p, q} is marked at the nth iteration of the while loop if
and only if the shortest string distinguishing p from q is of length n.

Proof. Clearly, the algorithm terminates, since there are a finite number of
pairs and so eventually we make it through the while loop starting on line 3
without marking any new pairs.
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We claim that the pair {p, q} is marked by the algorithm at iteration n iff
p �≡ q and the shortest string distinguishing p from q is of length n.

Suppose {p, q} is marked. We prove by induction on the number of iterations
n of the loop on line 3 that p �≡ q and, further, that p is distinguished from q

by a string of length n. The base case is 0 iterations; that is, {p, q} is marked
on line 1. Then p ∈ F and q ∈ Q− F , so p �≡ q. So ε distinguishes p from
q. Now suppose the claim is true for those pairs marked in some iteration < n;
we prove it for iteration n.

Pairs are marked in step 8, and this occurs only if {δ(p, a), δ(q, a)} was
marked on some previous iteration. In fact, this marking must have occurred at
iteration n− 1; otherwise we would have considered {p, q} at an earlier itera-
tion. Let r = δ(p, a) and s = δ(q, a). If {r, s} was marked, then by induction
r �≡ s and r is distinguished from s by a string t of length n− 1. Then the string
at distinguishes p from q and |at | = n.

For the converse, suppose p �≡ q, and x is a shortest string distinguishing
p from q, and n = |x|. We will prove by induction on n that the pair {p, q}
gets marked at iteration n. If |x| = 0, then {p, q} gets marked on line 1 of the
algorithm, at iteration 0 of the while loop. Now assume the claim is true for
all x with |x| < n. We prove the claim for |x| = n. Write x = ay with |y| = k,
a ∈ �. Consider {p′, q ′}, where p′ = δ(p, a) and q ′ = δ(q, a). Now p′ �≡ q ′

since the string y distinguishes them. Let z be a shortest string distinguishing
p′ from q ′. Then by induction {p′, q ′} gets marked at iteration |z|. Then the flag
done gets set in line 8, and {p, q} gets marked at the next iteration. It follows
that n = |z| + 1 = |ay|.

To estimate the running time of NAIVE-MINIMIZE, we need the following
theorem.

Theorem 3.10.3. If M has n ≥ 2 states, then the while loop of
NAIVE-MINIMIZE is performed at most n− 1 times, and in the last iteration,
no new pairs are marked.

Proof. Define a relation≡
k

on states of M as follows: p ≡
k

q if there is no string

x of length ≤k that distinguishes state p from state q. Then it is not hard to see
that≡

k
is an equivalence relation. Also, if p and q cannot be distinguished with

a string of length ≤k + 1, they cannot be distinguished with a string of length
≤k. Thus, ≡

k+1
is a refinement of ≡

k
.

Now from the argument of the previous theorem, p ≡
k

q if and only if after

k iterations of NAIVE-MINIMIZE, we have failed to distinguish p from q. We
also have
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(i) If p ≡
k

q, then p ≡
k+1

q if and only if δ(p, a) ≡
k

δ(q, a) for all a ∈ �.

(ii) If the relations ≡
k

and ≡
k+1

are identical, then ≡
k+a

equals ≡
k

for all a ≥ 0.

Now ≡
0

has two equivalence classes, and ≡ is the same as ≡
i

for some

i; without loss of generality, assume i is as small as possible. But either ≡
k+a

coincides with≡
k

for all a ≥ 1 or ≡
k+1

defines at least one more equivalence class

than≡
k

; hence,≡
i

defines at least i + 2 equivalence classes. But i + 2 ≤ n, and

so i ≤ n− 2.

Corollary 3.10.4. The algorithm NAIVE-MINIMIZE uses O(kn3) steps, where
k = |�| and n = |Q|.
Proof. The while loop is performed at most n− 1 times by Theorem 3.10.3.
Line 6 takes O(n2) time and line 7 takes O(k) time.

The next corollary to Theorem 3.10.3 is both surprising and useful. Basically,
it states that if we are given two DFAs that accept different languages, then
there is a relatively short string that is accepted by one but rejected by the other.
If the DFAs have m and n states, it is not difficult to obtain a bound of mn for
this problem, but the following theorem says that we can do much better.

Theorem 3.10.5. Let L1, L2 be regular languages accepted by DFAs with m

and n states, respectively, with L1 �= L2. Then there exists a string x of length
≤m+ n− 2 that is in (L1 − L2) ∪ (L2 − L1).

Proof. Take the DFA M1 = (Q1, �, δ1, q1, F1) and form the “directsum”
with M2 = (Q2, �, δ2, q2, F2). That is, create the DFA M = (Q,�, δ, q, F )
as follows:

Q = Q1 ∪ Q2

δ(p, a) =
{

δ1(p, a), if p ∈ Q1;

δ2(p, a), if p ∈ Q2;
q = q1

F = F1 ∪ F2.

Then if L1 �= L2, q1 �≡ q2, and furthermore by Theorem 3.10.3 these two states
can be distinguished by a string of length ≤ |Q| − 2 = m+ n− 2, where
m = |Q1|, n = |Q2|.

In fact, as the following theorem shows, the bound of m+ n− 2 is best
possible:
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0 0 0
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0 0 0 0
p4
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q1 q2q0

p0 p1 p2 p3

q3

Figure 3.19: The construction for m = 4, n = 5

Theorem 3.10.6. For all integers m, n ≥ 1, there exist DFAs M1 and M2 over
a unary alphabet with m and n states, respectively, such that the shortest string
accepted by one DFA but not the other is of length m+ n− 2.

Proof. Without loss of generality we may assume m ≤ n. If m = 1, the result
is easy. Otherwise assume m ≥ 2. Let M1 = (Q1, �, δ1, q0, F1) be the DFA
given as follows:

Q1 = {q0, q1, q2, . . . , qm−1}
� = {0}

δ1(qi, 0) = q(i+1) mod m

F1 = {qj : j ≡ n− 2 (mod m)}.
Let M2 = (Q2, �, δ2, p0, F2) be the DFA given as follows:

Q2 = {p0, p1, p2, . . . , pn−1}
� = {0}

δ2(pi, 0) =
{

pi+1, if i < n− 1;

pn−1, if i = n− 1;

F2 = {pj : j ≡ n− 2 (mod m)}.
For example, Figure 3.19 illustrates this construction for m = 4, n = 5.

Then it is easy to verify that 0m+n−2 is the shortest string accepted by one
machine but rejected by the other. We see that M1 and M2 behave identically
on all strings of length up to n− 2. For lengths n− 1, n, . . . , n+m− 3, M1

rejects (since the next largest string accepted after 0n−2 is 0m+n−2) and so does
M2. But M1 accepts 0m+n−2 while M2 rejects this string.

We now discuss how to modify NAIVE-MINIMIZE to improve the running
time to O(kn2). The main difference in MINIMIZE is that for each pair of states
{p, q}, we maintain a list of pairs. Recall that if U ({p, q}) = 1, we say {p, q}
is marked.
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MINIMIZE(M)
0. For all unordered pairs {p, q}, p �= q, set U ({p, q}) := 0
1. For all unordered pairs {p, q} with p ∈ F and q ∈ Q− F ,

set U ({p, q}) : = 1
2. For each unordered pair {p, q} with either p, q ∈ F or p, q �∈ F do

3. If U ({δ(p, a), δ(q, a)}) = 1 for some symbol a ∈ � then
4. U ({p, q}) := 1
5. Recursively set U ({p′, q ′}) := 1 for all unmarked pairs {p′, q ′} on the

list for {p, q}, and all pairs on those lists, etc.
6. Else

7. For all a ∈ � do
8. If δ(p, a) �= δ(q, a), put {p, q} on the list for {δ(p, a), δ(q, a)}

9. return(U )

The proof that MINIMIZE is correct is very similar to that for
NAIVE-MINIMIZE, and we leave it as Exercise 17.

Theorem 3.10.7. The algorithm MINIMIZE uses O(kn2) steps.

Proof. Line 1 uses O(n2) steps. The loop in line 2 uses O(kn2) steps, not
including the time to do the recursion in step 5. To count the number of steps
in line 5, we must think about it not during one step of the loop, but over the
entire algorithm. There are at most kn2 entries over all lists during the running
of the algorithm, so step 5 uses at most O(kn2) steps.

We mention that there exists a refinement of the algorithm MINIMIZE that
runs in O(kn log n) steps. For more details, see the notes.

We now turn to another minimization algorithm originally due to Brzo-
zowski. This algorithm has the property that it is excellent for hand computa-
tion and often works well in practice. However, its worst-case running time is
exponential.

Given a DFA M = (Q,�, δ, q0, F ), define MR to be the machine obtained
by reversing the arrows in M’s transition diagram. Formally, define MR =
(Q,�, δR, F, {q0}), where

δR(q ′, a) = {q ∈ Q : δ(q, a) = q ′}.
Note that MR is not strictly an NFA, since it may have more than one initial state.
Nevertheless it should be clear how to treat acceptance in such a generalized
NFA, and furthermore we can easily perform the subset construction on MR
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to obtain an equivalent DFA; the only significant difference is that the initial
state in the corresponding DFA is the set of initial states of the generalized
NFA.

For such a generalized NFA A, define S(A) to be the DFA that arises from
the subset construction, using only states reachable from the start state(s).

Theorem 3.10.8 (Brzozowski). The machine given by S((S(MR))R) is a mini-
mal DFA equivalent to M .

Proof. We first prove the following lemma. Our theorem will then follow by
applying the lemma twice.

Lemma 3.10.9. Suppose M = (Q,�, δ, q0, F ) is a DFA accepting the regular
language L, and suppose that every state of Q is reachable from q0. Then
N = S(MR) is a minimal DFA for LR .

Proof. Let MR = (Q,�, δR, q ′0, F
′), where δR is defined as earlier, and q ′0 =

F , F ′ = {q0}. Let S(MR) = N = (Q′′, �, δ′′, q ′′0 , F ′′). To show N is minimal,
it suffices to show that no two states of N are equivalent. Let A,B ∈ Q′′ be
states of N , so that A and B represent sets of states of M . Suppose A is
equivalent to B. We show A = B.

Let p ∈ A. Since every state of M is reachable from the start state, there
exists w ∈ �∗ such that δ(q0, w) = p. Hence, q0 ∈ δR(p,wR) in MR . Thus,
δ′′(A,wR) ∈ F ′′ in N .

If A is equivalent to B, then δ′′(B,wR) ∈ F ′′ in N . Thus, there exists p′ ∈ B

such that q0 ∈ δR(p′, wR) in MR . Hence, p′ = δ(q0, w). But then p = p′, since
M is a DFA. Thus, p ∈ B.

We have now shown A ⊆ B and, by symmetry, B ⊆ A. Hence, A = B.
This completes the proof of correctness of Brzozowski’s algorithm.

Figure 3.20 illustrates Brzozowski’s algorithm on a simple automaton.
We now estimate the worst-case running time of Brzozowski’s algorithm.

Theorem 3.10.10. Brzozowski’s algorithm can be made to run in O(kn22n)
time.

Proof. The cost of reversals is negligible compared to the cost of the two
subset constructions, so we estimate those.

Using Exercise 1.31, we can perform the initial subset construction in
O(kn2n) time. The resulting DFA has at most 2n states. When we reverse
and perform another subset construction, we may have to perform as many as
n rounds of 2n unions of 2n states.
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Figure 3.20: Illustration of Brzozowski’s algorithm

3.11 State complexity

Some regular languages, such as {0, 1}∗, can be accepted by DFAs with very
few states, while others, such as {0, 1}∗1{0, 1}n, require many states. The state
complexity of a regular language L, denoted by sc(L), is the smallest number
of states in any DFA accepting L or, equivalently, the number of states in the
minimal DFA accepting L.
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Similarly, we can study the nondeterministic state complexity of L, denoted
nsc(L), which is the smallest number of states in any NFA accepting L.

Theorem 3.11.1. Let L,L′ ⊆ �∗ be regular languages. Then sc(L ∩ L′) ≤
sc(L)sc(L′).

Proof Idea. The idea is to use the “direct-product”construction for automata.
The states of the new automaton consist of pairs, with the first component
simulating the automaton for L and the second component simulating the
automaton for L′.

Proof. Let L be accepted by the DFA (Q,�, δ, q0, F ) and L′ be accepted by
the DFA (Q′, �, δ′, q ′0, F

′). Then L ∩ L′ can be accepted by a DFA

(Q′′, �, δ′′, q ′′0 , F ′′),

where

• Q′′ := Q×Q′;
• q ′′0 := [q0, q

′
0];

• F ′′ := F × F ′; and
• δ′′([p, q], a) = [δ(p, a), δ(q, a)].

This DFA has |Q||Q′| states.

We now show that the upper bound of the previous theorem is tight.

Theorem 3.11.2. If |�| ≥ 2, then for all m, n ≥ 1, there exist regular lan-
guages L,L′ such that sc(L) = m, sc(L′) = n, and sc(L ∩ L′) = mn.

Proof. Let � be an alphabet containing the letters a, b. Define

L : = {x ∈ �∗ : |x|a ≡ 0 (mod m)};
L′ : = {y ∈ �∗ : |y|b ≡ 0 (mod n)}.

Then it is easy to see that sc(L) = m and sc(L′) = n. We claim sc(L ∩ L′) =
mn. To see this, note that

L ∩ L′ = {x ∈ �∗ : |x|a ≡ 0 (mod m), |x|b ≡ 0 (mod n)}.
We claim that for 0 ≤ i < m, 0 ≤ j < n, each stringaibj lies in a distinct equiv-
alence class of the Myhill–Nerodeequivalence relation. For choose w = aibj

and x = ai ′bj ′ for 0 ≤ i, i ′ < m, 0 ≤ j ′, j ′ < n. If w �= x, then either i �= i ′

or j �= j ′. Without loss of generality, assume the former case holds. Then
wam−ibn−j ∈ L ∩ L′, but xam−ibn−j �∈ L, since i ′ +m− i �≡ 0 (mod m). It
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follows that the minimal DFA for L ∩ L′ has ≥ mn states, and by Theo-
rem 3.11.1, it must have exactly mn states.

Similar but more complicated theorems can be proved for the deterministic
state complexity of other operations (see Exercise 49).

Now we turn to nondeterministic state complexity. Here the situation is more
challenging, since a minimal NFA for a given regular language is not necessarily
unique (see Exercise 18). Furthermore, it is known that the following decision
problem is PSPACE-hard:

Instance: a DFA M and an integer k.
Question: Is there an NFA with ≤k states accepting L(M)?

However, there are two simple theorems that can often be used to give lower
bounds on nsc(L).

Theorem 3.11.3. Let L be a nonempty regular language, and let n be the
length of a shortest string in L. Then nsc(L) ≥ n+ 1.

Proof. Let M = (Q,�, δ, q0, F ) be an NFA accepting L, and let x be a
shortest string in L with |x| = n. Suppose M has ≤n states. Now consider the
states encountered on an accepting computation for x. Since |x| = n, some
state must be encountered at least twice. We can now cut out this loop to find a
shorter string accepted by M , a contradiction.

Theorem 3.11.4. Let L ⊆ �∗ be a regular language, and let M =
(Q,�, δ, q0, F ) be an NFA accepting L.

Suppose there exists a set of pairs of words P = {(xi, wi) : 1 ≤ i ≤ n} such
that

(a) For all i with 1 ≤ i ≤ n, we have xiwi ∈ L.
(b) For all i, j with 1 ≤ i, j ≤ n, and i �= j , at least one of xjwi �∈ L and

xiwj �∈ L holds.

Then nsc(L) ≥ n.

Proof. We can define a function f : {1, 2 . . . , n} → Q as follows: for each i,
since xiwi ∈ L, there must be a state q ∈ δ(q0, xi) such that δ(q,wi) ∩ F �= ∅.
Define f (i) = q. Note that δ(f (i), wi) ∩ F �= ∅.

Now we claim that this map is an injection; that is, if i �= j , then f (i) �= f (j ).
For suppose i �= j but f (i) = f (j ). Then xiwj ∈ L since f (j ) = f (i) ∈
δ(q0, xi). Similarly, xjwi ∈ L since f (i) = f (j ) ∈ δ(q0, xj ). This contradic-
tion proves that f is an injection.



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

92 3 Finite automata and regular languages

Since the domain of f has cardinality n and f is an injection, Q has
cardinality ≥ n and nsc(L) ≥n.

Example 3.11.5. Let k ≥ 1 be an integer and consider the language Lk =
{0i1i2i : 0 ≤ i < k}. Take the set of pairs P to be the set

P = {(0i1j , 1i−j2i) : 0 ≤ j ≤ i < k}.
Let (x,w) = (0i1j , 1i−j2i) and (x ′, w′) = (0i ′1j ′ , 1i ′−j ′2i ′) be two such distinct
pairs. Then xw, x ′w′ ∈ L but xw′ = 0i1i ′+j−j ′2i ′ cannot be in L unless i = i′

and j = j ′. Hence there are at least |P | = k(k + 1)/2 states in any NFA that
accepts Lk .

3.12 Partial orders and regular languages

A partial order is a binary relation R on a set S that behaves like the usual
relation ≤ on real numbers. More precisely, it must be

(i) reflexive, that is, aRa for all a ∈ S;
(ii) antisymmetric, that is, aRb and bRa ⇒ a = b;

(iii) transitive, that is, aRb and bRc⇒ aRc.

Given any two real numbers x and y, they are comparable in the sense that
either x ≤ y or y ≤ x. However, this is not the case for a general partial order.
If xRy or yRx, we say x and y are comparable; otherwise we say they are
incomparable.

There are two natural partial orders associated with strings. The first is the
subword ordering: we write xSy if x is a subword of y, that is, if there exist
strings w, z such that y = wxz. The second is the subsequence ordering: we
write x | y if x is a subsequence of y, that is, if we can obtain x from y by
striking out 0 or more symbols from y. More precisely, x | y if there exist
an integer n ≥ 0 and strings xi, yj ∈ �∗, 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1 such that
x = x1x2 · · · xn and y = y1x1y2x2 · · · ynxnyn+1. You should now verify that
both of these relations are partial orders.

For the subword ordering it is possible to find an infinite set of pairwise in-
comparable strings. For example, {abna : n ≥ 1} forms such a set. However,
the following theorem shows the somewhat surprising fact that the correspond-
ing situation cannot occur for the subsequence ordering.

Theorem 3.12.1. Let � be a finite alphabet. Every set of strings over � that
are pairwise incomparable for the subsequence ordering is finite.
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Proof. Assume there exists an infinite set of pairwise incomparable strings.
Then there is certainly an infinite division-free sequence of strings (fi)i≥1, that
is, a sequence of strings f1, f2, . . . such that i < j ⇒ fi |/fj .

Now iteratively choose a minimal such sequence, as follows:

• let f1 be a shortest word beginning an infinite division-free sequence;
• let f2 be a shortest word such that f1, f2 begins an infinite division-free

sequence;
• let f3 be a shortest word such that f1, f2, f3 begins an infinite division-free

sequence; and so on.

By the pigeonhole principle, there exists an infinite subsequence of the fi ,
say fi1 , fi2 , fi3 , . . ., such that each of the strings in this subsequence starts with
the same letter, say a. Define xj for j ≥ 1 by fij = axj . Then we claim that

f1, f2, f3, . . . , fi1−1, x1, x2, x3, . . .

is an infinite division-free sequence that precedes (fi)i≥1, contradicting the
supposed minimality of (fi)i≥1.

To see that the constructed sequence is indeed division-free, note that fi |/fj

for 1 ≤ i < j < i1 by assumption. Next, if fi | xj for some i with 1 ≤ i < i1

and j ≥ 1, then fi | axj = fij , a contradiction. Finally, if xj | xk , then axj | axk ,
and hence fij | fik , a contradiction.

Notice that although we have proved that there are no infinite pairwise
incomparable sets for the subsequence ordering, there are arbitrarily large such
sets. For example, the language {0, 1}n consists of 2n strings that are pairwise
incomparable.

We now introduce two operations on languages, the subsequence and su-
persequence operations. Let L ⊆ �∗. We define

sup(L) = {x ∈ �∗ : there exists y ∈ L such that y | x};
sub(L) = {x ∈ �∗ : there exists y ∈ L such that x | y}.

Our goal is to prove that if L is a language, then sub(L) and sup(L) is regular.
First, though, we need some lemmas.

Lemma 3.12.2. Let L ⊆ �∗. Then

(a) L ⊆ sup(L);
(b) L ⊆ sub(L);
(c) sub(L) = sub(sub(L)).

Proof. Left to the reader.
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We now introduce some terminology. Let R be a partial order on a set S.
Then we say x ∈ S is minimal if yRx ⇒ y = x for y ∈ S. Let D(y) be the set
{x ∈ S : xRy}.
Lemma 3.12.3. Let R be a partial order on a set S.

(a) If x, y are distinct minimal elements, then x, y are incomparable.
(b) Suppose the set D(y) is finite. Then there exists a minimal y′ such that

y ′Ry.

Proof. (a) Suppose yRx . Then x = y since x is minimal. But x, y were
assumed distinct, a contradiction. A similar argument applies if xRy.

(b) If D(y) = {y}, then we may take y ′ = y. Otherwise let z be an element in
D(y)− {y}. Then D(z) ⊂ D(y), and D(z) �= D(y). If D(z) = {z}, we may take
y ′ = z. Continue in this fashion. Since D(y) is finite, we eventually terminate
and the last element chosen can be taken as y′.

Lemma 3.12.4. Let L ⊆ �∗. Then

(a) there exists a finite subset M ⊆ L such that sup(L) = sup(M).
(b) there exists a finite subset G ⊆ �∗ such that sub(L) = �∗ − sup(G).

Proof.
(a): Let M be the set of minimal elements of L. By Lemma 3.12.3 the

elements of M are pairwise incomparable. By Theorem 3.12.1, M is finite. It
remains to see that sup(L) = sup(M).

Proof that sup(M) ⊆ sup(L): suppose x ∈ sup(M). Then there exists y ∈
M ⊆ L such that y | x. Thus, x ∈ sup(L).

Proof that sup(L) ⊆ sup(M): suppose x ∈ sup(L). Then there exists y ∈ L

such that y | x. By Lemma 3.12.3 (b), there exists y ′ ∈ M such that y ′ | y. Then
y ′ | y | x, and so x ∈ sup(M).

(b) Let T = �∗ − sub(L). I claim that T = sup(T ). The inclusion T ⊆
sup(T ) follows from Lemma 3.12.2(a). Suppose sup(T ) �⊆ T ; then there ex-
ists an x ∈ sup(T ) with x �∈ T . Since T = �∗ − sub(L), this means x ∈
sub(L). Since x ∈ sup(T ), there exists y ∈ T such that y | x. Hence, by
Lemma 3.12.2(c), we have y ∈ sub(L). But then y �∈ T , a contradiction.

Finally, by part (a), there exists a finite subset G such that sup(G) = sup(T ).
Then sup(G) = sup(T ) = T = �∗ − sub(L), and so sub(L) = �∗ − sup(G).

We are now ready to prove the main result of this section.
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Theorem 3.12.5. Let L be a language (not necessarily regular). Then both
sub(L) and sup(L) are regular.

Proof. Clearly, sup(L) is regular if L = {w} for some single word w. This is
because if w = a1a2 · · · ak , then

sup({w}) = �∗a1�
∗a2�

∗ · · ·�∗ak�
∗.

Similarly, for any finite language F ⊆ �∗, sup(F ) is regular because

sup(F ) =
⋃
w∈F

sup({w}).

Now let L ⊆ �∗, and let M and G be defined as in the proof of
Lemma 3.12.4. Then sup(L) = sup(M), and so sup(L) is regular, since M

is finite. Also, sub(L) = �∗ − sup(G), and so sub(L) is regular since G is
finite.

Example 3.12.6. Consider the language

P3 = {2, 10, 12, 21, 102, 111, 122, 201, 212, 1002, . . .},
which represents the primes in base 3. I claim that the minimal elements of P3

are {2, 10, 111}. Clearly, each of these are in P3 and no proper subsequence is
in P3. Now let x ∈ P3. If 2|/x, then x ∈ {0, 1}∗. If further 10|/x, then x ∈ 0∗1∗.
Since x represents a number, x cannot have leading zeros. It follows that x ∈ 1∗.
But the numbers represented by the strings 1 and 11 are not primes. However,
111 represents 13, which is prime.

It now follows that

sup(P3) = �∗2�∗ ∪�∗1�∗0�∗ ∪�∗1�∗1�∗1�∗,

where � = {0, 1, 2}.
On the other hand, sub(P3) = �∗. This follows from Dirichlet’s theorem on

primes in arithmetic progressions, which states that every arithmetic progres-
sion of the form (a + nb)n≥0, gcd(a, b) = 1, contains infinitely many primes.

For base 10, you can use the card shown in Figure 3.21. Photocopy it on
thick cardboard stock and take it to a bar sometime.

3.13 Exercises

1. (a) Prove or disprove that L1/L2 = (L1/L2) for all languages L1, L2.
(b) Prove or disprove that L/{x} = (L/{x}) for all languages L and all finite

strings x.
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Figure 3.21: The prime game

2. Which of the following is true for all languages L1, L2?
(a) (L1/L2)L2 ⊆ L1,
(b) L1 ⊆ (L1/L2)L2.

3. Suppose L ⊆ �∗ is regular. Prove that the language

2L := {a1a1a2a2 · · · akak : each ai ∈ � and a1a2 · · · ak ∈ L}
is regular.

4. Generalizing the previous exercise, suppose x ∈ �∗k = {0, 1, . . . , k − 1}
and y ∈ �∗ for some alphabet �. If |x| = |y|, and x = a1 · · · an, y =
b1 · · · bn, we define rep(x, y) to be the string b

a1
1 b

a2
2 · · · ban

n . If |x| �= |y|, we
define rep(x, y) = ∅. Thus, for example, rep(234, abc) = aabbbcccc. Ex-
tend this definition to languages, as follows: if L1 ⊆ �∗k and L2 ⊆ �∗, then
rep(L1, L2) =⋃

x∈L1,y∈L2
rep(x, y). Thus, for example, rep(1∗, L) = L for

all languages L and rep(2∗, L) is just the language 2L of the previous
exercise. Show that if L1 and L2 are both regular, then so is rep(L1, L2).

5. Let L1 ⊆ L2 be regular languages with L2 − L1 infinite. Show that there
exists a regular language L such that L1 ⊆ L ⊆ L2 and L2 − L and L− L1

are both infinite.
6. Let L be a language and h a morphism. Show that

(a) L ⊆ h−1(h(L));
(b) h(h−1(L)) ⊆ L.

Also give examples where L �= h−1(h(L)) and h(h−1(L)) �= L.
7. Recall the definition of Pref(L) from Example 3.2.5. Give another proof of

the fact that if L is regular, so is Pref(L), by directly modifying the DFA
for L.
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∗8. Let L ⊆ �∗ be a language. For an integer n ≥ 0, define

L1/n = {x ∈ �∗ : xn ∈ L}.
Note that

root(L) :=
⋃
i≥1

L1/i .

(a) Show that if L is regular, so is L1/n for each n ≥ 1.
(b) Show that if L is accepted by a DFA with n states, then root(L) =⋃

1≤i≤n L1/i .
∗∗9. Show that if L is a regular language, then so is

ROOT(L) := {w : w|w| ∈ L}.
10. Define the perfect shuffle of languages as follows:

L1 X L2 = {x X y : x ∈ L1, y ∈ L2, and |x| = |y|}.
Show how to modify Example 3.3.8 to give a formal definition of the per-
fect shuffle in terms of morphisms, inverse morphisms, and intersection.

11. If shuff(L, {0}) is regular, need L be regular?
12. If L is regular, then must

pow(L) := {uk : u ∈ L, k ≥ 0}
also be regular?

13. Define the operation perm on strings as follows: perm(x) is the set of all
permutations of the letters of x. For example,

perm(0121) = {0112, 0121, 0211, 1012, 1021, 1102, 1120, 1201,
1210, 2011, 2101, 2110}.

Extend perm to languages as follows: perm(L) =⋃
x∈L perm(x).

If L is regular, need perm(L) be regular?
14. Show that any DFA accepting the language

Ln := {x ∈ {0, 1}∗ : the nth symbol from the right is 1},
introduced in Section 1.4, must have at least 2n states.

∗15. Is the class of regular languages closed under inverse substitution? That
is, let L be a regular language and s be a substitution that maps each letter
a to a regular language La . Define

s−1(L) = {x : s(x) ⊆ L}.
Must s−1(L) be regular?
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16. Consider replacing the definition for inverse substitution given in the
previous exercise with a new definition:

s[−1](L) := {x : s(x) ∩ L �= ∅}.
Suppose s maps letters to regular languages, and L is regular. Must

s[−1](L) be regular?
17. Using the proof of Theorem 3.10.2 as a guide, prove the correctness of

algorithm MINIMIZE.
18. Theorem 3.10.1 says that if M1, M2 are minimal DFAs accepting a regular

language L, then M1 and M2 are isomorphic. (Isomorphic means that the
machines are identical, up to renaming the states.) Show, by means of an
example, that this result is not true if “DFA”is replaced by “NFA.”

19. Let L be a regular language, and let M be the minimal DFA accepting L.
Suppose M has n final states. Show that any DFA accepting L must have
at least n final states.

20. Let � = {0, 1}. Give an example of a language L ⊆ �∗ for which the
Myhill–Nerodeequivalence relation RL has the property that every string
in �∗ is an equivalence class by itself.

21. Let L be a regular language, and let M = (Q,�, δ, q0, F ) be its minimal
DFA. Let M ′ = (Q′, �, δ′, q ′0,−) be the transformation automaton of M ,
as described in Section 3.7, but with all states not reachable from q ′0
discarded. Let RM ′ be the equivalence relation based on M ′, where x and
y are equivalent iff δ′(q ′0, x) = δ′(q ′0, y).

Now consider the equivalence relation x ≡ y, where “x ≡ y”means
“for all u, v ∈ �∗, uxv ∈ L iff uyv ∈ L.” Show that the equivalence
relation ≡ is the same as RM ′ .

∗22. The point of this exercise is to show that 2DFAs can be exponentially
more concise than DFAs in accepting certain languages.

Let n be an integer ≥1, and let Fn ⊆ {0, 1, 2, 3, 4}∗ be defined as
follows:

Fn = {3 0i1 1 0i2 1 · · · 1 0in 2k 0ik 4 : 1 ≤ k, j, ij ≤ n}.
For example,

F2 = {3010204, 30102204, 300102004, 300102204,
30100204, 3010022004, 3001002004, 30010022004}.

(a) Show that Fn can be accepted by a 2DFA using O(n) states.
(b) Using the Myhill–Nerodetheorem, show that the smallest DFA ac-

cepting Fn has at least nn states.
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∗∗23. For a word w, define SD(w), the subword-doubling map, as follows:

SD(w) = {u ∈ �∗ : there exist x, y, z ∈ �∗ such that u = xyyz

and w = xyz}.
In other words, SD(w) is the language of all strings obtainable from

w by doubling some subword.
For a language L, define

SD(L) =
⋃
w∈L

SD(w).

Define SD0(w) = {w} and SDi(w) = SD(SDi−1(w)) for i ≥ 1.
Finally, for a word w, define SDC(w), the subword-doubling closure

of w, as follows:

SDC(w) =
⋃
i≥0

SDi(w).

Prove that SDC(012) is not regular.
24. Let L1, L2 be languages with L1 ⊆ �∗, L2 ⊆ �∗, and let h : �∗ → �∗

be a morphism. Prove or disprove that

h(L1)− L2 ⊆ h(L1 − h−1(L2)).

Note: A− B means {x ∈ A : x �∈ B}.
25. The star height of a regular expression is the maximum number of nested

occurrences of the ∗ operator. The star height of a regular language L is
the minimum of the star heights of all regular expressions representing
L.

Show that the star height of any regular language over a one-letter
alphabet is ≤1.

26. Consider an alternate definition of quotient, defined as follows for
L1, L2 ⊆ �∗:

L1 ÷ L2 = {x ∈ �∗ : xy ∈ L1 for all y ∈ L2}.
If R is regular and L is any language, must R ÷ L be regular?

27. Characterize all regular languages L ⊆ �∗ with the following property:
there exists a constant c, depending on L, such that for all n ≥ 0, we
have |L ∩�n| ≤ c.

28. Fix an alphabet �. Give good upper and lower bounds on the number of
distinct languages that can be accepted by some DFA with n states.
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29. Let L1, L2 be languages. Consider the equation X = L1X + L2. Assum-
ing L1 does not contain the empty string, find a solution X of this equation
and prove it is unique. What if L1 contains ε?

30. Let �k = {0, 1, . . . , k − 1}. Let L ⊆ �∗k , and consider the set L(L) of
lexicographically largest strings of each length in L. Thus, for example,
in L({0, 1}∗) = 1∗ and L(ε + 1(0+ 01)∗) = (10)∗(ε+1).

Show that if L is regular, so is L(L).
31. (Continuation.) Instead of taking the lexicographically largest strings of

each length, consider taking the lexicographically median string of each
length. (That is, if there are r strings of length n, take string number �r/2�.)
Show that if the original language is regular, the resulting language need
not be regular.

32. In analogy with Example 3.12, compute the minimal elements for the
language

{2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, . . .}
of those strings that do not represent squares in base 10.

33. (a) A finite string x = a1a2a3 · · · an ∈ �∗ is said to possess the Fried-
man property if for all i, j with 1 ≤ i < j ≤ n/2, we have
ai · · · a2i |/aj · · · a2j . (Recall that w | x means w is a subsequence of
x.) Prove that for each �, there is a longest finite string with the
Friedman property.

(b) By analogy with (a), an infinite string x = a1a2a3 · · · ∈ �ω is said
to possess the Friedman property if for all i, j with 1 ≤ i < j , we
have ai · · · a2i |/aj · · · a2j . Prove that no infinite string possesses the
Friedman property.

∗34. Recall the operation cyc(L) from Section 3.4. Give an example of a
language L such that cyc(L) is regular, but L is not.

∗35. Let n be a positive integer and let Ln = (0+ (0 1∗)n−10)∗. Show that Ln

can be accepted by an NFA with n states, but no DFA with less than 2n

states accepts Ln.
36. Show that if R and L are regular languages given by DFAs, then there is

an algorithm to construct a DFA for R/L.
37. Consider the language Ak = {w ∈ {0, 1}k : w = wR}. Show that any

NFA accepting Ak has at least 2�k/2�+1 + 2�(k+1)/2� − 2 states. Also show
that this bound is tight.

38. Give a different proof of Theorem 3.4.1, based on the suggestion following
the proof.

39. Find the equivalence classes for the Myhill–Nerodeequivalence relation
for



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

3.13 Exercises 101

(a) L = {w ∈ {0, 1}∗ : |w|0 = |w|1}.
(b) L = {anbncn : n ≥ 1}.

∗∗40. Let � be a finite alphabet with at least two letters. A language L ⊆ �∗

is said to be sparse if

lim
n→∞
|L ∩�n|
|�n| = 0.

Prove or disprove that there exists a sparse language L such that LL =
�∗.

41. Describe a family of DFAs Mn for which Brzozowski’s algorithm takes
exponential time.

42. Show that for any word w ∈ �+, there exists a regular expression rw for
the language of all prefixes of w, such that |rw| ≤ 4|w|.

43. Show that there exists a constant c such that for any word w ∈ �+, there
exists a regular expression for �∗ − {w} of length ≤ c|w|.

∗44. Construct a family of regular expressions rn such that
(a) L(rn) ⊆ 0∗.
(b) There exists a constant c such that |rn| = O(nc).
(c) There exists a constant d such that the shortest regular expression

for L(rn) is of length >2dn.
45. For each k ≥ 0, show how to construct a regular language Lk over a finite

alphabet �k such that Lk has exactly nk words of length n, for all n ≥ 0.
(Note that 00 = 1.)

∗∗46. Describe a family of NFAs (Mn)n≥1 over a finite alphabet � satisfying
the following three conditions:
(a) Mn has O(n) states.
(b) L(Mn) �= �∗.
(c) the shortest string not accepted by Mn is of length ≥2n.

47. Give a proof of Theorem 1.4.2, (b)⇒ (a), along the following lines. Let
M = (Q,�, δ, q1, F ) be a DFA, where Q = {q1, q2, . . . , qn}. Define
Ri,j,k to be the language of all strings that take us from state i to state
j without passing through a state numbered higher than k. Now give a
recursion formula that allows you to compute Ri,j,k .

48. (Continuation.) Using the previous exercise, prove that if M is a DFA
with n = |Q| and k = |�|, then L(M) is specified by a regular expression
of length O(kn4n).

∗49. Show that if M1 is a DFA with m ≥ 1 states and M2 is a DFA with
n ≥ 2 states, then there is a DFA with ≤ m2n − 2n−1 states accepting
L(M1)L(M2). Furthermore, show that this bound is tight.
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50. We can consider the input–outputbehavior of a finite-state transducer on
an infinitelylong input. Now think about real numbers expressed in base-3
notation. Every real number between 0 and 1 has a base-3 expansion of
the form

.a1a2a3 · · · ,
where ai ∈ {0, 1, 2}; this expansion represents the number

∑
i≥1 ai3−i .

(You should think of the period as representing a “ternarypoint,”not
a decimal point.) Provided that the expansion does not end in infinitely
many 2s, this expansion is unique.

The Cantor set C is defined to be the set of all real numbers between
0 and 1 whose base-3 expansion contains only 0s and 2s. Prove that
every real number x between 0 and 1 can be written as the sum of
two numbers y and z chosen from C by giving a finite state transducer
that, on input a1a2a3 · · · , outputs the string [b1, c1][b2, c2][b3, c3] · · · ,
where x = .a1a2a3 · · · , y = .b1b2b3 · · · , z = .c1c2c3 · · · , y, z ∈ C, and
x = y + z.

51. (J. Buss) For each integer n ≥ 1, compute the deterministic state com-
plexity of the language Ln = {x ∈ {0, 1}∗ : [x]2 ≡ 0 (mod n)}, where by
[x]2 we mean the integer represented in base 2 by the string x.

52. Give a short regular expression for the language L(Mn) in Theorem 3.9.6.
By short we mean having O(n) symbols.

53. In an extended regular expression, intersection and complement may be
used. Give a short extended regular expression for the language L(w, x) =
{y : every occurrence of w in y is followed by x}.

54. Let � = {1, 2, . . . , n}, and define

Ln = {w ∈ �∗ : |w|i = 1 for all i}.
For example, L3 = {123, 132, 213, 231, 312, 321}.

(a) Prove that no regular expression of length <2n−1 can specify Ln.
(b) Prove that there exists a regular expression of length O(n2) specifying

Ln.
∗55. Let � = {1, 2, . . . , n}. Consider the language Ln consisting of all strings

over � such that there exists a way to partition the symbols of the string
into two multisets whose sum is equal. For example, 1122 ∈ L2, but
11221 �∈ L2. Show that each Ln is regular for n ≥ 1.

56. Let M = (Q,�, δ, q0, F ) be a DFA. Show that the language of strings
x that cause M to visit every state of Q while processing x is a regular
language.

57. An NFA M = (Q,�, δ, q0, F ) is ambiguous if there exists at least one
string w that M accepts via at least two distinct computation paths.
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(a) Show that an n-state NFA M is ambiguous if and only if it is ambigu-
ous on an input of length <n2 + n.

(b) Is this bound tight?
58. Let M be a DFA with n states, and suppose L(M) contains at least one

palindrome. Show that L(M) contains a palindrome of length <2n2.
59. Let E be a regular expression such that ε �∈ L(E). Show that there exists

a regular expression using only the operators union, concatenation, and
positive closure that specifies L(E).

60. Show that the Myhill–Nerodeequivalence classes for a language L are
the same as those for L.

61. Define the map r : �∗ → �∗ as follows: if w = a1a2 · · · an with each ai ∈
�, then r(w) = an

1an
2 · · · an

n . For example, r(abc) = aaabbbccc. Note
that r is not a morphism. Now extend r in the obvious way to languages
as follows: r(L) =⋃

x∈L r(x).
(a) Let L = (a+ ba)∗(ε + b), the language of words not containing bb

as a subword. What is r−1(L)?
(b) Show by means of an example that if L is regular then r(L) need not

be regular.
(c) Define r−1(L) = {x : r(x) ∈ L}. Prove that if L is regular then so is

r−1(L).
∗62. Let M = (Q,�, δ, q0, F ) be an NFA, and let a ∈ �. Let t ≥ 0, c ≥ 1

be the smallest integers such that δ(q0, a
t ) = δ(q0, a

t+c). Show that t ≤
(n− 1)2 + 1 and c divides lcm(1, 2, . . . , n).

63. Call a language L commutative if for all x, y ∈ L, we have xy = yx.
Show that L is commutative if and only if there exists a word w such that
L ⊆ w∗.

64. In this exercise you will develop an efficient algorithm to determine if
a regular language specified by an NFA M is palindromic, that is, if
x = xR for all x ∈ L(M). Your algorithm should run in time bounded by
a polynomial in the number of states of M .
(a) First, prove the following lemma: Let x, u, v,w, y, x′, u′, v′, w′, y ′

be words. If
(i) y ′x ′ = xy

(ii) y ′u′x ′ = xuy

(iii) y ′v′x ′ = xvy

(iv) y ′w′x ′ = xwy

(v) y ′v′u′x ′ = xuvy

(vi) y ′w′v′x ′ = xvwy

all hold, then y ′w′v′u′x ′ = xuvwy.
(b) Using the previous lemma, show that L(M) is palindromic if and only

if {x ∈ L(M) : |x| < 3n} is palindromic.
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(c) Show that there exists an NFA M ′ with O(r) states that accepts only
nonpalindromes and accepts all the nonpalindromes of length <r .

(d) Complete the proof of the algorithm by forming the cross-product of
M with M ′ to compute L(M)∩L(M ′). Finally, show that one can
efficiently determine if the resulting NFA accepts any word.

65. Show that for all n ≥ 2, there exists an NFA with n states such that the
shortest nonpalindrome accepted is of length 3n− 1.

66. Show that if L is regular, then L′ = {u ∈ �+ : there exists v ∈
�∗ such that uvu ∈ L} is regular.

67. A word w ∈ �∗ is said to bordered if it can be written in the form uvu

with u ∈ �+, v ∈ �∗. Show that the following problem is solvable in
polynomial time: given an NFA M , does M accept a bordered word?

68. For a word w ∈ �∗, we define palc(w) to be the palindromic closure of
w, that is, the (unique) shortest palindrome x such that w is a prefix of x.
Define palc(L) =⋂

w∈L{palc(w)}.
(a) Show that palc(w) = wt−1wR , where t is the longest palindromic

suffix of w.
(b) If L is regular, need palc(L) be regular?
(c) If L is regular, need palc−1(L) = {x ∈ �∗ : palc(x) ∈ L} be regular?

69. Let x1, x2, . . . , xk ∈ �∗. Show that �∗ − x∗1x∗2 · · · x∗k is finite if and only
if |�| = 1 and gcd(|x1|, |x2|, . . . , |xk|) = 1.

70. Let �,� be alphabets. We say a word pattern p ∈ �∗ matches a word
z ∈ �∗ if there exists a nonerasing morphism h such that h(p) = z. (By
nonerasing, we mean that h(a) �= ε for all a ∈ �.) For example, xx is a
pattern for the English word murmur. Define Pat(L) to be the language of
all patterns that match words in L.
(a) Give an example of a nonregular language L such that Pat(L) = L.
(b) Give an example of a nonregular language L such that Pat(L) is regular.
(c) Prove that if L ⊆ �∗ is regular, then the language

Pat(L) = {y ∈ �∗ : there exists z ∈ L such that y is a pattern for z}
is regular.

71. Let h : �∗ → �∗ be a morphism, and let L ⊂ �∗ be a language. Define

h−∗(L) =
⋃
i≥0

h−i(L),

where by h−i(L), we mean

i times︷ ︸︸ ︷
h−1(h−1(· · ·h−1(L))). Show that if L is regular,

so is h−∗(L).
72. Let L be a language, and define q(L) = {z ∈ L : xy �= z for all x, y ∈ L}.

Show that if L is regular, so is q(L).
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73. Let us say that a language L′ is an nth-order approximation to L if L∩
�≤n = L′ ∩�≤n.
(a) Define AL(n), the automaticity function of L, to be the smallest number

of states in any DFA M such that L(M) is an nth-order approximation
to L. Find good upper and lower bounds for AL(n).

(b) Prove that if L is not regular, then AL(n) ≥ (n+ 3)/2 infinitely often.

3.14 Projects

1. Find out more about applications of automata theory to game theory and
economics (“boundedrationality”).You could start with Axelrod [1984],
Rubinstein [1986], and Linster [1992].

2. Find out more about the connections between finite automata and number
theory. You can start with the book of Allouche and Shallit [2003].

3. Look into how regular languages can be efficiently learned. The paper of
Angluin [1987] is a good place to start. Also see Ibarra and Jiang [1991].

4. Look into the relationship between cellular automata and regular lan-
guages. Start with Wolfram [1984]. The book of Wolfram [2002] also has
some useful information, but at a much less technical level.

5. Look into generalizations of Theorem 3.4.1 and Theorem 3.8.8, the class of
regularity-preserving transformations. Start with the papers of Stearns and
Hartmanis [1963], Seiferas and McNaughton [1976], and Kozen [1996].

6. Look into the star-height problem, which asks for the minimum number of
nested stars needed in a regular expression for a given language. Start with
the papers of Eggan [1963] and Hashiguchi [1982, 1988].

3.15 Research problems

1. A DFA is called synchronizing if there exists a finite word w and a state
q such that reading w starting in any state leads to q. Cerny’s conjecture
asks if the length of the shortest synchronizing word for an automaton
with n states is ≤(n− 1)2. The best starting point is the Web page of Pin,
http://www.liafa.jussieu.fr/~jep/Problemes/Cerny.html.

2. Suppose you are given two distinct words u, v with |u|, |v| ≤ n. What is
the size of the smallest DFA that accepts u but rejects v, or vice versa? If
u and v are of different lengths then a simple argument gives a O(log n)
upper bound. How about if u and v are of the same length? Robson [1989]
showed that in this case a machine of size O(n2/5(log n)3/5) exists. Can
this bound be improved?
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3.16 Notes on Chapter 3

A good survey on regular languages is Yu [1997].

3.1 For Moore machines, see Moore [1956]. For Mealy machines, see
Mealy [1955].

3.2 Quotients were introduced by Ginsburg and Spanier [1963]. In the lit-
erature, L1/L2 is sometimes denoted L1L

−1
2 and is called the right quo-

tient. There is a corresponding notion of left quotient, written L−1
1 L2.

3.3 For more on morphisms, see Harju and Karhumäki [1997].
3.4 For generalizations of Theorem 3.4.1, see Seiferas and McNaughton

[1976].
3.5 Transducers are covered extensively in the book of Berstel [1979].

The particular kind of transducer we have studied in this section is
the most powerful finite-state version. Other, weaker, types of trans-
ducers include the generalized sequential machine or GSM, the se-
quential transducer (in left and right versions), and the subsequential
transducer.

3.6 The material in this section is from Shepherdson [1959]. In the litera-
ture, 2DFAs are often equipped with distinguished symbols that serve
as endmarkers for the input.

3.7 The transformation automaton can be found, in somewhat disguised
form, in McNaughton and Papert [1968]. Also see Lawson [2004,
chapters 8 and 9].

3.8 For more about the applications of Boolean matrices, see Zhang
[1999].

The current record for efficient n× n matrix multiplication is held
by Coppersmith and Winograd; it can be done in O(n2.376) steps.

3.9 The Myhill–Nerodetheorem is due to Nerode [1958]. Myhill [1957]
proved a similar result.

3.10 Theorem 3.10.5 can be considered with “NFA”replacing “DFA.”See
Nozaki [1979].

The algorithm MINIMIZE can be found in Hopcroft and Ullman
[1979].

For fast algorithms for DFA minimization, see, for example,
Hopcroft [1971], Gries [1973], and Blum [1996].

For Brzozowski’s algorithm, see Brzozowski [1962a]. This simple
algorithm has been rediscovered several times, for example, see Brauer
[1988] and Brzozowski [1989]. Our treatment of the equivalence rela-
tion ≡

k
is based on Wood [1987].
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3.11 Theorem 3.11.1 is due to Maslov [1970] and Yu, Zhuang, and Salomaa
[1994].

The PSPACE-completeness result is due to Jiang and Ravikumar
[1993, theorem 3.2].

Theorem 3.11.4 is due to Birget [1992] and was rediscovered in a
weaker form by Glaister and Shallit [1996], which is the source of
Example 3.11.5.

3.12 The material in this section is based on the treatment in Lothaire [1983,
§6.1] and Harrison [1978, §6.6]. Also see Haines [1969].
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4

Context-free grammars and languages

In this chapter we consider some advanced topics on context-free grammars
and languages. We start with closure properties.

4.1 Closure properties

You may recall from a first course on formal languages that the class of context-
free languages (CFLs) is closed under the operations of union, concatenation,
and Kleene ∗. (This follows easily from an argument using the representation
of a CFL by a grammar.)

Also recall that the class of CFLs is not closed under the operations of
intersection and complement. For example,

L1 = {aibicj : i, j ≥ 0}
and

L2 = {aibjcj : i, j ≥ 0}
provide examples of two CFLs such that their intersection is not context-free.
Similarly, L = {anbncn : n ≥ 0} is a non-CFL, but L is context-free (see
Exercise 1).

In this section we consider some of the operations we introduced in Sec-
tions 3.3–3.4, but for CFLs.

Theorem 4.1.1. The class of CFLs is closed under substitution by context-free
languages.

Proof. Let �,� be alphabets, let L ⊆ �∗ be a CFL, and suppose s is a
substitution such that s(a) = La ⊆ �∗ is a CFL for each a ∈ �. We wish to
show that s(L) is context-free.

108
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To see this, let G = (V,�,P, S) be a context-free grammar generating
L, and for each a ∈ �, let Ga = (Va,�, Pa, Sa) be a context-free grammar
generating La . By renaming variables, if necessary, we may assume that the
sets V and Va for a ∈ � are pairwise disjoint.

Now we construct a grammar for s(L). First, replace every occurrence of a

in G with Sa , the start symbol for the grammar Ga , and call the resulting set of
productions P ′. Now form the grammar

G′ = (V ∪
⋃
a∈�

Va,�, P ′ ∪
⋃
a∈�

Pa, S).

Clearly, L(G′) = s(L).

Corollary 4.1.2. The class of CFLs is closed under morphism.

Example 4.1.3. Theorem 4.1.1 and Corollary 4.1.2 are useful to prove that
certain languages are not context-free. For example, consider the language

ODD := {a1b3a5b7 · · · b4n−1 : n ≥ 1}.
To see that ODD is not context-free, let h(a) = h(b) = c. Assume ODD is context-
free. Then by Corollary 4.1.2, h(ODD) would be context-free, too. But h(ODD) =
{c4n2

: n ≥ 1}. This last language is easily seen not to be context-free using
the pumping lemma.

Theorem 4.1.4. The class of CFLs is closed under inverse morphism.

Proof Idea. Let L ⊆ �∗ be a CFL and h : �∗ → �∗ be a morphism. We want
to show that h−1(L) is context-free.

First, recall how the analogous property for regular languages was proved.
We took a deterministic finite automaton (DFA) M = (Q,�, δ, q0, F ) for
L and changed the “wiring,”defining δ′(q, a) = δ(q, h(a)). By analogy we
could start with a pushdown automaton (PDA) M = (Q,�,�, δ, q0, Z0, F )
accepting by final state and modify it in a similar way. Unfortunately, this
approach does not work directly for PDAs, since h(a) is a string, and on
processing a string a PDA may make many moves, including multiple pops of
the stack. In our PDA model there is no way to pop multiple symbols from a
stack in one move.

The solution is as follows: we read a symbol a from the input, compute h(a),
and then process the symbols of h(a) one by one. When we are done with the
symbols of h(a) we read another symbol from the input. The easiest way to
accomplish this is to store the as-yet-unprocessed symbols of h(a) in the state
of the PDA.
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Proof. More precisely, given M = (Q,�,�, δ, q0, Z0, F ) we create a PDA

M ′ = (Q′, �, �, δ′, q ′0, Z0, F
′),

where Q′ = Q× T and

T = {x : there exists a ∈ � such that x is a suffix of h(a)}.
Since � is finite, so is T . Also, we define q ′0 = [q0, ε] and F ′ = F × {ε}.

The transition function δ′ is defined as follows: there are Type 1 transitions
of the form

δ′([q, ε], a,X) = {([q, h(a)], X)}
for all q ∈ Q, a ∈ �, X ∈ �, and Type 2 transitions of the form

δ′([q, bx], ε,X) = {([p, x], γ ) : (p, γ ) ∈ δ(q, b,X)}
for all q ∈ Q, b ∈ � ∪ {ε}, X ∈ �, and bx ∈ T .

To see that this actually works, we must prove by induction on |x| that

(q, h(x), α)
∗� (p, ε, β) iff ([q, ε], x, α)

∗� ([p, ε], ε, β). The details are left to
the reader.

Theorem 4.1.5. Let T = (Q,�,�, q0, F, S) be a finite-state transducer and
let L ⊆ �∗ be a CFL. Then T (L) is context-free.

Proof. From Theorem 3.5.3 we know that the action of T on L can be repre-
sented as g(h−1(L)∩R), where g and h are morphisms and R is a regular lan-
guage. But the context-free languages are closed under these operations.

Theorem 4.1.6. The class of CFLs is not closed under quotient.

Proof. Let L = {a2nban : n ≥ 1}. Then L is easily seen to be context-free.
Define

L1 = (Lb)+ab

and

L2 = b(Lb)+.

Then both L1 and L2 are CFLs, since the class of CFLs is closed under the
operations of concatenation and Kleene ∗. If the CFLs were closed under
quotient then

L1/L2 = {x : ∃y ∈ L2 such that xy ∈ L1}
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would be a CFL. If xy ∈ L1 then

xy = ac1bac2b · · · ac2k−1bac2kbac2k+1b

for some positive integers c1, c2, . . . , c2k+1 with c2i−1 = 2c2i for 1 ≤ i ≤ k and
c2k+1 = 1. If y ∈ L2 then

y = bac2jbac2j+1b · · · ac2kbac2k+1b

for some j , 1 ≤ j ≤ k with c2t = 2c2t+1 for j ≤ t ≤ k and c2k+1 = 1. Now
c2k = 2, c2k−1 = 4, and so on, so it follows that

x = ac1bac2b · · · bac2j−1

with c2j−1 = 4k+1−j . Hence,

(L1/L2) ∩ a∗ = {a4n

: n ≥ 1},
and this language would also be context-free by Theorem 1.5.8. But {a4n

: n ≥
1} is easily seen not to be context-free using the pumping lemma, a contradic-
tion.

However, if L is a CFL and R is a regular language, then L/R is a CFL (see
Exercise 18).

4.2 Unary context-free languages

Consider CFLs over an alphabet consisting of a single symbol. In this section
we prove the following.

Theorem 4.2.1. A unary language is context-free if and only if it is regular.

Proof. If L is regular then it is context-free by Corollary 1.5.9.
For the converse, let L be a CFL with L ⊆ 0∗, and let n be the constant

in the pumping lemma for CFLs. For each m ≥ n with 0m ∈ L, the pumping
lemma applied to the string z = 0m says that there is some decomposition
0m = uvwxy, where |vx| ≥ 1 and |vwx| ≤ n, such that uviwxiy ∈ L for all
i ≥ 0. Now let am = |uwy| and bm = |vx|. Then 1 ≤ bm ≤ n, m = am + bm,
and 0am+ibm ∈ L for all i ≥ 0.

Let M = {m ≥ n : 0m ∈ L}, and let L′ = L∩ {ε, 0, 02, . . . , 0n−1}. Then

L = L′ ∪ {0m : m ∈ M} ⊆ L′ ∪
⋃
m∈M

0am (0bm )∗ ⊆ L,

so L = L′ ∪ ⋃
m∈M 0am (0bm )∗.
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Now each language 0am (0bm )∗ is a subset of 0a(0bm )∗ with a = am mod bm.
So define the finite set

A = {(a, b) : 1 ≤ b ≤ n, 0 ≤ a < b, and there exists m ∈ M with bm = b

and am ≡ a (mod bm)},
and, for all pairs (a, b) ∈ A, define

qa,b = min{am : m ∈ M and bm = b and am ≡ a (mod bm)}.
Then ⋃

m∈M
bm=b

am≡ a (mod bm )

0am (0bm )∗ =
⋃

(a,b)∈A
0qa,b (0b)∗,

so

L = L′ ∪
⋃

(a,b)∈A
0qa,b (0b)∗.

Thus we have written L as the union of a finite set (L′) and at most n2 regular
languages, so L is regular.

4.3 Ogden’s lemma

The pumping lemma is one of the most important tools we have for proving
languages not context-free (see Theorem 1.5.5). In this section we state and
prove a more powerful version of the pumping lemma known as Ogden’s
lemma.

Recall that the statement of the ordinary pumping lemma refers to a suf-
ficiently long string z, which we write as z = uvwxy with |vwx| ≤ n and
|vx| ≥ 1. By contrast, Ogden’s lemma permits us to identify certain symbols in
the string z as “marked”and consider only repetitions involving these symbols.

Lemma 4.3.1. Let L be a CFL generated by a grammar G with k variables,
where the right-hand side of every production is of length ≤d. Set n = dk+1.
Then for all z ∈ L with |z| ≥ n, if n or more symbols of z are marked arbitrarily,
there exists a decomposition z = uvwxy such that

(a) vx has at least one marked symbol.
(b) vwx has at most n marked symbols.
(c) There exists a variable A in G such that S =⇒∗ uAy, A =⇒∗ vAx,and

A =⇒∗ w.

Hence, uviwxiy ∈ L for all i ≥ 0.
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u v w x y

S

A

A

Figure 4.1: Proof of Ogden’s lemma

Note that by marking every symbol of z, we obtain the ordinary pumping
lemma for CFLs as a special case of Ogden’s lemma.

Proof. Let z ∈ L with |z| ≥ n = dk+1, and let T be a derivation tree for z. For
each vertex γ in T , we let m(γ ) be the number of marked descendants of γ .
We iteratively construct a path P in T having the property that for all vertices
α in P , we have m(α) > 0.

First, we add the root of T to P . If α is the last vertex added to P , we
consider the children of α. If α has no children, we stop. If α has only one
child β with m(β) > 0, add β to P and continue the construction starting with
β. Otherwise, if two or more children of α have marked descendants, call α a
branch point, pick a child β that maximizes the number of marked descendants,
add β to P , and continue the construction starting with β.

Now let the branch points on P , from top to bottom, be α0, α1, α2, . . . , αj . By
our construction, m(αi+1) ≥ 1

d
m(αi) for 0 ≤ i < j . Now m(α0) ≥ dk+1 (since z

has≥n marked descendants) and so inductively we get m(α1) ≥ 1
d
m(α0) ≥ dk ,

m(α2) ≥ 1
d
m(α1) ≥ dk−1, and so forth, until m(αj ) ≥ dk−j+1. But m(αj ) ≤ d

(since otherwise αj could not be the last branch point). It follows that d ≥
dk+1−j , and so 1 ≥ k + 1− j . Thus, j ≥ k.

Hence there are at least k + 1 branch points. Each branch point is labeled
with a variable, and there are only k variables, so among the last k + 1 branch
points there are two labeled with the same variable, say A. Thus we have a
situation like that depicted in Figure 4.1.

It follows that there exist strings u, v,w, x, y ∈ �∗ such that S
∗=⇒ uAy,

A
∗=⇒ vAx, and A

∗=⇒ w. Furthermore, vwx is the yield of the subtree of T

rooted at the branch point p labeled with the higher occurrence of A, and this
branch point has at most k other branch points below it in the path P . So p = αi

for i ≥ j − k. Now αj has at most d marked descendants; αj−1 has at most d2

marked descendants, and so on, so αi has at most dk+1 marked descendants.
Hence, vwx has no more than dk+1 = n marked symbols. Since the higher
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occurrence of A is a branch point, we know it has at least two children, say β

and γ , with marked descendants. Now w is the yield of one of these children,
so the other child with marked descendants yields at least one symbol in vx.

By induction on i we get S
∗=⇒ uAy

∗=⇒ uviAxiy
∗=⇒ uviwxiy and so

uviwxiy ∈ L(G). This completes the proof of Ogden’s lemma.

Example 4.3.2. Let us prove that

L = {aibjck : i = j or j = k but not both}
is not context-free. Note that the ordinary pumping lemma does not suffice
to prove L not context-free, since, for example, if we choose z = anbncr ,
r �= n, we cannot rule out the possibility that vx contains nothing but c’s, so
by pumping we cannot force the number of b’s to equal the number of c’s.

However with Ogden’s lemma and z = anbncn+n!, we can mark the a’s.
(This idea is sometimes called the n! trick.) Let z = uvwxy be the resulting
decomposition. Since vx must have at least one marked symbol, either (a)
v = ε and x contains an a or (b) v contains an a. In case (a), x cannot contain
any b’sor c’s, for otherwise uv2wx2y �∈ L. Hence, x consists only of a’s, say
x = al for some l ≥ 1. Then uv2wx2y = an+lbncn+n! �∈ L.

In case (b), v cannot contain any b’sor c’s, for otherwise uv2wx2y �∈ L.
Hence, v consists only of a’s, say v = al for some l with 1 ≤ l ≤ n. Now x

cannot contain two types of letters, for if it did, uv2wx2y �∈ L. So either x = am,
or x = bm, or x = cm for some m. If x = am or cm, then uv2wx2y �∈ L. If
x = bm, then either m �= l or m = l. If m �= l, then, by choosing i = 0, we get
that uwy has unequal numbers of a’s and b’s, so it is not in L. If m = l, then
choosing i = n!/l + 1 we get uv(n!/l)+1wx(n!/l)+1y = an+n!bn+n!cn+n! �∈ L.

Common Error 4.3.3. Note that Ogden’s lemma does not restrict the length of
v, w, or x other than the restriction implied by the number of marked symbols.
In particular, Ogden’s lemma does not necessarily imply that |v|, |w|, |x| ≤ n.

4.4 Applications of Ogden’s lemma

In this section we look at two additional applications of Ogden’s lemma. The
first concerns inherent ambiguity, while the second concerns the optimality of
a common construction for converting from a PDA to a CFG.

As we have seen in Section 1.5, a context-free grammar can be ambiguous;
that is, at least one word in the language generated has at least two different
leftmost derivations. Often it is possible to generate the language using a
different grammar that is unambiguous. However, this is not always the case:
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there exist CFLs for which every grammar is ambiguous. Such languages
are called inherently ambiguous. Note that inherent ambiguity is a property of
languages, while ambiguity is a property of grammars. It is notoriously difficult
to prove that a given language is inherently ambiguous.

Theorem 4.4.1. Let

La = {aibjck : i = j or j = k}.

Then La is a CFL that is inherently ambiguous.

The reason why this theorem is difficult to prove is that we have to show that,
no matter what context-free grammar is chosen to generate La , some string with
at least two different derivations exists. While this is believable—intuiti vely
we will need some variable that derives strings of the form aibicj and another
that derives strings of the form aibjcj , and hence some string of the form
aibici will be derived by both variables—note that it is not true that the same
string be derived ambiguously for all grammars. For every string you pick,
there is a CFG that generates La and generates that particular string in only
one way.

Proof. Clearly, La is context-free, as it is the union of {aibi : i ≥ 0}c∗ and
a∗{bici : i ≥ 0}, both of which are CFLs.

Let n be the constant in Ogden’s lemma. Consider the string z = ambmcm+m!,
where m = max(n, 3), and mark the a’s. By Ogden’s lemma there exists a
factorization z = uvwxy and a variable A such that S =⇒∗ uAy, A =⇒∗ vAx,
and A =⇒∗ w. Thus, uviwxiy ∈ La for all i ≥ 0; take i = 2 to get α :=
uv2wx2y ∈ La . Also, vx has at most m b’s, because that is the total number of
b’sin z. Since m ≥ 3, we have m < m!, and so |α|b ≤ 2m < m+m! ≤ |α|c.
Thus, |α|a = |α|b. Thus, vx contains the same number of a’sas b’s and must
contain at least one a since vx contains at least one marked symbol. Now
v and x can each contain only one type of symbol, for otherwise α �∈ La .
Thus, v = aj , x = bj , for 1 ≤ j ≤ m. Now let i = m!

j
+ 1 to get a deriva-

tion of

β = uviwxiy = am+m!bm+m!cm+m!

by using the production A =⇒∗ vAx i times.
Now play exactly the same game starting with the string z′ = am+m!bmcm,

but this time, mark the c’s. Once again, we get a factorization z′ = u′v′w′x ′y ′

and a variable A′ such that S =⇒∗ u′A′y ′, A′ =⇒∗ v′A′x ′, and A′ =⇒∗ w′.
And once again, we get that v′ = bj ′ , x ′ = cj ′ for some j ′, 1 ≤ j ′ ≤ m. Now
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let i ′ = m!
j ′ + 1 to get a derivation of

β = u′v′i
′
w′x ′i

′
y ′ = am+m!bm+m!cm+m!.

I claim these two derivations are different. To see this, observe that first
obtains all but m− j of its b’s through the production A =⇒∗ ajAbj , while
the second obtains all but m− j ′ of its b’s through the production A′ =⇒∗ bj ′

A′bj ′ .

Now let us turn to our second application of Ogden’s lemma.
In Section 1.5 we examined a well-known construction for finding a context-

free grammar that generates the same language as that accepted by a given PDA
(accepting by empty stack). Students seeing this construction for the first time
are often surprised at how difficult it seems. After all, the construction is not
particularly obvious. This leads to the following natural question: can the triple
construction be simplified? Perhaps surprisingly, the answer is no, at least with
respect to the number of variables, as the following theorem shows. As a bonus,
we get a nice application of Ogden’s lemma.

Theorem 4.4.2. For all integers n, p ≥ 1, there exists a PDA M = M(n, p)
with n states and p stack symbols such that every context-free grammar G

generating Le(M) uses at least n2p variables.

Proof. Let M = (Q,�,�, δ, q1, Z1,∅), where

• Q = {qi : 1 ≤ i ≤ n};
• � = {Zj : 1 ≤ j ≤ p};
• � = {ai,j , ti,j : 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {bk, dk : 1 ≤ k ≤ n};
and δ is defined as follows:

δ(q1, ai,j , Z1) = {(qi, Zj )}
δ(qi, ti,j , Zj ) = {(qi, ZjZj )}
δ(qi, bk, Zj ) = {(qk, Zj )}
δ(qk, dk, Zj ) = {(qk, ε)}.

Let L = Le(M) and let G = (V,�,P, S) be a context-free grammar such that
L(G) = L. Let m be the constant in Ogden’s lemma applied to G. For every
triple (i, j, k) such that 1 ≤ i, k ≤ n, 1 ≤ j ≤ p, let

z = z(i, j, k) = ai,j t
m
i,j bkd

m+1
k .
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We claim that M accepts z for we have the accepting computation

(q1, z, Z1) � (qi, t
m
i,j bkd

m+1
k , Zj )

∗� (qi, bkd
m+1
k , Zm+1

j )
∗� (qk, d

m+1
k , Zm+1

j )
∗� (qk, ε, ε).

Now, using Ogden’s lemma, mark all the symbols ti,j and dk; hence, 2m+ 1 ≥
m symbols are marked. By Ogden’s lemma we can write z = uvwxy such that

vx has at least one marked letter

vwx has ≤ m marked letters,

and there exists a variable Ai,j,k ∈ V such that

S
∗=⇒ uAi,j,ky

∗=⇒ uvrAi,j,kx
ry

∗=⇒ uvrwxry

for all r ≥ 0. This gives n2p variables. Now we must show they are all distinct.
If uwy ∈ Le(M), it must contain one more d letter than t letter, so vx must

contain the same number of t’sas d’s. By Ogden’s lemma, vx contains at least
one t or d, so it must contain both a t and a d. Since vwx has≤ m t’s and d’s, u
and y must be nonempty. Hence there exist integers s, σ ≥ 1 with s + σ ≤ m

and

u = ai,j t
m−s
i,j ;

vwx = t si,j bkd
σ
k ;

y = dm+1−σ
k .

Let Ai,j,k be a variable in G associated with z(i, j, k) = uvwxy. Let Ai ′,j ′,k′

be a variable in G associated with z(i′, j ′, k′) = u′v′w′x ′y ′. Suppose Ai,j,k =
Ai ′,j ′,k′ . Then we have

S
∗=⇒ uAi,j,ky = uAi ′,j ′,k′y

∗=⇒ uv′w′x ′y = ai,j t
m−s
i,j t s

′
i ′,j ′bk′d

σ ′
k′ d

m+1−σ
k ∈ L.

But after reading ai,j t
m−s
i,j , the configuration of M is of the form (qi,−, Zm−s+1

j ),
and it will now crash on reading ti ′,j ′ unless i ′ = i and j ′ = j . Simi-
larly, after having read uv′w′x ′, the configuration of M is of the form
(qk′ ,−, Zm+1−s+s′−σ ′

j ) and will crash on reading dk unless k = k′. Thus,
Ai,j,k = Ai ′,j ′,k′ implies that (i, j, k) = (i ′, j ′, k′).
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4.5 The interchange lemma

There are not many tools known to prove that a given language is not a CFL.
In this section we examine another tool: the interchange lemma. Roughly
speaking, the interchange lemma says that if a language is context-free, then
there is a large subset of the words of length n such that one can take two
strings from this subset, and interchange the subwords appearing at the same
position, and still get strings in the language. We then use this tool to prove that
the language of square-containing words is not a CFL.

Lemma 4.5.1. Let L be a CFL. Then there is a constant c > 0, depending on
L, such that for all integers n ≥ 2, all subsets R ⊆ L∩�n, and all integers
with 2 ≤ m ≤ n, there exists a subset Z ⊆ R, Z = {z1, z2, . . . , zk} such that
k ≥ |R|

c(n+1)2 and there exist decompositions zi = wixiyi , 1 ≤ i ≤ k, such that

(a) |w1| = |w2| = · · · = |wk|;
(b) |y1| = |y2| = · · · = |yk|;
(c) m

2 < |x1| = |x2| = · · · = |xk| ≤ m; and
(d) wixjyi ∈ L for all i, j , 1 ≤ i, j ≤ k.

First, we prove two technical lemmas.

Lemma 4.5.2. Let G = (V,�,P, S) be a context-free grammar in Chomsky
normal form generating L. Let m be an integer with m ≥ 2. Then for all strings
z ∈ L with |z| ≥ m, there exists a variable A ∈ V and a derivation

S
∗=⇒ wAy

∗=⇒ wxy = z

with m
2 < |x| ≤ m.

Proof. Let p be root of T , a parse tree for z. Clearly, p has ≥m descendants
that are terminal symbols. If p has exactly m descendants that are terminals,
take w = y = ε, A = S, and x = z. So assume p has >m descendants. Now
repeatedly replace p with the child that has the larger number of terminal
descendants, until p has ≤m descendants. Since the parent of p had >m

descendants, p must have >m/2 descendants. Let A be the label of p. Then
there exist strings w, y with S

∗=⇒ wAy and A
∗=⇒ x with m

2 < |x| ≤ m.

We now define certain sets involving derivations. Choose a subset R ⊆
L∩�n. For integers n1, n2 with 0 ≤ n1, n2 ≤ n define

Qn,R(n1, A, n2) : = {z ∈ R : there exists a derivation S
∗=⇒ wAy

∗=⇒
wxy = z, |w| = n1, |y| = n2}.
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Lemma 4.5.3. Let G = (V,�,P, S) be a context-free grammar in Chomsky
normal form generating L. Let 2 ≤ m ≤ n. Then for all subsets R ⊆ L∩�n,
there exist integers 0 ≤ n1, n2 ≤ n such that

m

2
< n− n1 − n2 ≤ m

and a variable A ∈ V such that

|Qn,R(n1, A, n2)| ≥ |R|
|V |(n+ 1)2

.

Proof. We have

R =
⋃
A∈V

0≤n1 ,n2≤n

Qn,R(n1, A, n2) =
⋃
A∈V

0≤n1 ,n2≤n
m
2 <n−n1−n2≤m

Qn,R(n1, A, n2),

where in the last line we used Lemma 4.5.2. Thus we have written R as the
union of at most (n+ 1)2|V | sets, so at least one of these sets has |R|

|V |(n+1)2

elements.

We can now prove the interchange lemma.

Proof. Let G = (V,�,P, S) be a context-free grammar in Chomsky nor-
mal form generating L− {ε}. Let c = |V |, and choose a subset R ⊆ L∩�n.
Then by Lemma 4.5.3 there exist integers 0 ≤ n1, n2 ≤ n with m

2 < n−
n1 − n2 ≤ m and a variable A such that |Qn,R(n1, A, n2)| ≥ |R|

|V |(n+1)2 . Take
Z = Qn,R(n1, A, n2). Every string zi ∈ Z has a derivation of the form

S
∗=⇒ wiAyi

∗=⇒ wixiyi = zi

with |wi | = n1 and |yi | = n2. Thus,

S
∗=⇒ wiAyi

∗=⇒ wixjyi ∈ L.

The proof of the interchange lemma is now complete.

We now give an application of the interchange lemma. Let Li be the language

{xyyz : x, z ∈ �∗, y ∈ �+},
where � = {0, 1, . . . , i − 1}. Thus, Li is the language of all words containing
(nontrivial) squares over an alphabet of i letters. It is not hard to see that L1

and L2 are context-free. (In fact, they are regular, by Exercise 2.3.) We will use
the interchange lemma to prove the following theorem.

Theorem 4.5.4. The language Li is not a CFL for i ≥ 3.
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Proof. First we prove the result for i = 6. At the end we explain how to get
the result for all i ≥ 3.

Assume that L6 is context-free. Let c be the constant in the interchange
lemma and choose n sufficiently large so that it is divisible by 8 and

2n/4

c(n+ 1)2
> 2n/8.

(The reason for this choice will be clear in a moment.)
By Theorem 2.5.2 there exists a squarefree string of every length over a

three-letter alphabet. Choose such a string r ′ of length n
4 − 1 over {0, 1, 2} and

define r = 3r ′. Define

An := {rrXs : s ∈ {4, 5}n/2},
where X is the perfect shuffle introduced in Section 1.2. Thus, every string in
An is of length n.

The strings in An have the following useful properties:

1. If z1 = w1x1y1, and z2 = w2x2y2 are strings in An with |w1| = |w2|,
|x1| = |x2|, and |y1| = |y2|, then w1x2y1 and w2x1y2 are both in An, too. For
z1 = rrXs, z2 = rrXs ′, and substituting x2 for x1 leaves the symbols corre-
sponding to rr the same, while possibly changing the symbols corresponding
to s. But since any s is permissible, this change does not affect membership
in An.

2. If z ∈ An, then z contains a square if and only if z is a square. For if z

contained a square, then considering only the symbols of z in {0, 1, 2, 3}, we
would still have a square. But this is impossible, since r is squarefree.

Now define the following subset of An:

Bn := L6 ∩An

= {rrXss : s ∈ {4, 5}n/4}.
Clearly, |Bn| = 2

n
4 . Since Bn ⊆ L6, the interchange lemma applies with m =

n/2 and R = Bn. Then there is a subset Z ⊆ Bn, Z = {z1, z2, . . . , zk} with
zi = wixiyi satisfying the conclusions of that lemma. In particular, k = |Z| ≥

2n/4

c(n+1)2 > 2n/8.
There are now two cases to consider, and each will lead to a contradiction.
Case 1: There exist indices g, h such that xg �= xh.
Case 2: There do not exist such indices.
In Case 1, we know from the interchange lemma that wgxhyg ∈ L. Since

xg �= xh, there must be a 4 or 5 in one-half of zg that is changed. But since
|xh| ≤ n/2, the corresponding symbol is not changed in the other half of the
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string. So wgxhyg cannot be a square. Since wgxhyg ∈ An, by observation (2)
given before see that wgxhyg cannot contain a square, either. Thus, wgxhyg �∈ L,
a contradiction.

In Case 2, all the xi must be the same. So there are at least n/4 positions in
which all the zi agree. This set of n/4 positions contains at least n/8 4’s and
5’s. There are only at most n/8 positions where we are free to make a choice
between 4 and 5. Thus, |Z| ≤ 2n/8, a contradiction.

It now follows that L6 is not a CFL.
We now show how to get the result for Li , i ≥ 3. In Exercise 34 you are

asked to show that the following morphism h is squarefree-preserving; that is,
x is squarefree if and only if h(x) is squarefree.

0→ 0102012022012102010212

1→ 0102012022201210120212

2→ 0102012101202101210212

3→ 0102012101202120121012

4→ 0102012102010210120212

5→ 0102012102120210120212.

Now suppose L3 is context-free. Then, by Theorem 4.1.4, the language
h−1(L3) is context-free. But since h is squarefree-preserving, h−1(L3) is the
language of all square-containing words over a six-letter alphabet, that is, L6,
which we have just proved non-context-free, a contradiction.

Finally, suppose Li is context-free for some i ≥ 3. Then Li ∩ {0, 1, 2}∗ is
context-free by Theorem 1.5.8. But this is L3, a contradiction.

4.6 Parikh’s theorem

In Section 4.2 we saw that every CFL over a unary alphabet is regular. In
this section we consider a beautiful generalization of this result, called Parikh’s
theorem. Parikh’s theorem has been described as “amongthe most fundamental,
yet subtly difficult to prove, in the theory [of context-free languages].”

If L ⊆ a∗ is a unary language, then we can consider the associated set

lengths(L) = {i : ai ∈ L}.
As we have seen in the proof of Theorem 4.2.1, if L is context-free, then
lengths(L) has the property that it is the union of finitely many arithmetic
progressions, that is, sets of the form {k + it : i ≥ 0}. It is natural to wonder
if this observation can be generalized to languages over larger alphabets.
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It can. To do so, we need to introduce the concepts of linear and semilinear
sets. Let k be an integer ≥1. A subset A of N

k is said to be linear if there exist
u0, u1, . . . , ur ∈ N

k such that

A = {u0 + a1u1 + · · · + arur : a1, a2, . . . , ar ∈ N}. (4.1)

The right-hand side of Eq. (4.1) is sometimes written as u0 + 〈u1, u2, . . . , ur〉.
A subset A of N

k is said to be semilinear if it is the union of finitely many
linear sets.

Next, we introduce the Parikh map ψ . We start with an ordered alphabet
� = {a1, a2, . . . , ak}. Then ψ : �∗ → N

k maps a word w ∈ �∗ to the vector
of length k given by

(|w|a1, |w|a2 , . . . , |w|ak
).

For example, if � = {a, b, c, d, e} and is ordered by alphabetic order, then
ψ(beaded) = (1, 1, 0, 2, 2). The map ψ can be extended to languages L as
follows:

ψ(L) =
⋃
w∈L
{ψ(w)}.

Note that the Parikh map is essentially the commutative image of a word and
that ψ(xy) = ψ(x)+ ψ(y) for all strings x, y ∈ �∗.

A very useful result about semilinear sets is the following:

Theorem 4.6.1. For any k ≥ 1, the class of semilinear sets of N
k is closed

under union, intersection, and complement.

Proof. The result about union is clear. Unfortunately, the proof for intersection
and complement is quite difficult and we omit it. A proof can be found in the
references at the end of this chapter.

Now, Parikh’s theorem says that if L is a CFL, then ψ(L) is semilinear. Note
that the converse does not hold (see Example 4.6.2(d)).

Example 4.6.2. Let us look at some examples:

(a) L0 = {0, 01}∗. Then ψ(L1) = 〈(1, 0), (1, 1)〉.
(b) L1 = {0, 1}2. Then ψ(L1) = {(0, 2), (1, 1), (2, 0)}. (This can be written as

((0, 2)+ 〈(0, 0)〉) ∪ ((1, 1)+ 〈(0, 0)〉) ∪ ((2, 0)+ 〈(0, 0)〉) .)
(c) L2 = {0n1n : n ≥ 1}. Then ψ(L2) = (1, 1)+ 〈(1, 1)〉.
(d) L3 = {0n1n2n : n ≥ 1}. Then ψ(L3) = (1, 1, 1)+ 〈(1, 1, 1)〉.
(e) L4 = PAL = {w ∈ {0, 1}∗ : w = wR}. Then

ψ(L4)=〈(0, 2), (2, 0)〉 ∪ ((0, 1)+〈(0, 2), (2, 0)〉) ∪ ((1, 0)+〈(0, 2), (2, 0)〉) .
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To see this, note that we can generate a palindrome with any given Parikh
image, except the case where both coordinates are odd.

(f) L5 = {0m1m2n3n : m, n ≥ 1}. Then ψ(L5) = (1, 1, 1, 1)+ 〈(1, 1, 0, 0),
(0, 0, 1, 1)〉.

(g) L6 = EQ = {w ∈ {0, 1}∗ : |w|0 = |w|1}. Then ψ(L6) = 〈(1, 1)〉.
(h) L7 = {x ∈ {0, 1}∗ : x is not of the form ww}. Then

ψ(L7) = ((0, 1)+X) ∪ ((1, 0)+X) ∪ ((1, 1)+X) ∪ ((2, 2)+X) ,

where X = 〈(0, 2), (2, 0)〉. The proof is left as Exercise 31.

The next theorem gives a relationship between semilinear sets and regular
languages.

Theorem 4.6.3. Let X ⊆ N
k be a semilinear set. Then there exists a regular

language L ⊆ �∗, where � = {a1, a2, . . . , ak}, such that ψ(L) = X.

Proof. A semilinear set is a union of a finite number of linear sets. So it
suffices to show the result for a linear set T .

Let T = u0 + 〈u1, u2, . . . , ut 〉, where ui = (vi,1, vi,2, . . . , vi,k). Now let

L = a
v0,1

1 a
v0,2

2 · · · av0,k

k

( ∑
1≤i≤t

a
vi,1

1 a
vi,2

2 . . . a
vi,k

k

)∗
.

Then L is regular and ψ(L) = T .

Now let us prove Parikh’s theorem. First, we need a lemma.

Lemma 4.6.4. Let G = (V,�,P, S) be a context-free grammar with k vari-
ables in Chomsky normal form. Let p = 2k+1. For all integers j ≥ 1, if
z ∈ L(G) and |z| ≥ pj , every derivation S =⇒∗ z has the same derivation
tree as a derivation of the form

S =⇒∗ uAy

=⇒∗ uv1Ax1y

=⇒∗ uv1v2Ax2x1y

...

=⇒∗ uv1v2 · · · vjAxj · · · x2x1y

=⇒∗ uv1v2 · · · vjwxj · · · x2x1y = z,

where A ∈ V , vixi �= ε for 1 ≤ i ≤ j , and |v1v2 · · · vjxj · · · x2x1| ≤ pj .
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Proof. Consider a derivation tree for z. As in the proof of the ordinary pump-
ing lemma for context-free grammars, since |z| ≥ pj = 2j (k+1), there must be
a path P of length ≥j (k + 1)+ 1 from the root S to a terminal. This path P

contains j (k + 1)+ 1 variables, so some variable must occur at least j + 1
times. Now trace a path P ′ from the last node on P backup until some variable
A occurs at least j + 1 times for the first time. The yield of the highest A

in P ′ is of length at most 2j (k+1) = pj . Each A gives a derivation of the form
A =⇒∗ viAxi ; combining these with S =⇒∗ uAy and the yield of the lowest A,
A =⇒∗ w, gives a derivation of the desired form with |v1v2 · · · vjxj · · · x2x1| ≤
pj . Each vixi is nonempty because these correspond to a variable other than
A, which must derive a nonempty string.

We are now ready for the proof of Parikh’s theorem.

Theorem 4.6.5. If L is a CFL, then ψ(L) is semilinear.

Proof. We can assume without loss of generality that L does not contain ε,
for if it does, we can first compute ψ(L) for the CFL L− {ε} and then add in
the vector (0, 0, . . . , 0).

So let G = (V,�,P, S) be a context-free grammar in Chomsky normal
form generating L− {ε}, and let p be the constant in the previous lemma.
Let U ⊆ V be any set of variables containing S. Define LU to be the set
of all words generated by G for which there exists a derivation including
precisely the variables in U—no more, no less. Now there are only finitely many
LU , and L =⋃

{S}⊆U⊆V LU . Thus, it suffices to show that each LU is semi-
linear.

Now fix an arbitrary U and assume that all derivations use only the variables
from U . Let � = |U |, and define the languages

E = {w ∈ LU : |w| < p�}

and

F = {vx : 1 ≤ |vx| ≤ p� and A =⇒∗ vAx for some variable A ∈ U}.

Note that both E and F are finite, so ψ(EF ∗) is semilinear. We will show that
ψ(LU ) = ψ(EF ∗).

First, let us show that ψ(LU ) ⊆ ψ(EF ∗). Let z ∈ LU ; we prove that ψ(z) ∈
ψ(EF ∗) by induction on |z|. The base case is |z| < p�. In this case, z ∈ E ⊆
EF ∗, so ψ(z) ∈ ψ(EF ∗).
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For the induction step, assume |z| ≥ p� and z ∈ LU . By Lemma 4.6.4, there
is a derivation for z that can be written in the form

S =⇒∗ uAy

(d1) =⇒∗ uv1Ax1y

(d2) =⇒∗ uv1v2Ax2x1y

...

(d�) =⇒∗ uv1v2 · · · v�Ax� · · · x2x1y

=⇒∗ uv1v2 · · · v�wx� · · · x2x1y = z,

where the derivations have been labeled d1, d2, . . . , d�.
Now, with each of the �− 1 variables B ∈ U − {A}, associate (arbitrarily)

a derivation di if B occurs in di . Since there are � labeled derivations and only
�− 1 variables in B ∈ U − {A}, there must be at least one derivation di that is
not associated with any variable. We can therefore omit di to get a derivation

S =⇒∗ uv1 · · · vi−1vi+1 · · · v�wx� · · · xi+1xi−1 · · · x1y = z′,

where z′ ∈ LU . Since |z′| < |z|, by induction we have ψ(z′) ∈ ψ(EF ∗). Now
vixi ∈ F , so ψ(z) = ψ(z′vixi) ∈ ψ(EF ∗), as desired.

Now we prove the other direction. Let z ∈ EF ∗; then z = e0f1f2 · · · ft for
some t ≥ 0, where e0 ∈ E and fi ∈ F for 1 ≤ i ≤ t . We prove by induction on
t that ψ(z) ∈ ψ(LU ).

The base case is t = 0. In that case, z = e0 ∈ E. Then by definition, z ∈ LU ,
so ψ(z) ∈ ψ(LU ).

For the induction step, assume z = e0f1 · · · ft , where e0 ∈ E and each
fi ∈ F . Since ft ∈ F , we can write ft = vx, where 1 ≤ |vx| ≤ pl and
A =⇒∗ vAx. By induction we know ψ(e0f1 · · · ft−1) = ψ(z′) for some
z′ ∈ LU . But since z′ ∈ LU , there exists a derivation of z′ using the vari-
able A, say S =⇒∗ v′Ax ′ =⇒∗ v′w′x ′ = z′. But then S =⇒∗ v′Ax ′ =⇒∗
v′vAxx ′ =⇒∗ v′vwxx ′ = z′′, so z′′ ∈ LU . Now ψ(z′′) = ψ(z′)+ ψ(vx) =
ψ(e0f1 · · · ft−1)+ ψ(ft ) = ψ(z), so ψ(z) ∈ ψ(LU ), as desired.

Sometimes Parikh’s theorem is useful for proving certain languages non-
context-free when other methods, such as the pumping lemma, fail.

Example 4.6.6. Let us prove that L = {aibj : j �= i2} is not context-free.
Suppose it is. Then by Parikh’s theorem, the set ψ(L) = {(i, j ) : j �= i2} is
semilinear. By Theorem 4.6.1, T := ψ(L) = {(i, i2) : i ≥ 0} is semilinear.
But by Theorem 4.6.3, there exists a regular language R ⊆ {a, b}∗ such that
ψ(R) = T . Now consider the morphism h : {a, b}∗ → c∗ defined by h(a) =
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h(b) = c. Then h(R) = {cn2+n : n ≥ 0}, which is easily seen to be nonregular
using the pumping lemma, a contradiction (since regular languages are closed
under application of a morphism). Thus, L is not context-free.

You might find this proof a bit unsatisfactory, as it depends on Theorem 4.6.1,
which we did not prove. We can prove the result about L without Theorem 4.6.1,
but it requires a bit more work. To do so, assume that ψ(L) is semilinear.
Then it is the union of linear sets, each of which can be written in the form
u0 + 〈u1, u2, . . . , uj 〉. Let d ′ be the maximum of all the integers occurring in
all vectors defining ψ(L), and let d = max(d ′, 3). Now let m = d! and n =
(d!)2 − d!. Clearly, n �= m2, so (m, n) ∈ ψ(L), and so (m, n) belongs to some
linear set u0 + 〈u1, u2, . . . , uj 〉. We first claim that some ui , 1 ≤ i ≤ j , must be
of the form (0, r) for some r , 1 ≤ r ≤ d. For otherwise, all the first coordinates
of the ui , 1 ≤ i ≤ j , are at least 1. Since (m, n) ∈ u0 + 〈u1, u2, . . . , uj 〉, we
can write

(m, n) = (q0, r0)+
∑

1≤i≤j

ai(qi, ri),

where ui = (qi, ri). Since each qi ≥ 1, it follows that m ≥ a1 + a2 + · · · + aj .
Now n = r0 + a1r1 + · · · + aj rj ≤ (m+ 1)d. Now, since d ≥ 3, we have d! >

d + 2 and so n = (d!)2 − d! > (d + 2)d!− d! = (d + 1)d! > d(d!+ 1) =
d(m+ 1), a contradiction.

Thus some ui is of the form (0, r). It follows that (m, n)+ t(0, r) ∈ ψ(L)
for all t ≥ 0. Now take t = d!/r; this is an integer because 1 ≤ r ≤ d. Then

(m, n)+ t(0, r) = (m, n)+ d!

r
(0, r) = (m, n+ d!) = (d!, (d!)2) ∈ ψ(L),

a contradiction.

4.7 Deterministic context-free languages

An interesting subclass of the CFLs is the deterministic context-free languages,
or DCFLs.

To formally define this class, recall that a PDA is given by a 7-tuple M =
(Q,�,�, δ, q0, Z0, F ). The PDA M accepts a string x by final state if and

only if (q0, x, Z0)
∗� (q, ε, α) for some q ∈ F and α ∈ �∗. We say that M is

deterministic if the following two conditions hold:

(a) |δ(q, a,A)| ≤ 1 for all q ∈ Q, a ∈ � ∪ {ε}, and A ∈ �;
(b) for all q ∈ Q and A ∈ �, if δ(q, ε,A) �= ∅, then δ(q, a,A) = ∅ for all

a ∈ �.
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The intent is that condition (a) prevents a choice between two non-ε moves,
while condition (b) prevents a choice between an ε move and a non-ε move.

If L is accepted by a DPDA by final state, then we say that L is a DCFL.
One of the most important observations about the DCFLs is that this class

is closed under complement. Recall how we proved that the class of regular
languages is closed under complement: we took a DFA M and created a new
machine M ′ to accept L(M) by changing the “finality”of each state: final states
became nonfinal and vice versa. We would like to do this with a DPDA, but
two problems occur.

First, a DPDA M may enter a state in which it never consumes additional
input symbols. This can occur because M has no defined move, or because the
stack has been emptied, or because it enters an infinite loop on ε-transitions.
If M never reads past x, then it cannot accept any string of the form xy for
y ∈ �+. If we simply changed the “finality”of each state of M to obtain M ′,
then M ′ would also never read past x, and so it would also not accept any string
of the form xy for y ∈ �+. We can fix this problem by forcing M to scan its
entire input.

Second, after reading a string x, M may enter a sequence of states on
ε-transitions. Suppose that it enters at least one final state and at least one
nonfinal state. Then by our definition of acceptance in PDAs, x would be
accepted. However, if we simply change the finality of each state to get M ′,
then x would still be accepted, which it should not. We can fix this problem by
recording, in between states where M actually reads an input, whether or not
M has seen a final state so far.

Lemma 4.7.1. If M = (Q,�,�, δ, q0, Z0, F ) is a DPDA, then there exists
a DPDA M ′ = (Q′, �, �′, δ′, q ′0, X0, F

′) such that L(M) = L(M ′) and M ′

always scans its entire input. More formally, for all inputs x ∈ �∗, there exists

a computation in M ′ such that (q ′0, x,X0)
∗� (q, ε, α) for some q ∈ Q′ and

α ∈ �′∗.

Proof. As earlier, the basic idea is simple: we add transitions, so there is
always a next move, and we add transitions to avoid infinite loops on ε-moves.
The actual implementation is a bit complex.

Suppose M = (Q,�,�, δ, q0, Z0, F ). We define a machine M ′ =
(Q′, �, �′, δ′, q ′0, X0, F

′), where Q′ = Q∪ {q ′0, d, f }, �′ = � ∪ {X0}, F ′ =
F ∪ {f }, and δ′ is defined as follows:

(a) δ′(q ′0, ε,X0) = {(q0, Z0X0)}.
(b) If δ(q, a,X) = ∅ and δ(q, ε,X) = ∅, then δ′(q, a,X) = {(d,X)}.
(c) δ′(q, a,X0) = {(d,X0)} for all q ∈ Q and a ∈ �.
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(d) δ′(d, a,X) = {(d,X)} for all a ∈ � and X ∈ �′.
(e) If M enters an infinite loop on ε-transitions from the configuration

(q, ε,X), then δ′(q, ε,X) = {(d,X)}, provided no state encountered in
the infinite loop is final, and δ′(q, ε,X) = {(f,X)} otherwise.

(f) δ′(f, a,X) = {(d,X)} for all a ∈ � and X ∈ �′.
(g) For all q ∈ Q, a ∈ � ∪ {ε}, X ∈ � for which δ′(q, a,X) has not been

defined earlier, δ′(q, a,X) = δ(q, a,X).

We leave the formal proof that this construction works to the reader.

We can now prove the fact that the DCFLs are closed under complement.

Theorem 4.7.2. If L is a DCFL then so is L.

Proof. If L is a DCFL, it is accepted by a DPDA M = (Q,�,�, δ, q0, Z0, F ).
By Lemma 4.7.1 we may assume that M scans its entire input. We now modify
M by adding a code to the state that says whether or not a final state has been
seen since the last “real”(i.e., non-ε) input. The meaning of y in the second
component is that a final state has been seen; the meaning of n is that it has
not; and the meaning of A is that the machine is about to read another “real”
input and has not entered a final state since the last “real”input.

Formally, let M ′ = (Q′, �, �, δ′, q ′0, Z0, F
′), where Q′ = Q× {y, n,A};

q ′0 =
{

[q0, y], if q0 ∈ F ;

[q0, n], if q0 �∈ F

and F ′ = Q× {A}. We also define δ′ as follows: if δ(q, a,X) = (p, γ ) for
a ∈ �, then

δ′([q, y], a,X) :=
{

([p, y], γ ), if p ∈ F ;

([p, n], γ ), if p �∈ F ;

δ′([q,A], a,X) :=
{

([p, y], γ ), if p ∈ F ;

([p, n], γ ), if p �∈ F ;

δ′([q, n], ε,X) := ([q,A], X).

If δ(q, ε,X) = (p, γ ), then

δ′([q, y], ε,X) := ([p, y], γ )

δ′([q, n], ε,X) :=
{

([p, y], γ ), if p ∈ F ;

([p, n], γ ), if p �∈ F ;
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We now argue that L(M ′) = L(M). To see this, suppose x = a1a2 · · · an ∈
L(M). Then M enters a final state after reading an. In this case, the second
component of the simulating M ′ will be y and cannot enter a state with second
component A before the next input symbol. Hence, x is not accepted by M ′. If
x �∈ L(M), then M never enters a final state after reading an. In this case, the
second component of the simulating M ′ will be n, and eventually all ε-moves
will be exhausted, and the machine will attempt to read a “real”input. At this
point the second component is changed to A and M ′ accepts.

Theorem 4.7.2 is an important tool in proving languages not DCFLs.

Example 4.7.3. Let us prove that the language

L := {w ∈ {a, b}∗ : w �= xx for all x ∈ {a, b}∗}
is not a DCFL.

Assume that L is a DCFL. Then

L = {xx : x ∈ {a, b}∗}
is a DCFL, since DCFLs are closed under complement. Now every DCFL
is a CFL, so L is a CFL. But L is not a CFL by the pumping lemma (see
Exercise 1.16).

Sometimes Theorem 4.7.2 is of no help in proving that a particular CFL is not
a DCFL. For example, consider PAL = {x ∈ {a, b}∗ : x = xR}, the palindrome
language. Now PAL is also a CFL—see Exercise 1.22—so Theorem 4.7.2 alone
cannot be used to show that PAL is not a DCFL. In these cases the following
theorem may be useful.

Theorem 4.7.4. Let L ⊆ �∗ be a language such that each Myhill–Nerode
equivalence class is of finite cardinality. Then L is not a DCFL.

Proof. Suppose L is a DCFL. Then, by Lemma 4.7.1, there exists a DPDA M

accepting L that scans its entire input. It is now easy to modify this DPDA so
that every move is either a pop or a push; it never replaces a symbol X on top
of the stack with a string of the form γ Y with X �= Y (see Exercise 26).

Let x ∈ �∗. Let yx be a string such that the height of M’s stack after
processing xyx is as small as possible. Our assumption about the moves of M

now implies that after processing xyx , M never pops or changes any of the
symbols currently on the stack. Note that we could have xyx = zyz for x �= z,
but there are still infinitely many strings of the form u = xyx for which after
processing u, M never pops or changes any of the symbols currently on the
stack.
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From these infinitely many strings, by the infinite pigeonhole principle, there
must be an infinite subset of the strings u such that M is in the same state after
processing u (including any ε-moves needed to minimize the stack height).
Further, there must be an infinite subset of these strings such that the top stack
symbol after processing u is the same. Finally, there must be an infinite subset
of these strings such that either all of them are in L or all of them are in L.
Thus there is an infinite set S of strings {u1, u2, . . .} such that

(q0, ui, Z0)
∗� (q, ε,Aαi)

for some q ∈ Q, αi ∈ �∗, A ∈ �, and all i ≥ 1, where this is a derivation of
minimal stack height. Hence for all z ∈ �+ and all i ≥ 1, we have

(q0, uiz, Z0)
∗� (q, z,Aαi).

Since A is never popped from the stack in this computation, the αi cannot
contribute in any way to future configurations. It follows that, for z �= ε, and
for all i and j , M accepts uiz if and only if it accepts ujz. On the other hand,
M accepts ui if and only if it accepts uj because we chose the set S such
that either S ⊆ L or S ⊆ L. Hence all the (infinitely many) ui are in the same
Myhill–Nerodeequivalence class for L, a contradiction.

Corollary 4.7.5. The language PAL = {x ∈ {a, b}∗ : x = xR} is not a DCFL.

Proof. We leave it to the reader as Exercise 27 to verify that in the Myhill–
Nerode equivalence relation for PAL, every string is in an equivalence class by
itself.

4.8 Linear languages

There is an interesting subclass of the CFLs known as the linear languages. To
define them we first define the notion of a linear grammar. A linear grammar
is one in which no right-hand side of any production contains more than one
occurrence of a variable. A language is linear if it has a linear grammar.

Example 4.8.1. The language ODDPAL = {x ∈ {a, b}∗ : x = xR and |x| is
odd} from Section 1.5 is linear, since it is generated by the linear grammar

S → a

S → b

S → aSa

S → bSb.
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The following is a pumping lemma for linear languages.

Lemma 4.8.2. If L is linear, then there exists a constant n such that if z ∈ L

with |z| ≥ n, then there exists a decomposition z = uvwxy with |uvxy| ≤ n

and |vx| ≥ 1 such that uviwxiy ∈ L for all i ≥ 0.

Proof. We can assume that G contains no unit productions, for otherwise we
may remove them using the algorithm of Exercise 1.27, without changing the
fact that the grammar is linear.

Let k be the number of variables in G, and let t be the length of the longest
right-hand side of any production. We may take n = (k + 1)t . If z ∈ L, and
|z| ≥ n, then it is easy to see that a parse tree for z must contain some variable
twice. Tracing down from the root of the parse tree, we see further that this
repeated variable—call it A—must occur within the first k + 1 variables starting
from the top. Thus we have

S
∗=⇒ uAy,

A
∗=⇒ vAx,

A
∗=⇒ w

for some strings u, v,w, x, y, and these last two derivations represent sentential
forms derived from the closest A to the top and the second closest, respectively.
Then the total distance from S to the second A from the top is a path of
length at most k, so |uvxy| ≤ (k + 1)t = n. Similarly, since G contains no
unit productions, we must have |vx| ≥ 1. Then, combining the derivations,
we get

S
∗=⇒ uAy

∗=⇒ uviAxiy
∗=⇒ uviwxiy

for all i ≥ 0, and hence uviwxiy ∈ L, as desired.

We now give an example of a nonlinear CFL.

Example 4.8.3. We claim that L = {aibicjdj : i, j ≥ 0} is a CFL that is not
linear.

To see this, use Lemma 4.8.2. Assume L is linear. Let z = anbncndn, where n

is the constant in the lemma. Consider decompositions of the form z = uvwxy

with |uvxy| ≤ n and |vx| ≥ 1. Then we must have v ∈ a∗, x ∈ d∗. Hence,
pumping with i = 2, we get z′ := uv2wx2y = an+kbncndn+l , where k = |v|,
l = |x|, and k + l ≥ 1, and z′ �∈ L. It follows that L is not linear.
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4.9 Exercises

1. Prove that if L = {anbncn : n ≥ 0}, then L is context-free but L is not.
2. Give an example of a DCFL that is not regular.
3. Let L be a CFL. Which of the following are always CFLs?

(a) 1
2L = {x : there exists y, |y| = |x|, with xy ∈ L}.

(b) L1/2 = {x : xx ∈ L}.
(c) {x : x∗ ⊆ L}.

4. Let

L = {w ∈ {a, b}∗ : |w|a = 2n; |w|b = 2n+1} for some n ≥ 0.

Show that neither L nor L is context-free.
5. Suppose G = (V,�,P, S) is a context-free grammar generating a CFL L.

Show how to create a grammar G′ to generate pref(L), where

pref(L) = {x ∈ �∗ : ∃y such that xy ∈ L}.
6. (a) Prove or disprove that

L3 = {aibjaibjaibj : i, j ≥ 1}
is the intersection of two CFLs.

(b) Generalizing (a), prove or disprove the same result (intersection of two
CFLs) for

Lk = {ai1bj1ai2bj2 · · · aikbjk : i1 = i2 = · · · = ik ≥ 1;

j1 = j2 = · · · = jk ≥ 1},
for each k ≥ 2.

7. Is the class of CFLs closed under the shuffle operation shuff (introduced
in Section 3.3)? How about perfect shuffle?

8. If shuff(L, {0}) is a CFL, need L be a CFL?
9. Recall the definition of σ (L) from Exercise 3.26: let L ⊆ �∗ be a language,

and define σ (L) = {x ∈ �∗ : xy ∈ L for all y ∈ �∗}. If L is context-free,
must σ (L) also be context-free?

10. Let w be the infinite word

w = a1a2 · · · = 1110100100001 · · · ;

here ak = 1 if k = Fn for some n, and ak = 0 otherwise. Here Fn is the
nth Fibonacci number, defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2

for n ≥ 2. Show that the language of all finite prefixes of w

{ε, 1, 11, 111, 1110, 11101, . . .}
is a co-CFL; that is, its complement is a CFL.
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11. In early versions of FORTRAN, a string constant was written
d(n)Ha1a2 · · · an, where d(n) is the decimal representation of n, and
each ai ∈ �, for some finite alphabet of legitimate characters �. Show
that the language of all such strings is not context-free.

12. A pure context-free grammar (PCF grammar) is one where there is no
distinction between variables and terminals; everything is a terminal. A
production rewrites a single terminal as a string of terminals, possibly
empty. More formally, G is a PCF grammar if G = (�,P, S), where
� is the set of terminals, P the set of productions, and S a finite set of
words. Then L(G), the language generated by G, is defined to be

L(G) = {x ∈ �∗ : for some s ∈ S, s
∗=⇒ x}.

For example, the PCF grammar given by

({a, b}, {s → asb}, {asb})
generates the language

{ansbn : n ≥ 1}.
(a) Prove the following lemma. Suppose L ⊆ {a, b}∗ satisfies the fol-

lowing three conditions: (i) L is infinite; (ii) every word in L contains
a3 and b3 as subwords; and (iii) there exists a real constant c > 0
such that each word w ∈ L contains some subword y, |y| ≥ c|w|,
and y does not contain two consecutive occurrences of the same
letter. Then L is not generated by a PCF grammar.

(b) Use (a) to prove that a3b3(ab)∗ is a regular language that is not
generated by any PCF grammar.

13. The census generating function of a language L is defined to be∑
n≥0 tnX

n, where tn counts the number of distinct strings in L of length
n. Give an example of a linear language for which the census generating
function is not rational.

∗∗14. Let L be a language over {0, 1, . . . , k − 1} for some integer k ≥ 1. The
language of minimal words of L, M(L), is defined by taking the union
of the lexicographically least word of each length (if it exists). Show that
M(L) is context-free if L is.

15. Let G = (V,�,P, S) be a context-free grammar.
(a) Prove that the language of all sentential forms derivable from S is

context-free.
(b) Prove that the language consisting of all sentential forms derivable

by a leftmost derivation from S is context-free.
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∗16. Recall that a word w ∈ �∗ is said to be unbordered if it cannot be written
in the form xyx, where |x| ≥ 1 and |y| ≥ 0. For example, the word 001

is unbordered, but 0010 is not (take x = 0 and y = 01). Define

P = {x ∈ {0, 1}∗ : x is unbordered}.
Show that P is not context-free. Hint: Use Ogden’s lemma.

17. Suppose L is an inherently ambiguous CFL. Then we know that for every
context-free grammar G with L = L(G), at least one word in L has at
least two different derivations in G. Show that in fact infinitely many
words in L must have at least two different derivations in G.

18. Show that if L is a CFL and R is a regular language, then the quotient
L/R is a CFL.

19. Let u, v,w, x, y ∈ �∗, and define

L = L(u, v,w, x, y) = {uviwxiy : i ≥ 0}.
Show that for all u, v,w, x, y, the language L is context-free.

20. Let # be a symbol not contained in the alphabet � = {a, b}, and consider
the language

L = {x#y : x, y ∈ �∗ and x is not a subword of y}.
Prove or disprove that L is not a CFL.

21. Let # be a symbol not contained in the alphabet � = {a, b}, and consider
the language

L = {x#y : x, y ∈ �∗ and x is not a subsequence of y}.
(Recall from Section 3.12 that we say x is a subsequence of y if x can be
obtained by striking out 0 or more letters from y.) Prove or disprove that
L is a CFL.

22. Suppose we modify our PDA model as follows: instead of requiring
δ(q, a,A) to be a finite set {(q1, γ1), . . . , (qk, γk)} representing the nonde-
terministic choices of the PDA, we allow the PDA to nondeterministically
choose among a potentially infinite set, but this set must be context-free.
More formally, we allow

δ(q, a,A) = (q1 × L1) ∪ (q2 × L2) ∪ · · · ∪ (qk × Lk),

where each Li is a CFL. We accept by empty stack.
Prove or disprove that the class of languages accepted by these more
powerful PDAs is precisely the class of CFLs.
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∗23. Recall the definition of inverse substitution from Exercise 3.15. Are the
CFLs closed under inverse substitution? That is, let L be a CFL, and let
s be a substitution that maps each letter a to a CFL La . Define

s−1(L) = {x : s(x) ⊆ L}.

Must s−1(L) be context-free? How about if s maps letters to finite sets?
24. Recall the alternate definition of inverse substitution from Exercise 3.16:

s[−1](L) := {x : s(x) ∩ L �= ∅}.

Suppose s maps letters to regular languages and L is context-free. Must
s[−1](L) be context-free? How about if s maps letters to CFLs?

∗25. Let α ≥ 0 be a real number, and define Lα = {ai bj : i/j ≤ α, i ≥
0, j ≥ 1}. Prove that Lα is context-free if and only if α is rational.

26. Show that, given a PDA M , there exists a PDA M ′ with the property that
M ′ has no moves of the form (p, γ Y ) ∈ δ(q, a,X) with X �= Y . That is,
all of the moves of M ′ either pop a symbol or push a string of symbols
on top of the stack; none replaces the current symbol on top of the stack.
Show further that if M is a DPDA, then M ′ can be constructed to be a
DPDA, too.

27. Show that in the Myhill–Nerodeequivalence relation for PAL, every string
is in an equivalence class by itself.

28. Give an example of a CFL with an unambiguous grammar that is not a
DCFL.

29. (T. Biedl) Clickomania is a game whose goal is to remove all the colored
squares in an array. Squares are removed by clicking on a connected
set of at least two squares of the same color and then these disappear
(see http://www.clickomania.ch for more information). Consider a
simplified version where the squares are arranged in a 1× n array and
come in only two colors, a and b. A string of a’s and b’sis solvable if
there is some choice of moves that reduces it to the empty string. For
example, abbaaba can be reduced to the empty string as follows, where
the underline portion denotes the part that is removed at each step:

abbaaba→ abbba→ aa→ ε.

Show that CL, the language of all solvable strings, is a CFL.
∗30. Let M = (Q,�,�, δ, q0, Z0,∅) be a PDA that accepts by empty stack.

Further, assume that every move of M is either a pop move or a move
where a single symbol is pushed on top of the current stack contents.
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(a) Suppose M accepts ε, the empty string. Prove that there must be an
accepting computation for ε where the maximum stack height during
the computation is ≤|Q|2|�|.

(b) How close to the bound |Q|2|�| can you come?

31. Compute ψ(L7), where ψ is the Parikh map and L7 = {x ∈ {0, 1}∗ :
x is not of the form ww}.

32. If ψ is the Parikh map, find some examples of long English words w and
suitable subsets of the alphabet for which:
(a) ψ(w) has all entries equal to 1;
(b) ψ(w) has all entries equal to 2;
(c) ψ(w) has all entries equal to 3;
(d) ψ(w) has all entries ≥2;
(e) ψ(w) is a permutation of (1, 2, 3, . . . , n);

(f) ψ(w) is a permutation of (1, 2, 2, 3, 3, 3, . . . ,

n︷︸︸︷
n ).

33. In this exercise we will construct a CFL such that none of its Myhill–Nerode
equivalence classes is context-free. Let

L = {x ∈ {a, b, c}∗ : |x|a �= |x|b or |x|b �= |x|c or |x|a �= |x|c}.
(a) Explain why L is context-free.
(b) Define γ (x) = (|x|a − |x|b, |x|b − |x|c). Show that γ (xy) = γ (x)+

γ (y).
(c) Show that x �∈ L if and only if γ (x) = (0, 0).
(d) Show that for all pairs of integers (i, j ), there exists a string x ∈
{a, b, c}∗ such that γ (x) = (i, j ).

(e) Show that x is related to y under the Myhill–Nerode equivalence
relation for L if and only if γ (x) = γ (y).

(f) Show that each Myhill–Nerode equivalence relation for L is not
context-free.

34. Show that the following morphism is squarefree-preserving, that is, x is
squarefree if and only if h(x) is squarefree.

0→ abacabcacbabcbacabacbc

1→ abacabcacbcabcbabcacbc

2→ abacabcbabcacbabcbacbc

3→ abacabcbabcacbcabcbabc

4→ abacabcbacabacbabcacbc

5→ abacabcbacbcacbabcacbc.
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∗35. Use the interchange lemma to prove that the following languages are not
context-free over a sufficiently large alphabet:
(a) the language of all strings containing at least one overlap;
(b) the language of all strings containing at least one cube;
(c) the language of all strings containing at least one abelian square. (An

abelian square is a string of the form xx′, where x ′ is a permutation
of x.)

∗36. Is the class of CFLs closed under the cyc operation introduced in Sec-
tion 3.4?

37. Recall the definition of perm(L) from Exercise 3.13.
(a) Give an example of a regular language L such that perm(L) is not

context-free.
(b) Show that if L is a regular language over an alphabet of two symbols,

then perm(L) is context-free.
∗38. For strings x,w of equal length, define match(x, y) to be the number of

indices i such that ai = bi , where x = a1a2 · · · an and y = b1b2 · · · bn.
Define

L = {y ∈ �∗ : y = xw, |x| = |w|, and match(x,w) ≥ 2}.
Is L context-free? Your answer may depend on the cardinality of �.

∗39. We say a word w ∈ �∗ is balanced if ||u|a − |v|a| ≤ 1 for all subwords
u, v of w, with |u| = |v|, and all a ∈ �; otherwise w is unbalanced. For
example, 01101 is balanced and 1100 is unbalanced.
(a) Prove that w ∈ {0, 1}∗ is unbalanced if and only if there exists a

palindrome x such that w contains both 0x0 and 1x1 as subwords.
(b) Prove that the set of unbalanced words over {0, 1} is context-free.

40. Recall the definition of h−∗(L) from Exercise 3.71. If L is context-free,
need h−∗(L) be context-free?

41. Prove that the language of all words over {0, 1} that are not prefixes of
the Thue–Morseword is context-free. Generalize.

42. For a language L, define llc(L) to be the union of the lexicographically
least conjugate of each member of L. Give an example of a regular
language L over a two-letter alphabet such that llc(L) is not context-
free.

43. For a language L, define llp(L) to be the union of the lexicographically
least permutation of each member of L. Show that if L is a regular
language over a two-letter alphabet, then llp(L) is context-free, while if
L is over a larger alphabet, then llp(L) need not be context-free.
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4.10 Projects

1. Find out about applications of the theory of formal languages to the study of
natural languages, such as English. You can start with Shieber [1985] and
Gazdar, Klein, Pullum, and Sag [1985].

2. Find out more about the class of languages that can be expressed as the
intersection of a finite number of CFLs. What are the closure properties of
this class? You can start with the paper of Liu and Weiner [1973].

3. Find out about graph grammars, a combination of formal language theory
and graph theory. An immense survey is the three-volume compendium of
Rozenberg [1997], Ehrig, Engels, Kreowski, and Rozenberg [1999], and
Ehrig, Kreowski, Montanari, and Rozenberg [1999].

4.11 Research problems

1. Given CFLs L1, and L2 with L1 ⊂ L2 and L2 − L1 infinite, need there
be a CFL L3 with L1 ⊂ L3 ⊂ L2 such that both L2 − L3 and L3 − L1 are
infinite? This question is due to Bucher [1980].

2. Are the primitive words over {0, 1} context-free? This classic problem has
been open for at least 20 years.

3. Let p(n) be a polynomial with rational coefficients such that p(n) ∈ N for
all n ∈ N . Prove or disprove that the language of the base-k representations
of all integers in {p(n) : n ≥ 0} is context-free if and only if the degree of
p is ≤1.

4.12 Notes on Chapter 4

4.1 Theorem 4.1.6 is due to Ginsburg and Spanier [1963]. Our proof is new.

4.2 The theorem in this section is due to Ginsburg and Rice [1962], although
our proof is different.

4.3 For Ogden’s lemma, see Ogden [1968]. There are very few techniques
known for proving languages not context-free. Another is the method
of Bader and Moura [1982].

4.4 Theorem 4.4.1 is originally due to Maurer [1969]. Our proof is from Du
and Ko [2001, pp. 149–150].
The result on the optimality of the triple construction is from Goldstine,
Price, and Wotschke [1982a, b].

4.5 For the interchange lemma, see Main [1982], Ross and Winklmann
[1982], Gabarro [1985], and (especially) Ogden, Ross, and Winklmann
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[1985]. Boonyavatana and Slutzki [1988] compared the power of the in-
terchange and pumping lemmas. The morphism h is from Brandenburg
[1983].

4.6 Parikh’s theorem was originally proved by Parikh in an obscure 1961
technical report. It later appeared as Parikh [1966]. Our proof is based
on Goldstine [1977]. Also see Pilling [1973]. The second proof in
Example 4.6.6 is from Du and Ko [2001, pp. 153–154].

For the closure of semilinear sets under intersection and complement,
see Ginsburg [1966]. No really simple proof of this result seems to be
known.

4.7 For more on DCFLs, see Fischer [1963], Schützenberger [1963], and
Ginsburg and Greibach [1966].

A weaker version of Theorem 4.7.4 was observed by M. Van Bies-
brouck (personal communication) after reading a similar theorem given
in Martin [1997].

4.8 For the linear languages, see Ginsburg and Spanier [1966].
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Parsing and recognition

In this chapter we investigate methods for parsing and recognition in context-
free grammars (CFGs). Both problems have significant practical applications.
Parsing, for example, is an essential feature of a compiler, which translates
from one computer language (the “source”)to another (the “target”).Typically,
the source is a high-level language, while the target is machine language.

The first compilers were built in the early 1950s. Computing pioneer Grace
Murray Hopper built one at Remington Rand during 1951–1952.At that time,
constructing a compiler was a black art that was very time consuming. When
John Backus led the project that produced a FORTRAN compiler in 1955–1957,
it took 18 person-years to complete.

Today, modern parser generators, such as Yacc (which stands for “yetanother
compiler-compiler”)and Bison, allow a single person to construct a compiler
in a few hours or days. These tools are based on LALR(1) parsing, a variant
of one of the parsing methods we will discuss here. Parsing is also a feature of
natural language recognition systems.

In Section 5.1 we will see how to accomplish parsing in an arbitrary CFG in
polynomial time. More precisely, if the grammar G is in Chomsky normal form,
we can parse an arbitrary string w ∈ L(G) of length n in O(n3) time. While
a running time of O(n3) is often considered tractable in computer science,
as programs get bigger and bigger, it becomes more and more essential that
parsing be performed in linear time.

Can general grammars be parsed faster than cubic time? Yes, Valiant has
shown that parsing can be reduced to matrix multiplication. Since it is known
how to multiply two n× n matrices in O(n2.376) steps, we can parse general
grammars within this time bound. But this method is not likely to be useful for
any grammars that people actually use, since it is quite complicated and the
hidden constant is large.

140
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It is currently not known if general grammars can be parsed in O(n2) time, so
computer scientists instead have turned to restricting the class of grammars so
that linear-time parsing can be achieved. Because of its importance to computer
science, it should come as no surprise to learn that many different parsing
methods have been proposed. The two main paradigms are top-down parsing,
where we begin with the start symbol S of the grammar and attempt to determine
the correct sequence of productions in a derivation starting with S, and bottom-
up parsing, where we begin with the string w and attempt to construct a
derivation by doing the productions “inreverse”until we wind up with S.

Although top-down parsing may seem more natural, it appears to be less
powerful and is less often used in practice. Nevertheless, understanding its
principles is instructive and we cover this topic in Section 5.3.

Most modern parser generators use a form of bottom-up parsing. We discuss
bottom-up parsing in Section 5.5.

5.1 Recognition and parsing in general grammars

Suppose we are given an CFG grammar G = (V,�,P, S) and we wish to
determine, given a string w, whether w ∈ L(G). This problem is less general
than parsing, since we do not demand that the algorithm produce the parse tree
if indeed w ∈ L(G).

First, we convert G to Chomsky normal form (see Exercise 1.28).
Next, we use a dynamic programming algorithm due (independently) to

Cocke, Younger, and Kasami, and often called the CYK algorithm. Let us write
w = a1a2 · · · an and w[i..j ] = ai · · · aj . Suppose we are trying to determine

whether A
∗=⇒ w[i..j ]. Since G is in Chomsky normal form, this is easy: if

i = j , then we just need to check to see if A→ ai is a production in P . If
i < j , then the first step of the derivation must look like A→ BC for some
variables B,C ∈ V . This implies that there exists k such that B

∗=⇒ w[i..k]
and C

∗=⇒ w[k + 1..j ].
These observations suggest the following dynamic programming algorithm:

determine, for all variables A ∈ V and subwords y of w, whether A
∗=⇒ y. We

do this in order of increasing length of y.

CYK(G,w)
Input: G = (V,�,P, S) is a context-free grammar in Chomsky normal form,

w = a1a2 · · · an is a string

Output: U [i, j ] contains all variables A such that A
∗=⇒ ai · · · aj
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for i := 1 to n do
U [i, i] := {A ∈ V : A→ ai is a production}

for d := 1 to n− 1 do
for i := 1 to n− d do

j := i + d

U [i, j ] := ∅
for k := i to j − 1 do

U [i, j ] := U [i, j ] ∪ {A ∈ V : A→ BC is a production
and B ∈ U [i, k] and C ∈ U [k + 1, j ]}

if (S ∈ U [1, n]) then
return(true)

else
return(false)

Theorem 5.1.1. Given a CFG G in Chomsky normal form and an input w

of length n, we can determine in O(n3) steps whether w ∈ L(G). Here the
constant in the big-O may depend on G.

Proof. The CYK algorithm has three nested loops. Each loop is executed at
most n times.

Example 5.1.2. Let us look at an example. Consider the following grammar
in Chomsky normal form:

S → AB | b
A→ CB | AA | a
B → AS | b
C → BS | c.

For the input cabab, the CYK algorithm fills in the table, as follows:

i\j 1 2 3 4 5
1 C ∅ A A S,B

2 A S,B ∅ C

3 S,B ∅ C

4 A S,B

5 S,B

Since S is in U [1, 5], it follows that cabab ∈ L(G).

We can modify the preceding CYK algorithm to produce parse trees for
strings in L(G). To do so, we add a new array CYK[A, i, j ]. The intent
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is that CYK[A, i, j ] contains the triple (B,C, k) if there exists a derivation
A

∗=⇒ w[i..j ] whose first step is A =⇒ BC and such that B
∗=⇒ w[i..k] and

C
∗=⇒ w[k + 1..j ]. We use a procedure called maketree that takes a variable

A and a set of strings γ1, γ2, . . . , γl as arguments and returns a tree with A as
the root and the γ ’s as children.

CYK-Make-Parse-Table(G,w)
Input: G = (V,�,P, S) is a context-free grammar in Chomsky normal form

w = a1a2 · · · an is a string
for i := 1 to n do

U [i, i] := {A ∈ V : A→ ai is a production}
for all variables A ∈ V , indices i, j with 1 ≤ i ≤ j ≤ n

set CYK[A, i, j ] := the empty list
for d := 1 to n− 1 do

for i := 1 to n− d do
j := i + d

U [i, j ] := ∅
for k := i to j − 1 do

U [i, j ] := U [i, j ] ∪ {A ∈ V : A→ BC is a production
and B ∈ U [i, k] and C ∈ U [k + 1, j ]}

For each A→ BC just added, append (B,C, k) to the list
CYK[A, i, j ]

Buildtree(A, i, j )
if i = j then

return(maketree(A→ ai)) for some production A→ ai

else if CYK[A, i, j ] = ∅
then error

else
choose an element (B,C, k) from CYK[A, i, j ]
l := Buildtree(B, i, k)
r := Buildtree(C, k + 1, j )
return(maketree(A→ l, r))

CYK-Parse(G,w)
1. Call CYK-Make-Parse-Table(G,w)
2. Return Buildtree(S, 1, |w|)
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c ba

a b

A

SAC

S

S

B

BA

Figure 5.1: A parse tree for the string cabab

Theorem 5.1.3. We can produce a parse tree for a string generated by a CFG
in Chomsky normal form in O(n3) steps, where n is the length of the string.

Proof. Left to the reader.

Example 5.1.4. Let us continue Example 5.1.2. For the input cabab, the
CYK-Make-Parse-Table algorithm creates the following entries:

i\j 1 2 3 4 5
1 C ∅ A : (C,B, 1) A : (A,A, 3) S : (A,B, 3), (A,B, 4)

B : (A, S, 3), (A, S, 4)
2 A S : (A,B, 2) ∅ C : (B, S, 3)

B : (A, S, 2)
3 S,B ∅ C : (B, S, 3)
4 A S : (A,B, 4)

B : (A, S, 4)
5 S,B

One resulting parse tree is shown in Figure 5.1.

5.2 Earley’s method

Earley’s method is a general parsing method that runs in O(n3) time on general
grammars, O(n2) time on unambiguous grammars, and can be modified to run
in linear time on LR(1) grammars.

Like the CYK parsing algorithm, it works in two stages. First, it builds a
parsing table for the input string. Once this is complete, we can recognize
whether the input is in L(G) or not. Next, we can use the information in the
parsing table to construct a parse tree for w.

We start with the construction of the parsing table. The table is an array
M = (Mi,j )0≤i≤j≤n, where w = a1a2 · · · an is the input and G = (V,�,P, S)
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is the grammar. Each entry holds a number of items, which are objects of
the form A→ α • β, where A→ αβ is a production of P . The • serves as a
placeholder. An item is said to be complete if it is of the form A→ α•.

The goal is to generate the entries of the table M such that the item A→
α • β is in Mi,j if and only if the production A→ αβ is in P and there exists
δ ∈ (V ∪ �)∗ such that

S
∗=⇒ a1a2 · · · aiAδ and α

∗=⇒ ai+1 · · · aj (5.1)

both hold.
Once this is done, we can recognize whether w ∈ L(G) quickly, as follows.

Lemma 5.2.1. We have w ∈ L(G) if and only if there exists an item of the form
S → α• ∈ M0,n.

Proof. If w ∈ L(G), then there is a derivation of the form S =⇒ α
∗=⇒ w.

Now (5.1) is satisfied for i = 0, A = S, δ = ε, and j = n, so S → α• ∈ M0,n.
On the other hand, if S → α• ∈ M0,n, then α

∗=⇒ a1a2 · · · an and S → α is
a production of P , so putting these together we get S

∗=⇒ w.
The following algorithm constructs the parsing table:

Make-Earley-Table

A. Add S → •γ to M0,0 for all productions S → γ in P .
Do the following steps until no more items can be added to M:

B. If Mi,j contains A→α • aj+1β, then add A→αaj+1 • β to Mi,j+1;
C. If Mi,j contains A→ α • Bβ and Mj,k contains B→γ •, then

add A→ αB • β to Mi,k;
D. If Mi,j contains A→α • Bβ, then add B → •γ to Mj,j for all

B → γ in P .

Example 5.2.2. Consider the following grammar, where S is the start symbol:

S → T+S

S → T

T → F∗T
T → F

F → (S)

F → a.

This grammar generates some simple algebraic expressions over the alphabet
� = {a,+, ∗, (, )}.



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

146 5 Parsing and recognition

Consider applying Earley’s algorithm to w = (a+ a) ∗ a. We can, if we
choose, do the algorithm in order of increasing j . Initially, by step A, we put

S → •T + S and S → •T in M0,0.
Then, by step D, we put

T → •F ∗ T and T → •F in M0,0.
Finally, by step D again, we put

F → •(S) and F → •a in M0,0.
Next, by step B we put

F → ( • S) in M0,1.
By step D we put

S → •T + S and S → •T in M1,1.
Then by step D we add, successively,

T → •F ∗ T , T → •F , F → •(S), and F → •a to M1,1.
Next, by step B we add

F → a• to M1,2.
And so, by step C (i = 1, j = 1, k = 2), since M1,1 contains T → •F ∗ T and
M1,2 contains F → a•, we add T → F • ∗T to M1,2.

Eventually, we find the following contents of the parsing table:

M0,0 S → •T + S S → •T T → •F ∗ T

T → •F F → •(S) F → •a
M0,1 F → (•S)
M0,2 F → (S•)
M0,4 F → (S•)
M0,5 F → (S)• S → T • T → F • ∗T

S → T • +S T → F•
M0,6 T → F ∗ •T
M0,7 T → F ∗ T • S → T • +S S → T •
M1,1 S → •T + S S → •T T → •F ∗ T

T → •F F → •(S) F → •a
M1,2 F → a• T → F • ∗T T → F•

S → T • +S S → T •
M1,3 S → T + •S
M1,4 S → T + S•
M3,3 S → •T + S S → •T T → •F ∗ T

T → •F F → •(S) F → •a
M3,4 F → a• T → F • ∗T T → F•

S → T • +S S → T •
M6,6 T → •F ∗ T T → •F F → •(S)

F → •a
M6,7 F → a• T → F • ∗T T → F•
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The next theorem proves that Earley’s method works.

Theorem 5.2.3. The item C → η • γ gets added to Mu,v iff the production
C → ηγ is in P , η

∗=⇒ w[u+ 1..v], and there exists δ ∈ (V ∪ �)∗ such that
S
∗=⇒ w[1..u]Cδ.

Proof. Suppose C → η • γ gets added to Mu,v . We prove the desired result
by induction on the number of items currently added in all entries of M .

For the base case, after step A has been performed, we have that S → •γ is
in M0,0, so η = ε, C = S, and we can take δ = ε.

Now let us prove the induction step. Suppose C → η • γ is added to Mu,v .
This can occur in either step B, C, or D of the algorithm.

If it occurs in step B, then u = i, v = j + 1, η = αaj+1, γ = β, and A =
C. Then Mi,j contains A→ α • aj+1β, which must have been added at an

earlier step. By induction α
∗=⇒ w[i + 1..j ] and S

∗=⇒ w[1..i]Aδ. Hence,
η = αaj+1

∗=⇒ w[i + 1..j + 1].
If it occurs in step C, then η = αB, γ = β, u = i, v = k, and C = A.

Then Mi,j contains the item A→ α • Bβ, which must have been added at an

earlier step. By induction, α
∗=⇒ w[i + 1..j ] and S

∗=⇒ w[1..i]Aδ. Also, Mj,k

contains B → γ •, so by induction γ
∗=⇒ w[j + 1..k]. Hence,

η = αB
∗=⇒ w[i + 1..j ]B

=⇒ w[i + 1..j ]γ, since B → γ is in P
∗=⇒ w[i + 1..j ]w[j + 1..k] = w[i + 1..k].

And we already have S
∗=⇒ w[1..i]Aδ.

If it occurs in step D, then η = ε, C = B, and u = v = j . By induction,
α
∗=⇒ w[i + 1..j ] and there exists δ such that S

∗=⇒ w[1..i]Aδ. Hence,

S
∗=⇒ w[1..i]Aδ

=⇒ w[1..i]αBβδ
∗=⇒ w[1..i]w[i + 1..j ]Bβδ = w[1..j ]Bβδ.

This completes one direction of the proof.
For the other direction, we will prove that C → •ηγ ∈ Mu,u and C →

η • γ ∈ Mu,v . In order to do this, we prove two lemmas. Let µ ∈ (V ∪ �)∗.

Lemma 5.2.4. If A→ α • µβ is in Mi,j and µ
∗=⇒ w[j + 1..k], then A→

αµ • β is in Mi,k .

Proof. By induction on r , the length of the derivation µ
∗=⇒ w[j + 1..k].
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The base case is r = 0. In this case we have µ = w[j + 1..k] and then
A→ α • w[j + 1..k]β ∈ Mi,j . Hence,

A→ αaj+1 • w[j + 2..k]β gets added to Mi,j+1 by step B

A→ αaj+1aj+2 • w[j + 3..k]β gets added to Mi,j+2 by step B
...

A→ αw[j + 1..k] • β gets added to Mi,k by step B.

For the induction step, assume r > 0. Then µ must contain a variable, say,
µ = µ1Bµ2 for B ∈ V . Since µ

∗=⇒ w[j + 1..k], we have

µ1
∗=⇒ w[j + 1..l]

B =⇒ γ
∗=⇒ w[l + 1..m], where B → γ is a production

µ2
∗=⇒ w[m+ 1..k]

for some integers l, m and the preceding derivations from µ1, γ, µ2 each take
<r steps. Now A→ α • µβ ∈ Mi,j ; that is,

A→ α • µ1Bµ2β ∈ Mi,j , (5.2)

so

A→ αµ1 • Bµ2β ∈ Mi,l (5.3)

by induction and (5.2). Now

B → •γ ∈ Ml,l (5.4)

by step D applied to Eq. (5.3). Hence,

B → γ • ∈ Ml,m (5.5)

by (5.4) and induction. Now

A→ αµ1B • µ2β ∈ Mi,m (5.6)

by step C and Eqs. (5.3) and (5.5). Finally, A→ αµ1Bµ2 • β ∈ Mi,k by
Eq. (5.6) and induction. Thus, Lemma 5.2.4 is proved.

Lemma 5.2.5. If S
∗=⇒ w[1..i]Bδ, then B → •γ ∈ Mi,i for all productions

B → γ ∈ P .

Proof. By induction on r , the length of the derivation S
∗=⇒ w[1..i]Bδ.

The base case is r = 0. Then i = 0, S = B, δ = ε, and by step A we have
S → •γ ∈ M0,0 for all productions S → γ ∈ P .
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For the induction step, assume r ≥ 1. Then look at the step of the derivation
where the displayed occurrence of B is introduced:

S
∗=⇒ µAδ1 =⇒ µαBβδ1

∗=⇒ w[1..i]Bδ,

where A→ αBβ is a production in P and µα
∗=⇒ w1w2 · · ·wi . Define j so

that

µ
∗=⇒ w[1..j ];

α
∗=⇒ w[j + 1..i].

Hence, A→ •αBβ ∈ Mj,j by induction applied to the derivation S
∗=⇒

µAδ1
∗=⇒ w[1..j ]Aδ1. Hence, A→ α • Bβ ∈ Mj,i by Lemma 5.2.4. Thus,

B → •γ ∈ Mi,i by step D.

We can now complete the proof of Theorem 5.2.3.
If η

∗=⇒ w[u+ 1..v] and there exists a δ such that S
∗=⇒ w[1..u]Cδ, then

C → •ηγ ∈ Mu,u by Lemma 5.2.5. Then C → η • γ ∈ Mu,v by Lemma 5.2.4
with A = C, α = ε, µ = η, γ = β, i = u, j = u, and k = v.

Next we prove a theorem about how efficiently Earley’s method can be
implemented.

Theorem 5.2.6. The parse table M = (Mi,j ) can be constructed in O(n3)
steps, where n = |w|.
Proof. We compute the table in order of increasing j . It suffices to see that
all the entries in Mi,j for all i can be computed in O(n2) steps. There are O(n)
possible entries, and for each one we have to do at most O(n) work in step C.

Theorem 5.2.7. If G is an unambiguous grammar with no useless symbols, no
unit productions, and no ε-productions, then M = (Mi,j ) can be constructed
in O(n2) steps, where n = |w|.
Proof. We use three data structures:

• Ij , 0 ≤ j ≤ n, a list of pairs (A→ α • β, i) such that (A→ α • β, i) ∈ Ij

if and only if A→ α • β ∈ Mi,j ;
• Lj (X), 0 ≤ j ≤ n,X ∈ V ∪ �, a list of pairs (A→ α •Xβ, i) such that

A→ α •Xβ ∈ Mi,j ;
• BVj , 0 ≤ j ≤ n, a bit vector, initially all 0, that for each item A→ α • β

tells whether the pair (A→ α • β, j ) has already been added to Ij .



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

150 5 Parsing and recognition

A subroutine ADD maintains these lists. Here is the code for ADD:

ADD((A→ α •Xβ, i), j )
1. append (A→ α •Xβ, i) to Ij

2. append (A→ α •Xβ, i) to Lj (X)
3. If i = j , set BVj [A→ α •Xβ] to 1.
4. If X ∈ V , for all productions X→ γ do

if BVj [X→ γ •] = 1
then call ADD ((A→ αX • β, i), j )

Our implementation of Earley’s algorithm now implements steps A–Das
follows:

A. For all productions S → α, call ADD((S → •α, 0), 0).
For j = 0, 1, . . . , n do:

B. If j > 0 then do
for each pair (A→ α • wjβ, i) on the list Lj−1(wj ),
call ADD ((A→ αwj • β, i), j )

1. For each pair on the list Ij do:
If the pair is of the form (B → γ •, i)

C. For each pair (A→ α • Bβ, k) on the list Li(B), call
ADD((A→ αB • β, k), j )

If the pair is of the form (A→ α • Bβ, i)
D. If BVj [B → •γ ] = 0, then call ADD((B → •γ, j ), j ).

Note that Ij lengthens as the algorithm proceeds.
We claim that the algorithm presented is correct and uses O(n2) steps. The

correctness proof is left to the reader; the only trick is that step 4 of ADD is needed
if (A→ α • Bβ, i) is added to Ij after the pair (B → γ •, j ) is considered in
line 1.

For the time bound, note that there exists a constant c such that at most
c(j + 1) pairs appear on the list Ij . For if the pair is of the form (A→ α • β, i)
with α �= ε, then by Exercise 9 we try to add this item to Ij at most once, since
G is unambiguous. If the pair is of the form (A→ •β, i), then it is added only
in steps A and D, and in step D the bit vector is checked before the item is
added. Thus the total number of pairs is ≤∑

0≤j≤n c(j + 1) = O(n2).
The running time now follows if we can show that the total time associated

with a list entry is O(1). We do so by an amortized analysis argument. We
allocate $2 to each list entry. $1 is used to pay for the cost of examining the
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entry in line 1, and $1 is used to pay for the cost of adding the entry to a list.
But our algorithm examines and adds each entry at most once. Thus the total
cost is O(n2).

Up until now we have used Earley’s algorithm as a recognizer, not a parser.
We now discuss how the parsing table constructed by the algorithm may be
used to parse.

PARSE (A→ β•, i, j )
{ Finds a rightmost derivation of w[i + 1..j ] starting with production

A→ β. }

If β = X1X2 · · ·Xm, set k := m and l := j

Repeat until k = 0:
If Xk ∈ �

set k := k − 1 and l := l − 1
Else {Xk ∈ V }

(*) find a complete item of the form Xk → γ • in Mr,l for some r

such that A→ X1X2 · · ·Xk−1 •Xk · · ·Xm ∈ Mi,r

Call PARSE(Xk → γ •, r, l)
Set k := k − 1 and l := r

This algorithm can be used to obtain a rightmost derivation of the input
string. We call PARSE with the arguments (S → α•, 0, n), where S → α• is an
item in M0,n.

Theorem 5.2.8. Assume that G contains neither ε-productions nor unit pro-
ductions and that the table [Mi,j ] has already been computed. If A =⇒
β

∗=⇒ wi+1 · · ·wj , then a call to PARSE(A→ β•, i, j ) produces a parse of
wi+1 · · ·wj starting with A→ β in O((j − i)2) steps.

Proof. For correctness, observe that if you have shown Xk+1 · · ·Xm
∗=⇒

wl+1 · · ·wj , then

A =⇒ β = X1X2 · · ·Xk−1XkXk+1 · · ·Xm
∗=⇒ X1X2 · · ·Xkwl+1 · · ·wj .

But A→ X1 · · ·Xk−1 •Xk · · ·Xm ∈ Mi,r , so X1 · · ·Xk−1
∗=⇒ wi+1 · · ·wr .

Hence, A
∗=⇒ wi+1 · · ·wrXkwl+1 · · ·wj . But Xk → γ • ∈ Mr,l , so γ

∗=⇒
wr+1 · · ·wl . Hence,

A
∗=⇒ wi+1 · · ·wrγwl+1 · · ·wj

∗=⇒ wi+1 · · ·wrwr+1 · · ·wlwl+1 · · ·wj,

as desired.
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For the running time analysis, let us prove by induction on j − i that the
running time of the call PARSE(A→ β•, i, j ) is bounded by c(j − i)2 for some
constant c. This is clearly true if j − i = 1. Now suppose β = X1X2 · · ·Xm

and that Xj
∗=⇒ wij+1 · · ·wij+1 for 1 ≤ j ≤ m. Note i = i1 and j = im+1. In

step (*) we need to examine all lists Mr,l for r = l, l − 1, . . . , i until the desired
item is found. This can be done in d(j − i) steps for some constant d. The total
cost is therefore

≤c((i2 − i1)2 + · · · + (im+1 − im)2)+ d((i2 − i1)+ · · · + (im+1 − im)).

By telescoping cancelation, the second sum is just d(j − i). Since G does not
contain ε-productions or unit productions, 1 < m ≤ j − i. Now by Exercise 13,
((i2 − i1)2 + · · · + (im+1 − im)2) is bounded by (j − i − 1)2 + 1 = (j − i)2 −
2(j − i)+ 2. Hence, taking c = d, the desired inequality follows.

5.3 Top-down parsing

As mentioned previously, a top-down parser attempts to construct the deriva-
tion tree for a word w ∈ L(G) from the “topdown,”that is, by starting with
the start symbol S of the grammar and choosing the correct productions in
order.

The most popular top-down methods are called LL(k). The first L stands
for left-to-right scan of the input, the second L stands for producing a leftmost
derivation, and the k refers to the number of symbols of “lookahead”that are
allowed. Lookahead is a feature of many parsing algorithms, and refers to how
many symbols of the input past the current position the algorithm is allowed to
refer to.

In this section we focus on LL(1) parsing. It is known that LL(1) parsers
are not as powerful as LL(k) parsers for arbitrary k; in fact, there are ex-
amples known of grammars that can be parsed with LL(k) parsers but not
LL(k − 1).

It is conceptually easy to think of a top-down parser as a one-state nondeter-
ministic pushdown automaton (PDA) with a write-only output tape, as shown
in Figure 5.2.

The configuration of such a parser is

[aiai+1 · · · an$, γjγj−1 · · · γ2γ1#, n1n2 · · · nk].

Here the input is a1 · · · an, the current stack contents is γj · · · γ1, with the top
symbol on the stack being γj , and n1 · · · nk is the output.
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j
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Stack

Output tape

a1 · · ·

· · ·

· · · $an

...

n1 n2 k

a2 ai ai+1

n n3

Program

γ

γ

Figure 5.2: Top-down parser illustrated

The initial configuration of the parser is

[a1a2 · · · an$, S#, ε].

Note: the special symbol $ should be thought of as the “end-of-input”marker,
and the special symbol # is the “bottom-of-stack”marker.

At any stage in the computation, the parser can do exactly one of three
things:

1. If the symbol on the top of the stack is a variable X, the parser pops X

and pushes the string α1 · · ·αt , where X→ α1 · · ·αt is a production in G.
The parser then writes the appropriate production, or a code for it, on the
output tape. (In general, there may be several such productions with X on
the left-hand side; the parser must choose the right one, based on X and the
current symbol being scanned.)

2. If the symbol on the top of the stack is a terminal x, it is compared with the
current input symbol a. If x = a, the stack is popped and the input pointer
is advanced one cell. If x �= a, the parser writes “reject”on the output tape
and halts.

3. If the symbol on the top of the stack is # and the input is $, the parser writes
“accept”on the output tape and halts.

The decision about what to do is based on a transition function M(γ, x).
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γ\x a b c $
S S → AB S → AB S → c Reject
A A → aS A → b Reject Reject
B B → AS B → AS B → c Reject
a Pop Reject Reject Reject
b Reject Pop Reject Reject
c Reject Reject Pop Reject
# Reject Reject Reject Accept

Figure 5.3: LL(1) parsing table

Example 5.3.1. Consider a grammar G with the following numbered produc-
tions:

1. S → AB;

2. S → c;

3. A→ aS;

4. A→ b;

5. B → AS;

6. B → c.

Then the transition function M(γ, x) is as given in Figure 5.3.

For example, here are the configurations of the parser on input acbbc:

(acbbc$, S#, ε) � (acbbc$, AB#, 1) � (acbbc$, aSB#, 13)

� (cbbc$, SB#, 13) � (cbbc$, cB#, 132) � (bbc$, B#, 132)

� (bbc$, AS#, 1325) � (bbc$, bS#, 13254) � (bc$, S#, 13254)

� (bc$, AB#, 132541)� (bc$, bB#, 1325414)� (c$, B#, 1325414)

� (c$, c#, 13254146) � ($, #, 13254146). (5.7)

This corresponds to using the productions 1, 3, 2, 5, 4, 1, 4, 6 in a leftmost
derivation of acbbc.

The whole game of LL(1) parsing is to construct the transition function
M . The parser must know which production to use, based only on the current
symbol on top of the stack and the current input symbol being scanned.

To compute M , we introduce two functions:

• FIRST(α), defined for all α ∈ (� ∪ V )∗;
• FOLLOW(A), defined for all A ∈ V .

The range of each of these functions is a set of symbols.
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Intuitively, we put a terminal a in FIRST(α) if it is possible to derive a
sentential form from α that begins with a.

Formally, we define

FIRST(α) = {a ∈ � : there exists a derivation α
∗=⇒ aβ for some

β ∈ (� ∪ V )∗} ∪ {ε : there exists a derivation α
∗=⇒ ε}. (5.8)

The heuristic description of FOLLOW(A) is as follows: we put a terminal a

in FOLLOW(A) if it could appear immediately following A in some sentential
form derivable from S.

Formally, we define

FOLLOW(A) = {a ∈ � : there exists a derivation S
∗=⇒ αAaβ for some

α, β ∈ (V ∪ �)∗} ∪ {$ : there exists a derivation S
∗=⇒ αA

for some α ∈ (V ∪ �)∗}. (5.9)

Example 5.3.2. Consider the following grammar G:

S → AB | a
A→ CD

B → bAB | ε
C → dSd | c
D → cCD | ε.

Then FIRST(AB) = {c, d}, because we have the two derivations:

AB =⇒ CDB =⇒ dSdDB;

AB =⇒ CDB =⇒ cDB.

Similarly, we have

FIRST(a) = {a};
FIRST(CD) = {c, d};

FIRST(bAB) = {b};
FIRST(ε) = {ε};

FIRST(dSd) = {d};
FIRST(c) = {c};

FIRST(cCD) = {c}.
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We also have FOLLOW(C) = {$, b, c, d}, because we have the derivations

S =⇒ AB =⇒ A =⇒ CD =⇒ C;

S =⇒ AB =⇒ CDB =⇒ CB =⇒ CbAB;

S =⇒ AB =⇒ CDB =⇒ CcCD;

S =⇒ AB =⇒ CDB =⇒ dSdDB =⇒ dABdDB =⇒ dCDBdDB =⇒
dCBdDB =⇒ dCdDB.

Similarly, we have

FOLLOW(S) = {$, d};
FOLLOW(A) = {$, b, d};
FOLLOW(B) = {$, d};
FOLLOW(D) = {$, b, d}.

Now we give an algorithm to compute M(γ, x), assuming we have algo-
rithms for FIRST and FOLLOW (which we discuss next).

Compute-LL-Table

1. M(a, a) = “pop”for all a ∈ �;
2. M(#, $) = “accept”;
3. For each production X→ α do

(a) For each terminal b ∈ FIRST(α), set M(X, b) = “applyproduction
X→ α”;

(b) If ε ∈ FIRST(α), set M(X, b) = “applyproduction X→ α”for all b ∈
FOLLOW(X);

4. M(X, b) = “reject”for all other cases.

Example 5.3.3. Let us compute the LL(1) parsing table for the grammar G of
Example 5.3.2 (see Figure 5.4). (Blank spaces mean “reject.”)

Note: It is possible that the function M(γ, x) is multiply defined. In that
case, we say the parsing table has a conflict, and the corresponding grammar is
not LL(1).

There are several approaches to handle conflicts in LL(1) grammars. We can
try to provide disambiguating rules that tell which of several productions we
should choose if there is a conflict. We can try all the possibilities, which forces
backtracking. We can attempt to rewrite the grammar to obtain an equivalent
LL(1) grammar. Finally, we can use more symbols of lookahead, which leads
to LL(2), LL(3), and so on.
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γ\x a b c d $

S S → a S → AB S → AB
A A → CD A → CD
B B → bAB B → ε B → ε
C C → c C → dSd
D D → ε D → cCD D → ε D → ε
a Pop
b Pop
c Pop
d Pop
# Accept

Figure 5.4: Parsing table M(γ, x) for G of Example 5.3.2

Definition. We say grammar G is LL(1) if M(γ, x) is single-valued. We say a
language L is LL(1) if there exists some LL(1) grammar G such that L = L(G).

The term LL(1) arises as follows: the first L stands for a left-to-right scan of
the input, the second L stands for the fact that the method produces a leftmost
derivation, and the 1 refers to 1 symbol of lookahead.

Theorem 5.3.4. If G is an LL(1) grammar, then G has a determinis-
tic top-down parser given by the algorithm to compute M(γ, x) given in
Compute-LL-Table.

Proof. We show that if z ∈ L(G), then the parser correctly constructs the
leftmost derivation of z and if z �∈ L(G), then the parser rejects z.

Let z = a1a2 · · · an. The initial configuration of the parser is

[a1a2 · · · an$, S#, ε].

The program first examines M(S, a1). If the entry is “reject,”that means a1 �∈
FIRST(α) for all α with S → α a production. Hence, no string in L(G) derivable
from S can begin with a1. Hence, z �∈ L(G).

Suppose M(S, a1) does contain a production. Then the production is S → α

and can come from 3(a) or 3(b). If it comes from 3(a), then a1 ∈ FIRST(α).
Since M(γ, x) is single-valued, if S → β is any other S-production, a1 �∈
FIRST(β). If 3(b), then ε ∈ FIRST(α), a1 ∈ FOLLOW(S), and a1 �∈ FIRST(β)
for any other S-production S → β. Hence, a1 = $, z = ε, and S → α is the
first production used to derive z.

We have shown that if z is derivable from S, then the parser correctly
determines the first production used.



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

158 5 Parsing and recognition

Similarly, suppose that after several moves the parser has reached the con-
figuration

[akak+1 · · · an$, Ax1x2 · · · xp#, y].

We want to show that it correctly determines the next production.
If M(A, ak) = “reject”,then I claim we cannot derive a string beginning

with ak from Ax1x2 · · · xp. For we know ak �∈ FIRST(α) for all A-productions

A→ α. It is possible however, that A
∗=⇒ ε. In that case, ak ∈ FOLLOW(A),

so by 3(b), M(A, ak) �= “reject.”
Now suppose M(A, ak) is a production. Then it must contain only one of the

form A→ α. If this production came from step 3(a), then ak ∈ FIRST(α) and
the production must be applied to derive akak+1 · · · an, since ak �∈ FIRST(β)
for all other β.

If it came from step 3(b), then ε ∈ FIRST(α), ak �∈ FIRST(α). Thus we must
transform A to ε first to derive akak+1 · · · an from Ax1x2 · · · xp. Then we derive
ak · · · an from x1 · · · xp. Hence the parser chooses the correct production here,
too.

To complete the proof we observe that eventually ak appears on the top of
the stack and is popped. Thus we eventually either accept or reject z, and we
accept if and only if a sequence of derivations actually produced z.

It remains to see how to compute the sets FIRST and FOLLOW.
To compute FIRST(α) we first show how to compute FIRST(X) when

X ∈ V ; then we show how to use this to compute FIRST(α) for α ∈ (V ∪ �)∗.
Here is the algorithm for FIRST(X):

COMPUTE-FIRST(G)
Input: G = (V,�,P, S) is a context-free grammar
1. Initialize F (B) = ∅ for all B ∈ V , and F (a) = {a} for all a ∈ �.
2. For each production of G do
3. (i) If the production is A→ aα for a ∈ �, set F (A) := F (A) ∪ {a}.

(ii) If the production is A→ ε, set F (A) := F (A) ∪ {ε}.
(iii) If the production is A→ Y1Y2 · · · Yk

(a) If there is a smallest index j such that ε �∈ F (Yj ),
set F (A) := F (A) ∪ (F (Y1) ∪ F (Y2) ∪ · · · ∪ F (Yj )− {ε})
(b) If there is no such index, set F (A) := F (A) ∪ F (Y1)
∪ F (Y2) ∪ · · · ∪ F (Yk).

4. If any of the sets F (B) were changed in size, return to step 2.
5. Otherwise set FIRST(A) := F (A) for all A ∈ V .
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Theorem 5.3.5. The preceding algorithm correctly computes FIRST(X) for
X ∈ V .

Proof. First, let us show that at all times during the algorithm’s execution we
have F (X) ⊆ FIRST(X) for X ∈ V ∪ �. This is clearly true after step 1. Now
assume it is true for all iterations up to iteration k; we prove it for iteration k.
At this step, a symbol gets added to F (X) only as a result of steps 3(i), (ii),
or (iii).

In step (i), we add a to F (A) if and only if there exists a production A→ aα,
and indeed a ∈ FIRST(A). In step (ii), we add ε to F (A) if and only if there
exists a production A→ ε, but then ε ∈ FIRST(A). Finally, in step (iii), there
are two possibilities. In possibility (a), there is a smallest index j such that
ε �∈ F (Yj ). In this case, ε ∈ FIRST(Yi) for 1 ≤ i < j , so by induction Yi

∗=⇒ ε

for 1 ≤ i < j . Hence all the terminals in F (Yi) for 1 ≤ i < j are in FIRST(Yi).
A similar argument applies to possibility (b).

Next, let us show that if x ∈ FIRST(A), then x eventually gets added to
F (A) by some step of the algorithm. Let x ∈ FIRST(A). There are two cases
to consider:

Case 1: x = a ∈ �. Then there exists a derivation

A =⇒ γ1 =⇒ γ2 =⇒ · · · =⇒ γn−1 =⇒ γn = aβ; (5.10)

without loss of generality, let this be the shortest such that it results in a

beginning a right-hand side derivable from A. We claim that a is added to F (A)
before or during the nth iteration.

If n = 1, then A =⇒ aβ is a production of G, so a is added to FIRST(A)
during step 3(i). Suppose our claim is true for all variables A and terminals
a for all n < n′. We prove the claim holds for n = n′. Suppose (5.10) holds.
Then let γ1 = Y1Y2 · · · Ys , where Yi ∈ V ∪ �. Thus,

A =⇒ Y1Y2 · · · Ys
∗=⇒ aβ.

Now there exists j such that Yi
∗=⇒ ε with 1 ≤ i < j , Yj

∗=⇒ aα, and

Yj+1 · · ·Ys
∗=⇒ δ, where αδ = β. All these derivations are of length < n′,

so by induction a ∈ F (Yj ). Hence, a is added to F (A) at the latest at step n′.

Case 2: x = ε. Similar to Case 1, and left to the reader.

Now that we know how to compute FIRST(X) for X ∈ V ∪ � ∪ {ε}, we
show how to compute FIRST(α) for an arbitrary sentential form α.
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Lemma 5.3.6. If α = Z1Z1 · · ·Zm, where Zi ∈ V ∪� for 1 ≤ i ≤ m, m ≥ 2,
then

FIRST(α) =




if there exists a small-

FIRST(Z1) ∪ · · · ∪ FIRST(Zj )−{ε}, est index j , 1≤j ≤ m

FIRST(Z1) ∪ · · · ∪ FIRST(Zm), such that ε �∈ FIRST

(Zj ); otherwise

Proof. Left to the reader.

Now we turn to the computation of FOLLOW(X).

COMPUTE-FOLLOW(G)
Input: G = (V,�,P, S) is a context-free grammar with no useless symbols
1. Initialize H (B) = ∅ for all B ∈ V , B �= S and H (S) = {$}.
2. For each production of G do
3. For each variable X on the right-hand side of the production,
write the production as A→ αXβ and

(i) add all the terminals in FIRST(β) to H (X); do not add ε;
(ii) if ε ∈ FIRST(β), add all symbols of H (A) to H (X).

4. If any of the sets H (B) were changed in size, return to step 2.
5. Otherwise set FOLLOW(A) := H (A) for all A ∈ V .

Theorem 5.3.7. The algorithm COMPUTE-FOLLOW correctly computes
FOLLOW(X) for all X ∈ V .

Proof. First, let us prove that the invariant H (A) ⊆ FOLLOW(A) holds at
every step of the algorithm. We do this by induction on the number of iterations
of step 2.

Initially, we have H (A) = ∅ ⊆ FOLLOW(A) for all A �= S. Also, H (S) =
{$}, and $ ∈ FOLLOW(S) because of the derivation S

∗=⇒ S.
Now assume that the invariant holds at step i; we prove it for step i + 1.

A symbol can be added to H (X) in step (i) or (ii). Suppose a ∈ � is added
in step (i). Then a ∈ FIRST(β), so there is a derivation β

∗=⇒ aγ for some
γ ∈ (V ∪ �)∗. Combining this with the derivation A

∗=⇒ αXβ, we get A
∗=⇒

αXβ
∗=⇒ αXaγ , so indeed a ∈ FOLLOW(X).

If step (ii) is taken, then we have ε ∈ FIRST(β), and hence there is a
derivation β

∗=⇒ ε. Let a ∈ H (A). Then by induction a ∈ FOLLOW(A). If
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a ∈ �, then there is a derivation S
∗=⇒ δAaγ . Combining this with the pro-

duction A→ αXβ, we get the derivation

S
∗=⇒ δAaγ =⇒ δαXβaγ

∗=⇒ δαXaγ,

so indeed a ∈ FOLLOW(X). If a = $, then there is a derivation S
∗=⇒ δA.

Combining this with A→ αXβ, we get

S
∗=⇒ δA =⇒ δαXβ

∗=⇒ δαX,

so indeed $ ∈ FOLLOW(X).
The converse is left to the reader.

5.4 Removing LL(1) conflicts

In this section we look at two basic techniques for converting a grammar to
LL(1) form. They are not always guaranteed to work, but they are useful in
many situations.

The first technique is removing left recursion. We say a grammar has imme-
diate left recursion if there exists a variable E with a production of the form
E→ Eα. Immediate left recursion can be removed from a grammar without
ε-productions as follows. Suppose the E-productions are

E→ Eα1 | Eα2 | · · · | Eαk | β1 | β2 | · · · | βj ,

where no βi starts with E. Then we remove these productions from the grammar
and replace them with the productions

E → β1E
′ | β2E

′ | · · · | βjE
′;

E′ → α1E
′ | α2E

′ | · · · | αkE
′ | ε.

It is easy to see that this change does not affect the language generated by the
grammar.

Example 5.4.1. The production rules

E→ EA | EB | c | d

would be replaced by

E → cE′ | dE′;
E′ → AE′ | BE′ | ε.
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However, it is also possible to have left recursion consisting of several steps,
as in the grammar given next.

S → Aa | b;

A→ Sd | ε.
This type of left recursion can be removed as follows:

REMOVE-LEFT-RECURSION(G)
Input: G = (V,�,P, S) is a context-free grammar
1. Arrange the variables in V in some order A1, A2, . . . , An.
2. For i := 1 to n do
3. For j := 1 to i − 1 do
4. Suppose the Aj -productions are Aj → δ1 | δ2 | · · · | δk .

Replace each production Ai→Ajγ with Ai→δ1γ | δ2γ | · · · | δkγ .
5. Eliminate immediate left recursion among the Ai as mentioned earlier.

Example 5.4.2. Suppose we start with the grammar

A1 → A2a | b;

A2 → A2c | A1d |ε.
Then step 4 of the preceding algorithm results in the new grammar

A1 → A2a | b;

A2 → A2c | A2ad | bd | ε.
Finally, step 5 gives

A1 → A2a | b;

A2 → bdA′2 | A′2;

A′2 → cA′2 | adA′2 | ε.
The second method to attempt to resolve LL(1) conflicts is called “factoring.”

The idea here is that if two or more productions have right-hand sides that begin
in the same way, this common prefix may be “factored”out by introducing a
new variable.

Example 5.4.3. Consider the “if-then-else”grammar

S → iEtSeS | iEtS | x;

E → y.
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We observe that the right-hand sides of the two productions S → iEtSeS

and S → iEtS share a common prefix of iEtS. This suggests introducing a
new variable S′ and creating the grammar

S → iEtSS ′ | x;

S ′ → eS | ε;

E → y.

This idea can be turned into an algorithm as follows:

FACTOR(G)
Input: G = (V,�,P, S) is a context-free grammar
1. For each variable A ∈ V do
2. Find the longest prefix α common to two or more right-hand sides of

A-productions.
3. If α �= ε, replace productions A→ αβ1 | · · · | αβn | γ1 | γ2 | . . . | γm

with productions A→ αA′ | γ1 | γ2 | . . . | γm

A′ → β1 | β2 | · · · | βn

where A′ is a new variable.
4. Repeat until no two right-hand sides of A-productions share a nontrivial

common prefix.

5.5 Bottom-up parsing

In the previous two sections we covered some aspects of top-down parsing. In
this section we continue our study of parsing methods by turning to bottom-up
parsing.

A bottom-up parsing method constructs a derivation by starting with a
string x and attempting to find the immediately previous sentential forms. The
best-known bottom-up methods are the LR(k) methods. Here the L stands
for left-to-right scan of the input and the R stands for a rightmost derivation,
produced in reverse by the algorithm. Once again the number k refers to the
number of symbols of lookahead performed by the algorithm.

We focus here on LR(0) parsing. While LR(0) parsing is generally consid-
ered too weak for practical parsers, it shares aspects with more complicated
methods that make it worthy of study.

The LR(0) algorithm depends on some specialized terminology. Suppose
we have a grammar G = (V,�,P, S) with no useless symbols. Recall from
Section 5.2 that an item is a production of G with a dot in the middle. A right
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sentential form is a sentential form that can appear somewhere in a rightmost
derivation in G. A handle of a right sentential form is a substring that could be
introduced in the immediately preceding step of a rightmost derivation. More
formally, if S

∗=⇒rm δAw =⇒rm δαw, for some δ, α ∈ (V ∪�)∗, A ∈ V , and
w ∈ �∗, then α is said to be a handle of δαw. A viable prefixof a right sentential
form γ ∈ (V ∪�)∗ is any prefix of γ ending at or to the left of the right end
of a handle of γ . Finally, we say that an item A→ α • β is valid for a viable
prefixγ if there is a rightmost derivation

S =⇒∗rm δAw =⇒rm δαβw

and γ = δα.

Example 5.5.1. Consider the following grammar G:

S → T

T → aT a

T → bT b

T → c.

Then S =⇒ T =⇒ aT a =⇒ abT ba =⇒ abcba is a rightmost derivation of
abcba. Also, γ = abT ba is a right sentential form and bT b is a handle of
γ . The viable prefixes of abT ba are ε, a, ab, abT , and abT b. The item
T → bT • b is valid for viable prefix abT , as is shown by the rightmost
derivation S

∗=⇒ aT a =⇒rm abT ba. (Take δ = a, A = T , w = a, α = bT ,
β = b.)

The interesting thing about viable prefixes is that for any grammar G with-
out useless symbols—whether LR(0) or not—there is a deterministic finite
automaton (DFA) that accepts the viable prefixes of G, and furthermore, the
name of the corresponding state is the set of valid items for that viable prefix.

We now show how to compute this DFA, which we call the Knuth DFA.
Given G = (V,�,P, S), we first show how to compute a certain NFA-ε
M(G) = (Q,�, δ, q0, F ), where

• Q = items(G) ∪ {q0};
• � = � ∪ V ;
• F = Q;

and δ is defined as follows:

1. δ(q0, ε) = {S → •α : S → α is a production of G};
2. δ(A→ α • Bβ, ε) = {B → •ρ : B → ρ is a production of G};
3. δ(A→ α •Xβ,X) = {A→ αX • β}, X ∈ V ∪�.
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c

T → aTa• T → bTb•

S → T

T → •c

T → a • Ta T → c•T → b • Tb

T → aT • a T → bT • b

T → •

• •

bTbT →• aTa

a

b

T

ε

ε

ε

ε

T
q0

ε

ε

a
ε

T

b

S → T

ε

ε ε

Figure 5.5: Knuth NFA-ε for the grammar of Example 5.5.1

We call this NFA-ε the Knuth NFA-ε. The Knuth DFA is computed from the
Knuth NFA-ε by the usual subset construction.

Example 5.5.2. The NFA-ε in Figure 5.5 is the Knuth NFA-ε corresponding
to the grammar of Example 5.5.1. The DFA in Figure 5.6 is obtained by the
subset construction. (Useless transitions have been deleted.)

Theorem 5.5.3. Assume G is a grammar with no useless symbols. Then the
corresponding Knuth NFA-ε has the following property: A→ α • β ∈ δ(q0, γ )
iff A→ α • β is valid for γ .

Proof. Suppose A→ α • β ∈ δ(q0, γ ). We must show

A→ α • β is valid for γ. (5.11)

A natural way to prove (5.11) would be by induction on |γ |, but the Knuth
NFA-ε we constructed has some edges labeled ε. So instead we prove assertion
(5.11) by induction on the length l of the shortest path labeled γ from q0 to
A→ α • β.

The base case is l = 1. Then γ = ε. Then we have the situation represented
in Figure 5.7.

Then S → •β is in δ(q0, γ ). Now S
∗=⇒ δAw =⇒ δαβw with A = S, w =

ε, α = ε, and δ = ε. Hence, S → •β is valid for γ .
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a

a

T → •aTa
a

T → •aTa
T → •c

a

T → •c

b

b

c
S → T• T → a • Ta

c

T → •bTb
T → •c

T → •bTb

q0

T → b • Tb
T → •bTb

T → •aTa
S → •T

T → c•

T → aT • a T → bT • b

T → aTa• T → bTb•

c

b

T

T T

b

Figure 5.6: Knuth DFA for the grammar of Example 5.5.1

Now assume (5.11) holds for all paths of length <l; we prove it for a path
of length l. Let there be a path labeled γ from q0 to A→ α • β. There are two
cases to consider:

Case 1: The last edge in the path is labeled with a nonempty symbol X ∈
V ∪ � (see Figure 5.8).

Write γ = γ ′X and α = α′X. Then, by induction, A→ α′ •Xβ is valid for
γ ′. Hence there exists a derivation

S
∗=⇒ δAw =⇒ δα′Xβw

with δα′ = γ ′. Thus, γ ′X = δα′X = δα. It follows that A→ α′X • β is valid
for γ .

Case 2: The last edge in the path is labeled ε. In this case we have the
situation represented in Figure 5.9.

S → •β
ε

q0

Figure 5.7: Base case of the proof
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γ ′ X
q0 A →α ′ •Xβ A →α ′X • β

Figure 5.8: Case 1 of the induction step

Hence, by induction, B → α′ • Aβ ′ is valid for γ . This means there exists
a rightmost derivation

S
∗=⇒ δBw =⇒ δα′Aβ ′w,

where γ = δα′. Now, since there are no useless symbols, β ′ must eventually
derive some terminal string, so suppose β ′ ∗=⇒ x. Then

S
∗=⇒ δBw =⇒ δα′Aβ ′w ∗=⇒ δα′Axw =⇒ δα′βxw.

Thus, A→ •β is indeed valid for δα′ = γ . This completes the proof of one
direction.

For the other direction, suppose A→ α • β is valid for γ . This means there
is a rightmost derivation

S
∗=⇒ δ′Aw =⇒ δ′αβw, (5.12)

where γ = δ′α. If we could show that δ(q0, δ
′) contains A→ •αβ, then by

successively applying rule (3) of the definition of the Knuth NFA-ε, it would
follow that δ(q0, δ

′α) contains A→ α • β, as desired.
So let us prove by induction on the length of the rightmost derivation (5.12)

that δ(q0, δ
′) contains A→ •αβ.

The base case is when this derivation is of length 1. Then δ′ = ε, A = S,
and w = ε. Then δ(q0, ε) contains A→ •αβ by rule (1).

For the induction step, suppose

S
∗=⇒ δ2Bx =⇒ δ2δ3Aδ4x

∗=⇒ δ2δ3Ayx,

where B → δ3Aδ4 is a production. Thus, δ′ = δ2δ3 and yx = w. By induction
we know B ← •δ3Aδ4 is in δ(q0, δ2). Then by rule (3) we have that B →
δ3 • Aδ4 is in δ(q0, δ2δ3). Finally, by rule (2) we conclude A→ •αβ is in
δ(q0, δ2δ3) = δ(q0, δ

′). The proof is complete.

We now formally define the concept of LR(0) grammar.

ε
q0 B →α ′ • A ′

γ

A → •ββ

Figure 5.9: Case 2 of the induction step
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Definition. A grammar G = (V,�,P, S) is LR(0) if each of the following
conditions holds:

(a) G has no useless symbols.
(b) The start symbol S does not appear on the right-hand side of any pro-

duction.
(c) For all viable prefixes γ , if A→ α• is a complete item valid for γ , then

no other complete item nor any item with a terminal immediately to the right
of the • is valid for γ .

How do we parse using the Knuth DFA? An LR(0) parser is a deterministic
PDA that generates a rightmost derivation. The stack of the DPDA holds a viable
prefix of a right sentential form α, including all variables of α. Actually, the
stack holds this viable prefix together with states of the Knuth DFA interspersed
between symbols of the viable prefix. The remainder of α appears as the
unexpended input.

Initially, the LR(0) parser is in a configuration (q,w, q0), where q0 now
means the initial state of the corresponding Knuth DFA for the grammar. (Our
description uses only a single state q, but allows the PDA to pop multiple
symbols in a single step. Any implementation by a normal PDA would require
extra states to handle these pops.)

At each step, the parser has two choices: (i) to shift a symbol from the input
to the stack, updating the state of the Knuth DFA, or (ii) to “reduce”or pop 2|α|
symbols from the stack, where A→ α• is a complete item on top of the stack,
and then push A and the appropriate state of the Knuth DFA back on top of the
stack. For this reason, LR parsers are sometimes called shift-reduce parsers.

More formally, an LR(0) parser behaves as follows: a typical configuration
before a move looks like

(q, atat+1 · · · an, qkXkqk−1Xk−1 · · · q1X1q0),

where x = a1 · · · an is the input, X1 · · ·Xkatat+1 · · · an is the current right
sentential form, and qj = δ(qj−1, Xj ), 1 ≤ j ≤ k, where δ is the transition
function of the Knuth DFA. If qk contains a complete item of the form A→ α•,
then α = Xi+1 · · ·Xk for some i ≥ 0, and the new configuration is

(q, atat+1 · · · an, q
′AqiXiqi−1 · · · q1X1q0),

where q ′ = δ(qi, A). Otherwise, the new configuration is

(q, at+1 · · · an, q
′atqkXkqk−1Xk−1 · · · q1X1q0),

where q ′ = δ(qk, at ). We accept, by emptying the stack, if there is a complete
item S → α• on top of the stack.
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Let us prove that the LR(0) parsing method works. First we prove the
following theorem.

Theorem 5.5.4. Let G be an LR(0) grammar, let x ∈ L(G), and let α �= S be
a right sentential form appearing in a derivation of x, that is, suppose S

∗=⇒
α
∗=⇒ x by a rightmost derivation. Then there is a unique right sentential form

β such that S
∗=⇒ β =⇒ α

∗=⇒ x.

Proof. Suppose the right sentential form is α = X1X2 · · ·Xky, y ∈ �∗, and one
rightmost derivation is S

∗=⇒ X1X2 · · ·XjAy =⇒ α = X1X2 · · ·Xky
∗=⇒ x,

using the production A→ Xj+1 · · ·Xk . Suppose there is another possible right
sentential form previous to α, and consider the corresponding right end of the
handle in α. There are three possibilities:

(i) the handle ends to the right of Xk (and hence the end is inside y);
(ii) the handle ends at Xk;

(iii) the handle ends at Xt for some t < k.

Consider s = δ(q0, X1X2 · · ·Xk) in the Knuth DFA for G. Then s contains a
complete item, namely A→ Xj+1 · · ·Xk•. But by the LR(0) rules, this means
that s contains no other complete items (ruling out case (ii)) and contains no
items with a terminal immediately to the right of the dot (ruling out case (i)).

Finally, we have to rule out case (iii). To do so, suppose there is a rightmost
derivation

X1X2 · · ·XrBXt+1 · · ·Xky =⇒ X1X2 · · ·Xky

using a production B → Xr+1 · · ·Xt . Since the derivation is rightmost,

each of Xt+1, . . . , Xk is a terminal. (5.13)

Now complete item B → Xr+1 · · ·Xt• is valid for viable prefix X1 · · ·Xt , but
then, since X1X2 · · ·Xk is also a viable prefix, there must be some other item
valid for X1 · · ·Xt . And by (5.13), this item must have a terminal to the right of
the dot or be complete. But this would violate the LR(0) rules, a contradiction.

Corollary 5.5.5. If G is LR(0), then it is unambiguous.

Proof. For every right sentential form in the derivation of w ∈ L(G), there is
only one previous right sentential form.

Now we prove that the LR(0) algorithm works.
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Theorem 5.5.6. Let M be the DPDA specified earlier, based on the LR(0)
grammar G. Then L(G) = Le(M), where by Le we mean acceptance by empty
stack.

Proof. First we prove that Le(M) ⊆ L(G).
Suppose that x ∈ Le(M). We will prove that x ∈ L(G) by producing a

rightmost derivation of x.
We define αi , the right sentential form represented by the configuration of

the DPDA M at step i, to be the string X1X2 · · ·Xky if the DPDA at step i has
configuration

(q, y, skXksk−1 · · · s1X1s0).

We will prove the following two assertions by induction on i. Let α−1 = α0.

1. δ(q0, X1X2 · · ·Xj ) = sj for all j , 0 ≤ j ≤ k, where δ is the transition func-
tion of the associated Knuth DFA.

2. Either αi =⇒rm αi−1 or αi = αi−1.

For i = 0, both (1) and (2) are true. (1) is true since the initial configuration
of the DPDA is (q, x, q0), and δ(q0, ε) = q0. (2) is true since α0 = α−1 = x.

Now assume the assertions are true for steps <i; we prove them for i.
Suppose the configuration of the DPDA before step i is (q, y, skXksk−1

· · · s1X1s0). At step i the DPDA either reduces or shifts.
(A) Reduce move: If the DPDA makes a reduce move, we know that sk con-

tains a complete item A→ γ •. By induction sk = δ(q0, X1X2 · · ·Xk). Since
δ is the transition function for the Knuth automaton, we know that A→ γ •
is valid for viable prefix X1X2 · · ·Xk . In other words, there exists a rightmost
derivation

S
∗=⇒ βAz =⇒ βγ z,

where βγ = X1X2 · · ·Xk . It follows that γ is a suffix of X1X2 · · ·Xk and hence
when we pop 2|γ | symbols from the stack we are left with

sjXj sj−1 · · · s1X1s0

for some j , with X1 · · ·Xj = β, Xj+1 · · ·Xk = γ . Then we push A and δ(sj , A)
maintaining the invariant (1).

On the other hand, the invariant (2) is preserved because we have

αi = X1X2 · · ·XjAy =⇒ X1X2 · · ·Xjγy = X1X2 · · ·Xky = αi−1.

(B) Shift move: If the DPDA makes a shift move, the invariant (1) is trivially
preserved and (2) is preserved because αi = αi−1.
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Finally, since x ∈ Le(M), we know the DPDA eventually empties its stack
and accepts its input. This can occur only if at some step, say step n, the
configuration is (q, ε, skXksk−1 · · · s1X1s0) and sk contains a complete item of
the form S → γ •. If this is the case, by the reasoning given earlier, there is a
rightmost derivation

S
∗=⇒ βSz =⇒ βγ z,

with X1X2 · · ·Xk = βγ . However, since S does not appear on the right-hand
side of any production, we must have S = βSz, so it follows that β = ε and
z = ε. Hence, X1X2 · · ·Xk = γ . Now define αn+1 = S. Then we have αi

∗=⇒
αi−1 for 1 ≤ i ≤ n+ 1. Since α0 = x, this gives a derivation of x in G.

Now let us show that L(G) ⊆ Le(M). Let x ∈ L(G). As we have seen in
Theorem 5.5.4, there is only one rightmost derivation S

∗=⇒ x. Suppose this
derivation is of length n and

S = αn =⇒ αn−1 =⇒ · · · =⇒ α0 = x.

We want to argue that M , when given x, eventually pops its stack and halts.
To do so, we need to create a measure of “progress”toward an accepting
computation. Suppose C = (q, y, skXksk−1 · · · s1X1s0) is a configuration of
M on input x. If X1X2 · · ·Xky = αi, then we define the weight of C to be
n− i + |y|. We then argue that each move of the DPDA is correct and reduces
the weight of its configuration.

Initially, the configuration is (q, x, q0), with weight n+ |x|. At each step,
M either reduces or shifts. Consider what happens at step i.

If M reduces, then there must be a complete item on top of the stack. By
Theorem 5.5.4, there is only one handle in X1 · · ·Xky and it must be Xj+1 · · ·Xk

with corresponding production A→ Xj+1 · · ·Xk . The machine now performs
a reduce move, and the corresponding weight decreases by 1.

If M shifts, then there is no complete item on top of the stack. We now
argue that shifting is the right thing to do. Suppose there were a complete item
A→ γ buried in the stack. Then this complete item would have been added at
some point. Consider the very next step. Since a complete item is on top, we
would do a reduce move, popping 2|γ | symbols from the stack, so if γ �= ε,
this complete item gets popped from the stack and cannot be buried. If γ = ε,
then A and δ(sk, A) are put on top of A→ • in the stack. If, in any future step,
X1X2 · · ·Xk has not risen to the top of the stack, then there will be a variable
on top of X1X2 · · ·Xk . But then ε (via A→ ε) cannot be the handle of any
right sentential form X1X2 · · ·Xkεβ, where β contains a variable, because then
X1X2 · · ·XkAβ =⇒ X1X2 · · ·Xkβ would not be a rightmost derivation. Thus
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the handle must include some symbols of the input, and shifting is the right
thing to do. This reduces the weight of the configuration by 1.

Eventually, the weight of the configuration becomes 0. At this point, we have
i = n and y = ε, and the DPDA pops its stack, accepting. Thus, x ∈ Le(M).

5.6 Exercises

1. Consider the grammar G given by the following productions:

S → AB | b
A→ BC | a
B → AS | CB | b
C → SS | a.

Using the CYK algorithm, show that babbbab ∈ L(G) and find a parse tree
for this string. Show the tables in the algorithms.

2. Suppose G is a CFG and w ∈ L(G). Show how to compute the number of
distinct parse trees for w in G in polynomial time.

3. Give an example of a grammar for which constructing the parse table by
Earley’s method uses 
(n3) steps. Hint: Consider the grammar S → SS | a.

4. Compute the table M(γ, x) for the grammar

S → aA | aB
A→ a

B → b.

Is this grammar LL(1)?
5. Find an LL(1) grammar for the following set: the set of strings over {a, b}∗

containing an equal number of a’s and b’s. Be sure to prove that your
grammar is correct and that it is LL(1).

6. Let G be a CFG with no useless symbols. Prove that G is an LL(1) grammar
if and only if, for any two distinct productions of the form X → α,
and X → β, the following holds: if x and y are in FOLLOW(X), then
FIRST(αx) ∩ FIRST(βy) = ∅. The symbols x and y need not be distinct.

7. Show that every regular language has an LL(1) grammar.
8. Give an example of an LR(0) grammar such that there exists a viable prefix

γ and items A→ •, B → α • β, which are both valid for γ .
9. Let G = (V,�,P, S) be an unambiguous grammar with no useless symbols

and w1w2 · · ·wn be a string in �∗. Show that if α �= ε, the algorithm to
construct the Earley table attempts to add an item A→ α • β to Mij at most
once.
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10. Give an example of a grammar that is LL(k + 1) but not LL(k).
∗11. Give an example of a context-free language that is LL(k + 1) but not

LL(k).
∗∗12. Give an example of a context-free language that is not LL(k) for any k.

13. Show that if i, j,m, i1, . . . , im+1 are all integers with i1 = i, im+1 = j ,
m ≥ 2, and i1 < i2 < · · · < im < im+1, then ((i2 − i1)2 + · · · + (im+1 −
im)2) is bounded by (j − i − 1)2 + 1.

14. Let G be an LR(0) grammar with A→ α•, α �= ε, valid for some viable
prefix γ . Prove that no other item can be valid for γ .

5.7 Projects

1. Study software packages for LR parsing, such as Yacc and Bison. How
do they compare in terms of features and efficiency?

2. Read about Valiant’s method for recognition in o(n3) time. You can start
with Valiant [1975].

5.8 Notes on Chapter 5

For Valiant’s result on parsing general CFGs, see Valiant [1975].

5.1 For the CYK algorithm, see, for example, Younger [1967].
5.2 Earley’s original paper is Earley [1970], but this is somewhat difficult

to read. I have followed Urbanek [1990] for one direction of the proof
of Theorem 5.2.3. While very clever, this paper unfortunately contains
several typographical errors. I have followed Aho and Ullman [1972]
for other parts of the presentation.

5.3 For two early papers on top-down parsing, see Rosenkrantz and Stearns
[1970] and Lewis and Stearns [1968]. Our presentation is based on the
book of Drobot [1989], but we have corrected many errors.

5.4 The material in this section is based on Aho, Sethi, and Ullman [1986].
5.5 For LR(k) grammars, see Knuth [1965].

The material in this section is based on Hopcroft and Ullman [1979],
but the proof of correctness (Theorem 5.5.6) is new and improved.
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6

Turing machines

In this chapter we explore some advanced topics relating to Turing machines
(TMs): Kolmogorov complexity and unsolvability aspects of context-free gram-
mars and languages. We begin by discussing unrestricted grammars and their
languages.

6.1 Unrestricted grammars

In previous chapters we have studied context-free grammars (CFGs) and vari-
ants as LL(1) and LR(0) grammars. None of these grammars is powerful enough
to generate the class of recursively enumerable languages. We introduce a new
model, the unrestricted grammar, which has more power.

In an unrestricted grammar, both the left and right side of productions can
be any string of variables and terminals, subject to the left side being nonempty.
In other words, a production is of the form α→ β, with α ∈ (V ∪ �)+ and
β ∈ (V ∪ �)∗. We apply a production in the same manner as for other kinds of
grammars; that is, if a sentential form is γαδ, then we can apply the production
α→ β to get the new sentential form γβδ. As usual we write γαδ =⇒ γβδ

and let
∗=⇒ be the reflexive, transitive closure of =⇒. Finally, as usual we

define L(G) for an unrestricted grammar G to be {w ∈ �∗ : S
∗=⇒ w}.

Example 6.1.1. The following is an unrestricted grammar for the language
{ai2

: i ≥ 1}:
S → BRAE

B → BRAA

RA→ aAR

Ra→ aR

RE → E

B → X

174
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XA→ X

Xa→ aX

XE → ε.

Here is the idea behind this example. It is based on the identity 1+ 3+
5+ · · · + (2n− 1) = n2. The B and E symbols are endmarkers. The first two
productions create strings of the form B(RAA)iRAE for all i ≥ 0. Thus, each
R has an odd number of As to its right. Each R then moves to the right, creating
a new a for each A encountered. When R hits E at the right, it disappears.
Finally, the symbol B changes to X and causes the As, X, and E to disappear.
Here are two examples of derivations using this grammar:

S =⇒ BRAE =⇒ BaARE =⇒ BaAE =⇒ XaAE =⇒ aXAE =⇒ aXE =⇒ a.

S
∗=⇒ BRAARAE =⇒ BRAARAARAE =⇒ BaARARAARAE

=⇒ BaARARAAaARE =⇒ BaAaARRAAaARE

=⇒ BaAaARaARAaARE =⇒ BaAaARaARAaAE

=⇒ BaAaARaAaARaAE =⇒ BaAaAaRAaARaAE

=⇒ BaAaAaaARaARaAE =⇒ BaAaAaaAaRARaAE

=⇒ BaAaAaaAaaARRaAE =⇒ BaAaAaaAaaARaRAE

=⇒ BaAaAaaAaaAaRRAE =⇒ BaAaAaaAaaAaRaARE

=⇒ BaAaAaaAaaAaRaAE =⇒ BaAaAaaAaaAaaRAE

=⇒ BaAaAaaAaaAaaaARE =⇒ BaAaAaaAaaAaaaAE

=⇒ XaAaAaaAaaAaaaAE =⇒ aXAaAaaAaaAaaaAE

=⇒ aXaAaaAaaAaaaAE =⇒ aaXAaaAaaAaaaAE

=⇒ aaXaaAaaAaaaAE
∗=⇒ aaaaaaaaaXAE

=⇒ aaaaaaaaaXE =⇒ aaaaaaaaa.

The following two theorems characterize the power of unrestricted gram-
mars.

Theorem 6.1.2. Let G = (V,�,P, S) be an unrestricted grammar. Then L(G)
is recursively enumerable.

Proof. We show how to construct a TM accepting L(G). Our TM is a non-
deterministic four-tape model. Tape 1 holds the input w, and will never change.
Tape 2 holds a sentential form. Tape 3 holds the left side of a production, and
tape 4 holds the corresponding right side.
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Initially, we write S on tape 2. Now, we perform the following loop forever,
until a halting state is reached. First, we nondeterministically choose a cell on
tape 2. Then, we nondeterministically choose a production rule α→ β and
write α on tape 3 and β on tape 4. Then we see if the symbols on tape 3 match
the symbols beginning in the cell being scanned on tape 2. If they do, we replace
the symbols with the contents of tape 4; this will require shifting the rest of the
symbols on tape 2 to the left if |α| > |β| and to the right if |α| < |β|. Next, we
compare the contents of tape 1 with tape 2; if they agree, we accept. Otherwise,
we return to the beginning of the loop.

We know from Exercise 1.29 that a nondeterministic four-tape machine is
equivalent to a deterministic one-tape machine, and hence L(G) is recursively
enumerable.

Theorem 6.1.3. Let L be a recursively enumerable language. Then there exists
an unrestricted grammar G such that L(G) = L.

Proof. If L is recursively enumerable, then there exists a deterministic one-tape
TM M accepting L. We now modify M to get a nondeterministic “language
generator”M ′ as follows: M ′ has two tracks. Starting with an initially blank
tape, M ′ writes a nondeterministically-chosen string w ∈ �∗ on track 1. Then
it copies w to track 2. Then it simulates M on track 1, and if M accepts, M ′

erases track 1, copies track 2 back to the tape (so the second track disappears
and there is now just one track), and enters the halting state h. If M does not
accept, M ′ crashes (by not having a next move).

In order to erase the tape, we need a small technical trick. Using Exer-
cise 1.30, we can assume that M ′ never writes a blank symbol B; instead, it
writes a new symbol B. Furthermore, we may assume that M ′ stops with the
tape head immediately to the right of w, scanning a B or B. Thus, M ′ has the
following behavior: it starts with a blank tape, and after some computation, it
eventually halts with a nondeterministically chosen member of L(M) (if one
exists) written on its tape, followed by some number of B symbols, with the
rest of the tape consisting of B symbols. We assume the tape head is scanning
the first B or B symbol when the machine halts.

Once we have such an M ′ = (Q,�,�, δ, q0, h), we create an unrestricted
grammar mimicking its computations, with productions as follows:

S → q0S1

S1 → BS1 | T
pX → qY for all X, Y ∈ �, p, q ∈ Q such that (q, Y, S) ∈ δ(p,X)

pX → Yq for all X, Y ∈ �, p, q ∈ Q such that (q, Y,R) ∈ δ(p,X)
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ZpX→ qZY for all X, Y,Z ∈ �, p, q ∈ Q such that (q, Y, L) ∈ δ(p,X)

hB→ h

hB→ h

hT → ε.

To see that this construction works, note that the productions have been
designed in such a way that intermediate sentential forms represent configura-
tions of M ′. Starting with S, we derive a string of the form q0Bn for some n. We
then perform moves of M ′ until h is reached, after which point the remaining B

and B symbols are removed, and the h symbol is removed. The resulting string
is the contents of the tape of M ′, which contains a nondeterministically chosen
element of L(M), if one exists.

6.2 Kolmogorov complexity

In this section we discuss the basic notions of Kolmogorov complexity.
When is a string of symbols complex? Intuitively, a string such as

0101010101010101010101010

is not complex, because there is an easy way to describe it, whereas a string
such as

0110101011001110010001010

is complex because it appears to have no simple description.
Here is another way to think about it. Suppose I flip a fair coin, recording

0 for heads and 1 for tails. If I produce 0110101011001110010001010 and
claim that it is a record of 25 tosses, no one would be surprised. But a few
eyebrows would be raised if I produced 0101010101010101010101010 as
my record of tosses. Thus complexity and randomness are linked.

Laplace noticed this connection two centuries ago. In 1819, he wrote

In the game of heads and tails, if heads comes up a hundred times in a row then this
appears to us extraordinary, because the almost infinite number of combinations
that can arise in a hundred throws are divided in regular sequences, or those in
which we observe a rule that is easy to grasp, and in irregular sequences, that are
incomparably more numerous.

Kolmogorov complexity is a way to measure the complexity, or randomness,
of a finite string. Roughly speaking, the Kolmogorov complexity C(x) of a string
x is the size (number of bits) in the shortest Pascal program P + input i that
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will print x and then halt. (If you do not like Pascal, feel free to substitute C,
APL, or your favorite programming language.)

If the Kolmogorov complexity of a string x is small, then there is a simple
way to describe x. If the Kolmogorov complexity of x is large, then x is hard
to describe; we say it is “complex”,“random”,or possesses “highinformation
content.”

We can also view the combination of program and input (P, i) as an optimal
way to compress x. In this interpretation, instead of storing x, we could store
(P, i), since we could always recover x by running P on input i. (Note that this
approach disregards the running time of P on input i.)

For a more formal definition of Kolmogorov complexity, we need a universal
TM U . The input to U is a self-delimiting binary encoding of a TM T , followed
by y ∈ {0, 1}∗, the input for T . By self-delimiting we mean that given e(T )y
we can tell where the encoding of T ends and y begins. We assume that T ’s
input alphabet, as well as U’s, is {0, 1}. U then simulates T on input y. It is
assumed that T has an output tape, and the output of U is what T outputs if
and when it halts.

Then C(x) is formally defined to be the length of a shortest input e(T )y that
causes U to output x.

Theorem 6.2.1. We have C(x) ≤ |x| +O(1).

Note that the constant in the big-O is independent of x.

Proof. Informally, we can use the following Pascal program:

program print(input);

begin

write(input);

end.

Clearly, the length of this program is |x| + c, where c is the number of
characters in the preceding template.

Formally, there exists some TM T that simply copies the input to the output.
Then the input to U is e(T )x, which is of length |x| + |e(T )| = |x| +O(1).

Example 6.2.2. Let us show C(xx) ≤ C(x)+O(1). Informally, given a Pascal
program P to print x, we simply call it twice to print xx. The extra cost to build
the “wrapper”program and call P twice corresponds to the O(1) term.

The next theorem, called the invariance theorem, shows that the particular
choice of programming language or universal TM is irrelevant, at least up to
an additive constant.
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Theorem 6.2.3. Suppose we define CAPL, CJAV A, and so on, analogously.
Then we have, for example,

CAPL(x) ≤ C(x)+O(1);

C(x) ≤ CAPL(x)+O(1).

Thus all these measures are the same up to an additive constant.

Proof. We prove C(x) ≤ CAPL(x)+O(1), leaving the other direction to
the reader. Suppose CAPL(x) = d. Then there exists an APL program p to
print out x, of size d. Now write an APL interpreter as a TM T ; such a
machine can be fed with p to output x. Thus, C(x) ≤ d +O(1) as desired,
since C(x) ≤ |e(T )p| = |e(T )| + |p|.

We can think of the representation of a string x as e(T )y as a sort of optimal
“compression”method (like the Unix compress command). The e(T ) captures
the “regular”aspects of x, while the y captures the “irregular”aspects of x.

We call a string x incompressible or random if C(x) ≥ |x|. We cannot
explicitly exhibit long incompressible strings x, but we can prove they exist:

Theorem 6.2.4. For all n ≥ 0, there exists at least one string x of length n

such that C(x) ≥ |x|.
Proof. There are 2n strings of length n, but at most 1+ 2+ · · · + 2n−1 =
2n − 1 shorter descriptions.

Unfortunately, Kolmogorov complexity is uncomputable, so perfect com-
pression is unattainable.

Theorem 6.2.5. The quantity C(x) is uncomputable.

Proof. Assume C(x) is computable by a TM T that takes x as input. Create a
new TM T ′ that, on input l, examines all strings of size l in lexicographic order
until it finds a string y with C(y) ≥ |y| = l, using T as a subroutine. Such a
string exists by Theorem 6.2.4. Then T ′ outputs y.

Now let us compute the Kolmogorov complexity of y. On the one hand, we
have C(y) ≥ l. On the other hand, the string y is completely determined by T ′

and l, so C(y) ≤ |e(T ′)| + (log2 l)+ 1.

l ≤ C(y) ≤ |e(T )| + (log2 l)+ c (6.1)

for a constant c. Now choose l sufficiently large so that l > |e(T )| + (log2 l)+
c. This inequality contradicts Eq. (6.1).



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

180 6 Turing machines

6.3 The incompressibility method

The basic idea in this method is that “most”strings cannot be compressed very
much. Generally speaking, a proof works by selecting a typical instance and
arguing about its properties. In the incompressibility method, we pick a random
“incompressible”string and argue about it.

Example 6.3.1. Let π (x) denote the number of primes ≤x. A celebrated
theorem known as the prime number theorem states that π (x) ∼ x

log x
. Using

the incompressibility method, however, we can prove the weaker inequality
π (n) > cn/(log n)2 for infinitely many n. In fact, we show that this inequality
is true for infinitely many n of the form n = 1+ �2dm(log2 m)2� for a constant
d.

Consider the ordinary binary representation of the nonnegative integers, so
that, for example, 43 is represented by 101011. If n ≥ 1 is represented by
a string x, then it is easy to see that |x| = �log2 n� + 1. Unfortunately, there
are also other possible representations for 43, such as 0101011. To avoid the
“leadingzeroes”problem, we can define a 1–1mapping between the natural
numbers and elements of {0, 1}∗ as follows: e(n) is defined to be the string
obtained by taking the ordinary base-2 expansion of n+ 1 and then dropping
the leading bit 1. For example, the representations of the first eight natural
numbers are given in the following table:

n e(n)
0 ε

1 0

2 1

3 00

4 01

5 10

6 11

7 000

Note that |e(n)| = �log2(n+ 1)� + 1− 1 = �log2(n+ 1)�. Now t + 1 ≤ 2t

for t ≥ 1, so

log2(t + 1) ≤ log2(2t) ≤ (log2 t)+ 1. (6.2)

It follows that

(log2 n)− 1 ≤ |e(n)| ≤ (log2 n)+ 1. (6.3)
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Previously we defined a binary string x to be random if C(x) ≥ |x|. Since we
now have a bijection between binary strings and natural numbers, we can define
a natural number N to be random if C(e(N )) ≥ |e(N )|. By Theorem 6.2.4, there
exist infinitely many random integers.

We will also need a prefix-free encoding of the natural numbers. By prefix-
free, we mean that no prefix of an encoding of a number m is the encoding
of some other number. Prefix-free encodings are useful because they enable
us to encode k-tuples of integers by simply concatenating the encodings. The
prefix-free property then ensures unique decoding.

There are many different ways to create prefix-free encodings, but the fol-
lowing one will suffice for us. Given a natural number m, we define

E(m) = 1|e(|e(m)|)|0e(|e(m)|)e(m).

Here are some examples of this encoding.

m E(m)
0 0

1 1000

2 1001

3 10100

4 10101

5 10110

6 10111

7 11000000

From (6.3) we get

|E(m)| ≤ 2(log2((log2 m)+ 1)+ 1)+ 1+ (log2 m)+ 1

≤ 2(log2 log2 m+ 2)+ log2 m+ 2

= 2 log2 log2 m+ log2 m+ 6.

Before we get started on the main result, let us use the ideas given earlier
to give a proof that there are infinitely many prime numbers. Suppose there are
only finitely many primes, say p1, p2, . . . , pk , and let N be random. Then

C(e(N )) ≥ |e(N )| ≥ (log2 N )− 1. (6.4)

On the other hand, from the well-known result that every integer can be factored
as a product of primes, we can write N = p

a1
1 · · ·pak

k for nonnegative integers
a1, a2, . . . , ak . Clearly, ai ≤ log2 N for 1 ≤ i ≤ k. It follows that we can encode
N by e(T )E(a1)E(a2) · · ·E(ak), where T is a TM that reconstructs N from
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the exponents in its prime factorization. The length of this representation is
O(k log2 log2 N ), which contradicts (6.4).

Now let us prove π (n) > cn/(log n)2 for infinitely many n. We note that an
integer N can be encoded by the string x := e(T )E(m)e(N/pm), where pm is
the largest prime dividing N and T is a TM that deduces m, computes pm, and
multiplies it by N/pm to get N . If N is random, then the length of x must be
at least as long as e(N ). Hence we have

|e(T )E(m)e(N/pm)| ≥ (log2 N )− 1

for infinitely many N . In fact, among these infinitely many N , there must be
infinitely many distinct m, for otherwise all random N could be factorized into
some finite set of primes, which is impossible as we have seen earlier.

Using the preceding inequalities for E and e, we get

log2 pm ≤ log2 m+ 2 log2 log2 m+ d

for some constant d ≥ 1. Now, raising 2 to both sides, we get pm ≤
2dm(log2 m)2. Now set n = �2dm(log2 m)2� + 1. We then have π (n) ≥ m.

It now remains to see that m ≥ n
2d (log2 n)2 . Assume, contrary to what we want

to prove, that

m <
n

2d (log2 n)2
. (6.5)

From our definition of n, we have

2dm(log2 m)2 < n ≤ 2dm(log2 m)2 + 1. (6.6)

Thus,

log2 n > d + log2 m+ 2 log2 log2 m. (6.7)

Now, using (6.5) first and then (6.7), we get, for m ≥ 2,

n > 2dm(log2 n)2

> 2dm(d + log2 m+ 2 log2 log2 m)2

≥ 2dm(log2 m+ 1)2

> 2dm(log2 m)2 + 1,

which contradicts (6.6). Thus our assumption in (6.5) is false and hence m ≥
n

2d (log2 n)2 . Since π (n) ≥ m, we get π (n) ≥ n
2d (log2 n)2 , our desired result.

We now turn to applications of the incompressibility method to formal
languages, specifically, to proving that certain languages are not regular.
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Example 6.3.2. Let L = {0k1k : k ≥ 1}. We prove that L is not regu-
lar. Suppose it were. Then it would be accepted by a deterministic finite
automaton (DFA) M = (Q,�, δ, q0, F ). We could then encode each inte-
ger n by providing a description of M (in O(1) bits) and q = δ(q0, 0n)
(in O(1) bits), because then n is uniquely specified as the least i with
δ(q, 1i) ∈ F . Hence, C(e(n))) = O(1). But there exist infinitely many n with
C(e(n)) ≥ log2 n+O(1), a contradiction.

We can generalize the previous example, as follows:

Lemma 6.3.3. Let L ⊆ �∗ be regular, and define Lx = {y : xy ∈ L}. Then
there exists a constant c such that for each x, if z is the nth string in Lx in
lexicographic order, then C(z) ≤ C(e(n))+ c.

Proof. The string z can be encoded by the DFA for L (in O(1) bits), plus the
state of the DFA after processing x (in O(1) bits), and the encoding e(n).

We now consider some applications of this lemma.

Example 6.3.4. Let us prove that L = {1p : p prime} is not regular. Let
x = 1pk , where pk is the kth prime. Then the second element of Lx is y =
1pk+1−pk . But as k→∞, the difference pk+1 − pk is unbounded (because, for
example, the n− 1 consecutive numbers n!+ 2, n!+ 3, n!+ 4, . . . , n!+ n

are all composite for n ≥ 2). Hence, C(1pk+1−pk ) is unbounded. However, by
Lemma 6.3.3, we have C(y) ≤ C(e(2))+ c = O(1), a contradiction.

Example 6.3.5. Let us prove that L = {xxRw : x,w ∈ {0, 1}+} is not regular.
Let x = (01)m, where m is random (i.e., C(e(m)) ≥ |e(m)| ≥ log2 m− 1). Then
the lexicographically first element of Lx is y = (10)m0. Hence, C(y) = O(1).
But C(y) ≥ log2 m+O(1), a contradiction.

Example 6.3.6. Let us prove that L = {0i1j : gcd(i, j ) = 1} is not regular.
Let x = 0(p−1)!1, where p is a prime, and |e(p)| = n. Then the second word in
Lx is y = 1p−1, which gives C(y) = O(1). But C(e(p)) ≤ C(y)+O(1), and
there are infinitely many primes, so C(e(p)) = O(1) for infinitely many primes
p, a contradiction.

6.4 The busy beaver problem

In this section we describe a problem of Rado on TMs now known as the busy
beaver problem. We assume that our TMs are deterministic and have a tape
alphabet consisting of a single symbol 1 and the usual blank symbol B. (In
Rado’s original description, the symbol 0 was used as a blank.) We also assume
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B/1, R

3

1 2B/1, L

h
1/1, R

B/1, L1/1, L

1/1, R

Figure 6.1: A three-state busy beaver

that our TM has a single “doublyinfinite”tape, initially completely blank, and
that the machine must move either right or left at each step—it cannot remain
stationary. There is a single halting state from which no transitions emerge, and
this halting state is not counted in the total number of states.

Rado’s function �(n) is defined to be the maximum number of (not neces-
sarily consecutive) 1s left on the tape after such an n-state TM halts. He also
defined a function S(n) that counts the maximum number of moves that can be
made by an n-state halting TM of this form.

For example, consider the three-state TM as shown in Figure 6.1.
If this machine is started with a tape of all blanks, it halts after 13 moves

with six consecutive 1s on the tape—check this. This shows that �(3) ≥ 6 and
S(3) ≥ 13. In fact, it can be shown that �(3) = 6 and S(3) = 21.

If a TM writes the maximum possible number of 1s for its number of
states—that is, �(n) 1s—then it is called a “busy beaver.”Busy beavers are
hard to find, even for relatively small n, for two reasons. First, the search space
is extremely large: there are (4(n+ 1))2n different TMs with n states. (For each
nonhalting state, there are two transitions out, so there are 2n total transitions,
and each transition has two possibilities for the symbol being written, two
possibilities for the direction to move—left or right, and (n+ 1) possibilities
for what state to go to—including the halting state.) Second, it is in general not
possible to determine whether a particular TM will halt, so it may not be easy
to distinguish between a machine that goes into an infinite loop from one that
goes for thousands, millions, or billions of steps before halting. For example,
it is known (by explicitly producing an example) that S(6) ≥ 102879. It is also
known that �(6) ≥ 101439.

In fact, we will show in a moment that neither �(n) nor S(n) is computable
function. This means that there is no halting TM that, on arbitrary input n,
will always halt and successfully compute these functions. Nevertheless, it is
possible to compute �(n) and S(n) for some small values of n by a brute-force
approach, and this has been done by many investigators.
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n (n) S(n) Source

1 1 1 Lin and Rado
2 4 6 Lin and Rado
3 6 21 Lin and Rado
4 13 107 Brady
5 4,098 47,176, 870 Marxen and Buntrock
6 101439 102879 Ligocki and Ligocki

≥ ≥
≥≥

Figure 6.2: �(n) and S(n) for 1 ≤ n ≤ 6

Figure 6.2 shows what is known about �(n) and S(n) for 1 ≤ n ≤ 6.
Figure 6.3 illustrates the six-state TM that makes about >102879 moves

before halting with about 101439 1s on its tape.
Now let us prove that neither �(n) nor S(n) is computable.

Theorem 6.4.1. The function �(n) is not computable by a TM.

Proof. The idea is to show that if f (n) is any computable function, then there
exists n0 such that �(n) > f (n) for n ≥ n0.

Our model of computable function is that a TM calculating f (n) starts with
a tape with a block of n 1s immediately to the right of the starting blank and
halts after a finite number of moves with a block of f (n) consecutive 1s on the
tape.

Let f be an arbitrary computable function and define

F (x) =
∑

0≤i≤x

(f (i)+ i2).

Since f is computable, so is F . In fact, there is a TM MF that, for all
strings y, when started in the configuration yB1xq0B halts in the configura-
tion yB1xB1F (x)hB. Assume MF has n states.

1

5h

B/1,L

1/B,R

1/B, L
B/1, L

B/1, R
B/1, L

1/1, L

B/1, L

1/B, L

1/1, R
6

2 3

4
B/1, L

1/B,R

Figure 6.3: A six-state busy beaver candidate
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Consider a TM M that, on input ε, first writes x 1s on an initially blank tape
and then halts with its head on the blank immediately following the rightmost
1. This can be done with x + 1 states. Next, M simulates MF on this tape,
resulting in the configuration B1xB1F (x)hB. Finally, M simulates MF again on
this tape, resulting in the configuration B1xB1F (x)B1F (F (x))hB. This machine has
x + 1+ 2n states.

Now any busy beaver machine of x + 1+ 2n states will leave at least as
many 1s as M does when started on input ε. Hence we have

�(x + 1+ 2n) ≥ x + F (x)+ F (F (x)).

But from its definition, F (x) ≥ x2, and there exists a constant c1 such that
x2 > x + 1+ 2n for all x ≥ c1. It follows that F (x) > x + 1+ 2n for x ≥ c1.
Now from its definition we have F (x) > F (y) if x > y, so we have F (F (x)) >

F (x + 1+ 2n) for x ≥ c1. It follows that

�(x + 1+ 2n) ≥ x + F (x)+ F (F (x)) > F (F (x)) > F (x + 1+ 2n)

≥ f (x + 1+ 2n)

for x ≥ c1. It follows that � is eventually greater than f . Since f was arbitrary,
� is noncomputable.

Corollary 6.4.2. The function S(n) is also noncomputable.

Proof. There exists a TM M with n states that writes �(n) 1s on its tape before
halting. Such a TM must make at least �(n) moves. Hence, S(n) ≥ �(n). Since
�(n) is eventually greater than any computable function, so is S(n). Hence, S

is also noncomputable.

6.5 The Post correspondence problem

In this section we discuss a famous unsolvable problem, the Post correspon-
dence problem, often abbreviated as PCP. The problem is very simple to de-
scribe: we are given as input two morphisms g, h : �∗ → �∗, and the question
we would like to solve is, does there exist a nonempty word x ∈ �∗ such that
g(x) = h(x)?

Example 6.5.1. Consider the morphisms g and h defined by

g(1) = 001 h(1) = 00

g(2) = 11 h(2) = 011

g(3) = 01 h(3) = 000

g(4) = 010 h(4) = 10.



P1: JsY

second CUUS348-Shallit 978 0 521 86572 2 August 6, 2008 21:1

6.5 The Post correspondence problem 187

This instance of PCP has no solution, for if g(x) = h(x), then x must start with
1; however, this choice results in one more 1 in the image of g than in the
image of h, and subsequence choices of letters do not allow this difference to
be made up.

On the other hand, the PCP instance defined by

g(1) = 0 h(1) = 1

g(2) = 1 h(2) = 011

g(3) = 011 h(2) = 0.

has a solution, but the shortest nonempty x with g(x) = h(x) has length 75. (One
such solution is x = 3113323111233312311231233123131123123311331

23122332231222211221132332122122.)

We now prove

Theorem 6.5.2. PCP is unsolvable.

Proof Idea. The basic idea is simple; we reduce from the halting problem.
Given a TM M and an input w, we structure our morphisms so that there is a
solution x to f (x) = g(x) iff there is an accepting computation for M on w.
To do this, we force f (u) to “lagbehind”g(u), and it can “catchup”only if
the computation halts.

The details, however, are somewhat messy. First, we define a variant of PCP
called MPCP (the modified Post correspondence problem). In this variant, we
look for a solution to f (x) = g(x), but demand that x start with a given fixed
letter. Then we show that the halting problem reduces to MPCP, and MPCP
reduces to PCP.

Proof. More precisely, MPCP is defined as follows: we are given morphisms
g, h : �∗ → �∗, where � = {0, 1, . . . , k}, and we want to know if there is a
word w such that g(0w) = h(0w).

Let us show that MPCP reduces to PCP. To make the notation a little
less cumbersome, we introduce the following notation for morphisms: if the
domain alphabet � has an obvious ordering, such as � = {1, 2, . . . , k}, we
write g = (w1, w2, . . . , wk) to denote that f (i) = wi for 1 ≤ i ≤ k.

Suppose g = (w1, w2, . . . , wk) and h = (x1, x2, . . . , xk) be an instance of
MPCP. We convert this to an instance of PCP as follows: we introduce two
new symbols � and � not in the alphabet of the wi and xi , and we let
g′ = (y0, y1, . . . , yk+1) and h′ = (z0, z1, . . . , zk+1), where y0 := �y1, z0 := z1,
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yk+1 := �, zk+1 := ��, and

yi := wiX

|wi |︷ ︸︸ ︷
� · · · �, zi :=

|xi |︷ ︸︸ ︷
� · · · �Xxi

for 1 ≤ i ≤ k. For example, if g = (10111, 1, 10) and h =
(10, 111, 0), then g′ = (�1�0�1�1�1�, 1�0�1�1�1�, �1�, 1�0�, �) and
h′ = (�1�0, �1�0, �1�1�1, �0, ��).

We now argue that MPCP is solvable for g and h if and only if PCP is
solvable for g′ and h′. Suppose 1i2i3 · · · ir is a solution to MPCP for g and
h. Then it is easy to see that 0i2 · · · ir (k + 1) is a solution to PCP for g′ and
h′. On the other hand, if i1, i2, . . . , ir is a solution to PCP for g′ and h′, then
we must have i1 = 0, for otherwise the images of the solution under g′ and
h′ would begin with two different letters. Similarly, we must have ir = k + 1,
for otherwise the images of the solution under g′ and h′ would end with two
different letters. Now let j be the smallest integer such that ij = k + 1. Then
i1i2 · · · ij is a solution to PCP for g′ and h′, and 1i2 · · · ij−1 is then a solution
to MPCP for g and h. We have now shown that MPCP reduces to PCP.

It remains to show that the halting problem reduces to MPCP. Suppose we
are given a TM M = (Q,�,�, δ, q0, h) and an input w ∈ �∗. We construct
an instance of MPCP as follows. To simplify the construction, we give the
corresponding values of the morphisms g and h in the following table, without
specifying the input alphabet:

Group Image of g Image of h Condition
Group 1 � �q0Bw�

Group 2 � �

X X

for X ∈ �

Group 3a qX Yp if δ(q,X) = (p, Y,R)
ZqX pZy if δ(q,X) = (p, Y,L)
qX pY if δ(q,X) = (p, Y, S)

Group 3b q� Yp� if δ(q, B) = (p, Y,R)
Zq� pZY� if δ(q, B) = (p, Y,L)
q� pY� if δ(q, B) = (p, Y, S)

for q ∈ Q− {h}, p ∈ Q, X, Y,Z ∈ �

Group 4 XhY h

Xh h

hY h

for X, Y ∈ �

Group 5 h�� �
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We now claim that M halts on w if and only if MPCP has a solution for the
two morphisms defined this table. (Note that the image of 0 is given by the first
line of the table.)

To see this, suppose M halts on w. Then there is a sequence of configura-
tions C1 = q0Bw,C2, . . . , Ct = αhβ representing an accepting computation.
We leave it to the reader to see that we can then choose a sequence of pairs
matching this computation, resulting in g(x) = h(x) = �C1�C2� · · · �Ct�z for
some string z.

Now suppose MPCP has a solution x. It is not hard to see that such a solution
corresponds to a computation of M . Consider forming g(x) and h(x) symbol
by symbol. Then since g(x) must begin � and h(x) begin �q0Bw�, and because
the pairs in Groups 2 and 3 do not increase the length of the image of h, there
is no way the length of the image of g can “catchup”unless pairs in Groups 4
and 5 are used. But we cannot use these symbols unless the halting state h is
reached, so M must halt.

Now let us see an application of the PCP.

Theorem 6.5.3. The following problem is unsolvable: given an arbitrary CFG
G, decide if it is ambiguous.

Proof. We show that if we could decide ambiguity for CFGs, we could solve
the PCP.

Let � = {1, 2, . . . , k}, and let g, h : �∗ → �∗ be the morphisms from an
instance of PCP. Without loss of generality, we may assume that � and � are
disjoint. We now construct a grammar G with the productions

S → S1 | S2

S1 → g(i) i, 1 ≤ i ≤ k

S1 → g(i) S1 i, 1 ≤ i ≤ k

S2 → h(i) i, 1 ≤ i ≤ k

S2 → h(i) S2 i, 1 ≤ i ≤ k.

We claim that G is ambiguous iff the PCP instance has a solution.
Suppose G is ambiguous. Now it is easy to see that the subgrammars defined

by taking either S1 or S2 to be the start symbol are each unambiguous, so any
ambiguity results from a word generated by S1 and S2. If a word w is derived
from both, then we have

w = g(i1)g(i2) · · · g(ir )ir · · · i2i1 = h(j1)h(j2) · · · g(js)js · · · j2j1
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for some nonempty words i1i2 · · · ir , j1j2 · · · js ∈ �∗. But then, since � and
� are disjoint, we must have r = s and i1 = j1, i2 = j2, . . . , ir = jr . Then
g(i1 · · · ir ) = h(i1 · · · ir ) and so we have a solution to PCP.

Similarly, if we have a solution i1i2 · · · ir to PCP, then the word
g(i1)g(i2) · · · g(ir )ir ir−1 · · · i2i1 has two distinct leftmost derivations in G, one
starting S =⇒ S1 and the other starting S =⇒ S2.

6.6 Unsolvability and context-free languages

In this section we discuss some unsolvability results dealing with context-
free languages and grammars. First we discuss two languages: valid(M), the
language of valid computations of a TM, and invalid(M), the language of
invalid computations of a TM.

A valid computation of a TM M = (Q,�,�, δ, q0, h) is defined to be a
string of the form w1#wR

2 #w3#wR
4 # · · · #wR

2k# or w1#wR
2 #w3#wR

4 # · · · #w2k−1#
for some integer k ≥ 1, n = 2k, or 2k − 1 as appropriate, where # is a symbol
not in � or Q such that

1. Each wi is a valid configuration of M .
2. w1 is a valid initial configuration of M; that is, it is of the form q0Bx for

x ∈ �∗.
3. wn is a valid accepting or final configuration of M , that is, of the form yhz,

where h is the halting state.
4. wi � wi+1 for 1 ≤ i < n.

The language of all valid computations of M is denoted valid(M). The lan-
guage of invalid computations of M , denoted invalid(M), is defined to be
(� ∪Q∪ {#})∗—v alid(M).

Theorem 6.6.1. There exists an algorithm that, given a TM M as input, pro-
duces two CFGs G1 and G2 such that valid(M) = L(G1) ∩ L(G2).

Proof. It is actually somewhat easier to sketch the construction of two
pushdown automatons (PDAs) M1 and M2 that accept L1 := L(G1) and
L2 := L(G2), respectively. By Theorem 1.5.7 we know that we can effectively
produce CFGs from these PDAs.

Both L1 and L2 consist of strings of the form x1#x2#x3 · · · #xm#. We use M1

to enforce the condition xi � xR
i+1 for i odd and M2 to enforce the condition

xR
i � xi+1 for i even. The machine M2 also checks to see that x1 is a valid

initial configuration of M . The condition that xm (respectively xR
m) is a valid

final configuration is checked by M1 or M2, respectively, according to whether
m is odd or even.
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Define L3 = {y#zR : y � z}. We sketch how L3 may be accepted by a
PDA M3. The PDA reads the input up to # and ensures that y is really a valid
configuration (i.e., of the form �∗Q�∗). As it does so, it computes zR on the
fly and pushes it onto its stack.

In more detail, M3 reads each symbol of y and pushes it onto its stack until
it reads a state p. Then M3 stores p in its finite control and reads the next
symbol X. It now looks up the corresponding transition in its finite control. If
δ(p,X) = (q, Y,R), then M3 pushes qY onto its stack. If δ(p,X) = (q, Y, S),
then M3 pushes Yq onto its stack. Finally, if δ(p,X) = (q, Y, L), then M3

reads the symbol on top of the stack (call it Z). Then M3 pops the Z and pushes
YZq in its place. (We have described the usual case, but some special cases
are needed if # appears in this process.) Finally, M3 reads the rest of the input
symbols up to the # and pushes them onto its stack. Now M3 pops its stack and
compares it to the rest of the input, symbol by symbol. It accepts if they agree;
otherwise it rejects.

In a similar way we can construct a PDA for L4 := {yR#z : y � z}. Now
define

L1 = (L3#)∗({ε} ∪ �∗h�∗#);

L2 = q0B�
∗#(L4#)∗({ε} ∪ �∗h�∗#).

Given PDAs M3 accepting L3 and M4 accepting L4 we can easily construct
PDAs M5 accepting L1 and M6 accepting L2. Finally, we claim that valid(M) =
L1 ∩ L2.

Now we can use Theorem 6.6.1 to prove an unsolvability result about gram-
mars.

Theorem 6.6.2. The following problem is unsolvable: given two CFGs G1 and
G2, decide if L(G1)∩L(G2) = ∅.
Proof. Suppose there were an algorithm to solve the given problem. Then
we could solve the following problem (the emptiness problem for TMs): given
a TM M , decide if L(M) = ∅. To see this, we reduce the emptiness problem
for TMs to our grammar problem. Given a TM M , we use Theorem 6.6.1
to create G1 and G2 such that valid(M) = L(G1)∩L(G2). Now we use our
hypothesized algorithm to decide if L(G1)∩L(G2) = ∅. Note that this occurs
iff valid(M) = ∅, which occurs if and only if L(M) = ∅. Hence we could
decide if L(M) = ∅, which is known to be unsolvable.

Even more results can be obtained using invalid(M).

Theorem 6.6.3. There exists an algorithm that, given a TM M , produces a
CFG G such that invalid(M) = L(G).
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Proof. The proof is generally along the lines of the proof of Theorem 6.6.1,
but is somewhat simpler because we do not need to ensure that wi � wi+1 for
all i; instead it suffices to find a single i for which wi � wi+1.

We claim that if w represents an invalid computation, then at least one of
the following conditions holds:

1. w is not of the form x1#x2# · · · xm#, where each xi is a configuration;
2. x1 �∈ q0B�∗;
3. xm �∈ �∗h�∗;
4. xi � xR

i+1 for some odd i;
5. xR

i � xi+1 for some even i.

It is easy to check conditions (1)–(3)with a finite automaton, while conditions
(4) and (5) can be checked with a single PDA using the same kind of argument
we used in proving Theorem 6.6.1. Hence we can constructively create a CFG
G such that invalid(M) = L(G).

Using Theorem 6.6.3 we can prove a large number of unsolvability results
about context-free grammars. Here are several; others are given in the exer-
cises.

Corollary 6.6.4. The following problem is unsolvable: given a CFG G =
(V,�,P, S), decide if L(G) = �∗.

Proof. We reduce from the emptiness problem for TMs. Given a TM M , we
can effectively construct a CFG G such that invalid(M) = L(G). Now note that
invalid(M) = �∗ if and only if L(M) = ∅, where � = � ∪Q ∪ {#}.

Corollary 6.6.5. The following problem is unsolvable: given two CFGs G1

and G2, decide if L(G1) = L(G2).

Proof. We reduce from the problem, given a CFG G1, is L(G1) = �∗. We can
easily construct a grammar G2 such that L(G2) = �∗. Hence, L(G1) = L(G2)
if and only if L(G1) = �∗, and this reduction gives the desired result.

Theorem 6.6.6. The following problem is unsolvable: given a CFG G, decide
if L(G) is regular.

Proof. Let G = (V,�,P, S) and let L = L(G). Suppose |�| is large enough
that the problem of deciding if L(G) = �∗ is unsolvable. Let L0 ⊆ �∗ be
a nonregular, context-free language generated by a CFG G0. Consider the
language L1 = L0#�∗ ∪�∗#L. Since the class of context-free languages is
effectively closed under concatenation and union, L1 is a context-free language,
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and a CFG G1 such that L1 = L(G1) can be effectively computed from G and
G0. We claim L1 is regular if and only if L = �∗.

Suppose L = �∗. Then L1 = �∗#�∗ is a regular language. Now suppose
L �= �∗. Then there exists w �∈ L, and we have L1/#w = L0. Since the class of
regular languages is closed under quotient, if L1 is regular, then L0 is regular.
By assumption, L0 is not regular, so L1 must not be regular as well. Thus, L1

is regular if and only if L = �∗. Since the problem of deciding if L = �∗ is
unsolvable, the result follows.

The next result shows that even if a “birdie”tells you that a given CFG
generates a regular language, there is no algorithm to compute an equivalent
DFA.

Theorem 6.6.7. There exists no algorithm that, given a CFG G such that L(G)
is regular, produces a DFA A such that L(A) = L(G).

Proof. Suppose to the contrary that such an algorithm exists. Let M = (Q,�,

�, δ, q0, h) be a TM such that L(M) is not recursive. By Theorem 6.6.3, there
exists an algorithm to compute a CFG G′ such that L(G′) = invalid(M). Let
� = � ∪Q ∪Q ∪ {#}. For x ∈ �∗, define

Fx = {q0y#z : y �= x and z ∈ �∗}.
The language Fx is regular, and a DFA B accepting Fx can easily be
computed. Given the DFA B and the grammar G′, a CFG Gx such that
L(Gx) = invalid(M) ∪ Fx can be effectively computed.

If x ∈ L(M), then L(Gx) = �∗ − {w}, where w is the accepting computa-
tion of M on x. If x �∈ L(M), then L(Gx) = �∗. In either case, L(Gx) is regular.
By our initial assumption, we can compute a DFA A such that L(A) = L(Gx).
Given such a DFA A, we can decide whether or not L(Gx) = �∗, and hence
decide whether or not x ∈ L(M). This is a contradiction, since L(M) is not
recursive.

6.7 Complexity and regular languages

In this section we prove several fundamental results about the computational
complexity of problems dealing with regular languages.

We start with the universality problem for regular expressions and non-
deterministic finite automaton (NFAs). Given a regular expression r over a
base alphabet � (respectively, an NFA M with input alphabet �), we would
like to know if L(r) �= �∗ (respectively, if L(M) �= �∗). Perhaps surprisingly,
both of these problems are PSPACE-complete.
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We start with regular expressions. The fundamental result is the following
lemma.

Lemma 6.7.1. Let T = (Q,�,�, δ, q0, h) be a one-tape deterministic TM and
p(n) be a polynomial such that T never uses more than p(|x|) cells on input x.
Let # be a new symbol not in �, and let � = � ∪Q. Then there is a polynomial
q(n) such that we can construct a regular expression rx in ≤ q(n) steps, such
that L(rx) �= (�∪ {#})∗ if and only if T accepts x.

Proof Idea. Although the details are somewhat messy, the basic idea is simple.
We encode a computation of the TM T as a string of successive configurations,
separated by the delimiter #. Then we construct the regular expression rx so that
it specifies all strings that do not represent accepting configurations. A string
might fail to represent an accepting configuration because it is in the wrong
format, or because the initial configuration is wrong, or because T never enters
the halting state h, or because in two consecutive configurations, the second
does not follow from the first by a valid move of T . All these possibilities can
be specified by rx .

Proof. We represent a computation of T as a string

#x1#x2# · · · #xk#,

where each xi is a configuration, that is, a string in �∗Q�∗. We will assume
that T always has a next move, which can be accomplished by creating a new
“deadstate”to enter if there is no move, and we will also assume that T simply
stays in the halting state without moving its tape head once the halting state is
reached.

We will further assume that the length of each configuration between #
signs is p(n)+ 1, which we can achieve by padding on the right with the
blank symbol B, if necessary. The “+1”term comes from the fact that each
configuration contains a state symbol.

Now we construct rx to specify strings that are not valid accepting compu-
tations. A string y fails to represent an accepting computation if and only if at
least one of the following conditions is met:

A: y is not of the form #x1#x2# · · · #xk# for some k ≥ 1, where each xi is of
length p(n)+ 1 and all but one symbol of xi is in �, with the exception
being in Q.

B: y begins with something other than #q0Ba1a2 · · · anB · · · B#, where x =
a1a2 · · · an and the number of blanks is p(n)− n.
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C: The halting state h never appears in a configuration.
D: y has a subword of the form #xi#xi+1#, where xi+1 does not follow from

xi in one step of T .

Now we can construct regular expressions A, B, C, and D for each of the
conditions.

For A, we need to specify subexpressions

A1: strings containing less than two instances of #: �∗ +�∗#�∗;
A2: strings not beginning or ending with #: �(�+ #)∗ + (�+ #)∗�;
A3: strings with no q ∈ Q appearing between two consecutive occurrences of

#: (�+ #)∗#�∗#(�+ #)∗;
A4: strings with two or more occurrences of q ∈ Q appearing between two

consecutive occurrences of #: (�+ #)∗#�∗Q�∗Q�∗#(�+ #)∗;
A5: strings with more than p(n)+ 1 symbols of � appearing between two

consecutive occurrences of #: (�+ #)∗#�p(n)+2�∗#(�+ #)∗;
A6: strings with fewer than p(n)+ 1 symbols of � appearing between

two consecutive occurrences of #: (�+ #)∗#(ε +�+�2 + · · · +
�p(n))#(�+ #)∗.

Now A = A1 + A2 + A3 + A4 + A5 + A6.
We construct B as the union B = B0 + B1 + B2 + · · · + Bp(n)+1, where

each Bi represents a configuration that differs from the correct initial configu-
ration in the ith location. So, letting a0 = B, we define

B0 = #(�− {q0})�p(n)#(�+ #)∗;

Bi = #�i(� − {ai−1})�p(n)−i#(�+ #)∗, 1 ≤ i ≤ n+ 1;

Bj = #�j (� − {B})�p(n)−j #(�+ #)∗, n+ 2 ≤ j ≤ p(n).

We construct C as (�− {h} + #)∗.
Finally, to construct D, we observe that given any four consecutive symbols

c1c2c3c4 of a configuration, we can determine what symbol will replace c2 in
the next configuration, that is, the symbol p(n)+ 2 symbols to the right of c2.
Thus, assuming the possible moves are

δ(p,X) =




(q, Y, L)

(q, Y,R)

(q, Y, S)
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we can define a function f (c1c2c3c4) as follows (where U,V,W,X, Y,Z are
in �, and p, q ∈ Q):

c1c2c3c4 f (c1c2c3c4)
UV WZ V

Y if left move
pXV W q if right move

Y if stationary move
V if left move

VpXW Y if right move
q if stationary move

q if left move
V WpX W if right move

W if stationary move
UV Wp V

There are also some additional cases involving the delimiter #, which we
leave to the reader.

Now, given f , we can define a regular expression for D as follows:

D =
⋃

c1,c2,c3,c4

(�+ #)∗c1c2c3c4(�+ #)p(n)−1(�∪ {#} − {f (c1c2c3c4)})(�+ #)∗.

Now it is easy to see that the length of rx is a polynomial that depends only
on x and T . Furthermore, rx denotes (�∪ {#})∗ if and only if T does not ac-
cept x.

Now we want to create a language Lregex that encodes the problem “Is
L(rx) �= �∗,”but there is a slight technical problem to overcome. The problem
is that the regular expressions are over an arbitrary alphabet, while Lregex must
be over a fixed alphabet. To solve this problem, we simply encode regular
expressions so that the first alphabetic symbol is represented by [1], the second
by [10], the third by [11], and so on. Thus, we define Lregex to be the set of all
encodings of regular expressions r , over the alphabet

[, ], (, ), ∅, ε, +, ∗, 0, 1,

such that L(r) �= (�∪ {#})∗.
Theorem 6.7.2. Lregex is PSPACE-complete.

Proof. First, let us prove that Lregex is in PSPACE. By Theorem 1.8.4 (Savitch’s
theorem), it suffices to give a nondeterministic polynomial-space-bounded TM
that accepts Lregex.
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Given an encoded regular expression re as input, we decode it to determine
r . Now we convert r to an NFA-ε M with n = O(|re|) states using the usual
technique. We now guess the string x that is not in L(M) symbol by symbol,
and simulate M on x. If we find that M fails to accept x, we accept the input
re. If our guess fails, and we have guessed at least 2n symbols, we reject. (We
can count up to 2n using O(n) space.)

Now we prove that if L ∈ PSPACE, then L ≤ Lregex. Let M be a deter-
ministic TM accepting L. Then by Lemma 6.7.1 we can construct a regular
expression rx of polynomial size in x such that L(rx) �= (�∪ {#})∗ if and only
if x ∈ L. Now convert rx to its encoding.

Corollary 6.7.3. The following problem is PSPACE-complete: given an NFA
M = (Q,�, δ, q0, F ), decide if L(M) �= �∗.

Our proof that the universality problem for regular expressions and NFAs is
PSPACE-complete no longer works for a unary alphabet. Over a unary alphabet,
we have the following.

Theorem 6.7.4. Let � = {a}. Consider the following problem: given a unary
regular expression r , decide if L(r) �= �∗. Then this problem is NP -complete.

Proof. First, let us see that the problem is in NP. Given a regular expression of
size k, we can easily convert it to an equivalent NFA M with n = O(k) states
using the standard algorithm. Now we guess a length m such that am �∈ L(M)
and then verify our guess using the Boolean matrix technique of Theorem 3.8.4.
If there is indeed such a word not in L(M), then one exists of length m < 2n.
(To see this, convert M to a DFA with at most 2n states. If a string labels a path
to a nonfinal state, there must be such a path of length <2n.)

To show the problem is NP-hard, we reduce from 3-SAT. Suppose we have
an instance of 3-SAT, say a formula ϕ = C1 ∧ C2 ∧ · · · ∧ Cn, where each Ci

is a clause, using variables x1, x2, . . . , xk and their negations. Let pi denote the
ith prime. We now construct an integer yi based on each clause Ci , which is
most easily defined in terms of an example. If the clause C1 is (x3 ∨ x5 ∨ x6),
then we let y1 be the unique integer, 0 ≤ y1 < p3p5p6 = 5 · 11 · 13 = 715 such
that

y1 ≡ 0 (mod p3)

y1 ≡ 1 (mod p5)

y1 ≡ 0 (mod p6).

So in this case, y1 = 650. Note that the right side of a congruence is 1 if the
corresponding variable is negated in the clause; 0 otherwise. Now we make the
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regular expression E = E0 + · · · + En, where

E0 =
⋃

1≤i≤k

⋃
2≤j<pi

aj (api )∗

and, in the example we chose earlier,

E1 = ay1 (ap3p5p6 )∗

and the other Ei are defined similarly, based on the variables that occur in their
clauses.

I now claim L(E) �= a∗ if and only if ϕ is satisfiable. For the way E is con-
structed, it omits a string if and only if it corresponds to a satisfying assignment.
E0, for example, specifies all strings that correspond to invalid assignments,
where we assign a value of 2 or more to a variable.

6.8 Exercises

1. Use a more efficient encoding than E in Example 6.3.1 to obtain the result
π (x) ≥ c x

(log x)(log log x)2 infinitely often.
2. Use Kolmogorov complexity and the incompressibility method to prove that

the language

L = {xx : x ∈ {0, 1}∗}
is not regular.

3. A common creationist claim is that gene duplication cannot generate infor-
mation. Prove the creationists wrong by showing that there exist infinitely
many strings x such that C(xx) > C(x).

4. Let H be the entropy function defined by H (α, β) = −α log2 α − β log2 β.
Suppose a binary string x of length n is chosen by flipping a coin with a
bias of α, 0 ≤ α ≤ 1

2 , where β = 1− α is the probability of tails. Show that
with very high probability, such a string satisfies C(x) ! H (α, β)n.

5. Show that the following problems are recursively unsolvable:
(a) Given a CFG G and a regular expression r , is L(G) = L(r)?
(b) Given a CFG G and a regular expression r , is L(r) ⊆ L(G)?
(c) Given CFGs G1 and G2, is L(G1) ⊆ L(G2)?

6. Prove that the following decision problem is unsolvable. Given a grammar
G over an alphabet �, is �∗ − L(G) finite?

7. Show that the following decision problem is solvable: given an arbitrary
CFG G and an arbitrary regular expression r as input, decide whether or not
L(G) ⊆ L(r).

8. Show the following problem is recursively unsolvable: given a CFG G, is
L(G) a linear language?
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9. Suppose the definition of unrestricted grammar is relaxed to allow pro-
ductions of the form ε → α. In other words, at any time during a deriva-
tion the string α can be inserted between any two symbols. Show that
this new model of unrestricted grammar also generates the class of re-
cursively enumerable languages.

10. Give an unrestricted grammar for {ww : w ∈ {0, 1}∗}.
11. Give an unrestricted grammar for the language

{ai : i ≥ 4 is not a prime}.

Give a sketch of the proof that your grammar is correct.
12. Show that the language of Kolmogorov-incompressible strings is not

recursive.
13. From Theorem 6.2.4 we know that, for all n ≥ 0, there is at least one

string x of length n with C(x) ≥ n. Prove that in fact there are 2n−c such
strings, for some constant c.

14. Let L1, L2 be context-free languages. Show that the following problem
is unsolvable: decide whether or not L1/L2 is context-free.

15. Prove that there exists a constant c such that there are infinitely many
strings x and y, where x is a subword of y, and C(x) > 2C(y)−c.

16. Prove that the following problem is PSPACE-complete: given an NFA
M = (Q,�, δ, q0, F ), decide if �∗ − L(M) is finite.

17. Prove that the following problem is unsolvable: given a string x, deter-
mine if C(x) < |x|.

∗∗18. Recall the definition of pattern matching a text given in Exercise 3.70:
p ∈ �∗ matches t ∈ �∗ if there is a nonerasing morphism h : �∗ → �∗

such that h(p) = t .
(a) Show that if the alphabets � and � are of fixed size, then we can

decide if p matches t in time polynomial in |p| and |t |.
(b) Show that the problem of deciding if p matches t for arbitrary

alphabets is NP-complete.
(c) Suppose we are given a pattern p and an NFA M , and we want to

decide if p matches t for some t ∈ L(M). Show that this problem is
PSPACE-complete.

(d) Suppose we are given a pattern p and a CFG G, and we want to
decide if p matches t for some t ∈ L(G). Show that this problem is
unsolvable even if p is just the pattern xx.

19. Which of the following PCP instances have solutions?
(a) (11, 01, 011), (1,110, 0);
(b) (11, 01, 101), (0, 011, 1);
(c) (0, 01, 1), (1, 0, 101).
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20. Show that the PCP is solvable if the images of the two morphisms are over
a unary alphabet.

21. Show that the following problem is PSPACE-complete: given n DFAs
M1,M2, . . . ,Mn, decide if there exists a string accepted by all of them.
Hint: Use the automata to check that a string represents a valid computation
of a polynomial-space-bounded TM.

22. Show that the following problem is PSPACE-complete: given an NFA M ,
decide if it accepts some string unambiguously, that is, if there exists some
accepted string for which there is only one acceptance path in the NFA.

6.9 Projects

1. Read papers about constructing “bad”examples of the PCP. Start with
Lorentz [2001] and Zhao [2003].

6.10 Research problems

1. Try finding busy beaver TMs for some variations on the TM model given
here: for larger alphabets, for one-directional tapes, and so on.

6.11 Notes on Chapter 6

6.1 Unrestricted grammars are sometimes called Type 0 grammars. The
grammar in Example 6.1.1 is due to J. Rideout.

Our proof of Theorem 6.1.3 is based on a suggestion of A. F. Nevrau-
mont.

6.2 An excellent introduction to Kolmogorov complexity can be found in Li
and Vitányi [1997]. Although the concept is attributed to Kolmogorov,
similar ideas were proposed about the same time by R. Solomonoff and
G. J. Chaitin.

6.3 The proof in Example 6.3.1 that π (x) ≥ cx/(log x)2 infinitely often is
sketched in Li and Vitányi [1997, pp. 4–5],where it is attributed to J.
Tromp, improving a result of P. Berman, which in turn was based on a
proof of G. Chaitin [1979].

The material on proofs of nonregularity is based on Li and Vitányi
[1995].

6.4 The busy beaver problem was introduced by Rado [1962]. Lin and Rado
[1965] gave the busy beavers with one, two, and three states, and Brady
[1983] solved the case of four states. Marxen and Buntrock [1990] gave
a candidate for the busy beaver with five states. The best example known
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on six states is due to Ligocki and Ligocki in December 2007 and can be
found at http://www.drb.insel.de/~heiner/BB/simLig62 b.

html. Heniner Marxen’s Web page, http://www.drb.insel.de/

~heiner/BB/, is the best online resource for the problem.
6.5 The PCP is due to Post [1946].

For a Web page giving record examples of the PCP, see http://www.
theory.informatik.uni-kassel.de/~stamer/pcp/pcpcontest

en.html.
Theorem 6.5.3 is due to Cantor [1962], Floyd [1962], and Chomsky

and Schützenberger [1963].
6.6 The results in this section are from Bar-Hillel, Perles, and Shamir [1961]

and Ginsburg and Rose [1963].
6.7 Our presentation of Theorem 6.7.2 is based strongly on that in Aho,

Hopcroft, and Ullman [1974, §10.6].
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7

Other language classes

In this chapter we discuss some less familiar language classes, such as the
context-sensitive languages (CLs) and the 2DPDA languages.

7.1 Context-sensitive languages

In this section we introduce a variant on the context-free grammar, known as
the context-sensitive grammar or CSG.

A grammar G = (V,�,P, S) is said to be context-sensitive if every pro-
duction in P is of the form αBγ → αβγ for some α, γ ∈ (V ∪ �)∗,
β ∈ (V ∪ �)+, and B ∈ V . A language L is said to be context-sensitive
(or a CSL) if L− {ε} is generated by some CSG. (The funny condition in-
volving ε arises because a CSG cannot have ε-productions, and hence, cannot
generate ε.)

The name context-sensitive comes from the fact that we can consider the
allowed productions to be of the form B → β, but they can be applied only in
the “context”α— γ .

Example 7.1.1. Consider the following CFG G1:

S → ABSc

S → Abc

BA→ CA

CA→ CB

CB → AB

Bb→ bb

A→ a.

202
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We claim that L(G1) = {anbncn : n ≥ 1}. Here is an informal argument that
this is the case. Note that BA

∗=⇒ AB by the series of context-sensitive pro-
ductions BA =⇒ CA =⇒ CB =⇒ AB. We argue that anbncn ∈ L(G1) for
all n ≥ 1. We can use the following derivation:

S =⇒ ABSc =⇒ ABABScc
∗=⇒ (AB)n−1Scn−1

=⇒ (AB)n−1Abcn = A(BA)n−1bcn

∗=⇒ A(AB)n−2ABbcn

=⇒ A(AB)n−2Abbcn = AA(BA)n−2bbcn

∗=⇒ AA(AB)n−2bbcn = AA(AB)n−3ABbbcn

=⇒ AA(AB)n−3Abbbcn = AAA(BA)n−3bbbcn

∗=⇒ Anbncn ∗=⇒ anbncn.

It remains to see that L(G1) ⊆ {anbncn : n ≥ 1}. The basic idea is that
any derivation of a terminal string must proceed roughly along the lines given
earlier. We leave the argument as an exercise.

There is an alternative characterization of CSLs in terms of grammars. We
say a grammar G = (V,�,P, S) is length-increasing if every production in
P is of the form α→ β, with α, β ∈ (V ∪ �)+ and |α| ≤ |β|. (As before, a
length-increasing grammar cannot generate the empty string.)

Example 7.1.2. Consider the following length-increasing grammar G2:

S → aBSc

S → abc

Ba → aB

Bb→ bb.

We claim that L(G2) = {anbncn : n ≥ 1}.
Theorem 7.1.3. A language L is generated by a length-increasing grammar if
and only if L is context-sensitive.

Proof. Clearly, if L is generated by a CSG, then it is generated by a length-
increasing grammar, because every CSG is actually length increasing.

To prove the other direction, we show how to take a length-increasing
grammar and transform it by a series of steps into a CSG, without changing the
language generated.

First, we do a transformation that changes all the occurrences of a terminal
in a production to a variable. Namely, we replace every occurrence of a in a
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production (on both sides) with the new variable Ca , for each a ∈ �. Then we
add productions (*) Ca → a for each a ∈ �. Clearly, this does not change the
language generated. Furthermore, these new productions are already context-
sensitive.

Now the right-hand sides of all productions (except those labeled (*)) consist
of strings of variables only. The rest of the transformation will be by example.
Take a production of the form CDE → JKLMN . Delete it and add the
following productions:

CDE → A1DE

A1DE → A1A2E

A1A2E → A1A2A3

A1A2A3 → JA2A3

JA2A3 → JKA3

JKA3 → JKLMN.

The effect of these productions is to replace CDE with JKLMN , via a series
of productions that are of the desired form. Note that all but the first production
have a distinguished variable Ai that does not appear in any other productions,
so the productions must be used in the order given, and cannot be used in any
other situation. (Different distinguished variables are used in other productions,
of course).

Here is a formal proof that the preceding construction works.
Deleting the terminals a that appear in productions and replacing them by

Ca and then adding the productions Ca → a clearly does not change the
language, so we will concentrate on the second part of the construction, for
which an example was already given, namely, how to replace the production
CDE→ JKLMN with a “chain”of productions of the desired form. In what
follows, we will use that example and refer to the variables such as A1, A2, A3

as auxiliary variables.
Let G be the original CSG and let G′ denote the grammar modified as

described earlier.
Claim: α

∗=⇒ β in G if and only if α
∗=⇒ β in G′ and α, β contain no

auxiliary variables.
Proof: Suppose α

∗=⇒ β in G. We prove by induction on the length of the
derivation that α

∗=⇒ β in G′. Clearly, this is true for derivations of length 0.
Now suppose α

∗=⇒ β in G, and consider the last production used. Without
loss of generality, assume it was CDE → JKLMN . Then

α = α1CDEα2 =⇒i−1 α1JKLMNα2 = β.
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By induction, α =⇒∗ α1CDEα2 in G′, and from the series of produc-
tions given before, we easily see CDE =⇒∗ JKLMN in G′, so α =⇒∗
α1JKLMNα2 = β in G′.

The other direction is a little harder. Suppose α
∗=⇒ β in G′ and α, β contain

no auxiliary variables. Then if this derivation is of length 0, it clearly also
occurs in G. For the induction step, assume that α =⇒i β in G′. Without loss
of generality, assume that CDE→ A1DE is the first production used in the
derivation in G′. Then all the other productions listed in the chain (introducing
the other auxiliary variables A2, A3, . . .) must eventually be used, and in the
order listed; otherwise the auxiliary variables do not disappear. For example,
once A1 is introduced the production A1DE→ A1A2E must eventually be
used, as there is no other production involving A1 that does not have an A2 to
its right, and so on. This is not to say that other productions could not be used in
between productions of the chain for CDE; in fact, this may well happen. Then
I claim that we can assume that all the productions listed in the chain for CDE

are actually used one after the other in the order listed, with no intervening
productions. For assume some other productions “intrude,”namely

α1CDEβ1 =⇒ α1A1DEβ1
∗=⇒ α2A1DEβ2 =⇒ α2A1A2Eβ2.

Then it is clear that in fact α1
∗=⇒ α2 (since the productions involving A1 are

very specific) and DEβ1 =⇒∗ DEβ2 (for the same reason). Hence we could
just as well have used the following derivation in G′:

α1CDEβ1
∗=⇒ α2CDEβ2 =⇒ α2A1DEβ2 =⇒ α2A1A2Eβ2.

Hence we have moved the offending productions to the “front”before any
productions in the chain for CDE are actually used.

This works fine when new auxiliary variables are being introduced. How
about when they are being removed? Well, suppose

α1JA2A3β1 =⇒ α1JKA3β1
∗=⇒ α2JKA3β2 =⇒ α2JKLMNβ2.

Then again, we must have α1JK
∗=⇒ α2JK and β1

∗=⇒ β2. Then we could
have instead used the following derivation in G′:

α1JA2A3β1 =⇒ α1JKA3β1 =⇒ α1JKLMNβ1
∗=⇒ α2JKLMNβ2,

which pushes the offending production to the “back.”(In the middle of the
chain of productions introduced for CDE → JKLMN , we get to push the
offending production to the front or back.)
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Now, by repeatedly applying this idea, we can bring together all of the
productions in the chain for CDE, so they appear consecutively, in the order
listed. By similar juggling, we can bring together all of the productions in the
chains for other productions.

This proves the claim. Now to finish up the proof, assume without loss
of generality that CDE → JKLMN is the first production used. Hence,
α = α1CDEβ1 =⇒i β in G′. By the lemma, we can use all the productions
in the chain for CDE immediately, and hence

α1CDEβ1
∗=⇒ α1JKLMNβ1,

where α1, β1 contain no auxiliary variables. Hence,

α =⇒ α1JKLMNβ1 =⇒j β

in G′, where j < i. Thus we can use induction to say that α1JKLMNβ1
∗=⇒ β

in G. But CDE→ JKLMN is a production in G, so α
∗=⇒ β in G. This

finishes the proof.

We now turn to a machine model for the CSLs. This model, called the linear-
bounded automaton or LBA, is very much like a one-tape nondeterministic
Turing machine (TM), but with the following changes: the contents of the input
tape is initially �w�, where w is the input and � and � are distinguished symbols,
called endmarkers, that can never be changed on the tape. Note that � and � are
tape symbols that are not contained in the input alphabet �. Further, the tape
head can move left, right, or stay stationary, but can never move left from �

or right from �. The effect of these rules is that the space used by the LBA is
limited to the length of the input. An LBA accepts if, as in the case of TMs,
it enters a distinguished state called the halting state, and is usually denoted
by h.

Theorem 7.1.4. If L is context-sensitive, then it is accepted by an LBA.

Proof. If L is context-sensitive, then L is generated by a length-increasing
grammar G. We now show how to accept L with an LBA M . First, by expanding
the alphabet size of M to 4-tuples, we can assume that M has four “tracks.”
Now we carry out the algorithm given in the proof of Theorem 6.1.2, with
the following difference: we use the tracks of M instead of different tapes,
and if at any time the length of the sentential form on track 2 exceeds the
length of the input—which is detected by attempting to move right on �—the
simulation crashes. This simulation accepts an input w if and only if there is
some derivation in G in which no intermediate step is longer than |w|. Since G

is length-increasing, w is accepted if and only if w ∈ L(G).
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Theorem 7.1.5. If L is accepted by an LBA, then L is context-sensitive.

Proof. The idea is similar to the proof of Theorem 6.1.3. There, we created a
grammar that would simulate the configurations of a TM—a nondeterministic
“language generator.” We apply the same general strategy here to make a
length-increasing grammar, but with some additional complications.

Suppose L is accepted by an LBA M . Then we can easily convert M to an
LBA M ′ that has the following property: it first copies its input w to a second
track. It then performs the computations of M on the first track. If M ever
accepts, M ′ writes the input w back on the tape (the two tracks disappear and
become just one), moves the tape head left to scan the left endmarker �, and
halts. This new LBA M ′, then, has the property that if it halts on input w, the
string w is left on the tape at the end of the computation.

We now simulate the computation of M ′ with a length-increasing grammar.
One additional problem is that at the end of a derivation we cannot simply
make the state and endmarkers disappear with ε-productions, since these would
violate the length-increasing rules. Instead, we incorporate these symbols into
adjacent symbols, making new single composite symbols such as [�pX] and
[�pX�]. More precisely, we associate each permanent symbol (i.e., member of
�) with all evanescent symbols (i.e., endmarker or state) to its left, including
any symbols to the right if we are at the right end of the tape. This simply
involves increasing the size of the tape alphabet.

The productions can be divided into several groups. To initialize the simu-
lated tape, we use the productions

S → [q0�a�] | [q0�a]S1

S1 → aS1 | [a�]

for all a ∈ �.
To simulate right moves of the LBA we use the productions

[p�X�]→ [�qX�]

[p�X]→ [�qX]

for states p, q, tape symbols X, and moves δ(p, �) = (q, �, R). We use produc-
tions

[pX]Z → Y [qZ]

[pX][Z�]→ Y [qZ�]

[�pX]Z → [�Y ][qZ]

[�pX�]→ [�Yq�]

[�pX][Z�]→ [�Y ][qZ�]
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for moves δ(p,X) = (q, Y,R) and tape symbols Z.
To simulate stationary moves of the LBA we use the productions

[p�X�]→ [q�X�]

[p�X]→ [q�X]

for moves δ(p, �) = (q, �, S), productions

[pX]→ [qY ]

[pX�]→ [qY�]

[�pX]→ [�qY ]

[�pX�]→ [�qY �]

for all moves δ(p,X) = (q, Y, S), and productions

[Xp�]→ [Xq�]

for all moves δ(p, �) = (q, �, S).
To simulate left moves of the LBA we use the productions

Z[pX]→ [qZ]Y

[�Z][pX]→ [�qZ]Y

[�Z][pX�]→ [�qZ][Y�]

Z[pX�]→ [qZ][Y�]

[�pX]→ [q�Y ]

[�pX�]→ [q�Y �]

for all productions δ(p,X) = (q, Y, L) and productions

[�Zp�]→ [�qZ�]

[Zp�]→ [qZ�]

for productions δ(p, �) = (q, �, L).
Finally, we add productions

[h�X�]→ X

[h�X]Y → X[Y�]

[X�]Y → X[Y�]

[X�][Y�]→ XY

[h�X][Y�]→ XY
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to simulate a left-to-right scan of the sentential form, converting all composite
symbols to single symbols. Here, � is a new symbol. This occurs only when the
halting state h is reached.

We now prove two theorems about relationship between the class of CSLs
and the class of recursive languages.

Theorem 7.1.6. Every CSL is recursive.

Proof. Suppose L is a CSL. We give an algorithm to test membership in
L that always terminates. Since L is a CSL, it is generated by some length-
increasing grammar G = (V,�,P, S). Hence, x ∈ L if and only if S

∗=⇒ x.
The length-increasing property implies that any intermediate sentential form in
a derivation of x must be of length ≤|x|. We can enumerate them all, and for
each pair of sentential forms, (α, β), we can determine if α =⇒ β. Now make a
finite directed graph whose vertices are these sentential forms and whose edges
are given by (α, β) when α =⇒ β. There is a path from S to x if and only if
S
∗=⇒ x, if and only if x ∈ L. Now just use breadth-first search to determine if

such a path exists.

Theorem 7.1.7. There exists a recursive language that is not a CSL.

Proof. First we prove the following lemma: we say a TM T is always-halting
if on any input x ∈ �∗, the TM halts with either 1 or 0 written on its tape.
In this case we define L(T ) = {x : T writes 1 on input x}. By an effective
enumeration of a set S we mean a TM with a write-only output tape, where
the tape head moves only right and successively writes on its output tape an
encoding of the elements of S such that (i) no element is written twice and
(ii) every element eventually gets written.

Lemma 7.1.8. Let M1, M2, . . . be an effective enumeration of some set of
always-halting TMs. Then there exists a recursive language L such that L �=
L(Mi) for all i ≥ 1.

Proof. Let us enumerate the elements of {0, 1}∗ as follows: x0 = ε, x1 = 0,
x2 = 1, x3 = 00, and so on. Now define L = {xi : Mi writes 0 on input xi}.
Now L is recursive, because on input xi we can determine i, then simulate Mi

on xi , and write 1 if and only if Mi writes 0. But L �= L(Mi), since xi ∈ L if
and only if xi �∈ L(Mi).

We can now prove Theorem 7.1.7.
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Proof. It suffices to show that we can effectively enumerate a set of always-
halting TM that accept the CSLs over {0, 1}. To do so, we simply encode each
CSG as a binary number, arrange them in ascending order, and create a TM
accepting each using the algorithm in the proof of Theorem 7.1.6.

Finally, we turn to the question of complementation of CSLs. The question
of whether the CSLs were closed under complement was open for many years,
until it was solved independently and nearly simultaneously by Immerman
and Szelepcsényi in 1988. The technique they used, called inductive counting,
is actually much more widely applicable. In this text, however, we restrict
ourselves to its application to the context-sensitive languages.

Theorem 7.1.9. If L is a CSL, then L is a CSL.

Proof Idea. The basic idea is as follows: given an LBA M accepting L, we
construct an LBA M ′ accepting L. On input x, M ′ attempts to verify that no
accepting configuration in M can be reached starting from the configuration
q0�x�. To know that all configurations have been checked, M ′ needs to count the
number of reachable configurations, a computation it carries out inductively.

Proof. Let M = (Q,�,�, δ, q0, h) be an LBA accepting L. We can assume
without loss of generality that if M accepts x of length n by reaching the halting
state h, it then erases its input tape and moves the head to the left end. This
means that x is accepted by M if and only if

q0�x�
∗� h�Bn�.

Thus, we want to create M ′ that accepts x if and only if the configuration q0�x�

does not lead to h�Bn� in M .
Now if M accepts an input x, and |x| = n, then there is an accepting com-

putation for x that consists of at most

C := |Q||�|n(n+ 2)

moves, since this is the number of different possible configurations of M . (A
longer computation would imply that a configuration is repeated, and hence
we could cut out a portion of the computation to get a shorter one.) Suppose we
knew that exactly R configurations of M were reachable from q0�x�. Then we
could accept L with an LBA that implements the following nondeterministic
algorithm:

Input: x and R.
Set reached := 0
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For all configurations γ , |γ | = n+ 3, do
(1) Guess a computation of M of s moves (s ≤ C), beginning at q0�x�,
one move at a time.
If the computation ends at the configuration γ then

reached := reached+1
(2) If γ = h�Bn�, then reject

(3) If reached = R then accept
(4) else reject

First, let us see why the algorithm works. If x ∈ L, then some sequence of
guesses in line (1) will result in each of the R reachable configurations being
examined, and the variable reached is then incremented until reached = R.
Since q0�x� does not lead to h�Bn�, we do not reject in line (2). Thus, there is
a computation that accepts in line (3).

On the other hand, if x �∈ L, then q0�x�
∗� h�Bn�. Then we either guess a

computation in line (1) that terminates at h�Bn�, and so we reject in line (2),
or failure to guess correctly leads to some configuration being omitted from
consideration. In this case the test in line (3) fails and so we reject in line (4).

It now remains to see how to determine R. Let us define Ri to be the
number of configurations of M that are reachable from q0�x� in ≤ i steps. We
inductively compute R0, R1, . . . , using the following algorithm:

Input: x.
Set R0 := 1 and i := 0
Repeat

i := i + 1
Ri := 0
For all configurations β, |β| = n+ 3, do { check if β is reachable }

Set reachable := false
Set reached := 0
For all configurations γ , |γ | = n+ 3, do { check all possible

predecessors }
(1) Guess a computation of M of ≤ i − 1 moves

beginning at q0�x�, one move at a time.
If the computation ends at γ then

Set reached := reached + 1
If γ � β or γ = β then

reachable := true
If reachable then Ri := Ri + 1
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(2) Else if reached �= Ri−1 then reject
Until

Ri−1 = Ri

(3) R := Ri

Return(R)

Again, let us see why this algorithm works. We first argue that some sequence
of guesses in line (1) will result in R = Ri being returned. This is because
for each configuration β reachable in ≤ j steps, we correctly guess either
β or a predecessor configuration γ in line (1). Furthermore, the number of
predecessor configurations is Ri−1, so the test in line (2) fails. Since Rj ≤ C =
|Q||�|n(n+ 2) and Rj ≥ Rj−1 for all j , eventually we must have Ri−1 = Ri

for some i.
Next, we argue that if R = Ri is returned, then it is correct. The only way

R can be returned in line (3) is for the test on line (2) to fail each iteration.
Thus, reached = Ri−1, which guarantees that all predecessor configurations
have been examined.

Finally, putting together these two algorithms gives us an algorithm to accept
L. It now remains to see that these algorithms can actually be implemented by
an LBA M ′. To do so, we use the usual trick of expanding the alphabet size so
that M ′ can use multiple “tracks,”each of which can store n symbols. Note that
log2 C = log2 |Q| + n log2 |�| + log2(n+ 2), so we need only O(n) symbols
to store a counter for the number of configurations, where the constant in the
big-O depends only on |Q| and � and not n. Similarly, we need only O(n)
symbols to store reached and the configurations we are examining. Finally,
we need only O(n) symbols to store the Ri , since we do not save all of them,
but only the last two.

7.2 The Chomsky hierarchy

Noam Chomsky (1928–),the influential American linguist and scholar, defined
a hierarchy of language classes, which is summarized (in extended form) in
Figure 7.1. It is now called the Chomsky hierarchy. Chomsky used the termi-
nology “Type 3 grammar”for what we call today a regular grammar, “Type 2
grammar”for context-free grammar, and so on.

Here are some comments about the Chomsky hierarchy. First, note that
nearly every class is represented by both a machine model and a grammar
type. This “duality”is extremely useful in proving theorems, since one has
the freedom to choose the appropriate representation. The exception is the
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Abbreviation Language class Machine model Grammar
REG Regular languages DFA, NFA, Regular grammar

NFA- , 2DFA (aka Type 3)
DCFL Deterministic context-free 

languages
Deterministic PDA LR(k) grammar, k≥ 1

CFL Context-free languages PDA Context-free grammar
(aka Type 2)

CSL Context-sensitive languages LBA Context-sensitive grammar,
length-increasing grammar

(aka Type 1)
REC Recursive languages Always-halting TM
RE Recursively enumerable 

languages
TM Unrestricted grammar

(aka Type 0)

ε

Figure 7.1: The Chomsky hierarchy

class of recursive languages, which does not have a corresponding grammar
model.

Also note that each class of languages is strictly contained in the one
after it.

7.3 2DPDAs and Cook’s theorem

A 2DPDA is a two-way deterministic pushdown automaton. This model dif-
fers from the ordinary pushdown automaton (PDA) model as described in
Section 1.5 in three ways:

• It is deterministic. There are no ε-moves, and from every configuration there
is at most one move.

• It is a two-way machine. The input head can move left or remain stationary,
as well as move right.

• It has endmarkers. A left endmarker � is at the left end of the input and a
right endmarker � is at the right end of the input.

More formally, we define a 2DPDA to be a 9-tuple M = (Q,�,�, �, �,

δ, q0, Z0, F ), where

• Q is a finite nonempty set of states.
• � is a finite nonempty input alphabet, not containing � or �.
• � is a finite nonempty stack alphabet.
• � and � are the left and right endmarkers.
• δ is the transition (partial) function, mapping Q× (� ∪ {�, �})× �→

Q× {−1, 0, 1} × �∗. The meaning of δ(q, a,X) = (p, j, α) is that in state
q, scanning symbol a, and with X on top of the stack, the 2DPDA enters
state p, moves left, remains stationary, or moves right according to whether
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j = −1, 0, 1, respectively, and replaces X with the string α. If δ(q, a,X) is
undefined, the machine crashes.

• q0 ∈ Q is the initial state.
• Z0 ∈ � is the initial stack symbol.
• F ⊆ Q is the set of final states.

A full configuration is a triple (q, h, α), where q is the current state, h is an
integer representing the current position of the input head (where h = 0 means
that we are scanning the � sign), and α is the stack contents.

We go from one full configuration to another in an (hopefully) obvious way.
For example, if δ(q, a,X) = (p, 1, α), then if we are currently scanning a at

position j we have (q, j,Xβ) � (p, j + 1, αβ). We write
∗� to denote the

reflexive, transitive closure of �, and we sometimes write
∗�x to emphasize

that the tape contents is x. Note that the tape contents never changes since the
2DPDA cannot write on the tape.

We define

L(M) = {x∈�∗ : (q0, 0, Z0)
∗�x(p, i, α) for some i, 0 ≤ i ≤ |x| + 1, α ∈ �∗,

and p ∈ F }.

We can depict 2DPDAs graphically using a transition diagram similar to
that used for deterministic finite automaton (DFAs). If δ(q, a,X) = (p, j, α),
we draw a transition as shown in Figure 7.2.

Example 7.3.1. The language L = {0i1i2i : i ≥ 1} is a non-CFL that is a
2DPDA language.

To accept L, start at the left-hand side of the input. If the first symbol seen
is not 0, reject. For each successive 0 seen, push a’s onto the stack until a 1

is seen. When a 1 is seen, start popping off symbols and moving right on the
input until Z0 (the initial stack symbol) reappears or 2 appears in the input. If
2 appears before Z0 encountered, reject (since there are more 0s than 1s). If 0
appears, reject (since there is a 0 after a 1). Otherwise look at the next input
symbol. If it is a 1, reject (since there are more 1s than 0s). If it is a 0, reject
(since there is a 0 after a 1). If you have not rejected, then the number of 0s
equals the number of 1s in the first part of the string.

q p
a, X/j, α

Figure 7.2: The transition δ(q, a, X) = (p, j, α) depicted
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Now move left until a 0 is encountered, and do the same thing with the 1s
and 2s that you did with the 0s and 1s. If you have not rejected, then the number
of 1s equals the number of 2s. Move right and accept.

Example 7.3.2. The language {ww : w ∈ {0, 1}∗} is a non-CFL that is a
2DPDA language.

To see this, we use the following method: (1) first, scan the input from left
to right pushing a’s onto the stack until � is reached. Also keep track of the
parity of the number of characters and reject if it is odd. Now move back to the
beginning of the input and move right, popping two a’s from the stack for each
character read. When Z0 reappears, you are at the middle of the input. (2) Now
move right, pushing input symbols onto the stack until � is reached. Now push
a b onto the stack. Now repeat (1); when b reappears, you are at the middle of
the input. Now move left, matching input symbols against the stack contents.
If all symbols match, and � is reached, accept.

Example 7.3.3. The language

{xcy : x, y ∈ {a, b}∗ and y is a subword of x}
is a 2DPDA language.

To see this, use the following algorithm, embodied in Figure 7.3:

1. M moves right on input until c is encountered.
2. M moves left, copying the symbols of x onto the stack until � is encountered.

Now xZ0 (not xR) is on the stack. Let x = a1a2 · · · an.
3. M moves right until c is encountered and then moves one symbol to the

right.
4. While the symbol on top of the stack matches the next symbol of the input,

pop off the symbol on top of the stack and move the input head one square
to the right.

5. If the input head is scanning �, accept. If the input head is not scanning �,
but Z0 is on top of the stack, reject. Otherwise the top of stack symbol and
input symbol disagree. Restore the stack by moving the input head to the
left until c is reached, copying. At this point M has aiai+1 · · · anZ0 on the
stack for some i, 1 ≤ i ≤ n. If i = n+ 1, M halts and rejects. Otherwise M

pops ai and moves its input head to the right to c and then one more symbol
to the right. Return to step 4.

Here is a sample computation on input:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
� a b b a b b a b a b c a b a �
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Configuration State Input Stack
number position contents

0 q0 0 Z0

1 q0 1 Z0
...

...
...

...
10 q0 10 Z0

11 q0 11 Z0

12 q1 10 Z0

13 q1 9 bZ0

14 q1 8 abZ0
...

...
...

...
21 q1 1 bbabbababZ0

22 q1 0 abbabbababZ0

23 q2 1 abbabbababZ0
...

...
...

...
33 q2 11 abbabbababZ0

34 q3 12 abbabbababZ0

35 q3 13 bbabbababZ0

36 q3 14 babbababZ0

37 q4 13 babbababZ0

38 q4 12 bbabbababZ0

39 q4 11 abbabbababZ0

40 q3 12 bbabbababZ0

41 q4 11 bbabbababZ0

42 q3 12 babbababZ0

43 q4 11 babbababZ0

44 q3 12 abbababZ0

45 q3 13 bbababZ0

46 q3 14 bababZ0

47 q4 13 bababZ0

48 q4 12 bbababZ0

49 q4 11 abbababZ0

50 q3 12 bbababZ0

51 q4 11 bbababZ0

52 q3 12 bababZ0

53 q4 11 bababZ0

54 q3 12 ababZ0

55 q3 13 babZ0

56 q3 14 abZ0

57 q3 15 bZ0

58 qf 15 Z0
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b, Z0/1, Z0

a, Z0/1, Z0

�, Z0/1, Z0

a, Z0/ 1, aZ0

b, Z0/ 1, bZ0

a, a/ 1, aa
b, a/ 1, ba
a, b/ 1, ab
b, b/ 1, bb

c, Z0/ 1, Z0

a, a/1, a
a, b/1, b
b, a/1, a
b, b/1, b

�, a/1, a
�, b/1, b

a, a/1, ε
b, b/1, ε

c, a/1, a
c, b/1, b

�, Z0/0, ε
�, a/0, ε
�, b/0, ε

a, a/− 1, aa
a, b/− 1, ab
b, a/−

−

−
−

−
−
−
−

1, ba
b, b/− 1, bb

(Backup, restore stack)

b, a/− 1, a
a, b/− 1, b

c, a/1, ε

(Cycle to
next suffi x of
x to check)

�, Z0/0, ε
ε�, a/0,

�, b/0, ε

(Move right to c)

(Copy x on to stack)

(Move right to c)

(Attempt to match y to x)

(Mismatch found)

q0

q1

q2

q3

qf
c, b/1, ε

q4

Figure 7.3: A 2DPDA for string matching

Note that the pattern-matching 2DPDA of the previous example can take

(|x||y|) steps on input xcy. This is 
(r2) if |x| = 2r and |y| = r . The fol-
lowing theorem of Cook, then, is very surprising.

Theorem 7.3.4. A 2DPDA can be simulated in linear time on a RAM.

Our RAM model is an assembler-type machine with an infinite number of
registers, x0, x1, x2, . . ., where each register can hold an arbitrary integer. A
RAM program contains instructions that allow a register to be loaded with a
constant, to add or subtract the contents of two registers and store their sum
or difference in a third, to perform indirect addressing, to do comparisons, and
to read input and print output. The reader should check that these operations
suffice to implement the algorithm given next.
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We define a partial configuration to be a triple of the form (q, p,A), where
q is a state of the 2DPDA, p is a position that the head is scanning, and A is
the current symbol on top of the stack.

The idea of the proof is to attempt to “short-circuit”the computation of M

by determining a terminator for each partial configuration. The terminator of a
configuration i is defined to be the configuration from which, on the next move,
the stack height first dips below that of i. If we reenter the configuration i, we
can simply bypass all intermediate computation (which can never depend on
symbols buried in the stack) and proceed directly to the terminator and perform
its transition, popping the stack.

To simplify the proof, we assume without loss of generality that every
move either pops, makes a horizontal move, or pushes a single additional
symbol onto the stack. We use another stack S to keep track of those partial
configurations whose terminator is still sought. We use an array next[ ] to
store the terminators known so far.

The algorithm uses the following variables:

• q, the current state of the 2DPDA M being simulated;
• p, the current position of M’s tape head;
• G, the current contents of M’s stack, with the top at the left;
• i, a current partial configuration of the form (q, p, top(G));
• S, a stack of lists that is used to hold partial configurations whose terminator

is currently unknown;
• flags[ ], a bit array indexed by partial configurations, initially 0;
• next[ ], an array of pairs ⊆ N×Q indexed by partial configurations,

initially 0.

Here is the 2DPDA simulation algorithm:

{ initialize }
q := q0

p := 0
G := Z0

i := (q0, 0, Z0)

{ initialize simulation }
S := empty stack
push(S, empty list)
while (|δ(i)| �= 0) do { while it is possible to move do }

if next[i] = 0 then
(q ′, d, β) := δ(i) { get next move }
if (|β| ≥ 1) do { horizontal move or push }
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if flags[i] = 1 then
halt and reject
{ because M was in partial configuration i at some previous time
in the computation and the computation path has led back to
partial configuration i at the same or higher-level of the stack;
hence M is in an infinite loop }

else
append i to top(S)
flags[i] := 1
q := q ′

p := p + d

replace top symbol of G with β

if |β| = 2 { push } push(S, empty list)
i := (q, p, top(G))

if (|β| = 0) do { pop the stack }
pop(G)
next[i] := (q ′, p + d)
for each element x in top(S)

set next[x] := (q ′, p + d)
flags[x] := 0

pop(S)
q := q ′

p := p + d

i := (q, p, top(G))
else {next[i] �= 0; perform ‘shortcircuit’}

(q ′, p′) := next[i]
pop(G)
q := q ′

p := p′

for each element x in top(S)
set next[x] := (q ′, p′)
flags[x] := 0

pop(S)
i := (q, p, top(G))
{ end do }
if i is an accepting configuration

accept
otherwise

reject
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Theorem 7.3.5. The 2DPDA simulation runs in linear time.

First we prove two lemmas.

Lemma 7.3.6. During the course of the simulation, every partial configuration
gets pushed and popped off the stack S at most once.

Proof. Suppose a partial configuration i is placed on the stack. When this
happens, flags[i] is set to 1. If the next action involving i is a push at a
higher level of the stack, then we are in an infinite loop, and this is detected by
checking flags[i]. So the next action must be a pop. At this point the next

array is updated. The next time i is encountered, the next entry has been set,
and so we pop, not push.

Lemma 7.3.7. Every element of next is assigned at most once.

Proof. Suppose not. Then some element, say next[i], is assigned twice. But
next[i] gets assigned only when i is popped from S. The first time next[i]
is assigned, i is popped off. The next time next[i] is assigned, i is popped
off again. If this occurs because there was an i buried in the stack below the i

that was first popped off, then there was an i encountered above another i, and
we are in an infinite loop, which is detected by examining flags[ ]. So this
cannot happen.

So another i must have been pushed after the first was popped. But this
cannot happen, since when i is considered for the second time, next[i] was
already set, so we would not push i onto the stack.

We are now ready to prove Theorem 7.3.5.

Proof. We claim that the simulation runs in time linear in the number of
reachable partial configurations, which is bounded by |Q|(|x| + 2)|�|.

To see this, let each of the following actions cost $1:

• appending a partial configuration to top(S);
• popping a partial configuration from top(S);
• setting next[i];
• reading next[i];
• pushing onto G;
• popping from G.

Now assign $7 to each partial configuration i. The money is allocated as
follows:
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• We allocate $5 for reading next[i] when next[i] = 0. This can occur only
once by Lemma 7.3.7, for either the stack height stays the same or goes up
between the next time i is considered, in which case we are in an infinite
loop, or the stack height dips below its current height. But in this latter case,
i was previously appended to top(S), so when it is popped off S, next[i] is
set. $2 pays for the cost of reading next[i] and appending i to top(S). The
other $3 is allocated as follows: $1 pays for the cost of pushing onto G and
the other $2 is “stapled”to the symbol we push onto G, for later use.

• We allocate $2 for the cost of setting next[i] and popping i from the stack
S. From Lemma 7.3.7 this occurs only once for each i.

Finally, we have to account for the cost of what happens when next[i] �= 0.
This is always accompanied by a pop of the stack G. So when this occurs, we
can pop the stack and recover the $2 that was stored there. $1 is used to pay
for reading next[i] and the other $1 is used to pay for the cost of popping the
stack.

7.4 Exercises

1. Under which operations in the following list is the class of CSLs closed:
Union, concatenation, intersection, substitution by CSLs, inverse homomor-
phism, Kleene closure, positive closure?

2. Suppose we modify our PDA model as follows: instead of a finite number of
nondeterministic choices, depending on the current symbol being read (or
ε) and the current top-of-stack contents, we allow the PDA to nondetermin-
istically replace the symbol currently on top of the stack with any member
of a given CSL. More formally, we allow

δ(a,X) = L(a,X),

where a ∈ � ∪ {ε}, and X ∈ �, where L(a,X) is a CSL. We accept by
empty stack.

Prove or disprove that the set of languages accepted by these more pow-
erful PDAs is precisely the set of CSLs. (One direction is easy.)

3. Show that every context-free language is accepted by a deterministic LBA.
4. The Boolean closure of the CFLs is the class of all languages that can be

obtained from CFLs by a finite number of applications of union, intersection,
and complement operations. Show that if L is contained in the Boolean
closure of the CFLs, then L is accepted by a deterministic LBA.

5. Show that there is a language L accepted by a deterministic LBA that is not
in the Boolean closure of the CFLs.
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6. Give a length-increasing grammar generating the language

{0Fn : n ≥ 1} = {0, 00, 000, 00000, 00000000, . . .},
where Fn is the nth Fibonacci number, defined by F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

7. Show that the set of primitive strings over {a, b} is context-sensitive. (For
the definition of primitive strings, see Section 2.3.)

8. Give an example of a CSL that is not a CFL.
9. Find a length-increasing grammar to generate the languages

(a) L = {0i1j2max(i,j ) : i, j ≥ 1};
(b) L = {0i1j2min(i,j ) : i, j ≥ 1};

10. Construct a 2DPDA to accept the language L = {w ∈ {a, b}∗ : w is
primitive }. Conclude that L can be recognized in linear time on a RAM.

11. Show that the set of bordered words over {a, b} is a 2DPDA language.
(The definition of bordered appears in Exercise 4.16)

12. Show that the language L = {a2n

: n ≥ 1} is a 2DPDA language that is not
a CFL.

13. Show that the language L = {0n1mn : m, n ≥ 1} is a 2DPDA language that
is not a CFL.

14. Show that the language L = {0n1n2
: n ≥ 1} is accepted by a 2DPDA.

15. Show that for every DFA M = (Q,�, δ, q0, F ), there exists a “small”
2DPDA M ′ over a unary alphabet that on input 1n accepts iff |�n ∩
L(M)| ≥ 1, that is, if M accepts at least one string of length n. By small
I mean that the size of your 2DPDA (i.e., the number of transition rules)
should be O(|�||Q|).

7.5 Projects

1. Find out about L-systems and their applications to computer graphics. A
good place to start is Prusinkiewicz and Hanan [1989] and Prusinkiewicz
and Lindenmayer [1990].

7.6 Research problems

1. A conjunctive grammar is a generalization of context-free grammars where
productions such as A→ α1 ∧ · · · ∧ αm, αi ∈ (V ∪�)∗, are allowed. This
production means A generates those words generated by all the α’s. The
conjunctive languages are those generated by conjunctive grammars. Is
the family of conjunctive languages closed under complementation? This
question is due to Okhotin [2006].
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2. A Boolean grammar is a generalization of context-free grammars where
productions such as A→ α1 ∧ · · · ∧ αm ∧ (¬β1) ∧ · · · ∧ (¬βn), αi, βi ∈
(V ∪�)∗, are allowed. This production means that A generates those words
generated by all the α’s and none of the β’s. Are there any languages rec-
ognized by deterministic LBAs in O(n2) time that cannot be specified by
Boolean grammars? This question is due to Okhotin [2006].

7.7 Notes on Chapter 7

7.1 Length-increasing grammars should really be called “length-
nondecreasing”grammars, but the former term is the one used in the
literature.

Kuroda [1964] proved the equivalence of CSLs and LBAs. The clo-
sure of the context-sensitive languages under complementation was
proved independently by Immerman [1988] and Szelepcsényi [1988].
Our proof is based on notes by J. Buss.

7.2 The Chomsky hierarchy was first defined by Chomsky [1956, 1959].
7.3 2DPDAs were introduced in Gray, Harrison, and Ibarra [1967]. Aho,

Hopcroft, and Ullman [1968] proved that any 2DPDA language can be
recognized in O(n2) time on a RAM. This was further improved to O(n)
time by Cook [1972]. An exposition of Cook’s proof can be found in
Aho, Hopcroft, and Ullman [1974, §9.4]. Also see Jones [1977]. Our
presentation is based largely on unpublished notes of Daniel Boyd.
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