
FogNetSim++: A Toolkit for
Modeling and Simulation of

Distributed Fog Environment

By
Tariq Qayyum
00000170749

Supervisor
Dr. Asad Waqar Malik

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(October 2018)



Approval

It is certified that the contents and form of the thesis entitled “FogNetSim++:
A Toolkit for Modeling and Simulation of Distributed Fog Envi-
ronment” submitted by Tariq Qayyum have been found satisfactory for
the requirement of the degree.

Advisor: Dr. Asad Waqar Malik

Signature:

Date:

Committee Member 1: Dr. Anis-ur-Rehman

Signature:
Date:

Committee Member 2: Dr. Muazzam Ali Khan

Signature:
Date:

Committee Member 3: Dr. Arsalan Ahmad

Signature:
Date:

i



Abstract

Fog computing is an emerging technology that extends the cloud and brings

the resources closer to the end devices to achieve better performance in

latency-sensitive application. Fog computing still lacks the standardization

in terms of simulation environment and architecture. Several fog simula-

tors has been developed and proposed previously. Most of the existing fog

simulators ignore core network characteristics like error rate, packet loss,

bandwidth etc. There are a number of fog simulators available today, among

which a few are open-source, whereas rest are commercially available. The

existing fog simulators mainly focus on a number of devices that can be sim-

ulated. Generally, the existing simulators are more inclined toward sensors’

configurations, where sensors generate raw data and fog nodes are used to in-

telligently process the data before sending to back-end cloud or other nodes.

Therefore, these simulators lack network properties and assume reliable and

error-free delivery on every service request. Moreover, no simulator allows re-

searchers to incorporate their own fog nodes management algorithms, such as

scheduling. In existing work, device handover is also not supported. In this

paper, we propose a new fog simulator called FogNetSim++1 that provides

users with detailed configuration options to simulate a large fog network.

It enables researchers to incorporate customized mobility models, fog node

scheduling algorithms, and manage handover mechanisms. In our evaluation

setup, a traffic management system is evaluated to demonstrate the scala-

bility and effectiveness of proposed simulator in terms of CPU, and memory

usage. We have also benchmarked the network parameters such as execution

delay, packet error rate, handovers, and latency.

1available at https://fognetsimpp.com

ii



Dedication

To my parents,
Dr. Asad Waqar Malik,
Dr. Muazzam Ali Khan,

Dr. Anis-ur-Rehman, and
Dr. Arsalan Ahmad,

Without whom this success would not be possible.

iii



Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Tariq Qayyum

Signature:

iv



Acknowledgment

....................................

Tariq Qayyum

v



Table of Contents

List of Figures viii

List of Symbols x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem Defination . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Objectives and Research Goals . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Information 5

3 Literature Review 11
3.0.1 Fog – IoT Simulators . . . . . . . . . . . . . . . . . . . 11
3.0.2 Cloud Simulators . . . . . . . . . . . . . . . . . . . . . 13

4 Methodology 16
4.1 FogNetSim++: Toolkit for Modeling and Simulation . . . . . 16

4.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Pricing Model . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Energy Modeling . . . . . . . . . . . . . . . . . . . . . 20
4.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5 Implementation – FogNetSim++ . . . . . . . . . . . . 24

5 Results & Discussion 31
5.1 Testing and Performance Evaluation . . . . . . . . . . . . . . 31
5.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion & Future Work 43
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



TABLE OF CONTENTS vii

References 45



List of Figures

2.1 Computing Architecture Pyramid . . . . . . . . . . . . . . . . 8

4.1 FogNetSim++ Design . . . . . . . . . . . . . . . . . . . . . . 18
4.2 FogNetSim++ - A Graphical User Interface . . . . . . . . . . 18
4.3 FogNetSim++ Working Model . . . . . . . . . . . . . . . . . . 20
4.4 State diagram for energy model . . . . . . . . . . . . . . . . . 22
4.5 FogNetSim++ - A basic view of architecture . . . . . . . . . . 26
4.6 Internal modular view of Broker Node . . . . . . . . . . . . . 28

5.1 Case study - simulated topology . . . . . . . . . . . . . . . . . 32
5.2 FogNetSim++ CPU usage with respect to number of nodes . . 35
5.3 FogNetSim++ memory usage with respect to the number of

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Delay in constructing enriched GUI . . . . . . . . . . . . . . 37
5.5 Average Task computation time for small-sized tasks . . . . . 37
5.6 Average Task computation time for medium-sized tasks . . . . 38
5.7 Average Task computation time for large-sized tasks . . . . . . 38
5.8 Average Task computation time for random-sized tasks . . . . 39
5.9 Handoff performed w.r.t task size . . . . . . . . . . . . . . . . 39
5.10 Average delay w.r.t task size . . . . . . . . . . . . . . . . . . . 40
5.11 Total Delay based on the compute capacity requirement . . . . 40
5.12 Average wireless error rate reported during the execution . . . 41
5.13 Average latency . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.14 Residual Energy Vector over simulation time . . . . . . . . . . 42
5.15 Average Energy Consumption vs Transmission power . . . . . 42

viii



List of Tables

2.1 Difference between Edge, Fog and Cloudlets [?] . . . . . . . . 9
2.2 The key features of Fog and Edge - not clear discuss . . . . . 10

3.1 Simulator Comparison . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Pricing Models supported in FogNetSim++ . . . . . . . . . . 21
4.2 Sample measurements of sensor nodes energy model’s calibra-

tion in FogNetSim++ . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Simulation Parameters – Broker . . . . . . . . . . . . . . . . . 27

5.1 Machine Specification . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . 34

ix



List of Symbols

Abbreviations

MQTT Message Queuing Telemetry Transport

ARP Address Resolution Protocol

CPU Central Processing Unit

GPU Graphical Processing Unit

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

MAC Media Access Control

ONF Open Networking Foundation

OS Operating System

RAM Random Access Memory

RTO Retransmittion Timeout

RTT Round Trip Time

SDN Software Defined Networking

SSH Secure Shell

TCP Transmission Control Protocol

VM Virtual Machine

x



List of Symbols xi

Nomenclature

σ Standard Deviation

RTTavg RTT of Data Plane

RTTFE RTT of Flow Entry Installation

RTTreinstall RTT of Flow Replacement Policy

RTTtest RTT of Test Pings

Thard Hard Timeout

Tsleep Sleep Time

Tstep Step Size

Tsoft Soft Timeout



Chapter 1

Introduction

An incredible paradigm shift is observed in Information and Communication
Technology (ICT) from limited and isolated computing environments to the
prevalent and passive computing over the years. Due to the progression in
the manufacturing and telecommunication industry, powerful smart-devices
are developed that are platform independent which can ubiquitously estab-
lish connection to the network. In recent years, 5G evolved such that the
whole network world looking at it as the future technology. The 5G technol-
ogy has several features which include the heterogeneously wireless network
connectivity and many applications can have benefits from it in term of per-
formance enhancement like response time, latency, and energy consumption.
As the technology grows, different devices joining themselves to become the
part of a grid and generate huge amount of data to be sent to cloud for
different operations like storage, and processing. Around 8.4 billion different
devices will be the part of Internet by start of year 2018 Gartner1 (2017). A
significant amount of intelligent processing is required on the raw data that
is generated from sensors, to send it to cloud for further processing. This
processing is needed to reduce the bandwidth usage, and in achieving better
latency. This is the reason that bringing resources closer to the end devices
is rising. Among many merging Edge computing paradigms, Fog is a most
prominent and efficient when IoT devices are involved.

Cisco [5] first introduced the term Fog. They explicitly described that for
is not an alternative to cloud, but it extends the cloud computing closer to
the end users (edge) [1]. If compared to the cloud data centers, virtualized
computing environment is deployed at edge, closer to end users [1]. Fog is an
additional layer between end users and cloud. Both Fog and Cloud provides
almost similar services, but Fog has advantage that it provides these services

1https://www.gartner.com/newsroom/id/3598917

1



2

to facilitate a specific region. The primary purpose of Fog is to improve
the latency for delay-sensitive as cloud is far away from the end users and
take more time for data to be sent. Many services are provided by the Fog
to different IoT applications and other networking devices like Road Side
/units, access points, and routers etc. The management of basic network
operations like fault tolerance, reliability, and scalability is easy when num-
ber of fog nodes increases. Another primary advantage of applying fog node
in between cloud and end devices is that, it reduces the bandwidth between
cloud and end devices.
Fog computing evolving but it faces several challenges like fog nodes architec-
ture, heterogenous device management, privacy, security, and device mobil-
ity. Another challenge is the interoperate-ability between two heterogenous
devices. It is necessary to process data coming from several devices before
sending it to the cloud or taking any action. Normally fog paradigm consists
of a few numbers of fog nodes that provide different services. This is the
reason that efficient algorithms are required to process data in efferent and
in timely manner. A general scenario is explained in Fig 1, where efficiency
is improved by installing a fog layer in between end devices and cloud. Just
like in cloud, better management of resources in the data center to achieve
maximum efficiency and billing is an important feature that needs to be im-
plemented in the fog. A flexible environment is provided by the fog and
with flexibility the challenge of managing the decentralized resources arises.
Location is flexible for a fog node as it can be installed anywhere in the net-
work. The main purpose of designing the fog is to improve the performance
of latency-sensitive applications, and the nest location for fog is the Smart
Gateways [2].
Contribution – In this thesis a fog simulator is proposed which we call
FogNetSim++. This toolkit provides the facility to simulate heterogenous
devices along with many features. Another important feature of FogNet-
Sim++ is that it provides a very efficient mechanism to perform handover
by which the location of a devices can easily be tracked. Thus, the result of
the task is returned to the sources by routing through different geographi-
cally located devices. FogNetSim++ is designed in such a flexible manner
that researchers can easily incorporated and merge their own algorithms.
These algorithms include task scheduling algorithms, resource allocation al-
gorithms, and mobility related classes. No such a rich tool exists in the past
that provides these features. On the other hand, FogNetSim++ facilitate
users to evaluate, simulate fog environment with various realistic network
characteristics. Both static and dynamic devices can be simulated using
FogNetSim++. It supports several protocols like advanced Message Queu-
ing Protocol (AMQP), Constrained Application Protocol (CoAP), and Mes-



3

sage Queue Telemetry Transport protocol (MQTT). The mobility models in
FogNetSim++ includes, StaticGridMobility, CircleMobility, TractorMobility,
RectangleMobility, TractorMobility, and StationaryMobility. FogNetSim++
provides energy modules by which user can simulate the energy usage of
nodes, and residual energy of the nodes. A central broker manages all fog
nodes and FogNetSim++ also have many scheduling algorithms.

1.1 Motivation

The existing Fog computing simulators lacking some of the main features and
modules like, mobility while working with wireless nodes and if they provide
mobility features they are lacking the safe handover and energy modules as
well. The gap in the existing research motivated us to work on the mobility,
handover, and energy modules simulation for Fog computing.

1.2 Problem Defination

There is a need of tookit to simulate distributed Fog computing environment
by considering the mobility, handover, realistic network characteristics, and
energy modules.

1.3 Objectives and Research Goals

The main objectives of the research is are given as

• Implementing modules in the INET, the core module of Omnet++ tool

• Implementation of MQTT protocol for Fog computing IoT devices in
omnet++

• Mobility models

• Save Handover

• Consideration and Implementation of realistic network characteristics

• Energy modules



4

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 covers the overview
of Fog computing environment, how it works, and which are the most com-
monly used protocols. In Chapter 3 the available simulators about Cloud
and Fog are discussed. In Chapter 4 the System model and the design of
FogNetSim++ is discussed. In Chapter ?? the sample experimental setup
is explained and the results are discussed. Finally, we conclude this the-
sis in Chapter 6 and discussed the possible future enhancements about the
FogNetSim++.



Chapter 2

Background Information

This chapter is composed of overview and all the background information
about the thesis.

Network equipment and expensive devices combine to achieve fog com-
puting. Simulation provides a pre-deployment testing before the deployment
of real resources and expensive devices. No standard toolkit is available in
the market to simulate fog computing specifically. However, several other
network simulators can be used to simulate a few features of fog computing.
This gap in the research motivate researchers to develop an extensive tool
that can be used to simulate all possible features of fog.

However, many features have been ignored in the existing fog simulators
that we discussed here. Many existing simulators focus on the homogenous
devices. A central deice process data before sending this processed to the
cloud. Java-based simulators exist that ignore the many important network
characteristics like packet drop, or error rate, channel collision, and network
congestion. The existing simulators have only limited feature of mobility
and they ignore handover completely. Many simulators are not even open
source, researchers and students cannot have benefit from them in a way
they can with open source simulators. Also, researchers cannot implement
their own algorithms for modification and testing. They also ignore cost
implementation and energy modules.

The overall Internet devices involved in fog networking are very expen-
sive. It is crucial to test the fog deployment using simulations and tools.
However, there are no fog simulation tools available to support deployment
and mobility models; thus, this makes it an open research challenge. FogNet-
Sim++ is designed for rapid simulation development to test new algorithms
for fog environment. The proposed simulator is flexibly designed to simulate
three levels i). IoT, where various heterogeneous devices can connect and
communicate ii). edge level, where edge servers can be placed to provide

5



6

services and iii). cloud data center level, connected through a high-speed
network. Using proposed simulator, researchers can test their algorithms in
terms of efficiency, resource usage, network latency, and efficient allocation
of resources.

One such application area is Mobile Edge Computing (MEC) that is
specifically focused on mobile applications keeping in view the limitations
of mobile devices in terms of storage and processing. Traditionally, devices
communicate directly with cloud data centers for services. However, such ar-
chitecture is not suitable for delay-sensitive applications, e.g., real-time video
streaming, or smart healthcare. Therefore, a middleware is added between a
mobile device and back-end cloud centers. This middleware layer is termed as
network edge in which some of the resources from cloud are made available on
the edge nodes. Therefore, MEC models allow users to host/store resources
at the network edge that is close to the end devices. The MEC architecture
is very promising for delay-sensitive applications as when the resources are
deployed near to the end devices, it will take less time for a request/response
to travel on the network [3]. For context-aware applications, sometimes it is
not desirable to send all the raw information to the cloud. Therefore, edge
nodes can be used to intelligently extract the only useful information that
should be sent to the cloud data centers.

With advancement in technology, the devices can become a part of a grid
and generate significant amount of data that is typically sent to cloud for
processing. According to Gartner1 (2017) report, around 8.4 billion devices
will be connected to the internet by the end of 2017. Therefore, the raw
data generated through various sensors require intelligent processing to re-
duce the bandwidth usage and improve the latency. For this purpose the
edge computing devices are required that can handle such kind of computa-
tion. Many vendors are manufacturing devices for edge computing e.g., Cisco
manufactured a series of edge devices Cisco Edge 300 and Cisco Edge 340.
These devices provide the facility of computing when installed at the edge
of the network. Moreover, any conventional device can also be used for this
purpose. Edge computing can also be performed in a distributed manner, as
discussed in [4]. The computing paradigm defined by Cisco is the extension
to conventional cloud computing model to execute the geo-distributed appli-
cations [5]. The Cisco introduced the term Fog Computing (FC) to support
latency-sensitive applications [1]. In typical terms, Fog is a cloud close to
the end user. Thus, a Fog is an extension of a cloud that provides compute,
storage, and networking. Similar to edge computing, the FC utilizes locally
connected computing resources to reduce the transmission latency. However,

1https://www.gartner.com/newsroom/id/3598917



7

the cloud data centers are still useful for big data analysis.
Similarly, another cloudlet-based Edge computing is proposed by Satya-

narayanan [6]. Cloudlets are decentralized Internet infrastructure that can be
used by mobile devices to offload compute intensive tasks. Cloudlet alleviates
the response latency and delay compared to cloud deployment. Cloudlet also
supports virtualization; services deployed inside virtual machine can eas-
ily be migrated to/from cloudlet. Moreover, handoff is also supported in
cloudlets [6].

The MEC and Fog are designed to assist devices in terms of performance.
The Fog is more flexible compared to MEC [2]. In MEC, the edge locations
are often limited and require hardware installation that also includes the
setup cost and time. Once, the edge devices are deployed, it is difficult to re-
deploy at different location with the dynamic burst of service requirements.
Whereas,

To promote Fog and encourage developers to design Fog enabled appli-
cations, the OpenFog consortium was held Princeton Univ. in Nov 2015.
The well known researchers/developers from Cisco, Microsoft, Dell, Intel
and ARM were participated. The generic Fog framework is shared with de-
velopers that can support any application such as transportation, agriculture
and etc. Thus, enabled the development of latency-sensitive applications.

In computing domain, the paradigm have evolved from parallel to dis-
tributed, grid to cloud, and edge to fog computing. The traditional cloud
paradigm is based on various features such as on-demand scaling, pay-as-
you-go, fault tolerance and etc. It also provide unlimited storage, region-
wise replication of data, and security services. Due to the benefits, cloud
computing is widely used. There are number of companies that are proving
cloud services, few well known companies are Amazon Ec2, Google Cloud,
Microsoft Azure and etc. The user can deploy services and store data inside
the cloud. The services and data hosted inside the cloud can easily accessed
from any device connected through the internet. Before using cloud ser-
vices, the user typically sign a contract termed as Service Level Agreement
(SLA). In SLA, user listed all the required resources and cloud providers are
bound to maintain the SLA all the time [7]. In general terms, cloud services
are categorized as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS). Whereas, there are other terms that
are very commonly using with cloud are X-as-a-Service (XaaS) (means unit
consumed - related to billing), Network-as-a-Service (NaaS), Storage-as-a-
Service and etc [8] [9].

Other than the benefits of cloud computing, there are some limitations.
One of the limitation is device-to-cloud connectivity that required Internet



8

connection. Especially for large-scale data transfer and latency-sensitive ap-
plications, the cloud is definitely not a good option. Some of the latency-
sensitive applications are smart grid, and streaming services. Moreover, in
cloud, services are often deployed on different physical systems that com-
municate with each other. The deployment can separate node can further
increase the delay due to intra-cloud traffic. Lastly, the cloud data centers
are not available in every region, so this further reduces the option to de-
ploy services or store data. Therefore, the concept of edge computing is
introduced to minimize the latency and serve the contents from the closed
possible location.

Figure 2.1: Computing Architecture Pyramid

Unlike cloud, Fog cannot be used for big data analysis; moreover, it is
scalable compared to the cloud paradigm. However, the edge and fog are very
closely related, sometime used interchangeably; the Fog has the capability
of device management, data service, and communication that are missing in
Edge computing [9]. The key features of Fog and Edge are listed in the table.

Edge computing a mechanism used for the optimization of cloud com-
puting systems. In edge computing the data processing is performed at the
edge of the network not at cloud resources. This process gives the benefit
of minimizing the communication bandwidth required between data-centers
and sensors by performing the computation at the edge of network and send
only necessary information to the cloud/data-centers [3]. Sending all infor-
mation to the cloud has been proved a less intelligent strategy because most



9

Table 2.1: Difference between Edge, Fog and Cloudlets [?]

Sr. Attributes Fog Computing Edge Computing Cloudlets
1 Node device Routers, Switches, Access Points, Gateways Servers running in base stations Data Center in a box
2 Node location Varying between End Devices and Cloud Radio Network Controller/Macro Base Station Local/Outdoor installation
3 Software architecture Fog Abstraction Layer based Mobile Orchestrator based Cloudlet Agent based
4 Context awareness Medium High Low
5 Proximity One or Multiple Hops One Hop One Hop
6 Access Mechanisms Bluetooth, Wi-Fi, Mobile Network Bluetooth, Wi-Fi, Mobile Network Bluetooth, Wi-Fi, Mobile Network
7 Inter node Communication Supported Partial Partial
8 Data services Yes Yes Yes
9 Application Hosting Yes Limited control Yes
10 Real-time control Yes No Yes
11 Virtualization Can be supported No Yes

of the times we don’t even need to store that much amount of raw data com-
ing from sensors. As the technology growing, scientists are eager to utilize
every possible information from almost every electronic device, which might
be sensor data coming from a sensor of other information coming from an
infrastructure device. If we start throwing that much amount of data to the
clouds, the possible problem that can occur are bandwidth resource issues in
network, storage and computing problems in the data-centers. The alterna-
tive to deal with situation is to compute some computation at the edge of
the network instead of sending them blindly to the cloud that can save a suf-
ficient amount of resources at clouds and network as well. The improvement
in latency can help in the systems where control information is required in a
very low delay like real time systems. For this purpose the edge computing
devices are required that can handle such kind of computation. Many ven-
dors are manufacturing devices for edge computing e.g. Cisco manufactured
edge series devices Cisco Edge 300 and Cisco Edge 340. These devices pro-
vide the facility of computing when installed at the edge of network. Further,
any conventional device can also be used for this purpose. Edge computing
can also be performed in a distributed environment [4].

The overall Internet devices involved in fog networking are very expensive.
It is crucial to test the fog deployment using simulations and tools. However,
there are no fog simulation tools available to support deployment and mo-
bility models; thus, this makes it an open research challenge. FogNetSim++
is designed for rapid simulation development to test new algorithms for fog
environment. The proposed simulator is flexibly designed to simulate three
levels i). IoT, where various heterogeneous devices can connect and commu-
nicate ii). edge level, where edge servers can be placed to provide services
and iii). cloud data center level, connected through a high-speed network.
Using proposed simulator, researchers can test their algorithms in terms of ef-
ficiency, resource usage, network latency, and efficient allocation of resources.



10

Table 2.2: The key features of Fog and Edge - not clear discuss

Features Edge Fog
Data services Yes Yes
Security VPN Data protection,

partial point E2E, Hardware
& Session level

Application hosting Yes but limited Yes
Real-time Control No Yes
Availability
Awareness Device aware Intelligent,

but aware of the
unaware of the entire domain &
entire domain device indp.

IoT vertical No vertical Supports
awareness awareness multiple verticals
IoT vertical No Yes
integration
Security scope Limited to End-to-End

devices
Virtualization Not designed Rich

for virtualization
virtualization



Chapter 3

Literature Review

In this section commonly, used simulators are discussed and compared them
with FogNetSim++.

3.0.1 Fog – IoT Simulators

DPWSim was proposed by Han et al. [10] to simulate IoT applications. They
simulated event-driven, and service-oriented models. In SimIoT [11], Sotiri-
adis et al. extended the SimIC framework. Many communication mecha-
nisms are provided for cloud data centers and IoT sensors are provided in
SmIoT. Another simulation toolkit named EdgeCloudSim which was pro-
posed to minimize the limitations in conventional cloud simulators so that
to simulate the edge computing environments. CloudSim was extended to
develop EdgeCloudSim [12].

A coordination technique was proposed by Khan et al. [13] to simulate a
large number of IoT nodes and also supports things related to home automa-
tion. It was proposed as an extension to the CloudSim. IoTSim is proposed
especially for big data processing on the data generated by IoT devices. The
author explained toolkit by discussing a case study and discussed the results.
A mobile based simulator MobIoTSim [14] for IoT devices was proposed to
simulate mobile devices. Authors claimed that the main objective of the sim-
ulator is to simulate mobile devices without buying the real ones which is also
the primary feature of any simulator, In MobIoTSim, users can understand
and explore the deep working of connected devices.

In [15], F. Claudio et al. proposed a simulator for crowd source appli-
cations like smart cities and named it as CrowdSenSim. A street lightening
environment was simulated to evaluate the performance and working of sim-
ulator. It can also be used at the places where data is collected in big amount
and need processing and it is available free for the researchers to work on it

11



12

as well ass they can enhance the features if they like to.
IoT sensors and devices are commonly simulated by SimpleIoTSimula-

tor [16]. This tool supports several IoT related protocols like CoAP, and
MQTT etc. the limitation observed in SimpleIoTSimulator is that it only
support RedHat 64 bit. A user can install the simulator environment only
using RedHad distribution. A PaaS enabled simulator for IoT devices is
proposed by IBM and is known as IBM Bluemix [17]. A web-based envi-
ronment is used to quickly install and simulate cloud applications and data
is gathered from IoT sensors and devices using these applications. With
IBM Bluemix hardware devices can be simulated from Intel, Texas Instru-
ment, and ARM. MQTT protocol is used to send data to cloud. Another
platform-as-a-service (PaaS) simulator Parse [18] is proposed by Facebook
that supports IoT sensors and devices. A very easy environment is provided
for application deployment. It supports several mobile devices. Google is
also in the race and the proposed simulator is Google Cloud Platform where
many devices can be virtualized and gather data from them. They named it
Google AppEngine.

A fog-based simulator iFogSim was proposed by Harshit et al. [20]. It
is developed in Java technology as an extension to CloudSim. Here scien-
tists discussed the resource management techniques’ impact in term of cost,
congestion, and latency. It has a few limitations as well. First limitation is
that it is java based and core network characteristics are not supported or
ignored. Also, it is not even compatible with different java versions. And the
documentation is not rich enough to understand and simulate environment
from scratch using this tool. On the other hand, in our proposed simula-
tor all tool like congestion, delay, packet drop, latency and many more are
available and it allows a user to flexibility simulate and test Fog computing
environment by varying these network characteristics.

Cisco has emerged as a big organization that provided a variety of network
devices. A toolkit which supports Cisco based devices is proposed and is
known as FIT [21]. It is an open source solution. Using FIT simulation is
not performed in a controlled environment and therefore simulation cannot
be repeated.

To simulate wireless networks, WSNet [22]– a discrete event simulation
model is proposed to simulate IoT devices. IoT networks can also be sim-
ulated with it. It contains modules like energy, routing protocols, radio
interfaces, and mobility. Disaster situations like fire, and earthquake can
also be simulated with it.



13

3.0.2 Cloud Simulators

CloudSim is the most commonly used cloud simulator, designed in Java at
University of Melbourne, Australia. It provides basic classes to define vir-
tual machines, users, data centers, computational resources, and applications
policies. Thus, facilitate with the generalized framework to cloud computing
services [?] [?]. To overcome the deficiency of CloudSim, number of simula-
tors have been designed as an extension to CloudSim. NetworkCloudSim is
an extension of Cloudsim, designed to simulate applications like workflows,
high performance applications, cloud data center and etc. This framework
provides a structure to develop cloud data centers, and the simulate different
policies. It can be used to simulate cloud data centers networking applica-
tions that involves communication among processes [?].

EMUSIM is another extension of CloudSim, designed to visualize the be-
havior services on cloud platforms [?]. It used open source software stack and
has limitations in terms of scalability due to hardware and cannot manage
large workloads. Cloud Analyst [?] provides the optimal resource schedul-
ing among users based on geographical location. It provides a rich map
based simulation framework for monitoring, load balancing, deployment of
data centers, data flows and cloud cluster monitoring. The key features in-
clude its flexible configuration, high degree of control, and simulation of data
center virtual machines, resource allocation policies, and internal communi-
cation[14].

GreenCloud is build using NS2 simulation framework. It is a collabo-
rative project between University of Luxembourg and North Dakota State
University. It is designed for packet level simulation and latest version also
support virtual machine (VM) migration and consolidation techniques. iCan-
Cloud is build on top of OMNeT++, designed for large cloud simulations.
It also compute the cost of using compute resources. It provides support for
Amazon EC2 and hypervisor that can be used to compare different policies.

GroudSim developed using Java, designed to support cloud and grid com-
puting. It allow researchers to execute complex simulation scenarios includ-
ing background workload generation and cost calculation. CloudNetSim++
is designed on the top of OMNeT++ and utilized the features of INET frame-
work. It provides a comprehensive framework that allow users to define their
own VM migration policies, and analyze usage cost.

A scheme was proposed by Canti et al. [30] to store energy in fog nodes so
that complex operations can be performed. This scheme is helpful because
power storage is a crucial part while we are working on IoT devices. IoT
devices have a very low amount of residual energy and on the other hand
radio uses energy in a very vast amount in sending and receiving data packets.



14

Table 3.1: Simulator Comparison

Simulators
Prog.
Language

Platform
Network
Configuration

Open
Source

Mobile
Nodes

Customize
Mobility
Models

Scheduling
Algorithms

Device
Handover

Energy
Module

MobIoTSim [14] Java Linux No Yes Yes No No No No
SimpleIoTSimulator [16] Java Unix No No Yes No No No No
IBM BlueMax [17] Java/Python Cloud No No Yes No No No No
Google IoT Sim [19] NA Cloud No No Yes No No No No
iFogSim/MyiFogSim [20] Java All No Yes Yes No Yes No No
Cooja [23] C Linux No Yes Limited No No No No
FogTorch [24] Java All No Yes No No No No No
RECAP simulator [25] N/A – Limited N/A No No No N/A N/A
EmuFog [26] Python All Yes Yes No No No No No
EdgeCloudSim [27] Java All No Yes Yes No Yes No No
Edge-Fog cloud [28] Python All No Yes Limited No No No No
Mobile Fog [29] N/A – No No Yes No No No No
FogNetSim++ C++ All Yes Yes Yes Yes Yes Yes Yes

Haruna et al. [31] proposed a technique to efficiently allocate the resource
in fog and it also supports handover in fog nodes. Handover is very important
while working with wireless nodes to make sure no data loss.

Fog is deployed as the middle layer in between cloud and source data i.e.
sensors and IoT devices that generate massive amount of data and send this
data to fog for processing. The energy management becomes very crucial at
this stage, hence and dynamic energy management technique was proposed
by Jie Cu et al. [35] which dynamically manage energy and learn during the
simulation to manage overall job mechanism.

Delay-constraint model is studied by Meng et al. [32] for computation
task offloading to the fog and cloud servers. The primary purpose of the
research to reduce the energy consumption while performing computation or
during communication. Results showed that the overall energy consumption
is reduced.

Compare to cloud, fog nodes contain only limited amount of resources,
and hence typical algorithms used for task scheduling at clouds are not good
enough for fog nodes because of rapid changes in user requirements. Lina
Ni and team [33] worked hard on the problem and came up with a resource
allocation algorithm for fog computing. Time and price were used to define
the system. The actions are taken placed dynamically depending on the
variables’ current situation.

A geographically distributed framework was proposed by Ananthanarayanan
et al. [36] for video analytics at large scale. This framework supports real
time video analytics, and it uses gateway nodes to provide streamline per-
formance. Ju Ren et al. [37] worked on the edge computing and formulated
a scalable framework for performance evaluation of edge computing. This
framework provide facility to smart home appliances and IoT devices, where
data is collected from a number of different sensors, and is sent to nearby
computing nodes. This computing node acts as the fog node in the network



15

and hence the communication and number of messages sent can be reduced
by pulling the intelligence closer to the devices generating data.

Bo Tang et al [41] contributed in the fog computing by introducing a
distributed architecture for different servers, and infrastructures, and they
claimed that they obtained very improved results. Li Ting et al. [42] worked
on the fiber channel to improve the quality of data collection with their
proposed cooperative framework. They reduced the delay by introducing the
fog relay nodes. A framework for hybrid offloading data and computation
tasks to the fog nodes is proposed in [43]. With this framework less energy is
consumed in task offloading because it used adaptive offloading algorithms.

Xiaodong Xu et al. [39] proposed a video transmission model where a
number of servers are used for caching of video data so that to prove delay
less transmission of video streaming. Several well-known companies are using
the technologies like NetFlix, and Youtube etc. They use this technique to
cache data at the edge of the network and provide delay less service. A
crowd sourced framework that works device-to-device is proposed by Chen
et al. [40] for edge computing and especially for mobile using 5G technology.
A device can communicate efficiently with another device in 5G technology.
So, a computing is required for a very large number of devices at the edge.
Another task sharing and resource allocation strategy is proposed by Sonmez
et al [12].

Security is an important factor while working with IoT devices. Many
researchers worked on the security aspects of the IoT devices. Among them,
Mithun Mukherjee and his team proposed a security framework for IoT de-
vices. PengFei Hu [45] proposed a framework using which security and pri-
vacy related complex computation can be performed at the fog node. They
used this technique face detection at fog. Face detection needs a complex
computation that we can perform at cloud and not at the devices because
of less energy at devices, and it is performed at cloud, the latency is a very
big overhead. So, here fog layer helps in reducing the unnecessary delay by
performing such computations at fog nodes. In vehicular network, timely
response is required because human life is at risk. Hence introducing fog
layer at in vehicular networks help in reducing delay [1].

We discussed many simulators above but most of them don’t facilitate
the researchers to introduce and incorporate their own algorithms for task
offloading, task scheduling, and mobility. Also, most of them are not open
sourced and not available freely in the market. Many of them ignore basic
network characteristics like, packet loss, bandwidth, and delay etc. Only a
limited number of mobility models are present in some simulators and most
of them ignore the mobility altogether. A table is constructed to compare
detailed feature in Table 3.1.



Chapter 4

Methodology

The main objective of this research is to establish a new simulating toolkit,
where researchers can simulate distributed Fog Computing environments. It
provides a number of additional features that previous tools were lacking.

4.1 FogNetSim++: Toolkit for Modeling and

Simulation

4.1.1 System Model

FogNetSim++ can support M fog nodes, P mobile nodes (d), and B broker
nodes. A base station (BS)is used between mobile nodes and broker nodes.
There are many types of moble devices like they can generate and send sensor
data or they can upload task to broker for computation (asking for resources).
So, mobile devices have the tendency to request resources from broker, and
broker ask other nearby fog nodes to facilitate the mobile nodes. M/M/1
queue and M/M/c queue is used at mobile and fog node respectively for the
sample traffic scenario. A mobile node ask the nearby broker for resources
and offload task for computation, the broker communicate with nearby fog
node and if the task size is not compatible or less resources are available at
this fog node, the broker asks other nearby fog node for resources and fur-
ther lease. The broker node keeps track of every task request and the current
status of resources at every fog node. If broker could not find resource for
an incoming task, it will add the task request to its queue, and retry later.
This way, the delay increases. Hence after time t the request will be dropped
and ask for re transmission. The task generation (di, i ∈ P ) at mobile node
follows the Poisson process with average req rate (µi).

16



17

A very computationally extensive request is generated from device (di).
This request is independent of the schedule, it can be schedule at any fog
device. The task is executed at any of available k number of homogeneous
fog devices. The θf represents the execution rate and φf represents the max
resource and load at a fog device. The maximum load at fog node is defined
so that unnecessary delay can be ignored. B received the request from di
and according to Poisson process:

µtotal =
P∑
i=0

µi. (4.1)

A node can accept the request as:

ϕ =

{
1 φf > µtotal
φf

µtotal
φf < µtotal

}
. (4.2)

Therefore, using (4.1) and (4.2), the execution rate can be compared at
fog device as:

ϑ = µtotal × ϕ =

{
µtotal φf > µtotal
φf φf < µtotal

}
. (4.3)

Using queuing theory analysis and Erlang’s formula [47], the avg waiting
time about every request can also be computed as.

Twait =
κ, µtotal

κθf

κθf − µtotal
+

1

θf
. (4.4)

The broker module have all the responsibility to perform and execute the
tasks. If broker node doesn’t have enough resources it forward the task to
the neighboring fog node. If the neighboring doesn’t have enough resource
the task is offloaded to cloud. In case of no resources available it the cloud,
the task is placed in queue of fog node for time t and after this time t retried
to offload the task or drop the task, and request re-transmission.

The proposed toolkit, FogNetSim++ is designed to support the execu-
tion of task at the fog nodes at the edge of network. It is observed that less
resources are available at the fog layer when we compare it to the cloud. I
cloud we have a huge amount of processing power and resources but at fog
these resources are always in limited amount. This is the reason efficient us-
age of these resources is required at fog layer. Hence, FogNetSim++ proved
a number of algorithms that share these resources such that to have max-
imum efficiently and usability of all available resources. Also, researchers



18

can incorporate their own task scheduling algorithms to test and compare
performance. User nodes send tasks to the fog nodes and fog node check if it
has the enough processing power or computation resources. If resources are
available at the fog node, it starts execution of the task. Otherwise, fog node
ask nearby fog nodes to execute task also keeps the record of task so that to
return response and result of respective user node. FogNetSim++ uses pub-
lish/subscribed based model to reserve resources and communication. sensor
devices are also supported in FogNetSim++

Figure 4.1: FogNetSim++ Design

Figure 4.2: FogNetSim++ - A Graphical User Interface



19

Algorithm 4.1 Algorithm – Broker Node (B)

1: List fogNodes[] ← FDM

2: List devices[] ← dP
3: Queue taskQueue[] ← nill
4: Timer timer ← 0
5:

6: while ( true ) do
7: if MessageRecInWaiting then
8: Msg ←Message.Received
9: if Msg.Type == Result then

10: Forward Msg to di
11: else if Msg.Type == FN.Φi then
12: Update FNi.Φi ← Φi

13: else if Msg.Type == di.position then
14: Update All di.Position for Handoff
15: else if Msg.Type == Servicereq then
16: taskQueue←Msg
17: end if
18: end if
19:

20: if taskQueue ! = Empty then
21: Msgreq ← taskQueuepop
22: if FNi.workload < FNi.Φi then
23: Forward Msgreq to FNi

24: else
25: boolflag ← true
26: for i=0 .. M do
27: if FNi.workload > FNi.Φi then
28: Msgreq ← taskQueuepop
29: Forward Msgreq to i
30: flag ← true
31: end if
32: end for
33: if flag then
34: Starttimer ← ∆T

35: end if
36: end if
37: end if
38:

39: if timerexpire then
40: for i=0 .. M do
41: if FNi.workload > FNi.Φi then
42: Msgreq ← taskQueuepop
43: Forward Msgreq to i
44: end if
45: end for
46: end if
47: end while



20

Figure 4.3: FogNetSim++ Working Model

4.1.2 Pricing Model

FogNetSim++ also provides different pricing models. The central broker
monitors the resource usage. The pricing model available in FogNetSim++
is listed in Table 4.1. For the pricing model, the broker is responsible for
managing the user SLA (service level agreement).

4.1.3 Energy Modeling

We proposed an energy model to estimate the energy consumption of wireless
nodes. Generally a sensor node consists of three main parts; a transceiver,
a micro-controller and power supply. FognetSim++ provides uses the exist-
ing power supply modules in Inet framework like ICcEnergyGenerator and
IEpEnergyGenerator. A wireless node has two parts software part and hard-
ware part. In software part the running application at the node which gen-
erates tasks and in hardware part two energy consumers as micro-controller
and transceiver. The sample values for energy consumption are listed in TA-
BLE ??. The state diagram of the current energy model is presented in the



21

Algorithm 4.2 Algorithm – Fog Node (FN)

1: Timer timer ← 0
2: Queue taskQueue[] ← nill
3: while ( true ) do
4: if MessageRecInWaiting then
5: Msg ←Message.Received
6: taskQueue←Msg
7: end if
8: if taskQueue! = Empty then
9: Msgreq ← taskQueuepop

10: Outcome← ExecuteMsgreq
11: Send(Outcome,B)
12: end if
13: if timer expired then
14: Send(φi, B)
15: timer ← reset
16: end if
17: end while

Table 4.1: Pricing Models supported in FogNetSim++

No.
Pricing
Model

Features/
Description

Price

1. Pay-as-you-go
Networking, Storage
Compute

$.0004/Mb

2. Subscription
Monthly Task size 10Gb
Monthly Task size 100Gb

$50/User
$450/User

3. Pay-for-resources
Storage
Compute

$0.0048/GB
$.0002/Mb

4. Hybrid Model
A dynamic model changes
according to the queue size
of broker

$.0004-$.0008



22

Figure 4.4: State diagram for energy model

Fig. 4.4. The energy consumption is calculated as:

Efn
t =

S(t)

B
· Ptrans +

S(t)

γfn
· Pidle (4.5)

In eq. 4.5 the energy consumption Efn
t is given for task t while computing

at fog node fn. This energy is the combination of two things, first the
power consumption at user node in uploading the task t of size S(t) on data
channel with bandwidth B and transmission power Ptrans. Second, the power
consumption at Fog Node (FN) in processing the task t of size S(t) with fog



23

node’s computing power γfn and the idle power Pidle.

E =

Q∑
t=0

Efn
t (4.6)

Eq. 4.6 represents the total energy for Q number of tasks.

Table 4.2: Sample measurements of sensor nodes energy model’s calibration
in FogNetSim++

Measurement of radio power
Sleep 60 µA
Idle 1.38 mA
Rx 9.6 mA
Tx (-18 dBm) 8.8 mA
Tx (-13 dBm) 9.8 mA
Tx (-10 dBm) 10.4 mA
Tx (-6 dBm) 11.3 mA
Tx (-2 dBm) 15.6 mA
Tx (0 dBm) 17.0 mA
Tx (+3 dBm) 20.2 mA
Tx (+4 dBm) 22.5 mA
Tx (+5 dBm) 26.9 mA

4.1.4 Implementation

The proposed toolkit is developed as an extension to OMNeT++. Omnet++
is an open sourced tool to simulate discrete event based network simulations.
It already has a number of modules developed by the contribution of com-
munity. FogNetSim++ is also an open source simulator so that it can be
available freely to everyone and everyone can enhance it by incorporating
their own algorithms. Fig. 4.1 depicts the design of FogNetSim++.

The existing simulators are not able to support all kind of sensor devices.
Hence, this is the motivation for designing FogNetSim++, which support all
kind of sensors and IoT devices [16] [17]. Also, they ignore basic network
characteristics like delay, packet loss etc. The existing work also doesn’t
support mobility models [6]. Fig. 4.2 shows the geographical representation
of the toolkit. FogNetSim++ is a complete solution for the simulation of
network environment using sensor nodes, broker nodes, and cloud data cen-
ters. The Broker nodes manages the requests and resources. FogNetSim++



24

is novel toolkit that provide the facility to simulate both static and mobile
nodes. Fig 4.1 depicts the modular diagram of FogNetSim++. The Toolkit
is composed of two main modules, user devices and brokers.

The mobility can introduce new challenges resulting from of device/node
hand over. The proposed framework provides a number of mobility models.
Moreover, the framework also supports network protocols that include UDP,
TCP, and MQTT. A working example of the use of these protocols is in-
cluded in the proposed framework, so researchers can customize as per their
requirements.

4.1.5 Implementation – FogNetSim++

The Broker is the core module in FogNetSim++, it handles the user devices
as well as fog nodes. User nodes establish a connection with broker using
MQTT protocol, broker is managing a table with all active user nodes. User
send task to the broker with publish message. Fog nodes also establish con-
nection with the broker, and keep updating the broker about their queue,
waiting time, and computation power. When the task arrives at broker, bro-
ker calculate the best fog node at which this task will be executed using
the task scheduling algorithms present in FogNetSim++. If User Fog node
doesn’t have enough resources, the broker asks other fog node. If this node
also don’t have enough resources to execute the task, then task is sent to
cloud for execution or in case of issue with cloud the task is placed in the
queue of fog node. The task is picked from from the queue when time arrives
or the queuing time of the task expires. Fig 4.3 shoes the load and internal
structure. When the task is computed, the fog node send results to the bro-
ker, and then broker forward this result to the relevant user. In this way,
no task or data is loss. FogNetSim++ assure the delivery of network pack-
ets with the assured delivery network protocol MQTT. In FogNetSim++,
researchers can implement their own algorithms to schedule tasks in bet-
ter way and they can enhance the mobility by adding new mobility models.
Handover is another important and crucial stage while working with wireless
nodes. Nodes keep moving while sending request for a task computation and
when results arrives about that task, node has moved from its location. To
find that node in the network and return the result about its task is referred
as handover. FogNetSim++ performs handover in very accurate manner so
that to avoid any data loss.

FogNetSim++ provides complete luxury of playing with physical net-
work characteristics like, packer loss, bit error, and bandwidth etc. Users
can change these network parameters very easily and test the network simu-



25

lation environment. This toolkit also provides a number of network protocols
like MQTT, HTTP, FTP, USD, TCP, and AMQP. Further, researchers can
enhance the tool by adding new protocols which is very easy. FogNetSim++
provides the facility to simulate heterogeneous devices. Sometimes, sensors
are fixed at different locations and sometimes they keep moving a particular
mobility pattern. Hence, both mobile and static devices are supported by
the FogNetSi++. There is a limitation in FogNetSim++ which says that
both IPv6 and IPv4 cannot be used at the same time but these versions can
be used in FogNetSim++.

The broker module uses publish, subscribed method to dispatch data to
the user devices and fog devices. devices can connect to broker in two possible
ways, either user device, or as a fog node. If node is connected as fog node,
it means this node is proposing its computation and storage resources to the
network and other devices can use these resources through broker. Broker
will decide which fog node will be used as computing node. The MQTT
protocol1, is implemented in the FogNetSim++, which was not present in
the previous versions of Omnet++.

A simple communication between broker and user device is presented
in Fig 5.1. The devices can register with broker node through Register(...)
function call. The call includes arguments such as broker id. The broker node
receives the updates through a function call Update(....). The updates are
pushed to the subscribers through Reflect(....) function call. The broker also
sends an acknowledgment to the publisher device/node. Any node can act
as a subscriber/publisher or both. The broker maintains key terms/topics.
A node can also request for computing power available at the broker. This
type of communication is handled through TCP/UDP protocols. Internal
execution of MQTT at broker node is shown in Fig 4.5.

MQTT is a publish/subscriber based lightweight messaging protocol, first
created by Arcom/IBM in 1998. Now it is an ISO standard (ISO/IEC20922)2.
MQTT is implemented in FogNetSim++ for communication among devices
and broker nodes.

Broker Module

As discussed above, broker node is responsible to provide resources on re-
quest. In FogNetSim++ we have categorized broker node into three types
i.e. static, mobility-based, and Wireless access based.The static nodes are the
computing servers, placed at the gateway to provide computing on request.

1http://mqtt.org/tag/standard
2http://mqtt.org/tag/standard



26

Figure 4.5: FogNetSim++ - A basic view of architecture

The mobility-based are the actual mobile nodes that can offer computation
to its neighboring nodes. The Wireless Access Based (WAB) is the access
points that can be used to serve the connected nodes. The internal modules
of broker node is shown in Fig 4.6. The WAB is designed on the inspiration
of Cisco Edge3 series routers which provide the facility of computing along
with the routing. A brief list of broker features is listed below:

• Manage a list of publishers and subscribers

• The publisher/subscribers topics are provided to broker through configu-
ration file

• Register publishers, subscribers and disseminate updates

• Provide computing capacity on request

• Optimally utilize resources among number of requested nodes

• If required, perform resource handover with neighboring brokers

• Communicate with data centers

• Provide interface to incorporate new algorithms for resource scheduling
and computing

3www.cisco.com



27

• Reliable data delivery

• Run at the edge, intermediate and smart gateway nodes

As explained above, the most important node is the broker which facilitate
the user nodes to provide resources as request arrives. The user nodes are
categorized into two types, one is static nodes that are connected to network
with Ethernet cables and the second is wireless nodes. Similarly, the broker
module is also categorized into two types, one is wired brokers in the network
and the other one is wireless that can be wireless nodes, or the wireless access
points. Fig.Fig 4.6 shows the internal structure of broker module. As the
Cisco4 has already introduced the routers that can perform computations at
themselves. FogNetSim++ provides the facility to users to simulate network
routers as broker nodes. Algorithm 4.1 and Algorithm 4.2 are deployed at
broker and fog nodes respectively. The sample simulataion parameters about
the environment is given in Table 4.3

Table 4.3: Simulation Parameters – Broker

Parameter Description

numMQTTApps The parameter indicates that the number of MQTT applications at each broker, it can be any integer number between 1– n

hasMQTT a one bit field to indicate that the protocol being used is MQTT

numTcpApps The parameter indicates that the number of TCP applications concurrently executing on broker node – default(0)

numUdpApps The parameter indicates that the number of UDP applications concurrently executing on broker node – default(0)

numSctpApps The parameter indicates that the number of Sctp applications concurrently executing on broker node – default(0)

numPingApps The parameter indicates that the number of Ping applications concurrently executing on broker node – default(0)

In FogNetSim++, brokerApp is an abstract class designed to work on
IoT protocols. It provides a skeleton class for fog node implementation.
By default it supports all types of brokers packed inside FogNetSim. The
implementation manages lists of subscribers along with their other required
data structures to support above mentioned functionality.

End Node Devices

Another core module of FogNetSim++ is end devices. Under end devices, we
have two type – sensor nodes and user node. The sensor nodes act as a data
generator; whereas, the user node can generate or receive data. The user
node can also act as a sensor. Further, these nodes are further categorized
into two – wired and wireless nodes. The nodes can be static or mobile, both
versions are supported. The salient features are given as:

• The sensor class register to publish data

4www.cisco.com



28

Figure 4.6: Internal modular view of Broker Node

• The objects inherited from user node class can register and subscribe for
data

• The data is pushed to the broker node

• Node acquire IP address through DHCP

• All nodes support MQTT protocol along with other application proto-
cols such as HTTP, TCP, FTP, SMTP, SNMP and UDP. Further, re-
searchers can write their own protocols for these nodes by extending
the interface class

Following parameters are used to set the initial values:

• numMQTTApps - parameter is used to specify the number of MQTT ap-
plications at each node

• destBroker – parameter the destination address of broker node, it can IP
address or name of the Broker or can be provided dynamically

End Node Implementation – End node devices is a skeleton module
designed to act as a sensor/user node that is mainly used to generate or



29

consume data. It uses MQTT messages for communication with broker node.
It provides a framework for researchers to incorporate their own application
algorithms to generate data or consumption. The basic parameters required
by this module are:

• string localAddress – acquire through DHCP

• int localPort – default(2498)

• double startTime

• string topics=default(””) a list of topics, comma separated

• int connectPort – default(2498)

• int connectAddress – dynamically populate

Mobility Models – Mobility is another very important feature of end
node devices. In FogNetSim wireless, and wired nodes/devices are supported.
The mobility can play an important role, it can create a new challenges
for researchers in the form of optimum use of resources and resources hand
over. In OMNeT++, an open source module (i.e., INET) provides different
type of mobility models. Normally mobility models are classified into two
categories, one type is called ”entity model” where movement of each node is
independent of other nodes; whereas, the second category is called a ”group
model”. In this model, movement of one node is dependent on the movement
of other nodes. The most commonly used entity and group models are listed
here:

• Random Waypoint – entity model

• Random Walk – entity model

• Guass-Markov – entity model

• Random Direction – entity model

• City Section – entity model

• Column Mobility – group model

• Pursue Mobility – group model

• Nomadic Community – group model

• Reference Point Group – group model



30

New models can also be integrated into FogNetSim++ but the integration
is available for entity models only. The already available mobility models in
FogNetSim++ are:

• Random Waypoint model – Introduces the pause times between variations
in speed and destination.

• Mass Mobility – Introduces a mass point with momentum and inertia.

• Deterministic Motions models– The mobility of fixed point nodes as well
as moving nodes around linear and rectangular paths.

• Chiang Mobility – Where probabilistic transition matrix is used to alter
the state of motion.

• Gauss-Markov – Where a turning parameter is used to change the amount
of randomness in the pattern.

Other then above listed models, the other available models are: Sta-
tionaryMobility, StaticGridMobility, CircleMobility, LinearMobility, Tractor-
Mobility, RectangleMobility, TractorMobility, RandomWPMobility, Gauss-
MarkovMobility, MassMobility, ConstSpeedMobility, ChiangMobility, Ns2Mobility,
BonnMotionMobility, and ANSimMobility.



Chapter 5

Results & Discussion

5.1 Testing and Performance Evaluation

FogNetSim++ offers a comprehensive platform to simulate diverse fog ap-
plications. It also help to understand the basic concept of fog computing.
FogNetSim++, provides a rich network configurations managed through a
network module. It allows the simulation over realistic network environment
that opens new challenges for researchers such as resources utilization, and
resources handoff.

All the modules are configured through ini file. The user can set the
values of different parameters such as the number of brokers, user nodes,
applications at each node, link data rate, channel noise, and mobility models
for every individual or group of nodes. To give the basic understanding of the
framework and to evaluate the performance of a simulator, network scenario
is simulated where a variable number of user nodes mobile and static are
placed, they are generating messages to the broker nodes. The broker node
executes the requested tasks in FIFO order and sends the result back to the
node. The performance is measured in terms of memory and CPU usage. As
the IoT simulator comprises of a large number of devices, therefore, it is im-
portant to benchmark the proposed FogNetSim++. Moreover, the network
contains a number of standardBrokers, wirelessBrokers, accesspointBrokers,
and a cloud data-centers. The system specifications are mentioned in Ta-
ble 5.1. The parameters used in a simulation is listed in Table 5.2.

5.2 Case Study

FogNetSim++ and its working can be understand by a network scenario. In
this sample network scenario, the traffic model is simulated where vehicles

31



32

Figure 5.1: Case study - simulated topology

have send data, and there are some fix points where sensors are installed to
generate the data. Pedestrians also taking part in the network, they have
mobile phones and users can move freely in the map and generate data. This
generated data is sent to broker and fog nodes for further processing and
the respective action is taken place according to the results of this generated
data. Law enforcement agencies can use this system to identify faces and
vehicles at a particular part of the city or map. They have ask fog nodes
to process data for rapid action based on the results. This is the best ap-
plication of fog in vehicular and security point of view. The fog nodes are
distributed geographically on the map so that to enhance the performance.
The network is analyzed according to the above mentioned network situa-
tion. The architecture of the above network is shown in Fig. 5.1.

The sensor devices generates data and send it to the broker. The bro-
ker then receives and forward this data to the other devices based on the
publish, subscribed model. When a broker receives a computation request,
it runs its task scheduling algorithms and assign task to the best fog node
for computation. The fog nodes continuously keep updating broker about
their resources. The broker also keeping a track on the devices to assure safe
handover. The result is then returned to the subscribers (user devices) and
action is taken placed according to the result. FogNetSim++ is salable is



33

it is measured in terms of CPU usage and memory. As the FogNetSim++
supports a large number of devices and sensors so the tool is bench-marked
in terms of CPU usage and memory usage. The delay, latency, error rate,
and task computation time measured. The simulation used four types of task
sizes. The small, medium, large and random with 200, 900, 1500 MIPS, and
a random number in rage of 200-1500 MIPS. The simulation is executed for
a fixed amount of time. The fog nodes have different amount of resources
that can be initialed in .ini file. The simulation results show that the value of
these parameters, latency, delay, and error rate is different for different size
of tasks. Table 5.1 shows the specification of system as well as simulation
parameters.

Table 5.1: Machine Specification

Parameters Value

CPU 4

Core(s) per socket 2

Thread(s) per core 4

CPU MHz 2390

Memory 8 Gb

The above simulation environment is tested by varying the number of
nodes and it is observed that with the increase in number of nodes the CPU
also increases as referenced in the The Fig. 5.2. However, it is also observed
that for around 1300 nodes the total CPU usage is less than 25% which is
very cost effective.

Similar behavior is observed with the memory usage. It also increases
with the increase in number of nodes as shown in Fig. 5.3. Also, results show
that overall memory usage for around 1300 nodes is 15% which is very afford-
able. The memory usage depends on the number of nodes but not in very
extensive sense. As graph shows that it is always less than 15% even when
the number of nodes are around 1300. The reason about this less memory
consumption is that most of the nodes usage shared resources and hence the
overall performance is improved.
The FogNetSim++ is implemented and developed as a top layer of Om-
net++. The Omnet++ has a limitation of delayed construction of enriched
graphical interface. The FogNetSim++ is evaluated by increasing the num-
ber of nodes and it is observed that with the increase in number of nodes



34

Table 5.2: Simulation Parameters

Sr. Parameters Value

1 Broker(s) can support upto 400

2 Wireless sensors 10-400

3 Wireless Mobility MassMobility

4 AccessPoint Broker(s) 10-400

5 Wireless Access Point(s) 10-400

6 Device(s) 60-880

7 Cloud Data-center(s) 1-4

8 Devices 1-100 Mobility Circular Mobility

9 Devices 101-300 Mobility Vehicle Mobility

10 Devices 301-600 Mobility Mass Mobility

11 Devices 601-880 Mobility Linear Mobility

12 Fog Nodes 1-1200 mqttApps 1 at each

13 Brokers Topic Name(s) Sensing data

14 Broker-Broker Link 10 Gbps

the delay in constructing the GUI also increase. The Fig. 5.4 depicts that
delay for 1300 nodes is around 600 seconds which a very big number. But
this is not a big issue because this is only one time delay, as the simulation is
loaded completely, there is no delay, and the simulator work in a streamline
environment.

The average task computation time is plotted in Fig. 5.5, 5.6, 5.7, 5.8 for
small, medium, large, and random-sized tasks respectively. As the results are
taken by varying the task size and are compared. Average task computation
time is represented by the dotted lines

As the tested simulation environment includes the wireless sensors with
mobility. So the handover percentage is also evaluated and the results proved
that with the larger task size, the handover percentage also increase. The
Fig. 5.9 depicts the results about handover. This is because the task size is
large, it needs more time in execution at fog but the user node is moving



35

Figure 5.2: FogNetSim++ CPU usage with respect to number of nodes

continuously because of the mobility model installed at the node, and it
passes through a number of access points’ range and hence perform handover.
Finally it receives the result from a closer fog node.

Fig 5.10 shows that the end-to-end delay also increase with the increase
in number of nodes. This is because the in a network with large number of
devices asking for task execution or resources, the congestion is observed as
well as a queue is built at broker node which causes the increase in the values
of end-to-end delay.

As discussed above that in simulation the task size is divided into four
categories, small, medium, large and random task size. The task execution
time is observed and evaluated which shoes that task execution time is di-
rectly proportional to the size of task as shown in Fig. 5.11. Hence, the usage
of small-sized tasks can enhance the system performance.

However, Fig. 5.12 shows the average error rate reported during execution.
The devices communicate using the wireless channel. However, the rate varies
with device placement, congestion of the network, and the mobility model
used for a node.

The average Latency of the system is represented in the Fig. 5.13 where
latency is showed at y-axis and the simulation time at x-axis. The energy is
also simulated in for the case study scenario. The residual energy is the type
of energy a node has at time t. The Fig. 5.14 explains the residual energy of



36

Figure 5.3: FogNetSim++ memory usage with respect to the number of
nodes

nodes in FogNetSim++ at any time. As the simulation proceed the residual
energy keeps decreasing and a time comes when the residual energy of node
drops to zero and the node gets dead.

The consumption of energy also depends upon the transmission power of
the wireless. More the transmission power more the energy is consumed. This
behavior is represented in the Fig. 5.15. The results are obtained by changing
the transmission power and results are plot in the Fig. 5.15. IoT devices
have limited amount of energy so the energy can be saved by decreasing the
transmission power. Yet it evolves a new problem of range but it can coped
by installing more nodes in the network.



37

Figure 5.4: Delay in constructing enriched GUI

Figure 5.5: Average Task computation time for small-sized tasks



38

Figure 5.6: Average Task computation time for medium-sized tasks

Figure 5.7: Average Task computation time for large-sized tasks



39

Figure 5.8: Average Task computation time for random-sized tasks

Figure 5.9: Handoff performed w.r.t task size



40

Figure 5.10: Average delay w.r.t task size

Figure 5.11: Total Delay based on the compute capacity requirement



41

Figure 5.12: Average wireless error rate reported during the execution

Figure 5.13: Average latency



42

Figure 5.14: Residual Energy Vector over simulation time

Figure 5.15: Average Energy Consumption vs Transmission power



Chapter 6

Conclusion & Future Work

Lastly, this chapter concludes the presented research work. In which, section
?? covers the future directions and some other research challenges that need
to be addressed and section ?? presents the conclusion of this research work.

6.1 Future Work

FogNetSim++ can be enhanced by providing an extensive framework which
helps the broker nodes to communicate with each other to share the resources
more effectively in the network. Further, researchers can add their own
algorithms about scheduling and resource allocation. FogNetSim++ is open
to extend the mobility models. New protocols can also be introduced and
can easily be added in the Toolkit. Researchers can work on the idea of using
both IPv4 and IPv6 together in a simulation.

6.2 Conclusion

The introduction of edge and fog technoloes helped the delay-sensitive appli-
cations. The Fog computing is the extension to cloud. In proposed simulator,
researchers can simulate distributed fog computing environments. Prior re-
search has a number of gaps where FogNetSim++ helps. FogNetSim++
considers core network characteristics like delay, packet loss, error rate, and
bandwidth which old simulators were lacking. The problem of safe handover
is also solved in FogNetSim++. FogNetSim++ support a number of mobility
models as well as several network protocols. A number of scheduling algo-
rithms has been added in proposed toolkit. Researchers can also add new
scheduling algorithms very easy. The energy module and a pricing model
is also proposed in FogNetSim++. A sample network scenario is discussed

43



44

and the results are discussed. The performance of the simulator is evalu-
ated with CPU, memory, and drawing enriched GUI. The FogNetSim++
is benchmarked at different platforms and results shows that simulator is
working very fine and well as compare to existing toolkit fro distributed fog
computing.



Bibliography

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[2] P. Bellavista, L. Foschini, and D. Scotece, “Converging mobile edge com-
puting, fog computing, and iot quality requirements,” in Future Internet
of Things and Cloud (FiCloud), 2017 IEEE 5th International Confer-
ence on. IEEE, 2017, pp. 313–320.

[3] J. Pan and J. McElhannon, “Future edge cloud and edge computing
for internet of things applications,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 439–449, Feb 2018.

[4] M. M. Gaber, J. B. Gomes, and F. Stahl, “Pocket data mining,” Big
Data on Small Devices. Series: Studies in Big Data, 2014.

[5] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[6] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
2009.

[7] H. Goudarzi and M. Pedram, “Hierarchical sla-driven resource manage-
ment for peak power-aware and energy-efficient operation of a cloud
datacenter,” IEEE Transactions on Cloud Computing, vol. 4, no. 2, pp.
222–236, April 2016.

[8] A. Singh, S. Sharma, S. R. Kumar, and S. A. Yadav, “Overview of paas
and saas and its application in cloud computing,” in 2016 International
Conference on Innovation and Challenges in Cyber Security (ICICCS-
INBUSH), Feb 2016, pp. 172–176.

45



BIBLIOGRAPHY 46

[9] M. Guzek, P. Bouvry, and E. Talbi, “A survey of evolutionary computa-
tion for resource management of processing in cloud computing [review
article],” IEEE Computational Intelligence Magazine, vol. 10, no. 2, pp.
53–67, May 2015.

[10] S. N. Han, G. M. Lee, N. Crespi, N. Van Luong, K. Heo, M. Brut, and
P. Gatellier, “Dpwsim: A simulation toolkit for iot applications using
devices profile for web services,” in Internet of Things (WF-IoT), 2014
IEEE World Forum on. IEEE, 2014, pp. 544–547.

[11] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, “Towards
simulating the internet of things,” in Advanced Information Networking
and Applications Workshops (WAINA), 2014 28th International Con-
ference on. IEEE, 2014, pp. 444–448.

[12] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in Fog and Mo-
bile Edge Computing (FMEC), 2017 Second International Conference
on. IEEE, 2017, pp. 39–44.

[13] A. M. Khan, L. Navarro, L. Sharifi, and L. Veiga, “Clouds of small
things: Provisioning infrastructure-as-a-service from within community
networks,” in Wireless and Mobile Computing, Networking and Commu-
nications (WiMob), 2013 IEEE 9th International Conference on. IEEE,
2013, pp. 16–21.

[14] T. Pflanzner, A. Kertész, B. Spinnewyn, and S. Latré, “Mobiotsim: to-
wards a mobile iot device simulator,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW). IEEE, 2016, pp. 21–27.

[15] C. Fiandrino, A. Capponi, G. Cacciatore, D. Kliazovich, U. Sorger,
P. Bouvry, B. Kantarci, F. Granelli, and S. Giordano, “Crowdsensim: a
simulation platform for mobile crowdsensing in realistic urban environ-
ments,” IEEE Access, vol. 5, pp. 3490–3503, 2017.

[16] “Simplesoft simpleiotsimulator,” http://www.smplsft.com/
SimpleIoTSimulator.html, accessed: 2018-08-10.

[17] “Ibm bluemix platform,” https://console.ng.bluemix.net, accessed:
2018-08-10.

[18] “Parse,” https://parse.com/products/iot, accessed: 2018-08-10.

http://www.smplsft.com/SimpleIoTSimulator.html
http://www.smplsft.com/SimpleIoTSimulator.html
https://console.ng.bluemix.net
https://parse.com/products/iot


BIBLIOGRAPHY 47

[19] “Google cloud platform,” https://cloud.google.com/solutions/iot/, ac-
cessed: 2018-08-10.

[20] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim:
A toolkit for modeling and simulation of resource management tech-
niques in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[21] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al.,
“Fit iot-lab: A large scale open experimental iot testbed,” in Internet
of Things (WF-IoT), 2015 IEEE 2nd World Forum on. IEEE, 2015,
pp. 459–464.

[22] K. Dolui and S. K. Datta, “Comparison of edge computing implementa-
tions: Fog computing, cloudlet and mobile edge computing,” in Global
Internet of Things Summit (GIoTS), 2017. IEEE, 2017, pp. 1–6.

[23] “Contiki cooja,” http://www.contiki-os.org/start.html, accessed: 2018-
08-10.

[24] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, Oct 2017.

[25] J. Byrne, S. Svorobej, A. Gourinovitch, D. M. Elango, P. Liston, P. J.
Byrne, and T. Lynn, “Recap simulator: Simulation of cloud/edge/fog
computing scenarios,” in 2017 Winter Simulation Conference (WSC),
Dec 2017, pp. 4568–4569.

[26] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran,
“Emufog: Extensible and scalable emulation of large-scale fog comput-
ing infrastructures,” in 2017 IEEE Fog World Congress (FWC), Oct
2017, pp. 1–6.

[27] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
May 2017, pp. 39–44.

[28] N. Mohan and J. Kangasharju, “Edge-fog cloud: A distributed cloud for
internet of things computations,” in 2016 Cloudification of the Internet
of Things (CIoT), Nov 2016, pp. 1–6.

https://cloud.google.com/solutions/iot/
http://www.contiki-os.org/start.html


BIBLIOGRAPHY 48

[29] K. Hong, D. J. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe, “Mobile fog: a programming model for large-scale ap-
plications on the internet of things,” in MCC@SIGCOMM, 2013.

[30] S. Conti, G. Faraci, R. Nicolosi, S. A. Rizzo, and G. Schembra, “Battery
management in a green fog-computing node: a reinforcement-learning
approach,” IEEE Access, vol. 5, pp. 21 126–21 138, 2017.

[31] H. A. M. Name, F. O. Oladipo, and E. Ariwa, “User mobility and re-
source scheduling and management in fog computing to support iot de-
vices,” in Innovative Computing Technology (INTECH), 2017 Seventh
International Conference on. IEEE, 2017, pp. 191–196.

[32] X. Meng, W. Wang, and Z. Zhang, “Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,” IEEE Access, vol. 5,
pp. 21 355–21 367, 2017.

[33] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strat-
egy in fog computing based on priced timed petri nets,” IEEE Internet
of Things Journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[34] A. Carrega, M. Repetto, P. Gouvas, and A. Zafeiropoulos, “A middle-
ware for mobile edge computing,” IEEE Cloud Computing, vol. 4, no. 4,
pp. 26–37, 2017.

[35] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscal-
ing in energy harvesting mobile edge computing,” IEEE Transactions on
Cognitive Communications and Networking, vol. 3, no. 3, pp. 361–373,
2017.

[36] G. Ananthanarayanan, P. Bahl, P. Bod́ık, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha, “Real-time video analytics: The
killer app for edge computing,” computer, vol. 50, no. 10, pp. 58–67,
2017.

[37] J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scal-
able iot architecture based on transparent computing,” IEEE Network,
vol. 31, no. 5, pp. 96–105, 2017.

[38] X. Gong, L. Guo, G. Shen, and G. Tian, “Virtual network embedding
for collaborative edge computing in optical-wireless networks,” Journal
of Lightwave Technology, vol. 35, no. 18, pp. 3980–3990, 2017.



BIBLIOGRAPHY 49

[39] X. Xu, J. Liu, and X. Tao, “Mobile edge computing enhanced adaptive
bitrate video delivery with joint cache and radio resource allocation,”
IEEE Access, vol. 5, pp. 16 406–16 415, 2017.

[40] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive d2d
collaboration for energy-efficient mobile edge computing,” IEEE Wire-
less Communications, vol. 24, no. 4, pp. 64–71, 2017.

[41] B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, and Q. Yang, “In-
corporating intelligence in fog computing for big data analysis in smart
cities,” IEEE Transactions on Industrial informatics, vol. 13, no. 5, pp.
2140–2150, 2017.

[42] T. Li, Y. Liu, L. Gao, and A. Liu, “A cooperative-based model for smart-
sensing tasks in fog computing,” IEEE access, vol. 5, pp. 21 296–21 311,
2017.

[43] X. Meng, W. Wang, and Z. Zhang, “Delay-constrained hybrid compu-
tation offloading with cloud and fog computing,” IEEE Access, vol. 5,
pp. 21 355–21 367, 2017.

[44] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N. Choud-
hury, and V. Kumar, “Security and privacy in fog computing: Chal-
lenges,” IEEE Access, vol. 5, pp. 19 293–19 304, 2017.

[45] P. Hu, H. Ning, T. Qiu, H. Song, Y. Wang, and X. Yao, “Security
and privacy preservation scheme of face identification and resolution
framework using fog computing in internet of things,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1143–1155, 2017.

[46] Q. Wang, D. Chen, N. Zhang, Z. Ding, and Z. Qin, “Pcp: A privacy-
preserving content-based publish–subscribe scheme with differential pri-
vacy in fog computing,” IEEE Access, vol. 5, pp. 17 962–17 974, 2017.

[47] B. Ngo and H. Lee, “Analysis of a pre-emptive priority m/m/c model
with two types of customers and restriction,” Electronics Letters, vol. 26,
no. 15, pp. 1190–1192, July 1990.


	Abstract
	Dedication
	Acknowledgment
	List of Figures
	List of Symbols
	Abbreviations
	Nomenclature
	Introduction
	Motivation
	Problem Defination
	Objectives and Research Goals
	Thesis Organization

	Background Information
	Literature Review
	Fog – IoT Simulators
	Cloud Simulators


	Methodology
	FogNetSim++: Toolkit for Modeling and Simulation
	System Model
	Pricing Model
	Energy Modeling
	Implementation
	 Implementation – FogNetSim++


	Results & Discussion
	Testing and Performance Evaluation
	Case Study

	Conclusion & Future Work
	Future Work
	Conclusion

	References

