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Chapter 1
Introduction

1.1  �The Effectiveness of Mathematics, Conceptual 
Integration, and Small Spatial Stories

On July 20, 1969, the lunar module of Apollo 11 landed on the moon. 
The trajectory of this historic space flight has been calculated by hand 
by a group of the so-called human computers.1 It is just an example of 
the effectiveness of mathematics in modeling (and changing) the 
world around us. Mathematics continues to be productively applied in 
engineering, medicine, chemistry, biology, physics, social sciences, 
communication, and computer science, to name but a few. As Hohol 
(2011: 143) points out, this fact is often treated by philosophers as an 
argument for mathematical realism of the Platonian or Aristotelian 
variety. It is from this perspective that Quine-Putnam’s “indispens-
ability argument,” Heller’s “hypothesis of the mathematical rational-
ity of the world,” and Tegmark’s “mathematical universe hypothesis” 
have been discussed. Eugene Wigner, a physicist, often quoted in this 
context, finished his paper titled The Unreasonable Effectiveness of 
Mathematics in the Natural Sciences in the following way:

The miracle of the appropriateness of the language of mathematics for the 
formulation of the laws of physics is a wonderful gift which we neither under-
stand nor deserve. We should be grateful for it and hope that it will remain 
valid in future research and that it will extend, for better or for worse, to our 

1 Including an African-American NASA mathematician, Katherine G.  Johnson, 
recently made famous by the highly acclaimed film Hidden Figures (2016).
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pleasure, even though perhaps also to our bafflement, to wide branches of 
learning. (1960: 14)

James C.  Alexander, a professor of mathematics, also sees the 
“unreasonable effectiveness” of mathematics as of a mystery but 
offers the following explanation for it:

It is a mystery to be explored that mathematics, in one sense a formal game 
based on a sparse foundation, does not become barren, but is ever more 
fecund. I posit [...] that mathematics incorporates blending (and other cogni-
tive processes) into its formal structure as a manifestation of human creativity 
melding into the disciplinary culture, and that features of blending, in particu-
lar emergent structure, are vital for the fecundity. (Alexander 2011: 3)

I agree with the above solution to the puzzle and have no doubt that 
it deserves further study. The subject of this book, further explained in 
the next section, is to prove that conceptual blending (integration), 
paired with “the human ability for story” (Turner 2005: 4), accounts 
for the effectiveness of mathematics. One could add, paraphrasing 
Wigner, that those two correlated mental features of the human mind 
make the effectiveness of mathematics reasonable. The conceptual 
blending theory mentioned by James Alexander in the above quota-
tion is thus introduced by Evans and Green (2006):

Blending Theory was originally developed in order to account for linguistic 
structure and for the role of language in meaning construction, particularly 
‘creative’ aspects of meaning construction like novel metaphors, counterfac-
tuals and so on. However, recent research carried out by a large international 
community of academics with an interest in Blending Theory has given rise to 
the view that conceptual blending is central to human thought and imagina-
tion, and that evidence for this can be found not only in human language, but 
also in a wide range of other areas of human activity, such as art, religious 
thought and practice, and scientific endeavour, to name but a few. Blending 
Theory has been applied by researchers to phenomena from disciplines as 
diverse as literary studies, mathematics, music theory, religious studies, the 
study of the occult, linguistics, cognitive psychology, social psychology, 
anthropology, computer science and genetics. (401)

Over the last two decades, the importance of conceptual blending 
and other mental processes in mathematics has been extensively stud-
ied by, among others, Lakoff and Núñez (2000), Fauconnier and 
Turner (2002), Turner (2005), Núñez (2006), Alexander (2011), 
Turner (2012), and Danesi (2016). Let us just quote two little frag-
ments, starting with the groundbreaking Where Mathematics Comes 

1  Introduction
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From: How the Embodied Mind Brings Mathematics Into Being by 
George Lakoff and Raphael Nunez.

Blends, metaphorical and nonmetaphorical, occur throughout mathematics. 
Many of the most important ideas in mathematics are metaphorical concep-
tual blends (2000: 48)

Mark Turner adds the concept of “small spatial story” as a vital 
component of conceptual blending in mathematics:

Our advanced abilities for mathematics are based in part on our prior cogni-
tive ability for story [...] - understanding the world and our agency in it through 
certain kinds of human-scale conceptual organizations involving agents and 
actions in space. Another basic human cognitive operation that makes it pos-
sible for us to invent mathematical concepts [...] is “conceptual integration,” 
also called “blending.” Story and blending work as a team.” (2005: 4)

Considering the already existing, impressive body of the literature 
on the subject of cognitive exploration of mathematics, we might 
question the point of adding yet another text to it; however, we have 
to bear in mind that mathematics is a vast discipline that has been 
evolving over millennia—there are still vast “here be dragons” areas 
on the map. All of the existing studies so far are case studies—usually 
focusing on a few selected mathematical concepts. For example, the 
foundational text by Lakoff and Nunez (2000) covers set theory, alge-
bra, and various selected topics like infinity, complex numbers, and 
Euler’s equation. However, its coverage of algebra is about 10 pages 
long (110–119), and this is certainly not enough for one of the most 
important branches of mathematics. The other sources I mentioned 
above (Fauconnier and Turner 2002; Turner 2005; Núñez 2006; 
Alexander 2011; Turner 2012; Danesi 2016) are equally selective in 
their choice of mathematical topics. And this is why a more compre-
hensive approach, further described in the next section, is called for.

1.2  �The Point and Method of the Book

I will prove that the construction of meaning in mathematics relies on 
the iterative use of basic mental operations of story and blending and 
demonstrate exactly how those two mental operations are responsible 
for the effectiveness and fecundity of mathematics. It will be done by 

1.2 � The Point and Method of the Book
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analyzing the language, the primary notions, axioms, definitions, and 
proof in Herstein’s (1975) excellent Topics in Algebra—a classic 
handbook2 addressed to “the most gifted sophomores in mathematics 
at Cornell” (8). Possible further effects of this study are making math-
ematics more accessible (easier to teach and learn) and perhaps 
demystifying mathematics as a product of the human mind rather than 
some eternal Platonic ideal.3

The research is systematic in two ways. Firstly, it covers all crucial 
areas of modern algebra, focusing on the fundamental notions such as 
set and element, mapping, group, binary operation, homomorphism, 
ring, and vector space. Secondly, it avoids what Stockwell (2002: 5) 
calls “a trivial way of doing cognitive poetics”—treating a literary 
(mathematical in our case) text only as a source of raw data to apply 
some acumen of cognitive psychology and cognitive linguistics. I 
don’t “set aside impressionistic reading and imprecise intuition” 
(ibid.). The book’s scrutiny of mathematical narrative is not limited to 
just spotting the mental patterns mentioned above but goes further to 
demonstrate how those universal patterns of “the way we think” influ-
ence our understanding of mathematics—the construction of mathe-
matical meaning.

1.3  �Who Is the Book Addressed To

The book is addressed to cognitive scientists, cognitive linguists, 
mathematicians, teachers of mathematics, and anybody interested in 
explaining the question of how mathematics works and why it works 
so well in modeling (what we perceive as) the world around us. I 
could not agree more with Rafael Nunez when he postulates that 

2 Undergraduate modern algebra courses are sometimes referred to as “Herstein-
level courses.”
3 The philosophical reflection on the ontological status of mathematical entities is 
beyond the scope of this book, but let us just point out that Platonic realism seems 
to prevail in this respect among mathematicians, Herstein included. The famous 
Swiss mathematician and philosopher, Paul Bernays (1935: 5), after analyzing the 
foundational contributions of Dedekind, Cantor, Frege, Poincare, and Hilbert, con-
cluded, 40  years before the first edition of Herstein’s Topics in Algebra, that 
“Platonism reigns today in mathematics”.

1  Introduction
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“mathematics education should demystify truth, proof, definitions, 
and formalisms” and that “new generations of mathematics teachers, 
not only should have a good background in education, history, and 
philosophy, but they should also have some knowledge of cognitive 
science.”4 Although our focus is academic-level mathematics, I have 
been trying not to befuddle the reader with too many advanced level 
formulas. The book, I very much hope, should be easy to follow by 
someone with no mathematical or cognitive science grounding. And 
the next chapter, in which the basic concepts are explained, is designed 
for that very purpose.

1.4  �The Organization of the Book

After introducing our main research tools (basic human cognitive 
abilities) and presenting an overview of our research area (modern 
algebra) in the next chapter, we will follow the order of a typical uni-
versity-level algebra course (in our case, Herstein 1975). We will start 
with analyzing the set theory and mappings (Chaps. 3 and 4, respec-
tively)—considered to be the foundation of the whole edifice of mod-
ern mathematics—and continue along the path of increasing 
complexity to groups (Chap. 5), rings, fields, and vector spaces (Chap. 
6). On each of those stages, we will take a close look at the primary 
concepts, axioms, definitions, and proof to see the telltale traces of the 
basic human cognitive patterns of story and conceptual blending.

4 http://www.cogsci.ucsd.edu/~nunez/web/PME24_Plenary.pdf, accessed 12.12.2016.

1.4  The Organization of the Book
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Chapter 2
The Theoretical Framework 
and the Subject of Study

2.1  �Overview

The following sections will introduce the tools of study and the 
subject to be studied—mental operations of story and conceptual 
blending and modern algebra.

2.2  �Language, Cognition, and Conceptual Integration

2.2.1  �Cognitive Linguistics

Cognitive linguistics is a relatively modern discipline based on the 
assumption that language reflects patterns of human thought, percep-
tion, motor system, and bodily interactions with the environment. As 
Eve Sweetser concisely puts it, “Linguistic system is inextricably 
interwoven with the rest of our physical and cognitive selves” (1990: 
6). Evans and Green (2006) describe the origin of cognitive linguistics 
in the following way:

Cognitive linguistics [...] originally emerged in the early 1970s out of dissat-
isfaction with formal approaches to language. Cognitive linguistics is also 
firmly rooted in the emergence of modern cognitive science in the 1960s and 
1970s, particularly in work relating to human categorisation, and in earlier 
traditions such as Gestalt psychology. Early research was dominated in the 
1970s and 1980s by a relatively small number of scholars. By the early 1990s, 
there was a growing proliferation of research in this area, and of researchers 
who identified themselves as ‘cognitive linguists’. In 1989/90, the International 
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Cognitive Linguistics Society was established, together with the journal 
Cognitive Linguistics. In the words of the eminent cognitive linguist Ronald 
Langacker (1991: xv), this ‘marked the birth of cognitive linguistics as a 
broadly grounded, self conscious intellectual movement’. (3)

One of the reasons for the described above, rapid expansion of the 
discipline was the fact that language, fascinating as it is, does no lon-
ger have to be studied for its own sake.

An important reason behind why cognitive linguists study language stems 
from the assumption that language reflects patterns of thought. Therefore, to 
study language from this perspective is to study patterns of conceptualisation. 
Language offers a window into cognitive function, providing insights into the 
nature, structure and organisation of thoughts and ideas. The most important 
way in which cognitive linguistics differs from other approaches to the study 
of language, then, is that language is assumed to reflect certain fundamental 
properties and design features of the human mind. (Evans and Green 2006: 5)

By studying linguistic patterns within this theoretical frame, 
researchers gain access to the universal patterns of human thought—
to “the way we think.” And “the way we think,” not accidentally, is 
how Mark Turner and Gilles Fauconnier (2002) chose to entitle1 their 
groundbreaking book on conceptual integration theory, which is now 
part of the cannon of cognitive linguistics and also the subject of the 
following section.

2.2.2  �Conceptual Integration (Blending) Theory: The Basic 
Architecture

Three theories feature prominently in cognitive semantics: cognitive 
metaphor theory,2 mental spaces theory,3 and conceptual integration 
theory,4 the latter related to the previous two and often described as an 
extension of them.

1 The full title is The Way We Think: Conceptual Blending and the Mind’s Hidden 
Complexities.
2 cf. Lakoff and Johnson (1980), Lakoff and Turner (1989), Lakoff (1993), Gibbs 
and Steen (1999), Lakoff and Johnson (1999)
3 cf. Fauconnier (1994), Fauconnier (1997), Fauconnier and Sweetser (1996)
4 cf. Fauconnier and Turner (1998), Coulson and Oakley (2000), Fauconnier and 
Turner (2002)
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Blending Theory is most closely related to Mental Spaces Theory, and some 
cognitive semanticists explicitly refer to it as an extension of this approach. 
This is due to its central concern with dynamic aspects of meaning construc-
tion and its dependence upon mental spaces and mental space construction as 
part of its architecture. However, Blending Theory is a distinct theory that has 
been developed to account for phenomena that Mental Spaces Theory and 
Conceptual Metaphor Theory cannot adequately account for. Moreover, 
Blending Theory adds significant theoretical sophistication of its own. The 
crucial insight of Blending Theory is that meaning construction typically 
involves integration of structure that gives rise to more than the sum of its 
parts. Blending theorists argue that this process of conceptual integration or 
blending is a general and basic cognitive operation which is central to the way 
we think. (Evans and Green 2006: 400)

Mark Turner (2014) begins his book, titled The Origin Of Ideas: 
Blending, Creativity, And The Human Spark, with the following 
statement:

The human contribution to the miracle of life around us is obvious: We hit 
upon new ideas, on the fly, all the time, and we have been performing this 
magic for, at the very least, 50,000 years. We did not make galaxies. We did 
not make life. We did not make viruses, the sun, DNA, or the chemical bond. 
But we do make new ideas—lots and lots of them. [...] Each of us is born with 
this spark for creating and understanding new ideas. But where exactly do 
new ideas come from? The claim of this book is that the human spark comes 
from our advanced ability to blend ideas to make new ideas. Blending is the 
origin of ideas. (1)

Blending then is the way we construct meaning and create new 
ideas, but what is it exactly? James Alexander (2011) begins his expla-
nation of conceptual blending in the following way:

Blending is a common but sophisticated and subtle mode of human thought, 
somewhat, but not exactly, analogous to analogy, with its own set of constitu-
tive principles, explicated, for example, in Fauconnier and Turner’s book The 
Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. 
(Alexander 2011: 2)

Blending, as we learn, is “somewhat, but not exactly, analogous to 
analogy”— does not sound very precise, does it? But James Alexander 
is perfectly right—let us take a closer look at “analogy.” In the next 
section in Table 2.4, we will have an example of “thinking in terms 
of”— a rather frivolous proof that thinking is (like) a camping trip 
in the Lake District. The left column is “somewhat analogous” to 
the right column. For example, solving a problem is analogous to 
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cracking a hard-boiled egg (or a walnut if it is a tough one). And we 
can easily see this analogy (or metaphor). In both cases (a problem, a 
walnut), prolonged effort, applying pressure, is involved. In both 
cases we are trying to get inside, to uncover something that is hidden, 
and—if successful—we are rewarded. This analogy, or metaphor, can 
be described as a mapping from the domain of cracking walnuts to the 
domain of solving complex theoretical problems (say, solving a dif-
ferential equation). And we are now “somewhat but not exactly” there. 
Let me remind the reader—we are trying to explain what conceptual 
blending is. So far we have established a set of analogies:

the walnut cracker (person) - the mathematician
walnut shell - the mathematical difficulty
physical effort, pressure - mental effort
peeling the walnut - constructing the solution
the content of the shell - the satisfaction of solving the equation
the nutcracker (tool) - the Calculus

In conceptual metaphor theory, the above would be called the met-
aphorical mapping. But human imagination is capable of more than 
that, more than just mapping the existing elements. For example, we 
can now imagine a person who uses advanced mathematics to find 
the best methods of cracking the walnut shell. This brilliant mathe-
matician/walnut enthusiast 1  day invents a perfect nutcracking 
machine, sells the patent to Kellogg’s, becomes immensely rich, gets 
bored with life and drinks herself to death, etc. We are capable of 
integrating, merging, compressing the input elements (the walnut 
cracker, the mathematician), importing new elements (Kellog’s, pat-
ent office, money, drinking habit), and then imaginatively running 
the story, inventing a whole new scenario. And after that, we may 
look back at the mathematician and the walnut cracker in the new 
light— in the blending theory, it is called “projecting back from the 
blended space to the input spaces.” The process of blending is also 
referred to as building a conceptual integration network. This is how 
Fauconnier and Turner (2002), the creators of conceptual blending 
theory, describe it:

Building an integration network involves setting up mental spaces, locating 
shared structures, projecting backwards to inputs, recruiting new structure to 
the inputs or the blend, and running various operations in the blend itself. (44)

The four mental spaces mentioned above are represented schemati-
cally in Fig. 2.1.
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In our “nutcracker example,” one of the input spaces is the small 
spatial story of a person trying to crack a nut, and the other represents 
the mathematician trying to solve an equation. The generic space con-
tains the shared features—the analogies between the two—and the 
blend (or “blended”) space is where the action of compressing the two 
stories takes place. The operations taking place in the blend space are 
the already exemplified compression, completion, and elaboration 
(imagining the new scenario, also called “running the blend”). The 
lines represent selective mappings between the spaces.

In the following two sections, we will discuss the criticism of the 
conceptual integration theory as well as Fauconnier and Turner’s 
(2002) reaction to the most salient critical points in the form of “the 
constitutive and governing principles.”

2.2.3  �The Criticism of the Conceptual Integration Theory

Despite the vigorous proliferation of CIT5-based research in fields as 
diverse as linguistics, ethnography, literary studies, and mathemat-
ics—or perhaps as a result of it—Fauconnier and Turner’s theory has 

5 Conceptual integration theory (aka conceptual blending theory). Stadelmann 
(ibid.) uses the abbreviation MSCI (Mental Spaces & Conceptual Integration)

Input 1 Input 2

Generic space

Blend

Fig. 2.1  Schematic 
representation of a 
conceptual integration 
network (Evans and Green 
2006: 405)

2.2 � Language, Cognition, and Conceptual Integration

www.Engineeringbookspdf.com



12

been a subject of a lively critical debate over the last two decades. 
Stadelmann (2012: 28–39) provides a long list of critical points made 
against conceptual integration theory:

	1.	Lack of terminological clarity
	2.	Using only post hoc evidence
	3.	Neglecting social, material, and historical dimension of cognition
	4.	Doubtful psychological reality of the generic space
	5.	The theoretical inconsistency of the simplex network
	6.	Lack of clear delineation and connection of backstage and onstage 

cognition
	7.	Unconstrained character (unfalsifiability)

Ad. 1 (lack of terminological clarity)
Stadelmann points out the definitional fuzziness of the basic ingredi-
ents of CIT:

What exactly are Mental Spaces? What is it that they contain? Why are they 
‘spatial’ in nature? Where are their boundaries? What is ‘mental’ about them? 
Here as in other areas, Fauconnier & Turner provide little information, and 
delineating and determining the content of Mental Spaces in a univocal man-
ner is virtually impossible. (ibid.: 32)

According to Fauconnier (1997:11), mental spaces are “partial 
structures that proliferate when we think and talk, allowing a fine-
grained partitioning of our discourse and knowledge structures.” And 
elsewhere (1985: 8), he defines them as “partial assemblies con-
structed as we think and talk, for purposes of local understanding and 
action [...] structured by frames and cognitive models.” It is difficult 
to disagree with Stadelmann—those “definitions” are vague and 
incomplete. On the other hand—as we will see especially in Chaps. 3 
and 4—algebra, usually considered a model of scientific rigor, is 
based on the so-called primitive notions of set, element, and ordered 
pair, which are never defined. And, just like mathematics, despite this 
definitional fuzziness, CIT continues to prove its applicability in many 
and diverse research areas.

Ad. 2 (using only post-hoc evidence)
The analyses of CIT are based on the retrospective decomposition of 
a finished product of a set of mental operations—a detective’s recon-
struction of events from the evidence found at the crime scene. As 
Stadelmann puts it:
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Like many other cognitive semantic theories – most prominently Conceptual 
Metaphor Theory (Lakoff, 1986; Lakoff & Johnson, 1980) – MSCI6 has been 
accused of delivering post hoc analyses only, meaning that it is ostensibly 
unable to account for actual online meaning construction (Gibbs, 2000; 
Harder, 2003; Hougaard, 2004, 2005). Starting with the ‘product’ of blending 
and then working backwards rather than following meaning construction ad 
hoc may lead to the data being tailored to fit the theory rather than the theory 
being derived from the data. It further leads to a failure in tracking the process 
of meaning-making as it unfolds in actual on-line cognising. However, advo-
cates (e.g. Coulson & Oakley, 2000; Rohrer, 2005; Talmy, 2000) of the post-
hoc approach argue that products constitute the only data currently available 
to researchers, and that it is impossible to track the psychological steps taken 
in any particularly accurate manner. (2012: 29)

The advocates of CIT (in fact, Vera Stadelmann is in this group too) 
certainly have a point here. Linguistic research is based on language—
a product (post hoc evidence) of cognition. However, Stadelmann 
claims that accounting for social (interactional) aspect of meaning 
construction can free us from the post hoc reconstruction trap.

Yet this might only be true for approaches focusing exclusively on the indi-
vidual mind. When considering the interactional dimension of meaning-mak-
ing, too, as interactional approaches to Cognitive Semantics have done (most 
notably Hougaard, 2004, 2005), evidence for step-by-step construction, 
essentially the processes of joint meaning-making over a number of turns, 
might be gathered. (ibid.)

The “interactional dimension” of meaning is featured also in the 
next point of criticism.

Ad. 3 (neglecting social, material, and historical dimension of 
cognition)
Conceptual integration networks are often analyzed independently of 
the communicative situation. If the hearer knows that the speaker has 
a friend called “Achilles,” who has recently gown an impressive blond 
beard, the meaning construction of the utterance “Achilles is a lion” 
would certainly be influenced by it, especially if the utterance was 
accompanied by a gesture of pointing toward the face (Stadelmann 
2012: 30).

The role of context in which the individual phenomenon is embedded is 
largely neglected [...]; the historical, social and material dimension of cognition 

6 Mental spaces and conceptual integration
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and its influence on meaning construction is similarly ignored (see also 
Harder, 2007; Sinha, 1999). Yet the ‘content’ of blending scenarios largely 
depends on the situation in which they are embedded, as has already been 
pointed out above. The emergent properties of a blend will subsequently 
differ depending on conversational salience, genre and situational relevance. 
(ibid.: 31)

Can CIT account for (historical, material, situational) context-
dependent multiple ways of meaning construction? It certainly can, 
even if some of the analyses provided by Fauconnier and Turner 
(1998, 2002) do not. In the “Achilles is a lion” example above, the 
mapping would be different (facial hair as a salient element rather 
than courage and physical strength), but it would still fit the theoreti-
cal frame. Multiple context-dependent ways of meaning construction 
also occur in mathematics, which may be surprising as the latter is 
considered to be a paragon of scientific rigor. In Chap. 4, for example, 
we will see that depending on the context (on the “ostensive clue”), 
the mapping can be understood as a “matchmaker,” a “carrier,” or a 
“hiker.” The next point of criticism is closely connected with points 2 
and 3.

Ad. 4 (doubtful psychological reality of the generic space)
As we learned in the previous section, the generic space contains the 
shared structures of the two inputs. Let us have an example. Fauconnier 
and Turner (2002: 39) analyze the following riddle:

A Buddhist Monk begins at dawn one day walking up a mountain, reaches the 
top at sunset, meditates at the top for several days until one dawn when he 
begins to walk back to the foot of the mountain, which he reaches at sunset. 
Make no assumptions about his starting or stopping or about his pace during 
the trips. Riddle: Is there a place on the path that the monk occupies at the 
same hour of the day on the two separate journeys? (Koestler 1964)

According to the authors, solving of the above requires a construc-
tion of a conceptual integration network. Input 1 contains the monk 
moving up, and in input 2 the monk is moving down. The blended 
space contains two monks, one going down and one going up, who at 
some point meet. The generic space is defined in the following way:

Generic Space. A generic mental space maps onto each of the inputs and con-
tains what the inputs have in common: a moving individual and his position, 
a path linking foot and summit of the mountain, a day of travel, and motion in 
an unspecified direction.

(Fauconnier and Turner 2002: 41)
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The critics of CIT point out that the generic space is a content-
independent abstraction of the two inputs and a result of a post hoc 
analysis, existing in the mind of the linguist and not accessible to the 
participant of the communicative act.

The question as to whether generic spaces are psychologically real and neces-
sary for the faithful analysis of blends is suitable to be raised [...]. In this 
regard, Hougaard (2004) points out that the generic structure proposed only 
adds abstracts from the input spaces to the network rather than further seman-
tics as well. Consequently, generic spaces are only required in the analyses of 
decontextualised, isolated examples that are not embedded in local contexts. 
In these cases, it is only the post-hoc constructed tertium comparationis struc-
ture that licenses blends, whereas in contextualised data it is local contexts 
that sanction, implement relevant blending operations, and guide the structure 
emerging from the blending process. (cf. Brandt & Brandt, 2005) (Stadelmann 
2012: 29)

The lack of psychological reality is featured also in the next point 
of criticism, which is connected with one of the four basic types of 
conceptual blending networks.

Ad 5. (The theoretical inconsistency of the simplex network)
The typology of conceptual integration networks is provided in the 
next section, where we will find that in the so-called simplex network, 
only one of the input spaces is structured—“contains a frame.” Let us 
have an example.

An especially simple kind of integration network is one in which human cul-
tural and biological history has provided an effective frame that applies to 
certain kind of elements and values, and that frame is in one input space and 
some of those kinds of elements are in the other input space. A readily avail-
able frame of human kinship is the family, which includes roles for the father, 
mother, child and so on. This frame prototypically applies to human beings. 
Suppose an integration network has one space containing only this frame, and 
another space containing only two human beings, Paul and Sally. When we 
conceive of Paul as the father of Sally, we have created a blend in which some 
of the family structure is integrated with the elements Paul and Sally. In the 
blended space, Paul is the father of Sally. This is a simplex network. 
(Fauconnier and Turner 2002: 120)

The definition and the example seem pretty straightforward, but if 
we go back to the first point of criticism (lack of terminological clar-
ity), we will remember that mental spaces were defined as “partial 
assemblies constructed as we think and talk, for purposes of local 
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understanding and action [...] structured by frames and cognitive 
models” (Fauconnier 1985: 8). And we have just learned that some 
mental spaces can be unstructured, and some contain “pure structure,” 
reminiscent of Lewis Carol’s “cat without a grin” and “grin without a 
cat.” Fortunately, in our analyses of conceptual blending in mathe-
matics, we will deal mostly with fully blown mental spaces, contain-
ing actors moving in space (like in the Buddhist monk riddle above) 
and manipulating objects. Mark Turner (1996) calls them “small spa-
tial stories.” (cf. Sect. 2.2.5).

Ad. 6 (lack of clear delineation and connection of backstage and 
onstage cognition)
According to CIT (MSCI), most of our thought processes are uncon-
scious; they are the “backstage cognition.” Fauconnier and Turner 
(2002: 321) use the metaphor of brain as a “bubble chamber of mental 
spaces.” And only selected mental spaces are brought to our con-
sciousness. But, according to Stadelmann (2012), the conscious/
unconscious duality is never properly dealt with in CIT, and their con-
nection remains unclear. How and according to what criteria are men-
tal spaces brought from the unconscious to the conscious cognition?

MSCI hopes to shed light on invisible ‘backstage’ cognition through ‘net-
work’ analyses. The theory thus draws heavily on established philosophical 
metaphors of stages and net(work)s and leaves open the question regarding 
what exactly it is that differentiates ‘onstage’ from ‘backstage’. What is it that 
selects a given integration network from the many that are “attempted and 
explored in an individual’s backstage cognition” (Fauconnier & Turner 
2002:309)? The authors deal with this question briefly, stating that “the nature 
of consciousness is to give us effects we can act on, and these effects are cor-
related with the unconscious processes” (ibid:56). In other words, “the 
moment of tangible, global understanding comes when a network has been 
elaborated in such a way that it contains a solution that is delivered to con-
sciousness” (ibid:57). But who/what is the agent delivering, and to whom is it 
being delivered? As consciousness and unconsciousness are not discussed in 
detail (only approximately a page is dedicated to the matter) and lack refer-
ence to philosophical or neurobiological discourse, one is left to wonder 
whether the notion of ‘backstage’ cognition in MSCI might after all involve a 
Homunculus translating the ‘backstage’ to the ‘onstage’, “selecting” Mental 
Spaces and blends from the “bubble chamber of Mental Spaces” (ibid:321) 
that is our brain. (Stadelmann 2012: 35)

I agree with Vera Stadelmann—the criteria of selecting the bubbles 
from the bubble chamber of our brain remain undiscovered. The stage 
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lighting of human cognition works in mysterious ways. However, this 
theoretical gap (and all theories have them) might  one  day be 
explained. And then, Vera Stadelmann’s homunculus, like Maxwel’s 
demon, will have to retreat to serve as a supernatural explanatory fac-
tor elsewhere. Of course, the assorted homunculi and demons will 
never be made redundant.7 And speaking of redundancy, let us move 
on to the last and most important point of criticism of the conceptual 
integration theory.

Ad. 7 (unconstrained character: unfalsifiability)
Of all critical points, the last one—the unfalsifiability (or untest-
ability)—seems the most grave. Any theory should be constrained in 
two ways: we should know where it can be applied, and—when the 
theory is applied—we should be able to tell whether it yields correct 
results.

Does conceptual blending occur wantonly? Is everything ‘blendable’? Early 
MSCI research was often accused of being too ‘unconstrained’, of advocat-
ing an ‘anything goes’ theory (cf. Gibbs, 2000), as it could not provide an 
adequate explanation for constraints on conceptual blending. (Stadelmann 
2012: 22)

Stadelmann sees the connection of “the testability problem” of CIT 
(MSCI) with the two tenets of cognitive linguistics—the so-called 
generalization commitment and cognitive (converging evidence) 
commitment (cf. Lakoff 1990).

A key goal of Cognitive Linguistics in general and Cognitive Semantics in 
particular lies in identifying the general principles of human cognition that 
apply across a wide range of phenomena (cf. Fauconnier, 1999). It thus con-
trasts with approaches that assume separate facilities for different aspects of 
cognition, such as a “faculty of language” (cf. Hauser, Chomsky, & Fitch, 
2002). This leads to the attempt by Cognitive Linguistics to attain ‘powerful 
generalisations’, such as those provided by MSCI. After all, conceptual blend-
ing is supposed to capture The (general) Way We Think, encompassing such 
diverse phenomena as constructions, metaphors, art and mathematics. 
Although carrying out research as a means of arriving at general conclusions 
regarding human cognition via the collection of “converging evidence” from 
a variety of fields is in itself laudable, generalisations also generate numerous 
complicated predicaments. This includes becoming banal, or rather being 

7 Unless we finally find an answer to “the ultimate question of life, the universe and 
everything” (Douglass Adams)
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unable to provide enlightening insights into specific phenomena and actual 
human behaviour [...] (Bache, 2005; Hougaard, 2004). (2012: 30)

Does anything go? Is CIT an unconstrained theory of everything 
with predictions that are too general, even banal? The answers are in 
the next section.

2.2.4  �The Constitutive and Governing Principles

As a response to the alleged “wantonness” (unconstrained character) 
of their theory, Fauconnier and Turner introduce the set of “constitu-
tive and governing principles”:

Cognitively modern human beings use conceptual integration to innovate-to 
create rich and diverse conceptual worlds that give meanings to our lives- 
worlds with sexual fantasies, grammar, complex numbers, personal identity, 
redemption, lottery depression. But such a panorama of wildly different 
human ideas and behaviors raises a question: Does anything go? On the con-
trary, conceptual integration operates not only according to a clear set of con-
stitutive principles but also according to an interacting set of governing 
principles. (2002: xvi)

The constitutive principles can be considered a blueprint of a con-
ceptual integration network, which is built with the use of mental 
spaces, selective projection, and compression. Stadelmann (2012) 
gives the following concise description of the blueprint:

On the constitutive layer [...] conceptual blending relies on the setting up of 
Mental Spaces and the mappings occurring between them by means of selec-
tive projection; these mappings yield novel, emergent insights that are not 
found in the respective inputs through selective projection via vital relations. 
Compression allows for global insight on a human scale to emerge in the 
blends, which often unite complex and semantically distant scenarios. (22)

The “vital relations” mentioned above are various types of map-
pings between and inside mental spaces in conceptual integration net-
works listed in Table 2.1. The right column shows typical compressions 
of the mappings between mental spaces in the network. For instance, 
CHANGE is compressed into UNIQUENESS.  Evans and Green 
(2006) consider the following example: “The ugly duckling has 
become a swan.” Despite the complete change in appearance over 
time, the swan is considered to be the same unique individual (422).
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Table 2.2 contains further constraints of the conceptual integration 
theory—the governing principles (also referred to as the optimality 
constraints). The constitutive principles told us how to build a net-
work, and now governing principles provide further details of the con-
struction and—most of all—the rules of proper maintenance.

The typology of typical integration networks is not typically given 
as part of the constitutive or governing principles, but it can certainly 
be classified as one of the (empirically based) constraints of the con-
ceptual integration theory. Table 2.3 lists various types of conceptual 
integration networks. We have to remember, however, that they are the 
most frequently occurring rather than the only possible ones:

The multiple possibilities for compression and decompression, for the topol-
ogy of mental spaces, the kinds of connections among them, the kinds of 
projection and emergence, and the richness of the world produce a vast array 
of possible kinds of integration network. Amid this diversity, four kinds of 
integration network stand out: simplex, mirror, single-scope and double-scope 
[...] and, indeed, when we look at the laboratory of Nature, we find very strong 
evidence that they really exist. (Fauconnier and Turner 2002: 119)

Fauconnier and Turner (2002) summarize the constraints of con-
ceptual blending in the following way:

The principles of conceptual integration - constitutive and governing - have 
been discovered through analysis of empirical data in many domains. These 

Table 2.1  The list of vital relations (Evans and Green: 425)

Outer-space vital relation
Inner-space vital 
relation (compression)

TIME SCALED TIME
SYNCOPATED TIME

SPACE SCALED SPACE
SYNCOPATED SPACE

REPRESENTATION UNIQUENESS
CHANGE UNIQUENESS
ROLE-VALE UNIQUENESS
ANALOGY IDENTITY

CATEGORY
DISANALOGY CHANGE

UNIQUENESS
PART-WHOLE UNIQUENESS
CAUSE-EFFECT (bundled with TIME and CHANGE) SCALED TIME

UNIQUENESS
CAUSE-EFFECT PROPERTY
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Table 2.2  The list of governing principles (Evans and Green 2006: 433)

Governing principle Definition
The topology 
principle

Other things being equal, set up the blend and the inputs 
so that useful topology in the inputs and their outer-space 
relations is reflected by inner-space relations in the blend 
(Fauconnier and Turner 2002: 327)

The pattern 
completion principle

Other things being equal, complete elements in the blend 
by using existing integrated patterns as additional inputs. 
Other things being equal, use a completing frame that has 
relations that can be compressed versions of the important 
outer-space vital relations between the inputs (Fauconnier 
and Turner 2002: 328)

The integration 
principle

Achieve an integrated blend (Fauconnier and Turner 2002: 
328)

The maximization of 
vital relations 
principle

Other things being equal, maximize vital relations in the 
network. In particular, maximize the vital relations in the 
blended space and reflect them in outer-space vital 
relations (Fauconnier and Turner 2002: 330)

The web principle Other things being equal, manipulating the blend as a unit 
must maintain the web of appropriate connections to the 
input spaces easily and without additional surveillance of 
composition (Fauconnier and Turner 2002: 331)

The unpacking 
principle

Other things being equal, the blend all by itself should 
prompt for the reconstruction of the entire network 
(Fauconnier and Turner 2002: 332)

The relevance 
principle

Other things being equal, an element in the blend should 
have relevance, including relevance for establishing links 
to other spaces and for running the blend. Conversely, an 
outer-space relation between the inputs that is important 
for the purposes of the network should have a 
corresponding compression in the blend (Fauconnier and 
Turner 2002: 333)

Table 2.3  Basic types of integration networks (Evans and Green: 431)

Network Inputs Blend
Simplex Only one input contains 

a frame
Blend is structured by this frame

Mirror Both inputs contain the 
same frame

Blend is structured by the same frame as 
inputs

Single 
scope

Both inputs contain 
distinct frames

Blend is only structured by one of the 
input frames

Double 
scope

Both inputs contain 
distinct frames

Blend is structured by aspects of both 
input frames
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principles, with all their intricacies and technical mechanisms, conspire to 
achieve the goal

•	 Achieve Human Scale

with noteworthy subgoals:

•	 Compress what is diffuse.
•	 Obtain global insight.
•	 Strengthen vital relations.
•	 Come up with a story.
•	 Go from Many to One. (322)

Mark Turner (2005: 4), already quoted in the Introduction, claims 
that “story and blending work as a team.” In the next section, we will 
take a closer look at this teammate of conceptual integration—the 
small spatial stories.

2.2.5  �Small Spatial Stories and Image Schemas

A small spatial story has three vital components—actors, space, and 
objects. Actors move in space and manipulate objects. This is how 
Mark Turner describes its importance:

We are very good at thinking in terms of small spatial stories. We are built for 
it, and we are built to use small spatial stories as inputs to conceptual blends. 
In small spatial stories, we separate events from objects and think of some of 
those objects as actors who perform physical and spatial actions. We routinely 
understand our worlds by constructing a conceptual integration network in 
which one of the inputs is a small spatial story. (Turner 2005: 6)

Let us focus on “thinking in terms of small spatial stories.” What 
does it mean exactly? And what is “thinking”? The answer to the last 
question can be as follows: THINKING IS A ROMP IN THE LAKE 
DISTRICT.8 And now I shall prove it. The left column in Table 2.4 
contains some typical expressions we use to describe thinking and 
understanding, and in the right column, we will find their “Lake 
District” interpretation. We have space, objects, and actors who move 
and manipulate the objects. It is just an example showing that we 

8 The capitalization may seem excessive here, but I am following a convention 
adopted by George Lakoff and Mark Johnson in their famous Metaphors We Live By 
(1980).
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think about thinking in terms of small spatial stories of actors/agents 
manipulating objects in space. So, “thinking in terms of small spatial 
stories” means mapping the domain of space, objects, and actions into 
the abstract domain of mental activity.

The readers familiar with cognitive linguistics and cognitive sci-
ence literature will of course recognize here the elements of CMT 
(conceptual metaphor theory).

Let us have another example of thinking in terms of small spatial 
stories. Mark Turner (2005) uses the example of the structure called 
“caused motion” in which an agent applies force to an object causing 
it to move along certain trajectory as in “He threw a ball over the 
fence” (Goldberg 1995). The syntactic structure is NP-VP-NP-PP, 
where NP is a noun phrase, VP is a verb phrase, and PP is a preposi-
tional phrase. Apart from the canonical examples with moving objects, 
like the one above, the same structure can be found in sentences like:

(1) They teased him out of his senses.
(2) I will talk you through the procedure.
(3) I read him to sleep. Turner (2005: 13)

Table 2.4  Thinking in terms of small spatial stories

In the realm of thought In the Lake District
It’s a lofty subject There are peaks
I am in deep water here Lakes
We have to dig deep And valleys
I am in the fog The weather changes
I am in complete darkness Night falls
Let’s shed some light on it We use torches
Now I can see it Daybreaks
Let’s stay with the subject for a little 
longer

We make camp

And now let’s move to another topic. And break camp
Let me chew on this one. Eat sandwiches
That’s a tough one to crack Boiled eggs and walnuts
Let’s move around this topic Find the right path
Let’s not go this way. Don’t touch this 
one

Avoid dangerous places

Can we turn this argument around? Not 
easy to grasp

Manipulate objects

Try to see it from my perspective Enjoy the views
One day, we will find the answers; get 
to the truth of the matter

After a long trek, we finally arrive at the 
overcrowded car park in Windermere.
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Each of the sentences is understood in terms of an agent causing an 
object to move in a certain direction, yet neither of the three examples 
involves an actual application of force or moving along a trajectory.

Small spatial stories, like the ones discussed above (actors moving 
in space and manipulating objects), are often associated with the con-
cept of “image schemas” in cognitive science and cognitive linguis-
tics literature. Mandler and Canovas (2014: 2–9) state simply that 
image schemas are simple spatial stories which constitute a crucial 
part of early, preverbal conceptual development of infants and are 
built of certain primitives such as container, path, move, into, out of, 
behind, contact, link, location, etc. Mark Turner (1996) provides the 
following definition:

Image schemas are skeletal patterns that recur in our sensory and motor expe-
rience. Motion along a path, bounded interior, balance, and symmetry are 
typical image schemas.” (9).

Certainly not all small spatial stories appearing in the following 
chapters as sources of mathematical concepts could be classified as 
image schemas—some can be quite complex—but it seems that all of 
them are composed of image-schematic elements9 such as the ones 
listed in Table 2.5.

9 To learn more about image schemas see, for example, Johnson (1987), Talmy 
(1988), Brugman (1998), Sweetser (1990), Mandler (1992), Turner (1996).

Table 2.5  Partial list of image schemas (Evans and Green 2006: 190)

SPACE UP-DOWN, FRONT-BACK, LEFT-RIGHT, NEAR-FAR, 
CENTRE-PERIPHERY, CONTACT, STRAIGHT, 
VERTICALITY

CONTAINMENT CONTAINER, IN-OUT, SURFACE, FULL-EMPTY, 
CONTENT

LOCOMOTION MOMENTUM, SOURCE-PATH-GOAL
BALANCE AXIS BALANCE, TWIN-PAN BALANCE, POINT 

BALANCE, EQUILIBRIUM
FORCE COMPULSION, BLOCKAGE, COUNTERFORCE, 

DIVERSION, REMOVAL OF RESTRAINT, 
ENABLEMENT, ATTRACTION, RESISTANCE

UNITY/
MULTIPLICITY

MERGING, COLLECTION, SPLITTING, ITERATION, 
PART-WHOLE, COUNT-MASS, LINK(AGE)

IDENTITY MATCHING, SUPERIMPOSITION
EXISTENCE REMOVAL, BOUNDED SPACE, CYCLE, OBJECT, 

PROCESS
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In The Literary Mind (1996), Mark Turner claims that:

We use story, projection, and parable to think, beginning at the level of small 
spatial stories. Yet this level, although fully inventive, is so unproblematic in 
our experience and so necessary to our existence that it is left out of account 
as precultural, even though it is the core of culture. (Turner 1996: 15)

And if small spatial stories are the “core of culture,” essential to our 
thought and existence, it should not be surprising we will keep finding 
them again and again in the narrative of mathematics, in the next 
chapters.

Before we end this section, let us quote the book which created the 
field of cognitive exploration of mathematics:

A great many cognitive mechanisms that are not specifically mathematical are 
used to characterize mathematical ideas. These include such ordinary cogni-
tive mechanisms as those used for the following ordinary ideas: basic spatial 
relations, groupings, small quantities, motion, distributions of things in space, 
changes, bodily orientations, basic manipulations of objects (e.g., rotating 
and stretching), iterated actions, and so on. (Lakoff and Nunez 2000: 29)

In the above quotation, the authors do not use the terms of “small 
spatial story” or “image schema,” but we can easily see the connec-
tion. Neither of the two terms can be found in the following quotation 
either, from Saunders Mac Lane (1909–2005), professor of mathe-
matics at Harvard and Cornell Universities and the president of 
American Mathematical Society:

Mathematics is not the study of intangible Platonic worlds, but of tangible 
formal systems which have arisen from real human activities. (1986: 470)

But the connection to “small spatial stories” (actors moving in space 
and manipulating objects) is there again. Mac Lane (qtd. in Lakoff 
1987: 354) has constructed the following list of correspondences 
between “real human activities” and branches of mathematics:

counting: arithmetic and number theory
measuring: real numbers, calculus, analysis
shaping: geometry, topology
forming (as in architecture): symmetry, group theory
estimating: probability, measure theory, statistics
moving: mechanics, calculus, dynamics
calculating: algebra, numerical analysis
proving: logic
puzzling: combinatorics, number theory
grouping: set theory, combinatorics
(Mac Lane 1986: 463)
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This rudimentary sketch of the conceptual integration theory will 
have to do for now10; we will see it in action in Chaps. 3, 4, 5, and 6. 
The next section offers a bird’s-eye view of our research area—the 
modern algebra.

2.3  �Modern Algebra for Beginners

Can the whole of modern algebra be described in a couple of sen-
tences? Yes it can; it has been designed to be elegantly simple. The 
story starts with sets (collections of objects) and mappings and pro-
ceeds to the concept of a group (a set with a mapping), a ring (a set 
with two mappings), and vector space (two sets with four mappings 
altogether). An example of a group are integers with addition, real 
numbers with addition and multiplication have the structure of a ring 
(also a field), and vector space can be exemplified by complex num-
bers.11 Each new concept is based on the previous ones, and, ulti-
mately, the whole multistory edifice rests on the sparse foundation of 
sets and mappings. Israel Nathan Herstein begins his classic12 Topics 
in Algebra handbook in the following way:

One of the amazing features of twentieth century mathematics has been its 
recognition of the power of the abstract approach. This has given rise to a 
large body of new results and problems and has, in fact, led us to open up 
whole new areas of mathematics whose very existence had not even been 
suspected. [...] The algebra which has evolved as an outgrowth of all this is 
not only a subject with an independent life and vigor-it is one of the important 
current research areas in mathematics-but it also serves as the unifying thread 
which interlaces almost all of mathematics, geometry, number theory, analy-
sis, topology, and even applied mathematics. (Herstein 1975: 1)

10 To learn more about conceptual blending theory, see, for example, Fauconnier and 
Turner (2002) and Turner (2014).
11 More precisely, complex numbers are a vector space over the field of real (or com-
plex) numbers (see Chap. 6 for more details).
12 cf., for example, the Chicago undergraduate mathematics bibliography, where we 
can read, “[...] classic text by one of the masters [...] wonderful exposition—clean, 
chatty but not longwinded, informal—and a very efficient coverage of just the most 
important topics of undergraduate algebra.”  ( https://www.ocf.berkeley.
edu/~abhishek/chicmath.htm, accessed 2017-10-06)
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The mathematical “abstract approach” mentioned above, also 
known as the “axiomatic approach”—the origin of modern algebra—
was developed gradually in the nineteenth and the first half of the 
twentieth century.13 In fact, axioms were used in mathematics ever 
since the birth of Euclidean geometry (ca. 300 BC), but there is one 
crucial difference— Euclid defined the primitives, such as point and 
straight line (e.g., a point is that which has location but no size), while 
in modern algebra the primary notions, such as set, element, and 
ordered pair,14 remain undefined. So, in the next chapters, when we 
discuss all the fascinating features of groups, we “will not know what 
we are talking about” to paraphrase the famous statement by Bertrand 
Russell.15 And this is because a group is defined as a set with a map-
ping, which fulfills the group axioms—any set, a collection of any 
objects. The shortest description of the “abstract approach” could be 
primary notions + axioms + definitions + theorems + proof. We learn 
from Herstein’s introduction above that algebra is “the unifying thread 
which interlaces almost all of mathematics”—so this is where we 
have to look for the foundations of modern mathematics.

As we mentioned above, although our focus is advanced level alge-
bra, reading this book should not require any prior mathematical 
training. What follows in Table 2.6 is an informal glossary of terms 
and symbols used in the following chapters in the chronological order. 
Typically, such glossaries are added at the end of a book, but I think it 
would be useful for a reader to have a quick look at the key terms now, 

13 According to Nicolas Bourbaki (a collective pseudonym for a famous group of 
mathematicians), “The axiomatization of algebra was begun by Dedekind and 
Hilbert, and then vigorously pursued by Steinitz (1910). It was then completed in 
the years following 1920 by Artin, Nöther and their colleagues at Göttingen (Hasse, 
Krull, Schreier, van der Waerden). It was presented to the world in complete form 
by van der Waerden’s book (1930).” (http://www.math.hawaii.edu/~lee/algebra/his-
tory.html, accessed 2017–10-06)
14 Herstein (1975) does not define ordered pairs and neither did Frege (1879). Other 
mathematicians suggested various definitions. For example, Hausdorff (1914: 32) 
gave the definition of the ordered pair (a, b) as {{a,1}, {b, 2}}, but, as we argue 
below, this does resolve the problem implicit circularity of the static definition of a 
mapping.
15 “Mathematics may be defined as the subject in which we never know what we are 
talking about.” (https://en.wikisource.org/wiki/Mysticism_and_Logic_and_Other_
Essays, accessed 2017–10-06)
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Table 2.6  Chronological glossary of the key mathematical terms

Term Description
Set Any collection of objects, a set of integers but also three bricks 

in a suitcase. Primary notion (not defined). Typically marked 
with a capital letter or curly brackets {}. For example, N, the 
set of natural numbers (positive integers with zero); R, the real 
numbers, etc.; {1,2,3} means a set of three numbers— 1,2, and 
3

Element of a set Any object in a collection (set) of objects. Primary notion (not 
defined). Typically marked with a lower case letter and the 
symbol ∈. For example, a∈A reads “a is an element of (the set) 
A” or “a is in A.” {x∈R | x > 0} means a set of all positive real 
numbers

Subset of a set A set whose all elements are in another set. A ⊂ S reads “A is a 
subset of S,” “A is contained in S” or “S contains A.”

Equal sets A = B if A ⊂ B and B ⊂ A. Two sets are one set if... But how 
can two sets be one set? If it is one set, how did it become two 
sets? Can one be two? Can two be one? Find the answers in 
Chap. 3

Union of two 
sets

A ∪ B reads “union of (sets) A and B” and is a set containing 
all elements of A and all elements of B and only those 
elements

Intersection of 
two sets

A ∩ B reads “intersection of (sets) A and B” and is a set 
containing all elements that are both in A and in B and only 
those elements

Empty set A set with no elements. Marked with Ø. Polish philosopher 
and mathematician, Stanisław Leśniewski, the creator of 
mereology, called it a “theoretical monstrum” and “a set of 
square circles”(1930: 196)

Ordered pair A set of two elements which are ordered (one element is first, 
and the other is second). Marked with (,). For example, (a,b) 
reads “an ordered pair of a and b.” primary notion (not defined, 
cf. Ftnt. 14 )

Cartesian 
product of two 
sets

A Cartesian product of A and B is the set of all ordered pairs 
(a,b) where a is in A and b is in B. Marked as A × B

Cartesian square 
of a set

A Cartesian product A × A, a set of all ordered pairs (a,b) 
where both a and b are in A. Interestingly, every Cartesian 
square contains the so-called diagonal subset which is a set of 
ordered pairs (a,a). A curious concept because (a,a) is a pair of 
two elements which are one and the same element

(continued)
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Term Description
Mapping A mapping from A to B is a subset of A × B in which every 

element of A is paired with an element of B. This is the 
definition Herstein calls “rigorous” and then adds that he 
almost never uses it, preferring a different “way of thinking 
about mapping.” In Chap. 4 Herstein’s puzzling reluctance will 
be explained

Composition of 
mappings

g(f(x))—Two mappings acting one after another: First x is 
mapped onto f(x), and then f(x) is mapped onto g(f(x))

Group A set with a binary operation. For example, integers with 
addition. The binary operation must follow certain rules (group 
axioms)—Like the existence of the identity element and the 
inverse element. See Chap. 5 for details (and for the 
mathematical beauty of finite groups)

Binary 
operation

For example, addition or multiplication. For a group G, the 
binary operation is defined as a mapping from the Cartesian 
square G × G to G which means that for every ordered pair 
(a,b), there exists in G a “result of the operation c.” for 
example, for integers under addition, the pair (2,2) is paired 
with 4, which is typically written as 2 + 2 = 4

Identity element For example, 0 for addition or 1 for multiplication. We add it 
or multiply by it, and nothing changes. Every group must 
contain an identity element

Inverse element For example, −5 is the inverse element for 5 (under addition) 
because 5 + (−5) = 0. Under multiplication, the inverse of 5 is 
1/5 because 5(1/5) = 1 (and 1 is the identity element for 
multiplication, just as 0 is for addition). Every element in a 
group must have an inverse element

Associativity For example, for multiplication (ab)c = a(bc). The binary 
operation in a group must be associative

Abelian group A group where the binary operation gives the same result when 
applied in any order. Integers with addition, for example, are 
an abelian group because a + b = b + a. The binary operation 
with this feature is called “commutative”

Subgroup A subset of a group which is also a group
Coset A set obtained by “multiplying” every element of a subgroup 

by one element of a group. If H is a subgroup of G and a is in 
G, aH is how we mark the left coset, and Ha is used for the 
right coset. For any subgroup, all cosets have the same number 
of elements, are either equal or disjoint, and cover the whole 
group. And, for some of us, this is where the beauty of finite 
groups lies

Table 2.6  (continued)

(continued)
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Term Description
Homomorphism A special kind of “structure-preserving” mapping. For 

example, if G and H are groups, the mapping f from G to H is 
a homomorphism if f(ab) = f(a)f(b) for every a,b in G. The 
square function for real numbers with multiplication could 
serve as an example because (ab)2 = a2b2. If a homomorphism 
is a 1-to-1 mapping, it is called an “isomorphism”

Order of a set Number of elements in a set. For example, if a set G has 3 
elements then o(G) = 3, which reads as “the order of G is 3”

Lagrange’s 
theorem for 
finite groups

If H is a subgroup of G, then o(H) is a divisor of o(G). For 
example, if G has 12 elements, any subgroup can have 1,2,3,4, 
6, or 12 elements. It can’t have, for example, 5 or 11 elements. 
In Chap. 5 we will try to see why this theorem is considered 
beautiful

Symmetry 
group on the  
set S

In Herstein’s handbook denoted by A(S). It is the set of all 
1-to-1 mappings of S onto itself. Such mappings are also called 
“permutations.” It is easy to prove that A(S) with composition 
of mappings is a group. In fact, historically, before the abstract 
approach became dominant, this is what groups where in 
mathematics—Sets of permutations

Cayley’s 
theorem

Every finite group G is isomorphic with a subgroup of A(G) 
which means that every finite group is in fact a set of 
permutations. This theorem (Cayley 1854) was crucial for the 
development of the abstract approach in algebra, showing that 
the group axioms are “meaningful” because they define the 
already well-known “concrete” groups of permutations

Ring An abelian group with additional binary operation, which has 
to be associative and distributive (see below). The set of 
integers with addition and multiplication is a ring

Distributive 
laws

a(b + c) = ab + bc and (a + b)c = ac + bc. The two binary 
operations in a ring must fulfill the distributive laws. We might 
remember them from the primary school as “multiplying 
brackets”

Division ring A ring in which inverse elements exist for both binary 
operations for every element of the ring (except for zero under 
multiplication). The set of real numbers with addition and 
multiplication is a division ring, for example

Commutative 
ring

A ring where both binary operations are commutative

Field A commutative division ring. The sets of real or rational 
numbers are examples of fields

Table 2.6  (continued)

(continued)
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Term Description
Vector space A vector space involves an abelian group and a field which 

have to fulfill certain rules. For example, the Cartesian square 
of the set of real numbers R2 is a vector space over R. See 
Chap. 6 for details

Module A generalization of a vector space in which the field is replaced 
with a ring. Every vector space is a module but not vice versa

n-dimensional 
vector space

A vector space is n-dimensional if there are n (linearly 
independent) vectors from which all the other vectors can be 
obtained as a result of the binary operations (adding vectors 
and multiplying vectors by scalars). It can be proven that every 
n-dimensional vector space over a field F is isomorphic (which 
practically means “identical”) with Fn

Table 2.6  (continued)

to see how the captivating story of modern algebra develops from the 
primary notions of set and element, before we start to delve deeper 
into the subject.

We now know what to look for (small spatial stories and conceptual 
integration networks) and where (the narrative of modern algebra, 
Herstein 1975). Let the hunt begin. We will start at the beginning of 
Herstein’s handbook, with the set theory, and then continue our analy-
sis of the mathematical narrative in a step-by-step, linear fashion, 
without jumping ahead.
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Chapter 3
Sets

3.1  �Overview

We will begin this chapter with examining the primitive (undefined) 
notions of “a set” and “an element” and then investigate the basic set-
theoretical concepts of subsets, equality of sets, the null set, the union, 
and intersection of sets. In the final section, we will take a closer look 
at the language of mathematical proof. At every stage of our close 
reading of the mathematical narrative, we will be looking for the men-
tal patterns like image schemas (e.g., the container image schema), 
small spatial stories (actors moving in space, manipulating objects), 
and conceptual integration.

3.2  �The Primitive Notions: Set and an Element

Set theory is commonly believed to be the foundation of modern 
mathematics. Mathematical stories often begin with terminology and 
primary (non-defined) notions. These are often explained by appeal to 
our intuition, often with examples from our everyday experience:
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We shall not attempt a formal definition of a set nor shall we try to lay the 
groundwork for an axiomatic theory1 of sets. Instead we shall take the opera-
tional and intuitive approach that a set is some given collection of objects. [...] 
we can consider a set as a primitive notion which one does not define. 
(Herstein 1975: 2)

In other words, to understand the notion of a mathematical set, we 
are to rely on our experience with collections of objects. A list of nota-
tion shortcuts follows, for example, “given a set S, we shall use the 
notation throughout a ∈ S to read ‘a is an element of S’” (2). So the 
notation is to “read,” to be expanded into a sentence containing another 
intuitive (never defined) notion of “an element of a set.” Our imagina-
tion and experience with collections of objects are now to help us 
understand that an element is one of those objects in the collection. 
But neither the object (element) nor the collection (set) is defined. 
They remain undefined also in the standard axiomatic set theory, 
called ZFC. Here we are, on page 2 of the algebra handbook, at the 
foundation of mathematics (or in the dark cellar of it that we do not 
dare visit at night, to use a less optimistic metaphor), and we have 
been prompted to use our imagination and experience twice. Our con-
cept of collections and elements is coded in language, so let us con-
sider a few random examples from the British National Corpus2 of 
sentences containing the word “contains” in Table 3.1.

As we will realize in the subsequent sections, only one out of the 
ten above is a “good” example of a set and elements. It is the only one 
that would be used as an example of a set in a handbook of algebra 
and the only one that fits the image schemas and small spatial stories 
upon which the set theory (clandestinely) relies. It is example 2, and 
to explain it, we need to go further into the set theory and see how the 
primary notions of set and element are used to define subsets, equal-
ity, the null set, the union, and the intersection of sets.

1 The canonical today, axiomatic set theory called ZFC, does not include the defini-
tion of a set either. The set remains a primary, undefined notion there as well. We 
should also mention that many important mathematical theorems (e.g., the contin-
uum hypothesis, Suslin hypothesis, diamond principle) were proven to be “indepen-
dent” of ZFC, which means they can neither be proved nor disproved within this 
framework. Which of course is one of the reasons some mathematicians contest the 
claim of the fundamental role of the set theory in modern mathematics.
2 The British National Corpus, version 3 (BNC XML Edition), 2007. Distributed by 
Bodleian Libraries, University of Oxford, on behalf of the BNC Consortium. URL: 
http://www.natcorp.ox.ac.uk/, accessed 2017-10-10.

3  Sets
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3.3  �Subsets and Equal Sets

3.3.1  �Subsets

We can now escape the “dark, dusty cellar” of primitive, undefined 
concepts that are the foundation of the set theory (and, as many claim, 
the whole edifice of modern mathematics) to enter the sunny realm of 
proper science, which is free from the constraints of imagination, 
experience, image schemas, small spatial stories, conceptual blend-
ing, human conceptual system, natural language, etc. (or so it would 
seem). And this is because, equipped with the set of primitives, we 
can now define concepts in a rigorous way (or so it would seem). The 
next quotation is a definition:

The set A will be said to be a subset of the set S if every element in A is an 
element of S, that is, if a ∈ A implies a ∈ S. We shall write this as A ⊂ S which 
may be read ‘A is contained in S’ (or, S contains A). (Herstein 1975: 2)

As we mentioned above, “an element of” was a primary notion, but 
now the definition of “contained in” (only for sets, not elements) is 

Table 3.1  A random BNC sample of sentences containing the verb “contains”

Your query “contains” returned 4560 hits in 1387 different texts (98,313,429 
words [4048 texts]; frequency, 46.38 instances per million words) (displayed in 
random order)
  1. FEV 804a The retina contains only nine light detectors
  2. CDH 26 Each pack contains colorant, protective cape, and gloves
  3. K93 287 The final syllable contains a short vowel
  4. HU2 919 The egg lecithin used contains five different fatty acids
  5. BPC 1814 The Tudor stable block contains an exhibition about the 

battle of Quebec
  6. HYA 2248 The section on “Drama and story” contains a number of brief 

practical examples
  7. B1F 1343 For all the joys that the world contains, reckon that love is 

the goldmine and those other things but gilded
  8. CER 278 The positive charge in a nucleus is due to the several protons 

it contains
  9. B7H 1469 Cornwall still contains a lot of tin
10. BNL 1406 A basic slow-cooker is an earthenware pot, with a lid, set in a 

metal frame that contains a heating element
aThe alphanumerical code allows to identify the source text and the position of the 
key word (in our case “contains”) in it, in the British National Corpus
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built upon it. It is important to notice that the set theory reserves the 
notion of a subset only for sets, not elements. The relations of “being 
an element” and “being a part” (subset) are completely separate. For 
example, number 1 is an element of {1,2,3} but not a subset of it. 
Conversely, the one-element set of {1} is a subset of {1,2,3} but not 
an element of it.3 If we believed the myth of the language of mathe-
matics being “rigorously precise,” we would expect this difference 
between elements and subsets to be clearly marked. The verb “con-
tain” was used only in the definition of a subset not in the description 
of an element of a set. And yet, a few pages down, we find for 
example:

“A nonempty set of positive integers always contains a smallest ele-
ment” (18), or “another natural characteristic of a group G is the num-
ber of elements it contains” (28). Of course, this is not to criticize our 
excellent source text. Mathematics uses natural language, and poly-
semy is the natural feature of all natural languages.

In the next sections, we will learn that different image schemas 
(to use the terminology from Chap. 2—different small spatial stories 
in one of the input spaces of the conceptual integration network) are 
at the base of the two concepts. But first, let us have a look at the rela-
tion of equality. It is probably the most important relation in mathe-
matics, which—for sets—is defined upon the notion of a subset.

3.3.2  �Equal Sets

What is meant by the equality of two sets? For us this will always mean that 
they contain the same elements, that is, every element which is in one is in the 
other and vice versa. In terms of the symbol for the containing relation, the 
two sets A and B are equal, written A = B, if both A ⊂ B and B ⊂ A. (ibid. 2)

It is so simple, so obvious—two sets are identical if all the elements 
are identical. In other words, two entities are one entity if a certain 
condition is met. On the other hand, how can two entities be one 

3 A Polish mathematician, Stanisław Leśniewski, was so taken aback by the unintui-
tive nature of the naive (and ZFC) set theory that he decided to create his own the-
ory, known today as mereology (the study of parts). In his theory, (created c.a. 1914) 
element and subset are one and the same, which is also an elegant way of avoiding 
the famous Russell’s paradox. (cf. Sect. 3.8).
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entity? If it is one, it is not two, is it? There is something strange going 
on here. We need multiple identical tokens of one object (a set in this 
case) so that then we can look at them separately, check if they fulfill 
a given condition (being a subset of one another), and then decide that 
yes, they are identical, they are one. We have to understand that we are 
not talking about two objects that have the same features, look the 
same, or belong to the same category, like two identical golf balls or 
two kings of spades from two identically looking decks of cards. 
There are unique objects in the world, like the Eiffel Tower or the 
Tower Bridge, and (equally) there are unique objects in mathematics. 
For example, in Chap. 5 we will learn that in every group (say, the 
integers with addition), the identity element (zero) is unique. And it 
means that there is only one number zero. And yet we can still write 
0 = 0 or {Eiffel Tower} = {Eiffel Tower}, and it will not be considered 
a contradiction, which begs the question of what identity and unique-
ness are. The answer can be found in the following quotation by the 
creators of the conceptual blending theory:

The recognition of identity, sameness, equivalence, A = A, which is taken for 
granted in form approaches (mathematics, for example, JW), is in fact a spec-
tacular product of complex, imaginative, unconscious work. Identity and 
opposition, sameness and difference, are apprehensible in consciousness and 
so have provided a natural beginning place for form approaches. But identity 
and opposition are finished products provided to consciousness after elabo-
rate work; they are not primitive starting points, cognitively, neurobiologi-
cally, or evolutionarily. (Fauconnier and Turner 2002: 6)

Most cells in a human organism die and are replaced with alarming 
frequency (from a couple of weeks to a couple of months); we also 
age and change appearance, place of residence, profession, interests, 
etc. and yet stay the same and unique throughout our lifetime. In our 
everyday experience, one object, say, a cup of coffee on my desk, 
always stays that way—one. Even when I take a sip and put it down, 
I still think of it as the same cup of coffee. It never turns into two cups 
of coffee so that I can look at them separately and say, hmm, yes, they 
are identical; however, in our imagination and memory, it is possible 
and we do it all the time. It is enough that I close my eyes for a second, 
look at the cup again, and think, yes, it’s the same cup. I could even 
write it down mathematically, cup1 = cup2, where cup1 was the cup I 
saw a second ago and cup2 is the cup I see now. The level and the 
temperature of the liquid inside are different; the position on the desk 
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may be slightly different but it is still the same, unique object. At the 
same time, I am aware of the various stages my coffee went through. 
I am able to project back from the cup I see now to those other stages/
tokens.

And that is how the cup is one and many at the same time. The 
interpretation from the standpoint of the conceptual integration theory 
is that there are two mental input spaces in which cup1 and cup2 are 
connected with identity relation, and in the blend space (cf. Table 2.2 
in Sect. 2.2.4—the web principle and the unpacking principle) the two 
cups are compressed into one—a unique object. Identity is the prod-
uct of blending. The relevant conceptual integration network is repre-
sented schematically in Fig. 3.1.

Our sensory input and memory always provide us with multiple 
tokens, but in our mind, through the constant process of blending, 

Table 3.2  Elements of small spatial stories and traces of conceptual integration 
found in the narrative of the set theory
1Objects Elements of sets, numbers, all kinds of objects that can belong to a 

collection
Actors Set, an actor who possesses objects and governs property; set 

operator (the potter, the setter), performs operations on sets, 
uniting, intersecting and dividing them. Proof—An actor who 
collects mathematical proofs but sometimes has to dispose of them 
to clear the path on his way to the QED spot

Actions Possessing/belonging (often categorized as a state, or a potential to 
act, perhaps not a prototypical action but of course, like with all 
linguistic taxonomies, the border between state and action is 
fuzzy); combining sets, forming them into new ones (uniting), 
intersecting, dividing, disposing of objects

Image 
schemasa

Containers with discrete and dimensionless, or voluminous objects 
(partly opened or tightly shut), an empty container (the null/empty 
set), part/whole, in-out, full-empty compulsion, blockage, removal 
of restraint, enablement, source-path-goal, object, superimposition

Conceptual 
blending

The equality symbol “=” always involves a blend (triggers a 
conceptual integration network). Multiple tokens of an object are 
compressed into a unique object. Yet, because the projections are 
bi-directional and the network is maintained (according to the web 
principle and the unpacking principle, cf. Sec. 2.2.4), the object 
can be “one and many” at the same time

aThe connection between small spatial story and image schema is explained in Sect. 
2.2.5
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those multiple tokens are compressed into one. Objects are not 
“externally unique”; uniqueness and identity are unconscious cre-
ations of the human mind. We will return to this fascinating subject of 
uniqueness in Sect. 5.5.

That’s all very well but we were just analyzing “pure mathemat-
ics”—there is no place in it for conceptual blending, memory, imagi-
nation, and sensory perception, all this cognitive stuff. Mathematical 
entities are eternal and unchanging; they exist in a world separate 
from the human world, don’t they? Well, unfortunately, no. 
Mathematics, wonderful as it is, is a product of the human mind, and 
this is just one more example of it. And we have just demonstrated 
that one of the crucial mathematical notions—equality, expressed 
with the “=” sign—depends on the human capacity for blending,4 the 
same mental process which is responsible for our understanding of 
the next mathematical notion to discuss, the null (or “empty”) set.

4 We will return to the subject in Chap. 5, when we discuss the uniqueness of the 
identity element in a group.

Generic space
(common structure)

cup of coffee
on my desk

(unique object)

Input 1
cup 1
(observed at 11:01,
before taking a sip)

Input 2
cup 2
(observed at 11:02,
after taking a sip)

Fig. 3.1  Uniqueness as a product of conceptual blending—a schematic representation
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3.4  �The Null Set

Let us begin with the definition:

The null set is the set having no elements; it is a subset of every set. We shall 
often describe that a set S is the null set by saying it is empty. (Herstein 1975: 2)

The notion of an empty set of course only strengthens the claim we 
have made before that the set-theoretical concepts, and mathematical 
concepts in general have image schematic origin (cf. Lakoff and 
Nunez 2000: 29—already quoted above). And, obviously, the empty 
set points us in the direction of the container image schema. The null 
set is an empty container. So a set is not just a collection of objects but 
a collection and a container—the collection in a container. And, as we 
learn, “it is a subset of every set.” Well that’s ok, isn’t it? All sets also 
include a container. But apparently they have this empty container 
inside—as a subset. This certainly goes against our intuition of collec-
tions in containers, where the container—the tin, the box, the safe, the 
display cabinet, the drawer—contain the collection and are not con-
tained in it. Both Frege and Leśniewski strongly criticized the notion, 
the latter describing the null set as a “theoretical monstrum” and “a 
class of square circles” (1930: 196).

As we said, the standard set theory is unintuitive and this is just 
another case in point. And when we say “unintuitive,” we are not 
claiming it is not based on image schemas. On the contrary, it is based 
on several image schemas, as we tried to demonstrate above, but of 
course not overtly, which certainly hampers understanding. We have 
to know which image schema applies to which notion, and this (at 
least in part) constitutes the base for mathematical meaning and math-
ematical understanding.

In the following two sections, we will introduce, following 
Herstein’s handbook of course, the two crucial operations on sets: the 
union and the intersection.

3.5  �The Union of Sets

The definition of a union of two sets:

Given two sets we can combine them to form new sets. The union of the two sets 
A and B, written as A ∪ B, is the set {x | x ∈ A or x ∈ B}. (Herstein 1975: 3)
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The sets are “combined to form.” The grammar construction used 
is NP1 verb NP2 to-infinitive NP3, and the narrative structure (the 
story) associated with it is that an agent (actor) performs an action 
over objects (two sets) in order to achieve a certain goal (forming a 
new set). What we have here is a projection of a small spatial story of 
an actor manipulating objects and forming new objects. The actor per-
forms a purposeful and planned action, according to a template, with 
predictable result. We may now even imagine a workshop, much like 
a pottery, where a skilled craftsman combines objects to form new 
ones. But instead of using bits of wet clay, the craftsman, the set potter 
(or simply, setter), combines sets to form new sets. We learn further 
that “for any set A, A ∪ A = A (union of A and A equals A).” Oh, I see, 
so I have this cup of coffee on my desk (there is always one there), and 
if I “combine” my cup of coffee with my cup of coffee, I will “form” 
my cup of coffee, how interesting. We already explained above how 
the equality sign “=” requires creating two mental tokens (input 
spaces) of the same object. In this case we have to do it twice in a row. 
First we need two tokens of A to combine them (to from A again) and 
then another token of A to compare it to the result of the combining. 
We already provided many examples of the unintuitive nature of set 
theory, but this is not one of them. Identity relation is one of the staple 
connectors, mappings, between mental spaces. And because this map-
ping is so common and seemingly effortless, it is often considered 
trivial, simple, and easy.

In the following section, we will focus on another basic set opera-
tion—the intersection of two sets.

3.6  �The Intersection of Sets

The intersection of sets is defined as follows:

The intersection of the two sets A and B, written as A ∩ B, is the set {x | x ∈ 
A and x ∈ B}. The intersection of A and B is thus the set of all elements which 
are both in A and in B. (Herstein 1975: 3)

It is pictorially represented in Fig. 3.2.
Both the narrative description “all elements which are in” and 

the image suggest the container schema. However, if we con-
sider an “improper” set X = {set1,set2,set3....X}  (cf. Sect. 3.8), no 
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image representation could possibly be drawn of a collection which is 
inside itself as one of the elements—an element that is both inside and 
outside at the same time. Let us remember also that “being in a set as 
an element” is a primitive, undefined notion and does not mean the 
same as “being in a set as a subset,” which is defined by the previous 
primitive.

We can now use our imagination to animate the above image by 
making the intersection either larger or smaller. And if we move the 
sets further apart, at one point they will be separated: “Two sets are 
said to be disjoint if their intersection is empty, that is, is the null set” 
(ibid.: 4). It is interesting to notice the geometrical differences between 
the sets and elements. A set can be inside another set or outside it or 
partially overlap with it—an intermediary state of being partially in 
and yet “sticking out a little.” The elements, however, do not enjoy the 
same degree of freedom. They can only be either outside or inside a 
set—no intersection possible. And this difference can be interpreted 
image schematically, through small spatial stories as we will see in 
the following section.

3.7  �Image Schemas and Small Spatial Stories for Sets 
and Elements

Image schemas emerge through everyday repeated experience. For 
the sets and subsets, it might be our experience of a partially open 
containers, objects allowed to overlap and stick out, like the fruit in a 
fruit bowl in Fig. 3.3.

For the elements, however, the container is like a box of tiny air gun 
pellets with a tightly fitted lid in Fig. 3.4.

Figures 3.3 and 3.4 are visualizations of the image schemas, and 
small spatial stories build on them, which contribute to the meaning 
construction of sets and elements, respectively. Contribute in the way 

A B

Fig. 3.2  Intersection 
of sets
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Fig. 3.3  Inside, partially inside, outside—an open container containing objects of 
volume, the schema of sets partially intersecting

Fig. 3.4  Outside or inside, no third option—the closed container containing small, 
undividable elements, the schema for the elements of a set

described in Sect. 2.2.5. The first small spatial story is “filling a 
partially open container with objects of volume” (like putting fruit 
into a fruit bowl). The second story is “filling a container with small 
point-like objects and then fitting the lid tightly” (the air gun pellets in 
a jar). The respective small spatial stories become then one of the 
inputs of conceptual integration networks for sets and elements.
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And now we can return for a moment to Table 3.1 to explain why 
only example 2 is the “good one,” meaning that it fits the way sets, 
elements, and subsets should be understood. Let us go through the 
examples one by one.

	  1.  The retina contains only nine light detectors.

Set theoretically, this example would only make sense if the retina 
were a set of separate light detectors, and not a continuous, spherical 
layer of tissue represented in Fig. 3.5. A mathematical set is a collec-
tion of separate, undividable, never intersecting objects in a container, 
and a subset must contain the same elements as the set it is contained 
in (cf. the definition of subset in Sect. 3.3.1).

	  2.  Each pack contains colorant, protective cape, and gloves.

A perfect example, a set consisting of separate, solid, not-intersect-
ing objects in a closed container.

	  3.  The final syllable contains a short vowel.

Not as bad as example 1, but for it to fully work, a syllable would 
have to be a set of separate phonemes (consonant and vowels) with 
well-defined boundaries (e.g., each separated by a glottal stop), which 
is never the case.

	  4.  The egg lecithin used contains five different fatty acids.

Continuous, viscous fluid, a mix of chemical compounds, no well-
defined boundaries, not the correct small spatial story for sets and 
elements.

Fig. 3.5  Retina seen 
through an 
ophthalmoscope (http://
webvision.med.utah.edu/
book/part-i-foundations/
simple-anatomy-of-the-
retina/, accessed 
2017-10-10)
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	  5. � The Tudor stable block contains an exhibition about the Battle of 
Quebec.

The stable block is probably more than a collection of exhibitions. 
We do have a container here, and the exhibition could be considered a 
subset contained within—the boundaries probably well defined. But 
the subset should consist of the same elements as the rest of the set 
(cf. the definition in Sect. 3.3.1), which is probably not the case.

	  6. � The section on “Drama and Story” contains  a number of brief 
practical examples.

This example would fit the set-theoretical small story but only if we 
assumed that it was divided into well-defined sections (there is not 
enough context information).

	  7. � For all the joys that the world contains, reckon that love is the 
goldmine and those other things but gilded.

For this example to “work” the world would have to be a set of 
separate, well-defined elements like say “joys,” “sorrows,” etc. “Joys” 
could be considered a subset of which love would be an element. If 
only the boundaries of love and other feelings could be defined.

	  8. � The positive charge in a nucleus is due to the several protons 
it contains.

If the nucleus were a set of noninteracting, separate elementary par-
ticles, the above example would fit the mathematical sense of set and 
element, and also the nuclear bomb would never be built.

	  9.  Cornwall still contains a lot of tin.

If we imagined Cornwall as a set of atoms, all the atoms of tin, a 
distinctive chemical element, would be a well-defined subset (all the 
elements of S are elements of A, cf. Sect. 3.3.1). Fortunately, espe-
cially for those of us waiting for the next season of Poldark,5 Cornwall 
is much more than that.

	10. � A basic slow-cooker is an earthenware pot, with a lid, set in a 
metal frame that contains a heating element.

A heating element is part of the metal frame, but to be a subset, 
it would have to contain the same elements, of which there is no 

5 http://www.imdb.com/title/tt3636060/, accessed 2017-10-10.
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indication. Also, it should have well-defined borders, which may not 
be the case here.

All the “bad” examples (all of them except example 2) are also 
understood through image schemas, small spatial stories, and concep-
tual blending. This is how human mind works, “the way we think” to 
quote the title of the seminal book by Fauconnier and Turner (2002). 
But those other examples are understood through different image 
schemas and small spatial stories than the ones on which the standard 
set theory is built. What brought us to this conclusion? Mainly, the 
definition of a subset in Sect. 3.3.1. The only way of establishing 
whether A is a subset of B is making sure that A contains the elements 
that B also contains. If a subset was defined differently (or not defined 
at all, as in Leśniewski’s mereology; see the next section), the other 
nine sentences could fit the theory. A large part of understanding 
mathematics is knowing which small spatial stories are “the correct 
ones.” And this conclusion, as we will see in the next chapters, applies 
not only to the set theory but to all the other parts of algebra. Brilliant 
mathematicians, like the author of our handbook, Israel Nathan 
Herstein, always use “the correct” small spatial stories but mostly 
unconsciously,6 so the students of mathematics are on their own. They 
must try to discover the right ones for themselves, often through the 
laborious process of trial and error.

More about the “correct” small spatial stories in the next section 
where we will also learn that mathematical sets are usually defined 
not through enumeration (they are too large for that) but by providing 
a condition, a shared property.

3.8  �Defining Sets with a Condition and Russell’s Paradox

One final, purely notational remark: Given a set S we shall constantly use the 
notation A = {a∈S | P(a)} to read ‘A is the set of all elements in S for which 
the property P holds’. (Herstein 1975: 2)

6 In fact, conceptual blending is always mostly unconscious—“These operations 
(conceptual blending, JW) -basic, mysterious, powerful, complex, and mostly 
unconscious-are at the heart of even the simplest possible meaning” (Fauconnier 
and Turner 2002: 6).
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We learn that elements of sets can have properties and we can 
create sets of elements sharing the same property. Elements can be 
evaluated according to a property or a set of properties and a new 
collection can be created—for example, a set of all my pencils that are 
red. We have to say that Herstein’s remark can hardly be classified as 
“purely notational,” and the author of Topics in Algebra was of course 
aware of that but, most likely, did not want to confuse the reader at the 
very beginning of his handbook. Assuming that we can construct any 
set of elements sharing a given property has grave theoretical conse-
quences which led to Russell’s paradox (axioms of ZFC, the standard 
set theory, were created as a reaction to it). For example, let us imag-
ine a set of all sets that have more than three elements. There is an 
infinity of such sets, like, say, a set of all cups, a set of all pencils, a set 
of all red hens, etc.—all containing more than three elements. Let us 
call it X. X = {A| o(A) > 3}, where o(A) (the order of set A) is the 
number of elements in A. Obviously X itself has more than three ele-
ments and therefore X is its own element: X = {set1,set2,set3,...,X}. 
Try to imagine a collection that contains itself and some other ele-
ments beside it. Every set contains itself, A⊂A and, in our experience 
with collections, nothing but itself. Sets like our X are called “improper 
sets.” Let us now create a set of all “proper” sets, i.e., sets that are not 
like X, sets that are not their own element. There is an infinity of 
proper sets. The already mentioned set of all cups is a proper set, for 
example. How do we know it? Because this set is not a cup, and there-
fore not its own element. The question Bertrand Russell asked (1901) 
can be rephrased like this: is the set of all proper sets a proper set? Or 
is it its own element? And any of the two possible answers to this 
question lead to a contradiction. If we assumed that it was a proper 
set, it would have to be its own element (because it is defined as a set 
of all  proper sets) and therefore improper. If we assumed it was 
improper, it would have to be its own element, and therefore it would 
have to be one of the proper sets (because it is defined as a set of all 
proper sets). It is surprising, isn’t it, that such a basic, simple con-
struction as the set theory leads to a contradiction. How is it possible? 
Especially considering the rigorous way the mathematical theories 
are constructed.

We will now try to answer this question and at the same time explain 
how Russell’s paradox is connected to the main theme of this book 
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(small spatial stories and conceptual blending in mathematics). In the 
first decades of the twentieth century, Russell’s paradox was dealt 
with in two ways: (1) fixing the existing theory (Ernst, Zermelo) and 
(2) creating new set theories (Stanisław Leśniewski, Bertrand Russel). 
Zermelo created a set of axioms which arbitrarily forbid the construc-
tion of improper sets, while Leśniewski in his theory got rid of the 
element/subset duality we discussed in the previous section. In his 
theory element and subset are one and the same, and the whole theory, 
the mereology, and the theory of parts are built on only one image 
schema: the part/whole relation. What Leśniewski discovered is that 
Russell’s paradox is the result of the clash between two image sche-
mas (small spatial stories) of the container and part/whole, repre-
sented in elements and subsets. In the theory of parts, every set (class) 
is necessarily its own part/subset/element and therefore “improper” in 
Russell’s terms. The set of all proper sets—the basis of Russell’s para-
dox—is therefore nonexistent and considering its features makes no 
sense. Of course, Leśniewski could not have used the terms of modern 
cognitive science (image schemas, small spatial stories, conceptual 
blending); instead, he speaks of intuition and “turning to reality.” This 
is how he comments on Zermelo’s axiomatic solution:

Architecturally sophisticated construction of Mr. Zermelo introduces to the 
set theory a number of unintuitive injunctions aiming at eliminating the para-
doxes from mathematics. The question [...] of whether the set theory of Mr. 
Zermelo will ever lead to contradictions7 is immaterial from the point of view 
of the intellectual torment caused by the reality-oriented imperative of the 
intuitive ‘truth’ of certain premises and accuracy of certain ways of reasoning 
[...]. From this point of view, the only method of solving the paradoxes is the 
intuitive eliminating of the errors of reasoning or premises leading to a con-
tradiction. Unintuitive mathematics will not cure the deficiency of intuition. 
(Leśniewski 1913: 167, translated by JW)

Let us repeat that only one of the two types of containment in the 
set theory triggers Russell’s paradox—the element, not the subset. It 
would be impossible to create the subset counterpart of a proper set. 
And this is because every set is by definition its own subset (some-
times referred to as the “improper” subset). When subset and element 
become one and the same, as in Leśniewski’s mereology, all sets are 
their own elements (subsets) and therefore improper. When we eliminate 

7 Leśniewski anticipates here, for example, the famous Banach-Tarski paradox 
11 years before it was discovered (in 1924).
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one of the two clashing small spatial stories defining containment, the 
famous paradox vanishes.

If we look again at this section’s introductory quotation, we will 
learn that “properties hold,” which means that they are actors capable 
of exerting and maintaining force and of grasping. It is a small spatial 
story (of an actor “moving and shaking”). In the next section, we will 
analyze an example of set-theoretical proposition in search of more 
small spatial stories like the ones above.

3.9  �Proposition, Proof, and Small Spatial Stories

For the definitions of the basic terms behind us, we are now ready for 
our first set-theoretical proposition and proof.

PROPOSITION For any three sets, A, B, C, we have
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
Proof. The proof will consist of showing, to begin with, the relation
(A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C) and then the converse relation
A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C).
We first dispose of (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C). Because
B ⊂B ∪ C, it is immediate that A ∩ B ⊂ A ∩ (B ∪ C). In a similar
manner, A ∩ C ⊂ A ∩ (B ∪ C). Therefore
(A ∩ B) ∪ (A ∩ C) ⊂ (A ∩ (B ∪ C)) ∪ (A ∩ (B ∪ C)) = A ∩ (B ∪ C).
Now for the other direction. [...] (Herstein 1975: 4)

In fact, the above is just the first half of the proof but enough for us 
to take a closer look at the linguistic and conceptual patterns. The 
proposition reminds us of the familiar feature we remember from 
arithmetic, for example, 2*(3 + 4) = (2*3) + (2*4), the so-called dis-
tributive property, more specifically, the multiplication being distribu-
tive over addition or, in more familiar terms, expanding brackets. And 
this is exactly what it is, with addition and multiplication of numbers 
replaced with union and intersection of sets.

The first line of the proposition contains “for any three sets, A, B, 
C, we have,” which is of course synonymous with “for any three sets, 
A, B, C, the following is true.” When a statement is true, “we have it.” 
We are in possession and we are the proud owners of all true state-
ments. And true statements are things we have. We probably keep 
those things in a safe somewhere or in a gallery and look at them 
proudly, thinking they are ours, we are the owners. And sometimes 
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other people give us new items for our collection, they share them 
with us, we reciprocate, etc. What we have here (!) is of course another 
small spatial story projected into the narrative of mathematical proof. 
And our small spatial story is then enriched with new elements, for 
example, “we first dispose of...,” which in this context is synonymous 
with “we prove that.” The statement to prove is an object we dispose 
of, we get it out of the way, so that we can get access to other objects 
on our path of mathematical proof and dispose of them too until we 
reach the spot where it says “QED—your work is done.” Our small 
spatial story expands, and if it does not stop, soon we will have to call 
it a medium-sized spatial story. In the little fragments of text inserted 
between the mathematical symbols, we also find “it is immediate 
that,” which we are to interpret as “one follows from the other and it 
is easy to understand.” But the ease, the low level of effort, is expressed 
metonymically through the (short) time it takes us to understand that 
the next statement follows from the previous one. And as we already 
observed, in our small spatial story of mathematical proof, we move 
along the path, and sometimes we have to move back: “and now for 
the other direction.” And on our way back, we will be disposing of 
other objects, storing the truths in our collection of true statements, 
and clearing a wider path to the mathematical truth. Finally, the small 
spatial story will have run its course. “The end” (or QED) will be dis-
played on the screen and the credits will roll.

We have just demonstrated that mathematical proof is understood 
in terms of small spatial stories of possession (ownership), collecting, 
removing obstacles, and moving along a path.

Summary
In this chapter we have discovered that the set theory, just like One 
Thousand and One Tales of Scheherazade, contains objects, actors, 
actions, image schemas, and conceptual blending.8 Examples are 
listed in Table 3.2 below.

The above “mental patterns” are structured as follows:

	1.	A small spatial story (actors moving in space and manipulating 
objects) is part of the mathematical narrative.

8 Mark Turner (1996: 9) calls the above “mental patterns of parable.”
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	2.	The small spatial story becomes one of the inputs of a conceptual 
integration network (in the mind of the reader).

	3.	The conceptual integration network is where mathematical mean-
ing is constructed.

When we say that “the narrative contains blending and small spatial 
stories,” it is a metonymic shortcut of course—they are mental pat-
terns, which can be triggered by the narrative but certainly do not 
reside there. Unlike the small spatial stories and their building blocks, 
the image schemas, which seem to be everywhere, blending is not 
easy to spot, being a mostly unconscious process. But we found traces 
of it in the mathematical narrative with perhaps the most tell-tale 
example being the equality of sets (Sect. 3.3.2). We need two identical 
tokens of a unique set to compare and to conclude they are indeed the 
same. The set has to be “one and many” at the same time, which is 
indicative of the bi-directional projection between the blend and the 
input spaces of the conceptual integration network.

In the next chapter, we will examine the second pillar on which the 
edifice of algebra rests—the mapping.

3.9  Proposition, Proof, and Small Spatial Stories
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Chapter 4
Mappings

4.1  �Overview

As in the previous chapter, we will continue to look for small spatial 
stories and conceptual blending to see how those mental patterns con-
tribute to the effectiveness and fecundity of mathematics. The subject 
of focus of this chapter is mathematical mapping, described in the 
quotation below as “the single, most important and universal notion.” 
We will find that at least three small spatial stories are prompted in our 
handbook as a way of constructing the meaning of mapping. Or, to 
use the terms introduced in Sect. 2.2, three small spatial stories 
become input spaces in the conceptual integration network where the 
meaning of mathematical mapping emerges. As we mentioned above, 
the input small spatial stories are always easier to spot than the mostly 
unconscious process of conceptual blending, but we will see several 
traces of it as well. A rather surprising secondary conclusion of the 
present chapter is that the official, “rigorous” definition of mapping as 
a set of ordered pairs is in fact fully circular, which—taking into 
account the crucial importance of mapping—should result in the 
whole discipline being completely barren. Instead, mathematics 
thrives, and its effectiveness is constantly confirmed by new applica-
tions in all areas of science and industry. In the following section will 
be able to see how conceptual blending and its input small spatial 
stories contribute to these accomplishments.
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4.2  �The Mapping as “a Carrier”

We are about to introduce the concept of a mapping of one set into another. 
Without exaggeration this is probably the single most important and universal 
notion that runs through all of mathematics. It is hardly a new thing to any of 
us, for we have been considering mappings from the very earliest days of our 
mathematical training. When we were asked to plot the relation y = x2, we 
were simply being asked to study the particular mapping which takes every 
real number onto its square. (Herstein 1975: 10)

One set is mapped “into” another—the preposition clearly suggests 
motion that ends in a container. And y =  x2 function (mapping) “takes 
every real number onto its square.” The mapping takes objects “onto” 
other objects. The scenario is all too clear: the mapping sees a num-
ber, takes it, moves with it along a path, and then drops it on a specific 
spot. The mapping then retraces its steps and goes looking for other 
numbers to carry and continue until the job is done and all the num-
bers are carried onto prescribed spots. And those spots are other num-
bers. So they are already taken. The mapping (actor/agent) has then 
no choice but to place the carried numbers “onto” those other num-
bers that are already there. So those target spots have now two num-
bers on them piled one on top of another. We will return to the small 
spatial story of the carrier, but, in the next section, we will first focus 
on the official definition of a mapping.

4.3  �The “Rigorous” Definition, Ordered Pairs

Let us take a look at the “rigorous” (as Herstein describes it) defini-
tion of a mapping: “If S and T are nonempty sets, then a mapping 
from S to T is a subset, M, of S × T such that for every s ∈ S there is 
a unique t ∈ T such that the ordered pair (s, t) is in M” (10). Where 
is all the motion now? The mapping is still “from S to T,” but other-
wise we learn that it is a subset, and subsets don’t move, do they? And 
this subset contains “ordered pairs.” So the concept of order is added 
and never defined (just like sets and elements before). It is not that 
Herstein forgot to define it—it is just another of those “primitives” or 
primary concepts that we are supposed to know from our everyday 
experience.

4  Mappings
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So what is “order” exactly? Let us think of some examples. We say 
“ordered from left to right.” And “left and right” are directions relative 
to our current location and of course orientation of our body. They 
(left and right directions) depend on our bodies being asymmetrical, 
having a well-defined front and back. We also say “on my left,” “on 
your right,” etc. So far we have established that order might have 
something to do with location of objects relative to our bodies. Is 
there a definition of left and right somewhere? Unfortunately not, at 
least not in mathematics. Left and right depend on a convention, just 
like language (to a degree)—they are not universal. There must be a 
community of people first, who agree that this direction (relative to 
my body orientation) will be henceforth called “left” and the other 
one “right.” And then, when the convention is established, we can 
order things from left to right.

Is order only a spatial concept then? Certainly not. We also say “I 
saw a sheep and then a cow.” So it seems we can have “temporal 
order” as well. On the other hand, the concept of time is projected 
from space. How else can we order things then? We can say, for exam-
ple, “these are my red pencils and these are my blue pencils and I keep 
them in separate boxes.” So, not space but, more generally, objects 
differing from one another, objects having different features (e.g., of 
location, shape, time, or color). Coming back to our “ordered pair” 
(s,t), s (the mark on the screen or on paper) is more to my left, and t 
(also the mark on the screen or on paper) is more to my right. The s 
and t letters have different locations (just like pencils can have differ-
ent colors), and this is the feature we can order them by.

A crucial mathematical concept depending for its sense on the posi-
tion of two squiggles on paper. Is it possible? Can’t we find something 
more profound, more mathematical? Unfortunately not. As we said, 
order (like set and element) is a “primitive” (undefined) concept. One 
of many such concepts that mathematicians leave for us to figure out 
for ourselves. And we tried, coming to the conclusion that the ordered 
pair of (s,t) is a mapping of two different spatial locations (of two 
squiggles on paper or on the screen) on the elements of the set {s, t}. 
So in fact, as we see, to understand the mathematical concept of map-
ping, we have to use an undefined concept that relies on mapping. 
Conundrum. Circularity. Concepts defined with oblique reference to 
themselves. In the next section we will explain how small spatial sto-
ries and conceptual integration create a way out of this problem.

4.3 � The “Rigorous” Definition, Ordered Pairs
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4.4  �Circularity of the “Rigorous” Definition and Conceptual 
Integration

The question we should ask now, is it just sloppy work by mathemati-
cians. Is there a better way of defining mapping? Can we have better 
definitions? Perhaps I should write a new algebra handbook that 
would be so much better than all those old books like Herstein’s. And 
the answer is of course no. If we believe that mathematics is a product 
of the human mind (and we do, and we have been finding proof of it 
again and again in this chapter), then it must be “flawed” in the same 
way that human mind is “flawed.” So what if the definition of map-
ping is circular? Circularity is one of the most obvious features of the 
human thought process. Canonically, two inputs are mapped into the 
blend where a new meaning/content/structure emerges which is then 
mapped BACK to input spaces, and no one said this cycle is repeated 
only once. Is this not circularity? Where the input concept/meaning is 
modified by itself via the blend? Of course it is. And it is not a “flaw” 
at all—it is simply the way this wonderful conceptualizer of ours 
works. And we have just found a trace of it in the “rigorous” definition 
of a mathematical mapping.

Now that we have mapping “defined” (the circular definition based 
on the mapping of the ordered pair), we could define ordered pair 
“rigorously” as, for example, the following mapping form {1,2} into 
{s,t}. (s,t) = {(1,s), (2,t)}. Of course this “definition” is explicitly cir-
cular—an ordered pair defined as a set (mapping) of ordered pairs, 
but, as we mentioned above, that is how our mind and mathematics as 
its product (often) works. We could of course use the reverse mapping 
from {s,t} into {1,2}. (s,t) = {(s,1), (t,2)}, and it would work as well 
(as long as it is a one-to-one mapping). And this is what numbering 
objects in a set is—a mapping from this set into a set of numbers 
(indexes) or vice versa. And when we have this mapping, we can say 
s is number 1 and t is number 2. Instead of numbers, we could use any 
other set of indexes, like {left, right}, {red, blue}, {sooner, later}, etc.

Let us remember our first glimpse of a mathematical mapping, a 
few paragraphs above: “the particular mapping which takes every real 
number onto its square.” Notice that there is no circularity there, but 
instead we have an actor carrying numbers to appointed (mapped) 
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places. And by doing this, this actor was also ordering. This exactly is 
what ordering is—carrying objects from one place to another (putting 
empty cups from my desk into the dishwasher, pens into the drawer, 
bits of paper into the trash can, etc.). Mathematicians used the concept 
of “order” to define mapping although conceptually mapping and 
order are one and the same. Of course, if I carried bits of paper from 
my desk into the dishwasher and put empty cups into the drawer and 
my perfectly good pens into the trash can (happens to all of us some-
times, doesn’t it?), I would not be strictly speaking “ordering,” so 
perhaps it would be better to conclude simply that ordering is a type 
of mapping, and mapping is carrying objects from one place to 
another. And again there is no circularity. We have achieved a certain 
order of thought and peace of mind. Our concepts are ordered and 
safe now. Everything is where it should be, and everything is in its 
place (this would make an excellent definition of “order”).

Let us go back to the language of “pure mathematics” and repeat 
the “rigorous” (circular) definition of mapping: “If S and T are non-
empty sets, then a mapping from S to T is a subset, M, of S × T such 
that for every s ∈ S there is a unique t ∈ T such that the ordered pair 
(s, t) is in M.” In Herstein’s words: “probably the single most impor-
tant and universal notion that runs through all of mathematics” 
(1975: 10). We have demonstrated above that this crucial “defini-
tion” is circular, but we have also mentioned that circularity is some-
times unavoidable, a consequence of the way human mind works, a 
consequence of conceptual integration, the most basic, constant, 
usually unnoticed, and yet most profound of our mental abilities: 
“The human spark comes from our advanced ability to blend ideas 
to make new ideas. Blending is the origin of ideas [...] Blending, I 
claim, is the big lever of the cognitively modern human mind” 
(Turner 2014: 9). And, as we observed above, circularity is built into 
blending because the mapping between the inputs and the blend is 
bi-directional, which means that the input concept is “modified by 
itself” via the blend.

The ordered pair definition of the mapping is presented as the offi-
cial, rigorous one, but as we will learn in the next chapter, it is for 
some reason “almost never used,” and another “way of thinking about 
it” is preferred.

4.4 � Circularity of the “Rigorous” Definition and Conceptual Integration
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4.5  �He Small Spatial Story of the Matchmaker

We have hypothesized above how the process of conceptual blending 
can help mathematicians live with, and even go on and do amazing 
things with, mathematics that is based upon a definition of mapping 
which is evidently circular. So let us enjoy the circular definition 
again, this time with Herstein’s comment on it:

DEFINITION: If S and T are nonempty sets, then a mapping from S to T is a 
subset, M, of SxT such that for every s ∈ S there is a unique t ∈ T such that 
the ordered pair (s, t) is in M.

This definition serves to make the concept of a mapping precise for us but 
we shall almost never use it in this form. Instead we do prefer to think of 
a mapping as a rule which associates [emphasis added] with any element s 
in S some element t in T, the rule being, associate (or map) s∈S with t∈T if 
and only if (s, t)∈M. We shall say that t is the image of s under the mapping. 
(Herstein 1975: 10)

We have already established beyond doubt that this definition does 
not “make the concept of mapping precise”—on the contrary, this 
definition of mapping is based on the (never-defined) concept of 
ordering, and ordering is mapping. Full circle. Let us be honest here—
it is a terrible definition. But Herstein, confirming (or at least not dis-
proving) our speculations in the previous section, uses the phrase “we 
do prefer to think of a mapping as [...].” So, yes, we have this defini-
tion, but there are many ways of “thinking about it.” What Herstein is 
telling us may be interpreted as “blend at will—there are many ways 
to construct the meaning of mathematical definitions.” And then he 
uses the phrase “rule which associates.” And the circularity magically 
disappears! But we are back to the “actor scenario”—a small spatial 
story. But this time we have a different actor. Instead of carrying 
objects from one place to another, this actor (and her name is Rule) 
only “associates” (connects) objects. No more heavy lifting— this is 
a white-collar job, a matchmaking agency: “Hello, s? We have found 
an excellent partner for you. His name is t.” And thus a pair of (s,t) is 
created and entered into Ms Rule’s notebook before she proceeds to 
phone the next client, etc.

As we will find in the next section, “the matchmaker” and “the car-
rier” are not the only small spatial stories contributing to the meaning 
of mathematical mapping.

4  Mappings
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4.6  �Definition by Graph, the Small Spatial Story of a Hiker

Defining a mapping as a set of ordered pairs is sometimes referred to 
as “definition by graph.” This is how Herstein introduces it:

Let us motivate a little the definition that we will make. The point of view we 
take is to consider the mapping to be defined by its “graph.” We illustrate this 
with the familiar example y = x2 defined on the real numbers S and taking its 
values also in S. For this set S, S x S, the set of all pairs (a, b) can be viewed 
as the plane, the pair (a, b) corresponding to the point whose coordinates are 
a and b, respectively.1 In this plane we single out all those points whose coor-
dinates are of the form (x, x2) and call this set of points the graph of y = x2.

(Herstein 1975: 10)

So, we do not have to think of a mapping a set of ordered pairs 
(which leads to circularity). Instead we can think of it as a geometric 
shape, “the graph”, a set of points on a plane which are “singled out.” 
But this definition of mapping —the shape, the graph—is not static at 
all because it prompts for action. In the primary school we are taught 
how a line graph works: “if you want to know what the value of the 
function (mapping) for x is, draw a line perpendicular to the x-axis 
until it crosses the graph and then from that point, another line, parallel 
to the x-axis, until it crosses the y-axis—and this is where your y is.”

We can imagine point x travel across the plane, and the points of the 
graph work as a map that tells us where to “turn” to find y (Fig. 4.1). 
This is another spatial/dynamic story we choose arbitrarily to refer to 

1 Herstein makes it sound rather easy, but “Western” geometry did not make this association until 
the seventeenth century (Descartes, Fermat). The mapping of SxS onto the plane is the base of 
analytic (or “Cartesian”) geometry.

y

x

TURN
HERE

TURN
HERE

Fig. 4.1  Graph of a 
function—the dynamic 
scenario of the hiker
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as “a hiker” (the story of a person who needs a map to know where to 
turn to reach her destination).

In the next section we will consider the question how exactly the 
small spatial stories help us avoid the circularity of the “rigorous” 
definition.

4.7  �Structured Small Spatial Stories vs. Circularity 
of the Definition

The small spatial stories so far (the carrier, the matchmaker, the hiker) 
seem to work very well as the conceptual ground for mathematical 
mapping, and they do not result in circularity. And this is because they 
are structured and inherently ordered, and there is no need to intro-
duce “order” or “ordered pair” as a primitive, undefined notion. Every 
small spatial story contains actors/agents, actions, and objects/
patients. Actors/agents carry out the actions according to a certain 
scenario. The carrier transports x to y, the rule associates x with y, and 
the hiker travels from x to y. Mathematical mapping, for its integrity, 
must forever remain a projection of (a conceptual integration network 
built on) a small spatial story. None of those stories, let us repeat, 
require pre-ordered pairs (the source of circularity) because the sce-
nario introduces order. For example, when the carrier transports an 
object (number) to a certain spot (also a number), we know which of 
these numbers is the x (argument) and which is the y (value) because 
they occupy different slots in the scenario—x is the object being car-
ried, and y is the goal of the path. Similarly, in the matchmaker story 
(Ms Rule), x is the client and y is the partner that  the matchmaker 
finds for the client. The Cartesian plane story is even more explicitly 
structured—x is on the horizontal axis, and y is the point we can find 
on the vertical axis if we turn at the right point. Mathematical map-
ping can only be understood through a dynamic scenario or as a blend 
of a number of dynamic scenarios—in other words, through small 
spatial stories. I do not think it is a coincidence that Herstein declares 
the static (circular) definition to be “almost never used” and prompts 
for a dynamic scenario instead. This is what quoted above Stanisław 
Leśniewski, the creator of the “theory of parts” (mereology), meant as 
“the reality-oriented imperative of the intuitive truth” (1913: 167).

4  Mappings
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Summary
Table 4.1 summarizes the traces of small spatial stories (actors, 
objects, actions) and conceptual integration we discovered by analyz-
ing the description of mapping in Herstein’s Topics in Algebra (1975). 
We have found three distinctive small spatial stories contributing to 
the construction of the meaning of mapping, and we have learned that 
mathematicians can switch between the small spatial stories they use 
or even have their preferred ones (cf. Sect. 4.5). We have also come to 
a rather surprising conclusion that the primitive concept of “order” 
(“ordered pair”) is in fact a mapping, which renders the official defini-
tion of a mapping circular; however, we argued that circularity is an 
inherent feature of human thought process, due to the bi-directionality 
of mapping in the conceptual integration network. An ordered pair is 
only one of the possible inputs in this network, the others are the set, 
and the small spatial stories mentioned above. The seemingly bound-
less fecundity of mathematics (and other areas of human creativity) 
confirms that circularity does not equal redundancy.

Now that we have discussed both the set and the mapping; we are 
ready to move on to the theory of groups because the shortest charac-
terization of a group is “a set with a mapping.” In fact, historically, the 
prototype of a group was a set of mappings (“permutations”), the so-
called “symmetry group.”2

2 Symmetry group is the set of all one-to-one mappings (also called “permutations”) of a set S onto 
itself, in Herstein’s handbook marked as A(S).

Table 4.1  Elements of small spatial stories and traces of conceptual integration 
found in the narrative of the mathematical mapping

Objects Numbers, elements of sets
Actors The carrier, the matchmaker, the hiker
Actions Carrying, associating, moving from x to y
Image schemas Source-path-goal, compulsion, link, matching, 

superimposition, diversion, object, container, process
Conceptual 
blending

Input spaces of the conceptual integration network can 
contain ordered pairs, points on the plane, carrying objects, 
associating objects, motion along a path. The circularity of 
the “rigorous” definition may reflect the circularity inherent 
in the process of blending. In any conceptual integration 
network, the mapping is bi-directional

4.7 � Structured Small Spatial Stories vs. Circularity of the Definition
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Chapter 5
Groups

5.1  �Overview

As in the previous chapters, we will follow the narrative of algebra to 
see how mathematical meaning emerges from small spatial stories 
and conceptual blending. This time we will focus on the narrative of 
the group theory considered to be one of the most beautiful areas of 
algebra (especially for the finite groups). This is how the chapter on 
group theory begins in Herstein’s handbook:

In this chapter we shall embark on the study of the algebraic object known as 
a group which serves as one of the fundamental building blocks for the sub-
ject today called abstract algebra. [...] In abstract algebra we have certain 
basic systems which, in the history and development of mathematics, have 
achieved positions of paramount importance. These are usually sets on whose 
elements we can operate algebraically-by this we mean that we can combine 
two elements of the set, perhaps in several ways, to obtain a third element of 
the set. (1975: 26).

We learn that an algebraic operation (e.g., like addition) can “com-
bine two elements to obtain a third element.” We had “combining” in 
Chap. 3 but as an operation on sets (the union of sets), not elements. 
The elements, objects in a collection, could never be combined. The 
notion of “a union of elements” simply does not exist in the set theory. 
This time it is a different type of combining—combining through 
mapping by creating the so-called ordered pairs we discussed in 
Chap.  4. Another actor, a craftsman again, is able to combine ele-
ments. We will learn later that one of the basic features of algebraic 
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operations (like the already mentioned addition, or multiplication, 
division, etc.) is that they “stay within the set.” For example, if we add 
two integers, the result is also an integer. Interestingly, when combin-
ing two numbers (2  +  3  =  5), we “obtain” a third number. So we 
“obtain” an already existing element, or rather we obtain a token of it, 
which then becomes one with itself. And we have seen this tokeniza-
tion in the previous chapter, when we discussed conceptual blending 
in connection with the “=” sign—the relation of equality (identity). 
And in the same sentence, we learn that there are “different ways” of 
combining. And each of those ways will require a different special-
ized craftsman. We can call them the adder, the subtractor, the multi-
plier, and the divider. New actors and traces of conceptual integration 
in one sentence—a promising start of a new chapter.

Let us enjoy one more fragment of Herstein’s introduction to the 
group theory, in which he explains what “good mathematics” is.

We should like to stress that these algebraic systems and the axioms which 
define them must have a certain naturality about them. They must come from 
the experience of looking at many examples; they should be rich in meaning-
ful results. One does not just sit down, list a few axioms, and then proceed to 
study the system so described. This, admittedly, is done by some, but most 
mathematicians would dismiss these attempts as poor mathematics. The sys-
tems chosen for study are chosen because particular cases of these structures 
have appeared time and time again, because someone finally noted that these 
special cases were indeed special instances of a general phenomenon, because 
one notices analogies between two highly disparate mathematical objects and 
so is led to a search for the root of these analogies. (Herstein 1975: 26).

Axioms must have “naturality.” Have we finally found an algebra 
handbook based on the concept of embodied cognition, the central 
idea of cognitive linguistics, and cognitive science?1 The next sen-
tence certainly does not quash this hope: “experience of looking at 
many examples,” “meaningful results,” etc. But, unfortunately, when 
we read the reminder of the above passage, there is no hope left for 
Herstein’s book joining the canon of cognitive science. The passage 
ends with “search for the root of these analogies.” And by “root,” 
Herstein means axioms. He believes mathematical truths are already 
out there (like Platonic forms); we just have to find the preexisting 
rule—the correct axiom.

1 cf. Sect. 2.2.1
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Mathematical beauty is a derivative of understanding and of grasping 
the meaning of axioms, theorems, and proof. Mathematical beauty 
follows mathematical truth. And our book is about the construction of 
mathematical meaning (based on conceptual blending, with small 
spatial stories as the input), so there is a clear connection. And in this 
chapter, we will try to grasp them both: truth and beauty of mathemat-
ical groups. The two previous chapters prepared us for it because, as 
we will see in the following section, the definition of a group is based 
on the notions of a set and a mapping.

5.2  �The Definition of a Group and the Story 
of the Matchmakers

This is how a group is defined:

DEFINITION A nonempty set of elements G is said to form a group if in G 
there is defined a binary operation, called the product and denoted by ·, such 
that

1.  a, b ∈ G implies that a· b ∈ G (closed).
2.  a, b, c ∈ G implies that a· (b·c) = (a·b) ·c (associative law).
3. � There exists an element e ∈ G such that a· e = e ·a = a for all a ∈ G (the 

existence of an identity element in G).
4. � For every a ∈ G there exists an element a-1 ∈ G such that a·a- 1 = a-1 ·a 

= e (the existence of inverses in G). (Herstein 1975 : 28)

We learn that “a set forms a group.” So in this case, the set is an 
actor or perhaps rather a metonymic reference to an actor who forms 
something out of a set. For this actor, the set is a rough material out of 
which something new is formed. The craftsman (agent) has to per-
form certain actions before the rough material becomes a finished 
product. And the group-forming procedure includes defining a binary 
operation, which has the specified features. The binary operation is a 
mapping, which we studied at length in the previous chapter. A map-
ping, as we established and Herstein (1975: 10) confirmed, can be 
“thought of” in many different ways. Herstein’s preference was to 
think of it as a “rule which associates elements.” This associating rule 
is another actor, which we chose to call “the matchmaker.” In our 
mathematical narrative, we now have an actor/agent—the match-
maker. But not just any kind, the interview procedure is very strict. 
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This matchmaker must be able to do her job (connecting elements) 
according to four given rules—the group axioms.

Before we concentrate on the rules to follow, let us just add that, in 
fact, a second actor is also involved in the process of group forming—
another matchmaker. To avoid confusion and also tell our tale of group 
formation in chronological order, we will call her “matchmaker1.” 
The job of matchmaker1 is to match all the elements of the rough 
material set G (not yet a finished group) in ordered pairs to form the 
Cartesian square G × G. And when this semifinished product is ready, 
matchmaker2 will associate each ordered pair with another citizen 
(element) of the set. To summarize, two actors/agents operate on the 
rough material of the set G: matchmaker1 and matchmaker2. Each of 
them has specialized tasks. Matchmaker1 associates all the elements 
of G into ordered pairs, and matchmaker2 associates each of those 
pairs with another element. Of those two, matchmaker2 has the tough-
est job—not only to perform the matching but to do that according to 
four strict rules.

The first rule matchmaker2 must follow is never to look for a match 
outside the set. The set is “closed” with regard to her actions; G is an 
isolated community allowing only “internal” marriages (or rather tri-
angles)—exogamy strictly forbidden.

Rule number 2, “the associative law” of the realm G is, as laws 
often are, quite complicated although the notation is very simple and 
familiar; we associate it immediately with multiplication. And we 
remember from primary school that we can use the brackets however 
we want without changing the “result.” What does it mean for match-
maker2? The match for (a,b) is (a·b), and now this match can also be 
matched with another element—c. And the result of this new match is 
(a·b)·c. But the order of matching can change, and the couple (b, c) 
can be matched first with (b·c), and then the result of matching ele-
ment a with it would be a·(b·c). And it has to be the same as the result 
of the previous match, where the first two clients (a and b) were 
matched first. So, whenever there is a group of three clients—a,b,c—
matchmaker2 must remember that the order of matches does not mat-
ter; the final match—a·b·c—must always be the same.

Rule number 3 requires that there exist a special element in G (an 
equivalent of 1 for multiplication or 0 for addition) such that the cou-
ple (a,e) or (e,a) is matched to a again. Element e is “Mr. Cellophane” 
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(from Chicago2); you can “look right through him, walk right by him, 
and never know he is there.”

Our Mr. Cellophane also features prominently in Rule 4. 
Matchmaker2 must always be able to find a mirror-opposite of element 
a—an anti-a—such that when they are matched as a pair, the result is 
null, void, and cellophane (0 in addition, 1 in multiplication, etc.).

The next chapter contains the first hint of mathematical beauty for 
finite groups.

5.3  �Abelian Groups, Finite Groups, and the Beauty 
of Mathematics (Part 1)

Definitions of abelian groups and finite groups follow, with Herstein’s 
commentary.

DEFINITION A group G is said to be abelian (or commutative) if for every a, 
b ∈ G, a·b = b·a. A group which is not abelian is called, naturally enough, 
non-abelian; having seen a family of examples of such groups we know that 
non-abelian groups do indeed exist. Another natural characteristic of a group 
G is the number of elements it contains. We call this the order of G and denote 
it by o(G). This number is, of course, most interesting when it is finite [empha-
sis added]. In that case we say that G is a finite group. (Herstein 1975: 28).

On the same page, we will find that “it is not surprising that for 
every nonempty set S the set A(S) is a group. Thus we already have 
presented to us an infinite source of interesting, concrete groups” 
(ibid.). A(S) is a set of all possible one-to-one mapping of S onto 
itself. And on the previous page, we read: “Amongst mathematicians 
neither the beauty nor the significance of  [...]  groups is disputed” 
(ibid.: 27). I have used emphasis in the above quotations to draw the 
reader’s attention to the concept of mathematical beauty—in our case, 
the beauty of groups, especially finite groups. And Herstein is telling 
us that it is not disputed among mathematicians. Only they can see it; 
he seems to be claiming. But the fact that mathematics may be consid-
ered beautiful—and in a moment we, mere mortals, will try to have a 
glimpse of it as well—does not contradict the main claim of this 
book (and many other sources mentioned so far) that mathematics is 

2 http://www.imdb.com/title/tt0299658/, accessed 2016–12-07
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a product of the human mind, because various products of the human 
mind, like art, literature, or music, are considered beautiful as well. 
And we do not need a separate proof that mathematicians are homo 
sapiens (cf. Lakoff and Nunez 2000: 1), so perhaps if they can see the 
beauty of mathematics, so can we? After all, one does not have to be 
an artist to see the beauty in Fig. 5.1 below.

Where does the beauty of finite groups dwell? And, more impor-
tantly, how is it connected to our main subject? In this book, we are 
trying not to skip ahead; notice that (almost) all quotations from 
Herstein’s handbook appear in chronological (increasing page num-
ber) order. And to answer these questions, we need the concepts of a 
subgroup, a coset, normal subgroup homomorphism, and most of all, 
Lagrange’s theorem. Therefore, the subject of mathematical beauty 
will be continued in Sects. 5.7, 5.8, and 5.9.

The next section contains Herstein’s remarks on the objective 
nature of mathematics and also an apology for his (excellent in our 
opinion) book being in parts “rather dull.” And of course, we humbly 
join him in this apology now but only with reference to the present 
volume.

Fig. 5.1  One of the Upper Paleolithic Chauvet cave paintings (https://www.the-
guardian.com/artanddesign/jonathanjonesblog/2014/mar/21/the-10-greatest-
works-art-ever, accessed 2016-12-14)
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5.4  �On the Objective Nature of Mathematics

We (there are evidently some identity, or uniqueness, issues here as 
the book has one, singular author—very relevant for the next section) 
are austerely bent on studying the language of “pure mathematics”. 
But now and then—please forgive us, dear reader—we cannot help 
ourselves and quote one of the “purely narrative” (the quotation marks 
equally justified when we use them for “pure mathematics”—of 
course we have narrative in both cases) fragments of Herstein’s excel-
lent algebra handbook that we have come to like very much. So here 
it comes:

We have now been exposed to the theory of groups for several pages and as 
yet not a single, solitary fact has been proved about groups. It is high time to 
remedy this situation. Although the first few results we demonstrate are, 
admittedly, not very exciting (in fact, they are rather dull) they will be 
extremely useful. Learning the alphabet was probably not the most interesting 
part of our childhood education, yet, once this hurdle was cleared, fascinating 
vistas were opened before us. (Herstein 1975: 33)

Apparently, the mission is to “find facts about groups.” Never mind 
that they have just been defined and called into being by virtue of 
manmade definition.3 We are on a safari now, surrounded by exciting 
animals that we want to observe closely and “find facts about.” Yes, 
mathematics is out there—Herstein is saying—finished, perfect, not 
at all a product of the human mind. Groups would be there whether 
we defined them or not. Numbers and matrices, mappings, sets and 
elements, points on a plane, the parabola, all the equations, 1.7, 1.71, 
and even 8.08, they would all be there even if we weren’t. And how 
kind it is of an author of an advanced algebra handbook to worry 
about it being sometimes “not very exciting” or even “rather dull”? 
But, on the contrary, the sole (one) author of this book—who suffers 
from identity problem and now is looking at himself from above, 
referring to himself in the third person—disagrees. The next bit of 
“pure mathematics” is truly mind-boggling.

3 It is true that groups existed before the “modern” (XIX c.) definition was created 
by Cayley (as sets of permutations, A(S)—the symmetry groups), but those were 
also defined and could also be described as “manmade.”
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5.5  �The Uniqueness of the Group Elements and Conceptual 
Blending

LEMMA If G is a group, then
a. The identity element of G is unique.
b. Every a ∈ G has a unique inverse in G. (Herstein 1975: 33)

The identity element in a group (1 for multiplication, 0 for addition, 
etc.) is unique. So there is only one “1” and only one “0.” There can’t 
be two (or more) 1’s or two (or more) 0’s. And the same applies (from 
point b) to 5 and −5, for example. −5 is unique. But, since 5 is the 
inverse of −5 (with respect to addition), 5 is also unique. And the 
same applies to all integers (they are a group) of course. How can we 
explain this equation then: 1 + 1 = 2. Are there two ones on the left? 
Or are we hallucinating? Or take his one: 1·1 = 1. Three ones? Or just 
one? Let us remember the definition of a group: 1 + 1 is an example 
of a result of an action of a binary operation (matchmaker2) who asso-
ciated the “ordered” (yes, exactly!) pair of (1,1) with number 2. So the 
“uniqueness” problems started then, at the level of definition, in the 
process of the “forming” of the group. Who is responsible for this 
mess? Well of course—there is no doubt—it is matchmaker1. It was 
her job to create the Cartesian square of G × G—the set of all ordered 
pairs (a,b) where both a and b are elements of G.  And one of 
those pairs is (1,1). But look at the symbol for the Cartesian square—
G × G. How many sets G are there? Apparently, at least two. But they 
are the same, unique set. Two of the same. How could we have missed 
it? Easily. We already discussed it in Chap. 3 when we focused on the 
equality sign “=.” Two input spaces containing tokens connected with 
identity relation, tokens that in the blend space are compressed into a 
unique entity. And therefore an object is “one and many” at the same 
time because of course the input spaces do not “disappear” or become 
“disconnected” but instead become part of conceptual integration net-
work which is then “run from the blend.” To quote one of the concep-
tual blending theory governing principles (the web principle): 
“Manipulating the blend as a unit must maintain the web of appro-
priate connections to the input spaces” (Fauconnier and Turner 
2002: 331; cf. also Table 2.2 in Sect. 2.2.5). Given a single and unique 
set G, say {Adam, Jacek}, we construct (matchmaker1 does in the 
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process of forming the group) another token of it and then build 
G  ×  G  =  {(Adam, Adam), (Jacek, Jacek), (Adam, Jacek), (Jacek, 
Adam)}. The Cartesian square set G × G contains pairs of “unique 
elements”—the (a,a) pairs—the so-called diagonal subset. In our case 
those are (Jacek, Jacek) and (Adam, Adam). We construct ordered 
pairs of one unique entity. There is nothing unusual about it; we do it 
all the time, mostly unconsciously.4 And we have just found another 
trace of it in the narrative of “pure mathematics.” And I have just cre-
ated an ordered pair of myself, to facilitate the writing process and 
move on at a faster pace to the next bit of mathematical narration.

Before we proceed with the proof itself it might be advisable to see what it is 
that we are going to prove. In part (a) we want to show that if two elements e 
and f in G enjoy the property that for every a E G, a = a · e = e · a = a · f = f · 
a, then e = f. (Herstein 1975: 33)

It is interesting to notice how the problem of “one and many at the 
same time” is handled in the above quotation. It will be an indirect 
proof, in which the assumption that the opposite of the proposition is 
true leads to a contradiction. What is assumed to be two different ele-
ments—e and f—will be proven to be one element e = f. The contra-
diction then lies in the contrast of two different elements vs. one 
element. In other words, what Herstein is obliquely telling us is when 
e = f they are ONE element. And that there can’t be TWO elements 
that are equal. Otherwise, there would be no contradiction and point a 
of our lemma would not be proven.

And yet group G, as we have seen above, is built on a Cartesian 
product of G  ×  G, which contains, for example, the (e,e) pair, an 
ordered pair of one element (there can’t be two, and it can be proved 
by contradiction). So in this case (and for all other (a,a) pairs of the 
G × G diagonal subset), an ordered pair contains one unique element, 
not two. But somehow, this is not a contradiction.

In the following section, we will take a closer look at the proof of 
the second part of the above lemma—the uniqueness of the inverse 
element.

4 George Mikes did it consciously, however, when he famously wrote “An 
Englishman, even if he is alone, forms an orderly queue of one.”
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5.6  �The Force Dynamics of Mathematical Proof

The proof of part b of the “uniqueness” lemma follows:

Rather than proving part (b), we shall prove something stronger which imme-
diately will imply part (b) as a consequence. Suppose that for a in G, a· x = e 
and a ·y = e; then, obviously, a· x = a ·y. Let us make this our starting point, 
that is, assume that a· x = a ·y for a, x,y in G. There is an element b E G 
such that b ·a = e (as far as we know yet there may be several such b’s). Thus 
b · (a· x) = b ·(a ·y); using the associative law this leads to x = e · x = (b ·a) · 
x = b ·(a· x) = b · (a ·y) = (b ·a) ·y = e ·y = y. We have, in fact, proved that a· 
x = a ·y in a group G forces x = y. (Herstein 1975: 34)

Instead of a proof of part b, we will have something “stronger.” In 
Chap. 3 we already described the small spatial story that is projected 
onto the process of mathematical proof. The actor—let’s give her a 
name, the truth collector—went on her way removing obstacles and 
storing them at the same time in her repository of mathematical truths 
on her way to a QED goal. And now we learn that a proof possesses 
strength and is therefore capable of forceful interaction. Weaker 
(lesser) proofs “follow” from “the stronger ones.” A proof, which is at 
the same time an element of the collection owned by the truth collec-
tor, can “force” another truth/proof. We have forceful interactions 
between mathematical proofs, and using one of them leads to conse-
quences—the balls hit other balls which then start to move and on 
their way force other balls into motion until finally the red ball (the 
proposition) goes straight into the pocket. Yes, it is a billiard ball game 
of force and motion, of objects interacting with other objects, exerting 
force, and causing motion, yet another small spatial story and its pro-
jection in the narrative of mathematics.

In the next section, we will continue our pursuit of mathematical 
beauty, after introducing the concept of a subgroup and formulating 
the famous Lagrange’s theorem.

5.7  �The Subgroups, Lagrange’s Theorem, and the Beauty 
of Mathematics (Part 2)

In general we shall not be interested in arbitrary subsets of a group G for they 
do not reflect the fact that G has an algebraic structure imposed on it. Whatever 
subsets we do consider will be those endowed with algebraic properties 
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derived from those of G. The most natural such subsets are introduced in the 
DEFINITION: A nonempty subset H of a group G is said to be a subgroup of 
G if, under the product in G, H itself forms a group. (Herstein 1975: 37)

We learn “G has an algebraic structure imposed by it.” Which is 
true of course, two skilled individuals are involved. Matchmaker1 
built the Cartesian product of G × G creating all couples (a,b), and 
then matchmaker2 (the binary operation), following certain strict 
rules, created triples by matching each couple in G × G with another 
element of G. Group G is now a well-structured society, not just a 
shapeless set G, which only served as rough material from which the 
group was formed. And a subgroup must also be thus structured, must 
have the structure “imposed on it,” or must be “endowed with alge-
braic properties derived from those of G.” So no more busy hammer-
ing now; all is built and finished already; we just have to spot an 
independent and self-reliant substructure.

We mentioned above that to try to see the beauty of mathematics, 
we need the notion of a subgroup. So far, there is nothing particularly 
beguiling about it—a self-reliant, closed substructure of a larger struc-
ture, like a hospital wing, for example, part of the hospital but with its 
own power supply, entrances and exits, skilled staff, management, etc. 
Impressive perhaps, but not particularly beautiful. But then comes a 
series of lemmas that lead to the so-called Lagrange’s theorem. And 
on the way to it, we learn about “right and left cosets.” A very simple 
notion, a coset of H is Ha, that is, all the elements we get when we 
“multiply” (multiplication is just one example of a binary operation 
but let’s stay with this simplification for a while) any x in H by an ele-
ment a which is in G. Ha and aH are examples of right and left cosets 
of H, respectively. And we learn many things about cosets. For exam-
ple, they are subsets of G of course because G is a group and therefore 
“closed” with respect to its binary operation. It was part of the defini-
tion or—in our story—part of matchmaker2 job description. 
Matchmaker2 was not allowed to associate ordered pairs in G with 
elements outside G.  It is also proved that any two cosets are either 
identical or disjoint. Additionally, we learn that a union of the disjoint 
cosets of any subgroup H in G equals G, which means that those 
cosets “cover” the whole group. And also that “there is a one-to-one 
correspondence between any two right cosets of H in G” (Herstein 
1975: 41). And one-to-one correspondence means that they have equal 
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number of elements. But, since He = H (e is the identity element, like 
1 in multiplication) is also a coset, all cosets have exactly o(H) ele-
ments and are “of the order of H,” i.e., have the same number of ele-
ments as H.

Equipped with all those “facts” about subgroups and cosets, we 
are now just one step ahead of formulating the famous Lagrange’s 
theorem, which is considered beautiful by mathematicians, and we 
will quote it in a moment, but the beauty is not only contained within 
a very simple and concise statement (which is coming) but the whole 
dramatic build up to it; all the features of subgroups and cosets we 
have just enumerated. And we will see it in just one moment, but first 
we must realize that beauty cannot be defined (even mathematicians 
know it). Beauty is a holistic impression—which sounds dangerously 
close to a definition. Let us not go there. Instead, let us use an exam-
ple. In art galleries we rarely see people with their noses touching the 
paintings—and not only for security reasons but because we usually 
want to “take the whole painting/picture in.” We can stay with each 
of the details separately, but then we want to see them all as a sum; 
we “look at the painting.” And the quotation marks in the previous 
sentence are justified because by “looking” here we mean an “active 
search for beauty.” And we are on the border of overusing quotation 
marks. Any moment now, if we do not want to get lost in the hopeless 
task of defining beauty, we will have to say “you know what I mean.” 
And this is the moment, dear reader. If you ever enjoyed a painting or 
a sculpture in an art gallery, you know what I mean.5 Up to now, in 
this non-finite paragraph, we have been looking at details (noses 
close to the canvas). It is time now to step back and take the whole 
painting in.

I will consciously use a parable now. A parable of looking through 
a kaleidoscope. As with any parable, we will try to understand one 

5 It seems so “unmathematical,” doesn’t it? How can we hope to say anything of 
value about mathematics, if we use phrases like this? But notice that mathematical 
narrative contains exactly the same phrase (“you know what I mean”) in many 
places. And we have already seen three examples in Chaps. 3 and 4: the set, the ele-
ment, and the ordered pair. They are never defined and we call them “primitives” or 
“primary notions.” So anytime such undefined term is used, what we really have in 
the narrative of mathematics is something like: “and a set/element/ordered pair is....
erm... you know what I mean.”
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story through another. In our case, the story of Lagrange’s theorem for 
finite groups through the story of looking through a kaleidoscope. In 
The Literary Mind, Mark Turner wrote that “parable serves as a labo-
ratory where great things are condensed in a small space. To under-
stand parable is to understand root capacities of the everyday mind” 
(1996: 16). Story and projection (mapping)—the basic ingredients of 
parable, “the root capacities of the everyday human mind”—have 
been with us at every stage of our analysis of mathematical narrative 
so far. And they will not leave us even when we dare to try to see the 
beauty of mathematics. So, finally, here it comes (Table 5.1).

We have not defined or proved anything. It was just another para-
ble, a subjective impression of one reader of mathematical narrative. 
And we have not even seen Lagrange’s theorem yet, so here it comes. 
But we may think of it as just an artist’s signature on a finished work 
of art.

If G is a finite group and H is a subgroup of G, then o(H) is a divisor of o(G).
(Herstein 1975: 41)

So, for example, if G has ten elements, any subgroup H of G can 
have one, two, five, or ten elements, because only 1, 2, 5, and 10 are 
divisors of 10. But we knew it already of course; it is just a sum of 
details we enumerated above. Let’s remember them again:

If H is a subgroup of G

•	 Each coset of H (Ha or aH) has the same number of elements as H.
•	 The cosets of H are either equal or disjoint.
•	 The cosets of H cover the whole group G.

What we have above is decomposition (division) of G into equal, 
disjoint parts, each of the order o(H). A kaleidoscope image known as 
Lagrange’s theorem. And there the beauty dwells.

Table 5.1  The kaleidoscope parable

The kaleidoscope Lagrange’s theorem
A few bits of colored glass inside a tube The symmetrical structure of group G
Look inside through symmetrical mirrors Find a subgroup, H
Just turn a few times, left or right, by any 
angle—doesn’t matter

Just multiply H a few times, from the 
left or from the right, by any element 
of G

To see perfect, stunning symmetrical 
shapes covering your whole visual field 
(Fig. 5.2)

To see equal, disjoint, symmetrical 
cosets covering the whole group
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Fig. 5.2  A kaleidoscope image

Stunning as it already is, we have not seen all of it yet. Let us keep 
looking at the kaleidoscope image to see even more symmetries. But 
first we need one more simple notion—the so-called normal subgroup.

5.8  �Normal Subgroups and the Beauty of Mathematics 
(Part 3)

DEFINITION A subgroup N of G is said to be a normal subgroup of G if for 
every g ∈ G and n ∈ N, gng−1 ∈ N. (Herstein 1975: 50).

For example, for abelian groups (where the order of “multiplication”6 
does not matter), any subgroup is a normal subgroup. And normal 
subgroups have many exciting features, and one of them is that the 
product of any two right cosets is also a right coset. So we can say that 

6 For simplicity, we use the familiar term of “multiplication” to denote the group 
binary operation.
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the set of right cosets is “closed” with respect to multiplication. Does 
it remind us of anything? Of course—matchmaker2. One of the rules 
she had to follow when “forming” a group was never to “leave” the 
group and never to associate outside the group. The group must be 
closed under its binary operation. It was part of the group definition. 
This is where the author of our (now definitely favorite) algebra hand-
book gets really excited and starts using exclamation marks. “The 
product of right cosets is a right coset. Can we use this product to 
make the collection of right cosets into a group? Indeed we can!” 
(Herstein 1975: 51). And then of course, a proof follows.

Herstein did not explain using the exclamation mark nor did he say 
anything about beauty (he mentioned it only once, many pages before, 
and only as a general reference to finite groups). But we know why he 
used it. Let us explain. What does it mean for our kaleidoscope image? 
We have just said that all those lovely cosets, which are equal and 
disjoint and cover the whole group, are also a group! And now I am 
excited and using exclamation marks. They also have the symmetry of 
a group. There is a second level of symmetry to the image. Not only 
is the group neatly and symmetrically divided into disjoint and equal 
cosets but those cosets have their own structure. They are also a group. 
A group of cosets. They are a group of equal and disjoint subsets of 
G. But this is not the end of it, because this new group, the “second 
level” group, has the same symmetry as G. So it can now be “covered” 
with its own “second level cosets.” But of course, those “second level” 
cosets (cosets of cosets) are also a group. So there is now a third level 
of symmetry, etc. And it never ends. What we have here is “infinite 
symmetry.” Well, almost—remember we are talking here of finite 
(and also abelian, to simplify the image) groups. So there is a finite 
number of symmetry levels. But finite can mean any number. So now 
try to imagine a kaleidoscope image with 2016 levels of symmetry, 
for example. And this is exactly why the exclamation mark was used 
by Herstein! And by me, in the previous sentence. And there even 
more beauty dwells. Beauty that is accessible to anyone, not only 
mathematicians. We just need to make a little effort and go the gallery 
or pick up a kaleidoscope.

5.8 � Normal Subgroups and the Beauty of Mathematics (Part 3)
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Truth be told, we have not seen all the symmetries yet of the almost 
infinitely7 intricate kaleidoscope image above. To see even more, we 
need another crucial mathematical notion—the homomorphism.

5.9  �The Homomorphism

5.9.1  �Homomorphism and the Carrier Story

If there is one central idea which is common to all aspects of modern algebra 
it is the notion of homomorphism. By this one means a mapping from an 
algebraic system to a like algebraic system which preserves structure. We 
make this precise, for groups, in the next definition.

DEFINITION A mapping φ from a group G into a group F is said to be a 
homomorphism if for all a,b ∈ G, φ(ab) = φ(a) φ(b). (Herstein 1975: 54)

Homomorphism as we learn is a mapping. As we remember from 
Chap. 4, there are “many ways of thinking about” a mapping. Herstein 
“prefers to think of it” as a rule that associates elements—a match-
maker. But we also saw that mapping can be understood parabolically 
as the story of “a carrier”—an actor  who carries elements of sets 
“onto” other elements, for example, the “particular mapping which 
takes every real number onto its square” (Herstein 1975: 10). So let us 
use our freedom of choosing various “ways of thinking” about map-
pings and consider homomorphism as a carrier. The (typical for any 
definition of a mapping) use of the prepositions above—“A mapping 
φ from a group G into a group F”—certainly prompts for the choice of 
the scenario of carrying objects from one place into another. And the 
path along which objects are being carried is a vital part of this small 
spatial story which is then projected onto the story of a mathematical 
mapping.

7 Finite, as we mentioned, can mean any number—however large—which of course 
begs the question of what non-finite is. But because we are trying not to jump ahead 
in this book, we will address this question later, when the mathematical narrative 
takes us to it. For now, let us use the following excellent definition by Douglass 
Adams. “Infinite: Bigger than the biggest thing ever and then some. Much bigger 
than that in fact, really amazingly immense, a totally stunning size, ‘wow, that’s 
big’, time. Infinity is just so big that by comparison, bigness itself looks really 
titchy. Gigantic multiplied by colossal multiplied by staggeringly huge [...].”
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But homomorphism is not just any mapping; it “preserves 
structure.” And preserving structure, just like the use of the preposi-
tions above, also prompts for “the carrier story.” Let us concentrate 
for a moment on the concept of preserving structure. The first mean-
ing in the Google Dictionary is “to maintain (something) in its origi-
nal or existing state.”8 So we can imagine a millionaire buying a castle 
in Scotland to have it rebuilt on his estate in California or better on his 
other estate in Ohio, because it snows there from time to time, which 
will make the “new” castle look even prettier and more authentic. And 
the carrier/builder is employed to take down the Scottish castle brick 
by brick, carry it to Ohio, and rebuild it there as a perfect replica—
preserving the original structure.

Let us take closer look at the “original structure” of the group. As 
we remember, two matchmakers were involved in the process of 
building (forming) of the group G.  Matchmaker1 built the set of 
ordered pairs, the Cartesian square of G × G. And then matchmaker2 
associated each of the pairs with another element of set G, following 
the four group definition rules. So the group is in fact organized in 
triples. For example, 2 + 3 = 5. The ordered pair of (2,3) is associated 
with number 5 (integers with addition are a group). And it’s an ordered 
pair of ((2,3),5).9 A pair where the first element is also a pair. And this 
is how the Scottish castle of G is built, and the Ohio castle of F must 
be built in exactly the same way. Let us call our particular “castle” 
homomorphism “OH” (like the Ohio state abbreviation). And imagine 
2,3, and 5 are the bricks (or numbers of particular bricks) of the 
Scottish castle, and the bricks, when carried to Ohio and stamped by 
US customs, are now OH(2), OH(3), and OH(5). Our carrier builder 
must remember that brick 2 was first mortared to brick 3 and then the 
already mortared pair was mortared to brick 5. This was the original 

8 https://www.google.pl/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-
8#q=preserve%20meaing, accessed 2016-12-20.
9 Following Herstein (and most other handbooks of mathematics), here is a task that 
the reader can solve. One of the ordered triples in the Scottish castle is ((1,1),2). But 
each number of course (number 1 included) indicates a unique brick. There is only 
one brick bearing number 1. Task: please explain why the Scottish castle is still 
standing strong, despite there being evidently a missing brick (the second number 1 
brick). In fact, by analogy, many bricks are missing—consider ((2,2),4), ((3,3),6), 
etc. Hint: read the first part of Chap. 4 again.

5.9 � The Homomorphism
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structure. To preserve the structure and rebuild the castle as a replica, 
OH(2) must be mortared to OH(3), and then both bricks as a mortared 
pair must be mortared to OH(5). And, as we saw in the previous sen-
tences, a lot of mortaring is required. So the Ohio triple building block 
must have this structure: ((OH(2),OH(3)),OH(5)). And this is exactly 
what the definition of homomorphism says because we can now 
write OH(2)  +  OH(3)  =  OH(5) or, to see it even more clearly, 
OH(2 + 3) = OH(2) + OH(3) (φ(ab)=φ(a)φ(b)).

We will now repeat the same tale of homomorphic castles using a 
matchmaker parable, which as we mentioned is Herstein’s preferred 
way of thinking about a mapping.

5.9.2  �Homomorphism and the Matchmaker Story

This tale is almost identical with the previous one but with one cru-
cial difference: the other structure must be already there, built sepa-
rately from Ohio bricks that were baked from native Ohio clay in a 
Cleveland brickyard. And what matchmaker5 (let’s call her that, 
we’ll explain in a moment) would be doing is simply checking 
whether all the bricks in Ohio were mortared correctly, preserving 
the original (still existing) Scottish structure, and whether indeed 
OH(2 + 3) = OH(2) + OH(3), which is just a notation for the follow-
ing brick connections: ((OH(2),OH(3)),OH(5)). And we may now 
see why Herstein prefers to think of a mapping as a rule (a match-
maker) associating elements. It is because this particular parabolic 
projection works much better here. It simply matches the definition 
better because in the definition, F is already a group, a finished castle, 
which means that, as with any group, two Ohio matchmakers had to 
form it—matchmaker3 and matchmaker4. And they had to do this 
job before matchmaker5 (the number obvious now) could start check-
ing the quality of the replica castle. Yes, homomorphism is just a 
building quality check. So we must be very careful which of the pos-
sible many “ways of thinking about” a mapping we choose if we 
want our small spatial story to match the definition of a homomor-
phism. And the fact that Herstein himself uses the word “preserve” 
and that we have the standard “from” and “into” in the definition 
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does not make this task easier, because as we noticed earlier, those 
words prompt for the “carrier” story. And in the carrier story, the 
homomorphism (i.e., the carrier) starts working before the other cas-
tle is ready. In fact, this actor builds the new castle. And this is a 
mismatch, because in the definition, castle F, the Ohio castle, is 
already built (F is a group).

And this is exactly why mathematics is sometimes so difficult to 
learn. It is not just the complexity of it but the natural language used 
in the description (“preserve”) and in the definitions (“from,” “into”). 
Natural language which prompts us to pick up an incorrect small spa-
tial story to project, which is of course vital because, as we are trying 
to convince the reader in every section of this book, small spatial sto-
ries and conceptual integration are crucial for understanding anything. 
If we pick the wrong story, we will understand homomorphism but 
just not the way mathematicians do. And they know which one to 
pick; Herstein told us (even if a touch obliquely and in a different 
chapter) of his preference for matchmaker (rule that associates ele-
ments). Unfortunately, not all algebra handbooks are as excellent as 
his. What we need in mathematical education is recognizing the cru-
cial role of small spatial stories and conceptual integration for under-
standing and then applying this insight in the new handbooks.

Before we proceed to the summary of Chap. 5, let us take a final 
glimpse at the kaleidoscope beauty of finite groups.

5.9.3  �Homomorphism and the Beauty of Mathematics (Part 4)

LEMMA Suppose G is a group, N is a normal subgroup of G; define the map-
ping φ from G to G/N by φ(x) = Nx for all x ∈ G. Then φ is a homomorphism 
of G onto G/N. (ibid., 56)

We learn that if N is a normal subgroup (and for abelian groups, any 
subgroup is normal as we mentioned above), group G is homomor-
phic with the set of right (and left of course) cosets G/N, which means 
that group G has the same structure as the set of equal and disjoint 
cosets of N that cover it. The group of cosets is a “replica castle” of 
G. So not only can we have 2016 (or more) levels of symmetry in our 
kaleidoscope image but each of those levels is a mirror (homomorphic) 
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image of G. So we can have any number of “nested” symmetry levels 
but all those levels of symmetry have the structure of G.10 And what 
was G again? A castle in Scotland of course. And in the kaleidoscope, 
this castle is covered with equal disjoint smaller castles (cosets of N). 
But the set of cosets is also a castle. And it is homomorphic with 
G. And this new (Ohio) castle is covered with equal disjoint smaller 
castles, and just repeat the process 2016 times to “get the picture”—
the finished kaleidoscope image of Lagrange’s theorem (Fig. 5.2).

Summary
In this chapter, we followed the mathematical narrative of the group 
theory. And of course, as in the previous chapters, we found the tell-
tale traces of the way mathematical (i.e., human) mind works and 
creates. For example, we closely observed how two busy individuals 
(matchmaker1, matchmaker2) form a group (build a castle) out of the 
rough material of a set. We then followed all the consequences of it. 
And while following them, we did not reject “impressionistic reading 
and imprecise intuition” (Stockwell 2002: 6) and dared to say a few 
words about the beauty of mathematics or, more specifically, the 
beauty of finite groups expressed by Lagrange’s theorem—one of the 
many gems of the group theory, each of them separately and uniquely 
beautiful. Not for a moment (not even when we tried to capture the 
elusive mathematical beauty) did we stray from our main subject, 
which is to see how small spatial stories and conceptual blending 
make mathematics meaningful and effective in modeling our world 
(Table 5.2).

As in Chap. 3, we came across the “one and many at the same time” 
problem. A fascinating feature that this time was explicitly addressed 
by the mathematical narrator. The identity element in a group was 
proven to be unique. But at the same time, it is not unique because, for 
example, the ordered pair of (e,e)11 is an element of the group struc-
ture, which includes the Cartesian square of G × G. And yet, due to the 
(mostly subconscious) conceptual blending, this problem is unnoticed, 

10 In our kaleidoscope parable, the group structure of G was a projection of the kalei-
doscope’s symmetrical mirrors. And the kaleidoscope image always reflects their 
symmetry, just like the cosets reflect the symmetry of G.
11 “e” is typically used for the group identity element (e.g., 1 for multiplication, 0 for 
addition, etc.)
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or if it is, it is not considered a contradiction because in our “everyday” 
cognition, objects are one and many at the same time.

We also saw how the language of definitions and their description 
can be misleading, prompting the wrong understanding—making us 
choose the incorrect small spatial story to project. And mathemati-
cians, the authors of the handbooks, always know which small spatial 
story should be used, but they usually do not let us know. And this is 
because story and conceptual integration are not yet considered rele-
vant by mathematicians, which may be one of the reasons mathemat-
ics is considered such a difficult subject.

We will now follow the mathematical narrative into the ring theory. 
And a ring is a group with two binary operations. A typical example 
of a ring is the set of integers with addition and multiplication.

Table 5.2  Elements of small spatial stories and traces of conceptual integration 
found in the narrative of groups

Objects Group elements, ordered pairs, ordered triples, bricks, kaleidoscope
Actors Various matchmakers creating the group structure, the truth 

collector (proof), builders, kaleidoscope user
Actions Matching, mortaring bricks together, creating the Cartesian square 

and binary operation structure, collecting, exerting force, turning 
the kaleidoscope, recreating, preserving the structure, carrying, 
moving

Image 
schemas

Container, source-path-goal, collection, link, object, process, 
compulsion, resistance

Conceptual 
blending

“The one and many problem,” the identity and inverse elements in a 
group—Multiple tokens of a unique object
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Chapter 6
Rings, Fields, and Vector Spaces

6.1  �Overview

In this last stage of our exploration of mathematics, we will analyze 
three more algebraic structures of increasing complexity—rings, 
fields, and vector spaces. Herstein begins his chapter on rings in the 
following way:

As we indicated in Chapter 2, there are certain algebraic systems which serve 
as the building blocks for the structures comprising the subject which is today 
called modern algebra. At this stage of the development we have learned 
something about one of these, namely groups. It is our purpose now to intro-
duce and to study a second such, namely rings. The abstract concept of a 
group has its origins in the set of mappings, or permutations, of a set onto 
itself. In contrast, rings stem from another and more familiar source, the set of 
integers. We shall see that they are patterned after, and are generalizations of, 
the algebraic aspects of the ordinary integers. (1975: 120)

We learn that various mathematical concepts have their “origins.” 
The rings, for example, are “patterned after” the algebraic features of 
“ordinary integers.” And what Herstein is telling us explicitly now is 
that mathematics is constructed like a literary parable—by projecting 
one story onto another. We are to understand one story—the story of 
rings—through another, the tale of integers. This is exactly what “pat-
terned after” means. Herstein continues in the same vein to tell us that 
“the analysis of rings will follow the pattern already laid out for 
groups. We shall require the appropriate analogs of homomorphism, 
normal subgroups, factor groups, etc.” (ibid.). So the story of rings 
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will also be a projection, a mapping from the story of groups. In the 
next quotation, we are reminded of Herstein’s view on what consti-
tutes “good mathematics” (cf. Sect. 5.1).

With the experience gained in our study of groups we shall be able to make 
the requisite definitions, intertwine them with meaningful theorems, and end 
up proving results which are both interesting and important about mathemati-
cal objects with which we have had long acquaintance. (ibid.)

“Meaningful” and “interesting” in this context mean connected 
with “mathematical objects with which we have had long acquain-
tance.” The abstract axioms of rings, fields, and vector spaces must 
account for what we already know about integers, real numbers, and 
groups. The parabolic progression of mathematical narrative mirrors 
the basic pattern of human understanding, as explained by Mark 
Turner in The Literary Mind: “Parable is the root of the human mind—
of thinking, knowing, acting, creating, and plausibly even of speak-
ing” (1996: 168). And the basic patterns of “parabolic thinking” are 
small spatial stories, image schemas, and conceptual integration. Let 
us look for them in the mathematical narrative of rings, fields, and 
vector spaces.

6.2  �Definition of a Ring, Small Spatial Story of Three 
Matchmakers

DEFINITION A nonempty set R is said to be an associative ring if in R there 
are defined two operations, denoted by + and ·, respectively, such that for all 
a, b, c in R:

1.  a + b is in R.
2.  a + b = b + a.
3.  (a + b) + c = a + (b + c).
4.  There is an element 0 in R such that a + 0 = a (for every a in R).
5.  There exists an element -a in R such that a + (−a) = 0.
6.  a · b is in R.
7.  a (b ·c) = (a· b)· c.
8. � a (b + c) = a· b + a· c and (b + c) ·a = b ·a + c ·a (the two distributive 

laws).
(Herstein 1975: 121)

And indeed, as Herstein mentioned above, we recognize all the 
familiar elements of a group definition, and we can see immediately 
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that an associative ring is a group under the “+” binary operation 
(called “addition” henceforth). R is also an abelian group because we 
can add in any order. There is also a second binary operation (called 
“multiplication”—the quotation marks justified because the associa-
tive ring is a generalization of integers and their familiar arithmetic 
operations). And we can see that second operation—the multiplica-
tion—is not defined as a “proper” group operation because neither the 
inverse nor identity elements are required to exist in R. And the two 
operations are connected with distributive laws (point 8) which is also 
familiar and known from primary school as multiplying brackets.

As we mentioned above, the familiar stories of groups and integers 
are now to be projected parabolically on the new story of rings. And 
“familiar” is certainly the key word here. Mathematics is often 
described as “linear,” i.e., you have to master all the previous bits 
before you can move on to the next ones. But if we think of it in the 
context of parabolic projection, there is nothing surprising about it. To 
understand one story through another, we have to be familiar with 
“another.” So this “linearity” only strengthens our conviction that 
mathematics is a narrative constructed a set of parabolic projections.

Notice that this time, the nature of binary operations (the match-
makers, carriers, etc.) is not even mentioned. We are supposed to 
remember them from the story of groups. So let us remember them 
now. Matchmaker1 has to create a set of ordered pairs (a, b), where 
both a and b are in R. It is the Cartesian product (square) of R × R. And 
then matchmaker2 (also known as “addition”) associates each of the 
pairs with a third element of R, following the group rules. But there is 
another matchmaker now—matchmaker3 (the “multiplication”)—
which also associates each ordered pair of R × R with a third element 
of R.  Three cooperating matchmakers. But how exactly do those 
matchmakers cooperate?

6.3  �The Structure of the Ring

6.3.1  �How the Ring Matchmakers Cooperate

How is the ring of R organized? For example, does matchmaker1 have 
to work overtime now and prepare two separate Cartesian squares for 
each of the other matchmakers, or will one suffice? If the second, if 
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only one R × R is created, perhaps, we can think of the ring structure 
as the following triples (or quadruples) now ((a,b),a + b,ab) or maybe 
((a,b), ab, a + b)? And the answer is a resounding NO. What we mean 
is we can think of the ring structure anyway we like, but there is only 
one “proper” (“mathematical”) way allowed here. So, if we want to 
think of it the way Herstein and other brilliant mathematicians do, we 
have to follow the parabolic level-by-level progression of mathemati-
cal narrative very closely. We mustn’t forget any details of the back-
ground stories. So let us go back to the ground floor again (we can use 
the elevator later to return to the ring level). Matchmaker2 and match-
maker3 are two separate binary operations (so the definition above 
says two). And what is a binary operation? A mapping. And what is a 
mapping? Well—as Herstein mentioned before—there are many ways 
of thinking about a mapping. And of course one of the “allowed ways 
of thinking” is the so-called graph definition we discussed in Chap. 1. 
A mapping is a set of ordered pairs. And what is a set and an ordered 
pair? Erm, uh, hmm... And this is where mathematical narrative will 
not help us anymore. Neither the set (also an element) nor an ordered 
pair is defined (cf. Ftnt. 14 in Chap. 2). They are the so-called “primi-
tive” or “primary” concepts (we could add “primordial,” “ancient,” 
“venerable,” and “hallowed” here, but we would still be none the 
wiser—and neither are the brilliant mathematicians). This is where 
mathematics says “you know what I mean”,1 dear reader, as we did 
when discussing the concept of mathematical beauty in the previous 
chapter. We are to rely on our own mettle—on our intuition and expe-
rience with collections and ordered pairs of objects. We went too far 
down now—this the dark, dusty cellar we mentioned in Chap. 3. 
Let’s go back up to the lobby again, where there is light and 
air-conditioning.

And in the lobby we have two binary operations which are two 
mappings, two sets of ordered pairs, and each pair has the following 
structure ((a,b),c). So each of those pairs has a pair as the first element. 

1 One could think that this is where mathematics is weak and fuzzy, a sort of Achilles 
heel of mathematics. Conversely, I think this is exactly where the strength of math-
ematics lies. The undefined primitives give mathematics (via small spatial stories 
and blending) its amazing flexibility and effectiveness. Just as the fuzziness of 
human categories makes them so much more effective and energy-efficient in com-
munication than the Aristotelian categories (cf. Rosch 1978).
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And of course a, b, and c are in R (are elements of set R). Two sets. 
And if we want to imagine them, the best way is to use those oval/
circular shapes—Venn’s diagrams. And there are only three versions 
of those diagrams if we have two sets. The three versions are separate 
shapes, not quite separate (intersecting), or one inside the other. So we 
have all three of them on the I-max 3D Dolby-digital screen of our 
imagination. Let us choose which of them should our camera focus on 
(it is just panning/trucking from left to right at the moment but ready 
to dolly forward and zoom on one of the three images at any time). Let 
us think. Does it ever happen that matchmaker2 and matchmaker3 
(addition, multiplication) perform the same matches? And the answer 
is yes—possibly. For example, 2 × 2 = 2 + 2, 0 × 0 = 0 + 0.2 So the 
image to focus on is this (Fig. 6.1):

Where A is the addition, B is the multiplication, and in the intersec-
tion area, we have, for example, ((2,2),4) and ((0,0),0). And this is 
how the two matchmakers, binary operations (addition, multiplica-
tion) are connected. Sometimes they may find the same match for the 
same couple (and then of course, the couple in question will demand 
a refund from one of them3).

And this is the story of rings so far—three busy matchmakers 
instead of two as it was with groups. In fact, the diagram above 
does not tell all about the connection of the two binary operations—
matchmaker2 and matchmaker3. Axiom 8 of the ring definition 

2 A task for the reader: prove that those are the only integer solutions of ab = a + b.
3 Well, the refund will probably not be granted because (2,2) and (0,0) are not “real 
couples” but just ordered pairs of one unique element (cf. our remarks on unique-
ness in Chaps. 3 and 5). “I am really sorry, Sir, but Wholesome, Threesome & co. is 
an agency for couples, not just one person pretending to be a couple.” On the other 
hand, 0 may get this refund anyway. It pretended to be a couple of (0,0), true, but 
was matched with itself by both agencies. Not fair really, because the “fake couple” 
of (2,2), for example, was matched with a delightful and quite separate character 
called “4.”

A B

Fig. 6.1  Intersecting 
binary operations in a ring
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(multiplying brackets) says, for example, that a(b + c) = ab+bc, which 
means that the binary operations, the matchmakers, do not work inde-
pendently but have to watch one another closely. For example, let us 
imagine multiplication (matchmaker3) trying to find a match for the 
couple of (a, b + c). There is no more freedom now of just calling 
anyone. There is only one choice. The multiplication can only associ-
ate this couple with the match the addition found for the pair of 
(ab,bc), which is of course ab+ac. But it works the other way round 
too, since the equality relation expressed by “=” is symmetric. So 
whenever the addition (matchmaker2) is wondering what to do with 
the couple of (ab,ac), the only choice is the match already found by 
the multiplication for (a,b + c), i.e., a(b + c). So we have three coop-
erating matchmakers, two of them (matchmakers 2 and 3) partially 
intersecting (joined at the hip).

6.3.2  �Ring as a Closed Container, Force Dynamics of Proof

Herstein comments on the ring axioms  (listed at the beginning of 
Sect. 6.2) in the following way:

Axioms 1 through 5 merely state that R is an abelian group under the opera-
tion +, which we call addition. Axioms 6 and 7 insist that R be closed under 
an associative operation ·, which we call multiplication. Axiom 8 serves to 
interrelate the two operations of R.  Whenever we speak of ring it will be 
understood we mean associative ring. Nonassociative rings, that is, those in 
which axiom 7 may fail to hold, do occur in mathematics and are studied, but 
we shall have no occasion to consider them. (Herstein 1975: 121)

We can see in the above that the axioms are also actors capable of 
performing multiple actions—they “serve to interrelate,” “insist that,” 
“merely state,” and sometimes even “may fail to hold.” Axioms speak 
with a variety of voices. It all depends on their mood on a particular 
day. Sometimes it is quiet monotone, when they just indicate things, 
“merely state.” But on other occasions, when they are in a more 
imperative mood, they will (we can imagine) raise their voice and 
“insist” categorically that the matchmakers, busy forming the ring 
structure, behave in a certain way. And as actors, the axioms not only 
speak but also perform physical actions. Actions that require the use 
of force, as in holding objects. We learn, however, that the axioms, 
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just like us, humans, have limited capacity of exerting force. And 
sometimes, try as they may, they “fail to hold.”

“Axioms 6 and 7 insist that R be closed under an associative opera-
tion.” R is a container then and the binary operation is a lid that is put 
on top of it to close it. And it’s all done under the watchful eye of the 
axioms, which insist that the container of R be closed. So instead of 
the Venn’s diagram above, we may now imagine the ring structure in 
the following way (Fig. 6.2).

We also learn that nonassociative rings “do occur in mathematics 
and are studied.” And, as we noticed in Chap. 5, this is indicative of 
imagining mathematics to be external, independent of human cogni-
tion. Mathematical objects are out there, and we are just studying 
them—not as creators but merely as observers. And the next of 
Herstein’s comments on the definition of an associative ring seems to 
confirm it. “It may very well happen, or not happen, that there is an 
element 1 in R such that a ·1 = 1 ·a = a for every a in R; if there is such 
we shall describe R as a ring with unit element” (ibid.). Mathematician 
is a botanist, discovering and collecting various, naturally occurring 
plants. “Natural examples exist where a· b ≠ b ·a. All these run coun-
ter to our experience heretofore” (Herstein 1975: 125).

So far, following Herstein’s guidance of course, we have been using 
the familiar names of “addition” and “multiplication” for the ring 
binary operations. But what about division? We certainly know how 
to divide integers, for example, but the result (3/4 or 7/5, etc.) does not 
have to be an integer. We need a new structure, which will be “closed 
under division.”

multiplication (lid 2)

addition (lid 1)

set R (container)

Fig. 6.2  Ring as a closed 
container
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6.4  �Rings, Fields, and Arithmetic

Heretofore in this chapter, we discussed the definition of a ring, and 
we are just a step away of another crucial mathematical construct (or 
natural species, as Herstein and many others would have it)—the 
field.

Definition A field is a commutative division ring (Herstein 1975: 126),

Where “commutative” means that for multiplication ab = ba and 
“division” means that all the elements but 0 (the addition identity ele-
ment) form a group under multiplication. And the fact that the story of 
rings (and fields now) is a parable of (among others) rational numbers 
helps us immediately to understand why 0 has to be excluded from the 
multiplicative ring. If we went back to the group definition in Sect. 
5.2, we would remember that there would have to exist an inverse ele-
ment 0−1 such that 0·0−1 = 1. And of course no such rational number 
exists as multiplication by 0 always yields 0. A field then has a “dou-
ble-group” structure—it is a group under addition and under multipli-
cation. But it is also a ring, which means that the two binary operations 
are connected in the way we discussed above (the distributive laws—
multiplying brackets). Of course, the set of rational numbers is just 
one example, and we expect, as is the mathematical way, a more gen-
eral theorem and a formal proof. Herstein, as we remember from the 
first section of this chapter, told us explicitly how a good mathemati-
cal story should be written: “make the requisite definitions, intertwine 
them with meaningful theorems, and end up proving results which are 
both interesting and important about mathematical objects with which 
we have had long acquaintance” (Herstein 1975: 120). And this is 
precisely what he does next.

LEMMA 3.2.1 If R is a ring, then for all a, b ∈ R:
1.  a0 = 0a = 0.
2.  a (− b) = (−a) b = − (ab).
3.  (−a)(−b) = ab.
If, in addition, R has a unit element 1, then:
4.  (−l)a = −a.
5.  (−1) (−1) = 1. (Herstein 1975: 126)

The above is certainly meaningful and of long acquaintance to any-
one who knows basic arithmetic. When we first learned it, it probably 
never occurred to us that it can be proven. Why do we need to prove 
something we have known since primary school?
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6.5  �From Set and Element to Arithmetic: The Story So Far

The answer of course is that the familiar story of numbers (integers, 
real, rational, irrational, numbers, etc.) can now to be projected onto 
an infinite variety of all kinds of rings and fields. And not only that, 
mathematicians seem to be constantly to be on the lookout for the 
simplest and the most basic source stories. The source story here is of 
course, looking back at the foundation, set and element. This is how 
our algebra narrative began. The progressions, the narrative projec-
tion stages that we have been analyzing so far, are these: set/element/
ordered pair >> mapping >> group >> ring >> field. What is amazing 
here is that we are about to witness the proof of the most basic rules 
of arithmetic. The proof is ultimately based on the “primary” concepts 
of set and element. So what mathematical narrative is telling us is that, 
for example, (−a)(−b) = ab is a projection of the story of collections—
sets and elements. And, if anyone was wondering what mathematical 
beauty is, here is the answer again. Or a significant part of it.

But how is it possible to get from a collection of objects to 0a = 0? 
It is nothing short of a miracle—one might think. But we have seen in 
this and the previous chapters exactly how it happened. Let us quickly 
summarize the story so far. It started with a collection of objects (ele-
ments in a set). And then a mapping was defined. And it was defined 
as a set of ordered pairs. But ordered pairs are also mappings. So the 
definition is circular and as such does not define anything. Fortunately, 
we were told that there are many ways of “thinking about” a mapping. 
And one of those ways was a story of a matchmaker that associates 
elements of sets. And this is how our story progressed. To create a 
group, two matchmakers had to work on a set, and then one more was 
needed to create a ring. The first of the matchmakers has to create a 
Cartesian square of RxR, which contains ordered pairs (a,b) of ele-
ments in R. And then the other two matchmakers associate those pairs 
with elements of R. Doing that, the matchmakers (addition, multipli-
cation) have to follow a set of rules—the ring axioms (which are basi-
cally the group axioms). And this is it. This is where we are now.

So where is the arithmetic in this story? Well, let us look again at, 
for example, 0a = 0. “0a” is the notation for the element matched by 
multiplication (matchmaker3) to the pair of (0,a). And 0 is the identity 
element of addition (matchmaker2). There is such element and it is 

6.5 � From Set and Element to Arithmetic: The Story So Far

www.Engineeringbookspdf.com



92

“unique”4 in R. So 0a = 0 is a shortcut for saying: matchmaker3 has to 
associate the pair of (0,a) with 0. It is a statement about the way one 
of the matchmakers that create the ring has to work. And this is what 
arithmetic is—rules for, or statements about, the matchmaking asso-
ciations. 1 + 2 = 3 means that addition (matchmaker2) has to associate 
the pair of (1,2) with 3. And that’s all there is to it. So this is how we 
got from sets and elements to arithmetic. There should be nothing 
mysterious about it—just a couple of matchmakers working to rule 
(like, e.g., Republic Act 69555).

6.6  �Multiplication by Zero Equals Zero: Proof as an Actor

Let us now enjoy part of the proof of LEMMA 3.2.1 above. “If a∈R, 
then a0 = a(0 + 0) = a0 + a0 (using the right distributive law), and 
since R is a group under addition, this equation implies that a0 = 0” 
(Herstein 1975: 126). This was fast, wasn’t it? And now, our match-
maker3 (multiplication) knows that the ring axioms (its job descrip-
tion) bound it to associate every (a,0) couple with 0. And this is also a 
rule of arithmetic. And the other proofs, which we need not quote 
here, are equally short and simple, following directly from the ring 
axioms. Or, if we remember our remarks on axioms also being actors, 
this is what the axioms “insist on.” The axioms are the matchmaker 
police; they watch the matchmakers closely and demand the rule of 
law be maintained. At least as long as they can uphold it. Unfortunately, 
as we learned, sometimes they “fail to hold,” and then of course the 
matchmakers run riot and do what they want. Herstein summarizes 
the series of proofs of LEMMA 3.2.1 as follows. “With this lemma 
out of the way we shall, from now on, feel free to compute with nega-
tives and 0 as we always have in the past. The result of Lemma 3.2.1 
is our permit to do so. For convenience, a + (−b) will be written a − b” 
(Herstein 1975: 127). We are reminded of our remarks in the previous 

4 cf. our remarks on uniqueness in Chaps. 3 and 5.
5 Republic Act 6955 prohibits the business of organizing or facilitating marriages 
between Filipinas and foreign men (https://en.wikipedia.org/wiki/Online_dating_
service, accessed 2016-12-28).
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chapters on another actor—mathematical proof—also known as the 
truth collector. This character acted by moving along a path (the path 
of proof) putting objects out of the way.

6.7  �Small Spatial Stories of Addition and Subtraction

6.7.1  �The Small Spatial Story of Jenga Blocks

We learn from the above quotation where subtraction comes from—at 
least in the narrative of modern algebra. It was in fact already part of 
the story of groups, where the inverse element was introduced. 
Subtracting is simply adding the inverse element.

We could use the word “simply” in the previous sentence because 
we have been closely following the story of sets, mappings, groups, 
rings, and fields. But we can imagine that for a school student, when 
they first learn that a − b = a + (−b), it need not be simple. Taking 
away is not adding, is it? And even the inverse element is not some-
thing that could easily be translated into our everyday experience, like 
collections or matching one object with another. What happens with 
the inverse element is that you have an object (number) and then add 
something to it and it disappears. The result is zero, nothing. Adding 
objects, say piling Jenga blocks one on top of another and then taking 
them away from the pile, is the way most of us understand adding and 
subtracting (Fig. 6.3).

And adding and removing (taking away), just like matching, can be 
found in most inventories of image schemas (e.g., Johnson 1987, 
Lakoff and Turner 1989). But it never happens, does it, that when we 
put one block on top of another they both disappear.

And it may seem the above magic trick of disappearing objects 
clashes with Herstein insisting repeatedly that mathematical axioms 
yield results that are “meaningful and familiar.” Well, mathematics 
can be thought of as a narrative, a literary creation structured like a 
parable /blend (projecting/mapping stories onto other stories). So per-
haps we should expect a Lord of the Rings magic component now and 
again. Well, perhaps, but we have not had any magic tricks so far. Our 
story could easily be tied down to small spatial stories and image 
schemas of collections of objects/containers (sets and elements), 
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matching (mapping), and force/motion (axioms, proof). And I will try 
to demonstrate that this image-schematic base of our mathematical 
narrative still holds. And it holds under one condition only: that we 
follow the narrative closely. A magician’s act can only be successful 
if we are not allowed to see all the moves—otherwise the magic dis-
appears. So let us look even closer at the magician’s act. And for that 
we will have to return for a moment to the story of groups.

6.7.2  �Cayley’s Theorem

In this volume we follow the story of “pure mathematics” (algebra in 
our case) as it is told today in modern handbooks, of which Herstein’s 
(1975) Topics in Algebra is an excellent example. However, although 
Herstein’s focus is the state of the art as it is today, sometimes, when 
it feels appropriate, he also mentions the historical roots of certain 
concepts.

Very early in his book, in Chap. 1, after defining a mapping, Herstein 
mentions the set of all one-to-one mappings of a set S onto itself—
A(S). And comments on it in the following way: “Aside from its own 

Fig. 6.3  Adding and 
subtracting (removing) in 
everyday experience
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intrinsic interest A(S) plays a central and universal [...] role in 
considering the mathematical system known as a group” (15). And 
then in Chap. 2, we find the following comment:

When groups first arose in mathematics they usually came from some specific 
source and in some very concrete form. Very often it was in the form of a set 
of transformations of some particular mathematical object. In fact, most finite 
groups appeared as groups of permutations, that is, as subgroups ‘of Sn. 
(Sn = A(S) when S is a finite set with n elements.) The English mathematician 
Cayley first noted that every group could be realized as a group of A(S) for 
some S. (Herstein 1975: 71)

Arthur Cayley, A Lucasian6 professor at Cambridge University, 
was one of the founders of what we call today “modern school of pure 
mathematics.” And that means he helped to bring mathematics from 
the domain of “concrete and specific” into the realm of “purely 
abstract.” And in 1854 he formulated the theorem, mentioned above, 
which was later named in his honor. And “the theorem enables us to 
exhibit any abstract group as a more concrete object, namely, as a 
group of mappings” (Herstein 1975: 72).

The binary operation for this “concrete” group of A(S) is the “com-
position,” also called the “product” of mappings. A very simple con-
cept defined for every x in S as fg(x) = g(f(x)). So the product fg works 
in the following way. First x is taken onto f(x) and then f(x) is taken 
onto g(f(x)). And, we have deliberately used one of the allowed ways 
of “thinking about mappings” we discussed in Chap. 1. We used the 
story of a carrier. And this actor’s job is very simple—to carry an 
object (a set S of objects) from one place to another. And the inverse 
element of f in A(S) is the inverse mapping, which is of course every 
carrier’s nightmare and means that she now has to undo everything 
she has done and bring all the objects, elements of the set S, back to 
their original places, which in mathematical notation is written as 
ff−1(x) = x (for every x in S). So the product of f and its inverse ele-
ment yields the identity element of A(S) which is the identity map-
ping. And the identity mapping is the job every carrier loves, because 
it means doing nothing and still getting paid. In the daily report, the 

6 The so-called Lucasian Chair of Mathematics is considered to be one of the most 
prestigious professorships in the world. Its occupiers over the years were, among 
others, Sir Isaac Newton, Paul Dirac, and—most recently—Stephen Hawking.
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carrier would simply state “I brought every x onto itself” and then go 
and have her tea until it is 5 o’clock. So this is what a group originally 
was—a set of a carrier’s jobs.

6.7.3  �The Small Spatial Story of Three Bricks

To imagine it even better, and to bring the concept of one-to-one 
mappings of S onto itself—A(S)—more to light, let us start with 
imagining S first. S is a set. And what is a set? A collection of objects. 
So let us imagine a concrete collection. Say, three bricks. This is an 
important imagination exercise, dear reader; please bear with me. 
Three separate bricks. And of course we cannot have them hanging in 
the air, so let us imagine three red bricks on a green lawn on a lovely 
summer’s day. And they are lying flat on the grass next to one another, 
10 cm apart, forming a neat rectangle (Fig. 6.4).

This is how we imagine collections of objects. Objects, as we know 
them, occupy space. They can move of course but let our collection be 
a static one. And as we look at our three red bricks on a green lawn, 
we already have them ordered: left, middle, and right; or west, mid-
dle, and east; or 1,2, and 3; or right, middle, and left; etc. Yes, ours is 
an orderly collection. And, as it is a lovely summer’s day, and we have 
nothing better to do, we can now play with those three bricks. For 
example, put the right one in the middle and the middle on the right. 
We are the carrier now. What we just did was a mapping. This is 
exactly what a mapping is—carrying objects from one place to 
another. We can now reverse what we just did and put the middle back 
on the right and the right one back in the middle. This is fun, isn’t it? 

Fig. 6.4  Three bricks on a 
lawn
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What could be nicer than playing with three bricks on a lawn on lovely 
summer’s day. We have just applied an inverse mapping to our set S of 
red bricks. So this is what an inverse mapping (or an inverse element 
in a group) is—taking the bricks back to their original position. And 
we can play with bricks all day of course. One of the many fulfilling 
ways to play with them could be, for example, to lift each of them a 
little and put it back again where it was, without changing places. Yes, 
we carried the bricks but left them where they were. And this was also 
a mapping, a very special kind of mapping—the identity mapping (or 
the identity element in a group). When we changed the position of the 
right one and the middle one and then put them back where they were, 
the result was an identity mapping. Our brick-moves, acts of carrying 
bricks from one place to another are a group. This is the origin of the 
concept. This is where mathematical groups (finite and non-finite) 
come from. We can understand the story of groups through the story 
of bricks. So let us now go back to the group definition from Sect. 5.2 
but look at it as a parable of our three bricks on a lawn.

DEFINITION A nonempty set of elements G is said to form a group if in G, 
there is defined a binary operation, called the product and denoted by·, such 
that (Herstein 1975: 28):

1.  a, b ∈ G implies that a· b ∈ G (closed).
2.  a, b, c ∈ G implies that a· (b·c) = (a·b) ·c (associative law).
3. � There exists an element e ∈ G such that a· e = e ·a = a for all a ∈ G (the 

existence of an identity element in G).
4. � For every a ∈ G, there exists an element a−1 ∈ G such that a·a- 1 = a−1 

·a = e (the existence of inverses in G).

G is now a set of carrier jobs, a set of moves, all the ways we can 
play with our bricks by changing their positions.7 And when we do 
two consecutive brick-moves, what we get is also a brick-move. Are 
bricks moves associative? Yes they are. It can easily be proved but let 
us just have a brick example. Let us play with our bricks some more. 
Imagine the following three moves: move 1 (right, middle), move 2 
(middle, right), and move 3 (right, middle). So what we did was put 
the right brick in the middle and the middle brick on the right. 
Then, in move 2, we reversed it. And then, in move 3, we repeated 
move 1 again. And as a result, the right and the middle brick changed 

7 A task for the reader: prove that there are 1 × 2 × 3 = 6 possible “brick-changing-
places moves.”
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positions. And now let us do the same moves but in different order: 
move 2 (middle, right), move 3 (right, middle), and move 1 (right, 
middle). And, of course, the result is the same. This is what “associa-
tive law” means. Is there an identity element in our brick-moves? Yes 
there is. It’s when we do nothing. Is there an inverse brick-move for 
every brick-move? Yes there is—we just have to put the bricks we 
moved back to their original places.

We can see now how the story of playing with bricks (brick-
moves, also referred to as “permutations”) was projected onto the 
story of groups. And then the story of groups was projected onto the 
story of rings and fields like, say, real numbers with addition and 
multiplication.

6.7.4  �From Bricks to Arithmetic

Let us concentrate on addition (subtraction) because this was the rea-
son for our detour back into the group (brick) theory. Adding two 
numbers means performing two brick-moves. 1 + 2 = 3, for example, 
means that when we perform brick-move 1 and then brick-move 2, 
what we get is brick-move 3. 2 + (−2) = 0 means that when we per-
form brick-move 2 and then put the bricks back as they were again, 
what we get is doing nothing, i.e., the identity element, a zero-move. 
And we already see what negative numbers are as brick-moves—they 
are the reverse moves, the go-back moves. And where’s the magic of 
disappearing Jenga blocks? Gone in a puff of smoke (or brick dust). 
We can now understand both subtraction and negative numbers easily 
through brick-moves. Take 4 + (−6) = 4–6 = −2. What does it mean 
in the language of moving bricks? Easy: perform move 4 and then the 
reverse of move 6, and what you get is the reverse of move 2.

And again, the adjective “easy” was used in the previous paragraph 
because we have seen the connection of “brick-moves” (group permu-
tations) to numbers. A connection definitely present in the narrative of 
modern algebra, where we are prompted, for example, to see real 
numbers as a field, which is a ring, which is a group. And by force of 
Cayley’s theorem, any group is a group of permutations (brick-moves) 
of a certain set, which is a collection of objects that can be carried 
(mapped) “on themselves.” But will it help our school pupil to make 
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sense of 4 + (−6) = −2? And the answer is no it won’t. She will never 
learn of Cayley’s theorem until she is in her second year at Cornell 
University, enjoying Herstein’s advanced algebra handbook. And 
even then, she might easily miss the significance of Cayley’s theorem. 
Even in this book, where we try to follow the narrative of algebra as 
closely as possible and without skipping ahead, we almost missed it. 
It was only quoted as an afterthought, when we puzzled over disap-
pearing Jenga blocks.

Should we perhaps add Cayley’s theorem to primary school cur-
riculum? Certainly not. Let us leave it where it is part of an advanced 
university course. But we could definitely use the idea (implicit in 
Cayley’s theorem and in the “origin” of the group concept) of addi-
tion/subtraction being completely equivalent as a product of map-
pings (permutations), which themselves are acts or carrying objects 
(e.g., bricks). What could be simpler in this context than 1 + (−1) = 0? 
It just means taking (carrying) a brick to a different place and bringing 
it back again. The story of brick-moves. And as a result, the brick is 
where it was and this is what 0 means. And in this way, we would 
apply the core of advanced algebra (Cayley’s theorem) in primary 
school teaching. And we could do that because ever since Where 
Mathematics Comes From8 (Lakoff and Nunez 2000), we realized that 
“cognitive debunking,” demystifying, mathematics is possible.

Yes, mathematics can be demystified and yet stay full of its natural 
(as opposed to supernatural, magical) beauty. The beauty residing in, 
for example, the kaleidoscope symmetry of finite groups (the 
Lagrange’s theorem we discussed in Chap. 5) or just the simplicity of 
the source stories (collections, carrying/matching) which are pro-
jected (as inputs in conceptual integration networks) on the infinite 
number of increasingly complex structures (like groups, rings, and 
fields) in the parabolic narrative of algebra. And when we use the 
phrase “natural,” we don’t mean—as Herstein often implies—that 
mathematics is “out there,” independent of the human mind. On the 
contrary, the beauty is natural because it relies on the natural features 
of human cognition, such as small spatial stories, projection, image 
schemas, and conceptual integration.

8 The full title is of course Where Mathematics Come From: How The Embodied 
Mind Brings Mathematics Into Being.
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6.7.5  �Arithmetic at School vs. Modern Algebra

The mathematics teaching methodology is not the primary focus of 
this volume, but let us say a few more words on the possible practical 
application of our “debunking” of algebra for teaching the concepts of 
addition, negative numbers, subtraction, and zero. They should, in our 
opinion, all be introduced to pupils at the same time (as a complete 
set) because all four of them, as we found above, are be based on the 
primary concept of motion and carrying objects. −2 is just as natural 
as 2—it is just a reverse move. And when we reverse a move, we get 
back to the starting point—and this is what zero is. And what we have 
just said is not just another random way of explaining the mysterious 
mathematical concepts. This is exactly what all group binary opera-
tions (mappings) are. This is the (brick) origin of groups (and, conse-
quently, rings and fields) we found by exploring the narrative of 
advanced algebra.

The traditional method of teaching arithmetic is to start with addi-
tion and then gradually introduce the “more complex” concepts of 
zero, subtraction, and negative numbers. The following examples 
come from a handbook for teachers called Practical Approaches to 
Developing Mental Maths Strategies for Addition and Subtraction9 
based on the insights of a well-known mathematics educator—John 
Van de Walle10—and his 6th edition of Elementary and Middle School 
Mathematics Teaching Developmentally (Van de Walle 2007). The 
book contains the relevant quotations followed by practical tips for 
teachers and exercises that can be used in the classroom.

Occasionally pupils feel that 6  +  0 must be more than 6 because ‘adding 
makes numbers bigger’ or that 12–0 must be 11 because ‘subtracting makes 
numbers smaller’. Instead of making arbitrary-sounding rules about adding 
and subtracting zero, build opportunities for discussing zero into the problem-
solving routine. (Van de Walle 2007: 154)

The ensuing practical advice for the math teacher is to “pose prob-
lems involving zero. For example, Robert had eaten 8 grapes. He was 

9 http://www.pdst.ie/sites/default/files/Mental%20Maths%20Workshop%201%20
Handbook.pdf, accessed 2017-01-03.
10 https://www.nctm.org/Grants-and-Awards/Supporters/John-A_-Van-de-Walle-
Biography/, accessed 2017-01-04.
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too full to eat any more. How many did Robert eat altogether? In 
discussion of the problem, use drawings/counters to illustrate the 
empty set (zero).” The “unnatural and complex” concept of zero is to 
be taught separately from addition/subtraction, with the use of a rich 
variety of teaching aids and completely redundant questions about 
Robert. Yes, dear children, he has eaten 8 grapes—how many grapes 
has he eaten?

Subtraction, according to Van de Walle, must also be tackled with 
care and only after the pupils have got the hang of addition.

Evidence suggests that children learn very few, if any, subtraction facts with-
out first mastering the corresponding addition facts. In other words, mastery 
of 3 + 5 can be thought of as prerequisite knowledge for learning the facts 
8–3 and 8–5. Without opportunities to learn and use reasoning strategies, 
students may continue to rely on counting strategies to come up with subtrac-
tion facts, a slow and often inaccurate approach. When children see 9–4, you 
want them to think spontaneously. ‘Four and what makes nine?’ (Van de 
Walle 2007: 175)

To heed Van de Walle’s guidance, teachers can use, for example, the 
following exercise.

 

It is surprising, isn’t it, how much what we teach at elementary 
level differs from the simple elegance of advanced algebra—Cayley’s 
theorem, for example. It feels like a completely different subject and 
much more complicated at that. And by strength (!) of Cayley’s theo-
rem, let us restate, there is nothing mysterious or complicated about 
adding the inverse element (subtraction)—it is just putting the bricks 
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back where they were. And what results is a zero-move, i.e., bricks 
stay in their original place.

As we noticed before, part the beauty of modern algebra narrative 
is the simplicity of its source stories (e.g., carrying objects from one 
place to another). But, unfortunately, all this brilliant elegance and 
simplicity has yet to find its way into the elementary classroom.11 And 
I hope that this book, and cognitive exploration of mathematics, in 
general, can help to achieve that.

Let us terminate our short visit to the primary classroom and return 
to the narrative of advanced algebra. In the next section, we will intro-
duce the most intricate algebraic structure so far—the vector space.

6.8  �Vector Space and the Seven Matchmakers

This is how Herstein begins his chapter on vector spaces:

Up to this point we have been introduced to groups and to rings; the former 
has its motivation in the set of one-to-one mappings of a set onto itself, the 
latter, in the set of integers. The third algebraic model which we are about to 
consider-vector space-can, in large part, trace its origins to topics in geometry 
and physics. (1975: 170)

As in the previous chapters, we learn that abstract mathematical 
concepts have their “concrete” origins. In this case, geometry and 
physics. And it is not the first time that physical objects will be used 
as a source story in mathematical parable. As we remember from 
Chap. 3, the story of modern algebra begins with a collection of 
objects. Yes, physical objects in physical space, so geometry was also 
already involved. In fact, geometry and physics accompanied us on 
every stage of mathematical narrative. The story of a collection pro-
gressed into the story of a mapping. And one of the ways a mapping 
can be interpreted is carrying (physical) objects (from a collection) 
from one (geometric) place to another. Further on we learn that the 

11 Herstein seems to be aware of this disparity when he says, for example, “Very 
early in our mathematical education—in fact in junior high school or early in high 
school itself—we are introduced to polynomials. For a seemingly endless amount of 
time we are drilled, to the point of utter boredom, in factoring them, multiplying 
them, dividing them, simplifying them. Facility in factoring a quadratic becomes 
confused with genuine mathematical talent” (Herstein 1975: 153).
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origin of a group is a set of physical moves (the bricks on a lawn from 
the previous chapter), i.e., a set of permutations. The mappings that 
are referred to as “binary operations” are compositions of physical 
moves. And the physical moves (mappings, permutations) are com-
posed in the following way: a physical object is taken from A to B and 
then from B to C. The resulting move (the composition or multiplica-
tion of mappings) is of course the move from A to C. If certain condi-
tions are met, the set of physical moves becomes a ring or even a field 
as we saw in the previous chapter.

The composition of moves we described above could be written, 
for example, as (A,B) + (B,C) = (A,C). And we are already adding 
vectors. So we are pretty well there and could skip to the next chapter, 
but we will not because we promised the reader not to skip ahead but 
instead to follow the narrative of algebra as closely as it is possible in 
this short volume. So let us return to our “Topics in Algebra” where 
we find next that:

Vector spaces owe their importance to the fact that so many models arising in 
the solutions of specific problems turn out to be vector spaces. For this reason 
the basic concepts introduced in them have a certain universality and are ones 
we encounter, and keep encountering, in so many diverse contexts. (Herstein 
1975: 170)

Vector spaces seem to pop up everywhere, but perhaps it should not 
be surprising in the light of our remarks above—they are already 
embedded in the narrative of algebra even before they are defined. 
And we can see that because we are able to pin down the “mental pat-
terns of parable” (Turner 1996) in the narrative of mathematics. Those 
mental patterns always include objects, actors, action, projection, 
image schemas, and conceptual integration. This is exactly how we 
know that binary operations that define groups, rings, fields, and (in a 
moment) vector spaces are based on a story of carrying objects along 
a path from one place to another. Those objects are sometimes returned 
to their original place (this is what the so-called inverse element in a 
group does) and what results is a no-move, a zero-move (also known 
as the identity element).

We do not know the story of vectors—it hasn’t started yet—but 
what we have seen so far is mathematical (algebra) narrative where 
the same small spatial stories appear again and again. And one such 
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story, which seems to be crucial so far, is the story of objects being 
moved along a path—the story of mappings. Let us draw it 
schematically.

A

B

C

An object is moved from A to B and then from B to C. This is one 
of the source stories for mappings and their “product” or “composi-
tion.” It does not matter where points A, B, or C are. Whatever their 
position and however close or far away they are, the result is also a 
move (a mapping), a move from A to C. And this feature of moving 
objects from place to place was projected onto the story of groups. A 
group must be closed under its binary operation as we remember from 
Chap. 5. What it meant was that whenever we multiply (or add) two 
elements of a group, the result is also in the same group.

Another part of the small spatial story of carrying objects around is 
that we can (almost) always put them back where they were. This is 
the sort of thing many of us are taught from the early childhood. You 
can play with your toys, but when you finish, please put them back 
where they were. And in the story of groups (and later rings and 
fields), it is called the inverse element. The group definition (an actor 
too, of course) demands that for every element in a group, there exists 
an inverse element.

A B

And when the inverse element is applied (added, carried, moved), 
the result is a no-move. And the no-move is also a vital character in 
the story of mathematical groups, where it is called “the identity ele-
ment.” The group definition, we discussed in Chap. 5, “insists cate-
gorically,” as Herstein puts it, that such an element exists. A no-move 
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or do-nothing element. Our experience of interacting with physical 
world tells us that when we do nothing to a stationary object, it stays 
where it is. In Newtonian mechanics it is referred to as “inertia” and 
is a consequence of the 1st law of Newtonian mechanics. If the net 
force acting on an object is zero, the velocity (including zero-veloc-
ity) stays constant. The inertia of physical objects, part of our every-
day experience, is therefore, as we can see, a vital component of the 
story of mathematical groups, rings, fields, and—in a moment—also 
vector spaces. Adding zero, or performing a no-move, results in 
objects staying where they are. And exactly the same result can be 
achieved by moving an object and then putting it back where it was:  
a + (−a) = 0.

It is of course not for the first time that we encounter force-dynamic 
interactions as underpinning various elements of mathematical narra-
tive. For example, in Chap. 3, we analyzed the story of mathematical 
proof, featuring an actor called the truth collector, who would move 
along a path, forcibly removing obstacles. In Chap. 5 we discussed 
group axioms as force-exerting actors, who would sometimes “fail to 
hold.” But certainly, the force-dynamic base of algebra narrative is 
most clearly discernible in the story of mappings. And, as we have 
seen so far, this story is indeed one of the most often encountered 
building blocks of crucial definitions of algebra. The definitions of a 
group, a ring, a field, and (as we shall soon see) a vector space are all 
based on the concept of a mapping. All the binary operations (includ-
ing the familiar addition, subtraction, multiplication, and division) are 
mappings.

And, while discussing Cayley’s theorem in Chap. 5, we found that 
that the set on which group definition is based (the source story for 
groups) is a set of mappings (permutations). The binary operations in 
this set are therefore mappings of mappings. An ordered pair, one of 
the primary concepts from Chap. 4, is a mapping and order itself is a 
type of mapping too. Herstein’s claim that “without exaggeration this 
is probably the single most important and universal notion that runs 
through all of mathematics” (1975: 10) is, as we have found out, per-
fectly accurate and not exaggerated indeed. And the first example of a 
mapping we encountered in Chap. 4 was y = x2, “which takes every 
real number onto its square”12 (ibid.).

12 Emphasis added
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Leonard Talmy (2000) observes that force dynamics seems to 
“underlie both our untutored ‘commonsense’ conceptions, and the 
sophisticated reasoning providing the basis for the scientific and 
mathematical tradition” (455). And, after our analysis of mathemati-
cal narrative, we can conclude that force-dynamic interactions under-
lie not only the process of reasoning (proof) but also its subject—the 
substance of mathematics.

DEFINITION A nonempty set V is said to be a vector space over a field F if 
V is an abelian group under an operation which we denote by +, and if for 
every a ∈ F, v ∈ V, there is defined an element, written αv, in V subject to:

1. α(v + w) = αv + αw.
2. (α + β)v = αv + βv
3. α(βv) = (αβ)v.
4. 1v = v.
for all α, β ∈ F, v, w ∈ V (where the 1 represents the unit element of F 

under multiplication) (Herstein 1975: 171).

Further on, we learn that a module is a generalization of the con-
cept of vector space in which the field F is replaced by a ring R.13 A 
vector space is defined “over a field.” As we remember from the previ-
ous chapter, a field is an abelian division ring. And in every ring, two 
binary operations are defined. So the definition of a vector space 
involves four binary operations: the multiplication and addition in F, 
the addition in V, and the multiplication of vectors by scalars, where 
vectors are in V and scalars are in F. The last of the four operations—
the scalar-vector multiplication—is unusual in the sense that it is 
defined over two separate sets. It matches “interset” pairs (α, v) with 
elements of V. Or, to use another of the source stories for mappings 
we discussed in Chap. 3, it carries pairs (α, v) into V. We have four 
binary operations (mappings) and two sets of F and V featuring in the 
definition of a vector space. The binary operations (each of them a 
matchmaker) operate on Cartesian products of F × F, V × V, and F × V, 
each of them requiring a separate “Cartesian” matchmaker to create. 
A vector space, we may conclude, requires the coordinated effort of 
seven matchmakers—we came a long way from a simple group, where 
just two of them were needed.

13 The definition of a module is almost identical with the definition of a vector space, 
except for axiom 4, which is absent because a ring, as we remember, does not have 
to contain a “1” (a multiplication identity element).

6  Rings, Fields, and Vector Spaces

www.Engineeringbookspdf.com



107

As we mentioned at the beginning of this section, vector spaces are 
indeed connected to geometry and physics. For example, all the equa-
tions of classical (Newtonian) mechanics feature R3 vectors, where 
R3 = R × R × R is the triple Cartesian product of the set of real num-
bers, which is a vector space over the field of (again) real numbers.

Summary
In this chapter we analyzed the story of rings, fields, and vector spaces 
with reference (as before) to small spatial stories, image schemas, and 
conceptual blending. We learned on the way that the source story for 
rings are the familiar sets of integers, rational, and real numbers with 
their binary operations. The story of rings is also to be partially under-
stood through the story of groups we analyzed in Chapter 5. Our find-
ings are summarized in Table 6.1.

One of the crucial features of the algebra story so far was its firm 
rooting in the schemas of collection/container (sets and elements) and 
force/motion (mappings, axioms, proof). At one point we considered 
subtraction as adding an inverse element: a + (−a) = a − a = 0. And it 
seemed for a moment that the connection to the abovementioned 
schematic base was broken because schematically14 a +  (−a)  =  0 
means that two elements are added and as a result they both disappear. 
However, by returning for a moment to the chronicle of groups, we 

14 In the schema of adding objects to a collection or putting objects in a container.

Table 6.1  Elements of small spatial stories and traces of conceptual integration 
found in the narrative of rings, fields, and vector spaces

Objects Elements of sets, numbers, vectors
Actors Matchmakers (binary operations), carriers, axioms
Actions Matching, carrying, moving, holding, resisting pressure
Image schemas Container, in-out, source-path-goal, collection, link, object, 

process, compulsion, resistance, removing of restraint, 
counterforce, cycle, stacking up/removing (Jenga)

Conceptual 
blending

Various binary operations understood differently depending on 
which small spatial story is in the input space of the conceptual 
integration network. For example, in primary school arithmetic, 
the input for subtraction is always the “removing/taking away” 
small spatial story, which creates learning difficulties by making 
the odd numbers an odd concept for the young students
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were able to demonstrate that the schematic base consistently holds 
throughout the story so far. The narrative of algebra avoids the appar-
ent problem of disappearing objects by using a different schema as a 
source for group binary operations. As we mentioned above, most 
crucial “abstract” mathematical notions are based on “concrete” enti-
ties. Groups, for example, have their origin in the set of permutations 
(one-to-one mappings of a set onto itself). And binary operations 
(such as addition) have their origin in compositions of permutations. 
The schematic equivalent of adding an inverse element is therefore 
(by strength of our analysis of mappings in Chap. 4 and Cayley’s the-
orem) carrying a group of objects from place A to place B and then 
returning them to their original position. And thus the schematic base 
of the advanced algebra narrative is consistently preserved.

We also observed that this schematic consistence and simplicity of 
advanced algebra narrative does not find its counterpart in the way 
elementary arithmetic is taught at school. In a typical elementary 
arithmetic course, subtraction and the concept of zero are taught only 
after basic addition is mastered and are considered more difficult to 
grasp. Adding negatives comes later still and is considered to be even 
more daunting for students. Yet, as we have demonstrated by reading 
mathematical narrative closely, all three concepts of addition, subtrac-
tion, and zero are based on one schema only—moving objects from 
one place to another. And therefore all three are equivalent and com-
plementary, which means they should not be taught separately. a 
+ (−a) = 0 within this schema means moving objects and then return-
ing them to the same place. As a result the objects stay where they 
were (the zero-move).

Vector fields with their intricate structure are as far as we travel in 
our exploration of modern algebra. At each point of our step-by-step 
linear analysis of the algebraic structures of growing complexity, we 
kept finding traces of conceptual integration, small spatial stories, and 
their building blocks—the image schemas.
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Chapter 7
Summary and Conclusion

We proceeded as follows. After introducing the subject and method of 
research in Chap. 1, in Chap. 2 we presented the basic assumptions of 
the conceptual integration theory, with particular attention paid to 
small spatial stories and their basic ingredients—the image schemas. 
The small spatial stories always describe actors “moving and shak-
ing” (changing location and manipulating objects). In the summary of 
each “research” chapter (Chaps. 3, 4, 5, and 6), we listed all the actors, 
objects, actions, and image schemas we managed to find, as well as 
“traces” of conceptual blending.

How did we find all of those? By reading Herstein’s (1975) popular 
university-level algebra handbook. And not only the descriptive pas-
sages written in plain English but also the formulas like, for example, 
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (cf. Sect. 3.9). The formulas are in 
fact also written in plain English, one just has to know how to read the 
symbols, and of course—this being a handbook—such instructions 
were provided. And this is how we know that the above formula reads 
“the union of set A and the intersection of sets B and C equals the 
union of the intersections of sets A and B and A and C.” We followed 
all the crucial definitions (and the undefined “primitives”), theorems, 
and proof looking for image schemas, actors, actions, motion, space, 
objects, and traces of conceptual integration. For example, “y = x2 [...] 
takes every real number onto its square” (Herstein 1975: 10, cf. Sect. 
4.2) means that mapping is (can be conceived in terms of) an actor 
who carries objects (numbers) from one place to another. Or, more 
precisely, one of the inputs of the conceptual integration network 
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responsible for the meaning construction of mathematical mapping is 
the small spatial story of an actor carrying objects from one place to 
another. In Sect. 3.3.2, to give another example, we analyzed the defi-
nition of equal sets. “A = B, if both A ⊂ B and B ⊂ A” (ibid.: 2), which 
reads “set A equals set B if both A is contained in B and B is contained 
in A.” The meaning of the above can only be grasped if we can have 
access to two separate tokens (A and B) of a unique object (a blend of 
A and B). In other words, both inputs and the blend must be accessi-
ble for processing, which is consistent with the constitutive and gov-
erning principles of CIT, especially the “web principle” and the 
“unpacking principle” (cf. Sect. 2.2.4). The results of our search are 
gathered in Table 7.1.

In all the chapters, we noticed the crucial importance of selecting 
the correct small spatial stories and image schemas as inputs for the 
proper construction of mathematical meaning.

Knowing which ones to choose is a matter of success or failure for 
the students of mathematics. And the secrecy of this knowledge, only 
very obliquely hinted at in mathematical handbooks, creates part of 
the mystery, the aura of inaccessibility surrounding mathematics. For 
example, in Sect. 3.7 we found that although both sets and elements 
can be contained, different small spatial stories/image schemas apply 
in each case. Selecting the proper image schema/small spatial story 
also proved vitally important for understanding the homomorphism 
(cf. Sect. 5.9) or negative numbers and zero (cf. Sect. 6.7).

In Chap. 5, we talked about mathematical beauty to prove that it is 
accessible to ordinary mortals (i.e., non-mathematicians). And we 
were able to see it because all of us, despite the level of mathematical 
training, are endowed with both literary (Turner 1996) and mathemat-
ical mind. Mark Turner’s “literary mind” is the mind which “works” 
like a literary parable, by projecting (blending) stories. As we tried to 
demonstrate by analyzing the language of modern algebra, the math-
ematical mind works in exactly the same way. The following quota-
tion remains true when we exchange the adjective “literary” with 
“mathematical.”

The literary mind is not a separate kind of mind. It is our mind. The literary 
mind is the fundamental mind. [...] But the common view, firmly in place for 
two and a half millennia, sees the everyday mind as unliterary and the literary 
mind as optional. This book is an attempt to show how wrong the common 
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Table 7.1  Elements of small spatial stories and traces of conceptual integration 
found in the narrative of modern algebra

Objects Elements of sets, numbers, all kinds of objects that 
can belong to a collection

Chap. 3

Actors Set—an actor who possesses objects, governs 
property. Set operator (the potter, the setter)—
performs operations on sets, uniting, intersecting, and 
dividing them. Proof—an actor who collects 
mathematical proofs but sometimes has to dispose of 
them to clear the path on her way to the QED spot

Actions Possessing/belonging (often categorized as a state, or 
a potential to act, perhaps not a prototypical action 
but of course, like with all linguistic taxonomies, the 
border between state and action is fuzzy), combining 
sets, forming them into new ones (uniting), 
intersecting, dividing, disposing of objects

Image schemas Containers with discrete and dimensionless, or 
voluminous objects (partly opened or tightly shut), 
an empty container (the null/empty set), part-whole, 
in-out, full-empty compulsion, blockage, removal of 
restraint, enablement, source-path-goal, object, 
superimposition

Conceptual 
blending

The equality symbol “=” always involves a blend 
(triggers a conceptual integration network). Multiple 
tokens of an object are compressed into a unique 
object. Yet, because the projections are bi-directional 
and the network is maintained (according to the web 
principle and the unpacking principle, cf. Sect. 
2.2.4), the object can be “one and many” at the same 
time

Objects Numbers, elements of sets Chap. 4
Actors The carrier, the matchmaker, the hiker
Actions Carrying, associating, moving from x to y
Image schemas Source-path-goal, compulsion, link, matching, 

superimposition, diversion, object, container, process
Conceptual 
blending

Input spaces of the conceptual integration network 
can contain: Ordered pairs, points on the plane, 
carrying objects, associating objects, motion along a 
path. The circularity of the “rigorous” definition may 
reflect the circularity inherent in the process of 
blending. In any conceptual integration network, the 
mapping is bi-directional

(continued)
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Table 7.1  (continued)

Objects Group elements, ordered pairs, ordered triples, 
bricks, kaleidoscope

Chap. 5

Actors Various matchmakers creating the group structure, 
the truth-collector (proof), builders, kaleidoscope 
user

Actions Matching, mortaring bricks together, creating the 
Cartesian square and binary operation structure, 
collecting, exerting force, turning the kaleidoscope, 
recreating, preserving the structure, carrying, moving

Image schemas Container, source-path-goal, collection, link, object, 
process, compulsion, resistance

Conceptual 
blending

“The one and many problem,” the identity and 
inverse elements in a group—Multiple tokens of a 
unique object

Objects Elements of sets, numbers, vectors Chap. 6
Actors Matchmakers (binary operations), carriers, axioms
Actions Matching, carrying, moving, holding, resisting 

pressure
Image schemas Container, in-out, source-path-goal, collection, link, 

object, process, compulsion, resistance, removing of 
restraint, counterforce, cycle, stacking up/removing 
(Jenga blocks)

Conceptual 
blending

Various binary operations understood differently 
depending on which small spatial story is in the input 
space of the conceptual integration network. For 
example, in primary school arithmetic, the input for 
subtraction is always the “removing/taking away” 
small spatial story, which creates learning difficulties 
by making the odd numbers an odd concept for the 
young students

view is and to replace it with a view of the mind that is more scientific, more 
accurate, more inclusive, and more interesting, a view that no longer misrep-
resents everyday thought and action as divorced from the literary mind. 
(Turner 1996: v)

Our goal, expressed in Chap. 1, was to “prove that mathematics 
relies on the iterative use of basic mental operations of story and 
blending and demonstrate exactly how those two mental operations 
are responsible for the effectiveness and fecundity of mathematics” 
(cf. Sect. 1.2). So far, in this summary, we have discussed only the 
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first part of it—the use of basic mental operations—but what about 
“the effectiveness and fecundity of mathematics”? How exactly did 
we account for the amazing adaptability of mathematics—its ability 
to reliably model the ever-changing world around us? There is an easy 
way out. We could let Mark Turner, for example, do our work and 
quote The Origin Of Ideas: Blending, Creativity And The Human 
Spark (2014), where the author argues convincingly that human cre-
ativity in any area, mathematics included, has its origin in conceptual 
blending.

The claim of this book is that the human spark comes from our advanced 
ability to blend ideas to make new ideas. Blending is the origin of ideas. 
(Turner 2014: 9)

And we could finish now. But instead, let us go back for a moment 
to what we found by reading an excellent algebra handbook (Herstein 
1975) closely. In Chap. 4, for example, we established that the offi-
cial, “rigorous” definition of a mapping—“the single most important 
and universal notion that runs through all of mathematics” (Herstein 
1975: 10)—is circular. The definition is circular because it is based on 
the undefined notion of an ordered pair, which is a mapping (cf. Sect. 
4.4). We have also found that mathematicians go around this problem 
by prompting a different way of meaning construction for this crucial 
notion. We are encouraged to think of a mapping in terms of small 
spatial stories of “the carrier,” “the hiker,” or “the matchmaker,” and 
this is how the circularity is avoided (cf. Sect. 4.7). As we explained 
in Sect. 2.2.2, “thinking in terms of” (understanding one story through 
another, the parable) means constructing a conceptual integration net-
work. Mathematics avoids being barren (circular) by incorporating 
the structured and dynamic small spatial stories as inputs for concep-
tual blending. And in this way, the small spatial stories and blending 
account for the fecundity of mathematics, preventing it from being 
barren. The flexibility of mathematics, its ability to keep up with the 
fast-developing technology and natural sciences, stems from contex-
tually motivated polysemy of the crucial mathematical terms—poly-
semy based on the choice from the inventory of “small spatial stories.” 
What we have just said was put much better, 30 years ago, by George 
Lakoff:

There is nothing easy or automatic or magical about the success of mathemat-
ics in empirical domains. It arises from [...] understanding of the phenomena 
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in ordinary, everyday terms, which are then translated into corresponding 
mathematical terms. It is the human capacity to understand experience in 
terms of basic cognitive concepts that is at the heart of the success of mathe-
matics. (1987: 364)

We wish now this was an algebra handbook so we could add QED.
We promised the reader not to skip ahead and we did not. We fol-

lowed the structure of mathematical narrative from its foundations up, 
without jumping floors—from the simplest (“primitive”) notions of a 
set and element to more complex concepts of a mapping, a group, a 
subgroup, a homomorphism, ring, field, and vector space. But we cer-
tainly did not cover the whole of modern algebra. We hope, however, 
that this book may be useful as a systematic sketch of the mathemati-
cal coastline, drawn from the vantage point of conceptual integration 
theory. Other travelers, and many of them will be needed, will have to 
fill in all the topographical details we missed.
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