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Preface

This work is inspired by thought to have an overall fuel-efficient nuclear plant
control system. I picked up the topic in 2002 while deriving the reactor control
laws, which aimed at fuel efficiency. Controlling the nuclear reactor close to its
natural behavior by concept of exponent shape governor, ratio control and use of
logarithmic logic, aims at the fuel efficiency. The power-maneuvering trajectory is
obtained by shaped-normalized-period function, and this defines the road map on
which the reactor should be governed. The experience of this concept governing
the Atomic Power Plant of Tarapur Atomic Power Station gives lesser overall gains
compared to the older plants, where conventional proportional integral and deriva-
tive type (PID) scheme is employed. Therefore, this motivation led to design the
scheme for control system than the conventional schemes to aim at overall plant
efficiency. Thus, I felt the need to look beyond PID and obtained the answer in frac-
tional order control system, requiring fractional calculus (a 300-year-old subject).
This work is taken from a large number of studies on fractional calculus and here it
is aimed at giving an application-oriented treatment, to understand this beautiful old
new subject. The contribution in having fractional divergence concept to describe
neutron flux profile in nuclear reactors and to make efficient controllers based on
fractional calculus is a minor contribution in this vast (hidden) area of science. This
work is aimed at to make this subject popular and acceptable to engineering and
science community to appreciate the universe of wonderful mathematics, which lies
between the classical integer order differentiation and integration, which till now is
not much acknowledged, and is hidden from scientists and engineers.

Shantanu Das
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About the Contents of This Book

The book is organized into 10 chapters. The book aims at giving a feel of this
beautiful subject of fractional calculus to scientists and engineers and should be
taken as a start point for research in application of fractional calculus. The book
is aimed for appreciation of this fractional calculus and thus is made as applica-
tion oriented, from various science and engineering fields. Therefore, the use of
too formal mathematical symbolism and mathematical formal theorem stating lan-
guage are restricted. Chapters 3 and 4 give an overview of the application of frac-
tional calculus, before dealing in detail the issues about fractional differintegrations
and initialization. These two chapters deal with all types of differential operations,
including fractional divergence application and usage of fractional curl. Chapter 1 is
the basic introduction, dealing with development of the fractional calculus. Several
definitions of fractional differintegrations and the most popular ones are introduced
here; the chapter gives the feel of fractional differentiation of some functions, i.e.,
how they look. To aid the understanding, diagrams are given. Chapter 2 deals with
the important functions relevant to fractional calculus basis. Laplace transformation
is given for each function, which are important in analytical solution. Chapter 3
gives the observation of fractional calculus in physical systems (like electrical, ther-
mal, control system, etc.) description. This chapter is made so that readers get the
feel of reality. Chapter 4 is an extension of Chap. 3, where the concept of fractional
divergence and curl operator is elucidated with application in nuclear reactor and
electromagnetism. With this, the reader gets a broad feeling about the subject’s wide
applicability in the field of science and engineering. Chapter 5 is dedicated to insight
of fractional integration fractional differentiation and fractional differintegral with
physical and geometric meaning for these processes. In this chapter, the concept
of generating function is presented, which gives the transfer function realization
for digital realization in real time application of controls. Chapter 6 tries to gener-
alize the concept of initialization function, which actually embeds hereditary and
history of the function. Here, attempt is made to give some light to decomposition
properties of the fractional differintegration. Generalization is called as the frac-
tional calculus theory, with the initialization function which becomes the general
theory and does cover the integer order classical calculus. In this chapter, the fun-
damental fractional differential equation is taken and the impulse response to that
is obtained. Chapter 7 gives the Laplace transform theory—a general treatment to
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xii About the Contents of This Book

cover initialization aspects. In this chapter, the concept of w-plane on which the
fractional control system properties are studied is described. In Chap. 7 elaborate
dealing is carried on for scalar initialization and vector initialization problems. In
Chaps. 6 and 7 elaborate block diagrams are given to aid the understanding of
these concepts. Chapter 8 gives the application of fractional calculus in electrical
circuits and electronic circuits. Chapter 9 deals with the application of fractional
calculus in other fields of science and engineering for system modeling and control.
In this chapter, the modern aspects of multivariate controls are touched to show the
applicability in fractional feedback controllers and state observer issues. Chapter 10
gives a detailed treatment of the order of a system and its identification approach,
with concepts of fractional resonance, and ultra-damped and hyper-damped sys-
tems. Also a brief is presented on future formalization of research and development
for variable order differintegrations and continuous order controller that generalizes
conventional control system. Bibliography gives list of important and few recent
publications, of several works on this old (new) subject. It is not possible to include
all the work done on this subject since past 300 years. Undoubtedly, this is an emerg-
ing area or research (not so popular at present in India), but the next decade will see
the plethora of applications based on this field. May be the twenty-first century will
speak the language of nature, that is, fractional calculus.

Shantanu Das
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Chapter 1
Introduction to Fractional Calculus

1.1 Introduction

Fractional calculus is three centuries old as the conventional calculus, but not very
popular among science and/or engineering community. The beauty of this subject
is that fractional derivatives (and integrals) are not a local (or point) property (or
quantity). Thereby this considers the history and non-local distributed effects. In
other words, perhaps this subject translates the reality of nature better! Therefore
to make this subject available as popular subject to science and engineering com-
munity, it adds another dimension to understand or describe basic nature in a better
way. Perhaps fractional calculus is what nature understands, and to talk with nature
in this language is therefore efficient. For past three centuries, this subject was with
mathematicians, and only in last few years, this was pulled to several (applied) fields
of engineering and science and economics. However, recent attempt is on to have
the definition of fractional derivative as local operator specifically to fractal science
theory. Next decade will see several applications based on this 300 years (old) new
subject, which can be thought of as superset of fractional differintegral calculus, the
conventional integer order calculus being a part of it. Differintegration is an operator
doing differentiation and sometimes integrations, in a general sense. In this book,
fractional order is limited to only real numbers; the complex order differentigrations
are not touched. Also the applications and discussions are limited to fixed fractional
order differintegrals, and the variable order of differintegration is kept as a future
research subject. Perhaps the fractional calculus will be the calculus of twenty-first
century. In this book, attempt is made to make this topic application oriented for
regular science and engineering applications. Therefore, rigorous mathematics is
kept minimal. In this introductory chapter, list in tabular form is provided to readers
to have feel of the fractional derivatives of some commonly occurring functions.

1.2 Birth of Fractional Calculus

In a letter dated 30th September 1695, L’Hopital wrote to Leibniz asking him a
particular notation that he had used in his publication for the nth derivative of a
function
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Dn f (x)

Dxn

i.e., what would the result be if n = 1/2. Leibniz’s response “ an apparent paradox
from which one day useful consequences will be drawn.” In these words, fractional
calculus was born. Studies over the intervening 300 years have proved at least half
right. It is clear that within the twentieth century especially numerous applications
have been found. However, these applications and mathematical background sur-
rounding fractional calculus are far from paradoxical. While the physical meaning is
difficult to grasp, the definitions are no more rigorous than integer order counterpart.

1.3 Fractional Calculus a Generalization of Integer Order
Calculus

Let us consider n an integer and when we say xn we quickly visualize x multiply n
times will give the result. Now we still get a result if n is not an integer but fail to
visualize how. Like to visualize 2π is hard to visualize, but it exists. Similarly the
fractional derivative we may say now as

dπ

dxπ
f (x)

though hard to visualize (presently), does exist. As real numbers exist between
the integers so does fractional differintegrals do exist between conventional integer
order derivatives and n-fold integrations. We see the following generalization from
integer to real number on number line as

xn = x .x .x .x . . . . . . . . . x
︸ ︷︷ ︸

n

n is integer

xn = en ln x n is real number

n! = 1.2.3 . . . .(n − 1)n n is integer

n! = Γ(n + 1) n is real and Gamma Functional is Γ(x) =
∞
∫

0

e−t t x−1dt

Therefore, the above generalization from integer to non-integer is what is making
number line general (i.e., not restricting to only integers). Figure. 1.1 demonstrates
the number line and the extension of this to map any fractional differintegrals. The
negative side extends to say integration and positive side to differentiation.

f,
d f

dt
,

d2 f

dt2
,

d3 f

dt3
, . . .→
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–3 –2 –1 0 1 2 3

f (–3) f (–2) f (–1) f (0) f (1) f (2) f (3)

Integration Differentiation

Fig. 1.1 Number line and Interpolation of the same to differintegrals of fractional calculus

←. . . ,
∫

dt
∫

dt
∫

f dt,
∫

dt
∫

f dt,
∫

f dt, f

Writing the same in differintegral notation as represented in number line we have

←. . .d
−3 f

dt −3
,

d −2 f

dt −2
,

d−1 f

dt−1
f,

d f

dt
,

d2 f

dt2
,

d3 f

dt3
, . . .→

Heaviside (1871) states that there is a universe of mathematics lying between the
complete differentiation and integration, and that fractional operators push them-
selves forward sometimes and are just as real as others.

Mathematics is an art of giving things misleading names. The beautiful—and
at first glance mysterious—name, the fractional calculus is just one of those mis-
nomers, which are the essence of mathematics. We know such names as natural
numbers and real numbers. We use them very often; let us think for a moment about
these names. The notion of natural number is a natural abstraction, but it is the
number natural itself a natural? The notion of a real number is generalization of the
notion of a natural number. The real number emphasizes that we pretend that they
reflect real quantities, but cannot change the fact that they do not exist. If one wants
to compute something, then one immediately discovers that there is no place for real
numbers in this real world. On a computer he/she can work with finite set of finite
fractions, which serves as approximations to unreal real number.

Fractional calculus does not mean the calculus of fractions, nor does it mean a
fraction of any calculus differentiation, integration, or calculus of variations. The
fractional calculus is a name of theory of integrations and derivatives of arbitrary
order, which unify and generalize the notion of integer order differentiation and
n-fold integration. So we call it generalized differintegrals.

1.4 Historical Development of Fractional Calculus

Fractional order systems, or systems containing fractional derivatives and integrals,
have been studied by many in engineering and science area—Heaviside (1922),
Bush (1929), Goldman (1949), Holbrook (1966), Starkey (1954), Carslaw and
Jeager (1948), Scott (1955), and Mikuniski (1959). Oldham and Spanier (1974)
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and Miller and Ross (1993) present additionally very reliable discussions devoted
specifically to the subject. It should be noted that there are growing number of
physical systems whose behavior can be compactly described using fractional calcu-
lus system theory. Of specific interest to electrical engineers are long electrical lines
(Heaviside 1922), electrochemical process (Ichise, Nagayanagi and Kojima 1971;
Sun, Onaral, and Tsao 1984), dielectric polarization (Sun, Abdelwahab and Onaral
1984), colored noise (Manderbolt 1967), viscoelastic materials (Bagley and Calico
1991; Koeller 1986; Skaar, Michel, and Miller 1988) and chaos (Hartley, Lorenzo
and Qammer 1995), and electromagnetism fractional poles (Engheta 1998). During
the development of the fractional calculus applied theory, for past 300 years, the
contributions from N.Ya. Sonnin (1869), A.V. Letnikov (1872), H. Laurent (1884),
N. Nekrasov (1888), K. Nishimoto (1987), Srivastava (1968, 1994), R.P. Agarwal
(1953), S.C. Dutta Roy (1967), Miller and Ross (1993), Kolwankar and Gangal
(1994), Oustaloup (1994), L.Debnath (1992), Igor Podlubny (2003), Carl Lorenzo
(1998) Tom Hartley (1998), R.K. Saxena (2002), Mainardi (1991), S. Saha Ray and
R.K. Bera (2005), and several others are notable. The author has tried to apply the
fractional calculus concepts to describe the nuclear reactor constitutive laws and
apply the theory for obtaining efficient automatic control for nuclear power plants.
Following are some of the notations and formalization efforts by several mathemati-
cians, since late seventeenth century:

Since 1695, after L’Hopital’s question regarding the order of the differentiation,
Leibniz was the first to start in this direction. Leibniz (1695–1697) mentioned
a possible approach to fractional order differentiation, in a sense that for non-
integer (n) the definition could be following. He wrote this letter to J. Wallis and
J. Bernulli.

dnemx

dxn
= mnemx

L. Euler (1730) suggested using a relationship for negative or non-integer (rational)
values; taking m = 1 and n = 1/2, he obtained the following:

dnxm

dxn
= m(m − 1)(m − 2) . . . (m − n + 1)xm−n

Γ(m + 1) = m(m − 1) . . . (m − n + 1)Γ(m − n + 1)

dnxm

dxn
= Γ(m + 1)

Γ(m − n + 1)
xm−n

d1/2x

dx1/2
=
√

4x

π
= 2√

π
x1/2

First step in generalization of notation for differentiation of arbitrary function was
conceived by J.B.J. Fourier (1820–1822), after the introduction of
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f (x) = 1

2π

+∞
∫

−∞
f (z)dz

+∞
∫

−∞
cos(px − pz)dp .

He made a remark as

dn f (x)

dxn
= 1

2π

+∞
∫

−∞
f (z)dz

+∞
∫

−∞
cos(px − pz + n

π

2
)dp,

and this relationship could serve as a definition of nth order derivative for non-
integer order n. N.H. Abel (1823–1826) introduced the integral as

x
∫

0

S′(η)dη

(x − η)α
= ψ(x).

He in fact solved the integral for an arbitrary α and not just for 1/2, and he obtained

S(x) = sin(πα)

π
xα

1
∫

0

ψ(xt)

(1− t)1−α dt .

After that, Abel expressed the obtained solution with the help of an integral of
order of α.

S(x) = 1

Γ(1− α)

d−αψ(x)

dx−α
.

J. Liouvilli (1832–1855) gave three approaches. The first one is Leibniz’s formula-
tion, which is as follows.

dmeax

dxn
= ameax

f (x) =
∞
∑

n=0

cnean x

dγ f (x)

dxγ
=
∞
∑

n=0

cnaγn ean x

Here, the function is decomposed by infinite set of exponential functions.
J. Liouville introduced the integral of non-integer order as the second approach,
which is noted below:
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μ
∫

φ(x)dxμ = 1

(−1)μΓ(μ)

∞
∫

0

φ(x + α)αμ−1dα

μ
∫

φ(x)dxμ = 1

Γ(μ)

∞
∫

0

φ(x − α)αμ−1dα

τ = x + α,&τ = x − α
μ
∫

φ(x)dxμ = 1

(−1)μΓ(μ)

∞
∫

x

(τ − x)μ−1φ(τ )dτ

μ
∫

φ(x)dxμ = 1

Γ(μ)

x
∫

−∞
(x − τ )μ−1φ(τ )dτ

The third approach given by Liouville is the definitions of derivatives of non-integer
order as

dμF(x)

dxμ
= (−1)μ

hμ

(

F(x)− μ
1

F(x + h)+ μ(μ− 1)

1.2
F(x + 2h)− . . .

)

dμF(x)

dxμ
= 1

hμ

(

F(x)− μ
1

F(x − h)+ μ(μ− 1)

1.2
F(x − 2h)− . . .

)

lim .h → 0

Liouville was the first to point the existence of the right-sided and left-sided differ-
entials and integrals.

G.F.B. Riemann (1847) used a generalization of Taylor series for obtaining a
formula for fractional order integration. Riemann introduced an arbitrary “compli-
mentary” function ψ(x) because he did not fix the lower bound of integration. He
could not solve this disadvantage. From here, the initialized fractional calculus was
born lately in the later half of the twentieth century; Riemann’s notation is as follows
with the complimentary function.

D−ν f (x) = 1

Γ(ν)

x
∫

c

(x − t)ν−1 f (t)dt + ψ(t)

Cauchy formula for nth derivative in complex variables is

f n(z) = n!

j2π

∮

f (t)

(t − z)n+1
dt

and for non-integer n = v, a branch point of the function (t−z)−v−1 appears instead
of pole
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Dν f (z) = Γ(ν + 1)

j2π

x+
∫

C

f (t)

(t − z)ν+1
dt

Generally, to understand the dynamics of any particular system, we often consider
the nature of the complex domain singularities (poles). Consider a complex function
G(z) = (zq+a)−1, where q > 0 and is a fractional number. This particular function
of the complex variable does not have any pole on the primary Riemann sheet of
the complex plane z = r exp( jθ ), i.e., within |θ | < π . It is impossible to force
the denominator zq + a to zero anywhere in complex plane |θ | < π . Consider
for q = 0.5, the denominator z0.5 + 1 does not go anywhere to zero in the pri-
mary Riemann sheet, |θ | < π . It becomes zero on secondary Riemann sheet at
z = exp(± j2π) = 1+ j0.

Normally, to get to the secondary Riemann sheet, it is necessary to go through
a “branch-cut” on the primary Riemann sheet. This is accomplished by increasing
the angle in the complex plane z. Increasing the angle to θ = +π gets us to the
“branch-cut” on the z – complex plane. This can also be accomplished by decreasing
the angle until θ = −π , which also gets us to the “branch-cut”. This “branch-cut”
lies at z = r exp(± jπ), for all positive r . Increasing the angle further eventually
gets to θ = ± j2π . Further increasing the angle θ > π makes to go “underneath”
the primary Riemann sheet, inside the negative real axis of z – complex plane.

The behavior of the function (z0.5+1)−1 is thus described by two Riemann sheets.
Returning to the first Riemann sheet on the z – complex plane, the branch cut begins
at z = 0, the origin, and extends out to the negative real axis to infinity. The end of
the branch cuts are called “branch-points,” which are then at the origin and at minus
infinity in the z – plane.

The “branch-points” can be considered as singularities on the primary Riemann
sheet of the z – plane as well, but the function

(

z0.5 + 1
)−1

does not go to infinity
then. Therefore to obtain the plot of the pole, one has to wrap around these branch-
points and go to secondary Riemann sheet (in this case, at 1+ j0 at θ = ±2π).

1.4.1 The Popular Definitions of Fractional Derivatives/Integrals
in Fractional Calculus

1.4.1.1 Riemann–Liouville

a Dα
t f (t) = 1

Γ(n − α)

(

d

dt

)n
t
∫

a

f (τ )

(t − τ )α−n+1
dτ

(n − 1) ≤ α < n

where n is integer and α is real number.
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1.4.1.2 Grunwald–Letnikov: (Differintegrals)

a Dα
t f (t) = lim

h→0

1

hα

[ t−a
h ]
∑

j=0

(−1) j

(

α

j

)

f (t − jh)

[

t − a

h

]

→ I NT EG E R

1.4.1.3 M. Caputo (1967)

C
a Dα

t f (t) = 1

Γ(n − α)

t
∫

a

f (n)(τ )

(t − τ )α+1−n
dτ, (n − 1) ≤ α < n,

where n is integer and α is real number.

1.4.1.4 Oldham and Spanier (1974)

Fractional derivatives scaling property is

dq f (βx)

dxq
= βq dq f (βx)

d(βx)q

which makes it suitable for the study of scaling. This implies the study of self-similar
processes, objects and distributions too.

1.4.1.5 K.S. Miller B. Ross (1993)

Dα f (t) = Dα1 Dα2 . . . Dαn f (t)

α = α1 + α2 + . . .+ αn

αi < 1

This definition of sequential composition is a very useful concept for obtaining frac-
tional derivative of any arbitrary order. The derivative operator can be any definition
RL or Caputo.

1.4.1.6 Kolwankar and Gangal (1994)

Local fractional derivative is defined by Kolwankar and Gangal to explain the
behavior of “continuous but nowhere differentiable” function. The other definitions
for fractional derivative, described in this chapter, are ‘non-local’ quantities.



1.5 About Fractional Integration Derivatives and Differintegration 9

For 0 < q < 1, the local fractional derivative is

Dq f (y) = lim
x→y

dq ( f (x)− f (y))

d(x − y)q
.

1.5 About Fractional Integration Derivatives
and Differintegration

All the efforts to realize fractional differintegration are “interpolating” the opera-
tions between the two integer order operations. In the limit when the order of the
operator approaches the nearest integer, the “generalized” differintegrals tend to
normal integer order operations.

1.5.1 Fractional Integration Riemann–Liouville (RL)

The repeated n-fold integration is generalized by Gamma function for the factorial
expression, when the integer n is real number α.

D−n f (t) = J n f (t) = fn(t) = 1

(n − 1)!

t
∫

0

(t − τ )n−1 f (τ )dτ

D−α f (t) = J α f (t) = fα(t) = 1

Γ(α)

t
∫

0

(t − τ )α−1 f (τ )dτ

Defining power function as

φα(t) = tα−1

Γ(α)

and using the definition of convolution integral, the expression for the fractional
integration can be therefore written as the convolution of the function and the power
function.

D−α f (t) = φα(t)∗ f (t) =
t
∫

0

φα(t) f (t − τ )dτ .

This process is depicted in Fig. 1.2, where L is the Laplace operator and L−1 is the
inverse Laplace operator.
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f (t) F (s)

F (s)Φα (s) D 
–α f (t)

φα (t) Φα (s)

L

L

L–1

Fig. 1.2 Block diagram representation of fractional integration process by convolution

1.5.2 Fractional Derivatives Riemann–Liouville (RL) Left Hand
Definition (LHD)

The formulation of this definition is:
Select an integer m greater than fractional number α,

(i) integrate the function (m − α) folds by RL integration method;
(ii) differentiate the above result by m.

The expression is given as

Dα f (t) = dm

dtm

⎡

⎣

1

Γ(m − α)

t
∫

0

f (τ )dτ

(t − τ )α+1−m
dτ

⎤

⎦

Figure 1.3 gives the process block diagram, and Fig. 1.4 gives the process of
differentiation of 2.3 times for a function.

1.5.3 Fractional Derivatives Caputo Right Hand Definition (RHD)

The formulation is exactly opposite to LHD.
Select an integer m greater than fractional number α,

(i) differentiate the function m times;
(ii) integrate the above result (m − α)-fold by RL integration method.

f (t) d 
−(m–α) d 

m d 
α f (t)

Fig. 1.3 Fractional differentiation Left Hand Definition (LHD) block diagram
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Integration Differentiation 

f (–3) f (–2) f (–1) f (0) f (1) f (2) f (3)

0.7 2.3
(i) (m − α) = 0.7

m = 3 (ii)

Fig. 1.4 Fractional differentiation of 2.3 times in LHD

In LHD and RHD the integer selection is made such that (m − 1) < α < m.
For example, differentiation of the function by order π will select m = 4. The
formulation of RHD Caputo is as follows:

Dα f (t) = 1

Γ(m − α)

t
∫

0

dm f (t)
dtm

(t − τ )α+1−m
dτ = 1

Γ(m − α)

t
∫

0

f (m)(t)

(t − τ )α+1−m
dτ

Figure 1.5 gives the block diagram representation of the RHD process, and Fig. 1.6
represents graphically the RHD used for fractionally differentiating function of 2.3
times.

The definitions of Riemann-Liouville of fractional differentiation played an
important role in the development of fractional calculus. However, the demands
of modern science and engineering require a certain revision of the well-established
pure mathematical approaches. Applied problems require definitions of fractional
derivatives, allowing the utilization of physically interpretable “initial conditions”
which contain f (a), f (1)(a), f (2)(a) and not fractional quantities (presently unthink-
able!). The RL definitions require

lim
t→a

a Dα−1
t f (t) = b1

lim
t→a

a Dα−2
t f (t) = b2

f (t) d 
−(m–α)d 

m d 
α f (t)

Fig. 1.5 Block diagram representation of RHD Caputo
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f (–3) f (–2) f (–1) f (0) f (1) f (2) f (3)

2.3

Integration Differentiation 

m = 3 (i)

(ii) (m − α) = 0.7

Fig. 1.6 Differentiation of 2.3 times by RHD

In spite of the fact that initial value problems with such initial conditions can be
successfully solved mathematically, their solutions are practically useless because
there is no known physical interpretation for such initial conditions.

RHD is more restrictive than LHD. For RL (or LHD), f (t) needs to be causal,
that is as long as f (0) = 0 for t ≤ 0, the LHD method is workable. For RHD
because f (t) is first made to mth derivative, i.e., f (m)(t), the condition f (0) = 0 and
f 1 = f 2 = . . . .. f m = 0 is required. In mathematical world, this is vulnerable for
RHD may be deliberating. For LHD

DαC 
= 0 = Ct−α

Γ(1− α)
,

the derivative of constant C is not zero. This fact led to using the RL or LHD
approach with lower limit of differentiation a → −∞; in physical world this poses
problem. The physical meaning of this lower limit extending toward minus infinity is
starting of physical process at time immemorial! In such cases, the transient effects
cannot be then studied. However, making a → −∞ is a necessary abstraction
for consideration of steady-state process, for example, for the study of sinusoidal
analysis for steady-state fractional order system.

While today we are familiar with interpretation of the physical world with integer
order differential equations, we do not (currently) have practical understanding of
the world with fractional order differential equations. Our mathematical tools go
beyond practical limitation of our understanding.

Therefore, still process is on to “generalize” the concepts for use in practical
world.

1.5.4 Fractional Differintegrals Grunwald Letnikov (GL)

Differintegration process as described below is differentiation for positive index and
integration for negative index for the differintegral (generalized) operator.
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f 1(x) = lim
h→0

f (x + h)− f (x)

h

f 2(x) = lim
h→0

f 1(x + h)− f 1(x)

h

= lim
h1→0

lim
h2→0

f (x+h1+h2)− f (x+h1 )
h2

− lim
h2→0

f (x+h2 )− f (x)
h2

h1

h1 = h2 = h

f 2(x) = lim
h→0

f (x + 2h)− 2 f (x + h)+ f (x)

h2
, continuing for n times we have

f n(x) = Dn f (x) = lim
h→0

1

hn

n
∑

m=0

(−1)m

(

n
m

)

f (x − mh).

(

n
m

)

= n!

m!(n − m)!

This can be replaced by Gamma functions as Γ(α+1)
m!Γ(α−m+1)

for non-integer n, i.e., α.

Therefore, differentiation in fractional order is

a Dα f (x) = lim
h→0

1

hα

[ x−a
h ]
∑

m=0

(−1)m Γ(α + 1)

m!Γ(α − m + 1)
f (x − mh).

For negative α, the process will be integration.

(−n
m

)

= −n(−n − 1)(−n − 2) . . . (−n − m + 1)

m!

= (−1)m n(n + 1)(n + 2)(n + 3) . . . (n + m − 1)

m!

= (−1)m (n + m − 1)!

m!(n − 1)!
→ (−1)m Γ(α + m)

m!Γ(α)

Therefore, for integration we write

a D−α f (x) = lim
h→0

hα
[ x−a

h ]
∑

m=0

Γ(α + m)

m!Γ(α)
f (x − mh).

The part [(x − a)/h] is integer part (floor function). That is, the upper limit of the
summation is the integer part of the fraction. Are RL, GL, RHD (Caputo) and LHD,
equivalent? The answer is, “yes.”
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1.5.5 Composition and Property

In this book, the symbols for fractional differintegration have been standardized as
follows.

c Dq
t f (t) represents initialized qth order differintegration of f (t) from start
point c to t .

cdq
t f (t) represents un-initialized generalized (or fractional) qth order differin-
tegral.

This is also same as

dq f (t)

[d(t − c)]q ≡ cdq
t f (t),

shifting the origin of function at start of the point from where differintegration starts.
This un-initialized operator can also be short, formed as dq f (t).

The index q > 0 is differentiation, and the index q < 0 is integration process.
For q as integer, the process is integer order classical differentiation and integration.

Miller and Ross (1993), with sequential fractional derivatives, tried to give formal
properties and to have composition methods for generalized differintegrals. Decom-
position a Dα

t y(t) = a Dm
t a Dα−m

t y(t) and also to some extent the index commu-
tation (under certain conditions) D−αD−β = D−(α+β) = D−βD−α are well true
for fractional integration. But fractional derivatives do not commute always, i.e.,
DαDβ 
= Dβ+α 
= Dα+β (except at zero initial conditions). Integer operator (m)
commutes with fractional operator (α), i.e., Dm Dα = Dm+α , some of the basic
composition properties. The desirable properties of fractional derivatives and inte-
grals are the following:

a. If f (z) is an analytical function of z, then its fractional derivatives 0 Dα
z f (z) is an

analytical function of z and α.

b. For α = n, where n is integer, the operation 0 Dα
z f (z) gives the same result as the

classical differentiation or integration of integer order n.

c. For α = 0, the operation 0 Dα
z f (z) is identity operator, i.e., 0 D0

z f (z) = f (z)

d. Fractional differentiation and fractional integration are linear operations:
0 Dα

z a f (z)+ 0 Dα
z bg(z) = a0 Dα

z f (z)+ b0 Dα
z g(z)

e. The additive index law, 0 Dα
z 0 Dβ

z f (z) = 0 Dβ
z 0 Dα

z f (z) = 0 Dα+β
z f (z), holds

under some reasonable constraints on the function f (z).

The above desirable properties are valid under causality; that is, the function is
differintegrated at the start point of the function itself (with initialization function
being zero).
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1.5.6 Fractional Derivative for Some Standard Function

Table 1.1 lists Riemann–Liouvelle fractional derivatives of some functions, which
are used very often. In most cases, the order of differentiation α may be a real num-
ber, so replacing it with −α gives Riemann–Liouville fractional integral. Table 1.1
can be used to find Grunwald–Letnikov, fractional derivatives, Caputo fractional
derivatives, and Miller–Ross sequential fractional derivatives. In such cases, α
should be taken between 0 and 1, and Riemann–Liouvelli fractional derivatives
should be properly combined (composed) with integer order derivatives, with con-
sidered definition (of composition). Table 1.1 gives the RL derivatives with lower
terminal at 0, and Table 1.2 gives the fractional RL derivatives with lower terminal

Table 1.1 RL derivative with lower terminal 0 i.e., 0 Dα
t f (t) for t > 0

function f (t) 0 Dα
t f (t). fractional derivative

H (t)
t−α

Γ(1 − α)

H (t − a)

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(t − a)−α

Γ(1− α)
, (t > a)

0, (0 ≤ t ≤ a)

H (t − a) f (t)

{

a Dα
t f (t), (t > a)

0, (0 ≤ t ≤ a)

δ(t)
t−α−1

Γ(−α)

δ(n)(t)
t−α−n−1

Γ(−α − n)

δ(n)(t − a)

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(t − a)−α−n−1

Γ(−n − α)
, (t > a)

0, (0 ≤ t ≤ a)

tv
Γ(v + 1)

Γ(v + 1− α)
tv+α v > −1

eλt t−αE1,1−α(λt)

cosh(
√
λt) t−αE2,1−α(λt2)

sinh(
√
λt)√

λt
t1−αE2,2−α(λt2)

ln(t)
t−α

Γ(1 − α)
(ln(t)+ ψ(1)− ψ(1 − α))

tβ−1 ln(t)
Γ(β)tβ−α−1

Γ(β − α)
(ln(t)+ ψ(β)− ψ(β − α))

tβ−1 Eμ,β (λtμ) tβ−α−1 Eμ,β−α(λtμ)
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Table 1.2 RL derivative with lower terminal at −∞ i.e., −∞Dα
t f (t)

function f (t) −∞Dα
t f (t) derivative

H (t − a)

⎧

⎪
⎨

⎪
⎩

(t − a)−α

Γ(1− α)
, (t > a)

0, (t ≤ a)

H (t − a) f (t)

⎧

⎨

⎩

a Dα
t f (t), (t > a)

0, (t ≤ a)

eλt λαeλt

eλt+μ λαeλt+μ

sin λt λα sin
(

λt + πα
2

)

cos λt λα cos
(

λt + πα
2

)

eλt sinμt rαeλt sin(μt + αϕ) r =
√

λ2 + μ2 tanϕ = μ

λ
(λ,μ > 0)

eλt cosμt rαeλt cos(μt + αϕ) r =
√

λ2 + μ2 tanϕ = μ

λ
(λ,μ > 0)

at−∞. In the list, H (t) is unit step Heaviside function. E is Mittag-Leffler function.
These tables give a feel of how fractional differintegration will look like in analytical
expressions.

1.6 Solution of Fractional Differential Equations

Fractional differential equations appear in several physical systems. Solution to
these is no more rigorous than its integer order counterpart. The Laplace transfor-
mation technique is very popular, though several analytical approaches do exist.
Numerical evaluation with “short-memory principle” is one among them popular
for computer programing and numerical regression. Mellin transform, power series
expansion method approach using fractional Green’s function, Babenko’s sym-
bolic method, orthogonal polynomial method, Reisz fractional potential method,
method with Wright’s function, and finite-part integral method are some of the
mathematician’s tool for obtaining the fractional differintegrals and solution of
fractional differential equation. However, in this book, only the Laplace transfor-
mation is considered as it is easily understood and being popular among engineers
and scientists.

1.7 A Thought Experiment

From an aircraft, we can see the city roads and observe the vehicular traffic move-
ment. The vehicle seems to move in a straight line. Therefore, as an observer, we
draw the velocity curve by simple one-order integer derivative of displacement and
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Fig. 1.7 Macroscopic and
microscopic view of moving
vehicles on road

find that it maps a straight line. In Fig. 1.7, the pair of straight line gives the velocity
trajectory of the upstream vehicle and downstream vehicle, as observed in macro-
scopic scale.

The same vehicle when looked with enlarged view tells us its continuous move-
ment but to avoid road heterogeneity it travels in zigzag fashion. The curve in the
lower frame of Fig. 1.7 maps this picture. Here the scale is enlarged. The velocities
for upstream and downstream vehicles are not pair of straight lines, but follow a
continuous, nowhere differentiable curve. So will the dx/dt give the true picture
of velocity or will it be d1+αx/dt1+α , where 0 < α < 1, give the representation
of the actual zigzag pattern is the thought experiment. Now the question about
the dimensions of velocity, in the thought experiment when defined as fractional
derivative of displacement, is the matter of another thought. In the present under-
standing, as per uniform time scales, the quantity dx/dt is velocity, and d2x/dt2

is the acceleration; however, the quantification of d1.23x/dt1.23 is hard to visualize.
This fractional differentiation is in between velocity and acceleration, perhaps a
velocity in some transformed time scale, which is non-uniform-enriching thought
for physical understanding of fractional quantities. The nature of zigzag pattern
shown is somewhat called fractal curve, actually a continuous and nowhere dif-
ferentiable function. The relation of fractal dimensions and fractional calculus is
an evolving field of science at present. The macroscopic view presented above
gives a thought of explanation of discontinuity and singularity formations in nature,
in classical integer order calculus. Can fractional calculus be an aid for explana-
tion of discontinuity formation and singularity formation is an enriching thought
experiment.

1.8 Quotable Quotes About Fractional Calculus

Expressed differently we may say that nature works with fractional derivatives.
We may express our concepts in Newtonian terms if we find it convenient, but if

we do so, we must realize that we have made translation into a language, which is
foreign to the system we are studying.
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All systems need a fractional time derivative in the equation describing them.
System having memory of all earlier events is thus necessary to include this record
of earlier events to predict the future. Conclusion is obvious and unavoidable: “Dead
matter has memory.”

Fractional calculus is the calculus of twenty-first century.

1.9 Concluding Comments

This field of science is evolving, and particularly as per author’s intuition, this cal-
culus will be the language of twenty-first century for physical system description
and controls. In this chapter, observation points toward evolving nature of the sci-
ence of fractional calculus definitions, though born 300 hundred years ago. The
“ifs and buts,” related to fractional calculus as today, is due to our own limitation
of understanding. This will have a clearer picture tomorrow when products based
on this subject will be used in the industry. This introduction chapter has given
the thought that there is a wonderful universe of mathematics staying within the
boundary of one complete differentiation and one complete integration. The science
maturity will absorb the richness in this fractional calculus may be in coming years
of twenty-first century. The chapter gives the idea that this fractional calculus is
as rigorous as its counterpart classical integer order differentiation and integration,
with subject’s richness for scientific research for future.



Chapter 2
Functions Used in Fractional Calculus

2.1 Introduction

This chapter presents a number of functions that have been found to be useful in
providing solutions to the problems of fractional calculus. The base function is the
Gamma function, which generalizes the factorial expression, used in multiple dif-
ferentiation and repeated integrations, in integer order calculus. The Mittag- Leffler
function is the basis function of fractional calculus, as the exponential function is to
the integer order calculus. Several modifications of the Mittag-Leffler functions are
introduced which are developed since 1903, for study of the fractional calculus.

2.2 Functions for the Fractional Calculus

2.2.1 Gamma Function

One of the basic functions of the fractional calculus is Euler’s Gamma function.
This function generalizes the factorial n! and allows n to take non-integer values.

2.2.1.1 Definition of the Gamma Function

Γ(z) =
∞
∫

0
e−t t z−1dt, which converges in the right half of the complex plane

�e(z) > 0.
Considering z to be real number, the above statement implies that Gamma func-

tion is defined continuously for positive real values of z.

S. Das, Functional Fractional Calculus for System Identification and Controls. 19
C© Springer 2008



20 2 Functions Used in Fractional Calculus

2.2.1.2 Basic Properties of Gamma Function

Γ(z + 1) = zΓ(z)

Γ(z + 1) =
∞
∫

0

e−t t (z+1)−1dt =
∞
∫

0

e−t t zdt

= [−e−t t z
]t=∞

t=0 + z

∞
∫

0

e−t t z−1dt

= zΓ(z)

The above equation is obtained by integration by parts. Obviously Γ(1) = 1, and
using the above property, we obtain values for z = 1, 2, 3, . . .

Γ(2) = 1.Γ(1) = 1!

Γ(3) = 2.Γ(2) = 2!

Γ(4) = 3.Γ(3) = 3!

. . . . . . . . . . . . . . . . . .

Γ(n + 1) = n.Γ(n) = n.(n − 1)! = n!

The above property is valid for positive values of z. Another important property of
the Gamma function is that it has simple poles at z = 0,−1,−2,−3, . . .

The proof is explained by splitting the function into two intervals, as indicated
below:

Γ(z) =
1
∫

0

e−t t z−1dt +
∞
∫

1

e−t t z−1dt

The first integral can be evaluated by using series expansion for the exponential
function. If �e(z) = x > 0, then �e(z + k) = x + n > 0 and thus t z+k

∣

∣

t=0 = 0.
Therefore,

1
∫

0

e−t t z−1dt =
1
∫

0

∞
∑

k=0

(−t)k

k!
t z−1dt =

∞
∑

k=0

(−1)k

k!

1
∫

0

tk+z−1dt =
∞
∑

k=0

(−1)k

k!(k + z)
.

The second integral may be represented as an “entire- function”



2.2 Functions for the Fractional Calculus 21

ϕ(z) =
∞
∫

1

e−t t z−1dt

Γ(z) =
∞
∑

k=0

(−1)k

k!

1

k + z
+ ϕ(z)

= ϕ(z)+ (−1)0

0!

1

0+ z
+ (−1)1

1!

1

1+ z
+ (−1)2

2!

1

2+ z
+ . . . .

thus clearly indicating simple poles at 0,−1,−2,−3 . . ., this means that at nega-
tive integer points, the Gamma function asymptotically approaches infinity and is
discontinuous at those negative integer values.

2.2.1.3 Gamma Function Defined by Limit

The gamma function can also be represented as a limit as follows:

Γ(z) = lim
n→∞

n!.nz

z(z + 1) . . . (z + n)
.

Here, we initially assume the right half plane �e(z) > 0, or in case of real number
positive values.

Let us introduce an auxiliary function to prove this part:

fn =
n
∫

0

(

1− t

n

)n

t z−1dt .

Substitute τ = t/n and then performing integration by parts we get the following:

fn(z) = nz

1
∫

0

(1− τ )nτ z−1dτ

= nz

z
n

1
∫

0

(1− τ )n−1τ zdτ

= nzn!

z(z + 1) . . . (z + n − 1)

1
∫

0

τ z+n−1dτ

= nzn!

z(z + 1) . . . (z + n − 1)(z + n)

Taking into account the well-known lim
n→∞
(

1− t
n

)n = e−t , we expect the following:
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lim
n→∞ fn(z) = lim

n→∞

n
∫

0

(

1− t

n

)n

t z−1dt =
∞
∫

0

e−t t z−1dt = Γ(z)

Incomplete Gamma function is defined in two ways. In both the definitions, the inte-
grand is same, but limits of integration is different. The Upper-incomplete Gamma
function is defined as

Γ(z, x) =
∞
∫

x

t z−1e−t dt,

and the Lower-incomplete Gamma function is defined as

γ (z, x) =
x
∫

0

t z−1e−t dt,

and in both the cases, x is real and x ≥ 0, and z is complex with �e(z) > 0. Some
of the properties of incomplete Gamma functions are

Γ(z) = Γ(z, x)+ γ (z, x)

Γ(z + 1, x) = zΓ(z, x)+ x ze−x

γ (z + 1, x) = zγ (z, x)− x ze−x

For integer n = z,

Γ(n, x) = (n − 1)!e−x
n−1
∑

k=0

xk

k!

Γ(n, 0) = Γ(n) = (n − 1)!

γ (n, x)→ Γ(n), lim x →∞
Γ(1, x) = e−x

γ (1, x) = 1− e−x

The incomplete Gamma function is used in obtaining fractional differentiation and
fractional integration of periodic functions, used as sinusoidal response studies of
fractional operators.

2.2.2 Mittag-Leffler Function

In the integer order calculus equations, the exponential function exp(z) plays an
important role. Similarly in the fractional order calculus, the Mittag-Leffler function
plays the important part.
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For this new function Eq [az], q > 0, Mittag- Leffler considered the parameter
a to be a complex number, such as a = |a| exp( jφ). As he studied this function, it
became apparent that this function is either stable (decays to zero) or unstable (goes
to infinity) as z increases, depending upon how the parameter a and q are chosen.
The result was that the function remained bounded for increasing z if |φ| ≥ q π

2 .

2.2.2.1 One-Parameter Mittag-Leffler Function

It is defined as

Eα(z) =
∞
∑

k=0

zk

Γ(αk + 1)

The expanded form is the infinite series that is as follows:

Eα(z) = 1+ z

Γ(α + 1)
+ z2

Γ(2α + 1)
+ z3

Γ(3α + 1)
+ . . .

This function was introduced by Mittag-Leffler in 1903.

2.2.2.2 Two-Parameter Mittag-Leffler Functions

Two-parameter Mittag-Leffler function plays a very important role in fractional
calculus. This function type was introduced by R. P. Agarwal and Erdelyi in
1953–1954.

The two-parameter function is defined as follows:

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
(α > 0, β > 0)

Eα,1(z) =
∞
∑

k=0

zk

Γ(αk+1)
≡ Eα(z) is one-parameter Mittag-Leffler function.

The following identities follow from the definition:

E1,1(z) =
∞
∑

k=0

zk

Γ(k + 1)
=
∞
∑

k=0

zk

k!
= ez

E1,2(z) =
∞
∑

k=0

zk

Γ(k + 2)
=
∞
∑

k=0

zk

(k + 1)!
= 1

z

∞
∑

k=0

zk+1

(k + 1)!
= ez − 1

z

E1,3(z) =
∞
∑

k=0

zk

Γ(k + 3)
=
∞
∑

k=0

zk

(k + 2)!
= 1

z2

∞
∑

k=0

zk+2

(k + 2)!
= ez − 1− z

z2
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The above equation have the general form as follows:

E1,m(z) = 1

zm−1

(

ez −
m−2
∑

k=0

zk

k!

)

The trigonometric and hyperbolic functions are also manifestations of the two-
parameter Mittag-Leffler function, which is indicated below:

E2,1(z2) =
∞
∑

k=0

z2k

Γ(2k + 1)
=
∞
∑

k=0

z2k

(2k)!
= cosh(z),

E2,2(z2) =
∞
∑

k=0

z2k

Γ(2k + 2)
= 1

z

∞
∑

k=0

z2k+1

(2k + 1)!
= sinh(z)

z

Generalized hyperbolic function of order n is represented below:

hr (z, n) =
∞
∑

k=0

znk+r−1

(nk + r − 1)!
= zr−1 En,r (zn), . . . (r = 1, 2, 3, . . ., n)

and the generalized trigonometric function of order n is also represented below:

kr (z, n) =
∞
∑

m=0

(−1)mznm+r−1

(nm + r − 1)!
= zr−1 En,r (−zn), . . . (r = 1, 2, 3, . . . , n)

Mathematical handbooks describe er f c(z) as follows:
The error function is defined as

er f (z) = 2√
π

z
∫

0

e−t2
dt

and is represented by series as

er f (z) = 2√
π

∞
∑

n=0

(−1)nz2n+1

(2n + 1)n!
= 2√

π

(

z − z3

3
+ z5

10
− z7

42
+ z9

216
+ . . .

)

The complimentary error function is defined as

er f c(z) = 1− er f (z) = 1− 2√
π

z
∫

0

e−t2
dt = 2√

π

∞
∫

z

e−t2
dt .
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The series asymptotic expansion of complimentary error function is

er f c(z) = e−z2

z
√
π

[

1+
∞
∑

n=1

(−1)n 1.3.5 . . . (2n − 1)

(2z2)n

]

= e−z2

z
√
π

[

1+
∞
∑

n=1

(−1)n (2n)!

n!(2z)2n

]

2.2.2.3 Variants of Mittag-Leffler Function

ξt (ν, a) = tν
∞
∑

k=0

(at)k

Γ(ν + k + 1)
= tνE1,ν+1(at)

This function is important for solving fractional differential equations.

�α (β, t) = tα
∞
∑

k=0

βktk(α+1)

Γ({k + 1}{α + 1}) = tαEα+1,α+1(βtα+1)

This function is called Rabotnov function, and a special variant too.

Scα(z) =
∞
∑

n=0

(−1)nz(2−α)n+1

Γ({2− α}n + 2)
= z E2−α,2(−z2−α)

is the fractional sine function form-I.

Csα(z) =
∞
∑

n=0

(−1)nz(2−α)n

Γ({2− α}n + 1)
= E2−α,1(−z2−α)

is the fractional cosine function form-I.

sinλ,μ(z) =
∞
∑

k=0

(−1)kz2k+1

Γ(2μk + 2μ− λ+ 1)
= z E2μ,2μ−λ+1(−z2)

is the fractional sine function form-II, and

cosλ,μ(z) =
∞
∑

k=0

(−1)kz2k

Γ(2μk + μ− λ+ 1)
= E2μ,μ−λ+1(−z2)

is the fractional cosine function form-II.
Generalization of the Mittag-Leffler function to two variables was suggested and

were further extended by Srivastava to the following type of symmetric form.
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ξ
ν,σ
α,β,λ,μ =

∞
∑

m=0

∞
∑

n=0

xm+ β(νn+1)−1
α yn+ μ(σm+1)−1

λ

Γ(mα + (νn + 1)β)Γ(nλ+ (σm + 1)μ)

Several manifestations including several variables representing Mittag-Leffler have
been made for multi-dimensional studies on fractional calculus.

2.2.2.4 Laplace Transforms of Mittag-Leffler Function

The following expressions give some identities for Laplace transforms pairs of
Mittag-Leffler functions

tαk+β−1 E (k)
α,β(atα)↔ sα−βk!

(sα − a)k+1

here

E (k)
α,β =

d (k)

dt (k)
Eα,β

For k > 0 the operation is differentiation of Mittag-Leffler function, and for k < 0
the operation is integration of Mittag- Leffler function.

β = 1, k = 0,→ Eα,1(atα)→ Eα(atα)↔ sα−1

sα − a

Eα(−λtα)↔ sα−1

sα + λ
Eα(−tα)↔ sα−1

sα + 1

Eα(λtα)↔ sα

sα − λ
d

dt
Eα(−λtα)↔ λ

sα + λ = −
(

s
sα−1

sα + λ − 1

)

d

dt
Eα(−tα)↔ 1

sα + 1
= −
(

s
sα−1

sα + 1
− 1

)

d−1

dt−1
Eα(−tα)↔ sα−2

sα + 1
= 1

s

sα−1

sα + 1
d−k

dt−k
Eα(−tα)↔ sα−k−1

sα + 1
= 1

sk

sα−1

sα + 1
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2.2.3 Agarwal Function

The Mittag-Leffler function is generalized by Agarwal in 1953. This function is
particularly interesting to the fractional order system theory due to its Laplace trans-
form given by Agarwal. The function is defined as follows:

Eα,β(t) =
∞
∑

m=0

t
(

m+ β−1
α

)

Γ(α.m + β)

L{Eα,β(tα)} = sα−β

sα − 1

2.2.4 Erdelyi’s Function

Erdelyi (1954) has studied the generalization of Mittag-Leffler function as

Eα,β (t) =
∞
∑

m=0

tm

Γ(α.m + β)
, α, β > 0

where the powers of t are integers.

2.2.5 Robotnov–Hartley Function

To effect the direct solution of the fundamental linear fractional order differential
equations, the following function was introduced by Robotnov and Hartley (1998)

Fq (−a, t) = tq−1
∞
∑

n=0

(−a)ntnq

Γ(nq + q)
, q > 0

This function is the “impulse response” of the fundamental fractional differential
equation and is used by control system analysis to obtain the forced or the initialized
system reaction.

2.2.6 Miller–Ross Function

In 1993, Miller and Ross introduced a function as the basis of the solution of frac-
tional order initial value problem. It is defined as the vth integral of the exponential
function, that is,
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Et (v, a) = d−v

dt−v
eat = tv

∞
∑

k=0

(at)k

Γ(v + k + 1)

2.2.7 Generalized R Function and G Function

It is of significant usefulness to develop a generalized function which when frac-
tionally differentiated or integrated (differintegrated) by any order returns itself.
Like exponential, trigonometric, hyperbolic functions of integer order calculus, the
definitions of such generalized Mittag-Leffler functions are important in fractional
calculus. In an earlier section, some variants of Mittag-Leffler are noted; here more
generalized R function and G function are introduced.

Rq,v[a, c, t] =
∞
∑

n=0

(a)n(t − c)(n+1)q−1−v

Γ{(n + 1)q − v} ≡ Rq,v[a, t − c]

Here t is independent variable and c is the lower limit of fractional differintegration.
Our interest in this function will be normally for the range t > c.

The Laplace transforms of R function are

Rq,v(a, 0, t)↔ sv

sq − a

Rq,v(a, c, t)↔ e−cssv

sq − a

2.2.7.1 Relation to Elementary Functions

R1,0(a, 0, t) = eat

a R2,0(−a2, 0, t) = a

{

t − a2t3

3!
+ a4t5

5!
− . . .

}

= sin(at)

R2,1(−a2, 0, t) =
{

1− a2t2

2!
+ a4t4

4!
− . . .

}

= cos(at)

a R2,0(a2, 0, t) = sinh(at)

R2,1(a2, 0, t) = cosh(at)

R1,0(a, 0, x) = eax
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2.2.7.2 Relationship of R Function to Other Generalized Function

Mittag-Leffler function:

L
{

Eq
[−atq

]} = 1

s

[

sq

sq + a

]

= sq−1

sq + a
, q > 0

Eq(−atq)↔ sq−1

sq + a
↔ Rq,q−1(−a, 0, t)

Agarwal function:

Eq,p(tq)↔ sq−p

sq − 1
↔ Rq,q−p(1, 0, t)

Erdelyi’s function:

t1−β Eq,β(tq ) = Rq,q−β (1, 0, t) = t1−β
∞
∑

n=0

tnq

Γ(nq + 1)

Robotnov and Hartley function:

Fq (−a, t)↔ 1

sq + a
↔ Rq,0(−a, 0, t) =

∞
∑

n=0

(−a)nt (n+1)q−1

Γ({n + 1}q)

L
{

Fq [a, t]
} = 1

sq − a
, q > 0

L
{

Eq
[−atq

]} = 1

s

[

sq − L
{

Fq [−a, t]
}]

0dq−1
t Fq [a, t] = Eq

[

atq
]

L−1

{

1

s(sq + a)

}

= 1

a

[

1− Eq(−atq)
] = 0d−q

t Eq
[

atq
]

L−1

{

sq

sq + a

}

= 0dq
t Fq [−a, t] = 0d1

t Eq
[−atq

] = L−1

{

1− a

sq + a

}

= δ(t)− a Fq [−a, t]

Miller and Ross function:

Et (v, a)↔ s−v

s − a
↔ R1,−v(a, 0, t) =

∞
∑

n=0

(a)ntn+v

Γ(n + v + 1)
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2.2.7.3 Further Generalized Function (G Function)

Gq,v,r (at) =
∞
∑

j=0

{(−r )(−1− r ) . . . (1− j − r )}(−a) j t (r+ j )q−v−1

Γ(1+ j )Γ({r + j}q − v)

function time expression f (t) Laplace transform F(s)

Mittag-Leffler Eq (atq) =
∞
∑

n=0

antnq

Γ(nq + 1)

sq

s(sq − a)

Agarwal Eα,β (tα) =
∞
∑

m=0

t

⎛

⎝m+
β − 1

α

⎞

⎠α

Γ(αm + β)

sα−β

sα − 1

Erdelyi Eα,β (t) =
∞
∑

m=0

tm

Γ(αm + β)

∞
∑

m=0

Γ(m + 1)

Γ(αm + β)sm+1

Robotnov–Hartley Fq (a, t) =
∞
∑

n=0

ant (n+1)q−1

Γ({n + 1}q)

1

sq − a

Miller–Ross Et (v, a) =
∞
∑

k=0

ak tk+v

Γ(v + k + 1)

s−v

s − a

Generalized R Rq,v(a, t) =
∞
∑

n=0

ant (n+1)q−1−v

Γ({n + 1}q − v)

sv

sq − a

Generalized G Gq,v,r (at) = sv

(sq − a)r

∞
∑

j=0

{(−r)(−1− r) . . . (1− j − r)}(−a) j t (r+ j )q−v−1

Γ(1+ j )Γ({r + j}q − v)

2.3 List of Laplace and Inverse Laplace Transforms Related
to Fractional Calculus

Laplace transform F(s) time expression f (t)

sα−1

sα ∓ λ ,�(s) > |λ|1/α Eα,1(±λtα)

k!sα−β

(sα ∓ λ)k+1
,�(s) > |λ|1/α tαk+β−1 Eα,β

(k)(±λ, tα)

k!

(
√

s ∓ λ)k+1
,�(s) > λ2 t

k − 1

2 E (k)

1

2
,
1

2

(±λ√t)

1

sα
tα−1

Γ(α)

arctan
k

s

1

t
sin(kt)

log
s2 − a2

s2

2

t
(1 − cosh at)
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log
s2 + a2

s2

2

t
(1− cos at)

log
s − a

s − b

1

t
(ebt − eat )

e−k
√

s

√
s(a +√s)

, (k ≥ 0) eakea2 t er f c(a
√

t + k

2
√

t
)

ae−k
√

s

s(a +√s)
, (k ≥ 0) er f c

(

k

2
√

t

)

− eak ea2 t er f c

(

a
√

t + k

2
√

t

)

1

s
√

s
e−k
√

s, (k ≥ 0) 2

√

t

π
e
−

k2

4t − k.er f c

(

k

2
√

t

)

1√
s

e−k
√

s , (k ≥ 0)
1√
π.t

e
−

k2

4t

1

s
e−k
√

s , (k ≥ 0) er f c

(

k

2
√

t

)

e−k
√

s, (k ≥ 0)
k

2
√
π.t3

e
−

k2

4t

1

sv
ek/s , (v > 0)

(

t

k

)(v−1)/2

Iv−1(2
√

kt)

1

sv
e−k/s , (v > 0)

(

t

k

)(v−1)/2

Jv−1(2
√

kt)

1

s
√

s
ek/s 1√

π.k
sinh 2

√
kt

1

s
√

s
e−k/s 1√

π.k
sin 2
√

kt

1√
s

ek/s 1√
π.t

cosh 2
√

kt

1√
s

e−k/s 1√
π.t

cos 2
√

kt

1

s
e−k/s J0(2

√
kt)

k

s2 + k2
coth

π.s

2k
|sin kt |

1√
s

1√
π.t

1

s
√

s
2

√

t

π

1

sn
√

s
, (n = 1, 2, . . .)

2ntn−(1/2)

1.3.5 . . . (2n − 1)
√
π

s

(s − a)3/2

1√
π.t

eat (1 + 2at)

√
s − a −√s − b

1

2
√
π.t3

(ebt − eat )

1√
s + a

1√
π.t
− aea2 t er f c(a

√
t)

√
s

s − a2

1√
π.t
+ aea2 t er f (a

√
t)
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√
s

s + a2

1√
π.t
− 2a√

π
e−a2 t

a
√

t
∫

0
eτ

2
dτ

1√
s(s − a2)

1

a
ea2 t er f (a

√
t)

1√
s(s + a2)

2

a
√
π

e−a2 t
∫ a
√

t
0 eτ

2
dτ

b2 − a2

(s − a2)(
√

s + b)
ea2 t
[

b − a{er f (a
√

t)}]− beb2
er f c(b

√
t)

1√
s(
√

s + a)
ea2 t er f c(a

√
t)

1√
s + b(s + a)

1√
b − a

e−at er f (
√

b − a
√

t)

b2 − a2

√
s(s − a2)(

√
s + b)

ea2 t

[

b

a
er f (a

√
t)− 1

]

+ eb2 t er f c(b
√

t)

(1− s)n

sn+(1/2)

n!

(2n)!
√
π t

H2n(
√

t)

Hn(x) = ex2 dn

dxn
(e−x2

)

Hermetite polynomial

(1− s)n

sn+(3/2)
− n!

(2n + 1)!
√
π

H2n+1(
√

t)

√
s + 2a −√s√

s

ae−at [I1(at)+ I0(at)]

In (x) = j−n Jn( j t)

Jn Bessel function of first kind

1√
s + a

√
s + b

e
−

1

2
(a+b)t

I0

(

a − b

2
t

)

Γ(k)

(s + a)k (s + b)k
For k > 0

√
π

(

t

a − b

)k−(1/2)

e
−

1

2
(a+b)t

Ik−(1/2)

(

a − b

2
t

)

1

(s + a)1/2(s + b)3/2
te
−

1

2
(a+b)t

[

I0

(

a − b

2
t

)

+ I1

(

a − b

2
t

)]

√
s + 2a −√s√
s + 2a +√s

1

t
e−at I1(at)

(a − b)k

(
√

s + a +√s + b)2k
For k > 0

k

t
e
−

1

2
(a+b)t

Ik

(

a − b

2
t

)

1√
s
√

s + a(
√

s + a +√s)2v
For k > 0

1

av
e
−

1

2
at

Iv
(a

2
t
)

1√
s2 + a2

J0(at)

1√
s2 − a2

I0(at), modified Bessel function of the first kind zero

order
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(
√

s2 + a2 − s)v√
s2 + a2

(v > −1) av Jv(at)

1

(
√

s2 + a2)k
k > 0

√
π

Γ(k)

(

t

2a

)k−(1/2)

Jk−(1/2)(at)

(
√

s2 + a2 − s)k , (k > 0)
kak

t
Jk(at)

(
√

s2 − a2 + s)v√
s2 − a2

, (v > −1) av Iv(at)

1

(s2 − a2)k
, (k > 0)

√
π

Γ(k)

(

t

2a

)k−(1/2)

Ik−(1/2)(at)

1

s
√

s + 1
er f (
√

t)

1

s +√s2 + a2

J1(at)

at
1

(s +√s2 + a2)N

N JN (at)

aN t
1√

s2 + a2(s +√s2 + a2)

J1(at)

a
1√

s2 + a2(s +√s2 + a2)N

JN (at)

aN

2.4 Concluding Comments

In this chapter, the basis functions that are important in the study of the fractional
order systems are introduced. Mostly the fundamental form is the Mittag-Leffler
function, and thus can be stated as the generalized exponential function. As
the exponential function plays the basis role in integer order calculus, so does
Mittag-Leffler function has its role in the fractional calculus. Other compacted
forms of the variants of Mittag-Leffler variety are also listed, which find several
applications of solution of fractional differential equations. All of these functions
are of power-series expansions and fit a variety of power law following processes.
In conclusion, the readers will be put to think about following reality. In circuit
theory experiment, we have made a low pass filter, with lumped resistance and
lumped capacitor. The step response to this should have a pure exponential reaction,
and mostly the recorders will show the similar reaction. The question is are we
observing a pure exponential curve uniquely determined by unique time constant,
the product of lumped resistance and lumped capacitor used. We tend to believe
that the observation is pure exponential and ode the aberration to non-linearity,
instrument error, leakages, distributed effects, and various others like parametric
drifts of components. The deviation from the expected curve, if redrawn by a suit-
able ‘power series’ function of Mittag-Leffler type, then we question the descriptor
equation, which classically is an integer order differential equation with ‘lumped
circuit components’. The Mittag-Leffler type function is the solution of fractional
differential equation, thus if the basic circuit descriptor were of fractional order
differential equation then we explain the reality, closely. However no capacitor is
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pure capacitor, no resistance is pure resistance, and no system can have lumped
characteristic, and the distributed parametric spread is reality. The same thoughts
can be extended to various other relaxation processes of the nature about diffusion,
reactor kinetics, electrochemistry, and several others. The variants of Mittag-Leffler
functions introduced here are developed in last four decades; several others may be
developed in future to explain the physical processes of nature.



Chapter 3
Observation of Fractional Calculus in Physical
System Description

3.1 Introduction

Fractional calculus allows a more compact representation and problem solution
for some spatially distributed systems. Spatially distributed system representation
allows a better understanding of the fractional calculus. The idea of fractional inte-
grals and derivatives has been known since the development of regular calculus.
Although not well known to most engineers, prominent mathematicians as well as
scientists of the operational calculus have considered the fractional calculus. Unfor-
tunately, many of the results in the fractional calculus are given in the language
of advanced analysis and are not readily accessible to the general engineering and
science community. Many systems are known to display fractional order dynamics.
Probably the first physical system to be widely recognized as one demonstrating
fractional behavior is the semi-infinite lossy (RC) transmission line. The current into
the line is equal to the half derivative of the applied voltage. That is, impedance is

V (s) = 1√
s

I (s) ;

many studied this system, Heaviside (1871) considered it extensively using the oper-
ational calculus. He states that “there is universe of mathematics lying in between
the complete differentiations and integrations, and that fractional operators push
themselves forward sometimes, and are just as real as others.” Another equivalent
system is diffusion of heat into semi-infinite solid. Here temperature looking in from
the boundary is equal to the half integral of the heat rate there. Other systems that
are known to display fractional order dynamics are viscoelasticity, colored noise,
electrode–electrolyte polarization, dielectric polarization, boundary layer effects in
ducts, and electromagnetic waves. Because many of these systems depend upon spe-
cific material and chemical properties, it is expected that a wide range of fractional
order behaviors are possible using different materials.

3.2 Temperature–Heat Flux Relationship for Heat Flowing
in Semi-infinite Conductor

The thermocouple consists of two pairs of dissimilar metals with a common
junction point. Because the wires are long and insulated, they will be treated as
“semi-infinite” heat conductors. Figure 3.1 represents one such wire of thermocouple
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Tsurf (t)

x = −∞ x = 0 x = +∞

Thermocouple

Direction of
heat flow

Fig. 3.1 Heat flow in semi-infinite wire thermocouple

pair. The thick line in Fig. 3.1 represents the semi-infinite heat conductor, the
thermocouple wire measuring the temperature at x = 0 the furnace wall, called as
Tsur f (t), which dynamically varies with the time. The initial temperature is denoted
by T0

The problem of heat conduction in the thermocouple wire is obviously one-
dimensional. The following derivation shows how fractional calculus appears in the
problem of relating the conduction heat flux through semi-infinite thermocouple
wire to the body temperature at the origin.

cρ
∂T

∂ t
= k

∂2T

∂x2
,

(t > 0,&−∞ < x < 0)

T (0, x) = T0

T (t, 0) = Tsur f (t)
∣

∣

∣

∣
lim

x→−∞ T (t, x)

∣

∣

∣

∣
<∞

where t is time(s), x is the spatial direction in the direction of heat flow (m), c is
the specific heat or heat capacity (J kg−1 K−1), ρ is density (kg m−3), T (t, x) is the
temperature (K), and k is coefficient of heat conduction (W m−1 K−1).

Let u(t, x) = T (t, x)− T0. Substituting this in the above set of equations, we get

cρ
∂u

dt
= k

∂2u

∂x2
,

(t > 0,&−∞ < x < 0)

u(0, x) = 0

u(t, 0) = Tsur f (t)− T0
∣

∣

∣

∣
lim

x→−∞ u(t, x)

∣

∣

∣

∣
<∞
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Taking Laplace transforms for the above equation gives

cρ.sU (s, x) = k
∂2U (s, x)

∂x2

∂2U (s, x)

∂x2
− cρs

k
U (s, x) = 0

The bounded solution for x tends to −∞ is

U (s, x) = U (s, 0) exp

(

x

√

scρ

k

)

;

differentiating this, we find

dU (s, x)

dx
= U (s, 0)

√

scρ

k
exp

(

x

√

scρ

k

)

.

From these two expressions, we get the following by putting x = 0 and taking
the inverse Laplace of s−0.5 F(s) → d−1/2 f (t), i.e., semi-integration, we obtain
semi-differential equation in time variable:

1√
s

d

dx
U (s, 0) =

√

cρ

k
U (s, 0)

d−1/2

dt−1/2

∂u(t, 0)

∂x
=
√

cρ

k
u(t, 0)

∂u(t, 0)

∂x
=
√

cρ

k

d1/2

dt1/2
u(t, 0)

Returning from u(t, x) to T (t, x), we get

k
∂T (t, 0)

∂x
=
√

cρk
d1/2

dt1/2
(Tsur f {t} − T0).

k
∂

∂x
T (t, 0) = Q(t)

is termed as heat flux, flowing through the thermocouple wire at the interface of the
furnace wall and point of contact (the origin). Therefore, the heat flux expression is

Q(t) =
√

cρk
d1/2

dt1/2

(

Tsur f (t)− T0
) = k
√

k
cρ

d1/2

dt1/2

(

Tsur f (t)− T0
)

= k√
α

a D1/2
t Tb(t).
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3.3 Single Thermocouple Junction Temperature in Measurement
of Heat Flux

From the derivation, as in the above section, we can write a general heat flow equa-
tion relating the heat flux conducted through a semi-infinite conductor of heat to the
temperature at the origin as time varying constitutive relation:

Qi (t) = k√
α

a D1/2
t Tb,

a D1/2
t ≡

d1/2

[d(t − a)]1/2

α = k

cρ

The semi-derivative is shown for initial time point a. When initial forcing conditions
(states) are zero, then the operator is

0 D1/2
t ≡

d1/2

dt1/2
;

here α is thermal diffusivity; Tb is the body temperature, at the point of contact of
thermocouple to the furnace wall.

The following equations define the time domain behavior.
Input heat flux to the thermocouple from steam temperature to the tip of the

thermocouple junction Qi = h A(Tg(t)− Tb(t)). At the tip of the thermocouple, this
input heat flux flows into two thermocouple wires as shown in Fig. 3.2. Thus,

Qi (t)− Q1(t)− Q2(t) = mc
dTb

dt
.

Converting this expression to integral form, we obtain the thermocouple node
temperature related to two heat fluxes as

Tb(t) = 1

mc
a D−1

t (Qi (t)− Q1(t)− Q2(t)) .

The two semi-infinite heat conductors have constitutive equations in semi-
differential form as derived for Fig. 3.1, as

Fig. 3.2 Thermocouple
junction for temperature (heat
flux) measurement

k1, α1

k2, α2

Tg Tb
Qi (t)

Q1(t)

Q2(t)
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Q1(t) = k1√
α1

a D1/2
t Tb(t) ,

and

Q2(t) = k2√
α2

a D1/2
t Tb(t)

where hA is product of convective heat transfer coefficient and surface area, and mc
is product of the mass and specific heat. The constitutive equation is obtained by
substituting values of Q′s, as

h A
(

Tg(t)− Tb(t)
)− k1√

α1
a D1/2

t Tb(t)− k1√
α2

a D1/2
t Tb(t) = mc

dTb(t)

dt
,

after taking Laplace transforms of the constitutive equations, we have the following
expression:

(

mcs + k1√
α1

s1/2 + k2√
α2

s1/2 + h A

)

Tb(s) = h ATg(s) .

The transfer function is as follows:

Tb(s)

Tg(s)
= 1
(

mc
h A

)

s + 1
h A

(

k1√
α1
+ k2√

α2

)

s1/2 + 1

The value of fractional calculus is clearly demonstrated in this analysis. Conven-
tional approaches require the solution of two simultaneous partial differential equa-
tions with ordinary integer order differential equation. The Bode plots show two
distinct asymptotes: (1) slope –10 db/decade (corresponds to semi-pole s1/2 behav-
ior) and (2) as –20 db/decade at higher frequency. The diagram is shown in Fig. 3.3
with (mc/h A) = 0.005, and

Fig. 3.3 Frequency response
amplitude frequency Bode
plot
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1

h A

(

k1√
α1
+ k2√

α2

)

= 5.0.

One more observation may be drawn from this analysis. In order to estimate heat
flux in any thermal system, classical method of utilizing two thermocouples can be
replaced by one thermocouple and from the temperature values obtained as function
of time instantaneous semi-differential equation, as indicated above, may be solved
to estimate flowing heat flux.

Observing the transfer function of this system, Tb(s)/Tg(s), obtained earlier, it
appears as per integer order calculus theory that it is a first-order system. The first-
order system response to a step input is a damped output, without any oscillation
and overshoot. The presence of fractional order terms makes somewhat an anoma-
lous argument (which is detailed in Chap. 9.9). Though the system appears to be
of first order, yet the presence of the half-order term, in denominator, may give a
system response, to a step input as oscillatory with overshoot. Therefore definition
of the system order for fractional order system is different, than that in integer order
calculus.

3.4 Heat Transfer

System identification is the part of control practice, in which the parameters that
enter into mathematical model of the system are determined. This is especially
important in thermal system with convection because of presence of heat transfer
coefficient, which is never really known with great exactitude, and may vary with
time due to physical or chemical changes at the heat transfer surface. There are also
other parameters like the thermal capacity of the conductive body, its surface area,
and its thermal diffusivity that have to be determined.

Rather than to find each of the parameters separately, it is more practical to
estimate non-dimensional expression that best fits the observed data. In this heat
transfer example, consider the cooling (or heating) of a one-dimensional plane wall
of thickness L, with spatial uniform initial temperature Ti . There is convective heat
transfer coefficient h from one wall to fluid at temperature T∞. The exact solu-
tion with partial differential equation is as follows with the boundary and initial
conditions.

The temperature field is T (x, t), where x is the coordinate measured from the
wall, and t is the time. The transient heat conduction equation in the wall is
given by

∂T (x, t)

∂ t
= α∂

2T (x, t)

∂x2
,

where α is the thermal diffusivity.
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The initial and boundary conditions are

∂T (x, t)

∂x
= 0 at x = 0

k
∂T (x, t)

∂x
+ h (T {x, t} − T∞) = 0, at x = L

T (x, t) = Ti , at t = 0

where k is the thermal conductivity of the wall material. With change of variable to
make dimensionless equation, we get the following transformed unitless variables as

ξ = x

L
,

τ = tα

L2
,

and unitless temperature as

θ = T (x, t)− T∞
Ti − T∞

,

and we obtain the dimensionless equation as

∂θ

∂τ
= ∂2θ

∂ξ2
,

with ∂θ
∂ξ
= 0, at ξ = 0 and ∂θ

∂ξ
+ Biθ = 0 at ξ = 1, and for τ = 0.

Where the “size-factor” Bi = hL/k is called the Biot’s number.
Solution to this dimensionless equation, which is the exact representation of heat

transfer, is

θ (x, τ ) =
∞
∑

n=1

Cn exp
(−λ2

nτ
)

cos (λn x) ,

where

Cn = 4 sinλn

2λn + sin (2λn)

and λn are positive roots of transcendental expression λn tanλn = Bi .
The dimensionless mean temperature is

θ (τ ) =
1
∫

0

θ (ξ, τ )dξ .
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The exact solution is obtained above, by considering various Biot’s number
(0.1–10). However, the first way to approximate this heat transfer phenomena
is by having spatial average of the temperature, i.e.

T (t) = 1

L

L
∫

0

T (x, t)dx

be taken as dependent variable. In terms of this average temperature, the heat bal-
ance equation is

d T (t)

dt
+ h

ρc

(

T −T∞
)

= 0 ,

where ρ is the density and c is specific heat of the wall material. The convec-
tive heat transfer initial and boundary conditions ∂T/∂x = 0, at x = 0, and
k(∂T/∂x)+ h(T − T∞) = 0, at x = 1 have been used to derive the above average
expression as approximation. The equation T = Ti at t = 0 gives T (0) = 1. Using
dimensionless variables, as done for exact solution case, one obtains

d θ /dτ + Bi θ = 0, with θ(0) = 1. Now numerical experiments point toward an
interesting observation that the solution with Bi = 0.1, the exact solution and this
approximation match closely, whereas for Bi = 10, the deviations are large.

An improvement to the above approximation is to write a fractional order differ-
ential equation, as (dq θ /dτ q)+ pBi θ = 0, with θ (0) = 1. Here q and p be varied
to minimize

E =
τmax∫

0

e(τ )2dτ ,

where e(τ ) is the difference between the exact solution and approximate solution of
θ (τ ). τmax is the maximum value of τ to which integration is carried out.

Here the effect of Bi is to be discussed. The fractional order q → 1 and the
multiplier of the Biot’s number p→ 1, as Bi → 0.

This example works well with dynamic system modeling where measurements
enable simultaneous time-dependent system identification as well as provide an
error signal for feedback controls. In the present heat transfer example, for the wall
with simple geometry, a lumped parameter energy balance in which temperature of
the system is assumed to be spatially uniform is commonly used to model transient
conductive systems exposed to convective heat fluxes at their boundaries. It is simple
to fit experimental data and the integer order (in this case first order) differential
equation that is easy to solve. For larger size (Biot’s number), there is difference
between actual temperature field and the spatial average used in lumped model.
This necessitates the solution of the partial differential equations for the transient
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heat conducting in the body which is made difficult by shape, heterogeneity, or the
unknown nature of the convective heat transfer coefficient at the boundaries.

This argument is true for any realistic process with transport phenomena. Here
a practical method to describe the system with fractional order differential equation
aims at reality in system identification and control, as real systems are distributed
phenomena.

3.5 Driving Point Impedance of Semi-infinite Lossy
Transmission Line

Assuming a lossy RC line, the boundary value problem can be defined in terms of the
current or voltage variables. Since a semi-infinite line is considered, the measurable
inputs or outputs are at x = 0, at the left end, while the right end x = ∞ is at finite
value. In terms of the voltage variable, the equations can be written as

∂v(x, t)

∂x
= i (x, t)R

∂i (x, t)

∂x
= C

∂v(x, t)

∂ t

R and C are resistance and capacitance per unit length.
Differentiating first with respect to x and then substituting second in the first one,

we get

∂2v

∂x2
= R

∂i

∂x
= RC

∂v

∂ t
,

choosing 1/RC as α, we get the problem formulation as

∂v(x, t)

∂ t
= α∂

2v(x, t)

∂x2
, v(0.t) = vI (t), v(∞, t) = 0.v(x, 0)

Given with

i (x, t) = − 1

R

∂v(x, t)

∂x

x = ∞

R C

i(t)

v(t)
x = 0

Fig. 3.4 Semi-infinite lossy transmission line
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In this formulation v is the voltage, i is the current, and vI (t) is a time-dependent
input variable. At x = ∞, the condition is of short circuit. A classical solution using
iterated Laplace transform is used to solve this problem.

Taking Laplace transform with respect to time and using s as temporal Laplace
variable gives

sV (x, s)− v(x, 0) = α d2V (x, s)

dx2
, with V (0, s) = VI (s), V (∞, s) = 0,

I (x, s) = − 1

R

dV (x, s)

dx
.

Then taking the Laplace transform with respect to spatial position x , and using p as
the spatial Laplace variable gives

s

α
V (p, s)− 1

α
V (p, 0) = p2V (p, s)− pV (0, s)−

[

dV (0, s)

dx

]

.

Substituting

[

dV (0, s)

dx

]

= V ∗ ,

this equation can be manipulated to give V (p, s) as

[

p2 − s

α

]

V (p, s) = − 1

α
V (p, 0)+ pV (0, s)+ V ∗(0, s) ,

or

V (p, s) =
[

1

p2 − s
α

] [

− 1

α
V (p, 0)+ pV (0, s)+ V ∗(0, s)

]

The first term of the transform, here, of the initial spatial distribution V (p, 0) is
problem-dependent. After rearrangement and partial fraction, the above expression
can be expressed as

V (p, s) =
[

1

2
√ s
α

(

p −√ s
α

) − 1

2
√ s
α

(

p −√ s
α

)

]
[

− 1

α
V (p, 0)

]

+
[

1

p2 − s
α

]

[

pV (0, s)+ V ∗(0, s)
]

Here the first term represents the effect of any initial spatial voltage distribution,
while the second term represents the voltage and current present at x = 0 at the end
of the line. The first term is now inverse Laplace transformed with respect to the
variable p using convolution, and the second is inverse-Laplace transformed using
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standard transform pairs.

V (x, s) =
∫ x

0

1

2
√

s
α

e+(x−λ)
√

s
α

[

− 1

α
v(λ, 0)

]

dλ

−
x
∫

0

1

2
√

s
α

e−(x−λ)
√

s
α

[

− 1

α
v(λ, 0)

]

dλ

+V (0, s) cosh

(

x

√

s

α

)

+ V ∗(0, s)
√ s
α

sinh

(

x

√

s

α

)

Equivalently,

V (x, s) =
x
∫

0

1

2
√

s
α

e+x
√

s
α e−λ
√

s
α

[

− 1

α
v(λ, 0)

]

dλ

−
x
∫

0

1

2
√

s
α

e−x
√

s
α e+λ
√

s
α

[

− 1

α
v(λ, 0)

]

dλ

+V (0, s)

2

[

e+x
√

s
α + e−x

√
s
α

]

+ V ∗(0, s)

2
√ s
α

[

e+x
√

s
α − e−x

√
s
α

]

Collecting the like exponentials gives the following:

V (x, s) = e+x
√

s
α

2

⎡

⎣V (0, s)+ V ∗(0, s)
√

s
α

− 1

α
√

s
α

x
∫

0

e−λ
√

s
α v(λ, 0)dλ

⎤

⎦

+e−x
√

s
α

2

⎡

⎣V (0, s)− V ∗(0, s)
√ s
α

+ 1

α
√ s
α

x
∫

0

e+λ
√

s
α v(λ, 0)dλ

⎤

⎦

It should be recognized that the coefficients multiplying the two exponential func-
tions are unknowns. Although the integral and either V (0, s) or V ∗(0, s) are given
in the problem statement, the other condition (V ∗ or V , respectively) at x = 0 is
determined as a response to these two given terms. Imposing the boundary condition
at x = ∞, allows the determination of a relationship between these three terms at
x = 0, and thus allows the impedance and initial condition response of the system.

It is required to evaluate the above equation in the limit x → ∞. In this limit
second term in the above equation goes to zero due to exponential behavior, however
the integral inside the bracket will diverge. That is

lim
x→∞

(

e−x
√

s
α

)

⎛

⎝

1

α
√

s
α

x
∫

0

e+λ
√

s
α v(λ, 0)dλ

⎞

⎠ = 0.∞
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We are thus left with indeterminate form, and this can be solved by L’Hopital’s rule
as follows (after rearrangement):

lim
x→∞

1
2α
√

s
α

x
∫

0
e+λ
√

s
α v(λ, 0)dλ

e+x
√

s
α

The L’Hopital rule says that this ratio has the same value as the ratio of the deriva-
tives (with respect to x) of the numerator and denominator. Differentiating the
denominator is easy, but differentiating the numerator with respect to x requires
Leibniz’s rule. Performing the differentiation gives

lim
x→∞

(

1
2α
√

s
α

d
dx

x
∫

0
e+λ
√

s
α v(λ, 0)dλ

)

(
√ s
α

e+x
√

s
α

)

Combining the leading constants, and applying the Leibniz’s rule to the numerator
gives

lim
x→∞

1
2s e+x
√

s
α v(x, 0)

e+x
√

s
α

.

It can now be seen that the exponential terms cancel, which leaves the result

lim
x→∞

1

2s
v(x, 0) = v(∞, 0)

2s
.

The problem statement however requires that the boundary condition v(∞, t) = 0
be satisfied for all time. Thus it is shown that the first term of the main equation
equals zero for x →∞.

From above limit derivations,

V (∞, s)= e+∞
√

s
α

2

⎡

⎣V (0, s)+ V ∗(0, s)
√

s
α

− lim
x→∞

1

α
√

s
α

x
∫

0

e−λ
√

s
α v(λ, 0)dλ

⎤

⎦=0

dropping the limit notation, we have

V (0, s)+ V ∗(0, s)
√

s
α

− 1

α
√

s
α

∞
∫

0

e−λ
√

s
α v(λ, 0) dλ = 0 .

Remembering that the current anywhere in the line is related to the voltage, then at
x = 0

I (0, s) = − 1

R

dV (0, s)

dx
= −V ∗(0, s)

R
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and solving for voltage in terms of source current gives

V (0, s) = RI (0, s)
√

s
α

+ 1

α
√

s
α

∞
∫

0

e−λ
√

s
α v(λ, 0)dλ

In evaluating the integral on the right, it is now recognized that this term is equivalent
to a Laplace transform integral with

s → q =
√

s

α
.

Thus the Laplace transform tables can simplify the evaluation of this term as
follows:

1

α
√

s
α

∞
∫

0

e−λ
√

s
α v(λ, 0)dλ = 1

α
√

s
α

[V (q, 0)]q=
√

s
α

.

The notation here on the right-hand side of this equation is used to indicate the
evaluation procedure. First the initial spatial distribution v(x, 0) is Laplace trans-
formed with respect to the spatial Laplace variable p to give V (p, 0). The integral
on the left side of the above equation is then easily calculated by replacing spatial
variable p with

q =
√

s

α
.

The voltage equation thus becomes

V (0, s) = RI (0, s)
√

s
α

+ 1

α
√

s
α

[V (p, 0)]p=
√

s
α

.

Notice that this contains the driving point impedance function Z (s), which is
obtained by setting the initial condition, which terms to zero.

Z (s) = V (0, s)

I (0, s)
= R
√

s
α

or as α = 1/RC , the impedance is

Z (s) = V (0, s)

I (0, s)
=
√

R

C

1√
s
.
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Note that in the impedance expression of Z (s), there are two parts, the forced
response due to I (0, s) and the initial condition response due to the initial voltage
distribution in the lossy line. The final expression of voltage anywhere in the line as
function of the applied voltage at the terminal VI (s) and the initial condition on the
line is

V (x, s) = e+x
√

s
α

2α
√

s
α

⎡

⎣[V (p, 0)]p=
√

s
α

−
x
∫

0

e−λ
√

s
α v(λ, 0)dλ

⎤

⎦

+e−x
√

s
α

2α
√

s
α

⎡

⎣2VI (s)−
[V (p, 0)]p=

√
s
α

α
√

s
α

+ 1

α
√

s
α

x
∫

0

e+λ
√

s
α v(λ, 0)dλ

⎤

⎦

Furthermore, the current at any point in the line can be determined directly from the
above equation as

I (x, s) = − 1

R

dV (x, s)

dx

By applying inverse Laplace transforms, for the driving point impedance expression,
the voltage–current behavior (with zero initial condition) is obtained as

i (t) = 1

R
√
α

d1/2v(t)

dt1/2

v(t) = R
√
α

d−1/2v(t)

dt−1/2

More compactly the voltage–current relation with the initial condition is expressed as

v(t) = R
√
α

d−1/2i (t)

dt−1/2
+ ϕ1(t),

ϕ1(t) = L−1

[

1

α
√ s
α

[V (p, 0)]p=
√

s
α

]

= L−1

⎛

⎝

1

α
√ s
α

x
∫

0

e−λ
√

s
α v(λ, 0)dλ

⎞

⎠
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or

i (t) = 1

R
√
α

d1/2v(t)

dt1/2
+ ϕ2(t)

ϕ2(t) = 1

R
√
α

dϕ1(t)

dt

3.5.1 Practical Application of the Semi-infinite Line in Circuits

3.5.1.1 Semi-integrator Circuit

The circuit shown in the Fig. 3.5 performs the function of semi- integration of the
input voltage vi (t). The half-order element (semi-infinite lossy line) is based on
one-dimensional diffusion equation

∂v

∂ t
= α ∂

2v

∂x2
,

which is depicted by a ladder of discrete resistance and capacitance as shown
in Fig. 3.4, and its connection is shown in Fig. 3.5 in an operational amplifier
circuit. The terminal characteristic or the driving point impedance as obtained is
described as

v(t) = r
√
α

d−1/2i (t)

dt−1/2
+ ϕ1(t)

or

i (t) = 1

r
√
α

d1/2v(t)

dt1/2
+ ϕ2(t) .

Fig. 3.5 Semi-integrator

if
R _

vi
ii vo

+
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Here v(t) and i (t) are the voltage and current respectively, at the terminal ele-
ment, r is the resistance per unit length and α is the product of r and c (the capaci-
tance per unit length of the line). The initial condition functions are determined by
the initial state of charge and voltage or current that exists on the infinite array of
elements. For operational amplifier, negative feedback configuration is

vi (t)− 0 = ii (t)R

0− v0(t) = r
√
α

d−1/2i f (t)

dt−1/2
+ ϕI (t) = r

√
αc D−1/2

t i f (t)

ii (t) = i f (t)

solving for vo (t)

v0(t) = −r
√
αc D−1/2

t

{

1

R
vi (t)

}

v0(t) = −r
√
α

R
c D−1/2

t vi (t)

Note the symbolism change from smallcase differential operator to uppercase one,
where the initialization function got included. This will be taken in detail while
elaborate explanation of the initialization of fractional differintegrals is given in
Chap. 6.

This is the basis of semi-integrator computing element. The equivalent (un-
initialized) impedance form may also be calculated as Z f = r

√
α/s1/2, Zi = R.

The transfer function (un-initialized) form is thus is

v0(s)

vi (s)
= − r

√
α

Rs1/2

3.5.1.2 Semi-differentiator Circuit

For the circuit in Fig. 3.6, the negative feedback configuration gives

ii (t) = 1

r
√
α

c D1/2
t (vi (t)− 0)

0− vo(t) = Ri f (t)

ii (t) = i f (t)

vo(t) = −Ri f (t) = − R

r
√
α

c D1/2
t vi (t)

This formation with the leading coefficients specialized to one is the basis of semi-
differential computing element. Fig. 3.7 gives a practical circuit for semi-integration
with operational amplifiers.
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Fig. 3.6 Semi-differentiator

vi
ii

_

+
vo

if

R

The circuit in Fig. 3.7 is to realize the fractional order PID analog control system.
In this circuit, the offset adjustment parts are not explicitly shown. The semi-integral
control will have transfer function as

V0(s)

Vi (s)
= Z f

Zi
=
√

R 1
Cs

R
= K√

s
.

By replacing s with jω, one gets the relation as

V0( jω)

Vi ( jω)
= K√

ω
e− jπ/4 .

This circuit behaves as constant phase element of angle −45◦, meaning to an sinu-
soidal input the circuit will give a constant phase lag to the output by 45◦. By using
values of the impedances, the transfer function constant

K =
√

22×103

0.47×10−6

22× 103
= 9.8 ,

and the transfer function is

V0( jω)

Vi ( jω)
= 9.8ω−0.5e− jπ/4 .

Fig. 3.7 Practical circuit for
semi-integrator

R = 22 KΩ
C = 0.47 μF

OP − 07
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Table 3.1 Practical results from semi-integrator circuit measurement

Input
frequency
(Hz) f

Input
frequency
(radian)ω

Phase
angle
(degree)

Vi (Volt) V0 (Volt) G = V0
Vi

K = G
√
ω 20 log(G)

(dB)

50 314 −50.4 3.8 2.0 0.5263 9.32 −5.57
100 628 −45.0 3.8 1.5 0.3947 9.89 −8.07
150 942 −56.25 3.8 1.2 0.3158 9.69 −10.01
200 1257 −55.40 3.8 1.00 0.2632 9.33 −11.59
250 1571 −60.00 3.8 0.80 0.2105 8.19 −13.53
400 2513 −41.50 3.8 0.75 0.1974 9.89 −14.09
450 2827 −49.10 3.8 0.70 0.1842 9.79 −14.69
600 3770 −51.40 3.8 0.65 0.1710 10.49 −15.34
700 4398 −52.94 3.8 0.60 0.1578 10.46 −16.03
750 4712 −56.25 3.8 0.58 0.1526 10.47 −16.32
900 5655 −69.23 3.8 0.56 0.1473 11.07 −16.63
950 5969 −60.00 3.8 0.54 0.1421 10.9 −16.95

The practical results given in Table 3.1, where almost a constant phase is demon-
strated (around−55◦). The circuit is excited by sinusoidal voltage and the phase lag
was recorded along with the peak–peak amplitude

3.5.2 Application of Fractional Integral and Fractional
Differentiator Circuit in Control System

Analog or digital realization can give a control system design for fractional order
control system. Figure 3.8 gives the block diagram representation of a classical
integer order system (DC Motor) being controlled by a fractional order feedback
controller.

System transfer function of DC motor is

G(s) = K

Js(T s + 1)
,

+ •
OUTPUT ω•

SET ω =
Js(Ts + 1)

K
G(s)

_ 

sα
K2s + 1

K1H(s) =

Fig. 3.8 Block diagram of fractional order control system
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J is the payload (inertia). Phase margin of the controlled system is

Φm = arg |G( jω)H ( jω)| + π,

the controller characteristics is

H (s) = K1
K2s + 1

sα
.

Here, choose K2 = T . Note that H (s) is composed of a differentiator of frac-
tional order (1− α) and an integral controller of order α. This gives constant phase
margin as

Φm = arg |G( jω)H ( jω)| + π

= arg

[

K1 K/J

( jω)1+α

]

+ π = arg
[

( jω)−(1+α)]+ π = −(1+ α)
π

2
+ π = 1

2
(π − πα)

The close-loop transfer function is

Gc = G( jω)H ( jω)

1+ G( jω)H ( jω)
= K K1/J

(s1+α + K K1/J )
.

The step input response will be

y(t) = L−1

[

K K1/J

s
(

s1+α + K K1/J
)

]

=
(

K K1

J

)

t1+αE1+α,2+α

(

−K K1

J
t1+α
)

This is “iso-damping,” meaning that the overshoot is same for various payloads
(inertia); to have this type of control system is robust and efficient. Figure 3.9 gives
the concept of iso-damping.

1.0

Output

Time

Fig. 3.9 Iso-damping in fractional order controlled system
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This feature is remarkable in the field of control science, indicating that a
system need not be of fractional order to have a fractional order controller. An
integer order system gets a robust and efficient feedback control if fractional cal-
culus is applied in the field of control science. This concept is dealt in detail in
Chap. 9.

3.6 Semi-infinite Lossless Transmission Line

Above discussion elaborates on semi-differentiation and semi- integration obtained
for driving point impedance of semi-infinite lossy line. A lossless transmission line
constitutes of L and C distributed throughout its length. In Fig. 3.4, the element
L will replace R. The line considered here is the semi-infinite lossless line whose
impedance is constant or an operator of zero order. The problem is written as

∂2v(x, t)

∂ t2
= 1

LC

∂2v(x, t)

∂x2
, v(0, t) = v1(t), v(∞, t) = 0, v(x, 0)&v′(x, 0)

given with

∂i (x, t)

∂x
= −C

∂v(x, t)

∂ t
&
∂v(x, t)

∂x
= −L

∂i (x, t)

∂ t
,

where v is the voltage, i is the current, vI (t) is time-dependent input variable, L is
inductance per unit length, and C is capacitance per unit length. A classical solution
to this problem is obtained through iterated Laplace transforms as done for semi-
infinite lossy line in Sect. 3.5. The main results are given below:

V (0, s) = −V ∗(0, s)√
LCs

+ 1√
LC

[V (p, 0)]p=s
√

LC +
1√
LCs

[

V ′(p, 0)
]

p=s
√

LC

V ∗(0, s) = dV (0, s)

dx
&V ′ = dv(x, 0)

dt

This contains transfer function of driving point (not impedance) as

V (0, s)

V ∗(0, s)
= − 1√

LCs

and in time domain

v(0, t) = − 1√
LC

∫

dv(0, t)

dx
dt + ϕ1(t)

ϕ1(t) is the time-dependent initial condition. The transfer function consists of two
parts: the forced response due to V ∗(0, s) and the initial condition response due to
the initial voltage distribution in the lossless line. Using current expression as given,
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the driving point impedance is obtained as follows:

V (0, s) =
√

L

C
I (0, s)−

√

L

C

[I (0, 0)]

s
+ 1√

LC
[V (p, 0)]p=s

√
LC

+ 1√
LCs

[

V ′(p, 0)
]

p=s
√

LC

Notice that the voltage is composed of two parts: the forced response due to I (0, s)
and the initial condition response due to the initial voltage distribution in the lossless
line. Considering only the first term, it can be seen that the impedance looking into
this line is thus

Z (s) = V (0, s)

I (0, s)
=
√

L

C

which is simply a constant. Mathematically, the impedance expressed in time
domain as

v(0, t) =
√

L

C
i (0, t)+ ϕ2(t)

has a time-dependent initial condition response due to initial voltage and current dis-
tribution and can be obtained by Laplace inverse of the last three terms of equation
showing V (0, s), I (0, s) relationship, i.e.,

V (0, s) =
√

L

C
I (0, s)−

√

L

C

[I (0, 0)]

s
+ 1√

LC
[V (p, 0)]p=s

√
LC

+ 1√
LCs

[

V ′(p, 0)
]

p=s
√

LC

Thus it can be seen that a simple constant gain operator (zero- order operator) can
also have time-varying initial condition terms. Figure 3.10 gives the diagram of a
lossless semi-infinite transmission line (a zero-order element). Though the order
of operation is zero, i.e., it returns the input function (variable) unaltered (except
gain or attenuation), yet in the theory of generalized calculus, the initial distributed
charges and voltage stored will be returned to the output. This initial function is
time varying into future. The initial conditions on the distributed L and C along the
infinite line gives rise to initialization functions (of time). Note that this particular
element (of zero order) does not call for differintegrations, but the initial conditions
ϕ associated with this distributed characteristics is very important to generalized
theory of initialized (fractional) calculus. Operational amplifier circuit realized with
zero-order distributed element will give practical understanding for generalized (ini-
tialized) calculus; it is dealt in detail in Chaps. 6 and 7.
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…
i(t)

v(t) c c c

llll

Fig. 3.10 Semi-infinite lossless transmission line

In Fig. 3.6, the input element is a lumped resistor R and the feedback element is a
lumped capacitor C . Then this circuit configuration gives lumped integrator circuit.
Let the input voltage vi (t) to the circuit be switched on at some time a, before the
time t = a the voltage is zero, and we start the circuit process (of integration) at
time t = c > a. This implies that the capacitor is pre-charged with q(c) Coulombs,
from time ato c with initial voltage vo(c). This constant is thus the initial condition
for this lumped element integrator circuit.

The describing equations for this configuration is as follows:

vi (t)− 0 = i f R

0− vo(t) = 1

C

t
∫

t=c

i f (t)dt + 1

C

t=c
∫

t=a

i f (t)dt = 1

C

t
∫

c

i f (t)dt + q(c)

C

= 1

C

t
∫

c

i f (t)dt + [0− vo(c)] = 1

C
c D−1

t i f (t).

c D−1
t is integer order one integration process starting from time t = c which

includes the initialization, process that is charging of the capacitor C from time
t = a to t = c which is represented as

ψ/(t) =
c
∫

a

i f dt = 1

C
q(c) = −vo(c) .

Therefore, the total process is un-initialized integration starting from time t = c,
that is:

cd−1
t i f =

t
∫

c

i f dt

plus initialization integration process from a to c, that is:

ad−1
c i f =

c
∫

a

i f dt =ψ/(t)
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These equations yield the final result by putting ii (t) = i f (t)

vo(t) = − 1

RC

t
∫

c

vi (t)dt + vo(c) = − 1

RC
c D−1

t vi (t) ,

with ψ(t) = −RCvo(t). This is classical integer order calculus, with initialization
as constant.

In the circuit of Fig. 3.6, we now replace the input element with semi-infinite
lossless (LC) transmission line, a zero-order element, and the feedback element
with lumped capacitor C f . The transmission line terminal equation is re-written as

i (t) =
√

C

L
v(t)+ ϕ(t) ,

with ϕ(t) as initial charge distribution on the distributed element.
The defining equations of this circuit are

ii (t) =
√

C

L
[vi (t)− 0]+ ϕ(t)

0− vo(t) = 1

C f

t
∫

t=c

i f (t)dt + [−vo(c)] ,

as done for the lumped integrator case above

ii (t) = i f (t)

Therefore solving for vo(t), we obtain

vo(t)=−
[

1

C f

√

C

L

] t
∫

t=c

vi (t)dt − 1

C f

t
∫

t=c

ϕ(t)dt + vo(c)=−
[

1

C f

√

C

L

]

c D−1
t vi (t)

where

ψ(t) =
√

L

C

t
∫

c

ϕ(t)dt + C f

√

L

C
vo(c)

Here the initialization function is not a constant, but a function of time.
This expression is similar to the classical integer order integrator with lumped

parameters as obtained earlier. Here the integrator is realized with distributed element.
The important difference is the values of initialization function. For a distributed
element integrator, the effect of past history is not only contained in a constant vo(c),
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which is charge on the capacitor C f , but also carried in the remainder of the ψ(t)
function, which accounts for the distributed charge along the semi-infinite line. It is
also observed here that the zero-order input element, as it is a wave equation

∂2v(x, t)

∂ t2
= 1

LC

∂2v(x, t)

∂x2
,

will simply propagate any perturbations in vi (t) along the semi-infinite line, never
returning, thus never seen again, the only effect being proportional variations in the
ii (t). This behavior is true for terminal charging. However for side charging (arbitrary
charging with voltages on the distributed line), an additional time function may return
to the circuit output, which is dependent on initial voltage distribution on the line.

The circuit of Fig. 3.6 when configured with input element as lumped capaci-
tor C and the feedback element as lumped resistance R behaves as integer order
differentiator. The constituent equations are

vi (t)− 0 = 1

C

t
∫

t=c

ii (t)dt + 1

C

t=c
∫

t=a

ii (t)dt = 1

C

t
∫

c

ii (t)dt + q(c)

C

= 1

C

t
∫

c

ii (t)dt + vi (c) = 1

C
c D−1

t ii (t)

0− vo(t) = i f R

ii (t) = i f (t)

This gives

vo(t) = −RC

[

d

dt
(vi (t)− vi (c))

]

= −RCc D1
t vi (t) = −RC

[

cd1
t vi (t)+ ψ(t)

]

The initialization term

ψ(t) = d

dt
vi (c)

is taken normally as zero. However, the presence of initial charge in the input capac-
itor gives an impulse output at the start of differentiation process at t = c.

Modifying the circuit of Fig. 3.6 with input element as capacitor Ci and the
feedback element with distributed LC zero-order element gives the integer order
differentiator transfer character, with the concept of initialization function and gen-
eralized calculus. The defining equations are

vi (t)− 0 = 1

Ci

t
∫

c

ii (t)dt + vi (c) = 1

Ci
c D−1

t ii (t)
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For the distributed feedback zero-order elements, the expression in the circuit is

0− vo(t) =
√

L

C
i f (t)+ ϕ(t) =

√

L

C
i f (t)+

√

L

C
ψ(t)

Putting ii (t) = i f (t), yields the final result as

vo(t) = −
√

L

C

[

Ci
d

dt
(vi (t)− vi (c))+ ψ(t)

]

= −Ci

√

L

C

[

d

dt
vi (t)+ 1

Ci
ψ(t)

]

= −Ci

√

L

C
c D1

t vi (t)

The generalized differentiation requires an initialization function. However for ter-
minal charging case for integer order differentiation this initialization is zero but for
side charged transmission line, an additional time function will be returned to the
circuit output.

A simple gain (memory) less zero-order operator is realized by configuring the
circuit of Fig. 3.6 with Ri as lumped resistor at input leg and R f as lumped resistor
at the feedback. The transfer characteristics will then be

vo(t) = − R f

Ri
vi (t) = − R f

Ri
c D0

t vi (t) = − R f

Ri

[

cd0
t vi (t)+ ψ(t)

]

,withψ(t) = 0 ,

clearly this circuit has no memory.
Zero-order circuit may be realized by employing semi-infinite distributed lossless

transmission lines at input leg and one lumped resistor R at feedback, of circuit of
Fig. 3.6.

The input leg equation with LC line is

ii (t) =
√

C

L
[vi (t)− 0]+ ϕi (t) =

√

C

L
c D0

t [vi (t)− 0]

The feedback leg equation is

0− vo(t) = Ri f (t)

and ii (t) = i f (t) gives

vo(t) = −Ri f (t) = −R

√

C

L
c D0

t vi (t) = −R

√

C

L

{

cd0
t vi (t)+ ψi (t)

}

where ψi (t) =
√

L

C
ϕi (t)
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This zero-order operation in general returns the input function vi (t) (with ampli-
fication or attenuation), also provides the extra time function (associated with the
memorized charges on the distributed element). This zero-order circuit has memory.

3.7 The Concept of System Order and Initialization Function

As the concept of order is central to the understanding of fractional (or integer) order
systems, some discussion of this concept now follows. In this discussion, single
input–output systems are considered. The examples in this chapter for heat flow
and transmission line (lossy and lossless) gave the stage for half-order system or
zero-order system. Recalling the characteristic equations or transfer function, we
call a system first order, second order, third order, etc., similarly the system can be
of fractional order too. We also consider that system representation is minimal and
they are linear.

Mathematical order is defined as the highest derivative occurring in a given dif-
ferential equation. The concept of mathematical order is applicable to both ordinary
and fractional differential equations. Normally, when the order is used without qual-
ifier, it implies the meaning of mathematical order.

For linear dynamic systems that are described by ordinary differential equations,
the system mathematical order implies or is equivalent to the following:

1. The highest derivative in ordinary differential equation;
2. The highest power of Laplace variable s, in the characteristic equation;
3. The number of initializing constants required for the differential equation;
4. The length of the state vector;
5. The number of singularities in the characteristic equation;
6. The number of energy storage elements;
7. The number of independent spatial directions in which a trajectory can move;
8. The number of devices that can add 90◦ sinusoidal steady state phase lag;
9. The number of devises that retain some memory of the past.

The utility of the definition of mathematical order is that it infers all the system
characteristics for the system, with integer order components.

Thus the benefit of having a definition for order for linear ordinary differen-
tial equations is that it allows a direct understanding of the behavior of given
dynamic system. Unfortunately, for fractional differential equations, the order of
the highest derivative does not infer all of the previously mentioned properties.
Indeed, the most important characteristics of order in integer order ordinary dif-
ferential equation is probably item (3), i.e., it indicates the number of initializing
constants, which together with the differential equations allow prediction of the
future behavior. In system terminology, this information provides initial states of
the system being analyzed. For fractional order differential equations these indica-
tors which are described to define ‘order’ of integer order differential equations,
are not valid. The ‘order’ of fractional differential equation neither correspond to
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number of energy/memory storing elements, nor number of ‘initializing constants’
nor number of integrations (even fractional) required to solve the system. Thus the
issue of order and the information required together with the fractional differential
equation to predict the future is fundamental and should be treated differently.

In the examples of this chapter, it has been demonstrated that when specific
differintegral operators (q = 1/2 and 0) are considered as semi-infinite systems,
a time-dependent term resulting from the initial spatial condition should be added
to the forced response. This is an important observation for solution of fractional
differential equations that can have rather arbitrary initial conditions.

3.8 Concluding Comments

The practical examples in this chapter demonstrated the reality of the existence of
fractional order differentiation and integrations, in natural description of systems.
Interesting observations are obtained from analysis of semi-infinite systems; heat
flow and current flow in lossy lines indicate the existence of semi-differintegration
operations needed to describe transfer characteristics. Also realization of the trans-
fer characteristics is possible by circuit synthesis and to have control system with
robustness measure, independent of the gain. The “ifs and buts” regarding the defi-
nition of the order of the system for fractional differential equation is an open issue
and cannot be directly related to integer order theory definitions. For example, a
first-order system having say highest order of differentiation as unity shows under
damped response to the step input excitation. Now the system looks as first-order
system but with fractional order differentiation too will behave as though having
some resonance. This behavior speaks that though the system may look classically
first order yet due to fractional order terms present the behavior changes, so does the
definition of the order. In this chapter, the examples point to the fact that distributed
parameters do point toward fractional order system description, and in reality, the
parameters are indeed distributed.



Chapter 4
Concept of Fractional Divergence
and Fractional Curl

4.1 Introduction

Fractional kinetic equations of the diffusion are useful approach for the descrip-
tion of transport dynamics in complex systems, which are governed by anomalous
diffusion and non-exponential relaxation patterns. The anomalous diffusion can be
modeled by fractional differential equation, in time as well as space. For the spatial
part, use of fractional divergence modifies the anomalous diffusion expression, in
the modified Fick’s law. Application of this fractional divergence is brought out in
the nuclear reactor neutron flux definition. When anomalous diffusion is observed
in time scale, the modification suggests the use of fractional kinetic equations.

Fractional curl operators will play perhaps role in electromagnetic theory and
Maxwell equations. Here, example of electromagnetics is taken to have a feel how
the fractional curl operator can map E and H fields in between the dual solutions of
Maxwell equation.

4.2 Concept Of Fractional Divergence for Particle Flux

Because of relative simplicity and widespread use, the basis of local theory is dis-
cussed first. The local theory makes use of ADE (advection diffusion equation) as

∂C

∂ t
= ∇. (−vC + D∇C) (4.1)

where C is the solute concentration, and D and v are local dispersion and velocity
tensors, respectively. The ADE is based on the classical definition of divergence of
a vector field. The divergence is defined as the ratio of total flux through a closed
surface to the volume enclosed by the surface when the volume shrinks toward zero.

divJ ≡ lim
V→0

1

V

∫

S

J.nd S (4.2)

S. Das, Functional Fractional Calculus for System Identification and Controls. 63
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where J is flux vector, V is an arbitrary volume enclosed by surface S, and n is unit
vector normal to the surface.

This is valid only if the flux is indeed a “point” vector quantity relative to the
scale of observation (e.g., heat flow in homogeneous material). Then the limit
exists and the operator reduces the familiar dot product with gradient vector
[∂/∂x, ∂/∂y, ∂/∂z]. Solute dispersion is counter example since it is primarily
due to the velocity fluctuations that arise only as an observation space grows
larger, invalidating the limit. The solute flux is due to combined effects of mean
velocity (advection) and velocity fluctuation (dispersion). The dispersive fluxes for
a given volume are typically averaged in some fashion (volumetric, statistical) and
approximated by Fick’s first law. Since velocity itself is a variable function of space,
as control volume shrinks (as divergence requires), the velocity fluctuations and the
dispersive flux disappear. Therefore true divergence of the macroscopic solute flux
cannot contain a macroscopic dispersive term.

Because of the limit in (4.2), the classical Gauss divergence theorem discounts
macro-dispersion until a point vector can approximate the dispersive flux. This calls
for separation of scales: The scale of the transport process must be much larger
than some finite volume at which the ratio in (4.2) becomes seemingly constant.
For these things to happen, the dispersive flux must not increase as volume passes
some largest size. This representative elementary volume (REV) for dispersion is the
point at which the deviations in the velocity field are negligible. The divergence is
associated with a non-zero volume and is given by the first derivative of total surface
flux to volume (Fig. 4.2) rather than the limit of the derivative at zero volume. The
dispersion coefficient does not grow (scale), if the ratio of the surface flux to volume
is constant over some range of volume (Fig. 4.1 and stepped solid lines of Fig. 4.2b
make piecewise constant slope of Fig. 4.2a). Therefore at some larger scale of obser-
vation (non-zero), the ratio of the total surface flux to volume is constant over large
range of arbitrary volumes, and the relatively constant first derivative (the de facto
divergence) allows assignment of dispersion coefficient. Both volume averaging and
ensemble averaging concepts are based on this idea of separation (or distinction) of
scale.

At the field scale, at least two problems occur that make it difficult to rely on
the REV method. First, even if there is a distinct hierarchy, the act of measurement
involves a volume integration, which impacts the dispersion coefficient. Second,

= KV
S

J.dS∫

0
Volume (V)

(a) (b)

1

S

J.dS
V ∫ = K

K

Volume (V)

Fig. 4.1 Classical definition of divergence of flux vector
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S

J.dS∫

0
Volume (V)

1 .
S

J dS
V ∫

0
Volume (V)
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Fig. 4.2 Effect of dipersive flux and neutron velocity fluctuation with macroscopic scale of obser-
vation extension

there is a long-standing and growing body of evidence that real solute materials
have evolving heterogeneity. If that is the case, then there will be no separation of
scales, and the dashed line of Fig. 4.2b represents the flux, as continuous one instead
of stepped one.

An integer order divergence theorem forces a scaling parameter, since ratio of
flux to volume is scale dependent. Rather than to use a step function approximation
(Fig. 4.2b), of the growth of dispersive flux with scale, which forces D to take on
increasing values, one might try to describe the evolving dashed line (Fig. 4.2b).
Non-local including convolutional theories do this by integrating cumulative effects
of dispersion over any length scale and/or time scale. A subset of these uses the
mathematical tools of fractional calculus, which are non-local operators for fractal
functions.

4.3 Fractional Kinetic Equation

The fundamental laws of physics are written as equations for the time evolution
of a quantity X(t) with d X(t)/dt = −AX , where this could be Maxwell’s equa-
tion, Schrodinger’s equation, Newton’s law of motion, or Geodesic equations. The
mathematical solution for the linear operator A is X(t) = X(0) exp {−At}, putting
τ = A−1 the standard exponential relaxation law is

X(t) = X(0) exp {−t/τ } . (4.3)

Complex systems and investigations of their structural and dynamical properties
have been established on the physics agenda. These structures with variations are
characterized through

a. a large diversity of elementary units;

b. strong interactions between the units; and

c. a non-predictable or anomalous evolution in course of time.
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Complex systems and their study play a dominant role in exact and life sciences,
embracing a richness of systems such as glasses, liquid crystals, polymers, proteins,
biopolymers, or even ecosystems. In general, the temporal evolution of, and within,
such systems deviates from the corresponding standard laws. With the development
of higher resolution experiments, these deviations have become more prominent.

One can have stretched exponential behavior as

X(t) = X(0) exp {− (t/τ )α} (4.4)

with 0 < α < 1, or one can visualize the asymptotic power law as

X(t) = X(0) (1+ t/τ )−n , with n > 0 (4.5)

Similarly the diffusion process in various complex systems usually no longer follow
Gaussian statistics, and thus Fick’s second law fails to describe the related transport
behavior. Especially one observes deviations from the linear dependence of mean
squared displacement:

< x2(t) >≈ K1t (4.6)

which is characteristic of Brownian motion, and such a direct consequence of central
limit theorem and the Markovian nature of the underlying stochastic process. Instead
anomalous diffusion is found in a wide diversity of systems, its hallmark being
non-linear growth of the mean squared displacement in course of time, following
power law:

< x2(t) >≈ Kαtα (4.7)

which is ubiquitous to a diverse number of systems. There exists a variety of other
patterns, such as logarithmic time dependence. The anomalous diffusion behavior
manifested in (4.7) is intimately connected with break down of the central limit
theorem, caused by either broad long-tailed distributions or long-range correlations.
These broad spatial jumps or waiting times distributions lead to non-Gaussian and
possibly non-Markovian time evolution way of diffusion, manifesting into non-local
temporal phenomena. Note that the unit of diffusion coefficient in (4.7) is having
unit [Kα] ≡ cm2s−α , according to anomalous diffusion exponentα. This exponent if
0 < α < 1 defines sub-diffusive transport, and it defines super-diffusive phenomena
for 1 < α < 2. For α = 1, the transport phenomena is normal integer order and
Fickian.

Standard integer order kinetic equation when integrated gives the following:

Xi (t)− X0 = −c

t
∫

0

X(t) = −c0 D−1
t X(t) (4.8)
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0 D−1
t is the standard Riemann–Liouville integral operator. The number density of

the species i, Xi = Xi (t) is a function of time, and Xi (t = 0) = X0 is the number
density of species i at time t = 0. If we drop the index i in (4.8) and replace c by
cα, then the solution of the generalized fractional order diffusion equation:

X(t)− X0 = −cα0 D−αt X(t) (4.9)

is

X(t) = X0

∞
∑

k=0

(−1)k(ct)kα

Γ(kα + 1)
(4.10)

It can be written as compact form, by use of Mittag-Leffler function as

X(t) = X0 Eα(−cαtα) (4.11)

4.4 Nuclear Reactor Neutron Flux Description

The neutron balance description in nuclear reactor is defined by transport theory.
The basic transport equations are then approximated by several coupled differen-
tial equations. One of the simplified approximation of the reactor representation
given to engineers is the neutron diffusion equation sets in multi-energy group or
single-energy group. In all these diffusion equations, the leakage term has Fick’s
law of diffusion, where the neutron flux is assumed to be a point quantity. For
larger reactor representation, several of these diffusion equations are formed and
modeled by region to region coupling coefficients. Engineering science then pro-
ceeds on these approximates to obtain reactor transfer function model, and then
various control system analyses are done. For complex systems, the integer models
of the reactor may not suffice and thus a fractional order model for obtaining flux
profile or kinetics may describe the complex reality better. The argument is similar
to that described for heat transfer model (Chap. 2.4), where distributed and complex
parametric spreads and size factor are described better by fractional transient heat
transfer equation.

4.5 Classical Constitutive Neutron Diffusion Equation

In classical sense, the constitutive equation assumes point neutron flux, with v as
the average speed of the neutrons passing through an area with n neutrons per unit
volume as neutron density. The vector quantity representing the neutron flux is J .
The following will elucidate the classical statements.
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−→
J = nv

φ = nv
−→
J = −D∇φ

Consider a closed volume, the loss of neutrons from the closed surface is given
as surface integral of neutron current, J.d S. The loss occurring in the volume by
absorption is given by absorption cross-section and then taking volume integral
of ΣaφdV . This total loss, when equated to the source term, gives the classical
constitutive neutron diffusion equation, as depicted below.

∫

S

J.d S +
∫

V

ΣaφdV =
∫

V

SdV

The above integral form when converted to volume integral is:

∫

V

(∇.J +
∑

a
φ − S)dV = 0 or ∇.J +Σaφ − S = 0 for equilibrium

Using the expression of J = −D∇φ, we obtain the following:

−D∇2φ +
∑

a
φ − S = 0

In the steady state, the RHS of above constitutive equation is zero, and if there is
time changing flux, then that is put in the RHS as

D∇2φ −
∑

a
φ + S = ∂n

∂ t
= 1

v

dφ

dt

4.5.1 Discussion on Classical Constitutive Equations

The classical neutron diffusion constitutive equation as described is based on the
classical divergence of the divergence of a vector field. The divergence is defined as
the ratio of total flux through a closed surface to the volume enclosed by the surface,
when volume shrinks toward zero.

divJ = lim
V→0

1

V

∫

S

J.d S

Where J is the flux vector, V is an arbitrary volume enclosed by surface S. The
dot product of vector J with the surface dS is obvious; this is valid only if the flux
is indeed a “point” quantity relative to the scale of observation. Neutron diffusion
is counterexample; this is primarily, due to velocity fluctuations (even at constant



4.5 Classical Constitutive Neutron Diffusion Equation 69

energy/temperature) that arise only as the observation space grows larger, invali-
dating the limit. Also the neutrons are no longer in homogeneous medium. The
dispersive fluxes for a given volume are typically averaged in some fashion (vol-
umetric, statistical) and are approximated by Fick’s first law as we have obtained

in deriving the classical constitutive equation for neutron diffusion,
−→
J = −D∇φ.

As the control volume shrinks to zero, the velocity fluctuations and the dispersive
flux disappear. Therefore in a true sense, the classical divergence theorem discounts
the real effects of macroscopic in-homogeneity and the fluctuations associated with
neutron diffusion in a reactor.

Because of the limit in the divergence definition, the classical Gauss divergence
theorem discounts the effect of large volume until the dispersive flux can be approx-
imated by a point quantity.

4.5.2 Graphical Explanation

Refer Fig. 4.1. In Fig. 4.1a, it is shown that the surface flux with respect to volume
of the observation space is of constant slope line. Figure 4.1b plots the ratio of the
surface flux with respect to the control volume (first derivative of Fig. 4.1a).

Figure 4.1 shows, in simplistic manner, that if the surface flux of neutrons with
average constant velocity grows in linear fashion with respect to the volume of the
observation space, then in this case, the ratio of the surface flux to the control volume
remains fixed. In this particular (ideal) case, making the control volume shrink to
zero will yield ideal definition of the divergence of the vector flux (neutron current
density). This simplistic picture neglects the effect of in-homogeneous medium and
macroscopic dispersion, fluctuating velocity effects and effects due to neighbor-
hood, neutron currents.

Figure 4.2 is an extension of Fig. 4.1 showing the macroscopic effects of surface
flux manifestaion as the control volume is enlarged. The observation space when
enlarged as shown in Fig. 4.2b captures dispersive effect of neutrons as magnified
by the staircase type of ratio of surface flux to the volume figure. The effect can
be seen as surface flux gets manifested as some power of observation space (vol-
ume). Figure 4.2b is the first derivative of Fig. 4.2a and shows that at quasi large
observation space (control volume), one gets seemingly constant ratio of surface
flux to volume, therefore yielding a non-local divergence of the neutron flux vector.
This definition of non-local divergence is what contradicts the classical divergence,
where the control volume is made to shrink to zero.

4.5.3 About Surface Flux Curvature

Refer Fig. 4.2a. The curvature is concave in nature as the observation space (con-
trol volume) is made bigger. Contention could have been that why the curvature is
taken as concave instead of convex. Here some practical reasoning will elucidate
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the nature of the curve shown in Fig. 4.2. For a very small observation space area,
the surface flux is the product of neutron current and that area. As the area is made
larger, the neighbouring neutrons effect the neutron current in the wider area of
measurement. This gives the larger value of the neutron current for the newer area
considered. This increment in the neutron current is what gets integrated in the sur-
face integral giving the concave shape (Fig. 4.2a).

This is elaborated in Fig. 4.3. Let the observation surface area for measurement
of neutron surface flux be divided into squares as shown. Assume that each center of
the square is having one neutron. If all the neutrons are at rest without any velocity
fluctutaions, then there will not be any finite probabilty that it may jump across to the
next adjacent box. However, the case is not so, as there always is a finite probabilty
of having neutrons designated for a particular box finding into the adjacent box.
However, if the area of observation is very small as depicted by smaller circles inside
each box, the fluctutaion effect of neutron velocity will not be observed. Therefore
with the smaller circles in the observation space measures a smaller neutron current
(solely due to the presence of its own neutron in the squrae box). However, the obser-
vation area is made into larger circles as shown in Fig. 4.3. Here we see that with
enlarged area the effect of neutrons in the adjacent square will enhance the neutron
current compared to the first smaller area. Also this bigger circle will catch the effect
of velocity fluctuations and therefore will show larger magnitude of neutron current.
This simplistic explanation is justified for the observation that the shape of the sur-
face flux with respect to the observation space (Fig. 4.2) is concave and not convex.

4.5.4 Statistical and Geometrical Explanation for Non-local
Divergence

Figure 4.3 divides the space into grids. The fluctuations in velocity cause the vio-
lation of classical limit of volume shrink to zero, for classical divergence also

Fig. 4.3 The effect of growing observation space modifying the neutron current
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elucidated by the fact that at a particular space the neutrons will have spatial long-
tailed distributions. The effect of this long-tailed statistical probability distribution
will thus get enhanced by the use of non-local divergence, and this reality effect
will thus be shown with avoidance of volume shrinkage to zero. Also in reality,
the coupling between various zones in the reactor takes place. The non-local diver-
gence with the principle of non-zero volume therefore is the apt tool for constitutive
equation for neutron diffusion equation for reactor description.

Refer the classical neutron diffusion equation and Fig. 4.2. The surface flux
is
∫

S
J.d S; then the ratio of the surface flux to the volume is taken to consider

the leakage through surface term as ∇.J , at volume shrinking towards zero.
Then with Fick’s law, we get the leakage of neutrons through a closed surface as
∇.(−D∇φ) = −D∇2φ. This term in one dimension case is

−D
d2φ

dx2

Examining the above and relating this to Fig. 4.2, one may say that divergence is the
slope of the surface flux (Fig. 4.2a). If this curvature has square law variation in the
shape, then the double derivative will be constant, and we have the entire curvature
captured in that constant. If the curvature of the surface flux (Fig. 4.2a) is not having
≈ x2 variation, but say has ≈ x1.5 variation, then double derivative will not capture
the information about the curvature in a constant.

4.6 Fractional Divergence in Neutron Diffusion Equations

The neutron leakage through closed surface enclosed by finite control volume may
be changed to−D dβ φ

dxβ = ∂α

∂xα .(−D dφ
dx ). The bracket quantity is Fick’s first law. Here

β is between 1 and 2, and α is between 0 and 1, non-integer fractional real numbers.
In the divergence formulations, the vector

[
∂α

∂xα
,
∂α

∂yα
,
∂α

∂zα
]→ ∇α,

the fractional divergence operator, which acts on the neutron current vector J .
The constitutive equation in fractional divergence form may thus be as follows:

∇α.J +Σaφ − S = 0

∇α(−D∇φ)+Σaφ − S = 0

D∇1+αφ −Σaφ + S = 0

Converting to one-dimensional form to get neutron flux profile in a reactor or neu-
tron flux profile near a source in scattering medium, we will look at solutions of the
form as follows:
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D
d1+αφ
dx1+α −Σaφ + S = 0, . . . 0 < α < 1

D
dβφ

dxβ
−Σaφ + S = 0, . . . 1 < β < 1

One may interpret the simplified form of ∇α.J is that a fractional divergence oper-
ator is applied to Fickian dispersion term. For illustration of how fractional deriva-
tives relate to the definition of divergence in neutron transport, consider two simple
functions f (x) = x2 and f (x) = x1.5. Recalling the fundamental of the derivatives,
we recall that the derivatives of function give the idea of the curvature contained
in the curve. Successive derivatives will strip of the independent variable and sub-
sequently will show up the curvature contents. Take the example f (x) = x2, the
first and second derivatives are f (1)(x) = 2x and f (2)(x) = 2, respectively. In
this example, the second derivative contains all the information about the function
and that is constant (i.e., 2). This argument favors well for well-behaved integer
order functions. Now let us change the function and take any real order func-
tion, say f (x) = x1.5; the first and second derivative is f (1)(x) = 1.5x0.5 and
f (2)(x) = 0.75x−0.5. In both the derivatives, for this real ordered function, the
derivatives vary with the independent variable. Refer Fig. 4.2b; the effect of growing
control volume is approximated as steps. Each step signifies growing value of D.
The shape emerged as dotted curve in Fig. 4.2b, approximates the first derivative of
Fig. 4.2a. Here the first derivative or any other higher order integer derivative fails
to contain the curvature information.

In the functions with real order (other than integer order), if the concepts of
fractional calculus are applied then we can contain the curvature information of
f (x)= x1.5 by taking 1.5 derivative of the f (x), symbolically d1.5x1.5/dx1.5=1.33.

dα

dxα
xu = Γ(u + 1)

Γ(u − α + 1)
xu−α

d1.5

dx1.5
x1.5 = Γ(1.5+ 1)

Γ(1.5− 1.5+ 1)
x1.5−1.5 = Γ(2.5) = 1.33

Therefore if the fractional differential operator is chosen in which the fractional
order of differentiation matches the power law scaling of the function, then the
curvature is reduced to a constant and all the scaling information is contained in the
order of the derivative and that constant. If the neutron plume is traveling through
material with evolving heterogeneity, then a fractional divergence might account for
the increased dispersive flux over larger range of measurement scale.

This argument sets the stage for writing neutron diffusion equation with frac-
tional calculus. The above derivation and discussion completes the description of
neutron diffusion equations in fractional calculus.

In deriving the fractional differential equations for neutron diffusion in an
enclosed volume, we argued the basis of taking a larger observation space for
defining divergence. The non-local formation of the divergence thus gives the effect
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of macroscopic effects caused by velocity fluctuations, the coupling effect of nearby
zonal neighborhood neutrons (refer Fig. 4.3). This therefore is making the consti-
tutive descriptive equations closer to reality. The classical integer order constitutive
differential equations are approximations to everything as “point” quantity in time
or in space. The classical integer order methods do not thus take into account the
space history or time history and therefore cannot represent the natural laws close
to reality. Fractional calculus does take of all these reality and therefore is more
appropriate for representation of natural phenomena. Refer Fig. 4.3, as an outside
observer, let us try to visualize space squares as depicted in the figure. The squares
without any neutrons in them look different to an outside observer as compared to
the squares with the neutrons, while observer sitting in the same squares will not
notice the difference in the squares with or without neutrons. So the observer in the
same space will apply point quantity and will try to describe the neutron balance by
classical integer order calculus. Whereas to the outside observer the squares or the
space will appear transformed with or without the presence of neutrons. The outside
observer thus will apply this space transformation correction factor and obtain some
different results, and that result will be close to reality.

4.6.1 Solution of Classical Constitutive Neutron Diffusion
Equation (Integer Order)

This section will serve as a revision to simple classical solution of the diffusion
equation. Then in the next section, we will solve the fractional differential equa-
tion obtained. This we will demonstrate the space variables in one dimension for
simplicity.

D∇2φ −Σaφ + S = dn

dt
= 1

v

dφ

dt
S = k∞Σaφ

D∇2φ + (k∞ − 1)Σaφ = 1

v

dφ

dt

The flux term is variable of space and time. The source term multiplication law
governs S. The separation of variables will give the following for the flux term which
can be substituted in the basic constitutive equation, and following expressions will
emerge.

φ = φ(r )e−Λt

D∇2φ(r )+ (k∞ − 1)Σaφ(r ) = −Λ
v
φ(r )

Λ is positive for sub-critical, negative for super critical, and zero for critical equilib-
rium reactor. We replace the space coordinate r , by x and with substitution of B as
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geometric buckling, we get following simple form. The temporal solution is avoided
for simplicity.

B2 = (k∞ − 1)Σa + Λ
v

D
d2φ(x)

dx2
+ B2φ(x) = 0

Here we can apply standard Laplace method with initial conditions at x = 0 at the
center point of the reactor geometry having constant flux and at the walls at x = a
zero flux. General Laplace formula for derivative of function is indicated below and
is applied to have polynomial form.

s2Φ(s)−
1
∑

k=0

sk d2−k−1φ(x)

dx2−k−1
]at x=0 + B2Φ(s) = 0

s2Φ(s)− dφ(x)

dx
]at x=0 − sφ(x)]at x=0 + B2Φ(s) = 0

dφ(x)

dx
]at x=0 = 0 and φ(x)]at x=0 = C

The above initial condition gives simple equation as s2Φ(s)− sC + B2Φ(s) = 0

Φ(s) = sC

s2 + B2

taking the inverse φ(x) = C cos Bx

4.6.2 Solution of Fractional Divergence Based Neutron Diffusion
Equation (Fractional Order)

With the extension of the above method, we try to solve the fractional differential
equation:

dβφ(x)

dxβ
+ B2φ(x) = 0

1 < β < 2

L

(

dα f (x)

dxα

)

= sαF(s)−
n−1
∑

k=0

sk dα−k−1 f (x)

dα−k−1
]at x=0

sβΦ(s)− dβ−1φ(x)

dxβ−1
]atx=0 − s

dβ−2φ(x)

dxβ−2
]at x=0 + B2Φ(s) = 0
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The above is Laplace transformation for LHD definition of the fractional derivative.
In this expression, the second and the third term of the left hand side has frac-
tional derivative of the flux at initial point, which is physically difficult to define
and to realize the same by experimental measurements is difficult at this stage. Let
us try to make use of Laplace transformation of RHD Caputo definition, as given
below:

L

(

dα

dxα
f (x)

)

= sαF(s)−
n−1
∑

k=0

sα−k−1 dk

dxk
f (x)at x=0

sβΦ(s)− sβ−1φ(x)at x=0 − sβ−2 d

dx
φ(x)atx=0 + B2Φ(s) = 0

We relate the above expression physically to the earlier initial condition taking sec-
ond term as C and third term as zero as done in Sect. 4.6.1. Here the integer order
derivative comes as initial condition, therefore physically realizable from measure-
ments and observations.

Φ(s) = sβ−1C

sβ + B2

φ(x) = C.L−1

[

sβ−1

sβ + B2

]

The solution of the fractional differential equation for the constitutive neutron bal-
ance equation therefore is with Laplace identity

L(Eα(−λtα) = sα−1

sα + λ,

we obtain

φ(x) = C.Eβ(−B2xβ) = C
∞
∑

k=0

(−B2xβ)k

Γ(βk + 1)

φ(x) = C + C
(−B2xβ)

Γ(β + 1)
+ C

(B4x2β)

Γ(2β + 1)
+ C

(−B6x3β)

Γ(3β + 1)
+ . . .

The above is flux mapping obtained by the solution of fractional order neutron con-
stitutive equations that is obtained by the concept of fractional divergence.

Let us see what classical flux pattern and fractional order flux pattern are same
when we take the fractional order equal to 2, the integer order.

Solution in the classical form is cosine function and series representation of the
same is
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cos(x) =1− x2

2!
+ x4

4!
− x6

6!
+ . . .

β =2, φβ=2(x) = C Eβ(−B2x2) = C
∞
∑

k=0

(−B2x2)k

Γ(2k + 1)

=C

[

1− (B2x2)

Γ(3)
+ (B2x2)2

Γ(5)
− (B2x2)3

Γ(7)
+ . . .

]

Γ(n + 1) =n!

φβ=2(x) =C

[

1− (Bx)2

2!
+ (Bx)4

4!
− (Bx)6

6!
+ . . .

]

≈ C. cos(Bx)

Therefore when the fractional order equals the integer order, we get classical flux
profile. This is proof of our assumption that indeed neutron flux being not a point
quantity be represented as fractional divergence of order less than unity.

4.6.3 Fractional Geometrical Buckling and Non-point Reactor
Kinetics

The above concept of fractional divergence gave a deviation from ideal flux map
(cosine). The term geometrical buckling is indicative of the flux profile of neutron
flux inside the reactor. Measuring the actual flux distribution and then controlling
the power of reactor is one mode of reactor control. Now if the control computer
is kept with a map of cosine table and the neutron spatial detectors are mapping in
each control cycle, then a deviation, the unwarranted correction cycles, will keep the
control devises moving. Actually the correction may not be called for if the control
computer is programed with actual fractional geometrical buckling data. The frac-
tional divergence has given the new thought of “fractional geometrical buckling,”
which in turn when used with basic multiplying factor k∞ gives rise to a concept of
fractional criticality. The describing reactor kinetics with fractional divergence will
give the concept of non-point kinetic description.

4.7 Concept of Fractional Curl in Electromagnetics

Fractional curl operator has been utilized to find the new set of solutions to
Maxwell’s equations by fractionalizing the principle of duality. New set of solutions
is named as fractional dual solutions.
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4.7.1 Duality of Solutions

The electromagnetic theory is based on the principle of duality. Dual solutions of
electromagnetics means any solution to a problem containing electric source can be
converted into a dual solution to the problem containing a magnetic source. Duality
does arise in circuit theory as circuit of Thevenin voltage source can be converted
to Norton current source. In electromagnetics, the set (E, H, D, B, μ, ε) has dual
solution with set (H,−E, B,−D, ε, μ). This can be demonstrated by example as
replacing E → H , H → −E , μ → ε, and ε → μ in ∇ × E = − jωH and
∇ × H = jωE , keeps the two Maxwell equations same.

4.7.2 Fractional Curl Operator

Fractional curl operator has been utilized to find the new set of solutions to
Maxwell’s equations by fractionalizing the principle of duality. In electromag-
netics, the principle of duality states that if (E, ηH ) is one set solutions (original)
to Maxwell equations, then other set of solutions (dual to original) is (ηH,−E),
where η is the impedance of the medium. The solution that may be regarded as
intermediate step between the original and dual to the original solutions may be
obtained using the following relationship.

E f d = 1

( jk)α
(∇×)αE and ηH f d = 1

( jk)α
(∇×)αH,

where (∇×)α means the fractional curl operator and k = 2π f
√
με = ω

√
με is

the wave number of the medium. The subscripted E f d , H f d notations mean frac-
tional dual solutions. Only unbounded medium (with no reflection boundaries) will
be considered in this book for demonstration of fractional curl operator. However,
standing wave patterns in reflection media and other studies of transmission line
wave propagation are possible.

4.7.3 Wave Propagation in Unbounded Chiral Medium

In a chiral medium, electric flux and magnetic flux densities are composite quantity
and are represented as D = ε [E + β∇ × E] and B = μ [H + β∇ × H ]. Therefore
the D (and B) at any point x depends on the electric field at other point x . This
spatially dispersive property is non-local property and here the fractional calculus is
used. The factor β is the chirality property of the media.

Consider a uniform plane wave propagating in z-direction in an unbounded
lossless isotropic chiral medium. According to field decomposition, field quanti-
ties E and H may be thought of as two plane waves i.e. (E+, H+) and (E−, H−).
The electric field corresponding to two-wave field is E±(z) = E±(0) exp( jk±z),
where k± = k(1 + κr ) is wave number of the two wave fields, k = ω

√
με and

κr = κ
√
μ0ε0/με. Using the following relation
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η±H±(z) = ± j E±(z)

corresponding magnetic field may be obtained. In the above expression

η± =
√

μ±
ε±
= η. This means each wave field sees media with equivalent consti-

tutive parameters as (ε+, μ+) and (ε−, μ−). Medium parameters of the equivalent
isotropic media are related to the parameters of this chiral medium by
ε± = ε(1 ± κr ) and μ± = μ(1 ± κr ). Simple expressions of wave fields can be

written as

E+ = 1

2
(E − jηH )

E− = 1

2
(E + jηH )

H+ = 1

2

(

H + j
E

η

)

H− = 1

2

(

H − j
E

η

)

The total field in chiral medium is

E(z) = E+(0) exp( jk+z)+ E−(0) exp( jk−z)

ηH (z) = j [E+(0) exp( jk+z)− E−(0) exp( jk−z)].

Fractionalizing the electric field
E+(z)&E−(z), we get

E f d+(z) = 1

( jk)α
(∇×)αE+(z)

= 1

( jk)α
{(z×)αE+(0)}

{

dα

dzα
exp( jk+z)

}

= E+(0) exp
{

j
(

k+z + απ
2

)}

Similarly, E−(z) = E−(0) exp
{

j
(

k−z − απ
2

)}

Fractional dual fields corresponding to the original field E(z), H(z) may be written
as

E f d (z) = E+(0) exp
{

j
(

k+z + απ
2

)}

+ E−(0) exp
{

j
(

k−z − απ
2

)}

ηH f d (z) = j [E+(0) exp
{

j
(

k+z + απ
2

)}

− E−(0) exp
{

j
(

k−z − απ
2

)}

]

It is obvious that for α = 0, E f d (z) = E(z) and ηH f d (z) = ηH (z).
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For α = 1, E f d(z) = ηH (z) and ηH f d(z) = −E(z), which is consistent with
electromagnetic principle of duality. For any value in between solutions may be
regarded as intermediate between the original and dual to the original solutions.

The example of fractional curl taken above can be extended to reflecting media
and that solution will enhance the duality of the reflection coefficients.

4.8 Concluding Comments

This chapter extends the argument about reality of having the concept of fractional
order calculus to describe the nuclear reactor and application in electromagnetic
theory. With regards to the electromagnetic theory, the application of the fractional
curl will see extension of its usage in description of Left Handed Materials (LHM)
or Metamaterials, where the electromagnetic gets reversed. Reversal of Snell’s law,
reversed Doppler effect, and superluminality are terms associated with LHM uti-
lized presently to have perfect focusing of beams by straight surfaces. Future will see
the geometrical interpretation of the concept of fractional curl and its use in forma-
tion of turbulence in flow of fluids and electromagnetics. The concept of fractional
divergence as introduced in reactor description will in future lead to development of
reactor criticality concepts based on fractional geometrical buckling. This enables
to describe the reactor flux profile more closely to actual and maintain efficient
correction and control. The fractional divergence will be used to describe several
anomalous effects presently observed in diffusion experiments, which is presently
ode to non-linearity effects and its explanation through integer order theory or by
probabilistic methods.



Chapter 5
Fractional Differintegrations: Insight Concepts

5.1 Introduction

This chapter describes the geometric and physical interpretation of fractional inte-
gration and fractional differentiation. As a start point, the Reimann–Liouville (RL)
fractional integration is taken. The geometric interpretation is developed first for
the RL integration process along with the concept of transformed time scales, and
in-homogeneous time axis. Thereafter the RL definition is geometrically explained
by convolution of the power function and the integrand. The concept of delay is
developed for Grunwald–Letnikov differintegration process, and this is converted
into the specific definition of short-memory principle, used for computer applica-
tions. The GL differintegration is also explained as in the classical calculus by
considering infinitesimal quantities for the independent variable and the function,
and explained graphically. The GL definition is expanded with binomial coefficients
and its application to numerical regression. Here the concept of generating function
is discussed, which by either power series expansion or continued fraction expan-
sion approximates fractional operators. These methods are advance algorithms to
get digital realization for fractional order controllers. Small introduction is made
regarding the definitions of local fractional derivatives for continuous but nowhere
differentiable functions.

5.2 Symbol Standardization and Description
for Differintegration

Mathematicians have used several notations since the birth of fractional calculus.
Several contemporary notations for fractional differentiation and fractional inte-
gration are mentioned in Sect. 1.4. Here, attempt will be made to standardize the
notations as differintegrals. The same operator is used as integrator, when index is
negative, and differentiator, when index is positive. Separate notation will be used
to indicate initialized differintegral operator and un-initialized operator. However,
the difference in notations is made clear as “un-initialized” and “initialized” differ-
integrals; the concept of initialization function ψ( f, q, a, c, t) is dealt in detail in
the next chapters 6 and 7.

S. Das, Functional Fractional Calculus for System Identification and Controls. 81
C© Springer 2008
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c Dq
t f (t) represents the initialized qth order differintegration of f (t) from start

point c to t . cdq
t f (t) represents un-initialized generalized (or fractional) qth order

differintegral. This is also same as

dq f (t)

[d(t − c)]q ≡ cdq
t f (t),

shifting the origin of function at start of the point from where differintegration starts.
This un-initialized operator can also be shortened to the form dq f (t). The initial-
ization function (not a constant) is represented as ψ( f, q, a, c, t), meaning that this
is function of independent variable t, and is for differintegral operator of order q,
for the function f (t) born at t = a (before that the function is zero), and differ-
integral process starting at t = c. This initialization function can be short formed
as ψ(t), ψ( f, q, t). Therefore the expression between initialized differintegral and
un-initialized one is

c Dq
t f (t) = cdq

t f (t)+ ψ( f, q, a, c, t)

The notation contains lower limit of the process at the front subscript and the order
of the process at the tail superscript, with independent variable with respect to what
is being differintegrated.

5.3 Reimann–Liouville Fractional Differintegral

5.3.1 Scale Transformation

The integration in fractional calculus is the embedded part of the fractional differin-
tegration. The RL definition is described as follows:

0 D−αt f (t) = 1

Γ(α)

t
∫

0

f (τ )(t − τ )α−1dτ

Take the function g as which is basically scaling the time τ variable to the function
g(τ ), it is the scale transformation concept. It is described as follows:

g(τ ) = 1

Γ(α + 1)
{tα − (t − τ )α}

τ → g(τ )

dg(τ ) = (t − τ )α−1

Γ(α)
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0 D−αt f (t) =
t
∫

0

f (τ )dg(τ )

Therefore, the fractional integration of the function is area under the curve for the
plot of f (τ ) and g(τ ), from 0 to t . Let us take three axes τ, g(τ ), f (τ ), making a
cubic room with floor comprising of plane τ and g(τ ). We plot the function as from
0 < t < τ , in the floor

g(τ ) = 1

Γ(α + 1)
{tα − (t − τ )α} .

This is depicted in Fig. 5.1. Along the obtained curve (on the floor), we build a
fence of varying height f (τ ), so the top edge of the fence is a three-dimensional
line. Points are τ, g(τ ), f (τ ) for 0 < τ < t .

The shadow on the wall (τ, f (τ )) as shown in Fig. 5.1 is a well-known area under

the curve and is a normal integer order integration 0 D−1
t f (t) =

t
∫

0
f (τ )dτ . The

second shadow on the wall (g(τ ), f (τ )) is geometric interpretation of the fractional
integration of f (t), i.e. 0 D−αt f (t) for fixed t . The observation from Fig. 5.1 is that
what happens when t is changing (namely growing), the fence changes simultane-
ously. Its length and in certain sense its shape changes.

The wall ( f (τ ), g(τ )), depicting shadow growing as t = 9 → 10 depicting
fractional integration, is shown in Fig. 5.2.

For t = 10, τ is varied from 0 to 10. g(τ ) is formed and then f (τ ) is plotted.
Figure 5.2 shows the change in the shape of the curve from t = 9 to t = 10 and
the integration under the new shape. The difference in the integer order integration

∫ f (τ) dτ

Wall-II ( f, g)
fractional
order
shadow-II

∫ f (τ), g (τ)

g (τ) τ

Floor (τ, g)

Wall-I ( f, τ)
integer order
shadow-I  

Fig. 5.1 The three-dimensional representation of RL fractional integration
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Fig. 5.2 Shadow on the wall
showing fractional integration
as t grows

f (τ)

g(τ)
t = 9 t = 10

is that of the new shape of the curve from 0 to 10 as compared to old one 0–
9. When t changes, the entire preceding time interval changes as well. Let us
consider a moving object fitted with speedometer and a clock. The observer in
the moving object records the speed at the end of each second (time interval) as
v1, v2, v3, . . . v10. At the end of 10 s, the observer in the moving object calculates
the distance, SN = v1 + v2 + v3 + . . . v10, where the observer takes by the local
clock each interval of time as “one-second.” Now the observer stationary at the fixed
frame of reference knows that the clock of the mobile observer is running slow. The
actual time at the end of each one-second is 1, 2, 4, 8, 16, 32, 64 . . .. Then the actual
distance traveled, as seen by stationary observer (call cosmic observer) as per the
actual time (call cosmic time), is So = v1+2v2+4v3+8v4+16v5+32v4+64v5+. . .,
is much more than SN . The integration of local velocity (speed) with local time is
integer order integration, and the integration of the speed recorded with respect to
the transformed time is fractional order integration. When moving body changes its
position in space–time, the gravitation field in the entire space–time changes due to
movement of the object. As a consequence, the “cosmic time interval”, which cor-
responds to the history of the movement of the moving object, changes. SN , v(τ ), τ
is individual, distance, speed, and time, of the observer moving with the object.
So, vo(t), t , are the distance, speed, and time as recorded by the observer outside on
fixed frame of reference (cosmic). They are related as

SN (t) = 0 D−1
t v(t) =

t
∫

0

v(τ )dτ , So(t) = 0 D−αt v(t) =
t
∫

0

v(τ )dg(τ ), v(t) = 0 D−αt So (t)

is individual velocity of the local speedometer as related to cosmic distance, and
vo(t) = d

dt So(t) = d
dt 0 D−αt v(t) = 0 D1−α

t v(t). The first derivative of cosmic distance
is the cosmic velocity, and the cosmic velocity is fractional derivative of order (1−α)
of the local velocity. Figure 5.3 gives the two kind of time: homogeneous (local
time) and heterogeneous (transformed time). In the above example, the variable t is
used as a notation for both observers, N and O.

g(τ ) describes the in-homogeneous time scales, which depends not only on τ but
also on the parameter t , representing the last measured value of the individual time
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0 1 2 3 4

0 1 2 3 4

5

5

6 7

Fig. 5.3 Homogeneous and heterogeneous time

(of the moving object). Fractional integration in time means transformation of the
local time to cosmic time.

5.3.2 Convolution

The Reimann–Liouville definition for the fractional integral is

d−q

[d(t − a)]−q f (t) = 1

Γ(q)

t
∫

a

(t − τ )q−1 f (τ )dτ, q ≥ 0

This definition is extended to fractional differentiation with m as an integer, as
follows:

dm−q

[d(t − a)]m−q f (t) ≡ 1

Γ(q)

dm

dtm

t
∫

a

(t − τ )q−1 f (τ )dτ, q ≥ 0,m > q

The RL integral can be viewed as convolution of the integrand function with power
function; when both the functions are causal, it can be expressed as

d−q

[d(t − 0)]
f (t) = f (t)∗h(t) = f (t)∗

(

1

Γ(q)t−q+1

)

= 1

Γ(q)

t
∫

0

f (τ )dτ

(t − τ )−q+1

where

h(t) = 1

Γ(q)t−q+1
.

Causal functions mean that no convolution response can be obtained before the func-
tion f (t) is applied Fig. 5.4 demonstrates the convolution process. The function is

f (t) = cos

(

2π

5
t

)

;
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2

a 1 h (τ)

0
-10 -5 0 5 10

1

b 0

-1
-10 -5 0 5 10

f (τ)

2

c 1

0
-10 -5 0 5 10

2

d 1

0
-10 -5 0 5 10

2

e 0

-2
-10 -5 0 5 10

1

f 0

-1
-10 -5

TIME

0 5 10

h (− τ)

h (5 − τ)

f (τ) . h (5 − τ)

Y = f (t)

X
d 

–1/2
 f (t)

Fig. 5.4 RL integral interpreted as convolution

the order of fractional integration is half q = 1/2. Figure 5.4a shows h(τ ) versus τ ;
Fig. 5.4b shows that f (t), t > 0. Figure 5.4c shows h(−τ ). The curve is obtained
for the value t = 5, and Fig. 5.4d shows the plot of h(t − τ ) at t = 5, i.e., h(5 − τ )
versus τ . Figure 5.4e shows the full integrand for t = 5. Now moving this h(t − τ )
for several continuous values of t from 0 to 10, repeating the graphs d and e and
obtaining the value of the integral of the product (for several values of t) the final
graph f is obtained. For t = 5, the graph e shows full integrand as h(5 − τ ) f (τ ).
The integral of this product becomes t = 5, value of the semi-integral of f (t).
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Fig. 5.5 Convoluting
function h (t) for several t

2

1

0 1

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

2 3 4 5 6

In Fig. 5.4f, the point X is
5
∫

0

f (τ )h(5− τ )dτ,

definite value of the integration.
Figure 5.5 demonstrates the several h(t − τ ) for t = 1, 2, 3, 4, 5, 6, . . .
Figure 5.6 demonstrates the semi-derivative of

f (t) = cos

(

2π

5
t

)

,

which is obtained from differentiating once the RL semi-integral graph.

5.3.3 Practical Example of RL Differintegration in Electrical
Circuit Element Description

These types of intermediate devises are becoming reality in electrical circuits as
evident from patent US 20060-267595 of November 2006. We shall start with a
resistoductance alone, which is a linear circuit element whose behavior is interme-
diate between that of an inductor element and ohmic resistor element. The term

Fig. 5.6 Semi-derivative of
function. Differentiating once
the RL semi-integral of f (t)

1.0

0.5

0

-0.5

-1

2

0

d 
–1/2 f (t)

d1/2 f (t)

-2

0 1 2 3 4 5 6

0 1 2 3 4 5 6
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resistoductance is combination of pure resistance and pure inductor. As integer
order equations, the fractional order requires fractional derivatives (or integrals) as
initial conditions. How does then one relate to initial condition expressed in terms
of fractional differintegrals? The constitutive equation of such an element is

v(t) = K 0 Dα
t i (t) or i (t) = 1

K
0 D−αi v(t)

Here v(t) is across variable, i.e., the voltage across the circuit element, and i (t) is
the through variable, i.e., current through the circuit element. If α = 0, the circuit is
purely resistive and K = R ohms, and if α = 1, the circuit is purely inductive and
K = L henrys.

For a step input of voltage v(t) = V0 applied at t = 0, the current is described
as fractional integration of the forcing function, i.e., i (t) = 1

K 0 D−αt v(t). In terms of

convolution definition (as forcing function being causal) and h(t) = tα−1

Γ(α)
, the power

function, the current is obtained as follows:

i (t) = 1

K

[

h(t)∗v(t)
] =

t
∫

0

(t − τ )α−1

K Γ(α)
V0dτ = V0

K Γ(α)

0
∫

t

−(x)α−1dx

= V0

K Γ(α)

[

− xα−1+1

α − 1+ 1

]0

t

= V0

K Γ(α)

[

− xα

α

]0

t

= V0

KαΓ(α)
tα

Using Γ(α + 1) = αΓ(α), we obtain the current to step input as

i (t) = V0

K Γ(α + 1)
tα

for pure resistance α = 0, and i (t) = V0/K and for pure inductance α = 1, and
i (t) = (V0/K )t .

The initial value of the current vanishes, i.e., there is no instantaneous current,
only retarded response. However, the first ordinary derivative of i (t) = K1tα is
unbounded, so that a finite though undefined current can be reached in arbitrary
small time interval. The change of i (t) is described by the fractional differential
equation as 0 Dα

t i (t) = V0/K .
In accordance with the theory of fractional differential in terms of RL derivatives,

an initial condition involving 0 Dα−1
t i (t) is thus required. Physically this initial con-

dition has no representation and cannot be directly obtained from measurement. This
condition can be found by taking the first-order integral of the constitutive equation.
This process relates the fractional (immeasurable) initial condition to something of
reality and measurable as

[

0 Dα−1
t i (t)

]

t→0 =
[

0 D−1
t (V0/K )

]

t→0
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In the case under consideration, voltage stress is finite at all times hence
[

0 D−1
t V0
]

t→0 = 0, which leads to the condition of zero initial condition involv-
ing fractional differintegral, namely,

[

0 Dα−1
t i (t)

]

t→0 = 0. The same consid-
eration applies to general finite voltage v(t), and the equation to be solved is
0 Dα

t i (t) = v(t)/K , and same zero initial condition be attached.
Now for the impulse input voltage at time 0, i.e., v(t) = Bδ(t) at t = 0, the

current expression is again i (t) = 1
K 0 D−αt v(t) using the convolution definition and

h(t) = tα−1

Γ(α)
, the current expression is

i (t) = 1

K

[

h(t)∗v(t)
] = 1

K

[

h(t)∗Bδ(t)
] = B

K
h(t) = B

tα−1

K Γ(α)

This is obtained as the convolution of function with impulse at t = 0, this returns
the function itself. The power function with gain B is retuned. This is property of
the convolution. As observed from the derived current expression for the impulse
voltage, the initial voltage–stress singularity gives rise to lower order current singu-
larity, since resistoductance cannot respond instantaneously.

The impulse response is mathematical convenience to evaluate transfer charac-
teristics and is seldom used in practice because it is even more problematic to apply
homogeneous impulse voltage on circuit element than to apply step. However inves-
tigating the impulse response will follow the same reasoning as for the step.

For the impulse voltage excitation for t > 0, the fractional differential equation
is 0 Dα

t i (t) = 0. In accordance with the theory of fractional differential equations
with RL derivatives, an initial condition involving [0 Dα−1

t i (t)]t→0 is required. This
can be found through integration of constitutive equation as

[

0 Dα−1
t i (t)

]

t→0 =
[

0 D−1
t (v(t)/K )

]

t→0 = B/K

which gives the initial condition in terms of fractional differintegral as
[

0 Dα−1
t i (t)

]

t→0 = B/K . This fractional differintegral initial condition is non-zero,
well defined, and bounded, whereas both current and its integer order derivatives are
unbounded, and its first-order integral is zero so that a meaningful initial condition
expressing the loading conditions cannot be obtained using integer order derivatives.

In the above example of resistoductance, it is possible to attribute physical mean-
ing to initial condition expressed in terms of fractional differintegral. Expressing
initial condition in terms of fractional derivative of a function u(t) is not a prob-
lem because it does not require a direct experimental evaluation of these fractional
derivatives. Instead, one should consider its counterpart (in separable twin), v(t) via
basic physical law, and measure (or consider) its initial values.

Similarly, other intermediate models can be considered as resistocaptance. Resis-
tocaptance will be similar in nature to resistoductance, where the circuit element will
be intermediate between pure resistance and pure capacitance. The constitutive part
will be
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v(t) = 1

K
0 D−αt i (t) or i (t) = K 0 Dα

t v(t),

where for α = 1 the element is pure capacitor with K = C farads, and for α = 0
the element will be pure conductance K = G mho.

These intermediate models can explain the behavior of “time-constant” disper-
sion effects in the circuit behavior when the relaxation observations cannot be
explained by single τ = R/L or RC time constant.

5.4 Grunwald–Letnikov Fractional Differinteration

The basic definition of Grunwald–Letnikov (GL) is

dq f (t)

[d(t − a)]q ≡ lim
N→∞

(

t−a
N

)−q

Γ(−q)

N−1
∑

j=0

Γ( j − q)

Γ( j + 1)
f

(

t − j

[

t − a

N

])

When the index q is negative, the above process is fractional integration, and when
q is positive fraction, the process tends to fractional differentiation. For under-
standing the recursive formulation of GL method consider a small example with
q = 1/2, N = 4. The GL expansion for the four terms is

d1/2 f (t)

[d(t − a)]1/2 ≡

(

t − a

N

)−1/2

Γ
(

−1

2

)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Γ(−1/2)

Γ(1)
f (t)+

Γ(1/2)

Γ(2)
f

(

t −
(

t − a

4

))

+
Γ(3/2)

Γ(3)
f

(

t − 2

(

t − a

4

))

+
Γ(5/2)

Γ(4)
f

(

t − 3

(

t − a

4

))

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

The process explanation is that the function f (t) is first multiplied by a constant then
time shifted by the amount ((t−a)/N), for (N−1) many times, and each shifted term
gets a weight multiplication (Γ( j − q)/Γ(−q)Γ( j + 1)) before summing and then
scaled by a factor ((t − a)/N)−q . Figure 5.7 shows the diagrammatic representation
of weighted addition for the four terms as derived for semi-differentiation of the
function f (t).

Thus the observation is that semi-derivative evaluation for a function by GL
method is seen to be a summation of progressively delayed evaluation of f (t)
multiplied by progressively decreasing constant weights, and finally multiplied by
((t − a)/N)−q . In reality choosing the value N = 4 is a crude approximation. The
definition states N →∞, so take a large value, as N = 10, 000. The following case
is considered for q = 1/2, N = 10, 000:
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[d (t − a)]1/2

d1/2 f (t)
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Fig. 5.7 Time delay weighted summation of semi-derivative (four-terms)

d1/2 f (t)

[d(t − a)]1/2
≡
(

t−a
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By comparison, it is seen that the four-term expansion and the 10,000-term expan-
sion of the semi-derivative in GL method Gamma function based coefficients are
the same for the first N terms. The time shift factor (incremental delay) is of course
very much smaller and indeed approaches zero as the number of terms are made
toward infinity.

Figure 5.8 shows the higher order approximation with large number of terms.
Figures 5.7 and 5.8 are similar except that the delay steps are smaller in the higher
order approximation. One observation is made as the time (independent variable)
grows, the delay between the consecutive terms increases as ΔT = t−a

N is the delay.
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Fig. 5.8 Time delay weighted summation of semi-derivative (large number terms) higher order
approximation of GL

Meaning that for fixed N , as the time grows the resolution between the samples of
the function decreases. This is overcome by spreading the sampling instrument N
uniformly in number in one interval and thus keeping ΔT same the GL approximate
can be written as

a Dq
t f (t) = lim

ΔT→0

(ΔT )−q

Γ(−q)

N−1
∑

j=0

Γ( j − q)

Γ( j + 1)
f (t − j (ΔT ))

5.5 Unification of Differintegration Through Binomial
Coefficients

The coefficient in Figs. 5.7 and 5.8 for the GL approximation in series form however
is through Gamma functions. Practically it is tough to evaluate Gamma function
especially when the argument is a large number. Also for electronics and real time
computer realization, the use of Gamma function is tough. Here the unification
approach is presented by use of binomial coefficients. First integer order unification
of repeated differentiation and repeated folded integration is presented. The same
can be generalized by use of Letnikov theorem to any arbitrary order (not in the
scope here).

The repeated integer order differentiation is as follows:

f (1)(t) = d f

dt
= lim

h→0

f (t)− f (t − h)

h
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f (2)(t) = d2 f

dt2
= lim

h→0

f (1)(t)− f (1)(t − h)

h

= lim
h→0

1

h

{

f (t)− f (t − h)

h
− f (t − h)− f (t − 2h)

h

}

= lim
h→0

f (t)− 2 f (t − h)+ f (t − 2h)

h2

f (3) = d3 f

dt3
= lim

h→0

f (t)− 3 f (t − h)+ 3 f (t − 2h)− f (t − 3h)

h3

By induction,

f (n) = dn f

dtn
= lim

h→0

1

hn

n
∑

r=0

(−1)r

(

n
r

)

f (t − rh)

The binomial coefficient
(

n
r

)

= n(n − 1)(n − 2) . . . (n − r + 1)

r !
,

for r > 1. The above derivative expression is generalized for any p integer where
p ≤ n, is

f (p)
h (t) = 1

h p

n
∑

r=0

(−1)r

(

p
r

)

f (t − rh)

and obviously

lim
h→0

f (p)
h (t) = f (p)(t) = d p f

dt p

because in such a case as follows, all the coefficients after

(

p
p

)

are zero.

For integration case, the index is negative; for convenience sake let us define (like
binomial coefficient) the following:

[

p
r

]

= p(p + 1)(p + 2) . . . (p + r − 1)

r !
.

Call this as pseudo-binomial coefficient.
Then
(−p

r

)

= −p(−p− 1)(−p− 2) . . . (−p − r + 1)

r !
= (−1)r

[ p

r

]

.
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Using this, we have for integration (differentiation with negative index):

f (−p)
h (t) = 1

h−p

n
∑

r=0

[

p
r

]

f (t − rh) = h p
n
∑

r=0

[

p
r

]

f (t − rh)

Taking interval t − a and dividing them equally by n, the limit can be written as
follows:

lim
h→ 0
nh = t − a

f (−p)
h = a D(−p)

t f (t)

Take p = 1, then f (−1)
h (t) = h

n
∑

r=0
f (t − rh). Taking into account t − nh = a,

lim
h → 0
nh = t − a

f (−1)
h (t) = a D−1

t f (t) =
t−a
∫

0

f (t − z)dz =
t
∫

a

f (τ )dτ

Take p=2, then

[

2
r

]

= 2.3.4...(2+r−1)
r! =r + 1, giving

f (−2)
h (t)=h2

n
∑

r=0

(r + 1) f (t − rh).

Rearranging and putting t + h = y, we get

f (−2)
h (t) = h

n
∑

r=0

[(rh) f (t − rh)+ f (t − rh)] = h
n+1
∑

r=1

(rh) f (y − rh)

and taking h→0 we get

lim
h → 0
nh = t − a

f (−2)
h (t) = a D(−2)

t f (t) =
t−a
∫

0

z f (t − z)dz =
t
∫

a

(t − τ ) f (τ )dτ .

Take p = 3, then

[

3
r

]

= 3.4...(3+r−1)
r! = (r+1)(r+2)

1.2 we have
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f (−3)
h (t) = h

1.2

n
∑

r=0

(r + 1)(r + 2)h2 f (t − rh)→ f (−3)
h (t)

= h

1.2

n+1
∑

r=1

r (r + 1)h2 f (y − rh),

here also t + h = y is substituted. Expressing the above by rearranging:

f (−3)
h (t) = h

1.2

n+1
∑

r=1
(rh)2 f (y − rh) + h2

1.2

n+1
∑

r=1
(rh) f (y − rh), taking h → 0 we

obtain a D(−3)
t f (t) = 1

2!

t−a
∫

0
z2 f (t − z)dz =

t
∫

a
(t − τ )2 f (τ )dτ . Because y → t , as

h → 0 and

lim
h→ 0
nh = t − a

h2

1.2

n+1
∑

r=1

rh f (y − rh) = lim
h→ 0
nh = t − a

h

t
∫

a

(t − τ ) f (τ ) = 0

Generally this process suggests that

a D−p
t f (t) = lim

h→ 0
nh = t − a

h p
n
∑

r=0

[

p
r

]

f (t − rh) = 1

(p − 1)!

t
∫

a
(t − τ )p−1 f (τ )dτ ,

repeated p-fold integration.
Applying the Letnikov theorem, the above expressions can be generalized for any

arbitrary order of differentiation and integration process with binomial coefficients
expressed as weights as indicated below.

For arbitrary differentiation of real order, the coefficient approximation for

(−1)k

(

α

k

)

is ω(α)
0 = 1 and ω(α)

k =
(

1− 1+α
k

)

ω
(α)
k−1; it is used for recursive com-

putation.

For arbitrary integration of real order, the coefficient approximation for

[

α

k

]

is

ω
(−α)
0 = 1 and ω(−α)

k = (1− 1−α
k

)

ω
(−α)
k−1 ; it is used for recursive computation.

A caution is put here; the factorials in the binomial (for differentiation) and
pseudo-binomial (for integration) coefficients get generalized by Gamma functions
as indicated in Chap. 1, for arbitrary order. However these weights are approximates
and are helpful in recursive formulation for computation and real time applications,
obviously with error.

5.6 Short Memory Principle: A Moving Start Point
Approximation and Its Error

For t >> a, the number of addends in fractional differintegral approximates
becomes enormously large. However, it follows from the expressions for GL
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definitions and unification arguments in the preceding sections that for large t
the role of “history” of the behavior of the function f (t) near the lower terminal
t = a (the start point of the differintegral) process can be neglected under certain
assumptions. Those observations lead us to the formulation of the “short-memory”
principle, which means taking into account only the “recent past” of the function
behavior, that is, in the interval [t − L, t], where L is memory length (in unit of
time). Therefore the approximation is

a Dα
t f (t) ≈ t−L Dα

t f (t), (t > a + L)

In other words, according to the short-memory principle, the fractional differintegra-
tional with lower limit a is approximated by fractional differintegration with “mov-
ing lower limit” (t − L). With this approximation, the addends in the GL process is
always not greater than [L/h]. In the selection of number of addend, the rule fol-
lowed is thus by this short-memory principle (for N(t)) is N(t) = min

{[

t
h

]

,
[

L
h

]}

,
h is step size.

Of course, for this simplification, penalty is paid in terms of accuracy. Following
rule will explain this. We consider the function in the interval (a, b) to be bounded
by f (t) ≤ M and have the error value as per required accuracy as ε. Then, the
following estimate is the rule:

Error in short-memory principle is expressed as

Δ(t) = ∣∣a Dα
t f (t)− t−L Dα

t f (t)
∣

∣ ≤ M L−1

|Γ(1− α)|
where (a + L ≤ t ≤ b) and f (t) ≤ M for a ≤ t ≤ b.

This inequality rule can be used for determining the “memory-length” (in unit of
time), provided the required accuracy is met, i.e., Δ(t) ≤ ε and a + L ≤ t ≤ b,
therefore

L ≥
(

M

ε |Γ(1− α)|
)1/α

Summarizing the approximates for differintegration process, we can write

a Dα
t =
⎧

⎨

⎩

dα

dtα �e(α) > 0
1 �e(α) = 0

∫

(dτ )−α �e(α) < 0

(t−L) D±αt f (t) ≈ h−(±α)
N (t)
∑

j=0

ω±αj f (t − jh)

N(t) = min

{[

t

h

]

,

[

L

h

]}

ω±α0 = 1, ω±αj =
(

1− 1± α
j

)

ω±αj−1
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5.7 Matrix Approach to Discretize Fractional Differintegration
and Weights

The weights or the coefficients for approximation of fractional differintegration as
described in the preceding sections are the following:

For differentiation: ωαk = (−1)k

(

α

k

)

, for k = 0, 1, 2, 3 . . . N .

This can be written as

ωα0 = 1, ωαk =
(

1− 1+ α
k

)

, for k = 1, 2, 3 . . . N.

For integration: ω−αk =
[

α

k

]

, for k = 0, 1, 2, 3, . . . N .

This can be written as

ω−α0 = 1, ω−αk =
(

1− 1− α
k

)

, for k = 1, 2, 3, ..N.

Both are same formulation. However, in system identification, the most appropriate
value of order α must be found; this means that various values of α are considered,
and for each α, the we have to calculate ωαk . In such cases, the above recursive
method is not easy; instead, Fast Fourier Transform (FFT) is used. The weights ωαk
can be considered (for differentiation) as coefficient of the series function (1− z)α.
The power series is expanded as

(1− z)α =
∞
∑

k=0

(−1)k

(

α

k

)

zk =
∞
∑

k=0

ω
(α)
k zk

Substituting z = e− jϕ , we have (1− e− jϕ)α =
∞
∑

k=0
ω

(α)
k e− jϕ and the coefficient ω(α)

k

is expressed in FFT as ω(α)
k = 1

j2π

2π
∫

0
fα(ϕ)e jkϕdϕ, where fα(ϕ) = (1− e− jϕ)α.

ω
(α)
k can be computed using FFT. Since in this case we always obtain a finite

number of coefficients, the FFT can be used with short-memory principle.
The approximation to fractional derivative can be written as the fractional differ-

ence approach:

a Dα
tk f (t) ≈ Δα f (tk)

hα
= h−α

k
∑

j=0

(−1) j

(

α

j

)

fk− j , for k = 1, 2, 3, . . . N
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Following the formulation of the above in matrix notation is helpful for coeffi-
cient evaluation:

⎡

⎢

⎢

⎢

⎢

⎣

h−αΔα f (t0)
h−αΔα f (t1)
∗

h−αΔα f (tN−1)
h−αΔα f (tN )

⎤

⎥

⎥

⎥

⎥

⎦

= 1

hα

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ω
(α)
0 0 0 ∗ 0
ω

(α)
1 ω

(α)
0 0 ∗ 0

∗ ∗ ∗ 0 0
ω

(α)
N−1 ω

(α)
N−2 ∗ ω(α)

0 0
ω

(α)
N ω

(α)
N−1 ∗ ω(α)

1 ω
(α)
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

f0

f1

∗
fN−1

fN

⎤

⎥

⎥

⎥

⎥

⎦

In the above coefficient matrix, the coefficients are symbolically represented as:

ω
(α)
j = (−1) j

(

α

j

)

, j = 0, 1, 2, . . . N . With the argument as indicated above, for

obtaining them from FFT, we have a generating polynomial, whose coefficients will
be the triangular matrix with ω(α)

j , with truncation as described by

Q(z) =
∞
∑

k=0
ω

(α)
k zk ↔ truncN (Q(z))

def=
N
∑

k=0
ω

(α)
k zk = QN (z). We write the matrix

notation in short as
[

h−αΔα f (tk)
] = [B] . [ fk], where matrix [B] includes 1/hα . We

call B(α)
N = [B] = βα(z) = h−α(1− z)α.

The approximation for fractional integration follows from BN by doing inverse
operation. Define I(α)

N = (B(α)
N )−1; the generating polynomial representation will be

for integration as I(α)
N ↔ ϕN = truncN (β−1

α (z)) = truncN (hα(1− z)−α)
For integration operation, the coefficient matrix is

I(α)
N = hα

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ω
(−α)
0 0 0 0 0
ω

(−α)
1 ω

(−α)
0 0 0 0

∗ ∗ ω
(−α)
0 0 0

ω
(−α)
N−1 ω

(−α)
N−2 ∗ ∗ 0

ω
(−α)
N ω

(−α)
N−1 ∗ ω

(−α)
1 ω

(−α)
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

The integral matrix representation in short is
[

hαΔ−α f (tk)
] =

[

I(α)
N

]

. [ fk],

k = 0, 1..N .

The weights for integration symbolically are ω(−α)
j = (−1) j

(−α
j

)

=
[

α

j

]

, for

j = 0, 1, 2, 3, . . . N .

5.8 Infinitesimal Element Geometrical Interpretation
of Fractional Differintegrations

The GL definition is described below:
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a Dq
t f (t) = lim

N→∞

(

t−a
N

)−q

Γ(−q)

N−1
∑

j=0

Γ( j − q)

Γ( j + 1)
f

(

t − j

(

t − a

N

))

= lim
ΔT→0

N−1
∑

j=0

Γ( j − q)

Γ(−q)Γ( j + 1)

f (t − jΔT )

ΔT q

ΔT = (t − a)/N, N →∞,ΔT → 0

The nature of the definition may be explored with the j th and ( j + 1)th term. In a
general sense, if the terms are additive and q < 0, then integration is in effect. If the
terms are differenced and q > 0, then differentiation is suggested. Then

a Dq
t f (t) = lim

ΔT→0

{

. . .+ Γ( j−q)
Γ(−q)Γ( j+1)

f (t− jΔT )
ΔT q + Γ( j+1−q)

Γ(−q)Γ( j+2)
f (t−( j+1)ΔT )

ΔT q + . . .
}

Dividing throughout by the coefficients of the j th term, and combining the j th and
( j + 1)th term gives

a Dq
t f (t) = lim

ΔT→0

{

. . .+ α
(

f (t − jΔT )+ β f (t − ( j + 1)ΔT

ΔT q

)

+ . . .
}

,

j = 1, 2, 3 . . . β = Γ( j + 1− q)Γ( j + 1)

Γ( j − q)Γ( j + 2)
, α = Γ( j − q)

Γ(−q)Γ( j + 1)

5.8.1 Integration

Now when q = −1, then β = 1 and α = 1. The GL equation simplifies for j and
j + 1 terms as

a D−1
t f (t) = lim

ΔT→0
{. . .+ ΔT [ f (t − jΔT )+ f (t − ( j + 1)ΔT )]+ . . .} ,

j = 1, 2, 3 . . .

which is conventional integration.
For simplicity, take q = 1/2, then

a D−1/2
t f (t)

= lim
ΔT→0

{

. . .+ αΔT
1/2
[

f (t − jΔT )+ β
−1/2

f (t − ( j + 1)ΔT

]

+ . . .
}

,

j = 1, 2, 3 . . .

β
−1/2
= j + 1

2

j + 1
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For all j greater than equal to zero, β is positive. The subscripted symbol indicates
semi-integration process. For the general case, the expression is

a D−q
t f (t) = lim

ΔT→0

{

. . .+ αΔT q
[

f (t − jΔT )+ β−q f (t − ( j + 1)ΔT
]+ . . .} ,

j = 1, 2, 3 . . .

Thus α and β are always positive, when q is between 0 and −1, and the above
summation is seen to be the integration process and indeed fractional. A geometric
approximation to this integration is given in Fig. 5.9.

If q = −1, then
∑

α f (t − jΔT )ΔT is an area represented below the curve
α f (t− jΔT ). If q = −2 (outside the domain of consideration here, as q is restricted
to−1), then

∑

α f (t − jΔT )ΔT 2 is a volume. Then the series
∑

α f (t − jΔT )ΔT q ,
for 0 ≥ q > −1, may be thought of as “fractional-area.” In Fig. 5.9, fractional
integral is the area under the α f (t − jΔT ) curve multiplied by ΔT q−1, a fractional
scaled version of the shaded area or full area.

5.8.2 Differentiation

For q = 1, α = 0 for all j except for j = 0. The GL expansion is

a D1
t f (t) = lim

ΔT→0

{

f (t)− f (t − ΔT )

ΔT

}

which is conventional integer order differentiation.

For general case, we take q=1/2, then β1/2
=
(

j−1/2
)

( j+1) , for all j ≥ 1→ β1/2
>0.

It can be seen that βq will be positive for all q when j ≥ 1. It is also true that
0 > α ≥ −1, for all q in the range. Therefore

Fig. 5.9 Geometric
interpretation if infinitesimal
incremental fractional
integration

f (t)

f (t − jΔT)

α f (t − jΔT)

j
N-1 .. 2 1 0 = j

ΔΤ



5.8 Infinitesimal Element Geometrical Interpretation of Fractional Differintegrations 101

a D
1/2
t f (t) = lim

ΔT→0

{

. . . αΔT−
1/2
[

f (t − jΔT )+ β1/2
f (t − ( j + 1)ΔT )

]

+ . . .
}

For general q the expression is

a Dq
t f (t) = lim

ΔT→0

{

. . . αΔT−q
[

f (t − jΔT )+ βq f (t − ( j + 1)ΔT )
]+ . . .}

So after the first j = 0 term, it is seen that all terms are a direct sum of nega-
tively weighted functions, again integration process. However, the effectiveness of
the weighing ΔT−q is changed as q > 0. The first j = 0 term for all q is ΔT−q f (t),
thus considering the first two terms, we have

a Dq
t f (t) = lim

ΔT→0

{

f (t)− q f (t − ΔT )

ΔT q
+ . . .

}

This brings in an effective differentiation (for q > 0) though scaled by ΔT q instead
of ΔT , as in the case of one-order differentiation.

If q is taken as 1, then this returns to the rate of change, like velocity (slope).
For value 2, i.e., outside the range, it yields acceleration. Therefore for 0–1, the
expression may be called as fractional rate of change of function. Figure 5.10 shows
the j = 0 and j = 1 points of a geometric approximation to the qth derivative. The
slope between the curves multiplied by ΔT−q+1 is loosely a geometric interpretation
for this part of the fractional derivative or fractional rate. The remaining terms after
the first two are like integration terms that may be interpreted as in Fig. 5.9, but
meaningless at limit ΔT → 0.

Fig. 5.10 Geometric
interpretation of fractional
differentiation for j = 0 to
j = 1

f (t)

q

f (t)
f (t − ΔΤ)

f (t) − q f  (t − ΔT ) q = 1

qf (t − ΔΤ) q f (t)

q = 1/2

ΔΤ q = 0

j = 1 j = 0
t
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5.9 Advance Digital Algorithms Realization
for Fractional Controls

As seen from the definitions of fractional differintegrations, the operations are not
a local or point property, rather distributed quantities. Therefore in the process to
obtain value of fractional differentiation and integration, a bit of historical behavior
is required. In spatial terms what is required is the behavior at the neighborhood
of that function. The GL and RL definitions capture that historical behavior of
the function, undoubtedly enormous amount of memory requirement is needed in
spite of having short-memory principle. The historical behavior of the function is
described by initialization function (instead of constant states in integer order cal-
culus). Minimum 100 recent past history of the function is required to obtain good
estimate with tolerable error and to get that initial function. There are advances in
algorithms to emulate the fractional differintegration by digital control theory of
discretization which leads to several other memory efficient methods, as compared
to GL method described herein. Few advance digital control algorithms are power
series expansion of Tustin rule, Al-Alouni rule, continued fraction expansion, and
method of interpolation through fractional order delay. These advance algorithms
are to realize the fractional control digital systems with approximately one-tenth
of memory requirement as compared with the short-memory principle of the GL
method. Advances in the algorithm development in this direction are ongoing pro-
cess, and this century will see several of it. In this section, attempt is made to give the
digital realization of the fractional differintegration operators; the readers, knowl-
edge about z- transforms and control system basics and fundamentals of digital
filters is required.

5.9.1 Concept of Generating Function

Discretization of fractional order differentiation sr can be expressed by so-called
generating function. Here s is the Laplace variable and discrete domain is z variable.
To revise the concepts of digital controls, the monomial z−1 is the unit delay dictated
by sampling or dicretization time T . The generating function is s = ω(z−1). For
backward difference or Euler’s rule, the function is Gg f (z−1) = 1−z−1

T . Performing
the power series expansion (PSE) of the (1− z−1)±r , using short-memory principle
we get

(s)±r = (Gg f (z−1)±r = T∓r z−[L/T ]
[L/T ]
∑

j=0

(−1) j

(±r
j

)

z[L/T ]− j

T is the sampling period, L is the Memory length, (−1) j

(±r
j

)

are binomial

coefficients of the form, i.e., c(r)
0 = 1, c(r)

j =
(

1− 1+(±r)
j

)

c(r)
j − 1. This PSE of
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the backward difference rule gives the digital realization of the GL method with
short-memory principle. Applying this realization in digital filter realization gives
the Finite Impulse Response (FIR) digital filter.

Generating function for the Trapezoidal rule (Tustin) is

GT (z) = (Gg f (z−1)
)±r =

(

2

T

1− z−1

1+ z−1

)±r

Al-Alouni mixed Trapezoidal and Euler generating function is

G(z)=(Gg f (z−1)
)±r =

(

8

7T

1− z−1

1+ z−1

)±r

;

these are infinite order rational discrete time transfer functions. To approximate it
with a finite order rational one, Continued Fraction Expansion (CFE) is an efficient
way.

G(z) =
∧

G(z) = a0(z)+ b1(z)

a1(z)+ b2(z)

a2(z)+ b3(z)
.......

,

with ai , bi are either rational functions of the variable z or constants. With CFE
method, the realization obtained is Infinite Impulse Response (IIR) digital filter. In
number theory, the CFE method is used to represent a real number. A number can
be represented as

x = a0 + 1

a1 + 1
a2+...

,

for x = π , a0 = [π] = 3, a1 =
[

1
π−3

] = 7, a2 =
[

1
1

π−3−7

]

= 15.

The [∗] is “FLOOR” function; it returns the integer part after operation.

5.9.2 Digital Filter Realization by Rational Function
Approximation for Fractional Operator

Al-Alouni (1997) stated that magnitude of frequency of ideal integrator 1/s lies
between that of Simpson and Trapezoidal digital integrators. It is reasonable to
interpolate the Simpson and Trapezoidal digital integrators to compromise the high-
frequency response. The Simpson digital integrator is

HS(z) = T (z2 + 4z + 1)

3(z2 − 1)
,

the Tustin (trapezoidal) integrator is
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HT (z) = T

2

(z + 1)

(z − 1)
.

The combined digital integrator is H (z) = a HS(z)+ (1 − a)HT (z), and the tuning
knob fraction is a ∈ [0, 1]. Putting Simpson integrator and Tustin integrator, we
obtain

H (z) = T (3− a)
{

z2 + [2(3+ a)/(3− a)] z + 1
}

6(z2 − 1)
= T (3− a)(z + r1)(z + r2)

6(z2 − 1)

with

r1 = 3+ a + 2
√

3a

(3− a)

and

r2 = 3+ a − 2
√

3a

(3− a)
.

Note that r1 = 1/r2 and r1 = r2 = 1, when a = 0 (Pure Tustin). For a 
= 0, H (z)
must have one non-minimum phase zero.

First we can obtain a family of new integer order digital differentiators from the
digital integrator introduced above by mixing Simpson and Tustin. Direct inversion
of H (z) will give an unstable filter since H (z) has non-minimum phase (NMP) zero,
r1. By reflecting the NMP r1 to 1/r1, i.e., r2 we have approximate as

∧
H (z) = K

T (3− a)(z + r2)2

6(z2 − 1)
.

To determine K , let the final value of the impulse response have H (z) and
∧

H (z) be

the same. Applying final value theorem, i.e., lim
z→1

(z − 1)H (z) = lim
z→1

(z − 1)
∧

H (z),

gives K = r1. Therefore, the new families of the digital differentiator are given by
generating the function

G(z) = 1
∧

H (z)
= 6(z2 − 1)

r1T (3− a)(z + r2)2
= 6r2(z2 − 1)

T (3− a)(z + r2)2

Finally, we can obtain the expression for the Digital Fractional Order Differen-
tiator as

G(z−1) = (Gg f (z−1)
)r = k0

(

1− z−2

(1+ bz−1)2

)r

Where r ∈ [0, 1] , k0 =
(

6r2

T (3− a)

)r

and b = r2.
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It is well known that compared to Power Series Expansion (PSE) the Continued
Fraction Expansion (CFE) is a method of evaluation of functions with faster con-
vergence in larger domain in complex plane. Using the CFE, an approximation for
an irrational function G(z−1) can be expressed as approximation. The CFE can be
automated by using MATLAB symbolic toolbox

C F E

(

1− x2

(1+ bx)2

)r

with x = z−1 for desired order n. The MATLAB script generates the above CFE
with polynomial containing the numerator and denominator with coefficients being
function of b and r . Following list is IIR transfer function for n = 3, a = 0 − 1
in steps of 0.25 for semi-differentiation r = 0.5 at sampling time of T = 0.001s
(1 ms).

Gn,a means nth order polynomial approximate at a mixing value a.

G(3,0)(z−1) = 357.8− 178.9z−1 − 178.9z−2 + 44.72

8+ 4z−1 − 4z−2 − z−3

G(3,0.25)(z
−1) = 392.9− 78.04z−1349.8z−2 + 88.97z−3

11.32+ 4z−1 − 5.66z−2 − z−3

G(3,0.5)(z
−1) = 1501− 503.6z−1 − 1289z−2 + 446.5z−3

47.26+ 4z−1 − 23.63z−2 − z−3

G(3,0.75)(z−1) = 968.1− 442z−1 − 820.8z−2363z−3

32.47− 4z−1 − 16.24z−2 + z−3

G(3,1.00)(z−1) = 353.1− 208z−1 − 297.4z−2 + 164.7z−3

12.46− 4z−1 − 6.228z−2 + z−3

The fourth-order approximation is for digital IIR is listed below

G(4,0)(z−1) = 715.5− 357.8z−1 − 536.7z−2 + 178.9z−3 + 44.72z−4

16+ 8z−1 − 12z−2 − 4z−3 + z−4

G(4,0.25)(z−1) = 555.3− 392.9z−1 − 477.2z−2 + 349.8z−3 − 19.56z−4

16− 2.489z−1 − 12z−2 + 1.245z−3 + z−4

G(4,0.5)(z
−1) = 508.1− 1501z−1 − 4.478z−2 + 1289z−3 − 382.9z−4

16− 40.54z−1 − 12z−2 + 20.27z−3 + z−4

G(4,0.75)(z
−1) = 477+ 968.1z−1 − 919z−2 − 820.8z−3 + 422.7z−4

16+ 37.8z−1 − 12z−2 − 8.371z−3 + z−4
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5.9.3 Filter Stability Consideration

For odd CFE n = 3, the pole-zero maps are nicely placed and behaved, that is, all
pole and zeros of the transfer function lie inside the unit circle and the poles and
zeros are interlaced along the segment of the real axis corresponding to z ∈ (−1, 1).
However, when n = 4 and even if “a” is near unity (tending toward Simpson rule),
there may be one canceling pole-zero pair, which may not be desirable. Therefore
suggestion is to use odd order (polynomial) expansions for CFE. When a = 0
for Tustin (trapezoidal) rule pole-zero (P-Z) maps always inside unit circle in an
interlacing way along the segment of the real axis z ∈ (−1, 1). For special case
a = 0, Tustin CFE for odd polynomial expansion gives

Dr (z) = C F E

(

1− z−1

1+ z−1

)r

= 1+ z−1

− 1
2

1
r + z−1

−2+ z−1

3
2

r
r2−1

+ z−1
2+.....

For semi-differentiation realization r = 0.5 for discretization time T = 0.001s
(1 ms), the approximate odd CFE expansions are

G1(z) = 44.72
z − 0.5

z + 0.5
,G3(z) = 44.72

z3 − 0.5z2 − 0.5z + 0.125

z3 + 0.5z2 − 0.5z − 0.125

5.10 Local Fractional Derivatives

Fractals and multifractals functions and corresponding curves or surfaces are found
in numerous places in non-linear and non-equilibrium phenomenon, for example,
low viscous turbulent fluid, Brownian motion. These phenomena give occurrence
of continuous but highly irregular (non-differentiable) curves. However the precise
nature of connection between the dimensions of the graph of fractal curve and frac-
tional differentiability property was only recognized recently. K.M. Kolwankar and
Anil D. Gangal introduced a new notion of Local Fractional Derivative (LFD).

In this section, only the definition of this LFD will be introduced. The classical
definition of fractional derivatives of Reimann–Liouvelli (RL), Grunwald–Letnikov
(GL) discussed in detail in this book makes it a non-local property. Also as discussed
the RL approach of fractional derivative of a constant makes it non- zero. These two
features make extraction of scaling information somewhat difficult. LFD tries to
overcome these issues by having a neighborhood point approach as defined:

Dq f (y) = lim
x→y

dq ( f (x)− f (y))

d(x − y)q

If this limit exists and is finite, then we say the LFD of order q(0 < q < 1) at x = y
exists. In this definition, the lower limit y is treated as a constant. The subtraction of
f (y) corrects for the fact that fractional derivative of a constant is not zero. Whereas,
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limit x → y is taken to remove non-local contents. Advantage of defining LFD
in this manner lies in its local nature and hence allowing the study of pointwise
behavior of functions.

5.11 Concluding Comments

The physical and geometric interpretation of fractional differintegration process has
shown some insight of the mathematics, which lies in between complete integration
and complete differentiation. The elaborate block diagrams provide understanding
for computation of these fractional processes. The upcoming field of local fractional
derivatives is just introduced, which is a tool for description of fractal process. The
concepts of minimizing computation effort by digital signal processing fundamen-
tals have given a direction to evolve efficient algorithms for digital control science
applications. The concepts are evolving even today, and future will see much more
insight into the concepts of fractional differintegrations.



Chapter 6
Initialized Differintegrals
and Generalized Calculus

6.1 Introduction

This chapter demonstrates the need for a non-constant initialization for the fractional
calculus. Here basic definitions are formed for the initialized fractional differinte-
grals (differentials and integrals). Here two basic popular definitions of fractional
calculus are considered: Riemann–Liouville (RL) and Grunwald–Letnikov (GL).
Two forms of initialization methods are prevalent, the “terminal initialization” and
the “side initialization.” The issue of initialization has been an essentially neglected
subject in the development of the fractional calculus. Liouville’s choice of lower
limit as −∞ and Riemann’s choice as c were in fact issues related to the same
initialization. Ross and Caputo maintained that to satisfy the composition of the
fractional differintegrals, the integrated function and its integer order derivatives
must be zero, for all times up to and including the start of fractional differintegration.
Ross stated that “The greatest difficulty in Riemann’s theory is the interpretation
of complimentary function. The question of existence of complimentary function
caused much of confusion. Liouvelli was led to error and Riemann became inextri-
cably entangled in his concept of a complimentary function.” The complimentary
function issue is raised here because an initialization function, “which accounts for
effect of history,” of the function, for fractional derivatives and integrals, will appear
in the definitions of this chapter. The form of initialization function is kept similar
to what Riemann has used as complimentary function ψ(x); however, its meaning
and use is different.

Constant initialization of the past is insufficiently general, the widely used con-
temporary equations for the Laplace transform for differintegrals based on that
assumption also lacks generality. Therefore, the generalized form is presented here.
In solution of fractional differential equations with assumed history, the set of ini-
tializing constants representing the values of fractional differintegrals at t = 0, that
are ineffective, will be deliberated in this chapter. Therefore, “non-constant initial-
ization” for generalized concept of integration and differentiation is required.

Also the fundamental fractional order differential equation concept is touched, its
solution is the fundamental time response, whose combination provide solution to
complicated systems. From this transfer function is constructed the fractional pole,
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which is the transfer function of the fundamental fractional differential equation, and
is the fundamental building block for more complicated fractional order systems.

A brief discussion on criteria and properties of generalized calculus as given by
Ross (1974) is given and then simple examples are provided for getting the gist of
fractional calculus, with importance given to initialization.

6.2 Notations of Differintegrals

Mathematicians have used several notations since the birth of fractional calculus.
Several contemporary notations for fractional differentiation and fractional integra-
tion are mentioned in Sect. 1.4. Here, attempt will be made to standardize the nota-
tions as differintegrals. The same operator is used as an integrator when the index
is negative and as a differentiator when the index is positive. Separate notations will
be used to indicate initialized differintegral operator and un-initialized operator.

c Dq
t f (t) represents “initialized” qth order differintegration of f (t) from start

point c to t cdq
t f (t) represents “un-initialized” generalized (or fractional) qth order

differintegral. This is also same as

dq f (t)

[d(t − c)]q ≡ cdq
t f (t),

shifting the origin of function at start of the point from where differintegration starts.
This un-initialized operator can also be short formed as dq f (t). The initialization
function (not a constant) is represented as ψ( f, q, a, c, t), meaning that this is func-
tion of the independent variable t , and is for differintegral operator of order q , the
function born at t = 0 (before that, the function is zero), and differintegral process
starting at c. This initialization function can be short formed as ψ(t), ψ( f, q, t).
Therefore, the expression between initialized differintegral and un-initialized one is

c Dq
t f (t) = cdq

t f (t)+ ψ( f, q, a, c, t)

The notation contains lower limit of the process at the front subscript and the order
of the process at the tail superscript, with independent variable with respect to what
is being differintegrated.

6.3 Requirement of Initialization

In real applications, it is usually the case that the problem to be solved is in some
way isolated from the past. That is, it should not be necessary to retreat to −∞ in
time to start the analysis. Usually, the analyst desires to start the analysis at some
time t = t0, with the knowledge (or assumption) of all values of the function and
its derivatives, specifically f (t0), f (1)(t0), f (2)(t0) . . . .. f (n)(t0), in the case of integer
order calculus. In modern parlance, this collection is called “state” and contains the
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effect of all the past history. One way in which the behavior of the semi-infinite
transmission line can be described is in terms of its input behavior (impedance) at
the open end of the line, that is, as semi-differential equation. However, to practi-
cally use such fractional order differential equation requires additional function of
time. In terms of the physics, this time function relates back to the initial voltage
distribution (distributed initialization) on the semi-infinite lossy line. From Chap. 3,
the input terminal behavior of the same is

V (0, s) = r I (0, s)
√

s
α

+ 1

α
√

s
α

∞
∫

0

e
√

s
α
λV (λ, 0)dλ,

where λ is the dummy variable of integration and s is Laplace variable. The above
expression, in Chap. 3, was obtained by iterated Laplace transformation technique
applied to the basic diffusion equation. However, an attraction of the fractional cal-
culus is the ability to express the behavior of the line (a distributed system or mathe-
matically partial differential equation) as part of the system of distributed equations
using fractional differential equations. Such a fractional differential equation for the
semi-infinite lossy line is

d1/2v(t)

dt1/2
= r
√
αi (t),

assuming v(x, 0) = 0. To initialize this distributed system, a function of time ψ(t)
must be added to account for the integral term of the obtained expression for V (0, s),
written above. With, this the fractional differential equation is

d1/2v(t)

dt1/2
+ ψ(t) = r

√
αi (t).

The focus in this chapter will be on ψ(t). Clearly, one can addend such terms in ad
hoc way to the fractional differential equations which are being solved; the formal
approach to evaluate this function is presented in detail in this chapter. If the ana-
lyst is constrained that the initial function value and all its derivatives are zero, the
range of applicability for this entire class of problems, which includes eventually
all distributed systems, will greatly be limited. Therefore, all fractional ordinary
differintegral equations require initialization terms to be associated with each frac-
tional differintegration term, in order to complete the description. This requirement
is a generalization to the requirement of a set of initialization constants “states,” in
integer order ordinary differential equations. Fundamentally, it is the information to
start the integration process of the differential equations while properly accounting
for the effect of the past.
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6.4 Initialization Fractional Integration
(Riemann–Liouville Approach)

This non-constant; initialization function ψ(t) which shall be elucidated clearly
brings out the past history, also brings to the definition of the fractional integral
the effect of past, namely, effect of fractionally integrating the function from its
birth. This added effect will also be influencing the process after time t , the start of
integration process.

Consider fractional order q integration of the f (t), the first starting at t = a and
second starting at t = c > a

ad−q
t f (t) = 1

Γ(q)

t
∫

a

(t − τ )q−1 f (τ )dτ (6.1)

cd−q
t f (t) = 1

Γ(q)

t
∫

c

(t − τ )q−1 f (τ )dτ (6.2)

Assume that the function was born at t = a, that is, f (t) = 0 for all time less than
equal to a, i.e., f (t) = 0, t ≤ a. Then the time period between a and c may be

considered as history. The assumption is that the integral
(

cd−q
t f (t)

)

is properly

initialized so that it should function as continuation of integral starting at t = a. To
this, therefore, an initialization must be added (to cd−q

t f (t)) so that the fractional
integral starting at t = c should be identical to the result starting at t = a for
t > c. We call what Riemann proposed as complimentary function as initialization
function as ψ .

We have for the above argument the following:
cd−q

t f (t)+ ψ = ad−q
t f (t), t > c. Then, ψ = ad−q

t f (t)− cd−q
t f (t), t > c

Therefore,

ψ = 1

Γ(q)

c
∫

a

(t − τ )q−1 f (τ )dτ ≡ ad−q
c f (t). t > c (6.3)

Here ψ is independent of t , thus is “non-constant.” For integer order integration, we

put q = 1, and see that ψ =
c
∫

a
f (τ )dτ = K , a constant. Because of increased com-

plexity of the initialization relative to the integer order calculus, it is important to
formalize the initialization process. This formalization will include the initialization
term into the definition of these fundamental fractional order calculus operators.

Two types of initialization are considered! (1) the terminal initialization, where
it is assumed that the differintegral operator can be initialized (charged) by effec-
tively differintegrating prior to the start time, t = c and (2) the side initialization,
where fully arbitrary initialization may be applied to the differintegral operator at
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time t = c. These are in contemporary terms and may be stated as terminal charg-
ing and side charging. First, we restrict to RL type of differintegrals for formal-
izing these definitions. This initialization function ψ has the effect of allowing
the function f (t) and its derivatives to start at a value other than zero, namely
a D−q

c f (t)at t=c, and continues to contribute to differintegral response after t = c.
That is, a function of time is added to the uninitialized integral (not just a constant
at t = c).

6.4.1 Terminal Initialization

The standard contemporary definition of fractional integral (RL) is accepted only
if the differintegrand f (t) = 0 for all t ≤ a. The initialization period (or space) is
region a ≤ t ≤ c. The fractional integration takes place for t > c ≥ a. Furthermore,
the fractional integration starts at t = c (i.e. point of initialization).

a D−q
t f (t) ≡ 1

Γ(q)

t
∫

a

(t − τ )q−1 f (τ )dτ, q ≥ 0. and t > a (6.4)

subject to f (t) = 0 for all t ≤ a.
The following definition of fractional integration will apply generally (at any

t > c):

c D−q
t f (t) ≡ 1

Γ(q)

t
∫

c

(t − τ )q−1 f (τ )dτ + ψ( f,−q, a, c, t), (6.5)

q ≥ 0, t > a, c ≥ a, and f (t) = 0 at t ≤ a.
The function ψ( f,−q, a, c, t) is called the initialization function and will be

chosen such that

a D−q
t f (t) = c D−q

t f (t). t > c (6.6)

This condition gives the following:

1

Γ(q)

t
∫

a

(t − τ )q−1 f (τ )dτ = 1

Γ(q)

t
∫

c

(t − τ )q−1 f (τ )dτ+ψ( f,−q, a, c, t). (6.7)

Since,
t
∫

a
g(τ )dτ =

c
∫

a
g(τ )dτ +

t
∫

c
g(τ )dτ .

Therefore, we get

ψ( f,−q, a, c, t) = a D−q
c f (t) = 1

Γ(q)

c
∫

a

(t − τ )q−1 f (τ )dτ (6.8)

t > c and q > 0
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This expression for ψ(t) gives “terminal initialization,” and also brings out in
the definition of fractional integral the effect of the past “history,” namely the effect
of fractionally integrating the f (t) from a to c. This effect is also called terminal
charging.

6.4.2 Side Initialization

When ψ is arbitrary and terminal initialization equation is not valid, then the effect
is called “side initialization,” or side charging. Figure 6.1 demonstrates the concept
initialization as a block diagram, as a signal flow graph.

Example 1. Let function f (t) = t for t > 0 and f (t) = 0 for t < 0. The semi-
integral process with initialization is demonstrated below from the start point of
integration at t = 1. By applying RL formulations for fractional integration, we
obtain the following:

0 D−1/2
t t = 1

Γ(1/2)

t
∫

0

(t − τ )0.5−1τ.dτ = 1

Γ(1/2)

0
∫

t

(t − x)(−dx)

x1/2

= t3/2

3
2 .

1
2 Γ(1/2)

= 4

3
√
π

t3/2

1 D−1/2
t t = 1

Γ(1/2)

0
∫

t−1

(t − x)(−dx)

x1/2
+ ψ(t,−0.5, 0, 1, t)

= 2

3
√
π

[

(t − 1)1/2(2t + 1)
]+ ψ(t,−1/2, 0, 1, t)

t > 1,&,Γ(0.5) = √π
ψ(t,−1/2, 0, 1, t) = 2

3
√
π

[

2t3/2 − (2t + 1)(t − 1)1/2
]

f (t)
adt

−q

cdt
−q

aDt
−q f (t)

cDt
−q f (t)

t > a

t > c

During initialization
(terminal charging)

ψ (f, –q, a, c, t)

f (t)
+

+

During Normal Function 

Fig. 6.1 Signal flow graph for demonstrating initialization of fractional integration
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cd
 

−1/2 (t)

D−1/2 f  (t) & Ψ Ψ(t,–1/2, a, c, t)

cD
−1/2

t

t
0            1                  2               3

(a)          (c)

• ••• • ••••

• • •

••• •• ••

aDt = ad 

−1/2 (t) −1/2

Fig. 6.2 Graphical representation of initialized differintegration for f (t) = t

The nature of initialization function may be noted, which is semi-integration of
the function from 0 to 1, and is function of t . Also as time passes, the func-
tion decays to zero, i.e. “the effect of history is forgotten as future grows!”
lim

t→∞ψ(t,−0.5, 0, 1, t) = 0, at least in this particular example. This is shown

in the Fig. 6.2.

6.5 Initializing Fractional Derivative
(Riemann–Liouvelle Approach)

This is contrary to integer order derivative, which is a point and also a local quantity
(property), where initialization is not called for. However, the definitions of frac-
tional derivatives do contain fractional integration, and thus fractional derivative of a
function is not a point quantity. For fractional derivative the initialization process is
called for. Fractional derivative is a non-local operator and therefore has history. In
solution of differential equations, the initialization constants, which sets the initial
values of the derivatives, really have the effect of accounting for the integration of
the derivative from −∞ to starting time of the integration (of the differential equa-
tion). In the fractional calculus, initialization for derivatives are also required for
handling the effect of “distributed initialization,” in actual system. Distributed ini-
tialization means initial voltage/charge profile in semi-infinite distributed transmis-
sion line (lossy of order 1/2 or lossless of order zero), or in case of initial strain dis-
tribution in elastic semi-infinite bar (order one). Extending generalization concept,
the integer order derivative also calls for initialization in “fractional context.” Thus,
a generalized integer order differentiation is defined as (with initialization) t > c.

c Dm
t f (t) ≡ dm

dtm
f (t)+ ψ( f,m, a, c, t). (6.9)
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Here m is positive integer and ψ( f,m, a, c, t) is an initialization function. Now
bare or un-initialized fractional derivative is defined as:

a Dq
t f (t) ≡ a Dm

t a D−p
t f (t). (6.10)

q ≥ 0, t > a, and f (t) = 0 at t ≤ 0, q = m − p. Meaning, m is the integer
just greater than the fractional order q , by amount p. The function is born at
t = a, and before that, the value is zero. The differentiation starts at t > c. Now
as in fractional integration case, ψ( f,−p, a, a, t) = 0. Further more, consider
h(t) = a D−p

t f (t), i.e., fractional integral of function starting at a with initialized
term ψ(h,m, a, a, t) = 0. The initialized fractional derivative is defined for q ≥ 0
and t > c ≥ a:

c Dq
t f (t) ≡ c Dm

t c D−p
t f (t). (6.11)

6.5.1 Terminal Initialization

The definition and concept is similar to that obtained as terminal initialization for
fractional integrals. The requirement is also the same as for the fractional integrals,
that is

c Dq
t f (t) = a Dq

t f (t) (6.12)

for all t > c ≥ a. Specifically, this requires compatibility of the derivatives starting
at t = a and t = c for all t > c. Therefore, it follows that

c Dm
t c D−p

t f (t) = a Dm
t a D−p

t f (t) (6.13)

Expanding the fractional integrals with initialization we obtain

c Dm
t

⎛

⎝

1

Γ(p)

t
∫

c

(t − τ )p−1 f (τ )dτ + ψ( f,−p, a, c, t)

⎞

⎠

= a Dm
t

⎛

⎝

1

Γ(p)

t
∫

a

(t − τ )p−1 f (τ )dτ + ψ( f,−p, a, a, t)

⎞

⎠ (6.14)

for t > c and ψ( f,−p, a, a, t) = 0. Using the definition of generalized integer
order derivative as defined above we get

dm

dtm

{

1
Γ(p)

t
∫

c
(t − τ )p−1 f (τ )dτ + ψ( f,−p, a, c, t)

}

+ ψ(h1,m, a, c, t)

= dm

dtm
1

Γ(p)

t
∫

a
(t − τ )p−1 f (τ )dτ + ψ(h2,m, a, a, t) (6.15)
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where h1 = c D−p
t f (t) and h2 = a D−p

t f (t); the integer order derivative is initialized
at t = a, thus ψ(h2,m, a, a, t) = 0. After rearranging the integrals we get

ψ(h1,m, a, c, t) = dm

dtm

⎛

⎝

1

Γ(p)

c
∫

a

(t − τ )p−1 f (τ )dτ − ψ( f,−p, a, c, t)

⎞

⎠ .

(6.16)
This is, the expression and “the requirement for the initialization for the derivative
in general.”

Under the condition of terminal charging of the fractional integral

ψ( f,−p, a, c, t) = 1

Γ(p)

c
∫

a

(t − τ )p−1 f (τ )dτ,

and is the initialization function of fractional integration as defined and derived earlier
(6.8). Therefore,ψ(h1,m, a, c, t) = 0, a very important result is seen, that is, “integer
order differentiation cannot be initialized through the terminal (terminal charging).”

6.5.2 Side Initialization

Refer theexpression(6.16)and therequirementfor initializationfor thegeneralderiva-
tive, as obtained in the terminal charging case. If side charging is employed, then
the function ψ( f,−p, a, c, t) is arbitrary. Thus it can be inferred from the require-
ment equation (6.16) that ψ( f,−p, a, c, t) or ψ(h1,m, a, c, t) can be arbitrary,
but not together, but should also satisfy the requirement expression derived above.

The generalized expression for the side charging case can be stated as:

c Dq
t f (t) = c Dm

t

⎧

⎨

⎩

1

Γ(p)

t
∫

c

(t − τ )p−1 f (τ )dτ + ψ( f,−p, a, c, t)

⎫

⎬

⎭

, (t . > c)

(6.17)
m is positive integer> q , with q = m − p

c Dq
t f (t) = dm

dtm

1

Γ(p)

t
∫

c

(t − τ )p−1 f (τ )dτ + dm

dtm
ψ( f,−p, a, c, t)

+ ψ(h,m, a, c, t) (6.18)

where h(t) = a D−p
t f (t). Here, both the initialization terms are arbitrary and thus

may be considered as a single (arbitrary) term, namely

ψ( f, q, a, c, t) ≡ dm

dtm
ψ( f,−p, a, c, t)+ ψ(h,m, a, c, t). (6.19)
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f (t) +                                                 + 

d 
−

 

p

+ h (t) d 
m

+

q = (m − p) t > c

c 
Dt  f (t)q

ψ (   f, –p, a.c.t) ψ (h, m, a, c, t)

Fig. 6.3 Initialization of fractional derivative

In case of terminal charging, the fractional integral initialization part

ψ( f,−p, a, c, t) = 1

Γ(p)

c
∫

a

(t − τ )p−1 f (τ )dτ for t > c (6.20)

Figure 6.3 demonstrates the initialization concept for fractional derivative

6.6 Initializing Fractional Differintegrals
(Grunwald–Letnikov Approach)

Here in this approach too, take the function’s starting time as a, and the differinter-
ation process starts at t = c. An initialization (notation same as for RL approach) is
introduced to account for past history and goes back to t = a, with f (t) = 0 at all
time before t = a. Then differintegration with arbitrary order q is

a Dq
t f (t) = dq f (t)

[d(t − a)]q ≡ lim
N→∞

(

t−a
N

)−q

Γ(−q)

N−1
∑

j=0

Γ( j − q)

Γ( j + 1)
f

(

t − j

{

t − a

N

})

(6.21)
t > a and f (t) = 0 at t ≤ a.

Grunwald–Letnikov (GL) definition for differintegrals will generally apply as:

c Dq
t f (t) ≡ dq f (t)

[d(t − c)]q + ψ( f, q, a, c, t). (6.22)

f (t) = 0 (at t ≤ a) and c ≥ a. Here again, ψ( f, q, a, c, t) is selected such that
c Dq

t f (t) will produce the same result as a Dq
t f (t) for t > c. Expressing as

c Dq
t f (t) = cdq

t f (t)+ ψ( f, q, a, c, t) = a Dq
t f (t) (6.23)

will be self-explanatory, for all t > c, and f (t) = 0 for all t ≤ a. Therefore,
ψ( f, q, a, c, t) = a Dq

t f (t) − cdq
t f (t) or identifying that a Dq

t f (t) → adq
t f (t),
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i.e., un-initialized differintegral, as per standard notation, we write the same as:
ψ( f, q, a, c, t) = adq

t f (t) − cdq
t f (t). In this, substituting the GL series, we obtain

the following:

ψ( f, q, a, c, t) = lim
N1→∞

⎧

⎪
⎨

⎪
⎩

(

t−a
N1

)−q

Γ(−q)

N1−1
∑

j=0

Γ( j − q)

Γ( j + 1)
f

(

t − j
t − a

N1

)

⎫

⎪
⎬

⎪
⎭

− lim
N2→∞

⎧

⎪
⎨

⎪
⎩

(

t−c
N2

)−q

Γ(−q)

N2−1
∑

j=0

Γ( j − q)

Γ( j + 1)
f

(

t − j
t − c

N2

)

⎫

⎪
⎬

⎪
⎭

(6.24)

For all t > c and f (t) = 0 for t < a.
After considerable manipulations, by adjusting delay element as equal, that

is N2 = ((t − c)/(t − a))N1, and adjusting with ΔT = (t − a)/N1 and
N3 = ((c − a)/(t − a))N1

ψ( f, q, a, c, t) = lim
N1→∞

{

ΔT−q

Γ(−q)

N3−1
∑

j=0

Γ(N1−1−q− j )
Γ(N1− j )

f (t − [N1 − 1− j] ΔT )

}

(6.25)

6.7 Properties and Criteria for Generalized Differintegrals

One of the fundamental problems of fractional calculus is the requirement that the
function and its derivatives be identically equal to zero at the start of initialization
(i.e. start of differintegration process) at time t = c. This needed to assure compo-
sition or index law holds implying that c Dv

t c Du
t f (t) = c Du

t c Dv
t f (t) = c Du+v

t f (t).
It is difficult in engineering sciences to always require that the functions and its
derivatives be at zero (rest) at initialization instants. This fundamentally implies
that “there can be no initialization or composition is lost”. Thus, it is not in general
true that f − d−Q

dt−Q
d Q f
dt Q = 0.

Therefore, while solving a fractional differential equation of the
form d Q f

dt Q = F , additional terms must be added, like

f − d−Q

dt−Q

d Q f

dt Q
= C1t Q−1 + C2t Q−2 + . . .Cmt Q−m,

to achieve the most general solution:

f = d−Q F

dt−Q
+ C1t Q−1 + C2t Q−2 + . . .+ Cmt Q−m .

These issues described says that the index law or the composition law is inadequate.
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Minimal set criteria have been thought fit to be applied for fractional (or gener-
alized) calculus. They are listed as follows and are called Ross (1974) criteria:

i. If f (z) is the analytic function of the complex variable z, the differintegral
c Dv

z f (z) is the analytic function of z and v.
ii. The operator c Dv

x f (x) must produce the same result of differentiation, when v
is a positive integer.

iii. If v is a negative integer (say v = −n), then c D−n
x f (x) must produce the same

result of n-fold integration of function f (x), and c D−n
x f (x) must vanish along

with f (1), f (2), . . . , f (n−1), all the (n − 1) derivatives at x = c.
iv. “Zero” operation leaves the function unchanged.

c D0
x f (x) = f (x)

v. Linearity of the fractional (generalized) differintegral operator:

c D−q
x [a f (x)+ bg(x)] = ac D−q

x f (x)+ bc D−q
x g(x)

vi. The law of exponents for arbitrary order holds

c D−u
x c D−vx f (x) = c D−u−v

x f (x) = c D−v−u
x f (x)

The above notations are used by Ross.
It should be noted that there is a minor conflict contained in these criteria. Also

a clear notation explanation should be given as c Dq
x f (x) in the above criteria is an

un-initialized differintegral. It is correct as the function itself starts at c, and before
that, the same is zero. So at t = c, c Dq

x f (x) = cdq
x f (x). The criterias (ii) and (iii)

call for backward compatibility and the criteria (vi) calls for index law to be holding
vis-à-vis integer order calculus.

The fundamental theorem of integer order calculus violates this “zero law” as:
d−mdm f (x) 
= d0 f (x) = f (x), for all f (x) and for all m (integer). The fun-

damental theorem states that
t
∫

c
f ′(t) = f (t) − f (c), and can be thus observed

that the reversal of differentiation and integration differs from f (t) by f (c), that
is by initialization (constant in integer order calculus). This failure in backward
compatibility and index law is handled in the integer order calculus by constant
of integration and by complimentary function for solution of differential equa-
tions (in ad hoc manner). The law of exponents (index law) is demonstrated in
Fig. 6.4.

The discussion in all the differintegrations is limited to the real domain. Under
the condition of terminal charging of the uth and vth differintegrations,

c Du
t c Dv

t f (t) = c Dv
t c Du

t f (t) = c Du+v
t f (t) for t > 0
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During normal functioning

During initialization
(terminal charging)

f (t) h(t)
+

adt
−v

adt
−u

t > a
f (t)a 

Dt
−u

a 
Dt

−v

+      +                                         +
f (t) h(t)                           + t > ccdt

−v cdt
−u f (t)c 

Dt
−u

c 
Dt

−v

ψ ( h,–v,a,c,t) ψ ( h,–u,a,c,t)

Fig. 6.4 Demonstration of index law

under the following conditions:

a. u < 0, v < 0 for continuous f (t)

b. u > 0, v > 0. For f (t) is m times differentiable. a Dm
t f (t) exists and is non-zero

continuous function of t for t > a, where m is an integer larger than integer part
[u] or [v].

c. u < 0, v > 0 same as (b)

6.7.1 Terminal Charging

Under the conditions of terminal charging, the above properties and criterias
holds; this provides credibility to the initialized fractional (generalized) calcu-
lus. Some conditions are however imposed, say on the linearity of fractional
integrals. c D−vt (bf (t) + kg(t)) = bc D−vt f (t) + kc D−vt g(t), (t > c) holds only
if ψ(bf + kg,−v, a, c, t) = bψ( f,−v, a, c, t)+ kψ(g,−v, a, c, t).

Relative to the criteria of backward compatibility with the integer order calculus,
the addition of the initialized function is clearly a generalization relative to inte-
ger order calculus. In a strict sense ψ(t) 
= 0 violates the criteria (ii); however,
we are looking for generalization of integer order calculus, and it is clear that this
generalization (i.e. addition of initialization function) will be very useful in many
applications.

Relative to the criteria of zero-order property holds for terminal charging.
Relative to linearity holds for the terminal charging subject to the above said rule.

Relative to composition rule, the above (a) (b) and (c) should follow.
It is noted that f (k)(c) = 0 for all k, no longer exists. This constraint has effec-

tively been contained (shifted to) the requirement f (t) = 0 for all t ≤ a. This allows
initialization of fractional differential equations.

In summary terminal charging case is backward compatible with integer order
calculus and satisfies the applicable criteria established by Ross.
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6.7.2 Side Charging

The case for side charging is less definitive. Criteria for backward compatibility
is the same as the terminal charging case. Relative to zero property the condition

ψ( f,−p, a, c, t) = 1
Γ(p)

c
∫

a
(t − τ )p−1 f (τ )dτ = 0 = ψ(h,m, a, c, t) is required for

side charging sinceψ is arbitrary. When these conditions are not met, the zero-order
operation on f (t) will return f (t) + g(t), i.e. the original function with extra time
function ((g(t)), the effect of initialization. Relative to linearity, the side charging
demands additional requirements about initialization.

These are not so much of an issue as it appears for practical applications. In
the solution of fractional differential equations, ψ(t) will be chosen in the much the
same manner as initialization are currently chosen for ordinary differential equations
in integer order. This will imply the nature of f (t) from a to c. The new aspect is that
to achieve a particular initialization for a given composition now requires attention
to the initialization of the composing elements.

6.8 The Fundamental Fractional Order Differential Equation

The problem to be addressed in this section is the solution of the fundamen-
tal linear fractional order differential equation (6.26). This system is considered
to be fundamental because its solution is the fundamental time response, whose
combination provides the solution of more complicated systems, analogous to the
exponential function for the integer order differential equation. The fundamental
equation is

c Dq
t x(t) ≡ cdq

t x(t)+ ψ(x, q, a, c, t) = −ax(t)+ bu(t), q > 0 (6.26)

where the left side should be interpreted to be the qth derivative of x(t), start-
ing at time c and continuing until time t . Here it will be assumed for clarity that
the problem starts at c = 0. We also assume temporarily in this section that
the initialization function ψ(x, q, a, c, t) = 0. Thus we will be concerned only
with the forced response for time being. Rewriting (6.26) with these assumptions,
we get

0dq
t x(t) = −ax(t)+ bu(t), q > 0 (6.27)

We will use Laplace transform techniques to simplify the solution of this differential
equation. In order to do so for this problem, the Laplace transform of the fractional
differential is required (given in detail in Chap. 7), ignoring the initialization terms
(6.27) can be Laplace transformed as:

sq X(s) = −a X(s)+ bU (s) (6.28)
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This equation can be rearranged to obtain the system transfer function:

X(s)

U (s)
= G(s) = b

sq + a
(6.29)

This is the transfer function of the fundamental linear fractional order differential
equation. As such, it contains the fundamental “fractional pole” and is the funda-
mental building block for more complicated fractional order systems. As the con-
stant b in (6.29) is a constant multiplier, it can be assumed without loss of generality
to be unity. Typically, transfer functions are used to study various properties of a
particular system. Specifically, they can be inverse Laplace transformed to obtain the
system impulse response, which can then be used with convolution approaches to
the problem. Generally, if U (s) is given, then the product G(s)U (s) can be expanded
using partial fractions, and forced response obtained by inverse transforming each
separately. To accomplish these tasks, it is necessary to obtain the inverse of (6.29),
which is the impulse response, or generalized exponential function, of the funda-
mental fractional order system.

6.8.1 The Generalized Impulse Response Function

Although the Laplace transform of (6.29) is not contained in standard Laplace trans-
form table, the following transform pair is available:

1

sq
= L

{

tq−1

Γ(q)

}

, q > 0 (6.30)

If we expand the right-hand side of (6.29) in describing powers of s, we can
then inverse transform the series term by term and obtain the generalized impulse
response. Then expanding (6.29) about s = ∞, we get

G(s) = 1

sq + a
= 1

sq
− a

s2q
+ a2

s3q
− . . . = 1

sq

∞
∑

n=0

(−a)n

snq
(6.31)

This series can be inverse transformed term by term using (6.30). The result is

L−1 {G(s)} = L−1

{

1

sq
− a

s2q
+ a2

s3q
− . . .

}

= tq−1

Γ(q)
− at2q−1

Γ(2q)
+ a2t3q−1

Γ(3q)
− . . .
(6.32)

The right side of (6.32) can now be collected into summation and used as definition
of the generalized impulse response function:

Fq [−a, t] ≡ tq−1
∞
∑

n=0

(−a)ntnq

Γ ({n + 1} q)
, q > 0 (6.33)
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We thus have important Laplace identity as L
{

Fq [a, t]
} ↔ 1

sq−a , q > 0. Also the
F function is generalization of exponential function for q = 1,

F1 [−a, t] =
∞
∑

n=0

(−at)n

Γ(n + 1)
= e−at

This generalization is the basis for the solution of most linear fractional order dif-
ferential equations.

Here we have established the F function as the impulse response of the funda-
mental linear differential equations. This function is important because it will allow
the creation of concise theory for fractional order systems, which is a generalization
of that of integer order systems, and where the F function generalizes and replaces
the usual exponential function.

Several other variants of this F function is possible for the solution of the fun-
damental equation (6.27), like Miller–Ross function, R function, and G function,
listed in Chap. 2.

From (6.32) and (6.33), we obtained impulse response as:

g(t) = L−1 {G(s)} = tq−1
∞
∑

n=0

(−a)ntnq

Γ(nq + q)
≡ Fq [−a, t] , q > 0 (6.34)

The function Fq [a, t] is closely related to the Mittag-Leffler function Eq [atq],
where one-parameter Mittag-Leffler function in series form is defined as:

Eq [x] ≡
∞
∑

n=0

xn

Γ(nq + 1)
, q > 0 (6.35)

Letting x = −atq , this becomes

Eq
[−atq

] ≡
∞
∑

n=0

(−a)ntnq

Γ(nq + 1)
, q > 0 (6.36)

which is similar to Fq [−a, t] expressed in (6.34), but not same as (6.34).
The Laplace transform of this Mittag-Leffler function (6.36) can also be obtained

via term by term transform of the series expansion as:

L
{

Eq [−atq]
} = L

{

1
Γ(1)
− atq

Γ(1+q)
+ a2t2q

Γ(1+2q)
+ . . .

}

= 1
s − a

sq+1 + a2

s2q+1 + . . . (6.37)
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or compactly:

L
{

Eq
[−atq

]} = 1

s

[

1− 1

sq
+ a2

s2q
+ . . .

]

= 1

s

∞
∑

n=0

(−a

sq

)n

= 1

s

∞
∑

n=0

(−a)n

snq

(6.38)

It should be noted that the summation expression (6.38) is similar to (6.31). Using
(6.31), (6.38) can be rewritten as:

L
{

Eq
[−atq

]} = 1

s

[

sq

sq + a

]

(6.39)

or equivalently:

L
{

Eq
[−atq

]} = 1

s

[

sq L
{

Fq [−a, t]
}]

(6.40)

Thus a general result can be expressed as:

L
{

Eq
[±atq

]} = sq−1

sq ∓ a
, q > 0 (6.41)

From (6.40), the relation between Mittag-Leffler (Eq) function and Robotnov–
Hartley function (Fq) is

0dq−1
t Fq [a, t] = Eq

[

atq
]

(6.42)

This demonstration was to show a method of obtaining solution of the “fundamental
fractional order (linear) differential equation” that is (6.27) by use of Robotnov–
Hartley function. This F function was utilized by Robotnov to study hereditary inte-
grals in solid mechanics. Solution to (6.27) may be obtained in terms of Miller–Ross
function and its Laplace transform. Miller–Ross function is the fractional derivative
of the exponential function defined as

Et (v, a) ≡ 0d−vt exp(at), whose Laplace transform is L {Et (v, a)} = s−v
s−a .

Also recent developments to study diffusion and fractional kinetic equations use
more complicated Fox functions in solving of fractional order differential equations.

Extending this developed technique, we obtain the solution of (6.27) for a unit
step input excitation. This can be obtained via Laplace transforms by transforming
the input function u(t), its Laplace is 1/s, which must be multiplied by the transfer
function G(s), (6.29), where b = 1 is taken. We get

X(s) = 1

s

[

1

sq + a

]

(6.43)

Manipulating (6.43), we obtain
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X(s) = 1/a

s

[

a

sq + a

]

= 1/a

s

[

1− sq

sq + a

]

= 1/a

s
− sq/a

s(sq + a)
(6.44)

Using expression (6.40), (6.44) is inverse Laplace transformed; the result is the step
response of the system:

x(t) = L−1

{

1

s(sq + a)

}

= 1

a

(

1− Eq
[−atq

]) = 1

a

(

h(t)− Eq
[−atq

])

(6.45)

Heaviside step is h(t) =
{

1 t ≥ 0
0 t < 0

Taking integer derivative of (6.45) gives Fq [−a, t], the impulse response:

Fq [−a, t] = 1

a

d

dt

(

h(t)− Eq
[−atq

])

(6.46)

Referring to (6.40) and multiplying the Laplace transforms, thereby s−q gives

s−q L
{

Eq
[−atq

]} = s−1 L
{

Fq [−a, t]
} = 1

s(sq + a)
,

which is (6.43). Inverse transforming this equation using expression (6.45) shows
that the step response of (6.27) with b = 1 is also the qth fractional integral of the
Mittag-Leffler function, that is:

x(t) = L−1

{

1

s(sq + a)

}

= 1

a

[

h(t)− Eq(−atq)
] = 0d−q

t Eq
[−atq

]

(6.47)

Few more interesting Laplace pairs can be obtained by taking the qth derivative of
the F function. Taking the un-initialized fractional derivative (0dq

t ), and in Laplace
domain multiplying by sq gives

L−1

{

sq

sq + a

}

= 0dq
t Fq [−a, t] (6.48)

This expression (6.48) is also the integer derivative of the Mittag-Leffler function:

L−1

{

sq

sq + a

}

= 0dq
t Fq [−a, t] = 0dq

t Eq
[−atq

]

(6.49)

The expression (6.49) can also be rewritten as:

L−1

{

sq

sq + a

}

= L−1

{

1− a

sq + a

}

= δ(t)− a Fq [−a, t] (6.50)
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Observing the expressions (6.48) and (6.50), we can write the following:

0dq
t Fq [−a, t] = δ(t)− a Fq [−a, t] (6.51)

This Fq [a.t] function is generalization of the exponential function of the integer
order calculus where it demonstrates the “eigenfunction property”; i.e., returning
the same function upon the qth fractional differentiation. Also (6.51) shows that
x(t) = Fq [−a, t], Robotnov–Hartley function is impulse response of the funda-
mental fractional order differential equation given by (6.27), for u(t) = δ(t) and
b = 1.

6.9 Concluding Comments

Strong motivation exists for the study and development of the fractional calculus.
This may be readily verified and validated by a large number of applications dis-
cussed in the preceding chapters, where need for fractional calculus and initial-
ization in particular is pointed. Fractional integration and fractional differentiation
processes require the use of non-constant initialization function. This initialization
function is the behavior of the function before the process of differintegration is
taken up, and makes up the process continuous in future. The initialization function
is history or memory associated with the process of differintegration of the function
since its birth. This history or memory fades away as time passes by and appears as
output of fractional differintegrator as an added function. The solution of fundamen-
tal fractional differential equation contains fractional pole in its transfer function and
property of which is important in system analysis. The initialized differintegration
process is the generalization of the total calculus theory, for fractional order systems
or integer order systems. The unifying concepts and notation of fractional calculus
provide a significant benefit that greatly simplifies the solution of certain differen-
tial equations (distributed systems). Perhaps the strongest motivation to develop the
fractional calculus is the belief that a wide variety of physical problems that have
resisted compact (and first principles) description when using integer order calculus
will yield to the methods of fractional calculus, otherwise major recourse was the
probabilistic methods.



Chapter 7
Generalized Laplace Transform for Fractional
Differintegrals

7.1 Introduction

Differential equations of fractional order appear more and more frequently in vari-
ous research areas of science and engineering. An effective method for solving such
equations is needed. The method of Laplace transforms technique gives almost a
unified approach to solve the fractional differential equations. Also generalization
of the same in view of initial conditions appropriately put (terminal/side charging)
gives unified generalized approach. In this chapter, scalar initialization and vector
initialization problem is taken to describe the approaches developed for initialization
function. These problems give insight into fractional “state” variable concepts and
general system description of fractional order systems, and controls. For fractional
order control system, stability analysis transformed Laplace sq → w plane (wedge)
is introduced. The pole placement and its properties for control system stability
for fractional order systems are carried on in this w-plane. The realization of frac-
tional Laplace operator by rational function approximation is also introduced in this
chapter.

7.2 Recalling Laplace Transform Fundamentals

Let us recall some basic facts about Laplace transforms, developed for classical
integer order calculus. The function F(s) of complex variable (frequency) s is
defined by:

F(s) = L { f (t)} =
∞
∫

0

e−st f (t)dt

this is called Laplace transform of the function f (t), which is called the original.
For Laplace transform to exist, f (t) must be of an exponential order α. In other
words, the function f (t) must not grow faster than a certain exponential function
when t tends to infinity. The original f (t) can be restored from Laplace transform
F(s) with the help of inverse transform:

S. Das, Functional Fractional Calculus for System Identification and Controls. 129
C© Springer 2008
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f (t) = L−1 {F(s)} = 1

j2π

γ+ j∞
∫

γ− j∞
est F(s)ds

where γ = 0 for all singularities of F(s) in the left half of s-plane (LHP) i.e. all
F(s) poles at LHP.

Laplace transform of
t
∫

b
f (t)dt is given by

L

⎧

⎨

⎩

t
∫

b

f (t)dt

⎫

⎬

⎭

= 1

s
F(s)+ 1

s

0
∫

b

f (t)dt .

Constructing this for initialized case, the generalized integer order Laplace transfor-
mation for integration operation can be expressed as:

L
{

b D−1
t f (t)

} = L
{

bd−1
t f (t)+ ψ( f,−1, a, b, t)

}

= L

⎧

⎨

⎩

t
∫

b

f (t)+ ψ( f,−1, a, b, t)

⎫

⎬

⎭

L
{

b D−1
t f (t)

} = 1

s
F(s)+ 1

s

0
∫

b

f (t)dt + L {ψ( f,−1, a, b, t)}.

However, in the most general case, theψ is selected arbitrarily, if chosen as constant
K , then since L {K } = K/s, it is clear that this term contains initialization effect of
the second term on the RHS of the above Laplace expression for initialized integer
order integration. Hence, it is not necessary to include such terms that redundantly
bring in the effect of initialization from the integer order calculus. Therefore:

L
{

b D−1
t f (t)

} = 1

s
F(s)+ L {ψ( f,−1, a, b, t)}

For multiple integer order integrals, the Laplace transform derivation is as follows:

L {g(t)} = L

{

t
∫

b

t1∫

b

t2∫

b
. . . . . .

tn−1
∫

b
f (tn)dtndtn−1 . . . .dt2dt1

}

; this is to be evaluated.

For convenience, write g
(

t j
) =

t j
∫

b
g
(

t j+1
)

dt j+1, for j = 1, 2, . . . n − 2, and

g (tn−1) =
tn−1
∫

b
f (tn)dtn . Then starting from out side, we have

L {g(t)} = L

⎧

⎨

⎩

t
∫

b

g (t1) dt1

⎫

⎬

⎭

= 1

s
L {g (t1)} + 1

s

0
∫

b

g (t1) dt1 = 1

s
L {g(t1)} + c1

s
,
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where constant c1 =
0
∫

b
g(t1)dt1. Going one level inside, i.e. replacing the g(t1) with

t1∫

b
g(t2)dt2, we get

L {g(t)} = 1

s

⎡

⎣L

⎧

⎨

⎩

t1∫

b

g(t2)dt2

⎫

⎬

⎭

⎤

⎦+ c1

s
= 1

s

[

1

s
L {g(t2)} + c2

s

]

+ c1

s

= 1

s2
L {g(t2)} + c2

s2
+ c1

s

Repeating this n times, we get the result as:

L

⎧

⎨

⎩

t
∫

b

t1∫

b

t2∫

b

. . . . . .

tn−1
∫

b

f (tn)dtndtn−1 . . . dt2dt1

⎫

⎬

⎭

= 1

sn
F(s)+

n
∑

i=1

ci
si , n = 1, 2, 3, . . . ..,

where coefficients ci is given as ci =
0
∫

b
g(ti )dti .

Consider the integer order derivative and its Laplace transform as
L
{

d
dt f (t)

} = L
{

f 1(t)
} = s F(s)− f (0+). For the initialized calculus case, the for-

mulation is L
{

0 D1
t f (t)

} = L
{

d f (t)
dt + ψ( f, 1, a, 0, t)

}

. Substituting the first defini-

tion into the second one we get L
{

0 D1
t f (t)

} = s F(s)− f (0+)+L {ψ( f, 1, a, 0, t)}.
Again in the most general case, the ψ is selected arbitrarily. If it is chosen as
value of the function f (t) at t = 0+, represented by Dirac delta function as
ψ = − f (t)δ(t − 0+), then L {ψ} = L

{− f (t)δ(t − 0+)
} = − f (0+). This

term then contains the initialization effect brought in by the integer order calculus
Laplace expansion. It is again not necessary to include the redundant term.

The notation f (0+) may be changed to f (0) with the understanding that t = 0
will be actually t = 0+. For repeated derivative, the Laplace transform gives

L
{

f (n)(t)
} = sn F(s)− sn−1 f (0)− sn−2 f (1)(0)− . . . ..− f (n−1)(0)

7.3 Laplace Transform of Fractional Integrals

Consider starting point of integration as c = 0, for simplicity. The Laplace transform
of the initialized fractional integral looks like

L
{

0 D−q
t f (t)

}

=
∞
∫

0

e−st

⎛

⎝

t
∫

0

(t − τ )q−1

Γ(q)
f (τ )dτ + ψ( f,−q, a, 0, t)

⎞

⎠dt (7.1)
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q > 0, t > 0. Apply convolution for Laplace transforms, i.e.,

h(t)∗g(t) =
t
∫

0

h(τ )g(t − τ )dτ ↔ H (s)G(s).

For the above fractional integral, take h(t) = f (t).&.g(t) = tq−1

Γ(q)
↔ 1

sq .

The Laplace of the fractional integral therefore is F(s)G(s) = 1
sq L { f (t)}, q > 0.

This gives the result as:

L
{

0 D−q
t f (t)

}

= 1

sq
L { f (t)} + L {ψ( f,−q, a, 0, t)} , q > 0 (7.2)

Here the observation is that the initialization function ψ( f,−q, a, 0, t) may be
thought to have equivalent (compound) effect of initialization to create 0 D−q

t f (t).
For fractional case, 0 D−q

t f (t) can be composed in infinite ways as opposed to inte-
ger order calculus, where only, integer order combinations are possible for compo-
sition, as indicated below for integer order n:

L
{

f (n)(t)
} = sn F(s) − sn−1 f (0) − sn−2 f (1)(0) . . . + f (n−1)(0). This implies

that f (n) is decomposed into n separate differentiations of unity order; conversely,
f (n) is composed of n separate discrete differentiation. But for fractional order, this
composition is not discrete but can thus be decomposed in infinite ways. This is
described next.

7.3.1 Decomposition of Fractional Integral in Integer Order

For generalized integration (with initialization), the composition law holds. The
decomposition of the following Laplace of initialization function is demonstrated
by integration by parts, for q > 1. The initialization function ψ( f,−q, a, 0, t) is
qth order integration of f (t) from a to 0 and is function of t , defined as in the
Chap. 6 of initialized differintegrals.

ψ( f,−q, a, 0, t) = 1

Γ(q)

0
∫

a

(t − τ )q−1 f (τ )dτ q > 1 (7.3)

L {ψ( f,−q, a, 0, t)} =
∞
∫

0

e−stψ( f,−q, a, 0, t)dt (7.4)

Take u = ψ( f,−q, a, 0, t), dv = e−st dt , then
du = d

dtψ( f,−q, a, 0, t) = ψ (1), and v = e−st

−s yields
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L {ψ( f,−q, a, 0, t)} =
[

e−st

−s
ψ( f,−q, a, 0, t)

]∞

0

+1

s

∞
∫

0

e−stψ (1)( f,−q, a, 0, t)dt (7.5)

L {ψ( f,−q, a, 0, t)} = 0+ 1

s
ψ( f,−q, a, 0, t)at t=0 + 1

s
L
{

ψ (1)( f,−q, a, 0, t)
}

(7.6)

Repeating the same another time gives

L {ψ( f,−q, a, 0, t)} = 1

s
ψ( f,−q, a, 0, t)at t=0 + 1

s

[

1

s
ψ (1)( f,−q, a, 0, t)at t=o

+1

s
L
{

ψ (2)( f,−q, a, 0, t)
}

]

(7.7)

Now repeating the process a total number of n times, where n is integer, such that
n + 1 > q > n gives the expression for the equivalent initialization function. For
q = 2.3 > 1, the n = 2.

L {ψ( f,−q, a, 0, t)} = 1

sn
L
{

ψ (n)( f,−q, a, 0, t)
}

+
n
∑

j=1

1

s j
ψ ( j−1)( f,−q, a, 0, t)at t=0 (7.8)

Putting this the Laplace transform of the fractional integral yields

L
{

0 D−q
t f (t)

}

= 1
sq L { f (t)} + 1

sn L
{

ψ (n)( f,−q, a, 0, t)
}

+
n
∑

j=1

1
s j ψ

( j−1)( f,−q, a, 0, t)at t=0. (7.9)

The expression states that the qth differintegral is composed (or can be decomposed)
of n order 1 integer integrations and a fractional integration of order q − n, refer
Fig. 7.1. For q = 2.3, meaning the composition have n = 2, full integer order
integration, and q − n = 0.3, order fractional integration.

Further more, the order 1 integrations are each initialized by a constant
ψ ( j−1)

at t=0. Following, we describe for sake of comparison the Laplace transform
for multiple integer order integrals. The compatibility is observed for (7.9) and
(7.10), for q = n = 1, 2, 3 . . . and properly choosing ψ .
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ψ(n) (f,−q,a,c,t)

ψ ψ ψ ψ

ψ(n–1) ψ(n–2) ψ(1) ψ(0)

t = 0 t = 0 t = 0 t = 0 t = 0

+

+ + +

+ + + + +

f (t) 0Dt
−q f (t)

n - order 1 integration

{ })0(
)(nL { })0(

1−nL { })0(
)1(L { })0(

)0(L

+ + + + + +

L{ f (t) } L{0D−q f (t)}

n - order 1 - integration

Decomposition for q > 1

sq−n

1
s
1

s
1

s
1

ψ{ })0(
)(nL ψ{ }(n)= L (f,−q,a,c,t)t = 0

d 
n−q d 

−1 d 
−1 d 

−1

Fig. 7.1 Block diagram representing integer order decomposition of fractional integral (time and
frequency domain)

L {g(t)} = L
{

t
b ∫ t1

b ∫ t2
b ∫ . . . . . . .tn−1

b ∫ f (tn)dtndtn−1 . . . . . . dt2dt1
}

= 1

sn
L { f (t)} + c1

s
+ c2

s2
+ . . .+ cn

sn

= 1

sn
L { f (t)} +

n
∑

j=1

c j

s j
(7.10)

The coefficients are c j =
0
∫

b
g(t j )dt j . In Fig. 7.1, the integer order integrations could

just be replaced by general (fractional) integrations, each also of order 1. Each of
these then will allow non-constant initialization function. Figure 7.2 is 0 D−q

t f (t)
decomposed into n generalized order 1 integrations and a fractional integration of
order −q + n, where n is the greatest integer less than q . The breakup expression
for Fig. 7.2 is

0 D−q
t f (t) = xn(t) = ψ1 + 0d−1

t xn−1(t) = ψ1 + 0d−1
t (ψ2 + 0d−1

t xn−2(t))

= ψ1+ 0d−1
t ψ2+ 0d−2

t (ψ3+ 0d−1
t xn−3(t))

=ψ1+ 0d−1
t ψ2+ 0d−2

t ψ3+ 0d−3
t xn−3(t) (7.11)
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ψ ( f,n,–q,a,0,t) ψn (x1,–1,a,0,t) ψ (x2) ψ2 (xn–2) ψ1 (xn–1,–1,a,0,t)

f (t) x1                 +    +

+ + + ++++

+ x2
xn = 0 

Dt
−q f (t)

n - generalized order – 1 integration

d 
n−q d 

−1 d 
−1 d 

−1

Fig. 7.2 Block diagram of integer order decomposition of fractional integration of order q, for
t > c = 0

Observing the fact that x1(t) = 0 D−q+n
t f (t) = ψ( f,−q + n, a, 0, t)+ 0d−q+n

t f (t),
repeating the above iteration n times, we have the following:

0 D−q
t f (t) = 0d−q

t f (t)+ 0d−n
t ψ( f,−q + n, a, 0, t)

+
n
∑

j=1

0d−( j−1)
t ψ j (x j,−1, a, 0, t) (7.12)

as the mathematical representation of Fig. 7.2. Taking the Laplace transforms, we
get

L
{

0 D−q
t f (t)

}

= 1

sq
L { f (t)} + 1

sn
L {ψ( f,−q + n, a, 0, t)}

+
n
∑

j=1

1

s( j−1)
L
{

ψ j (x j,−1, a, 0, t)
}

(7.13)

This expression is generalization of the expressions of Fig. 7.1, where the initializa-
tion effect was done by constants, values of ψ (n)(t)at t=0. In this case, the initializa-
tion effect is carried out by functions of time instead (i.e. ψn). Here for q = 2.3,
the integer n = 2, meaning the composition with three integer order integration and
one fractional order−q + n = −0.3 integration.

7.3.2 Decomposition of Fractional Order Integral
in Fractional Order

Here the decomposition of 0 D−q
t f (t) is not limited to only integer order integral

elements. Refer Fig. 7.3, where this decomposition is indicated. The mathematics is
explained below (for convenience subscript is dropped i.e. 0 D−q

t → D−q )

0 D−q
t f (t) = xn+1(t) = D−qn D−qn−1 . . . D−q2 D−q1 x1(t) t > 0.&.q j > 0 (7.14)

where q =
n
∑

i=1
qi
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ψ1(t) ψ2(t) ψn–1(t) ψn(t)

+

+

+

+

+ + +

f (t) x2 x3 xn xn+1

= x1

xn+1 = 0Dt
−Σqi f (t)

n: fractional integration
t > c = 0

d 

−q1

D 

−q1 D 

−q2 D 

−q3 D 

−qn

d 

−q2 d 

−q3 d 

−qη

Fig. 7.3 Decomposition of fractional order integral in fractional order

Then starting from inside, L {x2(t)} = L
{

0dq1
t x1(t)

} + L {ψ1(x1,−q1, a, 0, t)}
can be written with simplified symbols as

L {x2} = L
{

d−q1 x1
}+ ψ1(s) = s−q1 L {x1} + ψ1(s)

L {x3}=s−q2
{

s−q1 L {x1} + ψ1(s)
}+ ψ2(s)=s−q2−q1 L {x1} + s−q1ψ1(s)+ ψ2(s)

L {x4} = s−q3−q2−q1 L {x1} + s−q3−q2ψ1(s)+ s−q3ψ2(s)+ ψ3(s).

Repeating this process till xn+1 and defining Ba as Ba =
n
∑

i=a
qi , we can have the

general form of decomposition expression as, where 1 ≤ a ≤ n,

L {xn+1} = s−B1 L {x1}+s−B2ψ1(s)+s−B3ψ2(s)+. . .+s−Bnψn−1(s)+ψn(s) (7.15)

Summarizing this in compact form we get

L
{

0 D−q
t f (t)

}

= s−q L { f (t)} + ψn(s)+
n−1
∑

j=1

s−B j+1ψ j (s)

Ba =
n
∑

i=a

qi 1 ≤ a ≤ n (7.16)

The effective initialization here in this case is L
{

ψe f f
} = ψn(s)+

n−1
∑

j=1
s−B j+1ψ j (s)

7.4 Laplace Transformation of Fractional Derivatives

The derivative starting point is taken as c = 0 for simplicity, and the func-
tion f (t) is born at a, before t = a the function is zero. Here, we will find

L
{

0 Du
t f (t)

} = L
{

0 Dm
t 0 D−p

t f (t)
}

with u > 0, and m is the least integer greater
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than u, such that u = m − p. For u = 2.3, the integer m = 3. In the case of
integration decomposition, the integer n is chosen as the greatest integer less than
the fractional order of integration q . Using the definitions and expanding we get

L
{

0 Du
t f (t)

} = L
{

0 Dm
t 0 D−p

t f (t)
}

= L

⎧

⎨

⎩

dm

dtm

⎛

⎝

t
∫

0

(t − τ )p−1

Γ(p)
f (τ )dτ

⎞

⎠

⎫

⎬

⎭

+L

{

dm

dtm
ψ( f,−p, a, 0, t)

}

+ L {ψ(h,m, a, 0, t)} (7.17)

where h(t) = 0d−p
t f (t). Defining equivalent initialization function as

ψeq ( f, u, a, 0, t):

ψeq =
{

dm

dtm
ψeq ( f,−p, a, 0, t)

}

+ {ψ(h,m, a, 0, t)} (7.18)

Now consider the first term of the expanded expression i.e.

L

{

dm

dtm

(

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ

)}

=
∞
∫

0
e−st d

dt

(

dm−1

dtm−1

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ

)

dt (7.19)

Apply integration by parts by selecting u = e−st and

dv = d

dt

⎛

⎝

dm−1

dtm−1

t
∫

0

(t − τ )p−1

Γ(p)
f (τ )dτ

⎞

⎠ dt

Therefore, du = −se−st dt and v = dm−1

dtm−1

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ yields

= e−st dm−1

dtm−1

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ ]∞0 + s

∞
∫

0
e−st d

dt

(

dm−2

dtm−2

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ

)

dt (7.20)

The first term is zero after putting the end values; therefore, we get the Laplace
expression as

L

{

dm

dtm

(

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ

)}

= sL

{

d
dt

(

dm−2

dtm−2

t
∫

0

(t−τ )p−1

Γ(p)
f (τ )dτ

)}

(7.21)

Repeating the process m times yields
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L

⎧

⎨

⎩

dm

dtm

t
∫

0

(t − τ )p−1

Γ(p)
f (τ )dτ

⎫

⎬

⎭

= sm L
{

0d−p
t f (t)

}

(7.22)

using this result, the Laplace expression for fractional derivative is

L
{

0 Du
t f (t)

} = L
{

0 Dm
t 0 D−p

t f (t)
}

= sm L
{

0d−p
t f (t)

}

+ L

{

dm

dtm
ψ( f,−p, a, 0, t)

}

+L {ψ(h,m, a, 0, t)} (7.23)

or L
{

0 Du
t f (t)

} = sm L
{

0d−p
t f (t)

}

+ L
{

ψeq( f, u, a, 0, t)
}

(7.24)

here applying integral Laplace result for Laplace of 0d−p
t , we get

L
{

0 Du
t f (t)

} = sm−p L { f (t)} + L
{

ψeq( f, u, a, 0, t)
}

= su L { f (t)} + L
{

ψeq ( f, u, a, 0, t)
}

(7.25)

This is the most general form of Laplace transform of the fractional derivative
and is similar to what is obtained for Laplace of fractional integration. As the
case with fractional integrals, the fractional derivatives also can be decomposed
(or is composed off) infinite ways, thus several possible formulations exist for
ψeq ( f, u, a, c, t).

7.4.1 Decomposition of Fractional Order Derivative
in Integer Order

Equivalent form for L {ψ( f, u, a, 0, t)} of (7.25) is considered. Consider the expres-
sion that appeared in the previous derivation (7.17) i.e.

L

{

dm

dtm
ψ( f,−p, a, 0, t)

}

=
∞
∫

0

e−st d

dt

(

dm−1

dtm−1
ψ( f,−p, a, 0, t)

)

dt

For integrating by parts, take u = e−st and dv = d
dt

dm−1

dtm−1ψ( f,−p, a, 0, t)dt , so

du = −se−st dt and v = dm−1

dtm−1ψ( f,−p, a, 0, t). Therefore,
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L

{

dm

dtm
ψ( f,−p, a, 0, t)

}

= e−st dm−1

dtm−1
ψ( f,−p, a, 0, t)]∞0

+s

∞
∫

0

e−st dm−1

dtm−1
ψ( f,−p, a, 0, t)dt

= − dm−1

dtm−1
ψ( f,−p, a, 0, t)]t=0

+sL

{

dm−1

dtm−1
ψ( f,−p, a, 0, t)

}

(7.26)

This result is thus used to get

L

{

d

dt

dm−2

dtm−2
ψ( f,−p, a, 0, t)

}

= −
(

dm−2

dtm−2
ψ( f,−p, a, 0, t)

)

t=0

+sL

{

dm−2

dtm−2
ψ( f,−p, a, 0, t)

}

(7.27)

Therefore,

L

{

dm

dtm
ψ( f,−p, a, 0, t)

}

= − dm−1

dtm−1
ψ( f,−p, a, 0, t)]t=0

+ s

[

−
(

dm−2

dtm−2
ψ( f,−p, a, 0, t)

)

t=0
+ sL

{

dm−2

dtm−2
ψ( f,−p, a, 0, t)

}]

(7.28)

Repeating this process m times and writing

dk

dtk
ψ( f,−p, a, 0, t) = ψ (k)( f,−p, a, 0, t)

gives

L

{

dm

dtm
ψ( f,−p, a, 0, t)

}

= sm L {ψ( f,−p, a, 0, t)}

−
m
∑

j=1

s j−1ψm− j ( f,−p, a, 0, t)]t=0 (7.29)

Substituting the above obtained expression into equation for Laplace transform
of fractional derivative, we obtain Laplace transform of generalized derivative
decomposed into integer differentiations with ψm− j ( f,−p, a, c, t)at t=0, a constant
initialization, as:
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L
{

0 Du
t f (t)

} = L
{

0 Dm
t 0 D−p

t f (t)
}

= sm L
{

0d−p
t f (t)

}

+ sm L {ψ( f,−p, a, 0, t)}

−
m
∑

j=1

s j−1[ψm− j ( f,−p, a, 0, t)]t=0 + L {ψ(h,m, a, 0, t)} (7.30)

Here

0d−p
t f (t) = 1

Γ(p)

t
∫

0

(t − τ )p−1 f (τ )dτ = h(t),

the un-initialized fractional integration starting at t = c = 0.

L
{

0 Du
t f (t)

} = L
{

0 Dm
t 0 D−1

t f (t)
}

= su L { f (t)} −
m
∑

j=1

s j−1(ψm− j ( f,−p, a, 0, t)]t=0

+L {ψ(h,m, a, 0, t)} (7.31)

Figure 7.4 shows the decomposition.
Note what has been done here is to decompose the integer order derivative part

of 0 Du
t f (t) namely into m integer order 1 differentiations. For integer order Laplace

transform of derivative, we have L
{

f (m)(t)
} = sm L { f (t)} −

m
∑

j=1
s j−1 f (m− j )(0).

In (7.31) put p=0. This becomes zero-order operation, then setψ(h,m, a, 0, t) = 0
as discussed for terminal charging case for integer order initialization, in Chap. 6,
gives a specialized case with ψ (m− j )( f, 0, a, 0, t)at t=0 = f (m− j )(0). This will give
the above result of integer order repeated derivative Laplace relation as indicated
above.

In context of (7.31), the Laplace expression of total initialized system is

L {ψ( f, u, a, 0, t)} = −
m
∑

j=1

s j−1[ψ (m− j )( f,−p, a, 0, t)]at t=0+L {ψ(h,m, a, 0, t)} .

………

L{f (t)}

L{C0} L{C1} L{Cm–1} L{ψ (h,m)}

L{ψ ( f,–p)}
+ + + + +

- - - - -+

L{o 
Dt

u f (t)}
m-order -differentiation-1

ψ (m−j) (f,−p,a,o,t)Cm−j =
t = 0

s−p s s s s

Fig. 7.4 Decomposition of fractional derivative into integer order
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Further generalization is possible with (7.31). From (7.17) consider the term
L
{

dm

dtm ψ( f,−p, a, 0, t)
}

and for complete arbitrary initialization let

ψ( f,−p, a, 0, t) = 0d1−m
t ψ1(t)+0d2−m

t ψ2(t)+. . . ..0dm−m
t ψm(t) =

m
∑

j=1

0d j−m
t ψ j (t).

Then L
{

dm

dtm ψ( f,−p, a, 0, t)
} = L

{

m
∑

j=1

d jψ j (t)
dt j

}

=
m
∑

j=1
s j L
{

ψ j (t)
}

. Here, redun-

dant terms have been dropped. Therefore, (7.31) is further generalized as:

L
{

0 Du
t f (t)

} = L
{

0 Dm
t 0 D−p

t f (t)
}

= su L { f (t)} +
m
∑

j=1

s j L
{

ψ j (t)
}

+ L {ψ(h,m, a, 0, t)} ,

the difference with (7.31) is that the order of 1 derivatives are each initialized by time
varying functions. Meaning the order 1 differentiations is now generalized order 1
differentiation. The derivative initialization of (7.17) i.e. L {ψ(h,m, a, 0, t)} can
also be similarly decomposed, to have similar effect.

7.4.2 Decomposition of Fractional Derivative in Fractional Order

Figure 7.5 demonstrates this concept as signal flow graph.
As the decomposition of fractional integration was done by breaking into several

fractional elements −qk in the integration section, similarly by replacing all the
fractional integration components−qk = rk , this process is carried out.

The result of Fig. 7.5 is

d 

−pk

Differentiator element expanded

ψk (xk 
,qk 

,a,0,t)

xk(t)

xk(t)

+

+

+

+ + +

Equivalent differentiation element

xk+1(t)

xk+1(t)d 

mk

ψ (xk 
,–p,a,0,t) ψ (hk 

,mk 
,a,0,t)

d 

qk

Fig. 7.5 Decomposition of fractional derivative (fractional differentiation element)
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L
{

0 Dq
t f (t)

} = L
{

0 DB1
t x1(t)

} = L {xn+1(t)}

= sB1 L {x1(t)} + ψn(s)+
n−1
∑

j=1

sB j+1ψ j (s)Ba

=
n
∑

i=a

ri (7.32)

rk ≥ 0 and 1 ≤ a ≤ n, with initialization as:
ψk(xk, rk, a, 0, t) = dmk

dtmk
ψ(xk,−pk−1, a.0, t) + ψ(hk,mk, a, 0, t), where mk is

the least integer, such that rk = mk − pk and hk = 0d−pk
t xk(t)

7.4.3 Effect of Terminal Charging on Laplace Transforms

In all the above discussions, the initialization term ψ is taken as completely arbi-
trary, treating as “side charging” of the differintegrals. The effect of “terminal charg-
ing” is readily determined by appropriate substitutions for the ψ terms. That is for
integer derivative make ψ(h,m, a, 0, t) = 0,m = 1, 2 . . . and for the fractional

integrations take ψ( f,−p, a, 0, t) = 1
Γ(p)

0
∫

a
(t − τ )p−1 f (τ )dτ . Some modest sim-

plifications are done to Laplace transform of the fractional integral, the term ψ (k)

for terminal charging, as follows:

ψ (k)( f,−q, a, 0, t)]t=0 =
⎧

⎨

⎩

dk−1

dtk−1

⎛

⎝

d

dt

0
∫

a

(t − τ )q−1

Γ(q)
f (τ )dτ

⎞

⎠

⎫

⎬

⎭

t=0

, t > 0

Apply Lebniz’s rule, and we have

ψ (k)( f,−q, a, 0, t)]t=0 =
⎧

⎨

⎩

dk−2

dtk−2

⎛

⎝

d

dt

0
∫

a

(q − 1)(t − τ )(q−1)−1

Γ(q)
f (τ )dτ

⎞

⎠

⎫

⎬

⎭

t=0

Substitute (q−1)
Γ(q)
= 1

Γ(q−1)
, then the integral is recognized as (q − 1)th order differ-

integral and continuing the process gives

ψ (k)( f,−q, a, 0, t)]t=0=ψ( f,−q + k, a, 0, t)]t=0

In a similar fashion, a more general term is to be substituted for terminal initial
function as:
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ψ (n)( f,−q, a, 0, t) = ψ( f,−q + n, a, 0, t) = 1

Γ(q − n)

0
∫

a

(t − τ )q−n−1 f (τ )dτ

t > 0, and (n + 1 > q > n > 0)

7.5 Start Point Shift Effect

7.5.1 Fractional Integral

Specifically in effect of start of function at non-zero a is considered, and differinte-
gration start at c (non-zero) is shown, c > a ≥ 0 and q > 0. Then Laplace transform
of un-initialized fractional integral is

L
{

a D−q
t f (t)

}

= L
{

ad−q
t f (t)

}

= L

⎧

⎨

⎩

1

Γ(q)

t
∫

a

(t − τ )q−1 f (τ )dτ

⎫

⎬

⎭

By definition, f (t) = 0 for t ≤ a, thus the following can be formulated by unit step
at t = a as f (t) = u(t − a) f (t). The result is

L
{

a D−q
t f (t)

}

= L
{

ad−q
t f (t)

}

= L
{

0d−q
t (u(t − a) f (t))

}

7.5.2 Fractional Derivative

Under the same condition as above, the un-initialized fractional derivative is consid-

ered, then L
{

adq
t f (t)

}= L
{

adm
t ad−p

t f (t)
}

= L

{

dm

dtm
1

Γ(p)

t
∫

a
(t − τ )p−1 f (τ )dτ

}

, as

before m is the least integer greater than q . Again by definition f (t) = u(t−a) f (t).
Thus

L
{

adq
t f (t)

} = L

⎧

⎨

⎩

dm

dtm

1

Γ(p)

t
∫

0

(t − τ )p−1u(τ − a) f (τ )dτ

⎫

⎬

⎭

= L

{

dm

dtm 0d−p
t (u(t − a) f (t))

}

= L
{

0dq
t u(t − a) f (t)

}

So the final result is L
{

adq
t f (t)

} = L
{

0dq
t u(t − a) f (t)

}

.



144 7 Generalized Laplace Transform for Fractional Differintegrals

7.6 Laplace Transform of Initialization Function

7.6.1 Fractional Integral

From shifting theorem of Laplace transform, we have

L {g(t − a)u(t − a)} = e−as L {g(t)} ,

for a > 0. Taking f (t) = g(t − a) we thus have,

L { f (t)u(t − a)} = e−as L { f (t + a)} .

Now the fractional integral under terminal charging the desired Laplace transform
will be

L {ψ( f,−q, a, c, t)} = L
{

ad−q
t f (t)

}

− L
{

cd−q
t f (t)

}

= L
{

0d−q
t f (t)u(t − a)

}

− L
{

0d−q
t f (t)u(t − c)

}

= s−q L { f (t)u(t − a} − s−q L { f (t)u(t − c)}

Finally, L {ψ( f,−q, a, c, t)} = s−q
[

e−as L { f (t + a)} − e−cs L { f (t + c)}].

7.6.2 Fractional Derivative

The equivalent initialization function obtained for fractional derivative is

ψeq ( f, u, a, c, t) = dm

dtm
ψ( f,−p, a, c, t)+ ψ( f,−p, a, c, t),

where m is the least integer greater than u. For terminal charging, it has been shown
ψ(h,m, a, c, t)=0, therefore L {ψ( f, u, a, c, t)} = sm L {ψ( f,−p, a, c, t)}; in this,
applying the shifting theorem of Laplace the final result is

L {ψ( f, u, a, c, t)} = su
[

e−as L { f (t + a)} − e−cs L { f (t + c)}] .

7.7 Examples of Initialization in Fractional Differential
Equations

Proper initialization is crucial in the solution and understanding of fractional differ-
ential equations; the examples will elucidate the application of initialized fractional
calculus to the solution of differential equations.
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Example 1.

0 D1/2
t f (t)+ b f (t) = 0 t > 0; 0 D−1/2

t f (t)at t=0 = C

The notation above is un-initialized semi-derivative and by obtaining Laplace trans-
form will give F(s)= C

s1/2+b . The inverse Laplace gives

f (t) = Ct−1/2 E0.5,0.5(−b
√

t)

and for b = 1, f (t) = C
(

1√
π t
− et er f c

(√
t
)
)

.

Now the initialized approach is given below, considering semi- derivative as
initialized.

0 D1/2
t f (t)+ bf (t) = 0 t > 0. ψ( f, 1/2, a, 0, t) is arbitrary, for ‘side initial-

ization’ case. Therefore, the equation is written as

0d1/2
t f (t)+ ψ( f, 1/2, a, 0, t)+ b f (t) = 0, t > 0,

and ψ( f, 1/2, a, 0, t) is arbitrary. Laplace transforms now gives

F(s) = −ψ( f, 1/2, a, 0, s)

s1/2 + b
= − ψ(s)

s1/2 + b
.

This Laplace transform is same as for un-initialized approach (done above) when
ψ(t) = −Cδ(t), i.e. “when impulse at t = 0 is used to initialize the fractional
differential equation.’ Now using R function (variant of Mittag-Leffler function),
the generalized inverse of the initialized transform by applying

Rq,v(α, c, t) ≡
∞
∑

n=0

(α)n(t − c)(n+1)q−v−1

Γ((n + 1)q − v)
↔ sv

sq − α

and with convolution integral definition, we obtain most general solution of the
form as:

f (t) = −
t
∫

0

R1/2,0(−b, 0, t − τ )ψ(τ )dτ t > 0

Now with this arbitrary initialization, the above convolution integral is the most
general solution. If ψ(t) = −Cδ(t), from the derived general equation, we obtain
f (t) = C R1/2,0(−b, 0, t), which is identical to the above result of un- initialized
case.

For ‘terminal initialization,’ a more useful result would appear using the terminal
charging definition as:
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ψ( f, q, a, 0, t) = dm

dtm
ψ( f,−p, a, 0, t)+ ψ(h,m, a, 0, t)

q > 0 h(t) = ad−p
t f (t)

In the present case q = m − p, m = 1, p = 1/2, and ψ(h,m, a, 0, t) = 0. Then

ψ( f, 1/2, a, 0, t) = d

dt
ψ( f,−1/2, a, 0, t) = d

dt

1

Γ(1/2)

0
∫

a

(t − τ )−1/2 f (τ )dτ

Example 2.

0 DQ
t f (t)+ 0 Dq

t f (t) = h(t)
[

0 DQ−1
t f (t)+ 0 Dq−1

t f (t)
]

at t=0
= C

The problem uses symbolism as un-initialized fractional differential operator. Two
separate initialization functions for the two fractional differential operators, when
employed, gibes the most general solution as demonstrated below.

0d Q
t f (t)+ ψ1( f, Q, a, 0, t)+ 0dq

t f (t)+ ψ2( f, q, a, 0, t) = h(t)

and taking Laplace transform:

sQ F(s)+ sq F(s) = H (s)− ψ1( f, Q, a, 0, s)− ψ2( f, q, a, 0, s)

F(s) =
(

s−q

sQ−q + 1

)

[H (s)− ψ1( f, Q, a, 0, s)− ψ2( f, q, a, 0, s)]

again using generalized R function and the convolution definition, we get a most
generalized form of solution:

f (t) =
t
∫

0

RQ−q,−q (−1, 0, t − τ )(h(τ )− ψ1( f, Q, a, 0, τ )− ψ2( f, q, a, 0, τ ))dτ.

In this, the general expression allows having effect of continuing past, as in ter-
minal initialization. Giving these initialization function arbitrary values of say
ψ1 = −C1δ(t).&.ψ2 = −C2δ(t) and putting C = C1 + C2, the general solution

will be f (t) = −C RQ−q,−q (−1, 0, t)+
t
∫

0
RQ−q,−q (−1, 0, t − τ )(h(τ ))dτ .

It is to show that in this case of side charging, the effect of continuing past is not
shown in the solution.

Example 3. Consider the same example as in Example 7.2, i.e.

c DQ
t f (t)+ c Dq

t f (t) = h(t)

This may be written as
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cd Q
t f (t)+ cdq

t f (t) = h(t)− ψ1( f, Q, a, c, t)− ψ2( f, q, a, c, t) = h(t)− ψeq (t)

The Laplace transform of un-initialized fractional derivative is

L
{

cdq
t f (t)

} = L
{

0dq
t (u(t − c) f (t)

} = e−cssq L { f (t + c)} ,

where u(t − c) is unit step function, at time t = c. Thus, the Laplace transform of
the equation yields L { f (t + c)} = H (s)−ψeq (s)

e−cs sq (s Q−q+1) = ecs G(s)
[

H (s)− ψeq (s)
]

,where

G(s) = 1
sq (s Q−q+1) Consider two time intervals. First interval a1 = c1 = 0 and second

interval a2 = c2 = 1. The first interval is used as the initial period (charging) for the
second interval. We take excitation (forcing function) as h1(t) = (u(t)− u(t − 1)),
i.e. square window of height unity from 0 to 1. Also f (t) = 0, at t < 0, which also
tells ψ1( f, Q, 0, 0, t) = ψ2( f, q, 0, 0, t) = 0.
First Interval In this interval, the solution is

L { f1(t)} = 1− e−s

sq+1(sQ−q + 1)
=
(

1− e−s

s

)

G(s)

and f1(t) = RQ−q,−q−1(−1, 0, t)− u(t − 1)RQ−q,−q−1(−1, 0, t − 1) t > 0
for 0 < t < 1 then f1(t) = RQ−q,−q−1(−1, 0, t).

Second Interval In this interval, consider the forcing function h(t) = 0, and the
interval 1 is the initialization interval. The equation for this interval is

1d Q
t f2(t)+ 1dq

t f2(t) = −ψeq(t).

Using Laplace we get

L { f2(t + 1)} = −ψeq(s)

e−ssq (sQ−q + 1)

ψeq is taken based on the historic forcing h1(t) as was in the first interval.
ψeq = −h1(t) = −(u(t)−u(t−1)). Hence ψeq (s) = − 1−e−s

s . Substituting these,
we get

e−s L { f2(t + 1)} = 1− e−s

sq+1(sQ−q + 1)
= 1− e−s

s
G(s) = L { f1(t)}

Applying the Laplace shift rule, we have L { f2(t)u(t − 1)} = L { f1(t)}.
Thus for t > 1, we have the important result f2(t) = f1(t), t > 1.

7.8 Problem of Scalar Initialization

Linear scalar constant coefficient fractional differential equation for 0 < q < 1 is
given as 0dq

t x(t) = Ax(t)+Bu(t), assuming causality of the system, and the system
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was at rest meaning x(t) = 0 for all t < a. The qth derivative of x(t) starts at time
a and continues at time t . This means

0dq
t x(t) ≡ d

dt

⎡

⎣

1

Γ(1− q)

t
∫

a

x(τ )

(t − τ )q
dτ

⎤

⎦ .

Let the initialization of the scalar start at some time c after a. Choosing c = 0, the
differential equation can be written as 0dq

t x(t)+ adq
t x(t) = Ax(t)+ Bu(t). Here the

time axis is broken in two parts, one from a → 0 and the other from 0 → t . Here
as stated c = 0, is chosen. The term adq

0 x(t) above represents this initialization
response due to behavior of system before t = c = 0. It should be noticed that
the past history of the particular variable that is fractionally differentiated must be
known as long as the system has been operated to obtain the correct initialization
response. The equation then can be expressed as in terms of initialized fractional
derivative as: c Dq

t x(t) = 0dq
t x(t) + ψ(q, x, a, 0, t) = Ax(t) + Bu(t), where for

terminal charging for t > 0, the initialization function is

ψ(q, x, a, 0, t) ≡ adq
0 x(t) = d

dt

⎡

⎣

1

Γ(1− q)

0
∫

a

x(τ )

(t − τ )q
dτ

⎤

⎦ .

This initialization function is described in Chap. 6, called the initialization function
for fractional derivative. Using the Laplace transforms of the initialized expression,
we obtain the following:

sq X(s)+ ψ(q, x, a, 0, s) = AX(s)+ BU (s), where

ψ(q, x, a, 0, s) = L

⎧

⎨

⎩

d

dt

⎡

⎣

1

Γ(1− q)

0
∫

a

x(τ )

(t − τ )q
dτ

⎤

⎦

⎫

⎬

⎭

is the Laplace transform of the initialized function. Rearranging the above expres-
sion, we get

X(s) = B

sq − A
U (s)− 1

sq − A
ψ(q, x, a, 0, s).

Taking inverse Laplace transform of this expression, we obtain time response:

x(t) =
t
∫

0
Fq [A, τ ]Bu(t − τ )dτ −

t
∫

0
Fq [A, τ ]ψ(q, x, a, 0, t − τ )dτ . Here F func-

tion is the impulse response of fundamental linear differential equation (as explained
in Chap. 6), and is defined as

Fq [A, t] ≡ tq−1
∞
∑

n=0

Antnq

Γ(nq + n)
.
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The solution x(t) represents any forced response due to u(t), and the second term of
the solution expresses the initialized response of the system due to past history of
x(t), before time t = 0. Clearly for integer order systems (q = 1), this initialization
term ψ(1, x, a, 0, s) equals a constant and for fractional order systems, this term
ψ(1, x, a, 0, s) is a time varying expression into the future. It implies that the past
history of x(t) has appearance of a time-dependent forcing term into the “infinite”
future.

Let us choose the history as a constant meaning x(t) = k, for −∞ < t ≤ 0.
Then the initialization function becomes the limit a→∞, described as follows:

ψ(q, x,−∞, 0, s) = L

⎧

⎨

⎩

lim
a→−∞

d

dt

⎡

⎣

1

Γ(1− q)

0
∫

a

k

(t − τ )q
dτ

⎤

⎦

⎫

⎬

⎭

= L

{

lim
a→−∞

d

dt

[

k

Γ(1− q)

−(t − τ )1−q

(1− q)

]τ=0

τ=a

}

= L

{

lim
a→−∞

d

dt

[

k

Γ(1− q)

(

(t − a)1−q

(1− q)
− t1−q

(1− q)

)]}

= L

{

lim
a→−∞

k

Γ(1− q)

(

1

(t − a)q
− 1

tq

)}

= −L

{

k

Γ(1− q)

1

tq

}

= −ksq−1

Inserting this back into Laplace expression, we obtain X(s) = B
sq−A U (s)+ ksq

s(sq−A) .
Inverting this, we obtain the solution:

x(t) = B

t
∫

0

Fq [A, q] u(t − τ )dτ + k Eq
[

Atq
]

.

The first term is convolution of the input u(t) with impulse response (F func-
tion), and the second term is the initialization function response, and in this
particular case of history (k) is Mittag-Leffler function. For integer order sys-
tems q = 1 the initialized Laplace term (second term of X(s)) in case of the
constant is k/s.

7.9 Problem of Vector Initialization

Vector space representation is useful for “systems of fractional differential equa-
tions.” Once the minimal basis value q is chosen the vector representation
can be expressed as: c Dq

t x(t) = A x(t)+B u(t), the vector x(t) is given for
a ≤ t ≤ c or initialization vector ψ(q, x, a, c, t) given for t > c, and the output
vector is y(t) = C x(t)+D u(t). The parameters (matrices) A, B,C, D are usual
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state-space representation for systems of differential equations as for integer order
systems, representing state matrix, input and output matrix, and feed-through
matrix. The vector fractional order differential equation expressed above can be
written as: cdq

t x(t)+ψ(q, x, a, 0, t) = A x(t)+B u(t), where

ψ(q, x, a, 0, t) = [ψ(q, x1, a, 0, t), ψ(q, x2, a, 0, t) . . . ψ(q, xn, a, 0, t)]T

= [ψ1, ψ2, . . . , ψn]T .

At this point, it is important to notice that the fractional dynamic variable in
the system of vector space equations are not states in true sense of the name state-
space control terminology. In usual integer order system theory, the set of state of
the system, known at any given point in time along with the system equations, are
sufficient to predict the response of the system both forward or backward in time.
The collection of constant numbers x(t0) at time t0 specifies the complete “state” of
the system at that time. Therefore, the system will have unique time response, given
its “initial-state.”

Fractional dynamic variables do not represent the state of system at any given
time (alone) due to presence of the initialization function vector (history function),
carrying information about the history of the elements of the system. Consequently,
as the initialization function vector is generally present, the set of elements of the
vector x(t), evaluated at any point in time, does not specify the entire “state” of the
system. Thus in fractional system setting, the ability to predict the future response
of a system requires the set of fractional differential equations along with the initial-
ization function sets. The initialization problem of the vector fractional differential
equations can be solved as solved for the scalar case (Sect. 7.8), by using Laplace
transformation.

The Laplace transformed vector equation is sq X(s)+ψ(s) = A X(s)+B U (s)
and the output equation is transformed as Y (s) = C X(s)+D U (s). After perform-
ing matrix algebraic manipulations, we obtain (I sq − A) X(s) = B U (s)−ψ(s),
where I is n × n identity matrix matching dimensions of state matrix A. Therefore,
the Laplace vector solution is thus obtained as

X(s) = (I sq − A
)−1

B U (s)− (I sq − A
)−1

ψ(s),

inserting this in output expression to have output Laplace solution as

Y (s) =
{

C
(

I sq − A
)−1

B + D
}

U (s)−C
(

I sq − A
)−1

ψ(s) .

Inverting this one, we obtain time response as

y(t)=C

t
∫

0

Fq [A, τ ]
{

B u(t − τ )− ψ(t − τ )
}

dτ + D u(t)



7.10 Laplace Transform s → w Plane for Fractional Controls Stability 151

or equivalently can be expressed as

y(t)=C

t
∫

0

Fq [A, t − τ ]
{

B u(τ )−ψ(τ )
}

dτ + D u(t).

The above solution requires the use of matrix F function, which can be obtained
by the use of its series expansion. Matrix F function is defined as

Fq [A, t] ≡ tq−1
∞
∑

n=0

Antnq

Γ(nq + n)

for q > 0,
where A is n × n system matrix.
Consider the Laplace transformed equation

Y (s) = {C(I sq − A)−1 B + D
}

U (s)− C(I sq − A)−1 ψ(s),

derived earlier in this section. In this case, the system transfer matrix is
G(s) = {

C(I sq − A)−1 B + D
}

, and is system representation of multivari-
ate system. In this representation thus the system description is obtained as

Y (s) = G(s) U (s) − C(I sq − A)−1 ψ(s). The A, B,C, D are usual state-space
representation matrix namely system state matrix, input matrix, output matrix,
and feed-through matrix, as per multivariate state-vector representation of modern
control science.

7.10 Laplace Transform s → w Plane for Fractional
Controls Stability

As it is difficult to visualize multiple Riemann sheets, it is useful to perform “con-
formal transformation” into another complex plane s → w plane. System dynamics
are described by singularity (pole) location of the transformed transfer function in
new w-plane. The transfer function G(s) = 1

sq+1 , (0 < q < 1) does not have any
singularity (pole) in anywhere in s-plane (primary Riemann sheet), but after cross-
ing branch-cut the secondary Riemann sheet will contain the singularity (pole). For
q = 1/2, the denominator (s1/2 + 1) goes to zero at s = 1 + j0 = exp(± j2π),
which is underneath the s-plane negative real axis exp(± jπ), entering “secondary
Riemann sheet”, giving pole of the function there.

Here in this section, basic control theory knowledge is required, in Laplace
domain. To understand the behavior and stability property of the fundamental frac-
tional differential equation 0dq

t x(t) = −ax(t)+ bu(t), it is necessary to analyze the
pole-location of the system transfer function i.e. G(s) = X (s)

U (s) = b
sq+a . For classical
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control theory q = 1, that is integer order system, the pole-location are studied
in the complex Laplace plane (s-plane). The stability boundary in the s-plane is
the imaginary axis. Any pole lying to the right of the imaginary axis represents an
unstable time response. Examining G(s) = b

sq+a , however, indicates that the poles of
G(s) must now be evaluated in sq plane. Rather than dealing with fractional powers
of s, the analysis is carried out in w = sq , and then the pole-location properties will
be studied in the new complex w-plane.

To simplify the discussion, we limit the fractional order as 0 < q ≤ 1. The
mapping from s → w is as follows:

w = ρe jφ = α + jβands = re jθ .

Then defining w = sq = (re jθ
)q = rqe jqθ = ρe jφ , implying ρ = rq and φ = qθ .

With this equation, it is possible to map either lines of constant radius or lines
of constant angle from the s-plane into w-plane. Of particular interest is the image
of the s-plane stability boundary (s-plane imaginary axis), that is s = re± j π2 , maps
as w = rqe± jq π

2 . This is a pair of lines at φ = ±qπ/2. Thus, the right half plane
(RHP) of the s-plane maps into a “wedge” in the w-plane of angle less than ±90q
degree that is RHP of s-plane maps into |φ| < qπ/2.

As an example for semi-differential equation of order 1/2, the RHP of s-plane
maps into the wedge bounded by |φ| < π/4. A half-order system with its w-plane
poles in the wedge that is |φ| < π/4 would be unstable and corresponding F func-
tion (impulse response) would grow without bound.

It is also important to consider the mapping of the negative real axis of s-plane
s = re± jπ , the mapping is w = rqe± jqπ . Therefore, the entire “primary sheet” of
the s-plane maps into a w-plane wedge of angle less than ±180q degree; while all

Stable
Under-damped

q
π φ

φφ

< qπ<
2

2
4 3 1

Stable qπ <<

5
ℜ (w)

Over-damped
Hyper-damped

Ultra-damped 3
4

2 1
Im (w)

Unstable –zone < qπ / 2
π

Fig. 7.6 w-Plane stability zones and various pole locations
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Table 7.1 Properties of poles in w-plane

pole number (Fig. 7.6) region in w-plane region in s-plane property of time-
response

1 |φ| < q π
2 �e(s) > 0 (RHP) unstable

2 q π
2 < |φ| < qπ �e(s) < 0 (LHP) stable under-damped

oscillatory
3 φ = qπ negative real axis

s = r exp(± jπ)
stable over-damped

4 qπ < |φ| < π secondary Riemann
sheet |θ | > π

stable hyper-damped

5 |φ| = π Secondary Reiman
sheet

stable ultra-damped

the “secondary sheet” s-plane maps into the remainder of the w-plane. For half-
order system, the negative real axis of s-plane maps into w-plane lines at ±90
degree. Figure 7.6 gives the pole location properties of w-plane.

F function time response Fq [a, t] depends on both q and on parameter a, which
is the pole location of the system transfer function G(s) = b

sq+a . For a fixed value
of q , the angle φ of the parameter a, as measured from the positive real axis of
w-plane, determines the type of response to expect. This pole location is depicted
in the Table 7.1 with properties of time response.

All usual control system analysis Nyquist, root-locus plot concerning poles or
eigenvalues can be used in the w-plane, remembering the stability boundary is now
the image s-plane imaginary axis. Hyper-damped and ultra-damped system will be
taken up again in Chap. 10.

7.11 Rational Approximations of Fractional Laplace Operator

There are lots of approaches to get rational approximation of fractional order
Laplace operator. The sq keeps on appearing for fractional order systems and con-
trols. The rational function approximation gives direction to realize this fractional
order Laplace operator in circuit impedance and admittance forms. This section
gives insight into simple method of approximating the fractional Laplace operator.
It is well known that for interpolation or evaluation purposes, rational functions are
(sometimes) superior to polynomial fit because of their ability to model the function
with poles and zeros. In other words, for evaluation purposes, rational approxima-
tions frequently converge much more rapidly than power series expansion (PSE) and
have wider domain of convergence in the complex plane. These approximations can
be viewed in the Laplace domain, as rational approximations of the fractional order
operators. Furthermore, these approximations exhibit a common feature, which we
observe in all good rational approximations: They have poles and zeros interlaced
on the negative real axis of the s-plane, and the distance between successive poles
and zeros decrease as the approximations are improved by increasing the degree of
the numerator and denominator polynomial.
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There are a number of methods to evaluate rational approximations of the
fractional Laplace operator; they are general continued fractional expansion (CFE)
method, Carlson’s method, Matsuba’s method, Oustaloup’s method, Chareff’s
method, S.C. Dutta Roy’s method, Wang’s method, and Jones method.

Here, the Carlson’s approach using Newton’s approximation to find arbitrary root
of polynomial is described. The method is derived from a regular Newton process
for iterative approximation of the qth root. The starting point of the method is
(H (s))1/q−(G(s)) = 0, meaning H (s) = (G(s))q . Defining q = 1/p and m = p/2,
the iteration formula starting from first approximation H0(s) = 1 is

Hi(s) = Hi−1(s)
(p − m) (Hi−1(s))2 + (p + m) G(s)

(p + m) (Hi−1(s))2 + (p − m) G(s)

Say we want to approximate semi-integral Laplace operator
(

1
s

)1/2
to be realized by

this method, then take G(s) = 1
s , q = 1

2 , it makes p = 2 and m = 1. We get H1(s)
as the first rational approximate for initial function H0(s) = 1 as:

H1(s)=H0(s)
(p − m) (H0(s))2 + (p + m) G(s)

(p + m) (H0(s))2 + (p − m) G(s)
= (1)

(1)(1)+ (3)
(

1
s

)

(3)(1)+ (1)
(

1
s

) = s + 3

3s + 1

The second approximate is obtained by putting the obtained H1(s) as:

H2(s)=
(

s + 3

3S + 1

)
[

(1)
(

s+3
3s+1

)2 + (3)
(

1
s

)

(3)
(

s+3
3s+1

)2 + (1)
(

1
s

)

]

= (s + 3)
(

s3 + 33s2 + 27s + 3
)

(3s + 1)
(

3s2 + 27s2 + 33s + 1
)

The second approximate for semi-integration Laplace operator is

H2(s) = s4 + 36s3 + 126s2 + 84s + 9

3s4 + 84s3 + 126s2 + 36s + 1
≈
(

1

s

)1/2

.

Physical of this approximation steps is to be viewed as impedance (rather
immitance), realized by R, L,C network. The first approximation H0(s) is unit
impedance of pure resistance (unit value). The next approximation is H1(s), is RC
combination, and as the approximation grows, they get more and more components,
in the network. The fundamentals of circuit synthesis to realize these fractional
Laplace operators in network forms and present day Hybrid Micro Circuit fabrica-
tion techniques will give electrical circuit components for fractional order circuit
applications, in future.

Table 7.2 gives rational approximates for several fractional order Laplace opera-
tor for fractional integration realization.
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Table 7.2 Fractional operators with approximately 2 db error from 0.01 to 100 rad/s

Laplace fractional operator rational approximate

1

s0.1

220.4s4 + 5004s3 + 5038s2234.5s + 0.4840

s5 + 359.8s4 + 5742s3 + 4247s2147.7s + 0.2099

1

s0.2

60.95s4 + 816.9s3 + 582.8s2 + 23.24s + 0.04934

s5 + 134.0s4 + 956.5s3 + 383.5s2 + 8.953s + 0.01821

1

s0.3

23.76s4 + 224.9s3 + 129.1s24.733s + 0.01052

s5 + 64.51s4 + 252.2s3 + 63.61s2 + 1.104s + 0.002276

1

s0.4

25.00s4 + 558.5s3 + 664.2s2 + 44.15s + 0.1562

s5 + 125.6s4 + 840.6s3 + 317.2s2 + 7.428s + 0.02343

1

s0.5

15.97s4 + 593.2s3 + 1080s2 + 135.4s + 1

s5 + 134.3s4 + 1072s3 + 543.4s2 + 20.10s + 0.1259

1

s0.6

8.579s4 + 255.6s3 + 405.3s235.93s + 0.1696

s5 + 94.22s4 + 472.9s3 + 134.8s2 + 2.639s + 0.009882

1

s0.7

5.406s4 + 177.6s3 + 209.6s2 + 9.197s + 0.01450

s5 + 88.12s4279.2s3 + 33.30s2 + 1.927s + 0.0002276

1

s0.8

5.235s3 + 1453s2 + 5306s + 254.9

s4 + 658.1s3 + 5700s2 + 658.2s + 1

1

s0.9

1.766s2 + 38.27s + 4.914

s3 + 36.15s2 + 7.789s + 0.01000

These approximate representations are utilized to have impedance structures for
realization of fractional capacitance and with thus operational amplifier circuit tech-
nique, the fractional order integrator and fractional order differentiator be realized.

7.12 Concluding Comments

Many of the forms described in this chapter on the Laplace transform have been
derived to demonstrate how initialization function generalizes the Laplace trans-
forms (seen in integer order calculus). Here also several possible compositions of
fractional integration and fractional derivatives are demonstrated. Reader is advised
to imagine further, regarding the compositions of these operators, as to adhere to
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constraints of continuity and index (composition) laws to use these forms. The
selection of appropriate initialization function when structuring fractional differen-
tial equations will be analogous, but somewhat more demanding, than selection of
constants when structuring integer order systems. Experience working with partic-
ular equation or type of physical systems will be required of analyst in selection of
initialization function. The use of Laplace transforms and initialization is obtained
for scalar and vector initialization examples, it will be suitable for fractional order
system modeling, for single input single output, as well as multi-input multi-output
systems. The analysis of stability of the pole (and zero) property is to be carried
out in transformed Laplace (w) plane, and the theory and interpretation of control
system be mapped here, for future use of fractional order control system. Also the
Laplace operator for fractional capacitor is represented as rational function approx-
imation to synthesize circuits for fractional order control system, in analog way.
These concepts are very useful for futuristic control systems.



Chapter 8
Application of Generalized Fractional Calculus
in Electrical Circuit Analysis

8.1 Introduction

The fractional calculus is widely popular, especially in the field of viscoelasticity.
In this chapter, a variety of applications are discussed. This chapter is application
oriented to demonstrate the fundamentals of generalized (fractional) calculus devel-
oped earlier, with particular reference to initialization concepts. Here the treatment
is to show coupling effect of the initialization functions and the use of developed
Laplace technique. The applications and potential applications are in diffusion pro-
cess, electrical science, electrochemistry, material creep, viscoelasticity, control sci-
ence, electromagnetic theory, etc. This chapter is restricted to electronics and elec-
trical circuit models.

8.2 Electronics Operational Amplifier Circuits

8.2.1 Operational Amplifier Circuit with Lumped Components

The operational amplifier is well known in electrical science to provide gain.
Figure 8.1 gives a simple scheme.

We revise the concept of impedance transfer function. The terms Z f and Zi

are output and input impedances respectively, will represent general linear circuit
together with initialization functions. Therefore not strictly as impedance but some
similarity to perhaps memory element!

The Laplace transforms variables:

Input side: vi (s)− v−(s) = ii (s)Zi (s)

Output/feedback element: v−(s)− vo(s) = i f (s)Z f (s)

Inverting node: ii (s)− i f (s)− i−(s) = 0

S. Das, Functional Fractional Calculus for System Identification and Controls. 157
C© Springer 2008
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Fig. 8.1 Operational
amplifier circuit with lumped
impedances

vi(s) Zi(s) v–(s)
v+(s) vo(s)

Zf(s) 

+

–

For negative feedback configuration, the amplifier will have from its basic prop-
erty of high input impedance of NI (+) and I (−) terminals i− ∼= 0 therefore v− ∼= 0.
Putting these values, we obtain transfer function (voltage to voltage) as:

vo(s)

vi (s)
= − Z f (s)

Zi(s)

8.2.2 Operational Amplifier Integrator with Lumped Element

Figure 8.2 describes the classical integrator circuit.
The defining equations are

vi (t)− v−(t) =ii R

v−(t)− vo(t) = 1

C
c D−1

t i f (t) = 1

C

t
∫

c

i f (τ )dτ + 1

C

c
∫

a

i f (τ )dτ

= 1

C

i
∫

c

i f (τ )dτ
1

C
q(c) = 1

C

t
∫

c

i f (τ )dτ + [v−(c)− vo(c)
]

Substitution of initial charge stored from time t = a to time t = c as integral of

current is done. q(c) =
c
∫

a
i f (τ )dτ = C

[

v−(c)− vo(c)
]

as initial charge on the

capacitor at the start of integration process at time t = c. For operational amplifier,
putting i f = ii and v−(t) = 0 yields

Fig. 8.2 Integrator circuit
with lumped element

i f
C

i i R

vi(t) v–(t)
v+(t) vo(t)

+
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vo(t) = − 1

RC

t
∫

c

vi (τ )dτ + vo(c) = − 1

RC
c D−1

t vi (t)

with ψ(vi ,−1, a, c, t) = −RCvo(c) as initializing function.
Then with RC = 1, this integrator is represented as vo(t) = −c D−1

t vi (t). The
initialization function as defined stores the past history (contained in single constant
−vo(c)).

When this circuit is used in analog PID controller, the integral reset rate is defined

as Ti =
∣

∣

∣

Z f

Zi

∣

∣

∣ = 1
RC in unit of per second.

8.2.3 Operational Amplifier Integrator with Distributed Element

The input resistor is replaced by semi-infinite lossless transmission line, with dis-
tributed inductance per unit length l and capacitance per unit length c. The semiin-
finite lossless line has a characteristics equation as the wave equation of voltage, as:

∂2v(x, t)

∂ t2
= 1

lc

∂2v(x, t)

∂x2

The terminal characteristics is

i (t) =
√

c

l
v(t)+ ϕ1(t) = kv(t)+ ϕ1(t), where k =

√

c/ l

or

i (t) = kc D0
t v(t), where ψ(v, 0, a, c, t) = 1

k
ϕ1(t)

or

v(t) = 1

k
i (t)+ ϕ2(t)

or

v(t) = 1

k
c D0

t i (t) where ψ(i, 0, a, c, t) = kϕ2(t)

Notice that differentigration operation for voltage–current transfer relationship is
of order zero. This may be called a “zero-order” element. The voltage–current
relationship of a lumped resistor is also of zero-order differintegration. In the
lossless transmission line, it is the initial condition on the distributed inductor and
capacitor along infinite lines that gives rise to initial function (of time). Figure 8.3
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Fig. 8.3 Semi-infinite
lossless line (zero-order
differintegrator) i(t)

v(t)

l l l

• • •

l
• • •

gives the semi-infinite lossless (zero-order) element representation and Fig. 8.4 is
represents the operational amplifier circuit based on this lossless line.

The semi-infinite lossless line is connected as input element between the input
terminal and inverting node. The input element equation is

ii (t) = k
[

vi (t)− v−(t)
]+ ϕ1(t)

For feed back element

v−(t)− vo(t) = 1

C
c D−1

t i f (t) = 1

C

t
∫

c

i f (τ )dτ − vo(c)

Putting i f = ii and v−(t) = 0, we have expression for output as:

vo(t) = − 1

C

t
∫

c

[kvi (τ )+ ϕ1(τ )]dτ + vo(c)

= −
(

1

C
k

)
t
∫

c

vi (τ )dτ − 1

C

t
∫

c

ϕ1(τ )dτ + vo(c)

In compact generalized calculus notation, we summarize the transfer expression as:

Fig. 8.4 Integrator circuit
with distributed elements
(one-order integrator)

l

l c
C

c

v i l v– vo

i i v+ +

–

• • •
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vo(t) = −
(

1

C
k

)

c D−1
t vi (t) where ψ(vi ,−1, a, c, t) = 1

k

t
∫

c

ϕ1(τ )dτ + C
1

k
vo(c)

Selecting the coefficient values and circuit constants as unity we have
vo(t) = −c D−1

t vi (t). This is the same expression that is got in classical integrator
circuit with lumped elements. The difference exists in the values of the initialization
functions. For this integrator with distributed elements, the effect of “past history”
is contained not in a constant −vo(c), which is the charge stored in the integrating
capacitor C (the lumped element), but is in the remainder of the function ψ(t). This
accounts for the distributed charge along the semi-infinite line. The observation is
that the “zero-order differintegral” element that is the semi-infinite lossless line will
simply propagate the changes in input excitation (vi (t)) along the infinite line, and
never this perturbation will be seen again. The only effect seen being proportional
to the variation of the source end current (ii(t)). This is true for “terminal charging.”
For side charging or a “side charged” line, an additional function of time may be
impressed at output point of the circuit, which is dependent on the initial voltage
distribution on the line.

8.2.4 Operational Amplifier Differential Circuit
with Lumped Elements

Figure 8.5 describes the circuit, which is the classical differentiator block.
The expressions are for this classical differentiator:

vi (t)− v−(t) = 1

C
c D−1

t ii (t) = 1

C

t
∫

c

ii (τ )dτ + 1

C

c
∫

a

ii (τ )dτ

= 1

C

t
∫

c

ii (τ )dτ + q(c)

C
= 1

C

t
∫

c

ii (τ )dτ + vi−(−)(c)

v−(t)− vo(t) =i f (t)R

Fig. 8.5 Differentiator circuit
with lumped elements

i f

R

C

vi v– vo

ii v+
+

–
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Putting ii (t) = i f (t) = 0 and v−(t) = 0, we have

vo(t) = −Ri f (t) = −RC

[

d

dt
(vi (t)− vi−(−)(c))

]

In generalized calculus terms for t > c, we get vo(t) = −RCc D1
t vi (t). The ini-

tialization function to this generalized derivative is ψ(vi , 1, a, 0, t) = d
dt vi−(−)(c).

This initialization is normally put as zero. However, this initialization term can give
a “pulse” response at time t = c.

8.2.5 Operational Amplifier Differentiator
with Distributed Element

Figure 8.6 is the circuit where at the feedback element of the circuit is replaced by
semi-infinite lossless transmission line (zero-order distributed element).

The following is the derivation for the differentiator with distributed zero-order
elements:

vi (t)− v−(t) = 1

C
c D−1

t ii (t) = 1

C

t
∫

c

ii (τ )dτ + vi−(−)(c)

The distributed lossless (zero-order) element is connected at feedback path and
using its relation we get

v−(t)− vo(t) = 1

k
c D0

t i f (t) = 1

k
i f (t)+ 1

k
ψ(i f , 0, a, c, t), with k =

√

c

l

Fig. 8.6 Differentiator circuit
with distributed element
(one-order differentiator)

c

• • •

1

1

c

ii i f

vi C v– vo
+

v+
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Putting ii (t) = i f (t) and v−(t) = 0, we have the differentiator expression:

vo(t) = −1

k

[

C
d

dt

(

vi (t)− vi−(−)(c)
)+ ψ(i f , 0, a, c, t)

]

or

vo(t) = −C
1

k

[

d

dt
vi (t)+ 1

C
ψ(vi , 1, a, c, t)

]

In terms of generalized calculus notations and concepts, the differentiator circuit
is described by vo(t) = −C 1

k c D1
t vi (t), where initialization function associated

with the derivative operator is ψ(vi , 1, a, c, t) = − 1
Cψ(i f , 0, a, c, t). As in the

integrator case with distributed zero-order elements, the perturbations at the source
terminal end will be propagated away and never return back (reflected). It is
noted that for terminally charged integer order differentiator with lumped elements
ψe f f = 0.

8.2.6 Operational Amplifier as Zero-Order Gain
with Lumped Components

In Fig. 8.1 consider lumped impedances as pure lumped resistances. Therefore, the
circuit transfer function is
vo(t) = − R f

Ri
vi (t) = − R f

Ri
c D0

t vi (t), where clearly ψ(vi , 0, a, c, t) = 0. Mean-
ing that this circuit configuration has no memory. Also it is a classical zero-order
operator.

8.2.7 Operational Amplifier as Zero-Order Gain
with Distributed Elements

Figure 8.7 gives the circuit diagram where feedback element and the input
element of Fig. 8.1 are constituted by distributed element as semi-infinite
lossless line.

Fig. 8.7 Gain circuit with
distributed elements
(zero-order differintegration)

l2 c2

l2 c2

l1 c1

if
l1 c1

vi v– vo

ii v+
+
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The describing relations are

ii (t) =
√

c1

l1
c D0

t

[

vi (t)− v−(t)
]

,

where initialization ψ(vi − v−, 0, a, c, t) =
√

l1

c1
ϕ1(t).

v−(t)− vo(t) =
√

l2

c2
c D0

t i f (t),

where the initialization ψ(i f , 0, a, c, t) =
√

c2

l2
ϕ2(t).

Putting ii = i f and v−(t) = 0, we have the expression:

vo(t) = −
√

l2

c2
c D0

t

[√

c1

l1
c D0

t vi (t)

]

= −
√

c1l2

c2l1
c D0

t vi (t)

= −
√

l2

c2
cd0

t

[√

c1

l1

{

cd0
t vi (t)+ ψ(vi − v−, 0, a, c, t)+ ψ(i f , 0, a, c, t)

}

]

= −
√

c1l2

c2l1
cd0

t vi (t)−
√

l2

c2
ϕ1(t)− ϕ2(t)

Summarily, vo(t) = −
√

c1l2
c2l1 c D0

t vi (t) and initialization to this as

ψ(vi , 0, a, c, t) = ψ(vi − v−, 0, a, c, t)+
√

l1

c1
ψ(i f , 0, a, c, t)

=
√

l1

c1
ϕ1(t)+

√

c2l1

c1l2
ϕ2(t).

Summarizing the above observation leads that zero-order gain circuit returns the
input function vi (t) but provides extra time function based on initial distribution of
voltage currents in the distributed elements, i.e. ψ(vi , 0, a, c, t).

8.2.8 Operational Amplifier Circuit for Semi-differintegration
by Semi-infinite Lossy Line

Figure 8.8 describes the semi-infinite lossy line (a half-order element). As opposed
to lossless case, the voltage current relation is of half order here as it was zero order
for lossless case.



8.2 Electronics Operational Amplifier Circuits 165

Fig. 8.8 Semi-infinite lossy
line (half-order element) i(t)

v(t)

• • • •

• • • •

The diffusion equation corresponding to this lossy line is ∂v(x,t)
∂ t = α ∂

2v(x,t)
∂x2 . In

Fig. 8.8, v(t) and i (t) are the voltage and current at the source terminal. The per unit
length distributed resistance is r and per unit length distributed capacitance is c. The
diffusivity coefficient is α = rc. The initial state of charge and voltage that exists in
infinite array of elements is ψ .

The terminal characteristics is v(t) = r
√
α d−1/2

dt−1/2 i (t)+ ϕ1(t) or

v(t) = r
√
αc D−1/2

t i (t), where ψ(i,−1/2, a, c, t) = 1

r
√
α
ϕ1(t) or

i (t) = 1

r
√
α

d1/2

dt1/2
v(t)+ ϕ2(t) or

i (t) = 1

r
√
α

c D1/2
t v(t), where ψ(v, 1/2, a, c, t) = r

√
αϕ2(t).

8.2.9 Operational Amplifier Circuit for Semi-integrator

Figure 8.9 is the circuit for semi-integrator.
The component equations are the following:

vi (t)− v−(t) = ii (t)R

v−(t)− vo(t) = r
√
αc D−1/2

t i f (t), where ψ(i f ,−1/2, a, c, t) = 1

r
√
α
ϕ1(t).

Putting i f = ii and v−(t) = 0, we have the expression for semi-integration:

Fig. 8.9 Semi-integrator
circuit (half-order integrator)

ii if
vi R v–

vo
v+ +
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vo(t) = −r
√
α

R
c D−1/2

t vi (t),

where ψ(vi , t,−1/2, a, c, t) = Rψ(i f ,−1/2, a, c, t) = R
r
√
α
ϕ1(t).

Alluding to Fig. 8.1, the input element and output element impedances are
Z f = r

√
α

s1/2 and Zi = R, which leads to transfer function in s-domain as
V0(s)
Vi (s) = − r

√
α

Rs1/2 . Realizing this with r = 1K Ω and c = 1μF with R = 22K Ω gives

the transfer function for the semi-integrator as V0(s)
Vi (s) = −1.4374s−0.5. Replacing

s → jω, the transfer function becomes V0( jω)
Vi ( jω) = − 1.4374√

ω
exp
(− j π4

)

. Following
an inverting amplifier after semi-integration stage of Fig. 8.9, one gets fractional
(semi) integral control block for analog fractional order PID circuit. This block will
behave as a constant phase element of −450. The controller constant like reset rate

of PID is Ti = Z f

Zi
=
√

r
c

R = 1.4374.

8.2.10 Operational Amplifier Circuit for Semi-differentiator

Figure 8.10 shows a semi-differentiator circuit with semi-infinite lossy element
The expressions for circuit of Fig. 8.10 are ii (t) = 1

r
√
α c D1/2

t

[

vi (t)− v−(t)
]

.
Initializing expression is

ψ(vi − v−, 1/2, a, c, t) = r
√
αϕ2(t)

and v−(t)− vo(t) = i f (t)R. Putting i f = ii and v−(t) = 0 we have

vo(t) = −i f (t)R = − R

r
√
α

c D1/2
t vi (t)

and ψ(vi , 1/2, a, c, t) = ψ(vi − v−, 1/2, a, c, t) = r
√
αϕ2(t).

Fig. 8.10 Semi-differentiator
circuit

r c

i f 

r c R

vi v– 0v

ii v+ +
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8.2.11 Cascaded Semi-integrators

Figure 8.11 represents two semi-integrator circuits in series, which gives integral
operation of order one.

The circuit of Fig. 8.11 has the following expressions:
v2(t) = − r1

√
α1

R1
c D−1/2

t v1(t) with ψ1(v1,−1/2, a, c, t) is first integrator, transfer
function;
v3(t) = − r2

√
α2

R2
c D−1/2

t v2(t) with ψ2(v2,−1/2, a, c, t) is the second integrator
expression.

Then combining we have

v3(t) = r1r2
√
α1α2

R1 R2
c D−1

t v1(t) with

ψ(v1,−1, a, c, t) = cd−1/2
t ψ1(v1,−1/2, a, c, t)− R2

r2
√
α2
ψ2(v2,−1/2, a, c, t).

8.2.12 Semi-integrator Series with Semi-differentiator Circuit

Figure 8.12 gives the schematic of cascaded semi-differentiator and semi-integrator
to have overall zero order.

R1 = R2 = r1 = r2 = √α1 = √α2 = 1.

The solution is v3(t) = −c D1/2
t v2(t) = −c D1/2

t

[

−c D−1/2
t v1(t)

]

= c D0
t v1(t), as

expected. Here v3(t) = v1(t) only if

ψ(v1, 0, a, c, t) = cd1/2
t ψ(v1, 1/2, a, c, t)− ψ(v2, 1/2, a, c, t) = 0,

whereψ(v1, 0, a, c, t) is the combined initialization function for the combined oper-
ator c D0

t v1(t). This is satisfied under terminal charging. However under side charg-
ing conditions, it is seen that v3(t) = v1(t)+ψ(v1, 0, a, c, t) and the zero property is

r1

2
r

r1 c1

2
r

c2

R1 R2

v1 v2
v3

Fig. 8.11 Cascaded semi-integrators
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r1

r1 c1 r2
R2

R1 r2
c2

v1 v2 v3
+

Fig. 8.12 Cascade circuit semi-integrator and semi-differentiator

not satisfied (not necessarily satisfied), as was indicated in the concept of initialized
generalized calculus.

8.3 Battery Dynamics

8.3.1 Battery as Fractional Order System

This section analyzes a simple battery. Electrolytic cell is known to exhibit fractional
behavior, typically of half order. The fractional system is an electrode–electrolyte
interface, where diffusion takes place. This diffusion process is called the Warburg
impedance (or a constant phase CPE element). The two phases of battery operation
is considered: charging and discharging phases. The discharge phase is load drawing
(usage). The charging phase takes place from t = a = 0 to t = c, with actual current
flowing i.e. charging occurring for a = 0 ≤ t ≤ b. Later is the load drawing usage
phase. Figure 8.13 gives diagram of battery circuit charging, discharging phase cir-
cuit and the charge current profile. Here constant current charging is assumed. The
block “W” represents Warburg impedance of electrode–electrolyte interface.

8.3.2 Battery Charging Phase

Time domain equations from Fig. 8.13 are

v1(t)− v2(t) = 1
C 0 D−1

t ic(t) = 1
C

t
∫

0
ic(τ )dτ + v1−2(0)

v2(t)− v3(t) = i R(t)R

ic(t) = i R(t)+ iW (t), and

iW (t) = 1
B 0 D1/2

t [v2(t)− v3(t)]

Taking Laplace transform yields
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v1
c v3 1v c v3

v2 iw v2 iw
ic ci

R R
iR

R2 iR

iRL

Ic

a = 0 b c t

W W

Fig. 8.13 Battery charging, discharging circuit, and charging current profile

V1(s)− V2(s) = 1
Cs Ic(s)+ v1−2(0)

s

V2(s)− V3(s) = IR(s)R

Ic(s) = IR(s)+ IW (s) and

IW (s) = 1
B

[

s1/2 (V2(s)− V3(s))+ ψ(v2 − v3, 1/2, 0, c, s)
]

Eliminating IW (s), IR(s), V2(s) and rearranging, we arrive at the following:

Ic(s) = s
(

1
B s1/2 + 1

R

)

s + 1
CB s1/2 + 1

RC

{V1(s)− V3(s)}

+
1
B sψ(v2 − v3, 1/2, 0, c, s)− v1−2(0)

{

1
B s1/2 + 1

R

}

s + 1
CB s1/2 + 1

RC

or V1(s)− V3(s) =
{

s + 1
CB s1/2 + 1

RC

s
(

1
B s1/2 + 1

R

)

}

Ic(s)−
1
Bψ(s)

1
B s1/2 + 1

R

+ v1−2(0)

s

These Laplace expressions are used to carry out transfer function analysis and
to obtain time domain responses. The following are the useful Laplace transform
pairs:
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(

B√
s + B

R

)

↔ B

[

1√
π t
− B

R
e( B

R )2
t er f c

(

B

R

√
t

)]

[

1
C√

s
(√

s + B
R

)

]

↔ 1

C
e( B

R )2
t er f c

(

B

R

√
t

)

[

B
RC

s
(√

s + B
R

)

]

↔ 1

C

[

1− e( B
R )2

t er f c

(

B

R

√
t

)]

Using standard Laplace transform tables, the time response is got for an impulse
charging (Ic(s) = 1) as:

v1(t)− v3(t) = 1

C
+ B

{

1√
π t
− B

R
exp

(

B2

R2
t

)

er f c

(

B
√

t

R

)}

,

During the initialization period, both the initialization functions are taken as zero
for 0 = a < t ≤ c. The above time expression is for impulse charging and for any
general charging, this expression is convoluted with the charging current profile i.e.
general ic(t), to get following:

v1(t)− v3(t) =
t
∫

0

{

1

C
+ B

{

1√
πτ
− B

R
e( B

R )2
τer f c

(

B
√
τ

R

)}}

ic(t − τ )dτ

As in Fig. 8.13, if the constant current charge case for charging period ic(t) = Ic for
0 = a < t ≤ b, then the step current can be resolved as function of two unit step
functions. ic(t − τ ) = Ic(u(t − τ ) − u(t − τ − b)) and the charging equation thus
becomes

v1(t)− v3(t) =
t
∫

0

[

1

C
+ B

{

1√
πτ
− B

R
e( B

R )2
τer f c

(

B
√
τ

R

)}]

Icdτ

− u(t − b)

t−b
∫

0

[

1

C
+ B

{

1√
πτ
− B

R
e( B

R )2
τer f c

(

B
√
τ

R

)}]

Icdτ

Using the solved integral formula

t
∫

0

eEτer f c
(√

Eτ
)

dτ= 1

B

[

eEt er f c
(√

Et
)

− 1
]

+ 2√
π

√
Et,
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we get the charging equation as:

v1(t)− v3(t) = Ic

[

t

C
+ 2B

√

t

π
− R

B

{

e( B
R )2

t er f c

(

B
√

t

R

)

− 1+ 2√
π

(

B
√

t

R

)}
]

− Icu(t − b)

[

t − b

C
+2B

√

t − b

π
− R

B

{

e( B
R )2

(t−b)er f c

(

B
√

t − b

R

)

−1+ 2√
π

(

B
√

t − b

R

)}]

Figure 8.14 gives the charging voltage v1(t) − v3(t) for charging period of
0 < t < b = 1, and during relaxation period t > 1. The same figure demonstrates
the voltage across Warburg element v2(t) − v3(t). For simplicity, the parameters of
battery is chosen as R = B = C = 1.0.

The above charging expression of total battery includes the effect of both the
Warburg element and the capacitor, which is segregated as described in the follow-
ing expressions. Since the v1−2(0) = 0 must be zero, the voltage v2(t) − v3(t) is
determined as:

v2(t)− v3(t) = {v1(t)− v3(t)} − {v1(t)− v2(t)} = {v1(t)− v3(t)} − 1

C

t
∫

0

ic(τ )dτ

{v1(t)− v3(t)} − 1

C

t
∫

0

Ic {u(τ )− u(τ − b)} dτ

Using the derived expression for v1(t)−v3(t), the Warburg element will have voltage

v2(t)− v3(t) =
t
∫

0

B

{

1√
πτ
− B

R
e( B

R )2
τer f c

(

B
√
τ

R

)}

Icdτ

− u(t − b)

t−b
∫

0

B

{

1√
πτ
− B

R
e( B

R )2
τ er f c

(

B
√
τ

R

)}

Icdτ.

Fig. 8.14 Battery charging
till time 1 and thereafter
relaxation period for constant
current charging current up to
time 1

1.6

1.0

0.6

v2–v3

v1–v3

t1.0
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The above expression can be a good example for mathematical basis for an ini-
tialization function for systems of this type with constant current charging. These
equations are also valid for t > c with external open circuit. Also if it is desired to
initialize at c = 0, then axis shifting with t → (t − c) may be carried out for the
expression obtained for Warburg impedance.

Warburg element is a semi-derivative constitutive element

iW = 1

B
0 D1/2

t {v2(t)− v3(t)} ;

it is assumed and is terminally charged. Then the initialization function for the ele-
ment is defined formally as

ψ( f, u, a, c, t) = dm

dtm
ψ( f,−p, a, c, t)+ ψ(h,m, a, c, t),

by standard rule described in initialization chapter. Because of assumption of termi-

nal chargingψ(h, 1, a, c, t) = 0, thusψW = 1
Γ(1/2)

d
dt

c
∫

a
(t−τ )

1
2−1 {v2(τ )− v3(τ )}dτ ,

for t > c.

8.3.3 Battery Discharge Phase

Here in the solution, demonstration will be made to transform s → p and obtain the
solution. Referring to the circuit in Fig. 8.13, we write the following:

v1(t)− v2(t) = 1
C c D−1

t ic(t) = 1
C

t
∫

c
ic(t)dt + v1−2(c)

v2(t)− v3(t) = i R(t)R

ic(t) = i R(t)+ iW (t) = i RL(t)

v3(t)− v1(t) = i RL(t)RL and

iW (t) = 1
B c D1/2

t {v2(t)− v3(t)}

Laplace transforming the above set, we obtain

V1(s)− V2(s) = 1
Cs Ic(s)+ v1−2(c)

s

V2(s)− V3(s) = IR(s)R

Ic(s) = IR(s)+ IW (s) = IRL (s)

V3(s)− V1(s) = IRL (s)RL

IW (s) = 1
B

{

s1/2 (v2(s)− v3(s))+ ψW (v2 − v3, 1/2, 0, c, s)
}
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From charging analysis of equation V1(s)− V3(s) and with

Ic(s) = IRL (s) = {V3(s)− V1(s)} /RL

and taking a = 0, c = 1

V1(s)− V3(s) =
[

RL s
(

s1/2

B + 1
R

)

RL
s3/2

B +
(

1+ RL
R

)

s+ 1
C B s1/2+ 1

RC

] [

v1−2(1)
s − ψW (v2−v3,1/2,0,1,s)

B
(

s1/2
B + 1

R

)

]

There is no forced term (forced function is zero) but contains initialization terms
from capacitor v1−2(1) and from Warburg impedance ψW , the historic past of the
element.

The technique to solve the above expression is to convert s → p domain. By
putting p = s1/2, then p2 = s, p3 = s3/2

V1(p)− V3(p) =
[

p2(p+ B
R )

p3+ B
RL

(

1+ RL
R

)

p2+ 1
RL C p+ B

RL RC

]
[

v1−2(1)
p2 +

1
B ψ(v2−v3,1/2,0,1,p2)

p
B+ 1

R

]

Here appropriate substitution is called for ψ(p2), and then using partial fractions to
achieve p domain response. This obtained p domain response may be transformed
back to s domain and then inverse Laplace operation to get time domain answer. To
carry out this, special transform technique is required. The special transformation is
“conformal transformation.”

It is possible to simplify and rewrite the above expression in p-variable as:

V1(p)− V3(p) = (p + k1)(p2 + k2 p + k3)

(p + a)(p3 + k4 p + k4)

This can be partial fractioned and written as, first in p variable and then substituting
p = √s as:

V1(p)− V3(p) = A
p+a + B

p+b + C
p+c + D

p+d = A√
s+a
+ B√

s+b
+ C√

s+c
+ D√

s+d

Inverse Laplace transform will give time response as:

v1(t)− v3(t) = AF1/2 [−a, t]+ B F1/2 [−b, t]+ C F1/2 [−c, t]+ DF1/2 [−d, t]

Here F1/2 is the Robotnov–Hartley function, A, B,C, D, a, b, c, d are complex
numbers (in general).

It is now possible to do fractional order system analysis and design directly on the
transformed plane. To do this, it is essential to choose the greatest common fraction
q of a particular system. Once this is done, all powers of sq are replaced by powers
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of p = sq . Then standard pole-zero analysis is done. This analysis includes root
finding, partial fractions, root-locus compensation, etc. This is “conformal transfor-
mation,” s → w, plane is discussed in Chap. 7.

8.4 Tracking Filter

The concept of fractional calculus adds another dimension to many applications.
The example of fractional order-tracking filter will demonstrate the degree of free-
dom in tuning. This concept is welcome in control science applications where con-
ventional proportional integral and derivative (PID) controller gets more degree of
freedom as the order control of integration and derivative part is also available. By
this we get the new type of controller as P I αDβ . The fractional order-tracking fil-
ter is just one example. Here a noisy signal x(t) is to be filtered to yield filtered
signal y(t). Filter description is

(0 Dq
t + a)y(t) = ax(t) or 0dq

t y(t)+ ψ(y, q, 0, c, t)+ ay(t) = ax(t)

Taking Laplace gives

sq Y (s)+ ψ(s)+ aY (s) = a X(s)

Y (s) = a

sq + a
X(s)− ψ(s)

sq + a

The use of ψ(s) is to “pre-charge” the filter to maximize the filter lag, if taken zero
then

Y (s)

X(s)
= a

sq + a
is the transfer function of the filter.

For a unit step input X(s), the filter response is given by Y (s) = a
s(sq+a) . The full

range of freedom is available, 0 ≤ q ≤ 1. Taking q = 1/2, we have the time
response y(t) = 1− ea2t er f c(at1/2).

For q = 1/2, the forced response is obtained for a Heaviside unit step h(t) (as
above), which is from the listed transform tables. Following steps demonstrate the
solution of filter response for any order other than half, for unit step.

Let us write the filter output as

Y (s) = a

s(sq + a)
.

This we rewrite as follows:

Y (s) = a
1/a

s

(

a

sq + a

)

= a
1/a

s

(

1− sq

sq + a

)

= 1

s
− sq

s (sq + a)
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Using the Laplace pair L
{

Eq [−atq]
} = 1

s

[

sq L
{

Fq [−at]
}]

and

L
{

Eq
[

atq
]} = sq−1

sq − a
, q > 0,

we get the inverse of Laplace of

Y (s) = 1

s
− sq

s(sq + a)
= 1

s
− sq−1

sq + a

to get time response:

y(t) = [h(t)− Eq (−atq)
] = 1− Eq[−atq],

where h(t) =
{

1 t ≥ 0
0 t < 0

is Heaviside step.

For a first-order RC filter (integer-order filter with order q = 1) the Heaviside
step response is y(t) = 1−exp(−at), with time constant τ = RC = 1/a. For q = 1,
the one- parameter Mittag-Leffler function Eq [−atq] = E1 [−at] = exp(−at).
Here, passing remark is made, as for integer order calculus, the exponential function
appears as solution, for fractional order calculus Mittag-Leffler or its variants say
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Fig. 8.15 a Response to step for varying a at q = 0.5; b Response to a step for varying q at a = 1



176 8 Application of Generalized Fractional Calculus in Electrical Circuit Analysis

Robotnov-Hartley function, Miller-Ross function, etc. are the basis, and appears in
solutions (Fig. 8.15).

8.4.1 Observations

The tracking of the filter performance with varying qth order as said in Fig. 8.16
gives a variable slope of cut-off roll over at the same corner frequency. Also varying
the order q , by keeping the corner frequency unchanged, also controls the phase.
Conventionally, the tuning of filter call for tuning by adjustment of a, to have par-
ticular response in time domain, whereas the extra freedom of q gives temporal
response adjustment at the user’s will. This extra freedom is what the fractional
order tuners give i.e. to get temporal or frequency characteristics at user’s will. This
is the concept of “fractional pole,” which is fundamental to all these fractional order
systems.
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Fig. 8.16 Gain and phase plot with change of order q with constant a
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8.5 Fractional Order State Vector Representation
in Circuit Theory

This example, in this chapter, is chosen as a working model for vector space repre-
sentation. The vector initialization issues have been touched in Chap. 7. This exam-
ple will elaborate on the same topic and may be therefore extended for any system
having set of fractional differential equations as basic phenomena representation.
This example pertains to electrical science circuit analysis. Figure 8.17 repre-
sents the circuit diagram of a voltage source connected by an inductor to a semi-
infinite lossy transmission line. As described earlier, the lossy semi-infinite line
has got terminal characteristics defined by semi-differential element of fractional
calculus.

Dynamic relationship between current and voltage for inductor is
vL (t) = Lc D1

t i (t), where L is the inductance of the coil. For a semi-infinite
lossy line, the dynamic relationship is vo(t) = αc D−1/2

t i (t), where α is the line
constant which depends on the distributed ohmic resistance per unit length and
distributed capacitance per unit length. In the differential form with c = 0 (start
time), these equations can be expressed as:

0d1
t i (t)+ψ(1, i (t), a, 0, t) = 1

L
vL (t)and0d1/2

t vo(t)+ψ(1/2, vo(t), a, 0, t) = αi (t).

From Kirchoff’s law, we have vL (t) = vi (t) − vo(t). Replacing this in the inductor
expression above, we get the dynamic equation as

0d1
t i (t) = − 1

L
vo(t)+ 1

L
vi (t)− ψ(1, i (t), a, 0, t).

To have vector space of fractional dynamic variable, it is necessary to reduce all the
differential relationship to differential based on the largest common (denominator)
differential fraction. In this case, the choice is 1/2. We define the fractional order
dynamic variable vector as:

sL

+

+

VL(s) –

–

+ 
Vi(s) Vo(s)

Lossy line

_

i(t) ....s–1/2

Fig. 8.17 Voltage source connected to a lossy transmission line through series inductor
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x(t) =
⎡

⎣

x1(t)
x2(t)
x3(t)

⎤

⎦ ≡
⎡

⎣

vo(t)
i (t)

0d1/2
t i (t)

⎤

⎦

The system input is defined as u(t) = vi (t), and the system output is chosen as
y(t) = vo(t). The vector representation of the system will be as follows:

0d1/2
t x(t) =

⎡

⎣

0 α 0
0 0 1
− 1

L 0 0

⎤

⎦ x(t)+
⎡

⎣

0
0
1
L

⎤

⎦ u(t)+
⎡

⎣

−ψ(1/2, vo(t), a, 0, t)
0

−ψ(1, i (t), a, 0, t)

⎤

⎦

y(t) = [1 0 0
]

x(t)+ [0] u(t)

Performing Laplace transformations and matrix algebraic manipulations on the
above two vector space equations, we obtain

X(s) = 1

s3/2 + α/L

⎡

⎢

⎣

s αs1/2 α

− 1
L s s1/2

− s1/2

L − α
L s

⎤

⎥

⎦

⎧

⎨

⎩

⎡

⎣

0
0
1
L

⎤

⎦U (s)−
⎡

⎣

ψ1(s)
ψ2(s)
ψ3(s)

⎤

⎦

⎫

⎬

⎭

where ψ1(s) = ψ(1/2, vo(t), a, 0, s), ψ2(s) = 0 and ψ3(s) = ψ(1, i (t), a, 0, s),
which is constant for an inductor. The Laplace transform of the forced response
X F(s) is the first term, from the above relation is

X F(s) = 1/L
s3/2+α/L

⎡

⎣

α

s1/2

s

⎤

⎦U (s). The Laplace transform of the initialized

response X −i (s) is from the second term that is:

Xi (s) = −1

s3/2 + α/L

⎡

⎢

⎣

sψ1(s)+ αs1/2ψ2(s)+ αψ3(s)
(−1

L

)

ψ1(s)+ sψ2(s)+ s1/2ψ3(s)
(

−s1/2

L

)

ψ1(s)+ (−αL
)

ψ2(s)+ sψ3(s)

⎤

⎥

⎦

These expressions can now be evaluated for any specific input and initialization
function.

The choice of fractional dynamic variable order basis q should imply minimal
configurations. In the above example choosing q = 1/4 rather than 1/2 would yield
six dynamic variables, instead of three. It is also important to remember that the
least number of fractional dynamic variables is obtained by choosing the basis q as
the largest common (denominator) fraction of the differential order (for q1 = 1/2
and q2 = 1/3 would require basis q = 1/6).

The input output transfer function with L = 1 is

G(s) = V0(s)

Vi (s)
=

1√
s

s + 1√
s

= 1

s3/2 + 1
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The time domain representation of the transfer function (without initialization) is
thus the following:

0d3/2
t v0(t)+ v0(t) = vi (t).

Here initialization is zero,

ψ(v0, 3/2, a, 0, t) = 0,

thus, operation is 0 D3/2
t v0(t) = 0d3/2

t v0(t). This problem can be solved in several
ways depending upon the specific input. Using Fq [a, t] function as obtained for
the solution of “fundamental fractional order differential equation,” the impulse
response of this circuit with q = 3/2 as basis, and vi (t) = δ(t), Vi (s) = 1, the
solution is

v0(t) = L−1

{

1

s3/2 + 1

}

= F3/2 [−1.t] .

For a Heaviside step h(t) =
{

1 t ≥ 0
0 t < 0

input Vi (s) = 1/s, the solution is

v0(t) = L−1

{

1

s
(

s3/2 + 1
)

}

= h(t)− E3/2
[−t3/2

]

For the same circuit, solution basis is now chosen to be q = 1/2. Here w-plane
“conformal transformation” is demonstrated. This transformation was described in
Chap. 7, and let s1/2 = w. Putting this, we get w-plane transfer function as:

V0(w)

Vi (w)
= G(w) = 1

w3 + 1

The denominator w3 + 1 has one root at w = −1. Dividing the polynomialw3 + 1
by (w+1) gives the other factor as, w2−w+1. The other two roots of this are from
roots of w2 − w + 1, those are w = 1

2 ± j
√

3
2 = e± jπ/3. Therefore, the factorized

form of denominator is

w3 + 1 = (w − {−1})
(

w −
{

1

2
+ j

√
3

2

})(

w −
{

1

2
− j

√
3

2

})

This transfer function has poles in w-plane at w = −1, w = e+ jπ/3, and
w = e− jπ/3. Since the basis q = 1/2, the stability wedge is at angle

φ = ±q
π

2
= ±π

4
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. All these poles are to the left of the instability wedge in w-plane. The two poles
exp(+ jπ/3) and exp(− jπ/3) in the right half of the w-plane correspond to poles
at s = e+ j2π/3 and s = e− j2π/3 in s-plane, therefore an oscillatory response is
suggested. The third pole in w-plane w = −1 is in “hyper- damped” zone. This
pole adds a rapidly decaying time response, to the oscillatory response due to the
other two poles.

Expanding the G(w) obtained for base q = 1/2, we get the following:

G(w) = 1

w3 + 1
= 1

3

⎧

⎨

⎩

1

w + 1
−

1
2 + j

√
3

2

w −
(

1
2 + j

√
3

2

) −
1
2 − j

√
3

2

w −
(

1
2 − j

√
3

2

)

⎫

⎬

⎭

= 0.3333

w + 1
− 0.1667+ j0.2887

w − (0.5+ j0.866)
− 0.1667− j0.2887

w − (0.5− j0.866)

= 0.333

s1/2 + 1
− 0.1667+ j0.2887

s1/2 − (0.5+ j0.866)
− 0.1667− j0.2887

s1/2 − (0.5− j0.866)

The time response can be obtained by inverse Laplace transforming and by using

L
{

Fq [±a, t]
} = 1

sq∓a = 1
w∓a pair as:

v0(t) = 0.3333F1/2 [−1, t]− (0.1667+ j0.2887)F1/2 [0.5+ j0.866, t]

− (0.1667− j0.2887)F1/2 [0.5− j0.866, t]

v0(t) thus obtained above for the circuit of semi-derivative terminal point immi-
tance, connected to a voltage source through an inductor, is for only “forced-
response.” Similarly, the solution of the “initialization response” may be obtained
and then superimposed on this.

8.6 Concluding Comments

Here, a variety of electrical and electronic circuits have given the feel of generalized
fractional calculus, approaches. The intentions are to demonstrate the broad array
of uses of the fractional calculus, to clearly delineate the effects of the initialization
function, to contrast generalized versus integer order differentiation and integration,
to demonstrate the generalized “zero operation” (inverse operation), to demonstrate
the use of Laplace transform methods, to show some unusual aspects of mathematics
concerning the modeling of distributed effects—broadly to give scientists and engi-
neers a concept to model the reality of system being investigated by use of fractional
calculus.



Chapter 9
Application of Generalized Fractional Calculus
in Other Science and Engineering Fields

9.1 Introduction

In this chapter, a series of scientific and engineering application is shown, where the
fractional calculus is finding application. We start with diffusion model in elec-
trochemistry, electrode–electrolyte interface, capacitor theory, fractance circuits,
application in feedback control systems, viscoelasticity, and vibration damping sys-
tem. This survey cannot cover the complete applications like modern trends in
electromagnetic theory, such as fractional multipole, hereditary prediction of gene
behavior, fractional neural modeling in bio-sciences, communication channel traf-
fic models, chaos theory; hence simple applications are provided for appreciation.
However, in Sect. 9.6, attempt is made to provide vector state feedback controller
and observer that is available for multivariate control science.

9.2 Diffusion Model in Electrochemistry

One of the important studies in electrochemistry is the determination of concentra-
tion of analyzed electroactive species near the electrode surface. The characteristic
describing function is found experimentally as m(t) = 0 D−0.5

t i (t), which is the
fractional (half) integral of the current. Then the subject of interest is to find sur-
face concentration Cs(t) of the electro active species, which can be evaluated as
Cs (t) = C0 − k(0 D−0.5

t i (t)), where k = 1/(n AF
√

D)—A being electrode area, n
number of electrons involved in the reaction, D is the diffusion coefficient, and F is
the Faraday constant. C0 is the uniform concentration of the electro active species
throughout the electrolyte medium, at the initial equilibrium situation characterized
by constant potential at which the electrochemical reaction is possible.

The relationship is derived from the classical diffusion equation:

∂C(x, t)

∂ t
= D

∂2C(x, t)

∂x2
for (0 < x <∞&t > 0)

with C(∞, t) = C0&C(x, 0) = C0and

[

D
∂C(x, t)

∂x

]

x=0

= i (t)

n AF

S. Das, Functional Fractional Calculus for System Identification and Controls. 181
C© Springer 2008
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(similar equation for lossy semi-infinite transmission line and heat flux studies)
Some interesting points are listed below:

(1) m(t) is characteristic intermediate between the current i (t) and the charge passed
q(t). The charged passed is an integral q(t) =0 D−1

t i (t). This hints at non-
conservation law of charges, as m(t) manifests.

(2) The kinetics of the electrode process and the surface property of the electrode
(alluding to heterogeneity) are not assumed.

(3) Instead of classical diffusion equation, it is possible to model with fractional
order diffusion equation as:

0 Dα
t C(x, t) = D

∂2C(x, t)

∂x2

with 0 < α < 1, then the surface concentration will be related to
mα(t) = 0 Dα/2

t i (t).

9.3 Electrode–Electrolyte Interface Impedance

Warburg impedance in electrical battery (cell) is another motivating example of
the reality of fractional calculus. Limitation of electrical batteries, which always
exhibit a limited current output, is due to the fact that microscopic electrochemical
process at the electrode–electrolyte interface has “finite rate” and limits the current
output. Battery manufacturers use porous electrodes to circumvent this limitation,
by way of increasing the surface area. It has been experimentally established that
metal–electrolyte surface interface impedance does not exhibit pure capacitance
behavior, instead governed as power law: Z (ω) = K/( jω)α, where 0 < α < 1. In
Laplace term, Z (s) = K s−α . This power term approaches unity (impedance tending
to capacitive) as the smoothness of the interface is increased to infinity.

Warburg impedance Z (ω) ∝ ( jω)−0.5, for any solid-state diffusion, electrochem-
istry, gives rise to power law in frequency. The constitutive equation is

∂C

∂ t
= D

∂2C

∂x2
,

which gives rise to Z (ω) ∝ ( jω)−0.5. When diffusion takes place in a layer of thick-
ness L driven by diffusion over voltage at x = 0, the observed behavior is not
solely Warburg impedance. In a spatially restricted situation, there are at least two
domains in the impedance spectra, which are separated by characteristic frequency
ωd = D/L2. Warburg impedance occurs at a high-frequency regime, ω > ωd . At
low frequency regime ω < ωd , the impedance behavior depends on whether the
diffusion species are reflected or extracted at the end of region (x = L). The reason
for this is that the frequencyωd corresponds to the transit time for a diffusing particle
injected at x = 0, to cover a distance L. For ω > ωd , the particles will not sense the
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boundary x = L, so the system will behave as “semi-infinite” media. Anomalous
diffusion is characterized by a mean square displacement of the diffusing parti-
cles that does not follow the ordinary linear law < r2 >∝ t , but more generally
< r2 >∝ tβ .

Not surprisingly, many different mechanisms give rise to anomalous behavior—
like complex flow, flow through porous, flow through random tubular ion exchange
resin—due to structural complexity, shapes of complex geometry, etc.

The continuity equation is the fundamental conservation law

∂C

∂ t
= −∂ J

∂x

relating to time variation of the number density C of the diffusing species to the
macroscopic flux, J . The constitutive equation for diffusion is J = −D(∂C/∂x). To
calculate diffusion impedance, consider E(at x = 0) = (d E/dC)atx=0 C(at x = 0)
where E is the excitation voltage at x = 0; the expression gives linear dependence
at x = 0. The current is i (at x = 0) = q AJ . Taking the Laplace as the above
expressions of voltage and currents are for small changing quantities with respect
to time, we obtain at x = 0, E(s) = (d E/dC)0 C(s) and I (s) = q AJ (s). Thus the
diffusion impedance is Z (s) = E(s)

I (s) = RW
D
L

C(s)
J (s) where Warburg constant is RW and

is given by RW = L
q AD

(

d E
dC

)

0
.

The various diffusion equations for small amplitude sinusoidal concentration
may be written as in the Laplace domain form by taking Laplace of continuity and
constitutive equations: sC(s) = − ∂ J (s)

∂x and J (s) = −D ∂C(s)
∂x . From these, we get

∂2C
∂x2 = 1

λ2 C(s).
Here

λ(s) =
√

D

s
=
√

ωd

s
L

is the function of frequency. This Laplace (time–frequency) equation has the most
general solution as C(s) = B1 cosh x

λ
+ B2 sinh x

λ
.

The diffusion impedance at origin for a semi-infinite case having boundary con-
dition C(x = L) = 0 is

Z (s) = RW
D

L

C(s)

J (s)
= RW

(ωd

s

)1/2
tanh

[
(

s

ωd

)1/2
]

.

The same can be represented as semi-infinite lossy transmission line model too with
r and c, as per the unit length resistance and capacitance expressed as r = RW /L
and c = L/RW D.
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9.4 Capacitor Theory

Capacitor is a charge storage devise and it is assumed that whatever charges are
pumped they are held between the plates (electrodes) by ideal dielectric, having no
loss. Therefore, the impedance of non-leaky capacitor or ideal capacitor is Zc =
(1/jωC), with the dielectric constant assumed to be ideal as ε = ε′ − j0. Now if
we really have dielectric absorption, then the real capacitor is Zc = 1/( jωC)0.999,
having slight imperfection, but good for electronic circuits and sample and hold
circuits, etc. Now if one designs a leaky capacitor by selecting dielectric (not ideal)
but having ε = ε′ − jε′′ with ε′ = ε′′ = 106 for wide range of frequency and
temperature then ε = εrω

−1/2(1 − j ) = εr

√
2( jω)−1/2. Using this dielectric, the

capacitance impedance is

Z = 1

jωCε
= 1

jωCεr

√
2( jω)−1/2

= 1

Cεr

√
2( jω)1/2

.

The dielectric is lithium hydrazium sulphate (LiN2H2SO4). These capacitors are
useful to realize the analog circuits for fractional order controller. Figure 9.1 gives
the operational amplifier realization of using these capacitors.

This fact was experimented in the late nineteenth century by M.J. Curie, who
noted the current voltage relation as (power law) i (t) = V/htv , where (0 < v <

1, t > 0). In this expression, h is related to the capacitance of the capacitor and the
kind of dielectric, and v is related to losses of the capacitor. The transfer function
of this model of capacitor is found to be H (s) = Cφsv , where Cφ is model constant
close to what is called the capacitance. The capacitor impedance is described by
Z (s) = 1/Cφsv . Advance research has realized that these half-order capacitors by
polymer-coated electrode have been used as a constant phase element to get semi-
differentigration circuits.

s0.5
K

s0.5
K

Vi(s)

Vi(s)

V0(s)

V0(s)

R

R

+

+

sR

K

Vi(s)

V0(s)
=

V2(s)

V0(s)
= sK

Fig. 9.1 Operational amplifier circuit to have fractional integration and differentiation
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9.5 Fractance Circuit

Electrical circuit related to fractional calculus is fractance, an electrical circuit
behaving in between capacitance and resistance. An example of fractance is tree
fractance shown in Fig. 9.2, a self-similar structure.

The impedance of tree fractance is

Z ( jω) =
√

R

C

1√
ω

exp

(− jπ

4

)

;

this corresponds to the fractional order transfer function

Z (s) =
√

R

C

1√
s
.

A circuit exhibiting fractional order behavior is called fractance, not essentially
limited to half order, as described in the self-similar circuit diagram of Fig. 9.2.
The order can be of any arbitrary order in general. The fractance devises have
the following properties. They are constant phase elements, i.e. the phase angle is
constant, independent of the the frequency within wide range of frequency band.
Second it is possible to construct a filter, which has moderate characteristics, which
cannot be realized by using conventional devises. Generally speaking there are three
basic fractance devises. The most popular one is domino ladder circuit network.
Very often these are used as binary tree structure, as in Fig. 9.2. Also balanced
transmission line structure is used (or symmetrical domino ladder). Design of frac-
tances can be easily done by any of these topological configuration as mentioned, to
realize the rational approximated transfer function for the fractional order Laplace
operator (Chap. 7). Truncated continued fraction expansion (CFE) does not require
any further transformation, a rational approximation based on any other method as
(say Newton method of Carlson, described in Chap. 7) must be transformed into the
form of CFE. The values of the electrical circuit elements, which are necessary for
realizing a fractance, are then determined from the obtained continued fraction. If

R

R

C

R

C

C

• • • •

• • • •

Fig. 9.2 Tree fractance circuit
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all the coefficients of obtained CFE are positive, then the fractance can be simply
made by passive elements (R, L,C). If some of the coefficients are negative, then
the fractance realization requires active circuit as negative impedance converters,
realized by operation amplifier circuits. In some of the methods of CFE to realize the
represented transfer function, negative impedances do appear. Negative impedance
converters are also called current inverter and have transfer function as Vi/Ii = −Z ,
realized by operational amplifier.

Recalling the semi-infinite lossy transmission line, where r is series resistance
per unit length, and cis the shunt capacitance per unit length, used to demonstrate
semi-differentigration as derived terminal impedance (Chap. 3). The same circuit,
truncated, if we mentally reconstruct the equivalent impedance by traveling from
right side of the transmission line towards the left side, we will get the following:

Zrc(s) = r + 1

cs + 1
r+ 1

cs+ 1

. . . . . . . . . . . . . . . ..
1

cs+ 1

r+ 1
cs

For the shunt element, the admittance is Y (s) = cs, and thus impedance
is Z (s) = 1/Y (s). This truncated Zrc(s) is the approximation to the driv-
ing point impedance, which is

√
r/cs (fractional Laplace operator) for semi-

infinite line. The generalization of this with series impedances of different
values, Z1(s), Z3(s) . . . ..Z2n−3(s), Z2n−1(s), and shunt admittances of different
values, Y2(s),Y4(s) . . .Y2n−2(s),Y2n(s), gives the CFE form of domino ladder
immitance as:

Z (s) = Z1(s)+ 1

Y2(s)+ 1
Z3(s)+ 1

..
1

Y2n−2(s)+ 1

Z2n−1(s)+ 1
Y2n (s)

The transfer function Z (s) = s2+4s+3
s3+6s2+8s is realized by doing CFE for admittance as:

Y (s) = s3 + 6s2 + 8s

s2 + 4s + 3
= s + 1

1
2 + 1

4
3 s+ 1

3
2+

1
1
3 s

,

Meaning, shunt capacitors are 1, 4
3 ,

1
3 , corresponding to admittances, Y2(s),Y4(s),

Y6(s), the series impedance in this case is Z1(s) = 0, and the other series impedances
corresponding to Z3(s), Z5(s) are 1

2 ,
3
2 . This is standard Caurer-I form of circuit

synthesis. The same can be realized as Caurer-II form. Depending on the rational
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polynomial, the realization with CFE can have R,C, L components, combination
of them, or even negative impedances, in the ladder form.

The fundamentals of circuit synthesis are applicable for this fractance realization,
of rational transfer function synthesis for fractional order Laplace operator.

9.6 Feedback Control System

Feedback control system is one of the major areas where the concept of fractional
calculus should be applied to obtain efficient system. This concept gives an overall
efficiency (in terms of energy), also longevity and freedom, to the control engineer to
compensate any shifts in the transfer function due to parametric spreads aging, etc.
A system is efficient if the controller were of similar order to that of a plant (system)
being controlled. In reality, the systems are of fractional order and therefore to have a
fractional order controller will be efficient. Even for integer order systems, the frac-
tional controls give better freedom to achieve what is “iso-damping.”—Meaning,
to achieve an overall close loop behavior of overshoot that is independent of feed
forward gain (payload, amplifier feed forward gain, in power systems the load cur-
rent/load resistance). H.W. Bode envisaged this concept of having fractional inte-
grator circuits to achieve overshoot independent of the amplifier gain in 1945. He
proposed a fractional order controller, the purpose of which is to have a feedback
amplifier of good linearity and stable gains, even though the amplifier show non-
linear characteristics and variable gain over ambience and time. Bode proposed a
feedback amplifier, whose open loop frequency characteristics G0( jω) is such that
the gain is constant for 0 < ω < ω0 and phase is constant or −π(1− y) radians for
ω > ω0. The suggested value was y = 1/6, which guarantees a phase margin (PM)
of 30◦. The open loop transfer function is given as

G0( jω) = A0
[
√

1− (ω/ω0)2 + j (ω/ωo)
]2(1−y) ,

meaning |G0( jω)| = A0 for ω < ω0 and angle i.e. arg G0( jω) = −π(1 − y)
radians for ω > ω0. This is early development of fractional order controls. Thus
it was recognized that the open-loop transfer function of a good control system
shows a fractional order integral form with a fractional order between 1 and 2
(between totally being first order and second order), meaning that open-loop transfer
function should be like G0(s) = 1/sk . This gives close loop transfer function as
GCL (s) = 1

1+G0(s) = 1
sk+1 , s = jω.

In close loop transfer function GCL (s) = 1
sk+1 expression, put for s = jω, j =

cos π2 + j sin π
2 then
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s = ω
[

cos
π

2
+ j sin

π

2

]

sk = ωk

[

cos
kπ

2
+ j sin

kπ

2

]

= ωk cos
kπ

2
+ jωk sin

kπ

2
,

Put this value of ωk in GCL (s) to get

GCL (s)= 1

sk + 1
= 1

ωk cos kπ
2 + jωk sin kπ

2 + 1
= 1
(

ωk cos kπ
2 + 1

)+ jωk sin kπ
2

|GCL (s)| = 1
[

ω2k cos2 kπ
2 + 1+ 2ωk cos kπ

2 + ω2k sin2 kπ
2

]0.5

= 1
√
[

ω2k + 2ωk cos kπ
2 + 1

]

Mr is the maximum value of |GCL (s)| at ωr when the denominator
ω2k + 2ωk cos kπ

2 + 1 is minimum.
Therefore d

dω

[

ω2k + 2ωk cos kπ
2 + 1

] = 0 gives 2kω2k−1 + 2kωk−1 cos kπ
2 = 0,

meaning at ωk = − cos kπ
2 the magnitude of is maximized.

ωr =
∣

∣cos kπ
2

∣

∣
1/k

and putting this value of ω = ωr in expression of |GCL (s)|, we
get

Mr = 1
√
[
(− cos kπ

2

)2 + 2
(− cos kπ

2

)

cos kπ
2 + 1

]
= 1
√

cos2 kπ
2 − 2 cos2 kπ

2 + 1

= 1
√

1− cos2 kπ
2

= 1

sin kπ
2

For finding the damping ratio, we find the poles of GCL (s) by transformation to
w-plane and then with respect to s plane we look at the pole location.

Putting w = sk in the expression of close loop transfer function, we obtain
GCL (w) = 1

w+1 with poles at w = 1e± jπ in w-plane.
Therefore, the s-plane pole is at w1/k , meaning poles at s = (1)1/ke± jπ/k in the

s-plane. The line with angle (±π/k) with the positive real axis of the s-plane is the
locus of poles for GCL (s) and are called iso-damped lines for particular value of k.
The damping ratio ς = �e(s)

|s| with respect to imaginary ( jω) axis.

The angle of the iso-damped line with respect to imaginary axis is
(

π
k − π

2

)

and
thus anywhere on this line the pole be, the damping ratio is

ς = �e(s)

|s| = sin
(π

k
− π

2

)

.
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This close-loop transfer function gives step response properties of controlled
system output as robustness and stability measures.

|GCL (s)| =
∣

∣

∣

∣

∣

1
[

ωk cos (kπ/2)+ 1+ jωk sin (kπ/2)
]

∣

∣

∣

∣

∣

= 1
[

ω2k + 2ωk cos (kπ/2)+ 1
]0.5

Mr = 1

sin (kπ/2)
, ωr = |cos (kπ/2)|1/k .

The amplitude takes the peak value Mr at ωr . The damping ratio can be obtained
from the poles of GCL (s) as ς = sin

(

π
k − π

2

)

. The phase margin is given by
P M = π − k π2 = 90 (2− k)0. The overshoot can be expressed as the approximate
formula as MP

∼= (k − 1) (0.8k − 0.6) per unit. These performance specifications
are also termed as robustness measures and are listed for various fractional orders
(Table 9.1).

General properties of Bode’s ideal control system transfer functions are

a. Open loop:

Type: G0(s) = K
sk , (1 < k < 2)

Magnitude: constant slope of −k20 dB/dec
Cross-over frequency: a function of gain K
Phase: horizontal line of −kπ/2
Nyquist: straight line at argument−kπ/2

b. Closed loop:

Type: GCL (s) = K
sk+K , (1 < k < 2)

Gain margin: Am = ∞ infinite
Phase margin: Φm = π

(

1− k
2

)

, constant
Step response: y(t) = K tk Ek,k+1(−K tk)

Table 9.1 Robustness measures for various fractional orders k
k (order) P M (degree) ς MP % Mr

1 90 1 0 1
1.1 81 0.96 2.8 1.0125
1.2 72 0.87 7.4 1.0515
1.3 63 0.75 13.6 1.1223
1.4 54 0.62 21.1 1.2361
1.5 45 0.5 30.0 1.4142
1.6 36 0.38 40.5 1.7013
1.7 27 0.27 52.5 2.2027
1.8 18 0.17 66.3 3.2361
1.9 9 0.083 82.1 6.3925



190 9 Application of Generalized Fractional Calculus in Other Science and Engineering Fields

The solution to this is as follows.
The step response of a system with closed loop transfer function GCL (s) is

Y (s) = 1

s
GCL (s).

The closed loop transfer function is GCL (s) = K
sk+K .

Therefore:

Y (s) = 1

s
GCL (s) = K

s(sk + K )

Y (s) = K
1/K

s

(

K

sk + K

)

= K
1/K

s

[

1− sk

sk + K

]

= 1

s
− sk

sk + K

= 1

s
− sk−1

sk + K

Inverse Laplace transforming the above, we get

y(t) = [1− Ek(−K tk)
]

Using series expansion of one-parameter Mittag-Leffler function, we obtain

y(t) = 1−
[

1+ (−K tk)

Γ(k + 1)
+ (−K tk)2

Γ(2k + 1)
+ (−K tk)3

Γ(3k + 1)
+ . . .

]

= − (−K tk)

Γ(k + 1)
− (−K tk)2

Γ(2k + 1)
− (−K tk)3

Γ(3k + 1)
− . . .

= (K tk)

Γ(k + 1)
− (K tk)2

Γ(2k + 1)
+ (K tk)3

Γ(3k + 1)
− . . .

= K tk

[

1

Γ(k + 1)
+ (−K tk)

Γ(2k + 1)
+ (−K tk)2

Γ(3k + 1)
+ . . .

]

Now using the definition of two-parameter Mittag-Leffler function

Eα,β(z) =
∞
∑

n=0

zn

Γ(αn + β)
,

we can write

Ek,k+1(−K tk) = 1

Γ(k + 1)
+ (−K tk)

Γ(2k + 1)
+ (−K tk)2

Γ(3k + 1)
+ . . .

and use this to have time response expression as:

y(t) = K tk Ek,k+1(−K tk)
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The solution with one-parameter Mittag-Leffler and two-parameter Mittag-Leffler
are equivalent. More form of algebraic manipulations of the series can give different
compact functions as solutions (say by Robotnov–Hartley and several other variants
of Mittag-Leffler).

Therefore for Heaviside step input h(t) =
{

1 t ≥ 0
0 t < 0

, the time response of

output is

y(t) = K tk Ek,k+1(−K tk) = 1− Ek(−K tk) = h(t)− Ek(−K tk)

Furthermore, if the composition of a feedback controller with fractional differentia-
tor and α-order fractional integrator gives k = 1+ α, while obtaining GCL (s), then:

y(t) = K t1+αE1+α,2+α(−K t1+α)

Now with especially digital and advanced analog techniques, this fractional order
control system is possible in having real time responses. Figure 9.3 shows the
concept of fractional order PID system connection.

In fractional order PID control what is extra freedom to operator is in terms of the
two extra knobs, namely in the order of differentiation and the order of integration.
In these fractional order controller P I λDδ , the knob values λ, δ are between 0 and
1. In PID type control, we compensate only the dominant roots and with these extra
freedoms we are able to continuously span the area shaded in Fig. 9.4. The Laplace
domain of this controller has the form H (s) = U (s)

E(s) = K p + Ti s−λ + Tdsδ . This

P I λDδ controller with complex zeros and poles located anywhere in the left-hand
side s → w plane, may be rewritten as:

H (s) = K
(s/ωn )δ+λ+(2ςsλ)/ωn+1

sλ , where K is a gain, ς is the dimensionless damp-
ing ratio (is chosen mostly as under-damped, ς < 1 and = 1 for critically damped),
and ωn is the natural frequency. This P I λDδ is generalization to T I D (Tilt Integral
Derivative) compensator, which has a similar structure as P I D, but the proportional
component is replaced with tilted component having a transfer function s, to the
power of (−1/n). Therefore, the transfer function of T I D is H (s) = T

s1/n + I
s + Ds,

where T, I, D are controller constants and n is the non-zero real number (between
2 and 3). The above transfer function approximates Bode’s ideal transfer function
(US patent 5-371-670).

+ e(t)
e(t)Ke(t) + Ti 

D−λe(t) + Td 
Dδ

PIλ Dδ
u(t) y(t)

G(s)

x(t) _

K Ti Td λ δ

Fig. 9.3 Fractional order PID controls
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Fig. 9.4 Fractional order PID
and integer order PID, PD, PI 1.0

PD                     PID

DδPIλ

PI

1.0 λ

δ

It can also be mentioned that the controller can also be characterized with frac-
tional Laplace operator by band-limited lead effect. The lead lag compensator is of

the representation H (s) = K
(

1+τ1sq

1+τ2sq

)

,τ2 < τ1 and q being the fractional number.

This transfer function can be realized by rational function approximation methods
by recursive distribution of poles and zeros.

The example in state variable formulation gives some light about PID con-
trols in fractional domain. Let a fractional plant transfer characteristics G(s) be
identified as

a2 Dα y(t)+ a1 Dβ y(t)+ a0 y(t) = u(t)

simply written as a2y(α)(t) + a1 y(β)(t) + a0y(t) = u(t). The fractional order PID
H (s) is

u(t) = K e(t)+ Ti D−λt e(t)+ Td Dδ
t e(t)

Using state variable y(t) = x(t) = x1(t) and x (β)(t) = x2(t), the G(s) is obtained as
state-space, as:

[

x (β)
1 (t)

x (α−β)
2 (t)

]

=
[

0 1
− a0

a2
− a1

a2

] [

x1(t)
x2(t)

]

+
[

0
1
a2

] [

0
u(t)

]

and y(t) = x1(t)

By GL definition a D±r
t f (t) = lim

T→0

1
T±r

[ t−a
T ]
∑

j=0
b±r

j f (t − j T ),

where b±r
0 = 1, b±r

j =
(

1− (1+(±r))
j

)

b±r
j−1 are the binomial coefficients.

The discretized state-space expression for G(s) is

x1,k+1 = −
k+1
∑

j=1

bβj x1,k+1− j + T βx2,k

x2,k+1 = −
k+1
∑

j=1

cα−βj x2,k+1− j + T α−β
(

−a0

a2
x1,k − a1

a2
x2,k + 1

a2
uk

)

yk = x1,k
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The transfer characteristic equation in the state-space format is discretized using
the definition of Grunwald–Letnikov (GL) differintegral. For the state variables,
fractional derivative x (β)

1 = Dβ
t x1(t) and x (α−β)

2 = D(α−β)
t x2(t), GL expansion is

made and then written in the above format.
As we see fractional order differential equations accumulate the whole informa-

tion of the formula in a weighted form, this is called the “memory effect.” Frac-
tionally differentiated state-space variable must be known as long as the system
has been operated to obtain the correct response. This is known as “initialization
function.” For integer order systems, it is constant, and for fractional order systems,
it is time varying. In the usual integer order system theory, the set of states of the
system known at any given point in time along with the system equations are suf-
ficient to predict the response of the system, both forward and backward in time.
The fractional dynamic variables do not represent the “state” of the system at any
given time in the previous sense, we need “history” of states or sufficient number
by “short-memory principle” for initialization function computation. Because of the
above-mentioned memory effect from the high-memory consumption, advance con-
trol algorithms with direct discretization of Tustin rule, Al-Alouni rule, by power
series expansion (PSE) and/or continued fraction expansion (CFE) is developed. In
these new approaches, the memory requirement is one tenth of the memory required
for GL method. Several advance algorithms even to reduce this memory requirement
is an interesting topic of research and development.

Many generalization of integer control design are possible with freedom allowed
by fractional order systems. Some of them are listed below:

a. Integral control: Fractional integrals, H (s) = ks−q , are used as compensators.
The interesting feature of fractional integrals is that they still allow closed-loop
tracking of step reference signals, while allowing the freedom to tune the low-
frequency and high-frequency behavior by tuning the value of q , although the
tracking will be slower.

b. Derivative controls: Although the pure derivative control is seldom used, deriva-
tives of any fractional order, H (s) = ksq , are available, and these will have less
noise amplification at high frequencies than integer order derivatives.

c. PI, PD, and PID controls: Fractional elements allow use of any value of q , for
integral and derivative in these controllers. If a fractional PID control is imple-
mented, the fraction in the derivative part need not be same as the integral part
fraction. The different fractions are indicated in Fig. 9.3, the controller will be
H (s) = k p + ki s−q1 + kdsq2 . The generalizations of the PID controls give a
research topic of continuum order distribution controller (Chap. 9.9).

d. Lead and lags: Lead compensators are often used to help stabilize marginally
stable system. Lag compensators are often used to reduce the magnitude of high-
frequency loop gain of the system. Using fractional order components, it is pos-
sible to design fractional leads and fractional lag H (s) = k(sq1+a)

sq2+b . The benefit
to these is that it is easier to shape the open-loop and closed-loop frequency
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responses using them than exclusively integer-order elements, due to the extra
freedom offered by the continuum values of q .

e. Start point singularity: Design criterion unique to fractional order system deals
with time domain singularity occurring at time zero. If the plant transfer function
G(s) does not contain a term in the denominator with an exponent of at least
1, that is the leading term in the denominator is sq , then by the initial value
theorem g(0) = lim

s→∞ sG(s), the impulse response, g(t) = L−1 {G(s)}, will have

a singularity at time zero. This may not be desirable, however using appropriate
compensator in the forward path (say H (s) = ksq−1), the singularity in the output
of plant will be eliminated.

9.6.1 Concept of Iso-damping

The concept of having iso-damping i.e. overshoot independent of the payload (or
system gain) has remarkable usage in the field of control sciences. This is only
possible by use of fractional order calculus theory. This concept was introduced
as an example of DC motor controls in Chap. 3. The plant may or may not be
of fractional order, but controller with fractional order differential and or integral
action is what makes the system response iso-damped.

This concept when applied to nuclear power plant controls elevates overall fuel
efficiency robustness. The nuclear reactor is divided in two parts of, namely reac-
tor core and coupled energy transfer equipments (heat exchangers, boiler, turbine
generator). For the reactor part, the error correction is carried out in terms of ratio
control of the observed neutron power (feedback) to the demanded power of the set
point (on suitable set exponent). The effective power error is written as:

E P E = K1(log {Cal P} − log {Dem P}) + K2

(

1
TO BS
− 1

TS ET

)

∝ Cal P.et/TO BS

Dem P.et/TS ET
,

i.e. the ratio of observed neutronic power to the demanded power. This gives better
results as compared to the existing integer order linear PID type corrections, as the
governing formula is close to the reactor physics (which follows exponential and
logarithmic expressions). In above expression K1 = 1 and K2 = 0.5 s (digitiza-
tion time of control computer). This expression error governance gives fuel-efficient
concept.

The reactor is coupled to several energy conversion devises, which governed by
fractional order PID concept with iso-damping will increase overall nuclear power
plant efficiency. The systems are always under dynamic corrections, and there are
changes in gains (say payloads) and parametric shifts. This will be compensated by
having iso-damped control systems where overshoot is independent of gain (pay-
loads). The systems thus coupled to nuclear reactor will load the same with constant
overshoot throughout, thus it will have the same energy transfer and not jittery.
This process integrated over life span of nuclear power station will save nuclear
fuel. This example to govern large energy transfer machines with fractional order
controller with iso-damping is true for any power plant thus, to enhance overall fuel
efficiency.
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During ‘Start-Up Operation’ of nuclear plants, while negative feedback
stabilizing factors are absent, is a risky affair. Risk factor is more for experimental
research reactor, where reactor cores are configurable with several configurations
and materials. Although reactor trip systems will take care of any excursions in
power levels at start-up experiments, yet governing the start-up procedure with a
fractional order feedback controller where overshoot is independent of gain (fuel
characteristics) will add another level of safety and confidence.

As an example of DC motor controls, let the motor (plant) be expressed as
G(s) = Km

J s(s+1) with J as payload inertia. Let the selected fractional open-loop
transfer function have robustness and stability measure as per Bode’s ideal function
with phase margin constant of 600. Then Bode’s ideal open-loop transfer function,
which gives this phase margin, is G0(s) = 1

s4/3 . Since G0(s) = H (s)G(s), we can
obtain a transfer function in the form H (s) = J

Km

(

s2/3 + 1
s1/3

) = K
(

s2/3 + s−1/3
)

,

which is a particular case of P I λDδ , where K = J/Km is the controller con-
stant. The phase margin of the controlled system with a forward-loop controller

is Φm = arg [H ( jω0)G( jω0)]+ π = arg
[

1
( jω)4/3

]

+ π = π − 4
3
π
2 = π

3 , where ω0

is cross-over frequency.
The constant phase margin is not dependent on payload (gain) changes and the

system gains K . The phase curve is a horizontal line at −2π/3.
Step response of the closed loop can be expressed as:

y(t) = L−1
{

1
s(s1+1/3+1)

}

= t1+1/3 E1+1/3,2+1/3
(−t1+1/3

)

, where step response is

independent of the payload inertia at fractional order setting of 4/3. The solution is
noted as follows.

Close-loop transfer function from open-loop transfer function G0(s) = s−
4/3 is

GCL (s) = G0(s)

1+ G0(s)
= 1

s
4/3 + 1

.

The step input will have output (time) response as:

y(t) = L−1

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1

s

(

s
4/3 + 1

)

⎫

⎪
⎪
⎬

⎪
⎪
⎭

= L−1

⎧

⎨

⎩

1

s

⎡

⎣1− s
4/3

s
4/3 + 1

⎤

⎦

⎫

⎬

⎭

= L−1

⎧

⎨

⎩

1

s
− s

4
3−1

s
4/3 + 1

⎫

⎬

⎭

= 1− E4/3
(−t

4/3)

Expanding with definition of one-parameter Mittag-Leffler function E4/3
(−t

4/3)

we get
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y(t) = 1−
⎡

⎣1+ (−t
4/3)

Γ
(

4
3 + 1

) + (−t
4/3)2

Γ
(

2. 4
3 + 1

) + (−t
4/3)3

Γ
(

3. 4
3 + 1

) + . . .
⎤

⎦

= − (−t
4/3)

Γ
(

4
3 + 1

) − (−t
4/3)2

Γ
(

2. 4
3 + 1

) − (−t
4/3)3

Γ
(

3. 4
3 + 1

) − . . .

= t
4/3

Γ
(

4
3 + 1

) − (t
4/3)2

Γ
(

2. 4
3 + 1

) + (t
4/3)3

Γ
(

3. 4
3 + 1

) − . . .

= t
4/3

⎡

⎣

1

Γ
(

4
3 + 1

) + (−t
4/3)

Γ
(

2. 4
3 + 1

) + (−t
4/3)2

Γ
(

3. 4
3 + 1

) + . . .
⎤

⎦

Using the definition of two-parameter Mittag-Leffler function the following is
obtained:

y(t) = t
4/3E 4

3 ,
4
3+1(−t

4/3) = t1+ 1
3 E1+ 1

3 ,2+ 1
3
(−t1+ 1

3 )

9.6.2 Fractional Vector Feedback Controller

This section considers the use of fractional vector feedback for control system
design, especially for multivariate fractional state-space. The modeling of the sys-
tem in fractional vector state-space has been covered in Chap. 7, and example is
given in Chap. 8. The vector representation is

0dq
t x(t)+ψ(x, q, a, 0, t) = A x(t)+B u(t) and y(t) = C x(t)+D u(t). Typically,

vector feedback is implemented as u(t) = −K x(t)+ r (t), where r is the vector set
point and K is the feedback gain matrix to be determined. The closed-loop system
then becomes

0dq
t x(t) = [A − B K ] x(t)− ψ(x, q, a, 0, t)+ B r (t)

y(t) = [C − DK ] x(t)+ D r (t)

By choosing K appropriately and using standard pole-placement method, it is possi-
ble to place the eigenvalues anywhere in thew−plane. The det [wI − A + B K ] will
determine the pole-placement. While doing this, the eigenvalues should be placed
to the left of the instability wedge (Chap. 7). In this, sq = w; it is the transfor-
mation from s → w plane. Presently without worrying about the instability due to
initialization vector ψ , the pole-placement can be carried to give the stable closed-
loop performance as desired. At present, it is unclear how linear quadratic regulator
(LQR) and other optimal feedback regulator rules are redrawn for fractional vector
state problems.
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Consider A =
⎡

⎣

0 1 0
0 0 1
−2 −4 −6

⎤

⎦ , B =
⎡

⎣

0
0
1

⎤

⎦ ,C = [1 2 3
]

, D = [0], the system

is 0 Dq
t x(t) = A x +B u and y(t) = C x(t) with controller as u(t) = −K x(t).

The control parameter (gains) will be chosen such that the poles in the w-plane
are w1,2 = −2 ± j4 and w3 = −6. The Laplace transformation of the vector

system equation with feedback regulator is X(s) = −[sq I − A+ B K ]−1ψ(s). The
close-loop system matrix is [I sq − A + B K ] = [wI − A + B K ], from here the
value of K is evaluated as:

det [wI − A + B K ] = det

⎧

⎨

⎩

⎡

⎣

w 0 0
0 w 0
0 0 w

⎤

⎦−
⎡

⎣

0 1 0
0 0 1
−2 −4 −6

⎤

⎦+
⎡

⎣

0
0
1

⎤

⎦

[

k1 k2 k3
]

⎫

⎬

⎭

det

⎡

⎣

w −1 0
0 w −1

2+ k1 4+ k2 w + 6+ k3

⎤

⎦ = w3 + (6+ k3)w2 + (4+ k2)w + (2+ k1)

From the poles given in the w-plane, the characteristic equation is.
α(w) = (w+2− j4)(w+2+ j4)(w+6)= w3+10w2+44w+120. Comparing

this with coefficients of the determinant, we get K = [ k1 k2 k3
] = [ 4 40 118

]

.
Here we have obtained the controller matrix and the gains because the system is

controllable as rank of matrix
[

B AB A2 B
]

is 3 full ranks. These are usual theory
of multivariate control science. Refer Fig. 9.5 for fractional vector state feedback
block diagram.

9.6.3 Observer in Fractional Vector System

Just as in integer order theory, it is important to create observers or vector estima-
tors for fractional order system. This section will present the theory necessary for
designing fractional order observer. The fractional order vector estimator is

DD

r(t) u(t) x(t)

y(t)

−ψ

+ + +

D

A

–K

CB 0dt
−q

Fig. 9.5 State variable fractional vector controller
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0dq
t
∧
x
−(t)+

∧
ψ
−

(x−, q, a, 0, t) = A
∧
x
−(t)+ B u

−(t)− L

[

y
−

(t)− ∧y
−

(t)

]

∧
y
−

(t) = C
∧
x
−(t)+D u

−(t), where a non-zero initialization function
∧
ψ
−

has been assumed

for the observer. The vector error e
−(t) is defined as the difference between the real

system outputs x
−(t) and the estimated observer outputs

∧
x
−(t):

e
−(t) = x

−(t) − ∧x−(t). The observer gain L is determined as to force the error

between the plant vectors to go to zero. The dynamics of the error are obtained by

fractionally differentiating the error equation as: 0dq
t e
−(t) = 0dq

t x
−(t) − 0dq

t
∧
x
−(t). In

this, substitute the system equations to get

0dq
t e
−(t) =

[

A x
−(t)+ B u

−(t)− ψ
−

(x−, q, a, 0, t)

]

−
[

A
∧
x
−(t)+ B u

−(t)−
∧
ψ
−

(
∧
x
−, q, a, 0, t)

]

− L

[

y
−

(t)− ∧y
−

(t)

]

Now replacing the sensed system outputs y
−

(t) and
∧
y
−

(t) with the vector variable

Cx(t)+ Du(t) we obtain

0dq
t e
−(t) =

[

A x
−(t)+ B u

−(t)− ψ
−

(x−, q, a, 0, t)

]

−
[

A
∧
x
−(t)+ B u

−(t)−
∧
ψ
−

(
∧
x
−, q, a, 0, t)

]

−L

[

C x
−(t)+ D u

−(t)− C
∧
x
−(t)− D u

−(t)

]

Eliminating and doing simple algebra and substituting x
−(t)− ∧x−(t) = e

−(t) we get

0dq
t e
−(t) = [A − LC] e

−(t)−
{

ψ
−

(x−, q, a, 0, t)−
∧
ψ
−

(
∧
x
−, q, a, 0, t)

}

The matrix L is determined to force the observer error to go to zero by placing the
eigenvalues of [A − LC] in the stable region ofw-plane (Chap. 7). The initialization
function response eventually decays to zero for any system with 0 < q < 1 and

only has transient effect on the observer error. However, proper choice of
∧
ψ
−

will

help drive the error to zero sooner than if
∧
ψ
−

was simply zero.

Consider 0 Dq
t x
−(t) = A x

−(t)+ B u
−(t) and y

−
(t) = C x

−(t), observer gain has to set

such that the closed-loop poles follow thew-plane asw1,2 = −2± j
√

12, w3 = −5.
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A =
⎡

⎣

0 1 0
0 0 1
−6 −11 −6

⎤

⎦ , B =
⎡

⎣

0
0
1

⎤

⎦ ,C = [1 0 0
]

, D = [0]

The normal observability matrix is

⎡

⎣

C
C A
C A2

⎤

⎦ =
⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ and has full rank. There-

fore, the system is observable. The characteristic polynomial is

α(w) = (w + 2− j
√

12)(w + 2+ j
√

12)(w + 5) = w3 + 9w2 + 36w + 80.

det [wI − A + LC] = det

⎧

⎨

⎩

⎡

⎣

w 0 0
0 w 0
0 0 w

⎤

⎦−
⎡

⎣

0 1 0
0 0 1
−6 −11 −6

⎤

⎦+
⎡

⎣

l1

l2

l3

⎤

⎦

[

1 0 0
]

⎫

⎬

⎭

det

⎡

⎣

w + l1 −1 0
l2 w −1

l3 + 6 11 w + 6

⎤

⎦ = w3 + (l1 + 6)w2 + (6l1 + l2 + 11)w

+ (11l1 + 6l2 + l3 + 6)

Equating the determinant to the characteristic polynomial, we obtain l1 + 6 = 9,
6l1+ l2 + 11 = 36, 11l1+ 6l2+ l3 + 6 = 80 which give the value for observer gain
as L = [ l1 l2 l3

] = [3 7 −1
]

.
Refer Fig. 9.6 for fractional vector observer block diagram.

9.6.4 Modern Aspects of Fractional Control

The multivariate control aspects are discussed in the previous sections with exam-
ples. The controllable and observable issues are discussed, and disregarding the

r(t) u(t) y(t)

 +  +  +

++ − –

Plant

D

A

L

CB

y(t)
∧

∧

0dt
−q

−ψ

Fig. 9.6 Fractional vector dynamic variable observer
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time varying initialization vector, the gains of fractional state feedback and gains of
observer were calculated. In the example, coefficient equalization scheme is chosen
to equalize the determinants of controller and observer matrices. Here the Bass-Gura
and Ackerman formula from the rank determination approach is also suitable, to
place the poles as desired in the w-plane stability wedge.

Question of controllability and observability and minimality arise when the sys-
tems are expressed in the vector fractional dynamic variable form. There are two
directions to go in this regard. One is to completely redefine and derive all of the
related vector system properties. This is not done at this time though effort is on in
this regard. It is important to note that the fractional dynamic variable vector alone
does not contain all the information about the state of the system, but requires vector
ψ , the initialization vector. The implication of this is totally not clear at this stage;
however, one important consideration in observability and controllability issue is the
inclusion of the time-dependent initialization function. Rather than re-deriving all
the system theory results on controllability and observability, useful results can still
be obtained by simply using the observabilty and controllability matrices directly for
particular fractional vector system—while neglecting the initialization vector. This
can be done on usual ABCD matrices completely without regard to their deeper
theoretic implementation.

Finally, it should be noted that the vector space of fractional dynamic variables
allows direct use of standard state variable feedback and observer theory, with the
understanding that the closed-loop poles are being placed in stability zone of w-
plane. It is not clear at this point how to interpret any optimal control theory rules.
Although we could use Lyapunov and Riccati equations for design, their interpre-
tation is not clear with regard to optimality. One would expect that the resulting
controllers, which always guarantee to have closed-loop poles in left-half plane
(LHP) of s-domain, would now place all closed-loop poles in the LHP ofw-domain,
which would guarantee some form of stable “hyper-damped” response.

Kalman’s decomposition laws are still valid with initialization function taken
as one of the plant disturbance input. Also for state estimator, “fractional Kalman
filter” and extended, “fractional Kalman filter” for linear and non-linear systems are
recent developmental fields of multivariate control science.

9.7 Viscoelasticity (Stress–Strain)

Stress relaxation and creep behavior in stress–strain relationship are well described
by fractional order models. A stress–strain law for viscoelastic materials is described
as ε(t) = 1

K c D−vt σ (t), or a new specimen, where no initialization is required
and it is thus memoryless which is represented as (un-initialized derivative)
ε(t) = 1

K ad−vt σ (t). Here ε is the strain and σ the is stress. For v = 0, the material
is elastic solid and for v = 1 the material is viscous liquid. K is constant which
depends on the material. In the above stress–strain relationship both effects, i.e.,
instantaneous elastic and long-term viscous flow, are neglected.
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Consider a unit step load is applied from t = 0 and t = d on a new specimen
(un-initialized). σ (t) = κ [H (t)− H (t − d)], H is Heaviside step unity function
and κ is the magnitude. Then:

ε(t) = κ

K Γ(v)

t
∫

0

(t − τ )v−1 [H (τ )− H (τ − d)]dτ

= κ

K Γ(v)

⎡

⎣

t
∫

0

(t − τ )v−1dτH (t)−
t
∫

0

(t − τ )v−1dτH (t − d)

⎤

⎦

= κ

K Γ(v + 1)

[

tvH (t)− (t − d)vH (t − d)
]

This defines the strain (creep) response, for the prescribed loading. Figure 9.7 gives
the strain curve for this prescribed loading. For t < d = 1, the curve is essentially a
creep function, and for t > d = 1, is it a relaxation period.

The above example material was new. For creep initialization function associated
with constant past loading may be readily inferred from

ε(t) = κ

K Γ(v + 1)

[

tvH (t)− (t − d)vH (t − d)
]

as follows.
Consider this problem initialized at point c, then c D−q

t f (t) = a D−q
t , for t > c;

therefore, cd−q
t f (t) + ψ( f,−q, a, c, t) = a D−q

t f (t) = ad−q
t f (t), for t > c. Thus

ψ may be expressed as ψ( f,−q, a, c, t) = ad−q
t − cd−q

t , for t > c.
For obtaining the initialization function of creep problem initialized at t = c = d ,

where d is as used in the above equation, i.e.,

ε(t) = κ

K Γ(v + 1)

[

tvH (t)− (t − d)vH (t − d)
]

.

1.0
0.9
0.8
0.7 v = 0.8
0.6
0.5 v = 0.6
0.4
0.3
0.2
0.1 v = 0.2

t

0.5               1                 1.5    2    2.5    3    3.5

Fig. 9.7 Strain versus time (creep function and relaxation function)
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Applying this result to equation ψ( f,−q, a, c, t) = ad−q
t − cd−q

t , to the creep
problem, gives

c D−vt σ (t) = cd−vt σ (t)+ ψ(σ,−v, a, c, t), for t > c

Then taking c = d and since σ (t) = 0 for t > d , we get

cd−vt σ (t) = dd−vt σ (t) = 0, for t > c = d ,

and K times the response equation of

ε(t) = κ

K Γ(v + 1)

[

tvH (t)− (t − d)vH (t − d)
]

is the initialization function ψ(t); therefore:

ψ(σ,−v, a, c, t) = κ

Γ(v + 1)

[

tvH (t)− (t − c)vH (t − c)
]

, for t > c = d.

This initialization function with proper time shifts may thus be employed for the
material, which had “creep history.”

The stress relaxation (or creep) function χ(t) is defined as the stress required to
produce a strain H (t), excluding terms that are initially infinite or do not tend to
zero as time grows. For a new material this stress is

χ(t) = σ (t) = K advt ε(t) = K ad1
t ad−(1−v)

t ε(t)

= K
d

dt

K

Γ(1− v)

t
∫

0

(t − τ )−vH (τ )dτχ(t) = K

Γ(1− v)
t−vH (t)

yielding as a result the stress (creep) relaxation function for this formulation.
This stress–strain with memory and history definitions with fractional calculus is

a suitable method of describing the fundamentals of “shape-memory” alloys.

9.8 Vibration Damping System

The addition of damping is important in many applications for stability enhance-
ment. One such is requirement to have vibration-damping augmentation in gas tur-
bines blades (specially for aerospace). Figure 9.8 gives spring mass viscodamped
dynamic system diagram, and we derive the transfer function of the same.

Since the transfer function requires the initialization to be zero, the equations
describing the system use un-initialized operators as follows:
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Fig. 9.8 Spring mass
viscodamped dynamics

x0

m

F1 F2

xm 1 xm 2

k k3q3

k2q2k1q1

xi

F1 = −k10dq1
t (x0 − xm1)

F1 = k(xm1 − xi )

F2 = −k0dq2
t (x0 − xm2)

F2 = k30dq3
t (xm2 − xi ), and

F1 + F2 = m0d2
t x0

where ks are the damping coefficients and the spring constants, and m, F , and x are
the mass, force, and displacement respectively.

After taking Laplace transforms and considerable algebra and elimination pro-
cess, the generalized transfer function is

X0(s)

Xi (s)
=

1
k2

sq1+q3 + 1
k3

sq1+q2 + 1
k1

sq2+q3 + 1
k sq1+q2+q3

m
k1k2

s2+q3 + m
kk2

s2+q1+q3 + m
k1k3

s2+q2 + m
kk3

s2+q1+q2 + 1
k2

sq1+q3 + 1
k3

sq1+q2 + 1
k1

sq2+q3 + 1
k sq1+q2+q3

This general transfer function can be studied for special cases, by appropriate
choices of k, ki , and qi . For example, to allow damper 3 to represent a conven-
tional dashpot-damper, let q3 = 1, and select appropriate k3. Now making the
q1 = q2 = 0 means eliminating the dampers and spring of infinite stiffness, i.e.,
k1 = k2 = ∞ gives simple transfer function of fractional order q3 with viscoelastic
element 3. The transfer function is

X0(s)

Xi (s)
=

k3
m sq3 + k

m

s2 + k3
m sq3 + k

m

The frequency response may now be evaluated by putting s → jω, and determining
the magnitude and phase angle using the derived transfer function, for various values
of k/m, k3/m, and letting the fractional order q3 vary from 0 to 2 in steps of 0.2, to
arrive at designated design measures.

In nature, we always get mix of mass spring and damper systems, and thus to
have reality modeling, this fractional calculus plays an important role.



204 9 Application of Generalized Fractional Calculus in Other Science and Engineering Fields

9.9 Concluding Comments

As far the imagination goes, the reality systems have the effect of past. The
present behavior is someway definitely related to past history. The actual sys-
tems therefore are non-Markovian systems with past history, heredity, and mem-
ory. The fractional calculus thus is a language what nature understands the best.
This way, system modeling and control becomes efficient. The application here
included simple aspects of system modeling and control, and further research is
required to have optimal descriptor of dynamic vector space controllers. Not only
for science and engineering this tool is an efficient descriptor, but also for finance
and stock market analysis this tool is being recently explored and applied. There-
fore, this 300-year-old (new) subject will revive in this century, to speak what nature
understands the best.



Chapter 10
System Order Identification and Control

10.1 Introduction

For unknown systems, “system identification” has become the standard tool of the
control engineer and scientists. Identifying a given system from data becomes more
difficult, however when fractional orders are allowed. Here identification process
is demonstrated using the assumption that system order distribution is a continuous
one. Frequency domain system identification can thus be performed using numerical
methods demonstrated in this chapter. Here one concept of rLaplace transforms is
discussed (Laplace transform in log domain), to discuss the system order distri-
bution. Also mentioned is the variable order identification as further development,
where the system order also varies with ambience and time is highlighted. Here in
this chapter, an identification method based on continuous order distribution is dis-
cussed. This technique is suitable for both the standard integer order and fractional
order systems. This is topic of further advance research, as to qualify the procedure
of system order identification and to have a technique for tackling variable order.
Extending this continuous order distribution discussion, the advance research of
having a continuum order feedback and generalized PID control is elucidated. Also
in this chapter some peculiarities of the pole property of fractional order system as
ultra-damping, hyper-damping, and fractional resonance are explained. Elaborate
research in this direction is an ongoing process; to crisply define the system identi-
fication and the variable order structure, along with generalized controller for future
applications.

10.2 Fractional Order Systems

As the concept of order is central to the understanding of fractional (or integer)
order systems, some discussion of this concept now follows. In this discussion,
single-input–output systems are considered. The examples in the earlier chapters
for heat flow and transmission line (lossy and lossless), and several examples gave
the stage for half-order system or zero-order system, integer order systems, and
fractional order systems. Recalling the characteristic equations or transfer function

S. Das, Functional Fractional Calculus for System Identification and Controls. 205
C© Springer 2008
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definition, we call a system first order, second order, third order, etc., similarly,
the system can be of fractional order too, i.e., the characteristic equation having
powers of s-variable of non-integers numbers (real). We also consider that system
representation is generally of “minimal phase,” and they are linear. For non-minimal
phase, the system behavior is for a positive step demand; the output initially goes
in reverse and then changes direction to follow the demand. This is peculiar of gas
turbines, where for non-minimal phase system, the velocity first will marginally
decrease and then eventually increase to the follow increment in the demanded
velocity.

Mathematical order conventionally is defined as the highest derivative occurring
in a given differential equation. The concept of mathematical order is applicable to
both ordinary and fractional differential equations. Normally, when the order is used
without qualifier, it implies the meaning of mathematical order.

For linear dynamic systems that are described by ordinary differential equations,
the system mathematical order implies or is equivalent to the following:

(1) The highest derivative in ordinary differential equation
(2) The highest power of Laplace variable-s, in the characteristic equation
(3) The number of initializing constants required for the differential equation
(4) The length of the state vector
(5) The number of singularities in the characteristic equation
(6) The number of energy storage elements
(7) The number of independent spatial directions in which a trajectory can move
(8) The number of devices that can add 90o sinusoidal steady-state phase lag, and
(9) The number of devices that retain some memory of the past.

The utility of the definition of mathematical order for a differential equation, com-
posed of integer order component, is that, to infer the characteristic behaviour and
response of a system.

Thus the benefit of having a definition for order for linear ordinary differential
equations is that it allows a direct understanding of the behavior of a given dynamic
system. Unfortunately, for fractional differential equations, the order of the high-
est derivative does not infer all of the previously mentioned properties. Indeed,
the most important characteristics of order in integer order ordinary differential
equation is probably item (3) i.e. it indicates the number of initializing constants,
which together with the differential equations allow prediction of the future behav-
ior. In system terminology, this information provides initial “states,” of the system
being analyzed. Clearly, the order of highest derivative in a fractional differential
equation does not have this property nor does it predict the associated number of
energy/memory elements associated with fractional differential equation, nor does
it infer the number of integrations (even fractional), required to solve simulate the
given fractional differential equation. Thus the issue of order and the information
required together with the fractional differential equation to predict the future is
fundamental and should be treated differently. This is explained in section 10.12,
that a seemingly first order characteristic polynomial with fractional order terms
may go into resonance.
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For integer order systems once the maximum order of the system to be identified
is chosen, the parameters of the model can be optimized directly. For fractional
order systems, the identification requires (a) the choice of the number of fractional
operators, (b) the fractional powers of the operator, and (c) the coefficients of the
operators. Specifically in electrode–electrolyte interface experiments for determin-
ing the interface impedances, the frequency domain techniques are followed, for
chosen transfer function. But to identify the form of transfer function itself, with
order and coefficient, an approach from experimental data of frequency domain
analysis should be the starting point, to identify unknown systems.

10.3 Continuous Order Distribution

A very basic of mass spring damper system of force balance is taken here to study
the concept of continuous order distribution. The familiar system is represented
(with un-initialized derivative) as:

m0d2
t x(t)+ b0d1

t x(t)+ kx(t) = f (t) (10.1)

where x(t) is the position of the mass m, f (t) is the forcing function on the mass,
b is the damping, and k is the spring (restoring) force. In the Laplace domain, this
takes the following form:

(ms2 + bs + k)X(s) = F(s) (10.2)

It is well known that some element intermediate between spring and dashpot
behaves and balances the forces called viscoelastic element. Such element is
described as:

kq 0dq
t x(t) = f (t) 0 ≤ q ≤ 1 (10.3)

The Laplace representation is

kqsq X(s) = F(s) (10.4)

Adding this viscoelastic element to the original assumed (lumped) system (10.2),
we get

(

ms2 + bs + kqsq + k
)

X(s) = F(s) (10.5)

It is known that viscoelastic elements will posses any order q between 0 and 1, so
we can add another viscoelastic element and then keep on adding several others too,
like the following:
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(

ms2 + bs + kq2sq2 + kq1sq1 + k
)

X(s) = F(s) (10.6)
(

ms2 + kq4sq4 + kq3sq3 + bs + kq2sq2 + kq1sq1 + k
)

X(s) = F(s) (10.7)

This process could be continued so that the system can therefore be expressed as
power series with 0 ≤ qn ≤ 2, with N as integer, as follows:

(

N
∑

n=0

knsqn

)

X(s) = F(s) (10.8)

Now in reality the order qn is temperature dependent, and the entire system will be
considered as layered of such material. Therefore if the material is subjected to tem-
perature distribution, then the material will exhibit order distribution too. In the limit
of infinitesimally small elements, the above (10.8) will tend to continuum, and the
summation will be replaced then by integral. This gives the fundamental motivating
procedure for the concept with continuous order distribution. This continuous order
is expressed as:

⎛

⎝

2
∫

0

k(q)sqdq

⎞

⎠ X(s) = F(s) (10.9)

This is very general representation of a dynamic system of any type taken for system
identification studies. For demonstration, the familiar integer order dynamic spring
damper mass element equation (10.2) can be rewritten with the form expressed in
(10.9) as:

⎛

⎝

2
∫

0

[mδ(q − 2)+ bδ(q − 1)+ kδ(q)] sqdq

⎞

⎠ X(s) = F(s) (10.10)

Figure 10.1 shows the plot of k(q) and q , for the classical (10.2) mass–spring–
damper, i.e. order distribution. Here the order is discrete, dirac-delta functions at
0,1,2.

Figure 10.1 demonstrates for ideal (classical) systems; the orders are concen-
trated at a single number, in this case at 0,1,2. This is accepted if the mass, spring,
and damper are (really) ideal elements. In the classical calculus terminology, these

Fig. 10.1 Order distribution
of mass–spring–damper
integer order system

1.0

k(q)

0                1             2 q
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orders are point property, the question is if at all these are point quantities? If so
then should we have mass assigned to a point? But in reality, the mass is assigned
a distributed volume and thus the idealism vanishes. Therefore, the order indeed
need not be appoint property. Well even for integer order systems, these dirac-deltas
concentrated at 0,1,2 should spread out may be like Gaussian distribution with peaks
at 0,1,2 and spread from q = 0 to +∞, in continuous spectrum. Though Fig. 10.1
shows the height of these dirac-delta functions to be same, but actually, the height
is proportional to the coefficients. As per (10.10), the height will depend on the
relative values of the multiplier coefficients m, b, k. To demonstrate the concept,
all dirac-delta at the discrete order points are taken as of unity height, actually the
heights should be different.

Allowed the restriction on the maximum possible order (i.e. second order in
the present case), (10.9) can be still generalized as continuum power series, as
following:

⎛

⎝

∞
∫

0

k(q)sqdq

⎞

⎠ X(s) = F(s) (10.11)

The time domain representation of the (10.11) is

∞
∫

0

k(q)0dq
t x(t)dq = f (t) (10.12)

Mathematically, the system can also be described by continuum asymptotic series,
instead of power series (10.11), as:

⎛

⎝

∞
∫

0

k(q)s−qdq

⎞

⎠ X(s) = F(s) (10.13)

Combining (10.11) and (10.13), we obtain a very general system descriptive
method, as:

⎛

⎝

+∞
∫

−∞
k(q)sqdq

⎞

⎠ X(s) = F(s) (10.14)

10.4 Determination of Order Distribution from Frequency
Domain Experimental Data

Take the general power series representation of a system (10.11)
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⎛

⎝

∞
∫

0

k(q)sqdq

⎞

⎠ X(s) = F(s)

It is desirable to get the transfer function:

X(s)

F(s)
= 1
∞
∫

0
k(q)sqdq

= 1

P(s)
= G(s) (10.15)

Inverting (10.15) we get

P(s) =
∞
∫

0

k(q)sqdq = 1

G(s)
(10.16)

For an unknown system, the measured frequency response is available experimen-
tally, as G( jω). In (10.16), we replace s → jω, and assume that the representation
of the system is by form (10.16). Then

∞
∫

0

k(q)( jω)qdq = 1

G( jω)
(10.17)

System identification problem thus boils down to finding the order distribution k(q),
given G( jω).

Obviously, analytical approach is difficult, and we resort to numerical approach.
In reality, the order distribution decays as q → ∞. So to assume k(q) → 0 as
q grows will not be an offset from reality. In that event, the integral expressed in
(10.17) converges and Euler’s formula to numerically solve (10.17) is used. The
integral of (10.17) will take the summation form as:

N
∑

n=0

kn( jω)nQ Q = 1

G( jω)
(10.18)

where Q is the constant sample width, in the variable q , and kn is the height of the
sampled order distribution. Remembering that we usually have sampled frequency
response data, (10.18) should be satisfied at each data point or for any frequency
(ωi ). Thus we write (10.18) as:

N
∑

n=0

kn( jωi )nQ Q = 1

G( jωi)
, for any i (10.19)

Equation (10.19) can be written for 1 to M , frequency points as:
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Qk0 + Qk1( jω1)Q + Qk2( jω1)2Q + Qk3( jω1)3Q + . . . + QkN ( jω1)N Q = 1

G( jω1)

Qk0 + Qk1( jω2)Q + Qk2( jω2)2Q + Qk3( jω2)3Q + . . . + QkN ( jω2)N Q = 1

G( jω2)

.............................................................................................................................

..............................................................................................................................

Qk0 + Qk1( jωM )Q + Qk2( jωM )2Q + Qk( jωM )3Q + . . . + QkN ( jωM )N Q = 1

G( jωM )
(10.20)

Rearranging (10.20) in matrix form, we obtain

Q

⎡

⎢

⎢

⎢

⎢

⎣

1 ( jω1)Q ( jω1)2Q . ( jω1)N Q

1 ( jω2)Q ( jω2)2Q . ( jω2)N Q

. . . . .

. . . . .

1 ( jωM)Q ( jωM)2Q . ( jωM)N Q

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

k0

k1

.

.

kN

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1/G( jω1)
1/G( jω2)

.

.

1/G( jωM)

⎤

⎥

⎥

⎥

⎥

⎦

(10.21)

The compact form representation is shown below:

[W ] . [k] = [g] (10.22)

The [W ] matrix includes Q, and the vectors are [k] and [g]. Clearly if M > N , then
least square solution or matrix inverse solution may be applied, and can be solved to
get sampled order distribution k(q). The problem with the solution of (10.22) is that
the matrix [W ] tends toward singularity if N (the number of order samples) grows
large, or the order distribution sample size Q is made smaller.

Therefore numerically the order distribution k(q) is [k] = [W ]−1 [g] or can

be written as a pseudo-inverse expression, as [k] = [[W ]T [W ]
]−1

[W ]T [g]. The
proven concepts of numerical robustness is maintained in these calculations too.

10.5 Analysis of Continuous Order Distribution

By rewriting the integral in system equation (10.11), i.e.,
∞
∫

0
k(q)sqdq , the exponent

sq = exp [q ln(s)], we obtain

⎛

⎝

∞
∫

0

k(q)eq ln(s)dq

⎞

⎠ X(s) = P(s)X(s) = F(s) (10.23)

The expression (10.23) is effectively a Laplace transform of the function k(q), with
the new Laplace variable r = − ln(s). As long as the order distribution k(q) is of
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exponential order then the resulting P(s) is easy to evaluate, using this r -Laplace
transform.

Table 10.1 presents the transfer function P(s), for second-order systems with
continuous order distribution.

Equation (10.23) resembles Laplace transform in log frequency and could be used
for frequency domain analysis by replacing s → jωm . Then

∞
∫

0

k(nQ)enQ ln( jωm )= P( jωm),

rather difficult to solve, but solvable to obtain k(nQ).
The order distribution k(q) is taken for all q ≥ 0. The system descriptions

with the characteristic equations are expressed in differential equations with
differentiation order greater than zero. So the integration terms are also converted
to differentiation and the characteristic equations are in polynomial of powers of sq

with q ≥ 0. In the following derivations thus, the q is always taken as greater than
zero, and k(q) = 0, for all q < 0.

To evaluate r-Laplace transform from the given order distribution (continuous

spiked or mixed), the Laplace identities are used. So P(r ) =
∞
∫

0
k(q)e−rqdq obtained

is r-Laplace transform, and then in the obtained expression of P(r ) substitution for
r = − ln(s) is carried out to get P(s).

Following examples demonstrate the derivation of r-Laplace, P(r ), and then the
Laplace transform P(s) of continuous order, spiked ordered, and mixed order dis-
tributions, k(q).

For exponential order distribution k(q) = e−q , for all q ≥ 0.
r-Laplace transform is

P(r ) =
∞
∫

0

e−qe−rqdq =
∞
∫

0

e−q(r+1)dq = 1

r + 1
,

in this expression, putting r = − ln(s) gives

P(s) = 1

1− ln(s)

For k(q) = 1
q+a for all q ≥ 0,

P(r ) =
∞
∫

0

1

q + a
e−qr dq.

This integral we solve by using the definition of exponential integral, as:
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Table 10.1 Order distributions and their (r - Domain and s - Domain) Laplace transform

order distribution
k(q) vs. q

r-Laplace transform
P(r)

Laplace transfer function
P(s) r = − ln(s)

2
k(q)

1

1        2 q

1− e−2r

r

s2 − 1

ln(s)

k(q)

1

q1 2
1− 2e−r + e−2r

r2

1− 2s + s2

[ln(s)]2

k(q)
2

1

q1      2
1− (1+ 2r)e−2r

r2

1− [1− 2 ln(s)] s2

[ln(s)]2

k(q)

1 2

2

0
q

2r − 1+ e−2r

r2

s2 − 1− 2 ln(s)

[ln(s)]2

k(q)
2
1

1 2 q

•
re−2r + 1− e−r

r

s − 1+ s2 ln(s)

ln(s)

k(q)

1 2

2

1

q

•

r − 1+ e−r + r2e−2r

r2

s2 [ln(s)]2 − ln(s) + s − 1

[ln(s)]2

k(q)
1 2 q

1
1− (1+ r)e−r + r2e−2r

r2

1− s + s ln(s)+ s2 [ln(s)]2

[ln(s)]2

2

1

q1           2

k(q)

4π2(1− e−2r )

2r(r2 + 4π2)

4π2(s2 − 1)

2 ln(s)
[{ln(s)}2 + 4π2

]

1

q1

k(q)

1− e−r

r

s − 1

ln(s)

1

q1

k(q) 1− (1+ r)e−r

r2

1− s [1− ln(s)]

[ln(s)]2
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Ei (x)
def= −

∞
∫

−x

e−t

t
dt

Put u = q + a, then

P(r ) =
∞
∫

a

1

u
e−r(u−a)du = ear

∞
∫

a

1

u
e−rudu.

In this, take ru = v, then

P(r ) = ear

∞
∫

ar

r

v
e−v

dv

r
= ear

∞
∫

−(−ar)

1

v
e−vdv = −ear

⎧

⎪
⎨

⎪
⎩

−
∞
∫

−(−ar)

e−v

v
dv

⎫

⎪
⎬

⎪
⎭

= −ear Ei (−ar )

Substitute r = − ln(s) to get

P(s) = −ea[− ln(s)] Ei (−a [− ln(s)]) = − 1

sa
Ei
[

ln(sa)
]

For a train of spikes alternating at q = 1, 2, 3, 4 . . ., we have
k(q) = δ(q − 1)− δ(q − 2)+ δ(q − 3)− δ(q − 4)+ . . .

By using the shifted dirac-delta and its transform as δ(t − t0)↔ e−st0 , we get

P(r ) = e−r − e−2r + e−3r − e−4r + . . . = (e−r + e−3r + e−5r + . . .)
−(e−2r + e−4r + e−6r + . . .)
= e−r

1− e−2r
− e−2r

1− e−2r
= 1− e−r

er − e−r
= 1

2 sinh(r )
(1− e−r )

Substituting r = − ln(s) we obtain

P(s) = 1

2 sinh [− ln(s)]

(

1− e−[− ln(s)]
) = 1

sinh [ln(s)]

(

s − 1

2

)

For k(q) =
{

1 q ≥ 0
0 q > 1

, call this as “window order-one” W I N(0, 1).

Then P(r ) =
∞
∫

0
1.e−rqdq is

P(r ) =
1
∫

0

e−rq dq = 1− e−r

r
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and substituting r = − ln(s) we have

P(s) = 1− e−r[− ln(s)]

− ln(s)
= s − 1

ln(s)

For k(q) =
{

1 q ≥ 0
0 q > 2

, call this as “window order-two” W I N(0, 2),

then P(r ) = 1−e−2r

r , and substituting r = − ln(s), we have

P(s) = s2 − 1

ln(s)

For order distribution with continuous from 0 to 1 as W I N(0, 1) and spike at q = 2
is k(q) = W I N(0, 1) + δ(q − 2), then

P(r ) = L {W I N(0, 1)} + L {δ(q − 2)} gives

P(r ) = 1− e−r

r
+ e−2r = 1− e−r + re−2r

r

and substituting r = − ln(s) we have

P(s) = 1− e−[− ln(s)] + [− ln(s)] e−2[− ln(s)]

− ln(s)
= s2 ln(s)+ s − 1

ln(s)

For k(q) =
{

q q ≥ 0
0 q > 2

, call this as +R AM P(0, 2).

In this derivation, we use Laplace identity: tn f (t)↔ (−1)n dn F(s)
dsn .

This observation makes construction of +R AM P(0, 2) from W I N(0, 2) as:

+R AM P(0, 2) = qW I N(0, 2)

So Laplace will be qW I N(0, 2)↔ (−1)1 d
dr L {W I N(0, 2)}

P(r ) = (−1)
d

dr

1− e−2r

r
= 1− 2re−2r − e−2r

r2
= 1− (2r + 1)e−2r

r2

and substituting r = − ln(s), we have P(s) = 1−(2[− ln(s)]+1)e−2[− ln(s)]

[ln(s)]2 = 1+[2 ln(s)−1]s2

[ln(s)]2

For k(q) =
{

q q ≥ 0
0 q > 1

, call this as +R AM P(0, 1), using similar procedure as

above we get

P(r ) = 1− (1+ r )e−r

r2
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and substituting r = − ln(s), we get P(s) = 1+[ln(s)−1]s
[ln(s)]2

For k(q) =
{−q + 2 q ≥ 0

0 q > 2
, call this as −R AM P(0, 2), can be composed as:

k(q) = − [+R AM P(0, 2)]+ 2[W I N(0, 2)],

By using derived Laplace of these constituents we get

P(r ) = −
(

1− e−2r − 2re−2r

r2

)

+ 2

(

1− e−2r

r

)

= 2r − 1+ e−2r

r2
,

and substituting r = − ln(s), we get

P(s) = s2 − 1− 2 ln(s)

[ln(s)]2

For k(q) =
{−q + 1 q ≥ 0

0 q > 1
, call this as −R AM P(0, 1) and by the above proce-

dure, we compose this and write
k(q) = − [+R AM P(0, 1)] + 1[W I N(0, 1)], then taking Laplace of the con-

stituents we get

P(r ) = −
(

1− (1+ r )e−r

r2

)

+ 1

(

1− e−r

r

)

= r − 1+ e−r

r2

and substituting r = − ln(s), we get P(s) = s−1−ln(s)
[ln(s)]2

For k(q) =
⎧

⎨

⎩

0 q ≥ 0
−q + 2 q ≥ 1

0 q > 2
is −R AM P(0, 1) shifted from q = 0 to q = 1.

Here Laplace shift identity f (t − t0)↔ e−st0 F(s) is used to get

P(r ) = e−r

(

r − 1+ e−r

r2

)

= re−r − e−r + e−2r

r2
= (r − 1)e−r + e−2r

r2

and substituting r = − ln(s), we get

P(s) = ([− ln(s)]− 1) e−[− ln(s)] + e−2[− ln(s)]

[ln(s)]2 = s2 + s [ln(s)+ 1]

[ln(s)]2

For k(q) =
⎧

⎨

⎩

q q ≥ 0
−q + 2 q ≥ 1

0 q > 2
can be composed by

+R AM P(0, 1)+ [−R AM P(0, 1)]at q=1
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From above obtained results for shifted −R AM P(0, 1) and +R AM P(0, 1), we
get

P(r ) = 1− e−r − re−r

r2
+ re−r − e−r − e−2r

r2
= 1− 2e−r + e−2r

r2

and substituting r = − ln(s), we get P(s) = 1−2s+s2

[ln(s)]2

For k(q) = 1
2 − 1

2 cos(2πq), we use standard Laplace transform for Heaviside
step and cosine expressions to obtain

P(r ) = 1

2
× 1

r
− 1

2

(

r

r2 + 4π2

)

= 2π2

r (r2 + 4π2)

and substituting r = − ln(s), we get

P(s) = −2π2

ln(s)
{

[ln(s)]2 + 4π2
} .

We now use this derived expression to truncated k(q) =
{

0.5 − 0.5 cos(2πq) q ≥ 0
0 q > 2 ;

this can be composed by continuous function 1
2 − 1

2 cos(2πq) and from this subtract
the shifted function at q = 2, that is 1

2 − 1
2 cos [2π(q − 2)]. Using shift identity of

Laplace operation we get

P(r ) = 2π2

r (r2 + 4π2)
− e−2r

(

2π2

r (r2 + 4π2)

)

= 2π2(1− e−2r )

r (r2 + 4π2)

and substituting r = − ln(s), we get

P(s) = 2π2(s2 − 1)

ln(s)
{

[ln(s)]2 + 4π2
}

If k(q) is composed of one continuous function f (q) multiplied by aW I N(0, qn),
then to get r -Laplace transform, convolution identity is used.

Meaning P(r ) = L { f (q)}∗ L {aW I N(0, qn)}
From the system order distribution, continuous, spiked, or mixed k(q), it is

thus possible to obtain the Laplace transform P(s) of the same (by going through
intermediate r -Laplace i.e. P(r )). The reciprocal of the Laplace transform of the
system order distribution gives the frequency response or the system transfer func-
tion, G(s) = 1/P(s). When Laplace transform of the input excitation is multi-
plied by reciprocal of Laplace transform of order distribution, we get the output i.e.
X(s) = F(s)/P(s), F(s) is excitation. Conversely by controlling or manipulating
the shape/form of P(s), the system’s transfer function or the output shape/form can
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be controlled, with infinite freedom. The manipulation of the order distribution k(q)
thus gives a thought for “continuum order feedback controller.”

Figure 10.2 represents the system identification method applied for the transfer
function G(s) = 1

s2+1.5s1.5+s+1.5s0.5+1 . Equation (10.20) with Q = 0.1, N = 25
with ω spaced logarithmically between 10−2 and 102 gives the discretized plots
for k(q), the order distribution. Similarly Fig. 10.3 represents the order distribution
obtained for G(s) = 1

s2+0.5s+1 . The observation in Figs. 10.2 and 10.3 is that the
order spikes that one would have obtained are somewhat smeared and are blunt. The
techniques to concentrate the k(q) distribution peaks into specific discrete q values is
a topic of advance research and development. The concentration of the spikes should
ideally—as in Fig. 10.1, for integer as well as fractional order system—be identified.
Given order distribution in discrete form, the transfer function is reconstructed by
G(s) ≡ 1

N
∑

n=0
kn sn Q Q

.

Sampling issues are described here for different types of order distribution
(spiked, continuous, and mixed). In evaluating the order distribution integral, it will
be important to distinguish between types, i.e. spiked (impulsive) and continuous. If
the composition of the order distribution is assumed to be purely impulsive entirely,

or more generally k(q) =
N
∑

n=0
kδ(nQ)δ(q − nQ), qmax = N Q, then the integral

can be evaluated by Euler expansion. The approximation then for the integral is
qmax
∫

0
k(q)sqdq ∼=

N
∑

n=0
kδ(nQ)snQ Q. Here, in this discussion, a note may be taken as

it is observed that Q appears explicitly in the summation. The unit impulses are
spikes of unit area; their heights when identified by the above method are ampli-
fied by 1

/

Q. This height gets reduced by Q in the summation to give correct
results.

For continuous order distribution (for type say k(q) = exp(−q)) and others in
Table 10.1, the integral can be evaluated by inter-sample reconstruction technique.
This is analogous to sampled data reconstruction problem in time domain. Assuming

10

5
k(q)

0

q 
0                    0.5                    1                  1.5                    2                  2.5 

•
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•

•

• • •

•
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•

•

•
••

•

• •
• • •

•

•

•

Fig. 10.2 Order distribution for transfer function G(s) = 1
s2+1.5s1.5+s+1.5s0.5+1
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10

5

0

0                 0.5                   1                1.5                 2 q 

•
•

•

•

•

•

••• •

•

• ••
• • • •

•

•

•

••

• •

k(q)

Fig. 10.3 Order distribution of transfer function G(s) = 1
s2+0.5s+1

the order distribution to be piecewise constant, then the approximate integral is

expressed as
qmax∫

0
k(q)sqdq ∼=

N
∑

n=0
kc(nQ)

(n+1)Q
∫

nQ
sqdq = s Q−1

ln(s)

N
∑

n=0
kc(nQ)snQ .

Evaluation of
(n+1)Q
∫

nQ
sqdq is obtained by writing sq = eq ln(s). So

(n+1)Q
∫

nQ

sqdq =
(n+1)Q
∫

nQ

eq ln(s)dq =
[

eq ln(s)

ln(s)

](n+1)Q

nQ

=
[

sq

ln(s)

](n+1)Q

nQ

= 1

ln(s)

[

s(n+1)Q − snQ
] = snQ

[

sQ − 1
]

ln(s)

Notice that Q does not explicitly multiply the summation, though implicitly being
present in numerator. Using this discussion, the expression (10.22) is modified and
presented as:

⎡

⎢

⎢

⎢

⎢

⎣

( jω1)Q−1
ln( jω1)

{

1 ( jω1)Q ( jω1)2Q ∗ ( jω1)N Q
}

( jω2)Q−1
ln( jω2)

{

1 ( jω2)Q ( jω2)2Q ∗ ( jω2)N Q
}

∗
( jωM )Q−1

ln( jωM )

{

1 ( jωM )Q ( jωM )2Q ∗ ( jωM)N Q
}

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

kc0

kc1

∗
kcN

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

1/G ( jω1)
1/G ( jω2)
∗

1/G ( jωM )

⎤

⎥

⎥

⎦

If the order distribution is assumed to be with mixed type, that is, with
both the continuous order distribution and the impulsive type, then the recon-
struction procedure will be mixed for the above discussed procedure, for
the system identification experiments. Expression (10.16) gets modified as:
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[

N
∑

n=0
kδ (nQ) snQ Q + s Q−1

ln(s)

N
∑

n=0
kc (nQ) snQ

]

s= jω1

= 1
G( jω1) . Expression (10.22)

thus for the system identification with mixed order distribution is

⎡

⎢

⎢

⎢

⎣

Q
{

1 ( jω1)Q ∗ ( jω1)N Q
} ( jω1)Q−1

ln( jω1)

{

1 ( jω1)Q ∗ ( jω1)N Q
}

Q
{

1 ( jω2)Q ∗ ( jω2)N Q
} ( jω2)Q−1

ln( jω2)

{

1 ( jω2)Q ∗ ( jω2)N Q
}

∗ ∗
Q
{

1 ( jωM )Q ∗ ( jωM )N Q
} ( jωM )Q−1

ln( jωM )

{

1 ( jωM )Q ∗ ( jωM )N Q
}

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

kδ0
kδ1
∗

kδN
kc0
kc1
∗

kcN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎣

1/G ( jω1)
1/G ( jω2)
∗

1/G ( jωM )

⎤

⎥

⎦

10.6 Variable Order System

While developing the concept of continuous order distribution, some thought was
put in, that is, if the system is subjected to ambient variations, say temperature vari-
ation, then the fixed order does show distribution. For instance, taking the transfer
impedance of a half-order element at fixed ambience is Z ( jω) ∝ 1

( jω)0.5 may well
show a change in order 0.5 with the variable ambience. Therefore, the differintegrals
of the fractional or integer order may well have the order q , which varies with time
i.e. becomes q(t). Consider the fractional differential equation c Dq

t y(t) = f (t), and
the inferred integral equation is c D−q

t f (t) = y(t).
Since q can take any real value, the development of calculus for varying q

with t and y is essential field or research. The variable order system will have

c D−q(t,y)
t f (t) = y(t).

10.6.1 RL Definition for Variable Order

Consider only time variation of the order, i.e., q → q(t), the RL definition with zero
initial condition ψ( f,−q(t), a, c, t) = 0 yields

0 D−q(t)
t f (t) ≡

t
∫

0

(t − τ )qe(t,τ )−1

Γ(qg(t, τ ))
f (τ )dτ

Here the arguments of exponent are qe, and the Gamma function argument is qg may
be different. This is the basic difference from fixed-order system. The above formu-
lation of the definition can have q(t, τ )→ q(t), q(t, τ )→ q(τ ), q(t, τ )→ q(t−τ ).
Substitution of these three definitions into the above formulation of qe(t, τ ) and
qg(t, τ ) yields nine expressions of the variable order fractional RL integration.
These nine definitions are subjected to the criteria and desirable properties of frac-
tional integration, to rule out the undesirable formulations. The most important ones
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are linearity and index law (composition), leaving aside backward compatibility and
zero property.

Consider the linearity property for the definition of variable order integration as
mentioned above:

0 D−q(t)
t (a f (t)+ bg(t)) =

t
∫

0

(t − τ )qe(t,τ )−1

Γ(qg(t, τ ))
{a f (τ )+ bg(τ )}dτ

= a

t
∫

0

(t − τ )qe(t,τ )−1

Γ(qg(t, τ ))
f (τ )dτ

+b

t
∫

0

(t − τ )qe(t,τ )−1

Γ(qg(t, τ ))
g(τ )dτ

= a0 D−q(t)
t f (t)+ b0 D−q(t)

t g(t)

The above derivation shows that linearity is satisfied for all arguments of q in numer-
ator as well as denominator for the definition of fractional integral.

Out of all these substitutions, the definition of the variable order fractional RL
integration when qe(t, τ ) = qg(t, τ ) gives interesting observation, for the substitu-
tion case with, q(t, τ )→ q(t − τ ), which provided adherence to the index law, but
failed to satisfy composition law under the following definition:

0 D−q(t)
t f (t) ≡

t
∫

0

(t − τ )q(t−τ )−1

Γ(q(t − τ ))
f (τ )dτ

Here, it was inferred that 0 D−q(t)
t 0 D−v(t)

t f (t) = 0 D−v(t)
t 0 D−q(t)

t f (t) 
= 0 D−q(t)−v(t)
t

f (t). The detailed proof uses the convolution theory and the convolution nature of
this particular definition, which appears to be the most satisfactory one for use.

It should be mentioned that different physical processes might effectively use
different definitions, and all the three forms, namely,

0 D−q(t)
t f (t) ≡

t
∫

0

(t − τ )q(t−τ )−1

Γ(q(t − τ ))
f (τ )dτ,

0 D−q(t)
t f (t) ≡

t
∫

0

(t−τ )q(t )−1

Γ(q(t))
f (τ )dτ , and 0 D−q(t)

t f (t) ≡
t
∫

0

(t−τ )q(τ )−1

Γ(q(τ ))
f (τ )dτ may prove

useful.
This is because this formulation adheres to the index law and because of the

convolution forms, which makes available all of the results of the associated theory,
the most compelling definition is
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0 D−q(t)
t f (t) ≡

t
∫

0

(t − τ )q(t−τ )−1

Γ(q(t − τ ))
f (τ )dτ q(t) > 0

Figure 10.4 describes a variable order structure.
If the above form of equations are assumed, then parallel definition for the vari-

able structure derivative might be considered as:

0 Dq(t)
t f (t) ≡ 0 Dm

t 0 D−p(t)
t f (t), q(t) > 0

where q(t) = m− p(t), and m is positive integer. If it is assumed that q(t) be always
positive, then m could be taken as the least integer greater than q(t). However, since
composition does not hold, it is not clear that if this could be a reasonable definition.
Matters are further complicated by the fact that it may be desirable to allow q(t) to
range over both positive and negative values. This places a “seam” at q = 0, which
may make any approach based on RL definition implausible, and perhaps requires
an approach based on GL definition.

10.6.2 Laplace Transforms and Transfer Function of Variable
Order System

The derivation of the Laplace transforms of the variable order structure integral
follows that for the fixed-order case exactly, since the convolution theorem can be
applied. Then, considering the un-initialized case of fractional integration of vari-
able structure, we get

L
{

0 D−q(t)
t f (t)

}

=
∞
∫

0

e−st

⎛

⎝

t
∫

0

(t − τ )q(t−τ )−1

Γ(q(t − τ ))
f (τ )dτ

⎞

⎠ dt, q(t) > 0, t > 0

With definition of convolution L {h(t)∗g(t)}= H (s)G(s)= L

(

t
∫

0
h(τ )g(t − τ )dτ

)

,

and taking h(t) = f (t) and g(t) = tq(t )−1

Γ(q(t))
, the convolution theorem yields

L
{

0 D−q(t)
t f (t)

}

= F(s)G(s) = L { f (t)} L

{

tq(t)−1

Γ(q(t))

}

Fig. 10.4 Variable order structure

f (t)
y(t) = o D−q(t) f (t)

q(t)

o Dt 
−q(t)
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The variable order structure differintegration allows the introduction of a new
transfer function concept. Refer Fig. 10.4; the conventional transfer function relates
the Laplace transform of the output to the transform of the input (ratio of the two)
by:

T F1 ≡ L {y(t)}
L { f (t)} =

L
{

0 D−q(t)
t f (t)

}

L { f (t)} =
L { f (t)} L

{

tq(t )−1

Γ(q(t))

}

L { f (t)} = L

{

tq(t)−1

Γ(q(t))

}

Since the q(t) is now a variable, it may be thought of as an input (Fig. 10.4), and
for this, a new transfer function may be defined as TF2 ≡ L{y(t)}

L{q(t)} . For the considered
definition, the process from q(t) to y(t) has not been shown to be linear.

That is, 0 D−q1(t)−q2 (t)
t f (t) = 0 D−q1(t)

t f (t) + 0 D−q2(t)
t f (t) has not been shown.

Here further research is required to define and utilize new transfer function (T F2).
The relationship of the two transfer functions may be determined as follows.

Consider f (t) and q(t) to be related by g(t), where

q(t) =
t
∫

0
f (t)g(t − τ )dτ , then L {q(t)} = L { f (t)} L {g(t)}, by convolution the-

orem. Then:
T F2 = L{y(t)}

L{q(t)} = L{ f (t)}T F1

L{ f (t)}L{g(t)} gives T F1
T F2
= L {g(t)}

10.6.3 GL Definition for Variable Order

A variable structure differintegral is formed by GL definition too. Let

ΔT = (t − a)/N

and limit consideration to q → q(t) or q → q(t − jΔT ). Then expressing q gener-
ally as q → q(t, jΔT ), a generalized GL form may be written as:

a Dq(t)
t f (t) = lim

N →∞
ΔT → 0

N−1
∑

j=0

ΔT qE (t, jΔT ) Γ( j − qN (t, jΔT ))

Γ(−qD(t, jΔT ))Γ( j + 1)
f (t − jΔT )

It is observed that q(t, jΔT ) occurs three times in this expression, in the exponent as
qE , in the numerator as qN , and in the denominator as qD. Thus, the number of for-
mula combination (permutation) is eight, as compared to nine in RL type definition
previously discussed.

For the combinations qE (t, jΔT )→ qE (t − jΔT ), qN (t, jΔT )→ qN (t − jΔT ),
qD(t, jΔT )→ qD(t − jΔT ), the GL formulation is as follows:

a Dq(t)
t f (t) = lim

N →∞
ΔT → 0

N−1
∑

j=0

ΔT qE (t− jΔT ) Γ( j − qN (t − jΔT ))

Γ(−qD(t − jΔT ))Γ( j + 1)
f (t − jΔT )
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Fig. 10.5 Variable q(t)
differintegration by GL
method

f (t)

q (t)

t2t1a Function versus t

f (t −jΔT )
q (t1)

q (t2)

…………….4, 3, 2, 1, 0 = j  Function versus j

q (t2 − jΔT )

This is the most promising definition out of the eight permutations.
Consider two time interval evaluations of GL differeintegration of a Dq(t)

t f (t),
for common q(t) with one evaluation for a < t ≤ t1, and another in interval
a < t ≤ t2, where t2 > t1 (Fig. 10.5). The function did not exist before the time
t = a, so f (t) = 0 for t < a. In particular, consider the order q(t) steps from
constant value q(t1) → q(t2), a new constant value at time t = t1. The evalua-
tion of a Dq(t)

t f (t) to t = t2 can be viewed as an evaluation from t = a → t1,
summed to an evaluation from t = t1 → t2. In view of the hereditary nature of
the fractional differintegration, the evaluation to t = t1 is part of history in the
evaluation a to t2; thus it is apparent that for the evaluation of a Dq(t)

t f (t) to t = t2
based on the value qE (t, jΔT )→ qE (t − jΔT ), qN (t, jΔT )→ qN (t − jΔT ), and
qD(t, jΔT )→ qD(t− jΔT ) will yield desirable results; all others will give undesir-
able result. This is also because, over the period t < t1, part of evaluation, the value
of q(t, jΔT ) = q(t) = q(t2) will be used in the summation, essentially chang-
ing history. Thus, it appears that the only satisfactory definition is as mentioned
above. This definition parallels the RL promising formulation, and adds credibility
of convolution-related variable structure form. The intuitive nature of GL form, in
terms of available conceptualization, allows the hope that a form of it may evolve,
which would satisfy the composition property. The detailed study in this direction
is still a matter of research.

10.7 Generalized PID Controls

Here in this section generalization of the PI-PID controller is presented. The gener-
alization is possible only because of the availability of the fractional order elements.
The standard integer order PI-controller has a transfer function of the form:

H (s) = k p + ki

s
(10.24)
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This can be written as:

H (s) = k p + ki s
−1 (10.25)

The controller can now be generalized using fractional order integrals. Assuming
the base fraction q = 1/N , for now, a generalized PI-controller can be written as:

H (s) = k0 + k1s−q + k2s−2q + . . .+ kN−1s−(N−1)q + kN s−1, 0 < q < 1
(10.26)

H (s) =
N
∑

n=0

kns−nq, Nq = 1 (10.27)

Performing manipulation on above expressions we obtain

H (s) = k0s + k1s(N−1)q + . . .+ kN−1sq + kN

s
, Nq = 1 (10.28)

H (s) =

N
∑

n=0
kns(N−n)q

s
, Nq = 1 (10.29)

Clearly, this controller allows a much degree and much variety of compensation
results. Inserting this into the standard closed- loop control configuration with plant
transfer function G(s) gives closed-loop transfer function

T (s) = G(s)H (s)/ (1+ G(s)H (s))

as:

T (s) =

[

N
∑

n=0
kns(N−n)q

]

G(s)

s +
[

N
∑

n=0
kns(N−n)q

]

G(s)

, Nq = 1 (10.30)

With G(s) = N(s)/D(s), the close-loop transfer function becomes

T (s) =

[

N
∑

n=0
kns(N−n)q

]

N(s)

s D(s)+
[

N
∑

n=0
kns(N−n)q

]

N(s)

(10.31)

This generalization of a PI-control process gives considerable design capability and
freedom. Both close-loop poles and close- loop zeros can be placed by proper selec-
tion of the gains. The compensator can be further generalized by considering the
powers of q to be unrelated; in this case, the controller is
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H (s) = k0 + k1s−q1 + k2s−q2 + . . .+ kN−1s−qN−1 + kN s−1 =

N
∑

n=0
knsqN−n

s
(10.32)

The summation assumes q0 = 0 and qN = 1, and 0 ≤ qi ≤ 1 and 0 ≤ i ≤ N .
The above-discussed approach can be extended to PID controllers, where deriva-

tive action controller is allowed. However, the derivative control is seldom used
because its high-frequency attenuation of noise issues. Still to generalize the con-
cept, the PID controller can thus be generalized as:

H (s) = k ′N s+1 + k ′N−1s+(N−1)q + . . .+ k ′2s+2q + k ′1s+q + k0 + k1s−q

+k2s−2q + . . .+ kN−1s−(N−1)q + kN s−1 (10.33)

or equivalently with q = 1/N , the generalized PID is H (s) =
N
∑

n=−N
hnsnq . Based on

the previous discussions, the same compensator can be decomposed into numerator

and denominator and be expressed as H (s) =
N
∑

n=0
bn sn/N

N
∑

n=0
an sn/N

=
N
∑

n=0
bns pn

N
∑

n=0
an sqn

. In a closed-

loop feedback configuration, the plant G(s) = N(s)/D(s), we get the generalized
transfer function:

T (s) =

[

N
∑

n=0
bns pn

]

N(s)

[

N
∑

n=0
ansqn

]

D(s)+
[

N
∑

n=0
bns pn

]

N(s)

(10.34)

To determine the effectiveness of the generalized PID controller, the analysis must
be done on Nyquist plane, the quality of which depends on the approximation lim-
ited by approximation size.

10.8 Continuum Order Feedback Control System

As discussed in system identification section, taking the summation to the limit, we
get the transfer function of (10.33) in the form:

H (s) =

b
∫

a
KN (q)sqdq

b
∫

a
KD(q)sqdq

(10.35)

This is continuum order compensator, where the order distribution K (q) must be
selected for numerator and denominator so that H (s) remains causal and so that the
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integrand must converge. The general PID expression (10.33) can be expressed as
power series as

H (s) =

N
∑

n=0
bns pn

N
∑

n=0
ansqn

=
∞
∑

n=0

cnsrn

or asymptotic series as =
∞
∑

n=0
cns−wn representations. Thus, the power integral rep-

resentation for the continuum compensator would look as:

HP S(s) =
a
∫

0
K P S(q)sqdq . And the asymptotic series would be

HAS(s) =
∞
∫

0

K AS(q)sqdq.

The combined form will be having a form as H (s) =
a
∫

−∞
K (q)sqdq, where the order

distribution function K (q) is chosen to make the integral convergent. For an order
distribution for generalizing the PID controller of (10.33) will be

H (s) =
+1
∫

−1

K (q)sqdq (10.36)

Given the K (q) function, it is easy to perform the analysis of closed-loop system in
Nyquist plane. The selection of suitable K (q) is field of research; following example
of an oscillating plant will give some insight of the open issues.

Consider a plant transfer function G(s) = 1
s2+1 (an oscillator un-damped). A

possible compensator using the order distribution would be H (s) =
2
∫

0
K (q)sqdq,

and if this controller were placed before the plant, the resulting close-loop system
will have a transfer function, as

T (s) =

2
∫

0
K (q)sqdq

s2 +
2
∫

0
K (q)sqdq + 1

;

this compensator allows an infinite number of frequencies in the closed-loop system
and thus allows considerable freedom to design the appropriate K (q). The question
of selection of this function is to minimize some desired error, for a given input, or
more appropriately a cost function, but much research is required in this direction.
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10.9 Time Domain Response of Sinusoidal Inputs for Fractional
Order Operator

Replacing sq → ( jω)q gives frequency response of the transfer function. Frequency
domain approaches assume that the time responses are sinusoidal steady state.
Whenever, an input is applied to a system, the response will consists of transient part
and steady-state part. The frequency response approach assumes that the transient
has decayed away, and that the response is in sinusoidal steady state. For fractional
order systems, sinusoid steady state also implies that the initialized response due to
initialization function (ψ) has decayed to near zero.

A periodic function with period T is represented as Fourier series:

f (t) =
∞
∑

k=1

(

cke j2πkt/T + ck e− j2πkt/T
)

. Fourier integral obtains the coefficient,

and the coefficients are complex conjugate. The coefficient is

ck = 1

T

T
∫

0

f (t)e− j2πkt/T dt .

Oldham Spanier gives the method for evaluating fractional differentigration of
repeated periodic function by using lower- incomplete Gamma function as

0dq
t (exp (± j2πk/T )) =

(

± j2πk
T

)q
γ (−q,± j2πkt/T ) . This term contains

both the transient and the steady-state fractional derivative of the periodic function.
An asymptotic expansion for larger values of t for incomplete Gamma function, γ
term, gives

0dq
t f (t) =

∞
∑

k=1

(

2πk

T

)q

(ck exp [ j2π {(kt/T )+ (q/4)}]

+ ck exp [− j2π {(kt/T )+ (q/4)}])

Defining the radian frequency ω0 = 2π/T gives an equivalent response as:

0dq
t f (t)=

∞
∑

k=1

(kω0)q
(

ck exp j [kω0t + (πq/2)]+ ck exp {− j [kω0t + (πq/2)]})

For any given input frequency kω0, it can be seen that the magnitude of the corre-
sponding fractionally differintegrated steady-state output sinusoid has its magnitude
scaled by (kω0)q , and is phase shifted by qπ/2, for example, after the decay of the
transient 0dq

t (sinωt)→ lim
t→∞ (ω)q sin (ωt + [πq/2]).

This result generalizes the response obtained for integer order systems. Here it
is important to note that frequency response results require sinusoidal steady state,
and initialization function plays less important role.
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10.10 Frequency Domain Response of Sinusoidal Inputs
for Fractional Order Operator

In earlier section, it was mentioned that replacement of sq → ( jω)q gives the
steady-state response of the transfer function. However, substitution snq → ( jω)nq

for q as a fractional number and nq not necessary an integer, points towards multiple
solutions and several roots. The question here is actually which root of ( j )nq to use.
The primary root is considered to be one with the smallest angle from the positive
real axis, with remaining roots being secondary roots. The answer to this question is
given by time domain result of the previous section. That is, using the primary roots
given by the frequency domain substitution, snq → ( jω)nq will give the frequency
response corresponding to the correct time domain response. For example, s0.5 sub-
stituted by s = jω gives which is j 0.5ω0.5. Recognizing

√
j has roots exp ( jπ/4)

and exp ( j5π/4), the primary root is always chosen for the frequency response i.e.
the root e jπ/4. This observation allows using the standard tools for control system
analysis as Bode plot, Nyquist plot, and others.

The frequency response of fractional order differintegral gives insight into the
use of the control system tools. The un-initialized Laplace relation is

L
{

0dq
t f (t)

} = sq F(s).

Thus the transfer function of the fractional operator is H (s) = L{0dq
t f (t)}

F(s) = sq . To
obtain frequency response replace sq → ( jω)q .

The magnitude response is simply |H ( jω)| = ωq , which rolls off at 20q
d B/decade on Bode plot, and the phase shift is given by the angle of the primary
root of ( j )q which is arg H ( jω) = qπ/2, the derivative operation for q > 0 and
integration operation for q < 0.

10.11 Ultra-damped System Response

The properties of temporal behavior of systems were discussed in Chap. 7,
with respect to pole-locations in w-plane. In Chap. 7 by lines with angle qπ in
w-plane, are on the secondary Riemann sheet of the s-plane. These pole properties
were termed as hyper-damped, as they were damped more than usual integer-order
over-damped poles. Now with respect to the w-plane, it is with some necessity that
distinction is made, between the poles that are on the negative real axis of w-plane
(which are called ultra-damped) and complex conjugate poles of w-plane (which
are still hyper-damped).

An ultra-damped system will consist of parallel combination of the form

H (s) = Y (s)

U (s)
= k

sq + a
, a > 0
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and real. Here k is system gain, a is ultra-damped pole in w-plane and q > 0.
For simplicity, take a = 1, k = 1, and frequency response transfer function is
H ( jω) = 1

( jω)q+1 . For small values of frequency H ( jω) = 1, and magnitude is thus
unity and phase angle is zero. For large values of frequency, the transfer function
becomes H ( jω) = ( jω)−q, and frequency response reverts back to that of a simple
fractional order operator discussed in the Sect. 10.10.

10.12 Hyper-damped System Response

Hyper-damped systems have a pair of complex conjugate poles off the negative real
axis of w-plane, but are farther to the left than the under-damped region (Chap. 7).
These poles are at |φ| > ±qπ lines. Here there are several types of behaviors
depending upon the specific location of the poles in w-plane.

First, we address a system that can be realized with passive energy storage ele-
ment. A passive energy storage element is one that cannot return more energy to
the system than when placed into the element by the system in the past. An active
element is one that can return more energy to a system than when placed into it in
past. Typically, an active element will have associated with it, either a large gain
or negative gain. Necessary (but not sufficient) condition for fractional order sys-
tem to be passive are that minimal transfer function denominator have all positive
coefficients, and that all poles lie to the left of stability wedge in w-plane. Another
concept traditionally associated with passivity is positive real concept. To be posi-
tively real system, the frequency response of transfer function must always lie in the
right half of Nyquist plot, meaning that the arg H ( jω) ≤ ±π/2 and �eH ( jω)> 0.
This means that maximum phase shift of positive real transfer function is bounded
by ±90◦. A minimum phase system has smallest possible phase shift for a given
magnitude response. An implication of this in integer order system is that all the
system poles and zeros must lie in the left-half of the s-plane. For fractional order
system, the implication of this being minimum phase all pole-zero lie left of insta-
bility wedge of w-plane, |φ| > ±qπ/2. Consider as an example all pole system,
passive and positive real, minimum phase, transfer function H (s) = 1

s+as0.5+1 . (A
fractional order system can be of minimum phase without being positive real.) The
properties of this transfer function depend on the pole location as decided by the
value of a (Table 10.2).

The under-damped active region for 0 > a > −√2 has further consideration.
The negative value of “a” is indicative of an active system, while w-plane poles
remain in “under-damped” region. The fact that there exist under-damped poles
implies that this system has a resonance, and a resonance peak should appear in
the frequency response Bode diagram too. Thus even though the high-frequency
asymptotes, as well as Laplace transformed transfer function, of this example, indi-
cate that this system is only a first order, it can still go into resonance. Clearly,
adding more fractional order terms with smaller value of q would allow even more
resonance.
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Table 10.2 Pole placements (in w and s -planes) for a first order transfer function with one ‘half’
order fractional term
Value of a w = ρ exp jφ s = r exp jθ Property

w-plane s-plane

a < −√2 �e(w) > 0, �e(s) < 0, UNSTABLE

|φ| < π
4 |θ | < π

2

Right Half Plane

0 > a > −√2 �e(w) > 0, �e(s) < 0, STABLE
π
4 < |φ| < π

2
π
2 < |θ | < π UNDERDAMPED

Left Half Plane MIN-PHASE

2 > a > 0 �e(w) < 0, π < |θ | < 2π, STABLE
π
2 < |φ| < π Secondary Riemann Sheet HYPERDAMPED

a > 2 |φ| > π |θ | > 2π, STABLE

Secondary Riemann Sheet ULTRADAMPED

Consequently, it appears that the highest power of Laplace variable in transfer
function is no longer an indicator of the order effective order of fractional order
system, or of number of resonance to expect in its frequency response. We call the
resonance as fractional resonance.

10.13 Disadvantage of Fractional Order System

This section points out to some of the disadvantages that specially occur in compu-
tational efforts, to realize fractional order systems. This area of science is an evolv-
ing field; presently, disadvantages are pointed in order to make distinction between
classical integer order calculus. The points are summarized below:

a. Fractional order differential equations accumulate the entire information of the
function in weighted form.

b. Fractionally differentiated state variables must be known as long as the system
has been operated. This is known as initialization function.

c. For integer order systems, the initialization function is constant and for fractional
order systems it is time varying.

d. Integer order system set of state along with system equations is sufficient to pre-
dict the response.

e. The fractional dynamic variables do not represent the state of the system.

f. Fractional dynamics require history of states or sufficient number of points by
short-memory principle, for initialization function computation.

g. The above memory effect requires large memory. The evolving developments to
reduce this requirement in form of power series expansion and continued fraction
expansion of the generating function in digital domain is an ongoing process.
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10.14 Concluding Comments

A very advanced topic is touched upon as on today, about the reality of an order
of a system. Can there be total certainty about the fixed integer order definition of
a system, or should the order of a system be spread around principal orders along
with several fractional orders, to take care of distributed effects parametric spreads
and other realities, are the questions for scientists and engineers of today to think
and answer. When order of a system has distribution, then having controller with
distributed order may be wise to have for efficient governance. Also ambience can
change the order of the system, and future development in variable fractional order
system mathematics is an enriched area of research.
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