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ity, this book provides a pedagogical introduction to relativity. It is based
on lectures given by the author in Jena over the last decades, and covers
the material usually presented in a three-term course on the subject. It
is self-contained, but the reader is expected to have a basic knowledge of
theoretical mechanics and electrodynamics. The necessary mathematical
tools (tensor calculus, Riemannian geometry) are provided. The author
discusses the most important features of both special and general rel-
ativity, as well as touching on more difficult topics, such as the field
of charged pole–dipole particles, the Petrov classification, groups of mo-
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Preface

Special Relativity originally dealt with the symmetries of the electromag-
netic field and their consequences for experiments and for the
interpretation of space and time measurements. It arose at the end of
the nineteenth century from the difficulties in understanding the proper-
ties of light when this light was tested by observers at rest or in relative
motion. Its name originated from the surprise that many of the con-
cepts of classical non-relativistic physics refer to a frame of reference
(‘observer’) and are true only relative to that frame.

The symmetries mentioned above show up as transformation proper-
ties with respect to Lorentz transformations. It was soon realized that
these transformation properties have to be the same for all interacting
fields, they have to be the same for electromagnetic, mechanic, thermo-
dynamic, etc. systems. To achieve that, some of the ‘older’ parts of the
respective theories had to be changed to incorporate the proper transfor-
mation properties. Because of this we can also say that Special Relativity
shows how to incorporate the proper behaviour under Lorentz transfor-
mation into all branches of physics. The theory is ‘special’ in that only
observers moving with constant velocities with respect to each other are
on equal footing (and were considered in its derivation).

Although the words ‘General Relativity’ indicate a similar interpreta-
tion, this is not quite correct. It is true that historically the word ‘general’
refers to the idea that observers in a general state of motion (arbitrary
acceleration) should be admitted, and therefore arbitrary transforma-
tion of coordinates should be discussed. Stated more generally, for a
description of nature and its laws one should be able to use arbitrary
coordinate systems, and in accordance with the principle of covariance
the form of the laws of nature should not depend essentially upon the
choice of the coordinate system. This requirement, in the first place

xv



xvi Preface

purely mathematical, acquires a physical meaning through the replace-
ment of ‘arbitrary coordinate system’ by ‘arbitrarily moving observer’.
The laws of nature should be independent of the state of motion of the
observer. Here also belongs the question, raised in particular by Ernst
Mach, of whether an absolute acceleration (including an absolute rota-
tion) can really be defined meaningfully, or whether every measurable
rotation means a rotation relative to the fixed stars (Mach’s principle).

But more important for the evolution of General Relativity was the
recognition that the Newtonian theory of gravitation was inconsistent
with Special Relativity; in it gravitational effects propagate with an
infinitely large velocity. So a really new theory of gravitation had to be
developed, which correctly reflects the dynamical behaviour of the whole
universe and which at the same time is valid for stellar evolution and
planetary motion.

General Relativity is the theory of the gravitational field. It is based
on Special Relativity in that all laws of physics (except those of the
gravitational field) have to be written in the proper special-relativistic
way before being translated into General Relativity. It came into being
with the formulation of the fundamental equations by Albert Einstein
in 1915. In spite of the success of the theory (precession of the per-
ihelion of Mercury, deflection of light by the Sun, explanation of the
cosmological redshift), it had retained for a long time the reputation of
an esoteric science for specialists and outsiders, perhaps because of the
mathematical difficulties, the new concepts and the paucity of applica-
tions (for example, in comparison with quantum theory, which came into
existence at almost the same time). Through the development of new
methods of obtaining solutions and the physical interpretation of the
theory, and even more through the surprising astrophysical discoveries
(pulsars, cosmic background radiation, centres of galaxies as candidates
for black holes), and the improved possibilities of demonstrating general
relativistic effects, in the course of the last thirty years the general theory
of relativity has become a true physical science, with many associated
experimental questions and observable consequences.

The early neglect of relativity by the scientific community is also
reflected by the fact that many Nobel prizes have been awarded for the
development of quantum theory, but none for Special or General Rela-
tivity. Only in 1993, in the laudation of the prize given to J. H. Taylor, Jr.
and R. A. Hulse for their detection of the binary pulsar PSR 1913+16,
was the importance for relativity (and the existence of gravitational
waves) explicitly mentioned.



Preface xvii

Modern theoretical physics uses and needs ever more complicated
mathematical tools – this statement, with its often unwelcome conse-
quences for the physicist, is true also for the theory of gravitation. The
language of the general theory of relativity is differential geometry, and
we must learn it, if we wish to ask and answer precisely physical ques-
tions. The part on General Relativity therefore begins with some chap-
ters in which the essential concepts and formulae of Riemannian geom-
etry are described. Here suffix notation will be used in order to make
the book easier to read for non-mathematicians. An introduction to the
modern coordinate-free notation can be found in Stephani et al. (2003).

This book is based on the lectures the author gave in Jena through
many years (one term Special and two terms General Relativity), and
thus gives a rather concise introduction to both theories. The reader
should have a good knowledge of classical mechanics and of Maxwell’s
theory.

My thanks go to all colleagues (in particular in Jena), with whom
and from whom I have learnt the theory of relativity. I am especially
indebted to J. Stewart and M. Pollock for the translation of most of the
parts on General Relativity for the foregoing edition, M. MacCallum
for his critical remarks and suggestions, and Th. Lotze for his help in
preparing the manuscript.





Notation

Minkowski space: ds2 = ηab dxa dxb = dx2 + dy2 + dz2 − c2dt2

= dr2 − c2dt2 = −c2dτ2.

Lorentz transformations: xn′
= Ln′

m xm, Ln′
aLn′b = δba.

Special Lorentz transformation:

x′ =
x− vt√
1 − v2/c2

, ct′ =
ct− vx/c√
1 − v2/c2

.

Addition of velocities: v =
v1 + v2

1 + v1v2/c2
.

Four-velocity: un = dxn/dτ.

Riemannian space: ds2 = gab dxa dxb = −c2dτ2,

gabgbm = δam = gam, g = |gab|.
ε-pseudo-tensor: εabmn; ε1234 = 1/

√−g,

εabcdε
abmn = −2(gnc g

m
d − gmc gnd ).

Dualization of an antisymmetric tensor: F̃ ab = 1
2ε

abmnFmn.

Christoffel symbols: Γa
mn = 1

2g
ab(gbm,n + gbn,m − gmn,b).

Partial derivative: Ta,m = ∂Ta/∂x
m.

Covariant derivative: T a
;m = DT a/Dxm = T a

,m − Γa
mnTn,

Ta;m = DTa/Dxm = Ta,m − Γn
amTn.

Geodesic equation:
D2xi

Dλ2
=

d2xi

dλ2
+ Γi

nm

dxn

dλ
dxm

dλ
= 0.

Parallel transport along a curve xi(λ): DT a/Dλ = Ta
;b dxb/dλ = 0.

Fermi–Walker transport:
DTn

Dτ
− 1
c2

Ta

(
dxn

dτ
D2xa

Dτ2
− dxa

dτ
D2xn

Dτ2

)
= 0.

xix



xx Notation

Lie derivative in the direction of the vector field ak(xi):

LaT
n = Tn

,ka
k − T kan,k = Tn

;ka
k − T kan;k,

LaTn = Tn,ka
k + Tka

k
,n = Tn;ka

k + Tka
k
;n.

Killing equation: ξi;n + ξn;i = Lξgin = 0.

Divergence of a vector field: ai;i =
1√−g

(
√−gai),i.

Maxwell’s equations: Fmn
;n = (

√−gFmn),n/
√−g = jm/c,

F̃mn
;n = 0.

Curvature tensor:

am;s;q − am;q;s = abR
b
msq,

Rb
msq = Γb

mq,s − Γb
ms,q + Γb

nsΓ
n
mq − Γb

nqΓ
n
ms,

Ramsq = 1
2 (gaq,ms + gms,aq − gas,mq − gmq,as) + non-linear terms.

Ricci tensor: Rmq = Rs
msq = −Rs

mqs; Rm
m = R.

Field equations: Gab = Rab − 1
2
Rgab = κTab.

Perfect fluid: Tab = (µ + p/c2)uaub + pgab.
Schwarzschild metric:

ds2 =
dr2

1 − 2M/r
+ r2(dϑ2 + sin2 ϑ dϕ2) − (1 − 2M/r)c2dt2.

Robertson–Walker metric:

ds2 = K2(ct)
[

dr2

1 − εr2
+ r2(dϑ2 + sin2 ϑ dϕ2)

]
− c2dt2.

Hubble parameter: H(ct) = K̇/K.

Acceleration parameter: q(ct) = −KK̈/K̇2.

κ = 2.07 × 10−48 g−1cm−1s2, cH = 55 km/s Mpc.

2MEarth = 0.8876 cm, 2MSun = 2.9533 × 105 cm.



I. Special Relativity

1

Introduction: Inertial systems and the
Galilei invariance of Classical Mechanics

1.1 Inertial systems

Special Relativity became famous because of the bewildering proper-
ties of length and time it claimed to be true: moving objects become
shorter, moving clocks run slower, travelling people remain younger. All
these results came out from a theoretical and experimental study of light
propagation as seen by moving observers. More technically, they all are
consequences of the invariance properties of Maxwell’s equations.

To get an easier access to invariance properties, it is appropriate
to study them first in the context of Classical Mechanics. Here they
appear quite naturally when introducing the so-called ‘inertial systems’.
By definition, an inertial system is a coordinate system in which the
equations of motion take the usual form

mẍα = Fα, α = 1, 2, 3 (1.1)

(Cartesian coordinates x1 = x, x2 = y, x3 = z, ẍα = d2xα/dt2). Expe-
rimentally, an inertial system can be realized in good approximation
by a system in which the stars are at rest. Inertial systems are not
uniquely defined; if Σ is such a system, then all systems Σ′ which orig-
inate from Σ by performing a spatial translation, a rotation about a
constant (time-independent) angle, a shift of the origin of time, or a
motion with constant velocity, are again inertial systems. Accelerated
systems such as steadily rotating systems are not inertial systems, cp.
also (15.2).

We shall now study the abovementioned transformations in more
detail.

1



2 Introduction: Inertial systems and Galilei invariance

1.2 Invariance under translations

Experimental results should not depend on the choice of the origin of
the Cartesian coordinate system one is using (‘homogeneity of space’).
So if there is a system of masses mN , then their equations of motion

mN r̈N = FN (1.2)

should be invariant under a translation by a constant vector b, i.e. under
the substitution

r′N = rN + b, ṙ′N = rN , F′
N = FN . (1.3)

Substituting (1.3) into (1.2), the invariance seems to hold trivially. But
a closer inspection of (1.2) shows that if we write it out as

mN r̈N = FN (rM , ṙM , t) (1.4)

(the forces may depend on the positions and velocities of all masses),
then the substitution r′N = rN + b leads to

mN r̈′N = FN (r′M − b, ṙ′M , t). (1.5)

This has the form (1.4) only if the force on a mass does not depend
on the positions rM of the (other) masses, but only on the distances
rN − rM , because then we have FN = FN (rN − rM , ṙM , t) → F′

N =
FN (r′N − r′M , ṙ′M , t); the b drops out. Closed systems, for which the
sources of all forces are part of the system, usually have that property.

Examples of equations of motion which are invariant against transla-
tion are mr̈ = g (motion in a homogeneous gravitational field) and the
motion of a planet (at position r) in the field of the Sun (at position rS)

mr̈ = f
r− rS

|r− rS |3
. (1.6)

In a similar way, experimental results should not depend on the choice
of the origin of time (‘homogeneity of time’), the equations of motion
should be invariant under a time translation

t′ = t+ b. (1.7)

An inspection of equations (1.4) shows that the invariance is only guar-
anteed if the forces do not explicitly depend on time (they are then
time-dependent only via the motion of the sources of the forces); this
again will hold if there are no external sources of the forces.

We thus can state that for closed systems the laws of nature do not
permit an experimental verification, or a sensible definition, of an abso-
lute location in space and time.



1.3 Invariance under rotations 3

1.3 Invariance under rotations

Rotations such as the simple rotation about the z-axis

x′ = x cosϕ+ y sinϕ, y′ = −x sinϕ+ y cosϕ, z′ = z, (1.8)

are best described using matrices. To do this, we first denote the Carte-
sian coordinates by

x1 = x1 = x, x2 = x2 = y, x3 = x3 = z. (1.9)

The convention of using xα as well as xα for the same set of variables
looks rather strange and even clumsy; the reason for this will become
clear when dealing with vectors and tensors in both Special and General
Relativity. As usual in relativity, we will use the Einstein summation
convention: summation over two repeated indices, of which always one
is lowered and one is raised.

The general rotation (orthogonal transformation) is a linear transfor-
mation and can be written in the two equivalent forms

xα′
= Dα′

β x
β , xα′ = Dα′βxβ (1.10)

(note the position of the indices on the Ds!). Here, and on later
occasions in Special and General Relativity, we prefer a notation which
distinguishes the new coordinates from the old not by a new symbol
(say yα instead of xα), but by a prime on the index. This convention
is advantageous for many calculations of a general kind, although we
shall occasionally deviate from it. The transformation matrices Dα′

β

mediating between the two systems thus have two kinds of indices.
Rotations leave angles and lengths fixed; so if there are two arbitrary

vectors xα and ξα, then their scalar product has to remain unchanged.
With

xα′ = Dα′βxβ , ξα′
= Dα′

γ ξ
γ (1.11)

that gives the condition

xα′ξα′
= Dα′βDα′

γ xβξ
γ = xβξ

β . (1.12)

For arbitrary vectors x and ξ this can be true only for

Dα′βDα′
γ = δβ

γ , α, β, γ = 1, 2, 3. (1.13)

Equation (1.13) characterizes the general orthogonal transformation. By
taking the determinants on both sides of it (note that Dα′β and Dα′

γ

are numerically identical) we get
∥∥Dα′β

∥∥2 = 1. (1.14)



4 Introduction: Inertial systems and Galilei invariance

The transformations with
∥∥Dα′β

∥∥ = +1 are rotations; an example is the
rotation (1.8) with

Dα′β =


 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


 . (1.15)

Transformations with
∥∥Dα′β

∥∥ = −1 contain reflections such as, for
example, the inversion

x′ = −x,
y′ = −y,
z′ = −z,

⇒ Dα′β =


−1 0 0

0 −1 0
0 0 −1


 . (1.16)

To apply a rotation to the equations of motion, we first observe that
for time-independent rotations we have

xα′
= Dα′

β x
β ⇒ ẍα′

= Dα′
β ẍ

β . (1.17)

We then note that the force F is a vector, i.e. its components Fα trans-
form in the same way as the components of the position vector xα. If we
now multiply both sides of equation (1.1) by Dα′

β , we get

Dα′
β ẍ

β = mẍα′
= Dα′

β F
β = Fα′

; (1.18)

the form of the equation remains unchanged. But if we also take into
account the arguments in the components of the force,

mẍα′
= Dα′

β F
α(xβ , ẋβ , t) = Fα′

(xβ , ẋβ , t), (1.19)

we see that the Fα′
may depend on the wrong kind of variables. This

will not happen if the Fα depend only on invariants, which in practice
happens in most cases.

An example of an invariant equation is given by (1.6): the r− rS is a
vector, and the distance |r− rS| is rotationally invariant.

We thus can state: since the force is a vector, and for closed sys-
tems the force-components depends only on invariants, the equations of
motions are rotationally invariant and do not permit the definition of an
absolute direction in space.

1.4 Invariance under Galilei transformations

We consider two systems which are moving with a constant velocity v
with respect to each other:

r′N = rN − vt, t′ = t (1.20)
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(Galilei transformation). Because of ṙ′N = ṙN − v, r̈′N = r̈N , the equa-
tions of motion (1.4) transform as

mN r̈′N = mN r̈N = FN (r′M + vt, ṙ′M + v, t). (1.21)

Although the constant v drops out when calculating the acceleration,
the arguments of the force may still depend on v. The equations are
invariant, however, if only relative positions rM−rN (as discussed above)
and relative velocities ṙN − ṙM enter. This is usually the case if the
systems are closed and the equations are properly written. Take for
example the well known example of a motion in a constant gravitational
field g under the influence of friction,

mr̈ = −aṙ−mg. (1.22)

At first glance, because of the explicit ṙ occurring in it, this equation
seems to be a counterexample. But what is really meant, and is the
cause of the friction, is the relative velocity with respect to the air. The
equation (1.22) should correctly be written as

mr̈ = −a(ṙ− vAir)−mg, (1.23)

and the invariance is now obvious.
For closed systems, the equations of motions are invariant under Gali-

lei transformations; an absolute velocity cannot be defined. Stated dif-
ferently: only relative motions can be defined and measured (Galilei’s
principle of relativity).

We close this section with two remarks. In all three cases of invariances
we had to refer to closed systems; how far do we have to go to get a
really closed system? Is our Galaxy sufficient, or have we to take the
whole universe? Second, we saw that only relative velocities matter;
what about acceleration – why is this absolute?

1.5 Some remarks on the homogeneity of time

How can one check that space and time are really homogeneous? We
want to discuss that problem a little bit for the case of time.

We start with the notion ‘constant velocity’. How can one check that a
mass is moving with constant velocity? Of course by measuring distances
and reading clocks. How does one know that the clocks are going uni-
formly? After some consideration, and looking at standard procedures,
one concludes that good clocks are made by taking a periodic process
(rotation of the Earth, harmonic oscillator, vibration of a molecule) and
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dividing that into smaller parts. But how does one know that this fun-
damental process is really periodic – no clock to measure it is available!
The only way out is to define that process as being periodic. But which
kind of process should one use for that?

Of course, one has to consult Newton’s equations of motion

mr̈ =
d2r
dt2

= F (1.24)

and to take a process, such as the rotation of the Earth around the Sun,
which is periodic when these equations hold.

To see that really a definition of the time is hidden here in the equa-
tions of motion, consider a transformation

T = f(t) ⇒ dT = f ′dt, d/dt = f ′d/dT (1.25)

of the time. In the new time variable T the equations of motion (1.24)
read

f ′2
d2r
dT 2

+ f ′f ′′
dr
dT

= F; (1.26)

they no longer have the Newtonian form.
We conclude that the correct, appropriate time coordinate is that in

which the equations of motion take the simple form (1.24); the laws of
mechanics guarantee that such a time really exists. But it here remains
an open question whether this time coordinate, which is derived from
planetary motion, is also the appropriate time to describe phenomena
in other fields of physics such as light propagation. This questions will
be answered by Special Relativity – in the negative.

Exercises

1.1 Is the equation mr̈ − kr = 0 (harmonic oscillator) invariant
under translations?

1.2 Show that a rotation Dα′
β always has one real eigenvector w

with Dα′
β w

β = λwα, and that wα = (1, i, 0) is a complex eigen-
vector of the rotation (1.15). What are the corresponding eigen-
values?

1.3 Is mr̈ = f(x)r rotationally invariant?
1.4 Show that the Laplacian is invariant under rotations, i.e. that

∂2/∂xα∂xα = ∂2/∂xα′
∂xα′ holds.



2

Light propagation in moving coordinate
systems and Lorentz transformations

2.1 The Michelson experiment

At the end of the nineteenth century, it was a common belief that light
needs and has a medium in which it propagates: light is a wave in a
medium called ether, as sound is a wave in air. This belief was shattered
when Michelson (1881) tried to measure the velocity of the Earth on its
way around the Sun. He used a sensitive interferometer, with one arm
in the direction of the Earth’s motion, and the other perpendicular to
it. When rotating the instrument through an angle of 90◦, a shift of the
fringes of interference should take place: light propagates in the ether,
and the velocity of the Earth had to be added that of the light in the
direction of the respective arms. The result was zero: there was no
velocity of the Earth with respect to the ether.

This negative result can be phrased differently. Since the system of
the ether is an inertial system, and that of the Earth is moving with a
(approximately) constant velocity, the Earth’s system is an inertial sys-
tem too. So the Michelson experiment (together with other experiments)
tells us that the velocity of light is the same for all inertial systems which
are moving with constant velocity with respect to each other (principle
of the invariance of the velocity of light). The speed of light in empty
space is the same for all inertial systems, independent of the motion of
the light source and of the observer.

This result does not violate Galilei’s principle of relativity as stated
at the end of Section 1.4: it confirms that also the ether cannot serve to
define an absolute velocity. But of course something is wrong with the
transformation law for the velocities: light moving with velocity c in the
system of the ether should have velocity c+v in the system of the Earth.

This contradiction can be given a geometric illustration (see Fig. 2.1).
Consider two observers Σ (coordinates x, y, z, t) and Σ′ (coordinates x′ =
x − vt, y′ = y, z′ = z, t′ = t), moving with constant velocity v with
respect to each other. At t = 0, when their coordinate systems coincide,
a light signal is emitted at the origin. Since for both of them the light
velocity is c, after a time T the light signal has reached the sphere

7
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Σ Σ′
νT

y, z y′, z′

x, x′

Fig. 2.1. Light propagation as seen by two observers in relative motion; t =
t′ = T.

x2 + y2 + z2 = c2T 2 for Σ, and (x− vT )2 + y2 + z2 = c2T 2 for Σ′. But
this a contradiction, the light front cannot be simultaneously at the two
spheres!

It will turn out that it is exactly this ‘simultaneously’ which has to be
amended.

2.2 The Lorentz transformations

Coordinates The wave front of light emitted at t = 0 at the origin has
reached the three-dimensional light sphere

x2 + y2 + z2 − c2t2 = 0 (2.1)

at the time t. Space and time coordinates enter here in a very symmetric
way. Therefore we adapt our coordinates to this light sphere and take
the time as a fourth coordinate x4 = ct. More exactly, we use

xa = (x, y, z, ct), xa = (x, y, z,−ct), a = 1, . . . , 4. (2.2)

The two types of coordinates are obviously related by means of a matrix
η, which can be used to raise and lower indices:

xa = ηabx
b,

xa = ηabxb,
ηab = ηab =




1
1

1
−1


, ηa

b = δa
b . (2.3)

Using these coordinates, (2.1) can be written as

xaxa = ηab x
axb = x2 + y2 + z2 − c2t2 = 0. (2.4)

Invariance of light propagation and Lorentz transformations We now
determine the coordinate transformations which leave the light sphere
(2.4) invariant, thus ensuring that the light velocity is the same in both
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systems. Unlike the Galilei transformations (1.20), where the time co-
ordinate was kept constant, it too is transformed here: the definition of
the time scale will be adjusted to the light propagation, as it is adjusted
to the equations of motion in Newtonian mechanics, cp. Section 1.4.

The transformations we are looking for should be one-to-one, and no
finite point should go into infinity; they have to be linear. Neglecting
translations, they have the form

xn′
= Ln′

a x
a, xm′ = Lm′b xb, Lm′b = ηm′n′ηabLn′

a (2.5)

(for the notation, see the remarks after equation (1.10); note that ηm′n′

and ηab have the same numerical components).
To give the light sphere the same form xnx

n = 0 = xn′
xn′ in both

coordinates, the transformations (2.5) have to satisfy

xn′
xn′ = Ln′

aLn′bxaxb = xbxb, (2.6)

which for all xa is possible only if

Ln′
aLn′b = δb

a, a, b, n′ = 1, . . . , 4. (2.7)

These equations define the Lorentz transformations, first given by Walde-
mar Voigt (1887). The discussion of these transformations will fill the
next chapters of this book.

If we also admit translations,

xn′
= Ln′

a x
a + cn

′
, cn

′
= const., (2.8)

we obtain the Poincaré transformations.

Lorentz transformations, rotations and pseudorotations Equation (2.7)
looks very similar to the defining equation (1.13) for rotations, Dv′

αDν′β

= δβ
α, to which it reduces when the time (the fourth coordinate) is kept

fixed:

Ln′
a =
(
Dν′

α 0
0 1

)
. (2.9)

Rotations leave xαxα = x2 + y2 + z2 invariant, Lorentz transformations
xaxa = x2 + y2 + z2 − c2t2.

We now determine the special Lorentz transformation which corre-
sponds to a motion (with constant velocity) in the x-direction. We start
from

x′ = Ax+Bct, y′ = y

ct′ = Cx+Dct, z′ = z
⇐⇒ Ln′

a =




A 0 0 B
0 1 0 0
0 0 1 0
C 0 0 D


. (2.10)
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When we insert this expression for Ln′
a into (2.7), we get the three

conditions A2 − C2 = 1, D2 − B2 = 1, AB = CD, which can be
parametrically solved by A = D = coshϕ, B = C = − sinhϕ, so that
the Lorentz transformation is given by

x′ = x coshϕ− ct sinhϕ, y′ = y,

ct′ = −x sinhϕ+ ct coshϕ, z′ = z.
(2.11)

The analogy with the rotations

x′ = x cosϕ− y sinϕ, z′ = z,

y′ = −x sinϕ+ y cosϕ, t′ = t
(2.12)

is obvious – but what is the physical meaning of ϕ in the case of the
pseudorotations (2.11)?

To see this, we consider the motion of the origin x′ = 0 of the moving
coordinate system Σ′ as seen from Σ. From x′ = 0 and (2.11) we have

v =
dx
dt

=
c sinhϕ
coshϕ

⇒ tanhϕ =
v

c
, (2.13)

ϕ is in a simple way related to the velocity v. If we substitute v for ϕ
in the pseudorotations (2.11), we get the well-known form

x′ =
x− vt√
1− v2/c2

, ct′ =
ct− vx/c√
1− v2/c2

, y′ = y, z′ = z (2.14)

of the special Lorentz transformation. This transformation describes the
transformation between a system Σ and a system Σ′ which moves in the
x-direction with constant velocity v with respect to Σ.

For small velocities, v/c � 1, we regain x′ = x − vt, i.e. the Galilei
transformation; we see that Newtonian mechanics is valid for small ve-
locities, discrepancies will appear only if the particles are moving very
fast. We shall come back to this question in Chapter 4.

If we solve (2.14) for the xa, we will get the same equations, with the
primed and unprimed coordinates exchanged and v replaced by −v.

2.3 Some properties of Lorentz transformations

In this section we shall discuss some of the more mathematical properties
of the Lorentz transformations. Many of the physical implications will
be dealt with in the following chapters, in particular in Chapter 3.

Group property The Lorentz transformations form a group. To prove
this, we remark that matrix multiplication is associative, and see by
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inspection that the identity Ln′
a = δn

a is contained. Two successive
transformations yield

xm′′
= Lm′′

n′ xn′
= Lm′′

n′Ln′
a x

a = Lm′′
a x

a. (2.15)

This will be a Lorentz transformation if Lm
a satisfies (2.7), which is

indeed the case:

Lm′′
aLm′′d = Lm′′

n′Ln′
aLm′′b

′
Lb′

d = δb
nL

n′
aLb′

d = Lb′
aLb′

d = δd
a. (2.16)

In a similar way one can show that the inverse of a Lorentz transforma-
tion is again such a transformation.

Classification of Lorentz transformations The 4×4 matrices Ln′
a which

describe Lorentz transformations have 16 parameters which are subject
to the ten conditions (2.5); there are six independent Lorentz transfor-
mations, corresponding to three motions (e.g. in the direction of the
axes) and three rotations. As we shall show now, there are four distinct
types of Lorentz transformations.

From the defining equations (2.5) and (2.7) we immediately get∥∥Ln′
aLn′b

∥∥ =
∥∥δb

a

∥∥ = 1,
∥∥Ln′b

∥∥ =
∥∥ηn′m′

∥∥ · ∥∥ηab
∥∥ · ∥∥Lm′

a

∥∥ =
∥∥Lm′

a

∥∥,
(2.17)

so that ∥∥∥Ln′
a

∥∥∥ =
{

+1
−1

(2.18)

holds. Evaluating the (4,4)-component of (2.5), we obtain (remember
that indices are raised and lowered by means of η!)

1 = −η44Ln′
4Ln′4

= −ηn′m′
Ln′4Lm′4 = (L4′4)2 − (L1′4)2 − (L2′4)2 − (L3′4)2

(2.19)

and conclude that

L4′
4 =
{≥ +1
≤ −1

. (2.20)

Equations (2.18) and (2.20) show that there are four distinct classes of
Lorentz transformations. Those which do not contain reflections have
‖Ln

a‖ = +1 and are called proper. Transformations with L4
4 ≥ +1

are called orthochronous; because of ct′ = L4
4 ct+ · · · they preserve the

direction of time.

Normal form of a proper orthochronous Lorentz transformation By us-
ing an adapted coordinate system, any proper orthochroneous Lorentz
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transformation can be written in the form

Ln′
a =




♥ 0 0 ♥
0 × × 0
0 × × 0
♥ 0 0 ♥


 (2.21)

of direct product of a special Lorentz transformation (motion) (♥) and
a rotation (×) in the plane perpendicular to that motion. We leave the
proof to the reader, see Exercise 2.2.

Lorentz transformation for an arbitrarily directed velocity We start with
a question: how does a Lorentz transformation between two systems
whose spatial axes are parallel, as in Fig. 2.2, look ? By ‘parallel’ we
mean that, for a fixed time, x′ (for example) does not change if only y
and z vary: in

x′ = L1′
a x

a = L1′
1 x+ L1′

2 y + L1′
3 z + L1′

4 ct (2.22)

the L1′
2 and L1′

3 are assumed to be zero, and from the y′- and z′-
equations we see that also L2′

1, L2′
3, L

3′
1and L3′

2 should vanish. There
should be at least one component of the velocity, so we assume L1′

4 	= 0.
Inserting all this into the defining equations (2.7), the result may be
a surprise to the reader: the Lorentz transformation necessarily is of
the form (2.11) of a motion in the x-direction (which is preferred here
because of the assumption L1′

4 	= 0). So if the spatial axes of the two
systems should be parallel, then the motion must be in the direction of
one of the axes! For all other cases, the Lorentz transformations contain
also terms which cause a rotation of the spatial system. For rotations the
analogous effect is well known: none of the axes of a coordinate system
can remain unchanged unless it coincides with the axis of the rotation.

So one should not be surprised that the Lorentz transformation de-
scribing the motion of the system Σ′ with an arbitrarily directed velocity
V α (with no ‘extra’ rotation) looks rather complicated:

Σ

Σ′

νT

x

y

z

x′

y′

z′

Fig. 2.2. Lorentz transformations between parallel systems.
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La′
b =
(

(γ − 1)nαnβ + δα
β −vγnα/c

−vγnβ/c γ

)
, V α = vnα/c,

nαnα = 1, γ ≡ (1− v2/c2)−1/2, α, β = 1, 2, 3.

(2.23)

Note that the rotational part in (2.23), the term (γ−1)nαnβ , is of second
order in v/c.

Velocity addition formula for parallel velocities What is the result if we
perform two successive Lorentz transformations, both corresponding to
motions in the x-direction? Since the Lorentz transformations form a
group, of course again a transformation of that type – but with what
velocity?

Lorentz transformations are pseudorotations, i.e. they satisfy

x′ = x coshϕ1 − ct sinhϕ1, ct′ = −x sinhϕ1 + ct coshϕ1,

x′′ = x′ coshϕ2 − ct′ sinhϕ2, ct′′ = −x′ sinhϕ2 + ct′ coshϕ2.
(2.24)

To get (x′′, ct′′) in terms of (x, ct), we observe that one adds rotations
about the same axis by adding the angles:

x′′ = x coshϕ− ct sinhϕ,
ct′′ = −x sinhϕ− ct coshϕ,

ϕ = ϕ1 + ϕ2. (2.25)

To translate this relation into one for the velocities, we have to use
(2.13), i.e. tanhϕ = v/c, and the well-known theorem for the hyperbolic
tangent,

tanhϕ = tanh(ϕ1 + ϕ2) =
tanhϕ1 + tanhϕ2

1 + tanhϕ1 tanhϕ2
. (2.26)

We obtain
v =

v1 + v2
1 + v1v2/c2

. (2.27)

For small velocities, vn/c � 1, we get the Galilean addition formula
v = v1 + v2. If we take the velocity of light as one of the velocities (as a
limiting case, since the Lorentz transformations (2.14) are singular for
v = c), we get

v =
c+ v2

1 + v2/c
= c, (2.28)

the velocity of light cannot be surpassed.
On the other hand, if we take two velocities smaller than that of light,

we have, with v1 = c− λ, v2 = c− µ, λ, µ > 0,
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v =
2c− λ− µ

1 + (c− λ)(c− µ)/c2
= c

2c− λ− µ
2c− λ− µ+ λµ/c

=
c

1 + λµ/[c(2c− λ− µ)]
≤ c,

(2.29)

it is not possible to reach the velocity of light by adding velocities less
than that of light. The velocity addition formula (2.27) seems to indicate
that the velocity of light plays the role of a maximum speed; we shall
come back to this in the next chapter.

The addition of two non-parallel velocities will be considered in Sec-
tion 4.4.

Exercises

2.1 Show that the inverse of a Lorentz transformation is again a
Lorentz transformation.

2.2 Show by considering the eigenvalue equation La′
b xb = λxa that

the four eigenvalues λa of a proper orthochroneous Lorentz trans-
formation obey λ1λ2 = 1 = λ3λ4, and that by using the eigen-
vectors the Lorentz transformation can be written as indicated
in (2.21).

2.3 Show that the transformation (2.23) is indeed a Lorentz trans-
formation, and that origin of the system Σ′ obtained from Σ by
(2.23) moves with the velocity V α.

2.4 Show by directly applying (2.14) twice that (2.26) is true.
2.5 In a moving system Σ′, a rod is at rest, with an angle ϕ′ with

respect to the x′-axis. What is the angle ϕ with respect to the
x-axis?

3

Our world as a Minkowski space

In this chapter we will deal with the physical consequences of the Lorentz
transformations. Most of them were first found and understood by Ein-
stein (1905), although most of the more technical properties considered
in the last chapter were known before him.
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3.1 The concept of Minkowski space

We have seen that the velocity of light is the same for all inertial systems,
i.e. for all observers which move with constant velocity with respect to
each other. The velocity of light is just one aspect of Maxwell equations,
so that in fact the Michelson experiment shows that Maxwell equations
are the same in all inertial systems. Since the elements of our world
interact not only by electromagnetic fields, but also by gravitation, heat
exchange, and nuclear forces, for example, the same must be true for
all these interactions. The laws of physics are the same for all inertial
systems (principle of relativity).

The principle of relativity does not exclude the Galilei transformations
of mechanics, if one does not specify the transformations between inertial
systems. This can be done by demanding that the velocity of light is the
same for all inertial systems (principle of the invariance of the velocity
of light).

Both principles together characterize Special Relativity. They are
most easily incorporated into the laws of physics if one uses the concept
of Minkowski space.

The four-dimensional Minkowski space, or world, or space-time, com-
prises space and time in a single entity. This is done by using Minkowski
coordinates

xa = (xα, ct) = (r, ct), xa = ηab x
b = (xα,−ct). (3.1)

A point in this space is characterized by specifying space and time; it
may be called an event.

The metrical properties of Minkowski space (in Minkowski coordi-
nates) are given by its line element

ds2 = dx2 + dy2 + dz2 − c2 dt2 = dr2 − c2 dt2 = ηab dxa dxb. (3.2)

This line element is invariant under Lorentz transformations

xn′
= Ln′

a x
a, Ln′

aLn′b = δb
a (3.3)

since xnxn is. Note that ds2 is not positive definite!

3.2 Four-vectors and light cones

A four-vector an = (a1, a2, a3, a4) = (a, a4) is a set of four elements
which transforms like the components xn of the position vector,

an′
= Ln′

m am. (3.4)

An example is the vector connecting two points P1 and P2 of Minkowski
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space,
−−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1, ct2 − ct1).

Obviously, a Lorentz transformation mixes the spacelike and the time-
like parts of a four-vector, but leaves the ‘length’ fixed:

an′
an′ = Ln′

mLn′bamab = anan = inv. (3.5)

This invariant can have either sign, or can be zero, depending on the
relative size of the spacelike and timelike parts of the vector. This leads
to the following invariant classification of four-vectors:

anan = a2 − (a4)2



> 0 spacelike vector
= 0 null vector
< 0 timelike vector

. (3.6)

For a given vector an, one can always perform a (spatial) rotation of the
coordinate system so that a points in the x-direction: an = (a1, 0, 0, a4).
A special Lorentz transformation (2.14) then yields

a1′
=

a1 − va4/c√
1− v2/c2

, a4′
=

a4 − va1/c√
1− v2/c2

. (3.7)

For
∣∣a1/a4

∣∣ > 1, one can make a4′
vanish by choice of v (note that v has

to be smaller than c !), and similarly in the other cases. So one gets the
following normal forms of four-vectors.

Normal forms:
spacelike vector: an = (a, 0, 0, 0)

null vector: an = (a, 0, 0, a)
timelike vector: an = (0, 0, 0, a).

(3.8)

If we have two four-vectors an and bn, then we can define the scalar
product of the two by

|ab| = aibi = ηina
ibn. (3.9)

This is of course an invariant under Lorentz transformations. When |ab|
is zero, the two vectors are called orthogonal, or perpendicular, to each
other. Note that in this sense a null vector is perpendicular to itself.

A light wave emanating at t = 0 from the origin of the coordinate
system will at time t have reached the points r with

r2 − c2t2 = 0. (3.10)

If we suppress one of the spatial coordinates, equation (3.10) describes
a cone in (x, y, ct)-space. Therefore one calls (3.10) the light cone. As
Fig. 3.1 shows, the light cone separates timelike vectors inside it from
the spacelike vectors outside; null vectors are tangent to it.
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ct

r

null

spacelike

spacelike

timelike

Fig. 3.1. Light cone structure of Minkowski space.

One can attempt to visualize the special Lorentz transformation (2.14)
in Minkowski space by drawing the lines x′ = 0 and ct′ = 0 as ct′-axis
or x′-axis, respectively, for a given value of v/c, see Fig. 3.2. This figure
clearly shows that the new ct′-axis always lies inside the light cone (and
the new x′-axis outside), that the transformation becomes singular for
v = c, and that any timelike (spacelike) vector can be given its normal
form by a suitable Lorentz transformation. But it does not show that
the two coordinate systems are completely equivalent as in fact they are.

light cone

x

x′

ct ct′

Fig. 3.2. Visualization of a Lorentz transformation.

3.3 Measuring length and time in Minkowski space

The problem One may argue that the results of any measurement should
be independent of the observer who made them. If we admit observers
in relative motion, then only invariants with respect to Lorentz transfor-
mations will satisfy that condition. So for example (spacelike) distances
which occur only as a part of a four-vector do not have an invariant
meaning.

In practice one is accustomed to measuring spatial distances and time-
intervals separately, and one often insists on using these concepts. But
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then the results of a measurement depend on the state of motion of the
observer, as the components of a three-vector depend on the orientation
of the Cartesian coordinate system one uses. The typical question which
then arises is the following: suppose two observer Σ and Σ′ (in relative
motion) make some measurements; how are their results related? The
answer to this question leads to some of the most spectacular results of
Special Relativity theory.

The notion of simultaneity As a prerequisite, we will consider the mean-
ing of ‘same place at different times’. If an observer Σ states this for
an object, it means the object is at rest at x = 0 (for example). For
an observer Σ′ moving with respect to Σ and to the object, the object
changes its position; from (2.14) one gets

x′ =
x− vt√
1− v2/c2

, x = 0 ⇒ x′ =
−vt√

1− v2/c2
. (3.11)

There is no absolute being at the same place for different times.
This is trivial – but the corresponding result obtained by interchanging

the role of space and time is not. If an observer Σ states that two events
at different places xA and xB are simultaneous (observed at the same
time t0), then the application of a Lorentz transformation gives

ct′A =
ct0 − vxA/c√

1− v2/c2
, ct′B =

ct0 − vxB/c√
1− v2/c2

, c(t′A−t′B) =
(xB − xA)v
c
√

1− v2/c2
.

(3.12)
For an observer Σ′ the two events are no longer simultaneous: there is
no absolute simultaneity at different places.

This result has been much debated. In the beginning many people
objected to that statement, and most of the attempts to disprove Special
Relativity rely on the (hidden) assumption of an absolute simultaneity.
There seems to be a psychological barrier which makes us refuse to
acknowledge that our personal time which we feel passing may be only
relative.

We now shall analyze the notion of simultaneity in more detail, just
for a single observer. How can we judge and decide that two events
at different places A and B happen at the same time? Just to assume
‘we know it’ is tantamount to assuming that there are signals with an
infinite velocity coming from A and B which tell us that events have
taken place; also, though not said in those terms, Newtonian physics
uses this concept. To get a more precise notion, our first attempt may be
to say: two events are simultaneous if two synchronized clocks situated
at A and B show the same time. But how can we be sure that the
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two clocks are synchronized? We cannot transport one of two identical
clocks from A to B, since the transport may badly disturb the clock and
we have no way of checking that. Nor can we send a signal from A to B,
divide the distance AB by the signal’s velocity V to get the travelling
time, and compare thus the clocks: without a clock at B, we cannot
know the velocity V !

Considerations like this tell us that we need to define simultaneity. As
with the definition of time discussed in Section 1.5, simultaneity has to be
defined so that the laws of nature become simple, which means here: so
that the Lorentz transformations hold. Einstein showed that a possible
definition is like this: two events at A and B are simultaneous if light
signals emitted simultaneously with those events arrive simultaneously
in the middle of the line AB. Note that here ‘simultaneously’ has been
used only for events occurring at the same place!

By procedures like this, an observer Σ can synchronize his system of
clocks in space-times; for a different observer Σ′, this system is of course
no longer synchronized.

Time dilatation At r = 0, an event takes place between tB = 0 and
tE = T ; for an observer Σ at rest with that event the corresponding
time-interval is of course ∆t = T. Because of the Lorentz transforma-
tion (2.14) we then have ct′B = 0, c t′E = cT/

√
1− v2/c2; for a moving

observer Σ′ this event lasts

∆t′ =
∆t√

1− v2/c2
. (3.13)

A moving clock runs slower than one at rest, any clock runs fastest for
an observer who is at rest with respect to it.

Length contraction When we measure the length of a rod at rest, the
times tA and tB at which we look at the two endpoints xA = 0 and xB =
L are unimportant, its length is always L = ∆x. For a moving observer
Σ′ this is different: since the rod is moving in his system of reference,
he has to take care to determine its two endpoints simultaneously ! So
when using the relations

x′A =
−vtA√

1− v2/c2
, ct′A =

ctA√
1− v2/c2

,

x′B =
L− vtB√
1− v2/c2

, ct′B =
ctB − vL/c√

1− v2/c2
,

(3.14)

he has to set t′A = t′B . Choosing t′A = 0, this amounts to tA = 0,
tB = vL/c2, and thus to x′A = 0, x′B = L

√
1− v2/c2, or to
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∆x′ = ∆x
√

1− v2/c2. (3.15)

A moving rod is shorter than one at rest, a rod is longest for an observer
at rest with respect to it.

3.4 Two thought experiments

The two effects explained above, the time dilatation and the length con-
traction, are experimentally well confirmed. To get a better understand-
ing of them, we will now discuss in some detail two gedanken (thought)
experiments.

3.4.1 A rod moving through a tube

We take a rod of length 2L, and a tube of length L (both measured at
rest), see Fig. 3.3.

L L/2

2L

Σ – rod moving Σ′
– tube moving

Fig. 3.3. Rod and tube.

System Σ (Tube at rest, rod moving) The length of the tube is L. If
the rod moves with velocity v = c

√
3/2, application of (3.15) yields

2L
√

1− v2/c2 = L as the length of the rod; if it moves through the
tube, it just fits in!

System Σ′ (Rod at rest, tube moving) The rod is four times as long as
the tube, it never can fit into the tube!

How can the two results both be true? Observer Σ′ will state that Σ
did not measure the position of the rod’s endpoints simultaneously: Σ
determined the position of its tip when it had already reached the end of
the tube, and then waited until the end of the rod just entered the tube.

3.4.2 The twin paradox

Imagine a pair of twins; one is travelling around in space with a high
velocity, the other just stays on Earth.

System Σ (Earth at rest) The travelling twin, assumed to have a constant
velocity (except at the turning point), experiences a time dilatation, his
biological clock runs slower; when coming back to Earth he is younger.
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System Σ′ (Travelling twin at rest) For the travelling twin, the Earth is
moving with a (nearly always) constant velocity, and for him the twin
staying on Earth remains younger.

So when the two meet again on Earth: who really is younger than the
other? It is in the nature of a ‘paradox’ that the contradiction is only
apparent, something wrong has entered. So what is wrong in the above
reasoning?

A B

C

Fig. 3.4. ‘Shortest’ connection between A and B.

The wrong assumption is that the two systems of reference are equiv-
alent. They are not, since the system (Σ) of the Earth is an inertial
system, whereas the system (Σ′) of the travelling twin is not: when
returning, it must undergo an acceleration. One may argue that the
effect of this acceleration can be neglected if the times of constant
motion (which cause the time dilatation) are long enough. But that
is not true, as a detailed analysis shows. The reasoning saying that the
two systems are nearly equivalent, only the effect of the short times of the
acceleration needs to be neglected, is on a similar level as saying that –
since straight lines are the shortest connection between two points – the
connection of A and B via C is the shortest one, the short deviation
from a straight line in C does not count, see Fig. 3.4.

For a really reliable answer one has to know how to deal with accel-
erated systems; here General Relativity is to be asked, and the answer
is: yes, travelling (deviating from geodesic motion) keeps you younger.

3.5 Causality, and velocities larger than that of light

Special Relativity denies the existence of an absolute simultaneity. Can
it happen that even the temporal order of two events can be changed,
i.e. that what for an observer Σ is the cause of an effect, is later than
that effect for an observer Σ′ ?

To be precise, let us have a cause at x1 = 0, t1 = 0, and its effect at
x2 = L, t2 = T . The velocity of that phenomenon obviously is V = L/T .
An observer Σ′, moving with velocity v, sees the cause when t′1 = 0, and
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the effect when ct′2 = (cT − vL/c)/√1− v2/c2. He will state that the
effect takes place before the cause if t′2 < 0, i.e. if

vV > c2. (3.16)

This relation can be true only if at least one of the two velocities exceeds
that of light. So to avoid this acausal behaviour, one has to demand:
velocities greater than that of light must not and cannot occur.

This statement is so strict that it invites people to challenge it, and
newspapers regularly report on new findings that a velocity exceeding
that of light has been observed. Because of its importance, we want to
discuss three aspects of the above statement.

First we can say it reflects the logical consistency of Special Relativity.
It is supported by the property of Lorentz transformations, discussed in
Section 2.3, that by addition of velocities we cannot surpass c, and will
be strengthened in the next chapter where we shall show that a material
body cannot be accelerated from zero velocity to that of light.

Second, we have to stress that the limitation is only for velocities of
material bodies or of processes which can be started voluntarily at the
first point and are therefore suitable for transmitting information. To
make that clearer, we consider two thought experiments.

Imagine, as in Fig. 3.5, one blade (1) at rest and the other one (2)
moving with velocity V0. The intersection P of the two moves with ve-
locity V = V0/ sinα to the right. By choosing α small, we can make V
arbitrarily large, even exceeding c. Although the arrival of P may cut
your finger or your throat, the blade does not carry information, it is
always moving, and V > c does not violate the above statement. Blade
(2) would carry information, however, if we were able to start it at a
prescribed time simultaneously over its whole length, acting on it only
at P . This is not possible, since no material blade is completely rigid.

P

V

V0

V0α
(1)

(2)

Fig. 3.5. Moving blades.
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To turn the argument around: Special Relativity forbids the existence
of completely rigid bodies.

The second thought experiment uses a laser pointing to the Moon. By
rotating it, the point where it hits the Moon can be made to move on
its surface with arbitrary large velocity – but the cause is on the Earth,
not at the point hit first on the Moon!

Our third remark is a rather hypothetical one. Special Relativity does
not exclude particles with velocities larger than c as long as they cannot
be used to carry information, i.e. as long as they cannot be generated or
cannot interact with ordinary matter. Such hypothetical particles are
called tachyons.

So although we can define velocities (as in the above thought experi-
ments, or as, for example, phase velocities of waves in dispersive media)
which exceed that of light, this does not contradict our statement. For
us it is certain that no physical law should permit us to change the past,
an acausal behaviour should not take place. But there is no logical way
of excluding the possibility that future experiments could disprove the
theory by, for example, finding particles faster than light; but so far
Special Relativity has always proved to be right.

We close this section by showing how causal relations between points
in space-time can be visualized. The light cone at a point P divides
space-time into three parts. Points P1 in the upper part (inside and
on the future light cone) are in the (absolute) future of P ; they can be
influenced by P , but cannot act back. Points P2 in the lower part (inside
and on the past light cone) are in the absolute past; the can act on P,

but P cannot react. Points P3 outside the light cone are in the absolute
present; there is no causal connection between them and P .

P

P1

P2

P3

future

past

pre- sent

future null cone

past null cone

Fig. 3.6. Causal domains in space-time.
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Exercises

3.1 Show that the sum of two timelike vectors, both pointing into
the future (i.e. with positive timelike components) is again time-
like and pointing into the future.

3.2 Show that a vector orthogonal to a timelike vector is spacelike.
3.3 Show that two null vectors which are perpendicular to each other

are parallel.
3.4 Show that (as stated in the text) the observer Σ′ does not deter-

mine the position of the rod’s endpoints simultaneously when
judged by Σ.

3.5 How fast has a sphere of diameterD to be moved to pass through
a circular hole (diameter d ) in a plane sheet of paper?

4

Mechanics of Special Relativity

Lorentz transformations were derived from the properties of light prop-
agation. So naturally one would expect that we now start to discuss
Electrodynamics and Optics. But since for that we need tensor analy-
sis, we will reverse the logical order and treat Classical Mechanics first.

4.1 Kinematics

Newtonian mechanics is Galilei invariant; its foundations have to be
changed to make it Lorentz invariant. The best way to avoid mistakes
when doing this is to use only invariants and four-vectors.

World lines and proper time In non-relativistic mechanics, the motion
of a point particle is described by giving its position as a function of
time, r = r(t). Sometimes one uses also the arclength l defined by

dl2 = dx2 + dy2 + dz2, x = x(l), y = y(l), z = z(l), t = t(l). (4.1)

Here we rather want to have a notation which incorporates space and
time on an equal level; this is done by choosing the proper time τ defined
by
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−c2 dτ2 = ds2 = dxn dxn = dx2 + dy2 + dz2 − c2 dt2 (4.2)

as our parameter, and by describing the world line of the particle as
xn(τ) =

(
r(τ), ct(τ)

)
. Writing (4.2) as

−c2 dτ2 = −c2 dt2(1− d2r/c2 dt2) = −c2 dt2(1− v2/c2), (4.3)

we see that

dτ = dt
√

1− v2/c2 (4.4)

holds, where v = v(τ) is the – in general non-constant – velocity of the
particle. For a particle at rest, proper time and time coincide. Fig. 4.1
shows some typical examples of world lines.

ct

r

(a) (b) (c)

Fig. 4.1. Typical examples of world lines of particles: (a) particle at rest,
(b) accelerated particle, (c) impact of two particles.

Four-velocity Using only the world line representation xn = xn(τ) and
the parameter τ as ingredients, there is only one four-vector generalizing
the three-dimensional velocity, namely the four-velocity un defined by

un(τ) =
dxn

dτ
=

dxn

dt
√

1− v2/c2
=

(
v√

1− v2/c2
,

c√
1− v2/c2

)
. (4.5)

Because of the definition (4.2) of the proper time τ, the four-velocity
obeys

unun =
dxn

dτ
dxn

dτ
= −c2. (4.6)

This equation shows that the four components of un are not independent
of each other, and that un generalizes the tangent vector dr/dl (which
is always of length 1).

Four-acceleration Similarly we define the four-acceleration u̇n by

u̇n =
dun

dτ
=

d2xn

dτ2
. (4.7)

Because of (4.6) one has
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d(unun)/dτ = 0 = u̇nun, (4.8)

four-velocity and four-acceleration are orthogonal to each other.

Rest system of a particle Since in general v(τ) is not constant, an
accelerated particle cannot be transformed to rest by a Lorentz trans-
formation. This is possible only for a single instant of time τ = τ0, where
we can have un(τ0) = (0, 0, 0, c).

4.2 Equations of motion

In the foregoing section, we introduced some new notations. Now we
come to a more difficult part: since Newtonian mechanics contradicts
Lorentz invariance, we have to find a new law of nature! To do this,
we imitate Newtonian mechanics by demanding that the equations of
motion should have the form ‘acceleration is proportional to force’, i.e.
by demanding the form

m0
d2xn

dτ 2
= fn. (4.9)

The constant m0 is called proper mass, or rest mass, and the four-vector
fn the four-force, or simply force.

Since force and acceleration are four-vectors, and m0 is an invariant,
this equation is certainly Lorentz invariant. But is it correct? Does
it really describe nature? One possible way of testing this is to study
the Newtonian limit c → 0. As one can see from (4.5), the Newtonian
equations of motion (1.1) should be contained in the spatial components
of (4.9). But how is the three-force F contained in fn? Here we need
a result from electrodynamics (which we will give later in Section 7.4)
which says that fn has the form

fn =

(
F√

1− v2/c2
, f4

)
, (4.10)

with a not yet determined fourth component f4.

Spacelike components of the equations of motion Inserting the expres-
sion (4.10) for fn into the equation of motion (4.9), and using (4.5) and
(4.4), we obtain

d
dt
mv = F, m =

m0√
1− v2/c2

. (4.11)

For v � c, this is indeed the Newtonian equation of motion, with mass
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m and proper mass m0 coinciding. In general, however, it only has the
same form, but with a velocity-dependent mass m. It is a kind of a
surprise that the Newtonian form is still valid in Special Relativity!

For large velocities v, the mass m is growing, tending to infinity if v
approaches c; this shows that a finite force F cannot accelerate a point
mass so that its velocity equals that of light in a finite time.

Timelike component of the equations of motion The Newtonian equa-
tions of motion do not have a timelike component – so what new law is
hidden here? The answer is simple, but nevertheless surprising. If we
write the equations of motion as

m0u̇
n = fn (4.12)

and multiply this equation by un, we see that, because of (4.8),

fnun = 0 (4.13)

holds, so the four-force must be orthogonal to the four-velocity. This
relation can be used to determine f4; the simple calculation gives

fn =

(
F√

1− v2/c2
,

Fv

c
√

1− v2/c2

)
. (4.14)

Using this result, the timelike component of the equation of motion (4.9)
reads

d
dt
mc2 = Fv. (4.15)

A relation similar to this appears in Newtonian mechanics if we multiply
m dv/dt = F by v and write the result as

d
dt

(
1
2mv2

)
= Fv. (4.16)

It tells how the kinetic energy mv2/2 changes with time. So by analogy
we conclude that also (4.15) is the balance equation for the kinetic
energy of a particle. This interpretation is supported by the fact that
the development of mc2 with respect to v/c yields

mc2 =
m0√

1− v2/c2
= m0c

2 +
1
2
mv2 + · · ·. (4.17)

Energy E and (inertial) mass m are – except for the factor c2 – just
two names for the same thing,

E = mc2 =
m0c

2√
1− v2/c2

. (4.18)
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When this was first formulated by Einstein, it was a very surprising
result, with remarkable consequences, so that the above relation became
a trademark of Einstein’s. A consequence of (4.18) is that, besides a part
due to the motion of the particle, there is an energy m0c

2 due to its rest
mass. Kinetic energy can be transformed into other forms of energy,
for example into heat, and so it was argued that the same should be
the case for the rest energy m0c

2; we know nowadays that this is true.
Conversely, any energy of a system contributes to its rest mass, and so
photons (electromagnetic radiation) in a box also have a rest mass; since
any mass is a source for the gravitational field, photons therefore also
must have a gravitational field.

Energy-momentum four-vector The fact that energy and momentum of
a particle are closely related is best seen from the energy-momentum
four-vector pn, which just the four-velocity multiplied by the rest mass:

pn = m0u
n =

(
m0v√

1− v2/c2
,

m0c√
1− v2/c2

)

= (mv, E/c) = (p, E/c) , pnp
n = −m2

0c
2.

(4.19)

The equations of motion (4.9) are the balance equations for this vector.

4.3 Hyperbolic motion

Simple examples for relativistic mechanics are rare; most of the daily life
examples cannot be generalized meaningfully as (for example) a Lorentz
invariant gravitational field does not exist. An interesting example is,
however, the generalization of the one-dimensional motion under a con-
stant force (which in analogy to the homogeneous gravitational field we
name m0g). The corresponding x-component of the equation of motion
reads

d
dt
mv = F = m0

d
dt

v√
1− v2/c2

= m0g = const. (4.20)

The question whether this is really a correct relativistic generalization
of a motion under a constant force is left to the reader, see Exercise 4.2.

Taking the initial value v(0) = 0, the straightforward integration of
(4.20) yields

v√
1− v2/c2

= gt, v =
dx
dt

=
gt√

1 + (gt/c)2
,

x(t) = c2g−1
√

1 + (gt/c)2 + b, v(t) = c2t/(x− b),
(4.21)
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ct

x

Fig. 4.2. Hyperbolic motion.

from which
(x− b)2 − c2t2 = c4/g2. (4.22)

follows. This equation describes a hyperbola in x-t-space, which explains
the name hyperbolic motion; see Fig. 4.2. A photon emitted at t = 0
from a point to the left of x = b can never reach the particle.

To obtain x and t as functions of the proper time τ , we have to evaluate

dτ = dt
√

1− v2/c2 = dt/
√

1 + (gt/c)2. (4.23)

The result is

τ =
c

g
arcsinh

gt

c
, ct(τ) =

c2

g
sinh

gτ

c
, x(τ)− b =

c2

g
cosh

gτ

c
. (4.24)

For v � c, we regain with v = gt, x− const. = gt2/2, the well-known
results of Newtonian mechanics.

The simplicity of the hyperbolic motion admits some interesting
insights into relativistic effects.

Take two rockets, let them start at the same time t = 0 at x = x0

and x = x0 + L, respectively, and let them have the same accelera-
tion. Imagine now a rope spanned between them. What happens to the
rope when the two rockets are accelerating? From the viewpoint of an
observer at rest, the distance L between the rockets remains the same

ct

x

L

Fig. 4.3. Two identical rockets in hyperbolic motion.
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for all times. For him a material rope spanned between them thus also
has the same length for all times. But since that rope is moving, this can
only be so if in the rope’s rest system its length L′ is growing according
to L′ = L(1 − v2/c2)−1/2, so just compensating the length contraction
(3.15) due to its motion; the rope expands forever, until it finally tears
into pieces.

On the other hand, take two rockets with different accelerations g =
c2/X, but both their world lines being described by hyperbolae

x2 − c2t2 = X2. (4.25)

For either of the rockets (for any fixed value of X), its velocity v can be
obtained from d(x2−c2t2) as v = dx/dt = c2t/x; it obeys

√
1− v2/c2 =

X/x. Assume now the two rockets start at t = 0 with an infinitesimal
distance ∆x0 = ∆X. Because of (4.25), for any (constant) time we have
xdx = X dX, which amounts to ∆x = X∆X/x =dX

√
1− v2/c2. So we

have ∆x = ∆x0

√
1− v2/c2, which is exactly the formula for the length

contraction of a moving rod! If two rockets of the family (4.25), now
at a finite distance from each other, are connected by a rod, then this
rod undergoes different velocities at each of its parts, but as a whole
it is neither contracted nor expanded by the motion of the differently
accelerated rockets.

ct

x

∆x

∆x0

Fig. 4.4. Two rockets in hyperbolic motion, with different acceleration.

4.4 Systems of particles

Actio = reactio? In Newtonian mechanics, for a system of, say, two
particles, the equations of motion read

m1
d2r1

dt2
= F 12 + F ext

1 , m2
d2r2

dt2
= F 21 + F ext

2 , (4.26)

where FAB denotes the force exerted from particle A on particle B, and
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(a) (b)

P1 P2

F12 = F21

P ′
1

P ′′
1

F12

F21

Fig. 4.5. Interaction between two particles: (a) Newtonian physics, (b) Special
Relativity.

the Fext
A are forces from outside the system. It is one of the fundamental

laws that actio = reactio holds, i.e. the forces between the two particles
are equal in magnitude, but opposite in direction,

F 12 = −F 21. (4.27)

The two forces act – ‘naturally’ – at the same time, see Fig. 4.5.
In Special Relativity, causality has to be obeyed. This means that

the force F 12, which has its cause in particle 1 at some instant of time,
can have its effect on particle 2 only at a later time such that the action
propagates at most with the velocity of light. Whereas in Newtonian
mechanics F 12 and F 21 refer to the same track of interaction P1P2, this
is different in relativity: the action on particle 2 at P2 comes from P

′
1,

and it acts back on particle 1 at P
′′
1 . In general, actio = reactio no

longer holds, which makes the treatment of interacting particles much
more difficult. The deeper reason for these difficulties is the fact that
the field by which the interaction is mediated (e.g. the electromagnetic
field) has its own momentum which contributes to the momenta of the
particles which are balanced in the equations of motion (4.26).

As a consequence of this, the equations and calculations are simple
only if the interaction takes place at the same point in space-time: this
happens for a collision, or a decay, of particles, and we shall consider
only those from now on.

Collision and decay of particles – energy-momentum balance and cen-
tre of mass There are no external forces Fext

A , and interaction between
the particles takes place only when they are at the same point in space-
time. We therefore can assume vA = vB for all particles participating in
the process, and moreover FAB = −FBA. In generalizing the relativis-
tic equations of motion (4.11) and (4.15), or (4.9), and the Newtonian
equations (4.26), we conclude that
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Σ Σ′1
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1 2

ϕ1

ϕ2

p′
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p′
2
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2

Fig. 4.6. Elastic collision of two particles.

∑
A
mAvA = const.,

∑
A
mAc =

∑
A
EA/c = const. (4.28)

or

Pn ≡
∑

A
pn

A = const. (4.29)

holds: three-momentum and energy, or four-momentum, are conserved.
The vector Pn, being the sum of timelike vectors, all pointing into the

future, is again timelike and pointing into the future, see Exercise 4.1.
So there is a coordinate system in which it has the normal form

Pn = (0, P 4). (4.30)

This system is called the centre of mass system. Since the four-momentum
of a particle satisfies pnpn = −m2

0c
2, we attribute a rest massM0 = P 4/c

to the system of particles; but this rest mass is not the sum of the par-
ticles’ rest masses m0A, since

M0 = P 4/c =
∑

A
mA(vA) =

∑
A
m0A(1− v2

A/c
2)−1/2 ≥

∑
A
m0A

(4.31)
holds. The kinetic energy of the particles contributes to the system’s
rest mass.

Elastic collision of two particles A collision is called elastic if the two
rest masses remain unchanged during the collision. We consider two par-
ticles. In the observer’s system Σ, the first is moving in the x-direction,
the second is at rest; a bar denotes the respective values before the
collision. The conservation laws (4.28) yield

p1 = p1 + p2, E1 +E2 = E1 + E2 = E. (4.32)

What are the deflection angles ϕ1 and ϕ2? To calculate them, we
use the centre of mass system Σ′. Because of (4.32), it has Pn =
(MV, 0, 0,Mc) = (m1v1, 0, 0, E1 + E2), so its velocity V (in the x-
direction) is
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V = m1v1c
2/(E1 + E2), (4.33)

and the conservation laws (4.32) read

p ′
1 + p ′

2 = 0 = p′
1 + p′

2, E/c =
√

p2 +m2
0c

2

E
′
1 + E

′
2 = E′ = E′

1 + E′
2, for each particle.

(4.34)

If we now substitute the momenta p in the energy conservation (and use
p2

1 = p2
2 etc.), we obtain

E′/c =
√

p ′ 2
1 +m2

01c
2 +
√

p ′ 2
1 +m2

02c
2

=
√

p′ 2
1 +m2

0c
2 +
√

p′ 2
1 +m2

0c
2.

(4.35)

To get p ′
1 in terms of p′

1, we observe that an equation of the form
A − √a+ x =

√
b+ x has a unique solution for x. Since p′ 2

1 = p′ 2
1 is

a solution of (4.35), it is the only one: the three-momenta of the two
particles before and after the collision are of equal magnitude, they have
only been turned around, see Fig. 4.6, and the energies before and after
the collision are the same.

All that holds in the centre of mass system Σ′. To translate this into
the observer’s system Σ, we make use of the fact that the particles’ four-
momenta pn

A and pn
A (before and after the collision, respectively) and

the four-velocity V n of the centre of mass obey

(pn
A − pn

A)Vn = 0, A = 1, 2, (4.36)

in any system of reference, since this relation is Lorentz invariant, and
correct in the centre of mass system. If we apply it in the observer’s
system, where Vn = (1 − V 2/c2)−1/2(V, 0, 0, c) holds, and write the
momenta after the collision as pn

A = (pa cosϕA, ·, ·, EA/c) – the dots indi-
cate terms not entering (4.36) – then we obtain after a short calculation

cosϕ1 = [E1(E1 + E2)−E1E2 −m2
01c

4]/p1p1c
2,

cosϕ2 = (E1 + E2)(E2 − E2)/p1p1c
2.

(4.37)

Velocities in the observer system Σ and in the centre of mass system Σ′

If the system Σ′ moves with the (constant) velocity V with respect to Σ
in the x-direction, we can apply the inverse of the Lorentz transformation
(2.14), with v = V , and obtain for the differentials

dx =
dx′ + V dt′√
1− V 2/c2

, dy = dy′,dz = dz′, dt =
dt′ + V dx′/c2√

1− V 2/c2
. (4.38)

From this we get for the velocity (with vx = dx/dt etc.)
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vx =
v′x + V

1 + v′xV/c2
, vy =

v′y
√

1− V 2/c2

1 + v′xV/c2
, vz =

v′z
√

1− V 2/c2

1 + v′xV/c2
. (4.39)

These relations describe a special case of the addition of non-parallel
velocities; for vx = 0 = vy we regain (2.27).

Exercises

4.1 Show that (4.14) follows from (4.13) and (4.5)!
4.2 Compute for (4.20) the components of the acceleration u̇n and

show that u̇nu̇n = m2
0g

2 holds!
4.3 Transform the two-dimensional line element ds2 = dx2 − c2 dt2

by introducing coordinates x = X cosh cT, ct = X sinh cT adap-
ted to the hyperbolae (4.25), and relate the lines T = const. to
the velocity of the rockets flying on those hyperbolae!

4.4 An elastic rod tears when expanded to twice its rest length.
Such a rod undergoes from t = 0 a constant acceleration in its
length direction; when will it tear?

4.5 Apply (4.37) to the case where particle 1 is a photon, with
p1 = h/λ, p1 = hλ, where λ is the photon’s wavelength and h

is Planck’s constant, and give λ in terms of λ (Compton scat-
tering).

5

Optics of plane waves

5.1 Invariance of phase and null vectors

Optics is a part of Maxwell’s theory; but for most of its daily-life appli-
cations, the description of light by a scalar function suffices. This scalar
function u(xn) = u(r, ct) is a solution of the wave equation(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− ∂2

c2∂t2

)
u = ηnm ∂2

∂xnxm
u = �u = 0. (5.1)

A simple solution to this equation is the general plane wave

u(r, ct) = u0 eiΦ, Φ = kr− ωt, k2 = ω2/c2. (5.2)
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Φ = const

k

Fig. 5.1. Plane wave and wave vector in three-space.

The three-vector k is called the wave vector ; it points in the direction
orthogonal to the planes Φ = const. and is thus tangent to the light rays,
see Fig. 5.1. Its magnitude k = 2π/λ gives the number of wavelengths
λ per length π, and ω = 2πν is related to the frequency ν of the wave.

To see that the above description is in fact already Lorentz invariant,
we first observe that for many optical experiments the phase Φ is what
matters. Interference is due to differences in the phase of waves, and the
fact that at a given space-time point there is light, or is none, cannot
depend on the velocity of the observer looking there. So we conclude
that the phase Φ = kr − ωt is a Lorentz invariant. Since it obviously
can be written as

Φ = knxn, kn = (k, ω/c) = (k, 2πν/c), (5.3)

we further conclude that kn is a four-vector. Because of (5.2), k2 =
ω2/c2, it is a null vector. So we have

kn′
= Ln′

m km, knkn = 0. (5.4)

Most of the relativistic effects in optics are due to, and can be ex-
plained in terms of, the Lorentz transformation of the vector kn.

5.2 The Doppler effect – shift in the frequency of a wave

Suppose there is a plane wave travelling in the x-direction of an
observer’s rest frame Σ. It is characterized by its vector kn = (k, 0, 0, ω/c),
with k = ω/c.

Longitudinal Doppler effect For an observer Σ′ moving with velocity
v in the direction of the wave (in the direction of k), application of a
Lorentz transformation to kn yields

k4′
=
ω′

c
=

k4 − vk1/c√
1− v2/c2

=
ω/c− vk/c√

1− v2/c2
=
ω

c

1− v/c√
1− v2/c2

, (5.5)

and because of ω = 2πν one gets for the frequencies
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ν′ = v

√
1− v/c
1 + v/c

. (5.6)

Whereas most of the relativistic effects are of order v2/c2, here terms
of order v/c are included, which indicates that there may be a classical
part in it. Indeed one has

Relativ.: ν′ = ν(1− v/c+ v2/2c2 + · · ·),
Class., moving observ.: ν′ = ν(1− v/c), (5.7)

Class., moving source: v′ = ν(1 + v/c)−1 = ν(1− v/c+ v2/c2 − · · ·).
Transversal Doppler effect For an observer Σ′ moving with velocity v

in the y-direction orthogonal to the direction of the wave (orthogonal to
k), application of a Lorentz transformation to kn yields

k4′
=
ω′

c
=

k4√
1− v2/c2

, ν′ =
ν√

1− v2/c2
. (5.8)

In non-relativistic optics there is no such effect.

5.3 Aberration – change in the direction of a light ray

In a system Σ, the wave vector has the form (see Fig. 5.2)

kn = (−k cosα,−k sinα, 0, k), tanα = ky/kx. (5.9)

α
x

y

k

Fig. 5.2. Incident wave.

Seen from a system Σ′, which moves in the x-direction with velocity
v with respect to Σ, one then has

k′x =
−k cosα− vk/c√

1− v2/c2
, k′y = ky, (5.10)

and therefore, with (5.9) and tanα′ = k′y/k
′
x,

tanα′ =

√
1− v2/c2 sinα
cosα+ v/c

. (5.11)
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(a) (b)

v

v

v

k

α

c

Fig. 5.3. Aberration of (a) star light and (b) rain drops.

The best-known non-relativistic application of this effect is that a
telescope monitoring the position of a star has to be turned during the
year due to the motion of the Earth on its orbit around the Sun, see
Fig. 5.3. In this case, one has

α = π/2, tanα′ =

√
1− v2/c2

v/c
=
c

v

(
1− v2

2c2
+ · · ·

)
. (5.12)

In the non-relativistic limit, the aberration angle α′ is exactly that angle
by which one has to incline a tube (moving with velocity v) to permit
rain drops (falling vertically with velocity c) to reach its bottom.

The relation (5.11) is rather asymmetric in the angles α and α′. This
can be remedied by taking the tangent of α/2 instead that of α. Using
tan(α/2) = tanα/(1 +

√
1 + tan2 α), a straightforward calculation gives

tan
α′

2
=
√
c− v
c+ v

tan
α

2
. (5.13)

5.4 The visual shape of moving bodies

Penrose (1959) taught us to understand what equation (5.11) ‘really’
means – about 50 years after that equation was first written down.

Consider a sphere moving at a large distance with velocity v. What is
its shape as judged by an observer at rest (in monocular, non-stereoscopic
vision)? The naive answer is that because of the length contraction, the
diameter of the sphere will be contracted in the direction of the motion,
but not altered orthogonal to that direction: instead of a circle, one
will see an ellipse. But in this answer one forgot that ‘seeing’ means
‘following light rays’, and light rays are subject to aberration. A correct
answer can be obtained as follows.
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N

K

S

O

αα/2

tan α/2

z-plane

Fig. 5.4. Interpretation of the aberration formula.

When an observer Σ at O sees and locates a far away object at K,
this can be understood as saying that he marks its position on a unit
sphere surrounding him, using spherical coordinates α and ϕ (ϕ is the
angle around the axis, not shown in the figure). This sphere can be
projected onto a plane which it touches at its south pole S, see Fig. 5.4,
a procedure well-known from the theory of complex functions. In that
plane, the complex coordinate z = tan(α/2) exp(iϕ) is used. The angle
α/2 then naturally appears as the angle under which K is seen from the
north pole N , and tanα/2 as the projection onto the plane.

The aberration formula (5.13) now tells us that the change to a moving
system Σ′ induces a simple scale transformation z′ = const. z. From the
theory of holomorphic functions one knows that such a transformation
always maps circles (and as their limits also straight lines) onto circles,
not only at the plane, but also on the sphere. So what is a circle to Σ
will remain a circle to Σ′: the moving sphere has the apparent shape of
a circle, only its diameter has changed. Similarly, since the projection
of a straight rod onto the sphere is a part of a circle for Σ, it is again a
part of a circle for Σ′.

For a general body, at a large distance, the application of the aberra-
tion formula gives again a surprising result, see Exercise 5.2. Here we
shall use a different approach, see Fig. 5.5. Neglecting the z-extension,
we ask which parts of a cube (square) can be seen by an observer far away
at y → −∞, i.e. by parallel projection onto the plane y = 0. When the
square is at rest, obviously only the front side BC (length l) is visible.
When the square is moving with velocity v to the right, light arriving
simultaneously with that from B and C is that from A emitted when
A was at the position A′, l′ = vl/c left of A. Moreover, because of the
length contraction the front side BC has the length l′′ = l

√
1− v2/c2.
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(a) (b) (c)

y

l l′l′ l′′l′′

δ

A

BB CC

A′ A

Fig. 5.5. Image of a moving square: (a) at rest, (b) moving, and (c) rotated.

The projection is the same as if the square has been turned around by
the angle δ, with

sin δ = v/c. (5.14)

Note that in both these examples a rather simplified model (monocular
seeing, parallel projection) has been used. A realistic description would
be much more difficult.

5.5 Reflection at a moving mirror

To treat the reflection at a moving mirror, we take the solution for a
mirror at rest (in Σ′), and transform it into the system Σ in which the
mirror moves with constant velocity v.

Classical optics shows that for the reflection at a mirror at rest, the
two wave vectors have to satisfy (see Fig. 5.6)

mirror

Σ′

α′
β′

k′
1

k′
2

Fig. 5.6. Reflection at a mirror.
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kn′
1 = (−k′1 cosα′, k′1 sinα′, 0, k′1),

kn′
2 = (k′2 cosβ′, k′2 sinβ′, 0, k′2),

with
sinα′ = sinβ′,

k′1 = k′2 = k;
(5.15)

the two angles are equal, and the frequency ω = ck is not changed by
the reflection.

In the system Σ, the mirror is moving (receding) with velocity −v in
the x-direction. Application of a Lorentz transformation to the wave
vectors gives

kn
1 =

(
−k′(cosα′ + v/c)√

1− v2/c2
, k′ sinα′, 0,

k′(1 + v[cosα′]/c√
1− v2/c2

)

= (−k1 cosα, k1 sinα, 0, k1),

kn
2 =

(
k′(cosα′ − v/c)√

1− v2/c2
, k′ sinα′, 0,

k′(1− [cosα′]/c)√
1− v2/c2

)

= (−k2 cosβ, k2 sinβ, 0, k2).

(5.16)

One can easily read off that both frequencies νA = ckA/2π are changed
(Doppler shifted), and that the angles obey

sinα
sinβ

=
v2
ν1
. (5.17)

To eliminate the angles still hidden in the νA, one best introduces α/2
and β/2, as in the discussion of the aberration formula. A straightfor-
ward calculation yields

tan
α

2
=

√
1− v/c
1 + v/c

tan
α′

2
,

tan(α/2)
tan(β/2)

=
c− v
c+ v

. (5.18)

This result can also be understood in terms of photons which are
reflected less hard when the mirror is moving in the x-direction.

5.6 Dragging of light within a fluid

In fluid with refractive index n, the velocity of light is not c, but only
V = c/n. If that fluid is moving with velocity v, then an observer Σ′ at
rest will measure a velocity as obtained by applying (2.27) to V and v.
The result is

V ′ =
V + v

1 + vV/c2
= V + v

(
1− 1

n2

)
+ · · · =

c

n′ . (5.19)
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Two interpretations of this experiment due to Fizeau are possible: the
fluid drags the light with it and changes its velocity, or a moving fluid
has a different refractive index n′.

Exercises

5.1 Show that the wave equation operator � from (5.1) is Lorentz
invariant.

5.2 Show that the aberration formula (5.11), applied to α = π/2,
gives just the result (5.14) with δ = π/2− α′.

5.3 Show that a motion of the mirror in its plane does affect the
reflection angles and the frequencies.

5.4 A rocket flies through a large ring (radius R) orthogonal to its
orbit. How far back is the plane of the ring with respect to the
rocket when the pilot sees it as exactly to his left?

6

Four-dimensional vectors and tensors

Before we can treat Electrodynamics and Fluid Mechanics, we need some
more tools from tensor algebra and analysis which we will supply now.
We shall do that in some detail, since they are very similar to those used
in General Relativity.

6.1 Some definitions

We repeat and list here the basic definitions, with only short comments.
Lorentz transformations are transformations of Minkowski space,

xn′
= Ln′

a x
a, xm′ = Lm′b xb, (6.1)

which satisfy
Lm′b = ηm′n′ηabLn′

a, Ln′
aLm′a = δn

m. (6.2)

Scalars, or tensors of rank 0, are functions ϕ which remain invariant
under Lorentz transformations,
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ϕ′ = ϕ. (6.3)

Examples of scalars are the rest mass m0, the proper time τ, and the
phase Φ of a wave.
Four-vectors, or tensors of rank 1, are objects with four components
which transform as the components of xn,

an′
= Ln′

m am, am′ = Lm′nan. (6.4)

Examples are the force fn, the four-velocity un, and the wave vector kn.

Indices can be raised, or lowered, with the help of the matrix η,

an = ηnma
m, an = ηnmam,

ηnm = diag (1, 1, 1,−1) = ηnm, ηm
n = δm

n .
(6.5)

The an are called the contravariant, and the an the covariant compo-
nents of the vector.
A quadratic 4 × 4 matrix Tnm is a tensor of rank 2 if – under Lorentz
transformations – it transforms like the product of two four-vectors,

Tn′m′
= Ln′

aL
m′

b T
ab. (6.6)

Tnm are the contravariant, Tn
a = ηamT

nm the mixed, and Tab =
ηanηbmT

nm the covariant components of that tensor.
The quantities T a1

a2a3
a4······an

are the components of a tensor of rank
n if they transform like a contravariant vector with respect to each con-
travariant (upper) index, and like a covariant vector with respect to each
covariant (lower) index.
Pseudotensors transform similarly to tensors, but additional signs enter
into the transformation law which depend on the components of the
transformation matrix Ln′

a. The most important example is the so-
called ε-tensor εabcd. It is so defined that under interchange of two
arbitrary indices its sign changes (it is completely antisymmetric), and
that

ε1234 = 1 (6.7)

always holds (i.e. also after a Lorentz transformation has been per-
formed). Note that for a Riemannian space equation (6.7) has to be
replaced by (17.21)!

If we apply a Lorentz transformation to the ε-tensor and erroneously
treat it as a real tensor, we first see that εa′b′c′d′

= La′
nL

b′
mL

c′
pL

d′
qε

abcd

is again completely antisymmetric, and because of (6.7) we have

ε1
′2′3′4′

= L1′
nL

2′
mL

3′
pL

4′
qε

nmpq = ‖Ln′
a‖ = ±1 (6.8)
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(the middle term of this equation is the rule for calculating the determi-
nant of a matrix). We see that only for proper Lorentz transformations
with ‖Ln′

a‖ = +1 do we get the correct result ε1
′2′3′4′

= 1; in the general
case, we have to add a factor ‖Ln′

a‖ to the transformation law.

6.2 Tensor algebra

All rules for handling tensors have to guarantee that the results are again
tensors. The proof of the tensor property will only occasionally be given
in the text – we recommend the reader to fill that gap.

Addition One adds tensors of the same rank and the same index form
by adding their components,

T ab + Sab = Rab. (6.9)

Structures of the form T a + Sab, or Ta
b + Sab, are forbidden.

Multiplication Multiplication of the components of an nth rank tensor
by those of an mth rank tensor produces an (n+m)th rank tensor, for
example

Sa
b
cTnp

q = Nacnp
bq. (6.10)

Contraction Summing over a covariant and a contravariant index of a
tensor gives another tensor, whose rank is reduced by 2:

T ab
nm → T ab

am = Sb
m. (6.11)

The simplest example of a contraction is the trace T = T b
b of a second-

rank tensor.

Inner product, raising and lowering of indices, scalar product The mul-
tiplication of two tensors with simultaneous contraction over indices of
the two factors is called taking the inner product:

Sa
bT

nb
q = Nan

q. (6.12)

Important examples are the raising and lowering of indices by which one
can interchange covariant and contravariant components:

Tn = ηnaTa, Tnr
pq = ηmpη

rsTn
s
m

q. (6.13)

Another example is the scalar product of two vectors:

anbn = ηnma
nbm = ηnmanbm, (6.14)

with the special case
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a2 = ana
n. (6.15)

The quotient law A structure Nnm··
pq·· is a tensor if, and only if, the

contraction with every tensor T pq··
nm·· is an invariant,

Nnm··
pq··T pq··

nm·· = inv. (6.16)

The proof (for a simple example) is left to the reader, see Exercise 6.2.

Formulae for products of ε-tensors If during a calculation a product of
two ε-tensors occurs, then it can be expressed in terms of Kronecker
symbols ηa

b = δa
b as follows:

εabcdε
pqnm=− δp

aδ
q
bδ

n
c δ

m
d + δq

aδ
n
b δ

m
c δ

p
d − δn

a δ
m
b δ

p
c δ

q
d + δm

a δ
p
b δ

q
cδ

n
d

+ δq
aδ

p
b δ

n
c δ

m
d − δp

aδ
n
b δ

m
c δ

q
d + δn

a δ
m
b δ

p
c δ

q
d − δm

a δ
q
bδ

p
c δ

m
d

+ δn
a δ

q
bδ

p
c δ

m
d − δq

aδ
p
b δ

n
c δ

m
d + δp

aδ
m
b δ

n
c δ

q
d − δm

a δ
n
b δ

p
c δ

q
d (6.17)

+ δm
a δ

q
bδ

n
c δ

p
d − δq

aδ
n
b δ

p
c δ

m
d + δn

a δ
p
b δ

m
c δ

q
d − δp

aδ
m
b δ

q
cδ

n
d

+ δp
aδ

n
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q
cδ
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d − δn
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q
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m
c δ

p
d + δq

aδ
m
b δ

p
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n
d − δm
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p
b δ

n
c δ

q
d

+ δp
aδ

q
bδ

m
c δ

n
d − δq

aδ
m
b δ

n
c δ

p
d + δm

a δ
n
b δ

p
c δ

q
d − δn

a δ
p
b δ

q
cδ

m
d ,

εabcdε
aqnm=− δq

bδ
n
c δ

m
d − δn

b δ
m
c δ

q
d − δm

b δ
q
cδ

n
d (6.18)

+ δq
bδ

m
c δ

n
d + δm

b δ
n
c δ

q
d + δn

b δ
q
cδ

m
d ,

εabcdε
abnm=−2(δn

c δ
m
d − δm

c δ
n
d ), (6.19)

εabcdε
abcm=−6δm

d (6.20)

εabcdε
abcd=−24. (6.21)

Formula (6.17) is a consequence of (6.7) and the symmetry proper-
ties of the ε-tensor. In particular, the components of this pseudotensor
only differ from zero when the four indices have different values, so
that products fail to vanish only when the indices coincide pairwise.
The remaining formulae follow from (6.17) by contraction, noticing that
δn
n = 4.

6.3 Symmetries of tensors

A tensor is called symmetric with respect to two indices n,m which are
either both contravariant or both covariant if its components do not
alter under the interchange of these indices:

T pq··
nm·· = T pq··

mn··. (6.22)

It is called antisymmetric if its sign changes under this interchange:
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T pq··
nm·· = −T pq··

mn··· (6.23)

These symmetries remain preserved under Lorentz transformations.
The symmetric part with respect to the two indices a,m of an arbi-

trary tensor is the sum of the component and its permutation,

T(a|bc|m) = 1
2 (Tabcm + Tmbca). (6.24)

The antisymmetric part is obtained analogously:

T[a|bc|m] = 1
2
(Tabcm − Tmbca). (6.25)

Here we have used the convention of Bach brackets: round brackets
denote symmetrization, square brackets antisymmetrization. Indices in
the brackets not touched by the procedure are to be set between ver-
tical lines. This convention is especially useful when one symmetrizes
or antisymmetrizes with respect to several indices. One symmetrizes
by forming the sum of the tensor components with all permutations of
the indices and dividing by the number of permutations (when anti-
symmetrizing, one adds the even permutations and subtracts the odd
permutations). For example

T(n1n2··nν) = (Tn1n2··nν
+ Tn2n1··nν

+ · · ·+ Tnνn1n2··) / ν!, (6.26)

T[abc] = (Tabc − Tbac + Tbca − Tcba + Tcab − Tacb) / 3!. (6.27)

One sees the advantage of this formulation when applying it to formula
(6.17), which can be written simply as

εabcdε
pqnm = −24δ[pa δ

q
bδ

n
c δ

m]
d . (6.28)

Tensors which are symmetric or antisymmetric with respect to all
indices are called completely symmetric or antisymmetric, respectively.

A completely antisymmetric third rank tensor Tabc has exactly four
essentially different components, for example T123, T124, T134 and T234,
and therefore precisely the same number as a vector. One can exploit
this fact to map it to a pseudovector Tn with the aid of the ε-tensor:

εabcnTabc = Tn, Tabc = 1
3!εnabcT

n, (6.29)

in analogy to the mapping of an antisymmetric second-rank tensor (e.g.
the vector product of two vectors) to a pseudovector in three-dimensio-
nal Euclidean space.

A completely antisymmetric tensor of the fourth rank has essentially
only one component, and, with the aid of the ε-tensor, can be mapped
onto a pseudoscalar T ,
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εabcdT
abcd = T ; (6.30)

it is proportional to the ε-tensor.
In four-dimensional Minkowski space there are no completely anti-

symmetric tensors of rank higher than four.

6.4 Algebraic properties of second rank tensors

An arbitrary second rank tensor can be decomposed into its antisym-
metric and symmetric parts, and the latter further into a trace-free term
and a term proportional to ηab:

Tab = T[ab] + T(ab) = T[ab] + {T(ab) − 1
4T

n
n ηab}+ 1

4T
n
n ηab. (6.31)

The physically important second-rank tensors often belong to one of
the symmetry classes, or at least their constituent parts have different
physical meanings. Thus, for example, the electromagnetic field tensor
is antisymmetric, and its energy-momentum tensor is symmetric and
trace-free.

Because of the particular importance of symmetric and antisymmet-
ric tensors of second rank we will examine more closely their algebraic
properties (eigenvectors, eigenvalues, normal forms).

The tensor ηab The defining equation

ηa
bwb = λwa (6.32)

for an eigenvector is trivially satisfied (with λ = 1) for every vector wa.

Every vector is an eigenvector, ηab singles out no direction in space-time.

Symmetric tensors The eigenvector equation for a symmetric tensor
Tab,

Ta
bwb = λwa ←→ (Tab − ληab)wb = 0, (6.33)

can be regarded as a linear system of equations for the wb. The condition
for the existence of a solution is the secular equation

‖Tab − ληab‖ = 0. (6.34)

The eigenvalues λ can be determined from this equation. Under a
Lorentz transformation the secular equation is only multiplied by the
square of the determinant of the La′

n which because of (2.19) equals
unity. So the eigenvalues are invariant, and with them also the coeffi-
cients αA of the equation

λ4 + α1λ
3 + α2λ

2 + α3λ+ α4 = 0, (6.35)



6.4 Algebraic properties of second rank tensors 47

which follows from (6.34). As the αA are derived from the components of
Tab by algebraic operations, they are algebraic invariants of that tensor.
One can show that all other algebraic invariants can be constructed out
of the αA. The invariance property is also recognizable directly in, for
example,

α1 = Tn
n , α4 = −‖Tab‖ . (6.36)

Equation (6.35) gives in general four different eigenvalues λ from which
the eigenvectors can be determined. We will not go into the details here,
but instead indicate an important property. Whilst in three-dimensional
Euclidean space one can always transform symmetric tensors by or-
thogonal transformations to principle axes, that is no longer possible
in Minkowski space by Lorentz transformations. This is intimately con-
nected with the occurrence of null vectors, as can be seen by the example

Tab = kakb =




0
0

1 1
1 1


, ka = (0, 0, 1, 1), (6.37)

in which Tab is constructed from the null vector ka.

Antisymmetric tensors An antisymmetric tensor Fab can, of course,
never be brought to diagonal form, but nevertheless the question of
eigenvalues and eigenvectors is again significant. For an antisymmetric
tensor Fab, the eigenvalue equation

Fa
bwb = λwa (6.38)

implies, by contraction with wa, the relation

λwbwb = 0. (6.39)

That is, either the eigenvalue λ is zero, or the eigenvector wa is a null
vector, or both.

The antisymmetry of Fab also implies that

‖Fab − ληab‖ = ‖−Fba − ληba‖ = ‖Fba + ληba‖ , (6.40)

and since one can interchange rows and columns in the determinant it
follows that

‖Fab − ληab‖ = ‖Fab + ληab‖ . (6.41)

The secular equation ‖Fab − ληab‖ = 0 therefore transforms into itself
when λ is replaced by −λ, and hence contains only even powers of λ:

λ4 + β2λ
2 + β4 = 0. (6.42)
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It thus furnishes only two invariants, β2 and β4.
Every antisymmetric tensor Fab can be dualized; that is with the aid

of the ε-tensor its associated (pseudo -) tensor can be constructed:

F̃ ab = 1
2ε

abcdFcd. (6.43)

Because of the property (6.19) of the ε-tensor, a double application of
the duality operation yields the original tensor, apart from a sign:

˜̃
Fnm = 1

2εnmabF̃
ab = 1

4εnmabε
abcdFcd = −Fnm. (6.44)

One can show that the two invariants β2 and β4 can be simply ex-
pressed in terms of Fab and F̃ ab. In fact

β2 = 1
2FabF

ab, β4 = − 1
16

(
FabF̃

ab
)2
. (6.45)

6.5 Tensor analysis

As with algebraic manipulations with tensors, we demand that differen-
tiation of tensors (of tensor components) should result in tensors again.
This demand can easily be satisfied. Take for example a scalar ϕ. Since
it is an invariant, the same is true for its differential dϕ = (∂ϕ/∂xn) dxn.
Using the quotient law from above (or Exercise 6.2), we can conclude
that

ϕ,n =
∂ϕ

∂xn
(6.46)

is a tensor. Here and in the following we shall use the comma followed
by an index as an abbreviation for a partial derivative.

Similarly we can conclude that the partial derivatives of any tensor of
rank n give a tensor of rank n+1,

Tab
mn −→ T ab

mn,p =
∂T ab

mn

∂xp
. (6.47)

The operations (6.46) and (6.47) are generalizations of the three-dimensi-
onal gradient.

In a similar way, second and higher derivatives can be constructed, as
in

T ab
mn,pq =

∂2T ab
mn

∂xp∂xq
. (6.48)

Three differential operators are of particular importance in physics.
The first is the generalized divergence, the partial differentiation of a
vector or a tensor followed by a contraction,
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Tn −→ Tn
,n =

∂Tn

∂xn
. (6.49)

The second is the generalized curl, the partial differentiation of a vector
followed by antisymmetrization,

Tn −→ 1
2

(Tn,m − Tm,n) , (6.50)

and the third the generalized ∆-operator, applied to a scalar or a tensor,
e.g.

�T a = ηmn ∂2

∂xn∂xm
T a = ηmnT a

,mn. (6.51)

Although partial derivatives always result in a covariant index, this
last equation is sometimes also written as

ηmn ∂2

∂xn∂xm
T a = T a

,n
,n. (6.52)

We end this chapter with a remark concerning tensor equations, and
why it is so important to use only tensors in the formulation of physical
laws. If one knows that an equation is a tensor equation, then it suffices
to check its validity in any special coordinate system. For if Tab = Sab,
or Bab ≡ Tab − Sab = 0, in some special system, and if Bab is a tensor,
then because of the homogeneous transformation law (6.6) Bab vanishes
in any system.

Exercises

6.1 Show that Sb
m as defined by (6.11) is indeed a tensor. Hint:

start with the transformation law for T ab
nm.

6.2 Show that Bn are the components of a vector if Bn dxn = inv.
for any choice of the dxn.

6.3 Show that ηn
m is a second rank tensor.

6.4 Prove that the symmetry property Tab = Tba is preserved under
Lorentz transformations.

6.5 Show by direct transformations of the differentials that T,n is a
vector.
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Electrodynamics in vacuo

7.1 The Maxwell equations in three-dimensional notation

It is clear from the very beginning that Classical Electrodynamics need
not be changed to make it Lorentz invariant; the Lorentz transformations
were found by studying Maxwell’s theory! So what we have to do here
is to make that invariance explicit and visible, and then to use it for
answering interesting questions.

In a beginners’ course on electrodynamics, Maxwell’s equations are
usually given in a three-dimensional notation. We therefore will start
from such a formulation. Unfortunately, the people agreeing on the
MSKA-system of units in electrodynamics neglected the needs of rela-
tivists, as for example in the equation

curl E = −∂B/∂t (7.1)

shows: clearly a ‘c’ is missing here at the ∂t ! There are several ways
of solving this dilemma. The easiest seems to be to set c = 1 by choice
of units. We shall take a different approach and start from Maxwell’s
equations in the rational Gauss system (called ‘rational’ since there are
no factors 4π in the field equations).

Maxwell’s equations then read as follows (below we sometimes use a
dot to denote the partial derivative with respect to t):

curl E + ∂B/c∂t = 0, div B = 0, (7.2)

div D = ρ, curl H = (∂D/∂t+ j)/c, (7.3)

In vacuo: E = D, B = H. (7.4)

(Electric field E, displacement D, magnetic field H, magnetic induction
B, current density j, charge density ρ. In this chapter, from now on we
will set E = D and H = B.)

As an integrability condition for Maxwell’s equations the equation of
continuity (conservation of charge) has to be satisfied:

div j + ρ̇ = 0. (7.5)

Because of the system (7.2), a scalar potential U and a vector potential
A can be introduced by

50
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B = curl A, E = − grad U − ∂A/c∂t. (7.6)

If these potentials satisfy the Lorentz condition (Lorentz gauge)

div A + ∂U/c∂t = 0, (7.7)

the second set (7.3) of Maxwell’s equations reduces to the inhomogeneous
wave equations

∆A− ∂2

c2∂t2
A = −1

c
j, ∆U − ∂2

c2∂t2
U = −ρ. (7.8)

The Lorentz force exerted on a point charge q is

F = q (E + v ×B/c) , (7.9)

and the Poynting vector is given by

S = c (E×B) . (7.10)

7.2 Current four-vector, four-potential, and the retarded
potentials

We now start to translate the above equations into a four-dimensional
language, in which we shall use only manifestly covariant equations,
that is, only tensor equations. For this we have to find out, for example,
which three-vectors can be upgraded to four-vectors, and how.

First we remember that a moving charge is a current; a charge at rest
is a current for a moving observer. So obviously j and ρ are to be tied
together. If we try jn = (j, aρ), with some unknown constant a, then
the equation of continuity (7.5) shows that this constant has to equal c,
and we end up with

jn = (j, cρ), jn
,n = 0. (7.11)

If the current has its origin in a moving charge density (convection
current), then in three-dimensional notation we have j = ρv, which
obviously translates into jn = (ρv, ρc). Using un = (v, c)/

√
1− v2c2,

we end up with

jn = ρ0u
n, ρ =

ρ0√
1− v2c2

, (7.12)

where ρ0 is the rest-charge density.
Does (7.12) really indicate that the charge grows when it is moving? No,
ρ is the charge density, and (7.12) – together with the volume contraction
– just guarantees charge conservation.
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r

ct jn

P ′

(r′, ct′)

P

(r, ct)

Fig. 7.1. Causal structure of the retarded potentials.

When j and ρ form a four-vector, then equations (7.8) indicate that
the same is true for A and U ; there is a four-potential An,

An = (A, U), An = (A,−U), (7.13)

which satisfies the Lorentz convention

An
,n = 0 (7.14)

and the inhomogeneous wave equations

�An = ηmn ∂2

∂xn∂xm
An = ∆An − ∂2

c2∂2t2
An = −1

c
jn. (7.15)

All these equations are invariant under the gauge transformations

An = An + ϕ,n, (7.16)

where ϕ is an arbitrary function of all four coordinates.
The solution to the above inhomogeneous wave equations is usually

given in terms of the retarded potentials as

An(r, t) =
1

4πc

∫
jn(r′, t− |r− r′| /c)

|r− r′| d3r′. (7.17)

A manifestly covariant formulation of this relation is of course possible,
but we will not pursue this here. We stress, however, that the retardation
inherent in these integrals just says that electromagnetic fields propagate
on light cones, since t′ = t− |r− r′| /c is the equation for the light cone
between the two points P and P ′, cp. Fig. 7.1.

7.3 Field tensor and the Maxwell equations

Since there are no obvious candidates which might be added to the three-
vectors E and B to make four-vectors out of them, the essential idea is
to start with the relations between fields and potentials. Equations (7.6)



7.3 Field tensor and the Maxwell equations 53

show that E and B are given in terms of the derivatives of An. To make
these equations tensor equations, we have to construct a tensor from
the derivatives of An. There are three preferred candidates: the full set
Am,n, its symmetric part (Am,n + An,m), and its antisymmetric part
(Am,n − An,m). Counting the number of components of these tensors,
we get 16, or 10, or 6, respectively. Since the two three-vectors have
altogether 6 components, the choice is clear: the field-strength tensor,
or for short field tensor

Fmn = An,m −Am,n (7.18)

incorporates the components of both E and B.
When checking this assertion by calculating the components of Fmn,

we first note that Fmn is of course antisymmetric. Taking now An =
(A,−U) we obtain for example

Fµ4 = A4,µ −Aµ,4 = −U,µ − ∂Aµ/∂ct = Eµ, µ = 1, 2, 3, (7.19)

or, with xn = (x, y, z, ct),

F12 = A2,1 −A1,2 =
∂Ay

∂x
− ∂Ax

∂y
= Bz = B3. (7.20)

Putting all the pieces together, we find that

Fmn =




0 Bz −By Ex

−Bz 0 Bx Ey

By −Bx 0 Ez

−Ex −Ey −Ez 0


 , Fmn =




0 Bz −By −Ex

−Bz 0 Bx −Ey

By −Bx 0 −Ez

Ex Ey Ez 0




(7.21)
holds. The field tensor Fmn indeed comprises E and B in a single entity.
The three components of B can be extracted from Fmn by

Bα = εαµνFµν , Fµν = εµναBα, α, µ, ν = 1, 2, 3, (7.22)

where εαµν are the components of the completely antisymmetric three-
dimensional ε-tensor, with ε123 = 1.

There is a different, although equivalent, way of constructing a tensor
out of E and B: one uses the dualized field tensor F̃mn instead, which
is defined as

F̃mn = 1
2εmnabF

ab. (7.23)

So for example we have

F̃12 = 1
2ε12abF

ab = 1
2 (ε1243F 43 + ε1234F

34)

= 1
2(F 43 − F 34) = F 43 = Ez,

(7.24)
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and the final result is

F̃mn =




0 Ez −Ey −Bx

−Ez 0 Ex −By

Ey −Ex 0 −Bz

Bx By Bz 0


 , F̃mn =




0 Ez −Ey Bx

−Ez 0 Ex By

Ey −Ex 0 Bz

−Bx −By −Bz 0


 .

(7.25)
Comparing (7.21) and (7.25) we see that dualization is the transition

E→ −B, B→ E. (7.26)

Up to now all these are rather formal definitions; we still have to see
whether they fit into the framework of Maxwell’s equations. The answer
will be a clear ‘yes’. If we start with the equation div E = ρ, we see that
we can write it as

∂F 41

∂x
+
∂F 42

∂y
+
∂F 43

∂z
+
∂F 44

c∂t
= F 4n

,n = ρ =
1
c
j4 (7.27)

(note that F 44 = 0!). This is the fourth component of a tensor equation;
so we may guess that one full set of equations is given by

Fmn
,n = jm/c. (7.28)

If that is correct, we can dualize this equation: the first set (7.2) follows
– in vacuo – from the second set (7.3) by a dualization (7.2), together
with jn = 0, and we thus get

F̃mn
,n = 0. (7.29)

We still have to prove that (7.28) is correct. We do this by inserting
Fmn = An,m−Am,n into this equation. Exchanging the order of partial
differentiations and making use of the Lorentz convention An

,n = 0 and
of the inhomogeneous wave equations (7.15), we obtain

Fmn
,n = (An,m−Am,n),n = (An

,n),m−Am,n
,n = −�An = jn/c. (7.30)

The system (7.29) admits another representation. We can write it as

F〈ab,c〉 ≡ Fab,c + Fbc,a + Fca,b = 0, (7.31)

where 〈abc〉 denotes, as explicated, the rule for a cyclic permutation of
the indices together with a summation of the components. We leave the
proof of this form of (7.29) to the reader.

We close with a simple observation: if there are no charges and cur-
rents, jn = 0, then Maxwell’s equations are equivalent to

Φmn
,n = 0, Φmn ≡ Fmn + i F̃mn. (7.32)
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7.4 Poynting’s theorem, Lorentz force, and the
energy-momentum tensor

Poynting’s theorem is the energy-balance equation for the electromag-
netic field. As an immediate consequence of Maxwell’s equations one
obtains for the Poynting vector S the equation

div S + ∂w/∂t = −jE, (7.33)

where w = (E2 + B2)/2 is the energy density of the field.
Here it is not so easy to identify the four-dimensional structure of this

equation. The right hand side is the product of a vector and tensor
components, and after some thought one sees that it can be written
as F 4njn. So Poynting’s theorem (7.33) is the fourth component of a
vector equation, with Fmnjn on its right hand side. This reminds us of
mechanics, where we learned that the energy is the fourth component
of the energy-momentum four-vector, and we may guess that Poynting’s
theorem is just the energy-momentum balance for the electromagnetic
field. This guess is supported, and justified, by the spatial components
of Fmnjn which can be written as

Fµnjn = Fµνjν + Fµ4j4 = εµναBαjν + Eµcρ ∼ j×B + cρE. (7.34)

This is – except for a factor c – the Lorentz force density, and with
j = qv, ρ = qc we regain (7.9).

The left hand side of (7.33) clearly is a divergence, not of a vector,
but of a second-rank tensor, which is quadratic in the fields. It turns
out that this tensor, called the energy-momentum tensor, is given by

Tmn = F amFa
n − 1

4η
mnFabF

ab. (7.35)

It satisfies
Tmn

,n = −Fmnjn/c. (7.36)

We leave the proof to the reader, see Exercise 7.3.
The energy-momentum tensor Tmn is symmetric, and has a vanishing

trace, Tn
n = 0. To get more insight into its structure, we study its

components. With

F abFab = F 12F12+F 21F21+F 14F14+F 41F41+· · · = 2(B2−E2), (7.37)

we immediately get

T 44 = F 4aFa
4 + 1

2 (E2 −B2) = 1
2(E2 + B2) = w, (7.38)

the T 44-component is the energy density. Similarly we have
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T 4ν = F a4Fa
ν = Fα4Fα

ν = εανµF 4
αBµ = (E ×B)ν = Sν/c; (7.39)

here the Poynting vector appears. The Tαβ-components are less easy to
discuss. The result of a short calculation is

Tαβ = −EαEβ −BαBβ + 1
2 (E2 +B2)δαβ. (7.40)

These are, up to a sign, the components of Maxwell’s stress tensor σαβ,
an object often not very much discussed and seldom beloved by students.
Collecting all these pieces, we have found that Tmn has the following
structure:

Tmn =


 −σ

µν Sµ/c

Sν/c w


 , with

σµν : Maxwell’s
stress tensor,

Sν : Poynting vector,
w : energy density.

(7.41)

In mechanics, we have learned that momentum and energy of a particle
are tied together. Here the same is true for energy, Poynting vector, and
stress tensor. The relation

Tαn
,n = −σαβ

,β +
1
c2
∂Sα

∂t
=

1
c
Fαnjn =

1
c
(j×B + cρE)α

, (7.42)

with the Lorentz force density on the right hand side, shows that –
since force equals the time derivative of momentum – Sn/c2 is to be
interpreted as the momentum density, and the equations (7.36) are the
energy-momentum balance of the electromagnetic field.

We close this section with the remark that the Lorentz force density,
which enters the above equation, is part of the four-vector Fmnjn. We
can therefore conclude that the force density, and not the force itself,
is part of a four-vector – a fact we already used when formulating the
equations of motions in Section 4.2.

7.5 The variational principle for the Maxwell equations

Most of the fundamental equation of physics can be derived from varia-
tional principles of the form

W =
∫
Ldt =

1
c

∫
Ld4x =

∫
Ldx dy dz dt = extremum. (7.43)

The action W is either given in terms of a Lagrange function L (as for
example in mechanics) or in terms of a Lagrange density L (as will be the
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case here). Since the volume element is invariant under Lorentz trans-
formations, the Lorentz-invariant nature of the action W is guaranteed
provided L itself is an invariant.

There are not so many candidates for the L of the Maxwell field; it
should be at most quadratic in the field variables Fab, An and jn, and
the possible constitutive parts should be tensors (or vectors). Out of the
antisymmetric tensor Fmn only two invariants can be constructed, see
Section 6.4 and equation (6.45); these are

FabF
ab = 2(B2 −E2), F̃abF

ab = 4EB. (7.44)

The other two fields just combine to Anj
n.

It turns out that the correct choice, with all factors adjusted, is

L = −1
4F

abFab +Anj
n/c, (7.45)

which leads to

δW = δ
1
c

∫ [
Anj

n/c− 1
4η

naηmb(An,m −Am,n)(Aa,b −Ab,a)
]
d4x = 0.

(7.46)
For a given source jn, out of all possible fields An(xi) only those for
which W is stationary, δW = 0, are realized in nature. The variations
δAn (the difference between the ‘real’ An and those admitted for com-
parison) are small and must vanish at the surface of the four-dimensional
volume of integration.

We shall now derive Maxwell’s equations from the above action prin-
ciple. When varying the An, we obtain for a general L

δW =
1
c

∫
δLd4x =

1
c

∫ [
∂L
∂An

δAn +
∂L

∂An,m
δAn,m

]
d4x

(7.47)

=
1
c

∫ [
∂L
∂An

δAn −
( ∂L
∂An,m

)
,mδAn +

( ∂L
∂An,m

δAn

)
,m

]
d4x.

The last term under the integral sign is a four-dimensional divergence;
using the Gauss law, we can transform it into a surface integral which
vanishes since, by assumption, δAn = 0 on the surface. The action
principle then reads

δW =
1
c

∫ [
∂L
∂An

−
( ∂L
∂An,m

)
,m

]
δAn d4x = 0, (7.48)

which for arbitrary functions δAn can be satisfied only if

δL
δAn

≡ ∂L
∂An

−
( ∂L
∂An,m

)
,m = 0. (7.49)
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For the L given by (7.45) we get ∂L/∂An = jn/c and

∂L
∂An,m

=
∂L
∂Fab

∂Fab

∂An,m
= − 1

2
F ab ∂Fab

∂An,m

= − 1
2F

ab(δn
b δ

m
a − δn

a δ
m
b ) = Fnm,

(7.50)

and we correctly have

δL
δAn

= jn/c− Fnm
,m = 0. (7.51)

Maxwell’s equations follow indeed from the action principle with L
given by (7.45). The second set (7.29) of Maxwell’s equations is identi-
cally satisfied by the introduction of the four-potential An.

Exercises

7.1 Show that F〈ab,c〉 = 0 holds by writing Fab in terms of the four-
potential An.

7.2 The field equations Φmn
,n = 0 are invariant under the substitu-

tion Φmn → eiαΦmn, α = const. (‘duality rotation’). How do
the three-vectors E and B transform?

7.3 Show that Tmn
,n = −1

cF
mnjn is true by using the definition

of Tmn, Maxwell’s equations (7.27), and equations (7.32) to
substitute for F abFab,n.

7.4 Derive the field equations for a Lagrange density of the form
L = a1F

mnFmn + a2F̃
mnFmn, a1, a2 = const.

8

Transformation properties of electromagnetic
fields: examples

So far we have treated the electromagnetic field only in a rather formal
way. Here we want to give some examples of how the different quantities
are transformed under the special Lorentz transformations

x′ =
x− vt√
1− v2/c2

, ct′ =
ct− vx/c√
1− v2/c2

, y′ = y, z′ = z. (8.1)
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8.1 Current and four-potential

In case of the current density jn = (j, cρ), the transformation law (6.4)
of a four-vector yields

j′x =
jx − vρ√
1− v2/c2

, cρ′ =
cρ− vjx/c√

1− v2/c2
, j′x = jy, j

′
z = jz. (8.2)

Except for the relativistic correction 1/
√

1− v2/c2, these relations say
that moving charges contribute to the current, and part of the current
becomes charge if you move with it.

The four-potential undergoes the same transformation law,

A′
x =

Ax − vU/c√
1− v2/c2

, U ′ =
U − vAx/c√

1− v2/c2
, A′

x = Ay, A
′
z = Az. (8.3)

In both cases one has to be careful when discussing physical applica-
tions. Although the transformation law

An′
= Ln′

aA
a, (8.4)

is correct, it does not show explicitly that the arguments of the functions
An(xi) have to be transformed, too, to get the An′

in terms of the new
coordinates xn′

:

An′
[xi′ ] = Ln′

aA
a[xb(xi′)] = Ln′

aA
a[(L−1)b

i′ x
i′ ], (8.5)

where (L−1)i
b is the inverse of the Lorentz transformation Ln′

b, xb =
(L−1)b

i′ x
i′ .

Take, for example, a point charge Q at rest in the origin of the system
Σ. Its potentials are

A = 0, U =
Q

4πr
=

Q

4π
√
x2 + y2 + z2

. (8.6)

For the observer Σ′, this simple electric field has changed into a super-
position of a magnetic field (due to the motion of the charge) and an
electric field,

A′
x =

−vU/c√
1− v2/c2

, U ′ =
U√

1− v2/c2
, A′

x = 0 = A′
z. (8.7)

In detail, the potential U is given by

U ′(r′, ct′) =
Q

4π
√

1− v2/c2
1√

(x′ + vt′)2/(1− v2/c2) + y′2 + z′2

=
Q

4π
1√

(x′ + vt′)2 + (1− v2/c2)(y′2 + z′2)
.

(8.8)
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x x′

y, z y′, z′

U = const U ′ = const

Fig. 8.1. Lines of equal potential U and U ′, respectively.

Instead of spheres, the lines of equal potential U are now rotationally
symmetric ellipsoids, flattened in the direction of the motion (Fig. 8.1).

8.2 Field tensor and energy-momentum tensor

To get the explicit transformation laws for the field components, one has
to take the transformation law

F n′m′
= Ln′

aL
m′

b F
ab (8.9)

and to insert into it the matrices

Ln′
a =




Γ −vΓ/c
0 1 0 0
0 0 1 0

−vΓ/c 0 0 Γ


 , Fmn =




0 Bz −By −Ex

−Bz 0 Bx −Ey

By −Bx 0 −Ez

Ex Ey Ez 0


 ,

(8.10)
where Γ = (1− v2/c2)−1/2.

To calculate the new E′
x, for example, one may first write down only

the non-zero components of Ln′
a, and then insert Fmn:

E′
x = F 4′1′

= L4′
aL

1′
bF

ab

= L4′
1L

1′
1F

11 + L4′
1L

1′
4F

14 + L4′
4L

1′
1F

41 + L4′
4L

1′
4F

44

= (1− v2/c2)−1
(
v2F 14/c2 + F 41

)
= F 41 = Ex.

(8.11)

Proceeding in a similar way for the other components, we finally obtain

E′
x = Ex, E′

y =
Ey − vBz/c√

1− v2/c2
, E′

z =
Ez + vBy/c√

1− v2/c2
,

B′
x = Bx, B′

y =
Ey + vBz/c√

1− v2/c2
, B′

z =
Bz − vEy/c√

1− v2/c2
.

(8.12)
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With respect to a velocity v in the direction of one of the spatial axes,
this can be written as

E′
⊥ =

E⊥ + (v ×B)/c√
1− v2/c2

, B′
⊥ =

B⊥ − (v ×E)/c√
1− v2/c2

, E′
‖ = E‖, B′

‖ = B‖,.

(8.13)
These equations clearly show that E and B do not transform as the
spatial components of four-vectors. They also show that ‘electric’ and
‘magnetic’ is a distinction which depends on the motion of the observer,
as ‘charge’ and ‘current’ is. Equations (8.13) are invariant under a
duality transformation E → −B, B → E.

We apply the above transformations (8.13) to the field of an infi-
nite charged wire, with charge line density η, which extends in the x-
direction. In its rest system Σ we have only E⊥ non-zero,

Ex = 0 = Eϕ, Er = η/2πr, B = 0 (8.14)

(here ϕ is the angle around the x-axis, and r2 = y2+z2). For an observer
Σ′ moving along the x-axis, we obtain as the only nonzero components

E′
r =

η

2πr
√

1− v2/c2
, B′

ϕ = −v
c

η

2πr
√

1− v2/c2
, (8.15)

cp. Fig. 8.2. For small velocities, the magnetic field of moving charges is
rather small compared to its electric field: magnetic fields are a typical
relativistic effect! That they are so big when we have a current in a
metallic (non-charged) wire, with only slowly moving electrons, is due
to the enormous number of these electrons.

(a) (b)

rrη η′

x x′

E E′

j′

v

B′
ϕ

Fig. 8.2. Field of a charged wire (a) at rest and (b) moving.

This last example shows that a purely electric field becomes electric
and magnetic for a moving observer. Can it conversely happen that an
arbitrary electromagnetic field is purely electric or purely magnetic to a
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special observer? Since both EB and E2 −B2 are invariant, cp. (7.44),
this is possible only when EB = 0. If E2−B2 	= 0, this condition is also
sufficient. To prove this, take the directions of E and B as the y- and
z-directions, respectively. The transformation law (8.12) then gives

E′ =
E − vB/c√
1− v2/c2

, B′ =
B − vE/c√
1− v2/c2

,

E = (0, E, 0), E′ = (0, E′, 0), B = (0, 0, B), B′ = (0, 0, B′).

(8.16)

Depending on the relative size of E and B, one can find a velocity v <
c so that either E′ = 0 (for E/B < 1) or B′ = 0 (for E/B > 1); E = B

violates the assumption E2 −B2 	= 0.
When written explicitly, the transformation law for the components

of the energy momentum tensor (7.41) becomes rather clumsy; so we
shall not discuss it in detail. What we want to study is the behaviour
of the Poynting vector S and the energy density w. These components
are more intimately related than one may guess. To see this, we observe
that because of

w2−S2/c2 = 1
4(E2 +B2)2− (E×B)2 = (EB)2 + 1

4(E2−B2)2. (8.17)

w2 − S2/c2 = T 4nT4n is an invariant – although (S/c, w) is not a four-
vector!

An immediate consequence of (8.17) is that the energy always
dominates, w2 ≥ S2/c2; only if both field invariants vanish, EB = 0 =
E2 −B2, field momentum and field energy are of equal magnitude. We
will come back to those fields later in Section 9.4.

Exercises

8.1 How does the constant electric field inside a condenser look to
an observer moving (a) parallel or (b) orthogonal to it?

8.2 Use equations (8.12) to show that there is a coordinate system
in which E and B are parallel unless both invariants of the field
tensor vanish at that point.
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Null vectors and the algebraic properties of
electromagnetic field tensors

9.1 Null tetrads and Lorentz transformations

The occurrence of null vectors is a typical effect of the indefinite metric
of Minkowski space. In this chapter we shall show that null vectors can
be used in a systematic way for the representation of Lorentz transfor-
mations and for the study of the electromagnetic field.

In Minkowski space the preferred coordinates are the (quasi-)Cartesian
coordinates xn = (x, y, z, ct), in which we have

ds2 = ηab dxa dxb = dx2+dy2+dz2−c2 dt2, ηab =




1
1

1
−1


. (9.1)

Linked up with the four coordinates is a ‘tetrad’ of four unit vectors
za, wa, va and ua/c, which are orthogonal to the hypersurfaces xa =
const. and thus to each other,

za = x,a = (1, 0, 0, 0) , va = z,a = (0, 0, 1, 0),

wa = y,a = (0, 1, 0, 0), ua/c = −ct,a = (0, 0, 0,−1).
(9.2)

zaza = wawa = vava = −uaua/c
2 = 1, all other products zero. (9.3)

These four vectors form a complete system, any vector or tensor can be
expressed using their linear combinations and products, for example

ηab = zazb + wawb + vavb − uaub/c
2. (9.4)

We now want to use a tetrad of four null vectors instead of the above
tetrad of one timelike and three spacelike vectors. Since there are only
two real linearly independent null vectors in Minkowski space, which we
may take as

ka = (ua/c+ va)/
√

2, la = (ua/c− va)/
√

2, (9.5)

we have to add two complex vectors

ma = (za − iwa)/
√

2, ma = (za + iwa)/
√

2, (9.6)

which are complex conjugates of each other. The system (ka, la, ma, ma)
of four null vectors is called a null tetrad, or a Sachs tetrad, or a Newman–
Penrose tetrad (the reader should be aware of different sign conventions

63
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in the literature). Only two of the products of these null vectors are
non-zero,

kala = −1, mama = 1, all other products zero. (9.7)

Instead of (9.4), we now have

ηab = mamb +mamb − kalb − lakb. (9.8)

The four real basic vectors are of course not uniquely defined: it is
exactly the Lorentz transformations which mediate between two sys-
tems (za, wa, va, ua/c) and (z′a, w

′
a, v

′
a, u′a/c) both satisfying (9.3)–

(9.4). The same is true for the system (ka, la, ma, ma) of null vectors.
To find the transformations between two such systems of null vectors
explicitly, we first observe that the multiplication of ka by some con-
stant (or even function) A does not affect its being null; then to keep
kala fixed also (and ka pointing into the future), we have to take

ka′
= Aka, la

′
= A−1la, A > 0. (9.9)

The transformations keeping ka fixed turn out to be

ka′
= ka, la

′
= la +BBka +Bma +Bm a, ma′

= eiΘ(ma +Bka),
(9.10)Θ real, B complex,

and a special transformation keeping la fixed is

ka′
= ka + EEla +Ema +Ema, la

′
= la, ma′

= ma + Ela,
(9.11)E complex.

We also may simply interchange ka and la,

ka′
= la, la

′
= la. (9.12)

The general transformation between two null tetrads contains six real
parameters and thus precisely the same number as a general Lorentz
transformation. And indeed we are dealing here with a particularly
simple representation of the Lorentz transformations. The parameter
Θ on its own produces a rotation in the ma-m a- (x-y-) plane. To see
this, we use (9.2) and (9.6) to write ma = (x+ iy),a /

√
2, and infer from

ma′
= eiΘma that

(x+ iy)′ = eiΘ(x+ iy) (9.13)

holds. This splits into x′ = x cos Θ−y sin Θ, y′ = x sinΘ+y cos Θ. The
parameter A gives a special Lorentz transformation in the z-ct-plane,
and the parameters B and E describe so-called null rotations.
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9.2 Self-dual bivectors and the electromagnetic field tensor

Like every tensor, the antisymmetric field tensor Fab can be given in
terms of the null tetrad introduced above by an expansion of the kind

Fab = α1(kalb − kbla) + α2(kamb − kbma) + · · · , (9.14)

but the combinations

Uab = malb −mbla, Vab = kamb − kbma,

Wab = mamb −mbma − kalb + kbla
(9.15)

play a special rôle. These antisymmetric tensors, or bivectors, are self-
dual in the sense that under dualization they reproduce themselves up
to a factor − i:

Ũab = 1
2
εabpqU

pq = − iUab, Ṽab = − iVab, W̃ab = − iWab. (9.16)

One can verify these relations by using, for example, the fact that the
antisymmetric tensor εabpql

pmq yields zero upon contraction with la or
ma, and therefore because of (9.3) must be constructed from the vectors
la and ma, and that for the vectors of the null tetrad (verifiable with√

2ka = (0, 0, 1, 1),
√

2la = (0, 0,−1, 1), and
√

2ma = (1,−i, 0, 0)), we
have

εabpqk
albmpmq = − i. (9.17)

Because of their definition (9.15) and the properties (9.7) of the null
vectors, the self-dual bivectors have the ‘scalar products’

WabW
ab = −4, UabV

ab = 2,

WabW
ab = WabU

ab = VabV
ab = UabU

ab = 0.
(9.18)

The non-self-dual field tensor Fab of a Maxwell field cannot of course
be expanded in terms of the self-dual bivectors (9.15). Instead we have
to use the complex field tensor

Φab = Fab + i F̃ab (9.19)

already introduced in Section 7.3, which is self-dual in the above sense,

Φ̃ab = − i Φab. (9.20)

Hence it can be expanded with respect to the bivectors U, V, and W :

Φab = ϕ0Uab + ϕ1Wab + ϕ2Vab. (9.21)

Corresponding to the six independent components of a second-rank an-
tisymmetric tensor there occur three complex coefficients ϕi. They can
be calculated from the field tensor, because of (9.18), according to
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ϕ0 = 1
2
ΦabV

ab = By − Ex + i (Ey +Bx),

ϕ1 = − 1
4ΦabW

ab = Ez − iBz,

ϕ2 = 1
2
ΦabU

ab = Ex +By + i (Ey −Bx).

(9.22)

9.3 The algebraic classification of electromagnetic fields

First formulation Symmetric tensors become particularly simple when
one carries out a transformation to principal axes. Setting up the
analogous problem for antisymmetric tensors consists of simplifying the
expansion (9.21) by choice of the direction ka of the null tetrad; that is,
by adapting the null tetrad to the antisymmetric tensor under consider-
ation.

The self-dual bivectors transform under a rotation (9.11) according to

W ′
ab = Wab−2EUab, U ′

ab = Uab,, V ′
ab = Vab−EWab+E2Uab. (9.23)

Hence we have for the expansion coefficients occurring in (9.21)

ϕ0 = ϕ′
0 − 2Eϕ′

1 + E2ϕ′
2, ϕ1 = ϕ′

1 − Eϕ′
2, ϕ2 = ϕ′

2. (9.24)

We can therefore make one of the two coefficients ϕ0 or ϕ1 vanish by
suitable choice of E, that is, by suitable choice of the new direction
ka, and thereby simplify the expansion (9.21). Since only ϕ0 remains
invariant under the transformations (9.10), which leave ka fixed but
alter la and ma, and since we seek the most invariant choice possible,
we demand that ϕ0 vanishes:

ϕ′
0 − 2ϕ′

1E + ϕ′
2E

2 = 0. (9.25)

According to the number of roots E of this equation (and taking into
account a few special cases) one can divide the electromagnetic fields
into two classes.

Fields for whose field tensor the inequality

ϕ′ 2
1 − ϕ′

0ϕ
′
2 	= 0 (9.26)

holds are called non-degenerate. They possess two different directions ka

for which ϕ0 vanishes, since in general (9.25) has two distinct roots E.
For ϕ′

2 = 0 only one root exists, but then la is one of the null directions
singled out and one can again obtain ϕ0 = 0 through the interchange of
labels la ↔ −ka, Uab ↔ V ab.

Fields whose field tensor satisfies

ϕ′ 2
1 − ϕ′

0ϕ
′
2 = 0 (9.27)
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are called degenerate or null fields. They possess only one null direction
ka with ϕ′

0 = 0. If one has achieved ϕ0 = 0, then because of (9.27) ϕ1

also vanishes.
The relation

ϕ′2
1 − ϕ′

0ϕ
′
2 = −4ΦabΦab = −2(F abFab + i F̃ abFab), (9.28)

which follows from (9.18) and (9.21), shows particularly clearly that the
classification of electromagnetic fields introduced above is independent
of the choice of the null tetrad and of the interpretation through the
bivector expansion.

Equation (9.28) implies a simple prescription for establishing the type
of an electromagnetic field: a Maxwell field is degenerate, or a null field,
if and only if its two invariants vanish, that is if and only if

FabFab = 0 = F̃abFab. (9.29)

Second formulation One can also translate the classification just set up
into the more usual language of eigenvalue equations and eigenvectors.
As one can deduce from (9.21) and (9.15), ϕ0 = 0 is equivalent to

Φa
bkb = (Fa

b + i F̃a
b)kb = ϕ1ka. (9.30)

Non-degenerate fields thus possess two distinct null eigenvectors ka

for which (9.30) holds, or for which

k[cFa]bk
b = 0 = k[cF̃a]bk

b. (9.31)

Degenerate fields (null fields) for which ϕ0 and ϕ1 vanish possess only
one null eigenvector ka with

Fabk
b = 0 = F̃abk

b. (9.32)

Their field tensor has the simple structure Φab = ϕ2Vab, that is

Fab = kapb − kbpa, pak
a = 0 = pal

a (9.33)

(pa is spacelike).

9.4 The physical interpretation of electromagnetic null fields

The simplest example of an electromagnetic null field is a plane wave,

An = Re [p̂n ei krxr

], p̂nk
n = 0, knkn = 0,

Fnm = Re [(p̂mkn − p̂nkm)i ei krxr

].
(9.34)
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One easily verifies that the necessary and sufficient condition (9.29) for
the vanishing of the invariants is satisfied.

Plane waves (null fields) also occur as far fields of isolated charge and
current distributions. If one starts from the representation (7.17) of the
four-potential, i.e. from

An(r, t) =
1

4πc

∫
jn(r′, t− |r− r′| /c)

|r− r′| d3r′, (9.35)

and expands the corresponding field tensor in powers of 1/r,

Fnm =
1

Fnm /r+
2

Fnm /r2 + · · ·, r2 = r2, (9.36)

then one sees that
1

Fnm has the structure
1

Fnm= pmkn − pnkm, (9.37)

with

pm = ∂
[ ∫

jn(r′, t− |r− r′| /c)d3r′
]/

4πc∂t,

kn = −(t− |r− r′| /c),n =
(
xn − x′n
c |r− r′| ,−

1
c

)
≈ (xn/rc,−1/c),

knkn = 0, An
,n ≈ pnkn = 0.

(9.38)

A related example is the far field of an accelerated charged particle, see
Section 10.4 and Exercise 10.1.

The energy-momentum tensor (7.35) of a general null field has the
simple form

Tmn = F amFa
n = pap

akmkn = λ2kmkn. (9.39)

Between the energy flux density (Poynting vector) Sα = cT 4α and the
energy density w = T 44 the relation |Sα| = wc holds; the energy flux
density is as large as if the whole field energy moves with the velocity of
light: electromagnetic null fields are pure radiation fields.

Exercises

9.1 How is the parameter A in (9.9) related to the velocity between
the two systems?

9.2 Show that Φab as defined in (9.19) is in fact self-dual.
9.3 Show that degenerate fields are characterized by (B+ iE)2 = 0.
9.4 Show that the energy-momentum tensor can be written as Tmn

= 1
2ΦamΦ̄a

n.
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Charged point particles and their field

10.1 The equations of motion of charged test particles

In (non-relativistic) electrodynamics, the equation of motion for a par-
ticle of mass m and charge e reads

mr̈ =
d(mv)

dt
= F = e(E +

v
c
×B). (10.1)

The particle is a test particle in that the electromagnetic field generated
by the particle itself does not act back. From the considerations on
relativistic mechanics and the Lorentz force in Sections 4.2 and 7.4, it is
obvious that the relativistic equation of motion reads

m0
d2xa

dτ2
= m0

dua

dτ
= fa =

e

c
F abub. (10.2)

Its constitutive parts are invariants (m0, τ, e), four-vectors (fa, ua), and
a tensor (F ab).

As in Section 4.2, we split this equation into its spatial part and the
rest. With (7.34) and (4.11) we immediately obtain

d
dt

(mv) = e(E +
v
c
×B), m =

m0√
1− v2/c2

, (10.3)

which differs from (10.1) only in the velocity-dependence of m. A re-
definition of e, which one may have expected, is not necessary. For the
timelike component we get from (4.15) and ve(E + v ×B/c) = eEv

d(mc2)/dt = eEv. (10.4)

The magnetic field does not change the particle’s energy.
As an example we consider the motion of a particle in the x-y-plane

under the influence of a constant electric field E = (E, 0, 0), with the
initial conditions mvx = 0, mvy = p0 at t = 0. From the equations of
motion

d(mvx)/dt = eE, d(mvy)/dt = 0 (10.5)

one immediately gets

mvx = eEt, mvy = p0. (10.6)

Instead of solving the timelike component of the equations of motion,
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we use the identity m2v2−m2c2 = −m2
oc

2, cp. (4.19), which gives with

m2c2 = (eEt)2 +A2, A2 ≡ m2
0c

2 + p2
0, (10.7)

the time-dependence of m. With that (10.6) now reads

vx =
dx
dt

=
ecEt√

(eEt)2 +A2
, vy =

dy
dt

=
p0c√

(eEt)2 +A2
, (10.8)

and we can integrate it by

x− x0 =
c

eE

√
(eEt)2 +A2, y − y0 =

p0c

eE
arc sinh (eEt/A) . (10.9)

To see the geometric form of this orbit, we eliminate t and get

x− x0 =
cA

eE
cosh

(
eE(y − y0)

p0c

)
. (10.10)

The orbit is a catenary. Its non-relativistic limit (p0 = m0v0, A =
m0c, coshα = 1 + α2/2) is the parabola

x− x0 = const. + eE(y − y0)2/2m0v
2
0 . (10.11)

For p0 = 0 (no initial velocity in the y-direction) we regain from (10.9)
the hyperbolic motion of Section 4.3.

10.2 The variational principle for charged particles

As for the Maxwell equations in Section 7.5 we need invariants to con-
struct the Lagrange function L̂ for a variational principle of the form
typically used in mechanics,

W =
∫
L̂dτ =

∫
Ldt = extremum. (10.12)

L̂ should have the dimension of an energy. Out of the combinations
one can build from the entities (m0, x

n, un) describing the motion of the
particle, only m0u

nun = −m0c
2 meets this condition, and if we admit

for a Maxwell field, unAn is the only additional candidate. So we make
the ansatz

W =
∫

(−m0c
2+eAnu

n/c)dτ =
∫

[−m0c
2
√

1− v2/c2+eAv/c−eU ] dt.

(10.13)
In the non-relativistic limit v � c, the term −m0c

2
√

1− v2/c2 just gives
– up to a constant – the kinetic energy m0v

2/2.
To prove that this Lagrange function L is correct, we have to show

that the Euler–Lagrange equations
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d
dt

∂L

∂ẋα
− ∂L

∂xα
= 0 (10.14)

give the equations of motion (10.3). This is easily done, since – with
v2 = ẋαẋα – one gets

∂L

∂ẋα
=

m0ẋα√
1− v2/c2

+
e

c
Aα = mvα +

e

c
Aα,

∂L

∂xα
=
e

c
Aβ,αẋ

β − eU,α,

(10.15)
and from this

d
dt

∂L

∂ẋα
− ∂L

∂xα
=

d
dt

(mvα) +
e

c

∂Aα

∂t
+ eU,α +

e

c
(Aα,β −Aβ,α)vβ = 0,

(10.16)
which agrees with (10.3).

From the Maxwell field Fnm, the four-potential An is determined only
up to gauge transformations (7.16), i.e. up to

An = An + ϕ,n; (10.17)

the potential itself does not have an immediate physical meaning. How
does it happen that it appears in the action W? If we calculate the
change in W induced by such a gauge transformation, we obtain

c(W −W ) =
∫ 2

1

eϕ,nu
n dτ =

∫ 2

1

eϕ,n
dxn

dτ
dτ =

∫ 2

1

eϕ,n dxn =
∫ 2

1

edϕ

= eϕ
∣∣2
1

= const. (10.18)

Although W changes, it changes only by a constant which does not give
any contribution to the variation.

So far we have encountered two variational principles, one for the
Maxwell field in Section 7.5, and one for a charged particle just above.
An inspection of both actions shows that for a charged point particle,
where we can set ∫

Anj
n d4x =

∫
eAnu

n dτ, (10.19)

they jointly can be written as

W = −1
4
c−1
∫
FnmF

nm d4x+ ec−1
∫
Anu

n dτ − ∫ moc
2 dτ

=
∫
LMaxw d4x+

∫
LInteraction dτ +

∫
L̂Mech dτ.

(10.20)

The source-free Maxwell field, and the force-free particle motion, are
described by LMaxw and L̂Mech, respectively. The interaction works on
both sides. This kind of approach for describing interaction by adding
a term to the action is quite common in theoretical physics.
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10.3 Canonical equations

From the Lagrange function

L = −m0c
2
√

1− ẋαẋα/c2 + eAv/c− eU (10.21)

we construct the Hamilton function H by first calculating the canonical
momenta p̂α,

p̂α =
∂L

∂ẋα
= mvα +

e

c
Aα, (10.22)

cp. (10.15). These canonical momenta p̂α are different from the usual
momenta pα = mvα (so that we used a different symbol). For the
Hamilton function H = ẋαp̂α − L we obtain, after a short calculation,

H = mc2 + eU. (10.23)

We still have to substitute the velocities hidden in m by the canonical
momenta. For this we make use of

m2v2 −m2c2 = (p̂− eA/c)2 −m2c2 = −m2
0c

2, (10.24)

and arrive at

(H − eU)2/c2 = (p̂− eA/c)2 +m2
0c

2. (10.25)

This relation can be read as saying that there is a four-vector p̂n =
(p̂,−H/c) with p̂ np̂n = −m2

0c
2. This indicates that there may be a

truly four-dimensional canonical formalism, with the usual Hamilton
function as a fourth component of a vector, and a still unknown general-
ized Hamilton function. Although it is in principle possible to formulate
such an approach (see for example Sundermeyer 1982), we will not fol-
low this line of thought. Rather we shall give below an example – there
are not so many simple but truly relativistic problems!

Equation (10.25) can easily be solved with respect to H,

H = eU +
√
m0c4 + c2(p̂− eA/c)2. (10.26)

For completeness, we add the system of canonical equations, which reads

d
dt
xα =

∂H

∂p̂ α ,
d
dt
p̂α = − ∂H

∂xα
,

dH
dt

=
∂H

∂t
. (10.27)

We now want to apply this formalism to the motion of a charge (charge
e, rest mass m0) in a plane electromagnetic wave, see Fig. 10.1. We
assume that the charge is at rest at the beginning, and that the linearly
polarized plane wave hits the charge at t = 0,
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wave

e x1

A, x2

−x3

t = 0

Fig. 10.1. Motion of a charge in a plane electromagnetic wave.

An =
(
0, A(x1 − ct), 0, 0) ↔ E = (0, A′, 0), B = (0, 0, A′), (10.28)

at t = 0: x1 = x2 = x3 = 0 = ẋ1 = ẋ2 = ẋ3. A = 0 for x1 − ct ≥ 0.

The Hamilton function for this example is

H =
√
m0c4 + c2p̂ 2

1 + c2(p̂2 − eA/c)2 + c2p̂23 = m(p̂α, A)c2, (10.29)

and the canonical equations read

p̂1 = mẋ1, p̂2 = mẋ2 + eA/c, p̂3 = mẋ3, (10.30)
dp̂1

dt
=

(p̂2 − eA/c)ecA′

H
=

1
c

dH
dt

,
dp̂2

dt
= 0 =

dp̂3

dt
.

Making use of the initial conditions, one immediately gets

p̂2 = 0, p̂3 = 0 → H =
√
m0c4 + c2p̂ 2

1 + e2A2. (10.31)

Combining the second and third equations of (10.30) gives

d(H − cp̂1)/dt = 0 → H − cp̂1 = m0c
2, (10.32)

and together with (10.31)

p̂1 =
e2A2

2m0c3
, H =

e2A2

2m0c2
+m0c

2 = mc2. (10.33)

We still have to integrate the first system of (10.30), that is

mẋ1 = m0
dx1

dτ
= p̂1 =

e2A2

2m0c3
, m0

dx2

dτ
=
e

c
A, m0

dx3

dτ
= 0. (10.34)

Since

m0 dx1/dτ = H/c−m0c = mc−m0c = m0c dt/dτ −m0c (10.35)

we have d(x1 − ct)/dτ = −c and from this

cτ = ct− x1, A = A(x1 − ct) = A(τ). (10.36)
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The potential A just depends on the proper time of the charge, and that
makes the final integration easy:

x1(τ) =
e2

2m2
0c

3

∫ τ

0

A2(−cτ ′)dτ ′, t(τ) = τ + x1(τ),

x2(τ) = − e

m0c

∫ τ

0

A(−cτ ′)dτ ′, x3(τ) = 0.

(10.37)

The charge oscillates in the x2-direction, due to the electric field.
This motion induces a Lorentz force in the x1-direction, and the charge
is driven in the direction of the (Poynting vector) of the wave. When
the wave has passed by (A = AE = const. for some τ ≥ τE), the charge
moves with constant (zero for AE = 0) velocity in the x1-direction.

10.4 The field of a charged particle in arbitrary motion

If one gets the problem of finding the electromagnetic field of an acceler-
ated charged particle, the first idea may be to use the formula (7.17) for
the retarded potentials. Although it is possible, by means of δ-functions,
to apply this representation to the current of a point particle, there is a
shorter way which we will take now.

From the retarded potentials we take the knowledge of the causal
structure: only those points of the particle’s world line an(τ) which lie
on the light cone with vertex in xa contribute to the potentials An at a
point xa, i.e. only those points which satisfy (see Fig. 10.2)

RnRn = [xn − an(τ)][xn − an(τ)] = 0. (10.38)

We now use the Lorentz invariance of Maxwell’s theory by transform-
ing – for a given point (xn) and its counterpart (an(τ)) – to the system

un(τ )

an(τ ) xn

Rn = xn − an(τ )

Fig. 10.2. Field of a charged particle. For explanation, see text.
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in which the particle is at rest, un = dan/dτ = (0, 0, 0, c). In that sys-
tem, only the scalar potential U survives and is given by the well-known
expression

U =
e

4πr̂
=

e

4π(RαRα)1/2
, A = 0. (10.39)

Here r̂ is the spatial distance between (xn) and the point on the world
line; because of (10.38), it can also be written as r̂ = R4. This can be
used to rewrite (10.39) as

An(xm) = − eum

4πRnun

∣∣∣
ret
, (10.40)

where |ret indicates here and later that for the particle’s data (e.g. an(τ),
un(τ)) those on the past light cone through (xn) have to be taken (with
R4 = ct− a4 > 0).

As derived, equation (10.40) is valid only for the particle’s rest system.
But it clearly is a tensor equation, and so we can conclude that it is valid
in any system!

The equations (10.40) are often given in a three-space notation. With
An = (A, U), un = (v, c )/

√
1− v2/c2 and Rn = (R, R) they read

A(r, t) =
ev

4πc(R−Rv/c)

∣∣∣
ret
, U =

e

4π(R−Rv/c)

∣∣∣
ret

(10.41)

and are called ‘Liénard–Wiechert potentials’.
For calculating the field tensor from these potentials still another form

will be used. To get this, we split the vector Rn into its parts parallel
and orthogonal to the four-velocity, respectively:

Ra = ρ(na + ua/c), ρ = − Raua/c |ret , with uana = 0, nana = 1
(10.42)

(ρ is the R from above, the spatial distance between source and (xn)
in the rest system of the charge). With (10.42) we can write the four-
potential as

Aa(xn) =
eua

4πcρ

∣∣∣
ret
. (10.43)

To calculate the field tensor Fab we have to differentiate the potential
with respect to the xn. This has to be done carefully: since the point
(xn) and the position τ of the particle are tied together by the light cone
prescription |ret, a shift in the xn induces a shift in τ . In detail, we get
from (10.38)

Rn dRn = Rn(dxn − un dτ) = 0, (10.44)
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or – with (10.42) – (nn + un/c)dxn = (nn + un/c)un dτ = −cdτ , i.e.

c∂τ/∂xn = −(nn + un/c). (10.45)

To calculate the derivatives of the potential,

Aa,b =
[
− eua

4πcρ2
ρ,b +

eu̇a

4πcρ
τ,b

]∣∣∣
ret
, (10.46)

we still need the derivatives of ρ. We get them from

∂ρ

∂xb
=

d
dτ
(−Rauac

) ∂τ
∂xb

= (−uaua +Rau̇a)(nb + ub/c)/c2

= nb + ub/c+ ρnau̇
a[nb + ub/c]/c2.

(10.47)

Putting all the pieces together, and after some reshuffling, we finally
obtain

F ab(xn) =
e

4πc2ρ

[
u̇aub − uau̇b

c
− nau̇b + nbu̇a

(10.48)

−(naub − nbua)
nmu̇m

c

]∣∣∣∣
ret

+
e(uanb − ubna)

4πcρ2

∣∣∣∣
ret

.

This formula gives the field at a point (xn) generated from a point charge
which at the retarded time has four-velocity ua and four-acceleration u̇a,
where ρ is the spatial distance in the particle’s rest frame, and na the
spatial vector from the particle to (xn) in that frame.

The terms without acceleration u̇a are exactly those with ρ−2; they
correspond to the Coulomb field of a charge, and can be transformed
into a pure Coulomb field if the acceleration vanishes identically.

The terms containing the acceleration are those with a ρ−1.One knows
from Maxwell’s theory that fields which go as r−1 for large r (with
r2 = x2 + y2 + z2) usually have a Poynting vector which goes with r−2

so that there is a net energy flux through a sphere at large distances:
these fields are radiative. The same is true here: accelerated charges
radiate. To support this assertion, we calculate the Poynting vector
with respect to the particle’s rest frame. We do this by first calculating
the electric and magnetic field vectors of the radiation field in that rest
frame,

Ea = F abub/c =
e

4πc2ρ
[na(nmu̇m)− u̇a]

∣∣∣
ret
,

(10.49)
Ba = −F̃ abub/c = −1

2ε
abmnFmnub/c =

e

4πρc3
εabmnnmu̇nub

∣∣∣
ret
.

Note ubu̇b = 0 = ubnb and εabnmubu
a = 0; both four-vectors Ea and Ba
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are in fact spacelike three-vectors in the space orthogonal to ub. The
same is true for the Poynting vector

Sb = −εbpqhEpBquh =
e2[u̇au̇a − (nau̇a)2]

16π2c3ρ2
nb
∣∣∣
ret
. (10.50)

The Poynting vector points outwards, in the na-direction. The radiation
field described by (10.49)–(10.50) displays some very special properties.
Both Ea and Ba are orthogonal to na, and they are orthogonal to each
other; the three vectors Sa, Ea and Ba form an pairwise orthogonal
set of vectors (all orthogonal to ua), which is a typical property of a
plane electromagnetic wave. The wave emitted by a charged accelerated
particle is locally a plane wave.

By using the above Poynting vector, one can calculate the total
momentum and energy loss of the particle due to the radiation. The
result is

dP a

dτ
=

2e2

3c5
(u̇nu̇n)ua, (10.51)

which gives in the rest system for the radiated energy

dW
dt

=
2e2

3c3
u̇nu̇n. (10.52)

10.5 The equations of motion of charged particles – the
self-force

As shown in the preceding section, an accelerated charge radiates and
loses energy and momentum. This should cause a back-reaction to the
particle and should be reflected in its equation of motion. The equation
of motion should therefore be of the form

m0
d2xn

dτ2
=

e

c
Fnm

ext um + Γn + f̃n

external electro- self-force other
magnetic force forces

(10.53)

(we shall neglect the ‘other forces’ from now on). What is this self-force
Γn? The first guess may be that it is equal to the loss term discussed
above, i.e. Γn = Ṗn = 2e2(u̇au̇a)un/3c5. But this cannot be true; every
force four-vector has to be orthogonal to the four-velocity, and Ṗn is not:
Ṗnun = −2e2(u̇au̇a)/3c3. We cannot discuss here in detail the possible
remedy, but only give a plausible argument. Because of

uaua = −c2, u̇aua = 0, üaua + u̇au̇a = 0 etc., (10.54)
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one can simply add an additional force term proportional to ün to Ṗn

to make it orthogonal to un. This is done by writing

m0
d2xn

dτ2
=
e

c
Fnm

ext um +
2e2

3c3

[
ün − (u̇au̇a)

un

c2

]
. (10.55)

One may wonder whether this additional term does not lead to an extra
irreversible loss of energy. But when writing (10.55) as

d
dτ

(
m0u

n − 2e2

3c3
u̇n
)

=
e

c
Fnm

ext um − 2e2

3c3
(u̇au̇a)

un

c2
, (10.56)

one sees that it is a reversible term (which may be interpreted as the
momentum of the radiation field).

Equation (10.55), the so-called ‘Lorentz–Abraham–Dirac equation’,
has been much debated. Its most unfortunate feature is the appearance
of third derivatives (second derivatives of ua), which contradicts the
fundamental assumptions of Classical Mechanics.

To get an impression of the difficulties, we shall consider the simple
example of a one-dimensional motion x = x(τ),

d
dτ
m0ẋ =

2e2

3c3

[
...
x −(ẍ2 − c2ẗ 2) ẋ

c2

]
+K, (10.57)

where K is an external force. If we parametrize the four-velocity by

ẋ = c sinh q, cṫ = c cosh q −→ ẍ = cq̇ cosh q, cẗ = cq̇ sinh q, (10.58)

we obtain from (10.57)

q̇ − τ0q̈ = K̂, τ0 ≡ 2e2/3m0c
3, K̂ ≡ K/m0c cosh q. (10.59)

For K̂ = 0, this second order differential equation for the velocity
admits the solution

q̇ = a0 eτ/τ0 . (10.60)

This is a ‘run-away’ solution: there is no external force, but the particle
is always accelerated (it ‘borrows’ the energy for this from its own field).

To exclude those unphysical solutions, one has to impose some initial
conditions at, for example, τ = ±∞. If we have a force depending only
on τ, K̂ = K̂(τ), this can be done by taking the solution in the form

q(τ) =
∫ τ

−∞
K̂(τ ′)dτ ′ +

∫ ∞

τ

e(τ−τ ′)/τ0K̂(τ ′)dτ ′, (10.61)

where the particle is at rest (q = 0) for τ → −∞. If we take a force that
acts on the particle from τ = 0 on, and is zero before, then we have
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τ ≤ 0 : q(τ) =
∫ ∞

τ

e(τ−τ ′)/τ0K̂(τ ′)dτ ′, K̂(τ ′) = 0 for τ ′ < 0. (10.62)

But this means that q(τ) is non-zero for τ ≤ 0, the charge starts moving
before the force acts! This can be interpreted as an advanced action,
or by saying that its own field makes the point charge extended; for
an electron, the time τ0 is exactly the time the light needs to pass the
classical electron radius 2e2/3m0c

2 ≈ 2·10−13cm. For practical purposes
it may be a relief to note that at such small distances classical theory
becomes obsolete in any case, and has to be replaced by quantum theory.

It has been proposed (Rohrlich 2001) to replace the Lorentz–Abraham–
Dirac equation (10.55) by the equation

m0
d2xn

dτ2
=
e

c
Fnm

ext um +
2e4

3m2
0c

5

[m0c

e
Fnm

ext ,bu
bum + Fnm

ext Fmpextu
p

(10.63)
+ F am

ext Fmp extu
nuau

p
]
.

Although this equation excludes run-away solutions, it still does not
exclude the pre-acceleration described above.

All these attempts show that it is not simply possible to press the
degrees of freedom inherent in the point charge and its radiation field
into a simple particle model.

Exercises

10.1 Show that both the Coulomb part and the radiative part of the
field (10.48) can be written as F ab = kapb − kbpa. How do the
vectors pb in the two cases differ? Hint: use equation (10.38).

10.2 Verify the expression (10.50) for the Poynting vector by direct
calculation of T ab.

10.3 Use the result of Exercise 10.1 to calculate the invariants of the
field.

10.4 Show that one obtains (10.63) by repeatedly substituting u̇n by
eFnm

ext um/m0c on the right hand side of (10.55), i.e. of

m0u̇
n = cFnm

ext um/c+ 2e2(δn
a + unua/c

2)üa/3c3.

Further reading for Chapter 10

Rohrlich (1965).
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Pole-dipole particles and their field

11.1 The current density

Besides a charge, particles may also have a magnetic and an electric
dipole moment (and even higher moments). If we want to calculate, for
example, the force on a moving magnetic dipole, we first have to find a
suitable way of describing that dipole. This is done by giving the current
density jn in terms of four dimensional δ-functions and their derivatives.
A thorough discussion of δ-functions requires some knowledge of the
mathematical theory of distributions. What we will need, and give now,
is a physicist’s manual on how to deal with them.

For any function ϕ(xa) which vanishes with all its derivatives at the
boundary of the domain of integration, the following rules hold:

δ4(xm) = δ(x)δ(y)δ(z)δ(ct) = δ3(r)δ(ct),∫
δ4(xm − cm)ϕ(xa)dx4 = ϕ(cm),∫

δ4(xm),nϕ(xa)dx4 = − ∫ δ4(xm)ϕ(xa)n dx4 = −ϕ,n(0),∫
δ(τ − b)ϕ(τ)dτ = ϕ(b),

δ[f(τ)] =
∑
i

δ(τ − τi)
/ |f ′(τi)| , f(τi) = 0,

(11.1)

where τi are simple roots of f(τ) = 0, and f ′ is df/dτ .

Pole particle A simple point charge has the property that the current
(charge) density is zero except at the particle’s world line

xm = am(τ), with um = dam/dτ, umum = −c2. (11.2)

This property can be ensured by using δ4[xm− am(τ)]; this distribution
in itself would say that the charge is present not only at one point, but
also only for one instant of time, which is obviously wrong. This is
amended by performing an integration and writing

jn =
∫
wn(τ)δ4[xm − am(τ)]dτ. (11.3)

For a particle at rest, proper time and time coincide, one has cτ = a4 =
ct′, and (11.3) gives

jn =
∫
wn(t′)δ3[xµ − aµ]δ(ct− ct′)dt′ = wn(t)δ3[xµ − aµ]/c, (11.4)

80
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which is the required behaviour. To get the correct expression for wn,
one could demand the Lorentz invariance of the current; we will go a
different way and exploit the equation of continuity instead.

From jn
,n = 0, (11.3) and the properties (11.1) of δ-functions one

obtains

0 =
∫
wn(τ)δ4,n[xm−am(τ)]dτϕ(xb)dx4 = −∫wn(τ)ϕ,n[ab(τ)]dτ. (11.5)

Here we encounter a problem. At first glance one may think that since
the test functions ϕ(xa) are arbitrary, so are their derivatives occurring
above. But this is not quite true: if ϕ is chosen along the world line
ab(τ) of the particle, then its derivatives in the direction of the world line
are fixed, and only the derivatives orthogonal to it are free. To evaluate
equation (11.5), we therefore split the vector wn into its projections
along and orthogonal to the tangent vector un, respectively:

wn = A(τ)un + bn(τ), bnun = 0. (11.6)

With dϕ/dτ = ϕ,nu
n we then get from (11.5)

0 =
∫

[Aun + bn]ϕ,n dτ =
∫
bnϕ,ndτ +

∫
A(dϕ/dτ)dτ

=
∫
bnϕ,n dτ − ∫ ϕ(dA/dτ)dτ.

(11.7)

Since ϕ and its derivatives in the directions of bn are arbitrary, (11.7)
can be true only for bn = 0 = dA/dτ, and if we set A = ec, we obtain
the final result that the current for a charged pole-particle necessarily is

jn = ec
∫
un(τ)δ4[xm − am(τ)]dτ. (11.8)

Pole-dipole particle For the pole-dipole particle one starts with the
ansatz

jn = c
∫ (
wn(τ)δ4[xm − am(τ)] + wns(τ)δ4,s[x

m − am(τ)]
)
dτ, (11.9)

where the functions wm(τ) and wns(τ) are still to be determined from
the equation of continuity. First of all, we can assume that wnsus = 0,
since if there was a component in the direction of us, for example fnus,

this term would lead via partial integration,∫
fnus{∂ δ4[xm−am(τ)]/∂xs}dτ = − ∫ fnus{∂ δ4/∂as}dτ

= − ∫ fn(dδ4/dτ)dτ =
∫

(dfn/dτ)δ4dτ,
(11.10)

to a contribution to the not yet determined vector wn.

As before, we perform a projection in the direction of un, and orthog-
onal to it, by writing
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wn − dpn/dτ = eun + bn, wns = mns − unps, (11.11)

with baua = mnsus = psus = 0. If we use this in

0 = jn
,n = c

∫
[wnδ4,n + wnsδ4,sn]dτ (11.12)

and perform an integration over an arbitrary test function ϕ, we obtain

0 =
∫

[−wnϕ,n + wnsϕ,ns]dτ

=
∫

[(−dpn/dτ − cun − bn)ϕ,n + (mns − unps)ϕ,ns]dτ

=
∫

[c(de/dτ)ϕ− bnϕ,n +mnsϕ,ns]dτ.

(11.13)

In this relation, ϕ and all its derivatives are arbitrary functions, and we
can conclude that the corresponding coefficients have to vanish:

e = const., bn = 0, mns = −msn. (11.14)

The results of all this that the current density of a pole-dipole particle
can be written in either of the forms

jn(x) = c
∫ [

(eun + dpn/dτ)δ4[xm − am(τ)] (11.15)

+ (mns − unps)δ4,s[x
m − am(τ)

]
dτ, mns = −msn,

or, using (11.10) to shift the dpn/dτ -term to the mns,

jn(x) = c
∫ [
eunδ4[xm − am(τ)] + wnsδ4,s[x

m − am(τ)]
]
dτ,

wns = msn − unps + uspn = −wsn,
(11.16)

where e is a constant, and mns, wns, pn and un are arbitrary functions
of the proper time τ.

11.2 The dipole term and its field

The antisymmetric tensor wns has six independent components, and it
is a fair guess that the three components of mns represent the magnetic
dipole moment, and the three components of pn the electric dipole, cp.
also the structure of the polarization tensor (12.12).

To really prove that, one could determine the electromagnetic field
produced by the above current, and compare the results with the hope-
fully known field of dipoles. We will do this here only for the simple case
of a static electric dipole at rest. For such a dipole, with pn = (p, 0),
located at an = (0, 0, 0, ct), τ = t, one obtains as the four-potential
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An(r) =
1

4πc

∫
jn(r′)d3x′

|r− r′| = − 1
4π

∫
unps′

δ4,s′
d3x′

|r− r′|dτ

=
1
4π

∫
un ∂

∂xs′

(
1

|r− r′|
)
ps′
δ4(xi − ai)d3x′ dτ

=
1

4πc
unps′ ∂

∂xs′

(
1

|r− r′|
) ∣∣∣

r′=0
,

(11.17)

which has as its only non-zero component the well-known potential

U = A4 = pr/4πr3. (11.18)

In the general case, the potential of the dipole term can be calculated
using the retarded Green’s function of the wave equation as

cAm(xn) =
∫
jm(xn′

)Gret(xn − xn′
)d4x′,

2πGret(xn − xn′
) = δ[(xn − xn′

)(xn − xn′)]
∣∣
ret
.

(11.19)

Inserting here the dipole part of the current, one obtains

Am(xn) =
∫
wms′

δ4,s′ [xm − am(τ)]Gret(xn − xn′
)dτ d4x′

= − ∫ wns′
[∂Gret(xn − xn′

)/∂xs′
]
∣∣
xn′=an dτ

=
∫
wns[∂Gret(xn − an)/∂xs]dτ.

(11.20)

Using, as in Section 10.4 and in Fig. 10.2, the notation

Rn = xn−an(τ)→ dRn/dτ = −un, d(RnRn)/dτ = −2Rnun, (11.21)

and taking into account the definition

δret(RnRn) = δ(τret)/2 |Raua| (11.22)

of the retarded part of the δ-function (cp. the rules for δ[f(τ)]), we get

Am(xn) =
1
2π

∫
δ′ret(R

nRn)2Rsw
ms dτ

= − 1
2π

∫
[dδ′ret(R

nRn)/dτ ]
Rs

Raua
wms dτ

=
1
2π

∫
d
dτ

( Rs

Raua
wms
)
δret(RnRn)dτ,

(11.23)

and finally

Am(xn) =
1

4π |Raua|
d
dτ

( Rs

Raua
wms
)∣∣∣

ret
. (11.24)

The compactness of this formula is a little bit misleading: when really
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calculating the field tensor from this potential, one will get lengthy ex-
pressions, as in the case of the Liénard–Wiechert potentials in
Section 10.4.

11.3 The force exerted on moving dipoles

As shown in Section 7.4, the density f̂a of the force exerted on any
current by the surrounding electromagnetic field is given by

f̂a = F anjn/c. (11.25)

To get the (three-dimensional) force F, we have to integrate this
expression over the three-dimensional volume. For the dipole part of
the current (11.16), we thus have

(F)α =
∫
f̂α d3x/c =

∫
wnsδ4,s[x

m − am(τ)]Fα
n dτ d3x. (11.26)

Because of dτ = dt
√

1− v2/c2, and the properties of the δ-function, we
can perform the four-dimensional integration and obtain finally

(F)α(τ) = −wns(τ)Fα
n,s(τ)c−1

√
1− v(τ)2/c2. (11.27)

Exercises

11.1 Calculate the potential of a magnetic dipole at rest from the
mms-part of the current, in analogy to equation (11.17).

11.2 Apply the formalism of Green’s function to the monopole part
of the current and show that the Liénard–Wiechert potentials
result.

11.3 Use (11.27) to find the force on a moving electric dipole in an
electric field.

12

Electrodynamics in media

12.1 Field equations and constitutive relations

For a medium, some of the fundamental properties of Maxwell fields are
the same as in vacuo, and we can make use of results of Chapter 7.
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The first set of Maxwell’s equations, curl E+ ∂B/c∂t = 0, div B = 0,
guarantees the existence of a four-potential An from which the field
tensor F ab can be derived,

Fmn = An,m −Am,n, F̃mn
,n = 0. (12.1)

Similarly, the second set of Maxwell’s equations, curl H = (j+∂D/∂t)/c,
div D = ρ, is equivalent to

Hmn
,n =

1
c
jm, Hmn =




0 Hz −Hy −Dx

−Hz 0 Hx −Dy

Hy −Hx 0 −Dz

Dx Dy Dz 0


 . (12.2)

These equations have to be completed by a set of constitutive relations
which relate Fmn to Hmn (and jm to Fmn). In many cases a linear
relation between Hab and F ab is taken. In general, this is of the form

Hab = λab
mnFmn, (12.3)

with the appropriate antisymmetry conditions on the tensor λ. But to
mirror the simple relations D = εE, B = µH, a less ambitious approach
suffices, which we shall present now.

If un = un(xa) is the four-velocity of the medium (which need not be
constant throughout the medium), then one can define the electric and
magnetic fields by

Ea = F abub

c
, Ba = −F̃ abub

c
, Ha = −H̃abub

c
, Da = Habub

c
. (12.4)

In the local rest frame un = (0, 0, 0, c), the spatial components of these
four-vectors are exactly the usual fields; hence the constitutive equations
are

Habub = εF abub, H̃abub = µ−1F̃ abub. (12.5)

In three-dimensional notation these equations read

D+
v
c
×H = ε

(
E +

v
c
×B
)
, H− v

c
×D =

1
µ

(
B− v

c
×E
)
, (12.6)

or, after decomposition into the parts parallel and perpendicular to v
and some reshuffling,

D‖ = εE‖, D⊥ =
1

1− v2/c2

[
E⊥

(
ε− v2

µc2

)
+ v ×B

(
ε

c
− 1
µc

)]
,

(12.7)
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H‖ =
1
µ
B‖,H⊥ =

1
1− v2/c2

[
B⊥

(
1
µ
− εv2

c2

)
− v ×E

(
1
µc
− ε

c

)]
.

We now have to translate Ohm’s law. In general, the three-dimensio-
nal current consists of two parts: a convection current due to charges
moving with the medium, and a conduction current within the medium.
The convection current jn

conv thus is proportional to the four-velocity,

jn
conv = ρ0u

n. (12.8)

It is a timelike vector whose spatial part vanishes in the local rest system
of the medium, whereas the conduction current jncond is spacelike, with
j4cond=0 in the local rest system. So if only these two types of current
are present (there are for example no electrons moving freely through
the medium), the general current can be split as follows:

jn = jn
conv + jn

cond = −un(uaja)/c2 +
[
jn + un(uaja)/c2

]
. (12.9)

Ohm’s law then can be written as

jn + un(uaja)/c2 = σFnaua/c. (12.10)

As can be seen from its right hand side, the driving force for the current
is the Lorentz force.

Media can be characterized by their polarization P and their magne-
tization M defined by

D = E + P, H = B−M, (12.11)

which can be interpreted in terms of (densities of) magnetic and electric
dipoles. The corresponding tensor is the polarization tensor

Pmn = Fmn −Hmn =




0 Mz −My −Px

−Mz 0 Mx −Py

My −Mx 0 −Pz

Px Py Pz 0


 . (12.12)

V M

ω

Fig. 12.1. Electric field of a rotating magnet.



12.2 Remarks on the matching conditions at moving surfaces 87

A magnetized medium may produce an electric field when rotated, see
Fig. 12.1. This effect may lead to enormous electric fields in a rotating
neutron star.

12.2 Remarks on the matching conditions at moving surfaces

It is well known that if a boundary f(xn) = 0 divides the medium
into two parts with different physical properties, some care is needed to
satisfy Maxwell’s equations across that boundary. We shall now formu-
late the conditions appropriate for a moving boundary. For a boundary
(locally) at rest, we have f,4 = 0. So in the general case the vector na

normal to that boundary,

na = f,a

/
(f,bf

,b)1/2, nan
a = 1, f(xn) = 0, (12.13)

will be spacelike. We chose na to point into the interior of medium 1. If
there are charges or currents in the surface f(xn) = 0, characterized by
ja
B , we assume that they do not leave it,

ja
Bna = 0. (12.14)

The boundary conditions then read

Habnb

∣∣
1
− Habnb

∣∣
2

= ja
B/c, F̃ abnb

∣∣
1
− F̃ abnb

∣∣
2

= 0, (12.15)

where |A indicates on which side the value has to be taken.
To prove that these conditions are correct, at any point of the bound-

ary one can take the local rest frame na = (n, 0) and show that the
usual boundary conditions follow; one then gets for example H4bnb =
Dana = D(n), j

4
B/c = ρB and thus D(n)|1 − D(n)|2 = ρB (ρB is the

surface density of the charge).

12.3 The energy-momentum tensor

Before we try to construct an energy-momentum tensor for electro-
magnetic fields in media, we shall collect the conditions an energy-
momentum tensor should satisfy in general.

The energy-momentum tensor Tab of a physical system generalizes the
concept of the energy-momentum four-vector of mechanics, and there-
fore also that of energy and momentum in Classical Mechanics. For all
such systems a balance equation for energy and momentum can be for-
mulated. In particular if the system is closed, i.e. if there are no outside
forces and all forces are due to the interaction of the parts within that
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system, energy and momentum are conserved. In terms of the energy-
momentum tensor of that system this means

Tmn
,n = 0 for closed systems. (12.16)

For the Maxwell field (with sources) in vacuo this equation is not
satisfied: as equation (7.36) shows, the system is not closed, energy and
momentum can be transferred to the current (to the particles which
carry the charge). The system is closed only for jn ≡ 0.

In Classical Mechanics there is one more balance equation: that of
angular momentum. It is a consequence of the equations of motion. To
generalize the concept of angular momentum to fields, we remind the
reader of the structure r × p of angular momentum: it is the antisym-
metrized product of r with the momentum. If we write Tmn instead of
momentum, we get

Mmna = Tmnxa − T anxm (12.17)

as the angular momentum tensor. To check whether it is conserved we
determine its divergence for closed systems:

Mmna
,m = Tmn

,nx
a + Tmnδa

n − T an
,nx

m − T anδm
n = Tma − T am.

(12.18)
Angular momentum will be conserved only if the energy-momentum
tensor is symmetric,

Tma = T am for closed systems. (12.19)

We now return to our task of finding the energy-momentum tensor
for an electromagnetic in a medium. From what has been said above it
is obvious that the system ‘electromagnetic field’ is not closed, due to
the presence of the medium and its currents. But the situation is even
worse: it is not clear which part of the total energy-momentum should
be called ‘electromagnetic’. For the system

pure inter- elastic
+ +

Maxwell field action medium

there is no clear way of determining which of the two sides the interaction
should be added to, and how it might possibly be divided. This question
was much debated in the beginning of the twentieth century, when all
this was not yet clear.

In any case, as can be seen from the expression w = ED/2 for the elec-
trostatic energy inside a medium, the energy-momentum tensor should
be bilinear in the components of F ab and Hab. The most preferred choice
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Tmn = F amHa
n + 1

4
ηmnF abHab (12.20)

is due to Minkowski. This tensor is not symmetric, but its trace vanishes:
Tm

m = 0. To understand the physical meaning of its components we
observe that if the momentum balance is included in Tmn

,n it should
be in the form ∂(momentum)/∂t + · · ·, which means that the Tµ4-
components are the components of the momentum. On the other hand,
by calculating the components in a local rest system we find that

Tmn =



−σµν cgµ

Sν/c w


 , with

σµν : stress tensor,
cgµ = D × E : momentum

Sν : Poynting vector,
w : energy density.

Exercises

12.1 Show that F ab can be written in terms of Ea and Ba.
12.2 Give the tensor λabmn for the case of the relations (12.5). Hint:

use un, ηmn and εabnm.

13

Perfect fluids and other physical theories

13.1 Perfect fluids

For the non-relativistic description of perfect fluids one needs the density
µ(r, t), the pressure p(r, t) and the velocity field v(r, t). The fluid obeys
Euler’s equation (momentum balance)

µ
dv
dt

= −grad p+ f ,
d
dt

=
∂

∂t
+ vα ∂

∂xα
, α = 1, 2, 3, (13.1)

where f is the density of the (exterior) forces. In addition to this the
mass is conserved, which is expressed in the continuity equation

∂µ/∂t+ div(µv) = 0. (13.2)

The system of the two equations has to be supplemented by an equation
of state, for example by
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f(p, µ) = 0 ↔ p = p(µ). (13.3)

In a relativistic theory, the four-velocity field

ua(r, t) = ua(xn) =

(
v√

1− v2/c2
,

c√
1− v2/c2

)
(13.4)

replaces the velocity field v(r, t). For an arbitrary (but fixed) point P0

it can be transformed to

ua(P0) = (0, 0, 0, c) (local rest system). (13.5)

To find the relativistic generalization for the dynamical equations, we
will not try to generalize Euler’s equation. Instead we shall construct the
energy-momentum tensor of the fluid and get the dynamical equations
from it.

A perfect fluid is characterized by the fact that in the local rest system
of a fluid element there is only an isotropic pressure; other stresses, a
heat current across the border of that element I, etc. do not occur. That
is to say, the energy-momentum tensor has the form

0

T
mn =




− stress
tensor

c×momen-
tum

c× energy
current

energy




=



p

p

p

µc2


 , (13.6)

with the energy density proportional to the rest mass density µ. This
tensor can be easily be written in a covariant form as

Tmn = pηmn + (µ+ p/c2)uaub. (13.7)

The special case p = 0 is called dust, or incoherent matter. It will later
be used to model galaxies in the universe.

To understand the physical meaning of this energy-momentum tensor,
we shall now inspect some of its components. Momentum density g and
energy density w are given by

gα = Tα4/c = (µ+ p/c2)uαu4/c = vα(µ+ p/c2)/(1− v2/c2),
(13.8)

w = T 44 = (µ+ p/c2)u4u4 − p = (µc2 + pv2/c2)/(1− v2/c2).

Combining the two equations, we get

gα = vα(w + p)/c2. (13.9)
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Not only the mass (w/c2), but also the pressure contributes to the
momentum of a fluid element.

As we shall show now, the dynamical equations of the fluid are con-
tained in the balance equations of its energy and momentum,

Tmn
,n = fm, (13.10)

where fm is the four-vector of the external force density.
The timelike component of these equations is the energy balance

T 4n
,n = T 4α

,α + T 44
,4 = cgα

,α + ∂w/c∂t = f4, (13.11)

which can be written as

div[(w + p)v] + ∂w/∂t = cf4. (13.12)

In the non-relativistic limit w = µc2, p� µc2, f4/c� 1, this equation
yields

div(µv) + ∂µ/∂t = 0. (13.13)

One sees that the continuity equation (13.2) (mass conservation) is the
non-relativistic limit of the energy balance, the energy density is dom-
inated by µc2, and mass is not changed under the action of external
forces as it is in the fully relativistic description.

The spacelike components of (13.10) read

Tα
n

,n = p,α + [(µ+ p/c2)uαu
β ],β + [(µ+ p/c2)uαu

4],4 = fα (13.14)

or
p,α + (gαv

β),β + ∂gα/∂t = fα. (13.15)

Substituting the expression derived above for gα, and making use of the
energy balance equation (13.12), one obtains

w + p

c2
dv
dt

+ grad p+ (f4 + p,t/c
2)v = f . (13.16)

One easily recognizes that this generalizes Euler’s equation which is con-
tained here for w = µc2, p� µc2, vf4 � f .

One learns from this approach to relativistic fluid mechanics that it is
advantageous to start with the energy-momentum tensor if one is asking
for the correct form of the dynamical equations – this is true also for
other theories.

We close this section with a few remarks on the balance equation for
the mass. We have seen that the continuity equation (13.2) no longer
holds. If one tries to give that equation a relativistic form, one may be



92 Perfect fluids and other physical theories

tempted to write it as (µun),n = 0. But that is not true; instead one
gets, with µun = −Tnm

,m/c
2 and un

,au
aun = u̇nun = 0,

(µun),n = −fnun/c
2 − pun

,n/c
2; (13.17)

in general, mass will be generated (or annihilated). Note that in particle
dynamics we had p = 0 = fnun, and mass was conserved there.

If not mass, then other properties of matter may be conserved, for
example the baryon number n0 (number of baryons per volume). This
can be expressed by

(n0u
n),n = 0. (13.18)

13.2 Other physical theories – an outlook

At the end of the chapters on Special Relativity we add a few very short
remarks on its incorporation into other physical theories.

The typical notions and theorems of Thermodynamics are centred
around temperature, heat, work and energy (first law), entropy (sec-
ond law), and their foundation in Statistical Mechanics. Since we know
how to deal with mechanics, Statistical Mechanics offers the easiest way
for the understanding of the transformation properties of thermodynam-
ical quantities. The entropy S is defined there by the probability of a
configuration. Probability is based on counting numbers, and since num-
bers do not change under Lorentz transformations, the entropy S is an
invariant,

S = inv. (13.19)

A second typical expression in Statistical Mechanics, governing the
distribution of states, is e−E/kT , with k being Boltzmann’s constant, E
the energy, and T the temperature. Not said, but tacitly assumed, is
that thermodynamics usually is done in the rest frame of the medium.
The function in the exponent must be an invariant, and since E is the
fourth component of a four-vector, we are forced to assume that E/kT
is the product of two four-vectors,

−E/T = pnΘn, (13.20)

where pn = (p, E/c) is the four-momentum – which is pn = (0, 0, 0, E/c)
in the rest frame – and Θ is the temperature four-vector

Θn = un/T. (13.21)

One can now take the invariant T = c
√−ΘnΘn as the definition of
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temperature, or alternatively define the temperature from the fourth
component Θ4 by T ′ = Θ4/c, in which case one has the transformation
law T ′ = T

√
1− v2/c2.

For a detailed discussion of relativistic thermodynamics we refer the
reader to specialized textbooks, see for example Neugebauer (1980).

All classical and quantum field theories, and elementary particle phy-
sics, use Special Relativity as an indisputable ingredient – with one
important exception: the theory of the gravitational field. If one tries to
generalize Newton’s theory of gravitation, one is faced with the problem
of generalizing the Poisson equation

∆U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= Uα

,α = 4πfµ, α = 1, 2, 3, (13.22)

which tells how the Newtonian potential U (defined by its action on a
mass, md2r/dt2 = −mgradU) is generated by the mass distribution
µ = µ(r), f being the Newtonian constant of gravitation. It is easy to
write this Poisson equation Lorentz invariantly, namely as an inhomo-
geneous wave equation

∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
− ∂2U

c2∂t2
= Un

,n = 4πfµ, n = 1, 2, 3, 4. (13.23)

But this equation not only violates the spirit of relativity in that only
the energy appears on the right hand side, and not the momentum four-
vector, nor the energy-momentum tensor. It also does not explain why
inertial and gravitational masses are equal, and – even worse – it turns
out to be experimentally wrong. It needs more than a cheap invariance
trick to obtain the correct theory of the gravitational field. We shall
deal with that problem in the following chapters.





II. Riemannian geometry

14

Introduction: the force-free motion of
particles in Newtonian mechanics

14.1 Coordinate systems

In theoretical mechanics one usually meets only a few simple coordi-
nate systems for describing the motion of a particle. For the purposes
of mechanics one can characterize the coordinate system best via the
specification of the connection between the infinitesimal separation ds
of two points and the difference of their coordinates. In describing the
motion in three-dimensional space one chooses Cartesian coordinates x,
y, z with

ds2 = dx2 + dy2 + dz2, (14.1)

cylindrical coordinates ρ, ϕ, z with

ds2 = dρ2 + ρ2 dϕ2 + dz2, (14.2)

or spherical coordinates r, ϑ, ϕ with

ds2 = dr2 + r2 dϑ2 + r2 sin2 ϑ dϕ2. (14.3)

If the motion is restricted to a surface which does not change with
time, for example, a sphere, then one would use the corresponding two-
dimensional section (dr = 0) of spherical coordinates

ds2 = r2 dϑ2 + r2 sin2 ϑ dϕ2. (14.4)

For other arbitrary coordinate systems ds2 is also a quadratic function
of the coordinate differentials:

ds2 = gαβ(xν) dxα dxβ; α, β, ν = 1, 2, 3. (14.5)

95
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︷

︸︸

︷

︷

︸
︸

︷

Ψ

x1 x1+dx1

x1 = const

x2

x2+dx2

x2 = const

d(1)xα
d(2)xα

ds

(x1, x2)

(x1+dx1, x2+dx2)

Fig. 14.1. Measurement of lengths and angles by the use of the metric tensor.

Here and in all following formulae indices occurring twice are to be
summed, from one to three for a particle in three-dimensional space and
from one to two for a particle in a plane.

The form (14.5) is called the fundamental metric form; the position-
dependent coefficients gαβ form the components of the metric tensor.
It is symmetric: gαβ = gβα. The name ‘metric tensor’ refers to the fact
that by its use the quantities length and angle which are fundamental to
geometrical measurement can be defined and calculated. The displace-
ment ds of two points with coordinates (x1, x2) and (x1 +dx1, x2 +dx2)
is given by (14.5), and the angle ψ between two infinitesimal vectors
d(1)xα and d(2)xα diverging from a point can be calculated as

cosψ =
gαβ d(1)xα d(2)xβ√

gρσ d(1)xρ d(1)xσ
√
gµν d(2)xµ d(2)xν

. (14.6)

Formula (14.6) is nothing other than the familiar vector relation ab =
|a||b| cos(a, b) applied to infinitesimal vectors.

If the matrix of the metric tensor is diagonal, that is to say, gαβ

differs from zero only when α = β, then one calls the coordinate system
orthogonal. As (14.6) shows, the coordinate lines xα = const. are then
mutually perpendicular.

If the determinant of gαβ is non-zero, the matrix possesses an inverse
matrix gβµ which satisfies

gαβg
βµ = δµ

α = gµ
α. (14.7)

The immediate significance of the fundamental metric form (14.5) for
mechanics rests on its simple connection with the square of the velocity
v of the particle,

v2 =
(

ds
dt

)2

= gαβ
dxα

dt
dxβ

dt
, (14.8)
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which we need for the construction of the kinetic energy as one part of
the Lagrangian.

14.2 Equations of motion

We can obtain the equations of motion most quickly from the Lagrangian
L, which for force-free motion is identical with the kinetic energy of the
particle

L =
m

2
v2 =

m

2
gαβ

dxα

dt
dxβ

dt
=
m

2
gαβ ẋ

αẋβ. (14.9)

The corresponding Lagrange equations (of the second kind)

d
dt

∂L

∂ẋν
− ∂L

∂xν
= 0 (14.10)

are easily set up. We have

∂L/∂ẋν = mgαν ẋ
α, ∂L/∂xν = L,ν = 1

2mgαβ,ν ẋ
αẋβ (14.11)

(as done in Minkowski space, we use the comma followed by an index
as an abbreviation for a partial derivative), and from (14.10) it follows
immediately that

gαν ẍ
α + gαν,β ẋ

αẋβ − 1
2gαβ,ν ẋ

αẋβ = 0. (14.12)

If we first write the second term in this equation in the form

gαν,β ẋ
αẋβ = 1

2(gαν,β + gβν,α)ẋαẋβ , (14.13)

then multiply (14.12) by gµν and sum over ν, then because of (14.7) we
obtain

ẍµ + Γµ
αβ ẋ

αẋβ = 0, (14.14)

where the abbreviation

Γµ
αβ = 1

2
gµν(gαν,β + gβν,α − gαβ,ν) (14.15)

has been used.
Equations (14.14) are the required equations of motion of a particle.

In the course of their derivation we have also come across the Christoffel
symbols Γµ

αβ, defined by (14.15), which play a great rôle in differential
geometry. As is evident from (14.15), they possess the symmetry

Γµ
αβ = Γµ

βα, (14.16)

and hence there are eighteen distinct Christoffel symbols in three-dimen-
sional space, and six for two-dimensional surfaces.
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On contemplating (14.14) and (14.15), one might suppose that the
Christoffel symbols lead to a particularly simple way of constructing
the equations of motion. This supposition is, however, false; on the
contrary, one uses the very equations of motion in order to construct
the Christoffel symbols. We shall illustrate this method by means of an
example. In spherical coordinates (14.3), x1 = r, x2 = ϑ, x3 = ϕ, the
Lagrangian

L = 1
2
m(ṙ2 + r2ϑ̇2 + r2 sin2 ϑ ϕ̇2) (14.17)

implies the following Lagrange equations of the second kind:

r̈ − rϑ̇2 − r sin2 ϑ ϕ̇2 = 0, rϕ̈+ 2ṙϕ̇+ 2r cotϑ ϕ̇ϑ̇ = 0,

rϑ̈+ 2ṙϑ̇− r sinϑ cosϑ ϕ̇2 = 0.
(14.18)

Comparison with (14.14) shows that (noticing that, because of the sym-
metry relation (14.16), mixed terms in the speeds ṙ, ϑ̇, ϕ̇ always occur
twice) only the following Christoffel symbols are different from zero:

Γ1
22 = −r, Γ2

12 = Γ2
21 = r−1. Γ3

13 = Γ3
31 = r−1,

Γ1
33 = −r sin2 ϑ, Γ3

23 = Γ3
32 = cotϑ, Γ2

33 = − sinϑ cosϑ.
(14.19)

In the case of free motion of a particle in three-dimensional space the
physical content of the equations of motion is naturally rather scanty;
it is merely a complicated way of writing the law of inertia – we know
beforehand that the particle moves in a straight line in the absence of
forces. In the two-dimensional case, for motion on an arbitrary sur-
face, the path of the particle can of course be rather complicated. As
we shall show in the following section, however, a simple geometrical
interpretation of the equations of motion (14.14) is then possible.

14.3 The geodesic equation

In three-dimensional space the path of a force-free particle, the straight
line, has the property of being the shortest curve between any two points
lying on it. We are going to generalize this relation, and therefore ask
for the shortest curve connecting two points in a three-dimensional or
two-dimensional space; that is, for that curve whose arclength s is a
minimum for given initial-point and end-point:

s =
∫ PE

PI

ds = extremum. (14.20)
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In order to describe this curve we need an initially arbitrary parameter
λ, which for all curves under comparison has the same value at the end-
points PE and PI; if for the differential arclength ds we substitute the
expression (14.5), then (14.20) implies

s =
∫ λE

λI

ds
dλ

dλ =
∫ λE

λI

√
gαβ

dxα

dλ
dxβ

dλ
dλ = extremum, (14.21)

from which we shall determine the required shortest connecting curve,
the geodesic, in the form xα(λ).

The variational problem (14.21) has precisely the mathematical form
of Hamilton’s principle with the Lagrangian

L =
√
gαβx′αx′β =

√
F , x′α ≡ dxα

dλ
, (14.22)

and the parameter λ instead of the time t. Thus the geodesic must obey
the associated Lagrange equations of the second kind

d
dλ

∂L

∂x′ν
− ∂L

∂xν
=

d
dλ

(
gανx

′α
√
F

)
− 1

2
√
F
gαβ,νx

′αx′β

(14.23)

=
1

2F
√
F

[
−dF

dλ
gανx

′α + 2F
d
dλ

(gανx
′α)− Fgαβ,νx

′αx′β
]

= 0.

We can simplify this differential equation for the geodesic by choosing
the parameter λ appropriately (only for this extremal curve, not for the
comparison curves); we demand that λ be proportional to the arclength
s. From (14.21) and (14.22) it follows that F = constant, and from
(14.23) we get the differential equation of the geodesic

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ
dxβ

dλ
= 0. (14.24)

This differential equation not only has the same form as the equation
of motion (14.14), it is also completely equivalent to it, since, of course,
for a force-free motion the magnitude v = ds/dt of the speed is constant
because of the law of conservation of energy, and consequently the time t
is one of the allowable possibilities in (14.22) for the parameter λ which
is proportional to the arclength s.

If we choose as parameter λ the arclength s itself, then we can reca-
pitulate our result in the following law:

A force-free particle moves on a geodesic

d2xµ

ds2
+ Γµ

αβ

dxα

ds
dxβ

ds
= 0, (14.25)
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of the three-dimensional space or of the surface to which it is constrained.
Its path is therefore always the shortest curve between any two points

lying on it; for example, on the spherical surface the paths are great
circles.

In the General Theory of Relativity we shall meet the problem of
how to set up the equation of motion of a point mass in an arbitrary
gravitational field. It will turn out that the formulation of the equation
of motion for force-free motion just derived is a good starting point for
the solution of this problem.

14.4 Geodesic deviation

In this section we shall turn to a question whose answer requires the
help of Riemannian geometry, which we shall indeed use. The reader is
therefore asked for indulgence if some of the formalism appears rather
vague and the calculations inadequately motivated. He is recommended
to read this section again after mastering Chapter 5.

If the surface to which the particle is constrained is a plane, or a
surface which is due to the deformation of a plane (e.g. cylinder, cone)
then the geodesics are straight lines of this plane, and the equations of
motion of the point mass are very simple to integrate. With the use of
unsuitable coordinates, however, the geodesic equation (14.25) can be
rather complicated. In such a case how can one tell from the equation
of motion, that is, from the Christoffel symbols Γµ

αβ, that motion on a
plane is being described?

To answer this question we examine a family xα(s, p) of geodesics on
a surface, see Fig. 14.2. Here the parameter p labels the different geo-
desics and the arclength s is the parameter along the curves fixing the
different points of the same geodesic.

s

s

s

s = const

s s+ds

p

p+ dpp = const

tα

V α(s) dp

V α(s+ ds) d p

Fig. 14.2. The family of geodesics xα(s, p).
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A family of straight lines in the plane is now distinguished by the dis-
placement of two neighbouring geodesics, as measured between points
with the same value of the parameter s, being a linear function of
arclength s. This is a hint that also in the general case of geodesics
on an arbitrary surface we should examine the behaviour of the sepa-
ration of neighbouring geodesics and from this draw conclusions about
the properties of the surface.

We first form the partial derivatives

∂xα

∂s
= tα,

∂xα

∂p
= V α,

∂tα

∂p
≡ ∂V α

∂s
. (14.26)

The unit tangent vector tα points in the direction of the velocity, and
V α dp is just the displacement vector of two neighbouring geodesics. In
order to see whether we are dealing with a plane or not, it is, however,
insufficient to simply form ∂2V α/∂s2. Indeed, even for a straight line in
the plane, the fact that the tangent vector tµ = dxµ/ds is constant, that
is, independent of s, is not expressed in an arbitrary coordinate system
by dtµ/ds = 0, but, as a glance at the geodesic equation (14.25) shows,
by

D
Ds

tµ ≡ dtµ

ds
+ Γµ

αβt
α dxβ

ds
= 0. (14.27)

We interpret (14.27) as the defining equation for the operator D/Ds,
valid for every parameter s and applicable to every vector tµ. If accord-
ing to this prescription we form the expressions

D
Dp

tα =
∂2xα

∂s ∂p
+ Γα

µνt
µV ν ,

D
Ds

V α =
∂2xα

∂s ∂p
+ Γα

µνV
µtν , (14.28)

then we can at once read off the relation analogous to (14.26),

D
Dp

tα =
D
Ds

V α. (14.29)

We shall now calculate the quantity

D2V α

Ds2
=

D
Ds

( D
Dp

tα
)

(14.30)

in order to discuss with its help the behaviour of the separation of two
neighbouring geodesics. Our first goal is to express the right-hand side
in terms of the Christoffel symbols. Substitution of the defining equation
(14.27) gives us immediately



102 The force-free motion of particles

D2V α

Ds2
=

D
Ds

(∂tα
∂p

+ Γα
µνt

µV ν
)

=
∂2tα

∂s ∂p
+ Γα

µν,βt
βtµV ν + Γα

µν

(∂tµ
∂s

V ν + tµ
∂V ν

∂s

)

+ Γα
ρτ

(∂tρ
∂p

+ Γρ
µνt

µV ν
)
tτ .

(14.31)

We can simplify this equation by invoking the relation

0 =
D
Dp

Dtα

Ds
=

D
Dp

(∂tα
∂s

+ Γα
µνt

µtν
)
, (14.32)

which follows from the geodesic equation (14.27). This leads to

∂2tα

∂s ∂p
= −Γα

µν,βV
βtµtν − Γα

µν

(∂tµ
∂p

tν +
∂tν

∂p
tµ
)

−Γα
ρτ

(∂tρ
∂s

+ Γρ
µνt

µtν
)
V τ ,

(14.33)

which we can substitute into (14.31). Bearing in mind (14.26) and
(14.16), we then find that

D2V α

Ds2
= tβtµV ν(Γα

µν,β − Γα
µβ,ν + Γα

ρβΓρ
µν − Γα

ρνΓρ
µβ). (14.34)

The right-hand side of this equation gives us a measure of the change in
separation of neighbouring geodesics, or, in the language of mechanics,
of the relative acceleration of two particles moving towards one another
on neighbouring paths (V α dp is their separation, ds is proportional to
dt for force-free motion.) It is also called the geodesic deviation.

When the geodesics are straight lines in a plane, the right-hand side
should vanish; it is therefore – geometrically speaking – also a measure
of the curvature of the surface, of the deviation of the surface from a
plane. This intuitive basis also makes understandable the name ‘curva-
ture tensor’ for the expression Rα

µβν , defined by

Rα
µβν = Γα

µν,β − Γα
µβ,ν + Γα

ρβΓρ
µν − Γα

ρνΓρ
µβ . (14.35)

It can be determined from the Christoffel symbols by calculation or by
measurement of the change in separation of neighbouring paths. If it
vanishes, the surface is a plane and the paths are straight lines.

As an illustration we calculate the curvature tensor of the spherical
surface

ds2 = K2
(
dϑ2 + sin2 ϑ dϕ2

)
= K2

[
(dx1)2 + sin2 x1 (dx2)2

]
= gαβ dxα dxβ .

(14.36)
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The only non-vanishing Christoffel symbols are

Γ1
22 = − sinϑ cosϑ, Γ2

12 = Γ2
21 = cotϑ, (14.37)

and from them we find after a simple calculation the components of the
curvature tensor

R1
221 = −R1

212 = − sin2 ϑ = −K−2g22,

R2
121 = −R2

112 = 1 = K−2g11, Rα
µβν = 0 otherwise.

(14.38)

This result can be summarized by the formula

Rα
µβν = K−2

(
δα
β gµν − δα

ν gµβ

)
. (14.39)

It expresses the fact that, apart from the coordinate-dependent metric,
the curvature tensor depends only upon the radius of the sphere K. For
K →∞ the curvature tensor vanishes.

Exercise

14.1 Show that the curvature tensor of an arbitrary two-dimensional
surface always has the form (14.39), with of course a position-
dependent K.

15

Why Riemannian geometry?

It is one of the most important results of Special Relativity that basic
physical laws are most simply expressed when they are formulated not
in three-dimensional space but in four-dimensional space-time

ds2 = ηab dxa dxb = dx2 + dy2 + dz2 − c2 dt2,

ηab = ηab = diag(1, 1, 1,−1), a, b = 1, . . . , 4.
(15.1)

We shall now show that it is worthwhile replacing this Minkowski
space by a yet more complicated mathematical space-time structure.

If we were to examine a circular disk which is at rest in an inertial
system, from the standpoint of a coordinate system rotating around the
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axis of the disc, and try to measure the geometrical properties of the
disc with the help of rulers, then the following result would be plausible:
rulers laid out in the radial direction are not influenced by the rotation
of the disc, and the radius of the circle is unchanged; rulers laid out
along the periphery of the disc are shortened by the Lorentz contraction,
the circumference of the circle being thereby decreased. The rotating
observer thus establishes that the ratio of the circumference of the circle
to its diameter is less than π; he finds geometrical relations similar to
those on the curved surface of the sphere. Naturally the application of
the Lorentz transformation to rotating systems, and the definition of
simultaneity hidden in this measuring procedure, are questionable. But
that would only support the result of our ‘gedanken’ investigation, that
in going over to observers (coordinate systems) in arbitrary motion real
changes in the space-time structure (the behaviour of rulers and clocks)
can arise.

Physically even more significant is the indication to be deduced from
the investigation of the equation of motion of a particle moving in a
gravitational field g(r, t). If we write this equation in a Cartesian coor-
dinate system, whose origin moves with acceleration a with respect to
an inertial system, and which rotates with angular velocity ω, then we
get the familiar equation

mr̈ = mg −ma− 2mω × ṙ−mω × (ω × r)−mω̇ × r. (15.2)

All the terms of this equation of motion have the mass m as a factor.
From the standpoint of Newtonian mechanics this factor possesses two
distinct physical meanings: the force mg, which acts upon a body in the
gravitational field, is proportional to the gravitational mass mG, whilst
all other terms in (15.2) are an expression of the inertial behaviour of the
body (which is the same for all kinds of forces) and consequently contain
the inertial mass mI. It was one of the most important discoveries of
mechanics that for all bodies these two parameters are the same: all
bodies fall equally fast, and hence

mG = mI = m. (15.3)

When testing this relation, one has to exclude that the ratio mG/mI

depends on the composition of the body. The current values of the
Eötvös parameter ηE(1, 2) = (mG/mI)1 − (mG/mI)2 are ηE(1, 2) ≤
10−12, see Will (1993) and Schäfer (2000).

The numerical identity of inertial and gravitational mass also points to
a more essential identity. In the language of (15.2) gravitation is perhaps
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just as much an apparent force as the Coriolis force or the centrifugal
force. One could therefore suppose that the particle moves weightlessly
in reality, and that also the gravitational force can be eliminated by a
suitable choice of coordinate system.

As an exact consideration shows, the gravitational force can really
only be transformed away locally, that is, over a spatial region within
which the gravitational field can be regarded as homogeneous: inside an
Earth satellite or a falling box bodies move force-free for the
co-moving observer. Globally, however, this is not attainable through a
simple coordinate transformation (by changing to a moving observer):
there is no Cartesian coordinate system in which two distantly separated
satellites simultaneously move force-free.

If we therefore wish to adhere to the view that in spite of the ex-
isting gravitational field the particle moves force-free, and in the sense
of Chapter 14 translate ‘force-free’ by ‘along a geodesic’, then we must
alter the geometry of the space. Just as the geodesics on a surface fail
to be straight lines only if the surface is curved and the curvature tensor
defined by (14.34) and (14.35) does not vanish, so the planetary orbits
are only geodesics of the space if this space is curved.

In fact this idea of Einstein’s, to regard the gravitational force as a
property of the space and thereby to geometrize it, turns out to be
extraordinarily fruitful. In the following chapters we shall therefore
describe in detail the properties of such curved spaces.

16

Riemannian space

16.1 The metric

The geometrical background to the Special Theory of Relativity is the
pseudo-Euclidean space (15.1) with one timelike and three spacelike
coordinates. In the generalization which we will develop now we also
start with a four-dimensional manifold; that is, we shall assume that
every point (within a small finite neighbourhood) can be fixed uniquely
by the specification of four coordinates xn. It can of course occur that
it is not possible to cover the whole space-time with a single coordinate



106 Riemannian space

system. In order to be able to study physics in this manifold, we must
be able to measure the spatial and temporal separations of neighbouring
points. As the generalization of (15.1) and (14.5) we therefore introduce
the metric

ds2 = gmn(xi) dxn dxm (16.1)

(summation occurs from 1 to 4 over Latin indices appearing twice). This
fundamental metric form indicates how one measures on the small scale
(in the infinitesimal neighbourhood of a point) the interval ds between
the points (xn) and (xn + dxn) and the angle between two directions
dxn and dx̄n

cos(dxn,dx̄m) =
gnm dxn dx̄m

√
ds2 ds̄2

(16.2)

(see also Fig. 14.1). The metric tensor (the metric) gmn characterizes
the space completely (locally). It is symmetric, its determinant g is in
general different from zero, and it possesses therefore an inverse gan:

gmn = gnm, |gnm| = g 	= 0, gangnm = δa
m = ga

m. (16.3)

A space with the properties (16.1) and (16.3) is accordingly a gen-
eralization as much of the two-dimensional surfaces as also of the four-
dimensional uncurved (flat) Minkowski space. If ds2 is positive definite,
that is, zero only for dxi = 0 and positive otherwise (and if the parallel
transport of a vector is defined as in Chapter 18), then we are deal-
ing with a Riemannian space in the narrower sense. But, as we know
from the Special Theory of Relativity, the physical space-time must have
an extra structure: we can distinguish between timelike and spacelike
intervals, between clocks and rulers, and there is a light cone with ds = 0.
Our space is therefore a pseudo-Riemannian space, ds2 can be positive
(spacelike), negative (timelike) or null (lightlike); it is a Lorentzian met-
ric. Nevertheless we shall usually use the term Riemannian space (in
the broader sense) for it.

In Section 16.4 we shall describe how one takes into account the re-
quirement that there exist one timelike and three spacelike directions.

16.2 Geodesics and Christoffel symbols

On a two-dimensional surface we could define geodesics by making them
the shortest curve between two points:∫

ds = extremum. (16.4)



16.2 Geodesics and Christoffel symbols 107

In a pseudo-Riemannian space, in which ds2 can also be zero or negative,
we encounter difficulties in the application of (16.4), especially for curves
with ds = 0 (null lines). We therefore start here from the variational
principle∫

Ldλ =
∫ ( ds

dλ

)2

dλ =
∫
gmn

dxn

dλ
dxm

dλ
dλ = extremum, (16.5)

which, as we have shown in Section 14.3, is equivalent to (16.4) for
ds 	= 0. The Lagrange equations of the second kind for the Lagrangian
L = (ds/dλ)2 give (see Section 14.3)

d2xm

dλ2
+ Γm

ab

dxa

dλ
dxb

dλ
= 0 (16.6)

as differential equations of the geodesics. These are four second-order
differential equations for the four functions xm(λ), and accordingly geo-
desics are locally uniquely determined if the initial-point and the initial
direction or the initial-point and the end-point are given. When later
we speak briefly of the separation of two points, we always mean the
arclength of the connecting geodesics. The Christoffel symbols occurring
in (16.6) are of course defined as in (14.15) by

Γm
ab = 1

2
gmn(gan,b + gbn,a − gab,n). (16.7)

The Lagrangian L = gmn dxm dxn/dλ2 is a homogeneous function of
second degree in the ‘velocities’ ẋn = dxn/dλ

ẋn∂L/∂ẋn = 2L. (16.8)

Because of (16.8) and the Lagrange equation of the second kind we have

dL
dλ

=
∂L

∂xn
ẋn +

∂L

∂ẋn
ẍn =

( d
dλ

∂L

∂ẋn

)
ẋn +

∂L

∂ẋn
ẍn

=
d
dλ

( ∂L
∂ẋn

ẋn
)

= 2
dL
dλ

,

(16.9)

and therefore
dL
dλ

= 0, L = gnm
dxm

dλ
dxn

dλ
=
( ds

dλ

)2

= C = const. (16.10)

The constant C can be positive, negative or zero, and we distinguish
correspondingly spacelike, timelike and null geodesics. We shall meet
timelike geodesics again as paths for particles, and null geodesics as
light rays. Because of (16.10) the (affine) parameter λ along a geodesic
is clearly determined uniquely up to a linear transformation λ′ = aλ+b;
for timelike curves we shall identify λ with the proper time τ .
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Christoffel symbols are important quantities in Riemannian geome-
try. We therefore want to investigate more closely their relations to the
partial derivatives of the metric tensor given by (16.7). Because of the
symmetry gmn = gnm of the metric tensor, the Christoffel symbols too
are symmetric in the lower indices:

Γm
ab = Γm

ba. (16.11)

In four dimensions there are
(
5
2

)
= 10 different components of the metric

tensor, and therefore because of the additional freedom provided by
the upper indices, 4 × 10 = 40 distinct Christoffel symbols. But this
number is the same as the number of partial derivatives gmn,a of the
metric tensor, and it should therefore be possible to express the partial
derivatives through the Christoffel symbols, thus solving (16.7). In fact
because of (16.3) we have

gmiΓm
ab = 1

2 (gai,b + gbi,a − gab,i),

gmaΓm
ib = 1

2
(gia,b + gab,i − gib,a),

(16.12)

and adding the two equations we get

gia,b = gmiΓm
ab + gmaΓm

ib . (16.13)

The partial derivatives of the determinant g of the metric tensor can
also be calculated in a simple manner from the Christoffel symbols. The
chain rule implies that

∂g

∂xb
=

∂g

∂gia
gia,b. (16.14)

If one now introduces the expansion of the determinant g = |gmn|
along the ith row by

g =
∑

a

giaGia (no summation over i!) (16.15)

and uses the fact that the elements gia of the inverse matrix can be
expressed through the co-factors Gia according to

ggia = Gia, (16.16)

then one finds that
∂g/∂gia = ggia. (16.17)

If one also takes into account (16.13), then it follows that

∂g/∂xb = ggiagia,b = g(Γa
ab + Γi

ib) = 2gΓa
ab, (16.18)

and from this finally that
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∂ ln
√−g
∂xb

=
1
2g

∂g

∂xb
= Γa

ab. (16.19)

In writing the formula thus we have already assumed that g is negative
(see Section 17.2).

16.3 Coordinate transformations

Naturally the physical structure of our space-time manifold is not
allowed to depend upon the choice of the coordinates with which we
describe it. We now investigate which properties of the metric tensor
and of the Christoffel symbols are derivable from this requirement, that
is to say, how these quantities behave under a coordinate transformation.

All coordinate transformations of the old coordinates xn into new
coordinates xn′

are permitted which guarantee a one-to-one relationship
of the form

xn′
= xn′

(xn),
∣∣∣∣∂x

n′

∂xn

∣∣∣∣ 	= 0. (16.20)

We have in (16.20) made use of the convention of distinguishing the
new coordinates from the old by a prime on the index, as explained in
Section 1.3. With the abbreviation

An′
n =

∂xn′

∂xn
, (16.21)

we obtain from (16.20) the transformation law for the coordinate differ-
entials

dxn′
= An′

n dxn. (16.22)

The inverse transformation to (16.20),

xn = xn(xn′
), (16.23)

implies analogously

dxn = An
n′ dxn′

, An
n′ =

∂xn

∂xn′ , (16.24)

and, from (16.21) and (16.24),

An′
n A

n
m′ = δn′

m′ , An
n′An′

m = δn
m. (16.25)

We obtain the prescription for the transformation of the components of
the metric tensor from the requirement that lengths and angles should not
change under a coordinate transformation; that is, ds2 is an invariant:

ds′ 2 ≡ gn′m′ dxn′
dxm′

= ds2 = gnm dxn dxm = gnmA
n
n′Am

m′dxn′
dxm′

.

(16.26)
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Since this equation must hold for arbitrary choice of the dxn′
, it follows

that
gn′m′ = gnmA

n
n′Am

m′ . (16.27)

The behaviour of the Christoffel symbols under transformations is
most easily calculated using the geodesic equation (16.6). Since the
variational principle (16.5) was formulated with the help of the invariant
quantities ds and dλ, the geodesic equation must have the form (16.6)
in the new coordinates xn′

as well:

d2xm′

dλ2
+ Γm′

a′b′
dxa′

dλ
dxb′

dλ
= 0 (16.28)

(the property of a curve, to be the shortest connection between two
points, is independent of the choice of coordinates). If we substitute
into equation (16.28) the equation

d2xm′

dλ2
= Am′

m

d2xm

dλ2
+Am′

m,b

dxb

dλ
dxm

dλ

= −Am′
m Γm

ab

dxa

dλ
dxb

dλ
+Am′

a,b

dxb

dλ
dxa

dλ
,

(16.29)

which follows from (16.22) and

dxm′

dλ
= Am′

m

dxm

dλ
, (16.30)

and transform everything to dashed coordinates, we obtain finally

Γm′
a′b′ = Am′

m Aa
a′Ab

b′Γ
m
ab −Am′

a,bA
a
a′Ab

b′ . (16.31)

In this transformation formula it should be noted that the new Christof-
fel symbols are not homogeneous linear functions of the old. It is there-
fore quite possible that in a Riemannian space the Christoffel symbols
are non-zero in one coordinate system, whilst in another coordinate sys-
tem they vanish identically. Thus in the usual three-dimensional space
the Christoffel symbols are identically zero in Cartesian coordinates,
whereas in spherical coordinates they have the values given in (14.19).
We shall answer in Section 19.2 the question of whether the Christoffel
symbols can always be made to vanish.

16.4 Special coordinate systems

For many calculations and considerations it is convenient to use a spe-
cial coordinate system. But one must examine in each individual case
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whether a coordinate system with the desired properties really does
exist; that is, whether it is possible for a given metric ga′b′ to define
the four functions xn(xn′

) so that the transformed metric gab fulfils the
chosen requirements.

Orthogonal coordinates If the matrix gab has only diagonal elements,

ds2 = g11(dx1)2 + g22(dx2)2 + g33(dx3)2 + g44(dx4)2, (16.32)

then we are dealing with orthogonal coordinates, and the coordinate
lines (lines along which only one coordinate varies at any given time)
form right-angles with one another. In the three-dimensional Euclidean
space one uses and prefers such coordinates; for example, spherical
coordinates or cylindrical coordinates. As a more exact analysis shows,
such orthogonal coordinate systems do not in general exist in a four-
dimensional Riemannian space, since for arbitrarily given functions ga′b′

the system of differential equations

ga′b′
∂xa′

∂xa

∂xb′

∂xb
= 0 for a 	= b (16.33)

has no solutions xa′
(xa) which satisfy the conditions (16.20). This result

is plausible, since (16.33) is a system of six differential equations for four
functions.

Time-orthogonal coordinates We shall customarily choose time as the
fourth coordinate: x4 = ct; time-orthogonal coordinates exist when
g4α = 0. If, moreover, g44 has the value ±1, then we are dealing with
Gaussian coordinates, often also called synchronous coordinates. Since
it follows from g4α = 0 that also g4α = 0 (and vice versa), in going over
to time-orthogonal coordinates we have to satisfy the system

g4α = Aα
a′A4

b′g
a′b′ =

∂xα

∂xa′
∂x4

∂xb′ g
a′b′ = 0, α = 1, 2, 3. (16.34)

One can see that it is still possible to specify arbitrarily the function
x4(xb′), and then for every one of the functions xα(xa′

) a partial dif-
ferential equation has to be solved, the existence of the solution being
guaranteed by general laws. Time-orthogonal coordinates,

ds2 = gαβ dxα dxβ + g44(dx4)2, (16.35)

can therefore always be introduced (the fact that x4 has the name ‘time’
plays no rôle at all), and also it is still possible to satisfy the additional
condition |g44| = 1 by choice of the function x4(xb′).

Comoving coordinates Later applications in Riemannian spaces often
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deal with a velocity field un = dxn/dλ (a flux of bodies, or of observers).
Since λ is a coordinate-independent parameter, the components of this
velocity transform like the coordinate differential

un = An
n′un′

=
∂xn

∂xn′ u
n′
. (16.36)

By means of a coordinate transformation it is always possible to make
the three spatial components uα of the velocity zero, since the differential
equations

u1 =
∂x1

∂x1′ u
1′

+
∂x1

∂x2′ u
2′

+
∂x1

∂x3′ u
3′

+
∂x1

∂x4′ u
4′

= 0, . . . (16.37)

always have a solution xα(xn′
). In the resulting coordinate system,

in which the velocity has the form un = (0, 0, 0, u4), the particles do
not change their position; the coordinates move with the particles (one
can visualize the coordinate values attached to the particles as names).
Although the coordinate difference of two particles never alters, their
separation can vary because of the time-dependence of the metric.

Local Minkowski system At an arbitrarily given point, which in the
following we shall identify with the origin O of the coordinates, let the
coordinate lines form right-angles with one another. That this is possible
is intuitively obvious, and mathematically provable since, with the help
of suitable transformation matrices Aa′

a , one can transform the constant
matrix ga′b′(O) to principal axes. Then the metric at the point O,

ds′2 = g11(dx1′
)2 + g22(dx2′

)2 + g33(dx3′
)2 + g44(dx4′

)2, (16.38)

can be further simplified to

ds′2 = ±(dx1)2 ± (dx2)2 +±(dx3)2 ± (dx4)2 (16.39)

by a stretching of the coordinates

x1 =
√
|g11|x1′

, . . . . (16.40)

In the general case of an arbitrary metric no statement can be made
about the signs occurring in (16.39). In order to make sure of the con-
nection to the structure of Minkowski space we demand that the spaces
used in the General Theory of Relativity have signature (+2); that is,
at every point under transformation of the metric to the form (16.39)
three positive signs and one negative occur. We call such spaces normal
hyperbolic pseudo-Riemannian spaces. One can show that the signature
is an invariant, that is to say, it is independent of the choice of the ini-
tial coordinate system and of the (not uniquely determined) coordinate
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transformations, which lead to (16.39) (law of inertia of the quadratic
forms).

In physically important spaces (e.g. gravitational fields), there can be
singular points, however, at which the metric cannot be brought to the
normal form (16.39). Obviously, at these points the structure of the
space really does depart from that with which we are familiar.

Locally flat (geodesic) system After the introduction of a local Minkow-
ski system the situation at a point is as in a flat four-dimensional space.
One can also extend such a system into a (differential) neighbourhood
of the point.

This can be illustrated by the example of an arbitrarily curved two-
dimensional surface (see Fig. 16.1). Suppose one sets up the tangent
plane to the surface at the point O under consideration and projects the
Cartesian coordinates of the plane onto the surface. Since surface and
tangent plane touch, the resulting coordinate lines on the surface differ
from the straight lines of the plane only in second order. Applying the
same consideration to a four-dimensional space-time, we would project
the quasi-Cartesian coordinates of the tangential Minkowski space onto
the Riemannian space and expect a metric of the form

gmn(xa) = ηmn + 1
2dmnab(O)xaxb + · · · · (16.41)

We therefore call such a coordinate system locally flat.
In fact one can always locally transform an arbitrary metric

ḡmn(x̄a) = ḡmn(O) + ḡmn,i(O)x̄i + · · · (16.42)

into the form (16.41). For if one introduces new coordinates xa by

xa = x̄a + 1
2 Γ̄a

mn(O)xm̄xn̄ + . . . ←→ x̄a = xa − 1
2 Γ̄a

mn(O)xmxn + · · · ,
(16.43)

x1 x2

Fig. 16.1. Tangent plane and locally flat coordinate system.
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then, because of

∂x̄a/∂xn = δa
n − Γ̄a

mn(O)xm + · · · , (16.44)

the new metric tensor has the form (ignoring terms higher than linear
in xa)

gmn = ḡab

(
δa
b − Γ̄a

in(O)xi
) (
δb
m − Γ̄b

km(O)xk
)
. (16.45)

Its partial derivatives

∂gmn

∂xs

∣∣∣∣
xi=0

= ḡab(O)
(−Γ̄a

sn(O)δb
m − δa

nΓ̄b
sm(O)

)
+ ḡnm,s(O)

= −ḡam(O)Γ̄a
sn(O)− ḡnb(O)Γ̄b

sm(O) + ḡnm,s(O)
(16.46)

all vanish, however, since the last row is zero because of (16.13). We
have therefore arrived at a metric

gmn(xi) = gmn(O) + 1
2dmnab(O)xaxb, (16.47)

which can be changed into (16.41) by transformation to principal axes
and stretching of the axes.

Since in a locally flat coordinate system the partial derivatives of the
metric vanish at the point xa = 0, and with them the Christoffel symbols,
the geodesic equation (16.6) simplifies locally to

d2xn

dλ2
= 0, (16.48)

that is, the coordinate lines (e.g. x1 variable; x2, x3 and x4 constant)
are geodesics. One therefore also calls such a coordinate system locally
geodesic (at xa = 0).

A locally flat coordinate system offers the best approximation to a
Minkowski space that is possible in Riemannian geometry. How good
this substitution of a curved space by the tangent space is depends upon
the magnitudes of the coefficients dmnab in (16.41), from which we can
therefore expect to obtain a measure for the curvature of the space.

16.5 The physical meaning and interpretation of coordinate
systems

Coordinates are names which we give to events in the universe; they
have in the first instance nothing to do with physical properties. For
this reason all coordinate systems are also in principle equivalent, and
the choice of a special system is purely a question of expediency. Just as
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in three-dimensional space for a problem with spherical symmetry one
would use spherical coordinates, so, for example, for a static metric one
will favour time-orthogonal coordinates (16.35). Because of the great
mathematical difficulties in solving problems in the General Theory of
Relativity, the finding of a coordinate system adapted to the problem is
often the key to success.

In many applications one is interested in the outcome of measurements
performed by a special observer (or a family of observers); then one will
link the coordinate system with the observer and the objects which he
studies (observer on the rotating Earth, in a satellite, . . . ). After having
been thus fixed, the coordinate system naturally has a physical meaning,
because it is tied to real objects.

In addition to the comoving coordinates the locally flat coordinate sys-
tem possesses a particular significance. For an observer at the preferred
origin of the coordinate system, particles whose paths are geodesics move
force-free, because of (16.48). But geodesics are paths of particles in the
gravitational field (as we have made plausible and shall later prove); that
is, for the observers just mentioned there exists (locally) no gravitational
field: the locally flat coordinate system is the system of a freely falling
observer at the point in question of the space-time. This is the best
approximation to the Minkowski world, that is, to an inertial system,
that Riemannian geometry offers. It is determined in this manner only
up to four-dimensional rotations (Lorentz transformations).

Even when one has decided on a particular coordinate system, one
should always try to state results in an invariant form; that is, a form
independent of the coordinate system. To this end it is clearly necessary
to characterize the coordinate system itself invariantly. We shall later
familiarize ourselves with the necessary means to do this.

Finally, a few remarks on the question of how one can determine the
metric tensor gab when the coordinate system and auxiliary physical
quantities have been specified. Specification of the coordinate system
means physically that observers possessing rulers and clocks are dis-
tributed in the space. Locally, in the infinitesimal neighbourhood of a
point, the question is very easy to answer. One takes a freely falling
observer, who measures lengths and times in the manner familiar from
Special Relativity, and one then knows the interval ds2 of two points.
One then transforms to the originally given coordinate system; that
is, one expresses the result through the coordinates of the observers dis-
tributed in the space. Since ds2 does not change, from ds2 = gab dxa dxb

one can read off the gab for known ds2 and dxa.
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In time measurement, which is especially important, one distinguishes
between clocks which run (forwards) arbitrarily and thereby show
coordinate times t (which therefore have no immediate physical sig-
nificance), and standard clocks which show proper time τ , defined by
ds2 = −c2 dτ2. For a clock at rest (dxα = 0) the two times are
related by

dτ2 = −g44 dτ2. (16.49)

Exercises

16.1 A matrix An′
i has the structure (n′: row, i: column)

An′
i =




(x1)2

1
(x4)2

1


.

Can it represent an infinitesimal coordinate transformation dxn′

= An′
i dxi?

16.2 Calculate the matrix An′′
n representing two successive coordinate

transformations, and show that the matrices An′
n form a group.

16.3 A given vector ua can always be transformed into ua′
= (0, 0, 0,1).

Is that also true for ua?

Further reading for Chapter 16

Eisenhart (1949), Schouten (1954).

17

Tensor algebra

In General Relativity physical quantities and laws are required to have
a simple and well-defined behaviour under coordinate transformations

dxa′
=
∂xa′

∂xa
dxa = Aa′

a dxa, (17.1)

just as they do in Special Relativity. In contrast to Lorentz transforma-
tions
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xa′
= La′

a x
a, (17.2)

which are (special) linear transformations with position-independent
coefficients La′

a, we shall now be dealing with linear transformations of
coordinate differentials with position-dependent coefficients Aa′

a . But if
we restrict ourselves to the investigation of physical quantities at a given
point, without forming derivatives, then the differences from the rules
used in calculating with Lorentz transformations will be trivial: they
correspond to the difference between orthogonal and non-orthogonal
Cartesian coordinates. In particular the formal rules for manipulating
tensors are the same as those used in Sections 6.2 – 6.4 if we substitute
(La′

a, ηab, η
ab) by (Aa′

a , gab, g
ab), respectively. Referring to those sec-

tions, we shall give here only a rather concise review of tensor algebra,
concentrating on the differences to Minkowski space and Lorentz trans-
formations.

17.1 Scalars and vectors

Scalars (invariants) A scalar does not change under coordinate trans-
formation,

ϕ
′
= ϕ, (17.3)

its numerical value remains unchanged even if the coordinates it depends
on are transformed.

Vectors The four quantities T a are called the contravariant components
of a vector if they transform like the coordinate differentials

Tn′
= An′

n T
n. (17.4)

This definition implies that the coordinates xa themselves are not the
components of a vector – in a Riemannian space there is no position
vector.

Using the prescription

Ta = ganT
n, Tn = gnaTa, (17.5)

one can associate the covariant components Ta (index subscripted) with
the contravariant components Tn (index superscripted). Because of the
transformation laws (17.4) and (16.27) and the relation (16.25), the re-
lations

Ta′ = ga′n′T n′
= gamA

a
a′Am

n′TnAn′
n = ganT

nAa
a′ (17.6)

hold, and therefore

Ta′ = Aa
a′Ta. (17.7)
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T

T 1

T 2
T1

T2

x1

x2

Parallel projections Tn

Perpendicular projections Tn

Fig. 17.1. Covariant and contravariant components of a vector T.

Covariant and contravariant components describe the same vector, the
difference between them being typical of non-orthogonal coordinates.

Fig. 17.1 shows how in the x1-x2-plane one obtains the contravari-
ant components by parallel projection onto, and the covariant compo-
nents by dropping perpendiculars onto, the coordinate axes of a non-
orthogonal Cartesian system (with g11 = 1 = g22).

17.2 Tensors and other geometrical objects

‘Geometrical object’ is the collective name for all objects whose compo-
nents Ωk transform under a given coordinate transformation in such a
way that the new components Ω

k
are unique functions of the old ones,

of the transformation matrix Aa′
a , and of its derivatives:

Ω
k

= Ω
k
(Ωk;Aa′

a ;Aa′
a,m;Aa′

a,mn; . . .). (17.8)

In this section we shall encounter several geometrical objects which are
especially important for physics.

Tensors The quantities T a
bc...

d... are the components of a tensor if,
with respect to every upper (contravariant) index, they transform like
the contravariant components of a vector, and, to every lower (covariant)
index, like the covariant components of a vector:

T a′
b′c′...

d′... = T a
bc...

d...Aa′
a A

b
b′A

c
c′A

d′
d . . . . (17.9)

The rank of a tensor is equal to the number of its indices.
Corresponding to the rule (17.5) for vectors, we can also transform

between covariant and contravariant indices. For example, from (17.9)
we can form the covariant tensor (tensor written out in purely covariant
components)

Tnbcm = gnagmdT
a

bc
d. (17.10)
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Evidently the gab are the covariant components of a second-rank ten-
sor, whose ‘mixed’ components coincide with the Kronecker symbol,

gi
n = δi

n, (17.11)

cp. equations (16.3) and (16.27).

Tensor densities If we transform the determinant g = |gab| of the metric
tensor to another coordinate system, then we obtain

g′ = |ga′b′ | =
∣∣gabA

a
a′Ab

b′
∣∣ = |gab| · |Aa

a′ | ·
∣∣Ab

b′
∣∣ , (17.12)

that is,

g′ = |Aa
a′ |2 g =

∣∣∣ ∂xa

∂xa′

∣∣∣2g. (17.13)

The square of the functional determinant (Jacobian)
∣∣ ∂xa/∂xa′ ∣∣ occurs

in the transformation law for g; we are dealing with a scalar density of
weight 2.

In general we speak of a tensor density of weight W , whenever

T a′
b′...

d′... = |An
n′ |W T a

b...
d...Aa′

a A
b
b′A

d′
d . . . . (17.14)

We can draw an important conclusion from equation (17.13); since
we admit only those Riemannian spaces which at every point allow the
introduction of a local Minkowski system with g′ = |ηmn| = −1, then
from (17.13) the sign of g does not change under an arbitrary coordinate
transformation, and so g is always negative.

Pseudotensors In the transformation law of a pseudotensor (compared
with that of a tensor) there occurs also the sign of one of the elements
of the transformation matrix Aa

a′ or of a combination of its elements. A
simple example is a pseudovector,

Tn′
= sgn |Aa

a′ |An′
n T

n, (17.15)

in whose transformation law the sign of the functional determinant of
the coordinate transformation occurs. Under coordinate transformations
possessing locally the character of a rotation it behaves like a vector;
under reflections it also changes its sign.

The ε-pseudotensor The most important pseudotensor occurring in Gen-
eral Relativity is the ε-pseudotensor, often also short: ε-tensor. We have
learned in Section 6.1 that in a Minkowski space it is defined so that
under interchange of two arbitrary indices its sign changes (it is com-
pletely antisymmetric), and that
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M
ε 1′2′3′4′

= 1 (17.16)

holds (we have added the superscript M to emphasize that this is valid
only in a Minkowski system, and used coordinates xn′

). To define the
ε-pseudotensor in a Riemannian space, we can use this equation and
demand that (17.16) be valid in any local Minkowski system. If we
transform from this local Minkowski system xn′

to an arbitrary coordi-
nate system xn, then we have

εabcd = ± M
ε a′b′c′d′

Aa
a′Ab

b′A
c
c′A

d
d′ . (17.17)

The apparent ambiguity of sign appearing in (17.17) has its origin in the
pseudotensorial property. For example, (17.16) must again hold after a
pure reflection x1′

= −x1, that is, for A1
1′ = −1, A2

2′ = A3
3′ = A4

4′ = 1,
Aa

a′ = 0 otherwise, which once again leads to a Minkowski system; the
components of the ε-tensor must not change.

One can, however, bring (17.17) into a more easily manageable form.
If one fixes the indices abcd as 1234, then the right hand side of the
formula

ε1234 = ± M
ε a′b′c′d′

A1
a′A2

b′A
3
c′A

4
d′ (17.18)

is (up to the±) precisely the determinant |Aa
a′ | . Since in every Minkowski

system g′ = −1, then because of (17.13) this determinant has the value

|Aa
a′ | = ±1/

√−g, (17.19)

so that from (17.17) one obtains

εabcd = ± M
ε abcd |An

n′ | = M
ε abcd/

√−g, (17.20)

and thus the relation

ε1234 = 1/
√−g, (17.21)

which replaces (17.16). For the covariant components of the ε-tensor
one gets by lowering the indices according to (17.13)

εabcd = gamgbngcpgdqε
mnpq

= gamgbngcpgdq
M
ε mnpq/

√−g = −g M
ε abcd/

√−g,
(17.22)

so that

ε1234 = −√−g. (17.23)

Equation (17.21), together with the property of being completely
antisymmetric, uniquely defines the ε-pseudotensor.
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Two-point tensors Two-point tensors are not geometrical objects in the
strict sense. They appear in the description of physical processes in
which a cause at a point P brings about an effect at the point P . Their
indices refer to the points P and P, and are written respectively with
and without a bar over the index. Accordingly the transformation law
for a two-point tensor reads, for example,

Ta′n′(P , P ) = Tan(P , P )Aa
a′(P )An

n′(P ). (17.24)

An example of a two-point scalar is the arclength of a geodesic which
connects the points P and P . We shall meet an example of a second-rank
two-point tensor in Section 18.3 (the parallel propagator).

17.3 Algebraic operations with tensors

The rules for addition, multiplication, contraction and inner product of
tensors are the same as in Minkowski space, see Section 6.2, the prop-
erties (6.17)–(6.21) of products of ε-tensors remain unchanged, and also
symmetries of tensors are defined the same way; only on some occasions
one has to replace ηmn by gmn, or to add an additional

√−g.
So the decomposition (6.31) of an arbitrary second rank tensor now

reads

Tab = T[ab] + T(ab) = T[ab] + {T(ab) − 1
4T

n
n gab}+ 1

4T
n
n gab, (17.25)

the eigenvector equation (6.33) for a symmetric tensor Tab is to be re-
placed by

(Tab − λgab)wb = 0, (17.26)

and the coefficients α1 and α4 occurring in (6.35) are now

α1 = Tn
n , α4 = −‖Tab‖ g−1. (17.27)

Similarly, the secular equation for the antisymmetric tensors now reads

‖Fab − λgab‖ = 0. (17.28)

As in Minkowski space, every antisymmetric tensor Fab can be dualized
with the aid of the ε-tensor by defining

F̃ ab = 1
2ε

abcdFcd. (17.29)

Because of the property (6.19) of the ε-tensor, a double application of
the duality operation yields the original tensor, apart from a sign:

˜̃
Fnm = 1

2εnmabF̃
ab = 1

4εnmabε
abcdFcd = −Fnm. (17.30)
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17.4 Tetrad and spinor components of tensors

Tetrads At every point of space one can introduce systems of four lin-
early independent vectors h(r)

a , which are known as tetrads. The index
in brackets is the tetrad index; it numbers the vectors from one to four.
These four vectors can have arbitrary lengths and form arbitrary angles
with one another (as long as they remain linearly independent). The
matrix

g(r)(s) = h(r)
a h

(s)
b gab (17.31)

is an arbitrary symmetric matrix with negative-definite determinant. Its
inverse g(s)(t), which is defined by

g(s)(t)g
(t)(r) = δ

(r)
(s) = g

(r)
(s) , (17.32)

can be used to define tetrad vectors with tetrad indices subscripted

h(r)a = g(r)(s)h
(s)
a , (17.33)

and to solve (17.31) for gab:

gab = g(r)(s)h
(r)
a h

(s)
b . (17.34)

Tetrad components of tensors Just as one can write any arbitrary vector
as a linear combination of the four tetrad vectors, so one can use them
to describe any tensor

T ab...
nm... = T (r)(s)...

(p)(q)...h
a
(r)h

b
(s)h

(p)
n h(q)

m . . . . (17.35)

The quantities T (r)(s)...
(p)(q)... are called the tetrad components of the

tensor. They are calculated according to

T (r)(s)...
(p)(q)... = T ab...

nm...h
(r)
a h

(s)
b hn

(p)h
m
(q) . . . , (17.36)

which is consistent with (17.31) and (17.33). Tetrad indices are raised
and lowered by g(r)(s) and g(r)(s), respectively.

Coordinate and tetrad transformations The advantages offered in many
cases by the use of the tetrad components, which at first look very com-
plicated, become clear when one examines their transformation prop-
erties and when one introduces tetrads which are appropriate to the
particular problem being investigated.

As one can see from a glance at the defining equation (17.36), the
tetrad components behave like scalars under coordinate transformations;
clearly the labelling of the tetrad vectors, that is, their tetrad indices,
does not change under a coordinate transformation. One has therefore
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a good way of investigating the algebraic properties of tensors and can
simplify tensor components (that is, tetrad components) in a coordinate-
independent fashion by the choice of the tetrads.

Besides the coordinate transformations – and completely indepen-
dently of them – one can introduce a new tetrad system through a linear
(position-dependent) transformation of the tetrad vectors h(r)

a at every
point in the space:

h(r)′
a = A

(r)′

(r) h
(r)
a , h(r)′a = A

(r)
(r)′h(r)a, A

(r)′

(r) A
(r)
(s)′ = δ

(r)′

(s)′ . (17.37)

Under such transformations, of course, the tetrad components of tensors
alter; indeed they will be transformed with the matrices A(r)′

(r) and A(r)
(r)′ ,

respectively, for example,

g(s)′(t)′ = g(s)(t)A
(s)
(s)′A

(t)
(t)′ . (17.38)

Special tetrad systems We can choose the tetrads in such a way that the
four vectors at each point are in the directions of the coordinate axes;
that is, parallel to the four coordinate differentials dxa:

ha
(r) = δa

(r), grs = g(r)(s). (17.39)

This choice has the consequence that tetrad and tensor components
coincide. But on the other hand, given an arbitrary tetrad system in
the space, it is not always possible to transform the coordinates so that
the tetrads become tangent vectors to the coordinate lines.

A second important possibility is the identification of the tetrad vec-
tors with the base vectors of a Cartesian coordinate system in the local
Minkowski system of the point concerned:

g(r)(s) = ha
(r)h

b
(s)gab = η(r)(s) =




1
1

1
−1


. (17.40)

The four tetrad vectors, which we shall call za, wa, va and ua/c, form an
orthonormal system of one timelike and three spacelike vectors. From
(17.34) and (17.40), it follows that the metric tensor can be written as

gab = zazb + wawb + vavb − uaub/c
2. (17.41)

A third special case is the use of null vectors as tetrad vectors, a
possibility we already exploited in Section 9.1. As explained there, we
take two real null vectors

ka = 1√
2
(ua/c+ va), la = 1√

2
(ua/c− va), (17.42)
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and the two complex null vectors

ma = 1√
2
(za − iwa), ma = 1√

2
(za + iwa). (17.43)

The system (ka, la, ma, ma) of four null vectors is called a null tetrad,
or a Sachs tetrad, or a Newman–Penrose tetrad (the reader should be
aware of different sign conventions in the literature). Only two of the
products of these null vectors are non-zero,

kala = −1, mama = 1, all other products zero. (17.44)

We thus have

g(r)(s) =




0 1
1 0

0 −1
−1 0


. (17.45)

and

gab = mamb +mamb − kalb − lakb. (17.46)

Using this system, complex tetrad components can arise, although we
have allowed only real coordinates and tensors.

Spinors First-rank spinors are elements of a two-dimensional, complex
vector-space, in which an alternating scalar product

[ϕ,ψ] = −[ψ,ϕ] (17.47)

is defined. A spinor ϕ can be represented either by its contravariant
components ϕA or by its covariant components ϕA. The scalar product
of two spinors can be formed from these components with the help of
the metric spinor εAB ,

[ϕ,ψ] = εABϕ
AψB = −εABψ

AϕB, A,B = 1, 2. (17.48)

The metric spinor is antisymmetric:

εAB = −εBA. (17.49)

Together with its inverse, defined by

εABε
CB = δC

A , (17.50)

it can be used to shift indices:

ϕA = εABϕB, ϕB = ϕAεAB. (17.51)

The scalar products (17.47) and (17.48) do not change if one carries
out a unimodular transformation

ϕA′
= ΛA′

A ϕA, ϕA′ = ΛA
A′ϕA, |ΛA′

A | = 1, ΛA′
A ΛA

B′ = δA′
B′ . (17.52)
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The connection between the group of the unimodular transformations
and the group of Lorentz transformations isomorphic to it plays a great
rôle in special-relativistic field theory.

We denote quantities which transform with the complex matrix (ΛA′
A )

= ΛȦ′

Ȧ
by a dot over the index ϕȦ, ψḂ , . . . (in the literature, a prime on

the index is also customary). They obey

ϕȦ′
= ΛȦ′

Ȧ
ϕȦ. (17.53)

Scalar products ϕȦψ
Ȧ = εȦḂϕ

ȦψḂ remain invariant under such trans-
formations. According to this convention one forms the complex conju-
gate of a spinor by dotting the index (with Ä ≡ A, naturally):

(ϕA) = ϕȦ. (17.54)

Spinors χAḂ
MṄ...
... of higher rank are structures which behave with

respect to unimodular transformations of each index like the correspond-
ing first-rank spinor. The rules for handling these spinors follow from the
properties of first-rank spinors sketched above. Notice that upon mul-
tiplication and contraction, only summation over a contravariant and a
covariant index of the same type (that is, dotted or undotted) yields a
spinor again.

A spinor is Hermitian if it obeys the condition

ϕȦB = ϕBȦ. (17.55)

Spinor components and tensors With the aid of the metric spin-tensors
σm

AḂ = σm
ḂA, which are generalizations of the Pauli spin-matrices,

one can map the four complex components ϕAḂ of an arbitrary second-
rank spinor onto the four (now also complex in general) components of
a four-vector:

T a = σa
AḂϕ

AḂ/
√

2 ↔ ϕAḂ = −σaAḂT
a/
√

2,

T aTa = −ϕAḂϕ
AḂ.

(17.56)

Here the four 2× 2 matrices σa
AḂ satisfy the equations

σa
AḂσaCḊ = −2εACεḂḊ, σm

AḂσnAḂ = −2gmn. (17.57)

In analogous fashion one can map every nth-rank tensor to a spinor of
rank 2n.

From two basis spinors χA and µA, which satisfy the relations

χAµ
A = −µAχ

A = 1, χAχ
A = µAµ

A = 0, (17.58)
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one can form four second-rank spinors

mAḂ = χAµḂ , mAḂ = µAχḂ, kAḂ = χAχḂ, lAḂ = µAµḂ . (17.59)

The vectors ma, m̄a, ka and la associated with them according to the
prescription (17.56) satisfy the relations (17.45) and (17.44) of the null-
tetrad system. Thus there exists a close relation between the represen-
tation of a tensor by its spinor components and its representation by
components related to a null tetrad.

Exercises

17.1 A vector A is given in a two-dimensional Cartesian coordinate
system. Perform a coordinate transformation x′1 = x1 − bx2,

x′2 = x2, and draw the contravariant and the covariant compo-
nents of that vector in both systems.

17.2 Show that the symmetry property Tab = 1
2 (Tab+Tba) is invariant

under coordinate transformations.

Further reading for Section 17.4

Eisenhart (1949), Penrose and Rindler (1984, 1986).

18

The covariant derivative and parallel
transport

18.1 Partial and covariant derivatives

Physical laws are usually written down in mathematical form as differ-
ential equations. In order to guarantee that the laws are independent
of the coordinate system, they should moreover have the form of tensor
equations. We must therefore examine whether tensors can be differen-
tiated in such a way that the result is again a tensor, and if so, how this
can be done.

The partial derivative We denote the usual partial derivative of a posi-
tion-dependent tensor by a comma:
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∂T ab...
c...

∂xi
= T ab...

c...,i. (18.1)

However, the components T ab...
c...,i are not the components of a tensor, as

we can show from the example of the derivative of a vector. For we have

(Tn
,i )

′ =
(∂Tn

∂xi

)′
=

∂

∂xi′ (A
n′
n T

n) =
∂xi

∂xi′
∂

∂xi
(An′

n T
n)

= Ai
i′A

n′
n T

n
,i +Ai

i′A
n′
n,iT

n.

(18.2)

That is, the Tn
,i transform like the components of a tensor if, and only

if, the transformation matrices An′
n are independent of position (this is

true, for example, for Lorentz transformations of Minkowski space).
The only exception is the generalized gradient ϕ,a = ∂ϕ/∂xa of a

scalar ϕ; its components are those of a covariant vector. From ϕ′ = ϕ,
and hence dϕ′ = dϕ, we have

ϕ,a dxa = (ϕ,a)′ dxa′
, (18.3)

and the quotient law ensures the vector property of ϕ,a.
One can see why the partial derivatives of a tensor do not form a tensor

if one describes a constant vector field in the plane by polar coordinates
(Fig. 18.1). The vector components of this constant vector field become
position-dependent, because the directives of the coordinate lines change
from point to point; the partial derivative of the vector components
is a measure of the actual position-dependence of the vector only in
Cartesian coordinate systems.

T

T r

Fig. 18.1. Components of a constant vector field in polar coordinates.

Definition of the covariant derivative The above considerations suggest
that a covariant derivative (which produces tensors from tensors) can be
constructed from the partial derivative by making use of locally geodesic
coordinates and defining: The covariant derivative T ab...

mn...;i of a tensor
T ab...

mn... is again a tensor, which coincides with the partial derivative in
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the locally geodesic coordinate system:

T ab...
mn...;i = T ab...

mn...,i for gmn = ηmn, Γa
bc = 0. (18.4)

This definition of the covariant derivative is unique. It ensures the
tensor property and facilitates the translation of physical laws to the
Riemannian space, if these laws are already known in the Minkowski
space (using partial derivatives).

Properties of, and rules for handling, the covariant derivatives Since the

partial derivatives of ηmn and
M
ε abcd are zero, we have the equations

gab;m = 0, εabcd
;n. (18.5)

The metric tensor and the ε-tensor are thus covariantly constant.
Because the product rule and the sum rule hold for partial derivatives,

these rules also hold for covariant derivatives:

(T ab + Sab);n = T ab
;n + Sab

;n,

(T abSc);n = T ab
;nSc + T abSc;n.

(18.6)

Contraction, raising and lowering of indices, and taking the dual
depend upon multiplication with the metric or the ε-tensor. These op-
erations therefore commute with covariant differentiation. For example,

(T a
a);n = T ab

;ngab = (T a
a),n, (18.7)

in agreement with the fact that the covariant derivative of a scalar is
equal to its partial derivative.

For practical calculations we naturally need also a formula for
determining the covariant derivative in a given coordinate system – we
certainly do not want to transform every time first to the local geodesic
system, calculate the partial derivatives, and then transform back. This
formula is given by the following prescriptions.

The covariant derivatives of the contravariant and covariant compo-
nents of a vector are calculated according to the formulae

T a
;n = T a

,n + Γa
nmT

m,

Ta;n = Ta,n − Γm
anTm,

(18.8)

respectively. The covariant derivative of an arbitrary tensor is calculated
by applying the prescription (18.8) to every contravariant and covariant
index, for example,

T a
bc;d = T a

bc,d + Γa
dmT

m
bc − Γm

bdT
a

mc − Γm
cdT

a
bm. (18.9)
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To show that these prescriptions meet the definition of the covariant
derivative given above, we first observe that in a locally geodesic system
all Christoffel symbols disappear, so that, there, covariant and partial
derivatives coincide. The formulae (18.8) really do produce a tensor, al-
though the two terms on the right-hand sides are not separately tensors;
we leave the proof of this to the reader.

Although the covariant derivative always produces a covariant index,
one also writes it as a contravariant index; for example T ab;n is an ab-
breviation for

T ab;n = gniT ab
;i. (18.10)

18.2 The covariant differential and local parallelism

There is an obvious geometric meaning to the covariant derivative which
we shall describe in the following. One can visualize the covariant deriva-
tive – like the partial derivative – as the limiting value of a difference
quotient. In this context one does not, however, simply form the differ-
ence in the value of the tensor components at the points xi and xi +dxi:

dT a = T a(xi + dxi)− T a(xi) = T a
,i dxi (18.11)

(this would correspond to the partial derivative), but rather uses

DT a = dT a + Γa
nmT

n dxm = (T a
,m + Γa

nmT
n) dxm = T a

;m dxm.

(18.12)
The deeper reason for this more complicated formula lies in the fact that
tensors at two different points xi and xi +dxi obey different transforma-
tion laws, and hence their difference is not a tensor. Before forming the
difference, the tensor at the point xi+dxi must therefore be transported
in a suitable manner (preserving the tensor property) to the point xi,
without of course changing it during the process. In our usual three-
dimensional space we would translate ‘without changing it’ as ‘keeping
it parallel to itself’. We shall take over this way of speaking about the
problem, but we must keep clearly in mind that the meaning of ‘paral-
lelism at different points’ and ‘parallel transport’ is not at all self-evident
in a non-Euclidean space.

Three simple examples may illustrate this. Referring to Fig. 18.2, we
ask the following questions. (a) Are two vectors in a plane section still
parallel after bending of the plane? (b) Are the two vectors, which are
parallel in three-dimensional space, also parallel in the curved surface?
(Obviously not, for vectors in the surface can have only two components,
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(a) (b) (c)

(1)

(1)
(2)

(2)

(1)

(2)

P Q

Fig. 18.2. Parallelism of vectors on surfaces.

whereas vector (2) juts out of the surface and has three components –
but should one perhaps take the projection onto the surface?) (c) Which
of the two vectors at the point Q of the sphere of Fig. 18.2c is parallel to
that at the point P? Clearly both were parallelly transported, the one
along the equator always perpendicularly, and the other over the poles,
always parallel to the curve joining P and Q!

What we should realize from these examples is that in a curved space
one must define what one means by parallelism and parallel displace-
ment. The definition used in the construction of the covariant derivative
obviously reads: two vectors at infinitesimally close points are parallel
if, and only if, we have

DT a = dT a + Γa
nmT

n dxm = T a
;m dxm = 0; (18.13)

that is to say, their covariant differential disappears. A vector field is
parallel in the (infinitesimal) neighbourhood of a point if its covariant
derivative is zero there:

T a
;n = T a

,n + Γa
nmT

m = 0. (18.14)

If in a general affine (hence possibly even non-Riemannian) curved
space one were also to use this definition, then the Γa

mn would in that
case be arbitrary functions. A Riemannian space is distinguished by
the fact that Γa

mn are precisely the Christoffel symbols formed from
the metric tensor. The definitions (18.13) and (18.14) are of course so
constructed that in the local geodesic system they lead to the usual
parallel displacement in Minkowski space.
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18.3 Parallel displacement along a curve and the parallel
propagator

Let an arbitrary curve in our Riemannian space be given parametrically
by xn = xn(λ). It is then always possible to construct a parallel vector
field along this curve from the requirement that the covariant differential
of a vector along the curve vanishes; that is, from

DT a

Dλ
≡ T a

;n dxn

dλ
=

dT a

dλ
+ Γa

nmT
m dxn

dλ
= 0. (18.15)

One can in fact specify arbitrarily the value of the vector components
T a at some initial point λ = λ̄ and uniquely determine the vector at
some other arbitrary point λ of the curve from the system of differential
equations (18.15).

The geodesic equation

d2xa

dλ2
+ Γa

nm

dxn

dλ
dxm

dλ
=

D
Dλ

dxa

dλ
= 0 (18.16)

is obviously an example of such an equation which expresses the parallel
transport of a vector. It says that the tangent vector ta = dxa/dλ of
a geodesic remains parallel to itself. The geodesic is thus not only the
shortest curve between two points, but also the straightest. The straight
line in Euclidean space also has these two properties.

There is precisely one geodesic between two points if one excludes the
occurrence of conjugate points. (Such points of intersection of geodesics
which originate in one point occur, for example, on a sphere: all great
circles originating at the north pole intersect one another at the south
pole.) The result of parallelly transporting a vector (or a tensor) from
the point P̄ to the point P along a geodesic is therefore uniquely deter-
mined, while in general it certainly depends upon the choice of route (see
Section 19.2). Since the differential equation (18.15) to be integrated is
linear in the components of the vector T a to be transported, the vector
components at the point P are linear functions of the components at the
point P̄ :

Ta(P ) = gab̄(P, P̄ )T b̄(P̄ ). (18.17)

For tensor components we have analogously

Ta
b
n... = gaāg

bb̄gnn̄ . . . T
ā

b̄
n̄.... (18.18)

The quantities gab̄ are the components of the parallel propagator. It
is a two-point tensor of the type (17.24); the indices (barred or not) of
such a tensor also indicate the coordinates of which points it depends
upon. For more details, see Synge (1960).
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18.4 Fermi–Walker transport

The parallel displacement of a vector appears to be the most natural
way of comparing vectors at two different points of the space with one
another or of transporting one to the other point. There are, however,
physically important cases in which another kind of transport is more
useful for the formulation of physical laws.

An observer who moves along an arbitrary timelike curve xn(τ) under
the action of forces will regard as natural, and use, a (local) coordinate
system in which he himself is at rest and his spatial axes do not rotate.
He will therefore carry along with him a tetrad system whose timelike
vector is always parallel to the tangent vector tn = dxn/dτ of his path,
for only then does the four-velocity of the observer possess no spatial
components (he really is at rest), and he will regard as constant a vector
whose components do not change with respect to this coordinate system.

The fact that the tangent vector to his own path does not change for
the observer cannot, however, be expressed by saying that it is parallelly
transported along the path. Indeed the observer does not in general
move along a geodesic, and therefore under parallel transport a vector
vn pointing initially in the direction of the motion will later make an
angle with the world line (see Fig. 18.3).

(a) (b)

vn

tn

vn = tnvn = tn

vn = tn

Fig. 18.3. Parallel transport (a) and Fermi–Walker transport (b) of a vector
vn.

If, however, for every vector Tn one uses Fermi–Walker transport,
defined by the vanishing of the Fermi derivative, that is, by

DTn

Dτ
− Ta

1
c2

(
dxn

dτ
D2xa

Dτ2
− dxa

dτ
D2xn

Dτ2

)
= 0, (18.19)

then one can establish that the tangent vector tn to an arbitrary timelike
curve in the space is indeed Fermi–Walker-transported, since for Tn = tn

(18.19) is satisfied identically as a consequence of the relation
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D
Dτ

(
dxn

dτ
dxn

dτ

)
= 0 = 2

dxn

dτ
D2xn

Dτ2
, (18.20)

which follows from dxn dxn = −c2 dτ2. If the observer moves on a
geodesic D2xn/Dτ2 = 0, then parallel transport and Fermi–Walker
transport coincide.

For a given curve xn(τ) through the space equation (18.19) provides
a definition of how the change of a vector T n under advance along the
curve is to be calculated from the initial values of the vector. The reader
may confirm that the scalar product of vectors does not change under
this type of transport, and therefore that lengths and angles remain
constant.

A Fermi–Walker-transport tetrad-system is the best approximation to
the coordinate system of an observer who employs locally a non-rotating
inertial system in the sense of Newtonian mechanics (cp. Section 21.2).

18.5 The Lie derivative

If in a space a family of world lines (curves) is available which covers
the space smoothly and continuously, one speaks of a congruence of
world lines. Such curves can be the world lines of particles of a fluid, for
example. With every such congruence is associated a vector field an(xi),
which at any given time has the direction of the tangent to the curve
going through the point in question.

Let a vector field Tn(xi) also be given. One can now ask the question,
how can the change of the vector Tn under motion of the observer in the
direction of the vector field an be defined in an invariant (coordinate-
system-independent) manner? Of course one will immediately think of
the components Tn

;ia
i of the covariant derivative of Tn in the direction

of ai. There is, however, yet a second kind of directional derivative,
independent of the covariant derivative, namely the Lie derivative.

This derivative corresponds to the change determined by an observer
who goes from the point P (coordinates xi) in the direction of ai to the
infinitesimally neighbouring point P̄ (coordinates x̄i = xi +εai(xn)) and
takes his coordinate system with him (see Fig. 18.4).

If, however, at the point P̄ he uses the coordinate system appropri-
ate for P , then this corresponds to a coordinate transformation which
associates with the point P̄ the coordinate values of point P ; that is,
the transformation

xn′
= xn − εan(xi), An′

i = δn
i − εan

,i. (18.21)
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Transported
coordinate

system

an(xi)

P

P
εan

Fig. 18.4. How the Lie derivative is defined.

He will therefore regard as components of the vector Tn at the point P̄
the quantities

Tn′
(P̄ ) = An′

i T
i(xk + εak) = (δn

i − εan
,i)
[
T i(P ) + εT i

,k(P )ak
]
(18.22)

= Tn(P ) + εTn
,k(P )ak − εan

,kT
k(P ),

(ignoring terms in ε2) and compare them with Tn(P ).
This consideration leads us to define the Lie derivative in the direction

of the vector field an as the limiting value

LaT
n = lim

ε→0

1
ε

[
Tn′

(P̄ )− Tn(P )
]
, (18.23)

or the expression, which is equivalent because of (18.22),

LaT
n = Tn

,ka
k − T kan

,k. (18.24)

The Lie derivative of the covariant components Tn follows analogously
as

LaTn = Tn,ia
i + Tia

i
,n. (18.25)

One forms the Lie derivative of a tensor of higher rank by carrying over
(18.24) or (18.25) to every contravariant or covariant index, respectively;
thus for example

Lagmn = gmn,ia
i + gina

i
,m + gmia

i
,n. (18.26)

Obviously the Lie derivative and the usual directional derivative coin-
cide if the partial derivatives ai

,n are zero, for example, in a comoving
coordinate system ai = (0, 0, 0, 1).

The Christoffel symbols are not used in the calculation of the Lie
derivative. One can, however, in (18.24)–(18.26) replace the partial
derivatives by covariant derivatives, according to (18.8), obtaining
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LaT
n = Tn

;ia
i − T ian

;i,

LaTn = Tn;ia
i + Tia

i
;n,

Lagmn = am;n + an;m.

(18.27)

This result shows explicitly that the Lie derivative of a tensor is again
a tensor, although only partial derivatives were used in its definition.

The Lie derivative of tensors has the following properties, which we
list here without proof.

(a) It satisfies the Leibniz product rule.
(b) It commutes with the operation of contraction (although the Lie

derivative of the metric tensor does not vanish).
(c) It can be applied to arbitrary, linear geometrical objects, to Chri-

stoffel symbols, for example.
(d) It commutes with the partial derivative.

The Lie derivative plays an important rôle in the investigation of sym-
metries of Riemannian spaces, see Chapter 33.

Exercises

18.1 Use equations (18.8), (16.21) and (16.31) to show that(Ta
;n)′

= ∂T a′
/∂xn′

+ Γa′
n′m′Tm′

transforms like a tensor, i.e. that
(T a

;n)′ = Aa′
a A

n
n′T a

;n holds.
18.2 Apply h(a)i = gin̄h

n̄
(a) to a tetrad system (17.40) with (17.32) to

show that gin̄ = gn̄i holds.
18.3 Show that the scalar product of any two vectors does not change

under Fermi–Walker transport (18.19).
18.4 Show that the Lie derivative really has properties (a), (b), and

(d).
18.5 In a space with a given metric gab, a covariant derivative is

defined by T a‖n = T a
,n +Da

nmT
m. Calculate f,nm − f,m‖n and

show that Sa
nm = Da

nm −Da
mn is a tensor! Can Sa

nm be deter-
mined by demanding gab‖n = 0?

18.6 To any vector a, with components an, an operator a = an∂/∂xn

can be assigned. Use this notation to give the Lie derivative of
the vector Tn a simple form.

Further reading for Chapter 18

Eisenhart (1949), Schouten (1954), Yano (1955).
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The curvature tensor

19.1 Intrinsic geometry and curvature

In the previous chapters of this book we have frequently used the con-
cept ‘Riemannian space’ or ‘curved space’. Except in Section 14.4 on
the geodesic deviation, it has not yet played any rôle whether we were
dealing only with a Minkowski space with complicated curvilinear
coordinates or with a genuine curved space. We shall now turn to the
question of how to obtain a measure for the deviation of the space from
a Minkowski space.

If one uses the word ‘curvature’ for this deviation, one most often has
in mind the picture of a two-dimensional surface in a three-dimensional
space; that is, one judges the properties of a two-dimensional space (the
surface) from the standpoint of a flat space of higher dimensionality.
This way of looking at things is certainly possible mathematically for
a four-dimensional Riemannian space as well – one could regard it as a
hypersurface in a ten-dimensional flat space. But this higher-dimensional
space has no physical meaning and is no more easy to grasp or compre-
hend than the four-dimensional Riemannian space. Rather, we shall
describe the properties of our space-time by four-dimensional concepts
alone – we shall study ‘intrinsic geometry’. In the picture of the two-
dimensional surface we must therefore behave like two-dimensional
beings, for whom the third dimension is inaccessible both practically
and theoretically, and who can base assertions about the geometry of
their surface through measurements on the surface alone.

The surface of, for example, a cylinder or a cone, which in fact can
be constructed from a plane section without distortion, could not be
distinguished locally from a plane by such beings (that is, without their
going right around the cylinder or the cone and returning to their start-
ing point). But they would be able to establish the difference between
a plane and a sphere, because on the surface of the sphere:

(a) The parallel displacement of a vector depends upon the route (along
route 1 in Fig. 18.2c the vector is a tangent vector of a geodesic;
along route 2 it is always perpendicular to the tangent vector).

(b) The sum of the angles of triangles bounded by ‘straight lines’ (geo-

136
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desics) deviates from 180◦; it can amount to 270◦, for example.
(c) The circumference of a circle (produced by drawing out geodesics

from a point and marking off a constant distance on them as radius)
deviates from π multiplied by the diameter.

(d) The separation between neighbouring great circles is not propor-
tional to the distance covered (cp. geodesic deviation).

As a detailed mathematical analysis shows, these four possibilities car-
ried over to a four-dimensional space all lead to the concept of curvature
and to that of the curvature tensor. In the following sections we shall
become more familiar with this tensor, beginning with an investigation
of the parallel transport of vectors.

19.2 The curvature tensor and global parallelism of vectors

The covariant derivative enables us to give, through (18.15),

Ta;n
dxn

dλ
=

dTa

dλ
− Γm

anTm
dxn

dλ
= 0, (19.1)

a unique formula for the parallel displacement of a vector along a fixed
curve. When the result of the parallel displacement between two points
is independent of the choice of the curve, one speaks of global parallelism.
A necessary condition for its existence is evidently that the parallel dis-
placement should be independent of the route already for infinitesimal
displacements.

Upon applying (19.1) to the parallel displacement of the vector am

along the sides of the infinitesimal parallelogram of Fig. 19.1 we obtain:

from P1 to P ′: d1am = Γi
mnai d1x

n, (19.2)

from P1 to P ′′: d2am = Γi
mnai d2x

n, (19.3)

P1

P2

P

P ′′

′

d1x
n

d1x
n

d2x
n

d2x
n

am

am + d1am

am + d2am

am + δ′am

am + δ′′am

Fig. 19.1. Parallel displacement of a vector.
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from P1 over P ′ to P2 (Christoffel symbols are to be taken at P ′, there-
fore Γr

mq + Γr
mq,s d1x

s):

δ′am = (Γr
mq + Γr

mq,s d1x
s)(ar + d1ar) d2x

q + d1am

≈ Γr
mqΓ

i
rn d2x

q d1x
nai + Γr

mq,sar d1x
s d2x

q

+ Γi
mnai(d1x

n + d2x
n),

(19.4)

from P1 over P ′′ to P2 (Christoffel symbols are to be taken at P ′′):

δ′′am = (Γr
mq + Γr

mq,s d2x
s)(ar + d2ar) d1x

q + d2am

≈ Γr
mqΓ

i
rn d1x

q d2x
nai + Γr

mq,sar d2x
s d1x

q

+ Γi
mnai(d1x

n + d2x
n).

(19.5)

The vectors transported to P2 by different routes thus differ by

δ′′am−δ′am = (−Γr
mq,s+Γr

ms,q+Γr
nqΓ

n
ms−Γr

nsΓ
n
mq)ar d1x

s d2x
q. (19.6)

The parallel transport is therefore independent of the route for all vec-
tors ar and all possible infinitesimal parallelograms (d1x

n and d2x
n arbi-

trary) if and only if the Riemann curvature tensor (Riemann–Christoffel
tensor), defined by

Rr
msq = Γr

mq,s − Γr
ms,q + Γr

nsΓ
n
mq − Γr

nqΓ
n
ms, (19.7)

vanishes. If this condition is satisfied, then one can also define global
parallelism for finite displacements; the parallel transport will be inde-
pendent of path (as one can show by decomposing the surface enclosed
by a curve into infinitesimal parallelograms).

Path independence of the parallel displacement is the pictorial inter-
pretation of the commutation of the second covariant derivatives of a
vector; in fact for every arbitrary vector am we have

am;s;q = am;s,q − Γr
mqar;s − Γr

qsam;r

= am,s,q − Γr
ms,qar − Γr

msar,q − Γr
qmar,s

+ Γn
mqΓ

r
nsar − Γr

qsam,r + Γn
qsΓ

r
mnar,

(19.8)

and, after interchange of q and s bearing in mind (19.7), we obtain

am;s;q − am;q;s = Rr
msqar. (19.9)

Covariant derivatives commute if, and only if, the curvature tensor van-
ishes. One can also take (19.9) as the definition of the curvature tensor.

We can see the justification for the word curvature tensor in the fact
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that it disappears if, and only if, the space is flat, that is, when a Carte-
sian coordinate system can be introduced in the whole space. In Carte-
sian coordinates all the Christoffel symbols do indeed vanish, and with
them the curvature tensor (19.7). Conversely, if it does disappear, then
one can create a Cartesian coordinate system throughout the space by
(unique) parallel displacement of four vectors which are orthogonal at
one point. That Rr

msq really is a tensor can be most quickly realized
from (19.9).

To summarize, we can thus make the following completely equiva-
lent statements. The curvature tensor defined by (19.7) and (19.9)
vanishes if, and only if (a) the space is flat, that is, Cartesian coor-
dinates with gab = ηab and Γa

bc = 0 can be introduced throughout the
space; or (b) the parallel transport of vectors is independent of path; or
(c) covariant derivatives commute; or (d) the geodesic deviation (the rel-
ative acceleration) of two arbitrary particles moving force-free vanishes
(cp. Section 14.4).

19.3 The curvature tensor and second derivatives of the
metric tensor

The curvature tensor (19.7) contains Christoffel symbols and their deri-
vatives, and hence the metric tensor and its first and second derivatives.
We shall now examine more precisely the connection between the metric
and the components of the curvature tensor.

To this end we carry out in a locally geodesic coordinate system,

ḡab = ηab, Γ̄a
bc = 0 for x̄n = 0, (19.10)

a coordinate transformation

xn = x̄n+ 1
6
Dn

pqrx̄
px̄qx̄r, An

i = ∂xn/∂x̄i = δn
i + 1

2
Dn

pqix̄
px̄q, (19.11)

the constants Dn
pqi being initially arbitrary, but symmetric in the lower

indices. This transformation does not change the metric or the Christof-
fel symbols at the point xn = x̄n = 0, but it can serve to simplify the
derivatives of the Christoffel symbols. Because of the general transfor-
mation formula (16.31) we have

Γm
ab,n =

(
Γ̄r

ikA
m
r A

i
aA

k
b −Am

i,kA
i
aA

k
b

)
,n

(19.12)

from which because of (19.11) follows that at the point xn = 0

Γm
ab,n = Γ̄m

ab,n −Dm
abn. (19.13)

Since the coefficients Dm
abn of formula (19.11) are symmetric in the
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three lower indices, whereas the derivatives Γ̄m
ab,n of the Christoffel sym-

bols, which are to be regarded as specified, do not possess this symmetry
property, not all the derivatives Γm

ab,n can be made to vanish. Through
the choice

Dm
abn = 1

3

(
Γ̄m

ab,n + Γ̄m
na,b + Γ̄m

bn,a

)
, (19.14)

however, one can always ensure that

Γm
ab,n + Γm

na,b + Γm
bn,a = 0. (19.15)

If (19.15) and (19.10) are satisfied at a point, one speaks of canonical
coordinates.

In such a canonical coordinate system it follows from (19.7) that the
components of the curvature tensor satisfy

Rr
msq = Γr

mq,s − Γr
ms,q, (19.16)

and therefore, using also (19.15), that

Rr
msq +Rr

smq = −3Γr
ms,q. (19.17)

From the definition of the Christoffel symbols (16.13), on the other hand,
it follows that

gia,bn = gmiΓm
ab,n + gmaΓm

ib,n, (19.18)

and (19.17) and (19.18) together yield finally

gia,bn = −1
3 (Riabn +Riban +Raibn +Rabin). (19.19)

Using in advance the symmetry relations (19.24), this is equivalent to

gia,bn = −1
3 (Riban +Rabin). (19.20)

The equations (19.19) and (19.20) lead to an important conclusion.
At first sight they merely state that in canonical coordinates the second
derivatives of the metric tensor can be constructed from the components
of the curvature tensor. But because of (19.10) and (19.20), in canonical
coordinates all tensors which can be formed out of the metric and its
first and second derivatives can be expressed in terms of the curvature
tensor and the metric tensor itself. This relation between tensors must
be coordinate-independent, and so any tensor containing only the metric
and its first and second derivatives can be expressed in terms of the
curvature tensor and the metric tensor.

If one wants to apply this law to pseudotensors, then one must also
admit the ε-tensor as an additional building block.

Canonical coordinates permit a simple geometrical interpretation.
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Their coordinate lines are pairwise orthogonal geodesics, and the coor-
dinates of an arbitrary point are given by the product of the direction
cosines of the geodesic to the point from the zero point with the dis-
placement along this geodesic.

19.4 Properties of the curvature tensor

Symmetry properties The symmetry properties of the curvature tensor
can, of course, immediately be picked out from the defining equation
(19.7), or from

Ramsq = gar(Γr
mq,s − Γr

ms,q + Γr
nsΓ

n
mq − Γr

nqΓ
n
ms). (19.21)

But, in the geodesic coordinate system, in which the Christoffel symbols
vanish, and in which it follows from (19.21) that

Ramsq = (garΓr
mq),s − (garΓr

ms),q, (19.22)

and hence finally

Ramsq = 1
2 (gaq,ms + gms,aq − gas,mq − gmq,as), (19.23)

they are more quickly recognized. As one can immediately see from
(19.23), the curvature tensor is antisymmetric under interchange of the
first and second index, or of the third and fourth,

Ramsq = −Rmasq = −Ramqs = Rmaqs, (19.24)

but it does not alter under exchange of the first and last pairs of indices,

Ramsq = Rsqam, (19.25)

and, further, also satisfies the relation

3Ra[msq] = Ramsq +Rasqm +Raqms = 0. (19.26)

The equations (19.24) imply that under the relabelling (12) → 1,
(23) → 2, (34) → 3, (41) → 4, (13) → 5, (24) → 6 the independent
components of the curvature tensor can be mapped onto a 6× 6 matrix
RAB. Because of (19.25) this matrix is symmetric, and therefore has
at most

(
7
2

)
= 21 different components. The cyclic relation (19.26) is

independent of (19.24) and (19.25) (that is, not trivially satisfied) if, and
only if, all four indices of the curvature tensor are different, and (19.26)
hence supplies only one additional equation. The result of this count is
thus that in a four-dimensional space the Riemann curvature tensor has
a maximum of twenty algebraically independent components. One can
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show that in an N -dimensional space there are precisely N2(N2− 1)/12
independent components.

Ricci tensor, curvature tensor and Weyl tensor Because of the symme-
try properties of the curvature tensor there is (apart from a sign) only
one tensor that can be constructed from it by contraction, namely, the
Ricci tensor :

Rmq = Ra
maq = −Ra

mqa. (19.27)

It is symmetric, and has therefore ten different components. Its trace

R = Rm
m (19.28)

is called the curvature scalar R.
Just as (17.25) decomposes a symmetric tensor into a trace-free part

and a term proportional to the metric tensor, the curvature tensor can
be split into the Weyl tensor (or conformal curvature tensor) Cam

sq,
and parts which involve only the Ricci tensor and the curvature scalar:

Ram
sq = Cam

sq + 1
2
(ga

sR
m
q + gm

q R
a
s − gm

s R
a
q − ga

qR
m
s )

− 1
6 (ga

sg
m
q − ga

q g
m
s )R.

(19.29)

The Weyl tensor defined by (19.29) is ‘trace-free’,

Cam
aq = 0, (19.30)

and has all the symmetry properties of the full curvature tensor. The
name ‘conformal curvature tensor’ or ‘conformal tensor’ relates to the
fact that two different Riemannian spaces with the fundamental metric
forms dŝ 2 and ds2 which are conformally related

ds2 = Ω2(xi)dŝ 2 (19.31)

(all lengths are multiplied by the position-dependent conformal factor
Ω2, independent of direction) have the same conformal curvature tensor,
although their Riemann curvature tensors are different.

In summary we can therefore make the following statement. At ev-
ery point of a four-dimensional Riemannian space of the 100 possible
different second derivatives of the metric tensor only twenty cannot be
eliminated by coordinate transformations; they correspond to the twenty
algebraically independent components of the curvature tensor. These
twenty components can always be expressed by the ten components of
the Ricci tensor and the ten of the Weyl tensor, as (19.29) shows.

In three-dimensional space the curvature tensor has only six indepen-
dent components, exactly as many as the Ricci tensor, and the curvature
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tensor can be expressed in terms of the Ricci tensor:

Rαµ
στ = (gα

σR
µ
τ + gµ

τR
α
σ − gµ

σR
α
τ − gα

τ R
µ
σ)− 1

2R(gα
σ g

µ
τ − gα

τ g
µ
σ). (19.32)

On a two-dimensional surface (as for example on the sphere (14.36))
the curvature tensor has essentially only one component, the curvature
scalar R:

RAM
ST = R(gA

S g
M
T − gA

T g
M
S ). (19.33)

Bianchi identities Until now we have always thought of the metric as
given, and derived the curvature tensor from it. Conversely, one can
also ask the question whether the curvature tensor (with the correct
symmetry properties, of course) can be specified as an arbitrary function
of position, and the metric belonging to it determined. The answer
to this apparently abstract mathematical question will reveal a further
property of the Riemann tensor, which is particularly important for
gravitation.

The determination of the metric from a specified curvature tensor
amounts, because of (19.23), to the solution of a system of twenty second-
order differential equations for the ten metric functions gab. In general
such a system will possess no solutions; given a tensor with the alge-
braic properties of the curvature tensor there does not correspond a
metric whose curvature tensor it is. Rather, additional integrability
conditions must be satisfied. Although (19.20) holds only at one point,
and therefore may not be differentiated, one can recognize the basis of
the integrability condition in it; since the third partial derivatives of the
metric commute, there must be some relations among the derivatives of
components of the curvature tensor.

To set up these relations we write down the covariant derivative of the
curvature tensor

Ramsq;i = gar(Γr
mq,s − Γr

ms,q + Γr
nsΓ

n
mq − Γr

nqΓ
n
ms);i (19.34)

in locally geodesic coordinates. Since the Christoffel symbols vanish in
these coordinates one can replace the covariant derivative by the partial
and drop the products of Christoffel symbols:

Ramsq;i = gar(Γr
mq,si − Γr

ms,qi). (19.35)

If we add to this equation the two produced on permuting indices,

Ramqi;s = gar(Γr
mi,sq − Γr

mq,is),

Ramis;q = gar(Γr
ms,iq − Γr

mi,sq),
(19.36)
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then we obtain the Bianchi identities:

3Ram[is;q] = Ramis;q +Ramsq;i +Ramqi;s = 0. (19.37)

Every curvature tensor must satisfy these equations; if they hold, then
one can determine the metric for a given curvature tensor, and con-
versely, if one expresses the curvature tensor through the metric, then
they are satisfied identically. Because of the symmetry properties of the
curvature tensor exhibited in (19.24)–(19.26), many of the Bianchi iden-
tities are trivially satisfied, for example, if not all the indices i, q, s are
different. In four-dimensional space-time the system (19.37) contains
only twenty non-trivial independent equations.

Upon contracting the Bianchi identities, we obtain identities for the
Ricci tensor. We have

3gaqRam[is;q] = Ra
mis;a −Rms;i +Rmi;s,

3gmsgaqRam[is;q] = Ra
i;a −R,i +Ra

i;a,
(19.38)

and therefore

(Rai − 1
2g

aiR);i = 0. (19.39)

Finally in this section on the properties of the curvature tensor we
should point out that various sign conventions occur in the literature.
With respect to our definition, the Riemann tensor can have the opposite
sign, and the Ricci tensor can be formed by contraction over a different
pair of indices and hence again change its sign. When reading a book or
an article it is recommended that the convention used there be written
out in order to avoid mistakes arising from comparison with this book
or with other publications.

19.5 Spaces of constant curvature

An N -dimensional Riemannian space is of constant curvature if its cur-
vature tensor obeys

Rabcd =
R

N(N − 1)
(gacgbd − gadgbc), R = const., (19.40)

where R/N(N − 1) = εK−2 is called the Gaussian curvature. Those
spaces will frequently occur as (sub-) spaces of physically interesting
gravitational fields. They are the spaces with the greatest possible num-
ber of symmetries (see Section 33.4). We will list here some of their
properties.

It is known since Riemann (1826 – 1866) and Christoffel (1829 – 1900)
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that locally a space of constant curvature, of any signature, can be writ-
ten as

ds2 =
o
ηPQ dxP dxQ

(
1 + 1

4
εK−2 o

ηPQ xPxQ
)2 , o

ηPQ= diag (ε1, ..., εN ), (19.41)

where P,Q = 1, . . . , N, and εP = ±1 as appropriate. A space of non-
zero curvature, R/N(N − 1) = εK−2, K 	= 0, can be considered as a
hypersurface

o
ηPQ ZPZQ + k(ZN+1)2 = εK2, ε = ±1 (19.42)

in an (N + 1)-dimensional pseudo-Euclidean space with the metric

ds2 =
o
ηPQ dZP dZQ + ε(dZN+1)2. (19.43)

Any suitable parametrization of (19.42), for example in terms of angular
coordinates, will give rise to a special form of the metric of the space of
constant curvature.

Two-dimensional spaces of constant curvature can be regarded (at least
to some extent) as surfaces in flat three-dimensional space. Their metrics
can be given in many different though locally equivalent forms.

Surfaces of positive curvature (ε = +1) are spheres of radius K,

ds2 = K2(dϑ2 + sin2 ϑ dϕ2), 0 ≤ ϕ ≤ 2π, 0 ≤ ϑ ≤ π, (19.44)

cp. (14.36)–(14.39); they occur with spherically symmetric solutions.
Surfaces with negative curvature (ε = −1) are pseudospheres, and

their metric can be written as

ds2 = K2[dϑ2 + exp(2ϑ) dϕ2], 0 ≤ ϕ ≤ 2π, −∞ ≤ ϑ ≤ ∞. (19.45)

They can be realized by surfaces of revolution of the tractrix

z = K ln
∣∣∣(K ±√k2 − ρ2)

/
ρ
∣∣∣∓√K2 − ρ2 (19.46)

about the z-axis (ρ2 = x2 + y2). The name tractrix is due to the fact
that precisely this curve results if a man runs along the z-axis pulling
behind him an object on the end of a rope of length K, the object not
lying on the z-axis initially, see Fig. 19.2.

It is easy to convince oneself that the surface (19.46) really does have
the metric (19.45) by inserting the differential equation of the tractrix

(
dz
dρ

)2

=
K2 − ρ2

ρ2
(19.47)
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(a) (b)

zz

rρ K

K

Fig. 19.2. Tractrix (a) and surface of constant negative curvature (b).

into the line element of flat space and then making the substitution
ρ = K expϑ.

While the line element (19.45) of the space of constant negative cur-
vature is regular for all values of ϕ and ϑ, the surface has a singular line
for z = 0. One can prove quite generally that there exists no realization
of that space by a surface in flat three-dimensional space which is regu-
lar everywhere. This two-dimensional Riemannian space is not globally
embeddable in a flat three-dimensional space; such an embedding is only
possible locally.

Finally, a surface of zero curvature is locally a plane,

ds2 = dϑ2 + dϕ2, −∞ ≤ ϕ ≤ ∞, −∞ ≤ ϑ ≤ ∞, (19.48)

but can also realized (after bending the plane appropriately), for exam-
ple, by the surface of a cone or a cylinder. If one identifies the points
on the baseline of a cylindrical surface with those at height H, that
is, of one allows the variables ϑ and ϕ to occupy only the intervals
0 ≤ ϕ ≤ 2πR and 0 ≤ ϑ ≤ H by identification of the endpoints, then
one has constructed a closed space of zero curvature.

The three types (19.44), (19.45) and (19.48) can be summarized in the
form of (19.41), which here reads (after a rescaling of the coordinates)

ds2 = K2 dx2 + dy2

(1 + εr2/4)2
. (19.49)

Another frequently used version of the metric is

ds2 = K2
[ dr2

1− εr2 + r2 dϕ2
]
, r =

r

1 + εr2/4
. (19.50)

Three-dimensional spaces of constant curvature likewise split into three
types if we restrict ourselves to positive definite metrics; those spaces
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occur in the interior Schwarzschild solution (Section 26.4), and in cos-
mology as part of the Robertson–Walker metrics.

A space of positive constant curvature (ε = +1) corresponds to a
hypersphere

ds2 = K2[dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)],

0 ≤ χ ≤ π, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π,
(19.51)

which can be embedded in a four-dimensional flat space according to

Z1 = K cosχ, Z3 = K sinχ sinϑ cosϕ,

Z2 = K sinχ cosϑ, Z4 = K sinχ sinϑ sinϕ.
(19.52)

The volume of this hypersphere (the surface area, as regarded from the
four-dimensional space) is

V =
∫ √

g dχdϑdϕ =
∫
K3 sin2 χ sinϑ dχdϑ dϕ = 2π2K3. (19.53)

The ‘radial’ coordinate χ can take only the maximal value χ = π; there
is one point maximally distant from the null point χ = 0, namely the
antipodal point χ = π.

A space of constant negative curvature (ε = −1) has the metric

ds2 = K2[dχ2 + sinh2 χ(dϑ2 + sin2 ϑ dϕ2)]. (19.54)

The ‘radial’ coordinate χ can vary arbitrarily, and the space can have
infinite extent.

Finally, a space of zero curvature (ε = 0) is (locally) a flat space:

ds2 = dχ2 + dϑ2 + dϕ2. (19.55)

The metric of all three types of space can be written in the form

ds2 = K2 dx2 + dy2 + dz2

(1 + εr2/4)2
= K2

[
dr2

1− εr2 + r2(dϑ2 + sin2 ϑ dϕ2)
]
.

(19.56)
Spaces with ε = 1 are called closed, since although they are of course
unbounded, they contain a finite volume, and the separation of two
points is bounded. Spaces with ε = 0 or ε = −1 are frequently desig-
nated open. Since, however, amongst the spaces of negative curvature
and the flat spaces, closed models which result from a suitable identifica-
tion of points can readily by found (see the example discussed in connec-
tion with (19.48)), this designation is rather misleading. The problem of
finding all possible realizations of a space of constant curvature is called
the Cayley–Klein space-structure problem.
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Four-dimensional spaces of constant curvature are known, as cosmolog-
ical models, under the name of de Sitter universes; sometimes one uses
this name only for the space of constant positive curvature, whereas
those of negative curvature are called anti-de Sitter universes. The de
Sitter universes can all be represented by a hyperboloid

x2 + y2 + z2 + εw2 − v2 = K2 (19.57)

in a flat space of metric

ds2 = dx2 + dy2 + dz2 + εdw2 − dv2. (19.58)

For positive curvature the metric can be written as

ds2 = K2[cosh2 ct{dχ2 + sinh2 χ(dϑ2 + sin2 ϑ dϕ2)} − c2 dt2], (19.59)

the space of zero curvature is Minkowski space, and spaces of negative
curvature are represented locally by

ds2 = K2[cos2 ct{dχ2 + sinh2 χ(dϑ2 + sin2 ϑ dϕ2)} − c2 dt2]. (19.60)

Amongst the spaces of negative curvature there are some with closed
timelike curves.

De Sitter universes contain three-dimensional spaces of constant cur-
vature and hence belong to the Robertson–Walker metrics (to be dis-
cussed in Chapter 40).

Exercises

19.1 Show (e.g. by using locally geodesic coordinates (16.41)) that
the two metrics ĝab and gab = Ω2 ĝab have the same Weyl tensor.

19.2 Show that the tractrix (19.47), with ρ = K expϑ, really gives
the metric (19.45).

19.3 Find all spaces of constant curvature with metric ds2 = K2[dϑ2

+ f2(ϑ)dϕ2], K = const.
19.4 Show that Rmabn = F (gangmb−gabgmn) and Rmabn;i = Rmibn;a

imply F = const.

Further reading for Chapter 19

Eisenhart (1949), Schouten (1954).
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Differential operators, integrals and integral
laws

20.1 The problem

In the formulation of physical laws in three-dimensional flat space one
often uses the vector operators div, grad, curl and ∆ = div grad, which
in Cartesian coordinates can also be applied to tensor components.
Because of the integral laws∮

div AdV =
∮

AdS (Gauss) (20.1)∮
curlAdS =

∮
Adr (Stokes), (20.2)

they make an integral formulation of physical statements possible, for
example in electrodynamics. The integral laws can also be applied to
tensors of higher rank.

While the differential operators can be carried over relatively easily to
a four-dimensional curved space, the generalization of integral laws leads
to difficulties. One cause of the difficulties is that integrals can never be
taken over tensor components, but only over scalars, if the result is to
be a tensor. A second cause is the fact that the reverse of an integration
is really a partial differentiation, whereas for tensor equations we have
to choose the covariant derivative; for this reason we shall be especially
interested in those differential operators which are covariant, and yet
which can be expressed simply by partial derivatives.

The comprehensibility of the calculations is further obscured by the
complicated way in which we write volume and surface elements in
covariant form. The use of differential forms here can indeed produce
some improvement, but for actual calculations the gain is small.

20.2 Some important differential operators

The covariant derivative is the generalized gradient; for a scalar, covari-
ant and partial derivatives coincide:

ϕ;a = ϕ,a. (20.3)

149
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The generalized curl of a vector Am is the antisymmetric part of the
tensor An;m:

An;m −Am;n = An,m −Am,n − Γa
nmAa + Γa

mnAa. (20.4)

Because of the symmetry of the Christoffel symbols in the lower indices,
one here can replace covariant derivatives by partial derivatives:

An;m −Am;n = An,m −Am,n. (20.5)

One obtains the generalized divergence by contraction over the index
with respect to which the covariant derivative has been taken. Because
of the relation (16.19), Γa

ab = (ln
√−g),b, we have for a vector

Bn
;n = Bn

,n + Γn
naB

a = Bn
,n + (ln

√−g),aB
a, (20.6)

and therefore
Bn

;n =
1√−g (Bn√−g),n. (20.7)

For an antisymmetric tensor Fab = −Fba we have, because of the sym-
metry property of the Christoffel symbol,

F ab
;b = F ab

,b + Γa
bmF

mb + Γb
bmF

am = F ab
,b + (ln

√−g),mF
am; (20.8)

thus, just as for a vector, its divergence can also be expressed as a partial
derivative:

F ab
;b =

1√−g (
√−g F ab),b. (20.9)

Similarly, for every completely antisymmetric tensor we have

F [mn...ab]
;b =

1√−g (
√−g F [mn...ab]),b. (20.10)

For the divergence of a symmetric tensor there is no comparable simple
formula.

The generalized ∆-operator is formed from div and grad; from (20.3)
and (20.7) we have

∆ϕ = ϕ,n
;n =

1√−g (
√−g gnaϕ,a),n. (20.11)

20.3 Volume, surface and line integrals

In an N -dimensional (N ≤ 4) space, an s-dimensional hypersurface ele-
ment (s ≤ N) is spanned by s infinitesimal vectors d1x

n, d2x
n,. . . , dsx

n,
which are linearly independent and do not necessarily have to point in
the direction of the coordinate axes (see Fig. 20.1).
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d1x
n

d2x
n coordinate

lines

Fig. 20.1. A surface element.

We shall need the generalized Kronecker symbol δn1...ns
m1...ms

, which is
antisymmetric both in all upper and all lower indices, and for ni = mi

takes the value 1 (when these numbers are all different), so that

δn1...ns
m1...ms

= δ[n1...ns]
m1...ms

= δn1...ns

[m1...ms], δn1...ns
m1...ms

= 1 for ni = mi. (20.12)

We next define the object

dV n1...ns = δn1...ns
m1...ms

d1x
m1 · · · dsx

ms (20.13)

as a hypersurface (volume) element. As one can see, and can verify
from examples, this is a tensor which is antisymmetric in all indices.
Its components become particularly simple when the dix

n point in the
directions of the coordinate axes,

d1x
n = (dx1, 0, 0, . . .), d2x

n = (dx2, 0, 0, . . .), . . . . (20.14)

For s = 1, (20.13) simply defines the line element

dV n = dxn. (20.15)
For s = 2, since

δn1n2
m1m2

= δn1
m1
δn2
m2
− δn1

m2
δn2
m1
, (20.16)

the hypersurface element is associated in a simple manner with the sur-
face element d1r× d2r

dV n1n2 = d1x
n1 d2x

n2 − d1x
n2 d2x

n1 , (20.17)

and for s = N it has, using the differentials (20.14), essentially one
component

dV 12...N = dx1 dx2 · · · dxN . (20.18)

Since we can in principle integrate only over scalars, if we demand that
the integral be a tensor, then we must always contract the hypersurface
element with a tensor of the same rank. Thus only integrals of the form
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Gs
Tn1...ns

dV n1...ns = Is, 1 ≤ s ≤ N, (20.19)

are allowed.
In an N -dimensional space there are therefore precisely N different

types of integral, each corresponding to the dimension s of the hyper-
surface being integrated over. We may suppose that the tensors Tn1...ns

are completely antisymmetric, because in contraction with dV n1...ns all
symmetric parts would drop out anyway. Gs denotes the region over
which the s-dimensional integration is to be carried out.

In four-dimensional space there are thus four types of integral con-
tained in (20.19). When s = 1 we have, for example, the simple line
integral

I1 =
∫

G1
Tn dxn. (20.20)

For s = 3, as we have shown in (17.4), one can map the tensor Tn1n2n3

onto a vector, according to (6.29):

Tn1n2n3 = εan1n2n3T
a/3! =

√−g M
ε an1n2n3T

a/3!. (20.21)

Here it is meaningful to introduce by

dfa = εan1n2n3 dV n1n2n3/3! (20.22)

the pseudovector dfa which is perpendicular to the hypersurface element
(that is, perpendicular to the vectors dix

n), and whose length in a system
(20.14) is just

√−g dx1 dx2 dx3. Thus dfa is the generalized surface
element. In this way we obtain the simpler form

I3 =
∫

G3
T a dfa

(
=
∫

G3
T a√−g dx1 dx2 dx3 δ4a

)
(20.23)

of the hypersurface integral (the expression in parentheses is valid only
in the system in which G3 is the surface x4 = const. and in which (20.14)
holds).

Finally, for s = 4, every antisymmetric tensor Tn1n2n3n4 is propor-
tional to the ε-tensor:

Tn1n2n3n4 = Tεn1n2n3n4/4!. (20.24)

Because
δn1n2n3n4
m1m2m3m4

= −εn1n2n3n4εm1m2m3m4 (20.25)

(cp. (6.17)), it is appropriate to introduce the volume element dV by

dV = −εm1m2m3m4 d1x
m1 d2x

m2 d3x
m3 d4x

m4 , (20.26)

which in the preferred system (20.14) has the form
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dV =
√−g dx1 dx2 dx3 dx4. (20.27)

Volume integrals thus always have the simple form

I4 =
∫

G4
T dV

(
=
∫

G4
T
√−g dx1 dx2 dx3 dx4

)
(20.28)

(the expression in parentheses is the form when (20.14) is valid).

20.4 Integral laws

Integral laws which are valid in a Riemannian space all have the form
of a Stokes law, that is, they reduce the integral over a generalized curl

T[n1n2...ns−1;ns] = T[n1...ns−1,ns] (20.29)

to an integral over the boundary Gs−1 of the original (simply connected)
region of integration Gs:∫

Gs
Tn1...ns−1,ns

dV nsn1...ns−1 =
∫

Gs−1
Tn1...ns−1 dV n1...ns−1 . (20.30)

(Because of the antisymmetry of the volume element we are able to drop
the antisymmetrizing brackets on the tensor field.) In spite of the partial
derivative, (20.30) is a tensor equation – one can in all cases replace the
partial by the covariant derivative.

We shall not go through the proof of this law here, but merely indicate
the idea on which it is based. Just as with the proof of the Stokes law for
a two-dimensional surface, one decomposes the region Gs into infinites-
imal elements, demonstrates the validity of the law for these elements,
and sums up over all elements. In the summation the contributions from
the ‘internal’ boundary surfaces cancel out, because in every case they
are traversed twice, in opposite directions (see Fig. 20.2).

In three-dimensional flat space there are consequently three integral

GS−1

Fig. 20.2. The Stokes law for a surface Gs.



154 Differential operators, integrals and integral laws

laws. For s = 1 we obtain from (20.30)∫ P2

P1
T,n dxn = T (P2)− T (P1) (20.31)

(the boundary of a curve is represented by the two end points P1 and
P2). The Stokes law proper corresponds to s = 2, and s = 3 yields the
Gauss law.

In four-dimensional space, too, the Gauss law is a special case of the
general Stokes law (20.30). Because of (20.21) and (20.22), for s = N = 4
we obtain from (20.30)∫

G4
εan1n2n3T

a
;n4 dV n4n1n2n3/3! =

∫
G3
T a dfa. (20.32)

We next substitute for dV n4n1n2n3 from (20.13), (20.25), (20.26):

− ∫
G4
εan1n2n3T

a
;n4ε

n4n1n2n3 dV/3! =
∫

G3
T a dfa, (20.33)

and, finally, taking into account the rule (6.20), we obtain the Gauss law∫
G4
T a

;a dV =
∫

G3
T a dfa. (20.34)

When making calculations with integrals and integral laws one has to
make sure that the orientation of the hypersurface element is correctly
chosen and remains preserved; under interchange of coordinates the sign
of the hypersurface element dV n1...ns changes. Such a fixing of the
orientation occurs also, of course, in the case of the usual Stokes law
in three dimensions, where the sense in which the boundary curve is
traversed is related to the orientation of the surface.

20.5 Integral conservation laws

We want to describe in detail a particularly important physical appli-
cation of the Gauss integral law. From Special Relativity one already
knows that a mathematical statement of the structure

T a...c
,a = 0 (20.35)

(the vanishing of the divergence of a tensor field) corresponds physically
to a conservation law, establishing that some physical quantity does not
change with time. In order to prove this connection, one uses the Gauss
law, which there is also valid for tensor components.

In a Riemannian space the number of possible integral conservation
laws is already restricted by the fact that the Gauss law (20.34) can only
be applied to the divergence of a vector. To draw conclusions from

T a
;a = 0, (20.36)
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Spatial

infinity

Spatial

infinity

x4

x4 = const

x4 = const

dfa dfa

dfa

dfa G
(1)
3

G
(2)
3

G
(M)
3

G4

Fig. 20.3. The region of integration used in deriving the conservation law
(20.38).

let us imagine a vector field T a(xi), which differs from zero only within a
finite spatial region, and apply (20.34) to a four-dimensional ‘cylindrical’
region (hatched in Fig. 20.3) whose three-dimensional lateral surface
G

(M)
3 lies outside this region of space.
Since the contributions from the lateral surface G(M)

3 vanish, it follows
from (20.34) and (20.36) that∫

G
(1)
3
T a dfa +

∫
G

(2)
3
T a dfa = 0. (20.37)

If we now let the lateral surfaces go to (spatial) infinity, then the regions
of integration G

(1)
3 and G

(2)
3 cover the whole space x4 = const. And if

we further notice the opposite orientations of dfa in the two regions,
then it follows from (20.37) and (20.22) that∫

x4=const.
T a dfa =

∫
x4=const.

T 4√−g dx1 dx2 dx3 = const. (20.38)

The integral (20.38) defines a quantity whose value does not depend
upon the (arbitrary) time coordinate x4; it defines a conserved quantity.
We have derived this law under the supposition of a so-called isolated
vector field T a, that is, one restricted to a finite region of space. It is,
however, also valid when there are no lateral surfaces G(M)

3 , that is, when
the space is closed (like a two-dimensional spherical surface), or when
the integral over the lateral surface tends to zero (T a falls off sufficiently
quickly when the convex surface is pushed to spatial infinity).

Further reading for Chapter 20

Straumann (1984).
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Fundamental laws of physics in Riemannian
spaces

21.1 How does one find the fundamental physical laws?

Before turning in the next chapter to the laws governing the gravitational
field, that is, to the question of how the matter existing in the universe
determines the structure of the Riemannian space, we shall enquire into
the physical laws which hold in a given Riemannian space; that is to say,
how a given gravitational field influences other physical processes. How
can one transcribe a basic physical equation, formulated in Minkowski
space without regard to the gravitational force, into the Riemannian
space, and thereby take account of the gravitational force?

In this formulation the word ‘transcribe’ somewhat conceals the fact
that it is really a matter of searching for entirely new physical laws,
which are very similar to the old laws only because of the especially
simple way in which the gravitational field acts. It is clear that we shall
not be forced to the new form of the laws by logical or mathematical
considerations, but that we can attain the answer only by observation
and experiment. In searching for a transcription principle we therefore
want our experience to be summarized in the simplest possible formulae.

In the history of relativity theory the principle of covariance plays a
large rôle in this connection. There is no clear and unique formulation
of this principle; the opinions of different authors diverge here. Roughly
speaking, the principle of covariance expresses the fact that physical
laws are to be written covariantly by the use of tensors, to ensure the
equivalence, in principle, of all coordinate systems. Many criticisms
have been raised against this principle, their aim being to assert that
neither is it a physical principle, nor does it guarantee the correctness
of the equations thus obtained. An example from Special Relativity will
illustrate this. The potential equation

∆V = ηαβV,αβ = 0, α, β = 1, 2, 3 (21.1)

is certainly not Lorentz invariant. But we can make it so by introducing
an auxiliary field un which in a special coordinate system (in which
(21.1) holds) has the form un = (0, 0, 0, c). The equation

156
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∆V = (ηab + uaub/c2)V,ab = 0, a, b = 1, . . . , 4, (21.2)

thus obtained is certainly Lorentz invariant (covariant), but it is defi-
nitely false, because according to it effects always propagate with
infinitely large velocity. Of course one has to criticize (21.2) on the
grounds that a vector field ua was introduced ad hoc which singles out
the three-dimensional coordinates used in (21.1) and thereby favours the
rest system of an ‘aether’.

It is instructive to compare this example with the transition from the
Lorentz-invariant wave equation,

�V = ηabV,ab = 0, (21.3)

to the generally covariant equation

�V = gabV;ab = 0. (21.4)

In place of the auxiliary quantity un, the auxiliary quantity gab has
entered, which also singles out special coordinate systems (for example,
locally geodesic ones). How do we know whether (21.4) is correct? The
fundamental difference between (21.2) and (21.4) consists of the fact
that gab, in contrast to ua, possesses a physical significance; the met-
ric describes the influence of the gravitational field. One can therefore
interpret the requirement that physical equations should be covariant,
and that all the metric quantities being introduced to guarantee covari-
ance should correspond to properties of the gravitational field, as the
physical basis of the principle of covariance.

A much more meaningful transcription formula follows from the prin-
ciple of equivalence. Consistent with experience, we can generalize the
identity of inertial and gravitational mass. All kinds of interactions
between the constituent parts of a body (nuclear forces in the nuclei,
electromagnetic forces in atoms and molecules) contribute to its mass.
The principle of equivalence says that locally (in a region of space-time
not too large) one cannot in principle distinguish between the action of
a gravitational field and an acceleration. In other words, a freely falling
observer in a gravitational field cannot detect the gravitational field by
physical experiments in his immediate neighbourhood; for him all events
occur as in an inertial system.

We have already encountered coordinate systems, local geodesic
coordinates, in which the orbits of freely moving particles are described
by d2xa/dτ2 = 0 as in an inertial system. Because of this coincidence
we shall identify inertial systems and local geodesic coordinate systems.
As we know, such a local geodesic system can only be introduced in the
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immediate neighbourhood of a point; it is only useful so long as deriva-
tives of the Christoffel symbols, and hence the influence of the space
curvature, can be ignored. Accordingly the freely falling observer too
can establish the action of the gravitational force by examining larger
regions of space-time; for him the planetary orbits are not straight lines,
and upon bouncing on the Earth the freely falling box is no longer an
inertial system.

The identification (by the freely falling observer) of inertial system
and local geodesic coordinates and the definition (18.4) of the covariant
derivative make plausible the following transcription principle: one for-
mulates the physical laws in a Lorentz-invariant manner in an inertial
system and substitutes covariant for partial derivatives. This prescrip-
tion ensures simultaneously the covariance of the resulting equations and
their validity upon using curvilinear coordinates in Minkowski space.

Two criticisms can at once be raised, pointing out that this prescrip-
tion is neither unique nor logically provable. The first criticism concerns
the order of higher derivatives. Partial derivatives commute, covariant
ones do not. Practical examples nevertheless show that one can solve
this problem simply in most cases. The second objection concerns the
question of how we know that the curvature tensor and its derivatives do
not also enter the basic physical laws. The resulting covariant equations
would then not go over to the corresponding equations of Minkowski
space in local-geodesic coordinates; the difference would certainly be
small, however, and would be difficult to detect. Such a modification
of our transcription formula cannot be excluded in principle. But up
until now no experiments or other indications are known which make it
necessary.

In the following sections we shall formulate the most important physi-
cal laws in Riemannian spaces, without referring every time to the tran-
scription prescription ‘partial → covariant derivative’ we are using.

21.2 Particle mechanics

The momentum pn of a particle is the product of the mass m0 and the
four-velocity un:

pn = m0
dxn

dτ
= m0u

n, (21.5)

in which τ is the proper time, defined by

ds2 = gnm dxn dxm = −c2 dτ2. (21.6)
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For force-free motion in Minkowski space the momentum is constant.
Accordingly, a particle upon which no force acts apart from the gravi-
tational force moves on a geodesic of the Riemannian space,

Dpn

Dτ
= m0

D2xn

Dτ2
= m0u

n
;iu

i = m0

(
d2xn

dτ2
+ Γn

ab

dxa

dτ
dxb

dτ

)
= 0. (21.7)

External forces Fn cause a deviation from the geodesic equation:

Dpn

Dτ
= m0

D2xn

Dτ2
= Fn. (21.8)

Since the magnitude −c2 = unu
n of the four-velocity is constant, we

have
un;iu

n = 0; (21.9)

that is, the four-velocity is perpendicular to the four-acceleration u̇n =
un

;iu
i and the force Fn,

unun;iu
i = unu̇n = 0 = Fnun. (21.10)

The four equations of motion (21.8) are therefore not independent of
one another (the energy law is a consequence of the momentum law).

In order to understand better the connection between Newtonian
mechanics and mechanics in a Riemannian space we shall sketch how
the guiding acceleration a and the Coriolis force 2ω × ṙ, which an ac-
celerated observer moving in a rotating coordinate system would expe-
rience, are contained in the geodesic equation (21.7) which is valid for
all coordinate systems.

We therefore imagine an observer who is moving along an arbitrary
(timelike) world line and carries with him an orthogonal triad of vectors,
whose directions he identifies with the directions of his spatial coordinate
axes. For the description of processes in his immediate neighbourhood he
will therefore prefer a coordinate system with the following properties:
the observer is permanently at the origin O of the spatial system; as
time he uses his proper time; along his world line xα = 0 he always
uses a Minkowski metric (see Fig. 21.1). Summarizing, this gives up to
terms quadratic in the xn

ds2 = ηab dxa dxb + gab,ν(O)xν dxa dxb, gab,4(O) = 0. (21.11)

As spatial coordinate lines he will take the lines which arise from
‘straight’ extension of his triad axes (and are thus geodesic), marking off
as coordinates along them the arclength, and so completing this system
that in his spacex4 = const. all geodesics have locally the form of straight
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x1

x1

x2

x2

x4

x4

Fig. 21.1. Coordinate system of an arbitrarily moving observer.

lines xα = sλα (s is the arclength, and λα are the direction cosines).
For these geodesics we have then for arbitrary constant λα

d2xa

ds2
+ Γa

mn

dxm

ds
dxn

ds
= Γa

µνλ
µλν = 0; (21.12)

that is, all Christoffel symbols Γa
µν (a = 1, . . . , 4; µ, ν = 1, 2, 3) vanish.

Because of (16.13) the derivatives of the metric (21.11) therefore satisfy
the conditions

gαβ,ν = 0, g4β,ν = −g4ν,β. (21.13)

The equations (21.13) show that there are only three independent com-
ponents of the derivatives g4β,ν ; one can thus map these onto the com-
ponents of a ‘three-vector’ ωµ,

g4β,ν = −ε4βνµω
µ/c = −εβνµω

µ/c. (21.14)

The derivatives g44,ν not yet taken into account in (21.11), (21.13) and
(21.14) can be expressed through the acceleration aν of the observer, for
whose world line xα = 0, x4 = ct = cτ we have

aν ≡ d2xν

dt2
+ Γν

ab

dxa

dt
dxb

dt
= Γν

44c
2, (21.15)

and hence

g44,ν = −2aν/c2 = −2gνba
b/c2. (21.16)

To summarize, an observer, who carries with him his local Minkowski
system and in whose position space all geodesics diverging from him are
straight lines, uses in a neighbourhood of his world line xα = 0, x4 = cτ ,
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the coordinate system

ds2 = ηαβ dxα dxβ − 2εβνµx
νωµ dx4 dxβ/c− (1 + 2aνx

ν/c2
)
(dx4)2.

(21.17)
For him the only non-vanishing Christoffel symbols are

Γα
4ν = εν

α
µω

µ/c, Γα
44 = aα/c2, Γ4

4ν = aν/c
2. (21.18)

If the observer moves on a geodesic, then aν vanishes. In the coordi-
nates (21.17) the equation (18.19) which defines Fermi–Walker transport
has the form

dTµ

dτ
+ εα

µ
νω

νTα = 0,
dT 4

dτ
= 0. (21.19)

Hence for an observer who subjects this triad, formed out of vectors
which he regards as constant, to a Fermi–Walker transport, the vector
ωµ must vanish. If aν disappears as well as ωµ, then the coordinate
system (21.17) is an inertial system along the entire world line of the
observer.

To describe the motion of a particle the observer will naturally use
his coordinate system (21.17) and examine the acceleration d2xα/dt2 of
this particle in it. From the geodesic equation (21.12) we have for the
three spatial components of the acceleration the relation

d2xα

dt2
= 2εα

νµω
µ dxν

dt
− aα − dλ

dt
d
dt

(
dt
dλ

)
dxα

dt
. (21.20)

We can take the connection between λ and t from the time component
of the geodesic equation

d2t

dλ2
+ 2

aν

c2
dt
dλ

dxν

dλ
= 0. (21.21)

Substitution of (21.21) into (21.20) yields

d2xα

dt2
= −aα + 2εα

νµω
µ dxν

dt
+

2aν

c2
dxν

dt
dxα

dt
, (21.22)

or, in vector form,

r̈ = −a− 2ω × ṙ + 2(aṙ)ṙ/c2. (21.23)

One recognizes the guiding acceleration a and its relativistic correction
2(aṙ)ṙ/c2 (both vanish if the observer is moving freely on a geodesic),
and also the Coriolis acceleration 2ω × ṙ, caused by the rotation of the
triad carried by the observer relative to a Fermi–Walker-transported
triad. The vanishing of the Coriolis term in the Fermi–Walker system
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justifies the statement that for an observer who is not falling freely
(aν 	= 0) a local coordinate system produced by Fermi–Walker transport
of the spatial triad of vectors is the best possible realization of a non-
rotating system.

21.3 Electrodynamics in vacuo

The field equations As in Minkowski space, the electromagnetic field is
described by an antisymmetric field-tensor Fmn. Because it satisfies the
equations

3F[mn;a] = Fmn;a+Fna;m+Fam;n = Fmn,a+Fna,m+Fam,n = 0, (21.24)

it can be represented as the curl of a four-potential An:

Fmn = An;m −Am;n = An,m −Am,n. (21.25)

This potential is determined only up to a four-dimensional gradient. The
field is produced by the four-current jm:

Fmn
;n =

1√−g
(√−g Fmn

)
,n

=
1
c
jm. (21.26)

Because of the antisymmetry of Fmn, (21.26) is only integrable (self-
consistent) if the continuity equation

jm
;m =

1√−g
(√−g jm

)
,m

= 0 (21.27)

is satisfied. For an isolated charge distribution the conservation law for
the total charge Q follows from it (cp. Section 20.5):∫

x4= const.
ja dfa = const. = Q. (21.28)

By substituting (21.25) into (21.26) one can derive the generalized
inhomogeneous wave equation for the potential. Using the expressions
written with covariant derivatives, one obtains

An;m
;n −Am;n

;n = An
;n

;m +Rn
mAn −Am;n

;n = jm/c. (21.29)

If, on the other hand, one sets out directly from the special-relativistic
equation,

(An
,n),m −Am,n

,n = jm/c, (21.30)

and in it replaces the partial by covariant derivatives, then one obtains
(21.29) without the term in the Ricci tensor Rn

m (which arises by inter-
change of covariant derivatives). One clearly sees here that the transcrip-
tion formula ‘partial→ covariant derivative’ is not unique when applied
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to the potential. Potentials, however, are not directly measurable, and
for the physically important field strengths and their derivatives the pre-
scription which we gave above is unique. Since (21.29) follows directly
from this prescription it is considered to be the correct generalization of
the inhomogeneous wave equation.

For practical calculations it is often convenient to use partial deriva-
tives; (21.25) and (21.29) give[√−g gmagnb(Ab,a −Aa,b)

]
,n

=
√−g jm/c. (21.31)

Lagrangian and energy-momentum tensor Maxwell’s equations can be
derived from the action principle

W =
∫
Ld4x =

∫ [
jaAa/c− 1

4
(An,m −Am,n)(An,m −Am,n)

]√−g d4x

= extremum, (21.32)

where the components of the potential are varied as the independent
field quantities.

The symmetric energy-momentum tensor,

Tmn = F amFa
n − 1

4
gmnFabF

ab, (21.33)

is trace-free, Tn
n = 0. Its divergence is, up to a sign, equal to the

Lorentz force density,

Tmn
;n = −Fmnjn/c. (21.34)

Description of the solutions in terms of the sources In a Riemannian
space it is still possible to express the solution to the differential equation
(21.29) in the form of an integral

Am(xi) =
∫
Gmn̄(xi, x̄i)jn̄(x̄i)

√−ḡ d4x̄. (21.35)

The two-point tensor Gmn̄, the generalization of the Green function, is
now in general a very complicated function. We want to point out (with-
out proof) a notable difference in the way in which effects (for example,
light pulses) propagate in a Riemannian space in comparison with that
in a Minkowski space. While in Minkowski space the propagation of
effects in vacuo takes place exactly on the light cone, that is, a flash of
light at the point P̄ of Fig. 21.2(a) reaches the observer at precisely the
point P , in Riemannian space the wave can also propagate inside the
future light cone, a (weak) flash of light being noticeable also at points
later that P (for example, P ′). The reason for this deviation, which
one can also interpret as a deviation from Huygens’ principle, can be
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(a) (b)

ObserverObserver

P
P

P P

P ′

Fig. 21.2. Propagation of effects between source P̄ and observer (a) Minkowski
space: on the light cone, (b) Riemannian space: within the entire (shadowed)
interior of the light cone. (Dashed line = possible light path (‘dispersion’).)

thought of as a kind of scattering of the light wave by the space cur-
vature. In particularly simple Riemannian spaces this effect does not
occur; for example, the Robertson–Walker metrics belong to this class
(see Chapter 40).

Special properties of source-free fields Since one can convert (21.24) into
the system

F̃ ab
;b = 0 (21.36)

by use of the dual field tensor,

F̃ab = 1
2εabmnF

mn, (21.37)

then for jm = 0 Maxwell’s equations are equivalent to the equations

Φab
;b =
(
F ab + iF̃ ab

)
;b

= 0 (21.38)

for the complex field tensor Φab. A solution Φab remains a solution
after multiplication by a complex number eiα (a ‘duality rotation’). The
energy-momentum tensor

T ab = 1
2
ΦacΦ̄b

c (21.39)

does not change under such a duality rotation.
The source-free Maxwell’s equations are ‘conformally invariant’. A

conformal transformation is a transformation between two spaces M̂
(with metric dŝ 2) and M (with metric ds2) such that

ds2 = Ω2 dŝ 2 ↔ gab = Ω2 ĝab, (21.40)
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all distances are (locally) scaled by the same factor, independent of their
directions.

Suppose now in the space M we have a Maxwell field satisfying
√−gFmn

;n =
(√−gFmn

)
,n

= 0. (21.41)

Taking then in M̂ the same fields, Âa = Aa, F̂ab = Fab, we have with
g = Ω8 ĝ and Fmn = Ω−4F̂mn (here the dimension of the space enters!)

(
Ω4
√
−ĝΩ−4F̂mn

)
,n

= 0 =
(√−ĝ F̂mn

)
,n
, (21.42)

Maxwell’s equations are valid in M̂ , too.

Null electromagnetic fields As in Minkowski space (cp. Section 6.4 and
(7.44)) the electromagnetic field tensor possesses two invariants, namely

I1 = FabF
ab, I2 = FabF̃

ab. (21.43)

Null electromagnetic fields are fields for which both invariants vanish.
They are therefore generalizations of plane waves in flat space. As shown
in Section 9.3, the field Fmn and energy-momentum tensor Tmn have the
form

Fmn = (pmkn − kmpn), knkn = 0 = pnk
n, Tmn = (pnp

n)kmkn. (21.44)

21.4 Geometrical optics

The transition from wave solutions of the source-free Maxwell equations
to geometrical optics can be accomplished by substituting into the field
equations

(An;m −Am;n);n =
[√−g gmagnb(Ab,a −Aa,b)

]
,n

/√−g = 0 (21.45)

the ansatz

Aa = Âa(xn) eiωS(xn) (Âa complex, S real) (21.46)

and setting the coefficients of ω2 and ω separately to zero. As in
flat space, this splitting into amplitude Âa and eikonal (phase) S is
meaningful only in certain finite regions of space and represents a good
approximation only for large ω.

Substitution of (21.46) into (21.45) gives, on taking into account only
the terms in ω2,

S,m(ÂnS,n)− Âm(S,nS
,n) = 0. (21.47)
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Since the part of the field tensor proportional to ω is

Fmn = (ÂnS,m − ÂmS,n) iω eiωS = iω (AnS,m −AmS,n), (21.48)

this part vanishes if Âm is parallel to S,m. We are therefore interested
only in the solution

S,nS
,n = 0, AnS

,n = 0 (21.49)

of (21.47). The gradient S,n of the surfaces of equal phase is therefore a
null vector and the field tensor (21.48) has the structure (21.44) of the
field tensor of a null field, with km proportional to S,m and pn propor-
tional to ReAn (note that for comparison purposes one must take the
real part of the complex field quantities used here). In this approxima-
tion the field consequently behaves locally like a plane wave.

Differentiating (21.49) gives

S,nS,n;m = 0. (21.50)

Since the curl of a gradient vanishes (S,n;m = S,m;n), this is equivalent to

S,m;nS
,n = 0. (21.51)

This equation says that the curves xm(λ), whose tangent vector is S,m,

dxm

dλ
= S,m,

D2xm

Dλ2
=

DS,m

Dλ
= S,m;n dxm

dλ
= 0, (21.52)

are geodesics, and because S,nS
,n = 0 they are null geodesics.

If we characterize the wave not by Âa and the surfaces of constant
phase S = const., but by the curves xn(λ) orthogonal to them (which
we call light rays), then we have accomplished the transition from wave
optics to geometrical optics. In words, (21.51) then says that light rays
are null geodesics.

We shall take the approximation one step further, investigating the
terms in Maxwell’s equations proportional to ω, and hence obtaining
statements about how the intensity and polarization of the wave change
along a light ray.

From (21.45) and (21.49) one obtains immediately

−iω
[
2Âm

;nS
,n + ÂmS,n

;n − Ân
;nS

,m
]

= 0. (21.53)

If one contracts this equation with the vector ¯̂
Am, which is the complex

conjugate of Âm, and takes note of (21.49), then the result can be written
in the form ( ¯̂

AmÂ
m
)
;n
S,n +

( ¯̂
AmÂ

m
)
S,n

;n = 0, (21.54)
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or in the equivalent form ( ¯̂
AmÂ

mS,n
)
;n

= 0. (21.55)

Because the intensity of the wave is proportional to ¯̂
AmÂ

m, (21.54) can
be read as a statement about the change in intensity of the light ray
in the direction S,n. Even clearer, however, is the picture suggested by
(21.55). If one interprets

Jn = ¯̂
AmÂ

mS,n (21.56)

as a photon current, then this current is source-free (conservation of
photon number) and in the direction of the light rays.

We obtain a further physical consequence from (21.53) if we decom-
pose the vector Âm into its magnitude a and the unit vector Pm:

Âm = aPm. (21.57)

Then (21.54) is equivalent to

a,nS
,n = − 1

2aS
,n

;n, (21.58)

and from (21.53) we have

Pm
;bS

,b = 1
2

(Pna,n/a+ Pn
;n)S,m. (21.59)

This means, however, that the tensor fmn associated with the field tensor
(21.48),

fmn = PnS,m − PmS,n, (21.60)

which contains the characteristic directions of the wave (direction of
propagation S,n and polarization Pm), is parallelly transported along
the rays; we have

fmn;iS
,i = 0. (21.61)

21.5 Thermodynamics

Thermodynamical systems can be extraordinarily complicated; for
example, a great number of processes can be going on in a star simul-
taneously. We want to try to explain the basic general ideas, restricting
ourselves to the simplest systems.

During thermodynamical processes certain elements of matter, with
their properties, remain conserved, for example, in non-relativistic ther-
modynamics molecules or atoms and their masses. In the course of
transformations in stars and during nuclear processes the baryons with
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their rest mass are conserved instead. We shall therefore relate all quan-
tities to these baryons. If, for example, we choose a volume element of
the system, then we shall take as four-velocity ui of this element the
average baryon velocity. The flow (motion) of the system will therefore
be characterized by a four-velocity field

ui = ui(xm), uiui = −c2. (21.62)

To set up the basic thermodynamical equations one first goes to the
local rest system,

ui = (0, 0, 0, c), (21.63)

of the volume element under consideration and regards this volume
element as a system existing in equilibrium (of course it interacts with
its surroundings, so that the whole system is not necessarily in equilib-
rium); that is, one introduces for this volume element the fundamental
thermodynamic state variables, for example,

n baryon number density, s entropy per baryon mass,
ρ baryon mass density, p isotropic pressure,
T temperature, µ̄ chemical potential,
u internal energy per unit mass, f free energy per unit mass.

(21.64)

‘Density’ here always means ‘per three-dimensional volume in the local
rest system’; the entropy density, for example, would be given by sρ.
There exist relationships between these state variables which in the sim-
plest case express the fact that only two of them are really independent,
and, from knowledge of the entropy as a function of the energy and the
density, or of the specific volume v = 1/ρ,

s = s(u, v), (21.65)

one can calculate the other quantities, for example,

∂s

∂u
=

1
T
,

∂s

∂v
=
p

T
, f = u− Ts. (21.66)

For the interaction of the volume element with its surroundings we have
balance equations. These are the law of conservation of baryon number,

(ρua);a = 0 (21.67)

(generalized mass conservation), the balance equations for energy and
momentum, formulated as the vanishing of the divergence of the energy-
momentum tensor Tma,

Tma
;a = 0 (21.68)
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(generalized first law), and the balance equation for the entropy,

sa
;a = σ ≥ 0, (21.69)

which says that the density of entropy production σ is always positive
or zero (generalized second law of thermodynamics). Of course these
equations take on a physical meaning only if the entropy current density
sa and the energy-momentum tensor Tma are tied up with one another
and with the thermodynamic quantities (21.64).

This can be done as follows. One uses the projection tensor,

hab = gab + uaub/c
2, (21.70)

to decompose the energy-momentum tensor into components parallel
and perpendicular to the four-velocity,

Tab = µuaub + phab + (uaqb + qaub)/c2 + πab,

qau
a = 0, πabu

a = 0, πa
a = 0,

(21.71)

and links the quantities which then occur to the thermodynamic state
variables and to the entropy current vector. The coefficient of hab is the
isotropic pressure p, the internal energy per unit mass u is coupled to
the mass density µ in the rest system of the matter by

µ = ρ(1 + u/c2), (21.72)

and the heat current qi (momentum current density in the rest system)
goes into the entropy current density:

si = ρsui + qi/T. (21.73)

Equation (21.73) says that the entropy flows in such a way that it is
carried along convectively with the mass (first term) or transported by
the flow of heat (generalization of dS = dQ/T ).

We now want to obtain an explicit expression for the entropy produc-
tion density σ. Upon using (21.67) and the equation

s,nu
n =

1
T

(µc2
ρ

)
,n
un +

p

T

(1
ρ

)
,n
un =

1
ρT

[(
p+ µc2

)
ui

;i + µ,nu
nc2
]
,

(21.74)
which follows from (21.65), (21.66) and (21.72), we obtain

σ = sn
;n =

1
T

[(
p+ µc2

)
ui

;i + µ,nu
nc2
]

+
(qn

T

)
;n
. (21.75)

Since the terms in square brackets can be written in the form(
p+ µc2

)
ui

;i + µ,nu
nc2 = −(µuaub + phab);bua, (21.76)
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and the divergence of the energy-momentum tensor vanishes, (21.75)
implies the relation

σ =
[
Tmn − µumun − phmn

]
;m

un

T
+
(qn

T

)
;n
, (21.77)

which, bearing in mind the definition (21.71) of qn, and using (18.27),
can be cast finally into the form

σ = −(Tmn − µumun − phmn)
(um

T

)
;n

= − 1
2
(Tmn − µumun − phmn)L(u/T )gmn.

(21.78)

In irreversible thermodynamics one can satisfy the requirement that
σ ≥ 0 in many cases by writing the right-hand side of (21.78) as a
positive-definite quadratic form, that is, by making an assumption of
linear phenomenological equations. For the particular case πmn = 0,
when (21.78) reduces, because of (21.71), to

σ = −qa 1
T 2

( T
c2
u̇a + T ,a

)
, u̇a ≡ ua

;nu
n, (21.79)

this ansatz means that

qa = −κ̄(T,n + u̇nT/c
2
)
ha

n, (21.80)

which represents the relativistic generalization of the linear relation
between heat current and temperature gradient.

In many cases one can ignore irreversible processes. If the system
is determined by only two state quantities in the sense of (21.65), this
means because of (21.78) that complete, exact reversibility (σ = 0) is
possible either only for certain metrics (whose Lie derivatives vanish,
and the system is then in thermodynamic equilibrium), or for especially
simple media, whose energy-momentum tensor has the form

Tmn = µumun + phmn =
(
µ+ p/c2

)
umun + pgmn. (21.81)

Such a medium is called a perfect fluid or, for p = 0, dust. In a local
Minkowski system, the energy-momentum tensor has the form (13.6).

When superposing incoherent electromagnetic fields one has to add
(and average) the energy-momentum tensors and not the field strengths
(a field tensor can no longer be associated with this superposition). If
the fields being superposed single out locally no spatial direction in the
rest system um = (0, 0, 0, c) of an observer, then the resulting energy-
momentum tensor also has the perfect fluid form (21.81). Under the
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superposition the properties of vanishing trace, Tn
n = 0, and vanish-

ing divergence, Tmn
;n = 0, are of course preserved. Consequently the

radiation pressure p and the energy density µc2 are related by

3p = µc2. (21.82)

Such a medium is called an incoherent radiation field.

21.6 Perfect fluids and dust

According to the definition given in Section 21.5, a perfect fluid is char-
acterized by having an energy-momentum tensor of the form (21.81).

The equation of motion of this flow reads, using the notation µ̇ =
µ,nu

n, u̇n = un
;iu

i, etc.,

Tmn
;n =

(
µ+ p/c2

)
un

;nu
m +
(
µ+ p/c2

)
u̇m +

(
µ+ p/c2

)˙um + p,m = 0.
(21.83)

Contraction with um/c
2 gives the energy balance

µ̇+
(
µ+ p/c2

)
un

;n = 0, (21.84)

and contraction with the projection tensor, hi
m = gi

m + uium/c
2, the

momentum balance

(
µ+ p/c2

)
u̇i + himp,m = 0. (21.85)

Equation (21.85) shows that the pressure too contributes to the inertia
of the matter elements, the classical analogue of this equation being of
course

ρ
dv
dt

= −grad p. (21.86)

The equations of motion (21.84) and (21.85) must in each case be
completed by the specification of an equation of state. One can regard
as the simplest equation of state that of dust, p = 0. From this and the
equations of motion follow

u̇m = Dum/Dτ = 0 and (µun);n = 0; (21.87)

that is, the stream-lines of the matter are geodesics, and the rest mass
µ is conserved.
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21.7 Other fundamental physical laws

Just as with the examples of particle mechanics, electrodynamics, ther-
modynamics and mechanics of continua which have been described in
detail, so also one can carry over to Riemannian spaces other classical
theories, for example, those of the Dirac equation, of the Weyl equation
for the neutrino field, and for the Klein–Gordon equation. Although the
foundations of these theories have been thoroughly worked out, convinc-
ing examples and applications within the theory of gravitation are still
lacking, and we shall therefore not go into them further. For the Einstein
gravitation theory only the following property of closed systems, that is,
systems upon which act no forces whose origins lie outside the systems,
will be important; namely, that their energy-momentum tensor Tmn is
symmetric (expressing the law of conservation of angular momentum in
Special Relativity) and its divergence vanishes (generalization of the law
of conservation of energy-momentum in Special Relativity):

Tmn = Tnm, Tmn
;n = 0. (21.88)

With the fundamental laws of quantum mechanics and quantum field
theory things are rather different. Here indeed some work has been
done, addressed to particular questions, but one cannot yet speak of
a real synthesis between quantum theory and gravitation theory (see
Chapter 38).

Exercises

21.1 In Minkowski space, the four-potentials are often gauged by
An

;n = 0 (Lorentz gauge). Is that gauge also possible in a Rie-
mannian space? And will this gauge decouple the wave equa-
tions?

21.2 For a perfect fluid in hydrostatic equilibrium, the metric does
not depend on time in the fluid’s rest system. Determine gtt in
terms of p(µ) and give the explicit expression for p = αµ. Is a
surface p = 0 always possible in the latter case?

21.3 Show that for hydrostatic and thermal equilibrium (with qa = 0)
the temperature T satisfies T

√−gtt = const.

Further reading for Chapter 21

Ehlers (1961, 1966, 1971), Neugebauer (1980), Synge (1960), Tolman
(1934).



III. Foundations of Einstein’s
theory of gravitation

22

The fundamental equations of Einstein’s
theory of gravitation

22.1 The Einstein field equations

As we have already indicated more than once, the basic idea of Ein-
stein’s theory of gravitation consists of geometrizing the gravitational
force, that is, mapping all properties of the gravitational force and its
influence upon physical processes onto the properties of a Riemannian
space. While up until the present we have concerned ourselves only with
the mathematical structure of such a space and the influence of a given
Riemannian space upon physical laws, we want now to turn to the essen-
tial physical question. Gravitational fields are produced by masses – so
how are the properties of the Riemannian space calculated from the dis-
tribution of matter? Here, in the context of General Relativity, ‘matter’
means everything that can produce a gravitational field (i.e. that con-
tributes to the energy-momentum tensor), for example, not only atomic
nuclei and electrons, but also the electromagnetic field.

Of course one cannot derive logically the required new fundamental
physical law from the laws already known; however, one can set up
several very plausible requirements. We shall do this in the following
and discover, surprisingly, that once one accepts the Riemannian space,
the Einstein field equations follow almost directly.

The following requirements appear reasonable.

(a) The field equations should be tensor equations (independence of
coordinate systems of the laws of nature).

173
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(b) Like all other field equations of physics they should be partial dif-
ferential equations of at most second order for the functions to be
determined (the components of the metric tensor gmn), which are
linear in the highest derivatives.

(c) They should (in the appropriate limit) go over to the Poisson
(potential) equation:

∆U = 4πfµ (22.1)

of Newtonian gravitation theory (here U is the potential, f is the
Newtonian gravitational constant, and µ is the mass density).

(d) Since the energy-momentum tensor Tmn is the special relativistic
analogue of the mass density, it should be the cause (source) of the
gravitational field.

(e) If the space if flat, Tmn should vanish.

We now want to see where these requirements lead us. Plainly we need
a tensor (requirement (a)) that contains only derivatives of the met-
ric up to second order (requirement (b)); as building blocks for this
Einstein tensor Gmn, only the curvature tensor, the metric tensor and
the ε-tensor are available, as we have already shown in Section 19.3.
Requirement (d) means that the field equations have the structure

Gmn = κTmn, (22.2)

with a constant of nature κ which is still to be determined; this is consis-
tent with the symmetry and vanishing divergence (21.88) of the energy-
momentum tensor only if

Gmn
;n = 0 and Gmn = Gnm. (22.3)

There is now, as one can show, only one second rank tensor which is
linear (requirement (b)) in the components of the curvature tensor and
which satisfies (22.3); namely, Rmn − 1

2
gmnR, which we have already

met in (19.39) during the discussion of the Bianchi identities. Since the
metric tensor itself also satisfies (22.3), Gmn has the form

Gmn = Rmn − 1
2
gmnR+ Λgmn. (22.4)

The natural constant Λ is the cosmological constant, introduced by
Einstein (1917). If it does not vanish, a completely matter-free space
(Tmn = 0) would always be curved, in contradiction to requirement (e),
since because of (22.2) and (22.4) the Ricci tensor Rmn cannot vanish.
This requirement (e) is, however, difficult to prove. It is only possible
to distinguish the cases Λ = 0 and Λ 	= 0 by making observations and
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relating them to cosmological models. We shall assume that Λ = 0,
but we shall also discuss for a series of examples the influence of the
term Λgmn by bringing it into the right-hand side of (22.2) and formally
regarding it as part of the energy-momentum tensor.

The Einstein tensor thus has the form

Gmn = Rmn − 1
2Rgmn. (22.5)

For actual calculations, use of the explicit representation in terms of the
components of the curvature tensor

G1
1 = −(R23

23 +R24
24 +R34

34),

G2
2 = −(R13

13 +R14
14 +R34

34),

G1
2 = −(R31

32 +R41
42),

G2
3 = −(R12

13 +R42
43), etc.,

(22.6)

is often useful.
Our demands have led us in a rather unambiguous manner to the

Einstein field equations

Gmn = Rmn − 1
2Rgmn = κTmn. (22.7)

Einstein (1915) himself derived them after about ten years of research.
They were published nearly simultaneously by Hilbert (1915), who knew
about Einstein’s quest for the correct form of the equations and used the
variational principle (see Section 22.4) to derive them. The natural law
(22.7) shows how the space curvature (represented by the Ricci tensor
Rmn) is related to the matter distribution (represented by the energy-
momentum tensor Tmn).

The field equations (22.7) constitute a system of ten different equa-
tions to determine the ten metric functions gmn. But even for fixed initial
conditions this system has no unique solution; it must still
always be possible to carry out arbitrary coordinate transformations.
In fact precisely this under-determinacy in the system of field equations
is guaranteed by the existence of the contracted Bianchi identities

Gmn
;n = κTmn

;n = 0. (22.8)

They of course express the fact that the ten field equations (22.7) are
not independent of each other.

The equations (22.8) permit a conclusion of great physical significance.
Since the divergence of the Einstein tensor Gmn vanishes identically, the
Einstein field equations are integrable and free of internal contradiction
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only if Tmn
;n = 0. The covariant derivative in this condition is, however,

to be calculated with respect to the metric gmn, which should be first
determined from this very energy-momentum tensor! It is therefore in
principle impossible first to specify the space-time distribution of the
matter (the matter and its motion) and from this to calculate the space
structure. Space structure (curvature) and motion of the matter in
this space constitute a dynamical system whose elements are so closely
coupled with one another that they can only be solved simultaneously.
The space is not the stage for the physical event, but rather an aspect
of the interaction and motion of the matter.

Sometimes one can assume to good approximation that the space
structure is determined by a part of the energy-momentum tensor (for
example, by the masses of the stars) and that the remainder (for exam-
ple, the starlight) no longer alters the curvature. One then speaks of
test fields. These are fields which do not cause gravitational fields, but
are only influenced by the gravitational fields already existing and hence
serve to demonstrate the properties of these fields; they do not appear
on the right-hand side of the field equations (22.7).

22.2 The Newtonian limit

In every new physical theory the previous one is contained as a limit-
ing case. This experience is confirmed also in the theory of gravitation.
The purpose of this section is to bring out the connection between the
Einstein equations (22.7) and the Newtonian theory of gravitation and
thereby to clarify the physical meaning of the natural constant κ intro-
duced in (22.7). First of all we must define what we mean by ‘Newtonian
limit’. In the Newtonian theory of gravitation the mass density µ is the
only source of the field. In the applications in which its predictions have
been verified, such as planetary motion, all velocities in the rest sys-
tem of the centre of gravity of the field-producing masses, for example
the Sun, are small compared with the velocity of light. Therefore the
following characterization of the Newtonian limit is appropriate.

(a) There exists a coordinate system in which the energy density

T44 = µc2 (22.9)

is the effective source of the gravitational field and all other com-
ponents of the energy-momentum tensor are ignorable.

(b) The fields vary only slowly; derivatives with respect to x4 = ct,
which of course contain the factor c−1, are to be ignored.
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(c) The metric deviates only slightly from that of a Minkowski space:

gmn = ηnm + fnm, ηmn = diag (1, 1, 1,−1). (22.10)

Terms which are quadratic in fmn and its derivatives are ignored;
the Einstein field equations are linearized (see Section 27.2).

We have now to incorporate these three ideas into the field equations
(22.7). By contraction we have quite generally from (22.7) the relation

−R = κT a
a = κT, (22.11)

so that one can also write the Einstein equations in the form

Rmn = κ
(
Tmn − 1

2gmnT
)
. (22.12)

Of these ten equations only

R44 = κ
(
T44 − 1

2η44T
)

= κ
(
µc2 − 1

2µc
2
)

= 1
2κµc

2 (22.13)

is of interest in the Newtonian approximation. In order to calculate R44

from the metric (22.10) we start from the defining equation (19.7) for the
curvature tensor and ignore terms which are quadratic in the Christoffel
symbols, that is, we use

Ra
mbn = Γa

mn,b − Γa
mb,n = 1

2η
as(fsn,mb + fmb,sn − fmn,bs − fbs,mn).

(22.14)
Then we have

R44 = Ra
4a4 = 1

2η
as(fs4,a4 + fa4,s4 − f44,as − fas,44), (22.15)

or, on ignoring all time derivatives,

R44 = −1
2η

asf44,as = − 1
2η

ασf44,ασ = −1
2∆f44, (22.16)

and the field equation (22.13) simplifies to

∆f44 = −κµc2. (22.17)

This equation has indeed the structure of a Poisson equation – but not
every quantity which satisfies a Poisson equation necessarily coincides
with the Newtonian gravitational potential! In order not to make a
mistake in the physical interpretation of (22.17) we need one additional
piece of information, which is furnished by the geodesic equation

d2xn

dτ2
= −Γn

ab

dxa

dτ
dxb

dτ
. (22.18)

For slowly moving particles (e.g. planets) proper time almost coincides
with coordinate time t = x4/c, and the four-velocity on the right-hand
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side of (22.18) can be replaced by ua = (0, 0, 0, c):

d2xν

dt2
= −Γν

44c
2 = 1

2
ηνµg44,µc

2 = 1
2
ηνµf44,µc

2. (22.19)

If we compare this equation of motion with that for a particle in the
gravitational potential U , that is, with

d2r
dt2

= −gradU, (22.20)

then we see that the Newtonian gravitational potential U is related to
the metric by the relation

U = −c2f44/2, g44 = −(1 + 2U/c2), (22.21)

and that because of (22.1), (22.17) and (22.21) we have the relation

8πf/c4 = κ = 2.07× 10−48 g−1cm−1s2 (22.22)

between the Newtonian constant of gravitation f and the Einstein nat-
ural constant κ. This establishes the required connection between New-
tonian and Einsteinian gravitational theories.

The relation (22.21) between g44 and the potential U is in agreement
with equation (21.17), since for small spatial regions we certainly have
U(xν) = U,νx

ν = aνx
ν (aν = +U,ν , because we are dealing with com-

ponents of the acceleration seen from a freely falling inertial system).

22.3 The equations of motion of test particles

Monopole particle It is one of its particular merits that, in the Einstein
theory, the equations of motion are a consequence of the field equations.
If we take, for example, the Maxwell theory, then charge conservation
is of course a consequence of the field equations, but the motion of the
sources and the distribution of the charges are arbitrarily specifiable.
Also the field of two point charges at rest a finite distance apart is an
exact solution of Maxwell’s equations – although the charges exert forces
upon one another and therefore would be immediately accelerated into
motion.

Even after the Einstein field equations had been set up it was thought
that one had to demand in addition that the geodesic equation be the
equation of motion of a test particle; but eventually it was realized that
this can be deduced from the relation

Tmn
;n = 0 (22.23)
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which is always valid in the Einstein theory, and is thus a consequence
of the local energy-momentum conservation.

In order to show this we first of all need the energy-momentum ten-
sor for a pointlike particle of constant rest mass m. We use the four-
dimensional δ-function defined in Section 11.1, preferring here to write
volume integrals as for example∫

F (xi)
δ4[xn − an]√−g

√−g d4x = F (an), (22.24)

and perform the transition from the tensor Tmn = µumun of dust to
that of a pointlike particle by

T ik(yn) = mc

∫
δ4[yn − xn(τ)]√−g(xa)

dxi

dτ
dxk

dτ
dτ. (22.25)

In the local Minkowski rest-system (
√−g = 1, t = τ , xν = 0) it corre-

sponds precisely to the transition

µ→ mδ(x)δ(y)δ(z) (22.26)

of a continuous distribution of matter to a point mass.
We now insert the energy-momentum tensor (22.25) into (22.23).

Using (22.24) and (16.19) we can rewrite the partial derivatives as:

T ik
,k =

∂T ik

∂yk
= mc

∫
∂{δ4[yn − xn(τ)]}/∂yk√−g(xa)

dxi

dτ
dxk

dτ
dτ

= −mc
∫
∂{δ4[yn − xn(τ)]}/∂xk√−g(xa)

dxk

dτ
dxi

dτ
dτ

(22.27)
= mc

∫
δ4[yn − xn(τ)]

d
dτ

(dxi

dτ
1√−g
)
dτ

= mc

∫
δ4[yn − xn(τ)]√−g

(d2xi

dτ2
− Γa

ab

dxi

dτ
dxb

dτ

)
dτ.

From (22.23) we thus obtain

0 = T ik
;k = T ik

,k + Γi
nkT

in

= mc

∫
δ4[yn − xn(τ)]√−g

(d2xi

dτ2
− Γa

ak

dxi

dτ
dxk

dτ
(22.28)

+ Γi
nk

dxn

dτ
dxk

dτ
+ Γa

ak

dxi

dτ
dxk

dτ

)
dτ,

and hence

0 = mc

∫
δ4[yn − xn(τ)]√−g

(D2xi

Dτ2

)
dτ. (22.29)
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On the world line yn = xn(τ) of the particle this equation can only be
satisfied if

D2xi

Dτ2
= 0, (22.30)

and so the particle must move on a geodesic.
At first sight it is perhaps not apparent where it has in fact been

assumed in this rather formal derivation that we are dealing with a test
particle. But the gravitational field produced by a pointlike particle will
certainly not be regular at the position of the particle (the electrical field
at the position of a point charge is also singular), so that the metric and
Christoffel symbols do not exist there at all.

Spinning particle An extended body, for example, a planet, will in gen-
eral not move exactly along a geodesic. This is due not so much to
the gravitational field caused by the body itself as to the action of ‘tidal
forces’. Because of the space curvature, the distance between neighbour-
ing geodesics is not constant (see Section 1.4); that is, the gravitational
forces (which try to move every point of the body along a geodesic)
deform the body, change its state of rotation and thereby lead to a com-
plicated orbit. We can take account of one part of this effect by starting
off from the model of a pointlike body, but associating with it higher
moments (dipole moment, spin) in addition to the mass. Mathemati-
cally we can do this by using for its description not just δ-functions, but
also their derivatives.

As we shall be interested later on in the action of the gravitational
field upon a top, the equations of motion of a spinning (monopole-dipole)
particle will be described in brief; for details and proofs we refer to the
extensive literature on this problem.

An extended body can be approximately described by its mass m(τ),
the four-velocity ua(τ) of a suitably chosen point, and the antisymmetric
spin-tensor Sab(τ). From the vanishing of the divergence of the energy-
momentum tensor

T ik(yn) =
∫

c√−g
[
δ4[yn − xn(τ)]

(
muiuk + 1

2un[Ṡniuk + Ṡnkui]/c2
)

−{δ4[yn − xn(τ)] 1
2
(Smiuk + Smkui)

}
;m

]
dτ (22.31)

follow the equations of motion as

DSab/Dτ ≡ Ṡab =
(
unṠ

naub − unṠ
nbua
)
/c2 (22.32)

D
(
mua + ubṠ

ba/c2
)
/Dτ = 1

2R
a

bcdS
dcub. (22.33)



22.3 The equations of motion of test particles 181

Of these equations only seven are independent, as contraction with
ua shows. Thus they do not suffice for the determination of the ten
unknown functions (m, Sab, and three components of ua). The physical
reason for this is that Sab, like angular momentum or dipole moment in
Newtonian mechanics, depends upon the reference point, and we have
not yet fixed this point and its world line. We now define the reference
world line xa(τ) by the requirement that in the instantaneous rest frame
of an observer moving on the world line, the dipole moment of the body
is zero. Since the total mass is positive, such a line always exists. One
possible version of this condition is, as one can show,

Sabub = 0. (22.34)

Because of this subsidiary condition the antisymmetric tensor Sab has
only three independent components, which can be mapped uniquely onto
the spin-vector (intrinsic angular-momentum vector) Sa according to

Sa = 1
2εabmnu

bSmn/c, Smn = εaq
mnSauq/c, (22.35)

with Snun = 0.
Substitution of (22.34) and (22.35) into the equations of motion (22.32)

to (22.33) yields
DSa

Dτ
=

1
c2
uaSn

Dun

Dτ
, (22.36)

D
Dτ

m = 0, (22.37)

m
D
Dτ

ua = −1
c
εarq

pSruq
D2up

Dτ2
+

1
2c
Ra

bcdε
cdpqSpuqu

b. (22.38)

The first of these equations says that the spin-vector Sa is Fermi–
Walker transported along the orbit (cp. (18.19)); its magnitude then
remains constant:

SaSa = const. (22.39)

From the third equation (22.38) we see that the point defined by
(22.34) does not move on a geodesic; this effect will in general be ignorable.

The equation of motion for spin, (22.36), is also valid when additional
non-gravitational forces act, provided only that these forces exert no
couple on the body. An observer can therefore realize his Fermi–Walker
transported triad in the directions of the axes of three tops which are
suspended freely.
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Further reading for Section 22.3

Taub (1965), Westpfahl (1967).

22.4 A variational principle for Einstein’s theory

All known fundamental, physically significant equations of classical fields
can be derived from a variational principle, including the Einstein field
equations. What demands must one make regarding the Lagrangian
density L in order that precisely the field equations (22.7) follow from

δ
∫ Ld4x = 0? (22.40)

Of course the quantity in (22.40) must be an invariant; that is, L must
be the product of a scalar L and

√−g. But for the pure gravitational
field there is only one unique scalar which is quadratic in first derivatives
of the metric and linear in the second derivatives, namely, the scalar cur-
vature R (there is no scalar which contains only first derivatives). Since
the matter must also be represented in L, we couple it – as usual in
field theory – by simply adding a part κLM arising from the matter dis-
tribution (for example, from an electromagnetic field). Our variational
principle reads, upon appropriate choice of numerical factors, thus,

δW = δ
∫ (

1
2
R+ κLM

)√−g d4x = 0 (22.41)

(Hilbert 1915). We shall now show that the Einstein field equations
(22.7) really do follow from this ansatz.

As fundamental quantities of the gravitational field, which are to be
varied independently of one another, we shall naturally take the com-
ponents of the metric tensor gmn. (If in (22.41) one varies the non-
metrical field quantities contained in LM, one obtains the corresponding
field equations, for example, Maxwell’s equations.) As usual with action
integrals containing second derivatives, the variations δgmn of the basic
quantities and the variations of their first derivatives (combined into the
variations δΓn

ab of the Christoffel symbols) will be restricted so as to van-
ish on the bounding surfaces of the four-dimensional region of integra-
tion. Our first goal is to express the variations occurring in the equation

δW = 1
2

∫
[Rδ
√−g +

√−g Rmn δg
mn +

√−g gmn δRmn

+ δ (2κLM
√−g) ] d4x = 0

(22.42)

in terms of δgmn.
From the properties of the metric tensor and its determinant described

in Section 16.2 we obtain immediately

δ
√−g =

∂
√−g
∂gmn

δgmn = 1
2

√−g gmn δgmn (22.43)
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and
δgmn = −gmagnb δgab. (22.44)

The defining equations (19.7) and (19.27) for the curvature tensor and
the Ricci tensor, respectively, lead to

δRmn = −(δΓa
ma),n + (δΓa

mn),a − δ(Γa
rnΓr

ma − Γa
raΓr

mn). (22.45)

The evaluation of the variational principle will be seen later to depend
only upon the structure of the term containing δRmn, which is not easily
found by direct calculation from (22.45). We therefore give the result
(and its structure)

gmn δRmn =
1√−g [
√−g (gmn δΓa

mn − gma δΓn
mn)],a ≡ F a

;a (22.46)

without calculation and prove the correctness of this equation by show-
ing that it is a tensor equation and that it is satisfied in a particular
coordinate system.

The tensor property of equation (22.46) follows from the fact that
not only the δRmn, but also the difference δΓa

mn of Christoffel symbols
(the disturbing terms in (16.31) cancel when the difference is formed),
are tensors. The equation (22.46) is clearly correct in locally geodesic
coordinates; for

√−g = 1, gmn
,a = 0, Γa

bc = 0, (22.45) and (22.46) lead
to the same equation, namely, to

gmn δRmn = (gmn δΓa
mn − gma δΓn

mn),a = gmn(δΓa
mn,a − δΓa

ma,n).
(22.47)

We can only really work out the last term in (22.42) with exact knowl-
edge of the Lagrangian LM of the matter. In order to obtain LM, we
shall invoke the aid of the usual transcription formula. One starts from
the corresponding special-relativistic Lagrangian, replaces the partial by
covariant derivatives and now forms scalar products with gmn instead
of with ηmn. LM may thus contain Christoffel symbols, but certainly no
second derivatives of the metric, since it is in general constructed from
the field quantities and their first derivatives only. We can therefore
write generally

δ (
√−g LM) =

δ (
√−g LM)
δgmn

δgmn +
(√−g ∂LM

∂gmn,a
δgmn

)
,a
, (22.48)

in which we have used the usual abbreviation

δ (
√−g LM)
δgmn

=
∂ (
√−g LM)
∂gmn

−
(∂ (
√−g LM)
∂gmn,a

)
,a

(22.49)
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for the so-called variational derivative.
If we now substitute (22.43), (22.44), (22.46) and (22.48) into the

variational principle (22.42) then we obtain

δW = 1
2

∫ [ (
1
2g

mnR−Rmn +
2κ√−g

δ (
√−g LM)
δgmn

)
δgmn + F a

;a

(22.50)
+

2κ√−g
(√−g ∂LM

∂gmn,a
δgmn

)
,a

]√−g d4x = 0.

With the help of the Gauss law (20.34) we can reduce the last two terms
of the sum to a surface integral; this surface integral vanishes, however,
because we have demanded that δgmn = 0 and δΓa

bc = 0 on the boundary.
Hence (22.50) simplifies to

δW = 1
2

∫ (
1
2g

mnR−Rmn +
2κ√−g

δ (
√−g LM)
δgmn

)
δgmn

√−g d4x = 0.

(22.51)
Because of the independence of the variations δgmn the sum of the terms
contained in the parentheses must vanish identically, so that from our
variational principle we obtain precisely the Einstein equations

Rmn − 1
2g

mnR = κTmn, (22.52)

if we identify the energy-momentum tensor with the variational deriva-
tive according to

Tmn =
2√−g

δ (
√−g LM)
δgmn

. (22.53)

How can one justify this identification? Two standpoints are possi-
ble. On the one hand one can regard (22.53) as defining the energy-
momentum tensor or, put more exactly, the energy-momentum tensor
out of the many possible energy-momentum tensors of a classical field
theory, which must stand on the right-hand side of the Einstein field
equations. In this sense (22.53) is the construction principle for the
symmetric energy-momentum tensor, which is remarkably complicated
to find in many field theories. Although this procedure is quite natural in
the Einstein theory, one can of course also corroborate it by comparison
with the energy-momentum tensor Tmn, which is already known. We
will do this for the example of the Maxwell field. Since its Lagrangian

LM = − 1
4FabF

ab = − 1
4 (Ab,a −Aa,b)(As,r −Ar,s)gargbs (22.54)

does not depend at all upon derivatives of the metric, we have, because
of (22.48) and (22.44),
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δ (
√−g LM)
δgmn

=
∂ (
√−g LM)
∂gmn

= 1
2

√−g (LMg
mn + FnbFm

b), (22.55)

and from the definition (22.53)

Tmn = FnbFm
b − 1

4g
mnFabF

ab, (22.56)

which is indeed the correct energy-momentum tensor of electrodynamics.
Finally, we want to draw attention to a peculiar property of the action

function of the gravitational field. Although the Lagrangian contains
derivatives of second order, it does not give rise to differential equations
of fourth order for the field equations – as we would normally have
expected. This has to do with the fact that the curvature scalar R
contains derivatives of second order in precisely such a combination that
a four-dimensional divergence can be formed from them,

R =
1√−g [
√−g (gmaΓn

ma − gmnΓa
ma)],n + F (gmn,Γa

mn), (22.57)

which, by means of the Gauss law, can be turned into a surface integral
and hence supplies no contribution to the variation. This is also the
deeper reason why one part of the variation of the integrand appears as a
divergence (see (22.46)). The non-covariant decomposition (22.57) of the
Lagrangian of the gravitational field into a divergence and a remainder
containing only first derivatives plays an important rôle in the attempt
to define an energy-momentum tensor (energy-momentum complex) of
the gravitational field in the context of the Lagrangian function.

23

The Schwarzschild solution

23.1 The field equations

The gravitational fields which are most important in our daily life,
namely, that of the Earth and that of the Sun, are produced by slowly
rotating, nearly spherical mass distributions; they are approximately
spherically symmetric. Since, on the other hand, we may hope that
spherically symmetric gravitational fields are especially simple, we dis-
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cuss, as a first application of the Einstein field equations, the problem
of obtaining exact spherically symmetric solutions.

Line element We shall naturally try to introduce coordinates appropri-
ate to the problem. Since a choice of coordinates always leads to require-
ments on the metric functions, we must proceed carefully in order not to
lose solutions by making the restrictions too strong. Spherical symmetry
evidently signifies that in three-dimensional space, T = const., all radial
directions are equivalent and no perpendicular direction is singled out;
in spherical coordinates R, ϑ, ϕ we have

d(3)s2 = g11(R, cT ) dR2 + f(R, cT )
[
dϑ2 + sin2 ϑ dϕ2

]
. (23.1)

The angular coordinates at different times can be so chosen that gTϑ

and gTϕ do not appear in the metric (they would single out tangential
directions). Our ansatz thus reads

ds2 = g11(R, cT ) dR2 + f(R, cT )
[
dϑ2 + sin2 ϑ dϕ2

]
+ 2g14(R, cT ) dR dcT + g44(R, cT )c2 dT 2.

(23.2)

For many calculations it is expedient to simplify ds2 further. By the
coordinate transformation r2 = f(R, cT ), where f is positive (for if not
ϑ, ϕ would be additional timelike coordinates), we bring the line element
into the form

ds2 = h2(r, T ) dr2 − 2a(r, T )b(r, T )cdT dr − b2(r, T )c2 dT 2

+ r2
(
dϑ2 + sin2 ϑ dϕ2

)
,

(23.3)

which already contains the usual two-dimensional spherical surface
element. Here we have assumed implicitly that r is a spacelike and
T a timelike coordinate. A further transformation

eν/2 d(ct) = bd(cT ) + adr (23.4)

(eν/2 plays the rôle of an integrating factor) eliminates the undesired
non-orthogonal term. Thus we arrive at the Schwarzschild form,

ds2 = eλ(r,t) dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)− eν(r,t) d(ct)2, (23.5)

of the line element of a spherically symmetric metric.

Christoffel symbols The Christoffel symbols associated with a metric are
constructed most quickly by comparing the Euler–Lagrange equations

d
dτ

∂L

∂ (dxi/dτ)
− ∂L

∂xi
= 0, (23.6)

for the Lagrangian
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L =
1
2

[
eλ
(dr

dτ

)2

+ r2
(dϑ

dτ

)2

+ r2 sin2 ϑ
(dϕ

dτ

)2

− eν
(dx4

dτ

)2
]

(23.7)

with the geodesic equation

d2xi

dτ2
+ Γi

mn

dxm

dτ
dxn

dτ
= 0. (23.8)

The Christoffel symbols can then easily be read off. With the abbrevia-
tions ˙≡ ∂/∂ct and ′ ≡ ∂/∂r equations (23.6) become

eλ

[
d2r

dτ2
+

1
2

(dr
dτ

)2

λ′ +
dr
dτ

dx4

dτ
λ̇

]
− r
(dϑ

dτ

)2

− r sin2 ϑ
(dϕ

dτ

)2

+
1
2

(dx4

dτ

)2

eνν′ = 0,

r2
d2ϑ

dτ2
+ 2r

dr
dτ

dϑ
dτ
− r2 sinϑ cosϑ

(dϕ
dτ

)2

= 0, (23.9)

r2 sin2 ϑ
d2ϕ

dτ2
+ 2r sin2 ϑ

dr
dτ

dϕ
dτ

+ 2r2 sinϑ cosϑ
dϕ
dτ

dϑ
dτ

= 0,

eν

[
d2x4

dτ2
+
ν̇

2

(dx4

dτ

)2

+ ν′
dx4

dτ
dr
dτ

]
+

1
2
eλλ̇
(dr

dτ

)2

= 0.

Of the total of forty independent Christoffel symbols only the following
twelve are non-zero (here x1 = r, x2 = ϑ, x3 = ϕ and x4 = ct):

Γ1
11 = 1

2
λ′, Γ1

14 = 1
2 λ̇, Γ1

22 = − re−λ,

Γ1
33 = − r sin2 ϑ e−λ, Γ1

44 = 1
2eν−λν′, Γ2

12 = 1/r,

Γ2
33 = − sinϑ cosϑ, Γ3

13 = 1/r, Γ3
23 = cotϑ,

Γ4
11 = 1

2 λ̇eλ−ν , Γ4
14 = 1

2ν
′, Γ4

44 = 1
2 ν̇.

(23.10)

Ricci tensor From the general defining equation

Ra
mbn = Γa

mn,b − Γa
mb,n + Γa

rbΓ
r
mn − Γa

rnΓr
mb (23.11)

we obtain, bearing in mind (23.10),

R1
m1n = Γ1

mn,1 − Γ1
1m,n + Γ1

11Γ
1
mn + Γ1

14Γ
4
mn − Γ1

rnΓr
m1,

R2
m2n = Γ2

mn,2 − Γ2
2m,n + Γ2

12Γ
1
mn − Γ2

rnΓr
m2,

R3
m3n = − Γ3

3m,n + Γ3
13Γ

1
mn + Γ3

23Γ
2
mn − Γ3

rnΓr
m3,

R4
m4n = Γ4

mn,4 − Γ4
4m,n + Γ4

14Γ
1
mn + Γ4

44Γ
4
mn − Γ4

rnΓr
m4.

(23.12)

Unless m = n or (m,n) = (1, 4) these components vanish. Also R1234 =
0. Thus only the following components of the Ricci tensor differ from
zero:
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R11 = eλ−ν
[

1
2 λ̈+ 1

4 λ̇
2 − 1

4 λ̇ν̇
]− 1

2ν
′′ − 1

4ν
′2 − 1

4ν
′λ′ + λ′/r,

R44 = eν−λ
[

1
2ν

′′ + 1
4ν

′2 − 1
4ν

′λ′ + 1
4ν

′/r
]− 1

2 λ̈− 1
4 λ̇

2 + 1
4 λ̇ν̇,

R14 = λ̇/r,

R22 = − e−λ
[
1 + 1

2r(ν
′ − λ′)]+ 1 = R33/ sin2 ϑ.

(23.13)

We have indicated here in detail how the necessary calculations could
be done by hand. Of course, for really computing Christoffel symbols
and Riemann tensor components one would use one of the many existing
programs for algebraic computing, for example Maple or Mathematica.

Vacuum field equations Outside the field-producing masses the energy-
momentum tensor vanishes, and, since it follows immediately by taking
the trace of

Rmn − 1
2g

mnR = 0 (23.14)

that R = 0, the field equations for the vacuum are simply

Rmn = 0. (23.15)

That is, all the components (23.13) of the Ricci tensor must vanish.

23.2 The solution of the vacuum field equations

Birkhoff theorem From R14 = 0 we have immediately that λ̇ = 0; thus λ
and λ̇ depend only upon the radial coordinate r. The equation R22 = 0
can then only be satisfied if ν′ is also independent of time,

ν = ν(r) + f(t). (23.16)

Since ν occurs in the line element in the combination eν(r)ef(t) d(ct)2

one can always make the term f(t) in (23.16) vanish by a coordinate
transformation

dt′ = ef/2 dt, (23.17)

so that in the new coordinates we have

λ = λ(r), ν = ν(r); (23.18)

that is, the metric no longer depends upon time. And thus we have
proved the Birkhoff theorem: every spherically symmetric vacuum solu-
tion is independent of t. (The assumptions made in Section 23.1 may fail,
so that t is not a timelike coordinate and r is not a spacelike coordinate,
for example, in a black hole (see Section 35.3). However, the theorem
still holds, although one would no longer describe the solution as static.)
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If one considers the vacuum gravitational field produced by a spheri-
cally symmetric star, then this field remains static even if the material
inside the star experiences a spherically symmetric radial displacement
(explosion). Thus the Birkhoff theorem is the analogue of the statement
in electrodynamics that a spherically symmetric distribution of charges
and currents does not radiate, that there are no spherically symmetric
electromagnetic waves.

Schwarzschild solution For static vacuum fields the field equations (23.15)
simplify to

1
2
ν′′ + 1

4
ν′2 − 1

4
ν′λ′ − λ′/r = 0,

(ν′ + λ′)/r = 0,

e−λ(1− rλ′)− 1 = 0.

(23.19)

The second of these equations is equivalent to

λ(r) = −ν(r), (23.20)

since a possible additive constant in (23.20) is a special case of the f(t) in
(23.16) and can thus be made to vanish by a coordinate transformation.

Under the substitution α = e−λ, the third equation transforms into
the differential equation

α′ + α/r = 1/r, (23.21)

whose general solution is

α = e−λ = eν = 1− 2M/r, (23.22)

with 2M as a freely adjustable constant of integration. The spherically
symmetric vacuum solution, found by Schwarzschild (1916) and Droste
(1916), therefore has the line element

ds2 =
dr2

1− 2M/r
+ r2
(
dϑ2 + sin2 ϑ dϕ2

)−
(

1− 2M
r

)
c2 dt2. (23.23)

One can verify by direct substitution that the first of the field equations
(23.19) is also satisfied and furnishes no further conditions. We shall
discuss the physical meaning of the constant of integration M in the
following section.

23.3 General discussion of the Schwarzschild solution

In order to understand the physical properties of the Schwarzschild line
element (23.23) we have first to clarify the physical significance of the
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integration parameter M . This is best done through a comparison with
Newtonian theory. For large values of the coordinate r, (23.23) deviates
only a little from the metric of a flat space, and, from the relation
(22.21), which is valid in this limit and links the Newtonian gravitational
potential U to the metric, we have

U = −c2(1 + g44)/2 = −Mc2/r. (23.24)

We have thus to interpret the Schwarzschild solution as the gravitational
field present outside a spherically symmetric mass distribution whose
(Newtonian) mass m is

m =
Mc2

f
=

8πM
κc2

> 0. (23.25)

According to (23.25), the (positive) constant of integration 2M is a
measure of the total mass; since it has the dimension of a length, one
also calls rG = 2M the Schwarzschild radius or gravitational radius of
the source. For normal stars or planets rG is very small in relation to the
geometrical radius. The Schwarzschild radius of the Sun, for example,
has the value rG = 2.96 km, that of the Earth rG = 8.8 mm. Since the
Schwarzschild metric describes only the gravitational field outside the
matter distribution (we shall discuss the interior field in Chapter 26),
whilst the Schwarzschild radius mostly lies far in the interior, we shall
initially suppose that r � 2M always. See, however, Chapter 35, where
we shall investigate the Schwarzschild metric again, and in more detail.

In the discussion of physical properties of the Schwarzschild metric
(23.23) one must always remember that r and t in particular are only
coordinates and have no immediate physical significance. We there-
fore call t the coordinate time, to distinguish it, for example, from the
proper time τ of an observer at rest in the gravitational field; in the
Schwarzschild field these two quantities are related by

dτ =
√

1− 2M/r dt. (23.26)

The radial coordinate r is so defined that the surface area of a sphere
r = const., t = const. has the value 4πr2. The infinitesimal displacement
in the radial direction (dϑ = dϕ = dt = 0) is given, however, by

ds = dR =
dr√

1− 2M/r
, (23.27)

and is therefore always greater than the difference of the radial coordi-
nates. One can illustrate the metrical relations in the surface t = const.,



23.4 The motion of the planets and perihelion precession 191

Surface of star

F

x = r cos ϕ

y = r sin ϕ

Fig. 23.1. Illustration of the section t = const., ϑ = π/2 of the Schwarzschild

metric; F = [8M(r − 2M)]1/2.

ϑ = π/2 by means of a surface of revolution F = F (r), which for r →∞
goes over to a plane and for small r has a bulge out of this plane (see
Fig. 23.1). When discussing paths of motion (t variable) one must always
remember that g44 is also dependent upon position.

23.4 The motion of the planets and perihelion precession

Figure 23.1 gives a qualitative idea of the planetary orbits if one imag-
ines the planets as spheres which roll about on the surface under the
influence of a downwardly directed gravitational field. According to the
Newtonian gravitational theory the orbits of planets are ellipses (in the
xy-plane of Fig. 23.1). Does the Einstein theory in any way change this
well verified result?

To answer this question properly we should integrate the Lagrange
equations of the second kind already set up in (23.9). But since one
can always satisfy the initial conditions ϑ = π/2 and dϑ/dτ = 0 by
a suitable rotation of the coordinate system, and (23.9) then implies
that d2ϑ/dτ2 also vanishes, the orbit remains permanently in the plane
ϑ = π/2; as in Newtonian theory, the orbit of a planet runs in a ‘plane’
which passes through the middle of the Sun. We can therefore proceed
from the simplified Lagrangian

L =
1
2

[
1

1− 2M/r

(dr
dτ

2)
+ r2
(dϕ

dτ

2)
−
(
1− 2M

r

)(dx4

dτ

)2
]

(23.28)

which results from substitution of the Schwarzschild metric (23.23) and
ϑ = π/2 into (23.7).
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Since ϕ and x4 are cyclic coordinates, two conservation laws hold,
namely, that of angular momentum,

r2dϕ/dτ = B, (23.29)

and that of energy,
(1− 2M/r) dct/dτ = A. (23.30)

In place of a third equation of motion, we use the defining equation

1
1− 2M/r

(
dr
dτ

)2

+ r2
(

dϕ
dτ

)2

−
(

1− 2M
r

)(
dct
dτ

)2

= −c2 (23.31)

for the proper time τ , which like the energy law and the momentum law
has the form of a first integral of the equations of motion.

From now on the procedure is analogous to that of Newtonian
mechanics. In order to obtain the orbits r = r(ϕ) we replace the vari-
able τ by ϕ, with the aid of the angular-momentum law, and simplify
the equation of motion by the substitution u = r−1. Putting

r =
1
u
,

dϕ
dτ

= Bu2,
dct
dτ

=
A

1− 2Mu
,

dr
dτ

= −B du
dϕ

(23.32)

into (23.31), we have

B2u′2 +B2u2(1− 2Mu)−A2 = −c2(1− 2Mu), u′ ≡ du/dϕ. (23.33)

This equation can in fact be integrated immediately, but it leads to
elliptic integrals, which are awkward to handle. We therefore differenti-
ate (23.33) and obtain the equation

u′′ + u = Mc2/B2 + 3Mu2, (23.34)

which is easier to discuss. The term 3Mu2 is absent in the Newtonian
theory, where we have

u′′0 + u0 = Mc2/B2. (23.35)

The solutions of this latter differential equation are, as is well known,
the conics

u0 = Mc2(1 + ε cosϕ)/B2. (23.36)

We can obtain an approximate solution u1 to the exact orbit equation
(23.34) valid for M/r � 1, if we substitute the Newtonian solution
(23.36) into the term quadratic in u, that is, we solve

u′′1 + u1 =
Mc2

B2
+ 3Mu2

0 =
Mc2

B2
+

3M3c4

B4

(
1 + 2ε cosϕ+ ε2 cos2 ϕ

)
.

(23.37)
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This differential equation is of the type due to a forced oscillation. As
one can confirm by substitution, the first approximation sought for is

u1 = u0 +
3M3c4

B4

[
1 + εϕ sinϕ+ ε2

(
1
2
− 1

6
cos 2ϕ

)]
. (23.38)

The most important term on the right-hand side is the term linear in
εϕ, because it is the only one which in the course of time (with many
revolutions of the planet) becomes larger and larger. We therefore ignore
the other corrections to u0 and obtain (after substituting for u0)

u1 =
Mc2

B2

[
1 + ε cosϕ+ ε

3M2c2

B2
ϕ sinϕ

]
, (23.39)

or, since r0 = u−1
0 is large compared with M (M2c2/B2 � 1),

u1 =
1
r

=
Mc2

B2

[
1 + ε cos

(
1− 3M2c2

B2

)
ϕ
]
. (23.40)

The orbit of the planet is thus only approximately an ellipse (see
Fig. 23.2). The solution (23.40) is indeed still a periodic function, but
no longer, however, with the period 2π. The point at which the orbit
is closest to the Sun is reached again only after an additional rotation
through the angle

∆ϕP = 6πM2c2/B2. (23.41)

This effect is the famous perihelion precession. If, using the equation of
the ellipse (23.36), we express the factor Mc2/B2 in (23.41) in terms of
the semi-major axis a of the ellipse and of ε, so that

∆ϕP = 6πM/a
(
1− ε2), (23.42)

then we see that the precession of the perihelion is greatest for a large
central mass M and an elongated ellipse (ε ≈ 1) with a small (motion
close to the centre). For circular orbits it disappears.

a(1 + ε)

a(1 − ε)

∆ϕP

Fig. 23.2. Rosette motion of a planet due to perihelion precession (∆ϕP ex-
aggerated in magnitude).
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23.5 The propagation of light in the Schwarzschild field

Light rays and deflection of light Light rays are null geodesics, that is,
geodesics with ds2 = 0. We can compute the corresponding geodesic
equation as in the previous section and hence immediately take over
a part of the results found there. However, we must use the affine
parameter λ in place of the proper time τ and the relation

1
1− 2M/r

( dr
dλ

)2

+ r2
(dϕ

dλ

)2

−
(
1− 2M

r

)(dct
dλ

)2

= 0 (23.43)

in place of (23.31), cp. (16.10). We then arrive at the statement that
for suitable choice of coordinates light rays in the Schwarzschild met-
ric travel in the surface ϑ = const. = π/2 and satisfy the differential
equation

d2u

dϕ2
+ u = 3Mu2, u ≡ 1/r, (23.44)

which is analogous to (23.34).
In flat space (M = 0) the light rays are of course straight lines. With

our choice of coordinates these straight lines are represented by

u0 =
1
r

=
1
D

sin(ϕ− ϕ0). (23.45)

They run in the directions ϕ = ϕ0 and ϕ = ϕ0 + π to infinity (u = 0)
and have displacement D from the centre (r = 0).

To obtain an approximation solution u1 to (23.44) we put the Newto-
nian value (23.45) into the term quadratic in u and solve

d2u1

dϕ2
+ u1 =

3M
D2

sin2(ϕ− ϕ0). (23.46)

As one can verify by substitution, for suitable choice of ϕ0,

u1 =
1
r

= ± sinϕ
D

+
M(1 + cosϕ)2

D2
(23.47)

is a family of solutions. These curves come in parallelly from infinity
(from the direction ϕ = π), see Fig. 23.3. The sign in (23.47) is always
to be chosen so that u1 = 1/r is positive. Since a curve leaves the field
in the direction in which u1 again becomes zero (r infinite), its total
deflection relative to a straight line is (ignoring terms quadratic in M)

∆ϕ = 4M
/
D. (23.48)

This effect is the familiar deflection of light in a gravitational field,
one of the most important predictions of the Einstein theory. The
deflection is inversely proportional to the (Newtonian) displacement
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(a) (b)

ϕ = π

(1 – M/D)
D

D D≈

∆ϕ = 4M/Dϕ = 0

Fig. 23.3. Deflection of light: (a) flat space u = u0, (b) Schwarzschild metric
u = u1.

from the centre; since M/D � 1 always holds in the Solar System (this
was presupposed in the derivation) the effect is very small. In very strong
gravitational fields (23.48) is no longer applicable (see Chapter 35).

Red shift When propagating in a gravitational field, light changes not
only its direction, but also its frequency. Since the corresponding for-
mulae can be derived for arbitrary static fields at no extra effort, we
shall carry out this generalization and only substitute the special case
of the Schwarzschild metric again in the final result. A more general
relationship, valid for arbitrary (non-static) gravitational fields, will be
described in Section 40.2.

In a static gravitational field, that is, in a metric gmn which is inde-
pendent of time and which satisfies the condition g4α = 0, it is possible
by making the ansatz

Aµ(xn) = aµ(xα)eiωt (23.49)

in the gauge
A4 = 0,

[√−g g44Aβ
]
,β

= 0, (23.50)

to separate the Maxwell equations with respect to time and reduce them
to the time-independent wave equation

1√−g
[√−g gµαgνβ(aβ,α − aα,β)

]
,ν

+
ω2

c2
g44aµ = 0. (23.51)

An observer who is at rest at the location P1 of the transmitter will
naturally use not the coordinate time t but the proper time τ1 to measure
the frequency ν1 of the wave. Because of the general relation

τP =
√
−g44(P ) t (23.52)

between proper time and coordinate time, he will therefore associate the
frequency
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ν1 =
ωt

2πτ1
=

ω

2π
√−g44(1)

=
ω
√−g44(1)

2π
(23.53)

with the monochromatic wave (23.49), in agreement with the interpre-
tation of the factor −g44ω2/c2 in (23.51) as the square of a position-
dependent wave number. Analogously, an observer at rest at the location
P2 of the receiver measures the frequency

ν2 =
ω

2π
√−g44(2)

(23.54)

in his local Minkowski system. The frequencies ν1 and ν2 measured by
observers at rest at the points P1 and P2 are thus related by

ν1
ν2

=

√
g44(2)
g44(1)

= 1 + z. (23.55)

Although ν2 can just as well be larger as smaller than ν1, in general one
speaks of the effect of the redshift in the gravitational field and calls the
quantity z defined by (23.55) the redshift at the position P2.

For the Schwarzschild metric we have from (23.55) the relation

ν1
ν2

=

√
1− 2M/r2
1− 2M/r1

≈ 1 +M

(
1
r1
− 1
r2

)
. (23.56)

Light reaching the Earth (P2) from the Sun (P1) (r1 < r2) is shifted to
the red-wavelength region.

If we express g44 in terms of the Newtonian gravitational potential U
according to (22.21) then we obtain to first approximation

ν1

ν2
= 1 +

U2 − U1

c2
. (23.57)

In the picture of light as particles (photons) the gravitational redshift
corresponds to a change in the kinetic energy E = hν by the gain or loss
of potential energy m∆U = (E/c2)∆U , in accordance with (23.57).

Light-travel times and the Fermat principle Here too we generalize the
problem and permit arbitrary static gravitational fields (gab,4 = 0, gα4 =
0), since in all these fields the equation

d2xa

dλ2
+ Γa

mn

dxm

dλ
dxn

dλ
= 0 (23.58)

of a null geodesic can be brought into a form which allows a particularly
simple physical interpretation. For this we introduce the coordinate time
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t in place of the parameter λ and substitute for the Christoffel symbols
the explicit expressions

Γα
µν = 1

2
gαβ(gβµ,ν + gβν,µ − gµν,β),

Γα
4ν = 0, Γ4

µν = 0, Γ4
α4 = 1

2g
44g44,α = g44,α/2g44,

Γα
44 = −1

2g
αβg44,β , Γ4

44 = 0.

(23.59)

The fourth of equations (23.58),

d2t

dλ2
+
g44,α

g44

dxα

dt

( dt
dλ

)2

= 0, (23.60)

enables us to eliminate λ from the three spatial equations

d2xα

dt2
+ Γα

µν

dxµ

dt
dxν

dt
+ Γα

44c
2 +

d2t

dλ2

(dλ
dt

)2 dxα

dt
= 0, (23.61)

finding

d2xα

dt2
+ gαβ 1

2(gβµ,ν + gβν,µ − gνµ,β)
dxµ

dt
dxν

dt

−g44,ν

g44

dxν

dt
dxα

dt
− 1

2c
2gαβg44,β = 0.

(23.62)

If we remember the property of null geodesics that ds = 0, that is,

c2 dt2 = − gαβ dxα dxβ/g44 ≡ γαβ dxα dxβ ≡ −dl2/g44, (23.63)

then (23.62) can be reduced to

d2xα

dt2
+ Γ̂α

µν

dxµ

dt
= 0,

Γ̂α
µν ≡ 1

2
γαβ(γβµ,ν + γβν,µ − γµν,β), γαβγβν = δα

ν .

(23.64)

The curves described by this equation are, however, just the extremals
which follow from the variational principle
∫

dt =
1
c

∫ √
γαβ

dxα

dt
dxβ

dt
dt =

1
c

∫
dl√−g44 = extremum, (23.65)

see Section 14.3.
The variational principle (23.65) is the generalization of the Fermat

principle, that light propagates in a three-dimensional space in such a
way that the light-travel time t is an extremum.

The variational principle (23.65) can also be interpreted as saying
that the three-dimensional space (metric gαβ) has a refractive index
n = (−g44)−1/2, which is caused by the gravitational force (and which
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also contributes to the deflection of light), and that the velocity of light
v in the gravitational field is decreased according to c = nv. But this
latter interpretation is only to be used with the proviso that v is the
velocity of light with respect to the coordinate time t and therefore
has, like t itself, no immediate physical significance. Predictions about
the numerical value of the velocity of light have little value in General
Relativity; the only essential thing is that light propagates along null
geodesics (and that in local inertial systems one can give the velocity of
light the value c through choice of the unit of time).

23.6 Further aspects of the Schwarzschild solution

Isotropic coordinates The Schwarzschild coordinates in which we have
until now described the spherically symmetric gravitational field go over
to spherical coordinates at a great distance from the centre (for r →∞).
For many calculations or considerations it is more convenient to use
coordinates which are related to Cartesian coordinates. We introduce
them by the transformation

r = r̄
(
1 +M/2r̄

)2
,

x̄ = r̄ cosϕ sinϑ,

ȳ = r̄ sinϕ sinϑ,
z̄ = r̄ cosϑ, (23.66)

which turns (23.23) into

ds2 =
(
1 +M/2r̄

)4(dx̄2 + dȳ2 + dz̄2
)−
(

1−M/2r̄
1 +M/2r̄

)2

c2 dt2. (23.67)

Since in this form of the line element the three spatial directions enter
on an equal footing, one speaks of isotropic coordinates.

Harmonic coordinates Coordinates which are restricted by

�xa ≡ 1√−g
[√−g gnmxa

,m

]
,n

=
1√−g
(√−g gan

)
,n

= 0 (23.68)

are called harmonic coordinates (of course (23.68) is not a covariant
equation, rather is serves to pick out a coordinate system). Such coor-
dinates are useful in approximation procedures for the solution of Ein-
stein’s equations (see Section 27.2). In such coordinates, the Schwarz-
schild metric has the form

ds2 =
[(

1 +
M

r̄

2 )
ηαβ +

r̄ +M

r̄ −M
M2

r̄4
xαxβ

]
dxα dxβ − r̄ −M

r̄ +M
c2 dt2,

(23.69)
where
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r̄ = r −M. (23.70)

The interior field of a hollow (non-rotating) sphere The Schwarzschild
line element (23.23) follows from the requirement of spherical symmetry
alone, and it therefore holds also in the matter-free interior of a hollow,
non-rotating sphere. But in this case the metric must be finite at r = 0,
that is, M must vanish; the space inside a hollow sphere is field-free
(flat) as in the Newtonian gravitation theory.

23.7 The Reissner–Nordström solution

The Reissner–Nordström solution (Reissner 1916, Nordström 1918) is
the spherically symmetric, static, exterior field of a charged distribution
of mass. We state without proof that the gravitational field is described
by the metric

ds2 = eλ(r)dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)− e−λ(r)c2 dt2,

e−λ(r) = 1− 2M/r + κe2/2r2
(23.71)

and the electromagnetic field by the four-potential

Aα = 0, U = −A4 = e/r. (23.72)

The potential (23.72) is a solution of the source-free Maxwell equations[√−g gmagnb(Ab,a −Aa,b)
]
,n

= 0 (23.73)

in the Riemannian space of the metric (23.71), and the metric (23.71)
satisfies the Einstein field equations

Rin − 1
2Rgin = κTin, (23.74)

with the energy-momentum tensor of the Maxwell field (23.72) on the
right-hand side. The system (23.71) and (23.72) is thus an exact solution
of the coupled Einstein–Maxwell equations.

Since for large r the term κe/2r2 in the metric can be ignored, an
observer situated at great distance will interpret m = 8πM/κc2 as the
total mass of the source (see (23.25)). From (23.72) one deduces that
Q = 4πe is the total charge of the source.

In practice celestial bodies are weakly charged or uncharged, and so
the influence of the electromagnetic field on their metric can be ignored,
the Reissner–Nordström solution being replaced by its special case, the
Schwarzschild solution. Originally the hope was that in the Reissner–
Nordström solution one had found a useful model of the electron. But
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even for the electron, the particle with the largest charge per unit mass,
κe2/M has the value of only 2.8× 10−13 cm. The influence of the term
κe2/2r2 therefore only becomes important at such dimensions that the
effects of Quantum Mechanics and Quantum Field Theory dominate,
and the theories of General Relativity and Classical Electrodynamics
are no longer adequate to describe the properties of matter.

The Reissner–Nordström solution thus has only slight physical signi-
ficance. It deserves attention, however, as a simple example of an exact
solution of the Einstein–Maxwell equations.

Exercises

23.1 A light ray from a distant star touches the Earth tangentially.
By what angle will it be deflected?

23.2 Are there circular orbits r = R = const. > 2M, ϑ = π/2 for any
value of R?

24

Experiments to verify the Schwarzschild
metric

24.1 Some general remarks

The gravitational fields of the Earth and the Sun constitute our natu-
ral environment and it is in these fields that the laws of gravity have
been investigated and summed up by equations. Both fields are to good
approximation spherically symmetric and, as a result, suitable objects
to test the Einstein theory as represented in the Schwarzschild metric.

The Einstein theory contains the Newtonian theory of gravitation as a
first approximation and in this sense is of course also confirmed by Kep-
ler’s laws. What chiefly interests us here, however, are the – mostly very
small – corrections to the predictions of the Newtonian theory. In very
exact experiments one must distinguish carefully between the following
sources of deviation from the Newtonian spherically symmetric field:

(a) Relativistic corrections to the spherically symmetric field,
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(b) Newtonian corrections, due to deviations from spherical symmetry
(flattening of the Earth or Sun, taking into account the gravitational
fields of other planets),

(c) Relativistic corrections due to deviations from spherical symmetry
and staticity.

The Newtonian corrections (b) are often larger than the relativistic ef-
fects (a) which are of interest to us here, and can be separated from
them only with difficulty. Except for the influence of the rotation of the
Earth (Lense–Thirring effect, see Section 27.5), one can almost always
ignore the relativistic corrections of category (c).

The discussion of measurements and experiments in spherically sym-
metric gravitational fields is often done by comparing the results for the
Schwarzschild metric with those for a more general metric of the form
(in isotropic coordinates, with higher order terms neglected)

ds2 =
(
1 + γ 2M/ r̄ + · · · )(dx̄2 + dȳ2 + dz̄2

)
− (1− 2M/ r̄ + β 2M2/ r̄2 + · · · )c2 dt2.

(24.1)

The free parameters β and γ (two of the so-called PPN-parameters)
are found as ‘best-fit’ parameters to the observational data and serve
to measure the agreement between Einstein’s theory and observation
(they both have the value 1 for the Schwarzschild metric). Perihelion
precession ∆ϕP , light deflection ∆ϕ and light travel time ∆t for the
metric (24.1) differ from the Einstein values (shown with a suffix E) by

∆ϕP = 1
3 (2+2γ−β)∆ϕPE , ∆ϕ = 1

2(1+γ)∆ϕE , ∆t = 1
2(1+γ)∆tE .

(24.2)

24.2 Perihelion precession and planetary orbits

Einstein’s theory predicts the following relativistic contribution to the
perihelion precession per century:

Mercury 42.98′′, Earth 3.8′′,
Venus 8.6′′, Mars 1.35′′,

Satellite ≤ 1000′′, (24.3)

see (23.42). Because the deviation from spherical symmetry of the
Earth’s gravitational field is so large that one can determine the density
distribution of the Earth from observed irregularities in satellite orbits,
artificial satellites are far from ideal test objects.

In the first decade of relativity theory the most promising evidence
came from data on Mercury’s orbit. Astronomers before Einstein were
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already perturbed because although most of the observed perihelion pre-
cession, 5600′′ per century, could be ascribed to the influence of other
planets, there remained an unexplained 41′′ now seen to be in good
agreement with Einstein’s theory.

The survey of the orbit of Mars on the Viking Mission (1976–82)
and radar measurements of the distances to Venus and Mercury have
furnished data of substantially increased accuracy. More measurements
and a comprehensive computer analysis (for example the influence of the
larger asteroids on Mars’ orbit was taken into account) has produced the
values:

β − 1 = 3 (±3.1)× 10−3, γ − 1 = 0.7 (±1.7)× 10−3. (24.4)

The unknown quadrupole moment of the Sun is the main source of
uncertainty in the reduction of the data. The independently obtained
data for Mars and Mercury suggest, however, that it can be neglected.

In 1974 a pulsar (PSR 1913+16) was discovered that forms a binary
system with a smaller star whose nature (white dwarf, neutron star
or black hole) is unknown. The elliptic orbit of the pulsar shows an
unusually large rotation (periastron precession) of 4.22 (±0.04)◦ per
year, that is, 271 times the total value for Mercury. It is highly probable
that this is a purely relativistic effect.

24.3 Light deflection by the Sun

Maximum deflection occurs when the light ray grazes the surface of the
Sun (see Fig. 24.1), giving

∆ϕ = 1.75′′. (24.5)

To measure this effect for stars one compared the appearance of the
night sky in some region with the appearance of the same region during
a solar eclipse. (Without the eclipse the Sun’s luminosity would swamp
that of the stars.) The effect of the gravitational field of the Sun appears
to move the closest stars away from it. Although experimental problems,
caused, for example, by the distortion of the photographic emulsion
during the developing process, have produced values between 1.43′′ and

Earth
Sun

∆ϕ

True position of star

Apparent position of star

Fig. 24.1. How the Sun deflects light.
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2.7′′ for this effect, and Eddington’s experimental verification in 1919
brought Einstein public recognition. The current deflection values give

γ − 1 = 0.1 (± 0.22). (24.6)

Today’s data for the reflection of electromagnetic waves by the Sun
are much more accurate. Instead of stars from within our Galaxy, the
sources are radio galaxies and quasars, and not their distances to the
Sun, but the changes in their mutual distances due to the motion of the
Earth are observed, using very long baseline interferometry. The current
data confirm the Einsteinian value

γ − 1 = 0.000 (± 0.002). (24.7)

24.4 Redshifts

The redshift produced by the Earth’s gravitational field was measured
first by Pound and Rebka (1960) using the Mössbauer effect. The 57Fe
source in the basement of a tower was set in motion so that the resultant
Doppler shift corresponded exactly to the energy loss at the receiver,
22.5 m higher. The relation

∆λ/λ = gh (24.8)

was confirmed with 1 per cent accuracy.
A somewhat more accurate confirmation, 7×10−5, has been made in

an experiment in which a hydrogen maser was taken, with the aid of a
rocket, to a height of 10 000 km.

These results can also be considered as evidence for the assertion
that atomic and molecular clocks measure proper rather than coordinate
time.

24.5 Measurements of the travel time of radar signals (time
delay)

The time taken by a radar signal that has been reflected by a planet
(e.g. Mercury, Venus) or that has been emitted by a satellite can be
compared with the relativistic formula

∆t =
1
c

∫ √
−gαβ dxα dxβ

/
g44 (24.9)

in order to verify Einstein’s theory. This so-called fourth test of General
Relativity was first proposed by Shapiro (1964). The main data come
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from the Viking mission to Mars (1977), giving

γ − 1 = 0 (± 0.002). (24.10)

24.6 Geodesic precession of a top

The spin-vector Sa of a top which is transported along a geodesic (e.g.
inside a satellite) satisfies, because of (22.34)–(22.39), the equations

DSa/Dτ = 0, SaSa = const., Saua = 0. (24.11)

Since the unit vectors ha
(ν), which are used in the satellite and point

towards the fixed stars, are not parallelly transported during the motion,
the components S(ν) = Sah

a
(v) of the spin-vector in the rest system of

the satellite change as

dS(ν)

dτ
=

DS(ν)

Dτ
= Sa

Dha
(ν)

Dτ
. (24.12)

The components of the tetrad vectors in isotropic Schwarzschild
coordinates are obtained from the three orthogonal unit vectors used
in the rest system of the satellite by carrying out a Lorentz transforma-
tion with the speed −vα = −uα dτ/dt and a change of scale

dxα′
=
(
1 +M/2r̄

)2 dxα ≈ (1− U/c2) dxα,

dt′ =
(

1−M/2r̄
1 +M/2r̄

)
dt ≈ (1 + U/c2

)
dt.

(24.13)

Including only terms of first order, we then have

hα
(ν) =

(
1 + U/c2

)
δα
ν + vαvν/2c2, h4

(ν) = vν , S(α) = Sα. (24.14)

Substituting this expression into (24.12), and, bearing in mind that

dvα/dτ ≈ −U,α, (24.15)

we have finally

c2 dS(ν)/dτ ≈ 3
2S(α, [U,(α)v(ν) − U,(ν)v(α)], U,ν ≈ U,(ν), vα = v(α),

(24.16)
that is, the spin-vector rotates in the satellite’s system with the angular
velocity ω,

dS/dt = ω × S, ω = −3
2v × gradU/c2. (24.17)

If the rotation of the Earth is taken into account, an additional contri-
bution to ω arises (Lense–Thirring effect, see Section 27.5).
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For an Earth satellite ω amounts to about 8′′ per year; an experiment
is in preparation. The Earth–Moon system can be considered as a gyro-
scope, with its axis perpendicular to the orbital plane. The theoretical
geodesic precession of about 2′′ per century has been confirmed to about
2%. Similarly, the orbital spins of satellites undergo a precession, which
has been verified with an accuracy of about 20%.

Further reading for Chapter 24

Will (1993), Ashby (1998), Schäfer (2000).

25

Gravitational lenses

25.1 The spherically symmetric gravitational lens

Focal lineD
P

Fig. 25.1. The spherically symmetric gravitational field as a gravitational lens.

The family of curves (23.47) can obviously be interpreted as the family
of light rays arriving from a very distant point source. If instead of just
one ray (as in Fig. 23.3) the whole family is drawn (as in Fig. 25.1), one
sees that the rays converge; a (spherically symmetric) gravitational field
behaves like a lens. This gravitational lens is far from ideal, possessing
two closely related peculiarities: it produces double images, and incom-
ing parallel rays are focussed onto a focal line rather than a focal point.
(In interpreting pictures Fig. 23.3 and 25.1 it should be noted that the
r-ϕ-section of the Schwarzschild metric has been drawn as an r-ϕ-plane,
which will be a good description only for large r.)

This picture may lead to the following predictions. An observer at P
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(a) Rays (b) Poynting vector

Fig. 25.2. Einstein ring (a), and what really happens (b).

outside the focal line (see Fig. 25.1) will see two images, with different
intensities, corresponding to the two rays arriving at P . At a point F
on the focal line, all rays on the surface of a cone around the axis arrive.
Consequently, an observer will have the impression that the light comes
from a full circle: instead of a point, he will see a ring, the famous
Einstein ring, see Fig. 25.2(a).

Unfortunately, these predictions are completely wrong, and this Ein-
stein ring does not exist. The reason is that light is to be described by
waves; as shown in Section 21.4, geometrical optics and rays are only
an approximation, and it is exactly at regions where rays meet that
this approximation breaks down. Here interference of the waves arriv-
ing along different rays takes place (note that light originating from a
point-source, and travelling the same distance on the different paths, is
always coherent).

Without any calculation, one can see what the result of that interfer-
ence will be. At a given point, there is a unique Maxwell field, with a
unique Poynting vector. Because of the rotational symmetry about the
focal line, that Poynting vector must have the direction of that line; the
source of the wave will be seen in the undisturbed direction, see Fig.
25.2(b).

The details of the interference pattern are rather complicated, see
Herlt and Stephani (1976). Most impressive is the increase of intensity:
for a wave of wavelength λ, the intensity on the focal line is increased
by the (dimensionless) factor 4πM/λ (for a solar mass, and visible light,
this factor is of the order 1010). But also the apparent position of the
double images differs from that found by geometrical optics.

Both approaches, wave optics and geometrical optics, predict that
behind any pair of sources and lenses (stars, or galaxies), a focal line
extends to infinity; the universe is full of such focal lines.
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25.2 Galaxies as gravitational lenses

If we try to observe the image of a gravitational lens, the first idea may
be to inspect the focal line of the Sun; but that focal line starts only
at a distance of d ≈ 8 · 1010 km from the Sun, practically outside the
Solar System. So we have to look out for more distant lenses. Since the
gravitational fields of stars are comparatively weak, galaxies are better
candidates for lenses. Galaxies are not spherically symmetric, even less
than stars; the model of a spherically gravitational lens does not apply.
Focussing will take place, but the waves travelling along the different
rays will in general no longer be coherent, their arrival times differing
up to years. So for most applications geometrical optics suffices.

In a good approximation, the gravitational lens may be described by
a transparent matter distribution µ(r) in a plane orthogonal to the line
to the observer, and one can assume the deflection to take place only
within that plane. Again in an approximation, any mass element µ(r′)
will deflect the passing ray in the direction towards the mass as the
Schwarzschild solution does, i.e. by dϕ = 4M(r′ − r)/(r′ − r)2, with
M = fµ(r′)/c2, see (23.48) and (23.25). Integrating over all masses
gives the total deflection

ϕ(r) =
4f
c2

∫
µ(r′)(r′ − r)

(r′ − r)2
d2r′ (25.1)

observer

lens

source

DSL

D

DLO

S

S

O O

rr

r′µ d2r′

ϕ

ϕ
θ

β

β̂

ϕ̂

r̂

Fig. 25.3. Model of a gravitational lens.
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(all angles are small, so that we can treat them as vectors in a plane
tangent to the observer’s unit sphere), see Fig. 25.3. Note that the
distances DSL and DLO may need a careful definition if a cosmological
background has to be taken into account.

If β is the direction to the unperturbed position of the source, and all
angles are projected onto the source plane, one sees that

β̂ − ϕ̂ = r̂, with β̂ = Dβ , ϕ̂ = DSLϕ , r̂ = D r /DLO, (25.2)

or
β̂ = rD/DLO −DSLϕ(r) (25.3)

holds.
Equation (25.3) (the ‘lens equation’) obviously describes a mapping

of the lens plane (r) onto the source plane (β̂). For a given position β̂

of the source there may be more than one solution r; the source may
be seen at several positions on the sky. The magnification caused by
the deflection equals the ratio of the solid angles under which (a small
part of) the source and its image, respectively, appear to the observer;
it equals the Jacobian

J =
∣∣∣∣det

∂Θ
∂β

∣∣∣∣ =
∣∣∣∣det

∂β

∂Θ

∣∣∣∣
−1

, Θ = r/DLO, (25.4)

of the mapping (25.3). The zeros of J−1 correspond to caustics.
Although very few lens models have been treated rigorously, some gen-

eral results can be obtained from the mathematical theory of mappings,
including catastrophe theory, see Schneider et al. (1992) for further
details.

Gravitational lensing, with both source and lens being galaxies, has
been observed on many occasions. When the lens has a high symmetry,
the images of the (extended) source may even be part of a ring, which
is often called the Einstein ring.

Exercise

25.1 Use equations (25.1) and (25.3) to find the two directions in
which the star is seen by the observer at P in the Schwarzschild
field, cp. Fig. 25.1. What are the magnifications for the two
images?
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The interior Schwarzschild solution

26.1 The field equations

If we want to determine the gravitational field inside a celestial body
then we need a model for this body, that is, we must say something
about its energy-momentum tensor. Ignoring thermodynamic effects,
such as heat conduction and viscosity, the ideal fluid medium (21.81)

Tmn =
(
µ+ p/c2

)
umun + pgmn (26.1)

is a useful approximation.
We seek a spherically symmetric, static solution (ignoring radial mat-

ter currents in the stars), and thus require that the general line element
(23.5) is independent of time, that is,

ds2 = eλ(r) dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)− eν(r)c2 dt2 (26.2)

holds; the matter is at rest in this coordinate system,

um =
(
0, 0, 0, c e−ν/2

)
, (26.3)

and µ and p are functions purely of the radius r.
In setting up the field equations we can use the components of the

Ricci tensor already calculated in (23.13), setting to zero all time deriva-
tives. Because of

R = Rn
n = −2 e−λ

[
1
2ν

′′+ 1
4ν

′2− 1
4ν

′λ′−(ν′−λ′)/r+1/r2
]
+2/r2, (26.4)

the Einstein equations

Rn
m − 1

2Rg
n
m = κTn

m, (26.5)

hence assume the form

κp = R1
1 − 1

2R = e−λ[ν′/r + 1/r2]− 1/r2, (26.6)

κp = R2
2 − 1

2R = e−λ[ 12ν
′′ + 1

4ν
′2 − 1

4ν
′λ′ + 1

2 (ν′ − λ′)/r], (26.7)

−κµc2 = R4
4 − 1

2
R = −e−λ[λ′/r − 1/r2]− 1/r2. (26.8)

The four functions λ, ν, p and µ are to be determined from these three
equations and an equation of state f(µ, p) = 0 yet to be formulated.

209
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26.2 The solution of the field equations

As we have discussed in detail in Section 22.1, the field equations are only
integrable if the balance equations of energy and momentum Tmn

;n = 0
are satisfied. These conservation laws often give – analogously to the
first integrals of Classical Mechanics – an important indication of how
to solve the field equations. Since for static distributions of matter and
pressure we have

µ,nµ
n = 0, p,nu

n = 0, un
;n = 0, (26.9)

the equations

Tmn
;n =

[
pgmn +

(
µ− p/c2)umun

]
;n

= 0 (26.10)

simplify to the one equation

p′ +
(
µ+ p/c2

)
u1;4u

4 = p′ − (µ+ p/c2
)
Γ4

14u4u
4 = 0, (26.11)

which leads to

p′ = −1
2ν

′(p+ µc2
)
. (26.12)

This equation is a consequence of the field equations (26.6)–(26.8) and
can be used in place of one of these three equations.

The field equation (26.8) can be written in the form

κµc2r2 = −(e−λr
)′ + 1. (26.13)

Assuming that g11 = e−λ is finite at r = 0, it is integrated by

2m(r) = −r e−λ + r, (26.14)

where m(r) is defined by

m(r) = 1
2
κc2
∫ r

0
µ(x)x2 dx. (26.15)

The function m(r) is called the mass function. Equation (26.15) can also
be interpreted as showing that m(r) is proportional to the total mass
contained within a sphere of radius r, but then one must be careful to
note that r is only the coordinate radius, the true radius R(r) of the
sphere being given by

R(r) =
∫ r

0
eλ(x)/2 dx. (26.16)

In (26.14) we have succeeded in specifying one of the metric functions,

e−λ(r) = 1− 2m(r)/r, (26.17)

independently of a special equation of state. Taking now (26.12) and
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substituting ν ′ and eλ by using (26.6) and (26.17), we get for p the
differential equation

dp
dr

=
(µc2 + p)[2m(r) + κ0pr

3]
2r[2m(r)− r] (26.18)

(Tolman 1939, Oppenheimer and Volkoff 1939). To solve this equation
we must fix the equation of state. The most simple possibility is to
assume a constant rest-mass density,

µ = const. (26.19)

This equation of state certainly does not give a particularly good stellar
model; a constant mass density is a first approximation only for small
stars in which the pressure is not too large. The spherically symmetric,
static solution with the special equation of state (26.19) is called the
interior Schwarzschild solution.

For constant mass density (26.17) becomes

e−λ = 1−Ar2, A = 1
3
κµc2. (26.20)

Instead of solving (26.18), we directly use (26.12) in the form(
p+ µc2

)′ = − 1
2ν

′(p+ µc2
)
, (26.21)

and integrate it by

p+ µc2 = B e−ν/2. (26.22)

As the third field equation to be solved, we choose the combination

κ(µc2 + p) = e−λ(λ′ + ν′)/r = κB e−ν/2 (26.23)

of (26.6) and (26.8). Upon substitution for e−λ it goes over to

eν/2 (2A−Arν′ + ν′/r) = κB, (26.24)

and, through the intermediate step

2
(
1−Ar2)3/2[eν/2

(
1−Ar2)−1/2]′ = κBr, (26.25)

it can be easily solved to give

eν/2 = κB/2A−D
√

1−Ar2. (26.26)

The equations (26.20), (26.22) and (26.26) give the general solution
for the case of constant mass density µ. They contain two constants
of integration, B and D, which are to be determined by the matching
conditions.
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26.3 Matching conditions and connection to the exterior
Schwarzschild solution

From the Maxwell theory one knows that matching conditions for cer-
tain field components must be satisfied at the interface between two
media; these matching conditions follow from Maxwell’s equations. In a
completely analogous way, we must here ensure certain continuity prop-
erties of the metric at the surface of the star if we want to construct
the complete gravitational field from the solution in the interior of the
star (the interior Schwarzschild solution) and the solution in the exte-
rior space (the Schwarzschild solution). As we shall show in Chapter
30, the appropriate matching conditions follow from the Einstein field
equations. Since in our simple example physical plausibility considera-
tions will answer the purpose, we shall limit ourselves here to some brief
remarks on the matching conditions.

Continuity properties of the metric and its derivatives can obviously
be destroyed by coordinate transformations and inappropriate choice of
coordinates. We therefore formulate the matching conditions most sim-
ply in a special coordinate system in which the boundary is a coordinate
surface x4 = const. (in our example: r = r0) and Gaussian coordinates
are employed in the neighbourhood of the boundary, so that

ds2 = ε(dx4)2 + gαβ dxα dxβ , ε = ±1 (26.27)

(ε = +1, if x4 is a spacelike coordinate). Since second derivatives of the
metric appear in the field equations, their existence must be ensured,
that is, we demand that:

gαβ and gαβ,4 are continuous on x4 = const. (26.28)

By these requirements we have excluded layer structures in the surface
(δ-function singularities in the energy-momentum tensor).

In order to connect interior and exterior Schwarzschild solutions to
one another on the surface of the star r = r0, we ought first of all to
introduce (separate interior and exterior) Gaussian coordinates by

dx4 = dr eλ(r)/2, (26.29)

and try to satisfy the conditions (26.28) through choice of the still un-
specified integration parameters B and D (the internal solution) and of
M (the external solution). But here we want to deal with the problem
in a more intuitive fashion; the reader may reflect on the equivalence of
the two methods.

We require that the metric gmn is continuous for r = r0 and that the
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pressure p vanishes on the surface of the star. Because of (26.22) and
(26.26), the pressure depends upon r according to

p = Be−ν/2 − µc2 =
1
κ

3AD
√

1−Ar2 − κB/2
κB/2A−D√1−Ar2 , (26.30)

and hence these requirements correspond to the three equations

eλ continous: 1−Ar20 = 1− 2M/r0,

eν continous:
(
κB/2A−D

√
1−Ar20

)2 = 1− 2M/r0,

p = 0 : 3AD
√

1−Ar20 = κB/2.

(26.31)

They have the solution

M = 1
2Ar

3
0 = 1

6κµc
2r30 = 1

34πr30fµ/c
2, D = 1

2 ,

κB = 3A
√

1−Ar20 = κµc2
√

1− 1
3
κµc2r20,

(26.32)

by means of which all the constants of integration are related to the
mass density µ and the stellar radius r0.

The spherically symmetric gravitational field of a star with mass den-
sity µ = const. and radius r0 is thus described (Schwarzschild 1916) by
the interior Schwarzschild solution

ds2 =
dr2

1−Ar2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)

−
[

3
2

√
1−Ar20 − 1

2

√
1−Ar2

]2
c2 dt, (26.33)

µ = const., A = 1
3κµc

2, κp = 2A

√
1−Ar2 −

√
1−Ar20

3
√

1−Ar20 −
√

1−Ar2
inside the star, and by the exterior (vacuum) Schwarzschild solution

ds2 =
dr2

1− 2M/r
+ r2
(
dϑ2 + sin2 ϑ dϕ2

)− (1− 2M
r

)
c2,

(26.34)
2M = Ar30

outside. We should point out that in the coordinates used here ∂grr/∂gr

is discontinuous on the boundary surface r = r0, but that this disconti-
nuity can be removed by making a coordinate transformation.
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26.4 A discussion of the interior Schwarzschild solution

In interpreting the constant M , one must note that M is a measure of
the total effective mass of the star as seen from outside (field-producing
mass). As (26.32) shows, it is in fact proportional to the coordinate
volume 4πr30/3, but not, however, to the true three-dimensional volume
of the star.

While the mass density µ is constant, the pressure p increases inwards;
the solution is non-singular as long as p is finite. At r = 0, where p takes
its maximum value, this is only possible, because of (26.33), for

3
√

1−Ar20 > 1; (26.35)

that is, for

r0 >
9
8 2M. (26.36)

This inequality is to be interpreted as saying that for given total mass
M the interior solution is regular (exists) only if the stellar radius r0
is large enough, and in any case larger than the Schwarzschild radius
2M . For normal stars like our Sun this is always the case, but for stars
with very dense matter (nuclear matter) it may not be possible to satisfy
(26.36). There is then no interior Schwarzschild solution and, as we shall
describe in detail later (Section 36.2), no stable interior solution at all.

The three-dimensional space

d(3)s2 =
dr2

1−Ar2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)
(26.37)

of the interior Schwarzschild solution has an especially simple geometry.
One sees this best by introducing a new coordinate χ via r = A−1/2 sinχ
and transforming the line element (26.37) into the form

d(3)s2 = A−1
[
dχ2 + sin2 χ

(
dϑ2 + sin2 ϑ dϕ2

)]
. (26.38)

The metric (26.38) is that of a three-dimensional space of constant cur-
vature, cp. Section 19.5 and equation (19.45). In this space all points
are geometrically equivalent; of course the points in the star are physi-
cally ‘distinguishable’, because g44 (that is, in essence the pressure p) is
position dependent.

The geometric optical behaviour of the interior Schwarzschild solution
is exactly that of the Maxwell fish eye, truncated at some finite radius
(Buchdahl 1983).
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Exercises

26.1 Find the metric of the interior Schwarzschild solution in
isotropic coordinates ds2 = e2F (ρ)[dρ2 +ρ2

(
dϑ2 +sin2 ϑ dϕ2

)
]−

eν[r(ρ)]c2 dt2 by (i) performing a coordinate transformation with
r = 2aρ/(a2 +Aρ2) and an appropriate a, or by (ii) setting up
the field equations and solving them. Use the form (23.67) of
the Schwarzschild metric to show that in these coordinates gρρ,ρ

is continous at the surface.
26.2 Show that the interior Schwarzschild solution is conformally flat.
26.3 Solve (26.18) for µ = const. and compare the result with (26.30).
26.4 How does the Newtonian limit of (26.18) read?





IV. Linearized theory of
gravitation, far fields and

gravitational waves

27

The linearized Einstein theory of gravity

27.1 Justification for a linearized theory and its realm of
validity

One speaks of a linearized theory when the metric deviates only slightly
from that of a flat space,

gmn = ηmn + fmn, fmn � 1, (27.1)

and therefore all terms in the Einstein equations which are non-linear
in fmn or its derivatives can be discarded and the energy-momentum
tensor T ik can be replaced by its special-relativistic form.

This energy-momentum tensor then satisfies the special-relativistic
equation

T ik
,k = 0. (27.2)

Since no covariant derivatives occur in (27.2), in the linearized theory
the gravitational field has no influence upon the motion of the mat-
ter producing the field. One can specify the energy-momentum tensor
arbitrarily, provided only that (27.2) is satisfied, and calculate the gravi-
tational field associated with it. This apparently advantageous property
of the linearized theory has, however, the consequence that the gravita-
tional field corresponding to the exact solution can deviate considerably
from that of the linearized theory if the sources of the field (under the
influence of their own gravitational field) move in a manner rather dif-
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ferent from that supposed. It is therefore quite possible that there is
no exact solution whose essential features agree with those of a partic-
ular solution of the linearized theory. Since, however, one would like to
use approximation procedures at precisely those places where the exact
solution is unknown, one must be careful with conclusions drawn from
the results of the linearized theory.

Statements made in the linearized theory will be reliable then if we
have a good knowledge of the motion of the sources and if these sources
are not too massive (if the field produces by them is weak). This is the
case, for example, in the planetary system. The linearized theory can
also be used to analyze the fields, due to sources regarded as known,
at great distance from these sources, or to describe the metric and the
gravitational field in the neighbourhood of a point at which we have
introduced a locally geodesic coordinate system. As (27.1) already
shows, the linearized theory is applicable only as long as one can in-
troduce approximately Cartesian coordinates. From the standpoint of
the (curved) universe this means we shall always be dealing with local
applications.

27.2 The fundamental equations of the linearized theory

As we have already shown in equation (22.14), the curvature tensor
associated with the metric (27.1) has the form

Ra
mbn = 1

2η
as(fsn,mb + fmb,sn − fmn,bs − fbs,mn), (27.3)

obtained by ignoring all non-linear terms in fmn.
For the following calculations we use the convention that indices in the

fmn and its derivatives are always moved up or down with the flat-space
metric ηab, so that we have

fab = ηamηbnfmn, fa
a = ηabfab, . . . . (27.4)

From (27.3) we thus obtain the linearized field equations

Rmn − 1
2
Rηmn = − 1

2
[fmn

,a
,a − ηmnf

i
i
,a

,a + ηmnf
ab

,ab

+fa
a,mn − fa

n,ma − fa
m,na] = κTmn.

(27.5)

The following considerations lead, by means of suitable definitions and
subsidiary conditions (coordinate transformations), to a simpler and
mathematically clearer formulation of the linearized field equations.

We first of all introduce in the place of the quantities fmn new field
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functions f̄mn, which occur in the expansion
√−g gmn = ηmn − f̄mn (27.6)

of the density of the metric tensor and which are linked to the old func-
tions through the equations

f̄mn = fmn− 1
2ηmnf

a
a, fmn = f̄mn− 1

2ηmnf̄
a

a, fa
a = −f̄a

a. (27.7)

The field equations (27.5) then read

f̄mn
,a

,a + ηmnf̄
ab

,ab − f̄a
n,ma − f̄a

m,na = −2κTmn. (27.8)

We shall now simplify them further by means of coordinate transforma-
tions of the form

x̃n = xn + bn(xi) (27.9)

(these transformations are the analogue of the gauge transformations of
electrodynamics). From (27.9) we obtain

g̃mn = gas(δn
a + bn,a)(δm

s + bm,s), g̃ = |g̃mn|−1 = g(1 + 2ba,a)−1,

(27.10)
and hence

f̄mn = f̄mn − bn,m − bm,n + ηmnba,a. (27.11)

The four functions bn(xi) can be chosen arbitrarily; of course the trans-
formation (27.9) must not take us outside the framework of the linearized
theory, that is to say, f̄mn � 1 must hold. If we substitute (27.11) into
the field equation (27.8), then we see, upon making the choice

�bn = ηrsbn,rs = f̄mn
,m, (27.12)

that the field equations become particularly simple. The field variables
f̄mn (we now drop the tilde) then satisfy the equation

f̄mn
,n = −(√−g gmn

)
,n

= 0 (27.13)

(thus we use the harmonic coordinates defined in Section 23.6), and the
Einstein field equations reduce to the inhomogeneous wave equation

�f̄mn = f̄mn
,a

,a = −2κTmn. (27.14)

Of course, one must take only those solutions of the field equation
(27.14) which satisfy the subsidiary conditions (27.13); the existence of
such solutions is guaranteed by (27.2).
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27.3 A discussion of the fundamental equations and a
comparison with special-relativistic electrodynamics

The fundamental equations (27.14) and (27.8) have just the usual form
of the equations of a classical field theory in Minkowski space. They are
linear and, after introduction of the subsidiary condition (27.13), they
are even uncoupled. One can completely dispense with the idea of a
Riemannian space and regard the f̄mn as the components of a tensor
field by means of which gravitation is described in a flat space. The
action of this field upon a test particle is then given (according to the
geodesic equation) by

d2xa

dτ2
= −1

2η
ab(fbm,n + fbn,m − fnm,b)

dxn

dτ
dxm

dτ
. (27.15)

Field equations and equations of motion are Lorentz invariant.
Although this kind of gravitational theory is very tempting (and has

hence occasionally been interpreted as the correct theory of gravitation),
it does however have a serious shortcoming; the gravitational force does
not react back on the sources of the field. If one tries to correct this,
one is led back to the Einstein theory.

The striking analogy between the linearized Einstein equations and
electrodynamics is shown in Table 27.1.

Table 27.1. Maxwell theory versus linearized Einstein theory

Maxwell theory Linearized Einstein theory

Fundamental field four-potential Am f̄mn

variables

General field Am
,a

,a − Aa
,m,a f̄mn

,a
,a + ηmnf̄ab

,ab

equations = −jm/c +f̄a
n,am − f̄a

m,na = −2κTmn

gauge transformations coordinate transformations

Field equations are Ãm = Am + b,m
˜̄fmn =

invariant under (field tensor invariant) f̄mn − bn,m − bm,n + ηmnba
,a

(Christoffel symbols changed,
curvature tensor invariant)

Subsidiary conditions Aa
,a = 0 f̄mn

,n = 0

Form of the field
equations simplified �Am = −jm/c �f̄mn = −2κTmn

by these conditions

Further possible gauge
transformations �b = 0 �bn = 0
are restricted by
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In the linearized theory of gravitation, too, we can represent the solu-
tion to the field equations in terms of the sources, namely, in the form
of a ‘retarded potential’

f̄mn(r, t) =
κ

2π

∫
Tmn (r̄, t− |r− r̄|/c)

|r− r̄| d3x̄. (27.16)

To this particular solution one can still always add solutions of the ho-
mogeneous equations

�f̄mn = 0, f̄mn
,n = 0, (27.17)

and thus, for example, go over from the retarded to the advanced solu-
tions.

Sometimes it is more convenient to simplify the metric by a coordinate
transformation

f̃mn = fmn − bm,n − bn,m (27.18)

and not to use harmonic coordinates. Such a transformation can remove
pure coordinate effects, that is, terms which give no contribution to the
curvature tensor.

27.4 The far field due to a time-dependent source

In electrodynamics one learns that in general the following components
dominate in the far field of an arbitrary distribution of charge and
current (the characteristic r-dependence is in brackets): electrostatic
monopole (r−1), electrostatic and magnetostatic dipole (r−2), electro-
static quadrupole (r−3), oscillating electric and magnetic dipole and
electric quadrupole (all r−1). For charges which are not moving too
quickly, the spacelike contribution to the four-current density is smaller
than the timelike contribution by a factor of c, because jn = (ρv, ρc),
and therefore the electromagnetic radiation emerging from a system is
essentially that due to an oscillating electric dipole.

In a similar manner we now want to investigate and characterize the
gravitational far field of a matter distribution. The calculations are
simple, but somewhat tedious. To keep a clear view we divide them into
three steps.

Step 1. Power series expansion of the integrand of (27.16) We assume
that we are dealing with an isolated distribution of matter; that is, Tmn

is non-zero only within a finite spatial region (Fig. 27.1). In the far field
we can then replace |r− r̄| by the first terms of a power series expansion:
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r

r
|r− r|

Fig. 27.1. Isolated matter distribution.

|r− r̄| =
√

r2 − 2rr̄ + r̄2 = r − xαx̄α

r
− xαxβ

2r3
(
x̄αx̄β − r̄2δαβ

)
+ · · ·,

1
|r− r̄| =

1
r

+
xαx̄α

r3
+
xαxβ

2r5
(
3x̄αx̄β − r̄2δαβ

)
+ · · · · (27.19)

Imagining the series (27.19) to have been substituted into the argu-
ment t− |r− r̄|/c of the energy-momentum tensor and an expansion of
the components Tmn carried out, we then have

Tmn(r̄, t− |r− r̄|/c) = Tmn(r̄, t− r/c) + Ṫmn(r̄, t− r/c){r − |r− r̄|}/c

+ 1
2 T̈mn(r̄, t− r/c){r − |r− r̄|}2c−2 + · · · ·

(27.20)

For a motion of the matter periodic in time (frequency ω) it is justifiable
to ignore higher time derivatives if the diameter of the matter distribu-
tion is small by comparison with c/ω, and thus small compared to the
wavelength of the waves radiated out.

The integrand of (27.16) has, after substitutions of (27.19) and (27.20),
the form

Tmn(r̄, t− |r− r̄|/c)
|r− r̄| = Tmn

[1
r

+
xαx̄α

r3
+
xαxβ

2r5
(
3x̄αx̄β − r̄2δαβ

)]

+
Ṫmn

c

[xαx̄α

r2
+
xαxβ

2r4
(
3x̄αx̄β − r̄2δαβ

)]

+
T̈mn

c2

[xαxβ

2r3
x̄αx̄β

]
, (27.21)

where on the right-hand side the argument t−r/c in Tmn and its deriva-
tives have been suppressed.

Step 2. Definition of the moments of the energy-momentum tensor and
simplification by Lorentz transformations and conservation laws For
matter not moving too quickly, the component T44 dominates the energy-
momentum tensor, and we have

|T44| � |T4α| � |Tαβ |. (27.22)

Accordingly, in substituting (27.21) into the integrand of formula (27.16)
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it is only necessary to evaluate the integrals
∫
T44 d3x̄ ≡ m, ∫

T44x̄
α d3x̄ ≡ dα,

∫
T44x̄

αx̄β d3x̄ ≡ dαβ ,∫
T4ν d3x̄ ≡ −pν ,

∫
T4ν x̄

α d3x̄ ≡ bνα,
∫
Tαβ d3x̄ ≡ aαβ.

(27.23)

All these quantities are in principle functions of the retarded time t−r/c.
From the energy law

Tn4
,4 = −Tnµ

,µ (27.24)

and the law of angular momentum

(T 4mx̄s − T 4sx̄m),4 = −(T νmx̄s − T νsx̄m)
,ν (27.25)

we obtain, upon integration over the matter distribution and application
of the Gauss law (all operations are carried out in a flat space),

m = const (> 0), pν = const.,

bνα − bαν = Bνα = const., ḋα/c = pα.
(27.26)

We can therefore transform the three-momentum pα to zero by making
a Lorentz transformation and then (because m > 0) transform away the
matter dipole moment dα by shifting the origin of the spatial coordinate
system.

Further, from the two conservation laws (27.24) and (27.25), we obtain
the equations

T 4αx̄β + T 4βx̄α = (T 44x̄αx̄β),4 + (T 4ν x̄αx̄β),ν (27.27)

(T 44x̄αx̄β),44 = (Tµν x̄αx̄β),µν − 2(Tµαx̄β + Tµβ x̄α),µ + 2Tαβ ,

which upon integration lead to the relation

bαβ + bβα = − ḋαβ/c, aαβ = d̈αβ/2c2 (27.28)

between the moments of the energy-momentum tensor.
Taken together, all the moments in which we are interested can thus

be expressed in terms of the mass m, the angular momentum Bνα and
the mass quadrupole moment dαβ according to

m = const., pν = 0, dν = 0, Bνα = const.,

bνα =
(
Bνα − ḋνα/c

)
/2, aαβ = d̈αβ/2c2.

(27.29)

Step 3. Writing down the metric and simplifying it by coordinate trans-
formations Substituting the integrand (27.21) into the formula (27.16),
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using the results (27.23), and remembering the relations (27.29), we have

2π
κ
f̄44 =

m

r
+
xαxβ

2r5
(3dαβ − ηαβd

σ
σ)

+
xαxβ

2r4c
(3ḋαβ − ηαβ ḋ

σ
σ) +

xαxβ

2c2r3
d̈αβ , (27.30)

2π
κ
f̄4ν =

Bναx
α

2r3
− ḋναx

α

2cr3
− d̈ναx

α

2c2r2
,

2π
κ
f̄νµ =

d̈νµ

2c2r
.

The conversion to the fmn yields relatively complicated expressions
which we shall not give explicitly. The reader can verify by direct calcu-
lation that after a coordinate transformation (27.18) with the generating
functions

2π
κ
b4 =

xαxβ

8r4
(3dαβ − ηαβd

σ
σ) +

xαxβ

8cr3
(ḋαβ + ηαβ ḋ

σ
σ), (27.31)

2π
κ
bν = −3dναx

α

4r3
− ḋναx

α

2cr2
+

3dαβx
αxβxν

4r5
+

(ḋαβ + ηαβ ḋ
σ
σ)xαxβxν

8cr4

no time derivatives are contained in f44 and f4ν . The far field of an
isolated matter distribution then has, in the linearized theory, the metric

g44 = −1 + f44 = −1 +
2M
r

+
xαxβ

r5
(3Dαβ − ηαβD

σ
σ) +O(r−4),

g4ν = f4ν =
2xα

r3
εµναP

µ +O(r−3),

gµν = ηµν

[
1 +

2M
r

+
xαxβ

r5
(3Dαβ − ηαβD

σ
σ)
]

+
2

3c2r
(3D̈νµ − ηνµD̈

λ
λ)

+ (3D̈αβ − ηαβD̈
λ
λ)xαxβ

[ ηµν

3c2r3
+

xνxµ

12c2r5
]

(27.32)

− (3D̈να − ηναD̈
λ
λ)

6c2r3
xαxµ − (3D̈µα − ηµαD̈

λ
λ)

6c2r3
xαxν +O(r−2),

with the abbreviations

mass: M =
κ

8π

∫
T44 (r̄, t− r/c) d3x̄ = const.,

angular momentum: Pµ = εµν
α
κ

8π

∫
T4ν (r̄, t− r/c) x̄α d3x̄

= const., (27.33)

quadrupole moment: Dαβ =
κ

8π

∫
T44 (r̄, t− r/c) x̄αx̄β d3x̄

= Dαβ (t− r/c) .
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27.5 Discussion of the properties of the far field
(linearized theory)

As we have already shown in Section 22.2, f44 = g44 + 1 is essentially
the Newtonian potential of the matter distribution. Here it contains
a mass term and a quadrupole term, but no dipole contribution (we
have transformed this to zero by the choice of coordinate system). If we
compare the linear approximation

g44 = −1 + 2M/r + xαxβ(3Dαβ − ηαβD
σ
σ)/r5 +O(r−4) (27.34)

with the expansion

g44 = −1 + 2M/r − 2M2/r2 +O(r−3) (27.35)

of the Schwarzschild metric (in isotropic coordinates) in powers of r−1,
see (23.67) and (24.1), then we see that retention of the quadrupole term
in g44 is only justified in exceptional cases. The higher non-linear terms
with M2 will almost always dominate; (27.34) is a good approximation
only up to terms in r−1. The same restriction holds for the part of gµν

proportional to ηµν .
The occurrence of the angular momentum in g4ν is interesting. In the

Newtonian theory there is no dependence of the gravitational field upon
the rotation of a celestial body. To appreciate the physical meaning of
this term in the metric, we recall that a metric of the form

ds2 = ηαβ dxα dxβ−2g4β dx4 dxβ−(1 + 2aνx
ν/c2 + · · ·) (dx4)2 (27.36)

rotates with angular velocity

ωα = − 1
2cε

αβνg4β,ν (27.37)

with respect to a local inertial system, see Section 21.2. The coordinate
system used here, upon which we have based the linearized gravitational
theory, and which we have to identify with the system in which the
fixed stars are at rest, is thus locally a rotating coordinate system, or,
conversely, the local inertial systems rotate with angular velocity

Ωσ = 1
2c ε

σβνg4β,ν = −
(cPσ

r3
− 3xσxνP

νc

r5

)
(27.38)

with respect to the fixed stars. This Lense–Thirring (1918) effect can
be demonstrated by the precession of a top (which adds to that of the
geodesic precession (24.17)). Experiments to check this are in prepara-
tion. By the way, the analogue in electrodynamics of the components g4ν

of the metric and their effect is the magnetic field, which is created by
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currents and exerts a couple upon dipoles (Ωa has precisely the spatial
structure of the force field of a dipole).

The most important terms for the far field (27.32) of a source are
those strongest at infinity, namely, those proportional to r−1, that is
to say, the parts of the metric containing the mass M or the second
derivative of the quadrupole moment Dαβ(t− r/c). In electrodynamics
the corresponding potentials

U =
Q

4πr
+

xα

4πr2
[ ṗα(t− r/c)

c
+
pα(t− r/c)

r

]
+O(r−2),

Aν =
ṗν(t− r/c)

4πr

(27.39)

represent the far field of a charge Q and an oscillating electric dipole pα,
and the terms proportional to ṗα lead to the radiation of electromag-
netic waves. We may therefore suppose that the occurrence in the metric
of D̈αβ/r signifies that the system is emitting gravitational waves and
that, in contrast to the possibility of dipole radiation from a charge dis-
tribution, the gravitational radiation is quadrupolar in character. Both
suppositions can be to a certain extent verified. In order to be able
to make more exact statements one must of course go beyond the lin-
earized theory; we shall come back to this question in the next chapter.
(In electrodynamics, too, the Poynting vector, which characterizes the
radiation, is quadratic in the field strengths.)

27.6 Some remarks on approximation schemes

The linearized theory can be regarded as a first step in a systematic
approximation procedure. Using harmonic coordinates one starts with

f̄mn =
√−g gmn − ηnm, f̄mn

,n = 0 (27.40)

and finds that the (exact) Einstein field equations can be written as

�f̄mn = τmn, (27.41)

where � is the flat space wave operator, and τmn contains the energy-
momentum tensor Tmn and all terms from Gmn which are non-linear in
f̄mn. One then assumes a development of the sources and the field with
respect to a parameter λ, which numbers the orders and may or may
not have a physical meaning (such as the gravitational constant, or the
velocity v of the sources divided by c):

f̄mn =
∑

λkf̄mn
(k) , τmn =

∑
λkτmn

(k) , (27.42)
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so that
�f̄mn

(k) = τmn
(k) (27.43)

holds. Since the τmn
(k) depend only on the f̄mn

(i) of lower order, i ≤ k −
1, the equations (27.43) can be solved successively using the retarded
or advanced Green’s functions of the wave operator. Since the field
equations are integrable only if τmn

,n = 0 holds, these equations have
to be satisfied in each step, thus giving the equations of motion for the
sources of the field. Instead of using the wave operator � one can also
take the Poisson operator �, shifting the time-derivatives with their
c−2 to the right-hand side; this can be appropriate when considering
corrections to Newtonian gravity. (Note the sometimes strange labelling:
‘order 5/2’ means for example that the terms contain (c−2)5/2 = c−5).

The actual calculations are very long and cumbersome, but necessary
to understand the motion of planets or binary pulsars including the back
reaction from the outgoing quadrupole radiation.

Further reading for Section 27.6

Blanchet (2002).

Exercise

27.1 Insert (27.40) into (28.20) and show that the field equations
really have the form (27.41).

28

Far fields due to arbitrary matter
distributions and balance equations for
momentum and angular momentum

28.1 What are far fields?

The linearized theory of gravitation is based on the presumption that
over whole regions of space, at any rate in the vicinity of the sources of
the field, the gravitational field is weak, and the metric deviates only
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slightly from that of a Minkowski space. In nature we often meet a situ-
ation in which a distribution of matter (a satellite near the Earth, the
Earth, the planetary system, our Galaxy) is surrounded by vacuum, and
the closest matter is so far away that the gravitational field is weak in
an intermediate region. In the neighbourhood of the sources, however,
the field can be strong.

If such an intermediate region exists, and far away sources are not
present or their influence can be neglected, then we speak of the far
field of the configuration in question (Fig. 28.1). Notice that here, by
contrast, for example, to most problems in electrodynamics, we may not
always assume an isolated matter distribution which is surrounded only
by a vacuum. The assumption of a void (the ‘infinite empty space’)
into which waves pass and disappear contradicts the basic conception of
General Relativity; also the fact that we orient our local inertial system
towards the fixed stars indicates that we must always in principle take
into account the existence of the whole Universe whenever we examine
the properties of a part of the Universe.

While in the linearized theory we investigated solutions to the lin-
earized field equations, their dependence upon the structure of the sources
and their behaviour at great distances from the sources, now we are in-
terested in approximative and exact propertries of the solutions to the
exact field equations in regions where the gravitational fields are weak.
Our goal here is to obtain statements about the system from a knowledge
of the far field.

The simplest examples are gravitational fields whose far fields are
independent of time. We assume that to good approximation the metric
can be written as

gmn = ηmn + amn/r + bmn/r
2 +O(r−3). (28.1)

Outside
world

Outside
world

Far field
(intermed.

region)

Far field
gmn =

ηmn+O ( 1
r
)

System under consideration
(Earth, planetary system,

galaxy. . .)

Fig. 28.1. How the far field is defined.
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As the region of the far field is an annular or shell-like region and there-
may be sources outside, we ought to add onto (28.1) a series with in-
creasing powers of r. We drop these terms, however; this corresponds
to the model of an isotropic external environment.

The functions amn and bmn, which are independent of r and t, are to
be determined by substitution of (28.1) into the vacuum field equations

Rmn = 0. (28.2)

We can simplify these calculations by first obtaining solutions f̄mn to
the linearized field equations

∆f̄mn = 0, f̄nm
,n = 0, (28.3)

and then calculating the non-linear corrections.
Every solution of the potential equation can be represented in the form

of a multipole expansion. Thus, neglecting terms which are O(r−3), we
have

f̄44 = A/r +Aαx
α/r3, f̄4ν = Bν/r +Bναx

α/r3,

f̄µν = f̄νµ = Cνµ/r + Cνµαx
α/r3,

(28.4)

where, because of the subsidiary condition f̄mn
,n = 0, the constants are

restricted by the algebraic conditions

Bν = 0, Bνα = ηναB + εναβF
β ,

Cνµ = 0, Cνµα = δνµCα − δµαCν − δναCµ.
(28.5)

B and Cµνα can be eliminated by a coordinate transformation (27.9)
with

b4 = B/r, bα = −Cα/r. (28.6)

Experiment shows that in non-flat fields A is always non-zero (mass is
always positive), so that by a shift of the origin of coordinates Aα can
be transformed away as well. The linear approximation thus gives the
metric

ds2 =
(
ηmn + f̄mn − 1

2ηmnf̄
a
a

)
dxn dxm

= (1 +A/2r) ηαβ dxα dxβ + 2r−3εναβx
αF β dxν dx4

− (1−A/2r) (dx4)2.

(28.7)

If we compare this expression with the metric (27.32), which we
derived from the description of the fields in terms of the sources, then
we see that the constants A and Fβ can be identified with the mass M
and the angular momentum P according to
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A = 4M, F β = 2P β . (28.8)

This identification is not merely a repetition of the linearized theory. In
the linearized theory mass and angular momentum were defined through
the integrals (27.33) over the source distribution. Now, in the investiga-
tion of the far field of an (unknown) source, we take as definitions of the
mass and the angular momentum of the source just those coefficients in
the expansion of the far field which act upon a test body or a top in
exactly the same way as the mass or angular momentum, respectively,
of a weak source.

We have now to put into the metric (28.7) the corrections arising
from the non-linearity of the Einstein equations; (28.7) is not of course
a solution of the field equations (28.2), even if we ignore terms in r−3.
Since we are taking terms only up to r−2 and corrections due to the
non-linearity are always weaker by at least one power of r than the
original terms, we need to take into account terms quadratic in the
mass parameter. However, we can obtain these by series expansion from
the exact Schwarzschild solution (23.67) without performing additional
calculations.

We thus obtain the result that the far field of an arbitrary, time-
independent source has, in suitable coordinates, the form

ds2 =
(
1 + 2M/r + 3M2/2r2

)
ηαβ dxα dxβ + 4r−3εναβx

αP β dxν dx4

− (1− 2M/r + 2M2/r2
)
(dx4)2 +O(r−3), (28.9)

in whichM and Pα are regarded as the mass and the angular momentum
because of the way they act upon test bodies and because of the analogy
with the linearized theory.

28.2 The energy-momentum pseudotensor for the
gravitational field

The problem Linearized gravitational theory and its strong analogy
with electrodynamics leads one to suppose that time-varying gravita-
tional systems emit gravitational waves. Is it possible by examining the
far field to establish whether, and under what conditions, such waves
exist?

In a special-relativistic field theory one would probably try to answer
this question in the following fashion. The decisive factor in the existence
of waves or radiation is not merely that the fields are time-dependent,
but that energy, momentum and angular momentum are transported
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from one region of space to another. One therefore encloses the system
under consideration in, for example, a spherical surface, writes down
the balance equations for the above-mentioned quantities, and ascertains
whether, for example, an energy current is flowing through the sphere.
If this is the case, one can speak of radiation (provided that particles
are not just flowing across the boundary surface and carrying with them
energy, etc.). We therefore start out from the balance equations

Tmn
,n = 0, (Tmnxa − Tmaxn),m = 0 (28.10)

for momentum and angular momentum for the field under consideration.
If we want to perform a similar analysis in gravitation theory, we must

construct an energy-momentum tensor of the gravitational field (not of
the matter!) and derive balance equations from it. In General Relativity
there is, however, just one energy-momentum tensor, namely, that due
to the matter. Although its divergence vanishes,

Tmn
;n = 0, (28.11)

one cannot, however, deduce an integral conservation law from (28.11)
in a Riemannian space, because integration is the reverse of partial, and
not covariant, differentiation and one cannot apply the Gauss law to the
divergence of a symmetric second-rank tensor (see Chapter 20).

Since we are supposing the existence of gravitational waves, this nega-
tive statement should not really surprise us. If energy can be transported
in the form of gravitational waves, the energy of the sources alone can-
not remain conserved. Rather, one would expect that in place of (28.11)
there is a differential balance equation, formulated in terms of partial
derivatives, of the structure

[(−g)(Tmn + tmn)],n = 0, (28.12)

which expresses the fact that a conservation law holds only for the sum
of the matter (Tmn) and the gravitational field (tmn).

The problem is, therefore, to construct a tmn from the metric in such a
way that (28.12) is satisfied alone as a consequence of the field equations

Gnm = Rnm − 1
2Rgnm = κTnm. (28.13)

Before turning to this problem, we want to formulate clearly the
alternatives confronting us. Either we wish to deal only with tensors
and allow only covariant statements, in which case we use (28.11) and
can write down no balance equation for the energy transport by radia-
tion. Or else we want such a balance equation (28.12), which can only
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be formulated in a non-covariant manner; as one can see from (28.12),
tmn is not a tensor, and we call it the energy-momentum pseudotensor
of the gravitational field.

Since we pick out a Minkowski metric in the far field in a non-covariant
fashion anyway, to begin with we shall accept the lack of covariance in
(28.12), not going into its consequences until later. There are, however,
good reasons for deciding to maintain covariance and to regard the ques-
tion of energy transport by gravitational waves as inappropriate in the
theory of gravitation, because the concept of energy has lost its meaning
there (see Section 28.4).

Construction of the energy-momentum pseudotensor tmn The program
just described perhaps sounds plausible, but already in the initial equa-
tion (28.12) there is a flaw: tmn is not uniquely determined. The addition
of a term of the form Hikl

,l to (−g)tik in no way affects the validity of
(28.12), provided only that Hikl is antisymmetric in k and l:

(−g)t̃ik = (−g)tik +H i[kl]
,l,

[
(−g)t̃ik]

,k
=
[
(−g)tik]

,k
. (28.14)

Thus, one finds in the extensive literature on this problem a whole series
of different proposals, which finally, in the formulation of the conserva-
tion laws, give the same statements. We shall therefore not attempt to
derive our preferred (Landau–Lifshitz) form of tmn, but rather guess a
trial substitution from seemingly plausible requirements and then verify
its correctness.

In analogy to the properties of the energy-momentum tensors of all
other fields, tmn should be symmetric, it should be bilinear in the
first derivatives of the metric, and it should contain no second deriva-
tives. Furthermore, bearing in mind the field equations (28.13), equation
(28.12) must be satisfied identically, that is,

[(−g)(Gmn + κtmn)],n = 0 (28.15)

must hold for every metric. Equation (28.15) can be satisfied most
simply if we introduce a superpotential Umni according to

Umni
,i = (−g)(Gmn + κtmn), Umni = −Umin, Umni

,i = Unmi
,i.

(28.16)
Since second derivatives of the metric occur inGmn, Umni should contain
at most first derivatives. We can ensure this by writing Umni as the
divergence of a quantity Umnik:

Umni = Umnik
,k, (28.17)
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which depends only upon the metric, not on its derivatives. From the
symmetry requirement, the form of Umnik is uniquely determined up to
a factor; we make the choice

Umnik = 1
2 (−g)(gmngik − gmignk). (28.18)

While the validity of (28.15) is ensured because of our construction
procedure, we must examine explicitly whether tmn does contain no
second derivatives of the metric. From (28.16), that is, from

κ(−g)tmn = 1
2
[(−g)(gmngik − gmignk)]ik − (−g)Gmn, (28.19)

one obtains, after a rather long calculation,

2κ(−g)tmn = 1
8 (2gmlgnk − gmnglk)(2gipgqr − gpqgir)gir

,lg
pq

,k

+gmn
,kgik

,i − gmi
,ig

nk
,k + 1

2g
mnglig

lk
,pg

pi
,k (28.20)

− gikgip
,l(gmngnk

,p + gnlgmk
,p) + glig

kpgnl
,kgmi

,p

where the abbreviation

gmn ≡ √−g gmn (28.21)

has been used. The energy-momentum pseudotensor tmn therefore really
does have the desired properties. That we have succeeded so simply in
expressing the second derivatives of the metric contained in Gmn by the
derivatives of Umnik is closely connected with the possibility mentioned
in (22.48) of splitting up the Lagrangian of the gravitational field.

Properties of the energy-momentum pseudotensor The energy-momen-
tum pseudotensor tmn is not a tensor; one can see this property most
clearly by noticing that at any point of space-time the energy-momentum
pseudotensor can be made to vanish by the introduction of locally geo-
desic coordinates gmn = ηmn, gmn,a = 0. Therefore, if our idea of
associating energy and momentum with the pure gravitational field is
at all meaningful, then the gravitational energy is on no account to be
thought of as localizable; it is at best a quantity which one can associate
with a whole spatial region, its value at any one point being arbitrarily
alterable through choice of the coordinate system.

On the other hand, the energy-momentum pseudotensor does trans-
form like a tensor under coordinate transformations which have the for-
mal structure of a Lorentz transformation:

xn′
= Ln′

n x
n, tn

′m′
= Ln′

nL
m′

m tnm, Ln′
nLn′a = δa

n. (28.22)

This property is important when the energy-momentum pseudotensor
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is used for the far field of an isolated matter distribution, where the
space deviates only weakly from a Minkowski space and hence Lorentz
transformations have a physical meaning.

28.3 The balance equations for momentum and angular
momentum

We want now to use the energy-momentum pseudotensor and its super-
potential to obtain global statements about the energy, momentum and
angular momentum of the system under consideration, from the local
balance equations for the four-momentum

[κ(−g)(Tmn + tmn)],n = Umni
,in = Umnik

,kin = 0, (28.23)

and from the balance equation{
[κ(−g)(Tmn + tmn)]xa − [κ(−g)(Tma + tma)]xn

}
,m

= (Umni
,ix

a − Umai
,ix

n),m = 0
(28.24)

for angular momentum which follows from it.
To this end we integrate (28.23) and (28.24) over the region G3 of

the three-dimensional space x4 = const. indicated in Fig. 28.2, which
contains the matter and which reaches into the far-field zone, and with
the help of the Gauss law transform these integrals into surface-integrals
over the surface Σ of G3, giving

d
dx4

( ∫
G3
Um4i

,i d3x
)

= − ∫
G3
Umνi

,iν d3x = − ∫
Σ
Umνi

,i dfν , (28.25)

d
dx4

( ∫
G3

(U4ni
,ix

a − U4ai
,ix

n) d3x
)

= − ∫
Σ
(Uνni

,ix
a − Uνai

,ix
n) dfν .

(28.26)

Because of the symmetry properties (28.16), Um4i
,i contains no time

G3G3
ΣΣ

Far field Far field

World tube of
matter (T mn �= 0)

Fig. 28.2. Derivation of the balance equations.
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derivative, so that the left-hand sides of these equations can also be
transformed into surface integrals. We designate these integrals as

pm ≡ ∫G3
[(−g)(T 4m + t4m)] d3x = κ−1

∫
Σ
Um4ν dfν , (28.27)

Ian ≡ ∫G3
[(−g)(T 4nxa − T 4axn + t4nxa − t4axn)] d3x

(28.28)
= κ−1

∫
Σ
(U4nνxa − U4aνxn + U4naν − U4anν) dfν ,

and notice that if Tmn vanishes on Σ then we obtain the relations

dpm/dt = −cκ−1
∫
Σ
Umνi

,i dfν = −c ∫
Σ
(−g)tmν dfν , (28.29)

dIan/dt = −cκ−1
∫
Σ
(Uνni

,ix
a − Uνai

,ix
n) dfν

(28.30)
= −c ∫

Σ
(−g)(tνnxa − tνaxn) dfν .

We can interpret these equations as balance equations for the momen-
tum pm and the angular momentum Ian. They state that the momen-
tum and angular momentum of a source (of the region bounded by Σ)
change when gravitational radiation is transported over the boundary
surface Σ. Their particular advantage lies in the fact that all the quan-
tities occurring need to be known only on Σ, that is, only in the far-field
region.

In practice we shall identify the surface Σ with a ‘sphere’ r = const.;
since its surface element is given by

dfν = xνr sinϑ dϑdϕ+O(r), (28.31)

in the far-field region (r very large) we need take into account only those
contributions to the integrands which tend to zero no faster than as r−2.

If we are to test the physical content of the balance equations in the
example of the stationary metric (28.9), then, according to (28.27), for
the calculation of the momentum we need retain only the terms in the
metric proportional to r−1 (which give terms in r−2 in Um4ν); that is,
we can use the relation

Umni = 1
2 (gmngik − gmignk),k = 1

2

(
ηnkf̄mi

,k − ηikf̄mn
,k

)
, (28.32)

valid in the linearized theory. The result of this simple calculation is

pν = 0, p4 = 8Mπ/κ = mc2 = const.; (28.33)

that is, the spatial momentum is zero and the energy p4 is connected with
the mass m measured in the far field exactly as in the special-relativistic
formula. On the other hand, only the term in g4ν proportional to r−2

gives a contribution to the angular momentum Ian; one obtains
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I4ν = 0, Iαν = 8πεανβPβ/κ. (28.34)

The results (28.33) and (28.34) thus confirm our ideas, in particu-
lar the interpretation of pm as the momentum and Ian as the angular
momentum of the system comprising matter plus gravitational field.

For time-dependent fields, momentum and angular momentum will
not remain conserved. We examine this in the energy balance equation
of the far field (27.32) of a time-dependent source. Since the energy-
momentum pseudotensor is quadratic in the first derivatives of the met-
ric (see (28.20)), we have to take into account in the energy law

dp4/dt = −c ∫ (−g)t4νx
νr sinϑ dϑdϕ (28.35)

only the terms of the metric whose first derivatives go like r−1, namely,

g44 ≈ η44 − f̄44 ≈ −1− κ

4π
D̈αβx

αxβ

c2r3
,

g4ν ≈ −f̄4ν ≈ κ

4π
D̈ναx

α

c2r3
, Dαβ = Dαβ (t− r/c) ,

gµν ≈ ηµν − f̄µν ≈ ηµν − κ

4π
D̈νµ

c2r
.

(28.36)

After a simple, but rather lengthy, calculation one obtains

dp4

dt
= − 1

5c2
( ...

Dαβ − 1
3
ηαβ

...

D
σ
σ

)( ...

D
αβ − 1

3
ηαβ

...

D
τ
τ

)
; (28.37)

that is, the energy of the system always decreases. In the planetary
system, this loss of energy through gravitational quadrupole radiation
can certainly be ignored, since it is proportional to the sixth power of the
frequency ω of the system. In the system of the binary pulsar 1913+16,
however, this loss is significant.

The weakness of this application of the balance equations comes to
light when one tries to calculate not the loss of energy but the total
energy of the system emitting quadrupole waves: the corresponding in-
tegrals diverge for r → ∞ if the system emits continuously (the whole
space is filled with radiation). This diverging of the total energy is pos-
sible because in the linearized theory we have ignored the back reaction
produced by the emission of radiation upon the motion of the sources,
and consequently the system can give up energy continuously without
exhausting the supply. Of course, one can put in this back reaction
by hand, or better use an approximation scheme as sketched in Section
27.6, but it would be desirable to test the balance equations in the far
field of an exact solution. Unfortunately, however, no exact solution is
known which describes the emission of radiation by a physically reason-
able system.
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28.4 Is there an energy law for the gravitational field?

Because of the significance of the law of conservation of energy and (for
systems which are not closed) the energy balance equation in many areas
of physics, we shall examine their rôle in the theory of gravitation again,
to some extent repeating the discussion of Section 28.3.

In Special Relativity, Electrodynamics, Thermodynamics, Quantum
Mechanics and Quantum Field Theory it is always the case that a quan-
tity ‘energy’ can be defined for a system which is constant if the system
is isolated. If the system interacts with its surroundings, a balance equa-
tion can be written down so that the energy of the whole system (system
plus surroundings) is again constant.

By analogy one would expect that, for example, electrical energy and
energy of the gravitational field could transform into one another, their
sum remaining constant (if there are no other types of interaction). The
Einstein gravitational theory gives a completely different answer, how-
ever. In a general gravitational field there is indeed a conservation

Tmn
,n = 0 (28.38)

for the energy and momentum of the field-producing matter law in the
neighbourhood of a point, obtained upon introduction of the inertial
coordinate system there (locally geodesic system). But it holds only so
long as (in a region of space so small that) the curvature of the space, that
is, the real gravitational effects, can be ignored. In this sense, and with
this restriction, the theory of gravitation corroborates the conservation
laws of special-relativistic physics.

Over larger spatial regions when the gravitational field is properly
included there is no energy balance equation. It is incorrect to regard
this as a violation of energy conservation; there exists in general no local
covariant quantity ‘energy’ to which the property of conservation or non-
conservation can be ascribed. None of the foundations of physics are
thereby destroyed; energy is only a (very important) auxiliary quantity
for describing interactions, but the interaction of all parts of the Universe
is quite essential for the theory of gravitation.

The situation is rather more favourable if the gravitational field is not
completely general, but possesses certain additional properties. Thus
one can associate energy and momentum with a system that is sep-
arated from the rest of the Universe by a far-field zone, in the sense
of Section 28.1, and for which the integrals (28.27) exist. Here these
integrals assume an invariant significance through the use of Minkowski
coordinates, which they do not have in a general system, in which, for
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example, the superpotential also exists. Then balance equations can be
formulated, which for real systems, whose far fields of course do not
reach to infinity, are only approximations. A localization of the energy
in the interior of the system is in principle impossible.

Another important possibility for applying the concepts of energy,
momentum and angular momentum occurs when the gravitational field
possesses symmetries. While the local inertial system is invariant under
the Lorentz group and possible translations (rotations) just correspond
to the usual energy-momentum (angular-momentum) conservation law
of physics, the whole space-time has symmetry properties only in excep-
tional cases. If, however, symmetries are present, they always correspond
to conservation laws. We shall return to this problem in Chapter 33.

Further reading for Chapter 28

Misner et al. (1973), Landau and Lifschitz (1975).

29

Gravitational waves

29.1 Are there gravitational waves?

The existence of gravitational waves was disputed for a long time, but
in recent years their existence has been generally accepted. As often
in the history of a science, the cause of the variance of opinions is to
be sought in a mixture of ignorance and inexact definitions. Probably
in the theory of gravitation, too, the dispute will only be completely
settled when a solution, for example, of the two-body problem, has been
found, from which one can see in what sense such a double-star system
in a Friedmann universe emits waves and in what sense it does not, and
when the existence of such waves has been experimentally demonstrated.

Waves in the most general sense are time-dependent solutions of the
Einstein equations; of course such solutions exist. But this definition of
waves is, as we can see from experience with the Maxwell theory, rather
too broad, for a field which changes only as a result of the relative
motion of the source and the observer (motion past a static field) would
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not be called a wave. Most additional demands which a gravitational
wave should satisfy lead, however, to the characterization ‘radiation or
transport of energy’, and this is where the difficulties begin, as explained
in the previous chapter, starting with the definition of energy.

In order to make the situation relatively simple, in spite of the non-
linearity of the field equations, one can restrict attention to those solu-
tions which possess a far-field zone in the sense of Section 28.1. Thus
imagine the planetary system as seen from a great distance. Does this
system emit gravitational waves as a consequence of the motion of the
Sun and the planets? The linearized theory answers this question in
the affirmative, but ignores the back reaction of the radiation upon the
motion of the bodies. The general opinion of physicists is, however,
that such a system tries to adjust its state (the Sun captures planets
which have lost their kinetic energy by radiation) and thereby emits
waves. There is little to be said against this supposition if one imagines
the planetary system in an otherwise empty space. One may, however,
regard the process also in the following way (see Fig. 29.1). From an
initially non-spherically-symmetric field inside the far-field zone, and
the external universe which (as a consequence) is also not spherically
symmetric, there develops a Schwarzschild solution in the interior and
a Friedmann universe in the exterior (see Chapter 41). Both parts of
the universe strive to adjust their state, but whether, and in which di-
rection, energy transport occurs through the far-field zone in unclear –
neither of the two partners in the interaction is preferred in principle.
It is therefore not at all certain whether a freely gravitating system
(a system with exclusively gravitational interaction) emits gravitational
waves.

The situation is clearer when the properties (the matter distribution)
of a system are changed discontinuously by intervention from outside,

Schwarz-

schild

Schwarzschild

+

perturbation

Far field

Friedmann + perturbation Friedmann

Fig. 29.1. Settling down of a perturbed gravitational system.
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that is, by non-gravitational interaction, for example, by the explosion of
a bomb or a supernova. The change thus produced in the gravitational
field propagates out in the form of gravitational shock waves. We shall
go into this again in the discussion of the initial value problem in Section
30.5.

This theoretical discussion of definitions will not interest the experi-
mental physicist as much as the questions as to whether and how one can
produce gravitational waves and demonstrate their existence. Because
the gravitational constant is so small there seems no prospect at the
present time of producing gravitational waves of measurable intensity
by forced motion of masses. The question therefore reduces to whether
stars, stellar systems or other objects in our neighbourhood are emitting
gravitational waves and with what experimental arrangements one could
detect these waves. We come back to this problem briefly in Section 29.4.

Exact solutions describing the interactions between the motion of the
sources and the emission of radiation are not known. The considerations
of the next few pages almost always deal with an analysis of the local
properties of possible solutions. One introduces a local inertial system
in the far field or in the neighbourhood of a point and considers (small)
deviations from the Minkowski metric caused by the space curvature
which have wavelike character. Even when, in Section 29.3, we discuss
exact solutions, we are really dealing with an inadmissible idealization
and generalization of local properties of the gravitational fields, just as
for exactly plane electromagnetic waves in the Maxwell theory, which
also of course can only be realized in an approximate fashion (locally).

29.2 Plane gravitational waves in the linearized theory

The waves and their degrees of freedom The simplest solutions of the
linearized field equations in matter-free space,

�f̄mn = ηabf̄mn,ab = 0, f̄mn
,n = 0,

gmn = ηmn + fmn, f̄mn = fmn − 1
2
ηmnf

a
a

(29.1)

(see Section 27.2), are the plane, monochromatic gravitational waves

f̄mn = Re[âmneikrxr

], âmn = const., krk
r = 0, âmnk

m = 0, (29.2)

from which (in the sense of a Fourier synthesis) all solutions of (29.1)
can be obtained by superposition. (In this section indices are again
shifted with the flat-space metric ηmn.)

The independent components âmn, ten in number because of the sym-
metry, are restricted by the four subsidiary conditions âmnk

n = 0. One
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might therefore suppose that a plane, monochromatic gravitational wave
has six degrees of freedom (of polarization). But the waves (29.2) contain
pure coordinate waves; these are waves whose curvature tensor vanishes
identically, so that they can be eliminated by coordinate transforma-
tions. For many calculations it is convenient to get rid of these physically
meaningless degrees of freedom. To this end we have at our disposal the
coordinate transformations (27.9), whose generating functions,

bn(xm) = −ib̂neikmxm

, (29.3)

satisfy the wave equation
�bn = 0, (29.4)

and which effect a change of gauge

anm = ânm − b̂nkm − b̂mkn + ηnmb̂rk
r. (29.5)

The four constants b̂n can now be chosen so that, in addition to (29.2),

a4m = 0 = an4 (29.6)

(because amnk
n = 0 these are three additional conditions) and

aµ
µ = 0 = am

m (29.7)

are satisfied. The remaining two independent components of amn cannot
be transformed away, and therefore are of true physical significance.

The conditions (29.2), (29.6) and (29.7) have a simple visual interpre-
tation. Let us choose the spatial coordinate system in such a manner
that the wave propagates along the z direction, that is, kr has only the
components

kr = (0, 0, ω/c, ω/c). (29.8)

Then because of (29.2), (29.6) and (29.7) only the amplitudes axx,
axy and ayy of the matrix amn are non-zero, and in addition we have
axx = −ayy. The gravitational wave is therefore transverse and, cor-
responding to the two degrees of freedom of the wave, there are two
linearly independent polarization states, which when (29.8) holds can
be realized, for example, by the two choices (‘linear polarization’)

axx = −ayy, anm = 0 otherwise, (29.9)
axy = ayx, anm = 0 otherwise. (29.10)

The result of this analysis is thus the following. Gravitational waves
propagate with the speed of light (kr is a null vector). They are trans-
verse and possess two degrees of freedom of polarization. In the preferred
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coordinates (29.8) they have the metric

ds2 = (1 + fxx) dx2 + 2fxy dxdy + (1− fxx) dy2 + dz2 − c2 dt2,
(29.11)

fxx = axx cos (ωz/c− ωt+ ϕ) , fxy = axy cos (ωz/c− ωt+ ψ) .

The curvature tensor of plane gravitational waves Independent of any
special gauge the curvature tensor

Rambn = 1
2
(fan,mb + fmb,an − fmn,ba − fab,mn) (29.12)

of a plane gravitational wave always has the property

Rambnk
n = 0, (29.13)

as a result of the relations

fmnk
n = 1

2
kmf

a
a , fmn,ab = −kakbfmn (29.14)

which follow from (29.1) and (29.2). The null vector kn characterizing
the wave is an eigenvector of the curvature tensor.

In the special gauge of the metric (29.11) all non-vanishing compo-
nents of the curvature tensor can be expressed by

Rα4β4 = −1
2

d2fαβ

c2 dt2
. (29.15)

The motion of test particles in a plane, monochromatic gravitational
wave If one writes down the equation of motion

d2xa

dτ2
+ Γa

nm

dxn

dτ
dxm

dτ
= 0 (29.16)

of a test particle in the coordinate system (29.11), then one finds that

xα = const., x4 = cτ (29.17)

is a solution of the geodesic equation, because

Γa
44 = 1

2
ηab(2fb4,4 − f44,b) = 0. (29.18)

Particles initially at rest always remain at the same place; they appear
to be completely uninfluenced by the gravitational wave. This initially
surprising result becomes comprehensible when we remember that the
curvature of space enters the relative acceleration of two test particles,
and the action of the gravitational waves should therefore be detectable
in this relative acceleration (and not in the relative positions).

Now which acceleration is measured by an observer at rest at the origin
(O, ct) of the spatial coordinate system, who observes a particle which is
at rest at the point (xα, ct)? For the interpretation of his measurement
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0 π/2 π 3π/2

Fig. 29.2. Motion of a ring of test particles in a gravitational wave.

the observer will use not the coordinate system (29.11), but rather a
local inertial system which he carries with him,

ds2 = ηαβ dx̂α dx̂β − c2 dt2 + higher terms, (29.19)

which arises from (29.11) by the transformation

x̂α = xα + 1
2f

α
β(O, ct)xβ . (29.20)

In this inertial system the test particle has the time-varying position x̄α,
and its acceleration is (see (29.15))

d2x̄α

dt2
=

1
2

d2fα
β(O, ct)
dt2

xβ = −c2Rα
4β4x

β . (29.21)

Since fαβ has components only in the xy-plane, test particles also are
only accelerated relative to one another in this plane, perpendicular to
the direction of propagation of the wave. In this physical sense too, the
gravitational wave is transverse. Figure 29.2 shows the periodic motion
of a ring of test particles under the influence of the linearly polarized
wave (29.9).

The energy-momentum pseudotensor of the plane wave In the case of
the linearized plane wave the energy-momentum pseudotensor (28.20)
has the simple form

tmn = 1
4
airā

irkmkn sin2 ksx
s. (29.22)

Its proportionality to kmkn is typical of a plane wave. It is found also
for the electromagnetic wave (21.44) and expresses the fact that all the
energy flows with the velocity of light, there is no static part.

29.3 Plane waves as exact solutions of Einstein’s equations

Can one obtain exact solutions to Einstein’s equations which have prop-
erties similar to those of the plane waves in the linearized theory? Before
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this question can be answered, it is necessary to characterize the required
solutions in a covariant manner and thereby define in what sense one
wants to make a generalization.

If one scrutinizes the results of the previous section, then one sees that
only (29.13) is a covariant statement. One could try to start from there
and characterize plane waves by

Rmn = 0, Rambnk
n = 0, knk

n = 0. (29.23)

However, only the stronger conditions,

Rmn = 0, ka;n = 0, knk
n = 0, (29.24)

actually give the restriction to plane waves. (One can convince oneself
that (29.23) follows from (29.24)!) The requirement that ka;n = 0 gener-
alizes the property of plane waves in flat space of possessing parallel rays
with which are associated a null vector kn. These waves are therefore
called plane-fronted waves with parallel rays (pp-waves).

We shall encounter the more general class of solutions (29.23) again
in Chapter 32.

Choice of a suitable coordinate system Since k[a;b] = 0 holds, the null
vector ka can be written as the gradient of a function u. If we identify
u with the coordinate x4, then we have

ka = u,a, u = x4, ka = (0, 0, 0, 1). (29.25)

For a plane wave in flat space, which is propagating in the z-direction,
u is proportional to ct − z. Since ka is a null vector, g44 vanishes, and
by coordinate transformations xα′

= xα′
(xa), u′ = u one can arrive at

g14 = g24 = g44 = 0, g34 = 1, (29.26)

and, because g4agam = δ4m,

g31 = g32 = g33 = 0, g34 = 1. (29.27)

The reader may verify for himself that this and the following transforma-
tions really do exist (existence theorems for partial differential equations)
and do not destroy the form of the metric already obtained previously.

The null vector field ka is covariantly constant, and from this and
(29.23)–(29.27) it follows that

ka;n = Γm
ankm = − 1

2gan,3 = 0. (29.28)
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If we label the coordinates as (xn) = (x, y, v, u) and introduce con-
formally Euclidean coordinates into the two-dimensional xy -subspace
(which is always possible on a surface) then we arrive at the metric

ds2 = p2(x, y, u)
(
dx2 + dy2

)
+ 2m1(x, y, u) dxdu

+ 2m2(x, y, u) dy du

+ 2m4(x, y, u) du2 + 2du dv,

gab =



p2 0 0 m1

0 p2 0 m2

0 0 0 1
m1 m2 1 2m4


 ,

(29.29)

gab =




p−2 0 −m1p
−2 0

0 p−2 −m2p
−2 0

−m1p
−2 −m2p

−2 −2m4 + (m2
1 +m2

2)p
−2 1

0 0 1 0


 .

Solution of the field equations Because we have

km;b;n − km;n;b = 0 = Ra
mbnka, (29.30)

the components R4
mbn and R3mbn of the curvature tensor vanish iden-

tically, so that the field equations reduce to the five equations

Rmn = R1
m1n +R2

m2n = 0. (29.31)

Upon substitution of

Γ1
12 = Γ2

22 = −Γ2
11 = (ln p),2, Γ2

12 = Γ1
11 = −Γ1

22 = (ln p),1,

ΓA
3B = 0, Γ4

AB = 0, A,B = 1, 2,
(29.32)

into the defining equation for the curvature tensor,

Ra
mbn = Γa

mn,b − Γa
mb,n − Γa

rnΓr
mb + Γa

rbΓ
r
mn, (29.33)

it follows that R11 = 0 and R22 = 0 are equivalent to

∆(ln p) =
(
∂2

∂x2
+

∂2

∂y2

)
ln p = 0. (29.34)

ln p is therefore the real part of an analytic function of x + iy, so that
by a coordinate transformation in the xy-plane we can achieve

p = 1, ΓA
BC = 0, A,B = 1, 2. (29.35)

If we now calculate the components R1
412 and R2

421 using (29.35)
and

Γa
3b = 0, Γ2

14 = 1
2(m2,1 −m1,2) = −Γ1

24, (29.36)

then we see that the relation
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m1,2 −m2,1 = 2F ′(u) (29.37)

follows from the field equations R14 = R24 = 0. With the aid of the
coordinate transformations

v = v̄ − ∫ m1 dx+ F ′(u)xy,

x̄ = x cosF (u) + y sinF (u), ȳ = −x sinF (u) + y cosF (u),
(29.38)

this enables us to introduce the simplified form

ds2 = dx2 + dy2 + 2du dv +H(x, y, u) du2 (29.39)

of the metric (the bar on the new coordinates has been dropped). The
remaining field equation yet to be satisfied, R44 = 0, then reads

∆H =
( ∂2

∂x2
+

∂2

∂y2

)
H(x, y, u) = 0. (29.40)

Metrics (29.39) which satisfy this relation are the most general plane-
fronted waves with parallel rays.

Properties of plane-fronted waves with parallel rays In the coordinates

u = (z − ct)/
√

2, v = (z + ct)/
√

2 (29.41)

flat space has the line element

ds2 = dx2 + dy2 + 2du dv. (29.42)

Comparing this expression with the gravitational wave (29.39), one
can see that the wave is plane also in the intuitive sense that the char-
acteristic function H depends upon the time only in the combination
z − ct.

The general manifold of solutions also contains special wave-packets

x

y

z

Gravitational
wave

Direction of propagation
of the wave

H = 0
Flat space

H = 0
Flat space

H,11 �= 0
Curved space

Fig. 29.3. A special wave-packet.
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which are so constructed that the space before and after passage of the
wave is flat, see Fig. 29.3.

Since there is no potential function which is regular over the whole xy-
plane, H always possesses singularities (the only exception H = H(u)
leads to a flat four-dimensional space). To avoid such singularities it
is in many cases convenient to use another coordinate system. For the
simplest form of a wave

H =
(
x2 − y2

)
h(u), (29.43)

for example, the coordinate transformation

x = x̄a(u), y = ȳb(u), v = v̄ − 1
2
a′ax̄2 − 1

2
bb′ȳ2,

a′′/a = h(u) = − b′′/b,
(29.44)

leads to the line element (the dash on the coordinates has been sup-
pressed after the transformation)

ds2 = a2(u) dx2 + b2(u) dy2 + 2du dv, a′′b+ ab′′ = 0, (29.45)

with a metric regular over the whole xy-plane.
To end this discussion we shall compare the exact solution with the

plane waves of the linearized theory. If we once more go through the
derivation of the metric (29.39) of the exact solution, or if we substi-
tute this metric immediately into the field equations, then surprisingly
we can establish that no quadratic expressions of any kind in H or its
derivatives occur. The exact solution (29.39) is therefore also a solution
of the linearized field equations, and it even satisfies the gauge conditions
(
√−g gmn),n = 0, but not always of course the requirement |H| � 1. If

we want to compare exact solutions and approximate solutions in detail,
then we must linearize the exact solution; in the case of the solution
(29.45) this can be done by carrying out the substitution

a = 1 + α/2, b = 1− β/2, α� 1, β � 1, (29.46)

and ignoring higher terms in α and β. Because of (29.45) we have
α′′ = β′′, and hence α = β + c1u + c2, but then c1 must be zero (the
coordinate u can become arbitrarily large!) and c2 can be eliminated by
a coordinate transformation. Therefore the linearized form of (29.45) is

ds2 = [1 + α(u)]dx2 + [1− α(u)]dy2 + 2du dv. (29.47)

As a comparison with (29.9)–(29.11) shows, we are dealing with a lin-
early polarized packet of plane waves of differing frequencies.



248 Gravitational waves

29.4 The experimental evidence for gravitational waves

Gravitational waves change the curvature of space-time. They can in
principle be detected by the change in the trajectories of particles (mir-
rors, satellites, planets, . . .) or the oscillations they produce in mechan-
ical or electromagnetic systems. Only when large masses are rapidly
accelerated does one expect that the resulting gravitational waves are of
detectable strength. Such processes could occur, for example, in gravita-
tional collapse (see Chapter 36), in a supernova explosion of a star, in a
rapidly moving binary stellar systems or in processes near to black holes.

The first experimental search for gravitational waves was initiated by
J. Weber in 1961. His ‘aerial’ consisted of an aluminium cylinder 1.53 m
long and with radius 0.33 m; waves arriving at the cylinder transversally
would cause length oscillations. The initially observed ‘events’ could
not be reproduced, in spite of a greatly improved experimental proce-
dure and a cryogenic environment. Current technology of this type can
measure relative displacements h ≈ 10−18 (for millisecond pulses), cor-
responding to length perturbations of 10−16cm, that is, a thousandth of
the radius of the nucleus of an atom.

Most gravitational detectors now built or under consideration use laser
interferometry: they measure the displacement of freely suspended mir-
rors in a Michelson-type interferometer. To achieve the planned sensi-
tivity of h ≈ 10−21, the arm-lengths of the interferometers have to be
large: 600 m in the recently built GEO 600 detector near to Hannover,
4 km in LIGO (Laser Interferometer Gravitational-wave Observatory) in
the USA, 3 km in the French–Italian VIRGO project, and 5 · 106 km in
the space-borne LISA (Laser Interferometer Space Antenna) project, see
Rowan and Hough (2000) for details.

Although in the last 40 years the sensitivity of the receivers has been
improved by an order of 106, in the same time the theoretical predictions
about the wave magnitude to be expected have been revised and say
that – as in the 1960s – the receivers are just one order of magnitude
less sensitive than they ought to be. Gravitational waves have not yet
been detected.

An indirect proof of the existence of gravitational waves arises from
the very precise data from observations of the pulsar PSR 1913+16.
This rapidly rotating binary system should emit appreciable amounts of
gravitational quadrupole radiation, thereby lose energy and hence rotate
faster. The observed relative change in period of −2.422 (±0.006) ·10−12

is in remarkable agreement with the theoretical value.
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Exercises

29.1 Show that (29.24) implies (29.23).

29.2 Mr. X claims to have found a particularly interesting but simple
solution of Einstein’s equations, namely the wave ds2 = dy2 +
[1− sin(z − ct)]dz2 + 2 sin(z − ct)dz dct− [1 + sin(z − ct)]c2 dt2.
Is he right?

30

The Cauchy problem for the Einstein field
equations

30.1 The problem

The basic physical laws mostly have a structure such that from a know-
ledge of the present state of a system its future evolution can be
determined. In mechanics, for example, the trajectory of a point mass
is fixed uniquely by specifying its initial position and initial velocity;
in quantum mechanics, the Schrödinger equation determines the future
state uniquely from the present value of the ψ function.

As we shall see in the following sections, the equations of the gravita-
tional field also have such a causal structure. In order to appreciate this
we must first clarify what we mean by ‘present’ and ‘present state’. As
a preliminary to this we examine the properties of a three-dimensional
surface in a four-dimensional space. In the later sections we shall con-
cern ourselves with the initial value problem mainly in order to gain a
better understanding of the structure of the field equations.

30.2 Three-dimensional hypersurfaces and reduction formulae
for the curvature tensor

Metric and projection tensor Suppose we are given a three-dimensional
hypersurface in a four-dimensional Riemannian space which can be imag-
ined as an element of a family of surfaces; the normal vectors na to this
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family of surfaces must not be null:

nan
a = ε = ±1. (30.1)

Let us take these surfaces as the coordinate surfaces x4 = const. of
a coordinate system that is not necessarily orthogonal and denote the
components of the normal vectors by

na = (0, 0, 0, εN), na = (−Nα/N, 1/N),

a, b, . . . = 1, . . . , 4, α, β, . . . = 1, . . . , 3.
(30.2)

Then the metric tensor gαβ of the hypersurface,

(3)

ds2 = gαβ dxα dxβ , (30.3)

and the metric tensor gab of the four-dimensional space are related by

(4)

ds2 = gab dxa dxb = gαβ(dxα +Nα dx4)(dxβ +Nβ dx4) + ε(N dx4)2,
(30.4)

from which we obtain for the inverse tensors

gab =

(
gαβ + εNαNβ/N2 −εNα/N2

−εNβ/N2 ε/N2

)
,

gαβg
βν = δν

α,

Nα = gαβN
β .

(30.5)

With the help of the projection tensor hab = gab − εnanb, which has
the properties

habh
b
c = hac, habn

a = 0, hαβ = gαβ , hαβ = gαβ , h4
b = 0, (30.6)

we can decompose every tensor into its components parallel or perpen-
dicular to the vector normal to the hypersurface.

The extrinsic curvature tensor Kab In making the splitting

na;b = na;i(εninb + hi
b) (30.7)

of the covariant derivative of the normal vector we encounter the tensor
Kab defined by

Kab = −na;ih
i
b = −na;b + εṅanb. (30.8)

Since na is a unit vector and is proportional to the gradient of a family
of surfaces, Kab is symmetric; it has of course no components in the
direction of the normal to the surface:

Kab = Kba, Kabn
a = 0. (30.9)
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na na

+ Dna
xα

xα + dxα

Dna = −Kab dxb
Hypersurface

Fig. 30.1. Extrinsic curvature of a hypersurface.

Its components are linear combinations of the Christoffel symbols
4

Γ 4
αβ

of the four-dimensional space

Kab = −hi
ah

k
bni;k = εNhα

ah
β
b

4

Γ4
αβ ,

Kαβ = εN
4

Γ4
αβ = (Nα,β +Nβ,α − 2Nν

3

Γν
αβ − gαβ,4)/2N.

(30.10)

Figure 30.1 shows that the tensor Kab has a simple geometrical mean-
ing; under a shift of the normal vector along the hypersurface we have

Dna = na;β dxβ = na;ih
i
β dxβ = −Kab dxb. (30.11)

Kab is therefore a measure of the extrinsic curvature of the surface, that
is, of the curvature in relation to the surrounding space (in contrast to
the intrinsic curvature, which is characterized by the three-dimensional

curvature tensor
3

Rαβγδ of the surface alone.) In the theory of surfaces
the tensor Kab is associated with the second fundamental form.

Decomposition of the derivative of a vector perpendicular to na For the
covariant derivative of an arbitrary vector Ta orthogonal to the normal
vector na which obeys

Tan
a = 0, T a = (Tα, 0), Ta = (Tα, TβN

β), (30.12)

one obtains, after a short calculation using (30.9) and na;bT
a = −naTa;b,

the decomposition

Ta;b = hi
ah

k
bTi;k + εnbṪih

i
a + εnaT

iKib − nanbT
iṅi. (30.13)

Because h4
a = 0 and

hi
ah

k
bTi;k = hα

ah
β
b (Tα,β − Tr

4

Γ r
αβ)

= hα
ah

β
b

[
Tα,β − 1

2T
ρ(gρβ,α + gρα,β − gαβ,ρ)

]
,

(30.14)

the first term of this decomposition, which is wholly orthogonal to the
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normal vector, can be expressed in terms of the covariant derivative of
the three-vector Tα with respect to the three-dimensional metric gαβ :

hi
ah

k
bTi;k = hα

ah
β
b Tα||β , Tα||β ≡ Tα,β−

3

Γρ
αβTρ. (30.15)

In the derivation of this relation only the definition of the covariant
derivative and the orthogonality of Ti to ni have been used, and therefore
analogous equations hold for the projections of the derivative of arbitrary
tensors of higher rank perpendicular to the normal vector.

Reduction formulae for the curvature tensor The aim of the following
calculations is to set up relations between the curvature tensor of the
four-dimensional space and the properties of the hypersurface, that is,

between
4

Rabmn on the one hand, and
3

Rαβµν and the quantities na and
Kab on the other.

Because of (30.15), (30.13) and the equation

hab;i = −(ṅanb + naṅb)ni + ε(Kainb +Kbina), (30.16)

which follows from (30.8), we have

(Tβ||µ||ν − Tβ||ν||µ)hβ
b h

µ
mh

ν
p

= (Tr;sh
r
ih

s
k);qhi

b(h
k
mh

q
p − hk

ph
q
m)

= (Tr;s;q − Tr;q;s)hr
bh

s
mh

q
p + Tr;s(hr

ih
s
k);qhi

b(h
k
mh

q
p − hk

ph
q
m)

(30.17)

or
3

RαβµνT
αhβ

b h
µ
mh

ν
p =

4

RαrsqT
αhr

bh
s
mh

q
p + ε(KpbKmα −KbmKpα)Tα.

(30.18)
Since this equation holds for every vector Tα, the relation

4

Rαβµν =
3

Rαβµν + ε(KβµKαν −KβνKµα) (30.19)

holds between the curvature tensors (remember that hβ
σ = δβ

σ , h4
a = 0).

In the theory of surfaces one refers to the analogous relation between
the intrinsic and extrinsic curvatures of a surface as Gauss’s equation.

We obtain expressions for the remaining components of the four-
dimensional curvature tensor by making similar transformation of the
second derivatives of the normal vector. From (30.8), (30.15) and (30.16)
we have first of all

(nq;r;s − nq;s;r)h
q
bh

r
mh

s
p =

[
(nq;ih

i
r);s − (nq;ih

i
s);r
]
hq

bh
r
mh

s
p

= (Kqs;r −Kqr;s)h
q
bh

r
mh

s
p

= (Kβν||µ −Kβµ||ν)hβ
b h

µ
mh

ν
p,

(30.20)
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and from this follows the Codazzi equation:
4

Ra
βµνna = Kβν||µ −Kβµ||ν . (30.21)

Analogously, from

(nq;r;s − nq;s;r)h
q
bn

rhs
p

=
[
(εṅqnr −Kqr);s − (εṅqns −Kqs);r

]
nrhq

bh
s
p (30.22)

= ṅq;sh
q
bh

s
p +Kqrn

r
;sh

q
bh

s
p − εṅbṅp +Kbp;rn

r −Kqs(h
q
bh

s
p);rn

r,

we obtain finally
4

Ra
βmνnan

m = ṅ(β;ν) +KβµK
µ

ν − εṅβṅν + LnKβν . (30.23)

The reduction formulae (30.19), (30.21) and (30.23) are frequently
used for expressing the curvature tensor of a metric

ds2 = gαβ dxα dxβ + εN2
(
dx4
)2
, ε = ±1, (30.24)

in terms of the three-dimensional subspace (the metric gαβ) and the
function N . In this special case (Nα = 0) the equations simplify to

Kαβ = −gαβ,4/2N,
4

Rαβµν =
3

Rαβµν + ε(KβµKαν −KβνKαµ),
4

R4
βµν = ε(Kβν||µ −Kβµ||ν)/N,

4

R 4
β4ν = εKβν,4/N −N,β||ν/N + εKαβK

α
ν .

(30.25)

30.3 The Cauchy problem for the vacuum field equations

We are now in a position to be able to answer the following question.
Given a spacelike surface, that is, a surface with a timelike normal vector
na: which initial values of a metric can one specify on this surface and
which must one prescribe in order to be able to calculate the subsequent
evolution of the system with the aid of the vacuum field equations?

It is clear ab initio that, independent of the choice of the initial val-
ues, the metric of the space-time cannot be determined uniquely; we
can carry out arbitrary coordinate transformations on the initial sur-
face as in the whole four-dimensional space. Only certain characteristic
geometrical properties will be specifiable which then evolve with time in
a way which can be determined. For example, one can show that the
quantities Nα of the metric (30.4) must be given not just on the initial
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surface x4 = const., but in the whole space, in order to fix the metric
uniquely. To simplify the calculations, in the following we shall start
from Nα = 0; that is, we shall restrict ourselves to the time-orthogonal
coordinates (30.24) with ε = −1. The essential results of the analysis of
the initial value problem are unaffected by this specialization.

Vacuum field equations Let us write down the Einstein field equations
Rbm = 0 for the metric (30.24), that is, for

ds2 = gαβ dxα dxβ −N2
(
dx4
)2
, (30.26)

using the reduction formulae (30.25) and

4

R bm = (hra − nrna)
4

Rabrm =
4

R4
b4m + gαν

4

Rαbνm. (30.27)

Then, after making a useful rearrangement, we obtain
4

R4
4 − gβµ

4

Rβµ = −
3

R −Kβ
βK

µ
µ +KβµK

βµ = 0,

N
4

R4
µ = Kβ

µ||β −Kβ
β||µ = 0,

(30.28)

and
4

Rβµ =
3

Rβµ− 2KαµK
α

µ +Kα
αKβµ−Kβµ,4/N −N,β||µ/N = 0. (30.29)

Initial values and dynamical structure of the field equations The Ein-
stein field equations are second-order differential equations; accordingly
one would expect to be able to specify the metric and its first derivatives
with respect to time (x4) on an initial surface x4 = 0 and hence calcu-
late the subsequent evolution of the metric with time. As examination
of the field equations (30.28) and (30.29) shows, this surmise must be
made precise in the following way.

(1) In order to be able to calculate the highest time derivatives
occurring in equation (30.29), namely, Kβµ,4, one must know the metric
(gαβ , N) and its first time derivatives (Kαβ); that is, one must specify
these quantities on the hypersurface x4 = 0.

(2) The field equations (30.28) contain only spatial derivatives of gαβ

and Kαβ, and consequently the initial values gαβ(xν , 0) and Kαβ(xν , 0)
cannot be freely chosen. The equations (30.28) thus play the rôle of
subsidiary conditions (‘constraints’), limiting the degrees of freedom con-
tained in the initial value data, namely, the intrinsic and the extrinsic
curvature of the three-dimensional space.

(3) It is not possible to determine the time derivative of N with the
aid of the field equations from the initial values gαβ(xν , 0), Kαβ(xν , 0)
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and N(xν , 0). Rather, the function N =
√−g44 must be specified for

all times (had we used the Nα of the general form (30.4) of the metric,
we would have found the same for them). Since one can always achieve
N = 1 by coordinate transformations (introduction of Gaussian coordi-
nates), this special rôle played by N becomes understandable: N does
not correspond to a true dynamical degree of freedom.

(4) If one has specified N and the initial values of gαβ and Kαβ ,
bearing in mind the four subsidiary conditions (30.28), then from the six
field equations (30.29) one can calculate the subsequent time evolution
of the metric. The equations (30.29) are therefore also called the true
dynamical field equations.

The Bianchi identities,
4

Ra
b;a =

[
(ha

i − nani)
4

R i
b

]
;a

= 0, (30.30)

ensure, because of the equation

−(ni

4

R i
b);ana = (N

4

R4
b);4/N = NKν

ν

4

R4
b − (

4

Rα
b);α (30.31)

that follows from them, that the subsidiary conditions (30.28) are satis-
fied not just for x4 = 0 but for all times. That is to say, if the dynamical

equations
4

Rβµ = 0 are satisfied for all times and if R4
b = 0 for x4 = 0,

then because of (30.31) the time derivative of R4
b also vanishes (and

with it all higher time derivatives), and so R4
b = 0 holds always.

The splitting of the field equations into subsidiary conditions and
dynamical equations, and the questions of which variables of the gravi-
tational field are independent of one another, play an important part in
all attempts at quantizing the gravitational field.

30.4 The characteristic initial value problem

From the initial values of the metric and its first derivatives in the
direction normal to the surface we could in principle calculate the met-
ric in the whole space-time, because the vacuum field equations gave us
the second derivatives in the direction normal to the surface as func-
tions of the initial value data. In this context it was of only secondary
importance that the surface normal was timelike (ε = −1).

The situation is completely different, however, if the initial surface
u = x4 = const. is a null surface, that is, a surface whose normal ka = u,a

is a null vector. Because

ka = u,a = (0, 0, 0, 1), kak
a = gabkakb = 0 (30.32)
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we have g44 = 0 and furthermore, by the coordinate transformation
xν′

= xν′
(xα, u), u′ = u, we can also achieve g41 = 0 = g42. In these pre-

ferred coordinates we therefore have (remembering that ka = (0, 0, k3, 0)
and gabg

bi = δi
a)

g44 = g41 = g42 = 0, g31 = g32 = g33 = 0, g34g
34 = 1. (30.33)

Since second derivatives enter the curvature tensor only in the combina-
tion

4

Rmabn = 1
2 (gab,mn + gmn,ab − gan,mb − gmb,an) + · · · , (30.34)

second derivatives with respect to u = x4 occur only in the field equation
4

R 44 = −1
2g

µνgµν,44 + · · · = 0, (30.35)

while the remaining nine field equations,
4

R 4α = 0,
4

Rαβ = 0, (30.36)

contain at most first derivatives with respect to x4.
Although through the choice (30.33) of coordinates we have more or

less eliminated the unphysical degrees of freedom tied up with possible
coordinate transformations, the field equations are in no way sufficient
to calculate all second derivatives of the metric from the metric and its
first derivatives. The characteristic initial value problem, that is, the
initial value problem for a null hypersurface, differs fundamentally from
the usual Cauchy problem, that is, from the initial value problem for a
spacelike surface.

We shall not go into details here, but instead just clarify the physical
reasons for this difference by reference to the example of plane waves

ds2 = dx2 + dy2 + 2du dv +H du2,

(
∂2

∂x2
+

∂2

∂y2

)
H = 0, H,nk

n =
∂H

∂v
= 0

(30.37)

discussed in Section 29.3. If for u = 0 we were to specify the initial
values of H = g44 as a function H(x, y, v, 0) which is initially arbitrary,
then we could not determine the subsequent behaviour of the function H
from these values; nor would the additional specification of derivatives
with respect to u change anything. The field equations (30.37) only
give conditions for the initial values, the dependence of the metric upon
u remaining undetermined. Physically this indeterminacy is connected
with the possible occurrence of gravitational shock waves, and thus of
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waves whose amplitude H is zero outside a finite region of u. For an
observer in an inertial system a null surface u = z− ct = 0 is of course a
two-dimensional surface which moves at the speed of light. A wave-front
of a gravitational shock wave which is parallel to this surface will not be
noticed on the surface (there is no point of intersection; see Fig. 30.2).
An observer who knows only the metric on the surface u = 0 cannot
predict the arrival of the shock wave. A spacelike surface, on the other
hand, would intersect the shock wave somewhere; that is to say, from
the initial data on such a surface the subsequent course of the wave can
be determined (if one knows H on the surface t = 0 for all values of z,
then H is known as a function of u = z − ct).

Gravitational shock wave

u = 0 (null surface)

t = 0 (spacelike surface)

t
z

Fig. 30.2. A gravitational shock wave and the characteristic and usual initial
value problems.

30.5 Matching conditions at the boundary surface of two
metrics

In solving field equations one is often faced in practice with the problem
of joining together two metrics obtained in different regions of space-
time; for example, of joining a solution of the field equations Rab −
Rgab/2 = κTab, valid inside a star, with that of the vacuum equations
Rab = 0, appropriate to the region outside.

Clearly it is not necessary for all components of the energy-momentum
tensor to be continuous on the boundary surface. But what continuity
properties must the energy-momentum tensor and the metric and its
derivatives have in order that one can meaningfully speak of a solution
to Einstein’s equations?

We shall now deal with this problem under two restrictions: the
boundary surface should not be a null surface (where even in the vacuum,
pure discontinuities of the metric, that is, gravitational shock waves, can
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occur), and the energy-momentum tensor may indeed be discontinuous
but should contain no δ-function singularities (a surface layer structure
should not occur). Further, we want to simplify the formulae by using
a coordinate system of the form

ds2 = gαβ dxα dxβ + εN2(dx4)2 (30.38)

on both sides of the boundary surface x4 = const.
We can obtain a qualitative statement about the results to be expected

by the following consideration. If certain components of the energy-
momentum tensor are discontinuous, then, because of the field equations,
the components of the curvature tensor are at worst discontinuous. But
if the second derivatives of the metric are at most discontinuous, then
the metric and its first derivatives must be continuous.

When making this statement quantitative, one must note that by a
clumsy choice of coordinates artificial discontinuities can be produced
in the metric. The boundary surface between the two spatial regions I
and II should of course be a reasonable surface, that is, whether it be
approached from I or II it must always show the same metrical prop-
erties. To avoid unnecessary singularities we shall introduce the same
coordinate system on both sides of the boundary surface, that is, on this
surface we demand that

[gαβ] ≡ g
I
αβ− g

II
αβ = 0. (30.39)

Clearly all derivatives gαβ,νµ... of this metric should also be continuous

in the surface, particularly the curvature tensor
3

R αβµν . We can make
the function N =

√
εg44 continuous as well by suitable coordinate trans-

formations, or even transform it to unity; here, however, we shall allow
discontinuities, but no singularities.

Further statements about the continuity behaviour of the metric can
be obtained from the field equations. As the reduction formulae (30.25)
show, second derivatives of the metric in the direction of the surface

normal are contained only in the components
4

R 4
β4ν of the curvature

tensor; they consequently enter the spatial part of the field equations in
the combination

Gα
β = ε(Kα

β − δα
βK

ν
ν ),4/N + Ĝα

β (Kµν , gµν , gµν,λ, N,N,λ, . . .) = κTα
β .

(30.40)
Since in (30.40) neither Tα

β nor Ĝα
β will be singular on the boundary
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surface, Kα
β − δα

βK
ν
ν , and hence Kαβ itself, must be continuous:

[Kαβ ] =K
I

αβ− K
II

αβ = 0. (30.41)

While (30.39) ensures the equality of the intrinsic curvature on both
sides of the boundary surface, (30.41) demands equality of the extrinsic
curvature too.

When the two matching conditions (30.39) and (30.41) are satisfied,

then, because of (30.25),
4

R αβµν and N
4

R 4
βµν are also continuous; be-

cause of the field equations we must then also have

[T 4
4 ] = 0, [NT 4

α] = 0. (30.42)

To summarize: if on the boundary surface x4 = const. of two metrics
of the form (30.38) the energy-momentum tensor is non-singular, then
the metric gαβ and the extrinsic curvature Kαβ = −gαβ,4/2N of the
surface, as well as the components T 4

4 = εnan
bT a

b and NT 4
α = εnaT

a
α

of the energy-momentum tensor, must all be continuous there. While a
possible discontinuity of N =

√
εg44 can be eliminated by a coordinate

transformation, Tαβ can be completely discontinuous; although we must
of course have

[Gα
β ] = κ[Tα

β ]. (30.43)

When in Section 26.3 we joined together the interior and exterior
Schwarzschild solutions, we satisfied (30.39) by requiring continuity of
the metric and (30.42) by the condition p = 0; the matching condi-
tions (30.41) are then automatically satisfied. N also turns out to be
continuous in this case, whilst N,4 (note that x4 = r!) is discontinuous.





V. Invariant characterization
of exact solutions

Suppose that a solution of the Einstein equations is offered with the
request to test it and establish whether it is already known, what phys-
ical situation it describes, what symmetries are present, and so on. Be-
cause of the freedom in the choice of coordinate system, such questions
cannot usually be answered by merely looking at the solution. Thus one
only establishes with certainty that

ds2 = dx2 − x sin y dxdy + x2(5
4 + cos y)dy2

+ x2(5
4 + cos y − 1

4 sin2 y) sin2 y dt2 − dz2
(31.1)

describes flat Minkowski space (in inappropriate coordinates) by deter-
mining the curvature tensor. There exists, however, a series of methods
for characterizing solutions invariantly (independently of the choice of
coordinates), by means of which it has been possible to provide insight
into the structure of solutions and hence often find ways of obtaining
new solutions.

These methods, the most important of which we shall discuss in the
following chapters, are at first sight of a purely mathematical nature.
But, as often in theoretical physics, understanding of the mathemat-
ical structure simultaneously makes possible a deeper insight into the
physical properties.

31

Preferred vector fields and their properties

31.1 Special simple vector fields

With many problems and solutions in General Relativity, preferred vec-
tor fields occur. Their origin may be of a more physical nature (velocity

261
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field of a matter distribution, light rays) or of a more mathematical
nature (eigenvectors of the Weyl tensor, Killing vectors). One can use
a knowledge of the properties of such vector fields for the purpose of
classifying solutions or to simplify calculations by the introduction of
coordinate systems which are adapted to the preferred vector field. We
shall now discuss some special vector fields and coordinates appropriate
to them.

Congruences of world lines The vector fields investigated in the follow-
ing should have the property that at every point precisely one vector is
defined. A family of world lines (congruence of world lines) is equivalent
to such a vector field an(xi), its tangent vectors having the direction of
an and covering the region of space under consideration smoothly and
completely. This association is not unique, since not only an but also
λan points in the direction of the tangent.

One obtains an especially simple form of the vectors an(xi) by tak-
ing these world lines as coordinate lines (for example, xα = const., x4

variable); the vector field then has the normal form

an(xi) =
(
0, 0, 0, a4(xi)

)
. (31.2)

By means of a coordinate transformation x4′ = x4′(xi) one can set
a4 = 1. If an is the four-velocity of the matter, then in (31.2) we are
dealing with comoving coordinates.

Hypersurface-orthogonal fields A vector field is called hypersurface-
orthogonal (or rotation-free) if it is possible to construct a family of
surfaces f(xi) = const. across the congruence of world lines in such a
way that the world lines, and with them the vectors of the field, are per-
pendicular to the surfaces (Fig. 31.1).The vector field an must therefore
point in the direction of the gradient to the family of surfaces,

f,n = λan, (31.3)

and hence must also satisfy the equations

an;m − am;n = (λ,nam − λ,man)/λ, (31.4)

which give
ωi ≡ 1

2ε
imnra[m;n]ar = 0. (31.5)

A vector field an can be hypersurface-orthogonal only if its rotation ωi

as defined in (31.5) vanishes. One can show that this condition is also
sufficient: a vector field is hypersurface-orthogonal if (31.5) holds.

While the contravariant components an of a vector can always be
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︸ ︷︷ ︸

︸
︷
︷

︸

f = const
an(xi)

World line congruence

Fig. 31.1. Hypersurface-orthogonal vector field.

transformed to the normal form (31.2), a corresponding transformation
of the covariant components to the form

an(xi) =
(
0, 0, 0, a4(xi)

)
(31.6)

is only possible in a region of space if the vector field is hypersurface
orthogonal. One can see this immediately from the fact that (31.6) is
equivalent to an = a4 x

4
,n. If an is not a null vector, one can take

the surfaces f = const. as coordinate surfaces, and simultaneously with
(31.2) and (31.6) one can bring the metric to the form

ds2 = gαβ dxα dxβ + g44(dx4)2. (31.7)

We shall examine the case of a null vector in Section 31.3.

Geodesic vector fields A vector field an is called geodesic when the world
lines xi(s) of the associated congruence satisfy the geodesic equation:

ti;nt
n = 0, ti ≡ dxi/ds. (31.8)

Since ti = λ(xm)ai should certainly hold, this implies

a[mai];na
n = 0. (31.9)

This condition is also sufficient; that is to say, if it is satisfied, then one
can always determine a function λ which, when multiplied by ai, gives
a ti which satisfies (31.8).

If the vector field is hypersurface-orthogonal and geodesic, then
because of (31.2) and (31.6) we have in the metric (31.7)

aa;na
n = 0 = Γ4

α4 = 1
2g44,αg

44, α = 1, 2, 3; (31.10)

that is, g44 depends only upon x4 and can be brought to the value ±1
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by a coordinate transformation x4′ = x4′(x4):

ds2 = gαβ(xi) dxα dxβ ± (dx4)2. (31.11)

Killing vector fields Killing vector fields ai(xn) satisfy the condition

ai;n + an;i = 0. (31.12)

Because of their great importance we shall discuss them in more detail
in Chapter 33.

Covariantly constant vector fields A vector field is covariantly constant
if its covariant derivative vanishes:

ai;n = 0. (31.13)

From the definition (19.9) of the curvature tensor we have immediately

akRkinm = 0. (31.14)

The curvature tensor and with it the metric are restricted if such a vector
field exists.

If ai is not a null vector, then in the metric (31.11) we have

aα;β = 0 = Γ4
αβ; (31.15)

that is, gαβ is independent of x4. Because of (30.10), the tensor Kαβ

of the extrinsic curvature of the surface x4 = const. vanishes, and the
reduction formulae (30.19) and equation (31.14) lead to

4

R 4βνµ = 0,
3

Rαβνµ =
4

Rαβνµ. (31.16)

For vacuum solutions of the Einstein field equations we have accordingly

4

Rαβ =
3

Rαβ = 0, (31.17)

and, since the curvature tensor of the three-dimensional subspace can
be constructed from its Ricci tensor alone, according to (19.32), then
the curvature tensor of the four-dimensional space completely vanishes.

We thus have shown that, if a vacuum solution of the Einstein field
equations possesses a covariantly constant vector field, then either space-
time is flat or else we are dealing with a null vector field.

The vacuum solutions with a covariantly constant null vector field are
just the plane gravitational waves investigated in Section 29.3.
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31.2 Timelike vector fields

The invariant decomposition of um;i and its physical interpretation One
of the most important examples of a timelike vector field is the veloc-
ity field ui(xn) of a matter distribution; for example, that of the mat-
ter inside a star or that of the stars or galaxies (imagined distributed
continuously) in the universe. The properties of this velocity field are
best recognized by examining the covariant derivative ui;n. The idea
consists essentially in decomposing that portion of the covariant deriva-
tive which is perpendicular to the four-velocity ui, namely, the quantity
ui;n + ui;mu

mun/c
2 (notice that the relation uiui;n = 0 follows from

uiui = −c2), into its antisymmetric part, its symmetric trace-free part,
and the trace itself:

ui;n = −u̇iun/c
2 + ωin + σin + Θhin/3,

u̇i = ui;nu
n = Dui/Dτ, u̇iu

i = 0,

ωin = u[i;n] + u̇[iun]/c
2, ωinu

n = 0,

σin = u(i;n) + u̇(iun)/c
2 −Θhin/3, σinu

n = 0,

Θ = ui
;i,

hin = gin + uiun/c
2, hinu

n = 0.

(31.18)

Since this splitting is covariant, the individual components characterize
the flow field invariantly; they have the names:

u̇i : acceleration, ωin : rotation (twist),

σin : shear, Θ : expansion.
(31.19)

We shall now clarify the physical meaning of these quantities, and
thereby also justify the names (31.19). The congruence of world lines

xa = xa(yα, τ), (31.20)

which is associated with the velocity field

ua(xi) = ∂xa/∂τ, (31.21)

obviously has the physical significance of being a family of streamlines
(see Fig. 31.2). Along the world line of every particle (every volume
element) the yα are constant and τ varies; yα labels the different world
lines. Keeping the parameter τ fixed one passes from the world line (yα)
to the neighbouring world line (yα + δyα) on advancing by

δxa =
∂xa

∂yα
δyα. (31.22)
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︷ ︸︸ ︷
Stream lines

un

xa(yν, τ )

xa(yν+δyν, τ )δxa

δ⊥xa

Fig. 31.2. Stream kinematics.

Since we have

D
Dτ

δxa =
d
dτ
δxa + Γa

bc

dxb

dτ
δxc =

∂2xa

∂τ ∂yα
δyα + Γa

bcu
bδxc

=
∂ua

∂yα
δyα + Γa

bcu
bδxc =

∂ua

∂xn
δxn + Γa

bcu
bδxc,

(31.23)

this difference vector changes with advance along the world line by

(δxa)· = ua
;nδx

n. (31.24)

An observer comoving with the flow, however, will define as displace-
ment to the neighbouring fluid elements not δxa, but rather the projec-
tion of this quantity into his three-dimensional space, that is,

δ⊥xa = (ga
b + uaub/c

2)δxb = ha
bδx

b. (31.25)

Since this observer will use as his ‘natural’ comoving local coordinate
system one whose axes are Fermi–Walker transported (cp. Sections 18.4
and 21.2), he will define as the velocity of the neighbouring matter
elements the Fermi derivative of δ⊥xa. Using (31.24) and (31.25), and
remembering that (δ⊥xa)ua = 0, we obtain for this velocity

D(δ⊥xa)/Dτ − c−2(δ⊥xn)(uau̇n − u̇aun) = (δ⊥xn)˙ha
n, (31.26)

and from this, with (31.18), finally

(δ⊥xn) ˙ha
n = (ua

;n + u̇aun/c
2)(δ⊥xn) = (ωa

n + σa
n + Θha

n/3)(δ⊥xn).

(31.27)
Equation (31.27) gives the connection between the velocity (δ⊥xn)˙ ha

n

of the neighbouring particle to the observer (velocity relative to the
observer) and the (infinitesimal) position vector δ⊥xn pointing from the
observer to the particle. From it we can deduce the following.
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(a) The expansion Θ leads to a radially directed velocity field whose
magnitude is independent of direction; a volume element is thereby mag-
nified (Θ > 0) or diminished (Θ < 0) in size with its form preserved.

(b) Since the antisymmetric tensor ωmi of the rotation can be mapped
into the vorticity vector ωa according to (31.5) through

ωa = 1
2
εabmiubωmi, ωmi = εmiabω

aub, (31.28)

the velocity field described by it has the form

(δ⊥xn)˙ha
n = εa

nmiω
muiδ⊥xn. (31.29)

The velocity is perpendicular to the position vector δ⊥xn and to the
vorticity vector ωm, and thus we are dealing with a rotation about the
axis defined by ωm.

(c) The symmetric tensor σan of the shear leads to a direction-depen-
dent velocity field which produces an ellipsoid out of a sphere of particles.
Since the trace σn

n vanishes, this ellipsoid has the same volume as the
original sphere, and thus we here have a change in shape at constant
volume.

Special cases and statements about possible coordinate systems When
performing calculations one often uses the comoving coordinate system

ui = (0, 0, 0, u4). (31.30)

If the rotation ωmi vanishes, then the flow given by ui is hypersurface-
orthogonal and the metric can be brought to the form

ds2 = gαβ(xi) dxα dxβ − u2
4 dt2, ui = (0, 0, 0, u4). (31.31)

If one writes down the covariant derivative ua;b explicitly in this metric
and compares the result with (31.18), then one can show that:

(a) for ωmi = 0 and σmi = 0 the metric gαβ of the three-space contains
the time only in a factor common to all elements:

gαβ(xi) = V 2(xν , t)ḡαβ(xµ); (31.32)

(b) for ωmi = 0 and Θ = 0 the determinant of the three-metric gαβ

does not depend upon the time;
(c) for ωmi = 0 and u̇i = 0 one can transform u4 to c.

If the expansion and the shear vanish (Θ = 0 and σmi = 0), but not
the rotation (ωmi 	= 0), then for the comoving observer the distances
to neighbouring matter elements do not change, and we have a rigid
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rotation. In the comoving coordinate system (31.30) one can see this
from the fact that, because

u4hab,4 = Lu(gab + uaub/c
2) = ua;b + ub;a + (u̇aub + uau̇b)/c2 = 0,

(31.33)
the purely spatial metric hab does not change with time.

31.3 Null vector fields

Null vector fields kn(xi) can be characterized in a similar fashion to
timelike vector fields by the components of their covariant derivative
ki;n. In this case some peculiarities arise from the fact that because
knk

n = 0 one cannot simply decompose a vector, for example, into its
components parallel and perpendicular to kn; if we put an = λkn + ân,
then λ and ân cannot be uniquely determined. It is therefore preferable
to use projections onto a two-dimensional subspace associated with the
vector kn (which is spanned by the vectors ma and ma).

Geodesic null congruences and decomposition of ka;b Light rays and, as
we shall see later, also the null vector fields induced by gravitational
fields, lead to geodesic null vector fields. In the following we shall con-
sider therefore only such fields.

We can describe a family of null geodesics by

xa = xa(yν , v). (31.34)

Here y distinguishes the different geodesics and v is an affine parameter
along a fixed geodesic, that is, a parameter under the use of which the
tangent vector

ka = ∂xa/∂v, kaka = 0, (31.35)

satisfies the equation
k̇a ≡ ka;bk

b = 0. (31.36)

The affine parameter v is not determined uniquely by this requirement;
a linear transformation

v′ = A−1(yα)v +D(yα) (31.37)

is still possible along every geodesic, corresponding to a transformation

k′a = Aka. (31.38)

Using the null tetrad of Section 9.1, we now decompose the covari-
ant derivative ki;n of a geodesic null vector field with the help of the
projection tensor
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pab = mamb +mamb = gab + lakb + lbka (31.39)

into the components in the plane spanned (locally) by ma and ma and
the perpendicular components. Taking into account (31.35) and (31.36),
we obtain

ki;n = Ain + aikn + kibn (31.40)

with
Ain = ka;bp

a
i p

b
n = 2Re

[
(θ + iω)mimn − σmimn

]
,

aik
i = 0, bik

i = 0, θ, ω real, σ complex.
(31.41)

In spite of the non-uniqueness of the vectors ma and ma for fixed ka

(see (9.9)), the invariants

ω =
√

1
2
A[nr]Anr =

√
1
2
k[n;r]kn;r, θ = 1

2
An

n = 1
2
ki

;i,

|σ| =
√

1
2

[
A(nm)Anm − 1

2 (An
n)2
]

=
√

1
2

[
k(n;r)kn;r − 1

2(ki
;i)2
] (31.42)

formed from the antisymmetric part, the symmetric trace-free part, and
the trace of Ain, respectively, characterize the vector field in a unique
fashion, since they can be expressed solely in terms of kn;i. For a fixed
congruence of world lines, under a gauge transformation of the associated
null vector field according to (9.9), the invariants (31.42) will contain the
factor A too.

The physical interpretation of the decomposition of ki;n – the optical
scalars θ, ω and σ We fix attention on one element of the family of null
geodesics (31.34), which we shall now call light rays, and consider the
connecting vector

δxa =
∂xa(yν , v)

∂yα
δyα (31.43)

to neighbouring light rays. The neighbouring light rays clearly form a
three-parameter family. From this family we single out a two-parameter
family by the condition

kaδx
a = 0. (31.44)

Equation (31.44) expresses the fact that δxa is a spacelike vector. In
the rest system of this vector we have, because δxa = (δr, 0) and ka =
(k, k4),

kδr = 0; (31.45)
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δ⊥xa

(object)

(shadow)

(yν , v) (yν , v + dv)

(yν + dyν , v)
∆a dv

k + δk (neighbouring
light ray)

kn = (k, k4)

k (light ray)

Fig. 31.3. Three-dimensional sketch for interpreting the optical scalars.

that is, the three-dimensional light rays of this family are perpendicu-
lar to the connecting vector δr. In an arbitrary coordinate system we
can define the component of the connecting vector restricted by (31.44)
which is perpendicular to the light rays by

δ⊥xa = pa
b δx

b. (31.46)

We shall now calculate how δ⊥xa changes along the light rays, which
we can visualize as how the shadow which the light rays throw onto
a screen at right-angles to them differs from the ‘object’ δ⊥xa (see
Fig. 31.3).

The required quantity

∆a = pa
b (pb

iδx
i);nkn (31.47)

can be easily calculated by using the equation

(δxi);nkn = ki
;nδx

n, (31.48)

which follows from

(δxi),nk
n =

∂δxi

∂v
=

∂2xi

∂yα ∂v
δyα =

∂ki

∂yα
δyα =

∂ki

∂xn
δxn, (31.49)

remembering the relations (17.44), (31.36), (31.40), (31.41) and (31.44).
We obtain

∆a = Aa
iδ⊥xi = 2Re

[
(θ + iω)mim

a − σmim
a
]
δ⊥xi

(31.50)
= θδ⊥xa + iω

(
mim

a −mim
a
)
δ⊥xi − 2Re

[
σmim

a
]
δ⊥xi.

The three optical scalars θ, ω and σ can thus be visualized in the
following way

(a) The antisymmetric part of Aai, associated with ω, produces a
difference vector ∆a which is perpendicular to δ⊥xa. Since the shadow
is then rotated with respect to the object, ω is called the torsion or the
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r
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l l

θl dr l

r
=

θl dr
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Fig. 31.4. How distance is defined with the aid of θ.

rotation of the light rays. Within the realm of validity of geometrical
optics ka is always hypersurface-orthogonal, so that ω vanishes; systems
with ω 	= 0 can therefore be realized in a simple manner only by a
twisted bundle of light rays.

(b) The symmetric trace-free part of Aai, associated with σ, produces
as shadow of a circle an ellipse of equal area. The shrinking (stretching)
of the axes is determined by |σ|, whilst the direction of the axes of the
ellipse follows from the phase of σ. σ is called the shear of the null
congruence.

(c) The trace of Aai, which is associated with θ, produces a shadow
which is diminished or magnified in size with respect to the object in-
dependently of direction. θ is therefore called the expansion of the light
rays. The light rays emitted from a pointlike source of light constitute
the standard example of a family with θ 	= 0. Since in flat space we
have θ = 1/r for these rays (see Fig. 31.4), one uses θ in curved space
to define a parallax rP distance by

θ = 1/rP. (31.51)

Special cases and appropriate coordinate systems For making calcula-
tions with null vector fields one often uses coordinate systems in which

ki = (0, 0, k3, 0). (31.52)

If ki is hypersurface-orthogonal (ω vanishes), then as well as (31.52) one
can set

ki = λu,i = (0, 0, 0, k4),

ds2 = gAB dxA dxB + 2mi dxi du, A,B = 1, 2.
(31.53)

A comparison of (31.53) with the form ki = (0, 0, λ,−λ) of a null vector
in Minkowski space and Minkowski coordinates shows that −u signifies
a retarded time, for example, u = z − ct.

For plane waves with ka;b = 0 all three optical scalars vanish in agree-
ment with the intuitive interpretation of these quantities.
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Exercises

31.1 Show that in a spherically symmetric metric (23.5) any radially
directed vector field is hypersurface-orthogonal.

31.2 Show that in a Robinson–Trautman metric (34.4) the null vector
kn = u,n is hypersurface-orthogonal and shearfree, but has a
non-zero divergence.

32

The Petrov classification

32.1 What is the Petrov classification?

The Petrov classification is the classification of Riemannian spaces
according to the algebraic properties of the Weyl tensor (conformal cur-
vature tensor) defined by

Cai
sq = Rai

sq− 1
2 (ga

sR
i
q +gi

qR
a
s−gi

sR
a
q −ga

qR
i
s)+

1
6 (ga

sg
i
q−gi

sg
a
q ). (32.1)

From other areas of physics, one knows that algebraic properties of
tensors are linked with important physical properties. Thus, for exam-
ple, in crystal optics the classification of media according to the number
of distinct eigenvalues of the ε-tensor leads to the division into optically
biaxial, uniaxial or isotropic crystals. Therefore we may also hope to find
physically interesting relations by investigating the algebraic structure
of the curvature tensor.

The examination of the conformal tensor does not suffice of course if
one wants to determine all algebraic properties of the curvature tensor.
The information lacking is hidden in the Ricci tensor or (because of the
field equations) in the energy-momentum tensor. Here, however, we shall
restrict our discussion to the Weyl tensor, which anyway coincides with
the curvature tensor for vacuum fields; the Petrov classification is the
classification of vacuum gravitational fields according to the algebraic
properties of the curvature tensor.

The Petrov classification of gravitational fields is the analogue of the
algebraic classification of electromagnetic fields performed in Sections 9.2
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and 9.3, both formally and as regards physical content. The reader is
advised to consult these sections, since because of those analogies we
shall describe the Petrov classification relatively briefly.

32.2 The algebraic classification of gravitational fields

The expansion of the Weyl tensor in terms of self-dual bivectors With
the Weyl tensor Carsq of a gravitational field can be associated the tensor

∗
Carsq= Carsq + iC ãrsq = Carsq + 1

2 iεsqmnCar
mn (32.2)

which is analogous to the complex field-strength tensor Φab. This tensor
is clearly self-dual with respect to the last two indices:

∗
C ãrsq = 1

2
εsqmn

∗
Car

mn = −i
∗
Carsq . (32.3)

Because of the definition (32.1) of the Weyl tensor its contraction van-
ishes:

Car
aq = 0. (32.4)

Hence the Weyl tensor (in contrast to the curvature tensor of an arbi-
trary space) has the property that the dual tensors formed with respect
to the first and to the last pairs of indices coincide:

˜
∗
C ãrsq = 1

4εarikεsqmnC
ikmn = −Carsq (32.5)

(use equations (6.17) and (17.30)!). The tensor
∗
Carsq is therefore auto-

matically also self-dual with respect to the front index pair and can be
expanded entirely in terms of the self-dual bivectors (9.15):
∗
Carsq = Ψ′

0UarUsq + Ψ′
4VarVsq + Ψ′

1(UarWsq + UsqWar) (32.6)
+ Ψ′

2(UarVsq + UsqVar +WarWsq) + Ψ′
3(VarWsq + VsqWar).

In this expansion account has already been taken of the symmetry prop-
erties of the Weyl tensor; the ten algebraically independent components
are described by the five complex coefficients Ψ′

A.
The original Petrov (1969) classification consists essentially of classi-

fying the types of the self-dual tensor
∗
Carsq according to the number of

eigenbivectors defined by

1
2

∗
Carsq Q

sq = λQar, Q̃ar = −iQar. (32.7)
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Here we shall take a rather different approach and therefore state the
Petrov result without proof. Type I (special cases D, O) occurs when
there are three eigenbivectors, type II (special case N) possesses two
eigenbivectors and type III only one eigenbivector.

The classification of gravitational fields – first formulation By adapting
the null tetrad, and along with it also the self-dual bivectors to the Weyl
tensor under investigation, one can simplify the expansion (32.6) and set
Ψ0 = 0. To this end, because of (9.11) and (9.23), one has to line up
the direction ka (determine E) so that

Ψ0 = Ψ′
0 − 4Ψ′

1E + 6Ψ′
2E

2 − 4Ψ′
3E

3 + Ψ′
4E

4 = 0. (32.8)

Equation (32.8) has, as an equation of fourth degree, precisely four
roots E (this is true with corresponding interpretation also in the special
cases: for Ψ′

4 = 0 and Ψ′
0 	= 0 one obtains by the exchange of labels

la ↔ −ka an equation of fourth degree, for Ψ′
4 = Ψ′

0 = 0 then E = 0 is a
double root, and so on). To these four roots correspond four directions
ka (eigenvectors ka) with Ψ0 = 0. According to the multiplicity of these
roots one can divide Riemannian spaces into the following types:

Non-degenerate: Type I : four distinct roots,
Degenerate: Type II : one double root and two simple roots,

Type D : two double roots,
Type III : one triple root and one simple root,
Type N : one four-fold root,
Type O : the Weyl tensor and all ΨA are zero.

I

II

III

D

N 0

Fig. 32.1. The Penrose diagram.

The Penrose diagram (Fig. 32.1) provides a summary of the successive
growth in degeneracy; every arrow signifies one additional degeneracy.
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The classification of gravitational fields – second formulation It is pos-
sible to avoid the detour through the tensor

∗
Carsq and pick out the

types of gravitational fields directly from the Weyl tensor and its null
eigenvectors ka.

First of all one expresses the coefficients ΨA directly in terms of prod-
ucts of the Weyl tensor with the null-tetrad vectors, using (32.2) and
(9.16):

Ψ0 = 1
8

∗
Carsq V

arV sq = 1
4
CarsqV

arV sq = Carsqk
amrksmq,

Ψ1 = − 1
16

∗
Carsq V

arW sq = Carsqk
amrkslq,

Ψ2 = 1
8

∗
Carsq U

arV sq = −Carsqk
amrlsm̄q, (32.9)

Ψ3 = − 1
16

∗
Carsq U

arW sq = Carsql
am̄rlskq,

Ψ4 = 1
8

∗
Carsq U

arUsq = Carsql
am̄rlsm̄q.

Ψ0 vanishes for null eigenvectors ka; the real symmetric tensor

Saq = Carsqk
rks (32.10)

therefore contains no terms proportional to mrmq and m̄rm̄q. Further,
as a consequence of the symmetry properties of the Weyl tensor, the
relations

Saqk
q = 0, Sa

a = Ca
rsak

rks = 0 (32.11)

hold, and therefore it has the structure

Saq = αkakq + Re
[
β(kam̄q + kqm̄a)

]
. (32.12)

Eigenvectors of the Weyl tensor therefore have the property

k[bCa]rs[qkn]k
rks = 0 ↔ Ψ0 = 0. (32.13)

If two eigenvectors coincide (E = 0 is a double root of (32.8)), then
Ψ1 must also vanish, besides Ψ0. Because of (32.9), it then follows that
β = 0, and hence that

k[bCa]rsqk
rks = 0↔ Ψ0 = Ψ1 = 0. (32.14)

By pursuing these considerations further one finally arrives at the
results presented in Table 32.1 (in each case the last two columns hold
for the null eigenvectors of highest degeneracy).

By rotations of the null tetrad (for fixed ka) one can in addition set
Ψ2 = 0 for type I, Ψ3 = 0 for type II, Ψ3 = Ψ4 = 0 for type D (for
which 3Ψ2Ψ4 = 2Ψ3

2 always holds), and Ψ4 = 0 for type III.
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Table 32.1. The Petrov types and their properties

Type
Multiplicity of the
null eigenvectors

Vanishing
coefficients

Criterion satisfied
by Cabcd

I (1, 1, 1, 1) Ψ0 k[bCa]rs[qkn]k
rks = 0

II
D

(2, 1, 1)
(2, 2)

Ψ0, Ψ1 k[bCa]rsqkrks = 0

III (3, 1) Ψ0, Ψ1, Ψ2 k[bCa]rsqkr = 0

N (4) Ψ0, Ψ1, Ψ2, Ψ3 Carsqka = 0

O there are none all ΨA Carsq = 0

In order to determine the Petrov type of a given space one must first
compute the Weyl tensor and hence, using (32.9) with an arbitrary null
tetrad, the Ψ′

As. Equation (32.8) then gives the possible transformations
E and thus the multiplicity of the null eigenvectors.

32.3 The physical interpretation of degenerate vacuum
gravitational fields

For vacuum solutions of Einstein’s field equations the Weyl tensor and
the curvature tensor are identical, so that all statements of the previous
section also hold for the curvature tensor.

The simplest example of a degenerate vacuum solution is provided by
the plane gravitational waves dealt with in Section 29.3. Because

Rabmnk
n = 0, knkn = 0, (32.15)

they are of type N . One might therefore suppose that degenerate vac-
uum solutions are connected with gravitational radiation and gravita-
tional waves. In fact one can show that the curvature tensor of an iso-
lated matter distribution allows, under certain assumptions about the
sources, at large distance an expansion

Rabmn =
Nabmn

r
+
IIIabmn

r2
+
Dabmn

r3
+ · · · , (32.16)

where the symbols N , III and D refer to tensors of the respective al-
gebraic types. The far field of every source of gravitational radiation
(if such a field exists) is therefore a plane wave (type N) locally; if one
approaches closer to the source, then the four initially coincident direc-
tions of the null eigenvectors separate (peeling theorem). Unfortunately
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this result is not as fruitful as the corresponding one in electrodynamics,
because in general the relation between Nabmn, IIIabmn and Dabmn and
the properties of the sources of the field are not known.

Two simple properties of the null eigenvector fields of degenerate vac-
uum fields can be deduced from the Bianchi identities, which it is best
to use here in the form

R ãr
sq

;q = 0 (32.17)

or, since Rab = 0,
∗
C

arsq
;q = 0. (32.18)

We shall do this explicitly for type II and type D (Ψ0 = Ψ1 = 0,
Ψ2 	= 0); the calculations for the other types run analogously. Because

Vab;qW
ab = 4ka;qm

a, (32.19)

we have from (32.18) and (32.6)

0 =
∗
R

arsq
;qVar =

( ∗
R

arsqVar

)
;q
− ∗
R

arsqVar;q (32.20)
= 4(Ψ2V

sq);q − 8Ψ3V
sqka;qm

a − 2Ψ2U
arV sqVar;q − 8Ψ2W

sqka;qm
a.

Contraction with ks yields

V sq
;qks + 2ka;qm

akq = ka;qm
akq = 0; (32.21)

that is, the vector field ka is geodesic. Contraction of (32.20) with ms

leads to

V sq
;qms + 2ks;qm

smq = 3ks;qm
smq = 0; (32.22)

that is, the vector field is also shear-free (σ = 0).
The (multiple) eigenvectors of degenerate vacuum solutions thus form

a geodesic, shear-free congruence of world lines (as also do the eigenvec-
tors of degenerate electromagnetic fields). The converse of this state-
ment holds as well (Goldberg–Sachs theorem): if in a vacuum solution
a shear-free, geodesic null congruence exists, then this solution is degen-
erate and the congruence is a (multiple) eigencongruence. This law is
often used for determining the Petrov type, since a conclusion can be
drawn from knowledge of first derivatives (ka;n) alone, while the Petrov
type is generally only determinable from the curvature tensor (second
derivatives).

The example of the Schwarzschild solution (Exercise 32.1) shows that
degenerate solutions can in general not be interpreted as radiation fields.
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Exercises

32.1 Show that for the Schwarzschild metric (23.23) the vectors
√

2ka =
(
eλ/2, 0, 0, e−λ/2

)
, −√2la = −(eλ/2, 0, 0,−e−λ/2

)
,

√
2ma = (0, r,−ir sinϑ, 0), e−λ = 1− 2M/r

form a null tetrad satisfying the relations (17.44) and (17.46).
Show that both vectors ka and la are geodesic and shearfree.
Which Petrov type occurs?

32.2 Which is the Petrov type of the plane waves (29.39)–(29.40)?

33

Killing vectors and groups of motion

33.1 The problem

When we are handling physical problems, symmetric systems have not
only the advantage of a certain simplicity, or even beauty, but also spe-
cial physical effects frequently occur then. One can therefore expect in
General Relativity, too, that when a high degree of symmetry is present
the field equations are easier to solve and that the resulting solutions
possess special properties.

Our first problem is to define what we mean by a symmetry of a Rie-
mannian space. The mere impression of simplicity which a metric might
give is not of course on its own sufficient; thus, for example, the relatively
complicated metric (31.1) in fact has more symmetries than the ‘simple’
plane wave (29.39). Rather, we must define a symmetry in a manner
independent of the coordinate system. Here we shall restrict ourselves
to continuous symmetries, ignoring discrete symmetry operations (for
example, space reflections).

33.2 Killing vectors

The symmetry of a system in Minkowski space or in three-dimensional
(Euclidean) space is expressed through the fact that under translation
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along certain lines or over certain surfaces (spherical surfaces, for ex-
ample, in the case of spherical symmetry) the physical variables do not
change. One can carry over this intuitive idea to Riemannian spaces
and ascribe a symmetry to the space if there exists an s-dimensional
(1 ≤ s ≤ 4) manifold of points which are physically equivalent: under a
symmetry operation, that is, a motion which takes these points into one
another, the metric does not change.

These ideas are made more precise by imagining a vector ξi(xa) at
every point xa of the space and asking for the conditions under which
the metric does not change when proceeding in the direction ξi. Since
every finite motion can be constructed from infinitesimal motions, it is
sufficient to ensure the invariance of the metric under the infinitesimal
motion

x̄a = xa + ξa(xn) dλ = xa + δxa. (33.1)

For such a transformation we have

δgab = gab,nξ
n dλ, δ(dxa) = d(δxa) = ξa

,n dxn dλ, (33.2)

so that the line elements at the point xa and at the neighbouring point
x̄a are identical only if

δ
(
ds2
)

= δ(gab dxa dxb)

= (gab,nξ
n + gnbξ

n
,a + ganξ

n
,b) dxa dxb dλ = 0.

(33.3)

A symmetry is present if and only if (33.3) is satisfied independently of
the orientation of dxa, that is, for

gab,nξ
n + gnbξ

n
,a + ganξ

n
,b = 0. (33.4)

For a given metric, (33.4) is a system of differential equations deter-
mining the vector field ξi(xn); if it has no solution, then the space has
no symmetry. In spite of the fact that it contains partial derivatives,
(33.4) is a covariant characterization of the symmetries present. One
can see this by substituting covariant for partial derivatives or formu-
lating (33.4) with the help of the Lie derivative; (33.4) is equivalent to
the equation

ξa;b + ξb;a = Lξgab = 0, (33.5)

which is clearly covariant.
Vectors ξi which are solutions of the equations (33.4) or (33.5) are

called Killing vectors. They characterize the symmetry properties of
Riemannian spaces in an invariant fashion (Killing 1892).

If one chooses the coordinate system so that ξn has the normal form
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ξn = (0, 0, 0, 1), (33.6)

then (33.4) reduces to
∂gab/∂x

4 = 0; (33.7)

the metric does not depend upon x4. This shows clearly that in (33.4)
the alternative definition of symmetry as ‘independence of a coordinate’
has been covariantly generalized.

The world line congruence associated with the Killing vector field, that
is, the family of those curves which link points which can be carried into
one another by symmetry operations, is obtained by integration of the
equations

dxn/dλ = ξn(xi). (33.8)

33.3 Killing vectors of some simple spaces

The Killing equations (33.5) constitute a system of first-order linear
differential equations for the Killing vectors ξi(xn); the number and
type of solutions of these ten equations are dependent upon the metric
and hence vary from space to space. Here we shall first of all determine
the Killing vectors explicitly for two simple metrics, and only in the next
section deduce some general statements about the diversity of solutions
to the Killing equations.

The Killing vectors of Minkowski space can without doubt be obtained
most simply in Cartesian coordinates. Since all Christoffel symbols van-
ish, in these coordinates the Killing equations read

ξa,b + ξb,a = 0. (33.9)

If one combines the equations

ξa,bc + ξb,ac = 0, ξb,ca + ξc,ba = 0, ξc,ab + ξa,cb = 0, (33.10)

which result from (33.9) by differentiation, then one obtains

ξa,bc = 0, (33.11)

with the general solution

ξa = ca + εabx
b. (33.12)

The Killing equations (33.9) are satisfied by (33.12), however, only if

εab = −εba. (33.13)

Flat space thus processes ten linearly independent Killing vectors; the
four constants ca correspond to four translations and the six constants



33.4 Curvature tensor and Killing vectors 281

εab to six generalized rotations (three spatial rotations and three special
Lorentz transformations).

One can also obtain relatively quickly the Killing vectors associated
with the spherical surface

ds2 = dϑ2 + sin2 ϑ dϕ2 = (dx1)2 + sin2 x1(dx2)2. (33.14)

Written out in full, equations (33.4) read

ξ1,1 = 0, ξ1,2 + sin2 ϑ ξ2,1 = 0, ξ1 cosϑ+ sinϑ ξ2,2 = 0. (33.15)

The general solution

ξ1 = A sin(ϕ+ a), ξ2 = A cos(ϕ+ a) cotϑ+ b (33.16)

shows that there are three linearly independent Killing vectors, for
example the vectors

ξ
1

a= (sinϕ, cosϕ cotϑ), ξ
2

a= (cosϕ,− sinϕ cotϑ), ξ
3

a= (0, 1). (33.17)

The sphere thus possesses exactly the same number of Killing vectors as
the plane, which of course permits as symmetry operations two transla-
tions and one rotation.

33.4 Relations between the curvature tensor and Killing
vectors

From the Killing equation (33.5)

ξa;b + ξb;a = 0 (33.18)
and the relation

ξa;b;n − ξa;n;b = Rm
abnξm (33.19)

valid for every vector, a series of relations can be derived which enable
one to make statements about the possible number of Killing vectors in
a given space.

Because of the symmetry properties of the curvature tensor, the iden-
tity

(ξa;b − ξb;a);n − (ξn;a − ξa;n);b + (ξb;n − ξn;b);a = 0 (33.20)

follows from (33.19) for every vector. For Killing vectors it yields

ξa;b;n + ξn;a;b + ξb;n;a = 0 (33.21)

and together with (33.19) and (33.5) leads to

ξn;b;a = Rm
abnξm. (33.22)
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This equation shows that from the Killing vector ξn and its first deriva-
tives ξn;a all higher derivatives can be calculated in a given Riemannian
space. To determine a Killing vector field uniquely it therefore suffices to
specify the values of ξn and ξn;a at one point. Since one must of course
at the same time ensure that ξa;n = − ξn;a, then in an N -dimensional
Riemannian space there are precisely N+

(
N
2

)
= N(N+1)/2 such initial

values and, accordingly, a maximum of N(N+1)/2 linearly independent
Killing vector fields. The physical space (N = 4) thus has at most ten
Killing vectors and, as we shall show, it has ten only if the space is one
of constant curvature.

The maximum number cannot always be realized in a given space,
since the Killing equations are not necessarily integrable for every com-
bination of the initial values, and there even exist spaces without any
symmetry. Thus, for example, from the combination of the equation

ξn;b;a;i − ξn;b;i;a = Rm
naiξm;b +Rm

baiξn;m, (33.23)

which holds for every tensor ξa;b, with (33.22) and the Killing equation,
we obtain the relation

(Rm
abn;i −Rm

ibn;a)ξm

+ (Rm
abng

k
i −Rm

ibng
k
a +Rm

baig
k
n −Rm

naig
k
b )ξm;k = 0,

(33.24)

which further restricts the freedom in specifying ξm and ξm;k. From
the equations mentioned one can derive an algorithm for determining
the number of possible Killing vector fields in a given space. We will
not go into the details here, but rather refer the reader to the specialist
literature, e.g. Eisenhart (1961).

It is relatively easy to answer the question of which spaces possess
precisely the maximum number N(N + 1)/2 of Killing vectors. Clearly
for such spaces (33.24) must imply no restrictions on the values of ξm
and ξm;k, and therefore in this case we must have (remember that ξm;k +
ξk;m = 0!)

Rm
abp;i = Rm

ibp;a, (33.25)

Rm
abpg

k
i −Rk

abpg
m
i −Rm

ibpg
k
a +Rk

ibpg
m
a

+Rm
baig

k
p −Rk

baig
m
p −Rm

paig
k
b +Rk

paig
m
b = 0.

(33.26)

By contraction first just over i and k, and then both over i and k and
over a and b, one obtains from (33.26) the equations

(N − 1)Rm
abp = Rapg

m
b −Rabg

m
p , NRm

p = Rgm
p , (33.27)
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and hence the curvature tensor of such spaces of maximal symmetry has
the form

Rmabp = R(gapgmb − gabgmp)/N(N − 1). (33.28)

The curvature scalar R must be constant, see Exercise 33.4. Spaces
with these properties are called spaces of constant curvature (cp. Sec-
tion 19.5). The curvature R/N(N −1) can be positive, zero or negative.
The quantity

K =
√
N(N − 1)/|R| (33.29)

is known as the radius of curvature. In these spaces no point and no
direction is preferred. They are isotropic and homogeneous. Flat spaces
with vanishing curvature tensor are special instances of these spaces.

As one can easily show, a four-dimensional space of constant curvature
is not a solution of the vacuum field equations, apart from the trivial case
of a Minkowski space. The question of the maximum number of Killing
vectors in spaces which correspond to vacuum gravitational fields can
be answered in the following way. Vacuum solutions of type I or D have
at most four Killing vectors (to this group belongs the Schwarzschild
metric, for example, with one timelike Killing vector ξi = (0, 0, 0, 1) and
the three Killing vectors of the spherical symmetry); solutions of type N
have at most six, and solutions of types II and III at most three Killing
vectors.

33.5 Groups of motion

Translation in the direction of a Killing vector field can also be inter-
preted as a mapping of the space onto itself, or as a motion (for example,
a rotation) of the space. Since we designate as motions precisely those
transformations which do not alter the metric (for which the metric is
the same, in a suitable coordinate system, at the initial point and the
end point of the motion), these transformations form a group.

Groups of motion (Lie groups) are continuous groups whose elements
are differentiable functions of a finite number of parameters r. One
can imagine the entire group to be generated by repeated application of
infinitesimal transformations (33.1) in the direction of the r Killing vec-
tors of the space. These (linearly independent) Killing vectors thus serve
as a basis for generating the group. Since every linear combination of
Killing vectors is also a Killing vector, this basis is not uniquely deter-
mined.

One can characterize a group (and hence a space) by the number of
linearly independent Killing vectors and their properties. An intuitive
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picture of the way in which the group acts is provided by the regions
of transitivity, which are those regions of the space whose points can be
carried into one another by the symmetry operations of the group. The
surfaces of transitivity of the rotation group are spherical surfaces, for ex-
ample, and the group is multiply transitive on them; that is, there exists
more than one transformation which transforms one point into another.

The structure constants of a group of motion The structure of a group
which is generated by r Killing vectors can be most clearly recognized
if one examines the commutability of infinitesimal motions.

Two infinitesimal motions

x̄a = xa+ ξ
A

a (xi) dλA+ F
A

a (dλA)2 + · · · , (33.30)

x̃a = xa+ ξ
B

a (xi) dλB+ F
B

a (dλB)2 + · · · , (33.31)

in the direction of the Killing vectors ξ
A

a and ξ
B

a, respectively, give

˜̄xa = x̄a+ ξ
B

a (x̄i) dλB+ F
B

a (dλB)2 + · · ·

= xa+ ξ
A

a (xi) dλA+ F
A

a (dλA)2+ ξ
B

a (xi) dλB

+ ξ
B

a
,n(xi) ξ

A

n (xi) dλA dλB+ F
B

a (dλB)2 + · · ·
(33.32)

when performed one after the other. If one performs the transformations
in reverse order and then takes the difference of the two results, then
only that part of (33.32) antisymmetric in A and B remains:

˜̄xa − ¯̃xa =
(
ξ
B

a
,n ξ

A

n − ξ
A

a
,n ξ

B

n
)
dλA dλB + · · · · (33.33)

Infinitesimal motions thus commute only to first order; in second order
a difference term is left over, according to (33.33). We know, however,
that just as the point P̄ (coordinates x̄a) is equivalent to the initial

P P̄

P̃

¯̃P

˜̄P

ξ
A

a

ξ
A

a

ξ
B

a

ξ
B

a

CD
AB ξ

D

a

Fig. 33.1. Commuting of infinitesimal motions.
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point P , so also is the point P̃ (coordinates x̃a), see Fig. 33.1; because
of the group property of the symmetry transformations it is thus also
possible to construct a linear transformation from the Killing vectors
which describes the transition from P̄ to P̃ . Because of (33.33) we then
have for this transformation(

ξ
A

n ∂

∂xn
ξ
B

a − ξ
B

n ∂

∂xn
ξ
A

a
)

= CD
AB ξ

D

a, A,B,D = 1, . . . , r. (33.34)

The quantities CD
AB are called the structure constants of the group; they

are independent of the choice of coordinate system, but do depend upon
the choice of basis ξ

A

a and can be simplified (brought to certain normal

forms) by suitable basis transformations.
Using the operators

X
A

=ξ
A

n ∂

∂xn
, (33.35)

(33.34) can also be written in the form of a commutator relation

X
A
X
B
− X

B
X
A

=
[
X
A
, X

B

]
= CD

AB X
D
. (33.36)

One can show that for arbitrary specified structure constants a group
always exists, if these constants have the antisymmetry property

CD
AB = −CD

BA (33.37)

discernible in (33.34), and satisfy the Jacobi–Lie identity

CE
ADC

D
BC + CE

BDC
D
CA + CE

CDC
D
AB = 0, (33.38)

which follows from the Jacobi identity[
X
A
,
[
X
B
, X

C

]]
+
[
X
B
,
[
X
C
, X

A

]]
+
[
X
C
,
[
X
A
, X

B

]]
= 0. (33.39)

Examples The group of translations

ξ
A

a= δa
A, X

A
= δa

A ∂/∂x
a, a = 1, . . . , n, A = 1, . . . , n, (33.40)

of an n-dimensional flat space is an Abelian group. All its transforma-
tions commute, all the structure constants vanish.

The group of rotations of a three-dimensional flat space

ξ
1

a = (y,−x, 0), X
1

= y ∂/∂x− x ∂/∂y,
ξ
2

a = (z, 0,−x), X
2

= z ∂/∂x− x ∂/∂z,
ξ
3

a = (0, z,−y), X
3

= z ∂/∂y − y ∂/∂z (33.41)
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has the commutators[
X
1
, X

2

]
=X

3
,

[
X
2
, X

3

]
=X

1
,

[
X
3
, X

1

]
=X

2
. (33.42)

Since not all the structure constants vanish, but C3
12 = C1

23 = C2
31 = 1,

rotations do not commute. The operators X
A

and their commutators

correspond to the angular-momentum operators of Quantum Mechanics
and their commutation rules.

Classification of spaces according to their groups of motion One char-
acterizes the group of motion of a space by the number of its Killing vec-
tors, the structure of the group and the regions of transitivity.
Establishing all the non-isomorphic groups Gr of r Killing vectors, that
is, of groups whose structure constants cannot be converted into one
another by linear transformations of the basis, is a purely mathematical
problem of group theory. It is in principle solved: in the literature one
can find tables of all such possible groups for the cases of interest in
relativity theory.

Thus every group with two elements is either an Abelian group[
X
1
, X

2

]
= 0, (33.43)

or else we have [
X
1
, X

2

]
= c1 X

1
+ c2X

2
, (33.44)

with c1 	= 0. In the second case, however, we can always arrive at the
normal form [

X̄
1
, X̄

2

]
= X̄

1
(33.45)

by means of a basis transformation

X̄
1
= c1X

1
+ c2X

2
, X̄

2
=X

2
/c1. (33.46)

The relations (33.43) and (33.45) characterize the two non-isomorphic
groups G2.

Of special interest in cosmology are those groups whose regions of
transitivity are three-dimensional spaces (homogeneous models of the
universe; all points of the three-dimensional universe are equivalent).
All simply transitive groups G3 lead to such models. A list of all non-
isomorphic groups G3 can be obtained by using the relation

1
2ε

ABECD
AB = NDE, A,B = 1, 2, 3, (33.47)

which, because of the antisymmetry condition (33.37), maps the nine
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possible components of the matrix of the structure constants CD
AB onto

the 3 × 3 matrix NDE , and then splitting this matrix further into its
symmetrical part nDE and the antisymmetric part, which in turn can
be mapped onto a ‘vector’ aA:

NDE = nDE + εDEAaA. (33.48)

If one substitutes the representation of the structure constants resulting
from this decomposition,

CD
AB = εEAB n

DE + δD
B aA − δD

A aB , (33.49)

into the Jacobi–Lie identities (33.38), then these reduce to

nABaA = 0. (33.50)

One can always set aA = (a, 0, 0) by real linear transformations of the
basis operators X

A
and moreover transform nAB to principal axes, so that

the diagonal elements have only the values 0,±1. One hence obtains the
following normal form for the commutators and the structure constants
of a group G3: [

X
1
, X

2

]
= n3 X

3
+a X

2
,

[
X
2
, X

3

]
= n1 X

1
, an1 = 0,

[
X
3
, X

1

]
= n2 X

2
−a X

3
, ni = 0,±1.

(33.51)

As Table 33.1 shows, there are eleven types of groups G3 altogether,
which are distributed amongst the nine so-called Bianchi types I to IX.
Notice that in the types VII and VI for a 	= 0, 1 one is always dealing
with a whole family of non-isomorphic groups.

Table 33.1. The structure constants of the groups G3

Bianchi type I II VII VI IX VIII V IV III VII VI

a 0 0 0 0 0 0 1 1 1 a a

n1 0 0 0 0 1 1 0 0 0 0 0

n2 0 0 1 1 1 1 0 0 1 1 1

n3 0 1 1 −1 1 −1 0 1 −1 1 −1
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We should mention further that there are also groupsG4 and G6 which
are (multiply) transitive in three-dimensional space and can therefore
likewise correspond to homogeneous models of the Universe.

33.6 Killing vectors and conservation laws

The conservation laws of physics are closely connected with the sym-
metry properties of physical systems. In the theory of gravitation, the
properties of the four-dimensional space also have a physical significance.
In this section we shall show how symmetry properties (that is, the
existence of Killing vector fields) lead to conservation laws or other sim-
ple statements.

Mechanics of a point mass The motion of a point mass on a surface or
in Minkowski space in the absence of forces or the pure inertial motion
in a Riemannian space (motion in the gravitational field) takes place
along a geodesic:

D2

Dτ2
xa =

D
Dτ

ua = ua; bu
b = 0. (33.52)

Contraction of this equation with a Killing vector field ξ
A

a leads to

ξ
A

a Dua/Dτ = d
(
ξ
A

au
a
)
/dτ − uaξ

A
a;b u

b = 0, (33.53)

and taking into account the Killing equation (33.5), that is, the anti-
symmetry of ξ

A
a;b, we have

ξ
A

au
a = const. (33.54)

The quantities ξ
A

au
a do not change during the motion of the point mass;

they are conserved quantities. Thus in mechanics a conservation law is
associated with every Killing vector field. In Minkowski space with its
ten Killing vectors (33.12) and (33.13) there are accordingly ten con-
servation laws: the four translational Killing vectors lead to the con-
servation law for the four-momentum, the three spatial rotations to the
angular-momentum law and the three special Lorentz transformations
to the centre-of-gravity law.

Interestingly enough, there exist Riemannian spaces in which there are
more conservation laws than Killing vectors, that is to say, conservation
laws which cannot be traced back to the presence of a symmetry. To see
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this consider the equation

Ξab;n + Ξbn;a + Ξna;n = 0, Ξna = Ξan, (33.55)

which we shall take as the defining equations for a Killing tensor Ξan.
If these equations possess a solution which is not a linear combination
of products of Killing vectors, and which thus cannot be written in the
form

Ξab = c0gab +
∑
A,B

cAB

(
ξ
A

a ξ
B

b+ ξ
A

b ξ
B

a

)
, c0, cAB = const., (33.56)

then the conservation laws

D(Ξabu
aub)/Dτ = (Ξabu

aub);iui = 0 (33.57)

which follow from (33.52) and (33.55) are independent of the conserva-
tion laws (33.54). One can show that in Minkowski space there exist
only the trivial Killing tensors (33.56). An example of a space with a
non-trivial Killing tensor is the Kerr metric discussed in Section 37.1.
Killing tensors reflect symmetries of the (geodesic) differential equations
in a space spanned by the variables (xa, ua) rather than those of space-
time.

If forces are present and these have a potential,

Dua/Dτ = −Φ,a, (33.58)

then the conservation law (33.54) is still valid if the potential does not
change under the symmetry operation of the space:

ξ
A

a Φ,a =X
A

Φ = 0. (33.59)

The symmetry group of a mechanical (or general physical) system is
thus always a subgroup of the symmetry group of the space in which the
system is situated.

Scalar potentials in electrodynamics As the Killing equations (33.5)
show, a space possesses a Killing vector field if and only if the Lie deriva-
tive of the metric in the direction of this vector field vanishes:

Lξgnm = gnm,iξ
i + gimξ

i
,n + gniξ

i
,m = 0. (33.60)

We call a physical system in this space invariant under motion in the
direction of the Killing vector field if the Lie derivatives of the physi-
cal variables vanish. This definition guarantees that the components of
the field variables do not change under the motion when one introduces
the old coordinate system again at the point reached by the motion
(cp. the remarks on the intuitive interpretation of the Lie derivative in
Section 18.5).
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Thus if in a Riemannian space there exists an electromagnetic field (a
test field, or a field which acts gravitationally), then this field possesses
a symmetry if and only if, in an appropriate gauge, the four-potential
satisfies the condition

LξAm = Am,iξ
i +Aiξ

i
,m = 0. (33.61)

If the associated field tensor is contracted with the Killing vector, then
the resulting vector Em can be written as

Em = Fmnξ
n = (An,m −Am,n)ξn = ξnAn,m +Anξ

n
,m; (33.62)

that is, Em can be represented as the gradient of a scalar function Φ:

Em = (ξnAn),m = −Φ,m. (33.63)

In the absence of charges and currents, or in a simply connected region
outside the sources, or, when the current density vector ja and the
Killing vector ξa are parallel, then one can derive an analogous statement
for the vector

Hm = F̃mnξ
n (33.64)

as well. From the Maxwell equation

Fmn
;n = 1

2
εmn

abF̃
ab

;n = jm/c (33.65)

we obtain, upon contracting with εmrstξ
t, the equation(

F̃rs,t + F̃st,r + F̃tr,s

)
ξt = 0, (33.66)

and since because of (33.61) the Lie derivative of the dual field tensor
vanishes,

LξF̃mn = F̃mn,aξ
a + F̃anξ

a
,m + F̃maξ

a
,n = 0, (33.67)

Hm satisfies the conditionHm,a = Ha,m and consequently can be written
as the gradient of a potential Ψ:

Hm = −Ψ,m. (33.68)

The six quantities Em and Hm, which (for ξaξa 	= 0) completely
describe the Maxwell field, can thus be represented as gradients of two
scalar potentials, if ξa is a Killing vector. These potentials are gener-
alizations of the electrostatic and magnetic scalar potentials which one
usually introduces in Minkowski space when the fields are static, that
is, admit a timelike hypersurface-orthogonal Killing vector.

Equilibrium condition in thermostatics As we have shown in Section 21.5,
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a system is in thermodynamic equilibrium only if the Lie derivative of the
metric in the direction of ua/T vanishes; that is, if this vector is a Killing
vector. It is static if, further, the vector is hypersurface-orthogonal. In
the rest system ua = (0, 0, 0, c/

√−g44) of the matter, the components
g4α then vanish, and the metric does not change under time reversal.

Substituting the vector ξa = ua/T into the Killing equations (33.60),
we have (when g4α = 0)

gαβ,4 = 0, T,a = 0,
(√−g44 T ),α = 0. (33.69)

By means of a transformation of time only, dt′ =
√−g44 T dt, g4′4′ =

−1/T 2, one can convert these equations into

gmn,4 = 0,
(√−g44 T ),i = 0 (33.70)

(we have once again dropped the dash on the indices).
The equations (33.70) are the equilibrium conditions in the rest system

of the matter. A system is thus in equilibrium not when the temperature
gradient vanishes, but rather when the gradient of

√−g44 T is zero. This
condition can be interpreted in the following way: in equilibrium, the
change in temperature just compensates the energy which has to be fed
in or carried away under (virtual) transport of a volume element in the
gravitational field.

Observables in quantum mechanics In the usual coordinate represen-
tation of quantum mechanics the operators of momentum and angu-
lar momentum associated with the physical observables correspond to
the operators X

A
of the translations (33.40) and rotations (33.41) of the

three-dimensional Euclidean space. There thus exists a close connection
between those quantities which remain constant for a more extensive
physical system (for example, an atom) because of the symmetry of the
space, and those which can meaningfully be used to describe part of a
system (for example, an electron). This connection explains the diffi-
culties involved in carrying over the quantum mechanics of Minkowski
space to a general Riemannian space, which of course possesses no Killing
vectors at all.

Conservation laws for general fields In a Riemannian space the local
conservation law

T ik
;k = 0 (33.71)

holds for the energy-momentum tensor of an arbitrary field (an arbitrary
matter distribution). But no genuine integral conservation law can be
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associated with it, because of the non-existence of a Gauss law for tensor
fields of second or higher rank.

If, however, a Killing vector field ξ
A

a exists in the space, then it follows

from (33.60) and the Killing equation (33.5) that(
ξ
A

iT
ik
)
;k

= ξ
A

i;kT
ik+ ξ

A
iT

ik
;k = 0, (33.72)

and the Gauss law can be applied to this local conservation law for a
vector field (see Section 20.5). Under certain mathematical assumptions
a conservation law

T
A

=
∫

x4=const.

T ia ξ
A

i dfa =
∫

x4=const.

T i4 ξ
A

i
√−g dx1 dx2 dx3 = const. (33.73)

can then be associated with every Killing vector field of the space. If
the Killing vector is timelike, the associated conserved quantity will be
called energy. Whether for a spacelike Killing vector one uses the label
‘momentum’ or ‘angular momentum’ is sometimes only a matter of defi-
nition. In such a case one can be guided by the transitivity properties of
the group of motion (the three translations in flat space yield a transitive
group, the three spatial rotations are intransitive), by the commutators
of the associated operators X

A
or by the structure of the Killing vectors

in the asymptotically flat far-field zone.
Starting from the identity

(ξa;b − ξb;a);a;b = 0, (33.74)

valid for all vectors, one can recast the conservation law (33.72) in a
different form (Komar 1959). If ξa is a Killing vector then this identity,
(33.5) and (33.22) imply

(Rmbξm);b = 0 =
[
(Tmb − 1

2g
mbT )ξm

]
;b
, (33.75)

which agrees with (33.72) since T,mξ
m = 0.

From the standpoint of the symmetry properties of a field and of
the connection between symmetries and conservation laws, one would
therefore answer the question, discussed in detail in Section 28.4, of the
validity of an energy law for and in a gravitational field in the following
way. The energy of a gravitating system can be defined if a timelike
Killing vector exists, and then it is always conserved.

Exercises

33.1 Show that if LξFab = 0, then there is a gauge such that LξAa =
0.
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33.2 Assume there are two Killing vectors ξ and η. Is it always
possible to gauge the four-potential An by LξAn = 0 = LηAn?

33.3 Find the Killing vectors of the metrics (34.1) and (19.41).
33.4 Show that the Killing vectors (33.17) satisfy (33.42).
33.5 In a Minkowski space, there is a rotationally symmetric Maxwell

field. Use the two potentials φ and ψ to formulate Maxwell’s
equations in cylindrical coordinates.

34

A survey of some selected classes of exact
solutions

A compendium of all currently known solutions of Einstein’s equations
fills a thick book, see for example Stephani et al. (2003). In spite of
the complexity of the Einstein field equations many exact solutions are
known, but most have little physical relevance, that is, it is most im-
probable that sources with that specific structure exist in our universe.
On the other hand, exact solutions to many realistic problems, for ex-
ample, the two-body problem, are unknown. Here we must restrict our-
selves to a few brief references to, and remarks about, rather arbitrarily
selected classes of solutions. In Chapters 37, 41 and 43 we shall discuss
at greater length several solutions which can be used as models for stars
or the universe.

Many of the known solutions have been found by assuming from the
very beginning a high degeneracy (Petrov types D, N or 0) or a high
symmetry. We shall follow this approach.

34.1 Degenerate vacuum solutions

Several classes of degenerate vacuum solutions, that is, solutions with (at
least) one shear-free, geodesic null congruence, have been systematically
investigated. These classes include the following.

Type D solutions They are all known; their most important represen-
tative is the Kerr solution, see Section 37.1. An example of a type D
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solution which it has not (yet?) been possible to interpret physically is
the metric

ds2 =
dz2

b/z − 1
+
( b
z
− 1
)
dϕ2 + z2(dr2 − sinh2 r c2 dt2), (34.1)

which arises out of the Schwarzschild metric (23.23) via the transforma-
tion

ϑ→ i r, ϕ→ i ct, r → z, ct→ iϕ (34.2)

and an overall change of sign. Note that the coordinate labels in (34.1) are
completely arbitrary, for example, ϕ need not be an angular coordinate.

Degenerate solutions, whose eigenvector field is rotation-free and diver-
gence-free In Section 31.3 it was explained that the most important
physical and mathematical properties of a null vector field are contained
in the three optical scalars σ (shear), ω (rotation) and θ (divergence).
For degenerate solutions σ vanishes, in accordance with the definition,
and the vanishing of the other scalars as well simplifies the field equa-
tions considerably. Besides some special type D solutions, which have
this property, the structure of all types III and N which fall into this
category is known. Their metrics have the form

ds2 = |dx+ i dy +W du|2 + 2du dv +H du2, (34.3)

where the functions W (complex) and H (real) must satisfy two partial
differential equations. The most important representatives of this class
are the plane fronted waves with parallel rays (29.39)–(29.40) found in
Section 29.3.

Degenerate solutions, whose eigenvector field is rotation-free, but has a
non-vanishing divergence These solutions are comprised by

ds2 = r2P−2(dx2 + dy2) + 2 du dr + 2H du2, (34.4)

2H = −2m
r
− P 2

( ∂2

∂x2
+

∂2

∂y2

)
lnP − 2r

∂ lnP
∂u

, m = 0, 1,

where the function P (x, y, u) is a solution of the equation (Robinson and
Trautman 1962)

P 2
( ∂2

∂x2
+

∂2

∂y2

)[
P 2
( ∂2

∂x2
+

∂2

∂y2

)
lnP
]

= −12m
∂ lnP
∂u

. (34.5)

It can be shown that some of these time-dependent solutions finally
settle down to the Schwarzschild solution which is contained here as a
special case. But the hope of finding metrics amongst the solutions (34.3)
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and (34.4) which describe the radiation field of a bounded physically
meaningful matter distribution has not been realized.

34.2 Vacuum solutions with special symmetry properties

The Weyl class – axisymmetric, static vacuum fields In flat space, phys-
ical configurations which are static and also spherically or axisymmetric
(in cylindrical coordinates: ϕ-independent) are particularly simple. The
analogue of spherical symmetry leads immediately to the Schwarzschild
solution (Birkhoff theorem, see Section 23.2). The relativistic general-
ization of axially symmetric, static vacuum fields is the Weyl class: in a
suitable coordinate system the solution should not depend upon the time
t nor the cyclic coordinate ϕ and should not change under the transfor-
mations t→ −t and ϕ→ −ϕ (should contain no terms gϕr, gϕt, gϕϑ, gtr

or gtϑ). The last condition means physically that a time-independent
rotation of the source whose external field we are considering is forbid-
den.

To give an invariant definition: all vacuum solutions with two com-
muting, hypersurface-orthogonal Killing vectors, of which one is time-
like, whilst the world line congruence associated with the spacelike vector
consists of closed curves of finite length, belong to Weyl’s class. (A met-
ric is said to be stationary when it possesses a timelike Killing vector,
and static if in addition that vector is hypersurface-orthogonal). One
can show that for this symmetry the metric can be transformed to the
normal form (Weyl 1917)

ds2 = e−2U [e2k(dρ2 + dz2) + ρ2 dϕ2]− e2Uc2 dt2, (34.6)

where the functions U(ρ, z) and k(ρ, z) are to be determined from

U,ρρ + ρ−1U,ρ + U,zz = 0 (34.7)

and
ρ−1k,ρ = U 2

,ρ − U 2
,z , ρ−1k,z = 2U,ρU,z. (34.8)

Since (34.8) is always integrable when (34.7) holds, we have evi-
dence which apparently suggests the astonishing fact that from every
(ϕ-independent) solution U of the flat space potential equation (34.7),
that is, for every static axisymmetric vacuum solution of the Newtonian
gravitation theory, one can obtain a reasonable solution to the Einstein
theory by simply performing two line integrals (34.8). This statement
is, however, false in this oversimplified form. This is because we have
not yet ensured that the singular line ρ = 0 of the coordinate system is
not singular in the physical sense as well, with infinite mass density. To
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exclude the occurrence of such a singularity one has to demand that for
every infinitesimal circle about the z-axis the ratio of the circumference
to the radius is 2π (space-time is locally a Minkowski space); this is done
by the condition

k = 0 for ρ = 0 (z arbitrary). (34.9)

The differential equation (34.7) is of course linear, and solutions U
can be superposed, but the sum of two solutions, which individually
have a regular behaviour, will not in general satisfy the subsidiary con-
dition (34.9). The simple superposition of fields of two sources does not
yield a field whose sources are in gravitational equilibrium; to keep two
attracting masses apart one needs a singular mass distribution on the
axis.

In Newtonian theory, the spherically symmetric gravitational field is
given by U = 1/r = 1/

√
ρ2 + z2. Surprisingly, this U does not lead to

the Schwarzschild solution, see Exercise 34.1. Rather

e2U =
r+ + r− − 2m
r+ + r− + 2m

, e2k =
(r+ + r−)2 − 4m2

4r+r−
,

r2± = ρ2 + (z ±m)2,
(34.10)

gives the Schwarzschild solution in Weyl coordinates, cp. Fig. 34.1. This
is the analogue of the field of a massive rod (line) of length 2m in Newto-
nian physics. The singular surface r = 2m is just this line. This example
clearly shows that Weyl coordinates do not have an immediate physical
meaning, and moreover, that in relativity it is dangerous to connect an
intuitive meaning with coordinates suitably named.

Axisymmetric, stationary vacuum solutions In the Newtonian gravita-
tion theory the gravitational field of an axisymmetric source distribution

z

m

−m

r−

r+

ρ ρ

Fig. 34.1. Schwarzschild solution in Weyl coordinates.
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does not depend upon a possible rotation of the source about the sym-
metry axis. In the Einstein theory, on the other hand, the metric will be
altered by the corresponding matter current, which enters the energy-
momentum tensor. For uniform rotation, the metric will, of course, be
independent of t and ϕ, but the direction of time (the sense of rotation)
will be important. Formulated invariantly: axisymmetric, stationary
vacuum fields possess two commuting Killing vectors (an Abelian group
of motion G2), of which one is timelike (but not necessarily hypersurface-
orthogonal). One can show that vacuum metrics of this class can be
transformed into the canonical form

ds2 = e−2U [e2k(dρ2 + dz2) + ρ2 dϕ2]− e2U [dt+Adϕ]2, (34.11)

where the functions U , k and A depend only upon ρ and z and have to
satisfy the differential equations

U,ρρ + ρ−1U,ρ + U,zz = − 1
2e4Uρ−2(A 2

,ρ +A 2
,z),

(e4Uρ−1A,z),z + (e4Uρ−1A,ρ),ρ = 0,
(34.12)

ρ−1k,ρ = U 2
,ρ − U 2

,z − 1
4
e4Uρ−2

(
A 2

,ρ −A 2
,z

)
,

ρ−1k,z = 2U,ρU,z − 1
2e4Uρ−2A,ρA,z.

(34.13)

The system (34.13) is always integrable when (34.12) holds, so that k
can simply be calculated by quadrature. The system (34.12) has been
extensively investigated with regard both to simple solutions and to the
possibility of producing new solutions from those already known by, for
example, Bäcklund transformations.

The best known and most important representative of the class of
axisymmetric, stationary vacuum solutions is the Kerr metric, given by

e2U =
(r+ + r−)2(2 cos2 ϕ− 1) + 4m(m− r+ − r−) cos2 ϕ

(r+ + r−)2 + 4m(m+ r− + r+) cos2 ϕ
,

r2± = ρ2 + (m cos Φ± z)2
(34.14)

(the Weyl coordinates used here are related to the Boyer–Lindquist
coordinates of (37.1) by z = (r −m) cosϑ, ρ =

√
r2 + a2 − 2mr sinϑ).

Cylindrically symmetric solutions The cylindrically symmetric soluti-
ons are the counterpart of the static axisymmetric Weyl solution; instead
of a timelike and a spacelike Killing vector, one now has two spacelike
ones. The metric is independent of z and ϕ and can be written as

ds2 = e−2U [e2k(dρ2 − dt2) +W 2dϕ2] + e2Udz2. (34.15)
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The function W has to obey the wave equation

W,ρρ −W,tt = 0, (34.16)

which is solved by

W = f(t− ρ) + g(t+ ρ). (34.17)

Numerous solutions are known, which describe colliding plane waves.
For W 2

,ρ−W 2
,t > 0, one can adjust the coordinates by W = ρ, and the

rest of the field equations then yield

U,ρρ + ρ−1U,ρ − U,tt = 0 (34.18)

ρ−1k,ρ = U 2
,ρ + U 2

,t , ρ−1k,t = 2U,ρU,t. (34.19)

These are the Einstein–Rosen waves, which are the counterpart of the
flat-space cylindrical waves which obey (34.18).

For W = sin ρ sin t, the equation for U reads

sin t(U,ρ sin ρ),ρ − sin ρ(U,t sin t),t = 0. (34.20)

Standard separation leads to

U =
∑

n

cnhn(cos ρ)hn(cos t), cn = const., (34.21)

where the hn are the Legendre functions (first and second kind). This
form of the solution suggests that we should consider also ρ as a periodic
coordinate. Indeed, the regularity conditions (e.g. at ρ = 0 = π) can be
satisfied, and ρ, z and ϕ can be interpreted as generalized Euler angle
coordinates. These solutions are known as Gowdy universes; they are
closed universes containing only a gravitational radiation field, and they
have final and initial collapse singularities at t = 0 and t = π.

34.3 Perfect fluid solutions with special symmetry properties

Perfect fluids are often used to model the interiors of stars, or the galaxy
distribution in our Universe. Many exact perfect fluid solutions are
known, but only very few of them can serve as realistic models. The most
discussed ones are the (static or non-static) spherically symmetric solu-
tions; contained here are also the Friedmann universes, see Section 41.2.

For a realistic model of a spherically symmetric star, one should pre-
scribe an equation of state f(µ, p) = 0.But then in most cases it turns
out that the field equations cannot be solved analytically. So one rather
likes to solve the field equations by making some assumptions on the
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metric functions, and only then does one calculate pressure p and mass
density µ.

To give at least one example, we take the McVittie solution

ds2 = (1 + f)4e g(t) [1 + r2/4R2 ]−2[dr2 + r2(dϑ2 + sinh2 ϑ dϕ2)]

−(1− f)dt2/(1 + f), (34.22)

2f = me−g(t)/2 [1 + r2/4R2 ]1/2/r, R = const.

For m = 0, this a Robertson–Walker metric, the space t = const. is a
space of constant (positive) curvature, cp. Section 19.5. For g = 0 and
r2/R2 � 1, the solution approaches the exterior Schwarzschild solution
(23.67). So the McVittie solution has been interpreted as a particle in
a homogeneous universe.

Stars are usually rotating, and their interior should be modelled by a
stationary axisymmetric perfect fluid solution. But here the situation is
even worse than in the spherically symmetric case. A spherically sym-
metric perfect fluid with a surface p = 0 can nearly always be matched
to the exterior Schwarzschild solution; there is only one spherically sym-
metric vacuum solution, and the surface of the star always is a sphere.
For a rotating star, one cannot prescribe the shape of the surface, then
solve the interior problem, and then find an exterior vacuum solution to
be matched at the surface: such an exterior solution (asymptotically flat,
with no singularities) need not exist! Rather one has to solve the interior
and the exterior problem in one go, finding as a by-product the shape
of the star’s surface. No realistic model of a truly relativistic rotating
star has been found so far. Only in the extreme limit of a rotating disc
of dust is the complete solution known (Neugebauer and Meinel 1993).

Exercises

34.1 Determine the function k for the potential U = r−1 = (ρ2 +
z2)−1/2 and show that the resulting metric (the Chazy–Curzon
particle) is not spherically symmetric.

34.2 Find the static cylindrically symmetric vacuum solutions (U =
U(ρ), k = k(ρ) in (34.6) or in (34.15)).

34.3 Show that ds2 = K2[(dx1)2 + sin2 x1(dx2) + sin2 ct (dx3)2 −
c2 dt2] is the gravitational field of a covariant constant electro-
magnetic field whose only non-vanishing omponent is F34 =
K−3 sin ct.





VI. Gravitational
collapse and black

holes

In the examples and applications considered up until now we have always
correctly taken into account the non-linearity of the Einstein equations,
but most of the properties and effects discussed do not differ qualita-
tively from those of other classical (linear) fields. Now, in the discussion
of black holes and of cosmological models, we are going to encounter
properties of the gravitational field which deviate clearly from those of
a linear field. The structure of the space-time is essentially changed by
comparison with that of Minkowski space, and essentially new types of
questions arise.

35

The Schwarzschild singularity

35.1 How does one examine the singular points of a metric?

A quick glance at the Schwarzschild metric,

ds2 =
dr2

1− 2M/r
+ r2
(
dϑ2 + sin2 ϑ dϕ2

)− (1− 2M/r)c2 dt2 (35.1)

shows that a singularity of the metric tensor (of the component grr) is
present at r = 2M . In our earlier discussion of the Schwarzschild metric
in Chapter 23 we had set this problem aside with the remark that the
radius r = 2M lies far inside a celestial body, where the vacuum solution
is of course no longer appropriate. Now, however, we shall turn to the
question of whether and in what sense there is a singularity of the metric
at r = 2M and what the physical aspects of this are.

Places where a field is singular constitute a well-known phenomenon
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of classical physics. In electrostatics the spherically symmetric Coulomb
field

U =
e

4πr
(35.2)

is singular at r = 0, because an infinitely large charge density (point
charge) is present there. In non-linear theories the situation is more
complicated, because the singularity need not occur at the position of
the source. Einstein hoped that the singularities of the gravitational
field would represent elementary particles, that the general theory of
relativity would thus to a certain degree automatically yield a (non-
quantum-field-theoretical) theory of elementary particles. This hope has
not been fulfilled. Meanwhile, however, much has been learnt about the
nature of singularities of the gravitational field and about the physical
effects which occur there. Here we shall have to limit ourselves to the
description of a few basic ideas.

A singular coordinate system can evidently give a false indication of
a singularity of the space. For example, in flat three-dimensional space
spherical coordinates are singular at r = 0 in the sense that

√
g is zero

there and gϑϑ and gϕϕ become infinite, without the space showing any
peculiar properties there. Therefore, if the metric is singular at a point,
one investigates whether this singularity can be removed by introducing
a new coordinate system. Or, appealing more to physical intuition, one
asks whether a freely falling observer can reach this point and can use
a local Minkowski system there. If both are possible, then the observer
notices no peculiarities of the physical laws and phenomena locally, and
hence there is no singularity present.

Singular points or lines can also arise if a hole has been cut in the
universe by mistake, its edge appearing as a singularity. Of course one
can repair such a defect by substituting a piece of universe back in,
that is, one can complete the space by extension of a metric beyond its
initially specified region of validity by unbounded extension of geodesics.

In distinction from these two local types of investigation, one can also
examine the topological properties of the space in the neighbourhood
of a singularity and, for example, ask what possibilities there are of
interactions between the outside world and the neighbourhood of the
singularity, that is, which points of the space can be linked to one another
by test particles or by light rays.

We shall now elucidate some of these questions by reference to the
simple example of the Schwarzschild metric. For a more exact discussion
see for example Hawking and Ellis (1975).
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35.2 Radial geodesics near r = 2M

Soon after the Schwarzschild metric had been obtained as a solution of
the field equations, it was recognized that both the determinant of the
metric

−g = r4 sin2 ϑ (35.3)

and also the invariant

RabcdR
abcd = 48M2/r6 (35.4)

associated with the curvature tensor are regular on the ‘singular’ surface
r = 2M . This suggests that no genuine singularity is present there, but
rather that only the coordinate system becomes singular.

In order better to understand the physical conditions in the neigh-
bourhood of r = 2M , we investigate the radial geodesics, information
about which is provided by the line element

ds2 =
dr2

1− 2M/r
− (1− 2M/r)c2 dt2. (35.5)

From (35.5) or from (23.30) and (23.31) we obtain for the trajectories
of test particles

dr
dτ

= ±√A2 − c2(1− 2M/r),
dct
dτ

=
A

1− 2M/r
(35.6)

(A = const.). For photons one has ds2 = 0, that is

dr = ±(1− 2M/r)cdt. (35.7)

For a test particle (for a freely falling observer) passing from r = r0 to
r = 2M , equations (35.5) and (35.6) tell us that an infinitely long time
∫

dt =
∫ 2M

r0

A

c

dr
(1− 2M/r)

√
A2 − c2(1− 2M/r)

→ ∞ (35.8)

is required to traverse the finite distance

L0 =
∫ 2M

r0

dr√
1− 2M/r

, (35.9)

but that the destination is reached in the finite proper time

τ0 =
∫ 2M

r0

dr√
A2 − c2(1− 2M/r)

. (35.10)

The freely falling observer would therefore probably not notice anything
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special at r = 2M ; but the coordinates r and t are not really suitable
for describing his motion.

A photon would likewise require an infinitely long time, namely,

T0 =
1
c

∫ 2M

r0

dr
1− 2M/r

(35.11)

to cover the finite stretch L0 (35.9) – and again the coordinate time t
proves physically unsuitable for describing the process.

35.3 The Schwarzschild solution in other coordinate systems

We seek coordinate systems which are better adapted to the description
of physical processes in the neighbourhood of r = 2M than is the usual
Schwarzschild metric, coordinate systems which may possibly even cover
the space-time completely. Notice that an extension of the Schwarzschild
metric from the exterior space across the surface r = 2M does not
necessarily have to lead from (35.1) to the metric

ds2 = (2M/r − 1)c2 dt2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)− dr2

2M/r − 1
, (35.12)

which – with r < 2m – one could of course regard as the metric
‘inside’ r = 2M (where r is a timelike, and t a spacelike coordinate).
For r = 2M the metric (35.1) is completely undefined, and by extension
of the metric of the exterior space into r < 2M one could also arrive in
a completely different region of the ‘universal’ Schwarzschild solution,
just as by crossing a branch cut one can reach another branch of the
Riemannian surface of an analytic function. We must therefore distin-
guish between the Schwarzschild metric, which is only valid for r > 2M ,
and the general Schwarzschild solution, which is the (yet to be revealed)
maximal extension of the Schwarzschild metric, which contains (35.1)
as one section, but which can also be described in completely different
coordinates. We shall now meet three new coordinate systems (metrics)
which describe various sections of the Schwarzschild solution.

One can adapt the coordinate system to a freely falling observer by
the transformations

dT = dt+

√
2M
r

dr
c(1− 2M/r)

, (35.13)

cT (r, t) = ct+ 2
√

2Mr + 2M ln
∣∣(√r −√2M)

/
(
√
r +
√

2M)
∣∣,
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dR = cdT +
dr
√
r√

2M
= cdt+

√
r√

2M
dr

1− 2M/r
,

(35.14)
r(R, cT ) =

[
(R− cT )3

√
M/2

]2/3

.

In this way we pass from the Schwarzschild metric to the Lemâıtre metric
(Lemâıtre 1933)

ds2 =
2M
r

dR2 +r2
(
dϑ2 +sin2 ϑ dϕ2

)−c2 dT 2, r = r(R, cT ). (35.15)

T is clearly the proper time for particles which are at rest in the coor-
dinate system (35.15); and because of (35.14) and (35.6) dR = 0 holds
exactly for those particles which are initially at rest at infinity (A = c)
and then fall freely and radially. The line element (35.15) is regular at
r = 2M , and a freely falling observer notices nothing peculiar there; only
the point r = 0 is singular. A drawback of this metric is that the static
Schwarzschild solution is described by time-dependent metric functions.

In another coordinate system null geodesics are preferred to the time-
like geodesics used above. If one introduces a retarded time v by

dv = dt− dt∗ = dt+ dr
/
c(1− 2M/r),

cv = ct+ r + 2M ln(r − 2M)− 2M ln 2M
(35.16)

(dt∗ is the time needed by a radially falling photon to complete the
distance dr), then from the Schwarzschild metric (35.1) one arrives at
the Eddington–Finkelstein metric (Eddington 1924, Finkelstein 1958)

ds2 = 2cdr dv + r2
(
dϑ2 + sin2 ϑ dϕ2

)− (1− 2M/r)c2 dv2, (35.17)

in which light rays travelling inward radially are described by dv = 0.
In these coordinates, too, the metric functions are only singular at r = 0
(the vanishing of grr at r = 2M implies no loss of dimension, since
the determinant of the metric (35.17) does not vanish there). The line
element (35.17) is not invariant under time reversal v → −v, which
corresponds to a time reflection t → −t and a substitution of inward-
travelling by outward-travelling photons. But from this time reversal we
obtain another section of the universal Schwarzschild solution.

The maximal extension of the Schwarzschild metric is a metric which
contains all the sections considered up until now as component spaces
and which cannot be further extended. It is reached by introducing the
advanced time u,

cu = ct− r − 2M ln(r − 2M) + 2M ln 2M,

c(v − u) = 2r + 4M ln(r − 2M)− 4M ln 2M,
(35.18)
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into the metric (35.17), which hence (after elimination of dr) in ‘null
coordinates’ u, v takes the form

ds2 = r2
(
dϑ2 + sin2 ϑ dϕ2

)− c2 du dv (1− 2M/r), (35.19)

and by then making the coordinate transformations

v′ = ecv/4M , u′ = −e−uc/4M , z = 1
2 (v′ − u′), w = 1

2(v′ + u′). (35.20)

The result is the Kruskal form of the metric (Kruskal 1960) representing
the Schwarzschild solution

ds2 = 32M3r−1e−r/2M
(
dz2−dw2

)
+r2(w, z)

(
dϑ2+sin2 ϑ dϕ2

)
, (35.21)

which is related to the original Schwarzschild metric by

z2−w2 =
( r

2M
− 1
)

er/2M ,
w

z
=

1− e−2ct/4M

1 + e−2ct/4M
= tanh

ct

4M
. (35.22)

In the Kruskal metric (35.21) ϑ and ϕ are spherical coordinates (co-
ordinates on the subspaces with spherical symmetry). The coordinates
z and w are spacelike and timelike, respectively; they can take positive
and negative values, but are restricted so that r is positive.

We now want to describe briefly how the Schwarzschild metric and
its singularity appear from the standpoint of the Kruskal metric. The
exterior space of the Schwarzschild metric (r > 2M , t finite) corresponds
to region I of Fig. 35.1, where z > |w|. The rays w = ± z, z ≥ 0, form the

r = 2M

r = 2M r = 2M, t = +∞

r = 2M, t = –∞

r = 0 r = 0

r = 0 r = 0

r = const

w

z

1

1

II

II

II´
´

Fig. 35.1. The Kruskal diagram of the Schwarzschild solution (ϑ, ϕ sup-
pressed).
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boundary of this region, which is described in the r, t coordinates by t =
±∞ or r = 2M . If one crosses this boundary inwards into region II, that
is, if one crosses t = ±∞, r = 2M , then one arrives in the ‘interior’ of the
usual Schwarzschild metric; the Eddington–Finkelstein metric (35.17)
covers precisely these two regions. The regions I ′ and II ′, which can
be reached by further varying the coordinates w and z, are isometric
to (metrically indistinguishable from) regions I and II: the maximal
extension of the Schwarzschild solution contains both the exterior part
(r > 2M) and the interior part (r < 2M) of the Schwarzschild metric
twice. No boundaries or singularities occur, with the exception of (what
can be shown to be) the genuine singularity r = 0, which cannot be
removed by coordinate transformations, and which is represented in the
Kruskal diagram by two hyperbolae.

If we are inside the gravitational field of a spherically symmetric star,
that is, within region I, then because of the existence of the star, whose
surface is described in Fig. 35.1 by the line r = const., the regions I ′,
II and II ′ are of course to be replaced by an interior solution. Before
turning to the question of whether and in what manner the complete
Schwarzschild solution (including I ′, II and II ′) can be realized in na-
ture, we want to discuss more closely the physical consequences of the
maximal extension of the Schwarzschild metric.

35.4 The Schwarzschild solution as a black hole

From the mathematical description given in the previous section of
the different regions of the Schwarzschild solution, one might gain the
impression that it would be possible for an observer to pass from our
universe (region I) through the Schwarzschild singularity r = 2M and
the interior space (region II) into another universe (region I ′), which
is again the exterior space of a Schwarzschild metric. Since, however,
this observer requires an infinite time (as measured in proper time by
the people left behind) just to reach r = 2M , he would have vanished
forever to those remaining behind. Or, alternatively, while they believe
him to be still on the way to r = 2M , he has long since (as measured
in his proper time) been exploring the new universe I ′. To see whether
such journeys are possible, we must examine more carefully the proper-
ties of the geodesics of the Schwarzschild solution. Our traveller need
not necessarily fall freely (move on a geodesic), since he can of course use
a rocket; but he can never travel faster than light. Hence, with regard
to possible journeys and to the physical relations between the different
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regions of the Schwarzschild solution, the course of the null geodesics
(light rays) is particularly important.

If we limit ourselves to purely radial motions (ϑ = const., ϕ = const.),
then the line element

ds2 = 32M3r−1e−r/2M
(
dz2 − dw2

)
(35.23)

determines the course of geodesics. This metric is conformally flat. Null
geodesics (ds2 = 0) have

dz = ±dw, (35.24)

they are straight lines inclined at 45◦ (or 135◦) in the zw-plane. This
simple form for the null geodesics follows from the choice of our coordi-
nates, which were deliberately adapted to light propagation.

If one inserts into the Kruskal diagram all the null geodesics which
in region I run radially inwards (t increasing, r decreasing) or radially
outwards (t increasing, r increasing) and extends them across r = 2M ,
then one obtains the result sketched in Fig. 35.2. All light rays going
radially inwards intersect r = 2M (for t = ∞), penetrate into region
II and end up at the singularity r = 0; all light rays running outwards
come from the region II ′ and the singularity there.

Thus one cannot send radially directed light rays from our world (I)
into the regions I ′ or II ′; only region II is within reach, and once the
photon is there it cannot avoid the singularity r = 0. One might think

︷
︸
︸
︷

︷

︸
︸

︷

︷

︸
︸

︷

r = 2M, t = +∞

r = 2M, t = −∞

r = 0 r = 0

r = 0 r = 0

r = const

w

z

Outgoing
light rays

Incoming
light rays

Fig. 35.2. Null geodesics and local light cones in the Schwarzschild solution.
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of escaping the singularity r = 0 by using non-radially directed light
rays or observers with suitable rockets. But in fact once a photon is in
region II, it cannot avoid ‘falling’ to r = 0. Addition of new degrees of
freedom to (35.23) implies for photons that because

ds2 = 0 = 32M3r−1e−r/2M
(
dz2 − dw2

)
+ dσ2, dσ2 > 0, (35.25)

dw2 must be larger in relation to dz2 than for radial photons since
the term dσ2 must also be compensated. In Fig. 35.2 such light rays
would bend up more steeply and reach r = 0 even earlier. The same
conclusion can be drawn for observers with rockets. Their fate can also
be described as follows. While in our part of the universe it is always
possible with the aid of rockets to remain at a fixed point, in spite of
the gravitational field, r cannot remain constant in region II; as one
can see from (35.12), it plays the rôle of a time coordinate there, and
the observer cannot prevent the passage of time. By the way, in region
II the Schwarzschild solution is no longer static, since the Killing vector
which is timelike in region I becomes spacelike here.

Let us return to the observer whom we wanted to send into region I ′.
While we believe him to be on the way to r = 2M , he has long ago been
lost to the singularity r = 0 in region II; he can never reach regions I ′

or II ′.
We can thus establish the following causal structure for the Schwarz-

schild solution. From our world I we can influence region II, but not
regions I ′ or II ′, and we can be influenced by region II ′, but not by II
or I ′. While region I ′ is therefore rather uninteresting for us, region II
is a ‘black hole’ (everything can go in, nothing can come out), and region
II ′ is a ‘white hole’ (nothing can go in, things can only come out).

Is all this just playing with mathematical constructions? The current
opinion is that in our universe gravitational fields of this structure were
not present from the beginning, but have possibly developed since. If
they have thus only been in existence for a finite (coordinate) time, then
region II ′ has no interest for us, since in a finite time nothing can reach
us from there. Since, therefore, of the three regions I ′, II and II ′ on
the other side of the Schwarzschild singularity (it is probable that) only
II has relevance for us, we often speak of a ‘black hole’ when we mean
the full Schwarzschild solution.

The story of how a black hole comes into being, of the evolution of
the gravitational field of a normal star to a field whose Schwarzschild
radius r = 2M can be crossed from outside (no longer lies within the
star) – this will be the subject of the next chapter.
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Exercises

35.1 Are the curves {r, ϕ, ϑ} = const. geodesics for r < 2M?
35.2 Find all light rays which have r = const.
35.3 Show that in the metric (35.19) the coordinates u and v are null

coordinates in that u,nu,n = 0 = v,nv,n holds.
35.4 Show that for small r the Schwarzschild solution behaves like

ds2 = −dτ2+(aτ)αdt2+(aτ)β4M2(dϑ2+sin2 ϑ dϕ2). Determine
a, α, and β and discuss the fate of a freely falling observer by
using the results of the discussion of the Kasner-type solutions
in Chapter 43 and Fig. 43.1.

36

Gravitational collapse – the possible life
history of a spherically symmetric star

36.1 The evolutionary phases of a spherically symmetric star

In our universe a star whose temperature lies above that of its surround-
ings continuously loses energy, and hence mass, mainly in the form of
radiation, but also in explosive outbursts of matter. Here we want to
sketch roughly the evolution of such a star which is essentially charac-
terized and determined by the star’s innate properties (initial mass and
density, . . . ) and its behaviour in the critical catastrophic phases of its
life.

According to observation, stars exist for a very long time after they
have formed from hydrogen and dust. Therefore they can almost always
settle down to a relatively stable state in the interplay between attrac-
tive gravitational force, repulsive (temperature-dependent) pressure and
outgoing radiation.

The first stable state is reached when the gravitational attraction has
compressed and heated the stellar matter to such a degree that the con-
version of hydrogen into helium is a long-term source of energy sufficient
to prevent the star cooling and to maintain the pressure (a sufficiently
large thermal velocity of the stellar matter) necessary to compensate the
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gravitational force. The average density of such a star is of the order of
magnitude 1 g cm−3. A typical example of such a star is our Sun.

When the hydrogen of the star is used up, the star can switch over to
other nuclear processes (possibly only after an unstable phase associated
with explosions) and produce nuclei of higher atomic number. These
processes will last a shorter time and follow one another more quickly.
For sufficiently massive celestial bodies (the Earth would be too small!)
the resulting pressure is then so great that the nuclei lose their elec-
trons and a degenerate electron gas results. The density of this star is
of order 107 g cm−3; stars of such density are known as white dwarfs.
Using quantum mechanics for calculating the equilibrium states of such
a degenerate electron gas, Chandrasekhar (1931) could show that white
dwarfs with a mass above ∼1.44 solar masses cannot be stable (their
radius thus amounts at most to 5000 km). Stars with masses exceeding
this Chandrasekhar limit must therefore either lose a part of their mass
after hydrogen burning or else evolve towards a different final state.

If the pressure (the mass of the star) is large enough, this can happen
by the electrons and the protons of the nuclei (starting, for example, from
56Fe) turning into neutrons, so that the whole star finally consists of the
most closely packed nuclear matter. The density of such neutron stars
is about 1024 g cm−3. Although the details of the nuclear interactions
are not known exactly, one can nevertheless show that neutron stars are
only stable (the pressure can only then support the gravitational force
in equilibrium) if their mass does not appreciably exceed the mass of
the Sun. Neutron stars hence have radii of about 10 km. We are now
convinced that the so-called pulsars are neutron stars. Pulsars are stars
which send out optical or radio signals at regular intervals of 10−3 to
1 s; the period is kept so exactly that it can only be caused by the
rotation of the star, and rotation times of this order are only possible
for exceptionally small stars. However, the fact that more massive stars
cannot end their lives as neutron stars is crucial here to the question of
the final state of a star.

Before turning to the possible fate of more massive stars, we shall
bring in the Einstein field equations and ask what they have to say
about stable, spherically symmetric accumulations of matter.

36.2 The critical mass of a star

As we have shown in the discussion of the interior Schwarzschild
solution in Chapter 26, the gravitational field inside a static, spherically
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symmetric star is described by the metric

ds1 = eλ(r) dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)− eν(r)c2 dt2. (36.1)

A good approximation to stellar matter is given by the model of a perfect
fluid medium with rest mass density µ(r) and pressure p(r). Here the
field equations lead to

e−λ(r) = 1− 2m(r)/r, (36.2)

where m(r) is the mass function defined by

m(r) = 1
2κc

2
∫ r

0
µ(x)x2 dx. (36.3)

The remaining field equations can be converted, upon using (36.2), into

ν′ = − 2p′

p+ µc2
, κp =

ν′

r

(
1− 2m

r

)
− 2m

r3
. (36.4)

While we integrated these field equations earlier for the special case
µ = const., we now want to derive a conclusion valid for arbitrary µ(r),
following Weinberg (1972).

Suppose we have a star with finite (coordinate) radius r0. The pressure
p will vanish on the surface and will be greatest at the centre r = 0 of
the star; it cannot, however, be infinitely great there. The density µ(r)
should likewise remain finite for r = 0 and (on grounds of stability)
decrease outwards:

µ′(r) < 0. (36.5)

Since eν and its derivative must be continuous on the surface, m(r) takes
the value

m(r0) = M (36.6)

there, where M is just the mass parameter occurring in the exterior,
Schwarzschild solution; m/r3 is finite at r = 0 because of (36.3).

Our aim is to derive a condition for the maximum possible mass M
for given r0 from the condition that µ and p are finite.

From (36.4) one can see at once that ν′/r must be finite at r = 0. If
one introduces in place of eν the function f(r), where

f(r) = eν(r)/2, (36.7)

then this requirement becomes

f ′/rf finite at r = 0. (36.8)

By eliminating p from (36.4) one obtains, after some transformations,
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d
dr

[
1
r

√
1− 2m

r

df
dr

]
=

f√
1− 2m/r

d
dr

(m
r3

)
. (36.9)

Since m/r3 is the average mass density of the sphere of (coordinate)
radius r, because of the definition (36.3), and since the average mass
density cannot increase with r if µ decreases, then the right-hand side
of (36.9) is negative or (and this only for µ = const.) zero:

d
dr

[
1
r

√
1− 2m

r

df
dr

]
≤ 0. (36.10)

On the surface of the star the metric must go over smoothly to the
exterior Schwarzschild metric and the pressure must vanish, so that

f2(r0) = 1− 2M/r0, df/dr|r=r0
= M/(r20

√
1− 2M/r0) (36.11)

must hold, see (36.3) and (36.7). If one integrates (36.10) from r to r0
using these relations, then one obtains

f ′(r) ≥Mrr−3
0 (1− 2m/r)−1/2

. (36.12)

Since for finite f and m the right-hand side of (36.9) is finite, then
f ′(r)/r will be bounded. The finiteness condition (36.8) for the pressure
then reduces to the requirement that f(0) > 0. Integration of (36.12)
between 0 and r0, using (36.11), gives, however,

f(0) ≤
(

1− 2M
r0

)1/2

− M

r30

∫ r0

0

r dr
(1− 2m/r)1/2

. (36.13)

If we now split µ(r) into a constant density µ0 = 6M/κc2r30 and a
variable part ρ(r),

µ = µ0 + ρ,
∫ r0

0
ρ(x)x2 dx = 0, ρ′ ≤ 0, ρ(0) ≥ 0, (36.14)

then we see that the integral in

m(r) = Mr3r−3
0 +

∫ r

0
ρ(x)x2 dx (36.15)

is always positive. The right-hand side of (36.13) can therefore be
increased in magnitude by substituting Mr3/r30 for m(r). We then ob-
tain the final result of the analysis, namely,

f(0) ≤ 3
2 (1− 2M/r0)

1/2 − 1
2 . (36.16)

As we have shown above, the central pressure p(0) is only finite if f(0)
is greater than zero. Thus we can formulate the following important
statement: a spherically symmetric star can only exist in a state of stable
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equilibrium (can only compensate its own gravitational attraction with
a finite pressure) if its mass M and its radius r0 satisfy the inequality

r0 >
9
82M. (36.17)

For the special case of the interior Schwarzschild solution with the equa-
tion of state µ = const. we have already derived this inequality in Chap-
ter 26. Now we know that it is valid for an arbitrary equation of state.
In discussing this relation we must be careful about the definitions of M
and r0. M is (up to a factor) the integral of the mass density µ over the
coordinate volume; it has the invariant significance of being the gravi-
tating mass of the star as determined in the Newtonian far field. The
stellar radius r0 is defined so that the surface area of the star is 4πr20.

The inequality (36.17) expresses the fact that a star of fixed surface
area is only stable as long as its mass lies below a critical mass. A
star whose mass transgresses this limit must inevitably collapse into
itself as a consequence of its now too strong gravitational attraction.
While in the linear Newtonian gravitational theory a predominance of
the gravitational force can be compensated by a contraction and the
associated finite increase in pressure, or by additional forces, in the non-
linear Einstein theory above the critical mass (36.17) a pressure increase
or an extra force acts (via the energy-momentum tensor) to further
increase the gravitational field.

An analysis of the maximum stable mass for given constant mass den-
sity µ, using the model of the interior Schwarzschild solution, leads from
(36.3), (36.6) and (36.17) to the critical mass Mcrit

Mcrit =
8
9

√
2

3κc2µ
. (36.18)

With c2 = 1.86 × 10−27 cmg−1 one obtains for typical densities the
following critical masses, which are compared with the mass of the Sun:

µ (in g cm−3) 1 106 1015

Mcrit(in cm) 1.685× 1013 1.685× 1010 0.532× 106

Mcrit/M� 1.14× 108 1.14× 105 3.96

These very rough considerations already show that neutron stars can
have only a few solar masses; more massive stars have no stable final
state.

As an interesting side result we observe that, because of the general
formula (23.57) and the inequality (36.17), the redshift of a light signal
coming from the surface of a stable star has a maximum value of z = 2.
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Intuitively it is obvious that a rotation of a star will diminish the
central pressure and thus permit a larger critical mass. Indeed, Schöbel
and Ansorg (2003) could show that a rigid rotation enlarges the critical
mass (36.18) by (at most) a factor 1.3425.

36.3 Gravitational collapse of spherically symmetric dust

The considerations of the previous section have shown that if, during
its evolution, a massive, spherically symmetric star does not succeed in
ejecting or radiating away sufficient mass to become a neutron star, then
there is no stable, final state available to it. At some time or other it
will reach a state in which the pressure gradient can no longer balance
the gravitational attraction. Consequently it will continue to contract
further and its radius will pass the Schwarzschild radius r = 2M and
tend to r = 0: the star suffers a gravitational collapse.

Of course one would like to confirm these plausible intuitive ideas
by making exact calculations on a stellar model with a physically rea-
sonable equation of state (a reasonable relation between pressure and
mass density). The only model for which this is possible without great
mathematical complexity is that of dust (p = 0). Because the pressure
vanishes it is to be expected here that once a star started to contract it
would ‘fall in’ to a point. Nevertheless, this example is not trivial, since
it yields an exact solution of the Einstein equations which is valid inside
and outside the collapsing star, and which in a certain sense can serve
as a model for all collapsing stars.

As the starting point for treating this collapsing stellar dust we do
not take the canonical form (23.5) of the line element used earlier, but a
system comoving with the dust (cp. Section 16.4). We obtain it by car-
rying out a transformation r = r(ρ, cτ), t = t(ρ, cτ) and hence bringing
the metric (23.5) into the form

ds2 = eλ(ρ,cτ) dρ2 + r2(ρ, cτ)
(
dϑ2 + sin2 ϑ dϕ2

)− c2 dτ 2. (36.19)

The coordinate τ is clearly the proper time of a particle at rest in
the coordinate system (36.19), and the curves ρ = const., ϑ = const.,
ϕ = const. are geodesics (note that because of (21.87), dust always
moves along geodesics). Since un = (0, 0, 0, c), the energy-momentum
tensor has as its only non-vanishing component

T 4
4 = −c2µ(ρ, cτ). (36.20)

The non-vanishing Christoffel symbols of the metric (36.19) are
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Γ1
11 = λ′/2, Γ1

22 = −e−λrr′, Γ1
33 = −e−λrr′ sin2 ϑ,

Γ2
12 = r′/r, Γ2

24 = ṙ/r, Γ2
33 = − sinϑ cosϑ,

Γ3
13 = r′/r, Γ3

34 = ṙ/r, Γ3
23 = cotϑ, Γ1

14 = λ̇/2,

Γ4
11 = λ̇eλ/2, Γ4

22 = rṙ, Γ4
33 = rṙ sin2 ϑ,

(36.21)

with x1 = ρ, x2 = ϑ, x3 = ϕ and x4 = cτ , and denoting partial deriva-
tives with respect to ρ and cτ by ′ and ˙ respectively. The field equations
finally take the form

R1
1 −

R

2
=
r′2

r2
e−λ − 2r̈

r
− ṙ2

r2
− 1
r2

= 0, (36.22)

R2
2 −

R

2
= R3

3 −
R

2
=
(
r′′

r
− r′λ′

2r

)
e−λ − ṙλ̇

2r
− λ̈

2
− λ̇2

4
− r̈

r
= 0, (36.23)

R4
4 −

R

2
=
(2r′′

r
− λ′r′

r
+
r′2

r2

)
e−λ − ṙλ̇

r
− ṙ2

r2
− 1
r2

= −κµc2, (36.24)

R14 = λ̇r′/r − 2ṙ′/r = 0. (36.25)

First integrals of these equations can be obtained very easily. The
first step is to write (36.25) as

λ̇ =
(
r′2
)̇
/r′2 (36.26)

and then integrate it to give

eλ =
r′2

1− εf2(ρ)
, ε = 0,±1, (36.27)

with f(ρ) as an arbitrary function. Substitution into (36.22) leads to

2r̈r + ṙ2 = −εf2(ρ). (36.28)

If one now chooses r as the independent variable and u = (ṙ)2 as the
new dependent variable, then one obtains the linear differential equation

d(ru)/dr = −εf2(ρ), (36.29)

whose solution (with a still to be fixed function of integration F (ρ)) is

ṙ2 = −εf2(ρ) + F (ρ)/r. (36.30)

If one next eliminates f2 in (36.27) with the aid of (36.30), then one
finds that (36.23) is satisfied identically and that (36.24) leads to

κµc2 =
F ′

r′r2
. (36.31)

The partial differential equation (36.30) can be integrated completely,
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since ρ only plays the part of a parameter. For ε 	= 0 one can, through
introducing

dη = f dcτ/r, (36.32)

bring the differential equation into the form(
∂r

∂η

)2

=
F

f2
r − εr2 (36.33)

and solve it by

r =
F (ρ)

2f2(ρ)
h′ε(η),

cτ − cτ0(ρ) = ± F (ρ)
2f3(ρ)

hε(η),

hε =

{
η − sin η for ε = +1,

sinh η − η for ε = −1,
(36.34)

while for ε = 0 one immediately has from (36.30) that

cτ − cτ0(ρ) = ±2
3F

−1/2(ρ)r3/2, ε = 0. (36.35)

The general spherically symmetric dust solution, the Tolman (1934)
solution, thus has in comoving coordinates the form

ds2 =
(
∂r

∂ρ

)2 dρ2

1− εf2(ρ)
+ r2(ρ, cτ)

(
dϑ2 + sin2 ϑ dϕ2

)− c2 dτ 2,

(36.36)
κc2µ(ρ, cτ) =

F ′(ρ)
r2 ∂r/∂ρ

,

where r(ρ, cτ) is to be taken from (36.34) and (36.35). Of the three
free functions F (ρ), f(ρ) and τ0(ρ), at most two have a physical signifi-
cance, since the coordinate ρ is defined only up to scale transformations
ρ̄ = ρ̄(ρ). Unfortunately one cannot simply specify the matter distri-
bution µ(ρ, cτ) and then determine the metric, but rather through a
suitable specification of f , F and τ0 one can produce meaningful matter
distributions. Since layers of matter which move radially with differ-
ent velocities can overtake and cross one another, one must expect the
occurrence of coordinate singularities in the comoving coordinates used
here.

We now want to apply the Tolman solution to the problem of a star
of finite dimensions. To do this we have to obtain an interior (µ 	= 0)
solution and an exterior (µ = 0) solution and join these two solutions
smoothly at the surface ρ = ρ0 of the star.

We obtain the simplest interior solution when µ does not depend upon
position (upon ρ) and r has (for a suitable scale) the form r = K(cτ)ρ.
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τ
τ = 0−κM̂π/3 −κM̂π/6

2πρ0K(cτ)

κM̂

3
2πρ0

ε = −1

ε = 0

ε = +1

Fig. 36.1. Radius of a collapsing star as a function of time.

These restrictions lead to

f = ρ, F = 1
3
κM̂ρ3, µc2K3(cτ) = M̂ = const., τ0 = 0, (36.37)

and the metric

ds2 = K2(cτ)
[

dρ2

1− ερ2
+ ρ2
(
dϑ2 + sin2 ϑ dϕ2

)]− c2 dτ2,

K(η) = 1
6
κM̂h′ε(η),

cτ = − 1
6
κM̂hε(η),

hε(η) =




η − sin η for ε = +1,

η3/6 for ε = 0,

sinh η − η for ε = −1.

(36.38)

As comparison with (19.56) shows, the interior ρ ≤ ρ0 of the star is a
three-dimensional space of constant curvature, whose radius K depends
on time (in the language of cosmological models, it is a section of a
Friedmann universe, see Section 41.2). A great circle on the surface of
the star has the radius ρ0K(cτ), and because of the time-dependence of
K the star either expands or contracts.

As Fig. 36.1 shows, models with ε = 0 or −1 correspond to stars whose
radius decreases continuously from arbitrarily large values until at the
time τ = 0 a collapse occurs, while models with ε = +1 represent stars
which first expand to a maximum radius and then contract.

The solution in the exterior space to the star is clearly a spherically
symmetric vacuum solution, and because of the Birkhoff theorem it can
only be the Schwarzschild solution (see Fig. 36.2). Since the Tolman
solution (36.36) holds for arbitrary mass density µ, it must contain the
exterior Schwarzschild solution µ = 0 as a special case (F = const.).
In the Tolman solution the coordinates in the exterior space are chosen
so that the surface of the star is at rest. In the usual Schwarzschild
metric, on the other hand, the stellar surface is in motion. But in both
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Friedmann
metric

Schwarzschild
metric

Schwarzschild
metric

ρ = ρ0

Fig. 36.2. Snapshot of a collapsing star.

cases the motion of a particle of the surface takes place on a geodesic.
The equation (35.6) of the radial geodesics of the Schwarzschild metric,
namely,

(dr/dτ)2 = A2 − c2 + 2Mc2/r, (36.39)

must therefore coincide with (36.30) for all times τ at ρ = ρ0; that is,
the relation

F = 2M (36.40)

must hold. Since scale transformations ρ̄ = ρ̄(ρ) are still possible, f(ρ)
cannot be uniquely determined here; in the following we shall not need
f(ρ).

We must now ensure that the interior solution (36.38) and the exterior
solution (36.34), (36.35), (36.36) and (36.40) match smoothly at the
stellar surface ρ = ρ0. The necessary condition for this is clearly

r(ρ0, cτ) = K(cτ)ρ0. (36.41)

If we choose the origin of time in the exterior metric so that τ0(ρ0) = 0
then for ε 	= 0 the relation (36.41) can only be satisfied for all time τ
if both sides have the same functional dependence on τ , that is, only
if in (36.34) and (36.38) hε(η) has the same factor. This leads to the
condition

6M/f3(ρ0) = κµc2K3. (36.42)

From this and the above equations we obtain f(ρ0) = ρ0, and hence for
condition (36.42) we have finally

κµc2ρ3
0K

3 = 6M. (36.43)

For ε = 0 one immediately obtains the same condition from (36.35),
(36.38) and (36.41). It is easy to convince oneself that when (36.43) is
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satisfied, then the metric is continuous on the surface of the star and
the normal derivatives have the required continuity behaviour (30.41).

The condition (36.32) links the mass density µ of the star and its
coordinate radius Kρ0 with the externally acting Schwarzschild mass
parameter M , in the same way as occurred in (26.32) when the interior
and exterior Schwarzschild solutions were joined. If we recall the relation
(23.25), that is, the relation 2M = κmc2/4π between the Schwarzschild
radius 2M and the mass m which we would associate with the source of
the Schwarzschild solution in the Newtonian gravitational theory, then
we have

1
34πµρ3

0K
3(cτ) = 1

34πµr30 = m. (36.44)

Notice that only for ε = 0 is m the same as the integral over the mass
density µ, calculated in the interior metric (36.38).

The solution found here for the gravitational field of a collapsing star
clearly shows that in the interior of the star no peculiarities occur even
when the stellar surface ρ = ρ0 lies inside the Schwarzschild radius
r = K(cτ)ρ0 = 2M ; only at K(cτ) = 0 does the interior field become
singular.

To end this discussion, we shall follow the fate of a collapsing star in
the Kruskal space-time diagram. To do this we draw a radial geodesic
on which the points at the surface of the dust star move (Fig. 36.3). On
its left is the stellar interior with a metric which is regular up to the
point τ = 0 (from outside: r = 0). During the collapse a part of the
region II is revealed to an observer in the exterior space, but the regions
I ′ and II ′ (see Fig. 35.1) are not realized.

r = 0

r = 9M/4

Surface of star
r = ρ0K(cτ)

Interior
of star

I

II

Fig. 36.3. Collapse of a star in the Kruskal diagram.
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Outgoing
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Surface
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Fig. 36.4. Spherically symmetric collapse of a star in Eddington–Finkelstein
coordinates.

For many purposes it is more convenient to describe the collapse
in Eddington–Finkelstein coordinates (35.17), since one of the two ro-
tational degrees of freedom can be more easily represented here (re-
member that the Eddington–Finkelstein coordinates describe just the
regions I and II of the Kruskal diagram; that is, they include just those
parts of the Schwarzschild solution essential to the collapse). One can
see from Fig. 36.4 how the star contracts until it vanishes behind the
Schwarzschild radius r = 2M , that is, until the emitted light rays

cdv =
2dr

1− 2M/r
(36.45)

no longer succeed in reaching the exterior space (dv < 0 for r < 2M !).
The radially ingoing light rays

dv = 0, (36.46)

however, can always reach the surface of the star (or the singularity
r = 0). In order to interpret Fig. 36.4 or similar diagrams one has to
remember that the metrical relations of a two-dimensional Riemannian
surface are not correctly included in the plane of the paper. It is the
possibilities of interaction represented by light rays or by geodesics that
are essential.

Further reading for Chapter 36

Hawking and Ellis (1975), Shapiro and Teukolsky (1983).
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Rotating black holes

37.1 The Kerr solution

Most known stars are rotating relative to their local inertial system (rel-
ative to the stars) and are therefore not spherically symmetric; their
gravitational field is not described by the Schwarzschild solution. In
Newtonian gravitational theory, although the field certainly changes
because of the rotational flattening of the star, it still remains static,
while in the Einstein theory, on the other hand, the flow of matter acts
to produce fields. The metric will still be time-independent (for a time-
independent rotation of the star), but not invariant under time reversal.
We therefore expect that the gravitational field of a rotating star will be
described by an axisymmetric stationary vacuum solution which goes
over to a flat space at great distance from the source. Depending on
the distribution of matter within the star there will be different types
of vacuum fields which, in the language of the Newtonian gravitational
theory, differ, for example, in the multipole moments of the matter distri-
bution. One of these solutions is the Kerr (1963) solution, found almost
fifty years after the discovery of the Schwarzschild metric. It proves
to be especially important for understanding the gravitational collapse
of a rotating star. To avoid misunderstanding we emphasize that the
Kerr solution is not the gravitational field of an arbitrary axisymmetric
rotating star, but rather only the exterior field of a very special source.

We shall now discuss the Kerr solution and its properties. Since its
mathematical structure is rather complicated, we shall not construct a
derivation from the Einstein field equations.

The line element of the Kerr solution has the form, in the so-called
Boyer–Lindquist coordinates,

ds2 = Σ
(
dr2/∆ + dϑ2

)
+
(
r2 + a2

)
sin2 ϑ dϕ2 − c2 dt2

+ 2Mr
(
a sin2 ϑ dϕ− cdt

)2/Σ,
Σ ≡ r2 + a2 cos2 ϑ, ∆ ≡ r2 − 2Mr + a2.

(37.1)

For very large r it goes over to the line element of a flat space. To
disclose the meaning of the two parameters M and a, we take the far
field (large r, Σ ≈ ∆ ≈ r2) and transform the metric (37.1) there to

322



37.1 The Kerr solution 323

‘Cartesian coordinates’ by r2 = x2 + y2 + z2, ϑ = arctan
(√

x2 + y2/z
)
,

and ϕ = arctan(y/x). We obtain

g4x = 2May/r3, g4y = −2Max/r3, g4z = 0, g44 = 1−2M/r. (37.2)

By comparison with the representation (27.32), which is valid for every
far field, we can deduce that M is the mass and Ma the z-component
(the magnitude) of the angular momentum of the source of the Kerr field.
This physical interpretation of the two constants of the Kerr metric is
further consolidated by the facts that for a = 0 (absence of rotation)
(37.1) reduces to the Schwarzschild metric and that the Kerr metric is
invariant under the transformation t → −t, a → −a (time reversal and
simultaneous reversal of the sense of rotation).

The Boyer–Lindquist coordinates are generalized Schwarzschild coor-
dinates and like these are not suitable for describing the solution over
its full mathematical realm of validity. Provided that 0 < a2 < M2, the
coordinates (37.1) are clearly singular for ∆ = 0, that is, for the two
values

r+ = M +
√
M2 − a2 r− = M −√M2 − a2. (37.3)

For a = 0, r+ goes over to the Schwarzschild radius r = 2M , while r−
goes over to r = 0. From now on we shall ignore the parameter region
M2 < a2, which would correspond to very rapidly rotating bodies and
does not lead to black holes.

In analogy to the transition from Schwarzschild coordinates to Edding-
ton–Finkelstein coordinates, one can also transform the Kerr solution
into a form which has no singularities at r±. One introduces a new
coordinate v adapted to light propagation by

cdv = cdt+ (r2 + a2) dr
/
∆ (37.4)

and a new ‘angular coordinate’ Φ by

dΦ = dϕ+ adr/∆, (37.5)

which takes into account the corotation of the local inertial system (cp.
our discussion of the action of an angular momentum in Section 27.5).
The result of these transformations is the Kerr solution in Kerr coordi-
nates,

ds2 = Σdϑ2 − 2a sin2 ϑ dr dΦ + 2cdr dv

+ Σ−1 sin2 ϑ
[(
r2 + a2

)2 −∆a2 sin2 ϑ
]
dΦ2

− 4MarΣ−1 sin2 ϑ dΦ cdv − (1− 2Mr/Σ) c2 dv2.

(37.6)
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ϑ = 0

r = r−

r = r+

r = r+

Event horizon

Ergosphere

Σ = 2Mr
Limit of stationarity

Fig. 37.1. The limiting surfaces of the Kerr solution.

The Kerr solution possesses (like every axially-symmetric stationary
metric) two commuting Killing vectors, namely – in the coordinates
(r, ϑ, ϕ, ct) or (r, ϑ,Φ, cv) – the vectors

ηi = (0, 0, 1, 0), ξi = (0, 0, 0, 1). (37.7)

The Killing vector ξi, which in the far field is associated with the station-
arity (time independence), has an interesting property. Its magnitude

ξiξ
i = −(1− 2Mr/Σ) (37.8)

changes sign when one crosses the surface

Σ− 2Mr = r2 − 2Mr + a2 cos2 ϑ = 0. (37.9)

Inside this surface the Killing vector ξi is spacelike. The surface is
therefore called the limiting surface of stationarity (stationary limit).
Observers (particles) on it cannot be at rest with respect to infinity, but
must corotate.

The physical properties of the Kerr space-time are best brought out
(as for the Schwarzschild solution) by studying the possible trajectories
of test particles or photons. The details which one assembles in this
way are, however, so complicated and confusing that we shall eschew an
exhaustive description with proofs and merely give a qualitative discus-
sion of the most important results.

When we approach (Fig. 37.1) the singularity of the Kerr solution,
coming from the far field, we encounter first the stationary limit (37.9).
Between it and the surface r = r+ lies the so-called ergosphere. Particles
and light rays can penetrate this region from outside and leave it again.
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Even the following physical process is in principle possible. A particle
of positive energy E0,

−m0uiξ
i = E0 > 0, (37.10)

falls from outside along a geodesic into the ergosphere, E0 remaining
conserved ((37.10) is a special case of (33.54)). Under conservation of
four-momentum, the particle then is split into two parts:

m0u
i = m1u1

i +m2u2
i. (37.11)

Since the Killing vector ξi is spacelike inside the ergosphere, because of
(37.8), then the timelike vector u1

i can be chosen so that E1 = −m1u1
iξi

is negative. In the exterior space such a choice is impossible, because
ξi is timelike there and the product of two timelike vectors is always
negative. We then have

−m2u2
iξi = E2 = E0 − E1 > E0, (37.12)

and the second particle leaves the ergosphere with a greater energy than
that of the particle shot in. The rotation of the source is what yields the
energy for this process. A similar enhancement may happen to radiation
(‘superradiance’).

The surface r = r+ can of course be crossed by particles or photons
from outside, but it is impossible for photons or particles ever to leave the
interior space: like the Schwarzschild solution, the Kerr metric describes
the gravitational field of a black hole. Since all events which occur inside
the radius r = r+, such as the disintegration or radiation of test particles
or real particles, are never recorded by an external observer (no photon
can reach him from there), this surface is called the event horizon.

Further inside is the surface r = r−, which has no particular physical
significance, and finally one reaches at r = 0 a ring singularity, and not,
as one might at first suppose, a point singularity.

The regions of the Kerr solution discussed up until now correspond to
the regions I and II of the Kruskal diagram (Fig. 35.1) of the Schwarz-
schild solution. It is also possible to extend maximally the Kerr metric;
that is, the points corresponding to the regions I ′ and II ′ can be made
mathematically accessible, see for example Hawking and Ellis (1975) for
details.

37.2 Gravitational collapse – the possible life history of a
rotating star

The life history of a rotating star differs from that of a spherically sym-
metric star (considered in Section 36.1) not in the phases and the se-
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quence of processes which yield energy and the possible final stages of
these processes, but rather by the influence of the rotation in the con-
traction phase. If a rotating star contracts very strongly, then because
of the conservation of angular momentum it will rotate more and more
rapidly and possibly break up into separate fragments (only the nu-
cleus carries on contracting). Or, put another way, a star can in general
become extremely contracted (e.g. to a neutron star) only if it gives up
angular momentum to its surroundings. This can occur through ejec-
tion of matter or through gravitational interaction with other masses.
If, however, at the end it still possesses sufficient mass at very high den-
sity, then the gravitational forces become so strong that gravitational
collapse takes place, and then the Kerr solution remains as the external
gravitational field. Although these ideas seem very plausible and are
supported by a large number of facts and calculations, there are two
gaps in the theory of the gravitational collapse of a rotating star which
to date have not been closed.

The first gap is the lacking ‘internal’ Kerr solution. We do not have a
(stable or unstable) interior solution with a reasonable equation of state
which can be joined to the Kerr metric at the surface of the star, and
probably such a solution does not exist. Nor does one know any time-
variable (interior and exterior) solution whose exterior part changes into
a Kerr metric under collapse of the star. For these reasons one cannot say
in detail exactly how the collapse proceeds, although numerical relativity
is making progress here.

The second gap in our present knowledge is our ignorance as to whe-
ther, under a gravitational collapse, a Kerr metric always results, or
whether there are other, differently constituted, (singular) vacuum
solutions, which describe the end stage of the gravitational field of a
collapsed star. It is presumed that the star either does not collapse at
all or just tends to a Kerr metric; but the proof of this has so far eluded
us. The (supposed) uniqueness of the Kerr solution would be a typical
property of the Einstein theory: the gravitational field of a collapsed
star is characterized by only two parameters, namely, the mass M and
the angular momentum Ma, in contrast to the infinitely many parame-
ters (multipole moments) of a non-collapsed star. For the collapse itself
this restriction to two parameters signifies that the star must lose all the
higher moments not appropriate in this scheme by ejection or radiation
of mass before it disappears behind the event horizon.
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37.3 Some properties of black holes

In this section we want to collect some properties of black holes, tak-
ing particular account of those which are important for an observer in
the exterior space. To some extent we shall repeat things said in Chap-
ters 35–37, but we shall also bring out some new aspects and in particular
take into regard the fact that a black hole can be electrically charged
(the Kerr–Newman solution which is then appropriate contains the Kerr
solution as a special case).

(a) Black holes are solutions of the field equations which describe
the gravitational field of collapsed masses. This field is characterized
by three parameters: by the mass M , the angular momentum Ma and
the electrical charge Q. (An external observer can determine these three
parameters by observing the trajectories of uncharged and charged parti-
cles.) Other possible physical properties the source of the field had before
collapse (baryon number, electrical dipole moment,. . . ) are lost during
the collapse. The relation between angular momentum and the magnetic
moment produced by the rotation is, moreover, the usual ‘anomalous’
one for the electron.

(b) Black holes contain a closed event horizon. Within this surface
the gravitational field is so strong that particles, light rays and time-
dependent fields produced inside can no longer leave this region. Parti-
cles and light rays from outside can penetrate the horizon; for this they
need (as seen by a distant observer) an infinite time. An observer can
reach and pass the horizon in a finite time and inside can, it is to be
hoped, convince himself of the correctness of the theory described; but
he can never report back to the outside.

(c) Inside the event horizon there is a genuine singularity of the gravi-
tational field, which forms during the collapse. Fortunately the universe
is so constituted that (because of the event horizon) we cannot see this
singularity (‘cosmic censorship’) and so it is without meaning for physics
in the outside universe.

(d) Once it has formed, a black hole is (probably) stable and cannot be
destroyed. Matter (mass, radiation) which reaches the black hole from
outside can, however, change the charge Q, the mass M and the angular
momentum P = aM (the ‘indigestible remains’ of physical properties of
the matter fed in will be emitted in the form of radiation, from outside
the horizon of course). But during all these processes the quantity

A = 4π
[
2M2 −Q2 + 2

(
M4 −M2Q2 − P 2

)1/2
]

(37.13)
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can only increase. In the Kerr metric (37.6) A can be visualized as the
surface area of r = const. = r+, v = const. (the event horizon). This
law is also called (because of certain analogies to thermodynamics) the
second law of black-hole dynamics. The rearrangement

M2 =
A

16π
+

4πP 2

A
+
πQ4

A
+
Q2

2
(37.14)

of (37.13) clearly shows that it is indeed at the cost of charge and angular
momentum that one obtains energy (mass) from a black hole, but that
one cannot go below M = (A/16π)1/2. These statements also hold for
the possible union of two black holes into one. If, for example, two
spherically symmetric black holes (of masses M1 and M2) coalesce to
form one black hole, again spherically symmetric, then we must have

16πM2 = A ≥ A1 +A2 = 16π
(
M2

1 +M2
2

)
, (37.15)

and so at most the fraction

η =
M1 +M2 −M
M1 +M2

≤ 1−
√
M2

1 +M2
2

M1 +M2
≤ 1− 1√

2
(37.16)

of the mass can be given off in the form of gravitational radiation.
(e) The inclusion of quantum effects could alter this picture radically.

We shall return to this point in Section 38.4.

37.4 Are there black holes?

The question as to whether these black holes with their remarkable prop-
erties really exist and are necessarily formed in the final stages of col-
lapsing matter (stars, galaxies, . . . ) has various aspects.

There seems no doubt that there are no stable configurations when
mass becomes extremely concentrated. In those cases there must be a
collapse, and according to General Relativity a horizon is formed. Stated
otherwise, the gravitational field of very massive objects is so strong that
light cannot escape.

One can get rid of the sense of uneasiness which the existence of an
event horizon may imply. The lack of a genuine interaction with the mat-
ter behind the horizon is only apparent; if the matter has disappeared
behind the horizon, then it is left only with the properties of mass,
angular momentum and charge, and these act outward, are determinable
and (within limits) can even be changed from outside.

Doubts may arise whether the physics near to the horizon is ade-
quately described by Einstein’s theory. In the next chapter we shall
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see that quantum physics certainly will change the classical picture,
although the details of the interplay of quantum physics and relativity
are not yet understood.

Even more doubts may arise whether the fate of a collapsing star
which contracts to a point is really well understood. Perhaps this deep
extrapolation of the realm of validity of the Einstein theory – which
was developed mainly in weakly curved spaces – is wrong. But how,
where and whether at all the Einstein theory must be modified can only
be established by exploration of this theory and by comparison with
astrophysical observation.

Do black holes exist somewhere or other in our Universe?
Gravitational collapse is itself very probably associated with an explo-

sive outburst of matter, so that the star would suddenly flare up, rather
like a supernova. But this flaring up is not on its own very conclusive,
because it could also indicate the formation of a neutron star. Since the
far field of a black hole in no way differs from that of an ordinary star,
only processes close to the horizon can provide reliable evidence.

This evidence for the existence of a black hole becomes more con-
vincing when one finds very compact mass distributions which cannot
be stable if extended. This could be a partner of a double star, but
the most promising candidates are the centres of galaxies with masses
exceeding 106 M�. This evidence can be supported by observing X-rays
originating therefrom: matter falling into a rotating black hole, via an
accretion disc in the equatorial plane, may during the sharply acceler-
ated terminal stages emit X-rays or gravitational waves of high intensity,
and thus provide evidence for the existence of black holes.

In all these cases General Relativity is used to conclude the existence
of a black hole from the observation of a very massive object. By its very
definition, the horizon itself (and what is beyond it) cannot be seen. So
it is not yet possible to assert with absolute certainty whether or not the
black holes (in the form predicted by Einstein’s theory) exist. Whatever
the final answer turns out to be will improve our understanding of space-
time, that is, gravity, significantly.

Further reading for Chapter 37

Hawking and Ellis (1975), Chandrasekhar (1998), Frolov and Novikov
(1998), Celotti et al. (1999).
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Black holes are not black – Relativity
Theory and Quantum Theory

The picture of black holes we have drawn so far changes drastically if
quantum effects are taken into account. Before we go into the details of
this in Section 5 of this chapter, we want to make a few general remarks
on the interplay of Relativity Theory and Quantum Theory. For a more
detailed discussion we refer the reader to the literature given at the end
of the chapter.

38.1 The problem

The General Theory of Relativity is completely compatible with all other
classical theories. Even if the details of the coupling of a classical field
(Maxwell, Dirac, neutrino or Klein–Gordon field) to the metric field are
not always free of arbitrariness and cannot yet be experimentally tested
with sufficient accuracy, no doubt exists as to the inner consistency of
the procedure.

This optimistic picture becomes somewhat clouded when one appreci-
ates that besides the gravitational field the only observable classical field
in our universe is the Maxwell field, while the many other interactions
between the building blocks of matter can only be described with the aid
of Quantum Theory. A unification of Relativity Theory and Quantum
theory has not yet been achieved, however.

One of the main postulates of relativity theory is that a locally geodesic
coordinate system can be introduced at every point of space-time, so
that the action of the gravitational force becomes locally ineffective
and the space is approximately a Minkowski space. Hence it is easily
understandable why in our neighbourhood, with its relatively small space
curvature, space is, to very good approximation, as it is assumed to
be in quantum theory. But it also shows us the limits of this more or
less undisturbed coexistence of quantum theory and relativity theory: in
regions of strong curvature (close to singularities) and in questions which
concern the behaviour of far-extended physical systems, the two theo-
ries are no longer compatible, since they start out from different space
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structures. Quantum theory presupposes a Minkowski space of infinite
extent both in its fundamental commutation rules, which are formulated
explicitly using the group of motions of the space (the Lorentz group),
and in more technical issues like expansion in plane waves, asymptotic
behaviour at infinity or the formulation of conservation laws. Relativity
theory shows, however, that the space is a Riemannian space.

On the other hand, the idea of relativity theory, that the properties
of space are properties of the interaction of the matter and can be mea-
sured out by material test bodies, leads to contradictions when defining
or measuring very small distances (the metric in very small regions of
space); if the dimensions are so small that atoms or elementary parti-
cles should be taken as test objects, then quantum theory shows their
location is no longer so precisely defined that one can really speak of a
measurement, even be it only in a gedanken experiment.

In nature, however, there exist stars, which consist of elementary par-
ticles and whose motion obeys the gravitational laws, and therefore a
self-consistent synthesis of relativity theory and quantum theory must
be possible, where it is to be expected that at least one of these two
theories must be modified. Theoretical physicists are certainly in a dif-
ficult situation: in contrast to the physics of elementary particles, which
provides large amounts of experimental data seeking interpretation, here
there are no experimental findings (or at least none recognized as such)
which could give an indication of the course to be followed.

There are some likely candidates for the unification of gravity and
quantum theory; three of them will be outlined in the following sections.

38.2 Unified quantum field theory and quantization of the
gravitational field

Recently, after the successful unification of theweak, electromagnetic and
strong interactions in a unified quantum field theory (see e.g. Weinberg
1996), theoretical physicists have set themselves the ambitious task of
describing all four known interactions in a unified quantum field theory,
for example, in a supergravity or superstring theory. Complicated theo-
ries, sometimes with mathematical beauty and elegance, have been pro-
posed, but as yet there have been no resounding successes. But perhaps
this ‘theory of everything’ sought after both by relativists and elemen-
tary particle physicists is an illusion; the unity of our world need not be
reflected, even at the most basic physical level, by a simple comprehen-
sive set of formulae.
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A less demanding approach is to quantize only the gravitational field.
Various physical and formal mathematical grounds suggest that all fields
and interactions should be handled in a uniform manner; thus the gravi-
tational field also should be quantized. Many attempts in this direction
have already been made. So one may start from the analysis of the
Cauchy problem for the vacuum Einstein field equations made in Chap-
ter 30, use it to isolate the true dynamical degrees of freedom of the
gravitational field, that is, those which do not arise from pure coor-
dinate transformations, and quantize them. This is the starting point
for canonical quantization. Although a great deal of effort has been in-
vested not only to construct a formal theory, but also to understand and
interpret it physically, the task is still in its infancy. The picture of the
(four-dimensional) world would look quite different in a quantized the-
ory of gravity. At each event the world is a mixture of states, each with a
certain probability. Each of these states corresponds to a possible three-
geometry, including its topological properties, and can be described by
a point in superspace. How one couples in non-metric fields, how man
is to interpret the wave function of the universe and how measurement
processes and observers are to be described is unclear.

There is no problem in quantizing the linearized Einstein field equa-
tions, that is, the classical field f̄mn described by the equations

�f̄mn = 0, f̄mn
,n = 0 (38.1)

(see Section 27.2). It shows that the massless particles of this field,
analogous to the photons of the electromagnetic field, have spin 2. Of
course by restricting consideration to source-free weak fields the real
problems have been swept under the carpet.

38.3 Semiclassical gravity

A possible resolution of the problems caused by attempting to quantize
gravity is to treat the gravitational field classically, but quantize all
other fields. This school of thought is supported especially by those
who regard the gravitational field as playing a privileged rôle, which
should not and cannot be quantized. An extreme standpoint of this
conservative-relativistic view was taken by Einstein himself. For a time
he believed that quantum theory could be encompassed in a (possibly
generalized) theory of relativity that would link space-time singularities
to elementary particles. This hope has not been realized.

In a semiclassical theory the coupling of gravity to the quantized fields
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depends, on the one hand, on the fact that the field equations of the
latter can be formulated covariantly, and thus can be made to depend
on the gravitational field. On the other hand the gravitational field is
generated by the quantum fields; these occur, however, in the ‘source’
of the Einstein field equations, the energy-momentum tensor, not as
operators but as expectation values:

Rmn − 1
2Rgmn = κ〈Tmn〉. (38.2)

In order for the field equations (38.2) to be integrable the expectation
values for the components of the energy-momentum tensor must be di-
vergence free,

〈Tmn〉;n = 0. (38.3)

However, as a deeper analysis reveals, (38.3) is not a simple conse-
quence of the equations governing the quantum fields (which have not
been given explicitly), but rather a constraint on those quantities, for
example, the states, which are used to form the expectation values. One
sees immediately that the main problem in this form of unification of
quantum and relativity theory is the choice, meaning and interpretation
of states, even the ‘vacuum state’. In addition there are the difficul-
ties in carrying over to a non-linear theory, in which the superposition
principle is invalid, the usual interpretation of measurement processes.
It cannot be said with certainty whether such a semiclassical theory is
self-consistent, and to what extent it is a good approximation or even
consistent with observations.

38.4 Quantization in a given classical gravitational field

One can obtain an insight into the problems and consequences of the
as yet unknown unified theory by considering the influence of a given
gravitational field on the quantum field and ignoring the back-reaction,
that is, the inertia field produced by the quantum field. As an example
we outline the typical procedure, some results and some problems by
considering a real massless scalar field φ(xi),

�φ = φ,n
;n = 0. (38.4)

In order to quantize classical fields φ satisfying the wave equation
(38.4) in Minkowski space one can proceed as follows. One first repre-
sents the general (classical) solution of (38.4) by its Fourier transform
with respect to time t and splits the inversion integral into waves of posi-
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tive (e−iωt) and negative (e+iωt) frequency:

φ(xa) =
∫∞
0

[
φω(xα) e−iωt + φ̄ω(xα) eiωt

]
dω, α = 1, 2, 3. (38.5)

On the surfaces t = const. one constructs a complete orthonormal sys-
tem, fp(xα) and f̄p(xα), of solutions of the time-independent wave equa-
tion which can be used to represent φω and φ̄ω. The norm used thereby
is defined by

(Ψ1,Ψ2) = −i
∫ (

Ψ1Ψ̄2 − Ψ̇1Ψ̄2

)
d3x = (Ψ2,Ψ1). (38.6)

Every solution of the wave equation can be represented as a superpo-
sition of partial waves gn of the form fp(xα) e−iωt and their complex
conjugates ḡn; the index n represents symbolically the possible values
of p, which are often discrete, and the continuous frequency parameter
ω. Because of the structure of the norm (38.6) gn and ḡn satisfy the
equations

(gn, ḡm) = 0, (gn, gm) = −(ḡn, ḡm). (38.7)

The general Hermitian field operator φ(xα, t) can then be written in
the form

φ(xα, t) =
∑

n

{
angn(xα, t) + a†

nḡn(xα, t)
}
, (38.8)

where the operators an and a†
n satisfy the commutator rules

[an,an′ ] = 0 = [a†
n,a

†
n′ ], [an,a

†
n′ ] = δnn′ . (38.9)

The set of states which can be constructed by single or multiple appli-
cation of the creation operator a†

n to the vacuum state |0〉 forms the
Hilbert space of the system. Here the vacuum state is defined as that
state in which no particles can be annihilated,

an|0〉 = 0. (38.10)

A single particle state (of type n) |1n〉 is then constructed via

a†
n|0〉 = |1n〉. (38.11)

The total number of particles in a given state can be found by using the
number operator

N =
∑
n

Nn =
∑

n

a†
nan. (38.12)

It can be shown that this quantization procedure is Lorentz invariant.
In particular the vacuum state is independent of the (arbitrary) choice
of surfaces t = const.
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However, the attempt to carry over the procedure sketched above to a
curved space-time leads to a series of difficulties, which occur essentially
because of the non-existence of a preferred foliation of space-time by
three-dimensional surfaces and because the topology of space-time may
differ from the Minkowski one. Two different foliations of space-time
lead in general to different systems gn and ĝn of partial waves, that is,
to different definitions of particles.

Consider the representation of a general field operator with respect to
two such systems

φ =
∑
n

(angn + a†
nḡn) =

∑
m

(âmĝm + â†
mḡm), (38.13)

with corresponding vacuum states |0〉 and |0̂〉
an|0〉 = 0, ân|0̂〉 = 0. (38.14)

Because of the completeness of both systems, the functions and operators
of each system can be represented in terms of the other. In particular,
there exist relations of the form

ĝn =
∑
m

(αnmgm + βnmḡm), gn =
∑
m

(ᾱnmĝm − βnmˆ̄gm), (38.15)

with constant (complex) coefficients αnm and βnm (the relations (38.15)
describe a ‘Bogoliubov transformation’). On inserting (38.15) in (38.13)
one obtains the transformation law for the operators

am =
∑

n

(αnmân + β̄nmâ†
n). (38.16)

Thus not only are the particle (partial wave) definitions in the two sys-
tems different, but also, if βnm 	= 0, what one observer regards as a
vacuum state |0̂〉 is seen by the other to be a mixture of particles

am|0̂〉 = β̄nmâ†
n|0̂〉 = β̄nm|1̂n〉. (38.17)

This surprising result shows clearly that within General Relativity the
concept of particles is more problematical than one might have expected.
Proper Lorentz transformations in Minkowski space-time have βnm = 0
and so do not alter the vacuum state. However, an accelerated observer
in the ‘usual’ Minkowski space-time vacuum state would detect particles
(with a thermal spectrum).

An immediate consequence of this property of a quantum field is the
possibility that a gravitational field can create particles. Suppose, for
example, that initially (as t → −∞) there is a flat space with vacuum
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state |0̂〉, then a gravitational field is switched on and off, and finally
(as t→ +∞), the space is again Minkowski. However, the final vacuum
state |0〉 will not always agree with the initial one |0̂〉; particles have
been produced.

38.5 Black holes are not black – the thermodynamics of black
holes

The most spectacular example for the creation of particles by a gravi-
tational field is produced by the gravitational field of a collapsing star,
that is, the creation of a black hole. We shall sketch the basic ideas in
the case of spherically symmetric collapse. We shall use the Eddington–
Finkelstein coordinates introduced in Chapter 35, in which the Schwarz-
schild line element has the form

ds2 = 2cdr dv + r2
(
dϑ2 + sin2 ϑ dϕ2

)− (1− 2M/r)c2 dv2,

cv = ct+ r + 2M ln(r/2M − 1) = ct+ r∗.
(38.18)

Of course this metric represents only the exterior of the star, whose
boundary is given by

f(r, v) = 0, (38.19)

rr
0

cv

r = 2Mr = 2M

cv0

v > v0

v = v0

v

Surface of star
f(r, v) = 0

Fig. 38.1. A collapsing star and light rays in Eddington–Finkelstein coordi-
nates.
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see Figs. 36.4 and 38.1. The metric in the interior could be, for example,
a part of the Friedmann universe (36.38). What matters is that it is
regular and shows no peculiarities even when the surface of the star
disappears behind the horizon.

We consider a state of the system in which incoming waves do not
occur, especially as t → −∞. This corresponds to the choice of partial
waves

ĝω = ĥω(r, ϑ, ϕ) e−iωv = ĥω(r, ϑ, ϕ) e−iω(t+r∗/c) (38.20)

as waves of positive frequency (with respect to v). Thus we write the
solution of the wave equation �φ = 0 as

φ =
∫∞
0

(âω ĝω + â†ω ˆ̄gω) dω, (38.21)

and require the system to be in the corresponding vacuum state |0̂〉.
If the gravitational field creates particles, outgoing particles should be

present, although there are no ingoing ones. However, outgoing waves
are best described in terms of retarded time u given by

cu = ct− r∗ = cv − 2r∗ = cv − 2r − 4M ln(r/2M − 1), (38.22)

and the corresponding preferred system of partial waves with positive
frequency with respect to u is

gω′ = hω′(r, ϑ, ϕ) e−iω′u = hω′(r, ϑ, ϕ) e−iω′(v−2r∗/c). (38.23)

Unlike (38.20), this system is not complete, for in a general state some
incoming waves will be absorbed by the black hole and not propagate to
infinity as those in (38.23). However, in spite of this one can represent
the functions gω′ in terms of the complete system ĝω and ˆ̄gω,

gω′ =
∫∞
0

(
ᾱωω′ ĥω e−iωv − βωω′ ˆ̄hω eiωv

)
dv. (38.24)

Outgoing particles occur if and only if the Bogoliubov coefficients βωω′

do not vanish.
It is not possible to carry out exactly the transformation between the

two systems of functions gω′ and ĝω; in particular, the radial depen-
dence of the functions hω′ and ĥω cannot be given as simple analytic
expressions. However, as often in the discussion of wave propagation,
a geometrical optics (eikonal) approximation (see Section 21.4) allows
further progress. Both systems of functions have the form

φ = A(xi) e−iW (r,v), (38.25)
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where, because of the wave equation (38.4), the eikonal W (r, v) is to
satisfy

0 = cW,aW
,a = W,r

[
2W,v + c(1− 2M/r)W,r

]
= W,r[2W,v + cW,r∗ ].

(38.26)
Clearly the solutions of this equation form two classes: ingoing waves
having W = W (v), and outgoing waves having W = W (v − 2r∗/c) =
W (u).

The approximation that we shall now make is to convert only the
eikonal function W of the outgoing wave to the ingoing form, thus
neglecting the factors ĥω and hω′ , and to include only those terms in the
eikonal whose derivative is especially large. (In the geometrical optics
ansatz (38.25) it is always implicitly assumed that derivatives of W are
large in comparison with those of A.)

The conversion of the eikonal

W = ω′u = ω′[cv − 2r − 4M ln(r/2M − 1)
]/
c, (38.27)

of the outgoing waves (38.23), that is, the determination of the eikonal
Ŵ = Ŵ (v) of the corresponding ingoing wave can be done as follows.
Since Ŵ does not depend on r it is obviously sufficient to know Ŵ on
the surface of the star. In order to extract from W , the eikonal of the
outgoing wave, the eikonal of the ingoing wave on the surface of the
star, we have to trace the outgoing wave back to the surface of the star,
thence to the centre and further back to the surface again, and sum up
all changes in phase occurring along this path. Although we do not know
the eikonal or phase change within the star, we can at least estimate the
required quantities.

If the surface of the star is at rest or almost so (e.g. at the start of
the collapse, t→ −∞), the forward and backward directions within the
star are equivalent and in particular are v-independent. Therefore the
eikonal Ŵ (v) coincides with W (v) (up to an additive constant) on the
surface of the star,

Ŵ (v) = W (u)|r=r0 + const. = W (v, r)|r=r0 + const.

= ω′[v − 2r∗(r0)/c
]
+ const. = ω′v + const.

(38.28)

A constant contribution to the eikonal is inessential and can be
incorporated in the amplitude A (see (38.25)). Thus an outgoing wave
e−iW = e−iω′u is associated with an ingoing wave e−iŴ = e−iω′v of the
same frequency; if there is no ingoing wave then outgoing waves will not
exist and particles are not produced.
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If the surface of the star moves, and especially when it approaches
the horizon r = 2M , the forward and backward directions in the stellar
interior are no longer equivalent; the eikonal Ŵ (v) on the surface of the
star (and hence for all values of v) differs from W (u) on the surface
f(r, v) = 0 by an additive v-dependent function F (v),

Ŵ (v) = W (u)|f(r,v)=0 + F (v). (38.29)

Near the horizon the equation f(r, v) = 0 for the surface of the star has
the approximate form

r = 2M +Bc(v0 − v) + · · · , B = const., v < v0. (38.30)

From (38.27) and (38.30) follows

W (u)|f=0 = ω′c−1
(
cv − 4M − 2Bc(v0 − v) (38.31)

− 4M ln
[
Bc(v0 − v)/2M

]
+ · · · ).

If we are only interested in the dominant part of Ŵ (v) near v = v0 we
need only retain the ln term in (38.32), and we can also discard F (v) in
(38.29) which has a finite derivative at v = v0 because of the regularity
of the metric in the stellar interior. Thus for small positive v0 − v

Ŵ (v) ≈ −ω′c−14M ln c(v0 − v). (38.32)

Ingoing waves cannot produce outgoing waves with v > v0 because the
former must pass within the horizon r = 2M and can never return.

Let us summarize. The outgoing partial wave (38.23) has the following
representation in terms of incoming waves:

gω′ = 0, v > v0,

gω′ ∼ e+iω′4M [ln(v0−v)]/c, c(v0 − v)/2M � 1,

gω′ ∼ e−iω′v, v → −∞.
(38.33)

Because the Fourier transform of the middle line contains Γ(1−iω4m/c),
gω′ contains all frequencies ω (and not just the positive ones), and the
βωω′ of (38.24) are non-zero; particles are produced! The same result
(38.33) would have been obtained when instead of a collapsing star we
had considered a shrinking reflective spherical surface. Here too the
essential condition is that on the surface the phase (eikonal) of the
incoming wave coincides with that of the outgoing one.

The important parameter for particle production and the frequency
spectrum is the quantity 4M/c. A more precise analysis (Hawking 1975)
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shows that the particles have a thermal spectrum, that is, a black hole
with (Newtonian) mass m radiates like a black body of temperature

T =
h̄c

8πMk
=

h̄

kmκc2
≈ 1.2× 1026 K

m[g]
, (38.34)

where in the last equation the mass m is to be given in grams and the
temperature is obtained in degrees Kelvin. Black holes are therefore
not black but emit radiation continuously (‘Hawking effect’); smaller
(lighter) ones are hotter.

Even before Hawking had found this astonishing relationship between
thermodynamics, quantum theory and gravitation, Bekenstein (1973)
had suggested that a temperature and entropy could be associated with
a black hole. Just as the total entropy of a process involving several ther-
modynamical systems can never decrease, so the sum of all surface areas
Ai of a system of (rotating or non-rotating) black holes cannot decrease
(see Section 37.3). In fact Hawking’s discussion can be generalized to
rotating black holes, whose temperature T and entropy S are given by

T =
2(r+ −M)h̄c

Ak
, S =

2πk
κch̄

A. (38.35)

For spherically symmetric black holes the first law of thermodynamics
then reads

T dS = d(8πM/κ) = dmc2. (38.36)

Let us return to the derivation and discussion of particle production
in the gravitational field of a spherically symmetric collapsing star. The
derivation of the effect outlined above may appear to include some-
what arbitrary approximation procedures. However, the main equation
(38.32) furnishes all the important details about outgoing waves (parti-
cles) that would be observed by a distant observer at late times, since all
those come from a neighbourhood of the horizon. One sees immediately
that the basic idea can easily be carried over to other massless fields (e.g.
the Maxwell fields) because the eikonal equation (38.26) is the same for
all such fields. It can also be shown that massive particles are produced.

Where precisely do these particles originate? The analytic structure
of the eikonal suggests that the creation can be localized in a close
neighbourhood of the horizon; however, the global nature of the particle
concept in quantum field theory suggests caution before accepting so
simple an interpretation.

If a collapsing star emits particles continuously, its energy (mass) must
of course decrease. Because a solar mass black hole has a temperature
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T = 6×10−8 K this mass loss for conventional celestial objects undergo-
ing collapse is totally negligible. However, very low mass black holes can
have only a short life; because of the energy loss the temperature rises
rapidly, more is radiated, and in a self-accelerating process the black
hole disappears.

In order to decide whether these considerations are correct one needs a
theory which correctly describes the back-reaction of the quantum field
on the gravitational field, and we do not yet have one. Therefore it
is not clear whether in gravitational collapse a black hole must occur,
or whether particle production (which will have started before the star
disappears within the horizon) decreases the mass so quickly, and so
forces the horizon r = 2M to shrink so rapidly, that the outer surface of
the star always remains outside the horizon. It is highly plausible that
a horizon is created, but as yet we have no detailed ideas or theory as
to how it might subsequently disappear.

Further reading for Chapter 38

Bekenstein (1973), Hawking (1975), Birrell and Davies (1984), Green
et al. (1988), Ashtekar (1991), Wald (1994), Rovelli (1998).

39

The conformal structure of infinity

39.1 The problem and methods to answer it

Where does one end if one moves unwaveringly straight on? The naive
answer will be: at infinity. But is there only one infinity? From math-
ematics one knows that the complex plane is closed by a single point,
whereas infinity of the projective plane is a straight line. How is it in
a general space or space-time: does infinity depend on direction and/or
on velocity?

On the other hand one knows from the theory of complex functions
that the complex plane can be (stereographically) mapped onto the sur-
face of a sphere, so that infinity of that plane corresponds to a point
of the sphere. So, to study infinity, one should perhaps always per-
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M̂
dŝ2

ds2 = Ω2 dŝ2
M
ds2

Ω > 0

Ω = 0

Fig. 39.1. Conformal transformation mapping infinity on Ω = 0.

form a transformation which carries the infinitely extended manifold
over into a finite one, where the former infinity now is a point or in gen-
eral the boundary of a hopefully finite region. This transformation can
in general not be a coordinate transformation, and so we have to decide
which transformations should be admitted; the structure of infinity may
depend on that decision.

In space-time, the causal structure mediated by light cones is most
important. If we want that causal structure to be conserved, we are
led to use conformal transformations. A conformal transformation is a
transformation between two spaces M̂ (with metric dŝ 2) and M (with
metric ds2) such that

ds2 = Ω2 dŝ 2 ↔ gab = Ω2ĝab, (39.1)

all distances are (locally) scaled by the same factor, independent of their
directions. These transformations leave the source-free Maxwell equa-
tions invariant, as was shown in Section 21.3.

To study the structure of infinity for a given physical space M̂ we
have to find a conformal transformation (39.1) which relates M̂ to a
conformally equivalent mathematical world M such that the infinity of
M̂ is mapped onto the ‘boundary’ of M which is given by Ω = 0. This
boundary may be a point in an infinite region or – if we are lucky – it
looks like that in Fig. 39.1.

There is no algorithmic way of finding such a conformal transforma-
tion. One usually looks at the geodesics, extends them to arbitrarily
large values of their affine parameter to see where infinity is, and then
one tries some coordinate transformations in M̂ and hopes that one can
identify an Ω. The boundary Ω = 0 may a point, a line, or a hypersur-
face.
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39.2 Infinity of the three-dimensional Euclidean space (E3)

In three-dimensional Euclidean space

dŝ 2 = dξ2 + dη2 + dζ2, (39.2)

the potential equation

∆̂V̂ =
(√−ĝ ĝmnV̂,m

)
,n

/√−ĝ (39.3)

can be considered to be the physically most important equation.
As a first trial to discuss infinity, one may take the straight lines in

the ξ-direction as starting point. These geodesics extend to infinity. We
introduce a new coordinate x = 1/ξ (which brings infinity to x = 0).
The metric (39.2) then reads

dŝ 2 = x−4[dx2 + x4(dη2 + dζ2)]. (39.4)

One can easily read off Ω and ds2 as

Ω = x2, ds2 = dx2 + x4(dη2 + dζ2). (39.5)

For Ω = 0 we have ds2 = 0; infinity is a point, all parallel straight lines
end in a single point – which may be a different point for each direction
of the lines. The potential equation is no help in deciding this – it is not
invariant.

In a second trial we write the metric as

dŝ 2 = dr2 + r2(dϑ2 + sin2 ϑ dϕ2) (39.6)

and take the radial geodesics as starting point. Again we choose an
inversion x = 1/r to map infinity to x = 0. We now get

dŝ 2 = x−4[dx2 + x2(dϑ2 + sin2 ϑ dϕ2)] (39.7)

and can read off

Ω = x2, ds2 = dx2 + x2(dϑ2 + sin2 ϑ dϕ2). (39.8)

We see that dŝ 2 and ds2 give the same metric – which reflects the fact
that the inversion is a conformal transformation in an E3. The boundary
Ω = 0 is a point, independent of the direction of the radial geodesics.
Moreover, the potential equation is invariant under this special confor-
mal transformation if V̂ is suitably transformed, see Exercise 39.1. We
conclude that infinity of E3 is a point.
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39.3 The conformal structure of Minkowski space

The study of geodesics Since we want to use ‘radial’ geodesics, we start
with the form

dŝ 2 = dr2 + r2(dϑ2 + sin2 ϑ dϕ2)− c2 dt2 (39.9)

of the line element.
To deal with the spacelike geodesics, we parametrize them by r =

ρ coshχ, c t = ρ sinhχ (χ, ϑ and ϕ label the different geodesics, and
infinity is approached for ρ → ∞). Taking ρ and χ as coordinates,
we get

dŝ 2 = dρ2 + ρ2 cosh2 χ(dϑ2 + sin2 ϑ dϕ2)− dχ2
(39.10)

= x−4[dx2 + x2 cosh2 χ(dϑ2 + sin2 ϑ dϕ2)− x4dχ2], x = 1/ρ > 0.

We read off ds2 = dx2 + x2 cosh2 χ(dϑ2 + sin2 ϑ dϕ2)− x4dχ2, Ω = x2.

We see that Ω = 0 is the point x = 0 which we call I0; it represents
spacelike infinity.

Similarly, for timelike geodesics we take r = ρ sinhχ, ct = ρ coshχ,
and arrive at

dŝ 2 = x−4[−dx2 + x2 sinh2 χ(dϑ2 + sin2 ϑ dϕ2) + x4dχ2], x = 1/ρ.
(39.11)

But now ρ can have either sign, depending on the geodesics going into
the future or into the past. Timelike infinity consists of two points,
called I+ and I−.

For null geodesics we best use null coordinates u = (ct− r)/√2, v=
(ct + r)/

√
2, and label the null geodesics pointing into the future by

(v, ϑ, ϕ). We obtain

dŝ 2 = −2 du dv + 1
2
(v − u)2(dϑ2 + sin2 ϑ dϕ2),

= x−2[2 dxdu+ 1
2
(1− ux)2(dϑ2 + sin2 ϑ dϕ2)], x = 1/v. (39.12)

We read off ds2 = 2 dxdu + (1 − ux)2(dϑ2 + sin2 ϑ dϕ2)/2, Ω = x and
see that future null infinity I+ (scri-plus, from scri = script i) is char-
acterized by

Ω = x = 0, ds2 = 1
2
(dϑ2 + sin2 ϑ dϕ2). (39.13)

It is not only a sphere, since the null coordinate u can also vary, but a
three-dimensional null surface. For the null geodesics pointing into the
past, we have to interchange u and v, and get past null infinity I−. Null
infinity comprises I+ and I−. The results are summarized in Fig. 39.2.
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I0

I0

I0

I− I−

I+I+

I− I−

I+ I+

Fig. 39.2. Infinity of Minkowski space.

Conformal mapping to the Einstein universe A clearer picture of the
structure of infinity than that given by Fig. 39.2 can be obtained by the
conformal mapping of Minkowski space in the Einstein universe

ds2E = −c2dt2 + dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2),

0 ≤ χ ≤ π, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π,
(39.14)

which we will discuss in detail in Section 41.2.
Since both Minkowski space and Einstein universe are conformally

flat, there is at least a conformal relation of the type (39.1) between the
two. To make that explicit, one first transforms the Einstein universe

(a) (b)

I−

I+

I0I0I0

χ χ

t

I−

I+

I− I−

I+ I+

Fig. 39.3. Conformal Minkowski space (a) as part of the Einstein universe
(b) developed.
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by introducing null coordinates p, q to

ds2E = −4 dpdq + sin2(p− q)[dϑ2 + sin2 ϑ dϕ2], χ = p− q, ct = p+ q.

(39.15)
Starting with (39.12), one then gives Minkowski space a similar structure
by

dŝ 2 = cos−2 p cos−2 q
{−4 dpdq + sin2(p− q)[dϑ2 + sin2 ϑ dϕ2]

}
,
(39.16)

tan p = v/
√

2, tan q = u/
√

2, p ≥ q,
(the condition p ≥ q originates in r ≥ 0 in (39.9)). Comparing the two
line elements, one reads off

Ω = cos p cos q = cos 1
2(χ+ ct) cos 1

2(χ− ct). (39.17)

In the following discussion we shall suppress the two coordinates ϑ, ϕ.
The mapping between Minkowski space and Einstein universe is not

one-to-one. Rather, because of tan p = v/
√

2, tan q = u/
√

2, the
whole of Minkowski space (−∞ ≤ u, v ≤ +∞) is mapped onto the part
(−1

2π ≤ p, q ≤ + 1
2π) of the Einstein universe, infinity of Minkowski

space being the boundary Ω = 0. We shall not discuss in detail the
different parts of that boundary analytically, but just refer to Fig. 39.3.

The boundary Ω = 0, where p and q are constant, is thus built from
null geodesics on the Einstein universe. The corresponding picture of
Minkowski space is that of a square handkerchief wound around a cylin-
der; if developed, we get the square of Fig. 39.3(b). This is also called
the Penrose diagram of the Minkowski space. It shows that (conformal)
infinity is a closed light cone.

Qualitative questions can often be discussed in terms of this diagram.
The world lines of particles all originate in I− and end in I+. The
point I0 is the ‘usual’ spacelike infinity. Radiation going to infinity ends
up in I+. Null geodesics are given by p = const. or q= const., both
coordinates are null coordinates (p,ap

,a = 0 = q,aq
,a).

39.4 Asymptotically flat gravitational fields

Suppose one has a gravitational field which is isolated, all material
sources being within a closed region of space. Only incoming and out-
going radiation extends to spatial infinity. Albeit the material sources
will in general extend to timelike infinity, one may expect that far away
from the sources space-time is nearly Minkowskian or ‘asymptotically
flat’. How can one specify this ‘nearly Minkowskian’? One possibility
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is to assume that there is a conformal mapping as discussed above, and
to impose conditions on the conformal factor Ω.

The essential condition arises from the inspection of the field equa-
tions. If two metrics are related by (39.1), i.e. by gab = Ω2 ĝab, then one
gets for the traces R̂ and R of the Ricci tensors the relation

R̂ = Ω2R+ 6ΩΩ,c
||c − 12Ω,aΩ,a, (39.18)

where || denotes the covariant derivative with respect to the (unphysical)
metric gab.

If at infinity, i.e. at Ω = 0, one has vacuum (T̂ab = 0) or electrovacuum
(T̂ = 0), then the field equations imply R̂ = 0, and because of (39.18)
we have

Ω,aΩ,a = 0 at Ω = 0, (39.19)

Ω = 0 is a null surface (except for Ω,a = 0). A further condition is that
Ω = 0 has the same structure as in Minkowski space, any null geodesic
should begin and end there.

Space-times (M̂, ĝab) which have the three properties that
(I) a relation gab = Ω2 ĝab exists, with Ω ≥ 0, where gab and Ω are C3

on M and its boundary,
(II) on the boundary one has Ω = 0, Ω,a 	= 0, and
(III) every null geodesic intersects the boundary in two points

are called asymptotically simple. Together with the field equations these
three conditions should lead to asymptotically flat space-times. Note
that there may be singular points like I± and I0, which have to be
studied separately.

It is not known whether all ‘reasonable’ solutions for isolated sources
are asymptotically flat in this sense.

39.5 Examples of Penrose diagrams

The Schwarzschild solution Starting with the metric (35.19), i.e.

dŝ 2 = −c2du dv(1−2M/r)+r2[dϑ2+sin2 ϑ dϕ2], r = r(u, v), (39.20)

which is already adapted to light rays, we map the two null coordinates
u and v to finite ranges by

tanU = cu, tanV = cv. (39.21)

This leads to
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r = 2M r = 2M

r = 2M r = 2M

r = 0

r = 0

I0 I0

I− I−

I+I+

I+ I+

I− I−

Fig. 39.4. Penrose diagram for the Schwarzschild solution.

dŝ 2 = cos−2 U cos−2 V (1− 2M/r)dU dV + r2[dϑ2 + sin2 ϑ dϕ2]

= Ω−2
[
(1− 2M/r)dU dV + r2Ω2(dϑ2 + sin2 ϑ dϕ2)

]
, (39.22)

Ω = cosU cosV.

The boundary Ω = 0 is where U = ±π/2 or V = ±π/2 (or both), i.e.
u, v = ±∞. Since rΩ 	= 0 at Ω = 0, the boundary consists of (pieces of)
a light cone. We will not present a detailed discussion, but rather give
the results as Fig. 39.4; see also the diagrams Fig. 35.1 and 35.2.

Robertson–Walker metrics Cosmological models of the Robertson–Wal-
ker type, which will be discussed in the next chapters, are homogeneous
in space and, therefore, not asymptotically flat. But one still may ask
where null, or timelike, geodesics begin and end, and use conformal
factors to do this.

As can be shown by calculation of the Weyl tensor (32.1) or by
explicitly carrying out a coordinate transformation, all Robertson–Walker
metrics are conformally flat. If we restrict ourselves to the closed spaces

dŝ 2 = K2(ct)[dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)]− c2dt2, (39.23)

then after the transformations

T =
∫

dt/K(ct), r =
2 sinχ

cosχ+ cos cT
, cη =

2 sin cT
cosχ+ cos cT

(39.24)

the line element takes the form

dŝ 2 = 1
4K

2(ct)[cosχ+ cos cT ]2[dr2 + r2(dϑ2 + sin2 ϑ dϕ2)− c2dη2],
(39.25)

which differs from that of a Minkowski space only by a conformal factor.
More important for our present purpose is the fact that these metrics
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are all conformal to the Einstein universe,

dŝ 2 = Ω−2(cT )[dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)− c2dT 2],

Ω−1(ct) = K[ct(cT )],
(39.26)

which – in contrast to (39.16) – describes a one-to-one mapping.

t = π

t = 0

I+

I−

Fig. 39.5. Conformal structure of the Friedmann dust universe.

For example, for the Friedmann dust universe (41.34) we have Ω =
const./ (1 − cos cT ): at the ‘boundary’ – beginning and end of the uni-
verse – the conformal factor Ω is not zero, but tends to infinity. But
the three-spaces cT = 0, 2π (circles in Fig. 39.5) still have the property
that all past and future null geodesics end there: they represent I− and
I+, which are spacelike for this universe. This is closely related to the
occurrence of horizons, see Section 40.3 and the figures given there.

Exercises

39.1 Show that ∆̂V̂ = 0 in metric (39.6) leads to ∆V = 0 in metric
(39.8) if one sets V̂ = V x.

39.2 Identify the different parts of infinity of Minkowski space con-
tained in Ω = cos p cos q = 0.





VII. Cosmology

Gravitational forces are the only forces presently known which are long
range (in contrast to the nuclear forces, for example) and which cannot
be compensated (there are no negative masses). It is therefore to be
expected that, for large quantities of matter distributed over wide regions
of space, they will be the decisive forces, and hence the gravitational
forces will determine the evolution and dynamics of the universe.

Physical laws get their importance from the fact that a single law
describes many very different situations. Technically this comes out by
writing the laws as differential equations (usually of second order), which
admit a multitude of initial or boundary conditions. The law itself has
often been found by extracting some common rules from the observed
variety of effects. All these features are also present in the theory of
gravitation.

In cosmology, however, we encounter a very different situation. There
is only one realization of a cosmos, that which we are living in. And if
there was an extra physical law for this cosmos, we could not find and
prove it the usual way. That is to say, if we find a surprising new phe-
nomenon, we cannot easily decide which of its properties are a new law,
and which are due to initial conditions. Sometimes it is claimed that, in
a proper theory, initial conditions should be excluded, the cosmos must
not depend on them (this was one of the assumptions of the ‘inflation’
theory). Or one claims that the new law can be obtained from other
principles, such us the anthropic principle. It seems that mankind does
not like to be the outcome of an accidental initial value, but rather of
an extra law.

In this book we shall set aside these more speculative ideas. Rather we
shall take the conservative approach by asking whether our cosmos can
be understood as a special case governed by the ‘usual’ laws. That is, we
take the physical theories found and checked in our tiny neighbourhood,
extending and stretching them to the outmost. The laws of gravitation,
for example, have been checked only for a few hundred years, and mostly
inside the Solar System, and for small matter densities; to apply them
to the universe is an extreme extrapolation likely to fail.

For a recent review on many problems of cosmology see Ellis (1999).
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40

Robertson–Walker metrics and their
properties

40.1 The cosmological principle and Robertson–Walker
metrics

Cosmology makes statements about the whole universe. Here as in many
other areas of the natural sciences, every new discovery can revolution-
ize the structure of our knowledge, our present picture of the universe
being in no way complete and secure. But up until now this picture has
always proved compatible with assuming initially the universal validity
of natural laws, making calculations with strongly simplified models of
reality, then comparing with the observations, and thus in a stepwise
manner approximating models and formulations of the laws of nature
to reality. Still General Relativity is able to explain, and helps us to
understand, many features of the universe.

The simplest model of the universe is obtained from the cosmologi-
cal principle, that is, from the assumption that in the rest system of
matter there is no preferred point and no preferred direction, the three-
dimensional universe being constituted in the same way everywhere. A

‘The universe, my son,
is a large tank full of water.’

Fig. 40.1. The cosmological principle.
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glance at the sky (which of course ought to be uniformly bright or dark)
shows us that this model is a very great simplification and that the uni-
verse is uniform at best only on the average. We do not know how large
are the spatial regions over which the average should be taken – at any
rate the galaxies are not uniformly distributed, but tend to be clustered.
Nevertheless, this most simple of cosmological models can explain ob-
servations surprisingly well – although we have to admit that we might
be in the situation of the fish in Fig. 40.1.

Translated into the language of Riemannian geometry, this cosmolog-
ical principle clearly asserts that three-dimensional position space is a
space of maximal symmetry, that is, a space of constant curvature whose
curvature can, however, depend upon time:

(3)

ds2 = gαβ dxα dxβ = K2(ct) dσ2, (40.1)

dσ2 =
dx2 + dy2 + dz2

(1 + εr2/4)2
=

dr̄2

1− εr̄2 + r̄2(dϑ2 + sin2 ϑ dϕ2), ε = 0,±1.

cp. Section 19.5. Since the occurrence of terms g4α in the full space-time
metric picks out a spatial direction and g44(xα) signifies the dependence
upon position of the proper time of a test particle at rest, then only
the Robertson–Walker metrics (R–W metrics) (Robertson 1936, Walker
1936)

ds2 = K2(ct) dσ2 − c2 dt2 (40.2)

are in accord with the cosmological principle. The metric of this model
is thus already substantially determined by symmetry requirements; the
Einstein field equations can (if they are satisfied at all) now fix only the
time behaviour of the universe – the function K(ct) – and the type of the
local space – the choice of ε. For the reasons explained in Section 34.2,
K is called the radius of the universe, although K can only be visualized
in this way for closed (three-dimensional) spaces (ε = +1).

In the next section we shall discuss first of all some physical properties
of the metrics (40.2)–(40.2); we shall not draw conclusions from the
Einstein equations until Chapter 41.

40.2 The motion of particles and photons

We use the R–W metric in the form

ds2 = K2(ct)
[
dχ2 + f2(χ)

(
dϑ2 + sin2 ϑ dϕ2

)]− c2 dt2,
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f(χ) =




sinχ for ε = 1,
χ for ε = 0,
sinhχ for ε = −1.

(40.3)

It picks out the origin χ = 0 as a preferred point, and the coordinate χ
is directly related to the distance D of an arbitrary point (star at rest)
from the origin by

D = K(ct)χ. (40.4)

If the radius K of the universe changes with time, then the distances
of the stars and galaxies between each other also change, just as the
separations of fixed points (fixed coordinates) on a balloon change when
the balloon is blown up or deflated. The velocity Ḋ which thereby results
is proportional to the displacement D:

Ḋ =
∂D

∂t
=
K̇

K
cD. (40.5)

A test particle or a photon which moves in the absence of forces
describes, under suitable choice of the coordinate system, a purely ‘ra-
dial’ trajectory χ(τ), ϑ = const., ϕ = const., that is, a geodesic of the
metric

ds2 = K2(ct) dχ2 − c2 dt2 = −c2 dτ2. (40.6)

For a test particle of mass m0 we get, if we denote by v the speed
K dχ/dt and by p = mv = m0v/

√
1− v2/c2 the momentum of the

particle, a conservation law in three-dimensional form as

pK = const., (40.7)

(see Exercise 40.2). That is, the product of the radius of the universe
and the magnitude of the momentum is constant for force-free motion.

For photons one expects a similar result, that is, a dependence of the
wavelength and the frequency of an emitted photon upon the radius of
the universe K. We want now to derive the formula for the more general
case that the source and the observer move arbitrarily with respect to
the coordinate system (which we shall later identify as the rest system
of the matter), see Fig. 40.2.

The world line xa(v) (null geodesic) of a photon defines the null vector
ka = dxa/dv uniquely up to a factor which is constant along the world
line if we use an affine parameter as the parameter v; that is, one which
brings the geodesic equation to the form ka;bk

b = 0 (see Section 21.4).
The frequency ν which an observer moving with the four-velocity ua

associates with this photon is proportional to the timelike component
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1 2

Source Receiver

ua
ua

ka

ka

Fig. 40.2. The change in frequency of a photon in the gravitational field.

of ka at the location and in the rest system of the observer, that is,
proportional to kaua = gabu

akb. The frequencies measured in the rest
system of the source and by the observer are related according to

ν1
ν2

=
(kaua)1
(kaua)2

=
(gabk

aub)1
(gabkaub)2

. (40.8)

This formula describes not only the change in frequency which is a con-
sequence of the relative motion (dependence upon ua

1 and ua
2), that is,

of the Doppler effect, but also the shift in frequency in the gravitational
field (dependence upon the metric gab), and shows that the two effects
can only be separated in an artificial manner depending upon the coor-
dinate system.

Applying the formula (40.8) to sources and receivers which are at rest
in the coordinate system (40.6), we have to substitute

ua = (0, 0, 0, c), ka = (1, 0, 0,−1/K), (40.9)

and obtain
ν1
ν2

=
K(ct2)
K(ct1)

=⇒ νK = const., (40.10)

in complete analogy with (40.7).
One usually expresses the change in frequency of the light received at

two points through the red shift (relative change in wavelength)

z =
λ2 − λ1

λ1
. (40.11)

The equation (40.10) thus yields the relation

z =
K(ct2)
K(ct1)

− 1 (40.12)

between the redshift z of light received, for example, on the Earth at
time t2 and the radii of the universe at the times of emission (t1) and
reception (t2).

If on the Earth at the present time t = t2 one examines the light
emitted by a star at the time t = t1, then, if the radius of the universe
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does not change too quickly and the light travel time t2 − t1 is not too
large, one can replace K(ct1) by the first few terms of the Taylor series

K(ct) = K(ct2)
[
1 +Hc(t− t2)− 1

2
qH2c2(t− t2)2 + · · · ]. (40.13)

The parameters occurring here are the Hubble parameter H,

H(ct2) = K̇(ct2)/K(ct2), (40.14)

and the acceleration parameter (retardation parameter) q,

q(ct2) = −K̈(ct2)K(ct2)/K̇2(ct2). (40.15)

Substitution of the series (40.13) into (40.12) gives the relation

z = Hc(t2 − t1) +
(
1 + 1

2
q
)
H2c2(t2 − t1)2 + · · · (40.16)

between the redshift z and the light travel time t2 − t1.
The validity or applicability to our universe of the model of a Robert-

son–Walker metric is usually tested in the relation between the redshift
and the distance of the source. Since ds2 = 0 for light, from (40.6) and
(40.13) it follows that, to first approximation,

χ =
∫ t2

t1

cdt
K(ct)

≈ c(t2 − t1)
K(ct2)

+
Hc2(t2 − t1)2

2K(ct2)
+ · · · , (40.17)

and therefore, using (40.4) and (40.5),

z = HD+ 1
2
(q+1)H2D2 + · · · = Ḋ/c+ 1

2

(
Ḋ2−DD̈)/c2 + · · · . (40.18)

The redshift is to first approximation proportional to the present dis-
tance D of the source or to the ratio of the (cosmological) escape velocity
Ḋ of the source to the velocity of light.

40.3 Distance definitions and horizons

The determination of distance in astronomy is mostly done using the
concepts and ideas of a three-dimensional Euclidean space. We there-
fore want to describe briefly how the laws of light propagation in R–W
metrics influence the determination of distance.

One possible way of determining the distance of an object is to com-
pare its absolute luminosity L, which is defined as the total radiated
energy per unit time and is regarded as known, with the apparent lumi-
nosity l, which is the energy reaching the receiver per unit time and per
unit surface area. The luminosity distance DL is defined by

DL =
√
L/4πl, (40.19)
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D = K(ct2)χ

δ1χ δ2χ

χ = 0
t = t1

χ
t = t2

Fig. 40.3. The relation between apparent brightness and coordinate distance.

so that in the Euclidean space luminosity distance and geometrical dis-
tance coincide.

In a Robertson–Walker metric the relationship between true distance
D = Kχ and luminosity distance DL is more complicated, see Fig. 40.3.
The photons streaming out at t = t1 from the source χ = 0 are dis-
tributed, after a coordinate interval of χ, not of course over the surface
4πχ2, but, in the metric (40.3), over the surface

F = 4πf2(χ)K2(ct2). (40.20)

Moreover, because ds2 = 0, that is, because

K dχ = cdt, (40.21)

near to the source the photons emitted during the time interval δt are
distributed over the interval δ1χ = c δt/K(ct1), while at the receiver
in the time δt all those photons arrive which lie in an interval δ2χ =
c δt/K(ct2). And third, the energy of an individual photon has also
changed during its passage through the gravitational field by the factor
K(ct1)/K(ct2). We therefore finally obtain for the apparent luminosity

l =
L

4πf2(χ)K2(ct2)
K2(ct1)
K2(ct2)

, (40.22)

that is, the relation

DL =
f(χ)K2(ct2)
K(ct1)

= (1 + z)D
f(χ)
χ

(40.23)

between the luminosity distance DL, the coordinate distance D (at time
t2) and the redshift z of a light source. Since one observes objects with
z > 5, D and DL can differ considerably.

A alternative way of determining distance is to compare the true
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∆ = f(χ)K(ct1)δδ
χ = 0
t = t2 χ, t = t1

Fig. 40.4. Measurements of distance by determination of angle.

diameter ∆ of a system with the angle δ which it subtends at the Earth.
In Euclidean space we have of course

DA ≡ D = ∆/δ (40.24)

for the distance DA determined by measurement of angle.
In an R–W metric, however, (40.3) implies, according to Fig. 40.4,

DA =
∆
δ

= f(χ)K(ct1) =
D

1 + z

f(χ)
χ

. (40.25)

These two examples of how to determine distance show clearly how
the space curvature comes into astronomical considerations via the laws
of light propagation. Unexpected effects can occur. If, for example, the
function K(ct1) decreases with t1, for increasing f(χ), then the more dis-
tant of two objects of identical dimensions may have the greater angular
diameter.

Of course optical methods can only be used to determine the distances
of objects whose light reaches us. In flat space we can in principle see
every flash of light, however distant, if we wait sufficiently long to allow
for the finite velocity of light. In a curved space, however, the situation
is more complicated. Imagine a fly (a photon) which is crawling at
constant velocity away from the south pole of a balloon. By blowing up
the balloon (increasing the radius of curvature) sufficiently rapidly, can
one prevent the fly from reaching the north pole?

Light emitted at time t1 at the origin χ = 0 has, because of (40.3),
reached the point

χ =
∫ t2

t1

cdt
K(ct)

(40.26)

by time t2. If we want to know whether at the present time t = t2 we
can see all stars, then we must investigate whether the light sent out at
the beginning of the universe tB (the earliest possible time), from the
furthest possible star, can reach us, or whether our signal sent out at
the beginning of the universe and at the origin of the coordinate system
has by now reached all stars. Depending on the cosmological model the
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Particle horizon Event horizon

χ = 0
t = t2

χ = 0
t = t2

End of
universe tE

Beginning of
universe tBParticle

invisible
for t = t2

World line
of the

observer

Event which
remains invisible
to the observer

Event which
the observer

cannot influence

Fig. 40.5. Particle and event horizons.

beginning of the universe is here tB = −∞ or the first zero of K(ct)
(where the metric becomes singular) lying in the past.

At the present time t = t2 we can see stars up to a coordinate distance

χP =
∫ t2

tB

cdt
K(ct)

. (40.27)

If this value χP is smaller than the maximum coordinate distance (which
is π in closed universes and ∞ in open ones), that is, if not all stars are
visible, then χP defines the horizon up to which we can see. It is called
the particle horizon.

If, for example, the radius of the universe changes according to the
law K(ct) = ct2 and we find ourselves in the contraction phase t < 0,
then at the observer time t2 = −1

χP =
∫ −1

−∞

dt
t2

= 1; (40.28)

that is, in this cosmological model there is a particle horizon.
Another physically interesting question is whether (by means of the

photons emitted there) we can learn about every event occurring in the
universe, no matter when or where, or whether the end of the universe
tE (tE =∞ or the next zero of K(ct) lying in the future) coming prema-
turely prevents this. An equivalent question is whether our light signal
sent out at the present time t = t2 reaches all points of the universe
before its end tE. Since this light signal traverses a maximum coordi-
nate distance

χE =
∫ tE

t2

dt
K(ct)

(40.29)
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World line of the observer

Beginning of
the universe

Fig. 40.6. A cosmological model without an event horizon: the past light cone
going out from the observer intersects the world lines of all particles.

there exists an event horizon χE if χE is smaller than π or ∞: we shall
never learn anything about events which at the present time t = t2 are
situated at distances greater than χE.

Figures 40.5 and 40.6 give a qualitative picture of how horizons work.
The occurrence of horizons is closely related to the conformal structure
of infinity discussed in Section 39.5.

A possible misinterpretation of the significance of the horizons should
also be dealt with. Should there be an event horizon in our universe,
that is, events about which we can never learn anything, then that would
not imply the absence of an interaction with that part of the universe or
the establishing of something which is in principle now knowable. Our
(very poor) cosmological model presupposes from the beginning that the
universe is everywhere the same, and we therefore know in advance that
the same gravitational field and the same mass densities, and so forth,
are present behind the horizon as close by, because without the presence
of these masses as well the space in our neighbourhood would not be
homogeneous and isotropic. The events which we cannot observe only
affect test particles, that is, particles without a gravitational interaction,
and it is only we who cannot detect these particles, which do act upon
observers situated nearer to them.

40.4 Some remarks on physics in closed universes

There exists a multitude of cosmological models (up until now we have
encountered in the Robertson–Walker metrics only the most primitive),
which do not always differ significantly from one another, since they
form a continuous sequence. There are, however, some characteristics
of spaces which can be expressed by integers; in this class belongs the
property of whether a universe is open or closed. It is to be expected
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that closed universes also differ from open ones in a clear physical way
and that this difference may even possibly lead to statements which can
be tested on the Earth. We therefore want to describe in more detail
some properties of closed universes with R–W metrics.

As can be shown by calculation of the Weyl tensor (32.1) or by
explicitly carrying out a coordinate transformation, all R–W metrics
are conformally flat. If we restrict ourselves to closed spaces

ds2 = K2(ct)
[
dχ2 + sin2 χ

(
dϑ2 + sin2 ϑ dϕ2

)]− c2 dt2, (40.30)

then after the transformations

T =
∫

dt
K(ct)

, r =
2 sinχ

cosχ+ cos cT
, cη =

2 sin cT
cosχ+ cos cT

(40.31)

the line element takes the form

ds2 = 1
4K

2(ct)
[
cosχ+ cos cT

]2[dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)− c2 dη2
]
,

(40.32)
which differs from that of a Minkowski space only by a conformal factor.

As one can immediately see from the transformation formula (39.24),
this statement has only a local significance: the relations (40.31) map
a section (cosχ + cos cT ) 	= 0 of the curved space-time onto the full
Minkowski space, but a one-to-one mapping of the metrics (40.32) and
(40.30) onto one another is impossible, see also the discussion in
Section 39.2.

The source-free Maxwell equations are conformally invariant (see Sec-
tion 21.3); if we know their general solution in the Einstein universe,
then we also have at hand the general solutions in every closed R–W
universe. Since all spatial coordinates are periodic in the Einstein uni-
verse, the source-free Maxwell equations have the character of eigenvalue
equations for the frequency (Schrödinger 1940, see also Stephani 1974).
Amongst the solutions one finds a generalized plane wave (eigenfunction
with frequency c/λ), which in the neighbourhood of a point is practically
a plane wave, but whose amplitude is noticeably different from zero only
over a region

d ≈
√
λK. (40.33)

The influence of the space curvature ‘localizes’ the plane wave and makes
it similar to a particle trajectory. For visible light and a radius of the
universe of 2× 1010 light years, we obtain the value d ≈ 107 km.

If in an Einstein universe one draws the field lines of the D field
emanating from a point charge at rest, then they all intersect at the
antipodal point, but they arrive there with the opposite sign: in a closed
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universe, to every charge there corresponds a charge of opposite sign
(which, however, is not necessarily situated at the antipodal point). This
intuitively obtained statement can be derived from Maxwell’s equations.
For the charge density j4/c we have

1
c
j4 = F 4n

;n =

[√
− 4
gF 4n

]

,n

/√
− 4
g =

[√
3
gF 4n

]

,α

/√
3
g (40.34)

or, in three-dimensional form with F 4α = Dα,

Dα
;α = j4/c. (40.35)

Since the closed three-dimensional space has no surface (a spherical sur-
face has no boundary), application of the Gauss law yields∫

j4 d3V = 0; (40.36)

that is, Maxwell’s equations can only be integrated if the total charge
vanishes. Our universe is uncharged on the average, and so in this
respect a closed cosmological model would not stand in contradiction
with experiment.

The conclusion deduced from (40.35) evidently uses only the mathe-
matical structure of this equation, not its physical interpretation: the
volume integral of any quantity which can be written as a three-dimen-
sional divergence must vanish. A Newtonian gravitational theory, for
example, in which there are only positive mass densities µ,

∆U = U ,α
;α = −µ, µ > 0, (40.37)

is not possible in a closed universe (40.30).
If there exists in a closed universe a Killing vector ξn proportional to

a four velocity un,

ξn;i + ξi;n = 0, ξn = αun, (40.38)

then because of the definition of the curvature tensor, the Einstein field
equations and the general splitting (21.71) of the energy-momentum
tensor of a fluid, we have

(ξi;n − ξn;i);n = −2ξn;i
;n = −2ξmRm

ni
n (40.39)

= −2κ(ξmTm
i − 1

2
ξiTn

n) = ακ
(
3p+ µc2

)
ui + 2ακqi.

Because of the formal similarity to Maxwell’s equations one can con-
clude that for every closed universe the integral over the time component
(i = 4) of the right-hand side of (40.39) – over the analogue of the charge
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density – must vanish. But this is clearly not possible for perfect fluids
(qi = 0, p > 0, µ > 0): there exists no static or stationary, spatially
closed cosmological model with perfect fluid medium, whose Killing vec-
tor is parallel to the four-velocity. In the language of thermodynamics
this can also be formulated as a cosmological model with closed three-
dimensional space and perfect fluid (qi = 0) cannot exist in complete
thermodynamical equilibrium (the temperature vector ua/T cannot be
a Killing vector) (Neugebauer 1974).

In these last considerations we have already made use of the Einstein
equations. We shall now turn to the problem of determining the evolu-
tion of the R–W metrics from these field equations.

Exercises

40.1 A balloon is inflated so that its circumference D grows as D =
V t. A fly starts at t = 0 at the south pole, creeping with velocity
v < V . Will it ever reach the north pole?

40.2 Show that the conservation law (40.7) holds for the geodesics of
the metric (40.6).

41

The dynamics of Robertson–Walker metrics
and the Friedmann universes

41.1 The Einstein field equations for Robertson–Walker
metrics

The Robertson–Walker metrics are completely determined by the tem-
poral behaviour of the radius of the universe and by the sign of the cur-
vature, that is, byK(ct) and ε. We are thus confronted with the problem
of calculating these parameters from the properties of the matter in our
universe, and of seeing whether observational results and cosmological
model can be brought into agreement.

The curvature tensor and the Ricci tensor of an R–W metric can be
calculated relatively easily by applying the reduction formulae (30.25)
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to the line element

ds2 = K2(ct) dσ2 − c2 dt2 = gαβ dxα dxβ − c2 dt2. (41.1)

That is, we start from

Rαβµν =
3

Rαβµν − K̇2K−2(gβµgαν − gβνgαµ),

R4
β4ν = K̈K−1gβν , R4

βµν = 0, Kαβ = −K̇K−1gαβ ,
(41.2)

and, in accordance with (19.40), substitute the relation
3

Rαβµν = εK−2(gαµgβν − gβµgαν) (41.3)

for the three-dimensional curvature tensor of the R–W metric, whose
space is of course a space of constant curvature. For the non-vanishing
components of the Ricci tensor we obtain

Rβν =
[
K̈/K + 2

(
K̇2 + ε

)
K−2
]
gβν , R44 = −3K̈/K. (41.4)

Together with the Einstein field equations

Rmn − 1
2Rgmn = κTmn, (41.5)

the equations (41.4) show us that the energy-momentum tensor of the
matter in the universe is spatially isotropic in the coordinates (41.1)
and that no current of energy occurs (T4α = 0); in R–W metrics the
energy-momentum tensor must be that of a perfect fluid,

Tmn = pgmn +
(
µ+ p/c2

)
umun, (41.6)

where the preferred coordinate system (41.1) is the rest system of the
matter and µ and p depend only upon time.

As a consequence of (41.4) and (41.6) the field equations (41.5) reduce
to

2K̈/K +
(
K̇2 + ε

)
/K2 = −κp, (41.7)

3
(
K̇2 + ε

)
/K2 = −κµc2. (41.8)

These two equations are only mutually compatible if

µ̇/
(
µ+ p/c2

)
= −3K̇/K. (41.9)

Since for K̇ 	= 0 and µc2 + p 	= 0 (41.7) also follows from (41.9) and
(41.8), the field equation (41.7) can be replaced by (41.9).

Equation (41.8) is called the Friedmann equation (Friedmann 1922),
and the special R–W metrics which satisfy it are called Friedmann uni-
verses. Occasionally, only the cosmological model arising from the spe-
cial case p = 0 is designated the Friedmann universe. If one knows the
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equation of state f(µ, p) = 0, then from (41.9) one can determine the
radius K as a function of the mass density µ and hence calculate the
behaviour of K and µ with respect to time from (41.8).

The Friedmann cosmological models can also be characterized invari-
antly by the fact that they are just those solutions of the Einstein field
equations with a perfect fluid as source whose velocity fields un(xi) are
free of rotation, shear and acceleration.

41.2 The most important Friedmann universes

The Einstein universe Soon after having set up his field equations, Ein-
stein (1917) tried to apply them to cosmology. In accordance with the
then state of knowledge, he started from a static cosmological model.
Thus all the time derivatives in (41.7) and (41.8) vanish, so that we are
left with the equations

ε/K2 = −κp, 3ε/K2 = κµc2. (41.10)

These can only be brought into agreement with the observed data, which
require that p ≈ 0, by rather artificial means, namely, by introduction of
the cosmological constant Λ. According to this hypothesis, the energy-
momentum tensor contains, in addition to the contribution due to the
gravitating matter (here the dust), a contribution proportional to the
metric tensor:

κTmn = −λgmn + κµ̄umun, µ̄ > 0, Λ = const. (41.11)

Comparison of (41.11) with (41.10) gives us, upon use of

κp = −Λ, κµc2 = κµ̄c2 + Λ, (41.12)

the relations

ε = +1, Λ = +1/K2, κµ̄c2 = 2/K2. (41.13)

The Einstein universe is a closed universe of constant curvature:

ds2 = K2
[
dχ2+sin2 χ

(
dϑ2+sin2 ϑ dϕ2

)]−c2 dt2, K = const. (41.14)

As (41.12) shows, introducing a positive cosmological constant Λ is tan-
tamount to admitting a negative pressure.

The de Sitter universes The introduction of the cosmological constant
means that the space is curved even in the complete absence of matter.
For if one substitutes

κTmn = −Λgmn, Λ = const., (41.15)
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into the field equations (41.7) and (41.8), then one obtains

KK̈ − K̇2 = ε (41.16)

3(K̇2 + ε)K−2 = Λ. (41.17)

The best starting point for the integration of this system is equation
(41.17) differentiated once, namely,

K̈ − 1
3ΛK = 0. (41.18)

For positive Λ one obtains the proper de Sitter metrics (de Sitter 1917)

ε = +1 : K = B−1 coshBct,

ε = −1 : K = B−1 sinhBct,

ε = 0 : K = AeBct,

Λ = 3B2, (41.19)

for negative Λ the anti-de Sitter metrics

ε = −1 : K = B−1 cos cBt, Λ = −3B2, (41.20)

and for Λ = 0 the flat space ε = 0, K = const.
The de Sitter universes have a higher symmetry than might be sup-

posed from their description by Robertson–Walker metrics. If from
(41.2), (41.3), (41.16) and (41.17) one calculates the complete four-
dimensional curvature tensor of these spaces, then one obtains

Rabmn = 1
3Λ(gamgbn − gangbm). (41.21)

Thus we are dealing with four-dimensional spaces of constant curvature
(of positive curvature for Λ > 0) in which neither any space-direction
nor any time-direction is singled out, cp. Section 19.5. In particular,
the three metrics (41.19) are only three different sections of the same
four-dimensional space of constant positive curvature.

The radiation universe Incoherent, isotropic electromagnetic radiation
can formally be described by the energy-momentum tensor (41.6) of a
perfect fluid with

p = 1
3µc

2. (41.22)

With the aid of this equation of state we can at once integrate (41.9)
and obtain

µc2K4 = const. = 3A, (41.23)

which says that when the universe expands or contracts the mass density
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(energy density) of the radiation is inversely proportional to the fourth
power of the radius of the universe.

The behaviour of this universe with respect to time is determined by

K̇2 = κAK−2 − ε; (41.24)

upon introduction of y = K2 the differential equation (41.24) becomes

1
4 ẏ

2 = κA− εy, (41.25)

which can easily be integrated. If we choose the constant of integration
so that y(t0) = 0, then we obtain the solutions

ε = 0 : K2 = 2c
√
κA(t− t0),

ε = −1 : K2 = c2(t− t0)2 + 2c
√
κA(t− t0),

ε = +1 : K2 = −c2(t− t0)2 + 2c
√
κA(t− t0).

(41.26)

Although we certainly do not live in a radiation universe now, several
properties of these solutions are worth noting. One such is the occur-
rence of a singularity of the metric at t = t0. There K goes to zero,
the separation of two arbitrary points in the universe becomes arbitrar-
ily small, and in the neighbourhood of this singularity the radius K
becomes independent of ε; that is, the same for open and closed uni-
verses. Another interesting statement is that electromagnetic radiation
(light) alone can, by virtue of its own gravitational interaction, produce
a closed universe (ε = 1) whose radius K increases from zero to a maxi-
mum of

√
κA and then after the time ∆T = 2

√
κA/c2 goes back to zero

again.

The Friedmann universes By Friedmann universes in the strict sense
one means cosmological models with dust:

Tmn = µumun. (41.27)

For this special case one can immediately integrate (41.9) to give

µc2K3 = M̂ = const. (41.28)

The integration constant M̂ is evidently proportional to the total mass
for closed universes. Notice the changed power-dependence upon K in
comparison with the radiation universe (41.23)!

The remaining field equation (41.8) simplifies to the ‘Friedmann dif-
ferential equation’

K̇2 = κM̂/3K − ε. (41.29)
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Introduction of the new variables

cT = ±
∫

dct
K(ct)

(41.30)

brings it to the form

K ′ 2 = κM̂K/3− εK2, (41.31)

in which it can easily be solved by separation of variables. If we denote
the time at which K vanishes by t = 0, then the solutions of (41.29) are
parametrically (see Fig. 41.1)

ε = 0 : K = κM̂c2T 2/12, ct = ±κM̂(cT )3/36, (41.32)

ε = −1 : K = 1
6κM̂(cosh cT − 1), ct = ± 1

6κM̂(sinh cT − cT ), (41.33)

ε = +1 : K = 1
6κM̂(1− cos cT ), ct = ±1

6κM̂(cT − sin cT ). (41.34)

All three types have a singularity at the ‘beginning of the universe’ t = 0,
where the radiusK goes to zero. In the neighbourhood of this singularity
the three types have the same dependence upon time, namely,

K(ct) ≈ (3κM̂/4)1/3t2/3. (41.35)

For the closed model (ε = +1), K(ct) reaches a maximum and then goes
back again to zero, describing a cycloid. In the two open models K(ct)
increases continuously (if we take as the positive direction of time that
in which T increases).

ct

K(ct)

t0 = 0 κπM̂/6 κπM̂/3

κM̂/3
ε = 1

ε = 0

ε = −1

Fig. 41.1. The radius of the universe K as a function of time for the three
Friedmann models.
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41.3 Consequences of the field equations for models with
arbitrary equation of state having positive pressure and

positive rest mass density

From experience we know that the equation of state of ordinary matter
lies between that of dust (p = 0, µ > 0) and that of incoherent radiation
(µc2 = 3p) in the sense that µc2−3p ≥ 0 (in the microscopic picture the
pressure is caused by collisions of particles with at most the velocity of
light). Some notable properties of the Friedmann model follow, however,
from the field equations alone and the assumptions that µ > 0 and p > 0,
independently of the particular kind of equation of state (temperature
dependence!).

Thus from (41.7) and (41.8) one obtains the relation

6K̈ = −κ(µc2 + 3p
)
K, (41.36)

which can be interpreted in the following way. If K̇ is positive at a time
t, then, because of (41.36), K(ct) is a curve concave downwards (like the
curves of Fig. 41.1), which must have touched the axis K = 0 a finite
time ago. If K̇ is negative, this point K = 0 lies in the future. Since, as
we shall describe in detail, we are currently observing a positive K̇, the
universes with Robertson–Walker metrics inevitably have a ‘beginning
of the universe’ t = 0 at which the metric becomes singular (K becomes
zero), independently of the equation of state and the choice of ε. By
comparison of the function K(ct) with its tangent at the time t, the age
of the universe can be estimated in terms of the Hubble parameter H
according to

ct < K(ct)/K̇(ct) = 1/H(ct). (41.37)

If one writes (41.9) in the form

∂
(
µc2K3

)
/∂K = −3pK2, (41.38)

then one can see that µc2K3 increases into the past, possibly even
becoming infinite: for K → 0, µ increases at least as fast as K−3.
Hence one can ignore the term proportional to ε in equation (41.8) and
near the origin of the universe calculate with

3K̇2 = κµc2K2. (41.39)

The expansion behaviour of the early universe does not depend upon ε;
it is the same for open and closed models.

The future behaviour of the universe, on the other hand, will essen-
tially depend on ε. Because of (41.38), for increasing K the rest mass
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density µ decreases at least like K−3, and hence the term κµc2K2 goes
at least like K−1. Thus for ε = 1, a maximum K̇ = 0 will be reached
in a finite time, and since K = const. is not a solution of (41.36), the
radius function will decrease again and will necessarily reach K = 0
again: a closed universe with ε = 1 executes a cycle (or several cycles).
For ε = −1, K̇2 can never become zero, and the universe expands contin-
uously, K̇ tending to the value 1 (K(ct) ≈ ct for t→∞). The universes
with ε = 0 also expand continuously, only now K̇ and K̈ go to zero.

In all these universes there are particle horizons; an observer cannot
always see the whole universe at time t. Because of (40.26), the existence
of such horizons obviously depends crucially upon the behaviour ofK(ct)
at the origin tB = 0, and therefore we substitute the ansatz K ∼ (ct)α,
α > 0, into (41.36). From the signs alone of both sides of the resulting
equation it follows that α < 1. For small times we have

χP ∼ (ct)1−α, 0 < α < 1, (41.40)

so that χP is finite near t = 0 and smaller than π, and also for arbitrary
finite times χP is finite: in open models part of the universe is always
invisible. In closed models, however, after a sufficient time χP can take
the value π or even 2π. Thus, for example, in the Friedmann universe
(41.34) χP = cT = π for the time of maximum expansion (the whole
space is visible) and χP = 2π at the end of the universe (the observer
sees his world line, that is, he himself, at the beginning of the universe).

The occurrence of event horizons depends upon the behaviour ofK(ct)
at the end of the universe. Since for open models (ε = 0,−1) the radius
function K goes at most like t−1 for large t, then the integral (40.4)
diverges for tE → +∞: there is no event horizon; provided one waits
long enough, one learns of every event. In closed models (ε = +1), how-
ever, there do exist event horizons (the proof runs as with the above
considerations regarding particle horizons); an observer will not neces-
sarily learn anything before the universe comes to an end about events
which take place after the stage of maximal expansion.

Exercises

41.1 Show that for the de Sitter universes (41.21) holds.
41.2 Determine acceleration, rotation, shear and expansion (see Sec-

tion 31.2) for the R–W solutions!
41.3 Are there R–W metrics which have a constant µ (µ̇ = 0)?
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Our universe as a Friedmann model

42.1 Redshift and mass density

It was one of the most important confirmations of the ideas of the theory
of General Relativity and its application to cosmology when the cosmo-
logical redshift was found by Hubble in the year 1929, about thirteen
years after the basic equations had been set up and seven years after the
publication of the Friedmann model. In between had been the detour
and error of Einstein, who believed he could arrive at a cosmological
model only by the introduction of the cosmological constant, which led
to the Einstein universe, a static model without redshift.

Not only does the redshift verify the cosmology of General Relativity,
and in particular the concept of the expanding universe, but its exact
evaluation also gives us data to determine which of the homogeneous,
isotropic cosmological models our universe most closely resembles. From
the redshift (as a function of distance) the Hubble parameter H and the
acceleration parameter q can in principle be determined, see (40.18). If
one substitutes them according to their definitions

H = K̇/K, q = −K̈K/K̇2 (42.1)

into the field equations (41.7) and (41.8), then one obtains

6qH2 = κ
(
µc2 + 3p

)
, 3H2 = κµc2 − 3ε/K2. (42.2)

In general these two equations are of course not sufficient to determine
the four unknowns µ, p, ε and K from the redshift, that is, from a
knowledge of q and H2. But for our universe in its present state the
predominant part of µ is contained in the masses of the galaxies and the
pressure can consequently be ignored. For this dust we then have

6qH2 = κµc2, H2(2q − 1) = ε/K2. (42.3)

Since ε can only take on the values 0,±1, it can be determined from
the value of q alone: q > 1

2 gives a closed universe, q ≤ 1
2 the two

open models. If ε is fixed, then from H and q one can determine the
radius function K and the mass density µ, and compare them with
observations. That mass density µ which corresponds precisely to the
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critical value q = 1
2

(the transition from an open to a closed model of
the universe) is called the critical mass density:

µcrit = 2H2/κc2. (42.4)

Unfortunately present measurements and analyses of the redshift–
distance relation (40.18) are still so incomplete and inexact that the
relations (42.3) cannot yet be reliably evaluated. The following numer-
ical values based on the redshift (H and q) and the analysis of galaxy
counts (µ), are the most probable to date:

H = 6 · 10−29 cm−1, cH = 55 km s−1 Mpc−1, 1/cH = 18 · 109 a, (42.5)

q = 1± 1, (42.6)

µ = 3 · 10−31 g cm−3. (42.7)

If one compares the three numerical values with the relations (42.3)
then one establishes that:

(a) the presently observed mass density lies below the critical density

µcrit = 6 · 10−30 cm−3 (42.8)

which means that we ought to be living in an open universe;
(b) our universe has a radius of about K ≈ H−1 = 1.8 · 1010 light

years, is about 1 · 1010 years old and is in an expansion phase;
(c) since q cannot yet be determined exactly enough from the redshift

and also µ is not yet known with sufficient certainty, we cannot
yet say whether our universe is open or closed.

Taking into consideration the surprisingly rapid change (oscillations)
in the ‘certain’ numerical values of H, q and µ in the last few decades
one can regard only the following as reliably established:

(a) the age of the universe, which follows from the Hubble parameter
and from the age of rocks or of stellar systems, is of the order of
magnitude 1010 years (the uncertainty is by a factor of 2);

(b) the average mass density is about µ = 10−31 g cm−3 (uncertain
by a factor of 10);

(c) there is no doubt concerning the cosmological nature of the red-
shift and the applicability of relativity theory to cosmology.

As we have shown above, in the early epoch of the universe the
parameter ε played no essential part. Our ignorance of the exact value
of the acceleration parameter q, that is, of the value ε, thus does not
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put the value of the models for the earliest developmental stages of our
universe in jeopardy. In the following we therefore want to sketch the
ideas embodied in these models.

42.2 The earliest epochs of our universe and the cosmic
background radiation

In direct optical observation of very distant objects we are looking a
considerable way back into the past of our universe. But the origin of the
universe, and times close to it, corresponds to an infinitely large redshift;
it is therefore invisible in practice. Thus if from our observations we want
to obtain statements about the constitution of the universe in its early
phase, then we must look at physical objects closer to us, and judge from
their present condition, and the laws governing their (local) evolution,
the state of the universe when they were formed.

How then did our universe appear at the beginning? ‘Beginning of
the universe’ does not mean that no matter was present before or that
it was created at an instant; rather, this phrase should express the fact
that on the basis of physical laws the state of the universe was essentially
different from its present state (similarly at the ‘end of the universe’). In
the framework of the Friedmann universe, the beginning of the universe
is that time in the past at which the radius of curvature K was zero,
and the universe manifested a singular behaviour.

When speaking about ‘time’ in the early universe, one must take into
account that the measurement of time should always be seen in relation
to the properties of the matter. The time coordinate (universal time) t
of the Friedmann universe is the proper time for the mass elements of the
universe. The clocks which one uses for measuring proper time have zero
dimensions in the abstract theory; in practice, this means that they are
so small that the cosmological gravitational field does not change within
the clocks and during the lapse of one period. While at the present
time, therefore, the planetary system, for example, is a useful clock, in
the early universe only elementary particles and their conversions are
available. Measured by the number of characteristic individual physical
processes going on, the beginning of the universe may be still very far
away (possibly infinitely far away) even in the early phases (close to
the singularity); the unit of measurement derived from the planetary
system, the year and its subdivisions, does not correctly express this.

Let us return to the model of the early stages of the Friedmann uni-
verse. Today the major contribution to the energy-momentum tensor
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comes from stars (and possibly the mysterious dark matter hidden in
galaxies); the contribution from radiation is negligibly small. But in
the early stages of the universe a rather different balance must have oc-
curred. On the one hand, as the radius of the universe K decreases, the
energy density of radiation increases faster than that for matter because
of equations (41.23) and (41.28). On the other hand, the energy density
and temperature would rise so much that massive elementary particles
and antiparticles, which would be unstable under terrestrial conditions,
would be in thermal equilibrium with the high-energy photons. All ob-
servations and calculations point to the fact that about 1010 years ago
the universe was probably in a state of very high density. Cosmological
models therefore begin with conditions in which interactions of elemen-
tary particles are the decisive process. Thus a precise description of the
earliest epoch is only possible if quantum physics (elementary particle
physics) is taken into account; we can extrapolate into the past only
as far as we know the laws of high-energy physics, taking gravity into
account. This is a highly speculative area, but the following broad ideas
are generally accepted.

The universe began in a state of extremely high temperature and den-
sity, which can only be described accurately through the not yet achieved
unification of quantum theory and gravity. In the subsequent expansion
an era may have occurred in which quantum effects produced an energy-
momentum tensor proportional to the metric tensor, corresponding to a
negative pressure. During this epoch the world is described by a de Sit-
ter universe, in which the radius K increases exponentially (see equation
(41.19)); this is known as an inflationary universe.

This rapid expansion of the universe reduced the temperature, so that
equilibrium preferred the stable particles, namely, the electrons, protons,
atomic nuclei, the lighter chemical elements, and the neutrinos and pho-
tons generated in particular by pair annihilation. All these are particles
which are rather well understood, so that more confident predictions are
possible from here on.

During further expansion and cooling the photons then decouple in
the following sense. On the one hand, photons are not created to any
great extent, they do not have sufficient energy for pair production, and
they do not give their energy to the remaining matter (the universe is
‘transparent’). On the other hand, the energy density of the photons
decreases more rapidly than that of the rest of the matter, so that the
subsequent behaviour of the expansion is not influenced by the photons.

From this time on the energy-momentum tensor of the photon gas
alone thus obeys a conservation law



42.2 The early universe and the cosmic background radiation 375

T ik
Ph;k = 0, (42.9)

so that the energy density µPhc
2 obeys the relation

µPhc
2K4 = const., (42.10)

see (41.23), where now, however, in contrast to (41.24), the evolution of
the radius function K(ct) is dictated from outside (by the main compo-
nent of the matter, that is, by the matter in atomic nuclei). Since we
also have for the photon gas, according to the Planck radiation law,

µPhc
2 = const.T 4, (42.11)

its temperature decreases with increasing radius function as

T ∼ 1/K. (42.12)

The experimental confirmation of these considerations (first made by
Gamow as early as 1948), namely, the discovery of the incoherent cosmic
background radiation by Penzias and Wilson (1965, Nobel Prize 1978),
was certainly the greatest success of relativity theory in cosmology since
the interpretation of the Hubble redshift. Observations show that the
Earth is bathed by an (incoherent) electromagnetic radiation, whose
frequency spectrum corresponds to the radiation of a black body at
temperature

T0 ≈ 2.7 K (42.13)

with a maximum intensity near the wavelength λ0 ≈ 0.2 cm. (Since the
earliest measurements could be fitted by a slightly higher temperature,
this radiation is still also called the 3 K radiation.) The energy density
of this radiation today corresponds to a mass density of about

µPh ≈ 4.4× 10−34 g cm−3. (42.14)

If one assumes that the photons uncouple from the rest of the matter at
about 4000 K, then the cooling which has taken place in the meantime
corresponds, because of (42.13), (42.12) and (40.12), to a red shift of

z = 4000 : 2, 7− 1 ≈ 1480. (42.15)

The cosmic background radiation thus gives us immediate optical
access to the early epoch of the universe, back to much earlier times than
are accessible to optical instruments by observation of distant objects
(for which z ≤ 10). The high degree of isotropy of this radiation shows
that already at this time (if one assumes that initial anisotropies were
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dissipated) or up to this time (if one thinks of the inhomogeneities result-
ing later from the formation of galaxies) the universe was Friedmann-like
and that the Earth moves at most with a small velocity relative to the
rest system of the total matter.

For people who believe that all properties of the universe must be due
to its evolution and not to its initial conditions (see the discussion at the
very beginning of this part), this high degree of isotropy was the main
reason to introduce the inflationary model: an inflation will smooth out
that part of the universe which is accessible to our observations and
make it Friedmann-like.

For all discussions about the early universe one should keep in mind
that if we use an R–W metric, then General Relativity permits any
behaviour of the world radius K: we can insert K(ct) into (41.7)–(41.8),
read off p and µ, and invent a model sophisticated enough to give this
energy-momentum tensor.

To end this section we make some brief remarks about the evolution of
the universe after the formation of the electromagnetic background radi-
ation. During the gradual cooling of the ‘primeval fire-ball’ the chemical
elements hydrogen and helium form in the preferred equilibrium ratio
of about 73 : 27, almost no heavier elements being synthesized. Small
disturbances to the homogeneity of the universe then lead to galaxy for-
mation, and there the subsequent compression and heating of matter in
the stars leads to nuclear processes, during which the heavier elements
are produced. All these things are still the subject of research.

42.3 A Schwarzschild cavity in the Friedmann universe

The assumption of a position-independent mass-density in the universe
leads, as we have seen, to useful cosmological models with properties
which approximate to the observations, but they stand in flat contradic-
tion to the mass distribution to be found in our neighbourhood. Here
the mass is always concentrated into individual objects (planets, stars,
galaxies), and the practically matter-free space in between exceeds the
volume of these objects by several orders of magnitude.

This discrepancy can at least partially be removed, since the exact
solution for the gravitational field of a spherically symmetric star which
is surrounded by a matter-free space and situated in a special Friedmann
universe (p = 0) is known (Einstein and Strauss 1945).

The details of this model are as follows (Fig. 42.1). A spherically
symmetric star is surrounded by a space free of matter which again is
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Friedmann
universe

Friedmann
universe

vacuum

(Schwarzschild
metric)

Interior of star r = r0 = const

r = r1(t)
ρ = ρ1 = const

Fig. 42.1. The Schwarzschild vacuole in the Friedmann universe.

surrounded by a Friedmann dust universe. The gravitational field inside
the star can be described, for example, by the interior Schwarzschild
metric (for a static star) or by the section of a Friedmann universe (for
a collapsing or exploding star). A Schwarzschild solution

ds2 =
dr2

1− 2M/r
+ r2
(
dϑ2 + sin2 ϑ dϕ2

)− (1− 2M/r)c2 dt2,

r0 ≤ r ≤ r1,
(42.16)

can always be joined to this interior solution, and to this Schwarzschild
solution a Friedmann universe. This last part has been discussed in
detail and proved in Section 36.3, although always from the viewpoint
of a connection ‘inwards’. One can easily show, however, that all the
calculations are equally valid for the connection ‘outwards’ which is used
here. This connection can be most simply achieved by introducing a
new coordinate system into the Schwarzschild metric via a coordinate
transformation

r = r(ρ, cτ), ct = ct(ρ, cτ), (42.17)

so that we have

ds2 =
(∂r
∂ρ

)2 dρ2

1− εf2(ρ)
+ r2(ρ, cτ)

(
dϑ2 + sin2 ϑ dϕ2

)− c2 dτ 2,

(42.18)( ∂r
∂cτ

)2

+ εf2(ρ)− 2M/r = 0,

where the boundary ρ = ρ1 to the expanding or contracting universe

ds2 = K2(cτ)
[ dρ2

1− ερ2
+ ρ2
(
dϑ2 + sin2 ϑ dϕ2

)]− c2 dτ2 (42.19)
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is at rest. The junction between the Schwarzschild metric (42.16) or
(42.18) and the Friedmann universe (42.19) is possible if and only if
between the mass density µ(cτ) and the curvature K(cτ) of the universe,
on the one hand, and the gravitational radius 2M , the Newtonian mass
m = 8πM/κc2 and the ‘radius’ ρ1, or r1 = r(ρ1, cτ), on the other hand,
the relations

κµc2K3ρ3
1 = 6M = 3κmc2/4π, r1 = ρ1K(cτ) (42.20)

hold. These relations ensure that the dust particles of the boundary
surface between the vacuum and the cosmic matter move on geodesics
both of the interior Schwarzschild metric and of the exterior universe;
that is, the system is in a dynamical equilibrium.

In a Friedmann universe one can thus construct one or several spher-
ically symmetric cavities, gather up the originally dust matter within
each, and put it back into the middle of the cavities as stars. Notice,
however, that for ε 	= 0 the total extracted mass

mh =
∫ ρ1

0

√
g µdϑdϕdρ = 4πK3µ

∫ ρ1

0

ρ2 dρ√
1− ερ2

(42.21)

differs from the stellar mass m (only insignificantly for small radii ρ1).
The most interesting property of the vacuole solution is that inside the

vacuole the field is static. The expansion or contraction of the universe
has no influence on the physical processes inside the vacuole, except that
the radius r of the vacuole is time-dependent. An observer inside is only
made aware of the cosmic expansion through the redshift of objects lying
beyond the boundary surface. Stars inside show no redshift.

How then is the vacuole in which we live constructed? The relation

r1 = 3
√

6M/κµc2 (42.22)

between the coordinate radius r1 of the vacuole, the Schwarzschild radius
2M of the central body and the cosmic mass density µ is crucial for
the size of the vacuole. If we measure r1 and 2M in centimetres and
substitute the value 3× 10−31 g cm−3 for µ, then we have

r1 ≈ 1.75× 1019 3
√

2M. (42.23)

The vacuole radius of the Earth (2M = 0.88 cm) would thus extend
out far beyond the Sun, and many of the nearest fixed stars would in
fact be contained within the vacuole of the Sun (2M = 2.95 × 105cm).
But we obtain a realistic model if we identify the central body with
the local group of galaxies (2M ≈ 5 × 1017cm) to which belongs not
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only, for example, our Galaxy, but also the Andromeda nebula; there is
then no other galaxy in the associated vacuole. Inside this system the
expansion of the universe is not effective, the gravitational field being
determined exclusively by the masses contained within the vacuole (in so
far as the model is applicable, that is, as the mass distribution is to good
approximation spherically symmetric). The radius of the Earth or of the
Earth’s orbit thus does not change because of the cosmic expansion. But
of course the central body, that is, our Galaxy, could also be in a state
of general expansion which is independent of the cosmic expansion.

Of more theoretical interest is the fact that time runs differently inside
and outside the vacuole. As a consequence of the method of joining,
the universal time τ of the Friedmann universe is identical with the
proper time τ of the particles on the boundary layer r = r1, which move
on radial geodesics. Because of (35.6) and (36.41)–(36.45), this proper
time differs from the coordinate time t of the Schwarzschild metric by
the factor

dt
dτ

=

√
1− ερ2

1

1− 2M/ρ1K(cτ)
. (42.24)

In general this factor is ignorably small.
Vacuoles cannot be arbitrarily large. Trivially, the vacuole radius

ρ1 = sinχ1 may not exceed the maximum value π of the coordinate χ
in a closed universe (ε = +1). (The coordinate system used here covers
only the half universe with 0 ≤ ρ ≤ 1.) A second, more important,
condition follows from the requirement that the vacuole radius r1 must
be outside the Schwarzschild radius r = 2M . Because of the relation
(42.20) between vacuole radius and mass and the special form

K(cτ) = 1
6κµc

2K3k(cτ), (42.25)

of the time dependence of the Friedmann universe (see (41.28) and
(41.32)–(41.34)), the condition r1 > 2M just mentioned is only satis-
fied for

ρ2
1 <

1
2
k(cτ). (42.26)

The maximum allowed vacuole radius Kρ1 depends upon the age of the
universe. In a closed Friedmann universe the vacuole is always smaller
than the semi-universe (ρ1 < 1). A galaxy (a group of galaxies) of mass
M can thus only occur in a universe if the age of the universe τ is greater
than that required by

M2 = k(cτ)K2(cτ)/8. (42.27)
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In a closed universe (ε = +1) with a period of about 6× 109 years, that
is, κM/6 ≈ 9×1027 s, a vacuole of mass M ≈ 2.5×1017 cm, for example,
can form at the earliest 128 days after the beginning of the universe.

43

General cosmological models

43.1 What is a cosmological model?

A cosmological model is a model of our universe which, taking into
account and using all known physical laws, predicts (approximately) cor-
rectly the observed properties of the universe, and in particular explains
in detail the phenomena in the early universe. Such a model must also
explain inter alia why the universe was so homogeneous and isotropic
at the epoch of last scattering of the cosmic microwave background, and
how and when inhomogeneities (galaxies and stars) arose.

In a more restricted sense cosmological models are exact solutions
of the Einstein field equations for a perfect fluid that reproduce the
important features of our universe. Because there is only one actual
universe the large number of known or possible cosmological models
may at first seem surprising. There are, however, two reasons for this
multiplicity.

Firstly, only a section of our universe is known, both in space and in
time. All cosmological models which differ only near the origin of the
universe must be accepted for competition. In fact solutions are known
which are initially inhomogeneous or anisotropic to a high degree, and
which then increasingly come to approximate a Friedmann universe.
All cosmological models which yield a redshift and a cosmic background
radiation can hardly be refuted. The possibility cannot be excluded that
our universe is not homogeneous and isotropic, but has those properties
only approximately in our neighbourhood. An expanding ‘dust star’,
that is, a section of a Friedmann universe which is surrounded externally
by a static Schwarzschild metric (the model of a collapsing star discussed
in Section 36.3), may also perhaps be an excellent model of the universe.

Secondly, one also examines solutions of the field equations where it is
clear in advance that they do not correctly reproduce the properties of
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our universe. Every model is of course a great simplification of reality,
and only by the study of many solutions can one establish which simpli-
fications are allowed and which assumptions are essential. Exaggerating
one can say that there is almost no exact (perfect fluid) solution of the
field equations to which one could not attribute the name ‘cosmological
model’.

A special rôle is played now as before by cosmological models which
satisfy the cosmological principle to such an extent that the universe
(the three-dimensional position space) is homogeneous, that is, that the
points on a section t = const. are physically indistinguishable. Besides
the Robertson–Walker metrics, these models include all spaces which
possess a simply transitive group of motion G3 and are accordingly to
be associated with one of the Bianchi types I to IX (see Section 33.5)
or which permit a transitive group G4 which possesses no transitive
subgroup G3 (Kantowski–Sachs model). We want to go briefly into two
examples of such cosmological models.

43.2 Solutions of Bianchi type I with dust

If the three-dimensional space is the rest space of the matter and pos-
sesses three commuting Killing vectors, then we are dealing with homo-
geneous cosmological models of Bianchi type I. Since one can simulta-
neously transform the three Killing vectors to the normal forms

ξa
1 = (1, 0, 0, 0), ξa

2 = (0, 1, 0, 0), ξa
3 = (0, 0, 1, 0) (43.1)

in suitably chosen coordinates, the metric depends only upon the time
coordinate x4 = ct. By the transformation x4′ = x4′(x4), xα′ = xα +
fα(x4) one can, without destroying (43.1), always bring the metric to
the normal form

ds2 = −c2 dt2 + gαβ(ct) dxα dxβ . (43.2)

As one can see, the subspaces t = const. are flat three-dimensional spaces
in which – for a fixed t – Cartesian coordinates can always be introduced.

To calculate the curvature tensor of this metric we use the reduction
formulae (30.25). They give

Rαβµν = − 1
4 (ġβµġαν − ġβν ġαµ), R4

βµν = 0,
(43.3)

R4
β4ν = 1

2
g̈βν − 1

4
ġβαġµνg

αµ.

Using the relations ġ/g = gαβ ġαβ and ġβν = −gβαgνµġαµ, the field
equations
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Rab − 1
2
Rgab = κµuaub (43.4)

can be written as

R4
4 − 1

2R = − 1
8 ġβν ġ

βν − 1
8(ġ/g)2 = −κµc2, (43.5)

Rα
β − δα

β
1
2R− 1

2

(√−ggαρġρβ

)̇
/
√−g − δα

β
1
2κµc

2 = 0 (43.6)

(the equations R4
α = 0 are satisfied identically). Because of the equation

of conservation of rest mass (21.87), which always holds for dust, the
system of field equations is only integrable if

κµc2
√−g = M̂ = const. (43.7)

In order to integrate the field equations we take the trace of (43.6),
which gives the differential equation(√−g)̈ = 3

2M̂, (43.8)

which we can solve as √−g = 3
4ct(M̂ct+A). (43.9)

The complete system (43.6) can be integrated once, using (43.7), with
the result √−gġβα = M̂ctgβα + aµ

αgµβ . (43.10)

If for a fixed arbitrary time one introduces a Cartesian coordinate system
and arranges its axes so that the constant matrix aµ

α is diagonal, then
because of (43.10) the diagonal form of the metric remains preserved for
all time. Hence from (43.9) and (43.10) follows

ġ11 =
[
4
3
M̂/(M̂ct+A) + 2p1A/ct(M̂ct+A)

]
g11, p1A = 2

3
a1
1 (43.11)

with the solution

g11 = const.(M̂ct+A)4/3
[
ct/(M̂ct+A)

]2p1 (43.12)

and analogous results for g22 and g33. Thus we have finally the solution

ds2 = −c2 dt2 + g11 dx2 + g22 dy2 + g33 dz2,

g11 = (−g)1/3
[
ct/(M̂ct+A)

]2p1−2/3
,

κµc2
√−g = M̂,

(43.13)

g22 = (−g)1/3
[
ct/(M̂ct+A)

]2p2−2/3
, √−g = 3ct(M̂ct+A)/4,

g33 = (−g)1/3
[
ct/(M̂ct+A)

]2p3−2/3
,

in which, because of (43.6) and (43.5), the three coefficients pδ must
satisfy the conditions
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p1 + p2 + p3 = 1, p2
1 + p2

2 + p2
3 = 1 (43.14)

which is guaranteed by, for example,

2p1 − 2
3 = 4

3 sinα, 2p2 − 2
3 = 4

3 sin
(
α+ 2

3π
)
,

2p3 − 2
3

= 4
3

sin
(
α+ 2

3
π
)
, −1

6
π < α ≤ 1

2
π.

(43.15)

For the four-velocity ua = (0, 0, 0, c) of the field-producing matter we
have

ua;b = 1
2cgab,4. (43.16)

Thus we are dealing (compare with the definitions (31.18) of the kine-
matic quantities) with a geodesic (u̇a = 0), rotation-free (ωab = 0) flow,
whose expansion velocity is

Θ =
2M̂ct+A

t(M̂ct+A)
, (43.17)

and the components of whose shear velocity are

σλλ = 1
4Acgλλ(3pλ − 1)

/√−g (no summation over λ). (43.18)

The integration constant A is therefore a measure of the shear, while
the pλ characterize its dependence upon direction. The particular case
A = 0 leads to an (isotropic) Friedmann universe, see Exercise 43.1.

The metric (43.14) describes an anisotropic, homogeneous universe,
which is expanding or contracting. The distances between the dust
particles (at rest in these coordinates) change in a direction-dependent
fashion, as the isotropic case p1 = p2 = p3 stands in contradiction to
(43.14). For A > 0 (which can always be achieved by choice of the time
direction) the metric becomes singular at t = 0, if we approach the origin
from the positive t side.

In the general case α 	= π/2 (p3 	= 0) precisely one of the pλ, namely,
p3, is negative. Because

ġ33/g33 =
[
ct(M̂ct+A)

]−1( 4
3M̂ct+ 2p3A

)
, p3 < 0, (43.19)

then the relative change in distances in the z-direction is very strongly
negative at very small times. This collapse comes to a halt for ct =
−3p3A/2M̂ and it is followed by an expansion. In the x-direction and
the y-direction, on the other hand, the universe expands continuously.
If we follow its history backwards from positive t, then from an initial
sphere we find a very long, thin, elongated ellipsoid, and in the limiting
case t→ + 0 a straight line – a ‘cigar’ singularity occurs.
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α �= π/2 α = π/2

Fig. 43.1. The two types of singularity of a Bianchi type I universe.

It is worth noting that the mass M̂ does not affect the behaviour as
t→ 0; the metric (43.14) can be approximately replaced by the vacuum
solution (Kasner metric)

ds2 = (ct)2p1 dx2 + (ct)2p2 dy2 + (ct)2p3 dz2 − c2 dt2,

p1 + p2 + p3 = 1, p2
1 + p22 + p2

3 = 1.
(43.20)

In the exceptional case α = π/2, that is, p1 = 1, p2 = p3 = 0, we have

ġ11
g11

=
λM̂ct/3 + 2A
ct(M̂ct+A)

,
ġ22
g22

=
ġ33
g33

=
4M̂

3(M̂ct+A)
. (43.21)

A singular behaviour occurs for t→ + 0 only in the x-direction, and then
in such a way that (followed backwards in time) out of a sphere first a
strongly flattened, rotating ellipsoid is formed and finally a ‘pancake’
singularity (see Fig. 43.1).

For large times the metric approaches (independently of α) that of a
homogeneous and isotropic Friedmann universe with ε = 0.

43.3 The Gödel universe

The Gödel (1949) universe is a homogeneous, but anisotropic, four-
dimensional space whose metric is best be written in either of the two
forms

ds2 = a2
[
dx2 + 1

2e2x dy2 + dz2 − (ex dy + cdt)2
]
, a = const., (43.22)

ds2 = 4a2
[
dr2 + dz2 + (sinh2 r − sinh4 r) dϕ2

(43.23)− 2
√

2 sinh2 r dϕ cdt− c2 dt2
]
.
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It possesses five Killing vectors, which in the coordinates (43.22) have
the form

ξa
1 = (0, 1, 0, 0), ξa

2 = (0, 0, 1, 0), ξa
3 = (0, 0, 0, 1),

ξa
4 = (1,−y, 0, 0), ξa

5 = (y, e−2ex − 1
2y

2, 0,−2e−x).
(43.24)

Its gravitational field is produced by the energy-momentum tensor

Tmn =
1

2κa2
gmn +

umun

κc2a2
, um = (0, 0, 0, c/a), (43.25)

which we can interpret either as the energy-momentum tensor of a per-
fect fluid with

p = µc2 = 1/2κa2, (43.26)

or as an energy-momentum tensor which besides the contribution from
the dust also contains the cosmological term Λgmn (see (22.4)):

µ = 1/κc2a2, Λ = −1/2a2. (43.27)

Since only the components

u1;2 = −u2;1 = ac ex/2 (43.28)

of the derivative ua;b of the four-velocity are non-zero, the matter current
is geodesic, shear-free and expansion-free, but rotates with the constant
velocity

ω =
√
ωabωab/2 = c

/
a
√

2. (43.29)

The Gödel universe is certainly not a realistic model of the universe,
but it does possess a series of interesting properties. It is one of the few
cosmological models which contains rotating matter, and it also contains
closed timelike lines; that is, an observer can influence his own past, see
Exercise 43.1.

43.4 Singularity theorems

Of the cosmological models which we have so far discussed, the physi-
cally reasonable ones (Friedmann model, Bianchi type I universes) have
a singularity in their evolutionary history, that is, a beginning of the
universe or a primeval ‘big bang’, while the physically less realistic ones
(Einstein universe, de Sitter universe, Gödel universe) certainly do not
possess such a singularity, but they involve the cosmological constant, or
its matter obeys a rather implausible equation of state, show no redshift
or else contradict our ideas about causality.
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Since a singularity at the beginning of the universe is, however, a
rather unwelcome property of cosmological models, one would very much
like to know whether this singularity is unavoidable for physically rea-
sonable models. Do singularities perhaps occur only in cosmological
models of high symmetry and vanish under the small deviations from
symmetry which are always present in reality; or were we unlucky in our
selection of the model: are singularities absent in other universes of high
symmetry (for other Bianchi types)?

In answer to the last of the questions raised here we shall now show
that in gravitational fields which are produced by perfect fluids whose
elements move without rotation along geodesics, then under certain plau-
sible assumptions singularities must occur. Our starting point is the de-
composition (31.18) of the covariant derivative of the velocity field um

of the fluid, that is, the representation

um;i = ωmi + σmi + 1
3Θ
(
gmi + umui/c

2
)− u̇mui/c

2. (43.30)

If we substitute this into the identity

(um;i;n − um;n;i)gmiun = −Ranu
nua (43.31)

which is valid for every vector um, and use the field equations, we obtain

dΘ/dτ = −Θ2/3− σinσ
in − κc2(3p+ µc2

)
/2 + ωinω

in + u̇n
;n (43.32)

(Raychaudhuri equation). If we also assume that

µc2 + 3p ≥ 0 (43.33)

(physically we would of course expect further that µ ≥ 0 and p ≥ 0), then
all terms on the right-hand side of (43.32) except ωinω

in and possibly
u̇n

;n are negative. Therefore, if the rotation and the acceleration vanish
we have

d
(
Θ−1
)
/d τ ≥ 1/3. (43.34)

Accordingly Θ−1 was either (Θ > 0) zero at a finite proper time in
the past, or (Θ < 0) will take the value zero after a finite proper time.
Since the expansion Θ is a measure of the relative change in volume,
then singularities (with Θ = ∞) are always present in such models.
Because Θ = 3cK̇/K in the Friedmann universe, these singularities just
correspond to the zero points of the radius function K.

A similar conclusion can be drawn if the fluid itself is not necessarily
non-rotating, but if there does exist a rotation-free, geodesic congruence
of timelike world lines (cluster of test particles). Since for two timelike,
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future-directed, unit vectors ui/c and V i/c we always have uiVi ≤ −c2,
and hence the field equations yield

RanV
aV n ≥ κc2(3p+ µc2

)
/2, (43.35)

the inequality (43.34) follows also for these geodesics, and the family
of test particles shows a singular behaviour. The space-time is there-
fore singular in the mathematical sense. Whether the physical quanti-
ties (pressure, rest-mass density) behave singularly must be investigated
separately.

As a generalization of these laws one can show that in every universe
which is at some time homogeneous (which possesses a transitive spatial
group of motion), for which the associated initial value problem can
be solved uniquely on this initial surface and in which the condition
RabV

aV b < 0 is satisfied for all timelike or null vectors V a, then there
exists a singularity. This singularity is characterized by the occurrence
of geodesics which although of finite length cannot be extended. Again
the type of physical singularity must in every case be clarified separately.

The existence of singularities can be proved under still weaker assump-
tions; singularities occur, for example, in every spatially closed universe
which at some time or other expands or contracts.

Exercises

43.1 Show that for A = 0 equation (43.8) leads at once to ġβα =
4gβα/ct − aµ

βgµα/c
2t2, and that the field equations (43.9) can

only be satisfied for aµ
β ≡ 0. What kind of universe is this?

43.2 Use the form (43.23) of the Gödel metric to show that – if ϕ
is a angular coordinate – there are curves r = R, v = const.,
t = −εϕ+ const., which are timelike circles for ε = 0 and which
go into the past for small ε > 0.

Further reading for Chapter 43

Hawking and Ellis (1975), Krasiński (1997), Wainwright and Ellis (1997).
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Einstein, A. (1969). Über spezielle und allgemeine Relativitätstheorie (Berlin,
Akademie-Verlag).
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