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CHAPTER 1
THE REAL NUMBERS

1.1 THE REAL NUMBER SYSTEM

1. Note that |a — b| = max(a, b) — min(a, b).

@a+b+|a—b| =a+ b+ max(a,b) —min(a, b) = 2max(a, b).
Mb)a+b—|a—>b|=a+b—max(a,b) + min(a, b) = 2min(a, d).

(¢) Leta = a+b+2c+|a—b|+|a+b—2c+|a—b||. From (a), ¢ = 2 [max(a, b) + ¢ + | max(a, b) — c|] =q4r
B. From (a) with a and b replaced by max(a, b) and ¢, B = 4 max (max(a,b),c) =

4max(a, b, ¢).

(d)Leta = a+b+2€—|a—b|—|a+b—2€—|a—b||. From (b), « = 2 [min(a, b) + ¢ — | min(a, b) — c|] =4
B. From (a) with a and b replaced by min(a, b) and ¢, B = 4 min(min(a, b),c) =

4 min(a, b, ¢).

2. First verify axioms A-E:

Axiom A. See Eqns. (1) and (2).

AxiomB.Ifa =Othen(a +b)+c =b+canda+ (b +c)=b+c,s0(a+b)+

¢ = a+ (b + c¢). Similar arguments apply if » = 0 or ¢ = 0. The remaining case is
a=b=c=1.Since(l1+1)+1=0+1=1and1+ (1+1) =140 =1, addition

is associative. Since

unlessa =b =c =1,

Oa
(ab)c = a(be) = {1’ mlesa =0 =¢

multiplication is associative.

Axiom C. Since
0, ifa =0,

alb+c)=ab+ac = {b+c, ifa=1

the distributive law holds.
Axiom D. Eqgns. (1) and (2) imply that 0 and 1 have the required properties.



2 Chapter 1 The Real Numbers

Axiom E. Eqn.(1) implies that —0 = 0 and —1 = 1; Eqn. (2) implies that 1/1 = 1.
To see that the field cannot be ordered suppose that 0 < 1. Adding 1 to both sides yields

0+1<1+1,o0rl < 0,a contradiction. On the other hand, if 1 < O,then1+1 <0+ 1,
so 0 < 1, also a contradiction.

3. If 4/2 is rational we can write ~/2 = m/n, where either m is odd or n is odd. Then
m? = 2n2, so m is even; thus, m = 2m; where m; is an integer. Therefore, 4m% = 2n2,
son? = Zm% and n is also even, a contradiction.

4. If ,/p is rational we can write ,/p = m/n where either m or n is not divisible by p.
Then m? = pnz, so m is divisible by p; thus, m = pm; where m is an integer. Therefore,
pzm% = pn?,son? = pm% and 7 is also divisible by p, a contradiction.

6. If S is bounded below then T is bounded above, so 7" has a unique supremum, by
Theorem 1.1.3. Denote sup T = —«. Then (i) if x € S then —x < —a, so x > «; (ii) if
€ > 0 there is an x¢9 € T such that —xo < —a — €, s0 X9 > « + €. Therefore, there is
an o with properties (i) and (ii). If (i) and (ii) hold with « replaced by «; then —; is a
supremum of 7', so &; = « by the uniqueness assertion of Theorem 1.1.3.

7. (@) If x € S, theninfS < x < supS, and the transitivity of < implies (A), with equality
if and only if S contains exactly one point.

(b) There are three cases: (i) If S is bounded below and unbounded above, then inf § = «
(finite) and sup S = oo from (13); (ii) If S is unbounded below and bounded above, then
inf§S = —oo from (14) and sup S = B (finite); (iii) If S is unbounded below and above
then sup S = oo from (13) and inf S = —oo from (14). In all three cases (12) implies (A).

8. Leta = infT and b = sup S. We first show thata = b. If a < bthena < (¢ +b)/2 <
b. Since b = sup S, there is an so € S such that so > (a + b)/2. Since a = inf T, there
isatyg € T such thatty < (a + b)/2. Therefore, ty < 59, a contradiction. Hence a > b.
If @ > b there is an x such that b < x < a. From the definitions of @ and b, x & T and
x ¢ S, a contradiction. Hence a = b. Let 8 = a(= b). Since a and b are uniquely,
defined sois B. If x > Bthenx ¢ S (since f =supS),sox € T. Ifx < fthenx ¢ T
(since B = infT),s0x € S.

9. Every real number is in either S or 7. T is nonempty because U is bounded. S is
nonempty because if u € U and x < u thenx € S. If s € S thereis au € U such that
u > s, since s is not an upper bound of U. If t € T then ¢ > u, since ¢ is an upper bound
of U. Since u > s and t > u, t > s. Therefore, S and T satisfy the conditions imposed
in Exercise 8, so there is a number B such that every number greater than § is an upper
bound of U and no number less that 8 is an upper bound of U. However, § is also an upper
bound of U (if not, there would be a ug € U such that uy > B, which is impossible, since
if up > B then every number in (8, uo) is an upper bound of U). Therefore, 8 = sup U.
10. (@) Leta =supS and B =supT. If x = s+ ¢ then x <« + B. If ¢ > 0 choose s¢ in
S and tgin T such that sg > @ —€/2andtyg > B —€/2. Then xg = 59+ 1o >+ B —¢€
and o + B = sup(S + T') by Theorem 1.1.3. This proves (A). The proof of (B) by means
of Theorem 1.1.8 is similar.

(b) For (A), suppose that S is not bounded above. Then sup S = sup(S + T) = oco. Since
supT > —oo if T is nonempty, (A) holds. The proof of (B) is similar.
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11. Apply Exercise 10 with S and T replaced by S and —T.
12.Ifa =0then T = {b},soinfT =supT = b.
Now suppose that ¢ # 0 and let « = inf S and 8 = sup S. From the definitions of & and

ﬂ’
a<s and s<p forall se€S, (A)

and if € > 0 is given there are elements s; and s, of S such that
si<a+¢€/lal and s> B —¢€/|al. (B)
CASE 2. If a > 0, multiplying the inequalities in (A) by a shows that
ac <as and as <aPf forall seS.

Therefore,
ae+b<as+b forall se8, ©)

as+b<af+b forall seS. (D)

Multiplying the inequalities in (B) by a shows that
asy <aa+¢€ and asy; > aff —e,

since |a| = a. Therefore,
asy +b < (ax + b) + ¢, (E)

asy +b > (af +b) —e. (F)
Now (C) and (E) imply that ax + b = inf T', while (D) and (F) imply thata +b = sup T.
CASE 3. Suppose that a < 0. Multiplying the inequalities in (A) by a shows that

aae>as and as>af forall seS.

Therefore,
ae +b>as+b forall se8, (G)

as+b>af+b forall seS. (H)

Multiplying the inequalities in (B) by a shows that
asy >aa—e¢ and asy; <aP +e,

since |a| = —a. Therefore,
asy +b > (ax + b) — e, 0
asy +b < (af +b) +e. @
Now (G) and (I) imply that ao + b = sup T', while (H) and (J) imply thataf + b = inf T.
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1.2 MATHEMATICAL INDUCTION

1. P; is obvious. If P, is true, then

1434+ 4+Cn+1)=[14+3+---Cn-D]+2n+1)
=n*+Q2n+1) (by Py)
= +1)>
SO Py is true.
2. P; is obvious. If P, is true, then
P+22 4+ m+ 1) =[P +22+ -+ 1+ + 1)

_ n(n + 1)6(2n + 1) . 1)2 (by P

_(m+ 1D +2)2n +3)
= < ,

SO Py is true.

3. Since 1 = 1, P; is true. Suppose that n > 1 and P, is true. Then
PP+3% 4+ 2n+ 1) =[12+3"+-+2n— 1]+ 2n +1)?

2 _
_ w L @n+1)? (by Py)

n(2n —1)
3

(2n+1)[ +2n+li|

2n + 1
= n3+ [2n% + 5n + 3]

_ (n+1D@2n+1)(2n+3)

N 3

_(n+ DR2n+1)—1]2n+ 1)+ 1]
N 3
_(n+DEm+1)*—1]

= 3 :

that is,
12+32+...+(2n+1)2:n[4(n+—1)2_1)
3 ’

which is Py41.

4. P is trivial. P, is true by the triangle inequality (Theorem 1.1.1). If n > 2 and P, is
true then

lar +az + -+ an + ap1| = [(@1 + a2 + -+ + an) + an1]
<lar+az+ -+ an| + |an+1]

(A)
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by the triangle inequality witha = ay +a; + ---+ ay and b = a,41. By Py,
a1 +az + -+ an| < |ai] + |az| + -+ + |an|-

This and (A) imply Pj41.

5. Pp is obvious. If Py, is true then

(I +a)(d +az)-- (1 +ant1) =[(1+a1)-- (1 +an)](1 + ant1)
= (1 +a +"'+an)(1 + dnt1) (by Pp)

=l4ar+- - +any1 +anp1(ar + -+ an),

which implies P, 41, since a; > 0.

6. Pp is obvious. If Py, is true then

(I—a)d—az)---(1—ant1) =2 (I —ant1)(1 —ay —---—an) (by Pp)
=1l—ai = —dant1 + ant1(ar + -+ + an),

which implies Pj 4.

7. If s, >0then0 < e < 1,800 < s,41 < 1. Therefore P; is true and P, implies
Pyii.

8. Subtracting vR = % [R / VR + «/ﬁ] from the equation defining x,; yields (A)

Xnt1 — VR = (xn — «/ﬁ)z/(an). Since x¢ > 0, this implies by induction that x, > VR
for all n > 1, and the definition of x,4; now implies that x,+; < x, if n > 1. Now let P,
be the proposition that x, — ~/R < 27"(xo — +/R)?/xo. Setting n = 0 in (A) verifies P;.
n = 0. Since 0 < (x, — «/ﬁ)/xn < 1, (A) implies that x,4+; — VR < (xp — «/ﬁ)/Z, )
P, implies Py, 4.

9. (a) Rewrite the formula as

2ay,
Q2n+1)Q2n+2)

an+1 =

We compute a few terms to formulate P,;:

_2(11 _22
CEIL T
2a; 2 22 23
a3:— =

56 564 6

Let P, be the proposition that
2”
- @n)

An
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which is true for n = 1 (also for n = 2, 3, 4). If P, is true then
2ap _ 2 2" _ ontl
@n+1D)2n+2) @n+1D)Q2n+2) 2n)! @n+2)!
so P, implies P, 4.

an+1 =

(b) We compute a few terms to formulate P,:

3(11 3
a:—:—’
2775 T4
3a, 3 3 32
a3=—=——=7’
76 6-74-5 4.5-6-7
3as 3 32 33
ag = =

T8.9 894567 456789

Multiply numerator and denominator by 3! = 6 in each fraction yields simpler results:

_ _ 2.3
T TR T
Let P, to be proposition that
2.37
ap = ——,
T @2n+1)!

which is true for n = 1 (also for n = 2, 3, 4). If P, is true then

3a, 3 2.3n 2.3+l
a = = = B

T @i +3)2n+2)  @n+3)2n+2) @n+ D! @2n +3)!
so P, implies P, 4.

(¢) Rewrite the formula as

@2n+ D(2n + 2)a,

R Y §0)
We compute a few terms to formulate P,;:
3-4 3-4
a = a1 = —,
272227 T 202
5:6 5-6 3-4 3-4.5-6
a3 = aZ = = s
2(3)? 2(3)2 2(2)2  22(2-3)?
7-8 7-8 3:-4-5-6 3-4.-5-6-7-8
ag =

T2@) " T 2@ 2232 23234
Let P, be the proposition that
2n)!

= o2
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which is true for n = 1 (also for n = 2, 3, 4). If P, is true then

C@n+ D@42 @n+D@n+2) @n)!  @n+2)
M= T D T T 2k )2 2l (4 1)

(=)
an+1 = .
n

We compute a few terms to formulate P,;:

so P, implies P, 4.

(d) Rewrite the formula as

a, =2a1 =2,
3\? 3\, 32
w=(3)w=(3) 2=
4\? 4332 43
(B () 555

We take P, to be the proposition that
n—1

n

W=

which is true for n = 1 (also forn = 2, 3, 4). If P, is true, then

I S D A R
R =" n-1" a7

so P, implies P, 4.

10. If a, = n!thenay,yy = 0 + )a, = (n + H)n! = (n 4+ 1)!, so P, implies P,4;.
However, P, is false for all n, since a,, = 0 for all n, by induction.
11.

(a) If P, is true then

n+2)n-1)

I+2+--+n+n+1= 7 +@m+1)
43 (n+3)n
22

so P, implies P, 4.

(b) No; see Example 1.2.1.

12. Calculation shows that the first integer for which the inequality is true is no = 6. If
n>6and1/n! > 8"/(2n)! then

1 1 1 8" 1

= — > .
m+1! nln+1 " @min+1

(A)
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But
1 8 2n—13

- = >0, n=>
n+1 @n+2)Cn+1) @®G+D2n+1)
This and (A) imply that

e 8 gt
m+D! " e 2n+2)2n+1)  @n+2)V

so P, implies P, 4.

13. (a) If n > 0, let P, be the proposition that n = ag + r where ¢ is an integer and
0<r <a.Then P,istrueif0 <n < a,sincen = a-0+n. Pyistrue,sincea =a-1+0
Now suppose thatn > a and Py, Pi, ..., P, are true. Thenn+1—a <n,son+1—a =
qoa +r with0 < r < a, by the induction assumption. Hence n + 1 = (qo + 1)a + r. This
implies Py41.

() Ifb <0then0 < b + |bla = aqy + r with0 < r < a, from (a); hence b = aq + r
withg = g1 — |b].

(c) Suppose that aq + r = aq; + r1, where ¢q, g1, r and r; are integers with (A) 0 <
r,r1 < a. Thenalg — q1| = |r1 —r|. If ¢ # q1 then al|g — q1| > a, which implies that
|r1 —r| > a, contradicting (A). Therefore g; = g and r; = r.

14. (a) P; is true, from the definition in Example 1.2.7. Now assume that Py is true for
some k > 1. Suppose that that p divides p1 p2 - px px+1 = ab, witha = p;--- py and
b = pg41. From the given statement, p divides a or b. If p divides a then p = p; for
some i in {1,...,k}, by Pr. If p divides b then p = pg41, by P1. Therefore Py implies
Py

(b) Let Pj be the proposition that the assertion is true if min(r,s) = k. Then P; is true,
by the definition of prime in Example 1.2.7. Assume that Py is true for some k > 1.

Now suppose that p; - px pr+1 = q1 -+ ¢s, Where p1, ..., pk, Pk+1 and qq, ..., g5 are
positive primes and s > k + 1. Since pg4; divides g - - - g5, (a) implies that pry; = ¢;
for some i in {1,...,s}. We may assume that p,+; = ¢s. Then py---pxr = q1-*-qs—1,

and Py implies that k = s — 1 and {p1,---, pr} is a permutation of {gi,---,gx}. This
implies Pgy1.

15. P; and P, are true by inspection. Suppose that P, and P,_; are true for some n > 2.
Then

ant1 = [3" = (=2)"1 + 6[3"7" — (=2)"7']
=[3" 463" - [(=2)" + 6(=2)"""]
=[3" +2-3"] - [(-2)" — 3(-2)"]
— 3n+1 _ (_2)n+1’

which implies P, 4. Apply Theorem 1.2.3.
16. Py, P, and P5 are true by inspection. Suppose that P,, P,—; and P,_, are true for
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some n > 3. Then

g =9(3" =51 +2) = 233" =5 4 2) + 15370 = 5" 4 2)
=(9-3"1-23.3"72 4+ 15.3"73)
—(9-5"1 —23.5"2 £ 15.5"%) 4 (9 - 23 + 15)2
=(27-234+5)3"2 - (45-2343)5" 2 42 =3"_5" 12,

which implies P; ;. Use Theorem 1.2.3.

17. Routine computations verify P; and P,. Now suppose that n > 2 and assume that

_ L+ V) (=5
= NG

Fy (A)

for 1 <k <n. Then

(+ V5= (1= V3" | (+ V3 = (1= V5!
Fn+1:Fn+Fn—1: 2"«/5 + 2"_1«/5

1 (145 [1445 1 (1-v5\" ' [1-+5
A7) (50 [
o (1+«/§)H[3+«/§]_ I (1—J§)"_1[3—J§]
NAWE 2 NAWP 2
(1B = (1=
- 2n+1ﬁ ’

since
3£V5  (1£45?
2 4 '

1

1
18. Let P, be the proposition that the statement is true forall r > —1. Since/ (1-y)dy= P
0 r
Py is true. Now suppose that n > 0 and P, is true. Integration by parts yields

1 n+1 U1 gt
/y"“(l—y)’dy=—(liﬁ”rl +m/ Y=yt dy
’ n+1y ’ ’ *)
— nl_ r+1d .
r+1/0 Y =y) " dy
Py implies that [ (1 =y d ! if 2. Thi
that - = 2
,, implies tha /0 yi(l—=y) y (r+2)(r+3)---(r+n+2)1 ro> is
(n+1)!

1
and (A) imply that/ YA =y dr = verifying Py1.
0

F+DF+2)---(r+n+2)
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19.

n+1

+1 -
@ (” )r'" =1+ =1+ +0" =1+ ) (”)zm
m m
m=0 m=0

n n
m=0 m m=0 m

n n n+1 n

" "

m=0 m=1
n+1 n n

S ()]
= \m m—1
since ( 1) = ( N 1) = 0. Comparing coefficients of " in the first and last expres-

- n
sions shows that
n+1 n n
m m m—1

Now let P, be the proposition that

n n! 0<m <

= — m<n.
m m!'(n —m)!’ - -

Then Py is true, since (1 + t)0 = 1. Now suppose that P, is true for some n > 0. If
1 <m < n, then (A) and P, imply that

n—+1 _ n! n!
m | ml(n—m)! + (m—1Dn—m+1)!

n! 1 1
=Dl —m)! [EJ“ n—m+l]
~ n! ntl ()
S m=D!n—m)! m(n—m+1)  ml(n—m+ 1)

This verifies the assertions in P, for I < m < n, and we have seen they hold automati-
n—+1

Ty f 0 and 1 (thatis, ("1
ca orm = anam =n at 18, =
y 0 n+1

) = 1). Therefore P, implies
Pn+1-
n

(b) Set t = —1 in the identity (1 + ¢)" = Z (n>t" to obtain the first sum, # = 1 to
m

. m=0
obtain the second.
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(© (x + )" =y"(1 + x/y)". From (a) witht = x/y, we see from this that (x + y)" =
n n
DS [ IUAEES S (A R

m=0
20. We take constants of integration to be zero. Integrating by parts yields the first an-
tiderivative

Al(x):/logxdx=x10gx—/ldx=x10gx—x.

Integration by parts yields the second antiderivative

2 2 2
3
Az(x) = /(xlogx—x)dx = %logx—/(g +x) dx = x? - %
We conjecture that an n-th antiderivative is
xn
Ap(x) = pr) (logx —ky), (A)

for a suitable constant k,, to be determined later.

We have already verified (A) forn = 1 and 2, withk; = 1 and k, = 3/2. If we assume
that (A) is true for a given n then

xn+1 1 X" xn+1
Apir = ——logx — — knx" | dx = 1 kns1),
LT n!/(n+l + ”x) X = G oex k)

where |
k =k R
n+1 n+ n+ 1

Now an easy induction yields k, = Z'}=1 1/j. Therefore

x" “ 1
An:F lnx—;7

is an n-th antiderivative of log x for every n.

21. fa(x1,x2) = x1 +x2+|x1 —x2| = 2max(xy, x») from Exercise 1.1.1(a) witha = x;
and b = x,. Now

Sf3(x1,x2,x3) = folx1, x2) + 2x3 + | f2(x1, X2) — 2x3]
= 2 [max(x1, x2) + x3 + | max(xy, x2) — x3|]

= 4 max (max(xy, x3), xX3)
from Exercise 1.1.1(a) with @ = max(xy, x») and and b = x3. Since
max (max(xi, x2), X3) = max(xy, X2, x3), f3(x1,x2,x3) = 4max(xy, X2, x3).
Now let P, be the proposition that

Fo(X1, X2, ..., xp) = 2" T max(xq, X2, ..., Xp).
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If P, is true, then

-1
Jor1(x1, X2, oo Xng1) = fu(X1, X2, x0) 27 Xpg
+ | fox1. %2, xn) = 2" g |
=nl [max(xy, X2, ..., Xn) + Xn+1
+| max(‘xlv xZa D) xn) - xn+1 |]
= 2" max (max(x1, X2,...,Xn), Xn+1)
from Exercise 1.1.1(a) with @ = max(xy, x2,...,X,) and b = x,4+1. Since
max (max(xy, X2, ..., Xn), Xp+1) = Max(xXy, X2, ..., Xp+1)
this implies P,+1. A similar argument using Exercise 1.1.1(b) shows that g,, (x1, X2, ..., x,) =
2"~ min(x1, X2, ..., Xn).
22. P; is the assertion that
. 1 —cos2x
siny = ———
2sinx

To verify this we let A = B = x in the second given identity, to see that

cos2x = cos? x — sin? x.
Therefore
1 —cos2x 1 — cos? x + sin?
2sinx 2sinx
2sin® x .
= - =sinx
2sinx

Now suppose that n > 1 and Py is true. Then
sinx + sin3x + --- 4+ sin(2n + 1)x = [sinx + sin3x + --- + sin(2n — 1)x] + sin(2n + 1)x

1 —cos2
= 7@8 ad + sin(2n + 1)x  (from Py)
2sin x

1 —cos2nx + 2sinxsin(2n + 1)x

’

2sinx

that is,

A

1 — cos 2nx + 2sinx sin(2n + 1
sinx + sin3x 4 -+ + sin(2n + Dy = — % +2 Sinx sin(2n + Dx
sin x

To handle the product of sines in the numerator let A = (2n + 1)x and B = x in the given
identities. This yields

cos 2nx = cos(2n + 1)x cosx + sin(2n + 1)x sinx

cos(2n + 2)x = cos(2n + 1)x cosx — sin(2n + 1)x sin x.
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Subtracting the first of these identities from the second yields
2sin(2n + 1)x sinx = cos 2nx — cos(2n + 2)x,

and substituting this into (A) yields

1 —cos2 2nx — 2 2
sinx 4+ sin3x + --- 4 sin2n + 1)x = cos 2nx + c0s 2nx — cos(2n + 2)x

’

2sinx

o)
1 —cos(2n + 2)x

2sinx

sinx 4+ sin3x + --- 4+ sin(2n 4+ 1)x =

’

which is Py41.

23. Let P, be the stated proposition. Pj is trivial. Suppose that n > 1 and P,—_; is true. If
{, = n, P,_q implies P,. If £, = s < n, choose r so that £, = n, and define

¢; ifi #randi #n,
=13s ifi=r,
n ifi =n.

Then

Oy, Ly ... ly) — O, Uy, L) = (xn — Y5)? 4+ (Xr — yn)?
— (xn — yn)2 —(xr — ys)2
= Z(Xn _xr)(yn - YS) > 0. (1)

Since ¢}, = n, P,—; implies that

QW by, ... 00)> 0(1,2,....n).

Therefore (1) implies (6), which completes the induction.

1.3 THE REAL LINE

3. Suppose that a € A. We consider two cases: (i) Suppose thata € X. Thena € AN X
and (b) implies that « € B N X, which implies that a € B. (ii) Suppose that a ¢ X. Since
a € AU X, (a) implies that « € B U X. Therefore, a € B.

Since @ € X and a ¢ X are the only two possibilities, it follows that « € B. Therefore,
A C B. Similarly, B € A,s0 A = B.

6.xe(SNT)Y ©xeS urxeT® < xeSUTE.
xelSUT)Y ©xeSandxeT < xeS°NTEC.
7.(a)x€l”<:>x€F‘f0rsomeFinF<:>x€U{F‘|F€F}.
(b)xeU”<:>x€F‘f0reveryFinF<:>x€ﬂ{F‘|F€F}.

8. (a)If S, ..., Sy are open and x is in N7_, S;, there are positive numbers €1, ..., €, such

that (x —€;,x + €;) C S;. If e = min(eyq,...,€,), then (x —€,x + €) C ﬂ;»’:l S;.
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(b) MpZy(1/n,=1/n) = {0}.

9. (@ Let T = J;_, T;, where T, ..., T, are closed. Then T¢ = (/_, TF (Exercise 7).

Since Tf is open, so is T (Exercise 8). Hence, T is closed.

(b) UsZ,[1/n, 00) = (0, 00).

10. (a) Since U is a neighborhood of x, there is an € > 0 such that (xo —€,x9 +€) C U.

Since U C V, (xg — €, x9 + €) C V. Hence, V is a neighborhood of xy.

(b) Since Uy, U, ..., U, are neighborhoods of xg, there are positive numbers €;, €,
.., €y such that (xg —€;,x0 +¢;) C U; (1 <i < n). If ¢ = min(ey,...,¢€,), then
(xo —€,x0+€) C ﬂ?=1 U;. Hence, ﬂ?=1 U; is a neighborhood of xy.

12. If x¢ is a limit point of S, then every neighborhood of x( contains points of S other

than xg. If every neighborhood of xg also contains a point in S€, then xo € dS. If there is

a neighborhood of xg that does not contain a pointin S¢, then xo € S°. These are tho only

possibilities.

13. An isolated point xop of S has a neighborhood V' that contains no other points of S.

Any neighborhood U of xq contains V' N U, also a neighborhood of x¢ (Exercise 10(b)),

s0S°NU #®. Since xg e SNU, xg9 €0S.

14. (a) If x¢ € dS and U is a neighborhood of x¢ then, (A) U NS # @. If x¢ is not a limit

point of S, then (B) U N (S — {x0}) = @ for some U. Now (A) and (B) imply that xo € S,

and (B) implies that x¢ is an isolated point of .

(b) If S is closed, Corollary 1.3.6 and (a) imply that 3S C S; hence, S=5SUdsS=S.1If
S = S,then dS C S. Since S° C S, S is closed, by Exercise 12 and Corollary 1.3.6.

1
15. False: 0 is a limit point of { - | n=12,... } , which consists entirely of isolated
n

points.

16. (@) If € > 0,then S N (B —¢,B) # Band S° N (B, B + €) # @. (b) If S is bounded
below and @ = inf S then« € 0S.

17. inf S and sup S are in 0.5 (Exercise 16) and dS C S if S is closed (Exercise 14).

18. Suppose thata € S and H = {r | r>0and (@ —r,a+r)C S}. Since S is open,
H # (0. 1If S # R then H is bounded. Let p = sup H. Then a — p and a + p are limit
points of S and therefore in S, which is closed. Since S is open, there is an € > 0 such that
(a—p—€,a—p+e€)and (a+p—€,a+p+e)arein S. Since (a —p +€/2,a+ p—¢€/2) C
S it follows that (a — p— €,a + p + €) C S, which contradicts the definition of p. Hence,
S =R.

19. (a) If x¢ is a limit point of 0.5 and € > 0, there is an x; in (x¢o — €, xo + €) N 3S. Since
(xo — €, x0 + €) is a neighborhood of x; and x; € 35, (xog —€,x0 + €) N S # @ and
(xo —€,x0 + €) NS¢ # @. Therefore, xo € dS and 95 is closed (Corollary 1.3.6).

(b) If xo € SO then (xg — €, x9 + €) C S for some € > 0. Since (xg — €, x9 + €) C S°
(Example 1.3.4), S° is open.

(c) Apply (b) to S€.

(d) If xg is not a limit point of S, there is a neighborhood of x¢ that contains no points of
S distinct from xo. Therefore, the set of points that are not limit points of S is open, and
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the set of limit points of S is consequently closed.

(e) (f )C = exterior of S, which is open, by (b). Hence, S is closed and (f ) = S from
(Exercise 14(b)), applied to S.

19. (a) If x¢ is a limit point of 0.5 and € > 0, there is an x; in (xo — €, xg + €) N 3S. Since
(xo — €, x0 + €) is a neighborhood of x; and x; € 35, (xog —€,x0 + €) N S # @ and
(xo —€,x0 + €) NS¢ # @. Therefore, x¢ is in dS and S is closed (Corollary 1.3.6).

(b) If xo € S°, then (xo — €, x9 + €) C S for some € > 0. Since (xg — €, x9 + €) C S°
(Example 1.3.4), S° is open.

(c) Apply (b) to S€.
(d) If xg is not a limit point of S, there is a neighborhood of x¢ that contains no points of

S distinct from xo. Therefore, the set of points that are not limit points of S is open, and
the set of limit points of S is consequently closed.

(e) (f)c = exterior of S, which is open, by (b). Hence, S is closed and (f) = S from
(Exercise 14(b)), applied to S.

21. Since H, = {(s —1,s+1) |s € S} is an open covering for S, S C U";=1(Sj -
1,s5; + 1) for some s; < s < --- < s, in §. Therefore, S C (s1 — 1,5, + 1), and
S is bounded. If S is not closed, it has a limit point xo & S (Theorem 1.3.5). Then
Hy = {(s —|s — xol/2.5 + s — x0]/2) |s € S} is an open covering for S, but if s1, s2,
..., Sparein S and 2§ = min{|si — Xxo| | 1<ic< n}, then (J;_,(si — |xo — si|/2,si +
|xo — si|/2) does not intersect (xo — 8, xo + &), which contains points of S. Therefore, no
finite subcollection of H, covers S.

22. (a) If t¢ € T and every neighborhood of ¢ _contains a point of S, tlfn either g € S
or fo is a limit point of S. In either case 79 € S. Consequently, 7" C S. Conversely, if
T CS=SUdS,anytin T isin S or is a limit point of S (Exercise 14(a)); in either
case, every neighborhood of #; intersects S.

(b) (a) with T = R (reals) implies that S is dense in R if and only if every real number is

in S oris a limit point of S. This is equivalent to saying that every interval contains a point
of S.

23. (@) x € (S; N S2)° & x has a neighborhood N C S; NS, & x € S? and
X € Sg & x € S?ﬂSg. (b)x e S?USS =X € S? orx € Sg => x has a neighborhood
N suchthat N C S;or N C S, = x has aneighborhood N C S;US; = x € (S;US»)°.

24. (a) x € 3(S1 U S2) = every neighborhood of x contains a point in (S; U S,)°¢
and a point in S; U S,. If every neighborhood of x contains points in S; N S», then
x € 051 NaS, C 9851 U dS,. Now suppose that x has a neighborhood N such that
N NSy = 0. If U is any neighborhood of x, thensois N N U,and N NU N S, # 0,
since N N U must intersect S; U S>. This means that x € 35S, C 951 U 0S,. A similar
argument applies if x has a neighborhood N such that N N S, = @.

(b) x € 9(S1 N S2) = every neighborhood of x contains a point in (S; N S3)¢ and
a point in S; N S,. If every neighborhood of x contains a point in (S7 U S3)¢, then
x € 051 NaS, C 9S; U dS,. Now suppose that x has a neighborhood N such that
N C §;. If U is any neighborhood of x, thensois N N U,and N N U N S5 # 9, since
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N N U must intersect (S7 N S3)¢. This means that x € S, C 9S; U dS,. A similar
argument applies if x has a neighborhood N such that N C S5.

(o If x € S, then any neighborhood N of x contains points x¢ in S and x; notin S.
Either xo € S or xo € dS. In either case N NS # @. Since x; € N N S¢, it follows that
x € 3S5; hence, 05 C 9S.
(d) Obvious from the definition of 9.S.
(e)
(S —T)=0d(SNT ) (definitionof S —T')
C dSUaIT® (Exercise 24(b))
=dSuUaIT (Exercise 24(d)).



CHAPTER 2

Differential Calculus of Functions

of One Variable

2.1 FUNCTIONS AND LIMITS

1. (a) If |x
(b) e¢? > 0 for all y, while —|x| < 0 for all x.

() 1+ x2+4 y2 > 0forall x and y.

(d) y(y — 1) = x? has two solutions for every x.
4. (@) lim x? +2x +1 =4

X2 4+2x +1—4|=|x24+2x=3| =[x —1||]x + 3]
<|x—1|(x—1]+4) <86 +4)

if |[x — 1] < 4. Given € > 0 choose § < min(1, €/5). Then

|x24+2x —4| < (¢/5)(1 +4) = ¢

if [x — 1] < 4.
. x3-8
(b) lim = 10. PROOF:
x—>2 x —2
x2 -8 5 5
> —10|=|x"+2x+4—-10| = |x* +2x — 6|
x_

< 1, infinitely many y’s satisfy sin y = x;if |x| > 1, no y satisfies sin y = x.

= |x —2[|x + 4] < |x —2|(]x — 2] + 6) < 85 + 6)

if |[x — 2| < 4. Given € > 0 choose § < min(1, €/7). Then

2 _
X 8_10
-2

< (/N1 +6)=¢ if |x—1]<8.

17
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x2
: - . — 2
(c))}g})xz_l_—l.PRoon ‘m+l‘—‘ﬁ‘.lf|x|<l/«/§thenl—x >
1
1/2,50 | = 1+1 < 2x2. Therefore 5 1+1 < eif|x| < 8 = min(1/+/2, /€/2).
x2 — x2—
(@ lim ¥ = 2. PrRoOF: |V -2 = || c P Ao < i
x—>4 ' ’ Jx+2 2
|x — 4] < § = 2e.
(e)Since x> — 1 =x2 4+ x + 1,
2 1 2 1 -2 2x2% — 1
TS P N e o e 1 C S R et T ST
x—=2 x—=2 x—=2
We show that lirn1 f(x) =-2.
x—>
2x2—x +1 2x2—x+14+2(x-2) 2x2+x-3 (x—12x+3
s XA (-2) _ _ (= D@x +3)
x—=2 x—=2 x—=2 x—=2
if x # 2. Therefore
2x + 3 .
[f(x)+2] =|x—1] x—Z‘ if x#I. (A)
To handle the multiplier
2 2(x —2
x+3: (x )+7:2+ 7 ’
x—=2 x—=2 x—=2

we first restrict x to the interval (1/2,3/2) (so |x — 1] < 1/2). On this interval

12<2+ l < 8
x—2 3’

2x + 3
x—2

‘<12.

From this and (A), | f(x) + 2| < 12|x — 1| if 0 < |x — 1] < 1/2. If € > 0 is given, let
8 = min(e/12,1/2). Then | f(x) + 2| <€ if 0 < |x — 1] < 6.

5. If lim f(x) = L according to Definition 2.1.2 and €’ > 0, there is a § > 0 such that
|f(x)x—)z)| < €'if 0 < |x — x¢| < 8. Let € = Ke to see that lim f(x) = L according to
the modified definition. If xl_igcl0 f(x) = L according to the m):)dixf;)ed definition and €’ > 0,

thereis a6 > O such that | f(x) — L| < K€’ if 0 < |[x — xo| < §. Let €’ = €/K to see that
lim f(x) = L according to Definition 2.1.2.

X—>X0

Xt {O ifx <0, If € and § are arbitrary positive numbers,

7. (a) If x # 0 then . =

2ifx > 0.

then‘w—0‘=0<eif—8<x<0and LIx|—2‘=0<eif0<x<és.
X X

Therefore lim X+ || =(0and lim X+ || = 2.

x—>0— X x—>0+ X
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1 1 1
(b) Let f(x) = xcos— + sm — + sin ﬁ We first observe that lir%xcos - =0,
X xX—> X
1
since if [x| < § < e then |[xcos —| < |x| < €. If x < Othen f(x) = xcos— (since
X X
1 1
sinu = —sin(—u)), so lir(r)l f(x) = 0. If x > 0 then f(x) = X cos — + 2sin —.
x—>0— X
Therefore 11rn f(x) = 0 does not exist, because if it did we would have hr(r)l+ 2sin — =
X—> X
1
li — i = i = i hich is i ible si
Jim fx) lim x cos — < Jim fx)—0 Jim f(x), which is impossible since

1
2 sin — oscillates between +2 as x — 0+.
X

(©)
! 1
>
k-1 k=1 kg2 " )
x24+x—-2 (x+2)x-1 1
—_—) x<1
x+2
1 1 -1 -1
lim = —, since =2 < X |<eif|x—1|<min(l,6e).
x>1x+2 3 +2 3 3(x +2) 6
This and (A) imply that
|x —1] 1 |x — 1] 1
im ——=- and lim —/——— =——.
x>+ x24+x—-2 3 x—>1-x2 4+ x —2 3
@ fo) = 2522 T3 (e — 1) is undefined if x < 2,50 lim f(x)
X) = —— = VJx x — 1) is undefined if x < —2, so lim X
\/X+2 xX—>—2—

does not exist. If x > —2 then |f(x)] = /x+2|x — 1] < J/x+2[x +2-3| <
Vx +2 (Jx + 2|+ 3). Therefore if § < min(1,€2/4) then |f(x)| < € if 2 < x <
—2+4§. Hence lim f(x)=0.

x—>—2+
8 If lim h(x) = —p (p > 0), let ¢ = p/2 in Definition 2.1.5(a). Then there is a

X—>X0)—
§>0 sucoh that |h(x) — (—p)| < p/2if xo —8 < x < xo. This is impossible since
|h(x) = (=p)| = h(x) + p = pif h(x) = 0.
9. (a) Letting € = 1 in Definition 2.1.2, we see that thereis a p > 0 such that | f(x)—L| <
I,so|f(x)| < |L|+1,if 0 < |x — xo| < p. (b) For “xlixmo ” the set is of the form

(xo — p, x0). For “ lim ” the set is of the form (x¢, x¢ + p).
X—>X0+4

10. (a) Let P, be the proposition that lim [f(x)]" = L". P; is true by assumption. If
X—>X0

n > 1and P, is true then lim [f(x)]"*! = ( lim [f(x)]") lim f(x) (by Eqn. (12))=
X—x0 X—>XQ X—>XQ
L™L (by P,)= L"*!, which proves P,,.

n—1
(b) In the identity u” — v" = (u — v) Z u v" 17 letu = f(x)and v = L to obtain
r=0
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n—1
A [fO)"=L" = (f(x)— L) Z[f(x)]’L"_l_'. From Exercise 9, thereisa p > 0
r=0
such that | f(x)| < |L|+ 1if 0 < |x — xo| < p; hence (A) implies that |[ f(x)]" — L"| <
K|f(x)— L|if 0 < |x — x0| < p, where K is a constant. If ¢ > O there isa é; > 0
such that | f(x) — L] < € if 0 < |x — xo| < 81. Therefore |[f(x)]" — L"| < Ke if
0 < |x — xo| < min(p, 7).

1. Write | /700 = VE| = | £(0) — LI/ (VT + V) = /(x)~ LI /I and apply
Definition 2.1.2.

12. Use Definitions 2.1.2 and 2.1.5.

14. xlimoo f(x) = L if f is defined on an interval (—oo, b) and for each ¢ > 0 there is a

number « such that | f(x) — L| < e if x < «.

15. (a) xlgrolo = 0 because <eifx > 1/4/€.

x2+1 x2+1

sin x sin x

. 1 .
(b) lim fx—a<61fx>m.

= 0if ¢ < 0 because
X—>00 |x|’1

assumes the values =1 on

. sinx Lo . sin x
(¢) lim —— does not exist if @ < 0 since, for example,
x—o00 X% X«

very interval [a, 00).
(d) lim e *sinx = 0 because |e *sinx| = e¢™ < eifx > —Ine.
X—>00

(e) lim tanx does not exist because tan x is not defined on [a, co) for any a.
X—>00

. 2 . 42 —(r—1)2
(f) lim e e?* = 0 because if € < e then e ™* €2* = ee~ &1
X—>00

V1In(e/e).

16. For “ lim " statements such as “there is a § > 0 such that | f(x) — L| < € if 0 <

X—>00
|x — x0| < §” would be changed to “there is an « such that | f(x) — L| < € if x > «,”; for

“ lim " the last inequality would be replaced by “x < «.”
X—>—00

<eifx > 1+

19. (@) lim f(x) = —ooif f is defined on an interval (a, xo) and for each real number
M thergi—;xz?g > 0 such that f(x) < M if xo — 8 < x < Xxo.

(b) . lixrn f(x) = ooif f is defined on an interval (xo, b) and for every real number M
there—;s gt? > 0 such that f(x) > M if xg < x < x¢ + 8.

(© . lixrn f(x) = —ooif f is defined on an interval (x¢, ») and for every real number M
there—;s (:8 > 0 such that f(x) < M ifxg < x < x¢ + 6.

21.(a) lim f(x) = ooif f is defined on a deleted neighborhood of x¢ and, for every real
numberx]l—/)l)iothere isad > Osuch that f(x) > M if0 < |x — xo| < 4.

(b) lirn f(x) = oo if f is defined on a deleted neighborhood of x¢ and for, every real
nunfbe;(}l/l, thereis a § > 0 such that f(x) < M if 0 < |x — xo| < 8.

23. (a) xlgrolo f(x) = oo if f is defined on an interval (a, co) and, for every real number
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M, there is an « such that f(x) > M if x > «.
(b) lim f(x) = —ooif f is defined on an interval (—oo, b) and for, every real number
M,)tcl:e;gois an « such that f(x) < M if x < «.
25. Suppose that L is finite and € > 0. Since lim f(x) = L, there is an @ € (a, 00) such
that | f(x) — L| < e if x > «. Since xlgrolo ;(—;co)o = oo, thereis a y € (c, 00) such that

g(x) > aif x > y. Therefore | f(g(x)) — L| < eif x > y, s0 xlgrolo flgx)) =L.
Now suppose that L = oo and M is arbitrary. Since lim f(x) = oo, there is an @ €
(a, o0) such that f(x) > M if x > «. Since lim g(x)x;oooo, there is a y € (c, 00) such
that g(x) > « if x > y. Therefore f(g(x)) >x]\—/>lo?fx >y, S0 xli>r1010 f(g(x)) = oo.

The proof where L = —o0 is similar to this.
26. (a) Suppose that lim f(x) = L, and choose § > 0 so | f(x) — L| < €/2if 0 <
X—>X0

|x—x0| < 8. If x1 and x5 are in (xg—§, xo+§8) and distinct from x¢, then | f(x1)— f (x2)| <
| f(x1) — L]+ |L — f(x2)| < €9, a contradiction. Hence lim f(x) does not exist.
X—>X0

EEIT3

(b) Replace “every deleted neighborhood of x¢” by “every interval (xo, b),” “every interval

(a, x0),” “every interval (a, 00)”, and “every interval (—oo, b)”, respectively.
28. Let M be arbitrary. If —oo < L1 < L = 00, choose § > 0 so that f(x) > L; — 1
and g(x) > M — L, + 1if 0 < |x — xo| < 8;if L1 = Ly = o0, choose § > 0 so
that f(x) > M/2 and g(x) > M/2if 0 < |x — xo| < §. Then (f + g)(x) > M if
0<|x—x0| <8,s0 lim (f + g)(x) =00 =L; + L,.

X—>X0

If —oo = L1 < Ly < 00, choose § > 0sothat g(x) < L+ land f(x) <M — L, —1
if 0 < |x —xo| < &;if Ly = L, = —oo choose § > 0 so that f(x) < M/2 and
g(x) < M/2if0 < |x —x0] < . Then (f + g)(x) < M if0 < |x — xo| < §, s0
lim (f + g)(x) = —o0 = L1 + L».

X—>X0

29. Suppose that L; = 00,0 < p < Ly < 0o, and M > 0. Choose 7 so g(x) > p and
f(x) > M/pif x > t;then (fg)(x) > M if x > 1, 50 xli)rgo(fg)(x) =o00 = L;- L.
Similar arguments apply to the other cases.

30. (a) Let M be arbitrary. Suppose that L; = oo. If 0 < L, < oo choose § > 0 so
0 < g(x) <3L/2and f(x) > 2M/3L,if 0 < |x — xo| < §. Then (f/g)(x) > M if
0 < |x —x0] < 8,80 lim (f/g)(x) = 0o = Ly/L,. Similar arguments apply to the other
X—>X0

cases where L1 = £ooand 0 < |Ly| < oo.
Now suppose that |L;]| < oo and |Lz| = oo. If € > 0 choose § > 0so | f(x)| < |Li|+1
and |g(x)| > (|L1| + 1)/eif 0 < |x — xo| < 8. Then |(f/g)(x)| < €if 0 < |x — x| < 8,
so lim (f/g)(x) =0 = Ly/Ls.

X—>X0
(b) ( lim sin x) /( lim cos x) = 1/0 = oo is not indeterminate but

x—>m/2 x—>m/2
lim tanx = —oocand lim tanx = o0,s0 lim tan x does notexist in the extended

x—m/2t x—>m/27 x—>m/2
reals.
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32.
—n —n+1 .
lim r(x) = ( lim x"_m) lim 0% rax Hoe
X—00 X—00 x—00 hox ™M + blx—m‘l'l + oo+ by
0 ifn <m,
7 .
= lim a—nxn_m = E ifn = nt,
x=00 by oo ifn>manda,/b, >0,
—oo ifn > mand a,/b, <O.
Similarly,
0 ifn <m,
n ifn=m
a — ifn =m,
lim r(x)= lim —x""" ={b,
*¥——oo x=~>=00 by, =D ™ oo ifn >manday,/b, >0,

(=) ™*loo ifn >manda,/b, <O.

33. lim f(x) = lim g(x) forall x in (a, b). Proof: If lim f(x) = L and € > 0, there
X—>XQ xX—X0 xX—>X0

isad > Osuchthat | f(x) — L| < €if 0 < |x — xo| < §. Since x¢ is not a limit point
of S, there is a ; such that 0 < §; < § and g(x) = f(x) if |[x — xo| < 81. Therefore
lg(x) — L| < €if 0 < |x —x0] < 81,50 lim g(x) = L.

X—>X0

34. (b) We first prove that f(a+) = B. If M < f there is an x¢ in (a, b) such that
f(x0) > M. Since f is nonincreasing, f(x) > M ifa < x < xo. Therefore, if § = o0
then f(a+) = oco. If B <ocolet M = —e wheree > 0. Then B —€ < f(x) < +¢,
)

|f(x)—Bl<e if a<x<xp. (A)

If a = —oo this implies that f(—o0) = B. If a > —oco let § = xo — a. Then (A) is
equivalent to
|f(x)—Bl<e if a<x<a+3d,

which implies that f(a+) = S.

Now we prove that f(b—) = «. If M > « there is an x¢ in (a, b) such that f(x9) < M.
Since f is nonincreasing, f(x) < M if xo < x < b. Therefore, if @ = —oo then
f(b—) =—oo0. Ifa > —ocolet M = o + € where € > 0. Then ¢ < f(x) < o + €, s0

| f(x)—a| <e if xo<ux<b. (B)
If b = oo this implies that f(c0) = «. If b < colet § = b — xo. Then (B) is equivalent to
|f(x)—a| <e if b—8<x<b,

which implies that f(b—) = «.
(c) Applying (b) to f on (a, x¢) and (xo, b) separately shows that

flro) = _inf f(x1) and = flxo+) = sup flx2).

a<x|<x x0<x2<b
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However, if x; < xo < x2 then f(x1) > f(xo) > f(x2); hence f(xo—) > f(xo) >
Sf(xo+).

36. (@) 17 (x;x0) < Syr(x;x0),a < x < Xg,soapplying Exercise 8 to h(x) = S (x; x9)—
I (xixo) yields lim f(x) = Tim f(x).

X—=>X0—

(b) I_r(x;x0) = x<itn<fx (=f(@) =— sup f(t) = —=Sr(x;x0). Therefore

X=<t<XxQ

lim (—f)(x) = lim I_r(x;x9) =— lim Sy(x;xo) =— lim f(x).
X—>X0— X—=>X0— X—>X0— X—>x0—

S_p(xix0) = sup (—f() = —x<itn<fx f (@) = —1I7(x;xp). Therefore

X=<t<XxQ

lim (—f)(x) = lim S_s(x;x0) =— lim Ir(x;xo) =— lim f(x).
X—>Xx0— X—>Xx0— X—>xp—e X—>X0

(¢) Let € > 0. Suppose that (A) lim f(x) = lim f(x) = L. Then thereisan § > 0
X—=>X0—

X—=>X0—

such that
L—e=<1Is(x;x0) <Syp(xixo) <L+e€, xo—8<x<xo. (B)
Since I ¢ (x;x9) < f(x) < Sy(x;xp), this implies that
L—e< f(x)<L+4+e¢€, x9—08<x<xp; ©

hence xlixm_ f(x) = L. Conversely, if xllgcl f(x) = L then (C) holds for some § > 0.
But (C) im(;lies (B) and (B) implies that L _0 e < lim f(x) < x@_ ey < L
(Exercise 8). This implies (A). x—>x0— o

37. () Spig = sup () +g() < sup f()+ sup g(t) = Ss(x;xo) +

x§t<x0—_ X=Zt<xo— XZt<x9—
Sg(x;x0). Therefore lim (f 4+ g)(x) = lm Syri.(x;x0) < lim Sp(x;xo) +
X—>Xx0— X—>Xx0— X—>x0—
lim Sg(x;x0) = lim f(x)+ lim g(x)
X—>Xx0— X—>Xx0— X—>Xx0—

(b) Applying (a) to — f and —g yields
Tm (~(f +g) () = _Tm (- + Tm_(~g)(x).
—>X0 X—>X0 X—>X(Q
Now Exercise 36(b) implies that

— lim (f +¢(x) =— lim f(x)— lim g(x),

X—>x0— X—>x0— X—>Xx0—

SO
lim (f +¢)(x) = lm f(x)+ Lm g(x).

X—>Xx0— X—>Xx0— X—>Xx0—
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(c) Write f — g = f + (—g), and use (a) and (b) and Exercise 36(b) to show that

Tm (f-9(0) = Fm f(x)— lim g(x)

X—=>X0—

and
lim (f —@)(0) > lim f(x)— Tim_g(x).

X—>Xx0— X—>Xx0—

38. Necessity: If lim f(x) = L and € > 0, thereisa § > O such that | f(x) — L| < €/2
X—=>X0—

if xo —38 < x < x¢; hence | f(x1) — f(x2)] < |f(x1) — L| + |f(x2) — L] < €if
X0 —8 < X1, x2 < xo. Sufficiency: First let ¢ = 1 and note that there is a §o > 0 such
that | f(x1) — f(x2)] < 1if xg — 8o < x1,x2 < Xx9. Choose a in (xg — &g, Xo). Then
|f(x)] < 14+ |f(a)|ifa < x < xp; that is, f is bounded on (a, x¢). Now suppose
that € > 0, and choose § < &g so that | f(x1) — f(x2)| < € if xg — &, x1,x2 < Xop.
Then 0 < Sy(x;x9) — L7 (x;x0) < €if xg —8 < x < xp. Letting x — xo— yields
0 < x@ f(x) — lim f(x) < €, which implies that x@ f(x) = lim f(x).
—>Xx0— —>XxX0—

X—>Xx0— X—>Xx0—

Hence lim f(x) exists (finite) by Exercise 36(c).
X—>X0

39. For xo < x < b, define Sy (x;x0) = supy, <<y f () and I s (x; xo) = infx<r<x, /(7).

Then lim f(x) = lim Sr(x;xg) and lim f(x) = lim [Iz(x;xo). The exis-
x—>x0+ x—>x0+ X—Xx0— X—=>X0—
tence proofs are similar to those in Theroems 2.1.11 and 2.1.12.

40. Similar to the solution of Exercise 36(c).
41. Use Theorem 2.1.6 (in the extended reals), and Exercise 36(c) and Exercise 40.

2.2 CONTINUITY

1. Just invoke Definitions 2.1.2 and 2.1.5 with L = f(xo).
2. Apply Theorem 2.1.6 L = lim f(x),L = lim f(x),and L = f(xo).
X—=>X0— x—=>x0+

6. Let xo be an arbitrary real number. Since every interval contains both rational and
irrational numbers (Theorems 1.1.6 and 1.1.7), every interval containing xo contains a point

x such that | f(x) — f(x0)| = 2. Therefore lim does not exist, so f is not continuous at
X—>X0

X0-

7. If xo = p/q where p and ¢ are integers with no common factor, then f(xo) = 1/q,
while every neighborhood of x contains a number x (irrational) such that | £ (x)— f(xo)| =
1/q. Therefore f is discontinuous at every rational. If xg is irrational, then f(x¢) = 0.
Given € > 0, choose § > 0 so small that the interval (xo — 8, xo + &) contains no rational
0 if x is irrational
l/q ifx=p/q.

In either case | f(x) — f(x0)| < €. Hence, f is continuous at every irrational.

8. Let Aq, A2, ..., A, be the distinct values of f. Suppose f(xp) = A; and

p/q withqg < 1/€. If x is in this interval, then | f(x)— f(xo)| =

O<e<min{|)&i—k‘,~||i§jfn,j;éi}.
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If f is continuous at xg, there is a § > 0 such that | f(x) — f(xo)| < € if |x — xo| < 6.
Therefore f(x) = f(xo) if |[x — x0| < 8. The converse is obvious.

9. Suppose Y7 is continuous at xo. Then Exercise 8 implies that 7 is constant on some
interval I = (xo — 8, xo + §). Therefore I C T (so xg € T®) if xo € T, and I C T¢ (so
X0 € (TC)O) ifxo eTe.

Conversely, suppose that x¢ € T°. Then I = (xo —8,x0+96) C T9 for some § > 0,
so Yr(x) = 1 for all x € I, which implies that f is continuous at xo. Now suppose
xo € (T€)°. Then I = (xo — 8, x0 + 8) C (T¢)° for some § > 0, so Y7 (x) = 0 for all
x € I, which again implies that f is continuous at xo. Hence, f is continuous at every xg
in 7% U (T°)°.

10. Let h = f — g and suppose x¢ € (a,b). We must show that i(xo) = 0. Let € > 0.
Since £ is continuous on (a, b), there is a § > 0 such that (A) |h(x) — h(xo)| < € if
|x — xo| < 8. By assumption, 2(x) = 0 for some x in (xo — §, xo + 8), so (A) implies that
|h(x0)| < €. Since this holds for every € > 0, h(xg) = 0.

11. Suppose € > 0. From (a) there is a p > 0 such that (A) |g(u)| < € if 0 < |1 —u| < p.
If x, xo > 0 and |x — xo| < § =4f pxo then |1 — x/xo| < p, SO

lg(x) — g(xo)| = |g [xo(x/x0)] — g(x0)
= [g(x/x0) + g(x0) — g(xo)| (from (b))
=|g(x/x0)| <€ (from (A)).

Hence, g is continuous at x.

12. Suppose € > 0. From (a) there is a § > 0 such that (A) | f(u) — 1| < €if 0 < |u| < 6.
If x, xo > 0 then (b) with x; = x —x¢ and x = xo implies that f(x) = f(xo) f(x — Xxo).
Therefore | f(x) — f(x0)| < |f(x0)|]|f(x — x0) — 1|. Now (A) with u = x — x¢ implies
that | f(x) — f(x0)| < |f(x0)|e if |x — xo| < 6. Hence, f is continuous at xo.

13. (a) Write sinhx = (e* —e™)/2 and coshx = (e* + e™*)/2; then use Exercise 12
and Theorem 2.2.5.

(b) tanh x is continuous for all x, coth x for all x # 0.

14. Suppose € > 0. From (a) there is a § > 0 such that (A) [c(u)—1| < €if 0 < |u| < 6. If
x, xo > 0 then (b) and (c) imply that (s(x) —5(x0))? + (c(x) —c(x0))? = 2(1 —c(x —Xp));
hence, |s(x) — s(x0)] < +/2(1 —c(x —xp)) and |c(x) — c(x0)| < /2(1 —c(x — x9)).
Therefore (A) implies that |s(x) —s(xo)| < +/2€ and |c(x) —c(xo)| < v/2€ if |x —x0| < §.
Hence, ¢ and s are continuous at xg.

15. (@) If € = (f(xo) — p)/2, there is a § > 0 such that | f(x) — f(x¢)| < €. Therefore
f(x) = fxo) —€ = (f(xo) +p)/2> pif [x —xo| <Sand x € Dy.

(b) Replace “>" by “<” in (a).

(¢) If f(x¢) > u, (a) implies that f(x) > w in some neighborhood of x¢. This contradicts
the assumption that f(x) < u for all x.

16. (a) Suppose € > 0. Since f is continuous at xo, there is a § > 0 such that | f(x) —
f(xo)| < €if |x — xo| < 8. Since ||f(x)| — |f(x0)|| < | f(x) — f(x0)], it follows that
||f(x)| — |f(x0)|| < e if |x — xo| < §. Therefore | f| is continuous at x.
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(b) No; in Exercise 6, | f| is continuous and f is discontinuous for all x.

17. Theorem 2.1.9 implies (a) and (b) of Definition 2.2.4, so any discontinuities of f must
be jump discontinuities. The only remaining requirement of Definition 2.2.4 is that there
be only finitely many of these.

18. See the proof of Theorem 2.1.4.

19. (a) The proposition is true for n = 2, by Theorem 2.2.5. Suppose it is true for some
n > 2andlet f1, f3,..., fut1 becontinuouson S. Since f1+ fo+ -+ fu+1 = (1 +
fo+--+ fu)+ fat1, Theorem 2.2.5 with f = fi + fo+---+ fn and g = f,4+1 implies
that f1 + f2 +---+ fu+1 is continuouson S. Since f1 fo -+ fux1 = (12 fu) fu+1,
Theorem 2.2.5 with f = fi f2--- fn and ¢ = f,41 implies that f1 f> - -+ f,+1 is continu-
ous on S. This completes the induction.

(b) Since ax* is continuous everywhere if a is a constant and k is a nonnegative integer,
(a) implies that ag + a1 x + - -+ + a,x™ and bg + by x + - -- + by x™ are both continuous
everywhere. Therefore Theorem 2.2.5 implies that 7 (x) = (@0 +a1x + -+ -+ anx™)/(bo +
bix + -+ + by x™) is continuous wherever by + byx + -+ + by x™ # 0.

20. (a) Suppose € > 0. There are two cases to consider: (I) f1(x9) = f2(xo); and (I)
Si(xo0) # f2(xo).

CASE L. If f1(x9) = fa(x0) = K, choose § > 0 so that | f;(x) — K| < e (i = 1,2) if
|x — xo| < 8. Since for any x either | F(x) — F(xo)| = | fi(x) — K| or | F(x) — F(x0)| =
| f2(x) — K|, it follows that | F'(x) — F(x0)| < € if |x — xo| < 6.

CASE IL. If fi(x0) # f2(x0), assume without loss of generality that f>(xo) > fi(xo).
Since f, — f1 is continuous at x¢, Exercise 15(a) implies that there is a §; > 0 such that
if |[x — xo| < 81 then f2(x) > fi(x), and therefore F>(x) = f2(x). Now choose &3 so
that 0 < 8, < 81 and | f2(x) — fa(xo)| < € if |x — xo| < 82. Now |F(x) — F(x9)| =
| 2(x) = f2(x0)| < €if |x — xo| < &>.

(b) Use induction. From (a), P, is true. Suppose that n > 2 and P, is true. Let F(x) =
max( f1(x),..., far1(x)), where fi, ..., fn+1 are all continuous at xo. Then F(x) =
max(g(x), fu+1(x)), with g(x) = max(fi(x),..., fa—1(x)), which is continuous at xg
by the induction assumption. Applying P to f, and g shows that F is continuous at xg,
which proves Ppy1.

22. (a) Since f is continuous at yg, there is €; > 0 such that (A) | f(¢) — f(yo)| < € if
|t —yo| < €1. Since yo = lim g(x), thereisad > 0 suchthat (B) 0 < |g(x)—yo| < €7 if
X—>X0
0 < |x—x0| < §. Now (A) and (B) imply that | f(g(x))—f(g(x0))| < €if0 < |[x—x¢| < §.
Therefore lim f(g(x)) = yo.
X—>X0

24. Suppose there is no x» in [a, b] such that f(x2) = B. Then f(x) < B forall x € [a, b].
We will show that this leads to a contradiction. Suppose ¢t € [a,b]. Then f(¢) < B,
so f(t) < (f(t) + B)/2 < B. Since f is continuous at ¢, there is an open interval
I; about ¢ such that (A) f(x) < (f(t) + B)/2) if x € I; N [a,b] (Exercise 15). The
collection H = {I, |a <t< b} is an open covering of [a, b]. Since [a, b] is compact,
the Heine-Borel theorem implies that there are finitely many points #1, f5, ..., #; such that
the intervals I;,, I1,, ..., I, cover [a, b]. Define f; = max {(f(t,v) +8)/2|1<i< n}
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Then, since [a,b] C Ui—,(I; N [a,b]), (A) implies that f(x) < B1 (@ <t < b). But
B1 < B, so this contradicts the definition of 8. Therefore f(x2) = § for some x5 in [a, b].
25. Let« = infS and B = supS. Then @ < B, since f is nonconstant. We first show
that (o, B) C S. If ¢ < y < B, there are points x1, X in [ such that @ < f(x1) <
¥y < f(x2) < B, by definition of & and 8. Applying Theorem 2.2.10 to [x1, x2] shows that
f(c) = y for some ¢ between x; and x,. Therefore (¢, 8) C S. Since y ¢ Sif y <@ or
y > B, S is one of the intervals («, B), [«, B), («, B], or [o, B]. (If &« = —o0 or B = o0,
this statement must be modified in the obvious way.) If I is a finite closed interval, then f
attains the values o and B on / (Theorem 2.2.9), s0 S = [«, f].

26. Let xo be arbitrary and suppose € > 0. Since f is increasing, f(g(xo) —€) <

f(g(x0)) < f(g(xo) + €). Let
€1 = min{f(g(x0)) — f(g(x0) =€), [f(g(x0) + €) — f(g(x0)))} -

Then €; > 0. Since f o g is continuous at Xy, there is a § > 0 such that | f(g(x)) —
f(g(x0))| < erif|x—xo| < 8. Thisimplies that f(g(xo)—€) < f(g(x)) < f(g(x0)+€)
if |x — xo| < §. Since f is increasing, this means that g(xo) —€ < g(x) < g(xo0) + €, or,
equivalently, |g(x) — g(xo)| < € if |x — xo| < §. Hence, g is continuous at xo.

27. Since f is continuous on [a, x] (@ < x < b), Theorem 2.2.9 implies that F is well
defined on [a, b). Suppose € > 0. Since f is continuous from the right at a, there is
adé > Osuchthat |[f(t) — f(a)| < eifa < x < a+ 8. Since F(a) = f(a), this
implies that | f(z) — F(a)| < €,s0 f(t) < F(a) +¢,ifa <t < x < a + §. Therefore
F(a) < F(x) < F(a) + €ifa < x <a + §,so F is continuous from the right at a.

Now suppose a < xo < b. If F(xo) > f(xo) then F(xo) > f(x) for x in some neighbor-
hood N of xg, so F(x) = F(x¢) in N; hence, F is continuous at xo. If F(xg) = f(xo)
and € > 0, there is a § > 0 such that | f(x) — F(xo)| < € if |x — xo| < 8. Then (A)
F(xo) — € < f(x) < F(xo) + €if |x — xo| < 8. Therefore F(xo) < f(t) < F(xo) + ¢
ifxo <t <x <x0+6,80 F(xg) < F(x) < F(xo) +€ifxg < x < x9 + 8. This
implies that (B) F(xo+) = F(xo). (A) also implies that F(x¢) —e€ < f(t) < F(xp) if
X0 —8 <t <x < xg. Therefore F(xg) —€ < F(x) < F(xg) if xo —8 < x < x¢. This
implies that (C) F(x9o—) = F(x¢). (B) and (C) imply that F is continuous at x.

28. For convenience we state the following definition of uniform continuity: Let K be any
given positive constant. Then f is uniformly continuous on a set S if for each € > 0 there
isad > 0suchthat | f(x)— f(x)| < Ke if x,x" € S and |x — x| < §. This is equivalent
to Definition 2.2.11.

For (a), (b) and (c), suppose that e > 0 and | f(x) — f(x')| < € and |g(x) — g(x)| < € if
|x —x'| <dand x,x" € S.

@ |(f £&)x) = (f £ = 1/ (x) = f(] + [g(x) —g(x)]) < 2€if |x —x'| < §

and x, x’ € S.
(b) By Theorem 2.2.8, there is an M such that | f(x)| < M and g(x)| < M forall x in S.

Therefore
I(f)(x) = (fO)] = [f(x)gx) = f(xNg()] + | f(x)glx) — f(x)g(x)
SM(f(x) = fOXD] +1g(x) — g(x)] < 2Me
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if[x —x'| <§and x,x" € S.

(c) Since |g| is continuous and nonzero on S, Theorem 2.2.9 implies that there is an m > 0
such that |g(x)| > m for all x in S. Now,

J()g(x") — f(x)g(x)

[(f/9)(x) — (f/)(x")] =

g(x)g(x’)
_ I &)et") = f(NgON] + [ (Ngx) = f(xNg)]|
lg(x)g(x")]
_ 18O x) = fOD + S (D] g (x") = g (x|
- lg(x)g(x")]

<2Me/m*  (with M as in (b))

if[x —x'| <§and x,x" € S.

(d) For (b) take f(x) = g(x) = x; then f and g are uniformly continuous on (—oo, 00)
(Example 2.2.13), but ( fg)(x) = x? (Example 2.2.15), which is not. For (c) take f(x) =
I, g(x) =x,and I = (0, 1].

(e) For fg, require that f and g be bounded on S. For f/g, require this and also that
|g(x)| = p>0forall xin S.

29. Suppose € > 0. Since f is uniformly continuous on S, there is an §; > 0 such that

lf) = fONl<e if [y—y|<8 and y,y €S. (A)

Since g is uniformly continuous on 7, there is a § > 0 such that (B) |g(x) — g(x)] < &1
if [x —x'| <8and y,y € T. Now (A) and (B) imply that | f(g(x)) — f(g(x"))| < € if
|x —x'| < 8and y,y’ € T. Therefore f o g is uniformly continuouson 7.

30. (@) Let [; = [a;,b;], wherea; < by < as < by < - < ap < by, and §y =
min {aj+1 —b; | 1<j<n-— 1}. If e > O thereisa §; > O such that | f(x) — f(x)| <€
if x and x’ € I; and |x —x’| < §;. Let § = min{8y, 81, ..., 8x}. If x and x’ are in U’}=11j

and |x — x’| < §, then x and x” are in the same I; and | f(x) — f(x')| <e.

(b) No. If f(x) =1for0 <x < 1land f(x) =0forl < x < 2, then f is uniformly

continuous on [0, 1] and (1, 2] but not on [0, 2].

31. (b) Consider f(x) = x on (—00, 00).

32. Suppose lim f(x) = L and € > 0. Choose R so that | f(x) — L| < ¢/2if x > R.
X—>00

Then | f(x1) — f(x2)| < € if x1,x2 > R. Since f is uniformly continuous on [a, 2R],

there isa § > O such that 0 < § < R and | f(x1) — f(x2)| < € if |x; — x2| < & and

a < x1,x3 < 2R. If a < x1,x2 and |x; — x3| < § then either a < x1,x; < 2R or

X1,x2 > R. Ineither case | f(x1) — f(x2)| <e.

33. (a) Since f(x) = [f(x/2)]? from (i), f(x) > O for all x. If f(x¢) = O, then

f(x) = f(x0) f(x —x0) = 0 for all x, which contradicts (i). Threfore f(x) > 0 for all x.

(b) From (ii) and induction, (A) f(mt) = (f(¢))™ if m is a positive integer. Since f(0) =

1 because of (i) and continuity (Exercise 12), (A) holds for m = 0. If m is a negative

integer, then 1 = f(0) = f(mt + |m|t) = f(mt)f(|Im|t) = f(mt)(f({))™; hence,
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f(mt) = (f())"™ = (f(¢)y™. Hence, (A) holds for all integers m. If r = p/q then
flgrx) = (f(rx))? (t =rxandm = qin(A)), while f(qrx) = f(px) = (f(x))? (¢ =
x,m = p in(A)). Therefore, (f(x))? = f(rx))?,s0 f(rx) = (f(x))?/4 = (f(x))".

(© If f(1) = 1, (a) implies f(r) = 1 for every rational r. Since f is continuous on
(—00, 00) (Exercise 12) and the rationals are dense in (—oo0,00), f = 1 on (—00, 00)
(Exercise 10).

(d) Let x; < r; < ry < x3, with ry and r; rational, and define €9 = p"2 — p"! = f(rp) —
f(r1) > 0 (by (a)). By continuity, there are rationals 7| and r} such that x; < r| < rq
and f(x1) < f(r}) + eo/2and r» < r) < xp and f(x2) > f(r}) — €o/2. Therefore
fx2) = f(x1) > f(ry) = f(r]) —€o = (f(ry) — f(r2)) + (f(r1) — f(r}) > 050 fis
increasing. If A > 0 then f(rg) = p"® > A for some rational ry. Since f is increasing,
f(x) > Aif x > pg. Hence, xlgIolo f(x) = oo. If € > 0 there is a negative rational r such

that f(r1) = p™! < €. Ifr < x < ry (rrational) then 0 < p" = f(x) < f(r1) < e.
Hence, 0 < f(x) <e€ifx <ry,so lim f(x) =0.
X—>00

34. Theorem 2.1.9(b) implies that the set ﬁf = {f(x) | x € (a, b)} is a subset of the open
interval (f(b—), f(a+)). Therefore

Ry ={f(B)}U Ry U{f(@)} C{f(B)}U(f(b-), fla+)) ULf(@)}. (A)

Now suppose f is continuous on [a, b]. Then f(a) = f(a+), f(b—) = f(b), so (A)
implies that Ry C [f(b), f(a)]. If f(b) < u < f(a), then Theorem 2.2.10 implies that
pu = f(x) for some x in (a, b). Hence, Ry = [f(b), f(a)].

For the converse, suppose Ry = [ f(b), f(a)]. Since f(a) > f(a+) and f(b—) = f(b),
(A) implies that f(a) = f(a+)and f(b—) = f(b). We know from Theorem 2.1.9(c) that
if f is nonincreasing anda < xo < b, then f(xo—) > f(xo) > f(xo+). If either of these
inequalities is strict, then R s cannot be an interval. Since this contradicts our assumption,
f(xo—) = f(x0) = f(xo+). Therefore f is continuous at xo (Exercise 2). We can now
conclude that f is continuous on [a, b].
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2.3 DIFFERENTIABLE FUNCTIONS OF ONE VARIABLE

fx) = flxo) =m(x = x0) _ f(x) = f(xo)

X — Xo X — Xo

1. Since — m, the conclusion follows from

Definition 2.3.1.
2. lim h(x) exists if and only if f”/(x¢) exists.

X—>X0

3. From Lemma 2.3.2, (A) f(x)— f(x0) = [f/(x0) + E(x)](x —xo) where lim E(x) =
X—>X0

E(xp) = 0. Choose § > 0 so that |E(x)| < f'(x0)if 0 < |x — x¢| < §. Then f’(x0) +
E(x) > 0if 0 < |x — xo| < &, so (A) implies that f(x) > f(x¢) if xo < x < xo + § and
f(x) < f(xo)ifxg — 68 < x < Xxo.
4. (a)Ifa < x < cand |h| < min(x —a,c—x),then f(x+h)— f(x) = p(x+h)— p(x),
o tim LEED =IO e —p)

h—0 h h—0 h
Ifc <x <band |h| <min(x —c¢,b— x), then f(x + h) — f(x) = q(x + h) —q(x), so
i LEED =S G g )
h—0 h h—0 h
(b) If f'(c) exists, then f must be continuous at ¢ This is true if and only if p(c) = q(c).
If this condition holds then f”(c) exists if and only if p’ (c) = ¢/ (c).

xktLifx >0,

5. Note that if k£ is a nonnegative integer, then xK|x| = .
2 34 | | _xk-l—l if x <O0.

Apply
Exercise 4.

6. Since f(x) = f(x)f(0), either f = 0 or f(0) = 1. The conclusion holds if f = 0. If
f(0) = 1and xy is arbitrary, then }}in(l)(f(xo+h)—f(xo))/ h = f(xo) }}in})(f(h)—l)/ h=
f(x0) f(0).
7. (a) Set y = 0 to obtain

[c(0) —1]c(x) —s(0)s(x) =0

s(0)c(x) + [c(0) — 1]s(x) = 0.
Since ¢2 + s2 # 0 (because a? + b2 # 0), the determinant of this system, [c(0) —1]% +
[5(0)]?, equals zero. Hence ¢(0) = 1, s(0) = 0, so fim—o C_(h) — lh}}in%) <) ;C(O) =

s(h) s(h) — 5(0) B

a and lim —= = lim
h—0 h h—0 h

= b. Therefore,

.c(x+h)—clx) . ch)—1 .os(h)
fim S =0 i (S5 -0 S0

s0 (A) ¢’(x) = ac(x) — bs(x). Similarly,

fim S = i (E52) =0 i 2

so (B) s'(x) = bc(x) + as(x).
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(b) The system (A) and (B) in (a) can be solved subject to the initial conditions c(0) = 1
and 5(0) = 0 to obtain c(x) = e%* cosbx, s(x) = e**sinbx.

8. (a) Write
fx) _ (f(x)—f(xo)) (g(x)—g(xo))
g(x) X — Xo X — Xo ’

and use Theorem 2.1.4.
(b) If £ (xo) and g, (xo) exist, f(xo) = g(xo) = 0,and g’, (xo) # 0, then x_l)i)rcrg+ (f(x)/gx)) =

f+(x0)/ g’ (x0). A similar result holds with “—" replacing “+.
9.

T (f+89x)—(f+8xo) .. flx)— f(xo0) . 8(x) —g(xo)
m = lim ——— + lim ————

X—>X0 X — Xo X—>XQ X — Xo X—>XQ X — Xo

= f'(x0) + &' (x0).

10. See the solution of Exercise 9.

11.
e /90 = (f/8)r0) _ | [(@)g(x0) = f(xo)g(x)
xX—x0 (x — xo) x=>x0 (X —x0)g(x)g(xo)
o )80) = f)g(o) + f(xo)g(xo) = f(xo)g()]
X0 (x — x0)g(x)g(x0)
L S0 = f(xo)
= lim lim
X—X0 g(x) X—X0 X — Xo
N S (x0) im iy 8©) —8(o)

g(xo) X—X0o g(x) X—X0o X — Xo
_ J'(x0)g(x0) — f(x0)g' (x0)
(g(x0))? ‘

12. P; is true, by Theorem 2.3.4. Suppose thatn > 1 and P, is true. If f(”+1)(x0) and
g(’”'l) (x0) exist, then f ™) and g(”) exist on some neighborhood N of x¢, P, implies that

n

fO" ) =) (:1>f ®(x)g" ™ (x) if xeN. (A)

m=0

Theorem 2.3.4 implies that

L (1@ 0) = FE DI ) + SO, xe N,
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Substituting this into (A) and rearranging terms yields

n

("D =Y (:1) [0 g @) + £ () ()

m=0

« n (m) (n—m+1) $ n (m) (n—m)+1
= mz=:1 (m B 1)f (x)g (x) + mz=:0 (m)f x)g (x)
= f(x)g(n+1)(x) + Z |:(mn— 1) + (Z)] f(m)(x)g("_m+1)(x)

m=1

+/0D (0)g(x)

n+1 n+1
=2 ( m )f(’”)(x)g(”"”“)(x), x €N,

m=0

from Exercise 1.2.19. Setting x = x¢ here yields Pj ;.

13. The “proof" breaks down if g(x) — g(x¢) has zeros in every deleted neighborhood of
xo. We first show that if this is so, then g’(xg) = 0. If ¢ > 0 there is a § > 0 such that
g(x) —glxo)

X — X0

Xo contains a zero of g(x) — g(xo), this implies that |g’(xo)| < €. Since € is an arbitrary
positive number, this implies that g’(xo) = 0. Therefore, it suffices to show that 4’ (x¢) =
0, as follows. Since f is differentiable at g(x¢), there is a §; > 0 such that

S) — f(g(xo0))
u — g(xo)

g (x0)| < €if 0 < |x — xo| < 8. Since every deleted neighborhood of

= f(gxo))| <1 if 0 < u—g(xo)l <6,

Sf) — f(g(xo0))
u — g(xo)

Now let € > 0. Since g’(xg) = 0, there is a § > 0 such that

<|f'gxo)| +1=M if 0<|u—glxo)| <8i. (A)

‘M <e if 0<|x—x9| <62 (B)

X — X0

Therefore, |g(x) — g(x0)| < €82 if |[x — xo| < §. Now choose § < min(82,81/€). If
0 < |x —x0| <8 and g(x) # g(xp), then 0 < |g(x) — g(x0)| < €6 < &1 (from (B)), and
(A) and (B) imply that

)= )| _ | 60) = 60 50 2600 e il <
x—=xo | | &) —gx) X — Xo neT
Since h(x) — h(xo) = f(g(x)) — f(g(x0)) = 0 anyway if g(x) = g(xo), it follows that

hx) —
‘M < Me if 0<|x—xo| <$.

X — X9




Section 2.3 Differentiable Functions of One Variable 33

Hence A'(xg) = 0.
14.If y = f(x) then

guo—gm):gww»—gwuw>:(ﬂm—fuw)*
y=Yo f(x) = f(x0) X —Xo ’
since g(f(x)) = x. Since g is continuous and x = g(y), x — Xxp as y — Yo; hence,

i g») —glo) .. (f(X)—f(xO)
im —————— = ]im | *¥Y—"F—~——

y—>Yyo y—2>Yo0 X—=>X0 Yy —=JYo

)4=Uf@n

15. (a) Suppose that € > 0. Since f’(a+) exists, f is differentiable on an interval (a, b)
and there is a § > 0 such that (A) | f"(a+) — f'(c)| < eifa < ¢ < a +§. Since f} (a)
exists, f is continuous from the right at a. Therefore, the mean value theorem implies that

ifa < x < b, then 7f(x; : /(@) = f/(c) for some c in (a, x). This and (A) imply that
S =J@ _ f'(c)| < €ifa < x < a+3§. Therefore, f{(a) = lim f) = /@ =

X —a x—a+ X —a
f'(a+).

(b) Let f(x) = {_}’ iig’ Then f'(x) = 0if x > 0, so f'(04+) = 0; however,

- f( 1—(-1 2

SO-fO© 1D _2.
X X X

(¢) To prove: If f'(a+) exists and f is continuous from the right at a, then f|(a) =

f'(a+). Under these assumptions we can apply the mean value theorem as in (a).

16. If | f'(x)|] < M for x € (a,b), then | f(x2) — f(x1)| < M|x; — xo| for x1, xo €
(a, b) (Theorem 2.3.14). Now use Exercise 2.1.38 and the analogous statement concerning

f+1(0) does not exist, since

xlgcr(}-l- (-
. M’ a < x S b’ . . .
17. The function g(x) = X—a is continuous on [a, b], and & is
fi(a). x =a,

between g(a) and g(b). Hence, g(c) = p and therefore f(c) — f(a) = p(c —a) for some
¢ in (a, b) (Theorem 2.2.10).

18.If fi(a) < p < W then f(c) — f(a) = pu(c — a) for some c in (a, b), by
fb) - f@)
Exercise 17. If M <p< flb)letgx)y =3 b—a a<x<b,
e £ ). x=b,

which is continuous on [a, b]. Since g(a) < pu < g(b), Theorem 2.2.10 implies that
g(c) = p and therefore f(c) — f(b) = u(c — b) for some c in (a, b).
sinx cos0

19. (a) Exercise 8, implies that lir% =— = 1. Therefore, if we define f(0) = 1,
X—> X

then f is continuous at 0.

(b) If x #£ 0, then f(x) = MY and flx) = cosx X Solving these two equations

X X x2



34 Chapter 2 Differential Calculus of Functions of One Variable

for sin x and cos x yields sinx = xf and cosx = xf’ 4+ f. Since sin®> x + cos>x = I,

(14 x2) 2+ x2(f")? +2xff’ = 1. Therefore, if ¥ # 0 is a relative extreme point of £,

then (A) | f(¥)] = (1 + X2)~"/2. Notice that this also holds if ¥ = 0, from (a).

(¢) Since lim f(x) = lim f(x) =0, |f| attains a maximum at some X. Hence (a) and
X—>00 X—>—00

(b) imply that | f(x)| < 1, with equality if and only if x = 0.

. . . . . . . sinnx ncosnkmw
20. (a) Since sinnknm = sinkm = 0, Exercise 8, implies that lim = =

x—km 1 sin x ncoskm
(=1)=VX_ Therefore, if we define f(kx) = (—1)® V¥ then f is continuous at k.
(b) If x # km then f(x) = sm.nx and f'(x) = _o8 x. 312nnx CO,S . Solving these
nsinx nsin” x sin x

two equations for sinnx and cos nx yields sinnx = nf sinx, cosnx = f’sinx+ f cos x.
Since sin? nx + cos?nx = 1,

£+ @* = Dsin? x] + (f)?sin® x + 2ff'sinxcosx = 1.
Therefore, if X # 2k 7 is arelative extreme pointof f,then | f(x)| = [1 + (n? = 1)sin® f]_l/z.
Notice that this also holds if X = kr, from (a).

() Since f(x +2m) = f(x), | f] attains its maximum at some X in [0, 27]. Either ¥ = 0,
X = 2m,or f/(x) = 0. Hence (a) and (b) imply that | f(x)| < 1, with equality if and only
ifx =km.

21. Trivialif p = 1. If p > 1 let x; < x2 < --- < xp. From Rolle’s theorem, f’ has at
least one zero in (x;, X;+1), | <i < p — 1. This accounts for at least p — 1 zeros of f’. In
addition, f’ has at least n; — 1 zeros, counting multiplicities, at each x;. Therefore, f” has
atleast (ny — 1)+ (m2—1)+---+ (np, — 1)+ p—1 = n—1 zeros, counting multiplicities,
in 1.

23. Let x1, X2, ..., Xy and y1, ¥2, ..., yn bein (a,b) and y; < x;, 1 <i < n. Show that
n n

if f is differentiable on (a, b), then Z[f(xi) — fOol = f(©) Z(xi — y;) for some ¢
i=1 i=1

in (a, b).

1
|x|3/2sin—, x#0
X
0, x =0.

3 |x]3/? 1 1 1 3/25in(1
3P Gn (1) = L cos (L), since £70) = tim XSO e
2 x X |x|1/2 X x—0 x

ferentiable on (—oo, 00). However, f does not satisfy a Lipschitz condition at xo =
0. To see this, we exhibit a set of points {xz}72 , with O as a limit point such that

24. Counterexample: Let f(x) = § If x # 0, then f/(x) =

fim | L) = SO0 = 2/ @k 1)mk > 0. Then £(xi) = (—1kx?,
isc(?oo Xe+1 — Xk

S k1) — f(xk)

Xk+1 — Xk

3/2 3/2 3/2
_ Y1 T X% - 2x55 =2k +1) ;
Xk — Xk41 X — X1 2k +3)’

which approaches oo as k — oo.
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25. @ W' = flg' + g — ¢ — f¢" = —p(fg — fg) = Oforall xin (a,b), so
Theorem 2.3.12 implies that W is constant on (a, b).

(b) Since W # 0, g(x1) # 0 and g(x2) # 0. If g has no zeros in (x1, x2), then s = f/g
is continuous on [x1, x;] and differentiable on (x1, x3). Since £(x;) = h(xz) = 0, Rolle’s
theorem implies that 2’ = W/g? vanishes somewhere in (x1, x»), a contradiction.

— £(0 — —J=x
2. tim LSO VY and tim LSO SV
x—0+ x—0 x—>0+ X x—>0— x—0 x—=0— X
so f/(0) = oo.
x 20
27. Counterexample: f(x) = m’ Y * and xo = 0; f is not continuous at 0, but
0, x =0,

1
f/(0) = lim — = oo.
x—>0 |x|

28. (a) The equation of the tangent line to y = h(x) at (xo, h(x0)) is (A) y = h(xo) +
' (x0)(x — xo). Since h(xo) = f(x0)g(xo) and i’ (x0) = f'(x0)g(x0) + f(x0)g (x0) =
f(x0)g' (x0) # 0, from our assumption, (A) can be rewritten as (B) y = f(x0)[g(x0) +
g'(x0)(x — x0)]. The equation of the tangent line to y = g(x) at (xo, g(x¢)) is (C) y =
g(x0) + g’ (x0)(x — xo). From (B) and (C), both tangent lines intersect the x-axis at

T = xo— g(xo)
g'(x0)
. — X0 — X1
(b) Apply (a) with g(x) = x — x1,80 X = x¢ — 1 = X1.
— 2 —
(c) Apply (a) with g(x) = (x — x0)%, 50 X = x¢ — M = X0 — M =
Z(X() — xl) 2
Xo + X1
7

b
(d) Let f(x) = ax? + bx + c. Then f’'(x) = 2ax + b, s0 xog = =y is a critical point

a
b2 —4ac
P # 0. Now apply (b)
(e) The assumptions imply that / is as in (d), where y = x; and « and 8 are the zeros of
f(x) = ax? + bx + ¢, witha # 0. Since « and B are distinct, b> — 4ac # 0. Therefore,
(d) implies the conclusion. Assume that f is differentiable on (—oo, co) and x is a critical
point of f.

of f. However, f(x¢) = —
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2.4 ’HOSPITAL’S RULE
/

1. If lim S = oo and M is an arbitrary real number, there is an x¢ in (a, b) such

x—>b— g’(x

/

that f/((c)) > M if xo < ¢ < b. By the argument given in the text, we can assume also that

g'(c

— J
g has no zeros in [xg, b) and (A) M > M if x,t € [xg,b). If lim,p_ f(2) =
g(x) —g()
lim,_,;_ g(¢) = O then letting t — b— in (A) shows that f((x)) > M if x,t € [xo,b),
g(x

S . g _

so lim “——= = oo in this case. If lim;_p_ f(¢) = lim;p_ g(t) = o0, let u and x;
x—>b— g(x)
be as in the proof given in the text. Then (B) & > M if x; < x < b. Since
g()C)M(X)1
limy_,5_ u(x) = 1, there is an x, > x; such that u(x) > 3 if xo < x < b. Therefore, (B)
M
implies that Sx) > —ifx, <x < b,s0o lim & = o0 in this case also.
gx) 2 x—b— g(x)
tan~! 1/(1 + x?

2 lim X gy VA

=0 sin lx x>0 1/ —x2

. 1 —cosx . sin x 14+ x2 . sinx 1
3.l m — =1lim ———— = ( lim lim = —.
x—0 log(1 + xz) x—0 Zx/(l + xz) x—0 2 x—=0 X 2

. 14+ cosx . .
4. lim ——— = oo (not an indeterminate form).
x>0+ eX*¥ —1
. sinnx . ncosnx _
5. lim — = lim =(-1)" Iy,
x—>m SInX xX—>mw  COSX
. log(1 4+ x) . 1/(1+x)
6. llm —=1]lim —— =1.
x—0 X x—0 1
. 42 42 42
e a2 . sine™™ . —2xe * cose™*
7. lim e”sine = lim = lim
X—>00 X—00 e—x X—00 —e—X

1
= 2( lim cose_xz)( lim f ) = 2( lim 72) =0
X—>00 X—>00 pX“—X X—>00 (ZX — 1)ex —X
sin(1/x) . —(1/x)2 cos(1/x) .

8. xlg&xsm(l/x) = xlgrolo x Jim —(/x)2 = xlgrolo cos(l/x) = 1.
—1/x _ 1 _(l/x)Ze—l/x e—l/x
. “1x 1y — i © _ — 1 _
9. lim /x(e D= lim = = — =, T2 s =0
1 1 in®
10. lim tanxlogx = lim ogr _ lim /X = — lim ey
x>0+ x—>0+ cotx  x—0+ —csc2 x x>0+ X

2sin X COS X
— lim —— =
x—0+ 1
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log(| tan x sec? x/ tan x
11. lim sinx log(|tanx|) = lim M = lim 27/
X—> x— CSC X X—>m — CSC~ X COot X

. sinx/ cos3 x . 4
— lim —————— = — lim tan" x = 0.
xX—>7 cos x/ sin” x x—>7

1
12. lim [— + log(tan x)i| = lim
x—=>0+ | X x—>0+ X
lim [log(t Zx/t = lim log(t
x_l)r(r)1+[0g(anx)+xsec x/ anx] x_l)r(r)1+ og(tan x) +

( lim sec3x)( lim .x ):—oo+1-l=—oo.
x—>0+ x—0+ SInx
/ 1
13. 1im (Vx £ 1= J/X) = lim(«/x+l—ﬁ)( Xt +ﬁ)
X—>00 X—>00

Vx+14+ Jx
(WX + 12— (Yx)? . 1

lim = lim ——— =0

x>0 x4+ 14+ /x x>0 \/x + 1+ /x

1 + xlog(tanx)

. 1 1 ox—e*+1 . 1—e* . —e*
14. lim -——)=Ilim———=1lm———— = lim—— =
x=>0\e*—1 x x>0 x(e*—1) x—0e* —1 4 xe* x—02e* 4 x
1
7
. . cosx—1 . —sinx
15. lim(cotx —csc x) = lim ——— = lim =0.
x—0 x—0 sin x x—>0 COSX
. 1 1 . X —sinx . 1 —cosx
16. lim | — -——)=lim——=1lm———— =
x>0 \sinx Xx x—>0 Xxsinx x—0 sin X + x cos x
sin x

im —
x—0 2Cc0oS X — X SinXx
17. | sin x|*"* = exp[tan x log(| sinx|)] and lim tan x log(| sin x|) =
X—>T
log(| sin x cotx )
lim log([sinx)) _ lim = — lim tanx = 0, so lim |sinx|*"* = 1.
X—>1 cotx X—7T —CSC2 X X—>7 X—>T

18. | tan x|°°5* = exp[cos x log(| tan x|)] and lirn/ cos x log(| tan x|) =
x—>mw/2

. log(| tanx|) . sec?x/tanx ) cos x
lim ——— = lim ———— = lim -— =0,s0
x—m/2  SeCX x—m/2 Sec X tanx x—m/2 sin” x
lim |tanx|°** = 1.
x—>m/2
log(| sinx|)

19. | sinx|* = exp[x log(| sinx|)] and lim x log(| sinx|) = lim
x—0 x—0 1/x

. cosx/sinx . . x2 . 2x
Iim ———— = —( lim cos x lim — = — lim =0,
x>0 —1/x2 x—>0 x—0 sin x x—>0 COS X

so lim |sinx|* = 1.
x—>0

>

log(1 log(1 1
X

X —0 X x—0 14+ x
so lim (1 +x)'/* =e.
x—>0
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21. x%(/%) = exp[(log(|x|)) sin(1/x)] and xli)rgo(log(|x|)) sin(1/x)

. log(le])
— lim - =1l
t—0 1/sint

— tlin(l)(log(|t|)) sint =

1/t

t—0 cos ¢/ sin’ t

. 1 . sin% ¢ . . . sin(1/x)
lim — lim = lim 2sint cost = 0,so0 lim x° = 1.
t—0 COSt t—0 t t—0 X—>00
. X 2 . x2—242cosx . X —sinx
2. lim|{————— ) =1lm —— =2 lim - =
x—>0\1—cosx x x—0 x(1 —cosx) x—01—cosx 4+ xsinx
1—cosx sin x

m-— im
x—0 2s8inx + X CoS x x—03cosx —x

23. If ¢ < 0,then lim x%logx = (
x—>0+ x—>0+

Ifo =0, then lim x%logx
x—>0+

logx

im ——
x—>0+ 1/x¢
1/(xlogx) 1

If o > 0, then lim x%logx
x—>0+

log(l
24, 1im 108008 _ -
x—e sin(x — e) x—e cos(x —e) e

2.

x+1
x—1

log (

x+1
x—1

)

—2/(x2=1)

lim —% = lim ———
X—00 1/ /x2 —1 X—00 —x/(x2—1)3/2
. x+1 Vx2-1 5
= 2,50 lim =e”.

x—>oo \ x — 1

lim x“

Vx-1 X1
) = exp I:«/xz — 1 log (—1)i| and lim vx2—1 log(
X — XxX—00

sin x

) (xgr&_ logx) = o0o(—00) = —o0.

= lim 1 = —o0.
(1. 005) =

1/x
im ——— =
X—04+ —O[/)COH—I

= —— lim x“=0.
o x—>0+

x+1

)

lim /1—1/x2

X—>00

X —

x2—1

X

=2 lim
X—>00

Vx2-1
1 1 1
26. s =exp|vx2—1log x+ and lim vx2—1 log AlLL
x—1 x—1 x—>1+ x—1
i (x + 1)
og 2 2
. x—1 =2/(x*=1) x2—1 .
1 = _ = =1 V1—1/x2
x—1>r{1+ 1/,/x2 —1 x—>1+ —x/(x2 — 1)3/2 x—>1+ X x—1>r{1+ /x
Vx2-1
1
=0,50 lim (x+ ) =1
x—>1+ \ x — 1
log x)# 1
2716 < 0, then lim 28" _ (nm (1ogx)ﬁ) ( lim —) =0.-0=0.1ff =0,
xX—00 X xX—00 X—00 X
log x)# 1
then lim (log x) = (lim —) = 0. If B > 0 and k is the smallest positive inte-
X—>00 X X—>00 X

ger such that B < k, then k applications of I'Hospital’s rule yields lim

(logx)?
-

X—>00
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log x)#~1 log x)P—*
B lim (ogx)"™ _ —BB—-1)--(B—k+1) lim (log x)P™*
X—>00 X—>00 X
=0.
x —x X _ ,—Xx
28. lim (coshx — sinhx) = lim (e re e ): lim e™* = 0.
X—00 X—00 2 2 X—00
29. If @ < 0, then lim (x* — logx) = ( lim x“) - ( lim 1ogx) =0—00=—0o If
X—>00 X—00 X—>00
a = 0, then lim (x* —logx) = ( lim 1) - ( lim logx) = 1— 00 = —o00. Suppose
X—>00 X—>00 xX—>00
that « > 0. Then (A) lim (x* — logx) = ( im xo‘) ( lim (1 —x7¢ logx)). Since
X—00 X—00 X—>00
1 1 1 1 1
lim 2@ = coand lim 2% = Lpim % _ L b 0, (A) implies that
X—>00 x—o00 x¢% o X—>00 o{x’x—l o x—o0 X%
lim (x% —logx) =001 = oo.
X—>00
1 X X X
30 lim ePsin(e®) = lim Sn¢) _ py £L008€)
X—>—00 X—>—00 =X X—>—00 _Dxe X

——00 xX—>—00 X

1 . X .eXtx | 2ix
- = ( lim cos(e )) lim =—— lim (2x + 1)e = 0.
2 \x 2 x—>—00

log(1 + 1/x)]?
31, lim x(x + 1) flog(1 + 1/x)]* = lim_ [Olg/(x(++/)16))]

) —21log(l + 1/x) —(2x+1) . 2x(x + Dlog(l + 1/x)
lim = lim =
( X+ 1) )/(xZ(x+ 1)2) x50 2x+ 1

(im 7 ) (tim ozt +1/0) = (i 3 ) (Jim 22
(—1/x)*/(1+1/x) _

X—>00

li = 1.
e (C1/x)?
. sinx —x +x3/6 . cosx—14x2/2 . —sinx + x
32.lim—r"i—m——""=lim—— = lim—— =
x—0 x5 x—0 5x4 x—>0  20x3
. —cosx +1 . sinx 1
lim ——— = lim = —.
x—0 60x2 x—0 120x 120
e~ 1
33. If ¢ < 0, then lim — = (lim —)(nm eX) = 00-00 = 0o Ifa = 0, then
x—>00 X% x—00 x% X—>00
X
lim — = ( lim ex) = o0o. If @ > 0 and k is the smallest positive integer such that
x—00 x% X—>00

X
a < k, then k applications of L'Hospital’s rule yields lim ¢ -

x—00 x%
1 y e~ 1 y e~
— lim =...= im —— = oo.
o x—oo xo—1 afeg—1)--- (@ —k +1) x>o0 xa—k
tan x 2 tan x
. ) . e . sec” xe

34. lim e"*cosx = lim = lim ———a—=

x—37/2— x—3m/2— 1/cosx  x—3x/2— sinx sec? x

tan x
e

li

m - == —00.
x—37/2— SIN X
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35. If ¢ < 0, then lim (logx)*log(logx) = ( lim (logx)“) ( lim log(logx)) =
x—>1+ x—>1+ x—1+

0o(—00) = —oo. If @ = 0, then lim (log x)% log(logx) = ( lim log(log x)) = —00.
x—>1+ x—>1+

log(logx)

If o > 0, then hm (log x)%log(log x) = m, dog )= —
—> ogx

1 1
(log x)/x = —— 11rn (log)c)”H'2 =0.
x—>1+ —a(logx)™*1/x x>
X X 1 /
36. lim ——— — fim 2018
x—oo xlogx  x—oo (xlogx) X—00

37. (sin x)¥** = exp[tan x log(sin x)] and lirn/ tan x log(sin x) =
x—>mw/2

log(si t
lim M = lim —Y — |im sinxcosx = 0,s0 lim (sinx)™"*
x—>m/2 COotx x—>n/2 — csc2 x x—>m/2 x—>m/2
=1.
er — ; il
r!
38. We prove by induction that lin(l) rn=0 = 0ifn > 1. We first verify P;:
X—> X
e*r—1—x e* —1 . .
11rn —— = lim = 0. Now suppose that n > 1 and P, is true. Applying

x—0 x—0

| Hosp1ta1 s rule yields

n+1 n+1 n
o x" X' 1 o x"
r! Z (r r!
. r=0 r=0
lim = lim = lim ——— =0,
x—0 xntl x—0 (n + 1)x” x>0 (n + D)x"

by P,. Therefore, P, implies Ppy1.

x2r+t
sinx — Z( (2r T
39. We prove by induction that lim =0ifn > 0. We first
x>0 x2n+1
sinx — x . cosx —1 .
verify Py: hr% — = llr% -1 = 0. Now suppose that n > 0 and P, is true.
x—> X x—>
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Applying L' Hospital’s rule twice yields

ntl x2r+1 ntl X2
. r ,
sinx — Z(—l) m cos x — Z(—l) )
lim r=0 _ = lim r=0 :
x—0 x2n+3 x—0 (Zn + 3)x2n+2
ntl x2r-1
—sinx — 1) —
Z_jl( ) @r-1!
= lim =
x—0  (2n + 2)(2n + 3)x2n+l
y2r+l

sinx — Z( (2r T
A0 (20 + 2)(2n T 3)x2ntl

’

by P,. Therefore, P, implies Pp1.

40. (Proof by induction.) Py is obvious if k& < 0. Suppose that n > 0 and Py is true for
k < n. Then

2 2
e /x Coxnl o —m+DxT"2 op41 . eTVx

lim = lim > = lim > = lim =0.
x>0 xn+1 x>0 el/x x—>0 —Del/x /x3 2 x—0 xn1

Hence, P, is true.

41. (a) Since f is continuous at xg, limy—x, (f(x) — f(x9)) = 0. Since lim,_,x,(x —

x0) = 0 and limy_x, f'(x) exists, L’Hospital’s rule implies that xligclo m;_i){o(xo)
= limy—x, f'(x). Therefore, f'(xo) exists and equals limy—,x, f’(x), so f” is continuous
at xgp.

g(x)v X = Xo,
1+ g(x), x> xo.
f/(x) = g'(x) if x # xo, s0 limy—x, f/(x) = limy—x, g’(x) exists. However, f is not
continuous at xg, so f/(x¢) does not exist.

42. (a) (Proof by induction.) Since L;(x) = log(Lo(x)) = logx = Lo(logx), P; is true.

Now suppose thatn > 1 and P, is true. Then L, 41 (x) = log(L,(x)) = log(L,—1 (logx))

(by P,) = L,—1(logx). Hence, P, implies Pyy.

(b) (Proof by induction.) Since Lo(0+) = 0 and L;(0+) = log(0+) = —oo, P is

true. Now suppose that n > 1 and P, is true. Then L,(ay+1+) = Lp—1(log(an+1)+) =
Lp—1(log(e®*)+) = Lp—1(an+) = 0and Lypy1(a@n+1+) = Lp(log(an+1)+) = Ln(log(e?")+)
= Ly(an+) = —00, s0 P, is true.

(¢) Since L,—1(an+) = 0and L,(a,+) = —oo, L’'Hospital’s rule yields

| . Lav) L) _
o Bt O = B T ™ o S L)

1
—— lim (Ln 1(x))¥since L), = L), _,/L,—1. Thus, lim+(Ln_1(x))°‘Ln(x):(Ln_l(an)+)°‘
xX—>an

o Xx—an

0, from (b)

(b) Let g’ be continuous on (—oo, o) and define f(x) = The
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(d) We first prove by induction that (A) limy_,c L, (x) = oo. This is true forn = 0.

Now suppose that n > 0 and (A) is true. Since Lp4+1(x) = log(L,(x)), (A) implies

that limy—co Lyn+1(x) = oo (Exercise 2.1.25). If & < 0, then lim (L,(x))*/Ly—1(x) =
X—>00

(xlggo (Ln(x))“) (xlinolo 1 /Ln_l(x)) = 0:0 = 0. Ifa = 0, then 1im (L (x))*/Ly-1(x) =

( lim 1/Ln_1(x)) = 0. If ¢ > 0, let k be the smallest integer such that « < k. Then k
X—>00
applications of L’Hospital’s rule (using L, = L/, _,/L,—; each time) yields

Jim (L (6)* /Lyt () = (@ —1)... (@ =k + 1) lim (Ly () /Ly1(x) = 0.

43, If 0 < Ly < L, there is an xo such that f'(x) > L; f(x) > if x > x¢. Since
f(x) > 0on (0, 00), it follows that f'(x) > 0if x > xg, so f(x) > f(xo) if x > xo
and f'(x) > Lf(xo) if x > x¢. Therefore, f(x) > f(xo) (1 + L1(x — x0)) if x > x¢
(Theorem 2.3.11), s0 limy . f(x) = 0o0. By an induction proof based on Exercise 2.1.25,
limy_s00 fn(x) = o0. Since (A) f,/(x) = f'(fa—1(x)) f,/_; (x), an induction proof shows
o
that f,/(x) > 0 for sufficiently large x. Hence, L’Hospital’s rule yields lim (fn( )

xX—>00 fn l(x)
(fn(x))“ ' fo(x)

o lim ————————= if the limit on the right exists in the extended reals. Because of

xX—>00 (_x)
(A) this imphes that (B) lim (n(x ))Z) 11rn (f,, (xX)* f'(fu—1(x)) if the limit on the

right exists in the extendz(;> ;:alsft_slince Jn (x) = f (fu=1(x)), (B) can be rewritten as
TN O/1C9) S (fa=1(x)))
x>0 fu1(x) S(fa1(x))

However, since lim S0 = oo and lim f,—1(x) = oo, Exercise 2.1.25 implies that
X—00 f(x X—00

xll{rolo% L. Since lim (f,(x))* = 0, (C) implies that lim (ffnn(1 ():;

a(oco)L
4@ SO = exp(f(v)log | /()] and Jim f(x))log | /()] = tim CELON

S0/ f(x) o 1/f(x)
. X X . . i
i S o = A S0 = 050l |/ = 1.

log|.f(x)| 1)/ f(x)

. log |/ (x)] . :
(-1 — A — = e
®) |f ()] = exp( f(x)_l) nd o To—1 AT e

= 1,50 limg oy | f(0]/E7D = ¢,

lim ——
A 7
gl /O loglf@ _ S0/

1/f(x) — ol ML —olvV W A S S -
@ = exp (2255500 and i 2L = i ST = i =
0, so limy_x, | f(0)| V=D =1,

ap (22 S0
g(x)

o lim (fy(x))* ©

and fim 2L SO) SO

45. (1 e =
(I+1(x)) x—b— g(x) x—b— g'(x)
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L, solimy_p_(1 + f(x))/8®) = L,
46. The first four forms are not indeterminate; the rest are. A function may be of the form

00 — 00 as x — xo+ and —oo + 0o as x — xp—, but approach a limit as x — xo. (For

| 2
example, f(x) = — — any

with xo = 0.) Similar comments apply to the other pairs of

indeterminate forms.

2.5 TAYLOR’S THEOREM

—1/x2
1. We show by induction that (A) f®(x) = gn(l/x)e L X F 8’ , where ¢, is
, x=0.
a polynomial. If n = 0, the definition of f implies (A) with go(¥) = 1. Suppose
that n > 0 and (A) is true. If x # 0, then f@TD™ = g . (1/x), with qn+1(u) =

2u3q,(u) — u?q,(u). Since f™(0) = 0 (from (A)), f*+TD(©0) = m f (x)

1 —l/x _l/x
lim M. However, the last limit equals zero because lim ¢ = 0 for
x—0 X x=>0 X

every integer k (Exercise 2.4.40). Since /™ = 0 forn > 0, every Taylor polynomial of
f about 0 is identically zero.

2. From Theorem 2.5.1, (A) lim SO = Tani () _

B = 0. Since Ty4+1(x) = Tp(x) +

(n+1) T (n+1)
w(x — x0)"*1, (A) implies that lim S =Tl _ f (XO), which can
(n =+ 1)' xX—X0 (_x _xo)n-l—l (n 4 1)|
E —_E (n+1) (n+1)
be rewritten as lim n(x) n(Xo) = f (xo). Therefore, E,’, (x0) = S (XO).
X—>X0 X — Xo (n+ 1) (n+ 1!

3. (a) The hypotheses implies that (A) f(x) = ao + a1(x — x0) + E(x)(x — x¢), where
(B) lim E(x) = 0. Therefore, lim f(x) = ag, S0 ap = f(x) because f is continuous
xX—X0 xX—X0

at xo. Now (A) and (B) imply that f'(xo) = lim w -
X—>X( — Xo

3 .
(b) Let xo = ap = a1 = a, = 0 and f(x) = {g sinl/x, ifg’ Then f and
2 _ 3gin1

S 3x%sinl/x —xcos1/x, x 70, are both continuous at 0 and lim X Sm/x /x =

Oa X =0, X—>X0 x2
0, but f”(0) does not exist.

"
4. (a) From Lemma 2.5.2, f(xo + 1) = f(xo) + f'(x0)h + (f (x0) + E(xo + h))
l f//(XO) 2 .
and f(xo—h) = f(xo)— f'(x0)h+ + E(xo — h) | h*, where xhrgcl E>(x) =0,
—>X0

so the limit in question equals /"' (x¢) + hmh_,o (Ex(xo + h) + Ex(xo —h)) = f"(x0).
(b) Counterexample: Let xo = 0 and f(x) = x|x|. Then

S0 =2£O) + £ _ . hlh| = hlA
h—0 h? - h—0 h?

=0.
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However, f’'(x) = 2|x[, so f”(0) does not exist.

5. (a) For necessity, suppose that f has a simple zero at xo. Then Lemma 2.3.2 implies that
f(x) = g(x)(x — xo) with g(x) = f'(x¢) + E1(x), where lim E;(x) = E1(0) =0, so
X—>X0

VACY)

g is continuous at xg and lim g(x) = f”(xo) # 0. Since g(x) = .’ g is differen-
X—>X0

tiable on a deleted neighborhood of x¢. For sufficiency, suppose that f (x) = g(x)(x —xop)

where g has the stated properties. Then f(x¢) = 0 and f’(xo) = lim (x) =

] x—>0 X — Xo
lim g(x) = g(xo) # 0.
X—>X0

(b) Let g(x) = 1 + |x — xo[, s0 f(x) = (x —x0)(1 + |x — x0|). Then f(x¢) = 0 and
f’(x9) = 1, but g is not differentiable at xo.

6. (a) For necessity, suppose that f has a double zero at xo. Then Lemma 2.5.2 implies

that (A) f(x) = g(x)(x — x¢)? with g(x) = f( o) + Eo(x), where hm Eo(x) =

Ey(0) = 0, so g is continuous at xo and (B) lim g(x) = f (XO) # 0. Since g(x) =
X—>X0

f(x)
(x = x0)?’
(A) yields f/(x) = g'(x)(x — x0)? + 2g(x)(x — x0), x € N, 50 (C) g’ (x)(x — x¢) =

S 2g(x). Applying Lemma 2.5.2 to f” shows that S (x) = f"(x0) + E1(x),
X — X0 X — X0

/
where lim E;(x) = 0; therefore, lim S
X—X0 X—X0 (x — X )2

g is twice differentiable on a deleted neighborhood N of xo. Differentiating

= f"(xp). This, (B), and (C) imply
that lim (x — xg)g’(x) = 0.
X—>X0

For sufficiency, suppose that f(x) = g(x)(x — xo)?> where g has the stated properties

on a deleted neighborhood N of xg. Then f(x¢) = 0 and f'(x9) = 11n(1) Jx) =
—-0 X — Xo

xllgcl g(x)(x —x9) = 0. If x € N —{xo}, then f”(x) = g’ (x)(x —x0)? + 2g(x)(x — xp),
so f"(0) = limy—x, &' (x)(x — x0) + 2g(x) = 2g(xo) # 0.

(b) Let g(x) = 14 |x—xo|,50 f(x) = (x—x0)%(1+|x—xo|). Then f(x¢) = f'(x0) =0
and f”(x¢) = 2, but g is not differentiable at x.

7. Let P, be the stated proposition. Exercise 6 implies P;. We show that if P, is true for
some n > 1, then P,y is true..

For necessity, suppose that f has a zero of multiplicity n + 1 at xo. Then Lemma 2.5.2

S (xo)
implies that (A) f(x) = g(x)(x — x¢)"™! with g(x) = W + Eo(x), where
n !

S (xo)
lim Eo(x) = Eo(0) = 0, so g is continuous at xo and (B) lim g(x) = ———
xX—X0 xX—X0 n+ 1)
0. Since g(x) = ( Sx ;n 1 & is n 4 1 times differentiable on a deleted neighborhood

X —

N of xo. Differentiatlng (A) yields f/(x) = g1(x)(x — x0)", x € N, where (C) g1(x) =
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g’ (x)(x—x0)+(n+1)g(x). However, applying Lemma 2.5.2 to f” shows that (D) g1 (x) =

(n+1)
fi'(x") + Ei(x), where (E) lim E;(x) = 0. From (C) and (D), g’(x)(x — xo) =
X—>X0

f(n+nl‘) (xO)
7'+E1 (x)—(n+1)g(x). Now (B) and (E) imply that (F) lim (x—x¢)g’(x) = 0.
! X—>X0

We must still show that (G) lim (x — xo)jg(j)(x) = 0,2 < j < n. Since f’ has a zero
X—>X0

of multiplicity n at x¢, P, implies that lim (x — xo)jggj)(x) =0,1<j <n-—1.From
X—>X0
(C) this is equivalent to

lim gV (x)(x — x0)/ T + lim gV (x)(x —x0)) =0, 2<j<n—1. (H)
X—>X0

X—>X0
From (C), (F) and (H) with j = 1 imply (G) with j = 2. Moreover, if 3 <r <n — 1, (G)
and (H) with j = r — 1 imply (G) with j = r. This completes the necessity part of Pj,.

For sufficiency, suppose that f(x) = g(x)(x — xo)"*! where g is continuous at xo and
n + 1 times differentiable on a deleted neighborhood N of xo, g(xo) # 0, and (H)

lim (x —x0)’ g’ (x) =0, 1 < j <n. Then f(xo) = 0and f'(x¢) = lim & =
X—>X0 x—>0 X — Xo
lim g(x)(x —xo) = 0. Now define
X—>X0

o)  [FOE =30+ 0+ D). x #0.

' (n + 1)g(xo0). x =0.
Then g; is continuous at xo (since lim (x — x¢)g(x) = 0) and n times differentiable
X—>X0

on N, gi1(xp) # 0, and lim (x —xo)jggj)(x) =0,1<j <n-—1. Since f'(x) =
X—>X0

g1(x)(x — x0)", P, implies that f’ has a zero of multiplity n at xo. Therefore, f has a
zero of multiplicity n 4 1 at xo. This completes the proof of the sufficiency part of P, ;.

8. (a) The assumption implies that (A) cg + o1 (x —x0) + - - + (X —x0)" P (x)(x —x0)",
where lim ¢(x) = 0. Letting x — xo shows that 9 = 0. Now (A) implies that
X—>X0

o1 + o (X —x0) -+ otn (x — x0)" ! = q(x)(x —x0)" L. Letting x — 0 here shows that
a1 = 0. Applying this argument n 4 1 times yields the conclusion.

-T,
(b) By Theorem 2.5.1 lim M = 0. This and our assumption on p imply that

x—=>x0 (X — xg)"
. p(x) — Tr(x)
im ——————=

x—=>x0 (X — xo)" = 0. Now apply (@) with Q = p — T,

T, -8
9. Let T, and S, be the nth Taylor polynomialsof f and g about x¢. Then lim M =

xX—>XQ (_x — X())n
) —f) L f)—gl) L g(x) — Sp(x)
lim ————+ lim ———— + lim ————.
x—=x0 (X — xg)" x—=x0  (x —xo)" x—=>x0 (X —Xxo)"
The first and last limits on the right vanish by Theorem 2.5.1, the second by assumption.
Now apply Exercise 8(a) with Q = T,, — Sj,.

10. (@) FyGn—fg = (Fa— f)Gn+ f(Gn—g). 50 (A) lim F”(X)G’Eix);{’fx)g(x)) -
X—>Xx0 — X0
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F, — G _

Gn(xo) lim ) = fx) + f(xo) lim Gn¥) 809 _ 0, by Theorem 2.5.1. Now
x—=>x0 (X — xo)" x=xo (x —xo)"

let P, be the polynomial obtained by retaining only the powers of x — xo through the

nth in F,G,. Then P, = F,G, — any1(x — x0)" ! + -+ + az,(x — x0)?", where

(x _ X())n+k

an+1, -.., d2p are constants. Since lim = 0if k > 0, (A) implies that
x=>xo  (x — Xxp)"
P _
lim n(x) = f(0)g(x)) = 0. Therefore, Exercise 8(b) implies that P, = H,,.
x—=X0 (x — x0)"
x2 X3 x4
(b) (i) Let f(x) = e*, g(x) = sinx. Then Fy(x) = 1 + x + > + 3 + 4 and

3
G4(x) = x — % Multiplying F4 by G4 and discarding powers x¥ with k > 4 yields

3
Ha(x) = x +x2 + % Therefore, i (0) = 1, A”(0) = 2, h”'(0) = 2, and h® (0) = 0.

3
(ii) Let f(x) = cosmwx/2, g(x) = logx. Then F4(x) = —%(x -1+ Z—g(x — 1) and
(x = 1)? n =1 -1
2 3
P . 7 , T 3 o
powers (x —1)* withk > 4 yields Hy(x) = —E(x—l) + Z(x—l) + s (x—
4 , 1 " 3 @ 73
1)*. Therefore, h'(1) =0, A" (1) = —n, ""(1) = R and h'Y (1) = - + >

Ga(x) =(x—1) . Multiplying F4 by G4 and discarding

4 7'[2

(iii) Let f(x) = x2, g(x) = cosx. Then Fu(x) = (%+(x—§))2 = e +

g (x - %) + (x - %)2 and G4(x) = — (x - %) + % (x - %)3 Multiplying Fy

. . A . b4 T
by G4 and discarding powers (x - E) with k& > 4 yields Hy(x) = Y (x - E) -
2
i

2 (m m\3 w T4 , w2 ”
b4 (x - E) +(ﬂ - 1) (x - E) +€ (x - E) . Therefore, h'(7/2) = _T’h (r/2) =
2
=2, W (x/2) = —6 + ﬂT, and 1™ (/2) = 4.
(iv) Let f(x) = (1 +x)7', g(x) = e*. Then F4(x) = 1 —x + x2 — x3 4+ x* and
2 3 4
Gyx)=1—-x+ 5~ % + ;—4 Multiplying F, by G4 and discarding powers x* with
5 8 65
k > 4yields Hy(x) = 1 —2x + Exz - gx3 + ﬂx“. Therefore, h'(0) = —2, " (0) = 5,
h"(0) = —16, and h® (0) = 65.
11. (a) By Lemma 2, f(y) = F,(y) + E(3)(y — yo)", where lim E(y) = 0. Hence,
y=Yo
— F _ n
i L8O —Fagx) E1(g(x)) lim g(x) — g(xo)
(A) x>xo (x — xo)" XX x—X0 X — Xo
=0-(g'(x0))" = 0.
Since F,, is bounded in some neighborhood of g(xo) and lim g(x) = lim G,(x) =
xX—X0 X—>Xx(
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g(x0), Theorem 2.3.14 implies that there is a constant M such |F,,(g(x)) — Fn(Gn(x))| <
Fa(g(x) = Fa(Gn(¥)) | _

M |g(x)—Gp(x)]| for x in some neighborhood of x,. Therefore,

(x — xo)"
g§(x) = Gu(x)) |, . Fu(g(x) = Fu(Ga(x)) . . 8(x) = Gulx) _
—— = |; hence (B) lim = 0,since lim ————= =
(x = x0)" xX=x0 (x — xo)" x=xo (X — xo)"
- F, (G
0 (Lemma 2.5.2). (A) and (B) imply that fim 26 = Fn (Gnl) _ 4 the con-
xX—>XxQ (_x — _xo)”
clusion follows from Exercise 8(b).
x2 x4 x3
(b) Fa(x) =1- 5 + e and G4(x)x — i Forming F4(G4(x)) and discarding powers
2 5 2
X with k > 4 yields Ha(x) = 1 — XT n %. Therefore, /' (0) = 0, h”(0) = —1,

1"(0) = 0, and K™ (0) = 5.

12. (a) With f(y) = 1/y and yo = 1, F,(y) = Z':=0(—1)’(y — 1)". Apply Exer-
cise 11(a).

1 1 ¢ 4
(b) (i) g(x) = sinx, so Ga4(x) =1 — 3 (x - %) + 2 (x - %) . Forming Z:l[l —

k 1 2
G4(x)]" and discarding powers (x - %) withk > 4yields Hy(x) = 1+ 3 (x - %) +

4

25—4 (x — %) ,so W (m/2) = 0,h"(x/2) = 1, h"(x/2) = 0, and h¥ (/2) = 5.
4

(i) g(x) = 14+ x4+ x2,50 G4(x) = 1 + x + x2. Forming Z[l — G4(x)]" and discarding
r=1

powers x* with k > 4 yields Hy(x) = 1 —x + x> — x* so h/(0) = —1, h”(0) = 0,

1"(0) = 6, and h® (0) = —24.

(iii) We first consider /g(x) = (sec x)/+/2, for which go(x) = /2 cos x, which satisfies

the normalization condition go(7/2) = 1. The fourth Talylor polynomial of gy about
J4is Ga(x) = 1- (x = ) 1( ”)2+1( ”)3+1( ”)4F i
/4 is =1l—(x—=)—z(x—— —(x——= — (x — —) . Formin
4t YY) T2\ Ty) T\ Ty) T\ Ty &
4

k
Z[l — G4(x)]" and discarding powers (x - %) with k > 4 yields the fourth Taylor

r=1

polynomial Hy(x) = 1 + (x - z) + 3 (x - z)z + u (x - 1)3 + D (x - z) for

4 2 4 6 4 8 4
h/N2,50 W' (m)4) = 2,0 ()4) = 342, " (n/4) = 11+/2, and h® (r/4) = 57/2.
x2  x3 xt ‘
(iv) g(x) = 1+1log(l +x),50 Ga(x) = 1 +x— T + 31 Forming Z[l —Gs(0)]"

r=1
3 7 11
and discarding powers ¥ with k > 4 yields Hy(x) = 1 — x + Exz - §x3 + ?x“, S0
1 (0) = —1, "(0) = 3, K" (0) = —14, and KD (0) = 88.
(c) Since hg = 1, which is its own Taylor polynomial for every n, Exercise 10 implies
that H,G, = 1+ powers of (x — x¢) higher than n. However, H,(x)G,(x) = 1 +
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n k
Z cr(x — xo)k+ powers of x — x¢ higher than n, with ¢, = Za,bk_,, 1 <k <n.
=0

k=1
k

Hence Z arbg_, = 0,1 < k < n. This implies the result.

r=0
13. (@) f/(x) = Bx* + 2x)e*, s0 f/(0) = 0; f"(x) = (9x° + 18x3 + 2)e*, s0
f”(0) > 0; hence 0 is a local minimum of f.
M) f'(x) = Bx5+ 3x2)e*, s0 £/(0) = 0; f"(x) = (9x7 + 24x* + 6x)e*’, so
F70) = 0; £ (x) = (27x° + 135x% + 114x3 + 6)e*’, so £"(0) = 6; hence 0 is not a
local extreme point of f.

, x(x34+3x-2) , Y
(© f'(x) = —W, so f'(0) = 0; f"(x) =

so f”(0) = 2; hence 0 is a local minimum of f.

x(x3 +3x-2)
d f'x) = ————, 50 f'(0) = 0; f"(x) =
@ [0 = g S0 = 0 1)
f"(0) = —2; hence 0 is a local maximum of f.
(e f'(x) = (3xZsin®x + 2x)cosx + 2xsin® x — x%sinx, so f/(0) = 0; f"(x) =
6x2 sin x cos? x + (12x sin? x —x2 +2) cos x + (2—3x2) sin® x —4x sinx, so f”(0) = 2;
hence 0 is a local minimum of f.

2(x8 4+ 6x* —7x3 —3x + 1)
(x3+1)3 '

—2(x3—3x2-3x+1)
(x2 +1)3

, SO

® f'(x)= e’ (cos x 4+ 2x sinx), so f/(0) = 1; hence 0 is neither a local maximum nor
a local mininum.

(g f'(x) = e* (2x cos(x?) + sin(x?)), so f'(0) = 0;
F"(x) = e* ((4x +2) cos(x?) + (1 — 4x?) sin(x?)) ,

so f”(0) = 2; hence 0 is a local minimum of f.
(h) f/(x) = e (2x cos x—sinx),s0 £/(0) = 0; £"(x) = e* ((4x2+1) cos x —4x sin x),
so f”(0) = 1; hence 0 is a local minimum of f.

15. Since f'(x) = x>+ bx +c and f”(x) = 2x + b, there are three cases: (i) If b? < 4c,
then f” has no zeros, so f has no relative extrema. (i) If b> > 4c, the zeros of f’ are

—b+ Vb2 -4 —b—b%2—4
X = % and x, = fc Since f"(x1) = Vb2 —4c > 0
and f"(x2) = —+/b2—4c < 0, f(x1) is a relative minimum and f'(x,) is a relative
maximum of f. (iii) If 2> = 4c, then f’ has the repeated zero r; = —b/2. Therefore,

f'(x) = (x —r1)% so f'(r1) = f"(r1) = 0 while f”’(r;) = 2, so f has no relative
extreme points.

16. (a) f(x) = sinx, f/(x) = cosx, f”(x) = —sinx, f”(x) = —cosx. Therefore,
() =0, f/(0) = 1and f”(0) = 0, so Theorem 2.5.4 with xo = 0 and n = 2 implies

. c . .. .
that sinx = x — ——x> for some ¢ between 0 and x. Since | cos c| < 1, this implies that

psinx — x| < ¢ () ir | < 2
sSInx —Xx -\ = I | X .
6 \20 20
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1
b) f(x) = V1+x, f/(x) = ——, f"(x) = ————. Therefore, f(0) =0
B 1) = VTHE f10) = e (0 = = £(0)
1
and f'(0) = X so Theorem 2.5.4 with xo = 0 and n = 1 implies that V1 4+ x =
x x2 x 1
1+ B + 78@ 1) for some ¢ between 0 and x. Therefore, |[+/1 +x — 1 — ) < 3 if
1
|x] < =.
8
1
(¢ f(x) = cosx, f’(x) = —sinx, f”(x) = —cos x Therefore, f(?'[/4) = E and
1
f(x/2) = E, so Theorem 2.5.4 with xo = % and n = 1 implies that cosx =

1 T cosc¢ TN\ 2 T .
— [1 - (x - —)] - (x - Z) for some ¢ between 1 and x. Since |cosc| < —

V2 4 2 V2

it 7 < x < % this implies that ! [1 ( ”)]‘< LAV A
I — X -, 1S 1mplies at |CosS X — — - X — — — = 1T — X

4 16 P 2 4 51242 4

57

16"

1 1 2 6
@ f(x) =logx, f'(x) = ;e f(x) = - f"(x) = e fP(x) = - There-
fore, f(1) =0, f'(1) =1, f”(1) = —1, and f"’(1) = 2 so Theorem 2.5.4 with xo = 1
(x=1* =1

and n = 3 implies that logx = (x — 1) — 7 + 3 + R3(x), with R3(x) =
1(x—1\* 1 1 4
—= for some ¢ between 1 and x. Therefore, | R3(x)| < =
4\ ¢ 464)* \1—1/64
1 1
f 1| < —.
a6y Tty
n+1
17. Since Ty41(x) = T,(x) + m, Th(x) < Ty+1(x)ifx > 0. Ifn > 0
n !

Theorem 2.5.4, implies that e* = T,(x) + emx"*1/(n + 1)! where 0 < ¢, < x.
Since 1 < e“" < e* if 0 < ¢, < x, this implies that if x > 0 then e* > T,11(x)

n+1 n+1
X
de* < T, + e* . The last i lity implies that e* |1 — —— |,
and e n(x) e_l(”"‘ 1 e last inequality implies that e [ (n+1)!i| )
x _ x" 1 . 11/ (+1)
e* < |1 CEE T,(x)if0 <x < [(n+ 1 .
n !

18. (a) To verify Py:

Alerfix) +- -+ fitx)] =c1 filx +h) + -+ cx fu(x + h)

—c1 fi(x) = — ¢ fi (x)
=c1Afi(x) + -+ kA fr ().
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Now suppose that Py, is true for n > 1. Then

A" ey fi(x) + -+ e fie (0] = A (A [er fi(x) + - + ¢ fie (0)])
= Afct A" fi(x) + -+ + e A" fie(x)]
=1 AA" fi(x)) + -+ kA (A" fr(x))
=1 A" i)+ AT f(0),

where the second equality follows from P,, the third from P;. This verifies P, 41.

(b) P; is just the definition of A f(x). Now suppose thatn > 1 and P, is true. Then

AL f(x) = AA" f(x) = ) (—1)"_'”( )Af(x + mh)
m=0

n
m
(by P, and (a)). Therefore,

ALf(x) =D (=) (:1) [f (x 4+ (m + D)h) — f(m + kh)]
m=0

n+1

= mz=:1(—l)"+1_m (:1) —1f(x +mh) — r;)(—l)”_m (:1) f(x + km)
= (D" f(x) + Z(—l)’”’l_”’ [(”) -1+ (”)] f(x 4+ mh)
m m

m=1
+ f(x+ @+ 1)h)
n+1

= Yy ( N l)f(x + mh).

m=0

which verifies Pyy1.

19. Since Ao(x —x0)? = A%1 =1, Py is true. Since Al =1 —1 =0 and A(x — xo) =
(x +h — x9) — (x — x¢) = h, P; is true. Now suppose that n > 1 and P, is true. If
0 <m < n, then A”+1(x —x0)" = A(A"(x — x¢)™) = AO (by P,)= 0Al =0, by P;.
Also, A"t (x — x0)* = A(A"(x — x0)") = h"n! (by P,) = h"n!Al = 0, by P;. To
complete the induction we must show that (A) A" T1 (x—x()"*! = (n+1)!4"*1. From the

n+1
1
binomial theorem (Exercise 1.2.19), (x 4+ & — x¢)" ™! = Z (n + )h"+1_m (x — xo)™,

m
m=0

n—+1

n—1
which implies that A(x —xo)" ™! = (n 4+ 1)h(x — x¢)" + Z (
=0 m

)hn+1—m (x _xO)m.

n—1
1
Therefore, A" ! (x—x0)" ! = (n+1)hA™ (x—x0)" + Z (n + )h’”’l_m A" (x—xo)™.
m
m=0
Now P, and Exercise 18 imply that A”T1(x —x¢)" ™! = (n + Dh(n'h™) = (n + 1)1A" 1,
This completes the induction.
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20. (a) By Theorem 2.5.4,
h? h3
f(xo+h) = f(xo0) + f'(x0)h + f”(m); + f’"(ﬁ)g,
h? h3
f(xo—h) = f(xo0) — f'(x0)h + f”(m); - f’"(Cz)?,

where xog < ¢1 < xo + hand xo — h < ¢3 < xgo. Therefore,

A? —h h
BCZR — o) + 277 — £ e
¥ A2 f( Msh
Xo — ”
T S (xo)| = =
where M3 = sup|y,_c|< |f" ().
(b) By Theorem 2.5.4,

feo+h) = Z f<'>(xo>— + f Cenhias,

r=0
where x¢ < ¢1 < xo + h, and
") @,
—h r - i
fxo—h) = E_Of (X) +f (c2) 57

where xg — h < ¢ < xq. Therefore,

A? —h h?
BTEZD o) + [ 1960 + fDien] 2o
SO
Azf(xO ” ]‘/14]’12
h2
where

My= sup |f"()l.

|[xo—c|<h

21. From Theorem 2.5.4,

h? h3
f(xo+h) = f(xo) + f'(x0)h + f”(xo); + fm(co)?,
where xo < co < xo + h. Solving this for f'(xo) yields

2
Af(-xO) f//( ) f///(co)%.

f'(x0) =

51

(A)

(B)
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Now we must express f”(xo) in terms of A2 f(xo) and values of f”. To this end we apply
Theorem 2.5.4 again to write

4
f(xo +2h) = f(x0) +2f"(xo)h + 21" (x0)h* + gf”’(cl)h3
where xo < ¢1 < Xxo + 2h. Subtracting twice the equation (A) from this yields
4 1
S (xo +2h) = 2f(xo + h) = = f(x0) + f"(x0)h* + gf”’(61)h3 - gf”’(Co)h3-

Solving this for f”(xo) yields

A2
BT 2 e+ 51" el ©

S (x0) = 23

Substituting (C) into (B) yields

Af(x 1 2 1
7160y = LD a2 ) (57 = e )
hence k = —h/2.
22. If m > 0, then Theorem 2.5.4 implies that
S (x0) r SO () n
f(xo + mh) = Z_;) T"(mh) + W(mh) +

where xg < ¢, < X9 + mh. In particular, this is true if 0 < m < n. Therefore,
n

Z (= (”;) (mh)n+1 f(n+1)(Cm)-

n (r)
(A) A" f(xo) = ) #h’A”m’+
r=0 :

(n+1)! =
: noor
From Exercise 19, A"m" = {g'h” g Sifzn; =7 , SO Z #h'Anm' = f®(xo)h".
| | 1 ’=n n‘
Now (A) implies the stated inequality, with 4, = ——— Z m" 1,
(n+ 1! = \m

23. If x = x; for some i, the relation holds for any c. If not, then g(y) has at least n + 2
distinct zeros in (a, b). Repeated applications of Rolle’s theorem imply that g has at
least n + 2 — r zeros in (a, b). In particular, g+ (c) = 0 for some ¢ in (a,b). Since
pt) =0, gD (y) = F@FD(y) — K. Setting y = ¢ yields the result.

24. Take a = xo¢ and b = x in Theorem 2.5.5.



CHAPTER 3

Integral Calculus of Functions of
One Variable

3.1 DEFINITION OF THE INTEGRAL

1. Suppose that L; and L, both have the properties required of L in Definition 3.1.1. Let
€ > 0. Then there is a § > 0 such that if o is Riemann sum of f over any partition P
of [a,b] with ||P|| < §, then |0 — L;| < € and |0 — L,| < €. Therefore, |L, — L;| =
|[Li —0 40— Ly| <|o—La|+ |0 — L1] < 2¢. Since ¢ can be chosen arbitrarily small,
it follows that L1 = L.

b
2. (a) Suppose that / f(x)dx exists and let € > 0. Choose § > 0 so that |0 —
a

fab f(x)dx| < €/2 if o is any Riemann sum of f over a partition of [a, b] with | P| < §.
Now suppose that o and o, are Riemann sums of f over partitions P; and P, with norms
less than §. Then

lor — 02| =

b b
01—/ f(x)dx+/ f(x)dx — oz

b b
01—/ f(x)dx +/ f(x)dx — oz <§+§=e

=

(b) Part (a) implies that if € > 0, there is a § > 0 such that if o and ¢’ are Riemann sums
of f over a partition P with || P| < §, then |0 — 0’| < €. Just choose € < M to show that
[ is not integrable over [a, b].

3. For a given € > 0 we can choose § so that ‘a —fab f(x)dx‘ < eif |P| < é and o is
any Riemann sum of f over P (Definition 3.1.1). Then choose P so that || P| < & and
there is a Riemann sum o of f over P such that |0 — A| < €. Then ‘A - fab fx) dx‘ <

53
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|[A—0o|+|o— fab f(x)dx| < 2e. Since € can be chosen arbitrarily small, this implies that

b
A= [ f(x)dx
4. By the mean value theorem (x; —x;_l)/3 = djz(xj —xj_1) forsome d; in (x,;_1, x;).
Then

n n x3 _ x3 b3 .3
2 J Jj—1 a
Z dj(xj —xj-1) = Z 3 -3
J=1 Jj=1
n
Now let 0 = Z c?(xj — x;—1) be an arbitrary Riemann sum of f(x) = x? over P.
Jj=1
Since x;-1 < ¢; < xj, |[cF —d}| = |c; —djlle; +d;| < 2| P max(lal, b]), so

lo — (b3 — a3)/3| < 2| P||(b — a) max(|al, |b|). Since || P|| can can be chosen arbitrarily
small, this implies the conclusion.

5. Let P = {x¢, X2, ..., X, } be an arbitrary partition of [a, b]. By the mean value theorem,

(x;.”+1 — x;.”j'll)/(m +1) =d}"(xj — x;-1) forsome d; in (x;—1, x;). Then

n n xm-l—l _ xr-n_+11 bm+1 _ am+1
D df by —xm) =) F =
, , 3 3
Jj=1 j=1
n
Now let 0 = Z c;-”(xj — x;—1) be an arbitrary Riemann sum of f(x) = x™ over P.
Jj=1
Then
m—1
e —df = lej —dyl | Y ejdi T < PG — DA,
r=1

where A = max{|a|, |b|}. Therefore,

bm+1 _ am+1)

o— < IPllm — DA™ (b ~a).

m—+1

Since || P || can be chosen arbitrarily small, this implies the conclusion.

6. Let o = Z?=1 f(cj)(x; — x;—1) be a Riemann sum for f over [a,b]. Define
x} = —Xp—j, 0 < j =< n, and c} = —Cp—j+1, 1 < j =< n. Then we can rewrite
ocaso = )i, f(=c’)(x; = x;_); that is, every Riemann sum of f(x) over a par-
tition P = {xg,X1,...,Xn} of [a,b] is a Riemann sum of f(—x) over the partition
P’ = {x{,x},...,x,} of [-b,—a]. The converse is also true, by the same argument.
Therefore, Definition 3.1.1 implies the conclusion.

n

7.1f P = {x0, X1,...,Xn}, thens(P) = Zm_,- (xj—xj—1), wherem; = infy, | <x<x; f(x).
j=1

n
An arbitrary Reimann sum of f over P is of the form o = Z f(cj)(x; —x;_1) where
j=1
Xj—1 <cj <xj.Since f(c;) > mj,o > s(P).
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€

Now let ¢ > 0 and choose ¢; in [x;_1,x;] so that f(c;) < m; + ——,

n
1 < j =< n. The Riemann sum produced in this way is 0 = Z flep)x; —xj—1) >

Jj=1
n

Z [m,- + ;)} (xj —xj—1) = s(P) + €. Now Theorem 1.1.8 implies that
j=1 ‘ n(‘x/ _‘xj_l) ‘ ‘

s(P) is the infimum of the set of Riemann sums of f over P.

8. (a) From Theorem 2.2.9, for 1 < j < n, there are points a; and b; in [x;_1, x;] such
that f(a;) = M; and f(b;) = m;. Therefore, S(P) = Z?=1 fla;)(x; —xj—1) and
s(P) =312y f(bj)(x); —xj-1).

1
9. (a) Every lower sum of f(x) is a Riemann sum for g(x) = —x, so / fx)dx =
Jo_

1 1 1
—/ xdx = —3 Every upper sum of f(x) is a Riemann for 2(x) = x, so/ fx)dx =
0 0

1
1
xdx = —.
/0 2

1 1
(b) Every lower sum of f(x) is a Riemann sum for g(x) = x, so / fx)dx = / xdx =
Jo 0

1 iy 1

X Every upper sum of f(x) is a Riemann sum for 2(x) = 1, so/ fx)dx = / dx =
0 0

L.

10. Letx; =a + j(b—a)/n and

n

b _ n
o= et ) = U S ep [~ (b —a)fn]

Jj=1 j=1
e“(b_a) | — e b—a)/n
N 1—e®-a)n e—a)n _ 1"

= (" =9

b
Since lir% x/(e* —1) = 1, Exercise 3 implies that/ e dx = el — e
x— a

11. Let x; = jb/n and consider the Riemann sum

. b~ o b
o= Z sinx;_1(x; —x;-1) = o Z sin(j — 1);
j=2

j=1
_ b/n - . b jb
~ 2sinb/n ;I:COS(] _2); T 7i|
b/n b b
= m [1 + cos - —cos(n — 1); —cosbi| ,

which approaches 1 — cos b as n — oco. Now use Exercise 3.



56 Chapter 3 Integral Calculus of Functions of One Variable

12. Let x; = jb/n and and consider the Riemann sum

o= Z cosx;(x; —xj—1) = p Zcos o
Jj=1

Jj=1
b/n T[. . b )
B m /Z=:2 [Sln(] + 1); —sin(j — 1);i|
b/n b . . )
= Ysnb/n [— sin - + sinb + sin(n — 1);i| ’

which approaches sinb as n — oco. Now use Exercise 3.

13. Let P = {x¢, X1, ..., X} be a partition of [a, b]. Then every Riemann - Stieltjes sum
of f with respect to g over P,

> flep gt —gle—n)] =D fle)x; —xj-0).

Jj=1 j=1
is a Riemann sum of f over P, and conversely. This implies the conclusion.
14. Let P = {x0, X1, ..., Xn} be a partition of [a, b] such that || P|| < min(d —a,b —d).

Let ¢y, c2, ..., ¢, be the intermediate points occurring in a Riemann - Stieltjes sum of
Jf with respect to g over P; thatis, x;_1 < c¢; <x;,1 < j <n. Ifd ¢ [x;—1,x)],
then g(x;) — g(x;—1) = 0. Therefore, if x;—1 < d < x; for some i in {1,2,...,n},

then o = f(c1)[g1 — g(a)] + f(ci)(g2 — &1) + f(cn)[g(b) — g2]. On the other hand, if
¢ = x; forsomeiin{l,2,...,n},thenc = f(c1)[g1 — g@)] + flci-1)[gd) — g1)] +
f(ci)lg2—g(d)]+ f(cn)lg(h)—g2]. From the continuity assumptions on f, in either case
o = f@g1—g@]+ f(d)(g2—g1)+ f(B)gb) —ga] = [, f(x)dg(x)as | P|| — 0.
15. See the proof of Exercise 14.

b
16. (b) If g is increasing and f is unbounded on [a, b], then/ f(x)dg(x) does not exist.
a

(See the proof of Theorem 3.1.2.)
17. Same as Definition 3.1.3, except that x; — x;_y is replaced by g(x;) — g(x;—1).

3.2 EXISTENCE OF THE INTEGRAL

1. First suppose r = 1, so P’ is obtained by adding one point ¢ to the partition P =
{x0,X1,...,Xp}; then x;_; < ¢ < x; for some i in {1,2,...,n}. If j # i, then the
product 7 (x; — x;_1) appears in both s(P’) and s(P), and cancels out of the difference
s(P’") — s(P). Therefore, if

mip = inf  f(x) and mjp = inf f(x),

Xj—1=<X=cC CSX=X;

then
S(P") —s(P) =mj1(c —xi—1) —miz(x; —c) —m;(x; — Xi—1)
= (mj1 —m;)(c — xi—1) + (miz —m;)(x; —c).

(A)
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Since (1) implies that 0 < r;, —m; <2M,r =1, 2, (A) implies that
0 < 5(P") = 5(P) < 2M(x; — xi1) < 2M | P|.

This proves (3) forr = 1.

Now suppose r > 1 and P’ is obtained by adding points ¢, ¢3, ..., ¢y to P. Let PO = P,
and, for j > 11let PU) be the partition of [a, b] obtained by adding cjto PU~D_ Then the
result just proved implies that

0<s(PD)—s(PU™V) <2M|PUV| 1< <
Adding these inequalities and taking account of cancellations that occur yields
0= s(PD)—s(PO) <2M(IPO) + | PV + -+ PV (B)
Since P@ = P, P = P'and | P®| < |[P* V| for I <k <r—1,(B) implies that
0=<s(P)—s(P)=2Mr|P]|,

which is equivalent to (2).

2. Suppose that P is a partition of [a, b] and ¢ is a Riemann sum of f over P. From the

b b b
triangle inequality, (A) / f(x)dx — / f(x)dx| < / f(x)dx —s(P)

+ [s(P) —

ol + . Now suppose € > 0. From Definition 3.1.3, there is a partition

a—/abf(x)dx

b b
Py of [a, b] such that (B)/ f(x)dx = s(Po) > / f(x)dx— % From Definition 3.1.1,

b
there is a § > 0 such that (C) |o —/ f(x)dx| < % if | P|| < 8. Now suppose || P|| < §
a

and P is a refinement of Py. Since s(P) > s(Pp) by Lemma 3.2.1, (B) implies that
b b b
| r@dx = sy > [ x-S0 m) ‘s(m - [ reax

€ ..
< g in addition to

(C). Now (A), (C), and (D) imply that (E)

b b
/ f(x)dx—/ f(x)dx‘ < 2§+|S(P)—U|

for every Riemann sum o of f over P. Since s(P) is the infimum of these Riemann

€
sums (Theorem 3.1.4), we may choose ¢ so that |s(P) — o| < 3 Now (E) implies that

< €. Since € is an arbitrary positive number, it follows that

bf(x)dx— bf(x)dx
[

bf(x)dxz bf(x)dx.
[y

3. The first inequality follows immediately from Definition 3.1.3. To establish the second
inequality, suppose | f(x)| < K if a < x < b. From Definition 3.1.3, there is a partition
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b
Py = {x0,x1,...,Xr41} of [a, b] such that (A) s(Py) > / f(x)dx — % If P is any
a

partition of [a, b], let P’ be constructed from the partition points of Py and P. Then (B)
s(P') = s(Pp), by Lemma 3.2.1. Since P’ is obtained by adding at most r points to P,
Lemma 3.2.1 implies that (C) s(P’) < s(P) + 2Kr| P| Now (A), (B), and (C) imply that

b
s(P) = s(P’) —2Kr|P| = s(Po) —2Kr|P| > / f(x)dx — % —2Kr| P|| for every
Ja

b
partition P. Therefore, s(P) > / f(x)dx —€if |P|| <6 = L
Ja_ 4Kr

b
4. Let/ f(x)dx = L. Ife > 0, thereisad > Osuchthat L —¢/3 <o < L +¢/3

a
if o is any Riemann sum of f over a partition P with || P| < §. Since s(P) and S(P) are
respectively the infimum and supremum of all Riemann sums of f over P (Theorem 3.1.4),
L—€/3 <s(P) < S(P) < L+¢/3if||P|| < 8. Therefore, |S(P)—s(P)| < €if || P| < 8.
5. (Quantities with subscripts f and g refer to f and g, respectively.) We first show
that g is integrable on [a,b]. Let € > 0. From Theorem 3.2.7, there is a partition
P = {x0,X1,...,xn} of [a,b] such that (A) S¢(P) —ss(P) < €. Let S be the set of
integers in {1,...,n} such that [x;_1, x;] contains points from H. Since (A) remains
valid if P is refined, we may assume that (B) Z(xj—l — Xxj) < €. Now suppose
JES
|f(x)] < M and |g(x)|] < M. Since f(x) = g(x) forx € [x;_1,x;]if j ¢ S,

|(Sg(P) - Sg(P)) - (Sf(P) - Sf(P))| = Z [(Mg,j —mgj)—(Myp— mﬂp)] =
JES

AM ) cs(xj—1 — xj) < 4Me, from (B). This and (A) imply that Sg(P) — s¢(P) <

Sr(P)—ss(P)+ 4Me < (4M + 1)e. Therefore, g is integrable over [a, b], by Theo-

rem 3.2.7.

To complete the proof we apply Exercise 3.1.3to g, with A = || ab f(x)dx. Let e > 0 and
8 > 0 be given. Let P be a partition such that: (i) | P|| < &; (ii) [of — A] < e if oy is
any Riemann sum of f of P; and (iii) (B) holds. Now let 0z and oy be Riemann sums
over P corresponding to the same choice of the intermediate points cg, c1, ..., ¢,. Then

log—azl =Y lglc)) = feN)xj —xj-1)| <2M ) (xj—1—x;) < 2Me. Therefore,
JES jeS

log — Al = [(0g —0f) + (0 —A)| < |og — Al = |og —oy| + |of — A| = (2M + D),
which completes the proof (Exercise 3.1.3).

6. If P is an arbitrary partition of [c, 8], let s(P) and S(P) be lower and upper sums of g
over P. Let P be the partition of [&, B] containing vg, vy, ..., vz, and the partition points
of P. For 1 < £ < L let Py be the partition of [vg_;, v¢] constructed from the partition
points of of P contained in that interval. Let s(Pg) and S(Py) be the lower and upper sums
of g over Py. Let e > 0.
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L .y L
(a) Let Q1 = Z/ ‘ g()du. From Lemma 3.2.1, (A) s(P) < s(ﬁ) = ZS((P).
(=101 (=1

From Theorem 1.1.3, and Definition 3.1.3, s¢(P) < /ve g(u) du. Therefore, (A) implies
that s(P) < Q1. Moreover, again from Definition ?:f—._?aland Theorem 1.1.3, there is a a
partition Py of [vg—_1, v¢] such that s(Py) > /ve
of [a, B] zonstructed from the points in Py, v;’;: ..., Pp, then s(P) > Q; — €. Hence,

01 :/ g(u) du, from Theorem 1.1.3.
Ja

gu)du — %; hence, if P is the partition

L

L —,
(a) Let Q; = Z/ ‘ g(u)du. From Lemma 3.2.1, (A) S(P) > S(P) = Y _ Su(P).
(=11 (=1

From Theorem 1.1.8 and Definition 3.1.3, S¢(P) > /ve g(u) du. Therefore, (A) implies
that S(P) > Q,. Moreover, again from DMon 3%_?; and Theorem 1.1.8, there is a a
partition Py of [vy—1, vg] such that S(Py) < /ve
of [, ﬂ]_constructed from the points in Py, ;’ez_,l .., Pr, then S(P) < Q, + €. Hence,

g)du+ %; hence, if P is the partition

B
0, = / g(u) du, from Theorem 1.1.8.
o

fla)+ f)

7. (a) Let V be the total variation of f on [a, b]. Ifa < x < b,then f(x) = >

(f(x) = f@) + (f(x) — f(B))
2

[f@) + fO) | [f@) = fOI+ /) = fBD _ [f@) + FOI+V
2 2 - 2 ‘

; therefore,

| f(O)] =

(b) Let P = {x¢, X1, ..., Xn} be a partition of [a, b] and € > 0. From Theorem 3.1.4, we

n
can choosecy,...,cpandcy, ..., ¢, sothatx;_1 < c;, c} <x;,(A)|S(P)— Z flej)xj—xj—1)| <
Jj=1

%and B)[s(P) = 3 f()xj —xj-1)| < g Since S(P)—s(P) = S(P)=Y_ f(c)(x;—

Jj=1 j=1
Xj—1)+ Z (flcj)— f(cf/-)) (x; —xj—1)s(P) + Z f(c})(xj — x;j-1), the triangle in-
Jj=1 j=1
equality, (A), and (B) imply that S(P) —s(P) < € + Z | f(c;)— f(Cf,-)I(x‘/ —Xxj-1) <
j=1

€+ K||P| <2eif|P| < % Theorem 3.2.7 implies that f is integrable on [a, b].
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8.

D geplfe) = flxjmDl =D gle)) fx;) =D gle;) flxj-1)

J=1 Jj=1 Jj=1

n n—1
=Y glep)fx) =Y glej+) f(x))

J=1 J=0

= g(cnt1) f(xn) — g(co) f(x0) = Y f(x)glc;t1) — gle))]

J=0

=gb) f(b) —gla)fla) = > fxplglc;+1) — glc))).

J=0

n
If Z gle)[f(x;) — f(x;-1)] is a Riemann-Stieltjes sum of g with respect to f over
=1
J i
P, then Z f(xj)g(cj+1) — g(c;)] is a Riemann-Stieltjes sum of f with respect to g
J=0

over P = {co,c1,...,¢nt1}. (If ¢; = c;i41 for some i, then ¢; is counted only once in
b

P’.) Moreover, ||P’|| < 2| P]|. Now suppose € > 0. Since/ f(x)dg(x) exists, there

a

n b

isad > 0 such that Z S(xj)lglcj41) —glej)] —/ f(x)dg(x)| < eif |P']| < é.
j=0 a

Therefore, the identity derived above implies that

n b
Yo geNIf () = -] = f(b)g(b) + fla)g(a) + / fx)dg(x)| <e
j=1 a
if || P|| < /2. This implies the conclusion.
9. (a) Let V' be the total variation of g on [a, b]. Suppose that € > 0. Choose § > 0 so that
A |fx)—fx"H < % if x and x” are in [a, b] and |x — x’| < § (Theorem 2.2.12). Let

n
P ={x0,x1,....,xp}and 0 = Z felgx;) —gxj—1)]. Let P' = {to,t1, ..., tm} be
Jj=1

m
arefinement of P, and o’ = Z f(c)H[g(ti)—g(ti—1)]. Suppose that k, =xj,0=<j <n.

i=1

n kj
Then (B) [0 —0'| < Z Z | f(c;)—fep)|gti)—g(ti—1)|. Since x; 1 < ¢; < x;
.i=1i=1+kj_1
and x; <c, <x;if 1 +k;j; <i <kj,itfollowsthat|c; —c/| < |P|if 1 +k;—; <
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i <kj,j=1,...,n. Therefore, (A) and (B) imply that |c — ¢’| < (%) V = % if
P <é.

Let Py be a refinement of both P; and P,, and let gy be an Riemann-Stieltjes sum of f
with respect to g over Py. From (a), |01 — 00| < €/2 and |02 — 0¢| < €/2. Therefore,
|o1 — 02| < €, from the triangle inequality.

(c) Let M = sup,_.,.p f(x) (Theorem 2.2.8). If o is any Riemann-Stieltjes sum of f
with respect to g over [a,b], then |o| < MV. Hence |L(p)] < MV. Since L(§) is
nondecreasing and bounded below, L = bjng L(8) (Theorem 2.1.9).

(d) Suppose thate > 0. From (a) and (c) thereisa § > O such that (C) L < L(8) < L + ¢
and (D) |0 — 09| < € if 0 and ¢ are Riemann-Stieltjes sums of f with respect to g over
any partitions P and Py of [a, b] with norm less than . From the definition of L(8), we
can choose Py and o so that L(§) — € < 0o < L(§). Then (C) implies that |op — L| < €.
Now (D) and the triangle inequality imply that |0 — L| < |0 — 0¢| + |00 — L| < 2¢ if 0
is a Riemann-Stieltjes sum of f with respect to g over any partition P of [a, b] with norm

less than §. Hence, / f(x)dg(x) = L, by Definition 3.1.5.

b
10. / g(x) df (x) exists by Exercise 9 with f and g interchanged. Therefore, f (x)dg(x)

exists, by Exercise 8, again with f and g interchanged.

3.3 PROPERTIES OF THE INTEGRAL

1. Trivial if ¢ = 0. Suppose ¢ # 0 and ¢ > 0. If  is a Riemann sum of ¢f, then
n n

o = Z cflcj)xj—xj-1) =c Z f(cj)(x; —xj—1) = co, where o is a Riemann
Jj=1 Jj=1
sum for f. Since f is integrable on [a, b], Definition 3.1.1 implies that there is a § > 0

such that |0 — / fx)dx| < £ if o is a Riemann sum of f over any partition P of
a

lc]

[a, b] such that || P|| < §. Therefore,

b
3—/ cf(x)dx| < €if & is a Riemann sum of ¢ f
a

over any partition P of [a, b] such that || P|| < &, so cf is integrable over [a, b], again by
Definition 3.1.1.

2. If f1 and f, are integrable on [a, b] and c; and ¢, are constants, then Theorem 3.3.2
implies that ¢q f1 and c¢; f> are integrable on [a, b] and fab ci filx)dx = ¢; fab fi(x)dx,
i = 1, 2. Therefore, Theorem 3.3.1 implies P,. Now suppose n > 2 and P, is true. Let f1,
f2, ..., fnt1 be integrable on [a, b] and ¢y, ¢, ..., cy+1 be constants. By Theorem 3.3.1,

c1f1, 2 fa, ..., Cnt1 fnt1 are integrable on [a, b], and fab ci fi(x)dx = ¢; fab fi(x)dx,
=1,2,...,n+ 1. Now fab(clfl +ofot+ ot enrifar)(X)dx = fab[(clfl +
2fa+ ot enfu)(X) + cntr far1 ()] dx = fab(lel +eafo+ o+ enfa)x)dx +
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b b b b
[ enst fa1(x)dx (by Po)=c1 [, fi(x)dx+ca [; fo(x)dx+--+cn [, fa(x)dx+
Cn+1 fab fn+1(x)dx by P, and Theorem 3.3.2. Therefore, P, implies P, 1.
3. Yes; let f(x) = 1if x is rational, f(x) = —1 if x is irrational. Then S(P) = b —a
and s(P) = a — b for every partition P of [a, b], so f is not integrable on [a, b]. However,
| f(x)] = 1forall x in [a, b], so | f| is integrable on [a, b].
4.1f f(x) = my and g(x) = m2 (@ < x < b), write fg = (f —m1)(g —m2) + ma f +
my1g — mmy. The first product on the right is integrable by the proof given in the text. To
complete the proof, use Theorem 3.3.3.
5. Let “barred” quantities refer to 1/f. First suppose f(x) > p>0(a <x <b). If P =
{Xo0, ..., Xp} is a partition of [a, b], then M ; = I_/mj andm; =1/M;,soM; —m; =
(M;—m;)/m;M; < (M;—m)/p% hence (A) S(P)=F(P) < (S(P)—s(P))/p?. Now
suppose € > 0. If f is integrable on [a, b], then Theorem 3.2.7 implies that there is partition
P of [a, b] such that S(P)—s(P) < p2e,so (A) implies that S(P)—5(P) < €. Therefore,
1/f is integrable on [a, b], again by Theorem 3.2.7. Now suppose | f(x)| = p > 0 but
f(x) < 0for some x in [a, b]. Since f?2 is integrable on [a, b] by Theorem 3.3.6, applying
the result just proved to g = f2 shows that 1/f? is integrable on [a, b]. Therefore, 1/f =
fg is integrable on [a, b], again by Theorem 3.3.6.
6. Since f* = (f +1f/2, f~ = (f —|f)/2and f = ft* + f~, Theorems 3.3.3
and 3.3.5 imply the result.
7. (a) Since fol u(x)v(x)dx = fol x2dx = 1/3 and fol v(x)dx = fol xdx = 1/2,
u=c=2/3.

(b) Since f_ll u(x)v(x)dx = f_ll x%sinxdx =0,u =c = 0.
(¢) Since [y u(x)v(x)dx = [y x> dx = e —2and [, v(x)dx = [y e¥dx = e—1,

Uu=(e—2)/(e—1)andc = /(e —2)/(e —1).
8. Suppose € > 0. By Theorem 3.2.7 there are partitions P; of [a, b] and P, of [, ¢] such
that S(P1) —s(P1) < €/2 and S(P2) — s(P2) < €/2. Let P be the partition of [a, c] with
partition points from P; and Ps; then S(P)—s(P) = [S(P1)—s(P1)]+[S(P2)—s(P2)] <
€. Hence f is integrable on [a, c], by Theorem 3.2.7. To complete the proof, observe that
Riemann sums over partitions of [a, ¢] having b as a partition point can be broken up as
Ola.c] = Olab] + Ofbc]-
9.Ifa < b < ¢, Theorem 3.3.9 implies the conclusion. There are eight other possible or-
derings of a, b, and c. Suppose, for example, that ¢ < a < b. Then Theorem 3.3.9 implies
that (A) fcb fxydx = [ f(x)dx + fab f(x)dx. Since fcb f(x)ydx = — [, f(x)dx
and [ f(x)dx = — [ f(x)dx by definition, (A) is equivalent to — [, f(x)dx =
—[2 f(x) dx+fab f(x) dx, whichis equivalentto [ f(x)dx = fab fx)dx+ [, f(x)dx.
The other possibilities can be handled similarly.
10. Proof by induction. Theorems 3.3.8 and 3.3.9 imply P,. Now suppose n > 2 and
Py, istrue. Leta = ag < ay < -+ < ap+1 = b. Theorem 3.3.8 and P, imply that (A)
b n n n
[i fx)dx = faao f(x)dx + faa,, 1 f(x)dx. By Py, faao f(x)dx = faaol f(x)dx +
coo o [or f(x)dx. This and (A) imply Py
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11. By Exercise 10, (A) fab fxydx = 3, f;};’_l f(x)dx. Applying Theorem 3.3.7
withu = f,v =1,a = xj_1,and b = x; shows that f;};’_l f(x)dx = f(€;)(xj—xj-1)
for some ¢; € [x;_1,x;], j = 1,2, ..., n. Therefore, (A) implies that fab f(x)dx =
Yo f@) ) = xj-1).

12. Let P = {x¢, X1,...,Xn} and let op = Z'}=1 f(€;)(x; —x;_1) be the Riemann sum
chosen in the solution of Exercise 11. If o = Z?=1 f(cj)(x; —x;_1)is any Riemann sum

b n
o= [ fedx| =lo=oul = 317~ F@Ix; = xy-1). From
a j=1
Theorem 2.3.14, | f(c;) — f(c;)| < M(x; —xj—1) < M| P|. Therefore, (A) implies that

b n
o —/ f(x)dx‘ < MIIPI Y () = xjm1) = M| P(b—a).

Jj=1

over P, then (A)

13. (a) fab f(x)dx > 0 because every Riemann sum for f is > 0. If f is continuous at
¢ in [a,b] and f(c) > 0, there is an interval [«, 8] C [a, b] such that f(x) > f(c)/2 if

x € [a, B]. From Exercise 9, (A) fab fx)ydx = [ f(x) dx+ff f(x) dx+fé7 f(x)dx.

Since [ f(x)dx > Oand f; f(x)dx > 0, (A) implies that fab f(x)dx > ff f(x)dx >
f(c)(B —a)/2, where the last inequality follows from Theorem 3.3.2.

14. Since ! /x f(a)dt = f(a), we can write
x—alJ,
F(x)—F 1 x
FO-F@ gy = 1 [ o~ r@a
X—a xX—alJ,
From this and Theorem 3.3.5, (A) Fx) - Fa) fla)| < 1 /x | f() = fla)|dt|.
X —a |x_a| a

Since f is continuous from the right at a, there is for each ¢ > 0 a § > 0 such that
| f(t) — fa)] < eifa < x < a + 6 and t is between x and a. Therefore, from
F(x)— F(a) |x —al

A), | ————— f()
X—a |x —al

Fi(a) = f(a).
1 b
/ f(b)dt = f(b), we can write

< €

= eifa < x < a + §. This proves that

Since

b—x

F(x) — F(b) 1 b

2 p ) = [ e - s
F(x) — F(b) 1 b

TR ) = ‘/ &)= f) dz‘.

Since f is continuous from the left at b, there is for each ¢ > 0 a § > 0 such that

| f(B) — f(t)] < €eif b—6 < x < b and t is between x and b. Therefore, from (B),
M — f(b)‘ < e% = €if b—8 < x < b. This proves that F’ (b) = f(b).
—Xx —x

=

From this and Theorem 3.3.5, (B) ‘
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15. THEOREM. If f is integrable on [a,b] and a < ¢ < b, then the function g defined by
G(x) = fxc f(t)dt satisfies a Lipschitz condition on [a, b], and is therefore continuous on
[a, b].

THEOREM. If f is integrable on [a,b] and a < ¢ < b, then G(x) = [{ f(t)dt is
differentiable at any point in (a, b) where f is continuous, with G'(x¢) = — f(xo). If f is
continuous from the right at a, then G'_(a) = — f(a). If f is continuous from the left at b,
then G'_(b) = — f(b).

Rewrite G(x) = fcx(—f(t)) dt and apply Theorems 3.3.10 and 3.3.11to g = — f.

16. (a) Since arbitrary constants can be added to antiderivatives, (A) need not hold for
specific antiderivatives of f, g, and f + g.

(b) Every antiderivative of f + g can be obtained by adding antiderivatives of f and g,
and every such sum is an antiderivative of f + g.

17. If ¢ # 0, every antiderivative of ¢ f can be written as ¢ F, where F' is an antiderivative
of f; conversely, if F is an antiderivative of f, then cF is an antiderivative of ¢ f. This
statement is false if ¢ = 0, since then any constant is an antiderivative of ¢ f, while cF = 0
for any F'.

18. (a) Py is true, by Corollary 3.3.13. Now suppose n > 0 and P, is true. If f@*2) is
integrable on [a, b], integration by parts yields

b (n+1) b
(n+1) g — f (a) _n+l 1 (n+2) _ ntl
/a f ®b —)"dt = 1 b—-—a)"" + P /; f OB —-1)""dt.

Now P, implies Py 4.

(b) If £@*+D is continuous on [a, b].(a) and Theorem 3.3.7 imply the conclusion of Theo-
rem 2.5.5.

19. If ¢ and ¢; have the property, then f(b) f;' g(x) dx = 0, which implies that f;' gx)dx =
0, since f(b) > 0. Exercise 13 implies that ¢ = ¢;.

20. Letm = inf{f(x) |a <x < b} and define F(x) = f(x)—m. Then F is nonnegative

on [a,b]. Moreover, F is integrable on [a, b] if and only if f is, while F(¢(¢))¢’ (¢)

is integrable on [c, d] if and only if f(¢(¢))¢’(¢t) is. The assumed version of Theo-
rem 3.3.18 implies that if either F is 1ntegrab1e on [a, b] or F(¢(t))¢'(¢) is integrable

on [c, d] then so is the other, and (A) / F(x)dx = / F(p(1))|¢' (t)| dt. Now note

c

that (B) / mdx = (b — a). If ¢ is nondecreasing, then ¢(c) = a, ¢(d) =

and /()] = ¢'(1). 50 (©) [ mlg' )] di = [Img/(0)dt = m(@(d) - () =

m(b — a). If ¢ is nonincreasing, then ¢(c) = b, ¢(d) = a, and |[¢'(¢)] = —¢’(¢), so

©) [ mlg/ )] dt = — [T me/(t)dt = —m(¢(d) — $(c)) = m(b — a). Now (A), (B),

(C), and (D) imply that if either f is integrable on [a, b] or f(¢(2))¢’(¢) is integrable on
d

[c, d] then so is the other, and/ f(x)dx =/ f@@)|¢ (@) dt.

21. If ¢ is nonincreasing on [c, d], then ¢(—¢) is nondecreasing on [—d, —c], and (A)
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d

Eqb(—t) = —¢’(—t). Now suppose f is integrable on [a, b]. Then Exercise 3.1.6 implies
b —a

that f(—x) is integrable on [—b, —a], and (B) / fx)dx = / f(—=x)dx. Applying

the assumed restricted version of Theorem 3.3.1a8 to ¢(—¢) and }(—x) and recalling (A),

—a —C

we infer that (C) f(=x)dx = — f(p(=1))¢’' (—t) dt. Applying Exercise 3.1.6

—C

d

to f(¢(1))¢’(t), we conclude that (D) » flo(=1)¢' (=) dt = / flo@)¢' (1) dt.
b d ¢

Now (B), (C), and (D) imply that (E) / f(x)dx = —/ f(p(t)¢' (t)dt. Since

b d
|9’ (t)] = —¢'(), (E) is equivalent to/ fx)dx = / f(@p@)|¢’ ()| dt. A similar
argument applies if we start with the assuamption that f (qbft))qb’ (¢) is integrable on [c, d].
22. A typical RS sum for fab f(x)dg(x) is

n n
o= fleplglte) —gxj-)] =D flc))g @) (x; —xj-1)
Jj=1 j=1
where x;_; < ¢; < x; (mean value theorem). Let o’ = Z?=1 fCg'@Ej)x;j —xj-1),
which is a Riemann sum for fab f(x)g'(x)dx. Then

lo — 0’| < (max {| f(c;) — f@)||1 <) <n})Mb—a),

where |g’(x)| < M on [a,b]. By Theorem 2.2.12, f is uniformly continuous on [a, b];
therefore, |0 — 0’| can be made arbitrarily small by choosing || P || sufficiently small. Since

b
<lo—o'|+ a’—/ F(0g () dx|.

b
o— / £ (x) dx

the existence of |, ab f(x)g’ (x) dx implies the conclusion.

b n
23. A typical RS sum for/ f(x)dg(x)is(A)o = Z f(cj)g(x;) —g(xj—1)]. From

j=1
g" ()

Theorem 2.5.4, (B) g(x;) = g(c;) + g'(cj)(x; —c¢;) + (x; — c;)* for some

aj € (cj,x;)and (C) g(x;—1) = glc;)+ g (cj)(xj—1—c;)+ M(xj—l —c;)? for

some o1 € (xj_g, c;). Subtracting (C) from (B) and substituting the result in (A) yields

1 n
o =0+ fleple" @) - —¢" @) =)’ (D)
Jj=1

n b
where 0/ = Z f(c;)g' (cj)(x; — x;—1) is a Riemann sum for / f(x)g'(x)dx. Now
j=1 ¢
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suppose | f(x)| < M and |g"(x)] < K,a < x < b. From (D),

n

.. MK
o =o'l = = > G —ep)? + (xjo1 —¢;)*] < MK(b —a)|| P].
j=1

Therefore,

<lo—0d'|+

b
d—/.ﬂmyqu

b
a—/.ﬂmyuwx

B)
< MK(®-a)|lP| + ‘

b
w—/.ﬂmgqu.

b
If € > 0, there isa 8§ > 0 such that MK(b — a)§ < % and a’—/ f()g' (x)dx| < ;
a

if |P|| < 8. Therefore, (E) implies that < e if |P|| < 8. This

b
a—/.ﬂmguwx

b b
implies that/ f(x)dg(x) =/ f(x)g' (x)dx.

3.4 IMPROPER INTEGRALS

1. (a) Suppose that | f(x)| < M, a < x < b after f(b) is defined. If ¢ > 0, choose b; so
that a <by <band M(b — b;) < €. Since f is integrable on [a, b;], there is a partition
={a,x1,...,b1} of [a, b1] such that S(P1) — s(P2) < € (Theorem 3.2.7). Then P =

{a,x1,...,b1,b}is apartition of [a, b] for which S(P)—s(P) < 3e. Hence, / f(x)dx
exists (Theorem 3.2.7). Now define F(c) = f f(x)dx (@ < ¢ < b). Since F is con-

tinuous on [a, b] (Theorem 3.3.10), F(b—) = F(b), which implies that / fx)dx =

hm / f(x)dx. Since hm / f(x)dx is independent of f(b), / f(x)dx is inde-
pendent of f(b).
(b) Let f be locally integrable and bounded on (a, b], and let f(a) be defined arbitrar-
b

ily. Then f is properly integrable on [a, b], / f(x)dx does not depend on f(a), and
a

b b
/Hf(x)dxzcg%/c f(x)dx.

o
2. Letw and a1 be in (a, b). Suppose that we know that the improper integrals / f(x)dx
a

b o o
and/ f(x)dx both exist. Leta < ¢ < b. Then/ fx)dx = / fx)dx +
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o o

f(x)dx. Letting c — a+ shows that (A)/ f(x)dx = / fx) dx+/ f(x)dx.

a

Also, / fx)dx = / f(x)dx +/ f(x)dx. Letting ¢ — b— shows that (B)

/ f(x)dx =/ f(x) dx+/ f(x)dx. Adding (A) and (B) andnotingthat/ fx)dx =
“ o “ o “ b o b “

—/ f(x)dx showsthat/ f(x)dx+/ f(x)dxz/ f(x)dx+/ f(x)dx.

b
3. Suppose that f is locally integrable on [a, b) and / f(x)dx exists according to

Definition 3.4.1. Leta < o < c. Then/ fx)dx = / f(x)dx+/ f(x)dx,

o) hm f(x) dx exists. Theorem 3.3.8 implies that / f(x)dx exists (as a proper

a

1ntegra1), and Theorem 3.3.10 implies that 11m+/ fx)dx = / f(x)dx. Hence,
c—a c a

b b o
f(x) dx exists according to Definition 3.4.3. Moreover, / fx)dx = / f(x)dx+
a

a a
c o c c
lim / f(x)dx = lim (/ fx)dx + / f(x) dx) = lim / f(x)dx, so Def-
c—>b— Jqu c=>b—\Jg4 pe c—>b—J,
initions 3.4.1 and 3.4.3 yield the same value for / f(x)dx. A similar argument applies
a

b
if f islocally integrable on (a, b] and / f(x) dx exists according to Definition 3.4.2.
a
4. (a) Proper if p > 2, improper if p < 2. In either case
1/m 1 1
I = lim —(x”sin—) dx = —cPsin—- =0
dx X c
if p > 0; divergent if p < 0.
(b) Proper if p > 2, improper if p < 2. In either case
2/ 1 1
I = lim —(x”cos—) dx = —cPcos— =0
c—0+ J.  dx X c

if p > 0; divergent if p < 0.
(I1—e7?)/p, p#0,

c
(c) Improper for all p. / e PXdx = { Therefore,
0 c, p =0.
o0
/ e_pxdx:{l/p’ p>03
0 o, p=0.

1 _ Pl —
(d) Proper for p < 0, improper for p > 0. / xPdx = {(1 ¢ )/(L=p). P #0,
¢ —loge, p=1
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1

Therefore, /

gy {1/(1 —p). p<l,
0

00, p=>1

1
(e) Improper for all p. Write the integral as / = I; + I, with I} = / xPdxand I, =
0

o0 c
x~? dx. From (d), I; converges if and only if p < 1. Now consider /5. / X Pdx =

1 1
{(c—w—l)/(l—p), p#L Vp=1. p>1.

Therefore, I, = Since I con-

logc, p=1 00, p =<1
verges only if p < 1 and I converges only if p > 1, I diverges for all p.
o0 c
5. (a) We show by induction that x"e ™ dx = nl. e dx = 1—e ¢ Letting

0 0
¢ — 0 verifies Py. Now let n > 0 and suppose that P, is true. Integrating by parts yields
c
/ e x" T dx = —e "M 4 (n + 1)/ “*x" dx. Letting ¢ — oo and invoking P,
0 0

o0
yields/ e Xdx=m+ Dn! =0+ 1.
0

o0

c —C 1 1
(b)/ e_xsinxdxz—e (cosc +sinc) + —, so/ e Fsinxdx = —.
o 2 27 o 2

¢ xdx 0 xdx
c) Write I = 1 I, with I; = —— and I, = —. Si I, =
(¢) Write 1+ I, wi 1 /()x2+lan P /_Cx2+l ince I;

1
3 log(c? 4+ 1) — oo as ¢ — oo, I diverges. Therefore, I diverges.

c d 1 d
(d)/izl—vl—czalascal—,so L:l.
0

V1 —x2 0 v/1—x2
T (cosx sinx sinc
(e) - dx = ——— — —1 as ¢ — 0+. Therefore,
c c
cos X smx
( ) dx = —1.
X
sin x cosx) dx = _ o8¢ — 0 as ¢ — oo. Therefore,
7r/2 Cc

/ L) g
/2 X X

6. If € > 0, there is an a; such thata < a; < b and |f: f@)de —fab f@)de] <e€/2
b
if a; < ¢ < b (from Definition 3.4.1 if/ f(¢)dt is improper; from Exercise 1 if it is

proper). Therefore, ifa; < x <c¢ < b, ‘

t)dt| =

(t)dt—/xf(t)dt

< [f(z)dz—/jf(z)dr

+

/{;bf(t)dt—/: f@)de

€
<.
2
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Letting ¢ — b— here shows that < eifa; <x < b. This implies the stated

/xb f(x)dx

conclusion.

X
7. Apply Exercise 2.1.38 to F(x) = / f@)dz.
a

1 i 1 *® d > 1 i
8.(3)w>—ifx>e2.81nce/ —xzoo,/ mdxzoo.
VX Jx 2 X 2 Jx
* logx + sinx

Therefore, / dx = oo (Theorem 3.4.6(b)).

1 Vx
00 (2 3/2 0 2 3/2
(x*+3) .2 / (x*+3) .5

b)I = I, +1, where I} = -~ _sin“xdxand I, = - sin“xdx.
D)1= T+l ' /0 (x4 + 1)3/2 27 L F 12
7()62 +3)°2 sin? x < (2 +3)°2 < (o +3)°2 < L i ” < —23/2 if |x| >
(x* +1)3/2 (x* +1)3/2 x© |x|3 x2 |x|3

e’} 1 —«/E 1 e} 2 3/2
V3. Since/f;dx<ooand/ de<oo, [%sinzxdx<oo

3 —00 3 X

/—ﬁ (2 +3)¥?
and -
oo (Xt 4 1)3/2
and so does /.

1+ cos?x 1 1

sin? x dx < oo. Therfore I 1 and I converge (Theorem 3.4.6(a)),

= dx

1
(c) > = > if x > 1. Since/ = 00,
Vi+x2  JT1+x2 xJ1+1/x2 xV2 X
Ty, (Th 3.4.6(b))
——————dx = oo (Theorem 3.4. )
0o V1+x2
L 44 cosx *® 4+ cosx
d)I =1 +1 Wherelzfidxandlz —dx. 0 <
@1=htbwheeh = |G 07w 2T ) Trovs
4+ cosx 5 . . /1 dx
——— < — if x > 0. Since ——, I1 < oo (Theorem 3.4.6(a)). 0 <
I+xvx  Jx o Jx ( @
dreosx 5 o 1si /1 A 1 - oo (Th 3.4.6(a)). Therefore, I
if x . Since R oo (Theorem 3.4. . Therefore,
(I4+x)/x  x3/2 o x3/2 7
converges.

(e) Convergent, by Exercise 5(a),(b), and Theorem 3.4.4.

o0 o0
(f) Since 2+sinx > 1 and/ x~? dx = oo (Exercise 4(a)),/ x P (2+sinx)dx = oo
0 0

. sin x 1 . sin x
9. (a) hr(r)l+ ( ) / ( ) = lim = 1, so the analog of Theorem 3.4.7(a)
xX—>

xP xp—1 x>0+ X
/2 sin x /2
implies that / = / > dxand I; = / T converge or diverge together. Since
0 X 0 B
/2 g 1 —p+2
/ X = (z) —cPt2 , I1 < oo—and therefore I < oo—if and only
c xp7l 2 p|\2

if p <2.
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(b) lim (cosx) /( ) = lim cosx = 1, so the analog of Theorem 3.4.7(a) im-
x—>0+ x—>0+

/2 COS X /2
plies that 7 / dx and I = / —, converge or diverge together. Since
0 X
1

/2 p+1
/ d_x = (—) — Pl , I1 < oo—and therefore I < oco-if and only if
c x? 1-p pL\2

p<l1

(¢c) Write I = I; + I, where I}, = fol xPe ™ dx and I, = flooxl’e_x dx. Since
1

hm (x e ) /xP = 11r(r)1+e * =1, I < oo if and only if (A) xPdx < oo, by

the analog of Theorem 3.4.7(a). Since (A) holds if and only if p > -1, I < xif
and only if p > —1. Since lim (x Pe™*)/e /2 = lim x?e™*/? = 0 for all p and
o0 X—>00 X—>00

e /2 dx < oo, the analog of Theorem 3.4.7(a) implies that [, < oo for all p. There-

1
fore, I < oo if and only if p > —1

(d) Let f(x) = sinx(tanx)™? = (cosx)?(sinx)"?*!. Then I = 0”/2 f(x)dx is a
proper integral if 0 < p < 1.

If p < 0, then f is locally integrable on [0, 7/2). The mean value theorem implies that

cosx = —(sinc)(x — 7/2) for some ¢ between x and 7/2. Therefore, lim o8y
x—>m/2 X — 7'[/2
[ e . .
1,50 lim = 1. Since (x —7/2)? dx < oo if and only if p > —1,
x—>m/2— (x — 7'[/2)1J

Theorem 3.4.7(a) implies that I < 001f l<p<O0and] =o0if p <—1.

If p > 1, then f is locally integrable on (0, 7/2]. The mean value theorem implies that
cos X

cosx = —(sinc)(x — 7/2) for some ¢ between x and /2. Therefore, lim
x—>r/2 X — 7'[/2
: f(x) . /2 : .
I,so lim ————— = 1. Since (x —7/2)? dx < oo if and only if p > —1,
x—m/2— (x — 7 /2)P
Theorem 3.4.7(a) implies that / < oo 1f l<p<O0and! =o0if p <—1.
Li41(T)
10. The substitution u = L1 (x) transforms / f(x)dx into/ u~Pdu. Since
a

Liy1(a)
Tlim Lj41(T) = oo, Example 3.4.3 yields the conclusion.
—00

12.If f(x) =ao+ -+ apx" and g(x) = bg + -+ + by x™ (an, by # 0), then
Jx)
g(x)

|n—m

= |an/bm|.

x—>to0 |x

Therefore, / | f((x))
1

oo; that is, if and only if m —n > 2

13.(f+8)* = f2+2fg+8% = 0,50 fg = —(f2+g%)/2: (f —g)* = f?-2fg+g* =

0,50 fg < (f?+ g?)/2. Therefore, | fg| < (f? + g2)/2. Now use Theorem 3.4.6.

ldx < oo d/ |f((x))|dx < oo if and only if/ x"Mdx <
1
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14. Since f is nonoscillatory at b—, there is an interval [a1, b) on which f does not change
sign. Assume that f(x) > 0 and |g(x)| < M fora; < x < b; then

/ fg(ldx < M / F()dx = M [F(c) - Flay)].

Since F is bounded on [a, ), this implies that sup,, <. f;l | f(x)g(x)|dx < oo. Use
Theorem 3.4.5. A similar argument applies if f(x) < 0on [ay, D).

15. Since g is nonincreasing, it is locally integrable on [a, b) (Theorem 3.2.9), and therefore

so is fg (Theorem 3.3.6). Since | f(x)g(x)| < g(a)| f(x)], / | f(x)g(x)|dx < oo if

/ | f(x)|dx < oo (Theorem 3.4.6); hence, / f(x)g(x)dx converges (Theorem 3.4.9).

Ifa <x <c<b,then|[s f()g(t)dt| < f | f(O)|g(t)dt < g(x) [S|f(t)|dt. Letting

¢ — b— yields ‘ff f(t)g(t)dt‘ < g(x) fx | f(t)|dt. Now divide by g(x) and apply
Exercise 6 to | f|.

b
16. If f does not change sign on [a;, b), where a < a; < b, then obviously/ f(x)dx
a

b b b
and / | f(x)|dx converge or diverge together. Since / f(x)dx and / f(x)dx con-
aj a ai

b b
verge or diverge together, as do / | f(x)|dx and / | f(x)|dx, the conclusion follows.
a a

b
17. (a) If g is nonincreasing, then g(x) > 0 on [a, b) (since / g(x)dx = o0) and
a

Xr41 T Xi+l r
/ /(g ()] dx > Z / @l dx > pY gii41)
a j=0"%/ j=0

ro[*2 g(x)dx

>pZ x+1

Xj+2 = Xj+1

0 Xr+42

> — d .
> gx)dx — o0 as r — 00
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b
If g is nondecreasing, we may assume that g(x) > 0 (since / g(x) dx = 00); then
a

Xr41 Xj41 d
/ gl dx> Y / @l dx > p Y g(x))
a Jj=0"% j=1

i g dx

Xr
2% gx)dx — o0 as r — oo.
X0

c c
(b) If g is monotonic, then g’ does not change sign; hence, / lg’'(x)|dx = | / g (x)dx| =
a a

|g(c) — gl@)] — [g(a)] as ¢ — b—.

18. (a) p > 1: Since |[x P cosx| < x~P, absolutely convergent (Example 3.4.3 and

Theorem 3.4.6). 0 < p < 1: convergent by Theorem 3.4.10 with f(x) = cosx and

g(x) = x7P, but not absolutely convergent because of Theorem 3.4.12; hence, condi-
c

tionally convergent. p = 0: / cosx dx = sinc; divergent. p > 0: divergent by
0

Theorem 3.4.11).

(b) p > 1: absolutely convergent by Theorem 3.4.6, since

< ! s
~ x(logx)?

sin x

x> 2,

x(logx)?

and

¢ d log2)=?7 — (1 1=p log2)!—2
/ al dxz(Og) (logc) _)(og) as ¢ — 00.
2

x(log x)? p—1 p—1

o0
p < 1: convergent by Theorem 3.4.10 with g(x) = 1/x(logx)?. However, since / gx)dx =
2
0o, not absolutely convergent (Theorem 3.4.12); hence, conditionally convergent.

(c) p > 1: absolutely convergent by Example 3.4.3 and Theorem 3.4.6, since | sinx /x? log x| <
x7?. 0 < p < 1: convergent by Theorem 3.4.10; not absolutely convergent, by Theo-
rem 3.4.12; hence, conditionally convergent. p < 0: divergent by Theorem 3.4.11.
(d) If f(x) = xPsinl/x and g(x) = x~P7!, then lim @ = 1, so the integral
x—o00 g(x

converges absolutely if and only if p > 0 (Theorem 3.4.7). Since f(x) > 0 for all x in
[1, 00) there is no possibility of conditional conveergence.

.2 . 1

2
(e) Let f(x) = w Write the integral as I = I; + I, where I} = / f(x)dx
x 0

o0
and I, = / f(x) dx (both improper).e
1
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First consider /1. Note that f(x) > 0,0 < x < 1. Since lir(r)1+ f(x)/xP™3 = 2 and
xX—>
1
x PP dx < oo if and only p < 4, Theorem 3.4.7 implies that /; converges if and

0
only p < 4, and the convergence is absolute.

Now consider I». Since | sin” x sin2x| < 1, Example 3.4.3 and Theorem 3.4.6 imply that
X

X
I, converges absolutely if p > 1. Since / sin? ¢ sin 2t dt = 2/ sin®t cost dt =
0 0

1
—sin* x is bounded, Theorem 3.4.10 with g(x) = x~” implies that I, converges if

p > 0; however, Theorem 3.4.12 implies that the convergence is not absolute in this case,

(+1/2)m (+Dm 1
since/ sin® x cosx dx = / sin xcosxdx = -, j =123,..., and
. (+1/2)7 4

o0
/ xPdx =oc0if p > 0.
0

Hence, we conclude that I converges absolutely if 1 < p < 4, or conditionally if 0 < p <
1.
(B Let f(x) =

sin x
1+ x2)?

1 00

I, = / f(x)dx, and I3 = / f(x)dx. Since | f(x)| < x~27, Example 3.4.3 and
1

Theoreml?a.4.6 imply that /3 converges absolutely if p > 1/2. Theorem 3.4.10 implies that
I3 converges if p > 0, while Theorem 3.4.12 implies that the convergence is not absolute
if 0 < p < 1/2; hence, the convergence is conditional in this case. A similar analysis
show that 7 converges absolutely if p > 1/2, conditionally if 0 < p < 1/2. Therefore, I
converges absolutely if p > 1/2, conditionallyif 0 < p < 1/2.

-1
. Write the integralas I = I1+1,+ 13, with I} = / f(x)dx,
—00

o0

c c
19. / gx)sinx dx = —g(x)cosx|g+/ g (x)cosxdx. Since/ g (x)cosxdx
0 0 0
o0

converges by Theorem 3.4.10, g(x)sin x dx converges if and only if lim g(c)cosc
Cc—>00

0
exists, which occurs if and only if L = 0.
20.(a) |e*h(x)| < |e™°*h(x)| if x > 0 and s > s¢. Use Theorem 3.4.6.
(b) Use Theorem 3.4.10, with f(x) = h(x)e™0* and g(x) = e~¢—50)*,

a+1
T so we conjecture that

X
21. Assume that > 1. If f(¢) = A, then/ t*f(t)dt = n
0 o

X
A
lim x ! / t* f(t) dt = ——. To verify this, define
0 a+1

X—>00

X A X
F(x) =x! /0 Y f(t)dt — i x—o ! /O t(f(t) — A)dt.

Given € > 0, choose x¢ so that | f(x) — A| < € if x > x¢. Then, if x > xo,

|F(x)| <x™@! (/Oxo Y f(t) — Al dt +e/x I dt) <x ot /Oxo 1 f(t)—A| dt+e.

0
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Since the last integral is a constant indpendent of x, this implies that lim |F(x)| < e.
X—>00

Since € can be chosen arbitrarly small, lim F(x) = 0.
X—>00

22. (A) /x f)g)dt = F(x)g(x) — /x F(t)g'(t)dt. If |F(x)| < M on [a, b), then
(A) implies that ¢

/ F()g(0) di

=M [g(X) +/ g'(l)dl} =M (2g(x) — g(a)) .

This yields the conclusion.

23. Let € > 0 be given. From Exercise 6, there is a number x¢ in [a, ) such that F(x) =

X
/ f(¢t)dt satisfies |F(x)| < € if xo < x < b. Now suppose that xo < x < b; then
X0

/ Fg(0) di = / " F(g() di — F)g(t)

+ / F()g' (t)dt. (A)

0

1
g(x)

Since g’(x) > 0, /x F(t)g' (1) dt /x f(®)g(t)dt

0

/ F(0g() di

< €g(x), so (A) implies that <

1
ﬂ + 3e. Since the integral on the right is a constant independent of
gx

— 1
x and g(x) > coas x —> b—, lim ——

5% | e
/ f(t)g(t)dt‘=0

< 3e. Since € can be chosen

1
arbitrarily small, lim ——
xX—>00 g(_x)

24.Ifa < x < x1 < b, then

X1

/ FOg(0)di = —F()g(t)

+ /XI F(t)g'(t)dt.

X
Let f(x) = SUP,<;<p | F(2)]; since lirgl F(t) = 0 (Exercise 6), F is defined and nonin-
- t—>b—

creasing on [a, b), and (B) lirlr71 f(x) = 0. Since |F(t)g’'(t)] < —|f(x)|g’(t) x<t<
x—b—
b
b), / |F(t)g'(t)| dt < oo. Since lirrll7 F(x1)g(x1) = 0, letting x; — b—in (A) yields
X X1—>b—

b b
/ f)g)dt = F(x)g(x) + / F(t)g' () dt. This and the assumptions on g imply

b
that / f(t)g@)dt] <2F(x)g(x), and (B) now yields the result.
X
25. Use Theorem 3.4.13.
1 o]
(@ x =1/t / xPsinl/xdx = 17?72 sint dt; absolutely convergent if p > —1

0 1
by Example 3.4.3 and Theorem 3.4.6; conditionally convergent if =2 < p < 1 by Theo-
rems 3.4.10 and 3.4.12; divergent if p < —2 by Theorem 3.4.11.
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1 0
(b) x = €', s0t = logx; / [logx|? dx = / tPe'dt = I, + I, where I} =
0

—00
-1 0 0
/ tPetde, I, = / tPe' dt. I converges absolutely for every p. Since/ t? dt
—00 —1 -1
converges if and only if p > —1, Theorem 3.4.7 with f(¢) = ¢? and g(¢) = e't? implies
that I, converges if and only if p > —1, since lim e’ = 1. Therefore, I converges

t—>0—

absolutely if and only if p > —1. There is no possibility of conditional convergence.
o0 o0

()t =logx,sox =e'; I = / x? cos(logx)dx = / e P+ cos1 dtr. Absolutely
1 0

e(p+1)t

convergent by Theorem 3.4.6 if p < —1, since / dt converges if p < —1.

0
Divergent if p > —1, by Theorem 3.4.11.

o0
dt =logx,sox = ¢! / (logx)? dx = / tPe’ dt. Since thm tPe’ = oo for all
0 —00
p, Theorem 3.4.7(b) with f(t) = tPe’ and g(¢) = 1 implies divergence for all p.
oo 1 oo
(et =x?,sox =t"P If p > 0, then sinx?dx = — t~1Pgint dt, which

0 P Jo
is conditionally convergent if and only if p > 1, by Theorems 3.4.10, 3.4.12, and 3.4.11. If
o0

1
p <0,then] = ——/ = FVYPsint dt = (I +1,)/ p, where I = fl 1Y P ging dt

P Jo
and I, = foo = VP gint dr. I, converges absolutely for all p < 0, while /; is converges

absolutely if p < —1. Hence, I converges absolutely if p < —1.

*® dt ®dr 1 °dr v, u
26. (a)Ifu2=u1/ —,thenu’zzu’I/ ———andu ’Z’zu’l’/ —2——5-!-—;:
1 x x U 1 1

x u1 Uy 2 2y
® dt
u’l’/ - souy + puy = (U] + puy) —2 =0.
X 1 1
Tt df 1 “dtouy o
Ifu2=u1/ thenu2=u1/ + d"’z’=u'{/—2+—§——§=
o u o Uy ui uj

* dt
u’l’/o —., S0 Uy + pup = (uy +pu1)
Uy

* dx *° dt

(b) Let u be a positive solution of (A) on [0, c0). If/ 2(0) < oo, lety; = u / -
0 us(x

and y, = u; then *

S — —u/ dt u — u’/ooﬂ—l u=1
Y1y = yiy2 = ouz w2 ou)

d tim 29 _ /oo a__, If/oo dx tak d
an m = m —_— = . = 00, (] = U an =
00 yo(x) | xooo fy w2(1) 0 12(x) 7 y2

dt
u/ — then
o U

, , ,/x dt N 1 , /x dt !
— =ulu —+—]—uu — =
Y1V = V1)2 , 2 w2
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X dt -1 / o
and lim 2% _ iy ( / : ) — 0. In either case, (ﬂ) SRR AR
X200 yo(x) x>0 \Jo u* (1) Y2 Y2

27. b)u = —cle_x+czex+/ h(t)cosh(x—t)dt; u" = cle_x+czex+/ h(t) sinh(x—
0 0
t)ydt + h(t) = u + h(x).
eXet — o~ Xpl

(b) Since sinh(x —t) = —

u(x) = (cl — % /Ox h(t)e' dt) e ™ 4 (cz + %/Ox h(t)e™ dt) e”,

1 [~ 1 [~
soa(x) =cy — —/ h(t)e' dt and b(x) = ¢, + —/ h(t)e " dt.
2 Jo 2 Jo

o0 1 o0
(©If lim a(x) = A (finite), then/ h(t)e' dt converges, and A = CI_E/ h(t)e'dt.
X—>00 0 0
o0

From Exercise 24 with f(x) = h(x)e* and g(x) = e~ 2%, / h(t)e™ dt converges, and
0

o0 1 o0
lim er/ h(t)e™"dt = 0. Let B = c2 + —/ h(t)e 'dt. Then e?*[b(x) — B] =
X—>00 x 2 0
o0
—ezx/ h(t)e"dt — 0as x — oo, and e*[u(x) — Ade ™ — Be*] = [a(x) — A] +
X
e?*[b(x) — B] — 0 as x — oo.
o0
(d) Since lim b(x) =B (finite), / f(x)e ™ dx converges. From Exercise 23 with
X—>00 0
X
f(x) = h(x)e™ and g(x) = e?*, lim e_zx/ f(x)e* dt = 0, which implies that
X—>00 0
lim a(x)e >~
X—>00

28.

= 0. Now (a) implies the conclusion.

W = 1yl + eayl + /0 RO (094 () — ¥4 () y20)] dr:

u” = c1y] +cayy + /0 h(@)[y1(t)y5 (x) — y{ (x)y2(1)] dt

+h()[y1(0)y3(x) = y1()y2(0)] = —p(x)u + h(x).

a(x) = ¢1 /0 h(O)y2(0) dt, b(x) = ¢a + /0 By (1) dt.

o0

(b) From Exercise 24 with f = hy, and g = y2/y2, / h(t)y1(t) dt converges and
0

T y2(x)
1mm
x—>00 yq (_x)

/oo h(t)y1(t)dt =0.Let A = cl—/oo h(t)y2(t)dt, B = cZ+/ooh(t)y1(t)dt.
x 0 0
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Then
ux) = Ay () = By2 (%) =/ h(t)yz(t)dt—yZ(x)/ h(t)y1(t) dt — 0as x — oo.
yl(x) X J1 (x) X
(c) From Exercise 23 with f = hy; and g = y»/y1, lim ylg;/ h(t)y2(t)dt = 0.
X—>00 y2 0
Therefore, lim a(x)yl(x) =0,s0 lim u(x) = C2+/ h(t)y1(t)dt.
x=oco 7 yy(x) x=00 y3(x) 0

29. Let F(x) = /x f(t)g(t)dt; then

* _ o A@) ’ _fl(t)
/; fiDg) dr = / ( f(t))Fmdz— ol

[ fl(t))/F dr. (A
) (G5) o w
. b . . . . Y. .
Slnce/ f(t)g(t)dt converges, 1_1>r1171_ F(x) exists (finite). Since (7) is integrable in
S1(0)

f(@)
on [a,b), Theorem 3.4.6 implies that the integral on the right side of (A) converges as
x — oo. This implies the conclusion.

/
[a,b), lim exists (finite). Since (?) is absolutely integrable and F is bounded
X—>00

30. The assumptions imply that for some ¢ in [x1, x3],

(Theorem 3.3.7)

/ F(0)g(x) dx

- ‘f(c) / g(x)dx

x2
> / g(0)] dx = pM.

1

Therefore, the inequality of Exercise 7with f replaced by fgcannot hold if € < pM.

b
Hence, / f(x)g(x)dx diverges.

3.5 ANOTHER LOOK AT THE EXISTENCE OF THE PROPER RIEMANN INTEGRAL

I.Let M = sup f(x),m = infbf(x), and p = sup |f(x)— f(x")|. Then (A)

a<x<b x,x’' €la,b]

p<M-—m. Ife > 0,then f(x) > M —¢/2 and f(x') < m + €/2 for some x, x’ in
[a, b]; hence, f(x) — f(x') > M —m —¢€,s0 p > M —m — €. Since this is true for every
€>0,p0> M —m. This and (A) imply that p = M — m.

2. If S and S; are the sets of discontinuities of f and | f|, then (A) S; C S. If f is
integrable, then S is of Lebesgue measure zero (Theorem 3.5.1, and (A) implies that S
is also; hence, | f| is integrable (Theorem 3.5.6). Since 1/f is bounded and has the same
discontinuities as f if | f(x)| > p > 0, the same argument yields the second result.

3. If € > 0, there are open intervals {/;} and {I;} such that S; C U I; and S» C
J
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n n
17, with > L(1j) < e/2and Y " L(I}) < €/2,n = 1. Let {I{, 1} I}, 1],...} =
J Jj=1 j=1

n

{I.I{. L. I;....}. Then Y L(I}) <e,n>1.and S; US, C | JI/. Hence, S; U S,
Jj=1 J

is of Lebesgue measure zero.
4. Let Sy and S be the sets of discontinuities of f* and g, respectively. Since f and g are
integrable on [a, b], S1 and S, are of measure zero (Theorem 3.5.6). Hence, S1 U S3 is of
measure zero (Exercise 3). Therefore, the sets of discontinuities of f + g and fg are of
measure zero, so f + g and fg are integrable on [a, b] (Theorem 3.5.6).
5. Let Sy and S}, be the sets of discontinuities of f and /. Since f is integrable on
[a,b], S s is of Lebesgue measure zero (Theorem 3.5.6). Since g is continuous on [«, 8],
Sp C Sy. (Theorem 2.2.7). Hence, Sy, is of Lebesgue measure zero, so £ is integrable on
[a, b] (Theorem 3.5.6).

1 n
6. Let 7, = - Z |[F(ujn)—F(jn)|,h = Fog/(b—a),and P, = {Xon, X1n, ..., Xnn}»
Jj=1
where x;, =a + j(b—a)/n,0 < j <n. Define M;, = sup {h(x) | Xj_ip <x = x‘,-n}
and m;, = inf {h(x) | Xj—1n <x =< x‘,-n}. Let s(P,) and S(P,) be the lower and upper

1 n
sums of i over P,; then (A) S(P,) — s(Pp) = — Z(M/” — mjy,). Since h is inte-
" ; ;
=1

grable over [a, b] (Exercise 5), (B) limy—oo(S(Pr) —js(Pn)) = 0 (Exercise 3.2.4). Since
|G(f(jn)=G(f(vjn))| = (b—a)(Mjn —mjn) (A)and (B) imply that lim, o 7o = 0.
7. Let S = {x € [a,b] | f(x) # 0}. P = {x0,X1,...,X,} be an arbitrary partition
of [a,b]. None of the intervals [x;_1,x;] is contained in S, since any subset of S is
necessarily of measure zero. Therefore, foreach j > 1, thereisac; in [x;_1, x;] such that

n
f(cj) =0,s0 Z f(cj)(x; —x;—1) = 0. Thus, associated with every partition of [a, b]
j=1

b
is a Riemann sum of f that equals zero. Hence, / f(x)dx = 0, by Definition 3.1.1.
a
8. Apply Exercise 7to h = f — g. Since f(x) — g(x) = 0 except on a set of measure
b

b b
zero, / (f(x) — g(x)) dx = 0. Therefore, / fx)dx = / g(x)dx.



CHAPTER 4
Infinite Sequences and Series

4.1 SEQUENCES OF REAL NUMBERS

1. If € > 0, there is an integer N such that |sy — s| < €. Therefore, s > sy — € > —¢,
since sy > 0; that is, s is greater than any negative number, and is therefore nonnegative.

2. (a) From Definition 4.1.1, lim s, = s (finite) if, for each € > 0, there is an inteer N
n—>00

such that (A) |s, —s| < eifn > N. Now lett, = |s, —s|. From Definition 4.1.1 with {s,}
replaced by {z,} and s replaced by zero, lim t, = 0 if, for each € > 0, there is an integer
n—>o00

N such that (B) |t,| < € if n > N. Since the inequalities (A) and (B) are equivalent, the
conclusion follows.

(b) Suppose that |s, —s| < t, forn > Ny. Let € > 0. Since lim #, = O there is an integer
n—>o00

Nj such that |t,| < € if n > Nj. Therefore, |s —s,| < € if n > N = max(Ny, N1). Hence,
lim s, = s, by Definition 4.1.1.
n—>o00

3.
1
@) |sn —2| = —— < eifn > N, where N > 1/¢. Therefore, lim s, = 2.
n—+1 n—00

atn | _la—pl _ la—pl
B+n |B + n| n|l + B/n|
all n, so lim,_,0 s, = 1. Now suppose that @ # . First choose N1 > 2|8]|. If n > Ny,
then n > 28, so |B/n| < 1/2, which implies that |1 + §/n| > |1 — |8/n|| > 1/2 and
2|

2 —pl ifn > N;. Now let
n

(b) (A) |sn — 1| = . Ifa = B, thens, = 1 for

1
——— < 2; therefore, (A) implies that (B) |s, — 1| <
TN (A) imp B) [sn — 1]
N> be an integer such that N, > 2|a — f|/€ and let N = max(Ny, N2). Then (B) implies
that |s, — 1| < eif n > N. Hence, lim s, = 1.

n—>o00

1 . nx 1 1 .

(©) |sp| = |—sin—| < —. Choose N > 1/¢; then |s,| < — < eif n > N. Hence,
n 4 n N

lim s, = 0.

n—>o0

79
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4. (a) limy 0o 51 = 1/2:

1 n 1
bt
2n—2n—+/n+1 Vn+1
T 2@n+Vat D) | 20n+ Va0
- Vn+1 1

_4(n+1):4«/n+1

ifn > 3. If € > 0is given then choose N > 3 sothat4+/n + 1 > 1/€. Then |s,—1/2| < €
ifn>N.

(b) limy, 500 51 = 1/2:

n?4+2n+2 m*4+n)+m+1) 1
= :1-’——’
n24+n n24n n
)
1
lsp — 1] = —.
n

If € > 0 is given, choose N sothat N > 1/e. Then |s, — 1| < €ifn > N.

(¢) limy, 00 s, = 0; since | sinn| < 1,

|sinn| 1
NN

If € > 0 is given, choose N so that N > 1/€2. Then |s,| < €ifn > N.

(d)

Isn — 0] =

_ (Vn2 4+ n—n)(Vn%+n+n)
Vn?2+n+n
n?>+n—n?

n
V2 +n4+n il +n4+n

Note that 0 < s, < 1/2. We’ll show that lim,, o0 5, = 1/2.

Sn

1 n 1

S -——-—"=—— —

"2 UnZ+n+n 2
_2n—Vn2+n—n Sn

2(VnZ+n+n) _2(«/n2 +n+n)

Therefore,

= <
2(Wn2+n+n) 8n

Sp— =

1‘ [$n] 1
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Given € > 0 choose N > 1/8¢; then

<e if n>N.

5. The integer N in Definition 4.1.1 and does not depend upon ¢ if and only if the sequence
is constant for sufficiently large n. To see that this is sufficent, suppose that that s,, = s for
alln > Njp. Then |s, — s| = 0if n > Nj. Therefore, if € is an arbitrary positive number,
then |s, — s| < € if n > Nj. To see that it is necessary, suppose that there is an integer N
such that |s, — s| < € if n > N, for every € > 0. Fixingn > N and letting e — 04, we
see that 5, = s.

6. Let € > 0. Since lim,_, 5, = s there is an integer N such that |s,, — s| < € if n > N.
since ||s,| — |s|| < |sn —s| forall n, ||s,| — ||| < € forn > N; hence, lim, o |$2] = |5].
7. Lete > 0. Since lim s, = s there is an integer Ny such that (A) |s, —s| < € ifn > Nj.

n—>00

By assumption, there is an integer N, such that (B) |#, — s,| < € if n > N,. Both (A) and
(B)holdif n > N = max(N1, Na2), so |ty —s| < |ty — su| + |sn — 8| < 2¢if n > N.
Hence, lim, o t;, = s, by Definition 4.1.1.

8. Let o = inf{s,}. If « > —o0, Theorem 1.1.8 implies thatif ¢ > Othena < sy <« +¢€
for some integer N. Since ¢ < s, < sy if n > N, it followsthat ¢ < 5, < ea + € if
n > N. This implies that |s, — «| < € if n > N, so lim s, = « by Definition 4.1.1. If

n—>00

o = —oo and b is any real number, then sy < b for some integer N. Then s, < b for
n>N,so lim s, = —o0.
n—>00

_at+n+1 a+n
T B4+n+1 B+4n

9. (a) Sn+1 — Sn

_ a+n+DB+n)—(+n)B+n+1)

B+n+1)(B+n)

_ p—co

S BHn+DB+n)
Therefore, {s,} is increasing if 8 > «, decreasing if « < B. Since |s,| = i =

n
|1+ a/n| . . . .
W < 1+ |a|,n > 1, {s,} is bounded. Since {s,} is monotonic and bounded,
n
Theorem 4.1.6 implies that {s,} converges.
Sn1 (n+ 1) n" n \" . . .

b = — = < 1, so {s,} is decreasing. Since s, > 0 for all
(®) Sn (n + 1)rtl n! n+1 tsn} & g

n, Theorem 4.1.6 implies that {s,} converges.
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rn+1 n

r

C — — —
(© Sn+1 Sn_1+r”+1 Lt

_ rn+1(1 + rn) _ rn(l + rn+1)
B (14 o)1+ rm)

_ r'*(r—1)
- (1 4 rn+1)(1 4 rn)‘

Therefore, {s,} is decreasing if 0 < r < 1, increasing if r > 1. Since 0 < 5, < 1 for all n,

Theorem 4.1.6 implies that {s,} converges.

) Snt1 2n + 2)! 221 (n)? _ @n+2)2n+1)  2n+1
sn 220P2[(n+ D12 (2n)! 4(n + 1)? S 2n+2

decreasing. Since s, > 0 for all n, Theorem 4.1.6 implies that {s,} converges.

< 1, s0 {sp} is

10. If x > 0, then Tan"!x > 0. Moreover x,, 4+ 1—X, = f(x,) where f(x) = Tan™!(x)—x.
1
Since f(0) = 0and f'(x) = T2 1 <0ifx #0,e f(x) < 0if x > 0. Therefore,
X

if xo > 0, then 0 < x; < Xxp. By induction, 0 < x,4+1 < Xx,. By Theorem 4.1.6,
lim, 00 X, = inf{s,}.

1 A\2 1 4 44
11. (a)IfnzO,thens,%H—A:Z(Sn'i';) —A=Z(S5+2A+—3)—T=
1 A)? .
“sn—=) =0.50841 > VAifn>0.
4 Sn

1 A 1 /A A— s,%
Mb)Ifn>1,thensp41 —Spn==|sn+—)—sn==|——sn) = < 0 from
2 Sn 2 \ sy Sn
().

(c) Since {s,} is nondecreasing and bounded below, it is convergent by Theorem 4.1.6(b)

1 A 1 A
(d) Let s = lim,,,o. Then s = lim — (sn + —) = —(s + —), which implies that
s

n—o00 2 Sn 2

s2 = A; hence, s = JVA.
12. If {s,} is nondecreasing, then sup{s,} = oo, while if {s,} is nonincreasing, then
inf{s,} = —oo. In either case the conclusion follows from Theorem 4.1.6.
13. Suppose that s, = f(n) forn > Nj. Let € > 0. Since limx—,o f(x) = L there is an
integer N > Njp such that | f(x) — L| <eifx > N,so|s, — L| =|f(n) — L| < eif
n > N. Therefore, lim s, = L.

n—>o00
at+tx l+oa/x
B+x 14+B/x

14. (a) f(x) =

— 1 ast — oo; therefore, lim s, = 1.
n—>00

1
(b) f(x) = cos — ast — oo; therefore, lim s, = 1.
X n—o00

1 in1 13 cos 1
(©) f(x) = xsin— = = /x;by L’Hospital’stule, lim f(x) = lim —1/xcosl/x _
X lx x>0 .

—00 —1/x2
. 1 .
lim cos — = 1; therefore, lim;, o0 5, = 1.
X—>00
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1 1 1
@) f(x) =logx—x = —x (1 - E); since lim —2% = |im - = 0, lim f(x) =
X n—o00

x—>00 X xX—00 X
—00, s0 lim s, = —o0.
n—>00
1 14+1
(e) f(x) =log(x + 1) —log(x — 1) = log (%) = log (%) — logl =0as
X — —-1/x

X — o0; lim s, = 0.
n—>o00
15. If ¢ = 0, then ¢s,, = O for all n, so lim (cs,) = 0 = 0-es. Now suppose that ¢ # 0
n—>00

and € > 0. Since lim s, = s, there is an integer N such that |s — s,| < € if n > N; then
n—>00

lcsn —cs| < |cleifn > N,so lim (cs,) = cs.
n—>o00
16. Suppose that s = oo and ¢ > 0. For arbitrary a there is an integer N such that (A)
sp >a/cifn> N.Thencs, >aifn > N,so lim (cs,) = co = c¢s.
n—>o00

Suppose that s = oo and ¢ < 0. For arbitrary a there is an integer N such that (A) s, > a/c
ifn > N. Thencs, <aifn > N,so lim (cs,) = —o0 = cs.
n—>o00

Suppose that s = —oo and ¢ > 0. For arbitrary a there is an integer N such that (A)
sp <a/cifn> N.Thencs, <aifn > N,so lim (cs,) = —o0 = cs.
n—>o00

Suppose that s = —oo and ¢ < 0. For arbitrary a there is an integer N such that (A)
sp <a/cifn> N.Thencs, >aifn > N,so lim (cs,) = co = c¢s.
n—>o00

17. If € > 0, there are integers N1 and N, such that (A) |s, — s| < € if n > N; and (B)
|t —t| < €ifn > Np. If N = max(Ny, N2), then (A) and (B) both hold whenn > N,
SO |(Sn +1n) £ (s + 1) <|sn—s5|+ |th —t] <2e€ifn > N = max(Ny, N,). Therefore,
nli)rgo(sn +1,) =5+t

18. The equality holds if s and ¢ are both finite (Exercise 17). Now suppose that s = oo

and t > —oo. Then o = inf{t,} is finite and if a is arbitrary there is an integer N such that
sp > a—oaifn > N. Therefore, s, +t, > aifn > N, s0limy—oo(sy + 1) = 00 = s+1.

Now suppose that s = —oo and ¢t < co. Then 8 = sup{t,} is finite and if a is arbitrary,
there is an integer N such that s, < a — f if n > N. Therefore, s, +t, <a ifn > N, so
lim, 00 (Sy + 1) = —00 = 5 + 1.

19. There is an integer N such that |, —¢| < (1 — p)|t] ifn > N. (Takee = (1 — p)|t| in
the definition of limit); therefore,

t—(=plt|<ta <t+A-p)t|, n>=N.

If ¢ > 0, the first inequality is equivalentto t, > pt,n > N;ift < 0, the second inequality
is equivalentto ¢, < pt,n > N.

1+1¢ 1+1¢ 2t
20.sn=(1+n)s;therefore,s,,—s:( +n—1)s= ns.Since lim ¢, =0

—In 1—1, 1—1t, n—00

1
there is an integer Ny such that |¢,| < 1/2ifn > Ny. Then |1 —1,| > 1 — |t,] > 3 and
1
1 — 1]

< 2ifn > Ny, s0|s, —s| < 4|sty| if n > N;. If € > 0, choose N > Nj so that
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Itn < ﬁifn > N. Then |s, —s| < eifn> N.
S

21. We showed in the text that the equality holds if s and ¢ are both finite, so we consider

only the case where s = +00 and ¢ # 0. Our assumptions concerning {¢,} for sufficiently

large n are justified by Exercise 19 if |¢| < oo, or by the definitions of lim #, = Foo if
n—>o00

|t| = oo.

Suppose that s = 00, ¢ > 0, and 0 < b < t. There is an integer Ny such that s, > 0 and

tn > bifn > Ny, s0 (A) syty > bs, if n > Ni. For arbitrary a there is an integer N > N;

such that s, > a/b, and therefore bs,, > a, if n > N. From (A), syt, > a ifn > Ny, so

lim s,t, = 00 = st.

n—>o00

Suppose that s = 00, < 0,and t < b < 0. There is an integer Ny such that s, > 0 and
thn < bifn > Ni,so (B) syt, < bs, if n > Njp. For arbitrary a there is an integer N > N;
such that s, > a/b, and therefore bs, < a, if n > N. From (B), s,t, < a ifn > Ny, so
nll>r1010 Sply = —00 = St.

Suppose that s = —oo, t > 0, and 0 < b < t. There is an integer N; such that s, < 0 and
tn > bifn > Ny, s0 (C) syt, < bsy, if n > Njp. For arbitrary a there is an integer N > N;
such that s, < a/b, and therefore bs, < a,if n > N. From (C), s,t, < a ifn > Ni, so
nli>r1010 Sply = —00 = St.

Suppose that s = —o0, t < 0, and t < b < 0. There is an integer N; such that s, < 0 and
tn < bifn > Ny, so (D) syty, > bs, if n > Nj. For arbitrary a, there is an integer N > N;
such that s, < a/b, and therefore bs,, > a, if n > N. From (D), syt, > a ifn > Ny, so

lim s,t, = 00 = st.
n—>oo

22. The case where where s and ¢ are both finite is covered in the text. Therefore, we need
only consider the cases where either s or ¢ (but not both) is 00, and ¢ # 0. Let € > 0.

Suppose that s is finite and t = Foo. Since s is finite there is a constant M such that
|sn] < M for all n (Theorem 4.1.4), and there is an integer N such that |t,| > M/e¢ if
n > N, and therefore |s,t,| < €,if n > N. Therefore, lim s,/t, =0 =s/t.

n—>o00

Suppose that |s| = oo and 0 < |¢f| < oco. Then there is an integer Ny such that 0 <
|tn| < 2|| and the products {satn},;2 y, have the sign of s/7 if n > Nj. Therefore, s, /1n
is defined and |s,,/t,| > |sx|/2|t| if n = Nj. If a is an arbitrary real number there is an
integer N > N; such that |s,| > 2|al|?|, and therefore |s,/t,| > |a| if n > N. Hence,
nli)rgosn/tn =s/t.

23. Since {s,} is bounded below there is a number « such that s, > « for all n. Since

{sn} does not diverge to oo, there is a number § such that s, < § for infinitely many n. If

my = inf{Sk, Sk+1s--+» Sktrs--- > then o < my < B, so {my} is bounded. Since {my}

is nondecreasing it converges, by Theorem 4.1.6. Let (A) s = klim my. If € > 0, then
—>00

my > s — € for large k, and since s,, > my forn > k, s, > s — € for large n. If there were
an € such that s, < s 4 € for only finitely many n, there would be an integer K such that
sp > s + € if n > K. However, this implies that m; > s + € if k > K, which contradicts
(A). Therefore, s has the stated properties.
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If t > s, the inequality s, > ¢t — (¢ —s)/2 = s + (t —s)/2 cannot hold for all large n, since
Sp < 8 + (¢ —5)/2 for infinitely many n. If # < s, the inequality s, <t + (s —¢)/2 =
s — (s — t)/2 cannot hold for infinitely many 7, because s, > s — (s — t)/2 for large n.
Therefore, s is the only real number with the stated properties.

25. (a) Since s3;, = 1 and s2;p4+1 = —1,5s =l and s = —1.
. 3 _

(b) Since $5,, = (2 + %) and so;+1 = —(2 + m), s=2ands = —2.
. 6m + 1 2m+2 _

(c¢) Since s2;, = T and sy;m+1 = —m, s=3ands = -1

(d) Since the numbers 0, +/3/2, and —+/3/2 (and only these) appear infinitely many times
in the sequence, § = +/3/2 and s = —+/3/2.

26. If y > 0, then |s,| > y/2 for large n. If s, is not sign-constant for large n, then
sp > y/2 and sy, < —y/2 for infinitely many m and n. Therefore, s < —y/2 < y/2 <75,
and {s,} diverges (Theorem 4.1.12).

27. Choose N so that |s, —sm,| < €if n, m > N. Then |s,| < |sn —sn|+ |sn]| < € + |sn]
ifn>N.

28. (a) If s = oo, then lim s, = oo (Definition 4.1.10 and therefore lim (—s,) = —o0
n—o00 n—o0
(Theorem 4.1.8), so lim (—s,) = —oo (Definition 4.1.10). If s < oo and € > 0, then
n—>00

Sp > s—e forlarge n and s, < s+ € for infinitely many n; heﬂe, —Sp < —S + € for large n
and —s, > —s — € for infinitely many n. The uniqueness of lim (—s,) (Theorem 4.1.9(a))
n—>00

implies the conclusion.

(b)5 = lim [—(—s,)] = — lim (—s,) (by (a)), which yields the conclusion.
n—>o00

n—>o00
29. (a) Obvious if 5 + 7 = oo. If § + 1 = —o0, assume without loss of generality that
§=—-ocandt, <b < © for all n. If B is arbitrary, then s, < 8 — b, and therefore
Sn + ty < B, forlarge n; hence, lim (s, + t,) = —oo. Now suppose that s and  are finite
n—>00

and € > 0. ’[kensn <S+e€/2andt, <T+ €/2,50 (A) sy +tni§+?+ef0rlargen.
Therefore, lim (s,+1?,) < oo. By definition, (B) s,,+?, > —e+ lim (s;+¢;) forinfinitely
n—>o00 J—oo 7 :

many 7. Since (A) and (B) must both hold for some n, —e + li_m (sj+tj)<s+1t+eif
€ > 0. Letting € — 0+ yields the result. T
(b) Applying (a) to {—s,} and {—1,} yields
im [—(sy + t,)] < lim (—s,) + lim (—t,),
n—00 n—oo n—oo
and Exercise 28(a) implies the result.

30. (a)(i). Trivial if 57 = oo. If 57 < 00, then (A) sut, < (5 + €)(f + ¢) for large n, and
(B) sptn > —€ + lim s;¢; for infinitely many n. Since (A) and (B) both hold for some #,

—e + lim sjtj < (5 + €)(f + €) for small positive €. This implies (i).

(a)(ii). Obviousif st = 0.If s = 00, > 7 > 0,and @ > 0;, thent,, > 7,5, > /7, and
Sntn > «a if n is sufficiently large; hence, lim s,7, = oo0. If 0 < € < s, ¢ < 00, then (A)
n—>00
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Sntn > (8 — €)(t — €) for n sufficiently large, and (B) spt, < € + lim s;¢; for infinitely

Jj—o0
many #n. Since (A) and (B) both hold for some n, (s —€)(t —€) < € + lim s;¢; for small
Jj—o0
positive €. This implies (A).
(b) o
lim sut, = — lim (—s,)?, (Exercise 28(a))
n—00 n—00
< —t lim (—s,) (Exercise 30(a))
n—>00
= st (Exercise 28(b).)
(b) (ii) o o
lim sut, = — lim (—s,)t, (Exercise 28(b))
n—>00 n—>00
< —7 lim (—s,) (Exercise 30(b))
n—>00
= st (Exercise 28(a))

31. (a)(i) Since s = s (Theorem 4.1.12), lim s,t, < st (Exercise 30(a)(i)); hence, it
n—>00
suffices to show that lim s,t, > st. This is obvious if st = 0. Suppose that st = oo
n—>00

and 8 > 0. If 0 < 0 <fands = oo, thent, > o and s, > fB/0, and therefore
sntp > P, for sufficiently large n; therefore, lim s,f, = co. A similar argument applies
n—>o00

iff = coand s > 0. Now suppose that 0 < 5,7 < coand 0 < € < 5,0 < € < 7.
Then (s — €)(f — €) < spt, for infinitely many n. Since s,t, < € + lim s;¢; for large

n, (s —€)(f —€) < e+ lim s;t;, if € is sufficiently small. This implies the conclusion.
j—>00

(a)(ii). From 26(a)(ii), it suffices to show that (A) lim s,t, < st. Obvious if st = oo.
n—>o00

If s and ¢ are finite (obviously > 0), then s,¢, < (s + €)(¢ + €) for infinitely many » and

Sptn > —€ + lim s;¢; for sufficiently large n; hence, —e + lim s;¢; < (s + €)(t + ¢€) if
Feild Feildd

€ > (. This implies (A).
(b) Use Exercises 28 and 31(a).

32. Let ¢y, ¢3, ..., ¢k be the distinct terms in {s, }. If k = 1, the conclusion is obvious. If
k > 1let ¢ = min {|ci —cjl | i # j}. Since {s,} converges, there is an integer N such
that |s, — s;m| < €0 if n,m > N (Theorem 4.1.13). Therefore, s, must be constant for
n>N.

33. If s = 50, then s, = s for all n, soe lim,_, 5, = so. Now supppose s1 # So.

Sp + Sn— Sp—1 — S Sp— Sp— .
Spn+1 — Sp = n Tl — Sy = u, SO |Sp41 — Su| = M From this and
2 2 2
. . Is1 — sol .
induction, |s,+1 — Su| = ECTE n > 1. Now, if n > m,
|Sn _Sm| = |(Sn _Sn—l) + (Sn—l - Sn—Z) + -+ (Sm+1 _Sm)|

< |8z — Sn—1| + |Sn—1 — Su—2| + -+ + [Sm4+1 — Sm]|

— 1 1 —
EM(1+_+...+ )<|S1 sol
Zn—m—l

2m 2 2m—1
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o0
since Z 27k =2 1f e > 0, choose N so that 2V~1 > 1/(|s; — so|€). Then |s, — sm| < €

) k=0
ifn>m>N.

34. Suppose that s is finite and € > 0. Choose m so that |s, — s| < € if n > m. Then, if
n>m,

G1—=8)+@G2—=5)+ -+ (5p—5)

|tn —s| =
n
_|Gr=8) -t =) +|Sm+l_s|+"'+|Sn_S|
- n n
S1—=8)+ -+ (Sm—S n—m
o =9) bt =) nmm
n n

Since the numerator of the first fraction on the left is is independent of n,e lim |t, —s| < €.
n—>00
Since € can be made arbitrarily small, lim |t, —s| = 0; hence, lim 1, =s.
n—>oo n—>00
If s = oo and b > 0, choose m so that s, > b if n > m. Then, if n > m,

b [s1 4+ -+ Sml
n n n n ’

Smy1 Sy |sit sl n—m
n = - >

Since the numerator of the second fraction on the right is independent of n, lim #, > b.
n—>00

Since b is arbitrary, lim t, = oo. If s = —o0, apply this result to {—s,}.
n—>o00

35. (a) Suppose that M is an integer > «. It suffices to show that

tin 1= 5) (1= 357 ) 03 =0

n

Denote the product here by a,. Then loga, = Z log (1 - %) If0 < x < 1, then
k=M

log(1 — x) < —x (Theorem 2.5.4), so

n no ekl n+1
1 dx dx n+1
loga, < —a < E /k —:—oc/ 7:—0{10g VR

X
k=M k=M M
hence, lim loga, = —o0, so lim a, = 0.
n—>00 n—00

(b)

is of the form in (a), witha = ¢q + 1.

)

4.2 EARLIER TOPICS REVISITED WITH SEQUENCES

1. If lim s,, exists, there is an integer N such that
k—o00

Sy = 5| = ‘(—n"i (1 + i) S (1 n i)
i J

<1
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ifi, j > N. This is impossible unless n; and n; have the same parity if i, j > k.

4. If s = oo and a is arbitrary, there is an integer N such that s, > a if n > N. There is
an integer K such that ny > N if k > K therefore, s,, > a if k > K, so hm Spp = 00.

k—o0

If s = —oo and a is arbitrary, there is an integer N such that s, < a if n > N. There is an

integer K such that ny > N if k > K; therefore, 5,, <aifk > K, so hm Spp = —00.
k—o0

4. If € > 0, there is an integer N such that |s — s,| < € if n > N. There is an integer K
such that ny > N if k > K. Therefore, if kK > K, then |s — (—1)ksnk| <

5. Suppose that |s| > 0. Since lim |s,| = |s|, there is an integer N such that |s,| > |s|/2
n—>o00
if n > N (Exercise 4.1.19). Since |s — s,| = |s| + |s»| if s and s, have the same sign,

|s — sn| > 3|s|/2 for infinitely many n. This contradicts the definition of lim s, = s.
n—>o00
Therefore, s = 0.

6. If {s,} is nonincreasing, then {s,, } is also, so it suffices to show that (A) inf{s,, } =
inf{s, } and apply Theorem 4.1.6(b). Since the set of terms of {s,, } is contained in the set
of terms of {s,}, (B) inf{s,} < inf{s,,}. Since {s,} is noninceasing, there is for every n
an integer ny > n such that s, > s,, . This implies that inf{s,} > inf{s,, }. This and (B)
imply the conclusion.

7. (b) Choose n1, na, ..., sothatny < np < --- < ng < --- and x,, > k. (If this were
impossible for some k, then {x,} would be bounded above.)

(c) Choose ny, na, ..., sothatny < np < --- <ng <--- and x,, < —k. (If this were
impossible for some k, then {x,} would be bounded below.)

8. Since {s,} is bounded, {s,} has a convergent subsequence (Theorem 4.2.5)(a). Let s be
the limit of this convergent subsequence. If {s,} does not converge to s, there is an €9 > 0
and a subsequence {s,, } such that (A) [s,, —s| > € k > 1. Since {s,, } is bounded,
{sn, } has a convergent subsequence which must also converge to s, by assumption. This
contradicts (A); hence, nli>r1010 Sp = S.

For the counterexample, let {z, } be any convergent sequence (with lim z, = ¢)and {s,} =
n—>o00

{t1,1,62,2, ..., ty,n, ...}, which does not converge. A convergent {s,, } must be bounded;
hence, there is an integer K such that {s,, }?° - is subsequence of {,}, and therefore

lim s,, =1t.
k—o0

9.Lete > 0. If lim f(x) = L,thereisad > Osuchthat | f(x)—L| < €if 0 < |[x—X| < 6.
If {x,} is any sequence of points in Nx such that 11rn X, = X, there is an integer N such
that 0 < |x, —X| < § if n > N. Then |f(xn)—L| < 61fn > N, so hm fxn) =

For sufficiency, suppose that )}1_r>nf f(x) does not exist, or exists and dlffers from L. Then

there is an €9 > 0 such that, for each integer n, there is an x, in Ny that satisfies | f(x,) —

L| > €p. Then lim x, = X but hm f(xn) either does not exist or exists and differs from
n—>o00
L.

10. Choose {x,} in [a, b] so that f(x,) < min(a+1/n, f(x,—1)),n > 2. Then { f(x,)}5°
is nonincreasing and inf{ f (x,)}—, = «; hence, (A) hm f(xn) = a (Theorem 4.1.6)(b).
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Let {x,, } be a convergent subsequence of {x,} (Theorem 4.2.5(a)). If x = 11rn Xn, , then
11rn f(xn,) = a, because of (A) and Theorem 4.2.2. Moreover, X € [a b] and f is
contmuous on [a, b], so khrn f(xn,) = f(x) (Theorem 4.2.6). Hence, f(x) = o.
—>00

Now choose {x,} in [a,b] so that f(x,) > max(8 — 1/n, f(xp—1)), n > 2. Then
{f(xn)}5° is nondecreasing and sup{ f(x,)}ne, = B; hence, (B) nlgIolo f(xn) = B (The-

orem 4.1.6)(a). Let {x,, } be a convergent subsequence of {x,} (Theorem 4.2.5(a)). If
X = khrn Xn,» then khrn f(xn,) = B, because of (B) and Theorem 4.2.2. Moreover,

X € [a, b] and f is continuous on [a, b], so hm f(xn,) = f(X) (Theorem 4.2.6). Hence,
f&) =8
11. If f is not uniformly continuous on [a, b], then, for some €y > 0, there are sequences

{xn} and {y,} in [a, b] such that |x, — y,| < 1/n and (A) |f(xn) — f(yn)| = €. By
Theorem 4.2.6(a), {x, } has a subsequence {x,, } that converges to a limit X in [a, b]. Since

|Xn, — Yn,| < 1/ng, lim y,, = X also. Then lim f(x,,) = lim f(yn,) = f(*)
k—o00 k—o00 k—o00
(Theorem 4.2.6), which contradicts (A).
12. Let {x,} and {y,} be sequences such that lim x, = lim y, = X andlet lim f(x,) =
n—o00 n—>o00 n—>o0
L. If {zn} = {x1,Y1,%x2,¥2,X3,¥3,...}, then lim z, = X, so lim f(z,) exists,
n—o00 n—>o0

by assumption. Since { f(x,)} is a subsequence of { f(z,)}, Theorem 4.2.2 implies that

lim f(z,) = L. Since {f(yx)} is a subsequence of { f(z,)}, lim f(y,) = L. Now

n—o00 n—o0

apply Exercise 9.

12. Apply Exercise 12 to g(x) = M
X=X

4.3 INFINITE SERIES OF CONSTANTS

1. Apply Theorem 4.1.2 to the partial sums of the series.
2. Apply Theorem 4.1.8 to the partial sums of the series.

3.(alIfA, =a1+---+au, B, = b1 +---+b,,and a; = b; fori > N,then A, = B,+C
if n > N, where C is a constant.

o0
(b)If Ay = ay + -+~ + ay, and B, = by + -+ + by, then B, = Ay. Ibe,, = B,

o0 o0
then lim Ap = lim By, = B (Theorem 4.2.2), so Zan = B. If Zan = A (finite)
and € > 0, there is an integer K such that |B,, — A| = |Ax — A| < € 1fk > K. Since

B, = By, itng <n <ngy1, |By — A| < €if n > ng. Therefore, an = A. A similar

1
argument applies if A = Fo0.

4. (a) Apply Theorem 4.3.5.
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1 1 1 1 r+1
b) No; - = b t + — 4+ < —0 — 0.
(b) No Zn 00, bu P . " asn 00
m
5. If € > 0, there is an integer K such that Zan < ¢€/2ifm > k > K (Theorem 4.3.5).
k

m o0
Zan < €/2. Since Z a, converges, this means that

Therefore, if k > K, lim
m-—>00

n=k n=k
<e€/2 <e.
n=k
6. (a)Z—< Z/ /00 dx_ 1 1 Since this holds for all
v x? s xP T p—1(k—1p 1
1
>k, R
" an’ —1(k—1)1’1
(b) By writing
2 (=" 1 1 1 1
()nz_;{n k) T k2 Tkws) T
and
2 (=" 1 1 1 1 1 1
—1)k S — — — —
( ),,Z_;c n K \k+1 k+2) \k¥3 k+4 %
(=D > |1
we see that Z_;{ - <E. Since this holds for all m > k, Z_;{ - T

o0 o0
7. Use Theorem 4.3.9; note that Z b, = Z bpy1.
n=k—1

8. (@) Vn? —1 \/1—1/n2 1 /1-1/n? With b
. @a, = = = . Wi = ,
! nS+1 w32 /T+1/n5  n32 T+ 1/nd T on¥2

lim i_l smceZb < 00, Zan<oo

n—>o00
1 )
b) With a,, = and b , hrn — = 2. Since b, < oo,
®) S EI s 1 sin(nr/4)] "7 02 oo b Z
3 an < oo
l—e™"logn an

©app=——-—"— ltbn_ Z. Since lim = =1 ndZ =00, lim a, = oo,

n n—oo n—o00

n

by Corollary 4.3. 12
d)Ifa, = cos , then hrn a, = 1 and Z a, = oo by Corollary 4.3.6
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. T 1 . . a
(e) a, = sin n—z; let b, = por Since nlggoi = 7 and an < 00, Zan < 00, by
Corollary 4.3.12.

1 T 1 a
f)a, = —tan —; let b, = —- Since lim i = 7 and an < 00, Zan < 00, by

a n n n n—o00

Corollary 4.3.12.

1 b4 . .a
(2 ;cot;; let b, = m Since lim b_n = 1 and an = 00, Zan = 00, by Corol-

n—>o00 n
lary 4.3.12.
logn. _ . . an logn _
(h) a, = 2 let b, = peTEh Since nll>rrc>10—n = nlgIolo NG = 0O and an < 00,
Z a, < 0o, by Theorem 4.3.11(a).
o0
9. If/ f(x)dx < oo, there is an M such that
n n Xn+1
[ reax=3 [ reax<monzk (A)
k m=k Y *n
e n+1
(Theorem 3.4.5). Therefore, Z f(x)dx < M, n > k, so the series converges
n=k "

(Theorem 4.3.8). Conversely, if the series converges, then (A) holds for some M (The-
orem 4.3.8). If T > k, choose an integer N such that N > T. Then (A) implies that

T N [e%e)
/ f(x)dx < / fx)dx <M, so/ f(x)dx < oo (Theorem 3.4.5).
k k k

All three series diverge if p < 0, by Corollary 4.3.6. For p > 0 we consider the associated
improper integrals.

© oy gy = 1 ) © © X gy =
10. (a) o x—Elog(x -1 = oo; if p # 1, (XZT)” X =
1 (x2 = 1) PHH® (= i
—u o0 %fO <p<l Therefore, the series converge if and only if
2 —p+1 <oo ifp>1.
p>1

x 134yt

©  x 1 3 * i
b) | ——dx=:1 4| =occifp#£1, [ ————dx=
()/ -1 3(%@.+)‘ ity 7 ,/ @+ar T3 4

Therefore, the series converge if and only if p > 1.

(=00 if0O<p<l,
<oo ifp>1.

inh
(c) since lim smhn = 1, the series diverges if p = 1, by Corollary 4.3.6; if p #
n—oo coshn
®  sinh hn) P+ (= i
, _SImx X = M o0 %fO <p<L Therefore, the series
(cosh x)? —p+1 <oo ifp>1.

converge if and only if p > 1.

11. Use the integral test.
/

1" (o2
M < 0. Apply the integral test with f = g_.
4

1210 f = £ then f7 =
g
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n+1 dx m m+1 dx m 1
Z/ Z/—hence/ x—p<Zn—p

<
n=N+1 n=N+1 N+1 n=N+1
"d ® d 1 *d
/ _x Letting m — oo ylelds/ ad < Z — < / —x, which implies the
N XxP N1 XP = nk N XxP
result.
k+1
14. (@) A) f(k+1) < f(x)dx < f(k). Since
k
n—1 k+1
an= [+ | fk+D= | fdx].
k=1

the first inequality in (A) implies that a,+1 < a, < f(1). Also,

n—1

an:Z[f(k)_

k=1

k+1

f(x) dx] + f(n) >0,

by the second inequality in (A). Therefore, lim a, = inf{a,}, by Theorem 4.1.6(b). Since
n—>o00

n—1 k+1
Z |:f(k) — fx) dx] is an increasing function of n, inf{a, } > 0
k=1
(b) Take f(x) = 1/x.
2 4 sinnf 1 an — 2 + sinnf
15. = ——if b, = , then lim — = lim —F M < 3.
(@) dn n2 4+sinnf’ " S bn oo | 4 (sinnB)/n?
Since an < 00, Y ay < 00, by Theorem 4.3.11(b).
1
) a, = n r’*;if b, = r", then lim dn _ 1; since an converges if 0 < p < 1
n n—o0 bn

and diverges if p > 1, the same is true of Z an, by Corollary 4.3.12.

1
(c) Since lim, o € "° coshnp = 3 the series diverges, by Corollary 4.3.6.

n+logn . . 1 . an . logn) .
d)a, = W,lfbn = W,then nlggoa = nlgIolo (1 + " = 1; since
Z b, < 00 by the integral test, Z an < 0o, by Corollary 4.3.12.

1 1 1

e a, = w; if b, = , then lim dn _ lim ( 1+ OEM) _ 1; since

n?logn nlogn n—o00 by, n—00 n
Z b, = oo by the integral test, Zan = 00, by Corollary 4.3.12.

1+ 1/n)"

1 1"
®) an = 5 yif by = T thennlggoZ—” = lim (1+;) = e;since Y by <

n
00, ¥ " an < 00, by Corollary 4.3.12.
16. The series diverges if g0 = g1 = -+ = gm = 0 (Exercise 13). Suppose that g; = 0 if
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0<i < jandg; # 0. Let a, be the general term of the series and

b 1 i =0
n = - 1 = 9
Lo(n)P*1 /
1
b, — T if  1=<j=<m,
Lo(m)...L;j_1(n) [Lj (n)]

where pg; > 0and 0 < |p| < |q;]. Theann =o0if p < Oanden <ooif p>0
(Exercise 11). From Exercise 2.4.42,

. an |0 if q; >0,
hm__{oo if ¢ <O0.

n—>o00 n

Now use Theorem 4.3.11.

n

2 + sin?(nw/4 1 — —
17, @) ay = 220 L hen T X = Tim (2+sin2 ﬂ) = 3.
3n 3n n—oo by, n—00 2
Since an < 00, Y ay < 00, by Theorem 4.3.11(a).
n(n+1). R R n+2_1_ .
(b) a, = — nli)rrolo 7 = nli)rrolo an 7 Zan < 00 by the ratio test.

3 —sin(nr/2) . 1 — ay — n . nm
(C)an—W,lfbn—n—z,thennlizgoa—nlil'gon_’_l(:s—slnT)—4.
Since an < 00, Y ay < 00, by Theorem 4.3.11(a).

n4+ (=1 1 § 1 ay ,
da, = nn 1) 27 +cos(n71/2)’lfbn = Z—n,then nlggo 5 = 0. Since an < 00,

> ay < 00, by Theorem 4.3.11(a).

n!' . apii .o on+1 .
18. (@) a, = —; lim "1 — im = 00; E a, = 00, by the ratio test.
r* n—oo q, n—o00 r
n o Antl . 1\? .
(b) a, = nPr™ lim = limr(l+— =r; E a, converges if 0 < r < 1,

diverges if r = 1, by the ratio test. If » = 1, the series is Z n®, which converges if and
onlyif p < —1.

n

o dn+1 . ro. .
©a, = prE nli)rrolo P nli)rrolo T Zan < 00, by the ratio test.
r2n+1 Ani1 r2

( ).“” Qn+ ) nooo a, | oo 2n +2)2n + 3) 2_an < 0o, by the
ratio test.
© r Detl _ r 0; > an < oo, by the rati
e)a, = 5 m = m = 5 a oo, ¢ ratio

" 20 nboe ay | nooo 2n + 1)(2n + 2) " y
test.

2n)!  ap+1 2n +1 1 . an+1 1
@dn = o ay 2 +2 2+ 2 o\ a, 2

Z a, = 0o, by Raabe’s test.
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() ay = (Bn)! Can+1 | — Bn+2)Bn+1) | — 5On+4)
3Bl 4+ DI +3)! ay 9 +2)(m+4) I +2)(n+4)’
lim n Gnt1 _ 1) = -5; Zan < 00, by Raabe’s test.
n—o00 dn
2"n! 2 1 3
(©)an = ik nr 204D Clim o (2L =
5.--7-2n+3) ay 2n+5 2n+5 n—oo an

3
_E; Z a, < oo, by Raabe’s test.

1--- -1 —

@ay = SOV @HN D) (s Dty 2EE 2P,

BB+1D---(B+n—-1) an B+n B+n
limn (4 1) = — B; convergent if @ < B — 1, divergent if « > B — 1. If
n—oo an

-1 l

a:ﬂ—l,thenanzﬁ. If b, = e thennlggob—n—l smceanzoo
> "y = 00, by Corollary 4.3.12,
20. (a)anzw;a;/"z (2+( 1)")1/”, 11ma = o0; Zan—oo

2”
by Cauchy’s root test.
1 + sin3n60\" 1+sin3nf
— 5 );al/"zi; limal/"<— Zan<ooby

" 3 n—o00

(b) a, = (

Cauchy’s root test.

(c)a,,z(nﬂ)(w) Cal — +1)l/n(1+sin(nn/6>), —

; ; lim a;/” =
3 3 n—o00
2
g; Zan < 00, by Cauchy’s root test.

2
— 1 n. 1/” 1 n. : l/n_l, s
da,=[1-—-— ; I1-—=]; lim q, ——,Zan<oo,byCauchysr00t
n n e

n—00
test.

22. Recall that if a series S; is obtained by dropping finitely many terms from a series

S, then S and S; converge or diverge together. Let the given series be § = Z an
n

k [e9)
where m < k, and let S = Z |an|. Since S converges, so does S1 = Z an. Let
n=m
o0
S, = Z |an|; then §1 = :bfl, SO §1 converges. But §1 and S converge or diverge
n

together, so S converges.
23. If the assertion were false, there would be an integer Ny and a constant Jy such that
No+k

> an < Jo forall k > 0. But this implies that Y a; < oo (Theorem 4.3.8), a

n=~Np
contradiction.
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o0 o0
24. Suppose that Z lan| < oco. Let by, = |an| — ay; then 0 < b, < 2|ay|, so Z by

n=m n=m
o0

converges absolutely, by the comparison test. Since a, = |a,| — ba, Z a, converges, by

n=m

Theorem 4.3.3.

1 . . o 1

25. @) a, = (1" W; Z |an| < o0, by the integral test, smce/ de <
00.

sinnf 1
) an, = > ;Z|an| < 00, by comparisonwithzz—n.

1 b4 b4 b4

¢) a, = (—1)" —=sin —; since ‘sin—‘ < —, an,| < oo, by comparison with
© an = ()" —=sin =l = = )l y comp

b
> S

cosnf 1 — |an| ) 1
d)a, = ﬁ,lfbn = m,thennli)rgo 5 <1. Slncezm < 00, Z|an| <

00, by Theorem 4.3.11(a).

b — nsinnf . . n b — sinnd .
26. (a) apb, = m, with a, = m and b, = sinnf. The partial sums
of Y b, are bounded (shown in text), and
n+1 n
a —ay = —
LTI D2 () 2 4 (=1
_ =D)"2n+1)—nmn+1)
(D2 H (DY@ + (D)
1
Therefore, nli)rrolon2|an+1 —ap| = 1. Since Zn—z < 00, Z |an+1 — an| < o0, by

Theorem 4.3.11(a). Now apply Dirichlet’s test.

1 o0 0
with a, = — and b, = cosnf. To be specific, consider Z cosn .
" n

cosnf

(b) anby, =
n=1
sin (r — %) 6 —sin (r + %) 0 0 # 2%k,

Since cosrf =

2sin(6/2)
(sin26 —sin26) + (sin 26 —sin 26) + -+ + (sin (n — 3) 6 —sin(n + 1)6)
" 25in(6/2)
__sin %9 —sin(n + %)9
2sin(6/2) ’
hich implies that | B, | < ! > 2. Si | | = ! < d
which implies that |B,| < sin(9/2)’n_ . Since |ay+1 — an ETESTRE: an.

Z — <00, the conclusion follows from Dirichlet’s theorem.
n
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1
27. (@) an, = —= is decreasing with n and |B,| < 2 for all n. Abel’s test implies

Jn

1
convergence. Since E T = 00, the convergence is conditional.
n

1
(b) a, = — is decreasing with n and {| B, |} is bounded (shown in text). Abel’s test implies
n

6(m+1)

1
convergence. Now consider the series S = Z — ‘sin E‘ Since Z — ‘sinE >
n 6 n 6
n=1 6m+1
5 T 1
——  |sin —| for every m and — = 00, § = o0, by Theorem 4.3.8. Hence,
6(m + 1)‘ 6‘ y 2 y
1 . nm ..
Z —sin 3 converges conditionally.
n
Since (¢) |- ””<ldzl<th' i bsolutel
ince (¢) | — cos — — an — , the given series converges absolutely.
n? 6 | ~ n? nz = & g Y
1-3.5---(2 1 3
@) If a, = @n D gen @t 3 ()
4-6-8---2n +4) an 2n+ 6 n—oo \ ay,

3
5 Ny Zan < oo by Raabe’s test, and the given series converges absolutely, by the

comparison test.
ap + -+ + agn*

28. Let g(n) = bo + - + bsn®
S

, with ag, by # 0. Then

1/n 1/n

lim [g()r® V" = |r| Lim [g(m)|""" = |r|;

n—o00 n—o0

hence, the series converges absolutely if |r| < 1 (Theorem 4.3.17). If |r| > 1, then
lim |g(n)r"| = oo, so the series diverges (Corollary 4.3.6). If |r| = 1, Theorem 4.3.11
n—>o00

23

implies absolute convergence if and only if s > k + 2, since nlggo | g(n)|ns_k = . The

N
series does not converge conditionally if r = 1, since its terms have the same sign for large

n (Exercise 22); if r = —1, the series converges conditionally if and only if s = k + 1
(Corollary 4.3.22).

29. Since (a, £ by)? > 0, £2a,b, < a,% + b,%, SO |anby| < (a,% + b,%)/Z. Apply the
comparison test.

30. (a) If Z |an| < o0, then |a,| < 1, and so a,% < |ay| for large n, and the comparison

test implies that Z a,% < 00.

n n n
31. Let B, = ij, Sp = Zajbj, and t, = Z(aj —ajy1)Bj; then (A) s, =
Jj=1 Jj=1 Jj=1
th—1 +an By > t,—1 for n sufficiently large. From Theorem 4.3.11(b), lim #, = oo, since
n—>o0

fim = 4r0Br B 6 Now (A) implies that Tim s, = oo,
jooo (@) —aj+)W; Lo W) n—>00

32. (a) If |sinm6| < sine, then [mf — jm| < € for some integer j, and jm + ¢ <
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m+1)0 < (j+1)m—e€if 0 <2e <0 <z —2¢; hence, |sin(m + 1)0| > sine.

(b) The series converges (Example 4.3.22). To see that it does not converge absolutely,
assume without loss of generality that 0 < 2¢ < 6 < m — 2¢ and use Exercise 31, with

. . B
an = n~P, b, = |sinnf|, and w, = n. From (a), lim —2 > 0. Also, ap — aptr1e >

n—oo N
pn+1)7P71 50 Zn(an —Qpt1) = 00

( 1)n+1 e 1
33.1 t th E E - — .
nsert parentheses: (2m 1 Zm)

n=1 m=1

1 2 1
34. Insert parentheses: Z Z e R w— + 3 )
n

n=1
35. Their partial sums are the same for sufficiently large n.

36. In all parts we use the notation introduced in the proof for finite i and v, and mg =
nop = 0.
(a) Suppose that k > 1. Let my be an integer such that

mp ng—1
my > my—; and Zai— Z,Bj >u+k. (A)
i=1 j=1
Let n be the smallest integer such that
mg nk
ng > ng—; and Z(xi - Z,B, < u. B)

i=1
Then (A) implies that lim B, = oo. Since ny is the smallest integer for which (B) holds,
n—>00

= Bni < Bmgtn, <@, k=2 ©
Since b, < 0ifmy +np_1 <n <my + ng,
Bumytng < Bn < Bmyjng_y, Mk +ng—1 <n < my + ng. (D)
Since by, > 0if my + nx <n < myyq + ng,
Bimg+ni < Bn < Bmyyy+ny Mk + g <n < myyq +ng. (E)
From the first inequalities in (C), (D), and (E),
By > pu—PBup. mp+ng_y <n<mpyq + ng. (F)

From the second inequality in (C), B,, < u for infinitely many values of n. However, since
lim; o B; = 0, (F) implies that if € > 0, then B, < u — € for only finitely many values

of n. Therefore, lim B, =
n—oo
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my ng—1
(b) Suppose that k > 1. Let my, be an integer such that my > my_; and Z o — Z B>
i=1 j=1

mp
k. Then nlggo B, = o0. Let ni be an integer such that ny > nx_; and Zai - Z B <
i=1 '
—k. Then lim B, = —oo0.
n—>o00
mp Rg—1

(c) Suppose that k > 1. Let my, be an integer such that my > my_; and Zai — Z B>
i=1 j=1
k. Let ng = k. Then By 1n,_, > k and By 4n, > k — Br. Since klirn Br =0,
—00

lim B, = oo,
n—o00

37. It must have infinitely many nonnegative terms {; } and infinitely many negative terms
—B; h that P = = d li ;= i ; = 0.
{—B} such tha Z o Z Bj = ooan Hm o /an}o B

38. The series of positive terms must diverge to oo and the series of nonpositive terms must
converge.

g™ ()

39. Leta, = and b, = ‘ ; then
n!

£™(0)
n

(r) (n—r) n L@
Cn—Za by ’_Zf ‘(O)g (O)—iZ()f(r)(O) (n— r)(O) (0)’

—7r)! !
(n—r) n! —

from Exercise 2.3.12.
40.Let K =Y 72 o lar|.
|Cn —Aan| = |C —AnB + An(B _Bn)| = |C _Aan| + |An||B _Bn|
<|C — A,B| + K|B — By]|.
Given € > 0, choose Nj so that |B — By,| < € if n < N;. Then

|Cy — AuBn| < |C — AnB| + Ke, n > Ni. (A)

r m n n n
Cn = § § arbm—r | = § ar § bp—r = § arBp—r;
m=0 \r=0 r=0 m=r r=0

therefore,

Co—AnB =) ar(Byr — B). (B)

n
Choose N, > Nj so that Z |ar| < €if n > N, (Theorem 4.3.5). Since { B,} converges,

r=N>
{B,} is bounded. Let M be a constant such that |B,| + |B| < M for n > 0. From (B),
Nr—1
|Co — AuB| < Y las||Bu—r — Bl + Me, n > N,. (C)

r=0
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Choose N3 > Ny sothat|B;—B| <e€if j > N3—No+1.1fn > N3and0 <r < N,—1,
thenn —r > N3 — N, + 1, (C) implies that

N>—1
|Cw — Ay B| <E(M+ > |a,|> < (M + Ke).

r=0

This and (A) imply |C, — A, B,| < (M + 2K)e, n > Nj3. Therefore, lim C, =
n—>00
lim A,B, = AB

n—>o00

-1
1 n
41. Denote o;;, = . Z ar+s; then

r,s=0

2n—2

1n—l 1 1n—l [e9)
= - 1 — 2n—r —1 < -= 1 .
O n;(r+ )a,+n ;(n r — a, n;(r+ )ar+rz=;1a,

o0
If € > 0, choose N so that Z ar < €ifn > N (Corollary 4.3.7). Then

r=n
| V-l

oy < p Z;)(r + Da, +2¢,n > N.
r=

Now choose N; > N so that

| V-l
— Z(r+ a, <€, n> Nj.
n

=0

Then «,, < 3¢ifn > Ny, s0 lim «, = 0.
n—>o00

1 n—1
Denote 8, = o Z dr—g.

r,s=0

2n—l n—1 2n—l
n =a0+;Z:l(n—r)a, =ay +22:1a,—;Z:lra, =2A—ayp— 2yn,
r= r= r=

o] n—1 o]
1 .
where y, = Za, + ;Zrar. If € > 0, choose N so that Za, < e€ifn > N. Then
=n r=1 r=n
1n—l N—-1 1 N
—Zra, < — Z rar+e€,n > N.Now choose N; > Nsothat—Zrar <e€,n> Nj.
n r=1 n r=1 n r=1

Then y,, < 3eifn > Ny,s0 lim y, =0and lim 8, =24 — .
n—00 n—00
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42. Since (A) a¥)] < 0;,i.j > 1, and a; = lim a¥
. i—»oo 7

, it follows that |a;| < o},

o0
j = 1. Since Z 0; < 00, (A), (B) and the comparison test imply that Z |a§-i)| < oo and

Jj=1
o0
Y laj| < oo If N > 1, then
Jj=1
e’} %) N e’} ) e’}
doay = ap <y laP —ajl+ Y0 1aP14+ Y 4yl
j=1 j=1 j=1 J=N+1 J=N+1
v > (A)
<) laf —a;l+2 3 oy
J=1 j=N+1

oo
Given € > 0, choose N so that Z 0; < €. Having fixed N, choose I so that |a§.l) -
j=N+1

o0 o0
ajl < N’ for1 < j < Nifi > I. Then (A) implies that E_ a;l) — E_ aj| < 3eif
i > I, which completes the proof.

4.4 SEQUENCES AND SERIES OF FUNCTIONS

1. (@) If |x| > 1, then { F,(x)} diverges. If |x| < 1 then lim F,(x) = (1 —x?) lim x" =
n—o00 n—o0
0. Since F,(1) = Fy(—=1) =0foralln, lim F,(x) =0if |x| < 1.
n—>o0
(b) If |x| > 1, then {F, (x)} diverges. If |x| < 1 then lim F,(x) = (1 — x?) lim nx" =
n—o00 n—o0
0. Since F,(1) = Fy(—1) =0foralln, lim F,(x) =0if |x| < 1.
n—>o0
(¢) If |x| > 1, then {F;,(x)} diverges. If |x| < 1 then

s o= ) (1) =01 =0

Since F,(1) = 0foralln, lim F,(1) = 0. Since F,,(—1) = 0if n iseven and F,(—1) =
n—>00
—2if n is odd, { F,,(—1)} diverges. Therefore, lim F,(x) =1,—1 <x < 1.
n—>00

(d) By the mean value theorem, Fy(x) = sinx + f cos 0(x, n) where 0(x, n) is between

x and x + a Therefore, | F,, (x) —sinx| < — — 0asn — 00, 0O hrn Fn(x) = sinx,
—00 < X < 00.

(e) Fu(—1) = 0if n is odd and F,(—1) = 1 if n is even; hence, {F,(—1)} diverges.
Since F,(1) = 1 for all n, nlggo F,(1) = 1. Since nlggo x" = nli)rgoxzn =0if |x| < 1,
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lim F,(x) = 0if |x| < L. If |x| > 1, then
n—>o00

. .1 4x" . 1
ts, ) = (JL‘EO =T ) (,,1320 W) =0-1=0

. I, -1<x<1,
Therefore, nlggo F,(x) = {O, x| > 1.
XX x3 ,
(f) From Taylor’s theorem, sin — = — — cos 6(x, n)6—3 where 0(x, n) is between zero
n n n

2
X

and —. Therefore, |F,(x) — x| < —=,s0 lim Fj,(x) = x, —00 < x < o0.
n 6n2 n—o00

2 4
(g) From Taylor’s theorem, 1 — cos T x_2 —cos O(x,n) 22:—4 where 6(x, n) is between
n o n n
4
x

so lim Fy,(x) = xz, —00 < X < 00.
n—>oo

zero and i. Therefore, | F,(x) — x?| < ,
n 24n?

(h) Since F,,(0) = Oforalln, lim F,(0) = 0. Ifx # 0,then lim F,(x) = x lim "
n—>o00 n—>o0

n—00 e.nx2

x-0=0. Hence, F(x) =0, —00 < x < 00.
2 2

. X“+2nx +n 2nx 2n|x| 2|x|
W) = = = M e e IR == s = 0
therefore, lim F,(x) =1, —o0 < x < o0.

n—>o0
2. If x5 > xy, then Fy(x3) — F,(x1) > 0 for all n; therefore, F(x;) — F(x;) =
limy, 00 (F (x2) — F(x1)) > 0 (Exercise 4.1.1).
3. F,(x) = 1 for only finitely many (say k) values of x in [a, b], and is zero otherwise;
hence, if o is a Riemann sum of f over a partition P of [a, b], then |o| < k| P ||; hence,
fab F,(x)dx = 0. F is not integrable on [a, b], from Example 3.1.5 and Theorem 3.2.2
4. Ifx € S, [(g + )| = [g(x)] + [h(x)] < llglls + [I2]ls; hence, (A) [lg + hlls =
liglls + lIalls. Also, [(gh)(x)| = |g(x)[ [ (x)| < lIglislhlls.solighlls < llglls|lls-
Now suppose that either g or & is bounded on S. Replacing g by g — & in (A) yields
lgl = llg = Al + lI2ll, so B) llg — %Il = ligll — [I2]l. Interchanging g and / here
yields ||h — g|| = ||| — |lgll, which is equivalent to (C) ||g — k|| = ||k]| — |lgl|, since
17 —gll = llg —hll. Since

lgll =2l it lgl > lIAl,
Iall—lgl if Al > lgl.
(B) and (C) imply that [[g — &[| > [l gl — [I2]l].

5.(a) |[F(x)| < |x|"; since lim x" = 0if |[x] < 1, F(x) = 0. If S, is a closed subset of
n—>o00

(—1,1), then S; C [—r, r] for some r withO < r < 1,50 |F,(x) — F(x)| <r*ifx € S,.
Therefore, | F, — F||s. < r",so lim ||F, — F| = 0 and the convergence is uniform on
n—>o00

gl = lI2l] =

S¢. To show that the convergence is not uniform on S, choose p so that (A) 0 < p < e™”".
X
By L’Hospital’s rule, lir% P —logp, 50 lim, 5o (1 — p/") = —logp > n
X—> X
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from (A). Therfore the interval (p'/”, 1) has length > 2£ for n sufficiently large. Hence,
n

| sinnx,| = 1 for some x,, in (p*/”, 1) and | F,, (x,)| > p. Hence, | F, — F ||s > p for large
n, and the convergence is not uniformon S.

2n
(b) F(x) = 1if |x| < 1; F(x) = 0if |x| > 1. Hence, (A) |Fp(x) — F(x)| = T2 if
X
1
|x| < 1and (B) |Fn(x) — F(x)| = o if |x| > 1. From (A), | F,(x) — F(x)| < r?"
X
if |x| < r < 1; from (B), | Fy(x) — F(x)| < R72"if |x| > R > 1. This implies uniform
convergence on closed subsets of S. Letting x — 1— in (A) or x — 14 in (B) yields

|F — Fls = 3 for every n, so the convergence is not uniformon S.

sin x sin x sin x
(C) Fn (X) = m, SO F(x) = T Therefore, (A) |F(x)—Fn (x)| = m .
i 1
Since | o~ | < 1 (Exercise 2.3.19), (A) implies that | F (x)— Fy (x)| < == if [x| = r > 0,
X n%r

so the convergence is uniform on [r, co) for every r > 0; however, letting x — 0+ in (A)
shows that || F,, — F'||s = 1 for every n, so the convergence is not uniform on .

6. @If S C S, then |[F — Fylls, < |F — Fyls. Since lim |F — Fy|ls = 0,
n—>o0

lim [|F — Fyls, = 0.

n—>o00

(b)If | F—Fy||s; < eforn > N;and S = U]"_, Sk, then | F—F,|ls < max{||F—Fn||Sl. | 1<i< m} <
eifn > N = max(Ny, ..., Ny).

k k
(c) Let Fy(x) = x" and Sy = (_k—-l—l’m)’ k =1,2,.... Then [|Fyls, =

n
(m) — 0 as n — oo, so {F,} converges uniformly to zero on each Si. However

o0
U Sk = (—=1,1) and || Fy||(—1,1) = 1 for every n.
k

=1
7. (a) From Exercise 1(a), F(x) = 0on S = [—1, 1]. Since F)(x) — F'(x) = x" 1(n —

1/2
(n + 2)x?), F,(x) — F(x) assumes its maximum value in [—1, 1] at x = + ( j_ 2) .
n

n
n+2

2 n/2
Therefore, || F;, — Fl[—1,1] = ( ) — 0 as n — oo, so the convergence is

n+2
uniform on [—1, 1].

(b) From Exercise 1(b), F(x) = 0 on S = [—1,1]. Since F)(x) — F'(x) = nx""'(n —

1/2
(n + 2)x?), F,(x) — F(x) assumes its maximum value in [—1, 1] at x = + ( j_ 2) .
n
Therefore, | F, (x) — F(x)| < nr’if |x| < r, but

n (n+2)/2 b
F,—Flls =2 —— L2
IF,~ Fls =2 () :
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as n — oo. Hence, the convergence is uniform on [—r, 7] U {1} U {—1}if 0 < r < 1, but
noton § = [—1, 1].

(c¢) From Exercise 1(c), F(x) = 0on S = (—1,1]. |Fa(x) — F(x)| < 2r"if |x| <r,s0
the convergence is uniform on [—r,r] if 0 < r < 1. Since Fn(Z_l/") - F(Z_l/") =1
and || Fom+y1 — Fll[=1,,] = 2, it is not uniform on [r, 1] or [-1, —r] for any r. Since
F,(1) — F(0) = 0 for all n, the convergence is uniform on [—r, r] U {1} for all r in (0, 1).e

(d) From Exercise 1(d), F(x) = sinx and |F,(x) — F(x)| < m, —00 < X < 00;
n

r . . .
therefore, || Fy, — F||[—rr] < |—, so the convergence is uniform on any bounded set. It is
n

Fa (i%) ~F (i”—”)‘ = 1.

not uniform on (—o0, 00) since, for example, 7

1 ,—I<x<1,

(e) From Exercise 1(a), F(x) = {0 x| > 1

x"(1 —x") <o

Fax) = F)l = 1 <

1+ x"

1
if |x] <7 < 1land |F(x) — F(x)| = ‘ < 2r™if |x| > —, the convergence
r

1+ x2n
is uniform on [—r, r] U (—oo, —1/r] U [1/r,00), 0 < r < 1. Since lin}+ | Fom+1(x) —
xX—>—
F(x)] =1 and 11r{1+ | Fu(x) — F(x)| = 1, the convergence is not uniform on any set for
x—
which 1 or —1 is a limit point.
3
(f) From Exercise 1(f), F(x) = x and | F,, (x)— F(x)| < |6x—|2, —00 < X < 00; therefore,
n

3
r
| F— F ||(—r,;] < ——, so the convergence is uniform on any bounded set. Since | Fy, (n7)—

F(nm)| = nm, itis not uniform on (—oo, 00).
4
(g) From Exercise 1(g), F(x) = x? and |F,(x) — F(x)| < 2;6—2, —00 < X < 00
n
r|*

therefore, || F, — Fl/[—r] < so the convergence is uniform on any bounded set.

X
Since | F,(2nw) — F(2nmw)| :224:2712, the convergence is not uniform on (—oo, c0).

(h) From Exercise 1(h), F(x) = 0, —00 < x < 00. Since F, (x) — F'(x) = ne_”xz(l —
2nx2), |Fp(x) — F(x)| = n|x|e‘”x2 is a decreasing function of |x| if |x| > (2n)~'/2.
Therefore, |F,(x) — F(x)| < nre"r if |x| > rand n > 1/2r2, so the convergence
is uniform on (—oo, 7] U [r,00) if r > 0. Since |F,(x) — F(x)| = Me_l/z when
|x| = (2n)~1/2, the convergence is not uniform on (—00, 00).

(i) From Exercise 1(i), F(x) = 1, —o0 < x < oo. |[Fu(x)—1|=

24 52 =
X“+n n
|x| < r, so the convergence is uniform on [—r, r]. Since F,(n) — 1 = 1, it is not uniform
on (—o00, 00).

8. The Heine-Borel theorem implies that [a, b] C UL, I, for some x1, X2, ..., Xp. Use
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Exercise 6(b).

9. Suppose first that F;, is bounded on S if n > N. Then ||| Fx|ls — || Flls| < |[Fn — Flis,
n > N (Lemma 4.4.2), and lim | Fy| = || F| because lim | F, — F| s=0 Now suppose
n—o00 n—o0

that there are infinitely many integers n; < np < -+ < nx < --- such that || Fy, ||s = oo.
Since {F,} converges uniformly on S, Theorem 4.4.6 implies that | Fy|s = oo for all
sufficently large n. Therefore, || F|s = oo.

10. Since {F,} converges uniformly to F on S, there is an N; such that || F, — F||s < 1

if n > Nj. Suppose that F is bounded on S and n > Ny. Then ||Fylls = [|F +

(Fo = F)lls = [Flls + I1Fa — Flls < [Flls + 1, so limyoo [ Falls < [|Flls + 1.

Suppose that lim || F,|ls < oo. Then there is an integer N, and a number M such that
n—>o00

| Fulls < M ifn > N;. Now choose n > max(N1, N3). Then | Fl|s = || Fa+(F—F,)| <
|Full + || F — Full| < M + 1; that is, F is bounded on S.

11. Given € > 0 there are integers N1 and N, such that | F, — F|s < € if n > N; and
|Gn — Glls < eifn > N». Therefore, |[(Fn + Gn) = (F + G)||s < [[Fn — Flls + [|Gn —
Gls < 2¢ifn > max(Ny, Ny).

12. (a) Given € > 0 there are integers N; and N, such that || F, — F||s < € ifn > N; and
|G — Glls < €if n > N,. Therefore, | F,Gn, — FG|s = |(FaGn — FuG) + (F,G —
FG)||s < ||Fulls|Gn — Glls + |Glis||Fn — F|ls. From Exercise 9, there is an integer
N3 and a constant M such that | Fy|ls < M if n > N3. If n > max(Ny, N,, N3), then
| FnGn — FGlls < (M + |G| s)e.

13. @) |Ly — Lm| < |Ln — Fa(X)| + |Fa(x) — Fn(X)| + |Fn(x) — Lp|. If € > 0,
choose N so that || F,, — Filla,p) < € if n,m > N (Theorem 4.4.6); then |L, — L,»| <
|Ln — F(x)| + |Fn(x) — Lm| + €. Holding n and m fixed and letting x — xo shows that
|Ln — Lym| < €ifn,m > N. Hence, lim,_,oo L, = L exists (finite), by Theorem 4.1.13.
Now choose n so that |L — L,| < € and || F;, — F | (a,p) < €; then

|F(x) = L| < |F(x) = Fa(X)| + [Fa(x) = Ln| + [Ln — L]
< |Fu(x) — Ly| + 2e.
For this fixed n there isa § > 0 such that | F;,(x) — L, | < € if 0 < |x —x¢| < §. Therefore,

|F(x) — L| <3eif 0 < |x — xo| < 8; hence, limy_,, F(x) = L.
3

14. (a) F,(x) = n sin i. From Taylor’s theorem, sin X cos 0 (x, n)x— where
X n n n 6n32
O(x, n) is between zero and a Therefore, | F,, (x)—1]| < ﬂ, so[|[Fp—=1l[1,4 < 57— — 0
n 6n2 ’ 3n2

4 4
as n — oo. Therefore, lim / F,(x)dx = / 1 dx = 3, by Theorem 4.4.9.

I, 0<x<1,
1 x=1 Since | Fullfo,2] =
0

1
(b) F,(x) = ————; {Fy,} converges to F(x) =
1 4 x2n
, l<x<2.

2 2
1 forn > 1 and F is integrable on [0, 2], lim / F,(x)dx = / F(x)dx = 1, by
Theorem 4.4.10.
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1 n

2 1—e” 1
= — —asn — oo.
o 2 2

1
1
(C)/ nxe " dx = —Ee_"x
0

n 1 n
d F,(x) = (1 + i) ; since lim Fy(x) = e* and || Fyll[o,1] = (1 + —) — e as
n n—o00 n

1 1
n — oo, lim / F,(x)dx = / e*dx = e — 1, by Theorem 4.4.10.

b b
15. / F,(x)dx —/ Fn(x)dx| < (b —a)||Fn — Finll{a,5). Suppose that € > 0. Since
a a

{F,} converges uniformly on [a, b] there is an integer N such that || F, — Fp| < if

€
b—a

m,n > N (Theorem 4.4.2). Therefore, <eifm,n> N,

/;b Fn(x)dx—/;b Fp(x)dx

b
so lim F,(x) dx exists (Theorem 4.1.13).

—
n—oo J,

16. F and F;, F>, ...are nondecreasing (Exercise 2), so integrable (Theorem 3.2.9) on
[a, b]. Now use Theorem 4.4.9.

17. (@) On [—r/(147),7/(1=r)]if 0 < r < 1; see Example 4.4.12 and let M,, = n=/2",
Therefore, Weierstrass’s test implies that the series converges uniformly on compact sub-
sets of (—1/2, 00).

(b) On [—1/2, 00); see Example 4.4.12, set r = 1, and let M, = n=3/2,

(c) Since an" < oo ifand only if || < 1, on any set S for which ||[x(1—x)||s <r < L.

Since x(1 — x) < 1/4 for all x, solving x(1 — x) = —1 shows that S must be a closed
(1 —V3 1+ «/5)

subset of , .

2 2

(d) On (—o0, o0); take M,, = 1/n2.

(e) On [r, o0) with r > 1; take M, = n~".

() Since Z r" < oo ifand only if || < 1, on any set S such that [|(1—x2)/(1+x2)|s <

r < 1. Every x in such a set satisfies [(1 — r)/(1 + r)]"/? < |x| < [(1 + r)/(1 —r)]V2.
Compact subsets of (—oo, 0) U (0, co) have this property.

18. From Theorem 4.4.15 with M,, = |a, |, the two series converge uniformly on (—o0, 00).
Theorem 4.4.18 implies that the sums are continuous on (—oo, 00).

20. (b) Suppose that € > 0. Since Z | /x| converges uniformly on S, there is an integer N
such that ||| fu| + | fat+1] + -+ | fmllls < €if m = n > N (Theorem 4.3.5). Therefore,
I ot fasr 4ot fulls < Wfall+ 1 fasr| 4+ [ funllls <€ifm=n = N.so ) f
converges uniformly on S, by Theorem 4.4.13

21. Suppose that € > 0. Since Z M, < oo, there is an integer N such that M,, + M, 1 +
-oo+ My < eifm >n > N (Theorem 4.3.5). Then ||| fu| + | fas+1]l + -+ + | fullls <
[ falls + I fusrlls + -+ + 1 fmlls < Mn + Mpy1 + -+ My < e€ifm >n > N, so
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Z | fn| converges uniformly on S, by Theorem 4.4.13.

N N
2. I fup1(x) < fux), then D | fos1(¥) — ()] = Y (fa(¥) = far1(x)) =

Jj=k Jj=k

N

Je@) = fus1(0), 50 | Y 1wt = fal = S| < [fv41lls — 0as N — oo. Now
Jj=k S

apply Theorem 4.4.16.

n
23. Apply Theorem 4.4.7 to the partial sums F,, = Z Jm(x).
m=k
24. Let0 < § < % and let 1,,(8) = [2mm + §,2(m + 1)m — §], where m is an integer.

From arguments like that in Example 4.3.21, the sequences {|sinx + --- + sinnx|} and
{|cos x + --- + cosnx|} are bounded on /,,, (). Therefore, Corollary 4.4.17 with f, = a,
implies that Z an cosnf and Zan sinnf converge uniformly on /,,(8). Their sums

are continuous functions of x on I, (Theorem 4.4.7). If 2mn < x < 2(m + 1)x, then
x € I, (8) if § is sufficiently small. Therfore the two sums are continuous at x.

o0
26. Suppose that Z Jn converges pointwiseto F and each f,, is integrable on [a, b]. Then:

n=I[

b
(a) If the convergence is uniform, then F is integrable on [a, b], and (A) / F(x)dx =
a

b
Yo fatodx.

n=k*%
o0
n
(b) If the sequence Z fm is bounded and F is integrable on [a, b], then
m=k la.b]) n=k
(A) holds.
27. Theorem 4.4.19 justifies term by term integration in both parts.
» i nt2n x s x i nt2n i ; X 42n
@e™ = (-1 —;/ e~ dtz/ =D"— ) dt = (-1 / —dt =
=0 n! 0 0 =0 n! 0 0 n!
o0 2n+1
21" (2;+ Dn!’
n=0 '
: e 2n X o x [ 2n e x 2n
sin? t sin t 1
b) — = —1”7;/ —dtz/ —)'—— ] dt = —1”/ ——dt =
®) t ’;’( )(2n+1)! o 0 ’;)( )(2n+1)! ’;( ) o (2n+1)!
o0 2n+1

n X
2D @n+1)@2n + 1)

n=0
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n
28. Apply Theorem 4.4.11 to the partial sums F,, = Z Jm(x).
m=k
29. The series converges for x = 0 and the series obtained by differentiating it termwise
converges uniformly on finite intervals (Example 4.4.17). Use Theorem 4.4.20.

30. The given series and those obtained by differentiating it term by term an even number of
times obviously converge at xo = 0; those obtained by differentiating term by term an odd
number of times converge at xo = 0, by the alternating series test. Since the series obtained
by differentiating term by term k times converges uniformly on (—oo, 0o) by Weierstrass’s
test, the conclusion follows by repeated application of Theorem 4.4.20.

31. The graph of y = f,(x) is a triangle with height n and width 2/n3; hence, the area
under the graph is 1/n2. Since }_ 1/n? < oo and F is continuous, the conclusion follows.

4.5 POWER SERIES

1. > ay R™ and Y _(—1)"a, R" both converge absolutely if and only if ) _ |a,|R" < oco.
2. (a) |an |V = (1 * %)1/" 2+ (=1)"); limy o0 lan] /™ = 3e; R = 1/3e.

() |an|t/" =2Y¥" 5 lasn — ooy R = 1.

(©) |an " =2 + sin %;mﬁm lan V" =3; R =1/3.

(@) |an|t/" = nV/¥" > lasn — oo; R = 1.

(@) |an /" = %—)Oasn—)OO;Rzoo.

3. (@) If |a,r™| < M, then |a,(x1 — x0)"| < Mp", where p = |x; — xo|/r < 1, and
> lan(x1 — x0)"| < oo because Y p" < oo.

(b) If {an(x1 — x0)"} is bounded, then ) a, (x — x¢)" converges if |x — xo| < |x1 — Xo|
(from (a) with r = |x1 — xo|). This is a contradiction if |x; — x¢| > R.

1/n

4. lim|g(n)|'/" = 1if g is rational; hence, lim, oo |ang(n)| = limyseo |an|'/"

(Exercise 4.1.30(a)).
5. Since 1/R; > 1/R, there is an integer k such that |a,|"/" < 1/R; if n > k. Therefore,
lan||x — x0|" < (r/R1)"if |[x —x0| <randn >k, so

k n - n - r\" Y R
f@ =) antx=xo)'| < ) lanllx—xol" = ) (R_l) :(R_l) Ri—r’

n=0 n=k+1 n=k+1

6. The series g(x) converges if |x¥| < R and diverges if |x¥| > R. This implies the result.

a 7—z n+1
7. (@) If limy—soo |ant1]/|an] = oo, then lim [ant1(z =z | _ oo forany z # Zo;
n—>00 |an(z _ZO)n|

hence, Y |an(z — z0)"| = oo if z # z¢ (Theorem 4.3.14(b)), and R = 0.
|ans1(z —zo)"

(b) Iflim,, o |@n+1]/]|an| = 0, then lim = Oforany z # Zo; hence,
n—00 |an (Z — ZO)"|
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> lan(z — z0)"| < 00 if z # zo (Theorem 4.3.14(a)), and R = oo.
8. We use Theorem 4.5.3 in all parts.

it log(n +1) n

(a) lim = lim ——— = lim (LHospital’srule) = 1; R = 1.
n—oo | a, n—00 ]()gn n—oon + 1
a 2" (n + 1)P 1\? 1
(b) lim |2 — im0 DT (1+—) =2 R=—.
n—oo | ap n—o00 2npp n—o00 n 2
An+1 2n +2 2n 2n + 2)! nln! 2n +1
(¢ = = =2 — 4 as
n n+1 n (n+ Dln+ D! @2n)! n+1
1
n— oo, R=-.
4
D2+1 n4" 12 +1 1
(d) dnt1 :(n+)+ " = " (nt "+ — —asn—>o0;, R=4
an m+D4 T n24+1 4n+1) n2+1 4
dnpr1| _ (n+ D"l n\" 1
(e) A e s +; —>easn—>oo,R_g.
® Gat1 :a+n—>lasn—>oo;R=1.
an B+n
9. (a) Let L = lim dntt . The conclusion is obvious if L = 0. If 0 < € < L there is
n—oo| dn
an integer N such that dmt1] L — ¢ if m > N. Therefore, |a,| > (L —€)" Vl|an|, so
am

lan|V/" > [|an|(L—e)_N]l/n (L—e€)ifn > N.Hence, lim |a,|'/" > L —e. Since this
n—>o00

holds for every € > 0, lim |a,|"/" > L.

n—>o00
(b) Let L = lim dnt1 . The conclusion is obvious if L = co. If L < oo and € > 0,
n—>o0o | ay,
there is an integer N such that dm1) _ T + e if m > N. Therefore, |a,| < (L +
am

)" Nlay|, so |an|''" < [lan|(L + e)_N]l/n (L +¢)ifn > N. Hence, Iim |a,|"" <
n—>oo
L + . Since this holds for every € > 0, Iim |a,|"/" < L.
n—>oo

an+1
7

1
L. Hence, R = ik by Theorem 4.5.2.

If lim

n—>o00

=L,thenL =L = L,so lim |a,|"/" = L and therefore Tim |a,|'/" =
n—o00 n—o0

o0
10. Differentiating and multiplying by x yields % = Z nx", |x| < 1. Repeating

(1 _x) n=0
L x(14+x) > 2
this yields ——— = n“x", x| < 1.
y TEE n§=0 |x|

11. We apply Theorem 4.5.5 in all parts.
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@ o) = > (5)

n=0

oo

) (=) x\2n—1 (=1)" 2n+1
To() = Z=:1n'(n 1)v( ) __Zn'(n+1)'( ) =—he,

(b)
Z ( nl?(n@f p+)‘p) (2)2n+p_1
Z<> S s
X amm G % oy
R %i ﬁ )" = SUm @ = Ty,
(©)

2y, _ N~ D@4 p)@nt p 1) x\2bp
V= Z nl(n + p)! (2)

(=D*@n + p) (x\2tr
’;) nl(n + p)! (2)
( 1)" X 2n+p+2

(=" X\ 2n+p
ZZnv(n+p)v (E) ‘

xX2J)+ x4+ (x> —p

After rewriting the third sum as

o0 ( 1)71—1 2n+p . n(n + p) 2n+p
4Z(n—l)'(n+p—l)‘( ) _42(_) n‘(n+p)'( ) ’

00 2
s TN x\2ntr _rlp—DH+p—p
we obtain x*J J+xJ,+(x*—p?)Jp = Z;)an (E) ,withag = ol =

_Q@ntp@n+p—1)+Qn+p)—4ann +p)—p?

Oanda
an nl(n + p)!

=0.
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12. Znan -1 = —ZZan = —ZZan >x" L since f0) =1,a9 = 1.
From Corollary 4.5.7, the ﬁrst and last power serles are identical on an interval containing

2ap-2 2azm—1
xo = 0Oifand onlyifa; = 0and a, = — ,n > 2. Therefore, az;—1 = —

n 2m 1—)m
A2m—
and aj,;, = —ﬂ, m > 0. Sinceag = 1anda; =0, az;y—1 = 0and az, = =
m  _pym ) m!
for m > 1, by induction, so f(x) = Z XM = e
= m!

o0 o0
13. For |x| < RY*, g(x) = Z anx*" which can also be written as g(x) = Z bux™

n=0
. {0 ifm#kn, _ . . _
with b, = {an = kn (k = nonnegative integer) (Corollary 4.5.7). Since b,,, =
g™ (0) /"(0)
and a, =
m! n!

14. Repeated application of Rolle’s theorem shows that there are sequences {#,x } such that
f(k)(tnk) = 0and lim ft,; = xo, k > 1. Since f(k) is continuous at X, f(k)(xo) =0
n—>o00

and therefore a; = 0, k > 0, by Corollary 4.5.6.

15. From Theorem 4.5.2, "7 a,(x — xo)" converges uniformy to f on [x1, x]. Now
use Theorem 4.4.19.

1 *dt
16. L= W = Z( D" (x — 1)", |x — 1] < 1. Therefore, logx = /1 - =
o0 (_
Z(—l)“/ (t—D"dt = Z (x — )", |x — 1| < 1, by Theorem 4.5.8.
n=0 1 n=0 n+1
1 L (—1)" * logt "
Hence, o8Y _ Z( ) (x =", so/ %8 it ( ) / t—D"dt =
x—1 =0 n+1 1 —1
1 e —1)r1
Z (n( +)1)2 -t = ’; ( ’: (x = 1)", |x — 1] < 1, again by Theorem 4.5.8;
= 1.
) 2 y2n+1
17. Tan"'x = )" " = )" 1], b
7. Tan™ " x /0 1+t2 Z( )/ dt = Z( )2_'_1 |x < 1], by

2n + 1)!
Theorem 4.5.8. From Corollary 4.5.6, £ ?™(0) = 0 and f(2"+1>(0) (- 1)"(2n i 1) =

(=D"
—1)" .= — — E -~ J
=D"@2n) ; = Tan™ «/— (Zn T3z
18. If F'(x) = f(x), then 1ntegrat1ng term by term (Theorem 4.5.8) yields the result.

19. Use Theorem 4.5.8 repeatedly to show that f can be represented by a power series in
(x — xo) in the interval. Then use Theorem 4.5.5.
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20. Since the identity holds with x = 0, it suffices to verify that the derivative of the left
side is zero if |x| < 1. The derivative is

d(x) = —q(1 +x)70"" Z (Z)x” +(1+x)1 Zn(i)x”—l_
n=0 n=1

q q-—1 — [q—1 — [q—1
. _ d 2 : n—1 _ § n_ 1 q-1
e n(n) q(n - 1) " n=1 (n N 1>x n=0 ( " )x ( " X) ’

dx) =—q(1+x) 7' 1 +x)?+q(1+x)9(1+x)?" =0,|x] < L.
21. For a fixed x such that |x — x¢| < min Ry, R», the series

o0 o0
fx) = Z an(x —x0)" and g(x) = Z by (x — x0)" both converge, and Theorem 4.3.10

n=0 n=0
implies that af (x) + Bg(x) = Z(aoc + bB)(x — x0)".
n=0
22.If f(x) = cosh x, then f?™(x) = coshx and f@"+V(x) = sinhx,so @™ (0) =
e 2m
@m+1) () — _ X
L fCmHD(0) = 0,and f(x) = ,;) T

If f(x) = sinhx, then f?™(x) = sinhx and f?”*VD(x) = coshx, so f@™(0) = 0,
o0

@m-+1) x2ml
m 0) =1, and = _—
FEmDO) = Land () = ), Gy
m=0
S n S n x —Xx S 2m
X X e’ +e X
Since e* = — and e™™* = —1)"—, coshx = —— = and
Z n! Z( ) n! 2 Z 2m)!
n= =0 m=0
eX — X e x2m+1
inhx = —— = _—.
sinh x 7 Z am +le!

2 s 3 3 S
24. (a) e”sinx = 1+x+?+?+--- X—F'Fmﬁ-'“

N A
N 3 40
(b) 1+x2 TS T
1
:1—x+(§—1)x2+(1 —)x3+
1 x2+5x3+
— —_ X — — _— e
22 46
B R A (1—x5...)
(c) 1+ x6 2 24 720

1 x2  x*  721x®

2 24 720
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(d)
3 5 ¥2 X3 i 5
log(1 A ST -4y 42
(sin x) log(1 + x) (x + 120+ ) xX== + 3 1 + + )
3
SR SNE N (L PR L RRL I I
=x 2+(3 6)x +( +1)x+
SN SN AT
B 26 6 ‘
00 y2n+1 00 -
s — — n
25. 2sinxcosx = 2 ’;(—1 (2n+1)‘ Z( (2n)‘ —’;’cnx , where

- I 1 B ) = (2n+1 .
cn :2;(_1) D ey — Y mz( 2r )‘Addmg

2n+1 2n+1
2 1 2 1
22l () 4 1 = 2:(” )and0=(1—1)2"+1— > (- 1)(”+ )
r

r=0 r=0

n o0
. 2n+ 1 : 2x)2ntt
yields 2;:0( n2r ) = 22"*1 50 2sinx cos x = §= (—1)"% = sin2x.

26. (a) Differentiating (A) with respect to x yields
o0
(A=2xt + )72t —x) =Y (n + D Pyr1 (D"

hence,
o0 o0
(t=x) Y Pa()x" = (1 =2x1 +x%) Y " (n + 1) Ppyr (1)x".
n=0 n=0

Performing the indicated multiplications and shifting indices yields

tPo() 4+ D [tPa(t) = Paca (D] X" = P1(t) + [2P2(1) — 20Py ()] x

+ Y [+ D Payr () = 201 Py (t) + (n — 1) Py (D).
n=2

Equating like powers of x yields P = tPy(¢),
3tP; — Py 2n +1 n
Pr="—" """ and Pyi = tP, — Pp1, > 2.
2 ) an n+1 P - T1 n—1 n=
Setting x = 0 in (A) shows that Py(t) = 1. Therefore, P (t) = tPy(t) = ¢.

(b) Proof by induction: Py and P; are polynomials of degree 0 and 1 respectively. Now
suppose thatn > 2 and Py, Py, ..., P, are polynomials of degrees 0, 1, ..., n respectively.
Then the recursion formula implies that deg(P) = n + 1.
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sin x

b

27. () e* = (ap + a1 x + azxx® +azx> +--+)

2 3

X 2 3 sin x
1+x+7+g+---=(ao+a1x+a2x +azx” +--)
x2
=(ao+a1x+a2x2+a3x3+---)(l—?+---)
a a
=ao+a1x+(a2—go)x2+(a3—é)x3+---;
1 ay 2 I a1
a:l’a zl’a :—+—:—’a = -4 — = —.
0 ! 7276 3776 6 3

(b) cos x = (ap + aix + azx? + asx> + ---)(1 + x + x?);

2

X
1—7+---=(ao+a1x+a2x2+a3x3+---)(l+x+x2)
=ap + (a1 +ao)x + (ap + a1 + ax)x* + (a1 +az +az)x> + -+
1
aozl;ao+a1=O;ao+a1+a2=—§;a1+a2+a3=O;a0=l,aoz—l,
1 3
ap = —=,a3 = —.
2T

(©) secx = ag +arx? + axx* + azx®+---;
1= (ao+a1x2+a2x4+a3x6+---)cosx

2 4 6
X X X
:(ao+a1x2+a2x4+a3x6+---)(1——+———+---)

2 24 720
_ Iy , ar | ao\ 4 ( a a1 aO) 6 .
—“°+(“1 2)x+(“2 z+z4)x+ Bty T o) T
1 1 5] aop 5 7%} a1+ aop 61
ao=lbar=5d2= - — =343 = — — T .~ = -~
0 YTy T T ™ T 2 T 24 20 720

(d) xcscx =ag + aix? + arx* + azx® +---;

2 4 6
1= (ap +ar1x*>+axx* +azx®+---) (LI A A
6 120 5040
- _ 902 L U B e I B I P
= a0t (o= )% + (a2 = 4 g5t (00 = 55— 50g0) <+

do

ai aop 7 aj aq ao 31
a =Ly ==

1
62T %6 T120 360" T 6 120 T 5040  15120°
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®

2x)*  (2x)°  (2x)
2x—( ) +( ) _ ) + o =x(ao + arx* + axx* +azx +--+)

6 120 5040
x2  x* x©
1— 2= _
X( 6 T 120 5040 " )

=a0x+(a1—%))x3+(a2—g+laz—oo) x°
2 4 do N7
+ (as 6 120 5040) o
4 ao ao 4 4 aq ao 4 aq ao
:2’—— = —_— = ———:—1’—: ——+ ) = —F4—— =
o 3T T 63 5% 12071576 120
1 8 az aq ao 8 az ay ao 1
= —a7F - T B =T~ 0 =—.
127 315 ° 120 5040° 7 315 6 120~ 5040 360
28. (a) Multrplyrng both sides of the recurrence formula by x"*! and summing over
n > 1 yields Zaon Za X"l 46 Zan 1x" T hence, F(x) —5—5x =

n=1 n=1 n=1

5
x [F(x) — 5] 4+ 6x2F(x). Solving this for F(x) yields F(x) =

(1 =3x)(1+2x)

1
=3x + T2’ where A(1+2x)+ B(1—3x) ? 5. Settingzx =3

1
ields B = 2 and setti = —yields 4 = 3,s0 F = , and
yields and setting x 3 yields so F(x) “3x + 15 ox an

(b) Write F(x) =

o0
expanding the two terms as geometric series yields F(x) = 23[3"+1 — (=2)"Fxm,

o0 xntl
;) n+1Dn+2)°
v
( + D +2)

29. From the given expansion and Theorem 4.5.8, (x—1) log(1—x)—x = —

1
|x] < 1. Since Z m < 00, Abel’s theorem implies that Z

—x1_1>r(r)1_((x - 1)10g(1 —x)—x) =1

30. The series converges by the alternating series testif —1 < g < 0, since (A) (q> / ( _q’_ 1) =
n n

uand lim 1
n—+1 n—o0 \ n

n=0
stated identity also holds for —1 < g < 0, by Abel’s theorem. If ¢ < —1, then (A) implies
that the series diverges.

o0
= 0 (Exercise 4.1.35). Since ) _ T)xn = (14 ) if [x] < 1, the
n
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m
31. (a) Let s,y = Z bx. Summation by parts yields

k=n
m m—1 m—1
Zbkxk =1(1-x) Zskxk + smx™| < (1 —x)e Zxk +ex™ < 2e
k=n k=n k=n

if0<x<1,m>n> N. Use Theorem 4.4.13.

(e9) o0
(b) If Z b, converges, then g(x) = Z by x" converges uniformly on [0, 1] (a), so g is

n=0 n=
continuous on [0, 1] (Theorem 4.4.18); hence, limy—;— g(x) = g(1).

o0 o0 o0
32. From Exercise 31, the three series in the identity (Z anx") (Z bnx”) = (Z cnx")
n=0 n=0

n=0
converge uniformly on [0, 1], and are therefore continuous on [0, 1]. Letting x — 1— yields
the result.

[eS) k
33.If Z b, < oo, use Theorem 4.5.12. If Z b, = oo and M is arbitrary, then Z b, >
n=0 n=0
M for some k. Hence, there is a § such that 0 < § < 1 and Z];=o bpx™ > M ifl1 -6 <
x < 1. Since b, > 0 for all n, this implies that g(x) > M if 1 —§ < x < 1. Hence,
lir{1 g(x) = oo.
x—1—

> _1
34. Integrating the binomial series (1 — x2)~/2 = Z(—l)"( 2 )xzn, |x|] < 1, from
n
=0

00 _L 0\ y2nt1
0 to x yields sin™! x = Z(—l)" ; SPeE |x] < 1. But

n=0

1y -1 _@n-D@n-3)..() 1 (2n
n 21p) 22n\ n |’
© (5, y2n+1
sosin~!(x) = Z P 1) |x] < 1. Let x — 1— and use Exercise 33 to obtain
n n
n=0

the result.



CHAPTER 5

Real-Valued Functions of Several
Variables

IN THIS CHAPTER we consider real-valued function of n variables, where n > 1.

5.1 STRUCTURE OF "

1. () 3X + 6Y = 3(1,2 —3,1) + 6(0,—1,2,0) = (3,6,-9,3) + (0,—6,12,0) =
(3.0,3,0).

© X1V = 343 1D+ Hb 15D = b+ b ) =
111235
6° 127 24° 36/

2.(@X4+Y = (x14+y1, X242, -, Xn+Yn) = V14+X1, Y2+ X2, .., yn+xn) = Y+X
M X+Y)+Z=((x1+y)+z1.(x2+y2)+22,.... Xn+yn)+20) = (x1 + (1 +
z1), X2+ (2 +22) .o X0 + (yn +20) =X+ (Y +Z).
©If0=(0,0,...,0),then0+X = (0+x1,0+x2,...,04+x,) = (x1,X2,...,x,) =X
for every X. Now suppose that Y is a vector such that Y + X = X for some X. Then
1+ X1, Y2+ x2,..., V0 + Xn) = (X1, X2,...,X,); hence, y; + x; = x; and therefore
yi=0,1<i<n,s0Y=0.

WX+ (—X) =(x1,X2, ..., Xp) + (=X1,—X2,...,—Xp) = (X1 — X1, X2 — X2, ..., Xp —
Xn) = (0,0,...,0) = 0. f X4+Y = 0, then (x1 + y1,X2 + Y2,...,Xn + V) =
(0,0,...,0); hence, x; + y; = 0 and therefore y; = —x;, 1 <i <n,so0Y = -X.

(e)a(bX) = a(bxy,bxa,...,bxy) = (a(bx1),a(bxz),...,a(bx,)) = ((ab)xy, (ab)xa,..., (ab)x,) =

(ab)X.

®) (a+b)X = ((a+b)x1,(@a+b)xz,...,(a+b)xy) = (ax1+bx1,ax2+bxs,...,ax,+
bxy) = (axy,axs,...,axy) + (bx1,bxa,...,bx,) = aX + bX
@aX+Y)=alx1+y1,x24+y2,..., Xn+yn) = (alx1 +y1),a(x2+y2),...,a(x, +

Yn)) = (axi14ay1,axz+ays, ..., ax,+ay,) = (axy,axsz,...,axy)+@y,ayz,...,ayn)
aX +ay.

116
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(h) 1X = (Ix1, Ixa, ... 1) = (X1, X2, ..., ) = X
3. @) [X] = (12422 + (=32 +12)"? = V5.
1 1 1 1 1/2 \/@
(I _ .
B X (22+32+42+62) 12
© X = (12 +2% + (-1 + 3 +42)? = V3L,
) |X| = (02 + 12402+ (_1)2 +02 + (_1)2)1/2 _ ﬁ

@) [X—Y|=(B-22+(@#—02+ G+ 12+ (—4-2?)"? = /5o,

=y = (<11 o (L 1Y o (Loty L A
wx-vi=((55) +(5+g) +(5me) +(5+3) ) =T
© X —Y| = ((0-2)2+ (0 + 1>+ (0—2)2)"/* =3,

@X-Y]=(3-22+(1-02+ @12+ (0+4)2 + (-1 —1)2)/* = V31
5. @) XY = 3(3) + 4(0) + 5(3) + (—4)3 = 12.

(b)XY—l 1+111+91+5 1y 1

6\ 2)  12\2 g\4) 2\ 4) 32
©OX-Y=1(1)+22)+ (=3)(—1) + 1(3) + 4(4) = 27.
6. (a) [aX| = (a®x? + a?x2 + -+ a?x2)V2 = |a|(x? + x2 +--- + xH)V/2 = |a||X].
(b) [X] = (x?+x2+-- +x2)1/2 > 0, withequalityif and only if x; = xo = -+- = x,, = 0;
that is, if and only if X = 0.
© X=Y|=((x1 —y1)?+ (x2— y2)% + -+« + (xn — yn)*)'/2 > 0, with equality if and
onlyifx; —y; =x2—y, =+ =Xx, —y, = 0; thatis,ifand only if X = Y.
XY =x1y1 +x2y2+ -+ Xnyn = y1X1 + y2Xa+ -+ yuXn =Y - X,
@©X - Y+Z) =xi(1+z1)+x2002+22) + -+ x2(Vn +20) = X101 + X202 +
e Xpyn X121 X222+ o+ X072, =X Y+ XA Z.
() (cX)-Y = (cx1)y1 +(cx2)y2+- -+ (cxp)yn = x1(cy1) +x2(cy2) +- -+ xn(cyn) =
X (cY) = c(x1y1) + c(x2y2) + -+ c(xpyn) = ¢(X-Y).
8. If both equations represent the same line, then Xo = X; +soVand Xo+U = X; + 5V
for some s and s7; that is, X; — Xo = soV and U = (51 — s9)V are multiples of V.
Conversely, if X1 — Xy = aV and U = bV, then Xy + tU = X + (a + bt)V and since
there is for each s a unique ¢ such that s = a + bt, the two equations represent the same
line.

9. In all cases X = X + (X1 — Xop).
10. In all cases let p = sup {e | Ne(Xp) C S}.

(a) If S is a sphere with center X; and radius r and Xy € S, then p = r — |Xo — Xy ;
in this case X; = (0,3,-2,2), r = 7, and Xo = (1,2,-1,3). Since |Xo — X;| =
[(1,-1,1,1)| =2, p = 5.

bIfS = {(xl,xz,...,xn) | |xi| <r, 1 <i < n} and Xo = (xio),xéo),...,x,(,o)) €S,
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then p = 1r<nii£1n min{r; +xi(0), ri —xi(o)}. Inthis case Xg = (1,2, —1,3)and r; = 5,i =1,

2,3,4,50 p =min{6,4,7,3,4,6,8,2} = 2.

(©IfXy € R?isina triangle S, then p is the smallest of the distances from Xy to lines
parallel to the three sides of S. If the vertices of S are X, X5, and X3, then these three
distances are given by

_ VX0 —X5P2X5 — X5 — [(Xo — X3) - (X2 — X5)?

& X2 — X ’
iy = VX0 =XiPXs —Xu 2 — (Ko —X1) - (K3 — X))
X3 — Xy
iy = VX0 = XoPXi —Xo? ~ (Ko —Xa) - K1 —Xo)P
X1 — X
With Xy = (3, %), X; = (2,0),X; = (2,2), and X3 = (4, 4), straightforward computa-

! dy = dds; = 1;h _ !

m, z_ﬁ,an 3 =1; ence,p_ﬁ.

13.If [ X—Xo| =7 then every neighborhood of X contains points from S, (Xo) and points
from S, (Xo)“; hence, X is a boundary point of S, (Xo). If |X — Xo| # r, then X is either
in the interior or the exterior of S, (Xg) so X is not a boundary point of S, (Xg). Therefore,
38, (Xo) = {X||X —Xo| = r}.s0 §,(Xo) = 5,(Xo) UdS,(Xo) = {X||X—Xo| <r}.
14. Suppose that X9 € A. Since A is open, Xo has a neighborhood N C A. Since
N N B =0, Xy is not a limit point of B. Therefore, AN B = (. Similarly, A N B = @.

15. See the proof of Theorem 4.1.2.

16. By definition, [X, — X| = [Y7_, (xir —¥1)2]"/?. Suppose that € > 0. If (A)
lim; 0 Xir = X;, 1 < i < n, there is an integer R such that |xir — Xi| < eLﬁ for
1 <i <nifr > R. Then (B) |X; —X]| < €if r > R. Hence, (C) lim,_,o, X, = X. Since
|xir —xi| < |X, —X], (B) implies that |x;, — X;| < € if r > R; hence, (C) implies (A).

tions yield di =

17. Suppose that {X,} converges. Then the sequences {x;,}, | < i < n, all converge
(Theorem 5.1.14). Therefore, if € > 0, there is an integer R such that |x;, — x;5| < <

n
forl <i <n =1ifr,s > R (Theorem 4.1.13). This implies that (A) |X, — X;| < € 1f\/;,
s > R. Conversely, suppose that for every € > 0 there is an integer R satisfying (A). Then
|xir —xis| <eforl <i <mn=1ifr,s > R, so the sequences {x;,}, 1 <i < n,all
converge (Theorem 4.1.13). Therefore, {X,} converges (Theorem 5.1.14).

18. (@) lim X, = (lim rsin ™, lim cos ™, lim ™) = (,1,0).
r—00 r—00 r  r—oo r  r—oo

. . 1 . r+1 1\’
(b) lim X, = lim (1—— ), lim log ,lim (1 + — = (1,0, e).
r—00 r—00 r r—00 r+2 rooo r
19. (a) d(S) is the supremum of /(x; — x2)2 + (y1 — y2)? + (21 — 22)? where —2 <
X1,X2 <2, -1 < y1,y2 < 1,0 < z1, 22 < 4; to maximize this function let, for example,
x1=-2x=2,y1=—1y2=1,21 =0,2, = 4 thus, d(S) = V42 +22 + 42 =6,
(b) d(S) is the length of the major axis; that is, d(S) = 6.




Section 5.1 Structure of R* 119

(¢) d(S) is the length of the longest side; that is d(S) = |(4,4)—(2.,0)| = |(2.4)| = 2+/5.
n 1/2

(d) d(9) is the supremum of (Z(xi — yi)2> , where —L < x;, y; < L. To maximize
i=1

this function let, for example, x; = —L and y; = L, 1 <i < n; thus, d(S) = 2L+/n.

(e) Since S is unbounded, d(S) = oc.

20. Since S C S, (A)d(S) < d(S). IfXand Y are in S and € > 0, there are points X1, Y

in S such that | X — X | < € and |Y — Y| < €. Then

X-Y| <|X=Xi|+ X1 =Y1]|+ Y1 - Y| <d(S) + 2e.

Hence, d(S) < d(S) + €. Let € — 0+ to conclude that d(S) < d(S), which, with (A),
implies that d(S) = d(S).
21. Suppose that Xg isin S. If S # R”, thereis an X; ¢ S. Let

H={t|(1-0)Xp+1X;eSfor0<t<t}.

Since S is open it contains a neighborhood of Xo, so H # 0. Since X is not in S, t<1
forall Tin H. Let p = sup H and X = (1 — p)Xo + pXy; then X is a limit point of S and
so in S, because S is closed. Since S is open, it contains some € —neighborhood of X, so
p + €/2isin H. This contradicts the definition of p. Hence, S = R".

22. If Sp has finitely many members for some M, then some point from Sy is in
No>_, Sm. Hence, we assume that Sy, has infinitely many members for every m. Choose
X; in S; so that X; # X; if i # j. Then {X;} is a bounded infinite set and has a limit
point, by the Bolzano -_Weierstrass theorem. Since S; D S;+1, X is a limit point of every
Si. Since S; is closed, X is in each S;, and so in N7, S;. The conclusion does not hold if
S = [m, 00), which is closed, but no bounded.

23. S, is compact. If S, is nonempty for all n, then N;2, S, # @ (Exercise 22), which
implies that Uy, U,, ..., do not cover S, a contradiction.

24. (a) First, note that C,,, # 0. To see this, suppose that C,,, = @. Then |X — Xo| >
dist(Xg, S) + 1/m for all X € S, contrary to the definition of dist(Xg, S). Moreover, Cy,
is closed. To see this, suppose that Z is a limit point of C,,. Then Z is also a limit point of
of §, and therefore in S. Hence, if € > 0, there is an X in Cy, such that |X —Z| < ¢, so
|1Z—Xo| < |Z—-X]+ |X—Xo| < € +dist(Xp) + 1/m. Letting ¢ — 0 shows that Z € Cp,.
Therefore, C,, is compact.

Since Cppy1 C Cp, there is an X in Mor—y Cm (Exercise 22). Since dist(Xo, S) < |X —
Xo| < dist(Xp, S) + 1/m, m > 1, | X — Xp| = dist(Xp, S).

(b) Follows immediately from (a), since X # Xg if Xo ¢ S, and therefore |X — Xg| > 0.
() In R% let S = {(x,y)|x?+ y? <1} and Xo = (1,0); then dist(Xp, ) = 0, but
IX—Xp| >0ifX e S.

25. (a) Let p = dist(S, T'). For each positive integer m, let D, = {Z | dist(Z,T) < p+ 1/m}
Since T C Dy,, D, is nonempty. Moreover, D, is closed; to see th_is, suppose that Zisa
limit point of D, and € > 0. Then there is a Z¢ € D,, such that |Z — Zy| < € and a Z;
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in T such that |Zo — Z1| < p + 1/m + €. Hence, |Z—Zl| < p 4+ 1/m + 2e. Since this
is true for every € > 0, dist(Z, T) < p + 1/m; thatis, Z € D,,. The triangle inequality
shows that D,, is bounded, because T is; thus D, is compact.
Now define C,y = {Z|Z € S and dis(Z,T) < p+ 1/m}.
Since S is closed and C;y = Dy N S, Gy is compact. Since Cpy+1 C Cpy and Cp, # 0,
Exercise 22 implies that there is an X in N>_; Cp,. This X is in S and dist(X, T') = p.
From Exercise 24, there isa Y in T such that |[X — Y| = p.
b)IfSNT =0, thenX #Y,s0 [ X—-Y| > 0.
(©InR2 let S = {(x,y) | x2 4+ y? < 1} and T = {(x,y) | (x =32 +y?= 1}. Then
dist(S,7) =1,but | X—-Y|>1ifXe SandY € T.

o0

1 1
InR,let S ={2,4,6,...} and T = U [Zn + —,2n+2— —i|. Then dist(S,T) = 0,
n n

n=2
but  X-Y|>0ifXeSandYeT.
26. (a) For each X in S there is an n-ball Bx of radius rx centered at X such that Bx C
U. Let By be the open n-ball about X of radius rx/2. From the Heine - Borel theorem
finitely many of these, say N)’(l e B;(k’ cover S. Let r = min {rxl./Z | 1<i< k}. Now
suppose that dist(X, §) < r. Then there is a point Xin S such that [X — X| = dist(X, S)
(Exercise 24), and X € N,’(l_ forsome i. Now [ X—-X;| < | X—-X|+|X-X;| <r+rx,;/2 <
rx;,so Xisin Bx, C U.
(b) Suppose that |X| < M for every X in S. If Y € S;, choose X in S so that | X —
Y| = dist(Y,S). Then |Y| < [Y — X]| + |X| < r + M; hence, S, is bounded. To
see that S, is closed, suppose that Y is a limit point of S, and € > 0. Then there is a
Y in S, s uch that [Y — Y| < ¢, and an X in S such that dist(Y, S) = |X — Y|. Then
Y =X| < [Y-Y|+|Y—X] <e+r,andsodist(Y, S) < € + r. Letting e — 0, we see
that dist(Y, S) < r; therefore, Y € S,, and S, is closed.
27.1f U = (X, Y), then |U|? = |X|? + |Y|?; hence, D is bounded, since D1 and D are. If
Up = (Xo, Yo) is a limit point of D and € > 0, there are points X in D and Y in D, such
that [U — Up| < €, where U = (X, Y). Therefore, |X — Xo| < € and [Y — Yo| < €, which
implies that Xg € D1 = Dj,and Yo € D, = D;; hence, Up € D. Hence, D = D.
28. Suppose that Xo € A. Since S is open, there is a neighborhood Ny of X such that
N1 C AU B. Since Xy € B (because A N B = @), there is a neighborhood N; of X; such
that N, N B = @. Now Ny N N, C A. Hence, A is open. Similarly, B is open.
30. Suppose that S = A U B, where A N B = @ and AN B = 0. Since S° is connected,
we can assume that S 0 C A. Butthen S C S° (by definition of region) and S° C A4, so
S C A. Since AN B = @, it follows that S N B = @; that is, B = @. Therefore, S is
connected.

31. Suppose that S is aregionin Rand a,b € S, witha < b. Ifa <c <bandc ¢ S,
then S = AU B, where A = (—o0,¢) N S and B = (¢, 00) N S yields a “disconnection”
of S. Hence, if ¢ and b are in S, then (a, b) is also. This implies that S is an interval.

32. Since {X,} is bounded, so are its sequences of components. Choose a subsequence
of {X,} for which the sequence of first components converges; this is possible, by The-
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orem 4.2.5(a). Then pick a subsequence of this subsequence for which the sequence of
second components converges; the associated sequence of first components still converges,
by Theorem 4.2.2. Continuing in this way leads to a subsequence of {X,} for which each
component sequence converges. Now use Theorem 5.1.14.

5.2 CONTINUOUS REAL-VALUED FUNCTIONS OF n VARIABLES

1. (a)xl_igl0 =3|1f/X)=10|=3x+4y+z-12|=3x—-1D+4(—-2)+(z—-1| =
€

NS

(b) Assume throughout that (x, y) € D = {(x, y) | X # y}. Then f(x,y) = x>+ xy +

350 lim f(x) = 3; [ f(X) =3 =[x +xy+y? =3[ = [ = Dx +2)+ (= Dlx +

y+ D] <V (x+2)?2+ (x +y + 1)2|X—Xo|, by Schwarz’s inequality. If [X — X,| < 1,

then /(x +2)2 4+ (x + y + 1)2| < 3+/2e and | f(X) — 3| < 3+/2|X — Xo|. Hence, if

€
X —Xpo| <min | 1, ——= ), then X)—3| <e.
X~ Xo < min (1,25 ) then /00~ 3

(¢) lim f(X) = 1;if € > 0, there is a §; > 0 such that
X—>X0

v26|X — Xp|, by Schwarz’s inequality; hence, | f(X) — 10| < € if | X — Xp| <

sinu .
— —1| <€if0 < |u| < é;.

fu=x+4y +2z=(x+2)+4(y—1)+2(z+ 1) then |u| < V21 |X —Xp| < §; if

81 1
X — Xp| < ——; hence, X)— 1| <eif | X—Xo| < —.
| ol Noxi |f(X) — 1] | ol Noi

(d) lim f(X) = 0;ife > 0, thereisa § > 0 such that [u?logu| < €if 0 < |u| < §. Since
X—>X0

f(X) = |X]?log|X]|, | f(X)| <€if0 < [X]| < 8.

(e) Assume throughoutthat (x,y) € Dy = {(x, y) | x> y}. Then | f(X)| = /x— M
-y

62

JX—y </ «/§|X| by Schwarz’s inequality, so | f(X)| < € if 0 < |X] < Ne

¥ = (, fore > Othereis an M such thatue ™™ < e if u > M. Therefore,

(f) Since lim ue™
U—>00
1
| f(X)] <€if0 < |X| < —,s0lim f(X) = 0.
M X—0
2. See the proof of Theorem 2.1.3.
3. (a) If e > 0, there is a § > 0 such that

Sy —Ll<e if 0<[x—x0)’+( -] <8.

There is a §; > 0 such that |g(x) — yo| < 8/+/2if |x — xo| < 8;. Therefore, if |x — xo| <
1/2
min(81.8//2) then [ (x = xo)? + (g(x) = y0)* | < 8,50 | (x.g(0) — L| <.

(v/x) lim f(x. y(x)) = 1fa2 if 1im 2% — 4

(b) Since f(x,y)) = W . x>0 X

=
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_xo/t
(4 x* (/)97 5=

(¢) Since g(x, y(x)) = m glx,y(x)) =0 1f ) remains bounded

. 1 .
as x — 0; however, if y(x) = /x, then g(x, y(x)) = m, N xl_l)r(r)1+ glx,y(x)) =
00.
4.

(a) Henceforth, X € Dy = {(x, ¥,2) |x + 2y +4z # O}; then f(X) = g(u(X)), where
|smu| sinu| 1
glu) =

ﬁ and u(X) = x+2y+4z. Let M be an arbitrary real number.

Since hr% g(u) = 1-00 = o0, there is §; > 0 such that g(u) > M if 0 < |u| < §;. Since
u—

lim u(X) = O there isa § > 0 such that 0 < |[u(X)| < §; if | X — Xo| < &; hence,

X—>X0

fX)> Mif0<|[X—Xo| <8s0 lim f(X)=
x—(2,—1,0)

(b) Henceforth, X € Dy = {(x,y)|y < x}. Then 0 < x —y < +/2|X| (Schwarz’s
1
inequality), so /x —y < 2Y4/IX] and f(X) > ————. If M > 0 and |X| <
quality), s0 /=y VIX] and f( 21/4/IX] X

1
—,then f(X) > M,so lim = oo.
V2M? JX) x—>(0,0)

(©) IfX, = (-1,0), then lim f(X,) = Jim nw sinng = 0. I X, = (m,o),

nm’

/ 1
then lim f(X,) = lim /(2n + —)71 sin|2n + = | @ = oo. Hence, lim f(X) does
n—00 n—00 2 2 x—(0,0)

not exist in the extended reals.

2
(d) Henceforth, X € Dy = {(x,y)|x—2y # O}. Then f(X) = —()}7-’2_);2, o)
X =2y
1
li =— i 2 lim ——— = —4-00 = —o0.
x—>1(r2nl) f(X) x—>1m ( y+ X) x—>1(2 1) (x — 2y)2 o o
(e) Henceforth XeDy = {(x ¥, 2) |x +2y+4z # O} then f(X) = g(u(X)), where
gu) = inu and u(X) = x+2y+4z. If {X,,} is sequence of points such that u(X,) > 0

and X,, — (2 —1,0)then lim f(u(X,)) = lim u()l( )Si:(”%)“) = 001 = 00, If {X,}

is sequence of points such that u(X,) < 0and X, — (2,—1,0) then lim f(u(X,)) =
n—>o00

. 1 sinu(Xy) . ..
lim ———— = —00-1 = —o0. Hence, lim f(X) does not exist in the
n—00 M(Xn) M(Xn) x—(2,—1,0)

extended reals.

log4 + 2log|X]

5. (a) Since x2 4+ 2y? + 472 < 4]X2, | f(X)| < ; lim f(X) =0.
IX|2 [X|—>00
() | f(X).tex| < ﬁ; lim f(X) =0.
(© lim f(x,x) = lim e” 4x? 0, while lim f(x,—x) = 1; therefore, lim f(X)
X—>00 X—>00 xX—>00 [X|—>00
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does not exist.
@ fX) =e X 50 lim f(X)=0.
[X|—>00
(e) lim f(x,x)=1while lim f(x,0) = 0; therefore, lim f(X) does not exist.
xX—>00 X—>00 |X|—00
(@) limy o f(X) = oo if Dy is unbounded and for every real number M, there is a
number R such that f(X) > M if |X| > Rand X € Dy.

(b) limy| o0 f(X) = —o0 if D¢ is unbounded and for every real number M, there is a
number R such that f(X) < M if |X| > Rand X € Dy.

7. Since | f(X)| < |X |1t tan=b limy,, fX) = 0ifa; +ax + -+ a, > b. If
c1,Ca,...,Cy are constants, then

|C1|al|c2|a2"'|cn|a” al+a2+~~~+an—b‘
(C% + C% 4+ oo 4 C%)b/Z

flerr,car, ..., cpr) =

Therefore, f has zeros in every neighborhood of 0 if any a; > 0 (set ¢; = 0); however,
by taking ¢; # 01 < j < n, it can also be seen that f assumes arbitrarily large values
in every neighborhood of 0 if (A) a; + a + --- + a, < b. Hence, limy_,¢ f(X) does

not exist if (A) holds with a least one a; nonzero. If a; = --- = a, = 0 and b > 0O then
limgo f(X) =00. Ifa; =---=a, =b =0, f is constant.
x2(a* + 1/x2)3
8. g(x,0) = x® .Ifa #0th ax)=2>32 T /)
g(x,0) = x°* > ocoas |x| = oco. Ifa # en g(x,ax) xlo(a4+1/x10)_)ooas
8 6
|x| — oco. However, g(x, /x) = BN 0 as |x| — oco. Hence, lim g(X) does not
1+ x8 X|—>o00
exist.
Xy
, (x, 0,0), . .
11. Let f(x,y) = ¢x2+y? (x.7) # (0.0 ; then f(x,0) = x is continuous for
0, (x,y) = (0,0).
all x and f(0,y) = y is continuous for all y, but f is not continuous at (0, 0), since

lim  f(x,y) does not exist (Example 5.2.3).
(x,9)—(0,0)

5.3 PARTIAL DERIVATIVES AND THE DIFFERENTIAL

L @h(t) = f(x+ g1,y + ¢at) = (x + $11)* + 2(x + $11)(y + ¢at) cos(x + ¢11);

R (1) = 2¢1(x + ¢11) + 2¢1(y + ¢at) cos(x + ¢11) + 2¢2(x + ¢11) cos(x + ¢11)
—2¢1(x + ¢12)(y + ¢2t) sin(x + ¢11);

Af (X) , , e 1 \/E
— = h'(0) = 2x + 2ycosx — 2xysinx + 2¢pxcosx;if L= | —,—/= |,
of. 0) = ( y ysinx)gr + 2¢ 7 3
fX) 2 , \F
then — = —(x 4+ ycosx —xysinx) — 24/ =(x cos x).
o ﬁ( y Y sinx) 3( )

(b) h(t) = f(x + 11,y + ot 2+ ¢31) = exp(—(x + ¢11) + (v + ¢21)* +2(2 + ¢31));
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W (1) = h(t)(—=¢1 +2¢2(y + ¢21) + 2¢3); f(X) — W(0) = e ¥ 22 (g 4 2y +
263):if L = (L _ L L) e X _(=20) 2o

V3 V33 aL V3
_ 2. / af(X) _
(© h(t) = Z(x, + i) W (@0) = ZZW, i 0= zZ¢,x, itk =
i=1 i=1
11 1 X)) 2
(ﬁ’ ﬁ’ ’Tﬁ)’thena—t = E(X1+x2+ +xn)

(@ h(t) = f(x+¢1t,y +dat, 2+ p3t) = log(l+x+y+ 2+ (d1 + 2 +@3)1); I'(t) =

1+ 2+ ¢3 A :h/(o)zm;ifL:(O,l,O)
l+x+y+z+@1+d2+¢3) L I+x+y+z
9f (X) 1
then — = .
oL l+x+y+z
2. h(t) = f(x 4+ ¢1t.y + ¢ot) = prgpasingyt; B (1) = i cos ¢ 1; j;(f) = 1'(0) =

¢1 #2.

3. @ h(t) = f(x + ¢1t,y + ¢at. 2 + ¢3t) = sin[w(x + d11)(y + $20)(z + P31)];
W (t) = mg(t)cos[m(x + ¢11)(y + ¢a2t)(z + P3t)], with

g(t) = o1(y + h2t)(@ + ¢3t) + 2 (x + P11)(2 + ¢3t) + P3(x + Pp11) (¥ + 215

af (X ,
% = h'0) = ng(0)cosnxyz = mw(p1yz + ¢2xz + Pp3xy)cos mxyz; if L =

Xi—Xo _ (i B L) o V(L 1=2) 5T

1X1 — Xo] V6 V6 Ve oL NG

() h(t) = f(x+it. y+¢at, 2+ ¢3t) = exp(—((x +¢10)> + (y +¢21)> +2(z + $31)));
H(1) = —2h(t)($1 (x+11)+2 (v +21) +3): % = '(0) = —2¢” T2 (g x

ee . Xi—Xo 9f(1,0,-1)
¢y + ¢3);if L = X, Xo| ~ (1,0,0) then 0 = De.

(© h(t) = flx + 1ty + ot 2+ ¢3t) = log(l +x +y + 2 + (¢1 + ¢2 + ¢3)1);
() = 1+ 2+ ¢3 LX) o) = ¢1+¢2+¢3;if£=
l+x+y+z+ (@1 +d2+¢3) IL l+x+y+z
X1 —Xo (L 0 _L) then 9f(1,0,1)
Xi-Xol \V2'7 V2 oL

n 2
@A) = (Z(xi +f¢i)2> W) =4 (Z(xl + t1¢y) )Zcﬁl( +1¢1); —af(X) -

i=1 i=1 i=1
oo 0f(0)
h(0) = L-X;—==0.
(0) Zl m

4. If zo = f(x0,Y0), then z(z) = f(xo + t¢1, Yo + t¢$2) represents a curve through
9/ (xo, yo) .
oL

(X0, Y0, Zo) in the plane determined by the unit vectors L and k; is the slope of
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the curve at (xo, Yo, Zo).

(@) /x(0,0) = Jim =

lim %O = 0and f,(0,0) = lim J0,y) = f(0,0) _
y

x—0 -0 y

. 0-0 Yt +4x?y? — %)
lim —— = 0. If (x, 0,0) th ,Y) = d ,y) =
Jim — (x,y) # (0,0) then fx(x,y) 2102 and fy(x, y)
x(x* —4x2y? —y%) . fe(x,0) = £4(0,0) . 0-0

(x2 + y2)2 - Jxx(0,0) = )11—{% X )11—{% x 0; 1»(0,0) =

0,y) — f4(0,0 . 0-0 . 0,y) — (0,0

i O =HO.0 020 A0 £0.0)
y—0 y y—>0 'y y—>0 y

—yv—0 ,0)— £,(0,0 . -0
lim =1 f0(0,0) = lim 2O =H00 0
y—0 y x—0 X x—=>0 X

h,0)— ,0 . 0-0
(b) fx(x,0) = lim S+ 10 = fx.0 = lim = 0 for all x and fy(0,y) =
kx—>0 0 ! 0-0 e
Oa - B . -
fim LOYFO =TSO 070 a1y £ 0 then £:(0,y) =
y—0 k y—>0 y
_ 2 2
lim S 9) = /0. 9) = lim (x tan~1 2 — 2 gan! f) = —fim Zan 'L = =Y,
x—0 X x—0 X X y x—>0 X y
B - 70
by L'Hospital’s rule and the boundedness of tan~! u. If x # 0 then f}(x,0) = lir% Sx.y)~ f(x,0) =
y— y

2 2
lim (x_ tan~! Y y tan~! f) = lim o tan~! - x, by L’Hospital’s rule and the
y

y—=>0\'y X y—=>0 'y X
,0)— /x(0,0 . 0-0
boundedness of tan~! u. Now fxx(0,0) = lir% fx(x,0) = /x(0,0) = 11[%— = 0;
x—> X x—> X
0,y)— f,(0,0 . 0-0 . 0,y) — fx(0,0
£,»(0,0) = lim /(0,y) = fy(0.0) = lim —— = 0; fx,(0,0) = lim Jx(0.y) = fx(0,0) _
y—0 y—0 y—0 y
—yv—0 ,0)— £,(0,0 . -0
im =20 = 1, £,.0,0) = tim 20 =HOO X700
y—0 y x—0 X x—0 X
9. Assume throughout that (x, y) € §. Differentiating u, = v, with respect to x yields
Uxx = Vyy. Differentiating u, = —v, with respect to y yields u,, = —vy,. Therefore,
Uxx + Uyy = Vyx — Uxy = 0 (Theorem 5.3.3).
Differentiating u, = v, with respect to y yields uy, = v,,. Differentiating u, = —vy

with respect to x yields —uyx = vxyx. Therefore, vxx + vVyy = Uyxy — uyx = 0 (Theo-
rem 5.3.3).

10. Apply Theorem 5.3.3 to f as a function of x; and x ;, holding the other variables fixed.

11. X € S throughout this proof. First consider r = 2. The conclusion is obvious if
Xi, = Xi,, and it follows from Exercise 10 if x;, # x;,. Now suppose that r > 2 and
the proposition is true with r replaced by r — 1. If x;, = xj,, then {x;,,...,x;,_,}isa
rearrangement of {x;,,...,x;,_,}, so inl X X) = ijl""’xjr—l (X) by the induc-
tion assumption, and differentiating both sides of this equation with respect to x;, = x,
yields fxl'laxl'2~~~axl'r X) = ijl,sz.“,xjr (X). If x;, # xj, then x;, = x;, for some k
in{l,...,r —1}. Let {xp,,Xp,, ..., Xp,} be the rearrangement of {x;,, X;,, ..., X;, } ob-
tained by interchanging i, and ix. Then (A) fxl'laxl'2~~~axl'r X) = fxpl,xpz._.,xpr (X), by
Exercise 10. However, now x,. = Xxj,, so fxpl,xpz._.,xpr X) = ijl,sz_“,xjr (X) by the
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previous argument. This and (A) complete the induction.
12. Suppose thatn > 2 and Py, P, ..., P, are true. Then

i1+ 224+ -+ ) =1 +22+ -+ 20) + 2]

= Z( )(21 + 22+ +zn)*’z,',1{ (by Py)

r .
r ) J! Ji 2. e | T
= (]) T - — <1 % "'Z‘nn Zn+1
= — 12l !

|
by Py, Py, ..., P,. Since (r) T ~ )' , this can be rewritten as
)

oy y (Hesk)
(zi+z24+ -+ Zn+1) —"-ZZ r— )

1,0
=0 Jilj2!

ry _r» Fn41

_r‘Zzl 22 " Znt1
.

rilrale !’

which is Py41.

(b) There is a one-to-one correspondence between these n tuples and the products in the
expansion of (z; + z2 + --- + z,)" that contain r; factors equal to x1, 7, factors equal to

X2, ..., Iy factors equal to x,. The number of such products is #, from (a).
rilrp!-orp!
(¢) Follows from (b).
S0~ fXKo) ~dsyX=Xo) ¢
13. Let E(X) = X — Xo] ’ % and apply Theorem 5.3.7
0, X = Xp,
and the definition of the differential.
9£(0,0) _1id Ly
14. If ® = (¢1, ¢2), then o W' (0), where h(t) = { 14¢® + 242’ COIf
0, t=0.
Pi¢2 o7

= (1,0) then s = 0 and /' (0) = 0. If ¢, # 0, then /' (0) = 11

S0r4g8 4293 2
af(0,0)
ad

Therefore, exists for every ®. However, f is not continuous at (0, 0), since

, 1
ygr(r)l+ Sy, y)E # £(0,0).

15. Choose r > 0 so that S,(xo, yo) is in the neighborhood and [ fi(x, y)| < M; and
| fy(x. »)I = Mz if (x, y) € Sy(xo, yo). If (x, y) € Sr(xo. yo), then

f(xv y) - f(xOv yO) = [f(xv y) - f(xOv y)] + [f(xOv y) - f(xOv yO)]
= fx(X, y)(x —x0) + fy(x0, )y — Yo),
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where X is between x and x¢ and ¥ is between y and yg. (By the mean value theorem,
applied first with respect to x, with y fixed, and then with respect to y, with x fixed.)
Therefore, by Schwarz’s inequality,

| f(x. ) = f(xo. yo)| < M+ M2 /(x —x0)% + (y — y0)2,

which implies the result.
16. (a)

Sy = f1.) =2 = 1) +3(xy —2)+ (> —4)
=200+ Dx =D +3((x=Dy+ (O —=2)+ O +2(—2)
=2x+3y+2)x—-D+ @+ -2
=10x—-1)+70—-2)+ 2x+3y—-10)(x— 1D+ (y =2)(y — 2);

therefore, if (x, y) # (1,2),
|/ y) — f(1,2) = 10(x — 1) =7(y — 2)|
Vi =12+ (y -2)7?
by Schwarz’s inequality. Since( %un( ) V@2x 43y —10)2 + (y —2)2 = 0, f is differ-
x,y)—>(1,2
entiable at (1, 2).
(b)
Sy = f(LLD) =2 =D +3(x - 1) +4(yz = 1)

=2x+5x -1 +4(y -1 +4y(z—-1)
=7x -1 +40-D+4z-D+2(x -1 +4@@ - Dy —1);

therefore, if (x, y,z) # (1,1, 1),
Sy, ) - A LD -Tx —1) -4 -1 -4z -1
Va -1+ -D2+ @ - 1)?
by Schwarz’s inequality. Since (x,y)l—if?l,l,l) Vix—1)2+4(z—1)2 = 0, f is differen-
tiable at (1,1, 1).

<V @x +3y—10)2 + (y —2)2,

LN s T )

© SX) = f(Xo) = Y (7 —x%) = Y _(xi + xi0)(xi — Xio)
i=1 i=1
=2 xio(x;i —Xio) + Y _(xi — Xi0)*:
i=1 i=1

therefore,

FX) = f(Xo) =2 xio(xi — Xio)
i=1
1X — Xo|

= |X —Xol,
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so f is differentiable at X
17. Write

S(x.y)— f(x0.¥0) = f(x,¥) — f(x0.¥) +

f(xOvY;_f(xo’yO)(y—yo)- (A)

—Jo
Holding y fixed and applying the mean value theorem with respect to x yields f(x,y) —
f(x0,¥) = fx(X(¥),y), where X(y) is between x and x¢. Therefore,

f(x,y)— f(xo0,y) = [fx(x0, y0) + (fx(f, y) — fx(x0, vo))](x — xo)
(®)
= [fx(x0. y0) + €1(x, ¥)](x — xo),
where lim €1(x,y) = 0 because f is continuous at (xg, yo) From the definition
(x,)—>(x0,¥0)

Of fy(‘x()a yo)’

f(xo0,y) = f(x0,¥0) _ fy(x0. y0) + €2(1), ©
Yy—=DXo

where lim €,(y) = 0. Now (A), (B), (C), and Schwarz’s inequality imply that if (x, y) #
Y=o

(x0, yo) then
| f(x,¥) = f(x0, ¥0) — fx(x0, yo)(x — Xx0) — fy(X0, ¥0) (¥ — Yo)|
V(& —x0)2 + (y — y0)?

where E(x,y) = \/€2(x,y) + €2(»). Since lim E(x,y) =0, f isdifferentiable
(x,y)—>(x0,¥0)

at (xo, Yo)-
19. (a) It is given that

< E(x,y),

FX) = f(Xo) = D fr; Xo)(xi — xi0)

. i=1
lim

=0.
X—Xo |X-—Xﬂ

Let X =X, + tL; then

Ko + L) = f(Xo) =D fr; Xo)tghi
A — =0:

that is, .
af (Xo) — lim S (Xo + L) — f(Xo)

oL t—0 t

=Y fuXo)gi.

i=1

n n
(b) It Z fle (Xo) = 0, then % = 0 for every L. If Z fle (Xo) # 0, the maximum is
i=1 i=1
attained with
-1/2

¢i=fo,(Xo) | Y fEXo)| . ls<is=n

Jj=1



Section 5.3 Partial Derivatives and the Differential 129

To see this, use Lemma 5.1.5.
20. First note that |g(u)| < u? for all u and

1
) Qusin——cos—, u#0
g = "
limg&):O, u = 0;
u—>0 U

hence, g’(u) exists for all u, but is discontinuous at u = 0. Now,

|fX) = £(0) —0-x1 —0-x2— - —0- x| < |g(x1)| + |g(x2)| + -+ + |g(xn)| < [X]?,
SO

i ) = f@) —0-x1 —0-xp == 0-xu| _

xl—r>r41) |X| =0

that is, f is differentiable at (0,0,...,0). Since fr, = g'(x;), fx, is discontinuous at
0,0,...,0).

21. (a) B(h) = ¢(xo + h) — ¢(x0), where ¢(x) = f(x,yo + k) — f(x, yo). Since
¢'(x) = fe(x,yo + k) — fx(x,yo) the mean value theorem implies that (A) B(h) =
[/x(X, yo + h) — fx(X, yo)] h where X is between xo and x¢ + 4. Since fy is differentiable
at (xo, o),

Sx(X,yo+h) = frx(x0.v0) + fex(x0.y0)(X — x0) + fxy (X0, yo)h + a1(h)
fx(fa YO) = fx(XO’ YO) + fxx(XOa y0)(§€\_ X()) + bl(h)v

h bi(h
where lim al—() = lim L = 0. Therefore, from (A), (B) B(h) =
(x.0)—>(x0.y0) (x.9)—>(x0.50)

fxy(xo, yo)h2 + El(h)h, with El(h) = al(h) — bl(h), SO lim El(h) =
(x.y)~>(x0.30)

(b) B(h) = Y(xo + h) — Y(xo), where Y¥(y) = f(xo + h,y) — f(x0.¥). Since

v (y) = fy(xo + h,y) — fx(x0,y) the mean value theorem implies that (C) B(h) =

[ fy (xo + h,¥) — fy(x0.)] h where ¥ is between yo and yo + h. Since f, is differen-

tiable at (xg, yo),

0.

Sy (o +h,3) = fy(x0.y0) + fyx(x0.y0)h + fyy(X0. y0)(Y — yo) + az(h)
fy(x0, ) = fy(xo0, y0) + fyy(x0, y0)(V — o) + ba(h),

h by(h
where  fim 2" _ g 2 _ . Therefore, from (C), (D) B(h) =
(x.)—>(x0.50) h (x,)—>(x0,Y0)

E>(h
Fye(ro. yo)? + Ea(h)h, with Ea(h) = as(h) — by(h),s0 tim 22 _
(x.»)—>(x0.0) h
(¢) From (B) and (D) fxy (x0, y0)h? + E1(h = fyx(x0, yo)h* + E2(h)h; fxy(xo. yo) —
Ex(h) — Ex(h) . o e
Syx(x0.¥0) = — 5 since the right side — 0 as &~ — 0 and the left side is

independent of i, fxy (X0, yo) = fyx(X0. Yo)-

0.
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22. (a) Apply the result of Exercise 21 to f as a function of x; and x ;, holding the other
variables fixed.

(b) X € § throughout this proof. We want to show that inl Xiy seeesXiy X) = ijl X e jy X)
if each of the variables x1, x», ..., x, appears the same number of times in {x;,, X, ..., Xj, }
and {x;,,x},,...,x;,}. First consider r = 2. The conclusion is obvious if x;; = x;,,
and it follows from (a) if x;; # x;,. Now suppose that r > 2 and the proposition
is true with r replaced by r — 1. If x;, = xj,, then {x;,,...,x;,_,} is a rearrange-
ment of {x;,...,x;_,}, so fxil""’xir—l X) = ijl""’xjr—l (X) by the induction as-
sumption, and differentiating both sides of this equation with respect to x;, = X, yields
fxil iy weeXiy X) = ijl Xy ey (X). If x;, # xj, then x;, = x; for some k in
{l,...,r — 1}. Let {xp,,Xp,,...,Xp,} be the rearrangement of {x;,, X;,,...,X;,} ob-
tained by interchanging i, and ix. Then (A) fxilaxiz"'axir X)) = fxpl,xpz___,xpr (X), by
(a). However, now Xpr = Xjr, SO fxpl sXpo X pr (X) = ij] X jo e X jip (X) by the previous
argument. This and (A) complete the induction.

23. The three points lie on a line if and only if there are constants A and B such that

— Ax; — B =0( = 1,2, 3). This is equivalent to the condition that

Yo xo 1 Yo Xo 1
O=|y1 x1 1 |=]y1—yo x1—x0 O |,
y2 x2 1 Yy2—Yyo x2—x9 0

which is equivalent to the stated condition.
25. Since also
lim S(x,y) = f(x0, y0) = fx(x0, yo)(x — x0) — fy(x0, Y0)(y — Yo)
(x,9)=>(x0,0) V(x —x0)2 + (y — yo)?
it follows that
(f (x0, y0) —a) + (fx (0, yo) — b)(x — x0) + (fy (x0. yo) — ¢)(y — yo)

=0,

lim =0.
(x,9)=>(x0,0) V(& —x0)2 + (v — y0)?
Therefore, the problem reduces to showing that if o, 8, and y are constants such that
@+ Blx —x0) +y(y —yo) _ @A)
(x,y)—>(xo,yo) \/(x —x0)2+ (y — y0)?
thena = B = y = 0. Since (A) implies that o + lim  (B(x —x0) +y(y — o)) =
(x,y)—>(x0,¥0)
0, it follows that « = 0, so (A) reduces to lim Pl —x0) + 7 = yo) =0
(x,y)—>(x0,¥0) \/(x —x0)2 + (¥ — y0)?
Therefore, lim B — %o =0,s08 =0, and hmyy Yo =0,s0y =0.
x=x0" |x — xo| y=y0" |y — yol

5.4 THE CHAIN RULE AND TAYLOR’S THEOREM

1. Xp € D; and Uy € DY, by definition of differentiability. Therefore, B,(Xo) C Dy
and B,(Up) C Dy for some p,r > 0. Since G is differentiable at Ug, G is continuous
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at Uy, so there is a § such that 0 < § < r and |G(U) — G(Up)| = |G(U) — Xp| < p if
|U — Up| < §. This means that f(G(U)) is defined if [U — Ug| < §; that is, Up € Dg.

2. (a)LetU = (u,v) and X = (x, y).
First method:

Up = (0, 1);
dg1(U) _ veu+v—1;
ou
dg1(Uop)
ou
dg1(U) = vl poutvl,
av
dg1(Uop) — 2.
av

dUOgl = du + 2dv;
agZ(U) — _e—u+v—1.
u ’
9g2(Uo) _
ou
BgZ(U) — e—u+v—1.
v ’
dg2(Uo) 1.
v ’
du,g2 = —du + dv;
Xo = (g1(Uo), g2(Uop)) = (1, 1);
fe(X) = 6x + 4y% + 3; fr(Xo) = 13;
fy(X) =8xy; fy(Xo) = 8;
duoh = fx(Xo) duy81+ fy(Xo) dyy82 = 13(du+2dv)+8(—du+dv) = 5du+34dv.
Second method:
h(U) = 3u2e2UH20=2 | gy outv=1p=2u20=2 | 30 putv=l _ 332,2uF20-2 4 4 p—u+3v=3 1
3veu+v—1;
hu(U) — 6U26‘2u+2v_2 _ 4ve—u+3v—3 + 3veu+v—1; hu(UO) — 5;
hy(U) = (6v 4 6v2)e?# 2972 1 (4 4+ 120)e #3073 4 (3 4 3v)e* V1 1, (Uy) = 34;
duyh = hy(Up) du + hy(Up) dv = 5du + 34 dv.
(b)LetU = (u,v,w)and X = (x, y, 2).
First method:

Up =(1,1,1);
IgnU) 1

ouw  u’
dg1(Uo) 1.

ou
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g U) _ 1,
v v’
dg1(Uo) _ 1
v ’
Igi(U) 1
ow  w’
dg1(Uo) _ 1.
dw ’
dvog1 = du — dv + dw;
0g2(U) __2

ou u’
9g2(Uo)
ou
0g2(U) —o;
av
9g2(Uop) —o:
av
Ig2(U) _ 3.
dw w’
9g2(Uo) .
= 3’
ow
dvo82 = —2du —3dw;
dgs(U) _ 1

u u’
dg3(Uo) 1.
ou
dgs(U) 1

v v’
dg3(Uo)

v
dgzs(U)

ow
dvog3 = du + dv +2dw;

Xo = (g1(Uop), g2(Uop), g3(Up)) = (0,0, 0);
fx(X) = fy(X) = fz(X) = _e_(x+y+z)§
fx(XO) = fy(XO) = fz(XO) =-1;

dyyh = fx(Xo) dvyg1 + fy(Xo) dvyg2 + fz(Xo) dvyg3 = —(du— dv+ dw)—(-2du—
3dw)— (du+ dv +2dw) = 0.

Second method:
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x(U)+ y(U) +z(U) = (logu —logv +logw) + (—2logu — 3logw) + (logu + logv +
2logw) = 0; hence, 7(U) = 1 and dy,h = 0.

(b) Let U = (u,v) and X = (x, y).
First method:

Uo = (3,7/2);
dg1(U) .
= cos v;
ou
dg1(Uo) _ 0:
ou
dg1(U) o
e = —usinv;
9g1(Uo) ,
= _3;
ov
duy,8&1 = —3dv;
dg2(U) .
= sinv;
ou
9g2(Uo) _ I
ow
0g2(U) )
= U CoSV;
ov
dg2(Uo) _ 0:
ov
dUng = du

Xo = (g1(Uo), g2(Uo)) = (0, 3);

fxX) = [4(X) =2(x + y); [xXo) = fy(Xo) = 6;
duoh = fx(Xo) duog1 + fy(Xo) dyog2 = 6du — 18 dv.
Second method:

h(U) = u?(cos v + sinv)? = u?(1 + 2sinvcos v) = u?(1 + sin 2v);
hy(U) = 2u(1 + sin2v); h,, (Ug) = 6;

hy(U) = 2u? cos 2v; hy (Ug) = —18;

duyh = hy(Up) du + hy(Up)dv = 6du — 18 dv.

(d) LetU = (u,v,w)and X = (x, y, 2).

First method:

Up = (4,7/3,7/6);

dg1(U) .
= coSvSsinw
ou
dg1(Uo) _ 1,
ou 4’
dg1(U) L
= —UuSsSImvSsinw,

ov
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0g1Uo) _ _ 1.
v ’

dg1(U)
ow

dg1(Uo) - 3
ow ’

dvo81 = %du—«/gdv +V3dw;

0g2(U)
ou
9g2(Uop) _ V3

u 4
002U) _ _ Ginveos w;
ov
9g2(Uo)
o
080) _ e w;
ow
9g2(Uo) —

ow

= U COSVCOS W,

= COSVCOS W,

S

dvo82 = T3 du —3dv — dw,

0g3(U)
ou

dg3(Uop) _ V3

ou 2
dg3(U)
ov
dg3(Uo)

v
dg3(U) —o;

ow
dg3(Uo)

ow

=sinv

= U Cos V;

2;

0;

dv,83 = ? du + 2dv;

Xo = (g1(Up). £2(Up). g3(Uo)) = (1, +/3,2+/3);
fx(X) = 2x; fx(XO) =2

fy(X) =2y; fy(Xo) =2v/3;

f2(X) =225 f:(Xo) = 4v/3;
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1
dooh = f2(Xo) duyg1+ fy(Xo) dug 82+ f2(Xo) duy 83 = 2 (Z du — /3dv + ﬁdw)+

Zﬁ(?du—hiv— dw)+4«/§(?du+2dv) = 8du.

Second method:

h(U) = u? cos? v sin® w + u? cos? v cos? w + u?sin? v = u?; hy (U) = 2u; hy(U) = 0;

hy(U) = 0; 7y (Ug) = 8; hy(Ug) = 0; hy (Ug) = 0; dh = 8du.

3. hy = fuxr + fyyr + f22r = fxcosO + fysinf;

ho = fxxg + fyye + fzz0 = fx(—rsin) + fy(rcos @) = r(—fyxsinf + f; cos 0);

hy = fxxz+ fyyze + fz = [z

4. hy = faxr + fyyr + fz2r = frxsingcosO + fysingsinf + f; cos¢;

hg = fxxg + fyye + fz26 = rsing(—fx sinf + f; cos 0);

hy = fxx¢ + fyYe + fz2¢ = (fxcos¢cosO + fy cos¢sinf — f; sing.

5.@@) hy = 2uf’; hy =2vf’; vhy —uhy = 2(vu —uv) f' = 0.

() hy = f'cosu; hy = —f'sinv; hy sinv+hy cosu = (sinvcosu—cosusinv) f/ = 0.
u u

1
© b = — [ hy = = f's uhy +vhy = (5= 2) 7' =0,
v v v v

d) hy = (fx — fy)gu; hy = (fx — fy)gv; dh = hydu + hydv = (fx — fy)(gu du +
gvdv) = (fx — fy)dg.

6. hy = gxxy + &y + guWy; hz = gxXz + &z + uWz.
v u

7.Let F(u,v) = [ f(r)dt, whichcan be rewrittenas F(u, v) = / f@)di—| f@)dt;
1o 1)

v(x)
From Theorem 3.3.11, F,, (u,v) = —f(u) and Fy, (u,v) = f(v). Leth(x) = f@)dt =

F(u(x), v(x)); fromthe chainrule, 2’ (x) = Fy(u(x), v(x))v' (x)—F, (u(x), vg)g))C))u’(x) =
F)V'(x) = fu)u’ (x).

8. Forafixed (x1, X2, ..., Xp), differentiating the identity f(txq,tx2,...,tx,) =t" f(x1, X2, ...

with respect to ¢ and using the chain rule on the left yields

n
infxi (X1, tx2, .. txp) = rt" L f (X1, X200, Xn).

i=1

Now sett = 1.

9. fx = hyrx + heby;

fy = hrry + hgby;

Jrx = herxx + hoOxx + 1x(hprx + hroty) + Ox(hg,rx + hggty);

Syy = hrryy + hoOyy + ry(hyrry + hrg6y) + 0, (horry + hogty);

fex+ fyy = hr(rxx +7y)) +hg(Oxx +0yy) +hrr (r2+12) +hog (02 +607) + 200 (Ox7x +
0,ry);

Now we evaluate the multipliers of /., hg, h,r, hgg and h,.¢ = hg , on the right.

, Xn)
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X X y Y :
ry =——==—=co0s0;r, = ——— = = =sinb;

/x2+y2 r /x2+y2 r
r§+r§ =1

1 y y sin
Oy =———(—= ) =— =_ .
1+ (y/x)? ( ) x2 +y? r

9 1 (1)_ X cos

YU+ (/x2 \x) X242
1

2 p2 _ L.

9x+9y_r—2,

Oxrx + 6,1y = 0;

sin? 0 cos? 6

Fxx = —0,sinf = ;ryy = 6y cosf =

rxx+ryy:;;

0, cos 6 N rxsin®d . 2sinf cos 6

Oxx = , 2 = 2 >
0. — Oysin rycosf  2sinfcos6
e - R '
Oxx + 0y = 0.

10. hy, = fxau + fybu§

huu = fxauu + fybuu + au(fxxau + frybu) + bu(fyxau + fyybu);

hy = fxav + fybv§

hoy = fxayy + fyboy + av(fxx@v + fryby) + by(fyxav + fyyby);

P 4 hoy = fx(@uu +avo) + fy (bun + bvo) + (@5, + @3) fox + (b7 +b7) fyy + (@uby +
avbv)(fxy + fyx)-

Since a,, = by and ay, = —by, ayby + ayby, = 0 and b2 + b2 = a2 + a2. Differentiating
a, = by and a, = —b, with respect to u and v respectively yields a,, = by, and
ayy = —byy, S0 ayy + ayy = byy — byy = 0 (Theorem 5.3.3). Differentiating a,, = b,
and a, = —b,, with respect to v and u respectively yields a,, = byy and ayy, = —byy, SO
bg:)ri-bvv = —ayy +ayy = 0 (Theorem 5.3.3). Therefore, hyy +hyy = (frx + fyy)(a2 +
az).

Wouy=f'"+g5uxx=f"+ 8" ur =—cf +cg’suy =c2f"+c2g =c2l,.

12. @) hy = fx + fy; huw = (fxx — fxy) + (fyx — fyy) = fxx — fyy (Theorem 5.3.3).
() hy = fx + fy huu = (fxx + fxy) + (fyx + fry);

hy = fx = fy hoo = (fxx — fxy) = (fyx — fry);

huy + hyy = Z(fxx + ny)
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13. From Exercise 4, h, = fx sin¢ cos 6 + f, sin¢sinf + f; cos ¢;

her = (fxxXr + fxyYr + fxzzr) singcos 0 + (fyxXr + fyyyr + fyzzr)singsin6

+(fexXr + foyyr + fzz2r)cos ¢

= fexsin? ¢ cos? O + fy, sin® ¢psin® 6 + f,, cos® ¢
+ fxy (yrsing cos @ + x, singsin0) + f,7(z, singsinf + y, cos @)
~+ fxz (Zr sing cos O + x, cos @)

=2fxy (sin? ¢ sin 6 cos 0) + 2fyz(sin ¢ cos ¢ sin B) + 2 f; (sin ¢ cos ¢ cos )

= fexsin? ¢ cos? O + fy, sin® ¢ sin® 6 + f,, cos® ¢
+ fry sin® ¢ sin 20 + fy, sin2¢sin@ + fy sin2¢ cos 6;

hrg = (—fx sinf + fy cos ) sing + (fxxxe + fxyye)sing cosf
+(fyxxo + fyyye)singsin€ + (fzxxg + fzyyg) cos ¢
= (—fysinf + fy, cos0)sing + r(fyy — frx)sin® ¢ sin 6 cos 6
+7 fry sin? ¢(cos? O — sin® 0) + r(fzy cos 6 — frx sin ) sin ¢ cos ¢

= (—fxsinf + f, cosf)sing + %(fyy — frx) sin® ¢ sin 260
+7 fry sin? ¢ cos 260 + %(fzy cos O — fzx sinf)sin2¢
14. If hy, = 0 for all (u, v), then A, is independent of v, by Theorem 2.3.12. Therefore,
hy(u,v) = Up(u) and h(u, v) = Ui (u)+ V1 (v), where U (u) = Uo(u). If fxx— fyy =0,

Exercise 12(a) and this result imply that f(u + v,u —v) = U;(u) + Vi(v). Setting
x=u-4+vandy = u —v yields

ran =t (52 +n (55,

and the stated result follows, with U(u) = U;(14/2) and V(v) = Vi(v/2).
15. False; let D be the entire xy-plane except fior the nonnegative y axis, and

0 if y <0,
fGx,y)=14y> if y>0 and x <0,
y*  if y>0 and x >0.

Then f is differentiable and fx = O on D, but f(x,y) # f(—x,y)if y > 0 and x # 0.
16. In (a) and (b),

T3(x,y) = f(0,0) + (f2(0.0)x + £;(0,0)y)
1
+5 (fex 0. 0)x2 + 2 f5y(0,0)xy + f3,(0,0)y?)

1
+6(fxxx (0,0)x> + 3 fxxy (0, 0)x%y + 3 fxyy (0, 0)xy* + Syyy O, 0)y%);
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(@ f(x,y) = e cosy; f(0,0) =1;
fx(x,y) =e*cosy; fx(0,0) =1;
fy(x,y) = —e¥siny; £,(0,0) = 0;
Jex(x,y) = e*cosy; fxx(0,0) =1
fry(x.y) = —e*siny; fxy(0,0) = 0;
Syy(x,y) = —e*cosy; f,,(0,0) = —1;
Jrxx(x,y) = e*cos y; frxx(0,0) = 1
Jrxy(x,¥) = —e*siny; frxy(0,0) = 0;
Jryy(x,y) = —e*cos y; frxyy(0,0) = —1;
Syyy(x,y) = e*siny; f55(0,0) = 0;
2oy X3 xy?

T3(x, =1 .
3(x, ) +x + 6 >

(b) f(x,y) =777 f(0,0) = 1;
Se(x,y) = =777 f5x(0,0) = —1;
fy(x,y) = =777 £3,(0,0) — 1
Srx(x,9) = 775 f3x(0,0) = 1
Say(x,y) = e f43(0,0) = 1;
Syy(x,y) =775 f5(0,0) = 1;

Srxx (X, ¥) = =¥ f132(0,0) = =15
Srxy(x,¥) = =777 frxy(0,0) = —1;
Jryy(x,y) = =775 f2yy(0,0) = —1;
Syyy(x,y) = =775 f355,(0,0) = —1;

x X
T3(x,y)=1—x—y+7+xy+y—————————.

(c)If ry +rp + r3 < 3, then

3r1+r2+r3f(x’ ¥, Z)

IXT2oxT29x™3 k(x +y +z—3)>7HHrrs,

where k is a constant. Since the right side is zero if (x, y,z) = (1,1, 1), T3(x, y,z) = 0.

(d) All partial derivatives of f through the third order equal zero at (0,0, 0) except for
Jxyz(0,0,0) = cos x cos y cos z, which equals one at (0, 0, 0). Therefore,

1 3!
T3(x,y,z) = imfxﬂ(o’ 0,0)xyz = xyz.

17. Let Xo = (X10, X20, - - - » Xno). From Eqn. (23), the left side of Eqn. (35) can be written
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as

i kX R f(Xo)
Bxikf)xik_l ---3)6[1 Bxikf)xik_l ---3)6[1

01,0200l =1

X (Xiy — Xi10)(Xiy — Xi0) *** (Xig — Xiz0)

From Eqn. (32), each term in this sum is less in magnitude than €|X — X, |¥, and there are
n* terms. This yields Eqn. (35).

18. Theorem 5.4.9 with n = 1 requires that f®) be continuous at xo. Theorem 2.5.1
requires only that f %) (x) exist.

19. By Theorem 5.2.13, p assumes a minimum value p > 0 on {Y | Y| = 1}. IfX # 0,
then p(X/|X]) > p, and the homogeneity implies that p(X) > p|X|", which also obviously
holds if x = 0. This implies Eqn. (41), since d)((]:)) f is homogeneous of degree k.

Suppose that d,g(]f ) [ is negative definite. By an argument similar to the solution of Exer-
cise 19, it can be shown that there is a p > 0 such that

(k)
(dx,” f)(X —Xo)
e < —pX X f ()
for all X. Since

FX) = f(Xo) — (@)X ~ Xo)

li =0,
o X — Xo|¥
there is a § > 0 such that
L@
FX) = fXo) = 5@ NHX-X0)
X X G <§ if | X—Xp| <3é. (A)
— Xo

Therefore,
L ® p ko
SX) = fXo) < F(dxo )X —Xo) + §|X— Xo|® if X —Xo| <.
This and (A) imply that
FX) = f(Xo) < ~EX X0l if [X—Xo| <8,

which implies that X is a local maximum point of f.
21, p(x,y) = x2=2xy+y2+x*+y%; px(x,y) = 2x=2y+4x3; p,(x,y) = —2x+2y+
4y3. Since px(0,0) = py,(0,0) = 0, (0, 0) is a critical point of p. pyx(x,y) = 2+ 12x2;

Pay(x.¥) = =2 pyy(x. ) = 24 12y% (d oy p)(x. y) = 2x2 —dxy +2y% = 2(x—y)?
is positive semidefinite.
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q(x,y) = x2=2xy+y2—x*—y* gx(x,y) = 2x—2y—4x3 g, (x,y) = —2x+2y—4y3.
Since ¢x(0,0) = ¢,(0,0) = 0, (0,0) is a critical point of g. gxx(x,y) = 2 — 12x2;
ey (X.9) = =21 qyy (x.y) = 2—12y% (d{3y) @) (x. y) = 2x2 —4xy +2y% = 2(x — y)?
is positive semidefinite.

(b) D, = pxx(0,0)pxy, (0, O)—pfcy(O, 0) =2-2—22 =0and D; = gxx(0,0)gxy(0,0)—
q2,(0,0)=2-2-2>=0.

(©) p(x,y) = (x — y)? + x* + y* > 0 for all (x, y). Since p(0,0) = 0, (0, 0) is a local
minimum point of p.

g(x,y) = (x — )% — x* — y4, s0 q(x,x) = —2x* < 0if x # 0. Also, ¢(x,0) =
x2(1 —x?) > 0if 0 < x < 1. Since ¢(0,0) = 0, (0, 0) is not a local extreme point of ¢.



CHAPTER 6

VECTOR-VALUED
FUNCTIONS OF SEVERAL
VARIABLES

6.4 LINEAR TRANSFORMATIONS AND MATRICES

1. Recall that (A) L(U + V) and (B) L(aU) = aL(U) if U and V are vectors and «a is a
scalar. From (A) with U = a1 X; and v = a» X5, L(a;1 X1 +a2X5) = L(a1X1)+L(a2X>),
so (B) implies that L(a1X; + a2X3) = a;L(X;) + a2 L(X3). This proves the proposition
with k = 2. Now suppose that k > 2 and the proposition is true with k replaced by k — 1.
Then (A) withU = a1 X1 + -+ + a1 Xk—1 and V = ai Xy yields

L@ X1 + -+ ap—1 X1 + axXg) = L((@1X1 + - + a1 Xg—1) + apXg)
=L@ X1 + -+ axg—1Xg—1) + L(agXg)
= (a1L(X1) + -+ + a1 L(Xg—1)) + axL(Xk)

by the induction assumption and (B). This completes the induction.

141
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ain(x1 + y1) +anp(x2 + y2) + -+ awm(xn + yn)
az1(x1 + y1) +azn(x2 + y2) + -+ azn (X + yn)

LX+Y) =
L ami (X1 + Y1) + ama(x2 + y2) + -+ + amn (Xn + Yn)

ainxi +anxz+ -+ ammxny ainnyir +anyz+ -+ anyn
az1X1 + anxz + -+ azp Xy az1y1 +axnyz+ -+ amyn
+ .

| am1X1 + amaX2 + -+ AmaXn Am1y1 +am2y2 + -+ AmnYn
= L(X) + L(Y).

ayi(axy) +app(axz) +---+ an(axy)
azi(axy) + axlaxy) + -+ azp(axy)

L@X) =
ami(axy) + ama(axz) + - + amn(axy)

ailxy +apxz + -+ ainxy

az1X1 + A22X2 + -+ + dapXp
= aL(X).

Il
Q

Am1X1 + AmaXa + -+ AmnXn

7.(A+B)+C=[(a;j +bij) +cij] =[aij+ (bij +cij)| =A+ B+ C).

8. (a) r(sA) = r[sa;;] = [r(sa;;j)] = [(rs)a;;] = (rs)A.

b) (r + )A = [(r + s)a;;] = [ra;; + sa;;] =rA+sA

©r(A+B)= r[aij + b[j] = [r(a,'j + bl/)] = [ra,'j + rbij] =rA+rB.

9. Let D = [d;;] = AB and F = [f;;] = BC. Wemust show that DC = AF. By

p
definition, d;; = Zai,b,k (1 <i<m1 <k <gq),and the (i, j)th entry of DC is

r=1

q q p
Zdikck_,- = Z (Z ai,b,k) ckj (1 =i <m,1 < j < n). Changing the order of
k=1

k=1 \r=1

P q p
summation shows that the sum on the right equals Z dir Z b,kckj = Z a;r frj, which
r=1 k=1 r=1
is the (i, j)th entry of AF. Therefore, DC = AF.
10. If A + B is defined, then A and B have the same number m of rows and the same
number 7 of columns. If AB is defined, then the number n of columns of A must equal the
number m of rows of B. Therefore, A and B are square matrices of the same order.
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11. (a) From the definition of matrrix multiplication,

ail a2 -+ dip X1 apXxi +apXxz + -+ ainXxa
a1 azr -+ dAzp X2 a1 X1 + azxz + -+ danXxy
Amli Am2 - Amn Xn Am1X1 + GmaX2 + -+ QmnXn

() (c1Ly + 2L2)(X) = c1L1(X) + 2L (X) = c1A1X 4 c2A2X = (c1A1 4+ c2A2)X.

(C) L3(X) = Lz(Ll(X)) = Az(Ll(X)) = Az(A1X) = (AzAl)X from Exercise 9.
m n 2 m n

16. If Y = AX, then [Y2 =D [ Y aix; | <D [ D a? || IX? by Schwarz’s
i=1 \j=1 i=1 \j=1

inequality. Therefore, |Y|? < mnA?|X|?,s0 ||A|| < A/mn.

17. If ||A|| = 0, then AX = 0 for every X, which implies that A = 0.

18. |(A + B)X| < |AX] + [BX]| = (|A]l + [B[)|X]; hence, |A + B < [A[| + [|B]|.

19. |(AB)X| = [ABX)| < [[A[[BX] < [[A[|(|B]||X]): hence, |[AB]| < [|A[/||B].

1 1 2
20. (a) The matrix of the systemis A = | 2 —1 1 |; det(A) = 6. By Cramer’s
1 -2 -3
B N B b2 g
rule, x = - | =1 -1 l|=—=2y=-|2 -1 1| =— =3,z =
6l 2 2 _3 6 61 - 6
1 1 1
1 12
-12 -1 -1 [=——==2
6l 1 2 2 6
1 1 -1 s 1 -l
MMA=]| 3 =2 2 [;det(4d) =5 ByCramer’'srule, x = -| 0 -2 2| =
4 2 -3 e 2 -3
1 5 -1 1 1 5
10 1 15 1 0
—=2%y=={3 0 2|=—=3z==-|3 =2 0|==-=0.
5 >4 14 =3 5 N I O VB
1 2 3
@©A=|1 0 —1 [;det(4) =—2. By Cramer’s rule,
11 2
-5 2 3 4 (-5 3 0
x=—2|-1 0 -1|=-—2=-2y=—2|1 -1 -1|=-—2-=02z-=
—4 1 2 2 211 —4 2 2
1 2 =5
— |1 0 -1 |=—-—==-1
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1 -1 1
2 1 -3
@A = 3 2 0
2 1 -1
1 -1
__L 4 1
YT T 130 2
4 1
1
20_ . _ 1|2
20 ST 7203
2
40
9
20
21.(a)det(A)=‘ ;
1 2
(b) detA = | 1 0
1 1
1 0
1 2
—‘1 1‘=1;C31=
—1
1
—2:A 1 ="_ 3
2| ] _
4 2
(©) detA = | 3 —1
0 1
3 -1
4 2
e
4
—10; A7 = — 6
> 3
1 0 1
detA=[0 1 1
1 1 0
0 1
—1; 31 = ‘ 01

-2

1
=3
0
—1

; det(4) = —20. By Cramer’s rule,

-2

3
1
0

—

1 1 1 -2
BT E R S
T " 7Y 2003 13 0 1
2 4 -1 0
1 -1 1 1
3|_60_, 12 13 4
1 | 20 W= 20| 3 2 0 13
0 2 1 -1 4
T4 37 ., 1T 42
-2 A fewls ]
o -1 R
23 1 3
1 3 1 2
‘ —2,C32——‘1 _1 ‘—4,633 ‘1 O‘
-1 2| _ 32
11 = 1 2 - ; Cl12 = 0 2
2 1 4 1
4 1 4 2
1 1 0 1
1 O‘——l;ﬁz:—‘l O‘=1;613
1 1 1 0
1 1 ) o
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21;

(e) detA

—1

-2 3 0

=14;c13 =

3

2

C12

—1

0 0

=T7,¢c03=—|0 0 3 |=0;

3

0

—14; ¢

3

0;c21 = —

S S M,
Il
on
o e o
O1_A e o <)
on O
a o ae
_ [
| Il Il
-
N 3
I S 4
g &z
- I 9
(e
I o |
|
S on
e on O
on O
CT —ao
| 7_.0
on O |
|
I I I
- )
= & -
Q <
ce < < SO N A
S = S |
I I Il c o N —
21_A [N\ 037_~100
on O [eRN g\l
o O on AN OO
oA O N L
o o | |
— I~
I I I |
N P g _
Q Q Q A

(f)detA

—1

2 2

—21;6‘14

4 2

=| -1

14;c13

—22; Co4

2

2;¢20

—10;6‘33: 2 2 3

3

2 —1

—24; c31

=—|2 2 —1 |[=10;¢c41 =—

10; ¢34
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1 1 -1 11 | —_1411

—20;ca3=—| 2 2 3 |=25cu=| 2 2 —1|=25A"1=_—
10 21
-1 4 2 -1 4 1 17

-2
—18
22
24

22. Eqn. (10) and the continuity of {a;;} imply that the entries of A~!, and therefore of

B, are continuous on K. If the conclusion were false, there would be integers r and s

in{l,2,...,m},an ¢y > 0, and sequences {X;} and {Y;} in K such that (A) lim |X; —
j—00

Y;| =0,but(B)|b,5(X;,Y;)| > €0, j > 1. By the compactness of K and Exercise 5.1.32
there is a subsequence {X, } of {X;} which converges to a limit X in K, and (A) implies
that {Y, } does also. Therefore, lim (X;,,Y;,) = (X,X) in R?>™. This implies that

klim brs(Xj, . Yj,) = bys(X,X) = 0 (Theorem 4.2.6), which contradicts (B).
—00

6.2 CONTINUITY AND DIFFERENTIABILITY OF TRANSFORMATIONS

1. If

1 /:(X) — £ (Xo)| < %,lfi <m, if[X—Xo| < §and X € D,

then

m 1/2
IF(X) — F(Xo)| = (Z(ﬁ X) — ﬁ(Xo))2> < €if|[X —Xo| < §and X € D,.
i=1

Conversely, if this is true, then

| iX)— fiXo)| <e,1<i<m, if|X—Xp| <dand X € Dy.

n F&X) —FXo) ~FXo)X —Xo) _

=0:
X—X0 |X— X0|
2. (a)
3x +4y 3x0 + 4y0
F(X) — F(Xo) — F/(Xo)(X — Xo) = 2x — y — 2)(?0 — Yo
xX+y Xo + Yo
3 4 X — Xo 0
-1 2 -1 y—yo | =10
1 1 Z—2Z0 0
2x2 4+ xy +1 2 dx+y x
b) FX) = Xy ; FXp) = -1 ) FX) = y X

x2+y? 2 2x 2y

10
-10
-10

20
=25
=25
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3 1
FXo)=| -1 1 [
2 =2
x-DC2x+y-—-1
F(X) — F(Xo) — F'(Xo)(X — Xo) = (x—Dy+1) : (A)
(x=1>+ @ +1)7
Since |(x — 1)(y + 1)| < |X — Xp|? and
| = D@x +y = DI < [X=Xo[|2(x = D + (v + D] = V35X = Xo/%,
(Schwarz’s inequality), (A) implies that
F(X) — F(Xo) — F'(Xo)(X — Xo)| = V71X~ X,

which implies the conclusion.

sin(x + y) %
(©FX) = | sin(y +z) |:FXo) = % :
sin(x + z) 1
cos(x +y) cos(x + y) 0 1 10
F'(X) = 0 cos(y +z) cos(y+z2) (FXo)=—1| 0 1 1 |;
cos(x + 2) 0 cos(x + 2) ‘/— 0 0 0
sin(x + y) — NG ( —)
FX) —FXo) —F X)X —Xp) = . (A)
0 0 0 31n(y+2)—ﬁ—ﬁ( )
sin(x +z —1)

From Taylor’s theorem,

sinu—%(n—%)

sin(x+y)—%—%(x+y—%)‘f [(x—%)+y]2§|X—Xo|2 (B)

and

sin(y+z)—i—i(y+z—z)‘ < %[y+(z—%)]2§ X-Xo/*>. (©)

V2 V2 4

1 2
From Taylor’s theorem, |sinu — 1| < 3 (u — %) , SO

|sin(x+z)—l|5%[(x—%)+(z—%)]2§|X—Xo|2. D)
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Now (A), (B), (C), and (D) imply that
[F(X) — F(Xo) — F'(Xo)(X — Xo)| < v3]X—Xo|?,

which implies the conclusion.

3. Since F = (f1, f2,..., fm) is continuous at Xo, f1, f2, ..., fm are continuous at Xg
(Definition 5.2.9). Since & is also continuous at Xo, i f1, ifs, ..., hfa are continuous at
Xo (Theorem 5.2.8). Therefore, hF = (hf1,hfs, ..., hfm) is continuous at X¢ (Defini-
tion 5.2.9).

4. 1etF = (f1, f2,-.., fm) and G = (g1, g2, ..., &m)- Since F and G are continuous at
Xo, f1» f2»-++» fm and g1, g2, ..., gm are continuous at Xy (Definition 5.2.9). Therefore,
fi+g1, f2+82,..., g1 + g2 are continuous at Xo (Theorem 5.2.8). Therefore, F + G =
(fi +g1, 2+ &2, fm + gm) is continuous at X (Definition 5.2.9).

5. H = (hy,ha, ..., hy) where h;(U) = fi(g1(U), g2(U),...,g,(U)), 1 <i < m.
From Theorem 5.2.11, h; is continuous at Ug. Therefore, H is continuous at Uy (Defini-
tion 5.2.9).

6. fF = (f1, f2,..., fm) then f1, f>, ..., fm are continuous on S (Definition 5.2.9).
Hence, h = f2 + f# +--- + f2 is continuous on S (Theorem 5.2.8), so [F| = v/ is
continuous on S (Theorem 5.2.11).

7. Since |F| is continuous on S (Exercise 6), Theorem 5.2.13 implies the conclusion.

8. IFL(X) = AX, then |L(X) — L(Xo)| = JA(X — Xo)| < |A]||X — Xo.

9. (a) Since L is continuous on R” (Exercise 8), there are vectors Yy and Y; in S such
that |AYo| < |AY| < |AY;|, Y € S (Exercise 7); thatis, |[AYo| = min {|AY| | Y| = 1} and

X AX
|AY:| = max {|AY|||Y| = 1}. IfX # Othen Y = X € S, 50|AYo| = min { % X # 0}
AX
and |AY;| = max { % |X # 0}. This implies the conclusion, with m(A4) = |AY| and

M(4) = |AY,].

(b) From (a), |AX| < M(A)|X]| for all X; therefore, (A) |A| < M(A). Now suppose that
€ > 0. Since L is continuous on R”, there is a § > 0 such that [AY| > M(A) —€ifYe S
and |[Y — Y| < 8. Therefore, M(A) — € < ||A|. Letting € — 0+ yields M(A) < ||A]l.
This and (A) imply that M(A) = ||A]|.

(¢) If n > m or A is singular the system AX = 0 has a nontrivial solution, which we may
assume without loss of generality to be in S. Therefore, m(A) = 0.

(d) Applying (a) to A~! shows that there is U; € S such that [A71U;| = M(A™Y).
~1
U; Uy | 1
—— € S, mA) < |AV,| = = . Therefore, (A
M@ €S W = IAVil = AT = aranry Therefore, (A)
m(A)M(A™') < 1. From (a), there is a U, € S such that |AU,| = m(A). Since V, =

U U 1
2 e S, MA) > U2l _ 1 herefore, m(A)M(A~') > 1. This and (A)

m(A) m@A)  mA)’
imply that m(A)M(A™!) = 1. Applying this result to A~! yields m(A~')M(A) = 1.

10. Let F = (f1, f2,..., fm) and € > 0. Since f1, f2, ..., fm are uniformly continuous

Since V; =
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on S, there is a § > 0 such that

Iﬁ(X)—fi(Y)lfim, l<i<m if [Y—X| <6 and X,YeS.

Then [F(X) —F(Y)| <€if  X—Y| <dand X,Y € S.

11. Must show that if @ is an arbitrary real number, then (A) F(aX) = aF(X). First
consider ¢ = 0: F(0X) = F(0) = F(0 + 0) = F(0) + F(0) = 2F(0) = 2F(0X); hence,
F(0X) = 2F(0X), which implies (A) if @ = 0. Since F[(n + D)X] = F(rX) + F(X),
induction yields (A) if a is a nonnegative integer. If n is a negative integer, then

0 = F(0X) = F(nX + |n|X) = F(nX) + F(jn|X)
=FnX) + [n|FX) = FnX) — nF(X);

hence, (A) holds if a is any integer. If @ = m/n, then

F(3X)=mF (%) = F [n (%)} = ZF(X);

hence, (A) holds if a is rational. If a is any real and r is rational, then |F(aX) — aF(X)| <
|F(@X) —F(rX)| + |r — a||[F(X)|. Let  — a and use the continuity of F to complete the
proof.

15. Let G;(X) = A; + B;(X — Xo) (i = 1,2), and X = X, + U, with |U| = 1. Then

i (A1 —Az) +1(B; —By)U
t1—r>I(1) t -

Oa

which implies that A; = A, and (B;y — B2)U = 0 for every U. The latter implies that
B; = B,.

16. If F is differentiable at X then
F(X) —F(Xo) = F'(Xo)(X — Xo) + |X — X0 |[E(X),

where lim E(X) = 0. Choose §; such that |[E(X)| < 1if |X—Xj| < 6; and X € D;. Then

X—>X0
[FX) — FXo)| < (JFFXo)|| + 1)|X — Xp| if | X — X| < §1. Therefore, F is continuous
at Xo

17. If F is differentiable at X then
F(X) - F(Xo) = F'(Xo)(X = Xo) + [X = Xo|[E(X), X € Dy,

where lim E(X) = 0. If € > 0 choose § so that X € Dy and |[E(X)| < € if | X — Xp| < 6.

X—>X0

Then
[F(X) — F(Xo)| < (|F' Xo)|| + €)X —Xo| if [X—Xo| <3.
18. If F is differentiable at X then

F(X) - F(Xo) = F'(Xo)(X —Xo) + |X —Xo|E(X), X € Dy, (A)
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where lim E(X) = 0. Since
X—>X0

X — Xo| = |[F'(X0)] 'F'(Xo)(X — Xp)| < %|F/(Xo)(X —Xo)l,

[F'Xo)(X — Xp)| > r|X—Xp|. If 0 < € < r choose § so that X € Dy and |[E(X)| < € if
|X — Xp| < §. Now (A) implies that

FX) —FXo)| = (r — €)X —Xo| if [X—Xo| <.

19. X~ Y| = [ATH(LX) - L(Y))| = [ATM|[LX) - L(Y)].

—wsinusinvy WCcoSUCOSV COSU Sin v -2 0 0
20.(a)G'(U) = wcosusinv wsinucosv sinusinv |; G'(Up) = 0 01
0 —wsinv cos v 0 -2 0
2x 2y 0 0
FX)=| _ 2xz _ 2yz 1 Xo=GUy) = | 2 |;
(x2 + y2)2 (X2 4 y2)2  x2 4 2 0
0 4 0
/ _ .
-2 0 0
HU) =FnG U= o o V]| 0 o1 =[0 ) (]
4 0 -2 0 2
Check:
w2 sinZ v 0 2w?sinvcosv 2wsin?v
HU) = |: cos v ]; H((U) = 0 1 4+ cos?v cos v ; H(Up) =
w sin” v w sin® v w2 sin? v
[ 0 0 4 ]
1 .
0 —3 0
: 2x =2y
s | —vusinu cosu | _ L =3 1 ey )
(b)G(U)_[ vecosu sinu i|’G(UO)_ 2[ 31 i|’F(X)_ |: - l j|7
x2  x
371 = 5
X0=G(U0)=—[ }F'(Xo):[ VA ];
vall -3 3
6 6
1 - T 5 -3 1 —-18 0
’ _ W ’ _ V2 V2 _
3 3
Check:
v? cos 2u , —2v2sin2u  2vcos2u , —18 0
H(U)_[ tan u i|’H(U)_|: sec?u 0 ]’H(UO)_ 2 0|
1 -1 3 4 2
©GU =] 1 I 1 FX) = 4 -2 1 |;
1 =2 -1 1 1
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3 4 2 1 -1 9 -3
H' (U) = FX)G'(U) = 4 -2 1 1 1 |=| 3 -8
-1 1 1 1 =2 1 0
Check:
u—-3v+6 9 -3
HU) =| 3u—-8 -1 |HU)=| 3 -8
u—2 1 0
2 -1 1 _
@GO = [ 2ue’ v e’V :|; G'(Uo) = [ ; —é (1) i|;

Foo=| |

H'(Uo) = F'(Xo)G'(Up) = [
Check:

2u— u?—v? 4 -3 1
mw=[ ””+w+ezz}Hnm=[0 X 1]

1 -1

—_
—_
| I |
| — |
NN
[
N =
O =
| I |
Il
| — |
S &
|
—_
—_——
| I |

2Qu—v+w-—e¥ v

, _ | ecosv —e¥sinv | I T U | 2x 2y |,
OGO =] L }ﬁww{OI}Fm—[h_b}

e SInv € COoSv
2
H' (Up) = F(X0)G'(Up) = [ 5

2
2
10_20
o 1] |2 0YF
Check:

H(U) . eZu ) H/(U) _ 2€2u 0 )
| e*cos2v |’ | 2e*cos2v —2e%sin2v |’

&:waz[ }Fm@—[
0
0

, 20
H(U())_I:2 o |
1 2
m@@=[1 Z}Gwmz[lz}mm= 12y s
2 —2v 2 4
2x 1
3 1 2
X0=G(Uo)=[ :|;F'(Xo)= 140
-2
-6 1
1 2 1 2 5 10
H (Up) = F'(X0)G' (Up) = 1 4 [2 4:|: 9 18
-6 1 -4 -8
Check:
5u +2v —2v?
HU) = | —4u®> +4uv?> +u—v*+2v |;

u? + 4uv + 2u + 3v?
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5 2— 4y 5 10
HU) =| -8u+4v2+1 8Suv—4v3+2 [;H Uy = 9 18
2u+4v + 2 4u + 6v —4 -8

21. From Theorem 6.2.8, H' (U) = F'(G(U))G’ (U). Since the determinant of a product of
two matrices is the product of their determinants,

a(hltha*‘*ahn) _ a(fla va”"fn) a(glngv”"gn)

Oy, Ua, ... Up)  O(X1, X2, ..., Xp) O(Uy, Uz, ... Up)
where 0(g1, 82, -+, &n) and 01, a2, ... Itn) are evalutaed at U and —3(f1,f2,...,fn)
Uy, Uz, ..., Uuy) Uy, Uz, ..., Uy) (X1, X2, ..., Xn)

is evaluated at G(U).

22.1fF = (f1, f2, ..., fm) then F is continuous at X if and only if fi, f5, ..., fi, areall
continuous at Xo. Now apply Exercise 5.2.15.

23. F(S) is bounded by Exercise 7. Hence, we need only show that F(S) is closed. If Y is
a limit point of F(S), there is a sequence {Yj} in F(S) such that lim; .., Yz = Y, and a
sequence {Xy} in S such that F(Xj) = Y. Since S is compact, {Xy} has a subsequence
Xk, } which converges to a point X in S. From the continuity of F, F(X) = Y. Therefore,
Y € F(S). Since F(S) contains all its limit points, F(S) is closed.

6.3 THE INVERSE FUNCTION THEOREM

1. If F(G1(U)) = F(G2(U)) =Y forall Uin R(F), then G;(U) = G (U) for all such
U, since F is one-to-one.

2. Suppose that L is invertible and AXy = 0. Since L(0) = A0 = 0 and L is one-to-one,
Xp = 0. Therefore, A is nonsingular, by Theorem 6.1.15.

Conversely, suppose that A is nonsingular and L(X;) = L(X3). Then AX; = AXj, so
A(X; —X3) = 0 and X; — X3 = 0, by Theorem 6.1.15. Therefore, X; = X3, so L is
invertible.

If A is nonsingular and U € R” then L(A~'U) = U. This shows that L(R") = R".

i By Theore_m 6.1.7, there is a nonzero Vector_Xo such that A)_(o = 0. If S is open and
X e §, then X + tXy € S for small ¢; since A(X + tXp) = A(X), L is not one-to-one on
S.

6. (a) Suppose thata < x; < xa < b and f(x1) = f(x2) = L. If f is nonconstant on
[x1, Xx2], f must attain at least one of its extreme values on [x7, x»] at a point xg in (x1, X2).
Suppose that f(x9) = M is alocal maximum of f. We will show that f cannot be one-to-
one on any neighborhood of xg. If § > 0 and any two of f(xo — &), f(xo + 8), and f(x¢)
are equal, then f is not one-to-one on [xo — §, xo + §]. If they are all different, suppose
that (for example) that f(xo + 8) < f(xo —8) < f(x0). Then applying the intermediate
value theorem (Theorem 2.2.10) to [xo, xo + 6] implies that f(x) = f(xo — §) for some X
in this interval; thus f is not one-to-one on [xg — §, xo + §].

7. Since ax + by = /aZ + b2,/x% + y2 cos 6, where 0 is the angle between the vectors
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(a,b) and (x, y), (x,y) # (0,0) isin S if and only if (x, y) has an argument satisfying

¢—n/2 <arg(x,y) <¢ +1/2,

where ¢ = arg(a, b). Since F doubles arguments (see Example 6.3.4),
F(S) = {(u, v) | 2¢ —m < arg(u,v) < 2¢ + 71},

and Fgl is given by Eqn. (36), with 2¢p — 7 < arg(u,v) < 2¢ + m. Similarly, (x, y) #
(0,0) is in S if and only if x, y has an argument satisfying the inequalities

¢+ /2 < arg(x,y) < ¢ + 37/2,
and

F(S)) = {(u, v) | 2¢ + < arg(u,v) < 2¢ + 371} .

Clearly F(S1) = F(S), and Fgll is given by Eqn. (36), with2¢+ 7 < arg(u,v) < 2¢+3m.
Since the values of arg(u, v) used in Fgl and Fgll differ by 27 and the inverse mappings
halve arguments, Fgl = —Fgll.
8. If F(x1,u1) = F(x2,uz), then e™ = [F(x1,u1)| = [F(x2,u2)| = €*2,50 x1 = xa.
Hence, sinu; = sinu, and cosu; = cos u;, which implies that sin(u; — u;) = cos(u; —
uz) = 0; hence, u; — up = 2km (k = integer). Because of the assumption on S, k = 0;
that is, u1 = us.
9. Since S is compact, Exercise 5.1.32 implies that a subsequence {Fg1 (U ; )} converges to
a limit Xg in S. From the construction of the sequence, Xo # Fgl (ﬁ); however, F(Xy) =
U because lim; 00 Ukj = U and F is continuous at Xp. Since F (Fgl (ﬁ)) =U also, this
contradicts the assumption that F is one-to one on S.

molv]-[ 5000
R I I i B | K b

11 27
=y

u -1 1 2 X
| v | = 3 1 —4 y |;
-1 -1 2 Z
X -1 1 27'Tu 12
y | =Flu,v,w) = 3 1 —4 v [==] 1 0 -1 v
z 1 -1 2 201
1 u—+2v+ 3w
— U—w ;
2 u—+v+2w

12 3
Fly==|10 -1
2111 2
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9o
11. If F = (f1, f2,..., fu) and Fgl = (g1,.-.,8n), then ai(U) can be written as the
Uj
afy

quotient of determinants with entries of the form I (Fg1 (U)). Repeated use of the chain
Xs

rule gives the result.

2
-1 415)
1/x 1/x i|

1
F’(xy)—Z[i §:|1fxy7é0then(F(xy))1=Z|:1/y —1/y

0 AT T4 ) o

u

v
1 </ 1 .

four branches of F~1 are Gi(u,v) = E H i|, Gy(u,v) = 7 L:l-’__z i|,

S:S(u, V) = % [ _H :|, Gy(u,v) = % [ :H i|, with differential matri-
Giv) = [ UVIEED UNEE O e,y o)

W ARIN S N =l
G L[ =1/ utv —1/Vu+v
2000 = 2 i _1/m}

1 /Vu+v 1/Vu+v | o _
ﬁ —1/\/1/[—1) 1/\/1/[—1) ] —(F(x(u,v),y(u,v))) 1,

, 1 —-1/Ju+v —-1/Ju+v , 1
G4(”vv):ﬁ_ —1/Ju—v l/m}:(F(x(”vv)vY(”vv)))

13. (a) To see that F is one-to-one on S suppose that X; = (x11, X21,...,Xp1) and X5 =
(X12,X22,...,xp2) are in S and F(X;) = F(X3). Then, since A is invertible, xiz2 = xizl,
or, equivalently, (A) (x;2 —x;1)(xi2+xi1) = 0,1 <i < n. Since e;x;; > 0ande;xjp > 0,
Xi1 + Xxi2 # 0. Therefore, (A) implies that x;; = x;2, so X; = Xo.

= (F'(x(u,v), y(u,0) 7,

Gi(u,v) =

Now we note that

ailxi ajpXy - A1nXn
F/(X) az1Xxi azzXy - ao2pnXn
Ap1X1 Aaup2X2 -+ AppXnp

is nonsingular on S, since the determinant of this matrix is x1x5 - - - X, det(A4) # 0.

(b)Let A~ = [bi;]. Since
X

= BU,

B SN

2
Xn

R(F) = {U| Z?=1 bijju; >0, 1<i < n}, and X = FEI(U) is defined by (A) x; =
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-1

ailxi ajpXy - A1nXn

. oy 1| @ax1 ax;xa e danXn
sy = ooy =5 | T

ap1 X1 Aap2X2 -+ AppXn

with x1, X2, ..., X, asin (A).

155

14. (a) Sine the origin is not in S, Eqn. (35) implies that we cannot have O, (x, y) =

0y (x,y) = 0 forany (x,y)in S.

(b) Since a > 0 (because the originis not in S'), the possible arguments of any two points on
the line segment can differ only by multiples of 27z. Since 6 is continuous on the segment,

6 must be constant.

(c¢) Suppose that A C S. Since A is compact and 6 is continuous on A4, 6 assumes a

maximum on A. From (b), 6 must assume this maximum in A%, which contradicts (a).

(d) Every deleted neighborhood of (0, 0) contains a subset like A in (c).

16. Since au + bv = /a2 + b2+/u? + v2 cos ¢ where is the angle between the vectors
(a,b) and (u,v), (4, v) # (0,0) isin T if and only if (u, v) has an argument that satisfies

B —m/2 < arg(u,v) < B + m/2. Therefore, from Example 6.3.8,

[ ) ] =G, v) = W? +v?)"* cos[; arg(u. v)]
¢ ’ sin(arg(u, v)/2) |’

where B — /2 < arg(u,v) < B + 7/2. From the argument in Example 6.3.8,

dx  dy X

1 _
Be = e = ATy a0 v cosare (e, v)/2)
and 5 5 !
X _ .
B = i = 2y~ 2 G )/,

To obtain these formulas directly, we note that

u v .
W2 + v2)1/2 = cos(arg(u,v)) and m = sin(arg(u, v)),
while
darg(u, v) v darg(u, v) u
= - and =
ou u? + 02 o w2 + v2

(from (35) with (x, y) replaced by (u, v)).

(A)

(®)
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Since x = (u? + v?)/* cos(arg(u, v)/2),

0
a—i = m cos(arg(u, v)/2) — w? + v*)V*sin(arg(u, v)/2) (

1 u
C 22 + )4 ((u2 + v2)1/2

v
2 + vz))

s S, 0)/2))

v

cos(arg(u,v)/2) +

1
RNV (cos(arg(u, v)) cos(arg(u, v)/2) + sin(arg(u, v)) sin(arg(u, v)/2))

T 22 02
1
= 2z 5 prys O v)/2),
and
d
B = 207y Cos@e e 0)/2) = @ 0 sinGarg(u,v)/2) (ﬁ)

1 v u .
= 262 LoD ((u2 Y cos(arg(u, v)/2) — m sin(arg(u, v)/Z))

= m (sin(arg(u, v)) cos(arg(u, v)/2) — cos(arg(u, v)) sin(arg(u, v)/2))

1

= m sin(arg(u, v)/2).

Since y = (u? 4+ v?)/*sin(arg(u, v)/2),

ay . v
Tn = 2ar oy Snlare(. v)/2) + (4 %) cos(arg (4, v)/2) (‘ﬁ)
1 u . v
- 2wz 3 02 ((u2 T 02)i2 sin(arg(u, v)/2) — EERENTE cos(arg(u, v)/Z))
1
= Jo 3 o7y (cos(are(e.v)) sin(arg(,v)/2) = sin(arg (u. v)) cos(arg (. v)/2)
1
= —m sin(arg(u, v)/2),
and
y___ v sin(arg(u, v)/2) + W?* + v?)"* cos(arg (u, v)/2) (L)
2(u? + v2)3/4 g, gt 2(u? +v?)
1 v . u
= YO ((u2 T 02)i2 sin(arg(u, v)/2) + 7(”2 FNTE cos(arg(u, v)/Z))

1
= m (sin(arg(u, v)) sin(arg(u, v)/2) + cos(arg(u, v)) cos(arg(u, v)/2))
1

= m cos(arg(u, v)/2).
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17. Fgl is regular on F(S), by Theorem 6.3.3. If Fgl(u, v) = (x(u,v), y(u,v)), then

-1
Xu Xy | _ | ux uy _ 1 Uy  —Uy
Uy Uy Ux Uy UxVy — UxUy —Ux ux |’

which yields the conclusion.

A(x1, X2, . . .,
18. Since G(F(X)) = X, G/(F(X))F' (X) = I (Theorem 6.2.8). Since det(G') = 2CL¥2:22n)
; o(ur, uz, ..., up)

det(F") = M, and det(I) = 1, Theorem 6.1.9 implies the conclusion,

; 0(x1, X2, ..., Xn) ;
with Yy iz, -, Un) evaluated at X and I, X2, - Xn) evaluated at U = F(X) or,

(X1, X2, ..., Xn a(uy, Uz, ..., Uy

a ) PRI a 5 ey

equivalently, with M evaluated at U and M evaluated at

a(uy, Uz, ..., Uy (X1, X2,...,Xp
X = G(U).

19. If F(X) = (xf,xg, .. .,x,f) then

x2 0 0--- 0

0 x2 0 - 0
JF =3 . . .
0 o0 0 - x2
so JF(0) = 0. However, since the function y = x3 is one-to-one on (—00, 00), F is

one-to-one on R”.

More generally, let F = (f1, f2,..., fu) where fi1, fa, ... fu are all strictly monotonic
differentiable functions on (—oo, 00) and f{, f;, ..., f, have one or more common zeros.
20. In all cases, A(U) = G(Up) + G'(Uo)(U — Up) = Xp + (F'(Xo)) "1 (U — Up).

e | 4x3yS —4 5xtyt ] [ -8 57
(a)F(X)—[ 3x2)2  2x3y—3 ; F'(Xo) = 3 _5 |

1 —
wor =5 | 5 3 [o=roo=| 7

17 1[5 5 [u+5
so=| 1 ]-s[38][0]

i | 26y +y xP+x ] e[ 32
1 -
Eo = 3 3 Ju=ren =[5

wo-[1]4[ 4 3]03]

4xy +3x2 2x% 1 00
©FX) = 3x2 z y [(FXo=]|0 1 1 |;
1 11 11
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0 -1 1 1
FX) =] -1 1 0 ;U=FXo)=| 1 [;
. 1 0 0 2
0] 0 -1 1 u—1
AU)=| 1 |+ | -1 1 0 v—1
I 1 0 0 w—2
cosycosZ —xsinycosz —xcosysing
(FX)=| sinycosz xcosycosz —xsinysinz
sinz 0 Xcosz
0 -1 0 0
FXo)™'=|1 0 0 [|;U=FXp)=| -1 |;
0o 0 -1 0
1 0o -1 0 u
AU)=| n/2 |+]| 1 0 0 v+1
/4 0 0 -1 w
cos B cos ¢
21. From Exercise 6.2.14(b), F'(r, 0, ¢) = | sin6 cos¢
sin ¢

and JF(r, 0, ¢) = r? cos ¢. The cofactors of F'(r, 0, ¢) are

r cos 0 cos ¢
c11 = 0
[ sin 0 cos ¢
Clp = — .
sin ¢
[ sin @ cos ¢
C13 = .
sin ¢
[ —rsin6 cos
€21 = — 0
oy = [ cos 6 cos¢p
2= | sing
on [ cos O cos¢
2= sin¢
[ —rsinf cos ¢
€31 =
r cos 0 cos ¢
[ cos 6 cos¢p
C3p = — .
sin 6 cos ¢
[ cosfcos¢p
C33 = .
sin 6 cos ¢

—rcos 0 sing

—rsin 6 cos ¢

—rsin 0 sin¢
r cos ¢
—r sin@ sin ¢ :|

r cos ¢

0

¢ —rcosfsing

r cos ¢

¥ cos ¢

—rsinfcos¢ |
0

—rcos 0 sin¢
—rsinf sin¢

—rcosfsing |

¥ cos 0 cos ¢ :| .

:| = r2cos f cos? ¢;
= —rsinf;
—r cos 0 sin ¢ cos ¢;

:| = r2sin 6 cos? ¢;

:|=r0039;

= —r sin 6 sin ¢ cos ¢;
— 2 e
:| = r“cos ¢ sin ¢;

—rsin 0 sin¢

r cos 0 cos ¢

G/(x,y.2) = (F(r.0,¢))" =

:| = rcos? ¢;

JF'(Xo) =

—rsin 6 cos ¢
r cos 0 cos ¢

(= ]

[=IReR

[N e)

—rcos 0 sing¢
—rsin 0 sin¢
r cos ¢
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1 r2 cos 0 cos? ¢ r?2sin 6 cos? ¢ r2 cos ¢ sing
5 —rsin 6 rcosf 0 =
récosg |, cosfsing cos¢p —rsinf sin¢ cos ¢ rcos? ¢
cos 6 cos ¢ sin 0 cos ¢ sin¢
sin 6 cos 6 0
r cos ¢ r cos ¢
1 , o 1
——cosfsing ——sinfsing —cos¢
r r r
cosf —rsinf 0
22. From Exercise 6.2.14(c), F'(r,0,z) = | sin6 rcosf O |and JF(r,0,z) =r.
0 0 1
The cofactors of F/(r, 6, z) are
[ rcoso 07 _ 0 _ | sm6 0O} _ . 0
C11—- 0 | | =reosticiz = 0 | | = —sind
_ [ sin@  rcos6 -0 _ | —rsinf 0 — rsinf-
C13 - i O O - ,C21 - O 1 - ]
[ cos6 07 _ 0- _ [ cos6® —rsind _ o
C22 - i O 1 = COS £ C23 - O O - ’
[ —rsing 0 -0 _ | cost 0O -0
C31__ reosf 0 | T 27T sinf 0 | 7
[ cos® —rsinf | _ "
€33 = | sin@ rcosf | 7

rcosf rsinf 0
G(x,y,2)=F(0,z2) ' =—-| —sinf cosh 0
r

0 0 r
cos 0 sinf 0
1
= | ——sinf —cosf O
r r
0 0 1

23. T = T° U T (since T is closed) and F(T) = F(T)° U dF(T) (since F(T) is closed,
by Exercise 6.2.23). Since F is regular on 7%, F(T?) is open (Theorem 6.3.3; hence,
F(T° c F(T)°. Therefore, T°® C F! (F(T)O). Since F~! is one-to-one, this means
that F~! (OF(T)) N T° = @; hence, F~! (dF(T")) C 9T, so (A) dF(T) C F(dT). Since
F~! is also regular on F(S), and F(T') is a compact subset of F(S), we can write (A)
with F and 7 replaced by F~! and F(7'). This yields d (F_1 (F(T))) C F~1 (0F(T)), so
T C F~Y(0F(T)) and F(dT) C dF(T). This and (A) imply that F(3T) = 0F(T).

6.4 THE IMPLICIT FUNCTION THEOREM
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1. (a)

[5]__[;3_”1[; S0 ==l 2l S0

-1 1 u 3 2 . 0
®m| -1 1 1 v+—11|::|=0,
1 -1 0 1 Y 0
1 -1 177'F 3 2
v == =1 1 1 —11[’“}
11 -1 0 1 Y
oo 3 2 N [ o33 N
=—~lo0o 11 -1 1 [ }:- -1 2 [ }
2111 0 o1 [LY 21 5 3 |LVY

3 [ —y+#sinx | Jul]l _[3 1 T —y +sinx _
1 :||: :|_|:—x+siny:|’|:v:|_|:12:| |:—x+siny:|_
1 2 -1 y + sinx
501 -1 3:||:—x+smy:|
2 2 U+ x 0 2 2 1
1 -1
3 2

v+ Yy = 0 |;since | 1 —1 2| =13, u = —x,
— w+ 2z 0 3 2 -1

(d)

2. Slnce N1 isa nelghborhood of (Xo, Up), there is a § > 0 such that (X, U) € Ny if |[X —
Xo[? 4 [U—Uy|? < §2. Therefore, (X, Ug) € Ny if X € N = {X € R" | X — X,/ < §}.

3. Let X = (x10,X20,...,%n0), U = (rulo,uzo,-..,umo), and F = (f1, f2,..., fm),
n
where f;(X,U) = Zai_,-(xj —xjo) | — i —uio)’, 1 <i < m, where r and s are

positive integers and not all @;; = 0. Since

(u1 —ul())s_l 0 0
0 (us —uzo)s_l 0
FU(X’ U) =S k)
0 0 v (U —us g

Fy (X, Up) = 0 for arbitrary X if s > 1.

(@) If r = s = 3, then F(X,U) = 0if and only if U = Uy + A(X — Xo), with A = [a;;].
To see this, note that > — 83 = (¢ — B)(a? + af + B2) = 0 (with o and S real) if and
onlyifa = .
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(b)If r =1 and s = 3, then F(X, U) = 0 if and only if
1/3

n
wp =uio+ | Y ay(x; —xj0) |
j=1

U is a continuous for all X, and differentiable except at Xp.
©r=s5s=2.

4. f(x,y,u) = x2yu 4+ 2xy?u® = 3x3y3u; fr(x, y,u) = 2xyu + 2y%u® — 9x
fe(L,1,1) = =5; f5,(x, vy, u) = x2u + dxyu® — 9x3y2u®; £,(1,1,1) = —4;

Julx,y,u) = x2y + 6xy*u? — 15x3y3u*; f,(1,1,1) = =8;
u(1,1) = S L) — o) _fy(lvl,l) _ 1‘
X ’ - —_—

ALY —gwdh= 1

ful,1,1) 27
5. f(x,y,z.u) = x2y322u° + 2xy%u® — 3x37%u;
fe(x,y,zou) = 2xy°22u® + 2y%u3 — 9x2z%u; f(1,1,1,1) = =5;
fyCeoy, zou) = 5x2y422u® + dxyu; £,(1,1,1,1) = 9;
fo(x,y.z,u) = 2x2y zu® — 6x3zu; f(1,1,1,1) = —4;
Sulx,y,zou) = 5x2y°2%u* + 6xy?u? — 3x32%; fu(1,1,1,1) = 8;
ALY 5 AOLLD 9,
fu(1,1,1,1) 8
f(1,1,1,1) 1
TRALLD 2
6. (@) f(x,y,u) = 2x% + 2 + ue;
F1,2,u(1,2)) =2+ 4 +u(1,2)e*? = 6;u(1,2) = 0;
Sfe@e,y,u) = 4x; fx(1,2,0) = 4 fy(x, y,u) = 2y; f,(1,2,0) = 4
fulx,yu) =e(u+1); £,(1,2,0)=1;
e (1,2) = _ fx(1,2,0) _ _ f(1,2,0) _
Su(1,2,0) Su(1,2,0)
®) fx.yu) =ulx+ 1) +x(y+2)+yu-—2);
f(=1,-2,u(-1,-2)) = —2(u(-1,-2) = 2) = 0; u(—-1,-2) = 2;
Loy, u)y=u+ (y +2); fx(—1,-2,2)=2;
Sy, u) =x+ @ —2)y; f(=1,-2,2) = —1;
Sulx,y,u) =(x+ 1D +y; fu(-1,-2,2) =-2;
x(=1-2,2)
fu(=1,-2,2)
© f(x,y,u) =1—e"sin(x + y);
fr/d, /b, u(m/4,w/4) = 1 — /47D = 0, u(n /4, 1/4) = 0;
fr(x,y,u) = —e* cos(x + y); fx(w/4,7/4,0) = 0;
Sy(x, y,u) = —e*cos(x + y); fy(n/4,7/4,0) = 0;

ux(1,1,1) =

fu(1,1,1,1) 8§
u(1,1,1) =

—45u,(1,2) =

ux(—1,-2) = 1;uy(_1,_2):_M __I

fu(=1,-2,2) 2’

161
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Ju(x,y,u) = —e¥sin(x + y); fu(n/4,7/4,0)=1;

_ fx(mw/4,7/4,0) o _
Mx(ﬂ/4,ﬂ/4)——m—O,My(ﬂ/4,7'[/4)—
d) f(x,y,u)=xlogu + ylogx + ulogy;

f, Lu(l,1)) =logu(1,1) =0 u(1,1) = 1;
u
fx(x,y,u) =logu + %; L L) =1; fy(x,y,u) =logx + ;; HLL L) =1;

Sy(w/4,7/4,0)

C fu(/4,7/4,0) 0

fule.you) = = +logys fu(l 1, 1) = 1

~(1,1,1 1,1,1
e D= _?ugl,l,li - _ﬁl,l,li —
7.(a) f(x,y.u) = 2x2y* = 3uxy3 + u?x*y3;
FOL L u(l, 1) =2 = 3u(1, 1) +12(1, 1) = (1, 1) = D(u(l, 1) —2) = 0;
u (1, 1) = 1, ua(1,1) = 2.
fe(x,y,u) = dxy* —3uy3 + 4ux3y3,;
S Lui(L D) = fx(1,1,1) =55 fx(1, Luz(l, 1)) = fx(1,1,2) = 14;
fy(e,y,u) = 8x2y3 — Juxy? + 3u?x*y?;
S Lu (L D) = f,(1,1,1) =2; f3(1, Lua(1, 1)) = £,(1,1,2) = 2;
fulx, y,u) = =3xy> + 2ux*y?;
Su(L, Lur(L, 1) = fu (1, 1,1) = =15 fu(1, Lup(1, 1) = f,(1,1,2) = 1;
dui(1,1) _ fx(,1,1) . duy(1,1) _ fx(1,1,2) _

x  AALLD D ax ALy F
dur(1L)  f(LLD dua(Ll)  fy(1,1,2)
dy  AOLD T dy T (1,2
() f(x,y,u) =cosucosx + sinusiny = 0;
2k + Dm
f0,m,u0, 7)) = cosu(0, ) = 0; ug(0, ) = f;

fx(x,y,u) = —cosusinx; f(0,7,ur(0, 7)) = f(0, 7, 2k + 1)7/2) = 0;
fy(x,y,u) =sinucos y; f,(0, w,ux(0, 7)) = f,(0, 7, 2k + D)z /2) = (—=D)k;
Ju(x,y,u) = —sinucosx + cosusiny = 0;

S0, 70, u (0, 7)) = fu(0, 7, 2k + D7/2) = (—=1)F;

ug(0, )  fx (0,7, ug(0, ) o:

ox  fuOmoue0.m)
duy (0, ) _ Sy (0,7, uk (0, 7)) __
dy Ju(0, 7w, ur (0, 7))
8. Let X = (-xa Y, Z), XO = (13 %v _1)’ U= (M, U) and UO = (_2’ 1) Then
X2+ 4y? + 22 —2u? + 0?2 4+ 4
F(X’U)_[ (x+2+u—-v+3
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and F(XQ, U()) =0.

_ 2x 8y 2z |, 2 4 =2,

—_ 1
e e L ] (LA 1=1—0[} _ }
1
5

1 p—
U/(xo>=—(FU(XO,U0>>—1FX(X0,U0>=—m[i _ﬂ[g 0 2} |5
9.

I+4wu' +Qu+20 +2x—-1=0
(xv + e¥sin(v + x))u’ + (xu + e* cos(v + x))v" + uv + e* cos(v + x) = 0;
u'(0) + 2v’(0) = 1; v'(0) = —1; u’(0) = 3.
10. Let X = (x,¥), Xo = (1,-1), U = (u, v, w) and Uy = (1, 2, 0). Then
X2y +xy2+u2 —(w+w)?+3

F(X,U) = et —u—v—w+2
x+y)?+u+v+w?-3

and F(XQ, U()) =0.

2xy + % x2+2xy -1 -1
FiX,U) = exty exty ; Fx(Xo, Up) = 1
2(x+y) 2(x+y)
2u 2@w+w) —2@wv+w) 2 —4 —4
F,(X.U) = | —1 -1 -1 i FoXo.Up) = | -1 —1 —1 |;
1 1 2w 1 1 0
1 1 —4 0
FoXo.Up) ' =—| =1 4 6 [;
61 0 -6 -6

U'(Xo) = —(Fy(Xo, Up)) ' Fx(Xo, Up)

N I R (S R 5 s
=~ -1 4 6 o1l =t 25 s
61 0 -6 —6 0 0 6l 6 6

11. Let X = (x,y), Xo = (1, 1), and U = (u, v). Then

F(X.U) = [ xyu —4yu + 9xv :|

2xy — 3y +v?

and F(Xy, Up) = 0 if ug = 3vo and v(z) = 1, which is equivalent to (ug, vo) = £(3, 1).
Let Ul(XQ) = [ :; :| and UZ(XO) = —[ :; :|
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Fx(x,U)=[y”+9” (x =4 ];Fx(xo,ul(xo»=[ 12 ‘9];

2y 2x — 6y 2 4
Fy(Xo, Us (X)) = [ -2 }FU(X, U) = [ R }
Fy(Xo. Ui (Xo)) = [ _(3) ; }FU(XO,Uz(Xo)) = [ _(3) _3 }
(Fy(Xo, Ui (X)) ™! = é[ _3 z } (Fy(Xo. U2(X0))) ™" = —é[ 3 z ]§

U} (Xo) = —(Fy(Xo, U1(X0))) ' Fy(Xo, U1 (Xo))
_ =2 97712 =97_[ 1 37,
6 0 3 2 =4 | | -1 2/
U, (Xo) = —(Fy(Xo. U2(X0))) ™' Fu(Xo. Uo)
12 9 -12 97_ [ 13
6| 0 3 2 —4 | -1 2 |
12. Differentiate the three equations with respect to x, using the chain rule:
e*cosy — (e* sinu)uy + (e¥ cosw)vy — (e’ sinw)wy +1=0
e*siny + (e cosu)uy + (e” cosw)vy — (e’ sinw)wy =0
e*tany + (e% sec’ u)uy + (e”tan w)vy + (e¥ sec® w)wy = 0.
Setting (x,y,z) = (0,0,0) yields v5(0,0,0) = —2, ux(0,0,0) 4+ v,(0,0,0) = 0,

U5 (0,0,0) + w,(0,0,0) = 0; therefore, u,(0,0,0) = 2 and v, (0,0,0) = w,(0,0,0)
2.

14. If £ and &, are any two of the five variables and 71, 175, and 713 are the rest, the system
can be written in the form

ail ainz €1 " bir b1z bis Z; _10
a1 an & ba1 b ba3 ns 0|

air a2

This can be solved for &1 if and only if
& azi Az

# 0. We list the possibilities:

(12 x],[3 16 S ZT0 T e
(2 4]y T2 2] YT Lo]

O .
O b

1 2 .
2 4 ‘ = 0, this system does

not determine (x, y) as a function of (z, u, v).

- y
3 X 2 1 6
1__z_+[422:| Z _[

[ 1
| 2
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x1_ 13 216i_l
2T 721 422 =3

2 1 O
__[O 0 2 :| =-2y —u, z=-—2uv;

i 7 7 y
Lol . 11
| 2 2_[u_ [4 :| 12):| [ :|,Slnce 9 2‘—0thlssystemdoes
not determine (x, u) as a function of (y, z, v).
(L6 [x], [2 31 Y1 1701
2 2 v 4 1 2 =10l
- - - u
[ _[re]l'[2 31 Y1 17 2 6772 3 1 y
v]ooL2 2 41 2] 2Tl 2 141 2]|¢
i y :
_ 14 0 2 Y ol 2z
B R R
u_
2 37y ][ 16 Z To1
4 1 z 2 2 2 Lol
y__23—1116;“_i1_3116;€
@] L4 222 S0l -4 2]l2 22
v v
171 1 *
:_5[0 0 ﬂ u |1 y=—-zs(x+wu), z=-2
v
ERIEANEERA I 21
_4 2__u_+_2 12_ Z =_O_smce 42‘—Othesystemdoes

not determine (y, 1) as a function of (x, z, v).

2 3
4 1

6 131
2 lv T2 1 2]
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| — |
ISEEEA]
| I |
I
|
| — |
—_
N =
| I |
L
| — |
N =
N
[\S 2@
| I |
SEA
I
|
| —
| — |
|
— N
|
W =
| I |
| — |
N =

(3 67[ 2], [1 21 2T 07, dince
2 fle T2 4 2| 0 T Lof

not determine (z, v) as a function of (x, y, u).

(16 [u], [1 23 Yl To7.
2 2 ]| v 24 1] 2T Lof

T 1
< <
| I |
I
|
1
N =
N O
| I |

L
| — |
N =
N
—_
| I |
N =
I
—
sl=
| — |
|
N
|
— QN
| I |
| — |

—
[«>2 ]
(el
—_ O
[
= =
<
Il
|
=
|
\S}
=
S
Il
|

15. Let

feyzuv) =x2+4y? + 22 —2u? + 0% + 4
gx.y.zou )= +2>+u—v+3

and Py = (1,1, —1,-2,1).

X

B(f,g)_‘Sy 20 | 3(fg) _‘4 2‘__4.
e R B A TO) A A
B(f,g)_‘ 2 20 | 0(f9) ‘2 2‘__2.
dv) | 2642 —1 faao| |0 1]

<
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a(f, g)
a(x,v)
ye(l,-1,-2) = ——— 0 = —
a(f. g)
Ay, v) |,

(/. g) _‘ 8y —d4u | 3(f.9)
dy.u)y | 0 1 [ a(y.u)

(/. 8)
Iy u) |
v(1,-1,-2) = ——0 = —— =1,
(/. 8)
Iy, v,
0
16. Apply Theorem 6.4.1 with X = (w, y), Xo = (0,—1), U = (u,v,x) and Uy =
(1,2, 1). Then

-2 1

PO

X2y +xy2+u2 —(w+w)?+3
F(X,U) = et —u—v—w+2
x+y*?+ut+v+wr-3

and F(XQ, U()) =0.

[ —2(v+w) x%+2xy —4 —1
Fy(X,U) = ~1 A LR Xo U= | -1 1 |;
2w 2(x +y) 0 0
[ 2u 2+ w) 2xy + y? 2 —4 -1
F,(X.U)=| —1 ~1 D FyXo Ug)=| -1 -1 1 |;
|1 1 2(x +y) 1 1 0
1 1 1 5
(Fy(Xo,Up) ' =~ | -1 -1 1 |;
61 o 11

U'(Xp) = —(Fy(Xo, Up)) ' Fx(Xo, Ug) =

! 1 15 —4 -1 -5 0
——| -1 -1 1 -1 1 |=— 50 |;
0 11 0 0 6l 6 ¢
uw(0,—1) = 2, uy(0,—1) = 0, vyy(0,—1) = =2, vy(0,=1) = 0, x,(0,—1) = 1,

xy(0,-1) = —1.
17. See the solution of Exercise 6.3.11.
18. Let X = (x,¥), Xo = (1,1), U = (4, v) and Uy = (0, 1). Then

224 .2 2
F(X,U):[x+y +u?+v 3:|

X +y +u +v =3,
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and F(Xp, Up) = 0.

- [ 2 2 } p— [ 2 }

EXxO = 5|} o |

U'(X) = —(F (X, U)) "1 F(X, U) = uiv [ —n v ];

Uy = Z v;ux(l, 1) =0;uy = %ﬁ;uy(l, 1) =0

vy = Z ve(1,1) = —1; vyz%;vy(l,l)z—

= L0 3:5};; D0t =00, 1,1 =2

o = U

iy = U DO ),y

e = Lm0 ")(“L)l :S;z_ D0 =01 1) = -2

by = RO T 1) = -

uyy = D B0 Z 0 (1) = -

19, Let X = (x,y), Xo = (I, ~1), U = (u, v) and Uy = (1, 1). Then
FX,U) = [ uzz;vvz—;i; ﬁer ? }

and F(Xo, U()) =0.

1 1

rxv=| D) [Reo

2u —2v |,
2v 2u |’

1 u v
S .
(FU(Xa U)) - 2(M2+U2) [ —v u i|’
1 u+v v—u
/ — —1 - .
U(X) - (FU(Xv U)) FX(Xv U) - 2(”2 + UZ) [ uU—v u-+v i|’
u+v v—u 1
Uy = YO sux(1,—=1) =0, uy = 2w o7 suy(l,—1) = >
uU—v 1 u+v
Ux = 2(”2 ) Ux(l )= E; Vy = 2(”2 ) Uy(l -1) =0
N Uy + Uy _(u+v)(uux+vvx).u a _1)__1_
XX — 2(”2 + UZ) (uz + U2)2 ) XX k] - 87
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Uy + vy u +v)(uu, + vvy) 1
= - ; 1L-1) =23
My 2(u? + v?2) (u? 4 v2)? Uy ( ) 8
vy —uy (v —u)(uuy +vvy) 1
Uyy = 502 & 2 2 1 2)2 uyy(1,—1) = =3
2(u? 4+ v?) w? + v?) 8
Uy — Uy (u—v)(uux +vvx) (1.—1) = 1
Uxx = : -
T2 02 (u? 4 v?2)? pax 8
o — Uy + Vx (u+v)(uux+vvx) (1.—1) = _l.
T 2w 402) W oz Y 8’
uy +vy (4 v)(uuy +ovy)
Uyy = 2 2 2 2\2 ; yy(l )
2(u? + v?) (u? + v?)
20. Differentiating the identity
P(1(X), 2X),.... fu(X)) =0, Xe€S,
with respect to x1, X3, ..., X, yields
n
i}
f’ =0, 1<i<n XeS8. (A)

Jj=1

Since .
Y 42 (FX) >0, Xes,
j=1

(A) implies that the system

3f/

=0, 1<i<n, XeSs.

has the nontrivial solution (£1, ..., &,) = (¢u, FX)), ..., ¢u,(F(X))) for every X € S.

Now Theorem 6.1.15 implies the conclusion.



CHAPTER 7

INTEGRALS OF
FUNCTIONS OF SEVERAL
VARIABLES

7.1 DEFINITION AND EXISTENCE OF THE MULTIPLE INTEGRAL

1. Suppose, for example, that R = [a1, b1] X [az, b2] X - -+ X [an, by] with a; = by. Then
every partition P of R isof the form P = {Ry, R, ..., R}, where v(R;) = 0,1 < j <k.

Therefore, every Riemann sum of f over R equals zero, so [ f(X)dX = 0.
R
2. (a) Let Py and P, be partitions of [0, 2] and [1, 3]; thus,
Pi:0=xp<x1<-<x,=2 and Pr:l=yo<y;<:---<ys=3.

A typical Riemann sum of f over P = P; x P, is given by

r N
o= Y G +2mi)xi —xi—)(yj — yj-1) (A)
i=1j=1
where
xi-1 <& <x; and yj_1 <nij <. (B)
The midpoints of [x;_1, x;] and [y; 1, y;] are
¥; = % and ¥, = % ()
and (B) implies that
—_Xi—xi- _ A _ P
|&ij — Xi| < l 21 = 3 ST (D)

170
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and
j=vim_ 1Pl _ [P

2 = 2 2

- Y
Inij —¥;1 ==
Now we rewrite (A) as
r S
o= Y G% +27)(xi —xi—)(¥j — yj-1)
i=1j=1

+) Y [BG — %) + 2005 — V)] (i — xim) () = yj-1)-

i=1j=1

To find [ f(x,y)d(x, y) from this, we recall that

r N
Y i—xic) =2, Y (yj—yj-1) =2
i=1 j=1

(Example 3.1.1), and

r

Z(xiz —xi) =4, Z()ﬁ - Y?—l) =38

i=1 j=1

(Example 3.1.2).

171

(B)

¥

(©)

(H)

Because of (D), (E), and (G), the absolute value of the second sum in (F) does not exceed

5 r N
WP > i = xie) () = yj-1) = 10] P,

Jj=1j=1

so (F) implies that

r N
o= (3% +2y)(xi —xi—)(y; — yj-1)| < 10]P].
i=1j=1

Now

r

i=1j=1 i=1

=2) Xi(xi —xi-1)  (from (G)

i=1
= Z(‘xlz - x7-1) (from (C))
= fl (from (H)).

DY wil —xim) () —yj1) = [Z Xi(xi — xi—l)] Y = yj-1)
Jj=1

)
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r

N
Similarly, Z Z V;(xi—xi—1)(yj—y;-1) = 8. Therefore, (I) can be written as |0 —28| <
i=1j=1
10||P||. Since the right side can be made as small as we wish by choosing ||P| sufficiently

small, / (x+y)d(x,y) =28
R
(b) Let P; and P, be partitions of [0, 1]; thus,
Pi:0=xp<x1<-<xp=1 and Pr:0=yo<y1<:---<ys=1.

A typical Riemann sum of f over P = P; x P, is given by

r N
o= Z Z Eijnij(xi —xi—1)(yj — yj-1) (A)
im1 =1
where
xi—1 <&ij <x; and y;—1 <nij < ;. (B)

The midpoints of [x;_1, x;] and [y;_1, y;] are

- XitXi- — i+ Y-
X = ot T 5 -1 and Yj = 7)}‘/ Zy/ 1, (C)
and (B) implies that
— . _xi—xi—1 _ Pl _ Pl
Ly < < < — D
|&ij —xil < ) =TS = (D)
n IP2ll_ [P
- Yji—)Yi-1 2
Inij —¥;1 < 5 = = B (E)
Since
Eijniy = [Xi + Eyj —XDI; + iy — ;)]
=%y +Xxi(mij—y;)+¥,;E; —xi)+ Ej —x)Mi; —;),
we can rewrite (A) as o = S1 + S + S3 + S4 where
r N
S1 = (Z Xi(x;i —xi—1)> Vi =y
=1 =1
L " 1 15
~ (Do) (Zos i) - &
i= Jj=1
r N
Sa= )" Xi(nij — V)i —xi-)(yj — yj-1) (G)
i=1j=1
r N
Sa =) > ¥ — X — xi-1)(vj — yj-1), (H)

i=1j=1
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and

Sa =Y (=X =T = xi—)(v; = yj-1)- M

i=1j=1
From (E) and (G),

82| = ”g;” (Zr:fi(xi _xi—l)) Zs:(yj —yi-) | = ”:;”Zr:(x? x2) = M
=1 j=1 i=1

From (D) and (H),

R ”%” (Zr:(xi —xi—l)) ZS:Y;(W —yj-) | = |T PCE ”%”.
i=1 j=1 =1

From (D), (E), and (1),

j2 - PI?
|S4] < u (Z( P = Xio 1)) PICTESTENE ” 4|| ‘
=1

i=1

121, 1P
2
by choosing ||P|| sufficiently small, / xyd(x,y) = 1
R

Therefore, . Since the right side can be made as small as we wish

o——\| <
4| =

3. The given o is not a typical Riemann sum. The correct form is

r S
=22 fEDgm) @i = xi)(vj = yj-0).
i=1j=1
where x;—1 < &; < x; and yj—1 < nij < yj.
4. Let

Piia=xo<x1<--<x,=b and Pr:c=yy<y;<---<ys=d

be partitions of [a, b] and [c, d], and P = P; x P,. Then a typical Riemann sum of f over
r N

P is of the formo = Z Z S (& . nj)(xi —xi—1)(y; —y;—1), which can be interpreted as
i=1j=1

the sum of the volumes of parallelepipeds in R* with bases of areas (x; —x;—1)(y; —y,j—1)

and heights f(§;;, i), 1 <i <r,1 < j <s.
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k
5.@IfP={R;,R12..., R;},then S(P) = ZM‘,-V(R‘,-),Where M; = sup {f(X) | X € R‘,-}.
Jj=1

k
An arbitrary Riemann sum of f over P is of the form ¢ = Z JSX;)V(R;), where

j=1
X; € R;. Since f(X;) < M;,0 < S(P).
Now let € > 0 and choose X in R; so that f(X) >M,-—;,1§j < k. The Rie-
s 27 TRy
k k ¢
duced in thi iso = X)V(R) > M;— ———) | V(R)) =
mann sum produced in this way is & ;f( DV(R)) ;I: f; kV(Rj))i| (Rj)

S(P) — €. Now Theorem 1.1.3 implies that S(P) is the supremum of the set of Riemann
sums of f over P.

k
(b) Let P be as in (a). Then s(P) = Z m;V(R;), where m; = inf { f(X) | x € R;}. An
Jj=1
k
arbitrary Reimann sum of f over P is of the form o = Z JX;)V(R;) where X; € R;.
Jj=1

Since f(X;) > m;, 0 > s(P).

Now let € > 0 and choose X in R; so that f(X;) < m; + %, 1 < j < k. The Rie-
J
k k ¢
duced in thi iso = X)HV(R)) > i+ ——) | V(Rj) =
mann sum produced in this way is & ;f( DV(R)) ;I:m, kV(Rj))i| (Rj)

s(P) + €. Now Theorem 1.1.8 implies that s (P) is the infimum of the set of Riemann sums
of f overP.

5. LetP = {Ry, Ry, ..., R} be apartition of R. An arbitrary Riemann sum of f over P
n

is of the form o = Z SX)V(R;) where X; € R;.
Jj=1
k
(@ SP) = ZM‘,-V(R‘,-) where M; = sup {f(X)|X € Rj}. Since f(X;) < M;,
Jj=1

o < S(P). If € > 0 choose X; in R; so that f(X;) > M,

— ; The Riemann sum
© kV(R))

produced in this way is

k

€
> [M,- - WRJ-)] V(R;) = S(P) —e.

Jj=1

k
=) fX)V(R)) >
Jj=1

Now Theorem 1.1.3 implies that S(P) is the supremum of the set of Riemann sums of f
over P.



Section 7.1 Definition and Existence of the Multiple Integral 175

k
(b)sP) = ij V(R;) where m; = inf{f(X) | Xe Rj}. Since f(X;) > m;, 0 >
j=1

s(P). If € > 0 choose X, in R; so that f(X;) < m; + #R/) The Riemann sum
produced in this way is
k k
7= Y SEVR) < Y |y + s | ViR = s e
j=1 j=1 !

Now Theorem 1.1.3 implies that s(P) is the infimum of the set of Riemann sums of f over
P.

6. LetP = {R1,R;,..., Ri}. Let
M; = sup{f(x,y)|XE R‘,-} and m; :inf{f(x,y)|Xe R‘,-}.

Let j be arbitrary in {1,2,...,k}. Since R; contains a point (X;,y;) with X; and y;

irrational, M; = 3. Hence, / f(x,y)d(x,y) = 3(b —a)(d —c). Since R; contains a
R
point (X;,y;) withX; and y; rational, m; = 0. Hence, / fx,»)d(x,y) =0.
JR

7. First suppose that P| is obtained by adding one point to P;, and P/’. =P;,2<j=<n.
If P; is defined by ‘

P,~:a,~za,~0<a,~1<---<a,~mi:b,~, 1<i<n,
then a typical subrectangle of P is of the form
Rjyjowjn = lar -1, a11] X [a2, -1, G2 5] X -+ X [an, j, -1, anj,]-

Let ¢ be the additional point introduced into P; to obtain P;, and suppose that a; x—; <
¢ < ayg. If ji # k then R, j,..;, is common to P and P’, so the terms associated with it
in s(P) and s(P’) cancel in the difference s(P’) — s(P). To analyze the terms that do not
cancel, define

R gy =l kmr el X [az o1, a2] X - X [ =1 anj, ).
Rl(czl)zm =[c,a1x] X [az,jy—1,a2j5] X =+ X [@n,ju—1,Anjn],
M jy-.jy = inf{ f(X) | X € Rijy.., } @A)
and

Then s(P’) — s(P) is the sum of terms of the form

1
kj2+in

2
l(cj)z---jn @1k =€) =mpjpejy (@1x = a1k-1)] ©)

X(azj, —az,j,-1) - (@nj, = an,ju—1)-

[m (c —aig—1)+m
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The terms within the brackets can be rewritten as

1
kj2+in

@)

(m - mka"'jn)(c - al,k—l) + (mka"'jn - mkj2"'jn)(a1k - C)a (D)

which is nonnegative, because of (A) and (B). Therefore, (E) s(P) < s(P’). Moreover,
the quantity in (D) is not greater than 2M (a5 — a1 x—1), so (C) implies that the general
surviving term in s (P’) — s(P) is not greater than

2M ||P|(azj, — az,jo—1) -~ (@nj, — an,ju—1)-

The sum of these terms as jj, ..., j, assume all possible values (1 < j; < m;,i =
2,3,...,n)is
2M|P|[V(R)
DM (b2 = az) -+ by — an) = =2
1— a1
This implies that
2M||P||V(R
b1 —di
This and (E) imply (17) forry =landr, =---=r, =0.
Similarly, if r; = 1 forsome i in {1,...,n}and r; = 0if j # i, then
2M||P||V(R
bi —d;

To obtain (17) in the general case, repeat this argument ry + r + -+ + r, times, as in the
proof of Lemma 3.2.1.

8. Suppose that P; and P, are partitions of R and P’ is a refinement of both. From
Lemma 7.1.5, s(P1) < s(P’) and S(P’) < S(P,). Since s(P’) < S(P’) this implies
that s(P1) < S(P2). Thus, every lower sum is a lower bound for the set of all upper sums.

Since / f(X) dX is the infimum of this set, s(P;) < / f(X) dX for every partition Py
R - R
of R. This means that / f(X)dX is an upper bound for the set of all lower sums. Since
R

/ f(X) dX is the supremum of this set, this implies that / fX)dX < / fX)dX.
JR JR R

9. Suppose that P is a partition of R and ¢ is a Riemann sum of f over P. Let € > 0. From
Definition 7.1.2, there is a § > 0 such that

< % it |IP| <. (A)

o— / fX)dX
R
From the triangle inequality,

‘/ f(X)dX—/ FX)dX| < /f(X)dX—S(P) +IS®) — o]
R R R

(®)
+

o —/Rf(X) dX‘.
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From Definition 7.1.4, there is a partition Py of R such that

/f@MXSSmﬂ</f@MX+5 ©
R R 3

Now suppose that |P|| < § and P is a refinement of Py. Since S(P) < S(Py) by
Lemma 7.1.6, (C) implies that

7f(X)dX§ S(P) <7f(X)dx+ <
R R 3

SO
s®) - [ rxax|<$ D)
R 3
in addition to (A). Now (A), (B), and (D) imply that
/f(X)dX—/f(X)dX <2—€+|S(P)—a| (E)
R R 3

for every Riemann sum ¢ of f over P. Since S(P) is the supremum of these Riemann sums

(Theorem 7.1.5), we may choose ¢ so that |S(P) — o] < % Now (E) implies that

< €.

(ZfMMX—AfMMX

Since € is an arbitrary positive number, this implies that

Z}mmx:ﬁfmmx

From the triangle inequality,

‘/“11X>dX-—/mfxx>dx <[ s ax—s®) +1s@® -0
‘8 . x (F)
— X) dX|.
Ho— [ re0
From Definition 7.1.4, there is a partition Py of R such that
[ rax=sen> [ roax-5. ©)
JR JR 3

Now suppose that ||P|| < § and P is a refinement of P;. Since s(P) > s(P;) by Lemma 7.1.6,
(G) implies that

/f(X)dXzs(P)>/f(X)dX+f
JR JR 3
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SO
s - [ reoax|<§ H)
Jr 3
in addition to (A). Now (A), (F), and (H) imply that
‘ [ roax— [ rax) <5+ jsw) o) )
JR R 3

for every Riemann sum o of f over P. Since s(P) is the infimum of these Riemann sums

(Theorem 7.1.5), we may choose ¢ so that |s(P) — 0| < % Now (I) implies that

< €.

‘ [, rovax— | rax

Since € is an arbitrary positive number, this implies that

Af(X)dX=/Rf(X)dX.

10. The inequalities / fX)dX < S(P) and / fX)dX = s(P) follow directly from
R JR

Definition 7.1.4. Now suppose that | f(X)| < K if X € Rande > 0. Let R = [a1,b1] X

[az, ba] X -+ [an, by].

From Definition 7.1.4, there is a partition Py = P, ©) PZ(O) X - P,,(O) of R such that (A)

S(Py) < / fX)dX+ 5 Assume that P(/. ) has rj + 2 partition points (including a ; and
® <
bj),1 <j <n.IfP= P;xPyx---x P, isany partitionof R,letP’ = P/ x Pyx---x P,

where P/ is the refinement of P; including the partition points of P( ) ,1 <j <n.Then
Lemma 7.1.6 implies that (B) S (P’ ) < S(Pp) and

S(¥) = S(B) —2KV(R) [ 3 —— | |P]. ©

j=1 J Y%

) v
? v

b,-—a,

Now (A), (B), and (C) imply that

S(P) < S(P) + 2K V(R) Z

< S(Po) + 2K V(R) Z

/f(X)dX+ + 2KV(R) ||P||</f(X)dX+e
2 R

Jj=1
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n
if [P < 8, where 2K V(R) [ 3" —— | § < <.
oibi—a 2

From Definition 7.1.4, there is a partition Py = P x P{V x-..x P" of R such that (D)

s(Py) > / fX)dX - % Assume that P(/.I) has s; + 2 partition points (including a ; and
R <
bj),1 <j <n.IfP = Py xP,x---x P, is any partitionof R, letP” = P/'x P)/x---x P/,

where P /” is the refinement of P; including the partition points of P(l) 1 < j <n. Then
Lemma 7.1.6 implies that (E) s(P”) > s(Py) and

s(P") <sP)+2KV(R) [ P (F)
j=

J
—1 bj—a,

) 7

Now (D), (E), and (F) imply that

s(P) > s(P”) —2KV(R) Z

zﬂwﬂmﬂ)z P
XdX———ZKVR P X)dX —
- [ U‘;% s [ reax -
. - Sj €
if [P| < 8, where 2K V(R) [ Y Ty <3

Jj=1
11. If € > 0, there is a § > 0 such that

/f(X)dX—e<s(P)§S(P)</f(X)dX+e if |P|<3é
JR R

(Lemma 7.1.9). By assumption, this is equivalent to
L—e<s®P)<SP)<L+e if |P| <. (A)
If o is a Riemann sum of f over {P} then s(P) < o < S(P), so (A) implies that L — € <
o < L + €if ||P|| < §. Now Definition 7.1.2 implies that/ fX)dX = L.
R

12. Suppose that/ fX)dX = L. If e > 0, thereis a § > 0 such that L — ¢/3 <

R
0 < L + ¢/3 if 0 is any Riemann sum of f over a partition P with |P|| < §. Since s(P)
and S(P) are respectively the infimum and supremum of all Riemann sums of f over P,
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(Theorem 7.1.5) it folllows that L —e/3 < s(P) < S(P) < L +¢/3if |P|| < §. Therefore,
ISP) —s(P)| < eif ||P| < 8.

Now suppose that for every € > 0 there is a § > 0 such that [S(P) — s(P)| < € if [|P|| <
8. Since s(P) < / fX)dX < / fX)dX < S(P) for all P, this implies that 0 <
R R

/ fX)dX — / f(X)dX < e. Since € is an arbitrary positive number, this implies that
R JR

/ fX)dX = / f(X) dX. Therefore, / f(X) dX exists, by Theorem 7.1.7.
R JR R

14. (a) If € > 0, there are rectangles 71, T», ..., T and T}, T, ..., T, such that §; C
N

;
Uiy Ti. S2 C US_ T}, ) V(Ty) <€/2.and Y V(T]) < €/2. Then{Ty..... Ty, T}. ...

i=1 j=1
covers S7 U S, with total content < €.

(b)If Sy cUi_,; T, and S» C S1, then S» C Ul-r=1Tr.

i=1

(¢) Since U/_, T; isclosed, S C U/_,T; if S C U[_,T;.

15. Let R = [a1,b1] X --+ X [an,by] and T = [a1 —€,b1 + €] X -+ X [an — €, by + €],
where € > 0. Then R C T and, since a¢; = b; for some i, V(T) < 2¢ "1, where
L =max {(b; —aj) | 1<j<n}

16. Let R be a rectangle containing S. Suppose that € > 0. Since f is uniformly continous
on S (Theorem 7.1.5.2.15), there is a partition P of R such that | f(X) — f(Y)| < € if X
and Y are in S and in the same subrectangle of P. If Ry, R, ..., R, are the subrectangles
of P such that S N R; # @ and Xy, Xy, ..., Xj; are points in Ry, R, ..., Ry, then the
surface is contained in the set U7, {(X, 2) | X e R;and |z — f(X))] < e}. The content of
this set (in R"*1) is < Ke, where K is independent of €.

17. (a) Since T does not have zero content, there is an €y > 0 such that any finite col-
lection of rectangles covering T has total content > €,. Let R be a rectangle contain-

ing S, and let P = {R1, Ro, ..., Ri} be a partition of R. Let U = {j |R<}mT7é(zJ}.

Then Z V(Rj) > e€g, since the total content of U]/‘-=13Rj is zero (Exercise 15). If
Jjeu

j € U, then R(; contains points in 7" and points not in S, so sup {fs X) | X e R‘,-} -

inf { fs(X) | X e R‘,-} > p; therefore, if S(P) and s(P) are upper and lower sums of fg

over R, then S(P) —s(P) > pep. Hence, fs is not integrable on R (Theorem 7.1.12), so f

is not integrable on S (Definition 7.1.17).

M) If f =1,then f(X) >1onT = S NaS. Hence, fS dX, from (a).

18. (a) Suppose that |A(X)| < K and Sy = {X|X eSS and f(X)# O}. Let R =
[a1,b1] X [az, b2] X - -+ X [an, by] be a rectangle containing S. If € > 0, let Ty, T3, ...,

m
Tin be subrectangles of R such that So C U7_, T and (A) Z V(T;) < €. (So has zero
Jj=1
content, from Exercise 14(b). If 7; = [a1;, B1;]X: - -X[ttnj, Bujl, let P = Py x Pyx: X Py,
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where P; is the partition of [a;, b;] with partition points
ai, bi,ai1, Pir, iz, Biz, ..., tim, Bim-

(These are not in order.) We may suppose that So N R® C U”’_IT0 since if this were
not so, we could simply enlarge Ty, T», ..., T, slightly to make it so, while maintaining
(A). This guarantees that the union of the subrectangles of P on which &g assumes nonzero
values is contained in U"_, Tj; hence, (B) [S(P)| < Ke and (C) |s(P)| = Ke if S(P)
and s(P) are upper and lower sums for hg over R. This implies that S(P) — s(P) < 2ke,

0 / hs(X)dX = / h(X) dX exists (Theorem 7.1.12. If ¢ is a Riemann sum for A g
R N
over any refinement P’ of P, then |0| < Ke. This implies that / hs(X)dX = 0, so
R
/ h(X)dX = 0.
N
(b) From (a) with h = g — f, /(g — f)X)dX = 0. Theorem 1.11 implies that

[eax= [ roax+ [ - nax
19 Let € > 0. Since dSy has zero content, there are rectangles 71, 75, ..., Ty, such that

ZV(T) < eand 0So C UT_,T;. Let R = [a1,b1] x [az,ba] x -+ X [an,by] be a
Jj=1
rectangle such that S U (U';’=1 T;) C R. Let S(P) and s(P) be upper and lower sums for

fs over partitions of R, and let S(P) and 5(P) be similarly defined for fs,.

IfT; = [y, Byl X -+ X [otnj, Bujl, let P = Py x Py x -+ x Py, where P; is the partition
of [a;, b;] with partition points

a;, b, a1, Bir, iz, Biz, .. dim, Bim.

(These are not in order.) From Theorem 7.1.12 and Lemma 7.1.6, there is a partition
P={Ri,R,,..., R;} of Rsuchthat S(P)—s(P) < € and P is a refinement of Py. Now
let Ty = {j | R;NaSy # Q)} and suppose that | f(X)| < M, X € S. Then

S(P)—5(P) < S(P)—s(P)+2M Y V(R;) < (2M + 1)e.

Jj€To

20. First suppose that S = R, a rectangle. Any Riemann sum of f + g over a partition
P ={Ri,R,,..., R;} of R can be written as

Ofig = Z[f(x )+ gXHIV(R;)

Jj=1
k
=Y fXHV(R)) + Zg(x WI(R))
Jj=1 Jj=1

=0f + 0g,



182 Chapter 7 Integrals of Functions of Several Variables

where 07 and o are Riemann sums for f and g. Definition 7.1.2 implies that if € > 0,
there are positive numbers §; and §, such that

af—/Rf(X)dX <§ it P <&

and

Og —/Rg(x) dX

If |P|| < 8 = min(8;, 82) then
(af —/Rf(X)dX) + (ag —/Rg(x)dX)‘

af—/Rf(X)dX‘+ ag—/Rg(x)dX‘

€
< = if ||P| < 82.
St Pl <6

oes— [ ro0ax- [ g(x)dx‘ -

=

<€+€
— — =€,
2 2

so Definition 7.1.2 implies the conclusion.

To obtain the conclusion for a general bounded set S, let R be a rectangle containing S and
apply this result with f and g replaced by fs and gs.

21. First, consider the case where S = R (rectangle). The conclusion is trivial if ¢ =

0. Suppose that ¢ # 0 and € > 0. Any Riemann sum of c¢f over a partition P =
k

k
{R1, Ry, ..., Ry} of R can be written as & = Z cfX)HV(Rj) =c Z JXHV(R)) =
j=1 j=1
co, where ¢ is a Riemann sum of f over P. Since f is integrable on R, Definition 7.1.2

implies that there is a § > 0 such that ‘a —/ fX)dX| < |€—| if |P|| < §. Therefore,
R Cc

< €if o |P|| < §,s0cf isintegrable over R, again by Definition 7.1.2.

a—/Rcf(X)dX

To obtain the conclusion for a general bounded set S, let R be a rectangle containing S and
apply this result with f replaced by fs.

22. First, consider the case where S = R (rectangle). Since g(X)— f(X) > 0, every lower
sum of g — f over any partition of R is nonnegative. Therefore,

/R [£(X) — /(X)] dX = 0.

Hence,

/ ¢(X)dX — / F(X)dX = / [£(X) — f(X)]dX
R R R

(A)
- /R 8X) — £(X)] dX > 0,

o) / fX)dX < / g(X) dX. (The first equality in (A) follows from Theorems 7.1.23
R R
and 7.1.24; the second, from Theorem 7.1.8).
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To obtain the conclusion for a general bounded set S, let R be a rectangle containing S and
apply this result with f and g replaced by fs and gs.

23. First, consider the case where S = R (rectangle). Let P = {Ry, R2,..., R;} be a
partition of R and define

M; =sup{f(X)|X € R;},

mj =inf{f(X)|X € R;},

M =sup{|f(X)||X e R},

m; =inf{| f(X)||X € R;}.

Then o
M;—m;=sup{|fX)|—|fX)||X.X €R;}
<sup{|fX)— fX)||X.X € R} (A)
=Mj—m;j.

Therefore, S(P) — 5(P) < S(P) — s(P), where the upper and lower sums on the left are
associated with | | and those on the right are associated with f. Now suppose that € > 0.
Since f is integrable on R, Theorem 7.1.12 implies that there is a partition P of R such that
S(P) — s(P) < €. This and (A) imply that S(P) — 5(P) < €. Therefore, | f| is integrable
on R, again by Theorem 7.1.12.

Since f(X) < |f(X)| and — f(X) < | f(X)|, X € R, Theorems 7.1.2 and 7.1.4 imply that
[ roax < [ 1reoiaxand - [ ro0ax < [ 1re01ax.so | [ oo ax
R R R R N

/ /(X)) dX.
N

To obtain the conclusion for a general bounded set S, let R be a rectangle containing S and
apply this result with f replaced by fs.

=

24. First, consider the case where S = R (rectangle) and f and g are nonnegative. The
subscripts f, g, and fg in the following argument identify the functions with which the
various quantities are associated. We assume that neither f nor g is identically zero on R,
since the conclusion is obvious if one of them is.

IfP = {Ry, Ry, ..., Ry} is a partition of R then
k
Srg®) —ssg(p) = D (Mg, —myg ) )V(R)). (A)
Jj=1
Since f and g are nonnegative, Mg ; < My M, j and my, ; > my ;mg ;. Hence,
Mygj —mygj =My Mg j—myjmg,;
=My —mpj)Mgj +my;(Mg,j —mg.;)
=M (My;—myj) + My(Myg,j —mg,j),
where M ¢ and M, are upper bounds for f and g on R. From (A) and the last inequality,
Srg(P) —57g(P) < Mc[Syp(P) —s57(P)] + My[Sg(P) —5¢(P)]. (®)
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Now suppose that € > 0. Theorem 7.1.12 implies that there are partitions P; and P, of R
such that ¢ ¢

and Sg(P2) —s,(P2) < ——. C
A s (P2) = 55(P2) < ©
From Lemma 7.1.6, the inequalities in (C) also hold for any partition P that is a refinement
of Py and P,; hence, (B) yields

SrPy) —sr(Py) <

€ €
Srg(P) —s57,(P) < §+§ =€

for any such partition. Therefore, fg is integrable on R, by Theorem 7.1.12.

If f(X)>mqand g(X) >my (X € R),write fg = (f —m1)(g—m2)+maf +mig—
m1my. The first product on the right is integrable by the proof given above. To complete
the proof, use Theorems 7.1.23 and 7.1.24.

To obtain the conclusion for a general bounded set S, let R be a rectangle containing S and
apply this result with f and g replaced by fs and gs.

25. From Theorem 7.1.13, u is integrable on R. Therefore, Theorem 7.1.27 implies that
u(X)v(X) dX exists. If m = min {u(X) | X e R} and M = max {u(X) | Xe R}, then

R
m < u(X) < M and, since v(X) > 0, mv(X) < u(X)v(X) < Mv(X). Therefore,
Theorems 7.1.24 and 7.1.25 imply that

m/ v(X)de/ u(X)v(X)deM/ v(X)dX. (A)
R R R
This implies that
/ uX)X)dX = u(Xo)/ v(X)dX B)
R R
for any Xp in R if/ v(X)dX =0. If/ v(X)dX # 0, let
R R
/u(X)v(X)dX
7= IR
dst [rv(X)dX

Since fR v(X)dX > 0 in this case, (A) implies that m < u < M, and (Theorem 5.2.13)

implies that ¥ = u(Xp) for some Xg in R. This implies (B).
26. Let R = [a],b]] x [a},b)] x --- x [a),, b)]. be a subrectangle of R = [ay,b;] x
[az, ba] X --- X [an, by]. Suppose that € > 0. From Theorem 7.1.12, there is a partition

P=P X Py x-x P, ={R1,R5..., R} of R such that

k
S®)—s(P) =Y (M; —mj)V(R)) <e. (A)
Jj=1

We may assume that alf and blf are partition points of P;, 1 <1i < n, because if not, they can
be inserted to obtain a refinement P such that S (ﬁ’ )— s(ﬁ’ ) < S(P)—s(P) (Lemma 7.1.6).
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Therefore, there is a subset U of {1,2, ..., k} such that P’ = {R;} ey is a partition of R’.
Since (A) implies that

S®)—sP) =Y (M; —m)V(R)) <e.
Jjeu

Theorem 7.1.12 implies that f is integrable on R’.

27. (a) From Exercise 26, / g(X)d X exists if /~ g(X)d X does. For the converse, suppose
R R

that/ g(X)dX exists. Let R = [a1,b1] X [az, ba] X --- X [ay, by] and R = [a1, B1] x
R

[z, B2] - -+ X [otn, Bu]. Consider only partitions P = 171 X oee X Fn of ﬁ, where Fl is
a partition of [w;, B;] that includes a; and b; among its partition points. Let P; be the
partition of [a;, b;] consisting of the partition points of P; in [ai,bi]. Then P = Py X
P, x---x Py is a partition of R. Now P = {R1,....Rm, RY,..., R, R,..., R}, where
P ={Ry,....Ru}, R}...., R} intersect IR, but not RO, and RINR=0(1 <i <5s).
Now suppose that |g(X)| < M. Since g(X) = 0ifx € R/,

k
Sg(P) —sg(P) < SR(P) —5,(P) +2M Y V(R)). (A)
Jj=1
Since
RU[UA_ R | lay = 1P by + I P - x fan = 1Pl by + P
the above stated properties of R, ..., R; imply that

k
Y V(R)) < (b1 —ar + 2| P|) -+ (bn — an + 2| P|| = (b1 —a1) -+ (bn — an).  (B)
Jj=1

Now suppose that € > 0. Since / g(X) dX exists, there is a § > 0 such that Sg(P) —

R
Sr(P) < €/2if || P|| < & (Theorem 7.1.12); in addition, choose § so that the right side of
(B) < €/21if | P|| < 8. Then (A) implies that if || P|| < §, then Sz(P) —sz(P) < €, s0

/Ng(X)dX exists (Theorem 7.1.12).

R

To see that /Ng(X)dX = / g(X)dX, observe that
R R

m k P
o= ge)VR) + 3 0-V(R) + 3 0-V(R)),

i=1 j=1 q=1

where X; € R;, can be interpreted as a Riemann sum for both integrals.
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(b) Suppose that Ry and R, are rectangles containing S and / fs(X)dX exists. Ap-
Ry
plying (a) with R =R and R = R N R, implies that (C) / fsX)dX =
R1NR>

[fs(X) dX. Now applying (a) with R=RyandR = RiNR» implies that/ fsX)dX =
R Ry

/ [fs(X) dX. This and (C) imply the conclusion.

R1NR>

28. (a) From Exercise 26, f is integrable on each subrectangle Ry, R», ..., R. If o;

is a Riemann sum for / JS(X)dX over a partition of R;, 1 < j < k, then (A) o =
R;

01 + 02 + - - - + 0% is a Riemann sum for / f(X) dX over a refinement P’ of P. Because
R
of (A),

/Rf(X)dX—jZ:/RJ_ f(X)dX=(/Rf(X)dX—a)—jZ: (/R f(X)dX—aj)

(B)
o —/Rf(X)dX

Now suppose thate > 0. By Definition 7.1.2, thereisaa§ > 0 such that <

€ and <e€/k,1 <j <k,if |P’|| <§. This and (B) imply that

o - | reax

k
/R FX)dX ; /R x| <2

Since € can be made arbitrarily small, it follows that

k
/Rf(X)dX—;/Rj fX)dX =0.

(b) From (a) and Theorem 7.1.28 with u = f and v = 1, there is an X,- € R; such
that/ fX)dX = f(X,-)/ dX = f(X;)V(R;). The required Riemann sum is
R;

J

k
o= Y SEVR) = [ F0ax

Jj=1

k
29. Let P = {Ry,R,,..., R} and (A)/ fX)dX = Zf(X,-)V(Rj), where X; €
R j=1

k
R; (Exercise 28(b)). If 0 = Z SX;)V(R;) is any Riemann sum over R, then (A)
Jj=1
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k
implies that (B) < Z | f(X;) — f(X;)|V(R;). From Theorem 5.4.5,

Jj=1

a—/Rf(X)dX

n
SX;)— f(X,-) = Z Jx;i ()’Zj)(xij —X;j), where )’Zj is on the line segment connecting X ;
i=1

and X ;. From this and Schwarz’s inequality, (C) | f(X;) — f(X;)| < K|X; — X|, where
1/2

n
K=max{|Y f2(X)| |XeR
j=1

Now (B) and (C) imply that

k
o - /R FX)dX| < K Y |X; —X;|V(R)) < K/n|P|V(R).
j=1
Let M = k. /nV(R).
30. (a) Let

Piia=xo<x1<--<x,=b and Pr:c=yy<y;<---<ys=d

be partitions of [a, b] and [c,d], and P = P; x P,. If we consider f as a function of
(x, y) which happens to be independent of y, then Sy (P) = (d —¢)Sy(P1) and s s (P) =
(d —c)sp(P1). Let € > 0. Since f is integrable over [a, b], there is § > 0 such that
Sr(P)—sy(P1) <€/(d—c)if | P1| < & (Theorem 3.2.7). Therefore, S r (P)—s s (P) < €
if |P|| < &, so f is integrable on R (Theorem 7.1.12). Similarly, g is integrable over R.
(c) Since fg is now known to be integrable on R, we may consider Riemann sums of the
special form indicated in Exercise 3 to get the stated equality.

31. (a) Suppose that R is a rectangle containing S. From Exercise 18(b) with S = R,
f = fs,and g = fs,, / fsX)dX = / fs,(X) dX. This implies the conclusion.
R R

D) Write S = TZ'UT, UT3, where Ty = S1—S1 NSy, Tr, = S, —S1 NSy, Tz =
S1 N S;. From (a) and Exercise 14(b), f is integrable on 77 and 73; from Exercise 18(a),

f(X)dX = 0. Now use Theorem 7.1.30.
T3

7.2 ITERATED INTEGRALS AND MULTIPLE INTEGRALS

1

(;)/02 dy /_ll(x+3y) dx = /02 [(%2 + 3xy)

1

2
] dy=/ 6y dy = 3y*
x=—1 0

2
= 12.
0




188 Chapter 7 Integrals of Functions of Several Variables

2 1 2 FENE
(b) / dx/ (x3+y4)dy=/ [(x3y+—) ] dx
1 0 1 5/ ly=o
2 1 x4 x
— 3 _ — 2 s
—/1(x+5)dx (4+5)
27 2 27 2
(¢ / xdx/ sinxy dy =/ dx/ xsinxy dy
/2 1 /2 1

2 2
= —/ Cos Xy dx
/2 y=1

2n
:/ (cos x —cos2x) dx
/2
=—1.

( ) sian)
= (sinx —
2 /2

log2 1 s log2 2 5
(d) / ydy/ xe* Vdx =/ dy/ xye* Y dx
0 0 0 0
1 /logZ 2 1
== e dy
2 0 |: x=0

1 log2
—5 [ @-va

1

= E(ey -y)

2 79

27

°e2 1 —log2
0 2 .

L 20

2.Let Py ia; =xg <x1 <--<Xxp=by,Pr:a; =y <y <---<ys = by, and
P3:a3 =709 <z1 <--- < zy = b3 be partitions of [ay, b1], [az, b2], and [a3, b3], and let

P = P; x P, x P5. Denote Rl'jk = [xi_l, xi] X [yj_l, yj] X [Zk—la Zk]-
(a) P, x P is a partition of I, x I3. Suppose that

Mk Cjk) € vj—1,yj1 % [2k=1, 2], 1=<j<s, 1=<k<=<t,
SO
s t
o= Gk, L)y — yi-)(@k — 2k-1)
J=1k=1

is a typical Riemann sum of G over P, x P3. Since

r x

by
G L) = / Femmtwd =3[ fe e e dx,

i=1"Y%i—1

(A) implies that if

(A)

(®)

mijx = inf{f(x, ¥,2) | (x,y,2) € R,:,-k} and M;j; = sup {f(x, y) | (x,y,2) € R,:,-k} ,
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then

r r
Zmijk(xi —Xi-1) < G(Mjk. §jk) < Z M (xi — xi—1).
i=1 i=1
Multiplying through by (y; — ¥;—1)(2Zk — Zk—1), summingover 1 < j <s,1 <k <1,
and recalling (B) yields
s(P) <o < S(P), ©

where s(P) and S(P) are the upper and lower sums of f over P. Now let (P, x P3) and
S (P2 x P3) be the upper and lower sums of G over P, x Pj3; since they are respectively
the infimum and supremum of the Riemann sums of G over P, x P3 (Theorem 7.1.5), (C)
implies that R

s(P) <5(Py x P3) < S(P2 x P3) < S(P). D)

Since f is integrable on R, there is for each € > 0 a partition P of R such that S(P)—s(P) <
€ (Tl}ieorem 7.1.12). Consequently, from (D), there is a partition P, x P3 of I, x I3 such
that S(Py x P3) —5(P2 x P3) < ¢, s0 G is integrable on I, x I3 (Theorem 7.1.12).

It remains to verify that

/ Feoy D) d(x.y.2) = / G(y.2)d(y.2). )
R Irx1I3

From (B) and the definition of f12X13 G(y,2)d(y, z), there is for each € > 0 a § > 0 such
that

<e if ||P2x P3| <§;

/ G(y.2)d(y.2) — o
Irx1I3

that is,
a—e</ G(y,z2)d(y,z) <o +e if | P,x P3| <§é.
Irx1I3

This and (C) imply that
s(P)—e < / G(y,2)d(y,z) <SP) +¢ if |P| <3,
Irx1I3

and this implies that

/f(x,y,Z)d(x,y,z)—GS/ G(y,Z)d(y,Z)S/f(x,y,Z)d(x,y,ZHG (F)
JR IoxI3 R

(Definition 7.1.4). Since

/f(x,y,Z)d(x,y,z)=/f(x,y,1)d(x,y,z)
JR R

(Theorem 7.1.8) and € can be made arbitrarily small, (F) implies (E).

(b) Suppose that
k-1 Sl =2k 1=k<=t, (A)
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SO

o= H()(zk —2k-1) (B)
k=1

is a typical Riemann sum of H over P3. Since
r N
He = [ fergodr=Y Yy Fxy. &) dx.
I xI> i=1 j=1"Fi—xiIx[y—1,9]
(A) implies that if
mij = inf{f(x.y.z) | (x.y.2) € Rijk} and M = sup{f(x, ) | (x.y.2) € Rijk},
then
r N r t
DD T miexi —xic)0 —yi-1) S HG) <Y Miji(xi —xi-)(vj — yj-1)-
i=1j=1 i=1j=1
Multiplying through by (zx — Zx—1), summing over 1 < k < ¢, and recalling (B) yields
s(P) < o < S(P). ©)

where s(P) and S(P) are the upper and lower sums of f over P. Now let 5(P3) and S (P3)
be the upper and lower sums of H over Ps; since they are respectively the infimum and
supremum of the Riemann sums of H over P53 (Theorem 3.1.4), (C) implies that

s(P) <5(P3) < S(P3) < S(P). (D)

Since f is integrable on R, there is for each € > 0 a partition P of R such that S(P) —
sA(P) < € (Theorem 7.1.12). Consequently, from (D), there is a partition of /3 such that
S(P3) —5(P3) < €,s0 H is integrable on I3 (Theorem 3.2.7).

It remains to verify that

b3
/f(x,y,z)d(x,y,z)=/ H(z)dz. (E)
R as

From (B) and the definition of | ab: H(z) dz, there is for each € > 0 a § > 0 such that

b3

H(z)dz —o|<e if || P3| <$§;

as

that is,
b3

0—€< H(z)dz <o +e¢€ if | P3| <3.

as
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This and (C) imply that

b3
s(P)—e < H(z)dz < S(P)+¢ if |P| <3,

as
and this implies that

b3 r
H(z)dz < / fy.d@E. D) +e (B
R

as

/I;f(xvyvz)d(xvyvz)_ef

(Definition 7.1.4). Since

/iﬁmyxﬁﬂmyx)=/iﬁmy£ﬁﬂmy£)
JR R

(Theorem 7.1.8) and € can be made arbitrarily small, (F) implies (E).

3. If € > 0, there is a § > 0 such that | f(x,y) — f(x,)y)| < €if [y — y'| < & (The-
orem 5.2.14). Therefore, |F(y) — F(y')| < fab [f(x,y) — f(x,y)]dx < e —a) if
ly =y <8

4. 1letPy:a=xg<x1<--<xp=band P, :c=yy <y <---<ys=dbe
partitions of [a, b] and [c, d],and P = P; x P,. Then

S®) —s®) =D (f(xi,y) = fXi-1, yj—))xi = xi—)(y; = yj-1)

j=1i=1
=y [Z(f(xi, yj) = f(xic1, yi))(xi — xi—l)] vj=yj-1)
j=1Li=1

Y DY @i y) = i - — yi-1) | (i — Xich)

i=1|j=1

< NP Y (fboy)) = fla.y)(j —yj-1)

Jj=1

P2l Y (fximr, d) = f(xim1, €))xi — Xi-1)
i=1

= [PI(f(b.d) = fla.c))(d —c+b—a).

Since we can make ||P|| arbitrarily small, this and Theorem 7.1.12 imply that [, f(x, y)d(x, y)

exists. For each fixed y, f(x, y) is monotonicin x, so Theorem 3.2.9 implies that fab fx,y)dx
exists,c <y <d.
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2 1
5. (@) /R (o + D d(x. y) = /1 dy /O (xy + 1) dx

:/12[(%“) ;0] dy 2
=/12(§+1)dy=(y742+y)

2 3
(b) /R(Zx +3y)d(x,y) = /1 dy/1 (2x 4+ 3y)dx

2 3
= / |:(x2 + 3xy) ] dy
1 x=1

2 2
=/ 6y +8)dy = 3y% +8y)| =17
1 1
1 1
Xy X
— e d(x, =/ dfidx
(c) /R 2 (x.y) vdy | T
1 1
=/y[x/x2+y2 ]dy
0 x=0
1
=/ (y y2+1—y2)dy
0
bo2(v2-1

= % (02 + 12 =y?)
/4

0 3
27

(d) /xcosxycosand(x,y) :/ cosandx/ xcosxydy
R

0 0
2
dx
y=0

/4
= / cos2mx | sinxy
0

/4
:/ cos2mxsin2mwx dx
0
_ sin? 27 x |™/* 1
4 |, 4n

6. If € > 0 choose m so that 27"+1/2 < ¢. Then, for arbitrary (x, y), choose odd integers
p and g so that [2™x — p| < 1 and |2"y —¢q| < 1. Then

[(x—2p) + (v —27g)%]"* <,

so A is dense in R2. If P = {Ry, R,,..., Ry} is a partition of R = [a,b] x [c,d],
then R; N A and R; N A€ are both nonempty, 1 < j < k. Hence, s(P) = 0, while

S(P) = (b —a)(d — c). Therefore, / f(x,y)d(x,y) = 0, while / fx,»)dx,y) =
R R
(b—a)(d —c),so f isnot integrabl(;n R (Theorem 7.1.8).
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Since the set of point { | k = nonnegative integer, r = odd 1nteger} is denumerable,
f(x,y) = 1 on any horizontal line except on a set of values of x with measure zero in R

b
(Example 3.5.3); therefore, for a fixed y, f(x, y) is integrable on [a, b] and / fx,y)dx =

b — a, by Theorem 3.5.6 and Exercise 3.5.6. Therefore, / dy/ fx,y)dx = (d —

¢)(b — a). Similarly, f(x,y) = 1 on any vertical line except on a set of values of
y with measure zero in R; therefore, for a fixed x, f(x,y) is integrable on [c, d] and

d
/ f(x,y)dy = d — c. Therefore, / dx/ f&x,y»)dy = (b —a)d —c).
c a c
7. Recall that the rationals and irrationals are both dense on the real line.

@LletP; :0=xg<x; <--<xg=1land P, :0=yp9p<y; <:---<y =1
be partitions of [0, 1], and let P = Py x P,. Let R;; = [x;—1,x;] X [y;—1,y,]. From
Lemma 7.1.6, we may assume that x, = 1/2 for some integer r, with 0 < r < s. Then

inf {f(x, )| (x, ) € Rij}

2Xi—1yj-1, 1 =<i=<r,
Yj-1, r+1<ic<s,

Vi I1<i=<r,
sup{ ACS y)|(x y)eR,,} {2)16,)1,- r+1<i<s.

s(P) = (Zin_l(xi —Xxi—1) + Z (x; _xi—l)) Z yj—l(yj _y./—l)
Jj=1

i=1 i=r+1

1/2 1 1 3
=— 2/ xdx+/ dx /ydyz— as ||P|| =0,
0 1/2 0 8

S(P) = (Z(Xl — Xij— 1) +2 Z xl(-xl Xi— 1)) Zy/(y/ yj_l)

i=1 i=r+1

1/2 1 1 5
=—>/ dx+2/ xdx /ydyz— as |P|| =0,
0 1/2 0 8

-
0 A FCx.)d(x,y) = 3 and /R Fee)dy) =

(b)Let P : 0= yp < y1 <--- <y, = 1Dbe a partition of [0, 1]. For a given x, let s5(P)
and S (P) be lower and upper sums of f(x, y) over P. Since

. Zx —1, Of-xfl 23
1nf{f(-xv Y)|Yj—1 =y= yl} = {y,ijll, ! 1/2 < x </1’

sup {f(x.y)|yj-1 <y <yj}= {
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! 1
Znyj-l(yj—yj-l)ﬂx/ vdy =xas [P >0, 0<x<1/2
0
sx(P) = J=1

Sy vy IH/ ydy=1/2as |P| »0.  1/2<x<1.
Jj=1

t 1
Zmyj—yj_l)a/ vdy =1/2as|[P]| - 0. 0<x<1/2
Sy(P)={/7!

1
203 30—y oezx/ vdy = xas|[P| -0, 1j2<x<1:
0
Jj=1

1/2, _(1/2, 0<x<1/2,
<1 and/f(xy)dy {x, 1/2<x <1,

’

0=
1

X =
/2<x

1
J remar =,

so/o1 (/Llf(x,y)dy) dxz%and/o1 (ff(x,y)dy) dx = g

8. Recall that the rationals and irrationals are both dense on the real line.

LetP1:O=x0<x1<---<xs—l P, : 0=y <y <<y =1,and

10 =20 < 21 < cee < Zy = 1Dbe partmons of [0, 1], We exp101t the identities

Z(y,—y, 1) = Z(zk—Zk 1)—1andZ(x,—x, ) = Z (xi — Xi— 1)— =
i=1 i=r+1

w1th0ut specific references

(@) Let P = Py x P, x Py and Rjjx = [xi—1,Xi] X [yj—1,¥;] X [2Zk-1,2k]. From
Lemma 7.1.6, we may assume that x, = 1/2 for some integer r, with 0 < r < s. Then

2xi-1(yj-1 + 2k-1), 1 =i =,

i {5, (5,320 € R} = {71071 beisn

yj+ Zk, I1<i=<r,

sup {f(x,,2) | (x,»,2) € Riji} = {ZXi(y/ +2zx), r+1<i<s,

t u
In the following we exploit the identities Z(y_,- —yj-1) = Z(Z‘k — Zp—1) = 1 and
j=1 k=1
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r N
1
Z(xi —Xj—1) = Z (xi —xi—1) = 3 without specific references.
i=1 i=r+1

S(PY=2>"3" " xia(yjr + 2k-0) @i = Xie)(¥j — ¥j-1) @k — Zk-1)

i=1,=1k=1

+ 0D Y i+ D) — X)) = ¥i-D @k — Zk-1)

i=r+1j=1k=1

=2 ZY/ 1(vj = yj- 1)+ZZk 12k — 2k-1) le 1(xi — xi—1)

Jj=1 i=1

t

Y oy —yic0)+ Y 212k — Zk—1)

j=1 k=1

1 1 1/2 1 3
—>(/ ydy+/ zdz) 2/ xdx+ -] =-as ||P| —0.
0 0 0 2 4

to|~

S(PY=Y "> (v + 2 —xi-)(yj — yj-1)@k — 2k—-1)

i=1j=1k=1

+2 ) Y Y X+ ) = xim)0) = yi-) @k — k1)

i=r+1j=1k=1

t u
v =yic0+ Y Gk — k1)
Jj=1 k=1

t

+2( Dy = vi- 1)+ZZk(2k—2k 1) le(xl—xl 1)

Jj=1 i=1

1 1 1 1 5
—>(/ ydy+/ zdz)(—+2/ xdx+)=—as||P||—>O.
0 0 2 1/2 4

Therefore, / f(x,y,2)d(x,y,z) = é and / f(x,y,2)d(x,y,2) =~

(b) Let P= P; x P, and R,, = [xi—1,x;] X [yj—1,y;]. From Lemma 7.1.6, we may
assume that x, = 1/2 for some integer r, with 0 < r < s. For a given z, let s (P) and
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Sz (F) be lower and upper sums of f(x, y, z) over P. Since

] ~ 2xi—1(yj—1+2), 1<i<r,
1nf{f(X,y,Z) | (x,y) € Rij} = {yil_ll_ﬁ_yé ' r+l1<i<s

~ y+Za lflfra
sup {f(x.y.2) | (x.y) € Rij} = {Z;i(yi +2), r+l1<i<s,

sZ(F) = ZZ Z Xic1(Vjo1 + ) —xi—) ;= yj-1)

i=1j=1

+ Y D i+ D0 —xim) () = yj-1)

i=r+1j=1
r t r
=2 (Z Xi—1(xi — xi—l)) Z Vi-1(yj —yj-1) | +2z in—l(xi — Xi-1)
i=1 Jj=1 i=1
1 t
talet Y vy —yi-1)
j=1
IR d
— (E +2 z;xi_l(xi — xi_1)> zZ+ Z:l Vi-1(yj —yj-1)
= J=

1 1/2 1 3 1
— —+2/ xdx (z+/ ydy)z—(z+—) as [P — 0
2 0 0 4 2

Se(P)=) 2 (i + D —xi-)(yj — yjm1)

i=1j=1

+2 30 Y Xy + D0 = xim) (v = yj-1)

i=r+1j=1

1 t
=5lz+ Y vy =yj-1)

j=1
N t N
+2( > xi(xi—xi_1)> D=y [ +28 Y0 X —xia)
i=r+1 j=1 i=r+l

1 N
= (§+z > xilxi —xi1) (Z+ZYJ(Y/ yj-1)

i=r+1

—>(1+2/1 d)(+/ ) 5(+1) [P — 0]
— xdx )|z =7|l2t35)as )
2 1/2 0 4 2
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soéf(x,y,z)d(x,y) = % (z + %) and /ﬁf(x,y,z)d(x,y) = Z (Z + %)

1
(c)/ f(x,y,z)dx =y + z forall x;
0

/ dy/ f(xyz)dx_/()’-l-z)dy—( +yz)
/0 dz/()ydy/() f(%%z)dx:/o (%"'Z)dz:(%_,_%)

9. leta =x9g<x1<--<x,=bandc = yp < y; <--- < ys = b be partitions of
[a,b] and [c, d].

1

Ly
= — Z’
o 2

1
=1.
0

d
(a) From Exercise 3.2.6(a) with g(x) = / fx,y)dy,

/(/ S, y)dy> dx—Z/Xl l(ﬁf(x,y)dy) dx (A)

From Exercise 3.2.6(a) with g(y) = f(x, y) (x fixed), / fx,y)dy = Z Fj(x), with
Jj=1
yj

Fj(x) = ’ f(x,y)dy. Since
Yi—1
S
inf{ > Fj(x)|xj-1 <x <x, me Fj(0) | xjo1 < x < x;),
Jj=1
(A) implies that

/Lb(/Ldf(x,Y)d)) de;Z/Xl l(yflf(x y)dy) (B)

Xi Y
/_ ( f(x,y) dY) dx > mij(xi —xi—1)(yj — yj-1)

Yji—1

Since
with
mij =inf{f(x, y) | Xic1 SX <X, yj—1 <y < it
b d
(B) implies that / / f(x,y)dy | dx is an upper bound for all lower sums of f over
Ja \Jec

partitions of R = [a, b] x [c,d]. Since / f(x,y)d(x,y) is the supremum of this set,
R

A FOry)d(x,y) < /_b (/_d f(x,y)dyjdx
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d
(b) From Exercise 3.2.6(b) with g(x) = / fx,y)dy,

/ (/ f(x)’)d)’)dx—Z/Xll(/ff(x,y)dy)dx (A)

From Exercise 3.2.6(b) with g(y) = f(x, y) (x fixed), / fx,»)dy = Z Fj(x), with
Jj=1

Vi
Fj(x) = / f(x,y)dy. Since
y

j—1
N

sup 9 > Fj(x)|xj1 <x < x, Zup {Fj(x)|xj-1 <x <x,},
j=1 j=1

(A) implies that

/_(/ S, y)dy> dx<ZZ/)Cl l(yj/lf(x,y)afy) dx. (B)

i=1j

Since

Xi Y
/ ( f(x.y) dy) dx < Mij(x;i —xi—1)(y; —yj-1)
Xi—1 Yji—1

with
M =sup{f(x, )| xic1 <x <xi, yj-1 <y < y,},

d
(B) implies that / (/ f(x, ) dy) dx is a lower bound for all upper sums of f over
a c

partitions of R = [a,b] X [c,d]. Since /f(x, y)d(x,y) is the infimum of this set,
R

Zf(x, y)dx,y) = f (ff(x, ) dy) dx.

b d
10. Let U(x) = / f(x,y)dy and L(x) = / f(x,y)dy. From Exercise 9, (A)

b — b
/U(x)dx < /f(x,y)d(x,y) and (B)/ L(x)dx > /f(x,y)d(x,y). Since

L(x) < U(x) (Theorem 7.1.7), (A) implies that (C)/ L(x)dx < /f(x y)d(x,y)

and (B) implies that (D)/ Ux)dx > /f(x y)d(x,y). Slnce/f(x y)d(x,y) =
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/bU(x) dx < /bU(x) dx,

a a

/f(X,Y) d(x,y) = / f(x,y)d(x,y) (Theorem 7.1.8) and
JR R

b b
(A) and (D) imply that (E) / Ux)dx = / Ux)dx = / f(x,y)d(x,y), and, since
Ja a R

b b b b
/ L(x)dx < / L(x)dx, (B) and (C) imply that (F)/ L(x)dx = / L(x)dx =

/ f(x,y)d(x,y). From Theorem 3.2.6, (E) and (F) imply that U and L are integrable on
R

b b
,b], and L(x)dx = UXx)dx = ) d(x,y),
[a]an/; (x)dx / (x)dx /Rf(xy) (x.7)
11. (a)

2 5 0
/(x—2y+3z)d(x,y,z)=/ dz/ dy/ (x =2y +3z)dx
R -3 2 -2

2 5[ /52 0
= / dz/ [(— —2xy + 3xz) ] dy
-3 2 2 x=—2

2 5
=/ dz/ (—4y + 62 —2)dy
-3 2

2 5
= / |:(—2y2 + 6yz —2y) ] dz
y=-2

-3
2
= —285.
-3

2
- / (82 — 48) dz = (922 — 487)
-3

/2 2 1
(b)/ e sinxsinz d(x,y,2) =/ sinz dz/ e’ dy/ e sinxdx = 0.
R 0 0 -

1

1 1 1
(c) / (xy +2xz+yz)d(x,y,2) = / dy/ dz/ (xy +2xz 4+ yz)dx
R 0 -1 -1

1 1
=/ Zydy/ zdz = 0.
0 -1
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(d)
2 3 2,2 1 1 1 2 2,2
/x y ze ® d(x,y,z)z/ dx/ Xy dy/ xy“ze™ dz
R 0 0 0
1 1 1 1
= —/ dx/ Xy ey dy
2Jo 0 2=0
1! ! 2
= - d W —1)d
2/0 x/o Xy (e ) y
1 ! 2 !
=- T xy? d
NG
1 1 X2
T—x—Ddy=-e*———
/O(e x—1)dy 4(e 7 x)
1 5
=—-|le—=].
4 2
3 9—y2
12. (a) /(Zx +y2)d(x,y) = / dy/ 2x + y?)dx
s -3 0

3 9—y2
:/ |:(x2 + xyz) ] dy
-3 x=0

1

0

3 33 3
= 9/ 9 -y dy = 9(9y——) =324,
-3 3 -3
1 VY 1 x=./y
(b) /2xyd(x,y)=2/ ydy/ xdxz/ y | x? dy
S 0 x=y2 0 x=y2
1 3 6\ |1
4 y oy 1
= — d = _—— = —.
/O y(y —y")dy ( 3% ) R
: T log2y
(©) / et d(x,y) = / any dy/ e~ dx
S y /2 Y logy
T log2y
[l ]
w2 Y x=logy
T T
:/ sinydy = —cosy =1.
T

/2 /2
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13. The curves y = x2 and y = 2x intersect at (0, 0) and (2, 4).
¥
dy

4 vy 4l /\2
[snaen=["a [Tt nax= (_+xy)
S 0 y/2 0 2 x=y)2
4 2 5/2 2
- PR S W B S S
/0 (y T2 )dy ( w5 T3
2 2x 2 y2 2x
S 0 x2 0 2 yx2

4

0

2 4 3 4 5N\ |2
=/ (4x2—x3—x—)dx=(4i—x——x—) =2.
0 2 3 4 10/ | 15
1 x249 1
14.(a)A=/ dx/ dy=18/ dx = 36.
-1 x2—9 -1
1 4—x 1 1
(b)A=/ dx/ dy=2/(l—x)dx=—(l—x)2 =1
0 x+2
2 4-y? 33 2 s
(c)A=2/ dy/ dx =4 (4 yz)dy—4(4y——) = —
y 0 3
+

d A= dx/2 dy—/(ezx+2x)dx—(—+x)L
x y

1/3 (1-32)¥2 1-
16. f(x y,2)d(x,y,2) = / dZ/ dy f(x y,z)dx

1/2 (1-2y)/3 1-2y—3z

=/ dy/ dz/ f(x,y,z)dx
0 0 0
1/3 1-3z (1—x—-3z)/2

=/ dz/ dx/ f(x,y,z)dy
0 0 0
1 (1—x)/3 (1—x—3z)/2

=/ dx/ dz/ f(x,y,z)dy
0 0 0
1 (1—x)/2 (1—x—2y)/3

=/ dx/ dy/ f(x,y,2)dz
0 0 0

1/2 1-2y (1—x—2y)/3
=/ dy/ dx/ f(x,y,2)dz
0 0 0

201

52
15
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2/3 2—3x 2—y—3x
17. (a) /xd(x,y,z)z/ xdx/ (2—y—3x)dy/ dz
s 0 0 0

2/3 2-3x
=/ xdx/ dy
0 0
2—3x
dx
y=0

1 2/3
=—§/ 2—y—-3x)7°
0
1 2/3
= —/ (9x> — 12x? + 4x) dx
0

1 2/3
= 5/ x(2—3x)%dx
0
2

2(9%—2)6 +x)
1 Jx y?
(b) /yezd(x,y,z)zf dx/ ydy/ et dz
s 0 0 0
1 Jx »?
=/ dx/ y|:eZ ]dy
/dx/ y(e” —l)dy
1 Vx
= — eyz—y dx
e
/(e —x—1)dx
453
2 2 o 2 2)
x2+y
(©) /xyzd(xyz) / ydy/ xdx/ zdz
xz+y2
/ydy/ dx
=0
1 ! V132
:—/ ydy/ (x3+xy2)dx
2 Jo 0
1 ! x4 22) 1-y2
= - —+x d
4/(; y|:(2 Y x=0 Y

L |

1 [l s 1 yz ys
—g/o(y—)’)d)’—g(T—?)o

2/3 2

0 27
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1 z JzZ
(d) /yzd(x,y,z) =/ zdz/ ydy/ dx
S 0 0 z2

:/()IZ(ﬁ—zz)dz/Zydy

0

1 1
= 5/ (Z"? =% dz
0

1 2Z9/2 Z6
2\ 9 6

18. (a) The two surfaces intersect on the circle {(x, ¥,2) | x24+y2 =4,z = 2};
2 Va—x2 8—x2—y2 2 Va—x2
V:/ dx/ dy dzzZ/ dx/ 4—-x2—y%dy
-2 —V4—x2 x24y2 -2 —Va—=x2
2 Va—x2 2 33 Va—x2
=4/ dx/ (4—x2—y2)dy=4/ (4y—x2y——)
-2 0 2 3

1 2
= ?6/ (4—x2)%2dx.
0

L |
0 36

dx

y=0

(b)

1—x 1—x
/ / dy/ dz—/ dx/ (x* +y)dy
1 4x
/ (xy+—) dxz/ (——x+2x ——)dx
y=0 0 3 3
x x x4)1 1
32 3
(© V=/ x/ dy/ dz—/ dx/ y2dy
Lol _! _ L 128
3/ |:y y=0:|dx—3/0xdx—21x 0—21.
1 V1-x2 4(1-x2-y2)
(d) V=/ dx/ d@/
0 0 0
1 V1-x2
:4/ dx/ (1—x2—yHdy
0 0

1 3 1—-x2
ol o)
0 3

8 1
dx = —/ (1—x2)*2dx.
3Jo

y=0
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The change of variable x = sin 6 yields

8 /2 2 /2
V:—/ cos49d9:—/ (1 + cos26)% db
3Jo 3 Jo

2 /2 2 /2 1
:—/ (1+00329+003229)d9:—/ §+200329+—cos49 d@:z.
3Jo 3Jo 2 2 2

19. (a)

/R(jZ:xj) dX:jZ::I/ij dX

1 b,
= (@1 — b)) (@ —bs) -+ (an —ba) 3 | xax,

bj —dj Ja;

Jj=1
b,

= (a1 —b1)(az —by)---(a b)zz(b )y
/

_(ar —b1)(az —b2) -~ (an — bn) Z(a. +b)
= jtbj)

2 ‘
Jj=1

(b)

/R(/Z:x?) dX:/.Z::I/RdeX

= (a1 — b1)(@z2 = b3) -+ (an — bn) Z

1 J
/ X3 dx;
bj—ajJa; -

b,

= (a1 —bi)(az —b2)---(a b)z3(b )l
/

_ (a1 — b1)(az —b2) -+ (an — bn)
3

Z(a% + ajbj + b%)

Jj=1

(c)

by b> bn
/ X1X2 - XpdX = / x1dxy / Xodxy |-+ / Xn dxy,
R a az an

=27"(b7 — a7)(b3 —a3) -+ (by — ap).
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21. § = S1 U S, U S3, where

Si={(x.y)|-1<x<10<y<1},
S={x.y]0<x=<y-1,1<y=<2},
S3={(x.y)| —1<x<l-y 1<y=<2}.

/Sl(””d(x’”:/ol dy/_ll(x+y)dx

1 x2 1 1
=/ [(7+xy) ]dyzZ/ ydy =1;
0 x=-—1 0

2 y—1 2 %2 y—1
Sz(x+y)d(x,y)=/l dy/O (x+y)dx=/1 [(7+xy) x=o] o
_ (¥ 1 (Y2 2
= G o= (53]

2 1-y 2 x2

/L;S(x-'_y)d(x’y):/; dy/;1 (x+y)dx:/; |:(7+xy)
_ [ AV A Y

‘/1 (y‘7)dy—(7—z)

1_3’

17
therefore, /(x +y)dx,y)=1+1+ 3 — 3
s

22. Reversing the order of integration yields

/Ide/vl—xz dy _/1 d /\/I—yz xdx
0 0 VX2 4+ y? 0 Y 0

N
1 1-y2
=/ (\/x2+y2) dy
0 x=0
1 2 1
_ _ oy 2\ 1
—/0(1 y)dy—(y 2)0—2-

X
23. Integrating y™ (x) = f(x) from a to x yields (B) y"~V(x) = / f(t1)dt1, since
a

t 1)
y®D(a) = 0. Integrating (B) from a to x yields y"=2(x) = / dt2/ f(t)dt,
a a
since =2 (a) = 0. Continuing in this way yields (A).
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(a) Reversing the order of the integrations with respect to #; and #, as in Example 7.2.11
X

1) X
yields / dt, f(t)dn = / (x —t1) f(¢1) dt1. Now complete the proof by induc-
a

a a
tion. If n > 2 and

X In—1 13 1) 1 X 5
/ dln—l/ dln—z---/ dlz/ fw)dn = / (x =)' f(t) dtr,
a a a a (n _2)' a

then

X tn 13 t 1 x tn
[ [t [T [T pedn = o [ [T pe dn,
a a a a (n—Z)' a a

and reversing the order of the integrations with respect to #; and #,, on the right as in Exam-
ple 7.2.11 yields

[ | " g - | "ty / ? flydn = o — 0 f@dr,

where we have changed the dummy variable #; to 7.
24,

P P
/ e sinaxd(x,y) =/ dy/ e ™ sin ax dx
T, 0 0

[P a J ”e“’y(ysinap+acosap)d
Jo a2+ )2 Y=, a? + p? Y

By Schwarz’s inequality,

‘ysinap+acosap‘< 1

a? + p? T a2+ p?

o0
. . . . - 1
so the second integral is less in magnitude than —/ e Pdy=— —>0as p - oo;
aJo pa

hence,
o0

(A)

b4
0 2

Ia: 761 :tan_l—
(@) /0a2+y2 y !

Reversing the order of integration yields

P P
/ e ™ sin axdx =/ sinax dx/ e dy
T, 0 0

Pl—e >
:/ — sinaxdx
0 X

o i o ;
sinax _p,sinax
=/ dx—/ e dx.
0 X 0 X
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_xpSinax *® sinax

But [e™** < |ale™™”, so the second integral — 0 as p — oo. Hence, I(a) = /
X 0

X
This and (A) yield the conclusion.

7.3 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

1. Let Sy and S» be dense in R and S1 U S, = R; for example, let S be the set of
points in R with rational coordinates and let S, be the set of points in R with at least one

irrational coordinate. Then/I/fslusz dX = /VfSlUSz dX = V(R), wh11<e/1//sl dX =
/1//52 dX = V(R), 30/1//51 dX+/ ¥s, dX = 2V(R), and/l/fsl dX = /1//52 dX =
0,30/1//51 dX+/1//sde=O,

R JR

2. Let R = [ay, b1] X [az, ba] X - -+ X [an, by] be arectangle containing E and let € > 0.
Suppose that E has Jordan content zero. Since / YE(X)dX = 0, there is partition P =

R
{R1,Ry. ..., Ri} of R such that Sy (P) < €; thatis, if U = {j | R; N E # @}, then
Z V(T;) < e.Since E C U T;, E has content zero in the sense of Definition 7.1.14.
Jjeu jeu
Now suppose that £ has content zero in the sense of Definition 7.1.14. Then there are
rectangles T = [aij,bij] X [azj,baj] X+ +[anj, byj] (1 < j < n)in R such that £ C

U T; and Z V(T;) <e€.Forl <i < nlet P; be apartition of [a;, b;] that includes the
Jj=1 Jj=1
partition points a;, b;, a1, bi1, ai2, biz, ..., Ain, bin, and let P = Py x Py x---x P,. Then

(A) Sy (P) < €. Since sy . > 0, it follows that / ¥ £ (X) dX exists (Theorem 7.1.12) and
_ R _

equals /1//E (X) dX (Theorem 7.1.8). Since 0 < / YEX)dX < Sy (P), (A) implies
_JR R

that / YE (X)dX = 0; that is, E has Jordan content zero.
R

3. Since S7 and S, are Jordan measurable, S and dS, have zero content (Theorem 7.3.1).
Therefore, 357 U 9055 has zero content. Since d(S; U S2) C 957 U 352 and 9(S1; N S2) C
dS1UdS, (Exercisel.3.24(a),(b)), d(S1 US>) and d(S; NS,) have zero content. Therefore,
S1 U S5 and S; N S, are Jordan measurable (Theorem 7.3.1).

4. (a) Since S is Jordan measurable, S is bounded (by definition). Therefore, 0S has
zero content (Theorem 7.3.1). Since dS C 9 (Exercise 1.3.24(c)), dS has zero content.
Therefore, 0.5 is Jordan measurable (Theorem 7.3.1).

No; § = {(x, y) | 0<x<1,0=<y=<1,x,y rational} is not Jordan measurable, but S
is.

(b) Since S and T are both Jordan measurable, dS and 97 have zero content (Theo-

dx.
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rem 7.3.1). Since (S — T') C S U dT (Exercise 1.3.24(c)), d(S — T') has zero content.
Therefore, S — T is Jordan measurable (Theorem 7.3.1).
5. Suppose that € > 0. From Theorem 7.3.1, V(dS) = 0, so S can be covered by
k
rectangles Ry, ..., Ry such that (A) Z V(R;) < €; moreover, we may assume that 9§ C
i=1

k
T = U R°. Now S N T° is a closed subset of S°, and

i=1
H=[HN(SNTU[HNT]. (B)

But V [H N (S NTC)] = 0 by assumption, so H N (S N T°) can be covered by finitely
many rectangles with total content < €. Now (A) and (B) and the definition of 7" imply that
H can be covered by a collection of rectangles with total content < 2¢. Hence, V(H) = 0.
1 ifr=s,

0 ifr s S01=Br] LetA=lan] B = [er. and EA = [bys].

6. Define §,5 = {

n
In all cases, b,y = Z erilir.
k=1
(a) If E is obtained by interchanging rows i and j of I, then

8rs ifr#iandr # j,

Crsg = 8js ifr=1i,
8is ifr =j.
Orrars =ars ,ifr #iandr #s,
Therefore, bys = (8;5a;s = ajs . ifr =i,
Sitais = ajs , ifr = J.

(b) If E is obtained by multiplying row i of I by a constant c, then

_ {8,3 ifr £1i,

cbis  ifr =1i.

Sprars = a ifr #1i
Therefore, b,y = { ' "° e 7 J
cé’”a” = cdjs , ifr =1i.

(b) If E is obtained by adding ¢ times row i of I to row j (j # i), then

o JBrs ifr # J,
ST 8 4 iy ifr = j.

Therefore, b,y = Srrars = ars , %fr #* ]‘,

8jjajs + cijais = ajs +cajs ,ifr = j.
7. (a) Note that det(I) = 1. Interchanging two rows of a matrix multiplies its determinant
by —1; hence, det(E) = —1 if E is of type (a). Multiplying a row of a matrix by a constant

¢ multiplies its determinant by c; hence, det(E) = c if E is of type (b). Adding a multiple
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of one row of a matrix to another does not change its determinant; hence, det(E) = 1 if E
is of type (c).

(b) We must have E'E = I'in all cases. IfE interchanges rows i and j, then E'l!=E.If

E multiplies row i by c, then E~! multiplies row i by 1/c. If E adds ¢ times row i to row
j then E™1 adds —c times row i to row j.

1 0 1 1 0 1 1 0 0
8. (A= 1 1 0 ;] A7=(0 1 -1 |=EAwithE;=| -1 1 0 |[;
01 1 0 1 1 0 0 1
1 0 1 1 0 0
A, = 01 -1 =E;A; with E,; = 0 1 0 ;
o0 2 0o -1 1
1 0 1 1 0 0
Az = 01 -1 =E3A, with E;= 01 0 ;
0 0 1 0 1 %
1 0 O 1 0 —1
Ay = 01 -1 = E4A3 with E4 = 0 1 0 ;
0 0 1 0 0 1
1 0 0
I=EsA; with E;= 0 1 1 ;o I= (E5E4E3E2E1)A;
0 0 1
A =E['E;'E;'E;'E]!
1 0 0 1 0 0 1 0 0
=110 010 010
0 0 1 01 1 0 0 2
1 0 1 1 0
x[ 0 1 0 01 -1
0 0 1 0 0 1
2 3 =2 132 - 100
WA= 0 -1 5 |[:A;=| 0 -1 5 |=EAwithE;=| 0 1 0 |;
0 -2 4 0 -2 4 0 0 1
12 -1 1 00
A, = 0 1 =5 =E;A; with E, = 0 -1 0 ;
0 -2 4 [0 01
1 2 -1 1.0 0
Az = 0 1 -5 = E3A, with E; = 010 ;
00 —6 0 2 1
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1 2 -1 10 0
Ay = 01 -5 =E4A3 with E4 = 0 1 0 ;
00 1 | 00 -1 ]
10 127 1 -2 0]
As=| 0 1 =5 | =EsAs with Es=|0 1 0 |;
00 I | 0 0 1 |
10 0 1 0o -1
Ag = 01 -5 = E¢A5 with Eg = 0 1 0 ;
00 1 0 0 1

I = (E7EcEsE4E3EE )A;

—_ W O

1 0
I=EA¢ with E;= 0 1
0 0

A =E['E;'E;'E;'E;'E;'E;!

200 1 00 1 00 10 0
=010 0 -1 0 0 10 01 0
00 1 0 01 0 -2 1 00 —6
120 1o L 10 0
x 10 01 0 01 =5
0 0 1 00 1 00 1

1

X u . b
9. |:y:|—A|:v:|W1thA ad—bc[—c ai| Since det(A) = T
(uz —up)(vy —vy)

Theorem 7.3.7 with S = [u1, uz] X [v1, v2] implies that V(LL(S)) =

lad — bce|
x u 2 3 277" .
10. | y | =A] v [withA=]| -1 5 0 . Since det(A) = ——, Theo-
12
z w -2 4 0

rem 7.3.7 with S = [1, 2] x [5,7] x [1, 6] implies that V = 2

1. If X € H = G(S1) N G(S N ST), then X = G(Uy) and X = G(U;) where U; € S;
and U, € § N Sy. Since G is one-to-one on S% and U; e S9, it follows that U, € 9S.
Therefore, H C G(dS), so V(H) = 0, because V(G(dS)) = 0, by Theorem 7.3.1 and
Lemma 7.3.4. Now use Corollary 7.1.31.

12. We show that I, = I;. Similar arguments show that /3 = I and I4 = I;. Note that

Ti={(x.y)|a* <x*+y* <b>, x>0,y >0},
T, ={(u,v)|a®> <u® + v <b* u <0,v>0}

Consider the transformation (x,y) = G(u,v) = (—u,v). Then G(T2) = T;. Since

JG(u,v) = —1, Theorem 7.3.8 with S = T, implies that/ fx,»)d(x,y) = / f(=u,v)d(u,v),
T 1>
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which can be rewritten as (A) / fx,»)dx,y) = / f(=x,y)d(x, ), since the
T 1>

names of the variables of integration are irrelevant. Since f(—x,y) = f(x, y), (A) implies
that I, = I;.

L3. @IX = (x1,x2,...,xp) let HX) = (e1x1, €22, ..., g\,,xn) and, if U is any set, lgt
U= {H(X) | X e U}. If R is arectangle containing 7', then R is a rectangle containing 7.

IfP = {Ry, Ry, ..., R} isapartitionof R then P = {Ry, R,, ... Ry} isa partitionof R. If
k k

o= Z S(X;)V(R;) is a Riemann sum of f7 over R, thenc = eq Z gH(X; ))V(I/?\j)
—1 i=1

isa l“\;/iemann sum of g7 over R, and conversely. However, since g(I-‘I/(Xj ) = f(X;) and

V(R;) = V(R}), 0 = ego. This implies the conclusion.

(b) Define g(H(X)) = f(X); that is, let eg = 1. From (a), g is integrable on T =T

and / g(Y)dY = / f(X) dX, which is equivalent to (A) / gX)dX = / fX)dX,

since 7tﬂhe name of theTvariable of integration is irrelevant. Since HH(X)) = 73(, gX) =

fMHX)) = —f(X). Therefore, (A) implies that — / fX)dX = / fX)dX, so
T T

/T F(X)dX = 0.

— 2
14. (a)Let[ ! } =F(x.y) = [ y/x ];thenF,(x’y) _ [ y/x* 1/x ]’SO
v x+2y 1 2

2y +x Qy+x)? 1 (1 4 2u)?
JF(X, Y) = 2 = — 2 = .
X X 2y +x v
If G = F! then JG(u,v) = _(1-1—%102’ so Theorem 7.3.15 with f = 1 yields V =
/S U_,_%u)zd(”’ v), with S = [1, 4] x [1, 3]. Therefore,

4 du 3 1 2P 1 4
V:/l m/l ”d”:[‘m ] [7 l]:(a)“za‘

(b) Let[ Z i| =F(x,y) = [ ;/yx i|;thenF’(x,y) = [ —y);xz IJ/CX i|and JE(x,y) =
2y

- = 2.

X

1
If G = F~! then JG(u,v) = 30’ so Theorem 7.3.15 with f = 1 yields
v

1 . 1[4 > dv 5
V = —d(u,v), with § = [2, 4] x [2, 5]. Therefore, V = — du — =log-.
S 2v 2 2 2 U 2

15. Let

U 1 -1 0 X X u
v | =10 1 -1 y |; then y | =A v | =Gu,v,w),
I 0 z z
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1 1 1
1 1
where A = 3 -1 1 1 |and JG(u,v,w) =det(A) = 3 From Theorem 7.3.15,
-1 -1 1

2
frowtsarsoumno = [ 1355 e2(25) ¢ (F52) b

1
= g/(3u2 + 6uv + 6uw — 6u + 3v? + 6vw + 2v + 3w? +2w)d(u, v, w)
S

where § = [—1, 1] x [-1, 1] x [-1, 1]. Exploiting the symmetries in S reduces this to

9 f1 1 1
/(3x2+2y+z)d(x,y,z)= —/ du/ dv/ w?dw = 3.
T 8J1 —1 ~1

u | _ xy ) , _ y o x _
16. Let [ v :| =F(x,y) = [ y— x? :|, then F'(x, y) = [ ox 1 :| and JF(x,y) =
y + 2x2. Theorem 7.3.15 with G = F~! implies that

2, 2. oo 4
/ (P x2y-2x%) d(x. y) = / VAN 2 ) = / (=32 d(u, v) = / vd(u, v).
T S y+2x S S

2 1

1

where S = [1, 2]x]0, 1].Theref0re,/(y2+x2y—2x4) d(x,y) =/ du/ vdv = X
T 1 0

2
XT=Yy
—2(x2 + y2). Theorem 7.3.15 with G = F~! implies that

u | _ xy ) y |y x _
17. Let[ v :|—F(x,y) —[ 5 :|,thenF(x,y) = [ ox —2y ]andJF(x,y) =

4_ 4

1 1 1
/ oy e d(x.y) = / X ) ) = + / (2—y2)e™ d(u,v) = / verd(u, v),
T 2 Js 2 Js 2 Js

x2 4+ y2

12 3 5
with S = [1,2] x [2, 3]. Therefore, V = 5/ e du/ vdv = Ze(e —1).
1 2

18. Let
x ar cos 0 cos ¢
y | =G@,60,9) =| brsinfcos¢ |;
Z crsing

then

acosfcos¢p —arsinfcos¢p —arcosfsing
G'(r,0,¢) =| bsinfcos¢p brcos@cos¢p —brsinfsing
csing 0 crcos¢

and JG(r, 0, ¢) = abcr? cos ¢. Theorem 7.3.15 implies that V = abc / r2cos¢ d(r, 0, ¢)
N

with § = [0, 1] x [0, 27] x [%, —g] Therefore,

1 27 /2 4
V= abc/ rzdr/ d@/ cospdop = gnabc.
0 0

—m/2



Section 7.3 Change of Variables in Multiple Integrals 213

19. From the discussion of spherical coordinates,
ex2+y2+zz
T /x2 4+ y2 472

with § = [3,5] x [0,27] x [%, %] Therefore,

ex2+y2+zz 5 5 27 7/2
dx,y,2) =/ re” dr/ d@/ cos p dp = 2m(e?® —e°).
0

T /x2 4+ y2 + 72 3 —x/2

d(x,y,z)z/sérzcosqbd(r, 9,¢)=/Srerzcos¢d(r, 0, ¢)

X rcos 9 cosf —rsinf 0
20.Let| y | =G(r,0,z)=| rsinf |;thenG'(r,0,z) = | sin6 rcosf 0
Z Z 0 0 1

and JG(r, 0, z) = r. Theorem 7.3.15 implies that V = / rd(r,0,z) withS = {(r, 0,z) | 0<z<r0<r<20<0c< 271}.
s

2 2 z 2 167
Therefore,V:/ d@/ rdr/ dzzZn/ r2dr = —.
0 0 0 0 3

u x2 —y? 2x =2y 0
21. Let | v | = F(x,y,2) = | x2+y% |;thenF(x,y,z) = | 2x 2y 0
z z 0 0 1

1
and JF(x,y,z) = 8xy. If G = F~!, then JG(u,v,z) = 3’ and Theorem 7.3.15 with
Xy

1
implies that/ xyz(x* — yHd(x,y,z) = §/ uvz d(u, v, z), where S = [1,2]x][3, 4] x
T s 1 2 4 1 21
[0, 1]. Therefore,/ xyz(x* —yHd(x,y.2) = —/ udu/ vdv/ zdz = —.
T 8 1 3 0 64
22. In all parts denote the iterated integral by /.

d ’
(a) I :/%,whereT: {(x,y)|y§x§ \/4—y2,0§y§«/§},which
T

is the image of S = {(r, 0) | 0<r<2,0<0< 71/4} under the transformation [ ; :| =

Gor.0) = | "% | Since JG(r.0) = r.Th 7.3.15 implies that I = md@ rdr
r,0) = rsing | -Since (r,0) = r, Theorem 7.3.15 implies that I = A e
T

— log 5.

g ¢

byl = / Xty d(x,y), where T = {(x,y) | 0<y<+Vd4—-x2,0<x< 2}, which
T

is the image of § = {(r, 0) | 0<r=<2,0<6c< 71/2} under the transformation[ ; :| =

a0 =| 1o |

/2 2
/ d@/ re” dr = z(e4—1).
0 0 4

.Since JG(r, 0) = r, Theorem 7.3.15 implies that [ = / re” d(r,0) =
N
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©1 = / z2d(x, y,z) where
T

T:{(x,y,z)|O§z§\/l—x2—y2, —«/l—xzfyfvl—xz, —1§x§1},

which is the image of § = {(r, 0, ) | 0<r<1,0<0<27,0<¢< 71/2} under the

X r cos 0 cos ¢
transformation | y | = G(r,0) = | rsinfcos¢ |.Since JG(r,0) = r?cos ¢, The-
z r cos ¢

27 1 /2
orem 7.3.15 implies that I = / r*cos¢sin ¢ d(r, 0, ¢) = / d@/ r4dr/ cos¢sin® pdp =
s 0 0 0
2
15°
23. By symmetry, the 4-ball is the union of 16 sets, each of which has the same volume as
T, = {(xl,xz,X3,X4) |xf + x% +x§ +x§ < a?, x1,X2, X3, X4 > O}.
Moreover, T1 = G(S1), where
Sy ={(r.61.0,.03)|0<r <a,0<6,6,0; <m/2},

and G is one-to-one on S;.
G'(r,01,0,,03) =

cos 01 cos By cos 03 —rsinfycos B, cosflz  —rcos By sinfy cos B3  —r cos 01 cos 6, sin O3
sin 01 cos 6, cos 03 7 cos 01 cosbrcos0s —rsinfy sinbrcos 03 —r sin B cos O sin O3
sin 05 cos 03 0 1 cos 05 cos 03 —r sin 6, sin 63
sin 03 0 0 r cos 03
JG(V, 91, 92, 93) =
cos 01 cos By cos3 —sin By cosbrcosf3 —cosOysinbrcosf; —cos Bp cos b, sin O3
3 sin 01 cos 6, cos 03 cos 01 cosBrcos 03 —sinfysinbr cos O3  —sinBq cos b, sin O3
sin 6, cos 03 0 cos 6, cos 03 —sin 0, sin 03
sin 63 0 0 cos 03

= r3(=Dy sin03 + D5 cos 03, with

—sin 0y cos B, cos 03 —cos B sinb, cos 03 — cos Oy cos B, sin O3
D, = cos 01 cosBycos 3 —sinfysinfycosf3 —sin by cos b, sin O3
0 cos 05 cos 03 — sin 6, sin 05
—sinf; —cosf;sinf, —cosbqcosbdy
= cos 0, cos? 05 sin 05 cosfy —sinfysinf, —sinb; cos b,
0 cos 0> —sin 6,
. —sinf; —cosH;
= —cos? 6, cos? 05 sin 05 .
cosf; —sinf;
. . —sinf; —cosf
— cos 0, sin? 0, cos? 65 sin 63 ! Ul
cosf; —sinf;

= —cos 0, cos? 05 sin 05 (cos2 0, + sin? 6,) = — cos B, cos? O3 sin O5.
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and
cos 01 cos B, cos 3 —sin Oy cos B, cos 03 — cos Oy sin 65 cos 03
D, = | sin 61 cos 0, cos 03 cos 01 cos B, cos 03  —sin 0 sin 6, cos 03
sin 6, cos 03 0 cos 6, cos 03
cos 01 cosb, —sinf; —cosbpsinby
= cos B, cos® 03 | sin6; cos b, cos; —sinf;sinb,
sin 0, 0 cos 0>
. —sinf; —cosf
= cos 6, sin? 6, cos? 63 1 Ul
cosf; —sinf;
cosfy —sinf
+cos?Brcos3 05| .01 !
sin 61 cos 61
— a3 -2 2 _ 3
= cos” 03 cos B, (sin” 6, + cos” B,) = cos 0, cos” O3.
Therefore,

JG(V, 01,05, 93) = r3(—D1 sin 03 + D5 cos 93)

= r3(cos 6, cos? 03 sin? 03 + cos 6, cos* 6,)

= r3cos 6, cos? 05.

Now Theorem 7.3.8 implies that

V(Ty) = / r3 cos 0, cos? 03 d(r, 61,02, 03)
S1

/2 /2 /2 2 7'[2(14
:/ d91/ cos@deZ/ 003293d93/ r3dr = ,
0 0 0 0 32

w2a*

so V(T) = 16V(Ty) =

24. (a)LetY = AX;thenX = A~!'Yand V(T) = | det(A~1)|V(S), where S = o], B2] x

[a2, B2] X -+ X [0, Bp]; thatis, V(T) = (b1 = al)(ﬂTd;t(zZ))i = (Bn = a").

n
(b) Since x; = Z(A‘l)ﬁyi, Theorem 7.3.8 implies that

i=1

1 n
x; dX= —— Al '[/ i dY.
foor %= s LA i |y

Therefore,

cixi |dX=— A_1 iiCi / i dY = ———— dl/ i dY.

(A)
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i

V) [# V(S) Bl—af V()
- - yi dyl == - - ==
:31 — U Jo; ,31 — O 2 2

However, / yidY = (i + Bi). There-
S

n n
. V(T)
fore, (A) and (a) imply that /T /Z_:l c;jxj |dX = (T IZ_; di(a; + Bi).
25. The ellipsoid is the image of 7' under the linear transformation X = AY, where A is
the diagonal matrix with ay, as, ..., a, on the diagonal. Therefore, Theorem 7.3.7 implies
that the content of the ellipsoid is |a1asz - - - an | Vy.



CHAPTER S8
METRIC SPACES

8.1 INTRODUCTION TO METRIC SPACES

1. Clearly, (a) implies (i) and (b) and (c) imply (ii). Also, (b) and (¢) imply (ii). For the
converse, setting ¥ = v in (ii) yields 2p(w, v) > 0 for any (w, v), and letting w = u here
and invoking (i) yields (a). Setting w = v in (ii) yields (A) p(u, v) < p(v, u) for all u and
vin A. Interchanging u and v in (A) yields (C) p(v, u) < p(u, v) for allu and v in A. Now
(B) and (C) imply (b). Since p(w, u) = p(u, w), (ii) implies (c).

2. p(x,y) = p(x,u) + p(u,v) + p(v, y) and p(u,v) < p(u, x) + p(x,y) + p(y,v) so

p(x,u) + p(v,y) = p(x,y) — p(u,v) and p(u, x) + p(y,v) = p(u,v) — p(x, y). Since
p(u,x) = p(x,u) and p(y,v) = p(v, y), the last two inequalities imply that |p(x, y) —
p,v)| < p(x,u) + p(v, y).

3. (a) We must show that ¢ is a metric on A. It is obvious that ¢ satisfies Definition 8.1.1(a)
and (b). For (c),

p(u,v) 1 1

o(u,v) = = <
e L+ p(u.v) 1+ 1+
p(u, v) pu, w) + p(w,v)
__puw)+pw,v) pu, w) p(w,v)
L+ pu,w)+pw,v) 1+pu w)+pw,v) 1+pwu w)+pw,v)
p(u,U)) p(w’v)
=o(u,w)+o(w,v).
14+ pu,w) 1+ p(w,v) ( ) (w,v)
pn (U, v) . . .
(b) Define p,4+1(u,v) = —————, n > 1. Then (4, p,) is a metric space, by induc-
. 1+ pn(u,v)
tion.

4. Suppose thatug € S. If S isopenin (4, p) there is an € > 0 such that {u |p(u, Up) < e} -

S. Ifo(u,ug) < ¢ , then P, o) < ¢ ,80 p(u, ug) < € and thereforeu € S;
1+e€ 14+ p(u,up) 1+e€

hence, S is openin (4, o).

217
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If S isopen in (A4, o) there is an € > 0 such that {u | o(u,up) < e} C S. We may assume
that e < 1. If p(u, up) < %, then o (u, up) < € and therefore u € S; hence, S is open
—€

in (4, p).
5. It is obvious that p satisfies Definition 8.1.1(a) and (b). For (¢), we consider the possible
cases:

(i) Ifu # w, then p(u,v) <1 = p(u,w) < pu, w) + p(w, v), since p(w, v) > 0.
(i) Ifu =wandv # u, then p(u,v) <1 =0+ 1= p(u, w) + p(w, v).
(iii) fu = v = w, then p(u,v) =0=0+4+ 0= p(u, w) + p(w, v).

6. (a) If p(v,ug) = r1 > r and p(u,ugy) < r, then p(v,up) < p(v,u) + p(u, ugp), so
p(v,u) > p(v,up) — p(u,up) > ry —r; hence, Sc(v) N Sy(ug) =P ife <ry —r.

(b) S1(uo) = {uo}, {u|plu.ug) <1} = 4

7. (@) If Sy, S2, ..., Sy are open and u € NY_,S;, there are positive numbers €1, €2, ...,
€p such that S¢; (u) C S;. If ¢ = min {ei | 1<i< n}, then Se(u) C N7_,S;.

(b) Let T = UY_,T; where T1, 1>, ..., T, are closed. Then T° = N7_, TF. Since Tf is
open, so is 7¢, by (a). Hence, T is closed.

8. (a) Since U is a neighborhood of ug there is an € > 0 such that Sc(ugp) C U. Since

U CV,Sc(up) C V. Hence, V is a neighborhood of ug.

(b) Since Uy, U,, ..., U, are neighborhoods of u there are positive numbers €1, €3, ..., €,
such that S¢; (ug) C U;, 1 <i < n. If e = min {e,- | 1<i< n}, then S¢(uo) C N'_, U;.
Hence, N7_, U; is a neighborhood of u.

9. If ug is a limit point of S then every neighborhood of u contains points of S other than
ug. If every neighborhood of ug also contains a point in S€, then uy € 9S. If there is a
neighborhood of ¢ that does not contain a point in S then ug € S°. These are the only
possibilities.

10. An isolated point ug of S has a neighborhood V' that contains no other points of S.
Any neighborhood U of ug contains V' N U, also a neighborhood of u (Exercise 8(b)), so
S¢NU # @. Sinceug e SNU,up €98S.

11. (a) If ug € dS and U is a neighborhood of ug, then (A) U N S # @. If ug is not a limit
point of S then (B) U N (S — {uo}) = @ for some U. Now (A) and (B) imply that uy € S,
and (B) implies that uy is an isolated point of S.

(b) If S is closed, Theorem 8.1.13 and (a) imply that dS C S hence, S=SUdS=S8.1If
S = S,then dS C S. Since S° C S, S is closed, by Exercise 9 and Theorem 8.1.13.

12. (a) If ug is a limit point of d.S and € > 0, there is a u; in S¢(ug) N 9S. Since Se(ug) is
a neighborhood of #1 and u; € 4S5, Sc(ug) NS # @ and Se(up) N S€ # @. Therefore, ug
isin dS and dS is closed (Theorem 8.1.13).

(b) If ug € S°, then S¢(ug) C S for some € > 0. Since S¢(up) C S (Example 8.1.5) S°
is open.

(c) Apply (b) to S€.

(d) If ug is not a limit point of S, there is a neighborhood of u( that contains no points of
S distinct from ug. Therefore, the set of points that are not limit points of S is open and
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the set of limit points of S is consequently closed.

(e) (f )C = exterior of S, which is open, by (b). Hence, S is closed and (f) = S from
(Exercise 11(b)), applied to S.

(@)u € (S; N S2)° < u has aneighborhood N C S; NS, & u € S? andu € Sg S u e
S? N Sg. (b)u € S? U Sg = ue S? oru € Sg => u has a neighborhood N such that
N C Syor N C S, = u has aneighborhood N C S; U S, = u € (S; U S,)°.

14. (a) u € d(S1 U S2) = every neighborhood of u contains a point in (S; U S,)°¢
and a point in S; U S,. If every neighborhood of u contains points in S; N S», then
u € a5 Na4S, C 9487 U dS,. Now suppose that u has a neighborhood N such that
N NSy = 0. If U is any neighborhood of u, thensois N N U,and N N U N S, # 0,
since N N U must intersect S; U S>. This means that u € 35S, C 9S; U 0S,. A similar
argument applies if u# has a neighborhood N such that N N S, = @.

(b) u € 9(S1 N S2) = every neighborhood of u contains a point in (S; N S3)¢ and
a point in S; N S3. If every neighborhood of u contains a point in (S; U S3)¢, then
u € a5 Na4S, C 9487 U dS,. Now suppose that u has a neighborhood N such that
N C S8;. If U is any neighborhood of u, thensois N N U,and N N U N §§ # @, since
N N U must intersect (S1 N S3)¢. This means that u € S, C 9S; U dS2. A similar
argument applies if u# has a neighborhood N such that N C S5.

(c) If u € 3S, then any neighborhood N of u contains points 1o in S and u; not in S.
Either ug € S or ug € dS. In either case N NS # @. Since u; € N N S¢, it follows that
u € 0S; hence, S C 95S.

(d) Obvious from the definition of 9.

(e)
(S —T)=0d(SNT ) (definitionof S —T')
C dSUaITC (Exercise 14(b))
=dSuUaIT (Exercise 14(d)).

15. It is obvious that || - ||, satisfies Definition 8.1.3(a) and (b). For (c), since |x; + yi| <
|xi| + |yil,i =1, 2,..., n, it follows that

max {|x; + yi|[1 <i <n} <max {jx;| |1 <i <nf+max{|y|[l<i<n};
hence, [ X + Y|, < [ X]lz + Y.

k
16. (a) p(X,Y) = Zp(x,-, yi) > 0 with equality if and only if x; = y; for 1 <i < k;
i=1

thatis X =Y;

k k
pX,Y) =D pixisyi) = Y pi(vis xi) = p(Y, X);

i=1 i=1

k k
p(X,Z) = D p(xiszi) < Y (p(xi, yi) + p(is i) = pX, Y) + p(Y, Z).

i=1 i=1
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®) lim—oX, = X & lim pX,.X) = 0 & lim pj(x;p.55) = 0,1 < i < k
r—00 r—o0
& lim x;, =%;,1 <i <k.
r—>00

(c) Let e > 0. If {X,-}°° , is a Cauchy sequence there is an integer m such that p(X;, Xy) <
€if r, s > m. Therefore, for 1 < i <k, p(x;r, Xis) < € forr,s > m, so {x;-}72, is a
Cauchy sequence.

Conversely, if {x;,}>2, is a Cauchy sequence for < i < k, there is an integer m such that
p(xir, xis) < €/k, 1 <i < k. Therefore, p(X,,X;) < €ifr,s > k, so {X;}?2,is a
Cauchy sequence.

(d) Follows from (b) and (c).

o0

17. (a) Since Z a; < oo, p(X,Y) is defined for all (X,Y), by the comparison test. For
i=1

the verification that p is a metric, see the solution of Exercise 3(a).

o0
(b) . Suppose that lim x;, = X;,i > 1. Let € > 0. Choose N so that Z a < €/2.
r—>00
i=N+1

€ _ifr > R,1<i<N. Then p(X,.X) < € if

Now choose R so that p(x;,, X;) <
o

r > R,so lim X, = X.
r—>00

Now suppose that lim X, = X. Let 0 < € < 1. Forafixedi > 1, choose R; so
r—00

eot," r > R;. Then 7'0()6”’)6[1 < E,
2 1+ p(xir, xi) 2

~ € . ~
p(xir, Xi) < < <€, r>R;,s0limy 00 Xir = X;.

that p(X,,X) <

r > R;. This implies that

(c) Suppose that {x;,}°; is a Cauchy sequence for all i > 1. Let € > 0. Choose N so
> €
ZN(X[

that Z a; < €/2. Now choose R so that p(x;,, Xis) <
i=N+1
Then p(X,, X;) < €ifr,s > R, so {X,}72, is a Cauchy sequence.

ifr,s>R,1<i <N.

Now suppose that {X, } is a Cauchy sequence. Let 0 < € < 1. For a fixedi > 1, choose R;
so that p(X;, Xy) < ﬂ, r,s > R;. Then M < E, r, s > R;. This implies
62 1+ p(xir, Xis) 2
that p(x;r, Xis) < 7 <e€,r,s > R;,so{x;r}is a Cauchy sequence.
—€
(d) Follows from (b) and (c).

20. Let a and b be nonnegative. Since p < 1, Minkowski’s inequality implies that (a'/? +
bYP)P < a4 b. By lettingu = a'/? and v = b'/? we see that (u 4+ v)? < u? 4+ v? if u,
v > 0. Therefore,

n n n p
Do+ yil? < D (x| +yih? < Yl + )Y il
i=1 i=1 i=1 i=1

so p(X +Y) < pX + pY. However, p is not a norm, since p(cX) = c? p(X).
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21. (@) If Z |xi|? < oo then lim; »c0 X; = 0, so there is an integer J such that |x;| < 1

fori > J.If r > p,then |x;|" < |x;|? ifi > J; hence, Z |xi|" < oo, by the comparison
test.

0o 1/r
(b)Forr > pleto(r) = (Z |x,<|'> . Since |x;|/a(r) < 1ifr = p, (|x;i|/o(r))? >
i=1

(|xi|/o(r))"; therefore,
00 1/p 00 1/p
o(p) _ a7\ a7\
o) " (; (50) ) - (; (50 ) -
J

(¢c)Letr > p > 1. Since 1/r < 1, Exercise 20 with p replaced by 1/r, u = Z |xi|", and

i=1

o0

v = Z |x;|" implies that

i=J+1
7 1/r 0 1/r
X, < (Z |xi|') + ( 3 |xi|') . ()

i=1 i=J+1

Since lim; 00 X; = 0, |x;| = || X]|oo for some i, s0 (B) || X||ec < [|IX]|s. Let € > 0, and

o) 1/p
choose J so that ( Z |x,~|p> < €. Applying (b) toX = {0,...,0,, X541, X742,...}
i=J+1
00 1/r
shows that ( Z | X |') < e if r > p; therefore, from (A) and (B),
i=J+1

J 1/r
1X]loo < [X]lr < (Zw) +e. r>p,
i=1
SO
IX[loo < IX]lr < TV [X]loo + €.

Letting r — oo yields

IX] < lim |X[l[| < Tim X[, < [IX]leo + €.
r—00 r—00

Since € is arbitrary, lim, o || X = [ X]|co-

22. (a) From Exercise 3 |p(u,v) — p(un, vy)| < p(u, uy) + p(v, v,). If € > 0 there is an
integer k such that p(u, u,) + p(v,v,) < € if n > k; hence, |p(u, v) — p(Un, vn)| < € if
n>k,so lim p(u,,v,) = p(u,v).

n—>00

(b) Let v, = v and apply (a)
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23. There is an integer k such that ||u, — us| < 1if r, s > k. Therefore, if r > k, then

el < Nurll + lur —uell < llukll + 1.

24. (a) Clearly ||X|| > 0. If || X]|| = 0, then x; = 0. Now suppose that » > 1 and x; = 0,
n

1 <i <n-—1. Since Z x; = 0, it follows that x,, = 0. Therefore, X = 0, by induction.

i=1
Obviously ||aX]| = |a]|X]|

By the triangle inequality for real numbers,

YAy =D x4y v <

i=1 i=1 i=1

n
Z)’i

i=1

n
SZXI'+

i=1

n n
in +Zyi

i=1 i=1

’

s0X+YeAdifX,Y € Aand | X+ Y| < |X] + Y|l The verification of the other vector
space properties is straightforward.

(b) Let {X,}22, with X, = {x;,}{2, be a Cauchy sequence in A. If € > 0, there is an

integer k such that || X, — X;|| < €/2if r, s > k. Since xp, — Xps = Z(x” — Xig) —
i=1

n—1 l

Z(x” — Xis)s |Xnr — Xns| < eforalln > 1ifr,s > k. Hence, X;, = lim, o0 X, €xists

i=1

for all n > 1 (Theorem 4.1.13). Let X = {xi}2 falep

<

n
§xir_

i=1
M ifr,n > 1. Letting r — oo for each fixed n shows thatX € 4, and ||)/i|| <M.

Z(xir — Xis)

i=1

By Exercise 23, there is a constant M such that || X, || < M forall r > 1; thatis,

Since < €/2foralln > 1if r, s > k, letting s — oo shows that

n

Z(xir - 3C\l)
i=1
25. (a) Straightforward.

(b)bem > n then | f(x) — fm(X)| = fu(X)(A = fin—n(x)) < fu(x), 50 || fn — fmll <
/ fax)dx < (b —a)/(n +1).

<e¢/2foralln > 1ifr > k; hence, lim, o | X; — )’ZH =0.

. , a<x<b . . .
(© hm falx) = c—b is discontinuous, and therefore not in C|a, b]

26. (a) Since |x; + y,| < |xil + |yil, sup{|x, + yil |l > 1} < sup{|x,| |l > 1}
sup{|y,| |l > 1}

(b) Let {X,}22, be a Cauchy sequence in {o. Write X; = {x;/}$2,. If € > O there is
an integer R (independent of i) such that |x;, — x;5| < € if r, s > R; thatis, {x;-}22,

1s a Cauchy sequence in R for each ﬁxed i > 1. Let limy 500 Xjr = Xj, i > 1, and let
= {X 172,- Then lim, o0 X, = X. To see this, let € and R be as above. For each i,
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choose s; > R so that |x;5, — X;| < €. Then |x;, — X;| < |xjr — Xig; | + |xi5; — Xi| < 2€ if
r > R;thatis (A) | X, — X|| < 2¢if r > R. Finally, since | X| < | X — X,|| + | X, and
{X,}22, is bounded (Exercise 23), (A) implies that X € {o.

27. Since the set of convergent sequences is closed under addition and scalar multiplication
(Theorem 4.1.8), A is a subspace of R®. Since || - || = || - [loos (A4, | - ||) is @ normed
subspace of £, which is complete (Exercise 26(b)). Therefore, if {X,}>2 , is a Cauchy
sequence in (4, || - ||), there is an X such that limy 0o X, = X = {Xi}72, in the sense that
(A) limy 500 || X — f(”oo = 0. We have only to show that X = {Xi}$2, € A; that is, that

lim; .o X; exists. By the triangle inequality |X; —X ;| < |X; —xir|+ |xlir —Xjr| % =%
Suppose that € > 0. From (A), there is an integer k such that |X; — x;x| < €¢/3 and
|xjx —X;| < ¢€/3foralli, j > 1. Therefore, |X; — X;| < |xjx — x;k| + 2¢/3 for all
i, j > 1. Since X} converges, it is a Cauchy sequence (Theorem 4.1.13), so there is an
integer N such that |x;x — x ;x| < €/3ifi, j > N. Therefore, |X; — X;| < €ifi, j > k.
Hence, {X;}$2, is a Cauchy sequence, and therefore convergent (Theorem 4.1.13).

28. Since the set of sequences that converge to zero is closed under addition and scalar
multiplication (Theorem 4.1.8), A is a subspace of R®. If X = {x;}{2, is in A and
IX|loo = 0, then x; = Oforalli. If | X|lo > O, there is an integer k such that |x; | < [|X]|0o
ifi >k, s0 || X]oo = max{|x,~| | 1<ic< k}. In either case |X| = ||X[loo- Now an
argument similar to the one used in the solution of Exercise 27 shows that if {X,}22, is a
Cauchy sequence in A, there is a sequence X = {172, in Lo such that (A) lim, o0 [| X —
X|loo = 0. Let X = limjoo Xi. Then (B) [¥| < |¥ — Xi| + |% — xir| + |xir]. Let
€ > 0. From (A), there is an integer r such that |X; — x;»| < € forall i > 1. Hence, (C)
|X| < |Xx—=%;|+ |xir| + €. Since lim; o X; = 0 and lim; ., X; = X, we can choose i s0
large that |x;r| < € and |¥ — X;| < €. Now (C) implies that |X| < 3e. Since ¢ is arbitrary,
x =0.

29. (a) Similar to (and simpler than) the following argument for (b).

(b) Let {X;}72, be a Cauchy sequence in £, with X, = {x;,}72,. If € > 0, there is an
integer k such that (A) | X, —X||, < € if r, s > k. Therefore, |x;, —x;s| < € foralli > 1
if r, s > k. Hence, X; = lim, .0 X; exists fori > 1 (Theorem 4.1.13). Let X = {92,

By Exercise 23, there is a constant M such that | X;|, < M for all » > 1; that is,

A

00 1/p n
(Z |xi,|”> < M for r > 1. Therefore, for every integer n, Z |xir|? < MP for all

i=1 i=1
n

r > 1. Letting r — oo with n fixed yields Z |Xi|? < MP. Now letting n — oo shows

i=1

o0
thatZ:|33,-|’J < MP so X €.
i=1
n
From (A), if n is a positive integer, then Z |xir — xis|? < €Pifr,s > k. Letting s — 00

i=1
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n
here yields Z |Xir — %i|? < €? if r >. Now letting n — oo shows that | X, — X|| < € if
i=1

r >. Hence, lim, o0 X, = X.

8.2 COMPACT SETS IN A METRIC SPACE

1. If H is an open covering of U]/‘.=1Tj then H is an open covering of 77, 1 < j < k.

Since T is compact, T; has a finite subcovering H ; C H, and U]/‘.=1Hj is a finite open
. k ’

covering of Uiy T;.

2. (a) Let S be a closed subset of a compact set 7. Let {s,} be a sequence in S. Since T'

is compact there is a subsequence {s,;} of {s,} such that lim; o s,, = ¢ € T. Either

t = s,; for some j orf is a limit point of {s, } and therefore in S, since S is closed. Hence,
S is compact (Theorem 8.2.4).

(b)n {T | T e T} is a closed subset of 7. Apply (a).

(c) Since every T in T is closed (Theorem 8.2.6), N {T | T e T} is closed. Apply (b).

3.Ifa € SNT thendist(S,T) = p(a,a) = 0. Now assume that S N T = @. For each

positive integer n there is an s, in S and a #, in T such that p(s,, t,) < dist(S, T) + 1/n.

If p(sn, t,) = dist(S, T) for some n, we are finished. If p(s,,t,) > dist(S, T') for all n,

then at least one of the sequences {s,}, {¢,} has infinitely many distinct terms. Suppose that

{sn} has this property. Since S is compact, there is a subsequence {s,, } of {s,} such that

kli>nolo Sn, = 5 € § (Theorem 8.2.3). From (A), kli>nolo P(Sny s tny,) = dist(S, T). Let s,’C =

Sn and t;, = ty, . Then klirn s, =5 and klirn p(sg. 1) = dist(S, T). Since T is compact,
—00 —00

there is a subsequence {t,’{/_ } of {#; } such that lim t,’,/_ =1 € T (Theorem 8.2.3). Since any
. Jj—oo

subsequence of a convergent sequence converges to the limit of the sequence, lim s,’,/_ =5

and lim p(sy .7; ) = dist(S,T). Since lim p(sy ..1;.) = p(5,7) (Exercise 272(a)),

Jj—o0 J J j—00 j j
p(5,1) = dist(S, T).

4. (a)If T is totally bounded, there is a finite set 77 = {Xj, ..., X} of bounded sequences
such that if X € T then p(X,X;) < 1 forsomei € {1,...,k}. If X and Y are arbitrary
members of T, then p(X,X;) < 1 and p(X, X;) < 1 for some r and s in {1, 2, ..., n}, so

pX.Y) = p(X. X;) + p(Xr, Xs) + p(Xs, Y)
<2+ p(X;, X;) <24+ max {p(X;, X;) |1 <i < j <n}.

Therefore, T is bounded.

(b) If r # s, then p(X;, Xs) = 1, so T is bounded. Now suppose thate < 1/2and Y =
{yi}$2, is a sequence such that p(X;,Y) < €. Then y, > 1 —€ > 1/2,50 p(X;,Y) > 1/2
for all s # r; that is, no vector can satisfy p(X,,Y) < € for more than one value of r.
Hence, T is not totally bounded.

5. Since T is compact, T is bounded (Theorem 8.2.6). For each integer n there are members
sp and t, of T such that (A) d(T) — 1/n < p(sp,ty) < d(T). If p(sy,t,) = d(T) for
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some n, we are finished. If p(s,,t,) < d(T) for all n, then at least one of the sequences

{$n}, {tn } has infinitely many distinct terms. Suppose that {s, } has this property. Since T is

compact, there is a subsequence {s,, } of {s,} such that klirn Sn, =58 € T (Theorem 8.2.3).
—>00

From (A), kli>nolo o(Sngtn) = d(T). Lets; = sy, and t; = t, . Then kli>nolo s, = 5 and
klirn p(sg. 1) = d(T). Since T is compact, there is a subsequence {#; } of {t,} such
—00 J

that lim t,’,/_ =1 € T (Theorem 8.2.3). Since any subsequence of a convergent sequence

converges to the limit of the sequence, lim s, =5and lim p(s; .7 ) = d(T). Since
j oo M j—>00 VALY

lim p(s,’{/_,t,’{/_) = p(5,17) (Exercise 27%(a)), o(s.7) = d(T).
j—oo I

o0
6. Suppose thate > 0. Choose N so that Z Wi < €/2. Let 4 = max {p,i | 1<i < N},
i=N+1
and let p be an integer such that p(e/2N) > . Let Q. = {rie/ZN |r,~ = integer in[—p, p]}
Then the set of sequences X = {x;}$2, in £; such thatx; € Q¢, 1 <7 < N,and x; = 0,
i > N, is a finite €-net for 7.

0o 1/2
7. Suppose that € > 0. Choose J so that ( Z |p,,~|2> < €. Now let T* be the subset
i=J+1
of R” such that |x;| < u;, 1 <i < n. Since T* is a closed and bounded subset of R}, T*
is compact. Therefore, there is a finite collection of vectors U* = (u1,ua,...,u,) that
form a finite e-net for 7*. The vectors U = (u1,us,...,Uy,0,...,0,...) form a 2¢-net

for T.

8. Suppose that S is bounded. Let ©; and be a fixed member of S and let u be an arbitrary
member of S. Then p(u, ug) < p(u,u1)+pu,uo) < d(S)+p(u1,up), so D is bounded.

Now suppose that D is bounded; that is, there is a constant M such that p(u,ug) < M
if u € S. Then, if u and v are both in S, d(u,v) < d(u,up) + d(v,ug) < 2M,s0 S is
bounded.

Let u; be an arbitrary member of S. Since N¢(11) does not cover S there is a u; € S such
that p(u1, u2) > €. Now suppose that n > 2 and we have chosen u1, us, ..., u, such that
p(ui,uj) > €, 1 <i < j =<n. Since U7_, Se(u;) does not cover S, there is u,+1 € §
such that p(u;, un+1) > €,1 <i < n. Therefore, p(u;,u;) > e, 1 <i <j <n+1.

9. (@) Ifu, v € S and e > 0, there are s, ¢ € S such that p(u,s) < € and p(v, 1) < e.
Therefore, p(u, v) < p(u, s) + p(s, 1) + p(t, v) < d(S) + 2¢. Since € is arbitrary, d(S) <
d(S). Since d(S) > d(S) (obvious), d(S) = d(S).

(b) If {x, },>, is Cauchy sequence in (4, p) then S = {xn | n> 1} is bounded. From (a), S
is bounded. Therefore, S is compact (by assumption), so {x,}% , has a subsequence Xn, )

such that lim x,;, =X € S. If € > 0, choose k so that p(x,, X,») < €/2, m,n > k. Now

choose j so thatn; > k and p(xp,X) < €/2. Then p(x,,X) < p(xy, xnj) + p(xnj,f) <
2¢,n > k. Hence, lim x, = X.
n—>oo

10. Let {x;,}22, beasequence in T;, 1 <i <n andlet X, = (x1,, X2r, ..., Xkr)
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Suppose that 7" is compact. Then {X; } has a subsequence {X,, } such that lim X, = X =
§—>00

(X1,X2,...,X) € T (Theorem 8.2.4). Therefore, lim p(X,,, )’Z) =0,s0 lim p;(Xir,, X;)
§—>00 §—>00
0,1 <i < k. This implies that lim x;,, = X; € T;, 1 <i < k. Therefore, T; is compact,
S—>00

1 <i <k (Theorem 8.2.4).

Now suppose that 71, T3, ..., Ty are compact. We use induction on k. The result is trivial if
k = 1. Now suppose that k > 1 and and the assertion is true with k replaced by k — 1. Then
is, T1 x Tp x - - x Ty—; is compact, so any sequence {X,}22, in T has a sequence {X,,}%2,
such that limg_,o0 Xjr, = X; € T;, 1 <i < k—1. Denote Xgl) = X,,. Since T} is compact,
{x](cls)}g";l has a subsequence {xksj}‘/’.il such that lim;j 0 Xks;, = Xk (Theorem 8.2.4).

Since lim x5, = X;, 1 <i <k — 1 (Theorem 4.2.2), lim X, = (¥1.%2,....Xk) € T.
J =00 ’ j—ooo

Hence, T is compact (Theorem 8.2.4).
11. For a fixed j > 1 let {x;}22, be a sequence in T;. Fori # j let x;; = X,
r > 1, where X; € T;. Define X, = {x;,}?°,. Since T is compact, {X,}2 , has a sub-
sequence {X,}°2, such that limy o0 X/, = X e T; that is, limg_, oo p(X,S,)/i) = 0. But
> pj (Xjry. X))
PO X) = @iy P (Xjr X))
X;. Hence, T is compact (Theorem 8.2.4).
12.1f t; and , are in N2, T, then ¢; and £, are in T, foralln > 1, s0 p(t1, t2) < d(T,) for
n > 1; therefore, (¢) implies that p(t1, ;) = 0; thatis, #{ = #,. Hence, N72, T,, contains
at most one element. To complete the proof, we need only show that N2, 7, # @. We
prove this by contradiction. If NS, 7,, = @, then any ¢ in 77 is in the open set T, for
some n. Therefore, 71 C U5, T,. Since T is compact, there is an integer N such that
T, C U,11V=1Tn”. However, from (b), U,11V=1Tn‘ = Ty,s0 Ty C Ty. Since Tyy1 C T1,
it follows that Ty C Ty. But Tyyy C Ty, from (b). Since Ty 41 # @, thisis a
contradiction.

0 limg_s00 0 (X jry, X;) = 0; that is, limg oo Xjr, =

8.3 CONTINUOUS FUNCTIONS ON METRIC SPACES

1. (a) & (b):

Assume (a) and let ug € f~1(V); thatis, f(ug) = vo € V. Since V is open, there
is an € > 0 such that Nc(vg) C V. Since f is continuous there is a § > 0 such that
f(Ns(ug)) C Ne(vo) C V. This implies that Ns(ug) C f=1(V), so f~1(V) is open.
Assume (b) and let ug € A, vg = f(ug). If € > 0, then ug € f~1(Ne(vo)), which
is open, by assumption. Hence, there is a § > 0 such that Nj(ug) C f~'(Ne(vo)), so
S (Ns(uo)) C Ne(vo), and f is continuous at ug.

(b) < (o)

Assume (b) and let V be a closed subset of (B, p). Then V¢ is open and (f~1(V))¢ =
(V) isopen, so f~1(V)) is closed.

Assume (c) and let V be an open subset of (B, p). Then V¢ is closed and (f~1(V))¢ =
f~H(V¢)is closed, so f~1(V)) is open.
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2. Suppose that B = B U B;, where By and B, are disjoint open sets. Then A = A1 U A,
where A7 = f~1(B;) and Ay = f~1(B,) are open (Exercise 1) and disjoint. Since A4 is
connected, A1 = Jor A, = @.

3. (a) Since f(S) is a compact subset of R (Theorem 8.3.6), it is bounded.

(b) For every n there isa s, € S suchthate < s, < o + 1/n. Since S is compact, {s,}
has a convergent subsequence {s,; } such that lim s,, = u; € S. From Theorem 8.3.3,
' j—>oo

fn) = lim f(s,) =e.

For every n there is at, € S suchthat § — 1/n < t, < B. Since S is compact, {t,}
has a convergent subsequence {fy, } such that lim #,, = uy € S. From Theorem 8.3.3,
‘ j—oo

fluz) = lim fltn,) = B.

4. (a) Let u, up € U. By the triangle inequality, o (f(u), f(u)) < o(f(u), f(uo)) +
o(f(uo)., f(@) and o (f(uo). f (W) = o(f(uo). f(w)+0(f(w), f(i),s0g(u)—guo) =

o(f(u), f(uo)) and g(uo) — g) =< o(f(u), f(uo)). Therefore, [g(u) — g(uo)| =
o(f(u), f(up)). Let € > 0. Since f is continuous on U there is a § > 0 such that

o(f(u), f(uo)) < eifu € Ns(uo) N D s;hence, |g(u) —g(uo)| < eifu € Ns(uo) N Dy,
so g is continuouson U .

(b) Theorem 8.3.8

(c) Exercise 3(b).

5. Suppose that ug € Dy and let € > 0. Since g is continuous at f'(uo) thereis a §; > 0
such that y(g(v), g(f(uo))) < €ifa(v, f(uo)) < 8:1. Since f is continuous at 1 there is
a ¢ > 0 such that a(f(u), f(uo)) < 81 if p(u, up) < 8. Therefore, y(h(u), h(up)) < € if
p(u, ug) < 6.

6. Let up € A and suppose that € > 0. Since g is continuous on R”, there is a § > 0 such
that [g(y1. y2. .. yi)—g (o (s1). uo(52). . . . . uo(sx))| < e if max {|y; —uo(si)| |1 <i <k} <
8. Therefore, | f(u) — f(uo)| < €if p(u,up) <34.

7. Since u(s) > f(u) and |u(s) — v(s)| < p(u,v) forall s in S, v(s) > f(u) — p(u,v)
for all s. Hence, (A) f(v) > f(u) — p(u,v). If € > 0, there is an so such that u(so) <
f(u) + €/2. Since |u(sg) — v(so)| < p(u,v), v(so) < f(u) +€/2 + p(u,v). Therefore,
f() < f(u) + €/2 + p(u,v). This and (A) imply that | f(v) — f(u)| < p(u,v) + €/2.
Therefore, | f(v) — f(u)| < € if p(u,v) < €/2.

Since u(s) < g(u) and |u(s) — v(s)| < p(u,v) for all s in S, v(s) < gu) + p(u,v)
for all s. Hence, (B) g(v) < g(u) + p(u,v). If € > 0, there is an so such that u(sg) >
g(u) —€/2. Since |u(so) — v(so)| < p(u,v), v(so) > g(u) —€/2 + p(u, v). Therefore,
g() > g(u) —€/2 — p(u,v). This and (B) imply that |g(v) — g(u)| < p(u,v) —€/2.
Therefore, |g(v) — g(u)| < eif p(u,v) <€/2.

b b
8. Since | f(u)— f(v)] = ‘ / w(x) — v(x) dx‘ < / () —v (o) dx < (. v)(b—a),
it follows that | f(u) — f(v)| < € if p(u,v) < €/(b — a).



