
Introduction to Programming with Fortran

Ian D. Chivers and Jane Sleightholme

Introduction to
Programming with
Fortran
With Coverage of Fortran 90, 95, 2003, and 77

Ian D. Chivers, BSc, PGCEd, MSc, MBCS Jane Sleightholme, MSc, MBCS
Rhymney Consulting Kings College London
UK UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2005931518

ISBN-10: 1-84628-053-2 eISBN 1-84628-054-0 Printed on acid-free paper
ISBN-13: 978-1-84628-053-5

© Springer-Verlag London Limited 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in
writing of the publishers, or in the case of reprographic reproduction in accordance with the
terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Printed in the United States of America (MVY)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springeronline.com

Acknowlegement

The material in the book has evolved firstly from our combined experience of
working in Computing Services within the University of London at

• King's College, IDC (1986–2002) and JS (1985 to date)

• Chelsea College, JS (1978–1985)

• Imperial College, IDC (1978–1986)

in the teaching, advice and support of Fortran and related areas, and secondly in
the provision of commercial training courses. The following are some of the or-
ganisations we've provided training for:

• AWE, Aldermaston.

• Centre for Ecology and Hydrology, Wallingford.

• Environment Agency, Worthing.

• The Met Office, Bracknell and Exeter.

• QinetiQ, Farnborough.

• Rolls Royce, Derby.

• Veritas DGC Ltd., Crawley.

• Westland Helicopters, Yeovil.

The examples in the book are based on what will work with compilers that support
the Fortran 90 and 95 standards and also support ISO TR 15580 and 15581. At the
time of writing this book there are no compilers that fully support the Fortran 2003
standard.

Thanks are due to:

• The staff and students at King's College, Chelsea College and Imperial
College.

• The people who have attended the commercial courses. Its been great fun
teaching you and things have been very lively at times.

• The people on the Fortran 90 list and comp.lang.fortran. Access to the ex-
pertise of several hundred people involved in the use and development of
Fortran on a daily basis across a wide range of disciplines is inestimable.

• The people at NAG for the provision of the Fortran 95 compilers and Nag
Tools on the enclosed cd.

• The staff and facilities at PTR Associates. It is a pleasure training there.

• The patience of our families during the time required to develop the
courses upon which this book is based and whilst preparing the cam-
era-ready copy.

• Finally Rebecca Mowat, Joanne Cooling, Helen Desmond and Beverley
Ford at Springer for their enthusiasm and encouragement!

Our King's home page is:

• http://www.kcl.ac.uk/fortran

All of the program examples can be found there.

If you would like to contact us our email addresses are:

Ian D Chivers: ian.chivers@chiversandbryan.co.uk

Jane Sleightholme: jane.sleightholme@kcl.ac.uk

vi Acknowledgement

Contents

1 Overview . 1

2 Introduction to Computer Systems 9
2.1 The core of a computer system 10
2.1.1 Central processor unit — CPU. 10
2.1.2 Memory . 10
2.1.3 Bus . 10
2.2 Other components of a computer system 11
2.2.1 Disks. 11
2.2.2 Others . 11
2.3 Software . 12
2.4 Problems . 13
2.5 Bibliography . 13

3 Introduction to Operating Systems 15
3.1 History of operating systems. 16
3.1.1 The 1940s . 16
3.1.2 The 1950s . 16
3.1.3 The 1960s . 16
3.1.4 The 1960s and 1970s . 16
3.1.5 The 1970s, 1980s, and 1990s 17
3.2 Networking . 17
3.3 Problems . 18
3.4 Bibliography . 18

4 Introduction to Using a Computer System. 19
4.1 Files . 20
4.2 Editors . 20
4.3 Single-user systems . 20
4.4 Networked systems . 20
4.5 Multiuser systems. 21
4.6 Other useful things to know . 21

4.7 Common methods of using computer systems to develop Fortran
programs . 22

4.8 Bibliography . 23

5 Introduction to Problem Solving 25
5.1 Natural language . 26
5.2 Artificial language . 27
5.2.1 Notations . 27
5.3 Resumé . 27
5.4 Algorithms . 28
5.4.1 Top-down . 28
5.4.2 Bottom-up . 28
5.4.3 Stepwise refinement. 29
5.4.4 Modular programming . 29
5.4.5 Object oriented programming 29
5.5 Systems analysis and design . 30
5.5.1 Problem definition . 30
5.5.2 Feasibility study and fact finding 30
5.5.3 Analysis . 31
5.5.4 Design . 31
5.5.5 Detailed design . 31
5.5.6 Implementation . 31
5.5.7 Evaluation and testing. 31
5.5.8 Maintenance . 32
5.6 Conclusions . 32
5.7 Problems . 32
5.8 Bibliography . 33

6 Introduction to Programming Languages 35
6.1 Some early theoretical work . 36
6.2 What is a programming language? 36
6.3 Program language development and engineering 36
6.4 The early days . 36
6.4.1 Fortran — The Early Days . 37
6.4.2 Fortran 77 . 37
6.4.3 Cobol . 37
6.4.4 Algol. 38
6.5 Chomsky and program language development 39
6.6 Lisp . 39
6.7 Snobol . 40
6.8 Second-generation languages 40
6.8.1 PL/1 and Algol 68 . 40
6.8.2 Simula . 40
6.8.3 Pascal . 41

viii Contents

6.8.4 APL . 41
6.8.5 Basic . 41
6.8.6 C . 41
6.9 Some other strands in language development 42
6.9.1 Abstraction, stepwise refinement and modules 42
6.9.2 Structured programming. 42
6.9.3 Standardisation . 42
6.10 Ada . 43
6.11 Modula. 43
6.12 Modula 2 . 44
6.13 Other language developments 44
6.13.1 Logo . 44
6.13.2 Postscript, TeX and LaTeX . 45
6.13.3 Prolog . 45
6.13.4 SQL . 45
6.13.5 ICON . 46
6.14 Object orientated programming — OOP 46
6.14.1 Oberon and Oberon 2 . 46
6.14.2 Smalltalk . 47
6.14.3 C++ . 48
6.14.4 Java . 48
6.14.5 Visual Basic . 49
6.14.6 C# . 49
6.15 Fortran 90 . 50
6.16 Fortran 1995 . 51
6.17 ISO technical reports TR15580 and TR15581 52
6.18 Fortran 2003 . 52
6.19 DTR 19767 enhanced module facilities. 53
6.20 Internet resources . 54
6.20.1 Standards information . 54
6.20.2 Fortran discussion lists . 55
6.20.3 Other sources . 55
6.21 Summary . 56
6.22 Bibliography . 56

7 Introduction to Programming . 63
7.1 Language strengths and weaknesses 64
7.2 Elements of a programming language 64
7.2.1 Data description statements . 65
7.2.2 Control structures . 65
7.2.3 Data-processing statements . 65
7.2.4 Input and output (I/O) statements 65
7.3 Variables — name, type and value 68

Contents ix

7.4 Notes. 70
7.5 Some more Fortran rules . 71
7.6 Fortran character set . 72
7.7 Good programming guidelines 73
7.8 Compilers . 73
7.9 Program development . 74
7.10 Problems . 75

8 Arithmetic . 77
8.1 Rounding and truncation . 81
8.2 Time taken for light to travel from the Sun to Earth. 83
8.3 The PARAMETER statement 84
8.4 Range, precision and size of numbers 85
8.5 Health warning: optional reading, beginners are advised to

leave until later . 88
8.5.1 Selecting different INTEGER kind types 90
8.5.2 Selecting different REAL kind types 91
8.5.3 Specifying kind types for literal integer and real constants. 91
8.5.4 Positional number systems. 92
8.5.5 Bit data type and representation model 92
8.5.6 Integer data type and representation model 93
8.5.7 Real data type and representation model 93
8.5.8 IEEE 754. 94
8.5.9 Testing the numerical representation of different kind types on a

system . 94
8.5.10 Binary representation of different integer kind type numbers 98
8.5.11 Binary representation of a real number 100
8.5.12 Summary of how to select the appropriate kind type 101
8.6 Variable status. 101
8.7 Summary . 101
8.8 Problems . 102
8.9 Bibliography . 105

9 Arrays 1: Some Fundamentals 107
9.1 Tables of data . 108
9.1.1 Telephone directory . 108
9.1.2 Book catalogue . 108
9.1.3 Examination marks or results 109
9.1.4 Monthly rainfall . 109
9.2 Arrays in Fortran . 110
9.3 The DIMENSION attribute. 110
9.4 An index . 111
9.5 Control structure. 111
9.6 Monthly rainfall . 111

x Contents

9.6.1 Example 1: Rainfall . 112
9.7 People's weights . 113
9.7.1 Example 2: Setting array size with a parameter 114
9.8 Summary . 115
9.9 Problems . 116

10 Arrays 2: Further Examples . 119
10.1 Varying the array size at run time 120
10.2 Higher-dimension arrays . 121
10.2.1 A map . 121
10.2.2 Example 3: Sensible tabular output 123
10.2.3 Example 4: Average of three sets of values 124
10.2.4 Example 5: Booking arrangements in a theatre or cinema 125
10.3 Additional forms of the DIMENSION attribute and DO

loop statement . 126
10.3.1 Example 6: Voltage from �20 to +20 volts 126
10.3.2 Example 7: Longitude from �180 to +180. 127
10.3.3 Notes . 127
10.4 The DO loop and straight repetition. 127
10.4.1 Example 8: Table of temperatures 127
10.4.2 Example 9: Means and standard deviations 128
10.5 Summary . 129
10.6 Problems . 130

11 Whole Array and Additional Array Features. 133
11.1 Terminology. 134
11.1.1 Rank . 134
11.1.2 Bounds . 134
11.1.3 Extent. 134
11.1.4 Size . 134
11.1.5 Shape . 134
11.1.6 Conformable . 134
11.1.7 Array element ordering. 134
11.2 Whole array manipulation . 135
11.2.1 Assignment . 135
11.2.2 Expressions . 135
11.3 Array sections . 138
11.3.1 Rank 1 array example . 138
11.3.2 Rank 2 array example . 138
11.4 Array constructors . 140
11.4.1 Rank 1 array example — explicit values 140
11.4.1.1 Rank 1 array example and implied DO loop 141
11.4.1.2 Rank 1 array example and the DOT_PRODUCT intrinsic 141
11.4.2 Rank 1 example with step size of 2 in implied DO loop 143

Contents xi

11.4.3 Rank 1 array and the SUM intrinsic function 144
11.4.4 Rank 2 arrays and the SUM intrinsic function 145
11.5 Masked array assignment and the WHERE statement 146
11.5.1 Notes . 147
11.6 The FORALL statement and FORALL construct 147
11.6.1 Syntax . 147
11.6.2 Array element ordering and physical and virtual memory 148
11.7 Summary . 148
11.8 Problems . 149
11.9 Bibliography . 149

12 Output of Results . 151
12.1 Integers — I format or edit descriptor. 152
12.2 Reals — F format or edit descriptor. 155
12.2.1 Metric and imperial conversion 156
12.2.2 Overflow and underflow . 156
12.3 Reals — E format or edit descriptor 158
12.3.1 Simple E format example . 159
12.4 Spaces . 160
12.5 Characters — A format or edit descriptor 160
12.5.1 Headings . 161
12.6 Mixed type output in a FORMAT statement. 162
12.7 Common mistakes . 162
12.8 OPEN (and CLOSE) . 163
12.8.1 The OPEN statement . 163
12.8.2 Writing . 164
12.9 Repetition . 165
12.10 Some more examples . 167
12.11 Implied DO loops and array sections for array output 168
12.12 Formatting for a line printer 170
12.12.1 Mechanics of carriage control 171
12.12.2 Generating a new line on both line printers and terminals 172
12.13 Timing of writing formatted files 173
12.14 Timing of writing unformatted files 174
12.15 Summary . 176
12.16 Problems . 176

13 Reading in Data . 179
13.1 Reading from the terminal or keyboard versus reading

from files . 180
13.2 Fixed fields on input . 180
13.2.1 Integers and the I format . 180
13.2.2 Reals and the F format . 181
13.2.3 Reals and the E Format . 182

xii Contents

13.3 Blanks, nulls and zeros . 185
13.4 Characters . 186
13.5 Skipping spaces and lines . 187
13.6 Reading . 187
13.7 File manipulation again . 188
13.8 Reading using array sections 189
13.9 Timing of reading formatted files 190
13.10 Timing of reading unformatted files. 191
13.11 Errors when reading . 192
13.12 Summary . 193
13.13 Problems . 193

14 Files . 195
14.1 Data files in Fortran . 196
14.2 Summary of options on OPEN 198
14.3 More foolproof I/O . 200
14.4 Summary . 201
14.5 Problems . 202

15 Functions . 204
15.1 An introduction to predefined functions and their use 204
15.1.1 Example 1: Simple function usage 205
15.2 Generic functions . 205
15.2.1 Example 2: The ABS generic function 206
15.3 Elemental functions . 206
15.3.1 Example 3: Elemental function use 206
15.4 Transformational functions . 206
15.4.1 Example 4: Simple transformational use 207
15.4.2 Example 5: Intrinsic DOT_PRODUCT use 207
15.5 Notes on function usage . 207
15.6 Example 6: Easter . 208
15.7 Complete list of predefined functions 210
15.7.1 Inquiry functions . 210
15.7.2 Transfer and conversion functions 210
15.7.3 Computational functions . 211
15.7.4 Array functions . 211
15.7.5 Predefined subroutines . 211
15.8 Supplying your own functions 212
15.8.1 Example 7: Simple user defined function 212
15.9 An introduction to the scope of variables and local

variables. 214
15.10 Recursive functions . 214
15.10.1 Example 8: Recursive factorial evaluation 215

Contents xiii

15.11 Example 9: Recursive version of GCD 216
15.12 Example 10: After removing recursion 217
15.13 Pure functions . 218
15.14 Elemental functions . 218
15.15 Internal functions . 218
15.15.1 Example 11: Stirling's approximation 218
15.16 Resumé . 219
15.17 Function syntax . 220
15.18 Rules and restrictions . 220
15.19 Problems . 220
15.20 Bibliography . 221
15.20.1 Recursion and problem solving 222

16 Control Structures . 223
16.1 Selection among courses of action 224
16.1.1 The BLOCK IF statement . 225
16.1.2 Example 1: Quadratic roots. 227
16.1.3 Note . 228
16.1.4 Example 2: Date calculation 228
16.1.5 The CASE statement. 229
16.1.6 Example 3: Simple calculator. 230
16.1.7 Example 4: Counting vowels, consonants, etc. 231
16.2 The three forms of the DO statement 232
16.2.1 Example 5: Sentinel usage . 232
16.2.2 CYCLE and EXIT . 234
16.2.3 Example 6: e**x evaluation 234
16.2.4 Example 7: Wave breaking on an offshore reef 235
16.3 Summary . 237
16.3.1 Control structure formal syntax 237
16.4 Problems . 238
16.5 Bibliography . 240

17 Characters . 241
17.1 Character input . 243
17.2 Character operators . 244
17.3 Character substrings . 245
17.4 Character functions . 247
17.5 Collating sequence. 248
17.6 Summary . 250
17.7 Problems . 251

18 Complex . 253
18.1 Example . 255
18.2 Complex and kind type . 256
18.3 Summary . 256

xiv Contents

18.4 Problems . 256

19 Logical . 257
19.1 I/O . 261
19.2 Summary . 261
19.3 Problems . 262

20 User Defined Types . 263
20.1 Example 1: Dates . 264
20.2 Type definition . 264
20.3 Variable definition . 265
20.4 Example 2: Address lists . 265
20.5 Example 3: Nested user defined types. 266
20.6 Problems . 268
20.7 Bibliography . 268

21 An Introduction to Pointers . 269
21.1 Some basic pointer concepts 270
21.2 The ASSOCIATED intrinsic function 272
21.2.1 CVF 6.6C . 272
21.2.2 Intel, Windows, 8.1 . 272
21.2.3 Lahey, Windows 5.70f . 272
21.2.4 NAG, Windows, 4.2 . 273
21.2.5 Salford 4.6.0 . 273
21.3 Referencing A and B before assignment. 273
21.3.1 CVF . 274
21.3.2 Intel, Windows 8.1. 274
21.3.3 Lahey, Windows 5.70f . 275
21.3.4 NAG, Windows 4.2 . 275
21.3.5 Salford 4.6.0 . 275
21.4 The NULL intrinsic . 275
21.5 Assignment via = . 276
21.6 Singly linked list. 278
21.7 Reading in an arbitrary quantity of numeric data. 280
21.8 Arrays of pointers . 283
21.9 Arrays of pointers and variable sized data sets — 1 284
21.10 Arrays of pointers and variable sized data sets — 2 285
21.11 Memory leak examples. 285
21.12 Nonstandard pointer examples 288
21.13 Problems . 293

22 Introduction to Subroutines . 295
22.1 Example 1. 296
22.1.1 Defining a subroutine . 298
22.1.2 Referencing a subroutine . 299

Contents xv

22.1.3 Dummy arguments or parameters and actual arguments 299
22.1.4 Intent . 299
22.1.5 Local variables . 299
22.1.6 Local variables and the SAVE attribute 300
22.1.7 Scope of variables . 300
22.1.8 Status of the action carried out in the subroutine. 300
22.2 Example 2. 300
22.3 Example 3 — Quadratic example with interface blocks 301
22.4 Example 4 — Quadratic example and the CONTAINS statement . . 304
22.5 Why bother? . 306
22.6 Summary . 307
22.7 Problems . 307

23 Subroutines: 2 . 309
23.1 More on parameter passing . 310
23.1.1 Explicit-shape array . 310
23.1.2 Assumed-shape array . 310
23.1.3 Deferred-shape array . 310
23.1.4 Automatic arrays . 310
23.1.5 Assumed-size array — Fortran 77 style 310
23.1.6 Adjustable arrays — Fortran 77 style 311
23.2 Common code example . 311
23.3 Explicit-shape example. 311
23.4 Assumed-shape example . 313
23.4.1 Notes . 315
23.5 Characters arguments and assumed-length dummy arguments . . . 315
23.6 Rank 2 and higher arrays as parameters 316
23.6.1 Explicit-shape dummy arrays 316
23.6.2 Assumed-shape dummy array arguments 319
23.6.3 Notes . 320
23.6.4 Using the intrinsic functions MATMUL and TRANSPOSE 321
23.7 Automatic arrays and median calculation 322
23.7.1 Internal subroutines and scope 325
23.7.2 Timing the selection sort algorithm 325
23.7.2.1 Timing . 326
23.8 Alternative median calculation algorithm 327
23.8.1 Timing . 330
23.9 Recursive subroutines — Quicksort 332
23.9.1 Note — Interface blocks. 336
23.9.2 Note — Recursive subroutine 337
23.9.3 Note — Flexible design . 337
23.9.4 Note — Timing information 337
23.10 Summary . 337

xvi Contents

23.11 Problems . 338
23.12 Bibliography . 340
23.13 Commercial numerical and statistical subroutine libraries 340

24 An Introduction to Modules . 341
24.1 Modules for global data . 342
24.2 Modules for precision specification and constant definition. 343
24.2.1 Note . 344
24.3 Modules for sharing arrays of data 345
24.4 Modules for derived data types 346
24.4.1 Person data type . 347
24.5 Modules containing procedures — Quicksort example 349
24.6 Modules containing procedures — Statistics example 353
24.7 The solution of linear equations using Gaussian elimination 356
24.7.1 Notes . 361
24.7.1.1 Module for kind type . 361
24.7.1.2 Deferred-shape arrays . 361
24.7.1.3 Intrinisic functions MAXVAL and MAXLOC 361
24.8 Notes on module usage and compilation 361
24.9 Summary . 362
24.10 Problems . 362
24.11 Bibliography . 363

25 Converting from Fortran 77 . 365
25.1 Deleted features . 366
25.2 Obsolescent features . 366
25.2.1 Arithmetic IF . 366
25.2.2 Real and double precision DO control variables 366
25.2.3 Shared DO termination and non-ENDDO termination 366
25.2.4 Alternate RETURN . 367
25.2.5 PAUSE statement . 367
25.2.6 ASSIGN and assigned GOTO statements 367
25.2.7 Assigned FORMAT statements 367
25.2.8 H editing . 367
25.3 Better alternatives . 367
25.4 Example 1. 368
25.5 Example 2. 378
25.6 Commercial conversion tools 379
25.6.1 NAG . 379
25.6.2 Polyhedron . 395
25.6.3 Original Fortran 66. 407
25.6.4 Fortran 77 Version. 407
25.6.5 Fortran 90 Version. 408
25.7 Summary . 409

Contents xvii

25.8 Problems . 409

26 Case Studies . 411
26.1 Using linked lists for sparse matrix problems 412
26.1.1 Inner product of two sparse vectors 413
26.2 Solving a system of first-order ordinary differential

equations using Runga–Kutta–Merson. 417
26.2.1 Note: Alternative form of the ALLOCATE statement 424
26.2.2 Note: Automatic arrays. 424
26.2.3 Note: Dummy procedure arguments. 425
26.2.4 Keyword and optional arguments 425
26.3 Generic procedures . 427
26.4 A function that returns a variable length array 434
26.5 Operator and assignment overloading 436
26.6 A subroutine to extract the diagonal elements of a matrix 437
26.7 Perfectly balanced tree . 439
26.8 Pure function example . 442
26.8.1 Pure constraints . 442
26.9 Elemental function example 443
26.9.1 Elemental constraints . 444
26.10 Elemental subroutine example 445
26.11 Date class . 446
26.12 Graphics example — dislin. 461
26.13 Problems . 469
26.14 Bibliography . 470

27 ISO TR 15580 — IEEE Arithmetic. 473
27.1 History . 474
27.2 IEEE 754 Specifications . 476
27.2.1 Single precision floating point format 477
27.2.2 Double precision floating point format 479
27.2.3 Two classes of extended floating point formats 479
27.2.4 Accuracy requirements . 479
27.2.5 Base conversion — Converting between decimal and binary floating

point formats and vice versa 479
27.2.6 Exception handling . 480
27.2.7 Rounding directions . 480
27.2.8 Rounding precisions . 480
27.3 Resumé . 480
27.4 ISO TR 15580. 481
27.4.1 IEEE_FEATURES module . 481
27.4.2 IEEE_EXCEPTIONS module 481
27.4.3 IEEE_ARITHMETIC module 483
27.4.3.1 IEEE data type selection . 484

xviii Contents

27.4.3.2 General support enquiry functions 484
27.4.3.3 Rounding modes. 485
27.4.3.4 Number classification . 485
27.4.3.5 Arithmetic operations . 487
27.5 Summary . 488
27.6 Bibliography . 488
27.6.1 Web-based sources . 489
27.6.2 Hardware sources . 490
27.6.3 Operating Systems . 491
27.6.4 Java and IEEE 754. 491
27.6.5 C and IEEE 754 . 492

28 ISO TR 15581 Allocatable Enhancements 493
28.1 Allocatable dummy array example 494
28.2 Allocatable function result example 497
28.3 Allocatable structure component example 499
28.4 Summary . 499
28.5 Problem . 499

29 Fortran 2003 and the Enhanced Module Facility 501
29.1 Derived type enhancements 502
29.2 Object oriented programming support 502
29.3 Data manipulation enhancements 502
29.4 Input/output enhancements . 503
29.5 Interoperability with the C programming language. 503
29.6 Procedure pointers . 504
29.7 Scoping enhancements . 504
29.8 Support for IEC 60559 (IEEE 754) exceptions and

arithmetic . 504
29.9 Support for international usage: (ISO 10646) 504
29.10 Enhanced integration with the host operating system. 505
29.11 The ASSOCIATE construct 505
29.12 Enhanced modules facility . 505
29.13 Summary . 506

30 Parallel Programming . 507
30.1 MPI. 508
30.2 Co–array Fortran . 508
30.3 Openmp. 508
30.4 PVM . 509
30.5 HPF. 509
30.6 Parallel programming and high-performance computing 509
30.6.1 Summary . 510

31 Miscellaneous . 511

Contents xix

31.1 Program development and software engineering 512
31.1.1 Modules. 513
31.1.2 Programming style — Programs should be easy to read 513
31.1.3 Programming style — Programs should behave well 514
31.2 Data structures. 514
31.3 Algorithms . 514
31.4 Recursion . 515
31.5 Structured programming and the GOTO statement 515
31.6 Efficiency, space-time trade-off. 516
31.7 Program testing . 516
31.8 Simple debugging techniques 516
31.9 Software tools . 517
31.9.1 Cross referencing . 517
31.9.2 Pretty print . 517
31.9.3 NAGWare f90 Tools . 517
31.10 Numerical software sources 517
31.10.1 Numerical Algorithms Group. 518
31.10.2 Visual Numerics . 518
31.10.3 Netlib . 518
31.11 Coda . 518
31.12 Bibliography: All sources (bar one) taken from

comp.software-eng. 518
31.12.1 Software engineering. 518
31.12.2 Programming style . 519
31.12.3 Software testing . 519
31.12.4 Fun . 519

A Glossary . 520

B Sample Program Examples. 530

C ASCII Character Set . 534

D Intrinsic Functions and Procedures 535

E English and Latin Texts . 568

F Coded Text Extract . 569

G Formal syntax . 570

H Compiler Options . 575

Index . 581

xx Contents

1

Overview

“I don't know what the language of the year 2000 will look like, but it will be
called Fortran.”

C.A.R. Hoare

Aims
The aims of the chapter are to provide a background to the organisation of the
book.

1 Overview

The book aims to provide coverage of a recommended subset of the full Fortran
language. The subset we have chosen is one that fits most closely with the theory
and practice of structured programming, data structuring and software engineering.

This book has been written for both complete beginners with little or no program-
ming background and experienced Fortran programmers who want to update their
skills and move to a modern version of the language.

Chapters 2–4 provide a short background to computer systems and their use:

• Chapter 2 looks at the basics of computer systems from the hardware
point of view.

• Chapter 3 provides a short history of operating system developments and
looks at some commonly used operating systems.

• Chapter 4 looks at some of the fundamentals of using a computer system.

These three chapters provide information that will be very helpful in the longer
term for the successful use of computer systems for programming.

Chapters 5 and 6 provide a coverage of problem solving and the history and devel-
opment of programming languages. Chapter 5 is essential for the beginner as the
concepts introduced there are used and expanded on throughout the rest of the
book. Chapter 6 must be read at some point but can be omitted initially. Pro-
gramming languages evolve and some understanding of where Fortran has come
from and where it is going will prove valuable in the longer term:

• Chapter 5 looks at problem solving in some depth, and there is a coverage
of the way we define problems, the role of algorithms, the use of both
top-down and bottom-up methods, and the requirement for formal systems
analysis and design for more complex problems.

• Chapter 6 looks at the history and development of programming lan-
guages. This is essential as Fortran has evolved considerably from its ori-
gins in the mid-1950s, through the first standard in 1966, the Fortran 77
standard, the Fortran 90 standard, the Fortran 95 standard, TR 15580 and
TR 15581, Fortran 2003 and beyond. It helps to put many of the current
and proposed features of Fortran into context. Languages covered include
Cobol, Algol, Lisp, Snobol, PL/1, Algol 68, Simula, Pascal, APL, Basic,
C, Ada, Modula, Modula 2, Logo, Prolog, SQL, ICON, Oberon, Oberon
2, Smalltalk, C++, C# and Java.

Chapters 7 through 11 cover the major features provided in Fortran for numeric
programming in the first instance and for general purpose programming in the sec-

2 Chapter 1

ond. Each chapter has a set of problems. It is essential that a reasonable range of
problems is attempted and completed, as it is impossible to learn any language
without practice:

• Chapter 7 provides an introduction to programming with some simple
Fortran examples. For people with a knowledge of programming this
chapter can be covered fairly quickly.

• Chapter 8 looks at arithmetic in some depth, with a coverage of the vari-
ous numeric data types, expressions and assignment of scalar variables.
There is also a thorough coverage of the facilities provided in Fortran to
help write programs that work on different hardware platforms.

• Chapter 9 is an introduction to arrays and DO loops. The chapter starts
with some examples of tabular structures that one should be familiar with.
There is then an examination of what concepts we need in a programming
language to support manipulation of tabular data.

• Chapter 10 takes the ideas introduced in chapters 8 and 9 and extends
them to higher-dimensioned arrays, additional forms of the DIMENSION
attribute and corresponding form of the DO loop, and the use of looping
for the control of repetition and manipulation of tabular information with-
out the use of arrays.

• Chapter 11 looks at more of the facilities offered for the manipulation of
whole arrays and array sections, ways in which we can initialise arrays us-
ing constructors, look more formally at the concepts we need to be able to
accurately describe and understand arrays, and finally look at the differ-
ences between the way Fortran allows us to use arrays and the mathemati-
cal rules governing matrices.

Chapters 9 through 11 provide a coverage of some of the more important features
and uses of arrays in the field of numerical problem solving. The framework pro-
vided here is drawn upon in later chapters in the book with more complex and
realistic examples.

Chapters 12, 13 and 14 look at input and output (I/O) and file handling in Fortran.
An understanding of I/O is necessary for the development of so-called production,
non interactive programs. These are essentially fully developed programs that are
used repeatedly with a variety of data inputs and results:

• Chapter 12 looks at output of results and how to generate something that
is more comprehensible and easy to read than what is available with free
format output and also how to write the results to a file rather than the
screen.

Overview 3

• Chapter 13 extends the ideas introduced in Chapter 12 on output to cover
input of data, or reading data into a program and also considers file I/O.

• Chapter 14 provides a coverage of files.

Chapter 15 introduces the first building block available in Fortran for the construc-
tion of programs for the solution of larger, more complex problems. It looks at the
functions available in Fortran, the so-called intrinsic functions and procedures
(over 100 of them) and covers how you can define and use your own functions.

It is essential to develop an understanding of the functions provided by the lan-
guage and when it is necessary to write your own.

Chapter 16 introduces more formally the concept of control structures and their
role in structured programming. Some of the control structures available in Fortran
are introduced in earlier chapters, but there is a summary here of those already
covered plus several new ones that complete our coverage of a minimal working
set.

Chapters 17 through 21 complete our coverage of the facilities for data typing and
structuring provided by Fortran, both predefined and user defined. Fortran has now
caught up with some of the major developments in the data-structuring area of the
last 20 years, which have been available in other languages for some time:

• Chapter 17 looks at the character data type in Fortran. There is a coverage
of I/O again, with the operators available — only one in fact.

• Chapter 18 looks at the last numeric data type in Fortran, the complex
data type. This data type is essential to the solution of a small class of
problems in mathematics and engineering.

• Chapter 19 looks at the logical data type. The material covered here helps
considerably in increasing the power and sophistication of the way we use
and construct logical expressions in Fortran. This proves invaluable in the
construction and use of logical expressions in control structures.

• Chapters 20 looks at user-defined data types. This introduces another ma-
jor new feature of Fortran. Previous versions of the language lacked any
facilities in this area. This meant that in many applications earlier versions
of Fortran were not the language of first choice for many people.

• Chapter 21 looks at the dynamic data-structuring facilities now available
in Fortran. Examples are drawn from a range of sources.

These chapters conclude coverage of the data-structuring facilities provided by
Fortran. There are problems that will require facilities not provided, but it is sur-
prising what can be achieved with the set now provided in Fortran. The material

4 Chapter 1

covered is extended into more realistic examples when we look at the construction
of larger and more complex programs in the last few chapters in the book.

The next two chapters look at the second major building block in Fortran — the
subroutine. Chapter 22 provides a gentle introduction to some of the fundamental
concepts of subroutine definition and use and Chapter 23 extends these ideas.

Chapter 24 introduces the concept of a module and the range of things that it
brings to Fortran.

Chapter 25 looks at converting to modern Fortran. A number of examples are used
and several software tools are examined.

Chapter 26 has a number of case studies helping to pull together the ideas pre-
sented in the earlier chapters.

Chapter 27 looks at ISO TR 15580 — IEEE Arithmetic.

Chapter 28 deals with ISO TR 15581 — Allocatable Enhancements

Chapters 29 covers the new features of Fortran 2003 and ISO/IEC DTR 19767,
Enhanced Module Facilities.

Chapter 30 examines parallel Fortran.

Chapter 31 ties up some loose ends. It looks at program development and software
engineering, modules, programming style, data structures, algorithms, structured
programming, recursion and recursion removal, efficiency in space and time, pro-
gram testing, simple debugging techniques, software tools and numerical software
sources. There is also coverage of the various internet resources available for For-
tran.

Many of the chapters have annotated bibliographies. These often have pointers and
directions for further reading. The coverage provided cannot be seen in isolation.
The concepts introduced are by intention brief, and fuller coverage must be sought
where necessary.

There are several appendices:

• Appendix A — This is a glossary which provides coverage of both the
new concepts provided by Fortran and a range of computing terms and
ideas.

• Appendix B — Provides an example of a simple program in a number of
the languages described in the chapter on program language development.
There is also coverage of the standards that apply.

• Appendix C — The ASCII character set.

Overview 5

• Appendix D — Contains a list of all of the intrinsic procedures in Fortran
and includes a full explanation of each procedure with a coverage of the
rules and restrictions that apply and examples of use.

• Appendix E — Contains the English and Latin text extracts used in one of
the problems in the chapter on characters.

• Appendix F — Contains the coded text extract used in one of the prob-
lems in Chapter 17.

• Appendix G — Formal syntax

• Appendix H — Sample compiler options

This book is not and cannot possibly be completely self-contained and exhaustive
in its coverage of the Fortran language. Our first intention has been to produce a
coverage of the features that will get you started with Fortran and enable you to
solve quite a wide range of problems successfully.

Fortran, like most languages, has features that are of relatively little use or make
the construction of larger-scale programs more difficult, especially when moving
between hardware platforms. We have deliberately avoided these features.

Another problem is backwards compatibility with Fortran 77. Existing Fortran 77
programs have to be maintained, and there is much in that language that is depre-
cated or obsolescent in terms of Fortran 95 and Fortran 2003.

We have aimed to introduce a working subset of the new language that emphasises
the better constructs provided in Fortran over its predecessors, Fortran 77 and For-
tran 66.

All in all Fortran is an exciting language, and it has caught up with language de-
velopments of the 1970s, 1980s, and 1990s.

A range of hardware platforms, operating systems and Fortran compilers were
used. These include:

• DEC VAX under VMS and later Open VMS using the NAG Fortran 90
compiler.

• DEC Alpha under Open VMS using the DEC/Compaq Fortran 90 com-
piler.

• PC under DOS and Windows, DEC/Compaq Fortran 90.

• PC under DOS and Windows, DEC/Compaq/HP Fortran 95.

• PC under DOS and Windows, NAG/Salford Fortran 90.

• PC under DOS and Windows, Lahey Fujitsu Fortran 95 PRO 5.7.

6 Chapter 1

• PC under DOS and Windows, Intel.

• PC under DOS and Windows, NAGWare f95.

• Sun UltraSparc under Solaris using NAGWare F90.

• Sun UltraSparc under Solaris using NAGACE F90.

• Sun UltraSparc under Solaris using NAGWare F95.

• Sun UltraSparc under Solaris using Sun F90.

• Intel Linux, NAGWare f95.

• Intel Linux, Lahey Fujitsu Fortran 95 PRO, 6.1.

• Intel Linux, Intel.

Our recommendation is that you use at least two compilers in the development of
your code. Moving code between platforms teaches you a lot.

We are the current owners of the Fortran 90 list, and quoting the introduction “This
list covers all aspects of Fortran 90 and HPF, the new standard(s) for Fortran.
The emphasis should be on the *new* features of Fortran 90. It welcomes contri-
butions from people who write Fortran 90 applications, teach it in courses, want to
port programs and use it on (super)computers.”

Visit:

• http://www.jiscmail.ac.uk/lists/comp-fortran-90.html

for more information.

Ian Chivers is also Editor of Fortran Forum, the SIGPLAN Special Interest Publi-
cation on Fortran, ACM Press.

Overview 7

2

Introduction to
Computer Systems

“Don't Panic.”

Douglas Adams, The Hitch Hiker's Guide to the Galaxy

Aims
The aims of this chapter are to introduce the following:

• The components of a computer — the hardware.

• The components of a complete computer system — the other devices that
you need to do useful work with a computer.

• The software needed to make the hardware do what you want it do.

2 Introduction to Computer Systems

A computer is an electronic device and can be thought of as a tool like a lever or a
wheel, which can be made to do useful work. At the fundamental level it works
with bits (binary digits or sequences of zeros and ones). Bits are generally put to-
gether in larger configurations, e.g., 8, 16, 32, or 64. Hence computers are often
referred to as 8-bit, 16-bit, 32-bit, or 64-bit machines.

2.1 The core of a computer system
The heart of most computer systems comprises a motherboard, CPU, memory, one
or more busses and a power supply. We will look at the CPU, memory and bus in
more depth below.

2.1.1 Central processor unit — CPU

This is the brains of the computer. All of the work that the computer does is organ-
ised here.

2.1.2 Memory

The computer also has a memory. Memory on a computer is a solid state device
that comprises an ordered collection of bits/bytes/words that can be read or written
by the CPU. A byte is generally 8 bits (as in 8-bit byte), and a word is most com-
monly accepted as the minimum number of bits that can be referenced by the CPU.
This referencing is called addressing. The memory typically contains programs and
data.

The two most common word sizes are 32 and 64 bits.

A computer memory is often called random access memory, or RAM. This simply
means that the access time for any part of the memory is the same; in order to ex-
amine location (say) 97, it is not necessary to first look through locations 1 to 96.
It is possible to go directly to location 97. A slightly better term might have been
access at random. The memory itself is highly ordered.

2.1.3 Bus

A bus is a set of connections between the CPU and other components. The bus is
used for a variety of purposes. These include address signals, which tell the mem-
ory which words are wanted next and data lines, which are used to transfer data to
and from memory and to and from other parts of the computer system. This is typ-
ical of many systems, but systems do vary considerably; so while the information
above may not be true in specific cases, it provides a general model.

10 Chapter 2

2.2 Other components of a computer system
So far the computer we have described is not sufficiently versatile. We have to add
on other pieces of electronics to make it really useful.

2.2.1 Disks

These are devices for storing collections of bits, which are inevitably organised in
reality into bytes and files. One advantage of adding these to our computer system
is that we can switch the machine off, go away and come back at a later time and
continue with what we were doing.

Memory is expensive and fast, whereas disks are slower but cheaper. Most com-
puter systems balance speed against cost, and have a small memory in relation to
disk capacity.

Many people will be familiar with the two main types of disks on early personal
computers (PCs) or microcomputers: floppy disks and hard disks. Floppy disks
now come in one main physical size, 3-1/2 inch, but smaller ones are also used.
Hard disks are inside the system, and most people do not see them.

Optical drives are an essential part of present day systems. They exist in a variety
of flavours including simple read-only CD, rewritable CD and DVD forms.

2.2.2 Others

There are a large number of other input and output devices. These vary consider-
ably from system to system, depending on the work being carried out. They
include:

• Network (ethernet or wifi) cards for access to local and wide area net-
works.

• Modems for access from home, mainly to the Internet.

• Printers of a variety of types.

• Colour plotters.

• Phototypesetters.

• Pens.

• Sound interfaces, both for speech recognition and sound production.

• Scanners.

• Digital cameras.

• Joy sticks.

• Zip drives.

Introduction to Computer Systems 11

• Memory sticks.

The most important I/O devices are the keyboard and the screen, whether you use
a terminal, PC or workstation. This book has been written assuming that most of
your work will be done at one of these devices.

Terminals fall into two categories, character-based devices (and the DEC VT series
is a very popular one) and graphical devices (the X-Windows terminals are the
most popular). Terminal access to remote systems is often provided on PCs using
terminal emulation software, e.g., Telnet, WinQVT and X-Windows access to
UNIX systems via software like Vista Exceed.

PCs provide the opportunity for cheap and powerful desktop computing facilities,
where the processing is done locally.

Workstations are more powerful than microcomputers but this division is becoming
rather blurred with the recent generations of processors. Screens on these devices
are graphically oriented. Access to these systems is via a graphical or windows in-
terface.

This means that the device we use looks rather like an ordinary typewriter key-
board, although some of the keys are different. However, the location of the letters,
numbers and common symbols is fairly standard. Don't panic if you have never
met a keyboard before. You don't have to know much more than where the keys
are. Few programmers, even professionals, advance beyond the stage of using two
index fingers and a thumb for typing. You will find that speed in typing is rarely
important; it's accuracy that counts.

One thing that people unfamiliar with keyboards often fail to realise is that what
you have typed in is not sent to the computer until you press the carriage return
key. To achieve any sort of communication you must press that key; it will be
somewhere on the right-hand side of the keyboard, and will be marked return, c/r,
send, enter, or something similar.

2.3 Software
So far we have not mentioned software. Software is the name given to the pro-
grams that run on the hardware. Programs are written in languages. Computer
languages are frequently divided into two categories: high level and low level. A
low-level language (e.g., assembler) is closer to the hardware, whereas a high-level
language (e.g., Fortran) is closer to the problem statement. There is typically a
one-to-one correspondence between an assembly language statement and the actual
hardware instruction. With a high-level language there is a one-to-many correspon-
dence; one high-level statement will generate many machine-level instructions.

12 Chapter 2

A certain amount of general purpose software will have been provided by the man-
ufacturer. This software will typically include the basic operating system, one or
more compilers, an assembler, an editor, and a loader or link editor.

• A compiler translates high-level statements into machine instructions.

• An assembler translates low-level or assembly language statements into
machine instructions.

• An editor makes changes to text files, e.g., program sources.

• A loader or link editor takes the output from the compiler and completes
the process of generating something that can be executed on the hardware.

These programs will vary considerably in size and complexity. Certain programs
that make up the operating system will be quite simple and small (like copying
utilities), whereas certain others will be relatively large and complex (like a com-
piler).

In this book we concentrate on software or programs that you write for your re-
search or course work. As the book progresses you will be introduced to ways of
building on what other people have produced and how to take advantage of the
vast amount of software already written, tested and documented.

2.4 Problems
1. Distinguish between a memory address and memory contents.

2. What does RAM stand for?

3. What would a WOM (write only memory) do? How would you use it?

4. What does CPU stand for? What does it do?

5 What does a compiler do?

6 What does a linker do?

2.5 Bibliography
Baer J.L., Computer Systems Architecture, Computer Science Press.

Extremely readable coverage of this whole area. The version could do with an
update, but it is still a very impressive coverage. Highly recommended.

Bhandarkar D.P., Alpha Implementation and Architecture: Complete Reference and
Guide, Digital Press, 1996.

Excellent source of information on the Alpha architecture.

Introduction to Computer Systems 13

Intel currently make a lot of material available on their web site. Two useful URLs
are:

• http://www.intel.com/

and

• http://developer.intel.com/

Well worth a look. Many publications are available in Adobe Acrobat Portable
Document Format — PDF.

Reeves C.M., An Introduction to Logical Design of Digital Circuits, CUP, 1972.

This book provides coverage of the construction of the very simple electronic
building blocks from which most modern computer systems are made. Rela-
tively theoretical.

Tannenbaum A.S., Structured Computer Organisation, Prentice-Hall, 1976.

Very good coverage looking at a computer system in terms of a hierarchy of
levels. An easy read.

14 Chapter 2

3

Introduction to
Operating Systems

“‘Where shall I begin your Majesty’ he asked.
‘Begin at the beginning,’ the King said, gravely ‘and go
on till you come to the end then stop.’”

Lewis Carroll, Alice's Adventures in Wonderland

Aims
The aims of this chapter are:

• To provide a brief history of operating system development.

• To look briefly at some commonly used operating systems:

• DOS and Windows.

• UNIX and X-Windows.

• Linux and X-Windows.

• VMS and Open VMS.

3 Introduction to Operating Systems

A simple definition of an operating system is the suite of programs that make the
hardware usable. Most computer systems provide one. They vary considerably
from those available on early microcomputers, like CP/M, to DOS and the various
versions of Microsoft Windows on PCs and UNIX with X-Windows and Linux
with X-Windows on workstations and supercomputers.

From the designer's point of view operating systems are mainly resource managers.
They allow management of the CPU, disks and I/O devices. They have to provide
a user interface for computer operators, professional programmers (whether sys-
tems or applications), administrators of the system, and finally the casual end user.
As can be imagined, these groups have different functional requirements. It is
therefore useful to look at the development of operating systems, and see a shift
from satisfying the requirements of the professional to satisfying the requirements
of the casual end user.

3.1 History of operating systems

3.1.1 The 1940s

Early computer systems had no operating systems in the modern sense of the word.
An early commercially available machine was the IBM 604 which could undertake
some 60 program steps before using punch cards as backing store. The end user
had intimate knowledge of the machine and programmed at a very low level.

3.1.2 The 1950s

This era saw a rapid change in the capabilities of operating systems. They were de-
signed to make efficient use of an expensive resource. Jobs were batched so that
the time between jobs was minimised. The end user was now distanced from the
machine. This era saw rapid development in program language design and a nota-
ble end to the period was the design of Algol 60.

3.1.3 The 1960s

The next milestone was the introduction of multiprogramming. Probably initially
seen as a way of making efficient use of hardware it heralded the idea of time
sharing. A time-sharing system is characterised by the conversational nature of the
interaction and the use of a keyboard. This had a tremendous impact on the range
of uses that a computer system had and on the program development process.

3.1.4 The 1960s and 1970s

The realisation that computer systems could be used in a wide range of human ac-
tivities saw the development of large, general purpose systems, and probably the
most famous of these was the IBM 360 series. These systems were some of the

16 Chapter 3

most complex programming endeavours undertaken, and most projects were late
and well over budget. These costly mistakes helped lead to the establishment of
software engineering as a discipline.

The contribution of the time-sharing system to program development was quickly
realised to be considerable. A system that was developed during this period was
UNIX — and this operating system has a very sharp set of tools to aid in program
development.

3.1.5 The 1970s, 1980s, and 1990s

The 1970s represented a period of relative stability with newer and more complex
versions of existing systems.

During this period the importance of graphical interfaces emerged and, with drop-
ping hardware costs, graphical interfaces started to dominate.

The Apple Macintosh heralded a new era and became a popular choice for many
people. At the same time graphical interfaces were being added to existing major
operating systems, with X-Windows and associated higher-level systems hiding
raw UNIX from many users and Microsoft Windows on the Intel family of proces-
sors.

Linux (a free UNIX variant) is popular in the scientific field, and a very good al-
ternative to DOS and Windows on the Intel family of processors.

3.2 Networking
Networking simplistically is a way of connecting two or more computer systems.
Networking computer systems is not new. One of the first was the SAGE military
network, funded by the US DoD in the 1950s.

Networking capability has undergone a massive increase during the computer age.
Local networks of two or three systems through tens of systems in small research
groups and organizations are now extremely common place. It is not unusual now
to have in excess of a thousand network connected devices on one local area net-
work.

Wide-area networking is also quite common, and most major organisations now
have networks spanning a country or even the whole world.

One of the most widely used wide-area networks in the academic and scientific
world is the Internet, and there are many millions of systems on the Internet at the
time of writing this book.

A number of books on networking are included in the bibliography.

Introduction to Operating Systems 17

3.3 Problems
1. What type of system do you use, i.e., is it a stand alone microcomputer, termi-
nal, workstation, etc?

2. Is it networked, and if so in what way?

3. Is wide-area networking available?

4. Is a graphical interface available?

3.4 Bibliography
Brooks F.P., The Mythical Man Month: Essays on Software Engineering, Addi-
son-Wesley, 1982.

A very telling coverage of the development of the operating system for the
IBM 360 series of systems. A must for any one involved in the longer term in
program development.

Deitel H.M., An Introduction to Operating Systems, Addison-Wesley, 1984.

One of the most accessible books on operating systems with coverage of pro-
cess management, storage management, processor management, auxiliary
storage management, performance, networks and security, with case studies of
the major players including UNIX, VMS, CP/M, MVS, VM, DOS and Win-
dows.

Feit S., TCP/IP, Architecture, Protocols, and Implementation, McGraw-Hill.

A more technical book than Kroll, well written with a wealth of information
for the more inquisitive reader.

Kroll E., The Whole Internet User's Guide and Catalog, O'Reilly, 1994.

The Internet book. Written with very obvious enthusiasm by Mister Internet
himself!

18 Chapter 3

4

Introduction to Using
a Computer System

“Maybe one day we will be glad to remember even these things.”

Virgil

Aims
The aims of this chapter are to introduce some of the fundamentals of using a com-
puter system, including:

• Files.

• Editors.

• Systems access and networking.

4 Introduction to Using a Computer System

There are a number of concepts that underpin your use of any computing system.
Sitting at a high-resolution colour screen with a myriad of icons this may not be
immediately apparent, but developing an appreciation of it will help considerably
in the long term and when you inevitably move from one system to another.

4.1 Files
A file is a collection of information that you refer to by name, e.g., if you were to
use a word processor to prepare a letter then the letter would exist independently
as a file on that system, generally on a disk. With graphical interfaces there will be
a systematic iconic representation of files.

There will be many ways of manipulating files on the operating system that you
work on. You will use an editor to make changes to a file. This file might be the
source of a program and you could then use a compiler to compile your program.
The compiler will generate a number of files, some of interest to you, others for its
own use. There will be commands in the operating system to make copies of files,
back files up onto a variety of media, etc.

4.2 Editors
All general purpose computer systems have at least one editor so that you can
modify programs and data. Screen editors are by far the easiest to use, with
changes you make to the file being immediately visible on the screen in front of
you.

Some editors will have sophisticated command modes of operation with pattern
matching allowing very powerful text-processing capabilities. These can automate
many common tasks, taking away the manual, repetitive drudgery of screen-based
editing.

4.3 Single-user systems
These are becoming increasingly common, in use both at work and in the home.
The PC is a very popular choice in the scientific community. They offer ease of
use and access to a considerable amount of raw processing power for computer-in-
tensive applications.

4.4 Networked systems
It is quite common to interconnect the above to local and wide-area networks. This
same network would also have file servers, printers, plotters, mail gateways, etc.
Both authors have PCs with modems at home and have access via the telephone
system to the Internet.

20 Chapter 4

Workstations are generally networked in an environment like the above, providing
very powerful processing capability.

4.5 Multiuser systems
One step above microcomputers and workstations are multiuser systems. The di-
viding lines between microcomputers, individual workstations and multiuser
systems are rapidly becoming blurred.

Multiuser systems, especially the larger ones, are very popular as they relieve the
casual end users from much of the drudgery of the day-to-day tasks: backing up
disks, installing new versions of the software, locating and fixing problems with
software that doesn't work quite as it should, etc., are carried out by a system man-
ager or operator.

Here we find one person with the role of registering new users, backing up the file
system, sorting out printer problems, networking problems, etc. This also means
that not all of the users of the system have to remember rather arcane and some-
times rather magical commands! They can get on with solving their actual
problems.

4.6 Other useful things to know
You will soon need to know what files you are working with and there will be
commands to do this. There will be a need to get rid of files and there will be
commands to achieve this.

There will be ways of getting on-line help, and help as a command is (for once!)
used by a variety of operating systems. On UNIX systems the rather more unintel-
ligible man command is available.

There will be commands to print program listings and data files

With networked and multiuser systems there will be commands to send and receive
electronic mail to/from other users. It is easy to send and reply to mail from people
across the world, often in hours and even minutes. Table 4.1 has examples of some
common operating system commands in DOS, UNIX, Linux and VMS.

Introduction to Using a Computer System 21

Operating system DOS UNIX VMS
and command Linux

What files are there dir ls dir
Get rid of a file del rm del
Copy a file copy cp copy
Display a file on the screen type cat type
Print a file print pr print
Create or make changes to a file edit ed edit

vi edit/tpu
Make a subdirectory mkdir, md md create/dir
Change to another directory chdir, cd cd set default

Table 4.1 Common Operating System Commands

4.7 Common methods of using computer systems to develop
Fortran programs

The following are some of the ways in which you can use a computer system to
develop Fortran programs:

• PC running Windows and X-Windowing software to access a remote sys-
tem with a Fortran compiler installed, GUI interface.

• PC running Linux and X-Windows to access a remote system with a For-
tran compiler installed, GUI interface.

• PC running Windows and telnet or ssh to access a remote system with a
Fortran compiler installed, terminal-style interface.

• PC running Linux and telnet or ssh to access a remote system with a For-
tran compiler installed, terminal-style interface.

• PC running Windows, local Fortran compiler installed.

• PC running Linux, local Fortran compiler installed.

• Proprietary workstation, local compiler installed.

• Proprietary workstation, accessing compiler on remote system.

All will have one thing in common and that is that the following cycle is used:

22 Chapter 4

• Edit your program.

• Compile the program.

• Run the program.

• Check the answers.

• Go back and edit the program to correct the errors and repeat until the an-
swers are what you expect!

4.8 Bibliography
The main sources here are the manuals and documentation provided by the sup-
plier of whatever system you use. These are increasingly of a very high standard.
However they are inevitably written to highlight the positive and downplay the
negative aspects of the systems. The next sources are the many third-party books
written and widely available throughout the world. These vary considerably in
price from basic introductory coverages to very comprehensive reference works.
These are a very good complement to the first. The following URL is a very good
source of UNIX information.

• http://unixhelp.ed.ac.uk/

Gilly D., UNIX in a Nutshell, O'Reilly.

A very good quick reference guide. Assumes some familiarity with UNIX.
Current edition (at the time of writing this book) was System V Release IV,
with Solaris 2.0. Also provides coverage of the various shells, Bourne, Korn
and C.

Microsoft, Windows User's Guide, Microsoft Press.

Good coverage of Windows and suitable for the beginner and intermediate
level user. Sufficient for most users. A massive improvement over earlier ver-
sions.

Introduction to Using a Computer System 23

5

Introduction to
Problem Solving

“They constructed ladders to reach to the top of the enemy's wall, and they did this
by calculating the height of the wall from the number of layers of bricks at a point
which was facing in their direction and had not been plastered. The layers were
counted by a lot of people at the same time, and though some were likely to get
the figure wrong the majority would get it right... Thus, guessing what the thick-
ness of a single brick was, they calculated how long their ladder would have to
be.”

Thucydides, The Peloponnesian War

“‘When I use a word,’ Humpty Dumpty said, in a rather scornful tone, ‘it means
just what I choose it to mean — neither more nor less.’
‘The question is,’ said Alice, ‘whether you can make words mean so many differ-
ent things.’”

Lewis Carroll, Through the Looking Glass and What Alice Found There

Aims
The aims of this chapter are:

• To examine some of the ideas and concepts involved in problem solving.

• To introduce the concept of an algorithm.

• To introduce two ways of approaching algorithmic problem solving.

• To introduce the ideas involved with systems analysis and design, i.e., to
show the need for pencil and paper study before using a computer system.

5 Introduction to Problem Solving

It is informative to consider some of the dictionary definitions of problem:

• A matter difficult of settlement or solution, Chambers.

• A question or puzzle propounded for solution, Chambers.

• A source of perplexity, Chambers.

• Doubtful or difficult question, Oxford.

• Proposition in which something has to be done, Oxford.

• A question raised for enquiry, consideration, or solution, Webster's.

• An intricate unsettled question, Webster's.

A common thread seems to be a question that we would like answered or solved.
So one of the first things to consider in problem solving is how to pose the prob-
lem. This is often not as easy as is seems. Two of the most common methods to
use here are:

• In natural language.

• In artificial or stylised language.

Both methods have their advantages and disadvantages.

5.1 Natural language
Most people use natural language and are familiar with it, and the two most com-
mon forms are the written and spoken word. Consider the following language
usage:

• The difference between a 3-year-old child and an adult describing the
world.

• The difference between the way an engineer and a physicist would ap-
proach the design of a car engine.

• The difference between a manager and a worker considering the implica-
tions of the introduction of new technology.

Great care must be taken when using natural language to define a problem and a
solution. It is possible that people use the same language to mean completely dif-
ferent things, and one must be aware of this when using natural language whilst
problem solving.

Natural language can also be ambiguous: Old men and women eat cheese. Are
both the men and women old?

26 Chapter 5

5.2 Artificial language
The two most common forms of artificial language are technical terminology and
notations. Technical terminology generally includes both the use of new words and
alternate use of existing words. Consider some of the concepts that are useful when
examining the expansion of gases in both a theoretical and practical fashion:

• Temperature.

• Pressure.

• Mass.

• Isothermal expansion.

• Adiabatic expansion.

Now look at the following:

• A chef using a pressure cooker.

• A garage mechanic working on a car engine.

• A doctor monitoring blood pressure.

• An engineer designing a gas turbine.

Each has a particular problem to solve, and all will approach their problem in their
own way; thus they will each use the same terminology in slightly different ways.

5.2.1 Notations

Some examples of notations are:

• Algebra.

• Calculus.

• Logic.

All of the above have been used as notations for describing both problems and
their solutions.

5.3 Resumé
We therefore have two ways of describing problems and they both have a learning
phase until we achieve sufficient understanding to use them effectively. Having ar-
rived at a satisfactory problem statement we next have to consider how we get the
solution. It is here that the power of the algorithmic approach becomes useful.

Introduction to Problem Solving 27

5.4 Algorithms
An algorithm is a sequence of steps that will solve part or all of a problem. One of
the most easily understood examples of an algorithm is a recipe. Most people have
done some cooking, if only making toast and boiling an egg.

A recipe is made up of two parts:

• A check list of things you need.

• The sequence or order of steps.

Problems can occur at both stages, e.g., finding out halfway through the recipe that
you do not have an ingredient or utensil; finding out that one stage will take an
hour when the rest will be ready in ten minutes. Note that certain things can be
done in any order — it may not make any difference if you prepare the potatoes
before the carrots.

There are two ways of approaching problem solving when using a computer. They
both involve algorithms, but are very different from one another. They are called
top-down and bottom-up.

5.4.1 Top-down

In a top-down approach the problem is first specified at a high or general level:
prepare a meal. It is then refined until each step in the solution is explicit and in
the correct sequence, e.g., peel and slice the onions, then brown in a frying pan be-
fore adding the beef. One drawback to this approach is that it is very difficult to
teach to beginners because they rarely have any idea of what primitive tools they
have at their disposal. Another drawback is that they often get the sequencing
wrong, e.g., now place in a moderately hot oven is frustrating because you may not
have lit the oven (sequencing problem) and secondly because you may have no
idea how hot moderately hot really is. However, as more and more problems are
tackled, top-down becomes one of the most effective methods for programming.

5.4.2 Bottom-up

Bottom-up is the reverse to top-down! As before you start by defining the problem
at a high level, e.g., prepare a meal. However, now there is an examination of what
tools, etc. you have available to solve the problem. This method lends itself to
teaching since a repertoire of tools can be built up and more complicated problems
can be tackled. Thinking back to the recipe there is not much point in trying to
cook a six course meal if the only thing that you can do is boil an egg and open a
tin of beans. The bottom-up approach thus has advantages for the beginner. How-
ever, there may be a problem when no suitable tool is available. A colleague and
friend of the authors learned how to make Bechamel sauce, and was so pleased by
his success that every other meal had a course with a Bechamel sauce. Try it on

28 Chapter 5

your eggs one morning. Here is a case of specifying a problem, prepare a meal,
and using an inappropriate but plausible tool, Bechamel sauce.

The effort involved in tackling a realistic problem, introducing the constructs as
and when they are needed and solving it is considerable. This approach may not
lead to a reasonably comprehensive coverage of the language, or be particularly
useful from a teaching point of view. Case studies do have great value, but it helps
if you know the elementary rules before you start on them. Imagine learning
French by studying Balzac, before you even look at a French grammar book. You
can learn this way but even when you have finished, you may not be able to speak
to a Frenchman and be understood. A good example of the case study approach is
given in the book Software Tools, by Kernighan and Plauger.

In this book our aim is to gradually introduce more and more tools until you know
enough to approach the problem using the top-down method, and also realise from
time to time that it will be necessary to develop some new tools.

5.4.3 Stepwise refinement

Both of the above techniques can be combined with what is called stepwise refine-
ment. The original ideas behind this approach are well expressed in a paper by
Wirth, entitled “Program Development by Stepwise Refinement”, published in
1971. It means that you start with a global problem statement and break the prob-
lem down in stages, into smaller and smaller subproblems that become more and
more amenable to solution. When you first start programming the problems you
can solve are quite simple, but as your experience grows you will find that you can
handle more complex problems.

When you think of the way that you solve problems you will probably realise that
unless the problem is so simple that you can answer it straightaway some thinking
and pencil and paper work are required. An example that some may be familiar
with is in practical work in a scientific discipline, where coming unprepared to the
situation can be very frustrating and unrewarding. It is therefore appropriate to
look at ways of doing analysis and design before using a computer.

5.4.4 Modular programming

As the problems we try solving become more complex we need to look at ways of
managing the construction of programs that comprise many parts. Modula 2 was
one of the first languages to support this methodology and we will look at modular
programming in more depth in a subsequent chapter.

5.4.5 Object oriented programming

There is a class of problems that are best solved by the treatment of the compo-
nents of these problems as objects. We will look at the concepts involved in object
oriented programming and object oriented languages in the next chapter.

Introduction to Problem Solving 29

5.5 Systems analysis and design
When one starts programming it is generally not apparent that one needs a method-
ology to follow to become successful as a programmer. This is usually because the
problems are reasonably simple, and it is not necessary to be explicit about all of
the stages one has gone through in arriving at a solution. As the problems become
more complex it is necessary to become more rigorous and thorough in one's ap-
proach, to keep control in the face of the increasing complexity and to avoid
making mistakes. It is then that the benefit of systems analysis and design becomes
obvious. Broadly we have the following stages in systems analysis and design:

• Problem definition.

• Feasibility study and fact finding.

• Analysis.

• Initial system design.

• Detailed design.

• Implementation.

• Evaluation.

• Maintenance.

and each problem we address will entail slightly different time spent in each of
these stages. Let us look at each stage in more detail.

5.5.1 Problem definition

Here we are interested in defining what the problem really is. We should aim at
providing some restriction on both the scope of the problem, and the objectives we
set ourselves. We can use the methods mentioned earlier to help us out. It is essen-
tial that the objectives are:

• Clearly defined.

• Understood and agreed to by all people concerned, when more than one
person is involved.

• Realistic.

5.5.2 Feasibility study and fact finding

Here we look to see if there is a feasible solution. We would try and estimate the
cost of solving the problem and see if the investment was warranted by the bene-
fits, i.e., cost-benefit analysis.

30 Chapter 5

5.5.3 Analysis

Here we look at what must be done to solve the problem. Note that we are inter-
ested in finding out what we need to do, but that we do not actually do it at this
stage.

5.5.4 Design

Once the analysis is complete we know what must be done, and we can proceed to
the design. We may find there are several alternatives, and we thus examine alter-
nate ways in which the problem can be solved. It is here that we use the techniques
of top-down and bottom-up problem solving, combined with stepwise refinement
to generate an algorithm to solve the problem. We are now moving from the logi-
cal to the physical side of the solution. This stage ends with a choice among
several alternatives. Note that there is generally not one ideal solution, but several,
each with its own advantages and disadvantages.

5.5.5 Detailed design

Here we move from the general to the specific, The end result of this stage should
be a specification that is sufficiently tightly defined specification to generate actual
program code.

It is at this stage that it is useful to generate pseudocode. This means writing out in
detail the actions we want carried out at each stage of our overall algorithm. We
gradually expand each stage (stepwise refinement) until it becomes Fortran — or
whatever language we want.

5.5.6 Implementation

It is at this stage that we actually use a computer system to create the program(s)
that will solve the problem. It is here that we actually need to know enough about
a programming language to use it effectively to solve our problem. This is only
one stage in the overall process, and mistakes at any of the stages can create se-
rious difficulties.

5.5.7 Evaluation and testing

Here we try to see if the program(s) we have produced will actually do what they
are supposed to. We need to have data sets that enable us to say with confidence
that the program really does work. This may not be an easy task, as quite often we
only have numeric methods to solve the problem, which is why we are using the
computer in the first place — hence we are relying on the computer to provide the
proof; i.e., we have to use a computer to determine the veracity of the programs —
and as Heller says, Catch 22.

Introduction to Problem Solving 31

5.5.8 Maintenance

It is rare that a program is run once and never used again. This means that there
will be an ongoing task of maintaining the program, generally to make it work
with different versions of the operating system or compiler, and to incorporate new
features not included in the original design. It often seems odd when one starts
programming that a program will need maintenance, as we are reluctant to regard a
program in the same way as a mechanical object like a car that will eventually fall
apart through use. Thus maintenance means keeping the program working at some
tolerable level, often with a high level of investment in manpower and resources.
Research in this area has shown that anything up to 80% of the manpower invest-
ment in a program can be in maintenance.

5.6 Conclusions
A drawback, inherent in all approaches to programming and to problem solving in
general, is the assumption that a solution is indeed possible. There are problems
which are simply insoluble — not only problems like balancing a national budget,
weather forecasting for a year, or predicting which radioactive atom will decay, but
also problems which are apparently computationally solvable.

Knuth gives the example of a chess problem — determining whether the game is a
forced victory for white. Although there is an algorithm to achieve this, it requires
an inordinately long time to complete. For practical purposes it is unsolvable.

Other problems can be shown mathematically to be undecidable. The work of
Gödel in this area has been of enormous importance, and the bibliography contains
a number of references for the more inquisitive and mathematically orientated
reader. The Hofstader coverage is the easiest, and least mathematical.

As far as possible we will restrict ourselves to solvable problems, like learning a
programming language.

Within the formal world of Computer Science our description of an algorithm
would be considered a little lax. For our introductory needs it is sufficient, but a
more rigorous approach is given by Hopcroft and Ullman in Introduction to Au-
tomata Theory, Languages and Computation, and by Beckman in Mathematical
Foundations of Programming.

5.7 Problems
1. What is an algorithm?

2. What distinguishes top-down from bottom-up approaches to problem solving?
Illustrate your answer with reference to the problem of a car, motor-cycle or bicy-
cle having a flat tire.

32 Chapter 5

5.8 Bibliography
Aho A.V., Hopcroft J.E., Ullman J.D., The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1982.

Theoretical coverage of the design and analysis of computer algorithms.

Beckman F.S., Mathematical Foundations of Programming, Addison-Wesley, 1981

Good clear coverage of the theoretical basis of computing.

Bulloff J.J., Holyoke T.C., Hahn S.W., Foundations of Mathematics — Symposium
Papers Commemorating the 60th Birthday of Kurt Gödel, Springer-Verlag, 1969.

The comment by John von Neumann highlights the importance of Gödel's
work, .. Kurt Gödel's achievement in modern logic is singular and monumen-
tal — indeed it is more than a monument, it is a landmark which will remain
visible far in space and time. Whether anything comparable to it has occurred
in the logic of modern times may be debated. In any case, the conceivable
proxima are very, very few. The subject of logic has certainly changed its na-
ture and possibilities with Gödel's achievement.

Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming, Academic
Press, 1972.

This is the seminal book on structured programming.

Davis M., Computability and Unsolvability, Dover, 1982.

The book is an introduction to the theory of computability and
noncomputability — the theory of recursive functions in mathematics. Not for
the mathematically faint hearted!

Davis W.S., Systems Analysis and Design, Addison-Wesley, 1983.

Good introduction to systems analysis and design, with a variety of case stud-
ies. Also looks at some of the tools available to the systems analyst.

Fogelin R.J., Wittgenstein, Routledge and Kegan Paul, 1980.

The book provides a gentle introduction to the work of the philosopher
Wittgenstein, who examined some of the philosophical problems associated
with logic and reason.

Gödel K., On Formally Undecidable Propositions of Principia Mathematica and
Related Systems, Oliver and Boyd, 1962.

An English translation of Gödel's original paper by Meltzer, with quite a
lengthy introduction by R.B. Braithwaite, then Knightbridge Professor of
Moral Philosophy at Cambridge University, England, and classified under phi-
losophy at the library at King's, rather than mathematics.

Hofstadter D.,The Eternal Golden Braid, Harvester Press, 1979.

A very readable coverage of paradox and contradiction in art, music and logic,
looking at the work of Escher, Bach and Gödel, respectively.

Introduction to Problem Solving 33

Hopcroft J.E., Ullman J.D., Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

Comprehensive coverage of the theoretical basis of computing.

Kernighan B.W., Plauger P.J., Software Tools, Addison-Wesley, 1976.

Interesting essays on the program development process, originally using a
nonstandard variant of Fortran. Also available using Pascal.

Knuth D.E., The Art of Computer Programming, Addison-Wesley,

Vol 1. Fundamental Algorithms, 1974

Vol 2. Semi-numerical Algorithms, 1978

Vol 3. Sorting and Searching, 1972

Contains interesting insights into many aspects of algorithm design. Good
source of specialist algorithms, and Knuth writes with obvious and infectious
enthusiasm (and erudition).

Millington D., Systems Analysis and Design for Computer Applications, Ellis
Horwood, 1981.

Short and readable introduction to systems analysis and design.

Wirth N., Program Development by Stepwise Refinement, Communications of the
ACM, April 1971, Volume 14, Number 4, pp. 221-227.

Clear and simple exposition of the ideas of stepwise refinement.

34 Chapter 5

6

Introduction to
Programming Languages

“We have to go to another language in order to think clearly about the problem.”

Samuel R. Delany, Babel-17

Aims
The primary aim of this chapter is to provide a short history of program language
development and give some idea as to the concepts that have had an impact on
Fortran 95. It concentrates on some but not all of the major milestones of the last
40 years, in roughly chronological order. The secondary aim is to show the breadth
of languages available. The chapter concludes with coverage of a small number of
more specialised languages.

6 Introduction to Programming Languages

It is important to realise that programming languages are a recent invention. They
have been developed over a relatively short period — 45 years — and are still un-
dergoing improvement. Time spent gaining some historical perspective will help
you understand and evaluate future changes. This chapter starts right at the begin-
ning and takes you through some, but not all, of the developments during this 45
year span. The bulk of the chapter describes languages that are reasonably widely
available commercially, and therefore ones that you are likely to meet. The chapter
concludes with a coverage of some more specialised and/or recent developments.

6.1 Some early theoretical work
Some of the most important early theoretical work in computing was that of Turing
and von Neumann. Turing's work provided the base from which it could be shown
that it was possible to get a machine to solve problems. The work of von Neumann
added the concept of storage and combined with Turing's work to provide the basis
for most computers designed to this day.

6.2 What is a programming language?
For a large number of people a programming language provides the means of get-
ting a digital computer to solve a problem. There is a wide range of problems and
an equally wide range of programming languages, with particular languages being
suited to a particular class of problems, all of which often appears bewildering to
the beginner.

6.3 Program language development and engineering
There is much in common between the development of programming languages
and the development of anything from the engineering world. Consider the car: old
cars offer much of the same functionality as more modern ones, but most people
prefer driving newer models. The same is true of programming languages, where
you can achieve much with the older languages, but the newer ones are easier to
use.

6.4 The early days
A concept that proves very useful when discussing programming languages is that
of the level of a machine. By this is meant how close a language is to the underly-
ing machine that the program runs on. In the early days of programming (up to
1954) there were only two broad categories: machine languages and assemblers.
The language that digital machines use is that of 0 and 1, i.e., they are binary de-
vices. Writing a program in terms of patterns of 0 and 1 was not particularly
satisfactory and the capability of using more meaningful mnemonics was soon in-

36 Chapter 6

troduced. Thus it was realised quite quickly that one of the most important aspects
of programming languages is that they have to be read and understood by both ma-
chines and humans.

6.4.1 Fortran — The Early Days

The next stage was the development of higher-level languages. The first of these
was Fortran and it was developed over a 3 year period from 1954 to 1957 by an
IBM team led by John Backus. This group achieved considerable success, and
helped to prove that the way forward lay with high-level languages for com-
puter-based problem solving. Fortran stands for formula translation and was used
mainly by people with a scientific background for solving problems that had a sig-
nificant arithmetic content. It was thus relatively easy, for the time, to express this
kind of problem in Fortran.

By 1966 and the first standard Fortran:

• Was widely available.

• Was easy to teach.

• Had demonstrated the benefits of subroutines and independent compila-
tion.

• Was relatively machine independent.

• Often had very efficient implementations.

Possibly the single most important fact about Fortran was, and still is, its
widepread usage in the scientific community.

6.4.2 Fortran 77

The next standard in 1977 (actually 1978, and thus out by one — a very common
programming error, more of this later!) added character handling, but little else in
the way of major new features, really tidying up some of the deficiencies of the
1966 standard.

6.4.3 Cobol

The business world also realised that computers were useful and several languages
were developed, including FLOWMATIC, AIMACO, Commercial Translator and
FACT, leading eventually to Cobol — Common Business Orientated Language.
There is a need in commercial programming to describe data in a much more com-
plex fashion than for scientific programming, and Cobol had far greater capability
in this area than Fortran. The language was unique at the time in that a group of
competitors worked together with the objective of developing a language that
would be useful on machines used by other manufacturers.

Introduction to Programming Languages 37

The contributions made by Cobol include:

• Firstly the separation among:

• The task to be undertaken.

• The description of the data involved.

• The working environment in which the task is carried out.

• Secondly a data description mechanism that was largely machine inde-
pendent.

• Thirdly its effectiveness for handling large files.

• Fourthly the benefit to be gained from a programming language that was
easy to read.

Modern developments in computing — of report generators, file-handling software,
fourth-generation development tools, and especially the increasing availability of
commercial relational database management systems — are gradually replacing the
use of Cobol, except where high efficiency and/or tight control are required.

6.4.4 Algol

Another important development of the 1950s was Algol. It had a history of devel-
opment from Algol 58, the original Algol language, through Algol 60 eventually to
the Revised Algol 60 Report. Some of the design criteria for Algol 58 were:

• The language should be as close as possible to standard mathematical no-
tation and should be readable with little further explanation.

• It should be possible to use it for the description of computing processes
in publications.

• The new language should be mechanically translatable into machine pro-
grams.

A sad feature of Algol 58 was the lack of any input/output facilities, and this
meant that different implementations often had incompatible features in this area.

The next important step for Algol occurred at a UNESCO-sponsored conference in
June 1959. There was an open discussion on Algol and the outcome was Algol 60,
and eventually the Revised Algol 60 Report.

It was at this conference that John Backus gave his now famous paper on a method
for defining the syntax of a language, called Backus Normal Form, or BNF. The
full significance of the paper was not immediately recognised. However, BNF was
to prove of enormous value in language definition, and helped provide an interface
point with computational linguistics.

38 Chapter 6

The contributions of Algol to program language development include:

• Block structure.

• Scope rules for variables because of block structure.

• The BNF definition by Backus — most languages now have a formal def-
inition.

• The support of recursion.

• Its offspring.

Thus Algol was to prove to make a contribution to programming languages that
was never reflected in the use of Algol 60 itself, in that it has been the parent of
one of the main strands of program language development.

6.5 Chomsky and program language development
Programming languages are of considerable linguistic interest, and the work of
Chomsky in 1956 in this area was to prove of inestimable value. Chomsky's sys-
tem of transformational grammar was developed in order to give a precise
mathematical description to certain aspects of language. Simplistically, Chomsky
describes grammars, and these grammars in turn can be used to define or generate
corresponding kinds of languages. It can be shown that for each type of grammar
and language there is a corresponding type of machine. It was quickly realised that
there was a link with the earlier work of Turing.

This link helped provide a firm scientific base for programming language develop-
ment, and modern compiler writing has come a long way from the early work of
Backus and his team at IBM. It may seem unimportant when playing a video game
at home or in an arcade, but for some it is very comforting that there is a firm the-
oretical basis behind all that fun.

6.6 Lisp
There were also developments in very specialized areas. List processing was prov-
ing to be of great interest in the 1950s and saw the development of IPLV between
1954 and 1958. This in turn led to the development of Lisp at the end of the
1950s. Lisp has proved to be of considerable use for programming in the areas of
artificial intelligence, playing chess, automatic theorem proving and general prob-
lem solving. It was one of the first languages to be interpreted rather than
compiled. Whilst interpreted languages are invariably slower and less efficient in
their use of the underlying computer systems than compiled languages, they do
provide great opportunities for the user to explore and try out ideas whilst sitting at
a terminal. The power that this gives to the computational problem solver is con-
siderable.

Introduction to Programming Languages 39

Possibly the greatest contribution to program language development made by Lisp
was its functional notation. One of the major problems for the Lisp user has been
the large number of Lisp flavours, and this has reduced the impact that the lan-
guage has had and deserved.

6.7 Snobol
Snobol was developed to aid in string processing, which was seen as an important
part of many computing tasks, e.g., parsing of a program. Probably the most im-
portant thing that Snobol demonstrated was the power of pattern matching in a
programming language, e.g., it is possible to define a pattern for a title that would
include Mr, Mrs, Miss, Rev, etc., and search for this pattern in a text using Snobol.
Like Lisp it is generally available as an interpreter rather than a compiler, but com-
piled versions do exist, and are often called Spitbol. Pattern-matching capabilities
are now to be found in many editors and this makes them very powerful and useful
tools. It is in the area of text manipulation that Snobol's greatest contribution to
program language development lies.

6.8 Second-generation languages

6.8.1 PL/1 and Algol 68

It is probably true that Fortran, Algol 60 and Cobol are the three main first-genera-
tion high-level languages. The 1960s saw the emergence of PL/1 and Algol 68.
PL/1 was a synthesis of features of Fortran, Algol 60 and Cobol. It was soon real-
ised that whilst PL/1 had great richness and power of expression this was in some
ways offset by the greater difficulties involved in language definition and use.

These latter problems were also true of Algol 68. The report introduced its own
syntactic and semantic conventions and thus forced another stage in the learning
process on the prospective user. However, it has a small but very committed user
population who like the very rich facilities provided by the language.

6.8.2 Simula

Another strand that makes up program language development is provided by
Simula, a general purpose programming language developed by Dahl, Myhrhaug
and Nygaard of the Norwegian Computing Centre. The most important contribu-
tion that Simula makes is the provision of language constructs that aid the
programming of complex, highly interactive problems. It is thus heavily used in
the areas of simulation and modelling. It was effectively the first language to offer
the opportunity of object orientated programming, and we will come back to this
very important development in programming languages later in this chapter.

40 Chapter 6

6.8.3 Pascal

The designer of Pascal, Niklaus Wirth, had participated in the early stages of the
design of Algol 68 but considered that the generality and complexity of Algol 68
was a move in the wrong direction. Pascal (like Algol 68) had its roots in Algol 60
but aimed at providing expressive power through a small set of straightforward
concepts. This set is relatively easy to learn and helps in producing readable and
hence more comprehensible programs.

It became the language of first choice within the field of computer science during
the 1970s and 1980s, and the comment by Wirth sums up the language very well:
“although Pascal had no support from industry, professional societies, or govern-
ment agencies, it became widely used. The important reason for this success was
that many people capable of recognising its potential actively engaged themselves
in its promotion. As crucial as the existence of good implementations is the avail-
ability of documentation. The conciseness of the original report made it attractive
for many teachers to expand it into valuable textbooks. Innumerable books ap-
peared between 1977 and 1985, effectively promoting Pascal to become the most
widespread language used in introductory programming courses. Good course ma-
terial and implementations are the indispensable prerequisites for such an
evolution.”

6.8.4 APL

APL is another interesting language of the early 1960s. It was developed by
Iverson early in the decade and was available by the mid to late 1960s. It is an in-
terpretive vector- and matrix-based language with an extensive set of operators for
the manipulation of vectors, arrays, etc., of whatever data type. As with Algol 68 it
has a small but dedicated user population. A possibly unfair comment about APL
programs is that you do not debug them, but rewrite them!

6.8.5 Basic

Basic stands for Beginners All Purpose Symbolic Instruction Code, and was devel-
oped by Kemeny and Kurtz at Dartmouth during the 1960s. Its name gives a clue
to its audience and it is very easy to learn. It is generally interpreted, though com-
piled versions do exist. It is probably the most heavily used language on micros
and home computers. It has proved to be well suited to the rapid development of
small programs. It is much criticised because it lacks features that encourage or
force the adoption of sound programming techniques.

6.8.6 C

There is a requirement in computing to be able to access the underlying machine
directly or at least efficiently. It is therefore not surprising that computer profes-
sionals have developed high-level languages to do this. This may well seem a

Introduction to Programming Languages 41

contradiction, but it can be done to quite a surprising degree. Some of the earliest
published work was that of Martin Richards on the development of BCPL.

This language directly influenced the work of Ken Thompson and can be clearly
seen in the programming languages B and C. The UNIX operating system is al-
most totally written in C and demonstrates very clearly the benefits of the use of
high-level languages wherever possible.

With the widespread use of UNIX within the academic world C gained consider-
able ground during the 1970s and 1980s. UNIX systems also offered much to the
professional software developer, and became widely used for large-scale software
development and as Ritchie says: “C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it evidently satisfied a need for a system
implementation language efficient enough to displace assembly language, yet suffi-
ciently abstract and fluent to describe algorithms and interactions in a wide
variety of environments.”

6.9 Some other strands in language development
There are many strands that make up program language development and some of
them are introduced here.

6.9.1 Abstraction, stepwise refinement and modules

Abstraction has proved to be very important in programming. It enables a complex
task to be broken down into smaller parts concentrating on what we want to hap-
pen rather than how we want it to happen. This leads almost automatically to the
ideas of stepwise refinement and modules, with collections of modules to perform
specific tasks or steps.

6.9.2 Structured programming

Structured programming in its narrowest sense concerns itself with the develop-
ment of programs using a small but sufficient set of statements and, in particular,
control statements. It has had a great effect on program language design, and most
languages now support the minimal set of control structures.

In a broader sense structured programming subsumes other objectives, including
simplicity, comprehensibility, verifiability, modifiability and maintenance of pro-
grams.

6.9.3 Standardisation

The purposes of a standard are quite varied and include:

• Investment in people: by this we mean that the time spent in learning a
standard language pays off in the long term, as what one learns is applica-

42 Chapter 6

ble on any hardware/software platform that has a standard conformant
compiler.

• Portability: one can take the code one has written for one hardware/soft-
ware platform and move it to any hardware/software platform that has a
standard conformant compiler.

• Known reference point: when making comparisons one starts with refer-
ence to the standard first, and then between the additional functionality of
the various implementations

These are some but not all of the reasons for the use of standards. Their impor-
tance is summed up beautifully by Ronald G. Ross in his introduction to the
Cannan and Otten book on the SQL standard: “Anybody who has ever plugged in
an electric cord into a wall outlet can readily appreciate the inestimable benefits
of workable standards. Indeed, with respect to electrical power, the very fact that
we seldom even think about such access (until something goes wrong) is a sure
sign of just how fundamentally important a successful standard can be.”

Appendix A contains notes on what standards apply at this time for the languages
covered.

6.10 Ada
Ada represents the culmination of many years of work in program language devel-
opment. It was a collective effort and the main aim was to produce a language
suitable for programming large-scale and real-time systems. Work started in 1974
with the formulation of a series of documents by the American Department of De-
fence (DoD), which led to the Steelman documents. It is a modern algorithmic
language with the usual control structures and facilities for the use of modules, and
allows separate compilation with type checking across modules.

Ada is a powerful and well-engineered language. Its widespread use is certain as it
has the backing of the DoD. However, it is a large and complex language and con-
sequently requires some effort to learn. It seems unlikely to be widely used except
by a small number of computer professionals.

6.11 Modula
Modula was designed by Wirth during the 1970s at ETH, for the programming of
embedded real-time systems. It has many of the features of Pascal, and can be
taken for Pascal at a glance. The key new features that Modula introduced were
those of processes and monitors.

Introduction to Programming Languages 43

As with Pascal it is relatively easy to learn and this makes it much more attractive
than Ada for most people, achieving much of the capability without the complex-
ity.

6.12 Modula 2
Wirth carried on developing his ideas about programming languages and the culmi-
nation of this can be seen in Modula 2. In his words: “In 1977, a research project
with the goal to design a computer system (hardware and software) in an inte-
grated approach, was launched at the Institut fur Informatik of ETH Zurich. This
system (later to be called Lilith) was to be programmed in a single high level lan-
guage, which therefore had to satisfy requirements of high level system design as
well as those of low level programming of parts that closely interact with the given
hardware. Modula 2 emerged from careful design deliberations as a language that
includes all aspects of Pascal and extends them with the important module concept
and those of multi-programming. Since its syntax was more in line with Modula
than Pascal's the chosen name was Modula 2.”

The language's main additions with regard to Pascal are:

• The module concept, and in particular the facility to split a module into a
definition part and an implementation part.

• A more systematic syntax which facilitates the learning process. In partic-
ular, every structure starting with a keyword also ends with a keyword,
i.e., is properly bracketed.

• The concept of process as the key to multiprogramming facilities.

• So-called low-level facilities, which make it possible to breach the rigid
type consistency rules and allow one to map data with Modula 2 structure
onto a store without inherent structure.

• The procedure type, which allows procedures to be dynamically assigned
to variables.

A sad feature of Modula 2 has been the long time taken to arrive at a standard for
the language.

6.13 Other language developments
The following is a small selection of language developments that the authors find
interesting — they may well not be included in other people's coverage.

6.13.1 Logo

Logo is a language that was developed by Papert and colleagues at the Artificial
Intelligence Laboratory at MIT. Papert is a professor of both mathematics and edu-

44 Chapter 6

cation, and has been much influenced by the psychologist Piaget. The language is
used to create learning environments in which children can communicate with a
computer. The language is primarily used to demonstrate and help children develop
fundamental concepts of mathematics. Probably the turtle and turtle geometry are
known by educationists outside of the context of Logo. Turtles have been incorpo-
rated into the Smalltalk computer system developed at Xerox Palo Alto Research
Centre — Xerox PARC.

6.13.2 Postscript, TeX and LaTeX

The 1980s saw a rapid spread in the use of computers for the production of printed
material. The 3 languages are each used quite extensively in this area.

Postscript is a low-level interpretive programming language with good graphics ca-
pabilities. Its primary purpose is to enable the easy production of pages containing
text, graphical shapes and images. It is rarely seen by most end users of modern
desktop publishing systems, but underlies many of these systems. It is supported
by an increasing number of laser printers and typesetters.

TeX is a language designed for the production of mathematical texts, and was de-
veloped by Donald Knuth. It linearises the production of mathematics using a
standard computer keyboard. It is widely used in the scientific community for the
production of documents involving mathematical equations.

LaTex is Leslie Lamport's version of TeX, and is regarded by many as more
friendly. It is basically a set of macros that hide raw TeX from the end user. The
TeX/LaTeX ratio is probably 1 to 9 (or so I'm reliably informed by a TeXie).

6.13.3 Prolog

Prolog was originally developed at Marseille by a group led by Colmerauer in
1972/73. It has since been extended and developed by several people, including
Pereira (L.M.), Pereira (F), Warren and Kowalski. Prolog is unusual in that it is a
vehicle for logic programming. Most of the languages described here are basically
algorithmic languages and require a specification of how you want something
done. Logic programming concentrates on the what rather than the how. The lan-
guage appears strange at first, but has been taught by Kowalski and others to
10-year-old children at schools in London.

6.13.4 SQL

SQL stands for Structured Query Language, and was originally developed by peo-
ple mainly working for IBM in the San Jose Research Laboratory. It is a relational
database language, and enables programmers to define, manipulate and control data
in a relational database. Simplistically, a relational database is seen by a user as a
collection of tables, comprising rows and columns. It has become the most impor-
tant language in the whole database field.

Introduction to Programming Languages 45

6.13.5 ICON

ICON is in the same family as Snobol, and is a high-level general purpose pro-
gramming language that has most of the features necessary for efficient processing
of nonnumeric data. Griswold (one of the original design team for Snobol) has
learnt much since the design and implementation of Snobol, and the language is a
joy to use in most areas of text manipulation.

It is available for most systems via anonymous FTP from a number of sites on the
Internet.

6.14 Object orientated programming — OOP
OOP represents a major advance in program language development. The concepts
that this introduces include:

• Classes.

• Objects.

• Messages.

• Methods.

These in turn draw on the ideas found in more conventional programming lan-
guages and correspond to

• Extensible data types.

• Instances of a class.

• Dynamically bound procedure calls.

• Procedures of a class.

Inheritance is a very powerful high-level concept introduced with OOP. It enables
an existing data type with its range of valid operations to form the basis for a new
class, with more data types added with corresponding operations, and the new type
is compatible with the original.

As was mentioned earlier, the first language to offer functionality in this area was
Simula, and thus the ideas originated in the 1960s. The book Simula Begin by
Birtwistle, Dahl, Myhrhaug and Nygaard is well worth a read as it represents one
of the first books to introduce the concepts of OOP.

6.14.1 Oberon and Oberon 2

As Wirth says: “The programming language Oberon is the result of a concen-
trated effort to increase the power of Modula-2 and simultaneously to reduce its
complexity. Several features were eliminated, and a few were added in order to in-
crease the expressive power and flexibility of the language.”

46 Chapter 6

Oberon and Oberon 2 are thus developments beyond Modula 2. The main new
concept added to Oberon was that of type extension. This enables the construction
of new data types based on existing types and allows one to take advantage of
what has already been done for that existing type.

Language constructs removed included:

• Variant records.

• Opaque types.

• Enumeration types.

• Subrange types.

• Local modules.

• WITH statement.

• Type transfer functions.

• Concurrency.

The short paper by Wirth provides a fuller coverage. It is available at ETH via
anonymous FTP.

6.14.2 Smalltalk

Language plus use of a computer system.

Smalltalk has been under development by the Xerox PARC Learning Research
Group since the 1970s. In their words: “Smalltalk is a graphical, interactive pro-
gramming environment. As suggested by the personal computer vision, Smalltalk is
designed so that every component in the system is accessible to the user and can
be presented in a meaningful way for observation and manipulation. The user in-
terface issues in Smalltalk revolve around the attempt to create a visual language
for each object. The preferred hardware system for Smalltalk includes a high reso-
lution graphical display screen and a pointing device such as a graphics pen or
mouse. With these devices the user can select information viewed on the screen
and invoke messages in order to interact with the information.” Thus Smalltalk
represents a very different strand in program language development. The ease of
use of a system like this has long been appreciated and was first demonstrated
commercially in the Macintosh microcomputers.

Wirth has spent some time at Xerox PARC and has been influenced by their work.
In his own words “the most elating sensation was that after sixteen years of work-
ing for computers the computer now seemed to work for me.” This influence can
be seen in the design of the Lilith machine, the original Modula 2 engine, and in
the development of Oberon as both a language and an operating system.

Introduction to Programming Languages 47

6.14.3 C++

Stroustrup did his Ph.D thesis at the Computing Laboratory, Cambridge University,
England, and worked with Simula. He had previously worked with Simula at the
University of Aarhus in Denmark. His comments are illuminating: “but was pleas-
antly surprised by the way the mechanisms of the Simula language became
increasingly helpful as the size of the program increased. The class and co-routine
mechanisms of Simula and the comprehensive type checking mechanisms ensured
that problems and errors did not (as I - and I guess most people - would have ex-
pected) grow linearly with the size of the program. Instead, the total program
acted like a collection of very small (and therefore easy to write, comprehend and
debug) programs rather than a single large program.”

He designed C++ to provide Simula's functionality within the framework of C's ef-
ficiency, and he succeeded in this goal as C++ is a widely used object oriented
programming language. The major disadvantage now concerns the largely incom-
patible class libraries that exist. It is hoped that the various standards bodies
address this problem in the immediate future.

6.14.4 Java

Bill Joy (of Sun fame) had by the late 1980s decided that C++ was too compli-
cated and that an object oriented environment based upon C++ would be of use. At
around about the same time James Gosling (mister emacs) was starting to get frus-
trated with the implementation of an SGML editor in C++. Oak was the outcome
of Gosling's frustration.

Sun over the next few years ended up developing Oak for a variety of projects. It
wasn't until Sun developed their own web browser, Hotjava, that Java as a lan-
guage hit the streets. And as the saying goes the rest is history.

Java is a relatively simple object oriented language. Whilst it has its origins in C++
it has dispensed with most of the dangerous features. It is OO throughout. Every-
thing is a class.

It is interpreted and the intermediate byte code will run on any machine that has a
Java virtual machine for it. This is portability at the object code level, unlike porta-
bility at the source code level — which is what we expect with most conventional
languages. Some of the safe features of the language include:

• Built in garbage collection.

• No pointers — everything is passed by reference.

It is multithreaded, which makes it a delight for many applications. It has an exten-
sive windows toolkit, the so called AWT that was in the original release of the
language and Swing that came in later. It achieves much of what Visual Basic 6

48 Chapter 6

offers but within the framework of a far more powerful language. Development en-
vironments are becoming widely available to aid in this task.

A major drawback is the rapid development of the language and the large number
of different versions, and further compounded by the different virtual machines
available.

6.14.5 Visual Basic

Visual Basic (VB) has developed into one of the most widely used development
platforms for Windows. Its main strength is the ability to quickly put a visual inter-
face onto an a program. The following are some dates for the various versions that
Microsoft have released:-

• VB 1.0 May 1991 for Windows.

• VB 1.0 for MS-DOS September 1992.

• VB 2.0 November 1992.

• VB 3.0 Summer 1993.

• VB 4.0 August 1995.

• VB 5 February 1997.

• VB 6.0 Summer 1998.

• VB .NET 2002.

Two major drawbacks are:

• It only runs under Microsoft Windows

• It is a proprietary programming language and has been changed several
times by Microsoft. The .net version is a backwards incompatible upgrade
to previous versions.

It is one of the most widely used programming languages on the Windows plat-
forms.

6.14.6 C#

C# is a new language from Microsoft and is a key part of their .net framework. It
is a modern, well-engineered language in the same family of programming lan-
guages in terms of syntax as C, C++ and Java. If you have a knowledge of one of
these languages it will look very familiar.

One of the design goals was to produce a component oriented language, and to
build on the work that Microsoft had done with OLE, ActiveX and COM:

Introduction to Programming Languages 49

• ActiveX is a set of technologies that enables software components to in-
teract with one another in a networked environment, regardless of the lan-
guage in which they were created. ActiveX was built on the Component
Object Model (COM).

• COM is the object model on which ActiveX Controls and OLE are built.
COM allows an object to expose its functionality to other components and
to host applications. It defines both how the object exposes itself and how
this exposure works across processes and networks. COM also defines the
object's life cycle.

• OLE is a mechanism that allows users to create and edit documents con-
taining items or objects created by multiple applications. OLE was origi-
nally an acronym for Object Linking and Embedding. However, it is now
referred to simply as OLE. Parts of OLE not related to linking and embed-
ding are now part of Active technology.

Other design goals included creating a language:

• Where everything is an object — C# also has a mechanism for going be-
tween objects and fundamental types (integers, reals, etc.).

• Which would enable the construction of robust and reliable software — it
has garbage collection, exception handling and type safety.

• Which would use a C/C++/Java syntax which is already widely known
and thus help programmers converting from one of these languages to C#.

Microsoft has submitted C# to the ECMA for formal standardisation and it became
an ISO standard in 2003 - ISO/IEC 23270. Visit

• http://en.wikipedia.org/wiki/C_Sharp_programming_language#Standard-
ization

for up-to-date information on the standardisation effort.

6.15 Fortran 90
Almost as soon as the Fortran 77 standard was complete and published, work be-
gan on the next version. The language drew on many of the ideas covered in this
chapter and these help to make Fortran 90 a very promising language. Some of the
new features included:

• New source form, with blanks being significant and names being up to 31
characters.

• Better control structures.

• Control of the precision of numerical computation.

50 Chapter 6

• Array processing.

• Pointers.

• User defined data types and operators.

• Procedures.

• Modules.

• Recursion.

• Dynamic storage allocation.

We will look into all of these in turn.

6.16 Fortran 1995
Fortran was next standardised in 1996 — yet again out by one! Firstly we have a
clear up of some of the areas in the standard that had emerged as requiring clarifi-
cation. Secondly Fortran 95 added the following major concepts:

• The FORALL construct.

• PURE and ELEMENTAL procedures.

• Implicit initialisation of derived-type objects.

• Initial association status for pointers.

The first two help considerably in parallelization of code.

Minor features include amongst others:

• Automatic deallocation of allocatable arrays.

• Intrinsic SIGN function distinguishes between �0 and +0.

• Intrinsic function NULL returns disconnected pointer.

• Intrinsic function CPU_TIME returns the processor time.

• References to some pure functions are allowed in specification statements.

• Nested WHERE constructs.

• Masked ELSEWHERE construct.

• Small changes to the CEILING, FLOOR, MAXLOC and MINLOC intrin-
sic functions.

Some of these were added to keep Fortran in line with High Performance Fortran
(HPF). More details are given later.

Introduction to Programming Languages 51

Part 2 of the standard (ISO/IEC 1539-2:1994) adds the functional specification for
varying length character data type, and this extends the usefulness of Fortran for
character applications very considerably.

6.17 ISO technical reports TR15580 and TR15581
There are two additional reports that have been published on Fortran. TR 15580
specifies three modules that provide access to IEEE floating point arithmetic and
TR15581 allows the use of the ALLOCATABLE attribute on dummy arguments,
function results and structure components.

6.18 Fortran 2003
The language is known as Fortran 2003 even though the language did not make it
through the standardisation process until 2004. It is a major revision.

• Derived-type enhancements: parameterised derived types (allows the kind,
length, or shape of a derived type’s components to be chosen when the
derived type is used), mixed component accessibility (allows different
components to have different accessibility), public entities of private type,
improved structure constructors, and finalisers.

• Object oriented programming support: enhanced data abstraction (allows
one type to extend the definition of another type), polymorphism (allows
the type of a variable to vary at run time), dynamic type allocation,
SELECT TYPE construct (allows a choice of execution flow depending
upon the type a polymorphic object currently has), and type-bound proce-
dures.

• The ASSOCIATE construct (allows a complex expression or object to be
denoted by a simple symbol).

• Data manipulation enhancements: allocatable components, deferred-type
parameters, VOLATILE attribute, explicit type specification in array con-
structors, INTENT specification of pointer arguments, specified lower
bounds of pointer assignment and pointer rank remapping, extended ini-
tialisation expressions, MAX and MIN intrinsics for character type, and
enhanced complex constants.

• Input/output enhancements: asynchronous transfer operations (allow a pro-
gram to continue to process data while an input/output transfer occurs),
stream access (allows access to a file without reference to any record
structure), user specified transfer operations for derived types, user speci-
fied control of rounding during format conversions, the FLUSH statement,
named constants for preconnected units, regularisation of input/output
keywords, and access to input/output error messages.

52 Chapter 6

• Procedure pointers.

• Scoping enhancements: the ability to rename defined operators (supports
greater data abstraction) and control of host association into interface bod-
ies.

• Support for IEC 60559 (IEEE 754) exceptions and arithmetic (to the ex-
tent a processor’s arithmetic supports the IEC standard).

• Interoperability with the C programming language (allows portable access
to many libraries and the low-level facilities provided by C and allows the
portable use of Fortran libraries by programs written in C).

• Support for international usage: (ISO 10646) and choice of decimal or
comma in numeric formatted input/output.

• Enhanced integration with the host operating system: access to command
line arguments and environment variables and access to the processor’s
error messages (improves the ability to handle exceptional conditions).

It is not clear at this time when compilers will be available that fully conform to
the Fortran 2003 standard. At the time of writing this book some compilers had
started to implement some of the 2003 features. Up-to-date information can be
found at

• http://www.kcl.ac.uk/fortran

where we make available a number of Fortran resources including details of com-
pilers, books, code restructers, etc.

6.19 DTR 19767 enhanced module facilities
The module system in Fortran has a number of shortcomings and this DTR ad-
dresses some of the issues.

One of the major issues was the so-called recompilation cascade. Changes to one
part of a module forced recompilation of all code that used the module. Modula 2
addressed this issue by distinguishing between the definition or interface and im-
plementation. This can now be achieved in Fortran via submodules.

If a module as specified by International Standard ISO/IEC 1539-1:2004 is used to
package proprietary software, the source text of the module cannot be published as
authoritative documentation of the interface of the module without either exposing
trade secrets or requiring the expense of separating the implementation from the in-
terface every time a revision is published.

Using facilities specified in this technical report, one can easily publish the source
text of the module as authoritative documentation of its interface, while witholding

Introduction to Programming Languages 53

publication of the source text of the submodules that contain the implementation
details and the trade secrets embodied within them.

6.20 Internet resources
The Internet provides access to a wealth of information regarding the Fortran fam-
ily of languages.

6.20.1 Standards information

The official home of the standard is

• http://www.nag.co.uk/sc22wg5/

We recommend visiting the site to keep up to date with Fortran developments.

Their official ftp server can be found at

• ftp://ftp.nag.co.uk/sc22wg5/

Copies of all working documents can be found there.

Also have a look at

• ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/Index.txt

The following is a version of this file as of November 2004.

ISO/IEC JTC1/SC22/WG5 N1650

INDEX OF DOCUMENTS 1601-1650

(Documents enclosed in square brackets are not yet
available)

----- --

1601 Draft International Standard for Fortran 2003
(Maine)
1602 Draft TR on Enhanced Module Facilities (Snyder)
1603 Response to the PDTR ballot (Reid)
1604 Report from Netherlands (van Waveren)
1605 Abstract for the TR on Enhanced Module Facilities
(Snyder)
1606 Index of meetings (SD7) (Muxworthy)
1607 SC22 Project Information (SD3) (Reid)

54 Chapter 6

1608 WG5 Business Plan and Convener's Report to SC22
(Reid)
1609 Result of Enhanced Module Facilities DTR ballot
(JTC 1)
1610 Result of Fortran 2003 DIS ballot (JTC 1)

The documents in square brackets are not yet available.

6.20.2 Fortran discussion lists

The first to look at is the Fortran 90 list. Details can be found at

• http://www.jiscmail.ac.uk/lists/COMP-FORTRAN-90.html

If you subscribe you will have access to people involved in Fortran standardisation,
language implementors for most of the hardware and software platforms, people
using Fortran in many very specialised areas, people teaching Fortran, etc.

There is also a comp.lang.fortran list available via USENET news. This provides
access to people worldwide with enormous combined expertise in all aspects of
Fortran. Invariably someone will have encountered your problem or one very much
like it and have one or more solutions.

There are many people on the Internet who will make the time to provide you with
very valuable advice. As a point of network etiquette please do not waste band-
width with questions that are answered in the FAQ. Please also spend some time
developing an understanding of your problem and making some attempt to see if
the answer lies in the documentation or manuals. In computing services and techni-
cal support many user problems are labelled RTFM — read the fabulous manual.

6.20.3 Other sources

The following URLs are very useful:

• Fortran 90 FAQ, maintained by Michel Olagnon

• http://www.ifremer.fr/ditigo/molagnon/fortran90/engfaq.html

• http://www.kcl.ac.uk/fortran

• The Fortran Market, maintained by Walt Brainerd

• http://www.fortran.com/fortran/market.html

• Fortran90/95 Information, maintained by Mike Metcalf

• http://www.kcl.ac.uk/fortran

• Fortran FAQ, maintained by Keith Bierman, Sun

Introduction to Programming Languages 55

• http://www.fortran.com/fortran/FAQ/cont.html

• http://www.kcl.ac.uk/fortran

6.21 Summary
It is hoped that you now have some idea about the wide variety of uses that pro-
gramming languages are put to.

6.22 Bibliography
Fortran 2003 Standard, ISO/IEC DIS 1539-1:2004(E)

DTR 19767: Enhanced Module Facilities: ISO/IEC TR 19767:2004(E)

The ISO home page is

• http://www.iso.org/

The standard was published on 18th November 2004.

The J3 home page is:

• http://j3-fortran.org

The WG5 home page is:

• http://www.nag.co.uk/sc22wg5/

Both have copies of working documents.

Adobe Systems Incorporated, Postscript Language: Tutorial and Cookbook, Addi-
son-Wesley, 1985.

Adobe Systems Incorporated, Postscript Language: Reference Manual, Addi-
son-Wesley, 1985.

Adobe System Incorporated, Postscript Language: Program Design, Addison-Wes-
ley, 1985.

The three books provide a comprehensive coverage of the facilities and capa-
bilities of Postscript.

ACM SIG PLAN, History of Programming Languages Conference — HOPL-II,
ACM Press, 1993.

One of the best sources of information on programming language develop-
ments, from an historical perspective. There is coverage of Ada, Algol 68, C,
C++, CLU, Concurrent Pascal, Formac, Forth, Icon, Lisp, Pascal, Prolog,
Smalltalk and Simulation Languages by the people involved in the original de-
sign and or implementation. Very highly recommended. This is the second in
the HOPL series, and the first was edited by Wexelblat. Details are given later.

56 Chapter 6

Adams J.C., Brainerd W.S., Martin J.T., Smith B.T., Wagener J.L., Fortran 90
Handbook: Complete ANSI/ISO Reference, McGraw-Hill, 1992.

A complete coverage of the language. As with the Metcalf and Reid book
some of the authors were on the X3J3 committee. Originally expensive, but
very thorough.

Annals of the History of Computing, Special Issue: Fortran's 25 Anniversary,
ACM, Article 6,1, 1984.

Very interesting comments, some anecdotal, about the early work on Fortran.

Barnes J., Programming in Ada 95, Addison-Wesley, 1996.

One of the best Ada books. He was a member of the original design team

Bergin T.J., Gibson R.G., History of Programming Languages, Addison-Wesley,
1996.

This is a formal book publication of the Cenference Prceedings of HOPL II.
The earlier work is based on preprints of the papers.

Birtwistle G.M., Dahl O. J., Myhrhaug B., Nygaard K., SIMULA BEGIN, Chart-
well-Bratt Ltd, 1979.

A number of chapters in the book will be of interest to programmers unfamil-
iar with some of the ideas involved in a variety of areas including systems and
models, simulation, and co-routines. Also has some sound practical advice on
problem solving.

Brinch-Hansen P., The Programming Language Concurrent Pascal, IEEE Transac-
tions on Software Engineering, June 1975, 199-207.

Looks at the extensions to Pascal necessary to support concurrent processes.

Cannan S., Otten G., SQL — The Standard Handbook, McGraw-Hill, 1993.

Very thorough coverage of the SQL standard, ISO 9075:1992(E).

Chivers I.D., Clark M.W., History and Future of Fortran, Data Processing, vol. 27
no 1, January/February 1985.

Short article on an early draft of the standard, around version 90.

Chivers Ian, Essential C# Fast, Springer, ISBN 1-85233-562-9

A quick introduction to the C# programming language.

Chivers I.D., A Practical Introduction to Standard Pascal, Ellis Horwood, 1986.

A short introduction to Pascal.

Date C.J., A Guide to the SQL Standard, Addison-Wesley, 1997.

Date has written extensively on the whole database field, and this book looks
at the SQL language itself. As with many of Date's works quite easy to read.
Appendix F provides a useful SQL bibliography.

Introduction to Programming Languages 57

Deitel H.M., Deitel P.J., Java: How to Program, Prentice-Hall, 1999.

A very good introduction to Java.

Deitel H.M., Deitel P.J., Nieto T.R., Simply Visual Basic .Net, Prentice-Hall, 2003.

Good practical introduction to VB .NET.

Eckstein R., Loy M., Wood D., Java Swing, O'Reilly, 1998.

Comprehensive coverage of the visual interface features available in Java.

Flanagan D., Java in a Nutshell, O'Reilly, 1996.

Just what you would expect from this series. Very useful reference text.

Geissman L.B., Separate Compilation in Modula 2 and the Structure of the Mod-
ula 2 Compiler on the Personal Computer Lilith, Dissertation 7286, ETH Zurich

Harbison S.P., Steele G.L., A C Reference Manual, Prentice-Hall, 2002.

Very good coverage of the various flavours of C, including K&R C, Standard
C 1989, Standard C 1995, Standard C 1999 and Standard C++

Jacobi C., Code Generation and the Lilith Architecture, Dissertation 7195, ETH
Zurich

Fascinating background reading concerning Modula 2 and the Lilith architec-
ture.

Goldberg A., Robson D., Smalltalk 80: The Language and its Implementation, Ad-
dison-Wesley, 1983.

Written by some of the Xerox PARC people who have been involved with the
development of Smalltalk. Provides a good introduction (if that is possible
with the written word) of the capabilities of Smalltalk.

Goos G., Hartmanis J. (Eds), The Programming Language Ada — Reference Man-
ual, Springer Verlag, 1981.

The definition of the language.

Griswold R.E., Poage J.F., Polonsky I.P., The Snobol4 Programming Language,
Prentice-Hall, 1971.

The original book on the language. Also provides some short historical mate-
rial on the language.

Griswold R.E., Griswold M.T., The Icon Programming Language, Prentice-Hall,
1983.

The definition of the language with a lot of good examples. Also contains in-
formation on how to obtain public domain versions of the language for a
variety of machines and operating systems.

58 Chapter 6

Hoare C.A.R., Hints on Programming Language Design, SIGACT/SIGPLAN
Symposium on Principles of Programming Languages, October 1973.

The first sentence of the introduction sums it up beautifully: “I would like in
this paper to present a philosophy of the design and evaluation of program-
ming languages which I have adopted and developed over a number of years,
namely that the primary purpose of a programming language is to help the
programmer in the practice of his art.”

Jenson K., Wirth N., Pascal: User Manual and Report, Springer-Verlag, 1975.

The original definition of the Pascal language. Understandably dated when one
looks at more recent expositions on programming in Pascal.

Kemeny J.G., Kurtz T.E., Basic Programming, Wiley, 1971.

The original book on Basic by its designers.

Kernighan B.W., Ritchie D.M., The C Programming Language, Prentice-Hall,
1978

The original work on the C language, and thus essential for serious work with
C.

Kowalski R., Logic Programming in the Fifth Generation, The Knowledge Engi-
neering Review, The BCS Specialist Group on Expert Systems.

A short paper providing a good background to Prolog and logic programming,
with an extensive bibliography.

Knuth D. E., The TeXbook, Addison-Wesley, 1986.

Knuth writes with an tremendous enthusiasm and perhaps this is understand-
able as he did design TeX. Has to be read from cover to cover for a full
understanding of the capability of TeX.

Lyons J., Chomsky, Fontana/Collins, 1982.

A good introduction to the work of Chomsky, with the added benefit that
Chomsky himself read and commented on it for Lyons. Very readable.

Malpas J., Prolog: A Relational Language and its Applications, Prentice-Hall,
1987.

A good introduction to Prolog for people with some programming background.
Good bibliography. Looks at a variety of versions of Prolog.

Marcus C., Prolog Programming: Applications for Database Systems, Expert Sys-
tems and Natural Language Systems, Addison-Wesley.

Coverage of the use of Prolog in the above areas. As with the previous book
aimed mainly at programmers, and hence not suitable as an introduction to
Prolog as only two chapters are devoted to introducing Prolog.

Introduction to Programming Languages 59

Metcalf M. and Reid J., Fortran 90 Explained, Oxford Science Publications, 1992.

A clear compact coverage of the main features of Fortran 8x. Reid was secre-
tary of the X3J3 committee.

Mossenbeck H., Object-Orientated Programming in Oberon-2, Springer-Verlag,
1995.

One of the best introductions to OOP. Uses Oberon-2 as the implementation
language. Highly recommended.

Papert S., Mindstorms - Children, Computers and Powerful Ideas, Harvester Press,
1980.

Very personal vision of the uses of computers by children. It challenges many
conventional ideas in this area.

Sammet J., Programming Languages: History and Fundamentals, Prentice-Hall,
1969.

Possibly the most comprehensive introduction to the history of program lan-
guage development — ends unfortunately before the 1980s.

Sethi R., Programming Languages: Concepts and Constructs, Addison-Wesley,
1989.

The annotated bibliographic notes at the end of each chapter and the extensive
bibliography make it a useful book.

Reiser M., Wirth N., Programming in Oberon — Steps Beyond Pascal and Mod-
ula, Addison-Wesley, 1992.

Good introduction to Oberon. Revealing history of the developments behind
Oberon.

Reiser M., The Oberon System: User Guide and Programmer's Manual,
Addision-Wesley, 1991.

How to use the Oberon system, rather than the language.

Stroustroup B., The C++ Programming Language, 3rd Edition, Addison-Wesley,
1997.

The C++ book. Written by the designer of the language. Massive improve-
ment over the earlier editions.

Young S. J., An Introduction to Ada, 2nd Edition, Ellis Horwood, 1984.

A readable introduction to Ada. Greater clarity than the first edition.

Wexelblat, History of Programming Languages, HOPL I, ACM Monograph Series,
Academic Press, 1978.

Very thorough coverage of the development of programming languages up to
June 1978. Sessions on Fortran, Algol, Lisp, Cobol, APT, Jovial, GPSS,
Simula, JOSS, Basic, PL/I, Snobol and APL, with speakers involved in the
original languages. Very highly recommended.

60 Chapter 6

Wirth N., An Assessment of the Programming Language Pascal, IEEE Transac-
tions on Software Engineering, June 1975, 192-198.

Wirth N., History and Goals of Modula 2, Byte, August 1984, 145-152.

Straight from the horse's mouth!

Wirth N., On the Design of Programming Languages, Proc. IFIP Congress 74,
386-393, North-Holland.

Wirth N., The Programming Language Pascal, Acta Informatica 1, 35-63, 1971.

Wirth N., Modula: a language for modular multiprogramming, Software Practice
and Experience, 7, 3–35, 1977.

Wirth N., Programming in Modula 2, Springer-Verlag, 1983.

The original definition of the language. Essential reading for anyone consider-
ing programming in Modula 2 on a long term basis.

Wirth N. Type Extensions, ACM Trans. on Prog. Languages and Systems, 10, 2
(April 1988), 2004-214

Wirth N. From Modula 2 to Oberon, Software — Practice and Experience, 18,7
(July 1988), 661–670

Wirth N., Gutknecht J., Project Oberon: The Design of an Operating System and
Compiler, Addison-Wesley, 1992.

Fascinating background to the development of Oberon. Highly recommended
for anyone involved in large scale program development, not only in the areas
of programming languages and operating systems, but more generally.

Introduction to Programming Languages 61

7

Introduction to
Programming

“Though this be madness, yet there is method in't”
Shakespeare

“‘Plenty of practice’ he went on repeating, all the time that Alice was getting him
on his feet again. ‘plenty of practice.’”
The White Knight, Through the Looking Glass and What Alice Found There,
Lewis Carroll

Aims
The aims of the chapter are:

• To introduce the idea that there is a wide class of problems that can be
solved with a computer and, further, that there is a relationship between
the kind of problem to be solved and the choice of programming language
that is used.

• To give some of the reasons for the choice of Fortran.

• To introduce the fundamental components or kinds of statements to be
found in a general purpose programming language.

• To introduce the three concepts of name, type and value.

• To illustrate the above with sample programs based on three of the five
intrinsic data types:

• character, integer and real

• To introduce some of the formal syntactical rules of Fortran.

7 Introduction to Programming

We have seen that an algorithm is a sequence of steps that will solve a part or the
whole of a problem. A program is the realisation of an algorithm in a programming
language, and there are at first sight a surprisingly large number of programming
languages. The reason for this is that there is a wide range of problems that are
solved using a computer, e.g., the telephone company generating itemised bills or
the meteorological centre producing a weather forecast. These two problems make
different demands on a programming language, and it is unlikely that the same lan-
guage would be used to solve both.

The range of problems that you want to solve will therefore strongly influence
your choice of programming language. FORTRAN stands for FORmula TRANsla-
tion, which gives a hint of the expected range of problems for which it is suitable.

7.1 Language strengths and weaknesses
Some of the reasons for choosing Fortran are:

• It is a modern and expressive language, with much of the power of Ada
without the complexity.

• The language is now suitable for a very wide class of both numeric and
nonnumeric problems.

• The language is widely available in both the educational and scientific
sectors.

• A lot of software already exists, written in either Fortran 77 or its prede-
cessor, Fortran 66, also known as Fortran IV. This code can be
recompiled with standard conforming Fortran 90, 95 and 2003 compilers
which protects any major investment in existing code. Some 15% of code
worldwide is estimated to be in Fortran.

There are a few warts, however. Given that there has to be backwards compatibil-
ity with Fortran 77 some of the syntax is clumsy to say the least. However, a
considerable range of problems can now be addressed quite cleanly, if one sticks to
a subset of the language and adopts a consistent style.

7.2 Elements of a programming language
As with ordinary (so-called natural) languages, e.g., English, French, Gaelic, Ger-
man, etc., programming languages have rules of syntax, grammar and spelling. The
application of these rules in a programming language is more strict. A program has
to be unambiguous, since it is a precise statement of the actions to be taken. Many
everyday activities are rather vaguely defined — Buy some bread on your way

64 Chapter 7

home — but we are generally sufficiently adaptable to cope with the variations
which occur as a result. If, in a program to calculate wages, we had an instruction
Deduct some money for tax and insurance we could have an awkward problem
when the program calculated completely different wages for the same person for
the same amount of work every time it was run. One of the implications of the
strict syntax of a programming language for the novice is that apparently silly error
messages will appear when one first starts writing programs. As with many other
new subjects you will have to learn some of the jargon to understand these mes-
sages.

Programming languages are made up of statements. We will look at the various
kinds of statements briefly below.

7.2.1 Data description statements

These are necessary to describe the kinds of data that are to be processed. In the
wages program, for example, there is obviously a difference between people's
names and the amount of money they earn, i.e., these two things are not the same,
and it would not make any sense adding your name to your wages. The technical
term for this is data type — a wage would be of a different data type (a number) to
a surname (a sequence of characters).

7.2.2 Control structures

A program can be regarded as a sequence of statements to solve a particular prob-
lem, and it is common to find that this sequence needs to be varied in practice.
Consider again the wages program. It will need to select among a variety of cir-
cumstances (say married or single, paid weekly or monthly, etc,), and also to
repeat the program for everybody employed. So there is the need in a program-
ming language for statements to vary and/or repeat a sequence of statements.

7.2.3 Data-processing statements

It is necessary in a programming language to be able to process data. The kind of
processing required will depend on the kind or type of data. In the wages program,
for example, you will need to distinguish between names and wages. Therefore
there must be different kinds of statements to manipulate the different types of
data, i.e., wages and names.

7.2.4 Input and output (I/O) statements

For flexibility, programs are generally written so that the data that they work on
exist outside the program. In the wages example the details for each person em-
ployed would exist in a file somewhere, and there would be a record for each
person in this file. This means that the program would not have to be modified
each time a person left, was ill, etc., although the individual records might be up-
dated. It is easier to modify data than to modify a program, and it is less likely to

Introduction to Programming 65

produce unexpected results. To be able to vary the action there must be some
mechanism in a programming language for getting the data into and out of the pro-
gram. This is done using input and output statements, sometimes shortened to I/O
statements.

Let us now consider a simple program which will read in somebody's first name
and print it out:

PROGRAM ch0701
!
! This program reads in and prints out a name
!
IMPLICIT NONE
CHARACTER*20 :: First_Name
!

PRINT *,' Type in your first name.'
PRINT *,' up to 20 characters'
READ *,First_Name
PRINT *,First_Name

!
END PROGRAM ch0701

There are several very important points to be covered here, and they will be taken
in turn:

• Each line is a statement.

• There is a sequence to the statements. The statements will be processed in
the order that they are presented, so in this example the sequence is print,
read, print.

• The first statement names the program. It makes sense to choose a name
that conveys something about the purpose of the program.

• The next three lines are comment statements. They are identified by a !.
Comments are inserted in a program to explain the purpose of the pro-
gram. They should be regarded as an integral part of all programs. It is es-
sential to get into the habit of inserting comments into your programs
straightaway.

• The IMPLICIT NONE statement means that there has to be explicit typ-
ing of each and every data item used in the program. It is good program-
ming practice to include this statement in every program that you write, as
it will trap many errors, some often very subtle in their effect. Using an
analogy with a play, where there is always a list of the persona involved

66 Chapter 7

before the main text of the play we can say that this statement serves the
same purpose.

• The CHARACTER*20 statement is a type declaration. It was mentioned
earlier that there are different kinds of data. There must be some way of
telling the programming language that these data are of a certain type, and
that therefore certain kinds of operations are allowed and others are
banned or just plain stupid! It would not make sense to add a name to a
number, e.g., what does Fred + 10 mean? So this statement defines that
the variable First_Name is to be of type CHARACTER and only charac-
ter operations are permitted. The concept of a variable is covered in the
next section. Character variables of this type can hold up to 20 characters.

• The PRINT statements print out an informative message to the terminal
— in this case a guide as to what to type in. The use of informative mes-
sages like this throughout your programs is strongly recommended.

• The READ statement is one of the I/O statements. It is an instruction to
read from the terminal or keyboard; whatever is typed in from the termi-
nal will end up being associated with the variable First_Name. Input/out-
put statements will be explained in greater detail in later sections.

• The PRINT statement is another I/O statement. This statement will print
out what is associated with the variable First_Name and, in this case, what
you typed in.

• The END PROGRAM statement terminates this program. It can be
thought of as being similar to a full stop in natural language, in that it fin-
ishes the program in the same way that a period (.) ends a sentence.
Note the use of the name given in the PROGRAM statement at the start of
the program.

• Note also the use of the asterisk in three different contexts.

• Indentation has been used to make the structure of the program easier to
determine. Programs have to be read by human beings and we will look at
this in more depth later.

• Lastly, when you do run this program, character input will terminate with
the first blank character.

The above program illustrates the use of some of the statements in the Fortran lan-
guage. Let us consider the action of the READ * statement in more detail — in
particular, what is meant by a variable and a value.

Introduction to Programming 67

7.3 Variables — name, type and value
The idea of a variable is one that you are likely to have met before, probably in a
mathematical context. Consider the following:

circumference = 2 � r

This is an equation for the calculation of the circumference of a circle. The follow-
ing represents a translation of this into Fortran:

circumference = 2 * pi * radius

There are a number of things to note about this equation:

• Each of the variables on the right-hand side of the equals sign (pi and ra-
dius) will have a value, which will allow the evaluation of the expression.

• When the expression is fully evaluated the value is assigned to the vari-
able on the left-hand side of the equals sign.

• In mathemetics the multiplication is implied in Fortran we have to use the
* operator to indicate that we want to multiply 2 by pi by the radius.

• We do not have access to mathematical symbols like � in Fortran but
have to use variable names based on letters from the Roman alphabet.

The whole line is an example of an arithmetic assignment statement in Fortran.

The following arithmetic assignment statement illustrates clearly the concepts of
name and value, and the difference in the equals sign in mathematics and comput-
ing:

i = i + 1

In Fortran this reads as take the current value of the variable i and add one to it,
store the new value back into the variable i, i.e., i takes the value i+1. Alge-
braically,

i = i + 1

does not make any sense.

68 Chapter 7

Variables can be of different types. Table 7.1 shows some of those available in
Fortran.

Variable_name Data_type Value_stored

Temperature REAL 28.55

Number_of_People INTEGER 100

First_Name CHARACTER Jane

Table 7.1 Variable, Type and Value

Note the use of capitalisation and underscores to make the variable names easier to
read.

The concept of data type seems a little strange at first, especially as we commonly
think of integers and reals as numbers. However, the benefits to be gained from
this distinction are considerable. This will become apparent after you have written
several programs.

Let us now consider another program, one that reads in three numbers, adds them
up and prints out both the total and the average:

PROGRAM ch0702
!
! This program reads in three numbers and sums
! and averages them
!
IMPLICIT NONE
REAL :: N1,N2,N3,Average = 0.0, Total = 0.0
INTEGER :: N = 3

PRINT *,' Type in three numbers.'
PRINT *,' Separated by spaces or commas'
READ *,N1,N2,N3
Total= N1 + N2 + N3
Average=Total/N
PRINT *,'Total of numbers is ',Total
PRINT *,'Average of the numbers is ',Average

END PROGRAM ch0702

Introduction to Programming 69

7.4 Notes
The program has been given a name that means something.

There are comments at the start of the program describing what it does.

The IMPLICIT NONE statement ensures that all data items introduced have to oc-
cur in a type declaration.

The next two statements are type declarations. They define the variables to be of
real or integer type. Remember integers are whole numbers, whereas real numbers
are those which have a decimal point. For example, 2 is an integer and 2.7,
2.00000001, and 2.0 are all real numbers. One of the fundamental distinctions in
Fortran is between integers and reals. Type declarations must always come at the
start of a program, before any processing is done. Note that the variables have
been given sensible names to aid in making the program easier to understand.

The variables Average, Total and N are also given initial values within the type
declaration. Variables are initially undefined in Fortran, so the variables N1, N2,
N3 fall into this category, as they have not been given values at the time that they
are declared.

The first PRINT statement makes a text message (in this case what is between the
apostrophes) appear at the terminal. As was noted earlier, it is good practice to put
out a message like this so that you have some idea of what you are supposed to
type in.

The READ statement looks at the input from the keyboard (i.e., what you type)
and in this instance associates these values with the three variables. These values
can be separated by commas (,), spaces (), or even by pressing the carriage return
key, i.e., they can appear on separate lines.

The next statement actually does some data processing. It adds up the values of the
three variables (N1, N2, and N3) and assigns the result to the variable Total. This
statement is called an arithmetic assignment statement, and is covered more fully
in the next chapter.

The next statement is another data-processing statement. It calculates the average
of the numbers entered and assigns the result to Average. We could have actually
used the value 3 here instead, i.e., written Average=Total/3 and have exactly the
same effect. This would also have avoided the type declaration for N. However,
the original example follows established programming practice of declaring all
variables and establishing their meaning unambiguously. We will see further exam-
ples of this type throughout the book.

Indentation has been used to make the structure of the program easier to determine.

70 Chapter 7

The sum and average are printed out with suitable captions or headings. Do not
write programs without putting captions on the results. It is too easy to make mis-
takes when you do this, or even to forget what each number means.

Finally we have the end of the program and again we have the use of the name in
the PROGRAM statement.

7.5 Some more Fortran rules
There are certain things to learn about Fortran which have little immediate mean-
ing and some which have no logical justification at all, other than historical
precedence. Why is a cat called a cat? At the end of several chapters there will be
a brief summary of these rules or regulations when necessary. Here are a few:

• Source is free format.

• Lowercase letters are permitted, but not required to be recognised.

• Multiple statements may appear on one line and are separated by the
semicolon character.

• There is an order to the statements in Fortran. Within the context of what
you have covered so far, the order is:

• PROGRAM statement.

• Type declarations, e.g., IMPLICIT, INTEGER, REAL or CHARAC-
TER.

• Processing and I/O statements.

• END PROGRAM statement.

• Comments may appear anywhere in the program, after PROGRAM and
before END; they are introduced with a ! character, and can be in line.

• Names may be up to 31 characters in length and include the underscore
character.

• Lines may be up to 132 characters.

• Up to 39 continuation lines are allowed (using the ampersand (&) as the
continuation character).

• The syntax of the READ and PRINT statement introduced in these exam-
ples is

• READ format, input-item-list.

• PRINT format, output-item-list.

Introduction to Programming 71

� where format is * in the examples and called list directed format-
ting.

� and input-item-list is a list of variable names separated by com-
mas.

� and output-item-list is a list of variable names and/or a sequence
of characters enclosed in either ' or " , again separated by com-
mas.

• If the IMPLICIT NONE statement is not used, variables that are not ex-
plicitly declared will default to REAL if the first letter of the variable
name is A-H or O-Z, and to INTEGER if the first letter of the variable
name is I-N.

7.6 Fortran character set
The following summarises the Fortran character set:

A-Z Letters 0-9 Digits

_ Underscore Blank

= Equal + Plus

- Minus * Asterisk

/ Slash or oblique \ Backslash

(Left parenthesis) Right parenthesis

[Left square bracket] Right square bracket

{ Left curly bracket } Right curly bracket

, Comma . Period or decimal point

: Colon ; Semicolon

! Exclamation mark “ Quotation mark

% Percent & Ampersand

~ Tilde @ Commercial at

< Less than > Greater than

? Question mark ' Apostrophe

` Grave accent ^ Circumflex accent

| Vertical bar or line $ Currency symbol

Number sign

72 Chapter 7

7.7 Good programming guidelines
The following are guidelines, and do not form part of the Fortran language defini-
tion:

• Use comments to clarify the purpose of both sections of the program and
the whole program.

• Choose meaningful names in your programs.

• Use indentation to highlight the structure of the program. Remember that
the program has to be read and understood by both humans and a com-
puter.

• Use IMPLICIT NONE in all programs you write to minimise errors.

Do not rely on the rules for explicit typing, as this is a major source of errors in
programming.

7.8 Compilers
A number of hardware platforms, operating systems and compilers have been used
when writing this book and the two earlier books on Fortran 95 and Fortran 90:

• DEC VAX under VMS and later OPEN VMS with the NAG Fortran 90
compiler.

• DEC Alpha under OPEN VMS using the DEC Fortran 90 compiler.

• Sun Ultra Sparc under Solaris:

• NAGACE F90 compiler.

• NAGWare F95 compiler.

• Sun (Release 1.x) F90 compiler.

• Sun (Release 2.x) F90 compiler.

• PCs under DOS and Windows:

• DEC/Compaq Fortran 90 and Fortran 95 compilers.

• Intel Compiler (7.x, 8.x).

• Lahey Futitsu Fortran 95 (5.7).

• NAG Fortran 95 Compiler.

• NAG Salford Fortran 90 Compiler.

• Salford Fortran 95 Compiler.

Introduction to Programming 73

• PCs under Linux:

• Intel Compiler.

• Lahey Fujitsu Fortran 95 Pro (6.1).

• NAG Fortran 95 (4.x, 5.x).

It is very illuminating to use more than one compiler whilst developing programs.

7.9 Program development
A number of ways of developing programs have been used, including:

• Using DEC terminals to log into the DEC VAX and DEC Alpha systems.

• Using PCs running terminal emulation software to log into the DEC VAX
and DEC Alpha systems.

• Using terminal emulation software to log into the SUN Ultra Sparc.

• Using X-Windows software to log into the SUN Ultra Sparc systems.

• Using a DOS box and simple command line prompt.

• Using an integrated development environment, e.g., Microsoft Developer
Studio.

It is likely that you will end up doing at least one of the above and probably more.
The key stages involved are:

• Creating and making changes to the Fortran program source.

• Saving the file.

• Compiling the program:

• If there are errors you must go back to the Fortran source and make
the changes indicated by the compiler error messages.

• Linking if successful to generate an executable:

• Automatic link. This happens behind the scenes and the executable is
generated for you immediately.

• Manual link. You explicitly invoke the linker to generate the execut-
able.

• Running the program.

• Determining whether the program actually works and gives the results ex-
pected.

74 Chapter 7

These steps must be taken regardless of the hardware platform, operating system
and compiler you use. Some people like working at the operating system prompt
(e.g., DOS or UNIX), and others prefer working within a development environ-
ment. Both have their strengths and weaknesses.

7.10 Problems
1. Compile and run example 1 in this chapter. Experiment with the following types
of input.

Ian

Ian Chivers

"Jane Margaret Sleightholme"

2. Compile and run example 2 in this chapter.

Think about the following points:

• Is there a difference between separating the input by spaces or commas?

• Do you need the decimal point?

• What happens when you type in too many data?

• What happens when you type in too few data?

If you have access to more than one compiler repeat the above and compare the re-
sults.

3. Write a program that will read in your name and address and print them out in
reverse order.

Think about the following points:

• How many lines are there in your name and address?

• What is the maximum number of characters in the longest line in your
name and address?

• What happens at the first blank character of each input line?

• Which characters can be used in Fortran to enclose each line of text typed
in and hence not stop at the first blank character?

• If you use one of the two special characters to enclose text what happens
if you start on one line and then press the return key before terminating
the text?

The action here will vary between Fortran implementations.

Introduction to Programming 75

8

Arithmetic

“Taking Three as the subject to reason about —
A convenient number to state —

We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.

The result we proceed to divide, as you see,
By Nine Hundred and Ninety and Two:

Then subtract Seventeen, and the answer must be
Exactly and perfectly true.”

Lewis Carroll, The Hunting of the Snark

“Round numbers are always false.”

Samuel Johnson

Aims
The aims of this chapter are to introduce:

• The rules for the evaluation of arithmetic expressions to ensure that they
are evaluated as you intend.

• The idea of truncation and rounding applied to reals.

• The use of the PARAMETER statement to define or set up constants.

• The concepts and ideas involved in numerical computation, including:

• Specifying data types using kind-type parameters.

• The concept of numeric models and positional number systems for in-
teger and real arithmetic and their implementation on binary devices.

• Testing the numerical representation of different kind types on a sys-
tem.

8 Arithmetic

Most problems in the academic and scientific communities require arithmetic eval-
uation as part of the algorithm. As the rules for the evaluation of arithmetic in
Fortran may differ from those that you are probably familiar with, you need to
learn the Fortran rules thoroughly. In the previous chapter, we introduced the arith-
metic assignment statement, emphasising the concepts of name, type and value.
Here we will consider the way that arithmetic expressions are evaluated in Fortran.

Table 8.1 lists the five arithmetic operators available in Fortran.

Mathematical operation Fortran symbol
or operator

Addition +

Subtraction –

Division /

Multiplication *

Exponentiation **

Table 8.1 Fortran Operators

Exponentiation is raising to a power. Note that the exponentiation operator is the *
character twice.

The following are some examples of valid arithmetic assignment statements in For-
tran:

Taxable_Income = Gross_Wage - Personal_allowance
Cost = Bill + Vat + Service
Delta = Deltax/Deltay
Area = Pi * Radius * Radius
Cube = Big ** 3

The above expressions are all simple, and there are no problems when it comes to
evaluating them. However, now consider the following:

Tax = Gross_Wage - Personal_Allowance * Tax_Rate

78 Chapter 8

This is a poorly written arithmetic expression. There is a choice of doing the sub-
traction before or after the multiplication. Our everyday experience says that the
subtraction should take place before the multiplication. However, if this expression
were evaluated in Fortran the multiplication would be done before the subtraction.
A complete program to show the correct form in Fortran is as follow:

PROGRAM ch0801
IMPLICIT NONE
!
! Example of a Fortran program to calculate net pay
! given an employee's gross pay
!
REAL :: Gross_wage, Net_wage, Tax
REAL :: Tax_rate = 0.25
INTEGER :: Personal_allowance = 4800
CHARACTER*60 :: Their_Name

PRINT *,'Input employees name'
READ *,Their_Name
PRINT *,'Input Gross wage'
READ *,Gross_wage
Tax = (Gross_wage - Personal_allowance) * Tax_rate
Net_wage = Gross_wage - Tax
PRINT *,'Employee: ',Their_Name
PRINT *,'Gross Pay: ', Gross_wage
PRINT *,'Tax: ',Tax
PRINT *,'Net Pay:',Net_wage

END PROGRAM ch0801

We need to look at three areas here:

• The rules for forming expressions — the syntax.

• The rules for interpreting expressions — the semantics.

• The rules for evaluating expressions — optimisation.

The syntax rules determine which expressions are valid. The semantics determine a
valid interpretation, and once this has been done the compiler can replace the ex-
pression with any other one that is mathematically equivalent, generally in the
interests of optimisation.

The rules for the evaluation of expressions in Fortran are as follows:

• Brackets are used to define priority in the evaluation of an expression.

Arithmetic 79

• Operators have a hierarchy of priority — a precedence. The hierarchy of
operators is:

• Exponentiation: when the expression has multiple exponentiation,
the evaluation is from right to left. For example,

L = I ** J ** K

is evaluated by first raising J to the power K, and then using this
result as the exponent for I; more explicitly,

L = I ** (J ** K)

Although this is similar to the way in which we might expect an
algebraic expression to be evaluated, it is not consistent with the
rules for multiplication and division, and may lead to some con-
fusion. When in doubt, use brackets.

• Multiplication and division: within successive multiplications and
divisions, the rules regarding any mathematically equivalent expres-
sion means that you must use brackets to ensure the evaluation you
want For example, with

A = B * C / D * E

for noninteger numeric types the compiler does not necessarily
evaluate in a left to right manner, i.e., evaluate B times C, then
divide the result by D and finally take that result and multiply by
E.

• Addition and subtraction: as for multiplication and division the
rules regarding any equivalent expression apply. However, it is sel-
dom that the order of addition and subtraction is important, unless
other operators are involved.

The following are all examples of valid arithmetic expressions in Fortran:

Slope = (Y1-Y2)/(X1-X2)
X1 = (-B+((B*B-4*A*C)**0.5))/(2*A)
Q = Mass_D/2*(Mass_A*Veloc_A/Mass_D)**2 + &

((Mass_A * Veloc_A)**2)/2

Note that brackets have been used to make the order of evaluation more obvious. It
is often possible to write involved expressions without brackets, but, for the sake
of clarity, it is often best to leave the brackets in, even to the extent of inserting a
few extra ones to ensure that the expression is evaluated correctly. The expression
will be evaluated just as quickly with the brackets as without. Also note that none

80 Chapter 8

of the expressions is particularly complex. The last one is about as complex as you
should try: with more complexity than this it is easy to make a mistake.

The rule regarding any equivalent expression means if A, B and C are numeric
then the following are true:

A + B = B + A

– A + B = B – A

A + B + C = A + (B + C)

The last is nominally evaluated left to right, as the additions are of equal prece-
dence:

A * B = B * A

A * B * C = A * (B * C)

and again the last is nominally evaluated left to right, as the multiplications are of
equal precedence:

A * B – A * C = A * (B – C)

A / B / C = A / (B * C)

The last is true for noninteger numeric types only.

Problems arise when the value that a faulty expression yields lies within the range
of expected values and the error may well go undetected. This may appear strange
at first, but a computer does exactly what it is instructed to do. If, through a misun-
derstanding on the part of a programmer, the program is syntactically correct but
logically wrong from the point of view of the problem definition, then this will not
be spotted by the compiler. If an expression is complex, break it down into succes-
sive statements with elements of the expression on each line, e.g.,

Temp = B * B - 4 * A * C
X1 = (- B + (Temp ** 0.5)) / (2 * A)

and

Moment = Mass_A * Veloc_A
Q = Mass_D / 2 * (Moment / Mass_D) **2 + &

(Moment **2) / 2

8.1 Rounding and truncation
When arithmetic calculations are performed one of the following can occur:

Arithmetic 81

• Truncation. This operation involves throwing away part of the number,
e.g., with 14.6 truncating the number to two figures leaves 14.

• Rounding. Consider 14.6 again. This is rounded to 15. Basically, the
number is changed to the nearest whole number. It is still a real number.
What do you think will happen with 14.5; will this be rounded up or
down?

You must be aware of these two operations. They may occasionally cause prob-
lems in division and in expressions with more than one data type.

To see some of the problems that can occur consider the examples below:

PROGRAM ch0802
IMPLICIT NONE
REAL :: A,B,C
INTEGER :: I

A = 1.5
B = 2.0
C = A / B
I = A / B
PRINT *,A,B
PRINT *,C
PRINT *,I

END PROGRAM ch0802

After executing these statements C has the value 0.75, and I has the value zero!
This is an example of type conversion across the = sign. The variables on the right
are all real, but the last variable on the left is an integer. The value is therefore
made into an integer by truncation. In this example, 0.75 is real, so I becomes zero
when truncation takes place.

Consider now an example where we assign into a real variable (so that no trunca-
tion due to the assignment will take place), but where part of the expression on the
righthand side involves integer division:

PROGRAM ch0803
IMPLICIT NONE
INTEGER :: I,J,K
REAL :: Answer

I = 5
J = 2
K = 4
Answer = I / J * K
PRINT *,I

82 Chapter 8

PRINT *,J
PRINT *,K
PRINT *,Answer

END PROGRAM ch0803

The value of ANSWER is 8, because the I/J term involves integer division. The
expected answer of 10 is not that different from the actual one of 8, and it is cases
like this that cause problems for the unwary, i.e., where the calculated result may
be close to the actual one. In complicated expressions it would be easy to miss
something like this.

To recap, truncation takes place in Fortran:

• Across an = sign, when a real is assigned to an integer.

• In integer division.

It is very important to be careful when attempting mixed mode arithmetic — that
is, when mixing reals and integers. If a real and an integer are together in a divi-
sion or multiplication, the result of that operation will be real; when addition or
subtraction takes place in a similar situation, the result will also be real. The prob-
lem arises when some parts of an expression are calculated using integer arithmetic
and other parts with real arithmetic:

C = A + B - I / J

The integer division is carried out before the addition and subtraction; hence the
result of I/J is integer, although all the other parts of the expression will be carried
out with real arithmetic.

8.2 Time taken for light to travel from the Sun to Earth
How long does it take for light to reach the Earth from the Sun? Light travels 9.46
1012 km in 1 year. We can take a year as being equivalent to 365.25 days. (As all
school children know, the astronomical year is 365 days, 5 hours, 48 minutes and
45.9747 seconds — hardly worth the extra effort.) The distance between the Earth
and Sun is about 150,000,000 km. There is obviously a bit of imprecision involved
in these figures, not least since the Earth moves in an elliptical orbit, not a circular
one. One last point to note before presenting the program is that the elapsed time
will be given in minutes and seconds. Few people readily grasp fractional parts of
a year:

PROGRAM ch0804
IMPLICIT NONE
REAL :: Light_Minute, Distance, Elapse
INTEGER :: Minute, Second

Arithmetic 83

REAL , PARAMETER :: Light_Year=9.46*10**12
! Light_year : Distance travelled by light
! in one year in km
! Light_minute : Distance travelled by light
! in one minute in km
! Distance : Distance from sun to earth in km
! Elapse : Time taken to travel a
! distance (Distance) in minutes
! Minute : Integer number part of elapse
! Second : Integer number of seconds
! equivalent to fractional part of elapse
!

Light_minute = Light_Year/(365.25 * 24.0 * 60.0)
Distance = 150.0 * 10 ** 6
Elapse = Distance / Light_minute
Minute = Elapse
Second = (Elapse - Minute) * 60
Print *,' Light takes ' , Minute,' Minutes'
Print *,' ' , Second,' Seconds'
Print *,' To reach the earth from the sun'

END PROGRAM ch0804

The calculation is straightforward; first we calculate the distance travelled by light
in 1 minute, and then use this value to find out how many minutes it takes for light
to travel a set distance. Separating the time taken in minutes into whole-number
minutes and seconds is accomplished by exploiting the way in which Fortran will
truncate a real number to an integer on type conversion. The difference between
these two values is the part of a minute which needs to be converted to seconds.
Given the inaccuracies already inherent in the exercise, there seems little point in
giving decimal parts of a second.

It is worth noting that some structure has been attempted by using comment lines
to separate parts of the program into fairly distinct chunks. Note also that the com-
ment lines describe the variables used in the program.

Can you see any problems with this example?

8.3 The PARAMETER statement
This statement is used to provide a way of associating a meaningful name with a
constant in a program. Consider a program where � was going to be used a lot. It
would be silly to have to type in 3.14159265358, etc., every time. There would be
a lot to type and it is likely that a mistake could be made typing in the correct

84 Chapter 8

value. It therefore makes sense to set up � once and then refer to it by name. How-
ever, if PI was just a variable then it would be possible to do the following:

REAL :: li,pi
.
pi=3.14159265358
.
pi=4*alpha/beta
.

The pi=4*alpha/beta statement should have been li=4*alpha/beta. What has hap-
pened is that, through a typing mistake (p and l are close together on a keyboard),
an error has crept into the program. It will not be spotted by the compiler. Fortran
provides a way of helping here with the PARAMETER statement, which should be
preceded with a type declaration. The following are correct examples of the PA-
RAMETER statement:

REAL , PARAMETER :: pi=3.14159265358 , C=2.997925

and

REAL , PARAMETER :: Charge=1.6021917

The advantage of the PARAMETER statement is that you could not then assign
another value to pi, C or Charge. If you tried to do this, the compiler would gener-
ate an error message.

A PARAMETER statement may contain an arithmetic expression, so that some rel-
atively simple arithmetic may be performed in setting up these constants. The
evaluation must be confined to addition, subtraction, multiplication, division and
integer exponentiation. The following examples help to demonstrate the possibili-
ties:

REAL , PARAMETER :: parsec = 3.08*10**16 , &
pi = 3.14159265358 , &
radian = 360./pi

8.4 Range, precision and size of numbers
The range on integer numbers and the precision and the size of floating point num-
bers in computing are directly related to the number of bits allocated to their
internal representation. Tables 8.2 and 8.3 summarise this information for the two
most common bit sizes in use for integers and reals — 32 bits and 64 bits.

Table 8.2 looks at integer numbers.

Arithmetic 85

N bits Maximum integer

64 (2**63)–1 9,223,372,036,854,774,807

32 (2**31)–1 2,147,483,647

Table 8.2 Word Size and Integer Numbers

Table 8.3 is a corresponding table for real numbers.

N bits Precision Smallest real
largest real

64 15–18 ~ 0.5E–308

~ 0.8E+308

32 6–9 ~ 0.3E–38

~ 1.7E38

Table 8.3 Word Size and Real Numbers

Note that access to what the hardware supports is dependent on the operating sys-
tem and compiler as well.

Precision is not the same as accuracy. In this age of digital timekeeping, it is easy
to provide an extremely precise answer to the question What time is it? This an-
swer need not be accurate, even though it is reported to tenths (or even
hundredths!) of a second. Do not be fooled into believing that an answer reported
to ten places of decimals must be accurate to ten places of decimals. The computer
can only retain a limited precision. When calculations are performed, this limita-
tion will tend to generate inaccuracies in the result. The estimation of such
inaccuracies is the domain of the branch of mathematics known as Numerical
Analysis.

86 Chapter 8

To give some idea of the problems, consider an imaginary decimal computer which
retains two significant digits in its calculations. For example, 1.2, 12.0, 120.0 and
0.12 are all given to two-digit precision. Note therefore that 1234.5 would be rep-
resented as 1200.0 in this device. When any arithmetic operation is carried out, the
result (including any intermediate calculations) will have two significant digits.
Thus:

130 + 12 = 140 (rounding down from 142)

and similarly:

17 / 3 = 5.7 (rounding up from 5.666666...)

and:

16 * 16 = 260

Where there are more involved calculations, the results can become even less at-
tractive. Assume we wish to evaluate

(16 * 16) / 0.14

We would like an answer in the region of 1828.5718, or, to two significant digits,
1800.0. If we evaluate the terms within the brackets first, the answer is 260/0.14,
or 1857.1428; 1900.0 on the two-digit machine. Thinking that we could do better,
we could rewrite the fraction as

(16 / 0.14) * 16

Which gives a result of 1800.0.

Algebra shows that all these evaluations are equivalent if unlimited precision is
available.

Care should also be taken when is one is near the numerical limits of the machine.
Consider the following:

Z = B * C / D

where B, C and D are all 1030 and we are using 32-bit floating point numbers
where the maximum real is approximately 1038. Here the product B * C generates
a number of 1060 — beyond the limits of the machine. This is called overflow as
the number is too large. Note that we could avoid this problem by retyping this as

Z = B * (C / D)

where the intermediate result would now be 1030/1030, i.e., 1.

There is an inverse called underflow when the number is too small, which is illus-
trated below:

Arithmetic 87

Z = X1 * Y1 * Z1

where X1 and Y1 are 10–20 and Z1 is 1020. The intermediate result of X1 * Y1 is
10–40 — again beyond the limits of the machine. This problem could have been
overcome by retyping as

Z = X1 * (Y1 * Z1)

This is a particular problem for many scientists and engineers with all machines
that use 32-bit arithmetic for integer and real calculations. This is because there are
a number of physical constants (Plank constant, elementary charge, Bohr magneton
etc.,) that will cause arithmetic problems due to their size. This is rarely a problem
with machines with hardware support for 64-bit arithmetic.

How we get around this problem and how we move our programs from one plat-
form to another making sure that we are working with the same precision and
same range of numbers are covered in detail in the next section.

8.5 Health warning: optional reading, beginners are advised to
leave until later

It is very important in scientific programming to know the range and precision of
data on the hardware platform on which we are working. The facilities provided in
Fortran 95 now allow programmers to specify the range and precision they wish to
use and the compiler will choose an appropriate type.

If it is not possible to offer the precision and range requested the compiler returns
an error code. To avoid this happening the programmer needs to query the com-
puter first for details of its data representations before trying to run a program
which specifies range and precision.

In order to do this we use the KIND intrinsic function, (intrinsic functions are cov-
ered in depth in Chapter 14 and Appendix D), e.g.:

REAL :: X
PRINT *,'Kind number for X = ',KIND(X)

This will print out the kind number used by your system to represent default REAL
variables. These kind numbers are arbitrary and there is usually no meaning at-
tached to them.

Consider the following program, which demonstrates the use of the KIND func-
tion:

PROGRAM ch0805
IMPLICIT NONE

88 Chapter 8

INTEGER :: i
REAL :: r
CHARACTER*1 :: c
LOGICAL :: l
COMPLEX :: cp

PRINT *,' Integer ',KIND(i)
PRINT *,' Real ',KIND(r)
PRINT *,' Char ',KIND(c)
PRINT *,' Logical ',KIND(l)
PRINT *,' Complex ',KIND(cp)

END PROGRAM ch0805

It is worthwhile actually typing this program in and seeing what answers you get
for the system you are working on. Output from a PC compiler is given below:

[FTN90 Version 1.12 Copyright (c)SALFORD SOFTWARE LTD
1992 &]
[(c)THE NUMERICAL ALGORITHMS
GROUP 1991,1992]

NO ERRORS [FTN90]
Program entered

Integer 3
Real 1
Char 1
Logical 2
Complex 1

The following is the output from the DEC Fortran 90 compiler under OPEN VMS
on an Alpha 2100:

Program entered
Integer 4
Real 4
Char 1
Logical 4
Complex 4

Thus it is up to each compiler implementation to decide what kind numbers are as-
sociated with each type and kind variation. Thus the kind value on its own should
not be used across platforms to try to achieve portability.

In fact, specifying a kind number actually is not what is intended by the Fortran
standard, so two intrinsic functions

Arithmetic 89

SELECTED_INT_KIND

and

SELECTED_REAL_KIND

are available instead. They are used to specify the range of numbers for integers
and the range and precision of numbers for reals, and the compiler will return the
appropriate kind numbers that it has assigned to such representations. These kind
numbers can be assigned to parameters called kind type parameters, which can be
used with REAL and INTEGER type declarations. Let's consider the two main nu-
meric types to see how this works.

8.5.1 Selecting different INTEGER kind types

The Fortran standard specifies that only one integer kind needs to be available, but
often a machine's architecture or compiler implementation will offer more. Most
compiler implementations will offer the following:

• 8-bit or one-byte integers.

• 16-bit or two-byte integers.

• 32-bit or four-byte integers.

and 64-bit or eight byte integers will be available on certain platforms and imple-
mentations. The most common reason for choosing 8-bit or 16-bit integers is to
reduce the memory requirements of your program and the most common reason for
choosing 64-bit integers is to solve specialised problems in mathematics requiring
large integer numbers.

To choose an integer kind other than the default, you specify the range of the num-
bers you require it to lie in, in terms of a power of 10; e.g.,

INTEGER, PARAMETER :: First = SELECTED_INT_KIND (2)
INTEGER (First) :: I,J

selects an integer kind parameter, First, with representation which includes all inte-
gers between –102 and 102, i.e., numbers in the range –100 to 100. The integer
kind parameter can be used in brackets after the integer type statement to specify
variables of this integer kind, e.g., I and J.

If there is no integer kind representation for the range specified, the SE-
LECTED_INT_KIND function returns –1. Unfortunately it is not possible to then
test for –1 in a type statement, i.e., you will get a compile time error message. We
suggest that you run the program in Section 8.5.9 to find the limits of your ma-
chine's architecture before trying to specify a kind parameter that it can't support.

90 Chapter 8

8.5.2 Selecting different REAL kind types

The Fortran standard specifies that there must be at least two representations of the
real type, the default plus one other. Often there are more, depending on what the
underlying hardware can support. When working with real data there are two
things to specify — range and precision. The precision is the minimum number of
significant digits (all floating point numbers are normalised) to which real numbers
are stored, and the range is the power of 10 of the largest number to be repre-
sented. So, for example, to specify that a variable R has a kind type that supports
15 significant figures and a range 10�307 we define a real kind parameter, Long,
and then use this with the REAL type declaration for R as follows:

INTEGER, PARAMETER :: Long=SELECTED_REAL_KIND(15,307)
REAL (Long) :: R

The only problem is if the underlying hardware can't support this specification, in
which case the function will return –1 if the requested precision is unavailable, – 2
if the range is unavailable, and –3 if both are unavailable. As we mentioned earlier
with integer kinds, it is not possible to test for negative values in a type declara-
tion, so before trying to use different kind types, or even just the default types, you
need to know what kind types your machine supports and their range and preci-
sion.

8.5.3 Specifying kind types for literal integer and real constants

A literal constant is a data object whose value cannot change. An integer constant
1 is of default integer kind and a real constant 10.3 is a default real constant. If in
a program you have chosen a real kind type, other than the default, then to be con-
sistent and also to make sure that all real arithmetic is done to the precision
specified, you need to declare all real constants to be of this kind type. This is
done by giving the literal constant followed by an underscore and a kind number
or kind type parameter, e.g.

constant_kind

For the earlier example with a kind type parameter Long, a real literal constant of
this type would be given as

-22.36_Long

It is not recommended to use the actual kind number because, as we have seen,
these are not portable across machines.

The convention we use throughout this book if we require a numeric kind type
other than the defaults is to specify a kind type parameter, e.g.,

Arithmetic 91

INTEGER, PARAMETER :: Long = SELECTED_REAL_KIND(15,307)

and then use it with REAL type declarations, e.g.,

REAL (Long) :: R

This still doesn't make programs completely portable across different hardware
platforms, so you will firstly need to run a program which tests the range of data
representations. Before doing this we need to know a bit more about the underly-
ing representation of numerical data on computer systems.

8.5.4 Positional number systems

Most people take arithmetic completely for granted and rarely think much about
the subject. It is necessary to look at it in a bit more depth if we are to understand
what the computer is doing in this area.

Our way of working with numbers is essentially a positional one. When we look at
the number 1024, for example, we rarely think of it in terms of 1 * 1000 + 0 * 100
+ 2 * 10 + 4 * 1. Thus the normal decimal system we use in everyday life is a po-
sitional one, with a base of 10.

We are probably aware that we can use other number bases, and 2, 8 and 16 are
fairly common alternate number bases. As the computer is a binary device it uses
base 2.

We are also reasonably familiar with a mantissa exponent or floating point combi-
nation when the numbers get very large or very small, e.g., a parsec is commonly
expressed as 3.08 * 10 ** 16, and here the mantissa is 3.08, and the exponent is 10
** 16.

The above information will help in understanding the way in which integers and
reals are represented on computer systems.

8.5.5 Bit data type and representation model

The model is only defined for positive integers (or cardinal numbers), where they
are represented as a sequence of binary digits, and is based on the model:

i bk
k

n
k�

�

�

�
0

1

2

where i is the integer value, n is the number of bits, and bk is a bit value of 0 or 1,
with bit numbering starting at 0, and reading right to left. Thus the integer 43 and
bit pattern 101011 is given by:

43 = (1 * 32) + (0 * 16) + (1 * 8) + (0 * 4) + (1 * 2) + (1 * 1)

or

92 Chapter 8

43 = (1 * 25) + (0 * 24) + (1 * 23) +(0 * 22) +(1 * 21) +(1 * 20)

8.5.6 Integer data type and representation model

The integer data type is based on the model

i s l r
k

q

k

k�
�

��
1

1

where i is the integer value, s is the sign, q is the number of digits (always posi-
tive), r is the radix or base (integer greater than 1), and lk is a positive integer (less
than r).

A base of 2 is typical so 1023 is

1023 = (1 * 29) + (1 * 28) + (1 * 27) + (1 * 26) + (1 * 25) + (1 * 24) + (1 * 23)

+ (1 * 22) + (1 * 21) + (1 * 20)

8.5.7 Real data type and representation model

The real data type is based on the model

x s b f be

k

m

k

k�
�

��
1

where x is the real number, s is the sign, b is the radix or base (greater than 1), m
is the number of bits in the mantissa, e is an integer in the range emin to emax, and
fk is a positive number less than b.

This means that with, for example, a 32-bit real there would be 8 bits allocated to
the exponent and 24 to the mantissa. One of the bits in each part would be used to
represent the sign and is called the sign bit. This reduces the number of bits that
can actually be used to represent the mantissa and exponent to 31 and 7, respec-
tively. There is also the concept of normalisation, where the exponent is adjusted
so that the most significant bit is in position 22 — bits are typically numbered
0–22, rather than 1–23. This form of representation is not new, and is first docu-
mented around 1750 BC, when Babylonian mathematicians used a sexagesimal
(radix 60) positional notation. It is interesting that the form they used omitted the
exponent!

This is the theoretical basis of the representation of these three data types in For-
tran. Remember from Chapter 2 that the computer is essentially a binary device,
and works at the lowest level with sequences of zeros and ones.

This information together with the following provide a good basis for writing por-
table code across a range of hardware.

Arithmetic 93

8.5.8 IEEE 754

The first standard IEEE 754: 1985 covered binary floating point arithmetic. The
later IEEE 754: 1987 standard added decimal arithmetic.

A considerable amount of hardware now offers support for the IEEE 754 standard.
The standard can be purchased from

• http://standards.ieee.org

Work is under way on the next version and you can find out details of the current
state of play at

• http://grouper.ieee.org/groups/754/

There are quite a lot of good links from this site.

8.5.9 Testing the numerical representation of different kind types on a
system

You are now ready to write or adapt a program to run on your system in order to
test the range of integer kind types and the range and precision of real kind types.

The following program selects several integer and real kind types and by calling
the intrinsic functions KIND, HUGE, PRECISION and EPSILON produces most
of the information you need to know about for these kind types. Table 8.4 provides
details of what these functions do.

Function name Simple explanation

KIND(X) Returns the kind type

HUGE(X) Returns the largest number

PRECISION(X) Returns the decimal precision

EPSILON(X) Smallest difference between two reals

Table 8.4 Numeric Query Functions

A complete program using the above is as follows:

PROGRAM ch0806
!
! Examples of the use of the kind

94 Chapter 8

! function and the numeric inquiry functions
!
! Integer arithmetic
!
! 32 bits is a common word size,
! and this leads quite cleanly
! to the following
! 8 bit integers
! -128 to 127 10**2
! 16 bit integers
! -32768 to 32767 10**4
! 32 bit integers
! -2147483648 to 2147483647 10**9
!
! 64 bit integers are increasingly available.
! This leads to
! -9223372036854775808 to
! 9223372036854775807 10**19
!
! You may need to comment out some of the following
! depending on the hardware platform and compiler
! that you use.

INTEGER :: I
INTEGER (SELECTED_INT_KIND(2)) :: I1
INTEGER (SELECTED_INT_KIND(4)) :: I2
INTEGER (SELECTED_INT_KIND(9)) :: I3
INTEGER (SELECTED_INT_KIND(10)) :: I4

! Real arithmetic
!
! 32 and 64 bit reals are normally available.
!
! 32 bit reals 8 bit exponent, 24 bit mantissa
!
! 64 bit reals 11 bit exponent 53 bit mantissa
!
REAL :: R
REAL (SELECTED_REAL_KIND(6, 37)) :: R1
REAL (SELECTED_REAL_KIND(15,307)) :: R2
REAL (SELECTED_REAL_KIND(15,310)) :: R3

Arithmetic 95

PRINT *,' '
PRINT *,' Integer values'
PRINT *,' Kind Huge'
PRINT *,' '
PRINT *,' ',KIND(I),' ',HUGE(I)
PRINT *,' '
PRINT *,' ',KIND(I1),' ',HUGE(I1)
PRINT *,' ',KIND(I2),' ',HUGE(I2)
PRINT *,' ',KIND(I3),' ',HUGE(I3)
PRINT *,' ',KIND(I4),' ',HUGE(I4)

PRINT *,' '
PRINT *,' Real values'
PRINT *,' Kind Huge ',&

'Precision epsilon'
PRINT *,' '
PRINT *,' ',KIND(R),' ',HUGE(R),&
' ',PRECISION(R),' ',EPSILON(R)
PRINT *,' '
PRINT *,' ',KIND(R1),' ',HUGE(R1),&
' ',PRECISION(R1),' ',EPSILON(R1)
PRINT *,' ',KIND(R2),' ',HUGE(R2),&
' ',PRECISION(R2),' ',EPSILON(R2)
PRINT *,' ',KIND(R3),' ',HUGE(R3),&
' ',PRECISION(R3),' ',EPSILON(R3)

END PROGRAM ch0806

The output from the Intel compiler under Windows is:

Integer values
Kind Huge

4 2147483647

1 127
2 32767
4 2147483647
8 9223372036854775807

Real values
Kind Huge Precision epsilon

96 Chapter 8

4 3.4028235E+38
6 1.1920929E-07

4 3.4028235E+38
6 1.1920929E-07

8 1.797693134862316E+308
15 2.220446049250313E-016

16
1.189731495357231765085759326628007E+4932
33

1.925929944387235853055977942584927E-0034

The output from the Lahey Fujitsu compiler under Windows is:

Integer values
Kind Huge

4 2147483647

1 127
2 32767
4 2147483647
8 9223372036854775807

Real values
Kind Huge Precision epsilon

4 3.40282347E+38 6 1.19209290E-07

4 3.40282347E+38 6 1.19209290E-07
8 1.797693134862316E+308 15

2.220446049250313E-16
16 1.1897314953572317650857593266280070E+4932 33

1.9259299443872358530559779425849273E-0034

The output from the Salford compiler under Windows is:

Integer values
Kind Huge

Arithmetic 97

3 2147483647

1 127
2 32767
3 2147483647
4 9223372036854775807

Real values
Kind Huge Precision epsilon

1 3.402823E+38
6 1.192093E-07

1 3.402823E+38
6 1.192093E-07

2 1.797693134862E+0308
15 2.220446049250E-16

3 1.18973149535723177E+4932
18 1.08420217248550444E-19

Run this program on whatever system you have access to and compare the output
with the above examples.

8.5.10 Binary representation of different integer kind type numbers

For those who wish to look at the internal binary representation of integer numbers
with a variety of kinds, we have included the following program

SELECTED_INT_KIND(2) means provide at least an integer representation with
numbers between –102 and +102.

SELECTED_INT_KIND(4) means provide at least an integer representation with
numbers between –104 and +104.

SELECTED_INT_KIND(9) means provide at least an integer representation with
numbers between –109 and +109.

We use the INT function to convert from one integer representation to another.

We use the logical function BTEST to determine whether the binary value at that
position within the number is a zero or a one, i.e., if the bit is set.

I_in_Bits is a character string that holds a direct mapping from the internal binary
form of the integer and a text string that prints as a sequence of zeros or ones:

98 Chapter 8

PROGRAM ch0807
!
! Use the bit functions in Fortran to write out a
! 32 bit integer number as a sequence of
! zeros and ones
!
INTEGER :: J
INTEGER :: I
INTEGER (SELECTED_INT_KIND(2)) :: I1
INTEGER (SELECTED_INT_KIND(4)) :: I2
INTEGER (SELECTED_INT_KIND(9)) :: I3
CHARACTER (LEN=32) :: I_in_Bits

PRINT *,' Type in an integer '
READ * , I
I1=INT(I,KIND(2))
I2=INT(I,KIND(4))
I3=INT(I,KIND(9))
I_in_Bits=' '
DO J=0,7

IF (BTEST(I1,J)) THEN
I_in_Bits(8-J:8-J)='1'

ELSE
I_in_Bits(8-J:8-J)='0'

END IF
END DO
PRINT *,' 1 2 3'
PRINT *,'1234567890123456789012345678901234567890'
PRINT *,I1
PRINT *,I_in_Bits
DO J=0,15

IF (BTEST(I2,J)) THEN
I_in_Bits(16-J:16-J)='1'

ELSE
I_in_Bits(16-J:16-J)='0'

END IF
END DO
PRINT *,I2
PRINT *,I_in_Bits
DO J=0,31

IF (BTEST(I3,J)) THEN
I_in_Bits(32-J:32-J)='1'

ELSE

Arithmetic 99

I_in_Bits(32-J:32-J)='0'
END IF

END DO
PRINT *,I3
PRINT *,I_in_Bits

END PROGRAM ch0807

The DO loop indices follow the convention of an 8-bit quantity starting at bit 0
and ending at bit 7, 16-bit quantities starting at 0 and ending at 15, etc.

The numbers written out follow the conventional mathematical notation of having
the least significant quantity at the right-hand end of the digit sequence, i.e., with
127 in decimal we have 1 * 100, 2 * 10 and 7 * 1, so 00100001 in binary means 1
* 32 + 1 * 1 decimal.

Try running this program on the system you are using. Does it produce the results
you expect? Experiment with a variety of numbers. Try at least the following 0,
+1, –1, –128, 127, 128, –32768, 32767, 32768.

8.5.11 Binary representation of a real number

The following program is a simple variant of the previous one, but we now look at
a floating point number:

PROGRAM ch0808
!
! Use the bit functions in Fortran to write out a
! 32 bit integer number equivalenced to a real
! using the transfer intrinsic as a sequence of
! zeros and ones
!
IMPLICIT NONE
INTEGER :: I,J
CHARACTER (LEN=32) :: I_in_Bits=" "
REAL :: x=-1.0

PRINT *,' 1 2 3'
PRINT *,'1234567890123456789012345678901234567890'
PRINT *,I_in_Bits
I=TRANSFER(x,I)
DO J=0,31

IF (BTEST(i,J)) THEN
I_in_Bits(32-J:32-J)='1'

ELSE
I_in_Bits(32-J:32-J)='0'

END IF

100 Chapter 8

END DO
PRINT *,x
PRINT *,I_in_Bits

END PROGRAM ch0808

We use the intrinsic function transfer to help out here. The BTEST intrinsic takes
an integer argument, so we need to copy the bit pattern of the real number into an
integer variable.

8.5.12 Summary of how to select the appropriate kind type

To write programs that will perform arithmetically in a similar fashion on a variety
of hardware requires an understanding of:

• The integer data representation model and in practice the word size of the
various integer kind types.

• The real data representation model and in practice the word size of the
various real kind types and the number of bits in both the mantissa and
exponent.

Armed with this information we can then choose a kind type that will ensure mini-
mal problems when moving from one platform to another. End of health warning!

8.6 Variable status
Fortran has two concepts regarding the status of a variable: defined and undefined.
If a program does not provide an initial value (in a type statement) for a variable
then its status is said to be undefined. Consider the following code segment taken
from the earlier example that calculated the sum and average of three numbers:

REAL :: N1, N2, N3, Average=0.0, Total=0.0
INTEGER :: N=3

In the above the variables Average, Total and N all have a defined status. How-
ever, N1, N2 and N3 are said to be undefined. The use of undefined values is
implementation dependent and therefore not portable. Care must be taken when
writing programs to ensure that your variables have a defined status wherever pos-
sible. We will look at this area again in subsequent chapters.

8.7 Summary
The following are some practical rules and guidelines:

• Learn the rules for the evaluation of arithmetic expressions.

Arithmetic 101

• Break expressions down where necessary to ensure that the expressions
are evaluated in the way you want.

• Take care with truncation owing to integer division in an expression. Note
that this will only be a problem where both parts of the division are IN-
TEGER.

• Take care with truncation owing to the assignment statement when there
is an integer on the left-hand side of the statement, i.e., assigning a real
into an integer variable.

• When you want to set up constants which will remain unchanged through-
out the program, use the PARAMETER statement.

• Do not confuse precision and accuracy.

• Learn what the default KINDs are for the numeric types you work with,
what the maximum and minimum values and precision are for REAL
data, and what the maximum and minimum are for INTEGER data.

• You have been introduced to the use of the functions DIGITS, HUGE and
PRECISION, and some of the concepts involved in their use. We will
look at functions in much greater depth later on.

8.8 Problems
1. Compile and run examples 1 through 3 in this chapter.

2. Have another look at example 4. Compile and run it. It will generate an error
on some systems. Can you see where the error is? Appendix D contains sample
output from several compilers.

2.. Write a program to calculate the period of a pendulum. This is given mathemat-
ically as

t
length

� 2
9 81

�
.

Use the following Fortran arithmetic assignment statement:

T = 2 * PI * (LENGTH / 9.81) ** .5

The length (LENGTH) is in metres, and the time (T) in seconds. � was given a
value earlier in this chapter.

Repeat the above using two other methods. Try a hand-held calculator and a
spreadsheet. Do you get the same answers?

3. Base conversion.

102 Chapter 8

In this chapter you have seen a brief coverage of base conversion. The following
program illustrates some of the problems that can occur when going from base 10
to base 2 and back again. Which numbers will convert without loss?

program base_conversion
real :: x1=1.0
real :: x2=0.1
real :: x3=0.01
real :: x4=0.001
real :: x5=0.0001

print *,' ',x1
print *,' ',x2
print *,' ',x3
print *,' ',x4
print *,' ',x5

end program base_conversion

Which do you think will provide the same number as originally entered?

4. Simple subtraction. In this chapter we looked at representing floating point num-
bers in a finite number of bits.

Try the following program:

program subtract
real :: a=1.0002
real :: b=1.0001
real :: c

c=a-b
print *,a
print *,b
print *,c

end program subtract

5. Expression equivalence. We introduced some of the rules that apply in Fortran
for expression evaluation. In mathematics the following is true:

(x2-y2) = (x*x-y*y) = (x-y)*(x+y)

Try the following program:

program expression_equivalence
!
! simple evaluation of x*x-y*y
! when x and y are similar

Arithmetic 103

!
! we will evaluate in three ways.
!
real :: x=1.002
real :: y=1.001
real :: t1,t2,t3,t4,t5

t1=x-y
t2=x+y
print *,t1
print *,t2
t3=t1*t2
t4=x**2-y**2
t5=x*x-y*y
print *,t3
print *,t4
print *,t5

end program expression_equivalence

Solve the problem with pencil and paper, calculator and Excel.

The last three examples show that you must be careful when using a computer to
solve problems.

6. The following is a simple variant of ch0804. In this case we initialise light year
in an assignment statement. Do you think you will get the same results as from
running the earlier example? Appendix E contains the output from several compil-
ers.

PROGRAM ch0804p
IMPLICIT NONE
REAL :: Light_Minute, Distance, Elapse
INTEGER :: Minute, Second
REAL :: Light_Year
! Light_year : Distance travelled by light
! in one year in km
! Light_minute : Distance travelled by light
! in one minute in km
! Distance : Distance from sun to earth in km
! Elapse : Time taken to travel a
! distance (Distance) in minutes
! Minute : Integer number part of elapse
! Second : Integer number of seconds
! equivalent to fractional part of elapse
!

104 Chapter 8

Light_Year=9.46*10**12
Light_minute = Light_Year/(365.25 * 24.0 * 60.0)
Distance = 150.0 * 10 ** 6
Elapse = Distance / Light_minute
Minute = Elapse
Second = (Elapse - Minute) * 60
Print *,' Light takes ' , Minute,' Minutes'
Print *,' ' , Second,' Seconds'
Print *,' To reach the earth from sun'

END PROGRAM ch0804p

8.9 Bibliography
Some understanding of numerical analysis is essential for successful use of Fortran
when programming. As Froberg says “numerical analysis is a science — computa-
tion is an art.” The following are some of the more accessible books available.

Froberg C.E., Introduction to Numerical Analysis, Addison-Wesley, 1969.

The short chapter on numerical computation is well worth a read; it covers
some of the problems of conversion between number bases and some of the
errors that are introduced when we compute numerically. The Samuel Johnson
quote owes its inclusion to Froberg!

IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std
754-1985, Institute of Electrical and Electronic Engineers Inc.

The formal definition of IEEE 754.

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

A more thorough and mathematical coverage than Wakerly. The chapter on
positional number systems provides a very comprehensive historical coverage
of the subject. As Knuth points out the floating point representation for num-
bers is very old, and is first documented around 1750 B.C. by Babylonian
mathematicians. Very interesting and worthwhile reading.

Sun, Numerical Computation Guide, SunPro, 1993.

Very good coverage of the numeric formats for IEEE Standard 754 for Binary
Floating-Point Arithmetic. All SunPro compiler products support the features
of the IEEE 754 standard.

Wakerly J.F., Microcomputer Architecture and Programming, Wiley, 1981.

The chapter on number systems and arithmetic is surprisingly easy. There is a
coverage of positional number systems, octal and hexadecimal number system
conversions, addition and subtraction of nondecimal numbers, representation
of negative numbers, two's complement addition and subtraction, one's com-
plement addition and subtraction, binary multiplication, binary division, bcd or

Arithmetic 105

binary coded decimal representation and fixed and floating point representa-
tions. There is also coverage of a number of specific hardware platforms,
including DEC PDP-11, Motorola 68000, Zilog Z8000, TI 9900, Motorola
6809 and Intel 8086. A little old but quite interesting nevertheless.

106 Chapter 8

9

Arrays 1
Some Fundamentals

“Thy gifts, thy tables, are within my brain
Full charactered with lasting memory.”

William Shakespeare, The Sonnets

“Here, take this book, and peruse it well:
The iterating of these lines brings gold.”

Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of the chapter are to introduce the fundamental concepts of arrays and
DO loops, in particular:

• To introduce the idea of tables of data and some of the formal terms used
to describe them:

• Array.

• Vector.

• List and linear list.

• To discuss the array as a random access structure where any element can
be accessed as readily as any other and to note that the data in an array
are all of the same type.

• To introduce the twin concepts of data structure and corresponding control
structure.

• To introduce the statements necessary in Fortran to support and manipu-
late these data structures.

9 Arrays 1: Some Fundamentals

9.1 Tables of data
Consider the examples below.

9.1.1 Telephone directory

A telephone directory consists of the following kinds of entries:

Name Address Number

Adcroft A. 61 Connaught Road, Roath, Cardiff 223309
Beale K. 14 Airedale Road, Balham 745 9870
Blunt R.U. 81 Stanlake Road, Shepherds Bush 674 4546
...
...
...
Sims Tony 99 Andover Road,Twickenham 898 7330

This structure can be considered in a variety of ways, but perhaps the most com-
mon is to regard it as a table of data, where there are three columns and as many
rows as there are entries in the telephone directory.

Consider now the way we extract information from this table. We would scan the
name column looking for the name we are interested in, and then read along the
row looking for either the address or telephone number, i.e., we are using the name
to look up the item of interest.

9.1.2 Book catalogue

A catalogue could contain:

Author(s) Title Publisher

Carroll L. Alice through the Looking Glass Penguin
Steinbeck J. Sweet Thursday Penguin
Wirth N. Algorithms plus Data Structures = Program Prentice-Hall

108 Chapter 9

Again, this can be regarded as a table of data, having three columns and many
rows. We would follow the same procedure as with the telephone directory to ex-
tract the information. We would use the Name to look up what books are available.

9.1.3 Examination marks or results

This could consist of:

Name Physics Maths Biology History English French

Fowler L. 50 47 28 89 30 46
Barron L.W 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

This can again be regarded as a table of data. This example has seven columns and
five rows. We would again look up information by using the Name.

9.1.4 Monthly rainfall

The following data are the monthly average rainfall for London:

Month Rainfall

January 3.1
February 2.0
March 2.4
April 2.1
May 2.2
June 2.2
July 1.8
August 2.2
September 2.7
October 2.9
November 3.1
December 3.1

Arrays 1: Some Fundamentals 109

In this table there are two columns and twelve rows. To find out what the rainfall
was in July, we scan the table for July in the Month column and locate the value in
the same row, i.e., the rainfall figure for July.

These are just some of the many examples of problems where the data that are be-
ing considered have a tabular structure. Most general purpose languages therefore
have mechanisms for dealing with this kind of structure. Some of the special
names given to these structures include:

• Linear list.

• List.

• Vector.

• Array.

The term used most often here, and in the majority of books on Fortran program-
ming, is array.

9.2 Arrays in Fortran
There are three key things to consider here:

• The ability to refer to a set or group of items by a single name.

• The ability to refer to individual items or members of this set, i.e., look
them up.

• The choice of a control structure that allows easy manipulation of this set
or array.

9.3 The DIMENSION attribute
The DIMENSION attribute defines a variable to be an array. This satisfies the first
requirement of being able to refer to a set of items by a single name. Some exam-
ples are given below:

REAL , DIMENSION(1:100) :: Wages
INTEGER , DIMENSION(1:10000) :: Sample

For the variable Wages it is of type REAL and an array of dimension or size 100,
i.e., the variable array Wages can hold up to 100 real items.

For the variable Sample it is of type INTEGER and an array of dimension or size
10,000, i.e., the variable Sample can hold up to 10,000 integer items.

110 Chapter 9

9.4 An index
An index enables you to refer to or select individual elements of the array. In the
telephone directory, book catalogue, exam marks table and monthly rainfall exam-
ples we used the name to index or look up the items of interest. We will give
concrete Fortran code for this in the example of monthly rain fall.

9.5 Control structure
The statement that is generally used to manipulate the elements of an array is the
DO statement. It is typical to have several statements controlled by the DO state-
ment, and the block of repeated statements is often called a DO loop. Let us look
at two complete programs that highlight the above.

9.6 Monthly rainfall
Let us look at this earlier example in more depth now. Consider the following:

Month Associated integer Array Rainfall
representation and index value

January 1 RainFall(1) 3.1
February 2 RainFall(2) 2.0
March 3 RainFall(3) 2.4
April 4 RainFall(4) 2.1
May 5 RainFall(5) 2.2
June 6 RainFall(6) 2.2
July 7 RainFall(7) 1.8
August 8 RainFall(8) 2.2
September 9 RainFall(9) 2.7
October 10 RainFall(10) 2.9
November 11 RainFall(11) 3.1
December 12 RainFall(12) 3.1

Most of you should be familiar with the idea of the use of an integer as an alter-
nate way of representing a month, e.g., in a date expressed as 1/3/2000, for 1st

March 2000 (anglicised style) or January 3rd (americanised style). Fortran, in com-
mon with other programming languages, only allows the use of integers as an
index into an array. Thus when we write a program to use arrays we have to map
between whatever construct we use in everyday life as our index (names in our ex-
amples of telephone directory, book catalogue, and exam marks) to an integer

Arrays 1: Some Fundamentals 111

representation in Fortran. The following is an example of an assignment statement
showing the use of an index:

RainFall(1)=3.1

We saw earlier that we could use the DIMENSION attribute to indicate that a vari-
able was an array. In the above example Fortran statement our array is called
RainFall. In this statement we are assigning the value 10.4 to the first element of
the array; i.e., the rainfall for the month of January is 10.4. We use the index 1 to
represent the first month. Consider the following statement:

SummerAverage = (RainFall(6) + RainFall(7) + &
RainFall(8))/3

This statement says take the values of the rainfall for June, July and August, add
them up and then divide by 3, and assign the result to the variable
SummerAverage, thus providing us with the rainfall average for the three summer
months — Northern Hemisphere of course.

9.6.1 Example 1: Rainfall

The following program reads in the 12 monthly values from the terminal, computes
the sum and average for the year, and prints the average out.

PROGRAM ch0901
IMPLICIT NONE
REAL :: Total=0.0, Average=0.0
REAL , DIMENSION(1:12) :: RainFall
INTEGER :: Month

PRINT *,' Type in the rainfall values'
PRINT *,' one per line'
DO Month=1,12

READ *, RainFall(Month)
ENDDO
DO Month=1,12

Total = Total + RainFall(Month)
ENDDO
Average = Total / 12
PRINT *,' Average monthly rainfall was'
PRINT *, Average

END PROGRAM ch0901

RainFall is the array name. The variable Month in brackets is the index. It takes
on values from 1 to 12 inclusive, and is used to pick out or select elements of the

112 Chapter 9

array. The index is thus a variable and this permits dynamic manipulation of the
array at run time. The general form of the DO statement is

DO Counter = Start, End, Increment

The block of statements that form the loop is contained between the DO statement,
which marks the beginning of the block or loop, and the ENDDO statement, which
marks the end of the block or loop.

In this program, the DO loops take the form:

DO Month=1,12 start
... body

ENDDO end

The body of the loop in the program above has been indented. This is not required
by Fortran. However it is good practice and will make programs easier to follow.

The number of times that the DO loop is executed is governed by the last part of
the DO statement, i.e., by the

Counter = Start, End, Increment

Start as it implies, is the initial value which the counter (or index, or control vari-
able) takes. Each time the loop is executed, the value of the counter will be
increased by the value of increment, until the value of end is reached. If increment
is omitted, it is assumed to be 1. No other element of the DO statement may be
omitted. In order to execute the statements within the loop (the body) it must be
possible to reach end from start. Thus zero is an illegal value of increment. In the
event that it is not possible to reach end, the loop will not be executed and control
will pass to the statement after the end of the loop.

In the example above, both loops would be executed 12 times. In both cases, the
first time around the loop the variable MONTH would have the value 1, the second
time around the loop the variable MONTH would have the value 2, etc., and the
last time around the loop MONTH would have the value 12.

9.7 People's weights
In the table below we have ten people, with their names as shown. We associate
each name with a number — in this case we have ordered the names alphabeti-
cally, and the numbers therefore reflect their ordering. WEIGHT is the array name.
The number in brackets is called the index and it is used to pick out or select ele-
ments of the array. The table is read as the first element of the array WEIGHT has
the value 85, the second element has the value 76, etc.

Arrays 1: Some Fundamentals 113

Person Associated integer Array and Associated value
representation index

Andy 1 Weight(1) 85
Barry 2 Weight(2) 76
Cathy 3 Weight(3) 85
Dawn 4 Weight(4) 90
Elaine 5 Weight(5) 69
Frank 6 Weight(6) 83
Gordon 7 Weight(7) 64
Hannah 8 Weight(8) 57
Ian 9 Weight(9) 65
Jatinda 10 Weight(10) 76

9.7.1 Example 2: Setting array size with a parameter

In the first example we so-called hard coded the number 12, which is the number
of months, into the program. It occurred four times. Modifying the program to
work with a different number of months would obviously be tedious and
potentially error prone.

In this example we parameterise the size of the array and reduce the effort in-
volved in modifying the program to work with a different number of people:

PROGRAM ch0902
! The program reads up to number_of_people weights
! into the array Weight
! Variables used
! Weight, holds the weight of the people
! Person, an index into the array
! Total, total weight
! Average, average weight of the people
! Parameters used
! NumberOfPeople ,10 in this case.
! The weights are written out so that
! they can be checked
!
IMPLICIT NONE
INTEGER , PARAMETER :: Number_Of_People = 10
REAL :: Total = 0.0, Average = 0.0

114 Chapter 9

INTEGER :: Person
REAL , DIMENSION(1:Number_of_People) :: Weight

DO Person=1,Number_Of_People
PRINT *, ' Type in the weight for person ',Person
READ *,Weight(Person)
Total = Total + Weight(Person)

ENDDO
Average = Total / Number_Of_People
PRINT *,' The total of the weights is ',Total
PRINT *,' Average Weight is ',Average
PRINT *,' ',Number_of_People,' Weights were '
DO Person=1,Number_Of_People

PRINT *,Weight(Person)
ENDDO

END PROGRAM ch0902

9.8 Summary
The DIMENSION attribute declares a variable to be an array, and must come at
the start of a program unit, with other declarative statements. It has two forms and
examples of both of them are given below. In the first case we explicitly specify
the upper and lower limts:

REAL , DIMENSION(1:Number_of_People) :: Weight

In the second case the lower limit defaults to 1

REAL , DIMENSION(Number_of_People) :: Weight

The latter form will be seen in legacy code, especially Fortran 77 code suites.

The PARAMETER attribute declares a variable to have a fixed value that cannot
be changed during the execution of a program. In our example above note that this
statement occurs before the other declarative statements that depend on it. To recap
the statements covered so far, the order is summarised below.

Arrays 1: Some Fundamentals 115

PROGRAM First statement

INTEGER In any order and the
REAL Declarative DIMENSION and

PARAMETER
CHARACTER attributes are added here

Arithmetic assignment In any order
PRINT *
READ * Executable
DO
ENDDO

END PROGRAM Last statement

We choose individual members using an index, and these are always of integer
type in Fortran.

The DO loop is a very convenient control structure for manipulating arrays, and
we use indentation to clearly identify loops.

9.9 Problems
1. Compile and run examples 1 and 2 from this chapter.

2. Using a DO loop and an array rewrite the program which calculated the average
of five numbers (Question 3 in Chapter 8) and increase the number of values read
in from five to ten.

3.1 Modify the program that calculates the total and average of people's weights to
additionally read in their heights and calculate the total and average of their
heights. Use the data given below, which have been taken from a group of first
year undergraduates:

Height Weight
1.85 85
1.80 76
1.85 85
1.70 90

116 Chapter 9

1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

3.2 Your body mass index is given by your weight (in kilos) divided by your
height (in metres) squared. Calculate and print out the BMI for each person.

Grades of obesity according to Garrow as follows:

Grade 0 (desirable) 20–24.9

Grade 1 (overweight) 25–29.9

Grade 2 (obese) 30–40

Grad 3 (morbidly obese) >40

Ideal BMI range,

Men, Range 20.1–25 kg/m2

Women, Range 18.7–23.8 kg/m2

3.3 When working on either a UNIX system or a PC in a DOS box it is possible to
use the following characters to enable you to read data from a file or write output
to a file when running your program:

Character Meaning

< read from file

> write to file

On a typical UNIX system we could use

a.out < data.dat > results.txt

to read the data from the file called data.dat and write the output to a file called
results.txt.

On a PC in a DOS box the equivalent would be

program.exe < data.dat > results.txt

This is a quick and dirty way of developing programs that do simple I/O; we don't
have to keep typing in the data and we also have a record of the behaviour of the

Arrays 1: Some Fundamentals 117

program. Rerun the program that prints out the BMI values to write the output to a
file called results.txt. Examine this file in an editor.

4. Modify the program that read in your name to read in ten names. Use an array
and a DO loop. When you have read the names into the array write them out in re-
verse order on separate lines.

Hint: Look at the formal syntax of the DO statement.

5. Modify the rainfall program (which assumes that the measurement is in inches)
to convert the values to centimetres. One inch equals 2.54 centimetres. Print out
the two sets of values as a table.

Hint: Use a second array to hold the metric measurements.

6. Combine the programs that read in and calculate the average weight with the
one that reads in peoples names. The program should read the weights into one ar-
ray and the names into another. Allow 20 characters for the length of a name. Print
out a table linking names and weights.

7. In an earlier chapter we used the following formula to calculate the period of a
pendulum:

T = 2 * PI * (LENGTH / 9.81) ** .5

Write a program that uses a DO loop to make the length go from 1 to 10 metres in
1-metre increments.

Produce a table with two columns, the first of lengths and the second of periods.

118 Chapter 9

10

Arrays 2
Further Examples

“Sir, In your otherwise beautiful poem (The Vision of Sin) there is a verse which
reads
Every moment dies a man,
every moment one is born.
Obviously this cannot be true and I suggest that in the next edition you have it read
Every moment dies a man,
every moment 1 1/16 is born.
Even this value is slightly in error but should be sufficiently accurate for poetry.”

Charles Babbage in a letter to Lord Tennyson

Aims
The aims of the chapter are to extend the concepts introduced in the previous chap-
ter and in particular:

• To set an array size at run time - ALLOCATABLE arrays.

• To introduce the idea of an array with more than one dimension and the
corresponding control structure to permit easy manipulation of
higher-dimensioned arrays.

• To introduce an extended form of the DIMENSION attribute declaration,
and the corresponding alternative form to the DO statement, to manipulate
the array in this new form.

• To introduce the DO loop as a mechanism for the control of repetition in
general, not just for manipulating arrays.

• To formally define the block DO syntax.

10 Arrays 2: Further Examples

10.1 Varying the array size at run time
The earlier examples set the array size in the following two ways:

• Explicitly using a numeric constant

• Implicitly using a parameterised variable

In both cases we knew the size of the array at the time we compiled the program.
We may not know the size of the array at compile time and Fortran provides the
ALLOCATABLE attribute to accommodate this kind of problem. Consider the fol-
lowing example.

PROGRAM ch1001
!
! This program is a simple variant of ch0902.
! The array is now allocatable
! and the user is prompted for the
! number of people at run time.
!
IMPLICIT NONE
INTEGER :: Number_Of_People
REAL :: Total = 0.0, Average = 0.0
INTEGER :: Person
REAL , DIMENSION(:) , ALLOCATABLE :: Weight

PRINT *,' How many people?'
READ *,Number_Of_People
ALLOCATE(Weight(1:Number_Of_People))
DO Person=1,Number_Of_People

PRINT *, ' Type in the weight for person ',Person
READ *,Weight(Person)
Total = Total + Weight(Person)

ENDDO
Average = Total / Number_Of_People
PRINT *,' The total of the weights is ',Total
PRINT *,' Average Weight is ',Average
PRINT *,' ',Number_of_People,' Weights were '
DO Person=1,Number_Of_People

PRINT *,Weight(Person)
ENDDO

END PROGRAM ch1001

120 Chapter 10

The first statement of interest is the type declaration with the dimension and
allocatable attributes, e.g.,

REAL , DIMENSION(:) , ALLOCATABLE :: Weight

The second is the ALLOCATE statement where the value of the variable Num-
ber_of_people is not known until run time, e.g.,

ALLOCATE(Weight(1:Number_Of_People))

We will look more formally at these statements in Chapter 11.

10.2 Higher-dimension arrays
There are many instances where it is necessary to have arrays with more than one
dimension. Consider the examples below.

10.2.1 A map

Consider the representation of the height of an area of land expressed as a two-di-
mensional table of numbers e.g., we may have some information represented in a
simple table as follows:

Longitude
1 2 3

Latitude

1 10.0 40.0 70.0
2 20.0 50.0 80.0
3 30.0 60.0 90.0

The values in the array are the heights above sea level. The example is obviously
artificial, but it does highlight the concepts involved. For those who have forgotten
their geography, lines of latitude run east–west (the equator is a line of latitude)
and lines of longitude run north–south (they go through the poles and are all of the
same length). In the above table therefore the latitude values are ordered by row
and the longitude values are ordered by column.

A program to manipulate this data structure would involve something like the fol-
lowing:

Arrays 2: Further Examples 121

PROGRAM C1002
! Variables used
! Height - used to hold the heights above sea level
! Long - used to represent the longitude
! Lat - used to represent the latitude
! both restricted to integer values.
! Correct - holds the correction factor
IMPLICIT NONE
INTEGER , PARAMETER :: Size = 3
INTEGER :: Lat , Long
REAL , DIMENSION(1:Size,1:Size) :: Height
REAL , PARAMETER :: Correct = 10.0

DO Lat = 1,Size
DO Long = 1,Size

PRINT *,' Type in value at ',Lat,' ',Long
READ * , Height(Lat,Long)

ENDDO
ENDDO
DO Lat = 1,Size

DO Long = 1,Size
Height(Lat,Long) = Height(Lat,Long) + Correct

ENDDO
ENDDO
PRINT * , ' Corrected data is '
DO Lat = 1,Size

DO Long = 1,Size
PRINT * , Height(Lat,Long)

ENDDO
ENDDO

END PROGRAM C1002

Note the way in which indentation has been used to highlight the structure in this
example. Note also the use of a textual prompt to highlight which data value is ex-
pected. Running the program highlights some of the problems with the simple I/O
used in the example above. We will address this issue in the next example.

The inner loop is said to be nested within the outer one. It is very common to en-
counter problems where nesting is a natural way to express the solution. Nesting is
permitted to any depth. Here is an example of a valid nested DO loop:

DO ! Start of outer loop
DO ! Start of inner loop

.

122 Chapter 10

.
ENDDO ! End of inner loop

ENDDO ! End of outer loop

This example introduces the concept of two indices, and can be thought of as a
row and column data structure.

10.2.2 Example 3: Sensible tabular output

The first example had the values printed in a format that wasn't very easy to work
with. In this example we introduce a so-called implied DO loop, which enables us
to produce neat and humanly comprehensible output:

PROGRAM C1003
! Variables used
! Height - used to hold the heights above sea level
! Long - used to represent the longitude
! Lat - used to represent the latitude
! both restricted to integer values.
IMPLICIT NONE
INTEGER , PARAMETER :: Size = 3
INTEGER :: Lat , Long
REAL , DIMENSION(1:Size,1:Size) :: Height
REAL , PARAMETER :: Correct = 10.0

DO Lat = 1,Size
DO Long = 1,Size
READ * , Height(Lat,Long)
Height(Lat,Long) = Height(Lat,Long) + Correct

ENDDO
ENDDO
DO Lat = 1,Size

PRINT * , (Height(Lat,Long),Long=1,3)
ENDDO

END PROGRAM C1003

The key statement in this example is

PRINT * , (Height(Lat,Long),Long=1,3)

This is called an implied DO loop, as the longitude variable takes on values from 1
through 3 and will write out all three values on one line.

We will see other examples of this statement as we go on.

Arrays 2: Further Examples 123

10.2.3 Example 4: Average of three sets of values

This example extends the previous one. Now we have three sets of measurements
and we are interested in calculating the average of these three sets. The two new
data sets are:

9.5 39.5 69.5
19.5 49.5 79.5
29.5 59.5 89.5

and

10.5 40.5 70.5
20.5 50.5 80.5
30.5 60.5 90.5

and we have chosen the values to enable us to quickly check that the calculations
for the averages are correct.

This program also uses implied DO loops to read the data, as data in files are gen-
erally tabular:

PROGRAM C1004
! Variables used
! H1,H2,H3 - used to hold the heights above sea level
! H4 - used to hold the average of the above
! Long - used to represent the longitude
! Lat - used to represent the latitude
! both restricted to integer values.
IMPLICIT NONE
INTEGER , PARAMETER :: Size = 3
INTEGER :: Lat , Long
REAL , DIMENSION(1:Size,1:Size) :: H1,H2,H3,H4

DO Lat = 1,Size
READ * , (H1(Lat,Long), Long=1,Size)

ENDDO
DO Lat = 1,Size

READ * , (H2(Lat,Long), Long=1,Size)
ENDDO
DO Lat = 1,Size

READ * , (H3(Lat,Long), Long=1,Size)
ENDDO
DO Lat = 1,Size

DO Long = 1,Size
H4(Lat,Long)=(H1(Lat,Long) + H2(Lat,Long) + &

124 Chapter 10

H3(Lat,Long)) / Size
ENDDO

ENDDO
DO Lat = 1,Size

PRINT * , (H4(Lat,Long),Long=1,3)
ENDDO

END PROGRAM C1004

The original data was accurate to three significant figures. The output from the
above has spurious additional accuracy. We will look at how to correct this in the
later chapter on output.

10.2.4 Example 5: Booking arrangements in a theatre or cinema

A theatre or cinema consists of rows and columns of seats. In a large cinema or a
typical theatre there would also be more than one level or storey. Thus, a program
to represent and manipulate this structure would probably have a two-d or three-d
array. Consider the following program extract:

PROGRAM ch1005
IMPLICIT NONE
INTEGER , PARAMETER :: NR=5
INTEGER , PARAMETER :: NC=10
INTEGER , PARAMETER :: NF=3
INTEGER :: Row,Column,Floor
CHARACTER*1 , DIMENSION(1:NR,1:NC,1:NF) :: Seats=' '

DO Floor=1,NF
DO Row=1,NR

READ *,(Seats(Row,Column,Floor),Column=1,NC)
ENDDO

ENDDO
PRINT *,' Seat plan is'
DO Floor=1,NF

PRINT *,' Floor = ',Floor
DO Row=1,NR

PRINT *,(Seats(Row,Column,Floor),Column=1,NC)
ENDDO

ENDDO
END PROGRAM ch1005

Note here the use of the term PARAMETER in conjunction with the INTEGER
declaration. This is called an entity orientated declaration. An alternative to this is
an attribute-orientated declaration, e.g.,

Arrays 2: Further Examples 125

INTEGER :: NR,NC,NF
PARAMETER :: NR=5,NC=10,NF=3

and we will be using the entity-orientated declaration method throughout the rest
of the book. This is our recommended method as you only have to look in one
place to determine everything that you need to know about an entity.

10.3 Additional forms of the DIMENSION attribute and DO
loop statement

10.3.1 Example 6: Voltage from �20 to +20 volts

Consider the problem of an experiment where the independent variable voltage
varies from –20 to +20 volts and the current is measured at 1-volt intervals. For-
tran has a mechanism for handling this type of problem:

PROGRAM C1006
IMPLICIT NONE
REAL , DIMENSION(-20:20) :: Current
REAL :: Resistance
INTEGER :: Voltage

PRINT *,' Type in the resistance'
READ *, Resistance
DO Voltage = -20,20

Current(Voltage)=Voltage/Resistance
PRINT *, Voltage, ' ', Current(Voltage)

ENDDO
END PROGRAM C1006

We appreciate that, due to experimental error, the voltage will not have exact inte-
ger values. However, we are interested in representing and manipulating a set of
values, and thus from the point of view of the problem solution and the program
this is a reasonable assumption. There are several things to note.

This form of the DIMENSION attribute

DIMENSION(First:Last)

is of considerable use when the problem has an effective index which does not
start at 1.

There is a corresponding form of the DO statement which allows processing of
problems of this nature. This is shown in the above program. The general form of
the DO statement is therefore:

126 Chapter 10

DO counter=start, end, increment

where start, end and increment can be positive or negative. Note that zero is a le-
gitimate value of the dimension limits and of a DO loop index.

10.3.2 Example 7: Longitude from �180 to +180

Consider the problem of the production of a table linking time difference with lon-
gitude. The values of longitude will vary from –180 to +180 degrees, and the time
will vary from +12 hours to –12 hours. A possible program segment is:

PROGRAM ch1007
IMPLICIT NONE
REAL , DIMENSION(-180:180) :: Time=0
INTEGER :: Degree,Strip
REAL :: Value

DO Degree=-180,165,15
Value=Degree/15.
DO Strip=0,14

Time(Degree+Strip)=Value
ENDDO

ENDDO
DO Degree=-180,180

PRINT *,Degree,' ',Time(Degree)
END DO

END PROGRAM ch1007

10.3.3 Notes

The values of the time are not being calculated at every degree interval.

The variable Time is a real variable. It would be possible to arrange for the time to
be an integer by expressing it in either minutes or seconds.

This example takes no account of all the wiggly bits separating time zones or of
British Summer Time.

What changes would you make to the program to accommodate +180? What is the
time at �180 and +180?

10.4 The DO loop and straight repetition

10.4.1 Example 8: Table of temperatures

Consider the production of a table of liquid measurements. The independent vari-
able is the litre value; the gallon and US gallon are the dependent variables.
Strictly speaking, a program to do this does not have to have an array, i.e., the DO

Arrays 2: Further Examples 127

loop can be used to control the repetition of a set of statements that make no refer-
ence to an array. The following shows a complete but simple conversion program:

PROGRAM ch1008
IMPLICIT NONE
!
! 1 us gallon = 3.7854118 litres
! 1 uk gallon = 4.545 litres
!
INTEGER :: Litre
REAL :: Gallon,USGallon

DO Litre = 1,10
Gallon = Litre * 0.2641925
USGallon = Litre * 0.220022
PRINT *,Litre, ' ',Gallon,' ',USGallon

END DO
END PROGRAM ch1008

Note here that the DO statement has been used only to control the repetition of a
block of statements — there are no arrays at all in this program.

This is the other use of the DO statement. The DO loop thus has two functions —
its use with arrays as a control structure and its use solely for the repetition of a
block of statements.

10.4.2 Example 9: Means and standard deviations

In the calculation of the mean and standard deviation of a list of numbers, we can
use the following formulae. It is not actually necessary to store the values, nor to
accumulate the sum of the values and their squares. In the first case, we would
possibly require a large array, whereas in the second, it is conceivable that the ac-
cumulated values (especially of the squares) might be too large for the machine.
The following example uses an updating technique which avoids these problems,
but is still accurate. The DO loop is simply a control structure to ensure that all the
values are read in, with the index being used in the calculation of the updates:

PROGRAM ch1009
! Variables used are
! Mean - for the running mean
! SSQ - The running corrected sum of squares
! X - Input values for which
! mean and sd required
! W - Local work variable
! SD - Standard Deviation
! R - Another work variable

128 Chapter 10

IMPLICIT NONE
REAL :: Mean=0.0,SSQ=0.0,X,W,SD,R
INTEGER :: I,N

PRINT *,' ENTER THE NUMBER OF READINGS'
READ*,N
PRINT*,' ENTER THE ',N,' VALUES, ONE PER LINE'
DO I=1,N

READ*,X
W=X-Mean
R=I-1
Mean=(R*Mean+X)/I
SSQ=SSQ+W*W*R/I

ENDDO
SD=(SSQ/R)**0.5
PRINT *,' Mean is ',Mean
PRINT *,' Standard deviation is ',SD

END PROGRAM ch1009

10.5 Summary
Arrays can have up to seven dimensions.

DO loops may be nested, but they must not overlap.

The DIMENSION attribute allows limits to be specified for a block of information
which is to be treated in a common way. The limits must be integer, and the sec-
ond limit must exceed the first, e.g.,

REAL , DIMENSION(-123:-10) :: List
REAL , DIMENSION(0:100,0:100) :: Surface
REAL , DIMENSION(1:100) :: Value

The last example could equally be written

REAL , DIMENSION(100) :: Value

where the first limit is omitted and is given the default value 1. The array LIST
would contain 114 values, while Surface would contain 10201.

A DO statement and its corresponding ENDDO statement define a loop. The DO
statement provides a starting value, terminal value, and optionally, an increment
for its index or counter.

The increment may be negative, but should never be zero. If it is not present, the
default value is 1. It must be possible for the terminating value to be reached from
the starting value.

Arrays 2: Further Examples 129

The counter in a DO loop is ideally suited for indexing an array, but it may be
used anywhere that repetition is needed, and of course the index or counter need
not be used explicitly.

The formal syntax of the block DO construct is

[do-construct-name :] DO [label] [loop-control]
[execution-part-construct]

[label] end-do

where the forms of the loop control are

[,] scalar-variable-name =
scalar-numeric-expression ,
scalar-numeric-expression
[, scalar-numeric-expression]

and the forms of the end-do are

END DO [do-construct-name]
CONTINUE

and [] identify optional components of the block DO construct. This statement is
looked at in much greater depth in Chapter 16.

10.6 Problems
1. Compile and run all the examples in this chapter, except example 5. This is cov-
ered separately later.

2. Modify the first example to convert the height in feet to height in metres. The
conversion factor is one 1 equals 0.305 metres.

Hint: You can either overwrite the height array or introduce a second array.

3. The following are two equations for temperature conversion

c = 5 /9 * (t-32)

f = 32 + 9 /5 * t

Write a complete program where t is an integer DO loop variable and loop from
�50 to 250. Print out the values of c, t and f on one line. What do you notice about
the c and f values?

4. Write a program to print out the 12 times table. Typical output would be of the
form:

1 * 12 = 12

130 Chapter 10

2 * 12 = 24

3 * 12 = 36

etc.

Hint: You don't need to use an array here.

5. Write a program to read the following data into a two-dimensional array:

1 2 3
4 5 6
7 8 9

Calculate totals for each row and column and produce an output similar to that
below:

1 2 3 6
4 5 6 15
7 8 9 24
12 15 18

Hint 1: Example ch0902 shows how to sum over a loop.

Hint 2: You need to introduce two one-dimensional arrays to hold the row and
column totals. You need to index over the rows to get the column totals and over
the columns to get the row totals.

6. Modify the above to produce averages for each row and column as well as the
totals.

9. Using the following data from Problem 2 in Chapter 9:

1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

Use the program that evaluated the mean and standard deviation to do so for these
heights and weights.

Arrays 2: Further Examples 131

In the first case use the program as is and run it twice, first with the heights then
with the weights.

What changes would you need to make to the program to read a height and a
weight in a pair?

Hint: You could introduce separate scalar variables for the heights and weights.

10. Example 5 looked at seat bookings in a cinema or theatre. Here is an example
of a sample data file for this program

P P P P P P P P P P
P P P C C C C P P P
C C C E E P P P P P
C C C C C C C C C C
E E E P P P P P P P
C C E E P P C C E E
P P P P P P P P P P
P P P C C C C P P P
C C C E E P P P P P
C C C C C C C C C C
E E E P P P P P P P
C C E E P P C C E E
P P P P P P P P P P
P P P C C C C P P P
C C C E E P P P P P

The key for this is as follows:

C = Confirmed Booking

P = Provisional Booking

E = Seat Empty

Compile and run the program. The output would benefit from adding row and col-
umn numbers to the information displayed. We will come back to this issue in a
subsequent chapter on output formatting.

The data are in a file on the web and the address is given below.

• http://www.kcl.ac.uk/fortran

Problem 3.3 in the last chapter shows how to read data from a file.

132 Chapter 10

11

Whole Array
and Additional
Array Features

“A good notation has a subtlety and suggestiveness which at times make it seem
almost like a live teacher.”

Bertrand Russell

Aims
The aims of the chapter are:

• To look more formally at the terminology required to precisely describe
arrays.

• To introduce ways in which we can manipulate whole arrays and parts of
arrays (sections).

• ALLOCATABLE arrays — ways in which the size of an array can be de-
ferred until execution time.

• To introduce the concept of array element ordering and physical and vir-
tual memory.

• To introduce ways in which we can initialise arrays using array construc-
tors.

• To introduce the WHERE statement and array masking.

• To introduce the FORALL statement and construct.

11 Whole Array and Additional Array Features

11.1 Terminology
Fortran supports an abundance of array handling features. In order to make the de-
scription of these features more precise a number of additional terms have to be
covered and these are introduced and explained below.

11.1.1 Rank

The number of dimensions of an array is called its rank. A one-dimensional array
has rank 1, a two-dimensional array has rank 2 and so on.

11.1.2 Bounds

An array's bounds are the upper and lower limits of the index in each dimension.

11.1.3 Extent

The number of elements along a dimension of an array is called the extent.

INTEGER, DIMENSION(-10:15):: Current

has bounds �10 and 15 and an extent of 26.

11.1.4 Size

The total number of elements in an array is its size.

11.1.5 Shape

The shape of an array is determined by its rank and its extents in each dimension.

11.1.6 Conformable

Two arrays are said to be conformable if they have the same shape, that is, they
have the same rank and the same extent in each dimension.

11.1.7 Array element ordering

Array element ordering states that the elements of an array, regardless of rank,
form a linear sequence. The sequence is such that the subscripts along the first di-
mension vary most rapidly, and those along the last dimension vary most slowly.
This is best illustrated by considering, for example, a rank 2 array A defined by

REAL , DIMENSION(1:4,1:2) :: A

A has 8 real elements whose array element order is

A(1,1), A(2,1), A(3,1), A(4,1), A(1,2), A(2,2), A(3,2), A(4,2)

i.e., mathematically by column and not row.

134 Chapter 11

11.2 Whole array manipulation
The examples of arrays so far have shown operations on arrays via array elements.
One of the significant features of Fortran is its ability to manipulate arrays as
whole objects. This allows arrays to be referenced not just as single elements but
also as groups of elements. Along with this ability comes a whole host of intrinsic
procedures for array processing. These procedures are mentioned in Chapter 14,
and listed in alphabetical order with examples in Appendix D.

11.2.1 Assignment

An array name without any indices can appear on both sides of assignment and in-
put and output statements. For example, values can be assigned to all the elements
of an array in one statement:

REAL, DIMENSION(1:12):: Rainfall
Rainfall=0.0

The elements of one array can be assigned to another:

INTEGER, DIMENSION(1:50) :: A,B
...
A=B

Arrays A and B must be conformable in order to do this.

The following example is illegal since X is rank 1 and extent 20, whilst Z is rank 1
and extent 41.

REAL, DIMENSION(1:20) :: X
REAL, DIMENSION(1:41) :: Z
X=50.0
Z=X

But the following is legal because both arrays are now conformable, i.e., they are
both of rank 1 and extent 41:

REAL , DIMENSION (-20:20) :: X
REAL , DIMENSION (1:41) :: Y
X=50.0
Y=X

11.2.2 Expressions

All the arithmetic operators available to scalars are available to arrays, but care
must be taken because mathematically they may not make sense.

Whole Array and Additional Array Features 135

REAL , DIMENSION (1:50) :: A,B,C,D,E
C=A+B

adds each element of A to the corresponding element of B and assigns the result to
C.

E=C*D

multiplies each element of C by the corresponding element of D. This is not vector
multiplication. To perform a vector dot product there is an intrinsic procedure
DOT_PRODUCT, and an example of this is given in a subsequent section on array
constructors.

For higher dimensions

REAL ,DIMENSION (1:10,1:10) :: F,G,H
F=F**0.5

takes the square root of every element of F.

H=F+G

adds each element of F to the corresponding element of G.

H=F*G

multiplies each element of F by the corresponding element of G. The last statement
is not matrix multiplication. An intrinsic procedure MATMUL performs matrix
multiplication; further details are given in Appendix D.

Consider the following example, which is a solution to a problem set earlier, but is
now addressed using some of the whole array features of Fortran

PROGRAM ch1101
IMPLICIT NONE
INTEGER , PARAMETER :: N=12
REAL , DIMENSION(1:N) :: RainFall_ins=0.0
REAL , DIMENSION(1:N) :: RainFall_cms=0.0
INTEGER :: Month

PRINT *, ' Input the rainfall values in inches'
READ *, RainFall_ins
RainFall_cms=RainFall_ins * 2.54
DO Month=1,N

PRINT * , ' ', Month , ' ' , &
RainFall_ins(Month) , ' ' , &
RainFall_cms(Month)

136 Chapter 11

END DO
END PROGRAM ch1101

The statements

REAL , DIMENSION(1:N) :: RainFall_ins=0.0
REAL , DIMENSION(1:N) :: RainFall_cms=0.0

are examples of whole array initialisation. Each element of the arrays is set to 0.0.

The statement

READ *, RainFall_ins

is an example of whole array I/O, where we no longer have to use a DO loop to
read each element in.

Finally, we have the statement

RainFall_cms = RainFall_ins * 2.54

which is an example of whole array arithmetic and assignment.

Here is a two-dimensional example:

PROGRAM ch1102
! This program reads in a grid of temperatures
! (degrees Fahrenheit) at 25 grid references
! and converts them to degrees Celsius
IMPLICIT NONE
REAL, DIMENSION (1:5,1:5) :: Fahrenheit, Celsius
INTEGER :: Long, Lat
!
! Read in the temperatures
!

DO Lat=1,5
PRINT *, ' For Latitude= ',Lat
DO Long=1,5

PRINT *, ' For Longitude', Long
READ *,Fahrenheit(Long, Lat)

END DO
END DO

!
! Conversion applied to all values
!

Celsius = 5.0/9.0 * (Fahrenheit - 32.0)

Whole Array and Additional Array Features 137

PRINT * , Celsius
PRINT * , Fahrenheit

END PROGRAM ch1102

Note the use of whole arrays in the print statements. The output does look rather
messy though, and also illustrates array element ordering.

11.3 Array sections
Often it is necessary to access part of an array rather than the whole, and this is
possible with Fortran's powerful array manipulation features.

11.3.1 Rank 1 array example

Consider the following:

program ch1103
implicit none
integer , dimension(-5:5) :: x
integer :: i

x(-5:-1) = -1
x(0) = 0
x(1:5) = 1
do i=-5,5

print *,' ',i,' ',x(i)
end do

end program ch1103

The statement

x(-5:-1) = -1

is working with a section of an array. It assigns the value �1 to elements x(�5)
through x(�1).

The statement

x(1:5) = 1

is also working with an array section. It assignes the value 1 to elements x(1)
through x(5).

11.3.2 Rank 2 array example

In Chapter 9 we gave an example of a table of examination marks, and this is
given again below:

138 Chapter 11

Name Physics Maths Biology History English French

Fowler L. 50 47 28 89 30 46
Barron L.W 37 67 34 65 68 98
Warren J. 25 45 26 48 10 36
Mallory D. 89 56 33 45 30 65
Codd S. 68 78 38 76 98 65

The following program reads the data in, scales column 3 by 2.5 as the Biology
marks were out of 40 (the rest are out of 100), calculates the averages for each
subject and for each person and prints out the results.

program ch1104
implicit none
integer , parameter :: nrow=5
integer , parameter :: ncol=6
REAL , DIMENSION(1:nrow,1:ncol) &

:: Exam_Results = 0.0
real , dimension(1:nrow) &

:: People_average = 0.0
real , dimension(1:ncol) &

:: Subject_Average = 0.0
integer :: r,c

do r=1,nrow
read *, exam_results(r,1:ncol)

end do
Exam_Results(1:nrow,3) = 2.5 * Exam_Results(1:nrow,3)
do r=1,nrow

do c=1,ncol
people_average(r) = people_average(r) + &

exam_results(r,c)
end do

end do
people_average = people_average / ncol
do c=1,ncol

do r=1,nrow
subject_average(c) = subject_average(c) + &

exam_results(r,c)
end do

Whole Array and Additional Array Features 139

end do
subject_average = subject_average / nrow
print *,' People averages'
print *, people_average
print *, ' Subject averages'
print *, subject_average

end program ch1104

The statement

read *, exam_results(r,1:ncol)

uses sections to replace the implied DO loop in the earlier example.

The statement

Exam_Results(1:nrow,3) = 2.5 * Exam_Results(1:nrow,3)

uses array sections in the arithmetic and the assignment.

11.4 Array constructors
Arrays can be given intial values in Fortran using array constructors. Some exam-
ples are given below.

11.4.1 Rank 1 array example — explicit values
PROGRAM ch1105
IMPLICIT NONE
integer :: n=12
REAL :: Total=0.0, Average=0.0
REAL , DIMENSION(1:n) :: RainFall = &

(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)
INTEGER :: Month

DO Month=1,n
Total = Total + RainFall(Month)

ENDDO
Average = Total / n
PRINT *,' Average monthly rainfall was'
PRINT *, Average

END PROGRAM ch1105

The statement

REAL , DIMENSION(1:n) :: RainFall = &
(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)

140 Chapter 11

provides initial values to the elements of the array Rainfall.

11.4.1.1 Rank 1 array example and implied DO loop

The next example uses a simple variant:

PROGRAM ch1106
IMPLICIT NONE
!
! 1 us gallon = 3.7854118 litres
! 1 uk gallon = 4.545 litres
!
integer , parameter :: n=10
integer :: i
INTEGER , dimension(1:n) :: Litre=(/(i,i=1,n)/)
REAL , dimension(1:n) :: Gallon,USGallon

Gallon = Litre * 0.2641925
USGallon = Litre * 0.220022
DO i = 1,n

PRINT *,Litre(i), ' ',Gallon(i),' ',USGallon(i)
END DO

END PROGRAM ch1106

The statement

INTEGER , dimension(1:n) :: Litre=(/(i,i=1,n)/)

initialises the 10 elements of the Litre array to the values 1,2,3,4,5,6,7,8,9,10
respectively.

11.4.1.2 Rank 1 array example and the DOT_PRODUCT intrinsic

The following example uses an array constructor and the intrinsic procedure
DOT_PRODUCT:

INTEGER , DIMENSION(1:3) :: X,Y
INTEGER :: Result
X=(/1,3,5/)
Y=(/2,4,6/)
Result=DOT_PRODUCT(X,Y)

and Result has the value 44, which is obtained by the normal mathematical dot
product operation, 1*2 + 3*4 + 5*6.

The general form of the array constructor is (/ a list of expressions/) where each
expression is of the same type.

Whole Array and Additional Array Features 141

To construct arrays of higher rank than one the intrinsic function RESHAPE must
be used. An introduction to intrinsic functions is given in Chapter 14, and an al-
phabetic list with a full explanation of each function is given in Appendix D. To
use it in its simplest form:

Matrix = RESHAPE (Source, Shape)

where Source is a rank 1 array containing the values of the elements required in
the new array, Matrix, and Shape is a rank 1 array containing the shape of the new
array Matrix.

We consider the rank 1 array B=(1,3,5,7,9,11), and we wish to store these values
in a rank 2 array A, such that A is the matrix:

A �
�

�

	
	
	

�

�
�
�

1 7

3 9

5 11

The following code extract is needed:

INTEGER, DIMENSION(1:6) :: B
INTEGER, DIMENSION(1:3, 1:2) :: A
B = (/1,3,5,7,9,11/)
A = RESHAPE(B,(/3,2/))

Note that the elements of the source array B must be stored in the array element
order of the required array A.

The following example illustrates the additional forms of the RESHAPE function
that are used when the number of elements in the source array is less than the
number of elements in the destination. The complete form is

RESHAPE(Source, Shape, Pad, Order)

Pad and Order are optional. See Appendix D for a complete explanation of Pad
and Order:

program ch1107
implicit none
integer , dimension(1:2,1:4) :: x
integer , dimension(1:8) :: y=(/1,2,3,4,5,6,7,8/)
integer , dimension(1:6) :: z=(/1,2,3,4,5,6/)
integer :: r,c

print *,' Source array y'
print *,y
print *,' Source array z'

142 Chapter 11

print *,z
print *,' Simple reshape sizes match'
x=reshape(y,(/2,4/))
do r=1,2

print *,(x(r,c),c=1,4)
end do
print *,' Source 2 elements smaller pad with 0'
x=reshape(z,(/2,4/),(/0,0/))
do r=1,2

print *,(x(r,c),c=1,4)
end do
print *,' As previous now specify order as 1*2'
x=reshape(z,(/2,4/),(/0,0/),(/1,2/))
do r=1,2

print *,(x(r,c),c=1,4)
end do
print *,' As previous now specify order as 2*1'
x=reshape(z,(/2,4/),(/0,0/),(/2,1/))
do r=1,2

print *,(x(r,c),c=1,4)
end do

end program ch1107

11.4.2 Rank 1 example with step size of 2 in implied DO loop

Consider the following example:

program ch1108
implicit none
integer :: i
integer , dimension(1:10) :: x=(/(i,i=1,10)/)
integer , dimension(1:5) :: odd=(/(i,i=1,10,2)/)
integer , dimension(1:5) :: even

even=x(2:10:2)
print *,' x'
print *,x
print *,' odd'
print *,odd
print *,' even'
print *,even

end program ch1108

Whole Array and Additional Array Features 143

The statement

integer , dimension(1:5) :: odd=(/(i,i=1,10,2)/)

steps through the array 2 at a time.

The statement

even=x(2:10:2)

shows an array section where we go from elements two through ten in steps of
two. The 2:10:2 is an example of a subscript triplet in Fortran, and the first 2 is the
lower bound, the 10 is the upper bound, and the last 2 is the increment. Fortran
uses the term stride to mean the increment in a subscript triplet.

11.4.3 Rank 1 array and the SUM intrinsic function

The following example is based on ch1105. It uses the SUM intrinsic to calculate
the sum of all the values in the Rainfall array.

PROGRAM ch1109
IMPLICIT NONE
REAL :: Total=0.0, Average=0.0
REAL , DIMENSION(12) :: RainFall = &

(/3.1,2.0,2.4,2.1,2.2,2.2,1.8,2.2,2.7,2.9,3.1,3.1/)
INTEGER :: Month

Total = SUM(RainFall)
Average = Total / 12
PRINT *,' Average monthly rainfall was'
PRINT *, Average

END PROGRAM ch1109

The statement

Total = SUM(RainFall)

replaces the statements below from the earlier example

DO Month=1,n
Total = Total + RainFall(Month)

ENDDO

In this example SUM adds up all of the elements of the array Rainfall.

So we have three ways of processing arrays:

• Element by element.

144 Chapter 11

• Using sections.

• On a whole array basis.

The ability to use sections and whole arrays when programming is a major advance
of the element by element processing supported by Fortran 77.

11.4.4 Rank 2 arrays and the SUM intrinsic function

This example is based on the earlier exam results program:

program ch1110
implicit none
integer , parameter :: nrow=5
integer , parameter :: ncol=6
real , dimension(1:nrow*ncol) :: results = &

(/50 , 47 , 28 , 89 , 30 , 46 , &
37 , 67 , 34 , 65 , 68 , 98 , &
25 , 45 , 26 , 48 , 10 , 36 , &
89 , 56 , 33 , 45 , 30 , 65 , &
68 , 78 , 38 , 76 , 98 , 65/)

REAL , DIMENSION(1:nrow,1:ncol) :: Exam_Results &
= 0.0

real , dimension(1:nrow) :: People_average &
= 0.0

real , dimension(1:ncol) :: Subject_Average &
= 0.0

integer :: r,c
exam_results = &

reshape(results,(/nrow,ncol/),(/0.0,0.0/),(/2,1/))
Exam_Results(1:nrow,3) = 2.5 * Exam_Results(1:nrow,3)
subject_average = sum(exam_results,dim=1)
people_average = sum(exam_results,dim=2)
people_average = people_average / ncol
subject_average = subject_average / nrow
print *,' People averages'
print *, people_average
print *, ' Subject averages'
print *, subject_average

end program ch1110

This example has several interesting array features:

Whole Array and Additional Array Features 145

• We initialise a rank 1 array with the values we want in our exam marks
array. The data are laid out in the program as they would be in an external
file in rows and colums.

• We use RESHAPE to initialise our exam marks array. We use the fourth
parameter (/2,1/) to populate the rank 2 array with the data in row order.

• We use SUM with a DIM of 1 to compute the sums for the subjects.

• We use SUM with a DIM of 2 to compute the sums for the people.

11.5 Masked array assignment and the WHERE statement
Fortran has array assignment both on an element by element basis and on a whole
array basis. There is an additional form of assignment based on the concept of a
logical mask.

Consider the example of time zones given in Chapter 10. The Time array will
have values that are both negative and positive. We can then associate the positive
values with the concept of east of the Greenwich meridian, and the negative values
with the concept of west of the Greenwich meridian e.g.:

PROGRAM ch1111
IMPLICIT NONE
REAL , DIMENSION(-180:180) :: Time=0
INTEGER :: Degree,Strip
REAL :: Value
CHARACTER (LEN=1) , DIMENSION(-180:180) &

:: Direction=' '
DO Degree=-180,165,15

Value=Degree/15.
DO Strip=0,14

Time(Degree+Strip)=Value
ENDDO

ENDDO
DO Degree=-180,180

PRINT *,Degree,' ',Time(Degree)
END DO
WHERE (Time > 0.0)

Direction='E'
ELSEWHERE (Time < 0.0)

Direction='W'
ENDWHERE
PRINT *,direction

END PROGRAM ch1111

146 Chapter 11

11.5.1 Notes

The arrays must be conformable, i.e., in our example Time and Direction are the
same shape.

The selective assignment is achieved through the WHERE statement.

Both the WHERE and ELSEWHERE blocks can be executed.

The formal syntax is:

WHERE (array logical assignment)
array assignment block

ELSEWHERE
array assignment block

END WHERE

The first array assignment is executed where Time is positive and the is executed
where Time is negative. For further coverage of logical expressions see Chapters
15 and 18.

11.6 The FORALL statement and FORALL construct
The FORALL statement and FORALL construct were introduced into Fortran to
keep it inline with High Performance Fortran — HPF. They indicate to the com-
piler that the code can be optimised on a parallel processor. Consider the following
example where a value is subtracted from the diagonal elements of a square matrix
A:

FORALL (I=1:N)
A(I,I) = A(I,I) - Lamda

END FORALL

The FORALL construct allows the calculations to be carried out simultaneously in
a multiprocessor environment.

11.6.1 Syntax
FORALL (triplet [, triplet] ... [, mask])
variable = expression
FORALL (triplet [, triplet] ... [, mask])
pointer => target

The triplet specifies a value set for an index variable. It has the following syntax:

index = first : last [: stride]

First, last and stride are scalar integer expressions.

Whole Array and Additional Array Features 147

Mask is a scalar logical expression:

[name :] FORALL (triplet [, triplet] ... [,
mask])
...
END FORALL [name]

Name is an optional name, which identifies the FORALL construct.

11.6.2 Array element ordering and physical and virtual memory

Fortran compilers will store arrays in memory according to the array element or-
dering scheme. Whilst the standard says nothing about how this is implemented it
generally means in contiguous memory locations.

There will be a limit to the amount of physical memory available on any computer
system. To enable problems that require more than the amount of physical memory
available to be solved, most implementations will provide access to virtual mem-
ory, which in reality means access to a portion of a physical disk.

Access to virtual memory is commonly provided by a paging mechanism of some
description. Paging is a technique whereby fixed-sized blocks of data are swapped
between real memory and disk as required.

In order to minimise paging (and hence reduce execution time) array operations
should be performed according to the array element order.

Some common page sizes are:

• Sun UltraSparc – 4Kb, 8Kb.

• DEC Alpha – 8Kb, 16Kb, 32Kb., 64Kb.

• Intel 80x86 – 4Kb.

• Intel Pentium PIII – 4Kb.

The Intel PIII also supports large pages (2Mb and 4Mb) — see the reference at the
end of the chapter for more details.

11.7 Summary
We can now perform operations on whole arrays and partial arrays (array sections)
without having to refer to individual elements. This shortens program development
time and greatly clarifies the meaning of programs.

Array constructors can be used to assign values to rank 1 arrays within a program
unit. The RESHAPE function allows us to assign values to a two or higher rank ar-
ray when used in conjunction with an array constructor.

148 Chapter 11

We have introduced the concept of a deferred-shape array. Arrays do not need to
have their shape specified at compile time, only their rank. Their actual shape is
deferred until runtime. We achieve this by the combined use of the
ALLOCATABLE attribute on the variable declaration and the ALLOCATE state-
ment, which makes Fortran a very flexible language for array manipulation.

11.8 Problems
1. Give the rank, bounds, extent and size of the following arrays:

REAL , DIMENSION(1:15) :: A
INTEGER , DIMENSION(1:3,0:4) :: B
REAL , DIMENSION(-2:2,0:1,1:4) :: C
INTEGER , DIMENSION(0:2,1:5) :: D

Which two of these arrays are conformable?

2. Use the SUM intrinsic function (see Appendix D) to calculate the total rainfall
in the rainfall program example in Chapter 9.

3. Write a program to read in five rank 1 arrays, A, B, C, D, E and then store them
as five columns in a rank 2 array TABLE.

4. Take the first part of Problem 2 in Chapter 10 and rewrite it using the SUM in-
trinsic function.

11.9 Bibliography
Bhandarkar D.P., Alpha Implementation and Architecture: Complete Reference and
Guide, Digital Press.

Intel, Intel Architecture Software Developer's Manual Volume 3: System Pro-
gramming

This is available as a PDF file from Intel. Try:

• http://developer.intel.com/design/PentiumIII/manuals/

Whole Array and Additional Array Features 149

12

Output of
Results

“Why, sometimes I've believed as many as six impossible things before breakfast.”

Lewis Carroll, Through the Looking-Glass and What Alice Found There

“All the persons in this book are real and none is fictitious even in part.”

Flann O'Brien, The Hard Life

Aims
The aims here are to introduce the facilities for producing neat output and to show
how to write results to a file, rather than to the terminal. In particular:

• The A, I, E, F, and X layout or edit descriptors.

• The OPEN, WRITE, and CLOSE statements.

12 Output of Results

When you have used PRINT * a few times it becomes apparent that it is not al-
ways as useful as it might be. The data are written out in a way which makes some
sense, but may not be especially easy to read. Real numbers are written out with
all their significant places, which is very often rather too many, and it is often dif-
ficult to line up the columns for data which are notionally tabular. It is possible to
be much more precise in describing the way in which information is presented by
the program. To do this, we use FORMAT statements. Through the use of the
FORMAT we can:

• Specify how many columns a number should take up.

• Specify where a decimal point should lie.

• Specify where there should be white space.

• Specify titles.

The FORMAT statement has a label associated with it; through this label, the
PRINT statement associates the data to be written with the form in which to write
them.

12.1 Integers — I format or edit descriptor
Integer format is reasonably straightforward, and offers clues for formats used in
describing other numbers. I3 is an integer taking three columns. The number is
right justified, a bit of jargon meaning that it is written as far to the right as it will
go, so that there are no trailing or following blanks. Consider the following exam-
ple:

PROGRAM ch1201
INTEGER :: T

PRINT *,' '
PRINT *,' Twelve times table'
PRINT *,' '
DO T=1,12

PRINT 100, T,T*12
100 FORMAT(' ',I3,' * 12 = ',I3)

END DO
END PROGRAM ch1201

The first statement of interest is

PRINT 100, T,T*12

152 Chapter 12

The 100 is a statement label. There must be a format statement with this label in
the program. The variables to be written out are T and 12*T.

The second statement of interest is

100 FORMAT(' ',I3,' * 12 = ',I3)

Inside the brackets we have

' ' Print out what occurs between the quote marks, in this
case one space.

, The comma separates items in the FORMAT statement.

I3 Print out the first variable in the PRINT statement right
justified in three columns

, Item separator.

' * 12 = ' Print out what occurs between the quote characters.

, Item separator

I3 Print out the second variable (in this case an expression)
right justified in three colums.

All of the output will appear on one line.

Now consider the following example:

program ch1202
implicit none
integer :: big=10
integer :: i

do i=1,40
print 100,i,big
100 format(1x,i3,2x,i12)
big=big*10

end do
end program ch1202

The new feature in the format statement is the 1x and 2x edit descriptor. This is
another way of getting white space into the output, and in this case one space and
two spaces, respectively.

This program will loop and the variable big will overflow, i.e., go beyond the
range of valid values for a 32-bit integer. Does the program crash or generate a run
time error? This is the output from the NAG f95 compiler and the Intel Fortran 95
compiler.

Output of Results 153

1 10
2 100
3 1000
4 10000
5 100000
6 1000000
7 10000000
8 100000000
9 1000000000

10 1410065408
11 1215752192
12 -727379968
13 1316134912
14 276447232
15 -1530494976
16 1874919424
17 1569325056
18 -1486618624
19 -1981284352
20 1661992960
21 -559939584
22 -1304428544
23 -159383552
24 -1593835520
25 1241513984
26 -469762048
27 -402653184
28 268435456
29 -1610612736
30 1073741824
31 -2147483648
32 0
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0

Is there a compiler switch to trap this kind of error?

154 Chapter 12

12.2 Reals — F format or edit descriptor
The F format can be seen as an extension of the integer format, but here we have
to deal with the decimal point. The form of the F format specifies where the deci-
mal point will occur, and how many digits follow it. Thus, F7.4 means:

• There is a total width of seven.

• There is a decimal point

• There are four digits after the decimal point.

This means that since the decimal point is also written out, there may be up to two
digits before the decimal point. As in the case of the integer, any minus sign is part
of the number, and would take up one column. Thus, the format F7.4 may be used
for numbers in the range

–9.9999 to 99.9999

Let us look at the last example more closely. When a number is written out, it is
rounded; that is to say, if we write out 99.99999 in an F7.4 format, the program
will try to write out 100.0000! This is bad news, since we have not left enough
room for all those digits before the decimal point. What happens? Asterisks will be
printed. In the example above, a number out of range of the format's capabilities
would be printed as:

What would a format of F7.0 do? Again, seven columns have been set aside to ac-
commodate the number and its decimal point, but this time no digits follow the
point.

99.
-21375.

are examples of numbers written in this format. With an F format, there is no way
of getting rid of the decimal point.

The numbers making up the parts of the descriptors must all be positive integers.
The definition of a real format is therefore F followed by two integer numbers,
separated by a decimal point. The first integer must exceed the second, and the
second must be greater than or equal to zero. The following are valid examples:

F4.0
F6.2
F12.2
F16.8

Output of Results 155

but these are not valid:

F4.4
F6.8
F-3.0
F6
F.2

The program in Section 12.2.1 illustrates the use of both I format and F format.

12.2.1 Metric and imperial conversion
program ch1203
implicit none
integer :: fluid
real :: litres
real :: pints

do fluid=1,10
litres = fluid / 1.75
pints = fluid * 1.75
print 100 , pints,fluid,litres
100 format(' ',F7.3,' ',I3,' ',F7.3)

end do
end program ch1203

Pints will be printed out in F7.3 format, fluid will be printed out in I3 format and
litres will be printed out in F7.3 format.

12.2.2 Overflow and underflow

Consider the following program:

program ch1204
implicit none
integer :: i
real :: small = 1.0
real :: big = 1.0

do i=1,50
print 100,i,small,big
100 format(' ',i3,' ',f7.3,' ',f7.3)
small=small/10.0
big=big*10.0

end do
end program ch1204

156 Chapter 12

In this program the variable small will underflow and big will overflow. The out-
put from the Intel compiler is:

1 1.000 1.000
2 0.100 10.000
3 0.010 100.000
4 0.001 *******
5 0.000 *******
6 0.000 *******
7 0.000 *******
8 0.000 *******
9 0.000 *******

10 0.000 *******
11 0.000 *******
12 0.000 *******
13 0.000 *******
14 0.000 *******
15 0.000 *******
16 0.000 *******
17 0.000 *******
18 0.000 *******
19 0.000 *******
20 0.000 *******
21 0.000 *******
22 0.000 *******
23 0.000 *******
24 0.000 *******
25 0.000 *******
26 0.000 *******
27 0.000 *******
28 0.000 *******
29 0.000 *******
30 0.000 *******
31 0.000 *******
32 0.000 *******
33 0.000 *******
34 0.000 *******
35 0.000 *******
36 0.000 *******
37 0.000 *******
38 0.000 *******
39 0.000 *******
40 0.000 Infini

Output of Results 157

41 0.000 Infini
42 0.000 Infini
43 0.000 Infini
44 0.000 Infini
45 0.000 Infini
46 0.000 Infini
47 0.000 Infini
48 0.000 Infini
49 0.000 Infini
50 0.000 Infini

When the number is too small for the format, the printout is what you would prob-
ably expect. When the number is too large, you get asterisks. When the number
actually overflows the Intel compiler tells you that the number is too big and has
overflowed. However the program ran to completion and did not generate a run
time error.

12.3 Reals — E format or edit descriptor
The exponential or scientific notation is useful in cases where we need to provide a
format which may encompass a wide range of values. If likely results lie in a very
wide range, we can ensure that the most significant part is given. It is possible to
give a very large F format, but alternatively, the E format may be used. This takes
a form such as

E10.4

which looks something like the F, and may be interpreted in a similar way. The 10
gives the total width of the number to be printed out, that is, the number of col-
umns it will take. The number after the decimal point indicates the number of
positions to be written after the decimal point. Since all exponent format numbers
are written so that the number is between 0.1 and 0.9999..., with the exponent tak-
ing care of scale shifts, this implies that the first four significant digits are to be
printed out.

Taking a concrete example, 1000 may be written as 10**3, or as 0.1 * 10**4. This
gives us the two parts: 0.1 gives the significant digits (in this case only one signifi-
cant digit), while the 10**4 gives the exponent, namely 4 or +4. In a form that
looks more like Fortran, this would be written .1E+04, where the E+04 means
10**4.

There is a minimum size for an exponential format. Because of all the extra bits
and pieces it requires:

• The decimal point.

158 Chapter 12

• The sign of the entire number.

• The sign of the exponent.

• The magnitude of the exponent.

• The E.

The width of the number less the number of significant places should not be less
than 6. In the example given above, E10.4 meets this requirement. When the expo-
nent is in the range 0 to 99, the E will be printed as part of the number; when the
exponent is greater, the E is dropped, and its place is taken by a larger value; how-
ever, the sign of the exponent is always given, whether it is positive or negative.
The sign of the whole number will usually only be given when it is negative. This
means that if the numbers are always positive, the rule of six given above can be
modified to a rule of five. It is safer to allow six places over, since, if the format is
insufficient, all you will get are asterisks.

The most common mistake with an E format is to make the edit descriptor too
small, so that there is insufficient room for all the padding to be printed. Formats
like E8.4 just don't work (on output anyway). The following four are valid E for-
mats on output:

E9.3
E11.2
E18.7
E10.4

but the next five would not be acceptable as output formats, for a variety of rea-
sons:

E11.7
E6.3
E4.0
E10
E7.3

12.3.1 Simple E format example

This is the same as ch1204 except that we have replaced the F formatting with E
formatting:

program ch1205
implicit none
integer :: i
real :: small = 1.0
real :: big = 1.0

Output of Results 159

do i=1,50
print 100,i,small,big
100 format(' ',i3,' ',e10.4,' ',e10.4)
small=small/10.0
big=big*10.0

end do
end program ch1205

We now have three ways to print out floating point numbers and each has its use.
The PRINT * is very useful when developing programs.

12.4 Spaces
You have seen two ways of generating spaces on output. The first is to use ' char-
acters to enclose blanks in the format statement. The second is to use the X edit
descriptor. Consider the following.

PRINT 100, ALPHA,BETA
100 FORMAT(1X,F10.4,10X,F10.3)

The 10X is read rather like any of the other format elements — logically it should
have been X10, to correspond to I10 or F10.4, but that would be allowing intuition
to run away with you. Clearly the X3J3 committee felt it important that Fortran
should have inconsistencies, just like a natural language.

Remember that these blanks are in addition to any generated as a result of the lead-
ing blanks on numbers (if any are present). If you wish to leave a single space, you
must still precede the X by a number (in this case, 1); simply writing X is illegal.
The general form is therefore a positive integer followed by X.

12.5 Characters — A format or edit descriptor
This is perhaps the simplest output of all. Since you will already have declared the
length of a character variable in your declarations,

CHARACTER (10) :: B

when you come to write out B, the length is known — thus you need only specify
that a character string is to be output:

PRINT 100,B
100 FORMAT(1X,A)

If you feel you need a little extra control, you can append an integer value to the
A, like A10 (A9 or A1), and so on. If you do this, only the first 10 (9 or 1) char-

160 Chapter 12

acters are written out; the remainder are ignored. Do note that 10A1 and A10 are
not the same thing. 10A1 would be used to print out the first character of ten char-
acter variables, while A10 would write out the first 10 characters of a single
character variable. The general form is therefore just A, but if more control is re-
quired, this may be followed by a positive integer.

The following program is a simple rewrite of a program from Chapter 7.

PROGRAM ch1206
!
! This program reads in and prints out
! your first name
!
IMPLICIT NONE
CHARACTER (20) :: First_name
!

PRINT *,' Type in your first name.'
PRINT *,' up to 20 characters'
READ *,First_Name
PRINT 100,First_Name
100 FORMAT(1x,A)

!
END PROGRAM ch1206

12.5.1 Headings

A simple heading is given in the program below:

program ch1207
implicit none
integer :: fluid
real :: litres
real :: pints

PRINT *,' Pints Litres'
do fluid=1,10

litres = fluid / 1.75
pints = fluid * 1.75
print 100 , pints,fluid,litres
100 format(' ',f7.3,' ',i3,' ',f7.3)

end do
end program ch1207

Output of Results 161

12.6 Mixed type output in a FORMAT statement
The following example shows how to mix and match character, integer and real
output in one FORMAT statement:

PROGRAM ch1208
IMPLICIT NONE
CHARACTER (LEN=15) :: Firstname
INTEGER :: age
REAL :: weight
CHARACTER (LEN=1) :: sex

PRINT *,' Type in your first name '
READ *,Firstname
PRINT *,' type in your age in years'
READ *,age
PRINT *,' type in your weight in kilos'
READ *,weight
PRINT *,' type in your sex (f/m)'
READ *,sex
PRINT *,' your personal details are'
PRINT *
PRINT 100
100 FORMAT(4x,'first name', 4x , 'age' , 1x , &

'weight' , 2x , 'sex')
PRINT 200 , firstname, age , weight , sex
200 FORMAT(1x , a , 2x , i3 , 2x , f5.2 , 2x, a)

END PROGRAM ch1208

Take care to match up the variables with the appropriate edit descriptors. You also
need to count the number of characters and spaces when lining up the heading.

12.7 Common mistakes
It must be stressed that an integer can only be printed out with an I format, and a
real with an F (or E) format. You cannot use integer variables or expressions with
F or E edit descriptors or real variables and expressions with I edit descriptors. If
you do, unpredictable results will follow. There are (at least) two other sorts of er-
rors you might make in writing out a value. You might try to write out something
which has never actually been assigned a value; this is termed an indefinite value.
You might find that the letter I is written out. In passing, note that many loaders
and link editors will preset all values to zero — i.e., unset (indefinite) values are
actually set to zero. On better systems there is generally some way of turning this
facility off, so that undefined is really indefinite. More often than not, indefinite
values are the result of mistyping rather than of never setting values. It is not un-

162 Chapter 12

common to type O for 0, or 1 for either I or l. The other likely error is to try to
print out a value greater than the machine can calculate — out of range values.
Some machines will print out such values as R, but some will actually print out
something which looks right, and such overflow and underflow conditions can go
unnoticed. Be wary.

12.8 OPEN (and CLOSE)
One of the particularly powerful features of Fortran is the way it allows you to ma-
nipulate files. Up to now, most of the discussion has centred on reading from and
writing to the terminal. It is also possible to read and write to one or more files.
This is achieved using the OPEN, WRITE, READ and CLOSE statements. In a
later chapter we will consider reading from files but here we will concentrate on
writing.

12.8.1 The OPEN statement

This statement sets up a file for either reading or writing. A typical form is

OPEN (UNIT=1,FILE='DATA')

The file will be known to the operating system as DATA (or will have DATA as
the first part of its name), and can be written to by using the UNIT number. This
statement should come before you first read from or write to the file DATA.

It is not possible to write to the file DATA directly; it must be referenced through
its unit number. Within the Fortran program you write to this file using a statement
such as

WRITE(UNIT=1,FMT=100) XVAL,YVAL

or

WRITE(1,100) XVAL,YVAL

These two statements are equivalent. Besides opening a file, we really ought to
CLOSE it when we have finished writing to it:

CLOSE(UNIT=1)

In fact, on many systems it is not obligatory to OPEN and CLOSE all your files.
Almost certainly, the terminal will not require this, since INPUT and OUTPUT
units will be there by default. At the end of the job, the system will CLOSE all
your files. Nevertheless, explicit OPEN and CLOSE cannot hurt, and the added
clarity generally assists in understanding the program.

The following program contains all of the above statements:

Output of Results 163

program ch1209
implicit none
integer :: fluid
real :: litres
real :: pints

open (unit=1,file='ch1209.txt')
write(unit=1,fmt=200)
200 format(' Pints Litres')
do fluid=1,10

litres = fluid / 1.75
pints = fluid * 1.75
write(unit=1,fmt=100) , pints,fluid,litres
100 format(' ',f7.3,' ',i3,' ',f7.3)

end do
close(1)

end program ch1209

12.8.2 Writing

PRINT is always directed to the file OUTPUT; in the case of interactive working,
this is the terminal. This is not a very flexible arrangement. WRITE allows us to
direct output to any file, including OUTPUT. The basic form of the WRITE is

WRITE(6,100) X,Y,Z

or

WRITE(UNIT=6,FMT=100) X,Y,Z

The latter form is more explicit, but the former is probably the one most widely
used. We have an example here of the use of positionally dependent parameters in
the first case and equated keywords in the second. With the exceptions of the
PRINT statement and the READ * form of the READ, all of the input/output state-
ments allow the unit number and the format labels to be specified either by an
equated keyword (or specifier) or in a positionally dependent form. If you use the
explicit UNIT= and FMT= it does not matter what order the elements are placed
in, but if you omit these keywords, the unit number must come first, followed by
the format label.

UNIT=6 means that the output will be written to the file given the unit number 6.
In the next chapter we will cover the way in which you may associate file names
and unit numbers, but, for the moment, we will assume that the default is being
used. The name of the file, as defined by the system, will depend on the particular
system you use; a likely name is something like DATA06, TAPE6, or FILE0006.
One easy way to find out (apart from asking someone) is to create such a file from

164 Chapter 12

a program and then look at the names of your files after the program has finished.
A great many of computing's minor complexities can be clarified by simple experi-
mentation.

FMT=100 simply gives the label of the format to be used.

The overworked asterisk may be used, either for the unit or for the format:

UNIT=* will write to OUTPUT (the terminal)

FMT=* will produce output controlled by the list of variables, often called list
directed output.

The following three statements are therefore equivalent:

WRITE(UNIT=*,FMT=*) X,Y,Z
WRITE(*,*) X,Y,Z
PRINT*,X,Y,Z

There are other controls possible on the WRITE, which will be elaborated later.

12.9 Repetition
Often we need to print more than one number on a line and want to use the same
layout descriptor. Consider the following:

PRINT 100,A,B,C,D

If each number can be written with the same layout descriptor, we can abbreviate
the FORMAT statement to take account of the pattern:

100 FORMAT(1X,4F8.2)

is equivalent to

100 FORMAT(1X,F8.2,F8.2,F8.2,F8.2)

as you might anticipate. If the pattern is more complex, we can extend this ap-
proach:

PRINT 100,I,A,J,B,K,C
100 FORMAT(1X,3(I3,F8.2))

Bracketing the description ensures that we repeat the whole entity:

100 FORMAT(1X,3(I3,F8.2))

is equivalent to

100 FORMAT(1X,I3,F8.2, I3,F8.2, I3,F8.2)

Output of Results 165

Repetition with brackets can be rather more complex. In order to give some over-
view of formatted Fortran output, it is helpful to delve a little into the history of
the language. Many of the attributes of Fortran can be traced back to the days of
single-user mainframes (with often a fraction of the power of many contemporary
microcomputers and workstations). These would generally take input from punched
cards (the traditional 80-column Hollerith card), and would generate output on a
line printer. In this sort of environment, the individual punched card had a signifi-
cance which lines in a file do not have today. Each card could be seen as a single
entity — a physical record unit. The record was seen as an element of a subdivi-
sion within a file. Even then, there was some confusion between the notion of
physical records and files split into logically distinct subunits, since these subunits
might also be termed records. The present Fortran standard merely says that a re-
cord does not necessarily correspond to a physical entity, although a punched card
is usually considered to be a record. This leaves us sitting at our terminals in a be-
mused state, especially since we may have no idea what a punched card looks like
(an ideal state of affairs!).

It is important to have some notion of a record, since most of the formal defini-
tions dealing with output (and input) are couched in terms of records. Every time
an input or output statement is executed your nominal position in the file changes.
If we think in terms of individual records (which may be cards), the notions of cur-
rent, preceding and next record seem fairly straightforward. The current record is
simply the one we have just read or written, and the other definitions follow natu-
rally.

The situation becomes less clear when we realise that a single output statement
may generate many lines of output:

WRITE(UNIT=6,FMT=101) A,B,C
101 FORMAT(1X,F10.4)

writes out three separate lines. Looking at the output alone, there is no way to dis-
tinguish this from the output generated by

WRITE(UNIT=6,FMT=101) A
WRITE(UNIT=6,FMT=101) B
WRITE(UNIT=6,FMT=101) C
101 FORMAT(1X,F10.4)

In the latter case we would probably be happy to consider each line a record, al-
though in the previous example we might swither between considering all three
lines (generated by a single statement) a single record or three records. Consider
the first of these two examples more closely; each time the format is exhausted —
that is to say, each time we run out of format description, we start again on a new

166 Chapter 12

line (a new record). A new record is begun as each F10.4 is begun. The correct in-
terpretation is therefore that three records have been written.

The same sort of thing happens in more complex FORMAT statements:

WRITE(UNIT=6,FMT=105) X,I,Y
105 FORMAT(1X,F8.4,I3,(F8.4))

would write out a single record containing a real, an integer and a real. Using the
same format statement with WRITE (UNIT=6, FMT=105) X,I,Y,Z would write
out two records. The first containing the values of X, I and Y and the second con-
taining only Z. If there were still more values

WRITE(UNIT=6,FMT=105) X,I,Y,Z,A

would print out three records. The group in brackets — the (F8.4) — is repeated
until we run out of items.

12.10 Some more examples
Since it is the last open bracket which determines the position at which the format
is repeated, simply writing

WRITE(UNIT=6,FMT=100) A,I,B,C,J
100 FORMAT(1X,F8.4,I3,F8.2)

would imply that A, I and B would be written on one line then, returning to the
last open brackets (in this case the only open brackets), a new record (or line) is
begun to write out C and J. A statement like

100 FORMAT(1X,(F8.4),I3,F8.2)

would return to the (F8.4) group, and then continue to the I3 and F8.2 before re-
peating again (if necessary). The same thing happens if the (F8.4) had no brackets
around it. On the other hand

100 FORMAT(1X,(F8.4),I3,(F8.2))

contains superfluous brackets around the F8.4, since the repeat statement will never
return to that group. Are you confused yet? This all seems very esoteric, and re-
ally, we have only hinted at the complexity which is possible. It is seldom that you
have to create complex FORMAT statements, and clarity is far more important
than brevity.

When patterned or repeated output is used, we may want to stop when there are no
more numbers to write out. Take the following example:

Output of Results 167

WRITE(UNIT=1,FMT=100) A,B,C,D
100 FORMAT(1X,4(F6.1,','))

This will give output which looks like

37.4, 29.4, 14.2, -9.1,

The last comma should not be there. We can suppress these unwanted elements by
using the colon:

100 FORMAT(1X,4(F6.1:','))

which would then give us

37.4, 29.4, 14.2, -9.1

Since we run out of data at the fourth item, D, the output following is not written
out. It is a small point, but it does look a lot tidier. There are other ways of achiev-
ing the same thing.

This helps to illustrate another point, namely that you may have formats which are
more extensive than the lists which reference them:

WRITE(UNIT=1,FMT=100) A,B,C
WRITE(UNIT=1,FMT=100) X,Y
100 FORMAT(1X,6F8.2)

Both WRITE statements use the format provided, although they write out different
numbers of data, and neither uses up the whole format.

12.11 Implied DO loops and array sections for array output
The following program shows how to use both implied DO loops and array sec-
tions to output an array in a neat fashion:

program ch1210
implicit none
integer , parameter :: nrow=5
integer , parameter :: ncol=6
real , dimension(1:nrow*ncol) :: results = &

(/50 , 47 , 28 , 89 , 30 , 46 , &
37 , 67 , 34 , 65 , 68 , 98 , &
25 , 45 , 26 , 48 , 10 , 36 , &
89 , 56 , 33 , 45 , 30 , 65 , &
68 , 78 , 38 , 76 , 98 , 65/)

168 Chapter 12

REAL , DIMENSION(1:nrow,1:ncol) :: Exam_Results =
0.0
real , dimension(1:nrow) :: People_average =
0.0
real , dimension(1:ncol) :: Subject_Average =
0.0
integer :: r,c

exam_results = &
reshape(results,(/nrow,ncol/),(/0.0,0.0/),(/2,1/))
Exam_Results(1:nrow,3) = 2.5 * Exam_Results(1:nrow,3)
subject_average = sum(exam_results,dim=1)
people_average = sum(exam_results,dim=2)
people_average = people_average / ncol
subject_average = subject_average / nrow
do r=1,nrow

print 100 , (exam_results(r,c),c=1,ncol) ,&
people_average(r)

100 format(1x,6(1x,f5.1),' = ',f6.2)
end do
print *,' ==== ==== ==== ==== ==== ===='
print 110, subject_average(1:ncol)
110 format(1x,6(1x,f5.1))

end program ch1210

The print 100 uses an implied DO loop and the print 110 uses an array section.

Take care when using whole arrays. Consider the following program:

PROGRAM ch1211
REAL , DIMENSION(10,10) :: Y
INTEGER :: NROWS=6
INTEGER :: NCOLS=7
INTEGER :: I,J
INTEGER :: K=0

DO I=1,NROWS
DO J=1,NCOLS

K=K+1
Y(I,J)=K

END DO
END DO

WRITE(UNIT=*,FMT=100)Y

Output of Results 169

100 FORMAT(1X,10F10.4)

END PROGRAM ch1211

There are several points to note with this example. Firstly, this is a whole array
reference, and so the entire contents of the array will be written; there is no scope
for fine control. Secondly, the order in which the array elements are written is ac-
cording to Fortran's array element ordering, i.e., the first subscript varying 1 to 10
(the array bound), with the second subscript as 1, then 1 to 10 with the second sub-
script as 2 and so on; the sequence is

Y(1,1) Y(2,1) Y(3,1) Y(10,1)
Y(1,2) Y(2,2) Y(3,2) Y(10,2)

.

.
Y(1,10) Y(2,10) Y(10,10)

Thirdly we have defined values for part of the array. This program behaves differ-
ently with the following compilers:

• Sun Fortran 90.

• NagWare F95.

• Compaq F95.

If you have access to more than one compiler then try out this example.

12.12 Formatting for a line printer
There is one extension to format specifications which is relevant to line printers.
Fortran defines four special characters which have an effect on standard line print-
ers when they occur in the first character position of a line. This means that a
lineprinter which is not under your immediate control can be used to produce neat
output by sending a file to be printed on it. This has a variety of names including,
spooling, queueing and routing depending on the system. You should check with
your local system for the exact mechanism to achieve this.

The special characters are +, 0, 1 and blank. To be used, they must be the first
character of the output in each line — as if they were to be printed in column 1. In
fact, a standard line printer never prints a character that occurs in column 1 at all.

Whenever a WRITE statement is begun, the printer advances to a new record; i.e.,
a new line is begun before any data are transferred. If the first character is a spe-
cial character, then this will be interpreted by the line printer. If the first character

170 Chapter 12

to be printed is a blank, the printer continues printing on that line. The first charac-
ter is also known as the carriage control character.

The blank is a do nothing special control. It signifies that the line is to be printed
as it is.

The zero indicates that you wish to leave an extra line; this is often useful in spac-
ing out results to make the output more readable.

The 1 makes the output skip down to the top of the next page. This is clearly use-
ful for separating logically distinct chunks of output. If you obtain a line printer
listing of your compiled program, each segment will start at the top of a new page.

The plus is a no advance or overprint character. It suppresses the effect of the line
advance which a WRITE generates. No new line is begun and the previous line is
overprinted with the new. Overprinting can be useful especially when you wish to
print out grey scale maps but its use is rather restricted. In particular, it can be a
dangerous control character. If you have a format starting with a plus in a loop,
you can make the printer overprint again and again and again . . . and again and
again, until it has hammered itself into a pulp. This is not a good idea.

Similarly, accidental use of the 1 as a control character in a loop will give you lots
of blank pages. It is just a bit embarrassing to be presented with a 6 inch stack of
paper which is (almost) blank, because you had a 1 repeatedly in column 1.

12.12.1 Mechanics of carriage control

The following are all quite reasonable ways of generating the blank in column 1:

WRITE(UNIT=6,FMT=100)A
100 FORMAT(' ',F10.4)

or

WRITE(UNIT=6,FMT=100)A
100 FORMAT(1X,F10.4)

or

WRITE(UNIT=6,FMT=100)A
100 FORMAT(' THE ANSWER IS ',F10.4)

Note, however, that

WRITE(UNIT=6,FMT=100)A
100 FORMAT(F8.4)

Output of Results 171

could result in problems. If A contained the value 100.2934, the result on a line
printer would be

00.2934

printed at the top of a new page. The 1 is taken as carriage control, and the rest of
the line then printed.

Accidentally printing zeros in column 1 is a little more difficult, but

WRITE(UNIT=6,FMT=100)I
100 FORMAT(I1)

might just do it. Don't.

Remember that this only applies to line printer output, and not to the terminal.
Since Fortran only defines four characters as carriage control, you will find that
anything else in column 1 will give unpredictable results. On some systems, a fair
number of alternatives may be defined by the installation, and they may do some-
thing useful. On other systems, they may do something, but they may also fail to
print the rest of the line. This can be very perplexing. Beware.

12.12.2 Generating a new line on both line printers and terminals

There are several ways of generating new lines, other than with a 0 in column 1 of
your line printer output. A more general approach, which works on both terminals
and line printers, is through the oblique or slash, /. Each time this is encountered in
a FORMAT statement, a new line is begun.

PRINT 101,A,B
101 FORMAT(1X,F10.4/1X,F10.4)

would give output like

100.2317
-4.0021

This is the same as (F10.4) would have given, but clearly it opens up lots of possi-
bilities for formatting output more tidily:

PRINT 102,NVAL,XMAX,XMIN
102 FORMAT(' NUMBER OF VALUES READ IN WAS: ',I10/ &

' MAXIMUM VALUE IS: ',F10.4/ &
' MINIMUM VALUE IS: ',F10.4)

172 Chapter 12

may be easier to read than using only one line, and it is certainly more compact to
write than using three separate print statements. It is not necessary to separate / by
commas, although if you do nothing catastrophic will happen.

You may also begin a format description with a /, in order to generate an extra line
or even generate lots of lines with lots of slashes; e.g.,

WRITE(UNIT=6,FMT=103)A,B
103 FORMAT(//1X,F10.4,4(/),1X,F10.4)

will leave two lines before printing A, and then will generate four new lines before
writing B (i.e., there will be three lines between A and B — the fourth new line
will contain B). While a slash by itself, or with another slash, does not have to be
separated by commas from other groups, a more complex grouping, 4(/), does have
to have commas and brackets to delimit it.

12.13 Timing of writing formatted files
The following example looks at the amount of time spent in different sections of a
program with the main emphasis on formatted output:

program ch1212
implicit none
integer , parameter :: n=1000000
integer , dimension(1:n) :: x
real , dimension(1:n) :: y
integer :: i
real :: t,t1,t2,t3,t4,t5
character*10 :: comment

open(unit=10,file='ch1212.txt')
call cpu_time(t)
t1=t
comment=' Intial '
print 100,comment,t1
do i=1,n

x(i)=i
end do
call cpu_time(t)
t2=t-t1
comment = ' Integer '
print 100,comment,t2
y=real(x)
call cpu_time(t)
t3=t-t1-t2

Output of Results 173

comment = ' real '
print 100,comment,t2
do i=1,n

write(10,200) x(i)
200 format(1x,i10)

end do
call cpu_time(t)
t4=t-t1-t2-t3
comment = ' i write '
print 100,comment,t4
do i=1,n

write(10,300) y(i)
300 format(1x,f10.0)

end do
call cpu_time(t)
t5=t-t1-t2-t3-t4
comment = ' r write '
print 100,comment,t5
100 format(1x,a,2x,f7.3)

end program ch1212

There is a call to the built-in intrinsic cpu_time to obtain timing information.
Timing details for a number of compilers follow:

Intel Nag Salford
Intial 0.063 0.046 0.094
Integer 0.031 0.031 0.016
real 0.031 0.031 0.016
i write 10.109 16.968 2.453
r write 12.281 101.860 3.453

Formatted output takes up a lot of time, as we are converting from an internal bi-
nary representation to an external decimal form.

12.14 Timing of writing unformatted files
The following program is a variant of the above but now the output is in unformat-
ted or binary form:

program ch1213
implicit none
integer , parameter :: n=1000000
integer , dimension(1:n) :: x
real , dimension(1:n) :: y

174 Chapter 12

integer :: i
real :: t,t1,t2,t3,t4,t5
character*10 :: comment

open(unit=10,file='ch1213.txt',form='unformatted')
call cpu_time(t)
t1=t
comment=' Intial '
print 100,comment,t1
do i=1,n

x(i)=i
end do
call cpu_time(t)
t2=t-t1
comment = ' Integer '
print 100,comment,t2
y=real(x)
call cpu_time(t)
t3=t-t1-t2
comment = ' real '
print 100,comment,t2
write(10) x
call cpu_time(t)
t4=t-t1-t2-t3
comment = ' i write '
print 100,comment,t4
write(10) y
call cpu_time(t)
t5=t-t1-t2-t3-t4
comment = ' r write '
print 100,comment,t5
100 format(1x,a,2x,f7.3)

end program ch1213

Timing details for a number of compilers follows:

Intel Nag Salford
Intial 0.063 0.062 0.172
Integer 0.031 0.030 0.031
real 0.031 0.030 0.031
i write 0.031 0.064 0.063
r write 0.031 0.062 0.063

Output of Results 175

Unformatted is very efficient in terms of time. It also has the benefit for real or
floating point numbers of no information loss.

In Chapter 13 we will look at timing information reading in formatted and unfor-
matted files.

12.15 Summary
You have been introduced in this chapter to the use of format or layout descriptors
which will give you greater control over output.

The main features are:

• The I format for integer variables.

• The E and F formats for real numbers.

• The A format for characters.

• The X, which allows insertion of spaces.

Output can be directed to files as well as to the terminal through the WRITE state-
ment.

The WRITE, together with the OPEN and CLOSE statements, also introduces the
class of Fortran statements which use equated keywords, as well as positionally de-
pendent parameters.

The FORMAT statement and its associated layout or edit descriptor are powerful
and allow repetition of patterns of output (both explicitly and implicitly).

When output is to be directed to a line printer, the following four characters:

• +

• 0

• 1

• (blank)

allow reasonable control over the layout. Care must to be taken with these charac-
ters, since it is possible to decimate forests with little effort.

12.16 Problems
1. Rewrite the temperature conversion program which was Problem 8 in Chapter
10 to actually produce the output shown.

176 Chapter 12

2. Write a litres and pints conversion program to produce a similar kind of output
to problem one above. Start at 0 and make the central column go up to 50. One
pint is 0.568 litres.

3. Information on car fuel consumption is usually given in miles per gallon in Brit-
ain and the United States and in litres per 100 kilometres in Europe. Just to add an
extra problem US gallons are 0.8 imperial gallons.

Prepare a table which allows conversion from either US or imperial fuel consump-
tion figures to the metric equivalent. Use the PARAMETER statement where
appropriate:

1 imperial gallon = 4.54596 litres
1 mile = 1.60934 kilometres

4. The two most commonly used operating systems for Fortran programming are
UNIX and DOS. It is possible to use the operating system file redirection symbols
< and > to read from a file and write to a file, respectively. Rerun the program in
problem 1 to write to a file. Examine the file using an editor.

5. Modify any of the above to write to a file rather than the terminal. What
changes are required to produce a general output which will be suitable for both
the terminal and a line printer? Is this degree of generality worthwhile?

6. To demonstrate your familiarity with formats, reformat problems 1, 2 or 3 to use
E formats, rather than F (or vice versa).

7. Modify the temperature conversion program to produce output suitable for a line
printer. Use the local operating system commands to send the file to be printed.

8. Repeat for the litres and pints program.

9. What features of Fortran reveal its evolution from punched card input?

10. Try to create a real number greater than the maximum possible on your com-
puter — write it out. Try to repeat this for an integer. You may have to exercise
some ingenuity.

11. Check what a number too large for the output format will be printed as on your
local system — is it all asterisks?

12. Write a program which stores litres and corresponding pints in arrays. You
should now be able to control the output of the table (excluding headings — al-
though this could be done too) in a single WRITE or PRINT statement. If you
don't like litres and pints, try some other conversion (£ sterling to US dollars,
leagues to fathoms, Scots miles to Betelgeusian pfnings). The principle remains the
same.

Output of Results 177

13. Fortran is an old programming language and the text formatting functionality
discussed in this chapter assumes very dumb printing devices.

The primary assumption is that we are dealing with so-called monospace fonts, i.e.,
that digits, alphabetic characters, punctuation, etc., all have the same width.

If you are using a PC try using:

• Notepad

and

• Word

to open your programs and some of the files created in this chapter. What happens
to the layout?

If you are using Notepad look at the Word wrap and set Font options under the
edit menu.

What fonts are available? What happens to the layout when you choose another
font?

If you are using Word what fonts are available? What happens when you make
changes to your file and exit Word? Is it sensible to save a Fortran source file as a
Word document?

178 Chapter 12

13

Reading in Data

“Winnie-the-Pooh read the two notices very carefully,
first from left to right, and afterwards,
in case he had missed some of it, from right to left.”

A A Milne, Winnie-the-Pooh

“For Madmen Only”

Hermann Hesse, Steppenwolf

Aims
The aims of this chapter are to introduce some of the ideas involved in reading
data into a program. In particular, using the following:

• Reading from fixed fields.

• Integers, reals and characters.

• Blanks — nulls or zeros?

• READ — extensions.

• error handling on input.

• OPEN — associating unit numbers and file names.

• CLOSE

• REWIND

• BACKSPACE

13 Reading in Data

13.1 Reading from the terminal or keyboard versus reading
from files

It is unlikely that you would use fixed formats when reading numeric input from
the terminal or keyboard; they are more likely to be used when reading data from a
file. However the examples that follow do it. We look at reading from files later in
this chapter.

13.2 Fixed fields on input
All the formats described earlier are available, and again they are limited to partic-
ular types. Integers may only be input by the I format, reals with F and E, and
character (alphanumeric) with A.

13.2.1 Integers and the I format

Integers are read in with the I edit descriptor. Whereas, on output, integers appear
right justified, on input they may appear anywhere in the field you have delimited.
Blanks (by default) are considered not to exist for the purpose of the value read, al-
though they do contribute to the field width. Apart from the digits 0 to 9, the only
other characters which may appear in an integer field are – and +.

Consider the following 12 times table:

1 * 12 = 12
2 * 12 = 24
3 * 12 = 36
4 * 12 = 48
5 * 12 = 60
6 * 12 = 72
7 * 12 = 84
8 * 12 = 96
9 * 12 = 108

10 * 12 = 120
11 * 12 = 132
12 * 12 = 144

The following is a program to read the first and last columns of integer data:

program ch1301
implicit none
integer , parameter :: n=12
integer :: i

180 Chapter 13

integer , dimension(1:n) :: x
integer , dimension(1:n) :: y

do i=1,n
read 100,x(i),y(i)
100 format(2x,i2,9x,i3)
print 200,x(i),y(i)
200 format(1x,i3,2x,i3)

end do
end program ch1301

The

read 100,x(i),y(i)

will try reading values into x(i) and y(i) using format statement

100 format(2x,i2,9x,i3)

which will skip the first two characters on the line or record, read the first value
from the next two columns, skip the next nine characters and read the last value
from the next three characters.

We recommend that when working with formatted files you to use a text editor
that displays the column and line details

Notepad under Windows has a status bar option under the View menu. Gvim under
Windows has line and column information available. Under Redhat, vim and gedit
both display line and column information. User SuSe, kedit and vim display line
and column information. There should be an editor available on your system that
has this option.

13.2.2 Reals and the F format

Real numbers may be input using a variety of formats and we will look at the F
fomat in this example. Consider the following BMI data:

1.85 85
1.80 76
1.85 85
1.70 90
1.75 69
1.67 83
1.55 64
1.63 57
1.79 65
1.78 76

Reading in Data 181

The following program will read in the data:

program ch1302
implicit none
integer , parameter :: n=10
real , dimension(1:n) :: h
real , dimension(1:n) :: w
real , dimension(1:n) :: bmi
integer :: i

do i=1,n
read 100, h(i),w(i)
100 format(f4.2,2x,f3.0)

end do
bmi=w/(h*h)
do i=1,n

print 200,bmi(i)
200 format(2x,f5.0)

end do
end program ch1302

To read in the heights we need a total width of four columns with two after the
decimal point. We then skip two spaces and read in the weights. The data in the
file do not have a decimal point!

13.2.3 Reals and the E Format

An exponential format number (which may be read in F or E formats) can take a
number of different forms. The most obvious is the explicit form

-1.2E-4

where all the components of the value are present — the significant digits to the
left of the E, the E itself, and the exponent to the right. We can drop (almost) any
two of these three components, so:

-1.2
-1.2E
-1.2-4
-4

are all valid values. Only the first two are interpreted as the same numerical value,
and just giving the exponent part would be interpreted by the format as giving only
the significant digits. If the exponent is to be given, there must be some significant
digits as well. It is not even enough to give the E and assume that the program will
interpret this as 10 to the power exponent.

182 Chapter 13

E-4

is not an acceptable exponential format value, although

1E-4

would be.

There are opportunities for confusion with E formats.

READ(UNIT=*,FMT=102) X,Y
102 FORMAT(2E10.3)

with:

10.23 -2

would be interpreted as X taking the value 10.23E-2 and Y taking the value 0.0,
while with

102 FORMAT(2F8.3)

X would be 10.23, and Y would be –2.0.

Although the decimal point may also be dropped, this might generate confusion as
well. While

4E3
45
45E-4
45-4

are all valid forms, if an E format is used, a special conversion takes place. A for-
mat like E10.8, when used with integral significant digits (no decimal point), uses
the 8 as a negative power of 10 scaling e.g.'

3267E05

converts to

3267*10**8*10**5

or

3267*10**3

or

Reading in Data 183

3.267

Therefore, the interpretation of, say, 136, read in E format, would depend on the
format used:

Value Format Interpretation

136 E10.0 136.0
136 E10.4 136.0*10**–4

or 0.0136
136 E10.10 136.0*10**–10

or 0.0000000136
136. Any above 136.0

One implication of all this is that the format you use to input a variable may not be
suitable to output that same variable. So given the data:

136
136
136
136
136.
136.
136.
136.

and the program

program ch1303
implicit none
real :: x

read 100,x
100 format(e10.0)
print *,x
read 200,x
200 format(e10.4)
print *,x
read 300,x
300 format(e10.10)
print *,x
read *,x

184 Chapter 13

print *,x
read 100,x
print *,x
read 200,x
print *,x
read 300,x
print *,x
read *,x
print *,x

end program ch1303

We get the following output when the program is compiled with the Intel compiler:

136.0000
1.3600000E-02
1.3600000E-08
136.0000
136.0000
136.0000
136.0000
136.0000

Other compilers may give slightly different formatting of the output.

13.3 Blanks, nulls and zeros
You can control how Fortran treats blanks in input through two special format in-
structions, BN and BZ. BN is a shorthand form of blanks become null, that is, a
blank is treated as if it were not there at all. BZ is therefore blanks become zeros.

As we have already seen, 1 4 (i.e., the two digits separated by a blank) read in I3
format would be read as 14; similarly, 14 (one-four-blank) is also 14 when the BN
format is in operation. All of the blanks are ignored for the purposes of interpreting
the number. They help to create the width of the number, but otherwise contribute
nothing. This is the default, which will be in operation unless you specify other-
wise.

The BZ descriptor turns blanks into zeros. Thus, 1 4 (one-blank-four) read in I3
format is 104, and 14 (one-four-blank) is 140.

There is one place where we must be very careful with the use of the BZ format
— when using exponent format input. Consider

5.321E+02

Reading in Data 185

read in (BZ,E10.3) format. We have specified a field which is ten characters wide;
therefore the blank in column 10, which follows the E+02, is read as a zero, mak-
ing this E+020. This is probably not what was required.

13.4 Characters
When characters are read in, it is sufficient to use the A format, with no explicit
mention of the size of the character string, since this size (or length) is determined
in the program by the CHARACTER declaration. This implies that any extra char-
acters would not be read in. You may however read in less:

CHARACTER (10) :: LIST
.
.
READ(UNIT=5,FMT=100)LIST
100 FORMAT(A1)

would read only the first character of the input. The remaining nine characters of
LIST would be set to blank.

The notion of blanks as nulls or zeros has no meaning for characters. The blank is
a legitimate character and is treated as meaningful, completely distinct from the
notion of a null or a zero.

A simple variant on ch1301 which uses the character variable temp to hold the text
between the two numbers appears below:

program ch1304
implicit none
integer , parameter :: n=12
integer :: i
integer , dimension(1:n) :: x
integer , dimension(1:n) :: y
character*9 :: temp

do i=1,n
read 100,x(i),temp,y(i)
100 format(2x,i2,a,i3)
print 200,x(i),y(i)
200 format(1x,i3,2x,i3)

end do
end program ch1304

Note that in the format statement we just use the A edit descriptor and the number
of characters to read is picked up from the variable declaration.

186 Chapter 13

13.5 Skipping spaces and lines
The X format is also useful for input. There may be fields in your data which you
do not wish to read. These are easily omitted by the X format:

READ(UNIT=*,FMT=100) A,B
100 FORMAT(F10.4,10X,F8.3)

Similarly, you can jump over or ignore entire records by using the oblique. Do
note, however, that

READ(UNIT=*,FMT=100) A,B
100 FORMAT(F10.4/F10.4)

would read A from one line (or record) and B from the next. To omit a record be-
tween A and B, the format would need to be

100 FORMAT(F10.4//F10.4)

Another way to skip over a record is

READ(UNIT=*,FMT=100)
100 FORMAT()

with no variable name at all.

13.6 Reading
As you have already seen, reading, or the input of information, is accomplished
through the READ statement. We have used

READ *,X,Y

for list directed input from the terminal, and

READ(UNIT=*,FMT=100) X,Y

for formatted input from the terminal. These forms may be expanded to

READ(UNIT=*,FMT=*) X,Y

or

READ(UNIT=*,FMT=100) X,Y

for input from the terminal, or to

Reading in Data 187

READ(UNIT=5,FMT=*) X,Y

or

READ(UNIT=5,FMT=100) X,Y

when we wish to associate the READ statement with a particular unit number (or
format label, for formatted input). As with the WRITE statement, these last two
READ statements may be abbreviated to

READ(5,*) X,Y

and

READ(5,100) X,Y

13.7 File manipulation again
The OPEN and CLOSE statements are also relevant to files which are used as in-
put, and they may be used in the same ways. Besides introducing the notion of
manipulating lots of files, the OPEN statement allows you to change the default for
the treatment of blanks. The default is to treat blanks as null, but the statement
BLANK='ZERO' changes the default to treat blanks as zeros. There are other pa-
rameters on the OPEN, which are considered elsewhere.

Once you have OPENed a file, you may not issue another OPEN for the same file
until it has been CLOSEd, except in the case of the BLANK= parameter. You may
change the default back again with

OPEN(UNIT=10,FILE='Example.dat')
READ(UNIT=10,FMT=100) A,B
...
OPEN(UNIT=10,FILE='Example.dat',BLANK='ZERO')
READ(UNIT=10,FMT=100) A,B

This implies that, within the same input file, you may treat some records as blank
for null, and some as blank for zero. This sounds very dangerous, and is better
done by manipulating individual formats if it has to be done at all.

Given that you may write a file, you may also rewind it, in order to get back to the
beginning. The syntax is similar to the other commands:

REWIND(UNIT=1)

This often comes in useful as a way of providing backing storage, where interme-
diate data can be stored on file and then used later in the processing.

188 Chapter 13

The notion of records in Fortran input and output has been introduced. If you are
confident in your understanding of this ambiguous and nebulous concept, you can
backspace through a file, using the statement

BACKSPACE(UNIT=1)

which moves back over a single record on the designated file. There is no point in
trying to BACKSPACE or REWIND if the input is from the keyboard or terminal.

13.8 Reading using array sections
Consider the following output:

50.0 47.0 70.0 89.0 30.0 46.0 = 55.33
37.0 67.0 85.0 65.0 68.0 98.0 = 70.00
25.0 45.0 65.0 48.0 10.0 36.0 = 38.17
89.0 56.0 82.5 45.0 30.0 65.0 = 61.25
68.0 78.0 95.0 76.0 98.0 65.0 = 80.00
==== ==== ==== ==== ==== ====
53.8 58.6 79.5 64.6 47.2 62.0

A program to read this file using array sections is as follows:

program ch1305
implicit none
integer , parameter :: nrow=5
integer , parameter :: ncol=6
REAL , DIMENSION(1:nrow,1:ncol) :: Exam_Results =
0.0
real , dimension(1:nrow) :: People_average =
0.0
real , dimension(1:ncol) :: Subject_Average =
0.0
integer :: r,c

do r=1,nrow
read 100,(exam_results(r,1:ncol)),people_average(r)
100 format(1x,6(1x,f5.1),4x,f6.2)

end do
read *
read 110, subject_average(1:ncol)
110 format(1x,6(1x,f5.1))
do r=1,nrow

print
200,(exam_results(r,c),c=1,ncol),people_average(r)

Reading in Data 189

200 format(1x,6(1x,f5.1),' = ',f6.2)
end do
print *,' ==== ==== ==== ==== ==== ===='
print 210, subject_average(1:ncol)
210 format(1x,6(1x,f5.1))

end program ch1305

Note also the use of

read *

to skip a line.

If you are on a UNIX or Linux system use diff to compare the input and output
files. They should be the same.

13.9 Timing of reading formatted files
A program to read a formatted file is shown below:

program ch1306
implicit none
integer , parameter :: n=1000000
integer , dimension(1:n) :: x
real , dimension(1:n) :: y
integer :: i
real :: t,t1,t2,t3,t4,t5
character*10 :: comment

open(unit=10,file='ch1306.txt')
call cpu_time(t)
t1=t
comment=' Intial '
print 100,comment,t1
do i=1,n

read(10,200) x(i)
200 format(1x,i10)

end do
call cpu_time(t)
t2=t-t1
comment = ' i read '
print 100,comment,t2
do i=1,n

read(10,300) y(i)
300 format(1x,f10.0)

end do

190 Chapter 13

call cpu_time(t)
t3=t-t1-t2
comment = ' r read '
print 100,comment,t3
100 format(1x,a,2x,f7.3)
do i=1,10

print *,x(i), ' ' , y(i)
end do

end program ch1306

Some timing data from the Intel compiler follows:

Intial 0.063
i read 1.922
r read 1.828

1 1.000000
2 2.000000
3 3.000000
4 4.000000
5 5.000000
6 6.000000
7 7.000000
8 8.000000
9 9.000000

10 10.00000

13.10 Timing of reading unformatted files
The following is a program to read from an unformatted file:

program ch1307
implicit none
integer , parameter :: n=1000000
integer , dimension(1:n) :: x
real , dimension(1:n) :: y
integer :: i
real :: t,t1,t2,t3,t4,t5
character*10 :: comment

open(unit=10,file='ch1307.txt',form='unformatted')
call cpu_time(t)
t1=t
comment=' Intial '
print 100,comment,t1
read(10) x

Reading in Data 191

call cpu_time(t)
t2=t-t1
comment = ' i read '
print 100,comment,t2
read (10) y
call cpu_time(t)
t3=t-t1-t2
comment = ' r read '
print 100,comment,t3
100 format(1x,a,2x,f7.3)
do i=1,10

print *,x(i), ' ' , y(i)
end do

end program ch1307

Some timing data from the Intel compiler follows.

Intial 0.047
i read 0.063
r read 0.063

1 1.000000
2 2.000000
3 3.000000
4 4.000000
5 5.000000
6 6.000000
7 7.000000
8 8.000000
9 9.000000

10 10.00000

13.11 Errors when reading
In discussing some aspects of input, it has been pointed out that errors may be
made. Where such errors are noticed, in the sense that something illegal is being
attempted, there are two options:

• Print a diagnostic message, and allow correction of the mistake.

• Print a diagnostic message, and terminate the program.

The only time that the first makes sense is when you are interacting with a pro-
gram at a terminal. Some Fortran implementations provide correction facilities in a
case like this, but most do not.

192 Chapter 13

Chapter 21 looks at how we handle errors in input data, together with a more
in-depth coverage of file I/O.

13.12 Summary
Values may be read in from the keyboard, terminal or from another file through
fixed formats.

Much of the structure of input format statements is very similar to that of the out-
put formats. Broadly speaking, data written out in a particular format may be read
in by the same format. However, there is greater flexibility, and quite a variety of
forms can be accepted on input.

A key distinction to make is the interpretation of blanks, as either nulls or zeros;
alternative interpretations can radically alter the structure of the input data.

Fortran allows file names to be associated with unit numbers through the OPEN
statement. This statement allows control of the interpretation of blanks, although
this can also be done through the BN and BZ formats.

Files can also be manipulated through REWIND and BACKSPACE.

13.13 Problems
1. Write a program that will read in two reals and one integer, using

FORMAT(F7.3,I4,F4.1)

and that, in one instance treats blanks as zeros and in the second treats them as
nulls. Use PRINT * to print the numbers out immediately after reading them in.
What do you notice? Can you think of instances where it is necessary to use one
rather than the other?

2. Write a program to read in and write out a real number using

FORMAT(F7.2)

What is the largest number that you can read in and write out with this format?
What is the largest negative number that you can read in and write out with this
format? What is the smallest number, other than zero, that can be read in and writ-
ten out?

3. Rewrite two of the earlier programs that used READ,* and PRINT,* to use
FORMAT statements.

4. Write a program to read the file created by either the temperature conversion
program or the litres and pints conversion program. Make sure that the programs
ignore the line printer control characters and any header and title information. This

Reading in Data 193

kind of problem is very common in programming (writing a program to read and
possibly manipulate data created by another program).

5. Use the OPEN, REWIND, READ and WRITE statements to input a value (or
values) as a character string, write this to a file, rewind the file, read in the values
again, this time as real variables with blanks treated as null, and then repeat with
blanks as zeros.

6. Demonstrate that input and output formats are not symmetric — i.e., what goes
in does not necessarily come out.

7. Can you suggest why Fortran treats blanks as null rather than zero?

8. What happens at your terminal when you enter faulty data, inappropriate for the
formats specified? We will look at how we address this problem in Chapter 21.

194 Chapter 13

14

Files

“It is a capital mistake to theorise before one has data.”

Sir Arthur Conan Doyle

Aims
The aims of this chapter are:

• To review the process of file creation at a terminal.

• To introduce more formally the idea of the file as a fundamental entity.

• To show how files can be declared explicitly by the OPEN and CLOSE
statements.

• To introduce the arguments for the OPEN and CLOSE statements.

• To demonstrate the interaction between the READ/WRITE statements and
the OPEN/CLOSE statements.

14 Files

When you work interactively on a terminal, you are working with files, files that
contain programs, files that contain data, and perhaps files that are libraries. The
file is fundamental to most modern operating systems, and almost all operations
are carried out on files.

In this chapter we are going to extend some of your ideas about files. Let us con-
sider what kinds of files you have met so far:

1. Text files. These are the source of your programs, compilation listings, etc.
They can be examined by printing them. They can also be transmitted around
a computer system fairly easily. A file sent to a printer is a text file. Mail mes-
sages are generally plain text files. Note that when mail messages arrive in
your mail box they will then typically contain additional nonprintable informa-
tion.

2. Data files. These exist in two main forms: firstly those prepared by using an
editor, (hence a text file) and those prepared using a package or program, in a
computer readable form, but not directly readable by a human.

3. Binary, object or relocatable files, e.g., output from the compiler, satellite
data. They cannot be printed. To examine files like these you need to use spe-
cial utilities, provided by most operating systems.

The above categories account for the majority of files that you have met so far.

If you use a word processor then you will also have met files that are textual with
additional nonprintable information.

Let us now consider how we can manipulate files using Fortran. They will gener-
ally be data files, and will thus be text files. They can therefore be listed, etc.,
using standard operating system commands.

14.1 Data files in Fortran
These allow us to associate a logical unit number with any arbitrary file name dur-
ing the running of the program; e.g.,

OPEN(UNIT=1,FILE='DATA')

would associate the name DATA and the logical unit 1, so that

READ(UNIT=1,FMT=100) X

would read from DATA. Note that for this to work on some operating systems the
file DATA must be local to the session; we specify the name as a character vari-
able. If we then wanted to use a subsequent data file, we could have another OPEN

196 Chapter 14

statement, but if we want to use the same logical unit number, we must first
CLOSE the file

CLOSE(UNIT=1,FILE='DATA')

before we

OPEN(UNIT=1,FILE='DATA2')

In this way we can keep referring to logical unit 1, but change the file associated
with it. This can be useful in interactive programs where we wish to analyse differ-
ent sets of data, e.g.:

PROGRAM ch1401
IMPLICIT NONE
REAL :: X
CHARACTER (7) :: WHICH

OPEN(UNIT=5,FILE='INPUT')
DO

WRITE(UNIT=6,FMT='('' DATA SET NAME, OR END'')')
READ(UNIT=5,FMT='(A)') WHICH
IF(WHICH == 'END') EXIT
OPEN(UNIT=1,FILE=WHICH)
READ(UNIT=1,FMT=100) X
...
CLOSE(UNIT=1,FILE=WHICH)

END DO
END PROGRAM ch1401

One useful feature of the OPEN statement is that there are other parameters. What
would happen, for example, if the file is not there? To take care of this you can
use the IOSTAT and STATUS keywords, e.g.,

OPEN(UNIT=1,FILE='DATA',IOSTAT=FileStat,STATUS='OLD')

STATUS can be equated to one of four values:

STATUS='OLD'
STATUS='NEW'
STATUS='SCRATCH'
STATUS='UNKNOWN'

If we say STATUS='NEW', we are creating a new file and it should not matter
whether a file of the same name is present; 'SCRATCH' does not concern us, while
'UNKNOWN' implies that if a file of the correct name is present use it, but if not

Files 197

create a 'NEW’ one. If you omit the STATUS= keyword altogether, the value 'UN-
KNOWN’ will be assumed. If we use STATUS=’OLD’ and the file is not present,
this will cause an error which will be reflected in the value associated with the
variable Open_File_Status. Consider the following example:

...
OPEN(UNIT=1,FILE='DATA',IOSTAT=FileStat,STATUS='OLD')
IF (FileStat > 0) THEN

PRINT *,' Error opening file, please check'
STOP

END IF
READ(UNIT=1,FMT=100) X
...

The program will terminate after printing an appropriate error message. The stan-
dard defines that if an error occurs then IOSTAT will return a positive integer
value. A value of zero is returned if there is no error.

14.2 Summary of options on OPEN
UNIT: The unit number of the file to be opened.

IOSTAT: The I/O status specifier designates a variable to store a value indicating
the status of a data transfer operation. It takes the following form:

IOSTAT=i-var

i-var

is a scalar integer variable. When a data transfer statement is executed, i-var is set

to one of the following values:

• A positive integer indicating that an error condition occurred.

• A negative integer indicating that an end-of-file or end-of-record condition
occurred. The actual values vary between compilers.

• Zero indicating no error, end-of-file, or end-of-record condition oc-
curred.

Execution continues with the statement following the data transfer statement or the

statement identified by a branch specifier (if any).

An end-of-file condition occurs only during execution of a sequential READ state-

ment; an end-of-record condition occurs only during execution of a nonadvancing

READ statement.

FILE: Character expression specifying the file name.

198 Chapter 14

STATUS: Character expression specifying the file status. It can be one of 'OLD',
'NEW', 'SCRATCH' or 'UNKNOWN'.

ACCESS: Character expression specifying whether the file is to be used in a se-
quential or random fashion. Valid values are SEQUENTIAL (the default) or
DIRECT.

The two most common access mechanisms for files are sequential and direct. Con-
sider a file with 1000 records. To get at record 789 in a sequential file means
reading or processing the first 788 records. To get at record 789 in a direct access
file means using a record number to immediately locate record 789.

FORM: Character expression specifying

FORMATTED if the file is opened for formatted I/O

or

UNFORMATTED if the file is opened for unformatted I/O

The default is formatted for sequential access files and unformatted for direct ac-
cess files. If the file exists, FORM must be consistent with its present
characteristics.

As noted earlier data are maintained internally in a binary format, not immediately
comprehensible by humans. When we wish to look at the data we must write it in
a formatted fashion, i.e., as a sequence of printable ASCII characters — text, or the
written word. This formatting will carry with it an overhead in terms of the time
required to do it. It will also carry with it the penalty of conversion from one num-
ber base (internally binary) to another and also loss of significance due to rounding
with whatever edit descriptors are used, e.g., writing out as F7.4.

If we are interested in reusing data on the same system and compiler then we can
use the unformatted option and avoid both the time overhead (as there is no con-
version between the internal and external formats) and the loss of significance
associated with formatted data.

Please note that unformatted files are rarely portable between different computer
systems, and sometimes even between different compilers on the same system.

We will look again at the use of unformatted files in Chapter 28 when we deal
with efficiency and the space-time trade-off.

RECL: Integer variable or constant specifying the record length for a direct access
file. It is specified in characters for a formatted file and words for an unformatted
file.

BLANK: Character expression having one of the following values:

'NULL' if blanks are to be ignored on reading. Note that a field of all blanks is
treated as 0!

Files 199

'ZERO' if blanks are to be treated as zeros.

14.3 More foolproof I/O
Fortran provides a way of writing more foolproof programs involving I/O. This is
done via the IOSTAT keyword on the READ statement. Consider the following:

PROGRAM ch1402
IMPLICIT NONE
INTEGER :: IO_Stat_Number=-1
INTEGER :: I

DO
READ (UNIT=*,FMT=10,&
IOSTAT=IO_Stat_Number) I

10 FORMAT(I3)
PRINT *,' iostat=',IO_Stat_Number
PRINT *,I
IF (IO_Stat_Number==0) EXIT

END DO
END PROGRAM ch1402

The following data input should be tried and the values of IO_Stat_Number should
be examined

• A valid three-digit number + [RETURN] key

• A three-digit number with an embedded blank, e.g., 1 2 + [RETURN] key

• [RETURN] key only

• [CTRL] + Z

• Any other nonnumeric character on the keyboard

• 100200300 + [RETURN] key

• [CTRL] + C

This will then enable you to write programs that handle common I/O errors.

Consider the following:

PROGRAM ch1403
INTEGER , DIMENSION(10) :: A =&

(/-1,-1,-1,-1,-1,-1,-1,-1,-1,-1/)
INTEGER :: IO_Stat_Number=0
INTEGER :: I

OPEN(UNIT=1,FILE='DATA.DAT',STATUS='OLD')

200 Chapter 14

DO I=1,10
READ (UNIT=1,FMT=10,IOSTAT=IO_Stat_Number) A(I)
10 FORMAT(I3)
IF (IO_Stat_Number == 0) THEN

CYCLE
ELSEIF (IO_Stat_Number == -1) THEN

PRINT *,' End of file detected at line ',I
PRINT *,' Please check data file'
EXIT

ELSEIF (IO_Stat_Number > 0) THEN
PRINT *,' Non numeric data at line ',I
PRINT *,' Please correct data file'
EXIT

ENDIF
END DO
DO I=1,10

PRINT * , ' I = ',I,' A(I) = ',A(I)
ENDDO

END PROGRAM ch1403

The above program is system specific but interestingly the following compilers re-
turn the same value for end of file. They return different values for nonnumeric
data:

• NAG/Salford compiler.

• DEC Alpha OPENVMS compiler.

• NagAce Fortran 90 under Solaris.

• Sun F90 compiler (release 2.x).

• Nag F95 compiler under Solaris.

• Compaq/Dec F95, 6.01A.

What happens with a completely blank line?

Note that in the above example the testing for the various conditions only exits the
DO loop for reading data from the file. This means that execution would continue
with the statement immediately after the END DO statement. This may not be
what we want in all cases, and the EXIT may be replaced with a STOP statement
to terminate execution immediately.

14.4 Summary
The file is a fundamental entity within the operating system.

Files 201

A file may be manipulated in Fortran by associating its name with a unit number.
All subsequent communication within the program is through the unit number.

When a file is opened there are a large number of equatable keywords which may
be employed to establish its characteristics.

The default file type used in Fortran is sequential formatted, but several other eso-
teric types may be used.

14.5 Problems
1. Write a program to write the first 500 integers to a file using formatted I/O. Put
10 values on a line, with a blank as the first character of the line, and eight col-
umns allowed for each integer, with two spaces between integer fields.

Now write a program to read this file into an array, and write the numbers in re-
verse order over the original data, i.e., the data file now contains the first 500
numbers in descending order.

Now modify the first program to add the next 500 integers to the same file, so that
the file now comprises the first 500 numbers in descending order, and the next 500
numbers in ascending order.

2. To write and maintain a crude database of student details, we might do the fol-
lowing: create separate files for each year — CLAS1, CLAS2, CLAS3, or COF84,
COF85, COF86, and so on. In either case there is an unchanging prefix, CLAS or
COF, and a variable suffix, which identifies membership within the overall group.
In each of the files we may wish to record details like name, date of birth, address,
courses taken, etc. Such files will require updating as details change or as errors
are noted. Write (or sketch out) a program which would select and maintain such
records and would allow corrected files to be printed out. While you might feel
that the most appropriate tool for this job is an editor, you might find it too power-
ful a tool. An editor can leave files in a sorry state. Naturally, any program like
this should be helpful (so called 'user friendly'). Is this sort of information sensitive
enough to require security checks and passwords?

202 Chapter 14

15

Functions

“I can call spirits from the vasty deep.
Why so can I, or so can any man; but will they come
when you do call for them?”

William Shakespeare, King Henry IV, part 1

Aims
The aims of this chapter are:

• To consider some of the reasons for the inclusion of functions in a
programming language.

• To introduce, with examples, some of the predefined functions available
in Fortran 95.

• To introduce a classification of intrinsic functions, generic, elemental,
transformational.

• To introduce the concept of a user defined function.

• To introduce the concept of a recursive function.

• To introduce the concept of user defined elemental and pure functions.

• To briefly look at scope rules in Fortran 95 for variables and functions.

• To look at internal user defined functions.

15 Functions

The role of functions in a programming language and in the problem-solving pro-
cess is considerable and includes:

• Allowing us to refer to an action using a meaningful name, e.g., SINE(X)
a very concrete use of abstraction.

• Providing a mechanism that allows us to break a problem down into parts,
giving us the opportunity to structure our problem solution.

• Providing us with the ability to concentrate on one part of a problem at a
time and ignore the others.

• Allowing us to avoid the replication of the same or very similar sections
of code when solving the same or a similar subproblem which has the sec-
ondary effect of reducing the memory requirements of the final program.

• Allowing us to build up a library of functions or modules for solving par-
ticular subproblems, both saving considerable development time and in-
creasing our effectiveness and productivity.

Some of the underlying attributes of functions are:

• They take parameters or arguments.

• The parameter can be an expression.

• A function will normally return a value and the value returned is normally
dependent on the parameter(s).

• They can sometimes take arguments of a variety of types.

Most languages provide both a range of predefined functions and the facility to de-
fine our own. We will look at the predefined functions first.

15.1 An introduction to predefined functions and their use
Fortran provides over a hundred intrinsic functions and subroutines. For the pur-
poses of this chapter a subroutine can be regarded as a variation on a function.
Subroutines are covered in more depth in a later chapter. They are used in a
straightforward way. If we take the common trigonometric functions, sine, cosine
and tangent, the appropriate values can be calculated quite simply by:

X=SIN(Y)
Z=COS(Y)
A=TAN(Y)

204 Chapter 15

This is in rather the same way that we might say that X is a function of Y, or X is
sine Y. Note that the argument, Y, is in radians not degrees.

15.1.1 Example 1: Simple function usage

A complete example is given below:

PROGRAM ch1501
REAL :: X

PRINT *,' Type in an angle (in radians)'
READ *,X
PRINT *,' Sine of ', X ,' = ',SIN(X)

END PROGRAM ch1501

These functions are called intrinsic functions. A selection is follows:

Function Action Example

INT conversion to integer J=INT(X)
REAL conversion to real X=REAL(J)
ABS absolute value X=ABS(X)
MOD remaindering K=MOD(I,J)

remainder when I divided by J
SQRT square root X=SQRT(Y)
EXP exponentiation Y=EXP(X)
LOG natural logarithm X=LOG(Y)
LOG10 common logarithm X=LOG10(Y)
SIN sine X=SIN(Y)
COS cosine X=COS(Y)
TAN tangent X=TAN(Y)
ASIN arcsine Y=ASIN(X)
ACOS arccosine Y=ACOS(X)
ATAN arctangent Y=ATAN(X)
ATAN2 arctangent(a/b) Y=ATAN2(A,B)

A complete list is given in Appendix D.

15.2 Generic functions
All but four of the intrinsic functions and procedures are generic, i.e., they can be
called with arguments of one of a number of kind types.

Functions 205

15.2.1 Example 2: The ABS generic function

The following short program illustrates this with the ABS intrinsic function:

PROGRAM ch1502
IMPLICIT NONE
COMPLEX :: C=(1,1)
REAL :: R=10.9
INTEGER :: I=-27

PRINT *,ABS(C)
PRINT *,ABS(R)
PRINT *,ABS(I)

END PROGRAM ch1502

The four nongeneric functions are LGE, LGT, LLE and LLT — the lexical charac-
ter comparison functions.

Type this program in and run it on the system you use.

It is now possible with Fortran 95 for the arguments to the intrinsic functions to be
arrays. It is convenient to categorise the functions into either elemental or
transformational, depending on the action performed on the array elements.

15.3 Elemental functions
These functions work with both scalar and array arguments, i.e., with arguments
that are either single or multiple valued.

15.3.1 Example 3: Elemental function use

Taking the earlier example with the evaluation of sine as a basis, we have:

PROGRAM ch1503
REAL , DIMENSION(5) :: X = (/1.0,2.0,3.0,4.0,5.0/)

PRINT *,' Sine of ', X ,' = ',SIN(X)
END PROGRAM ch1503

In the above example the sine function of each element of the array X is calculated
and printed.

15.4 Transformational functions
Transformational functions are those whose arguments are arrays, and work on
these arrays to transform them in some way.

206 Chapter 15

15.4.1 Example 4: Simple transformational use

To highlight the difference between an element-by-element function and a
transformational function consider the following examples:

PROGRAM ch1504
IMPLICIT NONE
REAL , DIMENSION(5) :: X = (/1.0,2.0,3.0,4.0,5.0/)
! Elemental function

PRINT *,' Sine of ', X ,' = ',SIN(X)
! Transformational function

PRINT *,' Sum of ', X ,' = ',SUM(X)
END PROGRAM ch1504

The SUM function adds each element of the array and returns the SUM as a scalar,
i.e., the result is single valued and not an array.

15.4.2 Example 5: Intrinsic DOT_PRODUCT use

The following program uses the transformational function DOT_PRODUCT:

PROGRAM ch1505
IMPLICIT NONE
REAL , DIMENSION(5) :: X = (/1.0,2.0,3.0,4.0,5.0/)

PRINT *,' Dot product of X with X is'
PRINT *,' ',DOT_PRODUCT(X,X)

END PROGRAM ch1505

Try typing these examples in and running them to highlight the differences be-
tween elemental and transformational functions.

15.5 Notes on function usage
You should not use variables which have the same name as the intrinsic functions;
e.g., what does SIN(X) mean when you have declared SIN to be a real array?

When a function has multiple arguments care must be taken to ensure that the ar-
guments are in the correct position and of the appropriate kind type.

You may also replace arguments for functions by expressions, e.g.,

X = LOG(2.0)

or

X = LOG(ABS(Y))

Functions 207

or

X = LOG(ABS(Y)+Z/2.0)

15.6 Example 6: Easter
This example uses only one function, the MOD (or modulus). It is used several
times, helping to emphasise the usefulness of a convenient, easily referenced func-
tion. The program calculates the date of Easter for a given year. It is derived from
an algorithm by Knuth, who also gives a fuller discussion of the importance of its
algorithm. He concludes that the calculation of Easter was a key factor in keeping
arithmetic alive during the Middle Ages in Europe. Note that determination of the
Eastern churches' Easter requires a different algorithm:

PROGRAM ch1506
IMPLICIT NONE
INTEGER :: Year, Metcyc, Century, Error1, Error2, Day
INTEGER :: Epact, Luna, Temp
! A program to calculate the date of Easter

PRINT *,' Input the year for which Easter'
PRINT *,' is to be calculated'
PRINT *,' enter the whole year, e.g. 1978 '
READ *,Year

! calculating the year in the 19 year
! metonic cycle using variable metcyc

Metcyc = MOD(Year,19)+1
IF(Year <= 1582)THEN

Day = (5*Year)/4
Epact = MOD(11*Metcyc-4,30)+1

ELSE
! calculating the Century-century

Century = (Year/100)+1
! accounting for arithmetic inaccuracies
! ignores leap years etc.

Error1 = (3*Century/4)-12
Error2 = ((8*Century+5)/25)-5

! locating Sunday
Day = (5*Year/4)-Error1-10

! locating the epact(full moon)
Temp = 11 * Metcyc + 20 + Error2 - Error1
Epact = MOD(Temp,30)
IF(Epact <= 0) THEN

Epact = 30 + Epact

208 Chapter 15

ENDIF
IF((Epact == 25 .AND. Metcyc > 11) &
.or. Epact == 24)THEN

Epact = Epact+1
ENDIF

ENDIF
! finding the full moon

Luna= 44 - epact
IF (Luna < 21) THEN

Luna = Luna+30
ENDIF

! locating Easter Sunday
Luna = Luna+7-(MOD(Day+Luna,7))

! locating the correct month
IF(Luna > 31)THEN

Luna = Luna - 31
PRINT *,' for the year ',YEAR
PRINT *,' Easter falls on April ',Luna

ELSE
PRINT *,' for the year ',YEAR
PRINT *,' Easter falls on march ',Luna

ENDIF
END PROGRAM ch1506

We have introduced a new statement here, the IF THEN ENDIF, and a variant the
IF THEN ELSE ENDIF. A more complete coverage is given in the chapter on con-
trol structures. The main point of interest is that the normal sequential flow from
top to bottom can be varied. In the following case,

IF (expression) THEN

block of statements

ENDIF

if the expression is true the block of statements between the IF THEN and the
ENDIF is executed. If the expression is false then this block is skipped, and execu-
tion proceeds with the statements immediately after the ENDIF.

In the following case,

IF (expression) THEN

block 1

ELSE

Functions 209

block 2

ENDIF

if the expression is true block 1 is executed and block 2 is skipped. If the expres-
sion is false then block 2 is executed and block 1 is skipped. Execution then
proceeds normally with the statement immediately after the ENDIF.

As well as noting the use of the MOD generic function in this program, it is also
worth noting the structure of the decisions. They are nested, rather like the nested
DO loops we met earlier.

15.7 Complete list of predefined functions
Due to the large number of predefined functions it is useful to classify them, and
the following is one classification.

15.7.1 Inquiry functions

These functions return information about their arguments. They can be further
subclassified into BIT, CHARACTER, NUMERIC, ARRAY, POINTER, ARGU-
MENT PRESENCE:

Bit BIT_SIZE

Character LEN

Numeric DIGITS, EPSILON, EXPONENT, FRACTION, HUGE, KIND,
MAXEXPONENT, MINEXPONENT, NEAREST, PRECISION,
RADIX, RANGE, RRSPACING, SCALE, SET_EXPONENT,
SELECTED_INT_KIND, SELECTED_REAL_KIND,
SPACING, TINY

Array ALLOCATED, LBOUND, SHAPE, SIZE, UBOUND,

Pointer ASSOCIATED, NULL

Argument
Presence

PRESENT

15.7.2 Transfer and conversion functions

These functions convert data from one type and kind type to another type and kind
type. Most of them are by necessity generic.

210 Chapter 15

Transfer
and
Conversion

ACHAR, AIMAG, AINT, ANINT, CHAR, CMPLX, CONJG,
DBLE, IACHAR, IBITS, ICHAR, INT, LOGICAL, NINT,
REAL, TRANSFER

15.7.3 Computational functions

These functions actually carry out a computation of some sort and return the result
of that computation:

Numeric ABS, ACOS, ASIN, ATAN, ATAN2, CEILING, COS, COSH,
DIM, DOT_PRODUCT, DPROD, EXP, FLOOR, LOG, LOG10,
MATMUL, MAX, MIN, MOD, MODULO, SIGN, SIN, SINH,
SQRT, TAN, TANH

Character ADJUSTL, ADJUSTR, INDEX, LEN_TRIM, LGE, LGT, LLE,
LLT, REPEAT, SCAN, TRIM, VERIFY

Bit BTEST, IAND, IBCLR, IBSET, IEOR, IOR, ISHFT, ISHFTC,
NOT

15.7.4 Array functions

Reduction ALL, ANY, COUNT, MAXVAL, MINVAL, PRODUCT, SUM

Construction MERGE, PACK, SPREAD, UNPACK

Reshape RESHAPE

Manipulation CSHIFT, EOSHIFT, TRANSPOSE

Location MAXLOC, MINLOC

15.7.5 Predefined subroutines

Date and
Time

CPU_TIME, DATE_AND_TIME, SYSTEM_CLOCK

Random
Number

RANDOM_NUMBER, RANDOM_SEED

Other MVBITS

Functions 211

An alphabetical list of all intrinsic functions and procedures is given in Appendix
D. This list provides the following information:

• Function name.

• Description.

• Argument name and type.

• Result type.

• Classification.

• Examples of use.

Appendix D should be consulted for a more complete and thorough understanding
of intrinsic functions and their use in Fortran 95.

15.8 Supplying your own functions
There are two stages here: firstly, to define the function and, secondly, to reference
or use it. Consider the calculation of the greatest common divisor of two integers.

15.8.1 Example 7: Simple user defined function

The following defines a function to achieve this:

INTEGER FUNCTION GCD(A,B)
IMPLICIT NONE
INTEGER , INTENT(IN) :: A,B
INTEGER :: Temp

IF (A < B) THEN
Temp=A

ELSE
Temp=B

ENDIF
DO WHILE ((MOD(A,Temp) /= 0) .OR. (MOD(B,Temp) /=0))

Temp=Temp-1
END DO
GCD=Temp

END FUNCTION GCD

To use this function, you reference or call it with a form like:

PROGRAM ch1507
IMPLICIT NONE
INTEGER :: I,J,Result
INTEGER :: GCD

212 Chapter 15

PRINT *,' Type in two integers'
READ *,I,J
Result=GCD(I,J)
PRINT *,' GCD is ',Result

END PROGRAM ch1507

The first line of the function

INTEGER FUNCTION GCD(A,B)

has a number of items of interest:

• Firstly the function has a type, and in this case the function is of type IN-
TEGER, i.e., it will return an integer value.

• The function has a name, in this case GGD.

• The function takes arguments or parameters, in this case A and B.

The structure of the rest of the function is the same as that of a program, i.e., we
have declarations, followed by the executable part. This is because both a program
and a function can be regarded as a so-called program unit. We will look into this
more fully in later chapters.

In the declaration we also have a new attribute for the INTEGER declaration. The
two parameters A and B are of type integer, and the INTENT(IN) attribute means
that these parameters will NOT be altered by the function.

The value calculated is returned through the function name somewhere in the body
of the executable part of the function. In this case GCD appears on the left-hand
side of an arithmetic assignment statement at the bottom of the function. The end
of the function is signified in the same way as the end of a program:

END FUNCTION GCD

We then have the program which actually uses the function GCD. In the program
the function is called or invoked with I and J as arguments. The variables are
called A and B in the function, and references to A and B in the function will use
the values that I and J have respectively in the main program. We will look into
the whole area of argument association in much greater depth in later chapters.

Note also a new control statement, the DO WHILE ENDDO. In the following
case,

DO WHILE (expression)

block of statements

Functions 213

ENDDO

the block of statements between the DO WHILE and the ENDDO is executed
whilst the expression is true. There is a more complete coverage in Chapter 16.

We have two options here regarding compilation. Firstly, to make the function and
the program into one file, and invoke the compiler once. Secondly, to make the
function and program into separate files, and invoke the compiler twice, once for
each file. With large programs comprising one program and several functions it is
probably worthwhile to keep the component parts in different files and compile in-
dividually, whereas if it consists of a simple program and one function then
keeping things together in one file makes sense.

Try this program out on the system you work with.

15.9 An introduction to the scope of variables and local
variables

One of the major strengths of Fortran is the ability to work on parts of a problem
at a time. This is achieved by the use of program units (a main program, one or
more functions and one or more subroutines) to solve discrete subproblems. Inter-
action between them is limited and can be isolated, for example, to the arguments
of the function. Thus variables in the main program can have the same name as
variables in the function and they are completely separate variables, even though
they have the same name. Thus we have the concept of a local variable in a pro-
gram unit. We will look into this area again after a coverage of recursion and very
thoroughly after the coverage of subroutines and modules.

In the example above I, J, Result, are local to the main program. The declaration of
GCD is to tell the compiler that it is an integer, and in this case it is an external
function.

A and B in the function GCD do not exist in any real sense; rather they will be re-
placed by the actual variable values from the calling routine, in this case by
whatever values I and J have. Temp is local to GCD.

15.10 Recursive functions
There is an additional form of the function header that must be used when the
function is recursive. Recursion means the breaking down of a problem into a sim-
pler but identical subproblem. The concept is best explained with reference to an
actual example. Consider the evaluation of a factorial, e.g., 5!. From simple mathe-
matics we know that the following is true:

5!=5*4!

4!=4*3!

214 Chapter 15

3!=3*2!

2!=2*1!

1!=1

and thus 5! = 5*4*3*2*1 or 120.

15.10.1 Example 8: Recursive factorial evaluation

Let us look at a program with recursive function to solve the evaluation of factori-
als.

PROGRAM ch1508
IMPLICIT NONE
INTEGER :: I, F, Factorial

PRINT *,' Type in the number, integer only'
READ *,I
DO WHILE(I<0)

PRINT *,' Factorial only defined for '
PRINT *,' positive integers: Re-input'
READ *,I

END DO
F=Factorial(I)
PRINT *,' Answer is', F

END PROGRAM ch1508

RECURSIVE INTEGER FUNCTION Factorial(I) RESULT(Answer)
IMPLICIT NONE
INTEGER , INTENT(IN):: I

IF (I==0) THEN
Answer=1

ELSE
Answer=I*Factorial(I-1)

END IF
END FUNCTION Factorial

What additional information is there? Firstly, we have an additional attribute on the
function header that declares the function to be recursive. Secondly, we must re-
turn the result in a variable, in this case Answer. Let us look now at what happens
when we compile and run the whole program (both function and main program). If
we type in the number 5 the following will happen:

• The function is first invoked with argument 5. The ELSE block is then
taken and the function is invoked again.

Functions 215

• The function now exists a second time with argument 4. The ELSE block
is then taken and the function is invoked again.

• The function now exists a third time with argument 3. The ELSE block is
then taken and the function is invoked again.

• The function now exists a fourth time with argument 2. The ELSE block
is then taken and the function is invoked again.

• The function now exists a fifth time with argument 1. The ELSE block is
then taken and the function is invoked again.

• The function now exists a sixth time with argument 0. The IF BLOCK is
executed and Answer=1. This invocation ends and we return to the previ-
ous level, with Answer=1*1.

• We return to the previous invocation and now Answer=2*1.

• We return to the previous invocation and now Answer=3*2.

• We return to the previous invocation and now Answer=4*6.

• We return to the previous invocation and now Answer=5*24.

The function now terminates and we return to the main program or calling routine.
The answer 120 is the printed out.

Add a PRINT *,I statement to the function after the last declaration and type the
program in and run it. Try it out with 5 as the input value to verify the above state-
ments.

Recursion is a very powerful tool in programming, and remarkably simple solu-
tions to quite complex problems are possible using recursive techniques. We will
look at recursion in much more depth in the later chapters on dynamic data types,
and subroutines and modules.

15.11 Example 9: Recursive version of GCD
The following is another example of the earlier GCD function but with the algo-
rithm in the function replaced with an alternate recursive solution:

PROGRAM ch1509
IMPLICIT NONE
INTEGER :: I,J,Result
INTEGER :: GCD

PRINT *,' Type in two integers'
READ *,I,J
Result=GCD(I,J)
PRINT *,' GCD is ',Result

216 Chapter 15

END PROGRAM ch1509

RECURSIVE INTEGER FUNCTION GCD(I,J) RESULT(Answer)
IMPLICIT NONE
INTEGER , INTENT(IN) :: I,J

IF (J==0) THEN
Answer=I

ELSE
Answer=GCD(J,MOD(I,J))

ENDIF
END FUNCTION GCD

Try this program out on the system you work with, look at the timing information
provided, and compare the timing with the previous example. The algorithm is a
much more efficient algorithm than in the original example, and hence should be
much faster. On one system there was a twentyfold decrease in execution time be-
tween the two versions.

Recursion is sometimes said to be inefficient, and the following example looks at a
nonrecursive version of the second algorithm.

15.12 Example 10: After removing recursion
The following is a variant of the above, with the same algorithm, but with the re-
cursion removed:

PROGRAM ch1510
IMPLICIT NONE
INTEGER :: I,J,Result
INTEGER :: GCD

PRINT *,' Type in two integers'
READ *,I,J
Result=GCD(I,J)
PRINT *,' GCD is ',Result

END PROGRAM ch1510

INTEGER FUNCTION GCD(I,J)
IMPLICIT NONE
INTEGER , INTENT(INOUT) :: I,J
INTEGER :: Temp

DO WHILE (J/=0)
Temp=MOD(I,J)
I=J
J=Temp

Functions 217

END DO
GCD=I

END FUNCTION GCD

15.13 Pure functions
Within the world of mathematics there is the concept of a pure function. This
means that the function only returns a value, and has no effect on the arguments.
Fortran 95 introduced the ability to write user defined pure functions. We will pro-
vide examples in Chapter 26, when we have covered the additional syntax that is
required.

15.14 Elemental functions
Fortran 77 introduced the concept of generic intrinsic functions. Fortran 90 added
elemental intrinsic functions and the ability to write generic user defined functions.
Fortran 95 squares the circle and enables us to write elemental user defined func-
tions. We will show how this can be done in Chapter 26 when we have covered
the additional syntax that is required.

15.15 Internal functions
An internal function is a more restricted and hidden form of the normal function
definition.

Since the internal function is specified within a program segment, it may only be
used within that segment and cannot be referenced from any other functions or
subroutines, unlike the intrinsic or other user defined functions.

15.15.1 Example 11: Stirling's approximation

In this example we use Stirling's approximation for large n,

n n
n

e

n

! � �

�
	

�
�2�

and a complete program to use this internal function is given below:

PROGRAM ch1511
IMPLICIT NONE
REAL :: Result,N,R

PRINT *,' Type in N and R'
READ *,N,R

! NUMBER OF POSSIBLE COMBINATIONS THAT CAN
! BE FORMED WHEN
! R OBJECTS ARE SELECTED OUT OF A GROUP OF N

218 Chapter 15

! N!/R!(N-R)!
Result=Stirling(N)/(Stirling(R)*Stirling(N-R))
PRINT *,Result
PRINT *,N,R

CONTAINS
REAL FUNCTION Stirling (X)

REAL , INTENT(IN) :: X
REAL , PARAMETER :: PI=3.1415927, E =2.7182828
Stirling=SQRT(2.*PI*X) * (X/E)**X

END FUNCTION Stirling
END PROGRAM ch1511

The difference between this example and the earlier ones lies in the CONTAINS
statement. The function is now an integral part of the program and could not, for
example, be used elsewhere in another function. This provides us with a very pow-
erful way of information hiding and making the construction of larger programs
more secure and bug free.

15.16 Resumé
There are a large number of Fortran supplied functions and subroutines (intrinsic
functions) which extend the power and scope of the language. Some of these func-
tions are of generic type, and can take several different types of arguments. Others
are restricted to a particular type of argument. Appendix D should be consulted for
a fuller coverage concerning the rules that govern the use of the intrinsic functions
and procedures.

When the intrinsic functions are inadequate, it is possible to write user defined
functions. Besides expanding the scope of computation, such functions aid in prob-
lem visualisation and logical subdivision, may reduce duplication, and generally
help in avoiding programming errors.

In addition to separately defined user functions, internal functions may be em-
ployed. These are functions which are used within a program segment.

Although the normal exit from a user defined function is through the END, other,
abnormal, exits may be defined through the RETURN statement.

Communication with nonrecursive functions is through the function name and the
function arguments. The function must contain a reference to the function name on
the left-hand side of an assignment. Results may also be returned through the argu-
ment list.

We have also covered briefly the concept of scope for a variable, local variables,
and argument association. This area warrants a much fuller coverage and we will
do this after we have covered subroutines and modules.

Functions 219

15.17 Function syntax
The syntax of a function is:

[function prefix] function_statement &

[RESULT (Result_name)]

[specification part]

[execution_part]

[internal sub program part]

END [FUNCTION [function name]]

and prefix is:

[type specification] RECURSIVE

or

[RECURSIVE] type specification

and the function_statement is:

FUNCTION function_name ([dummy argument name list])

[] represent optional parts to the specification.

15.18 Rules and restrictions
The type of the function must only be specified once, either in the function state-
ment or in a type declaration.

The names must match between the function header and END FUNCTION func-
tion name statement.

If there is a RESULT clause, that name must be used as the result variable, so all
references to the function name are recursive calls.

The function name must be used to return a result when there is no RESULT
clause.

We will look at additional rules and restrictions in later chapters.

15.19 Problems
1. Find out the action of the MOD function when one of the arguments is negative.
Write your own modulus function to return only a positive remainder. Don't call it
MOD!

220 Chapter 15

2. Create a table which gives the sines, cosines and tangents for –1 to 91 degrees
in 1 degree intervals. Remember that the arguments have to be in radians. What
value will you give �? One possibility is �=4*atan(1.0). Pay particular attention to
the following angle ranges:

• –1,0,+1

• 29,30,31

• 44,45,46

• 59,60,61

• 89,90,91

What do you notice about sine and cosine at 0 and 90 degrees? What do you notice
about the tangent of 90 degrees? Why do you think this is?

Use a calculator to evaluate the sine, cosine at 0 and 90 degrees. Do the same for
the tangent at 90 degrees. Does this surprise you?

Repeat using a spreadsheet, e.g., Excel.

Are you surprised?

Repeat the Fortran program using one or more real kind types.

3. Write a program that will read in the lengths a and b of a right-angled triangle
and calculate the hypotenuse c. Use the Fortran SQRT intrinsic.

4. Write a program that will read in the lengths a and b of two sides of a triangle
and the angle between them
 (in degrees). Calculate the length of the third side c
using the cosine rule:

c a b abcos2 2 2 2� � � ()

5. Write a function to convert an integer to a binary character representation. It
should take an integer argument and return a character string that is a sequence of
zeros and ones. Use the program in Chapter 8 as a basis for the solution.

15.20 Bibliography
Abramowitz M., Stegun I., Handbook of Mathematical Functions, Dover, 1968.

• This book contains a fairly comprehensive collection of numerical algo-
rithms for many mathematical functions of varying degrees of obscurity. It
is a widely used source.

Association of Computing Machinery (ACM)

• Collected Algorithms, 1960–1974

Functions 221

• Transactions on Mathematical Software, 1975 —
A good source of more specialied algorithms. Early algorithms tended to
be in Algol, Fortran now predominates.

15.20.1 Recursion and problem solving

The following are a number of books that look at the role of recursion in problem
solving and algorithms.

Hofstader D. R., Gödel, Escher, Bach — an Eternal Golden Braid, Harvester
Press.

• The book provides a stimulating coverage of the problems of paradox and
contradiction in art, music and mathematics using the works of Escher,
Bach and Gödel, and hence the title. There is a whole chapter on recursive
structures and processes. The book also covers the work of Church and
Turing, both of whom have made significant contributions to the theory of
computing.

Kruse R.L., Data Structures and Program Design, Prentice-Hall, 1994.

• Quite a gentle introduction to the use of recursion and its role in problem
solving. Good choice of case studies with explanations of solutions.
Pascal is used.

Sedgewick R., Algorithms in Modula 3, Addison-Wesley, 1993.

• Good source of algorithms. Well written. The GCD algorithm was taken
from this source.

Vowels R.A., Algorithms and Data Structures in F and Fortran, Unicomp, 1998.

• The only book currently that uses Fortran 90/95 and F. Visit the Fortran
web site for more details. They are the publishers.

http://www.fortran.com/fortran/market.html

Wirth N., Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

• In the context of this chapter the section on recursive algorithms is a very
worthwhile investment in time.

Wood D., Paradigms and Programming in Pascal, Computer Science Press.

• Contains a number of examples of the use of recursion in problem solv-
ing. Also provides a number of useful case studies in problem solving.

222 Chapter 15

16

Control Structures

“Summarizing: as a slow-witted human being I have a very small head and I had
better learn to live with it and to respect my limitations and give them full credit,
rather than try to ignore them, for the latter vain effort will be punished by fail-
ure.”

Edsger W. Dijkstra, Structured Programming

Aims
The aims of this chapter are to introduce:

• Selection among various courses of action as part of the algorithm.

• The concepts and statements in Fortran needed to support the above:

Logical expressions and logical operators.

One or more blocks of statements.

• The IF THEN ENDIF construct.

• The IF THEN ELSE IF ENDIF construct.

• To introduce the CASE statement with examples.

• To introduce the DO loop, in three forms with examples, in particular:

The iterative DO loop.

The DO WHILE form.

The DO ... IF THEN EXIT END DO or repeat until form.

The CYCLE statement.

The EXIT statement.

16 Control Structures

When we look at this area it is useful to gain some historical perspective concern-
ing the control structures that are available in a programming language.

At the time of the development of Fortran in the 1950s there was little theoretical
work around and the control structures provided were very primitive and closely
related to the capability of the hardware.

At the time of the first standard in 1966 there was still little published work re-
garding structured programming and control structures. The seminal work by Dahl,
Dijkstra and Hoare was not published until 1972.

By the time of the second standard there was a major controversy regarding lan-
guages with poor control structures like Fortran which essentially were limited to
the GOTO statement. The facilities in the language had led to the development and
continued existence of major code suites that were unintelligible, and the pejorative
term spaghetti was applied to these programs. Developing an understanding of
what a program did became an almost impossible task in many cases.

Fortran missed out in 1977 on incorporating some of the more modern and intelli-
gible control structures that had emerged as being of major use in making code
easier to understand and modify.

It was not until the 1990 standard that a reasonable set of control structures had
emerged and became an accepted part of the language. The more inquisitive reader
is urged to read at least the work by Dahl, Dijkstra and Hoare to develop some un-
derstanding of the importance of control structures and the role of structured
programming. The paper by Knuth is also highly recommended as it provides a
very balanced coverage of the controversy of earlier times over the GOTO state-
ment.

16.1 Selection among courses of action
In most problems you need to choose among various courses of action, e.g.,

• If overdrawn, then do not draw money out of the bank.

• If Monday, Tuesday, Wednesday, Thursday or Friday, then go to work.

• If Saturday, then go to watch Queens Park Rangers.

• If Sunday, then lie in bed for another two hours.

As most problems involve selection between two or more courses of action it is
necessary to have the concepts to support this in a programming language. Fortran
has a variety of selection mechanisms, some of which are introduced below.

224 Chapter 16

16.1.1 The BLOCK IF statement

The following short example illustrates the main ideas:

. wake up

.

. check the date and time
IF (Today = = Sunday) THEN

.

. lie in bed for another two hours

.
ENDIF
.
. get up
. make breakfast

If today is Sunday then the block of statements between the IF and the ENDIF is
executed. After this block has been executed the program continues with the state-
ments after the ENDIF. If today is not Sunday the program continues with the
statements after the ENDIF immediately. This means that the statements after the
ENDIF are executed whether or not the expression is true. The general form is:

IF (Logical expression) THEN
.
Block of statements
.

ENDIF

The logical expression is an expression that will be either true or false; hence its
name. Some examples of logical expressions are given below:

(Alpha >= 10.1)

Test if Alpha is greater than or equal to 10.1

(Balance <= 0.0)

Test if overdrawn

((Today == Saturday).OR.(Today == Sunday))

Test if today is Saturday or Sunday

((Actual - Calculated) <= 1.0E-6)

Test if Actual minus Calculated is less than or equal to 1.0E-6

Control Structures 225

Fortran has the following relational and logical operators:

Operator Meaning Type

= = Equal Relational
/= Not equal Relational
>= Greater than or equal Relational
<= Less than or equal Relational
< Less than Relational
> Greater than Relational
.AND. And Logical
.OR. Or Logical
.NOT. Not Logical

The first six should be self-explanatory. They enable expressions or variables to be
compared and tested. The last three enable the construction of quite complex com-
parisons, involving more than one test; in the example given earlier there was a
test to see whether today was Saturday or Sunday.

Use of logical expressions and logical variables (something not mentioned so far)
is covered again in a later chapter on logical data types.

The 'IF expression THEN statements ENDIF' is called a BLOCK IF construct.
There is a simple extension to this provided by the ELSE statement. Consider the
following example:

IF (Balance > 0.0) THEN
. draw money out of the bank

ELSE
. borrow money from a friend

ENDIF
Buy a round of drinks.

In this instance, one or other of the blocks will be executed. Then execution will
continue with the statements after the ENDIF statement (in this case buy a round).

There is yet another extension to the BLOCK IF which allows an ELSEIF state-
ment. Consider the following example:

IF (Today == Monday) THEN
.

ELSEIF (Today == Tuesday) THEN

226 Chapter 16

.
ELSEIF (Today == Wednesday) THEN

.
ELSEIF (Today == Thursday) THEN

.
ELSEIF (Today == Friday) THEN

.
ELSEIF (Today == Saturday) THEN

.
ELSEIF (Today == Sunday) THEN

.
ELSE

there has been an error. The variable Today has
taken on an illegal value.

ENDIF

Note that as soon as one of the logical expressions is true, the rest of the test is
skipped, and execution continues with the statements after the ENDIF. This implies
that a construction like

IF(I < 2)THEN
...

ELSEIF(I < 1)THEN
...

ELSE
...

ENDIF

is inappropriate. If I is less than 2, the latter condition will never be tested. The
ELSE statement has been used here to aid in trapping errors or exceptions. This is
recommended practice. A very common error in programming is to assume that the
data are in certain well-specified ranges. The program then fails when the data go
outside this range. It makes no sense to have a day other than Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday or Sunday.

16.1.2 Example 1: Quadratic roots

A quadratic equation is:

a x b x c2 0� � �

This program is straightforward, with a simple structure. The roots of the quadratic
are either real, equal and real, or complex depending on the magnitude of the term
B ** 2 – 4 * A * C. The program tests for this term being greater than or less than

Control Structures 227

zero: it assumes that the only other case is equality to zero (from the mechanics of
a computer, floating point equality is rare, but we are safe in this instance):

PROGRAM ch1601
IMPLICIT NONE
REAL :: A , B , C , Term , A2 , Root1 , Root2
!
! a b and c are the coefficients of the terms
! a*x**2+b*x+c
! find the roots of the quadratic, root1 and root2
!

PRINT*,' GIVE THE COEFFICIENTS A, B AND C'
READ*,A,B,C
Term = B*B - 4.*A*C
A2 = A*2.

! if term < 0, roots are complex
! if term = 0, roots are equal
! if term > 0, roots are real and different

IF(Term < 0.0)THEN
PRINT*,' ROOTS ARE COMPLEX'

ELSEIF(Term > 0.0)THEN
Term = SQRT(Term)
Root1 = (-B+Term)/A2
Root2 = (-B-Term)/A2
PRINT*,' ROOTS ARE ',Root1,' AND ',Root2

ELSE
Root1 = -B/A2
PRINT*,' ROOTS ARE EQUAL, AT ',Root1

ENDIF
END PROGRAM ch1601

16.1.3 Note

Given the understanding you now have about real arithmetic and finite precision
will the ELSE block above ever be executed?

16.1.4 Example 2: Date calculation

This next example is also straightforward. It demonstrates that, even if the condi-
tions on the IF statement are involved, the overall structure is easy to determine.
The comments and the names given to variables should make the program
self-explanatory. Note the use of integer division to identify leap years:

PROGRAM ch1602
IMPLICIT NONE

228 Chapter 16

INTEGER :: Year , N , Month , Day , T
!
! calculates day and month from year and
! day-within-year
! t is an offset to account for leap years.
! Note that the first criteria is division by 4
! but that centuries are only
! leap years if divisible by 400
! not 100 (4 * 25) alone.
!

PRINT*,' year, followed by day within year'
READ*,Year,N

! checking for leap years
IF ((Year/4)*4 == Year) THEN

T=1
IF ((Year/400)*400 == Year) THEN

T=1
ELSEIF ((Year/100)*100 == Year) THEN

T=0
ENDIF

ELSE
T=0

ENDIF
! accounting for February

IF(N > (59+T))THEN
Day=N+2-T

ELSE
Day=N

ENDIF
Month=(Day+91)*100/3055
Day=(Day+91)-(Month*3055)/100
Month=Month-2
PRINT*,' CALENDAR DATE IS ', Day , Month , Year

END PROGRAM ch1602

16.1.5 The CASE statement

The CASE statement provides a very clear and expressive selection mechanism be-
tween two or more courses of action. Strictly speaking it could be constructed from
the IF THE ELSE IF ENDIF statement, but with considerable loss of clarity. Re-
member that programs have to be read and understood by both humans and
compilers!

Control Structures 229

16.1.6 Example 3: Simple calculator
PROGRAM ch1603
IMPLICIT NONE
!
! Simple case statement example
!

INTEGER :: I,J,K
CHARACTER :: Operator

DO
PRINT *,' Type in two integers'
READ *, I,J
PRINT *,' Type in operator'
READ '(A)',Operator
Calculator : &
SELECT CASE (Operator)

CASE ('+') Calculator
K=I+J
PRINT *,' Sum of numbers is ',K

CASE ('-') Calculator
K=I-J
PRINT *,' Difference is ',K

CASE ('/') Calculator
K=I/J
PRINT *,' Division is ',K

CASE ('*') Calculator
K=I*J
PRINT *,' Multiplication is ',K

CASE DEFAULT Calculator
EXIT

END SELECT Calculator
END DO

END PROGRAM ch1603

The user is prompted to type in two integers and the operation that they would like
carried out on those two integers. The CASE statement then ensures that the appro-
priate arithmetic operation is carried out. The program terminates when the user
types in any character other than +, -, * or /.

The CASE DEFAULT option introduces the EXIT statement. This statement is
used in conjunction with the DO statement. When this statement is executed con-
trol passes to the statement immediately after the matching END DO statement. In

230 Chapter 16

the example above the program terminates, as there are no executable statements
after the END DO.

16.1.7 Example 4: Counting vowels, consonants, etc.

This example is more complex, but again is quite easy to understand. The user
types in a line of text and the program produces a summary of the frequency of the
characters typed in:

PROGRAM ch1604
IMPLICIT NONE
!
! Simple counting of vowels, consonants,
! digits, blanks and the rest
!
INTEGER :: Vowels=0 , Consonants=0, Digits=0
INTEGER :: Blank=0, Other=0, I
CHARACTER :: Letter
CHARACTER (LEN=80) :: Line

READ '(A)', Line
DO I=1,80

Letter=Line(I:I)
! the above extracts one character at position I

SELECT CASE (Letter)
CASE ('A','E','I','O','U', &

'a','e','i','o','u')
Vowels=Vowels + 1

CASE ('B','C','D','F','G','H', &
'J','K','L','M','N','P', &
'Q','R','S','T','V','W', &
'X','Y','Z', &
'b','c','d','f','g','h', &
'j','k','l','m','n','p', &
'q','r','s','t','v','w', &
'x','y','z')

Consonants=Consonants + 1
CASE ('1','2','3','4','5','6','7','8','9','0')

Digits=Digits + 1
CASE (' ')

Blank=Blank + 1
CASE DEFAULT

Other=Other+1
END SELECT

END DO

Control Structures 231

PRINT *, ' Vowels = ', Vowels
PRINT *, ' Consonants = ', Consonants
PRINT *, ' Digits = ', Digits
PRINT *, ' Blanks = ',Blank
PRINT *, ' Other characters = ', Other

END PROGRAM ch1604

16.2 The three forms of the DO statement
You have already been introduced in the chapters on arrays to the iterative form of
the DO loop, i.e.,

DO Variable = Start, End, Increment

block of statements

END DO

A complete coverage of this form is given in the three chapters on arrays.

There are two additional forms of the block DO that complete our requirements:

DO WHILE (Logical Expression)

block of statements

ENDDO

and

DO

block of statements

IF (Logical Expression) EXIT

END DO

The first form is often called a WHILE loop as the block of statements executes
whilst the logical expression is true, and the second form is often called a RE-
PEAT UNTIL loop as the block of statements executes until the statement is true.

Note that the WHILE block of statements may never be executed, and the RE-
PEAT UNTIL block will always be executed at least once.

16.2.1 Example 5: Sentinel usage

The following example shows a complete program using this construct:

PROGRAM ch1605
IMPLICIT NONE
! this program picks up the first occurrence

232 Chapter 16

! of a number in a list.
! a sentinel is used, and the array is 1 more
! than the max size of the list.
INTEGER , ALLOCATABLE , DIMENSION(:) :: A
INTEGER :: Mark
INTEGER :: I,Howmany

OPEN (UNIT=1,FILE='DATA')
PRINT *,' What number are you looking for?'
READ *, Mark
PRINT *,' How many numbers to search?'
READ *,Howmany
ALLOCATE(A(1:Howmany+1))
READ(UNIT=1,FMT=*) (A(i),I=1,Howmany)
I=1
A(Howmany+1)= Mark
DO WHILE(Mark /= A(I))

I=I+1
END DO
IF(I == (Howmany+1)) THEN

PRINT*,' ITEM NOT IN LIST'
ELSE

PRINT*,' ITEM IS AT POSITION ',I
ENDIF

END PROGRAM ch1605

The repeat until construct is written in Fortran as:

DO
...
...

IF (Logical Expression) EXIT
END DO

There are problems in most disciplines that require a numerical solution. The two
main reasons for this are either that the problem can only be solved numerically or
that an analytic solution involves too much work. Solutions to this type of problem
often require the use of the repeat until construct. The problem will typically re-
quire the repetition of a calculation until the answers from successive evaluations
differ by some small amount, decided generally by the nature of the problem. A
program extract to illustrate this follows:

REAL , PARAMETER :: TOL=1.0E-6
.

Control Structures 233

DO
...
CHANGE=
...
IF (CHANGE <= TOL) EXIT

END DO

Here the value of the tolerance is set to 1.0E–6. Note again the use of the EXIT
statement. The DO END DO block is terminated and control passes to the state-
ment immediately after the matching END DO.

16.2.2 CYCLE and EXIT

These two statements are used in conjunction with the block DO statement. You
have seen examples above of the use of the EXIT statement to terminate the block
DO, and pass control to the statement immediately after the corresponding END
DO statement.

The CYCLE statement can appear anywhere in a block DO and will immediately
pass control to the start of the block DO. Examples of CYCLE and EXIT are given
in later chapters.

16.2.3 Example 6: e**x evaluation

The function etox illustrates one use of the repeat until construct. The function
evaluates e**x. This may be written as

1 + x/1! + x2/2! + x3/3! ...

or

1
11

1

�
��

� �

�
n

nx

n

x

n()!

Every succeeding term is just the previous term multiplied by x/n. At some point
the term x/n becomes very small, so that it is not sensibly different from zero, and
successive terms add little to the value. The function therefore repeats the loop un-
til x/n is smaller than the tolerance. The number of evaluations is not known
beforehand, since this is dependent on x:

REAL FUNCTION etox(X)
IMPLICIT NONE
REAL :: Term
REAL , INTENT(IN) :: X
INTEGER :: Nterm
REAL , PARAMETER ::Tol = 1.0E-6

etox=1.0

234 Chapter 16

Term=1.0
Nterm=0
DO

Nterm = Nterm +1
Term =(X / Nterm) * Term
etox = etox + Term
IF(ABS(Term) <= Tol)EXIT

END DO
END FUNCTION etox

program ch1606
implicit none
real :: etox
real , parameter :: x=1.0
real :: y

print *,' Fortran intrinsic ',exp(x)
y=etox(x)
print *,' User defined etox ',y

end program ch1606

The whole program compares the user defined function with the Fortran intrinsic
exp function.

16.2.4 Example 7: Wave breaking on an offshore reef

This example is drawn from a situation where a wave breaks on an offshore reef or
sand bar, and then reforms in the near-shore zone before breaking again on the
coast. It is easier to observe the heights of the reformed waves reaching the coast
than those incident to the terrace edge.

Both types of loops are combined in this example. The algorithm employed here
finds the zero of a function. Essentially, it finds an interval in which the zero must
lie; the evaluations on either side are of different signs. The while loop ensures
that the evaluations are of different signs, by exploiting the knowledge that the in-
cident wave height must be greater than the reformed wave height (to give the
lower bound). The upper bound is found by experiment, making the interval bigger
and bigger. Once the interval is found, its mean is used as a new potential bound.
The zero must lie on one side or the other; in this fashion, the interval containing
the zero becomes smaller and smaller, until it lies within some tolerance. This ap-
proach is rather plodding and unexciting, but is suitable for a wide range of
problems

Here is the program:

Control Structures 235

PROGRAM Break
IMPLICIT NONE
REAL :: Hi , Hr , Hlow , High , Half , Xl
REAL :: Xh , Xm , D
REAL , PARAMETER :: Tol=1.0E-6
! problem - find hi from expression given
! in function f
! F=A*(1.0-0.8*EXP(-0.6*C/A))-B
! HI IS INCIDENT WAVE HEIGHT (C)
! HR IS REFORMED WAVE HEIGHT (B)
! D IS WATER DEPTH AT TERRACE EDGE (A)

PRINT*,' Give reformed wave height, and water depth'
READ*,Hr,d

!
! for Hlow- let Hlow=hr
! for high- let high=Hlow*2.0
!
! check that signs of function results are different
!

Hlow = Hr
High = Hlow*2.0
Xl = F(Hlow, Hr, D)
Xh = F(High, Hr, D)

!
DO WHILE ((XL*XH) >= 0.0)

HIGH = HIGH*2.0
XH = F(HIGH,HR,D)

END DO
!

DO
HALF=(HLOW+HIGH)*0.5
XM=F(HALF,HR,D)
IF((XL*XM) < 0.0)THEN

XH=XM
HIGH=HALF

ELSE
XL=XM
HLOW=HALF

ENDIF
IF(ABS(HIGH-HLOW)<= TOL)EXIT

END DO
PRINT*,' Incident Wave Height Lies Between'

236 Chapter 16

PRINT*,Hlow,' and ',High,' metres'
CONTAINS
REAL FUNCTION F(A,B,C)
IMPLICIT NONE
REAL , INTENT (IN) :: A
REAL , INTENT (IN) :: B
REAL , INTENT (IN) :: C

F=A*(1.0-0.8*EXP(-0.6*C/A))-B
END FUNCTION F
END PROGRAM Break

16.3 Summary
You have been introduced in this chapter to several control structures and these in-
clude:

• The block if.

• The if then else if.

• The case construct.

• The block do in three forms:

• The iterative do or do variable=start,end,increment ... end do.

• The while construct, or do while ... end do.

• The repeat until construct, or do ... if then exit end do.

• The cycle and exit statements, which can be used with do statement in all
three forms:

• The do variable = start,end,increment ... end do.

• The while construct, or do while ... end do.

• The repeat until construct, or do ... if then exit end do.

These constructs are sufficient for solving a wide class of problems. There are
other control statements available in Fortran, especially those inherited from For-
tran 66 and Fortran 77, but those covered here are the ones preferred. We will look
in Chapter 28 at one more control statement, the so-called GOTO statement, with
recommendations as to where its use is appropriate.

16.3.1 Control structure formal syntax

CASE

Control Structures 237

SELECT CASE (case variable)
[CASE case selector

[executable construct] ...] ...
[CASE DEFAULT
[executable construct]

END SELECT

DO

DO [label]
[executable construct] ...

do termination

DO [label] [,] loop variable = initial value ,
final value , [increment]

[executable construct] ...
do termination

DO [label] [,] WHILE (scalar logical expression)
[executable construct] ...

do termination

IF

IF (scalar logical expression) THEN
[executable construct] ...

[ELSE IF (scalar logical expression THEN
[executable construct] ...] ...]

[ELSE
[executable construct] ...]

END IF

16.4 Problems
1. Rewrite the program for the period of a pendulum. The new program should
print out the length of the pendulum and period, for pendulum lengths from 0 to
100 cm in steps of 0.5 cm. The program should incorporate a function for the eval-
uation of the period.

2. Write a program to read an integer that must be positive.

Hint. Use a DO WHILE to make the user re-enter the value.

3. Using functions, do the following:

• Evaluate n! from n = 0 to n = 10.

238 Chapter 16

• Calculate 76!

• Now calculate (x**n)/n!, with x = 13.2 and n = 20.

• Now do it another way.

4. The program BREAK is taken from a real example. In the particular problem,
the reformed wave height was 1 metre, and the water depth at the reef edge was 2
metres. What was the incident wave height? Rather than using an absolute value
for the tolerance, it might be more realistic to use some value related to the re-
formed wave height. These heights are unlikely to be reported to better than about
5% accuracy. Wave energy may be taken as proportional to wave height squared
for this example. What is the reduction in wave energy as a result of breaking on
the reef or bar for this particular case.

5. What is the effect of using INT on negative real numbers? Write a program to
demonstrate this.

6. How would you find the nearest integer to a real number? Now do it another
way. Write a program to illustrate both methods. Make sure you test it for negative
as well as positive values.

7. The function etox has been given in this chapter. The standard Fortran function
EXP does the same job. Do they give the same answers? Curiously the Fortran
standard does not specify how a standard function should be evaluated, or even
how accurate it should be.

The physical world has many examples in which processes require that some
threshold be overcome before they begin operation: critical mass in nuclear reac-
tions, a given slope to be exceeded before friction is overcome, and so on.
Unfortunately, most of these sorts of calculations become rather complex and not
really appropriate here. The following problem tries to restrict the range of calcula-
tion, whilst illustrating the possibilities of decision making.

8. If a cubic equation is expressed as

z a z a z a3

2

2

1 0 0� � � �

and we let

q
a a a

� �1 2 2

3 9

(*)

and

r
a a a a a a

�
�

�
(* *) (* *)1 2 0 2 2 23

6 27

Control Structures 239

we can determine the nature of the roots as follows:

q3 + r2 > 0; one real root and a pair of complex
q3 + r2 = 0; all roots real, and at least two equal
q3 + r2 < 0; all roots real

Incorporate this into a suitable program, to determine the nature of the roots of a
cubic from suitable input.

9. The form of breaking waves on beaches is a continuum, but for convenience we
commonly recognise three major types: surging, plunging and spilling. These may
be classified empirically by reference to the wave period, T (seconds), the breaker
wave height, Hb (metres), and the beach slope, m. These three variables are com-
bined into a single parameter, B, where

B = Hb/(gmT2)

g is the gravitational constant (981 cm s–2). If B is less than 0.003, the breakers are
surging; if B is greater than 0.068, they are spilling, and between these values,
plunging breakers are observed.

(i) On the east coast of New Zealand, the normal pattern is swell waves, with wave
heights of 1 to 2 metres and wave periods of 10 to 15 seconds. During storms, the
wave period is generally shorter, say 6 to 8 seconds, and the wave heights higher,
3 to 5 metres. The beach slope may be taken as about 0.1. What changes occur in
breaker characteristics as a storm builds up?

(ii) Similarly, many beaches have a concave profile. The lower beach generally has
a very low slope, say less than 1 degree (m = 0.018), but towards the high-tide
mark, the slope increases dramatically, to say 10 degrees or more (m = 0.18). What
changes in wave type will be observed as the tide comes in?

16.5 Bibliography
Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming, Academic
Press, 1972.

• This is the original text, and a must. The quote at the start of the chapter
by Dijkstra summarises beautifully our limitations when programming and
the discipline we must have to master programming successfully.

Knuth D.E., Structured Programming with GOTO Statements, in Current Trends in
Programming Methodology, Volume 1, Prentice-Hall, 1977.

• The chapter by Knuth provides a very succinct coverage of the arguments
for the adoption of structured programming, and dispels many of the
myths concerning the use of the GOTO statement. Highly recommended.

240 Chapter 16

17

Characters

“These metaphysics of magicians,
And necromantic books are heavenly;
Lines, circles, letters and characters.”

Christopher Marlowe, The Tragical History of Doctor Faustus

Aims
The aims of this chapter are:

• To extend the ideas about characters introduced in earlier chapters.

• To demonstrate that this enables us to solve a whole new range of prob-
lems in a satisfactory way.

17 Characters

For each type in a programming language there are the following concepts:

• Values are drawn from a finite domain.

• There are a restricted number of operations defined for each type.

For the numeric types we have already met, integers and reals:

• The values are either drawn from the domain of integer numbers or the
domain of real numbers.

• The valid operations are addition, subtraction, multiplication, division and
exponentiation.

For the character data type the basic unit is an individual character — any charac-
ter which is available on your keyboard normally. To ensure portability we should
restrict ourselves to the Fortran character set, that is:

• the alphabetic characters A through Z, the digits or numeric characters 0
through 9, and the underscore character _

which may be used in variable names, and the complete Fortran character set is
given in section 7.6 in Chapter 7.

This provides us with 58 printing characters and omits many commonly used char-
acters, e.g., lower case letters. However, if one does work with this set then one
can ensure that programs are portable.

As the most common current internal representation for the character data type
uses 8 bits this should provide access to 256 (28) characters. However, there is lit-
tle agreement over the encoding of these 256 possible characters, and the best you
can normally assume is access to the ASCII character set, which is given in Ap-
pendix B. One of the problems at the end of this chapter looks at determining what
characters one has available.

The only operations defined are concatenation (joining character strings together)
and comparison.

We will look into the area of character sets in more depth later in this chapter.

We can declare our character variables:

CHARACTER :: A, String, Line

Note that there is no default typing of the character variable (unlike integer and
real data types), and we can use any convenient name within the normal Fortran
conventions. In the declaration above, each character variable would have been

242 Chapter 17

permitted to store one character. This is limiting, and, to allow character strings
which are several units long, we have to add one item of information:

CHARACTER (10) :: A
CHARACTER (16) :: String
CHARACTER (80) :: Line

This indicates that A holds 10 characters, STRING holds 16, and LINE holds 80.
If all the character variables in a single declaration contain the same number of
characters, we can abbreviate the declaration to

CHARACTER(80) :: LIST, STRING, LINE

But we cannot mix both forms in the one declaration. We can now assign data to
these variables, as follows:

A='FIRST ONE '
STRING='A LONGER ONE '
LINE='THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG'

The delimiter apostrophe (') or quotation mark (“) is needed to indicate that this is
a character string (otherwise the assignments would have looked like invalid vari-
able names).

17.1 Character input
In an earlier chapter we saw how we could use the READ * and PRINT * state-
ments to do both numeric and character input and output or I/O. When we use this
form of the statement we have to include any characters we type within delimiters
(either the apostrophe ' or the quotation mark “). This is a little restricting and
there is a slightly more complex form of the READ statement that allows one to
just type the string on its own. The following two programs illustrate the differ-
ences:

PROGRAM ch1701
!
! Simple character i/o
!
CHARACTER (80) :: Line

READ *, Line
PRINT *, Line

END PROGRAM ch1701

This form requires enclosing the string with delimiters. Consider the next form:

Characters 243

PROGRAM ch1702
!
! Simple character i/o
!
CHARACTER (80) :: Line

READ '(A)' , Line
PRINT *,Line

END PROGRAM ch1702

With this form one can just type the string in and input terminates with the car-
riage return key. The additional syntax involves '(A)' where '(A)' is a character edit
descriptor. The simple examples we have used so far have used implied format
specifiers and edit descriptors. For each data type we have one or more edit
descriptors to choose from. For the character data type only the A edit descriptor is
available.

17.2 Character operators
The first manipulator is a new operator — the concatenation operator //. With this
operator we can join two character variables to form a third, as in

CHARACTER (5) :: FIRST, SECOND
CHARACTER (10) :: THIRD
FIRST='THREE'
SECOND='BLIND'
...
THIRD=FIRST//SECOND
.
THIRD=FIRST//'MICE'

Where there is a discrepancy between the created length of the concatenated string
and the declared lengths of the character strings, truncation will occur. For exam-
ple,

THIRD=FIRST//' BLIND MICE'

will only append the first five characters of the string ' BLIND MICE' i.e., ' BLIN',
and THIRD will therefore contain 'THREE BLIN'.

What would happen if we assigned a character variable of length 'n' a string which
was shorter than n? For example,

CHARACTER (4) :: C2
C2='AB'

244 Chapter 17

The remaining two characters are considered to be blank, that is, it is equivalent to
saying

C2='AB '

However, while the strings 'AB' and 'AB ' are equivalent, 'AB' and ' AB' are
not. In the jargon, the character strings are always left justified, and the unset char-
acters are trailing blanks.

If we concatenate strings which have 'trailing blanks', the blanks, or spaces, are
considered to be legitimate characters, and the concatenation begins after the end
of the first string. Thus

CHARACTER (4) :: C2,C3
CHARACTER (8) :: JJ
C2='A'
C3='MAN'
JJ=C2//C3
PRINT*, 'THE CONCATENATION OF ',C2,' AND ',C3,' IS'
PRINT*,JJ

would appear as

THE CONCATENATION OF A AND MAN GIVES

A MAN

at the terminal.

Sometimes we need to be able to extract parts of character variables — substrings.
The actual notation for doing this is a little strange at first, but it is very powerful.
To extract a substring we must reference two items:

• The position in the string at which the substring begins.

and

• The position at which it ends.

e.g.,

STRING='SHARE AND ENJOY'

17.3 Character substrings
We may extract parts of this string:

BIT=STRING(3:5)

Characters 245

would place the characters 'ARE' into the variable BIT. This may be manipulated
further:

BIT1=STRING(2:4)//STRING(9:9)
BIT2=STRING(5:5) // &
STRING(3:3)//STRING(1:1)//STRING(15:15)

Note that to extract a single character we reference its beginning position and its
end (i.e., repeat the same position), so that

STRING(3:3)

gives the single character 'A'. The substring reference can cut out either one of the
two numerical arguments. If the first is omitted, the characters up to and including
the reference are selected, so that

SUB=STRING(:5)

would result in SUB containing the characters 'SHARE'. When the second argu-
ment is omitted, the characters from the reference are selected, so that

SUB=STRING(11:)

would place the characters 'ENJOY' in the variable SUB. In these examples it
would also be necessary to declare STRING, SUB, BIT, BIT1 and BIT2 to be of
CHARACTER type, of some appropriate length.

Character variables may also form arrays:

CHARACTER (10) , DIMENSION(20) :: A

sets up a character array of twenty elements, where each element contains ten char-
acters. In order to extract substrings from these array elements, we need to know
where the array reference and the substring reference are placed. The array refer-
ence comes first, so that

DO I=1,20
FIRST=A(I)(1:1)

ENDO

places the first character of each element of the array into the variable FIRST. The
syntax is therefore 'position in array, followed by position within string'.

Any argument can be replaced by a variable:

STRING(I:J)

246 Chapter 17

This offers interesting possibilities, since we can, for example, strip blanks out of a
string:

PROGRAM ch1703
IMPLICIT NONE

CHARACTER(80) :: String, Strip
INTEGER :: IPOS,I,Length=80
IPOS=0
PRINT *,' Type in a string'
READ '(A)',String
DO I=1,Length

IF(String(I:I) /= ' ') THEN
IPOS=IPOS+1
Strip(IPOS:IPOS)=String(I:I)

ENDIF
END DO
PRINT*,String
PRINT*,Strip

END PROGRAM ch1703

17.4 Character functions
There are special functions available for use with character variables: INDEX will
give the starting position of a string within another string. If, for example, we were
looking for all occurrences of the string 'Geology' in a file, we could construct
something like:

PROGRAM ch1704
IMPLICIT NONE
CHARACTER (80) :: Line
INTEGER :: I

DO
READ '(A)', Line
I=INDEX(Line,'Geology')
IF (I /= 0) THEN

PRINT *, ' String Geology found at position ',I
PRINT *, ' in line ', Line
EXIT

ENDIF
ENDDO

END PROGRAM ch1704

There are two things to note about this program. Firstly the INDEX function will
only report the first occurrence of the string in the line; any later occurrences in

Characters 247

any particular line will go unnoticed, unless you account for them in some way.
Secondly, if the string does not occur, the result of the INDEX function is zero,
and given the infinite loop (DO ENDDO) the program will crash at run time with
an end of file error message. This isn't good programming practice.

LEN provides the length of a character string. This function is not immediately
useful, since you really ought to know how many characters there are in the string.
However, as later examples will show, there are some cases where it can be useful.
Remember that trailing blanks do count as part of the character string, and contrib-
ute to the length.

The following example illustrates the use of both LEN and LEN_TRIM:

PROGRAM ch1705
IMPLICIT NONE
CHARACTER (LEN=20) :: Name
INTEGER :: Name_Length

PRINT *,' Type in your name'
READ '(A)',Name

!
! show LEN first
!

Name_length=LEN(Name)
PRINT *,' Name length is ',Name_length
PRINT *,' ',Name(1:Name_length),'<-end is here'
Name_length=LEN_TRIM(Name)
PRINT *,' Name length is ',Name_length
PRINT *,' ',Name(1:Name_Length),'<-end is here'

END PROGRAM ch1705

17.5 Collating sequence
The next group of functions need to be considered together. They revolve around
the concept of a collating sequence. In other words, each character used in Fortran
is ordered as a list and given a corresponding weight. No two weights are equal.
Although Fortran has only 58 defined characters, the machine you use will gener-
ally have more; 95 printing characters is a typical minimum number. On this type
of machine the weights would vary from 0 to 94. There is a defined collating se-
quence, the ASCII sequence, which is likely to be the default. The parts of the
collating sequence which are of most interest are fairly standard throughout all col-
lating sequences.

In general, we are interested in the numerals (0–9), the alphabetics (A–Z) and a
few odds and ends like the arithmetic operators (+ – / *), some punctuation (. and
,) and perhaps the prime ('). As you might expect, 0–9 carry successively higher

248 Chapter 17

weights (though not the weights 0 to 9), as do A to Z. The other odds and ends are
a little more problematic, but we can find out the weights through the function
ICHAR. This function takes a single character as argument and returns an integer
value. The ASCII weights for the alphanumerics are as follows:

0–9 48–57

A–Z 65–90

One of the exercises is to determine the weights for other characters. The reverse
of this procedure is to determine the character from its weighting, which can be
achieved through the function CHAR. CHAR takes an integer argument and re-
turns a single character. Using the ASCII collating sequence, the alphabet would
be generated from

DO I=65,90
PRINT*,CHAR(I)

ENDDO

This idea of a weighting can then be used in four other functions:

Function Action

LLE Lexically less than or equal to
LGE Lexically greater than or equal to
LGT Lexically greater than
LLT Lexically less than

In the sequence we have seen before, A is lexically less than B, i.e., its weight is
less. Clearly, we can use ICHAR and get the same result. For example,

IF(LGT('A','B')) THEN

is equivalent to

IF(ICHAR('A') > ICHAR('B')) THEN

but these functions can take character string arguments of any length. They are not
restricted to single characters.

These functions provide very powerful tools for the manipulation of characters,
and open up wide areas of nonnumerical computing through Fortran. Text format-

Characters 249

ting and word processing applications may now be tackled (conveniently ignoring
the fact that lower-case characters may not be available).

There are many problems that require the use of character variables. These range
from the ability to provide simple titles on reports, or graphical output, to the pro-
vision of a natural language interface to one of your programs, i.e., the provision
of an English-like command language. Software Tools by Kernighan and Plauger
contains many interesting uses of characters in Fortran.

17.6 Summary
Characters represent a different data type to any other in Fortran, and as a conse-
quence there is a restricted range of operations which may be carried out on them.

A character variable has a length which must be assigned in a CHARACTER dec-
laration statement.

Character strings are delimited by apostrophes (') or quotation marks (“). Within a
character string, the blank is a significant character.

Character strings may be joined together (concatenated) with the // operator.

Substrings occurring within character strings may be also be manipulated. There
are a number of functions especially for use with characters:

• ACHAR

• ADJUSTL

• ADJUSTR

• CHAR

• IACHAR

• INDEX

• LEN

• LEN_TRIM

• LLE

• LGE

• LGT

• LLT

• REPEAT

• SCAN

250 Chapter 17

• TRIM

• VERIFY

17.7 Problems
1. Suggest some circumstances where PRIME='''' might be useful. What other al-
ternative is there and why do you think we use that instead?

2. Write a program to write out the weights for the Fortran character set. Modify
this program to print out the weights of the complete implementation defined char-
acter set for your version of Fortran 90. Is it ASCII? If not, how does it differ?

3. Use the INDEX function in order to find the location of all the strings 'IS' in the
following data:

IF A PROGRAMMER IS FOUND TO BE INDISPENSABLE, THE BEST
THING TO DO IS TO GET RID OF HIM AS QUICKLY AS POSSIBLE.

4. Find the 'middle' character in the following strings. Do you include blanks as
characters? What about punctuation?

PRACTICE IS THE BEST OF ALL INSTRUCTORS. EXPERIENCE IS A DEAR
TEACHER, BUT FOOLS WILL LEARN AT NO OTHER.

5. In English, the order of occurrence of the letters, from most frequent to least is

E, T, A, O, N, R, I, S, H, D, L, F, C, M, U, G, Y, P, W, B, V, K, X, J, Q, Z

Use this information to examine the two files given in Appendix D (one is a trans-
lation of the other) to see if this is true for these two extracts of text. The second
text is in medieval Latin (c. 1320). Note that a fair amount of compression has
been achieved by expressing the passage in Latin rather than modern English. Does
this provide a possible model for information compression?

6. A very common cypher is the substitution cypher, where, for example, every let-
ter A is replaced by (say) an M, every B is replaced by (say) a Y, and so on. These
encyphered messages can be broken by reference to the frequency of occurrence of
the letters (given in the previous question).

Since we know that (in English) E is the most commonly occurring letter, we can
assume that the most commonly occurring letter in the encyphered message repre-
sents an E; we then repeat the process for the next most common and so on. Of
course, these correspondences may not be exact, since the message may not be
long enough to develop the frequencies fully.

However, it may provide sufficient information to break the cypher.

Characters 251

The file given in Appendix E contains an encoded message. Break it. Clue — Pg
Fybdujuvef jo Tdjfodf, Jorge Luis Borges.

252 Chapter 17

18

Complex

“Make it as simple as possible, but no simpler.”

Albert Einstein

“'Can you do addition?' the White Queen asked. 'What's one and one and one and
one and one and one and one and one and one and one?' 'I don't know' said Alice.
'I lost count.' 'She can't do addition,' the Red Queen interrupted.”

Lewis Carroll, Through the Looking Glass and What Alice Found There.

Aims
The aims of this chapter are:

• To introduce the last predefined numeric data type in Fortran.

• To illustrate with examples how to use this type.

18 Complex

This variable type reflects an extension of the real data type available in Fortran —
the COMPLEX data type, where we can store and manipulate complex variables.
Problems that require this data type are restricted to certain branches of mathemat-
ics, physics and engineering. Complex numbers are defined as having a real and
imaginary part, i.e.,

a = x + iy

where i is the square root of –1.

They are not supported in many programming languages as a base type which
makes Fortran the language of first choice for many people.

To use this variable type we have to write the number as two parts, the real and
imaginary elements of the number, for example,

COMPLEX :: U
U=(1.0,2.0)

represents the complex number 1 + i2. Note that the complex number is enclosed
in brackets. We can do arithmetic on variables like this, and most of the intrinsic
functions such as LOG, SIN, COS, etc., accept a complex data type as argument.

All the usual rules about mixing different variable types, like reals and integers,
also apply to complex. Complex numbers are read in and written out in a similar
way to real numbers, but with the provision that, for each single complex value,
two format descriptors must be given. You may use either E or F formats (or in-
deed, mix them), as long as there are enough of them. Although you use brackets
around the pairs of numbers in a program, these must not appear in any input, nor
will they appear on the output.

Fortran has a number of functions which help to clarify the intent of mixed mode
expressions. The functions REAL, CMPLX and INT can be used to 'force' any
variable to real, complex or integer type.

There are a number of intrinsic functions to enable complex calculations to be per-
formed. The program segment below uses some of them:

COMPLEX:: Z, Z1,Z2,Z3,ZBAR
REAL :: X,Y,X1,Y1,X2,Y2,X3,Y3,ZMOD

Z1 = CMPLX (1.0, 2.0) ! 1 + i 2
Z2 = CMPLX(X2, Y2) ! X2 + i Y2
Z3 = CMPLX (X3, Y3) ! X3 + i Y3
Z = Z1*Z2 / Z3

254 Chapter 18

X = REAL(Z) ! real part of Z
Y = AIMAG (Z) ! imaginary part of Z
ZMOD = ABS(Z) ! modulus of Z
ZBAR = CONJG(Z) ! complex conjugate of Z

18.1 Example
The second order differential equation:

d y

d t

dy

dt
y x t

2

2
2� � � ()

could describe the behaviour of an electrical system, where x(t) is the input voltage
and y(t) is the output voltage and dy/dt is the current. The complex ratio

y w

x w
w j w

()

()
()� � � �1 2 12

is called the frequency response of the system because it describes the relationship
between input and output for sinusoidal excitation at a frequency of w and where j
is � 1. The following program segment reads in a value of w and evaluates the

frequency response for this value of w together with its polar form (magnitude and
phase):

PROGRAM ch1801
IMPLICIT NONE
!
! Program to calculate frequency response of a system
! for a given Omega
! and its polar form (magnitude and phase).
!
REAL :: Omega ,Real_part , Imag_part , Magnitude, Phase
COMPLEX:: Frequency_response
!
! Input frequency Omega
!

PRINT *, 'Input frequency'
READ *,Omega

!
Frequency_response = 1.0 / &

CMPLX(- Omega * Omega + 1.0 , 2.0 * Omega)
Real_part = REAL(Frequency_response)
Imag_part = AIMAG(Frequency_response)

!

Complex 255

! Calculate polar coordinates (magnitude and phase)
!

Magnitude = ABS(Frequency_response)
Phase = ATAN2 (Imag_part, Real_part)

!
PRINT *, ' At frequency ',Omega
PRINT *, 'Response = ', Real_part,' + I ',Imag_part
PRINT *, 'in Polar form'
PRINT *, ' Magnitude = ', Magnitude
PRINT *, ' Phase = ', Phase

END PROGRAM ch1801

18.2 Complex and kind type
The standard requires that there be a minimum of two kind types for real numbers
and this is also true of the complex data type. Chapter 8 must be consulted for a
full coverage of real kind types. We would therefore use something like the fol-
lowing to select a complex kind type other than the default:

INTEGER , PARAMETER ::
Long_Complex=SELECTED_REAL_KIND(15,307)
COMPLEX (Long_Complex) :: Z

Chapter 24 includes a good example of how to use modules to define and use pre-
cision throughout a program and subprogram units.

18.3 Summary
COMPLEX is used to store and manipulate complex numbers: those with a real
and an imaginary part.

There are standard functions which allow conversion between the numerical data
types — CMPLX, REAL and INT.

18.4 Problems
1. The program used in Chapter 15 which calculated the roots of a quadratic had to
abandon the calculation if the roots were complex. You should now be able to
remedy this, remembering that it is necessary to declare any complex variables. In-
stead of raising the expression to the power 0.5 in order to take its square root, use
the function SQRT. If you manage this to your satisfaction, try your skills on the
roots of a cubic (see the problems in Chapter 15).

256 Chapter 18

19

Logical

“A messenger yes/no semaphore
her black/white keys in/out whirl of morse
hoopooe signals salvation deviously.”

Nathaniel Tarn, The Laurel Tree

Aims
The aims of this chapter are:

• To examine the last predefined type available in Fortran: logical.

• To introduce the concepts necessary to use logical expressions effectively,
namely:

• Logical variables.

• Logical operators.

• The hierarchy of operations.

• Truth tables.

19 Logical

Often we have situations where we need ON/OFF, TRUE/FALSE or YES/NO
switches, and in such circumstances we can use LOGICAL type variables, e.g.,

LOGICAL :: FLAG

Logicals may take only two possible values, as shown in the following:

FLAG=.TRUE.

or

FLAG=.FALSE.

Note the full stops, which are essential. With a little thought you can see why they
are needed. You will already have met some of the ideas associated with logical
variables from IF statements:

IF(A == B) THEN
.

ELSE
.

ENDIF

The logical expression (A == B) returns a value true or false, which then deter-
mines the route to be followed; if the quantity is true, then we execute the next
statement, else we take the other route.

Similarly, the following example is also legitimate:

LOGICAL :: ANSWER
ANSWER=.TRUE.
...
IF (ANSWER) THEN

...
ELSE

...
ENDIF

Again the expression IF (ANSWER) is evaluated; here the variable ANSWER has
been set to .TRUE., and therefore the statements following the THEN are exe-
cuted. Clearly, conventional arithmetic is inappropriate with logicals. What does 2
times true mean? (very true?). There are a number of special operators for logicals:

258 Chapter 19

.NOT. which negates a logical value (i.e., changes true to false or vice
versa).

.AND. logical intersection.

.OR. logical union.

To illustrate the use of these operators, consider the following program extract:

LOGICAL :: A,B,C
A=.TRUE.
B=.NOT.A

! (B now has the value 'false')
C=A.OR.B

! (C has the value 'true')
C=A.AND.B

! (C now has the value 'false')

To gauge the effect of these operators on logicals, we can consult a truth table:

X1 X2 .NOT.X1 X1.AND.X2 X1.OR.X2

true true false true true

true false false false true

false true true false true

false false true false false

As with arithmetic operators, there is an order of precedence associated with the
logical operators:

.AND. is carried out before

.OR. and .NOT.

In dealing with logicals, the operations are carried out within a given level, from
left to right. Any expressions in brackets would be dealt with first. The logical op-
erators are a lower order of precedence than the arithmetic operators, i.e., they are
carried out later. A more complete operator hierarchy is therefore:

• Expressions within brackets.

• Exponentiation.

• Multiplication/division.

Logical 259

• Addition/subtraction.

• Relational logical (= =, >, <, >=, <= /=).

• .AND.

• .OR. and .NOT.

Although you can build up complicated expressions with mixtures of operators,
these are often difficult to comprehend, and it is generally more straightforward to
break 'big' expressions down into smaller ones whose purpose is more readily ap-
preciated.

Historically, logicals have not been in evidence extensively in Fortran programs,
although clearly there are occasions on which they are of considerable use. Their
use often aids significantly in making programs more modular and comprehensible.
They can be used to make a complex section of code involving several choices
much more transparent by the use of one logical function, with an appropriate
name. Logicals may be used to control output; e.g.,

LOGICAL :: DEBUG
...
DEBUG=.TRUE.
...
IF(DEBUG)THEN

...
PRINT *,'LOTS OF PRINTOUT'
...

ENDIF

ensures that, while debugging a program you have more output. Then, when the
program is correct, run with DEBUG=.FALSE.

Note that Fortran does try to protect you while you use logical variables. You can-
not do the following:

LOGICAL :: UP, DOWN
UP=DOWN+.FALSE.

or

LOGICAL :: A2
REAL DIMENSION(10):: OMEGA
.
A2=OMEGA(3)

260 Chapter 19

The compiler will note that this is an error, and will not permit you to run the pro-
gram. This is an example of strong typing, since only a limited number of
predetermined operations are permitted. The real, integer and complex variable
types are much more weakly typed (which helps lead to the confusion inherent in
mixing variable types in arithmetic assignments).

19.1 I/O
Since logicals may take only the values .TRUE. and .FALSE., the possibilities in
reading and writing logical values are clearly limited. The L edit descriptor or for-
mat allows logicals to be input and output. On input, if the first nonblank
characters are either T or .T, the logical value .TRUE. is stored in the correspond-
ing list item; if the first nonblank characters are F or .F, then .FALSE. is stored.
(Note therefore that reading, say, TED and FAHR in an L4 format would be ac-
ceptable.) If the first nonblank character is not F, T, .F or .T, then an error message
will be generated. On output, the value T or F is written out, right justified, with
blanks (if appropriate). Thus,

LOGICAL :: FLAG
FLAG=.TRUE.
PRINT 100, FLAG, .NOT.FLAG
100 FORMAT(2L3)

would produce

T F

at the terminal.

Assigning a logical variable to anything other than a .TRUE. or .FALSE. value in
your program will result in errors. The 'shorthand' forms of .T, .F, F and T are not
acceptable in the program.

19.2 Summary
Another type of data — logical — is also recognised. A LOGICAL variable may
take one of two values — true or false.

• There are special operators for manipulating logicals:

• .NOT.

• .AND.

• .OR.

• Logical operators have a lower order of precedence than any others.

Logical 261

19.3 Problems
1. Why are the full stops needed in a statement like A = .TRUE.?

2. Generate a truth table like the one given in this chapter.

3. Write a program which will read in numerical data from the terminal, but will
flag any data which is negative, and will also turn these negative values into posi-
tive ones.

262 Chapter 19

20

User Defined Types

“Russell's theory of types leads to certain complexities in the foundations of math-
ematics... Its interesting features for our purposes are that types are used to prevent
certain erroneous expressions from being used in logical and mathematical formu-
lae; and that a check against violation of type constraints can be made purely by
scanning the text, without any knowledge of the value which a particular symbol
might happen to have.”

C.A.R. Hoare, Structured Programming

Aims
The aim of this chapter is to introduce the concepts and ideas involved in using the
facilities offered in Fortran 90 for the construction and use of user defined types:

• The way in which we define our own types.

• The way in which we declare variables to be of a user defined type.

• The way in which we manipulate variables of our own types.

• The way in which we can nest types within types.

The examples are simple and are designed to highlight the syntax. More complex
and realistic examples of the use of user defined data types are to be found in later
chapters.

20 User Defined Types

In the coverage so far we have used the intrinsic types provided by Fortran. The
only data structuring technique available has been to construct arrays of these in-
trinsic types. Whilst this enables us to solve a reasonable variety of problems, it is
inadequate for many purposes. In this chapter we look at the facilities offered by
Fortran for the construction of our own types and how we manipulate data of these
new, user defined types.

With the ability to define our own types we can now construct aggregate data
types that have components of a variety of base types. These are often given the
name records in books on data structures. In mathematics the term cartesian prod-
uct is often used, and this is the terminology adopted by Hoare. We will stick to
the term records, as it is the one that is most commonly used in computing and
texts on programming.

There are two stages in the process of creating and using our own data types: we
must first define the type, and then create variables of this type.

20.1 Example 1: Dates
PROGRAM ch2001
IMPLICIT NONE
TYPE Date

INTEGER :: Day=1
INTEGER :: Month=1
INTEGER :: Year=2000

END TYPE Date
TYPE (Date) :: D

PRINT *,D%Day, D%Month, D%Year
PRINT *,' Type in the date, day, month, year'
READ *,D%Day, D%Month, D%Year
PRINT *,D%Day, D%Month, D%Year

END PROGRAM ch2001

This complete program illustrates both the definition and use of the type. It also
shows how you can define initial values within the type definition.

20.2 Type definition
The type Date is defined to have three component parts, comprising a day, a month
and a year, all of integer type. The syntax of a type construction comprises:

264 Chapter 20

TYPE Typename
Data Type :: Component_name
etc

END TYPE Typename

Reference can then be made to this new type by the use of a single word, Date,
and we have a very powerful example of the use of abstraction.

20.3 Variable definition
This is done by

TYPE (Typename) :: Variablename

and we then define a variable D to be of this new type. The next thing we do is
have a READ * statement that prompts the user to type in three integer values, and
the data are then echoed straight back to the user. We use the notation
Variablename%Component_Name to refer to each component of the new data
type.

20.4 Example 2: Address lists
PROGRAM ch2002
IMPLICIT NONE
TYPE Address

CHARACTER (LEN=40) :: Name
CHARACTER (LEN=60) :: Street
CHARACTER (LEN=60) :: District
CHARACTER (LEN=60) :: City
CHARACTER (LEN=8) :: Post_Code

END TYPE Address
INTEGER , PARAMETER :: N_of_Address=78
TYPE (Address) , DIMENSION(N_of_Address):: Addr
INTEGER :: I

OPEN(UNIT=1,FILE="ADDRESS.DAT")
DO I=1,N_of_Address

READ(UNIT=1,FMT='(A40)') Addr(I)%Name
READ(UNIT=1,FMT='(A60)') Addr(I)%Street
READ(UNIT=1,FMT='(A60)') Addr(I)%District
READ(UNIT=1,FMT='(A60)') Addr(I)%City
READ(UNIT=1,FMT='(A8)') Addr(I)%Post_Code

END DO
DO I=1,N_of_Address

PRINT *,Addr(I)%Name

User Defined Types 265

PRINT *,Addr(I)%Street
PRINT *,Addr(I)%District
PRINT *,Addr(I)%City
PRINT *,Addr(I)%Post_Code

END DO
END PROGRAM ch2002

In this example we define a type Address which has components that one would
expect for a person's address. We then define an array Addr of this type. Thus we
are now creating arrays of our own user defined types. We index into the array in
the way we would expect from our experience with integer, real and character ar-
rays. The complete example is rather trivial in a sense in that the program merely
reads from one file and prints the file out to the screen. However, it highlights
many of the important ideas of the definition and use of user defined types.

20.5 Example 3: Nested user defined types
The following example builds on the two data types already introduced. Here we
construct nested user defined data types based on them and construct a new data
type containing them both plus additional information:

PROGRAM ch2003
IMPLICIT NONE
TYPE Address

CHARACTER (LEN=60) :: Street
CHARACTER (LEN=60) :: District
CHARACTER (LEN=60) :: City
CHARACTER (LEN=8) :: Post_Code

END TYPE Address
TYPE Date_Of_Birth

INTEGER :: Day
INTEGER :: Month
INTEGER :: Year

END TYPE Date_Of_Birth
TYPE Personal

CHARACTER (LEN=20) :: First_Name
CHARACTER (LEN=20) :: Other_Names
CHARACTER (LEN=40) :: Surname
TYPE (Date_Of_Birth) :: DOB
CHARACTER (LEN=1) :: Sex
TYPE (Address) :: Addr

END TYPE Personal
INTEGER , PARAMETER :: N_People=2

266 Chapter 20

TYPE (Personal) , DIMENSION(N_People) :: P
INTEGER :: I

OPEN(UNIT=1,FILE='PERSON.DAT')
DO I=1,N_People

READ(1,FMT=10) P(I)%First_Name,&
P(I)%Other_Names,&
P(I)%Surname,&
P(I)%DOB%Day,&
P(I)%DOB%Month,&
P(I)%DOB%Year,&
P(I)%Sex,&
P(I)%Addr%Street,&
P(I)%Addr%District,&
P(I)%Addr%City,&

P(I)%Addr%Post_Code
10 FORMAT(A20,/,&

A20,/,&
A40,/,&
I2,1X,I2,1X,I4,/,&
A1,/,&
A60,/,&
A60,/,&
A60,/,&
A8)

END DO
DO I=1,N_People

WRITE(*,FMT=20) P(I)%First_Name,&
P(I)%Other_Names,&
P(I)%Surname,&
P(I)%DOB%Day,&
P(I)%DOB%Month,&
P(I)%DOB%Year,&
P(I)%Sex,&
P(I)%Addr%Street,&
P(I)%Addr%District,&
P(I)%Addr%City,&
P(I)%Addr%Post_Code

20 FORMAT(A20,A20,A40,/,&
I2,1X,I2,1X,I4,/,&
A1,/,&
A60,/,&
A60,/,&

User Defined Types 267

A60,/,&
A8)

END DO
END PROGRAM ch2003

Here we have a date of birth data type (Date_Of_Birth) based on the Date
data type from the first example, plus a slightly modified address data type, incor-
porated into a new data type comprising personal details. Note the way in which
we reference the component parts of this new, aggregate data type.

20.6 Problems
1. Modify the last example to include a more elegant printed name. The current ex-
ample will pad with blanks the first name, other names and surname and span 80
characters on one line, which looks rather ugly.

Add a new variable name which will comprise all three subcomponents and write
out this new variable, instead of the three subcomponents.

20.7 Bibliography
Dahl O.J., Dijkstra E.W., Hoare C.A.R., Structured Programming, Academic
Press, 1972.

• This is one of the earliest and best introductions to data structures and
structured programming. The whole book hangs together very well, and
the section on data structures is a must for serious programmers.

Vowels R.A., Algorithms and Data Structures in F and Fortran, Unicomp, 1989.

• One of the few books looking at algorithms and data structures using For-
tran.

Wirth N., Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

Wirth N., Algorithms + Data Structures, Prentice-Hall, 1986.

• The first is in Pascal, and the second in Modula 2.

Wood D., Paradigms and Programming in Pascal, Computer Science Press, 1984.

• Contains a number of examples of the use of recursion in problem solv-
ing. Also provides a number of useful case studies in problem solving.

268 Chapter 20

21

An Introduction
to Pointers

“The question naturally arises whether the analogy can be extended to a data struc-
ture corresponding to recursive procedures. A value of such a type would be
permitted to contain more than one component that belongs to the same type as it-
self; in the same way that a recursive procedure can call itself recursively from
more than one place in its own body.”

C.A.R. Hoare, Structured Programming

Aim
The primary aim of the chapter is to introduce some of the key concepts of point-
ers in Fortran.

21 An Introduction to Pointers

All of the data types introduced so far, with the exception of the allocatable array,
have been static. Even with the allocatable array a size has to be set at some stage
during program execution. The facilities provided in Fortran by the concept of a
pointer combined with those offered by a user defined type enable us to address a
completely new problem area, previously extremely difficult to solve in Fortran.
There are many problems where one genuinely does not know what requirements
there are on the size of a data structure. Linked lists allow sparse matrix problems
to be soved with minimal storage requirements, two-dimensional spatial problems
can be addressed with quad-trees and three-dimensional spatial problems can be
addressed with oct-trees. Many problems also have an irregular nature, and pointer
arrays address this problem.

First we need to cover some of the technical aspects of pointers. A pointer is a
variable that has the POINTER attribute. A pointer is associated with a target by
allocation or pointer assignment. A pointer becomes associated as follows:

• The pointer is allocated as the result of the successful execution of an AL-
LOCATE statement referencing the pointer

or

• The pointer is pointer-assigned to a target that is associated or is specified
with the TARGET attribute and, if allocatable, is currently allocated.

A pointer shall neither be referenced nor defined until it is associated. A pointer is
disassociated following execution of a DEALLOCATE or NULLIFY statement,
following pointer association with a disassociated pointer, or initially through
pointer initialisation.

A pointer may have a pointer association status of associated, disassociated, or un-
defined. Its association status may change during execution of a program. Unless a
pointer is initialised (explicitly or by default), it has an initial association status of
undefined. A pointer may be initialised to have an association status of disassoci-
ated.

Let us look at some examples to clarify these points.

21.1 Some basic pointer concepts
With the introduction of pointers as a data type into Fortran we also have the intro-
duction of a new assignment statement — the pointer assignment statement.
Consider the following example:

PROGRAM C2101
INTEGER , POINTER :: A,B

270 Chapter 21

INTEGER , TARGET :: C
INTEGER :: D
C = 1
A => C
C = 2
B => C
D = A + B
PRINT *,A,B,C,D

END PROGRAM C2101

The first declaration defines A and B to be variables, with the POINTER attribute.
This means we can use A and B to refer or point to integer values. Note that in
this case no space is set aside for the pointer variables A and B. A and B should
not be referenced in this state.

The second declaration defines C to be an integer, with the TARGET attribute, i.e.,
we can use pointers to refer or point to the value of the variable C.

The last declaration defines D to be an ordinary integer variable.

In the case of the last two declarations space is set aside to hold two integers.

Let us now look at the various executable statements in the program, one at a time:

C = 1 This is an example of the normal assignment statement with
which we are already familiar. We use the variable name C in
our program and whenever we use that name we get the value of
the variable C.

A => C This is an example of a pointer assignment statement. This means
that both A and C now refer to the same value, in this case 1. A
becomes associated with the target C. A can now be referenced.

C = 2 Conventional assignment statement, and C now has the value 2.

B = > C Second example of pointer assignment. B now points to the value
that C has, in this case 2. B becomes associated with the target C.
B can now be referenced.

D = A + B Simple arithmetic assignment statement. The value that A points
to is added to the value that B points to and the result is assigned
to D.

The last statement prints out the values of A, B, C and D.

The output is

2 2 2 4

An Introduction to Pointers 271

21.2 The ASSOCIATED intrinsic function
The ASSOCIATED intrinsic returns the association status of a pointer variable.
Consider the following example:

PROGRAM C2102
INTEGER , POINTER :: A,B
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,ASSOCIATED(A)
PRINT *,ASSOCIATED(B)
C = 1
A => C
C = 2
B => C
D = A + B
PRINT *,A,B,C,D
PRINT *,ASSOCIATED(A)
PRINT *,ASSOCIATED(B)

END PROGRAM C2102

The output from running this program with a number of compilers is shown below.

21.2.1 CVF 6.6C
F
F

2 2 2
4
T
T

21.2.2 Intel, Windows, 8.1
F
F
2 2 2 4
T
T

21.2.3 Lahey, Windows 5.70f
F
F
2 2 2 4
T

272 Chapter 21

T

21.2.4 NAG, Windows, 4.2
T
T
2 2 2 4
T
T

21.2.5 Salford 4.6.0
T
T

2 2 2
4

T
T

We have some differences, and the actual answer as to why is rather subtle. The
standard says that the ASSOCIATED function must not be called with a pointer
whose status is undefined. So in this program we have declared the pointers A and
B but their initial status is undefined. So in a sense all of the above could be re-
garded as correct, as the program breaks the standard!

The next example is a simple variant.

21.3 Referencing A and B before assignment
Consider the following example:

PROGRAM C2103
INTEGER , POINTER :: A,B
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,ASSOCIATED(A)
PRINT *,ASSOCIATED(B)
PRINT *,A
PRINT *,B
C = 1
A => C
C = 2
B => C
D = A + B
PRINT *,A,B,C,D
PRINT *,ASSOCIATED(A)

An Introduction to Pointers 273

PRINT *,ASSOCIATED(B)
END PROGRAM C2103

Here we are actually referencing the pointer, even though its status is undefined.
Most compilers generate a run time error with this example. However, the error
message tends to be a little cryptic. Some sample outputs with the default compila-
tion options follow

21.3.1 CVF
F
F

forrtl: severe (157): Program Exception - access
violation
Image PC Routine
Line Source
ch2003cvf.exe 00401098 C2003
7 ch2003.f90
ch2003cvf.exe 004266A9 Unknown
Unknown Unknown
ch2003cvf.exe 0041D9E4 Unknown
Unknown Unknown
kernel32.dll 7C816D4F Unknown
Unknown Unknown

21.3.2 Intel, Windows 8.1
F
F

forrtl: severe (157): Program Exception - access
violation
Image PC Routine
Line Source
ch2003intel.exe 0040106E Unknown
Unknown Unknown
ch2003intel.exe 0043DE2D Unknown
Unknown Unknown
ch2003intel.exe 00430D60 Unknown
Unknown Unknown
kernel32.dll 7C816D4F Unknown
Unknown Unknown

274 Chapter 21

21.3.3 Lahey, Windows 5.70f
F
F
jwe0019i-u The program was terminated abnormally with
Exception Code EXCEPTION_ACCESS_VIOLATION.
Error occurs at or near line 6 of _MAIN__

error summary (Fortran)
error number error level error count

jwe0019i u 1
total error count = 1

21.3.4 NAG, Windows 4.2
T
T

Segmentation fault (core dumped)

21.3.5 Salford 4.6.0
T
T

-2130131837
1
2 2 2

4
T
T

Some of the compilers give a clue with a line number. The Salford output is
interesting as the program actually ran to completion. Try and find compiler op-
tions that will provide better diagnostic error messages with your compiler.

21.4 The NULL intrinsic
Fortran 95 introduced the NULL intrinsic. The three previous examples are to a
degree examples of Fortran 90 style programming:

PROGRAM C2104
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,ASSOCIATED(A)
PRINT *,ASSOCIATED(B)
C = 1
A => C

An Introduction to Pointers 275

C = 2
B => C
D = A + B
PRINT *,A,B,C,D
PRINT *,ASSOCIATED(A)
PRINT *,ASSOCIATED(B)

END PROGRAM C2104

All compilers tested gave the same correct result. The recommendation is therefore
to always use the NULL intrinsic to provide pointer variables with a known value
of disassociated, rather than undefined.

21.5 Assignment via =
Consider the following two examples:

PROGRAM C2105
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

C = 1
A = 21
C = 2
B => C
D = A + B
PRINT *,A,B,C,D

END PROGRAM C2105

and

PROGRAM C2106
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

C = 1
A => C
C = 2
B = A
D = A + B
PRINT *,A,B,C,D

END PROGRAM C2106

Both of these will compile but both will generate run time errors. In the first pro-
gram the problems lies with the statement

276 Chapter 21

A = 21

and in the second case the problem lies with the statement

B = A

Below are the corrected versions of the programs

PROGRAM C2107
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

ALLOCATE(A)
C = 1
A = 21
C = 2
B => C
D = A + B
PRINT *,A,B,C,D

END PROGRAM C2107

and

PROGRAM C2108
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

ALLOCATE(B)
C = 1
A => C
C = 2
B = A
D = A + B
PRINT *,A,B,C,D

END PROGRAM C2108

Our recommendation when using pointers is to nullify them when declaring them
and to explicitly allocate them before using them when assigning a value via nor-
mal assignment.

An Introduction to Pointers 277

21.6 Singly linked list
Conceptually a singly linked lists consists of a sequence of boxes with compart-
ments. In the simplest case the first compartment holds a data item and the second
contains directions to the next box.

We can construct a data structure in Fortran to work with a singly linked list by
combining the concept of a record from the previous chapter with the new concept
of a pointer. A complete program to do this is given below:

PROGRAM C2109
TYPE Link

CHARACTER :: C
TYPE (Link) , POINTER :: Next

END TYPE Link
TYPE (Link) , POINTER :: Root , Current
INTEGER :: IO_Stat_Number=0

ALLOCATE(Root)
READ (UNIT = *, FMT = '(A)' , ADVANCE = 'NO' , &
IOSTAT = IO_Stat_Number) Root%C

IF (IO_Stat_Number == -1) THEN
NULLIFY(Root%Next)

ELSE
ALLOCATE(Root%Next)

ENDIF
Current => Root
DO WHILE (ASSOCIATED(Current%Next))

Current => Current%Next
READ (UNIT=*,FMT='(A)',ADVANCE='NO', &
IOSTAT=IO_Stat_Number) Current%C
IF (IO_Stat_Number == -1) THEN

NULLIFY(Current%Next)
ELSE

ALLOCATE(Current%Next)
ENDIF

END DO
Current => Root
DO WHILE (ASSOCIATED(Current%Next))

PRINT * , Current%C
Current => Current%Next

END DO
END PROGRAM C2109

278 Chapter 21

The behaviour of this program is system specific. You will have to look at your
compiler documentation regarding the IO_Stat_Number. The first thing of interest
is the type definition for the singly linked list. We have

TYPE Link
CHARACTER :: C
TYPE (Link) , POINTER :: Next

END TYPE Link

and we call the new type Link. It comprises two component parts: the first holds
a character C, and the second holds a pointer called Next to allow us to refer to
another instance of type Link. Remember we are interested in joining together
several boxes or Links.

The next item of interest is the variable definition. Here we define two variables
Root and Current to be pointers that point to items of type Link. In Fortran
when we define a variable to be a pointer we also have to define what it is allowed
to point to. This is a very useful restriction on pointers, and helps make using them
more secure.

The first executable statement

ALLOCATE(Root)

requests that the variable Root be allocated memory. At this time the contents of
both the character component and the pointer component are undefined.

The next statement reads a character from the keyboard. We are using a number of
additional features of the READ statement, including

ADVANCE='NO'
IOSTAT=IO_Stat_Number

and the two options combine to provide the ability to read an arbitrary amount of
text from the user per line, and terminate only when end of file is encountered as
the only input on a line, typically by typing CTRL Z. Note that the numbers re-
turned by the IOSTAT option are implementation specific. A small program would
have to be written to test the values returned for each platform.

If an end of file is reached then the pointer Root%Next is nullified using the
NULLIFY statement. This gives the pointer a status of disassociated, and this is a
convenient way of saying that it doesn't point to anything valid.

If the end of file is not detected then the next link in the chain is created.

An Introduction to Pointers 279

The statement

Current => Root

means that both Current and Root point to the same physical memory location,
and this holds a character data item and a pointer. We must do this as we have to
know where the start of the list is. This is now our responsibility, not the compil-
ers. Without this statement we are not able to do anything with the list except fill it
up — hardly very useful.

The WHILE loop is then repeated until end of file is reached. If the user had typed
an end of file immediately then Current%Next would not be ASSOCIATED,
and the WHILE loop would be skipped.

This loop allocates memory and moves down the chain of boxes one character at a
time filling in the links between the boxes as we go. We then have

Current => Root

and this now means that we are back at the start of the list, and in a position to tra-
verse the list and print out each character in the list.

There is thus the concept with the pointer variable Current of it providing us with a
window into memory where the complete linked list is held, and we look at one
part of the list at a time.

Both WHILE loops use the intrinsic function ASSOCIATED to check the associa-
tion status of a pointer.

It is recommended that this program be typed in, compiled and executed. It is sur-
prisingly difficult to believe that it will actually read in a completely arbitrary
number of characters from the user. Seeing is believing.

21.7 Reading in an arbitrary quantity of numeric data
In this example we will look at using a singly linked list to read in an arbitrary
quantity of data and then allocating an array to copy it to for normal numeric cal-
culations at run time:

PROGRAM C2110

TYPE Link
REAL :: N
TYPE (Link) , POINTER :: Next

END TYPE Link

TYPE (Link) , POINTER :: Root, Current

280 Chapter 21

INTEGER :: I=0
integer :: error=0
INTEGER :: IO_Stat_Number=0
integer :: blank_lines=0

real , allocatable , dimension(:) :: x

ALLOCATE(Root)
READ (UNIT = *, FMT = *, IOSTAT = IO_Stat_Number)

Root%N
IF (IO_Stat_Number > 0) THEN

error=error+1
else if (io_stat_number == -1) then

NULLIFY(Root%Next)
else if (io_stat_number == -2) then

blank_lines=blank_lines+1
ELSE

i=i+1
ALLOCATE(Root%Next)

ENDIF

Current => Root

DO WHILE (ASSOCIATED(Current%Next))

Current => Current%Next

READ (UNIT=*,FMT=*, IOSTAT=IO_Stat_Number)
Current%N

IF (IO_Stat_Number > 0) THEN
error=error+1

else if (io_stat_number == -1) then
NULLIFY(current%Next)

else if (io_stat_number == -2) then
blank_lines=blank_lines+1

ELSE
i=i+1
ALLOCATE(current%Next)

ENDIF

An Introduction to Pointers 281

END DO

print *,i,' items read'
print *,blank_lines,' blank lines'
print *,error,' items in error'

allocate(x(1:i))
i=1
Current => Root

DO WHILE (ASSOCIATED(Current%Next))
x(i)=current%n
i=i+1
PRINT * , Current%N
Current => Current%Next

END DO

print *,x

END PROGRAM C2110

Below is a variant on this using the NAG compiler. Note the use of a module and
meaningful names for the status of the read:

PROGRAM C2111

use f90_iostat

TYPE Link
REAL :: N
TYPE (Link) , POINTER :: Next

END TYPE Link

TYPE (Link) , POINTER :: Root, Current

INTEGER :: I=0
INTEGER :: IO_Stat_Number=0

ALLOCATE(Root)
READ (UNIT = *, FMT = *, IOSTAT = IO_Stat_Number)

Root%N
if (io_stat_number == ioerr_eof) then

NULLIFY(Root%Next)

282 Chapter 21

ELSE if(io_stat_number == ioerr_ok) then
i=i+1
ALLOCATE(Root%Next)

ENDIF

Current => Root

DO WHILE (ASSOCIATED(Current%Next))

Current => Current%Next

READ (UNIT=*,FMT=*, IOSTAT=IO_Stat_Number)
Current%N

if (io_stat_number == ioerr_eof) then
NULLIFY(current%Next)

ELSE if(io_stat_number == ioerr_ok) then
i=i+1
ALLOCATE(current%Next)

ENDIF

END DO

print *,i,' items read'

Current => Root

DO WHILE (ASSOCIATED(Current%Next))
PRINT * , Current%N
Current => Current%Next

END DO

END PROGRAM C2111

21.8 Arrays of pointers
Arrays in Fortran are rectangular, even when allocatable. So if you wish to set up a
lower triangular matrix that uses minimal memory you have to use arrays of point-
ers. The following examples show how to do this.

PROGRAM C2112
IMPLICIT NONE
TYPE Ragged

An Introduction to Pointers 283

REAL , DIMENSION(:) , POINTER :: Ragged_row
END TYPE
INTEGER :: i
INTEGER , PARAMETER :: n=3
TYPE (Ragged) , DIMENSION(1:n) :: Lower_Diag

DO i=1,n
ALLOCATE(Lower_Diag(i)%Ragged_Row(1:i))
PRINT *,' Type in the values for row ' , i
READ *,Lower_Diag(I)%Ragged_Row(1:i)

END DO
DO i=1,n

PRINT *,Lower_Diag(i)%Ragged_Row(1:i)
END DO

END PROGRAM C2112

The type Ragged has a component that is a pointer to an array. Within the first DO
loop we allocate a row at a time and each time we go around the loop the array al-
located increases in size.

21.9 Arrays of pointers and variable sized data sets — 1
In this example we use a parameter statement to set up the number of stations:

PROGRAM C2113
IMPLICIT NONE
TYPE Ragged

REAL , DIMENSION(:) , POINTER :: rainfall
END TYPE
INTEGER :: i
INTEGER , PARAMETER :: nr=5
INTEGER , DIMENSION (1:nr) :: nc
TYPE (ragged) , DIMENSION(1:nr) :: station

DO i=1,nr
PRINT *,' enter the number of data values' &
' for station ',i

READ *,nc(i)
ALLOCATE(station(i)%rainfall(1:nc(i)))
PRINT *,' Type in the values for station ' , i
READ *,station(i)%rainfall(1:nc(i))

END DO
DO i=1,nr

PRINT *,station(i)%rainfall(1:nc(i))
END DO

284 Chapter 21

END PROGRAM C2013

We read in the dimension or number of values for each station at run time, and al-
locate the space at run time.

21.10 Arrays of pointers and variable sized data sets — 2
In this example the number of stations is read in at run time:

PROGRAM C2114
IMPLICIT NONE
TYPE Ragged

REAL , DIMENSION(:) , POINTER :: rainfall
END TYPE
INTEGER :: i
INTEGER :: nr
iNTEGER , ALLOCATABLE , DIMENSION (:) :: nc
TYPE (ragged) , ALLOCATABLE , DIMENSION(:) :: station

PRINT *,' enter number of stations'
READ *,nr
ALLOCATE(station(1:nr))
ALLOCATE(nc(1:nr))
DO I=1,Nr

PRINT *,' enter the number of data values ' &
' for station ',i

READ *,nc(i)
ALLOCATE(station(i)%rainfall(1:nc(i)))
PRINT *,' Type in the values for station ' , I
READ *,station(i)%rainfall(1:nc(i))

END DO
DO i=1,nr

PRINT *,station(i)%rainfall(1:nc(i))
END DO

END PROGRAM C2114

In this example both the number of stations and the dimension for each station is
read in at run time and allocated accordingly.

21.11 Memory leak examples
Dynamic memory brings greater versatility but requires greater responsibility. Con-
sider the following example:

An Introduction to Pointers 285

PROGRAM C2115
IMPLICIT NONE
INTEGER :: Allocate_status=0
REAL , DIMENSION(:) , POINTER :: X
REAL , DIMENSION(1:10) , TARGET :: Y
INTEGER , PARAMETER :: SIZE=10000000
INTEGER :: I

ALLOCATE(X(1:SIZE),STAT=Allocate_status)
IF (allocate_status > 0) THEN

PRINT *,' Allocate failed. Program ends.'
STOP

ENDIF
! initialise the memory that x points to

DO I=1,SIZE
X(I)=I

END DO
! print out the first 10 values

DO I=1,10
PRINT *,X(I)

END DO
! initialise the array y

DO I=1,10
Y(I)=I*I

END DO
! print out y

DO I=1,10
PRINT *,Y(I)

END DO
! x now points to y

X=>Y
! print out what x now points to

DO I=1,10
PRINT *,X(I)

END DO
! what has happened to the memory that x
! used to point to?
END PROGRAM C2115

The next is a simple variant on the above:

PROGRAM C2116
IMPLICIT NONE
INTEGER :: Allocate_status=0

286 Chapter 21

REAL , DIMENSION(:) , POINTER :: X
REAL , DIMENSION(1:10) , TARGET :: Y
INTEGER , PARAMETER :: SIZE=10000000
INTEGER :: I

DO
ALLOCATE(X(1:SIZE),STAT=Allocate_status)
IF (allocate_status > 0) THEN

PRINT *,' Allocate failed. Program ends.'
STOP

ENDIF

! initialise the memory that x points to
DO I=1,SIZE

X(I)=I
END DO

! print out the first 10 values
DO I=1,10

PRINT *,X(I)
END DO

! initialise the array y
DO I=1,10

Y(I)=I*I
END DO

! print out y
DO I=1,10

PRINT *,Y(I)
END DO

! x now points to y
X=>Y

! print out what x now points to
DO I=1,10

PRINT *,X(I)
END DO

! what has happened to the memory that x
! used to point to?

end do
END PROGRAM C2116

Before running this example we recommend starting up a memory monitoring pro-
gram.

Under Microsoft Windows XP Professional holding [CTRL] + [ALT] + [DEL] will
bring up the Windows Task Manager. Choose the [Performance] tab to get a

An Introduction to Pointers 287

screen which will show CPU usage, PF Usage, CPU Usage History and Page File
Usage History. You will also get details of Physical and Kernel memory usage.

Under Linux type

top

in a terminal window.

In these examples we also see the recommended form of the ALLOCATE state-
ment when working with arrays. This enables us to test if the allocation has
worked and take action accordingly. A positive value indicates an allocation error,
zero indicates OK.

21.12 Nonstandard pointer examples
Some Fortran compilers provide a LOC intrinsic. The description from the CVF on
line documentation follows:

result = LOC (x)
x (Input) is a variable, an array or a record field reference, a procedure, or a con-
stant; it can be of any data type. It must not be the name of an internal procedure
or statement function. If it is a pointer, it must be defined and associated with a
target.

This returns the address of the variable passed. Below are four examples that show
some of what is happening behind the scenes when using pointer variables. We
have also included some sample output:

PROGRAM C2117
INTEGER , POINTER :: A,B
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)
PRINT *,LOC(d)
C = 1
A => C
C = 2
B => C
D = A + B
PRINT *,A,B,C,D
PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)

288 Chapter 21

PRINT *,LOC(d)
END PROGRAM C2117

CVF Output:

0
0

4424172
4424168

2 2 2
4

4424172
4424172
4424172
4424168

Lahey Output:

0
0
4456968
4456972
2 2 2 4
4456968
4456968
4456968
4456972

The value zero is often used to signify a special memory value in computing. After
the pointer assignments it is clear that all three variables point to the same value:

PROGRAM C2018
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)
PRINT *,LOC(d)
C = 1
A => C
C = 2
B => C
D = A + B

An Introduction to Pointers 289

PRINT *,A,B,C,D
PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)
print *,loc(d)

END PROGRAM C2018

CVF Output:

0
0

4424168
4424164

2 2 2
4

4424168
4424168
4424168
4424164

Lahey Output:

0
0
4456968
4456972
2 2 2 4
4456968
4456968
4456968
4456972

We have again the use of zero as the special memory value:

PROGRAM C2119
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,LOC(a)
PRINT *,LOC(b)
ALLOCATE(a)
ALLOCATE(b)
PRINT *,LOC(a)
PRINT *,LOC(b)

290 Chapter 21

PRINT *,LOC(c)
PRINT *,LOC(d)
C = 1
A => C
C = 2
B => C
D = A + B
PRINT *,A,B,C,D
PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)
PRINT *,LOC(d)

END PROGRAM C2119

CVF Output:

0
0

3292304
3292328
4424152
4424148

2 2 2
4

4424152
4424152
4424152
4424148

Lahey Output:

0
0
8915968
8916160
4457148
4457152
2 2 2 4
4457148
4457148
4457148
4457152

An Introduction to Pointers 291

In this example we actually use the ALLOCATE statement to set aside space for
the pointers. What is interesting in this example is that the original space set aside
becomes lost after the pointer assignments. This indicates a small memory leak:

PROGRAM C2020
INTEGER , POINTER :: A=>NULL(),B=>NULL()
INTEGER , TARGET :: C
INTEGER :: D

PRINT *,LOC(a)
PRINT *,LOC(b)
ALLOCATE(a)
ALLOCATE(b)
PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)
PRINT *,LOC(d)
C = 1
A = 21
C = 2
B = A
D = A + B
PRINT *,A,B,C,D
PRINT *,LOC(a)
PRINT *,LOC(b)
PRINT *,LOC(c)
PRINT *,LOC(d)

END PROGRAM C2020

CVF Output:

0
0

3292304
3292328
4424152
4424148

21 21 2 42
3292304
3292328
4424152
4424148

Lahey Output:

292 Chapter 21

0
0
8915968
8916160
4457152
4457156
21 21 2 42
8915968
8916160
4457152
4457156

In this case the addresses for A and B remain the same as for a normal assignment,
not a pointer assignment.

21.13 Problems
1. Compile and run all of the example programs in this chapter with your compiler
and examine the output.

2. There are a number of ways of handling exceptions with the READ statement,
and we have used the IOSTAT option in this chapter. Consider the following pro-
gram:

PROGRAM C2102p
INTEGER :: IO_Stat_Number=0
INTEGER :: I

DO
READ (UNIT=* , FMT=10 , ADVANCE='NO' &
, IOSTAT=IO_Stat_Number) I
10 FORMAT(I3)

! 0 = no error
! no end of file (eof)
! no end of record (eor)
! - = eor or eof
! + = an error occurred

PRINT *,' iostat=',IO_Stat_Number
PRINT *,I

END DO
END PROGRAM C2102p

An Introduction to Pointers 293

This program is a simple test of the IOSTAT values of whatever system you work
on. Try typing in a variety of values including minimally:

• A valid three-digit number + [RETURN] key.

• A three-digit number with an embedded blank, e.g., 1 2 + [RETURN]
key.

• [RETURN] key only.

• [CTRL] + Z.

• Any other non-numeric character on the keyboard.

• 100200300 + [RETURN] key.

• [CTRL] + C

This will enable us to program exactly the kind of behaviour we want from I/O
and can be used as a code segment for other programs.

294 Chapter 21

22

Introduction to
Subroutines

“A man should keep his brain attic stacked with all the furniture he is likely to use,
and the rest he can put away in the lumber room of his library, where he can get at
it if he wants.”

Sir Arthur Conan Doyle, Five Orange Pips

Aims
The aims of this chapter are:

• To consider some of the reasons for the inclusion of subroutines in a pro-
gramming language.

• To introduce with a concrete example some of the concepts and ideas in-
volved with the definition and use of subroutines.

• The INTERFACE statement and interface blocks.

• Arguments or parameters.

• The INTENT attribute for parameters.

• The CALL statement.

• Scope of variables.

• Local variables and the SAVE attribute.

• The use of parameters to report on the status of the action carried out
in the subroutine.

22 Introduction to Subroutines

In the earlier chapter on functions we introduced two types of function

• Intrinsic functions — which are part of the language.

• User defined functions — by which we extend the language.

We now introduce subroutines which collectively with functions are given the
name procedures. Procedures provide a very powerful extension to the language
by:

• Providing us with the ability to break problems down into simpler more
easily solvable subproblems.

• Allowing us to concentrate on one aspect of a problem at a time.

• Avoiding duplication of code.

• Hiding away messy code so that a main program is a sequence of calls to
procedures.

• Providing us with the ability to put together collections of procedures that
solve commonly occurring subproblems, often given the name libraries,
and generally compiled.

• Allowing us to call procedures from libraries written, tested and docu-
mented by experts in a particular field. There is no point in reinventing
the wheel!

There are a number of concepts required for the successful use of subroutines and
we met some of them in Chapter 15 when we looked at user defined functions. We
will extend the ideas introduced there of parameters and introduce the additional
concept of an interface block. The ideas are best explained with a concrete exam-
ple.

Note that we use the terms parameters and arguments interchangeably.

22.1 Example 1
This example is one we met earlier that solves a quadratic equation, i.e., solves
a x b x c2 0� � �

The program to do this originally was just one program. In the example below we
break that problem down into smaller parts and make each part a subroutine. The
components are:

• Main program or driving routine.

• Interaction with user to get the coefficients of the equation.

296 Chapter 22

• Solution of the quadratic.

Let us look now at how we do this with the use of subroutines:

PROGRAM ch2201
IMPLICIT NONE
! Simple example of the use of a main program and two
! subroutines. One interacts with the user and the
! second solves a quadratic equation,
! based on the user input.

REAL :: P, Q, R, Root1, Root2
INTEGER :: IFail=0
LOGICAL :: OK=.TRUE.

CALL Interact(P,Q,R,OK)
IF (OK) THEN

CALL Solve(P,Q,R,Root1,Root2,IFail)
IF (IFail == 1) THEN

PRINT *,' Complex roots,
PRINT *,' calculation abandoned'

ELSE
PRINT *,' Roots are ',Root1,' ',Root2

ENDIF
ELSE

PRINT*,' Error in data input program ends'
ENDIF

END PROGRAM ch2201

SUBROUTINE Interact(A,B,C,OK)
IMPLICIT NONE
REAL , INTENT(OUT) :: A
REAL , INTENT(OUT) :: B
REAL , INTENT(OUT) :: C
LOGICAL , INTENT(OUT) :: OK
INTEGER :: IO_Status=0
PRINT*,' Type in the coefficients A, B AND C'
READ(UNIT=*,FMT=*,IOSTAT=IO_Status)A,B,C
IF (IO_Status == 0) THEN

OK=.TRUE.
ELSE

OK=.FALSE.
ENDIF

END SUBROUTINE Interact

Introduction to Subroutines 297

SUBROUTINE Solve(E,F,G,Root1,Root2,IFail)
IMPLICIT NONE
REAL , INTENT(IN) :: E
REAL , INTENT(IN) :: F
REAL , INTENT(IN) :: G
REAL , INTENT(OUT) :: Root1
REAL , INTENT(OUT) :: Root2
INTEGER , INTENT(INOUT) :: IFail

! Local variables
REAL :: Term
REAL :: A2
Term = F*F - 4.*E*G
A2 = E*2.0

! if term < 0, roots are complex
IF(Term < 0.0)THEN

IFail=1
ELSE

Term = SQRT(Term)
Root1 = (-F+Term)/A2
Root2 = (-F-Term)/A2

ENDIF
END SUBROUTINE Solve

22.1.1 Defining a subroutine

A subroutine is defined as

SUBROUTINE subroutine_name(optional list of dummy arguments)

IMPLICIT NONE

dummy argument type definitions with INTENT

...

END SUBROUTINE subroutine_name

and from the earlier example we have the subroutine

SUBROUTINE Interact(A,B,C,OK)
IMPLICIT NONE
REAL, INTENT(OUT)::A,B,C
LOGICAL, INTENT(OUT)::OK

END SUBROUTINE Interact

298 Chapter 22

22.1.2 Referencing a subroutine

To reference a subroutine you use the CALL statement:

CALL subroutine_name(optional list of actual arguments)

and from the earlier example the call to subroutine Interact was of the form:

CALL Interact(P,Q,R,OK)

When a subroutine returns to the calling program unit control is passed to the
statement following the CALL statement.

22.1.3 Dummy arguments or parameters and actual arguments

Procedures and their calling program units communicate through their arguments.
We often use the terms parameter and arguments interchangeably throughout this
text. The SUBROUTINE statement normally contains a list of dummy arguments,
separated by commas and enclosed in brackets. The dummy arguments have a type
associated with them; for example, in subroutine Solve X is of type REAL, but no
space is put aside for this in memory. When the subroutine is referenced e.g.,
CALL Solve(P,Q,R,Root1,Root2,Ifail), then the dummy argument points to the ac-
tual argument P, which is a variable in the calling program unit. The dummy
argument and the actual argument must be of the same type — in this case REAL.

22.1.4 Intent

It is recommended that dummy arguments have an INTENT attribute. In the earlier
example subroutine Solve has a dummy argument E with INTENT(IN), which
means that when the subroutine is referenced or called it is expecting E to have a
value, but its value cannot be changed inside the subroutine. This acts as an extra
security measure besides making the program easier to understand. For each pa-
rameter it may have one of three attributes:

• INTENT(IN), where the parameter already has a value and cannot be al-
tered in the called routine.

• INTENT(OUT), where the parameter does not have a value, and is given
one in the called routine.

• INTENT(INOUT), where the parameter already has a value and this is
changed in the called routine.

22.1.5 Local variables

We saw with functions that variables could be essentially local to the function and
unavailable elsewhere. The concept of local variables also applies to subroutines.
In the example above Term and A2 are both local variables to the subroutine
Solve.

Introduction to Subroutines 299

22.1.6 Local variables and the SAVE attribute

Local variables are usually created when a procedure is called and their value lost
when execution returns to the calling program unit. To make sure that a local vari-
able retains its values between calls to a subprogram the SAVE attribute can be
used on a type statement; e.g.,

INTEGER , SAVE :: I

means that when this statement appears in a subprogram the value of the local
variable I is saved between calls.

22.1.7 Scope of variables

In most cases variables are only available within the program unit that defines
them. The introduction of argument lists to functions and subroutines immediately
opens up the possibility of data within one program unit becoming available in one
or more other program units.

In the main program we declare the variables P, Q, R, Root1, Root2, IFail and OK.

Subroutine Interact has no variables locally declared. It works on the argu-
ments A, B, C and OK; which map onto P, Q, R and OK from the main program,
i.e., it works with those variables.

Subroutine Solve has two locally defined variables, Term and A2. It works with
the variables E, F, G, Root1, Root2 and IFail, which map onto P, Q, R, Root1,
Root2 and IFail from the main program.

22.1.8 Status of the action carried out in the subroutine

It is also useful to use parameters that carry information regarding the status of the
action carried out by the subroutine. With the subroutine Interact we use a log-
ical variable OK to report on the status of the interaction with the user. In the
subroutine Solve we use the status of the integer variable Ifail to report on the
status of the solution of the equation.

22.2 Example 2
Consider the following example:

program ch2202
implicit none
real :: a,b,c

a = 1000.0
b = 20.0
call divide(a,b,c)
print *,c

300 Chapter 22

end program ch2202

subroutine divide(a,b,c)
implicit none
integer , intent(in) :: a
integer , intent(in) :: b
integer , intent(out):: c

c=a/b
end subroutine divide

There is a fundamental problem here. In the main program the variables A, B and
C are declared to be of type real. In the subroutine DIVIDE they are integer.

If the main program and subroutine are in one file when compiled then the com-
piler has the oportunity of catching this mismatch. The Nag f95 compiler release
4.2 and the Salford FTN95 compiler release 4.6.0 both diagnose this error and will
not compile the program. The following compilers compiled and executed the code
generating the following answers:

CVF 6.6C: 1.4012985E-45

Intel 9.0 1.4012985E-45

Lahey 5.7 1.40129846E-45

Fortran 90 introduced a number of language features to help in this area:

• Interface blocks.

• Contained procedures.

• Modules.

We will look at the first two in this chapter and at modules later on.

22.3 Example 3 — Quadratic example with interface blocks
This is the first example with the addition of interface blocks:

PROGRAM ch2203
IMPLICIT NONE
! Simple example of the use of a main program and two
! subroutines. One interacts with the user and the
! second solves a quadratic equation,
! based on the user input.
INTERFACE

SUBROUTINE Interact(A,B,C,OK)

Introduction to Subroutines 301

IMPLICIT NONE
REAL , INTENT(OUT) :: A
REAL , INTENT(OUT) :: B
REAL , INTENT(OUT) :: C
LOGICAL , INTENT(OUT) :: OK

END SUBROUTINE Interact

SUBROUTINE Solve(E,F,G,Root1,Root2,IFail)
IMPLICIT NONE
REAL , INTENT(IN) :: E
REAL , INTENT(IN) :: F
REAL , INTENT(IN) :: G
REAL , INTENT(OUT) :: Root1
REAL , INTENT(OUT) :: Root2
INTEGER , INTENT(INOUT) :: IFail

END SUBROUTINE Solve

END INTERFACE

REAL :: P, Q, R, Root1, Root2
INTEGER :: IFail=0
LOGICAL :: OK=.TRUE.

CALL Interact(P,Q,R,OK)
IF (OK) THEN

CALL Solve(P,Q,R,Root1,Root2,IFail)
IF (IFail == 1) THEN

PRINT *,' Complex roots, calculation abandoned'
ELSE

PRINT *,' Roots are ',Root1,' ',Root2
ENDIF

ELSE
PRINT*,' Error in data input program ends'

ENDIF
END PROGRAM ch2203

SUBROUTINE Interact(A,B,C,OK)
IMPLICIT NONE
REAL , INTENT(OUT) :: A
REAL , INTENT(OUT) :: B
REAL , INTENT(OUT) :: C
LOGICAL , INTENT(OUT) :: OK
INTEGER :: IO_Status=0

302 Chapter 22

PRINT*,' Type in the coefficients A, B AND C'
READ(UNIT=*,FMT=*,IOSTAT=IO_Status)A,B,C
IF (IO_Status == 0) THEN

OK=.TRUE.
ELSE

OK=.FALSE.
ENDIF

END SUBROUTINE Interact

SUBROUTINE Solve(E,F,G,Root1,Root2,IFail)
IMPLICIT NONE
REAL , INTENT(IN) :: E
REAL , INTENT(IN) :: F
REAL , INTENT(IN) :: G
REAL , INTENT(OUT) :: Root1
REAL , INTENT(OUT) :: Root2
INTEGER , INTENT(INOUT) :: IFail

! Local variables
REAL :: Term
REAL :: A2
Term = F*F - 4.*E*G
A2 = E*2.0

! if term < 0, roots are complex
IF(Term < 0.0)THEN

IFail=1
ELSE

Term = SQRT(Term)
Root1 = (-F+Term)/A2
Root2 = (-F-Term)/A2

ENDIF
END SUBROUTINE Solve

The key code is given below:

INTERFACE

SUBROUTINE Interact(A,B,C,OK)
IMPLICIT NONE
REAL , INTENT(OUT) :: A
REAL , INTENT(OUT) :: B
REAL , INTENT(OUT) :: C
LOGICAL , INTENT(OUT) :: OK

END SUBROUTINE Interact

Introduction to Subroutines 303

SUBROUTINE Solve(E,F,G,Root1,Root2,IFail)
IMPLICIT NONE
REAL , INTENT(IN) :: E
REAL , INTENT(IN) :: F
REAL , INTENT(IN) :: G
REAL , INTENT(OUT) :: Root1
REAL , INTENT(OUT) :: Root2
INTEGER , INTENT(INOUT) :: IFail

END SUBROUTINE Solve

END INTERFACE

Interface blocks in the above example provide us with the ability to do type check-
ing between the calling routine and the called routine. One of the most common
errors in programming is getting the sequence and type of the parameters wrong
between subprograms. There is of course the editing overhead of duplicating the
code in this example. We will look at software tools that can generate interface
blocks for us in a later chapter.

There are times when the use of interface blocks is mandatory in Fortran and we
will cover this as and when required. However, it is good working practice to pro-
vide interface blocks when dealing with legacy Fortran 77 style code.

We will look at additional ways of providing explicit interfaces later on.

As Fortran 95 libraries become more widely available interface blocks for library
routines will be provided by the supplier on line, and this minimises much of the
effort in using them. Nag, for example, already has interface blocks available for
its library for many platforms.

22.4 Example 4 — Quadratic example and the CONTAINS
statement
This example solves the problem of diagnosing mismatches between the calling
and called routine by the CONTAINS statement. The two subroutines Interact and
Solve are now part of the main program. This method has drawbacks with larger
codes suites as we will end up recompiling all of the code within the main pro-
gram:

PROGRAM ch2204
IMPLICIT NONE
! Simple example of the use of a main program and two
! subroutines. One interacts with the user and the
! second solves a quadratic equation,

304 Chapter 22

! based on the use input.

REAL :: P, Q, R, Root1, Root2
INTEGER :: IFail=0
LOGICAL :: OK=.TRUE.

CALL Interact(P,Q,R,OK)
IF (OK) THEN

CALL Solve(P,Q,R,Root1,Root2,IFail)
IF (IFail == 1) THEN

PRINT *,' Complex roots, calculation abandoned'
ELSE

PRINT *,' Roots are ',Root1,' ',Root2
ENDIF

ELSE
PRINT*,' Error in data input program ends'

ENDIF

contains

SUBROUTINE Interact(A,B,C,OK)
IMPLICIT NONE
REAL , INTENT(OUT) :: A
REAL , INTENT(OUT) :: B
REAL , INTENT(OUT) :: C
LOGICAL , INTENT(OUT) :: OK
INTEGER :: IO_Status=0
PRINT*,' Type in the coefficients A, B AND C'
READ(UNIT=*,FMT=*,IOSTAT=IO_Status)A,B,C
IF (IO_Status == 0) THEN

OK=.TRUE.
ELSE

OK=.FALSE.
ENDIF

END SUBROUTINE Interact

SUBROUTINE Solve(E,F,G,Root1,Root2,IFail)
IMPLICIT NONE
REAL , INTENT(IN) :: E
REAL , INTENT(IN) :: F
REAL , INTENT(IN) :: G
REAL , INTENT(OUT) :: Root1
REAL , INTENT(OUT) :: Root2

Introduction to Subroutines 305

INTEGER , INTENT(INOUT) :: IFail
! Local variables

REAL :: Term
REAL :: A2
Term = F*F - 4.*E*G
A2 = E*2.0

! if term < 0, roots are complex
IF(Term < 0.0)THEN

IFail=1
ELSE

Term = SQRT(Term)
Root1 = (-F+Term)/A2
Root2 = (-F-Term)/A2

ENDIF
END SUBROUTINE Solve

END PROGRAM ch2204

Thus in this chapter we have seen three ways of using subroutines:

• Classic Fortran 77 style as in the first example. The major disadvantage is
the lack of checking of the parameters between the calling and called rou-
tine.

• Interface blocks — the major disadvantage is the code duplication

• Contained subroutines — major disadvantage is that we have to recompile
the program and all contained subroutines.

We will look at using modules to address this problem in a later chapter.

22.5 Why bother?
Given the increase in the complexity of the overall program to solve a relatively
straightforward problem, one must ask why bother. The answer lies in our ability
to manage the solution of larger and larger problems. We need all the help we can
get if we are to succeed in our task of developing large-scale reliable programs.

We need to be able to break our problems down into manageable subcomponents
and solve each in turn. We are now in a very good position to be able to do this.
Given a problem that requires a main program, one or more functions and one or
more subroutines we can work on each subcomponent in relative isolation, and
know that by using features like interface blocks we will be able to glue all of the
components together into a stable structure at the end. We can independently com-
pile the main program and functions and subroutines and use the linker to generate
the overall executable, and then test that. Providing we keep our interfaces the

306 Chapter 22

same we can alter the actual implementations of the functions and subroutines and
just recompile the changed procedures.

22.6 Summary
We now have the following concepts for the use of subroutines:

• INTERFACE blocks.

• INTENT attribute for parameters.

• Dummy parameters.

• The use of the CALL statement to invoke a subroutine.

• The concepts of variables that are local to the called routines and are un-
available elsewhere in the overall program.

• Communication between program units via the argument list.

• The concept of parameters on the call that enable us to report back on the
status of the called routine.

22.7 Problems
1. Type in the program example in this chapter as three files. Compile each indi-
vidually. When you have successfully compiled each routine (there will be the
inevitable typing mistakes) look at the file sizes of the object file. Now use the
linker to produce one executable. Look at the file size of the executable. What do
you notice?

The development of large programs is eased considerably by the ability to compile
small program units and eradicate the compilation errors from one unit at a time.

The linker obviously also has an important role to play in the development process.

2. Write a subroutine to calculate new coordinates (' , ')x y from (,)x y when the
axes are rotated counterclockwise through an angle of a radians using:

x x a y a' cos sin� �

y x a y a' sin cos� � �

Hint:

The subroutine would look something like

SUBROUTINE ChangeCoordinate(X,Y,A,XD,YD)

Write a main program to read in values of x,y,a, call the subroutine and print out
the new coordinates.

Introduction to Subroutines 307

23

Subroutines: 2

“It is one thing to show a man he is in error, and another to put him in possession
of the truth.”

John Locke

Aims
The aims of this chapter are to extend the ideas in the earlier chapter on subrou-
tines and look in more depth at parameter passing, in particular using a variety of
ways of passing arrays.

23 Subroutines: 2

23.1 More on parameter passing
So far we have seen scalar parameters of type real, integer and logical. We will
now look at numeric array parameters and character parameters. We need to intro-
duce some technical terminology first. Don't panic if you don't fully understand the
terminology the as examples should clarify things.

23.1.1 Explicit-shape array

An explicit-shape array is a named array that is declared with explicit values for

the bounds in each dimension of the array.

The following explicit-shape arrays can specify nonconstant bounds:

• An automatic array (the array is a local variable).

• An adjustable array (the array is a dummy argument to a subprogram).

23.1.2 Assumed-shape array

An assumed-shape array is a nonpointer dummy argument array that takes its

shape from the associated actual argument array.

23.1.3 Deferred-shape array

A deferred-shape array is an allocatable array or an array pointer. An allocatable

array is an array that has the ALLOCATABLE attribute and a specified rank, but

its bounds, and hence shape, are determined by allocation or argument association.

23.1.4 Automatic arrays

An automatic array is an explicit-shape array that is a local variable. Automatic ar-
rays are only allowed in function and subroutine subprograms, and are declared in
the specification part of the subprogram. At least one bound of an automatic array
must be a nonconstant specification expression. The bounds are determined when
the subprogram is called.

23.1.5 Assumed-size array — Fortran 77 style

An assumed-size array is a dummy argument array whose size is assumed from

that of an associated actual argument. The rank and extents may differ for the ac-

tual and dummy arrays; only the size of the actual array is assumed by the dummy

array. You would not use this type of parameter in modern Fortran code. We will

come back to arrays of this type in the chapter on converting from Fortran 77 to

modern Fortran.

310 Chapter 23

23.1.6 Adjustable arrays — Fortran 77 style

An adjustable array is an explicit-shape array that is a dummy argument to a
subprogram. At least one bound of an adjustable array must be a nonconstant spec-
ification expression. The bounds are determined when the subprogram is called.
You would not use this type of parameter in modern Fortran code. We will come
back to arrays of this type in the chapter on converting from Fortran 77 to modern
Fortran.

23.2 Common code example
We are going to use an example based on a main program and a subroutine that
calculates the mean and standard deviation of an array of numbers. The subroutine
has the following parameters:

• x - the array containing the real numbers.

• n - the number of elements in the array.

• mean - the mean of the numbers.

• std_dev - the standard deviaition of the numbers.

We will look at some of the ways we can pass the array between the main program
and the subroutine in both Fortran 77 and Fortran 90 styles.

23.3 Explicit-shape example
Consider the following program and subroutine.

program ch2301
implicit none
integer , parameter :: n=10
real , dimension(1:n) :: x
real , dimension(-4:5) :: y
real , dimension(10) :: z
real , allocatable , dimension(:) :: t
real :: m,sd
integer :: i

interface
subroutine stats(x,n,mean,std_dev)

implicit none
integer , intent(in) :: n
real , intent(in) , dimension(1:n) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev

Subroutines: 2 311

end subroutine stats
end interface

do i=1,n
x(i)=real(i)

end do
call stats(x,n,m,sd)
print *,' x'
print *,' mean = ',m
print *,' Standard deviation = ',sd
y=x
call stats(y,n,m,sd)
print *,' y'
print *,' mean = ',m
print *,' Standard deviation = ',sd
z=x
call stats(z,10,m,sd)
print *,' z'
print *,' mean = ',m
print *,' Standard deviation = ',sd
allocate(t(10))
t=x
call stats(t,10,m,sd)
print *,' t'
print *,' mean = ',m
print *,' Standard deviation = ',sd

end program ch2301

subroutine stats(x,n,mean,std_dev)
implicit none
integer , intent(in) :: n
real , intent(in) , dimension(1:n) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev
real :: variance
real:: sumxi,sumxi2
integer :: i

variance=0.0
sumxi=0.0
sumxi2=0.0
do i=1,n

312 Chapter 23

sumxi = sumxi+ x(i)
sumxi2 = sumxi2 + x(i)*x(i)

end do
mean=sumxi/n
variance = (sumxi2 - sumxi*sumxi/n)/(n-1)
std_dev=sqrt(variance)

end subroutine stats

The key line in the subroutine is

real , intent(in) , dimension(1:n) :: x

where the dummy array argument x is declared with explicit bounds and known as
an explicit-shape dummy array. Even though it is not mandatory it is recommended
that interface blocks be used so that the shape and size of actual and dummy argu-
ments can be checked explicitly.

Note also the use of a DO loop to calculate the sum of the elements and the sum of
the squares of the elements. This is a Fortran 77 style solution to this problem.

23.4 Assumed-shape example
A fundamental rule in modern Fortran is that the shape of an actual array argument
and its associated dummy arguments are the same, i.e., they both must have the
same rank and the same extents in each dimension. The best way to apply this rule
is to use assumed-shape dummy array arguments as shown in the example below.

In the subroutine we have

real , intent(in) , dimension(:) :: x

where x is an assumed-shape dummy array argument, and it will assume the shape
of the actual argument when the subroutine is called.

In this example in the main program we have declared the actual array argument x
to be allocatable to make the program more flexible.

program ch2302

implicit none
integer :: n
real , allocatable , dimension(:) :: x
real :: m,sd

interface
subroutine stats(x,n,mean,std_dev)

Subroutines: 2 313

implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev

end subroutine stats
end interface

print *,' type in n'
read *,n
allocate(x(1:n))
call random_number(x)
x=x*100
call stats(x,n,m,sd)
print *,' numbers were '
print *,x
print *,' Mean = ',m
print *,' Standard deviation = ',sd

end program ch2302

subroutine stats(x,n,mean,std_dev)
implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev
real :: variance
real:: sumxi,sumxi2
integer :: i

variance=0.0
sumxi=0.0
sumxi2=0.0
do i=1,n

sumxi = sumxi+ x(i)
sumxi2 = sumxi2 + x(i)*x(i)

end do
mean=sumxi/n
variance = (sumxi2 - sumxi*sumxi/n)/(n-1)
std_dev=sqrt(variance)

end subroutine stats

314 Chapter 23

23.4.1 Notes

There are several restrictions when using assumed-shape arrays:

• The rank is equal to the number of colons, in this case 1.

• The lower bounds of the assumed-shape array are the specified lower
bounds, if present, and 1 otherwise. In the example above it is 1 because
we haven’t specified a lower bound.

• The upper bounds will be determined on entry to the procedure and will
be whatever values are needed to make sure that the extents along each
dimension of the dummy argument are the same as the actual argument.
In this case the upper bound will be n.

• An assumed-shape array must not be defined with the POINTER or
ALLOCATABLE attribute in Fortran 90 or Fortran 95.

• When using an assumed-shape array an interface block is mandatory.

Assumed-shape arraay parameter passing also works with Fortran 77 style stati-
cally allocated arrays, i.e.,

real , dimension(1:10) :: x

which is commonly seen in older code.

23.5 Character arguments and assumed-length
dummy arguments

The types of parameters considered so far have been REAL, INTEGER and LOGI-
CAL. CHARACTER variables are slightly different because they have a length
associated with them. Consider the following program and subroutine which, given
the name of a file, opens it and reads values into two REAL arrays, X and Y:

PROGRAM ch2303
IMPLICIT NONE
REAL,DIMENSION(1:100)::A,B
INTEGER :: Nos,I
CHARACTER(LEN=20)::Filename
INTERFACE

SUBROUTINE Readin(Name,X,Y,N)
IMPLICIT NONE
INTEGER , INTENT(IN) :: N
REAL,DIMENSION(1:N),INTENT(OUT)::X,Y
CHARACTER (LEN=*),INTENT(IN)::Name

END SUBROUTINE Readin

Subroutines: 2 315

END INTERFACE
PRINT *,' Type in the name of the data file'
READ '(A)' , Filename
PRINT *,' Input the number of items in the file'
READ * , Nos
CALL Readin(Filename,A,B,Nos)
PRINT * , ' Data read in was'
DO I=1,Nos

PRINT *,' ',A(I),' ',B(I)
ENDDO

END PROGRAM ch2303

SUBROUTINE Readin(Name,X,Y,N)
IMPLICIT NONE
INTEGER , INTENT(IN) :: N
REAL,DIMENSION(1:N),INTENT(OUT)::X,Y
CHARACTER (LEN=*),INTENT(IN)::Name
INTEGER::I

OPEN(UNIT=10,STATUS='OLD',FILE=Name)
DO I=1,N

READ(10,*)X(I),Y(I)
END DO
CLOSE(UNIT=10)

END SUBROUTINE Readin

The main program reads the file name from the user and passes it to the subroutine
that reads in the data. The dummy argument Name is of type assumed-length, and
picks up the length from the actual argument Filename in the calling routine,
which is in this case 20 characters. An interface block must be used with as-
sumed-shape dummy arguments.

23.6 Rank 2 and higher arrays as parameters

23.6.1 Explicit-shape dummy arrays

Consider the following example which uses a Fortran 77 style of two-dimensional
array parameter passing.

In the main program we have the following declaration of the rank 2 actual array
arguments:

REAL , DIMENSION (1:Max,1:Max)::One,Two,Three,One_T

316 Chapter 23

and in the subroutine Matrix_bits we declare the rank 2 dummy array arguments as
follows:

REAL, DIMENSION (1:Max,1:Max), INTENT(IN) :: A,B
REAL, DIMENSION (1:Max,1:Max), INTENT(OUT) :: C,A_T

We have split the declaration into two as the arrays have different intents. These
dummy array arguments are explicit-shape, i.e., their bounds are declared in the
subroutine.

Note that in the main program N may be less than Max and because of the way
Fortran stores arrays internally we must pass both variables as arguments to the
subroutine Matrix_bits, N being used to control the DO loops and Max needed in
the array declarations:

PROGRAM ch2304
IMPLICIT NONE
INTEGER, PARAMETER :: Max=10
REAL , DIMENSION (1:Max,1:Max)::One,Two,Three,One_T
INTEGER :: I,N
INTERFACE

SUBROUTINE Matrix_bits(A,B,C,A_T,N,Max)
IMPLICIT NONE
INTEGER, INTENT(IN):: N, Max
REAL, DIMENSION (1:Max,1:Max), INTENT(IN) :: A,B
REAL, DIMENSION (1:Max,1:Max), INTENT(OUT) :: C,A_T
END SUBROUTINE Matrix_bits

END INTERFACE

PRINT *,'Input size of matrices'
READ*,N
DO WHILE(N > Max)

PRINT*,'size of matrices must be <= ',Max
PRINT *,'Input size of matrices'

READ*,N
END DO
DO I=1,N

PRINT*, 'Input row ', I,' of One'
READ*,One(I,1:N)

END DO
DO I=1,N

PRINT*, 'Input row ', I,' of Two'
READ*,Two(I,1:N)

END DO

Subroutines: 2 317

CALL Matrix_bits(One,Two,Three,One_T,N,Max)
PRINT*,' Matrix Three:'
DO I=1,N

PRINT *,Three(I,1:N)
END DO
PRINT *,' Matrix One_T:'
DO I=1,N

PRINT *,One_T(I,1:N)
END DO

END PROGRAM ch2304

SUBROUTINE Matrix_bits(A,B,C,A_T,N,Max)
IMPLICIT NONE
INTEGER, INTENT(IN):: N, Max
REAL, DIMENSION (1:Max,1:Max), INTENT(IN) :: A,B
REAL, DIMENSION (1:Max,1:Max), INTENT(OUT) :: C,A_T

INTEGER::I,J,K
REAL:: Temp
!
! matrix multiplication C=A B
!

DO I=1,N
DO J=1,N

Temp=0.0
DO K=1,N

Temp = Temp + A(I,K) * B (K,J)
END DO

C(I,J) = Temp
END DO

END DO
!
! set A_T to be transpose matrix A

DO I=1,N
DO J=1,N

A_T(I,J) = A(J,I)
END DO

END DO
END SUBROUTINE Matrix_bits

Note the use of DO loops to carry out the matrix multiplication and transpose. This
is a Fortran 77 style solution to the problem.

318 Chapter 23

23.6.2 Assumed-shape dummy array arguments

With the introduction of assumed-shape dummy array arguments the necessity to
pass through Max in the last program is removed. This is shown in the example
below:

PROGRAM ch2305
IMPLICIT NONE
REAL , ALLOCATABLE , DIMENSION &
(:,:)::One,Two,Three,One_T
INTEGER :: I,N
INTERFACE

SUBROUTINE Matrix_bits(A,B,C,A_T,N)
IMPLICIT NONE
INTEGER, INTENT(IN):: N

REAL, DIMENSION (:,:), INTENT(IN) :: A,B
REAL, DIMENSION (:,:), INTENT(OUT) :: C,A_T

END SUBROUTINE Matrix_bits
END INTERFACE

PRINT *,'Input size of matrices'
READ*,N
ALLOCATE(One(1:N,1:N))
ALLOCATE(Two(1:N,1:N))
ALLOCATE(Three(1:N,1:N))
ALLOCATE(One_T(1:N,1:N))
DO I=1,N

PRINT*, 'Input row ', I,' of One'
READ*,One(I,1:N)

END DO
DO I=1,N

PRINT*, 'Input row ', I,' of Two'
READ*,Two(I,1:N)

END DO
CALL Matrix_bits(One,Two,Three,One_T,N)
PRINT*,' Matrix Three:'
DO I=1,N

PRINT *,Three(I,1:N)
END DO
PRINT *,' Matrix One_T:'
DO I=1,N

PRINT *,One_T(I,1:N)
END DO

END PROGRAM ch2305

Subroutines: 2 319

SUBROUTINE Matrix_bits(A,B,C,A_T,N)
IMPLICIT NONE
INTEGER, INTENT(IN):: N
REAL, DIMENSION (:,:), INTENT(IN) :: A,B
REAL, DIMENSION (:,:), INTENT(OUT) :: C,A_T
INTEGER:: I,J, K
REAL:: Temp

!
! matrix multiplication C=AB
!

DO I=1,N
DO J=1,N

Temp=0.0
DO K=1,N

Temp = Temp + A(I,K) * B (K,J)
END DO

C(I,J) = Temp
END DO

END DO
!
! Calculate A_T transpose of A
!
!
! set A_T to be transpose matrix A

DO I=1,N
DO J=1,N

A_T(I,J) = A(J,I)
END DO

END DO
END SUBROUTINE Matrix_bits

23.6.3 Notes

The dummy array and actual array arguments look the same but there is a differ-
ence:

• The dummy array arguments A, B, C, A_T are all assumed-shape arrays
and take the shape of the actual array arguments One, Two, Three and
One_T, respectively.

• The actual array arguments One, Two, Three and One_T in the main pro-
gram are allocatable arrays or deferred-shape arrays. An allocatable array

320 Chapter 23

is an array that has an allocatable attribute. Its bounds and shape are de-
clared when the array is allocated, hence deferred-shape.

23.6.4 Using the intrinsic functions MATMUL and TRANSPOSE

In the previous two examples the matrix multiplication and transpose were hand
coded, and are what you would see in Fortran 77 style code. This example uses the
built in intrinsics MATMUL and TRANSPOSE and is modern Fortran 90 style:

PROGRAM ch2306
IMPLICIT NONE
REAL , ALLOCATABLE , DIMENSION &
(:,:)::One,Two,Three,One_T
INTEGER :: I,N
INTERFACE

SUBROUTINE Matrix_bits(A,B,C,A_T)
IMPLICIT NONE
REAL, DIMENSION (:,:), INTENT(IN) :: A,B
REAL, DIMENSION (:,:), INTENT(OUT) :: C,A_T

END SUBROUTINE Matrix_bits
END INTERFACE

PRINT *,'Input size of matrices'
READ*,N
ALLOCATE(One(1:N,1:N))
ALLOCATE(Two(1:N,1:N))
ALLOCATE(Three(1:N,1:N))
ALLOCATE(One_T(1:N,1:N))
DO I=1,N

PRINT*, 'Input row ', I,' of One'
READ*,One(I,1:N)

END DO
DO I=1,N

PRINT*, 'Input row ', I,' of Two'
READ*,Two(I,1:N)

END DO
CALL Matrix_bits(One,Two,Three,One_T)
PRINT*,' Matrix Three:'
DO I=1,N

PRINT *,Three(I,1:N)
END DO
PRINT *,' Matrix One_T:'
DO I=1,N

PRINT *,One_T(I,1:N)
END DO

Subroutines: 2 321

END PROGRAM ch2306

SUBROUTINE Matrix_bits(A,B,C,A_T)
IMPLICIT NONE
REAL, DIMENSION (:,:), INTENT(IN) :: A,B
REAL, DIMENSION (:,:), INTENT(OUT) :: C,A_T

C=MATMUL(A,B)
A_T=TRANSPOSE(A)

END SUBROUTINE Matrix_bits

Fortran thus provides a variety of ways of passing array parameters. We have cov-
ered both 77 and 90 styles, as you will see both in code that you work with.

23.7 Automatic arrays and median calculation
This example looks at the calculation of the median of a set of numbers and also
illustrates the use of an automatic array.

The median is the middle value of a list, i.e., the smallest number such that at least
half the numbers in the list are no greater. If the list has an odd number of entries,
the median is the middle entry in the list after sorting the list into ascending order.
If the list has an even number of entries, the median is equal to the sum of the two
middle (after sorting) numbers divided by two. One way to determine the median
computationally is to sort the numbers and choose the item in the middle.

Wirth classifies sorting into simple and advanced, and his three simple methods are
as follows:

• Insertion sorting — The items are considered one at a time and each new
item is inserted into the appropriate position relative to the previously
sorted item. If you have ever played bridge then you have probably used
this method.

• Selection sorting — First the smallest (or largest) item is chosen and is set
aside from the rest. Then the process is repeated for the next smallest item
and set aside in the next position. This process is repeated until all items
are sorted.

• Exchange sorting — If two items are found to be out of order they are in-
terchanged. This process is repeated until no more exchanges take place.

Knuth also identifies the above three sorting methods. For more information on
sorting the Knuth and Wirth books are good starting places. Knuth is a little old
(1973) compared to Wirth (1986), but it is still a very good coverage. Knuth uses
mix assembler to code the examples whilst the Wirth book uses Modula 2, and is
therefore easier to translate into modern Fortran.

322 Chapter 23

In the example below we use a selection sort:

program ch2307

implicit none
integer :: n
real , allocatable , dimension(:) :: x
real :: m,sd,median

interface
subroutine stats(x,n,mean,std_dev,median)

implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev
real , intent(out) :: median

end subroutine stats
end interface

print *,' How many values ?'
read *,n
allocate(x(1:n))
call random_number(x)
x=x*1000
call stats(x,n,m,sd,median)
print *,' mean = ',m
print *,' Standard deviation = ',sd
print *,' median is = ',median

end program ch2307

subroutine stats(x,n,mean,std_dev,median)
implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev
real , intent(out) :: median
real , dimension(1:n) :: y
real :: variance
real :: sumxi, sumxi2

sumxi=0.0

Subroutines: 2 323

sumxi2=0.0
variance=0.0
sumxi=sum(x)
sumxi2=sum(x*x)
mean=sumxi/n
variance=(sumxi2-sumxi*sumxi/n)/(n-1)
std_dev = sqrt(variance)

y=x
call selection
if (mod(n,2) == 0) then

median=(y(n/2)+y((n/2)+1))/2
else

median=y((n/2)+1)
endif

contains

subroutine selection
implicit none
integer :: i,j,k
real :: minimum

do i=1,n-1
k=i
minimum=y(i)
do j=i+1,n

if (y(j) < minimum) then
k=j
minimum=y(k)

end if
end do
y(k)=y(i)
y(i)=minimum

end do
end subroutine selection

end subroutine stats

In the subroutine stats the array y is automatic. It will be allocated automatically
when we call the subroutine. We use this array as a work array to hold the sorted
data. We then use this sorted array to determine the median.

Note the use of the SUM intrinsic in this example:

324 Chapter 23

sumxi=sum(x)
sumxi2=sum(x*x)

These statements replace the DO loop from the earlier example. A good optimising
compiler would not make two passes over the data with these two statements.

23.7.1 Internal subroutines and scope

The stats subroutine contains the selection subroutine. The stats subroutine has ac-
cess to the following variables

• x,n,mean,std_dev, median — these are made available as they are passed
in as parameters.

• y, variance, sumxi, sumxi2 — are local to the subroutine stats.

The subroutine selection has access to the above as it is contained within subrou-
tine stats. It also has the following local variables that are only available within
subroutine selection

• i,j,k, minimum

23.7.2 Timing the selection sort algorithm

The selection sort is a simple algorithm and the following main program illustrates
it limitations with increasing n. It uses the same stats subroutine as the previous
example:

program ch2308

implicit none
integer :: n
real , allocatable , dimension(:) :: x
real :: m,sd,median
integer , dimension(8) :: timing

interface
subroutine stats(x,n,mean,std_dev,median)

implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) ::

std_dev
real , intent(out) :: median

end subroutine stats
end interface

Subroutines: 2 325

n=1000
do

print *,' n = ',n
allocate(x(1:n))
call random_number(x)
x=x*1000
call date_and_time(values=timing)
print *,' initial '
print *, timing(6) , timing(7) , timing(8)
call stats(x,n,m,sd,median)
print *,' mean = ',m
print *,' Standard deviation = ',sd
print *,' median is = ',median
call date_and_time(values=timing)
print *,' after'
print *,timing(6),timing(7),timing(8)
n=n*10
deallocate(x)

end do

end program ch2308

23.7.2.1 Timing

Dell Precision Workstation, 2 * 933 MHz, 512 Mb ram:

n = 1000
initial 9 13 906
mean = 5.0895782E+02
Standard deviation = 2.8708249E+02
median is = 5.1872925E+02
after sort 9 13 950
n = 10000
initial 9 13 951
mean = 4.9967194E+02
Standard deviation = 2.8635922E+02
median is = 5.0259839E+02
after sort 9 14 689
n = 100000
initial 9 14 697
mean = 5.0123392E+02
Standard deviation = 2.8869482E+02
median is = 4.9957404E+02

326 Chapter 23

after sort 11 12 292

Dell Inspiron, 1 * 3.4 Ghz, 1 Gb ram:

n = 1000
initial 10 57 421
mean = 5.0781586E+02
Standard deviation = 2.9026807E+02
median is = 5.1530060E+02
after sort 10 57 524
n = 10000
initial 10 57 525
mean = 4.9770724E+02
Standard deviation = 2.8532513E+02
median is = 4.9151331E+02
after sort 10 57 778
n = 100000
initial 10 57 781
mean = 4.9930457E+02
Standard deviation = 2.8866571E+02
median is = 4.9931268E+02
after sort 11 23 374

This algorithm is approximately order n * log(n).

23.8 Alternative median calculation algorithm
This program uses an algorithm developed by Hoare to determine the median. The
number of computations required to find the median is approximately 2 * n.

Timings are given at the end:

program ch2309

implicit none
integer :: n
real , allocatable , dimension(:) :: x
real :: m,sd,median
integer , dimension(8) :: timing

interface
subroutine stats(x,n,mean,std_dev,median)

implicit none
integer , intent(in) :: n

Subroutines: 2 327

real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev
real , intent(out) :: median

end subroutine stats
end interface

n=1000
do

print *,' n = ',n
allocate(x(1:n))
call random_number(x)
x=x*1000
call date_and_time(values=timing)
print *,' initial '
print *,timing(6),timing(7),timing(8)
call stats(x,n,m,sd,median)
print *,' mean = ',m
print *,' Standard deviation = ',sd
print *,' median is = ',median
call date_and_time(values=timing)
print *,' after sort'
print *, timing(6),timing(7),timing(8)
n=n*10
deallocate(x)

end do

end program ch2309

subroutine stats(x,n,mean,std_dev,median)
implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(out) :: mean
real , intent(out) :: std_dev
real , intent(out) :: median
real , dimension(1:n) :: y
real :: variance
real :: sumxi, sumxi2
integer:: k

sumxi=0.0
sumxi2=0.0

328 Chapter 23

variance=0.0
sumxi=sum(x)
sumxi2=sum(x*x)
mean=sumxi/n
variance=(sumxi2-sumxi*sumxi/n)/(n-1)
std_dev = sqrt(variance)
y=x
if (mod(n,2) == 0) then

median = (find(n/2)+find((n/2)+1))/2
else

median=find((n/2)+1)
endif

contains

real function find(k)
implicit none
integer , intent(in) :: k
integer :: l,r,i,j
real :: t1,t2

l=1
r=n
do while (l<r)

t1=y(k)
i=l
j=r
do

do while (y(i)<t1)
i=i+1

end do
do while (t1<y(j))

j=j-1
end do
if (i<=j) then

t2=y(i)
y(i)=y(j)
y(j)=t2
i=i+1
j=j-1

end if
if (i>j) exit

end do

Subroutines: 2 329

if (j<k) then
l=i

end if
if (k<i) then

r=j
end if

end do
find=y(k)

end function find

end subroutine stats

23.8.1 Timing

Dell Precision Workstation, 2 * 933 MHz, 512 Mb ram:

n = 1000
initial 19 37 421
mean = 4.9430524E+02
Standard deviation = 2.9318149E+02
median is = 4.8815854E+02
after sort 19 37 426
n = 10000
initial 19 37 427
mean = 4.9803854E+02
Standard deviation = 2.9065613E+02
median is = 4.9482861E+02
after sort 19 37 431
n = 100000
initial 19 37 439
mean = 5.0035132E+02
Standard deviation = 2.8867920E+02
median is = 5.0099771E+02
after sort 19 37 468
n = 1000000
initial 19 37 542
mean = 4.9944907E+02
Standard deviation = 2.8857736E+02
median is = 4.9952847E+02
after sort 19 37 838
n = 10000000
initial 19 38 626
mean = 4.9974246E+02
Standard deviation = 2.8268231E+02

330 Chapter 23

median is = 4.9996432E+02
after sort 19 41 722

Dell Inspiron, 1 * 3.4 Ghz, 1 Gb ram:

n = 1000
initial 21 38 734
mean = 4.9351086E+02
Standard deviation = 2.9076068E+02
median is = 4.8678186E+02
after sort 21 38 734
n = 10000
initial 21 38 734
mean = 5.0000485E+02
Standard deviation = 2.8909946E+02
median is = 4.9666431E+02
after sort 21 38 765
n = 100000
initial 21 38 768
mean = 5.0053433E+02
Standard deviation = 2.8863885E+02
median is = 4.9899475E+02
after sort 21 38 775
n = 1000000
initial 21 38 797
mean = 5.0039590E+02
Standard deviation = 2.8852356E+02
median is = 5.0053967E+02
after sort 21 38 855
n = 10000000
initial 21 39 67
mean = 4.9973923E+02
Standard deviation = 2.8260712E+02
median is = 4.9987134E+02
after sort 21 39 806
n = 100000000
initial 21 41 930
mean = 1.7179869E+02
Standard deviation = 3.8263177E+02
median is = 5.0002957E+02
after sort 21 59 222

The differences between the two algorithms and systems are summarised below:

Subroutines: 2 331

System N Selection Find

Dual 100,000,000 NA NA

10,000,000 NA 3.096

1,000,000 NA 0.296

100,000 117.595 0.029

10,000 0.738 0.004

Single 100,000,000 NA 17.292

10,000,000 NA 0.739

1,000,000 NA 0.058

100,000 25.593 NA

10,000 0.253 NA

Hoare's Find algorithm is obviously much faster, but far less easy to understand
than the simple selection sort.

The limiting factor with this algorithm on these systems is the amount of installed
memory. The program crashes on both systems with a failure to allocate the auto-
matic array. This is a drawback of automatic arrays in that there is no mechanism
to handle this failure gracefully.You would then need to use allocatable local work
arrays. The drawback here is that the programmer is then responsible for the
deallocation of these arrays. Memory leaks are then possible.

23.9 Recursive subroutines — Quicksort
In Chapter 14 we saw an example of recursive functions. This example illustrates
the use of recursive subroutines. It uses a simple implementation of Hoare's
Quicksort. References are given in the bibliography. The overall problem is broken
down into:

• A main program that prompts the user for the name of the data file and n.
The allocation of the array is carried out in the main program.

• A subroutine to read the data.

• A subroutine to sort the data. This subroutine contains the recursive sub-
routine Quicksort.

• A subroutine to write the sorted data to a file.

Below is the complete program:

332 Chapter 23

PROGRAM ch2310
IMPLICIT NONE
INTEGER :: How_Many
CHARACTER (LEN=20) :: File_Name
REAL , ALLOCATABLE , DIMENSION(:) :: Raw_Data
integer , dimension(8) :: timing

INTERFACE
SUBROUTINE Read_Data(File_Name,Raw_Data,How_Many)

IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE Read_Data
END INTERFACE

INTERFACE
SUBROUTINE Sort_Data(Raw_Data,How_Many)

IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(INOUT) , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE Sort_Data
END INTERFACE

INTERFACE
SUBROUTINE Print_Data(Raw_Data,How_Many)

IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(IN) , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE Print_Data
END INTERFACE

PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name
call date_and_time(values=timing)
print *,' initial'
print *,timing(6),timing(7),timing(8)

Subroutines: 2 333

ALLOCATE(Raw_Data(How_Many))
call date_and_time(values=timing)
print *,' allocate'
print *,timing(6),timing(7),timing(8)
CALL Read_Data(File_Name,Raw_Data,How_Many)
call date_and_time(values=timing)
print *,' read'
print *,timing(6),timing(7),timing(8)
CALL Sort_Data(Raw_Data,How_Many)
call date_and_time(values=timing)
print *,' sort'
print *,timing(6),timing(7),timing(8)
CALL Print_Data(Raw_Data,How_Many)
call date_and_time(values=timing)
print *,' print'
print *,timing(6),timing(7),timing(8)
PRINT * , ' '
PRINT *, ' Data written to file SORTED.DAT'

END PROGRAM ch2310

SUBROUTINE Read_Data(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , DIMENSION(:) :: Raw_Data
! Local variables
INTEGER :: I

OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)
ENDDO

END SUBROUTINE Read_Data

SUBROUTINE Sort_Data(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(INOUT) , DIMENSION(:) :: Raw_Data

CALL QuickSort(1,How_Many)

334 Chapter 23

CONTAINS

RECURSIVE SUBROUTINE QuickSort(L,R)
IMPLICIT NONE
INTEGER , INTENT(IN) :: L,R
! Local variables
INTEGER :: I,J
REAL :: V,T

i=l
j=r
v=raw_data(int((l+r)/2))
do

do while (raw_data(i) < v)
i=i+1

enddo
do while (v < raw_data(j))

j=j-1
enddo
if (i<=j) then

t=raw_data(i)
raw_data(i)=raw_data(j)
raw_data(j)=t
i=i+1
j=j-1

endif
if (i>j) exit

enddo

if (l<j) then
call quicksort(l,j)

endif

if (i<r) then
call quicksort(i,r)

endif

END SUBROUTINE QuickSort

END SUBROUTINE Sort_Data

Subroutines: 2 335

SUBROUTINE Print_Data(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(IN) , DIMENSION(:) :: Raw_Data
! Local variables
INTEGER :: I

OPEN(FILE='SORTED.DAT',UNIT=2)
DO I=1,How_Many

WRITE(UNIT=2,FMT=*) Raw_Data(I)
ENDDO
CLOSE(2)

END SUBROUTINE Print_Data

23.9.1 Note — Interface blocks

We introduced interface blocks in Chapter 22, and in that chapter the parameters
were scalars; in this example we have a mix of arrays and scalars. The above pro-
gram is in Fortran 77 style with a main program and several distinct subroutines.
The use of interface blocks is recommended when using this style of programming
as it will minimise cross program unit (program, function, subroutine) errors.

Interface blocks are mandatory under the following situations:

• The procedure has optional arguments.

• When a function returns an array.

• When a function returns a pointer.

• For character functions a result that is dynamic.

• When the procedure has assumed-shape dummy arguments.

• When the procedure has dummy arguments with the pointer attribute.

• When the procedure has dummy arguments with the target attribute.

• When the procedure has keyword arguments and/or optional arguments.

• When the procedure is generic. You have already seen that some of the
intrinsic procedures have this status, e.g., SINE will return a result when
the argument is of a variety of types. This means that we can construct
procedures that will accept arguments of a variety of types and all we
need to do is provide a procedure that manipulates data of that type. We
will look at the construction of a procedure that is generic in a later chap-
ter.

• When the procedure provides a user defined operator.

336 Chapter 23

• When the procedure provides user defined assignment.

23.9.2 Note — Recursive subroutine

The actual sorting is done in the recursive subroutine QuickSort. The actual al-
gorithm is taken from the Wirth book. See the bibliography for a reference.

Recursion provides us with a very clean and expressive way of solving many prob-
lems. There will be instances where it is worthwhile removing the overhead of
recursion, but the first priority is the production of a program that is correct. It is
pointless having a very efficient but incorrect solution.

We will look again at recursion and efficiency in a later chapter and see under
what criteria we can replace recursion with iteration.

23.9.3 Note — Flexible design

The QuickSort recursive routine can be replaced with another sorting algorithm
and we can maintain the interface to Sort_Data. We can thus decouple the imple-
mentation of the actual sorting routine from the defined interface. We would only
need to recompile the Sort_Data routine and we could relink using the already
compiled main, read data and print data routines.

23.9.4 Note — Timing information

We call the date_and_time intrinsic subroutine to get timing information. A sum-
mary table from runnning the above program on a 3.4 Ghz system with 1 Gb
memory with four different compilers is given below:

n=10,000,000
Compiler

read sort print
1 7.328 2.812 61.391
2 7.563 2.922 58.843
3 5.765 3.281 17.751
4 7.015 3.438 22.344

As can be seen it is the I/O that dominates the overall running time of the program.
In the 10 years since first running this program we have seen the data set size in-
crease from tens of thousands to tens and hundreds of millions.

23.10 Summary
We now have a lot of the tools to start tackling problems in a structured and modu-
lar way, breaking problems down into manageable chunks and designing
subprograms for each of the tasks.

Subroutines: 2 337

23.11 Problems
1. Below is the random number program that was used to generate the data sets for
the Quicksort example:

program ch2311
implicit none
integer :: n
integer :: i
real , allocatable , dimension(:) :: x

print *,' how many values ?'
read *,n
allocate(x(1:n))
call random_number(x)
x=x*1000
open(unit=10,file='random.txt')
do i=1,n

write(10, 100)x(i)
100 format(f8.3)

end do
end program ch2311

Run the Quick_Sort program in this chapter with the data file as input. Obtain tim-
ing details.

What percentage of the time does the program spend in each subroutine? Is it
worth trying to make the sort much more efficient given these timings?

2. Find out if there is a subroutine library like the NAG library available. If there is
replace the Quick_Sort recursive subroutine with a suitable routine from that li-
brary. What times do you obtain?

3. Try using the operating system SORT command to sort the file. What timing
figures do you get now?

Was it worth writing a program?

4. Consider the following program:

program ch2312
!
! Program to test array subscript checking
! when the array is passed as an argument.
!
implicit none
integer , parameter :: array_size=10

338 Chapter 23

integer :: i
integer , dimension(array_size) :: a

do i=1,array_size
a(i)=i

end do
call sub01(a,array_size)

end program ch2312

subroutine sub01(a,array_size)
implicit none
integer , intent(in) :: array_size
integer , intent(in) , dimension(array_size) :: a
integer :: i
integer :: atotal=0
integer :: rtotal=0

do i=1,array_size
rtotal=rtotal+a(i)

end do
do i=1,array_size+1

atotal=atotal+a(i)
end do
print *,' Apparent total is ' , atotal
print *,' real total is ' , rtotal

end subroutine sub01

The key thing to note is that we haven’t used interface blocks and we have an error
in the subroutine where we go outside the array. Run this program. What answer
do you get for the apparent total?

Are there any compiler flags or switches which will enable you to trap this error?

Subroutines: 2 339

23.12 Bibliography
Hoare C.A.R., Algorithm 63, Partition; Algorithm 64, Quicksort, p.321; Algo-
rithm 65: FIND, Comm. of the ACM, 4 p.321–322, 1961.

Hoare C.A.R., Proof of a Program: FIND, Comm A.C.M., 13, No 1 (1970) 39–45

Hoare C.A.R., Proof of a Recursive Program: Quicksort, Comp. J., 14, No 4
(1971) 391–95.

Knuth D.E., The Art of Computer Programming, Volume 3 — Sorting and
Searching, Addison-Wesley, 1973.

Wirth N., Algorithms and Data Structures, Prentice-Hall, 1986.

23.13 Commercial numerical and statistical subroutine libraries
There are two major suppliers of commercial libraries:

• NAG: Numerical Algorithms Group

and

• Visual Numerics

They can be found at:

• http://www.nag.co.uk/

and

• http://www.vni.com/index.html

respectively. Their libraries are written by numerical analysts, and are fully tested
and well documented. They are under constant development and available for a
wide range of hardware platforms and compilers. Parallel versions are also avail-
able.

340 Chapter 23

24

An Introduction
to Modules

“Common sense is the best distributed commodity in the world, for every man is
convinced that he is well supplied with it.”

Descartes

Aims
The aims of this chapter are to look at the facilities found in Fortran provided by
modules, in particular:

• The use of a module to aid in the consistent definition of precision
throughout a program and subprograms.

• The use of modules for global data.

• The use of modules for derived data types.

• Two examples showing the use of modules with contained proecures and
their use to package procedures.

• A complete numerical example solving systems of linear equations using
Gaussian elimination.

24 An Introduction to Modules

As summarised in the Chapter 23 we now have the tools to solve many problems
using just a main program and one or more external and internal subprograms.
Both external and internal subprograms communicate through their argument lists,
whilst internal subprograms have access to data in their host program units.

We now introduce another type of program unit, the module, which is probably
one of the most important features of Fortran 90. The purpose of modules is quite
different from that of subprograms. In their simplest form they exist so that any-
thing required by more than one program unit may be packaged in a module and
made available where needed.

The form of a module is

MODULE module_name
...
END MODULE module_name

and the information contained within it is made available in the program units that
need to access it by

USE module_name

The USE statement must be the first statement after the PROGRAM or SUBROU-
TINE or FUNCTION statement.

In this chapter we will look at:

• Modules for global data.

• Modules for derived types.

• Modules for explicit interfaces.

• Modules containing procedures.

Modules are another program unit and exist so that anything required by more than
one program unit may be packaged in a module and made available where needed.

24.1 Modules for global data
So far the only way that a program unit can communicate with a procedure is
through the argument list. Sometimes this is very cumbersome, especially if a
number of procedures want access to the same data, and it means long argument
lists. The problem can be solved using modules; e.g., by defining the precision to
which you wish to work and any constants defined to that precision which may be
needed by a number of procedures.

342 Chapter 24

24.2 Modules for precision specification and constant definition
In the following example we use a module to define a parameter Long to specify
the precision to which we wish to work, and another for a range of mathematical
constants including a value for the parameter �. Note that the parameter � is de-
fined to this working precision. We then import the module defining these
parameters into the program units that need them:

module precision_definition
implicit none
integer , parameter ::

long=selected_real_kind(15,307)
end module precision_definition

module maths_constants
use precision_definition
implicit none
real (long) , parameter :: c = 299792458.0_long
! units m s-1
real (long) , parameter :: &

e = 2.71828182845904523_long
real (long) , parameter :: g = 9.812420_long
! 9.780 356 m s-2 at sea level on the equator
! 9.812 420 m s-2 at sea level in London
! 9.832 079 m s-2 at sea level at the poles
real (long) , parameter :: &

pi = 3.14159265358979323_long
end module maths_constants

PROGRAM ch2401
USE Precision_definition
IMPLICIT NONE
INTERFACE

SUBROUTINE Sub1(Radius,Area,Circum)
USE Precision_definition
IMPLICIT NONE
REAL(Long),INTENT(IN)::Radius
REAL(Long),INTENT(OUT)::Area,Circum
END SUBROUTINE Sub1

END INTERFACE
REAL(Long)::R,A,C
INTEGER ::I
DO I=1,10

An Introduction to Modules 343

PRINT*,'Radius?'
READ*,R
CALL Sub1(R,A,C)
PRINT *,' For radius = ',R
PRINT *,' Area = ',A
PRINT *,' Circumference = ',C

END DO
END PROGRAM ch2401

SUBROUTINE Sub1(Radius,Area,Circum)
USE Precision_definition
use maths_constants
IMPLICIT NONE
REAL(Long),INTENT(IN)::Radius
REAL(Long),INTENT(OUT)::Area,Circum
Area=Pi*Radius*Radius
Circum=2.0_Long*Pi*Radius

END SUBROUTINE Sub1

24.2.1 Note

In this example we wish to work with the precision specified by the kind type pa-
rameter Long in the module Precision_definition. In order to do this we use the
statement

USE precision_definition

inside the program unit before any declarations. The kind type parameter Long is
then used with all the REAL type declaration e.g.,

REAL (Long):: R ,A,C

To make sure that all floating point calculations are performed to the working pre-
cision specified by Long any constants such as 2.0 in subroutine Sub1 are specified
as const_Long e.g.,

2.0_Long

Note also that we define things once and use them on two occasions, i.e., we de-
fine the precision once and use this definition in both the main program and the
subroutine.

344 Chapter 24

24.3 Modules for sharing arrays of data
The following example uses one module containing a number of constants and a
second module containing an array definition:

module data
implicit none
integer , parameter :: n=12
real , dimension(1:n) :: rainfall
real , dimension(1:n) :: sorted

end module data

program ch2402
use data
implicit none

call readdata
call sortdata
call printdata

end program ch2402

subroutine readdata
use data
implicit none
integer :: i
character (len=40) :: filename

print *,' What is the filename ?'
read *,filename
open(unit=100,file=filename)
do i=1,n

read (100,*) rainfall(i)
end do

end subroutine readdata

subroutine sortdata
use data

sorted=rainfall
call selection

contains

subroutine selection

An Introduction to Modules 345

implicit none
integer :: i,j,k
real :: minimum

do i=1,n-1
k=i
minimum=sorted(i)
do j=i+1,n

if (sorted(j) < minimum) then
k=j
minimum=sorted(k)

end if
end do
sorted(k)=sorted(i)
sorted(i)=minimum

end do
end subroutine selection

end subroutine sortdata

subroutine printdata
use data
implicit none
integer :: i

print *,' original data is '
do i=1,n

print 100,rainfall(i)
100 format(1x,f7.1)

end do
print *,' Sorted data is '
do i=1,n

print 100,sorted(i)
end do

end subroutine printdata

Note that in this example the calls to the subroutines have no parameters. They
work with the data contained in the module.

24.4 Modules for derived data types
When using derived data types and passing them as arguments to subroutines, both
the actual arguments and dummy arguments must be of the same type, i.e., they
must be declared with reference to the same type definition. The only way this can

346 Chapter 24

be achieved is by using modules. The user defined type is declared in a module
and each program unit that requires that type uses the module.

24.4.1 Person data type

In this example we have a user defined type Person which we wish to use in the
main program and pass arguments of this type to the subroutines Read_data and
Stats. In order to have the type Person available to two subroutines and the main
program we have defined Person in a module Personal_details and then made the
module available to each program unit with the statement

USE Personal_details

We also have the use of an interface block to provide the ability to develop the
overall solution in stages:

MODULE Personal_details
IMPLICIT NONE
TYPE Person

REAL:: Weight
INTEGER :: Age
CHARACTER :: Sex

END TYPE Person
END MODULE Personal_details

PROGRAM ch2403
USE Personal_details
IMPLICIT NONE
INTEGER ,PARAMETER:: Max_no=100
TYPE (Person), DIMENSION(1:Max_no) :: Patient
INTEGER :: No_of_patients
REAL :: Male_average, Female_average

INTERFACE

SUBROUTINE Read_data(Data,Max_no,No)
USE Personal_details
IMPLICIT NONE
TYPE (Person), DIMENSION (:), INTENT(OUT):: Data
INTEGER, INTENT(OUT):: No
INTEGER, INTENT(IN):: Max_no

END SUBROUTINE Read_Data

SUBROUTINE Stats(Data,No,M_a,F_a)
USE Personal_details

An Introduction to Modules 347

IMPLICIT NONE
TYPE(Person), DIMENSION (:) :: Data
REAL:: M_a,F_a
INTEGER :: No

END SUBROUTINE Stats

END INTERFACE
!

CALL Read_data(Patient,Max_no,No_of_patients)
CALL Stats(Patient , No_of_patients , &

Male_average , Female_average)
PRINT*, 'Average male weight is ',Male_average
PRINT*, 'Average female weight is ',Female_average

END PROGRAM ch2403

SUBROUTINE Read_Data(Data,Max_no,No)
USE Personal_details
IMPLICIT NONE
TYPE (PERSON), DIMENSION (:), INTENT(OUT)::Data
INTEGER, INTENT(OUT):: No
INTEGER, INTENT(IN):: Max_no
INTEGER :: I
DO

PRINT *,'Input number of patients'
READ *,No
IF (No > 0 .AND. No <= Max_no) EXIT

END DO
DO I=1,No

PRINT *,'For person ',I
PRINT *,'Weight ?'
READ*,Data(I)%Weight
PRINT*,'Age ?'
READ*,Data(I)%Age
PRINT*,'Sex ?'
READ*,Data(I)%Sex

END DO
END SUBROUTINE Read_Data

SUBROUTINE Stats(Data,No,M_a,F_a)
USE Personal_details
IMPLICIT NONE
TYPE(Person), DIMENSION(:)::Data

348 Chapter 24

REAL :: M_a,F_a
INTEGER:: No
INTEGER :: I,No_f,No_m
M_a=0.0; F_a=0.0;No_f=0; No_m =0
DO I=1,No

IF (Data(I)%Sex == 'M' &
.OR. Data(I)%Sex == 'm') THEN

M_a=M_a+Data(I)%Weight
No_m=No_m+1

ELSEIF(Data(I)%Sex == 'F' &
.OR. Data(I)%Sex == 'f') THEN
F_a=F_a +Data(I)%Weight
No_f=No_f+1

ENDIF
END DO
IF (No_m > 0) THEN

M_a = M_a/No_m
ENDIF
IF (No_f > 0) THEN

F_a = F_a/No_f
ENDIF

END SUBROUTINE Stats

24.5 Modules containing procedures — Quicksort example
In this example we rewrite the Quicksort example to use modules. Each subroutine
is put into a module on its own. The program is given below:

module read_data

contains

SUBROUTINE Read(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , DIMENSION(:) :: Raw_Data

INTEGER :: I

OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)

An Introduction to Modules 349

ENDDO
END SUBROUTINE Read

end module read_data

module sort_data

contains

SUBROUTINE Sort(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(INOUT) , DIMENSION(:) :: Raw_data

CALL QuickSort(1,How_Many)

CONTAINS

RECURSIVE SUBROUTINE QuickSort(L,R)
IMPLICIT NONE
INTEGER , INTENT(IN) :: L,R
INTEGER :: I,J
REAL :: V,T

i=l
j=r
v=raw_data(int((l+r)/2))
do

do while (raw_data(i) < v)
i=i+1

enddo
do while (v < raw_data(j))

j=j-1
enddo
if (i<=j) then

t=raw_data(i)
raw_data(i)=raw_data(j)
raw_data(j)=t
i=i+1
j=j-1

endif
if (i>j) exit

350 Chapter 24

enddo

if (l<j) then
call quicksort(l,j)

endif

if (i<r) then
call quicksort(i,r)

endif

END SUBROUTINE QuickSort

END SUBROUTINE Sort

end module sort_data

module print_data

contains

SUBROUTINE Print(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(IN) , DIMENSION(:) :: Raw_data
INTEGER :: I

OPEN(FILE='SORTED.DAT',UNIT=2)
DO I=1,How_Many

WRITE(UNIT=2,FMT=*) Raw_data(I)
ENDDO
CLOSE(2)

END SUBROUTINE Print

end module print_data

PROGRAM ch2404
use read_data
use sort_data
use print_data
IMPLICIT NONE
INTEGER :: How_Many
CHARACTER (LEN=20) :: File_Name
REAL , ALLOCATABLE , DIMENSION(:) :: Raw_data

An Introduction to Modules 351

integer , dimension(8) :: dt

PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name

call date_and_time(values=dt)
PRINT 100 , dt(6),dt(7),dt(8)
100 FORMAT(' Initial cpu time = ',3(2x,i10))

ALLOCATE(Raw_data(How_Many))

call date_and_time(values=dt)
PRINT 110 , dt(6),dt(7),dt(8)
110 FORMAT(' Allocate cpu time = ',3(2x,i10))

CALL Read(File_Name,Raw_Data,How_Many)

call date_and_time(values=dt)
PRINT 120 , dt(6),dt(7),dt(8)
120 FORMAT(' Read data cpu time = ',3(2x,i10))

CALL Sort(Raw_Data,How_Many)

call date_and_time(values=dt)
PRINT 130 , dt(6),dt(7),dt(8)
130 FORMAT(' Quick sort cpu time = ',3(2x,i10))

CALL Print(Raw_Data,How_Many)

call date_and_time(values=dt)
PRINT 140 , dt(6),dt(7),dt(8)
140 FORMAT(' Write data cpu time = ',3(2x,i10))

PRINT * , ' '
PRINT *, ' Data written to file SORTED.DAT'

END PROGRAM ch2404

352 Chapter 24

The keys in this example is that each subroutine is in a module as a contained pro-
cedure and we just have three use statements in the main program to make the
subroutines available.

Note that we do not now have any interface blocks in this program. The cross unit
checking that interface blocks make available is provided automatically when using
modules.

24.6 Modules containing procedures — Statistics example
This is a reworking of the statistics subroutine introduced earlier. We now break
the subroutine down into three separate functions:

• mean

• std_dev

• median

that are contained within a module. The median function also has its own internal
procedure, find.

module statistics

contains

real function mean(x,n)
implicit none
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
integer :: i
real :: total

total=0
do i=1,n

total=total+x(i)
end do
mean=total/n

end function mean

real function std_dev(x,n,mean)
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , intent(in) :: mean
real :: variance

variance=0
do i=1,n

An Introduction to Modules 353

variance=variance + (x(i)-mean)**2
end do
variance=variance/(n-1)
std_dev=sqrt(variance)

end function std_dev

real function median(x,n)
integer , intent(in) :: n
real , intent(in) , dimension(:) :: x
real , dimension(1:n) :: y

y=x
if (mod(n,2) == 0) then

median = (find(n/2)+find((n/2)+1))/2
else

median=find((n/2)+1)
endif

contains

real function find(k)
implicit none
integer , intent(in) :: k
integer :: l,r,i,j
real :: t1,t2

l=1
r=n
do while (l<r)

t1=y(k)
i=l
j=r
do

do while (y(i)<t1)
i=i+1

end do
do while (t1<y(j))

j=j-1
end do
if (i<=j) then

t2=y(i)
y(i)=y(j)
y(j)=t2
i=i+1

354 Chapter 24

j=j-1
end if
if (i>j) exit

end do
if (j<k) then

l=i
end if
if (k<i) then

r=j
end if

end do
find=y(k)

end function find

end function median

end module statistics

program ch2405

use statistics

implicit none
integer :: n
real , allocatable , dimension(:) :: x
real :: m,sd,med
integer , dimension(8) :: v

print *,' How many values ?'
read *,n
call date_and_time(values=v)
print *,' initial ',v(6),v(7),v(8)
allocate(x(1:n))
call date_and_time(values=v)
print *,' allocate ',v(6),v(7),v(8)
call random_number(x)
call date_and_time(values=v)
print *,' random ',v(6),v(7),v(8)
x=x*1000
call date_and_time(values=v)
print *,' output ',v(6),v(7),v(8)
m=mean(x,n)

An Introduction to Modules 355

call date_and_time(values=v)
print *,' mean ',v(6),v(7),v(8)
print *,' mean = ',m
sd=std_dev(x,n,m)
call date_and_time(values=v)
print *,' standard deviation ',v(6),v(7),v(8)
print *,' Standard deviation = ',sd
med = median(x,n)
call date_and_time(values=v)
print *,' median ',v(6),v(7),v(8)
print *,' median is = ',med

end program ch2405

Note again that we do not need to have explicit interface blocks as the packaging
of the procedures within a module provides the interface checking automatically.

The program also has timing code added to allow profiling of the various parts of
the program.

24.7 The solution of linear equations using Gaussian elimination
At this stage we have introduced many of the concepts needed to write numerical
code, and have included a popular algorithm, Gaussian elimination, together with a
main program which uses it and a module to bring together many of the features
covered so far.

Finding the solution of a system of linear equations is very common in scientific
and engineering problems, either as a direct physical problem or indirectly, for ex-
ample, as the result of using finite difference methods to solve a partial differential
equation. We will restrict ourselves to the case where the number of equations and
the number of unknowns are the same. The problem can be defined as:

a x a x a x b

a x a x a x b

n n

n n

11 1 12 2 1 1

12 2 22 2 2 2

� � � �

� � � �

�

�

�

� � � � �

a x a x a x bn n nn n n1 1 2 2� � � ��

(1)

or

a a a

a a a

a a a

x

x

n

n

n n nn

11 12 1

21 22 2

1 2

1

2

�

�

� � � �

�

�

�

	
	
	
	

�

�
�
�
�

� �

x

b

b

bn n

�

�

	
	
	
	

�

�
�
�
�

�

�

�

	
	
	
	

�

�
�
�
�

1

2

356 Chapter 24

which can be written as:

A x b� (2)

where A is the n x n coefficient matrix, b is the right-hand-side vector and x is the
vector of unknowns. We will also restrict ourselves to the case where A is a gen-
eral real matrix.

Note that there is a unique solution to (2) if the inverse, A-1, of the coefficient ma-
trix A, exists. However, the system should never be solved by finding A-1 and then
solving A b x� �1 because of the problems of rounding error and the computational
costs.

A well-known method for solving (2) is Gaussian elimination, where multiples of
equations are subtracted from others so that the coefficients below the diagonal be-
come zero, producing a system of the form:

a a a

a a

a

x
n

n

nn

11 12 1

22 2

1

0

0 0 0

* * *

* *

*

�

�

� � � �

�

�

	
	
	
		

�

�
�
�
��

x

x

b

b

bn n

2

1

2

� �

�

�

	
	
	
	

�

�
�
�
�

�

�

�

	
	
	
		

�

�
�
�
��

*

*

*

where A has been transformed into an upper triangular matrix. By a process of
backward substitution the values of x drop out.

The subroutine Gaussian_Elimination implements the Gaussian elimination algo-
rithm with partial pivoting, which ensure that the multipliers are less than 1 in
magnitude, by interchanging rows if necessary. This is to try and prevent the
buildup of errors.

This implementation is based on two LINPACK routines SGEFA and SGESL and
a Fortran 77 subroutine written by Tim Hopkins and Chris Phillips and found in
their book Numerical Methods in Practice.

The matrix A and vector B are passed to the subroutine Gaussian_Elimination and
on exit both A and B are overwritten. Mathematically Gaussian elimination is de-
scribed as working on rows, and using partial pivoting row interchanges may be
necessary. Due to Fortran's row element ordering, to implement this algorithm effi-
ciently it works on columns rather than rows by interchanging elements within a
column if necessary.

MODULE Precisions
INTEGER,PARAMETER:: Long=SELECTED_REAL_KIND(15,307)
END MODULE Precisions

PROGRAM Solve

An Introduction to Modules 357

USE Precisions
IMPLICIT NONE
INTEGER :: I,N
REAL (Long), ALLOCATABLE:: A(:,:),B(:),X(:)
LOGICAL:: Singular

INTERFACE

SUBROUTINE Gaussian_Elimination(A,N,B,X,Singular)
USE Precisions
IMPLICIT NONE
INTEGER, INTENT(IN)::N
REAL (Long), INTENT (INOUT) :: A(:,:),B(:)
REAL (Long), INTENT(OUT)::X(:)
LOGICAL, INTENT(OUT) :: Singular

END SUBROUTINE Gaussian_Elimination

END INTERFACE

PRINT *,'Number of equations?'
READ *,N
ALLOCATE(A(1:N,1:N),B(1:N),X(1:N))
DO I=1,N

PRINT *,'Input elements of row ',I,' of A'
READ*,A(I,1:N)
PRINT*,'Input element ',I,' of B'
READ *,B(I)

END DO
CALL Gaussian_Elimination(A,N,B,X,Singular)
IF(Singular) THEN

PRINT*, 'Matrix is singular'
ELSE

PRINT*, 'Solution X:'
PRINT*,X(1:N)

ENDIF
END PROGRAM Solve

SUBROUTINE Gaussian_Elimination(A,N,B,X,Singular)
! Routine to solve a system Ax=b
! using Gaussian Elimination
! with partial pivoting

358 Chapter 24

! The code is based on the Linpack routines
! SGEFA and SGESL
! and operates on columns rather than rows!

USE Precisions
IMPLICIT NONE

! Matrix A and vector B are over-written
! Arguments

INTEGER, INTENT(IN):: N
REAL (Long),INTENT(INOUT):: A(:,:),B(:)
REAL (Long),INTENT(OUT)::X(:)
LOGICAL,INTENT(OUT)::Singular

! Local variables
INTEGER::I,J,K,Pivot_row
REAL (Long):: Pivot,Multiplier,Sum,Element
REAL (Long),PARAMETER::Eps=1.E-13_Long

!
! Work through the matrix column by column
!

DO K=1,N-1
!
! Find largest element in column K for pivot
!

Pivot_row = MAXVAL(MAXLOC(ABS(A(K:N,K)))) &
+ K - 1

!
! Test to see if A is singular
! if so return to main program
!

IF(ABS(A(Pivot_row,K)) <= Eps) THEN
Singular=.TRUE.
RETURN

ELSE
Singular = .FALSE.

ENDIF
!
! Exchange elements in column K if largest is
! not on the diagonal
!

IF(Pivot_row /= K) THEN
Element=A(Pivot_row,K)
A(Pivot_Row,K)=A(K,K)
A(K,K)=Element

An Introduction to Modules 359

Element=B(Pivot_row)
B(Pivot_row)=B(K)
B(K)=Element

ENDIF
!
! Compute multipliers
! elements of column K below diagonal
! are set to these multipliers for use
! in elimination later on
!

A(K+1:N,K) = A(K+1:N,K)/A(K,K)
!
! Row elimination performed by columns for efficiency
!

DO J=K+1,N
Pivot = A(Pivot_row,J)
IF(Pivot_row /= K) THEN

! Swap if pivot row is not K
A(Pivot_row,J)=A(K,J)
A(K,J)=Pivot

ENDIF
A(K+1:N,J)=A(K+1:N,J)-Pivot* A(K+1:N,K)

END DO
!
! Apply same operations to B
!

B(K+1:N)=B(K+1:N)-A(K+1:N,K)*B(K)
END DO

!
! Backward substitution
!

DO I=N,1,-1
Sum = 0.0
DO J= I+1,N

Sum=Sum+A(I,J)*X(J)
END DO
X(I)=(B(I)-Sum)/A(I,I)

END DO
END SUBROUTINE Gaussian_Elimination

360 Chapter 24

24.7.1 Notes

24.7.1.1 Module for kind type

A module, Precisions, has been used to define a kind type parameter, Long, to
specify the floating point precision to which we wish to work. This module is then
used by the main program and the subroutine, and the kind type parameter Long is
used with all the REAL type definitions and with any constants, e.g.,

REAL(Long), PARAMETER :: Eps=1.E-13_Long

24.7.1.2 Deferred-shape arrays

In the main program matrix A and vectors B and X are declared as deferred-shape
arrays, by specifying their rank only and using the ALLOCATABLE attribute.
Their shape is determined at run time when the variable N is read in and then the
statement

ALLOCATE(A(1:N,1:N), B(1:N), X(1:N))

is used.

24.7.1.3 Intrinisic functions MAXVAL and MAXLOC

In the context of subroutine Gaussian_Elimination we have used:

MAXVAL (MAXLOC (ABS (A (K:N,K)))) + K - 1

Breaking this down,

MAXLOC (ABS (A (K:N,K)))

takes the rank 1 array

(| (,) | , | (,) | , | (,) |)A K K A K K A N K�1 � (1)

where | (,) |A K K � ABS(A(K,K)) and of length N- K + 1. It returns the position of
the largest element as a rank 1 array of size one, e.g., (L)

Applying MAXVAL to this rank 1 array (L) returns L as a scalar, L being the posi-
tion of the largest element of array (1).

What we actually want is the position of the largest element of (1) , but in the Kth

column of matrix A. We therefore have to add K-1 to L to give the actual position
in column K of A.

24.8 Notes on module usage and compilation
If we only have one file comprising all of the program units (main program, mod-
ules, functions and subroutines) then there is little to worry about. However, it is

An Introduction to Modules 361

recommended that larger-scale programs be developed as a collection of files with
related program units in each file, or even one program unit per file. This is more
productive in the longer term, but it will lead to problems with modules unless we
compile each module before we use it in other program units.

Secondly, we must use one directory or subdirectory so that the compiler and
linker can find each program unit.

Thirdly, we must be aware of the file naming conventions used by each compiler
implementation we work with. Consider the following:

Fortran Compaq NAG f95
module name under DOS Sun Ultra Sparc

Precisions Precisions.mod Precisions.mod

Whilst in this case they are the same, this is not guaranteed.

24.9 Summary
We have now introduced the concept of a module, another type of program unit,
probably one of of the most important features of Fortran 90. We have seen in this
chapter how they can be used:

• Define global data.

• Define derived data types.

• Contain explicit procedure interfaces.

• Cackage together procedures.

This is a very powerful addition to the language, especially when constructing
large programs and procedure libraries.

24.10 Problems
1. Write two functions, one to calculate the volume of a cylinder � r l2 where the
radius is r and the length is l, and the other to calculate the area of the base of the
cylinder � r 2 . Define � as a parameter in a module which is used by the two func-
tions. Now write a main program which prompts the user for the values of r and l,
calls the two functions and prints out the results.

2. Make all the real variables in the above problem have 15 significant digits and a
range of 10-307 to 10+307. Use a module.

362 Chapter 24

24.11 Bibliography
Dongarra, J., Bunch, J.R., Moler, C.B., and Stewart, G.W. LINPACK User's Guide.
SIAM Publications, 1979.

• This Fortran 77 package is for the solution of simultaneous systems of lin-
ear algebraic equations. Special subroutines are included for many com-
mon types of coefficient matrices. The source is available through
NETLIB. See Chapter 28 for more details.

Hopkins T., Phillips C., Numerical Methods in Practice, using the NAG Library.
Addison-Wesley.

• This is a very good practical introduction to numerical analysis, with the
aim of guiding users to the more commonly used routines in the NAG
Fortran 77 library. It does this by introducing topics, giving some back-
ground, advantages and disadvantages, and the Fortran 77 code for some
of the more well-known algorithms. It then introduces the appropriate
NAG routine with a brief discussion of its use, calling sequence and any
error reporting facilities. We've found this invaluable for many of our stu-
dents who are users of the NAG library but not well versed with numeri-
cal analysis.
Maybe we will see a Fortran 90 version of this book in the near future?

NAG. Visit their web site for up to date details of their products:

• http://www.nag.co.uk/

Visual Numerics. Visit their web site for details of their products:

• http://www.vni.com/index.html

An Introduction to Modules 363

25

Converting from
Fortran 77

“Twas brillig, and the slithy toves
did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.”

Lewis Carroll

Aim
This chapter looks at some of the options available when working with older For-
tran code.

25 Converting from Fortran 77

This chapter looks at converting Fortran 77 code to Fortran 90 and 95 styles.

The aim here is to provide the Fortran 77 programmer (and in particular the person
with legacy code) with some simple guidelines for conversion.

The first thing that one must have is a thorough understanding of the newer, better
language features of Fortran 95. It is essential that the material in the earlier chap-
ters of this book be covered, and some of the problems attempted. This will
provide a feel for Fortran 95.

The second thing one must have is a thorough understanding of the language con-
structs used in this legacy code. Use should be made of the compiler
documentation for whatever Fortran 77 compiler you are using, as this will provide
the detailed (often system specific) information required. The recommendations be-
low are therefore brief.

It is possible to move gradually from Fortran 77 to Fortran 95. In many cases ex-
isting code can be quite simply recompiled by a suitable choice of compiler
options. This enables us to mix and match old and new in one program. This pro-
cess is likely to highlight nonstandard language features in your old code. There
will inevitably be some problems here.

The first thing to consider is what the standard says. The standard identifies two
kinds of decremented features; deleted and obsolescent. It is extremely unwise to
consider the long-term use of these features as they are candidates for removal
from future standards.

25.1 Deleted features
The list of deleted features for Fortran 95 is empty, i.e., there are none.

25.2 Obsolescent features
The obsolescent features are those for which better methods are available. They are
given below with alternatives.

25.2.1 Arithmetic IF

Use the IF statement.

25.2.2 Real and double precision DO control variables

Use integer.

25.2.3 Shared DO termination and non-ENDDO termination

Use an END DO.

366 Chapter 25

25.2.4 Alternate RETURN

Use a CASE statement on return. An error code has to be returned.

25.2.5 PAUSE statement

System specific. Normally easily replaced with a suitable READ statement.

25.2.6 ASSIGN and assigned GOTO statements

Fortunately rarely used.

25.2.7 Assigned FORMAT statements

Use character arrays, arrays and constants.

25.2.8 H editing

Use character edit descriptor.

25.3 Better alternatives
Below we are looking at the new features of the Fortran 95 standard, and how we
can replace our current coding practices with the better facilities that now exist.

• DOUBLE PRECISION — use KIND, see Chapter 8, and examples
throughout the book.

• fixed format — use free format

• implicit typing — use IMPLICIT NONE

• BLOCK DATA — use modules

• COMMON statement — use modules

• EQUIVALENCE — Invariably the use of this feature requires consider-
able system specific knowledge. There will be cases where there have
been extremely good reasons why this feature has been used, normally ef-
ficiency related. However with the rapid changes taking place in the
power and speed of hardware these reasons are diminishing.

• Assumed-size / explicit-shape dummy array arguments — If a dummy ar-
gument is assumed-size or explicit-shape (the only ones available in For-
tran 77) then the ranks of the actual argument and the associated argument
don't have to be the same. With Fortran 95 arrays are now objects instead
of a linear sequence of elements, as was the case with Fortran 77, and
now for array arguments the fundamental rule is that actual and dummy
arguments have the same rank and same extents in each dimension, i.e.,
the same shape, and this is done using assumed-shape dummy array argu-
ments. An interface block is mandatory for assumed-shape arrays.

Converting from Fortran 77 367

• ENTRY statement — use module plus USE statement.

• Statement functions — use internal function, see Chapter 14.

• Computed GOTO — use CASE statement, see Chapter 15.

• Alternate RETURN — use error flags on calling routine.

• INCLUDE — use modules plus USE statement.

• EXTERNAL statement for dummy procedure arguments.

Use explicit interface blocks everywhere. This also provides argument checking
and other benefits.

25.4 Example 1
The first and simplest option is to do nothing. Any code that is valid standard For-
tran 77 will compile as the various successor standards require backwards
compatibility with the Fortran 77 standard.

We will look at an example of leaving the Fortran 77 code alone using a sorting
subroutine from netlib. To get hold of a copy of this code visit:

• http://www.netlib.org/

and search using

• sort

as the keyword.

One of the retrieved links should be

• http://www.netlib.org/slatec/src/dsort.f

Here is a complete listing of this subroutine as is. The code wraps in places at
comment lines and this is intentional as we wanted to show you the code just as it
is without any changes to fit the printed page

*DECK DSORT
SUBROUTINE DSORT (DX, DY, N, KFLAG)

C***BEGIN PROLOGUE DSORT
C***PURPOSE Sort an array and optionally make the
same interchanges in
C an auxiliary array. The array may be
sorted in increasing
C or decreasing order. A slightly
modified QUICKSORT
C algorithm is used.

368 Chapter 25

C***LIBRARY SLATEC
C***CATEGORY N6A2B
C***TYPE DOUBLE PRECISION (SSORT-S, DSORT-D,
ISORT-I)
C***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
C***AUTHOR Jones, R. E., (SNLA)
C Wisniewski, J. A., (SNLA)
C***DESCRIPTION
C
C DSORT sorts array DX and optionally makes the same
interchanges in
C array DY. The array DX may be sorted in
increasing order or
C decreasing order. A slightly modified quicksort
algorithm is used.
C
C Description of Parameters
C DX - array of values to be sorted (usually
abscissas)
C DY - array to be (optionally) carried along
C N - number of values in array DX to be sorted
C KFLAG - control parameter
C = 2 means sort DX in increasing order
and carry DY along.
C = 1 means sort DX in increasing order
(ignoring DY)
C = -1 means sort DX in decreasing order
(ignoring DY)
C = -2 means sort DX in decreasing order
and carry DY along.
C
C***REFERENCES R. C. Singleton, Algorithm 347, An
efficient algorithm
C for sorting with minimal storage,
Communications of
C the ACM, 12, 3 (1969), pp.
185-187.
C***ROUTINES CALLED XERMSG
C***REVISION HISTORY (YYMMDD)
C 761101 DATE WRITTEN
C 761118 Modified to use the Singleton quicksort
algorithm. (JAW)

Converting from Fortran 77 369

C 890531 Changed all specific intrinsics to
generic. (WRB)
C 890831 Modified array declarations. (WRB)
C 891009 Removed unreferenced statement labels.
(WRB)
C 891024 Changed category. (WRB)
C 891024 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format.
(BAB)
C 900315 CALLs to XERROR changed to CALLs to
XERMSG. (THJ)
C 901012 Declared all variables; changed X,Y to
DX,DY; changed
C code to parallel SSORT. (M. McClain)
C 920501 Reformatted the REFERENCES section. (DWL,
WRB)
C 920519 Clarified error messages. (DWL)
C 920801 Declarations section rebuilt and code
restructured to use
C IF-THEN-ELSE-ENDIF. (RWC, WRB)
C***END PROLOGUE DSORT
C .. Scalar Arguments ..

INTEGER KFLAG, N
C .. Array Arguments ..

DOUBLE PRECISION DX(*), DY(*)
C .. Local Scalars ..

DOUBLE PRECISION R, T, TT, TTY, TY
INTEGER I, IJ, J, K, KK, L, M, NN

C .. Local Arrays ..
INTEGER IL(21), IU(21)

C .. External Subroutines ..
EXTERNAL XERMSG

C .. Intrinsic Functions ..
INTRINSIC ABS, INT

C***FIRST EXECUTABLE STATEMENT DSORT
NN = N
IF (NN .LT. 1) THEN

CALL XERMSG ('SLATEC', 'DSORT',
+ 'The number of values to be sorted is

not positive.', 1, 1)
RETURN

ENDIF

370 Chapter 25

C
KK = ABS(KFLAG)
IF (KK.NE.1 .AND. KK.NE.2) THEN

CALL XERMSG ('SLATEC', 'DSORT',
+ 'The sort control parameter, K, is not 2,

1, -1, or -2.', 2,
+ 1)

RETURN
ENDIF

C
C Alter array DX to get decreasing order if needed
C

IF (KFLAG .LE. -1) THEN
DO 10 I=1,NN

DX(I) = -DX(I)
10 CONTINUE

ENDIF
C

IF (KK .EQ. 2) GO TO 100
C
C Sort DX only
C

M = 1
I = 1
J = NN
R = 0.375D0

C
20 IF (I .EQ. J) GO TO 60

IF (R .LE. 0.5898437D0) THEN
R = R+3.90625D-2

ELSE
R = R-0.21875D0

ENDIF
C

30 K = I
C
C Select a central element of the array and save
it in location T
C

IJ = I + INT((J-I)*R)
T = DX(IJ)

C

Converting from Fortran 77 371

C If first element of array is greater than T,
interchange with T
C

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)

ENDIF
L = J

C
C If last element of array is less than than T,
interchange with T
C

IF (DX(J) .LT. T) THEN
DX(IJ) = DX(J)
DX(J) = T
T = DX(IJ)

C
C If first element of array is greater than T,
interchange with T
C

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)

ENDIF
ENDIF

C
C Find an element in the second half of the array
which is smaller
C than T
C

40 L = L-1
IF (DX(L) .GT. T) GO TO 40

C
C Find an element in the first half of the array
which is greater
C than T
C

50 K = K+1
IF (DX(K) .LT. T) GO TO 50

C

372 Chapter 25

C Interchange these elements
C

IF (K .LE. L) THEN
TT = DX(L)
DX(L) = DX(K)
DX(K) = TT
GO TO 40

ENDIF
C
C Save upper and lower subscripts of the array yet
to be sorted
C

IF (L-I .GT. J-K) THEN
IL(M) = I
IU(M) = L
I = K
M = M+1

ELSE
IL(M) = K
IU(M) = J
J = L
M = M+1

ENDIF
GO TO 70

C
C Begin again on another portion of the unsorted
array
C

60 M = M-1
IF (M .EQ. 0) GO TO 190
I = IL(M)
J = IU(M)

C
70 IF (J-I .GE. 1) GO TO 30

IF (I .EQ. 1) GO TO 20
I = I-1

C
80 I = I+1

IF (I .EQ. J) GO TO 60
T = DX(I+1)
IF (DX(I) .LE. T) GO TO 80
K = I

Converting from Fortran 77 373

C
90 DX(K+1) = DX(K)

K = K-1
IF (T .LT. DX(K)) GO TO 90
DX(K+1) = T
GO TO 80

C
C Sort DX and carry DY along
C

100 M = 1
I = 1
J = NN
R = 0.375D0

C
110 IF (I .EQ. J) GO TO 150

IF (R .LE. 0.5898437D0) THEN
R = R+3.90625D-2

ELSE
R = R-0.21875D0

ENDIF
C

120 K = I
C
C Select a central element of the array and save
it in location T
C

IJ = I + INT((J-I)*R)
T = DX(IJ)
TY = DY(IJ)

C
C If first element of array is greater than T,
interchange with T
C

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)
DY(IJ) = DY(I)
DY(I) = TY
TY = DY(IJ)

ENDIF
L = J

374 Chapter 25

C
C If last element of array is less than T,
interchange with T
C

IF (DX(J) .LT. T) THEN
DX(IJ) = DX(J)
DX(J) = T
T = DX(IJ)
DY(IJ) = DY(J)
DY(J) = TY
TY = DY(IJ)

C
C If first element of array is greater than T,
interchange with T
C

IF (DX(I) .GT. T) THEN
DX(IJ) = DX(I)
DX(I) = T
T = DX(IJ)
DY(IJ) = DY(I)
DY(I) = TY
TY = DY(IJ)

ENDIF
ENDIF

C
C Find an element in the second half of the array
which is smaller
C than T
C

130 L = L-1
IF (DX(L) .GT. T) GO TO 130

C
C Find an element in the first half of the array
which is greater
C than T
C

140 K = K+1
IF (DX(K) .LT. T) GO TO 140

C
C Interchange these elements
C

IF (K .LE. L) THEN

Converting from Fortran 77 375

TT = DX(L)
DX(L) = DX(K)
DX(K) = TT
TTY = DY(L)
DY(L) = DY(K)
DY(K) = TTY
GO TO 130

ENDIF
C
C Save upper and lower subscripts of the array yet
to be sorted
C

IF (L-I .GT. J-K) THEN
IL(M) = I
IU(M) = L
I = K
M = M+1

ELSE
IL(M) = K
IU(M) = J
J = L
M = M+1

ENDIF
GO TO 160

C
C Begin again on another portion of the unsorted
array
C

150 M = M-1
IF (M .EQ. 0) GO TO 190
I = IL(M)
J = IU(M)

C
160 IF (J-I .GE. 1) GO TO 120

IF (I .EQ. 1) GO TO 110
I = I-1

C
170 I = I+1

IF (I .EQ. J) GO TO 150
T = DX(I+1)
TY = DY(I+1)
IF (DX(I) .LE. T) GO TO 170

376 Chapter 25

K = I
C

180 DX(K+1) = DX(K)
DY(K+1) = DY(K)
K = K-1
IF (T .LT. DX(K)) GO TO 180
DX(K+1) = T
DY(K+1) = TY
GO TO 170

C
C Clean up
C

190 IF (KFLAG .LE. -1) THEN
DO 200 I=1,NN

DX(I) = -DX(I)
200 CONTINUE

ENDIF
RETURN
END

Our aim is to replace a call to the Quicksort subroutine in an earlier example with
a call to the dsort subroutine. The new program shall be called ch2501.f90 in what
follows.

If we follow the Fortran 77 route all we need to do is change all DOUBLE PRECI-
SION variables to REAL and comment out the calls to the external error handling
subroutine XERMSG.

We then comment out the call to Quicksort:

! CALL quicksort(1,how_many)

and replace with

CALL DSORT(Raw_data,Raw_Data,How_many,1)

where the value of 1 for kflag means ignore the second array.

Here is an example of using the Intel compiler to compile and run the complete
program:

• ifort -c dsort.f

• ifort ch2501.f90 dsort.obj

• ch2501

Converting from Fortran 77 377

The first command compiles the dsort routine as a Fortran 77 fixed source form
and generates an object file called dsort.obj.

The second command compiles the main program and modules and links this with
the dsort.obj file.

The third line runs the program.

This example shows how easy it is in practice to mix and match both Fortran 77
and Fortran 90 style code.

Let us next look at converting the above dsort routine to Fortran 90/95.

25.5 Example 2
Mike Metcalf provides a free program to convert from Fortran 77 to Fortran 90
syntax. A copy can be found at

• http://www.kcl.ac.uk/fortran

Below is the output from running this program.

Type name of file, shift, max. indent level, T or F
for blank treatment,
T or F for interface blocks only.
For simple use type only the name of the file

followed by a slash (/) and RETUR
N.
Note that the name should be given WITHOUT extension!

dsort/
Loop bodies will be indented by 0
Maximum indenting level is 0
Processing complete in 0.000 seconds
Maximum depth of DO-loop nesting 1
Maximum depth of IF-block nesting 2
No. of lines read 324
No. of program units read 1
Global syntax error flag F

The program simply replaces the C in column 1 with the new comment symbol !.
Here is what one needs to do to compile using the Intel compiler:

• ifort ch2501.f90 dsort.f90

This couldn't really be much simpler. Both methods are completely straightfor-
ward.

Other free conversions tools include

378 Chapter 25

• http://www.owlnet.rice.edu/~colby/f2f.html

and here is a quote by the author about the software:

“f2f is a Perl script, which does much of the tedious work of converting Fortran 77
source code into Fortran 90/95 form. There seems to be a lot of Fortran-hate in the
world, and I think this comes from people who have been forced to use Fortran 77
at some time or another. Hopefully, this program will make you a less hateful per-
son.”

25.6 Commercial conversion tools
There are a number of commercial conversion tools and some of them are given
below.

25.6.1 NAG

Their home site is

• http://www.nag.co.uk/

Here is a Fortran 77 program with several subroutines and common blocks. The
comments in the original program have been removed due to space considerations.
The complete programs can be found at:

• http://www.kcl.ac.uk/fortran

The tsunami plot file can be found at

http://www.kcl.ac.uk/fortran

The program was written by Ian whilst on an 18-month secondment to the United
Nations Environment Programme.

The code wraps in places and this is intentional as again we wanted to show you
the code as it is without any changes to fit the printed page.

PROGRAM Map01
LOGICAL TRIAL,SCREEN
REAL LONG,LAT
SCREEN = .FALSE.
TRIAL = .FALSE.
CALL DATAIN(TRIAL)
PRINT *,' What resolution map do you want'
PRINT *
PRINT *,' 1 = 119,650'
PRINT *,' 2 = 75,500'
PRINT *,' 3 = 43,100'
PRINT *,' 4 = 19,300'

Converting from Fortran 77 379

PRINT *,' 5 = 4,420'
PRINT *

100 READ (UNIT=*,FMT=*,END=200,ERR=200) IRES
200 IF ((IRES.LT.1) .OR. (IRES.GT.5)) THEN

PRINT *,' Please input a number in the
range 1 to 5'

GO TO 100
END IF
PRINT *,' What projection would you like?'
PRINT *
PRINT *,' 1 = Lambert - equal area

- rectangle'
PRINT *,' 2 = Mercator - equal direction

- rectangle'
PRINT *,' 3 = Hammer - equal area

- oval'
PRINT *,' 4 = Bonne -

- heart'
PRINT *,' 5 = Orthographic - globe

- round'
300 READ (UNIT=*,FMT=*,END=400,ERR=400) IPROJ
400 IF ((IPROJ.LT.1) .OR. (IPROJ.GT.5)) THEN

PRINT *,' Please input a number in the
range 1 to 5'

GO TO 300
END IF
LAT = 0.0
LONG = 180.0
PRINT *,' Which region do you wish to plot?'
PRINT *,' 0 = all regions'
PRINT *,' 1 = Hawaii'
PRINT *,' 2 = New Zealand and South Pacific

Islands'
PRINT *,' 3 = Papua New Guinea and Solomon

Islands'
PRINT *,' 4 = Indonesia'
PRINT *,' 5 = Philippines'
PRINT *,' 6 = Japan'
PRINT *,' 7 = Kuril Islands and Kamchatka'
PRINT *,' 8 = Alaska incluing Aleutian Islands'
PRINT *,' 9 = West Coast - North and Central

America'

380 Chapter 25

PRINT *,' 10 = West Coast - South America'
READ (UNIT=*,FMT=*,END=8000,ERR=8000) NREG

8000 IF ((NREG.LT.0) .OR. (NREG.GT.10)) THEN
PRINT *,' Please input a number between 0

and 10 inclusive'
GO TO 8000

END IF
PRINT *,' Which colour table do you wish to

use'
PRINT *,' HLS = 1'
PRINT *,' CMY = 2'
PRINT *,' RGB = 3'

500 READ (UNIT=*,FMT=*,END=600,ERR=600) ICOL
600 IF ((ICOL.LT.1) .OR. (ICOL.GT.3)) THEN

PRINT *,' Please input a number in the
range 1 to 3'

GO TO 500
END IF
PRINT *,' Select device, a list of valid

devices maybe'
PRINT *,' obtained by typing'
PRINT *,' list *'
PRINT *,' at the GROUTE prompt'
CALL GROUTE(' ')
CALL GOPEN
CALL GSEGCR(1)
CALL GSURFE
IF (IRES.EQ.1) THEN

CALL WEXTND
ELSE IF (IRES.EQ.2) THEN

CALL WRED1
ELSE IF (IRES.EQ.3) THEN

CALL WRED2
ELSE IF (IRES.EQ.4) THEN

CALL WRED3
ELSE IF (IRES.EQ.5) THEN

CALL WRED4
END IF
NR = 7
KOLOR = 0
CALL WOPEN(0,NR)
CALL WPROJ(IPROJ)

Converting from Fortran 77 381

CALL WCENTR(LONG,LAT)
CALL WDEFC(KOLOR)
CALL WPLOT(' ',0.0)
CALL CONVRT(TRIAL)
CALL PLOTEM(TRIAL,NREG)
CALL GSEGCR(1)
CALL GCLOSE
END
SUBROUTINE DATAIN(TRIAL)
LOGICAL TRIAL
CHARACTER*80 FILNAM
COMMON

/TSUNAM/REG0LA(378),REG0LO(378),REG1LA(206),REG1LO(206),
+

REG2LA(41),REG2LO(41),REG3LA(54),REG3LO(54),REG4LA(60),
+

REG4LO(60),REG5LA(1540),REG5LO(1540),REG6LA(80),REG6LO(8
0),

+
REG7LA(144),REG7LO(144),REG8LA(245),REG8LO(245),

+ REG9LA(285),REG9LO(285)

IF (TRIAL.EQ..TRUE.) THEN
PRINT *,' Entering data input phase'

END IF
FILNAM = 'tsunami.dat'
OPEN (UNIT=50,FILE=FILNAM,ERR=30,STATUS='OLD')
GO TO 40

30 PRINT *,' Error opening data file'
PRINT *,' Program terminates'
STOP

40 DO 100 I = 1,378
100 READ (UNIT=50,FMT=1000) REG0LA(I),REG0LO(I)

1000 FORMAT (1X,F7.2,2X,F7.2)
DO 110 I = 1,206

110 READ (UNIT=50,FMT=1000) REG1LA(I),REG1LO(I)
DO 120 I = 1,41

120 READ (UNIT=50,FMT=1000) REG2LA(I),REG2LO(I)
DO 130 I = 1,54

130 READ (UNIT=50,FMT=1000) REG3LA(I),REG3LO(I)
DO 140 I = 1,60

140 READ (UNIT=50,FMT=1000) REG4LA(I),REG4LO(I)

382 Chapter 25

DO 150 I = 1,1540
150 READ (UNIT=50,FMT=1000) REG5LA(I),REG5LO(I)

DO 160 I = 1,80
160 READ (UNIT=50,FMT=1000) REG6LA(I),REG6LO(I)

DO 170 I = 1,144
170 READ (UNIT=50,FMT=1000) REG7LA(I),REG7LO(I)

DO 180 I = 1,245
180 READ (UNIT=50,FMT=1000) REG8LA(I),REG8LO(I)

DO 190 I = 1,285
190 READ (UNIT=50,FMT=1000) REG9LA(I),REG9LO(I)

IF (TRIAL.EQ..TRUE.) THEN
DO 200 I = 1,10

200 PRINT *,REG0LA(I),' ',REG0LO(I)
PRINT *,' Exiting data input phase'
READ *,DUMMY

END IF
END
SUBROUTINE CONVRT(TRIAL)
LOGICAL TRIAL
COMMON

/TSUNAM/REG0LA(378),REG0LO(378),REG1LA(206),REG1LO(206),
+

REG2LA(41),REG2LO(41),REG3LA(54),REG3LO(54),REG4LA(60),
+

REG4LO(60),REG5LA(1540),REG5LO(1540),REG6LA(80),REG6LO(8
0),

+
REG7LA(144),REG7LO(144),REG8LA(245),REG8LO(245),

+ REG9LA(285),REG9LO(285)
COMMON

/MMTSUN/MM0LA(378),MM0LO(378),MM1LA(206),MM1LO(206),
+

MM2LA(41),MM2LO(41),MM3LA(54),MM3LO(54),MM4LA(60),
+

MM4LO(60),MM5LA(1540),MM5LO(1540),MM6LA(80),MM6LO(80),
+

MM7LA(144),MM7LO(144),MM8LA(245),MM8LO(245),MM9LA(285),
+ MM9LO(285)

IF (TRIAL.EQ..TRUE.) THEN
PRINT *,' Entering convert'

END IF

Converting from Fortran 77 383

DO 100 I = 1,378
100 CALL

WGETMM(REG0LO(I),REG0LA(I),MM0LO(I),MM0LA(I))
DO 110 I = 1,206

110 CALL
WGETMM(REG1LO(I),REG1LA(I),MM1LO(I),MM1LA(I))

DO 120 I = 1,41
120 CALL

WGETMM(REG2LO(I),REG2LA(I),MM2LO(I),MM2LA(I))
DO 130 I = 1,54

130 CALL
WGETMM(REG3LO(I),REG3LA(I),MM3LO(I),MM3LA(I))

DO 140 I = 1,60
140 CALL

WGETMM(REG4LO(I),REG4LA(I),MM4LO(I),MM4LA(I))
DO 150 I = 1,1540

150 CALL
WGETMM(REG5LO(I),REG5LA(I),MM5LO(I),MM5LA(I))

DO 160 I = 1,80
160 CALL

WGETMM(REG6LO(I),REG6LA(I),MM6LO(I),MM6LA(I))
DO 170 I = 1,144

170 CALL
WGETMM(REG7LO(I),REG7LA(I),MM7LO(I),MM7LA(I))

DO 180 I = 1,245
180 CALL

WGETMM(REG8LO(I),REG8LA(I),MM8LO(I),MM8LA(I))
DO 190 I = 1,285

190 CALL
WGETMM(REG9LO(I),REG9LA(I),MM9LO(I),MM9LA(I))

IF (TRIAL.EQ..TRUE.) THEN
PRINT *,' Exiting convert'

END IF
END

SUBROUTINE PLOTEM(TRIAL,NREG)
LOGICAL TRIAL
INTEGER NREG
COMMON

/MMTSUN/MM0LA(378),MM0LO(378),MM1LA(206),MM1LO(206),
+

MM2LA(41),MM2LO(41),MM3LA(54),MM3LO(54),MM4LA(60),

384 Chapter 25

+
MM4LO(60),MM5LA(1540),MM5LO(1540),MM6LA(80),MM6LO(80),

+
MM7LA(144),MM7LO(144),MM8LA(245),MM8LO(245),MM9LA(285),

+ MM9LO(285)
DATA DWIDTH/1.0/

IF (TRIAL.EQ..TRUE.) THEN
DWIDTH = 5.0
PRINT *,' Entering Plot points'

END IF
IF (NREG.EQ.0) THEN

KOLOUR = 2
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM0LO,MM0LA,378)
KOLOUR = 3
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM1LO,MM1LA,206)
KOLOUR = 4
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM2LO,MM2LA,41)
KOLOUR = 5
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM3LO,MM3LA,54)
KOLOUR = 6
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM4LO,MM4LA,60)
KOLOUR = 7
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM5LO,MM5LA,1540)
KOLOUR = 0
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM6LO,MM6LA,80)
KOLOUR = 24
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM7LO,MM7LA,144)
KOLOUR = 23
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM8LO,MM8LA,245)
KOLOUR = 22
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM9LO,MM9LA,285)

Converting from Fortran 77 385

ELSE IF (NREG.EQ.1) THEN
KOLOUR = 0
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM0LO,MM0LA,378)

ELSE IF (NREG.EQ.2) THEN
KOLOUR = 2
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM1LO,MM1LA,206)

ELSE IF (NREG.EQ.3) THEN
KOLOUR = 12
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM2LO,MM2LA,41)

ELSE IF (NREG.EQ.4) THEN
KOLOUR = 4
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM3LO,MM3LA,54)

ELSE IF (NREG.EQ.5) THEN
KOLOUR = 5
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM4LO,MM4LA,60)

ELSE IF (NREG.EQ.6) THEN
KOLOUR = 6
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM5LO,MM5LA,1540)

ELSE IF (NREG.EQ.7) THEN
KOLOUR = 7
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM6LO,MM6LA,80)

ELSE IF (NREG.EQ.8) THEN
KOLOUR = 8
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM7LO,MM7LA,144)

ELSE IF (NREG.EQ.9) THEN
KOLOUR = 9
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM8LO,MM8LA,245)

ELSE IF (NREG.EQ.10) THEN
KOLOUR = 10
CALL GWICOL(DWIDTH,KOLOUR)
CALL GDOT(MM9LO,MM9LA,285)

END IF
IF (TRIAL.EQ..TRUE.) THEN

386 Chapter 25

PRINT *,' Exiting Plot points'
END IF
END

Below is the converted program after using the Nag tool suite. The code wraps in
places and this is intentional as again we wanted to show you the code as it is
without any changes to fit the printed page.

MODULE mmtsun

INTEGER :: mm0la(378), mm0lo(378), mm1la(206),
mm1lo(206), mm2la(41), &

mm2lo(41), mm3la(54), mm3lo(54), mm4la(60),
mm4lo(60), mm5la(1540), &

mm5lo(1540), mm6la(80), mm6lo(80), mm7la(144),
mm7lo(144), mm8la(245), &

mm8lo(245), mm9la(285), mm9lo(285)

END MODULE mmtsun
MODULE tsunam

REAL :: reg0la(378), reg0lo(378), reg1la(206),
reg1lo(206), reg2la(41), &

reg2lo(41), reg3la(54), reg3lo(54), reg4la(60),
reg4lo(60), reg5la(1540), &

reg5lo(1540), reg6la(80), reg6lo(80), reg7la(144),
reg7lo(144), &

reg8la(245), reg8lo(245), reg9la(285), reg9lo(285)

END MODULE tsunam
PROGRAM map01
! .. Local Scalars ..

REAL :: lat, long
INTEGER :: icol, iproj, ires, kolor, nr, nreg
LOGICAL :: screen, trial

! ..
! .. External Subroutines ..

EXTERNAL convrt, datain, gclose, gopen, groute,
gsegcr, gsurfe, plotem, &

wcentr, wdefc, wextnd, wopen, wplot, wproj, wred1,
wred2, wred3, wred4
! ..

screen = .FALSE.

Converting from Fortran 77 387

trial = .FALSE.
CALL datain(trial)
PRINT *, ' What resolution map do you want'
PRINT *
PRINT *, ' 1 = 119,650'
PRINT *, ' 2 = 75,500'
PRINT *, ' 3 = 43,100'
PRINT *, ' 4 = 19,300'
PRINT *, ' 5 = 4,420'
PRINT *

100 READ (unit=*,fmt=*,end=200,err=200) ires
200 IF ((ires<1) .OR. (ires>5)) THEN

PRINT *, ' Please input a number in the range 1
to 5'

GO TO 100
END IF
PRINT *, ' What projection would you like?'
PRINT *
PRINT *, ' 1 = Lambert - equal area

- rectangle'
PRINT *, ' 2 = Mercator - equal direction -

rectangle'
PRINT *, ' 3 = Hammer - equal area

- oval'
PRINT *, ' 4 = Bonne -

- heart'
PRINT *, ' 5 = Orthographic - globe -

round'
300 READ (unit=*,fmt=*,end=400,err=400) iproj
400 IF ((iproj<1) .OR. (iproj>5)) THEN

PRINT *, ' Please input a number in the range 1
to 5'

GO TO 300
END IF
lat = 0.0
long = 180.0
PRINT *, ' Which region do you wish to plot?'
PRINT *, ' 0 = all regions'
PRINT *, ' 1 = Hawaii'
PRINT *, ' 2 = New Zealand and South Pacific

Islands'
PRINT *, ' 3 = Papua New Guinea and Solomon Islands'

388 Chapter 25

PRINT *, ' 4 = Indonesia'
PRINT *, ' 5 = Philippines'
PRINT *, ' 6 = Japan'
PRINT *, ' 7 = Kuril Islands and Kamchatka'
PRINT *, ' 8 = Alaska incluing Aleutian Islands'
PRINT *, ' 9 = West Coast - North and Central

America'
PRINT *, ' 10 = West Coast - South America'
READ (unit=*,fmt=*,end=8000,err=8000) nreg

8000 IF ((nreg<0) .OR. (nreg>10)) THEN
PRINT *, ' Please input a number between 0 and 10

inclusive'
GO TO 8000

END IF
PRINT *, ' Which colour table do you wish to use'
PRINT *, ' HLS = 1'
PRINT *, ' CMY = 2'
PRINT *, ' RGB = 3'

500 READ (unit=*,fmt=*,end=600,err=600) icol
600 IF ((icol<1) .OR. (icol>3)) THEN

PRINT *, ' Please input a number in the range 1
to 3'

GO TO 500
END IF
PRINT *, ' Select device, a list of valid devices

maybe'
PRINT *, ' obtained by typing'
PRINT *, ' list *'
PRINT *, ' at the GROUTE prompt'
CALL groute(' ')
CALL gopen
CALL gsegcr(1)
CALL gsurfe
IF (ires==1) THEN

CALL wextnd
ELSE IF (ires==2) THEN

CALL wred1
ELSE IF (ires==3) THEN

CALL wred2
ELSE IF (ires==4) THEN

CALL wred3
ELSE IF (ires==5) THEN

Converting from Fortran 77 389

CALL wred4
END IF
nr = 7
kolor = 0
CALL wopen(0,nr)
CALL wproj(iproj)
CALL wcentr(long,lat)
CALL wdefc(kolor)
CALL wplot(' ',0.0)
CALL convrt(trial)
CALL plotem(trial,nreg)
CALL gsegcr(1)
CALL gclose

END PROGRAM map01

SUBROUTINE datain(trial)

USE tsunam , ONLY : reg0la, reg0lo, reg1la, reg1lo,
reg2la, reg2lo, reg3la, &

reg3lo, reg4la, reg4lo, reg5la, reg5lo, reg6la,
reg6lo, reg7la, reg7lo, &

reg8la, reg8lo, reg9la, reg9lo
! .. Scalar Arguments ..

LOGICAL :: trial
! ..
! .. Local Scalars ..

REAL :: dummy
INTEGER :: i
CHARACTER (80) :: filnam

! ..
! .. Arrays in Common ..
! ..
! .. Common Blocks ..
! ..

IF (trial) THEN
PRINT *, ' Entering data input phase'

END IF
filnam = 'tsunami.dat'
OPEN (unit=50,file=filnam,err=30,status='OLD')
GO TO 40

30 PRINT *, ' Error opening data file'

390 Chapter 25

PRINT *, ' Program terminates'
STOP

40 DO 100 i = 1, 378
100 READ (unit=50,fmt=1000) reg0la(i), reg0lo(i)
1000 FORMAT (1X,F7.2,2X,F7.2)

DO 110 i = 1, 206
110 READ (unit=50,fmt=1000) reg1la(i), reg1lo(i)

DO 120 i = 1, 41
120 READ (unit=50,fmt=1000) reg2la(i), reg2lo(i)

DO 130 i = 1, 54
130 READ (unit=50,fmt=1000) reg3la(i), reg3lo(i)

DO 140 i = 1, 60
140 READ (unit=50,fmt=1000) reg4la(i), reg4lo(i)

DO 150 i = 1, 1540
150 READ (unit=50,fmt=1000) reg5la(i), reg5lo(i)

DO 160 i = 1, 80
160 READ (unit=50,fmt=1000) reg6la(i), reg6lo(i)

DO 170 i = 1, 144
170 READ (unit=50,fmt=1000) reg7la(i), reg7lo(i)

DO 180 i = 1, 245
180 READ (unit=50,fmt=1000) reg8la(i), reg8lo(i)

DO 190 i = 1, 285
190 READ (unit=50,fmt=1000) reg9la(i), reg9lo(i)

IF (trial) THEN
DO 200 i = 1, 10

200 PRINT *, reg0la(i), ' ', reg0lo(i)
PRINT *, ' Exiting data input phase'
READ *, dummy

END IF

END SUBROUTINE datain

SUBROUTINE convrt(trial)

USE tsunam, ONLY : reg0la, reg0lo, reg1la, reg1lo,
reg2la, reg2lo, reg3la, &

reg3lo, reg4la, reg4lo, reg5la, reg5lo, reg6la,
reg6lo, reg7la, reg7lo, &

reg8la, reg8lo, reg9la, reg9lo
USE mmtsun, ONLY : mm0la, mm0lo, mm1la, mm1lo,

mm2la, mm2lo, mm3la, mm3lo, &

Converting from Fortran 77 391

mm4la, mm4lo, mm5la, mm5lo, mm6la, mm6lo, mm7la,
mm7lo, mm8la, mm8lo, &

mm9la, mm9lo
! .. Scalar Arguments ..

LOGICAL :: trial
! ..
! .. Local Scalars ..

INTEGER :: i
! ..
! .. External Subroutines ..

EXTERNAL wgetmm
! ..
! .. Arrays in Common ..
! ..
! .. Common Blocks ..
! ..

IF (trial) THEN
PRINT *, ' Entering convert'

END IF
DO 100 i = 1, 378

100 CALL wgetmm(reg0lo(i),reg0la(i),mm0lo(i),mm0la(i))
DO 110 i = 1, 206

110 CALL wgetmm(reg1lo(i),reg1la(i),mm1lo(i),mm1la(i))
DO 120 i = 1, 41

120 CALL wgetmm(reg2lo(i),reg2la(i),mm2lo(i),mm2la(i))
DO 130 i = 1, 54

130 CALL wgetmm(reg3lo(i),reg3la(i),mm3lo(i),mm3la(i))
DO 140 i = 1, 60

140 CALL wgetmm(reg4lo(i),reg4la(i),mm4lo(i),mm4la(i))
DO 150 i = 1, 1540

150 CALL wgetmm(reg5lo(i),reg5la(i),mm5lo(i),mm5la(i))
DO 160 i = 1, 80

160 CALL wgetmm(reg6lo(i),reg6la(i),mm6lo(i),mm6la(i))
DO 170 i = 1, 144

170 CALL wgetmm(reg7lo(i),reg7la(i),mm7lo(i),mm7la(i))
DO 180 i = 1, 245

180 CALL wgetmm(reg8lo(i),reg8la(i),mm8lo(i),mm8la(i))
DO 190 i = 1, 285

190 CALL wgetmm(reg9lo(i),reg9la(i),mm9lo(i),mm9la(i))
IF (trial) THEN

PRINT *, ' Exiting convert'
END IF

392 Chapter 25

END SUBROUTINE convrt

SUBROUTINE plotem(trial,nreg)

USE mmtsun, ONLY : mm0la, mm0lo, mm1la, mm1lo,
mm2la, mm2lo, mm3la, mm3lo, &

mm4la, mm4lo, mm5la, mm5lo, mm6la, mm6lo, mm7la,
mm7lo, mm8la, mm8lo, &

mm9la, mm9lo
! .. Scalar Arguments ..

INTEGER :: nreg
LOGICAL :: trial

! ..
! .. Local Scalars ..

REAL :: dwidth
INTEGER :: kolour

! ..
! .. External Subroutines ..

EXTERNAL gdot, gwicol
! ..
! .. Arrays in Common ..
! ..
! .. Common Blocks ..
! ..
! .. Data Statements ..

DATA dwidth/1.0/
! ..

IF (trial) THEN
dwidth = 5.0
PRINT *, ' Entering Plot points'

END IF
IF (nreg==0) THEN

kolour = 2
CALL gwicol(dwidth,kolour)
CALL gdot(mm0lo,mm0la,378)
kolour = 3
CALL gwicol(dwidth,kolour)
CALL gdot(mm1lo,mm1la,206)
kolour = 4
CALL gwicol(dwidth,kolour)
CALL gdot(mm2lo,mm2la,41)

Converting from Fortran 77 393

kolour = 5
CALL gwicol(dwidth,kolour)
CALL gdot(mm3lo,mm3la,54)
kolour = 6
CALL gwicol(dwidth,kolour)
CALL gdot(mm4lo,mm4la,60)
kolour = 7
CALL gwicol(dwidth,kolour)
CALL gdot(mm5lo,mm5la,1540)
kolour = 0
CALL gwicol(dwidth,kolour)
CALL gdot(mm6lo,mm6la,80)
kolour = 24
CALL gwicol(dwidth,kolour)
CALL gdot(mm7lo,mm7la,144)
kolour = 23
CALL gwicol(dwidth,kolour)
CALL gdot(mm8lo,mm8la,245)
kolour = 22
CALL gwicol(dwidth,kolour)
CALL gdot(mm9lo,mm9la,285)

ELSE IF (nreg==1) THEN
kolour = 0
CALL gwicol(dwidth,kolour)
CALL gdot(mm0lo,mm0la,378)

ELSE IF (nreg==2) THEN
kolour = 2
CALL gwicol(dwidth,kolour)
CALL gdot(mm1lo,mm1la,206)

ELSE IF (nreg==3) THEN
kolour = 12
CALL gwicol(dwidth,kolour)
CALL gdot(mm2lo,mm2la,41)

ELSE IF (nreg==4) THEN
kolour = 4
CALL gwicol(dwidth,kolour)
CALL gdot(mm3lo,mm3la,54)

ELSE IF (nreg==5) THEN
kolour = 5
CALL gwicol(dwidth,kolour)
CALL gdot(mm4lo,mm4la,60)

ELSE IF (nreg==6) THEN

394 Chapter 25

kolour = 6
CALL gwicol(dwidth,kolour)
CALL gdot(mm5lo,mm5la,1540)

ELSE IF (nreg==7) THEN
kolour = 7
CALL gwicol(dwidth,kolour)
CALL gdot(mm6lo,mm6la,80)

ELSE IF (nreg==8) THEN
kolour = 8
CALL gwicol(dwidth,kolour)
CALL gdot(mm7lo,mm7la,144)

ELSE IF (nreg==9) THEN
kolour = 9
CALL gwicol(dwidth,kolour)
CALL gdot(mm8lo,mm8la,245)

ELSE IF (nreg==10) THEN
kolour = 10
CALL gwicol(dwidth,kolour)
CALL gdot(mm9lo,mm9la,285)

END IF
IF (trial) THEN

PRINT *, ' Exiting Plot points'
END IF

END SUBROUTINE plotem

Some of the key points include:

• Generation of modules from common blocks.

• Generation of USE statements with the ONLY option to explicitly specify
which variables are going to be made available in a particular subroutine.

• Documenting of variable, intrinsic and external usage within a subroutine.

• Code restructuring into a well laid out style.

The Nag tool suite can obviously be used to help maintain code during develop-
ment.

25.6.2 Polyhedron

Their home site is

• http://www.polyhedron.com/

and the conversion of dsort.f is given below.

Converting from Fortran 77 395

The code wraps in places and this is intentional as again we wanted to show you
the code as it is without any changes to fit the printed page.

!*==DSORT.f90 processed by SPAG 6.55Dc at 17:45 on 4
May 2005
!*------------------ SPAG Configuration Options

!*--0233,12 021101,-1
000000100000031111000002000020110201210,72 111 --
!*--100000000012114110000000000,100,50,20,10 52,99000
12000000000031 --
!*--99011000000000000,72,72 02,42,38,33
00011012110000100000000 --
!*--

!DECK DSORT
SUBROUTINE DSORT(Dx,Dy,N,Kflag)
IMPLICIT NONE
!*--DSORT10
!***BEGIN PROLOGUE DSORT
!***PURPOSE Sort an array and optionally make the
same interchanges in
! an auxiliary array. The array may be
sorted in increasing
! or decreasing order. A slightly
modified QUICKSORT
! algorithm is used.
!***LIBRARY SLATEC
!***CATEGORY N6A2B
!***TYPE REAL (SSORT-S, DSORT-D, ISORT-I)
!***KEYWORDS SINGLETON QUICKSORT, SORT, SORTING
!***AUTHOR Jones, R. E., (SNLA)
! Wisniewski, J. A., (SNLA)
!***DESCRIPTION
!
! DSORT sorts array DX and optionally makes the same
interchanges in
! array DY. The array DX may be sorted in
increasing order or
! decreasing order. A slightly modified quicksort
algorithm is used.
!
! Description of Parameters

396 Chapter 25

! DX - array of values to be sorted (usually
abscissas)
! DY - array to be (optionally) carried along
! N - number of values in array DX to be sorted
! KFLAG - control parameter
! = 2 means sort DX in increasing order
and carry DY along.
! = 1 means sort DX in increasing order
(ignoring DY)
! = -1 means sort DX in decreasing order
(ignoring DY)
! = -2 means sort DX in decreasing order
and carry DY along.
!
!***REFERENCES R. C. Singleton, Algorithm 347, An
efficient algorithm
! for sorting with minimal storage,
Communications of
! the ACM, 12, 3 (1969), pp.
185-187.
!***ROUTINES CALLED XERMSG
!***REVISION HISTORY (YYMMDD)
! 761101 DATE WRITTEN
! 761118 Modified to use the Singleton quicksort
algorithm. (JAW)
! 890531 Changed all specific intrinsics to
generic. (WRB)
! 890831 Modified array declarations. (WRB)
! 891009 Removed unreferenced statement labels.
(WRB)
! 891024 Changed category. (WRB)
! 891024 REVISION DATE from Version 3.2
! 891214 Prologue converted to Version 4.0 format.
(BAB)
! 900315 CALLs to XERROR changed to CALLs to
XERMSG. (THJ)
! 901012 Declared all variables; changed X,Y to
DX,DY; changed
! code to parallel SSORT. (M. McClain)
! 920501 Reformatted the REFERENCES section. (DWL,
WRB)
! 920519 Clarified error messages. (DWL)

Converting from Fortran 77 397

! 920801 Declarations section rebuilt and code
restructured to use
! IF-THEN-ELSE-ENDIF. (RWC, WRB)
!***END PROLOGUE DSORT
! .. Scalar Arguments ..
INTEGER Kflag , N
! .. Array Arguments ..
REAL Dx(*) , Dy(*)
! .. Local Scalars ..
REAL r , t , tt , tty , ty
INTEGER i , ij , j , k , kk , l , m , nn
! .. Local Arrays ..
INTEGER il(21) , iu(21)
! .. External Subroutines ..
! EXTERNAL XERMSG
! .. Intrinsic Functions ..
INTRINSIC ABS , INT

CALL
SB$ENT('DSORT','D:\document\f2003\examples\ch25\polyhedr
on\dsort.f'&

&)
!***FIRST EXECUTABLE STATEMENT DSORT

CALL BL$ENT(65)
nn = N
IF (nn<1) THEN

! CALL XERMSG ('SLATEC', 'DSORT',
! + 'The number of values to be sorted is
not positive.', 1, 1)

CALL BL$ENT(69)
CALL SB$EXI
RETURN

ENDIF
!

CALL BL$ENT(72)
kk = ABS(Kflag)
IF (kk/=1 .AND. kk/=2) THEN

! CALL XERMSG ('SLATEC', 'DSORT',
! + 'The sort control parameter, K, is not
2, 1, -1, or -2.', 2,
! + 1)

CALL BL$ENT(77)
CALL SB$EXI

398 Chapter 25

RETURN
ENDIF

!
! Alter array DX to get decreasing order if needed
!

CALL BL$ENT(82)
IF (Kflag<=-1) THEN
CALL BL$ENT(83)
DO i = 1 , nn

CALL BL$ENT(84)
Dx(i) = -Dx(i)

ENDDO
ENDIF

!
CALL BL$ENT(88)
IF (kk==2) GOTO 900

!
! Sort DX only
!

CALL BL$ENT(92)
m = 1
i = 1
j = nn
r = 0.375D0

!
100 CALL BL$ENT(97)

IF (i==j) GOTO 500
CALL BL$ENT(98)
IF (r<=0.5898437D0) THEN
CALL BL$ENT(99)
r = r + 3.90625D-2

ELSE
CALL BL$ENT(101)
r = r - 0.21875D0

ENDIF
!

200 CALL BL$ENT(104)
k = i

!
! Select a central element of the array and save
it in location T
!

Converting from Fortran 77 399

ij = i + INT((j-i)*r)
t = Dx(ij)

!
! If first element of array is greater than T,
interchange with T
!

IF (Dx(i)>t) THEN
CALL BL$ENT(114)
Dx(ij) = Dx(i)
Dx(i) = t
t = Dx(ij)

ENDIF
CALL BL$ENT(118)
l = j

!
! If last element of array is less than than T,
interchange with T
!

IF (Dx(j)<t) THEN
CALL BL$ENT(123)
Dx(ij) = Dx(j)
Dx(j) = t
t = Dx(ij)

!
! If first element of array is greater than T,
interchange with T
!

IF (Dx(i)>t) THEN
CALL BL$ENT(130)
Dx(ij) = Dx(i)
Dx(i) = t
t = Dx(ij)

ENDIF
ENDIF

!
! Find an element in the second half of the array
which is smaller
! than T
!

300 CALL BL$ENT(139)
l = l - 1

IF (Dx(l)>t) GOTO 300

400 Chapter 25

!
! Find an element in the first half of the array
which is greater
! than T
!

400 CALL BL$ENT(145)
k = k + 1

IF (Dx(k)<t) GOTO 400
!
! Interchange these elements
!

CALL BL$ENT(150)
IF (k<=l) THEN
CALL BL$ENT(151)
tt = Dx(l)
Dx(l) = Dx(k)
Dx(k) = tt
GOTO 300

ENDIF
!
! Save upper and lower subscripts of the array yet
to be sorted
!

CALL BL$ENT(159)
IF (l-i>j-k) THEN
CALL BL$ENT(160)
il(m) = i
iu(m) = l
i = k
m = m + 1

ELSE
CALL BL$ENT(165)
il(m) = k
iu(m) = j
j = l
m = m + 1

ENDIF
CALL BL$ENT(170)
GOTO 600

!
! Begin again on another portion of the unsorted
array

Converting from Fortran 77 401

!
500 CALL BL$ENT(174)

m = m - 1
IF (m==0) GOTO 1800
CALL BL$ENT(176)
i = il(m)
j = iu(m)

!
600 CALL BL$ENT(179)

IF (j-i>=1) GOTO 200
CALL BL$ENT(180)
IF (i==1) GOTO 100
CALL BL$ENT(181)
i = i - 1

!
700 CALL BL$ENT(183)

i = i + 1
IF (i==j) GOTO 500
CALL BL$ENT(185)
t = Dx(i+1)
IF (Dx(i)<=t) GOTO 700
CALL BL$ENT(187)
k = i

!
800 CALL BL$ENT(189)

Dx(k+1) = Dx(k)
k = k - 1
IF (t<Dx(k)) GOTO 800
CALL BL$ENT(192)
Dx(k+1) = t
GOTO 700

!
! Sort DX and carry DY along
!

900 CALL BL$ENT(197)
m = 1

i = 1
j = nn
r = 0.375D0

!
1000 CALL BL$ENT(202)

IF (i==j) GOTO 1400

402 Chapter 25

CALL BL$ENT(203)
IF (r<=0.5898437D0) THEN
CALL BL$ENT(204)
r = r + 3.90625D-2

ELSE
CALL BL$ENT(206)
r = r - 0.21875D0

ENDIF
!

1100 CALL BL$ENT(209)
k = i

!
! Select a central element of the array and save
it in location T
!

ij = i + INT((j-i)*r)
t = Dx(ij)
ty = Dy(ij)

!
! If first element of array is greater than T,
interchange with T
!

IF (Dx(i)>t) THEN
CALL BL$ENT(220)
Dx(ij) = Dx(i)
Dx(i) = t
t = Dx(ij)
Dy(ij) = Dy(i)
Dy(i) = ty
ty = Dy(ij)

ENDIF
CALL BL$ENT(227)
l = j

!
! If last element of array is less than T,
interchange with T
!

IF (Dx(j)<t) THEN
CALL BL$ENT(232)
Dx(ij) = Dx(j)
Dx(j) = t
t = Dx(ij)

Converting from Fortran 77 403

Dy(ij) = Dy(j)
Dy(j) = ty
ty = Dy(ij)

!
! If first element of array is greater than T,
interchange with T
!

IF (Dx(i)>t) THEN
CALL BL$ENT(242)
Dx(ij) = Dx(i)
Dx(i) = t
t = Dx(ij)
Dy(ij) = Dy(i)
Dy(i) = ty
ty = Dy(ij)

ENDIF
ENDIF

!
! Find an element in the second half of the array
which is smaller
! than T
!

1200 CALL BL$ENT(254)
l = l - 1

IF (Dx(l)>t) GOTO 1200
!
! Find an element in the first half of the array
which is greater
! than T
!

1300 CALL BL$ENT(260)
k = k + 1

IF (Dx(k)<t) GOTO 1300
!
! Interchange these elements
!

CALL BL$ENT(265)
IF (k<=l) THEN
CALL BL$ENT(266)
tt = Dx(l)
Dx(l) = Dx(k)
Dx(k) = tt

404 Chapter 25

tty = Dy(l)
Dy(l) = Dy(k)
Dy(k) = tty
GOTO 1200

ENDIF
!
! Save upper and lower subscripts of the array yet
to be sorted
!

CALL BL$ENT(277)
IF (l-i>j-k) THEN
CALL BL$ENT(278)
il(m) = i
iu(m) = l
i = k
m = m + 1

ELSE
CALL BL$ENT(283)
il(m) = k
iu(m) = j
j = l
m = m + 1

ENDIF
CALL BL$ENT(288)
GOTO 1500

!
! Begin again on another portion of the unsorted
array
!

1400 CALL BL$ENT(292)
m = m - 1

IF (m==0) GOTO 1800
CALL BL$ENT(294)
i = il(m)
j = iu(m)

!
1500 CALL BL$ENT(297)

IF (j-i>=1) GOTO 1100
CALL BL$ENT(298)
IF (i==1) GOTO 1000
CALL BL$ENT(299)
i = i - 1

Converting from Fortran 77 405

!
1600 CALL BL$ENT(301)

i = i + 1
IF (i==j) GOTO 1400
CALL BL$ENT(303)
t = Dx(i+1)
ty = Dy(i+1)
IF (Dx(i)<=t) GOTO 1600
CALL BL$ENT(306)
k = i

!
1700 CALL BL$ENT(308)

Dx(k+1) = Dx(k)
Dy(k+1) = Dy(k)
k = k - 1
IF (t<Dx(k)) GOTO 1700
CALL BL$ENT(312)
Dx(k+1) = t
Dy(k+1) = ty
GOTO 1600

!
! Clean up
!

1800 CALL BL$ENT(318)
IF (Kflag<=-1) THEN

CALL BL$ENT(319)
DO i = 1 , nn

CALL BL$ENT(320)
Dx(i) = -Dx(i)

ENDDO
ENDIF
CALL BL$ENT(323)
CONTINUE
CALL SB$EXI
END SUBROUTINE DSORT

Changing the subroutine using an editor would obviously be much more tedious
and error prone.

Below is an example from their site that looks at the same subroutine in Fortran
66, 77 and 90 styles.

406 Chapter 25

25.6.3 Original Fortran 66

This subroutine picks off digits from an integer and branches depending on their
value.

SUBROUTINE OBACT(TODO)
INTEGER TODO,DONE,IP,BASE
COMMON /EG1/N,L,DONE
PARAMETER (BASE=10)

13 IF(TODO.EQ.0) GO TO 12
I=MOD(TODO,BASE)
TODO=TODO/BASE
GO TO(62,42,43,62,404,45,62,62,62),I
GO TO 13

42 CALL COPY
GO TO 127

43 CALL MOVE
GO TO 144

404 N=-N
44 CALL DELETE

GO TO 127
45 CALL PRINT

GO TO 144
62 CALL BADACT(I)

GO TO 12
127 L=L+N
144 DONE=DONE+1

CALL RESYNC
GO TO 13

12 RETURN
END

25.6.4 Fortran 77 Version

In addition to restructuring, SPAG has renamed some variables, removed the un-
used variable IP, inserted declarations, and used upper and lower case to
distinguish different types of variable:

SUBROUTINE OBACT(Todo)
IMPLICIT NONE

C*** Start of declarations inserted by SPAG
INTEGER act , LENgth , NCHar

C*** End of declarations inserted by SPAG
INTEGER Todo , DONe , BASE
COMMON /EG1 / NCHar , LENgth , DONe

Converting from Fortran 77 407

PARAMETER (BASE=10)
100 IF (Todo.NE.0) THEN

act = MOD(Todo,BASE)
Todo = Todo/BASE
IF (act.EQ.1 .OR. act.EQ.4 .OR.

& act.EQ.7 .OR. act.EQ.8 .OR.
& act.EQ.9) THEN

CALL BADACT(act)
GOTO 200

ELSEIF (act.EQ.2) THEN
CALL COPY
LENgth = LENgth + NCHar

ELSEIF (act.EQ.3) THEN
CALL MOVE

ELSEIF (act.EQ.5) THEN
NCHar = -NCHar
CALL DELETE
LENgth = LENgth + NCHar

ELSEIF (act.EQ.6) THEN
CALL PRINT

ELSE
GOTO 100

ENDIF
DONe = DONe + 1
CALL RESYNC
GOTO 100

ENDIF
200 RETURN

END

25.6.5 Fortran 90 Version

SPAG has used DO WHILE, SELECT CASE, EXIT and CYCLE. No GOTOs or
labels remain.

SUBROUTINE OBACT(Todo)
IMPLICIT NONE

C*** Start of declarations inserted by SPAG
INTEGER act , LENgth , NCHar

C*** End of declarations inserted by SPAG
INTEGER Todo , DONe , BASE
COMMON /EG1 / NCHar , LENgth , DONe
PARAMETER (BASE=10)
DO WHILE (Todo.NE.0)

408 Chapter 25

act = MOD(Todo,BASE)
Todo = Todo/BASE
SELECT CASE (act)
CASE (1,4,7,8,9)

CALL BADACT(act)
EXIT

CASE (2)
CALL COPY
LENgth = LENgth + NCHar

CASE (3)
CALL MOVE

CASE (5)
NCHar = -NCHar
CALL DELETE
LENgth = LENgth + NCHar

CASE (6)
CALL PRINT

CASE DEFAULT
CYCLE

END SELECT
DONe = DONe + 1
CALL RESYNC

ENDDO
RETURN
END

This tool suite can also be used in the maintenance of code during development.

25.7 Summary
This chapter has shown some of the options open to you when working with leg-
acy code. The emphasis has been on relatively straightforward code restructuring.
The use of software tools to aid in this is highly recommended as converting man-
ually using an editor is obviously going to involve much more work.

In Chapter 26 we will look at an example that involves a major rewrite using user
defined data types.

25.8 Problems
1. Try out example 1 with your compiler. What compiler and linker options did
you need?

2. Get hold of the Metcalf conversion program and try example 2. What compiler
options did you need?

Converting from Fortran 77 409

26

Case Studies

“The good teacher is a guide who helps others to dispense with his services.”

R. S. Peters, Ethics and Education

Aims
The aims of this chapter are to look at several complete examples highlighting a
variety of aspects of the use of Fortran 95:

• Using linked lists for sparse matrix problems.

• The solution of a set of ordinary differential equations using the
Runga–Kutta–Merson method, with the use of a procedure as a parameter,
and the use of work arrays.

• Generic procedures.

• A function that returns a variable length array.

• Operator and assignment overloading.

• Diagonal extraction of a matrix.

• Modules and packaging.

• Pure and elemental functions.

• Elemental subroutines.

26 Case Studies

This chapter looks at more realistic case studies of the use of Fortran 95 and its
new features. There are examples of:

• Using linked lists for sparse matrix problems.

• The solution of a set of ordinary differential equations using the
Runga–Kutta–Merson method, with the use of a procedure as a parameter,
and the use of work arrays.

• The construction of generic procedures in Fortran 95. Many of the internal
functions will take arguments of a variety of data types and return a result
of the same type e.g., SINE will take an integer argument, real argument
of whatever precision, complex argument and return the appropriate result.

• Operator and assignment overloading and the use of a MODULE PROCE-
DURE.

• The extraction of the diagonal elements of a matrix.

• Pure and elemental functions.

• Elemental subroutines.

The examples have been chosen to highlight the better features of Fortran 95 and
what is possible with a modern language.

26.1 Using linked lists for sparse matrix problems
A matrix is said to be sparse if many of its elements are zero. Mathematical mod-
els in areas such as management science, power systems analysis, circuit theory
and structural analysis consist of very large sparse systems of linear equations. It is
not possible to solve these systems with classical methods because the sparsity
would be lost and the eventual system would become too large to solve. Many of
these systems consist of tens of thousands, hundreds of thousands and millions of
equations. As computer systems become ever more powerful with massive amounts
of memory the solution of even larger problems becomes feasible.

Direct Methods for Sparse Matrices, by Duff I.S., Erismon A.M. and Reid J.K.,
looks at direct methods for solving sparse systems of linear equations.

Sparse matrix techniques lend themselves to the use of dynamic data structures in
Fortran 95. Only the nonzero elements of a sparse matrix need be stored, together
with their positions in the matrix. Other information also needs to be stored so that
row or column manipulation can be performed without repeated scanning of a po-
tentially very large data structure. Sparse methods may involve introducing some
new nonzero elements, and a way is needed of inserting them into the data struc-

412 Chapter 26

ture. This is where the Fortran 95 pointer construct can be used. The sparse matrix
can be implemented using a linked list to which entries can be easily added and
from which they can be easily deleted.

As a simple introduction, consider the storage of sparse vectors. What we learn
here can easily be applied to sparse matrices, which can be thought of as sets of
sparse vectors.

26.1.1 Inner product of two sparse vectors

Assume that we have two sparse vectors x and y, for example:

x y�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�

3

0

5

0

0

4

0

1

3

0

2

1

�
�

and we wish to calculate the inner product x y x yT

i

n

i i�
�
�

1

. There are a number

of approaches to doing this and the one we use in the program below stores them
as two linked lists. Only the nonzero elements are stored (together with their indi-
ces):

x data file y data file
3 1 1 2
5 3 3 3
4 6 2 5

1 6

PROGRAM ch2601
!
! This program reads the non-zero elements of
! two sparse vectors x and y together with their
! indices, and stores them in two linked lists.
! Using these linked lists it then calculates
! and prints out the inner product.
! It also prints the values.
!
! updated 21/3/00 to initialise pointers to
! be disassociated using intrinsic function NULL
! plus minor updates
!

Case Studies 413

IMPLICIT NONE
CHARACTER (LEN=30):: Filename
TYPE sparse_vector
INTEGER :: index
REAL:: value
TYPE (sparse_vector), POINTER ::next=> NULL ()
END TYPE sparse_vector
TYPE(sparse_vector), POINTER :: Root_x,Current_x, &

Root_y,Current_y
REAL :: Inner_prod=0.0
INTEGER::IO_status

!
! Read non-zero elements of vector x together
! with indices into a linked list
!

PRINT *,'input file name for vector x'
READ '(A)',Filename
OPEN(UNIT=1 , FILE=Filename , STATUS='OLD' &
, IOSTAT=IO_status)
IF(IO_status /= 0)THEN

PRINT*,'Error opening file ',Filename
STOP

ENDIF
ALLOCATE(Root_x)
READ (UNIT=1 , FMT=* , IOSTAT=IO_status) &

Root_x%value,Root_x%index
IF(IO_status /= 0) THEN

PRINT*,' Error when reading from file ' &
, Filename, ' or file empty'
STOP

ENDIF
!
! Read data for vector x from file until eof
!

Current_x => Root_x
ALLOCATE(Current_x%next)
DO WHILE(ASSOCIATED(Current_x%next))

Current_x => Current_x%next
READ (UNIT=1,FMT=*,IOSTAT=IO_status) &

Current_x%value, Current_x%index
IF(IO_status == 0)THEN

ALLOCATE(Current_x%next)

414 Chapter 26

CYCLE
ELSEIF(IO_status > 0)THEN

!
! Error on reading
!

PRINT * ,'Error occurred when reading from ' &
, Filename

STOP
ELSE

!
! End of file
!

NULLIFY (Current_x%next)
END IF

END DO

CLOSE(UNIT=1)
!
! Read non-zero elements of vector y together
! with indices into a linked list
!

PRINT *,'input file name for vector y'
READ '(A)',Filename
OPEN(UNIT=1 , FILE=Filename , STATUS='OLD' &
, IOSTAT=IO_status)

IF(IO_status /= 0)THEN
PRINT*,'Error opening file ',Filename
STOP

ENDIF
ALLOCATE(Root_y)
READ (UNIT=1 , FMT=* , IOSTAT=IO_status) &

Root_y%value,Root_y%index
IF(IO_status /= 0) THEN

PRINT*,' Error when reading from ' &
, Filename, ' or file empty'

STOP
ENDIF

!
! Read data for vector y from file until eof
!

Current_y => Root_y
ALLOCATE(Current_y%next)

Case Studies 415

DO WHILE(ASSOCIATED(Current_y%next))
Current_y => Current_y%next
READ (UNIT=1 , FMT=* , IOSTAT=IO_status) &

Current_y%value, Current_y%index
IF(IO_status == 0)THEN

ALLOCATE(Current_y%next)
CYCLE

ELSEIF(IO_status > 0)THEN
!
! Error on reading
!

PRINT * , 'Error occurred when reading from' &
, Filename

STOP
ELSE

!
! End of file
!

NULLIFY (Current_y%next)
END IF

END DO
!
! Data has now been read and stored in 2 linked lists
! start at the beginning of x linked list and
! y linked list and compare indices
! in order to perform inner product
!

Current_x => Root_x
Current_y => Root_y
DO WHILE (ASSOCIATED(Current_x%next))

DO WHILE (Associated(Current_y%next) &
.AND. Current_y%index < Current_x%index)

!
! move through 2nd list
!

Current_y => Current_y%next
END DO

!
! At this point Current_y%index >= Current_x%index
! or 2nd list is exhausted
!

IF (Current_y%index == Current_x%index) THEN

416 Chapter 26

Inner_prod = Inner_prod &
+ Current_x%value * Current_y%value

END IF
Current_x => Current_x%next

END DO
!
! Print out inner product
!

PRINT *,'Inner product of two sparse vectors is :' &
, Inner_prod

!
! Print non-zero values of vector x and indices
!

PRINT*, 'non-zero values of vector x and indices:'
Current_x => Root_x
DO WHILE (ASSOCIATED(Current_x%next))

PRINT*,Current_x%value,Current_x%index
Current_x => Current_x%next

END DO
!
! Print non-zero values of vector y and indices
!
PRINT*, 'non-zero values of vector y and indices:'

Current_y => Root_y
DO WHILE (ASSOCIATED(Current_y%next))

PRINT*,Current_y%value,Current_y%index
Current_y => Current_y%next

END DO
!
END PROGRAM ch2601

26.2 Solving a system of first-order ordinary differential
equations using Runga–Kutta–Merson

Simulation and mathematical modelling of a wide range of physical processes of-
ten leads to a system of ordinary differential equations to be solved. Such
equations also occur when approximate techniques are applied to more complex
problems. We will restrict ourselves to a class of ordinary differential equations
called initial value problems. These are systems for which all conditions are given
at the same value of the independent variable. We will further restrict ourselves to
first-order initial value problems of the form:

Case Studies 417

dy

dt
f y t

dy

dt
f y t

dy

dt
f y tn

n

1

1

2

2

�

�

�

(,)

(,)

(,)

�

or

� (,)y f y t� (1)

with initial conditions

y t y()0 0�

where

y

y

y

f

f

f

y

y t

y tn n n

�
�

�

	
	
	

�

�
�
�

�
�

�

	
	
	

�

�
�
�

�
1 1

0

1 0

0

� � �

()

()

�

�

	
	
	

�

�
�
�

If we have a system of ordinary differential equations of higher order then they can
be reformulated to a system of order one. See the NAG library documentation for
solving ordinary differential equations.

One well-known class of methods for solving initial value ordinary differential
equations is Runge–Kutta. In this example we have coded the
Runga–Kutta–Merson algorithm, which is a fourth-order method and solves (1)
from a point t = A to a point t = B.

It starts with a step length h B A� �() 100 and includes a local error control
strategy such that the solution at t+h is accepted if:

� �error estimate user defined tolerance� .

If this isn't satisfied the step length h is halved and the solution attempt is repeated
until the above is satisfied or the step length is too small and the problem is left
unsolved. If the error criterion is satisfied the algorithm progresses with a suitable
step length solving the equations at intermediate points until the end point B is
reached. For a full discussion of the algorithm and the error control mechanism
used see Numerical Methods in Practice by Tim Hopkins and Chris Phillips:

MODULE Precisions
INTEGER,PARAMETER:: Long=SELECTED_REAL_KIND(15,307)
END MODULE Precisions

418 Chapter 26

SUBROUTINE Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,Tol)
!
! Runge-Kutta-Merson method for the solution
! of a system of N
! 1st order initial value ordinary
! differential equations.
! The routine tries to integrate from T=A to T=B with
! initial conditions in Y, subject to the
! condition that the
! Absolute Error Estimate <= Tol. The step length is
! adjusted automatically to meet this condition.
! If the routine is successful it returns with
! IFAIL = 0, T=B and
! the solution in Y.
!
USE Precisions
!
IMPLICIT NONE
! Define arguments
!
REAL (Long),INTENT(INOUT):: Y(:)
REAL(Long), INTENT(IN)::A,B,Tol
INTEGER,INTENT(IN)::N
INTEGER,INTENT(OUT)::IFAIL
!
INTERFACE

SUBROUTINE FUN(T,Y,F,N)
USE Precisions
IMPLICIT NONE
REAL(Long),INTENT(IN),DIMENSION(:)::Y
REAL(Long),INTENT(OUT),DIMENSION(:)::F
REAL(Long),INTENT(IN)::T
INTEGER,INTENT(IN)::N
END SUBROUTINE FUN

END INTERFACE
!
! Local variables
!
REAL(Long), DIMENSION(1:SIZE(Y)):: &

S1,S2,S3,S4,S5,New_Y_1,New_Y_2,Error
REAL(Long)::T,H,H2,H3,H6,H8,Factor=1.E-2_Long

Case Studies 419

REAL(Long)::Smallest_step=1.E-6_Long,Max_Error
INTEGER::No_of_steps=0
!

IFAIL=0
!
! Check input parameters
!

IF(N <= 0 .OR. A == B .OR. Tol <= 0.0) THEN
IFAIL = 1
RETURN

ENDIF
!
! Initialize T to be start of interval and
! H to be 1/100 of interval

T=A
H=(B-A)/100.0_Long
DO ! Beginning of Repeat loop

H2=H/2.0_Long
H3=H/3.0_Long
H6=H/6.0_Long
H8=H/8.0_Long

!
! Calculate S1,S2,S3,S4,S5
!
! S1=F(T,Y)

CALL FUN(T,Y,S1,N)

New_Y_1=Y+H3*S1

! S2 = F(T+H/3,Y+H/3*S1)

CALL FUN(T+H3,New_Y_1,S2,N)
New_Y_1=Y+H6*S1+H6*S2

! S3=F(T+H/3,Y+H/6*S1+H/6*S2)

CALL FUN(T+H3,New_Y_1,S3,N)

New_Y_1=Y+H8*(S2+3.0_Long*S3)

! S4=F(T+H/2,Y+H/8*(S2+3*S3))

420 Chapter 26

CALL FUN(T+H2,New_Y_1,S4,N)
New_Y_1=Y+H2*(S1-3.0_Long*S3+4.0_Long*S4)

! S5=F(T+H,Y+H/2*(S1-3*S3+4*S4))

CALL FUN(T+H,New_Y_1,S5,N)
!
! Calculate values at T+H
!

New_Y_1=Y+H6*(S1+4.0_Long*S4+S5)
New_Y_2=Y+H2*(S1-3.0_Long*S3+4.0*S4)

!
! Calculate error estimate
!

Error=ABS(0.2_Long*(New_Y_1-New_Y_2))
Max_Error=MAXVAL(Error)
IF(Max_Error > Tol) THEN

!
! Halve step length and try again
!

IF(ABS(H2) < Smallest_step) THEN
IFAIL = 2
RETURN

ENDIF
H=H2

ELSE
!
! Accepted approximation so overwrite Y with Y_new_1,
! and T with T+H
!

Y=New_Y_1
T=T+H

!
! Can next step be doubled?
!

IF(Max_Error*Factor < Tol)THEN
H=H*2.0_Long

ENDIF
!
! Does next step go beyond interval end B,
! if so set H = B-T

Case Studies 421

!
IF(T+H > B) THEN

H=B-T
ENDIF
No_of_steps=No_of_steps+1

ENDIF
IF(T >= B) EXIT ! End of repeat loop

END DO
END SUBROUTINE Runge_Kutta_Merson

A main program to use this subroutine is of the form:

PROGRAM ch2602
USE Precisions
IMPLICIT NONE
REAL(Long),Dimension(:),Allocatable::Y
REAL(Long)::A,B,Tol
INTEGER::N,IFAIL,All_stat
INTERFACE

SUBROUTINE Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,Tol)
USE Precisions
IMPLICIT NONE
REAL(Long),INTENT(INOUT) :: Y(:)
REAL(Long),INTENT(IN)::A,B,Tol
INTEGER,INTENT(IN)::N
INTEGER,INTENT(OUT)::IFAIL
INTERFACE

SUBROUTINE FUN(T,Y,F,N)
USE Precisions
IMPLICIT NONE
REAL(Long), INTENT(IN),DIMENSION(:)::Y
REAL(Long), INTENT(OUT),DIMENSION(:)::F
REAL(Long), INTENT(IN)::T
INTEGER,INTENT(IN)::N

END SUBROUTINE FUN
END INTERFACE

END SUBROUTINE Runge_Kutta_Merson
END INTERFACE
!
INTERFACE

SUBROUTINE Fun1(T,Y,F,N)
USE Precisions
IMPLICIT NONE

422 Chapter 26

REAL(Long), INTENT(IN),DIMENSION(:)::Y
REAL(Long), INTENT(OUT),DIMENSION(:)::F
REAL(Long),INTENT(IN):: T
INTEGER, INTENT(IN):: N
END SUBROUTINE Fun1

END INTERFACE
!

PRINT *,'Input no of equations'
READ*,N

!
! Allocate space for Y - checking to see that it
! allocates properly
!

ALLOCATE(Y(1:N),STAT=All_stat)
IF(All_stat /= 0) THEN

PRINT * , ' Not enough memory'
PRINT * , ' array Y is not allocated'
STOP

ENDIF
PRINT *,' Input start and end of interval over'
PRINT *,' which equations to be solved'
READ *,A,B
PRINT *,"Input ic's"
READ *,Y(1:N)
PRINT *,'Input Tolerance'
READ *,Tol
PRINT *,'At T= ',A
PRINT *,'Initial conditions are :',Y(1:N)
CALL Runge_Kutta_Merson(Y,Fun1,IFAIL,N,A,B,Tol)
IF(IFAIL /= 0) THEN

PRINT *,'Integration stopped with IFAIL = ',IFAIL
ELSE

PRINT *,'at T= ',B
PRINT*,'Solution is: ',Y(1:N)

ENDIF
END PROGRAM ch2602

Consider trying to solve the following system of first-order ordinary differential
equations:

� tany y1 3�

Case Studies 423

�
. tan .

cos
y

y

y

y

y
2

3

2

2

3

0 032 0 02
�

�
�

�
.

y
y

3

2

2

0 032
� �

over an interval t � 0 0. to t � 8 0. with initial conditions y y y1 0 2 0 5 3
5

� � �.
�

The user supplied subroutine is:

Subroutine Fun1(T,Y,F,N)
USE Precisions
IMPLICIT NONE
REAL(Long),INTENT(IN),DIMENSION(:)::Y
REAL(Long),INTENT(OUT),DIMENSION(:)::F
REAL(Long),INTENT(IN)::T
INTEGER,INTENT(IN)::N

!
F(1)=TAN(Y(3))
F(2)=-0.032_Long*F(1)/Y(2)-0.02_Long*Y(2)/COS(Y(3))
F(3)=-0.032_Long/(Y(2)*Y(2))

END SUBROUTINE Fun1

26.2.1 Note: Alternative form of the ALLOCATE statement

In the main program Odes we have defined Y to be a deferred-shape array, allocat-
ing it space after the variable N is read in. In order to make sure that enough
memory is available to allocate space to array Y the ALLOCATE statement is used
as follows:

ALLOCATE(Y(1:N),STAT=All_stat)

If the allocation is successful variable All_stat returns zero; otherwise it is given a
processor dependent positive value. We have included code to check for this and
the program stops if All_stat is not zero.

26.2.2 Note: Automatic arrays

The subroutine Runge_Kutta_Merson needs a number of local rank 1 arrays S1,
S2, S3, S4 and S5 for workspace, their shape and size being the same as the
dummy argument Y. Fortran 95 supplies automatic arrays for this purpose and can
be declared as

REAL(Long), DIMENSION (1:SIZE(Y)) :: S1, S2, S3, S4, S5

424 Chapter 26

The size of automatic arrays can depend on the size of actual arrays: in our exam-
ple they are the same shape and size as the dummy array Y, or some other dummy
arguments. Automatic arrays are created when the procedure is called and de-
stroyed when control passes back to the calling program unit. They may have
different shapes and sizes with different calls to the procedure, and because of this
automatic arrays cannot be saved or initialised.

A word of warning should be given at this point. If there isn't enough memory
available when an automatic array needs to be created problems will occur. Unlike
allocatable arrays there is no way of testing to see if an automatic array has been
created successfully. The general feeling is that even though they are nice, auto-
matic arrays should be used with care and perhaps shouldn't be used in production
code!

26.2.3 Note: Dummy procedure arguments

In order to make the use of the subroutine Runge_Kutta_Merson as general as pos-
sible, one of its dummy arguments (FUN) is the name of a subroutine which the
user supplies with the actual system of ordinary differential equations he or she
wishes to solve. This means that the main program which calls
Runge_Kutta_Merson passes as an actual argument the name of the subroutine
containing the definition of the equations to be solved. In this example the subrou-
tine is called Fun1. In order to do this in the main program Odes we have an
interface block for the Runge_Kutta_Merson subroutine and within this interface
block we have another interface block for the dummy routine FUN. We also have
an interface block for the actual subroutine Fun1 in the main program.

26.2.4 Keyword and optional arguments

The examples of procedures so far have assumed that the dummy arguments and
the corresponding arguments are in the same position, i.e., we are using positional
arguments. Fortran 95 also provides the ability to supply the actual arguments to a
procedure by keyword, and hence in any order.

To do this the name of the dummy argument is referred to as the keyword and is
specified in the actual argument list in the form

dummy-argument = actual-argument

To illustrate this, let us consider a subroutine to solve ordinary differential equa-
tions. The full subroutine and explanation are given in Chapter 27:

SUBROUTINE Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,TOL)

Case Studies 425

where A is the initial point, B is the end point at which the solution is required,
TOL is the accuracy to which the solution is required and N is the number of equa-
tions. The rest of the dummy arguments are explained in Chapter 27.

The subroutine can be called as follows:

CALL Runge_Kutta_Merson(Y , Fun1 , IFAIL , A=0.0 ,&
B=8.0 , Tol=1.0E-6 , N=3)

where the dummy arguments A, B, Tol and N are now being used as keywords.
The use of keyword arguments makes the code easier to read and decreases the
need to remember their precise position in the argument list.

Also with Fortran 95 comes the ability to specify that an argument is optional. This
is very useful when designing procedures for use by a range of programmers. In-
side a procedure defaults can be set for the optional arguments providing an
easy-to-use interface, while at the same time allowing sophisticated users a more
comprehensive one.

To declare a dummy argument to be optional the OPTIONAL attribute can be
used. For example, the last dummy argument Tol for the subroutine
Runge_Kutta_Merson could be declared to be optional (although internally in the
subroutine the code would have to be changed to allow for this), e.g.,

SUBROUTINE Runge_Kutta_Merson(Y,FUN,IFAIL,N,A,B,Tol)
USE Precisions

REAL(Long), INTENT(INOUT), OPTIONAL :: Tol

and because it is at the end of the dummy argument list, calling the subroutine
with a positional argument list, Tol can be omitted, e.g.,

CALL Runge_Kutta_Merson(Y,Fun1,IFAIL,N,A,B)

The code of the subroutine will need to be changed to check to see if the argument
Tol is supplied, the intrinsic function PRESENT being available for this purpose.
Sample code is given below:

SUBROUTINE Runge_Kutta_Merson(Y,FUN, IFAIL, N,A,B,Tol)
USE Precisions
! code left out
REAL(Long),INTENT(IN),OPTIONAL::Tol
REAL(Long)::Internal_tol = 1.0D-3

IF(PRESENT(Tol)) THEN
Internal_tol=Tol
PRINT*,'Tol = ', Internal_tol,' is supplied'

ELSE

426 Chapter 26

PRINT*,"Tol isn't supplied, default tolerance = "
PRINT *,Internal_tol,' is used'

ENDIF
! code left out but all references to tol
! would have to be changed to internal_tol
END SUBROUTINE Runge_Kutta_Merson

A number of points need to be noted when using keyword and optional arguments:

• If all the actual arguments use keywords, they may appear in any order.

• When only some of the actual arguments use keywords, the first part of
the list must be positional followed by keyword arguments in any order.

• When using a mixture of positional and keyword arguments, once a key-
word argument is used all subsequent arguments must be specified by
keyword.

• If an actual argument is omitted the corresponding optional dummy argu-
ment must not be redefined or referenced, except as an argument to the
PRESENT intrinsic function.

• If an optional dummy argument is at the end of the argument list then it
can just be omitted from the actual argument list.

• Keyword arguments are needed when an optional argument not at the end
of an argument list is omitted, unless all the remaining arguments are
omitted as well.

• Keyword and optional arguments require explicit procedure interfaces,
i.e., the procedure must be internal, a module procedure or have an inter-
face block available in the calling program unit.

A number of the intrinsic procedures we have used have optional arguments. Con-
sult Appendix D for details.

26.3 Generic procedures
There has always been a degree of support in Fortran for the concept of a generic
procedure. Simplistically, a procedure is generic if it can handle arguments of more
than one data type. This concept is one that is probably taken for granted with the
intrinsic procedures.

With Fortran 95 we can now define our own generic procedures. The example we
will use is based on the earlier one of sorting. In the original example the program
worked with real data. In the example below we have extended the program to
handle both integer and real data.

Case Studies 427

What is not obvious from our use of the internal procedures is that there will be
specific procedures to handle each data type, i.e., if a function can take integer,
real and complex arguments then there will be one implementation of that function
for each data type, i.e., three separate functions.

In the example below we add the ability to handle integer data. This means that
where we had:

• read data

• sort data

• print data

and one subroutine to implement the above we now have two subroutines to do
each of the above, one to handle integers and one to handle reals:

PROGRAM ch2603

use read_data_module
use sort_data_module
use print_data_module

IMPLICIT NONE
INTEGER :: How_Many
CHARACTER (LEN=20) :: File_Name
INTEGER , ALLOCATABLE , DIMENSION(:) :: integer_data
REAL , ALLOCATABLE , DIMENSION(:) :: real_Data

PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name
ALLOCATE(integer_data(How_Many))
CALL Read_Data(File_Name,integer_data,How_Many)
CALL Sort_Data(integer_data,How_Many)
CALL Print_Data(integer_data,How_Many)
PRINT *, ' Phase 1 ends.'
PRINT *, ' data written to file name ISORTED.DAT'
DEALLOCATE(integer_data)

PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name

428 Chapter 26

ALLOCATE(real_data(How_Many))
CALL Read_Data(File_Name,real_data,How_Many)
CALL Sort_Data(real_data,How_Many)
CALL Print_Data(real_data,How_Many)
PRINT *, ' Program ends.'
PRINT *, ' data written to file name RSORTED.DAT'

END PROGRAM ch2603

module read_data_module

interface read_data

module procedure read_integer
module procedure read_real

end interface read_data

contains

SUBROUTINE read_real(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , &

DIMENSION(:) :: Raw_Data
INTEGER :: I

OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)
ENDDO

END SUBROUTINE read_real

SUBROUTINE read_integer(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN):: File_Name
INTEGER , INTENT(IN) :: How_Many
INTEGER , INTENT(OUT) , &

DIMENSION(:) :: Raw_Data
INTEGER :: I

OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)

Case Studies 429

ENDDO
END SUBROUTINE read_integer

end module read_data_module

module sort_data_module

interface sort_data

module procedure sort_integer
module procedure sort_real

end interface sort_data

contains

SUBROUTINE sort_real(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(INOUT) , &

DIMENSION(:) :: Raw_Data
CALL QuickSort(1,How_Many)

CONTAINS

RECURSIVE SUBROUTINE QuickSort(L,R)
IMPLICIT NONE
INTEGER , INTENT(IN) :: L,R
INTEGER :: I,J
REAL :: V,T

i=l
j=r
v=raw_data(int((l+r)/2))
do

do while (raw_data(i) < v)
i=i+1

enddo
do while (v < raw_data(j))

j=j-1
enddo
if (i<=j) then

430 Chapter 26

t=raw_data(i)
raw_data(i)=raw_data(j)
raw_data(j)=t
i=i+1
j=j-1

endif
if (i>j) exit

enddo

if (l<j) then
call quicksort(l,j)

endif

if (i<r) then
call quicksort(i,r)

endif

END SUBROUTINE QuickSort

END SUBROUTINE sort_real

SUBROUTINE sort_integer(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
INTEGER , INTENT(INOUT) , &

DIMENSION(:) :: Raw_Data
CALL QuickSort(1,How_Many)

CONTAINS

RECURSIVE SUBROUTINE QuickSort(L,R)
IMPLICIT NONE
INTEGER , INTENT(IN) :: L,R
INTEGER :: I,J
INTEGER :: V,T

i=l
j=r
v=raw_data(int((l+r)/2))
do

do while (raw_data(i) < v)
i=i+1

Case Studies 431

enddo
do while (v < raw_data(j))

j=j-1
enddo
if (i<=j) then

t=raw_data(i)
raw_data(i)=raw_data(j)
raw_data(j)=t
i=i+1
j=j-1

endif
if (i>j) exit

enddo

if (l<j) then
call quicksort(l,j)

endif

if (i<r) then
call quicksort(i,r)

endif

END SUBROUTINE QuickSort

END SUBROUTINE sort_integer

end module sort_data_module

module print_data_module

interface print_data

module procedure print_integer
module procedure print_real

end interface print_data

contains

SUBROUTINE print_real(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many

432 Chapter 26

REAL , INTENT(IN) , &
DIMENSION(:) :: Raw_Data

INTEGER :: I
OPEN(FILE='RSORTED.DAT',UNIT=2)
DO I=1,How_Many

WRITE(UNIT=2,FMT=*) Raw_Data(I)
END DO
CLOSE(2)

END SUBROUTINE print_real

SUBROUTINE print_integer(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
INTEGER , INTENT(IN) , &

DIMENSION(:) :: Raw_Data
INTEGER :: I

OPEN(FILE='ISORTED.DAT',UNIT=2)
DO I=1,How_Many

WRITE(UNIT=2,FMT=*) Raw_Data(I)
END DO
CLOSE(2)

END SUBROUTINE print_integer

end module print_data_module

The key code is given below for each module:

interface read_data

module procedure read_integer
module procedure read_real

end interface read_data

interface sort_data

module procedure sort_integer
module procedure sort_real

end interface sort_data

interface print_data

Case Studies 433

module procedure print_integer
module procedure print_real

end interface print_data

The interface block name is used in the calling routine and the appropriate module
procedure will be called, based on a signature match of the actual and dummy pa-
rameters.

26.4 A function that returns a variable length array
The following program illustrates the use of a function that returns a variable
length array. This is in Fortran 90 style. The program also shows a second way of
generic programming using explicit interfaces. In this case you again use the inter-
face name in the calling routine, and the appropriate routine is called on the basis
of a parameter signature match:

PROGRAM ch2604
IMPLICIT NONE

INTERFACE
FUNCTION Running_Average(R,How_Many)

IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , DIMENSION (:) , INTENT(IN) :: R
REAL , DIMENSION(how_many) :: Running_Average

END FUNCTION Running_Average
END INTERFACE

INTERFACE Read_Data

SUBROUTINE RR(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE RR

SUBROUTINE RI(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many

434 Chapter 26

INTEGER , INTENT(OUT) , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE RI

END INTERFACE

INTEGER :: How_Many
CHARACTER (LEN=20) :: File_Name
REAL , ALLOCATABLE , DIMENSION(:) :: Raw_Data
REAL , ALLOCATABLE , DIMENSION(:) :: RA
INTEGER :: I

PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name
ALLOCATE(Raw_Data(how_many))
ALLOCATE(RA(how_many))
CALL Read_Data(File_Name,Raw_Data,How_Many)
RA=Running_Average(Raw_Data,How_Many)
DO I=1,How_Many

PRINT *,Raw_Data(I),' ' ,RA(I)
END DO

END PROGRAM ch2604

FUNCTION Running_Average(R,How_Many)
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(IN) , DIMENSION(:) :: R
REAL , DIMENSION(how_many) :: Running_Average
INTEGER :: I
REAL :: Sum=0.0

DO I=1,How_Many
Sum = Sum + R(I)
Running_Average(I)=Sum/I

END DO
END FUNCTION Running_Average

SUBROUTINE RR(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , &

DIMENSION(:) :: Raw_Data

Case Studies 435

INTEGER :: I
OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)
ENDDO

END SUBROUTINE RR

SUBROUTINE RI(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN):: File_Name
INTEGER , INTENT(IN) :: How_Many
INTEGER , INTENT(OUT) , &

DIMENSION(:) :: Raw_Data
INTEGER :: I

OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)
ENDDO

END SUBROUTINE RI

The preferred way of doing this is shown in Chapter 28, but it only works with
compilers that support ISO TR 15581.

26.5 Operator and assignment overloading
It is sometimes convenient to extend the meaning of an operator and the assign-
ment symbol beyond that provided by the language. This can be done in Fortran 95
using module procedures. The example below is based on moving around a
three-dimensional space:

MODULE T_Position
IMPLICIT NONE
TYPE Position

INTEGER :: X
INTEGER :: Y
INTEGER :: Z

END TYPE Position

INTERFACE OPERATOR (+)
MODULE PROCEDURE New_Position

END INTERFACE

CONTAINS

436 Chapter 26

FUNCTION New_Position(A,B)
TYPE (Position) ,INTENT(IN) :: A,B
TYPE (Position) :: New_Position

New_Position % X = A % X + B % X
New_Position % Y = A % Y + B % Y
New_Position % Z = A % Z + B % Z

END FUNCTION New_Position

END MODULE T_Position

PROGRAM ch2605
USE T_Position
IMPLICIT NONE
TYPE (Position) :: A,B,C

A%X=10
A%Y=10
A%Z=10
B%X=20
B%Y=20
B%Z=20
C=A+B
PRINT *,A
PRINT *,B
PRINT *,C

END PROGRAM ch2605

We have extended the meaning of the addition operator so that we can write sim-
ple expressions in Fortran based on it and have our new position calculated using a
user supplied function that actually implements the calculation of the new position.

26.6 A subroutine to extract the diagonal elements of a matrix
A common task mathematically is to extract the diagonal elements of a matrix. For
example if

A �
�

�

	
	
	

�

�
�
�

21 6 7

9 3 2

4 1 8

the diagonal elements are (21, 3, 8).

Case Studies 437

This can be thought of as extracting an array section, but the intrinsic function
PACK is needed. In its simplest form PACK (Array,Vector) packs an array, Array,
into a rank 1 array, Vector, according to Array's array element order.

Below is a complete program to demonstrate this:

PROGRAM ch2606
IMPLICIT NONE
INTEGER::I, N
REAL, ALLOCATABLE, DIMENSION(:,:) :: A
REAL, ALLOCATABLE, DIMENSION(:):: Adiag
LOGICAL:: OK
CHARACTER(LEN=20)::Filename

INTERFACE
SUBROUTINE Matrix_Diagonal (A, Diag, N, OK)

IMPLICIT NONE
REAL, INTENT(IN), DIMENSION(:,:) ::A
REAL, INTENT(OUT), DIMENSION(:) :: Diag
INTEGER, INTENT(IN) ::N
LOGICAL, INTENT(OUT):: OK

END SUBROUTINE Matrix_Diagonal
END INTERFACE

PRINT*,'input name of data file'
READ '(A)',Filename
OPEN(UNIT=1,FILE=Filename)
READ(1,*) N
ALLOCATE(A(1:N,1:N), Adiag(1:N))
DO I=1,N

READ(1,*)A(I,1:N)
END DO
CALL Matrix_Diagonal(A,Adiag,N, OK)
IF(OK) THEN

PRINT*,' Diagonal elements of A are:'
PRINT *,Adiag

ELSE
PRINT*,'Matrix A is not square'

END IF
END PROGRAM ch2606

SUBROUTINE Matrix_Diagonal (A, Diag, N, OK)
IMPLICIT NONE

438 Chapter 26

REAL, INTENT(IN), DIMENSION(:,:) ::A
REAL, INTENT(OUT), DIMENSION(:) :: Diag
INTEGER, INTENT(IN) ::N
LOGICAL, INTENT(OUT):: OK
REAL, DIMENSION (1:SIZE(A,1)*SIZE(A,1)) :: Temp
!
! Subroutine to extract the diagonal elements of
! an N * N matrix A
!

IF(SIZE(A,1) == N .AND. SIZE(A,2) == N) THEN
! Matrix is square

OK=.TRUE.
Temp = PACK(A,.TRUE.)
Diag=Temp(1:N*N:N+1)

ELSE
! Matrix isn't square

OK=.FALSE.
END IF

END SUBROUTINE Matrix_Diagonal

26.7 Perfectly balanced tree
Let us now look at a more complex example that builds a perfectly balanced tree
and prints it out. A loose definition of a perfectly balanced tree is one that has
minimum depth for n nodes. More accurately a tree is perfectly balanced if for
each node the number of nodes in its left and right subtrees differ by at most 1:

MODULE Node_Type_Def
IMPLICIT NONE

TYPE Tree_Node
INTEGER :: Number
TYPE (Tree_Node) , POINTER :: Left,Right
END TYPE Tree_Node

END MODULE Node_Type_Def

PROGRAM ch2607
! Construction of a perfectly balanced tree
USE Node_Type_Def
IMPLICIT NONE
TYPE (Tree_Node) , POINTER :: Root
INTEGER :: N_of_Items

INTERFACE

Case Studies 439

RECURSIVE FUNCTION Tree(N) RESULT(Answer)
USE Node_Type_Def
IMPLICIT NONE
INTEGER , INTENT(IN) :: N
TYPE (Tree_Node) , POINTER :: Answer

END FUNCTION Tree

SUBROUTINE Print_Tree(Trees,H)
USE Node_Type_Def
IMPLICIT NONE
TYPE (Tree_Node) , POINTER :: Trees
INTEGER :: H

END SUBROUTINE Print_Tree

END INTERFACE

PRINT *,' Enter number of items'
READ *,N_Of_Items
Root=>Tree(N_Of_Items)
CALL Print_Tree(Root,0)

END PROGRAM ch2607

RECURSIVE FUNCTION Tree(N) RESULT (Answer)
USE Node_Type_Def
IMPLICIT NONE
INTEGER , INTENT(IN) :: N
TYPE (Tree_Node) , POINTER :: Answer
TYPE (Tree_Node) , POINTER :: New_Node

INTEGER :: L,R,X
IF (N == 0) THEN

print *,' terminate tree'
NULLIFY(Answer)

ELSE
L=N/2
R=N-L-1
PRINT *,L,R,N
PRINT *,' Next item'
READ *,X
ALLOCATE(New_Node)

440 Chapter 26

New_Node%Number=X
print *, ' left branch'
New_Node%Left => Tree(L)
print *, ' right branch'
New_Node%Right => Tree(R)
Answer => New_Node

ENDIF
PRINT *, ' Function tree ends'

END FUNCTION Tree

RECURSIVE SUBROUTINE Print_Tree(T,H)
USE Node_Type_Def
IMPLICIT NONE
TYPE (Tree_Node) , POINTER :: T
INTEGER :: I
INTEGER :: H

IF (ASSOCIATED(T)) THEN
CALL Print_Tree(T%Left,H+1)
DO I=1,H

WRITE(UNIT=*,FMT=10,ADVANCE='NO')
10 FORMAT(' ')

ENDDO
PRINT *,T%Number
CALL Print_Tree(T%Right,H+1)

ENDIF
END SUBROUTINE Print_Tree

There are a number of very important concepts contained in this example and they
include:

• The use of a module to define a type. For user defined data types we must
create a module to define the data type if we want it to be available in
more than one program unit.

• The use of a function that returns a pointer as a result.

• As the function returns a pointer we must determine the allocation status
before the function terminates. This means that in the above case we use
the NULLIFY(Result) statement. The other option is to TARGET the
pointer.

• The use of ASSOCIATED to determine if the node of the tree is termi-
nated or points to another node.

Case Studies 441

Type the program in and compile, link and run it. Note that the tree only has the
minimal depth necessary to store all of the items. Experiment with the number of
items and watch the tree change its depth to match the number of items.

26.8 Pure function example
We recommended in Chapter 14 that you should ensure that your functions do not
have side effects, for safety reasons. With the ability to run your code on parallel
systems we have the additional problem in that the code may not actually work!
We would also like to be able to take advantage of automatic parallelisation if pos-
sible. In the following example we show how to do this using the PURE function
prefix:

PROGRAM ch2608
IMPLICIT NONE
INTEGER :: I,J,Result
INTEGER :: GCD

PRINT *,' Type in two integers'
READ *,I,J
Result=GCD(I,J)
PRINT *,' GCD is ',Result

END PROGRAM ch2608

PURE INTEGER FUNCTION GCD(A,B)
IMPLICIT NONE
INTEGER , INTENT(IN) :: A,B
INTEGER :: Temp

IF (A < B) THEN
Temp=A

ELSE
Temp=B

ENDIF
DO WHILE ((MOD(A,Temp) /= 0) .OR. (MOD(B,Temp) /=0))

Temp=Temp-1
END DO
GCD=Temp

END FUNCTION GCD

Procedures can also be made pure.

26.8.1 Pure constraints

The following are some of the constraints on pure procedures:

• A dummy argument must be INTENT(IN) for a pure function.

442 Chapter 26

• A dummy argument must have an INTENT attribute in a pure subroutine.

• Local variables may not have the save attribute.

• No I/O must be done in the procedure.

• Any functions and procedures referenced must be pure.

• You cannot have a stop statement with a pure procedure.

The above information should be enough to enable you to write simple pure func-
tions and procedures.

26.9 Elemental function example
The intrinsic trigonometric functions are elemental in that they can take an argu-
ment that is scalar or array valued, and of any of the supported numeric kind types.
With Fortran 95 we can make our own user defined functions elemental. Consider
the following example, which is an extension of the earlier example that calculated
e**x:

PROGRAM ch2609
IMPLICIT NONE
!
! Elemental function example
!
INTEGER :: I
REAL :: X
REAL , DIMENSION(10) :: Y

INTERFACE
ELEMENTAL REAL FUNCTION ETOX(X)
IMPLICIT NONE
REAL , INTENT(IN) :: X
END FUNCTION ETOX

END INTERFACE

X=1.0
DO I=1,10

Y(I)=I
END DO
PRINT *,Y
X=ETOX(X)
PRINT *,X
Y=ETOX(Y)
PRINT *,Y

Case Studies 443

END PROGRAM ch2609

ELEMENTAL REAL FUNCTION ETOX(X)
IMPLICIT NONE
REAL , INTENT(IN) :: X
REAL :: TERM
INTEGER :: NTERM
REAL , PARAMETER :: TOL =1.0E-6

ETOX=1.0
TERM=1.0
NTERM=0
DO

NTERM=NTERM+1
TERM=(X/NTERM)*TERM
ETOX=ETOX+TERM
IF (TERM<=TOL) EXIT

END DO
END FUNCTION ETOX

Note the following:

• We have added an interface block for the etox function.

• We have added the ELEMENTAL prefix to the function header.

• The dummy argument is scalar and INTENT(IN).

• The function result is scalar.

In this example we call the function with a scalar argument and a rank 1 array.
Run the program to see what happens.

You can have the PURE prefix but it is redundant as ELEMENTAL implies
PURE.

26.9.1 Elemental constraints

Some of the restrictions include:

• An elemental procedure must not be recursive.

• A dummy argument must not be a pointer.

• The result of an elemental function must not be a pointer.

• Elemental procedures must have explicit interfaces in all program units
that reference them.

444 Chapter 26

In a parallel environment this means that the array calculations could be carried out
simultaneously on two or more processors.

26.10 Elemental subroutine example
It is also possible to make subroutines elemental. Consider the following example:

PROGRAM ch2610
IMPLICIT NONE

INTERFACE
ELEMENTAL SUBROUTINE SWAP(X,Y)
INTEGER , INTENT(INOUT) :: X,Y
END SUBROUTINE SWAP

END INTERFACE

INTEGER , DIMENSION(10) :: A,B
INTEGER :: I

DO I=1,10
A(I)=I
B(I)=I*I

END DO
PRINT *,A
PRINT *,B
CALL SWAP(A,B)
PRINT *,A
PRINT *,B

END PROGRAM ch2610

ELEMENTAL SUBROUTINE SWAP(X,Y)
INTEGER , INTENT(INOUT) :: X,Y
INTEGER :: TEMP

TEMP=X
X=Y
Y=TEMP

END SUBROUTINE SWAP

Note the following:

• We have an interface block for the elemental subroutine.

• The subroutine dummy arguments are scalar with an INTENT attribute, in
this case INTENT(INOUT) as we are swapping them over.

Case Studies 445

In a parallel environment the swapping of array elements may be done simulta-
neously on two or more processors.

26.11 Date class
The following is a complete manual rewrite of Skip Noble and Alan Millers date
module. The original worked with the built-in Fortran intrinsic data types. It has
been rewritten to work with a user defined or derived date data type.

The first key code segment is

TYPE, PUBLIC :: date
PRIVATE
INTEGER :: day
INTEGER :: month
INTEGER :: year

END TYPE date

where the date data type is public but its components are private. This means that
access to the components must be done via subroutines and functions within the
date_module module.

The next key code segment is

PUBLIC :: calendar_to_julian,&
date_, &
date_stamp, &
date_to_day_in_year, &
date_to_weekday_number, &
get_day, &
get_month, &
get_year, &
julian_to_date, &
julian_to_date_and_week_and_day, &
ndays, &
year_and_day_to_date

where we explicitly make the listed subroutines and functions public, as the code
segment from the top of the module,

! ..
! .. Default Accessibility ..

PRIVATE

defines everything to be private.

446 Chapter 26

We have to provide a user defined constructor when the components of the derived
type are private. This is given below:

FUNCTION date_(dd,mm,yyyy) RESULT (x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

TYPE (date) :: x
! ..
! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: dd, mm, yyyy
! ..

x = date(dd,mm,yyyy)
END FUNCTION date_

This in turn calls the built-in constructor date.

We also provide three additional procedures to access the components of the date
class:

get_day
get_month
get_year

This is common programming practice in object oriented and object based pro-
gramming.

The program has also been through the Nag tool suite and this has helped to sys-
tematically lay out the code.

MODULE date_module
! Collected and put together january 1972,
! h. d. knoble.
! Original references are cited in each routine.
! Code converted using to_f90 by alan miller
! Date: 1999-12-22 time: 10:23:47
! Compatible with imagine1 f compiler: 2002-07-19
! At this time the functions and
! subroutines were as described below
! FUNCTION iday(yyyy, mm, dd) RESULT(ival)
! FUNCTION izlr(yyyy, mm, dd) RESULT(ival)
! SUBROUTINE calend(yyyy, ddd, mm, dd)
! SUBROUTINE cdate(jd, yyyy, mm, dd)

Case Studies 447

! SUBROUTINE daysub(jd, yyyy, mm, dd, wd, ddd)
! FUNCTION jd(yyyy, mm, dd) RESULT(ival)
! FUNCTION ndays(mm1, dd1, yyyy1,
! mm2, dd2, yyyy2) RESULT(ival)
! SUBROUTINE date_stamp(string, want_day, short)
! Code converted by ian chivers and jane sleightholme
! November 2004 - May 2005
! The changes are to go from
! working with integer variables
! for year, day and month to
! user defined date variables.
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Default Accessibility ..

PRIVATE
! ..
! .. Derived Type Declarations ..

TYPE, PUBLIC :: date
PRIVATE
INTEGER :: day
INTEGER :: month
INTEGER :: year

END TYPE date
! ..
! .. Public Statements ..

PUBLIC :: calendar_to_julian,&
date_, &
date_stamp, &
date_to_day_in_year, &
date_to_weekday_number, &
get_day, &
get_month, &
get_year, &
julian_to_date, &
julian_to_date_and_week_and_day, &
ndays, &
year_and_day_to_date

! ..
! The above are the contained
! functions and subroutines
! in this module.

448 Chapter 26

! Here is a short description of each one
! date_to_day_in_year - function
! returns the day in the year
! original arguments of day,month,year
! now date
! dayinyear
! date_to_weekday_number - function
! returns the week day number
! original argument d,m,y
! now date
! weekdaynum
! year_and_day_to_date - subroutine
! returns the day and month from
! year and day in year
! julian_to_date - subroutine
! returns a year_and_day_to_datear date from
! a julian date
! ndays - function
! returns the number of days between
! two dates
! julian_to_date_and_week_and_day - subroutine
! given a julian day this routine
! calculates year, month day and
! week day number and day number
! calendar_to_julian - function
! returns julian date from
! year_and_day_to_datear date
CONTAINS

! arithmetic functions "izlr" and "iday"
! are taken from remark on
! algorithm 398, by j. douglas robertson,
! cacm 15(10):918.

FUNCTION date_to_day_in_year(x)
! Convert from date to day in year
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: date_to_day_in_year
! ..

Case Studies 449

! .. Structure Arguments ..
TYPE (date), INTENT (IN) :: x

! ..
! .. Intrinsic Functions ..

INTRINSIC modulo
! ..

date_to_day_in_year = 3055*(x%month+2)/100 &
- (x%month+10)/13*2 - 91 + &
(1-(modulo(x%year,4)+3)/4 &
+ (modulo(x%year,100)+99)/100 &
- (modulo(x%year, &
400)+399)/400)*(x%month+10)/13 + x%day

END FUNCTION date_to_day_in_year

FUNCTION date_to_weekday_number(x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: date_to_weekday_number
! ..
! .. Structure Arguments ..

TYPE (date), INTENT (IN) :: x
! ..
! .. Intrinsic Functions ..

INTRINSIC modulo
! ..

date_to_weekday_number = &
modulo((13*(x%month+10 &
-(x%month+10)/13*12)-1)/5+x &
%day+77+5*(x%year+(x%month-14)/12 &
-(x%year+(x%month-14)/12)/100*100)/4 &
+(x%year+(x%month-14)/12)/400 &
-(x%year+(x%month-14)/12)/100*2,7)

END FUNCTION date_to_weekday_number

FUNCTION year_and_day_to_date(year,day) RESULT (x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..

450 Chapter 26

! .. Function Return Value ..
TYPE (date) :: x

! ..
! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: day, year
! ..
! .. Local Scalars ..

INTEGER :: t
! ..
! .. Intrinsic Functions ..

INTRINSIC modulo
! ..

x%year = year
t = 0
IF (modulo(year,4)==0) THEN

t = 1
END IF

!------the following statement is
! necessary IF year is < 1900 or > 2100.

IF (modulo(year,400)/=0 &
.AND. modulo(year,100)==0) THEN
t = 0

END IF

x%day = day

IF (day>59+t) THEN
x%day = x%day + 2 - t

END IF

x%month = ((x%day+91)*100)/3055
x%day = (x%day+91) - (x%month*3055)/100
x%month = x%month - 2

IF (x%month>=1 .AND. x%month<=12) THEN
RETURN

END IF

! x%month will be correct
! iff day is correct for year.

Case Studies 451

WRITE (unit=*,fmt='(a,i11,a)') &
'$$year_and_day_to_date: day of the year input =',

&
day, ' is out of range.'

END FUNCTION year_and_day_to_date

FUNCTION julian_to_date(julian) RESULT (x)
! Given a julian day number the date is returned.
! julian is the julian date from an epocch
! in the very distant past. see cacm 1968 11(10):657,
! letter to the editor by fliegel and van flandern.
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: julian
! ..
! .. Local Scalars ..

INTEGER :: l, n
! ..
! .. Function Return Value ..

TYPE (date) :: x
! ..

l = julian + 68569
n = 4*l/146097
l = l - (146097*n+3)/4
x%year = 4000*(l+1)/1461001
l = l - 1461*x%year/4 + 31
x%month = 80*l/2447
x%day = l - 2447*x%month/80
l = x%month/11
x%month = x%month + 2 - 12*l
x%year = 100*(n-49) + x%year + l

END FUNCTION julian_to_date

SUBROUTINE &

452 Chapter 26

julian_to_date_and_week_and_day(jd,x,wd,ddd)
! given jd, a julian day # (see asf jd),
! this routine calculates dd,
! the day number of the month;
! mm, the month number; yyyy the year;
! wd the weekday number, and
! ddd the day number of the year.
! example:
! CALL julian_to_date_and_week_and_day
! (2440588, yyyy, mm, dd, wd, ddd)
! yields 1970 1 1 4 1.
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Scalar Arguments ..

INTEGER, INTENT (OUT) :: ddd, wd
INTEGER, INTENT (IN) :: jd

! ..
! .. Structure Arguments ..

TYPE (date), INTENT (OUT) :: x
! ..

x = julian_to_date(jd)
wd = date_to_weekday_number(x)
ddd = date_to_day_in_year(x)

END SUBROUTINE julian_to_date_and_week_and_day

FUNCTION calendar_to_julian(x) RESULT (ival)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: ival
! ..
! .. Structure Arguments ..

TYPE (date), INTENT (IN) :: x
! ..
! date routine calendar_to_julian converts date to
! julian date. see cacm 1968 11(10):657,
! letter to the
! editor by henry f. fliegel and

Case Studies 453

! thomas c. van flandern.
! example calendar_to_julian(1970, 1, 1) = 2440588

ival = x%day - 32075 &
+ 1461*(x%year+4800+(x%month-14)/12)/4 + &
367*(x%month-2-((x%month-14)/12)*12)/12 &
- 3*((x%year+4900+(x%month-14)/ &
12)/100)/4

END FUNCTION calendar_to_julian

FUNCTION ndays(date1,date2)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: ndays
! ..
! .. Structure Arguments ..

TYPE (date), INTENT (IN) :: date1, date2
! ..
! dates; that is mm1/dd1/yyyy1 minus
! mm2/dd2/yyyy2,
! where datei and datej have elements mm, dd, yyyy.
! ndays will be positive iff
! date1 is more recent than date2.

ndays = calendar_to_julian(date1) &
- calendar_to_julian(date2)

END FUNCTION ndays

SUBROUTINE date_stamp(string,want_day,short)
! Returns the current date as a character string
! e.g.
! want_day short string
! .TRUE. .TRUE. Thursday, 23 Dec 1999
! .TRUE. .FALSE. Thursday, 23 December 1999

! <- defaul/
! .FALSE. .TRUE. 23 Dec 1999
! .FALSE. .FALSE. 23 December 1999
! .. Implicit None Statement ..

454 Chapter 26

IMPLICIT NONE
! ..
! .. Scalar Arguments ..

LOGICAL, OPTIONAL, INTENT (IN) :: short, want_day
CHARACTER (*), INTENT (OUT) :: string

! ..
! .. Local Scalars ..

INTEGER :: pos
LOGICAL :: sh, want_d

! ..
! .. Local Arrays ..

INTEGER :: val(8)
CHARACTER (9) :: day(0:6) = (/ 'Sunday ' &

, 'Monday ' &
, 'Tuesday ' &
, 'Wednesday' &
, 'Thursday ' &
, 'Friday ' &
, 'Saturday '/)

CHARACTER (9) :: month(1:12) = &
(/ 'January ' &
, 'February ' &
, 'March ' &
, 'April ' &
, 'May ' &
, 'June ' &
, 'July ' &
, 'August ' &
, 'September' &
, 'October ' &
, 'November ' &
, 'December '/)

! ..
! .. Intrinsic Functions ..

INTRINSIC date_and_time, len_trim, present, trim
! ..
! .. Local Structures ..

TYPE (date) :: x
! ..

want_d = .TRUE.
IF (present(want_day)) want_d = want_day
sh = .FALSE.

Case Studies 455

IF (present(short)) sh = short

CALL date_and_time(values=val)

x = date_(val(3),val(2),val(1))

IF (want_d) THEN
pos = date_to_weekday_number(x)
string = trim(day(pos)) // ','
pos = len_trim(string) + 2

ELSE
pos = 1
string = ' '

END IF

WRITE (string(pos:pos+1),'(i2)') val(3)
IF (sh) THEN

string(pos+3:pos+5) = month(val(2)) (1:3)
pos = pos + 7

ELSE
string(pos+3:) = month(val(2))
pos = len_trim(string) + 2

END IF

WRITE (string(pos:pos+3),'(i4)') val(1)

RETURN
END SUBROUTINE date_stamp

FUNCTION date_(dd,mm,yyyy) RESULT (x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

TYPE (date) :: x
! ..
! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: dd, mm, yyyy
! ..

x = date(dd,mm,yyyy)
END FUNCTION date_

456 Chapter 26

FUNCTION get_year(x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: get_year
! ..
! .. Structure Arguments ..

TYPE (date), INTENT (IN) :: x
! ..

get_year = x%year
END FUNCTION get_year

FUNCTION get_month(x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: get_month
! ..
! .. Structure Arguments ..

TYPE (date), INTENT (IN) :: x
! ..

get_month = x%month
END FUNCTION get_month

FUNCTION get_day(x)
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Function Return Value ..

INTEGER :: get_day
! ..
! .. Structure Arguments ..

TYPE (date), INTENT (IN) :: x
! ..

get_day = x%day
END FUNCTION get_day

END MODULE date_module

Case Studies 457

PROGRAM ch2611
! .. Use Statements ..

USE date_module, ONLY : calendar_to_julian, &
date, date_, &
date_stamp, &
date_to_day_in_year, &
date_to_weekday_number, &
get_day, &
get_month, &
get_year, &
julian_to_date_and_week_and_day, &
ndays, &
year_and_day_to_date

! ..
! .. Implicit None Statement ..

IMPLICIT NONE
! ..
! .. Local Scalars ..

INTEGER :: dd, ddd, i, mm, ndiff, wd, yyyy
CHARACTER (50) :: message

! ..
! .. Local Arrays ..

INTEGER :: val(8)
! ..
! .. Intrinsic Functions ..
! compute date this year for changing clocks
! back to est.
! i.e.compute date for the last
! sunday in october for this year.

INTRINSIC date_and_time
! ..
! .. Local Structures ..

TYPE (date) :: date1, date2, x
! ..
! Test date_stamp

message = ' date_stamp = '
CALL date_stamp(message(15:))
WRITE (*,'(a)') message
message = ' date_stamp = '
CALL date_stamp(message(15:),want_day=.FALSE.)
WRITE (*,'(a)') message

458 Chapter 26

message = ' date_stamp = '
CALL date_stamp(message(15:),short=.TRUE.)
WRITE (*,'(a)') message
message = ' date_stamp = '
CALL date_stamp &

(message(15:),want_day=.FALSE.,short=.TRUE.)
WRITE (*,'(a)') message

CALL date_and_time(values=val)

yyyy = val(1)
mm = 10

DO i = 31, 26, -1
x = date_(i,mm,yyyy)
IF (date_to_weekday_number(x)==0) THEN

PRINT *, 'turn clocks back to est on: '
print *, i, ' october ', get_year(x)
EXIT

END IF
END DO

! compute date this year for
! turning clocks ahead to dst
! i.e., compute date for the first
! sunday in april for this year.

CALL date_and_time(values=val)

yyyy = val(1)
mm = 4

DO i = 1, 8
x = date_(i,mm,yyyy)
IF (date_to_weekday_number(x)==0) THEN

PRINT *, 'turn clocks ahead to dst on: '
print *, i, ' april ', get_year(x)
EXIT

END IF
END DO

CALL date_and_time(values=val)

Case Studies 459

yyyy = val(1)
mm = 12
dd = 31
x = date_(dd,mm,yyyy)

! is this a leap year? i.e., is
! 12/31/yyyy the 366th day of the year?

IF (date_to_day_in_year(x)==366) THEN
PRINT *, get_year(x), ' is a leap year'

ELSE
PRINT *, get_year(x), ' is not a leap year'

END IF

x = date_(1,1,1970)

CALL julian_to_date_and_week_and_day &
(calendar_to_julian(x),x,wd,ddd)

IF (get_year(x)/=1970 .OR. &
get_month(x)/=1 .OR. &
get_day(x)/=1 .OR. &
wd/=4 .OR. ddd/=1) THEN
PRINT *, 'julian_to_date_and_week_and_day failed'
print *,' date, wd, ddd = ', &
get_year(x), get_month(x), get_day(x), wd, ddd
STOP

END IF

! difference between to same
! months and days over 1 leap year is 366.

date1 = date_(22,5,1984)
date2 = date_(22,5,1983)
ndiff = ndays(date1,date2)
yyyy = 1970
x = year_and_day_to_date(yyyy,ddd)

IF (ndiff/=366) THEN
PRINT *, 'ndays failed; ndiff = ', ndiff

ELSE

460 Chapter 26

! recover month and day
! from year and day number.

IF (get_month(x)/=1 .AND. get_day(x)/=1) THEN
PRINT *, 'year_and_day_to_date failed'
print *,' mma, dda = ', get_month(x), &

get_day(x)
ELSE

PRINT *, '** date manipulation subroutines'
print *, '** simple test ok.'

END IF
END IF

END PROGRAM ch2611

We also have an alternate form of array declaration in this program, which is given
below. It is common in Fortran 77 style code:

INTEGER :: val(8)

The next major addition to this code would be a date checking routine to test the
validity of dates. This would be called from within our constructor date_. This
would mean that we could never have an invalid date when using the date_module.
This is left as a programming exercise.

26.12 Graphics example — dislin
The following is a rewrite of the earlier tsunami plotting program. It now uses a
publically available graphics library called dislin. This is available from

• http://www.mps.mpg.de/dislin/

It is free for Linux operating systems. The tsunami plot can be found at

• http://www.kcl.ac.uk/fortran

There are some minor wrap problems with the code:

PROGRAM ch2612

USE DISLIN

LOGICAL :: trial, screen
REAL :: long, lat
screen = .FALSE.
trial = .FALSE.

Case Studies 461

CALL datain(trial)

PRINT *, ' Which region do you wish to plot?'
PRINT *, ' 0 = all regions'
PRINT *, ' 1 = Hawaii'
PRINT *, ' 2 = New Zealand and South Pacific

Islands'
PRINT *, ' 3 = Papua New Guinea and Solomon Islands'
PRINT *, ' 4 = Indonesia'
PRINT *, ' 5 = Philippines'
PRINT *, ' 6 = Japan'
PRINT *, ' 7 = Kuril Islands and Kamchatka'
PRINT *, ' 8 = Alaska incluing Aleutian Islands'
PRINT *, ' 9 = West Coast - North and Central

America'
PRINT *, ' 10 = West Coast - South America'

120 READ (unit=*,fmt=*,end=130,err=130) nreg
130 IF ((nreg<0) .OR. (nreg>10)) THEN

PRINT *, ' Please input a number between 0 and 10
inclusive'

GO TO 120
END IF

! dislin initialisation routines
! and setting of some basic components
! of the plot

! These are based on two program examples.

! Choose a file format

CALL METAFL('PDF')

! da4l = din a4 landscape 2970*2100 points

CALL SETPAG('DA4L')

! Initialise dislin

CALL DISINI

462 Chapter 26

! Plot a border round the page

CALL PAGERA

! Choose font

CALL PSFONT('HELVETICA')

! argument is the thickness of the frame in plot
coordinates.

CALL FRAME(3)

! determines the position of an axis system.
! the lower left corner of the axis system

CALL AXSPOS(400,1850)

! The size of the axis system
! are the length and height of an axis system in plot
coordinates. The default
! values are set to 2/3 of the page length and height.

CALL AXSLEN(2400,1400)

! Define axis title

CALL NAME('Longitude','X')

! Define axis title

CALL NAME('Latitude','Y')

! This routine plots a title over an axis system.

CALL TITLIN('Plot of 3034 Tsunami events ',3)

! determines which label types will be plotted on an
axis.
! MAP defines geographical labels which are plotted as
non negative floating-point

Case Studies 463

! numbers with the following characters ’W’, ’E’, ’N’
and ’S’.

CALL LABELS('MAP','XY')

! plots a geographical axis system.

CALL GRAFMP(-180.,180.,-180.,90.,-90.,90.,-90.,30.)

! The statement CALL GRIDMP (I, J) overlays an axis
system with a longitude
! and latitude grid where I and J are the number of
grid lines between labels in
! the X- and Y-direction.

CALL GRIDMP(1,1)

! The routine WORLD plots coastlines and lakes.

CALL WORLD

! The angle and height of the characters can be
changed with the routines AN-GLE
! and HEIGHT.

CALL HEIGHT(50)

! This routine plots a title over an axis system. The
title may contain up to four lines of text

designated
! with TITLIN.

CALL TITLE

! This is a call to the convert routine.
! This was required by UNIRAS
! CALL convrt(trial)

! This is a call to the routine that actually plots
each event.

464 Chapter 26

CALL plotem(trial,nreg)

! DISFIN terminates DISLIN and prints a message on the
screen. The level is set back to 0.

CALL DISFIN

END PROGRAM ch2612

SUBROUTINE datain(trial)

COMMON /TSUNAM/ &
reg0la(378) , &
reg0lo(378) , &
reg1la(206) , &
reg1lo(206) , &
reg2la(41) , &
reg2lo(41) , &
reg3la(54) , &
reg3lo(54) , &
reg4la(60) , &
reg4lo(60) , &
reg5la(1540) , &
reg5lo(1540) , &
reg6la(80) , &
reg6lo(80) , &
reg7la(144) , &
reg7lo(144) , &
reg8la(245) , &
reg8lo(245) , &
reg9la(285) , &
reg9lo(285)

LOGICAL :: trial
CHARACTER (80) :: filnam

IF (trial) THEN
PRINT *, ' Entering data input phase'

END IF
filnam = 'tsunami.dat'
OPEN (unit=50,file=filnam,err=100,status='OLD')

Case Studies 465

GO TO 110
100 PRINT *, ' Error opening data file'

PRINT *, ' Program terminates'
STOP

110 DO i = 1, 378
READ (unit=50,fmt=1000) reg0la(i), reg0lo(i)

END DO
1000 FORMAT (1X,F7.2,2X,F7.2)

DO i = 1, 206
READ (unit=50,fmt=1000) reg1la(i), reg1lo(i)

END DO
DO i = 1, 41

READ (unit=50,fmt=1000) reg2la(i), reg2lo(i)
END DO
DO i = 1, 54

READ (unit=50,fmt=1000) reg3la(i), reg3lo(i)
END DO
DO i = 1, 60

READ (unit=50,fmt=1000) reg4la(i), reg4lo(i)
END DO
DO i = 1, 1540

READ (unit=50,fmt=1000) reg5la(i), reg5lo(i)
END DO
DO i = 1, 80

READ (unit=50,fmt=1000) reg6la(i), reg6lo(i)
END DO
DO i = 1, 144

READ (unit=50,fmt=1000) reg7la(i), reg7lo(i)
END DO
DO i = 1, 245

READ (unit=50,fmt=1000) reg8la(i), reg8lo(i)
END DO
DO i = 1, 285

READ (unit=50,fmt=1000) reg9la(i), reg9lo(i)
END DO
IF (trial) THEN

DO i = 1, 10
PRINT *, reg0la(i), ' ', reg0lo(i)

END DO
PRINT *, ' Exiting data input phase'
READ *, dummy

END IF

466 Chapter 26

END SUBROUTINE datain

SUBROUTINE plotem(trial,nreg)

USE DISLIN

COMMON /TSUNAM/ &
reg0la(378) , &
reg0lo(378) , &
reg1la(206) , &
reg1lo(206) , &
reg2la(41) , &
reg2lo(41) , &
reg3la(54) , &
reg3lo(54) , &
reg4la(60) , &
reg4lo(60) , &
reg5la(1540) , &
reg5lo(1540) , &
reg6la(80) , &
reg6lo(80) , &
reg7la(144) , &
reg7lo(144) , &
reg8la(245) , &
reg8lo(245) , &
reg9la(285) , &
reg9lo(285)

LOGICAL :: trial
INTEGER :: nreg
INTEGER :: kolour=10
DATA dwidth/1.0/

IF (trial) THEN
dwidth = 5.0
PRINT *, ' Entering Plot points'

END IF

CALL INCMRK(-1)

IF (nreg==0) THEN

Case Studies 467

CALL SETCLR(kolour)
CALL CURVMP(reg0lo,reg0la,378)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg1lo,reg1la,206)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg2lo,reg2la,41)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg3lo,reg3la,54)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg4lo,reg4la,60)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg5lo,reg5la,1540)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg6lo,reg6la,80)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg7lo,reg7la,144)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg8lo,reg8la,245)
kolour = kolour +30
CALL SETCLR(kolour)
CALL CURVMP(reg9lo,reg9la,285)

ELSE IF (nreg==1) THEN
kolour = 10
CALL SETCLR(kolour)
CALL CURVMP(reg0lo,reg0la,378)

ELSE IF (nreg==2) THEN
kolour = 20
CALL SETCLR(kolour)
CALL CURVMP(reg1lo,reg1la,206)

ELSE IF (nreg==3) THEN
kolour = 30
CALL SETCLR(kolour)
CALL CURVMP(reg2lo,reg2la,41)

ELSE IF (nreg==4) THEN

468 Chapter 26

kolour = 40
CALL SETCLR(kolour)
CALL CURVMP(reg3lo,reg3la,54)

ELSE IF (nreg==5) THEN
kolour = 50
CALL SETCLR(kolour)
CALL CURVMP(reg4lo,reg4la,60)

ELSE IF (nreg==6) THEN
kolour = 60
CALL SETCLR(kolour)
CALL CURVMP(reg5lo,reg5la,1540)

ELSE IF (nreg==7) THEN
kolour = 70
CALL SETCLR(kolour)
CALL CURVMP(reg6lo,reg6la,80)

ELSE IF (nreg==8) THEN
kolour = 80
CALL SETCLR(kolour)
CALL CURVMP(reg7lo,reg7la,144)

ELSE IF (nreg==9) THEN
kolour = 90
CALL SETCLR(kolour)
CALL CURVMP(reg8lo,reg8la,245)

ELSE IF (nreg==10) THEN
kolour = 100
CALL SETCLR(kolour)
CALL CURVMP(reg9lo,reg9la,285)

END IF
IF (trial) THEN

PRINT *, ' Exiting Plot points'
END IF

END SUBROUTINE plotem

26.13 Problems
1. Compile and run ch2606. Try running it with matrices of your own choice.

2. Write a generic subroutine Swap which two takes arguments a and b (real or in-
teger) and swaps them. Write a main program that reads two real values and calls
Swap and then reads two integer values and again calls Swap.

3. Using ch2605 as a starting point extend the program to overload the subtraction
operator (–), for the user defined type position.

Case Studies 469

4. Modify the elemental function example to include usage of the function etox
with a rank 2 or higher array. Also add a call to the intrinsic function exp and
compare the results.

5. Using the balanced tree example as a basis and modify it to work with a charac-
ter array rather than an integer. The routine that prints the tree will also have to be
modified to reflect this.

6. Compile and run the program that calculated the inner product of two sparse
vectors using the data supplied. This should produce the answer 19.

26.14 Bibliography
Duff I.S., Erismon A.M., Reid J.K., Direct Methods for Sparse Matrices, Oxford
Science Publications, 1986.

• Authoritative coverage of this area. Relatively old, but well regarded.
Code segments and examples are a mixture of Fortran 77 and Algol 60
(which of course do not support pointers) and therefore the implementa-
tion of linked lists is done using the existing features of these languages.
The onus is on the programmer to correctly implement linked lists using
fixed size arrays rather than using the features provided by pointers in a
language. It is remarkable how elegant these solutions are, given the lack
of dynamic data structures in these two languages.

Hopkins T., Phillips C., Numerical Methods in Practice, Using the NAG Library.
Addison-Wesley, 1988.

• Good adjunct to the NAG library documentation for the less numerate
user.

Schneider G.M., Bruell S.C., Advanced Programming and Problem Solving with
Pascal, Wiley, 1981.

• The book is aimed at computer science students and follows the curricu-
lum guidelines laid down in Communications of the ACM, August 1985,
Course CS2. The book is very good for the complete beginner as the ex-
amples are very clearly laid out and well explained. There is a coverage of
data structures, abstract data types and their implementation, algorithms
for sorting and searching, the principles of software development as they
relate to the specification, design, implementation and verification of pro-
grams in an orderly and disciplined fashion — their words.

Vowels R.A., Algorithms and Data Structures in F and Fortran, Unicomp, 1998.

• The only book currently that uses Fortran 90/95 and F. Visit the Fortran
web site for more details. They are the publishers.

470 Chapter 26

• http://www.fortran.com/fortran/market.html

Wirth N., Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

• An early but illuminating book on the subject. Well worth a read. Pascal
is used.

Wirth N., Algorithms + Data Structures, Prentice-Hall, 1986.

• This is the Modula 2 version. Closer to Fortran than the Pascal version.

Case Studies 471

27

ISO TR 15580
IEEE Arithmetic

“'Can you do addition?' the White Queen asked. 'What's one and one and one and
one and one and one and one and one and one and one?'”

'I don't know,' said Alice. 'I lost count.'

Lewis Carroll, Through the Looking Glass and What Alice Found There

Aims
The aims of this chapter are to look in more depth at arithmetic and in particular at
the support that Fortran provides for the IEEE 754 standard. There is a coverage
of:

• Hardware support for arithmetic.

• Integer formats.

• Floating point formats: single and double.

• Special values: denormal, infinity and not a number — NAN.

• Exceptions and flags: divide by zero, inexact, invalid, overflow, under-
flow.

27 ISO TR 15580 — IEEE Arithmetic

The literature contains details of the IEEE 754 standard and the bibliography con-
tains details of a number of printed and on-line sources.

27.1 History
When we use programming languages to do arithmetic two major concerns are the
ability to develop reliable and portable numerical software. Arithmetic is done in
hardware and there are a number of things to consider:

• The range of hardware available both now and in the past.

• The evolution of hardware.

There has been a very considerable change in arithmetic units since the first com-
puters. The following is a list of hardware and computing systems that the authors
have some used or have heard of. It is not exhaustive or definitive, but rather re-
flects the authors' age and experience:

• CDC

• Cray

• IBM

• ICL

• Fujitsu

• DEC

• Compaq

• Gateway

• Sun

• Silicon Graphics

• Hewlett Packard

• Data General

• Honeywell

• Elliot

• Mostek

• National Semiconductors

• Intel

474 Chapter 27

• Zilog

• Motorola

• Signetics

• Amdahl

• Texas Instruments

• Cyrix

Some of the operating systems include:

• NOS

• NOS/BE

• Kronos

• UNIX

• VMS

• Dos

• Windows 3.x

• Windows 95

• Windows 98

• Windows NT

• Windows 2000

• MVS

• VM

• CP/M

• Macintosh

• OS/2

Again the list is not exhaustive or definitive. The intention is simply to provide
some idea of the wide range of hardware, computer manufacturers and operating
systems that have been around in the past 50 years.

To cope with the anarchy in this area Doctor Robert Stewart (acting on behalf of
the IEEE) convened a meeting which led to the birth of IEEE 754.

The first draft, which was prepared by William Kahan, Jerome Coonen and Harold
Stone, was called the KCS draft and eventually adopted as IEEE 754. A fascinat-

ISO TR 15580 — IEEE Arithmetic 475

ing account of the development of this standard can be found in An Interview with
the Old Man of Floating Point, and the bibliography provides a web address for
this interview. Kahan went on to get the ACM Turing Award in 1989 for his work
in this area.

This has become a de facto standard amongst arithmetic units in modern hardware.
Note that it is not possible to describe precisely the answers a program will give,
and the authors of the standard knew this. This goal is virtually impossible to
achieve when one considers floating point arithmetic. Reasons for this include:

• The conversions of numbers between decimal and binary formats.

• The use of elementary library functions.

• Results of calculations may be in hardware inaccessible to the program-
mer.

• Intermediate results in subexpressions or arguments to procedures.

The bibliography contains details of a paper that addresses this issue in much
greater depth — Differences Among IEEE 754 Implementations.

Fortran is one of a small number of languages that provides access to IEEE arith-
metic, and it achieves this via TR1880 which is an integral part of Fortran 2003.
The C standard (C9X) addresses this issue and Java offers limited IEEE arithmetic
support. More information can be found in the references at the end of the chapter.

27.2 IEEE 754 Specifications
The standard specifies a number of things including:

• Single precision floating point format.

• Double precision floating point format.

• Two classes of extended floating point formats.

• Accuracy requirements on the following floating point operations:

• Add.

• Subtract.

• Multiply.

• Divide.

• Square root.

• Remainder.

• Round numbers in floating point format to integer values.

476 Chapter 27

• Convert between different floating point formats.

• Convert between floating point and integer format.

• Compare.

• Base conversion, i.e., when converting between decimal and binary float-
ing point formats and vice versa.

• Exception handling for:

• Divide by zero.

• Overflow.

• Underflow.

• Invalid operation.

• Inexact.

• Rounding directions.

• Rounding precisions.

We will look briefly at each of these requirements.

27.2.1 Single precision floating point format

This is a 32-bit quantity made up of a sign bit, 8-bit biased exponent and 23-bit
mantissa. The standard also specifies that certain of the bit patterns are set aside
and do not represent normal numbers. This means that valid numbers are in the
range 3.40282347E+38 to 1.17549435E-38 and the precision is between 6 and 9
digits depending on the numbers.

The special bit patterns provide the following:

• +0

• -0

• subnormal numbers in the range 1.17549421E-38 to 1.40129846E-45

• + infinity

• - infinity

• quiet NaN (Not a Number)

• signalling NaN

One of the first systems that the authors worked with that had special bit patterns
set aside was the CDC 6000 range of computers that had negative indefinite and
infinity. Thus the ideas are not new, as this was in the late 1970s.

ISO TR 15580 — IEEE Arithmetic 477

The support of positive and negative zero means that certain problems can be han-
dled correctly including:

• The evaluation of the log function which has a discontinuity at zero.

• The equation 1 1
z z

� can be solved when z = –1.

See also the Kahan paper Branch Cuts for Complex Elementary Functions, or
Much Ado About Nothing's Sign Bit for more details.

Subnormals, which permit gradual underflow, fill the gap between 0 and the small-
est normal number.

Simply stated underflow occurs when the result of an arithmetic operation is so
small that it is subject to a larger than normal rounding error when stored. The ex-
istence of subnormals means that greater precision is available with these small
numbers than with normal numbers. The key features of gradual underflow are:

• When underflow does occur there should never be a loss of accuracy any
greater than that from ordinary roundoff.

• The operations of addition, subtraction, comparison and remainder are al-
ways exact.

• Algorithms written to take advantage of subnormal numbers have smaller
error bounds than other systems.

• If x and y are within a factor of 2 then x-y is error free, which is used in a
number of algorithms that increase the precision at critical regions.

The combination of positive and negative zero and subnormal numbers means that
when x and y are small and x-y has been flushed to zero the evaluation of

• 1
()x y�

can be flagged and located.

Certain arithmetic operations cause problems including:

• 0 * �

• 0 / 0

• x when x < 0

and the support for NaN handles these cases.

The support for positive and negative infinity allows the handling of

• x / 0 when x is nonzero and of either sign

478 Chapter 27

and the outcome of this means that we write our programs to take the appropriate
action. In some cases this would mean recalculating using another approach.

For more information see the references in the bibliography.

27.2.2 Double precision floating point format

This is a 64-bit quantity made up of a sign bit, 11-bit biased exponent and 52-bit
mantissa. As with single precision the standard specifies that certain of the bit pat-
terns are set aside and do not represent normal numbers. This means we have valid
numbers in the range 1.7976931348623157E308 to 2.2250738585072014E-308
and precision between 15 and 17 digits depending on the numbers.

As with single precision there are bit patterns set aside for the same special condi-
tions.

Note that this does not mean that the hardware has to handle the manipulation of
this 64-bit quantity in an identical fashion. The Sparc and Intel family handle the
above as two 32-bit quantities but the order of the two component parts is reversed
— so-called big endian and little endian.

27.2.3 Two classes of extended floating point formats

These formats are not mandatory. A number of variants of double extended exist
including:

• Sun — four 32-bit words, one sign bit, 15-bit biased exponent and 112-bit
mantissa, numbers in the range 3.362E-4932 to 1.189E4932, 33–36 digits
of significance.

• Intel — 10 bytes — one sign bit, 15-bit biased exponent, 63-bit mantissa,
numbers in the range 3.362E-4932 to 1.189E4932, 18–21 digits of signifi-
cance.

• PowerPC — as Sun.

27.2.4 Accuracy requirements

Remainder and compare must be exact. The rest should return the exact result if
possible. If not, there are well-defined rounding rules to apply.

27.2.5 Base conversion — Converting between decimal and binary floating
point formats and vice versa

These results should be exact if possible; if not the results must differ by toler-
ances that depend on the rounding mode.

ISO TR 15580 — IEEE Arithmetic 479

27.2.6 Exception handling

It must be possible to signal to the user the occurrence of the following conditions
or exceptions:

• Divide by zero.

• Overflow.

• Underflow.

• Invalid operation.

• Inexact.

The ability to detect the above is a big step forward in our ability to write robust
and portable code. These operations do occur in calculations and it is essential to
have user programmer control over what action to take.

27.2.7 Rounding directions

Four rounding directions are available:

• Nearest — the default.

• Down.

• Up.

• Chop.

Access to directed rounding can be used to implement interval arithmetic, for ex-
ample.

27.2.8 Rounding precisions

The only mandatory part here is that machines that perform computations in ex-
tended mode let the programmer control the precision via a control word. This
means that if software is being developed on machines that support extended
modes those machines can be switched to a mode that would enable the software
to run on a system that didn't support extended modes. This area looks like a can
of worms. Look at the Kahan paper for more information — Lecture Notes on the
Status of IEEE 754.

27.3 Resumé
The above has provided a quick tour of IEEE 754. We'll now look at what Fortran
has to offer to support it.

480 Chapter 27

27.4 ISO TR 15580
Fortran provides access to the facilities via the USE statement. The current stan-
dard does not have the concept of an intrinsic module. TR 15580 introduces this
concept. Three modules are provided:

• ieee_features

• ieee_exceptions

• ieee_arithmetic

The first thing to consider is the degree of conformance to the IEEE standard. It is
possible that not all of the features are supported. Thus the first thing to do is to
run one or more test programs to determine the degree of support for a particular
system.

27.4.1 IEEE_FEATURES module

This module defines a derived type, IEEE_FEATURES_TYPE, and up to 11 con-
stants of that type representing IEEE features:

• IEEE_DATATYPE — whether any IEEE data types are available.

• IEEE_DENORMAL — whether IEEE denormal values are available.

• IEEE_DIVIDE — whether division has the accuracy required by IEEE.

• IEEE_HALTING — whether control of halting is supported.

• IEEE_INEXACT_FLAG — whether the inexact exception is supported.

• IEEE_INF — whether IEEE positive and negative infinities are available.

• IEEE_INVALID_FLAG — whether the invalid exception is supported.

• IEEE_NAN — whether IEEE NaNs are available.

• IEEE_ROUNDING — whether all IEEE rounding modes are available.

• IEEE_SQRT — whether SQRT conforms to the IEEE standard.

• IEEE_UNDERFLOW_FLAG — whether underflow is supported.

27.4.2 IEEE_EXCEPTIONS module

This module provides data types, constants and generic procedures for IEEE ex-
ceptions:

TYPE IEEE_STATUS_TYPE

Variables of this type can hold a floatingpoint status value.

SUBROUTINE IEEE_GET_STATUS(STATUS_VALUE)

ISO TR 15580 — IEEE Arithmetic 481

TYPE(IEEE_STATUS_TYPE),INTENT(OUT) :: STATUS_VALUE

Stores the current floatingpoint status into the STATUS_VALUE argument.

SUBROUTINE IEEE_SET_STATUS(STATUS_VALUE)

TYPE(IEEE_STATUS_TYPE),INTENT(IN) :: STATUS_VALUE

Sets the current floatingpoint status from the STATUS_VALUE argument.

TYPE IEEE_FLAG_TYPE

Values of this type specify individual IEEE exception flags; constants for these are
available as follows:

TYPE(IEEE_FLAG_TYPE),PARAMETER :: IEEE_DIVIDE_BY_ZERO

TYPE(IEEE_FLAG_TYPE),PARAMETER :: IEEE_INEXACT

TYPE(IEEE_FLAG_TYPE),PARAMETER :: IEEE_INVALID

TYPE(IEEE_FLAG_TYPE),PARAMETER :: IEEE_OVERFLOW

TYPE(IEEE_FLAG_TYPE),PARAMETER :: IEEE_UNDERFLOW

In addition, two array constants are available for indicating common combinations
of flags:

TYPE(IEEE_FLAG_TYPE),PARAMETER :: &

IEEE_USUAL(3) = (/&

IEEE_DIVIDE_BY_ZERO,&

IEEE_INVALID, &

IEEE_OVERFLOW /), &

IEEE_ALL(5) = (/&

IEEE_DIVIDE_BY_ZERO,&

IEEE_INEXACT, &

IEEE_INVALID,&

IEEE_OVERFLOW, &

IEEE_UNDERFLOW /)

LOGICAL FUNCTION IEEE_SUPPORT_FLAG(FLAG,X)

TYPE(IEEE_FLAG_TYPE),INTENT(IN) :: FLAG

REAL(kind),INTENT(IN),OPTIONAL :: X

482 Chapter 27

Returns TRUE if detection of the specified IEEE exception is supported for the
REAL kind of X (if X is present), or for all REAL kinds (if X is absent).

LOGICAL FUNCTION IEEE_SUPPORT_HALTING(FLAG)

TYPE(IEEE_FLAG_TYPE),INTENT(IN) :: FLAG

Returns TRUE if IEEE_SET_HALTING_MODE can be used to change whether
the processor terminates the program on receiving the specified exception.

ELEMENTAL SUBROUTINE &
IEEE_GET_FLAG(FLAG,FLAG_VALUE)

TYPE(IEEE_FLAG_TYPE),INTENT(IN) :: FLAG

LOGICAL,INTENT(OUT) :: FLAG_VALUE

Sets (each element of) FLAG_VALUE to TRUE if the corresponding exception
specified by FLAG is signalling, and to FALSE otherwise.

ELEMENTAL SUBROUTINE &
IEEE_GET_HALTING_MODE(FLAG,HALTING)

TYPE(IEEE_FLAG_TYPE),INTENT(IN) :: FLAG

LOGICAL,INTENT(OUT) :: HALTING

Sets (each element of) HALTING to TRUE if the corresponding exception speci-
fied by FLAG is signalling, and to FALSE otherwise.

ELEMENTAL SUBROUTINE IEEE_SET_FLAG(FLAG,FLAG_VALUE)

TYPE(IEEE_FLAG_TYPE),INTENT(OUT) :: FLAG

LOGICAL,INTENT(IN) :: FLAG_VALUE

Sets the exception flag specified by (each element of) FLAG to signalling or quiet
according to the corresponding element of FLAG_VALUE.

ELEMENTAL SUBROUTINE &
IEEE_SET_HALTING_MODE(FLAG,HALTING)

TYPE(IEEE_FLAG_TYPE),INTENT(OUT) :: FLAG

LOGICAL,INTENT(IN) :: HALTING

Sets the halting mode for each exception specified by FLAG to the value of the
corresponding element of HALTING (TRUE = halt).

27.4.3 IEEE_ARITHMETIC module

These are given below:

ISO TR 15580 — IEEE Arithmetic 483

27.4.3.1 IEEE data type selection

INTEGER FUNCTION SELECTED_REAL_KIND(P,R)

INTEGER(kind1),OPTIONAL :: P

INTEGER(kind2),OPTIONAL :: R

The same as the SELECTED_REAL_KIND intrinsic, but only returns information
about the IEEE kinds of reals.

27.4.3.2 General support enquiry functions

LOGICAL FUNCTION IEEE_SUPPORT_DATATYPE(X)

REAL(kind),OPTIONAL :: X

Whether IEEE arithmetic is supported for the same kind of REAL as X (or for all
REAL kinds if X is absent).

LOGICAL FUNCTION IEEE_SUPPORT_DENORMAL(X)

REAL(kind),OPTIONAL :: X

Whether IEEE denormal values are supported for the same kind of REAL as X (or
for all REAL kinds if X is absent).

LOGICAL FUNCTION IEEE_SUPPORT_DIVIDE(X)

REAL(kind),OPTIONAL :: X

Whether division is carried out to the accuracy specified by the IEEE standard for
the same kind of REAL as X (or for all REAL kinds if X is absent).

LOGICAL FUNCTION IEEE_SUPPORT_INF(X)

REAL(kind),OPTIONAL :: X

Whether IEEE infinite values are supported for the same kind of REAL as X (or
for all REAL kinds if X is absent).

LOGICAL FUNCTION IEEE_SUPPORT_NAN(X)

REAL(kind),OPTIONAL :: X

Whether IEEE NaN (Not-a-Number) values are supported for the same kind of
REAL as X (or for all REAL kinds if X is absent).

LOGICAL FUNCTION IEEE_SUPPORT_SQRT(X)

REAL(kind),OPTIONAL :: X

Whether SQRT conforms to the IEEE standard for the same kind of REAL as X
(or for all REAL kinds if X is absent).

484 Chapter 27

LOGICAL FUNCTION IEEE_SUPPORT_STANDARD(X)

REAL(kind),OPTIONAL :: X

Whether all the IEEE facilities specified by the TR are supported for the same kind
of REAL as X (or for all REAL kinds if X is absent).

27.4.3.3 Rounding modes

TYPE IEEE_ROUND_TYPE

Values of this type specify the IEEE rounding mode.

TYPE (IEEE_ROUND_TYPE) , &
PARAMETER :: IEEE_DOWN

TYPE (IEEE_ROUND_TYPE) , &
PARAMETER :: IEEE_NEAREST

TYPE (IEEE_ROUND_TYPE) ,
PARAMETER :: IEEE_TO_ZERO

TYPE (IEEE_ROUND_TYPE) , PARAMETER :: IEEE_UP

LOGICAL FUNCTION IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X)

TYPE(IEEE_ROUND_TYPE),INTENT(IN) :: ROUND_VALUE

REAL(kind),OPTIONAL :: X

Whether the specified IEEE rounding mode is supported for the same kind of
REAL as X (or for all REAL kinds if X is absent).

SUBROUTINE IEEE_GET_ROUNDING_MODE(ROUND_VALUE)

TYPE(IEEE_ROUND_TYPE),INTENT(OUT) :: ROUND_VALUE

Sets the ROUND_VALUE argument to the current IEEE rounding mode.

SUBROUTINE IEEE_SET_ROUNDING_MODE(ROUND_VALUE)

TYPE (IEEE_ROUND_TYPE) , INTENT(IN) :: ROUND_VALUE

Sets the current IEEE rounding mode to that specified by ROUND_VALUE.

27.4.3.4 Number classification

TYPE IEEE_CLASS_TYPE

Values of this type indicate the IEEE class of a number.

TYPE (IEEE_CLASS_TYPE) , &
PARAMETER :: IEEE_NEGATIVE_DENORMAL

TYPE (IEEE_CLASS_TYPE) , PARAMETER :: IEEE_NEGATIVE_INF

ISO TR 15580 — IEEE Arithmetic 485

TYPE (IEEE_CLASS_TYPE) , PARAMETER :: IEEE_NEGATIVE_NORMAL

TYPE (IEEE_CLASS_TYPE) , PARAMETER :: IEEE_NEGATIVE_ZERO

TYPE (IEEE_CLASS_TYPE) , PARAMETER :: IEEE_POSITIVE_DENORMAL

TYPE (IEEE_CLASS_TYPE) , PARAMETER :: IEEE_POSITIVE_INF

TYPE(IEEE_CLASS_TYPE) , PARAMETER :: IEEE_POSITIVE_NORMAL

TYPE(IEEE_CLASS_TYPE) , PARAMETER :: IEEE_POSITIVE_ZERO

TYPE(IEEE_CLASS_TYPE) , PARAMETER :: IEEE_QUIET_NAN

TYPE(IEEE_CLASS_TYPE) , PARAMETER :: IEEE_signalling_NAN

ELEMENTAL TYPE(IEEE_CLASS_TYPE) FUNCTION IEEE_CLASS(X)

REAL(kind),INTENT(IN) :: X

Returns the appropriate value of IEEE_CLASS_TYPE for the number X, which
may be of any IEEE kind.

In addition to ISO/IEC TR 15580:1998(E), the module IEEE_ARITHMETIC de-
fines the “==” and “/=” operators for the IEEE_CLASS_TYPE. These may be used
to test the return value of the IEEE_CLASS function, e.g.,

USE,INTRINSIC :: IEEE_ARITHMETIC, ONLY: IEEE_CLASS, &

IEEE_QUIET_NAN, OPERATOR(==)

...

IF (IEEE_CLASS(X)==IEEE_QUIET_NAN) THEN

...

ELEMENTAL REAL(kind) FUNCTION IEEE_VALUE(X,CLASS)

REAL(kind),INTENT(IN) :: X

TYPE(IEEE_CLASS_TYPE),INTENT(IN) :: CLASS

Returns a sample value of the specified class for the same kind of real as X, which
may be of any IEEE kind.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_FINITE(X)

REAL(kind),INTENT(IN) :: X

Returns TRUE if X is not infinite or NaN.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_NAN(X)

REAL(kind),INTENT(IN) :: X

486 Chapter 27

Returns TRUE if X is either a signalling or quiet NaN.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_NEGATIVE(X)

REAL(kind),INTENT(IN) :: X

Returns TRUE if X is negative, including negative zero.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_NORMAL(X)

REAL(kind),INTENT(IN) :: X

Returns TRUE if X is not an infinity, NaN, or denormal.

ELEMENTAL LOGICAL FUNCTION IEEE_UNORDERED(X,Y)

REAL(kind),INTENT(IN) :: X,Y

Returns TRUE if X is a NaN or if Y is a NaN.

27.4.3.5 Arithmetic operations

ELEMENTAL REAL(kind) FUNCTION IEEE_COPY_SIGN(X,Y)

REAL (kind) , INTENT(IN) :: X,Y

Returns X with the sign of Y, even for NaNs and infinities.

ELEMENTAL REAL (kind) FUNCTION IEEE_LOGB(X)

REAL (kind) , INTENT(IN) :: X

Returns the unbiased exponent as a REAL value:

If X is zero, IEEE_DIVIDE_BY_ZERO signals and the result is –infinity if IEEE
infinities are supported for that kind, and –HUGE(X) if not.

If X is infinite, the result is +infinity.

If X is a NaN, the result is a quiet NaN (the same one if X is a quiet NaN); other-
wise the result is EXPONENT(X)-1.

ELEMENTAL REAL (kind) FUNCTION IEEE_NEXT_AFTER(X,Y)

REAL (kind) , INTENT(IN) :: X,Y

The same as NEAREST(X,1.0_kind) for Y>X and NEAREST(X,-1.0_kind) for
Y<X; if Y==X, the result is X, if either X or Y are NaNs the result is one of these
NaNs.

ELEMENTAL REAL (kind) FUNCTION IEEE_REM(X,Y)

REAL (kind) , INTENT(IN) :: X,Y

ISO TR 15580 — IEEE Arithmetic 487

X-Y*N exactly, where N is the integer nearest to the exact value X/Y. If the result
is zero, it has the same sign as X. This function is not affected by the rounding
mode.

ELEMENTAL REAL (kind) FUNCTION IEEE_RINT(X)

REAL (kind) , INTENT(IN) :: X

Round to an integer according to the current rounding mode.

ELEMENTAL REAL (kind) FUNCTION IEEE_SCALB(X,I)

REAL (kind1) , INTENT(IN) :: X

INTEGER (kind2) , INTENT(IN) :: I

The same as SCALE(X,I).

27.5 Summary
Support for the above is relatively limited at the time of writing this book. There is
always a time lag between the formal publication of a standard and the implemen-
tation in production compilers. As compiler support improves examples will be
added to our web site. Our home page is:

• http://www.kcl.ac.uk/fortran

27.6 Bibliography
Hauser J.R., Handling Floating Point Exceptions in Numeric Programs, ACM
Transaction on Programming Languages and Systems, Vol. 18, No. 2, March
1996, pp. 139–174.

• The paper looks at a number of techniques for handling floating point ex-
ceptions in numeric code. One of the conclusions is for better structured
support for floating point exception handling in new programming lan-
guages, or of course better standards for existing languages.

IEEE, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std
754-1985, Institute of Electrical and Electronic Engineers Inc.

• The formal definition of IEEE 754.

Knuth D., Seminumerical Algorithms, Addison-Wesley, 1969.

• There is a coverage of floating point arithmetic, multiple precision arith-
metic, radix conversion and rational arithmetic.

488 Chapter 27

Sun, Numerical Computation Guide, SunPro.

• Very good coverage of the numeric formats for IEEE Standard 754 for
Binary Floating-Point Arithmetic. All SunPro compiler products support
the features of the IEEE 754 standard.

27.6.1 Web-based sources

http://validgh.com/goldberg/addendum.html

• Differences Among IEEE 754 Implementations. The material in this paper
will eventually be included in the Sun Numerical Computation Guide as
an addendum to Appendix D, David Goldberg's What Every Computer
Scientist Should Know about Floating Point Arithmetic.

http://docs.sun.com/

• Follow the links to the Floating Point and Common Tools AnswerBook.
The Numerical Computation Guide can be browsed on-line or down-
loaded as a pdf file. The last time we checked it was about 260 pages.
Good source of information if you have Sun equipment.

http://www.validgh.com/

• This web site contains technical and business information relating to the
validgh professional consulting practice of David G. Hough. Contains
links to the Goldberg paper and the above addendum by Doug Priest.

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html

• Brief coverage of IEEE arithmetic with pointers to further sources. There
is also a coverage of the storage layout and ranges of floating point num-
bers. Computer Science 341 is an introduction to the design of a com-
puter's hardware, particularly the CPU and memory systems.

http://www.nag.co.uk/nagware/NP/TR.html

• NAG provide coverage of TR 15580 and TR 15581. The first is the sup-
port Fortran has for IEEE arithmetic.

http://www.cs.berkeley.edu/~wkahan/

• Willam Kahan home page.

http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

• An Interview with the Old Man of Floating Point. Reminiscences elicited
from William Kahan by Charles Severance, which appeared in an issue of
IEEE Computer - March 1998.

http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps

ISO TR 15580 — IEEE Arithmetic 489

• Lecture Notes on the Status of IEEE Standard 754 for Binary
Floating-Point Arithmetic. Well worth a read.

http://www.stewart.cs.sdsu.edu/cs575/labs/l3floatpt.html

• CS 575 Supercomputing — Lab 3: Floating Point Arithmetic. CS 575 is
an interdisciplinary course to introduce students in the sciences and engi-
neering to advanced computing techniques using the supercomputers at
the San Diego Supercomputer Center (SDSC).

http://www.mathcom.com/nafaq/index.html

• FAQ: Numerical Analysis and Associated Fields Resource Guide. A sum-
mary of Internet resources for a number of fields related to numerical
analysis.

http://www.math.psu.edu/dna/disasters/ariadne.html

• The Explosion of the Ariane 5: A 64-bit floating point number relating to
the horizontal velocity of the rocket with respect to the platform was con-
verted to a 16-bit signed integer. The number was larger than 32,768, the
largest integer storeable in a 16-bit signed integer, and thus the conversion
failed.

27.6.2 Hardware sources

Osbourne A., Kane G., 4-bit and 8-bit Microprocessor Handbook,
Osbourne/McGraw-Hill, 1981.

• Good source of information on 4-bit and 8-bit microprocessors.

Osbourne A., Kane G., 16-Bit Microprocessor Handbook, Osbourne/McGraw-Hill,
1981.

• Ditto 16-bit microprocessors.

Intel, 386 DX Microprocessor Hardware Reference Manual, Intel.

• The first Intel offering with 32-bit addressing.

Intel, 80386 System Software Writer's Guide, Intel.

• Developer's guide to the above.

http://www.intel.com/

• Intel's home page.

http://developer.intel.com/design/pentiumiii/

• Details of the Pentium III processor.

490 Chapter 27

http://www.cyrix.com/

• Cyrix home page.

Bhandarkar D.P., Alpha Implementations and Architecture: Complete Reference
and Guide, Digital Press, 1996.

• Looks at some of the trade-offs and design philosophy behind the alpha
chip. The author worked with VAX, MicroVAX and VAX vectors as well
as the Prism. Also looks at the GEM compiler technology that
DEC/Compaq use.

http://www.digital.com/alphaserver/workstations/

• Home page for the Compaq/DEC Alpha systems.

http://www.sgi.com/

• Silicon Graphics home page.

http://www.sun.com/

• Sun home page.

http://www.ibm.com/

• IBM home page.

27.6.3 Operating Systems

Deitel H.M., An Introduction to Operating Systems, Addison-Wesley, 1990.

• The revised first edition includes case studies of UNIX, VMS, CP/M,
MVS and VM. The second edition adds OS/2 and the Macintosh operat-
ing systems. There is a coverage of hardware, software, firmware, process
management, process concepts, asynchronous concurrent processes, con-
current programming, deadlock and indefinite postponement, storage man-
agement, real storage, virtual storage, processor management, distributed
computing, disk performance optimisation, file and database systems, per-
formance, coprocessors, risc, data flow, analytic modelling, networks, se-
curity and it concludes with case studies of the these operating systems.
The book is well written and an easy read.

27.6.4 Java and IEEE 754

http://www.cs.berkeley.edu/~darcy/Borneo/

• Borneo Language Homepage: Borneo is a dialect of the Java language de-
signed to have true support for the IEEE 754 floating point standard. The
status of arithmetic in Java is fluid. At the time of writing this book Sun
had withdrawn from the formal language standardisation process. Sun

ISO TR 15580 — IEEE Arithmetic 491

have a publication at their web site that addresses changes to the Java lan-
guage specification for JDK Release 1.2 floating point arithmetic. Their
home Java page is

• http://www.java.sun.com/

27.6.5 C and IEEE 754

http://wwwold.dkuug.dk/JTC1/SC22/WG14/

• The official home of JTC1/SC22/WG14 - C. The C programming lan-
guage standard ISO/IEC 9899 was adopted by ISO in 1990. ANSI then re-
placed their first standard X3.159 by the ANSI/ISO 9899 standard identi-
cal to ISO/IEC 9899:1990.

492 Chapter 27

28

ISO TR 15581
Allocatable Enhancements

Aim
The aim of this chapter is to provide a small number of examples illustrating some
of the features introduced with ISO TR 15581:

• Allocatable dummy arrays.

• Allocatable function results.

• Allocatable structure components.

28 ISO TR 15581 Allocatable Enhancements
In this chapter we provide three examples that illustrate the features introduced by
TR 15581. The facilities mean that we do not have to use pointers and this has
several efficiency benefits as the compiler does not have to worry about aliasing
and whether it can deallocate temporaries or not. There is also the issue of contigu-
ous memory allocation for allocatable arrays, which can't be guaranteed when
using pointers and sections and strides other than unity.

28.1 Allocatable dummy array example
In the Quicksort example the actual array allocation took place in the main pro-
gram. In this example we do the allocation in the Read_Data subroutine:

PROGRAM ch2801
IMPLICIT NONE
INTEGER :: How_Many
CHARACTER (LEN=20) :: File_Name
REAL , ALLOCATABLE , DIMENSION(:) :: Raw_Data
integer , dimension(8) :: timing

INTERFACE
SUBROUTINE Read_Data(File_Name,Raw_Data,How_Many)

IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , ALLOCATABLE , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE Read_Data
END INTERFACE

INTERFACE
SUBROUTINE Sort_Data(Raw_Data,How_Many)

IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(INOUT) , DIMENSION(:) :: Raw_Data

END SUBROUTINE Sort_Data
END INTERFACE

INTERFACE
SUBROUTINE Print_Data(Raw_Data,How_Many)

IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many

494 Chapter 28

REAL , INTENT(IN) , DIMENSION(:) :: Raw_Data
END SUBROUTINE Print_Data

END INTERFACE
PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name
call date_and_time(values=timing)
print * , ' initial'
print * , timing(6),timing(7),timing(8)
CALL Read_Data(File_Name,Raw_Data,How_Many)
call date_and_time(values=timing)
print * , ' read and allocate'
print * , timing(6),timing(7),timing(8)
CALL Sort_Data(Raw_Data,How_Many)
call date_and_time(values=timing)
print * , ' sort'
print * , timing(6),timing(7),timing(8)
CALL Print_Data(Raw_Data,How_Many)
call date_and_time(values=timing)
print * , ' print'
print * , timing(6),timing(7),timing(8)
PRINT * , ' '
PRINT *, ' Data written to file SORTED.DAT'

END PROGRAM ch2801

SUBROUTINE Read_Data(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , ALLOCATABLE , &

DIMENSION(:) :: Raw_Data

INTEGER :: I
ALLOCATE(Raw_Data(1:How_Many))
OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)
ENDDO

END SUBROUTINE Read_Data

ISO TR 15581 Allocatable Enhancements 495

SUBROUTINE Sort_Data(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(INOUT) , DIMENSION(:) :: Raw_Data

CALL QuickSort(1,How_Many)

CONTAINS

RECURSIVE SUBROUTINE QuickSort(L,R)
IMPLICIT NONE
INTEGER , INTENT(IN) :: L,R
INTEGER :: I,J,tt
REAL :: V,T

i=l
j=r
v=raw_data(int((l+r)/2))
do

do while (raw_data(i) < v)
i=i+1

enddo
do while (v < raw_data(j))

j=j-1
enddo
if (i<=j) then

t=raw_data(i)
raw_data(i)=raw_data(j)
raw_data(j)=t
i=i+1
j=j-1

endif
if (i>j) exit

enddo

if (l<j) then
call quicksort(l,j)

endif

if (i<r) then
call quicksort(i,r)

496 Chapter 28

endif

END SUBROUTINE QuickSort

END SUBROUTINE Sort_Data

SUBROUTINE Print_Data(Raw_Data,How_Many)
IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(IN) , DIMENSION(:) :: Raw_Data
INTEGER :: I

OPEN(FILE='SORTED.DAT',UNIT=2)
DO I=1,How_Many

WRITE(UNIT=2,FMT=*) Raw_Data(I)
ENDDO
CLOSE(2)

END SUBROUTINE Print_Data

We now have a choice of where we do the allocation. This is thus more flexible
than having to do all allocation in the main program, which is effectively a more
Fortran 77 style of programming.

28.2 Allocatable function result example
A function may return an array, and in this example the array allocation takes
place in the function:

PROGRAM ch2802
IMPLICIT NONE

INTERFACE
FUNCTION Running_Average(R,How_Many) RESULT(Rarray)

IMPLICIT NONE
INTEGER , INTENT(IN) :: How_Many
REAL , ALLOCATABLE , DIMENSION (:) , &

INTENT(IN) :: R
REAL , ALLOCATABLE , DIMENSION(:) :: Rarray

END FUNCTION Running_Average
END INTERFACE

INTERFACE
SUBROUTINE Read_Data(File_Name,Raw_Data,How_Many)

IMPLICIT NONE

ISO TR 15581 Allocatable Enhancements 497

CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , ALLOCATABLE , &
DIMENSION(:) :: Raw_Data

END SUBROUTINE Read_Data
END INTERFACE

INTEGER :: How_Many
CHARACTER (LEN=20) :: File_Name
REAL , ALLOCATABLE , DIMENSION(:) :: Raw_Data
REAL , ALLOCATABLE , DIMENSION(:) :: RA
INTEGER :: I

PRINT * , ' How many data items are there?'
READ * , How_Many
PRINT * , ' What is the file name?'
READ '(A)',File_Name
CALL Read_Data(File_Name,Raw_Data,How_Many)
ALLOCATE(RA(1:How_Many))
RA=Running_Average(Raw_Data,How_Many)
DO I=1,How_Many

PRINT *,Raw_Data(I),' ' ,RA(I)
END DO

END PROGRAM ch2802

FUNCTION Running_Average(R,How_Many) RESULT(Rarray)
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(IN) , ALLOCATABLE , DIMENSION(:) :: R
REAL , ALLOCATABLE , DIMENSION(:) :: Rarray
INTEGER :: I
REAL :: Sum=0.0

ALLOCATE(Rarray(1:How_Many))
DO I=1,How_Many

Sum = Sum + R(I)
Rarray(I)=Sum/I

END DO
END FUNCTION Running_Average

SUBROUTINE Read_Data(File_Name,Raw_Data,How_Many)
IMPLICIT NONE
CHARACTER (LEN=*) , INTENT(IN) :: File_Name
INTEGER , INTENT(IN) :: How_Many
REAL , INTENT(OUT) , ALLOCATABLE , &

498 Chapter 28

DIMENSION(:) :: Raw_Data
INTEGER :: I

ALLOCATE(Raw_Data(1:How_Many))
OPEN(FILE=File_Name,UNIT=1)
DO I=1,How_Many

READ (UNIT=1,FMT=*) Raw_Data(I)
ENDDO

END SUBROUTINE Read_Data

This is a much more Fortran 90 way of thinking.

28.3 Allocatable structure component example
This example illustrates the use of ragged arrays without the use of pointers:

PROGRAM ch2803
IMPLICIT NONE
TYPE Ragged

REAL , DIMENSION(:) , ALLOCATABLE :: Ragged_row
END TYPE Ragged
INTEGER :: I
INTEGER , PARAMETER :: N=3
TYPE (Ragged) , DIMENSION(1:N) :: Lower_Diag

DO I=1,N
ALLOCATE(Lower_Diag(I)%Ragged_Row(1:I))
PRINT *,' Type in the values for row ' , I
READ *,Lower_Diag(I)%Ragged_Row(1:I)

END DO
DO I=1,N

PRINT *,Lower_Diag(I)%Ragged_Row(1:I)
END DO

END PROGRAM ch2803

28.4 Summary
These features provide us with a safer way of addressing certain types of problems
that would previously have had to be tackled using pointers.

28.5 Problem
These features are not available in all compilers. Try each example out with your
compiler to determine the degree of standard conformance.

ISO TR 15581 Allocatable Enhancements 499

29

Fortran 2003 and the
Enhanced Module Facility

Aim
The aim of this chapter is to provide a brief coverage of some of the key features
of Fortran 2003.

29 Fortran 2003 and the Enhanced Module Facility

This standard was published in 2004 and the language is called Fortran 2003. This
is the classic out by one that the three previous versions of the language shared:

• Fortran 77 (1978)

• Fortran 90 (1991)

• Fortran 95 (1996)

Fortran 2008 is already in the pipeline!

The enhanced module facility is a separate development, and came after the publi-
cation of the 2003 standard.

29.1 Derived type enhancements
In Fortran 90/95 each of the intrinsic types has a kind parameter and character type
has a length parameter. Fortran 2003 makes this functionality available to derived
types.

29.2 Object oriented programming support
The language now offers:

• Type extension - one type can extend another.

• Polymorphism - the type of a variable can vary at run time.

• Dynamic type allocation.

• SELECT TYPE construct.

• Type-bound procedures.

Thus many problems based on abstract data typing and object oriented program-
ming are now easily programmed in Fortran.

29.3 Data manipulation enhancements
Data manipulation enhacements include:

• Allocatable components.

• Deferred type parameters.

• VOLATILE attribute.

• Explicit type specification in array constructors.

• INTENT specification of pointer arguments.

502 Chapter 29

• Specified lower bounds of pointer assignment and pointer rank remapping.

• Extended initialization expressions.

• MAX and MIN intrinsics for character type.

• Enhanced complex constants.

29.4 Input/output enhancements
I/O enhacements include:

• Asynchronous transfer operations — this allows a program to continue to
execute while an input/output transfer occurs.

• Stream access — which allows access to a file without reference to any
record structure.

• User specified transfer operations for derived types.

• User specified control of rounding during format conversions.

• The FLUSH statement.

• Named constants for preconnected units.

• Regularisation of input/output keywords.

• Access to input/output error messages.

Some of the above have been available in current compilers but not in a portable
and standard fashion.

29.5 Interoperability with the C programming language
The intention here is to provide interoperability of:

• Types: this includes intrinsic types, derived types and pointers.

• Variables: both scalar and array.

• Procedures: this requires an explicit interface.

This is done via an intrinsic module called ISO_BINDING_C and the BIND and
VALUE attributes.

C and Fortran interoperability has been possible for a long time with most compil-
ers, but again not in a standard and portable fashion.

Fortran 2003 and the Enhanced Module Facility 503

29.6 Procedure pointers
Procedure pointers permit ways of manipulating data (methods in object oriented
programming or OOP terminology) to be associated with objects (dynamic binding
in OOP terminology).

29.7 Scoping enhancements
There is now the ability to rename defined operators (which supports greater data
abstraction) and control host association into interface bodies.

29.8 Support for IEC 60559 (IEEE 754) exceptions and
arithmetic

This extends the ISO TR 15580 requirements. There is also a new IEEE 754 stan-
dard due to be published and it is envisaged that there will be support for this too.

29.9 Support for international usage: (ISO 10646)
Fortran 90 introduced the possibility of multibyte character sets, which provides a
foundation for supporting ISO 10646 (2000). This is a standard for 4-byte charac-
ters, which is wide enough to support all of the world’s languages.

A new intrinsic function has been introduced to provide the kind value for a speci-
fied character set:

• SELECTED_CHAR_KIND(NAME) returns the kind value as a default
INTEGER.

• NAME is a scalar of type default character. If it has one of the values DE-
FAULT, ASCII, and ISO_10646, it specifies the corresponding character
set.

The Fortran character set now includes both upper-case and lower-case letters and
further printable ASCII characters have been added as special characters:

• ~ Tilde

• \ Backslash

• [Left square bracket

•] Right square bracket

• ‘ Grave accent

• ^ Circumflex accent

• { Left curly bracket

504 Chapter 29

• } Right curly bracket

• | Vertical bar

• # Number sign

• @ Commercial at

There is also the choice of a decimal or a comma in numeric formatted input/out-
put.

29.10 Enhanced integration with the host operating system
A new intrinsic module, ISO_FORTRAN_ENV, contains the following constants:

• INPUT_UNIT, OUTPUT_UNIT, and ERROR_UNIT are default integer
scalars holding the unit identified by an asterisk in a READ statement, an
asterisk in a WRITE statement, and used for the purpose of error report-
ing, respectively.

• IOSTAT_END and IOSTAT_EOR are default integer scalars holding the
values that are assigned to the IOSTAT= variable if an end-of-file or
end-of-record condition occurs, respectively.

• NUMERIC_STORAGE_SIZE, CHARACTER_STORAGE_SIZE, and
FILE_STORAGE_SIZE are default integer scalars holding the sizes in
bits of a numeric, character, and file storage unit, respectively.

Some of the above functionality can be found in existing compilers, but again not
in a standard and therefore portable fashion.

29.11 The ASSOCIATE construct
This construct links named entities with expressions or variables during the execu-
tion of its block. Constructs may be nested.

29.12 Enhanced modules facility
The module facilities introduced in Fortran 90 had some drawbacks that were not
apparent at the time. They are not a problem for small to medium scale program
development but become a major issue with large code suites owing to the compi-
lation cascade problem. What was needed was a mechanism to effectively
decouple the interface from the implementation.

This is provided by this proposal where the concept of a submodule is introduced.
The interface can be defined in the main module and the actual implementation can
be done in submodules.

Fortran 2003 and the Enhanced Module Facility 505

29.13 Summary
There are no compilers at this time that fully support the above. We hope this has
whetted your appetite for what will be possible in the future with Fortran 2003
conformant compilers.

506 Chapter 29

30

Parallel
Programming

“Once upon a time, a very long time ago now, about last Friday, Winnie-the-Pooh
lived in a forest all by himself under the name of Sanders.”

(“What does 'under the name' mean” asked Christopher Robin, “It means he had
the name over the door in gold letters and lived under it”...)

A.A. Milne., Winnie-the-Pooh

Aim
The aims of this chapter is to introduce some of the options for parallel program-
ming.

30 Parallel Programming

There are a number of options in this area and there is a brief coverage of some of
them below.

30.1 MPI
MPI (message passing interface) is the standard for multicomputer and cluster mes-
sage passing introduced by the Message Passing Interface Forum April 1994:

• http://www.mpi-forum.org/index.html

Visit:

• http://www.tc.cornell.edu/

at Cornell University for details of the above in practice.

30.2 Co–array Fortran
Co-array Fortran (previously known as F—) is a small extension to Fortran 95.
Visit:

• http://www.co-array.org/

for more details.

The syntax is architecture independent and may be implemented on:

• Distributed memory machines.

• Shared memory machines.

• Clustered machines.

It is currently tabled for inclusion in the Fortran 2008 standard.

30.3 Openmp
To quote their home page ‘The OpenMP Application Program Interface (API) sup-
ports multi-platform shared-memory parallel programming in C/C++ and Fortran
on all architectures, including Unix platforms and Windows NT platforms. Jointly
defined by a group of major computer hardware and software vendors, OpenMP is
a portable, scalable model that gives shared-memory parallel programmers a sim-
ple and flexible interface for developing parallel applications for platforms
ranging from the desktop to the supercomputer.’

More information can be found at:

• http://www.openmp.org/

508 Chapter 30

30.4 PVM
Parallel Virtual Machine consists of a library and a run-time environment which al-
low the distribution of a program over a network of (even heterogeneous)
computers. Visit

• http://www.epm.ornl.gov/pvm/

• http://www.netlib.org/pvm3/

for more details.

30.5 HPF
To quote their home page

• http://www.crpc.rice.edu/HPFF/home.html

‘The High Performance Fortran Forum (HPFF), a coalition of industry, academic
and laboratory representatives, works to define a set of extensions to Fortran 90
known collectively as High Performance Fortran (HPF). HPF extensions provide
access to high-performance architecture features while maintaining portability
across platforms.’

They also provide details of:

• Surveys of HPF compilers and tools.

• Currently available commercial HPF compilers.

• Public domain HPF compilation systems.

• Research prototypes of HPF and HPF-related compilation systems.

• Mailing list.

30.6 Parallel programming and high-performance computing
Have a look at

• http://suparum.rz.uni-mannheim.de/docs/ind.html

for a lot of links to supercomputing centres and information on parallel computing
in general.

For details of the US Accelerated Strategic Computing Initiative — ASCI — visit:

• http://www.sandia.gov/ASCI/

• http://www.lanl.gov/projects/asci/asci.html

• http://www.llnl.gov/asci/

Parallel Programming 509

The following are some useful UK sites:

• http://www.epsrc.ac.uk/hpc

• http://www.csar.cfs.ac.uk/

The following site lists the top 500 supercomputers in the world:

• http://www.netlib.org/benchmark/top500.html

To see what can be done with all this processing power visit:

• http://www.met-office.gov.uk/

30.6.1 Summary

Fortran is evolving and has come a long way since the 1950s. It is now capable of
solving a wide range of problems.

A number of Fortran parallel dialects have emerged, but, it is important to realise
that they are dialects and not part of the Fortran standard, and hence using them
cannot guarantee portability.

Computers capable of supporting multiple processors are dropping in price and
coming within the reach of most people. Developments in this area open up the
possibilities of solving problems previously only possible on supercomputers.

510 Chapter 30

31

Miscellaneous

“The time has come,' the Walrus said,
'To talk of many things:

of shoes–and ships–and sealing wax–
of cabbages – and kings–

And why the sea is boiling hot–
And whether pigs have wings.”

Lewis Carroll, Through the Looking Glass and What Alice Found There.

Aim
The aim of this chapter is to provide a summary of what has been covered and
help put some of the material into context. In particular:

• Program development and software engineering.

• Programming style — programs should be easy to read.

• Programming style — programs should behave well.

• Data structures.

• Algorithms.

• Recursion, and when not to use it.

• Structured programming and the GOTO statement.

• Efficiency, the space time trade off.

• Simple debugging guidelines.

• Numerical software sources.

There is much to be learnt concerning the discipline of programming that does ap-
pear rather nonsensical at first.

31 Miscellaneous

By now it should be apparent that coding is only one small part of programming.
However, a thorough knowledge of a programming language is a prerequisite for
long term success.

Owing to its history, Fortran has a number of drawbacks in terms of its syntax and
semantics. There are some features that are quite clumsy in comparison to other,
more modern languages. However, there are also disadvantages in starting afresh
each time, and this is highlighted by the Algol W, Pascal, Modula, Modula 2,
(Modula 3), Oberon, Oberon 2 development. Moving from one language to its suc-
cessor requires code changes that involve varying degrees of effort.

31.1 Program development and software engineering
When one first starts programming the phrase software engineering will often ap-
pear meaningless. The problems that one solves when learning a programming
language are by necessity small and amenable to fairly rapid solution and hence
don't require too much thought and serious planning. This means that many people
will initially have a rather simplistic attitude and approach to programming in the
real world.

Consider the following classification, from Fairley (1985), Software Engineering
Concepts:

Classification Number of Time scale Lines of
programmers code

Trivial 1 1–4 weeks 500

Small 1 1–6 months 1K–5K

Medium 2–5 1–2 years 5K–50K

Large 5–20 2–3 years 50K–100K

Very large 100–1000 4–5 years 1M

Massive 2000–5000 5–10 years 1M–10M

The development of reliable and correct programs requires increasing degrees of
planning and organisation as one moves from trivial, to small, to medium and be-
yond. It is worthwhile looking again at the earlier coverage of systems analysis and

512 Chapter 31

design to see what stages we need to go through in the process of software engi-
neering.

There are some practical considerations that can be applied regarding our use of a
programming language, in this case Fortran 90.

31.1.1 Modules

Modules have a very important role to play in software engineering. Their addition
to Fortran has made the language a much better vehicle for the construction of
large-scale, reliable and easily maintainable programs. They enable us to adhere to
the two guidelines of logical coherence and independence.

How big should a program unit be? The rather trite statement here is small is beau-
tiful. Research has consistently shown that the time taken to test and debug a
program unit grows exponentially with program size. Thus we have the following:

Program size Testing and debugging time

1 unit 1 unit

2 units 4 units

3 units 8 units

4 units 32 units

etc.

Experience also shows that most program units are between 60 and 120 lines of
code. The reasons for this are to do with page size, rather than anything wonder-
fully technical. It is what we can fit onto one or two pages, i.e., what we can
examine and understand easily. If we have to flip back and forth then we quickly
lose track of what is happening.

31.1.2 Programming style — Programs should be easy to read

Programs have to be read and understood by both computer systems (the compiler)
and humans. Your time is a very valuable resource. It therefore pays to develop a
good programming style. Clarity, simplicity and consistency are of the essence:

• Meaningful names, not too long, not too short.

• Comments should clarify the meaning of the code.

Miscellaneous 513

• Indentation and formatting should be used to help structure the program
and make it easier to read and understand; pretty print utilities may be
available to help tidy up code.

The aim is not a Nobel prize for literature, but rather a style that adds rather than
detracts from understanding the meaning of the program.

31.1.3 Programming style — Programs should behave well

Programs that behave badly will not be used, and most people reading this will
know programs that they have stopped using precisely because they don't behave
well. There are a number of things to consider here:

• Robustness, e.g., a compiler should not abort at the first error, but rather
continue until some error limit is reached, preferably under user control.

• Input validation should be carried out, and the first criterion is legal input
data. A second criteria is to allow correction of invalid data without forc-
ing the user to retype everything. The phrase 'garbage in garbage out' im-
mediately springs to mind!

• Defensive programming — carry out tests before undertaking an opera-
tion. This will trap many common run-time errors, e.g., inappropriate ar-
gument to a function like the tangent of 90 degrees.

• Graceful degradation, e.g., ignore the one erroneous record in a file and
carry on processing the rest of the file.

• Stick to the standard — as was stated earlier this pays off in the protection
of the investment in people, in portability and a known reference point. If
you have to use nonstandard features then learn fully what that entails.
The apparently identical language extension in two compilers can quite
legitimately produce completely different results. Let the buyer beware!

31.2 Data structures
Data structures have an enormous role to play in programming. An acquaintance
with the wide range of available data structuring techniques is another skill that
needs to be developed.

31.3 Algorithms
Algorithms have an important role to play in programming. The ability to choose
the most appropriate algorithm for a particular problem is still another skill that
needs to be developed.

514 Chapter 31

31.4 Recursion
Recursion is a very powerful tool in problem solving. However, there are occa-
sions when the overhead of recursion can be a problem. In this case it may be
necessary to attempt to remove the recursion. There are a number of books that ad-
dress this issue.

31.5 Structured programming and the GOTO statement
Consider the task of painting the floorboards in a room. Imagine getting a brush
and a can of varnish and starting at the door. At some stage we end up in in the
corner of the room and we have no way of leaving the room without walking over
the recently painted boards. No problem: we GOTO the door.

Whilst the above may strike one as silly, the intention is to highlight the problems
that can be created by inadequate preparation and planning.

As Knuth makes clear in Structured Programming with GOTO Statements that the
real issue is structured programming, and structured programming is not the pro-
cess of writing programs and then eliminating their GOTO statements. The
comment by W.W. Peterson in his paper (regarding the teaching of PL/I, where he
taught students to use the GOTO in exceptional circumstances) highlights this
point: “A disturbingly large percentage of the students ran into situations that re-
quire GOTOs, and sure enough, it was often because while didn't work well to
their plan, but almost invariably because their plan was poorly thought out.”

We have left the coverage of the GOTO statement until the last chapter to try and
get people to think of solving problems without its use. The more astute reader
may have already noticed that we have several examples throughout the notes that
use an implied GOTO. These are the CYCLE and EXIT statements in loops. There
is nothing wrong with using a GOTO providing its meaning is clear.

The syntax of the statement is

GOTO label

where label is a string of one to five decimal digits. Any statement in a Fortran
program may have a label, e.g.,

GOTO 100

commonly used with a logical IF statement, e.g.,

IF (Error) GOTO 1000

Miscellaneous 515

31.6 Efficiency, space-time trade-off
Efficiency is important, but the first priority must always be program correctness.
A good understanding of the capabilities of the language, combined with a reason-
able breadth of knowledge in data structuring and algorithms, is a necessary
precursor to concerns regarding efficiency.

There is a simple trade-off available with many problems: space versus time. This
means that the program will require a large amount of memory to solve a problem,
and this will be reflected in a time reduction. Memory cannot be infinite on any
system, so there will be instances when a longer execution time has to be endured
owing to insufficient physical memory.

Thus it will often be necessary to have only part of the data in memory. We will
have to use disk to store the rest of the data we are processing. In situations like
this we recommend that you use unformatted files. As we stated earlier they offer
no loss of precision, and carry none of the overhead involved in formatting.

31.7 Program testing
Simplistically this means choosing a suite of data set inputs that test the following:

• One or more commonly occurring cases.

• Limiting cases.

• Pathological cases.

Just because it works on a small range of test data does not mean that there are no
bugs.

31.8 Simple debugging techniques
The first choice is to switch on all error testing that can be provided by the com-
piler, and flag all nonstandard language features. This will trap the most common
error, which is array indexing going beyond the declared bounds, for any array
data type.

Use of interface blocks will trap another very common error, which is parameter
mismatch between the calling and called routine.

The simplest debugging technique is the inclusion of print statements to clearly
identify where the problem lies and the state of the variables of interest. There is
no substitute for sitting down and working through a listing of the program with
sample runs to try and determine where problems lie.

516 Chapter 31

31.9 Software tools
There will be a range of tools available that aid in the program development pro-
cess for the hardware and software platform that you use.

31.9.1 Cross referencing

Good compilers will offer cross reference compilation options. It is probable that
stand alone tools in this area will eventually become available over the Internet.

31.9.2 Pretty print

It is likely that tools to aid in consistent program style will become available over
the Internet in the near future. NAG for example offers a tool to pretty print For-
tran 90 programs.

31.9.3 NAGWare f90 Tools

The following tools are currently available:

• Polisher: Pretty prints Fortran 90 code.

• Declaration Standardiser: Standardises declarations of variables and pa-
rameters.

• Precision Standardiser: Modifies software to use parameterised preci-
sion.

• Name Changer: Changes names.

Additional tools will be added with later releases.

31.10 Numerical software sources
This software exists in two main forms.

Firstly as coded algorithms, which can be obtained in a variety of source forms,
which you as end user include in your own program and compile with your partic-
ular compiler. Some of these are verified; others are made available with no
warranty!

Secondly as commercially precompiled libraries for a variety of compilers, operat-
ing systems and hardware platforms. These are subject to rigorous testing by the
suppliers and very well documented.

ACM — TOMS Transactions on Mathematical Software

They publish mathematical software as part of their collected algorithms of the
ACM, available on magnetic tape and diskette. Further information is available on
the World Wide Web, URL, http://www.acm.org

Miscellaneous 517

These sources are subject to validation and corrections, and improvements are pub-
lished.

31.10.1 Numerical Algorithms Group

This is one of the two major commercial providers of numeric and statistical soft-
ware. Their home page is:

• http://www.nag.co.uk/

31.10.2 Visual Numerics

Visual Numerics are the other major commercial provider of numeric and statisti-
cal software. Their home page is:

• http://www.vni.com/index.html

The following is the library home page:

• http://www.vni.com/products/imsl/index.html

31.10.3 Netlib

To quote their home page “The Netlib repository contains freely available soft-
ware, documents, and databases of interest to the numerical, scientific computing,
and other communities. The repository is maintained by AT&T Bell Laboratories,
the University of Tennessee and Oak Ridge National Laboratory, and by col-
leagues world-wide. The collection is replicated at several sites around the world,
automatically synchronised, to provide reliable and network efficient service to the
global community.”

Home page is:

• http://www.netlib.org/

The software is free but you use it at your own risk, no support offered, and their
motto is, Anything free comes with no guarantee!

31.11 Coda
Good luck!

31.12 Bibliography: All sources (bar one) taken from
comp.software-eng.

31.12.1 Software engineering

The best place to start is on USENET news. One of the FAQs is a comprehensive
post on reading material for software engineers, and it is maintained by profes-

518 Chapter 31

sional software engineers. The current top five are in order below, the sixth is
recommended reading.

Pfleeger S., Software Engineering: The Production of Quality Software,
Macmillan, 1991.

Pressman R., Software Engineering: A Practitioner's Approach, McGraw Hill,
1987.

Sage A., Palmer J.D., Software Systems Engineering, Not known.

Ghezzi C., Jayazeri M., Mandrioli D., Fundamentals of Software Engineering,
Prentice-Hall, 1991.

Berzins V., Luqi, Software Engineering with Abstractions, Addison-Wesley, 1991.

Brooks Frederick P. Jr, The Mythical Man Month: Essays of Software Engineering,
Addison-Wesley, 1995.

31.12.2 Programming style

Anand N., Clarify Function!, ACM SigPLAN Notices, 23(6), 69–79, 1988.

Henry S., A Technique for Hiding Proprietary Details While Providing Sufficient
Information for Researchers; or, do you Recognise this Well Known Algorithm?,
Journal of Systems and Software, 8(1), 3–11.

Brooks R., Studying Programmer Behaviour Experimentally: The Problems of
Proper Methodology, Communications of the ACM, 23(4), 207–213.

31.12.3 Software testing

Beizer Boris, Software Testing Techniques, Van Nostrand-Reinhold, 1990.

Hetzel William C., The Complete Guide to Software Testing, 2nd edition, QED In-
formation Services Inc, 1988.

Software Research Inc., Testing Techniques Newsletter, Software Research Inc.

31.12.4 Fun

Martin Gardner, Lewis Carroll: The Annotated Alice, Penguin, 1999.

• Martin Gardner has been writing articles on mathematics as fun for twenty
years. Lewis Carroll, née Charles Lutwidge Dodgson was a lecturer in
mathematics at Christ Church College, Oxford.

Miscellaneous 519

A Glossary

actual argument

A value (variable, expression or procedure) passed from a calling program unit to a
subprogram unit.

adjustable array

An explicit-shape array that is a dummy argument to a subprogram.

algorithm

Derived from the name of the 9th century Persian mathematician Abu Ja'far Mo-
hammed ibn Musa al-Kuwarizmi (father of Ja'far Mohammed, son of Moses,
native of Kuwarizmi), corrupted through western culture as Al-Kuwarizmi. Now a
sequence of computations.

allocatable array

An array that has the ALLOCATABLE attribute.

argument

Exists in two forms; actual argument, which is in the calling routine and is one of
a variable, expression or procedure, and dummy argument, which is in the called
routine.

argument association

The process of matching up an actual argument and dummy argument during pro-
gram execution.

array

An array is a data structure where each scalar element has the same type and kind.
An array may be up to rank 7. It may be referenced by element (via subscripts), by
section or as a whole.

array constructor

A mechanism used to initialise or give values to a one-dimensional array. The RE-
SHAPE function can then be used to handle rank 2 and above arrays.

array element

A scalar item of an array. An array element is picked out by a subscript.

array element ordering

The elements of an array, regardless of rank, form a linear sequence. The sequence
is such that the subscripts along the first dimension vary most rapidly.

520 Appendix A — Glossary

array section

A part of an array. The actual set depends on the subscripts.

ASCII

American Standard Code for Information Interchange. See Appendix C.

association

The means by which an entity can be referenced by different names in one scoping
unit, or one or more names in multiple scoping units.

assumed-length dummy argument

A dummy argument that inherits the length attribute of the actual argument.

assumed-shape array

A dummy argument that inherits the shape of the associated argument.

assumed-size array

A dummy array whose size is inherited from the associated actual argument.

attribute

A property of a data type, and specified in a type declaration statement.

automatic array

This is an explicit-shape array that is a local variable in a subprogram unit.

bound

The bounds of an array are the upper and lower limits of the index in each dimen-
sion.

character constant

A constant that is a string of one or more printable ASCII characters, enclosed in
apostrophes (') or quotation mark (").

character string

A sequence of one or more characters. These are contiguous.

collating sequence

The order in which a set of characters is sorted by default. The standard does not
require that a processor provide the ASCII encoding, but does require intrinsic
functions that convert between the processor encoding and the ASCII encoding.

Appendix A — Glossary 521

compilation unit

One or more source files that are compiled to form one object file.

component

Part of a derived type definition.

concatenate

Join together two or more character items using the character concatenation opera-
tor //.

conformable

Two arrays are said to be conformable if they have the same shape.

constant

A constant is a data object whose value cannot be changed. There are two kinds in
Fortran: one is obtained using the PARAMETER statement; the other is a literal
constant in an expression; e.g., with the expression 4*ATAN(1) both 4 and 1 are
literal constants. It may be a scalar or an array.

contiguous

Normally applied to items that are adjacent in memory, e.g., characters in a charac-
ter variable.

data entity

A data object that has a specific type.

data object

A data object is a constant, variable or part of a constant or variable.

data type

For each data type there are the following: 0. a name 1. a set of values from a do-
main; 2. a set of valid operations upon these values; 3. a display method. There are
five predefined data types in Fortran and these are integer, real, complex, character
and logical.

For integers the values are drawn from the domain of integer numbers, the valid
operations are addition, subtraction, multiplication, division and exponentiation,
and they are displayed as a sequence of digits.

declaration

A declaration is a nonexecutable statement that specifies attributes of a program el-
ement, e.g., specifying the dimension of an array and the type of a variable.

522 Appendix A — Glossary

default kind

The kind type parameter which is used for one of Fortran's base types (integer,
real, complex, character or logical) if one is not specified.

deferred-shape array

An allocatable array or an array pointer. The bounds are specified with a colon, (:).

defined

For a data object having a valid value.

derived type

A data type that is user defined and not one of the five intrinsic types.

dimension

An array can be from one to seven dimensioned inclusive. Also called the rank.

dummy argument

A variable name that appears in the bracketed or parenthesised list following the
procedure name. (e.g., function or subroutine name). Dummy arguments take on
the actual values of the corresponding arguments in the calling routine.

elemental

An operation that applies independently to each element in an array.

entity

Rather vague term covering a constant, variable, program unit, etc.

exceptional values

Normally restricted to real numbers and typically one of nonnormalised numbers,
infinity, not-a-number (NaN) values, etc.

explicit interface

A mechanism to make information available between the calling routine and the
called routine. This information includes the names of the procedures, the dummy
arguments, the attributes of the arguments, the attributes of functions, and the order
of the arguments.

explicit-shape array

A named array that has its bounds specified in each dimension.

Appendix A — Glossary 523

expression

An expression is a sequence of operands and operators that specifies a computa-
tion.

extent

The number of elements of one dimension of an array. Also called the size.

external subprogram

An external subprogram is one that is global to the whole program.

function

One of the two procedure mechanisms available in Fortran along with the subrou-
tine. They effectively provide a way of invoking a computation by using the
function name, and return a result. There is the concept of type and kind for the re-
sult.

function reference

A function is invoked by the use of its name in an expression.

function result

The result value(s) from invoking a function.

generic

Simplistically the ability of a procedure to accept arguments of more than type.
This facility is taken for granted with the intrinsic procedures, and users can now
create their own generic procedures.

global

An entity that is available throughout the executable program. A global entity has
global scope. See also scope and local scope.

host association

The mechanism by which a module procedure, internal procedure or derived type
definition accesses entities of the host.

implicit interface

A procedure interface whose properties are not known within the scope of the call-
ing routine.

inquiry function

A function whose result depends on the properties of the argument.

524 Appendix A — Glossary

interface block

A sequence of statements starting with an INTERFACE statement and ending with
an END INTERFACE statement.

interface body

The sequence of statements in an interface block between either a FUNCTION or
SUBROUTINE statement and the corresponding END statement.

internal procedure

A procedure that is contained within an internal subprogram. The program unit
containing the internal procedure is called the host. The internal procedure is local
to the host and inherits the host environment through host association.

intrinsic procedure

One of the standard supplied procedures.

kind

For each of the five Fortran types (integer, real, complex, logical and character)
there is the concept of kind. For example for integers it is common to find 8-bit,
16-bit and 32-bit implementations. Each of these has an associated kind type.

For real and complex types this enables us to choose both the range and precision
of the numbers we work with.

For characters we can choose between character sets, which is of considerable use
for working with different languages.

kind type parameter

An integer value used to identify the kind of one of the five base types, see above.

language extension

Most compiler implementations will provide language extensions. These are NOT
part of the standard, and make porting code suites between different hardware and
software platforms difficult and sometimes impossible.

linker

A program that is normally the final stage in the process of going from Fortran
source to executable.

local entity

An entity that is only available within the context of a subprogram.

Appendix A — Glossary 525

main program

A program unit that contains a PROGRAM statement.

module

A program unit that contains specifications and definitions that other program units
can access and use.

module procedure

A function or subroutine defined within a module

name

An entity with a program, e.g., constant, variable, function result, procedure, pro-
gram unit, dummy argument.

name association

This provides access to the same entity (either data or a procedure) from different
scoping units by the same or a different name.

nesting

The placing of one entity within another, e.g., one loop within another or one
subprogram within another.

nonexecutable statement

A language statement that describes program attributes, but does not cause any ac-
tion when the program is executed.

object file

File created after successful compilation. Used by the linker to generate an execut-
able.

parameter

Term used to describe two completely different things. 1. a named constant — and
hence the PARAMETER attribute. 2. more generally equivalent to argument.

pointer

A data object that has the POINTER attribute.

pointer association

The association of a part of memory to a pointer by means of a target.

precision

The number of significant digits in a real number.

526 Appendix A — Glossary

procedure

A function or subroutine.

procedure interface

The statements that specify the name of a procedure, the characteristics of that pro-
cedure, the name of the dummy arguments, the attributes of the dummy arguments
the generic identifier (optional) for the procedure.

program

A program is an entity that can be compiled and executed on its own. There must
be at least a declaration block and execution block.

program unit

A main program or a subprogram. The subprogram can be a function, subroutine
or module.

rank

The rank of an array is the number of dimensions.

recursion

A property of a function or subroutine, and it means that the function or subroutine
references itself directly or indirectly.

reference

a data object reference is the appearance of a named entity in an executable state-
ment requiring the value of the object.

relational expression

An expression containing one or more of the relational operators and operands of
numeric or character type.

scalar

A single data object of any type. A scalar has a rank of zero.

scalar variable

A variable of scalar type.

scope and scoping unit

The part of a program in which a name has a defined meaning. The name may be a
named constant, a variable, a function, a procedure, or dummy argument. The part
of the program is one of a program unit or subprogram, a derived type definition or
a procedure interface body. Scoping units cannot overlap, but one scoping unit

Appendix A — Glossary 527

may be contained in another. In the latter case we have an example of host associa-
tion.

shape

The rank and extents of an array.

shape conformance

Generally means that two or more arrays have the same rank and extent.

size

The total number of elements in an array — the product of the extents.

source file

A file known to the operating system that contains the Fortran statements.

statement

An instruction in a programming language, normally classified as executable and
nonexecutable.

stride

The increment in a subscript triplet.

structure

Either a scalar data object of derived type or a composite entity containing one or
more subcomponents.

subprogram

A user written or supplied function or subroutine.

subroutine

A user subprogram that is invoked with the CALL statement. It can return one
value, many values or no value at all to the calling program through the arguments.

subscript

A scalar integer expression used to select an element of an array

subscript triplet

A subscript triplet is a set of three values representing the lower bound of the array
section, the upper bound of the array section, and the increment (stride) between
them.

528 Appendix A — Glossary

substring

A contiguous set of characters in a string.

target

A named data object associated with a pointer.

transformational function

An intrinsic function that is not elemental or inquiry.

truncation

For real numbers the approximation obtained by chopping off the fractional part of
the number and working with the integer part.

For character variables removing one or more characters from a string.

type declaration

One of the nonexecutable statements in Fortran, and one of INTEGER, REAL,
COMPLEX, CHARACTER, LOGICAL or TYPE.

underflow

A condition where the result of an arithmetic expression is smaller than the mini-
mum value in the range for that data type.

user defined type

A data type that is defined by the user and not one of the intrinsic types.

variable

A data object that has an associated memory location whose value can be changed
during program execution. A variable may be a scalar or an array.

Appendix A — Glossary 529

B Sample Program Examples

There is a coverage of the standard that applies, where appropriate. The more curi-
ous and inquisitive user may be interested in the information held at

• www.iso.ch

which is the International Standards Organisations world wide web page.

Ada: ISO/IEC 8652:1995
WITH TEXT_IO;USE TEXT_IO;
PROCEDURE Add IS

X1 : FLOAT;
X2 : FLOAT;
Sum : FLOAT:=0.0;

BEGIN
PACKAGE FLT_IO IS NEW FLOAT_IO(FLOAT);
USE FLT_IO;

PUT(" Type in the two numbers");
GET(X1);
GET(X2);
Sum:=X1 + X2;
NEW_LINE(1);
PUT(X1);
PUT(" + ");
PUT(X2);
PUT(" = ");
PUT(Sum);

END Add;

Algol: Was ISO 1538, but this has been withdrawn.

Algol 68: No standard, but the major definition is in the Revised Report.

Apl: ISO 8485:1989.

Basic: ISO/IEC 10279:1991, Full Standard; ISO 6373:1984, Minimal
Conformance.
100 PRINT " Type in two numbers"
200 INPUT A, B
300 C = A + B
400 PRINT A, " + ", B, " = ", C

530 Appendix B — Sample Program Examples

C: ISO/IEC 9899:1990
include <stdio.h>
main()
{ float a,b,sum;

printf(" Type in two numbers ");
scanf("%f",&a);
scanf("%f",&b);
sum=a+b;
printf("%f",a);
printf(" + ");
printf("%f",b);
printf(" = ");
printf("%f",sum);
printf("\n"); }

C++: 1997–1998
#include <iostream.hxx>
#include <math.h>
int main()
{ float a,b,sum;

sum=0.0;
cout < " Type in two numbers " ;
cin > a > b ;
sum = a + b ;
cout < a < " + " < b < " = " < sum < "\n" ;
return (0); }

Cobol: ISO/IEC 1989:1985

Fortran 90: ISO/IEC 1539:1990
PROGRAM Example
IMPLICIT NONE
REAL :: A
REAL :: B
REAL :: Sum=0.0

PRINT * , ' Type in two numbers'
READ * , A,B
Sum = A + B
PRINT * , A ,' + ', B , ' = ', Sum

END PROGRAM Example

Appendix B — Sample Program Examples 531

ICON: No standard.

Lisp

Logo: No standard.

Modula 2: ISO/IEC Draft 10514
MODULE Example;

FROM InOut IMPORT Write,WriteLn,WriteString;
FROM InOut IMPORT ReadReal,WriteReal;
VAR

A,B : REAL;
Sum : REAL;

BEGIN
Sum := 0.0;
WriteString(" Type in two numbers");
WriteLn;
ReadReal(A);
ReadReal(B);
Sum := A + B;
WriteReal(A,10);
WriteString(" + ");
WriteReal(B,10);
WriteString(" = ");
WriteReal(Sum,10);
WriteLn;

END Example.

Oberon: No standard.

Pascal: Pascal — ISO 7185:1990; Extended Pascal — ISO/IEC 10206: 1991
PROGRAM Example(INPUT,OUTPUT);
VAR

A : REAL;
B : REAL;
Sum : REAL;

BEGIN
WRITELN(' Type in two numbers');
READLN(A,B);
Sum := A + B;
WRITELN(A, ' + ' , B ,' = ' , Sum)

END.

532 Appendix B — Sample Program Examples

Postscript:

Prolog: ISO/IEC Draft 13211-1

SQL: ISO 9075:1992(E)

Simula: No international standard, but a Swedish one does exist.

Smalltalk:

Snobol:

Appendix B — Sample Program Examples 533

C ASCII Character Set

534 Appendix C — ASCII Character Set

0 nul

1 soh

2 stx

3 etx

4 eot

5 enq

6 ack

7 bel

8 bs

9 ht

10 lf

11 vt

12 ff

13 cr

14 so

15 si

16 dle

17 dc1

18 dc2

19 dc3

20 dc4

21 nak

22 syn

23 etb

24 can

25 em

26 sub

27 esc

28 fs

29 gs

30 rs

31 us

32

33 !

34 “

35 #

36 $

37 %

38 &

39 '

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ? l

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93]

94 ^

95 _

96 '

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

127 del

D Intrinsic Functions and Procedures

The following abbreviations and typographic conventions are used in this appen-
dix.

Argument type and result type:

I Integer

R Real

C Complex

N Numeric (any of integer, real, complex)

L Logical

P Pointer

T Target

DP Double precision

Char Character, length = 1.

S Character

Class

E Elemental function

I Inquiry function

T Transformational function

S Subroutine

See Chapter 14 for more information on these classifications.

Arguments in italics

ALL(Mask,Dim)

are optional arguments, i.e., Dim may be omitted in the example above.

Double precision

Before Fortran 90 if you required real variables to have greater precision than the
default real then the only option available was to declare them as double precision.
With the introduction of kind types with Fortran 90 the use of double precision

Appendix D — Intrinsic Functions and Procedures 535

declarations is not recommended, and instead real entities with a kind type offering
more than the default precision should be used.

Kind optional argument

There are several functions that have an optional argument Kind, e.g.,
AINT(A,Kind). If Kind is absent the result is the same kind type as the first argu-
ment, in this case A. If Kind is present the result has the kind type specified by
this argument.

Result type

When the result type is the same as the argument type then the result is not just the
same type as the argument but also the same kind.

Miscellaneous rules

When the argument is Back it is of logical type.

When the argument is Count_Rate, Count_Max, Dim, Kind, Len, Order,
N_Copies, Shape, Shift, Values it is of integer type.

When the argument is Mask it is of logical type.

When the argument is Target it is of pointer or target type.

ABS(A)

Yields the absolute value unless A is complex; see below.

Argument: A Type: N

Result: As argument Class: E

Note: If A is complex (x,y) then the functions returns x y2 2�

Example: R1=ABS(A)

ACHAR(I)

Returns character in the ASCII character set.

Argument: I Type: I

Result: Char Class: E

Example: C=ACHAR(I)

ACOS(X)

Arccosine (inverse cosine).

536 Appendix D — Intrinsic Functions and Procedures

Argument: X Type: R

Result: As argument Class: E

Note: � �x � 1

Example: Y=ACOS(X)

ADJUSTL(String)

Adjust string left, removing leading blanks and inserting trailing blanks.

Argument: String Type: S

Result: As argument Class: E

Example: S=ADJUSTL(S)

ADJUSTR(String)

Adjust string right, removing trailing blanks and inserting leading blanks.

Argument: String Type: S

Result: As argument Class: E

Example: S=ADJUSTR(S)

AIMAG(Z)

Imaginary part of complex argument.

Argument: Z Type: C

Result: As argument Class: E

Example: Y=AIMAG(Z)

AINT(A,Kind)

Truncation.

Argument: A Type: R

Result: As A Class: E

Argument: Kind Type: I

Example: Y=AINT(Z) and when Z=0.3 Y=0, when Z=2.73 Y=2.0, when Z=–2.73
Y=-2.0

ALL(Mask,Dim)

Determines whether all values are true in Mask along dimension Dim.

Argument: Mask Type: L

Appendix D — Intrinsic Functions and Procedures 537

Result: L Class: T

Note: Dim must be a scalar in the range 1� �Dim n where n is the rank of Mask.
The result is scalar if Dim is absent or Mask has rank 1. Otherwise it works on the
dimension Dim of Mask and the result is an array of rank n–1.

Example: T=ALL(M)

ALLOCATED(Array)

Returns true if array is allocated.

Argument: Array Type: Any

Result: L Class: I

Note: Array must be declared with the ALLOCATABLE attribute.

Example: IF (ALLOCATED(Array)) THEN ...

ANINT(A,Kind)

Rounds reals, i.e., returns nearest whole number.

Argument: A Type: R

Result: As A Class: E

Example: Z=ANINT(A), if A = 5.63 Z = 6, if A=-5.7 Z = -6.0

ANY(Mask,Dim)

Determines whether any value is true in Mask along dimension Dim.

Argument: Mask Type: L

Result: L Class: T

Note: Mask must be an array. The result is a scalar if Dim is absent or if Mask is
of rank 1. Otherwise it works on the dimension Dim of Mask and the result is an
array of rank n–1.

Example: T=ANY(A)

ASIN(X)

Arcsine.

Argument: X Type: R

Result: As argument Class: E

Example: Z=ASIN(X)

538 Appendix D — Intrinsic Functions and Procedures

ASSOCIATED(Pointer,Target)

Returns the association status of the pointer.

Argument: Pointer Type: P

Result: L Class: I

Note:

1. If Target is absent then the result is true if POINTER is associated with a target,
otherwise false.
2. If Target is present and is a target, the result is true if Pointer is currently associ-
ated with Target and false if it is not.
3. If Target is present and is a pointer, the result is true if both Pointer and Target
are currently associated with the same target, and is false otherwise. If either
Pointer or Target is disassociated the result is false.

Example: T=ASSOCIATED(P)

ATAN(X)

Arctangent.

Argument: X Type: R

Result: As argument Class: E

Example: Z=ATAN(X)

ATAN2(Y,X)

Arctangent of Y / X.

Argument: Y Type: R

Result: As arguments Class: E

Example: Z=ATAN2(Y,X)

BIT_SIZE(I)

Returns the number of bits, as defined by the numeric model for integer numbers
in Chapter 8.

Argument: I Type: I

Result: As argument Class: I

Example: N_Bits=SIZE(I)

Appendix D — Intrinsic Functions and Procedures 539

BTEST(I,Pos)

Returns true if the bit is set in the integer argument at the position given by the
second argument.

Argument: I Type: I

Result: L Class: E

Example: T=BTEST(I,Pos)

CEILING(A,Kind)

Returns the smallest integer greater than or equal to the argument.

Argument: A Type: R

Result: I Class: E

Note:

If kind is present the result has the kind type parameter Kind.

Otherwise the result is of type default integer.

Example: I=CEILING(A) If A=12.21 then I=13, if A=-3.16 then I=-3

CHAR(I,Kind)

Returns the character in a given position in the processor collating sequence asso-
ciated with the specified kind type parameter. Normally ASCII.

Argument: I Type: I

Result: CHAR Class: E

Example: C=CHAR(65) and for the ASCII character set C='A'.

CMPLX(X,Y,Kind)

Converts to complex from integer, real and complex.

Argument: X Type: N

Result: C Class: E

Note:
1. If X is complex and Y is absent it is as if Y were present with the value
AIMAG(X).
2. If X is not complex and Y is absent, it is as if Y were present with the value 0.

Example: Z=CMPLX(X,Y)

540 Appendix D — Intrinsic Functions and Procedures

CONJG(Z)

Conjugate of a complex argument.

Argument: Z Type: C

Result: As Z Class: E

Example: Z1=CONJG(Z)

COS(X)

Cosine.

Argument: X Type: R, C

Result: As argument Class: E

Note: The arguments of all trigonometric functions should be in radians, not de-
grees.

Example: A=COS(X)

COSH(X)

Hyperbolic cosine.

Argument: X Type: R

Result: As argument Class: E

Example: Z=COSH(X)

COUNT(Mask,Dim)

Returns the number of true elements in Mask along dimension Dim.

Argument: Mask Type: L

Result: I Class: T

Note: Dim must be a scalar in the range 1� �Dim n, where n is the rank of Mask.
The result is scalar if Dim is absent or Mask has rank 1. Otherwise it works on the
dimension Dim of Mask and the result is an array of rank n–1.

Example: N=COUNT(A)

CPU_TIME(Time)

Returns the processor time.

Argument: Time Type: R

Result: N/A Class: S

Appendix D — Intrinsic Functions and Procedures 541

Example: CALL CPU_TIME(Time)

CSHIFT(Array,Shift,Dim)

Circular shift on a rank 1 array or rank 1 sections of higher-rank arrays.

Argument: Array Type: Any

Result: As Array Class: T

Note: Array must be an array, Shift must be a scalar if Array has rank 1, otherwise
it is an array of rank n–1, where n is the rank of Array. Dim must be a scalar with
a value in the range 1� �Dim n.

Example: Array=CSHIFT(Array,10)

DATE_AND_TIME(Date,Time,Zone,Values)

Returns the current date and time (compatible with ISO 8601:1988).

Argument: Date Type: S

Result: N/A Class: S

Time and Zone are of type S.

Note:
1. Date is optional and must be scalar and 8 characters long in order to return the
complete value of the form CCYYMMDD, where CC is the century, YY is the
year, MM is the month and DD is the day. It is INTENT(OUT).
2. Time is optional and must be scalar and 10 characters long in order to return the
complete value of the form hhmmss.sss where hh is the hour, mm is the minutes
and ss.sss is the seconds and milliseconds. It is INTENT(OUT).
3. Zone is optional and must be scalar and must be 5 characters long in order to re-
turn the complete value of the form hhmm where hh and mm are the time
differences with respect to Coordinated Universal Time in hours and minutes. It is
INTENT(OUT).
4. Values is optional and a rank 1 array of size 8. It is INTENT(OUT). The values
returned are as follows:
Values(1) = the year
Values(2) = the month
Values(3) = the day
Values(4) = the time with respect to Coordinated Universal Time in minutes.
Values(5) = the hour (24 hour clock)
Values(6) = the minutes
Values(7) = the seconds
Values(8) = the milliseconds in the range 0–999.

Example: CALL DATE_TIME(D,T,Z,V)

542 Appendix D — Intrinsic Functions and Procedures

DBLE(A)

Converts to double precision from integer, real, and complex

Argument: A Type: N

Result: DP Class: E

Example: D=DBLE(A)

DIGITS(X)

Returns the number of significant digits of the argument as defined in the numeric
models for integer and reals in Chapter 8.

Argument: X Type: I,R

Result: I Class: I

Example: I=DIGITS(X)

DIM(X,Y)

Returns first argument minus minimum of the two arguments: X -MIN(X,Y).

Argument: X Type: I

Result: As arguments Class: E

Example: Z=DIM(X,Y)

DOT_PRODUCT(Vector_1,Vector_2)

Performs the mathematical dot product of two rank 1 arrays.

Argument: Vector_1 Type: Nt

Result: As arguments Class: T

Vector_2 is as Vector_1.

Note:
1. If Vector_1 is of type integer or real the result has the value
SUM(Vector_1*Vector_2).
2. If Vector_1 is complex the result has the value
SUM(CONJG(Vector_1)*Vector_2).

3. If Vector_1 is logical the result has the value ANY(Vector_1 .AND. Vector_2).

Example: A=DOT_PRODUCT(X,Y)

DPROD(X,Y)

Double precision product of two reals.

Appendix D — Intrinsic Functions and Procedures 543

Argument: X Type: R

Result: DP Class: E

Example: D=DPROD(X,Y)

EOSHIFT(Array,Shift,Boundary,Dim)

End of shift of a rank 1 array or rank 1 section of a higher-rank array.

Argument: Array Type: Any

Result: As Array Class: T

Boundary is as Array.

Note: Array must be an array, Shift must be a scalar if Array has rank 1, otherwise
it is an array of rank n–1, where n is the rank of Array. Boundary must be scalar if
Array has rank 1, otherwise it must be either scalar or of rank n-1. Dim must be a
scalar with a value in the range 1� �Dim n.

Example: A=EOSHIFT(A,Shift)

EPSILON(X)

Smallest difference between two reals of that kind. See Chapter 8 and real numeric
model.

Argument: X Type: R

Result: As argument Class: I

Example: Tiny=EPSILON(X)

EXP(X)

Exponential, ex.

Argument: X Type: R, C

Result: As argument Class: E

Example: Y=EXP(X)

EXPONENT(X)

Returns the exponent component of the argument. See Chapter 8 and the real nu-
meric model.

Argument: X Type: R

Result: I Class: E

Example: I=EXPONENT(X)

544 Appendix D — Intrinsic Functions and Procedures

FLOOR(A, Kind).

Returns the greatest integer less than or equal to the argument

Argument: A Type: R

Result: I Class: E

Note:

If kind is present the result has the kind type parameter Kind, otherwise the result
is of type default integer.

Example: I=FLOOR(A) and when A=5.2 I has the value 5, when A=-9.7 I has the
value -10

FRACTION(X)

Returns the fractional part of the real numeric model of the argument See Chapter
8 and the real numeric model.

Argument: X Type: R

Result: As X Class: E

Example: F=FRACTION(X)

HUGE(X)

Returns the largest number for the kind type of the argument. See Chapter 8 and
the real and integer numeric models.

Argument: X Type: I,R

Result: As argument Class: I

Example: H=HUGE(X)

IACHAR(C)

Returns the position of the character argument in the ASCII collating sequence.

Argument: C Type: Char

Result: I Class: E

Example: I=IACHAR('A') returns the value 65.

IAND(I,J)

Performs a logical AND on the arguments.

Argument: I Type: I

Result: As arguments Class: E

Appendix D — Intrinsic Functions and Procedures 545

Example: K=IAND(I,J)

IBCLR(I,Pos)

Clears one bit of the argument to zero.

Argument: I Type: I

Result: As I Class: E

Note: 0 � �Pos BIT SIZE I_ ()

Example: I=IBCLR(I,Pos)

IBITS(I,Pos,Len)

Returns a sequence of bits.

Argument: I Type: I

Result: As I Class: E

Note: 0 0� � � �Pos Pos Len BIT SIZE I Lenand () _ () and .

Example: Slice=IBITS(I,Pos,Len)

IBSET(I,Pos)

Sets one bit of the argument to one.

Argument: I Type: I

Result: As I Class: E

Note: 0 � �Pos BIT SIZE I_ ().

Example: I=IBSET(I,Pos)

ICHAR(C)

Returns the position of a character in the processor collating sequence associated
with the kind type parameter of the argument. Normally the position in the ASCII
collating sequence.

Argument: C Type: CHAR

Result: I Class: E

Example: I=ICHAR('A') would return the value 65 for the ASCII character set.

IEOR(I,J)

Performs an exclusive OR on the arguments.

Argument: I Type: I

546 Appendix D — Intrinsic Functions and Procedures

Result: As I Class: E

Example: I=IEOR(I,J)

INDEX(String,Substring,Back)

Locates one substring in another, i.e., returns position of Substring in character ex-
pression String.

Argument: String Type: S

Result: I Class: E

Substring is of type S.

Note:
1. If Back is absent or present with the value .FALSE. then the function returns the
start position of the first occurrence of the substring. If LEN(Substring) = 0 then
one is returned.
2. If Back is present with the value .TRUE. then the function returns the start posi-
tion of the last occurrence of the substring. If LEN(Substring) = 0 then the value
(LEN(String) + 1) is returned.
3. If the substring is not found the result is zero.
4. If LEN(String) < LEN(Substring) the result is zero.

Example:
Where=INDEX(' Hello world Hello','Hello')
The result 2 is returned.
Where=INDEX(' Hello world Hello','Hello',.TRUE.)
The result 14 is returned.

INT(A,Kind)

Converts to integer from integer, real, and complex.

Argument: A Type: N

Result: I Class: E

Example: I=INT(F)

IOR(I,J)

Performs an inclusive OR on the arguments.

Argument: I Type: I

Result: As I Class: E

Example: I=IOR(I,J)

Appendix D — Intrinsic Functions and Procedures 547

ISHFT(I,Shift)

Performs a logical shift. The bits of I are shifted by Shift positions.

Argument: I Type: I

Result: As I Class: E

Note: | | _ ()Shift BIT SIZE I�

Example: I=ISHIFT(I,Shift).

ISHFTC(I,Shift,Size)

Performs a circular shift of the rightmost bits. The Size rightmost bits of I are cir-
cularly shifted by Shift positions.

Argument: I Type: I

Result: I Class: E

Note:
� �Shift Size�
0 � �Size BIT SIZE I_ ().
If Size is absent it is as if it were present with the value of BIT_SIZE(I).
If Shift is positive the shift is to the left.
If Shift is negative the shift is to the right.
If Shift is zero no shift is performed.

Example: I=ISHFTC(I,Shift,Size)

KIND(X)

Returns the KIND type parameter of the argument.

Argument: X Type: Any

Result: I Class: I

Example: I=KIND(X)

LBOUND(Array,Dim)

Returns the lower bounds for each dimension of the array argument or a specified
lower bound.

Argument: Array Type: Any

Result: I Class: I

Note:
1� �Dim n, where n is the rank of Array. The result is scalar if Dim is present oth-

548 Appendix D — Intrinsic Functions and Procedures

erwise the result is an array of rank 1 and size n.
The result is scalar if Dim is present, otherwise a rank 1 array and size n.

Example: I=LBOUND(Array)

LEN(String)

Length of a character entity.

Argument: String Type: S

Result: I Class: I

Example: I=LEN(String)

LEN_TRIM(String)

Length of character argument less the number of trailing blanks.

Argument: String Type: S

Result: I Class: E

Example: I=LEN_TRIM(String)

LGE(String_1,String_2)

Lexically greater than or equal to and this is based on the ASCII collating se-
quence.

Argument: String_1 Type: S

Result: L Class: E

String_2 is of type S.

Example: L=LGE(S1,S2)

LGT(String_1,String_2)

Lexically greater than and this is based on the ASCII collating sequence.

Argument: String_1 Type: S

Result: L Class: E

Example: L=LGT(S1,S2)

LLE(String_1,String_2)

Lexically less than or equal to and this is based on the ASCII collating sequence.

Argument: String_1 Type: S

Result: L Class: E

Appendix D — Intrinsic Functions and Procedures 549

String_2 is of type S.

Example: L=LLE(S1,S2)

LLT(String_1,String_2)

Lexically less than and this is based on the ASCII collating sequence.

Argument: String_1 Type: S

Result: L Class: E

Example: L=LLT(S1,S2)

LOG(X)

Natural logarithm, loge x.

Argument: X Type: R, C

Result: As argument Class: E

Example: Y=LOG(X)

LOG10(X)

Common logarithm, log10.

Argument: X Type: R

Result: As argument Class: E

Example: Y=LOG10(X)

LOGICAL(L,Kind)

Converts between different logical kind types, i.e., performs a type cast.

Argument: L Type: L

Result: L Class: E

Example: L=LOGICAL(K,Kind)

MATMUL(Matrix_1,Matrix_2)

Performs mathematical matrix multiplication of the array arguments.

Argument: Matrix_1 Type: N,L

Result: As arguments Class: T

Matrix_2 is as Matrix_1.

Note:
1. Matrix_1 and Matrix_2 must be arrays of rank 1 or 2. If Matrix_1 is of numeric

550 Appendix D — Intrinsic Functions and Procedures

type so must Matrix_2.
2. If Matrix_1 has rank 1, Matrix_2 must have rank 2.
3. If Matrix_2 has rank 1, Matrix_1 must have rank 2.
4. The size of the first dimension of Matrix_2 must equal the size of the last di-
mension of Matrix_1.
5. If Matrix_1 has shape (n,m) and Matrix_2 has shape (m,k) the result has shape
(n,k).
6. If Matrix_1 has shape (m) and Matrix_2 has shape (m,k) the result has shape (k).
7. If Matrix_1 has shape (n,m) and Matrix_2 has shape (m) the result has shape (n).

Example: R=MATMUL(M_1,M_2)

MAX(A1,A2,A3,...)

Returns the largest value.

Argument: A1 Type: I,R

Result: As arguments Class: E

A2, A3,.. are as A1.

Example: A=MAX(A1,A2,A3,A4)

MAXEPONENT(X)

Returns the maximum exponent. See Chapter 8 and numeric models.

Argument: X Type: R

Result: I Class: I

Example: I=MAXEXPONENT(X)

MAXLOC(ARRAY,Dim,Mask)

Determine the location of the first element of Array having the maximum value of
the elements identified by Mask if present.

Argument: Array Type: I,R

Result: I Class: T

Note:
0. Normally in Fortran 95 if you omit an optional argument you must use
keywords for the rest. This intrinsic breaks this rule and DIM can be omitted and it
is not necessary to use a keyword with Mask.
1. Array must be an array.
2. Mask must be conformable with Array
3. The result is an array of rank 1 and of size equal to the rank of Array.

Appendix D — Intrinsic Functions and Procedures 551

4. If Dim is present the result is an array of the rank of Array reduced by one and
with the shape of Array without the dimension Dim.

Example:

A=(/5,6,7,8/)

I=MAXLOC(A)

is (4), which is the subscript of the location of the first occurrence of the maximum
value in the rank 1 array.

If A �
�

�

	
	
	

�

�
�
�

1 8 5

9 3 6

4 2 7

I = MAXLOC(A,dim=1)

is (2,1,3) returning the position of the largest in each column.

I = MAXLOC(A,dim=2)

is (2,1,3) returning the position of the largest in each row.

MAXVAL(Array,Dim,Mask)

Returns the maximum value of the elements of Array along dimension Dim corre-
sponding to the true elements of Mask.

Argument: Array Type: I,R

Result: As argument Class: T

Note:
1� �Dim n, where n is the rank of Array. The result is scalar if Dim is absent, or
Array has rank 1. Otherwise the result is an array of rank n-1.
If Array has size zero then the result is the largest negative number supported by
the processor for the corresponding type and kind of Array.

Example:

MAXVAL((/1,2,3/)) returns the value 3.

MAXVAL(C,MASK=C < 0.0) returns the maximum of the negative elements of C.

For B �
�

�
	

�
�

1 3 5

2 4 6

MAXVAL(B,DIM=1) returns (2,4,6)

MAXVAL(B,DIM=2) returns (5,6)

552 Appendix D — Intrinsic Functions and Procedures

MERGE(True,False,Mask)

Chooses alternative values according to the value of a mask.

Argument: True Type: Any

Result: As True Class: E

Example: for

For True False Mask
T F T

�
�

�
	

�
� �

�

�
	

�
� �

2 6 10

4 8 12

1 5 9

3 7 11
, and

F T F

�

�
	

�
�

The result is
2 5 10

3 8 11

�

�
	

�
�

MIN(A1,A2,A3,...)

Chooses the smallest value.

Argument: A1 Type: I, R

Result: As arguments Class: E

Example: Y=MIN(X1,X2,X3,X4,X5)

MINEXPONENT(X)

Returns the minimum exponent. See Chapter 8 and numeric models.

Argument: X Type: R

Result: I Class: I

Example: I=MINEXPONENT(X)

MINLOC(Array,Dim,Mask)

Determine the location of the first element of Array having the minimum value of
the elements identified by Mask.

Argument: Array Type: I,R

Result: I Class: T

Note:
0. Normally in Fortran 95 if you omit an optional argument you must use
keywords for the rest. This intrinsic breaks this rule and Dim can be omitted and it
is not necessary to use a keyword with Mask.
1. Array must be an array.
2. Mask much be conformable with Array.
3. The result is an array of rank 1 and of size equal to the rank of Array.

Appendix D — Intrinsic Functions and Procedures 553

4. If DIM is present the result is an array of the rank of Array reduced by one and
with the shape of Array without the dimension DIM.

Example: I=MINLOC(Array)

In the above example if Array is a rank 2 array of shape (5,10) and the smallest
value is in position (2,1) then the result is the rank 1 array I with shape (2) and
I(1)=2 and I(2)=1.

See MAXLOC for further examples.

MINVAL(Array,Dim,Mask)

Returns the minimum value of the elements of Array along dimension Dim corre-
sponding to the true elements of Mask.

Argument: Array Type: I,R

Result: As Array Class: T

Note:1� �Dim n, where n is the rank of Array. The result is scalar if Dim is ab-
sent, or Array has rank 1. Otherwise the result is an array of rank n–1.
If Array has size zero then the result is the largest negative number supported by
the processor for the corresponding type and kind of Array.

Example:

MINAL((/1,2,3/)) returns the value 1.

MINVAL(C,MASK=C > 0.0) returns the minimum of the positive elements of C.

For B �
�

�
	

�
�

1 3 5

2 4 6

MINVAL(B,DIM=1) returns (1,3,5).

MINVAL(B,DIM=2) returns (1,2).

MOD(A,B)

Returns the remainder when first argument divided by second.

Argument: A Type: I, R

Result: As arguments Class: E

Note: If B=0 the result is processor dependent. For B � 0 the result is A -
INT(A/B) * B.

Example: R=MOD(A,B)
If A=8 and B=5 then R=3
If A=-8 and B=5 then R=-3

554 Appendix D — Intrinsic Functions and Procedures

If A=8 and B=-5 then R=3
If A=-8 and B=-5 then R=-3

MODULO(A,B)

Returns the modulo of the arguments.

Argument: A Type: I,R

Result: As A Class: E

Note:
1. If B=0 then the result is processor dependent.
2. Integer A
The result is R where A= Q * B + R and Q is integer
for B>0, 0 � R < B
for B < 0, B < R � 0
3. Real A
The result is A - FLOOR(A/B) * B.

Example: R=MODULO(A,B)
If A=8 and B=5 then R=3
If A=-8 and B=5 then R=2
If A=8 and B=-5 then R=-2
If A=-8 and B=-5 then R=-3

MVBITS(From,F_Pos,Len,To,T_Pos)

Copies a sequence of bits from one data object to another.

Argument: From Type: I

Result: N/A Class: S

All arguments are of integer type.

Note:
From must be INTENT(IN).
F_Pos must be INTENT(IN), F_Pos � 0, F_Pos+Len � BIT_SIZE(From).
Len must be INTENT(IN), Len � 0.
To must be INTENT(INOUT).
T_Pos must be INTENT(IN), T_Pos � 0, T_Pos + Len � BIT_SIZE(To).

Example: CALL MVBITS(F,FP,L,T,TP)

NEAREST(X,Next)

Returns the nearest different number. See Chapter 8 and the real numeric model.

Argument: X Type: R

Appendix D — Intrinsic Functions and Procedures 555

Result: As X Class: E

Next is of type R.

Example: N=NEAREST(X,Next)

NINT(A,Kind)

Yields nearest integer.

Argument: A Type: RI

Result: I Class: E

Note:
1. A > 0, the result is INT(A+0.5).
2. A � 0, the result is INT(A-0.5).

Example: I=NINT(X)

NOT(I)

Returns the logical complement of the argument.

Argument: I Type: I

Result: As I Class: E

Example: I=NOT(I)

NULL(Mold)

Returns a disassociated pointer.

Argument: Mold Type: P

Result: As argument Class: T

Note:

If the argument Mold is present the result is the same as Mold.

Otherwise it is determined by context.

Example: REAL , POINTER :: P=>NULL()

PACK(Array,Mask,Vector)

Packs an array into an array of rank 1, under the control of a mask.

Argument: Array Type: Any

Result: As Array Class: T

556 Appendix D — Intrinsic Functions and Procedures

Note:
1. Array must be an array.
2. Mask be conformable with Array.
3. Vector must have rank 1 and have at least as many elements as there are TRUE
elements in Mask.
4. If Mask is scalar with the value TRUE. Vector must have at least as many ele-
ments as there are in Array.
5. The result is an array of rank 1.
6. If Vector is present the result size is that of Vector.
7. If Vector is not present the result size is t, the number of TRUE elements in
Mask, unless Mask is scalar with a value TRUE in which case the result size is the
size of Array.

Example: R=PACK(A,M)

PRECISION(X)

Returns the decimal precision of the argument. See Chapter 8 and numeric models.

Argument: X Type: R, C

Result: I Class: I

Example: I=PRECISION(X)

PRESENT(A)

Returns whether an optional argument is present.

Argument: A Type: Any

Result: L Class: I

Note: A must be an optional argument of the procedure in which the PRESENT
function reference appears.

Example: IF (PRESENT(X)) THEN ...

PRODUCT(Array,Dim,Mask)

The product of all of the elements of Array along the dimension Dim correspond-
ing to the TRUE elements of Mask.

Argument: Array Type: N

Result: As Array Class: T

Note:
1. Array must be an array.
2. 1 � Dim � n where n is the rank of Array.
3. Mask must be conformable with Array.

Appendix D — Intrinsic Functions and Procedures 557

4. Result is scalar if Dim is absent, or Array has rank 1, otherwise the result is an
array of rank n–1.

Example:
1. PRODUCT((/1,2,3/)) the result is 6.
2. PRODUCT(C,Mask=C > 0.0) forms the product of the positive elements of C.

3. If B �
�

�
	

�
�

1 3 5

2 4 6

PRODUCT(B,DIM=1) is (2,12,30) and
PRODUCT(B,DIM=2) is (15,48)

RADIX(X)

Returns the base of the numeric argument. See Chapter 8 and numeric models.

Argument: X Type: I,R

Result: I Class: I

Example: Base=RADIX(X)

RANDOM_NUMBER(X)

Returns one pseudorandom number or an array of pseudorandom numbers from the
uniform distribution over the range 0 � x < 1

Argument: X Type: R

Result: N/A Class: S

Note: X is INTENT(OUT).

Example: CALL RANDOM_NUMBER(X)

RANDOM_SEED(Size,Put,Get)

Restarts (seeds) or queries the pseudorandom generator used by RAN-
DOM_NUMBER.

Argument: Size Type: I

Result: N/A Class: S

All arguments are of integer type.

Note:
1. Size is INTENT(OUT). It is set to the number N of integers that the processor
uses to hold the value of the seed.
2. Put is INTENT(IN). It is an array of rank 1 and size � N. It is used by the pro-
cessor to set the seed value.

558 Appendix D — Intrinsic Functions and Procedures

3. Get is INTENT(OUT). It is an array of rank 1 and size � N. It is set by the pro-
cessor to the current value of the seed.

Example: CALL RANDOM_SEED

RANGE(X)

Returns the decimal exponent range of the real argument. See Chapter 8 and the
numeric model representing the argument.

Argument: X Type: N

Result: I Class: I

Example: I=RANGE(N)

REAL(A,Kind)

Converts to real from integer, real or complex.

Argument: A Type: N

Result: R Class: E

Example: X=REAL(A)

REPEAT(String,N_Copies)

Concatenates several copies of a string.

Argument: String Type: S

Result: S Class: T

Example: New_S=REPEAT(S,10)

RESHAPE(Source,Shape,Pad,Order)

Constructs an array of a specified shape from the elements of a given array.

Argument: Source Type: Any

Result: As Source Class: T

Note:
1. Source must be an array. If Pad is absent or of size zero the size of Source must
be � PRODUCT(Shape).
2. Shape must be a rank 1 array and 0 � size < 8.
3. Pad must be an array.
4. Order must have the same shape as Shape and its value must be a permutation
of (1,2,... ,n) where n is the size of Shape. If absent it is as if it were present with
the value (1,2,...,n).
5. The result is an array of shape, Shape.

Appendix D — Intrinsic Functions and Procedures 559

Example:

RESHAPE((/1,2,3,4,5,6/),(/2,3/)) has the value
1 3 5

2 4 6

�

�
	

�
�

RESHAPE((/1,2,3,4,5,6/) , (/2,4/) , (/0,0/) , (/2,1/)) has the value
1 2 3 4

5 6 0 0

�

�
	

�
�

RRSPACING(X)

Returns the reciprocal of the relative spacing of model numbers near the argument
value. See Chapter 8 and the real numeric model.

Argument: X Type: R

Result: As X Class: E

Example: Z=RRSPACING(X)

SCALE(X,I)

Returns X * bI where b is the base in the model representation of X. See Chapter 8
and the real numeric model.

Argument: X Type: R

Result: As X Class: E

I is of integer type.

Example: Z=SCALE(X,I)

SCAN(String,Set,Back)

Scans a string for any one of the characters in a set of characters.

Argument: String Type: S

Result: I Class: E

Note:
1. The default is to scan from the left, and will only be from the right when Back
is present and has the value TRUE.
2. Zero is returned if the scan fails.

Example: W=SCAN(String,Set)

SELECTED_INT_KIND(R)

Returns a value of the kind type parameter of an integer data type that represents
all integer values n with –10R < n < 10R

Argument: R Type: I

560 Appendix D — Intrinsic Functions and Procedures

Result: I Class: T

Note:
R must be scalar.
If a kind type parameter is not available then the value –1 is returned.

Example: I=SELECTED_INT_KIND(2)

SELECTED_REAL_KIND(P,R)

Returns a value of the kind type parameter of a real data type with decimal preci-
sion of at least P digits and a decimal exponent range of at least R.

Argument: P and R Type: I

Result: I Class: T

Note:
1. P and R must be scalar.
2. The value –1 is returned if the precision is not available, the value -2 if the ex-
ponent range is not available, and –3 if neither is available.

Example: I=SELECTED_REAL_KIND(P,R)

SET_EXPONENT(X,I)

Returns the model number whose fractional part is the fractional part of the model
representation of X and whose exponent part is I.

Argument: X Type: R

Result: As X Class: E

I is of integer type.

Example: Exp_Part=SET_EXPONENT(X,I)

SHAPE(Source)

Returns the shape of the array argument or scalar.

Argument: Source Type: Any

Result: I Class: I

Note:
1. Source may be array valued or scalar. It must not be a pointer that is disassoci-
ated or an allocatable array that is not allocated. It must not be an assumed-size
array.
2. The result is an array of rank 1 whose size is equal to the rank of Source.

Example: S=SHAPE(A(2:5,-1:1)) yields S=(4,3)

Appendix D — Intrinsic Functions and Procedures 561

SIGN(A,B)

Absolute value of A times the sign of B.

Argument: A Type: I, R

Result: As A Class: E

Note:

In the special case where B is zero normally the result would have the value
ABS(A), but if B is one of the real kind types and the processor is able to distin-
guish between plus zero and minus zero then the result is ABS(A) if B is plus zero
and the result is –ABS(A) if B is minus zero.

B is as A.

Example: A=SIGN(A,B)

SIN(X)

Sine.

Argument: X Type: R, C

Result: As argument Class: E

Note: The argument is in radians.

Example: Z=SIN(X)

SINH(X)

Hyperbolic sine.

Argument: X Type: R

Result: As argument Class: E

Example: Z=SINH(X)

SIZE(Array,Dim)

Returns the extent of an array along a specified dimension or the total number of
elements in an array.

Argument: Array Type: Any

Result: I Class: I

Note:
1. Array must be an array. It must not be a pointer that is disassociated or an
allocatable array that is not allocated. If Array is an assumed-size array Dim must
be present with a value less than the rank of Array.

562 Appendix D — Intrinsic Functions and Procedures

2. Dim must be scalar and in the range 1 � Dim � n where n is the rank of Array.
3. Result is equal to the extent of dimension Dim of Array, or if Dim is absent, the
total number of elements of Array.

Example: A=SIZE(Array)

SPACING(X)

Returns the absolute spacing of model numbers near the argument value. See
Chapter 8 and the real numeric model.

Argument: X Type: R

Result: As X Class: E

Example: S=SPACING(X)

SPREAD(Source,Dim,N_Copies)

Creates an array with an additional dimension, replicating the values in the original
array.

Argument: Source Type: Any

Result: As Source Class: T

Note:
1. Source may be array valued or scalar, with rank less than 7.
2. Dim must be scalar and in the range 1 � Dim � n+1 where n is the rank of
Source.
3. N_Copies must be scalar.
4. The result is an array of rank n+1.

Example:
If A is the array (2,3,4) then SPREAD(A,DIM=1,NCOPIES=3) then the result is

the array

2 3 4

2 3 4

2 3 4

�

�

	
	
	

�

�
�
�

SQRT(X)

Square root.

Argument: X Type: R, C

Result: As argument Class: E

Example A=SQRT(B)

Appendix D — Intrinsic Functions and Procedures 563

SUM(Array,Dim,Mask)

Returns the sum of all elements of Array along the dimension Dim corresponding
to the true elements of Mask.

Argument: Array Type: N

Result: As Array Class: T

Note:
1. Array must be an array.
2. 1 � Dim � n where n is the rank of Array.
3. Mask must be conformable with Array.
4. Result is scalar if Dim is absent, or Array has rank 1, otherwise the result is an
array of rank n–1.

Example:
1. SUM((/1,2,3/)) the result is 6.
2. SUM(C,Mask=C > 0.0) forms the arithmetic sum of the positive elements of C.

3. If B �
�

�
	

�
�

1 3 5

2 4 6

SUM(B,Dim=1) is (3,7,11)
SUM(B,Dim=2) is (9,12)

SYSTEM_CLOCK(Count,Count_Rate,Count_Max)

Returns integer data from a real time clock.

Argument: Count Type: I

Result: N/A Class: S

Note:
1. Count is INTENT(OUT) and is set to a processor dependent value based on the
current value of the processor clock or to -HUGE(0) if there is no clock. 0 � Count
� Count_Max.
2. Count_Rate is INTENT(OUT) and it is set to the number of processor clock
counts per second, or zero if there is no clock.
3. Count_max is INTENT(OUT) and is set to the maximum value that Count can
have or to zero if there is no clock.

Example: CALL SYSTEM_CLOCK(C,R,M)

TAN(X)

Tangent.

Argument: X Type: R

564 Appendix D — Intrinsic Functions and Procedures

Result: As argument Class: E

Note: X must be in radians.

Example: Y=TAN(X)

TANH(X)

Hyperbolic tangent.

Argument: X Type: R

Result: As argument Class: E

Example: Y=TANH(X)

TINY(X)

Returns the smallest positive number in the model representing numbers of the
same type and kind type parameter as the argument.

Argument: X Type: R

Result: As X Class: I

Example: T=TINY(X)

TRANSFER(Source,Mold,Size)

Returns a result with a physical representation identical to that of Source, but inter-
preted with the type and type parameters of Mold.

Argument: Source Type: Any

Result: As Mold Class: T

Warning: A thorough understanding of the implementation specific internal repre-
sentation of the data types involved is necessary for successful use of this function.
Consult the documentation that accompanies the compiler that you work with be-
fore using this function.

TRANSPOSE(Matrix)

Transposes an array of rank 2.

Argument: Matrix Type: Any

Result: As argument Class: T

Note: Matrix must be of rank 2. If its shape is (n,m) then the resultant matrix has
shape (m,n).

Appendix D — Intrinsic Functions and Procedures 565

Example: For A �
�

�

	
	
	

�

�
�
�

1 2 3

4 5 6

7 8 9

TRANSPOSE(A) yields

1 4 7

2 5 8

3 6 9

�

�

	
	
	

�

�
�
�

TRIM(String)

Returns the argument with trailing blanks removed.

Argument: String Type: S

Result: As String Class: T

Note: String must be a scalar.

Example: T_S=TRIM(S)

UBOUND(Array,Dim)

Returns all the upper bounds of an array or a specified upper bound.

Argument: Array Type: Any

Result: I Class: I

Note:
1� �Dim n, where n is the rank of Array. The result is scalar if Dim is present oth-
erwise the result is an array of rank 1 and size n.
Result is a scalar if Dim is present otherwise is an array of rank 1, and size n.

Example: Z=UBOUND(A)

UNPACK(Vector,Mask,Field)

Unpacks an array of rank 1 into an array under the control of a mask.

Argument: Vector Type: Any

Result: As Vector Class: T

Note:
1. Vector must have rank 1. Its size must be at least t, where t is the number of
true elements in Mask.
2. Mask must be array valued.
3. Field must be conformable with Mask. Result is an array with the same shape as
Mask.

Example:

With Vector Mask

F T F

T F F

F F T

Field� �
�

�

	
	
	

�

�
�
�

�(, ,) and and12 3

1 0 0

0 1 0

0 0 1

�

�

	
	
	

�

�
�
�

566 Appendix D — Intrinsic Functions and Procedures

The result is

1 2 0

1 1 0

0 0 3

�

�

	
	
	

�

�
�
�

VERIFY(String,Set,Back)

Verify that a set of characters contains all the characters in a string by identifying
the position of the first character in a string of characters that does not appear in a
given set of characters.

Argument: String Type: S

Result: I Class: E

Note:
1. The default is to scan from the left, and will only be from the right when Back
is present and has the value TRUE.
2. The value of the result is zero if each character in String is in Set, or if String
has zero length.

Example: I=VERIFY(String,Set)

Appendix D — Intrinsic Functions and Procedures 567

E English and Latin Texts

YET IF HE SHOULD GIVE UP WHAT HE HAS BEGUN, AND AGREE TO
MAKE US OR OUR KINGDOM SUBJECT TO THE KING OF ENGLAND OR
THE ENGLISH, WE SHOULD EXERT OURSELVES AT ONCE TO DRIVE
HIM OUT AS OUR ENEMY AND A SUBVERTER OF HIS OWN RIGHTS
AND OURS, AND MAKE SOME OTHER MAN WHO WAS ABLE TO DE-
FEND US OUR KING; FOR, AS LONG AS BUT A HUNDRED OF US
REMAIN ALIVE, NEVER WILL WE ON ANY CONDITIONS BE BROUGHT
UNDER ENGLISH RULE. IT IS IN TRUTH NOT FOR GLORY, NOR RICHES,
NOR HONOURS THAT WE ARE FIGHTING, BUT FOR FREEDOM - FOR
THAT ALONE, WHICH NO HONEST MAN GIVES UP BUT WITH LIFE IT-
SELF.

QUEM SI AB INCEPTIS DIESISTERET, REGI ANGLORUM AUT ANGLICIS
NOS AUT REGNUM NOSTRUM VOLENS SUBICERE, TANQUAM
INIMICUM NOSTRUM ET SUI NOSTRIQUE JURIS SUBUERSOREM
STATIM EXPELLERE NITEREMUR ET ALIUM REGEM NOSTRUM QUI AD
DEFENSIONEM NOSTRAM SUFFICERET FACEREMUS. QUIA QUANDIU
CENTUM EX NOBIS VIUI REMANSERINT, NUCQUAM ANGLORUM
DOMINIO ALIQUATENUS VOLUMUS SUBIUGARI. NON ENIM PROPTER
GLORIAM, DIUICIAS AUT HONORES PUGNAMUS SET PROPTER
LIBERATEM SOLUMMODO QUAM NEMO BONUS NISI SIMUL CUM VITA
AMITTIT.

from 'The Declaration of Arbroath' c.1320. The English translation is by Sir James
Fergusson.

568 Appendix E — English and Latin Texts

F Coded Text Extract

OH YABY NSFOUN, YAN DUBZY LZ DBUYLTUBFAJ BYYBOHNX GPDA
FNUZNDYOLH YABY YAN SBF LZ B GOHTMN FULWOHDN DLWNUNX
YAN GFBDN LZ BH NHYOUN DOYJ, BHX YAN SBF LZ YAN NSFOUN
OYGNMZ BH NHYOUN FULWOHDN. OH YAN DLPUGN LZ YOSN,
YANGN NKYNHGOWN SBFG VNUN ZLPHX GLSNALV VBHYOHT, BHX
GL YAN DLMMNTN LZ DBUYLTUBFANUG NWLMWNX B SBF LZ YAN
NSFOUN YABY VBG YAN GBSN GDBMN BG YAN NSFOUN BHX YABY
DLOHDOXNX VOYA OY FLOHY ZLU FLOHY. MNGG BYYNHYOWN YL
YAN GYPXJ LZ DBUYLTUBFAJ, GPDDNNXOHT TNHNUBYOLHG DBSN
YL RPXTN B SBF LZ GPDA SBTHOYPXN DPSENUGLSN, BHX, HLY
VOYALPY OUUNWNUNHDN, YANJ BEBHXLHNX OY YL YAN UOTLPUG
LZ GPH BHX UBOH. OH YAN VNGYNUH XNGNUYG, YBYYNUNX
ZUBTSNHYG LZ YAN SBF BUN GYOMM YL EN ZLPHX, GANMYNUOHT
BH LDDBGOLHBM ENBGY LU ENTTBU; OH YAN VALMN HBYOLH, HL
LYANU UNMOD OG MNZY LZ YAN XOGDOFMOHN LZ TNLTUBFAJ.

Appendix F — Coded Text Extract 569

G Formal syntax

Statement ordering
FORMAT statements may appear anywhere between the USE statement and the
CONTAINS statement.

The following table summarises the usage of the various statements within individ-
ual scoping units.

Kind of Main Module External Module Internal Interface
scoping unit program sub sub sub body

program program program

USE Y Y Y Y Y Y

FORMAT Y N Y Y Y N

Misc Dec 1 Y Y Y Y Y Y

Derived type
definition Y Y Y Y Y Y

Interface block Y Y Y Y Y Y

Executable
statement Y N Y Y Y N

CONTAINS Y Y Y Y N N

1 Misc Dec (Miscellaneous declaration) are PARAMETER statements, IMPLICIT statements, type dec-
laration statements and specification statements.

Syntax summary of some frequently used Fortran constructs
The following provides simple syntactical definitions of some of the more fre-
quently used parts of Fortran 95.

Main program
PROGRAM [program-name]

[specification-construct] ...
[executable-construct] ...
[CONTAINS
[internal procedure] ...]

END [PROGRAM [program-name]]

570 Appendix G — Formal syntax

Subprogram
procedure heading

[specification-construct] ...
[executable-construct] ...
[CONTAINS
[internal procedure] ...]

procedure ending

Module
MODULE name

[specification-construct] ...
[CONTAINS
subprogram
[subprogram] ...]

END [MODULE [module-name]

Internal procedure
procedure heading

[specification construct] ...
[executable construct] ...

procedure ending

Procedure heading
[RECURSIVE] [type specification] FUNCTION
function-name &

([dummy argument list]) [RESULT (result name
)]
[RECURSIVE] SUBROUTINE subroutine name &

[([dummy argument list])]

Procedure ending
END [FUNCTION [function name]]
END [SUBROUTINE [subroutine name]]

Specification construct
derived type definition
interface block
specification statement

Appendix G — Formal syntax 571

Derived type definition
TYPE [[, access specification] ::] type name

[PRIVATE]
[SEQUENCE]
[type specification [[, POINTER] ::] component

specification list]
...
END TYPE [type name]

Interface block
INTERFACE [generic specification]

[procedure heading
[specification construct] ...

procedure ending] ...
[MODULE PROCEDURE module procedure name list] ...

END INTERFACE

Specification statement
ALLOCATABLE [::] allocatable array list
DIMENSION array dimension list
EXTERNAL external name list
FORMAT ([format specification list])
IMPLICIT implicit specification
INTENT (intent specification) :: dummy argument name
list
INTRINSIC intrinsic procedure name list
OPTIONAL [::] optional object list
PARAMETER (named constant definition list)
POINTER [::] pointer name list
PUBLIC [[::] module entity name list]
PRIVATE[[::] module entity name list]
SAVE[[::] saved object list]
TARGET [::] target name list
USE module name [, rename list]
USE module name , ONLY : [access list]
type specification [[, attribute specification] ...
:: &

object declaration list

572 Appendix G — Formal syntax

Type specification
INTEGER [([KIND=] kind parameter)]
REAL[([KIND=] kind parameter)]
COMPLEX[([KIND=] kind parameter)]
CHARACTER[([KIND=] kind parameter)]
CHARACTER[([KIND=] kind parameter)] &

[LEN=] length parameter)
LOGICAL[([KIND=] kind parameter)]
TYPE (type name)

Attribute specification
ALLOCATABLE
DIMENSION (array specification)
EXTERNAL
INTENT (intent specification)
INTRINSIC
OPTIONAL
PARAMETER
POINTER
PRIVATE
PUBLIC
SAVE
TARGET

Executable construct
action statement
case construct
do construct
if construct
where construct

Action statement
ALLOCATE (allocation list) [,STAT= scalar integer
variable])
CALL subroutinename [([actual argument specification
list])]
CLOSE (close specification list)
CYCLE [do construct name]
DEALLOCATE(name list) [, STAT= scalar integer
variable])
ENDFILE external file unit

Appendix G — Formal syntax 573

EXIT [do construct name]
GOTO label
IF (scalar logical expression) action statement
INQUIRE (inquire specification list) [output item
list]
NULLIFY (pointer object list)
OPEN (connect specification list)
PRINT format [, output item list]
READ (i/o control specification list) [input item
list]
READ format [, output item list]
RETURN [scalar integer expression]
REWIND (position specification list)
STOP [access code]
WHERE (array logical expression) array assignment
expression
WRITE (i/o control specification list) [output item
list]
pointer variable => target expression
variable = expression

574 Appendix G — Formal syntax

H Compiler Options

In this appendix we look at what compiler options there are that can help us at
both compile time and run time.

CVF
/check or /check:all

Equivalent to: /check:(arg_temp_created, bounds, flawed_pentium, format, power,
output_conversion, overflow, underflow).

/debug

If you specify /debug:full, /debug, /Zi, or /Z7, the compiler produces symbol table
information needed for full symbolic debugging of unoptimised code and global
symbol information needed for linking. This is the default for a debug configura-
tion in the visual development environment.

/exe[:file]

The /exe or /Fe option specifies the name of the executable program (EXE) or dy-
namic-link library (DLL) file being created. To request that a DLL be created
instead of an executable program, specify the /dll option.

/fltconsistency

The /fltconsistency or /Op option enables improved floating point consistency on
ia32 systems. floating point operations are not reordered and the result of each
floating point operation is stored into the target variable rather than being kept in
the floating point processor for use in a subsequent calculation. This option is ig-
nored on ia64 systems

/fpe:0

The /fpe:level option controls floating point exception handling at run time for the
main program. This includes whether exceptional floating point values are allowed
and how precisely run time exceptions are reported. The /fpe:level option specifies
how the compiler should handle the following floating point exceptions:

When floating point calculations result in a divide by zero, overflow, or invalid op-
eration. When floating point calculations result in an underflow. When a
denormalised number or other exceptional number (positive infinity, negative infin-
ity, or a NaN) is present in an arithmetic expression

/list

The /list or /Fs option creates a listing of the source file with compile time infor-
mation appended. To name the source listing file, specify file.

Appendix H — Compiler Options 575

/map

/map[:file], /nomap, or /Fmfile The /map or /Fm option controls whether or not a
link map is created. To name the map file, specify file.

/nooptimize

/show

The /show option specifies what information is included in a listing. In the visual
development environment, specify the Source Listing Options in the Listing File
Compiler Option Category.

/traceback

The /traceback option requests that the compiler generate extra information in the
object file that allows the display of source file traceback information at run time
when a severe error occurs.

/warn:all

The /warn option instructs the compiler to generate diagnostic messages for de-
fined classes of additional checking that can be performed at compile time.

Intel
/check:all

Determines whether several run time conditions are checked.keyword: all, none,
[no]arg_temp_created, [no]bounds, [no]format, [no]output_conversion

/debug:full

Determines the type of debugging information generated by the compiler in the ob-
ject file. keyword: minimal, partial, full, none.

/exe:%1intel

/[no]fltconsistency

Determines whether improved floating point consistency is used.

/fpe:0

Specifies floating point exception handling at run time for the main program; n =
0, 1, or 3. 0 - floating underflow results in zero; all other floating point exceptions
abort execution

/[no]map[:name]

Determines whether the compiler generates a link map (optionally, named name).

/[no]stand[:keyword]

576 Appendix H — Compiler Options

Tells the compiler to issue warnings for nonstandard Fortran language elements.
keyword: f90, f95, none.

/[no]traceback

Specifies whether the compiler should generate extra information in the object file
that allows the display of source file traceback information at run time when a se-
vere error occurs.

/warn:all

/map

Lahey
-chk

Specify -chk to generate a fatal run time error message when substring and array
subscripts are out of range, when non common variables are accessed before they
are initialised, when array expression shapes do not match, and when procedure ar-
guments do not match in type, attributes, size, or shape.

-f95

Specify -f95 to generate warnings when the compiler encounters nonstandard For-
tran 95 code.

-g

Specify -g to instruct the compiler to generate an expanded symbol table and other
information for the debugger.

-info

Specify -info to display informational messages at compile time. Informational
messages include such things as the level of loop unrolling performed, variables
declared but never used, divisions changed to multiplication by reciprocal, etc.

-lst

Specify -lst to generate a listing file that contains the source program, compiler op-
tions, date and time of compilation, and any compiler diagnostics.

-OUT

Default: the name of the first object or source file.

-map

Default: create a map file with same name as output file

-trap diou

Appendix H — Compiler Options 577

The -trap option specifies how each of four numeric data processor (NDP) excep-
tions will be handled at execution time of your program.

-trace

The -trace option causes a call traceback with procedure names and line numbers
to be generated with run time error messages.

-warn

-fullwarn provides the maximum level of warning and informational messages.

-xref

Specify -xref to generate cross-reference information. This information is shown in
the listing file in addition to the information that the -lst option would provide.

NAG
-C

ompile code with all possible run time checks. all array calls do none present
pointer

-float-store

gnu C based systems. Do not store floating point variables in machines with float-
ing point registers wider than 64 bits.

-gline

Include line number information in run time error messages.

-ieee=stop

Enables all IEEE arithmetic facilities except for nonstop arithmetic. Execution is
terminated on floating overflow, divide by zero or invalid operand.

-o output

-strict95

Salford
/CHECKMATE

A synonym for /FULL_UNDEF. /FULL_UNDEF implies /UNDEF which in turn
implies /CHECK.

/DEBUG

causes FTN95 to generate symbolic information and to activate the symbolic
debugger when fatal errors occur. /DEBUG is included in both /CHECK and

578 Appendix H — Compiler Options

/UNDEF, which are normally preferred. /DEBUG can be used on its own in order
to allow the debugger to be used on "dirty" code, which intentionally violates some
of the rules of Fortran.

/FULL_DEBUG

Outputs full debugging information including PARAMETERs

/FULL_UNDEF

Like /UNDEF but also INTENT(OUT) arguments are initialised as undefined on
entry to a procedure (see /INHIBIT_CHECK to switch this off) and by default
character variables are initialised as undefined. The reading of an undefined value
precipitates an error condition.

/link

Generate executable.

/list

/map

Control the output of a listing file.

/xref

Generates a crossreference of all variables in a program and subprograms.

The use of the Win32 /UNDERFLOW option ensures that the first occurrence of
underflow in an arithmetical computation is treated as a failure and is not ignored
as would otherwise be the case. A large number of occurrences of underflow dur-
ing execution can result in long execution times because of the way in which the
underflow condition is treated. If an underflow is trapped, the message

ERROR: Floating point arithmetic underflow

is output and the interactive debugger is entered. If underflows occur during pro-
gram execution and the /UNDERFLOW option is not used, a message is output at
the end of the run specifying the number of underflows that have occurred.

Appendix H — Compiler Options 579

A

A edit descriptor 186, 244

ABS function 205, 206, 211, 542

Accuracy 86, 102, 426, 476, 478–479

ACHAR function 211, 250, 542

ACOS function 205, 211, 542

ActiveX 49-50

Actual argument 299, 310, 313, 315,
346, 367, 425, 427

Ada 2, 9, 43-44, 56-58, 60, 64, 536

Addition 78, 80, 126, 133-135, 137,
139, 141, 143, 145, 147, 149, 260,
517

Addition operator 80, 437

Adjustable array 310–311, 520

ADJUSTL function 211, 250, 543

ADJUSTR function 211, 250, 543

AIMAG function 211, 543

AINT function 211, 542, 543

Algol 60 16, 38-41, 470

Algol 68 2, 40-41, 56, 536

Algorithm 28, 33-34, 105, 108,
221–222, 268, 340, 369, 397,
470–471, 478, 488, 511, 514,
518–519

ALL function 211, 541, 543

ALLOCATABLE arrays 119, 133

ALLOCATABLE attribute 52, 120,
149, 310, 315, 361, 520, 544

ALLOCATABLE dummy array
493–494

ALLOCATE statement 121, 149,
270, 288, 292, 424

Alternate RETURN 367–368

ANINT function 211, 544

ANY function 211, 544

APL 2, 41, 60

Argument 210, 212, 295, 359, 370,
390, 392–393, 398, 447,
450–457, 541–573

actual 299, 310, 313, 315, 346,
367, 425, 427, 520
allocatable dummy array argument
493, 494
array 206, 313, 316, 317, 319,
320, 367, 554, 556, 567
assumed-length 315, 316, 521

Index

assumed-shape 310, 313, 315,
316, 319, 320, 336, 367, 521
assumed-size 310, 367, 521, 567,
568
character 315
dummy 52, 220, 299, 310, 311, 313,
315–316, 336, 346, 367, 424–427,
442– 445, 520–523

keyword and optional 425, 427
PRESENT intrinsic function 210,
426–427, 563

rank 2 and higher array
arguments 316

Arithmetic 5, 77–79, 81, 83, 85,
87, 89, 91, 93, 95, 97, 99, 101, 103,
105, 116, 366, 473–475, 477, 479, 481,
483, 485, 487–491

Arithmetic assignment statement 68,
70, 78, 102, 213, 271

Arithmetic IF 366

Array constructor 140, 148

Array element 134, 148

Array element ordering 133–134,
138,142, 148, 170, 438, 520

Array functions 211

Array section 138

Arrays 107–149
adjustable 310–311, 520
allocatable 51, 119, 133, 270, 310
321, 425, 494, 520
assumed-shape 310, 313, 315–316
319–320, 336, 367, 521
assumed-size 310, 367, 521
automatic 310,322,424–425
bounds 134, 149, 310–311, 313
315, 317, 321, 478, 503, 516, 521
constructor 52, 133, 136, 140–141
148, 502, 520

conformable 134–135, 147, 149, 522
deferred shape 149, 310, 321, 361,
424, 523

element 133, 135, 170, 206, 246
446, 520
explicit shape 310–311, 313,
316–317, 367, 520–521, 523

extent 13–135, 149, 310, 313
315, 367, 524
rank 134–135, 138, 140–146,
148, 149, 310, 313, 315–317
361, 367, 424, 438, 444, 470, 503
520, 523, 527
section 133, 138, 140, 144–145
148, 168–169, 189, 438, 494,
520–521, 528
shape 134,142,542,565
size 110, 114, 119–120, 133–134
149, 270, 310, 313, 424–425, 524
528
stride 144, 147, 494, 528
whole array manipulation 135

ASCII character set 5, 242, 542, 546,
552

ASIN function 205, 211, 544

ASSIGN and assigned GOTO
statements 367

Assigned FORMAT statements 367

Assignment statement 68, 70, 78, 102,
104, 112, 213, 270–271

ASSOCIATED function 273

Assumed length dummy argument
315–316, 521

Assumed-shape arrays 310, 313,
315–316, 319–320, 336, 367, 521

Assumed-size 310, 367, 521

ATAN function 205, 211, 522, 545

582 Index

ATAN2 function 205, 211, 256, 545

Attribute specification 579

Automatic arrays 310, 322, 424–425

B

Basic 2, 41, 59–60, 536

BIT_SIZE function 210, 545

Blanks 179–180, 185, 232

Blanks, nulls and zeros 185

Block IF statement 225–226, 237

BTEST function 98–101, 211, 546

C

C 2, 41–42, 49–50, 53, 56, 58–59

C++ 2,48–50,56,58,60,508,537

CALL statement 295, 299, 307, 528

CASE statement 223, 229–230,
367–368

CEILING function 51, 211, 546

CHAR function 211, 249–250, 546

Character argument 315

Character functions 247

Character I/O 241–252

Character operators 244

CHARACTER statement 66–67,
241–252

Character string 250

CLOSE statement 151, 163, 176,
188, 195

CMPLX function 211, 254–256, 546

Co-array Fortran 508

Cobol 2, 37–38, 40, 60, 537

Collating sequence 248

Comments 66, 70–71, 73

Common mistakes 162

Compilation unit 522

Compilers used 6–7

Complex 89, 253–256, 297, 302,
305, 478, 541

Computational functions 211

Concatenate 565

Conformable 134

CONJG function 211, 255, 547

CONTAINS statement 219, 304, 576

Continuation character & 71

Control Structures 223–225, 227,
229, 231, 233, 235, 237, 239

Converting from Fortran 77 366–367,
369, 371, 373, 375, 377, 379, 381,
383, 385, 387,389, 391, 393, 395,
397,399, 401, 403, 405, 407, 409

COS function 204–205, 211, 254, 424
547

COSH function 211, 547

COUNT function 211 547

CSHIFT function 211, 548

CYCLE and EXIT 234, 515

CYCLE statement 223, 234

Index 583

D

Data description statements 65

Data processing statements 70

Data structures 511,514

Data type 3–4, 41, 46–47, 51–52, 63,
65, 69, 82, 92–93, 226, 242 244,
250, 254, 256, 264–268, 270, 288,
346–347, 362, 410, 412, 427–428,
441, 446, 470, 481, 516, 521–522

DATE_AND_TIME subroutine 211,
326, 328, 334, 337, 352, 355–356,
455–456, 458–459,495, 548

DBLE function 211, 549

DEALLOCATE statement 270, 326,
328, 428, 579

Debugging 260, 512–513, 516,
581–582, 585

Declaration 370, 398, 448, 517, 574

Decremented features 366

Default kind 102, 523

Deferred-shape arrays 149, 310, 321,
361, 424, 523

Deleted features 366

Derived type definition 578

DIGITS function 102, 210, 549

DIM function 146, 211, 549, 557–558

DIMENSION attribute 3, 110, 112,
115, 119, 126, 129

additional form 126

Division 78, 230

DO construct 130

DO loop 100, 113, 116, 118–119,
127–128, 130,137, 140, 169, 201,
284, 313, 325

DO statement 113, 126, 128–129

DO WHILE construct 212–215, 217,
224, 232–233, 236, 238, 278,
281–283, 317, 408–409, 414,416

DOT_PRODUCT function 136
141, 207, 211, 549

DOUBLE PRECISION 367, 369–370,
377

DPROD function 211, 549

Dummy argument 299, 523
assumed-length 315, 316, 521
assumed-shape 310, 313, 315,
316, 319, 320, 336, 367, 521
assumed-size 310, 367, 521,
567, 568
character 315
explicit shape array310–311, 313,
316–317, 367, 520–521, 523

Dummy procedure argument 425

Dynamic data structures 412, 470+

E

E edit descriptor 162

Editors 19–20

Efficiency 511,516

Elemental 206–207, 218, 411–412,
443–445, 541

Elemental functions 206, 218

Elemental subroutine 411–412, 445

Elements of a programming
language 64

584 Index

ELSE block 215–216, 228

ELSE IF 223, 229, 237–238

ELSEWHERE block 147

END DO statement 201, 230, 234

END FUNCTION statement 212–213,
220

END PROGRAM statement 67, 71

END SELECT statement 230–231, 238

Entity 523

Entity oriented declaration 125–126

EOSHIFT function 211, 550

EPSILON function 94, 96, 210, 550

Errors when reading 192

Evaluation and testing 31

Exception handling 50, 477, 480, 488,
581–582

EXIT statement 223, 230, 234, 515

EXP function 205, 211, 235–236, 239,
470, 550

Explicit interface 356, 368, 503, 523

Explicit-shape array 310–310, 520–521,
523

EXPONENT function 210, 550

Exponentiation operator 78, 80

Expressions 135, 259

Extent 134

External 370, 387, 392–393, 398, 576

F

F edit descriptor 151, 155

File name 164, 179, 193, 198, 316

FILE= specifier 163–164, 173, 197

Files 195–202
unformatted 174–176, 191, 199

Fixed fields on input 180

FLOOR function 51, 211, 551

FMT= specifier 163–165

FORALL statement and construct
51, 133, 147–148

FORM= specifier 175,191

FORMAT statement 150–193

Formatted data 199

Fortran character set 72, 242, 251, 504

FRACTION function 210, 551

Functions 94, 203–205, 207, 209,
211, 213, 215, 217, 219, 221,
370, 398, 450–451, 455, 458,
478, 541–573

arguments 219
array 211
computational 211
elemental 206, 218, 411–412,
443–444
generic 205–206, 210
inquiry 210, 524
internal 218
intrinsic 203–212, 541–573
pure 51, 203, 2128, 442–443
recursive 203, 214–215, 219
transfer and conversion 210
transformational 203, 206
user defined 203–212

Index 585

G

Gaussian elimination 341, 356–357

Generic 205, 411, 427

Generic functions 205

Generic procedures 411, 427

Global 378

Good programming guidelines 73

GOTO statement 224, 237, 240, 367,
511, 515

H

High Performance Fortran 51, 147,
509

Host association 53, 504, 524

HPF 7, 51, 147, 509

HUGE function 94, 96, 102, 210, 551

I

I edit descriptor 162,180

IACHAR function 211, 250, 551

IAND function 211, 551

IBCLR function 211, 552

IBITS function 211, 552

IBSET function 211, 552

ICHAR function 211, 249, 552

ICON 2, 46, 538

IEEE 5, 52–53, 57, 61, 94,
105, 473–477, 479–492, 504, 584

IEOR function 211, 552

IF statement 225–226, 228–229,
258, 366, 515

IMPLICIT NONE statement 66

Implied DO loops 168

INDEX function 247–248, 251

I/O 3–4, 12, 16, 66–67, 71, 122,
198, 200, 294, 337, 443, 503

INQUIRE statement 580

Inquiry functions 210

INT function 98

Integer data type 69, 71

Integer kind type 88–90

Intent 299

INTENT attribute 295, 299, 307,
443, 445

Interface 301, 304, 306, 336, 508,
576, 578

Interface block 301, 304, 306,
336, 576, 578

Internal functions 218

Internal procedure 577

Internal subroutine 325

Intrinsic functions 203–212, 541–573

IOR function 211, 553

ISHFT function 211, 554

ISHFTC function 211, 554

ISO TR 15580 472–492

ISO TR 15581 493–499

586 Index

K

Keyword and optional argument
425, 427

Kind 88, 96–98, 542–544, 546,
551, 553, 556, 562, 565, 576

KIND function 90

Kind type parameter 90–91, 344, 361
523, 525

L

L edit descriptor 261

LaTeX 45

LBOUND function 210, 554

LEN function 210, 248, 250, 555

LEN_TRIM function 211, 248,
250, 555

LGE function 206, 211, 249–250, 555

LGT function 206, 211, 249–250, 555

Linked list 270

LINPACK 357,363

Lisp 2, 39–40, 56, 60, 538

LLE function 206, 211, 249–250, 555

LLT function 206, 211, 249–250, 556

Local variables 295, 298–300,
303, 306, 334–336, 359, 419, 443

Local variables and the SAVE
attribute 295, 300

LOG function 205, 207–208, 211, 254
556

LOG10 function 205, 211, 556

Logical expression 223, 225

LOGICAL function 211, 556

Logical operators 257, 261

Logical variable 257

Logo 2, 44, 538

Lower bound 52, 144, 235, 315, 503,
554

M

Main program 296, 576

Maintenance 30, 32

Mantissa 92–93, 95, 101, 477, 479

Mask 146–148

Masked array assignment 146

MATMUL function 136, 211, 321–322
556

MAX function 52, 211, 503, 557

MAXEXPONENT function 210, 557

MAXLOC function 51, 211, 359, 361
557

MAXVAL function 211, 359, 361, 421
558

MERGE function 211, 559

MIN function 52, 211, 503, 559

MINEXPONENT function 210, 559

MINLOC function 51, 211, 559

MINVAL function 211, 560

MOD function 205, 208–212, 217,
220, 560

Index 587

Modula 2 2, 29, 44, 47, 53, 58,
61, 268, 323, 471, 512, 538

Module 5, 51, 54–56, 301,
341–343, 345–347, 349, 351,
353, 355, 357, 359, 361, 363,
411, 501–503, 505, 513, 576–577

PUBLIC and PRIVATE attributes
446–448, 578–579
USE 342–344, 347, 368
USE ONLY 390–393, 395

Modules and packaging 411

Modules containing procedures
342, 349, 353

Modules for derived data types 346

Modules for global data 342

MODULO function 211, 561

MPI 508

Multiple statements 71

MVBITS function 211, 561

N

NEAREST function 210, 561

Nested user defined types 266

Nesting 122

Netlib 518

Networking 17

NINT function 211, 562

NOT function 211, 562

NULL function 51, 210, 275–276, 562

NULLIFY statement 270,279

O

Oberon 2 2, 46–47, 512

Object oriented programming 29, 48,
52, 502, 504

OPEN statement 163, 188, 193, 197

OPENMP 508

Operator and assignment overloading
411–412, 436

Operator hierarchy 259

Operators 78,80

Optional arguments 336, 425–427

Overflow 87, 153, 156–158, 473
477, 480, 581, 584

P

PACK function 211, 438–439, 562

Parameters 114,369,397

Pascal 2, 34, 41, 43–44, 56–57,
59–61, 222, 268, 470–471, 512,
538

PL/1 2,40

POINTER attribute 270–271, 526

Pointers 269–294
arrays of pointers 283
assignment statement 270–271
association status 270

Postscript 45, 56, 539

Precision 86, 96–98, 326, 330,
343–344, 357–359, 361–362,
418–419, 422, 424, 426, 517

588 Index

PRECISION function 94, 96, 102, 210
563

PRESENT function 563

Pretty print 517

PRINT statement 67, 70–71, 152–153,
164, 177

PRIVATE attribute 446–448, 578–579

PRIVATE statement 578

PRODUCT function 211, 563

Program testing 516

Program unit 115, 148, 213–214,
299–300, 336, 342, 344–345
362, 425, 427, 441, 513, 527

Programming languages 2, 39, 65

Programming style 511, 513–514, 519

Prolog 2, 45, 56, 59, 370, 397, 539

PUBLIC attribute 446–448, 578–579

PUBLIC statement 578

PURE keyword 51, 203, 2128, 442–443

PVM 509

R

RADIX function 210, 564

RANDOM_NUMBER subroutine 211,
314, 564

RANDOM_SEED subroutine 211, 564

Range and precision of numbers
88, 90–91, 94, 525

RANGE function 210, 565

Rank 134–135, 138, 140–146,
148, 149, 310, 313, 315–317
361, 367, 424, 438, 444, 470, 503
520, 523, 52

Rank 2 and higher arrays as
parameters 316

READ statement 67, 70, 187–188,
198, 200, 243, 279, 293, 367, 505
ADVANCE= 278–279, 293, 441
IOSTAT= 200–201, 278–279,
281, 283, 293, 505

Reading 179–181, 183, 185, 187,
189, 191, 193, 280

Reading in Data 179–181, 183,
185, 187, 189, 191, 193

REAL function 205, 211, 565

Real kind type 91, 94, 101, 221, 256,
568

Reals 155, 158, 181–182

Recursion 51, 214, 216–217, 222,
337, 511, 515

Recursive 214–216, 332, 337, 340

Recursive functions 214

Recursive subroutines 332

Referencing a subroutine 299

Relational expression 527

Relational operator 226, 527

REPEAT function 211, 250, 565

REPEAT UNTIL loop 232

Repetition 165–166

RESHAPE function 142, 148, 520

RETURN statement 219

Index 589

REWIND 179, 188–189, 193–194, 580

Rounding and truncation 81

RRSPACING function 210, 566

S

SAVE attribute 295, 300

SCALE function 210, 488, 566

SCAN function 211, 250, 566

Scope 39, 295, 300

Scope of variables 295,300

Scoping unit 527

SELECT CASE statement 230–231,
238, 408–409

SELECTED_INT_KIND function 90

SELECTED_REAL_KIND function
90–92, 95, 210, 256, 567

SET_EXPONENT function 210, 567

Shape 134,142,542,565

SHAPE function 142,148,520

Shared DO termination and 366

SIGN function 51

Simula 2, 40, 46, 48, 56, 60, 417, 539

SIN function 204–207, 211, 254, 568

Singly linked list 278

SINH function 211, 568

SIZE function 210, 568

Skipping spaces and lines 187

Smalltalk 2, 47, 56, 58, 539

Snobol 2, 40, 46, 58, 60, 539

SPACING function 210, 569

Specification construct 577

Specification statement 578

SPREAD function 211, 569

SQL 2, 43, 45, 57, 539

SQRT function 205, 211, 219, 221,
228, 256, 569

Standardisation 42

Stepwise refinement 29

STOP statement 201

Stride 144, 147, 528

Structured programming 42,511,515

Subprogram 577

Subroutine 204, 295–297, 299–301,
303, 305, 307, 309– 311, 313,
315, 317, 319, 321, 323, 325, 327,
329, 331, 333, 335, 337, 339, 370,
387, 392–393, 398, 424, 439, 541

actual arguments 299
assumed-shape arrays 315, 320
automatic arrays 310, 322
contained 325–326
dummy arguments 298–299, 313,
315–316, 336
interface blocks 295, 301, 304,
306–307, 313, 336, 339
internal 325
INTENT attribute 295, 299, 307
KEYWORD and optional arguments
425
local variables and the
SAVE attribute 295
rank 2 and higher arrays
as arguments 316

Substring 250,553

590 Index

Subtraction operator 78

SUM function 207

Supplying your own functions 212

SYSTEM_CLOCK subroutine 211, 570

Systems Analysis and Design 33–34

T

TAN function 204–205, 211, 424, 570

TANH function 211, 571

Target 541–542, 545

Target attribute 270–271, 336

TeX 45, 59

TINY function 210, 571

Transfer and conversion functions 210

TRANSFER function 100, 211, 571

Transformational functions 206

TRANSPOSE function 211, 321–322,
571

Trees 440

TRIM function 211, 251, 572

Triplet 144, 147–148, 528

Truncation 82, 543

Type declaration 70–71

Type definition 264

U

UBOUND function 210, 572

Underflow 477, 480

Unformatted files 174, 176, 191, 199,
516

UNPACK function 211, 572

Upper bound 144, 235, 315, 572

USE 342–344, 347, 368, 576, 578

USE ONLY 390–393, 395, 578

User defined functions 296

User defined types 263–268

V

Variables 68–70, 114, 122–124, 128,
481, 503

status – undefined 70, 101, 270, 273

Vector 107, 110, 438, 549, 562–563,
572

VERIFY function 211, 251, 573

W

WHERE statement 133, 146–147

WHILE loop 232, 280

Whole array manipulation 135

WRITE statement 168, 170, 176, 188,
194–195, 505

Writing 36,164

X

X edit descriptor 160

Index 591

