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Preface

It must be stated at the outset that this little monograph has no preten-
sions to being a general all-purpose text in operator algebras. On the contrary,
it is an attempt to introduce the potentially interested reader — be it a grad-
uate student or a working mathematician who is not necessarily an operator
algebraist — to a selection of topics in the theory of subfactors, this selection
being influenced by the authors’ tastes and personal viewpoints. For instance,
we restrict ourselves to the theory of (usually hyperfinite) II; factors and
their subfactors (almost always of finite index); thus, factors of type III do
not make an appearance beyond the first (introductory) chapter, and the
Tomita—Takesaki theorem makes only a cameo appearance in the appendix.
It is hoped that such ‘simplifications’ will help to make the material more
accessible to the uninitiated reader.

The aim of this book is to give an introduction to some of the beautiful
ideas and results which have been developed, since the inception of the theory
of subfactors, by such mathematicians as Adrian Ocneanu and Sorin Popa; an
attempt has been made to keep the material as self-contained as possible; in
fact, we feel it should be possible to use this monograph as the basis of a two-
semester course to second year graduate students with a minimal background
in Hilbert space theory.

A remark is in order, as far as the references are concerned; when we state
certain standard facts without proof, the reader is often referred to a text
in operator algebras; if, in this process, it seems that the text by the second
author is cited more often than other texts, that is simply because, a reference
for that exact fact already being known to exist at that particular place, it
was possible to avoid a search for that fact in other texts.

We now give a brief outline of the contents of this volume for the sake of
the possibly interested specialist.

The first chapter begins with a quick introduction to some preliminary
facts about von Neumann algebras (Murray—von Neumann classification of
factors and introduction to traces); this first section contains no proofs,
but most of the sequel — with the notable exception of Popa’s theorem on
amenable subfactors — is self-contained modulo the unproved facts here. The
next section starts with the GNS construction and goes on to discuss the
standard form of a finite von Neumann algebra and, in particular, identifies
the commutant of the left-regular representation with the range of the right-
regular representation. The chapter continues with a discussion of crossed
products by countable groups and concludes with some examples — the left
von Neumann algebra of an ICC group, factors of the three types coming
from crossed products of commutative von Neumann algebras with count-
able groups acting ergodically and freely, a model of the hyperfinite fac-
tor which demonstrates that its fundamental group is the entire positive



line, and finally infinite tensor products and the definition of the hyperfinite
factor.

The second chapter starts with the classification of (separable) modules
over a von Neumann algebra (with separable pre-dual), continues with the
definition and some elementary properties of the AM-dimension of a (sepa-
rable) module over a II; factor M, and concludes with the definition and
some elementary properties of the index of a subfactor of a II; factor, the
statement of the result on restrictions on index values and a proof of the fact
that all index values in the interval [4,00) are possible.

The third chapter begins with a section on the fundamental notion of the
basic construction; the next section gathers together the basic facts about
inclusions of finite-dimensional C*-algebras (including the fact about the
basic construction and ‘reflection of Bratteli diagrams’ as well as the notion
of a Markov trace); the final section introduces the all-important sequence
{en}, derives the basic properties of this sequence, and indicates the relation
between the theorem on restrictions of index values and the classification of
non-negative integral matrices of norm less than 2, as well as an outline of the
procedure originally adopted to prove the existence of hyperfinite subfactors
of index 4 cos®Z.

The fourth chapter is devoted to the principal (or standard) graph invari-
ant of a subfactor. It starts with a discussion of (‘bifinite’) bimodules over a
pair of II, factors (contragredients and tensor products); the second section
gives the two descriptions (in terms of the sequence of higher relative com-
mutants as well as in terms of the bimodules that occur in the tower of the
basic construction) of the principal graph of a subfactor, reduces the result
on restriction of index values to the classification of non-negative integral ma-
trices of small norm, and concludes with some examples of principal graphs;
the chapter concludes with a discussion of ‘Pimsner—Popa bases’ and a proof
of why the higher relative commutants have an interpretation as intertwiners
of bimodules.

The fifth chapter starts with Pimsner and Popa’s minimax characteri-
sation of the index of a subfactor, the consequent estimation of the index
of a hyperfinite subfactor in terms of an approximating ‘ladder’ of finite-
dimensional C*-algebras, and introduces the important notion of a com-
muting square; the second section discusses examples of commuting squares
(vertex and spin models, and the braid-group example); the next section is de-
voted to the relation between commuting squares and the basic construction,
and the consequent importance of symmetric or non-degenerate commuting
squares (with respect to the Markov trace); the next two sections are devoted
to the path-algebra model for a tower of finite-dimensional C*-algebras, and
the reformulation of the commuting square condition in terms of ‘biunitarity’,
respectively; the sixth section is a discussion (without proofs) of the canon-
ical commuting square associated to a subfactor and Popa’s theorem on the
completeness of this invariant; the final section of this chapter centres around
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Ocneanu’s compactness theorem and the prescription it provides for comput-
ing the higher relative commutants of a subfactor built from an arbitrary
initial commuting square.

The sixth and final chapter is devoted to the rich class of examples of
subfactors provided by the so-called vertex and spin models. This chapter
systematically develops a diagrammatic formulation to discuss the higher
relative commutants in these examples, and also shows how to push this
diagrammatic formulation through for general commuting squares.

The book concludes with an appendix, which contains some facts used
in the text — such as the non-existence of two-sided (algebraic) ideals in
finite factors — as well as a computation of the principal and dual graphs
of the ‘subgroup-subfactor’ and the original derivation of the one-variable
polynomial invariant of knots.

Finally, the book comes equipped with such customary trappings as a bib-
liography, some remarks of a bibliographic nature, and one index containing
both terms and symbols used.
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Chapter 1

Factors

1.1 von Neumann algebras and factors

The fundamental notion is that of a von Neumann algebra. This is, typically,
what may be called the ‘symmetries of a group’. The precise way of saying
this is that a (concrete) von Neumann algebra is nothing but a set of the
form M = 7w(G) — where 7 is a unitary representation of a group G on a
Hilbert space H, and S’ denotes, for S a subset of £() (the algebra of all
bounded operators on #), the commutant of S defined by S’' = {2’ € L(H):
'z =z2' for all z in S}. In other words M is the set of intertwiners of the
representation 7: thus, z € M < z7(g) = m(g)z for all g in G.

The usual definition of a von Neumann algebra is: ‘a self-adjoint subal-
gebra of £L(H) satisfying M = M"’ (where we write M" for (M')"). This is
equivalent to the definition we have chosen to give. Reason: if M = 7(G)',
then M is a self-adjoint subalgebra and M = M", since S’ = S” for all
S C L(H); conversely, if M = M" is a self-adjoint subalgebra, we may set
G equal to the unitary group of M’ and appeal to the almost obvious fact
(cf. [Sunl], Lemma 0.4.7) that G linearly spans M’ (so that G' = (M")").

The canonical commutative examples of abstract von Neumann algebras
turn out to be L*®(X, u1), while the basic non-commutative example is £L(H).

The fundamental ‘double commutant theorem’ of von Neumann states
that a self-adjoint unital subalgebra M of £L(H) is weakly closed —i.e. (z,&, )
— (z&,n) V&, € H,z, € M Vn = z € M) (if and only if M is o-weakly
closed - see §A.1) if and only if M = M".

The importance of the notion of a von Neumann algebra was recognised
in 1936 by Murray and von Neumann (although of course, they called them
‘rings of operators’) — see [MvN1] — who also quickly realised that the ‘building
blocks’ in the theory of von Neumann algebras were (what they, and people
after them, called) factors. If M = w(G)’, then M is a factor precisely when
the representation is ‘isotypical’. (If G is compact and  is a strongly continous
representation, this says that 7 is a multiple of an irreducible representation;
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for general GG, this says that any two non-zero subrepresentations of 7 admit
non-zero subrepresentations which are equivalent.)

More precisely, a von Neumann algebra M is called a factor if it has trivial
centre —i.e., Z(M) =M N M' = C-1; and von Neumann proved — see [vN3]
— that any von Neumann algebra is ‘a direct integral of factors’.

Projections play a major role in the theory. It is true that any von Neu-
mann algebra is the norm-closed linear span of its projections — i.e., elements
p satisfying p = p* = p*. (Reason: if M = L*®(X, ), -this is because simple
functions — i.e., finite linear combinations of characteristic functions of sets
— are dense in L*°(X, p1). The preceding statement and the spectral theorem
show that any bounded normal operator is norm-approximable by finite lin-
ear combinations of its spectral projections. This proves the assertion about
general von Neumann algebras.)

Two projections e and f in a von Neumann algebra M are said to be
Murray-von Neumann equivalent — written e ~ f (or e ~ f (rel M)) — if
there exists (a partial isometry) u in M such that v*u = e and wu* = f. It is
not too hard to show that if (and only if) M is a factor, any two projections in
M are comparable in the sense that one is Murray—von Neumann equivalent
to a sub-projection of the other.

Factors were initially classified into three broad types by Murray and
von Neumann, on the basis of the structure of the lattice P(M) of projec-
tions in M. The key notion they use is that of a finite projection; say that
a projection e € P(M) is finite if e is not equivalent to any proper sub-
projection of e. It should be obvious that a minimal projection of M, should
one exist, is necessarily finite. It should also be equally clear that any factor
is one and exactly one of the types I-III as defined below.

DEFINITION 1.1.1 (a) A factor M is said to be of type:
(i) 1, if there ezists a non-zero minimal projection in M;

(i5) I1I, if M contains non-zero finite projections and if M is not of type I;
and

(111) 111, if no non-zero projection in M is finite.

(b) A factor M is said to be finite if 1 (the multiplicative identity of M,
which always exists — cf. the definition of a concrete von Neumann algebra)
is a finite projection in M; equivalently M is finite if M does not contain any
non-unitary isometry.

One of the basics facts about finite factors is contained in the following
result; for a proof, see, for instance [Takl], Theorem V.2.6.

PROPOSITION 1.1.2 If M is a finite factor, then there always ezists a unique
faithful normal tracial state (henceforth abbreviated simply to ‘trace’) on M;
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i.e., there exists a unique linear functional 7 on M such that:
(1) (trace) 7(zy) = 7(yz);
(i) (state) T(z*z) > 0 and 7(1) = 1;
(iii) (faithful) 7(z*z) #0 of z #0; and
(v) (normal) T is (o-)weakly continuous.
Further, if e, f € P(M), then

e~ f & 7(e)=7(f). (1.1.1)

We conclude this section with the rudiments of this Murray—von Neumann
classification of factors. Suppose then that M is a factor with separable pre-
dual. Then consider the above-mentioned three possibilities for the type of M:

(I) If M is a factor of type I, it turns out (and it is not hard to prove —
cf. [Sunl], Exercise 4.3.1, for instance) that M = L(H) for some separable
Hilbert space ‘H and that M is finite precisely when H is finite-dimensional.
In particular, any finite factor of type I is necessarily finite-dimensional. We
say that the type I factor M is of type I, if H is an n-dimensional Hilbert
space, forn = 1,2,---,00. If M is of type I,,1 < n < oo, then M ~ M,(C)
and the unique trace tr of Proposition 1.1.2 is just the usual matrix-trace
after suitable normalisation: thus, tr((z;;)) = + ¥1L) 2.

(II) If M is a factor of type II, there are two possibilities, according to
whether or not M is a finite factor in the sense of Definition 1.1.1(b). We say
that a type IT factor M is of type I or of type Il according to whether
or not M is a finite factor.

Recall, from Proposition 1.1.2 that every I, factor is equipped with a
faithful normal tracial state 7. It is true — for instance, see [Sunl], Propo-
sition 1.3.14 — that if M is a I]; factor, then {r(p) : p € P(M)} = [0,1].
Thus the trace 7 induces a bijection between the collection of Murray—von
Neumann equivalence classes of projections in a II; factor and the contin-
uum [0,1]. What attracted von Neumann to 1], factors was the possibility of
‘continuously varying dimensions’.

On the other hand, suppose M is a Il factor. Fix an arbitrary finite pro-
jection p; € M. It is true, then, that there exists — see, for instance, [Sunl] —a
sequence {p, : 1 < n < 0o} of mutually orthogonal projections in M such that
(i) pp ~ p1(rel M)Vn, and (ii) 3, p, = 1. Pick a partial isometry u, € M such
that u}u, = pn, upul = p;. (We briefly digress to remark that it is true — see
[Tak1], for instance — that if M is a von Neumann algebra, and if p € P(M),
then the so-called ‘corner’ of M defined by M, = pMp = {pzp : z € M} is
-again a von Neumann algebra.) It then follows easily that M, is a I1; factor,
and that the mapping ¢ — ((ufzu;)) establishes an isomorphism of M onto
M,, ® L(¢*). Now consider the map Tr : M (= {z € M : z > 0}) — [0, 0]
defined by Trz = Y, trar(unzul). It is true of this map — see [vN1] — that

(i) {Trp:p e P(M)} = [0, c0];
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(ii) if p,qg € P(M), then p~ g(rel M) < Trp = Trg; and
(iii) if p,q € P(M), and pg=0, then Tr(p+gq)=Trp+ Trq.

Notice that this choice of Tr is so ‘normalised’ that it takes the value 1 at
p1; it is true that but for this possible choice in scaling, the function Tr is
uniquely determined by the above properties. This function Tr is referred to
as the faithful normal semifinite trace on the Il factor.

(III) The factor M is of type II1I precisely when every non-zero projection
is infinite; under our standing assumption on the separability of the pre-dual
of M, it turns out — cf. [Sunl], Corollary 1.2.4(b) — that any two infinite
projections are equivalent. Thus M is a type III factor precisely when any
non-zero projection is Murray—von Neumann equivalent to the identity 1.

1.2 The standard form

Suppose @ is a normal state on a von Neumann algebra M —i.e., ¢ is a linear
functional on M which is:

(i) positive —ie., p(z*z) > 0;
(i) a state — (1) =1,
(iii) normal — i.e., p is o-weakly continuous.

Consider the sesquilinear form on M defined by (z,y) — (z,y) = ¢(y*z).
This satisfies all the requirements of an inner product except positive defi-
niteness — i.e., the set N, = {z € M : ¢(z*z) = 0} may be non-trivial. It
is, in any case, a consequence of the Cauchy-Schwarz inequality that N, is a
left-ideal of M. Hence the form (-,-) descends to a genuine inner product on
the quotient space M/N,; further, the equation 7 (z)(y + N,) = zy + N,, de-
fines, not just a well-defined, but even a bounded — with respect to the norm
lly + Nyll2 = ¢(y*y)'/? — linear operator m(z) on M/N,, which hence extends
to the completion H,,. It is painless to verify that if m,(z) denotes the exten-
sion to H, of 7(x), then m, defines a normal representation of M on H,.
Further, if {, = 1+ N,, then &, is a cyclic vector for y, i.e., [1,(M)&,] = H,
(where [S] denotes the closed subspace spanned by a subset S of Hilbert
space), and the given state ¢ is recovered from the triple (H,, 7, &,) by

o(z) = (mp(2)6p, &), 2 € M.

We summarise the foregoing construction — called the GNS construction
after Gelfand, Naimark and Segal — in the following:

PROPOSITION 1.2.1 Let ¢ be a normal state on a von Neumann algebra M.
Then there exists a triple (H,m,£) consisting of a Hilbert space H carrying
a normal representation m of M, and a distinguished cyclic vector & of the
representation satisfying p(z) = (m(z)€, &) for all z i M. i
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Notice, incidentally, that if the state ¢ is faithful (meaning ¢(z*z) #
0 if z #0), so is the representation .

EXAMPLE 1.2.2 If M = L*®(X, u), a typical normal state on M is of the
form ¢,(f) = [ fdv, f € L*®(X, ) — where v is a probability measure on X
which 1s absolutely continuous with respect to u. One GNS triple associated to
éy is given by H, = L*(X,v), m,(f)€ = f&, and &, is the constant function 1.

O

It must be clear that a necessary and sufficient condition for a normal
representation m of M to occur as a GNS representation (i.e., to be unitarily
equivalent to one) is that the representation 7 be a cyclic representation.

An easy application of Zorn’s lemma shows now that every (separable)
normal representation of a von Neumann algebra is a (countable) direct sum
of GNS representations.

In the rest of this section, we consider the special case when M
admits a faithful normal tracial state, and analyse the GNS con-
struction.

Assume thus that there exists a faithful normal tracial state 7 on M.
We write L2(M, 7) for the Hilbert space underlying the GNS representation
associated with 7. This representation is faithful, since n(z) = 0 = 0 =
|7 (z)&]|2 = 7(2*z) = = = 0. Hence we may — and do — identify z with 7, (z)
and we assume that M C L(L%*(M, 7)) so that there exists a cyclic vector
Q (which is the notation we shall employ for what we earlier called £;) such
that 7(z) = (zQ, Q) for all z € M.

Besides being a cyclic vector for M, the vector €2 is also separating for M
in the sense that zQ = 0(= 7(z*z) = |[zQ]|? = 0) = z = 0.

Hence the Hilbert space L?(M,7) contains a vector ) which is simulta-
neously cyclic and separating for M. We need the fact — which is ensured by
the next lemma — that 2 is also a cyclic and separating vector for M.

LEMMA 1.2.3 If M C L(H) is a von Neumann algebra, a vector £ in H is
cyclic for M if and only if £ is separating for M'.

Proof : Let £ € H. Let p' be the projection onto [M¢], the closed M-cyclic
subspace spanned by £. Note that p’ € M’ and that (1 — p')é = 0. So, if £ is
separating for M’, then p’ =1 so £ is cyclic for M.

Conversely if £ is cyclic for M, then 2’ € M’ and z'§{ =0 = z'n = 0 for
all n in [M¢], since z'(z€) = z(z'¢) = 0 for z in M. O

Thus L?(M, 7) has the vector £ which is cyclic and separating for M as
well as for M. For any vector £ in L?, consider the two operators defined by:
m(§)(ZQ) = 1'¢ Vi'e M, (1.2.1)

m(€)(zQ) = z{ Vze M. (1.2.2)
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Thus, dom m,(¢) = M'Q (and dom 7,.(§) = MQ); these operators are
densely and unambiguously defined since {2 is a cyclic and separating vector
for M and for M.

Call a vector & left-bounded (respectively right-bounded) if the operator
me(€) (resp., 7, (€)) extends to a (necessarily unique) bounded operator on all
of H (or equivalently, is bounded on its dense domain of definition).

If £ is left- (resp. right-) bounded, we shall continue to write m, (&) (resp.
7. (€)) for the unique continuous extension to all of L*(M, 7).

In order to state the fundamental proposition concerning L%(M,T) — or
the standard form of the finite von Neumann algebra M, as it is referred to
— we need one last bit of notation: the map zQ — z*Q is a conjugate-linear
isometry from MQ C L*(M,7) onto itself. Denote its extension to L*(M, )
by J. It must be clear that J is an anti-unitary involution — i.e., J is a
conjugate linear isometry of L*(M, 7) onto itself whose square is the identity;
in particular J = J* = J~!. This operator J is referred to as the modular
conjugation operator for M, and sometimes denoted by Jy,.

THEOREM 1.2.4 (1) JMJ =M'.
(2) The following conditions on a vector € € L*(M,T) are equivalent:
(i) & is left-bounded;
(i) € = zQ for some (uniquely determined) element z of M;
(1) & is right-bounded;
(i1) € = 2'Q for some (uniquely determined) element ©' of M'.

Proof: (1) The definition of J shows that if z,y € M, then (Jz*J)(y2) =
yz€; since ‘left multiplications commute with right multiplications’, we find
that

JMJ C M. (1.2.3)

On the other hand, if z € M, z' € M’, then by the ‘self-adjointness’ of the

anti-unitary operator J, we have

(J2'Q,zQ) = (JzQ,2'Q)
= (z*Q,2'Q)
= (Q,z2'Q)
= (Q,z'z0Q)
(z™Q, zQ)
Since z was arbitrary, this implies that
Jr'Q =2"*Q, V' € M. (1.2.4)

The above equation, together with the same reasoning that led to (1.2.3),

now shows that
JM'J C M, (1.2.5)

and the equality in (1) follows from equations (1.2.3) and (1.2.5).
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(2) Denote the set of left- (resp., right-) bounded vectors in L2(M, 7) by U,
(resp., U,); it is clear from the definitions that £ € Uy = m(§) € (M') = M
and & = m,(£)Q; conversely, if £ € M, then zQ2 € Uy and z = m;(z2). Thus the
map £ — me(€) establishes a bijective linear map of U, onto M, with inverse
being given by z — zf. In an identical manner, we also have U, = M'Q.
Thus (1) & (1)’ and (i) < (4)".

To complete the proof, we only need to prove that MQ = M'Q. If z € M,
then

Q= Jr*JQ e M'Q,

hence showing that MQ C M'Q. An identical reasoning, with the roles of M
and M’ reversed, proves the reverse inclusion, and hence the theorem. O

1.3 Discrete crossed products

The two constructions used initially by Murray and von Neumann — see [vN1]
and [vN2] — to construct examples of factors of all possible types were (i) the
crossed product construction, and (ii) the infinite tensor product construction.
This section is devoted to a discussion of the former, while the latter will be
discussed at the end of this chapter.

The starting data is a (discrete) group G acting on a von Neumann algebra
M —i.e., suppose we are given a group homomorphism t — oy from G to the
group Aut(M) of (normal) *-automorphisms of M. (It is a fact (cf. [Sunl],
Exercise 2.3.4(a)) that all *-algebra automorphisms of a von Neumann algebra
are automatically normal.) The crossed product is a sort of maximal von
Neumann algebra containing copies of M and G with ‘commutation relations
governed by the given action of G on M’; a little more precisely, the crossed
product of M by the action o of G is a specific von Neumann algebra of the
form M = (7(M) U XMG))" where 7 : M — M (resp., \:G — U(M), the
unitary group of M) is an injective normal *-homomorphism (resp., injective
unitary representation) of M (resp., of G), such that the copies 7(M) and
MG) of M and G satisfy the commutation relations

A)m(z)A\t)* = 7(au(z)), forall z € M,teq. (1.3.1)

The construction of the crossed product (which is usually denoted by
M x4 G, or simply M x G ) goes as follows:

Suppose M C L(H). The Hilbert space H on which M will be represented
has three (unitarily equivalent) descriptions:

(1) H=2(GH)={:G—H D Q)| < ook

teG

(i) H=PH={{(Et)ec : 2 IEDI* < oo}

teG teG
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where we think of a typical element of H as a column-vector with norm-
square-summable entries from ; although this seems an artificial vari-
ant of (i), it is this description, in view of the availability of the conve-
nience of matrix manipulations, which will prove most useful for dealing
with M x, G,

(iii) H = H ® £*(G), the Hilbert space tensor product of 1 and the Hilbert
space £*(G) of square-summable complex functions on G (or £2(G;C) in
the notation of (i)).

Before proceeding further, let us remark that £2(G) carries two natural — the
so-called left-regular and right-regular — unitary representations A, p : G —
U(L(L*(QR))), defined by (M,&)(t) = £(ut) and (pu&)(t) = £(tu). Alterna-
tively, if {&; : ¢ € G} denotes the canonical (or distinguished) orthonormal
basis of 2(G) - thus & is the characteristic function of the singleton set {t}
- then A\, (&) = &ut and py (&) = &u-1. It is a basic fact — see §1.4 — that

AG) = (p(@)", p(G) = MG)". (1.3.2)

To return to the definition of the crossed product, define 7 : M —

L(H) and X:G — L(H) by:

(@@ = a1 (2)é(?),
A@HE) = &™),

It is trivial to verify that m : M — L(H) (resp. A : G — L(H)) is a faithful
normal *-homomorphism (resp., faithful unitary representation) and that m
and ) satisfy equation (1.2.1). Now define M = (x(M) U M(G))", so that M
is the smallest von Neumann subalgebra of £(H) containing 7(M) and A(G).
This M is, by definition, the crossed product M x, G.

We used some realisation of M as a concrete von Neumann algebra to
define the crossed product M X, G. It is true, however — cf., for instance,
[Sunl], Proposition 4.4.4 — that the isomorphism class of the von Neumann
algebra M X ,G so constructed does not depend upon which faithful realisation
M on Hilbert space one started with.

We shall now pass to a closer analysis of M, by using the second picture
of H as @ycq H- In this form, it is clear that any bounded operator Z € L(H)
is represented by a matrix & = ((Z(s,1)))stec Where I(s,t) € L(H) for all
s,t € G, and (2€)(s) = Y _ #(s,t)€(t), the sum on the right being intepreted

teq@
as the norm limit of the net of finite sums. In this language, it is clear that

(m(z))(s,t) = bsea-1(z)

(1.3.3)

and
(Aw)(5,1) = bs,ut

for z in M,u,s,t in G.
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The point is that while elements of Matg(C) have two degrees of freedom,
the above generators of the crossed product have only one degree of freedom.
More precisely, we have the following matricial description of the crossed

product (where we identify an element £ € L£(H) with its matrix ((Z(s,?)))
(with respect to the orthonormal basis {{; : t € G})).

LeEMMA 1.3.1 With the preceding notation, we have
M={zeL(H):3z:G - M st. i(st)=a-1(z(st™!)) Vs,t € G}.

Proof: On the one hand, the right side is seen, quite easily, to define a
(weakly closed self-adjoint algebra of operators and hence a) von Neumann
subalgebra of £(H), while on the other, the algebra generated by m(M) U
A(QG) is seen to be the dense subalgebra, corresponding to finitely supported

functions, of the one given by the right side. O

It follows from Lemma 1.3.1 that the crossed product M x,G is identifiable
— via the association Z +— z(s) = Z(s,1) — with a space of functions from G
to M — viz.

M={z:G — M|3% € L(H) s.t. Z(s,t) = oy (z(st™)) Vs,t € G}. (1.3.4)

It is a matter of easy verification to check that the algebra structure
inherited from (m(M) U A(G))" by the set M defined by equation (1.3.4) is:

(@*y)(s) = D awr(z(st™))y(t), }

teG (1.3.5)
*(s) = as1(z(sTH)Y).
(The series above is interpreted as the limit, in the weak topology, of the
net of finite sums; this converges by the nature of matrix multiplication.)
In the new notation, note that

m(z)(s) =051 -z, 2 € M,

and
Aw)(s) =65y - 1,u € G.

We conclude this section by determining when the crossed product is a
finite von Neumann algebra — i.e., admits a faithful normal tracial state.

PROPOSITION 1.3.2 Let M = M x, G be as above (cf. the discussion pre-
ceding equation (1.8.5)). Then M admits a faithful normal tracial state 7 if
and only if M admits a faithful normal tracial G-invariant state T (where
G-invariance means Toay =71 Vit € G).
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Proof: If 7 is a faithful normal tracial state on M, then 7(z) = 7(r(z)) de-
fines a faithful normal tracial state on M which is G-mvarlant since 7(a(z)) =
#r(oq(x))) = FAOT(@AER)) = F((x)) = 7(z).

Conversely, if 7 is a G-invariant faithful normal tracial state, define 7(z) =
7(z(1)) (= 7(2(1,1))). Then 7 is clearly a normal positive linear function;
further, 7 is faithful (since Z € M, and 7(Z(1,1)) = 0 implies Z(1,1) = 0,
whence Z(t,t) = o4-1(%(1,1)) = O for all ¢ in G, whence Z_= 0 (since a positive
operator with zero diagonal is zero)). Finally, 7 is a trace, since

Fzxy) =7((zxy)(1))
— T(ZG Q-1 (.’L‘(t_l))y(t))
=3 (o1 (2(t))y (1))
teG
(since 7 is normal)
= 7zt ey (1))
teG
(since 7 is G-invariant)
— ¥ rely(®)al)
teG
(since T is a trace)
= Z T(as-1(y(s™h))z(s))
seG
B %(y * .’L‘) -

Before discussing when the crossed product is a factor, we digress for some
examples, one of which will motivate the definitions of the necessary concepts.

1.4 Examples of factors

1.4.1 Group von Neumann algebras

In the notation of §1.2, the (left) group von Neumann algebra LG of the
discrete group G is defined thus:

LG =cxG=XQ)" C L)),

where the crossed product is with respect to the trivial action — ay(z) =
z, Yt € G,z € C — of G on C, and, of course, A denotes the left-regular
representation of G on £2(G).

The analysis of §1.2 translates, in this most trivial case of a crossed prod-
uct, as follows: the elements of LG are those Z € L(¢*(G)) whose matrix,
with respect to the standard orthonormal basis {¢; : t € G} of £3(G), has
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the form Z(s,t) = z(st™') Vs,t € G for some function = : G — C. Note that
& = Z(t,1)&, so that the function z : G — C is nothing but #&;. Thus

t
there exists a unique function 7 : LG — ¢3(G) — defined by 7(%) = Z&; — such
that Z(s,t) = n(z)(st7!) Vs,t in G.
Some of the main features of the von Neumann algebra LG are contained
in the next proposition.

ProPOSITION 1.4.1 (1) LG is a finite von Neumann algebra; more precisely,
the equation 7(Z) = (€1, &1) defines a faithful normal tracial state on LG;

(2) (£(G),idre, &) is a GNS triple for the trace 7 of (1) above, whereidrg
is the identity representation of LG in £2(G); hence LG, realised as operators
on 02(@), is in standard form in the sense of §1.2; in particular,

MG =p(G)", p(G) = AG)". (1.4.1)
(8) The following conditions on G are equivalent:
(i) LG is a factor;

(ii) G is an ‘ICC group’ - i.e., every non-trivial conjugacy class C(t) =
{sts7:s € G}, fort # 1, is infinite.

In particular, if G is an ICC group, then LG is a I1; factor.

Proof : (1) The equation 7(A) = A, A € C, is clearly a trace on (M =) C
which is invariant under the trivial action of G and €. Hence (the proof
of) Proposition 1.3.2 implies that the equation 7(z) = Z(1,1) = n(z)(1) =
(Z£1,&1) defines a faithful normal tracial state on LG.

(2) (LG)&) 2 [{& = AMt)€, : t € G} = £2(G) and so &; is a cyclic vector
for LG such that 7(Z) = (££,£) VZ € LG. This proves the first assertion
in (2).

As for the second, note that the canonical conjugation J is the unique
anti-unitary operator in £2(G) such that J& = &-1 for all t € G, and that

JAJE = JA€n
JEsi—1
= g1

= psée-

Il

Deduce now from Theorem 1.2.4(2) that

MG) = MG)" = (LG) = J(LG)J = JA(G)"'J = (JNG)J)" = p(G)".
(1.4.2)

Thus A\(G)" and p(G)" are commutants of one another, thus proving (2).

(3) As before, write n : LG — ¢*(G) for 7(Z) = £&;. An easy computation

shows that Z € Z(M) if and only if 7(Z) is constant on conjugacy classes.
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Suppose now that G is an ICC group. Then the conditions that 7(Z) is
constant on conjugacy classes and that () € ¢2(G) force n(z)(t) = 0 for t #
1, ie., &= (n(Z)(1)) ide). Thus Z(LG) =cC and LG is a factor.

Conversely suppose G is not an ICC group so that there exists a finite
conjugacy class 1 # C C G, then if n = 1¢ denotes the characteristic function
of the finite set C, it follows that 7 € £2(G) and that the matrix defined by
Z(s,t) = 1¢(st™!) defines a bounded operator on ¢%(G), so that & € LG and
n(Z) = 7. The earlier discussion shows that Z € Z(LQ) (since 7 is constant on
conjugacy classes) while Z ¢ C, since 7(Z) = n ¢ C&;; thus LG has non-trivial
centre and is not a factor.

Finally, if G is an ICC group, then LG is a finite factor by (1) and (2)
of this proposition; the fact that G is an infinite group shows that LG is
an infinite-dimensional vector space over C and hence not a type I factor
(since finite type I factors are (isomorphic to some M,(C) and hence) of
finite dimension over C). o

Examples of ICC groups are given by:

oo
(i) Seo = |J Sn = the group of those permutations of 1,2,3,... which fix all
n=1
but finitely many integers;
(ii) F, (n > 1), the free group on n generators.

Hence LS, and LF,,n > 1, are (our first examples of) II; factors.

1.4.2 Crossed products of commutative von Neumann
algebras

Let M = L>(Q, F, ), where (Q, F, i) is a separable probability space. (The
assumption of separability is equivalent to the requirement that L2(Q, F, u)
is separable. Also, it is true — see [Tak1], for instance — that such an M is the
most general example of a commutative von Neumann algebra with separable
pre-dual.) By an automorphism of the measure space (£, F, u), we shall mean
a bimeasurable bijection T' of Q such that g o T! and p have the same null
sets. (Thus, T :  — Q is a bijection satisfying: (i) if £ is a subset of 2, then
EeF & TYE) € F;and (i) if E € F, then u(E) =0 & u(T}(E)) = 0.
Such a map T is also called a non-singular transformation in the literature.)
The reason for the above terminology is that the most general automorphism
of M is of the form 8(p) = poT, Yo € L*®(Q, F, u), for some automorphism
T of (Q, F, p).

If M, 0, T are as above, it is not hard to prove — cf. [Sunl], Exercise 4.1.12
— that the following conditions are equivalent:

(i) T acts ‘freely’ on Q - ie., p({w € Q : Tw = w}) = 0;

(i) ze M,zy=0(y)rVy e M = = 0.
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This is the justification for the following general definition.

DEFINITION 1.4.2 (1) An automorphism 6 of an abstract von Neumann al-
gebra M is said to be free if t € M,zy = 0(y)z Yy € M = z = 0.

(2) An action « of a group G on M - i.e., a group homormorphism « :
G — Aut(M) - is said to be free if the automorphism oy is free (in the sense
of (1) above) for everyt#1 in G.

We need one more definition before we proceed further:

DEFINITION 1.4.3 (1) If o : G — Aut(M) is an action of a group on any
von Neumann algebra, write M* = {z € M : au(z) = = Vt € G} for the
fized-point subalgebra of the action.

(2) The action o : G — Aut(M) is said to be ergodic if M* = C-1.

With the notation of Definition 1.4.3, it must be clear that M is always a
von Neumann subalgebra of M. Since any von Neumann algebra is generated,
as a von Neumann algebra, by its lattice of projections, it must be clear that
the action « is ergodic if and only if P(M*) = {0,1}.

In the special case when M = L*(Q, F, ), it must be clear from the
foregoing discussion that any action o : G — Aut(M) must be of the form
ai(p) = ¢ o T;!, where t — T is a group homomorphism from G into the
group of automorphisms of the probability space (2, F, u); and that the action
« is ergodic if and only if

E € F,u(EAT,Y(E)) =0Vt € G = u(E)=0 or p(E)=0 (1.4.3)

where A denotes symmetric difference (so that AAB = (A — B) U (B — A))
and E° denotes the complement of the set E. (This is the classical notion of
ergodicity and the reason for Definition 1.4.3(2).)

It would have been more natural to include the next proposition — which
concerns general von Neumann algebras — in the last section, but it has been
included here since the notions of freeness and ergodicity of an action are most
natural in the context of the abelian examples considered in this section.

PROPOSITION 1.4.4 Let o : G — Aut(M) be an action of a discrete group
G on any von Neumann algebra M. Let M = M X, G. Then:

(i) (M) N M = 7(Z(M)) & the action o is free; .

(ii) Assume the action « is free; then the crossed product M is a factor if
and only if the restricted action a|z(ar) is ergodic. (Here, we use the notation
a|m, to mean the restricted action — (a|a,)t(2o) = (o) for all zo € My —
of G on any von Neumann subalgebra My of M which is invariant under the
action «.)

In particular, if o is a free action of a discrete group G on L®(Q, F, p),
then the crossed product is a factor if and only if the action « is ergodic.
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Proof: As before, if Z€ M, we write z=%&,, so that Z(s,t) =0y (m(st‘l)z.

In view of equation (1.3.5), it is easily seen that the condition Z € (M) N M
translates into the condition that

z(t)y = a1 (y)z(t) Vy € M,t € G. (1.4.4)
Hence, if the action is assumed to be free, then

fen(MYNM = z(t)=0Vt#1
= I=m(z(1)) € 7(M).

Since the map 7 : M — M is injective, we see that indeed Z € 7(M)' N M =
Z =m(z) for some z(=z(1)) € Z(M).

Conversely, if the action is not free, there exist ¢t # 1 in G and o € M
such that zo # 0 and zoy = a4(y)zo for all y € M. If we now define the
function z : G — M by z(s) = 64-170, it is clear that the equation Z(s,u) =
oy-1(z(su")) defines a bounded operator Z on H; further, it must be equally
clear that # € m(M) N M and that & ¢ 7(M) (since ((Z(s,u))) is not a
diagonal matrix).

(ii) Assume the action « is free. It then follows from (i) above that

Z(M) = n(Z(M))NXG)
= {n(2):z€ Z(M) and z= o4(2) Vt € G},

whence the desired conclusion. 0

Thus if a countable group G acts freely and ergodically on M = L*®((,
F, ), then M = M x, G is a factor. The complete details of the Murray—
von Neumann type of the factor thus obtained are contained in the following
beautiful theorem due to von Neumann ([vN1]).

THEOREM 1.4.5 Let M = M X4 G be as above. (Thus, M = L*(Q, F, u),
where (Q, F, p) is a separable probability space, and G is assumed to act freely
and ergodically on M wvia the equations as(p) = ¢ o Ty ', where {T; : t € G}
is a group of automorphisms of the measure space (Q, F, 1).)

(1) M is of type I if and only if (Q, F, i) contains atoms - i.e., IE € F
such that u(E) > 0 and whenever Ey, € F,Ey, C E, either u(Ey) = 0 or
p(E — Ey) = 0. In this case, there ezists a countable partition Q = [I;cp Ei,
where each E; is an atom; further, M is of type I,,1 < n < oo, if and only if
|A] = n.

(2) M is of type II if and only if there exists a o-finite measure v on
(Q, F) such that (i) v is non-atomic — i.e v has no atoms, (i) v and p have
the same null sets, and (iii) v is G-invariant - i.e., vo Ty ' = v Vt € G.
Further, M is of type II, or Il according as v(Q) < oo or v(Q) = .

(8) M is of type III if and only if there exists no o-finite G-invariant
measure v which is mutually absolutely continuous with p.
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We shall not prove the theorem here. (The interested reader may find such
a proof, for instance, in [Sunl], Theorem 4.3.13.) We shall, instead, content
ourselves with a discussion of the II; case, which is the case of interest in this
book.

We know from Proposition 1.3.2 that M is a finite factor if and only if there
exists a faithful normal tracial state 7 on M = L*®(Q, F,n) (equivalently,
if there exists a probability measure v which has the same null sets as u)
which is G-invariant. If v is non-atomic, then M — and hence M - is infinite-
dimensional, so that M cannot be a factor of type I,,n < oo. Since Mis a
finite factor, the non-atomicity of v implies that M is a factor of type I1;.
On the other hand, if v is atomic, the finiteness of v and the ergodicity of
the action imply that (2 is the union of a finite number, say n, of atoms. This
means that M = €. The assumed freeness (and ergodicity) of the action now
forces G to have exactly n elements, and consequently M is a finite factor
with n? elements - i.e., it is a I,, factor.

EXAMPLE 1.4.6 Suppose G is a countably infinite dense subgroup of a com-
pact group.
(Two examples to bear in mind are:

(a) K=T1={e?:0 € R},G = {e?% : n € 7}, where 8 1s irrational;
and

(b)) K = {0,1}N = set of all (0,1) sequences, with group operation being
coordinate-wise addition mod 2, and G = the subgroup of those se-
quences which contain at most finitely many 1’s.)

Set Q = K, F = the o-algebra of Borel sets in K, and ;p = Haar measure.
(In ezample (a), p is normalised arc-length, so that u(I) = 8/27 if I is an arc
subtending an angle 0 at the origin, and in ezample (b), p is the countable
product of the measure on {0,1} which assigns 1/2 to {0} and to {1}.)

Fort € G and k € K, define Ty(k) = tk. It should be clear thatt — T} is a
homomorphism from G into the group of automorphisms of the measure space
(K, F, u). Further, if we define ay(¢p) = ¢ o Ty-1,t € G, ¢ € L®(K, F,pn), it
follows that « is an action of G on L®(K,F,p) which preserves yu and is
ergodic (since G is dense in K).

Hence L®(K) X4 G is a IT; factor, whenever G is an infinite countable
dense subgroup of a compact group.

EXAMPLE 1.4.7 A slight variation of the construction in the preceding ez-
ample yields factors of type III — the so-called Powers factors — see [Pow].
Suppose Q = {0,1}, equipped with the Borel o-algebra. Now take py to be
the countable product of a measure po on {0,1} which assigns unequal masses
to {0} and {1} thus: po{0} = 1/(1+A) and po{1} = A/(1+X), where X # 1. If
Ti,t € G, is defined as before, it is true that each Ty is still an automorphism
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of (0, F, 1), although po Tyt # p fort # 1. It is still the case that a, as de-
fined before, is an ergodic action of G on L*®(Q, F, u). The crucial difference
1s that, now, the action does not admit any o-finite invariant measure which
is mutually absolutely continuous with p, and hence Ry = L®(Q, F, ) Xo G
is a factor of type III. In fact, it turns out that Ry and Ry are non-isomorphic
for 0 < A # N < 1. We shall not prove these facts; the interested reader may
consult [Sunl], for instance.

EXAMPLE 1.4.8 The group G = SL(2,Z) admits a natural (linear) action
on (IR%, B, 1) — where u is Lebesgue measure defined on the o-algebra B of
Borel sets in IR®. It is true — cf. [Zim], Ezample 2.2.9 - that this action is
ergodic. Since p is an infinite measure, it follows from Theorem 1.4.5 that
M = L®(IR? B, 1) x SL(2,2) is a factor of type I1o,. ( Note that Lebesgue
measure is preserved by linear transformations of determinant 1.)

In the next proposition, we single out a certain feature of the preceding
example that we shall need later.

PROPOSITION 1.4.9 Let M = M x, G, where M = L®(IR* p) and G =
SL(2,2Z), are as in Ezample 1.4.8. Let py = lp denote the characteristic
function of the unit disc D = {(z,y) € R?: 22 +y? < 1} in IR? (so that p is
a projection in M). Then

(a) R = 7w(p)Mn(py) is a II; factor, where 7 : M — M is the canonical
embedding; and

(b) R = pRp for any non-zero projection p in R.

Proof : We use the notation of §1.3, so that a typical element of M is
represented by a matrix of the form ((Z(s, t)))s tee — which induces a bounded
operator on @) My, H, = L*(IR?, p) Vt € G —such that Z(s, ) = ap-1(z(st™")),

teq
where {z(s) : s € G} C L®(IR?, p).

Since M is a factor and m(p;) € P(M), it follows that R = Mg,y =
7(p1) M7 (p,) is a factor. Further, the non-atomicity of 4 shows that M,,, and
hence R, is infinite-dimensional over €. To show that R is a II; factor, it
suffies, therefore, to exhibit a faithful normal tracial state on R.

More generally, let p, = 1p,, where D, = {(z,y) € R* : 2> +y* < r?},
for 0 < 7 < co. It is easy to see that if # € M, then Z € Mr(p,), if and only if

Z(s,t) = as;-1(pr)Z(s, t)a-1(py); (1.4.5)

in other words, # € My(,) if and only if Z(s,t) (which is an L*-function on
IR?) is supported in T, }(ID,) N T;(ID,). In particular, if 7 € Mpy(,), then
#(1,1) € L*(ID,, p). It is not hard, using the fact that po 7y = p Vt € G,
to show that the equation

i 1
") =y / 5(1,1)dy (1.4.6)
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defines a faithful normal tracial state on My, ). Hence ]\Zf,r(p,) is a I factor
for all r > 0, thus proving (a).

Next, begin by noting that if A > 0, then the equation (6\(f)(z) =
fOz),z € R? f € L*(IR?, 1), defines, for each A > 0, an automorphism
6y of L*°(IR, 1) = M. Since linear maps commute with scalar multiplication,
it must be clear that 6y o ax = a4 0 0y VA > 0,t € SL(2,2Z). This implies
that there exists, for each A > 0, a unique automorphism 8, of M such that
02(((5,8))) = (02 (3(5,1))).

Since 0x(1p,) = 1p,, for 7,A > 0, it follows from equation (1.4.5) that
9,\( Ma(p,)) = Mr(p,,); in particular, setting r = 1 and 0 < A < 1 we find (since
ilﬂ(pf) = Mxip) = (Ma(p))n(s) = Rapy) that R = pRp if p = 7(p1),0 <

< 1.

Note, finally, that, if 0 < A < 1, then 7(m(py)) = 2u(ID,) = A?, where
71 is as defined in equation (1.4.6), with r = 1). Hence if 0 # p € P(R) and
A = 71(p)Y?, then 7y(p) = 7y (m(py)); so there exists (by equation (1.1.1)) a
unitary v € R such that upu* = 7(p,), and consequently R, = R,(,,) (via the
isomorphism R, 3 z — uzu*), thus completing the proof of the proposition.
O

1.4.3 Infinite tensor products

Fix an integer IV, and let
A= Q" My(C) = Myn(C).

Regard A, as a subalgebra of A, via the embedding

x 00 --- 0
0z 0O ---0
000 -z

Then it is clear that A, = U A, is a *-algebra, and that there exists a unique
tracial state on A, which restricts on the Iy~ factor A, to the unique tracial
state try,. (In fact, it is clear that this is the only tracial state on A., since
finite factors admit unique tracial states.) Let (H, 7, Q) denote the associated
GNS triple. We define

Ry = ®" My(€) = m(Ax)". (1.4.7)

The faithfulness of tra, implies that 7 embeds Ao, as a weakly dense *-
subalgebra of R(y). Since the equation

trRy, (T) = (20, Q)
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clearly defines a tracial state on Ry, it follows that the von Neumann algebra
R(ny has the property of admitting a unique normal tracial state. This implies
that Ry is a II; factor. (Reason: if h € Z(Ry))+ is arbitrary, then also
trR v, (h-) is a trace; further, in view of the infinite-dimensionality of A, the
finite factor Ry cannot be of type I.)

(Here is an alternative way of seeing that Ryy is a I, factor: consider the
compact group K = Z obtained as the direct product of countably infinitely
many copies of the discrete group Zy; let G be the dense subgroup consisting
of those sequences from Z which differ from the identity element in at most
finitely many places; then R(y) is isomorphic to the IT; factor constructed as
in Example 1.4.6.)

Notice that Ry is clearly approximately finite-dimensional in the sense of
the following definition. Not quite so clear, however, is the striking statement
of the subsequent theorem due to Murray and von Neumann (which we shall
not prove here). (See [MvN3] and also [Conl].)

DEFINITION 1.4.10 A von Neumann algebra M is said to be approximately
finite dimensional, or simply AFD, if there ezists an increasing sequence

AlgA2 g"'gAngAWH g
of finite-dimensional *-subalgebras, whose union in weakly dense in M.
THEOREM 1.4.11 Every AFD II, factor is isomorphic to R).

Thus we find that among the class of all II; factors, there is one, the so-
called hyperfinite I1, factor — which we shall always denote by the symbol R
— which is uniquely determined up to isomorphism by the property that it is
approximately finite-dimensional. Thus, for instance, if Soo = US>, Sy is the
group of those permutations of N which move at most finitely many integers,
then the group von Neumann algebra LS, is one model of the hyperfinite
I, factor. Less obvious, but also true, is the fact that the algebra denoted
by R in Proposition 1.4.9 is another model for the hyperfinite II; factor.



Chapter 2

Subfactors and index

2.1 The classification of modules

If M is any von Neumann algebra, we shall, by an M-module, mean a Hilbert
space ‘H equipped with an action of M, i.e., a unital normal homomorphism
from M into L(H). We shall generally suppress specific mention of the under-
lying representation 7 : M — L(H) and just write z£ instead of m(z)¢ when
z€MEEH.

If H and K are M-modules, we shall say that a bounded linear operator
T :H — Kis M-linear if T(z€) = z(T¢) Yz € M, € € H , and we shall denote
the collection of all such M-linear operators from H to K by yL(H,K).
When H = K, we shall simply write ,£L(H) for ,,L(H,H). (If 7 denotes
the underlying representation of M on H, note that ,L(H) = n(M)' and
consequently s £(H) is a von Neumann algebra. In general, it is true similarly
that ,£(H, K) is a weakly closed subspace of £L(H, K) which is well-behaved
under polar decomposition in the sense that if 7 € L(H,K) has polar
decomposition T' = U|T|, then T is M-linear if and only if U and |T| are.)

Two M-modules H and K are said to be isomorphic if there exists an
M -linear unitary operator of H onto K. (In view of the parenthetical general
remark of the last paragraph, this is equivalent to the existence of an invertible
M-linear map of H onto K.)

EXAMPLE 2.1.1 (i) If ¢ is a normal state on any von Neumann algebra M,
we shall use — here and elsewhere in the sequel — the symbol L*(M, ¢) to denote
the Hilbert space underlying the GNS representation of M associated with ¢,
and we shall denote the cyclic vector by Q4. Then, by definition, the Hilbert
space L*(M, ¢) is an M-module. (Further, as has already been remarked, every
cyclic M-module is isomorphic to such a module, for some normal state ¢.)

(it) If {H; : i € I} is any family of M-modules, then their direct sum
@Dicr Hi @5 again an M-module. In particular, if I = N and H; = H Vi,
this direct sum will be denoted by H ® €2 (for the obvious reason that the
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underlying Hilbert spaces are isomorphic and the action, in the tensor-product
formulation, can be identified thus: (€ ® n) = m(z)é ® n).

The following result is crucial in the classification of modules over factors.

PROPOSITION 2.1.2 Let M be any von Neumann algebra and let K be a
faithful M-module — i.e., a module such that the underlying representation of
M s faithful . Then any separable M -module H is isomorphic to a submodule
of K® 2.

Proof: First consider the case when H is a cyclic M-module and conse-
quently isomorphic to L%?(M, ) for some normal state 1 on M. The faith-
fulness assumption says that M is embedded as a von Neumann subalgebra
of £(K) and consequently, we may (extend 1 to a normal state on all of
L(K) - thanks to the Hahn—Banach extension theorem — and consequently)
find a sequence {&,} of vectors in K such that 3, ||| =1 and %(z) =

Yon(@én, &) Yz € M.
Notice now that, for each fixed n, we have, for all z € M,

|lzénl|? = (z*zbn, &) < P(z*z) = ||2y]|%; (2.1.1)

hence there exists a unique bounded operator R, : L*(M, ) — K such that
R, (2Qy) = z€, Vz € M. It follows at once from the definitions that each R,
is actually an M-linear map.

Now consider the (clearly M-linear) operator U : L*(M,¥) — K ® £2
defined by U¢ = 3, R,{®e€, where {€,}22, denotes the standard orthonormal
basis for £2. It must be clear that U is an isometric operator, whence L*(M, 1)
- and consequently H — is isomorphic, as an M-module, to a submodule (viz.,
the range of the operator U) of K ® ¢2.

Thus we have proved the proposition for cyclic modules. The general case
follows from the facts that (i) every separable module is isomorphic to a
countable direct sum of cyclic modules, and (ii) as an M-module, a countable
direct sum of copies of the module K ® £? is isomorphic to K ® £2 itself. O

REMARK 2.1.3 One consequence of the preceding result s a fact which s
sometimes termed the ‘structure of normal isomorphisms’. Suppose then that
M; C L(H;),i=1,2, are von Neumann algebras and suppose that there exists
a normal isomorphism 0 of My onto M,. Then put M = My and regard 6
as a faithful representation of M, and deduce from Proposition 2.1.2 that H,
is isomorphic, as an M-module, to a submodule of Hy ® £2. Similarly, Hy 1s
isomorphic, as an M-module, to Hy @ £2.

Also, it follows that each of the M-modules, H; ® £2,1 = 1,2, is isomor-
phic to a submodule of the other. This implies — by the same reasoning as
s employed to prove the classical Schroeder—-Bernstein theorem — that these
two modules are actually isomorphic. We thus have the so-called ‘structure
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of normal isomorphisms’, viz.: the isomorphism 6 is a composition of three
maps, (1) a dilation or ‘ampliation’ (id ® 1p2), (i) a spatial isomorphism
- i.e., one implemented by a unitary isomorphism of the underlying Hilbert
spaces (the one establishing the isomorphism of the M-modules H; ® £%), and
(111) a ‘reduction’ — i.e., the restriction to a submodule.

For us, the importance of Proposition 2.1.2 lies in the classification of
modules. For one thing, it says that it is enough to classify, up to isomorphism,
the various submodules of one module — which we may choose as Hy, =
H; ® €2, where H, = L*(M, $) for some arbitrary faithful normal state ¢
on M.

Before proceeding further, we single out two simple facts as lemmas, for
ease of reference.

LEMMA 2.1.4 Let M be a von Neumann algebra and let K be an M -module.
Then the map p — ranp sets up a bijection between the set P(pL(K)) of
M -linear projection operators in K and the set of M-submodules of K. Fur-
ther, two projections p,q € P(mL(K)) are Murray—von Neumann equivalent
(relative to the von Neumann algebra yL(K)) if and only if their ranges are
isomorphic as M-modules.

Proof: Easy. O

As in our treatment of crossed products, we adopt the convention that if
is a Hilbert space, then K ® £2 is identified with the Hilbert space direct sum
of countably infinitely many copies of K; also, we shall identify an operator
T € L(K ®¢?) with an infinite matrix ((7};)) with entries from £(X) (in such
a way that if z € £(K), then the operator z ® idy, gets identified with the
matrix with z on each diagonal entry and zeros elsewhere).

Recall that if M C L£(K), N C L(¢?) are von Neumann algebras, then
M ® N denotes the von Neumann subalgebra of X ®¢? generated by operators
of the form z ® y,z € M,y € N. Under the identification discussed in the
previous paragraph, it should be fairly clear that M ® £(¢?) corresponds to
the set of those operators T on X ®#? for which all the entries of the associated
matrix ((73;)) come from the von Neumann algebra M.

LEMMA 2.1.5 If M C L(K) is a von Neumann algebra, then
(M®1) =M & L£(£?). (2.1.2)
Proof: This is a routine computation. a

Now we are ready for the classification of separable modules over factors
with separable pre-duals.
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THEOREM 2.1.6 Let M be a factor with separable pre-dual and let H be a
separable M -module.

(1) If M 1s of type I, there ezists a sequence {H, : n e N={1,2,---,00}}
of pairwise non-isomorphic M-modules, and there ezists (a necessarily unique)
n € N such that H 2 H,.

(i) If M is of type I, there ezists a family {Hs : d € IR = [0,c0]} of
pairwise non-isomorphic M-modules, and there ezists (a necessarily unique)
d € IR such that H = H,.

(111) If M is of type 111, there exists a separable non-zero M-module which
1S unique up to isomorphism.

Proof: We consider the several possible cases.

Case(i): M is of type I As mentioned in §1.1, there exists a separable
Hilbert space K such that M = £(K). Deduce from Lemma 2.1.5 that M =
ML(K® ) (= 1 ® L(£?)) is a factor of type In,; it follows that for any
projection p € M, it is the case that Mp = pMp is again a factor of type I.
On the other hand, it is a consequence of Proposition 2.1.2 that if H is an
arbitrary M-module, then H is isomorphic, as an M-module, to p(K ® ¢2) for
some p € M and consequently, that pL(H) is a factor of type I and that in
fact, H is isomorphic, as an M-module, to the direct sum of n copies of K, if
p=1® py,po € L(£?) and n = dimran po.

Case(ii);: M is of type I, In this case, set K = L?(M,tr), where, of
course, the symbol tr denotes the unique normal tracial state on M. It follows
from Theorem 1.2.4 and Lemma 2.1.5 that 5 £(K) = JM J, and consequently,
mML(K® %) = JIMJ ® L(£?) is a factor of type I1n.

On the other hand, it follows from Proposition 2.1.2 and Lemma 2.1.4 that
the set of isomorphism classes of M-modules is in bijective correspondence
with the set of Murray—von Neumann equivalence classes of projections in this
11, factor; the latter set is, according to the discussion in §1.1, in bijection
with [0, co].

It follows that if H is any separable M-module, then there exists p €
P(amL(K ® £2)) such that M is isomorphic, as an M-module, to ran p and that
mL(H) is a factor of type II; further, the isomorphism class of H depends
only upon Trp.

Case(ii)oo: M is of type 11, In this case — as already mentioned in §1.1 —
there exists a finite projection p; € M such that My = py Mp, is a factor of
type II,, and such that M = My® L(£?). Set Ko = L?(M,, tr) and K = KQ£2.
It is seen then that pL(K) = Jup MoJa, ® 1 — where, of course, the symbol
Ju, denotes the ‘modular conjugation’ operator on Ky — which is a I]; factor.
It follows, as in the last case, that if H is any separable M-module, then there
exists a projection p € P(nL(K ® £2)) such that M is isomorphic, as an M-
module, to ranp and that ,£L(H) is a factor of type IT .
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Case (111): M is of type 111 Notice from the cases discussed so far, that
if P C L£(M), M an arbitrary Hilbert space, and if P is a factor of type I
(resp., IT), then also P’ is a factor of type I (resp., IT). Hence, if P is a factor
of type I11, it follows by exclusion that so also is P'.

Suppose now that K is an arbitrary faithful M-module. It follows from the
previous paragraph that pL(K ® £2) is a factor of type III. Since any two
non-zero projections in such a factor are Murray—von Neumann equivalent,

the proof of this case follows at once from Proposition 2.1.2 and Lemma 2.1 4.
0O

2.2 dimyH

In order to really be able to use Theorem 2.1.6, we shall find it convenient
to work with bimodules. For this reason, we shall make a slight change in
terminology: thus, if H is what we have so far been calling an M-module, we
shall henceforth refer to H as a left M -module.

On the other hand, a Hilbert space H is called a right M -module — where
M is an arbitrary von Neumann algebra — if there exists a o-weakly continuous
linear map 7, : M — L(H) which preserves adjoints and reverses products
(i.e., m(z*) = (7 (z))* and w.(zy) = 7 (y)7(z) for all z,y € M). As with
left modules, we shall often omit referring to the map =, and simply write éz
instead of 7. (z)é whenever z € M, ¢ € H. (The assumed product-reversal is
consistent with writing the operator on the right, as above, in the sense that
{(zy) = (§x)y Vz,y € M, € H.)

Every statement about left modules has a corresponding statement about
right modules, via the following observation. If M is a von Neumann algebra,
recall that there is an opposite von Neumann algebra M such that there
exists a linear isometry z° — z from M onto M which preserves adjoints
and reverses products. (Note that the conditions of the previous sentence
ensure that (M), = M, and determine the von Neumann algebra M°
uniquely up to isomorphism.) Thus, we may — and shall — think of a right
M-module as a left M°-module, i.e., as a Hilbert space H equipped with
a unital normal homomorphism 7% : M — L(H) ~ so that 7% (z%)¢ =
£z Vz e M, e H.

DEFINITION 2.2.1 (1) If M, N are von Neumann algebras, a Hilbert space H
1s said to be an M-N -bimodule if:

(a) H is a left M-module;
(b) H is a right N-module; and

(c) the actions of M and N commute; i.e., (m&)n = m({n) Vm € M,n €
N, £ eH.
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Thus, in order for H to be an M-N-bimodule, there must exist unital
normal homomorphisms m : M — L(H) and 70 : NP — L(H) (ie, a
unital normal anti-homomorphism m, : N — L(H)) such that 7%(NP) (=
m(N)) € m(M)'.)

(1t) If H,K are M-N-bimodules, an operator T € L(H,K) will be called
M-linear (resp., N-linear) if T(z€) = zT¢ (resp., T(Ey) = (T€)y) for all
t € M,y € N,§ € H. The collection of such M-linear (resp., N-linear)
operators will be denoted by yL(H,K) (resp., Ly(H,K)), and an operator
s said to be M-N-linear if it is both M-linear and N-linear; we denote the
collection of all such operators by pLn(H, K).

We shall be concerned primarily with I, factors in this book, and it will
serve us well to spell out exactly what Theorem 2.1.6 says in this special case.

If M denotes a I factor with separable pre-dual, the symbol try, will
always denote the unique normal tracial state on M and we shall simply write
LZ(M) for LZ(M, tI‘M).

We shall assume throughout this section that M denotes a II; factor with
separable pre-dual, and we shall write H, = L?(M) and H., = H; ® £2. Con-
sequently, we shall also use the symbols 7, T, to denote the representations
underlying the above M-modules. (Thus, for instance, 7o (z) = m1(2) ® idge.)
Also we shall write Mo, (M) = M ® L£(£?) and think of elements of M, (M)
as infinite matrices ((z;;)) with entries from M .

Notice now that H,; is actually an M-M-bimodule, with the right action
of M being given by m,(y)é = £y = Jy*JE; in fact, Theorem 1.2.4 says that
in this case, we have an equality m (M) = m.(M).

In order to deal with H,,, we shall find it convenient to think of H, as
Mat) x o (H) — by which we mean the Hilbert space of norm-square-summable
sequences with entries from H;. A moment’s thought should convince the
reader that H, is actually an M-My,(M)-bimodule with respect to matrix
multiplication (explicitly, if £ = (&,&, 1),z € M,y = ((y3;5)) € Mw(M),
and n = z€y, then 7; = ¥, z&y;;), and that in fact, we have 7o (M)
(Mo (M)).

Notice now that M (M) is a I, factor, and the ‘faithful normal semifi-
nite trace’ Tr on it — as discussed at the end of the last section — is given by
the obvious formula Tr((p;;)) = Y52, trar(pii). (This is the ‘natural’ normali-
sation to choose, in the sense that Tr(1x ® ¢) = 1 whenever ¢ is a projection
in £(£?) of rank 1. Throughout the sequel, the symbol Tr — if it is used in the
context of M (M) — will always mean the one defined in this paragraph.)

In the above terminology, the content of Theorem 2.1.6, at least as far as
11, factors are concerned, may be reformulated thus:

THEOREM 2.2.2 IfH is any separable M-module, then there exists a projec-
tion p € Moo (M) such that H = Hyop, and such a projection p is determined
uniquely up to Murray-von Neumann equivalence.
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We now come to a fundamental definition.

DEFINITION 2.2.3 Let ‘H denote an arbitrary separable module over a I,
factor M with separable pre-dual. Then define

dimpy H = Trp

where p € P(Mw(M)) is any projection such that Heop s isomorphic to H
as an M-module.

We shall soon derive some of the basic properties of the assignment H —
dimps H, which should convince the reader that there is every reason to call
this quantity the M-dimension of the module. Before that, however, we pause
to (a) mention an example that might make the reader more favourably dis-
posed to this definition, and (b) make a remark of a historical nature.

EXAMPLE 2.2.4 Suppose I is a discrete subgroup of a semisimple Lie group
G such that covol(T") < oo. Assume further that I' is an ICC group in the sense
discussed in §1.4. Suppose now that w is a ‘discrete-series representation’ of
G, meaning that 7 is a subrepresentation of the left-reqular representation
of G, or equivalently, that every (equivalently, that some non-zero) matriz-
coefficient of w (i.e., a function on G of the form (m(-)€,m) where €, belong
to the Hilbert space H, underlying the unitary representation m) is square-
integrable with respect to Haar measure.

It is then the case that | extends to an isomorphism of LT onto w(T)";
consequently, the algebra w(T')" is also a I, factor; and it can be shown — see
[GHJ] - that

dimyryr (Hy) = covol(T') x do,

where d, denotes the so-called ‘formal dimension’ of the discrete series rep-
resentation .

REMARK 2.2.5 We should mention here that what we have termed dimys H
occurred first in the work of Murray and von Neumann ([MuN1]) as the so-
called ‘coupling constant’ of the module. Their definition is different from
the one presented here (and depends upon a result we do not prove here,
since that is not really essential for our purposes). They define this coupling
constant as infinity if »L(H) is an infinite factor, and if this is a factor
of type 11, they show the following is true: pick any € # 0 in H and
let p € M (resp., o € mL(H)) be the projection operator whose range is
[ML(H)E] (resp., [ME]); then the quotient

trar(p)
tT(, (1) (P')
turns out to be a positive finite constant which is independent of the initial

choice of vector &; this is the number that they call the ‘coupling constant’ of
the module, and this number agrees with what we have defined as dimps H.
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(In order to minimise notation, we assume in the next proposition that
M C L(H) rather than that 7 is some abstract M-module; there is no real
distinction here since every unital normal homomorphism of a II; factor is
an isomorphism onto its image — see the appendix.)

PROPOSITION 2.2.6 Let H be a separable Hilbert space, and suppose M C
L(H) is a I, factor.
(i) For each d € [0, 0], there ezists an M-module H,4 3uch that dimpHg=d.
(1t) There ezists a unique d € [0, 00] such that H = Hg; in particular, two
M -modules are isomorphic if and only if they have the same M -dimension.
(iii) dimpyH < 00 & M’ is a II; factor.
(iv) dimpy L2(M) = 1.
(v) If {K,}n is any countable collection of separable M -modules, then

(vi) If dimps H < 0o so that M’ is a IT; factor (see (iii) above), and if
p' € P(M'), then dimpy(p'H) = trpp(p’) dimps H.

(vii) p € P(M) = dimp, (pH) = (trar(p)) = dimps H.

(vit) If dimp H < 0o — see (i1i) above — then

dimpp H = (dimpr H) ™2

Proof: The first two assertions follow immediately from Theorem 2.2.2,
and from the facts concerning the semifinite trace Tr that were listed out in
§1.1.

We shall find the following description of Hy, d < oo, convenient.

For d = n € N, H, is the direct sum of n copies of H;. As in the case
of d = oo, we think of H, as Mat;x,(H1); observe, as before, that H, is
naturally an M-M,,(M)-bimodule (with respect to matrix multiplication) in
such a way that yL(Hy,) = 7. (Mu(M)).

If d € [0,00), pick an integer n which is at least as large as d, pick a
projection g in the II; factor Mn(M) such that try,a(g) = £ and set
Hd = an.

(iii) Notice that if H = Heop , for some p € P(My(M)), then M’ =
Mu(M),, and that Trp < co 4 p is a finite projection.

(iv) If p = 1p ® e11, where e;; denotes the matrix-unit (with 1 in the
(1,1)-place and zeros elsewhere), then Ho,p & L*(M).

(v) Let dimys K, = dp,. We can find mutually orthogonal projections pj, in
Moo(M) such that Trp, = d, for each n. If p = ¥, pn, the desired assertion
follows from the fact that Tr is ‘countably additive’ on P(Mu(M)), since
@n ’Cn = Hcop‘

(vi) We may as well assume that H = H,4, where H, has been constructed
as in the discussion preceding the proof of (iii) of this proposition. Let n, ¢
have the same meanings as above. In this case, since yL(Hq) = Mn(M),,
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it follows that there exists a projection p € M, (M) such that p < ¢ and
p' = 7-(p). Then, pH = H,p and consequently, we see that

dimp (pPH) = n trar, () (D).

On the other hand, it follows from the uniqueness of the trace in a Il factor
that

trar(p) = traon,(p)
trar, () (P)
tar, (a0 ()
L dimp (p'H)

(vil) Notice that the conclusion is ‘additive in H’, in the sense that if
H = @, H, is a decomposition of H into countably many M-submodules,
and if the desired assertion is valid for each H,, then the desired assertion
is valid for H as well. Hence there is no loss of generality in assuming that
dimps H < trpp(< 1).

Hence - see the discussion just prior to the proof of (iii) above — we may
assume that H = (H,)q , where ¢ € P(M) and ¢ < p. It is then seen that

dimag, (PH) = dimyg, (p(H1)g)
= dimyg, (p(H1)p - 9)

dimay, (L*(My)q)
= trap,(g)-1 (by (vi) and (iv))
trpg
trap
dimM H

tryp

(viii) We may assume that H = H, is constructed as described in the

comments preceding the proof of (iii) above. First, if d = 1, this is a conse-
quence of Theorem 1.2.4 (1). Next, if d = n, note that H,e;; = H; and that
mr(en) is a projection in m,(M,(M)) = m(M)’ with trace ; it follows from
(vii) above that

1 = dimg, con) Ha

= dim(MC(Hn),r(gn)) (Hnell)

1.
= 1 dim(, £, (Ha);
hence dim(,, £(3,))(Hn) = %, thus proving the assertion when d = n. A similar
reasoning, applied to the fact that H, is obtained by ‘cutting down’ H,,, proves
the general case. |
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2.3 Subfactors and index

We begin with a look at some examples of bimodules (or correspondences, as
introduced and popularised by Connes — see [Con2]).

Suppose, to be specific, that M is a IT; factor and that H; = L*(M).
Then, as has been already observed, H; is an M-M-bimodule in a natural
fashion; but there are several other bimodule structures on L%(M) as follows.
Fix an automorphism 6 of M, and define the bimodule H, to be L?(M)
as a Hilbert space, but where the actions are given by: z - £ -y = z£6(y),
where the actions in the right side are as in H; (and the actions on the left
refer to the actions in Hp). It is easy to see that Hy, so defined, is indeed
an M-M-bimodule, which is ¢rreducible in the sense that Hy has no proper
sub-bimodules (or equivalently, the von Neumann algebra prLpr(Hg) reduces
to the scalar multiples of the identity operator). Thus, there are plenty of
irreducible M-M-bimodules, although there are no irreducible M-modules.

Further, since the only left-M-linear maps on L?(M) are of the form
m(z),z € M, it follows that if §; € Aut M,i = 1,2, then the bimodules
‘Hg, are isomorphic if and only if the automorphisms are -outer equivalent
- meaning that there exists a unitary element u € M such that 6,(z) =
02(uzu*) Yz € M. Thus, the set of equivalence classes of irreducible M-M-
bimodules is at least as rich as the group of outer automorphisms (viz., the
quotient of Aut M by the normal subgroup of inner automorphisms). In fact,
it is much richer, as can be seen, for instance, from the fact that we could have
defined the bimodule Hy by only requiring 6 to be a unital endomorphism.
(It is a fact that if M is a factor of type III, then every M-M-bimodule
is isomorphic to Hy, for some endomorphism 6 — see the third paragraph of
§4.1.)

It is clear that the assignment

H — (dimps— (M), dim_p(H)) (2.3.1)

defines an isomorphism-invariant of the M-M-bimodule H. The bimodules H,
show that the above is not a complete invariant of the bimodule. Motivated by
the success of Theorem 2.1.6, we are naturally led to the following question.

QUESTION 2.3.1 What can be said about the set
{(dimps—(H),dim_ps(H)) : H is a separable M-M-bimodul}?

Before we get to this question, pause to notice that if M is a factor and
if H is an M-M-bimodule, then, by definition of a bimodule, we see that
m(M) is a subfactor of m.(M)'; further, we see that, at least in this example,
the subfactor has ‘trivial relative commutant’ in the ambient factor precisely
when the initial bimodule is irreducible. We formalise all of this in the next
definition.
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DEFINITION 2.3.2 A subfactor of a factor M is a subalgebra N C M such
that N is also a factor and N contains the identity element of M. The sub-
factor N is said to be irreducible if it has ‘trivial relative commutant’ — i.e.,
if NNNM =cl.

EXAMPLE 2.3.3 (a) Suppose Ty is a subgroup of T, and suppose that both T
and 'y are ICC groups. Notice then that LTy sits naturally as a-subfactor of
the Iy factor LT. Notice, further, that ¢*(I') = L?(LT) and that if T = I Tps;
is the partition of T' into disjoint cosets of Iy, then £2(T') = @(£2(Ty))s; is an
orthogonal decomposition of £2(T') into (left) LTo- submodules (each of which
is isomorphic to £2(T'y) as an LTo-module, and consequently, we have

dimLpo (ZZ(F)) = [F : Po]

(b) Suppose G is a finite group acting on a II;-factor P. It is true — see
the first paragraph of §A.4 — that an automorphism 6 of a I, factor is ‘free’
in the sense of Definition 1.4.2 if and only if it is not an inner automorphism
(i.e., not of the form Adu = u(-)u* for some unitary u in the algebra). It
follows that if P,G are as above, then the crossed product algebra P X G s
a I, factor if and only if the action is outer — meaning that no non-identity
* element of G acts as an inner automorphism.

Suppose then that G acts as outer automorphisms of P, so that M = PxG
is a I factor. It should be clear now that every subgroup H of G would yield a
subfactor N = P x H of M. Notice now that there is a natural identification
L*(M) = L*(P) ® ¢*(G) and that if G = 11 Hs; is the partition of G into
distinct cosets of H, then (i) each of the subspaces H; = L?*(P) Q@ [{&hs; : h €
H}] is an N-submodule of L*(M), which is isomorphic, as an N-module, to
L%(N), and (i1) L*(M) = @ H;. It follows that dimy(L*(M)) = [G : H].

Motivated by the preceding examples, we make the following definition.

DEFINITION 2.3.4 If N is a subfactor of a I, factor M, define the indez of
N in M by the expression

[M : N] = dimy(L*(M)).

The next proposition shows that the index [M : N] can be read off from
any M-module of finite M-dimension.

PROPOSITION 2.3.5 Let N C M be an inclusion of I1, factors. Let H be any
separable M-module such that dimy H < oo. Then

dimy H < 0o & [M : N| < o0;
i fact, we have the identity

dimy H = [M : N]dimy H. (2.3.2)
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Proof: Suppose, to start with, that KC;,;7 = 1,2, are any two M-modules
with dimps KC; < 00. It follows then that there éxists n € N and a projection
¢ € uML(K; ® C™) such that K; &2 ¢'(Ky ® C"); thus we may deduce that
dimy K; < dimy (K ® C*) = n x dimy K,. Since the roles of K; and K, are
interchangeable, we see that dimy Ky < 0o < dimy Ky < co. In particular,
we see that dimy H < co & [M : N] < .

To prove the asserted equality, we may assume that, as an M-module,

H = Hug, where H, = IX(M)e " 2% SL2(M),q € My(M),tra,anq =
Ldim) H. Then dimyH, < oo so N'(= yL(H,)) is a I]; factor, and
hence, it follows that

dimy H = trym,(q) dimy H,
= tranT(q)n dimy H;
= dimps H[M : N]. O

Before proceeding further, we record an immediate consequence of this
fact and Proposition 2.2.6(viii).

COROLLARY 2.3.6 (a) If N C M is an inclusion of 11, factors, and if M C
L(H) and dimp; H < oo, then

[N': M']=[M: N].
(b) If N C M C P is a tower of II; factors, then
[P:N]=[P:M][M:N]. O
In particular, if H is an M-M-bimodule which is bifinite in the sense that
both dimy,— H < oo and dim_ps H < o0, it follows then that
dimp H - dim_p H = [7,(M)" : m(M)].

Thus, we find that the answer to Question 2.3.1 is tied up with the fol-
lowing related question.

QUESTION 2.3.7 What are the possible values of [M : N|, where N C M is
an inclusion of Iy factors ?

The following result — see [Jonl] — completely answers Question 2.3.7,
and the answer is quite unexpected in the light of our experience with the
classification of modules.

THEOREM 2.3.8 If N C M is any inclusion of II; factors, then
[M:N]e {4cos2% :n=3,4,---}U[4, 0]

Further, if A € ({4cos® L : n = 3,4,---}U[4, ]), then there exists a subfactor
Ry of the hyperfinite I1; factor such that [R: Ry] = .
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In this section, we shall content ourselves with describing a construction
of subfactors of all possible index values > 4.

LEMMA 2.3.9 Let N C M be an inclusion of 11} factors, and suppose M C
L(H) where dimp H < oo. If p € P(N' N M), then

[pPMp : Np| = try(p) - trar(p) - [M : NJ.
Proof: 1t follows from Proposition 2.3.5 that

dimNp(pH)

dimPMp(pH)

(trn(p) dimy H) - dimpgrp (pH)
(try(p) dimy H) - (trar(p) dimpy H),

[pMp: Np] =

as desired. O

PROPOSITION 2.3.10 Suppose M is a II; factor such that M, = M;_, for

some projection p € M. Let 8 : M, — M,_, be such an isomorphism, and

define N = {z+0(z) : z € M,}. Then N is a subfactor of M with [M : N] =
1 1

_|_

tryp ' trar(1-p)”

Proof: Note that p € N'NM and that pMp = Np, so that [pMp : Np| = 1.
Hence, by Lemma 2.3.9,

1=try(p) - trm(p) - [M = NJ,

and so 1
——— =tryi(p) - [M : NJ.
o) = @) M
Similarly, we also have
1
———— =try(1—p) - [M : NJ.
ey = ) (M)
Add the above equations to obtain the desired conclusion. 0

The existence of subfactors of the hyperfinite I]; factor R with index at
least 4 is an immediate consequence of proposition 1.4.9 and the preceding
proposition (and the trivial fact that the mapping ¢ — (3 + &) maps (0,1)
onto (0,'c0) ).

The preceding construction used the existence of non-trivial projections in
the relative commutant. The following question, which naturally arises, still
remains unanswered.

QUESTION 2.3.11 Describe the set of indez values [R : Ro) of irreducible
subfactors Ry of the hyperfinite factor R.
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We conclude this section with some useful consequences of Lemma 2.3.9.

PROPOSITION 2.3.12 Suppose N C M is an inclusion of II, factors such
that [M : N] < co. If there exist pairwise orthogonal non-zero projections
p1,-*,Pn € N'0N M, then [M : N] > n?

In particular,

(1)[M : N] < oo = N'N M is finite-dimensional;

(#)[M:N)<4=NnNM=clL

Proof: Deduce from Lemma 2.3.9 that

[M:N] > Zn:trM(pi)[M:N]

i=1

no1
> -
- ,;trzv'(?z‘)
> n’

(since ry,---,rm € (0,1), Ty = 1= T2y + > m?).
The above inequality clearly implies (i) and (ii). O



Chapter 3

Some basic facts

3.1 The basic construction

Suppose N C M is an inclusion of finite von Neumann algebras. Fix some
faithful normal tracial state tr on M, and consider the M-M-bimodule H =
L?(M,tr), with its distinguished cyclic trace vector 2. Since H is the com-
pletion of MQ, it follows that the subspace H; = [NQ] of H can be naturally
identified with L%(N, tr). Let ey denote the orthogonal projection of H onto
the subspace H;. It is a consequence of Theorem 1.2.4(1) that ey (M) C NQ,
and hence the projection ey induces, by restriction, a map £ : M — N. The
map E is called the (tr-preserving) conditional expectation of M onto N,
and is easily seen to satisfy the following properties:
(i)
enzey = FE(z)ey Vz € M, (3.1.1)
and consequently E defines a (Banach space) projection of M onto N.

(ii) E is N-N-bilinear, meaning that E(nymny) = ny E(m)n,.
(iii) tro E = tr.

It is clear from equation (3.1.1) that the conditional expectation is a *-
preserving map, or, in other words, that

Jey = CNJ, (312)
where J denotes the modular conjugation operator on H.

DEFINITION 3.1.1 The passage from the initial inclusion N C M to the von
Neumann algebra (M,eyx) = (M U {e,})", and consequently to the tower
N C M C (M, en), is called the basic construction.

We list some simple relations between the various objects involved in the
basic construction. Also, we adopt the convention that M (and hence, also
N) is identified, via m, with a subalgebra of £(H); thus, for instance, the
right action of M on H is given by ,.(z) = Jz*J.
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PROPOSITION 3.1.2 With the foregoing notation, we have:
(Z) ey € N'.
(1) N=Mn {ex}.
(151) (M, en) = JN'J.
(iv) Assume both M and N are II; factors. Then:
(a) (M, en) is a 11 factor if and only if [M : N] <_oo; in this case, we
have [{M,en) : M] =[M : N].

(b) tr(M,eN)(eN) = [M : N]—l.

(¢) (Markov property) Ep(en) = txa,eny(en) — where Ep denotes the con-
ditional ezpectation of the I1; factor (M, en) onto the subfactor M.

Proof: The first assertion is obvious; as for the second, the fact that the
trace vector (2 is separating for M implies that the map = — zey is injective,
and consequently, if z € M, it follows from equation (3.1.1) that £ commutes
with ey if and only if z = Ex.

(iii) It follows from (ii) that

IN'T = J(M,{en)")J
= (JM'J, JenJ)
= <M,6N>'

(iv) (a) The first assertion is a consequence of (iii) above and Proposition
2.2.6(iii). As for the second, note that

[(M,en): M] = (dimgey) L*(M))™
(dim gy g H)—l
(dimp» H)_l
dimNH

[M : N).

(b) On the one hand, tr(aey)en = tryrey, while on the other,

1 = dimy L*(N)
= dimN(eNH)
= tI’NICN'[MCN].

(c) We need to verify that
trmen)(zen) = Ttrp(z) Yz € M,

where 7 = tr(areyy(en) = [M : N|7'. We first verify this identity whenever
z € N; for this, note that, in view of (i), the map = +— tr(zey) is a trace
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on the II; factor N which takes the value 7 at the identity; appeal to the
uniqueness of the trace in a finite factor to conclude the proof in the special
case. The case of a general z € M reduces to the above case because of
equation (3.1.1), thus:

tr<M,5N)(:L‘6N) = tr<M’€N)(a:e?\,)
= tT(mrey) (enzen)
= tr(M,eN)(EN(z)eN). O

REMARK 3.1.3 In the sequel, if N C M is an inclusion of finite von Neu-
mann algebras, if tr is a fized tracial state on M, if (M,ey) is as above,
and if ¢ denotes an extension of tr to (M, ey), we shall say that en satisfies
the Markov property with respect to the algebra M (and ¢) if it is the case
that Eyr(en) = d(en), where Ey denotes the unique ¢-preserving conditional
expectation of (M, ey) onto M.

Before proceeding further, we record two simple consequences of the last
proposition.

COROLLARY 3.1.4 Suppose N C M 1is an inclusion of 11, factors. Then
[M:Nl=1&N=M.

Proof: If ey and (M, ey) are as above, then the assumption [M : N] =1
implies that tr(aeyyen = 1, and the faithfulness of the trace now implies that
ey = 1; thus, in the notation of the first paragraph of this section, we have
H; = H. An appeal to Proposition 3.1.2 (i) completes the proof. a

COROLLARY 3.1.5 If N C M is an inclusion of 11, factors, then
[M: N} ¢(1,2).

Proof: On the one hand, it follows from (iv)(a),(b) of Proposition 3.1.2 that
[(M,en) : N] = [M : NJ%. On the other hand, since ey € N' N (M, ey), the
non-triviality of the relative commutant implies, via Proposition 2.3.12(ii),
that we must have [M : N] > 2. i

We conclude this section with one way of constructing subfactors of the
hyperfinite II; factor.

EXAMPLE 3.1.6 Let us take the model R = Ry (in the notation of §1.4) of
the hyperfinite I1; factor. (Everything we say can be said just as well with any
N in place of 2.) Let A, have the same meaning as in the above-mentioned
construction of Ryy. Notice, to start with, that, for any n, there is an obuvious
identification A, @ Ay = Apig; for any © € Ay, let us denote the image of
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1®x under this identification by i1 i (Thus, Tny1,ni2 1 just the element
z ‘sitting in slotsn+1,n+2".)
Now fiz a unitary element u € Ay, and notice that the equation

Ou(z) = Jim Aduyyugsun g (z) (3.1.3)

defines a unital normal endomorphism 6, of R = R(yy. Consider the subfactor
R, = 0,(R) of R. Thus, we get a family of subfactors of R parametrised by the
unitary group U(4,C). It must be clear that the subfactor Ry, corresponding
to u = 1, is the trivial subfactor Ry = R. On the other hand, if we take u
to be the unitary operator implementing the ‘flip’ on C?* ® C* - or, in other
words,

o O
o= OO
O O+ O
= O O o

0
— then it is easy to see that 0, defines the ‘shift’, thus:

0, (71 ®2:® ) =111 QT Q - - -

whenever Ty, Tq, - - - € My(C). Thus, we find that in this case, R = My(C)®R,,
and consequently, [R : R,] = 4.

Since the unitary group U(4,C) is connected, we find that ‘the indez is a
discontinuous function of the subfactor’!

3.2 Finite-dimensional inclusions

In this section, we recall various elementary facts concerning finite-dimen-
sional von Neumann algebras.

To start with, any finite-dimensional C*-algebra A is semi-simple and
hence, by the Wedderburn—Artin theorem, is isomorphic to the direct sum of
finitely many matrix algebras over C. To be specific, if A is a finite-dimensional
C*-algebra, then

A= M, (C)d M,(C)® - & M,,(C) (3.2.1)

for a uniquely determined integer k(= dim Z(A)) and a uniquely determined
set {ny,---,ni} of positive integers. (The fact is that A admits exactly k
equivalence classes of (pairwise inequivalent) irreducible representations, and

the dimensions of these representations are precisely the integers ny, -, ng.)
If equation (3.2.1) is satisfied, we shall say that A is of type (n1,-- -, nk)
and we shall refer to the vector @ = (ny, - - -, ng) as the dimension vector of A.

Further, since a matrix algebra is a factor, it follows that if A is as above,
then there is a bijective correspondence between the set of faithful tracial
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states on A and the open simplex AF = {f = (t;,--, %) € R*: ¢t; > 0VYj
and mit = 1} given by 7 — ¢ , where t; = 7(p;) is the trace of a minimal
(= rank one) projection in the j-th summand of A. (The reason for the
superscript / (which denotes ‘transpose’) is that we shall find it convenient
to adopt the convention that dimension-vectors are row-vectors while trace-
vectors are column-vectors.)

That’s about all there is to say about finite-dimensional C*- (and hence
von Neumann) algebras.

Suppose now that we are given an inclusion A C B of finite-dimensional
C*-algebras. Then, besides the dimension-vectors, say 7 = (ni,---,ns) and
m = (my,---my), of A and B, respectively, there is more data needed to
describe how the smaller algebra is included in the larger. The more that is
needed is the k x ! inclusion matrix A = AL described thus: A;; is the
number of times that the i-th irreducible representation of A features, in the
restriction, to A, of the j-th irreducible representation of B. Less formally, but
more transparently, this is the number of times the i-th summand of A gets
repeated in the j-th summand of B. This data can clearly be encoded equally
efficiently in a bipartite (multi-) graph with k even and ! odd vertices, where
the i-th even vertex is joined to the j-th odd vertex by A;; bonds. (This graph
is sometimes referred to as the Bratteli diagram of the inclusion A C B.)
It is a fact that the isomorphism-class of the inclusion is uniquely determined
by the inclusion matrix and the dimension vectors of A and B.

EXAMPLE 3.2.1 The inclusion

(3 2 2o xesiose

0y
n

B = M;(c)® M,(C) ® Mi(C)

1s described by the data

A n o= (2,1) Bratteli diagram
Coms oY) A
B m = (321

O

It must be clear from the definitions that if the inclusion is unital - i.e.,
if the subalgebra contains the identity of the big algebra, and this is the only
kind of inclusion that we shall ever consider here — then the dimension-vectors
are related to the inclusion matrix by the equation

m=TA. (3.2.2)
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Similarly, if a tracial state 7 on A (resp., ¢ on B) corresponds to the
‘trace-vector’ 7 (resp., ), then

T=0laot=As (3.2.3)
It should be clear that if we had a whole tower
A CAC---CACAC -

of finite-dimensional C*-algebras, then we could stack up the Bratteli dia-
grams corresponding to the several inclusions and obtain the Bratteli dia-
gram of the tower. (Of course, for this to be possible, one must consistently
label the direct summands of any algebra in the tower.) Or, in terms of the
inclusion matrices, one should observe that — with the summands of the Ax’s
consistently labelled — Aﬁ:“ = Aﬁ:“ . Aﬁ:ﬁ.

For instance, we might have the following tower:

A1 C A C A3C A4C AsC -

A good feature about a tower {4,}32,, as above, is that it has ‘finite
width’ — meaning that sup, dim Z(A,) < co — and the Bratteli diagram is
connected and is periodic (of order two). The reason this is ‘good’ is that for
such a tower, the algebra |J A, admits a unique tracial state and yields the
hyperfinite I; factor as its completion in the GNS representation associated
with the trace — as in our discussion of R(y) in §1.4. (This is a consequence
of the general fact that if {A,}°2, is an arbitrary tower of C*-algebras and if
T is a tracial state on Ay, = U A,, and if 7, denotes the GNS representation
associated with 7, then 7,(Ax)"” is a factor if and only if 7 is an extreme
point in the set of tracial states of As.)

We now consider the basic construction, when applied to an inclusion
A C B of finite-dimensional C*-algebras. Notice that (B, e4) is, by definition,
an algebra of operators on the finite-dimensional space L*(B, ¢), and is hence
also finite-dimensional.

LEMMA 3.2.2 (a) Let A C B be a unital inclusion of finite-dimensional C*-
algebras. Fiz a faithful tracial state ¢ on B, and let J denote the modular
conjugation operator on L*(B, ¢). Let e denote the orthogonal projection of
L*(B, ¢) onto the subspace L*(A, ¢|4); let E4 denote the ¢-preserving condi-
tional ezpectation of B onto A; and let B; = (B, e) denote the result of the
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basic construction. Then:
(1) ze = Jz*Je, Vz € Z(A);
(i) if b € B, then b € Z(B) & b= Jb*J,
(i11) z — Jz*J is a *-isomorphism of Z(A) onto Z(B);

(iv) if p1,- -+, Dm (T€SP., q1," ", qn) 4 an ordering of the set of minimal cen-
tral projections of A (resp., B), and if we set p; = Jp;J,1 < i < m,
then p1,- -+, Dm 1S an ordering of the minimal central projections of By;

if A 1s the inclusion matriz for A C B, computed with respect to the p;’s
and g;’s, then the inclusion matriz for B C B, computed with respect
to the g;’s and the p;’s, is the transpose matriz A’'.

(b) Furthermore,
(i) the map a v ae is a *-isomorphism of A onto eBje;

(1) if p is a minimal central projection in A, and if py is a minimal pro-
jection of A such that py < p, then poe is a minimal projection in B
which is magjorised by the minimal central projection JpJ of B;.

Proof: (a)(i) For all z € Z(A),b € B, we have
2ebQp = 2E4(b)Qp = E4(b)2Qp = J2* JEA(D)Qp = J2* JebQdp.

(ii) This is obvious.

(iii) The map a — Ja*J is an anti-isomorphism of A into £(L%(B)), and
hence its restriction to the abelian subalgebra Z(A) is an isomorphism onto
J(ANA")J = B;Nn B,.

(iv) Only the assertion about the inclusion matrices needs proof. If A
denotes the inclusion matrix for B C Bj, the definitions imply that

. 1
Aij = [dime(pig; A'pigj N pig; Bpig;))?,
while
% . ~ ~ ~ ~\11
Aj; = [dime(q;5:B'q;pi N q;9iB1g;04))? -
Notice, by (ii) and (iii) above, that ¢;p; = pig; = Jpig;J, so that
q;PiB'q;pi N q;0:B1g;pi = Jpig;JB'Ipig;J N Jpiq; JByJpig; J
= J(pigjBpig; N pig; A'pig;)J,
thereby showing that indeed, ]\]‘i = Ayj.
(b) (i) Clearly the assignment a— ae defines an injective *-homomorphism

of A into eBje. To see that it is surjective, notice first that — thanks to the
fundamental equation ebe = E(b)e Vb € B, where E denotes the ¢-preserving
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conditional expectation of B onto A — the set {by + Y1, biebl : n > 0,b;, b} €
B} is a *-subalgebra of B; which contains B U {e} and is consequently equal
to all of By; since ebe = E(b)e, e(beb')e = E(b)E(V)e, it follows that indeed
eBe = Ae.

(ii) This follows at once from (b)(i), (a)(iil) and (i). O

We thus find that the isomorphism-type of (B,e4) is independent of the
initial state o. It turns out, however, that there is one ‘good choice’ of trace
on the big algebra — which is unique, under mild ‘irreducibility’ assumptions
— as shown by the next result.

A word about notation before we state the next result (which is necessary
because traces on finite-dimensional algebras are far from unique): if A C B
are as above, and if ¢ is a tracial state on B, we shall write o0 = trzif o and 5
are related as in equation (3.2.3); further, in this case, we shall write Ef for
the unique trz-preserving conditional expectation of B onto A.

PROPOSITION 3.2.3 Let A = AE denote the inclusion matriz, where A C B
is an inclusion of finite-dimensional C*-algebras as above; and let T = try be
a tracial state on B, as described above. The following conditions on the trace
T are equivalent:

(i) T extends to a tracial state T, = try, on (B,eq) such that Eg (ea) = M1
for some scalar J;

(1) AN'AT = )71,
Further, when these conditions are satisfied, the scalar A must be the reciprocal

of the Perron—Frobenius eigenvalue of the (positive semi-definite and entry-
wise non-negative) matriz A'A, and hence,

AT =[JNA] = (1AL

Proof: Let p;, g;, p; be as in Lemma 3.2.2(a)(iv); we assume that it is these
ordered sets of minimal projections in the three algebras A, B and (B, e4) with
respect to which inclusion matrices and trace-vectors are described. Thus, the
inclusion matrix for B C (B, e,4) is just A’ (by Lemma 3.2.2(a)(iv)).

Let 7, = try, be any tracial state on (B, e4) which extends 7 (or equiva-
lently, #, is a trace vector for (B, e4) such that A%, = 7). For each i, pick a
minimal projection p? in A such that p? < p;, and set p? = ple. It follows
from Lemma 3.2.2(b)(ii) that

(AD); =7(p?) and (F1); = (p?) Vi. (3.2.4)

On the other hand, it follows, by reasoning exactly as in the proof of
Proposition 3.1.2(iv)(c), that

ES(ea) = A1 & Ef(ea) = AL (3.2.5)
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Hence condition (i) of the proposition is seen to be exactly equivalent to the
requirement

(i)' There exists a trace-vector 7, for (B, e4) such that A'T; =Zand A7, =
At

If (i)’ is satisfied, then A’AT = A"1A’f; = A\~'7 and (ii) is satisfied. Con-
versely, if (ii) is satisfied, and if we define #; = AAZ, we see that (ii)’ is satisfied.

DEFINITION 3.2.4 A trace T which satisfies the equivalent conditions of
Proposition 3.2.3 is said to be a Markov trace for the inclusion A C B.

COROLLARY 3.2.5 Let A C B be an inclusion of finite-dimensional C*-
algebras.

(a) If 7 is a Markov trace for the inclusion A C B, then it extends uniquely
to a state tr; on (B,e4) which is a Markov trace for the inclusion B C
<B, €A>.

(b) The following conditions are equivalent:

(i) there exists a unique Markov trace for the inclusion A C B;

(i) the Bratteli diagram for the inclusion A C B is connected.

Proof: (a) This is clear from (the proof of) Proposition 3.2.3.

(b) The content of Proposition 3.2.3 is that try is a Markov trace for the
inclusion A C B precisely when 7 is a Perron—Frobenius eigenvector of the
(entry-wise non-negative) matrix AA’. The point is that the general theory
says — see [Gant], for instance — when such an eigenvector is unique, and
that answer, when translated into our context, is that (ii) is precisely what is
needed to ensure that uniqueness. O

3.3 The projections e, and the tower

In this section, we shall be interested in an (initial) inclusion M_; C M, of
finite von Neumann algebras, which falls into one of the following cases:

Case (i) M, and M_; are II; factors, and [M,: M_;] < oo;

Case (ii) M, and M_; are finite-dimensional; in this case, we shall always
assume that the inclusion is ‘connected’ (meaning that the Bratteli diagram
is connected), and we shall reserve the symbol try, for the Markov trace for
the inclusion, which is unique by Corollary 3.2.5(b).

In either case, write M; = (M, e;), where we write e; for the projection
we denoted earlier by eps_,. The reason for the changed notation is that then
the inclusion My, C M; falls into the same ‘case’ above, as did the initial
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inclusion M_; C Mpy; hence, we can iterate the above procedure to obtain a

tower
MyCM, € CMyC My S (3.3.1)

where M1 = (My, eny1) is the result of applying the basic construction to
the inclusion M, _; C M,, and e,; denotes the projection implementing the
(trps, -preserving) conditional expectation of M, onto M,_;.

It must be clear that in case (i), the tower (3.3.1) is a tower of I1; factors
such that [My41 : M,] is independent of n; and that in case (ii), it is a tower
of finite-dimensional C*-algebras. In either case, we see that |J M, comes
equipped with a tracial state tr (whose restriction to M, is trys,); in fact
this is the unique tracial state on |J M, and consequently we see that M., =
mee(U M,,)" is a II, factor (which is hyperfinite in case (ii), and also in case
(i) provided that each of My and M_; is).

EXAMPLE 3.3.1 (i) Suppose M_, = C1 C My(C) = My; then the inclusion
matric A%‘il is the 1 x 1 matriz [N]. It follows that M,—; & Mny~(C) =
®" My(C) Vn > 0, and we find that M = Rw). If we identify My with the
subalgebra My(C) ® 1 of My(C) ® My (C) = M,, then the projection e; is
given, in terms of the usual system {e;}Y;_, of matriz units of My(C), by
the formula ey = % SN e ® €.

(i) (In a sense, this is a ‘square Toot’ of the last ezample.)

Suppose M_; = €1 C ¢ = M,. Then A%"_l =[11---1] and it follows
that Mon—1 = My« (C) Vn > 1. If we think of My as the diagonal subalgebra
of Mn(C) = M, then the projection e, is the N x N matriz with all entries
equal to %.

The sequence {e,}%; of projections plays a central role in the theory of
subfactors. We list below some properties of this sequence.

PROPOSITION 3.3.2 Let {e,}52, be the sequence of projections in the Il
factor My, constructed, as above, from an initial inclusion M_y C My which
folls into either case(i) or case (ii). Write tr for the unique tracial state on
My,. Then:

(i) the number T = tre, is independent of n; further,

o | [My:M_y] in case (i),
= [|AYR |12 in case (4);

(i) tr(ze,) = Ttrz Vo € Mp_1,n > 1;
(1) en € M!_, N M, ¥n > 1, and in particular,

€nem = €men if |m —mn|>1;

(v) ent1€neni1 = Tenpy VY0 > 1;
(v) enentren = TEH V0 > 1.
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Proof: The Markov property and the fact that e, has trace equal to 7 are
proved in Proposition 3.1.2 (for case (i)) and Proposition 3.2.3 (for case (ii));
this takes care of (ii) and (i).

Assertion (iii) is a consequence of Proposition 3.1.2 (i).

(iv) Since tr restricts, on M,, to tryy,, it follows from equation (3.1.1) that
ent1Zent1 = Eur,_, (z)ent1 Yz € M,; in particular, if we choose z = e, and
use the already proved (ii), we get (iv).

(v) It follows from (iv) that u = T %eneny is a partial isometry in Mo,
with initial projection given by u*u = e,4;1. The final projection of v clearly
satisfies uu* < e,. On the other hand, we must have

T =tre, >'tr(uu*) = tr(u*u) = tre,y = 73

thus we must have truu* = tre,; since tr is a faithful trace, this implies that
wu* = e,, as desired. 0O

Notice the two expressions for 7 in Proposition 3.3.2(i); this is just an
indication of the deeper relationship between index of subfactors and squares
of norms of non-negative integer matrices. Parallel to Theorem 2.3.8, there is
an old result which is essentially due to Kronecker — see [GHJ] — which says
that if A is a finite matrix with integral entries, then

lIA|| € {2cos%:n=2,3,4,---}u[2,oo].

To better understand this statement, recall that — exactly as the inclusion
matrix AE is related to the Bratteli diagram for the inclusion A C B of
finite-dimensional C*-algebras — there is a bijective correspondence between
finite matrices with non-negative integral entries and finite bipartite (multi-)
graphs. The matrix G' which corresponds to a bipartite graph G is referred
to as the ‘adjacency matrix of G’ and ||G|| will also be called the norm of
the graph G. Closely tied up with Kronecker’s theorem (and the well-known
classification of Coxeter graphs or Dynkin diagrams) is the fact that the only
(bipartite) graphs with norm less than two are the ones listed below, where
the subscript refers to the number of vertices in the graph.

Zn oe—eo—o. —<
6 I
Z? o—o—o—I—o—o
8 o—o——o——o—I——o——o
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Now return to the case of a general initial inclusion M_; C M, (which
falls into case (i) or case (ii)). Let e,, 7 be as in Proposition 3.3.2(i). (Thus,
according to the foregoing discussion and Theorem 2.3.8, either 77! > 4 or
771 = 4 cos® L for some integer m > 3.)

Consider the algebras defined by

-1y _ Alg{ela"'yen} = {61,"',671}” ifn > 0,
()= { C ifn e {-1,0}.

(This notation turns out to be justified, as the following discussion shows.)

It is an easy consequence of the properties in Proposition 3.3.2(iii), (iv)
and (v) that each @Q,(77!) is finite-dimensional. It turns out — see [Jonl] for
details - that for any 7 < %, the Bratteli diagram for the tower {Qn(77)}32_;
is given by a ‘half-Pascal-triangle’, and that the Bratteli diagram for the tower
{@n(4cos® )} _, is obtained by starting with the half-Pascal-triangle and
slicing it off in a vertical line between the vertices labelled (m—3) and (m—2).
(The cases m = 4,5 have been illustrated below.)

T1>4 Tl =4cos’ ] 77l =4cos’ ¥

The analysis in [Jonl] goes on to show that if 7 = {sec*Z where m > 3,
the algebra UQ, (77!) admits a unique tracial state, and hence has a copy Rg
of the hyperfinite IT; factor as a von Neumann algebra completion (meaning
weak closure of its image under the associated GNS representation); and if
R_; denotes the von Neumann subalgebra of Ry generated by {e, : n > 2},
then R_, is a subfactor of Ry such that [R: R-y] = 771

Most of what was said in the last paragraph is also true when 7 < 2 (and
is proved in [Jonl]); the only statement that needs to be modified is that
when 7 < 2, it is no longer true that UQ,(7~!) admits a unique trace, but it
is true nevertheless that the completion of UQ, (7~!) with respect to the GNS
representation associated with the Markov trace is the hyperfinite factor R.
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Hence, in order to exhibit a subfactor of R with index 4 cos? 7, it suffices
to find an inclusion M_, € M, whose Bratteli diagram has norm 2cos - —
and for this, we may choose the graph A,,_; and pick an inclusion with this
as Bratteli diagram — and then R_; C R, meets our requirements.

Before concluding this section, we wish to point out that if 7, R_), Ry are as
above, we have an instance of simultaneous approximation of the subfactor—
factor inclusion R_; C Ry by finite-dimensional inclusions in the following
sense :

(e1) C (e1,e9) C -+ C (e eq,--7,en) € -+ — Ry

U U U U

Cc - (62> g g (627'”)611.)

N

- R,






Chapter 4

The principal and dual graphs

4.1 More on bimodules

Suppose M, P are arbitrary von Neumann algebras with separable pre-duals,
and suppose H is a separable M-P-bimodule. Pick some faithful normal state
¢ and set Hy = L*(M, ¢) and Ho, = H; ® £2. Tt follows from Theorem 2.2.2
that H may be identified, as a left M-module, with H.,q for some projection
¢ € My (M) (which is uniquely determined up to Murray—von Neumann
equivalence in My, (M)); further, we have pL(H) = 7, (Mo(M),). Since H
is an M-P-bimodule, it follows from our identification that there exists a
normal unital homomorphism 6 : P — My (M), such that the right action of
P is given by £ - y = £6(y).

Conversely, given a normal homomorphism 0 : P — My (M), let H,
denote the M-P-bimodule with underlying Hilbert space H,60(1), and with
the actions given, via matrix multiplication, by m - £ - p = mé&6(p). The
content of the preceding paragraph is that every separable M-P-bimodule is
isomorphic to Hy for suitable 6.

If M is a factor of type I11, then so is My (M), and hence every non-zero
projection in My (M) is Murray—von Neumann equivalent to 1,s ® e;;. Con-
sequently, every M-M-bimodule is isomorphic to Hy for some endomorphism
0: M— M.

Suppose M and P are Il factors and suppose Hy is as above. (In this
case, we naturally take ¢ = trys.) Notice then that dimy,_ H is finite pre-
cisely when Tr6(1) < oo, while dim_p H is finite precisely when the index
(Mp(M), : 6(P)] is finite.

This suggests that we define a co-finite morphism of P into M as a normal
homomorphism 0 : P — My (M) such that (i) 6(1) is a finite projection, say
¢, in M (M), and (ii) 6(P) has finite index in Mo, (M),. The point is that
if 0 is a co-finite morphism of P into M, then Hy = H0(1) is a bifinite
M-P-bimodule, and every bifinite M-P-bimodule arises in this fashion.

Motivated by the case of automorphisms, we shall say that two co-finite
morphisms 6;,7 = 1,2, of P into M are outer equivalent if there exists a
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partial isometry u € My (M) such that u*u = 6;(1), uu* = 05(1) and 8,(z) =
uf (z)u* Vz € P; thisis because, with this definition, two co-finite morphisms
0; from P into M are outer equivalent if and only if the corresponding bifinite
M-P-bimodules Hy, are isomorphic.

We wish, in the rest of this section, to discuss two operations — one unary
(contragredient) and one binary (tensor products) — that can be performed
with bimodules. (In the latter case, we shall restrict ourselves to the case
when both the algebras in question are II; factors.)

Contragredients: Suppose H is an M-P-bimodule. By the contragredient of
"H, we shall mean any P-M-bimodule H for which there exists an anti- unitary
operator J : H — H such that J(m - £ -p) = p*- J¢ - m*. It is clear that such
a contragredient exists and is unique up to isomorphism.

Note that if H = Hy, and if H = Hg, then § : P — My (M) while
f : M — My(P), and the relationship between the morphisms # and &
is somewhat mysterious. However, in the simple case when M = P and
is an automorphism of M, it is easy to verify that § (which is, after all,
only determined up to outer equivalence) may be taken as §~!. (The reader
should have no difficulty in constructing a J which establishes that Hy-1 is a
contragedient of Hy.)

Tensor products: We shall discuss tensor products of bifinite bimodules over
11, factors. First, however, we want to single out a distinguished dense sub-
space of such a bimodule, namely the one consisting of the so-called bounded
vectors.

Suppose, to be specific, that M, P are I]; factors and that H is a bifinite
M-P-bimodule. Say that a vector £ € H is left-bounded (resp., right-bounded)
if there exists a constant K > 0 such that ||ép||? < Ktrp(p*p) Vp € P
(resp., ||mé||* < Ktry(m*m) Vm € M), or equivalently, if there exists a
bounded operator L, : L*(P) — H (resp., R¢ : L*(M) — H) such that
Le(pY) = p Vp € P (resp., Re(mQ) = m¢{ Vm € M). It is true that
a vector is left-bounded if and only if it is right-bounded. (Reason: assume
H = H,, for a co-finite morphism § : P — M, (M); thus a vector in H is
of the form & = (&, --,&,) € (Matyxn(L2(M))6(1); it follows easily from
Theorem 1.2.4(1) — and the fairly easily proved fact that if P, is a subfactor
of P of finite index, then a vector is left-bounded for the right action of P
if and only if it is left-bounded for the right action of Py — that the above
vector ¢ satisfies either of the boundedness conditions above precisely when
each co-ordinate has the form & = z;Q for some z; € M.) Thus we may talk
simply of bounded vectors. We shall denote the collection of bounded vectors
in the bifinite bimodule H by the symbol Hj.

We list some properties of the assignment H — H, in the following propo-
sition, which is easily proved by considering the case of the model Hy. (In
any case, complete proofs of all the assertions in this section may be found,
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for instance, in [Sun3]; actually, only the case M = P is treated there, but
the proofs carry over verbatim to the ‘more general’ case.)

PROPOSITION 4.1.1 (a) Let M, P be II; factors and let H,K denote arbi-
trary bifinite M -P-bimodules. Then Hy is an M-P-linear dense subspace of
H, and the assignment T — Ty, defines a bijective correspondence between
the Banach space pLp(H,K) and the vector space pLp(Ho, Ko) of M-P-
linear transformations between the vector spaces Hy and KCy.

(b) There ezists a unique mapping (€,n) — (&, M)ar from Ho X Hy into M,
referred to as the M-valued inner product on the bimodule H, which satisfies
the following properties, for all £,1,( € Ho,m € M,p € P:

(i) (&, m) = trar((€, m)m)-

(i) (& &E)m

(ii1) (& mya = ((n, &) m)".

(iv) (m- &+ ¢ mu =m((& ) + (¢ mu

(v) (&-pma = (&P )u- o

As has been already remarked, if H = Hy, then we may identify Hy with
Mat;x,(M)6(1), and in this case,

((mh"',mn)’(yl:'“,yn Zmzyz

Further, if £ = Hy, then the typical element of 3;Lp(H, K) is of the form
¢ — ¢T (matrix multiplication), where T € 6(1)My(M)¢(1) is a matrix
satisfying 6(p)T = T'¢(p) Vp € P.

One reason for introducing the M-valued inner product is to facilitate the
formulation of the universal property possessed by the tensor product.

PROPOSITION 4.1.2 Suppose M, P and @ are 11, factors, and suppose 'H
(resp., K) is a bifinite M-P-bimodule (resp., P-Q-bimodule). Then there ex-
ists a bifinite M -Q-bimodule, denoted by HQ pkC, which is determined uniquely
up to tsomorphism, by the following property:

There exists a surjective linear map from the algebraic tensor product Hy®
Ko onto (H®p K)o, the image of € ® 1) being denoted by € Qp 1), satisfying:

(a) £ p@PN=EEQpp
(b)) m-£®@pn-q=m-({£®pn) ¢

(C) (6 ®p 7, ‘fl ®P 7]’>M = (‘S ) (7]1 77'>P, §,>M O
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The useful way to think of these tensor products is in the reformulation in
terms of co-finite morphisms. Suppose, to be specific, that H = Hy, K = Hy
for some co-finite morphisms 8 : P — M, (M), ¢ : Q@ — M,(P). It is not
hard to see that the equation

(0 ® B)ijni(q) = Oux(d52(q)) (41.1)

defines a normal homomorphism 6 ® ¢ : Q@ — My, M); it is further true
(although co-finiteness requires some work) that § ® ¢ is a co-finite morphism
from @Q into M and that Hpgs = He ®p Hy. In particular, in the special
case when M = P = @ and 6, ¢ € Aut(M), we find the reassuring fact that
0®¢=~004¢.

Another immediate consequence of the morphism description of the tensor
product is the multiplicativity of dimension under tensor products, meaning
that if H (resp. K) is an M-N- (resp., N-P-) bimodule, then

and
dim_p(H RN ’C) =dim_yH - -dim_p K. (413)

4.2 The principal graphs

We assume throughout this section that N C M is an inclusion of I factors
such that [M : N] < oo, and that

N=M,CM=MC- CMCCMyCMp C--- (421

is the tower of the basic construction, with M,y = (My, eny1) for n > 0.

It follows from Proposition 2.3.12 that {M] N M; : —1 < i < j} is a grid
of finite-dimensional C*-algebras, which is canonically associated with the
inclusion N C M, and is consequently an ‘invariant’ of the initial inclusion.
It turns out — see Proposition 4.3.7 — that there is a periodicity of order two
and hence we need to consider only i = —1 and 7 = 0.

Let us consider ¢ = —1 first. Notice that e, belongs to N' N M, and
implements the conditional expectation of N'N M, onto N'NM,,_,. It follows
— from Lemma 5.3.1(b) — that N'NM, 1 contains a copy of the basic construc-
tion for the inclusion (N'NM,_;) C (N'NM,), and consequently the Bratteli
diagram for the inclusion (N' N M,) C (N' N Mp41) contains a ‘reflection’ of
the Bratteli diagram for the inclusion (N'NM,_;) C (N'NM,). The graph ob-
tained by starting with the Bratteli diagram for the tower {N'NM,, : n > —1}
of relative commutants, and removing all those parts which are obtained by
reflecting the previous stage, is called the principal graph invariant of the in-
clusion N C M. A similar reasoning also applies for ¢+ = 0, and the resulting
graph is called the dual graph invariant of the inclusion N C M.
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We shall now give an alternative description of these two graphs, using
the language of bimodules. (The equivalence of these two descriptions is es-
tablished in §4.4.)

The principal graph is the bipartite multi-graph G defined as follows:
the set G(O) of even vertices is indexed by isomorphism classes of irreducible
N-N-bimodules which occur as submodules of yL*(M,)y for some n >
1; the set GO of odd vertices is indexed by isomorphism classes of irre-
ducible N-M-bimodules which occur as submodules of yL%(M,)s for some
n > 1; the even vertex labelled by the irreducible N-N-bimodule X is
connected to the odd vertex labelled by the irreducible N-M-bimodule Y
by k bonds, if k is the multiplicity with which X occurs in the N-
N-bimodule Y.

The dual graph is the bipartite multi-graph H defined as follows: the set
H© of even vertices is indexed by isomorphism classes of irreducible M-M-
bimodules which occur as submodules of prL*(M,)a for some n > 1; the set
HD of odd vertices is indexed by isomorphism classes of irreducible M-N-
bimodules which occur as submodules of y;L?(M, )y for some n > 1; the even
vertex labelled by the irreducible M-M-bimodule X is connected to the odd
vertex labelled by the irreducible M-N-bimodule Y by k£ bonds, if %k is the
multiplicity with which Y occurs in the M-N-bimodule X.

It is a consequence of Proposition 4.3.7 that the principal (resp., dual)
graph for the inclusion M C M; may be identified with the dual (resp.,
principal) graph for the inclusion N C M. Hence any result concerning the
principal graph has a corresponding statement about the dual graph. So we
shall restrict ourselves, in this section, to making some comments concerning
the principal graph.

The principal graph has a distinguished vertex *g which corresponds to
the even vertex indexed by the isomorphism class of the standard bimodule
~L?*(N)y. Notice that the odd vertices at distance 1 from *g are indexed
by isomorphism classes of irreducible N-M-submodules of yL%(M)s; hence
the case of irreducible subfactors corresponds to the case where %g has a
unique neighbour. Further, since the tensor product of bifinite bimodules is
a direct sum of only finitely many irreducible submodules, it follows from
the description of the principal graph that each vertex in G has only finitely
many edges incident on it; thus the principal graph is a locally finite connected
pointed bipartite graph.

Suppose G is the principal graph of the inclusion N C M, as above. Let
G denote the (non-negative integer-valued) G(© x GV matrix with gxy equal
to the number of bonds joining the even vertex X to the odd vertex Y in the
graph G. We shall also sometimes use the suggestive notation gxy = (X,Y).
Even if the graph G is infinite, the local finiteness of G translates into the
fact that the matrix G has only finitely many non-zero entries on any row or
column.
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We are now ready to prove an important relation between the index of
the subfactor and the norm of the matrix G, which will, in particular, reduce
the statement in Theorem 2.3.8 concerning the restriction on index values of
subfactors to the classification of graphs of norm less than 2.

PROPOSITION 4.2.1 Let N C M be an inclusion of Il factors such that
[M : N] < o0, and let G, G be as above.

(i) G defines, via matriz multiplication, a bounded operator from £2(G1))
into £2(G©), with ||G||* < [M : N).

(i) If [M : N] < 4, then G is necessarily finite and is one of the Cozeter
diagrams A,, D,, E¢, E; or Es.

Proof: (i) In order to prove (i), we shall prove the clearly equivalent state-
ment that GG’ defines a bounded self-adjoint operator on £2(G(®)) with norm
at most [M : N].

It is a consequence of the ‘Frobenius reciprocity’ statement contained in
Proposition 4.4.1 that

(vXn) ®n (WL2(M)y) 2 @ (X,Y) - nYu, VX €69,
Yeg®

where we write m - ‘H to denote the direct sum of m copies of the module H.
Equating left and right dimensions, we get

M : N)dimy-X = Y gxydimy_Y, VX € GO, (4.2.2)
Yeg™
and
dim_yX = 3 gxydim_pY, VX €G©®. (4.2.3)
Yeg)

Similarly, we find that
(NYM) Om (ML2(M)N) = @ (X, Y) - NnXnN, VY € Q’(l)

Xeg®
Equating dimensions, we get
dimy-Y = Y gxydimy- X, VY € G®, (4.2.4)
Xeg©®
and
[M:Nldim_pY = 5 gxydim_yX, VY €g®. (4.2.5)
Xeg©

It is an immediate consequence of equations (4.2.2) and (4.2.4) that if we
define vx = dimy_ X, VX € G, then v is a (column-) vector indexed by
G© such that (GG')v = [M : N]v.

On the other hand, it is a consequence of the Perron—Frobenius theorem
— see [Gant], for instance — that if the adjacency matrix of a connected graph
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has a positive eigenvector, then that adjacency matrix defines a bounded
operator (on the ¢2 space with basis indexed by the vertices of the graph)
with norm bounded by the eigenvalue afforded by the positive vector. This
completes the proof of (i).

(ii) If [M : N] < 4, it follows from (i) that ||G|| < 2, and we may appeal
to the classification of matrices of norm less than 2 — see the discussion in
§3.3. m]

We now discuss some examples of principal graphs.

EXAMPLE 4.2.2 Let N = (1,e5,e3,---) C M = (1,ey,€2, ), as in §3.3. It
is a consequence of a result called Skau’s lemma — see [GHJ] for details — that
G = An1 if [M : N] = 4 cos? Z; thus, in these cases, we find that the Bratteli
diagram for the tower {N' N M, : n > —1} is precisely the truncated Pascal
triangle of §3.8. (Since N'N M, 2 (1,ey,---,en), this means, in view of the
description of the Bratteli diagram for the tower {Q,(771)} discussed in §3.3,
that the inclusion above is actually an equality.)

When [M : N] > 4, however, things are quite different — see [GHJ] - and
the principal graph turns out to be A_q oo which is the infinite path extending
to infinity in both directions, so that we have a strict inclusion N' N M, D
(1,€y,---,en) in this case, and the Bratteli diagram for the tower {N' N M, :
n > —1} turns out to be the full Pascal triangle.

EXAMPLE 4.2.3 Suppose G is a finite group acting as outer automorphisms
of a I, factor P.

(i) Let N = P C P xG = M. In this case, the principal graph is an n-star
(where n = |G|) with all arms of length one; thus, for instance, if |G| = 3,
the principal graph is just the Cozeter graph D,.

(ii) Let N = PY C P = M be the subfactor of fized points under the
action. Then the principal graph G has one odd vertex and the even vertices
are indezed by the inequivalent irreducible representations of G, with the even
vertez indezed by m connected to the unique odd vertez by d, bonds, where d,
denotes the degree of the representation .

It is a fact — see §A.4 — that if My = (M, ey) is the result of the basic
construction, then the inclusion M C M, is isomorphic to the inclusion M C
M x G, and hence the discussion in the previous paragraph amounts to a
description of the dual graph of the case considered in ().

(111) More generally than in (i) and (i), if H is a subgroup of G, we
could consider the case N = P x H C P X G = M. This case is treated in
§A.4, where the principal and dual graphs are explicitly computed, using the
bimodule approach.

EXAMPLE 4.2.4 Suppose {61, --,0,} 1s a set of automorphisms of R, which
1s closed under the formation of inverses. It has then been shown by Popa —
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see [Pop6] - that if

z 0 - 0
0 01(23) 0

N = : : . ‘ :z€R) CM,u(R)=M
0 O ce On(2)

denotes the so-called ‘diagonal subfactor’ (given by the 6;’s), then the principal
graph is described by what might be called the Cayley graph of the subgroup
of Aut(R)/Int(R) generated by the 6;’s — where Int(R) denotes the group of
inner automorphisms of R.

4.3 Bases

We assume in the rest of this chapter that N C M is a finite-index inclusion
of II; factors, and that

N=M_,CM=MCMC - CMCMy4uC-- (4.3.1)

is the tower of the basic construction, with M,, = (M,,_1,e,) for n > 1. Also
we use the notation 7 = [M : N|~!. Further, we shall identify M with the
dense subspace MQ of L2(M).

We begin with a very useful fact.

LEMMA 4.3.1 (i) If z, € M, there exmists a unique element o € M such
that T1e; = xzoey; this element is given by o = T"IEM(zlel).
(ii) The action of My on L*(M) is given by

21 (yoOm) = T Ep(21y0e1) Qs

Proof: (i) Since Ep(e1) = 7, the second assertion and the uniqueness in
the first assertion follow. As for existence, we need therefore to show that
7 Ep(z1e1)er = z1e; for all z; € M;. Since the two sides vary (strongly)
continuously with z;, it suffices to establish this equality for a dense set of
z1’s. Note that the set D = {ag + X bie1ci : ao,b;,¢; € M,n € N} is a
self-adjoint subalgebra of M; which contains M U {e;} and is consequently
strongly dense in M;. Finally it is easily verified that if z; € D, then the
desired equality is indeed valid.

(ii) Again, we may assume that z; € D, as above, and the desired equality
is easily verified. O

REMARK 4.3.2 (a) The proof shows that the preceding lemma is also valid
when N C M is an inclusion of finite-dimensional C*-algebras, provided the
trace we work with is a Markov trace.
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(b) It follows from Lemma 4.8.1 (i) that the set of finite sums of elements
of the form ageiby, where ag,by € M, is an ideal in M; and must conse-
quently be equal to all of My by Proposition A.8.1. This shows that there is
an isomorphism ¢ : M @y M — M, such that ¢(ap Qn bo) = aperbo.

PROPOSITION 4.3.3 Fiz n > [M : NJ.
(a) Suppose g € M, (N) is a projection such that try,vyg = %—A—’l Then
there exist Ay, -+, Ap, € M such that

i; = En(Xid}) Vi, 5. (4.3.2)

A collection {A1, - -+, A} C M will be called a basis for M/N if the matriz
g = ((g:;)) defined by equation 4.3.2 above is a projection in M, (N) such that
trq = Ml

(b) Let {A1," -, An} C M be basis for M/N. Let £ € M be arbitrary.
Then,

(i) 2 = Sy B (2X)

(11) the row-vector (En(zA%), -, En(zA})) belongs to Mixn(N)g; and if
(z1,-++, 2n) € Mixn(N)g satisﬁes T = Y0, Tidi, then z; = En(zA}) Vj;

(11i) further, Y%, AfeX; = 1.

Proof:

(a) Let ¢ = ((gs5)) € M,(N) be a projection such that trqg = IA_”ﬁiVJ
Consider the projection E = ((E;;)) € M,(M;) defined by E;; = 6;je; notice
that ¢ and E are commuting projections, and so p = ¢F is also a projection
in the II; factor M, (M;). Observe next that

n
trp = thr(qiie) =Ttrqg = l = tr ey,
ni n

where e;; denotes the projection in M, (M;) with (1,1) entry equal to the
identity 1, and other entries equal to 0.

Hence the projections p and e;; are Murray-von Neumann equivalent in
M, (M,); thus, there exists a partial isometry v € M, (M) such that v*v = e,
and vv* = p; the condition v*v = ej; clearly implies that v has the form

vp 0 -+ 0
Vg 0 --- 0
V= . , (4.3.3)
0 . 0
vy 0 -+ 0
for uniquely determined v1, - -, v, € M;.

By definition of the v;’s, we have

n
Svivi=1 (4.3.4)
i=1
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and
’l)i’l); = @ij€ V’L,] (435)
In particular, note that
VU] = gie < e,

and hence, we must have v; = ev;. Then, by the preceding Lemma 4.3.1, there
exists a unique A; € M such that v; = e); Vi.
Deduce that
qije = 6/\,‘/\;6 = EN(/\i/\;)e>
thereby establishing (a).

Before proceeding to (b), we wish to point out that every ‘basis for
M/N’ arises in the manner indicated in the proof above. (Reason: Suppose
{A\1,"+, A} C M is basis for M/N. Define v; = e);, and define v € M, (M)
by equation 4.3.3; it is then seen that vv* = ¢F, so that v is a partial isom-
etry; also, it follows that the matrix v*v has 0 entries except at the (1,1)
place, and that the (1,1) entry must be f, for some projection f € M;, which
satisfies trf = 1; in other words, v*v = ey;, as desired.)

(b) To start with, note that (iii) is an immediate consequence of equation
4.3.4 (and the fact that v; = e);).

As for (i), if z € M is arbitrary, then

n
ex = Y exvjv;
=1

n
= Y ex)fe)
i=1

n

= 6(2 EN(x’\:)/\z)>

=1
and deduce from Lemma 4.3.1(i) that z = Y7 Ex(zA}) .
Note next that if z € M and if 1 < j < n, then,

e(Z EN(x)‘f)qij) = Z ex\;eq;;

=1 =1
= > exMeEn(XA})

i=1

n
= > exMelNe
=1

em)\;e
CEN(.%')\;),

and it follows (again from Lemma 4.3.1(i)) that

(5 Ex(@X)as) = Ew(eX));

=1
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in other words, the row-vector (Enx(zA}),---, En(z):)) indeed belongs to
M, xn(N)Q-

Conversely, if (21, -+, 2Zn) € Mixn(N)g, and if z = 37 | x;);, then observe
that

EN($)\;) = Z EN(.’L‘z)\l)\;)
=1

i=1

n
= D Tigy
=1
= :Ej)

thereby establishing (ii) and hence the proposition. O

A collection {1, -+, \,} C M which satisfies the condition (i) of the
above proposition is, strictly speaking, a ‘basis’ for M, viewed as a left N-
module, and should probably be called a ‘left-basis’ (as against a right-basis,
which is what the set of adjoints of a ‘left-basis’ would be); but we shall stick
to this terminology.

The above proposition is a mild extension of the original construction of
a basis (in [PP]). (They only discuss the case when the projection ¢ of the
proposition has zero entries on the off-diagonal entries.) The reason for our
mild extension lies in Lemma 4.3.4(1) and the consequent Remark 4.3.5. We
omit the proof of the lemma, which is a routine verification.

LeEMMA 4.3.4 (i) If N C M C P is a tower of I]; factors, with [P : N] < oo,
and if {X;: 1 <1< n} (resp., {n; : 1 < j < m}) is a basis for M/N (resp.,
P/M), then {\n; : 1 <i<n,1<j<m} isa basis for P/N.

(i) If {\1,---, \n} is a basis for M/N, then {77%e;); : 1 < j <n} isa
basis for My /M; hence {T_%)\iel)\j :1<14,7 <n} is a basis for M;/N. O

REMARK 4.3.5 Notice, from Lemma 4.8.4(ii), that any element of M is
expressible in the form 327, ; aijhie1j, with the a;;’s coming from N, which
is a slightly stronger statement than the fact — see Remark 4.3.2(b) - that
elements of the form aepb, with a,b € M, linearly span M.

Also, an easy induction argument shows that if {\; : i € I} is a basis for
M/N, and if we define, for i= (iy,---,ix) € I*,k > 1,

k(=1)

(k) _ k—1
AT =TT Ajerdgegerd, - '/\ik_lek—l cer i,

then {A\*) : i€ I*} is a basis for My_,/N.

Notice next, that if we write iV j = (iy,- -, i, J1, > Jx) for i,j € I*,
it follows from the commutation relations satisfied by the e,’s — see Proposi-
tion 3.3.2 — that

2
Ag@?) = T_%)‘i(k)(ek ceen)(epr o e2) - (eap-1 - 'ek)’\Jgk)'



58 CHAPTER 4. THE PRINCIPAL AND DUAL GRAPHS

This equation, together with the second statement in Lemma 4.3.4, should
suggest that we might expect the validity of the next result.

PRrROPOSITION 4.3.6 If M;,e; are as above, then, for eachm > 0,k > —1, the
algebra My on, is isomorphic to the result of the basic construction applied to
the inclusion My C Myim, with a choice of the projection which implements
the conditional expectation of My ., onto My being- given by

€[k,k+m)]
m(m—1

= 7 2 (ek+m+lek+m"'ek+2)(ek+m+2"‘ek+3)"'(ek+2m"‘ek+m+1)'

Proof: This is true basically because of the relations satisfied by the pro-
jections e,. As for the proof, there is no loss of generality in assuming that
k = —1. Rather than going through the proof of the proposition in its full
generality, we shall just present the proof when k£ = —1,m = 2; all the in-
gredients of the general proof are already present here, and the reader should
not have too much trouble writing out the proof in its full generality. In any
case, the proof may be found in [PP2].

Thus we have to show that N C M; C M; is an instance of the basic
construction, with a choice of the projection implementing the conditional
expectation of M; onto N being given by f = 77 leseeses.

First, the fact that e; commutes with e3 implies that f* = f; and

2= 772ee1e3e0e3e16 = T lesereserey = f,

so f is indeed a projection.
Next, for any z; € M;, note that

-2
fzif = T “eseiesesTiesezeren

—2
T %ege1e3FEpr(z1)esese1en

Il

I

7 tese1 Enr(z1)esere;
T lege1 Epr(z1)e1eze0
7 ey En(z1)ereses,

Il

I

and hence, indeed, we have
f:l)lf S EN(Zl)f VY, € M.

It follows that there exists a (unique) normal homomorphism 7 from P =
(M, eXt) (the result of the basic construction for the inclusion N C Mi) onto
Py = (M; U {f})", such that 7(ex?) = f and 7|p, = idps,. (The normality,
as well as the fact that image is a von Neumann algebra, may be deduced
from the second statement in Lemma 4.3.4(ii).) Since P is a II; factor, it
follows that 7 is an isomorphism and that P; is a II; subfactor of M3 such



4.4. RELATIVE COMMUTANTS VS INTERTWINERS 59

that [P, : M) = [My : N] = [M3 : M;]. This means that [M; : P;] =1, and
the proof is complete. O

We conclude this section with a proposition, due to Pimsner and Popa,
which shows that the basic construction lends itself to a nice ‘duality’ result,
which, among other things, yields the ‘periodicity of order two’ in the tower
of the basic construction, which was referred to in §4.2.

PROPOSITION 4.3.7 ([PP1]) Let d = [M : N). Then, for each n > —1, there
exists an isomorphism of towers:

(Ma(N) € Mg(M) C--- C Mg(M,)) = (M; C M, C -+ C Mpy).

Proof: We prove the case n = 0; the general case is proved similarly, by
using Remark 4.3.5.
Fix a basis {1, -+, \n} for M/N. Let ¢ = (1), where 0;;(z) = En(Aiz)})
Vz € M, and consider the model gM,(N)q of My(N). Define ¢ : My(N) — M;
by
n
$((ai)) = Z:l Aaijer)s.
1,)=
An easy computation shows that ¢ is a unital normal homomorphism, which is
necessarily injective. As for surjectivity, if z; € M;, deduce from Proposition
4.3.3(b)(iii) that

I

I

(Z /\:61)\1)"131(2 /\;61)\1')
i J

z )\;(61/\,'271)\;61)/\]';

i,j

but by Lemma 4.3.1(i), there exists m;; € M such that m;je; = A\ziAje;. It is
then clear that ; = ¢((En(m;;))), thereby establishing the surjectivity of ¢.

Now apply the conclusion above, to the basis {T~2e;\;} for My /M, to find
an isomorphism ¢; : My(M) — M, defined by

n
¢1((my)) =771 Y Mermijeser);,
1,7=1
which restricts on M;(N) to the map ¢ defined above, thus proving the propo-
sition. 0

4.4 Relative commutants vs intertwiners

This section is devoted to establishing the equivalence of the two descriptions
of the principal graphs given in §4.2.

We shall consistently use the symbols z,, y,, etc., to denote elements of
M,.
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PROPOSITION 4.4.1 (i) For each n > 0, there erists an isomorphism of
squares of finite-dimensional C*-algebras, as follows:

( Nl n M2n g N’ n M2n+1 ) (N‘CM(L2(MTL)) g N‘C'N(L2(Mn)) )
U U

IR$

@] U
M N My, € M' N Mppyy mMLm(LA(M,)) C mLn(LA(My,))

(i1) For each m > 0, there ezists an M,-M-linear unitary operator
Un (1, L2 (M) ) ©n (WL (M) 1) 2 (41, L (Miy1)a1)-

(11i) The composite maps

¢z} bt

NEN(LA(M,)) 2 N'NMypyr C N'NMynyo = NLy(LA(Maya)),
ént bni1

MEN(LA(My)) =2 M'N My © M N Mynye = yLay(L*(Mnya))

are given, in either case, by the formula
T u,(T®n isz(M))u;.

Proof: (1) Appeal first to Proposition 4.3.6 to note that N C M,, C Msp 41
(resp., M C M, C M,,) is an instance of the basic construction, and
hence Many1 = Jir, N'Jas,, so that (N' N Mapy1) = (N' N Juy, N'Jyg,) =
~Ln(L*(M,)). Similarly we can argue that each of the four corners in each
square of algebras, displayed in (i) above, is isomorphic to the corresponding
corner in the other square. Completing the proof is just a matter of ensuring
that the various isomorphisms are compatible. For this, use Lemma 4.3.1(ii)
and Proposition 4.3.6 to find that if we define ¢, : Man,1 — L(L%(M,)) by

(¢n (z2n+l))(anMn) = T_n—lEMn (z2n+1zne[—-l,n])QMn )

then @, (Many1) = Jar, N'Jar, and @y, |ar, = idps,. A pleasant exercise involv-
ing the commutation relations satisfied by the e,’s, coupled with a judicious
use of a combination of Lemma 4.3.1(i) and Proposition 4.3.6, as well as such
identities as

Elkke+m) = T —(m—l)e[k+1,k+m]ek+2ek+m+3 “ - ekym(Cksam - Ckyma1),
leads to the fact that if z, € My,, then
(¢n($2n))($nQMn) = T—nEMn (z2nzne[0,n])QMn; (441)

and consequently, as before, ¢,(Ma,) = Jpr, M'Jyy,, and this @, does all that
it is supposed to.

(ii) Recall that if P is any II; factor, and if Py, Qo are any two subfactors
of finite index in P, and if H = L2(P), regarded as a P;-Qo-bimodule, then
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Ho = P and the Py-valued inner product on ¥ is given by (z, y)p, = Ep,(zy*).
Define u, : M, ® M — M, 4, by
Un(Zn @ T0) = T_%Jiznen+l ‘et €1Z0.
It is a consequence of Remark 4.3.5 that u, is surjective. An easy computation
shows that
('Ufn(mn ® 1:0): un(yn ® y0)>Mr|.

= 7'_("-H)EMn ($n€n+1 ---e1Toyper - 6n+1y:)

= z.En(zoy5)vn

= (Zn - (%0, YO)N, Yn) M,

it follows from Proposition 4.1.2 that u, extends to an M,-M-linear unitary
operator of (37, L*(My,)n) ®n (a1, L*(M)ar) onto ar, L2(Mpy1)ur, as desired.

(iii) Note, in general, that if H (resp., K) is an N-P- (resp., P-Q-) bimod-
ule, where N, P,Q are II; factors, and if T € yLp(H),S € pLo(K), then
there is a unique element T®p S of yLo(H®pK) satisfying (T®pS)(E®pn) =
TE®p Sn, Y€ € Ho,n € Ko.

Hence, in order to establish the assertion for either of the composite maps,
we find, when all the definitions have been unravelled, that it suffices to verify
that for arbitrary z; € M;,j € {0,n,2n + 1}, we have

¢n+1(m2n+1)7'£2‘iun(mn RN -’L'O) = T#un(¢n($2n+l)zn ®n -’L'O)~ (442)
The definitions imply that the right side of equation (4.4.2) is equal to
7'_"_lEMn (m2n+lxne[—1,n])en+l s €10,

on the other hand, it follows from equation (4.4.1) that the left side of equation
(4.4.2) is equal to

—(n+1
T DBy (Tan1Znengr - - €170€[0,n+1])

= 77D Ey . (Tanr1Tneni1 - €1€0,41]) To-
Hence it suffices to prove that, for arbitrary yeny1 € Mapy1, We have
EM,,H (7!2n+16n+1 e '616[0,n+1}) = By, (y2n+1€[—1,n])6n+1 cerer.

An appeal to Proposition 4.3.6 and Lemma 4.3.1 shows that this amounts to
showing that

Erp (Y2nt1€n41 - - '€1€[o,n+1])€[o,n+1] = Eu, (yzn+1€[—1,n])6n+1 T €1€)on+1))
i.e., that

-n-1
T " Yont1€ng1 - *€1€[0n41) = Eum, (y2n+1€[—1,n])6n+1 ccr€1€[0,n+1]
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On the other hand, it follows immediately from the formula given in Propo-
sition 4.3.6 that

€ntl """ €1€[0,n+1] = €[-1,n]€2n+2 " " En42-
Hence it follows, again from Lemma 4.3.1, that

EMn(y2n+le[—l,n])en+l st €1€om41) = T_"—ly2n+1€[—1,n]€2n+2 T €nt2,
and a final appeal to Lemma 4.3.1 completes the proof. a

Before proceeding further, notice that if H is a bifinite P-Q-bimodule,
where P, Q are arbitrary II; factors, then pLo(H) is a finite-dimensional C*-
algebra. (Reason: Assume H = Hy, for some co-finite morphism 6 : @ —
My(P), where d = dimp_H; then pLo(Hy) = (My(P) N 6(Q)’, which is
finite-dimensional in view of the co-finiteness of §.)

Suppose, for notational convenience, that A = pLg(H). It must be clear
that there is a bijective correspondence between P(A) and the collection
of P-Q-sub-bimodules of H (given by p +— ranp). It follows that, under
the above correspondence, the (canonical) decomposition of the identity as
a sum of minimal central projections in A corresponds to the (canonical)
decomposition of H into its isotypical components; and that, the further
(non-canonical) decomposition of a minimal central projection as a sum of
minimal projections of A corresponds to the (non-canonical) decomposition
of the corresponding isotypical submodule of H as a direct sum of mu-
tually equivalent irreducible submodules. It follows that if H is a bifinite
P-Q-bimodule, then H is expressible as the direct sum of finitely many
irreducible P-Q-bimodules, and that if K is an irreducible bifinite P-Q-
bimodule, then there is a well-defined multiplicity with which ‘K occurs
in H’.

If we apply the foregoing remarks to the case when H = L*(M,),P =
@ = N, we find from Proposition 4.4.1 that the minimal central projections of
(N'N Ma,11) are in bijective correspondence with isomorphism classes of irre-
ducible N-N-sub-bimodules of L?(M,,). Similarly, the minimal central projec-
tions of (N'NM,,) are in bijective correspondence with isomorphism classes of
irreducible N-M-sub-bimodules of L?(M,). Further, Proposition 4.4.1(i) im-
plies that in the Bratteli diagram for the inclusion (N'NM,,) C (N'NMapnta),
the vertex indexed by an irreducible N-M-sub-bimodule X of L%(M,,), is con-
nected to the irreducible N-N-sub-bimodule Y of L?(M,,), by k bonds, where
k is the multiplicity with which X, when viewed as an N-N-bimodule, occurs
in Y. Similarly, the assertion (iii) of Proposition 4.4.1 can be re-interpreted as
a version of the Frobenius reciprocity theorem, thus: the inclusion matrix for
the inclusion (N’ N My,41) C (N’ N May,42) corresponds to ‘induction’, in the
same way that the inclusion matrix for the inclusion (N'NMy,,) C (N'NMapy1)
corresponds to ‘restriction’.
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Similar remarks apply also for the relative commutants of M in the mem-
bers of the tower of the basic construction, and we have completed the jus-
tification for the alternative description of the principal and dual graphs, in
terms of bimodules, which is given in §4.2.






Chapter 5

Commuting squares

5.1 The Pimsner—Popa inequality

The ‘inequality’ referred to in the title of this section is actually not an in-
equality, but a ‘minimax’ characterisation of the index of a subfactor which
can be taken as an alternative definition of the index. (This definition has
the advantage of making sense for any inclusion of von Neumann algebras
for which there is a conditional expectation of the bigger algebra onto the
smaller.)

Before getting to the inequality, we pause to record a lemma — see [Jon1]
— which shows that the basic construction is ‘generic’.

LEMMA 5.1.1 If My C M, is an inclusion of 1) factors with [M; : My < oo,
then there ezists a subfactor M_y such that My = (My, epr_, ).

Proof: The first step in the proof is to realise L?(Mp) as an M;j-module
in such a way that the action of M, agrees with the standard action. To
do this, start with a projection p, € M, satisfying trp, = [M; : My]™?,
observe that L?(M,)p, is an My-module with dimps, (L2(M;)p;) = 1, and use
an My-linear unitary operator u from L%(M;) onto L?*(M;)p; (noting that
L*(M,)p, is actually an M;-submodule of L2(M,)) to transfer the action of
M, to L?(M,), as desired.

So we may assume that My C £(L*(M,)). Now define M_, = JM}J, where
of course J denotes the modular conjugation operator on L?(M;). Note then
that

(Mo : M_y] = [M", : Mi) = [JM',J : TMLJ] = [M, : My).

If e, denotes the orthogonal projection of L%(My) onto L*(M_,), then e; €
M!,, and so e; = Je;J € M. It follows that if P = (My,e;), then P C M,
and [M, : P] = 1; an appeal to Corollary 3.1.4 completes the proof. O

We first state a weaker version of the inequality (which we prove), and
later state the stronger version (which we do not prove).
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PROPOSITION 5.1.2 (The Pimsner—Popa inequality) If N C M is an inclu-
sion of 11, factors with finite indez, if Ey denotes the unique trace-preserving
conditional ezpectation onto N, and if we write 7 = [M : N|71, then

T =sup{\ > 0: Ex(z) > Az Vz € M, }. (5.1.1)

Proof: In the course of the proof, we shall need the following simple fact,
which is an immediate consequence of equation (3.1.1), for instance:

The trace-preserving conditional expectation of a finite von Neumann al-
gebra onto a von Neumann subalgebra is completely positive — meaning that
if P C N is an inclusion of finite von Neumann algebras, and if ((a;;)) €
(Mn(N))+,n € N, then ((Ep(aij))) € (Mn(P))+

To prove the proposition, begin by appealing to Lemma 5.1.1, and assume
that M = (N, ep), for some subfactor P of N. Let z € M, ; write z = zz* for
some z in M. By Remark 4.3.2(b), we may assume that z = Y7, z;epy; for
some z;,¥; € N,n € N. An easy computation now shows that

n

z2¥ = Zz‘iEp(yiy;)epz;‘-,
ij=1
n

En(z2*) = 7 Z z; Ep(yiy;) ;.
1,j=1

It follows from the complete positivity of Ep (referred to at the start of this
proof) that the matrix y' = ((Ep(y:y}))) is positive. Since ep € P' N M, it
follows that

e 0 7]
22t = lmymlyd |01y
0 e z
77
< fzcmaly |
Tn
= 77'Eyn(22%).

Thus we see that Exyz > 7z Vz € M,. On the other hand, we know
that Ey(ep) = 71. The previous two sentences complete the proof of the
proposition. O

Now we state, without proof, the stronger version (see [PP1]), which states
that the previous proposition is valid without the assumption of finite index.

THEOREM 5.1.3 If N C M is an inclusion of 11, factors, and if Ex denotes
the unique trace-preserving conditional ezpectation onto N, then

[M : N] = (sup{A > 0: Ex(z) > Mz Vz e M,})™". (5.1.2)
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We single out the amount by which Theorem 5.1.3 is stronger than Propo-
sition 5.1.2, as a separate corollary.

COROLLARY 5.1.4 If N C M is an inclusion of I1; fdctors, then [M : N| <
oo if and only if there exists a positive constant A such that Eyz > Az Vz €
M,.

The next proposition is an important first step in the computation, by
approximation, of the index of a subfactor.

PROPOSITION 5.1.5 Suppose N C M 1is an inclusion of II; factors. Sup-
pose that the subfactor and factor can be simultaneously approzimated by a
grid of von Neumann subalgebras of M in the following sense (where ‘conver-
gence’ means that the ‘limit’ algebra is the weak closure of the union of the
increasing sequence of subalgebras that form the members of the sequence of
‘approzimants’):

By, € B C € B, C - M
@] U U U
Ay C A C Cc A, C — N.
Define
An = A(Bn, An) =sup{A >0: Eq,z > Xz Vz € By, };
then

[M : N] < (limsup A,) 2.

Proof: Consider the simple fact that if {H,}32, is an increasing sequence
of closed subspaces of a Hilbert space H, whose union is dense in H, and if
pn denotes the orthogonal projection onto H,, then p,§ — £ V¢ € H. This
fact has the following consequences in the context of this proposition:

(i) Ea,,z — Eyz weakly, for all z in M; and
(ii) if r € M and =z, = Ep,z, then z, — 7 strongly.

Fix z € M, and let z,, be as in (ii) above. Let {r,,} be a sequence in (0, 1)
such that r,, — 1 as m — co. Now fix an integer n, and note that since z,, €
By, Vm > n, the definition of A, ensures that E4_ (2,) > rmAmzn Ym 2> n.
Now use (i) and (ii) above, and conclude, by first letting m — oo and then
letting n — oo, that Eyz > (limsup, A,)z; this completes the proof, in view
of Theorem 5.1.3. m]
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EXAMPLE 5.1.6 Let By é B, be a connected inclusion of finite-dimensional
C*-algebras, and let By C B C By C --- C B, C --- denote the tower of
the basic construction with respect to the Markov trace. Then, as has already
been observed, there is a unique trace on U, B, and the von Neumann algebra
completion of this union is the hyperfinite II; factor R.

Set B_, = €, and pick arbitrary unitary elements u, € Bj,_; N Bpy1; it
follows ezactly as in Ezample 8.1.6 that there ezists a unique normal endo-
morphism o : R — R with the property that a|p, = Adyuyu.|B.- (This
construction s fairly general; for instance, if each B, is a factor, then this
18 the form of the most general endomorphism of \J,, B, which maps B, into
Bi1 for all n.)

Set A, = a(Bp-1),n > 0,M = R, N = a(R), and note that for n > 1, we
have

(An g An+1 g Bn+1) = Aduwzwun (Bn—l g Bn g Bn+1) )

and consequently, (A, C Apr1 C Bpui1) 1S an instance of the basic con-
struction; it follows from this and the proof of Proposition 5.1.2 that, in the
notation of Proposition 5.1.5, we have, for all k > 2,

e = IA]I7

Thus, we find, by Proposition 5.1.5, that no matter what the initial sequence
{un} of unitary elements is, we always have [M : N] < ||A|? < oo.

It 1s known - see [Jon6] and [Ake], for instance — from ezamples that the
ezact value of the index could be just about any admissible index value in the
range [1, ||A]|%]; it would be very interesting to determine the ezact dependence
of the index on the initial sequence of unitary elements.

The possible usefulness of Proposition 5.1.5 becomes enhanced in the light
of a result, due to Popa, to the effect that if N € M is an inclusion of
hyperfinite I; factors, then it is always possible to find finite-dimensional C*-
subalgebras A,, B, of M satisfying the conditions of the above proposition.

Further, Proposition 5.1.5 would be even more useful, if we could sharpen
the inequality to an equality. It becomes clear very quickly, however, that
it is unreasonable to expect any such equality without further conditions on
the approximating grid; for instance if {A,} is any increasing sequence of
finite-dimensional C*-subalgebras of R whose union is weakly dense in R,
and if we set B, = A,4 for some arbitrarily fixed &, then in the notation of
Proposition 5.1.5, we would have N = M = R, while the numbers ), could
all be quite large!

This leads us to the very important notion of a ‘commuting square of
finite von Neumann algebras’, which, as we shall soon see, very satisfactorily
plays the role of the ‘further conditions’ that were mentioned above.

DEFINITION 5.1.7 Suppose B; is a finite von Neumann algebra, and tr is a
faithful normal tracial state on By. Suppose Agy, A1 and By are von Neumann
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subalgebras of By such that Ay C A; N By, and suppose the following clearly
equivalent conditions are satisfied:

(1)
By, — B;

EAO l l EAI
Ao — Al

1s a commutative diagram of maps;
(1) Ea,(Bo) = Ao;
(i)

Al — B1
Eaq l l Epq
A() — Bg

18 a commutative diagram of maps;
(1) Ep,(A1) = Ao;
(i) Ea Ep, = Ea,;
(i11) Ep,Ea, = E4,.

When the preceding conditions are satisfied, we shall (often suppress spe-
cific reference to the trace tr, and simply) say that

By, € B
U U
Ay C A4

1§ @ commuting square of finite von Neumann algebras.

We shall discuss several examples of such commuting squares in the next
section. Before that, however, we conclude this section by making a general
remark about the notion of a commuting square, and then fulfil the asser-
tion made earlier about this notion by showing that in the presence of the
commuting square condition, we can sharpen Proposition 5.1.5 to the desired
equality.

REMARK 5.1.8 Let us temporarily adopt the convention that if G is a directed
graph without multiple bonds, then by a representation of G we shall mean an
assignment of an algebra A, to each verter v in the graph G and inclusion
maps ie : Ay, — Ay, whenever e is an edge in G from vy to vy. It can then
be shown that any tree admits an essentially unique representation, while if G
has cycles, there are some ‘parameters’ or in other words, there is a ‘moduli
space’. A commuting square may be considered as a point in this moduli space
corresponding to the graph given by a square.
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PROPOSITION 5.1.9 Suppose M, N, A,,, Bn, \, are as in Proposition 5.1.5,
and suppose further that

B, By

U @]

An g An+1

18, for each n, a commuting square. Then

N

[M: N] = (lim )~

Proof: The point to observe is that the result of stacking up (finitely
or countably many) commuting squares is again a commuting square. The
necessary formal argument is simple (and uses essentially only the simple
fact about increasing sequences of projections in Hilbert space which was
mentioned at the start of the proof of Proposition 5.1.5), and may be safely
omitted. O

5.2 Examples of commuting squares

In this section, we shall discuss three families of examples of commuting
squares. Each of them is of the special form

UAl u* Q Az
U U (5.2.1)
A C A

where (i) A9 C A; is a ‘connected’ inclusion of finite-dimensional C*-algebras,
(ii) Az = (Ai, e) is the result of the basic construction applied to Ay C Ay;
and (iii) v is a suitable unitary element in Ay N A, such that (5.2.1) is a
commuting square, with respect to the Markov trace on A,.

5.2.1 The braid group example

Consider the square (5.2.1), where v = (¢ + 1)ey — 1, for some scalar ¢ which
must necessarily satisfy |¢g| = 1 (in order for u to be unitary). It is an easy
exercise to check that for such a u, the square (5.2.1) satisfies the commuting
square condition if and only if

24q+q" = (trey) ™t

On the other hand, since the condition |g| = 1 clearly implies that |2 4+ g +
¢~'| < 4, this construction can work only when 77! = 4cos® I, for some
m > 3.

The reason for calling this the ‘braid group example’ is clarified in §A.5
of the appendix.
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5.2.2 Spin models

The reason that these examples are called spin models stems from statistical
mechanical considerations — see, for instance [Jon3].

Consider the square (5.2.1), where we now assume that 4y = C and 4; =
A is the diagonal subalgebra of A; = My(C) — see Example 3.3.1(ii). Another
easy computation shows that in this case, the square (5.2.1) satisfies the
commuting square condition if and only if |u;;| = \/LN Vi, 7.

A square matrix u, as above — i.e., a unitary matrix, all of whose entries
have the same modulus - is called a complez Hadamard matriz. The simplest
example of such a matrix is given, for any N, by u;; = \/LN exp(2my/—1ij) =

-“-’%, where w denotes a primitive N-th root of unity. (This matrix may be
called the finite Fourier transform, as it diagonalises the left regular rep-
resentation of the cyclic group Zy.) To see that there are many complex
Hadamard matrices, observe the following one-parameter family of 4 x 4 com-
plex Hadamard matrices, indexed by the parameter ¢ ranging over the unit

circle T in C:
1 t —1 t

DS I B
PTol -1t 1t
t —1 t 1

The reason for the adjective ‘complex’ in the previous paragraph is that
there is a fair amount of history related to real orthogonal matrices with
constant modulus — these were studied by Hadamard and bear his name. We
record here a few facts about such real Hadamard matrices:

(i) Call a positive integer N an Hadamard integer if there exists an N x N
real Hadamard matrix. It is easy to show that if V is an Hadamard integer and
if N > 2, then N = 0(mod4). The open question concerning real Hadamard
matrices is whether every multiple of 4 is in fact an Hadamard integer. (This
has been verified to be true for some fairly large multiples of 4.)

(ii) It is not hard to show that two squares of the form (5.2.1) that are
given by real Hadamard matrices are isomorphic (as squares of algebras) if
and only if the corresponding Hadamard matrices are equivalent in the sense
that it is possible to obtain one by (pre- and post-) multiplying the other
by diagonal orthogonal matrices and permutation matrices. The number A
of isomorphism classes of real Hadamard matrices of size N, for small N, is
given as follows:

N
h

| ro
|
| oo
| =

(@33

5.2.3 Vertex models

These examples also get their names from statistical mechanical considera-
tions — see [Jon3].
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Consider the square (5.2.1), where we now assume, as in Example 3.3.1(i),
that 4y = C, A, = My(C) ® 1, Ay = My(C) ® My(C). If we make the iden-
tification A; = Mp:(C), and if w = ((uj}))1<ijki<n, then the square (5.2.1)
satisfies the commuting square condition if and only if the matrix  is biuni-
tary, meaning that it satisfies the ‘two unitarity conditions’:

T _
Doudugy = Gkl
i

G _ s
Zuklukl/ = bjrbup
i,k

The simplest example of a vertex model is provided by the ‘flip’ — which
was briefly encountered in Example 3.1.6 — for which ufl = 0;16x;.

We shall consider the last two classes of examples in greater detail in
Chapter 6 (where, among other things, we shall see the reason for the above
‘biunitarity’ condition).

5.3 Basic construction in finite dimensions

Recall that if e is a projection in a von Neumann algebra, then the projection
V{uveu* : v € M, u unitary} is also given by A{f € P(Z(M)) : e < f}; this
projection, which we shall denote by zj/(e), is called the central support of
the projection e.

LEMMA 5.3.1 Let A C B be a unital inclusion of finite-dimensional C*-
algebras. Fiz a faithful tracial state ¢ on B, and let J denote the modular
conjugation operator on L*(B, ). Let e denote the orthogonal projection of
L?(B, ¢) onto the subspace L*(A, d|4); let E4 denote the ¢-preserving condi-
tional ezpectation of B onto A; and let By = (B, e) denote the result of the
basic construction.

(a) zp,(e) = 1.

(b) Suppose C is a finite-dimensional C*-algebra containing B. (We only
consider unital inclusions.) Suppose C contains a projection f satisfying:

(it) fof = E4(b)f, Vb€ B; and
(ii) a — af is an injective map of A into C.

Then BfB = CfC = Czo(f), and there ezists a unique isomorphism
¥ : By — CfC such that ¥(e) = f and ¥(b) = bzc(f) Vb€ B.

Proof: (a) Suppose z € P(Z(B;)) and e < z. Then also e = JeJ < JzJ €
P(Z(JB1J)) = P(Z(A)); but then (1—JzJ)e =0, and since the map a — ae
is an injective map of A, it follows, as desired, that z = 1.
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(b) The assumptions clearly imply that C = {by + =%, b;fb, : n €
N, b;, b, € B}. It follows — from this and (ii) — that CfC = BfB.

On the other hand, every two-sided ideal in the finite-dimensional C*-
algebra is of the form Cz, for a uniquely determined central projection z € C.
It follows from the definition of the central support that CfC = Cza(f).

In order to complete the proof, we need to show that the assignment

Ty bieb; — S bifb] yields a well-defined injective mapping from B; to
CfC. (It will immediately follow that such a map would be the desired iso-
morphism.) That this assignment is indeed an unambiguously defined bijec-
tion to CfC from Bj is an immediate consequence of (two applications, once
to C, and once to By, of) the following:

Assertion: Let n € N, b;, b} € B,1 <4 < n. Then

K3

STbifb; =0« Ea(bb;)Es(bjd) =0 Vb,b € B. (5.3.1)

i=1 i=1

Proof of assertion: Suppose Y. b; fb; = 0. Pre-multiply by fb and post-
multiply by ¥’ f, and appeal to the hypotheses (ii) and (iii), to conclude that
indeed, 7 Ea(bb;)Ea(bid') = 0 Vb, b’ € B. Conversely, if the latter condi-
tion is satisfied, pre-multiply by zf and post-multiply by fz’, to deduce that
zfo(X0 b foL)b' fa' = 0, for arbitrary z,z’ € B. Since the finite-dimensional
C*-algebra CfC = BfB has a unit, this implies that indeed >, b;fb; = 0,
and the proof of the assertion, and consequently of the lemma, is complete.
O

COROLLARY 5.3.2 Let A,B,By,C,e, f be as in Lemma 5.3.1(b). Then the
following conditions are equivalent:

(i) there exists an isomorphism ¢ : By — C such that ¢|p = idp and

ole) = f;
(ii) zo(f) = 1.

Proof: Obvious. 0

We come now to a very important relation between commuting squares
and the basic construction.

LEMMA 5.3.3 Suppose

KU UL (5.3.2)
Ao A

Na
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s a commuting square of finite-dimensional C*-algebras with respect to a trace
on By which is a Markov trace for the inclusion By C Bi, with inclusion
matrices as indicated.

Let By = (B, e) denote the result of the basic construction for the inclu-
sion By C Bj, where e denotes the projection in By which implements the
conditional ezpectation of By onto By. Define Ay = (Aj,e) C By. Then the
following is also a commuting square (with respect to the unique trace on B,
which extends the given trace on By and is a Markov trace for the inclusion
By C B,), with the inclusion matrices as indicated:

B, ¢ B,

W Uk (5.3.3)
e

A C Ay,

where Gy (resp., K1) is a matriz with block-form [G' T (resp., [ Ij{ ]), where

T (resp., A) is the submatriz of Gy (resp., K1) determined by the columns
(resp., rows) indezed by minimal central projections of Ay which are orthog-
onal to e.

Proof: Begin by observing that, in view of the assumed commuting square
condition, the tower Ay C A; C A, = (Aj,e) satisfies the conditions of
Lemma 5.3.1(b); in particular, any element of A, is of the form z = a +
>, bec;, where a,b;,c; € A;; and Ep,z = a + Y1, Thic; € A;, where
7 = ||H||™?%, and consequently (5.3.3) is also a commuting square.

Let p{", - - -, pY (resp., g, (1) be an ordering of the minimal central
projections of A; (resp., B)) for I = 0,1, with respect to which the inclusion
matrices are G, H, K, L as in (5.3.2). If we define q,(f) = Jp, q,(CO)JBI, 1<k<
no, it follows from Lemma 3.2.2(a)(iv) that ¢, --, @ is an ordering of
the minimal central projections of B, and hence the inclusion matrix for
B; C By, computed with respect to the q](«l)’s and the q,(f) s, is H'.

On the other hand, it follows from Lemma 5.3.1(b) that, if we write z =
Z4,(e), then there exists an isomorphism ¢ : (4;,e Ao> — Ayz such that

$(ei!) = e and ¢(a)) = a1z Ya; € Ay Define p® = ¢(JapJa,),1 < i <
mg, and let pfn?) 1 (2) be a listing of the minimal central projections of
A, which are orthogonal 0 2 (or equivalently, to e). It follows, again from
Lemma 3.2.2, that p(2) - p(2) is a listing of the minimal central projections
of A, such that the inclusion matrix for A; C A,, computed with respect to
the pll) s and the p,f) s, is [G' T, as asserted.

Fmally, fix 1 <1< mp1 <k < ng, and fix a minimal projection f €
Aop, By definition of the inclusion matrix, there exists a decomposition

(0) Zs “krsof f q,(co) as a sum of (mutually orthogonal) minimal projections

in Boq,(c . Notice that ¢(feﬁ(‘)) = ¢(f)¢(eA0) = fz-e = fe. Hence we may
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deduce from Lemma 3.2.2(b)(ii) that fe is a minimal projection in Azpz(?),
and further,

fed = fqe

= fq™e  (by Lemma 3.2.2(a)(i))
K

= ere;
s=1

but, again by Lemma 3.2.2(b)(ii), each r,e is a minimal projection in qu,(f).
This completes the proof that the inclusion matrix for A, C B, is indeed as

asserted. m]

COROLLARY 5.3.4 Let "
By, C B
KU UL (5.3.4)

Ap A

NQ

be as in Lemma 5.5.3.

(a) Then G'K < LH' in the entry-wise sense.

(b) Assume that each of the four inclusions in (5.3.4) is connected. Then
the following conditions are equivalent:

(i) GK = LH',
(i1) if Ay, By are as in Lemma 5.3.8, then z4,(e) = 1,

(ii1) V{ueu* : u € Ay, u unitary} = 1, where the ‘supremum’ is computed in
Ay or equivalently in L(L*(B,));

(tv) By is linearly spanned by A By = {a1by : a1 € Ay, by € Bo};
(i) K'G=HL,

(i) if Cy = (By, f) is the result of the basic construction for the inclusion
Ay C By (with respect to the Markov trace for this inclusion), and if
CO = <B07 f>; then ZCO(f) = 17

(iii) if Co and f are as in (ii) above, then \/{ufu* : u € By, v unitary} =1,
where the ‘supremum’ is computed in Cy or equivalently in L(L*(By));

() B is linearly spanned by BoA; = {boay : a1 € A;,by € Bo}.

(c) Assume that each of the four inclusions in (5.8.4) is connected, and
that the equivalent conditions of (b) are satisfied; then:

() NGl = 1H]l;
() 11K =ILl);
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(i3) if tr denotes the trace on By which is the Markov trace for By C By,
then tr is also the Markov trace for Ay C By, and tr|a, (resp., tr|g,) is
the Markov trace for Ay C A; (resp., Ay C By.)

Proof: (a) By multiplicativity of inclusion matrices, we find from Lemma
5.3.3 that (KH = GL and) LH' = G K; = G'K +T'A, thus establishing (a).

(b) By the above reasoning, if (ii) is satisfied, it follows from Lemma 5.3.3
that I' and A are absent, whence we have (i).

On the other hand, suppose (ii) is violated. In the notation of the proof of
Lemma 5.3.3, this means there exists 7, mg < 1 < mg, such that p§2) # 0. Since
the inclusion A; C A, is unital, there must exist j < m; such that I';; # 0.
Also, by the definition of an inclusion, there must exist k,1 < k < n,, such
that Ay # 0; it follows that (IA)jx # 0, and hence (G'K);x < (LH'),x, thus
establishing that (i) < (ii).

(In the following, we shall write § for the cyclic trace vector in L%(By).)
Notice that the condition (ii) amounts to the requirement that \/{ueu* :
u € Ay,u unitary} = 1, which amounts to requiring (since the range of
ueu* is just uBo(Y) that B is spanned by U{uBo{ : v € Ay, u unitary},
which is equivalent to the requirement that Bif) is spanned by {zby{2: z €
Az, by € By}. Since A, is spanned by A; together with elements of the form
aeay, a,a; € A, and since the range of e is just By{2, it follows that (ii) is
equivalent to the requirement that B;{) is spanned by A; By} (which, in view
of Q2 being a separating vector for By, is the same as (iv)) which is again seen
to be equivalent (by reversing the earlier reasoning) to (iii).

By taking adjoints, it is clear that the conditions (iv) and (iv)’ are equiva-
lent, while the equivalence of (i)'—(iv)’ follows from the equivalence of (i)—(iv).

(c) The assumption that (b)(ii) is satisfied implies — by Proposition 3.2.3
— that tr|a, is the Markov trace for Ay C A; (since Ep,e = ||H||7%) and that
Gl = [1H]].

As for (iii), let us write tB1 for the trace vector corresponding to the trace
tr. Let us also write t¢ for the trace vector corresponding to tr|c, where
C € {Ao, A1, Bo}. The already established fact that tr| 4, is the Markov trace
for Ag C A; implies that

G'th = |G|t (5.3.5)

Hence
H'HL't" = HK'Gt"™ = HK't" = L'G't* = ||G||2L't*.

Thus, L't is a, and hence the, Perron-Frobenius eigenvector for H'H; i.e.,
there exists a positive constant p such that L't"t = ptB1; but then, also
LL't" = pLtB% = pt41; and hence p = ||L||?, and indeed tr is the Markov
trace for A, C B;. O

REMARK 5.3.5 The proof shows that the conditions (ii), (111), (w),(ii), (1ii),
and (w) in Corollary 5.8.4(b) are equivalent even without requiring either
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that the trace in question is the Markov trace, or that all the inclusions are
connected. In fact, these conditions are equivalent under just the assumption
that we have a commuting square of finite von Neumann algebras, provided
that the ezpression ‘linearly spanned’ in conditions (iv) and (i) is replaced
by ‘contained in the closed subspace of L?(B;) generated by’. Such a general
commuting square of finite von Neumann algebras has also been called a non-
degenerate commuting square by Popa.

DEFINITION 5.3.6 The commuting square (5.3.4) is called a symmetric com-
muting square if the equivalent conditions in Corollary 5.3.4(b) are satisfied.

5.4 Path algebras

Suppose
AgCA CAC---CAC-- (5.4.1)

is a tower of finite-dimensional C*-algebras. We know that the ‘isomorphism
class’ of this tower is completely determined by the dimension vector of Ay and
the Bratteli diagrams of the successive inclusions. The path-algebra formalism
gives a model of such a tower (for any prescribed data as above), which is
quite useful in some computations. Before we get to discussing this formalism,
we set up some notation.

If A is a finite-dimensional C*-algebra, we shall write w(A4) for the set
of minimal central projections of A. Thus, if A C B is a unital inclusion of
finite-dimensional C*-algebras, then the inclusion matrix is the 7(A4) x 7(B)
matrix, with (p, g)-th entry given by [dim¢(pgA'pgNpgB pq)]?. We shall think
of an edge « in the Bratteli diagram for the inclusion A C B, which joins
p € m(A) and ¢q € 7(B), say, as being oriented so that it starts from p and
finishes at ¢, and we shall write p = s(c), ¢ = f(a).

Suppose now that the Ag’s are as in (5.4.1), where we assume that all
the inclusions are unital. For convenience, we set A_; = Cl C Ap; write
m(A-1) = {*}. For k > 0, let £ denote the set of edges in the Bratteli diagram
for the inclusion Ay_1 C Ay, oriented as discussed in the last paragraph.

For -1 <1 < k < 00, define

Q[z,k] = {a = (1, 0042, 00) 1 i €y, f(au) = s(ai) Vi};
Qoo = {or=(uyr, upa, - 00, -) 1 0 € Qy, flaw) = s(aiys) Vi
Q[k,k] = 7T(Ak).

For —1 <1 < k < o0, let Hjx) denote a Hilbert space with an orthonormal
basis indexed by x); we shall identify an operator z on Hyx) with its matrix
((z(a, 8))) (with respect to this basis).

If-1<1<1l; <k <k<oo,and if & = (o4q1,0042," %) € Qi)
write S(a) = 5(al+1)’ f((l) = f(ak) and Qiy,k1] = (all+1’all+2’ e ’akl)'
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We shall use the following obvious simplifying notational conventions:
Qg = Q1.8 Ut = Qo) @ = Qi
Hi) = Hi-1,4 Hit = Hioop H = Hi-15

Qk) = Q[-1,k), A1 = O[l,00)-

Finally, for —1 < n < oo, define

Bn={z € L(H) : 3a € L(H,)) such that
(e, B) = bay, p1,0(0n)s Bm), Vo, B € Q}.

PROPOSITION 5.4.1 With the foregoing notation, we have:
(i) for =1 < n < o0, By, is a *-subalgebra of L(H) and

By CB CByC---CB, C--v5 (5.4.2)
(i) if =1 < k <n < oo, then

B, = {z € L(H) : Ja € L(H[x) such that
III(CM, IB) = 6ak],ﬂk]a'(a[k7 /B[k) VamB € Q}a
B;C NnB, = {.’L‘ € L(H):3a € L’«('H[k,n]) such that
(0, B) = ayy, 8y 0apn1n M Alkn)s Birm)) Ve, B € Q};

(#1) for fited n > —1 and p € w(A,), define p € B, by
ﬁ(ay IB) = 6a,ﬂéf(a,._]),p VOé, IB € Q;

then m(B,) = {p: p € m(An)};
(iv) forn > —1, and X, p € Qp satisfying f(A) = f(p), define ex, € By
by
exu(a, B) = bay 206,y ubap b, Vo, BE Y
then
{exu: A p € Qn, f(X) = f(p)}

s a ‘system of matriz units’ for By;
(v) there exists an isomorphism 1 of the tower (5.4.1) onto the tower
(5.4.2) such that Y(p) =P Vp € 7(4n), Vn > -1.

Proof: The proof of (i)-(iv) is routine computation. Assertion (v) is easily
seen, via induction, to amount to the following statement which is indeed
true:

If Ay C A; and By C B, are inclusions of finite-dimensional C*-algebras,
if : Ay — By is an isomorphism, and if there exists a bijection ¢ : 7(4;) —
7(B;) such that the two inclusion matrices A4 and Ap satisfy Aa(p,q) =
A(8(p), ¢(q)), then there exists an isomorphism 8 : A; — B, which simulta-
neously extends both 8 and ¢. O
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REMARK 5.4.2 (1) Ifz € B, and a € L(Hy)) are related as in the definition
of B, the assignment = — a defines a faithful representation p, of By, on Hy);
we shall consequently simply write z(a, B) for (pnj(z))(a, B), whenever z €
Bn, 0, B3 € Qy). Further, dime¢ Hy) = Epe,,(An)[dimc(Bnﬁ)]%, and p, contains
each distinct irreducible representation of B, exactly once.

(2) Suppose 1, : A, — B, are two isomorphisms which both map Ay to
By and p € w(Ax) to p for each p € w(Ay), for 0 <k <n. Thenf =~ Loy
is an automorphism of A, with the following two properties: (a) 0(Ax) =
A, 0 <k < n;and (b) elz(Ak) = idz(Ak),O <k<n.

On the other hand, any automorphism of M,(C) is inner; hence an au-
tomorphism of a finite-dimensional C*-algebra is inner if and only if it acts
trivially on the centre; this implies, by an easy induction argument, that an
automorphism 6 of A, satisfies properties (a) and (b) of the preceding para-
graph if and only if it has the form 0 = Adugu,..u,, Where ug is a unitary
element of Aj,_; N Ay, for 0 < k < n.

Suppose now that tr is a faithful tracial state on A,, where we temporarily
fix n > 0. For —1 <k <n,let k) 7(Ax) — [0,1] be the trace-vector corre-
sponding to tr|4,; thus fl(,k) = tr pg, where py is any minimal projection in Agp.
In the following proposition, whose proof is another straightforward verifica-
tion, we identify the Ag’s with the corresponding By’s of Proposition 5.4.1.

PROPOSITION 5.4.3 (i) If—1 < k < n, and if z € By, thentrz=Yacq, f}fi)
z(a, o).

(i) If =1 < k < n, and if z € B,, then the tr-preserving conditional
expectation Ep, of B, onto By is given by

i
(Eﬂkm)(a’ ,3) = 6a[k,ﬂ[k Z (]{)(0) z(Olk] ° 0; /Bk] ° 0)

0€0k,n)  “f(ak))
3(6)=F(aky)

for all a, B € Qy), where we have used the symbol o to denote concatenation
of paths.
(i) In particular, if =1 < k < n, and if ey, is as in Proposition 5.4.1(iv),
then
B
Ep, (e&#) = 6’\[1::#[15 NOBRRLCR o
Fx)

‘We conclude this section by discussing the above path-algebra formulation
in the important special case when the tower (5.4.1) (equivalently, (5.4.2)) is
the tower of the basic construction applied to the initial connected inclu-
sion Ay C A;, with respect to the Markov trace. In this case, suppose A
(resp., £2) denotes the inclusion matrix (resp., the set of oriented edges in
the Bratteli diagram) for Ay C A;. Let us inductively identify p € 7(An)
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with Jg,,,pJ4, ., € T(Anto). Further, if o € Q, let us write & for the same
edge with the opposite orientation, and let us write Qy = {&@ : @ € Q}. It
then follows from Lemma 5.3.3 that if A,, denotes the inclusion matrix for
An, C Ay, then (A, Q) is (A, Q) or (A, Q) according as 7 is even or odd.

Let 7™ m(A,) — [0,1] denote the trace-vector corresponding to the
restriction to A, of tr, the unique consistently defined trace on Ay = Uy Ag.
Then, with our identification of m(Ay,) (resp., m(Aany1)) with m(Ag) (resp.,
7(Ay1)), it follows that

D) _ ) o) _ a0 0 _ g
where 7 = ||A]| 72

Again, in the following result, which is easily verified, we identify A, above
with the corresponding B, of Proposition 5.4.1.

PROPOSITION 5.4.4 With the foregoing notation, a candidate for the projec-
tion enq1 € Al N Anyy s given by

en+1(a, IB)
70 3(n)
i i
Fan)*f(Bn))
= O3B O Blaia 5°tln,n+11f"[n—l,nl5ﬂtn,n+u,5[n-1.n1 7(n—1) - (543)
.f(an—l])

5.5 The biunitarity condition

In this section, we discuss the important re-formulation, due to Ocneanu, of
the commuting square condition, as a biunitarity condition. Before we get to
that, it would be good to make a slight digression concerning matrix units.

Recall that if e;; is the n X n matrix with 1 in the (7, j) position and 0’s
elsewhere, then {e;; : 1 < 4,75 < n} is called a (or, sometimes, the) standard
system of matrix units for M,(C); more generally, if A is a I,, factor, a set
of matrix units for A is any set of the form {¢~1(e;;) : 1 < i,j < n}, where
¥ : A — M,(C) is any isomorphism. Slightly more generally, if A is a finite-
dimensional C*-algebra, we shall refer to a union of sets of matrix units for
each central summand of A as a system of matrix units for A. (See Proposition
5.4.1(iv).) Finally if we are given a tower of finite-dimensional C*-algebras,
say Ag C Ay C --- C A, as in the last section, we would like to work with a
system of matrix units for A, which is compatible with the tower in a natural
fashion.

For this, notice that, in the notation of Proposition 5.4.1, the set {ey,
A i € Qpp, f(A) = f(p)} is a system of matrix units for A, with the following



5.5. THE BIUNITARITY CONDITION 81

property: whenever —1 <k <1 <n, A, pu€ Quy,s(\) = s(p), f(A) = f(p), if
we define
Exp = Z eao)\oﬂ,aopoﬂ)
O(Eﬂk],ﬁéﬂ 1
Fla)=s(X),s(B)=F())
then {ex, : A, € Qg s(X) = s(w), f(A) = f(p)} is a set of matrix units for
AN Ay

DEFINITION 5.5.1 If Ag C A; C --- C A, is a tower of finite-dimensional
C*-algebras, we shall use the expression a system of matrix units for A, which
is compatible with the tower above, to denote any set of the form ¢~ ({ey,, :
A€ Q, f(A) = f(w)}), where ¢ and {ey, : A\, p € Qp, f(A) = f(p)} are
as in Proposition 5.4.1(v) and ().

Thus a consequence of Remark 5.4.2(2) is that any system of matrix units
for A, which is compatible with the tower {A; : 0 < k < n} can be obtained
from any other by an inner automorphism of A,, of the form Adyuy, ..., Wwhere
Uy 1s a unitary element of A;_; N Ay, for 0 < k < n.

If By = {pou : A € Qupys(A) = s(w), f(A) = f(u)} is a system of
matrix units for A,, which is compatible with the tower Ay C --- C A, and if
Biry = {0 A € Qegpy s(A) = s(p), F(X) = f(u)} is the system of matrix
units for By N B; as above, we shall say that the system By extends to the
system By, or that the system By, restricts to By .

We are now ready for the biunitarity condition. (In the following propo-
sition, we shall use the following notation: if Ay C A; C --- C A, is a tower
of finite-dimensional C*-algebras, we write {)(4.,4,;..4,) to denote the set of
oriented paths which was denoted by Qo in the last section. We shall also
use the convention that the symbol ao 8 will be used to denote concatenation
of the paths o and f, and it will be tacitly assumed that if this symbol is
used, then necessarily s(3) = f(«).)

PROPOSITION 5.5.2 Let
By, € B

U u (5.5.1)
Ay © A

be a square of algebras. Denote an element of (¢, a;41:8:) (T€SD-, Qc;403B0;B1))
by a triple a = (a0, 1, a2) (resp., B = (Bo, b1, B2)) where ao, fo € Qc;0)
ete., so that, for instance, 8= fyo [y 0 Bs.)

(a) Let {pao : o, ¢ € Qeianians), f(a) = ()} (resp., {gpp : B, B €
QciaoiBoiBr), [(B) = f(B)}) be a system of matriz units for By which is
compatible with the tower € C Ay C A; C By (resp., € C Ay € By C By).
Then there ezists a matriz U = ((uf)), with columns (resp., rows) indezed by
QAosay;By) (Tesp-, Qag;Bo;By)), Satisfying the following conditions:

(i) w8 = 0 unless 5(a) = s(B), f(a) = F(B);
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(i) for all a, & € Q¢;A0;41;8,), we have

_ B B .
Pa,et = Z uﬂtloazua’loa'z Gagof,alyop's
B:B'€Qa4;B9:By)

(112) U is unitary.

(b) If U' is another matriz satisfying (a)(i)-(ii1), then there ezist complex
scalars wp, p € m(By), of unit modulus, such that (u')? = wyyub.

(c) Suppose tr is a faithful tracial state on By, and suppose . 7(C) —
[0,1] is the trace vector corresponding to tr|c, for C € { Ao, A1, Bo, B1}; define
a matriz V with columns (resp., rows) indezed by Qag; 4,0 a0;80) = {1001 :
o € Q(Ao;A1)’ﬂ1 € Q(Ao;Bo)} (resp., Qay;B) © Q(130;131) = {0 52 T €
Qa;By), P2 € Q(Bo;31)}) as follows:

po2ofs _ ,/%ﬁﬁlﬁrﬂ;gﬁg if (s(a2), s(B2)) = (f(en), f(B1)), (5.5.2)
0

diof1
otherwise;

then (5.5.1) is a commuting square with respect to tr if and only if V is an
isometry — i.e., the columns of V constitute an orthonormal set of vectors.

Proof: (a) Let 1 (resp., ¥') denote an isomorphism of B; onto the path-
algebra model for B; coming from the tower Ag C A; C B; (resp., A9 C
By C By), as in Proposition 5.4.1(v), such that ¥(paw) = €an Vo, €
Q(C;Ao;AuBl) (resp., w(Qﬂ,ﬂ’) = épp Vﬂ, ,BI € Q(C;Ao;Bo;BO); and let Po (resp.,
po) denote the representation of ¥(Bj) (resp., ¥'(B;)) on a Hilbert space M
(resp., H') with orthonormal basis {{s : @ € Qc;a0;41;8,)} (resp., {ng : B €
QU (c;40;Bo;B1) } ), s in Remark 5.4.2(1).

Consider the representations p = po o9 and p' = py o9’ of By. It fol-
lows from Remark 5.4.2(1) that these representations are unitary equivalent.
Let U : H — H' be a unitary operator which intertwines p and p’. The
fact that U intertwines the restrictions to Ag of the representations p and
¢, is easily seen to imply that there exist scalars u? o € Qag;a1;8:1), B €
Q(40;Bo;B1) (8(@), f(a)) = (s(B), f(B)) (which are essentially just the matrix
coefficients of U with respect to the given bases), such that

Ué.ﬂl = E uﬁ10&2”700°ﬂ
BER(4:By;B

o(B)=H(oo F Y= ()

whenever o = ag o a; 0 @y € Qc;0;41;81)-
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Since p(Pa,or) = (+;€a)€a and p'(gs,p) = (-, ngr) 1, it follows that
P (Paw) = Up(Paa)U

= Z ugxoﬂz uz;oa’z pl (thOOﬂ,a:Pﬂ')?
B:B'€Qag;B0:81)
thereby proving (a).

(b) In the notation of the proof of (a), notice that if U’ is another matrix
as in (a), and if we use the same symbol for the associated unitary operator
from H to H' which is easily seen to necessarily intertwine the representations
p and p/, then U*U € p(B,;)'; but it is a consequence of Remark 5.4.2(1) that
(the representation p is ‘multiplicity free’ and hence) p(B;) = p(Z(B)),
which is seen to imply (b).

(c) If o, &' € Q¢ a054,) satisty f(a) = f(c), define

Doa! = Z Daoas,aloas
@2€Q4,;8:)
Then, according to the remarks preceding Definition 5.5.1, it is the case that
the set {pa,or : @, & € Qg;a04:), f(@) = f(a')} is a system of matrix units
for A;. Let {gap : B, 8 € Qc;a0;80), f(B) = f(B')} be the system of matrix
units for By obtained in a similar fashion.
Then for fixed a, & € Qg;a0;4,) satisfying f(a) = f(¢/), we have

— B B
Pa = Z U 00y u’a’loag Gagop,alof’
2684y ;:B;)
B,8'€ay;B9:B1)

and hence, by Proposition 5.4.3(iii),

+B;
—— t
— B f(B2) .
EBO (pa,u’) - Z u’gloag ua’loag 6ﬂ2 :ﬂ’g ZBO 2 qao°ﬁ1 :a6°ﬁ£ )
azEQ(Al;Bl) f(ﬂl)

BB €Rag;B0:B1)

it follows now from the definition of the matrix V that

FA
te A
———f )
EBo (pa,a') = = (a—)A Z (V*V)z-}lfl;zl%ooﬂl,aboﬂll. (553)
tf(oao)tf(oai)) ﬂl,ﬂien(go;sl)

On the other hand, since Paoal, = oo, Whenever ay, o) € Qqc;a,) satisfy
f(e) = f(ap), it follows from another application of Proposition 5.4.3(iii)
that

[
f
EAo (pa,a’) = 60!1 o %Aé—a)puo,aa

f(ao)
h

— f(e)

= 6&1,&’1 ont! Z Gogopr,ahops - (5'5‘4)
f(ao) B EQ(AO;BO)
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Since the gaqop;,af0p;’s are linearly independent, and since the pg o’s form a
basis for A, the assertion (c) follows from equations (5.5.3) and (5.5.4). O

REMARK 5.5.3 (1) It must be clear that (5.5.1) is a symmetric commuting
square if and only if the matriz V' of Proposition 5.5.2(c) is unitary; this is the
reason for referring to the conclusion of Proposition 5.5.2(c) as a biunitarity
condition.

(2) It must also be clear that if G, H, K and L are given rectangular matri-
ces with non-negative integral entries, and if these satisfy the obvious consis-
tency condition GL = K H, then a necessary and sufficient condition for the
eristence of a commuting square of algebras such as (5.5.1) with the inclusion
matrices of Ag C Ay, By C By, Ag C By and A; C By being G, H, K and L re-
spectively, is the ezistence of a unitary matriz U as in Proposition 5.5.2 (with
Q(ag;4,) being the set of oriented edges in a bipartite graph with ‘adjacency’
relations described by G, etc.), such that the corresponding V is an isometry.

(3) In the passage from the square (5.5.1) to the ‘biunitary’ matriz U,
it was necessary to fiz two systems of matriz units for By compatible with
the towers € C Ay C Ay C By, and € C Ay C By C By respectively. It
follows from Remark 5.4.2(2) that the ‘isomorphism class’ of a commuting
square is described by an equivalence class of ‘biunitary’ matrices U as in
Proposition 5.5.2, where two such matrices, say U and U, are equivalent if
U = WoUW,, where W, (resp., W) is a unitary matriz with rows and columns
indezed by Qag;a1;8,) (15D., QAo;BosBr)) Such that the matriz Wy (resp Wws)
has the form (Wh)gi2e = &(s(aa),f(en), e (s(ed), ), fapn(a1)at (a2)s} (resp.,

(W2)giest = Ss(on), (60000 (581605 (B1) 5t (b2)5f ) where ay, g, by, by are
suitably indezed unitary matrices.

(4) The passage U — V respects equivalences of biunitary matrices (which
describe symmetric commuting squares with respect to the Markov trace ); i.e.,
suppose U, U, Wy, Wa, ay, as, by, by are as above; suppose V is obtained from U
by the same prescription by which V was obtained from U, then it is easy to
see that the biunitary matrices V and V are also equivalent; to be brutally
explicit, one has V = WoV Wy, where

T \azof e 7.2
(W2l = Os(an), flan)s(Ba(o(ap) st stamn (@)t (B2)gh

(W)ams = (e sten, st s sen @at (b)g-

We shall say that the commuting square (5.5.1) is described by the biu-
nitary matriz U if the commuting square and the matrix are related as in
Proposition 5.5.2. Thus, this happens precisely when it is possible to find two
systems of matrix units {pa,q } and {gs g } for By, compatible with respect to
the towers Ag C A; C B; and Ay C By C B respectively, which are related
by the matrix U as in Proposition 5.5.2(a).

We now want to consider the case where (5.5.1) is a symmetric commuting
square with respect to the Markov trace, and consider the ‘dual’ (symmetric)
commuting square obtained, as in Lemma 5.3.3, from the basic construction.
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PROPOSITION 5.5.4 Let A;, B;, e be as in Lemma 5.8.8. Suppose in addition
that (5.8.2) is a symmetric commuting square. Suppose this symmetric com-
muting square is described by the biunitary matriz U as in Proposition 5.5.2,
and suppose V is the matriz associated with U as in Proposition 5.5.2(c).

(a)

HI

B, C B,

Ly Uk (5.5.5)
GI

Ay C A,

is also a symmetric commuting square, and it is described by the biunitary
matriz Up g =V;

(b) further,
B, "¢ B,
KU Uk (5.5.6)
A € 4

18 also a symmetric commuting square,and it is described by the biunitary
matriz Up g defined by

(0,21 riofiofs > i (5.5.7)

Q) 0d20K2 a0\ Ydpokg”
A€Q(4;:By)

Proof: Tt follows already from Lemma 5.3.3 that the inclusions in the
squares (5.5.5) and (5.5.6) are as indicated, and that (5.5.5), and consequently
(5.5.6), is a commuting square with respect to the Markov trace. Further, it
is obvious that the symmetry of the commuting square (5.3.2) implies that
of the commuting squares (5.5.5) and (5.5.6). So we only need to prove the
assertions concerning biunitary matrices.

We shall use the symbols «ag, a1, da, ﬂl,BQ,m, A and k, (or ‘primed’ ver-
sions of them) respectively, to denote the typical oriented path in Qg;a,),
Q(40:41)5 U A1;42)> Q(Bo;B1)> U(B1;B2)> (A0; Bo)s R(Ar;By) and (4,;B,), With the un-
derstanding that o, (resp., £,) is an oriented path in Q(4y;4,) (resp., Upy;5:))-

Suppose {Tagoar0rapoaiox'} A0 {Gagor,opy afor;op; ) denote systems of ma-
trix units for B; compatible with the towers C C Ay C A; C B; and
€ C Ag C By C B; respectively, and that the biunitary matrix U is related
to the commuting square (5.3.2) via these systems of matrix units; thus,

Taooalo)\,aboa'lo)\' = Z uziﬁlu_&a}lﬁ}qaoonloﬁl,%on;oﬁg. (558)
K1001,K, 00}

It is clear from Proposition 5.4.4 and Lemma 5.3.1 that there exists an
isomorphism, call it 13, of By onto the path-algebra model for B; coming
from the tower € C Ay C By C B; C By, such that 13 maps the system
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{Gagoryopy ahortop } Of matrix units for B) onto the standard system of matrix
units for the path algebra given by {€agox;op afortop; }, and such that

N
f(B1)°£(87)
Ps(e) = Y e (5.5.9)

—Bo eﬁloﬁl,ﬁioﬁ'l’
B1,81,5(B1)=s(B1) S(ﬁl)

where, as before, we write 7 : 7(C) — [0, 1] for the trace-vector correspond-
ing to trlc, for C € {A;, Bi 1 i = 0,1,2}. Let By = {Gqyom;08100,a0x,08 01}
be the system of matrix units for By (which is compatible with the tower
€ C Ay C By C B) C By) obtained as the inverse image under 3 of the
standard system {e, ..,0p,0 frsahonloflo 4,} of matrix units for the path-algebra
model. (It should be clear that this notation is justified — in the sense that
this system of matrix units does indeed extend the system {gagor;o0p1,af0x}08, }
chosen earlier.)

Similarly there exists an isomorphism 99 of A, onto the path-algebra
model for Ay coming from the tower € C Ay € A; C A,, such that
Y (Tagoa ahoa!) = €agom ahoa; a0d such that

[ Al
Pi(e) = > M : (5.5.10)

—A ea10&1 ,ajoaly
o0 ,s(a1)=s(a}) t5(an)
Now let B; = {paomlm,zOM,%m,1 o&'zon;} be any system of matrix units for
By which is compatible with the tower € C Ay C A; C Ay C By and which
‘extends’ the system (7)™ ({€4500100, o o 0ds 1); let ¢, denote the isomor-
phism of B, onto the path—algebra model from the tower € C Ay C A; C
Ay C B, which maps p° onto e

000 00i2 0K, ath 0t 00 20K) QO 0CE20K2 ,01600'10&'20&2 .

It should be clear that if we define
Z K10B1-—K108]

umok ua o' qaoonloﬁloﬂg,aoonloﬁloﬁ’
K10f1,K)0p]

Tagoalo,\oﬁg ,a{)oa’lo)\’oﬁ’z -

then By = {7, 1 0104 frsahod oNof'y } is a system of matrix units for By which is
compatible with the tower € C Ao C A, C By C B, and which extends the
already chosen system of matrix units {Tsg0a,0rap0ai0x} for By. It should be
obvious that we have the relations

3wyl . (5.5.11)

qao°ﬂ1°ﬁ1°ﬁ~2,112,05'105'105'2 ajod Tajo) ,raooalokoﬂg,aooalok’oﬁ’

ajod,afol!
The definitions and equation (5.5.10) imply that

Ve (5:5.12)

€= %Ao palodl,a’loc;’f
a,a),s(an)=s(a)) s(ai)
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Similarly, it follows from equation (5.5.9), equation (5.5.11), and the definition
of the matrix V' (in terms of U), that

B, B
| Erlentiiey)

e = {Bo 96,04 Biofy
B1,81,5(B1)=s(8}) s(B1)
<B1 B1
Crientiey)
= Z Z =By qaoonl of1 oﬁl,aoonl oﬂ'1 oﬁ'l
xpor s(61)

S(Bf )fsl(ﬁ;) F(s1y=s(81)

ZBl ZBI
B - 160U yop, ot

EBQ 10X ua’lo)\’ aq)oalo/\oﬁ_;,aooaf'lo/\'oﬁ'1
°‘0°"1°ﬁ1,73’1r°‘1°)*’“11°)" s(ﬂ1)

s(Br)=s(1)

iAx iAl
Z fla1)*f(o)) Xofy —MNofi!,
_ Yy

—Ao (f1°f€1v&/1o;g1

t

Taooal odofl1,agoa 0N off

D‘D°"1°ﬁ1rﬁ;’lr“1°)‘ra‘ll°)‘l s(en)

s(Br)=s(81)

Let H; and H, denote Hilbert spaces with orthonormal bases {{, : a €
Q(c;A0;41542:82) ) and {7y + ¥ € Qc;40;415B1;8,)} Tespectively. Let p; (resp.,
p2) denote the representation of By on H, (resp., H,) such that pi(p ) =
(-, €Yo (resp., pa(Ty,y) = (-, My )7y). Consider the unitary operator V : H; —
‘Hy defined by i

Véagoaodzons = Z vé’:f}iznaooalvoﬁg'
Aof2

It is clear from the definitions that V' intertwines the restrictions to A; of

the representations p; and p,, and that

0 = ) *
V'D1 (pao oQr] 020K2,01 00 0 20K 14

— Xoffy —Noffy _ .
- ~Z : vffzonzv&/2o;;'2p2(Taooaqo)\oﬂg,agoa'lo)\’oﬂ’z)' (5513)
Aofz,Nof,

It follows quite easily from equation (5.5.12), equation (5.5.13) and the
already obtained expression for e in terms of the r,.’s (after making the
change of variables (s, k2) to (81, k1)) that V*pi(e)V = pa(e). Since Ay =
(A1, e), this means that the operator V intertwines the restrictions to A, of
p1 and p;. .

Suppose now that ((wﬁiffw)) is the biunitary matrix which describes the
commuting square (5.5.5) with respect to the systems of matrix units {p3 . }
and {r,,}; thus, if we define an operator W : H; — H, by the prescription

— Xof2 _
Wf"0°al°d2°"2 - Z wd2°ﬂ217000010A0ﬁ2’
Xofa
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then W is a unitary operator which intertwines the representations p; and ps
of BQ.

It follows then that W*V € p;(As)’; on the other hand, it is clear from
the definitions that W*V commutes with {p;(f) : f € Z(Bs)}; on the other
hand, by Remark 5.4.2(1), we have p;(Z(Bs)) = p1(B2)’; thus we find that
W*V € p1(By), and that in fact W*V = p;(ug) for some unitary element
uy € Ay N By. It is easy now to see that if we define poo = uopd ,uf,
then {pa, } is a system of matrix units (which is compatible with the tower
C g Ao Q Al g A2 Q BQ) and that

Xofla —Nofi,

paooaloa'zonz,a{)oa’lo&'gon'z = ~Z B va'zonz &120,42Taooalo)\oﬁ—z,a{)oa’lo)\’oﬁ’z‘
Xofiz, N off5
(5.5.14)
This proves (a), while a combination of equations (5.5.14) and (5.5.8) estab-
lishes (b). m|

COROLLARY 5.5.5 Suppose (5.8.2) is a symmetric commuting square with
respect to the Markov trace. Let {B,} denote the tower of the basic cn-
struction applied to the initial inclusion By C By, with e,y € Buyp im-
plementing the conditional expectation of B, onto B,_;. Inductively define
Apr = (An,enq1),n > 1

(i) Then, for every n > 0,

B, C Bpn
u u (5.5.15)
An - An+l

is also a symmetric commuting square,and it is described by the biunitary
matriz Ul nqy), where

U | U if n iseven,
Pt =Y V' oif s odd.

(it) For each n > 0, we have isomorphisms

AlNB, C A NB,n Al 9N By C AL5NBnys
U u = U U
Z(A,) C AlNAnn Z(Ans2) C ApaNAngs

Proof: (i) is an immediate consequence of Proposition 5.5.4(a) and the
easily verifed fact that if we denote the passage U — V by V = V(U), then
Vv(D)) =U.

(ii) By definition, we can find systems of matrix units {pffl, o, €

Q(C§Ak§Ak+1;Bk+1)} and {Q,l(il,c,l)i’ : 16,/6, € Q(C;Ak;Bk;Bk+1)} for Bk+l (Wthh are
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compatible with the towers C C Ay C Ay C By and € C Ay C By C By,
respectively, such that
(k)
paooako,\k_{.l,aaoako)\;ﬁl

— AkoB AoBy (k)
- Z (u[krk+1])ﬂk°’\k+l (u[k»k'*'l])a’ko,\;c_'_l qaoo)\koﬂk,ago)\;coﬁ;c'
Ak 0Bk,A 0B,

Since Q(a,:B,:Bn11) = U(Ans2:Bni2;Basa), it follows from the path-algebra

description that there exists a unique isomorphism 9 : (A;,NB,11) — (A7 5N

2 . .
By13) such that 1/’(‘1&2)011,1,,\;0;;;) = Q,(\:tﬁ,)l,,\'noﬁ;; Since Uppnt1) = Upiansa)s 16

(n) — (nt2)
follows that also $(Pgox, 1 at0x.,,) = PayernisehoN, ,,» and so the map ¢
implements the desired isomorphism. O

5.6 Canonical commuting squares
Assume, as usual, that N C M is a finite-index inclusion of I; factors, that
N=M,CM=MCMC---CMC---

is the tower of the basic construction, and that e,,; denotes, for n > 0, the
projection in M,,,; which implements the conditional expectation of M, onto
M,_;.

PROPOSITION 5.6.1 Fiz n > 0, and let tr denote the restriction, to N' N

Mn+1, Of trMnH.
(i) The following is a commuting square with respect to tr:

N'NM, C NNM,y
u U (5.6.1)
M'NM, C M0 Mu.

(i) tr is the unique Markov trace for the inclusion (N'N M,) C (N'n
Mp41).

Proof: Fix z € (M'NM,,1) (resp., (N'NM,1)); then for arbitrary a € M
(resp., N), an application of Eyy, to both sides of the equation za = az yields
(Ear,z)a = a(Ep,(z)). Since a was arbitrary, this means that Epr (M’ N
Mny1) € (M'n M,) (xesp., Ep,(N'N M) C (N’ N M,)), which clearly
implies the truth of (i).

As for (ii), note, as above, that the projection €,,5 € (N' N M,+2) imple-
ments the tr-preserving conditional expectation of (N'NM,1) onto (N'NM,,)
and that e, satisfies the Markov property with respect to (N’ N M,1) and
tr M, 42 [(N'AM,pn)- It follows now from Lemma 5.3.1(b) and Proposition 3.2.3
that tr is a Markov trace for the inclusion (N' N M,) C (N'N Mp41). On the
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other hand, as a result of the bimodule picture of the principal graph, this
has already been seen to be a connected inclusion, and the proof is complete.
O

To proceed with the analysis, it is desirable to take a closer look at Lemma
5.1.1 and its consequences. According to that lemma, if N C M is a finite-
index inclusion of I1I; factors, then we can find a subfactor N_; of N such
that M is isomorphic to the result of the basic comstruction for N_; C N.
However, the choice of N_; is far from unique. For instance, if v is a unitary
element of N, it should be clear that uN_;ju* works just as well as N_;. (It
is a fact — see [PP1] - that this turns out to be the only freedom available in
the choice of N_;; but we do not need that fact here.)

Exactly as we constructed the tower {M,}n>1 of the basic constructlon
we may also construct a tunnel {N_,}n>; in such a way that every inclusion
of neighbours in (5.6.2) (below) is an inclusion of II; factors with index equal
to [M : NJ, and such that any string of three equally spaced factors ‘is a basic
construction’:

CNaC--NaCNCMCMC - MC- . (56.2)

The point, however, is that while the ‘tower’ construction is canonical,
the ‘tunnel’ construction is only ‘semi-canonical’ in the sense discussed in the
last paragraph; thus, given N_,, the subfactor N_,_; is determined only up
to an inner automorphism in N_,.

In any case, suppose we have chosen a tunnel as in (5.6.2). A little thought
should convince the reader that once we have fixed n, the map z — Jprz*Jps
defines an anti-isomorphism of N_, onto M,,; which maps N_; onto My
for 1 < k < n. Thus, we have, for each n, an anti-isomorphism (of commuting
squares):

M'NM, C MNMu1 \ giisom. [ MONLnyy © MNN.,
U U = U U
MinM, M{N Mpy NNNL,,, € NnN.,
(5.6.3)
It follows, thus, that independent of the manner in which the tunnel
{N_n}n>1 was constructed, the following grid of finite-dimensional C*
-algebras, equipped with consistently defined traces (given by the restrictions
of trar) — or rather, the trace-preserving isomorphism-class of this grid - is
an invariant of the inclusion N C M:

c=MnM C MNN C MNnN, € MNN, C .-
u u u (5.6.4)
NNnN C NNN, € NnNN, C ---

N

DEFINITION 5.6.2 The trace-preserving isomorphism-class of the grid (5.6.4)
of finite-dimensional C*-algebras is called the standard invariant of the sub-
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factor N C M, and the individual squares in this grid are called the canonical
commuting squares assoctated with the subfactor.

Notice, incidentally, that in view of the anti-isomorphisms given by (5.6.3),
the standard invariant contains the data of the principal and dual graphs of
the subfactor. (The latter (resp., the former) describes the Bratteli diagram
of the tower contained in the top (resp., the bottom) row in the standard
invariant.)

Further, it must be clear that the standard invariant would even be a
complete invariant for the subfactor N C M, provided we could, by making a
judicious set of choices, find a tunnel {N_,} with the (generating) property
that U, (M NN’,) is weakly dense in M and U,(NNN’,) is weakly dense in
N. Notice that an obvious necessary condition for this is that N and M be
both isomorphic to the hyperfinite II; factor. (It is a fact that a finite-index
subfactor of R is necessarily hyperfinite.)

It is a deep theorem due to Popa ([Pop6]) that a subfactor admits such a
generating tunnel if and only if it satisfies a certain property he calls strong
amenability. It follows from one of the equivalent ways of characterising this
notion of strong amenability that any subfactor of finite depth — i.e., for
which the principal (equivalently the dual) graph is a finite graph — is nec-
essarily strongly amenable, and is hence characterised by its standard invari-
ant.

It will be a good idea to consider the finite-depth case a little more
closely. Suppose then that N C M is a subfactor of finite depth. It then
follows from the definition of the principal and dual graphs, that if n is
large enough, then (M; N M,_;) C (M; N M,) C (M;] N Mp4;) is an in-
stance of the basic construction, as is (M' N M,—;) C (M'NnM,;) C (M'n
M, 1), with the conditional expectation being implemented in either case
by eny1. Thus, in view of Lemma 5.3.3 and Corollary 5.3.4, we may para-
phrase the finite-depth case of Popa’s theorem on amenable subfactors as
follows:

THEOREM 5.6.3 Let N C M be a subfactor (of a II; factor) of finite depth.
Then, for n sufficiently large,

MnM, C MnMy
@] @] (5.6.5)
MM, C M{nMy
is a symmetric commuting square. Further, the isomorphism class of this
square of algebras is a complete invariant of the subfactor.
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5.7 Ocneanu compactness
Suppose, in the opposite direction to Theorem 5.6.3, that we are given a
symmetric commuting square (with respect to the Markov trace), say
H
By, C B;
KU UL (5.7.1)
G
Ay C Ay,

where the inclusions are assumed to be connected. Let
ByCB CB,CB;C -+

be the tower of the basic construction (applied to the initial inclusion By C
B,), where Bpy) = (B, eny1) for n > 1. Define A,y = (Ap, €q41) for n > 1.
(Notice that, according to our conventions, the sequence {e,} now starts only
with e,.) It then follows from Lemma 5.3.3 and Corollary 5.3.4 that

Hn

Bn - Bn+1
KaU UL (5.7.2)
Gﬂ-
An C An+l

is a commuting square for each n > 1, with inclusion matrices as given, where
(Gn, Hpy K, Ly) is (G,H,K,L) or (G',H',L,K) according as n is even or
odd.

As has already been observed in §3.2, the algebra (U, B, admits a unique
tracial state, and consequently has a copy R of the hyperfinite I, factor as
its von Neumann algebra completion with respect to this trace; for the same
reason, the weak closure of |, A, is a subfactor Ry of R.

Thus each symmetric commuting square of finite-dimensional C*-algebras
(with respect to the Markov trace, and such that the inclusions are connected)
yields, by the above iterative procedure, a subfactor of the hyperfinite II;
factor. The content of Theorem 5.6.3 is that if, in place of (5.3.2), we had
started out with the canonical commuting square (5.6.5) associated with a
finite-depth subfactor of the hyperfinite II, factor, then the subfactor Ry
obtained by the above prescription would have been ‘anti-conjugate’ to N in
the sense that the inclusions N C M and Ry C R would be anti-isomorphic.

Conversely, we can start from an arbitrary symmetric commuting square
as above, obtain the subfactor Ry C R, and ask if there is any relation between
the initial commuting square and the canonical commuting squares. This need
not always be the case, but if we recapture the canonical commuting square,
then the commuting square we started with is said to be flat.

The first step in investigating flatness or otherwise of a commuting square
is the computation of the higher relative commutants; the answer to this
computation lies in the following result due to Ocneanu.
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THEOREM 5.7.1 (Ocneanu Compactness) Let A,, By, Ro, R be as above. Then
RyNR=A]NB,. (5.7.3)

Proof: First observe, in view of the equations A,.1 = (A4,,en,4+1) and
{ent+1} N By = B,_1, that if m > n > 1, then

A:nan = A;ln{€n+17€n+2a"'7em}’an
= A;lan—h

and we thus find that
A .NB,=ANBy Ym>n>1.
Since U, A, is weakly dense in Ry, it follows that
A1 NByC R NR.

(In the following, we identify a € R with aQg, and thus view R as being
metrised by || - ||z, the metric in L?(Ry).)

Let H,, denote A%, N Baypy1, viewed as a (finite-dimensional) Hilbert space
(with respect to || - ||2), and let E, (resp., F,,) denote the subspace Aj, N Ba,
(resp., A5, 1N Bany1). Then, as in the proof of Corollary 5.5.5, we can find an
(algebra) isomorphism L, : Hy — M, such that L,(Ey) = Eyand L,(Fp) =
F,.

We first establish the following:

Assertion: There exists a constant ¢ > 0 such that
cHlzl| < | Ln(2)]] < clla]| Yz € Ho, Vn.

Proof of assertion: Since L, is a *-algebra homomorphism, we have to
show that the set

tr L, (z*z)

- :z € AyNBy,n > 1}

{
is bounded away from 0 and oo. Since Aj N B; is a finite-dimensional C*-
algebra, it is sufficient to show that for all minimal central projections p €
Ag, q € By (thus the typical minimal central projection in Ay N B is pg), and
for any one minimal projection f € (AN Bi)pg, the sequence {t’%"fﬁ in > 1}
is bounded away from 0 and oo.
In the following paragraphs, we shall use the notation and terminology of
§5.5; in addition, we shall use the following notation: we write 7 : 7(Ag) — N
for the dimension-vector for Ay defined by ﬁf, = dim Agp; further, for C = A,

or B,, we shall write 7° : 7(C) — [0,1] for the trace-vector describing tr|c;
thus, it follows from Corollary 5.3.4 that 22 = A~1#%" and #A*+ = 1§~
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where A = ||G||> = ||H||®. Finally we shall write v = II%A"OT’ so that v is
2

the normalised Perron—Frobenius eigenvector for (GG') corresponding to the
eigenvalue A. In the sequel, we shall need the following standard fact from the
Perron-Frobenius theory: under the standing assumption of inclusions being
connected, it is true that for any vector w of the same size as v, the sequence
{(¢€)"w} converges to the vector (w,v)wv.

By the construction of L,, for each n, there exists a system {p,(;:)ﬂ,,;/oﬂ/ 1Ko
/6) K'l o /B’ S Q(Ao;Bo;Bl)u f(,B) = f(/BI)) S(K') = S(K")’f('{') = S(IB)) f(K'l) = S(/BI)}
of matrix units for A} N By, such that L, (P,(:l)g,n'og') = p,(:f,}g,,c,o[,,. So we have
to show that for each fixed path ko € Q4y;B,;B,), the sequence {tr p,(:f,};’mﬂ}
is bounded away from 0 and co. But we have

n ~Bon
LR D DR 7
GEQ(C;A,M)
f(0)=s(x)
_ GG -B
= > "p(—/\‘)"(P,S(E))tf(lﬁ)
pem(Ag)

GG'. . -B
= (S Pwtie
— (ﬁ,v)vs(n)fﬁlﬂ)
> 0,

thereby proving the assertion.

Before proceeding further, notice that if E, F' are subspaces of a finite-
dimensional Hilbert space H, the two expressions p;(z) = d(z, E N F) and
p2(z) = d(z, E) +d(z, F) define norms on H/(E N F) and consequently there
exists a constant £ > 0 such that k™'py(z) < pi(z) < kpa(z) Vz € H. In
particular, there exists a constant kg > 0 such that
ko_l(d(l‘, Eo) + d(.’L‘, Fo)) < d(.’L‘, Eo n Fo) < ko(d(.’l), Eo) -+ d(m, Fo)) Vz € Ho.

(5.7.4)

Coming back to the proof of the theorem, notice first that (as already
shown) E, NF, = A}, N By, = A1 N By Vn. Suppose now that z € Ry N R;
set z, = Epg_z for all n; it follows then that z, € Al N B,; i.e., T2, € E, and
Tont1 € F,. It follows now from the above, the assertion and (5.7.4) that

d(z2n, A} N By) d(zon, B, N Fy,)

cd(L; (z9n), Eo N Fp)

cko(d(L; (z20), Eo) + d(L7  (zan), Fo))
ko(d(an, Bn) + (@20, Fr))
kod(Ton, Fy)

02k0|l$2n - l‘2n+1||

0 as n — oo.

IN NN

LA
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On the other hand, since z, — z (in || - ||2) as n — oo, this means that
z € A} N By, and the proof is complete. O

REMARK 5.7.2 Theorem 5.7.1 is false if we drop the requirement that the
commuting square (5.7.1) is a symmetric commuting square, as shown by the
following example: let Ay = Ay = C # By # By; then (5.7.1) is trivially a
commuting square, Ry = {e, : n > 1}", and it is not always the case that
RN R = ({e1} N By =)B,. (See the construction of the 3+ /3 subfactor in
[GHJ].)

The use of Ocneanu’s compactness result lies in the fact that it can be
used just as well to compute all the higher relative commutants. In order to
see how that goes, we start with a lemma.

LEMMA 5.7.3 Suppose (5.7.1) is a symmetric commuting square (with re-
spect to the Markov trace). Then there ezist a finite set I, and {N:iel }c
By, {fi:1 €1} C Ay such that

(i) each f; is a projection,
(i) Eay(Nil}) = i fi;
(i) Yiertr fi = [|K||%; and
{7/1}) T = Ziel EAl(m)\;)/\J, Vz € Bl'
Proof: As before, we shall use the notation 7(C) for the set of minimal cen-
tral projections of a finite-dimensional C*-algebra C; for C' € { Ay, 41, Bo, B1},
we write 7° : m(C) — [0,1] for the trace-vector corresponding to tr|g; we

shall also write @ : w(A4y) — N for the ‘dimension-vector’ of Ay defined by
ﬁz = dim Agp. Thus, for instance, we have

KK'T% = || K||T%, Y = 1. 5.7.5
P’p
pem(Ao)

Finally, we shall denote the typical paths in €(¢.40), 2(40;B0) @0d 4(¢;40;B0) DY
the symbols «, & and [ respectively.

Let {gpp} denote a system of matrix units for By compatible with the
tower C C Ay C By. (The following notation is motivated by the fact that the
matrix with all entries equal to 1 is customarily denoted by the symbol J.)
For each p € m(Ay), define

Z Ga,!
F@)=f(a')=p

Z Z Qaok,al ok - (5.7.6)
a,a! Jf(a)=
f@=Flary=p T

(The normalising constant ensures that j, € P(Ao).)

-Ell —

jp=

'ejll =
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Define I = {(«, ) : f(k) = f(B)} and

Gep= Y, Gaoxg VY(k,B) €L (5.7.7)
o,f(a)=s(k)

It follows directly from Proposition 5.4.3 that

* f?(ox)_ .
Eao(ar,pa5 ) = 6(x,0),(,8") 22 Ts(s)Js() -
Ls(r)

-t‘Bo _%
10)
TAo vs(k) Qg 3,

tS(K,)
fn,ﬂ = js(n); V(Iﬁ, ﬂ) el

Define

Ak

It is then clear that {);, f; : ¢ € I} satisfies (i), while (ii) is an immediate
consequence of (5.7.5). Further, it follows easily from the definitions that

Another fairly straightforward computation shows that

r = ZEAO(‘T)‘:)’\l Vz € By. (579)

i€l

Now, it follows from Corollary 5.3.4(b)(iv) that B is linearly spanned by
A; By; on the other hand, it is a consequence of (5.7.9) that By is linearly
spanned by U;c; AoA;; thus B; is linearly spanned by U;e; A1);; also, the
commuting square condition implies that

Ea(NX) = 6ifi Vi,j el (5.7.10)

It follows therefore that {A;)\; : @ € I} is a pairwise orthogonal (with re-
spect to the trace-inner-product) collection of subspaces of B; which span
B,. Hence, if £ € By, there exist a; € A;,71 € I, such that z = Y, a;\;; it
follows from (5.7.10) that Ey4,(zA}) = a;f;, and hence, in view of (5.7.8),

Y E4@X)hi =) aifihi =z O

i€l i€l

COROLLARY 5.7.4 If Ry C R is constructed as in Theorem 5.7.8, and if
{M\i:1 €1} is as in Lemma 5.7.3, then

(i) {):i : 1 € I} is a basis for R/ Ry as in §4.3; and consequently,

(i) [R : Ro] = ||K||* = ||L||>.
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Proof: Since (5.7.2) is a symmetric commuting square for each n, it follows
(from the same reasoning employed in the proof of Lemma 5.7.3(iv) and
induction) that for any n and for any z € B,

I = Z EA,.(-T/\:))W

iel
Since
B, C R
U ]
A, C Ry
is clearly a commuting square for each n, this means that
[oe]
=Y Eg(zA)X\;, Vz € |J B,. (5.7.11)
i€l n=1

Since both sides of this equation vary continuosly with z, we see that

= ZERO(.'L‘/\:))\Z‘, Vr € R,
i€l

thus proving (i); assertion (ii) follows at once from Lemma 5.7.3(iii). O

Before we start to interpret Ocneanu’s compactness theorem to compute
the higher relative commutants (and consequently the principal graph) of the
subfactor Ry C R constructed as above (starting from an arbitrary symmetric
commuting square), it will be prudent to adopt a slight change in notation.

We shall henceforth use the symbols A} and A}, respectively, to denote
what we have so far been calling Ay and Bjg; likewise, we shall write R; for
what was earlier called R; thus R, = (Uy 4%)",n =10, 1.

Let Ry C Ry C RyC---C R, C--- denote the tower of the basic con-
struction. Since the symbol ex,; has already been reserved for the projection
in A7, which implements the conditional expectation of A} onto A}_,, for
n = 0,1, we shall use the symbol f,+; to denote the projection in R,,,; which
implements the conditional expectation of R, onto R,_;, for n > 1. (Again,
the sequence starts only with f,.)

For n > 1, inductively define

AZ-H = (A;cl)fn-‘rl)) vk Z 0.

PROPOSITION 5.7.5 Consider the grid {A} : n,k > 0} constructed as above.
Let n > 0.
(1)n AR is a finite-dimensional C*-algebra, for each k > 0, and R, =

(Urzy AR)".
(i1)n, If n > 1, then for each k > 0,
Ap C AR
¥ U (5.7.12)

47 oA
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is a symmetric commuting square with respect to trg, |ap,, (which is also the

Markov trace).
(#41)n, If n > 2, then, for each k > 0,

AP C AT C AL

1s an instance of the basic construction, and the projection f, implements the
conditional ezpectation of A™' onto A}~%.
(iv)n For each k > 1,

k-1 C AR C Abn

is an instance of the basic construction, and the projection ex4; implements
the conditional ezpectation of A} onto A}_;.

Proof: We prove the proposition by induction on n. The proposition being
true, by construction, for n = 0,1, we assume that n > 2 and that the
assertions (i)p—1—(iv),—1 are valid.

It follows from (ii),—; that

A;:—l C R,
U U (5.7.13)
AP? € Rasy

is a commuting square, for each k; hence, by the defining property of f,, we
find that if a?~' € A7, then

fnag_lfn = ERn_g(ag—l)fn = A:‘Z(a;:_l)fn

and hence f, indeed implements the conditional expectation of AZ’I onto
AZ'Z; in particular, it follows that the set {ao + 12, a;fna} : m € N, a;, 0} €
A?'} is a finite-dimensional C*-algebra containing (A7~ U {f,}), and con-
sequently

A]T: = {aO + Zaifna;: tmEN, ai)ag € Ag_l}) (5714)
i=1

thus establishing (i)y.

Since Egn-1(fn) = Egp-1(Er,_,(fa)) = 7, where 7 = [R; : Ro]71, the
equation (5.7.14) implies that E A?LI(AZ) C A?7!, and consequently (5.7.12)
is indeed a commuting square with respect to trg, | ap,,- In particular, since
this is valid for all k, it is also true that

A C R,
U U
AZ-I C R,

is a commuting square with respect to trg,.
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Let {); : © € I} C A} be a basis for R;/R, as in Corollary 5.7.4(i). It
follows from Lemma 4.3.4(ii) that {T‘"T—lfnfn_l <+« foX; 14 € I} is a basis for
R,/Rn,_1. In particular, if k£ > 1, and a} € A7, then

ap = T—(n—l)ZERn—l(a;cl)‘:fZ'"fn)fn'"f2)\i

i€l
- (1) Z EA;:_I (afXifo - fu)fn- - fohie (5.7.15)
i€l
Hence
n_ \/ATI;_I AR (5.7.16)

where the symbol \/ denotes ‘span’. It follows from Remark 5.3.5 that z At_l( fn)
=1, and hence, by Corollary 5.3.2, we have proved (iii),,.

Notice next that & > 1 = f, .- faA; € A} C A7_;; so, in view of the
already established fact that (5.7.12) is a commuting square, we see from
(5.7.15) that for arbitrary a} € A,

(a;:) = T—(n—l) Z EA;::% (GZ :fZ e fn)fn e f2>\i;

el

Eap

k-1

on the other hand, since f, - - foA; € A7 C {ex}', it follows from (iv),_; that

Ek+105Ekt1 = T_("_I)ZEA:j(aZ)\ffr"fn)fn"'f2/\i6k+1
iel

Eup_, (a)ext1; (5.7.17)

hence ej; indeed implements the conditional expectation of A} onto A%_;.
Deduce next from equation (5.7.16) and (iv),—; that

AZ+1 = \/AZ;%AZ
= VA e Ay AL
= \/AZ‘leHlA’,;
C \ AlernAL

which implies that z4p, (ex+1) = 1, which establishes (iv), in view of Corol-
lary 5.3.2.

Finally, in view of the already establlished fact that (5.7.12) is a commut-
ing square for all k, we see from the parenthetical remark in (ii),_1, and from
(iv)p-1, that

EAE(e;H.l) = EA:—1(6k+1) e Cl.

In view of the already established (iv),, this means that trp,|4r is @ Markov
trace for the inclusion A}_; C A7. The already established fact that (5.7.12) is
a commuting square, the identity (5.7.16), and the previous sentence complete
the proof of (ii),, and with that, the induction step, and consequently the
proof of the proposition, is complete. 0
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We are finally ready to use Ocneanu’s compactness theorem to compute
the higher relative commutants.

THEOREM 5.7.6 (Ocneanu compactness (contd.))

Let
e C .. C e C . C ... C ...
(@] U @] @] @] @]
Ap C A} C Ap C .- C A} C -+ > Ry
@] @] U U U U
.. C .o C .- C . c .- C e
U U U U @] @]
Ay € Al C AL C - C A C - > R
U U U U U U
A C A C A C - C A C - - R

be as in Proposition 5.7.5. Then, for each n > 1,
RyNR, = AY n A7

Proof: Fix n > 1 and consider the grid

A} C AT C AP C - C AL C - > R
U @] U U U @]
A € A} C Al C - C A C -+ — R,

By Proposition 5.7.5, this grid satisfies the hypothesis of Theorem 5.7.3, and
hence, by that theorem, the desired conclusion follows. O

We now state a few related problems whose solutions we would like to see.

QUESTION 5.7.7 Given a symmetric commuting square, say (5.7.1), does
there exist an algorithm which, in the preceding notation, would:

(a) compute dime(Ry N R,) in polynomial time (as a function of the input
data)?

(b) decide in finite time if the subfactor Ry C Ry has finite depth?
(c) answer (b) in polynomial time?

We should mention here that Ocneanu has shown that if it is already
known that the depth is a finite integer, say n, then the dimensions of the
higher relative commutants can be computed in polynomial time.



Chapter 6

Vertex and spin models

6.1 Computing higher relative commutants

This chapter is devoted to a discussion of the subfactors arising, as in §4.4,
from an initial commuting square which is a ‘vertex model’ in the terminology
of §5.2.3. Actually, we shall work with a slight generalisation, as follows.

LEMMA 6.1.1 Let

(N]

By C B

U U (6.1.1)
(V]

Ay C A

be a (clearly symmetric) commuting square of finite-dimensional C*-algebras
such that the inclusion matrices are 1 X 1 matrices (as indicated) and where
Ao = C. Suppose this commuting square is described by the biunitary matric
u (see §5.5), which is a kN x Nk matriz given by

u=((u’),1<a,<N,1<ab<k.
Define the unitary matrizc w € Myg(C) by
wgp = vl (6.1.2)
Then the square (6.1.1) is isomorphic to the square
w(l ® Mk(C))’LU* C MN(C) ® Mk(C)
U U (6.1.3)
C Cc  Myl©)®1l.
Proof: Let {pagewa : 1 < @, < N,1 < a,a’ < k} and {gppp : 1 <
B,B < N,1 <bb <k} be systems of matrix units for B; compatible with

the towers Ag C A; C B; and Ay C By C B; respectively, with respect to
which the biunitary matrix u describes the given commuting square.
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The system {pagarar : 1 < o, < N, 1< a,d <k} yields an isomorphism
1 : By = My (C) ® My (C) thus: ¥(Pagara’) = €aa ® €aar, Where the e’s denote
the standard systems of matrix units in matrix algebras. By definition, the
algebra A, has a system of matrix units defined by poer = XF_, Daa,e'a; hence
Y(Paa’) = o ® 15 1., P(A1) = My(C) ® 1.

By definition, we have

N k
_ b —b' G .
Paa,a'a’ = Z Z uaiua’a’qbﬁ,b'ﬁ"
B,8'=1bb'=1

and hence
N k .,
— ad— a
Qg b’ = Z Z Wgp Wery Paa,a'al s
a,a'=1a,a'=1

and consequently,

N k
T/)(Qbﬁ,b’ﬂ’) = Z Z wggﬂ)g/?, (%% X eqa

a,a'=1a,a'=1

w(ess & e )W’

where we view w as an element of My (C) ® M (C) in the obvious manner.
But By is spanned by {ge : 1 < b,V < k}, where gy = Egzl Qogpp- 1t follows
at once that

$(By) = w(l ® My(C))w*

as desired. (|

DEFINITION 6.1.2 We shall refer to any commuting square of the form (6.1.1)
as a vertex model.

REMARK 6.1.3 We shall need the fact, which the proof of the lemma shows,
that conversely if w = ((wg§)) € My(C) ® My(C) is unitary, and if

My(€)®1 C Mpy(C)® Mi(c)
u U (6.1.4)
C w(l® Mi(C))w*

N

is a commuting square (and is hence a verter model in our terminology),
then the biunitary matriz v which describes this commuting square is given
by w = ((ugg)), where ugg = wgy.

In the rest of this section, we shall start with a vertex model, as given by
(6.1.3), think of this as the initial commuting square

A © A
U U (6.1.5)
Ay C A,
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and describe the tower {RyNR, : n > 1} of relative commutants, as discussed
in §4.4. We shall use the notation of that section; in addition, we shall find it
convenient to use the notation

Cpn=RyNRy,n>1.
By Theorem 5.7.6, we have
Cp =AY N AL

On the other hand, the grid {A} :n > 0,k = 0,1} (when flipped over by 90°
from the way it looks in the grid in the statement of Theorem 5.7.6) is given
by

A} C Al C (ALf) C (Al fafs) C -0 C o
U U U U (6.1.6)
Ay C A5 C (A3 f) C (A5 fafs) C 0 C

the latter is, by Proposition 5.7.5(iii), the result of repeated applications of
the basic construction to the top row of the vertex model given by (6.1.4).
According to Remark 6.1.3, the basic (initial) commuting square

A Cc Al My(€)®1 C Mp(C)® Mi(C)
U U | = U U
a0 aan)

A C

N

Ay

N

of the grid (6.1.6) is described by the Nk x kN biunitary matrix u = ((ugg)),
where upg = wgy.

It follows from Corollary 5.5.5(1) and Proposition 5.5.4(b) that, for each
n > 1, the commuting square

(k"]

A} C A}

U U]
o

Ay C Ap

is described by the Nk™ x k"N biunitary matrix Upg ), which is defined by

N
Upn)pinss = Yoo gt (V(w)Pstugzs? - - (n factors)
Y5 Tn—1=1
N
= > upuug?e - (n factors)
71”"”7"1_1=1
N

_ aay 7202, 7203
= Yo wSRwlnEwl?? - (n factors).

Ty Tn—1=1
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(We pause to point out that in the n-th factors of the product in each of three
preceding lines, the subscript is given by b,0 in the first two lines and by b,
in the last line.)

By another application of Remark 6.1.3, we find that we may make the
identification

(A? < A’f) (MN(C)®1 S My(©)®(®" M(0)) )
U u | = )

@ U

AY C A C Won(1 ® (®" Mi(C))) Wiy )

N

(6.1.7)
where Wion) = (Wom)sr o)) € Muin(€)(= My(C) ® (®" Mi(C))) is
defined by

(Wom) g = Ulo,nl)or~f
Hence it follows that C, = A} N A} = (1 ® (" Mi(C))) N Wim(l ®
(®" My(C)))W .- Thus we see that C, may be identified with the set of
those F = ((Fbl1 ) € @ My(c) for which there exists a G = (G}, 7)) €
®™ My (€) such that 1® F' = Wiy ») (1@ G)W[ ;5 in longhand this means that
forall o, f € {1,2,---,N},a1,b1, -, an, by € ll 2,--,k}, we have

k N
> S FR{we wliw)®3 - (n factors)}

c1Cn 7151 Weyrby Woyabs
c1,yen =171, yn-1=1

k N
= Y > {wSs wlEwe - (n factors) }Gil T (6.1.8)

c1yea=l 71, Yn—1=1

We shall now re-write the answer to the computation of the higher relative
commutants — as provided by equation (6.1.8) — in a diagrammatical fashion
that should begin to convince the reader that these examples do indeed have a
connection with the vertex models of statistical mechanics. (The letter w that
appears above will, in the latter picture, correspond to Boltzmann weights.)

We shall be drawing diagrams as in the theory of knots — more precisely,
there will be over- and under-crossings, as below:

Actually, we shall be dealing with such diagrams where the two strands
of the crossing are both oriented, and we shall follow the convention of knot
theory and refer to the two different possible situations as positive and neg-
ative crossings. Also, typically, the four ends of the strands will be labelled,
with the ends of the over-crossing labelled by Greek alphabets (which are as-
sumed to vary over the set {1,2,--, N}), while the ends of the under-crossing
will be labelled by Latin alphabets (which are assumed to vary over the set
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{1,2,---,k}). We assign a ‘Boltzmann weight’ to such a labelled oriented
crossing by the following prescription:

b

Positive Crossing a T B = wgf.’
a
a

Negative Crossing o | g EE—E

(One way to remember the convention is as follows: for either type of
crossing, the Greek (resp., Latin) indices of w correspond to the over- (resp.,
under-) strand of the crossing; for a positive crossing, the orientation of the
over- (resp., under-) strand is given by reading the Greek (resp., Latin) indices
from top to bottom (resp., bottom to top); for a negative crossing, the complex
conjugate appears, and the orientations of the two strands are both read in
the opposite way to that of the positive crossing.)

With the above conventions, equation (6.1.8) may be rephrased as the
equality

(6.1.9)

where the vertical strings (on each side of the equality) are alternately oriented
upwards and downwards (starting with the one at the extreme left), and the
diagram is interpreted as follows:

By a state o of a diagram such as the following — where we have chosen
n = 2 for simplicity —
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— we shall mean a specification of a Latin (resp., Greek) letter to each segment
of a vertical (resp., horizontal) string. For example, o might be specified as
follows:

ay * T a9

F

01‘ ‘02

M
«o
bl\ \bz

By definition, the ‘energy E(c)’ associated to such a state o is the product
of the indicated matrix entry with the product of the Boltzmann weights of
all the crossings; thus, in the above example, we have

_ paiaz,,ac , Bz
E(U) - chz Wey1by Wby -

By a boundary edge of a diagram (such as T' above), we shall mean any
segment of a strand, at least one of whose edges is ‘free’; thus, in the preceding
example, the edges labelled ay, as, by, by, @ and 3 are the boundary edges.

By a ‘partial state’ will be meant a ‘state’ which has been specified only
on the boundary edges. Given a partial state x on a diagram T, define the
‘partition function’ Z& to be the sum of the energies E(o) corresponding to
all states o which ‘extend’ k.

We are finally ready to state the meaning of the equality (6.1.9); if the
diagrams on the left and right sides are denoted by T and B respectively, we
require that Zf = Z§ for all partially specified states k, where we identify
the sets of boundary edges of T and B in the obvious fashion.

We summarise the foregoing analysis in the next theorem.

THEOREM 6.1.4 Consider the vertex model

A4 C A w(l® Mi(C))w* C My(C) ® Mi(C)
( U U ) = ( u U ) (6.1.10)

A C C  Myl©)®l

N

A}

Let Ry C R; be the subfactor constructed from this initial commuting square

as in §4.4, and let Ro C Ry C Ry C--- C R, C --- be the tower of the basic
construction.

Then, for n > 1, Ry N Ry, can be identified with the set of those matrices

F = ((Fpryim) € @™ Mi(C) for which there exzists a G = ((Gyi 7)) €

®™ My (C) such that equation (6.1.9) is satisfied (in the sense just discussed).

0O

We now show how the computations of this section carry over, with slight
modifications, to spin models.
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Analogous to Lemma 6.1.1, one can prove, quite easily, that if

/

By C B,
aU Ug' (6.1.11)

4, & A

is a (clearly symmetric) commuting square with inclusions as indicated, where
G =[11---1]is the 1 x N matrix with all entries equal to 1, if this commuting
square is described by the biunitary matrix u = ((u;)), and if Ay = C, then
(the matrix v is a complex Hadamard matrix — see §5.2.2 — and) the square
(6.1.11) is isomorphic to

A C MN(C)
U u (6.1.12)
C C uAu*,

where A denotes the diagonal subalgebra of My (C). Thus, these are precisely
what we called ‘spin models’ in §5.2.2.

Suppose conversely that we start with a spin model, which we assume for
notational reasons is given by

wAw* C My(C)
U u (6.1.13)
c C A

if we think of this as the initial commuting square (6.1.5), and construct the
tower {R, : n > 0} as in §4.4, then an analysis akin to the one given above for
vertex models is seen to show that the higher relative commutants continue to
be described by the validity of equation (6.1.9), only the interpretation of this
equality is now as follows: (we give the general description first, then illustrate
with the cases of the second and third relative commutants, and the reader
should then be convinced that this diagrammatical description is much more
compact and clean than an explicit one with mathematical symbols; among
other things, such an explicit description would require different descriptions
according to the parity of n.)

To start with, we ignore orientations on the vertical strands. Next, given
a diagram — such as the left or right side of (6.1.9) — first colour the connected
components of the diagram alternately black and white, in a ‘chequer-board’
fashion, with the convention that the component at the south-west corner is
shaded black. By a state o of such a diagram, we now mean an assignment
of a symbol from the set {1,2,---, N} to each of the components coloured
black. By a boundary component, we mean one which is unbounded, and by
a partially defined state, we mean a state which has been specified only on
the boundary components.
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Once a state o has been fixed, we assign Boltzmann weights to each cross-
ing (which must clearly be one of the following types) as follows:

a
Positive Crossing . — wy
b
a
Negative Crossing - — w
b

And we define the energy E(o) of the state o to be the product of the indicated
‘matrix entry’ with the product of the Boltzmann weights of all the crossings.

Given a partially defined state k on a diagram T, we define the partition
function Z§ to be the sum of the energies E(o) of all states o which extend &.
Finally, the equality (6.1.9), in the context of spin models, means that once
the boundary components of the diagrams T and B of the left and right sides
of (6.1.9) have been identified in the obvious fashion, then Z§ = Z§ for all
partially defined states k.

Since the precise interpretation of this answer depends upon the parity of
the relative commutant in question, we illustrate the preceding discussion by
explicitly writing out the second and third relative commutants.

n=2:
| a
1 [
iE N

This means that Rj N R, consists of those F = ((F¥)) € My(C) such
that there exists an array of numbers G = ((Gb;p,)) (Which should be actu-
ally thought of as an element of C 2) such that for all choices of a,b;,b; €
{1u27"'>N}u

N e —_—
X; F;’Ll):lwb"'z = w,‘,‘lw,‘,lszlbz.
=
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n=3:
of [ o] |
F _
| G

s NS

This means that RN R consists of those arrays of numbers F' = ((Fgi2?))
(which must be thought of as an element of a direct sum of N copies of My(C))
such that there exists an array of numbers G = ((Ggi,fz)) (which should also
be thought of as an element of a direct sum of N copies of My(C)), such that,

for all choices of a1, aq,b1,b0 € {1,2,---, N},
N N
a102,,T T ,,02 17747 ,,,02 01T
Z FZ!IZ wbl wbz wbz - Z wb] wxl wa: Gb]bz'
z=1 =1

‘We summarise the foregoing in the following result.

THEOREM 6.1.5 Consider the spin model

A} C Al wAw* C My(C)
U U | = U u . (6.1.14)
Al AY c Cc A

N

Let Ry C Ry be the subfactor constructed from this initial commuting square
as i §4.4, and let Ry C Ry C Ry C--- C R, C --- be the tower of the basic
construction.

Then, for n > 1, Ry N R, can be identified with the set of those ‘matrices’
F for which there ezists a ‘matriz’ G such that equation (6.1.9) is satisfied
(in the sense just discussed). 0

REMARK 6.1.6 In the diagrammatic framework described above — for both
vertez and spin models — it should be remarked that the biunitarity condition
on the matriz w is ezactly equivalent to the requirement that ‘the partition
function given by w is invariant with respect to Reidemeister moves of type
I’ — meaning that, no matter how the two strands are oriented, resp., the
regions are shaded black and white, we have

N/
\
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The verification that this is indeed the case will be a good ezercise for the
reader to ensure that (s)he has understood our procedure.

REMARK 6.1.7 It is easily verified that, in the case of a verter model, the
embeddings (Ry N R,) — @™ My (C) which we obtained are consistent in the
sense that the following is a commutative diagram of inclusions (where we
embed @™ My (C) into @™ My(C) by z — z®1):

(RyN Roy1) — @™ Mi(C)
U U
(ByNR,) — ®"Mi(C)

Consequently, we may effectively use Theorem 6.1.4 for even computing
the principal graph of a subfactor arising from a vertex model.
For identical reasons, an analogous remark is also valid for spin models.

REMARK 6.1.8 The purpose of this remark is to point out that if Ry C R,
is constructed as above from a verter (resp., spin) model, then so also s
R; C Ry, and to consequently derive some facts concerning the dual principal
graph.

(1) To start with, make the obvious observation that if a commuting square

C ¢ D
U U
A C B

1s described by the biunitary matriz u, then the commuting square

B c D
U U
A cCc C

is described by the biunitary matriz u*.
It follows, then, from Proposition 5.5.4(a) that if
Al a
KU UL
G

Ay C A
is a symmetric commuting square which is described by a biunitary matriz U,
and if we construct the grid {A}} starting from this initial commuting square
in the usual manner, then the commuting squares

H G G
Al C A} Al C Al A? C A2
Ly Uk |, K'U ur and 'y UK’
GI H‘ !
A C A} Al C Al Al C Al
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are described by the biunitary matrices V,V and U respectively, where V is
as in Proposition 5.5.4, and

~ka /\5
'Uﬁ/-\ - v&lﬂ
~\& __ kB
uﬁfc = Ugyy-

Notice that U = U, and thus only these four biunitary matrices suffice to
describe all the squares in the grid.

(1) It follows from (i) above and equation (6.1.2) that if the matriz w
gives rise to the subfactor Ry C R, as in Theorem 6.1.4 or Theorem 6.1.5,
then the transposed matriz w' gives rise to the dual subfactor Ry C R,.

6.2 Some examples

The input for a vertex model, as in Theorem 6.1.4 for instance, is an Nk x Nk
matrix w = ((w§})), which satisfies the biunitarity condition that w is unitary,

as also is the matrix v defined by vpg = fj,‘,‘ ; this is easily seen to be equivalent
to the following condition:

Suppose we write w in block-form as w = ((w§))1<a,s<n, Where wj is the
k x k matrix defined by (w§)j = wgf; then the biunitarity condition says that
not only should w be unitary, but so also should be the matrix w'~ which is
the matrix obtained by forming ‘block-wise’ transpose: i.e., in block-form, we
have (w'V)§ = wh.

EXAMPLE 6.2.1 Let {y1,72, - -,Yn} be any collection of k X k unitary ma-

trices, and define
aa (7&); ’Lf o= ﬂ,
e { 0 otherwise. (6.2.1)

It is trivially verified that this w satisfies the biunitarity condition stated above.
(Reason: w§ = 0 if a # B3, and hence what we have called w'~ is the same
as w.) Notice that the ‘diagonal constraint’ above says that the Boltzmann
weight associated to a crossing is zero unless the two ends of the over-strand
have the same label.

It follows from Theorem 6.1.4 that C, = RyNR, consists of those matrices
F = ((F2)) € @™ My(C) for which there ezists a matriz G = (Gl pr)) €
®" My (C) such that

k
8 D Folir(ve)n(Wan(va)s

e1,en=1

k
=65 3 ()2 (¥2)2(Va)22 - )Geign

€1, nen=1
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forall ay, -+, an,b1, -, bn,, B, or equivalently,

Fa®T®%® ) =1a®Ta®7%® )G Ya.

n factors n factors

If we let K be the closed subgroup of U(k) generated by {'yafygl 1< a,8<
N}, and if we write w for the identity representation of K on C*, the previous
conditions are seen to be entirely equivalent to

Co=r®7R@7rQ- ) (K).

n factors

In view of Remark 6.1.7, a moment’s thought should convince the reader
that the principal graph of this subfactor has the following description: first
form a bipartite graph with the setAof even (resp., odd) vertices being given
by GO = K x {0} (resp., GO = K x {1}) - where K denotes the unitary
dual of the compact group K — where the number of bonds joining the vertices
(pi,1),1=0,1, is given by (po @, p1), the mutiplicity with which p; features in
the tensor product po @ 7; finally, the desired principal graph is the connected
component of the above graph which contains the even verter indezed by the
trivial representation of K.

Notice next that the transpose matriz w' is given by the matrices 1, -+, Yy
in exactly the same way that w is given by the v, ’s. Thus — in view of Remark
6.1.8(ii) - the dual graph is described by the closed subgroup K' of U(k) — given
by K' = {¢': g € K} - in the same way that the principal graph was described
by K. Notice now that K' = {g71: g€ K} = {g: g € K} = K. Hence the
equation ¢(g) = 7 defines an isomorphism ¢ : K' — K. Let ¢* : K — K’
denote the (obviously bijective) map defined by ¢*(p) = po'p. Notice that if we
write 7' for the identity representation of K' on C*, then 7' = ¢*(7). Finally,
it follows that the principal graph is isomorphic to the dual graph by a graph
isomorphism which associates the even or odd vertex in the former which is
indezed by p (say) to the even or odd verter in the latter which is indezed by

¢*(p)-

EXAMPLE 6.2.2 Let {c1,co,- -, ck} be any collection of N x N unitary ma-
trices, and define
ao _ (Ca)g if a=0b,
o = { 0 otherwise. (6.2.2)

It is trivially verified that this w satisfies the biunitarity condition stated above.
(Reason: each w§ is a diagonal matriz, and hence what we called w'~ 1is noth-
ing but the transpose of w.) Notice that the ‘diagonal constraint’ above says
that the Boltzmann weight associated to a crossing is zero unless the two ends
of the under-strand have the same label.

It follows from Theorem 6.1.4 that C, = RyNR, consists of those matrices
F = ((Fylor)) € @™ Mi(C) for which there exists a matriz G = ((Gy).pr)) €
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®™ My(C) such that

N
Z FI;? b(in (cbl )'yl(cbz)’h (cba)»m e )
’711'“:7",—1—1
n factors
N ——
= Z ((cal )'yl (Caz )’rl (cas) )Ggllg:
Ty Yn—1=1
n factors
forallay, -+, ap, by, by, @, B, or equivalently

a __ * @ a1 -eea.
Fb1 bn (cbl cbzcbs ' )ﬂ - (cal cazcas t )ﬂ blu.b:

n factors n factors
forallay, -, an, by, -, by, @, B; since the variables separate’, this shows that
Cp={F = (Ff) € @ Mi(€) : F52» =0 unless
CayChyCas ** + 1S @ scalar multlple of Cby ChyChy "+ °}-

After a moment’s thought, this is seen to imply that the principal graph of this
subfactor has the following description: let G be the (non-closed) subgroup of
Un(€) generated by {ci,ca,---,ck} and let G be the quotient of G by the
normal subgroup of those elements of G which are scalar multiples of the
identity matriz; form a bipartite graph with the sets of even and odd vertices
being both indezed by G, where the number of bonds joining the even vertez
indezed by [go] to the odd vertez [g1] is given by the cardinality of the set
{1 <i<k:[g1] = [goci]} — where we have used the notation g — [g] for the
quotient mapping G — G; finally, the desired principal graph is the connected
component of the above graph which contains the even verter indezed by the
identity element of G.

Here also, it is true that the dual graph is isomorphic to the principal
graph. To see this, first note — in view of Remark 6.1.8(%) — that w' is con-
structed out of the c}’s in ezactly the same manner that w was constructed out
of the c,’s. Using natural notations, we see that the dual graph is the Cayley
graph of the group G' = {¢' : g € G} modulo scalars, with respect to the
generators {[c}] : 1 < a < N}. The group isomorphism g — g¢' establishes the
desired graph isomorphism.

EXAMPLE 6.2.3 We now discuss the second relative commutant of a sub-
factor constructed from a spin model (as in Theorem 6.1.5). Using the no-
tation of that theorem, recall from §5.1 that Ry N Ry consists of those F' =
((Fg)) € My(C) such that there ezists an array of numbers G = ((Guys,))
(which should be actually thought of as an element of CN*) such that for all
choices of a, by, by € {1,2,-+-,N},

N
QT T o0 a
> Frwp wf = wp 0l Gy, (6.2.3)

=1
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For each a = (a3,a,) € {1,2,---,N} x {1,2,---, N}, define the vector v, €
C¥ by (va)s = wZ Ww,; then equation (6.2.3) says that vy is an eigenvec-
tor for the matriz F with eigenvalue Gyp,. Since Ry N Ry is generated by
self-adjoint elements, and since eigenvectors of a self-adjoint matriz which
correspond to distinct eigenvalues are orthogonal, we see that the matriz G
must satisfy Gop, = Gaya, if Vb 1S not orthogonal to va. More precisely, we
can deduce the following: let ~,, be the smallest equivalence relation in the set
{1,2,--+,N} x {1,2,---, N} such that a ~, b if vy, s not orthogonal to v,.
Then any G as in (6.2.3) must necessarily be constant on equivalence classes.
Conversely, if G is any matriz which is constant on equivalence classes, it is

easily seen that the equation

N —_—
F = Z Gblbz(vb)a(”b)z

by,ba=1

defines an element F satisfying (6.2.3).

It follows that Ry N Ry is an abelian *-subalgebra of My(C) with dimen-
sion equal to the number of ~,, equivalence classes. It turns out — see [JNM]
- that if C is one such equivalence class, then the number #{a : (a,i) € C}
1s independent of i; call this number the valency of the equivalence class. It is
a fact that if Fo is the minimal projection in Ry N Ry which is the projection
onto the subspace spanned by {vy : b € C}, then the valency of C is precisely
the rank of the projection Fg.

On the other hand, since trp,|rinr, = 7 Tr|RynR,, where Tr denotes the
(non-normalised) matriz-trace on My(C), and since the subfactor determines
not only the tower {Ry N R, : n > 0}, but also the traces {trr.|R)nR, 0 2
0}, we see that the subfactor given by a spin model as above determines the
number of ~,, equivalence classes as well as the valencies of each of these
components.

We wish to make two points through this ezample:

(a) Spin models yield a passage from Hadamard matrices to subfactors via
a commuting square. It is clear that two Hadamard matrices are equivalent
— as described in §5.2.2 — precisely when the associated commuting squares
are isomorphic (see Remark 5.5.8), and that in such a case, the associated
subfactors are conjugate. The point here is that, via the preceding remarks,
the subfactor associated to a Hadamard matriz w in the above fashion de-
termines the number of ~,, equivalence classes and the valencies of those
equivalence classes, and it turns out — see [JNM] — that these suffice to tell
the five pairwise inequivalent real Hadamard matrices of order 16 from one
another.

(b) It is a fact that there exists a 16 X 16 real Hadamard matric which is
not equivalent to its transpose. It follows from (a) above that the subfactor
associated to this Hadamard matriz s not self-dual.
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6.3 On permutation vertex models

This section® is devoted to a brief discussion of vertex models for which the
underlying biunitary matrix is a permutation matrix — i.e., has only 0’s and
1’s as entries. Recall — from the second paragraph of §6.2 — that a unitary
matrix w = ((w§})) € U(Nk) is biunitary precisely when its ‘block-wise
transpose’ 0, defined by wgj = wfi‘;, is also unitary.

In the next few pages, we shall write @ for the block-wise transpose of w.
Also we continue to use the conventions of this chapter concerning the use
of Greek and Latin letters for elements of Qy and € respectively, where we
write Q, = {1,2,---,n}.

We shall find it convenient to work with an alternative description of such
biunitary permutation matrices, which we single out in the next lemma.

LEMMA 6.3.1 Let w € My(C) @ My(C). Then the following conditions on w
are equivalent:

(i) w is biunitary, and is further a permutation matriz (i.e., is a 0,1 ma-
triz);

(ii) there ezist permutations {p, : a € Y} C S(O),{da : @ € Qn} C
S(Q) (where we write S(X) for the group of permutations of the set
X ), such that:

(a) the equation
m(8,0) = (p(B), As(b))
defines a permutation m € S(Qy X Q); and
(v)
Why = Oaa)m(86) = Saupn(8)0ars(0)-

Proof: (i) = (ii): If w is a biunitary 0, 1-valued matrix, then let 7 €
S(QN X Qk) be defined by w‘ﬂ’,‘,’ = (S(Q,a)’,r(ﬂ’b).

Assertion: For any § € Qn,a € Qi (resp., @ € Qn,b € Q), 1({8} x Q)N
(Qn x {a}) (resp., 7(Qn x {b}) N ({a} x 4)) is a singleton. Furthermore,

T({B} x )0 (v x {a}) = {(¢a(6),0)},
m(Qv x {b}) N ({a} x ) {(e, ¥a(0))},

where

$a(8) = pr1(0) () and Ya(b) = A1) (B)

The first (as well as the parenthetically included) statement of the as-
sertion is an immediate consequence of two facts: (i) the hypothesis on w

1This section is a reproduction, almost verbatim in places, of parts of the paper [KS].
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implies that the block-transpose matrix 0 is also a permutation matrix; and
(ii) 7(8,b) = (@, a) & B2 = 1.

The second assertion follows from the definitions.

The assertion clearly proves the implication (i) = (ii), while the implica-
tion (ii) = (i) is immediate. a

We shall find the following notation convenient.
DEFINITION 6.3.2 Define

Py = {m € S(Qn x Q) : there exists A : Qy — S(Q),p: U — S(Q)
such that 7(8,b) = (ps(8), As(b)) for all § € Qy,b € U}

where we write Ag (resp.,py) for the image of B (resp.,b) under the map A
(resp.,p). If m, A, p are related as above, we shall simply write m < (p,\) €
PN,k~

Thus Lemma, 6.3.1 states that there is a bijection between biunitary per-
mutation matrices of size Nk and elements 7 < (p,A) € Pyy, given by
Whh = Bapy(8)0a, 05 (0)-

The following proposition, which is an immediate consequence of the def-
initions, lists some useful properties of the various ingredients of a biunitary
permutation.

PROPOSITION 6.3.3 Let m < (p, A), @, Yo be as above. Then, for arbitrary
a € Qp,a € Qn, we have:

(Z) ¢ € S(QN)>1/)01 € S(Qk)§

(it) 71— (¢71,97Y) € Pyy (meaning, of course, that m~}(a,a) =
(821 (@), v (a)));

(i) 6 1(0) = o7 ) (@), ¥71(@) = Nk ). =

For the rest of this section, we fix a m < (p,A) € Py and let A, p, ¢, be
as above. Thus, if w is the biunitary permutation matrix that corresponds to
(psA), then

Wy = Ba,p(8)6ars(0): (6.3.1)

The point of the next lemma is to point out that if wgj = 1, then any pair
consisting of one Greek letter from {a, 3} and one Latin letter from {a, b}
determines the complementary pair. We shall find some of these formulae
convenient in subsequent computations.

LEMMA 6.3.4 Ifa,B € Qp,a,b € , then the following conditions are equiv-
alent:

() wga =1

(1t) o= p,(B) and b= Ag(a);
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(iii) B = ¢;'(c) and a =7 (b);
(iv) B =p; () and b=1u(a);
(v) a=¢(8) and a=Az'(b).

Proof: (i) < (ii) by definition.

(ii) < (ili) by Proposition 6.3.3(ii).

(ii) < (iv) by the formula for ¢~ given in Proposition 6.3.3(iii).

(iii) < (v) by the formula for 1)~! given in Proposition 6.3.3(iii). |

We wish to discuss the higher relative commutants C, = R,NR,_1,n > 0,
where R, =R_1CR=RyCR; C---CR, C---is the tower associated to
the subfactor R,y C R constructed from the commuting square given by w in
the usual manner. Before we get to that, notice the following consequence of
the preceding lemma: the Boltzmann weights associated with the two kinds
of crossings (as per the prescription of §6.1) are as follows:

b

f 85,0 (@) O ba(e)
Positive Crossing a___ . B —

| = 6a,¢b(ﬂ)6a,/\51(b)

a

a

| 06,05(2) Ba,ra (b)
Negative Crossing o . f —

1b = ba 4710037 (@)

(6.3.2)

Notation: Given a biunitary permutation w and corresponding maps A, p,
¢, 1 as above, then for arbitrary n > 1 and a € Qf, we define the alternating
products

Pa = PaPay Pag "+ Pz,
and

¢a = ¢a1¢ ¢a3 : a,.

We are now ready to introduce certain mappings that will play a central
role in the computation of the higher relative commutants.

PROPOSITION 6.3.5 (i) For all n > 1, there ezists a mapping Oy > « —
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LM € S(Q}) such that

o p = 0, 1wy 08, @)

a (6.3.3)

where the L™ ’s are defined as in (ii) below.
(it) LY = ¢7; and if n > 1 and if LIV (b) = a, then

a,_1) = LI D (b,_y)

(where we have used the obvious notation a,_yj to mean (a1, -+, an-1) ifa =
(a1, -, an)); and

1

e (a)(b") if n is odd.

n—1)

—1 . .
{ - ](a)(b") if n is even,
an =

(55) Py (@) = 857 ():

Proof: The proof is a direct consequence of the prescription, given in equa-
tion (6.3.2), for the Boltzmann weights associated to positive and negative
crossings. (For (iii), the two prescriptions given for each kind of crossing must
be used in conjunction.) ad

In the following, we fix a biunitary w, with associated A, p, ¢, % as above,
and let {C,,} denote the sequence of higher relative commutants for this R,,.

LEMMA 6.3.6 With the identification @"My(C) = Matqp (€), we have

-1
5 LT L (@)
PP @ ey LT LM (b)
for all o, B € Qp,a,b € Q).

Cn = {F = ((F2)) € Matqy(c) : F

Proof: In the notation of Theorem 6.1.4, we see, from Proposition 6.3.5,
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that on the one hand,

b
F b
| = el
N
a

which, in view of Proposition 6.3.5(iii), is seen to be equal to 6ﬂ,¢;1(a)G£éﬂ)(b).
Thus we find that C, consists of those F' € @™ My (C) for which there
exists a G € @" Mj/(C) such that

b _ LM (b
6ﬂ,P;l(a)F(Lgﬂ))_l(a) - 6ﬁ,¢§l(a)Ga .

Using the substitution ¢ = (L{)~Y(a), the last equation may be re-
written — again using Proposition 6.3.5(iii) — in a more symmetric form as

b _ LM (b)
Spoct@F = Spopt @ (o) (6.3.4)
This is easily seen to imply that
(n)
Fcb = 5¢;1,¢;1Gizn)gl:)) (6.3.5)

for arbitrary a € Qu, b, ¢ € QF, and also (as a result of Proposition 6.3.5(iii))
that

- (L(ﬂ))—l(t’))
Gt = Bpt ot F, d (6.3.6)

LEN1(@)
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for arbitrary § € Qn,b,C € Qp. The proof of the lemma is completed by
putting together equations (6.3.5) and (6.3.6) (and using the fact — which is
a consequence of Proposition 6.3.5(iii) — that

6,1 4-16 1 -1 =6 -1 -1 ) 0O
¢b s pL&n)(b),pLgn)(c) pLg‘n)(b)lpL'gn)(c)

The next lemma is the final ingredient necessary for the identification —
in an abstract sense — of the higher relative commutants.

LEMMA 6.3.7 Let Q be a finite set. Suppose we are given an equivalence
relation ~y on Q and a subset L C S(2) such that ,C Lt={oc"t:0€ L}
Let A = {z = ((z})) € Matq(C) : 7} = 6p, [110% forall i,j € Q0 € L},
where [ilo = {j € Q:1 ~p j}.

Define the equivalence relation ~ on Q by requiring that 1 ~ j < o (%) ~
a(j) for all o € G, where G 1is the subgroup of S(Q) generated by L. Then G
acts on the set of ~-equivalence classes (by o - [i] = [0(3)], where of course
[[] ={jeQ:in~j}) Suppose the set of ~-equivalence classes breaks up as
a disjoint union of I orbits under this action of G.

For 1 < p <, fiz one equivalence class [i,] from the p-th orbit, let H, =
{0 € G:0-[ip] =ip)} be the isotropy group of that equivalence class, and let
7, denote the natural permutation representation of Hy, on [iy). Then

!
A= @ WP(HP)I
p=1

Proof: To b(e in with, if 07,09 € L, note that for any z in A, we have
zj = 6[1]0,[7]0 o2(l) = 5[110,[1 OlraofosoTaroess) Since £ = L7, clearly G =
{0102 ,o0p:7 > 0,01, +,0, € L}, and it easﬂy follows now that

A ={z = ((z})) € Matq(c) : 2} = 6[1'],[_7]9358)) Vi,j € Q,0 € G}.

Suppose now that {[jg” ), [ )]} is the p-th orbit in the set of ~-equiva-

lence classes under the G-action, and suppose ](p )=, p For 1 < s < tp, fix
oP) € G such that o). [i,] = [j (”)] Assume that the elements of Q have been

so ordered that a(”), as a map of [j{”)] onto [j{], is order-preserving. It is
then falrly easy to see that z € A if and only if = has the block dlagonal form

T = @@m(p) with respect to the decomposition @ = H H[_](p) ], where

p=1s=1 p=1s=1
2P = —wg”)ewp(Hp)’. m

Putting the previous two lemmas together — by considering the special-

isation of Lemma 6.3.7 to the case where = Qf,a ~y b & Privay =

Py Yo € Qn, and L = {(L%"))—l(Lg")) ta, B8 € Qn} - we can sum-
marise the contents of this section as follows:
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PROPOSITION 6.3.8 Let w € My (C)® My (C) be a biunitary permutation ma-
triz and let A, p, ¢, have their usual meaning. Let R,, C R be the hyperfinite
(subfactor, factor)-pair corresponding to w, and let C, = R, N Ry—1,n > 0,
where Ry, = R,y C R = Ry C Ry C Ry C --- is the tower of the basic
construction. Then, for n = 1,2,---, the algebra C, has the following de-
scription:

Let L™ be defined as in Proposition 6.3.5; let G, be the subgroup of S(QF)
generated by {Lg")_ng") ca, 0 € Qn}; and let ~, be the equivalence relation
defined on Qf by

ar~,b& PL (o)) = PLE (o(b) Yo € G,,a € Qp.

Suppose the set of equivalence classes in Q} breaks up into I, orbits under the
Gy -action; fiz an equivalence class o] in the p-th orbit of equivalence classes,
and let Hy = {0 € G, : 0(0p) ~n ap}. If mp is the natural permutation
representation of Hy on [oy), then

ln
Cn ~ P m,(Hy)' O
p=1

We now discuss a few simple special examples.

EXAMPLE 6.3.9 (a) First consider the trivial case A = idq,, p = idg,. In
this most trivial ezample, (ﬁ, b) = (8,b) and in this case, the subfactor R,

of R = Mg(cC ®MN ) may be identified with 1 ® ®MN(C), and the

principal graph conszsts of two vertices with k bonds bethe;z them.
(b) Let A = idgq,, and let p : Q. — S(Qu) be an arbitrary map. Then
7(68,b) = (po(B),d), which clearly defines a permutation of Qn X ; i.e.,
— (p,A) € Pyy. Then observe that

$a(a) = p,\;‘(a)(a) = pa(@), Ya(a) = pal(a)( a) = a = Au(a)

and thus ¢ = p,ib = M. It follows from Proposition 6.38.5(ii) that, for all
n>1,
LED(a,0) = (L (@), A1 (@) = (L (@), o),

for all @ € Qu,a € Q,a € QF,n > 1; hence, inductively, we find that
Lg") = idgp for alln > 1 and for all a € Q. In this case, the equivalence
classes of QO are the sets E, = {a € QF : pa = 0}, as 0 ranges over the group
Gy generated by {p; : i € Qn}. (Actually, E, is empty unless o has the form
Par Py Pag " *-)

In fact, the hypothesis implies that wgy = 84,30a,p,(5), and hence this case
comes under the purview of the vertex models discussed in Example 6.2.2.

(c¢) Let X : Qn — S(Q) be an arbitrary map and let p, = idq, for all a;
thus, 7(B,b) = (B, Ae(8)), which is again clearly a permutation of Qn % U,
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whence m < (p,A) € Pyyx. Observe again that ¢o(er) = py-1(@) = a =
Pa(e) and that Po(a) = A,-1(,y(a) = Xa(a), so that ¢ = p,9p = X. It follows,
again from Proposition 6.8.5(11), that

LW = A7t x Azt x - x AZL

We assume, for simplicity, that A\; = id. Then, if G1 denotes the subgroup
of S(Q%) generated by {A\q : & € Qn}, we see, in the notation of Proposition
6.3.8, that Gy = {o X 0 X .-+ x 0 : 0 € G1}, that the equivalence relation
on QX is the trivial one (o ~ B for all o, ) — as a result of the triviality
of the p;’s — and if ™ denotes the natural representation of G1 on CV, then
CGe=2(rr®---@7)(G1)'.

Again, in this case, we have Wi = 64,504,,0), s0 this case falls under the
purview of Ezample 6.2.1.

(d) We may obtain the tensor product of cases (b) and (c) above, by the
following device: if \A) : Qn, — S(Q,) and p® : Q, — S(Q,) are arbitrary
maps, set N = NNy, k = ki1ks, and define Ay, pa by

Ao(a) = ()\81)(01)7 a2), pa(@) = (al,pﬁ?(az))

(We have made the obuvious identification Qy = Qpny X Uy, U = iy X Qs
and denoted a typical element of Qn (resp., Qx) by a = (a1, az) (resp., a =

(01,02))-)

Lest the reader should get the wrong impression that examples obtained
from permutation vertex models are all ‘trivial’ in some sense, we should
mention that already when NV = k = 3, there exists a permutation vertex
model whose associated subfactor is irreducible, has infinite depth and has
no ‘intermediate subfactors’. The interested reader may consult [KS] for the
details.

In fact, the reason for including this section here is that these permutation
models are a potential source of interesting subfactors.

6.4 A diagrammatic formulation

In this section, we discuss a diagrammatic formulation — along the lines of
our discussion of vertex models and spin models earlier in this chapter - that
is valid for a general non-degenerate commuting square (with respect to the
Markov trace).

We assume throughout this section that

L
Bo C B;
cU UH (6.4.1)

4 & A
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is a non-degenerate commuting square with respect to the Markov trace,
with inclusions as indicated, where we assume that all the inclusions are con-
nected. Further, we shall use the notation G, H, K and £ to denote the Brat-
teli diagrams encoded by the inclusion matrices G, H, K and L, respectively;
also, as before, we shall denote typical edges in the graphs G,H, K and L by
o, B,k and )\ respectively.

Let us write A) = Ag, AY = By, A} = A;, and Al = By, so that the
commuting square (6.4.1), when ‘transposed’, looks like this:

AT oA
KU UL (6.4.2)
G

A C A}

Let {Al : n > 0} be the tower of the basic construction for the initial
inclusion A} C A}, with the projection implementing the conditional expec-
tation of Al onto AL_, being given, as usual, by eny), for n > 1. As usual,
let A = (A% |, en),n> 1.

If Ry C R, is the subfactor constructed out of the commuting square
(6.4.1) by iterating the basic construction in the usual fashion, then it follows
from the analysis of §5.7 that the higher relative commutants are given by

RyNR, =AY NA® n>o0.

Once and for all, let us fix a biunitary matrix v = ((v"%3)) which describes
the commuting square (6.4.2). Let us simply write  for the trace-vector on
each AR,0 < n,k < 1. (Thus 7 : U}, ,—o7(AR) — [0,1], H'H(t|7(A})) =
||H|[Fr(AL), etc.)

We begin by describing how to represent elements of A2, n > 0. Actually,
since we are only interested in relative commutants, we shall only discuss
elements of AJ' N AY. We shall think of a typical element of this relative
commutant as a ‘black box’ with two sets of n strands, thus:

Such a black box is thought of as a scalar-valued function on the set of
possible states, where a state (for such a simple diagram) is an assignment of
vertices (from Uj_, m(AY)) to the regions, and edges (from G) to the strands
of the box, in such a way that (a) the assignment is a ‘graph-theoretic ho-
momorphism’ (meaning that if a strand is labelled by an edge «, and if the
two regions adjacent to the strand are labelled by vertices vy, v, of G, then o
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must be an edge from v; to v, in G), and (b) the region at the extreme left
is labelled by a vertex from m(AS). (We think of the Bratteli diagram as an
unoriented graph in this section.)

Thus a state — when n = 2 — may be given thus:

where v),v) € m(AY),19,v? € 7(AY),q; (resp., d1) is an edge joining v] to
v (resp., v?) and «, (resp., d;) is an edge joining v} (resp., v}) to vJ.

The description of elements of AJ' N AL is similar except for the following
variations: here, there are two sets of n + 1 strands, and a state should label
the first strands (from the left) by edges in the Bratteli diagram K, and all
subsequent strands should be labelled by edges from the Bratteli diagram
‘H; as to the regions, the region on the extreme left should be labelled by
a vertex from m(AY), and subsequent regions should be labelled by vertices
from U}C:O m(A}), and the ‘homomorphic property’ should be preserved; thus,
a state, in this case, might look like this (when n = 1):

E ool B

|

where, of course, v) € W(Ag),yé,v} € m(A}), vl € m(Ad),k (resp., k) is an

edge joining vg to vy (resp., v) in K, and G (resp., B) is an edge joining

v} (resp., v§) to v} in H.



6.4. A DIAGRAMMATIC FORMULATION 125

The inclusion of (A" N A%) in (A3 N A ,) is given by the obvious iden-
tification:

The (sometimes more complex) diagrams we shall be working with will
have two other components in addition to (zero or one or many) black boxes,
these being: (a) local extrema; and (b) crossings. Before we get to discussing
these, we pause to mention a few features of the diagrams that we shall
encounter:

(i) all the strands in the diagram will be oriented;
(i) all the strands connected to either side of a black box will be oriented

alternately in opposite directions (as in §6.2); further, the orientation
in a strand will be unaffected in passage through a black box;

(iii) a ‘black box’ with two sets of n strands will denote an element of A3'NA%
or AY N Al_,, depending on whether the first strand from the left is
oriented upwards or downwards;

(iv) the curves described by the strands will be smooth;

(v) if a strand is the over-strand at some crossing, it will be the over-strand
at all crossings it features in; further, as one proceeds along a strand,
the parity of the crossings that one comes across will be alternately
positive and negative; and finally,

(vi) at a crossing, neither of the strands is allowed to be horizontal.

A state on one of these (possibly complicated) diagrams is an assignment
of a vertex from Uy, xo 7(A%) to each region in the diagram, and of an edge
from GUHUK U L to each segment of each strand in the diagram, such that:

(i) the region on the extreme left is labelled by a vertex from m(AJ);
(i1) the usual ‘homomorphic property’ is satisfied;

(iii) at a crossing, the regions surrounding the crossing will be indexed as
follows, according to whether the crossing is positive or negative —

0 0

vy 0 0\‘ ) 1 (*)

U1 Yo Yo U

/ 1 \
) Vo
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— thus, at a positive (resp., negative) crossing, the region enclosed by
the two ‘out-arrows’ (resp., ‘in-arrows’) is labelled by a vertex from
m(A), and as one proceeds from this vertex in the anticlockwise (resp.,
clockwise) direction, one will encounter, in order, vertices indexed by

m(AD), m(A1) and w(Ap);

(iv) the labelling of the regions and strands incident on a black box is
consistent with the requirement (determined by the orientation of the
strands going into that box) imposed by demanding that that black
box is supposed to represent an element of an appropriate relative com-
mutant (see item (iii) in the earlier description of features of our dia-
grams).

By a ‘partial state’, we shall mean a state which has been prescribed only
on the ‘boundary’ of the diagram — by which we mean the unbounded regions
and unbounded segments of strings. A general diagram is thought of as a
function — the ‘partition function’ — on the set of partial states, as follows: if
D is a diagram and if -y is a partial state on the diagram, then the the value
7} is defined to be the sum, over all states o which extend +, of the value of
the diagram D on the state 7.

In order to evaluate a diagram on a state, we form the product of all the
‘local contributions’ (coming from black boxes, local extrema and crossings);
the local contribution coming from a black box is determined as before. We
now describe how to determine the ‘local contribution’ coming from (a) a
local extremum, and (b) a crossing.

Local eztrema: These are, obviously, configurations of either of the following
types:

V; Ve
/D

s

Ve t

If the ‘interior’ and ‘exterior’ regions of such a local extremum are la-
belled as indicated above, then the ‘local contribution’ of such an extremum
is defined to be

Crossings: To determine the ‘local contribution’ coming from a crossing,
there are two points to bear in mind:

(a) the assignment is invariant under isotopy;

(b) neither strand is horizontal.
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We postulate that at a positive or negative crossing of the following form,
the associated Boltzmann weight is as indicated.

K B
vg /
Positive Crossing 3 v} = UZZ&’
o
o
Iéj K
\ V3 o
Negative Crossing v} V) = UZ‘;&’
v}
X @

For a crossing which is not in this ‘canonical form’, use isotopy invariance,
as illustrated by the following example:

o K
0 1
Uy Vg
0
vy
1
U1
A B

Hence, in accordance with our convention for extrema, the ‘local contribution’
of the positive crossing given on the left (in ‘non-canonical form’) is given

b,
Y 21}
u™p . iﬁ . ﬁﬁ ’ .
@l t,0 28!
1 o

(Note that the above expression is what, in the notation of §5.5, would

have been denoted by v’-\°5 We shall use this notation in the immediate sequel,

QoK *

for typographical convenience.)




128 CHAPTER 6. VERTEX AND SPIN MODELS

In an entirely similar fashion, it may be verified that the prescription
for assigning Boltzmann weights to the various possible configurations of
crossings is as follows:

K U(} ﬁ A U(l) (67
/ /
v ol = wd = v
o A / v} K
(% 1)8 K ﬁ U} A
AN - N
o} = v = v v}
A vy K vg o
«@ 20 A Jé) o K
AN AN
v ol = uih = v
\
T A«
A U% ,3 K vg (67
0 / 1 = Xof = / 0

U1 Vo Vaok Vo U

It should be fairly clear, from the nature of our prescription for eval-
uating diagrams on states, that isotopic diagrams yield identical partition
functions.

Alternatively, we could have just defined the Boltzmann weights for all
possible crossings (in all possible ‘non-canonical forms’) by the preceding
prescription and then verified that this was an isotopy-invariant prescription.

In the rest of this section, we give some indications of the sort of ad-
vantages that this formalism has over the corresponding formulations with
formulae.

(1) To start with, it is a pleasant exercise to check that the matrix u satis-
fies the biunitarity condition precisely when diagrams related by Reidemeister
moves of type I7 yield identical partition functions.

(2) Next, the inclusion of A} N A% into A3 N Al is given by the following
identification, as can be verified by another pleasant little exercise:
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(3) The projection e, is represented by the following picture —

— with the understanding, of course, that if e, is viewed as an element of
AY N A® (resp., AY N Al), then there are n (resp., n 4+ 1 ) strands going
through the above ‘black box’. It follows — from this prescription, and the
equation e,y1ze,11 = (F Aﬁ_la:)en Vz € AF —that the conditional expectation

of AY' N A, onto A3 N AF is given thus:
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(4) It must not be surprising now to find that the relative commutant
A¥'n AF consists of black boxes of the following form —

— and that the conditional expectation of A}’ N A%, , (resp., A’ N AL) onto
AY' N A%, (resp., A} N A}) is given thus:

N ]

(5) What is customarily referred to as ‘flatness of the Jones projections’
is an immediate consequence of (1), (2) and (3) above: it is just the asserion
that

(6) Finally, the description of the higher relative commutants is exactly
as in the case of vertex models, except that the diagrams are now interpreted



6.4. A DIAGRAMMATIC FORMULATION 131

according to the prescriptions of this section; we state this explicitly as a
proposition, whose proof we omit since that is also exactly as for the case of
vertex models.

PropoSITION 6.4.1 Ifn > 0, then Ry N R, consists of precisely those F €
AY' N AL for which there ezists a G € A} NAL such that the following equation

holds:

(6.4.3)







Appendix

A.1 Concrete and abstract von Neumann
algebras

We used the word ‘concrete’ in the opening paragraphs of the first section
of this book, to indicate that we were looking at a concrete realisation or
representation (as operators on Hilbert space) of a more abstract object. The
abstract notion is as follows: suppose M is a C*-algebra — i.e., a Banach *-
algebra, where the involution satisfies ||z*z|| = ||z||? for all z in M; suppose
further that M is a dual space as a Banach space —i.e., there exists a Banach
space M, (called the pre-dual of M) such that M is isometrically isomorphic,
as a Banach space, to the dual Banach space (M,)*; let us temporarily call
such an M an ‘abstract von Neumann algebra’.

It turns out — cf. [Tak1],Corollary II1.3.9 — that the pre-dual of an abstract
von Neumann algebra is uniquely determined up to isometric isomorphism;
hence it makes sense to define the o-weak topology on M as o(M, M), the
weak™ topology on M defined by M,.

The natural morphisms in the category of von Neumann algebras are *-
homomorphisms which are continuous relative to the o-weak topology (on
range as well as domain); such maps are called normal homomorphisms.

The canonical commutative examples of abstract von Neumann algebras
turn out to be L*®(X, i), while the basic non-commutative example is L(H).
(The pre-dual £L(H), is the space of trace-class operators on H, endowed with
the trace-norm — the duality being given by L(H) x L(H), 3 (z, p) — tr(pz).)

It is not hard to see that if M is an abstract von Neumann algebra, so is
N, where N is any o-weakly closed self-adjoint subalgebra. In particular, a
o-weakly closed self-adjoint subalgebra of £(H) is an abstract von Neumann
algebra.

It follows from the double-commutant theorem that any ‘concrete’ von
Neumann algebra is an ‘abstract’ von Neumann algebra.

The (artificial) distinction between the notions of abstract and concrete
von Neumann algebras may (and shall henceforth) be dispensed with, in view
of the following theorem (see [Takl],Theorem III.3.5): any abstract von Ne-
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mann algebra admits a normal *-isomorphism onto a concrete von Neumann
algebra.

A.2 Separable pre-duals, Tomita—Takesaki
theorem

As was remarked in §1.2, any separable Hilbert space which carries a normal
representation of a von Neumann algebra is expressible as a countable direct
sum of ‘GNS’ representations. This fact leads to the following fact.

PropPoOSITION A.2.1 The following conditions on a von Neumann algebra M
are equivalent:

(1) M admaits a faithful normal representation on separable Hilbert space;
(1) M., 1is separable.

Proof: (i) = (ii): If 7 : M — L(H) is a faithful normal *-representation,
it is a fact — cf. [Takl], Proposition I111.3.12 — that 7(M) is a von Neumann
subalgebra of £(H) and that 7 is a o-weak homeomorphism of M onto 7(M).
Hence M, = w(M)., but 7(M). = L(H),/m(M),., where 7(M), = {p €
L(H), : (r(z),p) =0 Vz € M}, whence 7(M), inherits separability from
L(H),.

(if) = (i): In general, if X is a separable Banach space, then ball X* (the
unit ball of the Banach dual space X*) is a compact metric space (w.r.t. the

(e 9]

distance defined by d(p,¥) = > 27"|¢(2n) —9(zn )| where {z,}32, is a dense
n=1

sequence in ball X) and hence separable in the weak*-topology. It follows that
X*(=|Jn(ballX™)) is also weak*-separable.

n

In particular, if M, is separable, then there exists a sequence {z,}52, in
M which is o-weakly dense in M. So, if 7 is a representation on H with cyclic
vector &, then H must be separable since {m(z,)€}52, is a countable dense
set in H. In particular, if M, is separable, then H, is separable for every ¢
in M, (where (H,,m,,&,) is the GNS triple for ¢).

If {1}, is a dense sequence in M,, clearly {1, }3, separates points in
M. Now each 1, is expressible - cf. [Sak1], Theorem 1.14.3 — as a linear com-
bination of four normal states on M. Hence there exists a sequence {¢,}52,
of normal states on M which separates points in M. Let (Hn,ﬂn,gn) be the
GNS triple associated with ¢,, and let H = @ H,,m= @ 7. If &, denotes

n
the vector in H with &, in the n-th co-ordinate and zero in other co-ordinates,
it is clear that

(i) H is separable (by the previous paragraph); and
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(ll) (W(z)fn, ETL) = 9071(1‘) Vz € M? n= 1) 21 tre.
In particular, 7(z) = 0 implies ¢,(z) = 0 Vn, whence £ = 0; i.e., 7 is a
faithful normal representation of M on the separable Hilbert space H. O

REMARK A.2.2 If M satisfies the equivalent conditions of Proposition A.2.1,
then M admits a faithful normal state @. (Reason: if H is separable, then
L(H) admits a fasthful normal state, for instance p = 3(1/2")(:, £,)€n, where
{&} is an orthonormal basis for H.)

Assume for the rest of this section, that M is a von Neumann algebra
with separable pre-dual. Thus, by the preceding remark, we may always find
a faithful normal state , say ¢ on M. Let H = L*(M, ). It is true, as in
the case of finite M, that H admits a cyclic and separating vector . What
is different is that vectors of the form z2,z € M, are, in general, no longer
right-bounded. This and other such problems can eventually be overcome, due
to the celebrated Tomita—Takesaki theorem. In the following formulation of
this theorem, we identify M with its image under the GNS representation m,,.

THEOREM A.2.3 Let M, be as above. Then the mapping Q2 — x*Q, de-
fined on the dense subspace M, is a conjugate-linear closable operator Sp.
Let S = JAT denote the polar decomposition of the closure S of the operator
S(). Then

(1)JMJ = M'; and

(19)Adas (M) = M, Vi€ R. O

One consequence of (i) of this theorem, and Proposition 2.1.2, is that iso-
morphism classes of separable modules over an arbitrary von Neumann alge-

bra M with separable pre-dual are in bijective correspondence with Murray—
von Neumann equivalence classes of projections in M ® L£(£2).

A.3 Simplicity of factors

The purpose of this section is to prove the following result.

PRrROPOSITION A.3.1 A factor contains no proper weakly closed ideal.
A finite factor contains no two-sided ideal.

Proof: Suppose I is a two-sided ideal in a factor M. Polar decomposition
shows that z € I & |z| € I. This observation, together with the functional
calculus, shows that if I # 0, then there exists a non-zero projection p € I.
(Reason: Write 1, for the indicator function of the set (r, 00); if 0 # z € I, pick
r sufficiently small to ensure that p = 1,(|z|) # 0. Now define the (bounded
measurable) function g by

g9(t) = {

and note that t9(t) — 1,(t) V¢ € IR, whence |z|g(|z])=p.)

% if ¢t >r,
0 otherwise,
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Since we can find partial isometries {u; : ¢ € I} in M such that 1 =
Yier uipy; — with I finite if M is finite — the proof of the proposition is
complete. Q

COROLLARY A.3.2 A normal homomorphism of a factor is either identically
zZero or injective.

A.4 Subgroups and subfactors

We first observe that for an automorphism of a factor, the condition of being
free — see Definition 1.4.2 — is equivalent to not being an inner automorphism.
(It is obvious that an inner automorphism is not free. Conversely, suppose 8
is an automorphism of a factor P and that there exists an element z € P
such that zy = 6(y)z, Vy € P; this is seen to imply that both z*z and zz*
belong to the centre of P, and an appeal to polar decomposition suffices to
show that either £ = 0, or 4 is inner.)

In this section, we assume that o : G — Aut(P) is an outer action of
a finite group on a I, factor P — i.e., we assume that « is an action such
that if G © ¢ # 1, then o4 is not an inner automorphism of P. Since P
is a factor, it follows from the last paragraph and Proposition 1.4.4(i) that
P'Nn (P x, G) = ¢, and in particular, the crossed product P, = P X, G
is also a II, factor. It turns out that P, admits a natural action on L?*(P)
thus: since the trace on P is unique, it follows easily that there is a unitary
representation t +— u; of G on L%*(P), such that uwzQ = o4(z)Q; an easy
computation shows that w,zu; = () Vo € Pt € G. This implies that
there is a natural homomorphism of P X, G onto (PU {u; : t € G})", where,
of course, we regard elements of P as left-multiplication operators on L%(P).
Deduce now from Corollary A.3.2 that this homomorphism must be an iso-
morphism. Hence we assume, in the sequel, that P, = P U {u, : t € G}".

In this section, we shall prove the two succeeding propositions and com-
pute the the principal and dual graphs for the inclusion K C P;, where K is
as in Proposition A.4.2 below. (We continue to use the preceding notation in
the next two propositions.)

PROPOSITION A.4.1 If Py = PC is the fived-point algebra for the G-action,
then Py is an irreducible subfactor of P such that the result (P,ep,) of the
basic construction for the inclusion Py C P coincides with Py. (Thus, forming
the crossed product is ‘dual’ to taking the fized-point algebra.)

PROPOSITION A.4.2 The passage H — K = P Xq), H establishes a bijective
correspondence between subgroups H of G, and *-algebras K satisfying P C
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Proof of Proposition A.4.1:If J denotes the modular conjugation operator
on L%(P), note that J commutes with each u; — since automorphisms preserve
adjoints — and so

JP|J = J(P,{us}scc)'J = PN {ut};ec = h.

Thus F, is indeed a II; factor, and P, is the result of the basic construction
for the inclusion Py C P.
Further,
J(PyNP)J =P NP =c,
and so Py is, indeed, an irreducible subfactor of P, and the proof is complete.
0O

Before proceeding further, notice that {u; : ¢ € G} is a basis for P,/P in
the sense of §4.3.

Proof of Proposition A.4.2: A moment’s thought shows that, since G is
finite, it suffices to prove the following assertion:

Assertion: If P C K C P, is an intermediate *-subalgebra, if 0 # z =
Siecaur € K a, € Pyand if S = {t € G : a4(= Ep(zu})) # 0} (denotes the
support of z), then there exists ¢ € S such that u; € K.

First notice that the assumption P C K implies that Ep(Ku,) is a two-
sided ideal in P, and must hence be one of the trivial ideals. Hence if z, S are
as in the assertion, then Ep(PzPu¥) = P for all s € S.

We prove the assertion by induction on the cardinality of S. If S = {s} is
a singleton, the last observation shows that there exists a;,b; € P such that
Ep(X;a;zbut) = 1, which implies, together with the assumption S = {s},
that ug = Y, a;zb; € K.

Suppose then that |S| > 1; fix s € S. Argue as above to find z € PzP
such that Ep(zuf) = 1. Note that the support S, of z (as described in the
statement of the assertion) is contained in that of z, i.e., S, C S. Further,
s € S,, by construction. If S, = {s}, we are done by the last paragraph.
If not, suppose z = Y ies, OkUk, With a; # 0, # s. Since a1 is free, we
can find a unitary element v € P such that va; # ai-1(v); this means
that the element y = z — vza,-1(v*) is a non-zero element of K such that
Sy € (S \ {s}), and an appeal to the induction hypothesis completes the
proof. m]

Assume, in the rest of this section, that N C M is an inclusion of I];
factors with [M : N] = d < co. Once and for all, fix an integer n > d,
set I = {1,2,---,n}, fix a basis {\; : ¢ € I} for M/N, in the sense of
§4.3, and consider the (co-finite morphism of M into N given by the) map
: M — M(N) defined by 6;;(z) = Ex(\iz)}).

Let us write H for L?(M), when viewed as an N-M-bimodule. In the
language of §4.1, and with the preceding notation, we then have H = Hy(=
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Mixn(L*(N))8(1)). (In the following, if ¢ : Q — M;(P) is a co-finite mor-
phism, we shall write H,4 to denote the P-Q-bimodule M. (L*(P))¢(1).
Recall the fact — which we shall use below — that in this case, we have
pLo(Hg) = Mi(P)gy N ¢(Q)".) Also, we assume that My, k > 1, are the
members of the tower of the basic construction as usual.

LeMMA A.4.3 With the foregoing notation, for each pasitive integer k, define
H(k) M — MI"(N) thus: lfl = (il) e 'aik)»j = (jl» e ajk) € Ika then

gi(:lf) = Oijy (0o (- Oz (2) )
= EnOuEn(Au,En(- 'EN(/\ikz)‘;k) . -)/\;2)/\;1).

(i) Then 6%) is a co-finite morphism of M into N for each k > 1, and in
fact,
NP (Mi_1)u = Moy = Mynr(LF(N))OP (1); (A41)

consequently, we have an isomorphism of inclusions:
( N'N Moy ) ( Q(k"'l)(N)’ N Mir+a (N)g(k+l)(1) )
U (2]

U
9(k+1)(M)' N Myer (N)g(lc+l)(1)

(A.4.2)
N' N My

(i) Let ¢*) = %) viewed as a map from M into Myu(M). Then ¢® s
a co-finite morphism of M into M for each k > 1, and in fact,

mLP(Mi)ar = Hywy = Mygor (L2(M))0M)(1); (A4.3)
consequently, we have an isomorphism of inclusions:

M’ n M2k+1 B(k)(N)' n Mjk (M)a(k)(l)
U & U . (A.4.4)

M' N My, e(k)(M)’ n MIk(M)g(k)(l)

Proof: First note that equation (A.4.1) implies the co-finiteness of §*) as
well as (A.4.2) (in view of Proposition 4.4.1(i) and the parenthetical remark
preceding the statement of this lemma); so we only need to prove (i), which
we do by induction on k. The case k = 1 is valid, by definition; the implication
(A4.1)r = (A.4.1)gy is a consequence of Proposition 4.4.1(ii) and the fact
(already mentioned at the end of §4.1) that He ® Hy = Hogg-

The proof of (ii) is similar. O

We shall now apply the preceding lemma to compute the principal and
dual graphs for the subgroup-subfactor N = (P x H) C (P x G) = M. So
assume, for the rest of this section, that P, G, u; are as in the first part of this
section; assume further that H is a subgroup of G. To be specific, suppose
[G : H] = n, and suppose G = [, Hg; is the partition of G into the distinct
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right-cosets of H. It is clear then that {uy, : 1 < i < n} is a basis for M/N,
and yields the co-finite morphism 6 : M — M, (N) given by

0ij(z) = En(ugzu,-1), Yz € M.
J
Notice, in particular, that
0:5(r) = 6i5a4,(r), Vr € P, (A.4.5)

and
u, -1 if ;g € Hygj,
0;i — 9i99;
7(ug) { 0 ’

In order to discuss #*), k > 2, we shall find it convenient to use the following
notation: let I = {1,2,---,n}; denote the element (iy, 4y, - -, i) € I* by i; if
i € I*, define Ng; = g, g5, - - gi,, Also, we shall write g — f¢ for the action
of G on the set I* defined thus:

} Vg € G. (A.4.6)

otherwise,

ByG) =14 6iGir 950" € HgirGiry, -~ g, for 1< 1<k

we shall also, later, write 8% for the associated permutation representation of
G on c™.

With the preceding notation, the definitions imply that, fori,j € I*, k > 1,
we have

63 (r) = Sgong(r), Vr e P, (A47)
and k()
®) ) = ) Unaeng)-t iF 1= 650),

03" (ug) = { 0 otherwise, Vg € G. (A.4.8)

Now fix X = ((zy)) € Mp(M); the fact that P' N M = C is seen to imply
that X € %)(P)’ if and only if there exist scalars Cy; € € such that

zi5 = CijU(ngyngy-1 Vi,j € I*. (A.4.9)

Another easy computation shows that X € §®)(M)" if and only if X is given
by equation (A.4.9), where the scalars Cj; satisfy the relations

Cy = Cpraypry) V9 € Grije I™. (A.4.10)

It follows immediately, from Lemma A.4.3, that we have an isomorphism of

inclusions:

M' N Mgy B \u(H)

U = u . (A.4.11)
M'Nn Moy, ,Bk<G)I

Thus, in the Bratteli diagram for the inclusion (M’ N Myy) C (M’ N Mag41),
the central summands of M’ N My, (resp., M' N May41) are indexed by those
irreducible representations of G (resp., H) which feature in the representation
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B (resp., B*|g), and it is clear that the number of bonds joining a vertex
indexed by a suitable 7 € G to a vertex indexed by a suitable p € His
precisely the multiplicity with which p occurs in 7|g.

Now, suppose X = ((z3;)) € M (N); since uy € N < g € H, we find that
X € 0®)(P)" if and only if there exist scalars Cy; € C such that

_ | Gyumangy if (Mgi)(Ng;)™ € A,
Ty = { 0 J otherwise, (A.4.12)

Thus, the relative commutant §%*)(P)' N M (N) gets identified with the set
Cr = {((Cy)) € Mp(€) : C5=0 if (Ngs)(Ng5)™" ¢ H}.
Consider the mapping

@ M[k 1(C =) @ _1 O(p) ((OIJ)) € Cy
defined by

Cy = CP;_ it Ngi,Ng; € Hgp 1 <p<nm,
) 0 if M gi,MNg; belong to distinct cosets,

where we have used the notation i_ = (iz,- - -, ) for i € I*. A simple verifi-
cation shows that this mapping is an isomorphism of *-algebras.

Thus, we find that (%) (P)' N Mp(N)) = @p_, My (C). If the element
X € (0®(P)' N Mp(N)) corresponds to the element @p_ ((C(p))) under
this ismorphism, another simple computation shows that X commutes with
6® (u,) if and only if

C(ﬂ (») C(p)

s s rk-1
1iy,pt-1 ) = Cig Vpelijel* . (A.4.13)

Let us temporarily write K = P x Gy, where G is a subgroup of G, which
we will later choose to be G or H. The preceding analysm shows that X €
(0®)(K)' N Mp(N)) if and only if the corresponding C{ 2)s5 satisfy equation
(A.4.13) for all g € Gy. It follows readily from this descrlption that, if the
set I breaks up into [ orbits under the action f'|g,, if gV, -+, g® is a set
containing one element from each of these distinct orbits, and if G(()i) is the
isotropy subgroup of Gy corresponding to the point ¢, then

(BB (KY N M (V) = @D, 7(GS) (A.4.14)

When Gy = G, since the action 8! of G is clearly tran81t1ve we have [ =1,
so we may choose g) = 1, in which case we find that G( =H.

When Gy = H, the orblts under the action 3'|g of H correspond to the
double cosets of H in G, and so if [ is the number of double cosets, and if
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G = [I\_; Hg"WH is the partition of G into double cosets of H, we find that
GP =Hng®O " Hg® = H; (say).

It follows, from Lemma A .4.3, equation (A.4.14) and the last two para-
graphs, that in the Bratteli diagram for the inclusion (N' N My) C (N'N
Moi11), the central summands of (NN May) (resp., (N'N Myiy1)) are indexed
by those irreducible representations of H (resp., H; for any ¢) which occur in
B* g (resp., B*1|g,), and that the vertex labelled by a suitable 7 € H is
connected to the vertex labelled by a suitable p € H,1<i<]|, by m bonds,
if m is the multiplicity with which p occurs in 7|g,.

A moment’s thought about the nature of the principal and dual graphs
should convince the reader that we have proved the following.

PROPOSITION A.4.4 Let H be a subgroup of finite index in a discrete group
G. Suppose G acts as outer automorphisms on the II; factor P. Then the
principal graph G and the dual graph H for the inclusion N = P x H C
P x G = M have the following descriptions.

Let G = [I\_, Hg™ H be the partition of G into double cosets of H, and
let Hi= HNg®™ Hg®. First define a bipartite graph G as follows: let GO =
(I, (H; x {i})) x {0}, M) = H x {1}; join the even vertez ((p,1),0) to the
odd vertez (m,1) by m bonds, if m is the multiplicity with which p occurs in
7|m,. Then G is the connected component in G which contains the odd vertez
(1,1) which is indezed by the trivial representation of H.

Define the bipartite graph H as follows: let H® = GX{O}, HD = Hx {1};
connect the even vertez (m,0) to the odd vertez (p,1) by as many bonds as the
multiplicity with which p occurs in m|g. Then H is the connected component
in H which contains the even vertex (1,0) indezed by the trivial representation
of G. O

A.5 From subfactors to knots

In this section, we briefly sketch the manner in which the initial contact
between von Neumann algebras and knot theory was made; to be precise, we
outline the construction and some basic properties of what has come to be
known as the one-variable Jones polynomial invariant of links.

The starting point is Artin’s n-strand braid group, which we briefly de-
scribe. Fix a positive integer n — which should be at least 2 for anything
interesting to happen. Consider two horizontal rods with n hooks on each of
them, and suppose n strands, say of rope, are tied with one end to each of the
rods, in such a way that no hook has more than one strand tied to it. In order
to avoid pathologies, we assume that the two rods are placed horizontally
with one vertically above the other, and that the passage from the top rod to
the bottom is not allowed to ‘double back’, meaning that at any intermediate
height, there is exactly one point of each of the n strands.
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An n-strand braid is an equivalence class of such arrangements, where
two such arrangements are considered to be equivalent if it is possible to
continuously deform the one to the other. We shall think of the strands of
a braid as being oriented from the top to the bottom. Consistent with this
convention, we define the product of two m-strand braids by concatenation,
as follows:

It is fairly painless to verify that this definition endows the set B, of n-
strand braids with the structure of a group. (The inverse of a braid is given
by the braid obtained by reflecting the given braid in a mirror placed on
the horizontal plane through the bottom rod.) We shall only consider tame
braids, by which we mean one which admits only a finite number of crossings.
It then follows from our definition that B, is generated, as a group, by the set
{01, +,0n-1}, where o; is a braid with only one crossing, which is between the
(1 — 1)-th and i-th strands and which is positive according to the convention
adopted in §6.1. Thus, for instance, when n = 2, the generator and its inverse

are given as follows:
AN
\ /

o ot
A result due to Artin establishes the precise relations between these gen-
erators. (The reader will find it instructive to draw some pictures to convince
herself that these relations are indeed satisfied.)

THEOREM A.5.1 The braid group has the following presentation (in terms
of generators and relations):

1 io; =0os0;if [i— 7] > 1
BnZ 01,""*,0p—1: (b ) 0-10] U‘f11 IZ jl> ’ . a
(b2) 0i0i410i = 044100441
In other words, the theorem says that if g, - - -, g,_; are arbitrary elements

in a group G, then a necessary and sufficient condition for the existence of a
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homomorphism ¢ : B, — G such that ¢(o;) = g; Vi is that the g;’s satisfy
the so-called braid relations (b1) and (62), and in this case such a ¢ is unique.
Two consequences are worth singling out.

REMARK A.5.2 (1) There ezists a unique epimorphism w : B, — S, such
that w(o;) is the transposition (i,i+1). (It should be clear that in the language
of rods and strands, the braid « is such that the strand which ends at the i-th
hook on the bottom rod starts at the (w(a))(i)-th strand of the top rod.)

(2) There exists a unique homomorphism v, : B, — By, such that
dzn(cr(")) = U,("'H), 1 < i< n - where we have used the notation o™ to denote

7

the i-th generator of Bx. We shall, in the sequel, write
o™ =y (™), Vol € B,. (A.5.1)
Alternatively, we can see that

a(n+1) = o™

] ]

(8) If we set 0 = 010y -+ - 0p_y € By, it follows immediately from the braid
relations that o0o; = 0,10 for 1 < i < n—1; in other words, the generators
0; are pairwise conjugate in By,

In view of the striking similarity between the braid relations and the
relations satisfied by the e,’s, it is natural to try to use the latter to obtain a
representation of the former. The simplest way to obtain an invertible element
from a projection is to form a (generic) linear combination of the projection
and the identity. In view of Remark A.5.2(3), we wish therefore to set

g=C{(g+1)e;—1},1<i<n, (A.5.2)

where C' and ¢ are non-zero scalars. Recall that the e;’s come with a parameter
T; an easy computation shows that the g;’s as defined above satisfy the braid
relations precisely when the parameters 7 and ¢ are related by the equation

rl=qg4q¢t+2. (A.5.3)

Notice that
771 = 4cosh? z & g = exp(+22).

Hence, as the parameter ¢ varies over the set {exp(z—”g) :n=3,4,---}U
(0, 00), the parameter 7 ranges over all possible index-values of subfactors.
Further, the values of g for which the g;’s (with the normalisation C' = 1)
afford a unitary representation of the braid group are precisely the roots of
unity.

For convenience of reference, we paraphrase the foregoing remarks in the
following proposition.
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PROPOSITION A.5.3 Let q € {exp(2—"‘§'_—1) :n = 3,4,---} U (0,00), let 7
be defined by equation (A.5.3), and let {e,}>°, be the sequence of projections
assoctated to this T. Then, for any C # 0, there ezits a unique homomorphism
T Of By into the group of units of R such that

(o) = C{(q + l)e; — 1} for 1 <i<n. O

The closure & of a braid « € B, is defined as follows:

:

N

It should be clear that the closure of a braid is an oriented link. (Recall that
a link is a homeomorphic image of a disjoint union of circles, and that a link
is said to be oriented if an orientation has been specified in each component.
Alternatively, an oriented link is a compact 1-manifold without boundary,
with a distinguished orientation. A knot is a link with exactly one component
—1i.e., a knot is just a homeomorphic image of the circle.) A moment’s thought
should convince the reader that the number of components of & is precisely
the number of disjoint cycles in the cycle-decomposition of the permutation
7(a) — see Remark A.5.2(1).

Two links are considered to be equivalent, or the same, if the one can
be continuously deformed to the other. Precisely, this means that there is a
continuous map F : R x [0, 1] — IR® such that if we write F(z,t) = fi(z),
then fy = idzs, each f; is a homeomorphism of IR® onto itself, and f; maps the
first link onto the second. (We only consider links in JR* here.) Two oriented
links are said to be equivalent if they are equivalent as above in such a way
that f, preserves the orientations. We shall use the symbol £ to denote the
class of oriented links (in RR?).

Recall that a link is said to be tame if it is equivalent to one which is a
smoothly embedded submanifold of IR?.

THEOREM A.5.4 (Alexander) Every tame link (in IR®) is equivalent to the
closure of some braid (on a possibly large number of strands).

The final ingredient for us to make the connection between subfactors
and links is a result due to Markov which explains precisely how two different
braids (on possibly different numbers of strands) can have equivalent link
closures. In order to describe this result, some terminology would help.
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DEFINITION A.5.5 Let o™ € B,, 3™ € B,,. The braids o™ and 8™ are
said to be related by a Markov move of (a) type I, if n = m and if o™ and
B™ belong to the same conjugacy class in By; and (b) type II, if either (i)
m =n+1 and B = oD (cTNE or () m = n —1 and ™ =
o™ (g{M)£1,

A couple of diagrams should convince the reader of the sufficiency of the
following condition.

THEOREM A.5.6 (Markov) In order that two braids o™ € B, and (™ €
B, have equivalent link-closures, it is necessary and sufficient that there exist
braids o™ = ap,qq,- -, ax = ™ such that o; and oyy1 are related by a
Markov move (of either type), for 0 <1 < k.

An invariant of oriented links (which takes values in some set, say S) is
an assignment £ 3 L — P, € S with the property that L ~ L' = P, = Py,.
An immediate consequence of Theorems A.5.4 and A.5.6 is that in order to
define an invariant L — P of tame oriented links taking values in S, it is
necessary and sufficient to find functions P, : B, — S,n > 2 such that

P, is a class function on B,,, Vn, (A.5.4)
and
Py (" (o0t EY = p (™), Vo™ € B, Vn; (A.5.5)

when this happens, we have

P— = P,(a™), Vo™ € B, VYn>2.

a("‘)

Since class functions are usually obtained by taking the trace of a repre-
sentation, it is natural to seek a link invariant by considering the functions

Q@n (a) = trR('”n (a))’

where , is as in Proposition A.5.3. (Thus the condition (A.5.4) is automat-
ically satisfied because of the trace.)

As for the condition (A.5.5), note, to start with, that g;* = C~{(¢7* +
1)e; — 1}, and hence ¢! satisfies the Markov property with respect to the
algebra generated by m,(B,). Hence, if there is any hope of the Q),’s satisfying
(A.5.5), it must at least be the case that trg, = tr g;; a little algebra shows
that this happens precisely when we make the choice C = q%, in which case,
we find that

1

trgrt=—(¢*+q7%)7,

and consequently, that
Quir (@D () = {~(g% +477)}Qu(a™)

for any o™ € B,.
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A moment’s thought shows that if we define
Po(@) = {~(g? +¢73)}" "' Qu(e),a € B,

then the P,’s do satisfy both the conditions (A.5.4) and (A.5.5). We have
thus proved the following:

THEOREM A.5.7 Let q, 7,7, be as in Proposition-A.5.8, where we assume

1 . . . . .
that C = q72; then there ezists a complez-valued invariant of oriented links,
which we shall denote by L 3 L — Vi(q), such that, if a € B, then

Va(g) = {—(@% + ¢ )} Mrma(a). o

Most properties of this invariant are consequences of the fact that it sat-
isfies the so-called skein relations. To see what these are, it will be convenient
to use the point of view of link diagrams. The fact is that the image of a tame
link in JR® under the projection onto a generic plane in JR® will have only
double points — meaning that the inverse image of a point in the plane will
meet the given link in at most two points. In order to fully recapture the link
from the projection, it is necessary to indicate, at each crossing, which of the
two strands goes ‘over’ the other. For instance, a diagram representing the
so-called right-handed trefoil knot (with an orientation indicated) is

X

We shall henceforth identify the class £ with the class of all oriented
(tame) link diagrams. We shall say that three link diagrams L., L_, Ly are
skein-related if they are identical except at one crossing, where they have the

fOllO W lIlg fOI‘m.
\ /

L, L_ Lo

Before stating the next result, we recall that the unlink U, with ¢ compo-
nents is nothing but 1., where 1, denotes the identity element of B,.
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PROPOSITION A.5.8 The invariant defined in Theorem A.5.7 satisfies the
following relations:
. 1 1
(1) Vo.(q) = {—(¢7 + ¢ 2)}* ",
(i) of Ly, L_ and Ly are skein-related as above, then

Wi, () — aVi_(q) = (42 — ") Vi,(a).

Proof: Assertion (i) is an immediate consequence of the definitions.
(ii) Begin by observing that

3 1
g =q2e;—q*(1 —e),

and hence g; satisfies the quadratic relation

which may be re-written as

¢7lgi— a7 = (¢ —qP)L.

The desired conclusion is a consequence of the definition of V7, properties
of the trace, and the fairly obvious observation that the assumed skein-relation
between L,,L_ and Ly amounts to the existence of a positive integer n,
elements a and § of B, and an integer 1 < ¢ < n such that — thinking of
these link diagrams as links — we have

Ly =ac™B, L_=a(c™)-18, L,=ap. 0

The following elementary lemma will be very useful in deducing properties
of the invariant V from Proposition A.5.8.

LEMMA A.5.9 Let L be an oriented link diagram; there ezists a subset of
the set of crossings in L such that, if we change all these crossings (from an
over- to an under-crossing and vice versa), the resulting diagram represents
an unknot with the same number of components as L.

Proof: Arbitrarily label the distinct components of the diagram 1,2, - -, ¢,
and fix a reference point on each component, which is not a double point.
Given any crossing, change it if (and only if) one of the following things
happens: either (a) the crossing involves two different components, and the
component with the larger label crosses over the one with the smaller label;
or (b) the crossing involves only one component, and in travelling along that
component from the chosen reference point in the direction specified by the
orientation, the first time you come to the crossing, you find yourself going
along the over-strand of the crossing.
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A moment’s thought should convince the reader that this algorithm yields
a proof of the lemma.

For instance, if L is the link diagram given earlier to depict the right-
handed trefoil, our algorithm would yield the following diagram (with the
reference point as indicated):

[ ]

/

]

Given a link diagram L, define its ‘knottiness’ to be the ordered pair (n, k),
where n denotes the number of crossings in the diagram and k denotes the
minimum of the cardinalities of subsets of the set of crossings which satisfy
Lemma A.5.9; we shall say that a link diagram L, is ‘more knotty’ than a
diagram L, if the knottiness (nj, k;) of L, precedes the knottiness (ng, k)
of Ly in the lexicographic ordering — i.e., if either ny < my, or n; = ng,
ky < ks.

With respect to this ‘ordering’, the least knotty diagrams represent un-
links, and the preceding lemma has the following pleasing consequence: given
any link diagram which does not represent an unlink, there is a triple (L, L_,
Ly) of skein-related diagrams such that two things hold: (a) L is either L or
L_, and (b) L is more knotty than the other two diagrams in {Ly, L_, Lo}.

Since the set Z, x Z is well-ordered with respect to the lexicographic
order, the preceding considerations allow us to prove facts about Vj using
a ‘knotty induction’. By such a process, it is easy (and amusing) to prove
the following facts. (The strategy of proof is: first prove it for unlinks; then
assume the result for Ly and L, (resp., L_) and use Proposition A.5.8(ii) to
deduce the result for L_ (resp., Ly).)

PROPOSITION A.5.10 (1) Vi(q) is a Laurent polynomial in q%; more pre-
cisely, if L has an odd number of components, then Vi(q) is a Laurent poly-
nomial in q, while if L has an even number of components, then Vi(q) is q%
times a Laurent polynomial in gq.

(2) If L denotes the mirror-reflection of L, then

Vi) = Vi(g™).

(8) Properties (i) and (ii) of Proposition A.5.8 determine the invariant
Vi uniquely (via the process of ‘knotty induction’ discussed earlier). 0O
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We close by illustrating (3) above with the already mentioned example of
the right-handed trefoil.

L, =T, = right-handed trefoil

L_ =U; = unknot

-
S

Ly=H, = Hopf link

It follows that

Ve, (q) = ¢{aVi,(q) + (v3 — %)Vm(q)}. (A.5.6)

Next, in order to determine Vj,, notice the following skein-related triple
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of links:

N

L+=H+ L_=U2 L():Ul

This implies that
L
Ve

Putting equations (A.5.6) and (A.5.7) together, we find that

Vi, (@) = d{dVu,(0) + (Va Won(9)}- (A.5.7)

Ve (q) =q+¢* - ¢,

which implies that if T_ = ’f+ — in the notation of Proposition A.5.10 — so
that T_ denotes the so-called left-handed trefoil — then

Vr(@)=q¢'+q%-q*

The invariant V7, is quite good at detecting knots from their mirror-images
in this fashion.
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Bibliographical Remarks

§1.1: Almost all the material in this section was first established in the
seminal paper [MvN1]. The only exceptions to this blanket statement is the
existence of a tracial state on a finite factor (Proposition 1.1.2) — which was
established in [MvN2] — and the fact (briefly alluded to) about disintegration
of a general von Neumann algebra (with separable pre-dual) into factors —
which was established in [vN3].

§1.2: The fundamental GNS construction first made its appearance in
[GN], and appears later in polished form in [Seg], while the basic facts con-
tained in this section concerning the so-called standard module of a finite
factor were all known to the founding fathers — see [MvN2] (although they
did not quite use the same terminology as here).

§1.3: The notion of a discrete crossed product — at least when the algebra
that is being acted upon by the group is commutative — first appears in
[MvyN1]; already in this paper, they use this construction to give examples of
11 factors, and they identify ergodicity as the crucial property of the group
action to ensure factoriality of the crossed product.

§1.4: The definition given in Definition 1.4.2 is from [Kal]. The type-
classification given in Theorem 1.4.5 is again from [MvN1]. The Powers factors
made their appearance in [Pow], while the description of the model for the hy-
perfinite I, factor coming from the crossed product L®(IR?, B, ) x SL(2,7)
(in Example 1.4.8) is due to [Aub]. Infinite tensor products were first treated
in [vN2], and while the uniqueness statement concerning approximately finite-
dimensional I factors was first proved in [MvN3], the ultimate classification
of (all types of) approximately finite-dimensional factors was completed — ex-
cept for one case, the so-called III; case — in [Conl]; the outstanding /11,
case was finally disposed of in [Haa].

§2.1: The classification of all possible modules over a factor goes back to
[MvN3].

§2.2: The importance of bimodules was first recognised by Connes [Con2).
The coupling constant was introduced in [MvN1]. All the assertions in Propo-
sition 2.2.6 appear in [Jonl] although many of these can also be found in the
papers of Murray and von Neumann.
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§2.3: This entire section is from [Jonl].

§3.1: The basic construction appeared in [Ch] and [Sk], although it was
not really exploited in the manner discussed here until [Jonl]. Further, the
index of a subfactor was first considered in [Jonl], and indeed, most of this
section is also from that source.

§3.2: The notion of a Bratteli diagram was first systematically used in
[Bra]. Most of the discussion in this section is ‘folklore’; thus, for instance,
Lemma 3.2.2 may be found (in possibly different pieces) in [GHJ]. On the
other hand, facts concerning the Markov trace — such as Proposition 3.2.3
and Corollary 3.2.5 — occur in [Jon1].

§3.3: But for the reference to Kronecker’s theorem concerning integral
matrices of small norm — which may be found in [GHJ] — all of this section is
also from [Jonl].

§4.1: The importance of bimodules was identified and underlined in
[Conl]; their significance for subfactors was recognised in [Ocn]; the treat-
ment given here may be found in [Sun3].

§4.2: The importance of the principal graph invariant of a subfactor —
at least in the ‘relative commutant formulation’ — was already recognised in
the first paper [Jonl] on subfactors, where it was also shown that the A,
diagrams all arose as principal graphs. The ‘bimodule formulation’ of the
principal graph is due to Ocneanu ([Ocn]). The fact that the principal graph
had to be one of the Coxeter diagrams was recognised in [Jonl]. It was in
[Ocn] that it was stated that E7 and Dapy1 could not arise as the principal
graph invariant of a subfactor; (independent) proofs of this fact were furnished
in [Iz1] and [SV]. It was later shown, in [Kaw], [B-N] and [Iz2] respectively,
that all the graphs D,,, Fs and Fg did in fact arise as principal graphs.
The principal and dual graphs of the ‘subgroup-subfactor’ — referred to in
Example 4.2.3(iii) were explicitly computed in [KY]. The real significance of
the usefulness of the so-called ‘diagonal subfactor’ discussed in Example 4.2.4
has been brought out by Popa (see [Pop6]), who, incidentally, also computed
the principal graph of this diagonal subfactor.

§4.3: Everything in this section is from [PP1], the only exception being
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Proposition 4.3.6 which is from [PP2]. (As explained in the text, we have
worked here with a marginal variation of what they term an ‘orthonormal
basis’ - in that we replace the requirement of ‘orthonormality’ by ‘linear
independence’.)

§4.4: Everything in this section is contained in the work of Ocneanu and
Popa (if not in such explicit detail).

§5.1: Practically everything in this section is from [PP1]. The notion of
a commuting square, however, appeared much earlier in the work of Popa —
see [Popl] and [Pop2].

§5.2: Much of this section is motivated by considerations in [Jon3] and
[Jon5]. Hadamard matrices originated in [Had]; also see [SY].

§5.3: Lemma 5.3.1, Corollary 5.3.2 and Lemma 5.3.3 are from Wenzl’s
thesis — see [Wen]. The terminology ‘symmetric commuting square’ (in the
case of finite-dimensional C*-algebras) goes back to [HS]; the terminology
‘non-degenerate’ to describe the same notion (but for more general inclusions
of von Neumann algebras) is due to Popa — see [Pop6], for instance.

§5.4: The contents of this section were independently obtained in [Ocn]
and [Sund].

§5.5: Essentially all of this section is contained — although in a seemingly
different form — in [Ocn]. The formulation contained here — at least as far as
Proposition 5.5.2 is concerned — is explicitly worked out in [HS].

§5.6: The basic theorem stated in Theorem 5.6.3 was announced, without
proof, in [Ocn]. Subsequently, this was proved in full detail in [Pop4]; the
ultimate formulation of this theorem — in terms of (strong) amenability — is
in [Pop6].

§5.7: Ocneanu’s compactness result — both parts of it, as stated here — is
from [OK]. The assertion of Corollary 5.7.4(ii) was first established in [Wen],
although the proof given here, using bases, is different (and perhaps simpler).
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§6.1: The diagrammatic formulation of the higher relative commutants,
for vertex and spin models, is due to the first author (unpublished notes).

§6.2: The computations of the principal graphs of the examples consid-
ered in Examples 6.2.1 and 6.2.2 were independently performed in [BHJ] and
[KSV]. These sort of Cayley graphs had, of course, been obtained in more
general situations, in considerations of ‘diagonal subfactors’ in [Pop5] (also
see [Pop6]) and of subfactors arising as fixed-point algebras of compact group
actions — see [GHJ] and [Was].

§6.3: The contents of this section come from [KS].

§A.1: The equivalence of the abstract and concrete notions of a von Neu-
mann algebra was established by Sakai in [Sak2].

§A.2: For the Tomita—Takesaki theorem, see [Tak2].

§A.4: The use of the co-finite morphism and the bimodule calculus for
computing the principal graph of the subfactor N C N x G was demonstrated
in [OK]. The computation of the principal and dual graphs for the subfactor
N x H C N x G was carried out in [KY].

§A.5: Most of this material appeared first in [Jond4] — with the obvious
exception of the results of Artin, Alexander and Markov, which appeared first
in [Art], [Alex] and [Mark], respectively; for these results, also see [Bir].
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