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Solutions to Exercises

Problem Set 1.1, page 6

1 Line through (1, 1, 1); plane; same plane!

3 v = (2, 2) and w = (1,−1).

4 3v + w = (7, 5) and v − 3w = (−1,−5) and cv + dw = (2c + d, c + 2d).

5 u +v = (−2, 3, 1) and u +v +w = (0, 0, 0) and 2u +2v +w = (add first answers) = (−2, 3, 1).

6 The components of every cv + dw add to zero. Choose c = 4 and d = 10 to get (4, 2,−6).

8 The other diagonal is v −w (or else w − v). Adding diagonals gives 2v (or 2w).

9 The fourth corner can be (4, 4) or (4, 0) or (−2, 2).

10 i + j is the diagonal of the base.

11 Five more corners (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1). The center point is ( 1
2
, 1

2
, 1

2
). The

centers of the six faces are ( 1
2
, 1

2
, 0), ( 1

2
, 1

2
, 1) and (0, 1

2
, 1

2
), (1, 1

2
, 1

2
) and ( 1

2
, 0, 1

2
), ( 1

2
, 1, 1

2
).

12 A four-dimensional cube has 24 = 16 corners and 2 · 4 = 8 three-dimensional sides and 24

two-dimensional faces and 32 one-dimensional edges. See Worked Example 2.4 A.

13 sum = zero vector; sum = −4:00 vector; 1:00 is 60◦ from horizontal = (cos π
3
, sin π

3
) = ( 1

2
,
√

3
2

).

14 Sum = 12j since j = (0, 1) is added to every vector.

15 The point 3
4
v + 1

4
w is three-fourths of the way to v starting from w . The vector 1

4
v + 1

4
w is

halfway to u = 1
2
v + 1

2
w , and the vector v + w is 2u (the far corner of the parallelogram).

16 All combinations with c + d = 1 are on the line through v and w . The point V = −v + 2w is

on that line beyond w .

17 The vectors cv + cw fill out the line passing through (0, 0) and u = 1
2
v + 1

2
w . It continues

beyond v + w and (0, 0). With c ≥ 0, half this line is removed and the “ray” starts at (0, 0).

18 The combinations with 0 ≤ c ≤ 1 and 0 ≤ d ≤ 1 fill the parallelogram with sides v and w .

19 With c ≥ 0 and d ≥ 0 we get the “cone” or “wedge” between v and w .

20 (a) 1
3
u + 1

3
v + 1

3
w is the center of the triangle between u , v and w ; 1

2
u + 1

2
w is the center

of the edge between u and w (b) To fill in the triangle keep c ≥ 0, d ≥ 0, e ≥ 0, and

c + d + e = 1.

3
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21 The sum is (v − u) + (w − v) + (u −w) = zero vector.

22 The vector 1
2
(u + v + w) is outside the pyramid because c + d + e = 1

2
+ 1

2
+ 1

2
> 1.

23 All vectors are combinations of u , v , and w .

24 Vectors cv are in both planes.

25 (a) Choose u = v = w = any nonzero vector (b) Choose u and v in different directions,

and w to be a combination like u + v .

26 The solution is c = 2 and d = 4. Then 2(1, 2) + 4(3, 1) = (14, 8).

27 The combinations of (1, 0, 0) and (0, 1, 0) fill the xy plane in xyz space.

28 An example is (a, b) = (3, 6) and (c, d) = (1, 2). The ratios a/c and b/d are equal. Then

ad = bc. Then (divide by bd) the ratios a/b and c/d are equal!

Problem Set 1.2, page 17

1 u · v = 1.4, u · w = 0, v · w = 24 = w · v .

2 ‖u‖ = 1 and ‖v‖ = 5 = ‖w‖. Then 1.4 < (1)(5) and 24 < (5)(5).

3 Unit vectors v/‖v‖ = ( 3
5
, 4

5
) = (.6, .8) and w/‖w‖ = ( 4

5
, 3

5
) = (.8, .6). The cosine of θ is

v
‖v‖ · w

‖w‖ = 24
25

. The vectors w ,u ,−w make 0◦, 90◦, 180◦ angles with w .

4 u1 = v/‖v‖ = 1√
10

(3, 1) and u2 = w/‖w‖ = 1
3
(2, 1, 2). U 1 = 1√

10
(1,−3) or 1√

10
(−1, 3). U 2

could be 1√
5
(1,−2, 0).

5 (a) v ·(−v) = −1 (b) (v +w)·(v−w) = v ·v +w ·v−v ·w−w ·w = 1+( )−( )−1 = 0

so θ = 90◦ (c) (v − 2w) · (v + 2w) = v · v − 4w · w = −3

6 (a) cos θ = 1
(2)(1)

so θ = 60◦ or π
3

radians (b) cos θ = 0 so θ = 90◦ or π
2

radians

(c) cos θ = −1+3
(2)(2)

= 1
2

so θ = 60◦ or π
3

(d) cos θ = −1/
√

2 so θ = 135◦ or 3π
4

.

7 All vectors w = (c, 2c); all vectors (x, y, z) with x + y + z = 0 lie on a plane; all vectors

perpendicular to (1, 1, 1) and (1, 2, 3) lie on a line.

8 (a) False (b) True: u · (cv + dw) = cu · v + du · w = 0 (c) True

9 If v2w2/v1w1 = −1 then v2w2 = −v1w1 or v1w1 + v2w2 = 0.

10 Slopes 2
1

and − 1
2

multiply to give −1: perpendicular.

11 v · w < 0 means angle > 90◦; this is half of the plane.

12 (1, 1) perpendicular to (1, 5)− c(1, 1) if 6− 2c = 0 or c = 3; v · (w − cv) = 0 if c = v · w/v · v .

13 v = (1, 0,−1),w = (0, 1, 0).

14 u = (1,−1, 0, 0), v = (0, 0, 1,−1),w = (1, 1,−1,−1).

15 1
2
(x + y) = 5; cos θ = 2

√
16/

√
10
√

10 = .8.

16 ‖v‖2 = 9 so ‖v‖ = 3; u = 1
3
v ; w = (1,−1, 0, . . . , 0).

17 cos α = 1/
√

2, cos β = 0, cos γ = −1/
√

2, cos2 α + cos2 β + cos2 γ = (v2
1 + v2

2 + v2
3)/‖v‖2 = 1.
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18 ‖v‖2 = 42 + 22 = 20, ‖w‖2 = (−1)2 + 22 = 5, ‖(3, 4)‖2 = 25 = 20 + 5.

19 v − w = (5, 0) also has (length)2 = 25. Choose v = (1, 1) and w = (0, 1) which are not

perpendicular; (length of v)2 + (length of w)2 = 12 + 12 + 12 but (length of v −w)2 = 1.

20 (v+w)·(v+w) = (v+w)·v+(v+w)·w = v ·(v+w)+w ·(v+w) = v ·v+v ·w+w ·v+w ·w =

v · v + 2v · w + w · w . Notice v · w = w · v !

21 2v · w ≤ 2‖v‖‖w‖ leads to ‖v + w‖2 = v · v + 2v · w + w · w ≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 =

(‖v‖+ ‖w‖)2.

22 Compare v · v + w · w with (v −w) · (v −w) to find that −2v · w = 0. Divide by −2.

23 cos β = w1/‖w‖ and sin β = w2/‖w‖. Then cos(β−a) = cos β cos α+sin β sin α = v1w1/‖v‖‖w‖+

v2w2/‖v‖‖w‖ = v · w/‖v‖‖w‖.

24 We know that (v−w)·(v−w) = v ·v−2v ·w +w ·w . The Law of Cosines writes ‖v‖‖w‖ cos θ

for v · w . When θ < 90◦ this is positive and v · v + w · w is larger than ‖v −w‖2.

25 (a) v2
1w2

1 + 2v1w1v2w2 + v2
2w2

2 ≤ v2
1w2

1 + v2
1w2

2 + v2
2w2

1 + v2
2w2

2 is true because the difference is

v2
1w2

2 + v2
2w2

1 − 2v1w1v2w2 which is (v1w2 − v2w1)
2 ≥ 0.

26 Example 6 gives |u1||U1| ≤ 1
2
(u2

1 + U2
1 ) and |u2||U2| ≤ 1

2
(u2

2 + U2
2 ). The whole line becomes

.96 ≤ (.6)(.8) + (.8)(.6) ≤ 1
2
(.62 + .82) + 1

2
(.82 + .62) = 1.

27 The cosine of θ is x/
√

x2 + y2, near side over hypotenuse. Then | cos θ|2 = x2/(x2 + y2) ≤ 1.

28 Try v = (1, 2,−3) and w = (−3, 1, 2) with cos θ = −7
14

and θ = 120◦. Write v ·w = xz+yz+xy

as 1
2
(x+y+z)2− 1

2
(x2+y2+z2). If x+y+z = 0 this is − 1

2
(x2+y2+z2), so v ·w/‖v‖‖w‖ = − 1

2
.

29 The length ‖v −w‖ is between 2 and 8. The dot product v · w is between −15 and 15.

30 The vectors w = (x, y) with v · w = x + 2y = 5 lie on a line in the xy plane. The shortest w

is (1, 2) in the direction of v .

31 Three vectors in the plane could make angles > 90◦ with each other: (1, 0), (−1, 4), (−1,−4).

Four vectors could not do this (360◦ total angle). How many can do this in R3 or Rn?

Problem Set 1.3

1 (x, y, z) = (2, 0, 0) and (0, 6, 0); n = (3, 1,−1); dot product (3, 1,−1) · (2,−6, 0) = 0.

2 4x−y−2z = 1 is parallel to every plane 4x−y−2z = d and perpendicular to n = (4,−1,−2).

3 (a) True (assuming n 6= 0) (b) False (c) True.

4 (a) x + 5y + 2z = 14 (b) x + 5y + 2z = 30 (c) y = 0.

5 The plane changes to the symmetric plane on the other side of the origin.

6 x− y − z = 0.

7 x + 4y = 0; x + 4y = 14.

8 u = (2, 0, 0), v = (0, 2, 0), w = (0, 0, 2). Need c + d + e = 1.
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9 x + 4y + z + 2t = 8.

10 x− 4y + 2z = 0.

11 We choose v0 = (6, 0, 0) and then in-plane vectors (3, 1, 0) and (1, 0, 1). The points on the

plane are v0 + y(3, 1, 0) + z(1, 0, 1).

12 v0 = (0, 0, 0); all vectors in the plane are combinations y(−2, 1, 0) + z( 1
2
, 0, 1).

13 v0 = (0, 0, 0); all solutions are combinations y(−1, 1, 0) + z(−1, 0, 1).

14 Particular point (9, 0); solution (3, 1); points are (9, 0) + y(3, 1) = (3y + 9, y).

15 v0 = (24, 0, 0, 0); solutions (−2, 1, 0, 0) and (−3, 0, 1, 0) and (−4, 0, 0, 1). Combine to get

(24− 2y − 3z − 4t, y, z, t).

16 Choose v0 = (0, 6, 0) with two zero components. Then set components to 1 to choose (1, 0, 0)

and (0,−3/2, 1). Combinations are (x, 6− 3
2
z, z).

17 Now |d|/‖n‖ = 12/
√

56 = 12/2
√

14 = 6/
√

14. Same answer because same plane.

18 (a) |d|/‖n‖ = 18/3 = 6 and v = (4, 4, 2) (b) |d|/‖n‖ = 0 and v = 0

(c) |d|/‖n‖ = 6/
√

2 and v = 3n = (3, 0,−3).

19 (a) Shortest distance is along perpendicular to line (b) Need t + 4t = 25 or t = 5

(c) The distance to (5,−10) is
√

125.

20 (a) n = (a, b) (b) t = c/(a2 + b2) (c) This distance to tn = (ca, cb)/(a2 + b2) is

|c|/
√

a2 + b2.

21 Substitute x = 1 + t, y = 2t, z = 5− 2t to find (1 + t) + 2(2t)− 2(5− 2t) = 27 or −9 + 9t = 27

or t = 4. Then ‖tn‖ = 12.

22 Shortest distance in the direction of n ; w + tn lies on the plane when n · w + tn · n = d or

t = (d− n · w)/n · n . The distance is |d− n · w |/‖n‖ (which is |d|/‖n‖ when w = 0).

23 The vectors (1, 2, 3) and (1,−1,−1) are perpendicular to the line. Set x = 0 to find y = −16

and z = 14. Set y = 0 to find x = 9/2 and z = 5/2. These particular points are (0,−16, 14)

and (9/2, 0, 5/2).

24 (a) n = (1, 1, 1,−1) (b) |d|/‖n‖ = 1
2

(c) dn/n · n = ( 1
4
, 1

4
, 1

4
,− 1

4
)

(d) v0 = (1, 0, 0, 0) (e) (−1, 1, 0, 0), (−1, 0, 1, 0), (1, 0, 0, 1)

(f) all points (1− y − z + t, y, z, t).

25 n = (1, 1, 1) or any nonzero (c, c, c).

26 cos θ = (0, 1, 1) · (1, 0, 1)/
√

2
√

2 = 1
2

so θ = 60◦.

Problem Set 2.1, page 29

1 The planes x = 2 and y = 3 and z = 4 are perpendicular to the x, y, z axes.

2 The vectors are i = (1, 0, 0) and j = (0, 1, 0) and k = (0, 0, 1) and b = (2, 3, 4) = 2i + 3j + 4k .
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3 The planes are the same: 2y = 6 is y = 3, and 3z = 12 is z = 4. The solution is the same

intersection point. The columns are changed; but same combination x̂ = x .

4 The solution is not changed; the second plane and row 2 of the matrix and all columns of the

matrix are changed.

5 If z = 2 then x + y = 0 and x − y = z give the point (1,−1, 2). If z = 0 then x + y = 6 and

x− y = 4 give the point (5, 1, 0). Halfway between is (3, 0, 1).

6 If x, y, z satisfy the first two equations they also satisfy the third equation. The line L of

solutions contains v = (1, 1, 0) and w = ( 1
2
, 1, 1

2
) and u = 1

2
v + 1

2
w and all combinations

cv + dw with c + d = 1.

7 Equation 1 + equation 2− equation 3 is now 0 = −4. Solution impossible.

8 Column 3 = Column 1; solutions (x, y, z) = (1, 1, 0) or (0, 1, 1) and you can add any multiple

of (−1, 0, 1); b = (4, 6, c) needs c = 10 for solvability.

9 Four planes in 4-dimensional space normally meet at a point. The solution to Ax = (3, 3, 3, 2)

is x = (0, 0, 1, 2) if A has columns (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1).

10 Ax = (18, 5, 0), Ax = (3, 4, 5, 5).

11 Nine multiplications for Ax = (18, 5, 0).

12 (14, 22) and (0, 0) and (9, 7).

13 (z, y, x) and (0, 0, 0) and (3, 3, 6).

14 (a) x has n components, Ax has m components (b) Planes in n-dimensional space, but the

columns are in m-dimensional space.

15 2x + 3y + z + 5t = 8 is Ax = b with the 1 by 4 matrix A = [ 2 3 1 5 ]. The solutions x fill

a 3D “plane” in 4 dimensions.

16 I =

1 0

0 1

, P =

0 1

1 0

.

17 R =

 0 1

−1 0

, 180◦ rotation from R2 =

−1 0

0 −1

 = −I.

18 P =


0 1 0

0 0 1

1 0 0

 produces (y, z, x) and Q =


0 0 1

1 0 0

0 1 0

 recovers (x, y, z).

19 E =

 1 0

−1 1

, E =


1 0 0

−1 1 0

0 0 1

.

20 E =


1 0 0

0 1 0

1 0 1

, E−1 =


1 0 0

0 1 0

−1 0 1

, Ev = (3, 4, 8), E−1Ev = (3, 4, 5).

21 P1 =

1 0

0 0

, P2 =

0 0

0 1

, P1v =

5

0

, P2P1v =

0

0

.
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22 R = 1
2

√2 −
√

2
√

2
√

2

.

23 The dot product [ 1 4 5 ]


x

y

z

 = (1 by 3)(3 by 1) is zero for points (x, y, z) on a plane in

three dimensions. The columns of A are one-dimensional vectors.

24 A = [ 1 2 ; 3 4 ] and x = [ 5 −2 ]′ and b = [ 1 7 ]′. r = b −A ∗ x prints as zero.

25 A ∗ v = [ 3 4 5 ]′ and v ′ ∗ v = 50; v ∗A gives an error message.

26 ones(4, 4) ∗ ones(4, 1) = [ 4 4 4 4 ]′; B ∗w = [ 10 10 10 10 ]′.

27 The row picture has two lines meeting at (4, 2). The column picture has 4(1, 1) + 2(−2, 1) =

4(column 1) + 2(column 2) = right side (0, 6).

28 The row picture shows 2 planes in 3-dimensional space. The column picture is in 2-dimensional

space. The solutions normally lie on a line.

29 The row picture shows four lines. The column picture is in four -dimensional space. No solution

unless the right side is a combination of the two columns.

30 u2 =

 .7

.3

, u3 =

 .65

.35

. The components always add to 1. They are always positive.

31 u7, v7,w7 are all close to (.6, .4). Their components still add to 1.

32

 .8 .3

.2 .7

  .6

.4

 =

 .6

.4

 = steady state s. No change when multiplied by

 .8 .3

.2 .7

.

34 M =


8 3 4

1 5 9

6 7 2

 =


5 + u 5− u + v 5− v

5− u− v 5 5 + u + v

5 + v 5 + u− v 5− u

; M3(1, 1, 1) = (15, 15, 15);

M4(1, 1, 1, 1) = (34, 34, 34, 34) because the numbers 1 to 16 add to 136 which is 4(34).

Problem Set 2.2, page 40

1 Multiply by l = 10
2

= 5 and subtract to find 2x + 3y = 14 and −6y = 6.

2 y = −1 and then x = 2. Multiplying the right side by 4 will multiply (x, y) by 4 to give the

solution (x, y) = (8,−4).

3 Subtract − 1
2

times equation 1 (or add 1
2

times equation 1). The new second equation is 3y = 3.

Then y = 1 and x = 5. If the right side changes sign, so does the solution: (x, y) = (−5,−1).

4 Subtract l = c
a

times equation 1. The new second pivot multiplying y is d−(cb/a) or (ad−bc)/a.

Then y = (ag − cf)/(ad− bc).

5 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is 2 · 10 = 20. Then all

points on the line 3x + 2y = 10 are solutions, including (0, 5) and (4,−1).
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6 Singular system if b = 4, because 4x + 8y is 2 times 2x + 4y. Then g = 2 · 16 = 32 makes the

system solvable. The lines become the same: infinitely many solutions like (8, 0) and (0, 4).

7 If a = 2 elimination must fail. The equations have no solution. If a = 0 elimination stops for

a row exchange. Then 3y = −3 gives y = −1 and 4x + 6y = 6 gives x = 3.

8 If k = 3 elimination must fail: no solution. If k = −3, elimination gives 0 = 0 in equation 2:

infinitely many solutions. If k = 0 a row exchange is needed: one solution.

9 6x− 4y is 2 times (3x− 2y). Therefore we need b2 = 2b1. Then there will be infinitely many

solutions.

10 The equation y = 1 comes from elimination. Then x = 4 and 5x− 4y = c = 16.

11 2x + 3y + z = 8 x = 2

y + 3z = 4 gives y = 1 If a zero is at the start of row 2 or 3,

8z = 8 z = 1 that avoids a row operation.

12 2x − 3y = 3 2x − 3y = 3 x = 3 Subtract 2× row 1 from row 2

y + z = 1 gives y + z = 1 and y = 1 Subtract 1× row 1 from row 3

2y − 3z = 2 − 5z = 0 z = 0 Subtract 2× row 2 from row 3

13 Subtract 2 times row 1 from row 2 to reach (d − 10)y − z = 2. Equation (3) is y − z = 3. If

d = 10 exchange rows 2 and 3. If d = 11 the system is singular; third pivot is missing.

14 The second pivot position will contain −2 − b. If b = −2 we exchange with row 3. If b = −1

(singular case) the second equation is −y − z = 0. A solution is (1, 1,−1).

15 0x + 0y + 2z = 4 0x + 3y + 4z = 4

(a) x + 2y + 2z = 5 (b) x + 2y + 2z = 5

0x + 3y + 4z = 6 0x + 3y + 4z = 6

(exchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

16 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row 3 and

there is no third pivot. If column 1 = column 2 there is no second pivot.

17 x + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has infinitely many solutions.

18 Row 2 becomes 3y − 4z = 5, then row 3 becomes (q + 4)z = t − 5. If q = −4 the system is

singular — no third pivot. Then if t = 5 the third equation is 0 = 0. Choosing z = 1 the

equation 3y − 4z = 5 gives y = 3 and equation 1 gives x = −9.

19 (a) Another solution is 1
2
(x + X, y + Y, z + Z). (b) If 25 planes meet at two points, they

meet along the whole line through those two points.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes form

a triangle. This happens if rows 1 + 2 = row 3 on the left side but not the right side: for

example x + y + z = 0, x− 2y − z = 1, 2x− y = 1. No parallel planes but still no solution.

21 Pivots 2, 3
2
, 4

3
, 5

4
in the equations 2x + y = 0, 3

2
y + z = 0, 4

3
z + t = 0, 5

4
t = 5. Solution t = 4,

z = −3, y = 2, x = −1.

22 The solution is (1, 2, 3, 4) instead of (−1, 2,−3, 4).
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23 The fifth pivot is 6
5
. The nth pivot is (n+1)

n
.

24 A =


1 1 1

a a + 1 a + 1

b b + c b + c + 3

 for any a, b, c leads to U =


1 1 1

0 1 1

0 0 3

.

25 Elimination fails on

a 2

a a

 if a = 2 or a = 0.

26 a = 2 (equal columns), a = 4 (equal rows), a = 0 (zero column).

27 Solvable for s = 10 (add equations);

1 3

1 7

 and

0 4

2 6

. A = [ 1 1 0 0; 1 0 1 0;

0 0 1 1; 0 1 0 1 ] and U = [ 1 1 0 0; 0 −1 1 0; 0 0 1 1; 0 0 0 0 ].

28 Elimination leaves the diagonal matrix diag(3, 2, 1). Then x = 1, y = 1, z = 4.

29 A(2, :) = A(2, :)− 3 ∗A(1, :) Subtracts 3 times row 1 from row 2.

30 The average pivots for rand(3) without row exchanges were 1
2
, 5, 10 in one experiment—but

pivots 2 and 3 can be arbitrarily large. Their averages are actually infinite! With row exchanges

in MATLAB’s lu code, the averages .75 and .50 and .365 are much more stable (and should be

predictable, also for randn with normal instead of uniform probability distribution).

Problem Set 2.3, page 50

1 E21 =


1 0 0

−5 1 0

0 0 1

 , E32 =


1 0 0

0 1 0

0 7 1

 , P =


1 0 0

0 0 1

0 1 0




0 1 0

1 0 0

0 1 0

 =


0 1 0

0 0 1

1 0 0

.

2 E32E21b = (1,−5,−35) but E21E32b = (1,−5, 0). Then row 3 feels no effect from row 1.

3


1 0 0

−4 1 0

0 0 1

 ,


1 0 0

0 1 0

2 0 1

 ,


1 0 0

0 1 0

0 −2 1


 E21, E31, E32

M = E32 E31 E21




1 0 0

−4 1 0

10 −2 1

 .

4 Elimination on column 4: b =


1

0

0

 →


1

−4

0

 →


1

−4

2

 →


1

−4

10

. Then back substitution in

Ux = (1,−4, 10) gives z = −5, y = 1
2
, x = 1

2
. This solves Ax = (1, 0, 0).

5 Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 from 7 to 2

will change the pivot from 5 to no pivot.

6 If all columns are multiples of column 1, there is no second pivot.

7 To reverse E31, add 7 times row 1 to row 3. The matrix is R31 =


1 0 0

0 1 0

7 0 1

.

8 The same R31 from Problem 7 is changed to I. Thus E31R31 = R31E31 = I.
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9 M =


1 0 0

0 0 1

−1 1 0

. After the exchange, E must act on the new row 3.

10 E13 =


1 0 1

0 1 0

0 0 1

 ;


1 0 1

0 1 0

1 0 1

 ;


2 0 1

0 1 0

1 0 1

 .

11 A =


1 2 2

1 1 2

1 2 1

 .

12


9 8 7

6 5 4

3 2 1

 ,


1 2 3

0 1 −2

0 2 −3

.

13 (a) E times the third column of B is the third column of EB (b) E could add row 2 to

row 3 to give nonzeros.

14 E21 has l21 = − 1
2
, E32 has l32 = − 2

3
, E43 has l43 = − 3

4
. Otherwise the E’s match the identity

matrix.

15 A =


−1 −4 −7

1 −2 −5

3 0 −3

 →


−1 −4 −7

0 −6 −12

0 −12 −24

. E32 =


1 0 0

0 1 0

0 −2 1

.

16 (a) X − 2Y = 0 and X + Y = 33; X=22, Y=11 (b) 2m + c = 5 and 3m + c = 7; m = 2,

c = 1.

17

a + b + c = 4

a + 2b + 4c = 8

a + 3b + 9c = 14

gives

a = 2

b = 1

c = 1

.

18 EF =


1 0 0

a 1 0

b c 1

, FE =


1 0 0

a 1 0

b + ac c 1

, E2 =


1 0 0

2a 1 0

2b 0 1

, F 3 =


1 0 0

0 1 0

0 3c 1

 .

19 PQ =


0 1 0

0 0 1

1 0 0

, QP =


0 0 1

1 0 0

0 1 0

, P 2 = I, (−P )2 = I, I2 = I, (−I)2 = I (and many

more).

20 (a) Each column is E times a column of B (b)

1 0

1 1

 1 2 4

1 2 4

 =

1 2 4

2 4 8

 rows

are multiples of [ 1 2 4 ].

21 No. E =

1 0

1 1

, F =

1 1

0 1

, EF =

1 1

1 2

, FE =

2 1

1 1

.

22 (a)
∑

a3jxj (b) a21 − a11 (c) x2 − x1 (d) (Ax )1 =
∑

a1jxj .

23 E(EA) subtracts 4 times row 1 from row 2. AE subtracts 2 times column 2 of A from column

1.
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24 [ A b ] =

2 3 1

4 1 17

 →

2 3 1

0 −5 15

 :
2x1 + 3x2 = 1

−5x2 = 15

x1 = 5

x2 = −3.

25 The last equation becomes 0 = 3. Change the original 6 to 3. Then row 1 + row 2 = row 3.

26 (a) Add two extra columns;

1 4 1 0

2 7 0 1

 →

1 4 1 0

0 −1 −2 1

 →

−7

2

  4

−1

 .

27 (a) No solution if d = 0 and c 6= 0 (b) Infinitely many solutions if d = 0 and c = 0. No

effect from a and b.

28 A = AI = A(BC) = (AB)C = IC = C.

29 Given positive integers with ad− bc = 1. Certainly c < a and b < d would be impossible. Also

c > a and b > d would be impossible with integers. This leaves row 1 < row 2 OR row 2 <

row 1. An example is M =

3 4

2 3

. Multiply by

1 −1

0 1

 to get

1 1

2 3

, then multiply

twice by

 1 0

−1 1

 to get

1 1

0 1

. This shows that M =

1 1

0 1

 1 0

1 1

 1 0

1 1

 1 1

0 1

.

30 E =


1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

 and eventually M = “inverse of Pascal” =


1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1


reduces Pascal to I.

Problem Set 2.4, page 59

1 BA = 3I is 5 by 5 AB = 5I is 3 by 3 ABD = 5D is 3 by 1. ABD: No A(B + C): No.

2 (a) A (column 3 of B) (b) (Row 1 of A) B (c) (Row 3 of A)(column 4 of B)

(d) (Row 1 of C)D(column 1 of E).

3 AB + AC = A(B + C) =

3 8

6 9

.

4 A(BC) = (AB)C = zero matrix

5 An =

1 bn

0 1

 and An =

2n 2n

0 0

.

6 (A + B)2 =

10 4

6 6

 = A2 + AB + BA + B2. But A2 + 2AB + B2 =

16 2

3 0

.

7 (a) True (b) False (c) True (d) False.

8 Rows of DA are 3·(row 1 of A) and 5·(row 2 of A). Both rows of EA are row 2 of A. Columns

of AD are 3·(column 1 of A) and 5·(column 2 of A). Columns of AE are zero and column 1 of

A + column 2 of A.

9 AF =

a a + b

c c + d

 and E(AF ) equals (EA)F because matrix multiplication is associative.
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10 FA =

a + c b + d

c d

 and then E(FA) =

 a + c b + d

a + 2c b + 2d

. E(FA) is not F (EA) because

multiplication is not commutative.

11 (a) B = 4I (b) B = 0 (c) B =


0 0 1

0 1 0

1 0 0

 (d) Every row of B is 1, 0, 0, . . .

12 AB =

a 0

c 0

 = BA =

a b

0 0

 gives b = c = 0. Then AC = CA gives a = d : A = aI.

13 (A−B)2 = (B −A)2 = A(A−B)−B(A−B) = A2 −AB −BA + B2.

14 (a) True (b) False (c) True (d) False (take B = 0).

15 (a) mn (every entry) (b) mnp (c) n3 (this is n2 dot products).

16 By linearity (AB)c agrees with A(Bc). Also for all other columns of C.

17 (a) Use only column 2 of B (b) Use only row 2 of A (c)–(d) Use row 2 of first A.

18 A =


1 1 1

1 2 2

1 2 3

,


1 −1 1

−1 1 −1

1 −1 1

,


1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3

.

19 Diagonal matrix, lower triangular, symmetric, all rows equal. Zero matrix.

20 (a) a11 (b) l31 = a31/a11 (c) a32 − (a31
a11

)a12 (d) a22 − (a21
a11

)a12.

21 A2 =


0 0 4 0

0 0 0 4

0 0 0 0

0 0 0 0

, A3 =


0 0 0 8

0 0 0 0

0 0 0 0

0 0 0 0

, A4 = 0; then Av =


2y

2z

2t

0

, A2v =


4z

4t

0

0

,

A3v =


8t

0

0

0

, A4v = 0.

22 A = A2 = A3 = · · · but AB =

 .5 −.5

.5 −.5

 and (AB)2 = 0.

23 A =

 0 1

−1 0

 has A2 = −I; BC =

1 −1

1 −1

 1 1

1 1

 =

0 0

0 0

;

DE =

0 1

1 0

  0 1

−1 0

 =

−1 0

0 1

 = −ED.

24 A =

0 1

0 0

 has A2 = 0; A =


0 1 0

0 0 1

0 0 0

 has A2 =


0 0 1

0 0 0

0 0 0

 but A3 = 0.

25 An
1 =

2n 2n − 1

0 1

, An
2 = 2n−1

1 1

1 1

, An
3 =

an an−1b

0 0

.
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26


1

2

2

 [
3 3 0

]
+


0

4

1

 [
1 2 1

]
=


3 3 0

6 6 0

6 6 0

 +


0 0 0

4 8 4

1 2 1

 =


3 3 0

10 14 4

7 8 1

.

27 (a) (Row 3 of A)·(column 1 of B) = (Row 3 of A)·(column 2 of B) = 0

(b)


x

x

0

 [
0 x x

]
=


0 x x

0 x x

0 0 0

 and


x

x

x

 [
0 0 x

]
=


0 0 x

0 0 x

0 0 x

.

28 A

[ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ]
; [−−−−]B ; [−−−−]

[ ∣∣∣∣ ∣∣∣∣ ∣∣∣∣ ]
;

[ ∣∣∣∣ ∣∣∣∣ ][ −−−−

−−−−

]

29 Ax =

[ ∣∣∣∣ ∣∣∣∣ ] 
x1

x2

x3

 = x1(column 1) + x2(column 2) + · · · .

30 E21 =


1 0 0

1 1 0

0 0 1

, E31 =


1 0 0

0 1 0

−4 0 1

, E = E31E21 =


1 0 0

1 1 0

−4 0 1

, then EA =


2 1 0

0 1 1

0 1 3

.

31 In Problem 30, c =

−2

8

, D =

0 1

5 3

, D − cb/a =

1 1

1 3

.

32

 A −B

B A

 x

y

 =

Ax−By

Bx + Ay

 real part

imaginary part.

33 A times X will be the identity matrix I.

34 The solution for b =


3

5

8

 is 3x 1 + 5x 2 + 8x 3 =


3

8

16

 ; A =


1 0 0

−1 1 0

0 −1 1

 to produce

x1, x2, x3.

35 S = D − CA−1B is the Schur complement: block version of d− (cb/a).

36

a + b a + b

c + d c + d

 agrees with

a + c b + d

a + c b + d

 when b = c and a = d.

37 If A is “northwest” and B is “southeast” then AB is upper triangular and BA is lower trian-

gular. One reason: Row i of A can have n − i + 1 nonzeros, with zeros after that. Column j

of B has j nonzeros, with zeros above that. If i > j then (row i of A) · (column j of B) = 0.

So AB is upper triangular.

Similarly BA is lower triangular. Problem 2.7.40 asks about inverses and transposes and

permutations of a northwest A and a southeast B.

38 A =



0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0


, A2 =



2 0 1 1 0

0 2 0 1 1

1 0 2 0 1

1 1 0 2 0

0 1 1 0 2


, A3 =



0 3 1 1 3

3 0 3 1 1

1 3 0 3 1

1 1 3 0 3

3 1 1 3 0


, A3 with A2

gives diameter 3.
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39 A =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


, A2 =



0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0


, A3 =



0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0


need also A4

so diameter 4.

Problem Set 2.5, Page 72

1 A−1 =

 0 1
4

1
3

0

, B−1 =

 1
2

0

−1 1
2

, C−1 =

 7 −4

−5 3

.

2 P−1 = P ; P−1 =


0 0 1

1 0 0

0 1 0

. Always P−1 = ıtranspose of P .

3

x

y

 =

 .5

−.2

,

 t

z

 =

−.2

.1

 so A−1 = 1
10

 5 −2

−2 1

. A =

−1 0

0 −1

 and

−1 0

0 1

 and

any

x t

y z

 −1 0

0 1

 x t

y z

−1

.

4 x + 2y = 1, 3x + 6y = 0: impossible.

5 U =

1 −1

0 −1

.

6 (a) Multiply AB = AC by A−1 to find B = C

(b) B and C can be any matrices

 x y

−x −y

.

7 (a) In Ax = (1, 0, 0), equation 1 + equation 2 − equation 3 is 0 = 1 (b) The right sides

must satisfy b1 + b2 = b3 (c) Row 3 becomes a row of zeros—no third pivot.

8 (a) The vector x = (1, 1,−1) solves Ax = 0 (b) Elimination keeps columns 1+2 = column

3. When columns 1 and 2 end in zeros so does column 3: no third pivot.

9 If you exchange rows 1 and 2 of A, you exchange columns 1 and 2 of A−1.

10 A−1 =


0 0 0 1/5

0 0 1/4 0

0 1/3 0 0

1/2 0 0 0

, B−1 =


3 −2 0 0

−4 3 0 0

0 0 6 −5

0 0 −7 6

 (invert each block).

11 (a) A = I, B = −I (b) A =

1 0

0 0

, B =

0 0

0 1

.

12 C = AB gives C−1 = B−1A−1 so A−1 = BC−1.

13 M−1 = C−1B−1A−1 so B−1 = CM−1A.
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14 B−1 = A−1

1 0

1 1

−1

= A−1

 1 0

−1 1

: subtract column 2 of A−1 from column 1.

15 If A has a column of zeros, so does BA. So BA = I is impossible. There is no A−1.

16

a b

c d

  d −b

−c a

 =

ad− bc 0

0 ad− bc

 = (ad − bc)I. The inverse of one matrix is the

other divided by ad− bc.

17


1

1

−1 1




1

1

−1 1




1

−1 1

1

 =


1

−1 1

0 −1 1

 = E;


1

1 1

1 1 1

 = L = E−1

after reversing the order and changing −1 to +1.

18 A2B = I can be written as A(AB) = I. Therefore A−1 is AB.

19 The (1, 1) entry requires 4a − 3b = 1; the (1, 2) entry requires 2b − a = 0. Then b = 1
5

and

a = 2
5
. For the 5 by 5 case 5a− 4b = 1 and 2b− a = 0 give b = 1

6
and a = 2

6
.

20 A ∗ ones(4, 1) is the zero vector so A cannot be invertible.

21 6 of the 16 are invertible, including all four with three 1’s.

22

1 3 1 0

2 7 0 1

 →

1 3 1 0

0 1 −2 1

 →

1 0 7 −3

0 1 −2 1

 =
[
I A−1

]
;1 3 1 0

3 8 0 1

 →

1 0 −8 3

0 1 3 −1

 =
[
I A−1

]
.

23


2 1 0 1 0 0

1 2 1 0 1 0

0 1 2 0 0 1

 →


2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 1 2 0 0 1

 →


2 1 0 1 0 0

0 3/2 1 −1/2 1 0

0 0 4/3 1/3 −2/3 1

 →


2 1 0 1 0 0

0 3/2 0 −3/4 3/2 −3/4

0 0 4/3 1/3 −2/3 1

 →


2 0 0 3/2 −1 1/2

0 3/2 0 −3/4 3/2 z− 3/4

0 0 4/3 1/3 −2/3 1

 →


1 0 0 3/4 −1/2 1/4

0 1 0 −1/2 1 −1/2

0 0 1 1/4 −1/2 3/4

.

24


1 a b 1 0 0

0 1 c 0 1 0

0 0 1 0 0 1

 →


1 a 0 1 0 −b

0 1 0 0 1 −c

0 0 1 0 0 1

 →


1 0 0 1 −a ac− b

0 1 0 0 1 −c

0 0 1 0 0 1

.

25 A−1 = 1
4


3 −1 −1

−1 3 −1

−1 −1 3

; B


1

1

1

 =


0

0

0

 so B−1 does not exist.

26

 1 0

−2 1

 A =

1 2

0 2

. Then

1 −1

0 1

  1 0

−2 1

 A =

1 0

0 2

. Multiply by D =

1 0

0 1/2


to reach I. Here D−1E12E21 =

 3 −1

−1 1/2

 = A−1.
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27 A−1 =


1 0 0

−2 1 −3

0 0 1

 (notice the pattern); A−1 =


2 −1 0

−1 2 −1

0 −1 1

.

28

2 2 0 1

0 2 1 0

 →

2 0 −1 1

0 2 1 0

 →

1 0 −1/2 1/2

0 1 1/2 0

 =
[
I A−1

]
.

29 (a) True (AB has a row of zeros) (b) False (matrix of all 1’s) (c) True (inverse of A−1

is A) (d) True (inverse of A2 is (A−1)2).

30 Not invertible for c = 7 (equal columns), c = 2 (equal rows), c = 0 (zero column).

31 Elimination produces the pivots a and a− b and a− b. A−1 =
1

a(a− b)


a 0 −b

−a a 0

0 −a a

.

32 A−1 =


1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

. The 5 by 5 A−1 also has 1’s on the diagonal and superdiagonal.

33 x = (2, 2, 2, 1).

34 x = (1, 1, . . . , 1) has Px = Qx so (P −Q)x = 0.

35

 I 0

−C I

 and

 A−1 0

−D−1CA−1 D−1

 and

−D I

I 0

.

36 If AC = CA, multiply left and right by A−1 to find CA−1 = A−1C. If also BC = CB, then

(using the associative law!!), (AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB).

37 A can be invertible but B is always singular. Each row of B will add to zero, from 0+1+2−3,

so the vector x = (1, 1, 1, 1) will give Bx = 0. I thought A would be invertible as long as you

put the 3’s on its main diagonal, but that’s wrong:

Ax =


3 0 1 2

0 3 1 2

1 2 3 0

1 2 0 3




1

1

−1

−1

 = 0 but A =


0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

 is invertible

38 AD = pascal(4, 1) is its own inverse.

39 hilb(6) is not the exact Hilbert matrix because fractions are rounded off.

40 The three Pascal matrices have S = LU = LLT and then inv(S) = inv(LT)inv(L). Note that

the triangular L is abs(pascal(n, 1)) in MATLAB.

41 For Ax = b with A = ones(4, 4) = singular matrix and b = ones(4, 1) in its column space,

MATLAB will pick the shortest solution x = (1, 1, 1, 1)/4. Any vector in the nullspace of A

could be added to this particular solution.

42 If AC = I for square matrices then C = A−1 (it is proved in 2I that CA = I will also be true).

The same will be true for C∗. But a square matrix has only one inverse so C = C∗.
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43 MM−1 = (In − UV ) (In + U(Im − V U)−1V )

= In − UV + U(Im − V U)−1V − UV U(Im − V U)−1V

= In − UV + U(Im − V U)(Im − V U)−1V = In (formulas 1,2,4 are similar)

Problem Set 2.6, page 84

1 `21 = 1; L =

1 0

1 1

 times Ux = c is Ax = b:

1 1

1 2

 x

y

 =

5

7

.

2 `31 = 1 and `32 = 2 (and `33 = 1): reverse the steps to recover x + 3y + 6z = 11 from Ux = c:

1 times (x + y + z = 5) + 2 times (y + 2z = 2) + 1 times (z = 2) gives x + 3y + 6z = 11.

3 Lc = b is

1 0

1 1

 c1

c2

 =

5

7

; c =

5

2

. Ux = c is

1 1

0 1

 x1

x2

 =

5

2

; x =

3

2

.

4 Lc =


1

1 1

1 2 1


c

 =


5

7

11

; c =


5

2

2

. Ux =


1 1 1

1 2

1


x

 =


5

2

2

; x =


5

−2

2

.

5 EA =


1

0 1

−3 0 1




2 1 0

0 4 2

6 3 5

 =


2 1 0

0 4 2

0 0 5

 = U ; A = LU =


1

0 1

3 0 1

 U .

6


1

0 1

0 −2 1




1

−2 1

0 0 1

 A =


1 1 1

0 2 3

0 0 −6

 = U . Then A =


1 0 0

2 1 0

0 2 1

 U = E−1
21 E−1

32 U = LU .

7 E32E31E21A =


1

1

−2 1




1

1

−3 1




1

−2 1

1




1 0 1

2 2 2

3 4 5

.

This is


1 0 1

0 2 0

0 0 2

 = U . Then A =


1 0 0

2 1 0

3 2 1

 U = LU .

8 E = E32E31E21 =


1

1

−c 1




1

1

−b 1




1

−a 1

1

 =


1

−a 1

ac− b −c 1

. This is

L−1 = A−1.

9 2 by 2: d = 0 not allowed;


1 1 0

1 1 2

1 2 1

 =


1

l 1

m n 1




d e g

f h

i


d = 1, e = 1, then l = 1

f = 0 is not allowed

no pivot in row 2

10 c = 2 leads to zero in the second pivot position: exchange rows and the matrix will be OK.

c = 1 leads to zero in the third pivot position. In this case the matrix is singular.
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11 A =


2 4 8

0 3 9

0 0 7

 has L = I and D =


2

3

7

; A = LU has U = A (pivots on the diagonal);

A = LDU has U = D−1A =


1 2 4

0 1 3

0 0 1

 with 1’s on the diagonal.

12 A =

2 4

4 11

 =

1 0

2 1

 2 4

0 3

 =

1 0

2 1

 2 0

0 3

 1 2

0 1

 = LDU ; notice U is LT

A =


1

4 1

0 −1 1




1 4 0

0 −4 4

0 0 4

 =


1

4 1

0 −1 1




1

−4

4




1 4 0

0 1 −1

0 0 1

 = LDLT.

13


a a a a

a b b b

a b c c

a b c d

 =


1

1 1

1 1 1

1 1 1 1




a a a a

b− a b− a b− a

c− b c− b

d− c

. Need

a 6= 0

b 6= a

c 6= b

d 6= c

14


a r r r

a b s s

a b c t

a b c d

 =


1

1 1

1 1 1

1 1 1 1




a r r r

b− r s− r s− r

c− s t− s

d− t

. Need

a 6= 0

b 6= r

c 6= s

d 6= t

15

1 0

4 1

 c =

 2

11

 gives c =

2

3

. Then

2 4

0 1

 x =

2

3

 gives x =

−5

3

.

Check that A = LU =

2 4

8 17

 times x is b =

 2

11

.

16


1 0 0

1 1 0

1 1 1

 c =


4

5

6

 gives c =


4

1

1

. Then


1 1 1

0 1 1

0 0 1

 x =


4

1

1

 gives x =


3

0

1

.

17 (a) L goes to I (b) I goes to L−1 (c) LU goes to U .

18 (a) Multiply LDU = L1D1U1 by inverses to get L−1
1 LD = D1U1U

−1. The left side is lower

triangular, the right side is upper triangular ⇒ both sides are diagonal.

(b) Since L, U, L1, U1 have diagonals of 1’s we get D = D1. Then L−1
1 L is I and U1U

−1 is I.

19


1

1 1

0 1 1




1 1 0

1 1

1

 = LIU ;


a a 0

a a + b b

0 b b + c

 = (same L)


a

b

c

 (same U).

20 A tridiagonal T has 2 nonzeros in the pivot row and only one nonzero below the pivot (so 1

operation to find the multiplier and 1 to find the new pivot!). T = bidiagonal L times U :

T =


1 2 0 0

2 3 1 0

0 1 2 3

0 0 3 4

 −→ U =


1 2 0 0

0 −1 1 0

0 0 3 3

0 0 0 1

. Reverse steps by L =


1 0 0 0

2 1 0 0

0 −1 1 0

0 0 1 1

.
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21 For A, L has the 3 lower zeros but U may not have the upper zero. For B, L has the bottom

left zero and U has the upper right zero. One zero in A and two zeros in B are filled in.

22


x x x

x x x

x x x

 =


1 0 0

∗ 1 0

∗ 1



∗ ∗ ∗

0

0

 (∗’s are all known after the first pivot is used).

23


5 3 1

3 3 1

1 1 1

 →


4 2 0

2 2 0

1 1 1

 →


2 0 0

2 2 0

1 1 1

 = L. Then A = UL with U =


1 1 1

0 1 1

0 0 1

.

24


1 1 0 0 5

2 1 1 0 8

0 1 3 2 8

0 0 1 1 2

 →


1 1 0 0 5

0 −1 1 0 −2

0 1 1 0 4

0 0 1 1 2

. Solve

−1 1

1 1

 x2

x3

 =

−2

4

 for x2 = 3

and x3 = 1 in the middle. Then x1 = 2 backward and x4 = 1 forward.

25 The 2 by 2 upper submatrix B has the first two pivots 2, 7. Reason: Elimination on A starts

in the upper left corner with elimination on B.

26 The first three pivots for M are still 2, 7, 6. To be sure that 9 is the fourth pivot, put zeros in

the rest of row 4 and column 4.

27



1 1 1 1 1

1 2 3 4 5

1 3 6 10 15

1 4 10 20 35

1 5 15 35 70


=



1

1 1

1 2 1

1 3 3 1

1 4 6 4 1





1 1 1 1 1

1 2 3 4

1 3 6

1 4

1


.

Pascal’s triangle in L and U .

MATLAB’s lu code will wreck

the pattern. chol does no row

exchanges for symmetric

matrices with positive pivots.

28 c = 6 and also c = 7 will make LU impossible (c = 6 needs a row exchange).

32 inv(A) ∗ b should take 3 times as long as A\b (n3 for A−1 vs n3/3 multiplications for LU).

34 The upper triangular part triu(A) should be about three times faster to invert.

35 Each new right side costs only n2 steps compared to n3/3 for full elimination A\b.

36 This L comes from the −1, 2,−1 tridiagonal A = LDLT. (Row i of L) · (Column j of L−1) =(
1−i

i

) (
j

i−1

)
+(1)

(
j
i

)
= 0 for i > j so LL−1 = I. Then L−1 leads to A−1 = (L−1)TD−1L−1.

The −1, 2,−1 matrix has inverse A−1
ij = j(n− i + 1)/(n + 1) for i ≥ j (reverse for i ≤ j).

Problem Set 2.7, page 95

1 AT =

1 9

0 3

, A−1 =

 1 0

−3 1/3

, (A−1)T = (AT)−1 =

1 −3

0 1/3

; AT = A and A−1 =

1
c2

0 c

c −1

 = (A−1)T.

2 In case AB = BA, transpose both sides: AT commutes with BT.

3
(
(AB)−1

)T
= (B−1A−1)T = (A−1)T(B−1)T.
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4 A =

0 1

0 0

 has A2 = 0. But the diagonal entries of ATA are dot products of columns of A

with themselves. If ATA = 0, zero dot products ⇒ zero columns ⇒ A = zero matrix.

5 (a) xTAy = a22 = 5 (b) xTA =
[
4 5 6

]
(c) Ay =

2

5

.

6 MT =

AT CT

BT DT

; MT = M needs AT = A, BT = C, DT = D.

7 (a) False (needs A = AT) (b) False (c) True (d) False.

8 The 1 in column 1 has n choices; then the 1 in column 2 has n − 1 choices; . . . (n! choices

overall).

9 P1P2 =


0 1 0

0 0 1

1 0 0




1 0 0

0 0 1

0 1 0

 6= P2P1.

10 (3, 1, 2, 4), (2, 3, 1, 4) keep 4 in position; 6 more keeping 1 or 2 or 3 in position; (2, 1, 4, 3) and

(3, 4, 1, 2) exchanging 2 pairs.

11 P =


0 1 0

0 0 1

1 0 0

;

No AP is lower triangular (this is a column exchange); P1 =


1 0 0

0 0 1

0 1 0

, P2 =


0 0 1

0 1 0

1 0 0

.

12 (Px )T(Py) = xTPTPy = xTy because PTP = I; In general Px · y = x · PTy 6= x · Py :
0 1 0

0 0 1

1 0 0




1

2

3

 ·


1

1

2

 6=


1

2

3

 ·


0 1 0

0 0 1

1 0 0




1

1

2

 .

13 P =


0 1 0

0 0 1

1 0 0

 or its transpose; P̂ =

1 0

0 P

 for the same P had P̂ 4 = P̂ .

14 There are n! permutation matrices of order n. Eventually two powers of P must be the same:

P r = P s and P r−s = I. Certainly r − s ≤ n!

P =

P2

P3

 is 5 by 5 with P2 =

0 1

1 0

 and P3 =


0 1 0

0 0 1

1 0 0

.

15 (a) PT(row 4) = row 1 (b) P =

E 0

0 E

 = PT with E =

0 1

1 0

 moves all rows.

16 A2 −B2 and ABA are symmetric if A and B are symmetric.

17 (a) A =

1 1

1 1

 (b) A =

0 1

1 1

 (c) A =

1 1

1 0

 has D =

1 0

0 −1

.
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18 (a) 5 + 4 + 3 + 2 + 1 = 15 independent entries if A = AT (b) L has 10 and D has 5: total

15 in LDLT (c) Zero diagonal if AT = −A, leaving 4 + 3 + 2 + 1 = 10.

19 (a) The transpose of RTAR is RTATRTT = RTAR = n by n (b) (RTR)jj = (column j

of R) · (column j of R) = length squared of column j.

20

1 3

3 2

 =

1 0

3 1

 1 0

0 −7

 1 3

0 1

;

1 b

b c

 =

1 0

b 1

 1 0

0 c− b2

 1 b

0 1

.

21 Lower right 2 by 2 matrix is

−5 −7

−7 −32

,

d− b2 e− bc

e− bc f − c2

.

22


0 1

1 0

1

 A =


1

0 1

2 3 1




1 0 1

1 1

−1

;


1

0 1

1 0

 A =


1

1 1

2 0 1




1 2 0

−1 1

1



23 A =


0 0 1

1 0 0

0 1 0

 = P and L = U = I; exchanges rows 1–2 then rows 2–3.

24


1

1

1




0 1 2

0 3 8

2 1 1

 =


1

0 1

0 1/3 1




2 1 1

3 8

−2/3

. If we wait to exchange, then

A = L1P1U1 =


1

3 1

1




1

1

1




2 1 1

0 1 2

0 0 2

.

25 abs(A(1, 1)) = 0 and abs(A(2, 1)) > tol; A →

2 3

0 1

 and P →

0 1

1 0

; no more elimination

so L = I and U = new A. abs(A(1, 1)) = 0 and abs(A(2, 1)) > tol; A →


2 3 4

0 0 1

0 5 6

 and

P →


0 1 0

1 0 0

0 0 1

;
abs(A(2, 2)) = 0

abs(A(3, 2)) > tol
; A →


2 3 4

0 5 6

0 0 1

, L = I, P →


0 1 0

0 0 1

1 0 0

.

26 abs(A(1, 1)) = 0 so find abs(A(2, 1)) > tol; exchange rows to A =


1 1 0

0 1 2

2 5 4

 and P =


0 1 0

1 0 0

0 0 1

; eliminate to A =


1 1 0

0 1 2

0 3 4

 and L =


1 0 0

0 1 0

2 0 1

, same P ; abs(A(2, 2)) > tol

so eliminate to A =


1 1 0

0 1 2

0 0 −2

 = final U and L =


1 0 0

0 1 0

2 3 1

.

27 No solution
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28 L1 =


1

1 1

2 0 1

 shows the elimination steps as actually done (L is affected by P ).

29 One way to decide even vs. odd is to count all pairs that P has in the wrong order. Then

P is even or odd when that count is even or odd. Hard step: show that an exchange always

reverses that count! Then 3 or 5 exchanges will leave that count odd.

30 E21 =


1

−3 1

1

 and E21AET
21 =


1 0 0

0 2 4

0 4 9

 is still symmetric; E32 =


1

1

−4 1


and E32E21AET

21E
T
32 = D. Elimination from both sides gives the symmetric LDLT directly.

31 Total currents are ATy =


1 0 1

−1 1 0

0 −1 −1




yBC

yCS

yBS

 =


yBC + yBS

−yBC + yCS

−yCS − yBS

.

Either way (Ax )Ty = xT(ATy) = xByBC + xByBS − xCyBC + xCyCS − xSyCS − xSyBS .

32 Inputs


1 50

40 1000

2 50


x1

x2

 = Ax ; ATy =

 1 40 2

50 1000 50




700

3

3000

 =

 6820

188000

 1 truck

1 plane

33 Ax · y is the cost of inputs while x · ATy is the value of outputs.

34 P 3 = I so three rotations for 360◦; P rotates around (1, 1, 1) by 120◦.

35

1 2

4 9

 =

1 0

2 1

 1 2

2 5

 = EH

36 L(UT)−1 = triangular times triangular. The transpose of UTDU is UTDTUTT = UTDU

again.

37 These are groups: Lower triangular with diagonal 1’s, diagonal invertible D, permutations P ,

orthogonal matrices with QT = Q−1.

38


0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

 (I don’t know any rules for constructions like this)

39 Reordering the rows and/or columns of
[
a b
c d

]
will move the entry a.

40 Certainly BT is northwest. B2 is a full matrix! B−1 is southeast:
[
1 1
1 0

]−1
=

[
0 1
1 −1

]
. The

rows of B are in reverse order from a lower triangular L, so B = PL. Then B−1 = L−1P−1

has the columns in reverse order from L−1. So B−1 is southeast. Northwest times southeast is

upper triangular! B = PL and C = PU give BC = (PLP )U = upper times upper.

41 The i, j entry of PAP is the n− i + 1, n− j + 1 entry of A. The main diagonal reverses order.
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Problem Set 3.1, Page 107

1 x + y 6= y + x and x + (y + z ) 6= (x + y) + z and (c1 + c2)x 6= c1x + c2x .

2 The only broken rule is 1 times x equals x .

3 (a) cx may not be in our set: not closed under scalar multiplication. Also no 0 and no −x

(b) c(x + y) is the usual (xy)c, while cx + cy is the usual (xc)(yc). Those are equal. With

c = 3, x = 2, y = 1 they equal 8. This is 3(2 + 1)!! The zero vector is the number 1.

4 The zero vector in M is

0 0

0 0

; 1
2
A =

1 −1

1 −1

 and −A =

−2 2

−2 2

. The smallest

subspace containing A consists of all matrices cA.

5 (a) One possibility: The matrices cA form a subspace not containing B (b) Yes: the

subspace must contain A−B = I (c) All matrices whose main diagonal is all zero.

6 h(x) = 3f(x)− 4g(x) = 3x2 − 20x.

7 Rule 8 is broken: If cf (x) is defined to be the usual f(cx) then (c1 + c2)f = f((c1 + c2)x) is

different from c1f + c2f = usual f(c1x) + f(c2x).

8 If (f + g)(x) is the usual f(g(x)) then (g + f )x is g(f(x)) which is different. In Rule 2 both

sides are f(g(h(x))). Rule 4 is broken because there might be no inverse function f−1(x) such

that f(f−1(x)) = x. If the inverse function exists it will be the vector −f .

9 (a) The vectors with integer components allow addition, but not multiplication by 1
2

(b) Remove the x axis from the xy plane (but leave the origin). Multiplication by any c is

allowed but not all vector additions.

10 Only (a) (d) (e) are subspaces.

11 (a) All matrices

a b

0 0

 (b) All matrices

a a

0 0

 (c) All diagonal matrices.

12 The sum of (4, 0, 0) and (0, 4, 0) is not on the plane.

13 P0 has the equation x + y − 2z = 0; (2, 0, 1) and (0, 2, 1) and their sum (2, 2, 2) are in P0.

14 (a) The subspaces of R2 are R2 itself, lines through (0, 0), and (0, 0) itself (b) The sub-

spaces of R4 are R4 itself, three-dimensional planes n · v = 0, two-dimensional subspaces

(n1 · v = 0 and n2 · v = 0), one-dimensional lines through (0, 0, 0, 0), and (0, 0, 0, 0) alone.

15 (a) Two planes through (0, 0, 0) probably intersect in a line through (0, 0, 0) (b) The plane

and line probably intersect in the point (0, 0, 0) (c) Suppose x is in S ∩ T and y is in

S ∩T . Both vectors are in both subspaces, so x + y and cx are in both subspaces.

16 The smallest subspace containing P and L is either P or R3.

17 (a) The zero matrix is not invertible (b)

1 0

0 0

 +

0 0

0 1

 is not singular.

18 (a) True (b) True (b) False.

19 The column space of A is the x axis = all vectors (x, 0, 0). The column space of B is the xy

plane = all vectors (x, y, 0). The column space of C is the line of vectors (x, 2x, 0).
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20 (a) Solution only if b2 = 2b1 and b3 = −b1 (b) Solution only if b3 = −b1.

21 A combination of the columns of C is also a combination of the columns of A (same column

space; B has a different column space).

22 (a) Every b (b) Solvable only if b3 = 0 (c) Solvable only if b3 = b2.

23 The extra column b enlarges the column space unless b is already in the column space of A:

[ A b ] =

1 0 1

0 0 1

 (larger column space)

(no solution to Ax = b)

1 0 1

0 1 1

 (b already in column space)

(Ax = b has a solution)

24 The column space of AB is contained in (possibly equal to) the column space of A. If B = 0

and A 6= 0 then AB = 0 has a smaller column space than A.

25 The solution to Az = b + b∗ is z = x + y . If b and b∗ are in the column space so is b + b∗.

26 The column space of any invertible 5 by 5 matrix is R5. The equation Ax = b is always

solvable (by x = A−1b) so every b is in the column space.

27 (a) False (b) True (c) True (d) False.

28 A =


1 1 0

1 0 0

0 1 0

 or


1 1 2

1 0 1

0 1 1

; A =


1 2 0

2 4 0

3 6 0

 (columns on 1 line).

29 Every b is in the column space so that space is R9.

Problem Set 3.2, Page 118

1 (a) U =


1 2 2 4 6

0 0 1 2 3

0 0 0 0 0

 Free variables x2, x4, x5

Pivot variables x1, x3

(b) U =


2 4 2

0 4 4

0 0 0

 Free x3

Pivot x1, x2

2 (a) Free variables x2, x4, x5 and solutions (−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1)

(b) Free variable x3: solution (1,−1, 1).

3 The complete solutions are (−2x2, x2,−2x4 − 3x5, x4, x5) and (2x3,−x3, x3).

The nullspace contains only 0 when there are no free variables.

4 R =


1 2 0 0 0

0 0 1 2 3

0 0 0 0 0

, R =


1 0 −1

0 1 1

0 0 0

, R has the same nullspace as U and A.

5

−1 3 5

−2 6 10

 =

1 0

2 1

 −1 3 5

0 0 0

;

−1 3 5

−2 6 7

 =

1 0

2 1

 −1 3 5

0 0 −3

.

6 (a) Special solutions (3, 1, 0) and (5, 0, 1) (b) (3, 1, 0). Total count of pivot and free is n.

7 (a) Nullspace of A is the plane −x + 3y + 5z = 0; it contains all vectors (3y + 5z, y, z)

(b) The line through (3, 1, 0) has equations −x + 3y + 5z = 0 and −2x + 6y + 7z = 0.

8 R =

1 −3 −5

0 0 0

 with I = [ 1 ]; R =

1 −3 0

0 0 1

 with I =

1 0

0 1

.

9 (a) False (b) True (c) True (only n columns) (d) True (only m rows).
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10 (a) Impossible above diagonal (b) A = invertible =


1 1 1

1 2 1

1 1 2

 (c) A =


1 1 1

1 1 1

1 1 1


(d) A = 2I, U = 2I, R = I.

11


0 1 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 0 0

0 0 0 0 0 0 0




1 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1




0 0 0 1 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0



12


1 1 0 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

,


0 1 1 0 0 1 1 1

0 0 0 1 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

.

13 If column 4 is all zero then x4 is a free variable. Its special solution is (0, 0, 0, 1, 0).

14 If column 1 = column 5 then x5 is a free variable. Its special solution is (−1, 0, 0, 0, 1).

15 There are n− r special solutions. The nullspace contains only x = 0 when r = n. The column

space is Rm when r = m.

16 The nullspace contains only x = 0 when A has 5 pivots. Also the column space is R5, because

we can solve Ax = b and every b is in the column space.

17 A = [ 1 −3 −1 ]; y and z are free; special solutions (3, 1, 0) and (1, 0, 1).

18 Fill in 12 then 3 then 1.

19 If LUx = 0, multiply by L−1 to find Ux = 0. Then U and LU have the same nullspace.

20 Column 5 is sure to have no pivot since it is a combination of earlier columns. With 4 pivots in

the other columns, the special solution is s = (1, 0, 1, 0, 1). The nullspace contains all multiples

of s (a line in R5).

21 Free variables x3, x4: A =

−1 0 2 3

0 −1 2 1

.

22 A =


1 0 0 −4

0 1 0 −3

0 0 1 −2

.

23 A =


1 0 −1/2

1 3 −2

5 1 −3

.

24 This construction is impossible: 2 pivot columns, 2 free variables, only 3 columns.

25 A =


1 −1 0 0

1 0 −1 0

1 0 0 −1

.

26 A =

0 1

0 0

.
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27 If nullspace = column space (r pivots) then n− r = r. If n = 3 then 3 = 2r is impossible.

28 If A times every column of B is zero, the column space of B is contained in the nullspace of

A: A =

1 1

1 1

, B =

 1 1

−1 −1

.

29 R is most likely to be I; R is most likely to be I with fourth row of zeros.

30 A =

0 1

0 0

 shows that (a)(b)(c) are all false. Notice rref(AT) =

1 0

0 0

.

31 Three pivots (4 columns and 1 special solution); R =


1 0 0 −2

0 1 0 −1

0 0 1 0

 (add any zero rows).

32 Any zero rows come after these rows: R = [ 1 −2 −3 ], R =

1 0 0

0 1 0

, R = I.

33 (a)

1 0

0 1

 ,

1 0

0 0

,

1 1

0 0

,

0 1

0 0

,

0 0

0 0

 (b) All 8 matrices are R’s !

34 One reason: A and −A have the same nullspace (and also the same column space).

Problem Set 3.3, page 128

1 (a) and (c) are correct; (d) is false because R might happen to have 1’s in nonpivot columns.

2 R =


1 1 1 1

0 0 0 0

0 0 0 0

 r = 1; R =


1 0 −1 −2

0 1 2 3

0 0 0 0

 r = 2; R =


1 −1 1 −1

0 0 0 0

0 0 0 0

 r = 1

3 RA =


1 2 0

0 0 1

0 0 0

 RB =
[
RA RA

]
RC −→

RA 0

0 RA

 −→ Zero row in the upper

R moves all the way to the bottom.

4 If all pivot variables come last then R =

0 I

0 0

. The nullspace matrix is N =

I

0

.

5 I think this is true.

6 A and AT have the same rank r. But pivcol (the column number) is 2 for A and 1 for AT:

A =


0 1 0

0 0 0

0 0 0

 .

7 The special solutions are the columns of N =


−2 −3

−4 −5

1 0

0 1

 and N =


1 0

0 −2

0 1

 .



28

8 A =


1 2 4

2 4 8

4 8 16

, B =


2 6 −3

1 3 −3/2

2 6 −3

, M =

a b

c bc/a

.

9 If A has rank 1, the column space is a line in Rm. The nullspace is a plane in Rn (given by

one equation). The column space of AT is a line in Rn.

10 u = (3, 1, 4), v = (1, 2, 2); u = (2,−1), v = (1, 1, 3, 2).

11 A rank one matrix has one pivot. The second row of U is zero.

12 S =

1 3

1 4

 and S =
[
1

]
and S =

1 0

0 1

.

13 P has rank r (the same as A) because elimination produces the same pivot columns.

14 The rank of RT is also r, and the example matrix A has rank 2:

P =


1 3

2 6

2 7

 PT =

1 2 2

3 6 7

 ST =

1 2

3 7

 S =

1 3

2 7

 .

15 Rank(AB) = 1; rank(AM) = 1 except AM = 0 if c = −1/2.

16 (uvT)(wzT) = u(vTw)zT has rank one unless vTw = 0.

17 (a) By matrix multiplication, each column of AB is A times the corresponding column of B.

So a combination of columns of B turns into a combination of columns of AB.

(b) The rank of B is r = 1. Multiplying by A cannot increase this rank. The rank stays the

same for A1 = I and it drops to zero for A2 = 0 or A2 = [ 1 1; −1 −1 ].

18 If we know that rank(BTAT) ≤ rank(AT), then since rank stays the same for transposes, we

have rank(AB) ≤ rank(A).

19 We are given AB = I which has rank n. Then rank(AB) ≤ rank(A) forces rank(A) = n.

20 Certainly A and B have at most rank 2. Then their product AB has at most rank 2. Since BA

is 3 by 3, it cannot be I even if AB = I:

A =

1 0 0

0 1 0

 B =


1 0

0 1

0 0

 AB = I and BA 6= I.

21 (a) A and B will both have the same nullspace and row space as R (same R for both matrices).

(b) A equals an invertible matrix times B, when they share the same R. A key fact!

22 A =


1 3 0 2 −1

0 0 1 4 −3

1 3 1 6 −4

 =


1 0

0 1

1 1


1 3 0 2 −1

0 0 1 4 −3

 (nonzero rows of R).
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23 A = (pivot columns)(nonzero rows of R) =


1 0

1 4

1 8


1 1 0

0 0 1

 =


1 1 0

1 1 0

1 1 0

+


0 0 0

0 0 4

0 0 8

.

B =


1 0

1 4

1 8


1 1 0 1 1 0

0 0 1 0 0 1

 =


1 1 0 1 1 0

1 1 0 1 1 0

1 1 0 1 1 0

 +


0 0 0 0 0 0

0 0 4 0 0 4

0 0 8 0 0 8

 .

24 The m by n matrix Z has r ones at the start of its main diagonal. Otherwise Z is all zeros.

25 Y = Z because the form is decided by the rank which is the same for A and AT.

26 If c = 1, R =


1 1 2 2

0 0 0 0

0 0 0 0

 has x2, x3, x4 free. If c 6= 1, R =


1 0 2 2

0 1 0 0

0 0 0 0

 has x3, x4 free.

Special solutions in N =


−1 −2 −2

1 0 0

0 1 0

0 0 1

 (c = 1) and N =


−2 −2

0 0

1 0

0 1

 (c 6= 1)

If c = 1, R =

0 1

0 0

 and x1 free; if c = 2, R =

1 −2

0 0

 and x2 free; R = I if c 6= 1, 2

Special solutions in N =

1

0

 (c = 1) or N =

2

1

 (c = 2) or N = 2 by 0 empty matrix.

27 N =

 I

−I

 ; N =

 I

−I

 ; N = empty.

Problem Set 3.4, page 136

1


2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3

 →


2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1

 →


2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1


Ax = b has a solution when b3 + b2 − 2b1 = 0; the column space contains all combinations

of (2, 2, 2) and (4, 5, 3) which is the plane b3 + b2 − 2b1 = 0 (!); the nullspace contains all

combinations of s1 = (−1,−1, 1, 0) and s2 = (2,−2, 0, 1); xcomplete = xp + c1s1 + c2s2;

[ R d ] =


1 0 1 −2 4

0 1 1 2 −1

0 0 0 0 0

 gives the particular solution xp = (4,−1, 0, 0).

2


2 1 3 b1

6 3 9 b2

4 2 6 b3

 →


2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1

 Then [ R d ] =


1 1/2 3/2 5

0 0 0 0

0 0 0 0

 Ax = b

has a solution when b2−3b1 = 0 and b3−2b1 = 0; the column space is the line through (2, 6, 4)
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which is the intersection of the planes b2− 3b1 = 0 and b3− 2b1 = 0; the nullspace contains all

combinations of s1 = (−1/2, 1, 0) and s2 = (−3/2, 0, 1); particular solution xp = (5, 0, 0) and

complete solution xp + c1s1 + c2s2.

3 x
complete

=


−2

0

1

 + x2


−3

1

0

.

4 x
complete

=


1/2

0

1/2

0

 + x2


−3

1

0

0

 + x4


0

0

−2

1

.

5 Solvable if 2b1 + b2 = b3. Then x =


5b1 − 2b2

b2 − 2b1

0

 + x3


2

0

1

.

6 (a) Solvable if b2 = 2b1 and 3b1 − 3b3 + b4 = 0. Then x =

5b1 − 2b3

b3 − 2b1

 (no free variables)

(b) Solvable if b2 = 2b1 and 3b1 − 3b3 + b4 = 0. Then x =


5b1 − 2b3

b3 − 2b1

0

 + x3


−1

−1

1

.

7


1 3 1 b1

3 8 2 b2

2 4 0 b3

 →


1 3 1 b2

0 −1 −1 b2 − 3b1

0 −2 −2 b3 − 2b1

 →

row 3− 2 (row 2) + 4 (row 1)

is the zero row

[ 0 0 0 b3 − 2b2 + 4b1 ]

8 (a) Every b is in the column space: independent rows. (b) Need b3 = 2b2. Row 3−2 row 2 = 0.

9 L[U c ] =


1 0 0

2 1 0

3 −1 1




1 2 3 5 b1

0 0 2 2 b2 − 2b1

0 0 0 0 b3 + b2 − 5b1

 = [ A b ];

xp = (−9, 0, 3, 0) so −9(1, 2, 3) + 3(3, 8, 7) = (0, 6,−6) is exactly Axp = b.

10

1 0 −1

0 1 −1

 x =

2

4

.

11 A 1 by 3 system has at least two free variables.

12 (a) x 1 − x 2 and 0 solve Ax = 0 (b) 2x 1 − 2x 2 solves Ax = 0; 2x 1 − x 2 solves Ax = b.

13 (a) The particular solution xp is always multiplied by 1 (b) Any solution can be the par-

ticular solution (c)

3 3

3 3

 x

y

 =

6

6

. Then

1

1

 is shorter (length
√

2) than

2

0


(d) The “homogeneous” solution in the nullspace is xn = 0 when A is invertible.

14 If column 5 has no pivot, x5 is a free variable. The zero vector is not the only solution to

Ax = 0. If Ax = b has a solution, it has infinitely many solutions.

15 If row 3 of U has no pivot, that is a zero row. Ux = c is solvable only if c3 = 0. Ax = b might

not be solvable, because U may have other zero rows.
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16 The largest rank is 3. Then there is a pivot in every row. The solution always exists. The

column space is R3. An example is A = [ I F ] for any 3 by 2 matrix F .

17 The largest rank is 4. There is a pivot in every column. The solution is unique. The nullspace

contains only the zero vector. An example is A = [ I ; G ] for any 4 by 2 matrix G.

18 Rank = 3; rank = 3 unless q = 2 (then rank = 2).

19 All ranks = 2.

20 A =

1 0

2 1

 3 4 1 0

0 −3 0 1

; A =


1 0 0

2 1 0

0 3 1




1 0 1 0

0 2 −2 3

0 0 11 −5

.

21 (a)


x

y

z

 =


4

0

0

 + y


−1

1

0

 + z


−1

0

1

 (b)


x

y

z

 =


4

0

0

 + z


−1

0

1

.

22 If Ax 1 = b and Ax 2 = b then we can add x 1 − x 2 to any solution of Ax = B . But there will

be no solution to Ax = B if B is not in the column space.

23 For A, q = 3 gives rank 1, every other q gives rank 2. For B, q = 6 gives rank 1, every other q

gives rank 2.

24 (a)

1

1

 (b) [ 1 1 ] (c) [ 0 ] or any r < m, r < n (d) Invertible.

25 (a) r < m, always r ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.

26 R =


1 0 −2

0 1 2

0 0 0

, R = I.

27 R has n pivots equal to 1. Zeros above and below pivots make R = I.

28

1 2 3 0

0 0 4 0

 →

1 2 0 0

0 0 1 0

; xn =


−2

1

0

;

1 2 3 5

0 0 4 8

 →

1 2 0 −1

0 0 1 2

 xp =


−1

0

2

.

The pivot columns contain I so −1 and 2 go into xp.

29 R =


1 0 0 0

0 0 1 0

0 0 0 0

 and xn =


0

1

0

;


1 0 0 −1

0 0 1 2

0 0 0 5

: no solution because of row 3.

30


1 0 2 3 2

1 3 2 0 5

2 0 4 9 10

 →


1 0 2 3 2

0 3 0 −3 3

0 0 0 3 6

 →


1 0 2 0 −4

0 1 0 0 3

0 0 0 1 2

; xp =


4

−3

0

−2

 and xn = x3


−2

0

1

0

.

31 A =


1 1

0 2

0 3

; B cannot exist since 2 equations in 3 unknowns cannot have a unique solution.
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32 A = LU =


1 0 0 0

1 1 0 0

2 2 1 0

1 2 0 1




1 3 1

0 −1 2

0 0 0

0 0 0

 and x =


7

−2

0

 + x3


−7

2

1

 and then no solution.

36 A =

1 0

3 0

.

Problem Set 3.5, page 150

1


1 1 1

0 1 1

0 0 1




c1

c2

c3

 = 0 gives c3 = c2 = c1 = 0. But v1 + v2 − 4v3 + v4 = 0 (dependent).

2 v1, v2, v3 are independent. All six vectors are on the plane (1, 1, 1, 1) · v = 0 so no four of

these six vectors can be independent.

3 If a = 0 then column 1 = 0; if d = 0 then b(column 1) − a(column 2) = 0; if f = 0 then all

columns end in zero (all are perpendicular to (0, 0, 1), all in the xy plane, must be dependent).

4 Ux =


a b c

0 d e

0 0 f




x

y

z

 =


0

0

0

 gives z = 0 then y = 0 then x = 0.

5 (a)


1 2 3

3 1 2

2 3 1

 →


1 2 3

0 −5 −7

0 −1 −5

 →


1 2 3

0 −5 −7

0 0 −18/5

: invertible ⇒ independent columns

(b)


1 2 −3

−3 1 2

2 −3 1

 →


1 2 −3

0 7 −7

0 −7 7

 →


1 2 −3

0 7 −7

0 0 0

; A


1

1

1

 =


0

0

0

, columns add to 0.

6 Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3). Same

column numbers (not same columns!) for A.

7 The sum v1 − v2 + v3 = 0 because (w2 −w3)− (w1 −w3) + (w1 −w2) = 0.

8 If c1(w2+w3)+c2(w1+w3)+c3(w1+w2) = 0 then (c2+c3)w1+(c1+c3)w2+(c1+c2)w3 = 0.

Since the w ’s are independent this requires c2 + c3 = 0, c1 + c3 = 0, c1 + c2 = 0. The only

solution is c1 = c2 = c3 = 0. Only this combination of v1, v2, v3 gives zero.

9 (a) The four vectors are the columns of a 3 by 4 matrix A. There is a nonzero solution to

Ax = 0 because there is at least one free variable (b) dependent if [ v1 v2 ] has rank 0 or 1

(c) 0v1 + 3(0, 0, 0) = 0.

10 The plane is the nullspace of A = [ 1 2 −3 −1 ]. Three free variables give three solutions

(x, y, z, t) = (2,−1, 0, 0) and (3, 0, 1, 0) and (1, 0, 0, 1).

11 (a) Line in R3 (b) Plane in R3 (c) Plane in R3 (d) All of R3.
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12 b is in the column space when there is a solution to Ax = b; c is in the row space when there

is a solution to ATy = c. False. The zero vector is always in the row space.

13 All dimensions are 2. The row spaces of A and U are the same.

14 The dimension of S is (a) zero when x = 0 (b) one when x = (1, 1, 1, 1) (c) three

when x = (1, 1,−1,−1) because all rearrangements of this x are perpendicular to (1, 1, 1, 1)

(d) four when the x’s are not equal and don’t add to zero. No x gives dimS = 2.

15 v = 1
2
(v +w) + 1

2
(v −w) and w = 1

2
(v +w)− 1

2
(v −w). The two pairs span the same space.

They are a basis when v and w are independent.

16 The n independent vectors span a space of dimension n. They are a basis for that space. If

they are the columns of A then m is not less than n (m ≥ n).

17 These bases are not unique! (a) (1, 1, 1, 1) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1)

(c) (1,−1,−1, 0), (1,−1, 0,−1) (d) (1, 0)(0, 1); (−1, 0, 1, 0, 0), (0,−1, 0, 1, 0), (−1, 0, 0, 0, 1).

18 Any bases for R2; (row 1 and row 2) or (row 1 and row 1 + row 2).

19 (a) The 6 vectors might not span R4 (b) The 6 vectors are not independent

(c) Any four might be a basis.

20 Independent columns ⇒ rank n. Columns span Rm ⇒ rank m. Columns are basis for Rm ⇒

rank = m = n.

21 One basis is (2, 1, 0), (−3, 0, 1). The vector (2, 1, 0) is a basis for the intersection with the xy

plane. The normal vector (1,−2, 3) is a basis for the line perpendicular to the plane.

22 (a) The only solution is x = 0 because the columns are independent (b) Ax = b is solvable

because the columns span R5.

23 (a) True (b) False because the basis vectors may not be in S.

24 Columns 1 and 2 are bases for the (different) column spaces; rows 1 and 2 are bases for the

(equal) row spaces; (1,−1, 1) is a basis for the (equal) nullspaces.

25 (a) False for [ 1 1 ] (b) False (c) True: Both dimensions = 2 if A is invertible, dimen-

sions = 0 if A = 0, otherwise dimensions = 1 (d) False, columns may be dependent.

26 Rank 2 if c = 0 and d = 2; rank 2 except when c = d or c = −d.

27 (a)


1 0 0

0 0 0

0 0 0

,


0 0 0

0 1 0

0 0 0

,


0 0 0

0 0 0

0 0 1

 (b) Add


0 1 0

1 0 0

0 0 0

,


0 0 1

0 0 0

1 0 0

,


0 0 0

0 0 1

0 1 0



(c)


0 1 0

−1 0 0

0 0 0

,


0 0 1

0 0 0

−1 0 0

,


0 0 0

0 0 1

0 −1 0

 are a basis for all A = −AT.

28 I,


1 0 0

0 1 0

0 0 2

,


1 0 0

0 2 0

0 0 1

,


1 1 0

0 1 0

0 0 1

,


1 0 1

0 1 0

0 0 1

,


1 0 0

0 1 1

0 0 1

; echelon matrices do

not form a subspace; they span the upper triangular matrices (not every U is echelon).
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29

 1 0 0

−1 0 0

,

0 1 0

0 −1 0

,

0 0 1

0 0 −1

;

 1 −1 0

−1 1 0

 and

 1 0 −1

−1 0 1

.

30 −


1

1

1

 +


1

1

1

−


1

1

1

 +


1

1

1

 +


1

1

1

−


1

1

1

 = 0

31 (a) All 3 by 3 matrices (b) Upper triangular matrices (c) All multiples cI.

32

−1 2 0

0 0 0

,

−1 0 2

0 0 0

,

 0 0 0

−1 2 0

,

 0 0 0

−1 0 2

.

33 (a) y(x) = constant C (b) y(x) = 3x (c) y(x) = 3x + C = yp + yn.

34 y(0) = 0 requires A + B + C = 0. One basis is cos x− cos 2x and cos x− cos 3x.

35 (a) y(x) = e2x (b) y = x (one basis vector in each case).

36 y1(x), y2(x), y3(x) can be x, 2x, 3x (dim 1) or x, 2x, x2 (dim 2) or x, x2, x3 (dim 3).

37 Basis 1, x, x2, x3; basis x− 1, x2 − 1, x3 − 1.

38 Basis for S: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis for T: (1,−1, 0, 0) and (0, 0, 2, 1); S∩T

has dimension 1.

39 See Solution 30 for I = combination of five other P ’s. Check the (1, 1) entry, then (3, 2), then

(3, 3), then (1, 2) to show that those five P ’s are independent.

Four conditions on the 9 entries make all row sums and column sums equal: row sum 1 = row

sum 2 = row sum 3 = column sum 1 = column sum 2 (= column sum 3 is automatic).

40 The subspace of matrices that have AS = SA has dimension three.

41 (a) No, don’t span (b) No, dependent (c) Yes, a basis (d) No, dependent

42 If the 5 by 5 matrix [ A b ] is invertible, b is not a combination of the columns of A. If [ A b ]

is singular, and the 4 columns of A are independent, b is a combination of those columns.

Problem Set 3.6, page 161

1 (a) Row and column space dimensions = 5, nullspace dimension = 4, left nullspace dimension

= 2 sum = 16 = m + n (b) Column space is R3; left nullspace contains only 0.

2 A: Row space (1, 2, 4); nullspace (−2, 1, 0) and (−4, 0, 1); column space (1, 2); left nullspace

(−2, 1). B: Row space (1, 2, 4) and (2, 5, 8); column space (1, 2) and (2, 5);

nullspace (−4, 0, 1); left nullspace basis is empty.

3 Row space (0, 1, 2, 3, 4) and (0, 0, 0, 1, 2); column space (1, 1, 0) and (3, 4, 1); nullspace basis

(1, 0, 0, 0, 0), (0, 2,−1, 0, 0), (0, 2, 0,−2, 1); left nullspace (1,−1, 1).

4 (a)


1 0

1 0

0 1

 (b) Impossible: r + (n − r) must be 3 (c) [ 1 1 ] (d)

−9 −3

3 1


(e) Impossible: Row space = column space requires m = n. Then m− r = n− r.
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5 A =

1 1 1

2 1 0

, B =
[
1 −2 1

]
.

6 A: Row space (0, 3, 3, 3) and (0, 1, 0, 1); column space (3, 0, 1) and (3, 0, 0);

nullspace (1, 0, 0, 0) and (0,−1, 0, 1); left nullspace (0, 1, 0). B: Row space (1), column space

(1, 4, 5), nullspace: empty basis, left nullspace (−4, 1, 0) and (−5, 0, 1).

7 Invertible A: row space basis = column space basis = (1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis

and left nullspace basis are empty. Matrix B: row space basis (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0)

and (0, 0, 1, 0, 0, 1); column space basis (1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis

(−1, 0, 0, 1, 0, 0) and (0,−1, 0, 0, 1, 0) and (0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8 Row space dimensions 3, 3, 0; column space dimensions 3, 3, 0; nullspace dimensions 2, 3, 2; left

nullspace dimensions 0, 2, 3.

9 (a) Same row space and nullspace. Therefore rank (dimension of row space) is the same

(b) Same column space and left nullspace. Same rank (dimension of column space).

10 Most likely rank = 3, nullspace and left nullspace contain only (0, 0, 0). When the matrix is 3

by 5: Most likely rank = 3 and dimension of nullspace is 2.

11 (a) No solution means that r < m. Always r ≤ n. Can’t compare m and n

(b) If m− r > 0, the left nullspace contains a nonzero vector.

12


1 1

0 2

1 0


1 0 1

1 2 0

 =


2 2 1

2 4 0

1 0 1

; r + (n− r) = n = 3 but 2 + 2 is 4.

13 (a) False (b) True (c) False (choose A and B same size and invertible).

14 Row space basis (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2); nullspace basis (0, 1,−2, 1); column space

basis (1, 0, 0), (0, 1, 0), (0, 0, 1); left nullspace has empty basis.

15 Row space and nullspace stay the same; (2, 1, 3, 4) is in the new column space.

16 If Av = 0 and v is a row of A then v · v = 0.

17 Row space = yz plane; column space = xy plane; nullspace = x axis; left nullspace = z axis.

For I + A: Row space = column space = R3, nullspaces contain only zero vector.

18 Row 3 − 2 row 2 + row 1 = zero row so the vectors c(1,−2, 1) are in the left nullspace. The

same vectors happen to be in the nullspace.

19 Elimination leads to 0 = b3 − b2 − b1 so (−1,−1, 1) is in the left nullspace. Elimination leads

to b3 − 2b1 = 0 and b4 + b2 − 4b1 = 0, so (−2, 0, 1, 0) and (−4, 1, 0, 1) are in the left nullspace.

20 (a) All combinations of (−1, 2, 0, 0) and (− 1
4
, 0,−3, 1) (b) One (c) (1, 2, 3), (0, 1, 4).

21 (a) u and w (b) v and z (c) rank < 2 if u and w are dependent or v and z are

dependent (d) The rank of uvT + wzT is 2.

22


1 2

2 2

4 1


1 0 0

0 1 1

 =


1 2 2

2 2 2

4 1 1

.



36

23 Row space basis (3, 0, 3), (1, 1, 2); column space basis (1, 4, 2), (2, 5, 7); rank is only 2.

24 ATy = d puts d in the row space of A; unique solution if the left nullspace (nullspace of AT)

contains only y = 0.

25 (a) True (same rank) (b) False A = [ 1 0 ] (c) False (A can be invertible and also

unsymmetric) (d) True.

26 The rows of AB = C are combinations of the rows of B. So rank C ≤ rank B. Also rank C ≤

rank A. (The columns of C are combinations of the columns of A).

27 Choose d = bc/a. Then the row space has basis (a, b) and the nullspace has basis (−b, a).

28 Both ranks are 2; if p 6= 0, rows 1 and 2 are a basis for the row space. N(BT) has six vectors

with 1 and −1 separated by a zero; N(CT) has (−1, 0, 0, 0, 0, 0, 0, 1) and (0,−1, 0, 0, 0, 0, 1, 0)

and columns 3, 4, 5, 6 of I; N(C) is a challenge.

29 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1 (not unique).

Problem Set 4.1, page 171

1 Both nullspace vectors are orthogonal to the row space vector in R3. Column space is perpen-

dicular to the nullspace of AT in R2.

2 The nullspace is Z (only zero vector) so xn = 0. and row space = R2. Plane ⊥ line in R3.

3 (a)


1 2 −3

2 −3 1

−3 5 −2

 (b) Impossible,


2

−3

5

 not orthogonal to


1

1

1

 (c)


1

1

1

 in C (A) and


1

0

0


in N (AT) is impossible: not perpendicular (d) This asks for A2 = 0; take A =

[
1 −1
1 −1

]
(e) (1, 1, 1) will be in the nullspace and row space; no such matrix.

4 If AB = 0, the columns of B are in the nullspace of A. The rows of A are in the left nullspace

of B. If rank = 2, all four subspaces would have dimension 2 which is impossible for 3 by 3.

5 (a) If Ax = b has a solution and ATy = 0, then y is perpendicular to b. (Ax )Ty = bTy = 0.

(b) c is in the row space, x is in the nullspace: cTx = yTAx = yT0 = 0.

6 Multiply the equations by y1 = 1, y2 = 1, y3 = −1. They add to 0 = 1 so no solution:

y = (1, 1,−1) is in the left nullspace. Can’t have 0 = (yTA)x = yTb = 1.

7 Multiply by y = (1, 1,−1), then x1 − x2 = 1 plus x2 − x3 = 1 minus x1 − x3 = 1 is 0 = 1.

8 x = x r + xn, where x r is in the row space and xn is in the nullspace. Then Axn = 0 and

Ax = Ax r + Axn = Ax r. All vectors Ax are combinations of the columns of A.

9 Ax is always in the column space of A. If ATAx = 0 then Ax is also in the nullspace of AT.

Perpendicular to itself, so Ax = 0.

10 (a) For a symmetric matrix the column space and row space are the same (b) x is in the

nullspace and z is in the column space = row space: so these “eigenvectors” have xTz = 0.
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11 The nullspace of A is spanned by (−2, 1), the row space is spanned by (1, 2). The nullspace of

B is spanned by (0, 1), the row space is spanned by (1, 0).

12 x splits into x r + xn = (1,−1) + (1, 1) = (2, 0).

13 V TW = zero matrix makes each basis vector for V orthogonal to each basis vector for W .

Then every v in V is orthogonal to every w in W (they are combinations of the basis vectors).

14 Ax = Bx̂ means that [ A B ]
[ x

−x̂

]
= 0. Three homogeneous equations in four unknowns

always have a nonzero solution. Here x = (3, 1) and x̂ = (1, 0) and Ax = Bx̂ = (5, 6, 5) is in

both column spaces. Two planes in R3 must intersect in a line at least!

15 A p-dimensional and a q-dimensional subspace of Rn share at least a line if p + q > n.

16 ATy = 0 ⇒ (Ax )Ty = xTATy = 0. Then y ⊥ Ax and N (AT) ⊥ C (A).

17 If S is the subspace of R3 containing only the zero vector, then S⊥ is R3. If S is spanned

by (1, 1, 1), then S⊥ is spanned by (1,−1, 0) and (1, 0,−1). If S is spanned by (2, 0, 0) and

(0, 0, 3), then S⊥ is spanned by (0, 1, 0).

18 S⊥ is the nullspace of A =

1 5 1

2 2 2

. Therefore S⊥ is a subspace even if S is not.

19 L⊥ is the 2-dimensional subspace (a plane) in R3 perpendicular to L. Then (L⊥)⊥ is a 1-

dimensional subspace (a line) perpendicular to L⊥. In fact (L⊥)⊥ is L.

20 If V is the whole space R4, then V⊥ contains only the zero vector. Then (V⊥)⊥ = R4 = V .

21 For example (−5, 0, 1, 1) and (0, 1,−1, 0) span S⊥ = nullspace of A = [ 1 2 2 3; 1 3 3 2 ].

22 (1, 1, 1, 1) is a basis for P⊥. A = [ 1 1 1 1 ] has the plane P as its nullspace.

23 x in V⊥ is perpendicular to any vector in V . Since V contains all the vectors in S , x is also

perpendicular to any vector in S . So every x in V⊥ is also in S⊥.

24 Column 1 of A−1 is orthogonal to the space spanned by the 2nd, 3rd, . . ., nth rows of A.

25 If the columns of A are unit vectors, all mutually perpendicular, then ATA = I.

26 A =


2 2 −1

−1 2 2

2 −1 2

, ATA = 9I is diagonal : (ATA)ij = (column i of A)·(column j of A).

27 The lines 3x+y = b1 and 6x+2y = b2 are parallel. They are the same line if b2 = 2b1. In that

case (b1, b2) is perpendicular to (−2, 1). The nullspace is the line 3x + y = 0. One particular

vector in the nullspace is (−1, 3).

28 (a) (1,−1, 0) is in both planes. Normal vectors are perpendicular, but planes still intersect!

(b) Need three orthogonal vectors to span the whole orthogonal complement.

(c) Lines can meet without being orthogonal.

29 A =


1 2 3

2 1 0

3 0 1

, B =


1 1 −1

2 −1 0

3 0 −1

; v can not be in the nullspace and row space, or in

the left nullspace and column space. These spaces are orthogonal and vTv 6= 0.
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30 When AB = 0, the column space of B is contained in the nullspace of A. So rank(B) ≤ 4 −

rank (A) = (dimension of the nullspace A).

31 null(N ′) produces a basis for the row space of A (perpendicular to N (A)).

Problem Set 4.2, page 181

1 (a) aTb/aTa = 5/3; p = (5/3, 5/3, 5/3); e = (−2/3, 1/3, 1/3)

(b) aTb/aTa = −1; p = (1, 3, 1); e = (0, 0, 0).

2 (a) p = (cos θ, 0) (b) p = (0, 0) since aTb = 0.

3 P1 =
1

3


1 1 1

1 1 1

1 1 1

 and P1b =
1

3


5

5

5

 and P 2
1 = P1. P2 =

1

11


1 3 1

3 9 3

1 3 1

 and P2b =


1

3

1

.

4 P1 =

1 0

0 0

, P2 =
1

2

 1 −1

−1 1

. P1P2 6= 0 and P1 + P2 is not a projection matrix.

5 P1 =
1

9


1 −2 −2

−2 4 4

−2 4 4

, P2 =
1

9


4 4 −2

4 4 −2

−2 −2 1

. P1P2 = zero matrix because a1 ⊥ a2.

6 p1 = ( 1
9
,− 2

9
,− 2

9
) and p2 = ( 4

9
, 4

9
,− 2

9
) and p3 = ( 4

9
,− 2

9
, 4

9
). Then p1 +p2 +p3 = (1, 0, 0) = b.

7 P1 + P2 + P3 =
1

9


1 −2 −2

−2 4 4

−2 4 4

 +
1

9


4 4 −2

4 4 −2

−2 −2 1

 +
1

9


4 −2 4

−2 1 −2

4 −2 4

 = I.

8 p1 = (1, 0) and p2 = (0.6, 1.2). Then p1 + p2 6= b.

9 Since A is invertible, P = A(ATA)−1AT = AA−1(AT)−1AT = I: project onto all of R2.

10 P2 =

0.2 0.4

0.4 0.8

, P2a1 =

0.2

0.4

, P1 =

1 0

0 0

, P1P2a1 =

0.2

0

. No, P1P2 6= (P1P2)
2.

11 (a) p = A(ATA)−1ATb = (2, 3, 0) and e = (0, 0, 4) (b) p = (4, 4, 6) and e = (0, 0, 0).

12 P1 =


1 0 0

0 1 0

0 0 0

 = projection on xy plane. P2 =


0.5 0.5 0

0.5 0.5 0

0 0 1

.

13 p = (1, 2, 3, 0). P = square matrix =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

.

14 The projection of this b onto the column space of A is b itself, but P is not necessarily I.

P =
1

21


5 8 −4

8 17 2

−4 2 20

 and p = (0, 2, 4).

15 The column space of 2A is the same as the column space of A. x̂ for 2A is half of x̂ for A.
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16 1
2
(1, 2,−1) + 3

2
(1, 0, 1) = (2, 1, 1). Therefore b is in the plane. Projection shows Pb = b.

17 P 2 = P and therefore (I − P )2 = (I − P )(I − P ) = I − PI − IP + P 2 = I − P . When P

projects onto the column space of A then I − P projects onto the left nullspace of A.

18 (a) I − P is the projection matrix onto (1,−1) in the perpendicular direction to (1, 1)

(b) I − P is the projection matrix onto the plane x + y + z = 0 perpendicular to (1, 1, 1).

19 For any choice, say (1, 1, 0) and (2, 0, 1), the matrix P is


5/6 1/6 1/3

1/6 5/6 −1/3

1/3 −1/3 1/3

.

20 e =


1

−1

−2

, Q = eeT/eTe =


1/6 −1/6 −1/3

−1/6 1/6 1/3

−1/3 1/3 2/3

, P = I −Q =


5/6 1/6 1/3

1/6 5/6 −1/3

1/3 −1/3 1/3

.

21
(
A(ATA)−1AT

)2
= A(ATA)−1(ATA)(ATA)−1AT = A(ATA)−1AT. Therefore P 2 = P . Pb is

always in the column space (where P projects). Therefore its projection P (Pb) is Pb.

22 PT =
(
A(ATA)−1AT

)T
= A

(
(ATA)−1

)T
AT = A(ATA)−1AT = P . (ATA is symmetric.)

23 If A is invertible then its column space is all of Rn. So P = I and e = 0.

24 The nullspace of AT is orthogonal to the column space C (A). So if ATb = 0, the projection

of b onto C (A) should be p = 0. Check Pb = A(ATA)−1ATb = A(ATA)−10 = 0.

25 The column space of P will be S (n-dimensional). Then r = dimension of column space = n.

26 A−1 exists since the rank is r = m. Multiply A2 = A by A−1 to get A = I.

27 Ax is in the nullspace of AT. But Ax is always in the column space of A. To be in both of

those perpendicular spaces, Ax must be zero. So A and ATA have the same nullspace.

28 P 2 = P = PT give PTP = P . Then the (2, 2) entry of P equals the (2, 2) entry of PTP which

is the length squared of column 2.

29 Set A = BT. Then A has independent columns. By 4G, ATA = BBT is invertible.

30 (a) The column space is the line through a =

3

4

 so PC =
aaT

aTa
=

1

25

 9 12

12 25

. We can’t

use (ATA)−1 because A has dependent columns. (b) The row space is the line through

v = (1, 2, 2) and PR = vvT/vTv . Always PCA = A and APR = A and then PCAPR = A !

Problem Set 4.3, page 192

1 A =


1 0

1 1

1 3

1 4

 and b =


0

8

8

20

 give ATA =

4 8

8 26

 and ATb =

 36

112

.

ATAx̂ = ATb gives x̂ =

1

4

 and p = Ax̂ =


1

5

13

17

 and e = b − p =


−1

3

−5

3

. E = ‖e‖2 = 44.
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2


1 0

1 1

1 3

1 4


C

D

 =


0

8

8

20

. Change the right side to p =


1

5

13

17

; x̂ =

1

4

 exactly solves Ax̂ = b.

3 p = A(ATA)−1ATb = (1, 5, 13, 17). e = (−1, 3,−5, 3). e is indeed perpendicular to both

columns of A. The shortest distance ‖e‖ is
√

44.

4 E = (C + 0D)2 + (C + 1D − 8)2 + (C + 3D − 8)2 + (C + 4D − 20)2. Then ∂E/∂C = 2C +

2(C+D−8)+2(C+3D−8)+2(C+4D−20) = 0 and ∂E/∂D = 1·2(C+D−8)+3·2(C+3D−8)+

4 · 2(C + 4D − 20) = 0. These normal equations are again

4 8

8 26

 C

D

 =

 36

112

.

5 E = (C−0)2 +(C−8)2 +(C−8)2 +(C−20)2. AT = [ 1 1 1 1 ], ATA = [ 4 ] and ATb = [ 36 ]

and (ATA)−1ATb = 9 = best height C. Errors e = (−9,−1,−1, 11).

6 x̂ = aTb/aTa = 9 and projection p = (9, 9, 9, 9); eTa = (−9,−1,−1, 11)T(1, 1, 1, 1) = 0 and

‖e‖ =
√

204.

7 A = [ 0 1 3 4 ]T, ATA = [ 26 ] and ATb = [ 112 ]. Best D = 112/26 = 56/13.

8 x̂ = 56/13, p = (56/13)(0, 1, 3, 4). C = 9, D = 56/13 don’t match (C, D) = (1, 4); the

columns of A were not perpendicular so we can’t project separately to find C = 1 and D = 4.

9 Closest parabola:


1 0 0

1 1 1

1 3 9

1 4 16




C

D

E

 =


0

8

8

20

. ATAx̂ =


4 8 26

8 26 92

26 92 338




C

D

E

 =


36

112

400

.

10


1 0 0 0

1 1 1 1

1 3 9 27

1 4 16 64




C

D

E

F

 =


0

8

8

20

. Then


C

D

E

F

 =
1

3


0

47

−28

5

. Exact cubic so p = b, e = 0.

11 (a) The best line is x = 1 + 4t, which goes through the center point (t̂, b̂) = (2, 9)

(b) From the first equation: C · m + D ·
∑m

i=1 ti =
∑m

i=1 bi. Divide by m to get C + Dt̂ = b̂.

12 (a) aTa = m, aTb = b1 + · · ·+ bm. Therefore x̂ is the mean of the b’s (b) e = b − x̂a .

‖e‖2 =
∑m

i=1(bi − x̂ )2 (c) p = (3, 3, 3), e = (−2,−1, 3), pTe = 0. P =
1

3


1 1 1

1 1 1

1 1 1

.

13 (ATA)−1AT(b −Ax ) = x̂ − x . Errors b −Ax = (±1,±1,±1) add to 0, so the x̂ − x add to 0.

14 (x̂−x )(x̂−x )T = (ATA)−1AT(b−Ax )(b−Ax )TA(ATA)−1. Average (b−Ax )(b−Ax )T = σ2I

gives the covariance matrix (ATA)−1ATσ2A(ATA)−1 which simplifies to σ2(ATA)−1.

15 Problem 14 gives the expected error (x̂ − x)2 as σ2(ATA)−1 = σ2/m. By taking m measure-

ments, the variance drops from σ2 to σ2/m.

16
1

10
b10 +

9

10
x̂ 9 =

1

10
(b1 + · · ·+ b10).
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17


1 −1

1 1

1 2


C

D

 =


7

7

21

. The solution x̂ =

9

4

 comes from

3 2

2 6

 C

D

 =

35

42

.

18 p = Ax̂ = (5, 13, 17) gives the heights of the closest line. The error is b − p = (2,−6, 4).

19 If b = e then b is perpendicular to the column space of A. Projection p = 0.

20 If b = Ax̂ = (5, 13, 17) then error e = 0 since b is in the column space of A.

21 e is in N(AT); p is in C(A); x̂ is in C(AT); N(A) = {0} = zero vector.

22 The least squares equation is

5 0

0 10

 C

D

 =

 5

−10

. Solution: C = 1, D = −1.

23 The square of the distance between points on two lines is E = (y− x)2 + (3y− x)2 + (1 + x)2.

Set 1
2
∂E/∂x = −(y − x)− (3y − x) + (x + 1) = 0 and 1

2
∂E/∂y = (y − x) + 3(3y − x) = 0.

The solution is x = −5/7, y = −2/7; E = 2/7, and the minimal distance is
√

2/7.

24 e is orthogonal to p; ‖e‖2 = eT(b − p) = eTb = bTb − bTp.

25 The derivatives of ‖Ax − b‖2 are zero when x = (ATA)−1ATb.

26 Direct approach to 3 points on a line: Equal slopes (b2 − b1)/(t2 − t1) = (b3 − b2)/(t3 − t2).

Linear algebra approach: If y is orthogonal to the columns (1, 1, 1) and (t1, t2, t3) and b is in

the column space then yTb = 0. This y = (t2− t3, t3− t1, t1− t2) is in the left nullspace. Then

yTb = 0 is the same equal slopes condition written as (b2 − b1)(t3 − t2) = (b3 − b2)(t2 − t1).

27


1 1 0

1 0 1

1 −1 0

1 0 −1




C

D

E

 =


0

1

3

4

 has ATA =


4 0 0

0 2 0

0 0 2

, ATb =


8

−2

−3

,


C

D

E

 =


2

−1

−3/2

. At

x, y = 0, 0 the best plane 2− x− 3
2
y has height C = 2 which is the average of 0, 1, 3, 4.

Problem Set 4.4, page 203

1 (a) Independent (b) Independent and orthogonal (c) Independent and orthonormal.

For orthonormal, (a) becomes (1, 0), (0, 1) and (b) is (.6, .8), (.8,−.6).

2 q1 = ( 2
3
, 2

3
,− 1

3
). q2 = (− 1

3
, 2

3
, 2

3
). QTQ =

1 0

0 1

 but QQT =


5/9 2/9 −4/9

2/9 8/9 2/9

−4/9 2/9 5/9

.

3 (a) ATA = 16I (b) ATA is diagonal with entries 1, 4, 9.

4 (a) Q =


1 0

0 1

0 0

, QQT =


1 0 0

0 1 0

0 0 0

 (b) (1, 0) and (0, 0) are orthogonal, not independent

(c) ( 1
2
, 1

2
, 1

2
, 1

2
), ( 1

2
, 1

2
,− 1

2
,− 1

2
), ( 1

2
,− 1

2
, 1

2
,− 1

2
), (− 1

2
, 1

2
, 1

2
,− 1

2
).

5 Orthogonal vectors are (1,−1, 0) and (1, 1,−1). Orthonormal are ( 1√
2
,− 1√

2
, 0), ( 1√

3
, 1√

3
,− 1√

3
).
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6 If Q1 and Q2 are orthogonal matrices then (Q1Q2)
TQ1Q2 = QT

2 QT
1 Q1Q2 = QT

2 Q2 = I which

means that Q1Q2 is orthogonal also.

7 The least squares solution to QTQx̂ = QTb is x̂ = QTb. This is 0 if Q =

1

0

 and b =

0

1

.

8 If q1 and q2 are orthonormal vectors in R5 then (qT
1 b)q1 + (qT

2 b)q2 is closest to b.

9 (a) P = QQT =


1 0 0

0 1 0

0 0 0

 (b) (QQT)(QQT) = Q(QTQ)QT = QQT.

10 (a) If q1, q2, q3 are orthonormal then the dot product of q1 with c1q1 +c2q2 +c3q3 = 0 gives

c1 = 0. Similarly c2 = c3 = 0 independent (b) Qx = 0 ⇒ QTQx = 0 ⇒ x = 0.

11 (a) Two orthonormal vectors are 1
10

(1, 3, 4, 5, 7) and 1
10

(7,−3,−4, 5,−1) (b) The closest

vector in the plane is the projection QQT(1, 0, 0, 0, 0) = (0.5,−0.18,−0.24, 0.4, 0).

12 (a) aT
1 b = aT

1 (x1a1 + x2a2 + x3a3) = x1(a
T
1 a1) = x1

(b) aT
1 b = aT

1 (x1a1 + x2a2 + x3a3) = x1(a
T
1 a1). Therefore x1 = aT

1 b/aT
1 a1

(c) x1 is the first component of A−1 times b.

13 The multiple to subtract is aTb/aTa . Then B = b − aTb
aTa a = (4, 0)− 2 · (1, 1) = (2,−2).

14

1 4

1 0

 =
[
q1 q2

] ‖a‖ qT
1 b

0 ‖B‖

 =

1/
√

2 1/
√

2

1/
√

2 −1/
√

2

 √2 2
√

2

0 2
√

2

 = QR.

15 (a) q1 = 1
3
(1, 2,−2), q2 = 1

3
(2, 1, 2), q3 = 1

3
(2,−2,−1) (b) The nullspace of AT

contains q3 (c) x̂ = (ATA)−1AT(1, 2, 7) = (1, 2).

16 The projection p = (aTb/aTa)a = 14a/49 = 2a/7 is closest to b; q1 = a/‖a‖ = a/7 is

(4, 5, 2, 2)/7. B = b − p = (−1, 4,−4,−4)/7 has ‖B‖ = 1 so q2 = B .

17 p = (aTb/aTa)a = (3, 3, 3) and e = (−2, 0, 2). q1 = (1, 1, 1)/
√

3 and q2 = (−1, 0, 1)/
√

2.

18 A = a = (1,−1, 0, 0);B = b − p = ( 1
2
, 1

2
,−1, 0);C = c − pA − pB = ( 1

3
, 1

3
, 1

3
,−1). Notice the

pattern in those orthogonal vectors A,B ,C .

19 If A = QR then ATA = RTR = lower times upper triangular. Pivots of ATA are 3 and 8.

20 (a) True (b) True. Qx = x1q1 + x2q2. ‖Qx‖2 = x2
1 + x2

2 because q1 · q2 = 0.

21 The orthonormal vectors are q1 = (1, 1, 1, 1)/2 and q2 = (−5,−1, 1, 5)/
√

52. Then b =

(−4,−3, 3, 0) projects to p = (−7,−3,−1, 3)/2. Check that b − p = (−1,−3, 7,−3)/2 is

orthogonal to both q1 and q2.

22 A = (1, 1, 2), B = (1,−1, 0), C = (−1,−1, 1). Not yet orthonormal.

23 q1 =


1

0

0

, q2 =


0

0

1

, q3 =


0

1

0

. A =


1 0 0

0 0 1

0 1 0




1 2 4

0 3 6

0 0 5

.

24 (a) One basis for this subspace is v1 = (1,−1, 0, 0), v2 = (1, 0,−1, 0), v3 = (1, 0, 0, 1)

(b) (1, 1, 1,−1) (c) b2 = ( 1
2
, 1

2
, 1

2
,− 1

2
) and b1 = ( 1

2
, 1

2
, 1

2
, 3

2
).
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25

2 1

1 1

 =
1√
5

2 −1

1 2

 · 1√
5

5 3

0 1

. Singular

1 1

1 1

 =
1√
2

1 −1

1 1

 · 1√
2

2 2

0 0

.

The Gram-Schmidt process breaks down when A is singular and ad− bc = 0.

26 (qT
2 C ∗)q2 = BTc

BTB
B because q2 = B

‖B‖
and the extra q1 in C ∗ is orthogonal to q2.

27 When a and b are not orthogonal, the projections onto these lines do not add to the projection

onto their plane.

28 q1 = 1
3
(2, 2,−1), q2 = 1

3
(2,−1, 2), q3 = 1

3
(1,−2,−2).

29 There are mn multiplications in (11) and 1
2
m2n multiplications in each part of (12).

30 The columns of the wavelet matrix W are orthonormal. Then W−1 = WT. See Section 7.3

for more about wavelets.

31 (a) c = 1
2

(b) Change all signs in rows 2, 3, 4; then in columns 2, 3, 4.

32 p1 = 1
2
(−1, 1, 1, 1) and p2 = (0, 0, 1, 1).

33 Q1 =

1 0

0 −1

 reflects across x axis, Q2 =


1 0 0

0 0 −1

0 −1 0

 across plane y + z = 0.

34 (a) Qu = (I − 2uuT)u = u − 2uuTu . This is −u , provided that uTu equals 1

(b) Qv = (I − 2uuT)v = u − 2uuTv = u , provided that uTv = 0.

35 No solution

36 Orthogonal and lower triangular ⇒ ±1 on the main diagonal, 0 elsewhere.

Problem Set 5.1, page 213

1 det(2A) = 8 and det(−A) = (−1)4 det A = 1
2

and det(A2) = 1
4

and det(A−1) = 2.

2 det( 1
2
A) = ( 1

2
)3 det A = − 1

8
and det(−A) = (−1)3 det A = 1; det(A2) = 1; det(A−1) = −1.

3 (a) False: 2 by 2 I (b) True (c) False: 2 by 2 I (d) False (but trace = 0).

4 Exchange rows 1 and 3. Exchange rows 1 and 4, then 2 and 3.

5 |J5| = 1, |J6| = −1, |J7| = −1. The determinants are 1, 1, −1, −1 repeating, so |J101| = 1.

6 Multiply the zero row by t. The determinant is multiplied by t but the matrix is the same

⇒ det = 0.

7 det(Q) = 1 for rotation, det(Q) = −1 for reflection (1− 2 sin2 θ − 2 cos2 θ = −1).

8 QTQ = I ⇒ |Q|2 = 1 ⇒ |Q| = ±1; Qn stays orthogonal so can’t blow up. Same for Q−1.

9 det A = 1, det B = 2, det C = 0.

10 If the entries in every row add to zero, then (1, 1, . . . , 1) is in the nullspace: singular A has

det = 0. (The columns add to the zero column so they are linearly dependent.) If every row

adds to one, then rows of A− I add to zero (not necessarily det A = 1).

11 CD = −DC ⇒ |CD| = (−1)n|DC| and not −|DC|. If n is even we can have |CD| 6= 0.
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12 det(A−1) = det

 d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

 =
ad− bc

(ad− bc)2
=

1

ad− bc
.

13 Pivots 1, 1, 1 give det = 1; pivots 1,−2,−3/2 give det = 3.

14 det(A) = 24 and det(A) = 5.

15 det = 0 and det = 1− 2t2 + t4 = (1− t2)2.

16 A singular rank one matrix has det = 0; Also det K = 0.

17 Any 3 by 3 skew-symmetric K has det(KT) = det(−K) = (−1)3det(K). This is −det(K).

But also det(KT) = det(K), so we must have det(K) = 0.

18

∣∣∣∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 a a2

0 b− a b2 − a2

0 c− a c2 − a2

∣∣∣∣∣∣∣∣∣ = (b− a)(c− a)

∣∣∣∣∣∣1 b + a

1 c + a

∣∣∣∣∣∣ = (b− a)(c− a)(c− b).

19 det(U) = 6, det(U−1) = 1
6
, det(U2) = 36, det(U) = ad, det(U2) = a2d2. If ad 6= 0 then

det(U−1) = 1/ad.

20 det

a− Lc b− Ld

c− la d− lb

 = (ad− bc)(1− Ll).

21 Rules 5 and 3 give Rule 2. (Since Rules 4 and 3 give 5, they also give Rule 2.)

22 det(A) = 3, det(A−1) = 1
3
, det(A − λI) = λ2 − 4λ + 3. Then λ = 1 and λ = 3 give

det(A− λI) = 0. Note to instructor : If you discuss this exercise, you can explain that this is

the reason determinants come before eigenvalues. Identify 1 and 3 as the eigenvalues.

23 det(A) = 10, A2 =

18 7

14 11

, det(A2) = 100, A−1 = 1
10

 3 −1

−2 4

, det(A−1) = 1
10

.

det(A− λI) = λ2 − 7λ + 10 = 0 when λ = 2 or λ = 5.

24 det(L) = 1, det(U) = −6, det(A) = −6, det(U−1L−1) = − 1
6
, and det(U−1L−1A) = 1.

25 Row 2 = 2 times row 1 so det A = 0.

26 Row 3 − row 2 = row 2 − row 1 so A is singular.

27 det A = abc, det B = −abcd, det C = a(b− a)(c− b).

28 (a) True: det(AB) = det(A)det(B) = 0 (b) False: may exchange rows

(c) False: A = 2I and B = I (d) True: det(AB) = det(A)det(B) = det(BA).

29 A is rectangular so det(ATA) 6= (det AT)(det A): these are not defined.

30

∂f/∂a ∂f/∂c

∂f/∂b ∂f/∂d

 =

 d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

 =
1

ad− bc

 d −b

−c a

 = A−1.

31 The Hilbert determinants are 1, .08, 4.6×10−4, 1.6×10−7, 3.7×10−12, 5.4×10−18, 4.8×10−25,

2.7 × 10−33, 9.7 × 10−43, 2.2 × 10−53. Pivots are ratios of determinants so 10th pivot is near

10−10.

32 Typical determinants of rand(n) are 106, 1025, 1079, 10218 for n = 50, 100, 200, 400). Using

randn(n) with normal bell-shaped probabilities these are 1031, 1078, 10186, Inf ≥ 21024. MAT-

LAB computes 1.999999999999999× 21023 ≈ 1.8× 10308 but one more 9 gives Inf!
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33 n=5; p=(n – 1)^2; A0=ones(n); maxdet=0; for k=0:2^p – 1

Asub=rem(floor(k. * 2.^( – p+ 1:0)),2); A=A0; A(2:n,2:n)=1 – 2 * reshape(Asub,n – 1,n – 1);

if abs(det(A))>maxdet, maxdet=abs(det(A)); maxA=A; end end

Output: maxA = 1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 1 1 −1
1 −1 −1 −1 1

maxdet = 48.

34 Reduce B to [ row 3 : row 2; row 1 ]. Then det B = −6.

Problem Set 5.2, page 225

1 det A = 1 + 18 + 12− 9− 4− 6 = 12, rows are independent; det B = 0, rows are dependent;

det C = −1, independent rows.

2 det A = −2, independent; det B = 0, dependent; det C = (−2)(0), dependent.

3 Each of the 6 terms in det A is zero; the rank is at most 2; column 2 has no pivot.

4 (a) The last three rows must be dependent (b) In each of the 120 terms: Choices from

the last 3 rows must use 3 columns; at least one choice will be zero.

5 a11a23a32a44 gives −1, a14a23a32a41 gives +1 so det A = 0; det B = 2 ·4 ·4 ·2−1 ·4 ·4 ·1 = 48.

6 Four zeros in a row guarantee det = 0; A = I has 12 zeros.

7 (a) If a11 = a22 = a33 = 0 then 4 terms are sure zeros (b) 15 terms are certainly zero.

8 5!/2 = 60 permutation matrices have det = +1. Put row 5 of I at the top (4 exchanges).

9 Some term a1αa2β · · · anω is not zero! Move rows 1, 2, . . ., n into rows α, β, . . ., ω. Then

these nonzero a’s will be on the main diagonal.

10 To get +1 for the even permutations the matrix needs an even number of −1’s. For the odd P ’s

the matrix needs an odd number of −1’s. So six 1’s and det = 6 are impossible: max(det) = 4.

11 det(I + Peven) = 16 or 4 or 0 (16 comes from I + I).

12 C =

 6 −3

−1 2

. C =


0 42 −35

0 −21 14

−3 6 −3

. det B = 1(0) + 2(42) + 3(−35) = −21.

13 C =


3 2 1

2 4 2

1 2 3

 and ACT =


4 0 0

0 4 0

0 0 4

. Therefore A−1 = 1
4
CT.

14 |B4| = 2det


1 −1

−1 2 −1

−1 2

 + det


1 −1

−1 2

−1 −1

 = 2|B3| − det

 1 −1

−1 2

 = 2|B3| − |B2|.

15 (a) C1 = 0, C2 = −1, C3 = 0, C4 = 1 (b) Cn = −Cn−2 by cofactors of row 1 then

cofactors of column 1. Therefore C10 = −C8 = C6 = −C4 = −1.
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16 Must choose 1’s from column 2 then column 1, column 4 then column 3, and so on. Therefore

n must be even to have det An 6= 0. The number of row exchanges is 1
2
n so Cn = (−1)n/2.

17 The 1, 1 cofactor is En−1. The 1, 2 cofactor has a single 1 in its first column, with cofactor

En−2. Signs give En = En−1 − En−2. Then 1, 0, −1, −1, 0, 1 repeats by sixes; E100 = −1.

18 The 1, 1 cofactor is Fn−1. The 1, 2 cofactor has a 1 in column 1, with cofactor Fn−2. Multiply

by (−1)1+2 and also (−1) from the 1, 2 entry to find Fn = Fn−1 + Fn−2 (so Fibonacci).

19 |Bn| = |An| − |An−1| = (n + 1)− n = 1.

20 Since x, x2, x3 are all in the same row, they are never multiplied in det V4. The determinant

is zero at x = a or b or c, so det V has factors (x− a)(x− b)(x− c). Multiply by the cofactor

V3. Any Vandermonde matrix Vij = (ci)
j−1 has det V = product of all (cl − ck) for l > k.

21 G2 = −1, G3 = 2, G4 = −3, and Gn = (−1)n−1(n− 1) = (product of the n eigenvalues!)

22 S1 = 3, S2 = 8, S3 = 21. The rule looks like every second number in Fibonacci’s sequence

. . . 3, 5, 8, 13, 21, 34, 55, . . . so the guess is S4 = 55. Following the solution to Problem 32

with 3’s instead of 2’s confirms S4 = 81 + 1− 9− 9− 9 = 55.

23 The problem asks us to show that F2n+2 = 3F2n − F2n−2. Keep using the Fibonacci rule:

F2n+2 = F2n+1 + F2n = F2n + F2n−1 + F2n = F2n + (F2n − F2n−2) + F2n = 3F2n − F2n−2.

24 Changing 3 to 2 in the corner reduces the determinant F2n+2 by 1 times the cofactor of

that corner entry. This cofactor is the determinant of Sn−1 (one size smaller) which is F2n.

Therefore changing 3 to 2 changes the determinant to F2n+2 − F2n which is F2n+1.

25 (a) If we choose an entry from B we must choose an entry from the zero block; result zero.

This leaves a pair of entries from A times a pair from D leading to (det A)(det D)

(b) and (c) Take A =

1 0

0 0

, B =

0 0

1 0

, C =

0 1

0 0

, D =

0 0

0 1

.

26 (a) All L’s have det = 1; det Uk = det Ak = 2, 6,−6 for k = 1, 2, 3 (b) Pivots 2, 3
2
, − 1

3
.

27 Problem 25 gives det

 I 0

−CA−1 I

 = 1 and det

A B

C D

 = |A| times |D − CA−1B| which

is |AD −ACA−1B|. If AC = CA this is |AD − CAA−1B| = det(AD − CB).

28 If A is a row and B is a column then det M = det AB = dot product of A and B. If A is a

column and B is a row then AB has rank 1 and det M = det AB = 0 (unless m = n = 1).

29 (a) det A = a11A11 + · · ·+ a1nA1n. The derivative with respect to a11 is the cofactor A11.

30 Row 1 − 2 row 2 + row 3 = 0 so the matrix is singular.

31 There are five nonzero products, all 1’s with a plus or minus sign. Here are the (row, column)

numbers and the signs: + (1, 1)(2, 2)(3, 3)(4, 4)+ (1, 2)(2, 1)(3, 4)(4, 3)− (1, 2)(2, 1)(3, 3)(4, 4)−

(1, 1)(2, 2)(3, 4)(4, 3) − (1, 1)(2, 3)(3, 2)(4, 4). Total 1 + 1− 1− 1− 1 = −1.

32 The 5 products in solution 31 change to 16 + 1− 4− 4− 4 since A has 2’s and −1’s:

(2)(2)(2)(2) + (−1)(−1)(−1)(−1) − (−1)(−1)(2)(2) − (2)(2)(−1)(−1)− (2)(−1)(−1)(2).
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33 det P = −1 because the cofactor of P14 = 1 in row one has sign (−1)1+4. The big formula for

det P has only one term (1 · 1 · 1 · 1) with minus sign because three exchanges take 4, 1, 2, 3

into 1, 2, 3, 4; det(P 2) = (det P )(det P ) = +1 so det

0 I

I 0

 = det

0 1

1 0

 is not right.

34 With a11 = 1, the −1, 2,−1 matrix has det = 1 and inverse (A−1)ij = n + 1−max(i, j).

35 With a11 = 2, the −1, 2,−1 matrix has det = n +1 and (n +1)(A−1)ij = i(n− j +1) for i ≤ j

and symmetrically (n + 1)(A−1)ij = j(n− i + 1) for i ≥ j.

36 Subtracting 1 from the n, n entry subtracts its cofactor Cnn from the determinant. That

cofactor is Cnn = 1 (smaller Pascal matrix). Subtracting 1 from 1 leaves 0.

Problem Set 5.3, page 240

1 (a) det A = 3, det B1 = −6, det B2 = 3 so x1 = −6/3 = −2 and x2 = 3/3 = 1

(b) |A|=4, |B1|=3, |B2|=−2, |B3|=1. Therefore x1 =3/4 and x2 =−1/2 and x3 =1/4.

2 (a) y = −c/(ad− bc) (b) y = (fg − id)/D.

3 (a) x1 = 3/0 and x2 = −2/0: no solution (b) x1 = 0/0 and x2 = 0/0: undetermined.

4 (a) x1 = det [ b a2 a3 ]/ det A, if det A 6= 0 (b) The determinant is linear in column 1

so we get x1|a1 a2 a3|+ x2|a2 a2 a3|+ x3|a3 a2 a3|. The last two determinants are zero.

5 If the first column in A is also the right side b then det A = det B1. Both B2 and B3 are

singular since a column is repeated. Therefore x1 = |B1|/|A| = 1 and x2 = x3 = 0.

6 (a)


1 − 2

3
0

0 1
3

0

0 − 4
3

1

 (b)
1

4


3 2 1

2 1 2

1 2 3

. The inverse of a symmetric matrix is symmetric.

7 If all cofactors = 0 then A−1 would be the zero matrix if it existed; cannot exist. A =

1 1

1 1


has no zero cofactors but it is not invertible.

8 C =


6 −3 0

3 1 −1

−6 2 1

 and ACT =


3 0 0

0 3 0

0 0 3

. Therefore det A = 3. Cofactor of 100 is 0.

9 If we know the cofactors and det A = 1 then CT = A−1 and det A−1 = 1. The inverse of A−1

is A, so A is the cofactor matrix for C.

10 Take the determinant of ACT = (det A)I. The left side gives det ACT = (det A)(det C) while

the right side gives (det A)n. Divide by det A to reach det C = (det A)n−1.

11 We find det A = (det C)
1

n−1 with n = 4. Then det A−1 is 1/ det A. Construct A−1 using the

cofactors. Invert to find A.

12 The cofactors of A are integers. Division by det A = ±1 gives integer entries in A−1.
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13 Both det A and det A−1 are integers since the matrices contain only integers. But det A−1 =

1/ det A so det A = 1 or −1.

14 A =


0 1 3

1 0 1

2 1 0

 has cofactor matrix C =


−1 2 1

3 −6 2

1 3 −1

 and A−1 = 1
5
CT.

15 (a) C21 = C31 = C32 = 0 (b) C12 = C21, C31 = C13, C32 = C23 make S−1 symmetric.

16 For n = 5 the matrix C contains 25 cofactors and each 4 by 4 cofactor contains 24 terms and

each term needs 3 multiplications: total 1800 multiplications vs. 125 for Gauss-Jordan.

17 (a) Area
∣∣ 3 2
1 4

∣∣ = 10 (b) 5 (c) 5.

18 Volume =

∣∣∣∣ 3 1 1
1 3 1
1 1 3

∣∣∣∣ = 20. Area of faces = length of cross product

∣∣∣∣ i j k
3 1 1
1 3 1

∣∣∣∣ = −2i−2j +8k is 6
√

2.

19 (a) Area 1
2

∣∣∣∣ 2 1 1
3 4 1
0 5 1

∣∣∣∣ = 5 (b) 5 + new triangle area 1
2

∣∣∣∣ 2 1 1
0 5 1

−1 0 1

∣∣∣∣ = 5 + 7 = 12.

20
∣∣ 2 1
2 3

∣∣ = 4 =
∣∣ 2 2
1 3

∣∣ because the transpose has the same determinant. See #23.

21 The edges of the hypercube have length
√

1 + 1 + 1 + 1 = 2. The volume det H is 24 = 16.

(H/2 has orthonormal columns. Then det(H/2) = 1 leads again to det H = 16.)

22 The maximum volume is L1L2L3L4 reached when the four edges are orthogonal in R4. With

entries 1 and −1 all lengths are
√

1 + 1 + 1 + 1 = 2. The maximum determinant is 24 = 16,

achieved by Hadamard above. For a 3 by 3 matrix, det A = (
√

3)3 can’t be achieved.

23 TO SEND IN EMAIL

24 ATA =


aT

bT

cT

 [
a b c

]
=


aTa 0 0

0 bTb 0

0 0 cTc

 has
det ATA = (‖a‖‖b‖‖c‖)2

det A = ±‖a‖‖b‖‖c‖

25 The box has height 4. The volume is 4 = det


1 0 0

0 1 0

2 3 4

; i × j = k and (k · w) = 4.

26 The n-dimensional cube has 2n corners, n2n−1 edges and 2n (n− 1)-dimensional faces. Those

are coefficients of (2 + x)n in Worked Example 2.4A. The cube whose edges are the rows of

2I has volume 2n.

27 The pyramid has volume 1/6. The 4-dimensional pyramid has volume 1/24 = 1/4!.

28 J = r. The columns are orthogonal and their lengths are 1 and r.

29 J =

∣∣∣∣ sin ϕ cos θ ρ cos ϕ cos θ −ρ sin ϕ sin θ
sin ϕ sin θ ρ cos ϕ sin θ ρ sin ϕ cos θ

cos ϕ −ρ sin ϕ 0

∣∣∣∣ = ρ2 sin ϕ, needed for triple integrals inside spheres.

30

∣∣∣∣∣∣∂r/∂x ∂r/∂y

∂θ/∂x ∂θ/∂y

∣∣∣∣∣∣ =

∣∣∣∣∣∣ cos θ sin θ

(− sin θ)/r (cos θ)/r

∣∣∣∣∣∣ =
1

r
.

31 The triangle with corners (0, 0), (6, 0), (1, 4) has area 24. Rotated by θ = 600 the area is

unchanged. The determinant of the rotation matrix is J =
∣∣∣ cos θ − sin θ
sin θ cos θ

∣∣∣ =

∣∣∣∣ 1
2

−
√

3
2√

3
2

1
2

∣∣∣∣ = 1.

32 Base area 10, height 2, volume 20.
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33 V = det


2 4 0

−1 3 0

1 2 2

 = 20.

34


u1 u2 u3

v1 v2 v3

w1 w2 w3

 = u1

 v2 v3

w2 w3

− u2

 v1 v3

w1 w3

 + u3

 v1 v2

w1 w2

 = u · (v ×w).

35 (w × u) · v = (v ×w) · u = (u × v) · w : Cyclic = even permutation of (u , v ,w).

36 S = (2, 1,−1). The area is ‖PQ × PS‖ = ‖(−2,−2,−1)‖ = 3. The other four corners could

be (0, 0, 0), (0, 0, 2), (1, 2, 2), (1, 1, 0). The volume of the tilted box is |det| = 1.

37 If (1, 1, 0), (1, 2, 1), (x, y, z) are in a plane the volume is det


x y z

1 1 0

1 2 1

 = x− y + z = 0.

38 det


x y z

3 2 1

1 2 3

 = 0 = 7x− 5y + z; plane contains the two vectors.

39 Doubling each row multiplies the volume by 2n. Then 2 det A = det(2A) only if n = 1.

Problem Set 6.1, page 253

1 A and A2 and A∞ all have the same eigenvectors. The eigenvalues are 1 and 0.5 for A, 1 and

0.25 for A2, 1 and 0 for A∞. Therefore A2 is halfway between A and A∞.

Exchanging the rows of A changes the eigenvalues to 1 and −0.5 (it is still a Markov matrix

with eigenvalue 1, and the trace is now 0.2 + 0.3—so the other eigenvalue is −0.5).

Singular matrices stay singular during elimination, so λ = 0 does not change.

2 λ1 = −1 and λ2 = 5 with eigenvectors x 1 = (−2, 1) and x 2 = (1, 1). The matrix A + I has

the same eigenvectors, with eigenvalues increased by 1 to 0 and 6.

3 A has λ1 = 4 and λ2 = −1 (check trace and determinant) with x 1 = (1, 2) and x 2 = (2,−1).

A−1 has the same eigenvectors as A, with eigenvalues 1/λ1 = 1/4 and 1/λ2 = −1.

4 A has λ1 = −3 and λ2 = 2 (check trace and determinant) with x 1 = (3,−2) and x 2 = (1, 1).

A2 has the same eigenvectors as A, with eigenvalues λ2
1 = 9 and λ2

2 = 4.

5 A and B have λ1 = 1 and λ2 = 1. A + B has λ1 = 1, λ2 = 3. Eigenvalues of A + B are not

equal to eigenvalues of A plus eigenvalues of B.

6 A and B have λ1 = 1 and λ2 = 1. AB and BA have λ = 1
2
(3 ±

√
5). Eigenvalues of AB are

not equal to eigenvalues of A times eigenvalues of B. Eigenvalues of AB and BA are equal.

7 The eigenvalues of U are the pivots. The eigenvalues of L are all 1’s. The eigenvalues of A are

not the same as the pivots.

8 (a) Multiply Ax to see λx which reveals λ (b) Solve (A− λI)x = 0 to find x .
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9 (a) Multiply by A: A(Ax ) = A(λx ) = λAx gives A2x = λ2x (b) Multiply by A−1:

A−1Ax = A−1λx = λA−1x gives A−1x = 1
λ
x (c) Add Ix = x : (A + I)x = (λ + 1)x .

10 A has λ1 = 1 and λ2 = .4 with x 1 = (1, 2) and x 2 = (1,−1). A∞ has λ1 = 1 and λ2 = 0 (same

eigenvectors). A100 has λ1 = 1 and λ2 = (.4)100 which is near zero. So A100 is very near A∞.

11 M = (A − λ2I)(A − λ1I) = zero matrix so the columns of A − λ1I are in the nullspace of

A − λ2I. This “Cayley-Hamilton Theorem” M = 0 in Problem 6.2.35 has a short proof: by

Problem 9 = M has eigenvalues (λ1 − λ2)(λ1 − λ1) = 0 and (λ2 − λ2)(λ2 − λ1) = 0. Same

x 1, x 2.

12 P has λ = 1, 0, 1 with eigenvectors (1, 2, 0), (2,−1, 0), (0, 0, 1). Add the first and last vectors:

(1, 2, 1) also has λ = 1. P 100 = P so P 100 gives the same answers.

13 (a) Pu = (uuT)u = u(uTu) = u so λ = 1 (b) Pv = (uuT)v = u(uTv) = 0 so λ = 0

(c) x 1 = (−1, 1, 0, 0), x 2 = (−3, 0, 1, 0), x 3 = (−5, 0, 0, 1) are eigenvectors with λ = 0.

14 The eigenvectors are x 1 = (1, i) and x 2 = (1,−i).

15 λ = 1
2
(−1± i

√
3); the three eigenvalues are 1, 1,−1.

16 Set λ = 0 to find det A = (λ1)(λ2) · · · (λn).

17 If A has λ1 = 3 and λ2 = 4 then det(A − λI) = (λ − 3)(λ − 4) = λ2 − 7λ + 12. Always

λ1 = 1
2
(a + d +

√
(a− d)2 + 4bc) and λ2 = 1

2
(a + d−√ ). Their sum is a + d.

18

4 0

0 5

,

 3 2

−1 6

,

 2 2

−3 7

.

19 (a) rank = 2 (b) det(BTB) = 0 (d) eigenvalues of (B + I)−1 are 1, 1
2
, 1

3
.

20 A =

 0 1

−28 11

 has trace 11 and determinant 28.

21 a = 0, b = 9, c = 0 multiply 1, λ, λ2 in det(A− λI) = 9λ− λ3: A = companion matrix.

22 (A−λI) has the same determinant as (A−λI)T.

1 0

1 0

 and

1 1

0 0

: different eigenvectors.

23 λ = 1 (for Markov), 0 (for singular), − 1
2

(so sum of eigenvalues = trace = 1
2
).

24

0 0

1 0

,

0 1

0 0

,

−1 1

−1 1

. Always A2 = zero matrix if λ = 0, 0 (Cayley-Hamilton 6.2.35).

25 λ = 0, 0, 6 with x 1 = (0,−2, 1), x 2 = (1,−2, 0), x 3 = (1, 2, 1).

26 Ax = c1λ1x 1 + · · ·+ cnλnxn equals Bx = c1λ1x 1 + · · ·+ cnλnxn for all x . So A = B.

27 λ = 1, 2, 5, 7.

28 rank(A) = 1 with λ = 0, 0, 0, 4; rank(C) = 2 with λ = 0, 0, 2, 2.

29 B has λ = −1, −1, −1, 3 so det B = −3. The 5 by 5 matrix A has λ = 0, 0, 0, 0, 5 and

B = A− I has λ = −1, −1, −1, −1, 4.

30 λ(A) = 1, 4, 6; λ(B) = 2,
√

3, −
√

3; λ(C) = 0, 0, 6.

31

a b

c d

 1

1

 =

a + b

c + d

 = (a + b)

1

1

; λ2 = d− b to produce trace = a + d.
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32 Eigenvector (1, 3, 4) for A with λ = 11 and eigenvector (3, 1, 4) for PAP .

33 (a) u is a basis for the nullspace, v and w give a basis for the column space

(b) x = (0, 1
3
, 1

5
) is a particular solution. Add any cu from the nullspace

(c) If Ax = u had a solution, u would be in the column space, giving dimension 3.

34 With λ1 = e2πi/3 and λ2 = e−2πi/3, the determinant is λ1λ2 = 1 and the trace is λ1 +λ2 = −1:

e2πi/3 + e−2πi/3 = cos
2π

3
+ i sin

2π

3
+ cos

2π

3
− i sin

2π

3
= −1. Also λ3

1 = λ3
2 = 1.

A =
[ −1 1

−1 0

]
has this trace −1 and determinant 1. Then A3 = I and every (M−1AM)3 = I.

Choosing λ1 = λ2 = 1 leads to I or else to a matrix like A =
[
1 1
0 1

]
that has A3 6= I.

35 det(P − λI) = 0 gives the equation λ3 = 1. This reflects the fact that P 3 = I. The solutions

of λ3 = 1 are λ = 1 (real) and λ = e2πi/3, λ = e−2πi/3 (complex conjugates). The real

eigenvector x 1 = (1, 1, 1) is not changed by the permutation P . The complex eigenvectors are

x 2 = (1, e−2πi/3, e−4πi/3) and x 3 = (1, e2πi/3, e4πi/3) = x 2.

Problem Set 6.2, page 266

1

1 2

0 3

 =

1 1

0 1

 1 0

0 3

 1 −1

0 1

;

1 1

2 2

 =

 1 1

−1 2

 0 0

0 3


 2

3
− 1

3

1
3

1
3

.

2 If A = SΛS−1 then A3 = SΛ3S−1 and A−1 = SΛ−1S−1.

3 A =

1 1

0 1

 2 0

0 5

 1 −1

0 1

 =

2 3

0 5

.

4 If A = SΛS−1 then the eigenvalue matrix for A + 2I is Λ + 2I and the eigenvector matrix is

still S. A + 2I = S(Λ + 2I)S−1 = SΛS−1 + S(2I)S−1 = A + 2I.

5 (a) False: don’t know λ’s (b) True (c) True (d) False: need eigenvectors of S!.

6 A is a diagonal matrix. If S is triangular, then S−1 is triangular, so SΛS−1 is also triangular.

7 The columns of S are nonzero multiples of (2, 1) and (0, 1) in either order. Same for A−1.

8

a b

b a

 for any a and b.

9 A2 =

2 1

1 1

, A3 =

3 2

2 1

, A4 =

5 3

3 2

; F20 = 6765.

10 (a) A =

 .5 .5

1 0

 has λ1 = 1, λ2 = − 1
2

with x 1 = (1, 1), x 2 = (1,−2)

(b) An =

1 1

1 −2

 1n 0

0 (−.5)n


 2

3
1
3

1
3

− 1
3

 → A∞ =

 2
3

1
3

2
3

1
3


(c)

Gk+1

Gk

 = Ak

G1

G0

 →

 2
3

1
3

2
3

1
3


1

0

 =

 2
3

2
3

.
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11 A = SΛS−1 =

1 1

1 0

 =
1

λ1 − λ2

λ1 λ2

1 1

 λ1 0

0 λ2

  1 −λ2

−1 λ1

.

SΛkS−1 =
1

λ1 − λ2

λ1 λ2

1 1

 λk
1 0

0 λk
2

  1 −λ2

−1 λ1

 1

0

 =

 −

(λk
1 − λk

2)/(λ1 − λ2)

.

12 The equation for the λ’s is λ2−λ−1 = 0 or λ2 = λ+1. Multiply by λk to get λk+2 = λk+1+λk.

13 Direct computation gives L0, . . . , L10 as 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123. My calculator gives

λ10
1 = (1.618 . . .)10 = 122.991 . . ..

14 The rule Fk+2 = Fk+1 + Fk produces the pattern: even, odd, odd, even, odd, odd, . . .

15 (a) True (b) False (c) False (might have 2 or 3 independent eigenvectors).

16 (a) False: don’t know λ (b) True: missing an eigenvector (c) True.

17 A =

 8 3

−3 2

 (or other), A =

 9 4

−4 1

, A =

 10 5

−5 0

; only eigenvectors are (c,−c).

18 The rank of A− 3I is one. Changing any entry except a12 = 1 makes A diagonalizable.

19 SΛkS−1 approaches zero if and only if every |λ| < 1; Bk → 0.

20 Λ =

1 0

0 .2

 and S =

1 1

1 −1

; Λk →

1 0

0 0

 and SΛkS−1 →

 1
2

1
2

1
2

1
2

: steady state.

21 Λ =

 .9 0

0 .3

, S =

3 −3

1 1

; B10

3

1

 = (.9)10

3

1

, B10

 3

−1

 = (.3)10

 3

−1

, B10

6

0

 =

sum of those two.

22

2 1

1 2

 =
1

2

1 −1

1 1

 3 0

0 1

  1 1

−1 1

 and Ak =
1

2

1 −1

1 1

 3k 0

0 1

  1 1

−1 1

.

23 Bk =

1 1

0 −1

 3 0

0 2

k 1 1

0 −1

 =

3k 3k − 2k

0 2k

.

24 det A = (det S)(detΛ)(det S−1) = detΛ = λ1 · · ·λn. This works when A is diagonalizable.

25 trace AB = (aq + bs) + (cr + dt) = (qa + rc) + (sb + td) = trace BA. Proof for diagonalizable

case: the trace of SΛS−1 is the trace of (ΛS−1)S = Λ which is the sum of the λ’s.

26 AB −BA = I: impossible since trace AB − trace BA = zero± trace I. E =

1 0

1 1

.

27 If A = SΛS−1 then B =

A 0

0 2A

 =

S 0

0 S

 Λ 0

0 2Λ

 S−1 0

0 S−1

.

28 The A’s form a subspace since cA and A1 + A2 have the same S. When S = I the A’s give

the subspace of diagonal matrices. Dimension 4.

29 If A has columns x 1, . . . , xn then A2 = A means every Ax i = x i. All vectors in the column

space are eigenvectors with λ = 1. Always the nullspace has λ = 0. Dimensions of those spaces

add to n by the Fundamental Theorem so A is diagonalizable (n independent eigenvectors).

30 Two problems: The nullspace and column space can overlap, so x could be in both. There

may not be r independent eigenvectors in the column space.
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31 R = S
√

ΛS−1 =

2 1

1 2

 has R2 = A.
√

B would have λ =
√

9 and λ =
√
−1 so its trace is

not real. Note

−1 0

0 −1

 can have
√
−1 = i and −i, and real square root

 0 1

−1 0

.

32 AT = A gives xTABx = (Ax )T(Bx ) ≤ ‖Ax‖‖Bx‖ by the Schwarz inequality. BT = −B

gives −xTBAx = (Bx )TAx ≤ ‖Ax‖‖Bx‖. Add these to get Heisenberg when AB −BA = I.

33 The factorizations of A and B into SΛS−1 are the same. So A = B.

34 A = SΛ1S
−1 and B = SΛ2S

−1. Diagonal matrices always give Λ1Λ2 = Λ2Λ1. Then AB = BA

from SΛ1S
−1SΛ2S

−1 = SΛ1Λ2S
−1 = SΛ2Λ1S

−1 = SΛ2S
−1SΛ1S

−1 = BA.

35 If A = SΛS−1 then the product (A − λ1I) · · · (A − λnI) equals S(Λ − λ1I) · · · (Λ − λnI)S−1.

The factor Λ− λjI is zero in row j. The product is zero in all rows = zero matrix.

36 A =

1 1

1 0

 has A2 =

2 1

1 1

 and A2 −A− I = zero matrix confirms Cayley-Hamilton.

37 (A− aI)(A− dI) =
[
0 b
0 d−a

][
a−d b
0 0

]
=

[
0 0
0 0

]
38 (a) The eigenvectors for λ = 0 always span the nullspace (b) The eigenvectors for λ 6= 0

span the column space if there are r independent eigenvectors: then algebraic multiplicity =

geometric multiplicity for each nonzero λ.

39 The eigenvalues 2,−1, 0 and their eigenvectors are in Λ and S. Then Ak = SΛkS−1 is
2 1 0

1 −1 1

1 −1 −1




2k

(−1)k

0k

 1

6


4 1 1

2 −2 −2

0 1 −1

 =
2k

6


4 2 2

2 1 1

2 1 1

+
(−1)k

3


1 −1 −1

−1 1 1

−1 1 1


Check k = 1! The (2, 2) entry of A4 is 24/6 + (−1)4/3 = 18/6 = 3. The 4-step paths that

begin and end at node 2 are 2 to 1 to 1 to 1 to 2, 2 to 1 to 2 to 1 to 2, and 2 to 1 to 3 to 1 to

2. Harder to find the eleven 4-step paths that start and end at node 1.

Notice the column times row multiplication above. Since A = AT the eigenvectors in the

columns of S are orthogonal. They are in the rows of S−1 divided by their length squared.

40 B has the same eigenvectors (1, 0) and (0, 1) as A, so B is also diagonal. The 4 equations

AB −BA =

 a b

2c 2d

−
a 2b

c 2d

 =

0 0

0 0

 have coefficient matrix with rank 2.

41 AB = BA always has the solution B = A. (In case A = 0 every B is a solution.)

42 B has λ = i and −i, so B4 has λ4 = 1 and 1; C has λ = (1±
√

3i)/2 = exp(±πi/3) so λ3 = −1

and −1. Then C3 = −I and C1024 = −C.

Problem Set 6.3, page 279

1 u1 = e4t

1

0

, u2 = et

 1

−1

. If u(0) = (5,−2), then u(t) = 3e4t

1

0

 + 2et

 1

−1

.
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2 z(t) = −2et; then dy/dt = 4y − 6et with y(0) = 5 gives y(t) = 3e4t + 2et as in Problem 1.

3

 y′

y′′

 =

0 1

4 5

  y

y′

. Then λ = 1
2
(5±

√
41).

4

6 −2

2 1

 has λ1 = 5, x 1 =

2

1

, λ2 = 2, x 2 =

1

2

; rabbits r(t) = 20e5t + 10e2t,

w(t) = 10e5t + 20e2t. The ratio of rabbits to wolves approaches 20/10; e5t dominates.

5 d(v + w)/dt = dv/dt + dw/dt = (w − v) + (v − w) = 0, so the total v + w is constant. A =−1 1

1 −1

 has λ1 = 0 and λ2 = −2 with x 1 =

1

1

 and x 2 =

 1

−1

;
v(1) = 20 + 10e−2

w(1) = 20− 10e−2
.

6 λ1 = 0 and λ2 = 2. Now v(t) = 20 + 10e2t →∞ as t →∞.

7 eAt = I + t

0 1

0 0

 + zeros =

1 t

0 1

.

8 A =

 0 1

−9 6

 has trace 6, det 9, λ = 3 and 3 with only one independent eigenvector (1, 3).

9 my′′ + by′ + ky = 0 is

m 0

0 1

 y′

y

′ =

−b −k

1 0

 y′

y

.

10 When A is skew-symmetric, ‖u(t)‖ = ‖eAtu(0)‖ = ‖u(0)‖. So eAt is an orthogonal matrix.

11 (a)

1

0

 = 1
2

1

i

 + 1
2

 1

−i

. Then u(t) = 1
2
eit

1

i

 + 1
2
e−it

 1

−i

 =

cos t

sin t

.

12 y(t) = cos t starts at y(0) = 1 and y′(0) = 0.

13 up = A−1b = 4 and u(t) = ce2t + 4; up =

4

2

 and u(t) = c1e
2t

1

0

 + c2e
3t

0

1

 +

4

2

.

14 Substituting u = ectv gives cectv = Aectv − ectb or (A − cI)v = b or v = (A − cI)−1b =

particular solution. If c is an eigenvalue then A− cI is not invertible.

15

1 0

0 −1

,

1 0

0 1

,

 1 1

−1 1

. In each case eAt blows up.

16 d/dt(eAt) = A + A2t + 1
2
A3t2 + 1

6
A4t3 + · · · = A(I + At + 1

2
A2t2 + 1

6
A3t3 + · · · ) = AeAt.

17 eBt = I + Bt =

1 −t

0 1

. Derivative =

0 −1

0 0

 = B.

18 The solution at time t + T is also eA(t+T )u(0). Thus eAt times eAT equals eA(t+T ).

19

1 1

0 0

 =

1 1

0 −1

 1 0

0 0

 1 1

0 −1

; eAt =

1 1

0 −1

 et 0

0 1

 1 1

0 −1

 =

et et − 1

0 1

.

20 If A2 = A then eAt = I+At+ 1
2
At2+ 1

6
At3+· · · = I+(et−1)A =

1 0

0 1

+

et − 1 et − 1

0 0

.

21 eA =

e e− 1

0 1

, eB =

1 −1

0 1

, eAeB 6= eBeA =

 e e− 2

0 1

 6= eA+B =

e 0

0 1

.

22 A =

1 1

0 3

 =

1 1

2 0

 3 0

0 1


0 1

2

1 − 1
2

, then eAt =

et 1
2
(e3t − et)

0 e3t

.
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23 A2 = A so A3 = A and by Problem 20 eAt = I + (et − 1)A =

et 3(et − 1)

0 1

.

24 (a) The inverse of eAt is e−At (b) If Ax = λx then eAtx = eλtx and eλt 6= 0.

25 x(t) = e4t and y(t) = −e4t is a growing solution. The correct matrix for the exchanged

unknown u = (y, x) is

 2 −2

−4 0

 and it does have the same eigenvalues as the original matrix.

Problem Set 6.4, page 290

1 A =


1 3 6

3 3 3

6 3 5

+


0 −1 −2

1 0 −3

2 3 0

 = 1
2
(A+AT)+ 1

2
(A−AT) = symmetric + skew-symmetric.

2 (ATCA)T = ATCT(AT)T = ATCA. When A is 6 by 3, C is 6 by 6 and ATCA is 3 by 3.

3 λ = 0, 2,−1 with unit eigenvectors ±(0, 1,−1)/
√

2 and ±(2, 1, 1)/
√

6 and ±(1,−1,−1)/
√

3.

4 Q =
1√
5

1 2

2 −1

.

5 Q =
1

3


2 1 2

2 −2 −1

−1 −2 2

.

6 Q =

 .8 .6

−.6 .8

 or

−.8 .6

.6 .8

 or exchange columns.

7 (a)

1 2

2 1

 has λ = −1 and 3 (b) The pivots have the same signs as the λ’s

(c) trace = λ1 + λ2 = 2, so A can’t have two negative eigenvalues.

8 If A3 = 0 then all λ3 = 0 so all λ = 0 as in A =

0 1

0 0

. If A is symmetric then A3 =

QΛ3QT = 0 gives Λ = 0 and the only symmetric possibility is A = Q 0 QT = zero matrix.

9 If λ is complex then λ is also an eigenvalue (Ax = λx ). Always λ + λ is real. The trace is real

so the third eigenvalue must be real.

10 If x is not real then λ = xTAx/xTx is not necessarily real. Can’t assume real eigenvectors!

11

3 1

1 3

 = 2

 1
2

− 1
2

− 1
2

1
2

 + 4

 1
2

1
2

1
2

1
2

;

 9 12

12 16

 = 0

 .64 −.48

−.48 .36

 + 25

 .36 .48

.48 .64


12 [ x 1 x 2 ] is an orthogonal matrix so P1 + P2 = x 1x

T
1 + x 2x

T
2 = [ x 1 x 2 ]

xT
1

xT
2

 = I;

P1P2 = x 1(x
T
1 x 2)x

T
2 = 0. Second proof: P1P2 = P1(I − P1) = P1 − P1 = 0 since P 2

1 = P1.

13 λ = ib and −ib; A =


0 3 0

−3 0 4

0 −4 0

 has det(A− λI) = −λ3 − 25λ = 0 and λ = 0, 5i, −5i.
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14 Skew-symmetric and orthogonal; λ = i, i, −i, −i to have trace zero.

15 A has λ = 0, 0 and only one independent eigenvector x = (i, 1).

16 (a) If Az = λy and ATy = λz then B[ y ; −z ] = [−Az ; ATy ] = −λ[ y ; −z ]. So −λ is

also an eigenvalue of B. (b) ATAz = AT(λy) = λ2z . The eigenvalues of ATA are ≥ 0

(c) λ = −1, −1, 1, 1; x 1 = (1, 0,−1, 0), x 2 = (0, 1, 0,−1), x 3 = (1, 0, 1, 0), x 4 = (0, 1, 0, 1).

17 The eigenvalues of B are 0,
√

2, −
√

2 with x 1 = (1,−1, 0), x 2 = (1, 1,
√

2), x 3 = (1, 1,−
√

2).

18 y is in the nullspace of A and x is in the column space. A = AT has column space = row

space, and this is perpendicular to the nullspace. Then yTx = 0. If Ax = λx and Ay = βy

then shift by β: (A− βI)x = (λ− β)x and (A− βI)y = 0 and again x ⊥ y .

19 B has eigenvectors in S =


1 0 1

0 1 0

0 0 1 + d

 →


1 0 1

0 1 0

0 0 2

; independent but not perpendicular.

20 λ = −5 and 5 have the same signs as the pivots −3 and 25/3.

21 (a) False. A =

1 2

0 1

 (b) True (c) True. A−1 = QΛ−1QT is also symmetric (d) False.

22 If AT = −A then ATA = AAT = −A2. If A is orthogonal then ATA = AAT = I.

A =

 a 1

−1 d

 is normal only if a = d. Then x =

1

i

 is perpendicular to

 1

−i

.

23 A and AT have the same λ’s but the order of the x ’s can change. A =

 0 1

−1 0

 has λ1 = i

and λ2 = −i with x 1 = (1, i) for A but x 1 = (1,−i) for AT.

24 A is invertible, orthogonal, permutation, diagonalizable, Markov; B is projection, diagonaliz-

able, Markov. QR, SΛS−1, QΛQT possible for A; SΛS−1 and QΛQT possible for B.

25 Symmetry gives QΛQT when b = 1; repeated λ and no S when b = −1; singular if b = 0.

26 Orthogonal and symmetric requires |λ| = 1 and λ real, so every λ = ±1. Then A = ±I or

A = QΛQT =

cos θ − sin θ

sin θ cos θ

 1 0

0 −1

  cos θ sin θ

− sin θ cos θ

=

cos 2θ sin 2θ

sin 2θ − cos 2θ

= reflection.

27 Eigenvectors (1, 0) and (1, 1) give a 45◦ angle even with AT very close to A.

28 The roots of λ2 + bλ + c = 0 differ by
√

b2 − 4c. For det(A + tB − λI) we have b = −3 − 8t

and c = 2 + 16t− t2. The minimum of b2 − 4c is 1/17 at t = 2/17. Then λ2 − λ1 = 1/
√

17.

29 We get good eigenvectors for the “symmetric part” 1
2
(P +PT) which MATLAB would recognize

as symmetric. But the projection matrix P = A(ATA)−1AT = product of 3 matrices is not

recognized as exactly symmetric.

Problem Set 6.5, page 302

1 A4 has two positive eigenvalues because a = 1 and ac− b2 = 1; xTA1x is zero for x = (1,−1)

and xTA1x < 0 for x = (6,−5).
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2
Positive definite

for −3 < b < 3

1 0

b 1

 1 b

0 9− b2

 =

1 0

b 1

 1 0

0 9− b2

 1 b

0 1

 = LDLT;

Positive definite

for c > 8

1 0

2 1

 2 4

0 c− 8

 =

1 0

2 1

 2 0

0 c− 8

 1 2

0 1

 = LDLT.

3 f(x, y) = x2 + 4xy + 9y2 = (x + 2y)2 + 5y2; f(x, y) = x2 + 6xy + 9y2 = (x + 3y)2.

4 x2 + 4xy + 3y2 = (x + 2y)2 − y2 is negative at x = 2, y = −1.

5 A =

0 1

1 0

 produces f(x, y) = [ x y ]

0 1

1 0

 x

y

 = 2xy. A has λ = 1 and −1.

6 xTATAx = (Ax )T(Ax ) = 0 only if Ax = 0. Since A has independent columns this only

happens when x = 0.

7 ATA =

1 2

2 13

 and ATA =

6 5

5 6

 are positive definite; ATA =


2 3 3

3 5 4

3 4 5

 is singular.

8 A =

3 6

6 16

 =

1 0

2 1

 3 0

0 4

 1 2

0 1

. Pivots outside squares, and L inside.

9 A =


4 −4 8

−4 4 −8

8 −8 16

 has only one pivot = 4, rank A = 1, eigenvalues are 24, 0, 0, det A = 0.

10 A =


2 −1 0

−1 2 −1

0 −1 2

 has pivots 2,
3
2
,
4
3
; A =


2 −1 −1

−1 2 −1

−1 −1 2

 is singular; A


1

1

1

 =


0

0

0

.

11 |A1| = 2, |A2| = 6, |A3| = 30. The pivots are 2/1, 6/2, 30/6.

12 A is positive definite for c > 1; determinants c, c2 − 1, c3 + 2 − 3c > 0. B is never positive

definite (determinants d− 4 and −4d + 12 are never both positive).

13 A =

1 5

5 10

 has a + c > 2b but ac < b2, so not positive definite.

14 The eigenvalues of A−1 are positive because they are 1/λ(A). And the entries of A−1 pass the

determinant tests. And xTA−1x = (A−1x )TA(A−1x ) > 0 for all x 6= 0.

15 Since xTAx > 0 and xTBx > 0 we have xT(A + B)x = xTAx + xTBx > 0 for all x 6= 0.

Then A + B is a positive definite matrix.

16 xTAx is not positive when (x1, x2, x3) = (0, 1, 0) because of the zero on the diagonal.

17 If ajj were smaller than all the eigenvalues, A−ajjI would have positive eigenvalues (so positive

definite). But A− ajjI has a zero in the (j, j) position; impossible by Problem 16.

18 If Ax = λx then xTAx = λxTx . If A is positive definite this leads to λ = xTAx/xTx > 0

(ratio of positive numbers).

19 All cross terms are xT
i x j = 0 because symmetric matrices have orthogonal eigenvectors.

20 (a) The determinant is positive, all λ > 0 (b) All projection matrices except I are singular

(c) The diagonal entries of D are its eigenvalues (d) −I has det = 1 when n is even.
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21 A is positive definite when s > 8; B is positive definite when t > 5 (check determinants).

22 R =
1√
2

1 −1

1 1

 √9
√

1

 1√
2

 1 1

−1 1

 =

2 1

1 2

; R = Q

4 0

0 2

 QT =

3 1

1 3

.

23 λ1 = 1/a2 and λ2 = 1/b2 so a = 1/
√

λ1 and b = 1/
√

λ2. The ellipse 9x2 + 16y2 = 1 has axes

with half-lengths a = 1
3

and b = 1
4
.

24 The ellipse x2 + xy + y2 = 1 has axes with half-lengths a = 1/
√

λ1 =
√

2 and b =
√

2/3.

25 A =

9 3

3 5

; C =

2 0

4 3

.

26 C = L
√

D =


3 0 0

0 1 0

0 2 2

 and C =


1 0 0

1 1 0

1 1
√

5

 have square roots of the pivots from D.

27 ax2 + 2bxy + cy2 = a(x + b
a
y)2 + ac−b2

a
y2; 2x2 + 8xy + 10y2 = 2(x + 2y)2 + 2y2.

28 det A = 10; λ = 2 and 5; x 1 = (cos θ, sin θ), x 2 = (− sin θ, cos θ); the λ’s are positive.

29 A1 =

6x2 2x

2x 2

 is positive definite if x 6= 0; f1 = ( 1
2
x2 + y)2 = 0 on the curve 1

2
x2 + y = 0;

A2 =

6x 1

1 0

 =

6 1

1 0

 is indefinite and (0, 1) is a saddle point.

30 ax2 + 2bxy + cy2 has a saddle point if ac < b2. The matrix is indefinite (λ < 0 and λ > 0).

31 If c > 9 the graph of z is a bowl, if c < 9 the graph has a saddle point. When c = 9 the graph

of z = (2x + 3y)2 is a trough staying at zero on the line 2x + 3y = 0.

32 Orthogonal matrices, exponentials eAt, matrices with det = 1 are groups. Examples of sub-

groups are orthogonal matrices with det = 1, exponentials eAn for integer n.

Problem Set 6.6, page 310

1 C = (MN)−1A(MN) so if B is similar to A and C is similar to B, then A is similar to C.

2 B = (FG−1)−1A(FG−1). If C is similar to A and also to B then A is similar to B.

3

1 0

1 0

 =

0 1

1 0

−1 0 1

0 1

 0 1

1 0

; M =

1 0

0 −1

; M =

0 1

1 0

 gives B = M−1AM .

4 A has no repeated λ so it can be diagonalized: S−1AS = Λ makes A similar to Λ.

5

1 1

0 0

,

0 0

1 1

,

1 0

1 0

,

0 1

0 1

 are similar;

1 0

0 1

 by itself and

0 1

1 0

 by itself.

6 Eight families of similar matrices: 6 matrices have λ = 0, 1; 3 matrices have λ = 1, 1 and 3 have

λ = 0, 0 (two families each!); one has λ = 1, −1; one has λ = 2, 0; two have λ = 1
2
(1±

√
5).

7 (a) (M−1AM)(M−1x ) = M−1(Ax ) = M−10 = 0 (b) The nullspaces of A and of M−1AM

have the same dimension. Different vectors and different bases.
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8

0 1

0 0

 and

0 2

0 0

 have the same line of eigenvectors and the same eigenvalues 0, 0.

9 A2 =

1 2

0 1

, A3 =

1 3

0 1

, every Ak =

1 k

0 1

. A0 =

1 0

0 1

 and A−1 =

1 −1

0 1

.

10 J2 =

c2 2c

0 c2

, J3 =

c3 3c2

0 c3

, Jk =

ck kck−1

0 ck

; J0 = I, J−1 =

c−1 −c−2

0 c−1

.

11 w(t) =
(
w(0) + tx(0) + 1

2
t2y(0) + 1

6
t3z(0)

)
e5t.

12 If M−1JM = K then JM =


m21 m22 m23 m24

0 0 0 0

m41 m42 m43 m44

0 0 0 0

 = MK =


0 m12 m13 0

0 m22 m23 0

0 m32 m33 0

0 m42 m43 0

.

That means m21 = m22 = m23 = m24 = 0 and M is not invertible.

13 (1) Choose Mi = reverse diagonal matrix to get M−1
i JiMi = MT

i in each block (2) M0 has

those blocks Mi on its block diagonal to get M−1
0 JM0 = JT. (3) AT = (M−1)TJTMT is

(M−1)TM−1
0 JM0M

T = (MM0M
T)−1A(MM0M

T), and AT is similar to A.

14 Every matrix MJM−1 will be similar to J .

15 det(M−1AM − λI) = det(M−1AM −M−1λIM) = det(M−1(A− λI)M) = det(A− λI).

16

a b

c d

 is similar to

d c

b a

;

 b a

d c

 is similar to

 c d

a b

. I is not similar to

0 1

1 0

.

17 (a) True: One has λ = 0, the other doesn’t (b) False. Diagonalize a nonsymmetric

matrix and Λ is symmetric (c) False:

 0 1

−1 0

 and

0 −1

1 0

 are similar (d) True:

All eigenvalues of A + I are increased by 1, so different from the eigenvalues of A.

18 AB = B−1(BA)B so AB is similar to BA. Also ABx = λx leads to BA(Bx ) = λ(Bx ).

19 Diagonals 6 by 6 and 4 by 4; AB has all the same eigenvalues as BA plus 6− 4 zeros.

20 (a) A = M−1BM ⇒ A2 = (M−1BM)(M−1BM) = M−1B2M (b) A may not be similar

to B = −A (but it could be!) (c)

3 1

0 4

 is diagonalizable to

3 0

0 4

 because λ1 6= λ2

(d)

3 1

0 3

 has only one eigenvector, so not diagonalizable (e) PAPT is similar to A.

21 J2 has three 1’s down the second superdiagonal, and two independent eigenvectors for λ = 0.

Its 5 by 5 Jordan form is

J3

J2

 with J3 =


0 1 0

0 0 1

0 0 0

 and J2 =

0 1

0 0

.

Note to professors: You could list all 3 by 3 and 4 by 4 Jordan J ’s:
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a 0 0

0 b 0

0 0 c

 ,


a 1 0

0 a 0

0 0 b

 ,


a 1 0

0 a 1

0 0 a

 with 3, 2, 1 eigenvectors; diag(a, b, c, d) and


a 1

a

b

c

 ,


a 1

a

b 1

b

 ,


a 1

a 1

a

b

 ,


a 1

a 1

a 1

a

 with 4, 3, 2, 1 eigenvectors.

Problem Set 6.7, page 318

1 ATA =

 5 20

20 80

 has σ2
1 = 85, v1 =

1/
√

17

4/
√

17

, v2 =

 4/
√

17

−1/
√

17

.

2 (a) AAT =

17 34

34 68

 has σ2
1 = 85, u1 =

1/
√

5

2/
√

5

 , u2 =

 2/
√

5

−1/
√

5

.

(b) Av1 =

1 4

2 8

 1/
√

17

4/
√

17

 =

 √
17

2
√

17

 =
√

85

1/
√

5

2/
√

5

 = σ1u1.

3 u1 =

1/
√

5

2/
√

5

 for the column space, v1 =

1/
√

17

4/
√

17

 for the row space, u2 =

 2/
√

5

−1/
√

5

 for

the nullspace, v2 =

 4/
√

17

−1/
√

17

 for the left nullspace.

4 ATA = AAT =

2 1

1 1

 has eigenvalues σ2
1 =

3 +
√

5

2
and σ2

2 =
3−

√
5

2
.

Since A = AT the eigenvectors of ATA are the same as for A. Since λ2 = 1−
√

5
2

is negative,

σ1 = λ1 but σ2 = −λ2. The eigenvectors are the same as in Section 6.2 for A, except for the

effect of this minus sign: u1 = v1 =

λ1/
√

1 + λ2
1

1/
√

1 + λ2
1

 and u2 = −v2 =

λ2/
√

1 + λ2
2

1/
√

1 + λ2
2

.

6 A proof that eigshow finds the SVD for 2 by 2 matrices. Starting at the orthogonal pair

V 1 = (1, 0),V 2 = (0, 1) the demo finds AV 1 and AV 2 at angle θ. After a 90◦ turn by the

mouse to V 2,−V 1 the demo finds AV 2 and −AV 1 at angle π − θ. Somewhere between, the

constantly orthogonal v1, v2 must have produced Av1 and Av2 at angle θ = π/2. Those are

the orthogonal directions for u1 and u2.

7 AAT =

2 1

1 2

 has σ2
1 = 3 with u1 =

1/
√

2

1/
√

2

 and σ2
2 = 1 with u2 =

 1/
√

2

−1/
√

2

. ATA =
1 1 0

1 2 1

0 1 1

 has σ2
1 = 3 with v1 =


1/
√

6

2/
√

6

1/
√

6

, σ2
2 = 1 with v2 =


1/
√

2

0

−1/
√

2

; and v3 =


1/
√

3

−1/
√

3

1/
√

3

.

Then

1 1 0

0 1 1

 =
[
u1 u2

] √3 0 0

0 1 0

 [
v1 v2 v3

]T
.

8 A = UV T since all σj = 1.
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9 A = 12 UV T.

10 A = WΣWT is the same as A = UΣV T.

11 Multiply UΣV T using columns (of U) times rows (of ΣV T).

12 Since AT = A we have σ2
1 = λ2

1 and σ2
2 = λ2

2. But λ2 is negative, so σ1 = 3 and σ2 = 2. The

unit eigenvectors of A are the same u1 = v1 as for ATA = AAT and u2 = −v2 (notice sign

change because σ2 = −λ2).

13 Suppose the SVD of R is R = UΣV T. Then multiply by Q. So the SVD of this A is (QU)ΣV T.

14 The smallest change in A is to set its smallest singular value σ2 to zero.

15 (a) If A changes to 4A, multiply Σ by 4. (b) AT = V ΣTUT. And if A−1 exists, it is square

and equal to (V T)−1Σ−1U−1.

16 The singular values of A + I are not σj + 1. They come from eigenvalues of (A + I)T(A + I).

17 This simulates the random walk used by Google on billions of sites to solve Ap = p. It is

like the power method of 9.3 except that it follows the links in one “walk” where the vectors

pk = Akp0 averages over all walks.

Problem Set 7.1, page 325

1 With w = 0 linearity gives T (v + 0) = T (v) + T (0). Thus T (0) = 0. With c = −1 linearity

gives T (−0) = −T (0). Thus T (0) = 0.

2 T (cv + dw) = cT (v) + dT (w); add eT (u).

3 (d) is not linear.

4 (a) S(T (v)) = v (b) S(T (v1) + T (v2)) = S(T (v1)) + S(T (v2)).

5 Choose v = (1, 1) and w = (−1, 0). Then T (v) + T (w) = v + w but T (v + w) = (0, 0).

6 (b) and (c) are linear (d) satisfies T (cv) = cT (v).

7 (a) T (T (v)) = v (b) T (T (v)) = v + (2, 2) (c) T (T (v)) = −v (d) T (T (v)) = T (v).

8 (a) Range R2, kernel {0} (b) Range R2, kernel {(0, 0, v3)} (c) Range {0},

kernel R2 (d) Range = multiples of (1, 1), kernel = multiples of (1,−1).

9 T (T (v)) = (v3, v1, v2); T 3(v) = v ; T 100(v) = T (v).

10 (a) T (1, 0) = 0 (b) (0, 0, 1) is not in the range (c) T (0, 1) = 0.

11 V = Rn, W = Rm; the outputs fill the column space; v is in the kernel if Av = 0.

12 T (v) = (4, 4); (2, 2); (2, 2); if v = (a, b) = b(1, 1) + a−b
2

(2, 0) then T (v) = b(2, 2) + (0, 0).

13 Associative gives A(M1 + M2) = AM1 + AM2. Distributive over c’s gives A(cM) = c(AM).

14 A is invertible. Multiply AM = 0 and AM = B by A−1 to get M = 0 and M = A−1B.

15 A is not invertible. AM = I is impossible. A

 2 2

−1 −1

 =

0 0

0 0

.
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16 No matrix A gives A

0 0

1 0

 =

0 1

0 0

. To professors: The matrix space has dimension 4.

Linear transformations come from 4 by 4 matrices. Those in Problems 13–15 were special.

17 (a) True (b) True (c) True (d) False.

18 T (I) = 0 but M =

0 b

0 0

 = T (M); these fill the range. M =

a 0

c d

 in the kernel.

19 If v 6= 0 is a column of B and uT 6= 0 is a row of A, choose M = uvT.

20 T (T−1(M)) = M so T−1(M) = A−1MB−1.

21 (a) Horizontal lines stay horizontal, vertical lines stay vertical (b) House squashes onto a

line (c) Vertical lines stay vertical.

23 (a) A =

a 0

0 d

 with d > 0 (b) A = 3I (c) A =

cos θ − sin θ

sin θ cos θ

.

24 (a) ad−bc = 0 (b) ad−bc > 0 (c) |ad−bc| = 1. If vectors to two corners transform

to themselves then by linearity T = I. (Fails if one corner is (0, 0).)

25 Rotate the house by 180◦ and shift one unit to the right.

27 This emphasizes that circles are transformed to ellipses (figure in Section 6.7).

30 Squeezed by 10 in y direction; flattened onto 45◦ line; rotated by 45◦ and stretched by
√

2;

flipped over and “skewed” so squares become parallelograms.

Problem Set 7.2, page 337

1 Sv1 = Sv2 = 0, Sv3 = 2v1, Sv4 = 6v2; B =


0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0

.

2 All functions v(x) = a + bx; all vectors (a, b, 0, 0).

3 A2 = B when T 2 = S and output basis = input basis.

4 Third derivative has 6 in the (1, 4) position; fourth derivative of cubic is zero.

5 A =


0 1 1

1 0 0

0 1 1

.

6 T (v1 + v2 + v3) = 2w1 + w2 + 2w3; A times (1, 1, 1) gives (2, 1, 2).

7 v = c(v2 − v3) gives T (v) = 0; nullspace is (0, c,−c); solutions are (1, 0, 0) + any (0, c,−c).

8 (1, 0, 0) is not in the column space; w1 is not in the range.

9 We don’t know T (w) unless the w ’s are the same as the v ’s. In that case the matrix is A2.

10 Rank = 2 = dimension of the range of T .
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11 A =


1 0 0

1 1 0

1 1 1

; for output


1

0

0

 choose input v = v1 − v2.

12 A−1 =


1 0 0

−1 1 0

0 −1 1

 so T−1(w1) = v1−v2, T−1(w2) = v2−v3, T−1(w3) = v3; the only

solution to T (v) = 0 is v = 0.

13 (c) is wrong because w1 is not generally in the input space.

14 (a) T (v1) = v2, T (v2) = v1 (b) T (v1) = v1, T (v2) = 0 (c) If T 2 = I and T 2 = T

then T = I.

15 (a)

2 1

5 3

 (b)

 3 −1

−5 2

 = inverse of (a) (c) A

2

6

 must be 2A

1

3

.

16 (a) M =

r s

t u

 (b) N =

a b

c d

−1

(c) ad = bc.

17 MN =

1 0

1 2

 2 1

5 3

−1

=

 3 −1

−7 3

.

18 Permutation matrix; positive diagonal matrix.

19 (a, b) = (cos θ,− sin θ). Minus sign from Q−1 = QT.

20 M =

1 1

4 5

; (a, b) = (5,−4) = first column of M−1.

21 w2(x) = 1− x2; w3(x) = 1
2
(x2 − x); y = 4w1 + 5w2 + 6w3.

22 w ’s to v ’s:


0 1 0

.5 0 −.5

.5 −1 .5

. v ’s to w ’s: inverse matrix =


1 1 1

1 0 0

1 −1 1

.

23


1 a a2

1 b b2

1 c c2




A

B

C

 =


4

5

6

; Vandermonde determinant = (b − a)(c − a)(c − b); a, b, c must

be distinct.

24 The matrix M with these nine entries must be invertible.

25 a2 = r12q1 + r22q2 gives a2 as a combination of the q ’s. So the change of basis matrix is R.

26 Row 2 of A is l21(row 1 of U)+ l22(row 2 of U). The change of basis matrix is always invertible.

27 The matrix is Λ.

28 If T is not invertible then T (v1), . . ., T (vn) will not be a basis. Then we couldn’t choose

w i = T (v i).

29 (a)

0 3

0 0

 (b)

1 0

0 0

.

30 T (x, y) = (x,−y) and then S(x,−y) = (−x,−y). Thus ST = −I.



64

31 S(T (v)) = (−1, 2) but S(v) = (−2, 1) and T (S(v)) = (1,−2).

32

cos 2(θ − α) − sin 2(θ − α)

sin 2(θ − α) cos 2(θ − α)

 rotates by 2(θ − α).

33 False, because the v ’s might not be linearly independent.

Problem Set 7.3, page 345

1 Multiply by W−1 =



1
4

1
4

1
4

1
4

1
4

1
4

− 1
4

− 1
4

1
2

− 1
2

0 0

0 0 1
2

− 1
2


. Then e = 1

4
w1 + 1

4
w2 + 1

2
w3 and v = w3 + w4.

2 The last step writes 6, 6, 2, 2 as the overall average 4, 4, 4, 4 plus the difference 2, 2, −2, −2.

Therefore c1 = 4 and c2 = 2 and c3 = 1 and c4 = 1.

3 The wavelet basis is (1, 1, 1, 1, 1, 1, 1, 1) and the long wavelet and two medium wavelets (1, 1,

−1,−1, 0, 0, 0, 0) and (0, 0, 0, 0, 1, 1,−1,−1) and 4 short wavelets with a single pair 1,−1.

4 W−1
2 =



1
2

1
2

0 0

1
2

− 1
2

0 0

0 0 1 0

0 0 0 1


and W−1

1 =



1
2

1
2

0 0

0 0 1
2

1
2

1
2

− 1
2

0 0

0 0 1
2

− 1
2


.

5 The Hadamard matrix H has orthogonal columns of length 2. So the inverse is HT/4 = H/4.

6 If V b = Wc then b = V −1Wc. The change of basis matrix is V −1W .

7 The transpose of WW−1 = I is (W−1)TWT = I. So the matrix WT (which has the w’s in its

rows) is the inverse to the matrix that has the w∗’s in its columns.

Problem Set 7.4, page 353

1 ATA =

10 20

20 40

 has λ = 50 and 0, v1 =
1√
5

1

2

, v2 =
1√
5

 2

−1

; σ1 =
√

50.

2 AAT =

 5 15

15 45

 has λ = 50 and 0, u1 =
1√
10

1

3

, u2 =
1√
10

 3

−1

.

3 Orthonormal bases: v1 for row space, v2 for nullspace, u1 for column space, u2 for N(AT).

4 The matrices with those four subspaces are multiples cA.

5 A = QH =
1√
50

7 −1

1 7

 1√
50

10 20

20 40

. H is semidefinite because A is singular.

6 A+ = V

1/
√

50 0

0 0

 UT = 1
50

1 3

2 6

; A+A =

 .2 .4

.4 .8

, AA+ =

 .1 .3

.3 .9

.
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7 ATA =

10 8

8 10

 has λ = 18 and 2, v1 = 1√
2

1

1

, v2 = 1√
2

 1

−1

, σ1 =
√

18 and σ2 =
√

2.

8 AAT =

18 0

0 2

 has u1 =

1

0

, u2 =

0

1

.

9
[
σ1u1 σ2u2

] vT
1

vT
2

 = σ1u1v
T
1 + σ2u2v

T
2 . In general this is σ1u1v

T
1 + · · ·+ σrurv

T
r .

10 Q = UV T =
1√
2

1 1

1 −1

 and K =

√18 0

0
√

2

.

11 A+ is A−1 because A is invertible.

12 ATA =


9 12 0

12 16 0

0 0 0

 has λ = 25, 0, 0 and v1 =


.6

.8

0

, v2 =


.8

−.6

0

, v3 =


0

0

1

.

AAT = [ 25 ] and σ1 = 5.

13 A = [ 1 ] [ 5 0 0 ]V T and A+ = V


.2

0

0

 [ 1 ] =


.12

.16

0

; AA+ = [ 1 ]; A+A =


.36 .48 0

.48 .64 0

0 0 0


14 Zero matrix; Σ = 0; A+ = 0 is 3 by 2.

15 If det A = 0 then rank(A) < n; thus rank(A+) < n and det A+ = 0.

16 A must be symmetric and positive definite.

17 (a) ATA is singular (b) ATAx+ = ATb (c) (I −AA+) projects onto N(AT).

18 x+ in the row space of A is perpendicular to x̂ − x+ in the nullspace of ATA = nullspace of

A. The right triangle has c2 = a2 + b2.

19 AA+p = p, AA+e = 0, A+Ax r = x r, A+Axn = 0.

20 A+ = 1
5
[ .6 .8 ] = [ .12 .16 ] and A+A = [ 1 ] and AA+ =

 .36 .48

.48 .64

.

21 L is determined by `21. Each eigenvector in S is determined by one number. The counts are

1 + 3 for LU , 1 + 2 + 1 for LDU , 1 + 3 for QR, 1 + 2 + 1 for UΣV T, 2 + 2 + 0 for SΛS−1.

22 The counts are 1 + 2 + 0 because A is symmetric.

23 Column times row multiplication gives A = UΣV T =
∑

σiu iv
T
i and also A+ = V Σ+UT =∑

σ−1
i v iu

T
i . Multiplying A+A and using orthogonality of each u i to all other uj leaves the

projection matrix A+A: A+A =
∑

1v iv
T
i . Similarly AA+ =

∑
1u iu

T
i from V V T = I.

24 The columns of Û are a basis for the column space of A. So are the first r columns of U .

Those r columns must have the form ÛM1 for some r by r invertible matrix M1. Similarly

the columns of V̂ and the first r columns of V are bases for the row space of A. So V = V̂ M2.

Keep only the r by r invertible corner Σr of Σ (the rest is all zero). Then A = UΣV T has the

required form A = ÛM1ΣrM
T
2 V̂ T with an invertible M = M1ΣrM

T
2 in the middle.

25

 0 A

AT 0

 u

v

 = σ

u

v

. That block matrix connects to ATA and AAT.
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Problem Set 8.1, page ???

1 Det AT
0 C0A0 is by direct calculation. Set c4 = 0 to find det AT

1 C1A1 = c1c2c3.

2 (AT
1 C1A1)

−1 =


1 1 1

0 1 1

0 0 1




c−1
1

c−1
2

c−1
3




1 0 0

1 1 0

1 1 1

 =


c−1
1 + c−1

2 + c−1
3 c−1

2 + c−1
3 c−1

3

c−1
2 + c−1

3 c−1
2 + c−1

3 c−1
3

c−1
3 c−1

3 c−1
3


3 The rows of the free-free matrix in equation (9) add to [ 0 0 0 ] so the right side needs

f1 + f2 + f3 = 0. For f = (−1, 0, 1) elimination gives c2u1− c2u2 = −1, c3u2− c3u3 = −1, and

0 = 0. Then uparticular = (−c−1
2 − c−1

3 ,−c−1
3 , 0). Add any multiple of unullspace = (1, 1, 1).

4

∫
− d

dx

(
c(x)

du

dx

)
dx =

[
c(0)

du

dx
(0)− c(1)

du

dx
(1)

]
= 0 so we need

∫
f(x) dx = 0.

5 −dy

dx
= f(x) gives y(x) = C −

∫ x

0

f(t) dt. Then y(1) = 0 gives C =

∫ 1

0

f(t) dt and y(x) =∫ 1

x

f(t) dt. If f(x) = 1 then y(x) = 1− x.

6 Multiply AT
1 C1A1 as columns of AT

1 times c’s times rows of A1. The first “element matrix”

c1E1 = [ 1 0 0 ]Tc1[ 1 0 0 ] has c1 in the top left corner.

7 For 5 springs and 4 masses, the 5 by 4 A has all aii = 1 and ai+1,i = −1. With C =

diag(c1, c2, c3, c4, c5) we get K = ATCA, symmetric tridiagonal with Kii = ci + ci+1 and

Ki+1,i = −ci+1. With C = I this K is the −1, 2,−1 matrix and K(2, 3, 3, 2) = (1, 1, 1, 1).

8 The solution to −u′′ = 1 with u(0) = u(1) = 0 is u(x) = 1
2
(x−x2). At x = 1

5
, 2

5
, 3

5
, 4

5
this u(x)

equals u = 2, 3, 3, 2 (discrete solution in Problem 7) times (∆x)2 = 1/25.

9 −u′′ = mg has complete solution u(x) = A+Bx− 1
2
mgx2. From u(0) = 0 we get A = 0. From

u′(1) = 0 we get B = mg. Then u(x) = 1
2
mg(2x−x2) at x = 1

3
, 2

3
, 3

3
equals mg/6, 4mg/9, mg/2.

This u(x) is not proportional to the discrete u at the meshpoints.

10 The graphs of 100 points are “discrete parabolas” starting at (0, 0): symmetric around 50 in

the fixed-fixed case, ending with slope zero in the fixed-free case.

11 Forward vs. backward differences for du/dx have a big effect on the discrete u , because that

term has the large coefficient 10 (and with 100 or 1000 we would have a real boundary layer

= near discontinuity at x = 1). The computed values are u = 0, .01, .03, .04, .05, .06, .07, .11, 0

versus u = 0, .12, .24, .36, .46, .54, .55, .43, 0. The MATLAB code is E = diag(ones(6, 1), 1);

K = 64 ∗ (2∗ eye(7)−E−E′); D = 80 ∗ (E− eye(7)); (K + D)\ones(7, 1), (K −D′)\ones(7, 1).

Problem Set 8.2, page 366

1 A =


−1 1 0

−1 0 1

0 −1 1

; nullspace contains


c

c

c

;


1

0

0

 is not orthogonal to that nullspace.

2 ATy = 0 for y = (1,−1, 1); current = 1 along edge 1, edge 3, back on edge 2 (full loop).
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3 U =


−1 1 0

0 −1 1

0 0 0

; tree from edges 1 and 2.

4 Ax = b is solvable for b = (1, 1, 0) and not solvable for b = (1, 0, 0); b must be orthogonal to

y = (1,−1, 1); b1 − b2 + b3 = 0 is the third equation after elimination.

5 Kirchhoff’s Current Law ATy = f is solvable for f = (1,−1, 0) and not solvable for f = (1, 0, 0);

f must be orthogonal to (1, 1, 1) in the nullspace.

6 ATAx =


2 −1 −1

−1 2 −1

−1 −1 2

 x =


3

−3

0

 = f produces x =


1

−1

0

 +


c

c

c

; potentials 1, −1, 0 and

currents −Ax = 2, 1, −1; f sends 3 units into node 1 and out from node 2.

7 AT


1

2

2

 A =


3 −1 −2

−1 3 −2

−2 −2 4

; f =


1

0

−1

 yields x =


5/4

1

7/8

+


c

c

c

; potentials 5
4
, 1, 7

8

and currents −CAx = 1
4
, 3

4
, 1

4
.

8 A =



−1 1 0 0

−1 0 1 0

0 −1 1 0

0 −1 0 1

0 0 −1 1


leads to x =


1

1

1

1

 and y =



−1

1

−1

0

0


,



0

0

1

−1

1


.

9 Elimination on Ax = b always leads to yTb = 0 which is −b1 +b2−b3 = 0 and b3−b4 +b5 = 0

(y ’s from Problem 8 in the left nullspace). This is Kirchhoff’s Voltage Law around the loops.

10 U =



−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 0

0 0 0 0



is the matrix that keeps

edges 1, 2, 4; other trees

from 1, 2, 5; 1, 3, 4; 1, 3, 5;

1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.

11 ATA =


2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2


diagonal entry = number

of edges into the node

off-diagonal entry = −1

if nodes are connected.

12 (1) The nullspace and rank of ATA and A are always the same (2) ATA is always positive

semidefinite because xTATAx = ‖Ax‖2 ≥ 0. Not positive definite because rank is only 3 and

(1, 1, 1, 1) is in the nullspace (3) Real eigenvalues all ≥ 0 because positive semidefinite.

13 ATCAx =


4 −2 −2 0

−2 8 −3 −3

−2 −3 8 −3

0 −3 −3 6

 x =


1

0

0

−1

 gives potentials x = ( 5
12

, 1
6
, 1

6
, 0) (grounded x4 = 0

and solved 3 equations); y = −CAx = ( 2
3
, 2

3
, 0, 1

2
, 1

2
).

14 ATCAx = 0 for x = (c, c, c, c); then f must be orthogonal to x .
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15 n−m + 1 = 7− 7 + 1 = 1 loop.

16 5− 7 + 3 = 1; 5− 8 + 4 = 1.

17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f1 + · · ·+ f9 = 0

(c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.

18 Complete graph has 5 + 4 + 3 + 2 + 1 = 15 edges; tree has 5 edges.

Problem Set 8.3, page 373

1 λ = 1 and .75; (A− I)x = 0 gives x = (.6, .4).

2 A =

 .6 −1

.4 1

 1

.75

  1 1

−.4 .6

;

Ak approaches

 .6 −1

.4 −1

 1 0

0 0

  1 1

−.4 .6

 =

 .6 .6

.4 .4

.

3 λ = 1 and .8, x = (1, 0); λ = 1 and −.8, x = ( 5
9
, 4

9
); λ = 1, 1

4
, and 1

4
, x = ( 1

3
, 1

3
, 1

3
).

4 AT always has the eigenvector (1, 1, . . . , 1) for λ = 1.

5 The steady state is (0, 0, 1) = all dead.

6 If Ax = λx , add components on both sides to find s = λs. If λ 6= 1 the sum must be s = 0.

7

 .8 .3

.2 .7

 =

 .6 −1

.4 1

 1

.5

  1 1

−.4 .6

; A16 has the same factors except now (.5)16.

8 (.5)k → 0 gives Ak → A∞; any A =

 .6 + .4a .6− .6a

.4− .4a .4 + .6a

 with − 2
3
≤ a ≤ 1.

9 u1 = (0, 0, 1, 0); u2 = (0, 1, 0, 0); u3 = (1, 0, 0, 0); u4 = u0. The eigenvalues 1, i, −1, −i are

all on the unit circle. This Markov matrix contains zeros; a positive matrix has one largest

eigenvalue.

10 M2 is still nonnegative; [ 1 · · · 1 ]M = [ 1 · · · 1 ] so multiply by M to find

[ 1 · · · 1 ]M2 = [ 1 · · · 1 ] ⇒ columns of M2 add to 1.

11 λ = 1 and a + d− 1 from the trace; steady state is a multiple of x 1 = (b, 1− a).

12 Last row .2, .3, .5 makes A = AT; rows also add to 1 so (1, . . . , 1) is also an eigenvector of A.

13 B has λ = 0 and −.5 with x 1 = (.3, .2) and x 2 = (−1, 1); e−.5t approaches zero and the

solution approaches c1e
0tx 1 = c1x 1.

14 Each column of B = A− I adds to zero. Then λ1 = 0 and e0t = 1.

15 The eigenvector is x = (1, 1, 1) and Ax = (.9, .9, .9).

16 (I − A)(I + A + A2 + . . .) = I + A + A2 + . . . − (A + A2 + A3 + . . .) = I. This says that

I + A + A2 + . . . is (I −A)−1. When A =

0 .5

1 0

, A2 = 1
2
I, A3 = 1

2
A, A4 = 1

4
I and the

series adds to

1 + 1
2

+ . . . 1
2

+ 1
4

+ . . .

1 + 1
2

+ . . . 1 + 1
2

+ . . .

 =

2 1

2 2

 = (I −A)−1.
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17

0 1

0 0

 and

 0 4

.2 0

 have λmax < 1.

18 p =

8

6

 and

130

32

; I −

 .5 1

.5 0

 has no inverse.

19 λ = 1 (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).

20 No, A has an eigenvalue λ = 1 and (I −A)−1 does not exist.

Problem Set 8.4, page 382

1 Feasible set = line segment from (6, 0) to (0, 3); minimum cost at (6, 0), maximum at (0, 3).

2 Feasible set is 4-sided with corners (0, 0), (6, 0), (2, 2), (0, 6). Minimize 2x− y at (6, 0).

3 Only two corners (4, 0, 0) and (0, 2, 0); choose x1 very negative, x2 = 0, and x3 = x1 − 4.

4 From (0, 0, 2) move to x = (0, 1, 1.5) with the constraint x1 + x2 + 2x3 = 4. The new cost

is 3(1) + 8(1.5) = $15 so r = −1 is the reduced cost. The simplex method also checks

x = (1, 0, 1.5) with cost 5(1) + 8(1.5) = $17 so r = 1 (more expensive).

5 Cost = 20 at start (4, 0, 0); keeping x1 + x2 + 2x3 = 4 move to (3, 1, 0) with cost 18 and

r = −2; or move to (2, 0, 1) with cost 17 and r = −3. Choose x3 as entering variable and move

to (0, 0, 2) with cost 14. Another step to reach (0, 4, 0) with minimum cost 12.

6 c = [ 3 5 7 ] has minimum cost 12 by the Ph.D. since x = (4, 0, 0) is minimizing. The dual

problem maximizes 4y subject to y ≤ 3, y ≤ 5, y ≤ 7. Maximum = 12.

Problem Set 8.5, page 387

1
∫ 2π

0
cos(j+k)x dx =

[
sin(j+k)x

j+k

]2π

0
= 0 and similarly

∫ 2π

0
cos(j−k)x dx = 0 (in the denominator

notice j − k 6= 0). If j = k then
∫ 2π

0
cos2 jx dx = π.

2
∫ 1

−1
(1)(x) dx = 0,

∫ 1

−1
(1)(x2 − 1

3
) dx = 0,

∫ 1

−1
(x)(x2 − 1

3
) dx = 0. Then 2x2 = 2(x2 − 1

3
) +

0(x) + 2
3
(1).

3 w = (2,−1, 0, 0, . . .) has ‖w‖ =
√

5.

4
∫ 1

−1
(1)(x3 − cx) dx = 0 and

∫ 1

−1
(x2 − 1

3
)(x3 − cx) dx = 0 for all c (integral of an odd function).

Choose c so that
∫ 1

−1
x(x3 − cx) dx = [ 1

5
x5 − c

3
x3]1−1 = 2

5
− c 2

3
= 0. Then c = 3

5
.

5 The integrals lead to a1 = 0, b1 = 4/π, b2 = 0.

6 From equation (3) the ak are zero and bk = 4/πk. The square wave has ‖f‖2 = 2π. Then

equation (6) is 2π = π(16/π2)( 1
12 + 1

32 + 1
52 + · · · ) so this infinite series equals π2/8.

8 ‖v‖2 = 1 + 1
2

+ 1
4

+ 1
8

+ · · · = 2 so ‖v‖ =
√

2; ‖v‖2 = 1 + a2 + a4 + · · · = 1/(1 − a2) so

‖v‖ = 1/
√

1− a2;
∫ 2π

0
(1 + 2 sin x + sin2 x) dx = 2π + 0 + π so ‖f‖ =

√
3π.
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9 (a) f(x) = 1
2

+ 1
2

(square wave) so a’s are 1
2
, 0, 0, . . ., and b’s are 2/π, 0, −2/3π, 0, 2/5π, . . .

(b) a0 =
∫ 2π

0
x dx/2π = π, other ak = 0, bk = −2/k.

10 The integral from −π to π or from 0 to 2π or from any a to a+2π is over one complete period

of the function. If f(x) is odd (and periodic) then
∫ 2π

0
f(x) dx =

∫ π

0
f(x) dx +

∫ 0

−π
f(x) dx and

those integrals cancel.

11 cos2 x = 1
2

+ 1
2

cos 2x; cos(x + π
3
) = cos x cos π

3
− sin x sin π

3
= 1

2
cos x−

√
3

2
sin x.

12 d
dx



1

cos x

sin x

cos 2x

sin 2x


=



0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 −2

0 0 0 2 0





1

cos x

sin x

cos 2x

sin 2x


.

13 dy/dx = cos x has y = yp + yn = sin x + C.

Problem Set 8.6, page 392

1 (x, y, z) has homogeneous coordinates (x, y, z, 1) and also (cx, cy, cz, c) for any nonzero c.

2 For an affine transformation we need T (origin). Then (x, y, z, 1) → xT (i) + yT (j ) + zT (k) +

T (0).

3 TT1 =


1

1

1

1 4 3 1




1

1

1

0 2 5 1

 =


1

1

1

1 6 8 1

 is translation along (1, 6, 8).

4 S =


c

c

c

1

, ST =


c

c

c

1 4 3 1

, TS =


c

c

c

c 4c 3c 1

, use vTS.

5 S =


1/8.5

1/11

1

 for a 1 by 1 square.

6


1

1

1

1 1 2 1




2

2

2

1

 =


2

2

2

2 2 4 1

.

9 n = ( 2
3
, 2

3
, 1

3
) has ‖n‖ = 1 and P = I − nnT = 1

9


5 −4 −2

−4 5 −2

−2 −2 8

.
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10 Choose (0, 0, 3) on the plane and multiply T−PT+ = 1
9


5 −4 −2 0

−4 5 −2 0

−2 −2 8 0

6 6 3 9

.

11 (3, 3, 3) projects to 1
3
(−1,−1, 4) and (3, 3, 3, 1) projects to ( 1

3
, 1

3
, 5

3
, 1).

12 A parallelogram (or a line segment).

13 The projection of a cube is a hexagon.

14 (3, 3, 3)(I − 2nnT) = ( 1
3
, 1

3
, 1

3
)


1 −8 −4

−8 1 −4

−4 −4 7

 = (− 11
3

,− 11
3

,− 1
3
).

15 (3, 3, 3, 1) → (3, 3, 0, 1) → (− 7
3
,− 7

3
,− 8

3
, 1) → (− 7

3
,− 7

3
, 1

3
, 1).

16 v = (x, y, z, 0) ending in 0; add a vector to a point.

17 Rescaled by 1/c because (x, y, z, c) is the same point as (x/c, y/c, z/c, 1).

Problem Set 9.1, page 402

1 Without exchange, pivots .001 and 1000; with exchange, pivots 1 and −1. When the pivot is

larger than the entries below it, lij = entry/pivot has |lij | ≤ 1. A =


1 1 1

0 1 −1

−1 1 1

.

2 A−1 =


9 −36 30

−36 192 −180

30 −180 180

.

3 A =


1

1

1

 =


11/16

13/12

47/60

 =


1.833

1.083

0.783

 compared with A


0

6

−3.6

 =


1.80

1.10

0.78

. ‖∆b‖ < .04 but

‖∆x‖ > 6.

4 The largest ‖x‖ = ‖A−1b‖ is 1/λmin; the largest error is 10−16/λmin.

5 Each row of U has at most w entries. Then w multiplications to substitute components of x

(already known from below) and divide by the pivot. Total for n rows is less than wn.

6 L, U , and R need 1
2
n2 multiplications to solve a linear system. Q needs n2 to multiply the

right side by Q−1 = QT. So QR takes 1.5 times longer than LU to reach x .

7 On column j of I, back substitution needs 1
2
j2 multiplications (only the j by j upper left block

is involved). Then 1
2
(12 + 22 + · · ·+ n2) ≈ 1

2
( 1
3
n3).
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8

1 0

2 2

 →

2 2

1 0

 →

2 2

0 −1

 = U with P =

0 1

1 0

 and L =

 1 0

.5 1

; A →


2 2 0

1 0 1

0 2 0

 →


2 2 0

0 −1 1

0 2 0

 →


2 2 0

0 2 0

0 −1 1

 →


2 2 0

0 2 0

0 0 1

 = U with P =


0 1 0

0 0 1

1 0 0

 and L =


1 0 0

0 1 0

.5 −.5 1

.

9 The cofactors are C13 = C31 = C24 = C42 = 1 and C14 = C41 = −1.

10 With 16-digit floating point arithmetic the errors ‖x − ycomputed‖ for ε = 10−3, 10−6, 10−9,

10−12, 10−15 are of order 10−16, 10−11, 10−7, 10−4, 10−3.

11 cos θ = 1/
√

10, sin θ = −3/
√

10, R = 1√
10

 1 3

−3 1

 1 −1

3 5

 = 1√
10

10 14

0 8

.

12 Eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q: either

Q = 1√
2

1 −1

1 1

 and QAQ−1 =

2 −4

0 4

 or

Q = 1√
10

1 −3

3 1

 and QAQ−1 =

4 −4

0 2

.

13 Changes in rows i and j; changes also in columns i and j.

14 QijA uses 4n multiplications (2 for each entry in rows i and j). By factoring out cos θ, the

entries 1 and ± tan θ need only 2n multiplications, which leads to 2
3
n3 for QR.

Problem Set 9.2, page 408

1 ‖A‖ = 2, c = 2/.5 = 4; ‖A‖ = 3, c = 3/1 = 3; ‖A‖ = 2+
√

2, c = (2+
√

2)/(2−
√

2) = 5.83.

2 ‖A‖ = 2, c = 1; ‖A‖ =
√

2, c = infinite (singular matrix); ‖A‖ =
√

2, c = 1.

3 For the first inequality replace x by Bx in ‖Ax‖ ≤ ‖A‖‖x‖; the second inequality is just

‖Bx‖ ≤ ‖B‖‖x‖. Then ‖AB‖ = max(‖ABx‖/‖x‖) ≤ ‖A‖‖B‖.

4 Choose B = A−1 and compute ‖I‖ = 1. Then 1 ≤ ‖A‖‖A−1‖ = c(A).

5 If λmax = λmin = 1 then all λi = 1 and A = SIS−1 = I. The only matrices with ‖A‖ =

‖A−1‖ = 1 are orthogonal matrices.

6 ‖A‖ ≤ ‖Q‖‖R‖ = ‖R‖ and in reverse ‖R‖ ≤ ‖Q−1‖‖A‖ = ‖A‖.

7 The triangle inequality gives ‖Ax + Bx‖ ≤ ‖Ax‖ + ‖Bx‖. Divide by ‖x‖ and take the

maximum over all nonzero vectors to find ‖A + B‖ ≤ ‖A‖+ ‖B‖.

8 If Ax = λx then ‖Ax‖/‖x‖ = |λ| for that particular vector x . When we maximize the ratio

over all vectors we get ‖A‖ ≥ |λ|.

9

0 1

0 0

 +

0 0

1 0

 =

0 1

1 0

 has ρ(A) = 0 and ρ(B) = 0 but ρ(A + B) = 1; also AB =1 0

0 0

 has ρ(AB) = 1; thus ρ(A) is not a norm.
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10 The condition number of A−1 is ‖A−1‖‖(A−1)−1‖ = c(A). Since ATA and AAT have the same

nonzero eigenvalues, A and AT have the same norm.

11 c(A) = (1.00005 +
√

(1.00005)2 − .0001)/(1.00005−
√

).

12 det(2A) is not 2 det A; det(A + B) is not always less than det A + det B; taking |det A| does

not help. The only reasonable property is det AB = (det A)(det B). The condition number

should not change when A is multiplied by 10.

13 The residual b −Ay = (10−7, 0) is much smaller than b −Az = (.0013, .0016). But z is much

closer to the solution than y .

14 det A = 10−6 so A−1 =

 659,000 −563,000

−913,000 780,000

. Then ‖A‖ > 1, ‖A−1‖ > 106, c > 106.

15 ‖x‖ =
√

5, ‖x‖1 = 5, ‖x‖∞ = 1; ‖x‖ = 1, ‖x‖1 = 2, ‖x‖∞ = .7.

16 x2
1+· · ·+x2

n is not smaller than max(x2
i ) and not larger than x2

1+· · ·+x2
n+2|x1||x2|+· · · = ‖x‖21.

Certainly x2
1+· · ·+x2

n ≤ n max(x2
i ) so ‖x‖ ≤

√
n‖x‖∞. Choose y = (sign x1, sign x2, . . . , sign xn)

to get x · y = ‖x‖1. By Schwarz this is at most ‖x‖‖y‖ =
√

n‖x‖. Choose x = (1, 1, . . . , 1)

for maximum ratios
√

n.

17 The largest component |(x + y)i| = ‖x + y‖∞ is not larger than |xi| + |yi| ≤ ‖x‖∞ + ‖y‖∞.

The sum of absolute values |(x + y)i| is not larger than the sum of |xi| + |yi|. Therefore

‖x + y‖1 ≤ ‖x‖1 + ‖y‖1.

18 |x1|+2|x2| is a norm; min |xi| is not a norm; ‖x‖+‖x‖∞ is a norm; ‖Ax‖ is a norm provided A is

invertible (otherwise a nonzero vector has norm zero; for rectangular A we require independent

columns).

Problem Set 9.3, page 417

1 S = I and T = I −A and S−1T = I −A.

2 If Ax = λx then (I−A)x = (1−λ)x . Real eigenvalues of B = I−A have |1−λ| < 1 provided

λ is between 0 and 2.

3 This matrix A has I −A =

−1 1

1 −1

 which has |λ| = 2.

4 Always ‖AB‖ ≤ ‖A‖‖B‖. Choose A = B to find ‖B2‖ ≤ ‖B‖2. Then choose A = B2 to

find ‖B3‖ ≤ ‖B2‖‖B‖ ≤ ‖B‖3. Continue (or use induction). Since ‖B‖ ≥ max |λ(B)| it is no

surprise that ‖B‖ < 1 gives convergence.

5 Ax = 0 gives (S − T )x = 0. Then Sx = Tx and S−1Tx = x . Then λ = 1 means that the

errors do not approach zero.

6 Jacobi has S−1T = 1
3

0 1

1 0

 with |λ|max = 1
3
.

7 Gauss-Seidel has S−1T =

0 1
3

0 1
9

 with |λ|max = 1
9

= (|λ|max for Jacobi)2.
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8 Jacobi has S−1T =

a

d

−1  0 −b

−c 0

 =

 0 −b/a

−c/d 0

 with |λ| = |bc/ad|1/2. Gauss-

Seidel has S−1T =

a 0

c d

−1 0 −b

0 0

 =

0 −b/a

0 −bc/ad

 with |λ| = |bc/ad|.

9 Set the trace 2 − 2ω + 1
4
ω2 equal to (ω − 1) + (ω − 1) to find ωopt = 4(2 −

√
3) ≈ 1.07. The

eigenvalues ω − 1 are about .07.

11 If the iteration gives all xnew
i = xold

i then the quantity in parentheses is zero, which means

Ax = b. For Jacobi change the whole right side to xold.

13 uk/λk
1 = c1x 1 + c2x 2(λ2/λ1)

k + · · · + cnxn(λn/λ1)
k → c1x 1 if all ratios |λi/λ1| < 1. The

largest ratio controls, when k is large. A =

0 1

1 0

 has |λ2| = |λ1| and no convergence.

14 The eigenvectors of A and also A−1 are x 1 = (.75, .25) and x 2 = (1,−1). The inverse power

method converges to a multiple of x 2.

15 The jth component of Ax 1 is 2 sin jπ
n+1

− sin (j−1)π
n+1

− sin (j+1)π
n+1

. The last two terms, using

sin(a + b) = sin a cos b + cos a sin b, combine into −2 sin jπ
n+1

cos π
n+1

. The eigenvalue is λ1 =

2− 2 cos π
n+1

.

16 u0 =

1

0

, u1 =

 2

−1

, u2 =

 5

−4

, u3 =

 14

−13

 is converging to the eigenvector direction 1

−1

 with λmax = 3.

17 A−1 =
1

3

2 1

1 2

 gives u0 =

1

0

, u1 =
1

3

2

1

, u2 =
1

9

5

4

, u3 =
1

27

14

13

 →

1

1

.

18 R = QTA =

1 cos θ sin θ

0 − sin2 θ

 and A1 = RQ =

cos θ(1 + sin2 θ) − sin3 θ

− sin3 θ − cos θ sin2 θ

.

19 If A is orthogonal then Q = A and R = I. Therefore A1 = RQ = A again.

20 If A− cI = QR then A1 = RQ + cI = Q−1(QR + cI)Q = Q−1AQ. No change in eigenvalues

from A to A1.

21 Multiply Aq j = bj−1q j−1 + ajq j + bjq j+1 by qT
j to find qT

j Aq j = aj (because the q ’s are

orthonormal). The matrix form (multiplying by columns) is AQ = QT where T is tridiagonal.

Its entries are the a’s and b’s.

22 Theoretically the q ’s are orthonormal. In reality this algorithm is not very stable. We must

stop every few steps to reorthogonalize.

23 If A is symmetric then A1 = Q−1AQ = QTAQ is also symmetric. A1 = RQ = R(QR)R−1

= RAR−1 has R and R−1 upper triangular, so A1 cannot have nonzeros on a lower diagonal

than A. If A is tridiagonal and symmetric then (by using symmetry for the upper part of A1)

the matrix A1 = RAR−1 is also tridiagonal.

24 The proof of |λ| < 1 when every absolute row sum < 1 uses |
∑

aijxj | ≤
∑
|aij ||xi| < |xi|.

(Note |xi| ≥ |xj |.) The Gershgorin circle theorem (very useful) is proved after its statement.
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25 The maximum row sums give all |λ| ≤ .9 and |λ| ≤ 3. The circles around diagonal entries give

tighter bounds. The circle |λ− .2| ≤ .7 contains the other circles |λ− .3| ≤ .5 and |λ− .1| ≤ .6

and all three eigenvalues. The circle |λ − 2| ≤ 2 contains the circle |λ − 2| ≤ 1 and all three

eigenvalues 2 +
√

2, 2, and 2−
√

2.

26 The circles |λ− aii| ≤ ri don’t include λ = 0 (so A is invertible!) when aii > ri.

27 From the last line of code, q2 is in the direction of v = Aq1−h11q1 = Aq1− (qT
1 Aq1)q1. The

dot product with q1 is zero. This is Gram-Schmidt with Aq1 as the second input vector.

28 r1 = b − α1Ab = b − (bTb/bTAb)Ab is orthogonal to r0 = b: the residuals r = b − Ax

are orthogonal at each step. To show that p1 is orthogonal to Ap0 = Ab, simplify p1 to cP1:

P1 = ‖Ab‖2b − (bTAb)Ab and c = bTb/(bTAb)2. Certainly (Ab)TP1 = 0 because AT = A.

(That simplification put α1 into p1 = b − α1Ab + (bTb − 2α1b
TAb + α2

1‖Ab‖2)b/bTb. For a

good discussion see Numerical Linear Algebra by Trefethen and Bau.)

Problem Set 10.1, page 427

1 Sums 4, −2 + 2i, 2 cos θ; products 5, −2i, 1.

2 In polar form these are
√

5eiθ, 5e2iθ, 1√
5
e−iθ,

√
5.

3 Absolute values r = 10, 100, 1
10

, 100; angles θ, 2θ, −θ, −2θ.

4 |z × w| = 6, |z + w| ≤ 5, |z/w| = 2
3
, |z − w| ≤ 5.

5 a + ib =
√

3
2

+ 1
2
i, 1

2
+

√
3

2
i, i, − 1

2
+

√
3

2
i; w12 = 1.

6 1/z has absolute value 1/r and angle −θ; 1
r
e−iθ times reiθ = 1.

7

a −b

b a

  c

d

 =

ac− bd

bc + ad

 real part

imaginary part

8

A1 −A2

A2 A1

 x 1

x 2

 =

b1

b2

.

9 2 + i; (2 + i)(1 + i) = 1 + 3i; e−iπ/2 = −i; e−iπ = −1; 1−i
1+i

= −i; (−i)103 = (−i)3 = i.

10 z + z is real; z − z is pure imaginary; zz is positive; z/z has absolute value 1.

11 If aij = i− j then det(A−λI) = −λ3−6λ = 0 gives λ = 0,
√

6i, −
√

6i (the conjugate of
√

6i).

12 (a) When a = b = d = 1 the square root becomes
√

4c; λ is complex if c < 0 (b) λ = 0

and λ = a + d when ad = bc (c) the λ’s can be real and different.

13 Complex λ’s when (a + d)2 < 4(ad− bc); write (a + d)2 − 4(ad− bc) as (a− d)2 + 4bc which is

positive when bc > 0.

14 det(P − λI) = λ4 − 1 = 0 has λ = 1, −1, i, −i with eigenvectors (1, 1, 1, 1) and (1,−1, 1,−1)

and (1, i,−1,−i) and (1,−i,−1, i) = columns of Fourier matrix.

15 det(P6 − λI) = λ6 − 1 = 0 when λ = 1, w, w2, w3, w4, w5 with w = e2πi/6 as in Figure 10.3.

16 The block matrix has real eigenvalues; so iλ is real and λ is pure imaginary.
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17 (a) 2eiπ/3, 4e2iπ/3 (b) e2iθ, e4iθ

(c) 733πi/2, 49e3πi(= −49),
√

50e−πi/4, 50e−πi/2.

18 r = 1, angle π
2
− θ; multiply by eiθ to get eiπ/2 = i.

19 a + ib = 1, i, −1, −i, ± 1√
2
± i√

2
.

20 1, e2πi/3, e4πi/3; −1, eπi/3, e−πi/3; 1.

21 cos 3θ = Re(cos θ+i sin θ)3 = cos3 θ−3 cos θ sin2 θ; sin 3θ = Im(cos θ+i sin θ)3 = 3 cos2 θ sin θ−

sin3 θ.

22 If z = 1/z then |z|2 = 1 and z is any point eiθ on the unit circle.

23 (a) ei is at angle θ = 1 on the unit circle; |ie| = 1e = 1 (c) There are infinitely many

candidates ie = ei(π/2+2πn)e.

24 (a) Unit circle (b) Spiral in to e−2π (c) Circle continuing around to angle θ = 2π2.

Problem Set 10.2, page 436

1 ‖u‖ =
√

9 = 3, ‖v‖ =
√

3, uHv = 3i + 2, vHu = −3i + 2 (conjugate of uHv).

2 AHA =


2 0 1 + i

0 2 1 + i

1− i 1− i 2

 and AAH =

3 1

1 3

 are Hermitian matrices.

3 z = multiple of (1 + i, 1 + i,−2); Az = 0 gives zHAH = 0H so z (not z !) is orthogonal to all

columns of AH (using complex inner product zH times column).

4 The four fundamental subspaces are C(A), N(A), C(AH), N(AH).

5 (a) (AHA)H = AHAHH = AHA again (b) If AHAz = 0 then (zHAH)(Az ) = 0. This is

‖Az‖2 = 0 so Az = 0. The nullspaces of A and AHA are the same. AHA is invertible when

N(A) = {0}.

6 (a) False: A =

 0 1

−1 0

 (b) True: −i is not an eigenvalue if A = AH (c) False.

7 cA is still Hermitian for real c; (iA)H = −iAH = −iA is skew-Hermitian.

8 Orthogonal, invertible, unitary, factorizable into QR.

9 P 2 =


0 0 1

1 0 0

0 1 0

, P 3 = I, P 100 = P 99P = P ; λ = cube roots of 1 = 1, e2πi/3, e4πi/3.

10 (1, 1, 1), (1, e2πi/3, e4πi/3), (1, e4πi/3, e2πi/3) are orthogonal (complex inner product!) because

P is an orthogonal matrix—and therefore unitary.

11 C =


2 5 4

4 2 5

5 4 2

 = 2+5P +4P 2 has λ = 2+5+4 = 11, 2+5e2πi/3+4e4πi/3, 2+5e4πi/3+4e8πi/3.
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12 If UHU = I then U−1(UH)−1 = U−1(U−1)H = I so U−1 is also unitary.

Also (UV )H(UV ) = V HUHUV = V HV = I so UV is unitary.

13 The determinant is the product of the eigenvalues (all real).

14 (zHAH)(Az ) = ‖Az‖2 is positive unless Az = 0; with independent columns this means z = 0;

so AHA is positive definite.

15 A = 1√
3

 1 −1 + i

1 + i 1

 2 0

0 −1

 1√
3

 1 1− i

−1− i 1

.

16 K = (iAT in Problem 15) = 1√
3

 1 −1− i

1− i 1

 2i 0

0 −i

 1√
3

 1 1 + i

−1 + i 1

;

λ’s are imaginary.

17 Q = 1√
2

 1 −i

−i 1

 cos θ + i sin θ 0

0 cos θ − i sin θ

 1√
2

1 i

i 1

 has |λ| = 1.

18 V = 1
L

1 +
√

3 −1 + i

1 + i 1 +
√

3

 1 0

0 −1

 1
L

1 +
√

3 1− i

−1− i 1 +
√

3

 with L2 = 6 + 2
√

3 has |λ| = 1.

V = V H gives real λ, trace zero gives λ = 1, −1.

19 The v ’s are columns of a unitary matrix U . Then z = UUHz = (multiply by columns)

= v1(v
H
1 z ) + · · ·+ vn(vH

nz ).

20 Don’t multiply e−ix times eix; conjugate the first, then
∫ 2π

0
e2ix dx = [e2ix/2i]2π

0 = 0.

21 z = (1, i,−2) completes an orthogonal basis for C3.

22 R + iS = (R + iS)H = RT − iST; R is symmetric but S is skew-symmetric.

23 Cn has dimension n; the columns of any unitary matrix are a basis: (i, 0, . . . , 0), . . .,

(0, . . . , 0, i)

24 [ 1 ] and [−1 ]; any [ eiθ ];

 a b + ic

b− ic d

;

 w eiφz

−z eiφw

 with |w|2 + |z|2 = 1.

25 Eigenvalues of AH are complex conjugates of eigenvalues of A: det(A−λI) = 0 gives det(AH−

λI) = 0.

26 (I − 2uuH)H = I − 2uuH; (I − 2uuH)2 = I − 4uuH + 4u(uHu)uH = I; the matrix uuH

projects onto the line through u .

27 Unitary means UHU = I or (AT− iBT)(A+ iB) = (ATA+BTB)+ i(ATB−BTA) = I. Then

ATA + BTB = I and ATB −BTA = 0 which makes the block matrix orthogonal.

28 We are given A + iB = (A + iB)H = AT − iBT. Then A = AT and B = −BT.

29 AA−1 = I gives (A−1)HAH = I. Therefore (A−1)H = (AH)−1 = A−1 and A−1 is Hermitian.

30 A =

1− i 1− i

−1 2

 1 0

0 4

 1
6

2 + 2i −2

1 + i 2

 = SΛS−1.
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Problem Set 10.3, page 444

1 Equation (3) is correct using i2 = −1 in the last two rows and three columns.

2 F−1 =


1

1

1

1


1
2


1 1

1 i2

1 1

1 i2


1
2


1 1

1 1

1 −1

−i i

 = 1
4
FH.

3 F =


1

1

1

1




1 1

1 i2

1 1

1 i2




1 1

1 1

1 −1

i −i

.

4 D =


1

e2πi/6

e4πi/6

 and F3 =


1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3

.

5 F−1w = v and F−1v = 1
4
w .

6 (F4)
2 =


4 0 0 0

0 0 0 4

0 0 4 0

0 4 0 0

 and (F4)
4 = 16I.

7 c =


1

0

1

0

 →


1

1

0

0

 →


2

0

0

0

 →


2

0

2

0

 = Fc;


0

1

0

1

 →


0

0

1

1

 →


0

0

2

0

 →


2

0

−2

0

.

8 c → (1, 1, 1, 1, 0, 0, 0, 0) → (4, 0, 0, 0, 0, 0, 0, 0) → (4, 0, 0, 0, 4, 0, 0, 0) which is F8c. The second

vector becomes (0, 0, 0, 0, 1, 1, 1, 1) → (0, 0, 0, 0, 4, 0, 0, 0) →

(4, 0, 0, 0,−4, 0, 0, 0).

9 If w64 = 1 then w2 is a 32nd root of 1 and
√

w is a 128th root of 1.

10 For every integer n, the nth roots of 1 add to zero.

11 The eigenvalues of P are 1, i, i2 = −1, and i3 = −i.

12 Λ = diag(1, i, i2, i3); P =


0 1 0

0 0 1

1 0 0

 and PT lead to λ3 − 1 = 0.

13 e1 = c0 + c1 + c2 + c3 and e2 = c0 + c1i + c2i
2 + c3i

3; E contains the four eigenvalues of C.

14 Eigenvalues e1 = 2−1−1 = 0, e2 = 2−i−i3 = 2, e3 = 2−(−1)−(−1) = 4, e4 = 2−i3−i9 = 2.

Check trace 0 + 2 + 4 + 2 = 8.

15 Diagonal E needs n multiplications, Fourier matrix F and F−1 need 1
2
n log2 n multiplications

each by the FFT. Total much less than the ordinary n2.

16 (c0+c2)+(c1+c3); then (c0−c2)+i(c1−c3); then (c0+c2)−(c1+c3); then (c0−c2)−i(c1−c3).

These steps are the FFT!


