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PREFACE

Material Covered
This book presents an introduction to linear algebra and to some of its signif-
icant applications. It is designed for a course at the freshman or sophomore
level. There is more than enough material for a semester or quarter course.
By omitting certain sections, it is possible in a one-semester or quarter course
to cover the essentials of linear algebra (including eigenvalues and eigenvec-
tors), to show how the computer is used, and to explore some applications of
linear algebra. It is no exaggeration to say that with the many applications
of linear algebra in other areas of mathematics, physics, biology, chemistry,
engineering, statistics, economics, finance, psychology, and sociology, linear
algebra is the undergraduate course that will have the most impact on students’
lives. The level and pace of the course can be readily changed by varying the
amount of time spent on the theoretical material and on the applications. Cal-
culus is not a prerequisite; examples and exercises using very basic calculus
are included and these are labeled “Calculus Required.”

The emphasis is on the computational and geometrical aspects of the sub-
ject, keeping abstraction to a minimum. Thus we sometimes omit proofs of
difficult or less-rewarding theorems while amply illustrating them with exam-
ples. The proofs that are included are presented at a level appropriate for the
student. We have also devoted our attention to the essential areas of linear
algebra; the book does not attempt to cover the subject exhaustively.

What Is New in the Eighth Edition
We have been very pleased by the widespread acceptance of the first seven
editions of this book. The reform movement in linear algebra has resulted in a
number of techniques for improving the teaching of linear algebra. The Lin-
ear Algebra Curriculum Study Group and others have made a number of
important recommendations for doing this. In preparing the present edition,
we have considered these recommendations as well as suggestions from fac-
ulty and students. Although many changes have been made in this edition, our
objective has remained the same as in the earlier editions:

to develop a textbook that will help the instructor to teach and
the student to learn the basic ideas of linear algebra and to see
some of its applications.

To achieve this objective, the following features have been developed in this
edition:

xi



xii Preface

New sections have been added as follows:

• Section 1.5, Matrix Transformations, introduces at a very early stage
some geometric applications.

• Section 2.1, An Introduction to Coding, along with supporting material
on bit matrices throughout the first six chapters, provides an introduc-
tion to the basic ideas of coding theory.

• Section 7.3, More on Coding, develops some simple codes and their
basic properties related to linear algebra.

More geometric material has been added.
New exercises at all levels have been added. Some of these are more
open-ended, allowing for exploration and discovery, as well as writing.
More illustrations have been added.
MATLAB M-files have been upgraded to more modern versions.
Key terms have been added at the end of each section, reflecting the in-
creased emphasis in mathematics on communication skills.
True/false questions now ask the student to justify his or her answer, pro-
viding an additional opportunity for exploration and writing.
Another 25 true/false questions have been added to the cumulative review
at the end of the first ten chapters.
A glossary, new to this edition, has been added.

Exercises
The exercises in this book are grouped into three classes. The first class, Ex-
ercises, contains routine exercises. The second class, Theoretical Exercises,
includes exercises that fill in gaps in some of the proofs and amplify material
in the text. Some of these call for a verbal solution. In this technological age,
it is especially important to be able to write with care and precision; therefore,
exercises of this type should help to sharpen such skills. These exercises can
also be used to raise the level of the course and to challenge the more capa-
ble and interested student. The third class consists of exercises developed by
David R. Hill and are labeled by the prefix ML (for MATLAB). These exer-
cises are designed to be solved by an appropriate computer software package.

Answers to all odd-numbered numerical and ML exercises appear in the
back of the book. At the end of Chapter 10, there is a cumulative review of
the introductory linear algebra material presented thus far, consisting of 100
true/false questions (with answers in the back of the book). The Instructor’s
Solutions Manual, containing answers to all even-numbered exercises and
solutions to all theoretical exercises, is available (to instructors only) at no
cost from the publisher.

Presentation
We have learned from experience that at the sophomore level, abstract ideas
must be introduced quite gradually and must be supported by firm foundations.
Thus we begin the study of linear algebra with the treatment of matrices as
mere arrays of numbers that arise naturally in the solution of systems of linear
equations—a problem already familiar to the student. Much attention has been
devoted from one edition to the next to refine and improve the pedagogical
aspects of the exposition. The abstract ideas are carefully balanced by the
considerable emphasis on the geometrical and computational foundations of
the subject.
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Material Covered
Chapter 1 deals with matrices and their properties. Section 1.5, Matrix Trans-
formations, new to this edition, provides an early introduction to this important
topic. This chapter is comprised of two parts: The first part deals with matri-
ces and linear systems and the second part with solutions of linear systems.
Chapter 2 (optional) discusses applications of linear equations and matrices to
the areas of coding theory, computer graphics, graph theory, electrical circuits,
Markov chains, linear economic models, and wavelets. Section 2.1, An Intro-
duction to Coding, new to this edition, develops foundations for introducing
some basic material in coding theory. To keep this material at a very elemen-
tary level, it is necessary to use lengthier technical discussions. Chapter 3
presents the basic properties of determinants rather quickly. Chapter 4 deals
with vectors in Rn . In this chapter we also discuss vectors in the plane and
give an introduction to linear transformations. Chapter 5 (optional) provides
an opportunity to explore some of the many geometric ideas dealing with vec-
tors in R2 and R3; we limit our attention to the areas of cross product in R3

and lines and planes.
In Chapter 6 we come to a more abstract notion, that of a vector space.

The abstraction in this chapter is more easily handled after the material cov-
ered on vectors in Rn . Chapter 7 (optional) presents three applications of real
vector spaces: QR-factorization, least squares, and Section 7.3, More on Cod-
ing, new to this edition, introducing some simple codes. Chapter 8, on eigen-
values and eigenvectors, the pinnacle of the course, is now presented in three
sections to improve pedagogy. The diagonalization of symmetric matrices is
carefully developed.

Chapter 9 (optional) deals with a number of diverse applications of eigen-
values and eigenvectors. These include the Fibonacci sequence, differential
equations, dynamical systems, quadratic forms, conic sections, and quadric
surfaces. Chapter 10 covers linear transformations and matrices. Section 10.4
(optional), Introduction to Fractals, deals with an application of a certain non-
linear transformation. Chapter 11 (optional) discusses linear programming, an
important application of linear algebra. Section 11.4 presents the basic ideas
of the theory of games. Chapter 12, provides a brief introduction to MATLAB

(which stands for MATRIX LABORATORY), a very useful software package
for linear algebra computation, described below.

Appendix A covers complex numbers and introduces, in a brief but thor-
ough manner, complex numbers and their use in linear algebra. Appendix B
presents two more advanced topics in linear algebra: inner product spaces and
composite and invertible linear transformations.

Applications
Most of the applications are entirely independent; they can be covered either
after completing the entire introductory linear algebra material in the course
or they can be taken up as soon as the material required for a particular appli-
cation has been developed. Brief Previews of most applications are given at
appropriate places in the book to indicate how to provide an immediate appli-
cation of the material just studied. The chart at the end of this Preface, giving
the prerequisites for each of the applications, and the Brief Previews will be
helpful in deciding which applications to cover and when to cover them.

Some of the sections in Chapters 2, 5, 7, 9, and 11 can also be used as in-
dependent student projects. Classroom experience with the latter approach has
met with favorable student reaction. Thus the instructor can be quite selective
both in the choice of material and in the method of study of these applications.
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End of Chapter Material
Every chapter contains a summary of Key Ideas for Review, a set of supple-
mentary exercises (answers to all odd-numbered numerical exercises appear
in the back of the book), and a chapter test (all answers appear in the back of
the book).

MATLAB Software
Although the ML exercises can be solved using a number of software pack-
ages, in our judgment MATLAB is the most suitable package for this pur-
pose. MATLAB is a versatile and powerful software package whose cor-
nerstone is its linear algebra capability. MATLAB incorporates profession-
ally developed quality computer routines for linear algebra computation. The
code employed by MATLAB is written in the C language and is upgraded as
new versions of MATLAB are released. MATLAB is available from The Math
Works, Inc., 24 Prime Park Way, Natick, MA 01760, (508) 653-1415; e-mail:
info@mathworks.com and is not distributed with this book or the instruc-
tional routines developed for solving the ML exercises. The Student Edition
of MATLAB also includes a version of Maple, thereby providing a symbolic
computational capability.

Chapter 12 of this edition consists of a brief introduction to MATLAB’s
capabilities for solving linear algebra problems. Although programs can
be written within MATLAB to implement many mathematical algorithms, it
should be noted that the reader of this book is not asked to write programs.
The user is merely asked to use MATLAB (or any other comparable soft-
ware package) to solve specific numerical problems. Approximately 24 in-
structional M-files have been developed to be used with the ML exercises
in this book and are available from the following Prentice Hall Web site:
www.prenhall.com/kolman. These M-files are designed to transform
many of MATLAB’s capabilities into courseware. This is done by providing
pedagogy that allows the student to interact with MATLAB, thereby letting the
student think through all the steps in the solution of a problem and relegating
MATLAB to act as a powerful calculator to relieve the drudgery of a tedious
computation. Indeed, this is the ideal role for MATLAB (or any other similar
package) in a beginning linear algebra course, for in this course, more than in
many others, the tedium of lengthy computations makes it almost impossible
to solve a modest-size problem. Thus, by introducing pedagogy and reining in
the power of MATLAB, these M-files provide a working partnership between
the student and the computer. Moreover, the introduction to a powerful tool
such as MATLAB early in the student’s college career opens the way for other
software support in higher-level courses, especially in science and engineer-
ing.

Supplements
Student Solutions Manual (0-13-143741-0). Prepared by Dennis Kletzing,
Stetson University, and Nina Edelman and Kathy O’Hara, Temple University,
contains solutions to all odd-numbered exercises, both numerical and theoret-
ical. It can be purchased from the publisher.

Instructor’s Solutions Manual (0-13-143742-9). Contains answers to all
even-numbered exercises and solutions to all theoretical exercises—is avail-
able (to instructors only) at no cost from the publisher.

Optional combination packages. Provide a computer workbook free of
charge when packaged with this book.
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Linear Algebra Labs with MATLAB, by David R. Hill and David E.
Zitarelli, 3rd edition, ISBN 0-13-124092-7 (supplement and text).
Visualizing Linear Algebra with Maple, by Sandra Z. Keith, ISBN 0-13-
124095-1 (supplement and text).
ATLAST Computer Exercises for Linear Algebra, by Steven Leon, Eugene
Herman, and Richard Faulkenberry, 2nd edition, ISBN 0-13-124094-3
(supplement and text).
Understanding Linear Algebra with MATLAB, by Erwin and Margaret
Kleinfeld, ISBN 0-13-124093-5 (supplement and text).

Prerequisites for Applications

Prerequisites for Applications

Section 2.1 Material on bits in Chapter 1
Section 2.2 Section 1.4
Section 2.3 Section 1.5
Section 2.4 Section 1.6
Section 2.5 Section 1.6
Section 2.6 Section 1.7
Section 2.7 Section 1.7
Section 5.1 Section 4.1 and Chapter 3
Section 5.2 Sections 4.1 and 5.1
Section 7.1 Section 6.8
Section 7.2 Sections 1.6, 1.7, 4.2, 6.9
Section 7.3 Section 2.1
Section 9.1 Section 8.2
Section 9.2 Section 8.2
Section 9.3 Section 9.2
Section 9.4 Section 8.3
Section 9.5 Section 9.4
Section 9.6 Section 9.5
Section 10.4 Section 8.2
Sections 11.1–11.3 Section 1.6
Section 11.4 Sections 11.1–11.3

To Users of Previous Editions:

During the 29-year life of the previous seven editions of this book, the book
was primarily used to teach a sophomore-level linear algebra course. This
course covered the essentials of linear algebra and used any available extra
time to study selected applications of the subject. In this new edition we
have not changed the structural foundation for teaching the essential lin-
ear algebra material. Thus, this material can be taught in exactly the same
manner as before. The placement of the applications in a more cohesive
and pedagogically unified manner together with the newly added applica-
tions and other material should make it easier to teach a richer and more
varied course.
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TO THE STUDENT

It is very likely that this course is unlike any other mathematics course that
you have studied thus far in at least two important ways. First, it may be your
initial introduction to abstraction. Second, it is a mathematics course that may
well have the greatest impact on your vocation.

Unlike other mathematics courses, this course will not give you a toolkit
of isolated computational techniques for solving certain types of problems.
Instead, we will develop a core of material called linear algebra by introduc-
ing certain definitions and creating procedures for determining properties and
proving theorems. Proving a theorem is a skill that takes time to master, so at
first we will only expect you to read and understand the proof of a theorem.
As you progress in the course, you will be able to tackle some simple proofs.
We introduce you to abstraction slowly, keep it to a minimum, and amply il-
lustrate each abstract idea with concrete numerical examples and applications.
Although you will be doing a lot of computations, the goal in most problems
is not merely to get the “right” answer, but to understand and explain how to
get the answer and then interpret the result.

Linear algebra is used in the everyday world to solve problems in other
areas of mathematics, physics, biology, chemistry, engineering, statistics, eco-
nomics, finance, psychology, and sociology. Applications that use linear alge-
bra include the transmission of information, the development of special effects
in film and video, recording of sound, Web search engines on the Internet, and
economic analyses. Thus, you can see how profoundly linear algebra affects
you. A selected number of applications are included in this book, and if there
is enough time, some of these may be covered in this course. Additionally,
many of the applications can be used as self-study projects.

There are three different types of exercises in this book. First, there are
computational exercises. These exercises and the numbers in them have been
carefully chosen so that almost all of them can readily be done by hand. When
you use linear algebra in real applications, you will find that the problems are
much bigger in size and the numbers that occur in them are not always “nice.”
This is not a problem because you will almost certainly use powerful software
to solve them. A taste of this type of software is provided by the third type of
exercises. These are exercises designed to be solved by using a computer and
MATLAB, a powerful matrix-based application that is widely used in industry.
The second type of exercises are theoretical. Some of these may ask you to
prove a result or discuss an idea. In today’s world, it is not enough to be
able to compute an answer; you often have to prepare a report discussing your
solution, justifying the steps in your solution, and interpreting your results.

xix



xx To the Student

These types of exercises will give you experience in writing mathematics.
Mathematics uses words, not just symbols.

How to Succeed in Linear Algebra
• Read the book slowly with pencil and paper at hand. You might have to

read a particular section more than once. Take the time to verify the steps
marked “verify” in the text.
• Make sure to do your homework on a timely basis. If you wait until the

problems are explained in class, you will miss learning how to solve a
problem by yourself. Even if you can’t complete a problem, try it any-
way, so that when you see it done in class you will understand it more
easily. You might find it helpful to work with other students on the mate-
rial covered in class and on some homework problems.
• Make sure that you ask for help as soon as something is not clear to you.

Each abstract idea in this course is based on previously developed ideas—
much like laying a foundation and then building a house. If any of the
ideas are fuzzy to you or missing, your knowledge of the course will not
be sturdy enough for you to grasp succeeding ideas.
• Make use of the pedagogical tools provided in this book. At the end of

each section we have a list of key terms; at the end of each chapter we
have a list of key ideas for review, supplementary exercises, and a chapter
test. At the end of the first ten chapters (completing the core linear algebra
material in the course) we have a comprehensive review consisting of 100
true/false questions that ask you to justify your answer. Finally, there is
a glossary for linear algebra at the end of the book. Answers to the odd-
numbered exercises appear at the end of the book. The Student Solutions
Manual provides detailed solutions to all odd-numbered exercises, both
numerical and theoretical. It can be purchased from the publisher (ISBN
0-13-143742-9).

We assure you that your efforts to learn linear algebra well will be amply
rewarded in other courses and in your professional career.

We wish you much success in your study of linear algebra.
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1C H A P T E R

LINEAR EQUATIONS
AND MATRICES

1.1 LINEAR SYSTEMS
A good many problems in the natural and social sciences as well as in en-
gineering and the physical sciences deal with equations relating two sets of
variables. An equation of the type

ax = b,

expressing the variable b in terms of the variable x and the constant a, is
called a linear equation. The word linear is used here because the graph of
the equation above is a straight line. Similarly, the equation

a1x1 + a2x2 + · · · + anxn = b, (1)

expressing b in terms of the variables x1, x2, . . . , xn and the known constants
a1, a2, . . . , an , is called a linear equation. In many applications we are given
b and the constants a1, a2, . . . , an and must find numbers x1, x2, . . . , xn , called
unknowns, satisfying (1).

A solution to a linear equation (1) is a sequence of n numbers s1, s2, . . . ,

sn , which has the property that (1) is satisfied when x1 = s1, x2 = s2, . . . ,
xn = sn are substituted in (1).

Thus x1 = 2, x2 = 3, and x3 = −4 is a solution to the linear equation

6x1 − 3x2 + 4x3 = −13,

because
6(2)− 3(3)+ 4(−4) = −13.

This is not the only solution to the given linear equation, since x1 = 3, x2 = 1,
and x3 = −7 is another solution.

More generally, a system of m linear equations in n unknowns x1, x2,

. . . , xn, or simply a linear system, is a set of m linear equations each in n
unknowns. A linear system can be conveniently denoted by

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm .

(2)

1



2 Chapter 1 Linear Equations and Matrices

The two subscripts i and j are used as follows. The first subscript i indi-
cates that we are dealing with the i th equation, while the second subscript j is
associated with the j th variable x j . Thus the i th equation is

ai1x1 + ai2x2 + · · · + ainxn = bi .

In (2) the ai j are known constants. Given values of b1, b2, . . . , bm , we want to
find values of x1, x2, . . . , xn that will satisfy each equation in (2).

A solution to a linear system (2) is a sequence of n numbers s1, s2, . . . , sn ,
which has the property that each equation in (2) is satisfied when x1 = s1,
x2 = s2, . . . , xn = sn are substituted in (2).

To find solutions to a linear system, we shall use a technique called the
method of elimination. That is, we eliminate some of the unknowns by
adding a multiple of one equation to another equation. Most readers have
had some experience with this technique in high school algebra courses. Most
likely, the reader has confined his or her earlier work with this method to lin-
ear systems in which m = n, that is, linear systems having as many equations
as unknowns. In this course we shall broaden our outlook by dealing with
systems in which we have m = n, m < n, and m > n. Indeed, there are
numerous applications in which m �= n. If we deal with two, three, or four
unknowns, we shall often write them as x , y, z, and w. In this section we use
the method of elimination as it was studied in high school. In Section 1.5 we
shall look at this method in a much more systematic manner.

EXAMPLE 1 The director of a trust fund has $100,000 to invest. The rules of the trust state
that both a certificate of deposit (CD) and a long-term bond must be used.
The director’s goal is to have the trust yield $7800 on its investments for the
year. The CD chosen returns 5% per annum and the bond 9%. The director
determines the amount x to invest in the CD and the amount y to invest in the
bond as follows:

Since the total investment is $100,000, we must have x + y = 100,000.
Since the desired return is $7800, we obtain the equation 0.05x + 0.09y =
7800. Thus, we have the linear system

x + y = 100,000
0.05x + 0.09y = 7800.

(3)

To eliminate x , we add (−0.05) times the first equation to the second, obtain-
ing

x + y = 100,000
0.04y = 2800,

where the second equation has no x term. We have eliminated the unknown
x . Then solving for y in the second equation, we have

y = 70,000,

and substituting y into the first equation of (3), we obtain

x = 30,000.

To check that x = 30,000, y = 70,000 is a solution to (3), we verify that
these values of x and y satisfy each of the equations in the given linear system.
Thus, the director of the trust should invest $30,000 in the CD and $70,000 in
the long-term bond.
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EXAMPLE 2 Consider the linear system

x − 3y = −7
2x − 6y = 7.

(4)

Again, we decide to eliminate x . We add (−2) times the first equation to the
second one, obtaining

x − 3y = −7
0x + 0y = 21

whose second equation makes no sense. This means that the linear system (4)
has no solution. We might have come to the same conclusion from observing
that in (4) the left side of the second equation is twice the left side of the first
equation, but the right side of the second equation is not twice the right side
of the first equation.

EXAMPLE 3 Consider the linear system

x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2.

(5)

To eliminate x , we add (−2) times the first equation to the second one and
(−3) times the first equation to the third one, obtaining

x + 2y + 3z = 6
− 7y − 4z = 2
− 5y − 10z = −20.

(6)

We next eliminate y from the second equation in (6) as follows. Multiply the
third equation of (6) by

(− 1
5

)
, obtaining

x + 2y + 3z = 6
− 7y − 4z = 2

y + 2z = 4.

Next we interchange the second and third equations to give

x + 2y + 3z = 6
y + 2z = 4

− 7y − 4z = 2.

(7)

We now add 7 times the second equation to the third one, to obtain

x + 2y + 3z = 6
y + 2z = 4

10z = 30.

Multiplying the third equation by 1
10 , we have

x + 2y + 3z = 6
y + 2z = 4

z = 3.

(8)
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Substituting z = 3 into the second equation of (8), we find y = −2. Substi-
tuting these values of z and y into the first equation of (8), we have x = 1.
To check that x = 1, y = −2, z = 3 is a solution to (5), we verify that
these values of x , y, and z satisfy each of the equations in (5). Thus, x = 1,
y = −2, z = 3 is a solution to the linear system (5). The importance of the
procedure lies in the fact that the linear systems (5) and (8) have exactly the
same solutions. System (8) has the advantage that it can be solved quite easily,
giving the foregoing values for x , y, and z.

EXAMPLE 4 Consider the linear system

x + 2y − 3z = −4
2x + y − 3z = 4.

(9)

Eliminating x , we add (−2) times the first equation to the second one, to
obtain

x + 2y − 3z = −4
− 3y + 3z = 12.

(10)

Solving the second equation in (10) for y, we obtain

y = z − 4,

where z can be any real number. Then, from the first equation of (10),

x = −4− 2y + 3z

= −4− 2(z − 4)+ 3z

= z + 4.

Thus a solution to the linear system (9) is

x = r + 4

y = r − 4

z = r,

where r is any real number. This means that the linear system (9) has infinitely
many solutions. Every time we assign a value to r , we obtain another solution
to (9). Thus, if r = 1, then

x = 5, y = −3, and z = 1

is a solution, while if r = −2, then

x = 2, y = −6, and z = −2

is another solution.

EXAMPLE 5 Consider the linear system

x + 2y = 10
2x − 2y = −4
3x + 5y = 26.

(11)
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Eliminating x , we add (−2) times the first equation to the second and (−3)

times the first equation to the third one, obtaining

x + 2y = 10
− 6y = −24
−y = −4.

Multiplying the second equation by
(− 1

6

)
and the third one by (−1), we have

x + 2y = 10
y = 4
y = 4,

(12)

which has the same solutions as (11). Substituting y = 4 in the first equation
of (12), we obtain x = 2. Hence x = 2, y = 4 is a solution to (11).

EXAMPLE 6 Consider the linear system

x + 2y = 10
2x − 2y = −4
3x + 5y = 20.

(13)

To eliminate x , we add (−2) times the first equation to the second one and
(−3) times the first equation to the third one, to obtain

x + 2y = 10
− 6y = −24
−y = −10.

Multiplying the second equation by
(− 1

6

)
and the third one by (−1), we have

the system

x + 2y = 10
y = 4
y = 10,

(14)

which has no solution. Since (14) and (13) have the same solutions, we con-
clude that (13) has no solutions.

These examples suggest that a linear system may have one solution (a
unique solution), no solution, or infinitely many solutions.

We have seen that the method of elimination consists of repeatedly per-
forming the following operations:

1. Interchange two equations.
2. Multiply an equation by a nonzero constant.
3. Add a multiple of one equation to another.

It is not difficult to show (Exercises T.1 through T.3) that the method of
elimination yields another linear system having exactly the same solutions as
the given system. The new linear system can then be solved quite readily.
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As you have probably already observed, the method of elimination has
been described, so far, in general terms. Thus we have not indicated any rules
for selecting the unknowns to be eliminated. Before providing a systematic
description of the method of elimination, we introduce, in the next section, the
notion of a matrix, which will greatly simplify our notation and will enable us
to develop tools to solve many important problems.

Consider now a linear system of two equations in the unknowns x and y:

a1x + a2 y = c1

b1x + b2 y = c2.
(15)

The graph of each of these equations is a straight line, which we denote by
l1 and l2, respectively. If x = s1, y = s2 is a solution to the linear system
(15), then the point (s1, s2) lies on both lines l1 and l2. Conversely, if the point
(s1, s2) lies on both lines l1 and l2, then x = s1, y = s2 is a solution to the
linear system (15). (See Figure 1.1.) Thus we are led geometrically to the
same three possibilities mentioned previously.

1. The system has a unique solution; that is, the lines l1 and l2 intersect at
exactly one point.

2. The system has no solution; that is, the lines l1 and l2 do not intersect.
3. The system has infinitely many solutions; that is, the lines l1 and l2 coin-

cide.

Figure 1.1 � y

x

(b) No solution

l1
l2

y

x

(a) A unique solution

l1

l2

y

x

(c) Infinitely many solutions

l1

l2

Next, consider a linear system of three equations in the unknowns x , y,
and z:

a1x + b1 y + c1z = d1

a2x + b2 y + c2z = d2

a3x + b3 y + c3z = d3.

(16)

The graph of each of these equations is a plane, denoted by P1, P2, and P3,
respectively. As in the case of a linear system of two equations in two un-
knowns, the linear system in (16) can have a unique solution, no solution, or
infinitely many solutions. These situations are illustrated in Figure 1.2. For a
more concrete illustration of some of the possible cases, the walls (planes) of
a room intersect in a unique point, a corner of the room, so the linear system
has a unique solution. Next, think of the planes as pages of a book. Three
pages of a book (when held open) intersect in a straight line, the spine. Thus,
the linear system has infinitely many solutions. On the other hand, when the
book is closed, three pages of a book appear to be parallel and do not intersect,
so the linear system has no solution.
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Figure 1.2 �

(a) A unique solution

P1

P2

(c) Infinitely many solutions(b) No solution

P3

P2

P1

P3
P1

P3

P2

EXAMPLE 7 (Production Planning) A manufacturer makes three different types of chem-
ical products: A, B, and C . Each product must go through two processing
machines: X and Y . The products require the following times in machines X
and Y :

1. One ton of A requires 2 hours in machine X and 2 hours in machine Y .
2. One ton of B requires 3 hours in machine X and 2 hours in machine Y .
3. One ton of C requires 4 hours in machine X and 3 hours in machine Y .

Machine X is available 80 hours per week and machine Y is available 60 hours
per week. Since management does not want to keep the expensive machines
X and Y idle, it would like to know how many tons of each product to make
so that the machines are fully utilized. It is assumed that the manufacturer can
sell as much of the products as is made.

To solve this problem, we let x1, x2, and x3 denote the number of tons
of products A, B, and C , respectively, to be made. The number of hours that
machine X will be used is

2x1 + 3x2 + 4x3,

which must equal 80. Thus we have

2x1 + 3x2 + 4x3 = 80.

Similarly, the number of hours that machine Y will be used is 60, so we have

2x1 + 2x2 + 3x3 = 60.

Mathematically, our problem is to find nonnegative values of x1, x2, and x3 so
that

2x1 + 3x2 + 4x3 = 80
2x1 + 2x2 + 3x3 = 60.

This linear system has infinitely many solutions. Following the method
of Example 4, we see that all solutions are given by

x1 = 20− x3

2
x2 = 20− x3

x3 = any real number such that 0 ≤ x3 ≤ 20,
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since we must have x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0. When x3 = 10, we have

x1 = 5, x2 = 10, x3 = 10

while
x1 = 13

2 , x2 = 13, x3 = 7

when x3 = 7. The reader should observe that one solution is just as good as the
other. There is no best solution unless additional information or restrictions
are given.

Key Terms
Linear equation Solution to a linear system No solution
Unknowns Method of elimination Infinitely many solutions
Solution to a linear equation Unique solution Manipulations on a linear system
Linear system

1.1 Exercises
In Exercises 1 through 14, solve the given linear system by
the method of elimination.

1. x + 2y = 8
3x − 4y = 4

2. 2x − 3y + 4z = −12
x − 2y + z = −5

3x + y + 2z = 1

3. 3x + 2y + z = 2
4x + 2y + 2z = 8

x − y + z = 4

4. x + y = 5
3x + 3y = 10

5. 2x + 4y + 6z = −12
2x − 3y − 4z = 15
3x + 4y + 5z = −8

6. x + y − 2z = 5
2x + 3y + 4z = 2

7. x + 4y − z = 12
3x + 8y − 2z = 4

8. 3x + 4y − z = 8
6x + 8y − 2z = 3

9. x + y + 3z = 12
2x + 2y + 6z = 6

10. x + y = 1
2x − y = 5
3x + 4y = 2

11. 2x + 3y = 13
x − 2y = 3

5x + 2y = 27

12. x − 5y = 6
3x + 2y = 1
5x + 2y = 1

13. x + 3y = −4
2x + 5y = −8

x + 3y = −5

14. 2x + 3y − z = 6
2x − y + 2z = −8
3x − y + z = −7

15. Given the linear system

2x − y = 5

4x − 2y = t ,

(a) determine a value of t so that the system has a
solution.

(b) determine a value of t so that the system has no
solution.

(c) how many different values of t can be selected in
part (b)?

16. Given the linear system

2x + 3y − z = 0

x − 4y + 5z = 0,

(a) verify that x1 = 1, y1 = −1, z1 = −1 is a solution.

(b) verify that x2 = −2, y2 = 2, z2 = 2 is a solution.

(c) is x = x1 + x2 = −1, y = y1 + y2 = 1, and
z = z1 + z2 = 1 a solution to the linear system?

(d) is 3x , 3y, 3z, where x , y, and z are as in part (c), a
solution to the linear system?

17. Without using the method of elimination, solve the
linear system

2x + y − 2z = −5

3y + z = 7

z = 4.

18. Without using the method of elimination, solve the
linear system

4x = 8

−2x + 3y = −1

3x + 5y − 2z = 11.

19. Is there a value of r so that x = 1, y = 2, z = r is a
solution to the following linear system? If there is, find
it.

2x + 3y − z = 11

x − y + 2z = −7

4x + y − 2z = 12
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20. Is there a value of r so that x = r , y = 2, z = 1 is a
solution to the following linear system? If there is, find
it.

3x − 2z = 4

x − 4y + z = −5

−2x + 3y + 2z = 9

21. Describe the number of points that simultaneously lie in
each of the three planes shown in each part of Figure 1.2.

22. Describe the number of points that simultaneously lie in
each of the three planes shown in each part of Figure 1.3.

P3

P2

P1

(a)

P1

P3

P2

(b)

(c)

P3

P1 P2

Figure 1.3 �

23. An oil refinery produces low-sulfur and high-sulfur fuel.
Each ton of low-sulfur fuel requires 5 minutes in the
blending plant and 4 minutes in the refining plant; each
ton of high-sulfur fuel requires 4 minutes in the blending
plant and 2 minutes in the refining plant. If the blending
plant is available for 3 hours and the refining plant is
available for 2 hours, how many tons of each type of fuel
should be manufactured so that the plants are fully
utilized?

24. A plastics manufacturer makes two types of plastic:
regular and special. Each ton of regular plastic requires
2 hours in plant A and 5 hours in plant B; each ton of
special plastic requires 2 hours in plant A and 3 hours in
plant B. If plant A is available 8 hours per day and plant
B is available 15 hours per day, how many tons of each
type of plastic can be made daily so that the plants are
fully utilized?

25. A dietician is preparing a meal consisting of foods A, B,
and C. Each ounce of food A contains 2 units of protein,
3 units of fat, and 4 units of carbohydrate. Each ounce of
food B contains 3 units of protein, 2 units of fat, and 1
unit of carbohydrate. Each ounce of food C contains 3
units of protein, 3 units of fat, and 2 units of
carbohydrate. If the meal must provide exactly 25 units
of protein, 24 units of fat, and 21 units of carbohydrate,
how many ounces of each type of food should be used?

26. A manufacturer makes 2-minute, 6-minute, and
9-minute film developers. Each ton of 2-minute
developer requires 6 minutes in plant A and 24 minutes
in plant B. Each ton of 6-minute developer requires 12
minutes in plant A and 12 minutes in plant B. Each ton
of 9-minute developer requires 12 minutes in plant A
and 12 minutes in plant B. If plant A is available 10
hours per day and plant B is available 16 hours per day,
how many tons of each type of developer can be
produced so that the plants are fully utilized?

27. Suppose that the three points (1,−5), (−1, 1), and (2, 7)

lie on the parabola p(x) = ax2 + bx + c.
(a) Determine a linear system of three equations in three

unknowns that must be solved to find a, b, and c.

(b) Solve the linear system obtained in part (a) for a, b,
and c.

28. An inheritance of $24,000 is to be divided among three
trusts, with the second trust receiving twice as much as
the first trust. The three trusts pay interest at the rates of
9%, 10%, and 6% annually, respectively, and return a
total in interest of $2210 at the end of the first year. How
much was invested in each trust?

Theoretical Exercises
T.1. Show that the linear system obtained by interchanging

two equations in (2) has exactly the same solutions as
(2).

T.2. Show that the linear system obtained by replacing an
equation in (2) by a nonzero constant multiple of the
equation has exactly the same solutions as (2).

T.3. Show that the linear system obtained by replacing an

equation in (2) by itself plus a multiple of another
equation in (2) has exactly the same solutions as (2).

T.4. Does the linear system

ax + by = 0

cx + dy = 0

always have a solution for any values of a, b, c, and d?
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1.2 MATRICES
If we examine the method of elimination described in Section 1.1, we make
the following observation. Only the numbers in front of the unknowns x1, x2,
. . . , xn are being changed as we perform the steps in the method of elimina-
tion. Thus we might think of looking for a way of writing a linear system
without having to carry along the unknowns. In this section we define an ob-
ject, a matrix, that enables us to do this—that is, to write linear systems in
a compact form that makes it easier to automate the elimination method on a
computer in order to obtain a fast and efficient procedure for finding solutions.
The use of a matrix is not, however, merely that of a convenient notation. We
now develop operations on matrices (plural of matrix) and will work with ma-
trices according to the rules they obey; this will enable us to solve systems of
linear equations and solve other computational problems in a fast and efficient
manner. Of course, as any good definition should do, the notion of a matrix
provides not only a new way of looking at old problems, but also gives rise to
a great many new questions, some of which we study in this book.

DEFINITION An m × n matrix A is a rectangular array of mn real (or complex) numbers
arranged in m horizontal rows and n vertical columns:

A =



a11 a12 · · · · · · a1 j · · · a1n

a21 a22 · · · · · · a2 j · · · a2n
...

... · · · · · · ... · · · ...

ai1 ai2 · · · · · ·

✻

✛

j th column

i th rowai j · · · ain
...

...
...

...

am1 am2 · · · · · · amj · · · amn


. (1)

The ith row of A is[
ai1 ai2 · · · ain

]
(1 ≤ i ≤ m);

the jth column of A is 
a1 j

a2 j
...

amj

 (1 ≤ j ≤ n).

We shall say that A is m by n (written as m × n). If m = n, we say that A is
a square matrix of order n and that the numbers a11, a22, . . . , ann form the
main diagonal of A. We refer to the number ai j , which is in the i th row and
j th column of A, as the i, jth element of A, or the (i, j) entry of A, and we
often write (1) as

A = [
ai j

]
.

For the sake of simplicity, we restrict our attention in this book, except
for Appendix A, to matrices all of whose entries are real numbers. However,
matrices with complex entries are studied and are important in applications.
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EXAMPLE 1 Let

A =
[

1 2 3
−1 0 1

]
, B =

[
1 4
2 −3

]
, C =

 1
−1

2

 ,

D =
1 1 0

2 0 1
3 −1 2

 , E = [
3
]
, F = [−1 0 2

]
.

Then A is a 2 × 3 matrix with a12 = 2, a13 = 3, a22 = 0, and a23 = 1; B is
a 2 × 2 matrix with b11 = 1, b12 = 4, b21 = 2, and b22 = −3; C is a 3 × 1
matrix with c11 = 1, c21 = −1, and c31 = 2; D is a 3× 3 matrix; E is a 1× 1
matrix; and F is a 1 × 3 matrix. In D, the elements d11 = 1, d22 = 0, and
d33 = 2 form the main diagonal.

For convenience, we focus much of our attention in the illustrative ex-
amples and exercises in Chapters 1–7 on matrices and expressions containing
only real numbers. Complex numbers will make a brief appearance in Chap-
ters 8 and 9. An introduction to complex numbers, their properties, and exam-
ples and exercises showing how complex numbers are used in linear algebra
may be found in Appendix A.

A 1× n or an n × 1 matrix is also called an n-vector and will be denoted
by lowercase boldface letters. When n is understood, we refer to n-vectors
merely as vectors. In Chapter 4 we discuss vectors at length.

EXAMPLE 2 u = [
1 2 −1 0

]
is a 4-vector and v =

 1
−1

3

 is a 3-vector.

The n-vector all of whose entries are zero is denoted by 0.

Observe that if A is an n×n matrix, then the rows of A are 1×n matrices
and the columns of A are n × 1 matrices. The set of all n-vectors with real
entries is denoted by Rn . Similarly, the set of all n-vectors with complex
entries is denoted by Cn . As we have already pointed out, in the first seven
chapters of this book we will work almost entirely with vectors in Rn .

EXAMPLE 3 (Tabular Display of Data) The following matrix gives the airline distances
between the indicated cities (in statute miles).


London Madrid New York Tokyo

London 0 785 3469 5959
Madrid 785 0 3593 6706
New York 3469 3593 0 6757
Tokyo 5959 6706 6757 0



EXAMPLE 4 (Production) Suppose that a manufacturer has four plants each of which
makes three products. If we let ai j denote the number of units of product i
made by plant j in one week, then the 4× 3 matrix


Product 1 Product 2 Product 3

Plant 1 560 340 280
Plant 2 360 450 270
Plant 3 380 420 210
Plant 4 0 80 380


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gives the manufacturer’s production for the week. For example, plant 2 makes
270 units of product 3 in one week.

EXAMPLE 5 The wind chill table that follows shows how a combination of air temperature
and wind speed makes a body feel colder than the actual temperature. For
example, when the temperature is 10◦F and the wind is 15 miles per hour, this
causes a body heat loss equal to that when the temperature is −18◦F with no
wind.

◦F

15 10 5 0 −5 −10
mph

5 12 7 0 −5 −10 −15

10 −3 −9 −15 −22 −27 −34

15 −11 −18 −25 −31 −38 −45

20 −17 −24 −31 −39 −46 −53

This table can be represented as the matrix

A =
 5 12 7 0 −5 −10 −15

10 −3 −9 −15 −22 −27 −34
15 −11 −18 −25 −31 −38 −45
20 −17 −24 −31 −39 −46 −53

 .

EXAMPLE 6 With the linear system considered in Example 5 in Section 1.1,

x + 2y = 10
2x − 2y = −4
3x + 5y = 26,

we can associate the following matrices:

A =
1 2

2 −2
3 5

 , x =
[

x
y

]
, b =

 10
−4
26

 .

In Section 1.3, we shall call A the coefficient matrix of the linear system.

DEFINITION A square matrix A = [
ai j

]
for which every term off the main diagonal is zero,

that is, ai j = 0 for i �= j , is called a diagonal matrix.

EXAMPLE 7

G =
[

4 0
0 −2

]
and H =

−3 0 0
0 −2 0
0 0 4


are diagonal matrices.
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DEFINITION A diagonal matrix A = [
ai j

]
, for which all terms on the main diagonal are

equal, that is, ai j = c for i = j and ai j = 0 for i �= j , is called a scalar
matrix.

EXAMPLE 8 The following are scalar matrices:

I3 =
1 0 0

0 1 0
0 0 1

 , J =
[−2 0

0 −2

]
.

The search engines available for information searches and retrieval on the
Internet use matrices to keep track of the locations of information, the type of
information at a location, keywords that appear in the information, and even
the way Web sites link to one another. A large measure of the effectiveness
of the search engine Google c© is the manner in which matrices are used to
determine which sites are referenced by other sites. That is, instead of directly
keeping track of the information content of an actual Web page or of an indi-
vidual search topic, Google’s matrix structure focuses on finding Web pages
that match the search topic and then presents a list of such pages in the order
of their “importance.”

Suppose that there are n accessible Web pages during a certain month.
A simple way to view a matrix that is part of Google’s scheme is to imagine
an n × n matrix A, called the “connectivity matrix,” that initially contains all
zeros. To build the connections proceed as follows. When it is detected that
Web site j links to Web site i , set entry ai j equal to one. Since n is quite large,
about 3 billion as of December 2002, most entries of the connectivity matrix
A are zero. (Such a matrix is called sparse.) If row i of A contains many ones,
then there are many sites linking to site i . Sites that are linked to by many
other sites are considered more “important” (or to have a higher rank) by the
software driving the Google search engine. Such sites would appear near the
top of a list returned by a Google search on topics related to the information
on site i . Since Google updates its connectivity matrix about every month, n
increases over time and new links and sites are adjoined to the connectivity
matrix.

The fundamental technique used by Google c© to rank sites uses linear
algebra concepts that are somewhat beyond the scope of this course. Further
information can be found in the following sources.

1. Berry, Michael W., and Murray Browne. Understanding Search Engines—
Mathematical Modeling and Text Retrieval. Philadelphia: Siam, 1999.

2. www.google.com/technology/index.html
3. Moler, Cleve. “The World’s Largest Matrix Computation: Google’s Page

Rank Is an Eigenvector of a Matrix of Order 2.7 Billion,” MATLAB News
and Notes, October 2002, pp. 12–13.

Whenever a new object is introduced in mathematics, we must define
when two such objects are equal. For example, in the set of all rational num-
bers, the numbers 2

3 and 4
6 are called equal although they are not represented

in the same manner. What we have in mind is the definition that a
b equals c

d
when ad = bc. Accordingly, we now have the following definition.

DEFINITION Two m×n matrices A = [
ai j

]
and B = [

bi j
]

are said to be equal if ai j = bi j ,
1 ≤ i ≤ m, 1 ≤ j ≤ n, that is, if corresponding elements are equal.
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EXAMPLE 9 The matrices

A =
1 2 −1

2 −3 4
0 −4 5

 and B =
1 2 w

2 x 4
y −4 z


are equal if w = −1, x = −3, y = 0, and z = 5.

We shall now define a number of operations that will produce new matri-
ces out of given matrices. These operations are useful in the applications of
matrices.

MATRIX ADDITION

DEFINITION If A = [
ai j

]
and B = [

bi j
]

are m × n matrices, then the sum of A and B is
the m × n matrix C = [

ci j
]
, defined by

ci j = ai j + bi j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

That is, C is obtained by adding corresponding elements of A and B.

EXAMPLE 10 Let

A =
[

1 −2 4
2 −1 3

]
and B =

[
0 2 −4
1 3 1

]
.

Then

A + B =
[

1+ 0 −2+ 2 4+ (−4)

2+ 1 −1+ 3 3+ 1

]
=

[
1 0 0
3 2 4

]
.

It should be noted that the sum of the matrices A and B is defined only
when A and B have the same number of rows and the same number of columns,
that is, only when A and B are of the same size.

We shall now establish the convention that when A + B is formed, both A
and B are of the same size.

Thus far, addition of matrices has only been defined for two matrices.
Our work with matrices will call for adding more than two matrices. Theorem
1.1 in the next section shows that addition of matrices satisfies the associative
property: A + (B + C) = (A + B) + C . Additional properties of matrix
addition are considered in Section 1.4 and are similar to those satisfied by the
real numbers.

EXAMPLE 11 (Production) A manufacturer of a certain product makes three models, A, B,
and C. Each model is partially made in factory F1 in Taiwan and then finished
in factory F2 in the United States. The total cost of each product consists of
the manufacturing cost and the shipping cost. Then the costs at each factory
(in dollars) can be described by the 3× 2 matrices F1 and F2:

F1 =


Manufacturing
cost

Shipping
cost

32 40
50 80
70 20

 Model A
Model B
Model C
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F2 =


Manufacturing
cost

Shipping
cost

40 60
50 50

130 20

 Model A
Model B
Model C

The matrix F1 + F2 gives the total manufacturing and shipping costs for each
product. Thus the total manufacturing and shipping costs of a model C product
are $200 and $40, respectively.

SCALAR MULTIPLICATION

DEFINITION If A = [
ai j

]
is an m×n matrix and r is a real number, then the scalar multiple

of A by r , r A, is the m × n matrix B = [
bi j

]
, where

bi j = rai j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

That is, B is obtained by multiplying each element of A by r .

If A and B are m × n matrices, we write A + (−1)B as A − B and call
this the difference of A and B.

EXAMPLE 12 Let

A =
[

2 3 −5
4 2 1

]
and B =

[
2 −1 3
3 5 −2

]
.

Then

A − B =
[

2− 2 3+ 1 −5− 3
4− 3 2− 5 1+ 2

]
=

[
0 4 −8
1 −3 3

]
.

EXAMPLE 13 Let p = [
18.95 14.75 8.60

]
be a 3-vector that represents the current prices

of three items at a store. Suppose that the store announces a sale so that the
price of each item is reduced by 20%.

(a) Determine a 3-vector that gives the price changes for the three items.
(b) Determine a 3-vector that gives the new prices of the items.

Solution (a) Since each item is reduced by 20%, the 3-vector

0.20p = [
(0.20)18.95 (0.20)14.75 (0.20)8.60

]
= [

3.79 2.95 1.72
]

gives the price reductions for the three items.
(b) The new prices of the items are given by the expression

p− 0.20p = [
18.95 14.75 8.60

]− [
3.79 2.95 1.72

]
= [

15.16 11.80 6.88
]
.

Observe that this expression can also be written as

p− 0.20p = 0.80p.
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If A1, A2, . . . , Ak are m × n matrices and c1, c2, . . . , ck are real numbers,
then an expression of the form

c1 A1 + c2 A2 + · · · + ck Ak (2)

is called a linear combination of A1, A2, . . . , Ak , and c1, c2, . . . , ck are
called coefficients.

EXAMPLE 14 (a) If

A1 =
0 −3 5

2 3 4
1 −2 −3

 and A2 =
 5 2 3

6 2 3
−1 −2 3

 ,

then C = 3A1 − 1
2 A2 is a linear combination of A1 and A2. Using scalar

multiplication and matrix addition, we can compute C :

C = 3

0 −3 5
2 3 4
1 −2 −3

− 1

2

 5 2 3
6 2 3
−1 −2 3



=


− 5

2 −10 27
2

3 8 21
2

7
2 −5 − 21

2

 .

(b) 2
[
3 −2

] − 3
[
5 0

] + 4
[−2 5

]
is a linear combination of

[
3 −2

]
,[

5 0
]
, and

[−2 5
]
. It can be computed (verify) as

[−17 16
]
.

(c) −0.5

 1
−4
−6

 + 0.4

0.1
−4
0.2

 is a linear combination of

 1
−4
−6

 and

0.1
−4
0.2

.

It can be computed (verify) as

−0.46
0.4
3.08

.

THE TRANSPOSE OF A MATRIX
DEFINITION If A = [

ai j
]

is an m × n matrix, then the n × m matrix AT = [
aT

i j

]
, where

aT
i j = a ji (1 ≤ i ≤ n, 1 ≤ j ≤ m)

is called the transpose of A. Thus, the entries in each row of AT are the
entries in the corresponding column of A.

EXAMPLE 15 Let

A =
[

4 −2 3
0 5 −2

]
, B =

6 2 −4
3 −1 2
0 4 3

 , C =
 5 4
−3 2

2 −3

 ,

D = [
3 −5 1

]
, E =

 2
−1

3

 .
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Then

AT =
 4 0
−2 5

3 −2

 , BT =
 6 3 0

2 −1 4
−4 2 3

 ,

CT =
[

5 −3 2
4 2 −3

]
, DT =

 3
−5

1

 , and ET = [
2 −1 3

]
.

BIT MATRICES (OPTIONAL)
The majority of our work in linear algebra will use matrices and vectors whose
entries are real or complex numbers. Hence computations, like linear combi-
nations, are determined using matrix properties and standard arithmetic base
10. However, the continued expansion of computer technology has brought to
the forefront the use of binary (base 2) representation of information. In most
computer applications like video games, FAX communications, ATM money
transfers, satellite communications, DVD videos, or the generation of music
CDs, the underlying mathematics is invisible and completely transparent to
the viewer or user. Binary coded data is so prevalent and plays such a central
role that we will briefly discuss certain features of it in appropriate sections of
this book. We begin with an overview of binary addition and multiplication
and then introduce a special class of binary matrices that play a prominent role
in information and communication theory.

Binary representation of information uses only two symbols 0 and 1. In-
formation is coded in terms of 0 and 1 in a string of bits.∗ For example, the
decimal number 5 is represented as the binary string 101, which is interpreted
in terms of base 2 as follows:

5 = 1(22)+ 0(21)+ 1(20).

The coefficients of the powers of 2 determine the string of bits, 101, which
provide the binary representation of 5.

Just as there is arithmetic base 10 when dealing with the real and complex
numbers, there is arithmetic using base 2; that is, binary arithmetic. Table 1.1
shows the structure of binary addition and Table 1.2 the structure of binary
multiplication.

Table 1.1

+ 0 1

0 0 1

1 1 0

Table 1.2

× 0 1

0 0 0

1 0 1

The properties of binary arithmetic for combining representations of real
numbers given in binary form is often studied in beginning computer science
courses or finite mathematics courses. We will not digress to review such
topics at this time. However, our focus will be on a particular type of ma-
trix and vector that contain entries that are single binary digits. This class of
matrices and vectors are important in the study of information theory and the
mathematical field of error-correcting codes (also called coding theory).

∗A bit is a binary digit; that is, either a 0 or 1.
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DEFINITION An m × n bit matrix† is a matrix all of whose entries are (single) bits. That
is, each entry is either 0 or 1.

A bit n-vector (or vector) is a 1× n or n × 1 matrix all of whose entries
are bits.

EXAMPLE 16 A =
1 0 0

1 1 1
0 1 0

 is a 3× 3 bit matrix.

EXAMPLE 17 v =


1
1
0
0
1

 is a bit 5-vector and u = [
0 0 0 0

]
is a bit 4-vector.

The definitions of matrix addition and scalar multiplication apply to bit
matrices provided we use binary (or base 2) arithmetic for all computations
and use the only possible scalars 0 and 1.

EXAMPLE 18 Let A =
1 0

1 1
0 1

 and B =
1 1

0 1
1 0

. Using the definition of matrix addition

and Table 1.1, we have

A + B =
1+ 1 0+ 1

1+ 0 1+ 1
0+ 1 1+ 0

 =
0 1

1 0
1 1

 .

Linear combinations of bit matrices or bit n-vectors are quite easy to com-
pute using the fact that the only scalars are 0 and 1 together with Tables 1.1
and 1.2.

EXAMPLE 19 Let c1 = 1, c2 = 0, c3 = 1, u1 =
[

1
0

]
, u2 =

[
0
1

]
, and u3 =

[
1
1

]
. Then

c1u1 + c2u2 + c3u3 = 1

[
1
0

]
+ 0

[
0
1

]
+ 1

[
1
1

]
=

[
1
0

]
+

[
0
0

]
+

[
1
1

]
=

[
(1+ 0)+ 1
(0+ 0)+ 1

]
=

[
1+ 1
0+ 1

]
=

[
0
1

]
.

From Table 1.1 we have 0 + 0 = 0 and 1 + 1 = 0. Thus the additive
inverse of 0 is 0 (as usual) and the additive inverse of 1 is 1. Hence to compute
the difference of bit matrices A and B we proceed as follows:

A − B = A + (inverse of 1) B = A + 1B = A + B.

We see that the difference of bit matrices contributes nothing new to the alge-
braic relationships among bit matrices.

†A bit matrix is also called a Boolean matrix.
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Key Terms
Matrix n-vector (or vector) Scalar multiple of a matrix
Rows Diagonal matrix Difference of matrices
Columns Scalar matrix Linear combination of matrices
Size of a matrix 0, the zero vector Transpose of a matrix
Square matrix Rn , the set of all n-vectors Bit
Main diagonal of a matrix Google c© Bit (or Boolean) matrix
Element (or entry) of a matrix Equal matrices Upper triangular matrix
i j th element Matrix addition Lower triangular matrix
(i, j) entry Scalar multiplication

1.2 Exercises
1. Let

A =
[

2 −3 5
6 −5 4

]
, B =

 4
−3

5

 ,

and

C =
 7 3 2
−4 3 5

6 1 −1

 .

(a) What is a12, a22, a23?

(b) What is b11, b31?

(c) What is c13, c31, c33?

2. If [
a + b c + d
c − d a − b

]
=

[
4 6

10 2

]
,

find a, b, c, and d.

3. If [
a + 2b 2a − b
2c + d c − 2d

]
=

[
4 −2
4 −3

]
,

find a, b, c, and d.

In Exercises 4 through 7, let

A =
[

1 2 3
2 1 4

]
, B =

1 0
2 1
3 2

 ,

C =
3 −1 3

4 1 5
2 1 3

 , D =
[

3 −2
2 4

]
,

E =
2 −4 5

0 1 4
3 2 1

 , F =
[−4 5

2 3

]
,

and O =
0 0 0

0 0 0
0 0 0

 .

4. If possible, compute the indicated linear combination:

(a) C + E and E + C (b) A + B

(c) D − F (d) −3C + 5O

(e) 2C − 3E (f) 2B + F

5. If possible, compute the indicated linear combination:
(a) 3D + 2F

(b) 3(2A) and 6A

(c) 3A + 2A and 5A

(d) 2(D + F) and 2D + 2F

(e) (2+ 3)D and 2D + 3D

(f) 3(B + D)

6. If possible, compute:
(a) AT and (AT )T

(b) (C + E)T and CT + E T

(c) (2D + 3F)T

(d) D − DT

(e) 2AT + B

(f) (3D − 2F)T

7. If possible, compute:
(a) (2A)T (b) (A − B)T

(c) (3BT − 2A)T

(d) (3AT − 5BT )T

(e) (−A)T and −(AT )

(f) (C + E + F T )T

8. Is the matrix

[
3 0
0 2

]
a linear combination of the

matrices

[
1 0
0 1

]
and

[
1 0
0 0

]
? Justify your answer.

9. Is the matrix

[
4 1
0 −3

]
a linear combination of the

matrices

[
1 0
0 1

]
and

[
1 0
0 0

]
? Justify your answer.

10. Let

A =
1 2 3

6 −2 3
5 2 4

 and I3 =
1 0 0

0 1 0
0 0 1

 .

If λ is a real number, compute λI3 − A.



20 Chapter 1 Linear Equations and Matrices

Exercises 11 through 15 involve bit matrices.

11. Let A =
1 0 1

1 1 0
0 1 1

, B =
0 1 1

1 0 1
1 1 0

, and

C =
1 1 0

0 1 1
1 0 1

. Compute each of the following.

(a) A + B (b) B + C (c) A + B + C

(d) A + CT (e) B − C

12. Let A =
[

1 0
1 0

]
, B =

[
1 0
0 1

]
, C =

[
1 1
0 0

]
, and

D =
[

0 0
1 0

]
. Compute each of the following.

(a) A + B (b) C + D (c) A + B + (C + D)T

(d) C − B (e) A − B + C − D

13. Let A =
[

1 0
0 0

]
.

(a) Find B so that A + B =
[

0 0
0 0

]
.

(b) Find C so that A + C =
[

1 1
1 1

]
.

14. Let u = [
1 1 0 0

]
. Find the bit 4-vector v so that

u+ v = [
1 1 0 0

]
.

15. Let u = [
0 1 0 1

]
. Find the bit 4-vector v so that

u+ v = [
1 1 1 1

]
.

Theoretical Exercises
T.1. Show that the sum and difference of two diagonal

matrices is a diagonal matrix.

T.2. Show that the sum and difference of two scalar
matrices is a scalar matrix.

T.3. Let

A =
a b c

c d e
e e f

 .

(a) Compute A − AT .

(b) Compute A + AT .

(c) Compute (A + AT )T .

T.4. Let O be the n × n matrix all of whose entries are
zero. Show that if k is a real number and A is an n × n
matrix such that k A = O , then k = 0 or A = O .

T.5. A matrix A = [
ai j

]
is called upper triangular if

ai j = 0 for i > j . It is called lower triangular if
ai j = 0 for i < j .



a11 a12 · · · · · · · · · a1n

0 a22 · · · · · · · · · a2n

0 0 a33 · · · · · · a3n

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · 0 ann


Upper triangular matrix

(The elements below the main diagonal are zero.)



a11 0 0 · · · · · · 0
a21 a22 0 · · · · · · 0
a31 a32 a33 0 · · · 0
...

...
...

. . .
...

...
...

...
. . . 0

an1 an2 an3 · · · · · · ann


Lower triangular matrix

(The elements above the main diagonal are zero.)

(a) Show that the sum and difference of two upper
triangular matrices is upper triangular.

(b) Show that the sum and difference of two lower
triangular matrices is lower triangular.

(c) Show that if a matrix is both upper and lower
triangular, then it is a diagonal matrix.

T.6. (a) Show that if A is an upper triangular matrix, then
AT is lower triangular.

(b) Show that if A is a lower triangular matrix, then
AT is upper triangular.

T.7. If A is an n × n matrix, what are the entries on the
main diagonal of A − AT ? Justify your answer.

T.8. If x is an n-vector, show that x+ 0 = x.

Exercises T.9 through T.18 involve bit matrices.

T.9. Make a list of all possible bit 2-vectors. How many are
there?

T.10. Make a list of all possible bit 3-vectors. How many are
there?

T.11. Make a list of all possible bit 4-vectors. How many are
there?
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T.12. How many bit 5-vectors are there? How many bit
n-vectors are there?

T.13. Make a list of all possible 2× 2 bit matrices. How
many are there?

T.14. How many 3× 3 bit matrices are there?

T.15. How many n × n bit matrices are there?

T.16. Let 0 represent OFF and 1 represent ON and

A =
 ON ON OFF

OFF ON OFF
OFF ON ON

 .

Find the ON/OFF matrix B so that A + B is a matrix
with each entry OFF.

T.17. Let 0 represent OFF and 1 represent ON and

A =
 ON ON OFF

OFF ON OFF
OFF ON ON

 .

Find the ON/OFF matrix B so that A + B is a matrix
with each entry ON.

T.18. A standard light switch has two positions (or states);
either on or off. Let bit matrix

A =
1 0

0 1
1 1


represent a bank of light switches where 0 represents
OFF and 1 represents ON.
(a) Find a matrix B so that A + B will represent the

bank of switches with the state of each switch
“reversed.”

(b) Let

C =
1 1

0 0
1 0

 .

Will the matrix B from part (a) also “reverse” that
state of the bank of switches represented by C?
Verify your answer.

(c) If A is any m × n bit matrix representing a bank of
switches, determine an m × n bit matrix B so that
A + B “reverses” all the states of the switches in
A. Give reasons why B will “reverse” the states
in A.

MATLAB Exercises
In order to use MATLAB in this section, you should first read
Sections 12.1 and 12.2, which give basic information about
MATLAB and about matrix operations in MATLAB. You are
urged to do any examples or illustrations of MATLAB

commands that appear in Sections 12.1 and 12.2 before
trying these exercises.

ML.1. In MATLAB, enter the following matrices.

A =
 5 1 2
−3 0 1

2 4 1

 ,

B =
 4 ∗ 2 2/3

1/201 5− 8.2
0.00001 (9+ 4)/3

 .

Using MATLAB commands, display the following.
(a) a23, b32, b12

(b) row1(A), col3(A), row2(B)

(c) Type MATLAB command format long and
display matrix B. Compare the elements of B
from part (a) with the current display. Note that
format short displays four decimal places
rounded. Reset the format to format short.

ML.2. In MATLAB, type the command H = hilb(5); (Note
that the last character is a semicolon, which
suppresses the display of the contents of matrix H .
See Section 12.1.) For more information on the hilb
command, type help hilb. Using MATLAB

commands, do the following:

(a) Determine the size of H .

(b) Display the contents of H .

(c) Display the contents of H as rational numbers.

(d) Extract as a matrix the first three columns.

(e) Extract as a matrix the last two rows.

Exercises ML.3 through ML.5 use bit matrices and the
supplemental instructional commands described in Section
12.9.

ML.3. Use bingen to solve Exercises T.10 and T.11.

ML.4. Use bingen to solve Exercise T.13. (Hint: An n × n
matrix contains the same number of entries as an
n2-vector.)

ML.5. Solve Exercise 11 using binadd.

1.3 DOT PRODUCT AND MATRIX MULTIPLICATION
In this section we introduce the operation of matrix multiplication. Unlike
matrix addition, matrix multiplication has some properties that distinguish it
from multiplication of real numbers.
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DEFINITION The dot product or inner product of the n-vectors a and b is the sum of the
products of corresponding entries. Thus, if

a =


a1

a2
...

an

 and b =


b1

b2
...

bn

 ,

then

a · b = a1b1 + a2b2 + · · · + anbn =
n∑

i=1

ai bi .
† (1)

Similarly, if a or b (or both) are n-vectors written as a 1 × n matrix, then the
dot product a · b is given by (1). The dot product of vectors in Cn is defined
in Appendix A.2.

The dot product is an important operation that will be used here and in
later sections.

EXAMPLE 1 The dot product of

u =
 1
−2

3
4

 and v =
 2

3
−2

1


is

u · v = (1)(2)+ (−2)(3)+ (3)(−2)+ (4)(1) = −6.

EXAMPLE 2 Let a = [
x 2 3

]
and b =

4
1
2

. If a · b = −4, find x .

Solution We have
a · b = 4x + 2+ 6 = −4

4x + 8 = −4

x = −3.

EXAMPLE 3 (Application: Computing a Course Average) Suppose that an instructor
uses four grades to determine a student’s course average: quizzes, two hourly
exams, and a final exam. These are weighted as 10%, 30%, 30%, and 30%,
respectively. If a student’s scores are 78, 84, 62, and 85, respectively, we can
compute the course average by letting

w =
0.10

0.30
0.30
0.30

 and g =
78

84
62
85


and computing

w · g = (0.10)(78)+ (0.30)(84)+ (0.30)(62)+ (0.30)(85) = 77.1.

Thus, the student’s course average is 77.1.

†You may already be familiar with this useful notation, the summation notation. It is discussed in
detail at the end of this section.
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MATRIX MULTIPLICATION
DEFINITION If A = [

ai j
]

is an m × p matrix and B = [
bi j

]
is a p × n matrix, then the

product of A and B, denoted AB, is the m × n matrix C = [
ci j

]
, defined by

ci j = ai1b1 j + ai2b2 j + · · · + aipbpj

=
p∑

k=1

aikbk j (1 ≤ i ≤ m, 1 ≤ j ≤ n).
(2)

Equation (2) says that the i , j th element in the product matrix is the dot
product of the i th row, rowi (A), and the j th column, col j (B), of B; this is
shown in Figure 1.4.

Figure 1.4 � colj(B)
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. . .
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a22
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.

.
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.
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.

.

.

.

.

.

. . .

. . .

. . .

. . .

c11

cm1

c21

.

.

.

c12

cm2

c22

.

.

.

c1n

cmn

c2n

.

.

.cij

. . .

. . .

. . .

= .

p∑
k = 1

rowi(A) . colj(B) =        aik bkj

Observe that the product of A and B is defined only when the number of
rows of B is exactly the same as the number of columns of A, as is indicated
in Figure 1.5.

Figure 1.5 � A B = AB

m np p

the same

size of AB

m     n

EXAMPLE 4 Let

A =
[

1 2 −1
3 1 4

]
and B =

−2 5
4 −3
2 1

 .

Then

AB =
[
(1)(−2)+ (2)(4)+ (−1)(2) (1)(5)+ (2)(−3)+ (−1)(1)

(3)(−2)+ (1)(4)+ (4)(2) (3)(5)+ (1)(−3)+ (4)(1)

]
=

[
4 −2
6 16

]
.
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EXAMPLE 5 Let

A =
1 −2 3

4 2 1
0 1 −2

 and B =
 1 4

3 −1
−2 2

 .

Compute the (3, 2) entry of AB.

Solution If AB = C , then the (3, 2) entry of AB is c32, which is row3(A) · col2(B). We
now have

row3(A) · col2(B) = [
0 1 −2

] ·
 4
−1

2

 = −5.

EXAMPLE 6 The linear system
x + 2y − z = 2

3x + 4z = 5

can be written (verify) using a matrix product as[
1 2 −1
3 0 4

] x
y
z

 = [
2
5

]
.

EXAMPLE 7 Let

A =
[

1 x 3
2 −1 1

]
and B =

2
4
y

 .

If AB =
[

12
6

]
, find x and y.

Solution We have

AB =
[

1 x 3
2 −1 1

] 2
4
y

 = [
2+ 4x + 3y

4− 4+ y

]
=

[
12

6

]
.

Then

2+ 4x + 3y = 12

y = 6,

so x = −2 and y = 6.

The basic properties of matrix multiplication will be considered in the
following section. However, multiplication of matrices requires much more
care than their addition, since the algebraic properties of matrix multiplication
differ from those satisfied by the real numbers. Part of the problem is due to
the fact that AB is defined only when the number of columns of A is the same
as the number of rows of B. Thus, if A is an m × p matrix and B is a p × n
matrix, then AB is an m×n matrix. What about B A? Four different situations
may occur:

1. B A may not be defined; this will take place if n �= m.
2. If B A is defined, which means that m = n, then B A is p × p while AB is

m × m; thus, if m �= p, AB and B A are of different sizes.
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3. If AB and B A are both of the same size, they may be equal.
4. If AB and B A are both of the same size, they may be unequal.

EXAMPLE 8 If A is a 2× 3 matrix and B is a 3× 4 matrix, then AB is a 2× 4 matrix while
B A is undefined.

EXAMPLE 9 Let A be 2× 3 and let B be 3× 2. Then AB is 2× 2 while B A is 3× 3.

EXAMPLE 10 Let

A =
[

1 2
−1 3

]
and B =

[
2 1
0 1

]
.

Then

AB =
[

2 3
−2 2

]
while B A =

[
1 7
−1 3

]
.

Thus AB �= B A.

One might ask why matrix equality and matrix addition are defined in
such a natural way while matrix multiplication appears to be much more com-
plicated. Example 11 provides a motivation for the definition of matrix multi-
plication.

EXAMPLE 11 (Ecology) Pesticides are sprayed on plants to eliminate harmful insects. How-
ever, some of the pesticide is absorbed by the plant. The pesticides are ab-
sorbed by herbivores when they eat the plants that have been sprayed. To
determine the amount of pesticide absorbed by a herbivore, we proceed as fol-
lows. Suppose that we have three pesticides and four plants. Let ai j denote
the amount of pesticide i (in milligrams) that has been absorbed by plant j .
This information can be represented by the matrix

A =


Plant 1 Plant 2 Plant 3 Plant 4

2 3 4 3
3 2 2 5
4 1 6 4

 Pesticide 1
Pesticide 2
Pesticide 3

Now suppose that we have three herbivores, and let bi j denote the number of
plants of type i that a herbivore of type j eats per month. This information
can be represented by the matrix

B =


Herbivore 1 Herbivore 2 Herbivore 3

20 12 8
28 15 15
30 12 10
40 16 20

 Plant 1
Plant 2
Plant 3
Plant 4

The (i, j) entry in AB gives the amount of pesticide of type i that animal j
has absorbed. Thus, if i = 2 and j = 3, the (2, 3) entry in AB is

3(8)+ 2(15)+ 2(10)+ 5(20)

= 174 mg of pesticide 2 absorbed by herbivore 3.

If we now have p carnivores (such as man) who eat the herbivores, we can
repeat the analysis to find out how much of each pesticide has been absorbed
by each carnivore.
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It is sometimes useful to be able to find a column in the matrix product AB
without having to multiply the two matrices. It can be shown (Exercise T.9)
that the j th column of the matrix product AB is equal to the matrix product
Acol j (B).

EXAMPLE 12 Let

A =
 1 2

3 4
−1 5

 and B =
[−2 3 4

3 2 1

]
.

Then the second column of AB is

Acol2(B) =
 1 2

3 4
−1 5

 [
3
2

]
=

 7
17

7

 .

Remark If u and v are n-vectors, it can be shown (Exercise T.14) that if we view them
as n × 1 matrices, then

u · v = uT v.

This observation will be used in Chapter 3. Similarly, if u and v are viewed as
1× n matrices, then

u · v = uvT .

Finally, if u is a 1× n matrix and v is an n × 1 matrix, then u · v = uv.

EXAMPLE 13 Let u =
 1

2
−3

 and v =
 2
−1

1

. Then

u · v = 1(2)+ 2(−1)+ (−3)(1) = −3.

Moreover,

uT v = [
1 2 −3

]  2
−1

1

 = 1(2)+ 2(−1)+ (−3)(1) = −3.

THE MATRIX-VECTOR PRODUCT WRITTEN IN TERMS
OF COLUMNS
Let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


be an m × n matrix and let

c =


c1

c2
...

cn


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be an n-vector, that is, an n × 1 matrix. Since A is m × n and c is n × 1, the
matrix product Ac is the m × 1 matrix

Ac =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




c1

c2
...

cn

 =


row1(A) · c
row2(A) · c

...

rowm(A) · c



=


a11c1 + a12c2 + · · · + a1ncn

a21c1 + a22c2 + · · · + a2ncn
...

am1c1 + am2c2 + · · · + amncn

 .

(3)

The right side of this expression can be written as

c1


a11

a21
...

am1

+ c2


a12

a22
...

am2

+ · · · + cn


a1n

a2n
...

amn


= c1col1(A)+ c2col2(A)+ · · · + cncoln(A).

(4)

Thus the product Ac of an m × n matrix A and an n × 1 matrix c can be
written as a linear combination of the columns of A, where the coefficients
are the entries in c.

EXAMPLE 14 Let

A =
[

2 −1 −3
4 2 −2

]
and c =

 2
−3

4

 .

Then the product Ac written as a linear combination of the columns of A is

Ac =
[

2 −1 −3
4 2 −2

]  2
−3

4

 = 2

[
2
4

]
− 3

[−1
2

]
+ 4

[−3
−2

]
=

[−5
−6

]
.

If A is an m × p matrix and B is a p × n matrix, we can then conclude
that the j th column of the product AB can be written as a linear combination
of the columns of matrix A, where the coefficients are the entries in the j th
column of matrix B:

col j (AB) = Acol j (B) = b1 j col1(A)+ b2 j col2(A)+ · · · + bpj colp(A).

EXAMPLE 15 If A and B are the matrices defined in Example 12, then

AB =
 1 2

3 4
−1 5

 [−2 3 4
3 2 1

]
=

 4 7 6
6 17 16

17 7 1

 .
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The columns of AB as linear combinations of the columns of A are given by

col1(AB) =
 4

6
17

 = Acol1(B) = −2

 1
3
−1

+ 3

2
4
5


col2(AB) =

 7
17

7

 = Acol2(B) = 3

 1
3
−1

+ 2

2
4
5


col3(AB) =

 6
16

1

 = Acol3(B) = 4

 1
3
−1

+ 1

2
4
5

 .

LINEAR SYSTEMS
We now generalize Example 6. Consider the linear system of m equations in
n unknowns,

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm .

(5)

Now define the following matrices:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 , x =


x1

x2
...

xn

 , b =


b1

b2
...

bm

 .

Then

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn




x1

x2
...

xn

 =


a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

...
...

am1x1 + am2x2 + · · · + amnxn

 .

The entries in the product Ax are merely the left sides of the equations in
(5). Hence the linear system (5) can be written in matrix form as

Ax = b.

The matrix A is called the coefficient matrix of the linear system (5), and the
matrix 

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...

am1 am2 · · · amn bm

 ,

obtained by adjoining column b to A, is called the augmented matrix of the
linear system (5). The augmented matrix of (5) will be written as

[
A b

]
.

Conversely, any matrix with more than one column can be thought of as the
augmented matrix of a linear system. The coefficient and augmented matrices
will play key roles in our method for solving linear systems.
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EXAMPLE 16 Consider the linear system

−2x + z = 5
2x + 3y − 4z = 7
3x + 2y + 2z = 3.

Letting

A =
−2 0 1

2 3 −4
3 2 2

 , x =
x

y
z

 , and b =
5

7
3

 ,

we can write the given linear system in matrix form as

Ax = b.

The coefficient matrix is A and the augmented matrix is−2 0 1 5
2 3 −4 7
3 2 2 3

 .

EXAMPLE 17 The matrix [
2 −1 3 4
3 0 2 5

]
is the augmented matrix of the linear system

2x − y + 3z = 4

3x + 2z = 5.

It follows from our discussion above that the linear system in (5) can be
written as a linear combination of the columns of A as

x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · · + xn


a1n

a2n
...

amn

 =


b1

b2
...

bm

 . (6)

Conversely, an equation as in (6) always describes a linear system as in (5).

PARTITIONED MATRICES (OPTIONAL)
If we start out with an m× n matrix A = [

ai j
]

and cross out some, but not all,
of its rows or columns, we obtain a submatrix of A.

EXAMPLE 18 Let

A =
 1 2 3 4
−2 4 −3 5

3 0 5 −3

 .

If we cross out the second row and third column, we obtain the submatrix[
1 2 4
3 0 −3

]
.
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A matrix can be partitioned into submatrices by drawing horizontal lines
between rows and vertical lines between columns. Of course, the partitioning
can be carried out in many different ways.

EXAMPLE 19 The matrix

A =
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45


is partitioned as

A =
[

A11 A12

A21 A22

]
.

We could also write

A =
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

 =
 Â11 Â12 Â13

Â21 Â22 Â23

 , (7)

which gives another partitioning of A. We thus speak of partitioned matrices.

EXAMPLE 20 The augmented matrix of a linear system is a partitioned matrix. Thus, if
Ax = b, we can write the augmented matrix of this system as

[
A b

]
.

If A and B are both m × n matrices that are partitioned in the same way,
then A+ B is obtained simply by adding the corresponding submatrices of A
and B. Similarly, if A is a partitioned matrix, then the scalar multiple cA is
obtained by forming the scalar multiple of each submatrix.

If A is partitioned as shown in (7) and

B =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

b51 b52 b53 b54

 =
B11 B12

B21 B22

B31 B32

 ,

then by straightforward computations we can show that

AB =
( Â11 B11 + Â12 B21 + Â13 B31) ( Â11 B12 + Â12 B22 + Â13 B32)

( Â21 B11 + Â22 B21 + Â23 B31) ( Â21 B12 + Â22 B22 + Â23 B32)

 .

EXAMPLE 21 Let

A =


1 0 1 0
0 2 3 −1
2 0 −4 0
0 1 0 3

 =
[

A11 A12

A21 A22

]
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and let

B =


2 0 0 1 1 −1
0 1 1 −1 2 2
1 3 0 0 1 0
−3 −1 2 1 0 −1

 =
[

B11 B12

B21 B22

]
.

Then

AB = C =


3 3 0 1 2 −1
6 12 0 −3 7 5
0 −12 0 2 −2 −2
−9 −2 7 2 2 −1

 =
[

C11 C12

C21 C22

]
,

where C11 should be A11 B11 + A12 B21. We verify that C11 is this expression
as follows:

A11 B11 + A12 B21 =
[

1 0
0 2

] [
2 0 0
0 1 1

]
+

[
1 0
3 −1

] [
1 3 0
−3 −1 2

]

=
[

2 0 0
0 2 2

]
+

[
1 3 0
6 10 −2

]

=
[

3 3 0
6 12 0

]
= C11.

This method of multiplying partitioned matrices is also known as block
multiplication. Partitioned matrices can be used to great advantage in dealing
with matrices that exceed the memory capacity of a computer. Thus, in mul-
tiplying two partitioned matrices, one can keep the matrices on disk and only
bring into memory the submatrices required to form the submatrix products.
The latter, of course, can be put out on disk as they are formed. The parti-
tioning must be done so that the products of corresponding submatrices are
defined. In contemporary computing technology, parallel-processing comput-
ers use partitioned matrices to perform matrix computations more rapidly.

Partitioning of a matrix implies a subdivision of the information into
blocks or units. The reverse process is to consider individual matrices as
blocks and adjoin them to form a partitioned matrix. The only requirement
is that after joining the blocks, all rows have the same number of entries and
all columns have the same number of entries.

EXAMPLE 22 Let

B =
[

2
3

]
, C = [

1 −1 0
]
, and D =

[
9 8 −4
6 7 5

]
.

Then we have

[
B D

] = [
2 9 8 −4
3 6 7 5

]
,

[
D
C

]
=

9 8 −4
6 7 5
1 −1 0

 ,

and [[
D
C

]
CT

]
=

9 8 −4 1
6 7 5 −1
1 −1 0 0

 .
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Adjoining matrix blocks to expand information structures is done regu-
larly in a variety of applications. It is common to keep monthly sales data for
a year in a 1× 12 matrix and then adjoin such matrices to build a sales history
matrix for a period of years. Similarly, results of new laboratory experiments
are adjoined to existing data to update a database in a research facility.

We have already noted in Example 20 that the augmented matrix of the
linear system Ax = b is a partitioned matrix. At times we shall need to solve
several linear systems in which the coefficient matrix A is the same but the
right sides of the systems are different, say b, c, and d. In these cases we
shall find it convenient to consider the partitioned matrix

[
A b c d

]
. (See

Section 6.7.)

SUMMATION NOTATION (OPTIONAL)
We shall occasionally use the summation notation and we now review this
useful and compact notation, which is widely used in mathematics.

By
n∑

i=1
ai we mean

a1 + a2 + · · · + an.

The letter i is called the index of summation; it is a dummy variable that can
be replaced by another letter. Hence we can write

n∑
i=1

ai =
n∑

j=1

a j =
n∑

k=1

ak .

EXAMPLE 23 If
a1 = 3, a2 = 4, a3 = 5, and a4 = 8,

then

4∑
i=1

ai = 3+ 4+ 5+ 8 = 20.

EXAMPLE 24 By
n∑

i=1
ri ai we mean

r1a1 + r2a2 + · · · + rnan.

It is not difficult to show (Exercise T.11) that the summation notation satisfies
the following properties:

(i)
n∑

i=1

(ri + si )ai =
n∑

i=1

ri ai +
n∑

i=1

si ai .

(ii)
n∑

i=1

c(ri ai ) = c

(
n∑

i=1

ri ai

)
.

EXAMPLE 25 If

a =


a1

a2
...

an

 and b =


b1

b2
...

bn

 ,
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then the dot product a · b can be expressed using summation notation as

a · b = a1b1 + a2b2 + · · · + anbn =
n∑

i=1

ai bi .

EXAMPLE 26 We can write Equation (2), for the i , j th element in the product of the matrices
A and B, in terms of the summation notation as

ci j =
p∑

k=1

aikbk j (1 ≤ i ≤ m, 1 ≤ j ≤ n).

It is also possible to form double sums. Thus by
m∑

j=1

n∑
i=1

ai j we mean that

we first sum on i and then sum the resulting expression on j .

EXAMPLE 27 If n = 2 and m = 3, we have

3∑
j=1

2∑
i=1

ai j =
3∑

j=1

(a1 j + a2 j )

= (a11 + a21)+ (a12 + a22)+ (a13 + a23) (8)

2∑
i=1

3∑
j=1

ai j =
2∑

i=1

(ai1 + ai2 + ai3)

= (a11 + a12 + a13)+ (a21 + a22 + a23)

= right side of (8).

It is not difficult to show, in general (Exercise T.12), that

n∑
i=1

m∑
j=1

ai j =
m∑

j=1

n∑
i=1

ai j . (9)

Equation (9) can be interpreted as follows. Let A be the m × n matrix[
ai j

]
. If we add up the entries in each row of A and then add the resulting

numbers, we obtain the same result as when we add up the entries in each
column of A and then add the resulting numbers.

EXAMPLES WITH BIT MATRICES (OPTIONAL)
The dot product and the matrix product of bit matrices are computed in the
usual manner, but we must recall that the arithmetic involved uses base 2.

EXAMPLE 28 Let a =
1

0
1

 and b =
1

1
0

 be bit vectors. Then

a · b = (1)(1)+ (0)(1)+ (1)(0) = 1+ 0+ 0 = 1.
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EXAMPLE 29 Let A =
[

1 1
0 1

]
and B =

[
0 1 0
1 1 0

]
be bit matrices. Then

AB =
[
(1)(0)+ (1)(1) (1)(1)+ (1)(1) (1)(0)+ (1)(0)

(0)(0)+ (1)(1) (0)(1)+ (1)(1) (0)(0)+ (1)(0)

]
=

[
1 0 0
1 1 0

]
.

EXAMPLE 30 Let A =
[

1 1 1 x
1 1 0 1

]
and B =

y
0
1
1

 be bit matrices. If AB =
[

1
1

]
, find x

and y.

Solution We have

AB =
[

1 1 1 x
1 1 0 1

] y
0
1
1

 = [
y + 1+ x

y + 1

]
=

[
1
1

]
.

Then y + 1 + x = 1 and y + 1 = 1. Using base 2 arithmetic, it follows that
y = 0 and so then x = 0.

Key Terms
Dot product (inner product) Augmented matrix Block multiplication
Product of matrices Submatrix Summation notation
Coefficient matrix Partitioned matrix

1.3 Exercises
In Exercises 1 and 2, compute a · b.

1. (a) a = [
1 2

]
, b =

[
4
−1

]
(b) a = [−3 −2

]
, b =

[
1
−2

]

(c) a = [
4 2 −1

]
, b =

1
3
6


(d) a = [

1 1 0
]
, b =

1
0
1


2. (a) a = [

2 −1
]
, b =

[
3
2

]
(b) a = [

1 −1
]
, b =

[
1
1

]

(c) a = [
1 2 3

]
, b =

−2
0
1



(d) a = [
1 0 0

]
, b =

1
0
0



3. Let a = [−3 2 x
]

and b =
−3

2
x

. If a · b = 17,

find x .

4. Let w =
[

sin θ

cos θ

]
. Compute w · w.

5. Find all values of x so that v · v = 1, where v =


1
2

− 1
2

x

.

6. Let A =
[

1 2 x
3 −1 2

]
and B =

y
x
1

 . If AB =
[

6
8

]
,

find x and y.
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In Exercises 7 and 8, let

A =
[

1 2 −3
4 0 −2

]
, B =

 3 1
2 4
−1 5

 ,

C =
2 3 1

3 −4 5
1 −1 −2

 , D =
[

2 3
−1 −2

]
,

E =
 1 0 −3
−2 1 5

3 4 2

 , and F =
[

2 −3
4 1

]
.

7. If possible, compute:
(a) AB (b) B A (c) C B + D

(d) AB + DF (e) B A + F D

8. If possible, compute:
(a) A(B D) (b) (AB)D (c) A(C + E)

(d) AC + AE (e) (D + F)A

9. Let A =
 2 3
−1 4

0 3

 and B =
[

3 −1 3
1 2 4

]
.

Compute the following entries of AB:
(a) The (1, 2) entry (b) The (2, 3) entry

(c) The (3, 1) entry (d) The (3, 3) entry

10. If I2 =
[

1 0
0 1

]
and D =

[
2 3
−1 −2

]
, compute DI2 and

I2 D.

11. Let

A =
[

1 2
3 2

]
and B =

[
2 −1
−3 4

]
.

Show that AB �= B A.

12. If A is the matrix in Example 4 and O is the 3× 2
matrix every one of whose entries is zero, compute AO .

In Exercises 13 and 14, let

A =


1 −1 2
3 2 4
4 −2 3
2 1 5


and

B =
1 0 −1 2

3 3 −3 4
4 2 5 1

 .

13. Using the method in Example 12, compute the following
columns of AB:
(a) The first column (b) The third column

14. Using the method in Example 12, compute the following
columns of AB:
(a) The second column (b) The fourth column

15. Let

A =
 2 −3 4
−1 2 3

5 −1 −2

 and c =
2

1
4

 .

Express Ac as a linear combination of the columns of A.

16. Let

A =
1 −2 −1

2 4 3
3 0 −2

 and B =
1 −1

3 2
2 4

 .

Express the columns of AB as linear combinations of
the columns of A.

17. Let A =
[

2 −3 1
1 2 4

]
and B =

3
5
2

.

(a) Verify that AB = 3a1 + 5a2 + 2a3, where a j is the
j th column of A for j = 1, 2, 3.

(b) Verify that AB =
[
(row1(A))B
(row2(A))B

]
.

18. Write the linear combination

3

[−2
3

]
+ 4

[
2
5

]
+ 2

[
3
−1

]
as a product of a 2× 3 matrix and a 3-vector.

19. Consider the following linear system:

2x + w = 7
3x + 2y + 3z = −2
2x + 3y − 4z = 3

x + 3z = 5.

(a) Find the coefficient matrix.

(b) Write the linear system in matrix form.

(c) Find the augmented matrix.

20. Write the linear system with augmented matrix
−2 −1 0 4 5
−3 2 7 8 3

1 0 0 2 4
3 0 1 3 6

 .

21. Write the linear system with augmented matrix2 0 −4 3
0 1 2 5
1 3 4 −1

 .

22. Consider the following linear system:

3x − y + 2z = 4
2x + y = 2

y + 3z = 7
4x − z = 4.

(a) Find the coefficient matrix.

(b) Write the linear system in matrix form.

(c) Find the augmented matrix.
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23. How are the linear systems whose augmented matrices
are[

1 2 3 −1
2 3 6 2

]
and

1 2 3 −1
2 3 6 2
0 0 0 0


related?

24. Write each of the following as a linear system in matrix
form.

(a) x

[
1
2

]
+ y

[
2
5

]
+ z

[
0
3

]
=

[
1
1

]

(b) x

1
1
2

+ y

2
1
0

+ z

1
2
2

 =
0

0
0


25. Write each of the following linear systems as a linear

combination of the columns of the coefficient matrix.
(a) x + 2y = 3

2x − y = 5

(b) 2x − 3y + 5z = −2
x + 4y − z = 3

26. Let A be an m × n matrix and B an n × p matrix. What
if anything can you say about the matrix product AB
when:
(a) A has a column consisting entirely of zeros?

(b) B has a row consisting entirely of zeros?

27. (a) Find a value of r so that ABT = 0, where

A = [
r 1 −2

]
and B = [

1 3 −1
]
.

(b) Give an alternate way to write this product.

28. Find a value of r and a value of s so that ABT = 0,
where

A = [
1 r 1

]
and B = [−2 2 s

]
.

29. Formulate the method for adding partitioned matrices
and verify your method by partitioning the matrices

A =
1 3 −1

2 1 0
2 −3 1

 and B =
 3 2 1
−2 3 1

4 1 5


in two different ways and finding their sum.

30. Let A and B be the following matrices:

A =


2 1 3 4 2
1 2 3 −1 4
2 3 2 1 4
5 −1 3 2 6
3 1 2 4 6
2 −1 3 5 7


and

B =


1 2 3 4 1
2 1 3 2 −1
1 5 4 2 3
2 1 3 5 7
3 2 4 6 1

 .

Find AB by partitioning A and B in two different ways.

31. (Manufacturing Costs) A furniture manufacturer
makes chairs and tables, each of which must go through
an assembly process and a finishing process. The times
required for these processes are given (in hours) by the
matrix

A =
[ Assembly

process
Finishing
process

2 2
3 4

]
Chair
Table

The manufacturer has a plant in Salt Lake City and
another in Chicago. The hourly rates for each of the
processes are given (in dollars) by the matrix

B =
[ Salt Lake

City Chicago

9 10
10 12

]
Assembly process
Finishing process

What do the entries in the matrix product AB tell the
manufacturer?

32. (Ecology—Pollution) A manufacturer makes two kinds
of products, P and Q, at each of two plants, X and Y . In
making these products, the pollutants sulfur dioxide,
nitric oxide, and particulate matter are produced. The
amounts of pollutants produced are given (in kilograms)
by the matrix

A =
[ Sulfur

dioxide
Nitric
oxide

Particulate
matter

300 100 150
200 250 400

]
Product P
Product Q

State and federal ordinances require that these pollutants
be removed. The daily cost of removing each kilogram
of pollutant is given (in dollars) by the matrix

B =


Plant X Plant Y

8 12
7 9
15 10

 Sulfur dioxide
Nitric oxide
Particulate matter

What do the entries in the matrix product AB tell the
manufacturer?

33. (Medicine) A diet research project consists of adults
and children of both sexes. The composition of the
participants in the project is given by the matrix

A =
[ Adults Children

80 120
100 200

]
Male
Female

The number of daily grams of protein, fat, and
carbohydrate consumed by each child and adult is given
by the matrix

B =
[ Protein Fat

Carbo-
hydrate

20 20 20
10 20 30

]
Adult
Child
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(a) How many grams of protein are consumed daily by
the males in the project?

(b) How many grams of fat are consumed daily by the
females in the project?

34. (Business) A photography business has a store in each
of the following cities: New York, Denver, and Los
Angeles. A particular make of camera is available in
automatic, semiautomatic, and nonautomatic models.
Moreover, each camera has a matched flash unit and a
camera is usually sold together with the corresponding
flash unit. The selling prices of the cameras and flash
units are given (in dollars) by the matrix

A =
[ Auto-

matic
Semi-

automatic
Non-

automatic

200 150 120
50 40 25

]
Camera
Flash unit

The number of sets (camera and flash unit) available at
each store is given by the matrix

B =


New
York Denver

Los
Angeles

220 180 100
300 250 120
120 320 250

 Automatic
Semiautomatic
Nonautomatic

(a) What is the total value of the cameras in New York?

(b) What is the total value of the flash units in Los
Angeles?

35. Let s1 =
[
18.95 14.75 8.98

]
and

s2 =
[
17.80 13.50 10.79

]
be 3-vectors denoting the

current prices of three items at stores A and B,
respectively.
(a) Obtain a 2× 3 matrix representing the combined

information about the prices of the three items at the
two stores.

(b) Suppose that each store announces a sale so that the
price of each item is reduced by 20%. Obtain a 2× 3
matrix representing the sale prices at the two stores.

Exercises 36 through 41 involve bit matrices.

36. For bit vectors a and b compute a · b.

(a) a = [
1 1 0

]
, b =

0
1
1



(b) a = [
0 1 1 0

]
, b =


1
1
1
0


37. For bit vectors a and b compute a · b.

(a) a = [
1 1 0

]
, b =

1
0
1


(b) a = [

1 1
]
, b =

[
1
1

]

38. Let a = [
1 x 0

]
and b =

x
1
1

 be bit vectors. If

a · b = 0, find all possible values of x .

39. Let A =
[

1 1 x
0 y 1

]
and B =

1
1
1

 be bit matrices. If

AB =
[

0
0

]
, find x and y.

40. For bit matrices

A =
1 1 0

0 1 0
0 0 1

 and B =
0 1 0

1 1 0
1 0 1


compute AB and B A.

41. For bit matrix A =
[

1 1
0 1

]
, determine a 2× 2 bit matrix

B so that AB =
[

1 0
0 1

]
.

Theoretical Exercises
T.1. Let x be an n-vector.

(a) Is it possible for x · x to be negative? Explain.

(b) If x · x = 0, what is x?

T.2. Let a, b, and c be n-vectors and let k be a real number.

(a) Show that a · b = b · a.

(b) Show that (a+ b) · c = a · c+ b · c.

(c) Show that (ka) · b = a · (kb) = k(a · b).

T.3. (a) Show that if A has a row of zeros, then AB has a
row of zeros.

(b) Show that if B has a column of zeros, then AB has
a column of zeros.

T.4. Show that the product of two diagonal matrices is a
diagonal matrix.

T.5. Show that the product of two scalar matrices is a scalar
matrix.

T.6. (a) Show that the product of two upper triangular
matrices is upper triangular.

(b) Show that the product of two lower triangular
matrices is lower triangular.

T.7. Let A and B be n × n diagonal matrices. Is
AB = B A? Justify your answer.

T.8. (a) Let a be a 1× n matrix and B an n × p matrix.
Show that the matrix product aB can be written as
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a linear combination of the rows of B, where the
coefficients are the entries of a.

(b) Let a = [
1 −2 3

]
and

B =
 2 1 −4
−3 −2 3

4 5 −2

 .

Write aB as a linear combination of the rows of B.

T.9. (a) Show that the j th column of the matrix product
AB is equal to the matrix product Acol j (B).

(b) Show that the i th row of the matrix product AB is
equal to the matrix product rowi (A)B.

T.10. Let A be an m × n matrix whose entries are real
numbers. Show that if AAT = O (the m × m matrix
all of whose entries are zero), then A = O .

Exercises T.11 through T.13 depend on material marked
optional.

T.11. Show that the summation notation satisfies the
following properties:

(a)
n∑

i=1

(ri + si )ai =
n∑

i=1

ri ai +
n∑

i=1

si ai .

(b)
n∑

i=1

c(ri ai ) = c

(
n∑

i=1

ri ai

)
.

T.12. Show that
n∑

i=1

m∑
j=1

ai j =
m∑

j=1

n∑
i=1

ai j .

T.13. Answer the following as true or false. If true, prove
the result; if false, give a counterexample.

(a)
n∑

i=1

(ai + 1) =
(

n∑
i=1

ai

)
+ n

(b)
n∑

i=1

m∑
j=1

1 = mn

(c)
m∑

j=1

n∑
i=1

ai b j =
[

n∑
i=1

ai

] [
m∑

j=1

b j

]
T.14. Let u and v be n-vectors.

(a) If u and v are viewed as n × 1 matrices, show that
u · v = uT v.

(b) If u and v are viewed as 1× n matrices, show that
u · v = uvT .

(c) If u is viewed as a 1× n matrix and v as an n × 1
matrix, show that u · v = uv.

MATLAB Exercises
ML.1. In MATLAB, type the command clear, then enter

the following matrices:

A =


1 1

2

1
3

1
4

1
5

1
6

 , B = [
5 −2

]
, C =

[
4 5

4
9
4

1 2 3

]
.

Using MATLAB commands, compute each of the
following, if possible. Recall that a prime in
MATLAB indicates transpose.

(a) A ∗ C (b) A ∗ B

(c) A + C ′ (d) B ∗ A − C ′ ∗ A

(e) (2 ∗ C − 6 ∗ A′) ∗ B ′ (f) A ∗ C − C ∗ A

(g) A ∗ A′ + C ′ ∗ C

ML.2. Enter the coefficient matrix of the system

2x + 4y + 6z = −12

2x − 3y − 4z = 15

3x + 4y + 5z = −8

into MATLAB and call it A. Enter the right-hand
side of the system and call it b. Form the augmented
matrix associated with this linear system using the
MATLAB command [A b]. To give the augmented
matrix a name, such as aug, use the command
aug = [A b]. (Do not type the period!) Note that
no bar appears between the coefficient matrix and
the right-hand side in the MATLAB display.

ML.3. Repeat the preceding exercise with the following
linear system:

4x − 3y + 2z − w = −5

2x + y − 3z = 7

−x + 4y + z + 2w = 8.

ML.4. Enter matrices

A =


1 −1 2
3 2 4
4 −2 3
2 1 5


and

B =
1 0 −1 2

3 3 −3 4
4 2 5 1


into MATLAB.

(a) Using MATLAB commands, assign row2(A) to
R and col3(B) to C. Let V = R ∗ C. What is V
in terms of the entries of the product A ∗ B?

(b) Using MATLAB commands, assign col2(B) to
C, then compute V = A ∗ C. What is V in
terms of the entries of the product A ∗ B?

(c) Using MATLAB commands, assign row3(A) to
R, then compute V = R ∗B. What is V in terms
of the entries of the product A ∗ B?
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ML.5. Use the MATLAB command diag to form each of
the following diagonal matrices. Using diag we can
form diagonal matrices without typing in all the
entries. (To refresh your memory about command
diag, use MATLAB’s help feature.)
(a) The 4× 4 diagonal matrix with main diagonal[

1 2 3 4
]
.

(b) The 5× 5 diagonal matrix with main diagonal[
0 1 1

2
1
3

1
4

]
.

(c) The 5× 5 scalar matrix with all 5’s on the
diagonal.

ML.6. In MATLAB the dot product of a pair of vectors can
be computed using the dot command. If the vectors
v and w have been entered into MATLAB as either
rows or columns, their dot product is computed
from the MATLAB command dot(v, w). If the
vectors do not have the same number of elements,
an error message is displayed.
(a) Use dot to compute the dot product of each of

the following vectors.
(i) v = [

1 4 −1
]
, w = [

7 2 0
]

(ii) v =


2
−1

0
6

, w =


4
2
3
−1


(b) Let a = [

3 −2 1
]
. Find a value for k so

that the dot product of a with b = [
k 1 4

]
is

zero. Verify your results in MATLAB.

(c) For each of the following vectors v, compute
dot(v,v) in MATLAB.

(i) v = [
4 2 −3

]

(ii) v = [−9 3 1 0 6
]

(iii) v =


1
2
−5
−3


What sign is each of these dot products?
Explain why this is true for almost all vectors v.
When is it not true?

Exercises ML.7 through ML.11 use bit matrices and the
supplemental instructional commands described in Section
12.9.

ML.7. Use binprod to solve Exercise 40.

ML.8. Given the bit vectors a =


1
1
0
1

 and b =


1
0
0
1

, use

binprod to compute a · b.

ML.9. (a) Use bingen to generate a matrix B whose
columns are all possible bit 3-vectors.

(b) Define A = ones(3) and compute AB using
binprod.

(c) Describe why AB contains only columns of all
zeros or all ones. (Hint: Look for a pattern
based on the columns of B.)

ML.10. Repeat Exercise ML.9 with 4-vectors and A =
ones(4).

ML.11. Let B be the n × n matrix of all ones. Compute B B
for n = 2, 3, 4, and 5. What is B B for n = k, where
k is any positive integer?

1.4 PROPERTIES OF MATRIX OPERATIONS
In this section we consider the algebraic properties of the matrix operations
just defined. Many of these properties are similar to familiar properties of
the real numbers. However, there will be striking differences between the
set of real numbers and the set of matrices in their algebraic behavior under
certain operations, for example, under multiplication (as seen in Section 1.3).
Most of the properties will be stated as theorems, whose proofs will be left as
exercises.

THEOREM 1.1 (Properties of Matrix Addition) Let A, B, C, and D be m × n matrices.

(a) A + B = B + A.
(b) A + (B + C) = (A + B)+ C.
(c) There is a unique m × n matrix O such that

A + O = A (1)

for any m×n matrix A. The matrix O is called the m×n additive identity
or zero matrix.
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(d) For each m × n matrix A, there is a unique m × n matrix D such that

A + D = O. (2)

We shall write D as (−A), so that (2) can be written as

A + (−A) = O.

The matrix (−A) is called the additive inverse or negative of A.

Proof (a) To establish (a), we must prove that the i , j th element of A + B equals
the i , j th element of B + A. The i , j th element of A+ B is ai j + bi j ; the
i , j th element of B + A is bi j + ai j . Since the elements ai j are real (or
complex) numbers,

ai j + bi j = bi j + ai j (1 ≤ i ≤ m, 1 ≤ j ≤ n),

the result follows.
(b) Exercise T.1.
(c) Let U = [

ui j
]
. Then

A +U = A

if and only if ∗

ai j + ui j = ai j ,

which holds if and only if ui j = 0. Thus U is the m × n matrix all of
whose entries are zero; U is denoted by O .

(d) Exercise T.1.

EXAMPLE 1 To illustrate (c) of Theorem 1.1, we note that the 2× 2 zero matrix is[
0 0
0 0

]
.

If

A =
[

4 −1
2 3

]
,

we have [
4 −1
2 3

]
+

[
0 0
0 0

]
=

[
4+ 0 −1+ 0
2+ 0 3+ 0

]
=

[
4 −1
2 3

]
.

The 2× 3 zero matrix is [
0 0 0
0 0 0

]
.

∗The connector “if and only if ” means that both statements are true or both statements are false.
Thus (1) if A +U = A, then ai j + ui j = ai j and (2) if ai j + ui j = ai j , then A +U = A.
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EXAMPLE 2 To illustrate (d) of Theorem 1.1, let

A =
[

2 3 4
−4 5 −2

]
.

Then

−A =
[−2 −3 −4

4 −5 2

]
.

We now have A + (−A) = O .

EXAMPLE 3 Let

A =
[

3 −2 5
−1 2 3

]
and B =

[
2 3 2
−3 4 6

]
.

Then

A − B =
[

3− 2 −2− 3 5− 2
−1+ 3 2− 4 3− 6

]
=

[
1 −5 3
2 −2 −3

]
.

THEOREM 1.2 (Properties of Matrix Multiplication)

(a) If A, B, and C are of the appropriate sizes, then

A(BC) = (AB)C.

(b) If A, B, and C are of the appropriate sizes, then

A(B + C) = AB + AC.

(c) If A, B, and C are of the appropriate sizes, then

(A + B)C = AC + BC.

Proof (a) We omit a general proof here. Exercise T.2 asks the reader to prove the
result for a specific case.

(b) Exercise T.3.
(c) Exercise T.3.

EXAMPLE 4 Let

A =
[

5 2 3
2 −3 4

]
, B =

2 −1 1 0
0 2 2 2
3 0 −1 3

 ,

and

C =
1 0 2

2 −3 0
0 0 3
2 1 0

 .

Then

A(BC) =
[

5 2 3
2 −3 4

] 0 3 7
8 −4 6
9 3 3

 = [
43 16 56
12 30 8

]
and

(AB)C =
[

19 −1 6 13
16 −8 −8 6

] 1 0 2
2 −3 0
0 0 3
2 1 0

 = [
43 16 56
12 30 8

]
.
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EXAMPLE 5 Let

A =
[

2 2 3
3 −1 2

]
, B =

1 0
2 2
3 −1

 , and C =
−1 2

1 0
2 −2

 .

Then

A(B + C) =
[

2 2 3
3 −1 2

] 0 2
3 2
5 −3

 = [
21 −1

7 −2

]
and

AB + AC =
[

15 1
7 −4

]
+

[
6 −2
0 2

]
=

[
21 −1

7 −2

]
.

DEFINITION The n × n scalar matrix

In =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 ,

all of whose diagonal entries are 1, is called the identity matrix of order n.

If A is an m × n matrix, then it is easy to verify (Exercise T.4) that

Im A = AIn = A.

It is also easy to see that every n × n scalar matrix can be written as r In for
some r .

EXAMPLE 6 The identity matrix I2 of order 2 is

I2 =
[

1 0
0 1

]
.

If

A =
[

4 −2 3
5 0 2

]
,

then
I2 A = A.

The identity matrix I3 of order 3 is

I3 =
1 0 0

0 1 0
0 0 1

 .

Hence

AI3 = A.



Sec. 1.4 Properties of Matrix Operations 43

Suppose that A is a square matrix. If p is a positive integer, then we define
the powers of a matrix as follows:

Ap = A · A · · · A︸ ︷︷ ︸
p factors

.

If A is n × n, we also define
A0 = In.

For nonnegative integers p and q, some of the familiar laws of exponents
for the real numbers can also be proved for matrix multiplication of a square
matrix A (Exercise T.5):

Ap Aq = Ap+q

and
(Ap)q = Apq .

It should be noted that
(AB)p �= Ap B p

for square matrices in general. However, if AB = B A, then this rule does
hold (Exercise T.6).

We now note two other peculiarities of matrix multiplication. If a and b
are real numbers, then ab = 0 can hold only if a or b is zero. However, this is
not true for matrices.

EXAMPLE 7 If

A =
[

1 2
2 4

]
and B =

[
4 −6
−2 3

]
,

then neither A nor B is the zero matrix, but

AB =
[

0 0
0 0

]
.

If a, b, and c are real numbers for which ab = ac and a �= 0, it then
follows that b = c. That is, we can cancel a out. However, the cancellation
law does not hold for matrices, as the following example shows.

EXAMPLE 8 If

A =
[

1 2
2 4

]
, B =

[
2 1
3 2

]
, and C =

[−2 7
5 −1

]
,

then

AB = AC =
[

8 5
16 10

]
,

but B �= C .

Remark In Section 1.7, we investigate a special class of matrices A for which AB =
AC does imply that B = C .

EXAMPLE 9 (Business) Suppose that only two rival companies, R and S, manufacture
a certain product. Each year, company R keeps 1

4 of its customers while 3
4



44 Chapter 1 Linear Equations and Matrices

switch to S. Each year, S keeps 2
3 of its customers while 1

3 switch to R. This
information can be displayed in matrix form as

R S

A =
 1

4
1
3

3
4

2
3

 R

S

When manufacture of the product first starts, R has 3
5 of the market (the market

is the total number of customers) while S has 2
5 of the market. We denote the

initial distribution of the market by

x0 =
 3

5
2
5

 .

One year later, the distribution of the market is

x1 = Ax0 =
 1

4
1
3

3
4

2
3

  3
5
2
5

 =
 1

4

(
3
5

)+ 1
3

(
2
5

)
3
4

(
3
5

)+ 2
3

(
2
5

)
 =

 17
60
43
60

 .

This can be readily seen as follows. Suppose that the initial market consists
of k people, say k = 12,000, and no change in this number occurs with time.
Then, initially, R has 3

5 k customers, and S has 2
5 k customers. At the end of the

first year, R keeps 1
4 of its customers and gains 1

3 of S’s customers. Thus R has

1
4

(
3
5 k

)+ 1
3

(
2
5 k

) = [
1
4

(
3
5

)+ 1
3

(
2
5

)]
k = 17

60 k customers.

When k = 12,000, R has 17
60 (12,000) = 3400 customers. Similarly, at the end

of the first year, S keeps 2
3 of its customers and gains 3

4 of R’s customers. Thus
S has

3
4

(
3
5 k

)+ 2
3

(
2
5 k

) = [
3
4

(
3
5

)+ 2
3

(
2
5

)]
k = 43

60 k customers.

When k = 12,000, S has 43
60 (12,000) = 8600 customers. Similarly, at the end

of 2 years, the distribution of the market will be given by

x2 = Ax1 = A(Ax0) = A2x0.

If

x0 =
[

a
b

]
,

can we determine a and b so that the distribution will be the same from year
to year? When this happens, the distribution of the market is said to be stable.
We proceed as follows. Since R and S control the entire market, we must have

a + b = 1. (3)

We also want the distribution after 1 year to be unchanged. Hence

Ax0 = x0

or  1
4

1
3

3
4

2
3

 a

b

 =
a

b

 .
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Then
1
4 a + 1

3 b = a

3
4 a + 2

3 b = b

or

− 3
4 a + 1

3 b = 0
3
4 a − 1

3 b = 0.
(4)

Observe that the two equations in (4) are the same. Using Equation (3) and
one of the equations in (4), we find (verify) that

a = 4
13 and b = 9

13 .

The problem described is an example of a Markov chain. We shall return
to this topic in Section 2.5.

THEOREM 1.3 (Properties of Scalar Multiplication) If r and s are real numbers and A
and B are matrices, then

(a) r(s A) = (rs)A
(b) (r + s)A = r A + s A
(c) r(A + B) = r A + r B
(d) A(r B) = r(AB) = (r A)B

Proof Exercise T.12.

EXAMPLE 10 Let r = −2,

A =
[

1 2 3
−2 0 1

]
, and B =

2 −1
1 4
0 −2

 .

Then

A(r B) =
[

1 2 3
−2 0 1

] −4 2
−2 −8

0 4

 = [−8 −2
8 0

]
and

r(AB) = (−2)

[
4 1
−4 0

]
=

[−8 −2
8 0

]
,

which illustrates (d) of Theorem 1.3.

It is easy to show that (−1)A = −A (Exercise T.13).

THEOREM 1.4 (Properties of Transpose) If r is a scalar and A and B are matrices, then

(a) (AT )T = A
(b) (A + B)T = AT + BT

(c) (AB)T = BT AT

(d) (r A)T = r AT
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Proof We leave the proofs of (a), (b), and (d) as an exercise (Exercise T.14) and
prove only (c) here. Thus let A = [

ai j
]

be m × p and let B = [
bi j

]
be p × n.

The i , j th element of (AB)T is cT
i j . Now

cT
i j = c ji = row j (A) · coli (B)

= a j1b1i + a j2b2i + · · · + a jpbpi

= aT
1 j b

T
i1 + aT

2 j b
T
i2 + · · · + aT

pj b
T
ip

= bT
i1aT

1 j + bT
i2aT

2 j + · · · + bT
ipaT

pj

= rowi (BT ) · col j (AT ),

which is the i , j th element of BT AT .

EXAMPLE 11 Let

A =
[

1 3 2
2 −1 3

]
and B =

0 1
2 2
3 −1

 .

Then

(AB)T =
[

12 7
5 −3

]
and

BT AT =
[

0 2 3
1 2 −1

] 1 2
3 −1
2 3

 = [
12 7

5 −3

]
.

DEFINITION A matrix A = [
ai j

]
with real entries is called symmetric if

AT = A.

That is, A is symmetric if it is a square matrix for which

ai j = a ji (Exercise T.17).

If matrix A is symmetric, then the elements of A are symmetric with respect
to the main diagonal of A.

EXAMPLE 12 The matrices

A =
1 2 3

2 4 5
3 5 6

 and I3 =
1 0 0

0 1 0
0 0 1


are symmetric.
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EXAMPLES WITH BIT MATRICES (OPTIONAL)
All of the matrix operations discussed in this section are valid on bit matrices
provided we use arithmetic base 2. Hence the scalars available are only 0
and 1.

EXAMPLE 13 Let A =
1 0

1 1
0 1

 be a bit matrix. Find the additive inverse of A.

Solution Let −A =
a b

c d
e f

 (the additive inverse of A). Then A + (−A) = O . We

have

1+ a = 0 0+ b = 0

1+ c = 0 1+ d = 0

0+ e = 0 1+ f = 0

so a = 1, b = 0, c = 1, d = 1, e = 0, and f = 1. Hence −A = A. (See also
Exercise T.38.)

EXAMPLE 14 For the bit matrix A =
[

1 0
1 0

]
determine a 2 × 2 bit matrix B �= O so that

AB = O .

Solution Let B =
[

a b
c d

]
. Then

AB =
[

1 0
1 0

] [
a b
c d

]
=

[
a b
a b

]
=

[
0 0
0 0

]
provided a = b = 0, c = 0 or 1, and d = 0 or 1. Thus there are four such
matrices, [

0 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
1 0

]
, and

[
0 0
1 1

]
.

Section 2.2, Graph Theory, which can be covered at this time, uses mate-
rial from this section.
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Preview of an Application

Graph Theory (Section 2.2)
In recent years, the need to solve problems dealing with communication among
individuals, computers, and organizations has grown at an unprecedented rate.
As an example, note the explosive growth of the Internet and the promises of
using it to interact with all types of media. Graph theory is an area of applied
mathematics that deals with problems such as this one:

Consider a local area network consisting of six users denoted by P1, P2,

. . . , P6. We say that Pi has “access” to Pj if Pi can directly send a message
to Pj . On the other hand, Pi may not be able to send a message directly to
Pk , but can send it to Pj , who will then send it to Pk . In this way we say that
Pi has “2-stage access” to Pk . In a similar way, we speak of “r -stage access.”
We may describe the access relation in the network shown in Figure 1.6 by
defining the 6× 6 matrix A = [

ai j
]
, where ai j = 1 if Pi has access to Pj and

0 otherwise. Thus A may be

Figure 1.6 �

P1

P2

P3

P4

P5

P6

A =



P1 P2 P3 P4 P5 P6

P1 0 0 0 0 1 0
P2 0 0 0 0 1 0
P3 1 1 0 0 1 1
P4 0 1 0 0 1 0
P5 0 0 0 0 0 1
P6 0 0 0 1 0 0

.

Using the matrix A and the techniques from graph theory discussed in
Section 2.2, we can determine the number of ways that Pi has r -stage access
to Pk , where r = 1, 2, . . . . Many other problems involving communications
can be solved using graph theory.

The matrix A above is indeed a bit matrix, but in this situation A is best
considered as a matrix in base 10, as will be shown in Section 2.2.
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Key Terms
Properties of matrix addition Properties of matrix multiplication Properties of transpose
Additive identity or zero matrix Identity matrix Symmetric matrix
Additive inverse or negative of a matrix Powers of a matrix Skew symmetric matrix

1.4 Exercises
1. Verify Theorem 1.1 for

A =
[

1 2 −2
3 4 5

]
, B =

[
2 0 1
3 −2 5

]
,

and

C =
[−4 −6 1

2 3 0

]
.

2. Verify (a) of Theorem 1.2 for

A =
[

1 3
2 −1

]
, B =

[−1 3 2
1 −3 4

]
,

and

C =
1 0

3 −1
1 2

 .

3. Verify (b) of Theorem 1.2 for

A =
[

1 −3
−3 4

]
, B =

[
2 −3 2
3 −1 −2

]
,

and

C =
[

0 1 2
1 3 −2

]
.

4. Verify (a), (b), and (c) of Theorem 1.3 for r = 6,
s = −2, and

A =
[

4 2
1 −3

]
, B =

[
0 2
−4 3

]
.

5. Verify (d) of Theorem 1.3 for r = −3 and

A =
[

1 3
2 −1

]
, B =

[−1 3 2
1 −3 4

]
.

6. Verify (b) and (d) of Theorem 1.4 for r = −4 and

A =
[

1 3 2
2 1 −3

]
, B =

[
4 2 −1
−2 1 5

]
.

7. Verify (c) of Theorem 1.4 for

A =
[

1 3 2
2 1 −3

]
, B =

3 −1
2 4
1 2

 .

In Exercises 8 and 9, let

A =
[

2 1 −2
3 2 5

]
, B =

2 −1
3 4
1 −2

 ,

C =
 2 1 3
−1 2 4

3 1 0

 , D =
[

2 −1
−3 2

]
,

E =
 1 1 2

2 −1 3
−3 2 −1

 , and F =
[

1 0
2 −3

]
.

8. If possible, compute:

(a) (AB)T (b) BT AT (c) AT BT

(d) B BT (e) BT B

9. If possible, compute:

(a) (3C − 2E)T B (b) AT (D + F)

(c) BT C + A (d) (2E)AT

(e) (BT + A)C

10. If

A =
[−2 3

2 −3

]
and B =

[
3 6
2 4

]
,

show that AB = O .

11. If

A =
[−2 3

2 −3

]
, B =

[−1 3
2 0

]
,

and

C =
[−4 −3

0 −4

]
,

show that AB = AC .

12. If A =
[

0 1
1 0

]
, show that A2 = I2.

13. Let A =
[

4 2
1 3

]
. Find

(a) A2 + 3A

(b) 2A3 + 3A2 + 4A + 5I2

14. Let A =
[

1 −1
2 3

]
. Find

(a) A2 − 2A

(b) 3A3 − 2A2 + 5A − 4I2

15. Determine a scalar r such that Ax = rx, where

A =
[

2 1
1 2

]
and x =

[
1
1

]
.

16. Determine a constant k such that (k A)T (k A) = 1, where

A =
−2

1
−1

 .

Is there more than one value of k that could be used?
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17. Let

A =
[−3 2 1

4 5 0

]
and a j = col j (A), j = 1, 2, 3. Verify that

AT A =
a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3

a3 · a1 a3 · a2 a3 · a3



=
aT

1 a1 aT
1 a2 aT

1 a3

aT
2 a1 aT

2 a2 aT
2 a3

aT
3 a1 aT

3 a2 aT
3 a3

 .

Exercises 18 through 21 deal with Markov chains, an area
that will be studied in greater detail in Section 2.5.

18. Suppose that the matrix A in Example 9 is

A =
 1

3
2
5

2
3

3
5

 and x0 =
 2

3

1
3

 .

(a) Find the distribution of the market after 1 year.

(b) Find the stable distribution of the market.

19. Consider two quick food companies, M and N. Each
year, company M keeps 1

3 of its customers, while 2
3

switch to N. Each year, N keeps 1
2 of its customers,

while 1
2 switch to M. Suppose that the initial distribution

of the market is given by

x0 =
 1

3

2
3

 .

(a) Find the distribution of the market after 1 year.

(b) Find the stable distribution of the market.

20. Suppose that in Example 9 there were three rival
companies R, S, and T so that the pattern of customer
retention and switching is given by the information in
the matrix A where

A =


R S T
1
3

1
2

1
4

2
3

1
4

1
2

0 1
4

1
4


R

S

T

(a) If the initial market distribution is given by

x0 =


1
3

1
3

1
3

 ,

then determine the market distribution after 1 year;
after 2 years.

(b) Show that the stable market distribution is given by

x =


21
53

24
53

8
53

 .

(c) Which company R, S, or T will gain the most
market share over a long period of time (assuming
that the retention and switching patterns remain the
same)? Approximately what percent of the market
was gained by this company?

21. Suppose that in Exercise 20 the matrix A was given by

A =


R S T

0.4 0 0.4
0 0.5 0.4

0.6 0.5 0.2

 R
S
T

(a) If the initial market distribution is given by

x0 =


1
3

1
3

1
3

 ,

then determine the market distribution after 1 year;
after 2 years.

(b) Show that the stable market distribution is given by

x =


10
37

12
37

15
37

 .

(c) Which company R, S, or T will gain the most
market share over a long period of time (assuming
that the retention and switching patterns remain the
same)? Approximately what percent of the market
was gained by this company?

Exercises 22 through 25 involve bit matrices.

22. If bit matrix A =
[

1 1
1 1

]
, show that A2 = O .

23. If bit matrix A =
[

1 1
0 1

]
, show that A2 = I2.

24. Let A =
[

0 1
0 1

]
be a bit matrix. Find

(a) A2 − A (b) A3 + A2 + A

25. Let A =
[

0 0
1 1

]
be a bit matrix. Find

(a) A2 + A (b) A4 + A3 + A2
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Theoretical Exercises
T.1. Prove properties (b) and (d) of Theorem 1.1.

T.2. If A = [
ai j

]
is a 2× 3 matrix, B = [

bi j

]
is a 3× 4

matrix, and C = [
ci j

]
is a 4× 3 matrix, show that

A(BC) = (AB)C .

T.3. Prove properties (b) and (c) of Theorem 1.2.

T.4. If A is an m × n matrix, show that

Im A = AIn = A.

T.5. Let p and q be nonnegative integers and let A be a
square matrix. Show that

Ap Aq = Ap+q and (Ap)q = Apq .

T.6. If AB = B A, and p is a nonnegative integer, show that

(AB)p = Ap B p.

T.7. Show that if A and B are n × n diagonal matrices,
then AB = B A.

T.8. Find a 2× 2 matrix B �= O and B �= I2 such that
AB = B A, where

A =
[

1 2
2 1

]
.

How many such matrices B are there?

T.9. Find a 2× 2 matrix B �= O and B �= I2 such that
AB = B A, where

A =
[

1 2
0 1

]
.

How many such matrices B are there?

T.10. Let A =
[

cos θ sin θ

− sin θ cos θ

]
.

(a) Determine a simple expression for A2.

(b) Determine a simple expression for A3.

(c) Conjecture the form of a simple expression for Ak ,
k a positive integer.

(d) Prove or disprove your conjecture in part (c).

T.11. If p is a nonnegative integer and c is a scalar, show that

(cA)p = cp Ap.

T.12. Prove Theorem 1.3.

T.13. Show that (−1)A = −A.

T.14. Complete the proof of Theorem 1.4.

T.15. Show that (A − B)T = AT − BT .

T.16. (a) Show that (A2)T = (AT )2.

(b) Show that (A3)T = (AT )3.

(c) Prove or disprove that, for k = 4, 5, . . . ,

(Ak)T = (AT )k .

T.17. Show that a square matrix A is symmetric if and only
if ai j = a ji for all i , j .

T.18. Show that if A is symmetric, then AT is symmetric.

T.19. Let A be an n × n matrix. Show that if Ax = 0 for all
n × 1 matrices x, then A = O .

T.20. Let A be an n × n matrix. Show that if Ax = x for all
n × 1 matrices x, then A = In .

T.21. Show that if AAT = O , then A = O .

T.22. Show that if A is a symmetric matrix, then Ak , k = 2,
3, . . . , is symmetric.

T.23. Let A and B be symmetric matrices.
(a) Show that A + B is symmetric.

(b) Show that AB is symmetric if and only if
AB = B A.

T.24. A matrix A = [
ai j

]
is called skew symmetric if

AT = −A. Show that A is skew symmetric if and only
if ai j = −a ji for all i , j .

T.25. Describe all skew symmetric scalar matrices. (See
Section 1.2 for the definition of scalar matrix.)

T.26. If A is an n × n matrix, show that AAT and AT A are
symmetric.

T.27. If A is an n × n matrix, show that
(a) A + AT is symmetric.

(b) A − AT is skew symmetric.

T.28. Show that if A is an n × n matrix, then A can be
written uniquely as A = S + K , where S is symmetric
and K is skew symmetric.

T.29. Show that if A is an n × n scalar matrix, then A = r In

for some real number r .

T.30. Show that I T
n = In .

T.31. Let A be an m × n matrix. Show that if r A = O , then
r = 0 or A = O .

T.32. Show that if Ax = b is a linear system that has more
than one solution, then it has infinitely many solutions.
(Hint: If u1 and u2 are solutions, consider
w = ru1 + su2, where r + s = 1.)

T.33. Determine all 2× 2 matrices A such that AB = B A
for any 2× 2 matrix B.

T.34. If A is a skew symmetric matrix, what type of matrix
is AT ? Justify your answer.

T.35. What type of matrix is a linear combination of
symmetric matrices? (See Section 1.3.) Justify your
answer.

T.36. What type of matrix is a linear combination of scalar
matrices? (See Section 1.3.) Justify your answer.

T.37. Let A = [
ai j

]
be the n × n matrix defined by aii = r

and ai j = 0 if i �= j . Show that if B is any n × n
matrix, then AB = r B.
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T.38. If A is any m × n bit matrix, show that −A = A.

T.39. Determine all 2× 2 bit matrices A so that A2 = O .

T.40. Determine all 2× 2 bit matrices A so that A2 = I2.

MATLAB Exercises
In order to use MATLAB in this section, you should first have
read Chapter 12 through Section 12.3.

ML.1. Use MATLAB to find the smallest positive integer k
in each of the following cases. (See also Exercise
12.)

(a) Ak = I3 for A =
0 0 1

1 0 0
0 1 0



(b) Ak = A for A =


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0


ML.2. Use MATLAB to display the matrix A in each of the

following cases. Find the smallest value of k such
that Ak is a zero matrix. Here tril, ones, triu, fix,
and rand are MATLAB commands. (To see a
description, use help.)
(a) A = tril(ones(5),−1)

(b) A = triu(fix(10 ∗ rand(7)), 2)

ML.3. Let A =
 1 −1 0

0 1 −1
−1 0 1

. Using command

polyvalm in MATLAB, compute the following
matrix polynomials:
(a) A4 − A3 + A2 + 2I3 (b) A3 − 3A2 + 3A

ML.4. Let A =
0.1 0.3 0.6

0.2 0.2 0.6
0.3 0.3 0.4

. Using MATLAB,

compute each of the following matrix expressions:
(a) (A2 − 7A)(A + 3I3).

(b) (A − I3)
2 + (A3 + A).

(c) Look at the sequence A, A2, A3, . . . , A8, . . . .
Does it appear to be converging to a matrix? If
so, to what matrix?

ML.5. Let A =
1 1

2

0 1
3

. Use MATLAB to compute

members of the sequence A, A2, A3, . . . , Ak , . . . .
Write a description of the behavior of this matrix
sequence.

ML.6. Let A =
 1

2
1
3

0 − 1
5

. Repeat Exercise ML.5.

ML.7. Let A =
 1 −2 1
−1 1 2

0 2 1

. Use MATLAB to do the

following:

(a) Compute AT A and AAT . Are they equal?

(b) Compute B = A + AT and C = A − AT . Show
that B is symmetric and C is skew symmetric.
(See Exercise T.24.)

(c) Determine a relationship between B + C and A.

Exercises ML.8 through ML.11 use bit matrices and the
supplemental instructional commands described in Section
12.9.

ML.8. (a) Use binrand to generate a 3× 3 bit matrix B.

(b) Use binadd to compute B + B and B + B + B.

(c) If B were added to itself n times, what would be
the result? Explain your answer.

ML.9. Let B = triu(ones(3)). Determine k so that
Bk = I3.

ML.10. Let B = triu(ones(4)). Determine k so that
Bk = I4.

ML.11. Let B = triu(ones(5)). Determine k so that
Bk = I5.

1.5 MATRIX TRANSFORMATIONS
In Section 1.2 we introduced the notation Rn for the set of all n-vectors with
real entries. Thus, R2 denotes the set of all 2-vectors and R3 denotes the
set of all 3-vectors. It is convenient to represent the elements of R2 and R3

geometrically as directed line segments in a rectangular coordinate system.‡

Our approach in this section is intuitive and will enable us to present some
interesting geometric applications in the next section (at this early stage of the
course). We return in Section 3.1 to a careful and precise study of 2-vectors
and 3-vectors.

‡You have undoubtedly seen rectangular coordinate systems in your precalculus or calculus
courses.




